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Preface

Eurocrypt 2017, the 36th annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, was held in Paris, France, from April 30 to May
4, 2017. The conference was sponsored by the International Association for Crypto-
logic Research (IACR). Michel Abdalla (ENS, France) was responsible for the local
organization. He was supported by a local organizing team consisting of David
Pointcheval (ENS, France), Emmanuel Prouff (Morpho, France), Fabrice Benhamouda
(ENS, France), Pierre-Alain Dupoint (ENS, France), and Tancrède Lepoint (SRI
International). We are indebted to them for their support and smooth collaboration.

The conference program followed the now established parallel track system where
the works of the authors were presented in two concurrently running tracks. Only the
invited talks spanned over both tracks.

We received a total of 264 submissions. Each submission was anonymized for the
reviewing process and was assigned to at least three of the 56 Program Committee
members. Submissions co-authored by committee members were assigned to at least four
members. Committee members were allowed to submit at most one paper, or two if both
were co-authored. The reviewing process included a first-round notification followed by a
rebuttal for papers that made it to the second round. After extensive deliberations the
Program Committee accepted 67 papers. The revised versions of these papers are included
in these three-volume proceedings, organized topically within their respective track.

The committee decided to give the Best Paper Award to the paper “Scrypt Is Max-
imally Memory-Hard” by Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin,
and Stefano Tessaro. The two runners-up to the award, “Computation of a 768-bit Prime
Field Discrete Logarithm,” by Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra,
Christine Priplata, and Colin Stahlke, and “Short Stickelberger Class Relations and
Application to Ideal-SVP,” by Ronald Cramer, Léo Ducas, and Benjamin Wesolowski,
received honorable mentions. All three papers received invitations for the Journal of
Cryptology.

The program also included invited talks by Gilles Barthe, titled “Automated
Proof for Cryptography,” and by Nigel Smart, titled “Living Between the Ideal and
Real Worlds.”

We would like to thank all the authors who submitted papers. We know that the
Program Committee’s decisions, especially rejections of very good papers that did not
find a slot in the sparse number of accepted papers, can be very disappointing. We
sincerely hope that your works eventually get the attention they deserve.

We are also indebted to the Program Committee members and all external reviewers
for their voluntary work, especially since the newly established and unified page limits
and the increasing number of submissions induce quite a workload. It has been an
honor to work with everyone. The committee’s work was tremendously simplified by
Shai Halevi’s submission software and his support, including running the service on
IACR servers.



Finally, we thank everyone else —speakers, session chairs, and rump session chairs
— for their contribution to the program of Eurocrypt 2017. We would also like to thank
Thales, NXP, Huawei, Microsoft Research, Rambus, ANSSI, IBM, Orange, Safran,
Oberthur Technologies, CryptoExperts, and CEA Tech for their generous support.

May 2017 Jean-Sébastien Coron
Jesper Buus Nielsen
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Abstract. Functional encryption (FE) has emerged as an outstanding
concept. By now, we know that beyond the immediate application to
computation over encrypted data, variants with succinct ciphertexts are
so powerful that they yield the full might of indistinguishability obfus-
cation (IO). Understanding how, and under which assumptions, such
succinct schemes can be constructed has become a grand challenge of
current research in cryptography. Whereas the first schemes were based
themselves on IO, recent progress has produced constructions based on
constant-degree graded encodings. Still, our comprehension of such graded
encodings remains limited, as the instantiations given so far have exhib-
ited different vulnerabilities.

Our main result is that, assuming LWE, black-box constructions of
sufficiently succinct FE schemes from constant-degree graded encodings
can be transformed to rely on a much better-understood object — bilin-
ear groups. In particular, under an über assumption on bilinear groups,
such constructions imply IO in the plain model. The result demonstrates
that the exact level of ciphertext succinctness of FE schemes is of major
importance. In particular, we draw a fine line between known FE con-
structions from constant-degree graded encodings, which just fall short
of the required succinctness, and the holy grail of basing IO on better-
understood assumptions.

In the heart of our result, are new techniques for removing ideal graded
encoding oracles from FE constructions. Complementing the result, for
weaker ideal models, namely the generic group model and the random
oracle model, we show a transformation from collusion-resistant FE in
either of the two models directly to FE (and IO) in the plain model,
without assuming bilinear groups.
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1 Introduction

Functional Encryption (FE) is a fascinating object. It enables fine-grained con-
trol of encrypted data, by allowing users to learn only specific functions of the
data. This ability is captured trough the notion of function keys. A function key
SKf , associated with a function f , allows to partially decrypt a ciphertext CTx

encrypting an input x in a way that reveals f(x) and nothing else.
A salient aspect of FE schemes is their ciphertext succinctness. Focusing on

the setting of (indistinguishability-based) single-key FE where only one func-
tion key SKf is supported, we say that an FE scheme is weakly succinct if the
ciphertext size scales sub-linearly in the size of the circuit f ; namely,1

|CTx| ≤ |f |γ · poly(|x|), for some constant compression factor γ < 1.

While non-succinct single-key FE schemes (where we allow the size of ciphertexts
to grow polynomially with |f |) are equivalent to public-key encryption (or just
one-way functions, in the secret-key setting) [28,41], weakly succinct schemes
are already known to be extremely strong. In particular, subexponentially-secure
weakly-succinct FE for functions in NC1 implies indistinguishability obfuscation
(IO) [1,6,11], and has far reaching implications in cryptography and beyond (e.g.,
[7,10,18,23,24,42]).2

Thus, understanding how, and under which assumptions, weakly-succinct
FE can be constructed has become a central question in cryptographic research.
While schemes for Boolean functions in NC1 have been constructed from LWE
[27], the existence of such FE scheme for non-Boolean functions (which is
required for the above strong implications) is still not well-founded, and has
been the subject of a substantial body of work. The first construction of gen-
eral purpose FE that achieves the required succinctness relied itself on IO [24].
Subsequent constructions were based on the algebraic framework of multilinear
graded encodings [22]. Roughly speaking, this framework extends the traditional
concept of encoding in the exponent in groups. It allows encoding values in a field
(or ring), evaluating polynomials of a certain bounded degree d over the encoded
values, and testing whether the result is zero.

Based on graded encodings of polynomial degree Garg, Gentry, Halevi, and
Zhandry [25] constructed unbounded-collusion FE, which in turn is known to
lead to weakly succinct FE [2,11]. Starting from the work of Lin [31], several
works [3,32,35] have shown that assuming also pseudorandom generators with
constant locality, weakly-succinct FE can be constructed based on constant-
degree graded encodings under simple assumptions like asymmetric DDH. How-
ever, these constructions require constant degree d ≥ 5.

1 Here weak succinctness is in contrast to full succintness, where the ciphertext size
does not depend at all on the function size.

2 Formally, [1,11] require that not only the ciphertext is succinct, but also the encryp-
tion circuit itself. This difference can be bridged assuming LWE [34], and for sim-
plicity is ignored in this introduction. Our results will anyhow rely on LWE.
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Despite extensive efforts, our understanding of graded encodings of any
degree larger than two is quite limited. Known instantiations are all based
on little-understood lattice problems, and have exhibited different vulnerabili-
ties [15,20–22,38]. In contrast, bilinear group encodings [14,29], akin to degree-2
graded encodings, have essentially different instantiations based on elliptic curve
groups, which are by now quite well understood and considered standard. Bridg-
ing the gap between degree 2 and degree d > 2 is a great challenge.

Our Main Result in a Nutshell: Size Matters. We show that the exact
level of succinctness in FE schemes has a major impact on the latter challenge.
Roughly speaking, we prove that black-box constructions [40] of weakly-succinct
FE from degree-d graded encodings, with compression factor γ < 1

d , can be trans-
formed to rely only on bilinear groups. Specifically, assuming LWE 3 and for any
constant ε, starting from 1

d+ε -succinct FE in the ideal degree-d graded encoding
model, we construct weakly-succinct FE in the ideal bilinear model.

The ideal graded encoding model generalizes the classical generic-group
model [43]. In this model, the construction as well as the adversary perform
all graded encoding operations through an ideal oracle, without access to an
explicit representation of encoded elements. Having this ideal model as a start-
ing point allows capturing a large class of constructions and assumptions, as it
models perfectly secure graded encodings. Indeed, the FE schemes in [3,31,32,35]
can be constructed and proven secure in this model.

The resulting construction from ideal bilinear encodings can further be
instantiated in the plain model using existing bilinear groups, and proven secure
under an über assumption on bilinear groups [13,16]. In particular, assuming
also subexponential-security, it implies IO in the plain model.

How Close are We to IO from Bilinear Maps? Existing weakly-succinct
FE schemes in the ideal constant-degree model [3,31,32,35] have a compression
factor γ = C/d, for some absolute constant C > 1. Thus, our result draws a fine
line that separates known FE constructions based on constant-degree graded
encodings and constructions that would already take us to the promised land of
IO based on much better-understood mathematical objects. Crossing this line
may very well require a new set of techniques. Indeed, one may also interpret
our result as a negative one, which puts a barrier on black-box constructions of
FE from graded encodings.

Discussion: Black-Box vs Non-Black-Box Constructions. For IO schemes
(rather than FE), a combination of recent works [12,39] demonstrates that black-
box constructions from constant-degree graded encodings are already very pow-
erful. They show that any IO construction relative to a constant-degree oracle
can be converted to a construction in the plain model (under standard assump-
tions, like DDH). Since weakly-succinct FE schemes imply IO, we may be lead to
think that weakly-succinct black-box constructions of FE from constant-degree

3 More precisely, we need to assume the hardness of LWE with subexponential
modulus-to-noise ratio. For simplicity, we ignore the parameters of LWE in this
introduction; see Sect. 4 for more details.
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graded encodings would already imply IO in the plain model from standard
assumptions. Interestingly, this is not the case.

The crucial point is that the known transformations from FE to IO [1,11]
are non-black-box, they use the code of the underlying FE scheme, and thus do
not relativize with respect to graded encoding oracle. That is, we do not know
how to move from an FE scheme based on graded encodings to an IO scheme
that uses graded encodings in a black-box way. Indeed, if there existed such a
black-box transformation between FE and IO, then combining [12,31,35,36,39],
IO in the plain model could be constructed from standard assumptions.

Instead, we show how to directly remove constant-degree oracles from FE.
Our transformation relies on new techniques that are rather different than those
used in the above works for removing such oracles from IO.

1.1 Our Results in More Detail

We now describe our results in further detail. We start by describing the ideal
graded encoding model and the ideal bilinear encoding model more precisely.

The Ideal Graded Encoding Model. A graded encoding [22] is an encoding
scheme for elements of some field.4 The encoding supports a restricted set of
homomorphic operations that allow one to evaluate certain polynomials over
the encoded field elements and test whether these polynomials evaluate to zero
or not. Every field element is encoded with respect to a label (sometimes called
the level of the encoding). For a given sequence of encodings, their labels control
which polynomials are valid and can be evaluated over the encodings. The degree
of the graded encoding is the maximal degree of a polynomial that is valid with
respect to any sequence of labels.

In the ideal graded encoding model, explicit encodings are replaced by access
to an oracle that records the encoded field elements and provides an interface
to perform operations over the elements. Different formalizations of such ideal
graded encoding oracles exist in the literature (e.g. [4,5,17,39]) and differ in
details. In this work, we follow the model of Pass and shelat in [39].

The ideal graded encoding oracle M is specified by a field F and a validity
predicate V operating on a polynomial and labels taken from a set L. The oracle
M = (F, V ) provides two functions — encoding and zero-testing.

Encoding: Given a field element ξ ∈ F and a label � ∈ L the oracle M samples
a sufficiently long random string r to create a handle h = (r, �). It records the
pair (h, ξ) associating the handle with the encoded field element.

Zero-testing: a query to M consists of a polynomial p and a sequence of han-
dles h1, · · · , hm where hi encodes the field elements ξi relative to label �i.
M tests if the polynomial and the labels satisfy the validity predicate and
whether the polynomial vanishes on the corresponding field elements. That
is, M returns true if and only if V (p, �1, · · · �m) = true and p(ξ1, · · · ξm) = 0.

4 For ease of exposition, we consider graded encodings over fields. Our results can also
be obtained with any commutative ring in which it is computationally hard to find
non-unit elements.
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Like in [39], we restrict attention to well-formed validity predicates. For such
predicates, a polynomial p is valid with respect to labels �1, · · · , �m, if and only
if every monomial Φ in p is valid with respect to the labels of the handles that Φ
acts on. Indeed, existing graded encodings all consider validity predicates that
are well-formed.5

The Ideal Bilinear Encoding Model. The ideal bilinear encoding model
corresponds to the ideal graded encoding model where valid polynomials are of
degree at most two. We note that in the ideal graded encoding model described
above, encoding is a randomized operation. In particular, encoding the same
element and label (ξ, �) twice gives back two different handles. In contrast, tra-
ditional instantiations of the ideal bilinear encoding model are based on bilinear
pairing groups (such as elliptic curve groups) where the encoding is a deter-
ministic function. We can naturally capture such instantiations, by augmenting
the ideal bilinear encoding model to use a unique handle for every pair of field
element and label (as done for instance in [4,35,44]).

The Main Result. Our main result concerns FE schemes in the ideal graded
encoding model. In such FE schemes, all algorithms (setup, key derivation,
encryption, and decryption), as well as all adversaries against the scheme, have
access to a graded encoding oracle M. We show:

Theorem 1 (Informal). Assume the hardness of LWE. For any constants d ∈
N and γ ≤ 1

d , any γ-succinct secret-key FE scheme for P/poly, in the ideal
degree-d graded encoding model, can be transformed into a weakly-succinct public-
key FE scheme for P/poly in the ideal bilinear encoding model.

IO in the Plain Model under an Über Assumption. Our main transfor-
mation results in a weakly-succinct public-key FE scheme in the ideal bilinear
encoding model. By instantiating the ideal bilinear encoding oracle with concrete
bilinear pairing groups, we get a corresponding FE scheme in the plain model.
For security to hold, we make an über assumption [13] on the bilinear groups.
An über assumption essentially says that two encoded sequences of elements
in the plain model can be distinguished only if they are also distinguishable in
the ideal model. There are no known attacks on the über security of existing
instantiations of bilinear pairing groups.

Since weakly-succinct public-key FE with subexponential security in the plain
model implies IO we deduce the following corollary

Corollary 1 (Informal). Assume subexponential hardness of LWE and bilinear
groups with subexponential über security. For any constants d ∈ N, γ < 1

d , any
subexponentially-secure, γ-succinct, secret-key FE for P/poly in the ideal degree-
d graded encoding model, can be transformed into an IO scheme for P/poly in
the plain model.
5 In the body, we make another structural requirement on validity predicates called

decomposability. This requirement is somewhat more technical, but is also satisfied by
all known formulations of graded encodings. For the simplified technical exposition
in this introduction it can be ignored. See further details in Definition 4.
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FE in Weaker Ideal Models. We also consider FE schemes in ideal models
that are weaker than the ideal bilinear encoding model. Specifically, we consider
the generic-group model (that corresponds to the ideal degree-1 graded encoding
model) and the random-oracle model. We give transformations from FE in these
models directly to FE in the plain model without relying on bilinear encodings.

In the transformation given by Theorem 1, from the ideal constant-degree
graded encoding model to the ideal bilinear encoding model, we considered
the notion of single-key weakly succinct FE. In contrast, our transformations
from the generic-group model and the random-oracle model to the plain model
require that we start with a stronger notion of collusion-resistant FE. Collusion-
resistance requires security in the presence of an unbounded number of functional
keys. Crucially, ciphertexts are required not to grow with the number of keys
(but are allowed to grow polynomially in the size of the evaluated functions).

Collusion-resistant FE is known to imply weakly-succinct FE through a
black-box transformation [2,11]. In the converse direction, only a non-black-
box transformation is known [26,30], and therefore we cannot apply it to ideal
model constructions of FE.

Theorem 2 (Informal). Assume the hardness of LWE. Any collusion-resistant
secret-key FE scheme in the generic-group model, or in the random-oracle model,
can be transformed into a collusion-resistant public-key FE scheme in the plain
model.

1.2 Our Techniques

We next give an overview of the main ideas behind our degree-reduction trans-
formation given by Theorem 1.

Can We Adopt Techniques from IO? As already mentioned, we do not
know how to transform FE schemes into IO schemes in a black-box way. Thus,
we cannot rely directly on existing results that remove ideal oracles from IO [39].
Furthermore, trying to import ideas from these results in the IO setting to the
setting of FE encounters some inherent difficulties, which we now explain.

Roughly speaking, removing ideal oracles from IO is done as follows. Starting
with a scheme in an ideal oracle model, we let the obfuscator emulate the oracle
by itself and publish, together with the obfuscated circuit, some partial view of
the self-emulated oracle. This partial view is on one hand, sufficient to preserve
the functionality of the obfuscated circuit on most inputs, and on the other hand,
does not compromise security. The partial view is obtained by evaluating the
obfuscation on many random inputs (consistently with the self-emulated oracle),
observing how evaluation interacts with the oracle, and performing a certain
learning process. Arguing that the published partial view does not compromise
security crucially relies on the fact that evaluating the obfuscated program is a
public procedure that does not share any secret state with the obfuscator.

The setting of FE, however, is somewhat more complicated. Here rather than
an evaluator we have a decryptor that given a function key SKf and ciphertext
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CT encrypting x, should be able to compute f(x). In contrast to the evaluator in
obfuscation, the state of the decryptor is not publicly samplable. Indeed, gener-
ating function keys SKf for different functions requires knowing a master secret
key. Accordingly, it is not clear how to follow the same approach as before.

XIO instead of IO. Nevertheless, we observe that there is a way to reduce
the problem to a setting much more similar to IO. Specifically, there exists [9] a
black-box transformation from FE to a weaker version of IO called XIO. XIO [33],
which stands for exponentially-efficient IO, allows the obfuscation and evaluation
algorithms to run in exponential time 2O(n) in the input size n, and only requires
that the size of an obfuscation ˜C of a circuit C is slightly subexponenetial in n:

| ˜C| ≤ 2γn · poly(|C|) for some constant compression factor γ < 1.

Despite this inherent inefficiency, [33] show that XIO for logarithmic-size inputs
implies IO assuming subexponential hardness of LWE. A natural direction is
thus to try and apply the techniques used to remove oracles from IO to remove
the same oracles also from XIO; indeed, if this can be done, such oracles can
also be removed from FE, due to the black-box transformation between the two.

This, again, does not work as is. The issue is that the transformations remov-
ing degree-d graded encoding oracle from IO may blow up the size of the original
obfuscation from | ˜C| in the oracle model to roughly | ˜C|2d in the plain model.
However, the known black-box construction of XIO from FE [9] is not suffi-
ciently compressing to account for this blowup. Even starting from FE with
great compression, say γFE < d−10, the resulting XIO has a much worst com-
pression factor γXIO > 1/2. In particular, composing the two would result in a
useless plain model obfuscation of exponential size 2n·d.

Motivating our Solution. To understand our solution, let us first describe
an over-simplified candidate transformation for reducing XIO with constant-
degree graded encoding oracles to XIO with degree-1 oracles (akin to the generic-
group model). This transformation will suffer from the same size blowup of the
transformations mentioned above.

For simplicity of exposition, we first restrict attention to XIO schemes with
the following simple structure:

– Any obfuscated circuit ˜C consists of a set of handles h1, . . . , hm corresponding
to field elements ξ1, . . . , ξm encoded during obfuscation, under certain labels
�1, . . . , �m.

– Evaluation on any given input x consists of performing valid zero-tests over
the above handles, which are given by degree-d polynomials p1, . . . , pk.

A simple idea to reduce the degree-d oracle to a linear oracle is to change the
obfuscation algorithm so that it computes ahead of time the field elements ξΦ

corresponding to all valid degree-d monomials Φ(ξ1, . . . , ξm) =
∏

i∈[d] ξji
. Then,

rather than using the degree-d oracle, it uses the linear oracle to encode the field
elements ξΦ, and publishes the corresponding handles {hΦ}Φ. Evaluation is done
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in a straight forward manner by writing any zero-test polynomial p of degree d
as a linear function in the corresponding monomials

p(ξ1, · · · , ξm) =
∑

Φ

αΦΦ(ξ1, . . . , ξm),

and making the corresponding zero-test query Lp({hΦ}) :=
∑

Φ αΦhΦ to the
linear oracle.

Indeed, the transformation blows up the size of the obfuscated circuit from
roughly m, the number of encodings in the original obfuscation, to md, the
number of all possible monomials. While such a polynomial blowup is acceptable
in the context of IO, for XIO with compression d−1 ≤ γ < 1, it is devastating.

Key Idea: XIO in Decomposable Form. To overcome the above difficulty,
we observe that the known black-box construction of XIO from FE [9] has cer-
tain structural properties that we can exploit. At a very high level, it can be
decomposed into smaller pieces, so that instead of computing all monomials over
all the encodings created during obfuscation, we only need to consider a much
smaller subset of monomials. In this subset, each monomial only depends on a
few small pieces, and thus only on few encodings.

To be more concrete, we next give a high-level account of this construction.
To convey the idea in a simple setting of parameters, let us assume that we have
at our disposal an FE scheme that support an unbounded number of keys, rather
than a single key scheme, with the guarantee that the size of ciphertexts does
not grow with the number of keys. In this case, the XIO scheme in [9] works as
follows:

– To obfuscate a circuit C with n input bits, the scheme publishes a collection
of function keys {SKDτ

}τ for circuits Dτ , indexed by prefixes τ ∈ {0, 1}n/2

(will be specified shortly), and a collection of ciphertexts
{

CTρ‖C

}

ρ
, each

encrypting the circuit C and a suffix ρ ∈ {0, 1}n/2.
– Decrypting a ciphertext CTρ‖C with key SKDτ

reveals Dτ (ρ‖C) := C(τ, ρ).

The obfuscated circuit indeed has slightly subexponential size. It contains:

– 2n/2 function keys SKDτ
, each of size poly(|C|),

– 2n/2 ciphertexts CTρ‖C , each of size poly(|C|).
Going back to the ideal graded-encoding model, the FE key generation and

encryption algorithms use the ideal oracle to encode elements. Therefore, gen-
erating the obfuscation involves generating a set of k encodings hτ = {hτ,i}i∈[k]

for each secret key SKDτ
and a set of k encodings hρ = {hρ,i}i∈[k] for each

ciphertext CTρ‖C , for some k = poly(|C|). The crucial point is that now, evalu-
ating the obfuscation on a given input (τ, ρ) only involves the two small sets of
encodings hτ ,hρ. In particular, any zero-test made by the decryption algorithm
is a polynomial defined only over the underlying field elements ξτ = {ξτ,i}i∈[k]

and ξρ = {ξρ,i}i∈[k].
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This gives rise to the following degree reduction strategy. In the obfus-
cation, rather then precomputing all monomials in all encodings as before,
we precompute only the monomials corresponding to the different pieces
{

Φ(ξρ)
}

ρ,Φ
, {Φ(ξτ )}τ,Φ. Now, rather than representing zero-tests made by the

decryption algorithm as linear polynomials in these monomials, they can be
represented as quadratic polynomials

p(ξτ , ξρ) = Qp

(

{Φ(ξτ )}Φ ,
{

Φ(ξρ)
}

Φ

)

.

To support such quadratic zero tests, we resort to bilinear groups. We use the
bilinear encoding oracle to encode the values

{

Φ(ξρ)
}

ρ,Φ
, {Φ(ξτ )}τ,Φ, and pub-

lish the corresponding handles {hτ,Φ}τ,Φ , {hρ,Φ}ρ,Φ. Evaluation is done in a
straight forward manner by testing the quadratic polynomial Qp.

The key gain of this construction is that now the blowup is tolerable. Now,
each set of k encodings, blows up to kd, which is acceptable since k = poly(|C|)
is small (and not proportional to the size of the entire obfuscation as before,
which is exponential in n). In the body, we formulate a general product form
property for XIO schemes, which can be used as the starting point of the above-
described transformation; we further show that single-key FE schemes with 1

d+ε -
succinctness implies such XIO schemes.

A Closer Look. The above exposition is oversimplified. To actually fulfill our
strategy, we need to overcome two main challenges.

Challenge 1: Explicit Handles. The core idea described above assumes that
the obfuscation is simply given as an explicit list of handles, which may not
be the case starting from an arbitrary FE scheme. In particular, the obfuscator
may use the oracle M to produce a set of encodings, but not output them
explicitly; indeed, it can output an arbitrary string. In this case, we can no longer
apply the degree reduction technique, since we do not know which encodings
are actually contained in the obfuscation. Näıvely publishing all monomials in
all field elements ever encoded by the obfuscator may be insecure — some of
these encodings, which are never explicitly included in the obfuscation, may
leak information.

To handle XIO schemes constructed from general FE schemes, we need a way
to make any “implicit” handles explicit, without compromising security. Our idea
is to learn the significant handles that would later suffice for evaluation on most
inputs, and publish them explicitly. This idea is inspired by [19,36,39] and their
observation (already mentioned above) that in obfuscation, the evaluator’s view,
including all the handles it sees, is publicly and efficiently samplable.

Roughly speaking, the learning process involves evaluating the obfuscated
circuit on many random inputs and making explicit all handles involved in
these evaluations. When doing this näıvely, the number of such test evaluations
required to guarantee reasonable correctness is proportional to the number of
elements encoded by the obfuscator. This would result in a quadratic overhead in
the size of the obfuscation, which would again completely foil XIO compression.
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Avoiding the blowup requires a somewhat more sophisticated learning process
that once again exploits the local structure of the construction in [9].

The scheme resulting from the above learning process is only approximately
correct — the obfuscation with explicit handles errs on say 10% of the inputs.
We show that even such approximate XIO is sufficient for obtaining FE and IO
in the plain model (this step is described later in this overview).

Challenge 2: Invalid Monomials. Another main challenge is that it may
be insecure to publish encodings of all the monomials

{

Φ(ξρ)
}

ρ,Φ
, {Φ(ξτ )}τ,Φ.

The problem is that some products Φ(ξρ) · Φ′(ξτ ) may result in monomials that
would have been invalid in the degree-d ideal model. For example, Φ(ξρ) could
correspond to a degree-(d−2) monomial Φ. In the degree-d ideal model, it would
only be possible to multiply such a monomial by degree-2 monomials Φ′(ξτ ), and
zero test. In the the described new scheme, however, it can multiply monomials
Φ′(ξτ ) of degree 3, or even d, which might compromise security.

Our solution proceeds in two steps. First, we show how to properly preserve
validity by going to a more structured model of bilinear encodings that gener-
alizes asymmetric bilinear groups. In this model, every encoding contains one
of many labels and only pairs of encodings with valid labels can be multiplied.
We then encode the monomials

{

Φ(ξρ)
}

ρ,Φ
, {Φ(ξτ )}τ,Φ with appropriate labels

that preserve the information regarding the original set of labels. This guaran-
tees that the set of monomials that can be zero-tested in this model corresponds
exactly to the set of valid monomials in the constant-degree graded encoding
model we started from.

Second, we show how to transform any construction in this (more structured)
ideal model into one in the standard ideal bilinear encoding model (correspond-
ing to symmetric bilinear maps). At a very high-level, we develop a “secret-key
transformation” from asymmetric bilinear groups to symmetric bilinear groups.
The transformation allows anyone in the possession of a secret key to translate
encodings in the asymmetric setting to new encodings in the symmetric setting
in a manner that enforces the asymmetric structure.

From Approximately-Correct XIO back to FE. After applying all the
above steps, we obtain an approximately-correct XIO scheme in the ideal bilinear
encoding model. The only remaining step is going from such an XIO scheme
back to FE. The work of [34] showed how to construct FE from XIO with
perfect correctness, assuming in addition LWE. We modify their transformation
to construct FE starting directly from approximately-correct XIO. This is done
using appropriate Error Correcting Codes to accommodate for the correctness
errors from XIO.6 The transformation uses XIO as a black-box, and can thus be
performed in the ideal bilinear model.

Putting It All Together. Putting all pieces together, we finally obtain our
transformation from 1

d+ε -succinct FE in the constant-degree graded encoding

6 We note that existing transformations for removing errors from IO [12] do not work
for XIO. See Sect. 4 for details.
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model to weakly-succinct FE in the bilinear encoding model. To recap the struc-
ture of the transformation:

1. Start with a 1
d+ε -succinct (single-key) FE in the ideal constant-degree graded

encoding model.
2. Transform it into an XIO scheme in the ideal constant-degree graded encod-

ing model satisfying an appropriate decomposition property (which we call
product form).

3. Transform it into an approximate XIO scheme in the ideal bilinear encoding
model.

4. Use the resulting approximate XIO scheme and LWE to get a weakly-succinct
FE (still, in the ideal bilinear encoding model).

Instantiating the oracle in bilinear groups with über security gives a correspond-
ing construction in the plain model.

Organization. In Sect. 2, we define (oracle-aided) XIO, and introduce the
constant-degree oracles considered in this work. In Sect. 3, we show how to
transform XIO, in a certain product form, relative to constant-degree oracles
to approximate XIO relative to symmetric bilinear oracles. In Sect. 4, we explain
how to move from approximate XIO and LWE, to IO. Due to the space limit,
some of the details and proofs are omitted. These can be found in the full version
of this paper [8], where we additionally describe how to remove generic-group
oracles and random oracles from unbounded collusion FE schemes.

2 Preliminaries

2.1 XIO

We next formally define the notion of exponentially-efficient indistinguishability
obfuscation (XIO) for any collection of circuit classes C ⊆ Plog/poly, where
Plog/poly is the collection of all classes of polynomial-size circuits with loga-
rithmic size input. The definition extends the one in [33] by considering also
approximate correctness.

Definition 1 (Plog/poly). The collection Plog/poly includes all classes C =
{Cλ} for which there exists a constant c = c(C), such that the input of any
circuit C ∈ Cλ is bounded by c log λ and the size of C is bounded by λc.

Definition 2 (XIO [33]). A pair of algorithms xiO = (xiO.Obf, xiO.Eval) is an
exponentially-efficient indistinguishability obfuscator (XIO) for a collection of
circuit classes C = {C = {Cλ}} ⊆ Plog/poly if it satisfies:

– Functionality: for any C ∈ C, security parameter λ ∈ N, and C ∈ Cλ with
input size n,

Pr
xiO

x←{0,1}n

[xiO.Eval( ˜C, x) = C(x) : ˜C ← xiO.Obf(C, 1λ)] ≥ 1 − α(λ).

We say that xiO.Obf is correct if α(λ) ≤ negl(λ) and approximately-correct if
α(λ) ≤ 1/100.
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– Non-trivial Efficiency: there exists a constant γ < 1 and a fixed polynomial
poly(·), depending on the collection C (but not on any specific class C ∈ C),
such that for any class C ∈ C security parameter λ ∈ N, circuit C ∈ Cλ with
input length n, and input x ∈ {0, 1}n the running time of both xiO.Obf(C, 1λ)
and xiO.Eval( ˜C, x) is at most poly(2n, λ, |C|) and the size of the obfuscated
circuit ˜C is at most 2nγ · poly(|C|, λ). We call γ the compression factor, and
say that the scheme is γ-compressing.

– Indistinguishability: for any C = {Cλ} ∈ C and polynomial-size distin-
guisher D, there exists a negligible function μ(·) such that the following holds:
for all security parameters λ ∈ N, for any pair of circuits C0, C1 ∈ Cλ of the
same size and such that C0(x) = C1(x) for all inputs x,

∣

∣Pr
[D(xiO.Obf(C0, 1λ)) = 1

] − Pr
[D(xiO.Obf(C1, 1λ)) = 1

]∣

∣ ≤ μ(λ).

We further say that xiO.Obf is δ-secure, for some concrete negligible function
δ(·), if for all polynomial-size distinguishers the above indistinguishability gap
μ(λ) is smaller than δ(λ)Ω(1).

Remark 1 (Logarithmic Input). Indeed, for XIO to be useful, we must restrict
attention to circuit collections C ⊆ Plog/poly. This ensures that obfuscation
and evaluation are computable in time 2O(n) = poly(λ).

Remark 2 (Probabilistic xiO.Eval). Above, we allow the evaluation algorithm
xiO.Eval to be probabilistic. Throughout most of the paper, we restrict attention
to deterministic evaluation algorithms. This typically will simplify exposition
and is without loss of generality.

XIO with an Oracle. We say that an XIO scheme xiO = (xiO.Obf, xiO.Eval)
is constructed relative to an oracle O if the corresponding algorithms, as well
as the adversary, may access the oracle O. Namely, the obfuscation algorithm
xiO.ObfO(C, 1λ) and the evaluation algorithm xiO.EvalO( ˜C, x) are given oracle
access to O. In the security definition, the adversarial distinguisher DO also gets
access to the oracle.

2.2 The Ideal Graded Encoding Model

The ideal graded-encoding model we consider is inspired by previous generic
group and ideal graded-encoding models [5,17,37,43] and is closest to the model
of Pass and Shelat [39]. As in [39], we consider well-formed predicates that are
determined by the validity of monomials.

Definition 3 (Well-Formed Validity Predicate). V is well-formed if for
any d ∈ N and degree-d polynomial V (p, �1, . . . , �m) =

∧

i≤d,j1,...,ji∈[m], ρj1,...,ji
�=0

V ({�j1 , . . . , �ji
}); namely, p is valid relative to the labels �1, . . . , �m if every mono-

mial of p is valid relative to the corresponding multi-set of labels {�j1 , . . . , �ji
}.

We additionally consider the following decomposability requirement.
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Definition 4 (Decomposable Validity Predicate). V is decomposable if it
is well-formed and there exist a projection function Π and a two-input pred-
icate VΠ satisfying: For every two multisets A = {�1,1, . . . , �1,k1} and B =
{�2,1, . . . , �2,k2} of labels, the validity of their union is given by7

V (A � B) = VΠ(Π(A),Π(B)).

The arity of a decomposable predicate V is

Arity(V ) := max
A

|{Π(B) : VΠ(Π(A),Π(B)) = 1 }| ;

namely, it is the maximum number of projections Π(B) that satisfy the validity
predicate together with any given projection Π(A), where A and B are multisets
of labels.

Intuitively, a decomposable validity predicate has the property that any two
different pairs of multi-sets (A,B) 	= (A′, B′) share the same validity decision if
they have the same projection (Π(A),Π(B)) = (Π(A′),Π(B′)). In other words,
any information about the multi-sets beyond their projection does not matter.
In the literature, all known ideal graded encoding models consider decomposable
validity predicates with arity bounded by the degree (or even less). For instance,
in set-based graded encodings, the labels correspond to subsets of some fixed
universe U, and a set of labels {S1, . . . , Sk | Si ⊆ U} is valid if the sets are disjoint
and

⊎

Si = U. Therefore, we can define the projection of any A = {S1, . . . , Si}
to be Π(A) =

⊎

Si (or ⊥ if the sets are not disjoint), in which case the arity
is exactly one (indeed, for any Π(A) only U \ Π(A) may satisfy the induced
validity predicate).

We now formally define the ideal graded encoding model.

Definition 5 (Ideal Graded Encoding Oracle). The oracle MF,V is a state-
ful oracle, parameterized by a field F and a validity predicate V . The oracle
answers queries of two forms:

1. Encoding Queries: Given a field element ξ ∈ F and label �, the oracle
samples a uniformly random string r ← {0, 1}log |F|, returns the handle h =
(r, �), and stores (h, ξ).

2. Zero-Test Queries: Given a polynomial p ∈ F[v1, . . . , vm], and handles
h1, . . . , hm, the oracle does the following:
– For each i ∈ [m], obtains a tuple (hi, ξi) from the stored list. If no such

tuple exists, stops and returns false.
– From each hi = (ri, �i), obtains �i, and checks that V (p, �1, . . . , �m) = true

to verify the query is valid and if not, returns false.
– Performs a zero test, returning true if p(ξ1, . . . , ξm) = 0 and

falseotherwise.

7 For two multisets A = {a1, . . . , an} , B = {b1, . . . , bm}, their union A � B =
{a1, . . . , an, b1, . . . , bm} counts multiplicity; e.g., {1, 1} � {1, 2} = {1, 1, 1, 2}.
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An ideal graded encoding oracle M = {MFλ,Vλ
} is a collection of oracles

MFλ,Vλ
, one for each λ ∈ N, where |F| = 2Θ(λ).

The oracle M is said to be degree-d, if for every polynomial p of degree
deg(p) > d, and any label vector �, V (p, �) = false. We say that an oracle M is
decomposable if it has a decomposable validity predicate with bounded polynomial
arity poly(λ).

Remark 3. In some previous models (e.g., [39]), the ability to make encoding
queries is further restricted. The above definition does not enforce any such
restrictions. The results in this paper are presented in a public encoding model,
which allows anyone to encode at any time. Our results on removing generic
group oracle and random oracle from FE schemes can be extended to the model
of private encodings, and the same holds for our results on reducing the degree
of graded encoding oracles (Sect. 3), under certain mild assumptions. See the full
version [8] for more details.

3 Reducing Constant-Degree Oracles to Bilinear Oracles

We show that any XIO scheme with a constant-degree decomposable ideal oracle
can be transformed into an approximately-correct one with an ideal symmetric
bilinear oracle (analogous to symmetric bilinear groups), provided that the XIO
scheme is in a certain product form. We start by defining formally the notion of
XIO in product form and of a symmetric bilinear oracle.

Definition 6 (Product Collection). X = {Xn}n∈N
,Y = {Yn}n∈N

are said
to be a product collection if:

1. Equal-Size Partition: For any X,X ′ ∈ Xn and Y, Y ′ ∈ Yn:

|X| = |X ′|,X ∩ X ′ = ∅ |Y | = |Y ′|, Y ∩ Y ′ = ∅,

2. Product Form: let Xn =
⊎

X∈Xn
X,Y n =

⊎

Y ∈Yn
Y then the input space

{0, 1}n factors:
{0, 1}n ∼= Xn × Y n.

Definition 7 (XIO in Product Form). We say that an XIO scheme xiO =
(xiO.ObfO, xiO.EvalO), relative to oracle O, for a collection of circuit classes C,
is in (X ,Y)-product form for a product collection (X ,Y) if:

– The obfuscation algorithm xiO.ObfO factors into two algorithms
(xiO.ObfOX , xiO.ObfOY ), such that for any circuit C ∈ C, xiO.ObfO(C, 1λ; r),
outputs
({

C̃X ← xiO.ObfOX (C, X, 1λ; r)
}

X∈Xn

,
{

C̃Y ← xiO.ObfOY (C, Y, 1λ; r)
}

Y ∈Yn

)
,

and all executions may use joint randomness r.
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– There is an evaluation algorithm xiO.EvalOX ,Y such that for any (X,Y ) ∈ Xn ×
Yn,

xiO.EvalOX ,Y( ˜CX , ˜CY ) =
(

xiO.EvalO( ˜C, (x, y))
)

(x,y)∈X×Y
.

Corresponding notation:

– We denote by qX
o = qX

o (C, λ) the maximal total size
∑

Q∈QX
o

|Q| of all oracle

queries QX
o = {Q} made by xiO.ObfOX (C,X, 1λ) when obfuscating an n-bit

input circuit C ∈ C for any X ∈ Xn. Symmetrically, we denote by qY
o =

qY
o (C, λ) the bound on the total size

∑

Q∈QY
o

|Q| of oracle queries QY
o = {Q}

made by xiO.ObfOY (C, Y, 1λ) for any Y ∈ Yn.

Definition 8 (Symmetric Bilinear Oracle). The symmetric Bilinear Oracle
B2 =

{B2
Fλ,V

}

is a special case of the ideal graded encoding oracle, where the
validity predicate V is of degree two and is defined over a single label �B. That
is, V (L) = true for a multiset of labels L, if and only if L ⊆ {�B, �B}.
We now state the main theorem of this section.

Theorem 3. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, relative
to a degree-d decomposable ideal graded encoding oracle M, for a collection of cir-
cuit classes C that is in (X ,Y)-product form, for some product collection (X ,Y).
Further assume that for some constant γ < 1,

|Xn| · (

qX
o · min

(

qX
o , |Yn| · log qX

o

))d
+ |Yn| · (

qY
o · min

(

qY
o , |Xn| · log qY

o

))d

≤ 2γn · poly(|C|, λ).

Then xiO can be converted into an approximately-correct scheme xiO� relative to
the symmetric bilinear oracle B2.

Remark 4. A slightly easier to parse version of the above condition, with some
loss in parameters, is that |Xn| · (

qX
o

)2d + |Yn| · (

qY
o

)2d ≤ 2γn · poly(|C|, λ).

Remark 5. Our ideal symmetric bilinear oracle captures symmetric bilinear pair-
ing groups, but with two small gaps: Our oracle generates randomized encodings
(following the Pass-shelat model) whereas bilinear pairing groups have unique
encodings (of the form ga), and our oracle does not support homomorphic
opeartions whereas bilinear paring groups do. These differences are not con-
sequential. In the full version of this paper [8], we show how to instantiate the
transformed XIO schemes produced by the above theorem using concrete bilinear
pairing groups.

Without Loss of Generality. Throughout this section, we make the following
assumptions without loss of generality.
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– Obfuscator only encodes: The XIO obfuscation algorithm only performs
encoding queries and does not perform any zero tests. This is without loss of
generality, as the obfuscator knows the field elements and labels underlying
any generated handle (it encoded them itself), so zero-tests can be internally
simulated.

– Evaluator and adversary only zero-test: The XIO evaluation algorithm
as well as the adversary only perform zero tests and do not encode any
elements themselves. Indeed, encoding of any (ξ, �) can be internally sim-
ulated by sampling a corresponding handle ˜h. Then, whenever a zero-test
(p, h1, . . . , hm,˜h1, . . . ,˜hm̃) includes such self-simulated handles ˜hi, it is trans-
lated to a new zero test that does not include such handles, by hardwiring the
required field elements into the polynomial p.

3.1 Step 1: Explicit Handles

In this section, we show how to transform any XIO in product form relative
to an ideal degree-d oracle (not necessarily decomposable) into one where all
handles required for evaluation are given explicitly (also in product form). We
start by defining the notion of explicit handles in product form and then state
and describe the transformation.

Definition 9 (Explicit Handles in Product Form). An XIO scheme xiO =
(xiO.ObfM, xiO.EvalM), relative to an ideal graded encoding oracle, for a collec-
tion of circuit classes C, is said to have explicit handles in (X ,Y)-product form,
for a product collection (X ,Y), if the obfuscation and evaluation algorithms sat-
isfy the following structural requirement:

– The algorithm xiO.ObfM(C, 1λ) outputs ˜C =
(

˜Z, { ˜HX}X∈Xn
, { ˜HY }Y ∈Yn

)

,

where each ˜HX and ˜HY are sets of handles generated by the oracle M during
obfuscation, and ˜Z is arbitrary auxiliary information.

– All true zero-test queries (p, h1, . . . , hm) — that is, zero-test queries that eval-
uate to true — made by the evaluation algorithm xiO.EvalM

(

˜C, (x, y)
)

are

such that for all j ∈ [m], hj ∈ ˜HX ∪ ˜HY , where (X,Y ) ∈ Xn × Yn are the
(unique) sets such that (x, y) ∈ X × Y .

Corresponding notation:

– We denote by qX
h = qX

h (C, λ) the bound maxX∈Xn
| ˜HX | on the maximum size

of the set of explicit handles corresponding to any X ∈ Xn. We denote by
qY
h = qY

h (C, λ) the bound on maxY ∈Yn
| ˜HY |.

We show that any xiO.Obf scheme relative to an ideal graded encoding oracle
that is in product form can be turned into one that has explicit handles in
product form, but is approximately correct.
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Lemma 1. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, relative
to an ideal graded encoding oracle M, for a collection of circuit classes C, that
is in (X ,Y)-product form, for some product collection (X ,Y). Then xiO can be
converted into a new approximately-correct scheme xiO� with explicit handles in
(X ,Y)-product form (relative to the same oracle M).

Furthermore, the size of the explicit handle sets are bounded as follows

qX
h ≤ O

(

qX
o

) · min
(

qX
o , |Yn| · log qX

o

)

, qY
h ≤ O

(

qY
o

) · min
(

qY
o , |Xn| · log qY

o

)

.

Our New XiO Scheme with Explicit Handles. We now describe the new
obfuscator xiO. We assume w.l.o.g that qX

o ≥ qY
o (otherwise, the obfuscator

reverses the roles of X ,Y).

The Obfuscator xiO�.Obf: Given a circuit C ∈ C with input size n, and security
parameter 1λ, xiO�.ObfM(C, 1λ) does the following:

– Obfuscate: Emulate the obfuscator xiO.ObfM(C, 1λ) to obtain
(
{C̃X ← xiO.ObfMX (C, X, 1λ)}X∈Xn , {C̃Y ← xiO.ObfMY (C, Y, 1λ)}Y ∈Yn

)
.

For each X ∈ Xn store a list LX of all tuples (h, ξ) such that xiO.ObfMX (C,X, 1λ)
requested the oracle M to encode (ξ, �) and obtained back a handle h = (r, �).
Store a similar list LY for each execution xiO.ObfMY (C, Y, 1λ).

– Learn Heavy Handles for Xn: for each X ∈ Xn, let ˜HX = ∅.
For i ∈ {

1, . . . , KX = min
(

400qX
o , |Yn| · log

(

400qX
o

))}

do:
• Sample a random Yi ← Yn.
• Emulate xiO.Eval

(·)
X ,Y( ˜CX , ˜CYi

). To answer zero-test queries, emulate M
using the lists (LX , LYi

) constructed during the obfuscation phase.
• In the process, for every zero-test query (p, h1, . . . , hm), if

M(p, h1, . . . , hm) = true, namely it is a valid zero test and the answer is
indeed zero, add h1, . . . , hm to ˜HX .

Store the resulting ˜HX .
– Learn Remaining Handles for Yn: for each Y ∈ Yn, let ˜HY = ∅.

For i ∈ {

1, . . . , KY = min
(

200qY
o , |Xn| · log

(

200qY
o

))}

do the following:
• Sample a random Xi ← Xn, and let ˜HXi,Y = ∅.
• Emulate xiO.Eval

(·)
X ,Y( ˜CXi

, ˜CY ). To answer zero-test queries, emulate M
using the lists (LXi

, LY ) constructed during the obfuscation phase.
• In the process, for every zero-test query (p, h1, . . . , hm), if

M(p, h1, . . . , hm) = true, namely it is a valid zero test and the answer is
indeed zero, add h1, . . . , hm to ˜HXi,Y .

• Remove from ˜HXi,Y all handles in ˜HXi
.

• If | ˜HXi,Y | ≤ qY
o (C, λ), add ˜HXi,Y to ˜HY . Otherwise discard ˜HXi,Y .

Store the resulting ˜HY .
– Output:

˜C� = ( ˜Z, { ˜HX}X∈Xn
, { ˜HY }Y ∈Yn

), where ˜Z = ({ ˜CX}X∈Xn
, { ˜CY }Y ∈Yn

).
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The Evaluator xiO�.Eval: Given an obfuscation ˜C� = ( ˜C, { ˜HX}X∈Xn
,

{ ˜HY }Y ∈Yn
), (x, y) ∈ Xn × Y n, xiO�.EvalM( ˜C�, (x, y)) does the following:

– Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y .
– Emulate xiO.Eval

(·)
X ,Y( ˜CX , ˜CY ).

– Whenever xiO.Eval makes a zero-test query (p, h1, . . . , hm):
• If for some i, hi /∈ ˜HX ∪ ˜HY , answer false.
• Forward any other zero-test to the oracle M and return its answer.

In the full version [8], we show that the new obfuscator is approximately correct,
secure, and efficient as stated in Lemma 1.

3.2 Step 2: From Constant-Degree to Degree Two

We show that any XIO scheme with explicit handles in product form, relative to a
degree-d decomposable ideal oracle (for arbitrary d = O(1)), can be transformed
into one relative to a degree-2 decomposable ideal oracle. The resulting degree-2
oracle is defined with respect to a validity predicate V 2 related to the validity
predicate V d of the degree-d oracle we start with.

Intuitively, this model can be seen as an extension of the standard asymmetric
bilinear maps, where instead of two base groups we may have more. That is,
instead of two asymmetric base-groups G1, G2 where (ga

1 , gb
2) ∈ G1 × G2 can be

mapped to e(g1, g2)ab in the target group GT , we possibly have a larger number
of groups G1, . . . , Gn and a collection of valid mappings {ek : Gik

×Gjk
→ GT },

which may be a strict subset of all possible bilinear maps.

Lemma 2. Let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme, for a collec-
tion of circuit classes C, defined relative to a degree-d decomposable ideal oracle
Md = {Md

Fλ,Vλ
}, with explicit handles in (X ,Y)-product form, for some product

collection (X ,Y). Assume further that for some constant γ < 1,

|Xn| · (qX
h

)d
+ |Yn| · (qY

h

)d ≤ 2γn · poly(|C|, λ).

Then xiO can be converted to a new scheme xiO�, also with explicit handles
in (X ,Y)-product form, relative to a degree-2 decomposable oracle M2.

We now present our new XiO scheme relative to a degree-2 decomposable
oracle; see the full version for its analysis.

The New XiO Scheme Relative to a Degree-2 Oracle M2. In what
follows, let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme with explicit han-
dles in product form, defined relative to a degree-d decomposable ideal oracle
Md = {Md

Fλ,Vλ
}. We describe a new scheme xiO� = (xiO�.Obf(·), xiO�.Eval(·))

(also, with explicit handles in product form) defined relative to a degree-2 decom-
posable ideal oracle M2 = {M2

Fλ,V �
λ
}.

The Obfuscator xiO�.Obf: Given a circuit C ∈ C with input size n, and security
parameter 1λ, and oracle access to M2, xiO�.ObfM

2
(C, 1λ) does as follows:
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– Emulate Obfuscation:
• Emulate xiO.ObfM

d

(C, 1λ).
• Throughout the emulation, emulate the oracle Md, storing a list L =

{(h, ξ)} of encoded element-label pairs (ξ, �) and corresponding handles
h = (r, �).

• Obtain the obfuscation ( ˜Z, { ˜HX}X∈Xn
, { ˜HX}Y ∈Yn

).
– Encode Monomials:

• For each X ∈ Xn:
1. Retrieve ˜HX = (h1, . . . , hm) and the corresponding field elements and

labels (ξ1, �1), . . . , (ξm, �m) from the stored list L.
2. For every formal monomial Φ(v1, . . . , vm) = vi1 . . . vij

, where j ≤ d
and i1, . . . , ij ∈ [m], compute

Φ(ξ) := ξi1 · · · ξij
, Φ(�) :=

{

�i1 , . . . , �ij

}

, Φ(h) :=
{

hi1 , . . . , hij

}

.

(For simplicity of notation, we overload Φ to describe different func-
tions when acting on field elements, labels, and handles.) Then,
request M2 to encode the field element and label (ξ�

X,Φ, ��
X,Φ) :=

(Φ(ξ), Φ(�)), and obtain a handle h�
X,Φ.

3. Store ˜H�
X =

{

(h�
X,Φ, Φ(h))

}

Φ• For each Y ∈ Yn:
1. Symmetrically perform the above two steps with respect to ˜HY

(instead of ˜HX).
2. Store ˜H�

Y =
{

(h�
Y,Φ, Φ(h))

}

Φ
.

– Output:

˜C� = ( ˜C, { ˜H�
X}X∈Xn

, { ˜H�
Y }Y ∈Yn

), where ˜C := ( ˜Z, { ˜HX}X , { ˜HY }Y ).

The Evaluator xiO�.Eval: Given an obfuscation ˜C� = ( ˜C, { ˜H�
X}X∈Xn

,
{ ˜H�

Y }Y ∈Yn
), input (x, y) ∈ Xn × Y n, and oracle M2, xiO�.EvalM

2
( ˜C�, (x, y))

does the following:

– Emulate xiO.EvalM
d

( ˜C, (x, y)).
– Emulate any zero-test query (p, h1, . . . , hm) it makes to Md as follows:

1. Parse ˜C = ( ˜Z, { ˜HX}X∈Xn
, { ˜HY }Y ∈Yn

).
2. Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y .

Retrieve ˜HX , ˜HY .
3. Split h = (h1, . . . , hm) into two verctors of handles hX ⊆ ˜HX and hY ⊆

˜HY . (Such a partition always exists, by the guarantee of explicit handles
in product form.)

4. Viewing p(h) as a formal polynomial in variables h, factor it as

p(h) =
∑

i

γiΦi(h) =
∑

i

γiΦX,i(hX)ΦY,i(hY ),

where γi ∈ F\{0} are the coefficients, and each monomial Φi(h) is factored
into ΦX,i(hX) · ΦY,i(hY ).
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5. Translate {ΦX,i(hX), ΦY,i(hY )}i into handles {h�
X,i, h

�
Y,i}i by locating

(h�
X,i, ΦX,i(hX)) ∈ ˜H�

X and (h�
Y,i, ΦY,i(hY )) ∈ ˜H�

Y .
6. Consider the degree-2 formal polynomial:

p�(h�) =
∑

i

γih
�
X,ih

�
Y,i.

7. Make the zero-test (p�,h�) to the oracle M2 and return the result.

Labels and Validity Predicate V 2 of Oracle M2. Note that labels with
respect to M2 are subsets of the label set of M. Let V d be the decomposable
validity predicate associated with Md. We define a new validity predicate of
degree 2, which is also decomposable. For this purpose, we need to define V 2 for
labels corresponding to bilinear monomials given by a multi-set {��

1, �
�
2}. For all

other multi-sets L (with cardinality larger than 2), V 2(L) = false, capturing
that this is a degree 2-predicate.

The validity predicate V 2({��
1, �

�
2}) is computed as follows:

– Parse ��
1 and ��

2 as as two multi-sets {�1,1, . . . , �1,k1} , {�2,1, . . . , �2,k2}.
– Apply the original predicate to the disjoint union multi-set:

V 2({��
1, �

�
2}) := V d(��

1 � ��
2) = V d({�1,1, . . . , �1,k1} � {�2,1, . . . , �2,k2}).

Recall that the fact that V d is decomposable means that there exist a pro-
jection function Πd and predicate V d

Π , such that, for every two multi-sets
��
1, �

�
2, V d(��

1 � ��
2) = V d

Π(Πd(��
1),Π

d(��
2)). We show that V 2 is also decom-

posable, by defining its corresponding projection function Π2 and predicate
V 2

Π , and showing that on input two multisets A = {��
i }i and B = {��

j}j ,
V 2(A � B) = V 2

Π(Π2(A),Π2(B)). The projection function Π2 on input a mul-
tiset A computes: Π2(A) =

(|A|,Πd(���∈A��)
)

. The predicate V 2
Π on input two

multisets A,B outputs false if |A|+ |B| > 2. Otherwise, if A,B contain exactly
two labels ��

1, �
�
2, the predicate computes:

V 2
Π(Π2(A), Π2(B)) = V d(Πd(���∈A��), Πd(���∈B��))

= V d((���∈A��) � (���∈B��)) = V d(��
1 � ��

2) = V 2(A � B)

Therefore V 2 is decomposable. Moreover, it is easy to see that the arity of V 2

is exactly that of V d, which is bounded by a fixed polynomial.

3.3 Step 3: Asymmetric Oracles to Symmetric Oracles

We show that any XIO scheme with explicit handles relative to the oracle M2

can be converted to a scheme relative to a symmetric bilinear oracle B2 (also
with explicit handles). This model is analogous to the symmetric bilinear pairing
groups where there is a single base group G with a bilinear map e : G×G → GT

(Definition 8). The transformation will incur a certain blowup depending on the
arity of the oracle M2, which is a bounded polynomial.
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Lemma 3. Let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme, for a collection
of circuit classes C, defined relative to the (asymmetric) decomposable oracle M2,
with explicit handles in (X ,Y)-product form, for some product collection (X ,Y).
Then xiO can be converted to a new scheme xiO� relative to the (symmetric)
oracle B2, also with explicit handles in (X ,Y)-product form.

Towards the lemma, we show a transformation that reduces the oracle M2 to a
symmetric bilinear oracle B2. In the full version [8], we use this transformation
to convert any XiO scheme relative to M2 to one relative to B2.

Reducing Oracle M2 to Oracle B2. The transformation consists of a recod-
ing process E that takes a secret key K, and an arbitrary encoding query of
the form (ξ, �) to M2, and transforms it into a set of new encoding queries
(ξ�

1 , �B), . . . , (ξ�
k, �B) which it gives B2 (all with respect to the unique label �B).

E then outputs a handle h representing (ξ, �) consisting of a list of handles
h = (h�

1, . . . , h
�
k) generated by B2 for ξ�

1 , . . . , ξ�
k.

The encoder E is associated with a (public) decoder D. The decoder D
is given as input a zero-test query (p,h1, . . . ,hm) for M2 to be evaluated
over underlying field elements ξ = (ξ1, . . . , ξm), and now represented by ξ� =
(ξ�

1,1, . . . , ξ
�
1,k, . . . , ξ�

m,1, . . . , ξ
�
m,k) encoded in B2 with handles h� = (h�

1,1, . . . ,
h�
1,k, . . . , h�

m,1, . . . , h
�
m,k). The decoder then translates it into a new zero-test

query (p�,h�) and submits it to B2, with the guarantee that if the zero test
is valid with respect to the validity predicate V associated with Md, then
p(ξ) = p�(ξ�), and otherwise, p�(ξ�) evaluates to non-zero with overwhelming
probability.

We next turn to a more formal description of the transformation. In what
follows, let V be an arbitrary degree-2 decomposable validity predicate, defined
over pairs of labels (�, �′) ∈ L × L from a label set L, and associated with
projection function Π and predicate VΠ with bounded arity Arity(VΠ) ≤ poly(λ).

Secret Encoding Key. The secret key K consists of random invertible field
elements η�, ϕ� ← F \ {0} for each label � ∈ L, and random invertible field ele-
ments απ, βπ, γπ, δπ ← F\{0} for every π in the corresponding set of projections
Γ = {Π({�}) : � ∈ L}.

Remark 6 (Lazy Secret-Key Sampling). Note that the total number of labels and
their projection could be superpolynomial, making the secret key superpolyno-
mial in length. To deal with such cases, the recoder uses lazy sampling to sample
the above random invertible elements only when needed and keeps a record of
all sampled elements. As we argue below, the total number of random invert-
ible elements to be sampled is polynomial in the number of tuples (ξ, �) to be
recoded. For simplicity of exposition, we describe the procedure with respect to
a key consisting of all possible random invertible elements.

Recoding. Given the secret key K and (ξ, �) ∈ F×L, the encoder EB2
((ξ, �),K)

does the following:
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– Samples two secret shares ξL, ξR at random from F subject to ξL + ξR = ξ.
– Let π = Π({�}) be the projection of {�}. Generates the field elements:

ξ�
◦ :=

(

ξ�
◦,α,L = απ · ξL, ξ�

◦,β,R = βπ · ξR, ξ�
◦,γ,L = γπ · ξL, ξ�

◦,δ,R = δπ · ξR

)

.

– Let match(π) = {π′ : VΠ(π, π′) = true} be the set of projections that eval-
uates to true with π. (For every π′ ∈ match(π), and every �′, such that,
π′ = Π({�′}), it holds that V ({�, �′}) = true.)
For each π′ ∈ match(π), generates the field elements:

ξ�
π′ :=

(

ξ�
π′, 1

α ,L =
1

απ
· ξL, ξ�

π′, 1
β ,L =

1
βπ

· ξL,

ξ�
π′, 1

γ ,R =
1
γπ

· ξR, ξ�
π′, 1δ ,R =

1
δπ

· ξR

)

.

– If V ({�}) = true, generates field elements

ξ�
� :=

(
ξ�

�,η,L = η� · ξL, ξ�
�, 1

η
=

1

η�
, ξ�

�,ϕ,R = ϕ� · ξR, ξ�
�, 1

ϕ
=

1

ϕ�

)
,

– Asks B2 to encode (with respect to the unique label �B) the field elements
ξ�

◦, (ξ
�
π′)π′∈match(π) , ξ�

� generated above, obtaining corressponding handles

h� =
(

h�
◦, (h

�
π′)π′∈match(π) ,h�

�
)

.

– Outputs handles h�.

We argue that when V has bounded poly(λ) arity, the size of the new encoding h�

is bounded by poly(λ). This is because, h�
◦ and h�

� each consists of 4 encodings,
while (h�

π′)π′∈match(π) consists of O(|match(π)|) = Arity(VΠ) ≤ poly(λ).

Decoding. Given a degree-2 polynomial p and handles (h�
1, . . . ,h

�
m), where

h�
i = h�

i,◦,
(

h�
i,π′

)

π′∈match(π)
,h�

i,� the decoder DB2
(p,h�

1, . . . ,h
�
m):

– Writes p as a formal polynomial

p(h�
1, . . . ,h

�
m) = σ +

∑

k

ρkh�
k +

∑

i≤j

ρi,jh
�
i h

�
j .

– If for any monomial h�
k in p, V ({�k}) = false, or for any monomial h�

i h
�
j ,

V ({�i, �j}) = false, return false. Otherwise, continue.
– Generates a new degree-2 formal polynomial

p
�
(h

�
) = σ +

∑

k

ρk ·
(

h
�
k,�,η,Lh

�

k,�, 1
η

+ h
�
k,�,ϕ,Rh

�

k,�, 1
ϕ

)

+

∑

i≤j

ρi,j ·
(

h
�
i,◦,α,Lh

�

j,πi, 1
α

,L
+ h

�
i,◦,γ,Lh

�

j,πi, 1
γ

,R
+ h

�
i,◦,β,Rh

�

j,πi, 1
β

,L
+ h

�
i,◦,δ,Rh

�

j,πi, 1
δ

,R

)

.

– It submits to B2 the zero test (p�,h�) and returns the result.
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3.4 Putting It All Together

We conclude the proof of Theorem 3.

Proof (of Theorem 3). To obtain xiO�, we apply to xiO Lemmas 1, 2, 3.

– Lemma 1 turns xiO into an approximately-correct XIO scheme xiO1 with
explicit handles, relative to the same degree-d decomposable oracle Md that
xiO uses.

– Lemma 2 turns xiO1 into an approximately-correct XiO scheme xiO2 with
explicit handles, relative to an asymmetric bilinear oracle M2 that is also
decomposable.

– Lemma 3 turns xiO2 into an approximately-correct XiO scheme xiO3 with
explicit handles, relative to a symmetric bilinear oracle B2.

The final XiO scheme xiO3 is exactly the new XiO scheme xiO�. By composing
the three lemmas, we have that xiO� is approximately correct and secure. The
only thing to argue that xiO� is also weakly succinct. Note that the obfuscated
circuits of xiO� have the form

˜C =
(

˜Z, { ˜HX}, { ˜HY }, { ˜H�
X}, { ˜H�

Y }, { ˜H ′
X}, { ˜H ′

Y }
)

where ˜Z is an obufscated circuit of the original scheme xiO, ˜HX and ˜HY are the
sets of explicit handles of Md added by Lemma 1, ˜H�

X and ˜H�
Y are the encodings

of monomials of M2 added by Lemma 2, ˜H ′
X and ˜H ′

Y are the re-encodings of
B2 added by Lemma 3. By the three lemmas and the fact that the original
scheme xiO is γ�-compressing and satisfies the efficiency requirement stated in
Theorem 3, we have,

| ˜C| ≤ | ˜Z| + O
(∣

∣

∣{ ˜H ′
X}, { ˜H ′

Y }
∣

∣

∣

)

≤ 2γ�npoly(λ, |C|) +
(

|Xn| · (

qX
o · min

(

qX
o , |Yn| · log qX

o

))d

+|Yn| · (

qY
o · min

(

qY
o , |Xn| · log qY

o

))d
)

· poly(λ)

≤ (2γ�n + 2γn) · poly(λ, |C|) ≤ 2γ′n · poly(λ, |C|),
for some γ′ < 1. Thus,the new XIO scheme is weakly succinct.

4 From (Approximate) XIO and LWE to FE

We describe at a high-level how to use approximate XIO to construct 1-key
weakly succinct FE for P/poly, assuming LWE. The formal transformation can
be found in the full version of this paper [8].

Theorem 4. Assuming LWE with subexponential modulus-to-noise ratio and
the existence of an approximate XIO scheme for Plog/poly, there exists a single-
key weakly-succinct FE scheme FE for P/poly.



26 N. Bitansky et al.

A Failed Attempt. Lin, Pass, Seth and Telang [33] showed a transformation
from correct XIO for Plog/poly to IO for P/poly, assuming LWE.8 Previously,
Bitansky and Vaikuntanathan [12] showed how to make any approximately cor-
rect IO correct (assuming, say, LWE). Thus, to prove the above theorem, a nat-
ural idea is to amplify the correctness of approximate XIO to obtain correct XIO
by [12], and then invoke the transformation of [33]. This approach turns out to
completely fail. Indeed, the [12] transformation only works for classes of circuits
that are expressive enough; in particular, it relies on the ability of circuits in the
class to process encrypted inputs, which must inherently be of super-logarithmic
length in the security parameter. However, XIO for such circuit classes, which
lie outside of Plog/poly, is inefficient (see Remark 1).

Instead, we show how to modify the transformation of [33], based on error-
correcting codes, so that, it works directly with approximate XIO. Below, we
briefly review the [33] transformation and describe our key ideas.

Review of the [33] Transformation. Goldwassar et al. [27] constructed, from
LWE with subexponential modulus-to-noise ratio, a fully succinct, public-key,
single-key, FE scheme for Boolean NC1 circuits; namely, the encryption circuit
of their scheme has size poly(n, λ), where n is the message length.

Starting from such an FE scheme bFE for Boolean circuits, the first observa-
tion in [33] is as follows: To construct an FE scheme, FE for any (possibly non-
Boolean) circuit C, one can use bFE to issue a key for the corresponding Boolean
circuit B that produces one output bit at a time, that is, B(m, i) = (C(m))i.
Then to enable evaluating the circuit C, it suffices to publish a list of bFE
ciphertexts encrypting all pairs (m, i). This, however, leads to a scheme with
encryption time linear in the length of the output (as it needs to produce a
ciphertext for every output bit), and is not weakly succinct. The key idea in [33]
is using XIO to generate the list of encrypted pairs (m, i). Namely, obfuscate a
circuit that given as input i, outputs the encryption of (m, i), where random-
ness is derived with a pseudorandom function. Since XIO achieves “sublinear
compression”, the resulting FE scheme is now weakly succinct for all of NC1,
including circuits with non-Boolean output.

Our Approach. The basic idea behind replacing XIO with approximate XIO is
to use good error-correcting codes to allow recovering the output of a given func-
tion even if some of the encryptions (m, i) are faulty. Specifically, we make the fol-
lowing modification to the transformation of [33]. Instead of deriving a key for the
Boolean function B(m, i) = (C(m))i, which computes the i-th bit of the circuit’s
output, we consider the function B�(m, i) = (ECC(C(m)))i that outputs the i-th
bit of an error-corrected version of this output. As before, we use XIO to to gener-
ate the list of encryptions (m, i), only that now, with approximate XIO, some of
these encryptions may be faulty. Nevertheless, we can still recover (ECC(C(m)))i

for a large enough fraction of indices i, and can thus correct, and obtain C(m). By
using codes with constant rate, and a linear-size constant-depth encoding circuit,
we can show that this transformation achieves the required compression.

8 The LWE assumption was later weakened to the existence of public key encryption
by [9], but only for sufficiently-compressing XIO.
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Abstract. Functional encryption (FE) enables fine-grained control of
sensitive data by allowing users to only compute certain functions for
which they have a key. The vast majority of work in FE has focused
on deterministic functions, but for several applications such as privacy-
aware auditing, differentially-private data release, proxy re-encryption,
and more, the functionality of interest is more naturally captured by
a randomized function. Recently, Goyal et al. (TCC 2015) initiated a
formal study of FE for randomized functionalities with security against
malicious encrypters, and gave a selectively secure construction from
indistinguishability obfuscation. To date, this is the only construction of
FE for randomized functionalities in the public-key setting. This stands
in stark contrast to FE for deterministic functions which has been real-
ized from a variety of assumptions.

Our key contribution in this work is a generic transformation that
converts any general-purpose, public-key FE scheme for deterministic
functionalities into one that supports randomized functionalities. Our
transformation uses the underlying FE scheme in a black-box way and
can be instantiated using very standard number-theoretic assumptions
(for instance, the DDH and RSA assumptions suffice). When applied to
existing FE constructions, we obtain several adaptively-secure, public-key
functional encryption schemes for randomized functionalities with secu-
rity against malicious encrypters from many different assumptions such
as concrete assumptions on multilinear maps, indistinguishability obfus-
cation, and in the bounded-collusion setting, the existence of public-key
encryption, together with standard number-theoretic assumptions.

Additionally, we introduce a new, stronger definition for malicious
security as the existing one falls short of capturing an important class
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of correlation attacks. In realizing this definition, our compiler combines
ideas from disparate domains like related-key security for pseudorandom
functions and deterministic encryption in a novel way. We believe that
our techniques could be useful in expanding the scope of new variants
of functional encryption (e.g., multi-input, hierarchical, and others) to
support randomized functionalities.

1 Introduction

Traditionally, encryption schemes have provided an all-or-nothing approach to
data access: a user who holds the secret key can completely recover the message
from a ciphertext while a user who does not hold the secret key learns nothing
at all from the ciphertext. In the last fifteen years, numerous paradigms, such
as identity-based encryption [31,45,85], attribute-based encryption [24,66,84],
predicate encryption [37,71,75,78], and more have been introduced to enable
more fine-grained access control on encrypted data. More recently, the cryp-
tographic community has worked to unify these different paradigms under the
general umbrella of functional encryption (FE) [35,79,83].

At a high level, an FE scheme enables delegation of decryption keys that
allow users to learn specific functions of the data, and nothing else. More pre-
cisely, given a ciphertext for a message x and a secret key for a function f ,
one can only learn the value f(x). In the last few years, numerous works have
explored different security notions [3,4,7,16,23,35,79] as well as constructions
from a wide range of assumptions [8,10,50,55,62,64,86]. Until very recently,
the vast majority of work in functional encryption has focused on deterministic
functionalities, i.e., on schemes that issue keys for deterministic functions only.
However, there are many scenarios where the functionality of interest is more
naturally captured by a randomized function. The first two examples below are
adapted from those of Goyal et al. [65].

Privacy-aware auditing. Suppose a government agency is tasked with mon-
itoring various financial institutions to ensure that their day-to-day activity is
compliant with federal regulations. The financial institutions do not want to give
complete access of their confidential data to any external auditor. Partial access
is insufficient if the financial institution is able to (adversarially) choose which
part of its database to expose. An ideal solution should allow the institutions
to encrypt their database before providing access. Next, the government agency
can give the external auditors a key that allows them to sample a small number
of randomly chosen records from each database.

Constructing an encryption scheme that supports this kind of sampling func-
tionality is non-trivial for several reasons. If an auditor obtains two independent
keys from the government agency, applying them to the same encrypted data-
base should nonetheless generate two independent samples from it. On the flip
side, if the same key is applied to two distinct databases, the auditor should
obtain an independent sample from each.



32 S. Agrawal and D.J. Wu

Another source of difficulty that arises in this setting is that the encryption
is performed locally by the financial institution. Thus, if malicious institutions
are able to construct “bad” ciphertexts such that the auditor obtains correlated
or non-uniform samples from the encrypted databases, then they can completely
compromise the integrity of the audit. Hence, any encryption scheme we design
for privacy-aware auditing must also protect against malicious encrypters.

Differential privacy. Suppose a consortium of hospitals, in an effort to pro-
mote medical research, would like to provide restricted access to their patient
records to approved scientists. In particular, they want to release information in
a differentially-private manner to protect the privacy of their patients. The func-
tionality of interest in this case is the evaluation of some differentially-private
mechanism, which is always a randomized function. Thus, the scheme used to
encrypt patient data should also support issuing keys for randomized functions.
These keys would be managed by the consortium.

Proxy re-encryption. In a proxy re-encryption system, a proxy is able to
transform a ciphertext encrypted under Alice’s public key into one encrypted
under Bob’s public key [13]. Such a capability is very useful if, for example,
Alice wants to forward her encrypted emails to her secretary Bob while she is
away on vacation [27]. We refer to [13] for other applications of this primitive.

Proxy re-encryption can be constructed very naturally from a functional
encryption scheme that supports randomized functionalities. For instance, in
the above example, Alice would generate a master public/secret key-pair for an
FE scheme that supports randomized functionalities. When users send mail to
Alice, they would encrypt under her master public key. Then, when Alice goes
on vacation, she can delegate her email to Bob by simply giving her mail server
a re-encryption key that re-encrypts emails for Alice under Bob’s public key.
Since standard semantically-secure encryption is necessarily randomized, this
re-encryption functionality is a randomized functionality. In fact, in this sce-
nario, Alice can delegate an arbitrary decryption capability to other parties. For
instance, she can issue a key that only re-encrypts emails tagged with “work” to
Bob. Using our solution, the re-encryption function does not require interaction
with Bob or knowledge of any of Bob’s secrets.

Randomized functional encryption. Motivated by these applications, Alwen
et al. [8] and Goyal et al. [65] were the first to formally study the problem of FE
for randomized functionalities. In such an FE scheme, a secret key for a random-
ized function f and an encryption of a message x should reveal a single sample
from the output distribution of f(x). Moreover, given a collection of secret keys
skf1 , . . . , skfn

for functions f1, . . . , fn, and ciphertexts ctx1 , . . . , ctxn
correspond-

ing to messages x1, . . . , xn, where neither the functions nor the messages need to
be distinct, each secret key skfi

and ciphertext ctxj
should reveal an independent

draw from the output distribution of fi(xj), and nothing more.
In supporting randomized functionalities, handling malicious encrypters is

a central issue: a malicious encrypter may construct a ciphertext for a mes-
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sage x such that when decrypted with a key for f , the resulting distribution
differs significantly from that of f(x). For instance, in the auditing application
discussed earlier, a malicious bank could manipulate the randomness used to
sample records in its database, thereby compromising the integrity of the audit.
We refer to [65] for a more thorough discussion on the importance of handling
malicious encrypters.

1.1 Our Contributions

To date, the only known construction of public-key FE for randomized func-
tionalities secure against malicious encrypters is due to Goyal et al. [65] and
relies on indistinguishability obfuscation (iO) [15,55] together with one-way
functions. However, iO is not a particularly appealing assumption since the
security of existing iO constructions either rely on an exponential number of
assumptions [11,14,40,80,87], or on a polynomial set of assumptions but with
an exponential loss in the security reduction [58,59]. This shortcoming may even
be inherent, as suggested by [57]. Moreover, numerous recent attacks on multi-
linear maps (the underlying primitive on which all candidate constructions iO
are based) [38,42–44,46,47,69,77] have reduced the community’s confidence in
the security of existing constructions of iO.

On the other hand, functional encryption for deterministic functions (with
different levels of security and efficiency) can be realized from a variety of
assumptions such as the existence of public-key encryption [63,83], learning with
errors [62], indistinguishability obfuscation [55,86], multilinear maps [56], and
more. Thus, there is a very large gap between the assumptions needed to build
FE schemes for deterministic functionalities and those needed for randomized
functionalities. Hence, it is important to ask:

Does extending public-key FE to support the richer class of randomized
functions require strong additional assumptions such as iO?

If there was a general transformation that we could apply to any FE scheme
for deterministic functions, and obtain one that supported randomized func-
tions, then we could leverage the extensive work on FE for the former to build
FE for the latter with various capabilities and security guarantees. In this paper,
we achieve exactly this. We bridge the gap between FE schemes for deter-
ministic and randomized functionalities by showing that any general-purpose,
simulation-secure FE scheme for deterministic functionalities can be extended to
support randomized functionalities with security against malicious encrypters.
Our generic transformation applies to any general-purpose, simulation-secure
FE scheme with perfect correctness and only requires fairly mild additional
assumptions (e.g., the decisional Diffie-Hellman (DDH) [29] and the RSA [30,82]
assumptions suffice). Moreover, our transformation is tight in the sense that it
preserves the security of the underlying FE scheme. Because our transformation
relies only on simple additional assumptions, future work in constructing general-
purpose FE can primarily focus on handling deterministic functions rather than
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devising specialized constructions to support randomized functions. We now give
an informal statement of our main theorem:

Theorem 1.1 (Main theorem, informal). Under standard number-theoretic
assumptions, given any general-purpose, public-key functional encryption scheme
for deterministic functions, there exists a general-purpose, public-key functional
encryption scheme for randomized functions secure against malicious encrypters.

In this work, we focus on simulation-based notions of security for FE. As
shown by several works [35,79], game-based formulations of security are inad-
equate if the function family under consideration has some computational hid-
ing properties. Moreover, as noted by Goyal et al. [65, Remark 2.8], the nat-
ural notion of indistinguishability-based security in the randomized setting can
potentially introduce circularities in the definition and render it vacuous. Addi-
tionally, there are generic ways to boost the security of FE for deterministic
functionalities from a game-based notion to a simulation-based notion [50].

We do note though that these generic indistinguishability-to-simulation
boosting techniques sometimes incur a loss in expressiveness (due to the
lower bounds associated with simulation-based security for FE [5,7,35,79]). For
instance, while it is possible to construct a general-purpose FE scheme secure
against adversaries that makes an arbitrary (polynomial) number of secret key
queries under an indistinguishability-based notion of security, an analogous con-
struction is impossible under a simulation-based notion of security. We leave as
an important open problem the development of a generic transformation like
the one in Theorem 1.1 that applies to (public-key) FE schemes which satisfy
indistinguishability-based notions of security and which does not incur the loss
in expressiveness associated with first boosting to a simulation-based notion of
security. Such a transformation is known in the secret-key setting [73], though
it does not provide security against malicious encrypters.

Concrete instantiations. Instantiating Theorem 1.1 with existing FE schemes
such as [55,56,64] and applying transformations like [10,26,50,51] to boost cor-
rectness and/or security, we obtain several new public-key FE schemes for ran-
domized functionalities with adaptive simulation-based security against mali-
cious encrypters. For example, if we start with

– the GVW scheme [63], we obtain a scheme secure under bounded collusions
assuming the existence of semantically-secure public-key encryption and low-
depth pseudorandom generators.

– the GGHZ scheme [56], we obtain a scheme with best-possible simulation secu-
rity relying on the polynomial hardness of concrete assumptions on composite-
order multilinear maps [36,48,49].

– the GGHRSW scheme [55], we obtain a scheme with best-possible simulation
security from indistinguishability obfuscation and one-way functions.

The second and third schemes above should be contrasted with the one given by
Goyal et al. [65], which achieves selective security assuming the existence of iO.
We describe these instantiations in greater detail in Sect. 5.
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Security definition. We also propose a strong simulation-based definition
for security against malicious encrypters, strengthening the one given by
Goyal et al. [65]. We first give a brief overview of their definition in Sect. 1.2 and
then show why it does not capture an important class of correlation attacks. We
also discuss the subtleties involved in extending their definition.

Our techniques. At a very high level, we must balance between two conflicting
goals in order to achieve our strengthened security definition. On the one hand,
the encryption and key-generation algorithms must be randomized to ensure
that the decryption operation induces the correct output distribution, or even
more fundamentally, that the scheme is semantically-secure. On the other hand,
a malicious encrypter could exploit its freedom to choose the randomness when
constructing ciphertexts in order to induce correlations when multiple cipher-
texts or keys are operated upon. We overcome this barrier by employing ideas
from disparate domains like related-key security for pseudorandom functions and
deterministic encryption in a novel way. We discuss our transformation and the
tools involved in more detail in Sect. 1.3.

We believe that our techniques could be used to extend the capability of
new variants of functional encryption like multi-input FE [32,61], hierarchical
or delegatable FE [9,39], and others so that they can support randomized func-
tionalities with security against malicious encrypters as well.

Other related work. Recently, Komargodski et al. [73] studied the same
question of extending standard FE to FE for randomized functionalities, but
restricted to the private-key setting. They show that starting from any “function-
private” secret-key FE scheme for deterministic functionalities, a secret-key
FE scheme for randomized functionalities can be constructed (though without
robustness against malicious encrypters). However, as we discuss below, it seems
challenging to extend their techniques to work in the public-key setting:

– The types of function-privacy that are achievable in the public-key setting are
much more limited (primarily because the adversary can encrypt messages
of its own and decrypt them in order to learn something about the underly-
ing function keys). For instance, in the case of identity-based and subspace-
membership encryption schemes, function privacy is only possible if we assume
the function keys are drawn from certain high-entropy distributions [33,34].

– An adversary has limited control over ciphertexts in the private-key setting.
For instance, since it cannot construct new ciphertexts by itself, it can only
maul honestly-generated ciphertexts. In such a setting, attacks can often be
prevented using zero-knowledge techniques.

Concurrent with [65], Alwen et al. [8] also explored the connections between FE
for deterministic functionalities and FE for randomized functionalities. Their
construction focused only on the simpler case of handling honest encrypters and
moreover, they worked under an indistinguishability-based notion of security
that has certain circularity problems (see the discussion in [65, Remark 2.8])
which might render it vacuous.
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1.2 Security Against Malicious Encrypters

Simulation security. Informally, simulation security for FE schemes support-
ing randomized functionalities states that the output of any efficient adversary
with a secret key for a randomized function f and an encryption of a message
x can be simulated given only f(x; r), where the randomness r used to evaluate
f is independently and uniformly sampled. Goyal et al. [65] extend this notion
to include security against malicious encrypters by further requiring that the
output of any efficient adversary holding a secret key for a function g and a
(possibly dishonestly-generated) ciphertext ĉt should be simulatable given only
g(x̂; r), where x̂ is a message that is information-theoretically fixed by ĉt, and
the randomness r is uniform and unknown to the adversary. This captures the
notion that a malicious encrypter is unable to influence the randomness used to
evaluate the function during decryption.

More formally, in the simulation-based definitions of security [35,79], an
adversary tries to distinguish its interactions in a real world where ciphertexts
and secret keys are generated according to the specifications of the FE scheme
from its interactions in an ideal world where they are constructed by a simulator
given only a minimal amount of information. To model security against malicious
encrypters, Goyal et al. give the adversary access to a decryption oracle in the
security game (similar to the formulation of IND-CCA2 security [81]) that takes
as input a single ciphertext ct along with a function f . In the real world, the
challenger first extracts a secret key skf for f and then outputs the decryption
of ct with skf . In the ideal world, the challenger invokes the simulator on ct. The
simulator then outputs a value x (or a special symbol ⊥), at which point the
challenger replies to the adversary with an independently uniform value drawn
from the distribution f(x) (or ⊥).

Limitations of the existing definition. While the definition in [65] captures
security against dishonest encrypters when dealing with deterministic function-
alities, it does not fully capture the desired security goals in the randomized
setting. Notably, the security definition only considers one ciphertext. However,
when extending functional encryption to randomized functionalities, we are also
interested in the joint distribution of multiple ciphertexts and secret keys. Thus,
while it is the case that in any scheme satisfying the security definition in [65],
the adversary cannot produce any single ciphertext that decrypts improperly, a
malicious encrypter could still produce a collection of ciphertexts such that when
the same key is used for decryption, the outputs are correlated. In the auditing
application discussed before, it is imperative to prevent this type of attack, for
otherwise, the integrity of the audit can be compromised.

Strengthening the definition. A natural way to strengthen Goyal et al.’s def-
inition is to allow the decryption oracle to take in a set of (polynomially-many)
ciphertexts along with a function f . In the real world, the challenger extracts
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a single key skf for f and applies the decryption algorithm with skf to each
ciphertext. In the ideal world, the simulator is given the set of ciphertexts and
is allowed to query the evaluation oracle Of once for each ciphertext submitted.
On each query x, the oracle responds with a fresh evaluation of f(x). This direct
extension, however, is too strong, and not achievable by any existing scheme.
Suppose that an adversary could efficiently find two ciphertexts ct1 �= ct2 such
that for all secret keys sk, Decrypt(sk, ct1) = Decrypt(sk, ct2), then it can easily
distinguish the real and ideal distributions. When queried with (f, (ct1, ct2)), the
decryption oracle always replies with two identical values in the real world irre-
spective of what f is. In the ideal world, however, it replies with two independent
values since fresh randomness is used to evaluate f every time.

While we might want to preclude this type of behavior with our security
definition, it is also one that arises naturally. For example, in both Goyal et
al.’s and our construction, ciphertexts have the form (ct′, π) where ct′ is the
ciphertext component that is actually combined with the decryption key and π
is a proof of the well-formedness of ct′. Decryption proceeds only if the proof
verifies. Since the proofs are randomized, an adversary can construct a valid
ciphertext component ct′ and two distinct proofs π1, π2 and submit the pair of
ciphertexts (ct′, π1) and (ct′, π2) to the decryption oracle. Since π1 and π2 do not
participate in the decryption process after verification, these two ciphertexts are
effectively identical from the perspective of the decryption function. However,
as noted above, an adversary that can construct such ciphertexts can trivially
distinguish between the real and ideal worlds.

Intuitively, if the adversary submitted the same ciphertext multiple times in
a decryption query, it does not make sense for the decryption oracle to respond
with independently distributed outputs in the ideal experiment. The expected
behavior is that the decryption oracle responds with the same value on all identi-
cal ciphertexts. In our setting, we allow for this behavior by considering a gener-
alization of “ciphertext equivalence.” In particular, when the adversary submits
a decryption query, the decryption oracle in the ideal experiment responds con-
sistently on all equivalent ciphertexts that appear in the query. Formally, we
capture this by introducing an efficiently-checkable equivalence relation on the
ciphertext space of the FE scheme. For example, if the ciphertexts have the
form (ct′, π), one valid equivalence relation on ciphertexts is equality of the ct′

components. To respond to a decryption query, the challenger first groups the
ciphertexts according to their equivalence class, and responds consistently for
all ciphertexts belonging to the same class. Thus, without loss of generality, it
suffices to just consider adversaries whose decryption queries contain at most
one representative from each equivalence class. We provide a more thorough
discussion of our strengthened definition in Sect. 3.

As far as we understand, the Goyal et al. construction remains secure under
our strengthened notion of security against malicious encrypters, but it was
only shown to be selectively secure assuming the existence of iO (and one-way
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functions).1 Our transformation, on the other hand, provides a generic way of
building adaptively-secure schemes from both iO as well as plausibly weaker
assumptions such as those on composite-order multilinear maps (Sect. 5). Finally,
we note that not all schemes satisfying the Goyal et al. security notion satisfy
our strengthened definition. In fact, a simplified version of our transformation
yields a scheme secure under their original definition, but not our new definition
(Remark 4.2).

Further strengthening the security definition. An important assumption
that underlies all existing definitions of FE security against malicious encrypters
is that the adversary cannot craft its “malicious” ciphertexts with (partial)
knowledge of the secret key that will be used for decryption. More formally,
in the security model, when the adversary submits a query to the decryption
oracle, the secret key used for decryption is honestly generated and hidden from
the adversary. An interesting problem is to formulate stronger notions of ran-
domized FE where the adversary cannot induce correlations within ciphertexts
even if it has some (limited) information about the function keys that will be
used during decryption. At the same time, we stress that our existing notions
already suffice for all of the applications we describe at the beginning of Sect. 1.

1.3 Overview of Our Generic Transformation

Our primary contribution in this work is giving a generic transformation from
any simulation-secure general-purpose (public-key) FE scheme2 for deterministic
functionalities to a corresponding simulation-secure (public-key) FE scheme for
randomized functionalities. In this section, we provide a brief overview of our
generic transformation. The complete construction is given in Sect. 4.

Derandomization. Our starting point is the generic transformation of Alwen
et al. [8] who use a pseudorandom function (PRF) to “derandomize” function-
alities. In their construction, an encryption of a message x consists of an FE
encryption of the pair (x, k) where k is a uniformly chosen PRF key. A secret
key for a randomized functionality f is constructed by first choosing a random
point t in the domain of the PRF and then extracting an FE secret key for the

1 While there is a generic transformation from selectively-secure FE to adaptively-
secure FE [10], it is described in the context of FE for deterministic functions.
Though it is quite plausible that the transformation can be applied to FE schemes
for randomized functions, a careful analysis is necessary to verify that it preserves
security against malicious encrypters. In contrast, our generic transformation allows
one to take advantage of the transformation in [10] “out-of-the-box” (i.e., apply it
to existing selectively-secure FE schemes for deterministic functions) and directly
transform adaptive-secure FE for deterministic functions to adaptively-secure FE
for randomized functions.

2 Our transformation requires that the underlying FE scheme be perfectly correct.
Using the transformations in [26,51], approximately correct FE schemes can be con-
verted to FE schemes that satisfy our requirement.
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derandomized functionality gt(x, k) = f(x;PRF(k, t)), that is, the evaluation of
f using randomness derived from the PRF. Evidently, this construction is not
robust against malicious encrypters, since by reusing the same PRF key when
constructing the ciphertexts, a malicious encrypter can induce correlations in
the function evaluations. In fact, since the PRF key is fully under the control
of the encrypter (who needs not sample it from the honest distribution), it is
no longer possible to invoke PRF security to argue that PRF(k, t) looks like a
random string.

Secret sharing the PRF key. In our transformation, we start with the same
derandomization approach. Since allowing the encrypter full control over the
PRF key is problematic, we instead secret share the PRF key across the cipher-
text and the decryption key. Suppose the key-space K of the PRF forms a group
under an operation �. As before, an encryption of a message x corresponds to
an FE encryption of the pair (x, k), but now k is just a single share of the PRF
key. To issue a key for f , another random key-share k′ is chosen from K. The key
skf is then an FE key for the derandomized functionality f(x;PRF(k � k′, x)).
In this scheme, a malicious encrypter is able to influence the PRF key, but does
not have full control. However, because the malicious encrypter can induce cor-
related PRF keys in the decryption queries, the usual notion of PRF security no
longer suffices. Instead, we require the stronger property that the outputs of the
PRF appear indistinguishable from random even if the adversary observes PRF
outputs under related keys. Security against related-key attacks (RKA-security)
for PRFs has been well-studied [1,2,18,19,22,25,72,74] in the last few years, and
for our particular application, a variant of the Naor-Reingold PRF is related-key
secure for the class of group-induced transformations [18].

Applying deterministic encryption. By secret-sharing the PRF key and
using a PRF secure against related-key attacks, we obtain robustness against
malicious encrypters that only requests the decryption of unique (x, k) pairs (in
this case, either k or x is unique, so by related-key security, the output of the
PRF appears uniformly random). However, a malicious encrypter can encrypt
the same pair (x, k) multiple times, using freshly generated randomness for the
base FE scheme each time. Since each of these ciphertexts encrypt the same
underlying value, in the real world, the adversary receives the same value from
the decryption oracle. In the ideal world, the adversary receives independent
draws from the distribution f(x). This problem arises because the adversary is
able to choose additional randomness when constructing the ciphertexts that
does not affect the output of the decryption algorithm. As such, it can construct
ciphertexts that induce correlations in the outputs of the decryption process.

To protect against the adversary that encrypts the same (x, k) pair, we note
that in the honest-encrypter setting, the messages that are encrypted have high
entropy (since the key-share is sampled uniformly at random). Thus, instead of
having the adversary choose its randomness for each encryption arbitrarily, we
instead force the adversary to derive the randomness from the message. This
is similar to what has been done when constructing deterministic public-key
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encryption [17,20,41,54] and other primitives where it is important to restrict
the adversary’s freedom when constructing ciphertexts [21]. Specifically, we sam-
ple a one-way permutation h on the key-space of the PRF, set the key-share in
the ciphertext to h(k) where k is uniform over K, and then derive the random-
ness used in the encryption using a hard-core function hc of h.3 In addition, we
require the adversary to include a non-interactive zero-knowledge (NIZK) argu-
ment that each ciphertext is properly constructed. In this way, we guarantee
that for each pair (x, k), there is exactly a single ciphertext that is valid. By our
admissibility requirement, the adversary is required to submit distinct cipher-
texts (since matching ciphertexts belong to the same equivalence class). Thus,
the underlying messages encrypted by each ciphertext in a decryption query nec-
essarily differ in either the key-share or the message component. Security then
follows by RKA-security.

2 Preliminaries

For n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For bit-strings
a, b ∈ {0, 1}∗, we write a‖b to denote the concatenation of a and b. For a finite
set S, we write x

r←− S to denote that x is sampled uniformly from S. We denote
the evaluation of a randomized function f on input x with randomness r by
f(x; r). We write Funs[X ,Y] to denote the set of all functions mapping from a
domain X to a range Y. We use λ to denote the security parameter. We say
a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all
c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We use poly(λ) (or just poly) to denote a quantity
whose value is bounded by some polynomial in λ.

We now formally define the tools we need to build FE schemes for random-
ized functionalities with security against malicious encrypters. In the full ver-
sion of this paper [6], we also review the standard definitions of non-interactive
zero-knowledge (NIZK) arguments of knowledge [28,53,67,68] and one-way per-
mutations [60].

2.1 RKA-Secure PRFs

We begin by reviewing the notion of related-key security [1,2,18,19,22,25,72,74]
for PRFs.

3 In the deterministic encryption setting of Fuller et al. [54], the hard-core function
must additionally be robust. This is necessary because hc(x) is not guaranteed to
hide the bits of x, which in the case of deterministic encryption, is the message
itself (and precisely what needs to be hidden in a normal encryption scheme!). Our
randomized FE scheme does not require that the bits of k remain hidden from the
adversary. Rather, we only need that hc(k) does not reveal any information about
h(k) (the share of the PRF key used for derandomization). This property follows
immediately from the definition of an ordinary hard-core function.
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Definition 2.1 (RKA-Secure PRF [18,22]). Let K = {Kλ}λ∈N
, X =

{Xλ}λ∈N
, and Yλ = {Yλ}λ∈N

be ensembles where Kλ, Xλ, and Yλ are finite
sets and represent the key-space, domain, and range, respectively. Let F :
Kλ × Xλ → Yλ be an efficiently computable family of pseudorandom functions.
Let Φ ⊆ Funs[Kλ,Kλ] be a family of key derivation functions. We say that F is
Φ-RKA secure if for all efficient, non-uniform adversaries A,
∣

∣

∣Pr
[

k
r←− Kλ : AO(k,·,·)(1λ) = 1

]

− Pr
[

f
r←− Funs[Φ × Xλ,Yλ] : Af(·,·)(1λ) = 1

]∣

∣

∣

= negl(λ),

where the oracle O(k, ·, ·) outputs F (φ(k), x) on input (φ, x) ∈ Φ × Xλ.

Definition 2.2 (Group Induced Classes [18,76]). If the key space K forms
a group under an operation �, then the group-induced class Φ� is the class of
functions Φ� = {φb : a ∈ K �→ a � b | b ∈ K}.

2.2 Functional Encryption

The notion of functional encryption was first formalized by Boneh et al. [35] and
O’Neill [79]. The work of Boneh et al. begins with a natural indistinguishability-
based notion of security. They then describe some example scenarios where these
game-based definitions of security are inadequate (in the sense that a trivially
insecure FE scheme can be proven secure under the standard game-based defin-
ition). To address these limitations, Boneh et al. defined a stronger simulation-
based notion of security, which has subsequently been the subject of intense
study [7,50,62,63,65]. In this work, we focus on this stronger security notion.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where Xλ and Yλ are
finite sets and represent the input and output domains, respectively. Let F =
{Fλ}λ∈N be an ensemble where each Fλ is a finite collection of (deterministic)
functions from Xλ to Yλ. A functional encryption scheme FE = (Setup,Encrypt,
KeyGen,Decrypt) for a (deterministic) family of functions F = {Fλ}λ∈N

with
domain X = {Xλ}λ∈N

and range Y = {Yλ}λ∈N
is specified by the following four

efficient algorithms:

– Setup: Setup(1λ) takes as input the security parameter λ and outputs a public
key mpk and a master secret key msk.

– Encryption: Encrypt(mpk, x) takes as input the public key mpk and a mes-
sage x ∈ Xλ, and outputs a ciphertext ct.

– Key Generation: KeyGen(msk, f) takes as input the master secret key msk,
a function f ∈ Fλ, and outputs a secret key sk.

– Decryption: Decrypt(mpk, sk, ct) takes as input the public key mpk, a cipher-
text ct, and a secret key sk, and either outputs a string y ∈ Yλ, or a special
symbol ⊥. We can assume without loss of generality that this algorithm is
deterministic.

First, we state the correctness and security definitions for an FE scheme for
deterministic functions.



42 S. Agrawal and D.J. Wu

Definition 2.3 (Perfect Correctness). A functional encryption scheme FE =
(Setup,Encrypt,KeyGen,Decrypt) for a deterministic function family F =
{Fλ}λ∈N

with message space X = {Xλ}λ∈N
is perfectly correct if for all f ∈ Fλ,

x ∈ Xλ,

Pr[(mpk,msk) ← Setup(1λ);
Decrypt(mpk,KeyGen(msk, f),Encrypt(mpk, x)) = f(x)] = 1.

Our simulation-based security definition is similar to the one in [7], except
that we allow an adversary to submit a vector of messages in its challenge query
(as opposed to a single message). Our definition is stronger than the one orig-
inally proposed by Boneh et al. [35] because we do not allow the simulator to
rewind the adversary. On the other hand, it is weaker than [50,63] since the
simulator is allowed to program the public parameters and the responses to the
pre-challenge secret key queries.

Definition 2.4 (SIM-Security). An FE scheme FE = (Setup,Encrypt,KeyGen,
Decrypt) for a deterministic function family F = {Fλ}λ∈N with message space
X = {Xλ}λ∈N

is (q1, qc, q2)-SIM-secure if there exists an efficient simulator S =
(S1,S2,S3,S4) such that for all PPT adversaries A = (A1,A2), where A1 makes
at most q1 oracle queries and A2 makes at most q2 oracle queries, the outputs
of the following two experiments are computationally indistinguishable:

Experiment RealFEA (1λ):
(mpk,msk) ← Setup(1λ)

(x, st) ← AO1(msk,·)
1 (mpk) for x ∈ X qc

λ

ct∗i ← Encrypt(mpk, xi) for i ∈ [qc]

α ← AO2(msk,·)
2 (mpk, {ct∗i }i∈[qc]

, st)
Output (x, {f} , α)

Experiment IdealFEA (1λ):
(mpk, st′) ← S1(1

λ)

(x, st) ← AO′
1(st

′,·)
1 (mpk) where x ∈ X qc

λ

• Let f1, . . . , fq1 be A1’s oracle queries
• Let yij = fj(xi) for i ∈ [qc], j ∈ [q1]

({ct∗i }i∈[qc]
, st′) ← S3(st

′, {yij}i∈[qc],j∈[q1]
)

α ← AO′
2(st

′,·)
2 (mpk, {ct∗i }i∈[qc]

, st)

Output (x, {f ′} , α)

where O1(msk, ·) and O′
1(st

′, ·) are pre-challenge key-generation oracles, and
O2(msk, ·) and O′

2(st
′, ·) are post-challenge ones. The oracles take a function

f ∈ Fλ as input and behave as follows:

– Real experiment: Oracles O1(msk, ·) and O2(msk, ·) both implement the
key-generation function KeyGen(msk, ·). The set {f} is the (ordered) set of
key queries made to O1(msk, ·) in the pre-challenge phase and to O2(msk, ·)
in the post-challenge phase.

– Ideal experiment: Oracles O′
1(st

′, ·) and O′
2(st

′, ·) are the simulator algo-
rithms S2(st′, ·) and S4(st′, ·), respectively. On each invocation, the post-
challenge simulator S4 is also given oracle access to the ideal functionality
KeyIdeal(x, ·). The functionality KeyIdeal accepts key queries f ′ ∈ Fλ and
returns f ′(xi) for every xi ∈ x. Both algorithms S2 and S4 are stateful. In
particular, after each invocation, they update their state st′, which is carried
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over to the next invocation. The (ordered) set {f ′} denotes the key queries
made to O′

1(st
′, ·) in the pre-challenge phase, and the queries S4 makes to

KeyIdeal in the post-challenge phase.

3 Functional Encryption for Randomized Functionalities

In a functional encryption scheme that supports randomized functionalities, the
function class Fλ is expanded to include randomized functions from the domain
Xλ to the range Yλ. Thus, we now view the functions f ∈ Fλ as taking as input
a domain element x ∈ Xλ and randomness r ∈ Rλ, where R = {Rλ}λ∈N

is
the randomness space. As in the deterministic setting, the functional encryption
scheme still consists of the same four algorithms, but the correctness and security
requirements differ substantially.

For instance, in the randomized setting, whenever the decryption algorithm
is invoked on a fresh encryption of a message x or a fresh key for a function f ,
we would expect that the resulting output is indistinguishable from evaluating
f(x) with fresh randomness. Moreover, this property should hold regardless of
the number of ciphertexts and keys one has. To capture this property, the cor-
rectness requirement for an FE scheme supporting randomized functions must
consider multiple keys and ciphertexts. In contrast, in the deterministic set-
ting, correctness for a single key-ciphertext pair implies correctness for multiple
ciphertexts.

Definition 3.1 (Correctness). A functional encryption scheme rFE = (Setup,
Encrypt,KeyGen,Decrypt) for a randomized function family F = {Fλ}λ∈N

over
a message space X = {Xλ}λ∈N

and a randomness space R = {Rλ}λ∈N
is correct

if for every polynomial n = n(λ), every f ∈ Fn
λ and every x ∈ X n

λ , the following
two distributions are computationally indistinguishable:

1. Real: {Decrypt (mpk, ski, ctj)}i,j∈[n], where:

– (mpk,msk) ← Setup(1λ);
– ski ← KeyGen(msk, fi) for i ∈ [n];
– ctj ← Encrypt(mpk, xj) for j ∈ [n].

2. Ideal: {fi (xj ; ri,j)}i,j∈[n] where ri,j
r←− Rλ.

As discussed in Sect. 1.2, formalizing and achieving security against malicious
encrypters in the randomized setting is considerably harder than in the deter-
ministic case. A decryption oracle that takes a single ciphertext along with a
function f does not suffice in the randomized setting, since an adversary could
still produce a collection of ciphertexts such that when the same key is used for
decryption, the outputs are correlated. We could strengthen the security defi-
nition by allowing the adversary to query with multiple ciphertexts instead of
just one, but as noted in Sect. 1.2, this direct extension is too strong. In order to
obtain a realizable definition, we instead restrict the adversary to submit cipher-
texts that do not behave in the same way. This is formally captured by defining
an admissible equivalence relation on the space of ciphertexts.



44 S. Agrawal and D.J. Wu

Definition 3.2 (Admissible Relation on Ciphertext Space). Let rFE =
(Setup,Encrypt,KeyGen,Decrypt) be an FE scheme for randomized functions with
ciphertext space T = {Tλ}λ∈N

. Let ∼ be an equivalence relation on T . We say
that ∼ is admissible if ∼ is efficiently checkable and for all λ ∈ N, all (mpk,msk)
output by Setup(1λ), all secret keys sk output by KeyGen(msk, ·), and all cipher-
texts ct1, ct2 ∈ Tλ, if ct1 ∼ ct2, then one of the following holds:

– Decrypt(mpk, sk, ct1) = ⊥ or Decrypt(mpk, sk, ct2) = ⊥.
– Decrypt(mpk, sk, ct1) = Decrypt(mpk, sk, ct2).

We remark here that there always exists an admissible equivalence relation on
the ciphertext space, namely, the equality relation. Next, we define our strength-
ened requirement for security against malicious encrypters in the randomized
setting. Like [65], we build on the usual simulation-based definition of security
for functional encryption (Definition 2.4) by providing the adversary access to a
decryption oracle. The definition we present here differs from that by Goyal et al.
in two key respects. First, the adversary can submit multiple ciphertexts to the
decryption oracle, and second, the adversary is allowed to choose its challenge
messages adaptively (that is, after seeing the public parameters and making
secret key queries).

Definition 3.3 (SIM-security for rFE). Let F = {Fλ}λ∈N
be a randomized

function family over a domain X = {Xλ}λ∈N
and randomness space R =

{Rλ}λ∈N
. Let rFE = (Setup,Encrypt,KeyGen,Decrypt) be a randomized func-

tional encryption scheme for F with ciphertext space T . Then, we say that rFE
is (q1, qc, q2)-SIM-secure against malicious encrypters if there exists an admissi-
ble equivalence relation ∼ associated with T and there exists an efficient simu-
lator S = (S1,S2,S3,S4,S5) such that for all efficient adversaries A = (A1,A2)
where A1 makes at most q1 key-generation queries and A2 makes at most q2 key-
generation queries, the outputs of the following experiments are computationally
indistinguishable:4

Experiment RealrFEA (1λ):
(mpk,msk) ← Setup(1λ)

(x, st) ← AO1(msk,·),O3(msk,·,·)
1 (mpk)

where x ∈ X qc
λ

ct∗i ← Encrypt(mpk, xi) for i ∈ [qc]

α ← AO2(msk,·),O3(msk,·,·)
2 (mpk, {ct∗i } , st)

Output (x, {f} , {g} , {y} , α)

Experiment IdealrFEA (1λ):
(mpk, st′) ← S1(1

λ)

(x, st) ← AO′
1(st

′,·),O′
3(st

′,·,·)
1 (mpk)

where x ∈ X qc
λ

• Let f1, . . . , fq1 be A1’s oracle
queries to O′

1(st
′, ·)

• Pick rij
r←− Rλ, let yij = fj(xi; rij)

for all i ∈ [qc], j ∈ [q1]
({ct∗i } , st′) ← S3(st

′, {yij})

α ← AO′
2(st

′,·),O′
3(st

′,·,·)
2 (mpk, {ct∗i } , st)

Output (x, {f ′} , {g′} , {y′} , α)

4 In the specification of the experiments, the indices i always range over [qc] and the
indices j always range over [q1].
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where the oracles O1(msk, ·), O′
1(st

′, ·), O2(msk, ·), and O′
2(st

′, ·) are the analogs
of the key-generation oracles from Definition 2.4:

– Real experiment: Oracles O1(msk, ·) and O2(msk, ·) implement KeyGen
(msk, ·), and {f} is the (ordered) set of key queries made to oracles O1(msk, ·)
and O2(msk, ·).

– Ideal experiment: Oracles O′
1(st

′, ·) and O′
2(st

′, ·) are the simulator algo-
rithms S2(st′, ·) and S4(st′, ·), respectively. The simulator S4 is given oracle
access to KeyIdeal(x, ·), which on input a function f ′ ∈ Fλ, outputs f ′(xi; ri)
for every xi ∈ x and ri

r←− Rλ. The (ordered) set {f ′} consists of the key
queries made to O′

1(st
′, ·), and the queries S4 makes to KeyIdeal.

Oracles O3(msk, ·, ·) and O′
3(st

′, ·, ·), are the decryption oracles that take inputs
of the form (g, C) where g ∈ Fλ and C = {cti}i∈[m] is a collection of m = poly(λ)
ciphertexts. For queries made in the post-challenge phase, we additionally require
that ct∗i /∈ C for all i ∈ [qc]. Without loss of generality, we assume that for all
i, j ∈ [m], if i �= j, then cti �∼ ctj. In other words, the set C contains at most
one representative from each equivalence class of ciphertexts.

– Real experiment: On input (g, C), O3 computes skg ← KeyGen(msk, g). For
i ∈ [m], it sets yi = Decrypt(skg, cti) and replies with the ordered set {yi}i∈[m].
The (ordered) set {g} denotes the functions that appear in the decryption
queries of A2 and {y} denotes the set of responses of O3.

– Ideal experiment: On input (g′, C ′), O′
3 does the following:

1. For each ct′i ∈ C ′, invoke the simulator algorithm S5(st′, ct′i) to obtain a
value xi ∈ Xλ ∪ {⊥}. Note that S5 is also stateful.

2. For each i ∈ [m], if xi = ⊥, then the oracle sets y′
i = ⊥. Otherwise, the

oracle choose ri
r←− Rλ and sets y′

i = g′(xi; ri).
3. Output the ordered set of responses {y′

i}i∈[m].
The (ordered) set {g′} denotes the functions that appear in the decryption
queries of A2 and {y′} denotes the outputs of O′

3.

Remark 3.4. Note that the above definition does not put any constraint on the
equivalence relation used to prove security. Indeed, any equivalence relation—as
long as it is admissible—suffices because if two ciphertexts ct1, ct2 fall into the
same equivalence class, they essentially behave identically (for all parameters
output by Setup and all keys sk output by KeyGen, decrypting ct1, ct2 with sk
must either give the same result, or one of the ciphertexts is invalid). Thus, by
restricting an adversary to providing at most one ciphertext from each equiva-
lence class in each decryption query, we are only preventing it from submitting
ciphertexts which are effectively equivalent to the decryption oracle.

Remark 3.5. One could also consider an ideal model where the adversary is
allowed to submit equivalent ciphertexts to the decryption oracle (at the cost
of making the security game more cumbersome). In the extreme case where the
adversary submits identical ciphertexts, it does not make sense for the decryp-
tion oracle to respond independently on each of them—rather, it should respond
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in a consistent way. In constructions of randomized FE that provide malicious
security, there naturally arise ciphertexts that are not identical as bit-strings,
but are identical from the perspective of the decryption function. In these cases,
the expected behavior of the ideal functionality should again be to provide con-
sistent, rather than independent, responses.

Consider now an adversary that submits a function f and a set C of cipher-
texts to the decryption oracle, where some ciphertexts in C belong to the same
equivalence class. To respond, the challenger can first group these ciphertexts
by equivalence class. For each equivalence class C ′ of ciphertexts in C, the chal-
lenger invokes the simulator on C ′. On input the collection C ′, the simulator
outputs a single value x and indicates which ciphertexts in C ′, if any, are valid.
If C ′ contains at least one valid ciphertext, the challenger samples a value z
from the output distribution of f(x). It then replies with the same value z on
all ciphertexts marked valid by the simulator, and ⊥ on all ciphertexts marked
invalid. (This is a natural generalization of how we would expect the decryption
oracle to behave had the adversary submitted identical ciphertexts to it.)

4 Our Generic Transformation

Let F = {Fλ}λ∈N
be a randomized function class over a domain X = {Xλ}λ∈N

,
randomness space R = {Rλ}λ∈N

and range Y = {Yλ}λ∈N
. We give the formal

description of our functional encryption scheme for F (based on any general-
purpose FE scheme for deterministic functionalities) in Fig. 1. All the necessary
cryptographic primitives are also shown in Fig. 1.

Theorem 4.1. If (1) NIZK is a simulation-sound extractable non-interactive
zero-knowledge argument, (2) PRF is a Φ-RKA secure pseudorandom func-
tion where Φ is group-induced, (3) OWP is a family of one-way permutations
with hard-core function hc, and (4) FE is a perfectly-correct (q1, qc, q2)-SIM
secure functional encryption scheme for the derandomized class GF , then rFE
is (q1, qc, q2)-SIM secure against malicious encrypters for the class F of random-
ized functions.

Before proceeding with the proof of Theorem4.1, we remark that our
strengthened definition of security against malicious encrypters (Definition 3.3)
is indeed stronger than the original definition by Goyal et al. [65].

Remark 4.2. A simpler version of our generic transformation where we only
secret share the RKA-secure PRF key used for derandomization and include
a NIZK argument can be shown to satisfy the Goyal et al. [65] definition
of security against malicious encrypters, but not our strengthened definition
(Definition 3.3). In particular, if the randomness used in the base FE encryption
is under the control of the adversary, a malicious encrypter can construct two
fresh encryptions (under the base FE scheme) of the same (x, k) pair and submit
them to the decryption oracle. In the real world, the outputs are identical (since
the ciphertexts encrypt identical messages), but in the ideal world, the oracle
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Fig. 1. Generic construction of a functional encryption scheme for any family of ran-
domized functions F = {Fλ}λ∈N

over a domain X = {Xλ}λ∈N
, randomness space

R = {Rλ}λ∈N
and range Y = {Yλ}λ∈N

.
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replies with two independent outputs. This is an admissible query because if the
underlying FE scheme is secure, one cannot efficiently decide whether two FE
ciphertexts encrypt the same value without knowing any scheme parameters. But
because each individual output is still properly distributed (by RKA-security of
the PRF), security still holds in the Goyal et al. model.

We now proceed to give a proof of Theorem 4.1 in Sects. 4.1 and 4.2. In the
full version [6], we also show that our transformed scheme is correct.

4.1 Proof of Theorem4.1: Description of Simulator

To prove Theorem 4.1, and show that rFE is secure in the sense of Definition 3.3,
we first define an equivalence relation ∼ over the ciphertext space T = {Tλ}λ∈N

.
Take two ciphertexts ct1, ct2 ∈ Tλ, and write ct1 = (ct′1, π1) and ct2 = (ct′2, π2).
We say that ct1 ∼ ct2 if ct′1 = ct′2.

Certainly, ∼ is an efficiently-checkable equivalence relation over Tλ. For the
second admissibility condition, take any (mpk,msk) output by Setup and any sk
output by KeyGen(msk, ·). Suppose moreover that Decrypt(mpk, sk, ct1) �= ⊥ �=
Decrypt(mpk, sk, ct2). Then, by definition of Decrypt(mpk, sk, ·),

Decrypt(mpk, sk, ct1) = FE.Decrypt(mpk′, sk, ct′1)
= FE.Decrypt(mpk′, sk, ct′2) = Decrypt(mpk, sk, ct2),

where mpk’ is the master public key for the underlying FE scheme (included in
mpk). The second equivalence follows since ct′1 = ct′2.

We now describe our ideal-world simulator S = (S1,S2,S3,S4,S5). Let
S(fe) = (S(fe)

1 ,S(fe)
2 ,S(fe)

3 ,S(fe)
4 ) be the simulator for the underlying FE scheme

for deterministic functionalities. Let S(nizk) = (S(nizk)
1 ,S(nizk)

2 ) and E(nizk) =
(E(nizk)

1 , E(nizk)
2 ) be the simulation and extraction algorithms, respectively, for

the NIZK argument system.

Algorithm S1(1λ). S1 simulates the setup procedure. On input a security para-
meter 1λ, it operates as follows:

1. Invoke S(fe)
1 (1λ) to obtain a master public key mpk’ and some state st(fe).

2. Invoke E(nizk)
1 (1λ) to obtain a CRS σ, a simulation trapdoor τ , and an extrac-

tion trapdoor ξ.
3. Sample a one-way permutation t ← OWP.Setup(1λ) and define ht(·) =

OWP.Eval(t, ·).
4. Set mpk ← (mpk′, t, σ) and st ← (st(fe),mpk, τ, ξ). Output (mpk, st).

Algorithm S2(st0, f). S2 simulates the pre-challenge key-generation queries.
On input a state st0 = (st(fe)0 ,mpk, τ, ξ) and a function f ∈ Fλ, it operates as
follows:

1. Choose a random key k
r←− Kλ and construct the derandomized function gf

k

as defined in Eq. (1).
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2. Invoke S(fe)
2 (st(fe)0 , gf

k ) to obtain a key sk and an updated state st
(fe)
1 .

3. Output the key sk and an updated state st1 = (st(fe)1 ,mpk, τ, ξ).

Algorithm S3(st0, {yij}i∈[qc],j∈[q1]
). S3 constructs the challenge ciphertexts. Let

x = (x1, x2, . . . , xqc) be the challenge messages the adversary outputs. On input
a state st0 = (st(fe)0 ,mpk, τ, ξ), where mpk = (mpk′, t, σ), and a collection of
function evaluations {yij}i∈[qc],j∈[q1]

, S3 operates as follows:

1. Invoke S(fe)
3 (st(fe)0 , {yij}i∈[qc],j∈[q1]

) to obtain a set of ciphertexts {ct′i}i∈[qc]

and an updated state st
(fe)
1 .

2. For i ∈ [qc], let si be the statement

∃x, k : ct′i = FE.Encrypt(mpk′, (x, ht(k)); hc(k)). (3)

Using the trapdoor τ in st0, simulate an argument πi ← S(nizk)
2 (σ, τ, si), and

set ct∗i = (ct′i, πi).
3. Output the challenge ciphertexts {ct∗i }i∈[qc]

and the updated state st1 =

(st(fe)1 ,mpk, τ, ξ).

Algorithm S4(st0, f). S4 simulates the post-challenge key-generation queries
with help from the ideal functionality KeyIdeal(x, ·). On input a state st0 =
(st(fe)0 ,mpk, τ, ξ) and a function f ∈ Fλ, it operates as follows:

1. Choose a random key k
r←− K, and construct the derandomized function gf

k

as defined in Eq. (1).
2. Invoke S(fe)

4 (st(fe)0 , gf
k ). Here, S4 also simulates the FE.KeyIdeal(x, ·) ora-

cle for S(fe)
4 . Specifically, when S(fe)

4 makes a query of the form gf ′
k′ to

FE.KeyIdeal(x, ·), S4 queries its own oracle KeyIdeal(x, ·) on f ′ to obtain val-
ues zi for each i ∈ [qc].5 It replies to S(fe)

4 with the value zi for all i ∈ [qc].
Let sk and st

(fe)
1 be the output of S(fe)

4 .
3. Output the key sk and an updated state st1 = (st(fe)1 ,mpk, τ, ξ).

Algorithm S5(st, ct). S5 handles the decryption queries. On input a state st =
(st(fe),mpk, τ, ξ) and a ciphertext ct, it proceeds as follows:6

1. Parse mpk as (mpk′, t, σ) and ct as (ct′, π). Let s be the statement

∃x, k : ct = FE.Encrypt(mpk′, (x, ht(k)); hc(k)).

If NIZK.Verify(σ, s, π) = 0, then stop and output ⊥.
5 The underlying FE scheme is for the derandomized class GF , so the only permissible

functions S(fe)
4 can issue to FE.KeyIdeal are of the form gf ′

k′ for some k′ and f ′.
6 Recall that in the security definition (Definition 3.3), the decryption oracle accepts
multiple ciphertexts, and invokes the simulator on each one individually. Thus, the
simulator algorithm operates on a single ciphertext at a time.
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2. Otherwise, invoke the extractor E(nizk)
2 (σ, ξ, s, π) using the extraction trap-

door ξ to obtain a witness (x, k) ∈ Xλ × Kλ. Output x and state st.

4.2 Proof of Theorem4.1: Hybrid Argument

To prove security, we proceed via a series of hybrid experiments between an
adversary A and a challenger. Each experiment consists of the following phases:

1. Setup phase. The challenger begins by generating the public parameters of
the rFE scheme, and sends those to the adversary A.

2. Pre-challenge queries. In this phase of the experiment, A can issue key-
generation queries of the form f ∈ Fλ and decryption queries of the form
(f, C) ∈ Fλ × T m

λ to the challenger. For all decryption queries (f, C), we
require that for any cti, ctj ∈ C, cti �∼ ctj if i �= j. In other words, each set of
ciphertexts C can contain at most one representative from each equivalence
class.

3. Challenge phase. The adversary A submits a vector of messages x ∈ X qc
λ

to the challenger, who replies with ciphertexts {ct∗i }i∈[qc]
.

4. Post-challenge queries. In this phase, A is again allowed to issue key-
generation and decryption queries, with a further restriction that no decryp-
tion query can contain any of the challenge ciphertexts (i.e., for any query
(f, C), ct∗i /∈ C for all i ∈ [qc]).

5. Output. At the end of the experiment, A outputs a bit b ∈ {0, 1}.

We now describe our sequence of hybrid experiments. Note that in defining a
new hybrid, we only describe the phases that differ from the previous one. If one
or more of the above phases are omitted, the reader should assume that they
are exactly the same as in the previous hybrid.

Hybrid Hyb0. In this experiment, the challenger responds to A according to the
specification of the real experiment RealrFEA .

– Setup phase. The challenger samples (mpk,msk) ← Setup(1λ) and sends
mpk to A.

– Pre-challenge queries. The challenger responds to each query as follows:
• Key-generation queries. On a key-generation query f ∈ Fλ, the chal-

lenger responds with KeyGen(msk, f).
• Decryption queries. On a decryption query (f, C) ∈ Fλ ×T m

λ , the chal-
lenger samples sk ← KeyGen(msk, f). For each cti ∈ C, the challenger sets
yi = Decrypt(sk, cti), and sends {yi}i∈[m] to the adversary.

– Challenge phase. When the challenger receives a vector x ∈ X qc
λ , it sets

ct∗i = Encrypt(mpk, xi) for each i ∈ [qc] and replies to A with {ct∗i }i∈[qc]
.

– Post-challenge queries. This is identical to the pre-challenge phase.

Hybrid Hyb1. This is the same as Hyb0, except the challenger simulates the CRS
in the setup phase and the arguments in the challenge ciphertexts in the challenge
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phase. Let S(nizk) = (S(nizk)
1 ,S(nizk)

2 ) be the simulator for NIZK. Note that we
omit the description of the pre- and post-challenge phases in the description
below because they are identical to those phases in Hyb0.

– Setup phase. The challenger generates the public parameters as in Hyb0,
except it uses S(nizk)

1 to generate the CRS. Specifically, it does the following:
1. Sample (mpk′,msk′) ← FE.Setup(1λ).
2. Run S(nizk)

1 (1λ) to obtain a CRS σ and a simulation trapdoor τ .
3. Sample a one-way permutation t ← OWP.Setup(1λ), and define ht(·) =

OWP.Eval(t, ·).
4. Set mpk = (mpk′, t, σ) and send mpk to A.

– Challenge phase. The challenger constructs the challenge ciphertexts as in
Hyb0, except it uses S(nizk)

2 to simulate the NIZK arguments. Let x ∈ X qc
λ be

the adversary’s challenge. For i ∈ [qc], the challenger samples k∗
i

r←− Kλ and
sets ct′i ← FE.Encrypt(mpk′, (xi, ht(k∗

i )); hc(k∗
i )). It invokes S(nizk)

2 (σ, τ, si) to
obtain a simulated argument πi, where si is the statement in Eq. (3). Finally,
it sets ct∗i = (ct′i, πi) and sends {ct∗i }i∈[qc]

to A.

Hybrid Hyb2. This is the same as Hyb1, except the challenger uses uniformly
sampled randomness when constructing the challenge ciphertexts.

– Challenge phase. Same as in Hyb1, except that for every i ∈ [qc], the
challenger sets ct′i = FE.Encrypt(mpk′, (xi, ht(k∗

i )); ri) for a randomly chosen
ri

r←− {0, 1}ρ.

Hybrid Hyb3. This is the same as Hyb2, except the challenger answers the
decryption queries by first extracting the message-key pair (m, k) from the
NIZK argument and then evaluating the derandomized function on it. Let
E(nizk) = (E(nizk)

1 , E(nizk)
2 ) be the extraction algorithm for NIZK.

– Setup phase. Same as in Hyb2 (or Hyb1), except the challenger runs
(σ, τ, ξ) ← E(nizk)

1 (1λ) to obtain the CRS σ, the simulation trapdoor τ , and
the extraction trapdoor ξ.

– Pre-challenge queries. The key-generation queries are handled as in Hyb2,
but the decryption queries are handled as follows.
• Decryption queries. On input (f, C), where C = {cti}i∈[m],

1. Choose a random key k
r←− Kλ.

2. For i ∈ [m], parse cti as (ct′i, πi), and let si be the statement in
Eq. (3). If NIZK.Verify(σ, si, πi) = 0, set yi = ⊥. Otherwise, invoke
the extractor E(nizk)

2 (σ, ξ, si, πi) to obtain a witness (xi, ki), and set
yi = f(xi;PRF(k � ht(ki), xi)).

3. Send the set {yi}i∈[m] to A.
– Post-challenge queries. This is identical to the pre-challenge phase.
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Hybrid Hyb4. This is the same as Hyb3, except the challenger uses the simulator

S(fe) = (S(fe)
1 ,S(fe)

2 ,S(fe)
3 ,S(fe)

4 ) for the underlying FE scheme to respond to
queries. Let S = (S1,S2,S3,S4,S5) be the simulator described in Sect. 4.1.

– Setup phase. Same as in Hyb3, except the challenger invokes the base FE
simulator S(fe)

1 to construct mpk. The resulting setup algorithm corresponds
to the simulation algorithm S1. Hence, we can alternately say that the chal-
lenger runs S1(1λ) to obtain mpk = (mpk′, t, σ) and st = (st(fe),mpk, τ, ξ),
and sends mpk to A.

– Pre-challenge queries. The decryption queries are handled as described in
Hyb3, but key-generation queries are handled as follows.
• Key-generation queries. On a key-generation query f ∈ Fλ,

1. Sample a key k
r←− Kλ. Let gf

k be the derandomized function corre-
sponding to f .

2. Run S(fe)
2 (st(fe), gf

k ) to obtain a secret key sk and an updated state.
3. Update st accordingly and send sk to A.

Note that this is exactly how S2 behaves when given f and st as inputs.
– Challenge phase. The challenger constructs the challenge ciphertexts using

the simulation algorithm S3. Specifically, it does the following on receiving
x ∈ X qc

λ :
1. For each i ∈ [qc], choose a key k∗

i
r←− Kλ.

2. Let f1, . . . , fq1 ∈ Fλ be the pre-challenge key-generation queries made
by A and k1, . . . , kq1 ∈ Kλ be the keys chosen when responding to each
query. For all i ∈ [qc] and j ∈ [q1], compute rij = PRF(kj �ht(k∗

i ), xi) and
set yij = fj(xi; rij).

3. Invoke the simulator algorithm S3(st, {yij}i∈[qc],j∈[q1]
) to obtain a collec-

tion of ciphertexts {ct∗i }i∈[qc]
and an updated state st.

4. Send {ct∗i }i∈[qc]
to A.

– Post-challenge queries. The decryption queries are handled as in the pre-
challenge phase, but key-generation queries are handled differently as follows.
• Key-generation queries. The first step stays the same: a key k is picked

at random and gf
k is defined. The challenger then invokes S(fe)

4 with
inputs st(fe) and gf

k , instead of S(fe)
2 . In invoking S(fe)

4 , it simulates the
FE.KeyIdeal(x, ·) oracle as follows: on input a function of the form gf ′

k′ , it
computes yi = gf ′

k′ (xi, ht(k∗
i )) = f ′(xi;PRF(k′�ht(k∗

i ), xi)) and replies with
the set {yi}i∈[qc]

. The function key returned by S(fe)
4 is given to A, and st

is updated appropriately. This is the behavior of S4.

Hybrid Hyb5. This is the same as Hyb4, except the outputs of PRF are replaced
by truly random strings. This matches the specification of the ideal experiment
IdealrFEA . We highlight below the differences from the previous hybrid.

– Pre-challenge queries. While the key queries are handled as before, the
decryption queries are handled as follows.
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• Decryption queries. Same as in Hyb4, except the function f is evaluated
using uniformly sampled randomness. In other words, on input f and C =
{cti}i∈[m], the challenger does the following:

1. For every cti ∈ C, invoke the simulator algorithm S5(st, cti) to obtain
a value xi ∈ Xλ ∪ {⊥} and an updated state st.

2. If xi = ⊥, set yi to ⊥, else set it to f(xi; ri), where ri
r←− Rλ.

3. Send the set of values {yi}i∈[m] to A.
– Challenge phase. The challenge ciphertexts are constructed as in the ideal

experiment. Specifically, instead of using PRF to generate the randomness
for evaluating yij in the first and second steps of the challenge phase, the
challenger simply computes fj(xi; rij) for rij

r←− Rλ. The remaining two steps
(third and fourth) stay the same.

– Post-challenge queries. The decryption queries are handled as in the pre-
challenge phase, but key queries are handled as follows:
• Key-generation queries. Same as Hyb4, except the oracle FE.KeyIdeal

(x, ·) is implemented using uniformly sampled randomness as in the ideal
experiment. Specifically, if S(fe)

4 makes a query to FE.KeyIdeal(x, ·) with a
derandomized function gf ′

k′ , the challenger chooses an ri
r←− Rλ for every

i ∈ [qc], and replies with {f ′(xi; ri)}i∈[qc]
.

In the full version [6], we complete the hybrid argument by showing that each
consecutive pair of experiments are computationally indistinguishable. We also
show in the full version that our transformed scheme is correct.

5 Instantiating and Applying the Transformation

In this section, we describe one way to instantiate the primitives (the NIZK
argument system, the RKA-secure PRF, and the one-way permutation) needed
to apply the generic transformation from Sect. 4, Theorem 4.1. Then, in Sect. 5.2,
we show how to obtain new general-purpose functional encryption schemes for
randomized functionalities with security against malicious encrypters from a
wide range of assumptions by applying our transformation to existing functional
encryption schemes.

5.1 Instantiating Primitives

All of the primitives required by our generic transformation can be built from
standard number-theoretic assumptions, namely the decisional Diffie-Hellman
(DDH) assumption [29], the hardness of discrete log in the multiplicative group
Z

∗
p (for prime p), and the RSA assumption [30,82]. The first two assumptions can

be combined by assuming the DDH assumption holds in a prime-order subgroup
of Z∗

p, such as the subgroup of quadratic residues of Z∗
p, where p is a safe prime

(p = 2q + 1, where q is also prime). We describe one such instantiation of our
primitives from the DDH and RSA assumptions in the full version [6]. This yields
the following corollary to Theorem4.1:
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Corollary 5.1. Assuming standard number-theoretic assumptions (that is, the
DDH assumption in a prime-order subgroup of Z∗

p and the RSA assumption), and
that FE is a perfectly-correct (q1, qc, q2)-SIM secure functional encryption scheme
for the derandomized function class GF , then rFE is (q1, qc, q2)-SIM secure against
malicious encrypters for the class F of randomized functions.

5.2 Applying the Transformation

In this section, we give three examples of how our generic transformation
from Sect. 4 could be applied to existing functional encryption schemes to
obtain schemes that support randomized functionalities. Our results show that
functional encryption for randomized functionalities secure against malicious
encrypters can be constructed from a wide range of assumptions such as public-
key encryption, concrete assumptions over composite-order multilinear maps, or
indistinguishability obfuscation, in conjunction with standard number-theoretic
assumptions (Corollary 5.1). The examples we present here do not constitute an
exhaustive list of the functional encryption schemes to which we could apply the
transformation. For instance, the construction of single-key-secure, succinct FE
from LWE by Goldwasser et al. [62] and the recent adaptively-secure construc-
tion from iO by Waters [86] are also suitable candidates.

We note that the FE schemes for deterministic functions we consider below
are secure (or can be made secure) under a slightly stronger notion of simula-
tion security compared to Definition 2.4. Under the stronger notion (considered
in [50,63]), the simulator is not allowed to program the public-parameters (they
are generated by the Setup algorithm) or the pre-challenge key queries (they
are generated using the KeyGen algorithm). Hence, when our transformation is
applied to these schemes, there is a small loss in security. We believe that this loss
is inherent because the new schemes are secure under malleability attacks while
the original schemes are not. In particular, the construction of Goyal et al. [65]
also suffers from this limitation.

The GVW scheme. In [63], Gorbunov et al. give a construction of a general-
purpose public-key FE scheme for a bounded number of secret key queries. More
formally, they give both a (q1, 1, poly)- and a (q1, poly, 0)-SIM7 secure FE scheme
for any class of deterministic functions computable by polynomial-size circuits
based on the existence of semantically-secure public-key encryption and pseudo-
random generators (PRG) computable by low-degree circuits. These assumptions
are implied by many concrete intractability assumptions such as factoring.

The GVW scheme can be made perfectly correct if we have the same guar-
antee from the two primitives it is based on: a semantically-secure public-key
encryption scheme and a decomposable randomized encoding scheme [70]. There
are many ways to get perfect correctness for the former, like ElGamal [52] or

7 We write poly to denotes that the quantity does not have to be a-priori bounded,
and can be any polynomial in λ.
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RSA [82]. For the latter, we can use Applebaum et al.’s construction [12, The-
orem 4.14]. We can now apply our generic transformation (Corollary 5.1) to the
GVW scheme to obtain the following corollary:

Corollary 5.2. Under standard number-theoretic assumptions, for any polyno-
mial q1 = q1(λ), there exists a (q1, 1, poly)-SIM and a (q1, poly, 0)-SIM secure
FE scheme for any class of randomized functions computable by polynomial-size
circuits with security against malicious encrypters.

In the full version [6], we describe how to apply our generic transforma-
tion from Sect. 4 to the GGHZ [56] and GGHRSW [55] functional encryption
schemes to obtains FE schemes supporting randomized functionalities from con-
crete assumptions over multilinear maps and indistinguishability obfuscation,
respectively. We thus obtain the following corollaries:

Corollary 5.3. Under standard number-theoretic assumptions, and the GGHZ
complexity assumptions on composite-order multilinear maps [56, Section 2.3],
for any polynomials q1 = q1(λ) and qc = qc(λ), there exists a (q1, qc, poly)-SIM
secure functional encryption for all polynomial-sized randomized functionalities
with security against malicious encrypters.

Corollary 5.4. Under standard number-theoretic assumptions, and the exis-
tence of an indistinguishability obfuscator, for any polynomials q1 = q1(λ) and
qc = qc(λ), there exists a (q1, qc, poly)-SIM secure functional encryption for
all polynomial-sized randomized functionalities with security against malicious
encrypters.

Comparison with the GJKS scheme. We note that (q1, qc, poly)-SIM secu-
rity matches the known lower bounds for simulation-based security in the stan-
dard model [7,35]. We remark also that the FE schemes from Corollaries 5.3
and 5.4 provide stronger security than the original FE scheme for randomized
functionalities by Goyal et al. [65]. Their construction was shown to be selec-
tively rather than adaptively secure. Specifically, in their security model, the
adversary must commit to its challenge messages before seeing the master pub-
lic key. On the contrary, when we apply our generic transformation to both the
GGHZ scheme from composite-order multilinear maps as well as the GGHSRW
scheme from indistinguishability obfuscation, we obtain an adaptive-secure FE
scheme where the adversary can not only see the master public key, but also
make secret key queries prior to issuing the challenge query.

6 Open Questions

We conclude with a few interesting open questions for further study:

– Can we construct an FE scheme for a more restrictive class of randomized
functionalities (e.g., sampling from a database) without needing to go through
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our generic transformation? In other words, for simpler classes of randomized
functionalities, can we construct a scheme that does not require a general-
purpose FE scheme for deterministic functionalities?

– Is it possible to generically convert a public-key FE scheme for deterministic
functionalities into one that supports randomized functionalities without mak-
ing any additional assumptions? Komargodski, Segev, and Yogev [73] show
that this is possible in the secret-key setting.
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Abstract. In 2003, Schnorr introduced Random sampling to find very
short lattice vectors, as an alternative to enumeration. An improved vari-
ant has been used in the past few years by Kashiwabara et al. to solve
the largest Darmstadt SVP challenges. However, the behaviour of ran-
dom sampling and its variants is not well-understood: all analyses so
far rely on a questionable heuristic assumption, namely that the lat-
tice vectors produced by some algorithm are uniformly distributed over
certain parallelepipeds. In this paper, we introduce lattice enumeration
with discrete pruning, which generalizes random sampling and its vari-
ants, and provides a novel geometric description based on partitions of
the n-dimensional space. We obtain what is arguably the first sound
analysis of random sampling, by showing how discrete pruning can be
rigorously analyzed under the well-known Gaussian heuristic, in the same
model as the Gama-Nguyen-Regev analysis of pruned enumeration from
EUROCRYPT ’10, albeit using different tools: we show how to efficiently
compute the volume of the intersection of a ball with a box, and to effi-
ciently approximate a large sum of many such volumes, based on sta-
tistical inference. Furthermore, we show how to select good parameters
for discrete pruning by enumerating integer points in an ellipsoid. Our
analysis is backed up by experiments and allows for the first time to
reasonably estimate the success probability of random sampling and its
variants, and to make comparisons with previous forms of pruned enu-
meration. Our work unifies random sampling and pruned enumeration
and show that they are complementary of each other: both have different
characteristics and offer different trade-offs to speed up enumeration.

1 Introduction

With the upcoming NIST standardization of post-quantum cryptography and
the development of fully-homomorphic encryption, it is becoming increasingly
important to provice convincing security estimates for lattice-based cryptosys-
tems. To do so, we need to understand the best lattice algorithms, such as the
ones used to solve the largest numerical challenges. For NTRU challenges [33] and
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Darmstadt’s lattice challenges [18], the largest records were solved (by respec-
tively Ducas-Nguyen and Chen-Nguyen) using algorithms (pruned enumera-
tion [11] with state-of-the-art BKZ [5]) which are reasonably well-understood.
However, the seven largest records of Darmstadt’s SVP challenges [28] have been
solved by Kashiwabara and Teruya (using significant computational power, com-
parable for the largest challenge to that of RSA-768) using an algorithm which
is partially secret: an incomplete description can be found in [8]. The core of
the algorithm seems to be an improved variant of Schnorr’s random sampling
method [30], which was introduced as an alternative to enumeration [31] for
finding extremely short lattice vectors.

Unfortunately, our understanding of random sampling and its variants is
not satisfactory: all the analyses [4,8,9,20,30] so far rely on several heuristic
assumptions, the most questionable being the Randomness Assumption, which
says that the lattice vectors produced by some algorithm are uniformly dis-
tributed over certain parallelepipeds. As noted by Ludwig [20], this assumption
cannot hold, and a gap between theoretical analyses and experimental results has
been reported [8,20]. In some sense, the situation is reminiscent of enumeration
with pruning, which was introduced and partially analyzed in the mid-nineties
by Schnorr et al. [31,32], but arguably only well-understood in 2010, when Gama
et al. [11] provided a novel geometric description and presented its first sound
analysis, which provided much better parameters.

At this point, we do not know if random sampling is better or worse than
pruned enumeration, neither in theory nor in practice, which is rather puzzling,
considering their importance for lattice algorithms, which can be used to solve
a wide range of problems, such as integer programming [15], factoring polyno-
mials with rational coefficients [16], integer relation finding [13], as well as prob-
lems in communication theory (see [1,24] and references therein), and public-key
cryptanalysis (see [22] and references therein). Pruned enumeration is used in
state-of-the-art implementations of BKZ [2,5].

Our results. We introduce lattice enumeration with discrete pruning, which gen-
eralizes naturally Schnorr’s random sampling and all its variants, and provides a
novel geometric description based on partitions of the n-dimensional space. This
new description allows us to rigorously analyze discrete pruning under the well-
known Gaussian heuristic, in the same model as the Gama-Nguyen-Regev [11]
analysis of pruned enumeration, albeit using different tools. This is the first
sound analysis of random sampling and its variants, and our presentation unifies
both pruned enumeration and random sampling, by viewing them as two differ-
ent ways of speeding up the classical enumeration algorithm. In other words, we
improve the understanding of random sampling to that of pruned enumeration.

To complement our theoretical analysis, we introduce three technical tools
which allow, in practice, to estimate success probabilities and optimize parame-
ters for discrete pruning: this is the most difficult aspect of discrete pruning,
because given parameters, estimating the running time of discrete pruning is on
the other hand very easy. The first two tools are combined to estimate accu-
rately and efficiently the success probability: the first one computes efficiently
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the volume of the intersection of an n-dimensional ball with a box, and the sec-
ond one uses statistical inference to approximate efficiently large sums of such
volumes without computing individually each volume. Finally, the third tool is
an efficient algorithm to generate nearly-optimal parameters for discrete pruning
in practice.

Our analysis is backed up by experiments, and allows us to make concrete
comparisons with other forms of pruned enumeration. As an example, our analy-
sis shows that the Fukase-Kashiwabara variant [8] outperforms Schnorr’s original
algorithm and its variants by Buchmann-Ludwig [4,20]. Experimentally, we find
that discrete pruning is complementary with continuous pruning: whether one is
more efficient than the other depends on the exact setting, such as what is the
lattice dimension, the radius of the enumeration ball, the required time, etc.

Technical overview. A lattice is the set of all integer combinations of n linearly
independent vectors b1, . . . ,bn in R

n. These vectors are known as a basis of the
lattice. The most famous computational problem involving lattices is the shortest
vector problem (SVP), which asks to find a nonzero lattice vector of smallest
norm, given a lattice basis as input. A basic approach is enumeration which
dates back to the early 1980s with work by Pohst [25], Kannan [15], and Fincke-
Pohst [7] and is still actively investigated (e.g., [1,11,12,31,35]): given a radius
R > 0 and a basis B = (b1, . . . ,bn) of a lattice L, enumeration computes all the
points in L∩S where S is the zero-centered ball of radius R, which allows to find
a shortest lattice vector by comparing their norms. Enumeration goes through
all lattice vectors

∑n
i=1 xibi, exhaustively searching in order xn, xn−1 . . . x1 ∈ Z

by projecting L onto suitable subspaces of increasing dimension: for instance,
bounds on xn are found by projecting L onto a line, and intersecting it with S.
The running time of enumeration depends on R and the quality of the basis, but
is typically super-exponential in n.

To speed up the running time of enumeration, Schnorr, Euchner, and
Hörner [31,32] suggested in the 1990s a modification of enumeration called
pruned enumeration. We follow the geometric presentation of Gama, Nguyen
and Regev [11], who revisited pruned enumeration. Essentially, pruned enumer-
ation is a trade-off, defined by a pruning set P ⊆ R

n: P is chosen in such a way
that enumerating all the points in L ∩ S ∩ P is much faster than over L ∩ S, but
this is only useful if L∩S ∩P is non-trivial �⊆ {0}, in which case we have found a
short non-zero lattice vector in L∩S. Under the Gaussian heuristic, L∩S ∩P is
“expected” to be non-trivial when vol(S ∩P ) is sufficiently large with respect to
the lattice. Here, the set P is defined as an intersection of n cylinders such that
P ⊆ S, thus vol(S ∩ P ) = vol(P ), and [11] shows how to approximate efficiently
vol(P ), which allows to choose good parameters: furthermore, if vol(S∩P ) turns
out to be too small to hope for a solution, one can simply repeat the process
with many choices of P , which may still be cheaper overall than the original
enumeration.

We introduce discrete pruning, which follows the same framework, except
that the pruning set P is completely different. Instead of a cylinder-intersection,
we consider a set P formed by regrouping finitely many cells of suitable partitions
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of R
n, related to the lattice L: we show that random sampling and its variants

all fall in this category. In practice, P can be rewritten as the union of finitely
many non-overlapping boxes, where a box means a cube whose sides are not
necessarily of equal length but are still perpendicular. To analyze the algorithm,
it therefore suffices to be able to compute vol(S ∩ H) where S is a ball and
H is a box: we give exact formulas as infinite series, asymptotical estimations
and efficient numerical methods to compute such volumes, which might be of
independent interest. However, it actually suffices to approximate a large sum
∑

i vol(S ∩Hi): we introduce the use of statistical inference to approximate such
a sum, without computing each term of the sum.

To select good parameters for the algorithm, we introduce a fast method
based on enumerating integer points in an ellipsoid, which allows to select a
nearly-optimal pruning set P without resorting to computations of vol(S ∩ H).

Experimental results. Our experiments support our analysis of discrete prun-
ing and explain very clearly why the Fukase-Kashiwabara variant [8] of random
sampling outperforms Schnorr’s random sampling [30] and its Buchmann-Ludwig
variant [4]: for typical parameters, the cells selected by [8] turn out to have a
much larger intersection with the ball S than the corresponding cells in [4,30].
Our algorithm for selecting discrete pruning parameters provides parameters
which are in practice at least slightly better than [8]: we stress that our method
is completely automatic, whereas [8] strongly relies on experiments and do not
explain how to select parameters in arbitrary dimension, which makes compar-
isons difficult. Our experiments suggest that discrete pruning can be slower or
faster than continuous pruning [11,31,32], depending on the exact setting. First,
the performances are impacted by the lattice dimension, the enumeration radius,
and the target running time. For instance, we find that the benefits of discrete
pruning increase when the lattice dimension grows, the target running time is
small and the basis is not too reduced. Potentially, this might improve BKZ-type
algorithms, by speeding up the preprocessing of the enumeration subroutine,
or by incorporating high-dimensional discrete pruning in the reduction process
itself. Second, our analysis shows that the optimal basis reduction required by
discrete pruning is different from the optimal basis reduction required by contin-
uous pruning: roughly speaking, the smaller the sum of squared Gram-Schmidt
norms, the better for discrete pruning. This means that to fully take advantage
of discrete pruning, one may have to modify the reduction algorithm, and not
simply use LLL or BKZ: in fact, some of the secret modifications of [8] may
exactly target that, as it is clear that the reduction of [8] is a bit different from
BKZ strategies. Third, there are implementation differences between discrete
pruning and continuous pruning. It appears that discrete pruning is easier to
parallelize, which may make it better suited to special hardware. Finding good
parameters for discrete pruning is also a bit easier than for continuous pruning:
in particular, there are less parameters to consider, which might be useful for
blockwise reduction.
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Future work. There are many interesting questions related to discrete pruning.
First, one may wonder what is the most efficient form of pruned enumeration,
either asymptotically or in practice: we now know continuous pruning [11,31,32]
and discrete pruning, and we showed how to compare both in practice, but a
theoretical asymptotical comparison is not easy. Can a combination of both, or
another form of pruning be more efficient? Second, is it possible to efficiently
reduce a basis in such a way that the power of discrete pruning is maximized? For
instance, are there better ways to decrease the sum of squared Gram-Schmidt
norms?

We presented discrete pruning in the SVP case, i.e. to find short lattice
vectors. The methodology can be adapted to the CVP case, i.e. to find lattice
vectors close to a given target: as a special case, [19] already noticed that the
Lindner-Peikert algorithm [17] can be viewed as the BDD adaptation of Schnorr’s
random sampling [30]. However, in the general case of discrete pruning, there
appears to be a few differences: the details will be investigated in future work.

Finally, our algorithm to select good discrete pruning parameters is based
on enumerating integer points in an ellipsoid: though the algorithm is extremely
efficient in practice, we do not know at the moment how to prove it, and it would
be interesting to do so.

Related work. Liu and Nguyen [19] also tried to view Schnorr’s random sampling
as some form of pruning, in the context of bounded distance decoding: however,
their formalization does not rely on partitions, and does not capture all the
variants of random sampling, including the one of [8].

Roadmap. We start in Sect. 2 with some background and notation on lattices,
and continue with a general description of enumeration (with or without prun-
ing) in Sect. 3. In Sect. 4, we present lattice enumeration with discrete pruning
based on partitions, show that it generalizes Schnorr’s random sampling and
its variants, and give our rigorous analysis. In Sect. 5, we address the techni-
cal problem of computing the volume of the intersection of a ball with a box,
which is required by our discrete pruning analysis. In Sect. 6, we show how to
select optimal parameters for discrete pruning. We present experimental results
in Sect. 7. In the full version available on the eprint archive, we provide missing
proofs and additional information.

2 Preliminaries

General. For any finite set U , we denote by #U its number of elements. For
any measurable subset S ⊆ R

n, we denote by vol(S) its volume. Throughout the
paper, we use row representations of matrices. The Euclidean norm of a vector
v ∈ R

n is denoted ‖v‖. We denote by Balln(R) the n-dimensional zero-centered
Euclidean ball of radius R, whose volume is vol(Balln(R)) = Rn πn/2

Γ(n/2+1) .
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Lattices. A lattice L is a discrete subgroup of R
m. Alternatively, we can define

a lattice as the set L(b1, . . . ,bn) = {∑n
i=1 xibi : xi ∈ Z} of all integer com-

binations of n linearly independent vectors b1, . . . ,bn ∈ R
m. This sequence of

vectors is known as a basis of the lattice L. All the bases of L have the same
number n of elements, called the dimension or rank of L, and the n-dimensional
volume of the parallelepiped {∑n

i=1 aibi : ai ∈ [0, 1)} they generate. We call
this volume the co-volume, or determinant, of L, and denote it by covol(L). The
lattice L is said to be full-rank if n = m. We denote by λ1(L) the first minimum
of L, defined as the length of a shortest nonzero vector of L. The most famous
lattice problem is the shortest vector problem (SVP), which asks to find a lattice
vector of norm λ1(L).

Orthogonalization. For a basis B = (b1, . . . ,bn) of a lattice L and i ∈ {1, . . . , n},
we denote by πi the orthogonal projection on span(b1, . . . ,bi−1)⊥. The Gram-
Schmidt orthogonalization of the basis B is defined as the orthogonal sequence
of vectors B� = (b�

1, . . . ,b
�
n), where b�

i := πi(bi). For each i we can write
bi as b�

i +
∑i−1

j=1 μi,jb�
j for some unique μi,1, . . . , μi,i−1 ∈ R. Thus, we may

represent the μi,j ’s by a lower-triangular matrix μ with unit diagonal. The pro-
jection of a lattice may not be a lattice, but for all i ∈ {1, . . . , n}, πi(L) is
an n + 1 − i dimensional lattice generated by the basis πi(bi), . . . , πi(bn), with
covol(πi(L)) =

∏n
j=i

∥

∥b�
j

∥

∥.

Reduced bases. Lattice reduction algorithms aim to transform an input basis
into a “high quality” basis. There are many ways to quantify the quality of bases
produced by lattice reduction algorithms. One popular way is to consider the
Gram-Schmidt norms ‖b�

1‖, . . . , ‖b�
n‖. Intuitively speaking, a good basis is one

in which this sequence does not decay too fast. In practice, it turns out that the
Gram-Schmidt coefficients of bases produced by the main reduction algorithms
(such as LLL or BKZ) have a certain “typical shape”, assuming the input basis is
sufficiently random. This property was thoroughly investigated in [10,23]. This
typical shape is often used to estimate the running time of various algorithms. In
particular, many theoretical asymptotic analyses (as introduced by Schnorr [30])
assume for simplicity that this shape is given by ‖b�

i ‖/‖b�
i+1‖ = q where q

depends on the reduction algorithm; although less precise, this approximation
called the geometric series assumption (GSA) is very close to the shape observed
in practice.

Gaussian Heuristic. The classical Gaussian Heuristic provides an estimate on
the number of lattice points inside a “nice enough” set:

Heuristic 1. Given a full-rank lattice L ⊆ R
n and a measurable set S ⊆ R

n,
the number of points in S ∩ L is approximately vol(S)/covol(L).

If the heuristic holds, we would expect λ1(L) to be close to GH(L) =
vol(Balln(1))−1/ncovol(L)1/n, and that there about αn points in L which have
norm ≤ αGH(L). Some rigorous results along these lines are known. For instance,
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for a fixed set S, if we consider random lattices of unit-covolume, and scale them
to have covol(L), Siegel [34] shows that the average number of points in S ∩ L
is exactly vol(S)/covol(L). Furthermore, it is known that λ1(L) is in some sense
close to GH(L) for a random lattice (see [26]). Note, however, that the heuristic
can also be far off; for L = Z

n, for instance, the heuristic estimates the number
of lattice points inside a ball of radius

√
n/10 around the origin to be less than

1, yet there are exponentially many lattice points there (see [21] for more such
examples). One should therefore experimentally verify the use of the heuristic,
as we shall do later. This is particulary necessary, as pruned enumeration relies
on strong versions of the heuristic, where the set S is not fixed, but actually
depends on a basis of L.

Statistics. We denote by E() and V() respectively the expectation and the vari-
ance of a random variable.

Lemma 1. Let X be a random variable uniformly distributed over [α, β]. Then:

E(X2) =
α2 + β2 + αβ

3
and V(X2) =

4

45
α4 − 1

45
α3β − 2

15
α2β2 − 1

45
αβ3 +

4

45
β4

Proof. We have:

E(X2) =
1

β − α

∫ β

α

x2dx =
1

β − α

[

x3/3
]β

α
=

α2 + β2 + αβ

3

E(X4) =
1

β − α

∫ β

α

x4dx =
1

β − α

[

x5/5
]β

α
=

α4 + α3β + α2β2 + αβ3 + β4

5

Finally, V(X2) = E(X4) − E(X2)2. 	

Corollary 1. Let y ∈ R. Let X (resp. X ′) be a random variable uniformly
distributed over [y − 1/2, y + 1/2] (resp. [y/2, (y + 1)/2]). Then:

E(X2) = y2 +
1

12
,E(X′2) = y2/4+ y/4+

1

12
, V(X2) =

y2

3
+

1

180
,V(X′2) =

y2

48
+

y

48
+

1

180
.

In this paper, it is convenient to extend the expectation and variance this to any
measurable set C of R

n by using the squared norm, to measure how short is a
random vector of C:

E{C} := Ex∈C(‖x‖2) V{C} := Vx∈C(‖x‖2).

Normal distribution. The CDF of the normal distribution of expectation 0 and
variance 1 is the error function

erf(z) :=
2√
π

∫ z

0

e−t2dt.

3 Enumeration with Pruning

In this section, we give an overview of lattice enumeration and pruning, and
revisit the analysis model of [11].
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3.1 Enumeration

Let L be a full-rank lattice in R
n. Enumeration [7,15,25] is an elementary algo-

rithm which, given a basis B = (b1, . . . ,bn) of L and a radius R > 0, outputs
all the points in L ∩ S where S = Balln(R): by comparing all their norms, it is
then possible to extract the shortest lattice vectors.

The main idea is to perform a recursive search using projections, which allows
to reduce the dimension of the lattice: if ‖v‖ ≤ R, then ‖πk(v)‖ ≤ R for all
1 ≤ k ≤ n. We start with the one-dimensional lattice πn(L): it is trivial to
enumerate all the points in πn(L)∩S. Assume that we enumerated all the points
in πk+1(L)∩S for some k ≥ 1, then we can derive all the points in πk(L)∩S by
enumerating the intersection of a one-dimensional lattice with a suitable ball,
for each point in πk+1(L)∩S. Concretely, it can be viewed as a depth first search
of a gigantic tree called the enumeration tree. The running-time of enumeration
depends on R and the quality of B, but it is typically super-exponential in n,
even if L ∩ S is small.

We do not need to know more about enumeration: the interested reader is
referred to [11] for more details.

3.2 Enumeration with Pruning

We note that in high dimension, enumeration is likely to be unfeasible in general
for any radius R � GH(L): indeed, by the Gaussian heuristic, we expect #(L ∩
Balln(R)) to have about (R/GH(L))n points. For such large radius R, it is
therefore more meaningful to just ask for one solution (or say, a bounded number
of solutions) in L ∩ Balln(R), rather than all the points.

Enumeration with pruning is a natural method to speed up enumeration,
which goes back to the work of Schnorr et al. [31,32] in the 90s. We introduce its
more general form: pruned enumeration uses an additional parameter, namely
a pruning set P ⊆ R

n, and outputs all points in L ∩ S ∩ P . The advantage is
that for suitable choices of P , enumerating L ∩ S ∩ P is much cheaper than
enumerating L ∩ S.

If L ∩ S ∩ P �⊆ {0}, then pruned enumeration provides non-trivial points in
L ∩ S, which is the first goal of pruned enumeration. Otherwise, it will return
nothing or the zero vector, but we can simply repeat the process with many
different P ’s until we find a non-trivial point, provided that there are many
choices for P . In fact, by repeating sufficiently many times this process, one
might even be able to recover all of L ∩ S.

In order to analyze the algorithm, we need to predict when L ∩ S ∩ P ⊆
{0}: this is especially tricky, since for all choices of P considered in the past,
the enumeration of L ∩ S ∩ P was completely deterministic, which makes the
probability space unclear. Gama et al.[11] provided the first sound analysis of
enumeration with pruning, by viewing the pruning set P as a random variable:
in practice, it depends on the choice of basis B. Then we define the success
probability of pruned enumeration as:

Pr
succ

= Pr
P

(L ∩ S ∩ P �⊆ {0}),
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that is, the probability that it outputs a non-trivial point in L ∩ S.
In general, this probability is very hard to compute. To estimate this proba-

bility, in the spirit of [11], we make the following heuristic assumption inspired
by the Gaussian heuristic applied to the lattice L and the set S ∩ P :

Heuristic 2. For reasonable pruning sets P and lattices L, the success proba-
bility Pr(L∩S ∩P �⊆ {0}) is close to min(1, vol(S ∩P )/covol(L)), and when this
is close to 1, the cardinal of L ∩ S ∩ P is close to vol(S ∩ P )/covol(L).

We stress that this well-defined heuristic is only a heuristic: it is easy to select
pruning sets P for which the heuristic cannot hold. But the experiments of [11]
show that the heuristic typically holds for the pruning sets considered by [11], and
our experiments show that it also holds for typical pruning sets corresponding
to discrete pruning.

If the heuristic holds, then it suffices to be able to compute vol(S ∩ P ) to
estimate the success probability of pruned enumeration. To estimate the running
time of the full algorithm, we need more information:

– An estimate of the cost of enumerating L ∩ S ∩ P .
– An estimate of the cost of computing the (random) reduced basis B.

Gama et al. [11] introduced extreme pruning in which vol(S ∩ P )/covol(L) con-
verges to zero, yet the global running time to find a non-zero short vector is
much faster than enumeration, namely exponentially faster asymptotically for
the choice of [11].

3.3 Continuous Pruning

Until now, the most general form of pruning set P that has been used is the
following generalization [11] of pruned enumeration of [31,32], which was also
concurrently used in [35]. There, P is defined by a function f : {1, . . . , n} → [0, 1]
and a lattice basis B = (b1, . . . ,bn) as follows:

P = {x ∈ R
n s.t. ‖πn+1−i(x)‖ ≤ f(i)R for all 1 ≤ i ≤ n},

where the πi’s are the Gram-Schmidt projections defined by the basis B. We
call continuous pruning this form of pruned enumeration, by opposition with
discrete pruning, which is the topic of this paper.

By definition, P ⊆ S so vol(S ∩ P ) = vol(P ). By suitable rotation, isometry
and scaling, vol(P ) can be derived from R, n and the volume of the cylinder
intersection defined by f :

Cf =

⎧

⎨

⎩

(x1, . . . , xn) ∈ R
n s.t.

i
∑

j=1

x2
j ≤ f(i)2 for all 1 ≤ i ≤ n

⎫

⎬

⎭

.

Gama et al. [11] showed how to efficiently compute tight lower and upper bounds
for vol(Cf ), thanks to the Dirichlet distribution and special integrals. Using
Heuristic 2, this allows to reasonably estimate the probability of success.
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Using the shape of P , [11] also estimated of the cost of enumerating L∩S∩P ,
by using the Gaussian heuristic on projected lattices πi(L), as suggested in [12]:
these estimates are usually accurate in practice.

To optimize the whole selection of parameters, one finally needs to take into
account the cost of computing the (random) reduced basis of B. For instance,
this is done in [2,5], which illustrates the power of continuous pruning in the
context of lattice reduction.

Though continuous pruning has proved very successful, it is unknown if it
is the most efficient form of pruned enumeration: there might be better choices
of pruning sets P , and this is the starting point of discrete pruning, which we
introduce next.

4 Enumeration with Discrete Pruning

We now introduce enumeration with discrete pruning, which generalizes
Schnorr’s random sampling [30] and its variants [4,8], and a provides a novel
geometric description based on partitions, which is crucial for our analysis.

4.1 Lattice Partitions

Discrete pruning is based on what we call a lattice partition:

Definition 1. Let L be a full-rank lattice in Q
n. An L-partition is a partition

C of R
n such that:

– The partition is countable: R
n = ∪t∈T C(t) where T is a countable set, and

C(t) ∩ C(t′) = ∅ whenever t �= t′.
– Each cell C(t) contains a single lattice point, which can be found efficiently:

given any t ∈ T , one can compute in polynomial time the single point of
C(t) ∩ L. We call this process the cell enumeration.

We call t ∈ T the tag of the cell C(t). Since R
n = ∪t∈T C(t), this means that any

point in R
n also has a tag, because it belongs to a unique cell C(t). Any lattice

partition induces a (bijective) encoding of lattice points onto T : any lattice point
belongs to R

n, and therefore has a tag; reciprocally, given a tag t ∈ T , one can
compute the unique lattice point in C(t) by the cell enumeration.

The simplest examples of lattice partitions come from fundamental domains
of lattices. In particular, one can easily check that any basis B = (b1, . . . ,bn)
of L gives rise to two trivial lattice partitions with T = Z

n as follows:

– C(t) = tB + D where D = {∑n
i=1 xibi s.t. − 1/2 ≤ xi < 1/2} is a paral-

lelepiped.
– C(t) = tB + D where D = {∑n

i=1 xib�
i s.t. − 1/2 ≤ xi < 1/2} is a box, i.e. a

paralellepiped whose axes are pairwise orthogonal.
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However, these lattice partitions are not very useful, because C(t) ∩ L = {tB},
which means that we know the lattice point directly from its tag: the cell enu-
meration is just a matrix/vector product.

The first non-trivial example of lattice partition is the following:

Lemma 2. Let B be a basis of a full-rank lattice L in Z
n. Let T = Z

n and for
any t ∈ T , CZ(t) = tB�+D where D = {∑n

i=1 xib�
i s.t. −1/2 ≤ xi < 1/2}. Then

(CZ(), T ) with Algorithm1 is an L-partition, which we call Babai’s partition.

Proof. We already know that (CZ(), T ) is a L(B�)-partition because B� is a basis
of L(B�). To show that it is also a L-partition, it suffices to show that CZ(t) ∩ L
is always a singleton, which can be found in polynomial time. To see this, note
that Babai’s nearest plane algorithm [3] implies that for any t ∈ T , there is a
unique v ∈ L such that v − tB� ∈ D, and that v can be found in polynomial
time. It follows that CZ(t) ∩ L = {v}. 	


The encoding of lattice points induced by Babai’s partition is exactly the
encoding onto Z

n introduced in [6]. The paper [8] defines a different encoding of
lattice points onto N

n, which implicitly uses a different lattice partition based
on T = N

n rather than Z
n, which we now define:

Algorithm 1. Cell enumeration for Babai’s partition from Babai’s Nearest
Plane algorithm [3]
Input: A tag t ∈ Z

n and a basis B = (b1, . . . ,bn) ∈ Q
n of a lattice L, with Gram-

Schmidt orthogonalization B�.
Output: v ∈ L such that {v} = L ∩ CZ(t)
1: v ← 0 and u ← tB�

2: for i := n downto 1 do
3: Compute the integer c closest to 〈b�

i ,u〉/〈b�
i ,b�

i 〉
4: u ← u − cbi and v ← v + cbi

5: end for
6: Return v

Algorithm 2. Tagging for the natural partition
Input: A vector x =

∑n
i=1 xib

�
i ∈ R

n where the b�
i ’s are the Gram-Schmidt vectors

of a basis B = (b1, . . . ,bn) of a full-rank lattice L in R
n.

Output: A tag t ∈ N
n such that x ∈ CN(t).

1: for i := n downto 1 do
2: if xi > 0 then
3: ti ← �2xi� − 1
4: else
5: ti ← −	2xi

6: end if
7: end for
8: Return (t1, . . . , tn)
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Algorithm 3. Cell enumeration for the natural partition
Input: A tag t ∈ N

n and a basis B = (b1, . . . ,bn) ∈ Q
n of a lattice L, with Gram-

Schmidt orthogonalization matrix μ.
Output: v ∈ L such that {v} = L ∩ CN(t)
1: for i := n downto 1 do
2: y ← −∑n

j=i+1 ujμj,i

3: ui ← 	y + 0.5

4: if ui < y then
5: ui ← ui − (−1)ti�ti/2�
6: else
7: ui ← ui + (−1)ti�ti/2�
8: end if
9: end for

10: Return
∑n

i=1 uibi

Lemma 3. Let B be a basis of a full-rank lattice L in Z
n. Let T = N

n and
for any t = (t1, . . . , tn) ∈ T , CN(t) = {∑n

i=1 xib�
i s.t. − (ti + 1)/2 < xi ≤

−ti/2 or ti/2 < xi ≤ (ti + 1)/2}. Then (CN(), T ) with Algorithm3 is an L-
partition, which we call the natural partition.

Proof. The fact that the cells CN(t) form a partition of R
n is obvious: the cells

are clearly disjoint and any point of R
n belongs to a cell (see Algorithm 2). The

only difficulty is to show that any cell contains one and only one lattice point,
and that it can be found efficiently: this is achieved by Algorithm3, which is a
variant of Babai’s nearest plane algorithm. 	

Figure 1 displays Babai’s partition and the natural partition (with tags) in
dimension two. The encoding of lattice points derived from the natural partition
is exactly the encoding introduced by Fukase and Kashiwabara in [8]. What is
remarkable is that every cell of the natural partition is not connected, except
the zero cell: each cell CN(t) is the union of 2k boxes, where k is the number of
non-zero coefficients in t, as illustrated by Fig. 1.

To compare the Babai partition and the natural partition, we study the
moments of their cells, which follow from Corollary 1:

Fig. 1. Babai’s partition and the natural partition in dimension two: different cells are
coloured differently. (Color figure online)
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Corollary 2 (Moments of Babai’s partition). Let B be a basis of a full-
rank lattice L in R

n. Let t = (t1, . . . , tn) ∈ Z
n and the cell CZ(t) = tB� + D

where D = {∑n
i=1 xib�

i s.t. − 1/2 ≤ xi < 1/2}. Then:

E{CZ(t)} =
n
∑

i=1

(

t2i +
1
12

)

‖b�
i ‖2 and V{CZ(t)} =

n
∑

i=1

(

t2i
3

+
1

180

)

‖b�
i ‖4

Corollary 3 (Moments of the natural partition). Let B be a basis of
a full-rank lattice L in R

n. Let t = (t1, . . . , tn) ∈ N
n and the cell CN(t) =

{∑n
i=1 xib�

i s.t. − (ti + 1)/2 < xi ≤ −ti/2 or ti/2 < xi ≤ (ti + 1)/2}. Then:

E{CN(t)} =

n∑
i=1

(
t2i
4

+
ti

4
+

1

12

)
‖b�

i ‖2 and V{CN(t)} =

n∑
i=1

(
t2i
48

+
ti

48
+

1

180

)
‖b�

i ‖4

This suggests that the natural partition is better than Babai’s partition: we will
return to this topic in Sect. 6.

4.2 Discrete Pruning from Lattice Partitions

Any L-partition (C, T ) defines a partition R
n = ∪t∈T C(t). Discrete pruning

is simply obtained by choosing a finite number of cells C(t) to enumerate, as
done by Algorithm 4: discrete pruning is parametrized by a finite set U ⊆ T ,
which specifies which cells to enumerate. Discrete pruning is therefore a pruned
enumeration with pruning set:

P = ∪t∈UC(t)

Algorithm 4. Discrete Pruning from Lattice Partitions
Input: A lattice partition (C(), T ), a finite subset U ⊆ T and a radius R.
Output: L ∩ S ∩ P where S = Balln(R) and P = ∪t∈UC(t).
1: R = ∅

2: for t ∈ U do
3: Enumerate L ∩ C(t): if the output vector has norm ≤ R, add the vector to the

set R.
4: end for

The algorithm performs exactly k partition-enumerations, where k = #U is
the number of cells of discrete pruning, and each partition-enumeration runs in
polynomial time by definition of the lattice partition. So the running time is #U
polynomial-time operations: one can decide how much time should be spent.

Since the running time is easy to evaluate, the only difficulty is to estimate
the probability of success. Based on Heuristic 2, the probability can be derived
from:

vol(S ∩ P ) =
∑

t∈U

vol(S ∩ C(t)). (1)
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Thus, the problem is reduced to computing the volume vol(S ∩ C(t)) of the
intersection of a ball with a cell. If we want to maximize the probability of
success for a given effort (i.e. for a fixed number k of cells), it suffices to select
the k cells which maximize vol(S ∩ C(t)) among all the cells: we will study this
topic in Sect. 6 for the natural partition.

The hardness of computing vol(S∩C(t)) depends on the lattice partition, but
for Babai’s partition and the natural partition, this can be reduced to computing
the volume vol(S ∩ H) where S is a ball and H is a box, which is exactly the
topic of Sect. 5:

– In the case of Babai’s partition, each cell CZ(t) is already a box.
– In the case of the natural partition, each cell CZ(t) is the union of 2j symmetric

(non-overlapping) boxes, where j is the number of non-zero coefficients of t. It
follows that vol(CZ(t) ∩ S) = 2jvol(H ∩ S), where H is any of these 2j boxes.

Interestingly, in Sect. 6.3, we show how to approximate well the sum of (1)
without computing all the terms, using only a constant number of terms.

4.3 Revisiting Schnorr’s Random Sampling
and the Fukase-Kashiwabara Variant

Here, we show that Schnorr’s random sampling and its variants, including
the Fukase-Kashiwabara variant, can all be viewed as special cases of discrete
pruning.

Schnorr’s Random Sampling. Let B = (b1, . . . ,bn) be a basis of a full-rank
lattice L in Z

n: denote by B� = (b�
1, . . . ,b

�
n) its Gram-Schmidt orthogonaliza-

tion. Let 1 ≤ u ≤ n−1 be an integer parameter. Schnorr’s random sampling [30]
outputs all points v ∈ L of the form

∑n
i=1 μib�

i such that μn = 1 and the

remaining μi ∈
{

[−1/2, 1/2( if i ≤ n − (u + 1)
[−1, 1( if n − u ≤ i ≤ n − 1

This is equivalent to pruned enumeration with a pruning set defined as the
following (non-centered) box of parameter u:

Pu =

⎧

⎪

⎨

⎪

⎩

n
∑

i=1

xib�
i s.t.

−1/2 ≤ xi < 1/2, if i ≤ n − (u + 1)
−1 ≤ xi < 1, if n − u ≤ i ≤ n − 1
1/2 ≤ xi < 3/2, if i = n

⎫

⎪

⎬

⎪

⎭

(2)

Clearly vol(Pu) = 2ucovol(L). Curiously, the box Pu has slightly bigger moments
than ∪t∈Uu

CN(t) where Uu = {(0, ..., 0, tn−u, ..., tn−1, 1) ∈ {0, 1}n} is a finite set
defining discrete pruning with the natural partition: the corresponding pruning
set also has volume 2ucovol(L). Schnorr’s box actually corresponds to discrete
pruning with the same finite set Uu of tags, but using a different hybrid lattice
partition, which matches the natural partition for the first n − 1 coordinates,
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and Babai’s partition for the n-th coordinate: namely, T = N
n−1 × Z and for

any t ∈ T

CSchnorr(t) =

{
n∑

i=1

xib
�
i s.t.

−(ti + 1)/2 < xi ≤ −ti/2 or ti/2 < xi ≤ (ti + 1)/2 if i ≤ n − 1

−1/2 ≤ xn − tn < 1/2
.

}

Based on Heuristic 2, the success probability of random sampling can be deduced
from vol(Pu∩S), where Pu is a non-centered box and S is a ball: the computation
of such volumes is exactly the topic of Sect. 5. There, the following computations
will be useful:

Lemma 4 (Moments of Schnorr’s box). Let B = (b1, . . . ,bn) be a basis
of a full-rank lattice L in R

n, and Pu be Schnorr’s box of parameter u defined
by (2). Then:

E{Pu} =
∑n−(u+1)

i=1 ‖b�
i ‖2

12
+
∑n−1

i=n−u ‖b�
i ‖2

3
+

13‖b�
n‖2

12

V{Pu} =
∑n−(u+1)

i=1 ‖b�
i ‖4

180
+
∑n−1

i=n−u ‖b�
i ‖4

45
+

61‖b�
n‖4

180
In some variants of random sampling (see [4,30]), one actually considers a ran-
dom subset of Uu of size k for some k � 2u: based on Heuristic 2, the success
probability of random sampling can be deduced from vol(C(t) ∩ S), where C(t)
is the union of symmetric non-overlapping boxes. Again, the problem can be
reduced to the volume computation of Sect. 5.

It can easily be checked that the other variants by Buchmann-Ludwig [4] can
also be viewed as discrete pruning.

The Fukase-Kashiwabara Variant. As mentioned previously, Fukase and
Kashiwabara [8] recently introduced an encoding of lattice points onto N

n, which
turns out to be the encoding derived from the natural partition. Their variant
proceeds by enumerating all lattice points having certain encodings. In our ter-
minology, this can immediately be rewritten as discrete pruning with the natural
partition, where the finite set of tags has size approximately 5 × 107.

They do not provide a general algorithm to select tags: however, they explain
which tags they selected to solve the SVP challenges, so this only applies to
certain settings and fixed dimensions. Here is an example in dimension n in the
range 120 − 140. The selection proceeds in two stages:

– First, they select a large set of candidates V ⊆ N
n, formed by all tags

(t1, . . . , tn) ∈ N
n such that:

• all ti ∈ {0, 1, 2}
• the total number of indexes i such that ti = 1 is ≤ 13, and the indexes i

such that ti = 1 all belong to {n − 55 + 1, . . . , n}.
• the total number of indexes i such that ti = 2 is ≤ 1, and the indexes i

such that ti = 2 all belong to {n − 15 + 1, . . . , n}.
– For each t ∈ V , they compute E{CN(t)} using the formula of Corollary 3.
– The final set U is formed by the 5 × 107 tags t ∈ V which have the smallest

E{CN(t)}.
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4.4 Optimizations

If the discrete pruning set U has exactly k elements, then the running time
is k polynomial-time operations. However, from a practical point of view, it
is important to decrease as much as possible the cost of the polynomial-time
operation.

First, one can abort the enumeration of a cell if we realize that the lattice
vector inside the cell will be outside the ball S: this is similar to what is done
during enumeration.

Second, we can speed up the computation by regrouping cells. A good exam-
ple is Schnorr’s random sampling. We can view Schnorr’s pruning set Pu as
the union of 2u cells, but when we want to enumerate all lattice points inside
S ∩ Pu, it is better to view it as a single box: discrete pruning can be rewritten
here as some variant of enumeration. More generally, depending on the set U
of tags, we can recycle some computations: similar tricks were used for pruned
enumeration [11].

Third, we note that all the cell enumerations can be performed in parallel:
discrete pruning is easier to parallelize than continuous pruning. It seems that
discrete pruning should be better suited to special hardware than continuous
pruning.

5 Ball-Box Intersections

In this section, we are interested in computing the volume of the intersection
between a ball and a box, either exactly by a formula or approximately by an
algorithm. More precisely, we are interested in vol(B ∩ H), where B is the ball
of center c ∈ R

n and radius R, and H is the following box:

H = {(x1, . . . , xn) ∈ R
n s.t. αi ≤ xi ≤ βi},

where the αi’s and βi’s are given. Without loss of generality, we may assume
that c = 0 after suitable translation, and R = 1 after suitable scaling. Hence,
we are interested in:

Vol (Balln(1) ∩ H) = Vol

(

Balln(1) ∩
n
∏

i=1

[αi, βi]

)

=
n
∏

i=1

(βi − αi) Pr
(x1,...,xn)←∏n

i=1[αi,βi]

[

n
∑

i=1

x2
i ≤ 1

]

(3)

The section is organized as follows. In Sect. 5.1, we give a rigorous asymptotical
estimate of (3) when the box is sufficiently balanced, but we show that it is ill-
suited to the case of discrete pruning. In Sect. 5.2, we provide two exact formulas
for (3) as infinite series, due to respectively Constales and Tibken [27]: these
infinite series give rise to approximation algorithms by truncating the series. In
Sect. 5.3, we give a heuristic method to approximate (3), based on fast inverse
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Laplace transforms: this method is referred as FILT in the remaining of the
paper. Section 5.4 provides an experimental comparison of the running time of
the three methods of Sects. 5.2 and 5.3, in the context of discrete pruning: it
turns out that in high dimension, the FILT method outperforms the other two.

We note that Buchmann and Ludwig [4, Theorem 1] (more details in [20,
Theorem 18]) implicitly adressed the computation of (3): the main part of [4,
Algorithm 3] can be viewed as a heuristic approximation algorithm based on
the Discrete Fourier transform, but no experimental result seems to be reported
in [4,20].

5.1 Asymptotical Analysis

The following result shows that the volume of the intersection of a ball with a
“balanced” box can be asymptotically computed, because the right-hand prob-
ability of (3) can be derived from the central limit theorem:

Theorem 3. Let C1, C2 > 0 be constants. Let H = {x = (x1, . . . , xn) ∈ R
n

s.t. αi ≤ xi ≤ βi}, where C1 ≤ βi − αi and max(|αi|, |βi|) ≤ C2. Then
Y = (‖x‖2 − E{H})/

√

V{H} has zero mean and variance one, and converges
in distribution to the normal distribution, i.e. for all y > 0:

lim
n→∞ Pr

x∈H

(

‖x‖2 ≤ E{H} + y
√

V{H}
)

=
1
2

(

1 + erf(y/
√

2)
)

,

where

E{H} =
n
∑

i=1

(

α2
i + β2

i + αiβi

3

)

and

V{H} =
n
∑

i=1

(

4
45

α4
i − 1

45
α3

i βi − 2
15

α2
i β

2
i − 1

45
αiβ

3
i +

4
45

β4
i

)

.

Unfortunately, we cannot apply Theorem3 when the box H is Schnorr’s box
which, after suitable rotation, corresponds to:

– If i ≤ n − (u + 1), then βi = ‖b�
i ‖/2 and αi = −βi;

– If n − u ≤ i ≤ n − 1, then βi = ‖b�
i ‖ and αi = −βi;

– αn = ‖b�
n‖/2 and βn = 3/2‖b�

n‖
If the basis B is LLL-reduced, then the ‖b�

i ‖’s typically decrease geometrically,
which means that the (αi, βi)’s do not satisfy the assumptions of Theorem3. Fur-
thermore, experiments show that in practice, the distribution of the Y defined
in Theorem 3 is not normal (see Fig. 2) as its left-tail is below that of the normal
distribution and its right-tail is over. Worse, the distance with the normal dis-
tribution actually increases with the dimension: see Fig. 3. However, if we fix the
dimension and apply stronger and stronger lattice reduction, we expect the box
to become more and more “balanced”: this is confirmed by Fig. 4, which shows
that the more reduced the basis is, the closer Y is to the normal distribution.
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Fig. 2. Comparison of the normal distribution with the experimental distribution of Y
defined in Theorem 3 with Schnorr’s box (with u = 10) over an LLL-reduced basis in
dimension 100. Both tails significantly deviate from normal tails. On the right, there
is a log-scale.

Fig. 3. Evolution of the distribution of Y defined in Theorem 3 with Schnorr’s box
(with u = 10) over an LLL-reduced basis, as the dimension increases: it becomes less
and less normal.

If the box is “unbalanced”, it is always possible to upper bound and lower
bound the right-hand probability of (3). For instance, an upper bound follows
from Hoeffding’s bound:

Lemma 5. Let H = {x = (x1, . . . , xn) ∈ R
n s.t. αi ≤ xi ≤ βi}. Then for any

y > 0:
Pr
x∈H

(‖x‖2 ≤ E{H} − y
) ≤ e−2y2/

∑n
i=1(βi−αi)

2
.

Proof. It suffices to apply Hoeffding’s bound with y > 0 and the n independent
variables −Xi = −x2

i . 	
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Fig. 4. Evolution of the distribution of Y defined in Theorem 3 with Schnorr’s box
(with u = 40) in dimension 250, with varying reductions: it becomes closer to normal
as the basis becomes more reduced

However, these upper bounds are typically very pessimistic for the type of boxes
we are interested in. Reciprocally, in the spirit of Schnorr [30] (see also [4,9]), it
is also possible to give a lower bound on the right-hand probability of (3), by
considering the largest sub-box J of H which is contained in Balln(1), in which
case vol(Balln(1) ∩ H) ≥ vol(J). This can lead to an asymptotic lower bound if
we are able to conveniently bound the side-lengths of H, i.e. the ‖b�

i ‖’s. This is
why Schnorr [30] introduced the Geometric Series Assumption (GSA), but this
only holds in an approximate sense, which creates some problems (see [4]): for
instance, the GSA implies that all ‖b�

i ‖ are always ≤ ‖b1‖ for i ≥ 2, but in
practice, it can happen that some b�

i is larger than b1. To prevent this problem,
one can use instead absolute bounds: for instance, Fig. 5 shows that in practice,
for a random LLL-reduced basis, maxB ‖b�

i ‖/‖b1‖ can be upper bounded by a
geometric sequence indexed by i, with parameters independent of n. However,
the lower bound obtained is again typically very pessimistic for the type of boxes
we are interested in.

5.2 Exact Formulas

Here, we provide two exact formulas for the intersection volume as infinite series,
by sligthly generalizing the works of respectively Constales and Tibken [27], who
studied the special case of a zero-centered cube.

Fourier Series. We first generalize Constales’ method based on Fourier series.
Let S(x) =

∫ x

0
sin(t2)dt and C(x) =

∫ x

0
cos(t2)dt be the Fresnel integrals.
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Fig. 5. Evolution of maxB ‖b�
i ‖/‖b1‖ over hundreds thousands LLL-reduced bases, as

i ≥ 2 increases, in dimensions 100 (blue) and 150 (red): the right-hand graph is in
log-scale. (Color figure online)

Theorem 4. Let αj ≤ βj for 1 ≤ j ≤ n. Let � =
∑n

j=1 max(α2
j , β

2
j ). Then:

vol(Balln(1) ∩
n
∏

j=1

[αj , βj ])

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∏n
j=1 |βj − αj | if � ≤ 1

(

1
2

−
∑n

j=1 α2
j + β2

j + αjβj

3�
+

1
�

+
1
π

Im
∞
∑

k=1

Φ(−2πk/�)
k

e2iπk/�

)

∏n
j=1(βj − αj)

if � > 1

(4)

where Φ is defined as

Φ(ω) =
n
∏

j=1

(C(βj

√|ω|) − C(αj

√|ω|)) + isgn(ω)(S(βj

√|ω|) − S(αj

√|ω|))
(βj − αj)

√|ω| .

A proof can be found in the full version: it is just a slight generalization of the
proof of Constales [27]. An approximation algorithm can be derived by truncat-
ing the infinite series of (4) to N terms: computing each term costs approximately
n operations, where an operation is dominated by the computation of a constant
number of Fresnel integrals. The computation of Fresnel integrals is classical: for
instance, it can be done by reduction to erf computations.

Multidimensional Fourier Transforms. We now generalize Tibken’s formula
based on the n-dimensional Fourier transform.
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Theorem 5. Let αj ≤ βj for 1 ≤ j ≤ n. Then:

vol(Balln(1) ∩
n∏

j=1

[αj , βj ]) =
1

(4π)n/2

(
I( 1

2n+4
, 0)

Γ(n/2 + 1)
+

∞∑
k=2

L
n/2
k (n/2 + 1)I( 1

2n+4
, k)

Γ(k + n/2 + 1)(2n + 4)k

)

(5)
where Lα

k (x) denotes the generalized Laguerre polynomial, Γ is the classical
Gamma function and:

I(λ,0) = πn
n∏

j=1

(
erf

(
βj

2
√

λ

)
− erf

(
αj

2
√

λ

))
and I(λ, k) = (−1)k

(
∂

∂λ

)k

I(λ, 0)

Again, an approximation algorithm can be derived by truncating the infinite
series. The first term of (5) is easy to compute from the erf, and turns out to
give a much better approximation than the central limit theorem for Schnorr’s
box. But the right-hand sum terms are trickier to compute (see the full version
for details), due to the derivative in the definition of I(λ, k) and the presence of
Laguerre polynomials.

5.3 Numerical Approximation from Fast Inverse Laplace
Transforms (FILT)

We now present the method we used in practice to approximate the volume,
which is based on the Laplace transform. The starting point is similar to
the Fourier series approach, but it deviates afterwards. For a function f(x)
defined over x ≥ 0, its Laplace transform F = L{f} is defined over C as
F (s) =

∫∞
0

f(t)e−stdt. The inverse transform is given by the Bromwich integral

f(t) =
1

2πi

∫ c+∞i

c−∞i

F (s)estds, (6)

where the integration is done along the vertical line Re(s) = c in the complex
plane such that c is greater than the real part of all singularities of F (s). If g(t) =
∫ t

0
f(τ)dτ , then L{g} (s) = 1

s {f} . Thus, if X is a non-negative random variable
with probability density function f(x), then its cumulative distribution function
FX(x) satisfies: FX(x) = L−1

{

1
sL{f}(s)

}

(x). Thus, if we denote by ρ∑n
j=1 x2

j
the

probability density function of
∑n

i=1 x2
i , then the right-hand probability of (3)

is given by:

Pr
(x1,...,xn)←∏n

i=1[αi,βi]

[

n
∑

i=1

x2
i ≤ 1

]

= L−1

{

1
s
L{ρ∑n

i=1 x2
i
}(s)

}

(1). (7)

When xi is uniform over [αi, βi], the p.d.f. of x2
i is

ρx2
i
(z) =

⎧

⎨

⎩

1
2(βi − αi)

√
z

(α2
i ≤ z ≤ β2

i )

0 otherwise
.
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Thus, the p.d.f. of x2
1 + · · · + x2

n is given by their convolution: ρx2
1+···+x2

n
(z) =

ρx2
1
(z) ∗ · · · ∗ ρx2

n
(z), where

(f ∗ g)(t) =
∫ t

τ=0

f(τ)g(t − τ)dτ.

However, the Laplace transform of a convolution is simply the product of the
transforms: if f1(t) and f2(t) be two functions with Laplace transform F1(s) and
F2(s) respectively, then

L{f1 ∗ f2} (s) = F1(s) · F2(s).

In our case, the Laplace transform of each individual pdf is given by

L
{

ρx2
i

}

(s) =
√

π (erf(βi
√

s) − erf(αi
√

s))
2(βi − αi)

√
s

. (8)

Thus,

L
{

ρ∑n
i=1 x2

i

}

(s) =
(π

s

)n/2 n
∏

i=1

(erf(βi
√

s) − erf(αi
√

s))
2(βi − αi)

, (9)

and computing (7) is reduced to computing the inverse Laplace transform of (9)
at 1, namely:

πn/2−1

2i

∫ c+∞i

c−∞i

es

sn/2+1

n
∏

j=1

(erf(βi
√

s) − erf(αi
√

s))
2(βi − αi)

ds (10)

for a real number c within a certain range.
We used Hosono’s method [14] to invert the Laplace transform: given F (s), we

want to compute its inverse f(t). Let γ > γ0 in the region of convergence. Hosono
used the following approximation of the exponential function, for γ1 > γ0:

es ≈ E(s, γ1) :=
eγ1

2 cosh(γ1 − s)

which has singularity points at

sm = γ1 +
(

m − 1
2

)

πi for m ∈ N.

Considering the integral along the sides of thebox{γ1+x+yi : |x| < a, |y| < R}
for some small number a and large number R. Letting R → ∞, and by the residue
theorem, we have

f(t) =
1

2πi

∫ c+∞i

c−∞i

F (s)estds ≈ eγ1

t

∞
∑

m=1

(−1)mImF

(

γ1 + (m − 1/2)πi

t

)

. (11)

Here, we used the fact that ReF and ImF are respectively odd and even functions
when f(t) is a real function. Thus, by choosing a suitable γ1 and truncating the
sum of (11) to N terms, we can obtain an approximation of the inverse Laplace
transform f(t), and therefore approximate (10).
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Choice of Preimages. Since our function includes
√

s, we need to specify
which square root over C, in such a way that the function is continuous along
the path (c − ∞i, c + ∞i). Since the path is in Re > 0, we choose the primal
value of

√
s in the area | arg z| < π/4.

Speeding up the convergence by Euler’s series transform. To approxi-
mate the sum

∞
∑

m=1

(−1)mFm :=
∞
∑

m=1

(−1)mImF

(

γ1 + (m − 1/2)πi

t

)

by a small number of terms, we apply the Euler’s series transform to its last
terms

∞
∑

m=1

(−1)mFm ≈
k
∑

m=1

(−1)mFm + (−1)k
J
∑

j=1

(−1)jΔj−1Fk+1

2j

where Δj−1Fk+1 is the forward difference
∑j−1

i=0 (−1)i
(

j−1
i

)

Fj+k−i. The
van Wijngaarden transformation gives us a simple algorithm. Let s0,j =
∑k+j

m=k+1(−1)mFm for j = 0, 1, . . . J and compute s�+1,j = (s�,j + s�,j+1)/2
for all � ≥ j. Finally, sJ,0 is an approximation of the partial sum.

5.4 Experimental Comparison

We give experimental results to compare the running time and accuracy required
by the previous three methods (namely, Constales’ formula (4), Tibken’s formula
(5), and our FILT method (11) to approximate the intersection volume (3): in
each case, it depends on a number of terms, and only experiments can tell how
many terms are required in practice.

Accuracy of the FILT Method. We first report on the accuracy of the FILT
method, which turns out to require the least number of terms in practice. To
check accuracy, we compared with a very good approximation of the volume,
which we denote by “convolution” in all the graphs: it was obtained with the
Fourier series method with a huge number of terms. To visualize results more
easily, most of the graphs display an approximation of a pdf, instead of a cdf:
Fig. 6 shows the accuracy of FILT on (8) in dimension one, when the function is
the pdf of x2

j :

eγ1

t

N
∑

m=1

(−1)mImF

(

γ1 + (m − 1/2)πi

t

)

≈
⎧

⎨

⎩

1
2(βj − αj)

√
t

(α2
j ≤ z ≤ β2

j )

0 otherwise
.

(12)
for γ1 and N , where

F (s) =
√

π (erf(βj
√

s) − erf(αj
√

s))
2(βj − αj)

√
s

.
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Fig. 6. Accuracy of (12) for (8) as the number N of terms increases.

Fig. 7. Accuracy of (11) for evaluating (9) as the number N of terms increases. On
the left, n = 3. On the right, n = 10.

For higher dimensions n = 3 and n = 10, Fig. 7 shows the accuracy of the method
for evaluating (9).

When we apply (10) to (7) to compute the volume of the intersection, the
method is very efficient: Fig. 8 shows the accuracy of the method in dimen-
sion 140 for the pdf and the CDF of the target random variable, as the
number N increases. Here, the box comes from a random natural cell of tag
(0, . . . , 0, t131, . . . , t140) where tj ∈ {0, 1, 2}.

Comparison with the Methods of Constales and Tibken. For each dimen-
sion, we generated a random LLL basis and considered the box H corresponding
to the tag which as the 1000-th smallest expectation. Then we compute the
intersection volume V = Vol(Balln(0, 1.2 · GH(L)) ∩ H) using the FILT method
with sufficiently many terms as the reference value r. Table 1 shows what is the
number of required terms to achieve a small relative error in practice, that is,
the minimum k such that

∣

∣

∣

∣

r − sk

r

∣

∣

∣

∣

< 10−5

where sk is the approximation computed with k terms. All computations were
done using cpp dec float < 50 > of the boost library which can use 50-decimal
floating-point numbers. For the computation of the Constales and FILT method,
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Fig. 8. Accuracy of the van Wijngaarden transformation in dimension 140. On the left,
pdf; and on the right, CDF.

Table 1. Required number of terms and running times for the three volume methods

Method/Dimension 40 50 60 80 100 150

Constales � terms 34 34 42 67 109 890

Time[sec.] 0.55 0.65 0.92 1.9 3.0 45.1

Tibken � terms 34 39 54 - - -

Time[sec.] 5.9 19.5 362.5 - - -

FILT � terms 39 46 46 46 43 34

Time[sec.] 1.06 1.54 1.72 1.96 2.06 1.88

the van Wijngaarden transformation (Sect. 5.3) is used to speed up the conver-
gence. In our FILT method, we used a heuristic value γ1 = max(50, 30+3

√
dim).

From Table 1, we conclude that the FILT method is the best method in
practice for discrete pruning: its running time is around 2 s across dimension
40–150, and its required number of terms stays around 40. On the other hand,
Tibken’s method gets quickly impractical: our implementation requires a huge
precomputation table (see the full version for details), which was not taken
into account, and we see that the number of terms increases, which creates a
sharp increase in the running time. Constales’ method is very competitive with
FILT until dimension 80, and even faster in dimension ≤ 60, but its number of
terms starts to increase from dimension 60, to the point of making the method
significantly slower than FILT in dimension 150.

We note that the running time of FILT (resp. Constales’ method) is dom-
inated by the computation of erf(·) (resp. S(·) and C(·)): interestingly, in the
context of discrete pruning, when we want to compute the intersection volumes
for many tags over a fixed basis, we can recycle some computations because
erf(βi

√
s) only depends on ti. Since tags of interest typically have few non-zero

coefficients, and that these non-zero coefficients are small, there is a lot of over-
lap: given two tags t and u, there are many indices i such that ti = ui. In
practice, when computing the intersection volumes for sufficiently many tags
over a common basis, the total running time is decreased by a factor 10–20.
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So the running times of Table 1 can be further decreased when it is applied to
discrete pruning: the amortized running time for FILT is a fraction of a second.

6 Optimizing Discrete Pruning with the Natural
Partition

Wesaw inSect. 4.2 that to optimizediscretepruning for a given effort (i.e. for afixed
number M of cells), it suffices to select the M cells which maximize vol(S ∩ C(t))
among all the cells. In the case of the natural partition, the computation of each
vol(S ∩ C(t)) can be reduced to the computation of vol(S ∩ H) where H is a sub-
box of C(t). And we would like to identify which tags maximize vol(S ∩ H).

Section 5 gave methods to compute vol(S ∩ H) very efficiently, say less than
one second. Unfortunately, this is too inefficient to make an online selection,
since we may want to process a huge number of cells. Even if we preprocess the
computation of tags by using a profile of the Gram-Schmidt norms ‖b�

i ‖, this
will be too slow.

In this section, we study practical heuristic methods to select optimal tags
for the natural partition: we use our volume computations of Sect. 5 to check
the quality of our selection, so the results of Sect. 5 are very useful. The section
is organized as follows. In Sect. 6.1, we observe a strong correlation between
vol(S∩C(t)) and E{CN(t)} for most tags t. This leads us to select the cells which
minimize E{CN(t)}, which avoids any computation of vol(S ∩ C(t)): Sect. 6.1
explains how to do so efficiently. In Sect. 6.3, we show how to check much more
quickly the quality of a discrete pruning set: we show how to speed-up the approx-
imation of a large sum of intersection volumes vol(S ∩C(t)), based on statistical
inference, which is crucial to estimate the success probability of discrete pruning.
Finally, in Sects. 6.4 and 6.5, we compare the quality of cells, depending on the
discrete pruning set, and explain how to avoid bad cells.

6.1 Correlation Between Intersection Volumes and Cell
Expectations

Inspired by the tag selection of [8] (see Sect. 4.3), we experimentally studied the
relationship between the intersection volume vol(S ∩ C(t)) and the cell expec-
tation E{CN(t)}. We found that for a fixed-radius centered ball S, for random
cells CN(t) of the natural partition, there exists a strong negative correlation
between vol(S ∩ CN(t)) and E{CN(t)}: roughly speaking, the bigger the expecta-
tion E{CN(t)}, the smaller the volume vol(S ∩ CN(t)), as shown in Fig. 9.

More precisely, for a BKZ-20 reduced basis of a 70-dimensional lattice, we
computed the best 214 = 16, 384 cells with respect to E{CN(t)} (using Corol-
lary 3), and vol(S ∩ CN(t)) where S is the ball of radius ‖b1‖. The correlation
coefficient of Pearson, Spearman and Kendall are 0.9974191, 0.83618071 and
0.72659780 respectively. The left-hand graph of Fig. 9 shows the intersection
volumes of the best cells, sorted by expectation: apart from a few exceptions,
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Fig. 9. Graphs of approximated cell-ball intersection volumes sorted by expectation

we see that the curve always decreases, which means that most of the time, the
bigger the expectation of the cell, the smaller is the intersection volume.

In other words, if we are only interested in selecting the cells with the largest
intersection volumes, we do not need to compute the volume, a near-optimal
solution can be found by selecting the cells with the smallest expectation (where
the expectation is trivial to compute using Corollary 3), which we will do very
efficiently in the next subsection: the volume computation is only necessary when
we want to estimate the success probability, not for the selection of tags. We say
near-optimal because though the cells with the smallest expectation may not
exactly be the cells with the largest intersection volume, most of them are. If
we use many cells but miss only a few good cells, it will not affect much the
success probability. Note that the selection of cells with the smallest expectation
is independent of the radius of the ball S.

As an application of this heuristic supported by experiments, we give evidence
that the natural partition is better than Babai’s partition: Algorithm5 shows
how to transform efficiently any discrete pruning U for Babai’s partition into a
discrete pruning V (of the same size) for the natural partition, in such a way
that

∑

t∈U E(CZ(t)) ≥ ∑

t∈V E(CN(t)). Thus, if we only consider the expectation
of cells, we can ignore Babai’s partition, and restrict ourselves to the natural
partition.

Another interesting application is that for a fixed tag, one can decrease the
expectation of its cell by decreasing

∑n
i=1 ‖b�

i ‖2: this suggests that the smaller
this quantity, the better for discrete pruning.

6.2 Finding the Cells of Lowest Expectations

Recall that the expectation of a cell of the natural partition is given by:

E{CN(t)} =
n
∑

i=1

(

t2i
4

+
ti
4

+
1
12

)

‖b�
i ‖2

We now explain how to compute the tags t ∈ N
n which minimize this

expectation.
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Algorithm 5. Discrete Pruning: From Babai’s partition to the natural partition
Input: A finite set U ⊆ Z

n defining a discrete pruning with Babai’s partition (CZ(), Z
n)

over a basis B of a lattice L.
Output: A finite set V ⊆ N

n of the same cardinal as U , defining a discrete pruning
with the natural partition (CN(), Nn) over B such that the finite union of cells has
lower E than for U .

1: Partition the set U as U1, . . . , Um so that m is minimal and within any subset Ui,
all the tags t ∈ Ui are the same in absolute value, i.e. (|t1|, . . . , |tn|) is constant.

2: Define the bijection ν : Z → N by ν(z) = 2|z| − 1 if z is odd, and ν(z) = 2|z|
otherwise.

3: for i = 1 to m do
4: for j = 1 to n do
5: Compute the number ej of tags t ∈ Ui such that tj < 0
6: Compute the number fj of tags t ∈ Ui such that tj > 0
7: if ej ≥ fj then
8: εj ← 1
9: else

10: εj ← −1
11: end if
12: end for
13: Vi ← ∅

14: for t ∈ Ui do
15: for j = 1 to n do
16: t′

j ← ν(εjtj)
17: end for
18: Vi ← Vi ∪ (t′

1, . . . , t
′
n)

19: end for
20: end for
21: Return ∪n

i=1Vi.

For a fixed sequence (‖b�
i ‖)1≤i≤n, minimizing E{CN(t)} is equivalent to

minimizing the function q(t1, . . . , tn) =
∑n

i=1(ti + 1/2)2‖b�
i ‖2 over N

n, which
is the same as minimizing ‖∑n

i=1 tib�
i +

∑n
i=1 b

�
i /2‖2: the minimal value is

∑n
i=1 ‖b�

i ‖2/4 reached at 0.
Let L� be the lattice spanned by the b�

i ’s, which are pairwise orthogonal.
Then finding the M cells with the smallest expectation E{CN(t)} is equivalent
to finding the M lattice points

∑n
i=1 tib�

i ∈ L� with positive coefficients ti ∈ N

which are the closest to u = −∑n
i=1 b

�
i /2. To solve this problem, we solve a

related problem: find all the lattice points
∑n

i=1 tib�
i ∈ L� whose distance to

u is less than a given bound, with the restriction that all ti ∈ N. This is a
special case of lattice enumeration in which the coefficients are positive and
the input basis vectors are orthogonal: it can be done by slightly modifying
enumeration, as shown by Algorithm 6. Given a bound r > 0 and r1 ≤ r2 ≤ · · · ≤
rn, Algorithm 6 generates all non-zero (x1, . . . , xn) ∈ N

n such that
∑n

i=1(xi +
1/2)2ri ≤ r. Algorithm 6 finds all the integer points ∈ Z

n which are inside some
ellipsoid and the positive orthant (because each xi ≥ 0). We will explain later
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why require that r1 ≤ r2 ≤ · · · ≤ rn, but we note that this is actually not a
constraint: if the ri’s are not increasing, sort them by finding a permutation π
of {1, . . . , n} such that rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n), then call Algorithm 6 on
(rπ(1) ≤ rπ(2) ≤ · · · ≤ rπ(n) and r, and post-process any output (x1, . . . , xn) of
Algorithm 6 by returning instead (xπ−1(1), . . . , xπ−1(n)). Thus, by choosing the
ri’s as the ‖b�

i ‖2’s after suitable reordering, we can indeed use Algorithm6 to
find all the lattice points

∑n
i=1 tib�

i ∈ L� whose distance to u is less than a given
bound, with the restriction that all ti ∈ N.

Now we claim that if we call Algorithm 6 with a suitable value of r we can
indeed find the M cells with the smallest expectation E{CN(t)} as follows:

– There are small intervals I such that for any r ∈ I, Algorithm 6 will output
only slightly more than M solutions. Then we can sort all the solutions by
expectation, and only output the best M tags.

– To find such an interval I slightly modify Algorithm 6 to obtain an algorithm
that decides if the number of non-zero (x1, . . . , xn) ∈ N

n such that
∑n

i=1(xi +
1/2)2ri ≤ r is larger or less than a given number, with an early-abort as soon
as it has found enough solutions. This immediately gives us a suitable I by
binary search, using a logarithmic number of calls to the modified version of
Algorithm 6. In practice, a non-optimized implementation typically takes a
few seconds to find say the best 50 millions tags.

To make this approach practical, it is crucial that Algorithm6 is very efficient.
At first, this looks rather surprising: Algorithm6 is doing enumeration with
a lattice basis (b�

1, . . . ,b
�
n) whose Gram-Schmidt norms are identical to that of

(b1, . . . ,bn), with a non-trivial radius beyond the GH(L�). Even if we restrict to
positive coefficients, it looks impossible, because the running time of enumeration
is typically predicted well by the Gaussian heuristic (see [11]), using values that
depend only the Gram-Schmidt norms: this means that, naively, we might expect
enumeration in L� to be as expensive as enumeration in L, in which case the
whole approach would be meaningless, because the goal of discrete pruning is
to speed up enumeration. Fortunately, it turns out that the usual predictions
for the running time of enumeration do not apply to L�, because the basis
(b�

1, . . . ,b
�
n) we use has a very special property: all its vectors are orthogonal,

and it is known that in lattices generated by orthogonal vectors, the number of
lattice points in a ball can behave significantly differently than usual (see [21]).
Yet, that alone would not be sufficient in practice to guarantee efficiency: this is
where the constraint r1 ≤ r2 ≤ · · · ≤ rn matters. In our experiments with that
constraint, if � is the number of solutions (i.e. the number of (x1, . . . , xn) ∈ N

n

such that
∑n

i=1(xi +1/2)2ri ≤ R), the running time appears to be polynomial in
�. More precisely, like all enumeration algorithms, Algorithm6 can be viewed as
a depth-first search of a tree, and the running time is less than O(L) polynomial-
time operations, where L is the total number of nodes of the tree. In practice,
at least in the context of discrete pruning, the number L seems to be bounded
by O(� × n), and even � × n. This is contrast in the usual situation for which
the number of nodes of the enumeration tree is exponentially larger than the
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Algorithm 6. Enumeration of cells of low expectations
Input: (r1, . . . , rn) ∈ R

n such that 0 ≤ r1 ≤ r2 ≤ · · · ≤ rn and a bound r > 0.
Output: All (x1, . . . , xn) ∈ N

n \ {0} such that
∑n

i=1(xi + 1/2)2ri ≤ r and all xi ≥ 0.
1: v2 = · · · = vn = ρn+1 = 0 // current coefficients
2: for k = n downto 2 do
3: ρk = ρk+1 + (vk + 1/2)2 · rk // partial squared norms
4: end for
5: k = v1 = 1;
6: while true do
7: ρk = ρk+1 + (vk + 1/2)2 · rk // compute squared norm of current node
8: if ρk ≤ r then
9: if k = 1 then

10: return (v1, . . . , vn); (solution found)
11: vk ← vk + 1
12: else
13: k ← k − 1 // going down the tree
14: vk ← 0
15: end if
16: else
17: k ← k + 1 // going up the tree
18: if k = n + 1 then
19: exit (no more solutions)
20: else
21: vk ← vk + 1
22: end if
23: end if
24: end while

number of solutions. We leave it as an open problem to show the efficiency of
Algorithm 6.

6.3 Faster Approximation of the Success Probability
by Statistical Inference

As seen in Sect. 4.2, estimating the success probability of discrete pruning
requires from (1) the computation of

∑

t∈U vol(S ∩ C(t)), where U is the set
of tags. We saw in the previous section how to compute efficiently vol(S ∩ C(t))
for the natural partition by reducing to the case of vol(H ∩ S) where H is box.
Although this computation is efficient, it is not sufficiently efficient to be applied
billions of times within a few seconds.

Fortunately, the classical theory of statistical inference allows us to approx-
imate

∑

t∈U vol(S ∩ C(t)) reasonably well without computing each term of the
sum separately: it turns out that even a constant number of terms is sufficient to
obtain a good approximation in practice, and a good approximation is sufficient
for our heuristic estimate of the success probability of discrete pruning, since
Heuristic 2 is only a heuristic estimate. To illustrate the presentation, we report
experiments for a 70-dimensional LLL-reduced basis of a random lattice L, radius



Random Sampling Revisited: Lattice Enumeration with Discrete Pruning 95

R = 1.2GH(L), and a typical set of tags, namely 5,000,000 tags generated by
Algorithm 6. Using the FILT method, we find that the sum

∑

t∈U vol(S ∩ C(t))
of 5,000,000 volumes is approximately 35.03688covol(L) by computing each vol-
ume, and we will show how to approximate this value using only 1,000 volumes.

We want to approximate the sum μ =
∑

t∈U vol(S ∩ C(t)), which is exactly
the expectation of the discrete random variable X = #U × vol(S ∩ C(t)), when
t ranges over the finite set U .

Let X1, . . . , Xm be random variables chosen independently from the same
distribution as X. Then the sample mean X = (X1+· · ·+Xm)/m. Its expectation
E(X) is exactly the target μ =

∑

t∈U vol(S ∩ C(t)), and its variance V(X) is
V(X)/m. We want to know how close is X to its expectation μ.

Since the Xi’s are discrete, the central limit theorem implies that
√

m(X −μ)
converges in distribution (as m grows) to the centered normal distribution of
standard deviation σ: Fig. 10 shows the distribution of X and X (with m =
1000) for our example. This means that in practice, we can already expect to
find a reasonable approximation of μ by simpling selecting m tags t1, . . . , tm
independently and uniformly at random from the set U : the estimate would be
#U
m

∑m
i=1 vol(S ∩ C(ti)), with an absolute error of magnitude ±σ/

√
m.

The strategy we described is known as simple sampling, because it is the
simplest method to estimate the expectation of X, but there are many other
methods. In practice, we used a better yet still simple strategy, known as stratified
sampling, because we can take advantage of properties of the cells we select in
practice.

In the simplest form of stratified sampling, the set of tags U can be parti-
tioned into subsets, and one selects a tag uniformly at random inside each subset
and “extrapolate”, as before. More precisely, if the subsets are U1, . . . Um, then
the (randomized) estimate is

X ′ =
1
m

m
∑

i=1

#Ui × vol(S ∩ C(ti)), (13)

Fig. 10. Distribution of X/(#Ucovol(L)) (on the left) and the sample mean X (on the
right) for m = 1000.
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where each ti is selected uniformly at random from Ui. In our case, assume that
we select the set U of tags formed by the best M tags t with respect to E{CN(t)}
for some M . Then we sort all these tags by increasing expectation, and split the
ordered sequence into m subsets U1, . . . , Um of nearly equal size. Thus, for all
(ti, tj) ∈ Ui × Uj and i < j, we have: E{CN(ti)} ≤ E{CN(tj)}.

Figure 11 shows that for the same value of m, the distribution of X ′ is nar-
rower than that of X, and therefore stratified sampling gives a better estimate
than simple sampling. Figure 12 shows how accurate is (13), for increasing values
of m, where there are 10,000 trials for each value of m. Using these sampling
strategies from statistical inference, it is now possible to estimate rather pre-
cisely the sum of volumes efficiently in practice. A value of the order m = 1000
appears to be sufficient, even for much larger sets of tags. This is consistent with
common practice in statistical surveys.

By combining this fast approximation algorithm with Sect. 6.2, we can effi-
ciently find out what is the best trade-off for discrete pruning: by increasing order
of magnitude of M , and starting with a small one, we use Sect. 6.2 to identify the

Fig. 11. Distributions of the estimate of simple sampling and stratified sampling.

Fig. 12. Accuracy of stratified sampling with m = 10, . . . , 5000. The right-hand side
zooms in the region y ∈ [34, 36].
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nearly-best M cells, and apply the fast approximation algorithm to estimate the
success probability for these M cells. We then deduce which M offers the best
trade-off, after taking into account the time of basis reduction, like in continuous
pruning [11]. However, this optimization is easier than for continuous pruning:
the only parameter is M (or even its order of magnitude).

6.4 Comparison of Cells

As we mentioned in Sect. 4.3, Schnor’s random sampling is essentially discrete
pruning with the set of tags Uu = {(0, ..., 0, t1, ..., tu, 1) ∈ {0, 1}n}. We have
computed the intersection volume and the cell expectations of these tags. The
blue curve in Fig. 9 shows the intersection volume sorted by cell expectation. We
compared Schnorr’s cells with the cells of Fukase-Kashiwabara [8], as selected by
the process described in Sect. 4.3. The experiments show that the intersection
volumes are much bigger for the FK cells than for Schnorr’s cells: the Fukase-
Kashiwabara variant [8] outperforms Schnorr’s random sampling. We also com-
puted the best cells in terms of expectation, using our algorithm: in this limited
experiments, we can see in Fig. 9 that the FK tags are very close to our tags, but
that tey are still different. For instance, if we consider a typical BKZ-20 basis of
a 250-dimensional random lattice, then among the best 5 × 107 tags selected by
Algorithm 6:

– about 70% of the tags have at least one coefficient �∈ {0, 1} and cannot there-
fore be selected by Schnorr’s random sampling.

– about 25% of the tags have at least two coefficients �∈ {0, 1} and cannot
therefore be selected by the method outlined in [8].

Accordingly, we obtained several experiments in which the shortest vector found
by discrete pruning had a tag which did not mach the FK selection nor of course
Schnorr’s selection.

6.5 Bad Cells

To conclude this section, we note that discrete pruning can be slightly improved
by removing what we call bad cells. For instance, the lattice point inside the cell
CN(0) is zero, which is useless. When selecting a set of tags by lowest expectation,
the set usually contains “a trivial” tag of the form of ei = (0, . . . , 0, 1, 0, . . . , 0).
When the basis B is size-reduced, it turns out that the lattice point inside the
cell CN(t) is simply the trivial vector bi, which is usually not very short for usual
reduction algorithms, and can anyways be tested separately. Although the cells
of these tags have small expectation, they are not useful for discrete pruning:
they can be removed by precomputation.

7 Experiments

Most of our experiments were performed by a standard server with two Intel
Xeon E5-2660 CPUs and 256-GB RAMs. In this section, by random reduced
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basis, we mean a basis obtained by reducing the Hermite normal form of lattices
generated by the SVP challenge generator [28] with different seeds: each seed
selects a different lattice, and we only consider one reduced basis per lattice for
a given reduction strength. The LLL and BKZ reduced bases are computed by
the NTL and progressive BKZ library [2], respectively.

Typical graphs of ‖b�
i ‖2 of LLL, PBKZ-20 and 60 are shown in Fig. 13.

Fig. 13. Typical graphs of ‖b�
i ‖ of LLL, PBKZ-20 and 60 reduced bases of a random

100-dimensional lattice.

For a lattice basis B, a set of tags T = {t1, . . . , tM}, and bounding radius
R, define the symbol

V (B, T,R) =
M
∑

j=1

vol(CN(ti) ∩ Balln(R))
covol(L)

which, by Heuristic 1, is a heuristic estimate of the number of lattice points
contained in the union of cells.

7.1 Verifying Heuristics on the Success Probability
and Number of Solutions

For a lattice basis and a set {t1, . . . , tM} of tags, consider the union of cor-
responding cells, that is, the pruning set: P = ∪N

i=1CN(ti). Heuristic 1 sug-
gests that the number of lattice points inside P and shorter than R is roughly
vol(P ∩ Balln(R))/covol(L).

We verified this estimate by using random LLL-reduced bases in dimension
100. For each basis Bi, we generated 1,000 tags by Algorithm 6 and selected
the best tags so that the total ratio vol(P ∩ Balln(R))/covol(L) (with radius
R = 1.2GH(L)) was larger than 0.001. About 300 or 400 tags are selected. For
17,386 bases and 6,281,800 tags generated as above, we display the result in
Fig. 14. By the red curve the relation between accumulated volume, that is, for
the set of first i tags Ti = {t1, . . . , ti},

∑

ti⇐Lj

V (L, Ti, R = 1.2GH(Lj)). Here,

the notation ti ⇐ Lj means that ti is generated by Algorithm 6 for the basis Lj .
The blue curve is the number of non-zero vectors which are contained in the
boxes of the tag set Ti.
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Fig. 14. Comparison between accumulated volume and actual number of found vectors

7.2 Comparison with Classical Pruned Enumeration

We give experiments comparing discrete pruning with continuous pruning [11].
The parameters are: the lattice dimension n, the number of tags M , the enu-
meration radius R = α · GH(L) and the blocksize β of BKZ lattice reduction.

The outline of the comparison is as follows: Generate an n-dimensional ran-
dom lattice and reduce it by BKZ-β. Generate the M best tags T = {t1, . . . , tM}
by Algorithm 6 and compute the intersection volume V (L, T,R = α · GH(L)).
For M > 1000, we use stratified sampling with m = 1000.

To compare with continuous pruning, we adapt Gama-Nguyen-Regev’s opti-
mization method to minimize the expected number of processed nodes

N =
1

2

n∑
k=1

vol{(x1, . . . , xk) ∈ R
k :
∑�

i=1 x2
i < (Rf(�) · αGH(L))2 for all � ∈ [k]}∏n

i=n−k+1 ‖b�
i ‖ .

subject to the volume of cylinder intersections

vol{(x1, . . . , xn) ∈ R
n :
∑�

i=1 x2
i < (R × f(�) · αGH(L))2 for ∀ � ∈ [n]}
covol(L)

is larger than V (L, T,R) by optimizing the bounding coefficients f(1), . . . , f(n).
Note that in the original paper [11], their condition is the probability defined by
the surface area of a cylinder intersection.

The cost estimation for discrete pruning is easy: the number of operations
is essentially M · n2/2 floating-point operations since one conversion defined in
Algorithm 1 requires n2/2 floating-point operations, like Babai’s nearest plane
algorithm. But the implementation can be massively parallelized (see [29] for
the special case of Schnorr’s random sampling). On the other hand, the cost
estimation for continuous pruning is a bit more tricky, since the actual cost to
process one node, i.e., cost to decide whether the node is alive or pruned, is
proportional to the depth in the searching tree. To make a rigid comparison,
we counted up the actual number Ni of nodes at depth i processed during the
enumeration by experiments and we define the cost as

∑n
i=1 i · Ni.
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With these settings, we tried 20 random bases for the same parameter set
(n,M,R = α · GH(L), β): Fig. 15 shows the average ratio of the costs

1
20

19
∑

seed=0

M · n2/2
n
∑

i=1

i · Ni

which indicates when discrete pruning is faster or slower than continuous prun-
ing, depending on whether the ratio is ≤ 1 or ≥ 1.

The trends are clear from the figures. We find that the discrete pruning is
faster than continuous pruning when:

1. The number M of tags is small. This might be useful in extreme enumeration
for approximating the shortest vector problem.

2. The lattice dimension is high. Besides the speed factor, it might be useful
because it is not easy to run continuous pruning with a very low success prob-
ability in high dimension, as it is harder to find suitable optimized bounding
functions.

3. The lattice basis is not strongly BKZ-reduced.

On the other hand, the α parameter that sets the enumeration radius does not
affect the trends.

Fig. 15. Discrete pruning vs Continuous pruning: above the virtual horizontal line
100, discrete pruning is more expensive. (Upper left) 150-dim LLL-reduced bases with
increasing α and M ; (Upper right) LLL-reduced bases with increasing dimension and
α. M = 104 is fixed; (Lower left) 150-dim with increasing blocksize β of progressive
BKZ and α. M = 104 is fixed. Note that β = 0 corresponds to LLL.
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Abstract. We present novel variants of the dual-lattice attack against
LWE in the presence of an unusually short secret. These variants are
informed by recent progress in BKW-style algorithms for solving LWE.
Applying them to parameter sets suggested by the homomorphic encryp-
tion libraries HElib and SEAL yields revised security estimates. Our
techniques scale the exponent of the dual-lattice attack by a factor of
(2 L)/(2 L + 1) when log q = Θ(L log n), when the secret has constant
hamming weight h and where L is the maximum depth of supported
circuits. They also allow to half the dimension of the lattice under
consideration at a multiplicative cost of 2h operations. Moreover, our
techniques yield revised concrete security estimates. For example, both
libraries promise 80 bits of security for LWE instances with n = 1024 and
log2 q ≈ 47, while the techniques described in this work lead to estimated
costs of 68 bits (SEAL) and 62 bits (HElib).

1 Introduction

Learning with Errors (LWE), defined in Definition 1, has proven to be a
rich source of cryptographic constructions, from public-key encryption and
Diffie-Hellman-style key exchange (cf. [Reg09,Pei09,LPR10,DXL12,BCNS15,
ADPS16,BCD+16]) to fully homomorphic encryption (cf. [BV11,BGV12,Bra12,
FV12,GSW13,CS15]).

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probabil-
ity distribution on Z and s be a secret vector in Z

n
q . We denote by Ls,χ,q the

probability distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly at

random, choosing e ∈ Z according to χ and considering it in Zq, and returning
(a, c) = (a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq are

sampled according to Ls,χ,q or the uniform distribution on Z
n
q × Zq.

Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈
Z

n
q × Zq sampled according to Ls,χ,q.
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Quantum Cryptography and Fully Homomorphic Encryption”.
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We may write LWE instances in matrix form (A, c), where rows correspond
to samples (ai, ci). In many instantiations, χ is a discrete Gaussian distribution
with standard deviation α q/

√
2π. Though, in this work, like in many works on

cryptanalysis of LWE, the details of the error distribution do not matter as long
as we can bound the size of the error under additions.

The bit-security of concrete LWE instances is a prominent area of cur-
rent cryptographic research, in particular in light of standardisation initiatives
for LWE-based schemes and LWE-based (somewhat) homomorphic encryption
being proposed for applications such as computation with medical data [KL15].
See [APS15] for a relatively recent survey of known (classical) attacks.

Applications such as [KL15] are enabled by progress in homomorphic
encryption in recent years. The two most well-known homomorphic encryption
libraries are HElib and SEAL. HElib [GHS12a,HS14] implements BGV [BGV12].
SEAL v2.0 [LP16] implements FV [Bra12,FV12]. Both schemes fundamentally
rely on the security of LWE.

However, results on the expected cost of solving generic LWE instances do
not directly translate to LWE instances as used in fully homomorphic encryp-
tion (FHE). Firstly, because these instances are typically related to the Ring-
LWE assumption [LPR10,LPR13] instead of plain LWE. Secondly, because these
instances are typically small-secret instances. In particular, they typically sam-
ple the secret s from some distribution B as defined below. We call such instances
B-secret LWE instances.

Definition 2. Let n, q be positive integers. We call

B any distribution on Z
n
q where each component ≤ 1 in absolute value, i.e.

‖s(i)‖ ≤ 1 for s ←$ B.
B+ the distribution on Z

n
q where each component is independently sampled uni-

formly at random from {0, 1}.
B− the distribution on Z

n
q where each component is independently sampled uni-

formly at random from {−1, 0, 1}.
B+

h the distribution on Z
n
q where components are sampled independently uni-

formly at random from {0, 1} with the additional guarantee that at most h
components are non-zero.

B−
h the distribution on Z

n
q where components are sampled independently uni-

formly at random from {−1, 0, 1} with the additional guarantee that at most
h components are non-zero.

Remark 1. In [BLP+13], instances with s ←$ B+ are referred to as binary-secret;
B+ is used in [FV12]; B− is used in Microsoft’s SEAL v2.0 library1 and [LN14];
B−
64 is the default choice in HElib, cf. [GHS12b, Appendix C.1.1] and [HS14].

It is an open question how much easier, if any, B-secret LWE instances are
compared to regular LWE instances. On the one hand, designers of FHE schemes

1 cf. KeyGenerator::set poly coeffs zero one negone() at https://sealcrypto.codeplex.
com/SourceControl/latest#SEAL/keygenerator.h.

https://sealcrypto.codeplex.com/SourceControl/latest#SEAL/keygenerator.h
https://sealcrypto.codeplex.com/SourceControl/latest#SEAL/keygenerator.h
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typically ignore this issue [GHS12a,LN14,CS16]. This could be considered as
somewhat justified by a reduction from [ACPS09] showing that an LWE instance
with an arbitrary secret can be transformed into an instance with a secret fol-
lowing the noise distribution in polynomial time and at the loss of n samples.
Hence, such instances are not easier than instances with a uniformly random
secret, assuming sufficiently many samples are available. As a consequence, LWE
with a secret following the noise distribution is considered to be in normal form.
Given that the noise in homomorphic encryption libraries is also typically rather
small—SEAL and HElib use standard deviation σ ≈ 3.2—the distribution B−

gives rise to LWE instances which could be considered relatively close to normal-
form LWE instances. However, considering the actual distributions, not just the
standard deviations, it is known that LWE with error distribution B is insecure
once sufficiently many samples are available [AG11,ACFP14,KF15].

On the other hand, the best, known reduction from regular LWE to B+-secret
LWE has an expansion factor of log q in the dimension. That is, [BLP+13] gives a
reduction from regular LWE in dimension n to LWE with s ←$ B+ in dimension
n log q.

In contrast, even for noise with width ≈ √
n and s ←$ B− the best known

lattice attacks suggest an expansion factor of at most log log n [BG14], if at all.
Overall, known algorithms do not perform significantly better for B-secret LWE
instances, perhaps reinforcing our confidence in the common approach of simply
ignoring the special form of the secret.

One family of algorithms has recently seen considerable progress with regards
to B-secret instances: combinatorial algorithms. Already in [Reg09] it was
observed that the BKW algorithm, originally proposed for LPN by Blum, Kalai
and Wasserman [BKW00], leads to an algorithm in 2Θ(n) time and space for solv-
ing LWE. The algorithm proceeds by splitting the components of the vectors ai

into blocks of k components. Then, it searches for collisions in the first block in
an “elimination table” holding entries for (possibly) all qk different values for
that block. This table is constructed by sampling fresh (ai, ci) pairs from the
LWE oracle. By subtracting vectors with colliding components in the first block,
a vector of dimension n − k is recovered, applying the same subtraction to the
corresponding ci values, produces an error of size

√
2α q. Repeating the process

for consecutive blocks reduces the dimension further at the cost of an increase
in the noise by a factor

√
2 at each level. This process either continues until all

components of ai are eliminated or when there are so few components left that
exhaustive search can solve the remaining low-dimensional LWE instance.

A first detailed study of this algorithm when applied to LWE was provided
in [ACF+15]. Subsequently, improved variants were proposed, for small secret
LWE instances via “lazy modulus switching” [AFFP14], via the application
of an FFT in the last step of the algorithm [DTV15], via varying the block
size k [KF15] and via rephrasing the problem as the coding-theoretic problem
of quantisation [GJS15]. In particular, the works [KF15,GJS15] improve the
exploitation of a small secret to the point where these techniques improve the
cost of solving instances where the secret is as big as the error, i.e. arbitrary



106 M.R. Albrecht

LWE instances. Yet, combinatorial algorithms do not perform well on FHE-
style LWE instances because of their large dimension n to accommodate the
large modulus q.

1.1 Our Contribution/Outline

We first review parameter choices in HElib and SEAL as well as known algo-
rithms for solving LWE and related problems in Sect. 2.

Then, we reconsider the dual-lattice attack (or “dual attack” in short) which
finds short vectors y such that y · A ≡ 0 mod q using lattice reduction. In
particular, we recast this attack as the lattice-reduction analogue of the BKW
algorithm and adapt techniques and lessons learned from BKW-style algorithms.
Applying these techniques to parameter sets suggested for HElib and SEAL, we
arrive at revised concrete and asymptotic security estimates.

First, in Sect. 3, we recall (the first stage of) BKW as a recursive dimension
reduction algorithm for LWE instances. Each step transforms an LWE instance
in dimension n to an instance in dimension n − k at the cost of an increase
in the noise by a factor of

√
2. This smaller instance is then reduced further

by applying BKW again or solved using another algorithm for solving LWE;
typically some form of exhaustive search once the dimension is small enough.
To achieve this dimension reduction, BKW first produces elimination tables
and then makes use of these tables to sample possibly many LWE samples in
dimension n−k relatively cheaply. We translate this approach to lattice reduction
in the low advantage regime: we perform one expensive lattice reduction step
followed by many relatively cheap lattice reductions on rerandomised bases. This
essentially reduces the overall solving cost by a factor of m, where m is the
number of samples required to distinguish a discrete Gaussian distribution with
large standard deviation from uniform modulo q. We note that this approach
applies to any LWE instance, i.e. does not rely on an unusually short secret and
thus gives cause for a moderate revision of many LWE estimates based on the
dual-attack in the low advantage regime. It does, however, rely on the heuristic
that these cheap lattice reduction steps produce sufficiently short and random
vectors. We give evidence that this heuristic holds.

Second, in Sect. 4, we observe that the normal form of the dual attack—
finding short vectors y such that y ·A ≡ x mod q is short—is a natural analogue
of “lazy modulus switching” [AFFP14]. Then, to exploit the unusually small
secret, we apply lattice scaling as in [BG14]. The scaling factor is somewhat
analogous to picking the target modulus in modulus switching resp. picking the
(dimension of the) code for quantisation. This technique applies to any B-secret
LWE instance. For B−

h -secret instances, it reduces the cost of the dual attack
by a factor of 2L/(2L + 1) in the exponent when log q = Θ (L log n) for L the
supported depth of FHE circuits and when h is a constant.

Third, in Sect. 5, we focus on s ←$ B±
h and adapt the dual attack to find

short vectors which produce zero when multiplied with a subset of the columns
of A. This, as in BKW, produces a smaller, easier LWE instance which is then
solved using another algorithm. In BKW, these smaller instances typically have
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very small dimension (say, 10). Here, we consider instances with dimension of
several hundreds. This is enabled by exploiting the sparsity of the secret and
by relaxing the conditions on the second step: we recover a solution only with a
small probability of success. The basic form of this attack does not rely on the
size of the non-zero components (only on the sparsity) and reduces the cost of
solving an instance in dimension n to the cost of solving an instance in dimension
n/2 multiplied by 2h where h is the hamming weight of the secret (other trade-
offs between multiplicative cost increase and dimension reduction are possible
and typically optimal). We also give an improved variant when the non-zero
components are also small.

In Sect. 6, we put everything together to arrive at our final algorithm Silke,
which combines the techniques outlined above; inheriting their properties. We
also give revised security estimates for parameter sets suggested for HElib and
SEAL in Table 1. Table 1 highlights that the techniques described in this work
can, despite being relatively simple, produce significantly revised concrete secu-
rity estimates for both SEAL and HElib.

Table 1. Costs of dual attacks on HElib and SEAL. Rows “log2 q” give bit sizes for the
maximal modulus for a given n, for SEAL it is taken from [LN14], for HElib it is chosen
such that the expected cost is 280 resp. 2128 s according to [GHS12a]. The rows “dual”
give the log cost (in operations) of the dual attack according to our lattice-reduction
estimates without taking any of our improvements into account; The row “Silkesmall”
gives the log cost of Algorithm 3 with “sparse” set to false; The rows “Silkesparse”
give the log cost of Algorithm 3 with “sparse” set to true. The “sparse” flag toggles
whether the approach described in Sect. 5 is enabled or not in Algorithm 3.

n 1024 2048 4096 8192 16384

SEAL 80-bit

log2 q 47.5 95.4 192.0 392.1 799.6

dual 83.1 78.2 73.7 71.1 70.6

Silkesmall 68.1 69.0 68.2 68.4 68.8

HElib 80-bit

log2 q 47.0 87.0 167.0 326.0 638.0

dual 85.2 85.2 85.3 84.6 85.5

Silkesparse 61.3 65.0 67.9 70.2 73.1

HElib 128-bit

log2 q 38.0 70.0 134.0 261.0 511.0

dual 110.7 110.1 109.3 108.8 108.9

Silkesparse 73.2 77.4 81.2 84.0 86.4
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Table 2. Logarithms of algorithm costs in operations mod q when applied to example
parameters n = 2048, q ≈ 263.4, α ≈ 2−60.4 and s ←$ B−

64. The row “base line” gives
the log cost of attacks according to our lattice-reduction estimates without taking any
of our improvements into account.

Strategy Dual Decode Embed

HElib 188.9 — —

Base line 124.2 116.6 114.5

Sect. 4 101.0 — —

Sect. 5 97.1 111.0 110.9

Sect. 6 83.9 — —

2 Preliminaries

Logarithms are base 2 if not stated otherwise. We write vectors in bold, e.g. a,
and matrices in upper-case bold, e.g. A. By a(i) we denote the i-th component of
a, i.e. a scalar. In contrast, ai is the i-th element of a list of vectors. We write Im

for the m × m identity matrix over whichever base ring is implied from context.
We write 0m×n for the m×n zero matrix. A lattice is a discrete subgroup of Rn.
It can be represented by a basis B. We write Λ(B) for the lattice generated by
the rows of the matrix B, i.e. all integer-linear combinations of the rows of B.
We write Λq(B) for the q-ary lattice generated by the rows of the matrix B over
Zq, i.e. the lattice spanned by the rows B and multiples of q. We write An:m for
the rows n, . . . , m − 1 of A. If the starting or end point is omitted it is assumed
to be 0 or the number of rows respectively, i.e. we follow Python’s slice notation.

2.1 Rolling Example

Throughout, we are going to use Example 1 below to illustrate the behaviour
of the techniques described here. See Table 2 for an overview of complexity esti-
mates for solving this set of parameters using the techniques described in this
work.

Example 1. The LWE dimension is n = 2048, the modulus is q ≈ 263.4, the noise
parameter is α ≈ 2−60.4, i.e. we have a standard deviation of σ ≈ 3.2. We have
s ←$ B−

64, i.e. only h = 64 components of the secret are ±1, all other components
are zero. This set of parameters is inspired by parameter choices in HElib and
produced by calling the function fhe params(n=2048,L=2) of the LWE estimator
from [APS15].

2.2 Parameter Choices in HElib

HElib [GHS12a,HS14] uses the cost of the dual attack for solving LWE to estab-
lish parameters. The dual strategy reduces the problem of distinguishing LWE
from uniform to the SIS problem [Ajt96]:
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Definition 3 (SIS). Given q ∈ Z, a matrix A, and t < q; find y with 0 <
‖y‖ ≤ t and

y · A ≡ 0 (mod q).

Now, given samples A, c where either c = A · s + e or c uniform, we can
distinguish the two cases by finding a short y which solves SIS on A and by
computing 〈y, c〉. On the one hand, if c = A · s + e, then 〈y, c〉 = 〈y · A, s〉 +
〈y, e〉 ≡ 〈y, e〉 (mod q). If y is short then 〈y, e〉 is also short. On the other hand,
if c is uniformly random, so is 〈y, c〉.

To pick a target norm for y, HElib picks ‖y‖ = q which allows distinguishing
with good probability because q is not too far from q/σ since σ ≈ 3.2 and q is
typically rather large. More precisely, we may rely on the following lemma:

Lemma 1 ([LP11]). Given an LWE instance characterised by n, α, q and a vec-
tor y of length ‖y‖ such that y ·A ≡ 0 (mod q), the advantage of distinguishing
〈y, e〉 from random is close to

exp(−π(‖y‖ · α)2).

To produce a short enough y, we may call a lattice-reduction algorithm. In
particular, we may call the BKZ algorithm with block size β. After performing
BKZ-β reduction the first vector in the transformed lattice basis will have norm
δm
0 ·det(Λ)1/m where det(Λ) is the determinant of the lattice under consideration,

m its dimension and the root-Hermite factor δ0 is a constant based on the block
size parameter β. Increasing the parameter β leads to a smaller δ0 but also leads
to an increase in run-time; the run-time grows at least exponential in β (see
below).

In our case, the expression above simplifies to ‖y‖ ≈ δm
0 ·qn/m whp, where n is

the LWE dimension and m is the number of samples we consider. The minimum
of this expression is attained at m =

√

n log q
log δ0

[MR09].

Explicitly, we are given a matrix A ∈ Z
m×n
q , construct a basis Y for its left

kernel modulo q and then consider the q-ary lattice Λq(Y) spanned by the rows
of Y. With high probability Y is an (m−n)×m matrix and Λq(Y) has volume
qn. Let L be a basis for Λq(Y), m′ = m − n and write Y = [Im′ |Y′] then we
have

L =
(

Im′ Y′

0 q In

)

.

In other words, we are attempting to find a short vector y in the integer row
span of L.

Given a target for the norm of y and hence for δ0, HElib2 estimates the cost
of lattice reduction by relying on the following formula from [LP11]:

log tBKZ(δ0) =
1.8

log δ0
− 110, (1)

2 https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/
src/FHEContext.cpp#L22.

https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/src/FHEContext.cpp#L22
https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/src/FHEContext.cpp#L22
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where tBKZ(δ0) is the time in seconds it takes to BKZ reduce a basis to achieve
root-Hermite factor δ0. This estimate is based on experiments with BKZ in the
NTL library [Sho01] and extrapolation.

2.3 LP Model

The [LP11] model for estimating the cost of lattice-reduction is not correct.
Firstly, it expresses runtime in seconds instead of units of computation.

As Moore’s law progresses and more parallelism is introduced, the number of
instructions that can be performed in a second increases. Hence, we first must
translate Eq. (1) to units of computation. The experiments of Lindner and Peik-
ert were performed on a 2.33 Ghz AMD Opteron machine, so we may assume
that about 2.33 · 109 operations can be performed on such a machine in one
second and we scale Eq. (1) accordingly.3

Secondly, the LP model does not fit the implementation of BKZ in NTL. The
BKZ algorithm internally calls an oracle for solving the shortest vector prob-
lem in smaller dimension. The most practically relevant algorithms for realising
this oracle are enumeration without preprocessing (Fincke-Pohst) which costs
2Θ(β2) operations, enumeration with recursive preprocessing (Kannan) which
costs βΘ(β) and sieving which costs 2Θ(β). NTL implements enumeration with-
out preprocessing. That is, while it was shown in [Wal15] that BKZ with recursive
BKZ pre-processing achieves a run-time of poly(n) ·βΘ(β), NTL does not imple-
ment the necessary recursive preprocessing with BKZ in smaller dimensions.
Hence, it runs in time poly(n) · 2Θ(β2) for block size β.

Thirdly, the LP model assumes a linear relation between 1/ log(δ0) and the
log of the running time of BKZ, but from the “lattice rule-of-thumb” (δ0 ≈
β1/(2β)) and 2Θ(β) being the complexity of the best known algorithm for solving
the shortest vector problem, we get:

Lemma 2 ([APS15]). The log of the time complexity achieve a root-Hermite
factor δ0 with BKZ is

Θ

(

log(1/ log δ0)
log δ0

)

if calling the SVP oracle costs 2Θ(β).

To illustrate the difference between Lemma 2 and Eq. (1), consider Regev’s
original parameters [Reg05] for LWE: q ≈ n2, α q ≈ √

n. Then, solving
LWE with the dual attack and advantage ε requires a log root-Hermite fac-
tor log δ0 = log2

(

α
√

ln(1/ε)/π
−1

)

/(4n log q) [APS15]. Picking ε such that

log
√

ln(1/ε)/π ≈ 1, the log root-Hermite factor becomes log δ0 = 9 log n
32n . Plug-

ging this result into Eq. 1, we would estimate that solving LWE for these para-
meters takes log tBKZ(δ0) = 32n

5 log n − 110 s, which is subexponential in n.

3 The number of operations on integers of size log q depends on q and is not constant.
However, constant scaling provides a reasonable approximation for the number of
operations for the parameter ranges we are interested in here.
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2.4 Parameter Choices in SEAL 2.0

SEAL v2.0 [LP16] largely leaves parameter choices to the user. However, it pro-
vides the ChooserEvaluator::default parameter options() function which returns val-
ues from [LN14, Table 2].4 This table gives a maximum log q for 80 bits of secu-
rity for n = 1024, 2048, 4096, 8192, 16384. We reproduce these values for log q in
Table 1. The default standard deviation is σ = 3.19.

The values of [LN14, Table 2] are based on enumeration costs and the simula-
tor from [CN11,CN12]. Furthermore, to extrapolate from available enumeration
costs from [CN12,LN14] assumes calling the SVP oracle in BKZ grows only expo-
nentially with β, i.e. as 20.64β−28. Note that this is overly optimistic, as [CN12]
calls enumeration with recursive preprocessing to realise the SVP oracle inside
BKZ, which has a complexity of βΘ(β).

Finally, we note that the SEAL v2.0 manual [LP16] cautions the user against
relying on the security provided by the list of default parameters.

2.5 Lattice Reduction

We will estimate the cost of lattice reduction using the following assumptions:

BKZ-β produces vectors with δ0 ≈
(

β
2πe (πβ)

1
β

)
1

2(β−1)
[Che13]. The SVP oracle

in BKZ is realised using sieving and sieving in blocksize β costs tβ = 20.292 β+12.31

clock cycles. Here, 0.292β follows from [BDGL16], the additive constant +12.31
is based on experiments in [Laa15]. BKZ-β costs c n · tβ clock cycles in dimen-
sion n for some small constant c based on experiments in [Che13]; cf. [Che13,
Figure 4.6]. This corresponds roughly to 2 c tours of BKZ. We pick c = 8 based
on our experiments with [FPL16].

This estimate is more optimistic than the estimate in [APS15], which does
not yet take [BDGL16] into account and bases the number of SVP oracle calls
on theoretical convergence results [HPS11] instead of experimental evidence. On
the other hand, this estimate is more pessimistic than [BCD+16] which assumes
one SVP call to be sufficient in order to protect against future algorithmic devel-
opments. While such developments, amortising costs across SVP calls during
one BKZ reduction, are plausible, we avoid this assumption here in order not
to “oversell” our results. However, we note that our improvements are some-
what oblivious to the underlying lattice-reduction model used. That is, while
the concrete estimates for bit-security will vary depending on which estimate
is employed, the techniques described here lead to improvements over the plain
dual attack regardless of model. For completeness, we give estimated costs in
different cost models in Appendix C.

According to the [LP11] estimate, solving Example 1 costs 2157.8 s or 2188.9

operations using the standard dual attack. The estimates outlined in this section
predict a cost of 2124.2 operations for the same standard dual attack.

4 Note that the most recent version of SEAL now recommends more conservative
parameters [LCP16], partly in reaction to this work.
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2.6 Related Work

LWE. Besides the dual attack, via BKW or lattice-reduction, there is also
the primal attack, which solves the bounded distance decoding (BDD) prob-
lem directly. That is, given (A, c) with c = A · s + e or c ←$ U (

Z
m
q

)

find
s′ such that |w − c| with w = A · s′ is minimised. For this, we may employ
Kannan’s embedding [AFG14] or variants of Babai’s nearest planes after lattice
reduction [LP11,LN13]. For Example 1 the cost of the latter approach is 2116.6

operations, i.e. about a factor 190 faster than the dual attack.
Arora & Ge proposed an asymptotically efficient algorithm for solving

LWE [AG11], which was later improved in [ACFP14]. However, these algorithms
involve large constants in the exponent, ruling them out for parameters typically
considered in cryptography. We, hence, do not consider them further in this work.

Small-Secret LWE. As mentioned in [GHS12b], we can transform instances
with an unusually short secret into instances where the secret follows the error
distribution, but n samples have the old, short secret as noise [ACPS09].

Given a random m×n matrix A mod q and an m-vector c = A ·s+e mod q,
let A0 denotes the first n rows of A, A1 the next n rows, etc., e0, e1, . . . are the
corresponding parts of the error vector and c0, c1, . . . the corresponding parts of
c. We have c0 = A0 · s + e0 or A−1

0 · c0 = s + A−1
0 e0. For i > 0 we have ci =

Ai·s+ei, which together with the above gives AiA−1
0 c0−ci = AiA−1

0 e0−ei. The
output of the transformation is z = B · e0 + f with B = (A−1

0 | A1 · A−1
0 | . . . )

and z = (A−1
0 c0 | A1A−1

0 c1 | . . .) and f = (s|e1 | . . . ). For Example 1, this
reduces α from 2−60.4 to ≈ 2−60.8 and marginally improves the cost of solving.

An explicit variant of this approach is given in [BG14]. Consider the lattice

Λ = {v ∈ Z
n+m | [A | Im] · v ≡ 0 mod q}.

It has an unusually short vector (s||e). When ‖s‖ � ‖e‖, the vector (s||e) is
uneven in length. To balance the two sides, rescale the first part to have the
same norm as the second. When s ←$ B−, this scales the volume of the lattice
by σn. When s ←$ B+, this scales the volume of the lattice by (2σ)n because
we can scale by 2σ and then re-balance. When s ←$ B±

h , the volume is scaled
depending on h. For our rolling example, this approach costs 2114.5 operations,
i.e. is about a factor 830 faster than the dual attack.

Independently and concurrently to this work, a new key-exchange protocol
based on sparse secret LWE was proposed in [CKH+16]. A subset of the tech-
niques discussed here are also discussed in [CKH+16], in particular, ignoring
components of the secret and using lattice scaling as in [BG14].

Combinatorial. This work combines combinatorial and lattice-reduction tech-
niques. As such, it has some similarities with the hybrid attack on NTRU [HG07].
This attack was recently adapted to LWE in the B-secret case in [BGPW16] and
its complexity revisited in [Wun16].
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Rings. Recently, [ABD16] proposed a subfield lattice-attack on the two fully
homomorphic encryption schemes YASHE [BLLN13] and LTV [LTV12], showing
that NTRU with “overstretched” moduli q is less secure than initially expected.
Quickly after, [KF16] pointed out that the presence of subfields is not necessary
for attacks to succeed. NTRU can be considered as the homogeneous version
of Ring-LWE, but there is currently no indication that these attacks can be
translated to the Ring-LWE setting. There is currently no known algorithm
which solves Ring-LWE faster than LWE for the parameter choices (ring, error
distribution, etc.) typically considered in FHE schemes.

3 Amortising Costs

If the cost of distinguishing LWE from random with probability ε is c, the cost of
solving is customary estimated as at least c/ε [LP11]. More precisely, applying
Chernoff bounds, we require about 1/ε2 samples to amplify a decision experiment
succeeding with advantage ε to a constant advantage. Hence, e.g. in [APS15],
the dual attack is costed as the cost of running BKZ-β to achieve the target
δ0 multiplied by the number of samples required to distinguish with the target
advantage, i.e. ≈ c/ε2.

In the case of the dual attack, this cost can be reduced by performing reran-
domisation on the already reduced basis. If L is a basis for the lattice Λq(Y), we
first compute L′ as the output of BKZ-β reduction where β is chosen to achieve
the target δ0 required for some given target advantage. Then, in order to produce
sufficiently many relatively short vectors yi ∈ Λq(Y) we repeatedly multiply L′

by a fresh random sparse unimodular matrix with small entries to produce L′
i.

As a consequence, L′
i remains somewhat short. Finally, we run BKZ-β′ with

β′ ≤ β on L′
i and return the smallest non-zero vector as yi. See Algorithm 1,

where εd is chosen following Lemma 1 (see below for the expectation of ‖y‖)
and m is chosen following [SL12].

That is, similar to BKW, which in a first step produces elimination tables
which allow sampling smaller dimensional LWE samples in O(n2) operations, we
first produce a relatively good basis L′ to allow sampling yi relatively efficiently.

To produce the estimates in Table 1, we assume the same rerandomisation
strategy as is employed in fplll’s implementation [FPL16] of extreme pruning
for BKZ 2.0.5 This rerandomisation strategy first permutes rows and then adds
three existing rows together using ±1 coefficients, which would increase norms
by a factor of

√
3 < 2 when all vectors initially have roughly the same norm. For

completeness, we reproduce the algorithm in Appendix A. We then run LLL,
i.e. we set β′ = 2, and assume that our yi have their norms increased by a factor
of two, i.e. E[‖yi‖] = 2 · δm

0 qn/m.

Heuristic. We note that, in implementing this strategy, we are losing statistical
independence. To maintain statistical independence, we would consider fresh

5 https://github.com/fplll/fplll/blob/b75fe83/fplll/bkz.cpp#L43.

https://github.com/fplll/fplll/blob/b75fe83/fplll/bkz.cpp#L43
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Data: candidate LWE samples A, c ∈ Z
m×n
q × Z

m
q

Data: BKZ block sizes β, β′ ≥ 2
Data: target success probability ε
εd ← exp(−π(E[‖yi‖] · α)2);
m ← �2 log(2 − 2 ε)/ log(1 − 4 ε2d)�;
L ← basis for {y ∈ Z

m : y · A ≡ 0 mod q};
L′ ← BKZ-β reduced basis for L;
for i ← 0 to m − 1 do

U ←$ a sparse unimodular matrix with small entries;
Li ← U · L′;
L′

i ← BKZ-β′ reduced basis for Li;
yi ← shortest row vector in L′

i;
e′

i ← 〈yi, c〉;
end
if e′

i follow discrete Gaussian distribution then
return �;

else
return ⊥;

end
Algorithm 1. Silke1: Amortising costs in BKW-style SIS strategy for solving LWE

LWE samples and distinguish 〈yi, ei〉 from uniform. However, neither HElib nor
SEAL provides the attacker with sufficiently many samples to run the algorithm
under these conditions. Instead, we are attempting to distinguish 〈yi, e〉 from
uniform. Furthermore, since we are performing only light rerandomisation our
distribution could be skewed if our yi in 〈yi, e〉 are not sufficiently random.
Just as in BKW-style algorithms [ACF+15] we assume the values 〈yi, e〉 are
distributed closely enough to the target distribution to allow us to ignore this
issue.

Experimental Verification. We tested the heuristic assumption of
Algorithm 1 by rerandomising a BKZ-60 reduced basis using Algorithm 4 with
d = 3 followed by LLL reduction several hundred times. In this experiment,
we recovered fresh somewhat short vectors in each call, where somewhat short
means with a norm at most twice that of the shortest vector of L′. We give
further experimental evidence in Sect. 6.

Finally, we note that this process shares some similarities with random
sampling reduction (RSR) [Sch03], where random linear combinations are LLL
reduced to produce short vectors. While, here, we are only performing sparse
sums and accept larger norms, the techniques used to analyse RSR might per-
mit reducing our heuristic to a more standard heuristic assumption.

4 Scaled Normal-Form

The line of research improving the BKW algorithm for small secrets starting
with [AFFP14] proceeds from the observation that we do not need to find
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y · A ≡ 0 mod q, but if the secret is sufficiently small then any y such that y ·A
is short suffices, i.e. we seek short vectors (w,v) in the lattice

Λ = {(y,x) ∈ Z
m × Z

n : y · A ≡ x mod q}.

Note that this lattice is the lattice considered in dual attacks on normal form
LWE instances (cf. [ADPS15]).6 Given a short vector in (w,v) ∈ Λ, we have

w · c = w · (A · s + e) = 〈v, s〉 + 〈w, e〉 .

Here, v corresponds to the noise from “modulus switching” or quantisation in
BKW-style algorithms and w to the multiplicative factor by which the LWE
noise increases due to repeated subtractions.

Now, in small secret LWE instances we have ‖s‖ < ‖e‖. As a consequence,
we may permit ‖v‖ > ‖w‖ such that

‖ 〈w, s〉 ‖ ≈ ‖ 〈v, e〉 ‖.
Hence, we consider the lattice

Λc = {(y,x/c) ∈ Z
m × (1/c · Z)n : y · A ≡ x mod q}

for some constant c, similar to [BG14]. The lattice Λc has dimension m′ = m+n
and whp volume (q/c)n. To construct a basis for Λc, assume Am−n:m has full
rank (this holds with high probability for large q). Then Λc = Λ(L′) with

L′ =

⎛

⎝

1
c In 0n×(m−n) A

−1
m−n:m

Im−n B′

qIn

⎞

⎠

where [Im−n|B′] is a basis for the left kernel of A mod q.

Remark 2. In our estimates for HElib and SEAL, we typically have m = n and
[Im−n|B′] ∈ Z

0×n.

It remains to establish c. Lattice reduction produces a vector (w,v) with

‖(w,v)‖ ≈ δm′
0 · (q/c)n/m′

, (2)

which translates to a noise value

e = w · A · s + 〈w, e〉 = 〈c · v, s〉 + 〈w, e〉
and we set

c =
α q√
2π h

≡ √
m′ − n

to equalise the noise contributions of both parts of the above sum.
As a consequence, we arrive at the following lemma, which is attained by

combining Eq. (2) with Lemma 1.
6 The strategy seems folklore, we were unable to find a canonical reference for it.
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Lemma 3. Let m′ = 2n and c = α q√
2π h

·√m′ − n. A lattice reduction algorithm
achieving δ0 such that

log δ0 =
log

(

2n log2 ε
πα2h

)

8n

leads to an algorithm solving decisional LWE with s ←$ B−
h instance with advan-

tage ε and the same cost.

Remark 3. We focus on m′ = 2n in Lemma 3 for ease of exposure. For the
instances considered in this work, m′ = 2n is a good approximation for m′ (see
Sect. 6).

For Example 1 we predict at a cost of 2107.4 operations mod q for solving
Decision-LWE when applying this strategy. Amortising costs as suggested in
Sect. 3 reduces it further to 2101.0 operations mod q.

Asymptotic Behaviour. The general dual strategy, without exploiting small
secrets, requires

log δ0 =
log

(

− 2 log ε
α2q

)

4n

according to [APS15]. For HElib’s choice of 8 = α q and h = 64 and setting ε
constant, this expression simplifies to

log δ0 =
log q + Cd

4n
,

for some constant Cd. On the other hand, Lemma 3 simplifies to

log δ0 =
log q + 1

2 log n + Cm

4n
, (3)

for some constant Cm < Cd.
For a circuit of depth L, BGV requires log q = L log n + O(L) [GHS12b,

Appendix C.2]. Applying Lemma 2, we get that

lim
κ→∞

costm

costd
= lim

n→∞
costm

costd
=

2L

2L + 1
,

where costd is the log cost of the standard dual attack, costm is the log cost
under Lemma 3 and κ the security parameter. The same analysis applies to any
constant h. Finally, when h = 2/3n, i.e. s ←$ B−, then the term 1/2 · log n
vanishes from (3), but Cm > Cd.

5 Sparse Secrets

Recall that BKW-style algorithms consist of two stages or, indeed, sub-
algorithms. First, in the reduction stage, combinatorial methods are employed
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to transform an LWE instance in dimension n into an instance of dimension
0 ≤ n′ ≤ n, typically with increased noise level α. This smaller LWE instance is
then, in the solving stage, is solved using some form of exhaustive search over
the secret.

Taking the same perspective on the dual attack, write A = [A0 | A1] with
A0 ∈ Z

m×(n−k)
q and A1 ∈ Z

m×k
q and find a short vector in the lattice

Λ = {y ∈ Z
m : y · A0 ≡ 0 mod q}.

Each short vector y ∈ Λ produces a sample for an LWE instance in dimen-
sion k and noise rate α′ = E[‖y‖] · α. Setting k = 0 recovers the original dual
attack. For k > 0, we may now apply our favourite algorithm for solving small
dimensional, easy LWE instances. Applying exhaustive search implies log2 k < κ
for s ←$ B+ resp. log3 k < κ for s ←$ B− when κ is the target level of security.

The case s ←$ B±
h permits much larger k by relaxing the conditions we place

on solving the k-dimensional instance. Instead of solving with probability one,
we solve with some probability pk and rerun the algorithm in case of failure.

For this, write A · P = [A0 | A1] and s · P = [s0 | s1] where P is a random
permutation matrix. Now, over the choice of P there is a good chance that
s1 = 0 and hence that A1 · s1 ≡ 0 mod q. That is, the right choice of P places
all non-zero components of s in the s0 part.

In particular, with probability 1−h/n a coordinate s(i) is zero. More generally,
picking k components of s at random will pick only components such that s(i) = 0
with probability

pk =
k−1
∏

i=0

(

1 − h

n − i

)

=

(

n−h
k

)

(

n
k

) ≈
(

1 − h

n

)k

.

Hence, simply treating k > 0 in the solving stage the same as k = 0 suc-
ceeds with probability pk. The success probability can be amplified to close to
one by repeating the elimination and solving stages ≈ 1/pk times assuming we
distinguish with probability close to 1.

It is clear that the same strategy translates to the primal attack by simply
dropping random columns before running the algorithm. However, for the dual
attack, the following improvement can be applied. Instead of considering only
s1 = 0, perform exhaustive search over those solutions that occur with suffi-
ciently high probability. In particular, over the choice of P, the probability that
s1 contains k − j components with s1,(i) = 0 and exactly j components with
s1,(i) �= 0 is

pk,j =

(

n−h
k−j

)(

h
j

)

(

n
k

) ,

i.e. follows the hypergeometric distribution.
Now, assuming s ←$ B−

h , to check if any of those candidates for s1 is correct,
we need to compare

(

k
j

) ·2j distributions against the uniform distribution mod q.



118 M.R. Albrecht

Thus, after picking a parameter  we arrive at Algorithm 2 with cost:

1. m calls to BKZ-β in dimension n − k.
2. m · ∑


i=0

(

k
i

) · 2i · i additions mod q to evaluate m samples on all possible
solutions up to weight .

Assuming m is chosen such that distinguishing LWE from uniform suc-
ceeds with probability close to one, then Algorithm 2 succeeds with probability
∑


j=0 pk,j .

Data: m × n matrix A over Zq

Data: m vector c over Zq

Data: density parameter 0 ≤ � ≤ 64
Data: dimension parameter 0 ≤ k ≤ n
P ←$ n × n permutation matrices;

[A0 | A1] ← A · P with A0 ∈ Z
m×(n−k)
q ;

L ← basis for scaled-dual lattice of A0;
for i ← 0 to m − 1 do

yi ← a short vector in the row span of L;
e′

i ← 〈yi, c〉;
end
if e′

i follow discrete Gaussian distribution then
return �;

end

foreach s′ in the set of
∑�

i=0

(
k
i

) · 2i candidate solutions do
for i ← 0 to m − 1 do

e′′
i = e′

i + 〈yi · A1, s
′〉;

end
if e′′

i follow discrete Gaussian distribution then
return �;

end

end
return ⊥;

Algorithm 2. Silke2: Sparse secrets in BKW-style SIS strategy for solving LWE.

Asymptotic Behaviour. We arrive at the following simple lemma:

Lemma 4. Let 0 ≤ h < n and d > 1 be constants, ph,d be some constant
depending on h and d, cn,α,q be the cost of solving LWE with parameters n, α, q

with probability ≥ 1 − 2−p2
h,d Then, solving LWE in dimension n with s ←$ B±

h

costs O(cn−n/d,α,q) operations.

Proof. Observe that ph,d = limn→∞
(

n−h
n/d

)

/
(

n
n/d

)

is a constant for any constant
0 ≤ h < n and d > 1. Hence, solving O(1/ph,d) = O(1) instances in dimension
n − n/d solves the instance in dimension n. ��
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Remark 4. Picking d = 2 we get limn→∞
(

n−h
n/2

)

/
(

n
n/2

)

= 2−h and an overall costs
of O(2h · cn/2,α,q). This improves on exhaustive search, which costs O(2h · (

n
h

)

),
when cn/2,α,q ∈ o

((

n
h

))

.

6 Combined

Combining the strategies described in this work, we arrive at Algorithm 3
(Silke). It takes a flag sparse which enables the sparse strategy of Algorithm 2.
In this case, we enforce that distinguishing LWE from uniform succeeds with
probability 1− 2−κ when we guessed s′ correctly. Clearly, this parameter can be
improved, i.e. this probability reduced, but amplifying the success probability is
relatively cheap, so we forego this improvement.

We give an implementation of Algorithm 3 for sparse = false in Appendix B.
For brevity, we skip the sparse = true case. We also tested our implementation
on several parameter sets:7

1. Considering an LWE instance with n = 100 and q ≈ 223, α = 8/q and h = 20,
we first BKZ-50 reduced the basis L for c = 16. This produced a short vector
w such that | 〈w, c〉 | ≈ 215.3. Then, running LLL 256 times, we produced
short vectors such that E[| 〈wi, c〉 |] = 215.7 and standard deviation 216.6.

2. Considering an LWE instance with n = 140 and q ≈ 240, α = 8/q and
h = 32, we first BKZ-70 reduced the basis L for c = 1. This took 64 hours and
produced a short vector w such that | 〈w, c〉 | ≈ 223.7, with E[| 〈w, c〉 |] ≈ 225.5

conditioned on |w|. Then, running LLL 140 times (each run taking about 50 s
on average), we produced short vectors such that E[| 〈wi, c〉 |] = 226.0 and
standard deviation 226.4 for 〈wi, c〉.

3. Considering the same LWE instance with n = 140 and q ≈ 240, α = 8/q and
h = 32, we first BKZ-70 reduced the basis L for c = 16. This took 65 hours
and produced a short vector w such that | 〈w, c〉 | ≈ 224.7 after scaling by c,
cf. E[| 〈w, c〉 |] ≈ 224.8. Then, running LLL 140 times (each run taking about
50 s on average), we produced short vectors such that E[| 〈wi, c〉 |] = 225.5 and
standard deviation 225.9 for 〈wi, c〉.

4. Considering again the same LWE instance with n = 140 and q ≈ 240, α = 8/q
and h = 32, we first BKZ-70 reduced the basis L for c = 1. This took 30 hours
and produced a short vector w such that | 〈w, c〉 | ≈ 225.2, cf. E[| 〈w, c〉 |] ≈
225.6. Then, running LLL 1024 times (each run taking about 50 s on average),
we produced 1016 short vectors such that E[| 〈wi, c〉 |] = 225.8 and standard
deviation 226.1 for 〈wi, c〉.

7 All experiments on “strombenzin” with Intel(R) Xeon(R) CPU E5-2667 v2 @
3.30 GHz.
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Data: candidate LWE samples A, c ∈ Z
m×n
q × Z

m
q

Data: BKZ block sizes β, β′ ≥ 2
Data: target success probability ε
Data: sparse flag toggling sparse strategy
Data: scale factor c ≥ 1
Data: dimension parameter 0 ≤ k ≤ n, 0 when sparse is set
Data: density parameter 0 ≤ � ≤ k, 0 when sparse is set
// distinguishing advantage per sample from β, β′

εd ← exp(−π(E[‖yi‖] · α)2);
if sparse then

εt ← 1 − 1/2κ; // for security parameter κ

r ← max
(
�log(1 − ε)/ log(1 −∑�

j=0 pk,j)�, 1
)
;

else
εt, r ← ε, 1;

end
// required number of samples for majority vote

m ← �2 log(2 − 2 εt)/ log(1 − 4 ε2d)�;
repeat r times

P ←$ n × n permutation matrices;

[A0 | A1] ← A · P with A0 ∈ Z
m×(n−k)
q ;

L ← basis for {(y,x/c) ∈ Z
m × (1/c · Z)n : y · A0 ≡ x mod q};

L′ ← BKZ-β reduced basis for L;
for i ← 0 to m − 1 do

U ←$ a sparse unimodular matrix with small entries;
Li ← U · L′;
L′

i ← BKZ-β′ reduced basis for Li;
(wi,vi) ← shortest row vector in L′

i;
e′

i ← 〈wi, c〉;
end
if e′

i follow discrete Gaussian distribution then
return �;

end

foreach s′ in the set of
∑�

i=1

(
k
i

) · 2i candidate solutions do
for i ← 0 to m − 1 do

e′′
i = e′

i + 〈wi · A1, s
′〉;

end
if e′′

i follow discrete Gaussian distribution then
return �;

end

end

return ⊥;
Algorithm 3. Silke: (Sparse) BKW-style SIS Strategy for solving LWE



On Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices 121

5. Considering an LWE instance with n = 180 and q ≈ 240, α = 8/q and h = 48,
we first BKZ-70 reduced the basis L for c = 8. This took 198 hours8 and
produced a short vector w such that | 〈w, c〉 | ≈ 226.7, cf. E[| 〈w, c〉 |] ≈ 225.9.
Then, running LLL 180 times (each run taking about 500 s on average), we
produced short vectors such that E[| 〈wi, c〉 |] = 226.6 and standard deviation
226.9 for 〈wi, c〉.

All our experiments match our prediction bounding the growth of the norms
of our vectors by a factor of two. Note, however, that in the fourth experiment
1 in 128 vectors found with LLL was a duplicate of previously discovered vector,
indicating that re-randomisation is not perfect. While the effect of this loss on
the running time of the overall algorithm is small, it highlights that further
research is required on the interplay of re-randomisation and lattice reduction.

Applying Algorithm 3 to parameter choices from HElib and SEAL, we arrive
at the estimates in Table 1. These estimates were produced using the Sage [S+15]
code available at http://bitbucket.org/malb/lwe-estimator which optimises the
parameters c, , k, β to minimise the overall cost.

For the HElib parameters in Table 1 we chose the sparse strategy. Here,
amortising costs as in Sect. 3 did not lead to a significant improvement, which
is why we did not use it in these cases. All considered lattices have dimension
< 2n. Hence, one Ring-LWE sample is sufficient to mount these attacks. Note
that this is less than the dual attack as described in [GHS12a] would require
(two samples).

For the SEAL parameter choices in Table 1, dimension n = 1024 requires two
Ring-LWE samples, larger dimensions only require one sample. Here, amortising
costs as in Algorithm 1 does lead to a modest improvement and is hence enabled.

Finally, we note that reducing q to ≈ 234 resp. ≈ 2560 leads to an estimated
cost of 80 bits for n = 1024 resp. n = 16384 for s ←$ B−

64. For s ←$ B−,
q ≈ 240 resp. q ≈ 2660 leads to an estimated cost of 80 bits under the techniques
described here. In both cases, we assume σ ≈ 3.2.

Acknowledgements. We thank Kenny Paterson and Adeline Roux-Langlois for help-
ful comments on an earlier draft of this work. We thank Hao Chen for reporting an
error in an earlier version of this work.

8 We ran 49 BKZ tours until fplll’s auto abort triggered. After 16 tours the norm of
the then shortest vector was by a factor 1.266 larger than the norm of the shortest
vector found after 49 tours.

http://bitbucket.org/malb/lwe-estimator
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A Rerandomisation

Data: n × m matrix L
Data: density parameter d, default d = 3
Result: U · L where U is a sparse, unimodular matrix.
for i ← 0 to 4 · n − 1 do

a ←$ {0, n − 1};
b ←$ {0, n − 1} \ {a};
L(b),L(a) ← L(a),L(b) ;

end
for a ← 0 to n − 2 do

for i ← 0 to d − 1 do
b ←$ {a + 1, n − 1};
s ←$ {0, 1};
L(a) ← L(a) + (−1)s · L(b);

end
end
return L;
Algorithm 4. Rerandomisation strategy in the fplll library [FPL16].

B Implementation

# -*- coding: utf -8 -*-

from sage.all import shuffle , randint , ceil , next_prime , log , cputime , mean , variance ,

set_random_seed , sqrt

from copy import copy

from sage.all import GF , ZZ

from sage.all import random_matrix , random_vector , vector , matrix , identity_matrix

from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler \

as DiscreteGaussian

from estimator.estimator import preprocess_params , stddevf

def gen_fhe_instance (n, q, alpha=None , h=None , m=None , seed=None):

"""

Generate FHE -style LWE instance

:param n: dimension

:param q: modulus

:param alpha: noise rate (default: 8/q)

:param h: hamming weight of the secret (default: 2/3n)

:param m: number of samples (default: n)

"""

if seed is not None:

set_random_seed(seed)

q = next_prime(ceil(q)-1, proof=False)

if alpha is None:

alpha = ZZ(8)/q

n, alpha , q = preprocess_params(n, alpha , q)

stddev = stddevf(alpha*q)

if m is None:

m = n

K = GF(q, proof=False)

A = random_matrix(K, m, n)

if h is None:

s = random_vector(ZZ, n, x=-1, y=1)

else:

S = [-1, 1]

s = [S[randint (0, 1)] for i in range(h)]

s += [0 for _ in range(n-h)]

shuffle(s)
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s = vector(ZZ , s)

c = A*s

D = DiscreteGaussian (stddev)

for i in range(m):

c[i] += D()

return A, c

def dual_instance0(A):

"""

Generate dual attack basis.

:param A: LWE matrix A

"""

q = A.base_ring (). order()

B0 = A.left_kernel (). basis_matrix (). change_ring(ZZ)

m = B0.ncols ()

n = B0.nrows ()

r = m-n

B1 = matrix(ZZ, r, n). augment(q*identity_matrix(ZZ , r))

B = B0.stack(B1)

return B

def dual_instance1(A, scale =1):

"""

Generate dual attack basis for LWE normal form.

:param A: LWE matrix A

"""

q = A.base_ring (). order()

n = A.ncols ()

B = A.matrix_from_rows (range(0, n)). inverse (). change_ring(ZZ)

L = identity_matrix(ZZ, n). augment(B)

L = L.stack(matrix(ZZ, n, n). augment(q* identity_matrix(ZZ , n)))

for i in range(0, 2*n):

for j in range(n, 2*n):

L[i, j] = scale*L[i, j]

return L

def balanced_lift(e):

"""

Lift e mod q to integer such that result is between -q/2 and q/2

:param e: a value or vector mod q

"""

from sage.rings.finite_rings.integer_mod import is_IntegerMod

q = e.base_ring (). order()

if is_IntegerMod(e):

e = ZZ(e)

if e > q//2:

e -= q

return e

else:

return vector(balanced_lift(ee) for ee in e)

def apply_short1(y, A, c, scale =1):

"""

Compute ‘y*A‘, ‘y*c‘where y is a vector in the integer row span of

‘‘dual_instance(A)‘‘

:param y: (short) vector in scaled dual lattice

:param A: LWE matrix

:param c: LWE vector

"""

m = A.nrows ()

y = vector(ZZ , 1/ZZ(scale) * y[-m:])

a = balanced_lift(y*A)

e = balanced_lift(y*c)

return a, e

def log_mean(X):

return log(mean([abs(x) for x in X]), 2)

def log_var(X):

return log(variance(X). sqrt(), 2)
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def silke(A, c, beta , h, m=None , scale=1, float_type="double"):

"""

:param A: LWE matrix

:param c: LWE vector

:param beta: BKW block size

:param m: number of samples to consider

:param scale: scale rhs of lattice by this factor

"""

from fpylll import BKZ , IntegerMatrix , LLL , GSO

from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

if m is None:

m = A.nrows()

L = dual_instance1(A, scale=scale)

L = IntegerMatrix.from_matrix(L)

L = LLL.reduction(L, flags=LLL.VERBOSE)

M = GSO.Mat(L, float_type=float_type)

bkz = BKZ2(M)

t = 0.0

param = BKZ.Param(block_size=beta ,

strategies=BKZ.DEFAULT_STRATEGY ,

auto_abort=True ,

max_loops =16,

flags=BKZ.VERBOSE|BKZ.AUTO_ABORT|BKZ.MAX_LOOPS)

bkz(param)

t += bkz.stats.total_time

H = copy(L)

import pickle

pickle.dump(L, open("L-%d-%d.sobj"%(L.nrows , beta), "wb"))

E = []

Y = set()

V = set()

y_i = vector(ZZ , tuple(L[0]))

Y.add(tuple(y_i))

E.append(apply_short1(y_i , A, c, scale=scale )[1])

v = L[0]. norm()

v_ = v/sqrt(L.ncols)

v_r = 3.2* sqrt(L.ncols - A.ncols ())*v_/scale

v_l = sqrt(h)*v_

fmt = u"{\"t\": %5.1fs , \"log(sigma )\": %5.1f, \"log(|y|)\": %5.1f, \"log(E[sigma ]):\"%5.1f}"

print

print fmt%(t,

log(abs(E[-1]), 2),

log(L[0]. norm(), 2),

log(sqrt(v_r**2 + v_l**2), 2))

print

for i in range(m):

t = cputime ()

M = GSO.Mat(L, float_type=float_type)

bkz = BKZ2(M)

t = cputime ()

bkz.randomize_block (0, L.nrows , stats=None , density =3)

LLL.reduction(L)

y_i = vector(ZZ , tuple(L[0]))

l_n = L[0]. norm()

if L[0]. norm() > H[0]. norm ():

L = copy(H)

t = cputime(t)

Y.add(tuple(y_i))

V.add(y_i.norm ())

E.append(apply_short1(y_i , A, c, scale=scale )[1])

if len(V) >= 2:

fmt = u"{\"i\": %4d, \"t\": %5.1fs , \"log(|e_i |)\": %5.1f, \"log(|y_i |)\": %5.1f,"

fmt += u"\"log(sigma )\": (%5.1f,%5.1f), \"log(|y|)\": (%5.1f,%5.1f), |Y|: %5d}"

print fmt%(i+2, t, log(abs(E[-1]), 2), log(l_n , 2), log_mean(E), log_var(E),

log_mean(V), log_var(V), len(Y))

return E
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C Alternative Cost Models

See Table 3.

Table 3. Costs of dual attacks on HElib and SEAL in the [LP11] cost model resp.
assuming SVP in dimension β costs 20.64β−28 operations as in [LN14] plugged into the
estimator from [APS15]; cf. Table 1.

[LP11]

n 1024 2048 4096 8192 16384

SEAL 80-bit

q 47.5 95.4 192.0 392.1 799.6

dual 107.9 97.4 88.0 82.0 78.8

small 80.5 81.1 78.2 76.4 75.9

HElib 80-bit

q 47.0 87.0 167.0 326.0 638.0

dual 111.5 112.4 111.5 111.2 111.2

sparse 58.1 62.6 65.4 69.2 71.5

HElib 128-bit

q 38.0 70.0 134.0 261.0 511.0

dual 162.0 162.1 160.1 159.1 159.5

sparse 76.3 81.9 85.8 86.2 90.3

[LN14,APS15], 8 − 16 BKZ tours

n 1024 2048 4096 8192 16384

SEAL 80-bit

q 47.5 95.4 192.0 392.1 799.6

dual 101.2 91.7 83.1 78.3 76.1

small 74.5 76.0 74.1 73.5 73.2

HElib 80-bit

q 47.0 87.0 167.0 326.0 638.0

dual 105.1 107.1 106.8 107.7 108.8

sparse 54.1 59.1 62.8 65.8 68.9

HElib 128-bit

q 38.0 70.0 134.0 261.0 511.0

dual 158.4 159.8 158.6 158.3 160.0

sparse 72.0 77.4 81.4 84.3 87.1
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[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX
Security Symposium, USENIX Security, vol. 16, Austin, TX, USA, 10–12
August 2016, pp. 327–343. USENIX Association (2016)

[AFFP14] Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus
switching for the bkw algorithm on LWE. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 429–445. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54631-0 25

[AFG14] Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving
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Abstract. Since May (Crypto’02) revealed the vulnerability of the small
CRT-exponent RSA using Coppersmith’s lattice-based method, several
papers have studied the problem and two major improvements have
been made. Bleichenbacher and May (PKC’06) proposed an attack for
small dq when the prime factor p is significantly smaller than the other
prime factor q; the attack works for p < N0.468. Jochemsz and May
(Crypto’07) proposed an attack for small dp and dq where the prime
factors p and q are balanced; the attack works for dp, dq < N0.073. Even
after a decade has passed since their proposals, the above two attacks
are still considered to be the state-of-the-art, and no improvements have
been made thus far. A novel technique seems to be required for fur-
ther improvements since the attacks have been studied with all the
applicable techniques for Coppersmith’s methods proposed by Durfee-
Nguyen (Asiacrypt’00), Jochemsz-May (Asiacrypt’06), and Herrmann-
May (Asiacrypt’09, PKC’10). In this paper, we propose two improved
attacks on the small CRT-exponent RSA: a small dq attack for p < N0.5

(an improvement of Bleichenbacher-May’s) and a small dp and dq attack
for dp, dq < N0.091 (an improvement of Jochemsz-May’s). We use
Coppersmith’s lattice-based method to solve modular equations and
obtain the improvements from a novel lattice construction by exploiting
useful algebraic structures of the CRT-RSA key generation. We explicitly
show proofs of our attacks and verify the validities by computer experi-
ments. In addition to the two main attacks, we propose small dq attacks
on several variants of RSA.

Keywords: CRT-RSA · Cryptanalysis · Coppersmith’s method ·
Lattices · LLL algorithm

1 Introduction

1.1 Background

Let N = pq be a public RSA modulus whose prime factors p and q are usu-
ally the same bit-size. A public exponent e and a secret exponent d satisfy
c© International Association for Cryptologic Research 2017
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ed = 1 mod (p − 1)(q − 1). For encryption/verifying (resp. decryption/signing),
the heavy modular exponentiation of e (resp. d) has to be computed. To achieve
faster computation, a simple solution is to use a small public or secret exponent.
However, Wiener [49] showed that a public RSA modulus is factorized in polyno-
mial time when the secret exponent is too small such that d < N0.25. Boneh and
Durfee [4] revisited the problem with Coppersmith’s lattice-based method [7,17]
and improved the bound to d < N0.284. Furthermore, in the same work, the
bound was improved to d < N0.292 by exploiting sublattice structures from the
previous one although the proof is involved.

To simultaneously thwart the small secret exponent attack and achieve faster
decryption/signing, the Chinese Remainder Theorem (CRT) is often used as
described by Quisquater and Couvreur [34]. Instead of the original secret expo-
nent d, there are CRT-exponents dp and dq that satisfy

edp = 1 mod (p − 1) and edq = 1 mod (q − 1).

Then a natural question to ask is whether there exist analogous attacks of
the Boneh-Durfee [4] to the small CRT-exponents. The first answer was given by
May (Crypto’02) [28]. May analyzed the unbalanced RSA whose prime factor p
is significantly smaller than the other prime factor q, and proposed an attack for
a small dq with an arbitrary large dp. The paper contains two attacks where the
former attack works for p < N0.382. The latter attack works only for smaller p,
however, is better than the former attack for p < N0.23 in the sense that a larger
dq can be recovered. Since May’s attack works only in the unbalanced setting,
it is an interesting open question if the attacks can be improved to cover the
balanced RSA.

Subsequently, several improved attacks on the small CRT-exponent RSA have
been proposed. Bleichenbacher and May (PKC’06) [2] revisited May’s work [28]
in the same attack scenario and proposed an improved attack. The attack works
for a larger p such that p < N0.468, and recovers a larger dq than May’s attack
for any size of p. However, the balanced prime factors still could not be captured.
To capture the balanced RSA, Bleichenbacher and May analyzed other attack
scenarios where both dp and dq are small in the same work. They proposed an
attack which works for e < N . Although the same situation was already studied
by Galbraith et al. [13], Sun and Wu [39], their attacks only work for a smaller e.
Jochemsz and May (Crypto’07) [21] proposed the first attack that works for a
full size e when dp, dq < N0.073.

In the past decade, no improved attacks of Bleichenbacher-May [2] and
Jochemsz-May [21] have been proposed. Hence, following these attacks seems
to be the best way to study the security of the CRT-RSA. Indeed, until recently,
several papers followed the attacks and reported the vulnerabilities of the CRT-
RSA, e.g., an attack on Takagi’s RSA [38], an attack on the RSA with multiple
exponent pairs [33], and partial key exposure attacks [3,26,37,44,46].
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1.2 Technical Hardness

Coppersmith introduced two lattice-based methods; to solve a modular equa-
tion [7] and an integer equation [6]. May’s attack and Bleichenbacher-May’s
attack used the former method whereas Jochemsz-May’s attack used the latter
method. Both methods first construct a lattice and then solve equations with a
small root in polynomial time. In this research area, constructing better attacks
is equivalent to designing better lattices that reflect the more useful algebraic
structure of the equation. For the purpose, several useful strategies and tech-
niques for lattice constructions have been introduced thus far. Currently best
known small CRT-exponent attacks [2,21,28] are based on the state-of-the-art
lattice constructions; the Durfee-Nguyen technique (Asiacrypt’00) [11] and the
Jochemsz-May strategy (Asiacrypt’06) [20]. Since the Durfee-Nguyen technique
is useful to handle the relation N = pq and the Jochemsz-May construction yields
good lattices for arbitrary polynomials, these approaches [2,28] seem appropriate
to study the attack. Moreover, to the best of our knowledge, there remained no
useful strategies to analyze the attack scenarios at that time. After the proposals
of [2,21,28], a new technique called unravelled linearization was introduced by
Herrmann and May (Asiacrypt’09) [15]. The technique has been used to study
various attack scenarios on RSA, e.g., [1,14,16,18,22,23,41–43,45,47,48], and
drastically developed the research area. For example, Herrmann and May [16]
showed an elementary proof of Boneh-Durfee’s attack [4] to exploit the sublattice
structures. However, unfortunately, unravelled linearization could not improve
small CRT-exponent attacks. Although Herrmann and May (PKC’10) [16] tried
to exploit sublattice structures, they could not obtain better asymptotic bounds.
Therefore, to obtain better bounds, a novel technique seems to be developed.

1.3 Our Results

In this paper, we develop a novel lattice construction technique for Coppersmith’s
modular method where the technique enables us to exploit more useful algebraic
structures of the CRT-RSA key generation. A basic application of the technique
is an improved small dq attack for unbalanced prime factors (Sect. 3). As opposed
to the previous results by May [28] and Bleichenbacher-May [2], our attack is
the first result to reach a meaningful bound, i.e., p < N0.5. Hence, we solve one
of the major open problems for the security of the small CRT-exponent RSA.
Moreover, our attack can recover a larger dq than [2,28] for any size of p. In
addition, our attack requires less lattice dimensions than Bleichenbacher-May’s
attack [2] since our technique exploits sublattice structures from [2]’s lattice
where the approach is similar to Boneh-Durfee [4]. Indeed, our experiments show
that Bleichenbacher-May’s attack works better than their theoretical analyses.

We claim that our technique is not limited to the small dq attack. The tech-
nique is also applicable to a small dp and dq attack (Sect. 4) that improves
Jochemsz-May’s attack [21]. As we mentioned, small dq attacks [2,28] and
small dp and dq attacks [21] were studied with different approaches in previ-
ous works; the former attack used Coppersmith’s modular method whereas the



Small CRT-Exponent RSA Revisited 133

latter attack used Coppersmith’s integer method. However, our powerful tech-
nique enables us to improve these attacks in the same manner. Our attack1

works for dp, dq < N0.091 with a full size e where the exponent of N is about
25% larger than Jochemsz-May’s attack.

Recently, numerous papers [12,19,25,27,32,33,35,36,38,41,45,47] have been
studying the security of RSA variants. We further show that we can extend our
small dq attack to the RSA variants (Sect. 5), i.e., the Multi-Prime RSA, Tak-
agi’s RSA, and the RSA with multiple exponent pairs. Our attacks significantly
improve previous attacks on these variants [33,38].

1.4 Key Technique

We show an overview of our technique. The CRT-RSA key generation for dq is
written as

edq = 1 + k(q − 1) (1)

with some integer k. By multiplying the equation by p, we obtain

edqp = p + k(N − p) = N + (k − 1)(N − p). (2)

Recall in May’s and Bleichenbacher-May’s attack scenario [2,28], the prime p
is significantly smaller than the other prime q. They solved the latter Eq. (2)
modulo e to recover unknown (k−1, p). Since the prime p is significantly smaller
than the other prime q, to construct better attacks, solving the Eq. (2) is more
promising approach than solving the Eq. (1) to recover (k, q). Hence, only the
Eq. (2) was used in previous attacks. However, it means that the constructions
of previous attacks significantly rely on the fact that p is much smaller than q.
As a result, these attacks do not work when p is close to N0.5.

What we focus on is a fact that the Eqs. (1) and (2) are essentially the
same; there are two representations for the same CRT-RSA key generation. As
opposed to previous works, our improved lattice constructions utilize the alge-
braic structure of both Eqs. (1) and (2) simultaneously not only the Eq. (2). The
two representations are compatible in the sense that the combination enables us
to exploit more useful algebraic structures. More specifically, we use the Eqs. (1)
and (2) where the proportion can be adaptively determined by the sizes of p and
q. Then, to solve the modulo e equation as previous works, our framework always
yields the better lattices than previous approaches. Our attacks are better than
Bleichenbacher-May’s attack for any size of p.

At a glance, our lattice construction technique is specialized to the improve-
ment of Bleichenbacher-May’s attack. As we pointed out, May’s attack and
Bleichenbacher-May’s attack used Coppersmith’s method to solve a modular
equation [7,17] whereas Jochemsz-May’s attack used the method to solve an
integer equation [6,10]. The modular equation for the former attack and the inte-
ger equation for the latter attack have completely different algebraic structures.
1 In the full version, we further improve the bound to dp, dq < N0.122.
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However, surprisingly, our powerful technique enables us to construct better lat-
tices and improves Jochemsz-May’s attack, too. It suggests that our proposed
technique is quite useful to study the security of CRT-RSA over a wide range.

2 Preliminaries

Consider a modular equation h(x1, . . . , xr) = 0 (mod W ), where all the absolute
values of the target solutions (x̃1, . . . , x̃r) are bounded above by X1, . . . , Xr.
When

∏r
j=1 Xj is reasonably smaller than W , Coppersmith’s method can find

all the solutions in polynomial time. In this section, we recall a simplified refor-
mulation of the method due to Howgrave-Graham [17] and its basis tools, i.e.,
Howgrave-Graham’s lemma and the LLL algorithm.

Let ‖h(x1, . . . , xr)‖ denote a norm of a polynomial which represents the
Euclidean norm of the coefficient vector. The following Howgrave-Graham’s
lemma reduces the modular equations into integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [17]). Let h̃(x1, . . . , xr) ∈
Z[x1, . . . , xr] be a polynomial with at most n monomials. Let m,W,X1, . . . , Xr

be positive integers. Suppose that:

1. h̃(x̃1, . . . , x̃r) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃r| < Xr,
2. ‖h̃(x1X1, . . . , xrXr)‖ < Wm/

√
n.

Then h̃(x̃1, . . . , x̃r) = 0 holds over the integers.

To solve r-variate modular equations h(x1, . . . , xr) = 0 (mod W ), it suffices to
find r new polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr) whose root is the same
as the original one, i.e., (x1, . . . , xr) = (x̃1, . . . , x̃r), and whose norms are small
enough to satisfy Howgrave-Graham’s lemma.

To find such small norm polynomials from the original modular polynomial
h(x1, . . . , xr), lattices and the LLL algorithm are used. An n-dimensional lattice
is an additive discrete subgroup of Zn. In other words, a lattice represents all
integer linear combinations of its basis vectors. All vectors are row representa-
tion throughout the paper. Let b1, . . . , bm be n-dimensional linearly indepen-
dent vectors in Z

n. A lattice spanned by these vectors as a basis is defined as
L(b1, . . . , bm) := {∑m

j=1 cjbj : cj ∈ Z for all j = 1, 2, . . . , n}. We also use a
matrix representation for the basis. We define a basis matrix B as m×n matrix
which has the basis vectors b1, . . . , bm in each row. A lattice spanned by a basis
matrix B is denoted as L(B). We call a lattice full-rank if and only if n = m.
A determinant of a lattice det(L(B)) is defined as the m-dimensional volume of
the fundamental parallelepiped; P(B) := {cB : c ∈ R

m, 0 ≤ cj < 1, for all j =
1, 2, . . . ,m}. The determinant can be computed as det(L(B)) =

√

det(BBT ) in
general and that of a full-rank lattice can be computed as det(L(B)) = |det(B)|.
In this paper, we only use a full-rank lattice. More specifically, we only use a
lattice with a triangular basis matrix. Hence, the determinant of the lattice can
be computed easily as the absolute value of a product of all diagonals.
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Lattice has been used in various ways in cryptographic research. See [8,9,29–
31] for more information. In cryptanalysis, finding non-zero short lattice vectors
is usually an essential operation. In this paper, we recall the LLL algorithm [24]
that outputs short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [24,29]). Given linearly independent vectors
b1, . . . , bn in Z

n, the LLL algorithm finds new basis vectors b̃1, . . . , b̃n for a
lattice L(b1, . . . , bn) that satisfy

‖b̃j‖ ≤ 2n(n−1)/4(n−j+1) det(L(B))1/(n−j+1) for 1 ≤ j ≤ n,

in time polynomial in n and the maximum input length of b1, . . . , bn.

Again, we explain how to solve the modular equation h(x1, . . . , xr) = 0
(mod W ). At first, we construct n polynomials h1(x1, . . . , xr), . . . , hn(x1, . . . , xr)
that have the root (x̃1, . . . , x̃r) modulo Wm with some positive integer m. Then
we construct n basis vectors b1, . . . , bn and equivalently its matrix representa-
tion B. Each elements of a vector bj for j = 1, 2, . . . , n consist of coefficients of
hj(x1X1, . . . , xrXr). Since all vectors in a lattice L(B) are integer linear combi-
nations of the basis vectors, all polynomials whose coefficients are derived from
lattice vectors have the root (x̃1, . . . , x̃r) modulo Wm. We apply the LLL algo-
rithm to a lattice basis B and obtain r LLL-reduced vectors b̃1, . . . , b̃r. Then
new polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr) which are derived from the
above r LLL-reduced vectors satisfy Howgrave-Graham’s lemma provided that
det(L(B))1/n < Wm. Here, we omit small terms. When we obtain r polynomials
h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr), the root (x̃1, . . . , x̃r) can easily be recovered
by computing resultant or Gröbner bases for the polynomials.

We should note that the method needs heuristic argument for multivariate
problems. The polynomials h̃1(x1, . . . , xr), . . . , h̃n(x1, . . . , xr) derived from LLL
output vectors have no assurance of algebraic independency. In this paper, we
assume that the polynomials are algebraic independent as previous works [2,21,
28] since there exist few negative reports. Moreover, we justify the validity of
our attacks by computer experiments.

3 Small dq Attack

In this section, we propose an attack for small dq when p is significantly smaller
than q. The attack improves Bleichnbacher-May’s attack [2].

3.1 An Overview of the Lattice Construction

At first, we explain our strategy for lattice constructions. Since our lattice con-
struction is highly technical, we show toy examples that compare previous lat-
tices [2,28] and ours. We hope that these examples help readers to understand
our technique easily.
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Recall the CRT-RSA key generation;

edq = 1 + k(q − 1)

with some integer k. If we can solve the following modular equation:

fq(xq, yq) = 1 + xq(yq − 1) = 0 (mod e)

whose root is (xq, yq) = (k, q), a public modulus N can be factorized. However,
since the prime factor q is significantly larger than the other prime factor p, i.e.,
p = Nβ and q = N1−β for β ≤ 1/2, May [28] multiplied the above equation by
p and obtain the following equation:

edqp = p + k(N − p) = N + (k − 1)(N − p).

Hence, if the following modular equation can be solved, the public modulus N
can be factorized:

fp(xp, yp) = N + xp(N − yp) = 0 (mod e)

whose root is (xp, yp) = (k − 1, p). Let e = Nα and dq = N δ. Then the absolute
values of the root (xp, xq, yp, yq) is bounded above by Xp := Nα+β+δ−1,Xq :=
Nα+β+δ−1, Yp := Nβ , Yq := N1−β respectively within constant factors. Later we
also use a notation X := Xp = Xq. In this setting, the other CRT-exponent dp

can be arbitrary large such that dp ≈ Nβ .

May’s Matrix. May [28] solved the modular equation fp(xp, yp) = 0 under
the standard lattice construction which can be captured by Jochemsz-May’s
strategy [21]. For example, although we omit the detail, he constructed the basis
matrix as the following:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e
0 eXp

N NXp −XpYp

0 0 0 eYp

0 0 NXpYp NYp −XpY
2
p

0 0 0 0 0 eY 2
p

0 0 0 0 NXpY
2
p NY 2

p −XpY
3
p

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where the rows consist of coefficients of seven polynomials: e, exp, fp(xp, yp),
eyp, ypfp(xp, yp), ey2

p, y2
pfp(xp, yp). All the polynomials share the common root as

fp(xp, yp) modulo e. In addition to the base polynomials, i.e., e, exp, fp(xp, yp),
he added extra yp-shifts, i.e., eyp, ypfp(xp, yp), ey2

p, y2
pfp(xp, yp). Applying the

LLL reduction to the above matrix, polynomials derived from the LLL output
vectors satisfy Howgrave-Graham’s lemma when

X4
pY 9

p e4 < e7 ⇔ 4(α + β + δ − 1) + 9β < 3α

⇔ δ < 1 − α + 13β

4
.
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The core idea of the approach is solving the Eq. (2) not (1) since p is significantly
smaller than q. Hence, if p becomes close to q such that β ≥ 0.382, May’s attack
does not work.

Bleichenbacher-May Matrix. To improve May’s attack [28] based on the
above matrix, Bleichenbacher and May [2] made use of the relation ypyq = N
as Durfee and Nguyen [11]. Although the exact solution of yp is unknown, the
relation enables us to reduce powers of Yp in the diagonals by multiplying powers
of yq to all the polynomials. By optimizing the powers of yq, Bleichenbacher-
May’s matrix always offers better results than May’s matrix.

To explain our improvement later, we modify Bleichenbacher-May’s matrix
where the modified matrix offer the same bound as the original Bleichenbacher-
May matrix. The modification helps readers to understand the spirit of our
improvement. Previous May’s matrix used only extra yp-shifts, however, modified
Bleichenbacher-May’s matrix used both yp-shifts and yq-shifts. Hence, we omit
ey2

p, y2
pfp(xp, yp) from the above matrix and add eyq, N

−1 · yqfp(xp, yp) in turn
where the new polynomials share the common root as fp(xp, yp) modulo e:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e
0 eXp

N NXp −XpYp

0 0 0 eYp

0 0 NXpYp NYp −XpY
2
p

0 0 0 0 0 eYq

0 −Xp 0 0 0 Yq XpYq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Although the precise definition of the polynomial selection is slightly different
from the one in the original paper, they are essentially the same in the sense
that the above matrix yields the same bound as the original Bleichenbacher-May
attack. Applying the LLL reduction to the above matrix, polynomials derived
from the LLL output vectors satisfy Howgrave-Graham’s lemma when

X4
pY 4

p Y 2
q e4 < e7 ⇔ 4(α + β + δ − 1) + 4β + 2(1 − β) < 3α

⇔ δ <
1
2

− α + 6β

4
.

Compared with May’s matrix, the matrix reduces the powers of Yp by multiplying
the powers of Yq. It means that Bleichenbacher-May’s approach tries to control
the appearance of Yp and Yq. Then the attack works for larger p than May’s
attack up to p < N0.468. By optimizing the selection of yp-shifts and yq-shifts,
Bleichenbacher-May’s attack is always better than May’s attack.

Our Matrix. To improve the Bleichenbacher-May attack, what we focus on is
the representation of the polynomial. More concretely, previous works used the
only one representation, i.e., fp(xp, yp), however, there is the other representa-
tion, i.e., fq(xq, yq), for the same polynomial. Indeed, a useful algebraic property
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can be exploited from the polynomial fq(xq, yq) by making use of the fact that
xq = xp + 1. For the above Bleichenbacher-May matrix to be triangular, the
polynomial eyq is necessary. Since eYq is larger than the modulus e, the poly-
nomial does not contribute to maximize the solvable root bound as explained
in [30,40]. However, we make use of fq(xq, yq) and show that the matrix becomes
triangular without eyq as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e
0 eXp

N NXp −XpYp

0 0 0 eYp

0 0 NXpYp NYp −XpY
2
p

0 −Xp 0 0 0 XqYq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Although the above Bleichenbacher-May matrix used N−1 · yqfp(xp, yp) in the
bottom row, we use fq(xq, yq) in turn. Notice that fq(xq, yq) = N−1 ·yqfp(xp, yp)
and we use the same polynomial as the Bleichenbacher-May, however, the alge-
braic structure of fq(xq, yq), i.e., the relation xq = xp+1, enables the matrix to be
triangular without eyq. The operation means that Bleichenbacher-May’s matrix
contains better sublattices. The representation fq(xq, yq), which was not used by
Bleichenbacher and May, enables us to exploit the sublattices. Indeed, by con-
struction, our matrix always outperforms the above Bleichenbacher-May matrix
with less lattice dimensions. Applying the LLL reduction to our above matrix,
polynomials derived from the LLL output vectors satisfy Howgrave-Graham’s
lemma when

X3
pXqY

4
p Yqe

3 < e6 ⇔ 4(α + β + δ − 1) + 4β + (1 − β) < 3α

⇔ δ <
3
4

− α + 7β

4
.

Since β ≤ 1/2, the bound is always better than the above Bleichenbacher-May
example.

May’s Modulo q Attack. We should notice that our lattice construction tech-
nique does not always offer the best attack. More concretely, as we discussed
above, our lattice offers better results than all the existing lattices to solve
fp(xp, yp) = 0 and fq(xq, yq) = 0. However, there is the other formulations
to attack CRT-RSA, i.e., May’s modulo q approach [28]. From the CRT-RSA
key generation edq = 1 + k(q − 1), May solved a modular equation;

x + ey = 0 (mod q)

whose root is (k − 1, dq). Since the modulo e and the modulo q approach is
different, we should check whether which method is the better. Although our
modulo e attacks are the better in most cases, we will show in Sect. 5.2 that the
modulo p approach outperforms modulo e approach for small dp attack with a
modulus N = prq.
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3.2 Attack for Large e

Although the above discussion handled only toy examples, our approach
improves an asymptotic condition of the small CRT-exponent attack. In this
section, we propose an improved attack that works when α > β/(1 − β). The
attack is the first result to cover the desired bound, i.e., β < 1/2 with a full
size e.

Theorem 1. Let N = pq be an RSA modulus where p = Nβ and q = N1−β for
β ≤ 1/2. Let e = Nα and dq < N δ be a public/CRT exponent respectively such
that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ <
(1 − β)(3 + 2β) − 2

√

β(1 − β)(αβ + 3α + β)
3 + β

and α >
β

1 − β
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

As opposed to previous results, when α = 1, the attack works to β < 1/2.
Figure 1 compares our result and the Bleichenbacher-May for α = 1. Our attack
covers larger δ than the Bleichenbacher-May attack for all β.

Proof of Theorem 1. To solve the modular equation fq(xq, yq) = 0 and equiva-
lently fp(xp, yp) = 0, we use the following shift-polynomials:

g[i,j](xp, yp) := xj
pf

i
p(xp, yp)em−i,

g′
[i,j](xp, yp) := yj

pf
i
p(xp, yp)em−i,

g′′
[i,j](xp, xq, yp, yq) := f i−j

p (xp, yp)f j
q (xq, yq)em−i,

with some positive integer m. For non-negative integers i and j, all the shift-
polynomials share the same root as fp(xp, yp) and fq(xq, yq) modulo em. May [28]

Fig. 1. Comparison between our attack (Theorem 1) and the Bleichenbacher-May for
α = 1.
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used the same shift-polynomials as g[i,j](xp, yp) and g′
[i,j](xp, yp). The (modified)

Bleichenbacher-May attack used an additional shift-polynomial which used only
fp(xp, yp). However, as we showed an example in the previous section, we use
the both representations fp(xp, yp) and fq(xq, yq) simultaneously. Then we can
construct triangular basis matrices that generalize the toy example as follows.

Lemma 2. Let all the polynomials be defined as above. Let τp and τq be con-
stants such that τp ≥ 0 and 0 ≤ τq ≤ 1. Define sets of indices

Ix := {i = 0, 1, . . . ,m; j = 0, 1, . . . ,m − i},

Iy,p := {i = 0, 1, . . . ,m; j = 1, 2, . . . , 	τpm
},

Iy,q := {i = 1, 2, . . . ,m; j = 1, 2, . . . , 	τqi
}.

Let B be a matrix whose rows consist of coefficients of g[i,j](xpXp, ypYp),
g′
[i,j](xpXp, ypYp), and g′′

[i,j](xpXp, xqXq, ypYp, yqYq) with indices in Ix, Iy,p, and
Iy,q, respectively. If the shift-polynomials are ordered as

g[i,j] ≺ g′
[i,j], g

′′
[i,j],

g[i,j] ≺ g[i′,j′], g
′
[i,j] ≺ g′

[i′,j′], g
′′
[i,j] ≺ g′′

[i′,j′] for i < i′,

g[i,j] ≺ g[i,j′], g
′
[i,j] ≺ g′

[i,j′], g
′′
[i,j] ≺ g′′

[i,j′] for j < j′,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes trian-
gular with diagonals

– Xi+j
p Y i

p em−i for g[i,j](xpXp, ypYp),
– Xi

pY
i+j
p em−i for g′

[i,j](xpXp, ypYp),
– Xi

qY
j
q em−i for g′′

[i,j](xpYp, xqXq, ypYp, yqYq).

Here, we do not prove the lemma. Later, we prove a more general form of the
statement, i.e., Lemma 3.

We compute the resulting condition of Theorem 1. The dimension n and the
determinant of the lattice det(B) = XsXY

sYp
p Y

sYq
q ese can be computed as:

n =
∑

(i,j)∈Ix

1 +
∑

(i,j)∈Iy,p

1 +
∑

(i,j)∈Iy,q

1 =
1 + 2τp + τq

2
m2 + o(m2),

sX =
∑

(i,j)∈Ix

(i + j) +
∑

(i,j)∈Iy,p

i +
∑

(i,j)∈Iy,q

i =
2 + 3τp + 2τq

6
m3 + o(m3),

sYp
=

∑

(i,j)∈Ix

i +
∑

(i,j)∈Iy,p

(i + j) =
1 + 3τp + 3τ2

p

6
m3 + o(m3),

sYq
=

∑

(i,j)∈Iy,q

j =
τ2
q

6
m3 + o(m3),

se =
∑

(i,j)∈Ix

(m − i) +
∑

(i,j)∈Iy,p

(m − i) +
∑

(i,j)∈Iy,q

(m − i)

=
2 + 3τp + τq

6
m3 + o(m3).
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Applying the LLL reduction, the polynomials obtained from the output vectors
satisfy Howgrave-Graham’s lemma if XsXY

sYp
p Y

sYq
q ese < enm, i.e.,

(α + β + δ − 1)
2 + 3τp + 2τq

6
+ β

1 + 3τp + 3τ2
p

6

+ (1 − β)
τ2
q

6
− α

1 + 3τp + 2τq

6
< 0

by omitting low order terms of m. To minimize the left hand side of the inequality,
we substitute the parameters τp = (1−2β−δ)/(2β) and τq = (1−β−δ)/(1−β),
then the condition becomes

δ <
(1 − β)(3 + 2β) − 2

√

β(1 − β)(αβ + 3α + β)
3 + β

as required. To satisfy the restriction τp ≥ 0, α > β/(1 − β) should hold. The
other parameter τq always satisfies 0 ≤ τq ≤ 1. �

3.3 Attack for Small e

The attack of Theorem 1 works only for α > β/(1 − β). The constraint comes
from the fact that the parameter τp used in the proof should be non-negative.
To capture the other case, i.e., α ≤ β/(1 − β), under the same algorithm con-
struction, we set the parameters τp = 0 and τq = (1 − β − δ)/(1 − β), then the
attack works for δ < 2(1 − β) − √

(1 + α)(1 − β).
However, by modifying the lattice construction, a better result can be

obtained as follows.

Theorem 2. Let N = pq be an RSA modulus where p < Nβ and q ≥ N1−β for
β ≤ 1/2. Let e = Nα and dq < N δ be a public/CRT exponent respectively such
that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ < 1 − β −
√

αβ(1 − β) for β(1 − β) ≤ α ≤ β

1 − β
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

As we claimed, the bound of Theorem 2 is better than δ < 2(1 − β) −
√

(1 + α)(1 − β) which can be obtained from the same algorithm construction
as Theorem 1. We show the proof of Theorem 2. The proof is more technical
than that of Theorem 1, however, the spirit is almost the same. In the subsequent
sections, lattices which are similar to that of Theorem 2 will be used.

Proof of Theorem 2. To solve the modular equation fq(xq, yq) = 0 and equiva-
lently fp(xp, yp) = 0, we use the following shift-polynomials:

g[i,j],λ(xp, xq, yp, yq) := xj
pf

�λi�
p (xp, yp)f�(1−λ)i�

q (xq, yq)em−i,

g′
[i,j],λ(xp, xq, yp, yq) := yj

qf
�λi�
p (xp, yp)f�(1−λ)i�

q (xq, yq)em−i,
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with some positive integer m and a parameter 0 < λ ≤ 1. For non-negative
integers i and j, all the shift-polynomials share the common root as fp(xp, yp)
and fq(xq, yq) modulo em. Here, notice that 	λi
 + �(1 − λ)i� = i for all i. The
shift-polynomials g′

[i,j](xp, yp) and g′′
[i,j](xp, yp) used in the proof of Theorem 1

is the special case of g[i,j],λ(xp, xq, yp, yq) and g′
[i,j],λ(xp, xq, yp, yq) for λ = 1. As

the attack of Theorem 1, we use both representations fp(xp, yp) and fq(xq, yq)
simultaneously for all shift-polynomials. Using these shift-polynomials, we can
construct triangular basis matrices as follows.

Lemma 3. Let all the polynomials be defined as above. Let τ be a constant such
that 1 − λ < τ ≤ 1. Let m be a positive integer. Define sets of indices as

Ix := {i = 0, 1, . . . ,m; j = 0, 1, . . . ,m − i},

Iyq
:= {i = 1, 2, . . . ,m; j = 1, 2, . . . , 	τi
 − �(1 − λ)i�}.

Let B be a matrix whose rows consist of coefficients of
g[i,j],λ(xpXp, xqXq, ypYp, yqYq) and g′

[i,j],λ(xpXp, xqXq, ypYp, yqYq) with indices
in Ix and Iy,q respectively. If the shift-polynomials are ordered as

g[i,j],λ ≺ g′
[i,j],λ,

g[i,j],λ ≺ g[i′,j′],λ, g′
[i,j],λ ≺ g′

[i′,j′],λ for i < i′,

g[i,j],λ ≺ g[i,j′],λ, g′
[i,j],λ ≺ g′

[i,j′],λ for j < j′,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes trian-
gular with diagonals

– Xi+j
p Y

�λi�
p em−i for g[i,j],λ(xpXp, xqXq, ypYp, yqYq) with i such that i = 0 and

	λi
 − 	λ(i − 1)
 = 1,
– Xi+j

q Y
�(1−λ)i�
q em−i for g[i,j],λ(xpXp, xqXq, ypYp, yqYq) with i such that i �= 0

and 	λi
 − 	λ(i − 1)
 = 0,
– Xi

qY
�(1−λ)i�+j
q em−i for g′

[i,j],λ(xpXp, xqXq, ypYp, yqYq).

A proof of the lemma is the most technical part of this paper. We prove it in
Sect. 3.4.

We compute the resulting condition of Theorem 2. The dimension n and the
determinant of the lattice det(B) = XsXY

sYp
p Y

sYq
q ese can be computed as:

n =
∑

(i,j)∈Ix

1 +
∑

(i,j)∈Iyq

1 =
λ + τ

2
m2 + o(m2),

sX =
∑

(i,j)∈Ix

(i + j) +
∑

(i,j)∈Iyq

i =
λ + τ

3
m3 + o(m3),

sYp
=

∑

(i,j)∈Ix

	λi
 =
λ2

6
m3 + o(m3),
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sYq
=

∑

(i,j)∈Ix

�(1 − λ)i� +
∑

(i,j)∈Iyq

(�(1 − λ)i� + j) =
τ2

6
m3 + o(m3),

se =
∑

(i,j)∈Ix

(m − i) +
∑

(i,j)∈Iyq

(m − i) =
1 + λ + τ

6
m3 + o(m3).

Applying the LLL reduction, the polynomials obtained from the output vectors
satisfy Howgrave-Graham’s lemma if XsXY

sYp
p Y

sYq
q ese < enm, i.e.,

(α + β + δ − 1)
λ + τ

3
+ β

λ2

6
+ (1 − β)

τ2

6
− α

−1 + 2λ + 2τ

6
< 0

by omitting low order terms of m. To minimize the left hand side of the inequality,
we set the parameters λ = (1 − β − δ)/β and τ = (1 − β − δ)/(1 − β), then the
condition becomes

δ < 1 − β −
√

αβ(1 − β)

as required. To satisfy the restrictions 0 < λ ≤ 1 and 1 − λ < τ ≤ 1, β(1 − β) ≤
α ≤ β/(1 − β) should hold. �

Fig. 2. Comparison between our attack (Theorem 3) and the attack of Lu et al.
(Theorem 4) [27].

As opposed to the attack of Theorem 1, that of Theorem 2 is applicable to
a balanced RSA, i.e., β = 1/2, for α ≤ 1. For a balanced RSA, we substitute
β = 1/2 and the attack becomes as follows.

Theorem 3. Let N = pq be an RSA modulus where the prime factors p and
q are the same bit-size. Let e = Nα and dq < N δ be a public/CRT exponent
respectively such that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ <
1 − √

α

2
for α ≥ 1

4
,
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then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

By construction, the attack always outperforms that under Bleichenbacher-
May’s lattice construction. We also compare our attack with that of Lu et al. [28]
(Theorem 9 of [27]) which follows May’s modulo q approach.

Theorem 4 ([27]). Let N = pq be an RSA modulus where the prime factors p
and q are the same bit-size. Let e = Nα and dq < N δ be a public/CRT exponent
respectively such that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ <
3 − 4α

8
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

Figure 2 compares our attack (Theorem 3) and that of Lu et al. (Theorem 4).
Our attack is better for all 1/4 < α < 1.

3.4 Proof of Lemma 3

In this section, we show a proof of Lemma 3 that is the most technical part of this
paper. Before the detailed proof, we explain the spirit of our triangular matrix.
The polynomials which we use contains four variables xp, xq, yp, yq. Furthermore,
there are two algebraic relations: xq = xp + 1 and ypyq = N . By using the latter
relation, i.e., ypyq = N , we transform all monomials as they do not have both
yp and yq simultaneously where the same operation was also done in previous
works [2,11]. Moreover, we use an additional trick. By using the former relation,
i.e., xq = xp + 1, we transform all monomials as they do not have both xp and
xq simultaneously. More concretely, the variable xp appears only in monomials
where powers of yp are non-negative whereas the variable xq appears only in
monomials where powers of yq are positive. The simple operation is the key
technique of this paper.

Then we show the proof of Lemma 3.

Proof of Theorem 3. Since all g[i,j],λ(xp, xq, yp, yq) for i = 0 have only one mono-
mial xj

pe
m, these polynomials generate triangular basis matrix with diagonals

Xj
pem. Then remaining proof is inductive; we show that the basis matrix is still

triangular with other polynomials.
At first, we assume that polynomials g[i′,j′],λ(xp, xq, yp, yq) such that

g[i′,j′],λ(xp, xq, yp, yq) ≺ g[i,j],λ(xp, xq, yp, yq) generate a triangular matrix as
stated in Lemma 3. Then, we show that a matrix is still triangular with a new
polynomial g[i,j],λ(xp, xq, yp, yq) whose diagonal is xi+j

p y
�λi�
p em−i. By definition,

g[i,j],λ(xp, xq, yp, yq) = xj
pf

�λi�
p (xp, yp)f�(1−λ)i�

q (xq, yq)em−i

= xj
p(N + Nxp − xpyp)�λi�(1 − xq + xqyq)�(1−λ)i�em−i.
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From the relation xq = xp + 1 and equivalently xp = xq − 1, the polynomial
becomes

= xj
p(Nxq − xpyp)�λi�(xp + xqyq)�(1−λ)i�em−i.

By expanding (Nxq − xpyp)�λi� and (xp + xqyq)�(1−λ)i�,

=xj
p

⎛

⎝

�λi�
∑

ip=0

(	λi

ip

)

(−xpyp)ip · (Nxq)�λi�−ip

⎞

⎠ ·
⎛

⎝

�(1−λ)i�
∑

iq=0

(�(1 − λ)i�
iq

)

(xqyq)iq · x�(1−λ)i�−iq
p

⎞

⎠ em−i

=
�λi�
∑

ip=0

�(1−λ)i�
∑

iq=0

(−1)ip

(	λi

ip

)(�(1 − λ)i�
iq

)

N�λi�−ip ·

x�(1−λ)i�+ip−iq+j
p x�λi�−ip+iq

q yiq
q yip

p em−i.

From the relation ypyq = N , the polynomial becomes

=
�(1−λ)i�

∑

iq=0

�λi�
∑

ip=iq

(−1)ip

(	λi

ip

)(�(1 − λ)i�
iq

)

N�λi�−ip+iq ·

x�(1−λ)i�+ip−iq+j
p x�λi�−ip+iq

q yip−iq
p em−i

+
�(1−λ)i�−1

∑

ip=0

�(1−λ)i�
∑

iq=ip+1

(−1)ip

(	λi

ip

)(�(1 − λ)i�
iq

)

N�λi�·

x�(1−λ)i�+ip−iq+j
p x�λi�−ip+iq

q yiq−ip
q em−i.

Notice that there are no monomials that have yp and yq simultaneously. The
exponents of yp in the first summation are non-negative whereas the exponents
of yq in the second summation are positive. Hence, as we discussed above, we
replace all xq in the first summation by xp + 1 and replace all xp in the second
summation by xq − 1. Then, the polynomial becomes

=
�(1−λ)i�

∑

iq=0

�λi�
∑

ip=iq

(−1)ip

(	λi

ip

)(�(1 − λ)i�
iq

)

N�λi�−ip+iq ·

x�(1−λ)i�+ip−iq+j
p (xp + 1)�λi�−ip+iqyip−iq

p em−i

+
�(1−λ)i�−1

∑

ip=0

�(1−λ)i�
∑

iq=ip+1

(−1)ip

(	λi

ip

)(�(1 − λ)i�
iq

)

N�λi�·

(xq − 1)�(1−λ)i�+ip−iq+jx�λi�−ip+iq
q yiq−ip

q em−i

=
�(1−λ)i�

∑

iq=0

�λi�
∑

ip=iq

�λi�−ip+iq
∑

i′=0

(−1)ip

(	λi

ip

)(�(1 − λ)i�
iq

)(	λi
 − ip + iq
i′

)

·
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N�λi�−ip+iqxi−i′+j
p yip−iq

p em−i

+
�(1−λ)i�−1

∑

ip=0

�(1−λ)i�
∑

iq=ip+1

�(1−λ)i�+ip−iq+j
∑

i′=0

(−1)ip+i′
(	λi


ip

)(�(1 − λ)i�
iq

)

·
(�(1 − λ)i� + ip − iq + j

i′

)

N�λi�xi−i′+j
q yiq−ip

q em−i.

The polynomial has monomials for variables

– x
ipx
p y

ipy
p for ipy = 0, 1, . . . , 	λi
; ipx = ipy + �(1 − λ)i� + j, . . . , i + j,

– x
iqx
q y

iqy
q for iqy = 1, 2, . . . , �(1 − λ)i�; iqx = iqy + 	λi
, . . . , i + j.

Then, we show that these variables except xi+j
p y

�λi�
p already appeared in the

diagonals of a basis matrix. The above variables appeared for diagonals of
g[i′,j′],λ(xpXp, xqXq, ypYp, yqYq) for

i′ = 0, 1, . . . , i − 1 such that 	λi′
 − 	λ(i′ − 1)
 = 1;
j′ = �(1 − λ)i� − �(1 − λ)i′� + j, . . . , i + j − i′, and
i′ = 1, 2, . . . , i − 1 such that 	λi′
 − 	λ(i′ − 1)
 = 0;
j′ = 	λi
 − 	λi′
, . . . , i + j − i′.

Since i′ < i, by our definition of the polynomial order,

g[i′,j′],λ(xpXp, xqXq, ypYp, yqYq) ≺ g[i,j],λ(xpXp, xqXq, ypYp, yqYq)

holds for all the above i′ and j′. All we have to show is that these polynomials
are selected in the lattice basis. For the purpose, we show that the indices

i′ = 0, 1, . . . , i − 1;
j′ = min{�(1 − λ)i� − �(1 − λ)i′� + j, 	λi
 − 	λi′
}, . . . , i + j − i′,

are contained in

i′ = 0, 1, . . . ,m; j′ = 0, 1, . . . ,m − i′.

Since 0 < λ ≤ 1, 0 ≤ i′ ≤ i, and j ≥ 0,

�(1 − λ)i� − �(1 − λ)i′� + j ≥ 0 and 	λi
 − 	λi′
 ≥ 0

hold. Since i + j ≤ m holds,

i + j − i′ ≤ m − i′

holds. Then the statement holds. In the same manner, analogous proof is
obtained for the other polynomials g′

[i,j],λ(xp, xq, yp, yq). We will show the
remaining proof in the full version. �
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To end this section, we briefly show how to deduce Lemma 2 from
Lemma 3. The collection of shift-polynomials g[i,j](xp, yp) and g′′

[i,j](xp, xq, yp, yq)
in Lemma 2 are essentially the same as g[i,j],λ(xp, xq, yp, yq) and g′

[i,j],λ

(xp, xq, yp, yq) in Lemma 3 for λ = 1. Hence, by setting the parameters (λ, τ)
in Lemma 3 as (1, τq), Lemma 3 show that g[i,j](xp, yp) and g′′

[i,j](xp, xq, yp, yq)
in Lemma 2 generate a triangular matrix. To complete the proof of Lemma 2,
we also use May’s result [28] that showed that polynomials g[i,j](xp, yp) and
g′
[i,j](xp, yp) generate a triangular matrix. As a result, g[i,j](xp, yp), g′

[i,j](xp, yp),
and g′′

[i,j](xp, xq, yp, yq) in Lemma 2 generates a triangular matrix.

Table 1. For 1000-bit RSA moduli, asymptotic and experimental comparisons of small
dq attacks

Bitsize of q Bleichenbacher-May [2] Our work

Asymptotic Expt. dim. L3 time Asymptotic Expt. dim. L3 time

305 0.210 0.160 63 53 min 0.230 0.170 56 15min

355 0.140 0.100 63 44 min 0.164 0.100 58 16min

405 0.075 0.050 63 35 min 0.103 0.055 66 57min

440 0.033 0.010 63 35 min 0.064 0.012 66 60min

3.5 Experimental Results

We have implemented the experiment program in Magma 2.10 computer algebra
system [5] on a PC with Intel(R) Core(TM) Duo CPU(3.30 GHz, 4.0 GB RAM
Windows 7). Table 1 lists some theoretical and experimental results on factor-
ing two 1000-bit RSA moduli with varying bit-size of q. In all experiments, we
successfully find the factorization of these RSA moduli.

In [2], the experimental results are much better than their theoretical analy-
sis. For example, for 440-bit factor q, with a lattice dimension of 63, in theory

Fig. 3. Comparisons of recoverable bounds depending on lattice dimensions. The left
and the right figure is for β = 0.35 and β = 0.40, respectively.
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Table 2. Asymptotic bounds and lattice dimension for small δ with fixed lattice dimen-
sions.

β = 0.45

δ 0.010 0.020 0.030 0.040 0.052

dim. 109 154 340 1055 Asymptotic

β = 0.48

δ 0.002 0.005 0.010 0.015 0.020

dim. 486 686 1491 5443 Asymptotic

the attack should not work (we can recover the small private key dp up to a size
of N−0.083), however, in practice, we succeed for dp with bit-size a 0.010-fraction
of N . Since our lattice construction captures the underlying sublattice structure
of [2]’s desired lattice, we can do better than [2]: with a lattice dimension of 66,
experimentally we can reconstruct dp with a size of N0.012.

Note that our result of Theorem 1 is an asymptotic improvement. In Table 2,
we present numerical values of δ for different values of β and lattice dimension.
Moreover, compared with [2], our method requires smaller lattice dimensions.
For β = 0.35 and β = 0.40, Fig. 3 shows a comparison of these two approaches
in the terms of the bit-size of small secret exponent dp that can be attacked.

4 Small dp and dq Attack

In this section, we propose an attack when both dp and dq are small. The attack
improves Jochemsz-May’s attack [21].

4.1 Our Attack

Recall the CRT-RSA key generation;

edq = 1 + kq(q − 1) and edp = 1 + kp(p − 1)

with some integers kq and kp. Hence, if we can solve the following simultaneous
modular equations, RSA modulus N can be factorized:

fq,1(xq,1, yq) = 1 + xq,1(yq − 1) = 0 mod e,

fp,2(xp,2, yp) = 1 + xp,2(yp − 1) = 0 mod e,

where the root is (xq,1, xp,2, yq, yp) = (kq, kp, q, p).
In addition, by multiplying p and q to the key generation equations respec-

tively, the following representations can be obtained:

edqp = p + kq(N − p) = N + (kq − 1)(N − p),
edpq = q + kp(N − q) = N + (kp − 1)(N − q).
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Then, we can also use the following modular equations:

fp,1(xp,1, yp) = N + xp,1(N − yp) = 0 mod e,

fq,2(xq,2, yq) = N + xq,2(N − yq) = 0 mod e,

where the root is (xp,1, xq,2, yp, yq) = (kq − 1, kp − 1, p, q).
To summarize the above discussion, we want to solve the following simulta-

neous modular equations:

fp,1(xp,1, yp) = N + xp,1(N − yp) = 0 mod e,

fq,1(xq,1, yq) = 1 + xq,1(yq − 1) = 0 mod e,

fp,2(xp,2, yp) = 1 + xp,2(yp − 1) = 0 mod e,

fq,2(xq,2, yq) = N + xq,2(N − yq) = 0 mod e,

where the root is (xp,1, xq,1, xp,2, xq,2, yp, yq) = (kq − 1, kq, kp, kp − 1, p, q). Let
e = Nα, dp < N δ, and dq < N δ for a balanced RSA, i.e., q < p < 2q. The
absolute values of xp,1, xq,1, xp,2, xq,2 are bounded above by X = Nα+δ−1/2

within constant factors whereas the absolute values of yp and yq are bounded
above by Y = N1/2 within constant factors.

Unfortunately, an approach to solve the above four equations simultaneously
does not offer an improvement. The approach gives us only the same bound as
Theorem 3. Hence, we use an additional algebraic relation. From the CRT-RSA
key generation,

edq = 1 + kq(q − 1) and edp = 1 + kp(p − 1),
⇔ kq − 1 = kqq (mod e) and kp − 1 = kpp (mod e).

By multiplying these two equations, we obtain

(kq − 1)(kp − 1) = kqkpN (mod e).

Then the following new equation can be obtained:

h(xp,1, xq,1, xp,2, xq,2) = (N − 1)xp,1xp,2 + xp,1 + Nxp,2 = 0 (mod e)
= (N − 1)xq,1xq,2 + Nxq,1 + xq,2 = 0 (mod e).

The polynomial also has two representations as the previous polynomials. Notice
that the same equation as h(xp,1, xq,1, xp,2, xq,2) was already used by Galbraith
et al. [13]. We make use of these equations and obtain the following result.

Theorem 5. Let N = pq be an RSA modulus where p and q are the same bit-
size. Let e = Nα and dp, dq < N δ be a public/CRT exponent respectively such
that edq = 1 (mod (q − 1)) and edp = 1 (mod (p − 1)). Given public elements
N and e, if

δ <
1
2

−
√

α

6
for α ≥ 3

8
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.
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For the full size e, the attack works for δ < 1/2 − 1/
√

6 = 0.091 · · · which
is better than Jochemsz-May’s bound [21], i.e., δ < 0.073. Our attack is better
than all existing attacks.

Proof of Theorem 5. To solve the above modular equations, we use the following
shift-polynomials:

g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq)

:=xj1
p,1x

j2
p,2y

�(i1+i2)/2�
q f i1

p,1(xp,1, yp)f i2
p,2(xp,2, yp)hu(xp,1, xp,2, xq,1, xq,2)·

em−(i1+i2+u),

g′
[i1,i2,j1],p

(xp,1, xq,1, xp,2, xq,2, yp, yq)

:=y�(i1+i2)/2�−j1
q f i1

p,1(xp,1, yp)f i2
p,2(xp,2, yp)em−(i1+i2+u),

g′
[i1,i2,j2],q

(xp,1, xq,1, xp,2, xq,2, yp, yq)

:=y�(i1+i2)/2�+j2
q f i1

p,1(xp,1, yp)f i2
p,2(xp,2, yp)em−(i1+i2+u),

with some positive integer m. For non-negative integers i1, i2, j1, i2, and u,
all the shift-polynomials share the common root as fp,1(xp,1, yp), fp,2(xp,2, yp),
fq,1(xq,1, yq), fq,2(xq,2, yq), and h(xp,1, xq,1, xp,2, xq,2) modulo em. Then we can
construct triangular basis matrices as follows.

Lemma 4. Let all the polynomials be defined as above. Let τ be a constant such
that 1/2 ≤ τ ≤ 1. Define sets of indices as

Ix :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i1 = 0, 1, . . . ,m; i2 = 0, 1, . . . ,m − i1; j1 = j2 = 0;
u = 0, 1, . . . , �m−(i1+i2)

2 �, and
i1 = 0, 1, . . . ,m − 2; i2 = 1, 2, . . . ,m − 1 − i1; j1 = 1;

j2 = 0;u = 0, 1, . . . , �m−1−(i1+i2)
2 �, and

i1 = 0, 1, . . . ,m; i2 = 0; j1 = 1, 2, . . . ,m − i1; j2 = 0;
u = 0, 1, . . . , �m−(i1+j1)

2 �, and
i1 = 0; i2 = 0, 1, . . . ,m; j1 = 0; j2 = 1, 2, . . . ,m − i2;

u = 0, 1, . . . , �m−(i2+j2)
2 �,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

Iy,p :=
{

i1 = 0, 1, . . . ,m; i2 = 0, 1, . . . ,m − i1;
j1 = 1, 2, . . . , 	τ(i1 + i2)
 − 	(i1 + i2)/2


}

,

Iy,q :=
{

i1 = 0, 1, . . . ,m; i2 = 0, 1, . . . ,m − i1;
j2 = 1, 2, . . . , 	τ(i1 + i2)
 − �(i1 + i2)/2�

}

.

Let B be a matrix whose rows consist of coefficients of g[i1,i2,j1,j2,u](xp,1Xp,1,
xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq), g′

[i1,i2,j1],p
(xp,1Xp,1, xq,1Xq,1, xp,2Xp,2,

xq,2Xq,2, ypYp, yqYq), and g′
[i1,i2,j2],q

(xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp,

yqYq) with indices in Ix, Iy,p, and Iy,q, respectively. If the shift-polynomials
are ordered as
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g[i1,i2,j1,j2,u] ≺ g′
[i1,i2,j1],p

, g′
[i1,i2,j2],q

,

g[i′
1,i′

2,j′
1,j′

2,u′] ≺ g[i1,i2,j1,j2,u] for i′1 + i′2 < i1 + i2,

g[i′
1,i′

2,j′
1,j′

2,u′] ≺ g[i1,i2,j1,j2,u] for i′1 + i′2 = i1 + i2, u
′ < u,

g[i′
1,i′

2,j′
1,0,u] ≺ g[i1,i2,j1,0,u] for i′1 + i′2 = i1 + i2, j

′
1 < j1,

g[i′
1,i′

2,0,j′
2,u] ≺ g[i1,i2,0,j2,u] for i′1 + i′2 = i1 + i2, j

′
2 < j2,

g′
[i′

1,i′
2,j′

1]
, g′

[i′
1,i′

2,j′
2],q

≺ g′
[i1,i2,j1],p

, g′
[i1,i2,j2],q

for i′1 + i′2 < i1 + i2,

g′
[i′

1,i′
2,j′

1]
≺ g′

[i1,i2,j1],p
for i′1 + i′2 = i1 + i2, j

′
1 < j1,

g′
[i′

1,i′
2,j′

2],q
≺ g′

[i1,i2,j2],q
for i′1 + i′2 = i1 + i2, j

′
2 < j2,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes trian-
gular with diagonals

– Xi1+j1+u
p,1 Xi2+j2+u

p,2 Y
�(i1+i2)/2�
p em−(i1+i2+u) for g[i1,i2,j1,j2,u] if i1 + i2 is odd,

– Xi1+j1+u
q,1 Xi2+j2+u

q,2 Y
�(i1+i2)/2�
q em−(i1+i2+u) for g[i1,i2,j1,j2,u] if i1 + i2 is even,

– Xi1
p,1X

i2
p,2Y

�(i1+i2)/2�+j1
p em−(i1+i2) for g′

[i1,i2,j1],p
,

– Xi1
q,1X

i2
q,2Y

�(i1+i2)/2�+j2
q em−(i1+i2) for g′

[i1,i2,j2],q
.

We do not prove the lemma, however, the proof can be obtained in the same
manner as in Sect. 3.4. The polynomials which we use contain six variables
xp,1, xp,2, xq,1, xq,2, yp, yq. Furthermore, there are three algebraic relations, i.e.,
xq,1 = xp,1 + 1, xp,2 = xq,2 + 1, and ypyq = N . By using the last relation, i.e.,
ypyq = N , we transform all monomials as they do not have both yp and yq simul-
taneously as the proof of Lemma 3. In addition, by using the other relations,
i.e., xq,1 = xp,1 + 1 and xp,2 = xq,2 + 1, we transform all monomials as they do
not have both xp,1 and xq,1 simultaneously or both xp,2 and xq,2 simultaneously.
More concretely, the variables xp,1 and xp,2 appear only in monomials whose
exponents of yp are positive whereas the variables xq,1 and xq,2 appear only in
monomials whose exponents of yq are non-negative.

We compute the resulting condition of Theorem 5. The dimension n and the
determinant of the lattice det(B) = XsXY sY ese can be computed as:

n =
∑

(i1,i2,j1,j2,u)∈Ix

1 +
∑

(i1,i2,j1)∈Iy,p

1 +
∑

(i1,i2,j2)∈Iy,q

1

=
2τ

3
m3 + o(m3),

sX =
∑

(i1,i2,j1,j2,u)∈Ix

(i1 + i2 + j1 + j2 + 2u) +
∑

(i1,i2,j1)∈Iy,p

(i1 + i2)

+
∑

(i1,i2,j2)∈Iy,q

(i1 + i2)

=
τ

2
m4 + o(m4),
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sY =
∑

(i1, i2, j1, j2, u) ∈
Ix s.t. i1 + i2 is odd

⌈

i1 + i2
2

⌉

+
∑

(i1, i2, j1, j2, u) ∈
Ix s.t. i1 + i2 is even

⌊

i1 + i2
2

⌋

+
∑

(i1,i2,j1)∈Iy,p

(⌈

i1 + i2
2

⌉

+ j1

)

+
∑

(i1,i2,j2)∈Iy,q

(⌊

i1 + i2
2

⌋

+ j2

)

=
τ2

4
m4 + o(m4),

se =
∑

(i1,i2,j1,j2,u)∈Ix

(m − (i1 + i2 + u)) +
∑

(i1,i2,j1)∈Iy,p

(m − (i1 + i2))

+
∑

(i1,i2,j2)∈Iy,q

(m − (i1 + i2))

=
2τ + 1

12
m4 + o(m4).

Applying the LLL reduction, the polynomials obtained from the output vec-
tors satisfy Howgrave-Graham’s lemma if XsXY sY ese < enm, i.e.,

(

α + δ − 1
2

)

τ

2
+

1
2

· τ2

4
+ α · 2τ + 1

12
< α · 2τ

3

by omitting low order terms of m. To minimize the left hand side of the inequality,
we set the parameters τ = 1 − 2δ, then the condition becomes

δ <
1
2

−
√

α

6

as required. To satisfy the restriction τ ≥ 1/2, δ ≤ 1/4 and equivalently α ≥ 3/8
should hold. �

4.2 Experimental Results

We have implemented the experiment program of Sect. 4.1 in Magma 2.10 com-
puter algebra system [5] on a PC with Intel(R) Core(TM) Duo CPU(3.30 GHz,
4.0 GB RAM Windows 7). Table 3 lists the asymptotic and experimental results
on factoring 1000-bit RSA moduli with varying dimension of lattice under small
decryption exponents. In all experiments, we successfully find the factorization
of these RSA moduli.

5 Attacks on the Variants

In this section, we study small CRT-exponent attacks on the RSA variants, i.e.,
the Multi-Prime RSA, Takagi’s RSA, and the RSA with multiple exponent pairs.
We extend our attack of Theorem 2 to the variants.
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Table 3. For 1000-bit RSA moduli, asymptotic and experimental comparisons of small
dp and dq attacks on balanced CRT-RSA

Bitsize of N Asymptotic Expt. (m, dim.) L3 time (in sec.)

1000 0.091 0.034 (4, 95) 358.787

0.053 (6, 252) 31390.147

5.1 Multi-Prime RSA

In this section, we extends the small CRT-exponent attack for the Multi-Prime
RSA as follows.

Theorem 6. Let N =
∏r

i=1 pi be an RSA modulus where r ≥ 2 and all the
prime factors p1, . . . , pr are the same bit-size. Let e = Nα and dpi

< N δi be
a public/CRT exponent respectively such that edpi

= 1 (mod (pi − 1)) for all
i = 1, . . . , r. Given public elements N and e, if

min
i∈{1,...,r}

δi <
1 − √

(r − 1)α
r

for α >
r − 1
r2

,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense that
Theorem 6 becomes the same as Theorem 3 for r = 2.

We also extend May’s modulo pi attack [28] for the Multi-Prime RSA as
follows.

Theorem 7 (Adapted from [27]). Let N =
∏r

i=1 pi be an RSA modulus
where r ≥ 2 and all the prime factors p1, . . . , pr are the same bit-size. Let e =
Nα and dpi

< N δi be a public/CRT exponent respectively such that edpi
= 1

(mod (pi − 1)) for all i = 1, . . . , r. Given public elements N and e, if

min
i∈{1,...,r}

δi <
r + 1 − r2α

2r2
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense
that Theorem 7 becomes the same as Theorem 4 for r = 2. We omit the proof
since it is almost the same as Theorem 9 of [27]. The bound of Theorem 6 is
always better than or equal to that of Theorem 7. Figure 4 compares the attack
condition between Theorems 6 and 7 for r = 3 and 4.

5.2 Takagi’s RSA

In this section, we extends the small CRT-exponent attack for Takagi’s RSA as
follows.
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Fig. 4. Comparisons between our attacks of Theorems 6 and 7. The left and the right
figure is for r = 3 and 4, respectively.

Theorem 8. Let N = prq be an RSA modulus where r ≥ 1 and the prime
factors p and q are the same bit-size. Let e = Nα and dp < N δp , dq < N δq be a
public/CRT exponent respectively such that edp = 1 (mod (p − 1)) and edq = 1
(mod (q − 1)). Given public elements N and e, if

min{δp, δq} <
1 − √

rα

r + 1
for α >

r

(r + 1)2
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for Takagi’s RSA in the sense that
Theorem 8 becomes the same as Theorem 3 for r = 1. Although Shinohara
et al. [38] extended Bleichenbacher-May’s attack, our attack is always better.

We also extend May’s modulo a prime factor attack [28] for Takagi’s RSA as
follows.

Theorem 9 (Adapted from [28]). Let N = prq be an RSA modulus where
r ≥ 1 and the prime factors p and q are the same bit-size. Let e = Nα and
dp < N δp , dq < N δq be a public/CRT exponent respectively such that edp = 1
(mod (p − 1)) and edq = 1 (mod (q − 1)). Given public elements N and e, if

δp <
2r + 1 − (r + 1)2α

2(r + 1)2
or δq <

r + 2 − (r + 1)2α
2(r + 1)2

,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Takagi’s RSA in the sense that
Theorem 9 becomes the same as Theorem 4 for r = 1. We omit the proof since
it is almost the same as Theorem 9 of [27]. The bound for δq of Theorem 8 is
always better than or equal to that of Theorem 9, however, the bound for δp of
Theorem 9 is better than or equal to that of Theorem 8. Figure 5 compares the
attack condition for small dp between Theorems 8 and 9 for r = 2 and 3.
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Fig. 5. Comparisons between our attacks of Theorems 8 and 9. The left and the right
figure is for r = 2 and 3, respectively.

5.3 RSA with Multiple Exponent Pairs

In this section, we extends the small CRT-exponent attack for the RSA with
multiple exponent pairs as follows.

Theorem 10. Let N = pq be an RSA modulus where the prime factors p and
q are the same bit-size. Let e� = Nα and dq,� < N δ for � = 1, . . . , r be a
public/CRT exponent respectively such that e�dq,� = 1 (mod (q − 1)). Given
public elements N and e1, . . . , er, if

δ <
1
2

−
√

α

3r + 1
,

then N can be factorized in time polynomial in input length and exponential in
r by assuming that polynomials which are derived from LLL reduced bases are
algebraically independent.

We can successfully extend the attack for RSA with multiple exponent pairs in
the sense that Theorem 10 becomes the same as Theorem 3 for r = 1. We do not

Fig. 6. Comparison between our attack (Theorem 10) and the attack of Peng et al. [33]
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think May’s modulo q approach is an appropriate way for the attack scenario,
hence, we do not extend it. Peng et al. proposed the attack (Theorem 2 of [33])
which extended Bleichenbacher-May’s [2] and works when δ < (9r−14)/(24r+8)
for an α = 1. Theorem 10 is always better than the attack of Peng et al. Indeed,
even if there are infinitely many exponent pairs r, the attack of Peng et al.
works for δ < 3/8 whereas our attack works for the same bound of δ with only
21 exponent pairs. Figure 6 compares recoverable sizes of dq between our attack
and that of Peng et al. [33].

6 Concluding Remarks

In this paper, we studied a lattice-based cryptanalysis of the small CRT-exponent
RSA. We developed a novel lattice construction technique that is specialized to
the CRT-RSA key generation and proposed several improved attacks. When a
prime factor p is significantly smaller than the other prime factor q with a small
dq, we solved an open problem which was claimed in [2,28]; we proposed an
attack that works for p < N0.5. When both dp and dq are small, we proposed an
attack that works for dp, dq < N0.091 with a full size e. We also proposed attacks
on the RSA variants, i.e., the Multi-Prime RSA, Takagi’s RSA, and RSA with
multiple exponent pairs.
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C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292.
Springer, Heidelberg (2005). doi:10.1007/11506157 24

14. Herrmann, M.: Lattice-based cryptanalysis using unravelled linearization. Ph.D.
thesis, der Ruhr-Universitat Bochum (2011)

15. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
when do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 487–504. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 29

16. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 4

17. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). doi:10.1007/BFb0024458

18. Huang, Z., Hu, L., Xu, J.: Attacking RSA with a composed decryption expo-
nent using unravelled linearization. In: Lin, D., Yung, M., Zhou, J. (eds.)
Inscrypt 2014. LNCS, vol. 8957, pp. 207–219. Springer, Cham (2015). doi:10.1007/
978-3-319-16745-9 12

19. Huang, Z., Hu, L., Xu, J., Peng, L., Xie, Y.: Partial key exposure attacks on
Takagi’s variant of RSA. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 134–150. Springer, Cham (2014). doi:10.1007/
978-3-319-07536-5 9

20. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
doi:10.1007/11935230 18

21. Jochemsz, E., May, A.: A polynomial time attack on rsa with private CRT-
exponents smaller than N 0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 395–411. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 22

22. Kunihiro, N.: On optimal bounds of small inverse problems and approximate
GCD problems with higher degree. In: Gollmann, D., Freiling, F.C. (eds.) ISC
2012. LNCS, vol. 7483, pp. 55–69. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33383-5 4

http://dx.doi.org/10.1007/3-540-68339-9_14
http://dx.doi.org/10.1007/3-540-44670-2_3
http://dx.doi.org/10.1007/978-3-540-24676-3_29
http://dx.doi.org/10.1007/3-540-44448-3_2
http://dx.doi.org/10.1007/978-3-319-23021-4_10
http://dx.doi.org/10.1007/11506157_24
http://dx.doi.org/10.1007/978-3-642-10366-7_29
http://dx.doi.org/10.1007/978-3-642-13013-7_4
http://dx.doi.org/10.1007/978-3-642-13013-7_4
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/978-3-319-16745-9_12
http://dx.doi.org/10.1007/978-3-319-16745-9_12
http://dx.doi.org/10.1007/978-3-319-07536-5_9
http://dx.doi.org/10.1007/978-3-319-07536-5_9
http://dx.doi.org/10.1007/11935230_18
http://dx.doi.org/10.1007/978-3-540-74143-5_22
http://dx.doi.org/10.1007/978-3-642-33383-5_4
http://dx.doi.org/10.1007/978-3-642-33383-5_4


158 A. Takayasu et al.

23. Kunihiro, N., Shinohara, N., Izu, T.: A unified framework for small secret exponent
attack on RSA. IEICE Trans. 97-A(6), 1285–1295 (2014)

24. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Math. Ann. 261, 515–534 (1982)

25. Lu, Y., Zhang, R., Lin, D.: Factoring multi-power RSA modulus N = prq with
partial known bits. In: Boyd, C., Simpson, L. (eds.) Information Security and
Privacy - 18th Australasian Conference, ACISP 2013. LNCS, vol. 7959, pp. 57–71.
Springer, Heidelberg (2013)

26. Lu, Y., Zhang, R., Lin, D.: New partial key exposure attacks on CRT-RSA
with large public exponents. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 151–162. Springer, Cham (2014). doi:10.1007/
978-3-319-07536-5 10

27. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 189–213. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 9

28. May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002).
doi:10.1007/3-540-45708-9 16

29. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

30. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications.
Information Security and Cryptography, pp. 315–348. Springer, Heidelberg (2010)

31. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman,
J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001).
doi:10.1007/3-540-44670-2 12

32. Peng, L., Hu, L., Huang, Z., Xu, J.: Partial prime factor exposure attacks on RSA
and its Takagi’s variant. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065,
pp. 96–108. Springer, Cham (2015). doi:10.1007/978-3-319-17533-1 7

33. Peng, L., Hu, L., Lu, Y., Sarkar, S., Xu, J., Huang, Z.: Cryptanalysis of variants
of RSA with multiple small secret exponents. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 105–123. Springer, Cham (2015). doi:10.
1007/978-3-319-26617-6 6

34. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18, 905–907 (1982)

35. Sarkar, S.: Small secret exponent attack on RSA variant with modulus N = prq.
Des. Codes Crypt. 73(2), 383–392 (2014)

36. Sarkar, S.: Revisiting prime power RSA. Discrete Appl. Math. 203, 127–133 (2016)
37. Sarkar, S., Maitra, S.: Partial key exposure attack on CRT-RSA. In: Abdalla, M.,

Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536,
pp. 473–484. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9 29

38. Shinohara, N., Izu, T., Kunihiro, N.: Small secret CRT-exponent attacks on takagi’s
RSA. IEICE Trans. 94–A(1), 19–27 (2011)

39. Sun, H., Wu, M.: An approach towards rebalanced RSA-CRT with short public
exponent. IACR Cryptology ePrint Archive 2005, 53 (2005)

40. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate lin-
ear equations modulo unknown divisors. IEICE Trans. 97-A(6), 1259–1272 (2014)

41. Takayasu, A., Kunihiro, N.: Cryptanalysis of RSA with multiple small secret expo-
nents. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 176–191.
Springer, Cham (2014). doi:10.1007/978-3-319-08344-5 12

http://dx.doi.org/10.1007/978-3-319-07536-5_10
http://dx.doi.org/10.1007/978-3-319-07536-5_10
http://dx.doi.org/10.1007/978-3-662-48797-6_9
http://dx.doi.org/10.1007/3-540-45708-9_16
http://dx.doi.org/10.1007/3-540-44670-2_12
http://dx.doi.org/10.1007/978-3-319-17533-1_7
http://dx.doi.org/10.1007/978-3-319-26617-6_6
http://dx.doi.org/10.1007/978-3-319-26617-6_6
http://dx.doi.org/10.1007/978-3-642-01957-9_29
http://dx.doi.org/10.1007/978-3-319-08344-5_12


Small CRT-Exponent RSA Revisited 159

42. Takayasu, A., Kunihiro, N.: General bounds for small inverse problems and its
applications to multi-prime RSA. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS,
vol. 8949, pp. 3–17. Springer, Cham (2015). doi:10.1007/978-3-319-15943-0 1

43. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA: achieving the
Boneh-Durfee bound. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781,
pp. 345–362. Springer, Cham (2014). doi:10.1007/978-3-319-13051-4 21

44. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on CRT-RSA: better
cryptanalysis to full size encryption exponents. In: Malkin, T., Kolesnikov, V.,
Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 518–537.
Springer, Cham (2015). doi:10.1007/978-3-319-28166-7 25

45. Takayasu, A., Kunihiro, N.: How to generalize RSA cryptanalyses. In: Cheng, C.-
M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615,
pp. 67–97. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8 4

46. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on CRT-RSA: general
improvement for the exposed least significant bits. In: Bishop, M., Nascimento,
A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 35–47. Springer, Cham (2016). doi:10.
1007/978-3-319-45871-7 3

47. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA with multiple
exponent pairs. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723,
pp. 243–257. Springer, Cham (2016). doi:10.1007/978-3-319-40367-0 15

48. Takayasu, A., Kunihiro, N.: A tool kit for partial key exposure attacks on RSA. In:
Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 58–73. Springer, Cham
(2017). doi:10.1007/978-3-319-52153-4 4

49. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf.
Theor. 36(3), 553–558 (1990)

http://dx.doi.org/10.1007/978-3-319-15943-0_1
http://dx.doi.org/10.1007/978-3-319-13051-4_21
http://dx.doi.org/10.1007/978-3-319-28166-7_25
http://dx.doi.org/10.1007/978-3-662-49387-8_4
http://dx.doi.org/10.1007/978-3-319-45871-7_3
http://dx.doi.org/10.1007/978-3-319-45871-7_3
http://dx.doi.org/10.1007/978-3-319-40367-0_15
http://dx.doi.org/10.1007/978-3-319-52153-4_4


Multiparty Computation II



Group-Based Secure Computation: Optimizing
Rounds, Communication, and Computation

Elette Boyle1(B), Niv Gilboa2, and Yuval Ishai3

1 IDC Herzliya, Herzliya, Israel
elette.boyle@idc.ac.il

2 Ben Gurion University, Beersheba, Israel
gilboan@bgu.ac.il

3 Technion and UCLA, Haifa, Israel
yuvali@cs.technion.ac.il

Abstract. A recent work of Boyle et al. (Crypto 2016) suggests that
“group-based” cryptographic protocols, namely ones that only rely on a
cryptographically hard (Abelian) group, can be surprisingly powerful. In
particular, they present succinct two-party protocols for securely com-
puting branching programs and NC1 circuits under the DDH assumption,
providing the first alternative to fully homomorphic encryption.

In this work we further explore the power of group-based secure com-
putation protocols, improving both their asymptotic and concrete effi-
ciency. We obtain the following results.
– Black-box use of group. We modify the succinct protocols of Boyle

et al. so that they only make a black-box use of the underlying group,
eliminating an expensive non-black-box setup phase.

– Round complexity. For any constant number of parties, we obtain
2-round MPC protocols based on a PKI setup under the DDH assump-
tion. Prior to our work, such protocols were only known using fully
homomorphic encryption or indistinguishability obfuscation.

– Communication complexity. Under DDH, we present a secure 2-
party protocol for any NC1 or log-space computation with n input bits
and m output bits using n + (1 + o(1))m + poly(λ) bits of commu-
nication, where λ is a security parameter. In particular, our protocol
can generate n instances of bit-oblivious-transfer using (4 + o(1)) · n
bits of communication. This gives the first constant-rate OT protocol
under DDH.

– Computation complexity. We present several techniques for
improving the computational cost of the share conversion procedure of
Boyle et al., improving the concrete efficiency of group-based protocols
by several orders of magnitude.

1 Introduction

Gentry’s 2009 breakthrough on fully homomorphic encryption (FHE) [18,36]
changed the landscape of the theory of secure computation. FHE enables arbi-
trary computations on encrypted inputs, thereby providing a general-purpose
c© International Association for Cryptologic Research 2017
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tool for succinct secure computation protocols whose communication complex-
ity is smaller than the circuit size of the function being computed. FHE-based
protocols were also used to minimize the round complexity of secure multiparty
computation [2,14,32,33].1

On the downside, despite impressive recent progress [13,15,22], the concrete
efficiency of current FHE implementations still leaves much to be desired. More-
over, the set of cryptographic assumptions on which FHE can be based is still
quite narrow. These two limitations may in fact be related, in that attempts at
efficient implementation are curbed by the limited variety of FHE candidates.
Indeed, all such candidates rely on similar lattice-related algebraic structures and
are subject to lattice reduction attacks that have a negative impact on concrete
efficiency. In particular, no FHE construction is known under a discrete-log-
type assumption or even in the generic group model. This should be contrasted
with standard public-key encryption schemes and non-succinct secure computa-
tion protocols that can be easily (and unconditionally) realized in the generic
group model.

A recent work of Boyle et al. [8] introduced a new technique for succinct
secure computation that can be based on any DDH-hard group. (For better
concrete efficiency, it is useful to rely on stronger assumptions than DDH, such
as the circular security of ElGamal encryption.) While the results obtained using
this group-based approach are weaker than corresponding FHE-based results in
several important aspects, they do give hope for better concrete efficiency in
useful application scenarios. The present work is motivated in part by this hope.

More concretely, the approach of [8] replaces the use of FHE by a 2-party
homomorphic secret sharing (HSS) primitive, which turns out to be sufficient for
the purpose of succinct secure two-party computation. An HSS scheme is a secret
sharing scheme that supports homomorphic computations on the shares, such
that the output of the computation is compactly shared between the parties.
We in fact make the stronger requirement that the output be additively shared
between the parties over a finite Abelian group. In particular, if the output is a
single bit, each output share can be just a single bit. HSS can be viewed as a
dual version of function section sharing [7], where the roles of the function and
the input are reversed, or a weaker version of additive-spooky encryption [14].

The main result of [8] is a DDH-based HSS scheme for branching programs,
which in particular captures logspace and NC1 computations. We provide a high
level overview of this HSS scheme in Sect. 2.2. The HSS scheme of [8] can be
used to obtain succinct secure two-party computation protocols for the same
classes. One difficulty in applying this HSS scheme towards secure computation
is that it has an inverse polynomial error probability, and moreover the event
of an error is correlated with the secret input. This difficulty was addressed
in [8] by combining error-correcting codes with general-purpose secure two-party

1 As in previous related works, our default notion of secure computation refers to
security against passive (semi-honest) adversaries. In most cases, similar protocols
with security against active (malicious) adversaries can be obtained under the same
assumptions by using a suitable version of the GMW compiler [21,24,34].
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computation protocols for recovering the correct output from the encoding. This
approach has a significant overhead in communication and computation, and
requires additional rounds of interaction.

The source of the error in the HSS scheme from [8] is a non-interactive share
conversion procedure, which converts multiplicative shares into additive shares.
To perform this conversion with an error probability bound of δ, the procedure
requires O((1/δ) · log(1/δ)) (or expected O(1/δ)) group multiplications.

1.1 Our Contribution

In this work we further explore the power of group-based secure computation
protocols, improving both their asymptotic and concrete efficiency. Following is
a detailed overview of our results and the underlying techniques.

Black-box use of group. The group-based succinct protocols from [8] use
general-purpose secure computation to distribute the key generation of a “public-
key” HSS scheme, namely one that allows joint computation on two or more
shared inputs. This procedure leads to poor concrete efficiency, and makes a
non-black-box use of the underlying cryptographic group. We present a generic
approach for obtaining similar results while only making a black-box use of the
underlying group. This approach relies on the plaintext- and key-homomorphism
properties of ElGamal encryption (or its circular-secure variant [4]) and can be
used for improving the concrete cost of group-based protocols.

Minimizing round complexity. For any constant number of parties, we obtain
2-round MPC protocols based on a Public Key Infrastructure (PKI) setup under
the DDH assumption.2 Prior to our work, such protocols were only known using
different flavors of FHE [2,14,33] or indistinguishability obfuscation [14,17].
(Granted, the latter protocols can further support polynomial number of parties,
and with milder setup requirements: PKI setup can be relaxed to a CRS setup
by using multi-key FHE, which can be based on LWE [14,33], or even eliminated
by relying on indistinguishability obfuscation [14].)

Our 2-round protocol is obtained in three steps. In the first step, we construct
a 1-round (PKI-based) distributed HSS scheme, which can be used to jointly
share inputs that originate from multiple clients. This can be used to construct
a 2-round protocol in the PKI model that allows m clients to compute a function
of their inputs with the help of two servers (of which at most one is corrupted),
where in this protocol each client sends a single message to each server and each
server sends a single message to each client. The protocol only satisfies a weak
notion of 1/poly security (i.e., security with inverse-polynomial simulation error),
due to the input-dependent error of the HSS scheme (inherited from the share
conversion procedure of [8]). The protocol can be used to succinctly evaluate
branching programs. Alternatively, it can be used to evaluate general circuits

2 This implies 3-round protocols in the plain model. Note, however, that unlike the
first round in a general 3-round protocol, a PKI setup is independent of the inputs
and the number of parties.
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(at the cost of compromising succinctness) by applying the HSS evaluation to a
low-complexity randomized encoding of the circuit [1,3,38].

The second step achieves security amplification. That is, we improve the
security of the above protocol to hold with negligible simulation error, without
increasing the round complexity. This is done by evaluating a compiled version of
the desired computation, which is resilient to leakage on intermediate computa-
tion values. This compilation is obtained by using a virtual “client-server” MPC
protocol to make computations locally random, where the initial messages from
clients to virtual servers are HSS-shared between the two real servers, and the
role of each virtual server is emulated by the two (real) servers via HSS evalua-
tion. This virtual MPC protocol only needs to provide security against a small
fraction of corrupted (semi-honest) virtual servers, but additionally needs to be
robust in the sense that the output can still be computed even when a bounded
number of virtual servers fail. The latter feature is important for coping with
the error of the underlying HSS.

A technical issue we need to deal with is that the event of failure in the share
conversion procedure is correlated not only with the input but also with bits of
the secret key. To cope with this type of leakage, we modify the underlying HSS
scheme to use a redundant representation of the secret key that makes leakage
of a small number of bits harmless.

To make this security amplification step efficient, we need the virtual MPC
protocol to have a constant number of rounds, and the next message function
computed by each server in each round to be efficiently implementable by branch-
ing programs. In particular, we can use 2-round virtual MPC protocols that
apply to constant-degree polynomials and do not require any server-to-server
communication. (Again, general circuits can be handled via randomized encod-
ing.) These protocols are sufficient for our main feasibility result of 2-round
MPC from DDH. We can additionally get succinct 2-round protocols for NC1 by
applying a different type of virtual MPC protocol that computes NC1 functions
in a constant number of rounds with low client-to-server communication, but
additionally requires (a large amount of) server-to-server communication.3 As a
corollary, we get a 2-message 2-party protocol for computing any NC1 function
f(x, y) (with output delivered to one party), where the length of each message
is comparable to the length of the corresponding input (and is independent of
the complexity of f).

In the third and final step, we use a player virtualization technique [10,23]
to transform the 2-round (m-client) 2-server protocol into a 2-round protocol
with m clients and an arbitrary constant number of servers k. At a high level,
this is done by iteratively emulating the computations of a single server (begin-
ning with a single server in the 2-server protocol) by two separate servers, via
another level of 2-round MPC. Because of the complexity blowup in each iter-
ation, this virtualization step can only be applied a constant number of times.

3 Interestingly, this approach does not seem to extend to branching programs using
known techniques, since in known constant-round protocols for branching programs
the next message function cannot be efficiently computed by branching programs.
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Such a client-server protocol readily implies a 2-round (standard) k-party pro-
tocol by letting m = k and having each party emulate the corresponding client
and server.

Improving communication complexity. Under DDH, we present a secure
2-party protocol for any NC1 or log-space computation with n input bits and
m output bits using n + (1 + o(1))m + poly(λ) bits of communication, where λ
is a security parameter. In particular, we generate n instances of

(

2
1

)

-oblivious-
transfer (OT) of bits using 4n+o(n)+poly(λ) bits of communication. This gives
the first constant-rate OT protocol under DDH. Constant-rate OT protocols
(with a poor concrete rate) could previously be constructed using a polynomial-
stretch local pseudorandom generator [27] or the Phi-hiding assumption [28].
A similar result to ours can also be obtained under LWE, via the HSS scheme
implied by [14].

The above result is obtained via a new security amplification technique, which
provides a simpler and more efficient alternative to the use of virtual MPC in
the second step described above. The downside is that this approach is restricted
to the 2-party setting and requires an additional round of interaction. The high
level idea is as follows. Denote the two parties by P0, P1 and assume that the
functionality f delivers an output only to P1. We rely on a Las-Vegas variant of
HSS where the shared output is guaranteed to be correct (i.e., the two output
shares add up to the correct output) unless P1 outputs ⊥, where the latter
occurs with small probability. The idea is to have P1 use

(

m
m−k

)

-OT for m � k
in order to block itself from the k output shares of P0 that correspond to the
positions in which it outputs ⊥. Note that the m − k selected output shares
can be simulated given the correct output and the output shares of P1, and
thus they do not leak any additional information about the input. To make up
for the k lost output bits, we use an erasure code to encode the output. Since
we can make the number of erasures small, we only need to introduce a small
amount of redundancy to the output. A crucial observation which makes this
approach useful is that the above form of “punctured OT” can be implemented
with only m + o(m) bits of communication by combining general-purpose 2PC
with a puncturable pseudo-random function [37].

Improving computation complexity. We present several techniques for
reducing the computational cost of the share conversion procedure from [8],
improving the concrete efficiency of group-based protocols (both in [8] and the
present work) by several orders of magnitude.

First, we present an optimization that improves the asymptotic worst-case
running time of conversion by an O(log(1/δ)) factor, where δ is the error prob-
ability. In the procedure from [8], a group element h is mapped to the smallest
non-negative integer i such that h ·gi (where g is a group generator) belongs to a
pseudo-random set of distinguished group elements of density δ. Allowing δ error
probability, O((1/δ) · log(1/δ)) values of i should be checked, requiring a similar
number of group multiplications in the worst case. While the expected number of
group multiplications is O(log(1/δ)), in applications that involve “shallow” com-
putations (where many short sequences of RMS multiplications are performed



168 E. Boyle et al.

in parallel) it is the worst-case time that dominates the overall performance.
The alternative approach we propose is to apply an integer-valued hash function
φ to every group element, and return the (first) value of i in an interval of size
O(1/δ) that minimizes the value of φ(h · gi). This requires only O(1/δ) group
multiplications. We can also get an unconditional implementation of this alterna-
tive share conversion by using explicit constructions of “min-wise independent”
hash functions [11,25].

Next, we present several optimization ideas that apply “conversion-friendly
groups” towards improving the concrete running time of share conversion by sev-
eral orders of magnitude. These optimizations rely on discrete-log-type assump-
tions in multiplicative subgroups of Z∗

p of a prime order q, where p = 2q + 1 is
a prime which is close to a power of 2, and where g = 2 is a generator of the
subgroup. We propose several concrete choices of such p. The advantage of such
a group is that multiplying a group element h by the generator g can be done
by shifting h by one bit to the left, and adding the difference between p and the
closest power of 2 in case that the (removed) leftmost bit is 1. In fact, one can
multiply h by gw, where w is comparable to the machine word size (say, w = 32)
by using a small constant expected number of machine word operations (64-bit
additions or multiplications).

A second observation is that by making a seemingly mild heuristic assumption
on the MSB sequence of the powers h·gi (where h is random), it suffices to search
for the first position in the sequence that contains a stretch of 0’s of length
≈ log(1/δ). Concretely we need a combinatorial pseudo-randomness assumption
asserting that such a stretch occurs roughly as often as expected in a totally
random sequence.

By using an optimized “lazy” strategy for finding the first such stretch of 0’s,
the entire share conversion procedure can be implemented with an amortized cost
of less than a single machine word operation per step. Concretely, the amortized
cost is roughly 0.03 machine word additions and multiplications and 0.2 masking
operations per step. This should be compared to a full group multiplication per
step in the procedure of [8]. Combining all the optimizations, one can perform
thousands of RMS multiplications per second with error probability that is small
enough for performing shallow computations.

We note that the latter optimizations do not apply to Elliptic Curve groups,
and hence do not provide the optimal level of succinctness. However, the gain
in the computational cost of share conversion is arguably much more significant.
We leave open the question of implementing similar optimizations for the case
of Elliptic Curve groups.

2 Preliminaries

We give some necessary definitions and provide a high-level overview of the BGI
construction of [8]. We refer the reader to the full version for further details.
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2.1 Homomorphic Secret Sharing and DEHE

As in [8], we consider the case of 2-out-of-2 secret sharing, where an algorithm
Share is used to split a secret w ∈ {0, 1}n into two shares, such that each share
computationally hides w. The homomorphic evaluation algorithm Eval is used to
locally evaluate a program P ∈ P on the two shares, such that the two outputs
of Eval add up to P (w) modulo a positive integer β (where β = 2 by default),
except with δ error probability. The running time of Eval is polynomial in the
size of P and 1/δ. Here we formalize a stronger “Las Vegas” notion of HSS where
Eval may output ⊥ with at most δ probability, and the output is guaranteed to
be correct as long as no party outputs ⊥.

Definition 1 (Homomorphic Secret Sharing: Las Vegas Variant). A
(2-party) Las Vegas Homomorphic Secret Sharing (HSS) scheme for a class of
programs P consists of algorithms (Share,Eval) with the following syntax:

– Share(1λ, w): On security parameter 1λ and w ∈ {0, 1}n, the sharing algorithm
outputs a pair of shares (share0, share1). We assume that the input length n is
included in each share.

– Eval(b, share, P, δ, β): On input party index b ∈ {0, 1}, share share (which also
specifies an input length n), a program P ∈ P with n input bits and m output
bits, an error bound δ > 0 and integer β ≥ 2, the homomorphic evaluation
algorithm either outputs yb ∈ Z

m
β , constituting party b’s share of an output

y ∈ {0, 1}m, or alternatively outputs ⊥ to indicate failure. When β is omitted
it is understood to be β = 2.

The algorithm Share is a PPT algorithm, whereas Eval can run in time polyno-
mial in its input length and in 1/δ. The algorithms (Share,Eval) should satisfy
the following correctness and security requirements:

– Correctness: For every polynomial p there is a negligible ν such that for
every positive integer λ, input w ∈ {0, 1}n, program P ∈ P with input length
n, error bound δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr[(share0, share1) ← Share(1λ, w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :
(y0 = ⊥) ∨ (y1 = ⊥)] ≤ δ + ν(λ),

and

Pr[(share0, share1) ← Share(1λ, w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :
(y0 
= ⊥) ∧ (y1 
= ⊥) ∧ y0 + y1 
= P (w)] ≤ ν(λ),

where addition of y0 and y1 is carried out modulo β.
– Security: Each share keeps the input semantically secure.

We will also use a stronger asymmetric version of Las Vegas HSS where only
one party (say, P1) may output ⊥. This is defined similarly to the above, except
that conditions y0 = ⊥ and y0 
= ⊥ in the correctness requirement are removed.
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HSS versus DEHE. We also consider a public-key variant of HSS, known
as distributed-evaluation homomorphic evaluation (DEHE) [8]. This variant is
described and explored in the full version of this work.

Multi-evaluation variant. For our applications of Las Vegas HSS it will some-
times not be enough to consider a single execution of Eval but rather a sequence
of such executions following a single execution of Share. In such a case, we will
need to assume that the events of outputting ⊥ in different executions are indis-
tinguishable from being independent. (This will allow us to apply a Chenoff-style
bound when analyzing the total number of errors.) To simplify the terminology
and notation, we implicitly assume by default that all instances of HSS we use
are of the multi-evaluation variant.

2.2 BGI Construction [8]

The work of [8] constructs 2-party HSS (and DEHE) that directly supports
homomorphic evaluation of “Restricted-Multiplication Straight-line” (RMS)
programs over small integers. Such programs support four operations: Load
Input to Memory, Add Values in Memory, Multiply Input by Memory Value,
and Output Value. (See full version for formal RMS syntax). We provide here a
high-level description of the [8] construction, which serves as a starting point for
many of our results. In what follows, let G be a DDH-hard group of prime order
q with generator g ∈ G, and let � = �log q. We begin with the BGI construction
of HSS based on circular-secure ElGamal:
Secret shares: To secret share a (small integer) input w, the BGI construction
samples an ElGamal key pair (c, e = gc) ∈ Zq ×G, and outputs shares as follows:
(1) Each party gets an additive secret share over Zq of the input w and of the
product cw (viewed as an element of Zq). (2) Each party also gets (copies of the
same) (� + 1) ElGamal ciphertexts, one encrypting w and one encrypting each
product c(t)w of w with the tth bit of the secret key for t ∈ [�].
Homomorphic evaluation: Evaluation maintains the invariant that (after each
instruction) for each memory value x in the RMS program execution, the value
of x and of cx are each held as an additive secret sharing across the two par-
ties. This directly holds for any “Load Input to Memory” instruction, and can
straightforwardly be achieved for each “Add Values in Memory” instruction by
linear homomorphism of additive secret shares. “Output Value From Memory”
to a target group Zβ (for some integer β ≤ q specified in the RMS program)
is achieved by having each party shift his current share of the relevant memory
value by a common rerandomization value and then output this share mod β.

The primary challenge is in supporting “Multiply Input by Value in Memory.”
Recall in such situation the parties hold additive secret shares of x and cx for the
memory value x, and ElGamal ciphertexts of w and {c(t)w}t∈[�] for the input w.
Evaluation takes place in two steps, repeated for each ciphertext; for example,
for the ciphertext encrypting w, we convert the common ElGamal ciphertext of
w and additive secret shares of x and cx to additive secret shares of wx:
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1. Use additive secret shares of x and cx to perform distributed ElGamal
decryption via “linear algebra in the exponent,” yielding multiplicative secret
shares of gwx. For ciphertext (gr, gcr+w), the multiplicative share of gwx is
(gr)−[share of cx](gcr+w)[share of x].

2. To return the computed shares of gwx back to additive shares of wx, the par-
ties execute a share conversion procedure referred to as “Distributed Discrete
Log,” wherein the parties output the distance (measured by powers of g) of
their share value gzb from the nearest point in an agreed-upon “distinguished
set” in G. Error occurs in this step if parties output with respect to different
distinguished points, which occurs if a distinguished point lies “between” the
parties’ two shares gz0 , gz1 = gz0+wx.
A tradeoff between computation and error can be made, by decreasing the
density of distinguished points δ, and scaling computation as 1/δ; the result-
ing error probability is roughly δM , where M is the maximal value of the
“payload” wx (corresponding to the “distance” between the parties’ shares).

By repeating the above 2 steps for w and for each c(t)w, the parties receive
additive secret shares of wx and of each c(t)wx. As a final step, the shares of
{c(t)wx}t∈[�] are combined by the appropriate powers-of-2 linear combination to
yield a single set of additive shares of cwx, yielding the desired invariant for the
new memory value wx.

Remark 1 (Removing the ElGamal circular security assumption). This can be
done by one of two methods: (1) a standard “leveled” approach, using a sequence
of secret keys (growing the HSS share size by the depth of computation); alterna-
tively, (2) by replacing ElGamal with the “BHHO” encryption scheme of Boneh,
Halevi, Hamburg, and Ostrovsky [4], which is provably circular secure based on
DDH. Roughly, BHHO ciphertexts are an O(λ)-element extension of ElGamal,
where the first elements are of the form gr

1, . . . , g
r
� (for fixed generators g1, . . . , g�

and encryption randomness r), and the final element contains the message as
gmsg masked by a subset-product of the previous elements as dictated by the
secret key s ∈ {0, 1}�. In particular, BHHO decryption follows a direct analog
of “linear algebra in the exponent” as in ElGamal, and thus can be leveraged in
the same manner within homomorphic share evaluation, where the new invariant
for each memory value x is holding additive secret shares of x as well as each
product stx, for the secret key bits st, t ∈ [�]. In addition, BHHO supports the
same form of plaintext homomorphism required for DEHE, as discussed above.
We refer the reader to [8] for a detailed formal treatment.

2.3 Secure Multiparty Computation

We consider two types of protocols for secure multiparty computation (MPC):
standard k-party MPC protocols and client-server protocols. We refer the reader
to [12,19] for standard definitions of MPC protocols and only highlight here the
aspects that are particularly relevant to this work.

In a standard MPC protocol there are k parties who interact with each other
in order to compute a function of their inputs. We say that such a protocol is



172 E. Boyle et al.

secure if it is computationally secure against a static, passive adversary who may
corrupt any strict subset of the parties. We use 2PC to refer to the case k = 2.

Client-server protocols. In a client-server protocol there are m clients and
k servers. Only the clients have inputs and get an output. Clients and servers
can communicate over secure point-to-point channels. We assume protocols in
the client-server model to take the following canonical form: in the first round
each client sends a message to each server. Then there may r ≥ 0 rounds of
interaction in which each server can send a message to each other server. We
assume the servers to be deterministic, so that every message sent by a server
in a given round is determined by the messages it received in previous rounds.
Finally, there is an output reconstruction round in which each server sends a
message to each client, and where each client computes an output by applying
a local decoding function to the k messages it received.

We specify such a client-server protocol by Π = (Encode,NextMsg,Decode),
where Encode(i, xi) is a randomized function mapping the input of Client i to the
k messages it sends in the first round, NextMsg(i,m) is a next message function
which determines the messages sent by Server i in the current round given the
messages m it received in previous rounds, and Decode(i,m) denote the output
of Client i given the messages m it received in the final round. Finally, we will
consider by default protocols for functionalities that deliver the same output
to all clients. In such a case, we can assume that each server sends the same
message to all clients, and Decode(i, ·) is the same for all i.

Security and robustness. We say that Π is a t-secure protocol for f if it is
secure against a static, passive (semi-honest) adversary who may corrupt any
set of parties that includes at most t servers and an arbitrary number of clients.
Security is defined by the existence of a simulator Sim(1λ, T, 1n, y) that given a
security parameter λ (in the computational case), a set T of corrupted parties, an
input length n, and an output y of f (in the case at least one client is corrupted)
outputs a simulated view of the parties in T . Simulation should be either perfect
or computational, depending on the type of security. We assume computational
(k − 1)-security by default, but will also consider protocols that offer perfect
t-security for smaller values of t. Note that any secure k-client k-server protocol
for f implies a standard k-party MPC for f by letting Party i simulate both
Client i and Server i.

A t-robust protocol for f is a t-secure protocol with the following additional
feature: the clients obtain the correct output of f even if t servers fail to send
messages. Equivalently, the function Decode outputs the correct output of f at
the end of the protocol execution even if up to t of its inputs are replaced by ⊥.

Succinct MPC. We will consider MPC protocols for a class of programs P,
where all parties are given a “program” P ∈ P (say, a boolean circuit, boolean
formula or branching program) as an input, and their running time should be
polynomial in the size of P . See Sect. 4 of [8] for a full definition. We refer to
an MPC protocol for P as being succinct if the communication complexity is



Group-Based Secure Computation 173

bounded by a fixed polynomial in the total length of inputs and outputs and the
security parameter, independently of the program size.

MPC with PKI setup. For both flavors of MPC protocols, we consider round
complexity with a public key infrastructure (PKI) setup. A PKI setup allows
a one-time global choice of parameters params ← ParamGen(1λ), followed by
independent choices of a key pair (ski, pki) ← KeyGen(1λ, params) by each party
Pi.4 We assume that each party knows the public keys of all parties with whom
it wants to interact as well as its own secret key. Note that the public keys are
generated independently of any inputs or even the number of other parties in
the system. For this reason we do not count the PKI setup towards the round
complexity of our protocols.

3 Black-Box Client-Server HSS and MPC

In order to use HSS or its public-key DEHE variant to obtain secure computation,
the secret sharing procedure (or DEHE key setup) must be performed in a secure
distributed fashion. Applying general-purpose secure computation to do so, as
suggested in [8], has poor concrete efficiency and requires non-black-box access
to the underlying group.

To avoid this, we introduce the notion of client-server HSS (Π,Eval), defined
as standard HSS, except that the input is distributed between multiple clients
and the centralized sharing algorithm Share is replaced by a distributed protocol
Π. That is, Π allows m clients, each holding a secret input wi, to share the joint
input (w1, . . . , wm) between the servers in a way that supports homomorphic
computations via Eval. We will be interested in constructing client-server HSS
(and DEHE) that only make a black-box access to the underlying group.

The security requirement is that the view of an adversary who corrupts a
subset of clients/servers, leaving at least one client and one server uncorrupted,
can be simulated given the inputs of corrupted clients, without knowledge of the
inputs of uncorrupted clients. A formal definition of client-server HSS is deferred
to the full version. A “multi-evaluation” version enables independent executions
of Eval without re-executing Π.

Intuitively, in our construction of the joint secret sharing protocol Π, each
client Ci will generate an independent ElGamal key pair (ci, ei), and the joint
keys of the system will correspond to c =

∑

ci ∈ Zq and e =
∏

ei ∈ G, leveraging
the key homomorphism of ElGamal. The primary challenge (mirroring the BGI
HSS) is how to generate encryptions of the products c(t)wi, where c(t) are the
bits of the joint secret key c =

∑

ci (where addition is in Zq). To solve this, we
leverage the fact that the BGI construction does not strictly require {0, 1} values
for this c(t), but rather can support computations on any sufficiently small values

4 We will only use params to specify a group for ElGamal encryption; hence, we can
let params be a common random string, or even pick params deterministically under
a suitable variant of DDH.



174 E. Boyle et al.

at the expense of greater computation during the share conversion procedure.
We will thus use the (possibly non-Boolean) values

∑

i c
(t)
i in the place of c(t).

We present the full construction and proof of client-server HSS in the full
version. In fact, we achieve the stronger primitive of multi-evaluation client-
server DEHE, which directly implies the former.

Remark 2 (ElGamal Circular Security vs. DDH). For simplicity, throughout
the present work we describe our constructions based on circular security of
ElGamal. However, in each case we may directly remove this circular security
assumption, as in [8], by either considering a leveled variant or replacing ElGa-
mal with a circular-secure variant due to BHHO [4], as described in Remark 1.
Our theorem statements implicitly apply this transformation directly.

Proposition 1 (Black-box client-server HSS/DEHE). There exists a
multi-evaluation client-server DEHE protocol (and thus also multi-evaluation
client-server HSS) for branching programs that makes a black-box access to any
DDH-hard group.

3.1 Black-Box Succinct Secure Computation

Given a black-box m-client 2-server multi-evaluation HSS (ΠHSS,EvalHSS) as
above, and an arbitrary general 2PC protocol ΠMPC, we obtain succinct secure
m-client 2-server computation for branching programs based on DDH which
makes only black-box use of the DDH group. Namely, to securely evaluate a
program P : (1) the clients and servers interact via ΠHSS to share the clients’
inputs, (2) the servers homomorphically evaluate λ copies of the desired program
P on the resulting shares, and then (3) run the generic protocol ΠMPC to securely
evaluate the most common combined output.

Note that the procedure for combining evaluated shares and taking the
majority (in Step 3) does not require any G group operations (only operations
over the output space Zβ), so that general secure computation of this function
is still black-box in the DDH group G.

Theorem 1 (Black-box succinct secure computation for branching pro-
grams). There exists a constant-round succinct m-client 2-server protocol ΠBB

for branching programs that makes only black-box access to any DDH-hard group.

Remark 3 (1/poly security tradeoff). The round complexity of ΠBB is given
by the round complexity HSS sharing protocol ΠHSS plus that of the generic
MPC to evaluate the reconstruction-majority. If one is willing to accept 1/poly
security, the MPC reconstruction phase can be replaced by a direct exchange of
the output shares computed in the homomorphic evaluation. The corresponding
simulator will follow the same simulation strategy, but will fail with inverse-
polynomial probability, in the event that a homomorphic evaluation error occurs.
The resulting protocol will have rounds(ΠHSS) + 1 rounds.

From here on, all of our protocols make a black-box access to the group
except for protocols that involve k ≥ 3 servers (in client server model) or parties
(in the MPC model).
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4 DDH-Based 2-Round Protocols over PKI

In this section we present a 2-round secure computation protocol in the PKI
setup model for a constant number of parties and arbitrary polynomial-size cir-
cuits, based on DDH. Our starting point will be the general secure client-server
protocol structure given in Theorem 1.

As discussed in the Introduction, our final 2-round solution removes the extra
rounds of interaction by means of three main technical steps, which we present in
the following three sections: (1) Constructing a Client-Server HSS whose secret
sharing protocol Π can be executed in a single round of interaction in the PKI
model; (2) Amplifying the resulting 2-round client-server protocol (Remark 3)
from 1/poly to full security using techniques in leakage resilience; and (3) Com-
piling from 2 to any constant number k of servers by iteratively emulating a
server’s computation securely by 2 separate servers.

4.1 Succinct 2-Server Protocol with 1/poly Security

We begin by constructing m-client 2-server HSS whose secret sharing protocol
Π takes place via a single message from each client within the PKI model.

Our construction takes a similar approach to the black-box client-server HSS
of the previous section, where each client owns an independent ElGamal key pair
(ci, ei). However, the approach does not quite work as is. The primary challenge
is in agreeing on common encryptions of the cross-products c

(t)
j wi for different

clients Ci, Cj . Recall that HSS evaluation requires not only that each party holds
an encryption of the same value, but in fact the exact same ciphertext.

This remains a problem even if we consider the setting with a public-key
infrastructure (PKI). Namely, even given all clients’ public keys, it is not clear
how in a single message of communication all clients can agree on the same
ciphertext of c

(t)
i wj under the joint key

∏

i ei when c
(t)
i and wj are known by

two different clients, and c
(t)
i and wj themselves must remain hidden.

This goal can be achieved, however, for the i, j “pairwise” combination of
public keys eiej , by including an encryption of c

(t)
i under key ei as part of an

expanded public key of client Ci. (Note that the value of c
(t)
i depends only on

Ci’s keys themselves and not on inputs or number of parties, hence this is a
valid contribution to the PKI setup.) Namely, given an encryption [[c(t)i ]]ci of
c
(t)
i (using notation from [8], as per Fig. 1), client Cj can use the homomorphic

properties of ElGamal to first shift this to an encryption under ei of the product
c
(t)
i wj , and then shift this ciphertext to an encryption of the same value under

key eiej by coordinate-wise multiplying in an encryption of 0 under key ej . (Note
that the second step is necessary in order to hide wj from client Ci.)

We demonstrate that generating these pairwise c
(t)
i wj ciphertexts under the

respective pairwise keys is enough to support full homomorphic evaluation capa-
bility. The new invariant maintained throughout homomorphic evaluation is that
for each memory variable ŷ, the correct value y of this variable is held as an addi-
tive secret sharing 〈y〉, and as a collection of m additive secret sharings 〈ciy〉,
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Fig. 1. Notation, pairing operations, and share conversion algorithm, as used in [8]. For
simplicity we describe the scheme with subtractive (and division) secret sharing instead
of converting back and forth between additive and subtractive (resp., multiplicative and
division) shares; see discussion in full version.

one for the key ci of each client i ∈ [m]. Whenever we wish to perform an RMS
multiplication using a ciphertext [[c(t)i wj ]]ci+cj , we can combine the correspond-
ing pair of secret shares 〈(ci + cj)y〉 = 〈ciy〉 + 〈cjy〉, and then proceed as usual
as if the secret key were the sum ci + cj .

As one additional change (which will be useful in future sections), we replace
the bit decomposition (c(t))t∈[�] of a key c with a more general, possibly random-
ized, representation (ĉ(t))t∈[�′] ← Decomp(c). The only requirements for correct-
ness are: (1) each value ĉ(t) has small magnitude; and (2) there exists a Zq-linear
reconstruction procedure Recomp for which c = Recomp((ĉ(t))t∈[�′]).5

The formal descriptions of (Π1r,Eval1r) are given in Figs. 2 and 3.

5 Note that bit decomposition can be expressed in this form, where Decomp(c) :=
(c(t))t∈[�] and Recomp((c(t))t∈[�]) :=

∑�
t=1 2t−1c(t).



Group-Based Secure Computation 177

Lemma 1 (One-Round Client-Server HSS). Assume hardness of DDH.
Then for any polynomial m = m(λ), there exists an m-client 2-server HSS
(Π1r,Eval1r) for which Π1r is a single round in the PKI model.

Proof. We defer the proof to the full version. We remark that a crucial property
for security is that any secret value owned by a client Ci is encrypted under
a combination of keys that includes his own key, ci (and distributed as a fresh
encryption due to re-randomization). Because of this, semantic security holds
for all honest-client values, by the key homomorphism properties of ElGamal.

Plugging in the client-server HSS (Π1r,Eval1r) to the framework of Theorem 1,
together with the round-savings-for-1/poly tradeoff described in Remark 3, we
directly obtain the following proposition.

Proposition 2 (Succinct 2-server protocol with 1/poly security for
branching programs). Assuming PKI setup and DDH, for any polynomial
p(·) and m = m(λ) there is a (succinct) 2-round m-client 2-server client-server
protocol for branching programs with 1/p(λ) security.

4.2 Amplifying Security via Leakage Resilience

The 1/poly security loss in the protocol of Sect. 4.1 is due to the noticeable prob-
ability of (input-dependent) error in the homomorphic evaluation of the client-
server HSS, revealed when evaluated output shares are directly exchanged. We
now develop techniques for addressing this information leakage without addi-
tional communication rounds.

Simulatable Las Vegas HSS. Toward this goal, we first consider and realize two
beneficial properties of a client-server HSS:

– Las Vegas correctness. In such an HSS scheme, servers can output a special
symbol ⊥ if they identify a possible error situation in the homomorphic eval-
uation. Las Vegas correctness guarantees that if both servers output a non-⊥
value then correct reconstruction will hold.

– Simulatability of errors. Unfortunately, it will be the case in constructions that
servers do not always agree on whether an error is possible to occur (otherwise
error could be removed completely by having each server recompute in such
situation), and learning whether the other server reaches ⊥ may reveal secret
information. To address this, we consider a further “simulatability” property
which formally characterizes what information is leaked through this process.

We construct simulatable Las Vegas HSS where the information leakage
depends locally on values of a small number of memory values within the compu-
tation of the RMS program and/or symbols ĉ(t) of the secret key representation.

In the following two subsections, we present our construction of a simulatable
Las Vegas HSS whose secret-sharing protocol is a single round given PKI, and
then use this construction as a tool together with leakage-resilient techniques to
obtain a (fully) secure 2-round 2-party computation protocol in the PKI model.
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Fig. 2. One-round m-client 2-server HSS secret sharing protocol Π1r. (Decomp,
Recomp) refer to a decomposition procedure with low-magnitude shares and linear
reconstruction (generalizing bit decomposition).
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Fig. 3. One-round m-client 2-server homomorphic evaluation algorithm Eval. Evalua-
tion maintains the invariant that for each memory value ŷi the servers hold: (1) additive
shares 〈yi〉, and (2) m sets of additive shares 〈cαyi〉, for the secret key cα of each of
the m clients. Here, i, j, k denote memory indices, t ∈ [�′] denotes an index of a key
representation, and α, γ ∈ [m] denote client ids.

Defining and Obtaining Simulatable Las Vegas HSS. We define a “simu-
latable” variant of client-server Las Vegas HSS (LV-HSS), where each server has
a secondary output in Eval that represents its knowledge about the other server’s
primary output. The secondary output can either be �, indicating that it is cer-
tain that the other server does not output ⊥, or a predicate Pred (represented
by a circuit) that specifies a function of the clients’ inputs w and randomness r
such that the other party outputs ⊥ if and only if Pred(w, r) = 1. We require
that the secondary output is � except with at most δ probability. Note that
Pred may depend on the program P being homomorphically evaluated.

Definition 2 (Simulatable Client-Server Las Vegas HSS). A (m-client,
2-server) Simulatable Client-Server Las Vegas HSS scheme for class of programs
P consists of a distributed protocol Π and PPT algorithm Eval, with syntax:
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– Π specifies an interactive protocol between m clients C1, . . . , Cm and two
servers S0, S1, where each client Ci begins with input wi, and in the end of exe-
cuting Π the servers S0, S1 output homomorphic secret shares share0, share1,
respectively, of the joint input (w1, . . . , wm).

– Eval has a second output z such that z is either the symbol � or a predicate
Pred : {0, 1}n → {0, 1} represented by a boolean circuit.
We denote by (share0, share1) ← Π(w; r, R0, R1) where w = (w1, . . . , wm) and
r = (r1, . . . , rm) the execution of Π in which each client i ∈ [m] uses input
wi and randomness ri, each server b ∈ {0, 1} uses randomness Rb, and the
output to each server Sb is shareb.

The pair (Π,Eval) should satisfy the correctness of Definition 1 (with respect to
the first output of Eval), and the following additional requirements:

– Security: There exists a PPT simulator Sim such that for any corrupted
set Corrupt ⊂ {C1, . . . , Cm} ∪ {S0, S1} of clients and servers for which at
least one server and one client are uncorrupted, for every polynomial p, and
sequence of input vectors wλ = (wλ

1 , . . . , wλ
m) ∈ ({0, 1}p(λ))m, it holds that

view(1λ,Corrupt,wλ)
c∼= Sim(1λ,Corrupt, {wi}Ci∈Corrupt, {|wi|}Ci �∈Corrupt).

– Error simulation: For every polynomial p there is a negligible ν such that
for every λ ∈ N, input w ∈ {0, 1}n, program P ∈ P with input length n,
error bound δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), then for every
b ∈ {0, 1},

Pr[(share0, share1) ← Π(w; r, R0, R1);
(yb, zb) ← Eval(b, shareb, P, δ, β) : zb 
= �] ≤ δ + ν(λ),

and for every circuit Pred and c ∈ {0, 1}:
Pr[(share0, share1) ← Π(w; r, R0, R1); (yb, zb) ← Eval(b, shareb, P, δ, β), b = 0, 1 :

(zc = Pred) ∧ (χ(y1−c = ⊥) �= Pred(w, r))] ≤ ν(λ),

where χ(y1−c = ⊥) evaluates to 1 if y1−c = ⊥ and evaluates to 0 otherwise.

Constructing simulatable Las Vegas HSS. Our construction of simulatable
(client-server) LV-HSS will be a variant of the 1-round Client-Server HSS con-
struction, with a modified core share-conversion sub-routine DistributedDLog
(called within ConvertShares), which enables each party to convert a multiplica-
tive share of gz ∈ G to an additive share of z ∈ Zq (for small z).

Following [8], the procedure DistributedDLog takes as input a share h ∈ G

and outputs the distance on the cycle generated by g ∈ G between h and the
first “distinguished” point h′ ∈ G such that a pseudo-random function (PRF)
outputs 0 on h′. Two invocations on inputs h and h ·gz for a small z result, with
good probability (over the initial choice of PRF seed), in outputs i and i − z for
some i ∈ Zq. In such case, the DistributedDLog procedure converts a difference
of small z in the cycle generated by g in G to the same difference over Z.
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Algorithm 1. Simulatable SLVDistribDLog
G,g(b, h, δ,M, φ)

1: Let DangerZone := {h, hg(−1)b , . . . , hg(−1)bM}.
2: Let SimDangerZone := {hg−M+1, . . . , h, . . . , hgM} and initialize BadValues ← ∅.
3: if ∃h′ ∈ SimDangerZone with φ(h′) = 0�log(2M/δ)� then Let BadValues be the set

of z ∈ [M ] for which {hg(−1)bz, hg(−1)bz+(−1)b−1
, . . . , hg(−1)bz+(−1)b−1M} contains

some h′ with φ(h′) = 0�log(2M/δ)�). If BadValues = ∅, set BadValues ← �.
4: end if
5: if ∃h′ ∈ DangerZone with φ(h′) = 0�log(2M/δ)� then Let i = ⊥.
6: else
7: Set h′ ← h, i ← 0. Let T = 2Mλ/δ.
8: while (φ(h′) �= 0�log(2M/δ)� and i < T ) do
9: h′ ← h′ · g, i ← i + 1.

10: end while
11: end if
12: Return (i,BadValues).

For any h, h · gz ∈ G, DistributedDLog yields an error in two cases:

1. When there exists a distinguished point h′ between the two inputs h, hgz: i.e.,
h′ = hgi for some i ∈ {0, . . . , z − 1}.

2. When there does not exist a distinguished point within a fixed polynomial-size
range after which the party will abort.

We construct a simulatable Las Vegas version of this sub-routine,
SLVDistribDLog, described in Algorithm 1. This algorithm has three primary
differences from the original procedure DistributedDLog.

1. For simplicity, the end-case abort threshold T is set large enough (2Mλ/δ)
so that the probability of abort over the choice of distinguished points (via
the PRF φ) is negligible. Recall the choice of T gives a tradeoff between error
probability and required computation (in [8], and in our complexity-optimized
versions in later sections, the threshold is set to a lower value).

2. Given an input share h ∈ G, maximum magnitude bound M , and “party
id” b ∈ {0, 1}, the algorithm will now output ⊥ if there is a distinguished
point h′ within M steps of h in the direction dictated by b. Recall that this
sub-routine will be called simultaneously by party P0 (the “behind” party)
holding share h and party P1 (the “ahead” party) holding share h · gz. In the
new procedure, P0 will output ⊥ if any of h · g, . . . , h · gM−1 is distinguished,
and P1 will output ⊥ if any of h · gz−M+1, . . . , h · gz−1 is distinguished. This
will guarantee (no matter the value of z ∈ [M ]) that if there is a distinguished
point between the two parties’ shares then both parties will output ⊥.
This zone of values is denoted DangerZone in SLVDistribDLog.

3. SLVDistribDLog now outputs two values: (1) a Zq-element (or ⊥) as usual,
corresponding to the output additive share, and (2) a subset BadValues ⊂ [M ]
of values z such that the other party 1 − b will have a distinguished point h′
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within his DangerZone (and output ⊥) if and only if he runs SLVDistribDLog

with input hg(−1)bz (i.e., our respective inputs h, g(−1)bz are multiplicative
shares of gz for some z ∈ BadValues).
Basically, for each possible share of the other party, we can directly determine
if it would result in ⊥, and record the corresponding secret shared value z ∈
[M ] if it would. In the notation of SLVDistribDLog, the window SimDangerZone
is of size 2M and captures all possible shifted windows of size M which could
be the DangerZone of the other party, depending on which of the M possible
values of z is the current offset between shares.

In the full version we present a construction of simulatable Las Vegas HSS,
using SLVDistribDLog as a sub-routine. Roughly: At every share conversion step
of homomorphic evaluation in EvalSLV, with some probability there will exist a
bad set of plaintext values z ∈ [M ] such that if the newly computed shared
value is equal to z then the other party would output ⊥. These sets of bad val-
ues are identified within SLVDistribDLog and are stored as BadValues’s within
Eval. A pair (k,BadValuesk) ∈ Z × 2[M ] is added to LeakageInfo if partial com-
putation value yk = z ∈ BadValues would lead to the other party outputting
⊥. This corresponds to a share conversion for some 〈yk〉. Similarly, a pair
((k, γ, t),BadValuesk,γ,t) ∈ (Z× [m]× [�])×2[M ] is added to LeakageInfo if partial
computation value ĉ

(t)
γ yk = z ∈ BadValuesk,γ,t would lead to the other party

outputting ⊥. This corresponds to a share conversion for some 〈ĉ(t)γ yk〉. Note
that the values yk are defined as a function of the program P and a given input
w . The choice of Pred incorporates the P dependency, and operates on input w
as well as a subset of (at most λ values of) ĉ(t).

Proposition 3. Assume hardness of DDH. Then for any polynomial m = m(λ),
the scheme (ΠSLV,EvalSLV) described above is an m-client 2-server simulatable
Las Vegas HSS, where ΠSLV is a single round in the PKI model. Moreover, with
overwhelming probability in λ over the randomness of Π, the predicate Pred
depends on at most λ intermediate variables of the evaluation of the RMS pro-
gram P and values ĉ(t).

Remark 4 (Asymmetric Las Vegas HSS). In some of our later applications (see
Sect. 5), it will be advantageous to have an asymmetric notion of Las Vegas
HSS, where only one of the two parties might output ⊥. In these applications,
simulatability will not be required. We can achieve such notion via a simple
tweak of our construction by simply removing the option of outputting ⊥ for
party P1 within the sub-routine SLVDistribDLog.

Secure 2-server Computation from Simulatable LV-HSS and Leakage
Resilience. We now combine the simulatable LV-HSS of Proposition 3, which
yields 2-server protocols with partial leakage, together with techniques for pro-
tecting computation against this leakage, to obtain a 2-round (m-client 2-server)
secure computation protocol (in the PKI model) with standard security.
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More concretely, the simulatable LV-HSS (ΠSLV,EvalSLV) guaranteed leakage
(with high probability) of up to λ intermediate RMS computation memory values
yi and secret-key representation values ĉ(t).

To protect against leakage of intermediate computation values, we can replace
homomorphic evaluation of the program P with evaluation of a new (“leakage-
resilient”) program that takes as input secret shares w

(1)
i , . . . , w

(k)
i of clients’

inputs wi, and emulates a k-server secure computation of the program (whose
NextMsg computation is in NC1) that recombines secret shares and evaluates P ,
while guaranteeing correctness and security against λ out of k server corruptions
(referred to as “λ-robustness”). Indeed, the λ leaked/erred intermediate compu-
tation values from HSS evaluation now correspond directly to revealing/losing
the view of up to λ (virtual) servers in the emulated protocol. For simplicity, we
use client-server protocols with no server-server communication, and so we can
even emulate servers by independent HSS executions. Such protocols are known
to exist for secure computation of low-degree polynomials [26]; in turn, this yields
a solution for secure computation of general circuits P by instead generating a
randomized encoding of the circuit P , computable in low degree [1,38].

To deal with the leakage on the values ĉ(t), we further refine the above app-
roach. It will no longer be sufficient to take the ĉ(t) directly as the bits of the
ElGamal secret key c (as in [8]), since this leakage will compromise the security
of the encryptions and thus the HSS. Instead, we take (ĉ(t))t∈[�′] ← Decomp(c)
defined by first additively secret sharing c over Zq into λ+1 shares, and then tak-
ing the �′ := (λ + 1)� bits of these separate values. Note that the ĉ(t) themselves
are bits (in particular, have small magnitude) and reconstruction is linear over
Zq (first perform powers-of-2 bit reconstruction, then add the resulting values).
But, further, any subset of λ values ĉ(t) are statistically independent of c.

Theorem 2 (Security amplification via virtual client-server protocols).
Let (ΠSLV,EvalSLV) be the one-round simulatable Las Vegas client-server HSS
from Proposition 3, and let (Encode,NextMsg,Decode) be a λ-robust client-
server secure computation protocol with no server-server communication with
NextMsg ∈ NC1 (see Sect. 2.3). Then for any polynomial m = m(λ), the proto-
col Π given in Construction 3 is a secure m-client 2-server protocol for general
circuits that executes in 2 rounds in the PKI model.

Construction 3 (Secure 2-round m-client 2-server protocol (with
PKI)).
Input: Each client begins with input wi.
Tools:

– (“Virtual”) 2λ-robust m-client k-server single-round secure computation pro-
tocol (Encode,NextMsg,Decode), with no server-server interaction (i.e., server
computation is a single execution of NextMsg ∈ NC1).

– One-round simulatable LV-HSS (ΠSLV,EvalSLV) from Proposition 3.



184 E. Boyle et al.

Protocol:

0. PKI: The new PKI consists of k independent copies of the PKI distribution
from the simulatable LV-HSS; denote each copy by PKI(j).

1. Each client Ci encodes his input as (msg
(1)
i , . . . ,msg

(k)
i ) ← Encode(i, wi).

2. Communication Round 1: In k parallel executions (one for each virtual
server in the underlying secure computation protocol), using fresh random-
ness, the clients each send the corresponding single message as dictated by
the one-round sharing protocol ΠSLV, where in the j’th execution (j ∈ [k]),
client Ci uses PKI(j) and input msg

(j)
i .

3. As a result of the previous step, each (real) HSS server Sb learns k shares
share

(1)
b , . . . , share

(k)
b , one for each virtual server in the secure computation

protocol, where share
(j)
b is one share of all clients’ messages to virtual server j.

4. Each server Sb performs k independent homomorphic evaluations: For
each virtual server j ∈ [k], let (output(j)b , z

(j)
b ) = EvalSLV

G,g (b, share(j)b ,
NextMsg, 1/2kλ), with allowable error probability 1/2kλ. Let outputb =
(output(1)b , . . . , output

(k)
b ), i.e. Sb’s secret share (with possible ⊥ symbols) of

the encoded output of the client-server protocol.
5. Communication Round 2: Each server b ∈ {0, 1} sends his evaluated

share, outputb, to all clients.
6. Each client outputs Decode(output0+output1): i.e., recombining the HSS out-

put shares (where ⊥ + h is defined as ⊥) and running the decoding procedure
of the client-server protocol on the resulting output.

Proof (Sketch). We defer the formal security proof to the full version and
briefly outline the simulator Sim2r(1λ, {wi}Ci∈Corrupt, y), where Corrupt ⊂
{C1, . . . , Cm} ∪ {S0, S1} is the set of corrupted clients/servers, and y is the
output P (w1, . . . , wm) received by the ideal functionality.

Assume wlog that Sb ∈ Corrupt. Sim2r simulates the HSS shares sent to Sb in
the first round on behalf of each honest client Ci, by generating an HSS sharing
with respect to PKI(j) of 0 for each virtual server j ∈ [k]. For j ∈ [k], Sim2r

computes (output(j)b , z
(j)
b ) = EvalSLV

G,g (b, share(j)b ,NextMsg, 1/2kλ) on Sb’s shares.

Let CorruptVirtS = {j ∈ [k] : z
(j)
b = Pred

(j)
b 
= �} be the virtual servers j for

which output
(j)
1−b might be ⊥ (thus leaking information). By Proposition 3, with

overwhelming probability |CorruptVirt| ≤ λ (by correctness and independence of
executions) and each Pred

(j)
b depends on the input and at most λ values of ĉ(t)

for the key c within the corresponding j’th HSS execution.
Sim2r then runs the simulator for the underlying (virtual) m-client k-server

protocol, for corrupted clients CorruptVirtC = Corrupt∩{C1, . . . , Cm} and corrupted
(virtual) servers CorruptVirtS , for corrupted inputs {wi}Ci∈Corrupt. The resulting
simulated viewVirt contains, in particular, the messages {msg

(j)
i }Ci /∈Corrupt received

by each corrupt virtual server j ∈ CorruptVirtS from honest clients Ci, and all (pre-
Decode) values output(1), . . . , output(k).

For j ∈ [k], Sim2r simulates the output share output
(j)
1−b as follows. Sample λ

random bits to serve as the bits (ĉ(t))t∈[λ] of the jth key that Pred
(j)
b depends
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on (if z
(j)
b = Pred

(j)
b 
= �). If j /∈ CorruptVirtS , or if Pred(j)b (msg(j), (ĉ(t))t∈[λ]) = 0,

then output
(j)
1−b = output(j) − output

(j)
b . Otherwise, output(j)1−b = ⊥.

Theorem 5 is an application of the above, obtained by using the virtual client-
server protocol of [26] for evaluating low-degree polynomials. Our final result
follows from generic transformations using low-degree randomized encodings [1].

Theorem 4 (MPC for low-degree polynomials [26]). For any t,m, d ∈ N

there is a 2-round, m-client, k-server, perfectly t-robust protocol with no server-
server interaction, for the class of degree-d polynomials over F2, where k =
O(dt). When evaluating a vector of � polynomials on n inputs, the computation
of each server can be implemented by a circuit of depth O(log(n + � + k)).

Theorem 5 (Succinct 2-server protocol for low-degree polynomials).
Assuming PKI setup and DDH, there is a succinct 2-round 2-server client-server
protocol for evaluating degree-d polynomials, for any constant d.

Corollary 1 (2-server protocol for circuits). Assuming PKI setup and
DDH, there is a (non-succinct) 2-round 2-server client-server protocol for
circuits.

Note that while this solution yields 2 rounds of communication, the amount
of information communicated is greater than the program size. In the full ver-
sion, we describe a more complex solution achieving succinct 2-round secure
computation for the class of NC1 programs.

4.3 From 2 to k Servers

As the final step, we compile the 2-round m-client 2-server protocol into a 2-
round m-client k-server protocol, for any constant k ∈ O(1). This is achieved
by iteratively emulating the role of one server by two servers via the original 2-
server protocol. A similar notion of party emulation has appeared within many
contexts in the literature (e.g., [10,23]). In each step of this process, the next-
message-function computed by the emulated server is realized by using a 2-round
client-server protocol involving the m clients and the 2 emulating servers. This
increases the number of servers by 1, while still maintaining security as long
as only a strict subset of the servers are corrupted. The communication and
computation complexity of the protocol increase by a factor of poly(λ) in each
such step. Repeating k − 1 times, we get the following.

Theorem 6 (2-round k-server client-server protocol). Assume PKI setup
and DDH. Then for any constant k ≥ 2 there is a 2-round k-server client-server
protocol (alternatively, a 2-round k-party MPC protocol) for circuits.
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5 Optimizing Communication

In the previous section, we eliminated the inverse polynomial error and leakage
of HSS by using secret-sharing of the inputs and applying virtual client-server
MPC protocols to compute on these shares. In this section we describe a simpler
alternative approach that has better asymptotic and concrete communication
complexity (and better computational complexity as well) at the cost of requiring
an additional round of interaction. In contrast to the previous approach, the
current approach applies only to the case of 2PC and does not apply to the
more general case of client-server MPC.

The high level idea is as follows. Denote the two parties by P0, P1 and assume
that the functionality f delivers an output only to P1. We rely on an asymmetric
Las-Vegas HSS (see Definition 1) where the output of Eval is guaranteed to be
correct (i.e., the two output shares add up to the correct output) unless P1

outputs ⊥, where the latter occurs with at most δ probability. The idea is to
have P1 use

(

m
m−k

)

-bit-oblivious-transfer (denoted by
(

m
−k

)

-OT) in order to block
itself from the k output shares of P0 that correspond to the positions in which
it outputs ⊥. Note that the m−k selected output shares can be simulated given
the correct output and the view of P1, and thus they do not leak any additional
information about the input. To make up for the k lost output bits, we use an
erasure code to encode the output. Since we can make the number of erasures
small, we only need to introduce a small amount of redundancy to the output.

Punctured OT. A key observation is that by setting the error parameter δ to
be sufficiently small, we can ensure that the

(

m
−k

)

-OT parameters are such that
k is much smaller than m. We refer to OT in this parameter regime as punctured
OT and show how to implement it very efficiently by using a puncturable PRF.

A puncturable PRF [37] is a standard PRF family FK equipped with a punc-
turing algorithm Puncture that given a set of points X = {x, . . . , xk} ⊆ {0, 1}d

produces an evaluation key KX that allows an evaluation of the PRF on
all inputs except those in X. Moreover, the PRF values on the inputs in X
should be indistinguishable from random given KX . See full version for a for-
mal definition. As was shown in [5,9,29], the GGM construction [20] of PRFs
from a length-doubling PRG can be used to obtain a puncturable PRF for
X = {x1, . . . , xk} ⊆ {0, 1}d with key size |KX | = O(λkd). The evaluation of
F at all points given K or at all non-punctured point given KX requires O(2d)
invocations of a PRG G : {0, 1}λ → {0, 1}2λ. The circuit size required for gen-
erating KX given a λ-bit K and X is kd · poly(λ).

A protocol for
(

m
−k

)

-OT can be implemented using a puncturable PRF and
any general-purpose 2PC protocol (e.g., Yao’s protocol [31,38]) in the following
natural way.

– Sender’s input: s ∈ {0, 1}m, where every i ∈ [m] is represented by a d-bit
string.

– Receiver’s input: X ⊂ [m] where |X| = k.
– Given primitives: a puncturable PRF (FK ,Puncture), an ideal 2PC oracle Π.
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1. Invoke Π on the randomized functionality that, on Receiver input X, delivers
a random PRF key K to Sender and constrained PRF key KX to Receiver.

2. Sender computes and sends s′ ∈ {0, 1}m where s′
i = si ⊕ FK(i).

3. Receiver outputs (i, s′ ⊕ FKX
(i)) for i ∈ [m] \ X.

Analysis. Correctness is straightforward. Security follows from the fact that
the values of FK on all inputs i ∈ [m] \ X are pseudorandom given KX . Thus,
a simulator can simulate the receiver’s view given the receiver’s output by just
running the protocol with an arbitrary s that is consistent with the output.
Plugging in Yao’s protocol6 for implementing Π, we get the following theorem.

Theorem 7 (Punctured OT via puncturable PRF). Suppose a
(

2
1

)

-OT
protocol exists. Then there is a protocol for

(

m
−k

)

-OT with m + k · log m · poly(λ)
bits of communication, where the computational complexity consists of O(m)
invocations of a length-doubling PRG G : {0, 1}λ → {0, 1}2λ and poly(λ) addi-
tional computation.

We turn to describe our communication-efficient technique for eliminating
the inverse polynomial error of HSS. In addition to punctured OT, our second
ingredient is a simple randomized erasure correcting code.

Lemma 2 (Erasure correcting code). There is a randomized linear encod-
ing function Cr : {0, 1}m → {0, 1}m+m/λ that can correct a 1/λ2 rate of random
erasures with all but m · negl(λ) probability.

Proof. A message x ∈ {0, 1}m is encoded by (x, y1, . . . , ym/λ) where yi is the
parity of a random subset of λ2/2 − 1 bits of x. By a Chernoff bound, except
with m · negl(λ) probability, every bit of x is involved in at least λ/3 sets, where
every set (including the corresponding parity check) contains an erasure with at
most λ2/2

λ2 = 1/2 error probability. Hence, for any fixed xi, the probability that
all sets involving xi contain an erasure is at most 2−λ/3. Hence, the probability
that some xi cannot be recovered is bounded by m · negl(λ) as required. ��

Finally, we combine punctured OT and erasure codes to give a succinct 2PC
protocol for branching programs. This protocol avoids the use of virtual client-
server MPC and can thus achieve better communication rate and computational
complexity than its counterpart from Sect. 4.2.

The protocol is similar to the protocol for branching programs from [8] (cf.
Theorem 4.5 in full version), which evaluates m branching programs on inputs
of total length n using n + m · poly(λ) bits of communication, except for the
following differences. First, instead of repeating each output bit λ times, the
functionality is modified so that the outputs are encoded using the randomized
erasure code of Lemma 2 (where a PRG is used to pick the randomness r with

6 We do not attempt here to optimize the concrete efficiency of this secure com-
putation. Given the current speed of secure 2PC protocols for AES, even a naive
implementation is expected to be quite efficient.



188 E. Boyle et al.

sublinear communication). Second, instead of applying a standard DEHE to
compute shares of the output encoding, we use a (multi-evaluation) asymmetric
Las Vegas variant in which P1 outputs ⊥ whenever there is a risk of error. We set
the error parameter δ to be a sufficiently small 1/poly(λ) so that: (1) except with
negl(λ) probability, the number of ⊥ outputs is bounded by k = m/λ2, and (2)
the communication complexity of

(

m′

−k

)

-OT, where m′ = m + m/λ, is m + o(m).
Finally, P1 uses punctured OT to retrieve the output shares of P0 in the positions
where it did not output ⊥. Note that, by the definition of asymmetric Las Vegas
HSS, the shares obtained from P0 are determined by the shares of P1 and the
output (except with negligible probability), and hence they can be simulated
given the output.

The above protocol gives rise to the following theorem.

Theorem 8 (Optimized 2PC for branching programs). Assuming DDH,
there is a constant-round secure 2-party protocol for evaluating any sequence
of m branching programs of size S on inputs (x0, x1) of total length n, using
n+(1+o(1))m+poly(λ) bits of communication and poly(λ) ·m ·S2 computation.

As a corollary, we get the following near-optimal protocol for OT.

Corollary 2 (Constant-rate bit-OT). Assuming DDH, there is a constant-
round secure 2-party protocol for evaluating n instances of bit-OT with (4 +
o(1))n + poly(λ) bits of communication and poly(λ) · n computation.

Combining Corollary 2 with the GMW protocol for secure circuit evaluation
using bit-OT [21], we get the following corollary.

Corollary 3 (MPC for general circuits). Assuming DDH, there is a secure
2-party protocol for evaluating any circuit C of size S with O(S) + poly(λ) bits
of communication.

This should be compared with a similar protocol from the full version of [8]
(cf. Theorem 4.10) in which the communication complexity has an additional
(depth + output) · poly(λ) term.

6 Optimizing Computation

A bottleneck of the performance of the HSS scheme in [8] and the schemes in
this paper is the computation time of homomorphically evaluating RMS multi-
plications. The time required for the multiplication is almost entirely the result
of � + 1 executions of ConvertShares and 2(� + 1) executions of MultShares.

We present three optimizations of these procedures. The first optimizes the
worst case asymptotic running time of the share conversion algorithm by a
log(1/δ) factor, but does not improve the expected running time. The second
optimization, which is incompatible with the first, optimizes the concrete run-
ning time of the conversion. The third balances the computational complexity of
ConvertShares and MultShares to reduce the overall running time of evaluating
an RMS multiplication. The first and third of these optimizations (discussed in
greater detail in the Introduction) are deferred to the full version of the paper.
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6.1 Optimizing the Conversion

A straightforward implementation of the share conversion step in Fig. 1 for a
group element h ∈ G requires computing the sequence h, hg,. . . , hgx for a gener-
ator g, computing a pseudo-random function on each element and choosing the
first distinguished point (or alternatively the minimal value). A natural strategy
for this implementation is to choose the group G to be a group over elliptic
curves, since computing the sequence h, hg, . . . , hgx in such groups is more effi-
cient than in other DDH groups.

We explore an alternative implementation to the conversion step which tests
whether a sub-sequence of elements hgi, . . . , hgi+j includes a distinguished point
without explicitly computing each element in the sub-sequence. To achieve this
idea we work over groups Z

∗
p with specific structure rather than over an EC

group. In addition, this approach requires the distinguished point version of share
conversion rather than the min-hash method (described in the full version).

The first idea is to decide if an element hgi ∈ G is distinguished without using
a PRF φ. We say that an element h′ is distinguished if the representation of h′

has d = �log(1/δ) leading zeroes, i.e. h′ < 2�log p�−d. We conjecture that if h ∈ G

is chosen randomly then the sequence h, . . . , hgx has a distinguished point with
essentially the same probability as that of the sequence φ(h), . . . , φ(hgx). Observe
that h can be chosen randomly since the two servers can shift their respective
elements h0, h1 by a shared random element r maintaining the difference between
the elements.

The second idea is to consider pseudo-Mersenne primes, i.e. primes of the
form p = 2k − γ for small γ, in which the element 2 generates a large sub-group.
We refer to such primes as conversion friendly. In this setting, 2h mod p can be
computed by shifting the bit representation of h one bit to the left, removing the
most significant bit and adding γ to the result if the removed bit is 1. Therefore,
computing the next element of the sequence h, . . . , hgx involves little more than
a comparison of the bit, an addition, and testing whether the d most significant
bits of the result are zero.

Further savings are possible by taking advantage of hardware architectures
that enable fast multiplication of w-bit words. If h = a12n−w + a0 for 0 ≤ a0 <
2n−w, 0 ≤ a1 < 2w then 2wh ≡ a02w + a1γ mod p. Note that if γ << 2w then
computing 2wh requires one multiplication of words and with high probability
one addition of words.

It is possible to test if any of the w elements h, 2h mod p, . . . , 2w−1h mod p
are distinguished by checking whether the most significant 2w bits of h include
the substring 0d. That can be done efficiently in standard computer architectures
by dividing the 2w bits into strips of length d/2 and checking whether any of
the strips is 0d/2. If none of them are then the sequence h, 2h, . . . , 2w−1h does
not contain a distinguished point and the next element to be examined is 2wh.
An interesting property of the algorithm is that it is almost independent of the
size of the underlying group.

A class of conversion-friendly primes which are relatively common are pseudo-
Mersenne primes p which are safe, i.e. p = 2q +1 for a prime q and which satisfy
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Table 1. Performance figures for the conversion step over a prime p = 2n − γ with d
zero bits determining a distinguished point.

Word size Multiplications
per step

Additions
per step

Masking
operations per
step

No. of Conversion
steps per second

32 bits 0.031 0.031 0.22 1.6 billion

w bits 1
w

1
w

+ γ
2w

2
w

(
⌈

w
d

⌉
+ d

2d/2
) –

p ≡ ±1 mod 8. For such primes the sub-group G that includes all the quadratic
residues modulo p is of size q. Since q is prime, every element in G generates the
sub-group and one of these elements is 2 since p ≡ ±1 mod 8. Examples for such
conversion-friendly primes one can use include 21280 −7243217, 21536 −11510609
and 22048 − 1942289.

Assessing the security of DDH over these primes is difficult due to the scarcity
of published attacks. Theoretically, the best attack against DDH over pseudo-
Mersenne primes is using the Special Number Field Sieve (SNFS) [35] to com-
pute discrete logarithms modulo the prime. The SNFS has been used to factor
Mersenne numbers, with the current record being 21199 − 1 [30]. To account for
the speedup offered by SNFS, the bit-length of such special primes needs to be
roughly 50% bigger than that of a general prime to provide a similar level of
security. For instance, a 2048-bit special p is roughly comparable to a 1340-bit
general p [16].

Table 1 presents the average number of basic operations required for one
conversion step, i.e. computing 2h mod p from h and checking whether h is dis-
tinguished, and the number of conversion steps per second. The figures in the
first row of the table are based on an implementation on a commodity laptop
(Dell Latitude 3550, with Intel i7-5500 CPU, running single-threaded at 2.4 GHz
and with 8 GByte of RAM) and can be significantly improved given a dedicated
hardware and software platform. The implementation used 32-bit words together
with multiplications of two 32 bit operands into a 64 bit product. The second
row is a general analysis for an architecture with w bit words. The basic oper-
ations which are measured in the table are word-sized multiplication, addition
and bit level operations (bit-by-bit AND operations and shifts).

The table makes it clear that the conversion step requires on average well
below a single instruction, e.g. 0.25 instructions per step in the example in the
first row. In the alternative approach for computing a conversion step, each such
step includes a group operation over an elliptic curve. Based on [6] Table 3, the
fastest elliptic curve multiplication by a scalar for a relatively small, 254-bit,
curve requires 196,000 machine instructions (on a somewhat stronger machine
than what we used). A multiplication requires on average 254 · (3/2) group oper-
ations, which means that each group operation, and each conversion, requires
at least 2000 times the number of instructions of a conversion step implemented
via conversion-friendly primes.
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Abstract. The round complexity of secure computation has been a fun-
damental problem in cryptography. Katz and Ostrovsky proved that 5
rounds are both necessary and sufficient for secure computation in the
stand alone setting, thus resolving the exact round complexity of stand-
alone secure computation.

In contrast, round complexity of secure computation in the concurrent
setting, where several protocols may run simultaneously, is poorly under-
stood. Since standard polynomial time simulation is impossible in the
concurrent setting, alternative security notions have been proposed, e.g.,
super-polynomial simulation (SPS). While SPS security can be achieved
in constant rounds, the actual constant (> 20) is far from optimal.

In this work, we take the first steps towards studying the exact
round complexity of concurrent secure computation. We focus on the
two party case and present a new secure computation protocol that
achieves SPS security under concurrent self-composition. Our proto-
col has 5 rounds assuming quasi-polynomially-hard injective one-way
functions (or 7 rounds assuming standard polynomially-hard collision-
resistant hash functions). We also require other standard assumptions,
specifically trapdoor OWPs and lossy TDFs. This matches the rounds
for standalone secure computation.

More specifically, our security proof presents a polynomial time reduc-
tion from SPS security to 3-round public-coin non-malleable commit-
ments with appropriate extractability properties. Such commitments are
known based on quasi-polynomially-hard injective OWFs. (The reduc-
tion also works with a special 6-round non-malleable commitment to
yield the 7-round result under CRHFs.)
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1 Introduction

Secure computation protocols are protocols that enable mutually distrustful par-
ties to compute a functionality without compromising the correctness of the out-
puts and the privacy of their inputs. Secure computation protocols have been
studied in both two-party case and multi-party case, and it was shown that
secure computation protocols for any functionality can be constructed in both
cases in a model with malicious adversaries and a dishonest majority [12,36].

The security of secure computation protocols is defined by using simulation
paradigm. Specifically, to define the security of a protocol π for computing a
function f , we consider the real world, where the parties compute f by exe-
cuting π, and the ideal world, where the parties compute f by interacting with
a trusted third party. Then, we define the security by requiring that for any
adversary in the real world there exists a simulator in the ideal world such that
whatever an adversary can do in the real world can be “simulated” in the ideal
world by the simulator.
Round complexity of secure computation. A fundamental question in this
area is to understand how many rounds are necessary and sufficient for securely
computing general functionalities. Katz and Ostrovsky [18] proved that five
rounds are both necessary and sufficient for secure two-party computation in
the standalone setting where there is only one protocol execution. These results
were further extended in [11,30] w.r.t. black-box constructions and simultane-
ous message channels. These results completely settle the round complexity of
two-party computation in the standalone setting.
The concurrent setting. While standalone security is sufficient for many appli-
cations, other situations (such as protocol execution over the Internet) require
stronger notions of security. This setting where there may be many protocols
executions at the same time, is called the concurrent setting. Unfortunately, it
is known that stand-alone security does not necessarily imply security in the
concurrent setting [8].

Secure computation in the concurrent setting is more challenging to define
than the standalone setting. Canetti [4] proposed the notion of universally com-
posable (UC) security where protocols maintain their strong simulation based
security guarantees even in the presence of other arbitrary protocols. However,
achieving UC-security in the plain model turned out to be impossible [4,5]. More-
over, Lindell [25,26] proved that even in the special case where only instantiations
of the same protocol are allowed, standard notion of polynomial-time simulation
is impossible to achieve. (This is called “self composition” and corresponds to
the setting we are interested in.)

These strong negative results motivated the study of alternative notions for
concurrent secure computation, such as super-polynomial-time simulation (SPS)
security (and the closely related angel-based security), input-indistinguishable
computation, bounded concurrent composition, and multiple ideal-query model
[2,6,10,13,14,19,20,23,28,29,31–33,35].
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In this work we focus on SPS security in the two-party setting. In SPS secu-
rity, the simulator is allowed to run in super-polynomial time; thus, SPS security
guarantees that whatever an adversary can do in the real world can also be done
in the ideal world in super-polynomial time. Although allowing the simulator
to run in super-polynomial time weakens the security guarantee, SPS security
still guarantees meaningful security for many functionalities. Furthermore, it was
shown that under SPS security, concurrent self-composition can be achieved in
the plain model. (In what follows, by SPS security we mean SPS-security under
concurrent self-composition.)

SPS security has been extensively studied and improved upon in the litera-
ture. Prabhakaran and Sahai [35] provided the initial positive result for SPS secu-
rity. Although, these early results [28,35] relied on non-standard/subexponential-
time assumptions, Canetti, Lin and Pass achieved this (actually, the angel-based)
notion under standard polynomial-time assumptions [6] in a polynomial number
of rounds. Soon after, Garg et al. [10] presented a constant round SPS-secure
protocol, thus resolving the asymptotic round-complexity of SPS-secure compu-
tation (under polynomially-hard assumptions).
Exact round complexity of SPS-secure computation. Although the SPS-
secure protocol of [10] has asymptotically constant rounds, its exact round com-
plexity is actually quite large (more than 20). In contrast, the standalone setting
only requires five rounds [18]. Is this gap necessary? What is the exact round
complexity of SPS-secure protocols for computing general functionalities? To the
best of our knowledge, these questions have not been explored before.

1.1 Our Results

In this work, we take the first steps towards studying the exact round com-
plexity of concurrent secure computation. We present a new secure computation
protocol whose round complexity matches that of the stand alone setting. More
specifically, we present a five-round SPS-secure two-party computation protocol.
Our protocol guarantees security under concurrent self-composition.

We are interested in basing the security of our protocol on standard,
polynomially-hard, assumptions. We do this by providing a polynomial-time
reduction that reduces the SPS-security of our protocol to that of 3-round public-
coin non-malleable commitments with some natural extractability properties. In
particular, we want 3-round non-malleable commitments that are extractable
without over-extraction [19].

One caveat is that such non-malleable commitments, at present, are only
known to exist under quasi-polynomially-hard injective OWFs [16].1 Con-
sequently, we only achieve a result under quasi-polynomially hard injective
OWFs. We remark that even under super-polynomially hard assumptions,

1 The 3-round non-malleable commitment of [16] was claimed to be secure under
polynomially-hard injective OWFs; however, the public-coin variant of their scheme
is proven secure only under quasi-polynomially-hard injective OWFs (see the latest
ePrint version [15]).
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previous SPS-secure protocols have quite large round complexity (more than 20)
[2,14,20,24,33].

While existence of quasi-polynomially-hard injective OWFs is considered a
standard assumption, it would be interesting to know if we can rely only on
polynomially-hard assumptions. Towards this goal, we realize that our construc-
tion actually works with a special 6-round non-malleable commitment scheme
based on (polynomially-hard) CRHFs. This gives us a 7-round SPS-secure
protocol for general functionalities where all underlying assumptions are only
polynomially-hard.

1.2 Overview of Techniques

Our overall strategy is to apply the techniques of the constant-round SPS-secure
protocol of Garg et al. [10] to the five-round secure two-party computation pro-
tocol of Katz and Ostrovsky [18]. In this subsection, we first recall the techniques
of Garg et al. and explain the difficulty in applying the techniques of Garg et al.
to the protocol of Katz and Ostrovsky. After that, we give an overview of our
techniques.
SPS protocol of Garg et al. Like other SPS protocols, the concurrently
SPS-secure multi-party computation protocol of Garg et al. [10] has “trapdoor
secrets” that enable simulation,2 and the simulator obtains the trapdoor secrets
by breaking cryptographic primitives by brute-force in super-polynomial time.
The main technical challenge in the proof of security is to design a polynomial-
time reduction that reduces the security of the protocol to the security of
underlying cryptographic primitives. In fact, since the simulator runs in super-
polynomial time, a naive approach that having the reduction emulate the simu-
lator internally can only result in super-polynomial-time reductions.

To obtain a polynomial-time reduction in the proof of security, Garg et al.
consider a hybrid experiment in which the brute-force extraction of the trap-
door secrets is replaced with polynomial-time rewinding extraction. With such
a hybrid experiment, Garg et al. designs a security proof roughly as follows.

1. First, the indistinguishability between the real and the hybrid experiment
is reduced to the security of various protocol components. The reductions
run in polynomial time since both the real and the hybrid experiment run in
polynomial time.

2. Next, the indistinguishability between the hybrid and the ideal experiment is
shown without relying on any cryptographic assumptions. No cryptographic
assumption is needed to show this indistinguishability since the two experi-
ments differ only in how the trapdoor secrets are extracted and anyway the
same trapdoor secrets are extracted in both experiments except with negligi-
ble probability.

2 Concretely, the trapdoor secrets enable the simulator to give “proofs of correct
behavior” while executing the protocol incorrectly.
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However, since the protocol is executed in the concurrent setting, the use of
rewinding extraction causes problems.

The first problem is that rewinding can become recursive in the concur-
rent setting, which often leads to the necessity of large round complexity of
the protocol. Recall that rewinding extraction typically requires the creation of
“look-ahead threads,” i.e., rewinding the adversary and interacting with it again
from an earlier point of the protocol. If the simulator is required to do simu-
lation even on the look-ahead threads, the rewinding can become recursive—if
the adversary starts new sessions on look-ahead threads, the simulator need to
extract the trapdoor secrets from these newly started sessions, and thus, need to
rewind the adversary recursively. A key observation by Garg et al. is that, since
the look-ahead threads are created only in the hybrid experiment, the simulator
does not need to do “full simulation” on the look-ahead threads. More precisely,
Garg et al. observe that in the hybrid experiment, the simulator can use the
secret inputs of the honest party to execute newly started sessions honestly on
the look-ahead threads, by which the simulator can avoid rewinding the adver-
sary recursively. (The secret inputs of the honest parties are used only on the
look-ahead threads, and they are never used on the “main thread.”)

The second problem is that the components of the protocol can be rewound
in the hybrid experiment due to the rewinding extraction of the trapdoor secrets,
which makes it hard to show the indistinguishability between the real and the
hybrid experiment. Specifically, since any component in a session can be rewound
due to the rewinding extraction of other sessions, and the security of a crypto-
graphic primitive is in general not preserved when it is rewound, it is not clear
if the indistinguishability of the real and the hybrid experiment can really be
reduced to the security of the components. Garg et al. solved this problem by
carefully designing their protocol and a sequence of intermediate hybrid experi-
ments. Specifically:

1. They define the sequence of intermediate hybrids between the real and the
hybrid experiment in such a way that the concurrent sessions are switched
from honestly executed ones to simulated ones session by session in the order
of their special messages—namely, the messages such that the look-ahead
threads are created from the rounds of these messages.3 Switching in this
order guarantees that in each intermediate hybrid, rewinding occurs only
until special message of the session that has just been switched to simulation.

2. Then, they design the protocol in such a way that all the “rewinding-insecure”
components (namely, the components whose security is not preserved when
they are rewound) start only after special message of the protocol. A key
point is that when the protocol is designed in this way, it is guaranteed that
in an intermediate hybrid where a session is switched to simulation (and
therefore rewinding occurs only until special message of this session), all the
rewinding-insecure components in this session are not rewound and therefore
their security can be used in the proof of indistinguishability.

3 In the actual security proof in [10], the sessions are switched to honestly executed
ones in a more complex manner since each session has two special messages.
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Applying techniques of Garg et al. to Katz-Ostrovsky two-party pro-
tocol. Unfortunately, the techniques of Garg et al. cannot be applied on the
round-optimal two-party secure computation protocol of Katz and Ostrovsky
(KO) [18] in a straightforward manner.

The main difficulty is that in the KO protocol, the techniques of Garg et al.
is not helpful to solve the second problem described above, i.e., the problem that
the components of the protocol can be rewound in the hybrid experiment. Recall
that Garg et al. solve this problem by designing their protocol in such a way that
the rewinding-insecure components start only after special message. In the KO
protocol, however, some components are executed in parallel to compress the
round complexity and therefore a rewinding-insecure component starts before
special message.

To see the difficulty in more details, let us first recall the KO protocol. (In
this overview, we concentrate on the setting where only one party obtains the
output. In this setting, the KO protocol has only four rounds.) Roughly speaking,
the KO protocol is a semi-honest secure two-party computation protocol that
is augmented with proofs of correct behavior. Since the protocol has only four
rounds, these proofs are executed somewhat in parallel: One party, P1, gives a
proof in Rounds 1–3 and the other party, P2, gives in Rounds 1–4. Also, these
proofs have the proof-of-knowledge property (and thus are rewinding insecure)
and the simulator can extract the implicit input of the adversary from them.
When extracting the implicit input, the simulator rewinds the adversary in the
last two rounds of the proof; hence, when P1 is corrupted, special message is the
message in Round 2 (since look-ahead threads are created from Round 2), and
when P2 is corrupted, special message is the message in Round 3 (since look-
ahead threads are created from Round 3). Notice that when P2 is corrupted, the
proof by P1 in Rounds 1–3 is executed before special message in Round 4.

Then, the difficulty is the following. Let us consider that we design a sequence
of intermediate hybrids following the approach of Garg et al. In the intermediate
hybrids, all we can guarantee is that when a session is switched to simulation,
no rewinding occurs after special message of this session—hence, when P2 is
corrupted, we can only guarantee that no rewinding occurs after Round 4, and
thus, cannot guarantee that the proof by P1 in Rounds 1–3 is not rewound in this
session. Then, since the simulation of the KO protocol is indistinguishable only
when the proof by P1 is secure, it seems hard to prove the indistinguishability
among the intermediate hybrids unless the proof by P1 is rewinding secure.
Furthermore, since we require that the proof by P1 has the proof-of-knowledge
property, it seems unlikely that the proof by P1 can be rewinding secure.
Our techniques. To solve the problem that the components of the protocol are
rewound in the hybrid experiment, we use the fact that, as observed by Garg et
al., in the SPS setting the look-ahead threads can depend on the inputs of the
honest parties. Specifically, we use the fact that we do not need to remove the
input of P1 from the proof of correct behavior on the look-ahead threads.

First, we recall the KO protocol in more details. For simplicity, we assume
that each party has only 1-bit input. In this case, P1 gives the proof of correct
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behavior using a witness indistinguishable proof of knowledge ΠWIPOK for a state-
ment of the form st0 ∨ st1, where in the honest execution, only one of st0 and
st1 is true depending on the input of P1. In simulation, in a session where P2 is
corrupted, the simulator makes both st0 and st1 true and simulates the proof of
correct behavior using a witness for st0. (Notice that the proof no longer depends
on P1’s input.) In a session where P1 is corrupted, the simulator extracts the
implicit input of the adversary by extracting a witness from ΠWIPOK and checking
whether the extracted witness is a witness for st0 or not.

Then, our idea is the following. We replace ΠWIPOK with other cryptographic
components—witness-indistinguishable one and extractable one—so that we
can have both rewinding-secure witness-indistinguishability and extractability.
Specifically, the components we use are:

– a ZAP system (namely, a two-round public-coin witness indistinguishable
proof system). Since ZAP has only two rounds, it is witness indistinguishable
even when it is rewound.

– a three-round honest-committer extractable commitment (namely, a
commitment scheme such that, as long as the committer behaves honestly, the
committed value can be extracted by rewinding the committer). The honest-
committer extractable scheme that we use, denoted by ExtCom′, is a variant
of a three-round challenge-response based extractable scheme. To commit to a
message m using ExtCom′, the committer commits to many 2-out-of-2 secret
shares {(α0

i , α
1
i )} of m using a standard non-interactive commitment scheme

in the first round, and after receiving challenge {ei} from the receiver, the
committer reveals {αei

i } in the third round but does not open the correspond-
ing commitments. An important property of ExtCom′ is that the committer’s
messages in the first and the third round can be simulated independently of
each other. In particular, we can simulate a commitment by committing to
all-zero strings in the first round and sending random strings in the last round.
(Later, we use this property to say that even though ExtCom′ is extractable,
it also has some rewinding security.)

We then modify the KO protocol in such a way that P1 gives two ExtCom′

commitments in Rounds 1–3, where one is correctly constructed and the other
is simulated, and then proves by ZAP in Rounds 2–3 that either a witness
for st0 is committed in the first ExtCom′ commitment or a witness for st1 is
committed in the second one. (Recall that only one of st0 and st1 is true in the
KO protocol depending on the input of P1) With this modification, we can solve
the problem as follows. When P2 is corrupted, the simulator makes both st0 and
st1 true (as the KO simulator does), commits to witnesses for st0 and st1 in
the two ExtCom′ commitments, and completes the ZAP proof using a witness
for that st0 is committed in the first ExtCom′ commitment. Then, even though
ZAP and ExtCom′ can be rewound in the hybrid experiments, we can show the
indistinguishability using their security for the following reasons.

1. First, the simulator can switch a simulated ExtCom′ commitment to a hon-
est one in an indistinguishable way even under rewinding as long as the
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commitment does not need to be a honest one on the look-ahead threads. This
is because the third message of the simulated commitment consists of just ran-
dom strings; we can design a reduction that obtains a ExtCom′ commitment
(either a simulated one or a honest one) on the main thread from an external
committer while internally simulating the look-ahead threads by simulating
the third message of this ExtCom′ commitment with random strings.

2. Second, the witness indistinguishability of ZAP holds even when it is rewound.
This is because it has only two rounds.

On the other hand, when P1 is corrupted, the simulator can extract the implicit
input from the adversary by extracting the committed values from the two
ExtCom′ commitments and checking whether a witness for st0 or st1 is extracted.
Even though ExtCom′ is only honest-committer extractable, the simulator can
extract the implicit input in this way since the soundness of ZAP guarantees
that at least one of the ExtCom′ commitments is constructed correctly.
Other technicalities. To prove security formally, we need to modify the KO
protocol further.

First, we need to add non-malleability to the KO protocol because in the con-
current setting with interchangeable roles, the adversary can participate as the
first party in a session while participating as the second party in another session.
To add non-malleability, we use a non-malleable commitment in a similar manner
as Barak et al. [1], who constructed a concurrent non-malleable zero-knowledge
argument using a non-malleable commitment. In particular, we modify the KO
protocol in such a way that, instead of giving a proof of correct behavior, a
party commits to a witness for the correct behavior using a non-malleable com-
mitment and then proves that it committed to a valid witness. As in the protocol
of Barak et al. [1], we assume that the non-malleable commitment is extractable
and that some components of our protocol are statistically secure. (Roughly, this
is for guaranteeing that the non-malleable commitment is non-malleable w.r.t.
not only itself but also the other components of our protocol.)

Second, for technical reasons, we augment the KO protocol with a lossy
encryption scheme, i.e., an encryption scheme that has a lossy key generation
algorithm such that lossy keys statistically hide the plaintexts. Roughly speaking,
this is because unlike the SPS-secure protocol of Garg et al. [10], the KO protocol
does not have the property that the same information is extracted by rewinding
extraction and by brute-force extraction. (Recall that this property is required
when the indistinguishability between the hybrid and the ideal experiment is
shown.) Specifically, an adversary can make the rewinding simulator obtain a
valid implicit input whereas the brute-force simulator obtain an invalid one. We
therefore modify the KO protocol so that for such an adversary, all the messages
that depend on the extracted implicit input are encrypted under a lossy key
(whereas they are encrypted under a normal key in the honest execution).
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2 Preliminaries

In this paper, we denote the security parameter by κ. We assume familiar-
ity with the definitions of basic cryptographic schemes and protocols, such as
secret-key/public-key encryption schemes, message authentication codes, com-
mitment schemes, and witness-indistinguishable proof/argument of knowledge.
We remind the reader that there exists a non-interactive perfectly binding com-
mitment scheme under the existence of injective one-way functions, and there
exists a two-round statistically hiding commitment scheme under the existence
of collision-resistance hash functions.

2.1 Components of Katz-Ostrovsky 2-Party Computation

We recall the secure two-party computation protocol of Katz and Ostrovsky [18]
and its components. Part of the text is taken from [11,18].
Semi-honest two-party computation based on Yao’s garbled circuits
We first recall that a semi-honest secure two-party computation protocol can be
constructed using Yao’s garbled circuit scheme [27,36].

We view Yao’s garbled circuit scheme as a tuple of PPT algorithms
(GenGC,EvalGC), where GenGC is the “generation procedure” that generates a
garbled circuit for a circuit C along with “labels,” and EvalGC is the “evaluation
procedure” that evaluates the circuit on the “correct” labels. Each individual
wire i of the circuit is assigned two labels, Zi,0, Zi,1. More specifically, the two
algorithms have the following format (here i ∈ [κ], b ∈ {0, 1}).

– (GCy, {Zi,b}) ← GenGC(1κ, F, y): GenGC takes as input a security parameter
κ, a circuit F , and a string y ∈ {0, 1}κ. It outputs a garbled circuit GCy along
with the set of all input-wire labels {Zi,b}.

– v = EvalGC(GCy, {Zi,xi
}): Given a garbled circuit GCy and a set of input-

wire labels {Zi,xi
}, where x = x1x2 · · · xκ ∈ {0, 1}κ, EvalGC outputs either an

invalid symbol ⊥ or a value v = F (x, y).

The two algorithms have the following properties.

– Correctness: Pr [EvalGC(GCy, {Zi,xi
}) = F (x, y)] = 1 for all F, x, y, taken

over the correct generation of GCy, {Zi,b} by GenGC.
– Security: There exists a PPT simulator SimGC such that for any F , we

have {(GCy, {Zi,xi
})}x,y ≈c {SimGC(1κ, F, v)}x,y, where (GCy, {Zi,b}) ←

GenGC (1κ, F, y) and v = F (x, y).

Yao’s garbled circuit scheme is based on the existence of one-way functions.
Using Yao’s garbled circuit scheme and a semi-honest OT protocol, two par-

ties, P1 and P2, can compute a function F of their inputs in the semi-honest
setting as follows. Let x, y be the inputs of P1, P2 respectively. Consider the
setting that only one party, say P1, learns the output of F . Then, P2 first com-
putes (GCy, {Zi,b}) ← GenGC(1κ, F, y) and sends GCy to P1. The two parties
then engage in κ parallel instances of OT, where in the i-th instance, P1 inputs
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xi and P2 inputs (Zi,0, Zi,1) to the OT protocol, and P1 learns Zi,xi
. Then, P1

computes v = EvalGC(GCy, {Zi,xi
}) and outputs v = F (x, y).

We next recall that a three-round semi-honest OT protocol can be con-
structed from enhanced trapdoor permutations (TDPs).

Definition 1 (Trapdoor permutations). Let TDP be a triple of PPT
algorithms (TDP.Gen,TDP.Eval,TDP.Invert) such that if TDP.Gen(1κ) out-
puts a pair (f, td), then TDP.Eval(f, ·) is a permutation over {0, 1}κ and
TDP.Invert(f, td, ·) is its inverse. TDP is a trapdoor permutation if for
any PPT adversary A, there exists a negligible function μ such that
Pr[(f, td) ← TDP.Gen(1κ); y ← {0, 1}κ;x ← A(f, y) : TDP.Eval(f, x) = y] ≤
μ(κ).

For convenience, we drop (f, td) from the notation and write f(·), f−1(·) to
denote algorithms TDP.Eval(f, ·),TDP.Invert(f, td, ·) respectively. We assume
that TDP satisfies a weak variant of certifiability, namely, given f it is possi-
ble to decide in polynomial time whether TDP.Eval(f, ·) is a permutation over
{0, 1}κ. Let H be the function that is obtained from a single-bit hardcore func-
tion h of f ∈ TDP as follows: H(z) = h(z)‖h(f(z))‖ . . . ‖h(fκ−1(z)). Informally,
H(z) looks pseudorandom given fκ(z).

The semi-honest OT protocol based on TDP is constructed as follows. Let
P2 hold two strings Z0, Z1 ∈ {0, 1}κ and P1 hold a bit b. In the first round,
P2 chooses trapdoor permutation (f, f−1) ← TDP.Gen(1κ) and sends f to P1.
Then P1 chooses two random strings z′

0, z
′
1 ← {0, 1}κ, computes zb = fκ(z′

b)
and z1−b = z′

1−b, and sends (z0, z1) to P2. In the last round P2 computes Wa =
Za ⊕ H(f−κ(za)) for each a ∈ {0, 1} and sends (W0,W1) to P1. Finally, P2

recovers Zb by computing Zb = Wb ⊕ H(zb).
Putting it altogether, we obtain the following three-round semi-honest secure

two-party computation protocol for the single-output functionality F :

Protocol ΠSH: P1 holds input x ∈ {0, 1}κ and P2 holds inputs y ∈ {0, 1}κ. Let
TDP be a family of trapdoor permutations and H be its hardcore bit function
for κ bits. In the following, i always ranges from 1 to κ and b from 0 to 1.

Round-1: P2 computes (GCy, {Zi,b}) ← GenGC(1κ, F, y), chooses {(fi,b, f
−1
i,b )}

using TDP.Gen(1κ), and sends (GCy, {fi,b}) to P2.
Round-2: P1 chooses random strings {z′

i,b}, computes zi,xi
= fκ(z′

i,xi
) and

zi,1−xi
= z′

i,1−xi
, and sends {zi,b} to P2.

Round-3: P2 computes Wi,b = Zi,b ⊕ H(f−κ
i,b (zi,b)) and sends {Wi,b} to P2.

Output: P1 recovers the labels Zi,xi
= Wi,xi

⊕ H(z′
i,xi

) and computes v =
EvalGC(GCy, {Zi,xi

}).

Equivocal commitment scheme Eqcom. We next recall the equivocal com-
mitment scheme of [18] that is based on any (standard) non-interactive perfectly
binding commitment scheme Com. To commit to a bit x ∈ {0, 1}, the sender
chooses coins ζ1, ζ2 and computes Eqcom(x; ζ1, ζ2)

def= Com(x; ζ1)‖Com(x; ζ2).
It sends Cx = Eqcom(x; ζ1, ζ2) to the receiver along with a zero-knowledge
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proof that Cx was constructed correctly (i.e., that there exist x, ζ1, ζ2 such that
Cx = Eqcom(x; ζ1, ζ2)). To decommit, the sender chooses a bit b at random and
reveals x, ζb, denoted by openCx

. Note that a simulator can “equivocate” the com-
mitment by setting C = Com(x; ζ1)‖Com(1 − x; ζ2) for a random bit x ∈ {0, 1},
simulating the zero-knowledge proof, and then revealing ζ1 or ζ2 depending on
x and the bit to be revealed. This extends to strings by committing bitwise.
Sketch of the Katz-Ostrovsky Two-Party Protocol. The main components
of the secure two-party computation protocol of Katz and Ostrovsky [18] are the
three-round semi-honest secure two-party computation protocol ΠSH and proofs
about the correctness of each round. Specifically, the protocol of [18] proceeds
as follows. First, both parties commit to their inputs. Then, they run (modified)
coin-tossing protocols to guarantee that each party obtains random coins that
are committed to the other party. Finally, they run the ΠSH protocol together
with proofs about the correctness of each round.

Since even a zero-knowledge argument alone requires four rounds, in the pro-
tocol of [18] the proof-of-correctness part is executed in parallel with ΠSH. To
enable such a parallel execution, Katz and Ostrovsky use a zero-knowledge argu-
ment system with a “delayed input” property, i.e., a property that the statement
to be proven need not be known until the last round. (Specifically, they use a
variant of the four-round zero-knowledge proof system by Feige and Samir [9].)
Furthermore, for technical reasons, in the protocol of [18] the above equivocal
commitment scheme is used to commit to the garbled circuit.

2.2 Component of Our Protocol

Statistical Feige-Shamir zero-knowledge argument ΠFS. We use a four-
round “delayed-input” statistical zero-knowledge argument ΠFS that is based
on the four-round zero-knowledge argument system by Feige and Shamir
[9]. Recall that the Feige-Shamir zero-knowledge argument for a statement
thm consists of the following two (somewhat parallelized) executions of a
witness-indistinguishable proof-of-knowledge system: in the first execution (in
Rounds 1–3), the verifier proves the knowledge of “simulation trapdoor”
σ—namely, selects a one-way function f , sets x1 = f(w1) and x2 = f(w2),
and proves the knowledge of a witness for ∃w s.t. x1 = f(w)∨x2 = f(w); in the
second execution (in Rounds 2–4), the prover proves the knowledge of a witness
for thm or the simulation trapdoor—i.e., proves the knowledge of a witness for
thm ∨ (∃w s.t. x1 = f(w) ∨ x2 = f(w)). We then obtain ΠFS by using Blum’s
three-round witness-indistinguishable proof of knowledge (denoted by ΠWIPOK)
in the first execution and a four-round statistical witness-indistinguishable ver-
sion of the “delayed input” witness-indistinguishable argument of Lapidot and
Shamir [21] (denoted by ΠSWIAOK) in the second execution. It is not hard to see
that ΠFS has a property that the statement to be proven is not needed until
its last round, and it is complete, sound, and zero-knowledge even when the
statement is determined in the last round.
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Extractable commitment scheme ExtCom′. We use the following commit-
ment scheme ExtCom′, which is used in [10]. Let Com be any non-interactive
perfectly binding commitment.

Commit Phase: The common input is security parameter 1κ. The input to
the committer is a string m ∈ {0, 1}poly(κ).
1. The committer chooses κ independent random pairs {α0

i , α
1
i }i∈[κ] such

that α0
i ⊕ α1

i = m for every i ∈ [κ]. The committer then commits to αb
i

for every i ∈ [m], b ∈ {0, 1} using Com. Let cb
i be the commitment to αb

i .
2. The receiver sends uniformly random bits {ei}i∈[κ].
3. The committer sends αei

i for every i ∈ [κ].
Comment: The committer just sends αei

i and does not decommit cei
i .

Open Phase: The committer decommits cb
i to αb

i for every i ∈ [κ], b ∈ {0, 1}.

ExtCom′ has extractability in the sense that we can extract the committed value
if we can obtain two correctly constructed transcripts by rewinding the committer
in the last two rounds. We remark that if the commitment is invalid, i.e., there is
no value to which the commitment can be correctly decommitted, this extracting
procedure can output any value. We also remark that in ExtCom′, a committer
can easily give an invalid commitment by committing to all-zero strings in the
first round and sending random strings in the last round. We use such an “fake”
execution of ExtCom′ in our protocol.
Non-malleable commitment scheme NMCom. Let 〈C,R〉 be a tag-based
commitment scheme (i.e., a commitment scheme that takes a κ-bit string—a
tag—as an additional input). Informally, 〈C,R〉 is non-malleable if for any man-
in-the-middle adversary M, who gives a commitment of 〈C,R〉 in the “right”
interaction while receiving a commitment of 〈C,R〉 in the “left” interaction, the
value committed in the right interaction is “independent” of the value committed
in the left interaction as long as the tags in the two interactions are different.
See, e.g., [22] for a formal definition.

In our main result, we use a non-malleable commitment scheme such that:

1. The scheme is public coin (i.e., the receiver is public coin) and the round
complexity is 3.

2. The scheme has the following extractability: an extractor extracts the com-
mitted value from a valid commitment and extracts ⊥ from an invalid one.

Such a non-malleable commitment exist under quasi-polynomially-hard injective
OWFs [15,16]; see Footnote 1. For simplicity, we also assume that the extractor
E rewinds the committer in the last two rounds until it obtains two accepting
transcripts. That is, we assume that E interacts with the committer in the same
way as the honest receiver on the main thread while repeatedly interacting with
it from the second round with fresh randomness on the look-ahead threads, and
when the commitment is accepting on the main thread, E extracts the committed
values using the accepting commitment on a look-ahead thread.
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Lossy encryption scheme. Informally, a lossy encryption scheme [3,17] is a
public-key encryption scheme such that, in addition to the standard key gen-
eration algorithm, it has a lossy key generating algorithm with the following
property: A lossy public key is indistinguishable from a standard public key, and
a ciphertext generated under a lossy public key statistically hides the informa-
tion of the plaintext. More precisely, a lossy public-key encryption scheme is a
tuple (LE.Gen, LE.Enc, LE.Dec) of PPT algorithms such that:

– LE.Gen(1κ, inj) outputs injective keys (pk, sk).
– LE.Gen(1κ, lossy) outputs lossy keys (pklossy, sklossy).

For a formal security definition, see [3,17].
It is shown in [3] that a lossy encryption scheme can be constructed from

lossy trapdoor functions [34], which in turn can be realized based on a variety of
assumptions including the DDH assumption and the LWE assumption.
ZAP ΠZAP. ZAPs are two-message public-coin witness-indistinguishable proof
systems, and can be based on doubly enhanced trapdoor permutations [7].

3 UC Security and Its SPS Variant

We recall the definition of UC security [4] and its SPS variant [2,10,35]. A part
of the text below is taken from [10].

3.1 UC Security

We assume familiarity with the UC framework. For full details, see [4].
Recall that in the UC framework, the model for protocol execution consists

of the environment Z, the adversary A, and the parties running protocol π. In
this paper, we consider static adversaries and assume the existence of authen-
ticated communication channels. Let EXECπ,A,Z(κ, z) denote a random vari-
able for the output of Z on security parameter κ ∈ N and input z ∈ {0, 1}∗

with a uniformly-chosen random tape. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(κ, z)}κ∈N,z∈{0,1}∗ .

The security of a protocol π is defined using the ideal protocol. In the execu-
tion of the ideal protocol, all the parties simply hand their inputs to the ideal
functionality F . The ideal functionality F carries out the desired task securely
and gives outputs to the parties, and the parties forward these outputs to Z. The
adversary S in the execution of the ideal protocol is often called the simulator.
Let π(F) denote the ideal protocol for functionality F .

We say that a protocol π emulates protocol φ if for any adversary A there
exists an adversary S such that no environment Z, on any input, can tell with
non-negligible probability whether it is interacting with A and parties running π
or it is interacting with S and parties running φ. We say that π securely realizes
an ideal functionality F if it emulates the ideal protocol Π(F).
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3.2 UC Security with Super-Polynomial Simulation

We next provide a relaxed notion of UC security where the simulator is given
access to super-polynomial computational resources.

Definition 2. Let π and φ be protocols. We say that π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial-time adversary S such that
for any environment Z that obeys the rules of interaction for UC security, we
have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 3. Let F be an ideal functionality and let π be a protocol. We say
that π UC-SPS-realizes F if π UC-SPS-emulates the ideal process Π(F).

The multi-session extension of an ideal functionality. When showing con-
current security of a protocol π under SPS security, we need to construct a sim-
ulator in a setting where parties execute π concurrently. (In other words, unlike
in UC security, we cannot rely on the composition theorem in SPS security.)

To consider the simulator in such a setting, we use a multi-session extension
of an ideal functionality. Roughly speaking, the multi-session extension F̂ of an
ideal functionality F is a functionally that internally runs multiple copies of F .

4 Our Five-Round Secure Two-Party Protocol

In this section, we prove our main result.

Theorem 1. Assume the existence of collision-resilient hash function fam-
ilies, trapdoor permutation families4, lossy encryption schemes, and quasi-
polynomially-hard injective one-way functions. Let F be any well-formed two-
party functionality and F̂ be its multi-session extension. Then, there exists a
five-round protocol that UC-SPS realizes F̂ .

The other result, a seven-round protocol under polynomially-hard assumptions,
is given in the full version of this paper.

Recall that in the UC framework, there are any number of parties P1, P2, . . .,
and any two of them (say, Pi and Pj) can compute F using F̂ in each subsession.
To simplify the description of the protocol and the proofs, in what follows we
denote the first party of F by P1 and the second party of F by P2 in every
subsession. (Equivalently, we consider a setting where two parties P1, P2 com-
pute F any number of times using F̂ , and A corrupts either P1 or P2 in each
subsession.)

4 Recall that we assume that the trapdoor permutation families satisfy (a weak form
of) “certifiability” and their domain/range is {0, 1}κ.
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4.1 Our Protocol Π2PC

Our protocol is based on the two-party computation protocol of Katz and Ostro-
vsky [18]; their protocol is described in Sect. 2.1. In our protocol, we use the
primitives that are described in Sects. 2.1 and 2.2, and additionally, we use a
symmetric-key encryption scheme SKE = (SKE.Enc,SKE.Dec) and a message
authentication code MAC.
Our protocol Π2PC. We denote the two parties by P1 and P2. P1 holds input
x ∈ {0, 1}κ and P2 holds input y ∈ {0, 1}κ. The identities of P1 and P2 (i.e.,
their PIDs) are id1 and id2 respectively, where id1 = id2. Let F = (F1, F2) :
{0, 1}κ × {0, 1}κ → {0, 1}κ × {0, 1}κ be the functionality to be computed. Let
F ′ = (F ′

1, F
′
2) be a functionality such that:

– F ′
1(x, y′) = (F1(x, y), enc,mac), where y′ = (y, skske, skmac, ωenc) ∈ {0, 1}4κ,

enc = SKE.Encskske(F2(x, y);ωenc), and mac = MACskmac(enc).
– F ′

2(x, y′) = ⊥ for any x and y′.

In the following i always ranges from 1 to κ and b from 0 to 1. We will skip
mentioning the SID and SSID to keep the protocol specification simple.
Round 1. P1 sends a message m1 that is defined as follows.

1. P1 commits to 2κ random strings {ri,b} using 2κ parallel and independent
executions of Com. I.e., it chooses uniformly random strings ri,b and random-
ness ωi,b

com and then generates comi,b = Com(ri,b;ωi,b
com).

2. P1 starts committing to κ strings {ri,1−xi
‖ωi,1−xi

com } using κ parallel and inde-
pendent executions of ExtCom′ and also starts κ “fake” executions of ExtCom′.
Concretely, P1 prepares {exti,b1 } as follows.
– For every i ∈ [κ], P1 prepares exti,1−xi

1 by committing to ri,1−xi
‖ωi,1−xi

com

using ExtCom′. I.e., it generates exti,1−xi

1 ← ExtCom′
1(ri,1−xi

‖ωi,1−xi
com ),

which is the first message of ExtCom′(ri,1−xi
‖ωi,1−xi

com ).
– For every i ∈ [κ], P1 prepares exti,xi

1 by committing to all-zero strings using
Com. (Recall that the first round of ExtCom′ consists of 2κ executions of
Com.)

3. P1 prepares the first message fs1 of ΠFS.
4. Message m1 is the tuple ({comi,b, ext

i,b
1 }, fs1).

Round 2. P2 sends a message m2 that is defined as follows.

1. P2 samples secret-keys skske and skmac for SKE and MAC respectively and
chooses randomness ωenc for SKE.Enc.

2. P2 prepares a garbled circuit and labels for F ′
1 with input y′ =

(y, skske, skmac, ωenc). I.e., it uniformly chooses randomness Ω and generates
(

GC, {Zi,b}
)

= GenGC
(

1κ, F ′
1, y

′;Ω
)

.
3. P2 generates standard commitments to the labels and an equivocal com-

mitment to the garbled circuit. I.e., it uniformly chooses randomness {ωi,b
lab}

and ωgc and generates Ci,b
lab = Com(Zi,b;ω

i,b
lab) and Cgc = Eqcom(GC;ωgc).

Let openCgc
be the decommitment information that decommits Cgc to GC.
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4. P2 samples random strings {r′
i,b} and

(

fi,b, f
−1
i,b

) ← TDP.Gen(1κ) for the
coin tossing and the oblivious transfer executions.

5. P2 generates the second messages {exti,b2 } for all the executions of ExtCom′

initiated by P1.
6. P2 prepares the first message zap1 of ΠZAP.
7. P2 prepares the second message fs2 of ΠFS initiated by P1.
8. P2 chooses randomness ωleEnc for LE.Enc.
9. Let wit2 := (y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}) and wit4 := (wit2, {f−1

i,b },
ωleEnc). Then, P2 starts committing to wit4 using NMCom with identity id2.
I.e., it generates nm1 ← NMCom1(id2,wit4), which is the first message of
NMCom(id2,wit4).
We remark that wit2 is a witness for the following statement st2 =
(F ′

1,Cgc, {Ci,b
lab}).

∃ wit2 =
(

y′, Ω,GC, ωgc, openCgc
, {Zi,b, ω

i,b
lab}

)

s.t.
(a)

(

GC, {Zi,b}
)

= GenGC
(

1κ, F ′
1, y

′;Ω
)

, and
(b) Cgc = Eqcom(GC;ωgc) and ∀(i, b) : Ci,b

lab = Com(Zi,b;ω
i,b
lab), and

(c) openCgc
is a valid decommitment that opens Cgc to GC.

Comment: Informally, st2 is the statement that P2performed this step cor-
rectly, i.e., generated a garbled circuit and labels correctly and then committed
to them in Cgc, {Ci,b

lab}.
10. Message m2 is the tuple ({Ci,b

lab, r
′
i,b, fi,b, ext

i,b
2 },Cgc, zap1, fs2, nm1).

Round 3. If any of {fi,b} is invalid, P1 aborts. Otherwise, P1 sends a message
m3 that is defined as follows.

1. P1 invokes κ parallel executions of oblivious transfer to obtain the input-wire
labels corresponding to its input x. More specifically, P1 does the following
for every i ∈ [κ].
– If xi = 0, sample z′

i,0 ← {0, 1}κ/2 and then set zi,0 := fκ
i,0(PRG(z′

i,0)) and
zi,1 := ri,1 ⊕ r′

i,1.
– If xi = 1, sample z′

i,1 ← {0, 1}κ/2 and then set zi,1 := fκ
i,1(PRG(z′

i,1)) and
zi,0 := ri,0 ⊕ r′

i,0.
2. P1 prepares {exti,b3 }, where {exti,1−xi

3 } are the third messages of ExtCom′ and
{exti,xi

3 } are random strings.
3. P1 prepares injective keys (pkle, skle) of the lossy encryption scheme, i.e., it

generates (pkle, skle) ← LE.Gen(1κ, inj).
4. P1 prepares the second message zap2 of ΠZAP proving the following statement

st3 = ({comi,b, ext
i,b
1 , exti,b2 , exti,b3 , r′

i,b, zi,b, fi,b}, pkle):
∃ wit3 = ({bi, ri, ω

i
com, ωi

ext, z
′
i}i∈[κ], skle, ωleGen) s.t. ∀i:

(a) comi,bi = Com(ri;ωi
com), and

(b) exti,bi1 and exti,bi3 are the first and the third messages of
ExtCom′(ri‖ωi

com;ωi
ext) with the second message being exti,bi2 , and

(c) zi,bi = ri,bi ⊕ r′
i,bi

, and
(d) zi,1−bi =fκ

i,1−bi
(PRG(z′

i))
∨

(pkle, skle)=LE.Gen(1κ, lossy;ωleGen).
P1 uses ({1 − xi, ri,1−xi

, ωi,1−xi
com , ωi,1−xi

ext , z′
i,xi

}i∈[κ],⊥,⊥) as the witness.
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Comment: Informally, st3 is the statement that either P1 performed this step
correctly (i.e., one of zi,0, zi,1 is an image of fκ

i,1−bi
(PRG(·)) and the other

is the outcome of the coin-tossing) or pkle is a lossy key. Here, PRG is used
to make sure that zi,1−bi = ri,1−bi ⊕ r′

i,1−bi
holds when pkle is an injective

key.
5. P1 prepares the third message fs3 of ΠFS.
6. P1 prepares the second message nm2 of NMCom.
7. Message m3 is the tuple ({zi,b, ext

i,b
3 }, pkle, zap2, fs3, nm2).

Round 4. If zap2 or fs3 is not accepting, P2 aborts. Otherwise, P2 sends a
message m4 that is defined as follows.

1. P2 completes the execution of the oblivious transfers by computing Wi,b =
Zi,b ⊕ H(f−κ

i,b (zi,b)).
2. P2 encrypts {Wi,b}‖GC‖openCgc

using the lossy encryption scheme with pub-
lic key pkle and randomness ωleEnc (which was chosen in Round 2), i.e., it
computes CTgc = LE.Encpkle({Wi,b}‖GC‖openCgc

;ωleEnc).
3. P2 prepares the final message nm3 of NMCom.
4. Let st4 = ({fi,b, zi,b}, st2,CTgc) be the following statement:

∃wit4 = (wit2, {gi,b}, ωleEnc) s.t.
(a)wit2 = (y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}) is a valid witness for st2, and

(b) ∀(i, b): fκ
i,b(g

κ
i,b(zi,b)) = zi,b, and

(c) CTgc = LE.Encpkle({Wi,b}‖GC‖openCgc
;ωleEnc), where Wi,b = Zi,b ⊕

H(gκ
i,b(zi,b)).

Then, P2 prepares the final message fs4 of ΠFS proving the following statement
(nm1, nm2, nm3, st4).

∃ ωnm and wit4 s.t.
(a) nm1 and nm3 are the first and the third message of NMCom(id2,
wit4;ωnm) with the second message being nm2, and
(b) wit4 is a valid witness for st4.

I.e., P2 proves that it committed to a witness for st4 using NMCom.
Comment: Informally, st4 is the statement that P1 performed this step and
the previous step correctly (in particular, the final messages of the oblivious
transfers and the opening of Cgc were encrypted in CTgc).

5. Message m4 is the tuple (CTgc, fs4, nm3).

Round 5. If fs4 or nm3 is not accepting, P1 aborts. Otherwise, P1 sends a
message m5 that is defined as follows.

1. P1 recovers {Wi,b}‖GC‖openCgc
by decrypting CTgc, i.e., it computes

{Wi,b}‖GC‖openCgc
= LE.Decskle(CTgc). If (GC, openCgc

) is not a valid open-
ing of Cgc, P1 aborts. Otherwise, P1 recovers the garbled labels {Zi :=
Zi,xi

} from the completion of the oblivious transfer, and then it computes
(F1(x, y), enc,mac) = EvalGC(GC, {Zi}).

2. Message m5 is the tuple (enc,mac).
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Output computation

P1’s output: P1 outputs F1(x, y), which it obtained in Round 5.
P2’s output: If MACskmac(enc) = mac, P2 outputs ⊥. Otherwise, it outputs

F2(x, y) = SKE.Decskske(enc).

4.2 Description of Simulator S
The simulator S internally invokes A and simulates the real-world execution for
A as follows. To simulate the interaction between A and Z, S simply forwards
messages between A and Z. To simulate the interaction between P1 and P2, S
does the following in each subsession.
Case 1: P1 is corrupted. S simulates P2’s messages as follows.

– In Round 1, S receives m1 = ({comi,b, ext
i,b
1 }, fs1) from A.

– In Round 2, S prepares m2 = ({Ci,b
lab, r

′
i,b, fi,b, ext

i,b
2 },Cgc, zap1, fs2, nm1) in the

same way as P2 does except for the following.
• S generates {Ci,b

lab} by committing to all-zero strings.
• S generates Cgc in a way that it can be decommitted to any value by using

equivocality.
• S generates nm1 by committing to a all-zero string using NMCom.

Then, S sends m2 to A.
– In Round 3, S receives m3 = ({zi,b, ext

i,b
3 }, pkle, zap2, fs3, nm2) from A. If m3

is accepting, S does the following.
1. Extracts the committed values of the ExtCom′ commitments

{(exti,b1 , exti,b2 , exti,b3 )} by brute force. The extracted values are denoted by
{r̃i,b‖ω̃i,b

com}. (If a commitment is invalid, its committed value is defined to
be ⊥.) If there is i ∈ [κ] such that for any b∗

i ∈ {0, 1}, either (r̃i,b∗
i
, ω̃

i,b∗
i

com) is
not a valid decommitment of comi,b∗

i
or it holds that zi,b∗

i
= r̃i,b∗

i
⊕ r′

i,b∗
i
, S

aborts the simulation with output Abort1.
2. Define x∗ = (x∗

1, . . . , x
∗
κ) as follows: for each i ∈ [κ], if (r̃i,0, ω̃

i,0
com) is a valid

decommitment of comi,0 and furthermore it holds that zi,0 = r̃i,0 ⊕ r′
i,0,

define x∗
i := 1, and otherwise, define x∗

i := 0.
3. Send x∗ to the ideal functionality F (through F̂) and obtain v1 =

F1(x∗, y).
4. Extract the “simulation trapdoor” σ of ΠFS by brute force from its first

three rounds (fs1, fs2, fs3).
– In Round 4, S prepares m4 = (CTgc, fs4, nm3) in the same way as P2 does

except for the following.
• S generates CTgc as follows. First, S simulates a garbled circuit and

labels by (GC∗, {Z∗
i }) ← SimGC(1κ, F ′

1, v
′
1), where v′

1 = (v1, ˜enc, m̃ac),
˜enc ← SKE.Encskske(0

κ), and m̃ac = MACskmac( ˜enc) for randomly sam-
pled skske and skmac. Second, using the equivocality of Eqcom, S obtains a
decommitment open∗

Cgc
that opens Cgc to GC∗. Third, S generates {Wi,b}

by Wi,x∗
i

:= Z∗
i ⊕H(f−κ

i,x∗
i
(zi,b)) and Wi,1−x∗

i
← {0, 1}κ. Finally, S generates

CTgc by CTgc ← LE.Encpkle({Wi,b}‖GC∗‖open∗
Cgc

).
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• S generates fs4 by completing ΠFS using the simulation trapdoor σ.
Then, S sends m4 to A.

– In Round 5, S receives m5 = (enc,mac). If m5 is accepting, S tells the ideal
functionality F to send the output to P2.

Case 2: P2 is corrupted. S simulates P1’s messages as follows.

– In Round 1, S generates m1 = ({comi,b, ext
i,b
1 }, fs1) in the same way as P1

except that S generates exti,b1 by committing to ri,b‖ωi,b
com using ExtCom′ cor-

rectly for every i ∈ [κ] and b ∈ {0, 1}. Then, S sends m1 to A.
– In Round 2, S receives m2 = ({Ci,b

lab, r
′
i,b, fi,b, ext

i,b
2 },Cgc, zap1, fs2, nm1)

from A.
– In Round 3, S generates m3 = ({zi,b, ext

i,b
3 }, pkle, zap2, fs3, nm2) in the same

way as P1 except for the following.
• S generates {zi,b} by zi,b := ri,b ⊕ r′

i,b for every i ∈ [κ] and b ∈ {0, 1}.
• S generates exti,b3 by executing ExtCom′ correctly for every i ∈ [κ] and

b ∈ {0, 1}.
• S generates pkle by (pkle, skle) ← LE.Gen(1κ, lossy) with randomness ωleGen.

(I.e., S generates a lossy public key rather than an injective one.)
• When generating zap2, S uses ({1, ri,1, ω

i,1
com, ωi,1

ext,⊥}i∈[κ], skle, ωleGen) as
the witness. (I.e., S proves that {(comi,1, ext

i,1
1 , exti,13 , zi,1)} are computed

correctly and pkle is a lossy public key.)
Then, S sends m3 to A.

– In Round 4, S receives m4 = (CTgc, fs4, nm3). If m4 is accepting, S does the
following.

1. Extract the committed value of the NMCom commitment (nm1, nm2, nm3)
by brute force. If the extracted value is not a valid witness for
st4, S aborts the simulation with output Abort2. Otherwise, the
extracted value is denoted by wit4 = wit2‖{gi,b}‖ωleEnc, where wit2 =
(y′, Ω,GC, ωgc, openCgc

, {Zi,b, ω
i,b
lab}).

2. Parse y′ as (y, skske, skmac, ωenc), send y to the ideal functionality F , and
receive v2 = F2(x, y).

– In Round 5, S generates m5 = (enc,mac) by enc := SKE.Encskske(v2;ωenc) and
mac = MACskmac(enc).

4.3 Proof of Indistinguishability

Fix any PPT adversary A, and assume for contradiction that there exists a PPT
environment Z and a PPT distinguisher D such that for infinitely many κ:

ε(κ)
def
=
∣∣Pr [D(EXECΠ2PC,A,Z(κ)) = 1] − Pr

[
D(EXECΠ(F),S,Z(κ)) = 1

]∣∣ ≥ 1

poly(κ)
.

(1)

We derive a contradiction by a hybrid argument. Let m be an upper bound
on the number of subsessions (e.g., an upper bound on the running time of Z).
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Let N := (10mκ/ε)2, which is a parameter that we use in the hybrid exper-
iments. (Roughly speaking, we use N to determine the number of rewinding
during extraction procedures in the hybrid experiments. We define N so that
the extraction fails with probability that is much smaller than ε.)

Before defining the hybrid experiments, we define the order of the sessions.
The order of the sessions is determined by the order of special messages, where
the message in Round 2 is special message when P1 is corrupted, and the message
in Round 3 is special message when P2 is corrupted.

Then, we define the hybrid experiments, H0:17, Hk:j (k ∈ [m], j ∈ [17]), and
Hm+1:1, as follows. Hybrid H0:17 is identical with the real experiment. Hence, in
H0:17, several parties (environment Z, adversary A, and two parties P1, P2) are
invoked and then protocol Π2PC is executed concurrently multiple times among
them; we call these executions of Π2PC the main thread. Next, for every k ∈ [m],
hybrids Hk:1, . . . ,Hk:17 are defined as follows.

Hybrid Hk:1 is the same as Hk−1:17 except that in session k on the main thread,
if P1 is corrupted, then the simulation trapdoor σ and the implicit input x∗

are extracted as follows.
1. Just before special message of session k appears on the main thread, 2N

look-ahead threads are created. Namely, from special message of session k
(inclusive), the main thread of Hk−1:17 is executed 2N times with fresh
randomness by rewinding all the parties including Z and A.
If there are at least two look-ahead threads on which Round 3 of session
k is accepting, {r̃i,b, ω̃

i,b
com} are defined as follows.

(a) For every u, v such that 1 ≤ u < v ≤ 2N , if Round 3 of session
k is accepting both on the u-th look-ahead thread and on the v-th
one, and a valid decommitment of comi,b is extractable from ExtCom′

on these threads, then r̃i,b and ω̃i,b
com are defined to be the extracted

decommitment.
(b) If r̃i,b and ω̃i,b

com are not defined by the above process, then r̃i,b =
ω̃i,b
com = ⊥.

2. Then, the main thread is resumed from special message of session k, and
if Round 3 of session k is accepting on the main thread, the following are
done. If there are less than two look-ahead threads on which Round 3
of session k is accepting, the experiment is aborted with output Abort1.
Otherwise, the simulation trapdoor σ is extracted based on the informa-
tion on the look-ahead threads and the main thread; if a valid simula-
tion trapdoor is not extractable, the experiment is aborted with output
Abort1. Next, x∗ = (x∗

1, . . . , x
∗
κ) is defined as follows: For every i ∈ [κ], let

b∗
i be the bit such that (r̃i,b∗

i
, ω̃

i,b∗
i

com) is a valid decommitment of comi,b∗
i

and furthermore it holds that zi,b∗
i

= r̃i,b∗
i

⊕ r′
i,b∗

i
; if there is no such b∗

i ,
the experiment is aborted with output Abort1, and if b∗

i is not uniquely
determined, b∗

i := 0; then, define x∗
i := 1 − b∗

i .
Hybrid Hk:2 is the same as Hk:1 except that in session k on the main thread,

if P1 is corrupted, then ΠFS in session k is switched to simulation, i.e., fs4 is
generated by using σ as the witness.
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Hybrid Hk:3 is the same as Hk:2 except that in session k on the main thread,
if P1 is corrupted, then the value committed by NMCom is switched to a
all-zero string.

Hybrid Hk:4 is the same as Hk:3 except that in session k on the main thread, if
P1 is corrupted, then {Ci,b

lab} are generated by committing to all-zero strings
by using Com.

Hybrid Hk:5 is the same as Hk:4 except that in session k on the main thread, if
P1 is corrupted, then Cgc is generated in a way that it can be opened to any
value using the equivocality and openCgc

is computed by the equivocality.
Hybrid Hk:6 is the same as Hk:5 except that in session k on the main thread, if

P1 is corrupted, then {Wi,b} are generated by Wi,x∗
i

:= Zi,x∗
i
⊕H(f−κ

i,x∗
i
(zi,x∗

i
))

and Wi,1−x∗
i

← {0, 1}κ.
Hybrid Hk:7 is the same as Hk:6 except that in session k on the main thread,

if P1 is corrupted, then GC and labels are generated by simulation, i.e., as
follows.
1. Compute v1 = F1(x∗, y) and v2 = F2(x∗, y), where y is the input of P2 in

session k.
2. Compute (GC∗, {Z∗

i }) ← SimGC(1κ, F ′
1, v

′
1), where v′

1 = (v1, ˜enc, m̃ac),
˜enc ← SKE.Encskske(v2), and m̃ac = MACskmac( ˜enc) for random skske and
skmac.

3. Set GC := GC∗ and Zi,x∗
i

:= Z∗
i . (Labels {Zi,1−x∗

i
} are not used in Hk:6.)

Hybrid Hk:8 is the same as Hk:7 except that in session k on the main thread,
if P1 is corrupted, then honest P2’s output v2 is computed as follows.
1. If MACskmac(enc) = mac, P2 outputs ⊥. Otherwise, it outputs F2(x∗, y).

Hybrid Hk:9 is the same as Hk:8 except that in session k on the main thread, if
P1 is corrupted, then ˜enc is generated by ˜enc ← SKE.Encskske(0

κ) during the
generation of GC and labels.

Hybrid Hk:10 is the same as Hk:9 except that in session k on the main thread,
if P2 is corrupted, then wit4 is extracted in session k as follows.
1. Just before special message of session k appears on the main thread, N

look-ahead threads are created. Namely, from special message of session
k (inclusive), the main thread of Hk:9 is executed N times with fresh
randomness by rewinding all the parties including Z and A.

2. The main thread is resumed from special message of session k. If Round
4 of session is accepting on the main thread, extract wit4 from NMCom
using the information on the look-ahead threads and the main thread; if
the extraction fails or wit4 is not a valid witness for st4, the experiment
is aborted with output Abort2.

Hybrid Hk:11 is the same as Hk:10 except that in session k on the main thread,
if P2 is corrupted, then honest P1’s output v1 is computed as follows.
1. Parse the extracted wit4 as wit2‖{gi,b}‖ωleEnc, where wit2 = (y′, Ω,GC,

ωgc, openCgc
, {Zi,b, ω

i,b
lab}) and y′ = (y, skske, skmac, ωenc).

2. Set v1 := F1(x, y) if the message m4 in Round 4 is accepting and set
v1 := ⊥ otherwise.
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Hybrid Hk:12 is the same as Hk:11 except that in session k on the main thread, if
P2 is corrupted, then m5 = (enc,mac) is generated using the keys skske, skmac

and the randomness ωenc in the extracted wit4.
Hybrid Hk:13 is the same as Hk:12 except that in session k on the main thread,

if P2 is corrupted, then pkle is switched to a lossy public key, and CTgc is no
longer decrypted in Round 5.

Hybrid Hk:14 is the same as Hk:13 except that in session k on the
main thread, if P2 is corrupted, then zap2 is generated by using ({1 −
xi, ri,1−xi

, ωi,1−xi
com , ωi,1−xi

ext ,⊥}i∈[κ], skle, ωleGen) as the witness (i.e., by using
a witness for the fact that pkle is a lossy public key).

Hybrid Hk:15 is the same as Hk:14 except that in session k on the main thread,
if P2 is corrupted, then zi,b is generated by zi,b := ri,b ⊕ r′

i,b for every i ∈ [κ]
and b ∈ {0, 1}.

Hybrid Hk:16 is the same as Hk:15 except that in session k on the main thread,
if P2 is corrupted, then exti,b1 and exti,b3 are generated by committing to
ri,b‖ωi,b

com correctly using ExtCom′ for every i ∈ [κ] and b ∈ {0, 1}.
Hybrid Hk:17 is the same as Hk:16 except that in session k on the

main thread, if P2 is corrupted, then zap2 is generated by using
({1, ri,1, ω

i,1
com, ωi,1

ext,⊥}i∈[κ], skle, ωleGen) as the witness (i.e., by using a wit-
ness for the fact that {(comi,1, ext

i,1
1 , exti,13 , zi,1)} are correctly constructed

and pkle is a lossy public key).

Finally, hybrid Hm+1:1 is identical with the ideal experiment.

Remark 1. The hybrid experiments Hk:1, . . . , Hk:17 are designed so that no look-
ahead thread is created after special message of session k.

Our goal is to show that the output of the first hybrid H0:17 and that of
the last hybrid Hm+1:1 are indistinguishable (more precisely, are distinguishable
with advantage at most ε/2.) Toward this goal, we show the indistinguishability
among the outputs of the intermediate hybrids. Also, for a technical reason, we
show that the following condition holds with high probability in each hybrid: In
a session in which P2 is corrupted, if the session is accepting then the NMCom
commitment from P2 is valid and the committed value wit4 is a valid witness
for st4. (Notice that if this condition holds, then we can extract the input of P2

from NMCom.) Formally, for every k′ ∈ [m] let Badk′ be the event that in the
k′-th session on the main thread, P2 is corrupted, Round 4 is accepting, but the
committed value wit4 of NMCom is not a valid witness for st4, and let ρk:j:k′

be the probability that Badk′ occurs in Hk:j . We first observe that ρ0:17:k′ is
negligible for every k′ (i.e., Badk′ occurs in the real experiment with negligible
probability for every k′).

Lemma 1. For every k′ ∈ [m], ρ0:17:k′ = negl(κ).

Proof. This lemma follows from the soundness of ΠFS because P2 proves in ΠFS

that a valid witness for st4 is committed in NMCom. ��
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Now we are ready to show the indistinguishability among the outputs of the
hybrids. Let Hk:j be the random variable representing the output of Hk:j . We
first prove the following lemma.

Lemma 2. For every k ∈ [m], the following two inequalities hold.

1. |Pr [D(Hk−1:17) = 1] − Pr [D(Hk:17) = 1]| ≤ 2κ + 1√
N

+
1
N

+ negl(κ). (2)

2. ∀k′ ∈ [m] : ρk:17:k′ ≤ ρk−1:17:k′ + negl(κ). (3)

Proof. Fix any k ∈ [m]. From Lemma 1, it suffices to show that the above two
inequalities hold whenever we have

∀k′ ∈ [m] : ρk−1:17:k′ = negl(κ). (4)

In what follows we show claims about the outputs of each neighboring hybrids.

Claim 1. |Pr [D(Hk−1:17) = 1] − Pr [D(Hk:1) = 1]| ≤ 2κ+1√
N

+ negl(κ). Further-
more, for every k′ ∈ [m], ρk:1:k′ ≤ ρk−1:17:k′ .

Proof. We first show the indistinguishability of the outputs of the hybrids. The
output of Hk:1 differs from that of Hk−1:17 only when it outputs Abort1 in session
k, and Hk:1 outputs Abort1 in session k only when one of the following events
occur.

Event E1: Round 3 of session k is accepting on less than two look-ahead threads
but it is accepting on the main thread.

Event E2: The extraction of the simulation trapdoor σ fails.
Event E3,i (i ∈ [κ]): There is no b∗

i such that (r̃i,b∗
i
, ω̃

i,b∗
i

com) is a valid decommit-
ment of comi,b∗

i
and zi,b∗

i
= r̃i,b∗

i
⊕ r′

i,b∗
i
.

From Markov’s inequality, E1 occurs with probability at most 1/
√

N , and from
the extractability of ΠWIPOK (inside ΠFS), E2 occurs with negligible probability.
In what follows, we show that for every i ∈ [κ], E3,i occurs with probability at
most 2/

√
N + negl(κ). Let prefix be any prefix of the execution of Hk:1 up until

the creation of the look-ahead threads in the k-th session (exclusive). We show
that for every i, under that condition that a prefix of the execution of Hk:1 is
prefix, E3,i occurs with probability at most 2/

√
N +negl(κ). For b ∈ {0, 1}, let us

say that session k is (i, b)-good if its Round 3 is accepting, a valid decommitment
(ri,b, ω

i,b
com) of comi,b is correctly committed in (exti,b1 , exti,b2 , exti,b3 ), and it holds

that zi,b = ri,b ⊕ r′
i,b. From the extractability of ExtCom′, one of the following

events occurs whenever E3,i occurs.

– Session k is (i, 0)-good on the main thread, but it is (i, 0)-good on less than
two look-ahead threads. If session k is (i, 0)-good on the main thread with
probability at most 1/

√
N , this event occurs with probability at most 1/

√
N .

Furthermore, even if session k is (i, 0)-good on the main thread with proba-
bility at least 1/

√
N , this event occurs with probability at most 1/

√
N , since

from Markov’s inequality, session k is (i, 0)-good on less than two look-ahead
threads with probability at most 1/

√
N .
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– Session k is (i, 1)-good on the main thread, but it is (i, 1)-good on less than
two look-ahead threads. From the same argument as above, this event occurs
with probability at most 1/

√
N .

– On the main thread, Round 3 of session k is accepting but it is neither (i, 0)-
good nor (i, 1)-good. From the soundness of ΠZAP, this event occurs with
negligible probability.

Hence, for every i ∈ [κ], E3,i occurs with probability at most 2/
√

N + negl(κ).
From the union bound, the probability that there exists i ∈ [κ] such that E3,i

occurs is at most 2κ/
√

N + negl(κ). Since prefix is any prefix, we conclude that
even without conditioning that a prefix of the execution of Hk:1 is prefix, the
probability that there exists i ∈ [κ] such that E3,i occurs is at most 2κ/

√
N +

negl(κ). Hence, the indistinguishability follows.
We next observe that we have ρk:1:k′ ≤ ρk−1:17:k′ . This is because the main

thread of Hk:1 is identical with that of Hk−1:17 until the experiment outputs
Abort1 in session k, and when it outputs Abort1, the experiment is aborted
immediately and no further NMCom commitment is created. ��
Claim 2. |Pr [D(Hk:1) = 1] − Pr [D(Hk:2) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:2:k′ ≤ ρk:1:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:2 differs from
Hk:1 only in that in session k on the main thread, the simulation trapdoor is
used in ΠSWIAOK (inside ΠFS) as the witness. We then observe that, since no look-
ahead thread is created after Round 2 of session k on the main thread, ΠSWIAOK

in session k is not rewound after its second round, and so the indistinguishability
follows from the witness indistinguishability of ΠSWIAOK.

We next observe that ρk:2:k′ ≤ ρk:1:k′ + negl(κ) follows from the statistical
witness indistinguishability of ΠSWIAOK. Specifically, if ρk:2:k′ differs from ρk:1:k′

with non-negligible amount, we can break the statistical witness indistinguisha-
bility of ΠSWIAOK by checking whether Badk′ occurs or not by extracting the
committed value of the NMCom commitment by brute force. ��
Claim 3. |Pr [D(Hk:2) = 1] − Pr [D(Hk:3) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:3:k′ ≤ ρk:2:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:3 differs from
Hk:2 only in the committed value of NMCom in session k on the main thread. We
then observe that, since no look-ahead thread is created after Round 2 of session
k on the main thread, NMCom in session k on the main thread is not rewound.
Hence, the indistinguishability follows from the hiding property of NMCom.

We next observe that ρk:3:k′ ≤ ρk:2:k′ + negl(κ) follows from the non-
malleability of NMCom. Specifically, if ρk:3:k′ differs from ρk:2:k′ with non-
negligible amount, we can break the non-malleability of NMCom by considering
an adversary that internally emulates Hk:2 while obtaining the NMCom com-
mitment of session k from the external committer and forwarding the NMCom
commitment of session k′ to the external receiver. We remark that since NMCom
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is public coin, we can emulate Hk:2 while forwarding the NMCom commitment of
session k′ to the external receiver (without worrying that it can be rewound). ��
Claim 4. |Pr [D(Hk:3) = 1] − Pr [D(Hk:4) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:4:k′ ≤ ρk:3:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:4 differs from
Hk:3 only in the committed values of Com in session k. Hence, the indistinguisha-
bility follows from the hiding properly of Com.

We next observe that ρk:4:k′ ≤ ρk:3:k′ + negl(κ) follows from the hiding prop-
erty of Com and the extractability of NMCom. Specifically, if ρk:4:k′ differs from
ρk:3:k′ with non-negligible amount, we can break the hiding property of Com by
considering an adversary that internally emulates Hk:3 while obtaining {Ci,b

lab}
of session k from the external committer and extracting the committed value of
the NMCom commitment in session k′. We remark that there are two subtleties:

1. The extraction from NMCom requires rewinding, and hence the Com commit-
ment in session k might be rewound during the extraction from NMCom. Nev-
ertheless, we can use the hiding property of Com since Com is non-interactive
(which trivially implies that Com is hiding even when it is rewound).

2. The NMCom commitment in session k′ might be rewound in Hk:3 during the
creation of the look-ahead threads. Nevertheless, we can use its extractability
since NMCom is public coin (which implies that an adversary can internally
emulate Hk:3 while forwarding NMCom to an external receiver). ��

We remark that the statement of Claim 4 also holds w.r.t. Hk:j and Hk:j+1 for
j = 4, . . . , 8. The proofs are similar to the proof of Claim 4: the indistinguisha-
bility between the outputs of the hybrids is shown by relying on the security of
the components (e.g., the equivocality of Eqcom), and the inequality between
ρk:j:k′ and ρk:j+1:k′ is shown by additionally using the extractability of NMCom.
We therefore have the following claim.

Claim 5. |Pr [D(Hk:4) = 1] − Pr [D(Hk:9) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:9:k′ ≤ ρk:4:k′ + negl(κ).

A formal argument for this claim is given in the full version of this paper.

Claim 6. |Pr [D(Hk:9) = 1] − Pr [D(Hk:10) = 1]| ≤ 1
N + negl(κ). Furthermore,

for every k′ ∈ [m], ρk:10:k′ ≤ ρk:9:k′ .

Proof. We first show the indistinguishability of the outputs. The output of
Hk:10 differs from that of Hk:9 only when it outputs Abort2 in session k, and
Hk:10 outputs Abort2 in session k only when one of the following happens.

1. Round 4 of session k does not complete on the look-ahead threads but it
completes on the main thread.

2. Even though Round 3 of session k completes on a look-ahead thread and the
main thread, a valid witness wit4 for st4 is not extractable.
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The former occurs with probability at most 1/N from the swapping argument.
The latter occurs with negligible probability since we have ρk:9:k′ = negl(κ)
from Eq. (4). (Notice that when P2 is corrupted in session k, the main thread of
Hk:9 proceeds identically with that of Hk−1:17.) Hence, the indistinguishability
follows.

We next observe that we have ρk:10:k′ ≤ ρk:9:k′ . This is because Hk:10 is
identical with Hk:9 until it outputs Abort2 in session k, and when it outputs
Abort2, the experiment is immediately aborted. ��
We remark that the statement of Claim 4 also holds w.r.t. Hk:j and Hk:j+1 for
j = 10, . . . , 14; the proofs are similar to the proof of Claim 4. We therefore have
the following claim.

Claim 7. |Pr [D(Hk:10) = 1] − Pr [D(Hk:15) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:15:k′ ≤ ρk:10:k′ + negl(κ).

A formal argument for this claim is given in the full version of this paper.

Claim 8. |Pr [D(Hk:15) = 1] − Pr [D(Hk:16) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:16:k′ ≤ ρk:15:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:16 differs from
Hk:15 only in that exti,xi

1 and exti,xi

3 are generated by committing to ri,xi
‖ωi,xi

com

correctly using ExtCom′ (rather than by executing “fake” ExtCom′). Since exti,xi

1

consists of Com commitments to κ pairs of 2-out-of-2 secret shares and exti,xi

3

consists of the revealing of the shares that are selected by exti,xi

2 , we use the
hiding property of Com to show the indistinguishability. Assume for contradic-
tion that the output of Hk:15 and that of Hk:16 are distinguishable. Then, we
consider an adversary ACom that internally emulates Hk:16 honestly except for
the following.

– In Round 1 of session k on the main thread, ACom obtains {exti,xi

1 } from the
external committer, where each exti,xi

1 consists of Com commitments whose
committed values are either all-zero strings or pairs of 2-out-of-2 secret shares
of ri,xi

‖ωi,xi
com.

– In Round 3 of session k on the main thread, ACom computes exti,xi

3 as in the
correct execution of ExtCom′ assuming that the values committed in exti,xi

1

are the pairs of 2-out-of-2 secret shares.

When ACom receives Com commitment to the pairs of 2-out-of-2 secret shares,
the internally emulated experiment is identical with Hk:16. When ACom receives
Com commitments to all-zero strings, the internally emulated experiment is iden-
tical with Hk:15 (since in this case, exti,xi

3 consists of random strings that are
independent of other parts of the experiment). Hence, we derive a contradiction.

Remark 2. ExtCom′ in session k might be rewound in Hk:15 and Hk:16 since
look-ahead threads might be created after Round 1 of session k on the main
thread (for simulating other sessions). Nevertheless, ACom can emulate Hk:16
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while obtaining exti,xi

1 from the external committer because (1) the randomness
for generating exti,xi

1 and exti,xi

3 is not used after Round 1 and (2) exti,xi

3 on
look-ahead thread is a random string (and thus can be simulated trivially).

We next observe that ρk:16:k′ ≤ ρk:15:k′ + negl(κ) follows from the indistin-
guishability of Com. The argument for this statement is similar to the one in the
proof of Claim 4. ��
Claim 9. |Pr [D(Hk:16) = 1] − Pr [D(Hk:17) = 1]| ≤ negl(κ). Furthermore, for
every k′ ∈ [m], ρk:17:k′ ≤ ρk:16:k′ + negl(κ).

Proof. We first show the indistinguishability of the outputs. Hk:17 differs from
Hk:16 only in the witness used in ΠZAP. Hence, the indistinguishability follows
form the witness indistinguishability of ΠZAP.

We next observe that ρk:17:k′ ≤ ρk:16:k′ + negl(κ) follows from the witness
indistinguishability of ΠZAP and the extractability of NMCom. The argument for
this statement is similar to the one in the proof of Claim 4. ��

By combining Claims 1, 2, 3, 4, 5, 6, 7, 8 and 9, we conclude that the two
inequalities in the statement of Lemma 2 hold for k. This concludes the proof of
Lemma 2. ��

We next show that the output of Hm:17 and that of the last hybrid Hm+1:1

(i.e., the ideal experiment) is indistinguishable.

Lemma 3

|Pr [D(Hm:17) = 1] − Pr [D(Hm+1:1) = 1]| ≤ m

(
2κ + 1√

N
+

1

N
+ negl(κ)

)
+ negl(κ).

Proof. We consider an intermediate hybrid Ĥm:17 that is the same as Hm:17

except that the extractions from ExtCom′, ΠWIPOK, and NMCom are performed
by brute force rather than by rewinding (hence, no look-ahead thread is created
in Ĥm:17). That is, Ĥm:17 is the same as Hm:17 except that in a session in which
P1 is corrupted, the simulation trapdoor σ and the committed values {r̃i,b‖ω̃i,b

com}
of ExtCom′ are extracted by brute force, and in a session in which P2 is corrupted,
the committed value wit4 of NMCom is extracted by brute force.

First, we observe that the output of Ĥm:17 and that of Hm+1:1 are identical,
that is,

Pr
[

D(Ĥm:17) = 1
]

= Pr [D(Hm+1:1) = 1] . (5)

This can be seen by inspection: in Ĥm:17, all the messages of the honest parties
are generated in the same way as in Hm+1:1 and the outputs of the honest parties
are computed in the same way as in Hm+1:1.

Next, we show the indistinguishability between the output of Ĥm:17 and that
of Hm:17. We first observe that when Hm:17 outputs neither Abort1 nor Abort2,
the messages and outputs of the honest parties are statistically close to those
that would be computed with brute-force extractions (i.e., as in Ĥm:17).
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– When Hm:17 does not output Abort2, a valid witness wit4 for st4 is extracted
in every session in which P2 is corrupted, and the same wit4 would be also
extracted by brute-force extraction. (This is because from Lemmas 1 and 2,
the probability that Badk′ occurs in Hm:17 is negligible for every k′ ∈ [m].)

– When Hm:17 does not output Abort1, a valid simulation trapdoor σ is extracted
in every session in which P1 is corrupted, and although a different simulation
trapdoor might be extracted as σ by brute-force extraction, the information
about σ is statistically hidden because a statistical witness-indistinguishable
argument ΠSWIAOK is used in ΠFS.

– When Hm:17 does not output Abort1, an implicit input x∗ is defined according
to the values extracted from ExtCom′ in every session in which P1 is corrupted.
If pkle is an injective public key in such a session, the same x∗ would be defined
by brute-force extraction except with negligible probability. (This is because
if pkle is an injective public key, the soundness of ΠZAP guarantees that for
every i ∈ [κ], there is a unique b∗

i ∈ {0, 1} such that (exti,b
∗
i

1 , ext
i,b∗

i
2 , ext

i,b∗
i

3 )
is a correct ExtCom′ commitment to a valid decommitment (ri,b∗

i
, ω

i,b∗
i

com) of
comi,b∗

i
and zi,b∗

i
= ri,b∗

i
⊕r′

i,b∗
i
.) If pkle is a lossy public key in such a session, a

different x∗ might be defined by brute-force extraction.5 However, x∗ is used
only to compute CTgc and the output of honest P2, where CTgc is generated
by LE.Encpkle(·) (which statistically hides the plaintext when pkle is lossy) and
the output of P2 is ⊥ when mac in Round 5 is rejecting (which is almost always
the case when pkle is lossy because skmac is statistically hidden in this case).
Thus, the information about x∗ is statistically hidden in this case.

We next analyze the probability that Hm:17 outputs Abort1 or Abort2. From
Lemma 2, we have

|Pr [D(H0:17) = 1] − Pr [D(Hm:17) = 1]| ≤ m

(

2κ + 1√
N

+
1
N

+ negl(κ)
)

.

Then, since H0:17 (i.e., the real experiment) never output Abort1 or Abort2, we
have that Hm:17 outputs Abort1 or Abort2 with probability at most

m

(

2κ + 1√
N

+
1
N

+ negl(κ)
)

.

By combining the above, we obtain
∣∣∣Pr
[
D(Ĥm:17) = 1

]
− Pr [D(Hm:17) = 1]

∣∣∣ ≤ m

(
2κ + 1√

N
+

1

N
+ negl(κ)

)
+ negl(κ).

(6)

From Eqs. (5) and (6), we obtain

|Pr [D(Hm:17) = 1] − Pr [D(Hm+1:1) = 1]| ≤ m

(
2κ + 1√

N
+

1

N
+ negl(κ)

)
+ negl(κ).

��
5 This is because from an invalid ExtCom′ commitment, the brute-force extractor

always outputs ⊥ but the rewinding extractor can output any value (in particular,
it can output even a valid decommitment of Com).
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From Lemmas 2 and 3 and N = (10mκ/ε)2, we have
∣

∣Pr [D(EXECΠ2PC,A,Z(κ)) = 1] − Pr
[

D(EXECΠ(F),S,Z(κ)) = 1
]∣

∣

= |Pr [D(H0:17) = 1] − Pr [D(Hm+1:1) = 1]|

≤ 2m

(

2κ + 1√
N

+
1
N

+ negl(κ)
)

+ negl(κ) ≤ 5mκ√
N

=
ε

2
.

This contradicts to Eq. (1). This concludes the proof of Theorem 1.
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Abstract. In this paper, we describe a new protocol for secure three-
party computation of any functionality, with an honest majority and
a malicious adversary. Our protocol has both an information-theoretic
and computational variant, and is distinguished by extremely low com-
munication complexity and very simple computation. We start from the
recent semi-honest protocol of Araki et al. (ACM CCS 2016) in which
the parties communicate only a single bit per AND gate, and modify it
to be secure in the presence of malicious adversaries. Our protocol fol-
lows the paradigm of first constructing Beaver multiplication triples and
then using them to verify that circuit gates are correctly computed. As
in previous work (e.g., the so-called TinyOT and SPDZ protocols), we
rely on the cut-and-choose paradigm to verify that triples are correctly
constructed. We are able to utilize the fact that at most one of three par-
ties is corrupted in order to construct an extremely simple and efficient
method of constructing such triples. We also present an improved com-
binatorial analysis for this cut-and-choose which can be used to achieve
improvements in other protocols using this approach.

1 Introduction

1.1 Background

In the setting of secure computation, a set of parties with private inputs wish
to compute a joint function of their inputs, without revealing anything but the
output. Protocols for secure computation guarantee privacy (meaning that the
protocol reveals nothing but the output), correctness (meaning that the cor-
rect function is computed), and more. These security guarantees are provided
in the presence of adversarial behavior. There are two classic adversary mod-
els that are typically considered: semi-honest (where the adversary follows the
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protocol specification but may try to learn more than allowed from the pro-
tocol transcript) and malicious (where the adversary can run any arbitrary
polynomial-time attack strategy). In the information-theoretic model, security is
obtained unconditionally and even in the presence of computationally unbounded
adversaries. In contrast, in the computational model, security is obtained in the
presence of polynomial-time adversaries and relies on cryptographic hardness
assumptions.

Despite its stringent requirements, it has been shown that any polynomial-
time functionality can be securely computed with computational security [3,12,
23] and with information-theoretic security [4,8,20]. These results hold both for
semi-honest and malicious adversaries, but a two-thirds honest majority must be
assumed in order to obtain information-theoretic security (or an honest majority
when assuming broadcast).

There are two main approaches for constructing secure computation pro-
tocols: the secret-sharing approach (followed by [4,8,12]) works by having the
parties interact for every gate of the circuit, whereas the garbled-circuit app-
roach (followed by [3,23]) works by having the parties construct an encrypted
version of the circuit which can be computed at once. Both approaches have
importance and have settings where they perform better than the other. On the
one hand, the garbled-circuit approach yields protocols with a constant number
of rounds. Thus, in high-latency networks, they far outperform secret-sharing
based protocols which have a number of rounds that is linear in the depth of the
circuit being computed. On the other hand, protocols based on secret-sharing
typically have low bandwidth, in contrast to garbled circuits that are large and
costly in bandwidth. Given that the bandwidth is often the bottleneck, it fol-
lows that protocols with low communication have the potential to achieve much
higher throughput.

1.2 Our Results

In this paper, we focus on the question of achieving secure computation in the
presence of malicious adversaries with very high throughput on a fast network
(without utilizing special-purpose hardware). We start with the recent three-
party protocol of [1] that achieves security in the presence of semi-honest adver-
saries. The protocol requires transmitting only a single bit per AND gate, and
the computation per gate is very simple. On a cluster of three 20-core servers
with a 10 Gbs connection, the protocol of [1] achieves a rate of computation
of 7 billion AND gates per second. This can be used, for example, to securely
compute 1.3 million AES block operations per second.

Our approach to achieving malicious security follows the Beaver multiplica-
tion triple approach [2] used in [5,9,19] (and many follow-up works). According
to this approach, the parties securely generate shares of triples (a, b, c) where
a, b are random and c = ab (for the case of Boolean circuits, this is equivalent to
c = a∧ b). Such triples can then be used to verify that AND gates are computed
correctly. In the (difficult) case of no honest majority considered in [5,9,19],
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there are two major challenges: (a) how to generate such triples without mali-
cious parties causing either the shares to be invalid or causing c �= ab, and
(b) how to force the parties to send their “correct” values in the multiplication
triple in the verification stage. The first problem is solved in [5,9,19] by using
cut-and-choose: many triples are generated, some are opened, and the others
are put in buckets and used to verify each other. The second problem is solved
in [5,9,19] by using homomorphic MACs on all of the values. The generation of
the triples to start with and the use of MACs adds additional overhead that is
very expensive.

In this paper, we heavily utilize the fact that at most one party (out of 3)
is corrupted in order to generate triples at very little expense, and to force
the parties to send the correct values. In fact, the secret-sharing method used
in [1] is such that it is possible to generate shares of random values without any
interaction (using correlated randomness which is generated by the parties at
almost no cost). Furthermore, we show how it is possible to detect if a malicious
party sends incorrect values (in the prepared multiplication triples) when there is
an honest majority, without requiring MACs of any kind. As a result, generating
multiplication triples is very cheap. In turn, this enables us to generate a large
number of triples at once, which further improves the parameters of the cut-and-
choose step as well.

Overall, our protocol requires very simple computation, and achieves mali-
cious security at very low communication cost. Specifically, with a statistical
error of 2−40 each party needs to send only 10 bits per AND gate to one other
party; for 2−80 this rises to only 16 bits per AND gate.

Based on the implementation results in [1], our estimates are that our new
protocol should achieve a rate of over 500 million AND gates per second on the
same setup as [1]. This is orders of magnitude faster than any other protocol
achieving malicious security (see related work below).

1.3 Outline of Our Solution and Organization

In this section, we describe the different subprotocols and constructions that
make up our protocol, and provide the high-level ideas behind our constructions.

In Sect. 2.1, we present the 2-out-of-3 secret-sharing scheme used in [1] and
some important properties of it. Then, in Sect. 2.2 we describe the semi-honest
protocol of [1] for multiplication (AND) gates. In addition, we prove a crucial
property of this protocol that we heavily rely on in our construction: for any
malicious adversary, the honest parties always hold a valid sharing after the
multiplication protocol; the shared value may either equal the AND of the input
(if the adversary follows the protocol) or its complement (if the adversary cheats).

In Sect. 2.3 we show how to generate correlated randomness (functionality
Fcr); after an initial exchange of keys for a pseudorandom function, the protocol
is non-interactive. This makes it highly efficient, and also secure for malicious
adversaries (since there is no interaction at all and so no way to cheat). In
Sect. 2.4, we use Fcr to securely compute functionality Frand that provides ran-
dom shares to all parties. A very important feature of our protocol is based
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on the fact that Frand can be securely computed non-interactively using corre-
lated randomness. This means that the first step in generating multiplication
triples – generating shares of random a, b via calls to Frand – can be carried out
non-interactively and thus at a very fast rate.

In Sect. 2.5, we use Frand to carry out secure coin tossing (by generating
shares of random values and then just opening them); each coin is generated by
sending just a single bit. We explain how this is achieved, since it introduces
a key technique that we use throughout. As we have mentioned, shares of a
random value can be generated non-interactively and thus this is secure for
malicious adversaries by default. However, when opening the shares to obtain
the coin, a malicious adversary can cheat by sending an incorrect share value.
Here we critically utilize the fact that we have an honest majority. In particular,
we can simply have all pairs of parties send their shares to each other. Since the
sharing is valid and any two parties can reconstruct the secret, each party can
reconstruct separately based on the shares received from each other party, and
compare. If the adversary cheats, then the result will be different reconstructed
secrets, which will result in an abort. Our secret-sharing scheme has two bits
and so this would cost each party sending 4 bits. However, we observe that in
order to open it suffices to send 1 bit of each share only. Furthermore, we observe
that if each party sends its bit to only one other party (P1 to P2, P2 to P3, and
P3 to P1) then the bit sent by one honest party to another will result in the
correct coin (there is always one such pair since only one party is corrupted).
Thus, it actually suffices for each party to send its bit to only one other party
and to record the result of the coin on a “public view” string. Then, at the end
of the entire execution, before any output is revealed, the parties can compare
their views by sending a collision-resistant hash of their local public view. If
the two honest parties received a different coin at any point then they will have
different local public views and so will abort before anything is revealed. As a
result, coin-tossing can be achieved by each party sending just a single bit to
one other party.

In Sects. 2.6, 2.7 and 2.8, we introduce additional functionalities needed for
our protocol. First, in order to carry out the cut-and-choose, a random permu-
tation must be applied to the tuples generated. This is carried out using Fperm

(Sect. 2.6) which computes a random permutation of array indices. This function-
ality is easily realized by the parties just coin tossing the amount of randomness
needed to define the permutation. In addition, in order for the parties to share
inputs and obtain output, we need a way to deal shares and open shares that is
secure for malicious adversaries. These are constructed in Sect. 2.7 (Freconst for
robustly reconstructing a secret to one party) and Sect. 2.8 (Fshare for robustly
sharing a value).

We now explain how the above subprotocols can be used to generate correct
multiplication triples. The parties first call Frand to generate shares of random
values a, b and then run the semi-honest multiplication protocol of [1] to generate
shares of c. As we have mentioned above, the semi-honest multiplication protocol
has the property that even if the adversary is malicious, the shares of c are
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valid. However, if the adversary cheats then it may be the case that c = ab ⊕ 1
instead of equalling ab. In order to prevent this from happening, the parties
generate many triples and use some to check the others. Namely, the parties
first randomly choose a subset of the triples which are opened to verify that
indeed c = ab. This uses the subprotocol in Sect. 2.9 which carries out this exact
check. Next, the remaining triples are partitioned randomly into buckets of size
B (the random division is carried out using Fperm). Then, in each bucket, B − 1
of the triples are used to verify that one of the triples is correct, except with
negligible probability (without revealing the triple being checked). This uses
the subprotocol of Sect. 2.10 which shows how to use one triple to verify that
another is correct. This protocol is described in Sect. 3, and it securely computes
functionality Ftriples that generates an array of random multiplication triples for
the parties.

Finally, we show how to securely compute any functionality f using ran-
dom multiplication triples. Intuitively, this works by the parties running the
semi-honest multiplication protocol for each AND gate and verifying each mul-
tiplication using a triple. The verification method, as used in [9,19], has the
property that if a multiplication triple is good and the adversary cheats in the
gate multiplication, then this is detected by the honest parties. As with all of our
protocols, we take care to minimize the communication, and verify each gate by
sending only 2 bits (beyond the single bit needed for the multiplication itself).

The efficiency of our construction relies heavily on the cut-and-choose para-
meters, both with respect to how many triples need to be opened and checked
and the bucket size. In Sect. 5 we provide a tight analysis of this cut-and-choose
game which yields a significant improvement over previous analyses for similar
games in [5,19]. For concrete parameters that are suitable for our protocol, our
analysis is approximately 25% better than [5,19].

Caveats. We stress that our protocol is specifically defined for the case of 3 par-
ties only. This case is of interest for outsourced computations, as in the Share-
mind business model [22], for two-party setting where a third auxiliary server can
be used, and in other settings of interest as described in [1]. The generalization
of our protocol to more parties is not straightforward since we rely on replicated
secret sharing, and the size of such shares increases exponentially in the number
of parties. In addition, our protocol is only secure with abort ; this is unlike other
protocols for the honest majority case that achieve fairness. Nevertheless, this is
sufficient for many applications. For this setting, we are able to achieve security
for malicious adversaries with efficiency way beyond any other known protocol.

1.4 Related Work

Most of the work on concretely-efficient secure computation has focused on the
dishonest majority case. These protocols are orders of magnitude less efficient
than ours, but deal with a much more difficult setting. For example, the best
protocols based on garbled circuits for batch executions [17,21] require only
sending 4 garbled circuits per execution. Even ignoring all of the additional work
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and communication (which is very significant), 4 garbled circuits per execution
means sending 1000 bits per gate, which is 100 times the cost of our protocol.
Likewise, the SPDZ/MASCOT protocol [14] communicates approximately 360
bits per gate for three parties, which is 36 times the cost of our protocol. The
same is true for all other dishonest-majority protocols; c.f. [5,9,19].

In the setting of an honest majority, the only highly-efficient protocol with
security for malicious adversaries that has been implemented, to the best of our
knowledge, is that of [18]. We compare our protocol to [18] in detail in Sect. 6.
Our protocol is more than an order of magnitude cheaper both in communication
and computation; however, their protocol is constant-round and therefore better
suited to slow networks.

1.5 Definition of Security

Our protocols are proven secure under the standard ideal/real simulation para-
digm, for the case of malicious adversaries and with abort.

2 Building Blocks and Subprotocols

2.1 The Secret Sharing Scheme

We denote the three parties by P1, P2 and P3. Throughout the paper, in order to
simplify notation, when we use an index (say i) to denote the ith party, we will
write i−1 and i+1 to mean the “previous” and “subsequent” party, respectively.
That is, when i = 1 then Pi−1 is P3 and when i = 3 then Pi+1 is P1.

We use the 2-out-of-3 secret sharing scheme of [1], defined as follows. In order
to share a bit v, the dealer chooses three random bits s1, s2, s3 ∈ {0, 1} under
the constraint that s1 ⊕ s2 ⊕ s3 = v. Then:

– P1’s share is the pair (t1, s1) where t1 = s3 ⊕ s1.
– P2’s share is the pair (t2, s2) where t2 = s1 ⊕ s2.
– P3’s share is the pair (t3, s3) and t3 = s2 ⊕ s3.

It is clear that no single party’s share reveals anything about v. In addition,
any two parties can obtain v; e.g., given (t1, s1), (t2, s2) one can compute v =
t1 ⊕ s2. We denote by [v] a 2-out-of-3 sharing of the value v according to the
above scheme.

Claim 2.1. The secret v together with the share of one party fully determine
the shares of the other parties.

Proof: By the definition of the secret sharing scheme, it holds that ti = si−1⊕si.
Since (ti, si) for some i ∈ {1, 2, 3} and v are determined, this determines both
si−1 and si+1 as well. This follows since si−1 = ti ⊕ si and si+1 = v ⊕ si ⊕ si−1.
Thus, the shares of the other two parties are determined. �
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Opening shares. We define a subprocedure, denoted open([v]), for our secret

sharing scheme, as follows. Denote the shares of v by
{

(ti, si)
}i=3

i=1
. Then, each

party Pi sends ti to Pi+1, and each Pi outputs v = si ⊕ ti−1.

Local operators for shares. We define the following local operators on shares:

– Addition [v1] ⊕ [v2]: Given a share (t1i , s
1
i ) of v1 and a share (t2i , s

2
i ) of v2, each

party Pi computes: (t1i ⊕ t2i , s
1
i ⊕ s2i ).

– Multiplication by a scalar σ · [v]: Given a share (ti, si) of v and a value σ ∈
{0, 1}, each party Pi computes (σ · ti, σ · si).

– Addition of a scalar [v] ⊕ σ: Given a share (ti, si) of v and a value σ ∈ {0, 1},
each party Pi computes (ti, si ⊕ σ).

– Complement [v]: Given a share (ti, si) of v, each party Pi computes (ti, si)
(where b is b’s complement)

We stress that when writing [v1] ⊕ [v2] the symbol “⊕” is an operator on shares
and not bitwise XOR, whereas when we write v1 ⊕ v2 the symbol “⊕” is bitwise
XOR; likewise for the product and complement notation. We now prove that
these local operators achieve the expected results.

Claim 2.2. Let [v1], [v2] be shares and let σ ∈ {0, 1} be a scalar. Then, the
following properties hold:

1. [v1] ⊕ [v2] = [v1 ⊕ v2]
2. σ · [v1] = [σ · v1]
3. [v1] ⊕ σ = [v1 ⊕ σ]
4. [v1] = [v1]

Proof: Denote the shares of v1 and v2 by
{

(t1i , s
1
i )

}i=3

i=1
and

{

(t2i , s
2
i )

}i=3

i=1
,

respectively.

1. We prove that [v1] ⊕ [v2] = [v1 ⊕ v2] by showing that {(t1i ⊕ t2i , s
1
i ⊕ s2i )}i=3

i=1

is a valid sharing of v1 ⊕ v2. First, observe that the s-parts are valid since
(s11 ⊕ s21) ⊕ (s12 ⊕ s22) ⊕ (s13 ⊕ s23) = (s11 ⊕ s12 ⊕ s13) ⊕ (s21 ⊕ s22 ⊕ s23) = v1 ⊕ v2.
Furthermore, for every i, (t1i ⊕ t2i ) = (s1i−1⊕s1i )⊕(s2i−1⊕s2i ) = (s1i−1⊕s2i−1)⊕
(s1i ⊕ s2i ) as required.

2. We prove that σ · [v1] = [σ · v1] by showing that {(σ · t1i , σ · s1i )}i=3
i=1 is a valid

sharing of σ ·v1. This is true since σ ·s11⊕σ ·s12⊕σ ·s13 = σ ·(s11⊕s12⊕s13) = σ ·v1
and σ · t1i = σ · (s1i−1 ⊕ s1i ) = σ · s1i−1 ⊕ σ · s1i as required.

3. We prove that [v1] ⊕ σ = [v1 ⊕ σ] by showing that {(t1i , σ ⊕ s1i )}i=3
i=1 is a

valid sharing of σ ⊕ v1. This is true since (σ ⊕ s11) ⊕ (σ ⊕ s12) ⊕ (σ ⊕ s13) =
σ ⊕ (s11 ⊕ s12 ⊕ s13) = σ ⊕ v1 and t1i = s1i−1 ⊕ s1i = (σ ⊕ s1i−1) ⊕ (σ ⊕ s1i ).

4. We prove that [v1] = [v1] by showing that {(t1i , s
1
i )}i=3

i=1 is a valid sharing of v1.
This holds since s11 ⊕ s12 ⊕ s13 = s11 ⊕ s12 ⊕ s13 = v1 and t1i = s1i−1 ⊕ s1i =
s1i−1 ⊕ s1i . �
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Consistency. In the setting that we consider here, one of the parties may be
maliciously corrupted and thus can behave in an arbitrary manner. Thus, if
parties define their shares based on values received, it may be possible that the
honest parties hold values that are not a valid sharing of any value. We therefore
define the notion of consistency of shares. We stress that this definition relates
only to the shares held by the honest parties, since the corrupted party can
always change its local values. As we will show after the definition, shares are
consistent if they define a unique secret v.

Definition 2.3. Let (t1, s1), (t2, s2) and (t3, s3) be the shares held by parties
P1, P2 and P3 respectively, and let Pi be the corrupted party. We say that the
shares are consistent if it holds that si+1 = si+2 ⊕ ti+2.

In order to understand the definition, recall that in a valid sharing of v it
holds that ti+2 = si+1 ⊕ si+2. Thus, we obtain that si+1 = si+1 ⊕ si+2 ⊕ si+2 =
si+2 ⊕ ti+2 as the definition requires. The intuition behind this is that, in order
to reconstruct the secret, the honest parties Pi+1 and Pi+2 need to learn ti
and ti+1 respectively. However, since ti is held by the corrupted party, we use
the fact that ti = ti+1 ⊕ ti+2 to obtain that Pi+1 can reconstruct the secret
using ti+1 which it knows and ti+2 which is held by the other honest party.
The definition says that computing the secret using Pi+1’s share and ti+2; i.e.,
computing si+1 ⊕ ti+1 ⊕ ti+2, yields the same value as computing the secret
using Pi+2’s share and ti+1; i.e., computing si+2 ⊕ ti+1. We stress that shares
may be inconsistent. For example, if P1 is the corrupted party and the shares
of the honest parties P2, P3 are (1, 1) and (1, 1) respectively, then the shares are
inconsistent since s2 = 1 whereas s3 ⊕ t3 = 1 ⊕ 1 = 0. Thus, these shares cannot
be the result of any sharing of any value.

2.2 Computing AND Gates – One Semi-honest Corrupted Party

We review the protocol for securely computing AND (equivalently, multiplica-
tion) gates for semi-honest adversaries from [1] as it will be used in a subprotocol
in our protocol for malicious adversaries. This subprotocol requires each party
to send a single bit only. The protocol works in two phases: in the first phase the
parties compute a simple

(

3
3

)

XOR-sharing of the AND of the input bits, and in
the second phase they convert the

(

3
3

)

-sharing into the above-defined
(

3
2

)

-sharing.
Let (t1, s1), (t2, s2), (t3, s3) be a secret sharing of v1, and let (u1, w1), (u2, w2),

(u3, w3) be a secret sharing of v2. We assume that the parties P1, P2, P3 hold
correlated randomness α1, α2, α3, respectively, where α1 ⊕ α2 ⊕ α3 = 0. The
parties compute

(

3
2

)

-shares of v1v2 = v1 ∧ v2 as follows:

1. Step 1 – compute
(

3
3

)

-sharing:
(a) P1 computes r1 = t1u1 ⊕ s1w1 ⊕ α1, and sends r1 to P2.
(b) P2 computes r2 = t2u2 ⊕ s2w2 ⊕ α2, and sends r2 to P3.
(c) P3 computes r3 = t3u3 ⊕ s3w3 ⊕ α3, and sends r3 to P1.

These messages are computed and sent in parallel.
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2. Step 2 – compute
(

3
2

)

-sharing: In this step, the parties construct a
(

3
2

)

-
sharing from their given

(

3
3

)

-sharing and the messages sent in the previous
step. This requires local computation only.
(a) P1 stores (e1, f1) where e1 = r1 ⊕ r3 and f1 = r1.
(b) P2 stores (e2, f2) where e2 = r2 ⊕ r1 and f2 = r2.
(c) P3 stores (e3, f3) where e3 = r3 ⊕ r2 and f3 = r3.

It was shown in [1], that f1⊕f2⊕f3 = r1⊕r2⊕r3 = v1v2. Thus, the obtained
sharing is a consistent sharing of v1v2. We now show something far stronger;
specifically, we show that the above multiplication protocol (for semi-honest
adversaries) always yields consistent shares, even when run in the presence of a
malicious adversary. Depending on the adversary, the result is either a consistent
sharing of the product or its complement, but it is always consistent.

Lemma 2.4. If [v1] and [v2] are consistent and [v3] was generated by executing
the (semi-honest) multiplication protocol on [v1] and [v2] in the presence of one
malicious party, then [v3] is a consistent sharing of either v1v2 or v1v2 ⊕ 1.

Proof: If the corrupted party follows the protocol specification then [v3] is a
consistent sharing of v1v2. Else, since the multiplication protocol is symmetric,
assume without loss of generality that P1 is the corrupted party. Then, the only
way that P1 can deviate from the protocol specification is by sending r1⊕1 to the
honest P2 instead of r1, and in this case P2 will define its share to be (e2, f2) =
(r2 ⊕ r1 ⊕ 1, r2). Meanwhile, P3 defines its share to be (e3, f3) = (r3 ⊕ r2, r3),
as it receives r2 from the honest P2. Thus, f3 ⊕ e3 = r3 ⊕ (r3 ⊕ r2) = r2 = f2
meaning that [v3] is consistent by Definition 2.3. Furthermore, it is a sharing of
v1v2 ⊕ 1 since f3 ⊕ e2 = r3 ⊕ (r1 ⊕ 1 ⊕ r2) = v1v2 ⊕ 1 (utilizing the fact that
r1 ⊕ r2 ⊕ r3 = v1v2). �

2.3 Generating Correlated Randomness – F1
cr/F2

cr

Our protocol relies strongly on the use of random bits which are correlated. We
define two types of correlated randomness:

– Type 1: Consider an ideal functionality F1
cr that chooses α1, α2, α3 ∈ {0, 1}

at random under the constraint that α1 ⊕ α2 ⊕ α3 = 0, and sends αi to Pi for
every i.

– Type 2: Consider an ideal functionality F2
cr that chooses α1, α2, α3 ∈ {0, 1}

at random, and sends (α1, α2) to P1, (α2, α3) to P2, and (α3, α2) to P3.

Generating correlated randomness efficiently. It is possible to securely
generate type-1 correlated randomness with perfect security by having each party
Pj simply choose a random ρj ∈ {0, 1} and send it to Pj+1. Then, each Pj

defines αj = ρj ⊕ρj−1 (observe that α1 ⊕α2 ⊕α3 = 0 since each ρ-value appears
twice). In order to compute type-2 correlated randomness, each party Pj sends
a random ρj as before, but now each Pj outputs the pair (ρj−1, ρj). (Formally,
the ideal functionalities F1

cr/F2
cr must be defined so that the corrupted party Pi
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has some influence, but this suffices.) Despite the elegance and simplicity of this
solution, we use a different approach that does not require any communication.
Although the above involves sending just a single bit, this would actually double
the communication per AND gate which is the bottleneck of efficiency.

Protocol 2.5 describes a method for securely compute correlated randomness
computationally without any interaction beyond a short initial setup. Observe
that in the output of F1

cr, it holds that α1⊕α2⊕α3 = 0. Furthermore, for every j,
Pj does not know kj+1 which is used to generate αj+1 and αj+2. Thus, αj+1

and αj+2 are pseudorandom to Pj , under the constraint that α2 ⊕α3 = α1. This
was proven formally in [1] and the same proof holds for the malicious setting.

PROTOCOL 2.5 (Computing F1
cr/F2

cr)

– Auxiliary input: Each party holds a security parameter κ and a descrip-
tion of a pseudorandom function F : {0, 1}κ × {0, 1}κ → {0, 1}.

– Setup (executed once):
1. Each party Pj chooses a random kj ∈ {0, 1}κ.
2. Each party Pj sends kj to party Pj+1.

– Generating randomness: Upon input id,
• Computing F1

cr: each party Pj computes αj = Fkj (id)⊕Fkj−1(id) and
outputs it.

• Computing F2
cr: each party Pj outputs

(
Fkj (id), Fkj−1(id)

)
.

Formally defining the F1
cr/F2

cr ideal functionalities. A naive definition
would be to have the ideal functionality choose α1, α2, α3 and send αj to Pj

for = j ∈ {1, 2, 3} (or send αj , αj−1 to Pi in the F2
cr functionality). However,

securely realizing such a functionality would require a full-blown coin tossing
protocol. In order to model our non-interactive method, which suffices for our
protocol, we need to take into account that the corrupted party Pi can choose
its ki and this influences the output, as Pi’s value is generated in a very specific
way using a pseudorandom function. In order for the view of the corrupted party
to be like in the real protocol, we define the functionality F1

cr/F2
cr so that they

generate the corrupted party’s value in this exact same way.
The functionalities are described formally in Functionality 2.6. The corrupted

party chooses two keys k, k′ for the pseudorandom function F and sends them to
the functionality. These keys are used to generate the values that are influenced
by the corrupted party, whereas the other values are chosen uniformly. We denote
by κ the computational security parameter, and thus the length of the keys k, k′.

The following is proved in the full version of our paper.

Proposition 2.7. If F is a pseudorandom function, then Protocol 2.5 securely
computes functionalities F1

cr and F2
cr, respectively, with abort in the presence of

one malicious party.
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FUNCTIONALITY 2.6 (F1
cr/F2

cr – correlated randomness)

Let F : {0, 1}κ × {0, 1}κ → {0, 1} be a keyed function. Upon invocation, the
adversary controlling party Pi chooses a pair of keys k, k′ ∈ {0, 1}κ and sends
them to F1

cr/F2
cr. Then:

– F1
cr: Upon receiving input id from all parties, functionality F1

cr computes
αi = Fk(id)⊕Fk′(id) and chooses random values αi−1, αi+1 ∈ {0, 1} under
the constraint that α1 ⊕ α2 ⊕ α3 = 0. F1

cr sends αj to Pj for every j.
– F2

cr: Upon receiving input id from all parties, functionality F2
cr computes

αi = Fk(id) and αi−1 = Fk′(id) and chooses a random value αi+1 ∈ {0, 1}.
F2

cr sends (αj−1, αj) to Pj for every j.

2.4 Generating Shares of a Random Value – Frand

In this section, we show how the parties can generate a sharing of a random secret
value v known to none of them. Formally, we define the functionality Frand that
chooses a random v ∈ {0, 1}, computes a sharing [v], and sends each party its
share of [v]. However, Frand allows the corrupted party to determine its own
share, and thus computes the honest parties’ shares from the corrupted party’s
share and the randomly chosen v. Frand is formally specified in Functionality 2.8.

FUNCTIONALITY 2.8 (Frand – generating shares of a random
value)

– Frand receives (ti, si) from the corrupted party Pi.
– Frand chooses a random v ∈ {0, 1} and defines the respective shares

(ti−1, si−1), (ti+1, si+1) of Pi−1, Pi+1 based on (ti, si) and v (as described
in Claim 2.1).

– Frand sends (ti−1, si−1) to Pi−1, and sends (ti+1, si+1) to Pi+1.

Protocol 2.9 describes how to securely compute Frand in the F2
cr-hybrid

model, without any interaction.

PROTOCOL 2.9 (Securely computing Frand)

1. The parties call F2
cr and receive (r3, r1), (r1, r2), and (r2, r3), respectively.

2. P1 defines t1 = r3 ⊕ r1 and s1 = r1.
3. P2 defines t2 = r1 ⊕ r2 and s2 = r2.
4. P3 defines t3 = r2 ⊕ r3 and s3 = r3.

Observe that t1 ⊕ t2 ⊕ t3 = 0. Furthermore, define v = s1 ⊕ t3 = r1 ⊕ r2 ⊕ r3.
Observe that s2 ⊕ t1 and s3 ⊕ t2 also both equal the same v. Thus, this non-
interactive protocol defines a valid sharing [v] for a random v ∈ {0, 1}. The fact
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that v is random follows from the fact that it equals r1 ⊕ r2 ⊕ r3. Now, by the
definition of F2

cr, a corrupted Pi knows nothing of ri+1 = αi+1 which is chosen
uniformly at random, and thus the defined sharing is of a random value.

Proposition 2.10. Protocol 2.9 securely computes functionality Frand with
abort in the F2

cr-hybrid model, in the presence of one malicious party.

Proof: Let A be a real adversary; we define S as follows:

– S receives A’s input k, k′ to F2
cr.

– Upon receiving id from A as intended for F2
cr, simulator S simulates A receiv-

ing back (ri−1, ri) = (Fk′(id), Fk(id)) from F2
cr.

– S defines ti = ri−1 ⊕ ri and si = ri, and externally sends (ti, si) to Frand.
– S outputs whatever A outputs.

We show that the joint distribution of the outputs of S and the honest parties
in an ideal execution is identical to the outputs of A and the honest parties in
a real execution. In order to see this, observe that in a real execution, given a
fixed ri−1, ri (as viewed by the adversary), the value v is fully determined by
ri+1. In particular, by the definition of the secret-sharing scheme, v = si⊕ti−1 =
ri ⊕ ri−2 ⊕ ri−1 = r1 ⊕ r2 ⊕ r3. Since ri+1 is randomly generated by F2

cr, this
has the same distribution as Frand choosing v randomly (because choosing v
randomly, or choosing some r randomly and setting v = ti ⊕ r is identical).
Thus, the joint distributions are identical. �

2.5 Coin Tossing – Fcoin

We now present a highly-efficient three-party coin tossing protocol that is secure
in the presence of one malicious adversary. We define the functionality Fcoin

that chooses s random bits v1, . . . , vs ∈ {0, 1} and sends them to each of the
parties. The idea behind our protocol is simply for the parties to invoke s calls
to Frand and to then open the result (by each Pi sending ti to Pi+1; see Sect. 2.1).
Observe that this in itself is not sufficient since a malicious party may send an
incorrect opening, resulting in the honest parties receiving different output. This
can be solved by using a subprocedure called compareview() in which each party
Pj sends its output to party Pj+1. If any party receives a different output, then
it aborts. The reason why this is secure is that the protocol guarantees that
if Pi is corrupted then Pi+2 receives the correct outputs v1, . . . , vs; this holds
because when opening the shares, the only values received by Pi+2 are sent by
the honest Pi+1 and are not influenced by Pi. Thus, Pi+2’s output is guaranteed
to be correct, and if Pi+1 and Pi+2 have the same output then Pi+1’s output is
also correct. This is formally described in Protocol 2.11.
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PROTOCOL 2.11 (Securely computing Fcoin)

1. The parties invoke s calls to Frand; denote their outputs by [v1], ..., [vs].
2. For every j ∈ {1, .., s}, the parties run the open([vj ]) procedure defined in

Sect. 2.1 to obtain vj .
3. The parties run compareview(v1, . . . , vs) by each Pj sending the outputs

v1, . . . , vs to Pj+1. If a party receives different output, then it outputs ⊥.
Otherwise, it outputs v1, . . . , vs.

Proposition 2.12. Protocol 2.11 securely computes functionality Fcoin with
abort in the Frand-hybrid model, in the presence of one malicious party.

Proof: Let A be the real adversary controlling Pi; we construct the simulator S:

1. S receives v1, . . . , vs from the trusted party computing Fcoin.
2. S invokes A and simulates s calls to Frand, as follows:

(a) S receives Pi’s share in every call to Frand.
(b) Given v1, . . . , vs and Pi’s shares, S computes the value ti−1 that A should

receive from Pi−1. (Specifically, for the �th value, let (t�i , s
�
i) be Pi’s share

and let v� be the bit received from Fcoin. Then, S sets ti−1 = v� ⊕ s�
i .

This implies that the “opening” is to v�.)
(c) If A sends an incorrect ti value in any open procedure, then S sends

aborti+1 to Fcoin causing Pi+1 to abort in the ideal model. Otherwise,
it sends continuei+1 to Fcoin. (In all cases it sends continuei−1 to Fcoin

since Pi−1 never aborts.)

By the way Frand is defined, the output distribution of A and the honest par-
ties in a real execution is identical to the output distribution of S and the
honest parties in an ideal execution. This is because each vj is uniformly dis-
tributed, and S can fully determine the messages that A receives for any fixed
v1, . . . , vs. �

Deferring compareview. Our protocol has the property that nothing is revealed
to any party until the end, even if a party behaves maliciously. As such, it will
suffice for us to run compareview only once at the very end of the protocol before
outputs are revealed. This enables us to have the parties compare their views
by only sending a collision-resistant hash of their outputs, thereby reducing
communication. As we will see below, this method will be used in a number of
places, and all compareview operations will be done together.

2.6 Random Shuffle – Fperm

In our protocol, we will need to compute a random permutation of an array
of elements (where each element is a “multiplication triple”). Let Fperm be an
ideal functionality that receives a vector d of length M from all parties, chooses
a random permutation π over {1, ...,M} and returns the vector d′ defined by
d′[i] = d[π[i]] for every i ∈ {1, ...,M}. Functionality Fperm can be securely
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PROTOCOL 2.13 (Securely computing Fperm)

All parties hold the same input d, and work as follows:

1. For j = 1 to M :
(a) The parties call Fcoin enough times to generate a random index i ∈

{j, . . . , M}.
(b) Each party swaps d[j] and d[i].

2. Each party output the resulting vector d.

computed by the parties running the Fisher-Yates shuffle algorithm [10], and
obtaining randomness via Fcoin. This is formally described in Protocol 2.13.

The following proposition follows trivially from the security of Fcoin:

Proposition 2.14. Protocol 2.13 securely computes functionality Fperm with
abort in the Fcoin-hybrid model, in the presence of one malicious party.

2.7 Reconstruct a Secret to One of the Parties – Freconst

In this section we show how the parties can open a consistent sharing [v] of
a secret v to one of the parties in a secure way. We will use this subprotocol
for reconstructing the outputs in our protocol. We remark that we consider
security with abort only, and thus the party who should receive the output
may abort. We stress that this procedure is fundamentally different to the open
procedure of Sect. 2.1 in two ways: first, only one party receives output; second,
the open procedure does not guarantee correctness. In contrast, here we ensure
that the party either receives the correct value or aborts. We stress, however,
that the protocol is only secure if the sharing [v] is consistent; otherwise, nothing
is guaranteed. We formally define Freconst in Functionality 2.15.

FUNCTIONALITY 2.15 (Freconst – secure reconstruction)

Let S be the adversary and Pi the corrupted party. Freconst receives
(ti+1, si+1, j) from Pi+1 and (ti+2, si+2, j) from Pi+2, and works as follows:

– Freconst computes v = si+2 ⊕ ti+1 and sends v to Pj . In addition, Freconst

sends (ti, si) to S (where (ti, si) is Pi’s share as defined by the shares
received from the honest parties).

Note that Freconst also sends Pi’s share to S. This is needed technically in the
proof to enable simulation; it reveals nothing since this is the corrupted party’s
share anyway. Also, observe that the output is determined solely by the honest
parties’ shares; this guarantees that the corrupted party cannot influence the
output beyond causing an abort.

We show how to securely compute Freconst in Protocol 2.16. Intuitively, the
protocol works by the parties sending their shares to Pj who checks that they
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are consistent, and reconstructs if yes. In order to reduce communication, we
actually show that it suffices for the parties to send only the “t” parts of their
shares.

PROTOCOL 2.16 (Reconstruct a Secret to One Party)

– Inputs: The parties hold a sharing [v] and an index j ∈ {1, 2, 3}.
– The protocol:

1. Parties Pj+1 and Pj−1 send tj+1 and tj−1, respectively, to Pj .
2. Party Pj checks that tj = tj+1 ⊕ tj+2. If yes, it outputs v = sj ⊕ tj−1;

otherwise, it outputs ⊥.

Proposition 2.17. If the honest parties’ inputs shares are consistent as in
Definition 2.3, then Protocol 2.16 securely computes Freconst with abort, in the
presence of one malicious party.

Proof: Let A be the real adversary controlling Pi, and assume that the honest
parties’ shares are consistent. We first consider the case that Pj is corrupt (i.e.,
i = j). In this case, the simulator S receives v and (ti, si) = (tj , sj) from Freconst.
These values fully define all other shares, and in particular the values tj+1 and
tj−1. Thus, S can simulates Pj+1 and Pj−1 sending tj+1 and tj−1 to Pj .

We next consider the case that Pj is honest (i.e., j �= i). In this case, S receives
Pi’s share (ti, si) from Freconst. Then, S invokes A and receives the bit t′i that
Pi would send to Pj . If t′i = ti (where ti is the correct share value as received
from Freconst), then S sends continuej to Freconst so that the honest Pj receives v.
Otherwise, S sends abortj to Freconst so that the honest Pj outputs ⊥. Observe
that in a real protocol Pj aborts unless t1 ⊕ t2 ⊕ t3 = 0 (which is equivalent
to tj = tj+1 ⊕ tj+2). Thus, if the corrupted party sends an incorrect ti value,
then Pj will certainly abort. In contrast, if the adversary controlling Pi sends
the correct ti, then the output will clearly be the correct v, again as in the ideal
execution with S. �

2.8 Robust Sharing of a Secret – Fshare

In this section, we show how to share a secret that is held by one of the parties
who may be corrupt. This sub-protocol will be used to share the parties’ inputs in
the protocol. We define Fshare in Functionality 2.18 We note that the corrupted
party always provides its share as input, as in Frand. In addition, the dealer
provides v and the (honest) parties receive their correct shares as defined by
these values.

We show how to securely compute Fshare in Protocol 2.19. The idea behind
the protocol is to first generate a random sharing via Frand which guarantees a
consistent sharing of a random value (recall that this requires no communica-
tion). Next, the parties reconstruct the shared secret to the dealer, who can then
send a single bit to “correct” the random share to its actual input. This ensures
that the honest parties hold consistent shares, as long as a corrupt dealer sent
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FUNCTIONALITY 2.18 (Functionality Fshare – sharing a secret)

Let Pj be the party playing the dealer, and let Pi be the corrupted party:

– The corrupted Pi sends (ti, si) to Fshare.
– The dealer Pj sends v to Fshare.
– Fshare computes (tj+1, sj+1) and (tj+2, sj+2) from (ti, si) and v (as

described in Claim 2.1) and sends the honest Pi−1 and Pi+1 their respective
shares.

PROTOCOL 2.19 (Robust Sharing of a Secret)

– Inputs: Party Pj holds a bit v ∈ {0, 1}.
– The protocol:

1. The parties call Frand to obtain [a] for a random a ∈ {0, 1}.
2. The parties call Freconst with [a] and j as its inputs, and so Pj

receives a. If Pj receives ⊥, it sends ⊥ to all other parties and halts.
Else, it proceeds to the next step.

3. Party Pj sends b = a ⊕ v to the other parties.
4. The parties run compareview(b) by each Pj sending the bit b to Pj+1.

If any party sees different b values, then it sends ⊥ to all other parties
and halts.

5. The parties each set their share [v] = [a] ⊕ b (using the operator
defined in Sect. 2.1).

– Output: Each party outputs its share in [v].

the same bit to both; this is enforced by the parties comparing to ensure that
they received the same bit from the dealer.

The following is proven in the full version of this paper.

Proposition 2.20. Protocol 2.19 securely computes Fshare with abort in the
(Frand,Freconst)-hybrid mode, in the presence of one malicious party.

Deferring compareview. As in Sect. 2.5, the compareview step can be deferred
to the end of the execution (before any output is revealed). When using this
mechanism, the bits to be compared are simply added to the parties local view
and stored, and they are compared at the end.

2.9 Triple Verification with Opening

A multiplication triple is a triple of shares ([a], [b], [c]) with the property that
c = a · b. Our protocol works by constructing triples and verifying that indeed
c = a · b. We begin by defining what it means for such a triple to be correct.

Definition 2.21. ([a], [b], [c]) is a correct multiplication triple if [a], [b] and [c]
are consistent sharings, and c = a · b.
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In our main protocol for secure computation, the parties will generate mul-
tiplication triples in two steps:

1. The parties generate random sharings [a] and [b] by calling Frand twice.
2. The parties run the semi-honest multiplication protocol described in Sect. 2.2

to obtain [c].

Recall that by Lemma 2.4, the sharing [c] is always consistent. However, if one of
the parties is malicious, then it may be that c = ab ⊕ 1. Protocol 2.22 describes
a method of verifying that a triple is correct. The protocol is very simple and
is based on the fact that if the shares are consistent and c �= ab, then one of
the honest parties will detect this in the standard open procedure defined in
Sect. 2.1. This protocol is called verification “with opening” since the values
a, b, c are revealed.

PROTOCOL 2.22 (Triple Verification With Opening)

– Inputs: The parties holds the triple ([a], [b], [c]).
– The protocol:

1. The parties run the procedures open([a]), open([b]) and open([c]).
Denote the output of party Pj from the three procedures by aj , bj

and cj respectively.
2. Each party Pj checks that cj = aj ·bj . If no, it sends ⊥ to both parties

and aborts.
3. If no ⊥ message is received, each party outputs accept.

Lemma 2.23. If [a], [b], [c] are consistent shares, but ([a], [b], [c]) is not a correct
multiplication triple, then both honest parties output ⊥ in Protocol 2.22.

Proof: Let Pi be the corrupted party, and assume that [a], [b], [c] are consistent
shares, but ([a], [b], [c]) is not a correct multiplication triple. This implies that
c = a · b ⊕ 1. Therefore, in the open procedures, party Pi+2 will receive values
ai+2, bi+2, ci+2 such that ci+2 �= ai+2 · bi+2, and will send ⊥ to both parties.
(This holds since Pi+2 receives messages only from Pi+1 that are independent of
what Pi sends.) Thus, both honest parties will output ⊥. �

2.10 Triple Verification Using Another (Without Opening)

We have seen how to check a triple by opening it and revealing its values a, b, c.
Such a triple can no longer be used in the protocol. In this section, we show
how to verify that a multiplication triple is consistent without opening it, by
using (and wasting) an additional random multiplication triple that is assumed
to be consistent. The method is described in Protocol 2.24. The idea behind the
protocol is as follows. Given shares of x, y, z and of a, b, c, the parties compute
and open shares of ρ = x ⊕ a and σ = y ⊕ b; these values reveal nothing about
x and y since a, b are both random. As we will show in the proof below, if one
of (x, y, z) or (a, b, c) is correct and the other is incorrect (e.g., x �= y · z but
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c = a · b) then z + c + σ · a + ρ · b + ρ · σ = 1. Thus, this value can be computed
and opened by the parties. If x, y, z is incorrect and a, b, c is correct, then the
honest parties will detect this and abort. In order to save on communication,
we observe that if the value to be opened must equal 0 then it must hold that
sj = tj−1. Thus, it suffices for the parties to compare a single bit.

PROTOCOL 2.24 (Triple Verif. Using Another Without Opening)

– Inputs: The parties hold a triple ([x], [y], [z]) to verify and an additional
triple ([a], [b], [c]).

– The protocol:
1. Each party locally computes [ρ] = [x] ⊕ [a] and [σ] = [y] ⊕ [b].
2. The parties run open([ρ]) and open([σ]), as defined in Sect. 2.1. Denote

by ρj and σj the respective output received by Pj in the openings.
3. The parties run compareview(ρj , σj) by each Pj sending (ρj , σj) to

Pj+1. If a party sees different values, then it sends ⊥ to all parties
and outputs ⊥.

4. Each party Pj computes [z] ⊕ [c] ⊕ σj · [a] ⊕ ρj · [b] ⊕ ρj · σj . Denote
by (tj , sj) the result of the computation held by party Pj .

5. The parties run compareview(tj) by each Pj sending tj to Pj+1. Upon
receiving tj−1 from Pj−1, party Pj checks that sj = tj−1. If yes, it
outputs accept; else, it sends ⊥ to all other parties and outputs ⊥.

6. If no abort messages are received, then output accept.

Lemma 2.25. If ([a], [b], [c]) is a correct multiplication triple and [x], [y], [z] are
consistent shares, but ([x], [y], [z]) is not a correct multiplication triple, then all
honest parties output ⊥ in Protocol 2.24.

Proof: Let Pi be the corrupted party. Assume that ([a], [b], [c]) is a correct
multiplication triple, that [x], [y], [z] are consistent sharings, but ([x], [y], [z]) is
not a correct multiplication triple. This implies that all values a, b, c, x, y, z are
well defined (from the honest parties’ shares) and that c = ab and z �= xy.

Let ρ = x ⊕ a and σ = y ⊕ b. If Pj+1 receives an incorrect bit from Pj in the
openings of ρ and σ (i.e., if ρj �= ρ or σj �= σ) then it detects this in compareview
of Step 3 with Pj+2 and thus both honest parties output ⊥. (Observe that Pj+2

receives the openings from Pj+1 who is honest and thus it is guaranteed that
ρj+1 = ρ and σj+1 = σ.)

We now show that if Pi+1 and Pi+2 did not output ⊥ in Step 3 (and thus
σi+1 = σi+2 = σ and ρi+1 = ρi+2 = ρ), then Pi+1 and Pi+2 output ⊥ with
probability 1 in Step 5. In order to show this, we first show that in this case,
[z]⊕ [c]⊕σj · [a]⊕ρj · [b]⊕ρj ·σj = [1]. Observe that z �= xy and thus z = xy ⊕1,
and that σ = y ⊕ b and ρ = x ⊕ a. Thus, we have:
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[z] ⊕ [c] ⊕ σ[a] ⊕ ρ[b] ⊕ ρσ

= [xy ⊕ 1] ⊕ [c] ⊕ (y ⊕ b)[a] ⊕ (x ⊕ a)[b] ⊕ (x ⊕ a)(y ⊕ b)
= [xy ⊕ 1] ⊕ [c] ⊕ [(y ⊕ b)a] ⊕ [(x ⊕ a)b] ⊕ (xy ⊕ ay ⊕ xb ⊕ ab)
= [xy ⊕ 1 ⊕ c ⊕ (y ⊕ b)a ⊕ (x ⊕ a)b ⊕ xy ⊕ ay ⊕ xb ⊕ ab]
= [xy ⊕ 1 ⊕ c ⊕ ya ⊕ ba ⊕ xb ⊕ ab ⊕ xy ⊕ ay ⊕ xb ⊕ ab]
= [1]

where the last equality follows from simple cancellations and the fact that by the
assumption c = ab. We therefore have that the honest parties hold a consistent
sharing of 1. Denoting the respective shares of Pi+1 and Pi+2 by (ti+1, si+1)
and (ti+2, si+2), by the definition of the secret-sharing scheme we have that
si+2 = ti+1 ⊕ 1 and so si+2 �= ti+1. This implies that Pi+2 sends ⊥ to all other
parties in Step 5 of the protocol, and all output ⊥. �

Deferring compareview: In the first compareview, all parties include ρj , σj in
their view. In the second compareview, Pj includes tj in its joint view with Pj+1

and includes sj in its joint view with Pj−1. Observe that the requirement that
sj = tj−1 is automatically fulfilled by requiring that the pairwise views be the
same. This holds since Pj include sj in its view with Pj−1, whereas Pj−1 includes
tj−1 in its view with Pj . As a consequence, in the protocol when compareview is
deferred, each party stores two strings – one for its joint view with each of the
other parties – and hashes these two strings separately at the end of the protocol.
We remark that it is possible to use only a universal hash function by choosing
the function after the views have been fixed, if this is desired. Recall that in
compareview, it suffices for each party to send its view to one other party. Thus,
all communication in our protocol follows the pattern that Pi sends messages to
Pi+1 only, for every i ∈ {1, 2, 3}.

3 Secure Generation of Multiplication Triples – Ftriples

In this section, we present a three-party protocol for generating an array of
correct multiplication triples, as defined in Definition 2.21. Formally, we securely
compute the functionality Ftriples defined in Functionality 3.1.

We show how to securely compute Ftriples in Protocol 3.2. The idea behind the
protocol is as follows. The parties first use Frand to generate many shares of pairs
of random values [ai], [bi]. Next, they run the semi-honest multiplication protocol
of Sect. 2.2 to compute shares of ci = ai · bi. However, since the multiplication
protocol is only secure for semi-honest parties, a malicious adversary can cheat
in this protocol. We therefore utilize the fact that even if the malicious adversary
cheats, the resulting shares [ci] is consistent, but it may be the case that ci =
aibi ⊕1 instead of ci = aibi (see Lemma 2.4). We therefore use cut-and-choose to
check that the triples are indeed correct. We do this by opening C triples using
Protocol 2.22; this protocol provides a full guarantee that the parties detect any
incorrect triple that is opened. Next, the parties randomly divide the remaining
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FUNCTIONALITY 3.1 (Ftriples – generating multiplication triples)
Let Pi be the corrupted party. Upon receiving N from P1, P2, P3, and receiv-

ing N triples of pairs
{

(tj
ai

, sj
ai

), (tj
bi

, sj
bi

), (tj
ci , s

j
ci)
}N

j=1
from Pi, functionality

Ftriples works as follows:

– For j = 1, . . . , N , Ftriples chooses random aj , bj ∈ {0, 1} and computes
cj = ajbj .

– For j = 1, . . . , N , Ftriples defines a vector of sharings d = ([aj ], [bj ], [cj ]).

The sharings are computed from
[
(tj

ai
, sj

ai
), (tj

bi
, sj

bi
), (tj

ci , s
j
ci)
]

provided by

Pi and the chosen aj , bj , cj (as in Claim 2.1).
– Ftriples sends each party its shares in all of the generated shares.

triples into “buckets” of size B and use Protocol 2.24 to verify that the first
triple in the bucket is correct. Recall that in Protocol 2.24, one triple is used
to check another without revealing its values. Furthermore, by Lemma 2.25, if
the first triple is not correct and the second is, then this is detected by the
honest parties. Thus, the only way an adversary can successfully cheat is if (a)
no incorrect triples are opened, and (b) there is no bucket with both correct and
incorrect triples. Stated differently, the adversary can only successfully cheat if
there exists a bucket where all triples are incorrect. By appropriately choosing
the bucket-size B and number of triples C to be opened, the cheating probability
can be made negligibly small.

Proposition 3.3. Let N,B,C be such that N = CB2 and (B − 1) log2 C ≥ σ.
Then, Protocol 3.2 securely computes Ftriples with abort in the (Frand,Fperm)-
hybrid model, with statistical error 2−σ and in the presence of one malicious
party.

Proof Sketch: Intuitively, the triples generated are to random values since
Frand is used to generate [ai], [bi] for all i (note that in Ftriples the adversary
chooses its shares in [ai], [bi]; this is inherited from its capability in Frand). Then,
Protocol 2.22 is used to ensure that the first C triples are all correct (recall that
by Lemma 2.4, [ai], [bi], [ci] are all consistent sharings, and thus by Lemma 2.23
the honest parties output ⊥ if ci �= aibi). Finally, Protocol 2.24 is used to verify
that all of the triples in d are correct multiplication triples. By Lemma 2.25, if
([a1], [b1], [c1]) in any of the buckets is not a correct multiplication triple, and
there exists a j ∈ {2, . . . , B} for which ([aj ], [bj ], [cj ]) is a correct multiplication
triple, then the honest parties output ⊥ (note that once again by Lemma 2.4,
all of the shares are guaranteed to be consistent). Thus, the only way that di for
some i ∈ [N ] contains an incorrect multiplication triple is if all of the C opened
triples were correct and the entire bucket Di contains incorrect multiplication
triples. Denote the event that this happens for some i by bad. By choosing B
and C so that Pr[bad] is negligible, the protocol is secure. Observe that the
triples are all generated and fixed before Fperm is called, and thus the proba-
bility that bad occurs is equal to the balls-and-buckets game of [5,19], where
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the adversary wins only if there exists no “mixed bucket” (containing both good
and bad balls). In [5, Proof of Lemma 12], it is shown that Pr[bad] < 2−σ when
(B − 1) log2 C ≥ σ (these parameters are derived from their notation by setting
C = �, B = b and N = �b2). For any σ, we therefore choose B and C such
that N = CB2 and (B − 1) log2 C ≥ σ, and the appropriate error probability is
obtained.

Observe that simulation is easy; S receives N triples from the trusted party
and simulates the 2(NB + C) calls to Frand. S places the appropriate values
from the N triples in random places, and ensures that they will all be the first
triple in each bucket (by setting the output of Fperm appropriately). Then, S
sends continue to the trusted party if and only if A did not cheat in any mul-
tiplication. The only difference between the protocol execution with A and the
simulation with S is in the case that bad occurs, which happens with negligible
probability. �

Concrete parameters. In our protocol, generation of triples is highly efficient.
Thus, we can generate a very large number of triples at once (unlike [19]) which
yields better parameters. In [19, Proof of Theorem 8] it was shown that when
the probability of a triple being incorrect is 1/2, the adversary can cheat with
probability at most 2−σ when (1 + log2 N)(B − 1) ≥ σ. This implies that for
N = 220 and σ = 40, we can take B = 3 because (1+log2 N)(B−1) > 21·2 > 40.
In order to make the probability of a triple being incorrect be (close to) 1/2, we
can set C = 3 · 220. This implies that the overall number of triples required is
6 · 220.

An improved combinatorial analysis is provided in [5]. They show that when
setting N = CB2, the adversary can cheat with probability at most 2−σ when
(B − 1) log2 C ≥ σ (in [5], they write � instead of C and b instead of B). In
order to minimize the number of triples overall, B must be kept to a minimum.
For N = 220 and σ = 40, one can choose B = 4 and C = 216. It then follows
that (B − 1) log2 C = 3 · 16 > 40. Thus, the overall number of triples required is
NB + C = CB3 + C = 222 + 216. Observe that these parameters derived from
the analysis of [5] yield approximately 2/3 the cost of 6 · 220 as required by the
analysis of [19]. (This follows because 6 · 220 = 3

2 · 222.)
In Sect. 5 we provide a new analysis showing that it suffices to generate 3 ·

220+3 triples. This is approximately 25% less than the analysis of [5]. Concretely,
to generate 1 million validated triples, the analysis of [5] requires generating
4,065,536 triples initially, whereas we require only 3,000,003.

Deferring compareview. In the calls to functionalities Frand and Fperm and in
the execution of Protocol 2.24, the parties use the compareview subprocedure.
As explained before, the parties actually compare only at the end of the entire
triple-generation protocol, and compare a hash of the view instead of the entire
view, which reduces communication significantly.

Using pseudorandomness in Fperm. In practice, in order to reduce the com-
munication, the calls to Fcoin inside Fperm are only used in order to generate
a short seed. Each party then applies a pseudorandom generator to the seed in
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order to obtain all of the randomness needed for computing the permutation.
This protocol actually no longer securely computes Fperm since the permutation
is not random, and the corrupted party actually knows that it is not random
since it has the seed. Nevertheless, by the proof of Proposition 3.3, we have that
the only requirement from Fperm is that the probability of bad happening is
negligible. Now, since the triples are fixed before Fperm is called, the probability
of bad happening is simply the probability that a specific subset of permuta-
tions occur (that map all of the incorrect triples into the same bucket/s). If
this occurs with probability that is non-negligibly higher than when a truly ran-
dom permutation is used, then this can be used to distinguish the result of the
pseudorandom generator from random.

4 Secure Computation of Any Functionality

In this section, we show how to securely compute any three party functionality f .
The idea behind the protocol is simple. The parties first use Ftriples to generate a
vector of valid multiplication triples. Next, the parties compute the circuit using
the semi-honest multiplication protocol of Sect. 2.2 for each AND gate. Recall
that by Lemma 2.4, the result of this protocol is a triple of consistent shares
([a], [b], [c]) where c = ab or c = ab⊕1, even when one of the parties is malicious.
Thus, it remains to verify that for each gate it holds that c = ab. Now, utilizing
the valid triples generated within Ftriples, the parties can use Protocol 2.24 to
verify that ([a], [b], [c]) is a correct multiplication triple (i.e., that c = ab) without
revealing anything about a, b or c. See Protocol 4.2 for a full specification.

We prove the following theorem:

Theorem 4.1. Let f be a three-party functionality. Then, Protocol 4.2 securely
computes f with abort in the (Ftriples,Fshare,Freconst)-hybrid model, in the pres-
ence of one malicious party.

Proof Sketch: Intuitively, the security of this protocol follows from the fol-
lowing. If the adversary cheats in any semi-honest multiplication, then by
Lemma 2.25 the honest parties output ⊥. This holds because by Lemma 2.4
all shares [x], [y], [z] are consistent (but z �= xy), while ([ak], [bk], [ck]) is guaran-
teed to be a correct multiplication triple since it was generated by Ftriples. Thus,
the adversary must behave honestly throughout, and the security is reduced to
the proof of security for the semi-honest case, as proven in [1].

The simulator for A works by playing the role of the trusted party for Ftriples

and Fshare, and then by simulating the semi-honest multiplication protocol in
the circuit emulation phase for every AND gate. The verification stage involving
executions of Protocol 2.24 is then simulated by S internally handing random
ρ, σ values to A as if sent by Pi−1. Since S plays the trusted party in Ftriples

and Fshare, it knows all of the values held and therefore can detect if A tries
to cheat. If yes, then it simulates the honest parties aborting, and sends ⊥ to
the trusted party as Pi’s input. Otherwise, it sends the input of Pi sent by A in
Fshare. Finally, after receiving Pi’s output from the trusted party computing f ,
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S plays the ideal functionality computing Freconst. If A sends abort to Freconst

then S sends abort to the trusted party computing f ; otherwise, it sends continue.
We stress that the above simulation works since the semi-honest multiplication
protocol is private in the presence of a malicious adversary, meaning that its view
can be simulated before any output is revealed. This was shown in [1, Sect. 4].
Thus, the view of a malicious A in the circuit-emulation phase is simulated as
in [1], and then the verification phase is simulated as described above. This
completes the proof sketch. �

Generating many triples in the offline. In many cases, the circuit being
computed is rather small. However, the highest efficiency in Ftriples is achieved
when taking a very large N (e.g., N = 220). We argue that Ftriples can be run
once, and the triples used for multiple different computations. This is due to
the fact that the honest parties abort if any multiplication is incorrect, and
this makes no difference whether a single execution utilizing N gates is run, or
multiple executions.

5 Improved Combinatorial Analysis

In this section we provide a tighter analysis of the probability that the adversary
succeeds in circumventing the computation without being caught. This analysis
allows us to reduce both the overall number of triples needed and the number
of triples that are opened in the cut-and-bucket process, compared to [5,19]. In
our specific protocol, reducing the number of triples to be opened is of great
importance since generation of a triple requires 3 bits of communication, while
each opening requires 9 bits.

Loosely speaking, the adversary can succeed if the verification of an incorrect
AND gate computation is carried using an incorrect multiplication triple. This
event can only happen if no incorrect triples were opened and if the entire bucket
from which the incorrect triple came contained only incorrect triples. Otherwise,
the honest parties would abort in the triples-generation protocol, when running
the check phase. Since the triples are randomly assigned to buckets, the proba-
bility that this event occurs is small (which is what we need to prove). Clearly,
increasing the number of triples checked and the bucket size reduces the success
probability of the adversary. However, increasing these parameters raises the
computation and communication cost of our protocol. Thus, our goal is to min-
imize these costs by minimizing the number of triples generated (and opened).
We denote by σ the statistical parameter, and our aim to guarantee that the
adversary succeeds with probability at most 2−σ. Recall that C is the number
of triples opened in the cut-and-bucket process and B is the size of the bucket.
We start by defining the following balls-and-buckets game, which is equivalent
to our protocol (in the game, a “bad ball” is an incorrect multiplication triple).
We say that the adversary “wins”, if the output of the game is 1.
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PROTOCOL 3.2 (Generating Multiplication triples)

– Input: The number N of triples to be generated.
– Auxiliary input: Parameters B and C.
– The Protocol:

1. Generate random sharings: The parties invoke 2(NB + C) calls to
Frand; denote the shares that they receive by [([ai], [bi])]

NB+C
i=1 .

2. Generate multiplication triples: For i = 1, . . . , NB + C, the parties
run the semi-honest multiplication protocol of Sect. 2.2 to compute
[ci] = [ai] · [bi]. Denote D = [([ai], [bi], [ci])]

NB+C
i=1 ; observe that [ci] is

the result of the protocol and is not necessarily “correct”.
3. Cut and bucket: Let M = NB+C. In this stage, the parties perform a

first verification that the triples were generated correctly by opening
C triples, and then randomly divide the remainder into buckets.
(a) The parties call Fperm with vector D.
(b) The parties run Protocol 2.22 (triple verification with opening)

for each of the first C triples in D, and remove them from D. If
a party did not output accept in every execution, it sends ⊥ to
the other parties and outputs ⊥.

(c) The remaining NB triples in D are divided into
N sets of triples D1, . . . ,DN , each of size B. For
i = 1, . . . , N , the bucket Di contains the triples
([a(i−1)·B+1], [b(i−1)·B+1], [c(i−1)·B+1]), ..., ([ai·B ], [bi·B ], [ci·B ]).

4. Check buckets: The parties initialize a vector d of length N . Then, for
i = 1, . . . , N :
(a) Denote the triples in Dk by ([a1], [b1], [c1]), ..., ([aB ], [bB ], [cB ]).
(b) For j = 2, . . . , B, the parties run Protocol 2.24 (triple verifica-

tion using another without opening) on input ([a1], [b1], [c1]) and
([aj ], [bj ], [cj ]), to verify ([a1], [b1], [c1]).

(c) If a party did not output accept in every execution, it sends ⊥
to the other parties and outputs ⊥.

(d) The parties set di = ([a1], [b1], [c1]); i.e., they store these shares
in the ith entry of d.

– Output: The parties output d.

Game1(A, N,B,C) :

1. The adversary A prepares M = NB + C balls. Each ball can be either bad
or good.

2. C random balls are chosen and opened. If one of the C balls is bad then
output 0. Otherwise, the game proceeds to the next step.

3. The remaining NB balls are randomly divided into N buckets of equal size
B. Denote the buckets by B1, ..., BN . We say that a bucket is fully bad if
all balls inside it are bad. Similarly, a bucket is fully good if all balls inside
it are good.

4. The output of the game is 1 if and only if there exists i such that bucket Bi

is fully bad, and all other buckets are either fully bad or fully good.
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PROTOCOL 4.2 (Securely Computing a Functionality f)

– Inputs: Each party Pj where j ∈ {1, 2, 3} holds an input xj ∈ {0, 1}�.
– Auxiliary Input: The parties hold a description of a boolean circuit C

that computes f on inputs of length �. Let N be the number of AND gates
in C.

– The protocol – offline phase: The parties call Ftriples with input N and
obtain a vector d of sharings.

– The protocol – online phase:
1. Sharing the inputs: For each input wire, the parties call Fshare with

the dealer being the party whose input is associated with that wire.
2. Circuit emulation: Let G1, ..., GN be a predetermined topological

ordering of the gates of the circuit. For k = 1, ..., N the parties work
as follows:
• If Gk is a XOR gate: Given shares [x] and [y] on the input wires,

the parties compute [x] ⊕ [y] and define the result as their share
on the output wire.

• If Gk is a NOT gate: Given shares [x] on the input wire, the parties
compute [x] and define the result as their share on the output wire.

• If Gk is an AND gate: Given shares [x] and [y] on the input wires,
the parties run the semi-honest multiplication protocol of Sect. 2.2.

3. Verification stage: Before the secrets on the output wires are recon-
structed, the parties verify that all the multiplications were carried
out correctly, as follows. For k = 1, . . . , N :
(a) Denote by ([x], [y]) the shares of the input wires to the kth AND

gate, and denote by [z] the shares of the output wire of the kth
AND gate.

(b) The parties run Protocol 2.24 (triple verification using another
without opening) on input ([x], [y], [z]) and ([ak], [bk], [ck]) to ver-
ify ([x], [y], [z]).

(c) If a party did not output accept in every execution, it sends ⊥
to the other parties and outputs ⊥.

Observe that all executions of Protocol 2.24 can be run in parallel. In
addition, compareview can be run once at the end of all checks, and
using a hash of the view as described in Sect. 3.

4. If any party received ⊥ in any call to any functionality above, then it
outputs ⊥ and halts.

5. Output reconstruction: For each output wire of the circuit, the parties
call Freconst with input ([v], j) where [v] is the sharing of the value on
the output wire, and Pj is the party whose output is on the wire.

6. If a party received ⊥ in any call to Freconst then it sends ⊥ to the
other parties, outputs ⊥ and halts.

– Output: If a party has not output ⊥, then it outputs the values it received
on its output wires.

Note that the condition in the last step forces the adversary to choose at
least one bad ball if it wishes to win. We first show that for A to win the game,
the number of bad balls A chooses must be a multiple of B, the size of a bucket.
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Lemma 5.1. Let T be the number of bad balls chosen by the adversary A. Then,
a necessary condition for Game1(A, N,B,C) = 1 is that T = B·t for some t ∈ N.

Proof: This follows immediately from the fact that the output of the game is
1 only if no bad balls are opened and all buckets are fully bad or good. Thus, if
T �= B · t, then either a bad ball is opened or there must be some bucket that is
mixed, meaning that it has both bad and good balls inside it. Therefore, in this
case, the output of the game will be 0. �

Following Lemma 5.1, we derive a formula for the success probability of the
adversary in the game. We say that the adversary A has chosen to “corrupt” t
buckets if t = T

B , where T is the number of bad balls generated by the adversary.

Theorem 5.2. Let t be the number of buckets A has chosen to corrupt. Then,
for every 0 < t ≤ N it holds that

Pr[Game1(A, N,B,C) = 1] =
(

N

t

)(

NB + C

tB

)−1

.

Proof: Assume A has chosen to corrupt t buckets. i.e., A has generated tB
bad balls. Let Ec be the event that no bad balls were detected when opening C
random balls. We have:

Pr[Ec] =

(

NB+C−tB
C

)

(

NB+C
C

) =
(NB + C − tB)!(NB)!
(NB − tB)!(NB + C)!

.

Next, let EB the event that the bad balls are in exactly t buckets after
permuting the balls (and so there are t fully bad buckets and all other buckets
are fully good). There are (NB)! ways to permute the balls, but if we require
the tB bad balls to fall in exactly t buckets then we first choose t buckets out of
N , permute the tB balls inside them, and finally permute the other NB − tB
balls in the other buckets. Overall, we obtain that

Pr[EB ] =

(

N
t

)

(tB)!(NB − tB)!
(NB)!

.

Combining the above, we obtain that

Pr[Game1(A, N,B,C) = 1] = Pr[Ec ∧ EB ] = Pr[Ec] · Pr[EB ]

=
(

N

t

)

(NB + C − tB)!(tB)!
(NB + C)!

=
(

N

t

)(

NB + C

tB

)−1

.

�

Next, we show that if C ≥ B, then the best strategy of the adversary is
to corrupt exactly one bucket. This allows us to derive an upper bound of the
success probability of the adversary.
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Theorem 5.3. If C ≥ B, then for every adversary A, it holds that

Pr[Game1(A, N,B,C) = 1] ≤ N

(

NB + C

B

)−1

.

Proof: Following Theorem 5.2, we need to show that for every t ≥ 1
(

N

t

)(

NB + C

tB

)−1

≤ N

(

NB + C

B

)−1

.

First, observe that when t = 1, the left side of the inequality is exactly the
same as its right side, and thus the theorem holds.

Next, assume that t ≥ 2; It is suffices to show that:
(

N

t

)(

NB + C

tB

)−1

≤
(

NB + C

B

)−1

which is equivalent to proving that
(

N

t

)

(tB)!(NB + C − tB)!
(NB + C)!

≤ B!(NB + C − B)!
(NB + C)!

which is in turn equivalent to proving that
(

N

t

)

(tB)!
B!

≤ (NB + C − B)!
(NB + C − tB)!

.

By multiplying both sides of the inequality with 1
(tB−B)! we obtain that in

order to complete the proof, it suffices to show that
(

N

t

)(

tB

tB − B

)

≤
(

NB + C − B

tB − B

)

. (1)

Using the assumption that C ≥ B, we obtain that instead of proving Eq. (1),
it is sufficient to prove that

(

N

t

)(

tB

tB − B

)

≤
(

NB

tB − B

)

. (2)

To see that Eq. (2) holds, consider the following two combinatorial processes:

1. Choose t buckets out of N . Then, choose tB − B out of the tB balls in these
buckets.

2. Choose tB − B out of NB balls.

Note that since t ≥ 2, it holds that tB − B > 0, and the processes are well
defined. Next, observe that both processes end with holding tB − B balls that
were chosen from an initial set of NB balls. However, while in the second process
we do not place any restriction on the selection process, in the first process we
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require that t buckets will be chosen first and then the tB − B balls are allowed
to be chosen only from the t buckets. Thus, the number of choice options in
the second process is strictly larger than in the first process. Finally, since the
first process describes exactly the left side of Eq. (2), whereas the second process
describes exactly the right side of Eq. (2), we conclude that the inequality indeed
holds. �

Corollary 5.4. If C = B and B,N are chosen such that σ ≤ log
(

(N ·B+B)!
N ·B!·(N ·B)!

)

,

then for every adversary A it holds that Pr[Game1(A, N,B,C) = 1] ≤ 2−σ.

Proof: This holds directly from Theorem 5.3, which holds if C ≥ B. Since this
holds for any C ≥ B, we set C = B in the bound of Theorem5.3, and have that
the bound is fulfilled if

N

(

NB + B

B

)−1

≤ 2−σ and so
1
N

·
(

NB + B

B

)

≥ 2σ.

Taking log of both sides yields the result. �

Corollary 5.4 provides us a way of computing the bucket size B for every
possible N and σ. For example, setting N = 220 and σ = 40 (meaning that we
want to output 220 triples from the pre-processing protocol with error probability
less than 2−40), we obtain that B = 3 suffices and we need to generate NB +
C = 3 · 220 + 3 triples, of which only 3 triples are opened. We performed this
computation for N = 220, 230 and σ = 40, 80, 128 and compared the results
with [5] (recall that according to their analysis, when setting N = CB2, the
adversary can cheat with probability at most 2−σ when (B − 1) log2 C ≥ σ).
The comparison is presented in Tables 1, 2 and 3. In the tables, we use “M” to
denote the number of triples that are initially generated, i.e., M = NB + C in
our work whereas M = CB3 + C in [5].

Table 1. Parameter comparison for σ = 40

N = 220 N = 230

B M C B M C

[5] 4 4,259,840 65,536 3 3,340,530,119 119,304,647

Our work 3 3,145,731 3 3 3,221,225,475 3

As can be seen, in all cases, our combinatorial analysis yields a significant
improvement, both in the number of generated triples and in the number of
triples needed to be opened. Specifically, although only few triples are opened,
we reduce the overall number of triples generated by up to 25%, compared to [5].
Recall that both improvements are important, as each triple less to generate
means 1 bit less to send for each party, and each triple less to open means 3 bit
less to send for each party.
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Table 2. Parameter comparison for σ = 80

N = 220 N = 230

B M C B M C

[5] 7 7,361,432 21,400 5 5,411,658,793 42,949,673

Our work 5 5,242,885 5 4 4,294,967,300 4

Table 3. Parameters comparison for σ = 120

N = 220 N = 230

B M C B M C

[5] 10 10,496,246 10,486 6 6,427,277,106 29,826,162

Our work 7 7,340,039 7 5 5,368,709,125 5

6 Efficiency and Comparison

In this section, we describe the communication and computation complexity of
(the computationally secure variant of) our protocol. We compare our protocol
to that of [18], since this is the most efficient protocol known for our setting of
three parties, malicious adversaries, and an honest majority. The complexity of
the protocol in [18] is close to Yao’s two-party semi-honest protocol, and thus
its communication complexity is dominated by the size of the garbled circuit
and its computation complexity is dominated by the amount of work needed to
prepare a garbled circuit and evaluate it. The comparison summary is shown in
Table 4; for our protocol, the complexity is based on a bucket size of B = 3. A
detailed explanation appears below.

Communication Complexity. We count the number of bits sent by each party
for each AND gate. The semi-honest multiplication protocol requires sending a
single bit, and verifying a triple using another without opening requires sending
2 bits (only very few triples are checked with opening and so we ignore this).
Now, a single multiplication and a single verification is used for each AND gate
(3 bits). Furthermore, each triple is generated from B triples (generated using
B multiplications) and B − 1 verifications, thereby costing B + 2(B − 1) bits.
The overall cost per gate is therefore B +2B −2+3 = 3B +1. For B = 3 (which
suffices with N = 220 and error 2−40), we conclude that only 10 bits are sent by
each party per gate.

Table 4. Average cost per party (N = number of AND gates in the circuit)

Communication (bits) Number of AES computations

Our protocol 10N 20N+3N log(3N))
128

≈ N
5

The protocol of [18] 85N 3N
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In contrast, in [18], the communication is dominated by a single garbled
circuit. When using the half-gates optimization of [24], such a circuits consists
of two ciphertexts per AND gate with a size of 256 bits. Thus, on average, each
party sends 256/3 ≈ 85 bits per AND gate.

Number of AES computations. The computations in our protocol are very
simple, and the computation complexity is therefore dominated by the AES com-
putations needed to generated randomness (in the multiplication and to compute
correlated randomness). Two bits of pseudorandomness are needed for each call
to Fcr to generate correlated randomness. In order to generate a triple, 2 calls to
Fcr are required and an additional call for the multiplication, for a total of 6 bits.
For every AND gate, B triples are generated and one additional multiplication
is carried out for the actual gate, resulting in a total of 6B + 2 bits. In addition,
Fperm requires an additional NB log(NB) bits of pseudorandomness. Thus, the
total number of pseudorandom bits for N gates equals (6B+2)N +NB log(NB);
taking B = 3 as above, we have 20N + 3N(log 3N). Noting that 128-bits of
pseudorandomness are generated with a single AES computation, this requires
20N+3N(log 3N)

128 ≈ N
5 calls to AES.

In contrast, in the protocol of [18], two parties need to garble the circuit
and one needs to evaluate it. Garbling a circuit requires 4 AES operations per
AND gate and evaluating requires 2 operations per AND gate. Thus, the average
number of AES operations is 10

3 ≈ 3 per party per AND gate.
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Abstract. The security analysis of Keccak, the winner of SHA-3, has
attracted considerable interest. Recently, some attention has been paid
to the analysis of keyed modes of Keccak sponge function. As a notable
example, the most efficient key recovery attacks on Keccak-MAC and
Keyak were reported at EUROCRYPT’15 where cube attacks and cube-
attack-like cryptanalysis have been applied. In this paper, we develop a
new type of cube distinguisher, the conditional cube tester, for Keccak
sponge function. By imposing some bit conditions for certain cube vari-
ables, we are able to construct cube testers with smaller dimensions. Our
conditional cube testers are used to analyse Keccak in keyed modes. For
reduced-round Keccak-MAC and Keyak, our attacks greatly improve the
best known attacks in key recovery in terms of the number of rounds or
the complexity. Moreover, our new model can also be applied to keyless
setting to distinguish Keccak sponge function from random permuta-
tion. We provide a searching algorithm to produce the most efficient
conditional cube tester by modeling it as an MILP (mixed integer linear
programming) problem. As a result, we improve the previous distinguish-
ing attacks on Keccak sponge function significantly. Most of our attacks
have been implemented and verified by desktop computers. Finally we
remark that our attacks on the reduced-round Keccak will not threat the
security margin of Keccak sponge function.

Keywords: Keccak-MAC · Keyak · Cube tester · Conditional cube
variable · Ordinary cube variable

1 Introduction

The Keccak sponge function family, designed by Bertoni, Daemen, Peeters, and
Giles in 2007 [1], was selected by the U.S. National Institute of Standards and
Technology (NIST) in 2012 as the proposed SHA-3 cryptographic hash function.
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part II, LNCS 10211, pp. 259–288, 2017.
DOI: 10.1007/978-3-319-56614-6 9
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Due to its theoretical and practical importance, cryptanalysis of Keccak has
attracted increasing attention. There has been extensive research recently, pri-
marily on the keyless setting. For example, in keyless modes of reduced-round
Keccak, many results have been obtained on collision attack [2], preimage attack
[3] and second preimage attack [4]. Additionally, there are also some research
focused on the distinguishers of Keccak internal permutation, in which the size
of input is the full state. In [5], a distinguisher of full 24-round Keccak internal
permutation was proposed which takes 21579 Keccak calls. Using the rebound
attack and efficient differential trails, Duc et al. [6] derived a distinguisher for
8-round Keccak internal permutation with the complexity 2491. Jérémy et al.
[7] provided an 8-round internal differential boomerang distinguisher on Keccak
with practical complexity. It should be remarked that these results on Keccak
internal permutation seem to be a little far from the security margin of Keccak
sponge function, which do not lead any attacks to Keccak hash function. For
distinguishing attacks on Keccak sponge function with the bitrate part as its
input, some results have been given in [8–10]. These distinguishers are one step
closer to the security margin but some of these distinguisher are far from being
practical.

By embedding a secret key in a message as an input, Keccak can be used
in several settings. For example, Keccak sponge function can produce a pseudo-
random binary string of arbitrary length, and hence can serve as a stream cipher.
It is also a natural keyed hash function, namely, a message authentication code
(MAC). Moreover, an authenticated encryption (AE) scheme based on Keccak
was described in [11]. However, there is much less research reported for the
keyed modes of the family of Keccak sponge functions. Besides the side channel
attack for Keccak-MAC [12], the celebrated paper on key recovery attacks [10]
seems to be the only one found in the literature for analysing keyed modes of
Keccak. In [10], the authors set cube variables in the column parity (CP) kernel
to control the propagation of the mapping θ in the first round. More specifically,
the cube dimension can be reduced by carefully selecting cube variables so that
they are not multiplied with each other after the first round. The cube sums of
output polynomials depend only on a portion of key bits. The dedicated cube-
attack-like cryptanalysis uses this property to construct the first key recovery
attack on reduced-round Keccak-MAC and Keyak. It is also noted that the cube
attack and cube-attack-like are very efficient techniques in analysing Keccak-like
cryptosystems in [13,14].

We observe that most of the attacks described in the previously published
work deal with propagations of cube variables only after the first round. Thus,
it is a natural and interesting question to ask whether and how we can control
certain relations of cube variables after the second round of the Keccak sponge
function to push this kind of attacks further. The purpose of this paper is to
answer this question by proposing the technique of conditional cube tester and
making the corresponding attacks more efficient. To the best of our knowledge,
the results obtained in this paper are currently the best in terms of the number
of rounds or the complexity.
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1.1 Our Contributions

Conditional Cube Tester for Keccak Sponge Function. Our conditional
cube tester model is inspired by the dynamic cube attack on Grain stream cipher
[15]. The approach of dynamic cube attack in [15] is to set some bit conditions
on the initial value (IV) so that the intermediate polynomials can be simplified
and the degree of output polynomial can be reduced. However, this approach
cannot be utilized directly in the setting of Keccak sponge function because
its structure is very different from that of Grain stream cipher. Additionally,
the number of intermediate polynomials related to the ones in the previous
round is too large for Keccak, which makes the approach of dynamic cube attack
infeasible. The bit-tracing method (see [16]), proposed by one of the authors, is
a powerful technique to analyse hash functions. This method has also been used
in the cryptanalysis of block ciphers such as Simon family in [17]. Some ideas
of our current work are stimulated by the bit-tracing method. In this paper, we
propose a new approach by imposing bit conditions on the input to control the
propagation of cube variables caused by the nonlinear operation χ. This will
be helpful in identifying the cube variables that are not multiplied with each
other after the second round of Keccak sponge function. We provide several
algorithms for searching the cube variables and imposing the corresponding bit
conditions. These algorithms give a base to construct a conditional cube tester.
In some cases the dimension of this cube tester is smaller than the cube testers
in [10]. Our model is also influenced by the conditional differential cryptanalysis
method developed in [18]. Noted that our analysis is algebraic in nature since
the attacks are designed by exploring algebraic properties while the previous
conditional differential is based on differential bias.

Improved Key Recovery Attack on Reduced-Round Keccak-MAC. We
have obtained improved results for Keccak-MAC by applying the conditional
cube tester. For 5-round Keccak-MAC-512, our key recovery attack makes 224

Keccak calls. We are also able to recover full key bits for 6-round Keccak-MAC-
384 with the complexity of 240. Furthermore, we prove that a 7-round Keccak-
MAC-256 can be broken using 272 Keccak calls. These results greatly improve
the current best complexity bounds for key recovery attacks reported in [10].
Notice that in [10] the attacks were performed on 5-round Keccak-MAC-288
and 6-round and 7-round Keccak-MAC-128, with the time complexity of 235,
266 and 297 respectively. As it is easy to see that an attack on Keccak-MAC-
n1 can be used to break Keccak-MAC-n2 without increasing its complexity as
long as n1 ≥ n2, we conclude that our attacks cover those in [10] with better
efficiencies. It is remarked that our attacks on 5-round Keccak-MAC-512 and
6-round Keccak-MAC-384 are practical and have been verified by experiments.
In Table 1, we list a comparison of the performance of our key recovery attacks
and the existing ones. This table also shows that our attacks save the space
complexity significantly.
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Table 1. Summary of key recovery attacks on Keccak-MAC

Rounds Capacity Time Data Memory Reference

5 576 235 235 Negligible [10]

6 256 266 264 232 [10]

7 256 297 264 232 [10]

5 576/1024 224 224 Negligible Sect. 4

6 256/768 240 240 Negligible Sect. 4

7 256/512 272 272 Negligible Sect. 4

Improved Key Recovery Attack on Reduced-Round Keyak. Keyak is
an AE scheme based on Keccak sponge function [11]. In this paper we also
use the technique of conditional cube tester to recover the key for reduced-
round Keyak. In this situation, we assume that a message is of two blocks and
the nonce could be reused. This means that our attacks on Keyak break the
properties of authenticity and integrity because the specification of Keyak [11]
states that a nonce may not be variable when only authenticity and integrity
are required. We perform our attacks on 7-round and 8-round Keyak with the
time complexity of 242 and 274 respectively. Under the same assumption on the
nonce, [10] proposed a key recovery attack on Keyak, which can work up to 7
rounds with the time complexity of 276. Table 2 compares our results with the
existing attacks on Keyak, and shows a significant reduction of complexity by
using our method. It is also interesting to note that the memory complexity in
our attacks is negligible.

Table 2. Summary of key recovery attacks on Keyak

Rounds Capacity Time Data Memory Reference

7 256 276 275 243 [10]

7 256 242 242 Negligible Sect. 5

8 256 274 274 Negligible Sect. 5

Improved Distinguishing Attack on Keccak Sponge Function. In addi-
tion to the cases of keyed modes of Keccak, we use the technique of conditional
cube tester in keyless setting as well. To be more specific, we use this technique
to carry out distinguishing attacks on Keccak sponge function. With the help of
mixed integer linear programming (MILP), we can get a suitable combination
of conditional cube variables automatically with good efficiency. As a result,
practical distinguishing attacks have been achieved for Keccak sponge function
up to seven rounds. There have been several distinguishing attacks on Keccak
sponge function reported in the published papers. In [8], Naya-Plasencia et al.
put forward a 4-round differential distinguisher over Keccak-256/224. A 6-round
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distinguisher over Keccak-224 was constructed in [9] by Das et al. Recently, a
straightforward distinguisher on n-round Keccak sponge function was given in
[10] which invokes 22

n−1+1 Keccak calls for n ≤ 7. Table 3 lists these existing dis-
tinguishing attacks on Keccak sponge function together with our attacks. It can
be seen that our improvements over the previous attacks are quite significant.

Table 3. Summary of distinguishing attacks on Keccak sponge function

Rounds Capacity Time Data Memory Reference

4 448/512 225 224 Negligible [8]

6 448 252 252 Negligible [9]

6 448/512/576 233 233 Negligible [10]

7 448/512/576 265 265 Negligible [10]

8 576 2129 2129 Negligible [10]

5 448/512 29 29 Negligible Sect. 6

6 768/1024 29 29 Negligible Sect. 6

6 448/512/576 217 217 Negligible Sect. 6

7 768 217 217 Negligible Sect. 6

7 448 233 233 Negligible Sect. 6

The remainder of the paper is organized as follows. We introduce some pre-
liminaries needed for the paper in Sect. 2, including Keccak sponge function, two
keyed modes of Keccak, and the idea of cube tester. In Sect. 3, we will describe
our new model, the conditional cube tester. Key recovery attacks for Keccak-
MAC and Keyak based on our new model will be discussed in detail in Sects. 4
and 5. Section 6 is devoted to distinguishing Keccak sponge function from a
random permutation using the conditional cube tester. Finally, we conclude the
paper in Sect. 7.

2 Preliminaries

In the section, we will briefly introduce some necessary background for this paper.
We will describe Keccak sponge function including two keyed modes, namely
Keccak-MAC and the AE scheme Keyak. In the later part of the section, the
idea of cube tester will be described.

2.1 Keccak Sponge Function

Description of Keccak Sponge Function. We shall just describe the Keccak
sponge function in its default version. We refer the readers to [1] for the complete
Keccak specification.
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The (default) sponge function works on a 1600-bit state A, which is sim-
ply a three-dimensional array of bits, namely A[5][5][64]. The one-dimensional
arrays A[ ][y][z], A[x][ ][z] and A[x][y][ ] are called a column, a row and a lane
respectively; the two-dimensional array A[ ][ ][z] is called a slice (see Fig. 1). The
coordinates are always considered modulo 5 for x and y and modulo 64 for z.
Each 1600-bit string a is interpreted as a state A in the following manner: the
(64(5y + x) + z)th bit of a becomes A[x][y][z].

Fig. 1. Terminologies used in Keccak

For each n ∈ {224, 256, 384, 512}, the sponge function Keccak-n corresponds
to parameters r (bitrate) and c = 2n (capacity) with r + c = 1600. Initially, all
the 1600 bits are filled with 0s and the message will be split into r-bit blocks.
There are two phases in the Keccak sponge function. In the absorbing phase,
the next r-bit message block is XORed with its first r-bit segment of the state
and then the state is processed by internal permutation which consists of 24
rounds. After all the blocks are absorbed, the squeezing phase starts. In this
phase, Keccak-n will return the first r bits as the output of the function with
internal permutation iteratively until the n-bit digest is produced.

In the permutation, each round is computed by composing five operations
θ, ρ, π, χ and ι as R = ι ◦ χ ◦ π ◦ ρ ◦ θ. Given a round constant RC, the round
function can be described by the following pseudo-code, where r[x, y] is the offset
of the internal permutation shown in Table 8 and for a lane L, rot[L, n] means
L >>> n.

R(A, RC)
{

θ step
for x in (0...4)

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4]
D[x] = C[x-1] xor rot(C[x+1],1)

for x in (0...4)
for y in (0...4)

A[x,y] = A[x,y] xor D[x]
ρ step
for x in (0...4)
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for y in (0...4)
A[x,y] = rot[A[x,y],r[x,y]]

π step
for x in (0...4)

for y in (0...4)
B[y,2*x+3*y] = A[x,y]

χ step
for x in (0...4)

for y in (0...4)
A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y])

ι step
A[0,0] = A[0,0] xor RC

return A
};

The purpose of θ is to diffuse the state. If a variable in every column of state
has even parity, it will not diffuse to other columns: this is the column parity
kernel (CP kernel) property. Thus diffusion of some input variables caused by
θ can be controlled in the first round. This property has been widely used in
cryptanalysis of Keccak. For example, the attacks in [10] use it to decrease
the dimension of the cube. The operations ρ and π just change the position of
bits. The first three linear operations θ, ρ and π will be called half a round. In
the permutation, the only nonlinear operation is χ whose algebraic degree is 2.
Therefore, after an n-round Keccak internal permutation, the algebraic degree
of the output polynomial is at most 2n. We will not consider ι since it has no
impact on our attacks.

2.2 Keyed Modes of Keccak

MAC Based on Keccak. As an example demonstrated in Fig. 2, one gets a
MAC (or a tag) by concatenating a secret key with a message as the input to
a hash function. This primitive to ensure data integrity and authentication of a
message should satisfy the two following security requirements: no key recovery
and resistance of MAC forgery.

Figure 2 shows the construction of Keccak-MAC-n working on a single block.
As described in Sect. 2.1, n is half of capacity length. In this paper we will use a
single block message and assume that the key and tag are 128 bits long. So there
are two significant lanes that consist of key bits. Block sizes may be different
based on the variants we analyse.

Authenticated Encryption Scheme Based on Keccak. An AE scheme is
used to provide confidentiality, integrity and authenticity of data where decryp-
tion is combined with integrity verification. An authenticated encryption scheme
based on Keccak is the scheme Keyak [11] which is a third-round candidate algo-
rithm submitted to CAESAR [19]. Figure 3 depicts the construction of Keyak
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Fig. 2. Construction of Keccak-MAC-n

on two-block message. Both key and nonce are 128 bits. The capacity is 256 bits
long and the bitrate is 1344 bits long.

According to the specification of Keyak [11], when confidentiality of data is
not required, a nonce can be reused. In this paper, we shall restrict our discussion
to the two-block Keyak.

Fig. 3. Construction of Keyak on two blocks

2.3 Cube Tester

Cube tester introduced in [20] is a distinguisher to detect some algebraic property
of cryptographic primitives. The idea is to reveal non-random behaviour of a
Boolean function with algebraic degree d by summing its values when cube
variables of size k (k ≤ d) run over all of their 2k inputs. This cube sum can be
taken as higher order derivative [21] of the output polynomial with respect to
cube variables. More precisely, we have

Theorem 1. ([10]) Given a polynomial f : {0, 1}n → {0, 1} of degree d. Sup-
pose that 0 < k ≤ d and t is the monomial

∏k−1
i=0 xi. Write f as:

f(X) = t · Pt(xk, . . . , xn−1) + Qt(X),

where none of the monomials in Qt(X) is divisible by t. Then the sum of f over
all values of the cube (cube sum) is

∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1),

where the cube Ct contains all binary vectors of the length k.
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Some properties for the polynomial Pt, such as its low algebraic degree and
highly unbalanced truth table, have been extensively considered in [20,22].

(n + 1)-Round Cube Tester on Keccak Sponge Functions. A cube tester
can be constructed based on algebraic properties of Keccak sponge function to
distinguish a round-reduced Keccak from a random permutation. An adversary
can easily select a combination of 2n + 1 cube variables such that they are not
multiplied with each other after the first round of Keccak. Note that after n-
round Keccak the degree of these cube variables is at most 2n. So the adversary
can sum the output values over a cube of dimension 2n + 1 to get zero for
a (n + 1)-round Keccak. This property is also used to perform MAC forgery
attack in [10] when n ≤ 6.

3 Conditional Cube Tester for Keccak Sponge Function

As stated in Sect. 2, the cube attacks against the keyed modes of Keccak in [10] are
to select the cube variables that are not multiplied with each other after the first
round. Actually, it can be done simply in the context of the differential propaga-
tion. Let us consider the following example. In Fig. 4, A[2][0][0] = A[2][1][0] = v0
is set to be a cube variable and it only impacts two bits before the operation χ
in the first round. To find 2n + 1(n ≤ 6) cube variables to construct an attack,
one just needs to trace the positions of these bits.

Fig. 4. Overview of bit conditions

In our new model, we develop a strategy to carefully choose the cube variables
such that they are either not multiplied with each other after the second round
or multiplied within a restrict set of variables.

The idea of our new model—the conditional cube tester, is to attach some
bit conditions to a cube tester. Figure 4 illustrates how to formulate such condi-
tions. A detailed discussion will be given later in this section. To minimize the
possibilities that the cube variable v0 gets multiplied with other cube variables,
we need to slow down the propagation of v0. This can be done by imposing some
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additional conditions on the input message so that the coloured input bits of
the second round are not related to v0. Thus these coloured input bits of the
second round will not diffuse to other bits in the next round Keccak internal
permutation. This is how the propagation of v0 is controlled.

In the rest of this section, we shall define some types of cube variables in the
CP kernel that are involved in the conditional cube tester. An important type
is a set of variables that are well behaved through two rounds of Keccak, and
we will see that some extra conditions on bits must be satisfied in order to get
such variables. Then we will prove a useful result for these cube variables in a
conditional cube tester. In the last part of the section, we shall discuss some
properties on Keccak sponge function and describe algorithms based on these
properties to examine multiplication relation after the second round between
every pair of cube variables.

3.1 Conditional and Ordinary Cube Variables in a Conditional
Cube Tester

In our discussion, cube variables are the variables in the CP kernel that are not
multiplied with each other after the first round of Keccak. Now let us define two
types of cube variables for the conditional cube tester.

Definition 1. Cube variables that have propagation controlled in the first round
and are not multiplied with each other after the second round of Keccak are
called conditional cube variables. Cube variables that are not multiplied with
each other after the first round and are not multiplied with any conditional cube
variable after the second round are called ordinary cube variables.

An ordinary cube variable has the advantage that it does not need any extra
conditions. However, there are no mechanisms to prevent ordinary cube variables
from being multiplied with each other after the second round. Thus, in order to
get an optimal cube tester for Keccak sponge function, a proper combinations
of ordinary cube variables and conditional cube variables should be carefully
selected.

To construct an (n + 2)-round cube tester, we need to choose p conditional
cube variables and q ordinary cube variables. With an appropriate choice of p
and q, we have

Theorem 2. For (n + 2)-round Keccak sponge function (n > 0), if there are p
(0 ≤ p < 2n + 1) conditional cube variables v1, . . . , vp, and q = 2n+1 − 2p + 1
ordinary cube variables, u1, . . . , uq (If q = 0, we set p = 2n + 1), then the term
v1v2 . . . vpu1 . . . uq will not appear in the output polynomials of (n + 2)-round
Keccak sponge function.

Proof. Let X1, · · · ,Xs be the terms that contain vi (i = 1, . . . , p) after the
second round. Then by the definition of conditional cube variables, the degree
of each Xj is one with respect to some vi(i = 1, . . . , p). Similarly, let Y1, · · · , Yt

be the terms that contain ui (i = 1, . . . , q) after the second round. Then by the
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definition of ordinary variables, the degree of each Yj is at most two with respect
to some uis (i = 1, . . . , p), and no vi (i = 1, . . . , p) appears in Yj .

For output polynomials after another n-round operation, a term with the
highest degree with respect to v1, . . . , vp and u1, . . . , uq must be of the following
form

Tn+2 = Xi1Xi2 . . . XikYj1Yj2 . . . Yjh with k + h = 2n.

This implies that there are at most k distinct vi and 2h distinct uj can appear
in Tn+2.

If Tn+2 is divisible by v1v2 . . . vpu1 . . . uq, then we would have k ≥ p, 2h ≥ q+1
(since q is odd). This yields

k + h ≥ p +
q + 1

2
= p + 2n − p + 1 > 2n,

and we have reached a contradiction. ��
Let us make some remarks on this theorem. The case that there is no condi-

tional cube variable (i.e., p = 0) has been discussed extensively in [10], such as
forgery attacks on Keccak-MAC and Keyak. For the case where 1 ≤ p ≤ 2n + 1,
we can apply the conditional cube tester to recover the key for the (n + 2)-
round keyed modes of Keccak based on Theorem 2. The specific methods will be
described in Sects. 4 and 5. Furthermore, in Sect. 6, we are able to use the case
p = 2n + 1 to implement the distinguishing attacks on Keccak sponge function.

In this paper, we only consider the cases when n = 3, 4, 5. If a proper com-
bination of cube variables could be found for n > 5, the conditional cube tester
still works.

3.2 Properties of Keccak Sponge Function

Before stating three useful properties of Keccak sponge function, we will describe
the bitwise derivative of Boolean functions–a tool that helps us to explain our
ideas accurately. The bitwise derivative of Boolean functions was proposed by
Bo Zhu et al. and used to analyse Boolean algebra based block ciphers [23].
We observe that there is an equivalent relation between the differential char-
acteristic and the bitwise derivatives of Boolean functions. However, it is much
more efficient to trace the propagation of a variable by observing the differential
characteristic rather than by computing the exact bitwise derivatives of Boolean
functions. The bitwise derivative of a Boolean function is defined as follows.

Definition 2. Given a Boolean function f(x0, x1, . . . , xn−1), the bitwise deriv-
ative of f with respect to the variable xm is defined as

δxm
f = fxm=1 + fxm=0

The 0-th bitwise derivative is defined to be f itself. The i-th, where i ≥ 2, bitwise
derivative with respect to the variable sequence (xm1 , . . . , xmi

) is defined as

δ(i)xm1 ,...,xmi
f = δxmi

(δ(i−1)
xm1 ,...,xmi−1

f)
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Now let us describe differential properties of χ in the view of bitwise deriva-
tive. In this section, we first fix some notations. We will write the input of χ to be
the (vector-valued) Boolean function F = (f0, f1, f2, f3, f4). The corresponding
output is written as the (vector-valued) Boolean function G = (g0, g1, g2, g3, g4).
The bitwise derivative of a (vector-valued) Boolean function is defined to be the
(vector-valued) Boolean function by taking bitwise derivative in a component-
wise manner.

Property 1 (Bit Conditions). If δv0F = (1, 0, 0, 0, 0), then δv0G = (1, 0, 0, 0, 0)
if and only if f1 = 0 and f4 + 1 = 0.

Proof. By the structure of χ, the algebraic representation of the output Boolean
function G is given by the following equations:

g0 = f0 + (f1 + 1)f2,
g1 = f1 + (f2 + 1)f3,
g2 = f2 + (f3 + 1)f4,
g3 = f3 + (f4 + 1)f0,
g4 = f4 + (f0 + 1)f1.

From the definition of the bitwise derivative, it can be deduced that δv0G =
(1, 0, 0, f4 + 1, f1). It is clear that δv0G = (1, 0, 0, 0, 0) if and only if f1 = 0 and
f4 + 1 = 0. ��

Fig. 5. Diffusion caused by operation χ

Now we explain the equivalence between the truncated differential character-
istic and the bitwise derivatives of Boolean functions when tracing the propaga-
tion of a variable by using Fig. 5. Let the input difference for χ be (1, 0, 0, 0, 0)
and the truncated output difference is (1, 0, 0, ?, ?) with ‘?’ meaning an unknown
bit. From the view of Boolean functions, the output vector (1, 0, 0, ?, ?) indicates
that δv0g0 = 1, δv0g1 = 0, δv0g2 = 0 and both δv0g3, δv0g4 are some Boolean func-
tions. From the view of the differential characteristic, if f1 = 0 and f4 + 1 = 0,
then the differential characteristic (1, 0, 0, 0, 0) → (1, 0, 0, 0, 0) holds with prob-
ability 1. This also implies that g0 is related to v0 but gi (for 1 ≤ i ≤ 4) are
independent of v0. Therefore, the truncated differential characteristics and the
bitwise derivatives of Boolean functions are equivalent representations.
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Table 4. Summary of conditions for bitwise derivative of χ

Input/Output bitwise derivative (Difference) Conditions

(1, 0, 0, 0, 0) −→ (1, 0, 0, 0, 0) f1 = 0, f4 = 1

(0, 1, 0, 0, 0) −→ (0, 1, 0, 0, 0) f2 = 0, f0 = 1

(0, 0, 1, 0, 0) −→ (0, 0, 1, 0, 0) f3 = 0, f1 = 1

(0, 0, 0, 1, 0) −→ (0, 0, 0, 1, 0) f4 = 0, f2 = 1

(0, 0, 0, 0, 1) −→ (0, 0, 0, 0, 1) f0 = 0, f3 = 1

We summarize all of the five input bitwise derivative cases in Table 4 where
each input bitwise derivative has only one non-zero bit. Each case can be proved
in a similar manner as Property 1. As discussed before, in each case, the input
and output have the same vector of bitwise derivatives so that the propagation
of v0 by χ is under control. This will be used in constructing our conditional
cube tester.

Fig. 6. 1.5-round differential of an ordinary and a conditional cube variable

In order to show the advantage of a conditional cube variable over an ordinary
cube variable, we consider the propagation of variable A[2][0][0] = A[2][1][0] = v0
in two views: as an ordinary cube variable in the view of truncated differential
characteristic (Fig. 6(a)) and as a conditional cube variable in the view of differ-
ential characteristic (Fig. 6(b)).

It is obvious to see that the two active bits at the beginning of the second
round will affect 22 bits caused by the step θ. Thus, the conditional cube vari-
able in Fig. 6(b) only relates to 22 active bits after 1.5-round Keccak internal
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permutation. However, not only bits with black colour but also those with gray
colour after 1.5-round Keccak involve the ordinary cube variable in Fig. 6(a). In
total, there are 62 bits related to v0 after 1.5-round Keccak. So it is more likely
for a ordinary cube variable to get multiplied with other cube variables after the
second round Keccak.

The pattern of the conditional cube variable v0 in Fig. 6(b) will be called
a 2-2-22 pattern to reflect the number of active bits in three states (the input
state, the output state of the first round and the output state of the first 1.5
rounds).

During the process of searching more cube variables, we need to determine
whether candidate variables get multiplied after the second round of Keccak
and eliminate conditional cube variable candidates that require conflicting condi-
tions. We observe that the following two properties with respect to the operation
χ will be useful in dealing with these situations.

Property 2 (Multiplication). Assume that δv0F = (δv0f0, 0, 0, 0, 0) and δv1F =
(0, δv1f1, 0, 0, 0) with δv0f0 · δv1f1 	= 0, then the term v0v1 will be in the output
of χ.

Proof. As mentioned in the proof of the Property 1, the component g4 of the
output G = (g0, g1, g2, g3, g4) is f4 + (f0 + 1)f1. From

δ(2)v0,v1
g4 = δv1(δv0g4) = δv1(δv0f0) · f1 + δv0f0 · δv1f1 = δv0f0 · δv1f1

we see that δ
(2)
v0,v1g4 	= 0 and hence g4 contains the term v0v1. In particular, if

δv0f0 = δv1f1 = 1, then g4 = v0v1+h, where h is a Boolean function not divisible
by v0v1. ��
Property 3 (Exclusion). If δv0F = (1, 0, 0, 0, 0) and δv1F = (0, 0, 1, 0, 0), then
at least one of δv0G = (1, 0, 0, 0, 0) and δv1G = (0, 0, 1, 0, 0) is false.

Proof. From the Property 1 as well as the Table 4, the conditions δv0F =
(1, 0, 0, 0, 0) and δv0G = (1, 0, 0, 0, 0) would imply f1 = 0, f4 = 1. Under the
assumption δv1F = (0, 0, 1, 0, 0), if δv1G = (0, 0, 1, 0, 0) also holds true, then we
would have f1 = 1, f3 = 0. This is a contradiction. ��

For a version of Keccak sponge function, many positions in the plaintext
space can be set as cube variables. For example, as shown in Fig. 7, we can set
the bits in the same colour as a cube variable for the version Keccak-512. There
are 256 such cases in 64 slices. Each of these cases in a version of Keccak is called
a cube variable candidate.

Before searching for a proper combination of cube variables from these can-
didates to construct a conditional cube tester, we need to know the relation
between every pair of cube variable candidates, namely, whether they are multi-
plied after the second round of Keccak. This problem could be solved directly by
examining exact intermediate polynomials after the second round. However, it is
very time-consuming to derive such an exact representation for the polynomials
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after the second round. Our approach with the application of truncated differ-
entials can determine the (multiplication) relation between two cube variables
efficiently. The precise procedures will be given in Algorithms 1, 2 and 3. These
three algorithms are based on Properties 2 and 3.

Fig. 7. Cube variable candidates in a slice for Keccak-512

In the three algorithms, v0 and v1 are assumed to be two cube variable
candidates in a Keccak version. We use δv0A (δv1A) to denote the positions
of v0 (v1) in the input state, which means to apply bitwise derivative on each
entry of A. For example δv0A[i][j][k] = 1 means A[i][j][k] = v0 + h, where h is
a Boolean function independent of v0. For a cube variable candidate v, we shall
use ‘0’, ‘1’ and ‘2’ to denote the inactive bit, the active bit and the unknown
bit respectively. To be more specific, v is of type ‘0’ if δvA[i][j][k] = 0, v is of
type ‘1’ if δvA[i][j][k] = 1 and type ‘2’ if δvA[i][j][k] is a Boolean function. In
this way, the truncated differences or differences in the algorithms can be used
to interpret the bitwise derivatives on the state with respect to v.

Now we include three algorithms in this subsection for determining whether
two possible cube variables (conditional or ordinary) have a multiplication rela-
tion after first round and the second round. The first algorithm is restricted to
the case of two ordinary cube variable candidates. They should not be multiplied
together after the first round.

The second algorithm is to test the relation between a conditional cube vari-
able candidate and an ordinary cube variable candidate, whose multiplication
is not allowed after the second round. The third algorithm is to examine the
relation between two conditional cube variable candidates, whose multiplication
is not allowed after the second round either.

4 Key Recovery Attack on Reduced-Round Keccak-MAC

In this section, we will use conditional cube testers to perform key recovery
attacks against Keccak-MAC. First, we will discuss the general procedure for key
recovery attack, including the attack process, complexity analysis and searching
algorithm for suitable combinations of conditional and ordinary cube variables.
Then we will describe conditional cube attacks to different variants of Keccak-
MAC, including Keccak-MAC-512, Keccak-MAC-384 and Keccak-MAC-224.
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Algorithm 1. Determine Relation of Two Ordinary Cube Variable Candidates
Input: δv0A and δv1A for two ordinary cube variable candidates v0 and v1
Output: multiplication relation of v0 and v1
1: compute the 0.5-round output difference B0 (B1) based on δv0A(δv1A);
2: flag=0
3: for each integer i ∈ [0, 63], each integer j ∈ [0, 4], each integer k ∈ [0, 4] do
4: if B0[k][j][i] · B1[k + 1][j][i] = 1 then
5: flag=1; � Property 2.
6: end if
7: end for
8: if (flag) then
9: return multiplied after the first round;

10: else
11: return not multiplied after the first round;
12: end if

Algorithm 2. Determine Relation of a Conditional Cube Variable Candidate
and an Ordinary Cube Variable Candidate
Input: δv0A and δv1A for the conditional cube variable candidate v0 and the ordinary

cube variable candidate v1
Output: multiplication relation of v0 and v1
1: flag=[0,0]
2: compute the 0.5-round output difference B0 (B1) based on δv0A(δv1A);
3: compute the 1.5-round truncated output difference C0 (C1) based on δv0A(δv1A);
4: for each integer i ∈ [0, 63], each integer j ∈ [0, 4], each integer k ∈ [0, 4] do
5: if B0[k][j][i] · B1[k + 1][j][i] = 1 then
6: flag[0]=1; � Property 2.
7: end if
8: if C0[k][j][i] · C1[k + 1][j][i] �= 0 then
9: flag[1]=1; � Property 2.

10: end if
11: end for
12: if (flag[0]) then
13: return multiplied after the first found;
14: else if (flag[1]) then
15: return multiplied after the second round;
16: end if
17: return not multiplied after the second round;
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Algorithm 3. Determine Relation of Two Conditional Cube Variable Candi-
dates
Input: δv0A and δv1A for two conditional cube variable candidates v0 and v1
Output: multiplication relation of v0 and v1
1: flag=[0,0,0]
2: compute the 0.5-round output difference B0 (B1) based on δv0A(δv1A);
3: compute the 1.5-round output difference C0 (C1) based on δv0A(δv1A);
4: for each integer i ∈ [0, 63], each integer j ∈ [0, 4], each integer k ∈ [0, 4] do
5: if B0[k][j][i] · B1[k + 2][j][i] = 1 then
6: flag[0]=1; � Property 3.
7: end if
8: if B0[k][j][i] · B1[k + 1][j][i] = 1 then
9: flag[1]=1; � Property 2.

10: end if
11: if C0[k][j][i] · C1[k + 1][j][i] = 1 then
12: flag[2]=1; � Property 2.
13: end if
14: end for
15: if (flag[0]) then
16: return contradiction;
17: else if (flag[1]) then
18: return multiplied after the first round;
19: else if (flag[2]) then
20: return multiplied after the second round;
21: end if
22: return not multiplied by the second round;

4.1 General Process for Key Recovery Attack on Keccak-MAC

Given a cube tester with p conditional cube variables and q = 2n+1 − 2p + 1
ordinary cube variables (1 ≤ p ≤ 2n +1), we can construct a key recovery attack
on (n + 2)-round Keccak-MAC. In order to explain the general attack process
clearly, we need to define some types of variables other than cube variables. As
we know, a bit condition is an equality with a single variable on the left hand
side and a Boolean function on the right hand side. The variable on the left
hand side is called a conditional variable. Other public variables (that can be
assigned to arbitrary values) are called free variables. Thus, a bit condition is a
relation between conditional variable, equivalent key bit and free variables. It is
assumed that s equivalent key bits are related to the bit conditions derived from
conditional cube variables. The general attack process is described as follows.

Step 1. Assign free variables with random values.
Step 2. Guess values of the s equivalent key bits.
Step 3. Calculate the values of conditional variables under the guess of key bits.
Step 4. For each possible set of values of cube variables, compute the corre-

sponding tag and then sum all of the 128-bit tags over the (2n+1 − p + 1)-
dimension cube.
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Step 5. If the sum is zero, the guess of these s key bits is probable correct and
the process terminates; otherwise the guess is invalid, go back to Step 2.

After one execution of the above process, which takes 22
n+1−p+1 · 2s Keccak

calls at most, the values of s key bits can be recovered. To recover the remaining
128−s key bits, we just shift the positions of all the cube variables equally to the
right along the z-direction and repeat the process for 128/s times. In this case,
the bitwise derivatives with respect to the cube variables are rotated equally
along the z axis as well. This rotation, known as translation invariance in the
direction of the z axis, will change the equivalent key bits in the bit conditions
but not the relations between the cube variables. Therefore, the time and data
complexity of the key recovery attack are both 1

s · 22n+1−p+s+8 = 2s−p

s · 22n+1+8.
Thus, for an (n+2)-round conditional cube attack, the complexity is determined
by 2s−p

s . We would like this term to be small to achieve a better performance.
Notice that when the number of conditional cube variables gets larger, more
key bits will be involved in the bit conditions and hence more guesses will be
required. So p can not be too large to make the attack better. In our case, we use
one conditional cube variable and 2n+1 − 1 ordinary cube variables to construct
our key recovery attack on Keccak-MAC.

We choose A[2][0][0] = A[2][1][0] = v0 as the conditional cube variable in
our attacks. As shown in Fig. 4, bit conditions are derived from δv0A[2][0][6] =
δv0A[2][4][6] = δv0A[4][3][62] = δv0A[4][4][62] = 0, where A is the intermedi-
ate state after 1.5-round Keccak. This procedure could be done efficiently with
the help of SAGE [24], a software on symbol computation. We fix A[2][0][0] =
A[2][1][0] = v0 as the conditional cube variable because there are only two equiv-
alent key bits involved in the bit conditions. But if we choose other positions
to set the conditional cube variable, the number of key bits involved in the
bit conditions may be greater than two. Thus, A[2][0][0] = A[2][1][0] = v0 is
the cube variable and we find the corresponding ordinary cube variables using
Algorithm 4.

In the discussion later, we will see that 2n+1 − 1 ordinary cube variables can
be always found for n = 3, 4 and 5. So in these cases, the cube tester with v0
and 2n+1−1 ordinary cube variables can be constructed to perform key recovery
attacks on different variants of Keccak-MAC.

4.2 Key Recovery on 5/6/7-Round Keccak-MAC

We first discuss 5-round Keccak-MAC-512. In this case, n = 3 and full key
bits can be recovered with one conditional cube variable and 15 ordinary cube
variables. The block size of this version is 1600 − 2 · 512 = 576 bits. As dis-
cussed in Sect. 4.1, we set A[2][0][0] = A[2][1][0] = v0 to be the conditional cube
variable. A[4][0][44], A[2][0][4], A[2][0][59] and A[2][0][27] are the conditional vari-
ables assigned with Boolean functions and a set of the corresponding ordinary
cube variables is produced by Algorithm 4 (see Table 5). To recover the remain-
ing key bits, the positions of the conditional cube variable shall be shifted to
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Algorithm 4. Searching Ordinary Cube Variables along with the conditional
cube variable A[2][0][0] = A[2][1][0] = v0 for Keccak-MAC
Output: a set of ordinary cube variables;
1: m=#{ordinary cube variable candidates in bitrate part}
2: S = ∅

3: for each integer i ∈ [0, m − 1] do
4: execute Algorithm 2 with v0 and the i-th ordinary cube variable candidate ui

as the input;
5: if Algorithm 2 returns ‘not multiplied by the second round’ then
6: S ← S ∪ {ui}
7: end if
8: end for
9: Choose the maximum number of variables in S which will not be multiplied with

each other after the first round and put these variables into T
10: return T

A[2][0][i] = A[2][1][i] = v0(1 ≤ i ≤ 63) and the positions of ordinary cube vari-
ables shall be rotated at the same time. The key is recovered in 224 time and
data, which is very practical. On a desktop computer, the process of recovering
a key only costs a few minutes.

The next example is a simple illustration of the attack where the key was
generated randomly. For the convenience of statement, all the free variables are
fixed to be zero, but they can be random bits. It is obvious that the correct key
can be easily distinguished.

128-bit key:
1110000100010100000101101001000101111111000000110010111001110101
1100011110001011110100011111111010000101011000000011000100100010
correct value: k5 + k69 = 1, k60 = 0
guessed value:00, cube sum: 0xe93169ae5c86d086, 0xf6ec898c859bea1a
guessed value:01, cube sum: 0xc7d0bc36dc141c5e, 0x523a33c8753eb171
guessed value:10, cube sum: 0x0,0x0
guessed value:11, cube sum: 0x2ee1d5988092ccd8, 0xa4d6ba44f0a55b6b
To perform a conditional cube attack on 6-round Keccak-MAC-384, we use

one conditional cube variable and 31 ordinary cube variables to recover full 128-
bit key with 240 Keccak calls. Fixing the conditional cube variable, we collect the
corresponding ordinary cube variables by applying Algorithm4. The parameters
for this attack can be found in Table 9. It takes just a few days to run this attack
on a desktop with four i5 processors. An instance for attacking 6-round Keccak-
MAC-384 is summarized below, with randomly generated key and free variables
are fixed to be zero:

128-bit key:
1111011111001001000111010010100111100011110001110111100100000010
0111000010010100010101110110111110100010101010001110111001100011
correct value: k5 + k69 = 1, k60 = 0
guessed value:00, cube sum: 0x3f9d5fa4e143f779, 0x26607b3ce1c56f2b
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Table 5. Parameters set for attack on 5-round Keccak-MAC-512

Ordinary cube variables A[2][0][8]=A[2][1][8]=v1, A[2][0][12]=A[2][1][12]=v2,

A[2][0][20]=A[2][1][20]=v3, A[2][0][28]=A[2][1][28]=v4,
A[2][0][41]=A[2][1][41]=v5, A[2][0][43]=A[2][1][43]=v6,
A[2][0][45]=A[2][1][45]=v7, A[2][0][53]=A[2][1][53]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][4]=A[3][1][4]=v11, A[3][0][9]=A[3][1][9]=v12,
A[3][0][13]=A[3][1][13]=v13, A[3][0][23]=A[3][1][23]=v14,
A[3][0][30]=A[3][1][30]=v15

Conditional cube variable A[2][0][0]=A[2][1][0]=v0

Bit conditions A[4][0][44]=0, A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + 1,
A[2][0][7]= A[4][0][6] + A[2][1][7] + A[3][1][7]

Guessed key bits k60, k5 + k69

guessed value:01, cube sum: 0x99bbf2ae6b93a7fb, 0xdbbb864fcc563747
guessed value:10, cube sum: 0x0,0x0
guessed value:11, cube sum: 0x398b37a846e81e42, 0x691cf4345e2164ee

For 7-round Keccak-MAC-256, our conditional cube attack takes 272 Keccak
calls to recover full 128-bit key, with a cube of dimension 64. We include the
parameters of this attack in Table 10.

5 Key Recovery Attacks on Reduced-Round Keyak

Similar to the key recovery attack on Keyak in [10], we also deal with two-block
messages (as depicted in Fig. 3) and allow the reuse of a nonce. In this way, we
can use the first block to control the input of the second permutation and the
second block to get the output of the second permutation. The attack described
here is in fact a state recovery attack. We are able to get the bitrate part X0

(see Fig. 3) but not the 256 bits in the capacity part. Denoting the capacity
part as k = (k0, k1, · · · , k255), we will first recover k, then get the master key by
performing the inverse of the first Keccak internal permutation.

In the attack, cube variables are set in the input state of the second Keccak
internal permutation by choosing the values of P1 while the second message block
P2 is set to zero bits. This implies that the second ciphertext block C2 is the
output of Keccak internal permutation. The attack procedure is almost identical
to the general process described in Sect. 4.1 except for the bit conditions and the
inverse process on the output. For 1344 output bits of Keyak, the operation χ
of the last round on the most significant 1280 bits can be reversed. Note that
the linear operations of the final round do not increase the degree of output
polynomials, so the previous (n + 2)-round cube tester can be used for (n + 3)-
round. In other words, conditional cube attack can be extended by one more
round forward without increasing the dimension of cube.

For 7-round Keyak, conditional cube attack is built with the same cube as
in Table 9 except for a different set of bit conditions as shown in Table 6. Note
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that in Table 6 A denotes the input state to the second internal permutation.
By shifting the positions of cube variables and repeating the attack for 192/4 =
48 times, three lanes of secret values, i.e. k0, . . . , k191, can be recovered with
236 · 48 = 241.58 Keyak calls. The other lane of key bits can be recovered by
changing the conditional cube variable to A[3][0][i] = A[3][1][i] = v0 and a
set of the corresponding ordinary cube variables could be produced similarly
by Algorithm 4. Since only one key bit is involved in the bit conditions after
recovering three lanes of secret values, the remaining lane of secret values can
be identified with 233 · 26 = 239 Keyak calls. In total, the time complexity to
recover the full 128-bit master key is about 242 Keyak calls.

For 8-round Keyak, cube variables in Table 10 and bit conditions in the
Table 6 are used in the conditional cube attack. Using a similar analysis as that
to 7-round Keyak, the data and time complexities for 8-round attack are 274.

Finally, we remark that the memory complexity for both attacks can be
neglected.

Table 6. Parameters for attacking 7-round and 8-round Keyak

Bit conditions for 8(7)-round Keyak A[4][0][44]=k169 (+A[4][1][44]) + A[2][2][45] +
A[3][2][45] + A[4][2][44] + A[2][3][45] + A[4][3][44],
A[0][0][5]= k128 + A[1][0][5] + A[2][0][4] + A[0][1][5]
+ A[2][1][4] + A[0][2][5] + A[2][2][4] + A[0][3][5] +
A[2][3][4] + A[0][4][5] + 1, A[0][0][60]= k56 + k183 +
A[2][0][59] + A[0][1][60] + A[2][1][59] + A[0][2][60] +
A[2][2][59] + A[0][3][60] + A[2][3][59]+ A[0][4][60] +
1, A[2][0][7]= k131 + A[4][0][6] + A[2][1][7] +
A[3][1][7] + A[4][1][6] + A[2][2][7]+ A[4][2][6] +
A[2][3][7] + A[4][3][6]

Guessed key bits k169, k128, k56 + k183, k131

6 Distinguishing Attacks on Keccak Sponge Function

In this section, conditional cube tester will be applied to establish distinguishing
attacks on Keccak sponge function with practical complexity. By Theorem 2, if
we use 2n + 1 conditional cube variables, the monomial containing these 2n + 1
conditional cube variables will not appear in the output polynomials of (n + 2)-
round Keccak sponge function. This means that the dimension of the cube to
distinguish (n + 2)-round Keccak is reduced to 2n + 1 from higher numbers
reported in [10]. In some cases like Keccak-512 and Keccak-384, the distinguish-
ing attacks could be extended one more round forward.

Our construction of the cube tester includes two parts:

– Find a combination of sufficiently many conditional cube variables;
– Derive the corresponding bit conditions for the chosen conditional cube vari-

ables.
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6.1 Constructing Conditional Cube Tester with MILP

A mixed-integer linear programming (MILP) problem is a linear programming
problem with some variables taking integer values. MILP has been used to find
the best differential characteristic in [25]. In this section, we model the problem
of finding a combination of sufficiently many conditional cube variables as an
MILP problem.

In this new model, each conditional cube variable candidate is assigned with
a variable xi ( 1 ≤ i ≤ m) where xi takes value from {0, 1}. The i-th conditional
cube variable candidate is selected as a conditional cube variable if and only if
xi = 1. To find sufficiently many conditional cube variables, we need to find an
assignment X = {(x1, x2, . . . , xm)|xi ∈ {0, 1}, 1 ≤ i ≤ m} of hamming weight
larger than 2n +1. From earlier analysis, we know that in some cases two condi-
tional cube variable candidates can not be selected simultaneously. We will first
generate such constraints in terms of X. The precise generation procedure is the
following.

Algorithm 5. Generating Constraints on X

Input: m conditional cube variable candidates;
Output: A set F of constrains on X
1: F = ∅

2: for each integer i ∈ [1, m − 1] do
3: for each integer j ∈ [i + 1, m] do
4: excute Algorithm 3 on the i-th and j-th conditional cube variable candidates;

5: if Algorithm 3 does not return ‘Not Multiplied after the Second Round’ then
6: F ← F ∪ {xi + xj ≤ 1}
7: end if
8: end for
9: end for

10: return F

With the constraint set F, the selection problem for conditional cube variables
is modeled into a binary linear programming problem as follow:

m
∑

i=1

xi ≥ 2n + 1

s.t.A0X ≤ b,X = {(x1, x2, . . . , xm)|xi ∈ {0, 1}, 1 ≤ i ≤ m}
where A0 is a binary matrix and b a binary vector such that A0X ≤ b describes
the constraint set F . Although MILP is proved to be NP-hard, our problem
is a special (and small) instance and can be solved by the programming solver
Gurobi Optimizer [26] based on branch and cut algorithm.

We can get a desired combination of conditional cube variables by solving
the MILP problem. In the rest of the section, we will construct distinguishing



Conditional Cube Attack on Reduced-Round Keccak Sponge Function 281

Table 7. Four differential characteristics in double kernel pattern

NO δi Differential
0 δ0 - - - - - - - - - - - - - - - 1 8- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - 8- - - - - - - - - - - - - - - - - - - - - - - 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 δ1 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 δ1.5 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - 8 - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - 1 - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - -

2 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - 4 - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - -
- - - - - - - - - - - - - 8 - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - 4 - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - 2 - - - - - - - - - - -

attacks on Keccak sponge function by solving the MILP problems and deriving
the corresponding conditions for these conditional cube variables.

6.2 Distinguishing Attack on Keccak-512 and Keccak-384

As depicted in Fig. 7, there are 4 conditional cube variables candidates in one
slice for Keccak-512. There are total 256 such candidates in 64 slices. Applying
Algorithm 5 to generate all of the constraints with respect to these 256 candidates
and solving the problem with Gurobi Optimizer, we get a set of 9 conditional
cube variables. The bit conditions can be derived directly from δvm

A[i][j][k] =
0(0 ≤ m ≤ 9), where δvm

A[i][j][k] 	= 1 and A is the 1.5-round intermediate state.
We then construct a 5-round conditional cube tester. Note that the algebraic
degree of output polynomial of 5-round Keccak-512 is at most 8, the cube sum
of 5-round Keccak-512 output is zero.

The most significant 320 bits of Keccak-512 output can be reversed so that the
distinguishing attack can be extended one more round further without increasing
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Table 8. Offsets r[x,y] in operation ρ

0 1 62 28 27

36 44 6 55 20

3 10 43 25 39

41 45 15 21 8

18 2 61 56 14

Table 9. Parameters set for attack on 6-round Keccak-MAC-384

Ordinary cube variables A[2][0][12]=A[2][1][12]=v1, A[2][0][20]=A[2][1][20]=v2,
A[2][0][28]=A[2][1][28]=v3, A[2][0][41]=A[2][1][41]=v4,
A[2][0][43]=A[2][1][43]=v5, A[2][0][45]=A[2][1][45]=v6,
A[2][0][53]=A[2][1][53]=v7, A[2][0][61]=A[2][1][61]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][9]=A[3][1][9]=v11, A[3][0][13]=A[3][1][13]=v12,
A[3][0][15]=A[3][1][15]=v13, A[3][0][23]=A[3][1][23]=v14,
A[3][0][30]=A[3][1][30]=v15, A[3][0][40]=A[3][1][40]=v16,
A[3][0][46]=A[3][1][46]=v17, A[3][0][56]=A[3][1][56]=v18,
A[3][0][57]=A[3][1][57]=v19, A[4][0][5]=A[4][1][5]=v20,
A[4][0][10]=A[4][1][10]=v21, A[4][0][12]=A[4][1][12]=v22,
A[4][0][14]=A[4][1][14]=v23, A[4][0][47]=A[4][1][47]=v24,
A[4][0][58]=A[4][1][58]=v25, A[4][0][62]=A[4][1][62]=v26,
A[4][0][63]=A[4][1][63]=v27, A[0][1][28]=A[0][2][28]=v28,
A[0][1][34]=A[0][2][34]=v29, A[0][1][37]=A[0][2][37]=v30,
A[0][1][46]=A[0][2][46]=v31

Conditional cube variable A[2][0][0]=A[2][1][0]=v0

Bit conditions A[4][0][44]= A[4][1][44] + A[2][2][45], A[2][0][4]= k5 + k69 +
A[0][1][5] + A[2][1][4] + A[0][2][5] + A[2][2][4] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + A[0][2][60] +
A[2][2][59] + 1, A[2][0][7]= A[4][0][6] + A[2][1][7] + A[4][1][6]
+ A[2][2][7] + A[3][1][7].

Guessed key bits k60, k5 + k69

the complexity. The time complexity for the distinguishing attack on 6-round
Keccak-512 with the conditional cube tester is thus 29 Keccak calls and the
data complexity is also 29. From the fact that a distinguishing attack on Keccak
with the capacity c1 also works on Keccak with the capacity c2 with the same
complexity as long as c1 > c2, this attack can also distinguish Keccak-224,
Keccak-256 up to 5 rounds and Keccak-384 up to 6 rounds.

We can find a combination of 17 conditional cube variables for Keccak-384
and construct a 7-round conditional cube tester in a similar manner with a
complexity of 217.

The conditions for these two conditional cube tester are shown in Tables 11
and 12. We have verified both of these two conditional cube testers by experi-
ments.
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Table 10. Parameters set for attack on 7-round Keccak-MAC-256

Ordinary cube variables A[2][0][8]=A[2][1][8]=v1, A[2][0][12]=A[2][1][12]=v2,

A[2][0][20]=A[2][1][20]=v3, A[2][0][28]=A[2][1][28]=v4,
A[2][0][41]=A[2][1][41]=v5, A[2][0][43]=A[2][1][43]=v6,
A[2][0][45]=A[2][1][45]=v7, A[2][0][53]=A[2][1][53]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][9]=A[3][1][9]=v11, A[3][0][13]=A[3][1][13]=v12,
A[3][0][30]=A[3][1][30]=v13, A[3][0][40]=A[3][1][40]=v14,
A[3][0][46]=A[3][1][46]=v15, A[3][0][56]=A[3][1][56]=v16,
A[4][0][5]=A[4][1][5]=v17, A[4][0][10]=A[4][1][10]=v18,
A[4][0][12]=A[4][1][12]=v19, A[4][0][14]=A[4][1][14]=v20,
A[4][0][31]=A[4][1][31]=v21, A[4][0][47]=A[4][1][47]=v22,
A[4][0][58]=A[4][1][58]=v23, A[4][0][62]=A[4][1][62]=v24,
A[4][0][63]=A[4][1][63]=v25, A[0][1][37]=A[0][2][37]=v26,
A[0][1][47]=v27, A[0][2][47]=v27+v28, A[0][3][47]=v28,
A[0][1][46]=A[0][2][46]=v29, A[0][1][59]=A[0][2][59]=v30,
A[1][1][7]=A[1][2][7]=v31, A[1][1][15]=A[1][2][15]=v32,
A[1][1][20]=A[1][2][20]=v33, A[1][1][26]=A[1][2][26]=v34,
A[1][1][30]=A[1][2][30]=v35, A[1][1][38]=A[1][2][38]=v36,
A[1][1][39]=A[1][2][39]=v37, A[1][1][40]=A[1][2][40]=v38,
A[1][1][52]=A[1][2][52]=v39, A[1][1][54]=A[1][2][54]=v40,
A[2][1][11]=A[2][2][11]=v41, A[2][1][15]=A[2][2][15]=v42,
A[2][1][19]=A[2][2][19]=v43, A[2][1][24]=A[2][2][24]=v44,
A[2][1][52]=A[2][2][52]=v45, A[2][1][58]=A[2][2][58]=v46,
A[2][1][61]=A[2][2][61]=v47, A[3][1][23]=A[3][2][23]=v48,
A[3][1][29]=A[3][2][29]=v49, A[3][1][58]=A[3][2][58]=v50,
A[4][1][1]=A[4][2][1]=v51, A[4][1][28]=A[4][2][28]=v52,
A[4][1][44]=A[4][2][44]=v53, A[4][1][50]=A[4][2][50]=v54,
A[4][1][61]=A[4][2][61]=v55, A[0][2][17]=A[0][3][17]=v56,
A[0][2][28]=A[0][3][28]=v57, A[0][2][34]=A[0][3][34]=v58,
A[0][2][56]=A[0][3][56]=v59, A[1][2][44]=A[1][3][44]=v60,
A[1][2][49]=A[1][3][49]=v61, A[1][2][57]=A[1][3][57]=v62,
A[2][0][5]=A[2][2][5]=v63

Conditional cube variable A[2][0][0]=A[2][1][0]=v0

Bit conditions A[4][0][44]= A[2][2][45] + A[3][2][45], A[2][0][4]= k5 + k69 +
A[0][1][5] + A[2][1][4] + A[0][2][5] + A[2][2][4] + A[0][3][5] +
1, A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + A[0][2][60] +
A[2][2][59] + A[0][3][60] + 1, A[2][0][7]= A[3][1][7] +
A[4][1][6] + A[2][1][7] + A[4][1][6] +A[2][2][7] + A[4][2][6]

Guessed key bits k60, k5 + k69

6.3 Distinguishing Attack on Keccak-224

For Keccak-224, the same process can be applied with the conditional cube vari-
ables candidates in a 2-2-22 pattern. But with 1536 conditional cube variable
candidates, the searching problem becomes difficult to solve. So we turn to con-
sider the conditional cube variable candidates in double kernel patterns. The
bitwise derivatives of such a chosen variable are still invariant with respect to
the operation θ in the second round.
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Table 11. Conditions to distinguish Keccak-512

Conditional cube variables A[2][0][0]=A[2][1][0]=v0,
A[2][0][1]=A[2][1][1]=v1,A[2][0][2]=A[2][1][2]=v2,
A[2][0][3]=A[2][1][3]=v3,A[2][0][22]=A[2][1][22]=v4,
A[2][0][23]=A[2][1][23]=v5,A[2][0][44]=A[2][1][44]=v6,
A[2][0][45]=A[2][1][45]=v7,A[3][0][15]=A[3][1][15]=v8

Bit conditions A[2][0][4]= A[0][0][5]+ A[1][0][5]+ A[0][1][5]+ A[2][1][4]+ 1,
A[2][0][5]= A[0][0][6]+ A[1][0][6]+ A[0][1][6]+ A[2][1][5]+ 1,
A[2][0][6]= A[0][0][7]+ A[1][0][7]+ A[0][1][7]+ A[2][1][6]+ 1,
A[2][0][7]= A[0][0][8]+ A[1][0][8]+ A[0][1][8]+ A[2][1][7]+ 1,
A[2][0][8]= A[4][0][7]+ A[2][1][8]+ A[3][1][8], A[2][0][9]=
A[4][0][8]+ A[2][1][9]+ A[3][1][9], A[2][0][10]= A[4][0][9]+
A[2][1][10]+ A[3][1][10], A[2][0][17]= A[0][0][18]+ A[0][1][18]+
A[2][1][17]+ 1, A[2][0][25]= A[4][0][24]+ A[2][1][25],
A[2][0][26]= A[0][0][27]+ A[1][0][27]+ A[0][1][27]+
A[2][1][26]+ 1, A[2][0][27]= A[0][0][28]+ A[1][0][28]+
A[0][1][28]+ A[2][1][27]+ 1, A[2][0][29]= A[4][0][28]+
A[2][1][29]+ A[3][1][29], A[2][0][30]= A[4][0][29]+ A[2][1][30]+
A[3][1][30], A[2][0][40]= A[0][0][41]+ A[0][1][41]+ A[2][1][40]+
1, A[2][0][46]= A[4][0][45]+ A[2][1][46], A[2][0][47]=
A[4][0][46]+ A[2][1][47], A[2][0][48]= A[4][0][47]+ A[2][1][48],
A[2][0][49]= A[0][0][50]+ A[1][0][50]+ A[0][1][50]+
A[2][1][49]+ 1, A[2][0][51]= A[4][0][50]+ A[2][1][51]+
A[3][1][51], A[2][0][52]= A[4][0][51]+ A[2][1][52]+ A[3][1][52],
A[2][0][59]= A[0][0][60]+ A[0][1][60]+ A[2][1][59]+ 1,
A[2][0][60]= A[0][0][61]+ A[0][1][61]+ A[2][1][60]+ 1,
A[2][0][61]= A[0][0][62]+ A[0][1][62]+ A[2][1][61]+ 1,
A[2][0][62]= A[0][0][63]+ A[0][1][63]+ A[2][1][62]+ 1,
A[3][0][23]= A[0][0][22]+ A[0][1][22]+ A[3][1][23], A[3][0][31]=
A[0][0][30]+ A[0][1][30]+ A[3][1][31], A[3][0][45]= A[1][0][46]+
A[1][1][46]+ A[3][1][45]+ 1, A[4][0][3]= A[0][0][5]+
A[1][0][5]+ A[0][1][5]+ 1, A[4][0][6]= A[0][0][8]+ A[1][0][8]+
A[0][1][8]+ A[3][1][7]+ 1, A[4][0][25]= A[0][0][27]+
A[1][0][27]+ A[0][1][27]+ 1, A[0][1][49]= A[0][0][49]+
A[1][0][49]+ A[4][0][47]+ 1, A[4][0][44]=0, A[4][0][2] = 1.

Four differential characteristics in double kernel pattern are shown in Table 7
in hexadecimal format with ‘-’ denoting zero. The rows labeled with δ0 and δ1
are the input difference of the first round and the second round respectively;
δ1.5 is the output difference after 1.5-round Keccak. The first two differential
characteristics can be found in [9] in 6-6-6 pattern and the other two are found
using the method in [8] in 8-8-8 pattern. As an example, a conditional cube
variable can be set as

A[0][0][0]=A[0][1][0]=A[2][1][30]=A[2][2][30]= A[1][0][63]=A[1][2][63]=v0.

This variable only impacts 6 bits after 1.5 round, which reduces the possibili-
ties for the conditional cube variables to multiply with each other. Because of
translation invariance in the direction of the z axis, we have 256 conditional
cube variable candidates to build the MILP problem by applying Algorithm5.
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Table 12. Conditions to distinguish Keccak-384

Conditional

cube

variables

A[0][0][14]=A[0][1][14]=v0, A[2][0][23]=A[2][1][23]=v1,A[2][0][24]=A[2][1][24]=v2,

A[2][0][43]=A[2][1][43]=v3, A[2][0][44]=v4, A[2][1][44]=v4+v5, A[2][2][44]=v5,

A[3][0][56]=A[3][1][56]=v6, A[3][0][58]=A[3][1][58]=v7, A[0][1][57]=A[0][2][57]=v8,

A[0][1][58]=A[0][2][58]=v9, A[1][1][49]=A[1][2][49]=v10, A[1][1][50]=A[1][2][50]=v11,

A[2][1][41]=A[2][2][41]=v12, A[0][0][20]=A[0][2][20]=v13, A[1][0][13]=A[1][2][13]=v14,

A[2][0][0]=A[2][2][0]=v15, A[2][0][16]=A[2][2][16]=v16

Bit

conditions

A[0][0][1]= A[3][0][2]+ A[0][1][1]+ A[3][1][2]+ A[4][1][2]+ A[0][2][1]

A[0][0][2]= A[3][0][3]+ A[0][1][2]+ A[3][1][3]+ A[4][1][3]+ A[0][2][2]+ 1

A[0][0][5]= A[3][0][6]+ A[0][1][5]+ A[3][1][6]+ A[0][2][5]+ 1

A[0][0][7]= A[3][0][8]+ A[0][1][7]+ A[3][1][8]+ A[0][2][7]

A[0][0][9]= A[3][0][10]+ A[0][1][9]+ A[3][1][10]+ A[0][2][9]

A[0][0][12]= A[2][0][11]+ A[0][1][12]+ A[2][1][11]+ A[0][2][12]+ A[2][2][11]+ 1

A[0][0][15]= A[2][0][14]+ A[0][1][15]+ A[2][1][14]+ A[0][2][15]+ A[2][2][14]

A[0][0][16]= A[2][0][15]+ A[0][1][16]+ A[2][1][15]+ A[0][2][16]+ A[2][2][15]

A[0][0][19]= A[2][0][18]+ A[0][1][19]+ A[2][1][18]+ A[0][2][19]+ A[2][2][18]+ 1

A[0][0][22]= A[3][0][23]+ A[0][1][22]+ A[3][1][23]+ A[4][1][23]+ A[0][2][22]+ A[2][2][24]+ 1

A[0][0][28]= A[1][0][29]+ A[2][0][27]+ A[2][0][28]+ A[4][0][29]+ A[0][1][28]+ A[0][1][29]+

A[1][1][28]+ A[2][1][27]+ A[2][1][28]+ A[4][1][29]+ A[0][2][28]+ A[0][2][29]+ A[1][2][28]+

A[2][2][27]+ A[2][2][28]+ 1

A[0][0][29]= A[1][0][29]+ A[2][0][28]+ A[0][1][29]+ A[2][1][28]+ A[0][2][29]+ A[2][2][28]+ 1

A[0][0][30]= A[1][0][29]+ A[4][0][30]+ A[1][1][29]+ A[4][1][30]+ A[1][2][29]+ 1

A[0][0][34]= A[2][0][33]+ A[0][1][34]+ A[1][1][34]+ A[2][1][33]+ A[0][2][34]+ A[2][2][33]

A[0][0][39]= A[4][0][37]+ A[0][1][39]+ A[4][1][37]+ A[0][2][39]+ 1

A[0][0][40]= A[3][0][41]+ A[0][1][40]+ A[3][1][41]+ A[4][1][41]+ A[0][2][40]+ 1

A[0][0][42]= A[2][0][41]+ A[0][1][42]+ A[0][2][42]

A[0][0][43]= A[2][0][42]+ A[0][1][43]+ A[1][1][43]+ A[2][1][42]+ A[0][2][43]+ A[2][2][42]+ 1

A[0][0][46]= A[1][2][46]+ A[2][0][45]+ A[0][1][46]+ A[2][1][45]+ A[0][2][46]+ A[2][2][45]+ 1

A[0][0][48]= A[1][0][48]+ A[2][0][47]+ A[0][1][48]+ A[2][1][47]+ A[0][2][48]+ A[2][2][47]+ 1

A[0][0][49]= A[2][0][48]+ A[2][0][49]+ A[3][0][48]+ A[0][1][49]+ A[2][1][48] + A[3][1][48]+

A[0][2][49]+ A[2][2][48]

A[0][0][60]= A[2][0][59]+ A[0][1][60]+ A[2][1][59]+ A[0][1][60]+ A[2][2][59]+ 1

A[0][0][63]= A[3][0][0]+ A[0][1][63]+ A[3][1][0]+ A[0][2][63]+ 1

A[1][0][8]= A[3][0][7]+ A[1][1][8]+ A[3][1][7]+ A[1][2][8]

A[1][0][22]= A[0][1][23]+ A[1][1][22]+ A[1][2][22]+ A[2][2][24]+ 1

A[1][0][23]= A[4][0][24]+ A[0][1][24]+ A[1][1][23]+ A[4][1][24]+ A[1][2][23]+ 1

A[1][0][25]= A[3][0][24]+ A[1][1][25]+ A[3][1][24]+ A[1][2][25]+ 1

A[1][0][28]= A[1][0][29]+ A[2][0][28]+ A[4][0][29]+ A[0][1][29]+ A[1][1][28]+ A[2][1][28]+

A[4][1][29]+ A[0][2][29]+ A[1][2][28]+ A[2][2][28]

A[1][0][44]= A[3][0][43]+ A[1][1][44]+ A[3][1][43]+ A[1][2][44]

A[1][0][45]= A[3][0][44]+ A[1][1][45]+ A[3][1][44]+ A[1][2][45]

A[1][0][49]= A[2][0][49]+ A[3][0][48]+ A[3][1][48]+ 1

A[1][0][50]= A[4][0][51]+ A[0][1][51]+ A[4][4][51]+ 1

A[1][0][51]= A[3][0][50]+ A[1][1][51]+ A[3][1][50]+ A[1][2][51]+ A[2][2][51]

A[1][0][59]= A[4][0][60]+ A[1][1][59]+ A[4][1][60]+ A[1][2][59]

A[2][0][2]= A[4][0][1]+ A[2][1][2]+ A[4][1][1]+ A[2][2][2]

A[2][0][4]= A[2][1][4]+ A[2][2][4]

A[2][0][5]= A[4][0][4]+ A[2][1][5]+ A[4][1][4]+ A[2][2][5]

A[2][0][7]= A[4][0][6]+ A[2][1][7]+ A[3][1][7]+ A[4][1][6]+ A[2][2][7]

A[2][0][22]= A[4][0][21]+ A[2][1][22]+ A[4][1][21]+ A[2][2][22]

A[2][0][25]= A[4][0][24]+ A[2][1][25]+ A[4][0][24]+ A[2][2][25]

A[2][0][30]= A[4][0][29]+ A[2][1][30]+ A[3][1][30]+ A[4][1][29]+ A[2][2][30]

A[2][0][31]= A[4][0][30]+ A[2][1][31]+ A[3][1][31]+ A[4][1][30]+ A[2][2][31]

A[2][0][38]= A[4][0][37]+ A[2][1][38]+ A[4][1][37]+ A[2][2][38]

A[2][0][39]= A[3][0][41]+ A[2][1][39]+ A[3][1][41]+ A[4][1][41]+ A[2][2][39]

A[2][0][50]= A[4][0][49]+ A[2][1][50]+ A[3][1][50]+ A[4][1][49]+ A[2][2][50]

A[2][0][51]= A[2][2][51]+ 1

A[2][0][62]= A[3][0][0]+ A[1][1][63]+ A[2][1][62]+ A[3][1][0]+ A[2][2][62]

A[2][0][63]= A[4][0][62]+ A[2][1][63]+ A[4][1][62]+ A[2][2][63]

A[3][0][22]= A[4][0][24]+ A[0][1][24]+ A[3][1][22]+ A[4][1][24]

A[3][0][40]= A[4][0][37]+ A[3][1][40]+ A[4][1][37]+ A[4][1][40]

A[3][0][49]= A[4][0][51]+ A[0][1][51]+ A[3][1][49]+ A[4][1][51]+ A[2][2][50]+ 1

A[4][0][2]= A[4][1][2]+ 1

A[4][0][22]= A[3][1][23]+ A[4][1][22]+ A[2][2][23]

A[4][0][23]= A[4][1][23]+ A[2][2][24]

A[4][0][50]= A[2][1][51]+ A[3][1][51]+ A[4][1][50]+ 1

A[0][1][20]= A[2][0][19]+ A[2][1][19]+ A[2][2][19]+ 1

A[1][2][40]= 1 A[4][1][0]= 1 A[1][2][19]= 1

A[1][2][20]= 1 A[1][1][40]= 1 A[2][1][8]= 0 A[1][1][15]= 1
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Table 13. Conditional cube variables to distinguish Keccak-224

Conditional cube variables

A[0][0][3]=A[1][2][2]=v0, A[0][1][3]=A[2][1][33]=A[2][2][33]=v0+v25, A[1][0][2]=v0+v17,

A[0][0][6]=A[1][0][5]=A[1][2][5]=v1, A[0][1][6]=A[2][1][36]=A[2][2][36]=v1+v17,

A[0][0][9]=A[0][1][9]=A[2][1][39]=A[2][2][39]=A[1][0][8]=A[1][2][8]=v2, A[0][0][11]=A[1][0][10]=v3,

A[0][1][11]=A[2][1][41]=A[2][2][41]=v3+v18, A[1][2][10]=v3+v16,

A[0][0][14]=A[2][1][44]=A[2][2][44]=A[1][0][13]=A[1][2][13]=v4, A[0][1][14]=v4+v16+v26, A[0][0][16]=v5,

A[0][1][16]=A[2][1][46]=A[2][2][46]=v5+v19, A[1][0][15]=v5+v20+v27, A[1][2][15]=v5+v27,

A[0][0][19]=A[1][0][18]=A[1][2][18]=v6, A[0][1][19]=A[2][1][49]=A[2][2][49]=v6+v20,

A[0][0][21]=A[0][1][21]=A[2][1][51]=A[2][2][51]=v7, A[1][0][20]=v7+v21+v28, A[1][2][20]=v7+v28,

A[0][0][22]=A[2][1][52]=A[2][2][52]=A[1][0][21]=v8, A[0][1][22]=A[1][2][21]=v8+v14,

A[0][0][24]=A[1][0][23]=A[1][2][23]=v9, A[0][1][24]=A[2][1][54]=A[2][2][54]=v9+v21,

A[0][0][27]=A[2][1][57]=A[2][2][57]=A[1][0][26]=A[1][2][26]=v10, A[0][1][27]=v10+v28,

A[0][0][29]=A[1][0][28]=v11, A[0][1][29]=A[2][1][59]=A[2][2][59]=v11+v22, A[1][2][28]=v11+v15,

A[0][1][32]=v12+v15+v29, A[0][0][32]=A[2][1][62]=A[2][2][62]=A[1][0][31]=A[1][2][31]=v12,

A[0][0][62]=A[1][2][61]=v13, A[0][1][62]=A[2][1][28]=A[2][2][28]=v13+v23, A[1][0][61]=v13+v24,

A[3][1][6]=A[3][2][6]=A[1][3][21]=A[0][1][25]=A[0][3][25]=v14, A[3][1][13]=A[3][2][13]=v15+v29,

A[1][3][28]=A[0][3][32]=v15, A[3][1][59]=A[3][2][59]=v16+v26, A[1][3][10]=A[0][3][14]=v16
A[1][3][2]=A[4][0][40]=A[4][2][40]=A[0][3][6]=v17, A[1][0][7]=A[4][0][45]=A[4][2][45]=v18+v26,

A[1][3][7]=A[0][3][11]=v18 A[1][0][12]=A[1][3][12]=A[4][0][50]=A[4][2][50]=A[0][3][16]=v19,

A[1][3][15]=A[0][3][19]=v20, A[4][0][53]=A[4][2][53]=v20+v27, A[1][3][20]=A[0][3][24]=v21,

A[4][0][58]=A[4][2][58]=v21+v28, A[1][0][25]=A[4][0][63]=A[4][2][63]=v22+v29,

A[1][3][25]=A[0][3][29]=v22, A[1][0][58]=A[1][3][58]=A[4][0][32]=A[4][2][32]=A[0][3][62]=v23,

A[1][3][61]=A[4][0][35]=A[4][2][35]=A[0][1][1]=A[0][3][1]=A[2][1][31]=A[2][2][31]=v24,

A[1][0][63]=A[1][3][63]=A[4][0][37]=A[4][2][37]=A[0][3][3]=v25, A[1][2][7]=A[0][2][14]=v26,

A[0][2][22]=A[3][1][3]=A[3][2][3]=v27 A[0][2][27]=A[3][1][8]=A[3][2][8]=v28, A[1][2][25]=A[0][2][32]=v29,

A[2][0][55]=A[2][1][55]=v30 A[0][2][60]=A[0][3][60]=v31, A[0][1][37]=A[0][3][37]=v32

With Gurobi Optimizer, we can find a combination of 30 conditional cube vari-
ables. Three conditional cube variables in 2-2-22 pattern have been added to the
combination to get 33 independent conditional cube variables. Refer to Table 13
for the list of the conditional cube variables. The bit conditions can be derived
exactly from the conditional cube variables, but they will be listed in the auxil-
iary supporting material due to the space limitation. Thus, a 7-round cube tester
on Keccak-224 is constructed.

The time complexity of this distinguishing attack is 233. Memory complexity
is negligible. This distinguishing attack can be performed on a desktop computer
in several hours.

7 Conclusion

In this paper, we propose the conditional cube tester for Keccak sponge function
with the advantage of having smaller dimensions compared to the previous cube
tester in some cases. Our approach is based on a novel idea to add some condi-
tions for certain cube variables, so that the multiplication between cube variables
are under control after the second round of Keccak sponge function. More specif-
ically, using a conditional cube tester to round-reduced Keccak-MAC and Keyak,
our key recovery attacks are more efficient than the currently best known attacks
according to the number of rounds or the complexity. Another application of our
conditional cube tester is to construct distinguishing attacks on Keccak sponge
function. Our distinguishing attacks are much faster and improve the existing
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attacks. Most of our attacks are very practical and implementations and exper-
iments have been conducted on desktop computers. We should also remark that
our proposed conditional cube testers may be used to analyse Keccak-like cryp-
tosystems. Implementations of our methods are available at http://people.uwm.
edu/gxu4uwm/eurocrypt17 code/.
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Abstract. AES is probably the most widely studied and used block
cipher. Also versions with a reduced number of rounds are used as a
building block in many cryptographic schemes, e.g. several candidates of
the SHA-3 and CAESAR competition are based on it.

So far, non-random properties which are independent of the secret
key are known for up to 4 rounds of AES. These include differential,
impossible differential, and integral properties.

In this paper we describe a new structural property for up to 5 rounds
of AES, differential in nature and which is independent of the secret
key, of the details of the MixColumns matrix (with the exception that
the branch number must be maximal) and of the SubBytes operation.
It is very simple: By appropriate choices of difference for a number of
input pairs it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace is
always a multiple of 8.

We not only observe this property experimentally (using a small-scale
version of AES), we also give a detailed proof as to why it has to exist. As
a first application of this property, we describe a way to distinguish the
5-round AES permutation (or its inverse) from a random permutation
with only 232 chosen texts that has a computational cost of 235.6 look-
ups into memory of size 236 bytes which has a success probability greater
than 99%.

Keywords: Block cipher · Permutation · AES · Secret-key distinguisher

1 Introduction

Block ciphers play an important role in symmetric cryptography provid-
ing the basic tool for encryption. They are the oldest and most scrutinized

The extended version of this paper can be found in [13]. It includes a more formal
description of the main result of this paper which exploits the subspace trail notation
[14] recently introduced at FSE 2017.
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cryptographic tools. Consequently, they are the most trusted cryptographic algo-
rithms that are often used as the underlying tool to construct other cryptographic
algorithms, whose proofs of security are performed under the assumption that
the underlying block cipher is ideal.

While the security of public-key encryption schemes are related to the hard-
ness of well-defined mathematical problems, informally a block cipher is consid-
ered secure if an (efficient) adversary, with access to the encryptions of messages
of its choice, cannot tell apart those encryptions from the values of a truly ran-
dom permutation. In other words, this means that an (efficient) adversary, with
access to the encryptions of messages of its choice, cannot tell the difference
between the block cipher (equipped with a random key) and a truly random
permutation. This notion of block cipher security was introduced and formally
modeled by Luby and Rackoff [19] in 1988, and it was motivated by the design of
DES. To be a bit more precise (but without going into the details), a secret key
distinguisher is one of the weakest cryptographic attacks that can be launched
against a secret-key cipher. In this attack, there are two oracles: one that sim-
ulates the cipher for which the cryptographic key has been chosen at random
and the other simulates a truly random permutation. The adversary can query
both oracles and his task is to decide which oracle is the cipher and which is the
random permutation. The attack is considered to be successful if the number of
queries required to make a correct decision is below a well defined level.

The Rijndael block cipher [8] has been designed by Daemen and Rijmen in
1997 and was chosen as the AES (Advanced Encryption Standard) by NIST in
2000. Nowadays, it is probably the most used and studied block cipher. The
possibility to set up a secret key distinguisher for 5-round of AES that exploits
a property which is independent of the secret key was already considered in
[21] and improved in [14]. However, only partial solutions have been proposed
and the problem is still open. As we will argue below, the solutions so far are
partial because the distinguishers are derived from a key-recovery attack and
they actually exploit as property the existence of a sub-key for which a property
on 4 rounds holds.

In this paper, we present (and practical verify) the first secret-key distin-
guisher for 5-round AES which exploits a new structural/differential property
which is independent of the secret key, that is a property that can be practically
verified without needing to know or to get to know any information of the secret
key. As we are going to show, it requires 233 chosen plaintexts/ciphertexts and
has a computational cost of 236.6 table look-ups.

1.1 Secret-Key Distinguishers for AES-128

In the usual security model, the adversary is given a black box (oracle) access to
an instance of the encryption function associated with a random secret key and
its inverse. The goal is to find the key or more generally to efficiently distinguish
the encryption function from a random permutation.

More formally, a block cipher is a family of functions E : K × S → S,
with K a finite set called the key space and S a finite set called the domain
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or message space. For every k ∈ K, the function Ek(·) = E(k, ·) is a permutation.
The inverse of the block cipher E is defined as a function E−1 : K × S → S
that satisfies E−1

k (Ek(s)) = s for each k ∈ K and for each s ∈ S. A block cipher
Ek(·) with key space K is a (q, t, ε)-pseudorandom permutation (PRP) if any
adversary making at most q oracle queries and running in time at most t can
distinguish Ek (for a random key k) from a uniformly random permutation with
advantage at most ε.

Definition 1. Let E be block cipher defined as before, and Perm(S) be the set
of all permutations of S. Let D be a distinguisher with oracle access to a permu-
tation and its inverse, and returning a single bit. The (Strong PseudoRandom
Permutation) SPRP-advantage of D against E is defined as

Advsprp
E (D) = |Prob(π ← Perm(S) : Dπ(·),π−1(·) = 1)

− Prob(k ← K : DEk(·),E−1
k (·) = 1)|.

For integers q and t, the SPRP-advantage of E is defined as

Advsprp
E (q, t) = max

D
Advsprp

E (D),

where the maximum is taken over all distinguishers making at most q oracle
queries and running in time at most t. E is a (q, t, ε)-SPRP if Advsprp

E (q, t) ≤ ε.

Note that if AdvE(D) � 0, then the Ek(·) behaves (exactly) like a random
permutation from the distinguisher point of view.

Before we focus on the 5-round distinguisher, we briefly summarize the prop-
erties exploited by the secret key distinguisher on AES-like permutations up to
4 rounds. We stress that, even if a key-recovery attack can also be used as a
secret key distinguisher in this paper we focus only on secret-key distinguisher
that are independent of the secret key.

The most competitive secret-key distinguishers up to 3-round are based on
the differential [5] and on the truncated differential cryptanalysis [17]. These dis-
tinguishers exploit the fact that some r-round differential characteristics exist
with higher probability for an AES permutation than for a random one. In [7],
Daemen et al. proposed an attack vector that uses a 3-round distinguisher to
attack up to 6 rounds of the cipher and later became known as integral attacks.
In an integral distinguisher, given inputs with particular properties, one exploits
the fact that the sum of the corresponding ciphertexts is zero with probability
1 for an AES permutation, while this happens with a (much) lower probabil-
ity for a random permutation. Finally, another possible distinguisher exploits
the impossible-differential cryptanalysis, which was independently proposed by
Knudsen [18] and by Biham et al. [3]. In impossible-differential cryptanalysis,
the idea is to exploit the fact that some differential trails hold with probability
0 for an AES permutation (i.e. impossible differential trails), while they have
probability greater than 0 for a random permutation.



292 L. Grassi et al.

5-Round “Distinguisher” for AES-128: State of Art. A distinguisher
for five rounds of AES-128 has been recently proposed by Sun, Liu, Guo, Qu,
and Rijmen at Crypto 2016 [21]. This distinguisher - which requires the whole
input-output space to work - has been improved in [14], where authors set up
a secret key distinguisher in the same setting of the one proposed in [21], but
which requires only 298.2 chosen plaintexts.

Both these two distinguishers are derived by a key-recovery attack on AES-
128 with a secret S-Box. In particular, they are able to distinguish a random
permutation from an AES one exploiting the existence of a (secret) key for
which a property on 4-round is verified. In more details, the property on 4-
round used in [21] is the balance property, while the one used in [14] is the
impossible differential one. With respect to a classical key-recovery attack, these
distinguishers require the knowledge only of a single byte of the secret subkey
to distinguish an AES permutation with a secret S-Box from a random one.

For a complete comparison with the distinguisher presented in this paper,
we briefly recall how they are set up, and we refer to [14,21] for a complete
discussion. In both cases, authors first assume to know the difference of two bytes
(i.e. 1 byte) of one secret subkey. Using this knowledge, they are able to extend
a four rounds distinguisher to five rounds. In order to turn these distinguishers
into secret-key ones, the idea is simply to iterate these distinguishers on all the
28 possible values of the difference of these two bytes of the secret subkey. The
idea is that for an AES permutation there exists one difference of these two
bytes for which a property (which is independent of the secret key) on 4-round
is satisfied, while for a random permutation this property on 4-round is never
satisfied (with high probability) for any of the 28 possible values.

We stress that both these distinguishers require to find part of the secret key
in order to verify a property on 4-round, i.e. they work as key-recovery attacks.
Note that the research of a secret-key distinguisher which is independent of
the secret key is of particular interest and importance since it (theoretically)
allows to set up key recovery attacks, as it already happened for the secret-key
distinguishers up to 4 rounds just described. Moreover, we highlight that both
these distinguishers are independent of the details of the S-Box, but they depend
on the details of the MixColumns matrix (in particular, they exploit the fact that
for at least one column of the MixColumns matrix or its inverse two elements
are identical).

1.2 Our Result: The First 5-Round Secret-Key Distinguisher
for AES-128 Independent of the Secret Key

The results presented in the previous two papers don’t solve the problem to set
up a 5-round secret key distinguisher of AES which exploits a property which is
independent of the secret key. In Sect. 3 of this paper, we provide a solution to
this problem, that is we propose the first secret-key distinguisher on 5-round of
AES which exploits a new property which is independent of the secret key and
of the details of the S-Box.
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The high-level idea is very easily described. By appropriate choices of differ-
ence for a number of input pairs it is possible to make sure that the number of
times that the difference of the resulting output pairs assumes certain values is
always a multiple of 8. More concretely, given a set of plaintexts which are equal
in certain bytes, consider the corresponding ciphertexts after 5 rounds. The idea
is to count the total number of different ciphertext pairs with zero-difference in
certain bytes. As we show in detail in the paper, for an AES permutation this
number can only be a multiple of 8, while it does not have any particular prop-
erty for the case of a random permutation. As we will see in the comparison, the
resulting distinguisher proposed in this paper is much more efficient than those
proposed earlier, it works both in the encryption and in the decryption mode of
AES and it does not depend on the details of the MixColumns matrix (with the
exception that the branch number must be five) or/and of the SubBytes opera-
tion. A formal statement of this property used by our distinguisher is given in
Theorem 1 in Sect. 3.1, and its detailed proof is given in Sect. 4.

Comparison with 4-Round Secret-Key Distinguishers. These last prop-
erties also highlight a difference between our new distinguisher and the others
currently used in literature. In most cases, especially in the cryptanalysis of
AES, one does not have the necessity to investigate the details of the S-Boxes.
Consider for example the 4-round secret-key distinguishers, based on the inte-
gral [12] and on the impossible-differential [4] properties. In the first one, given
a set of chosen plaintexts of which part is held constant and another part varies
through all possibilities, it is possible to prove that their XOR-sum after 4-round
is always equal to 0. In the second one, given the same set of chosen plaintexts,
it is possible to prove that the difference of each possible pair of ciphertexts after
4-round can not take some values (some differences have prob. 0, i.e. they are
impossible). In both cases, the corresponding results are independent of the key
and of the non-linear components. That is, if some other S-Boxes with similar
differential/linear properties are chosen in a cipher, the corresponding cryptan-
alytic results remain the same.

Although there are already 4-round impossible differentials and zero-
correlation linear hulls for AES, the effort to find new impossible differentials
and zero-correlation linear hulls that could cover more rounds has never been
stopped. In Eurocrypt 2016, Sun et al. [22] proved that, unless the details of
the S-Boxes are exploited, one cannot find any impossible differential or zero-
correlation linear hull of the AES that covers 5 or more rounds. Moreover, due
to the link among impossible differential, integral and zero correlation linear
cryptanalysis [23], an analogous result holds also for the integral case. On the
other hand, our new property presented in this paper holds up to 5-round of AES
independently of the key and of the details of the S-Box (and of the MixColumns
operation), and allows to answer an almost 20-year old problem: given a set of
chosen plaintexts similar to the one used by the integral and impossible differ-
ential distinguishers just recalled, is there any property which is independent of
the secret key after 5-round AES?
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Table 1. 5-round Secret-Key Distinguishers for AES with a Single Secret S-Box. In this
table, we limit ourselves to consider the distinguishers that exploit a property which is
independent of the key, or which are derived by a key-recovery attack but are indepen-
dent of the S-Box and require the knowledge of only part of the key. The complexity
is measured in minimum number of chosen plaintexts CP or/and chosen ciphertexts
CC which are needed to distinguish the AES permutation from a random one with
probability higher than 99%. Time complexity is measured in memory accesses (M) or
XOR operations (XOR). The case in which the final MixColumns operation is omitted
is denoted by “r.5 round”, i.e. r full rounds and the final one. “Key-Independence”
denotes a distinguisher which is able to distinguish 5-round AES from a random per-
mutation without discovering any information of the secret key or of part of it.

Property Rounds Data CP CC Cost Key-Independence Ref.

Structural Diff. 4.5 − 5 233 ✓ ✓ 236.6 M ✓ Sect. 3

Impossible Diff. 4.5 − 5 298.2 ✓ 2107 M [14]

Integral 5 2128 ✓ 2128 XOR [21]

Comparison of 5-Round Secret-Key Distinguishers. For a better com-
parison between this new secret-key distinguisher proposed in this paper and
earlier ones, we propose to classify the secret-key distinguishers in the following
way (from strongest to weakest):

1. a distinguisher which is completely independent of the secret key (e.g., it
exploits properties that are not related to the existence of a key) and inde-
pendent of the details of the S-Box;

2. a distinguisher which depends on the existence of a key and is derived by a
key-recovery attack.

A comparison between our new distinguisher and the ones proposed in [14,21]
is given in Table 1, where “Key-Independence” denotes a secret-key distinguisher
which is derived by a key-recovery attack, i.e. that does not exploit a property
which is independent of the secret key. Moreover, with respect to the previous
classification, a complete comparison of all the secret key distinguishers and key-
recovery attacks (used as distinguishers) for 5-round AES is provided in Table 2 -
Appendix C of the full version of the paper [13].

2 Preliminary - Description of AES

The Advanced Encryption Standard [8] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite fields F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr round are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:
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– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (it provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;
– MixColumns (MC) - multiplication of each column by a constant 4×4 invert-

ible matrix MMC (MC and SR provide diffusion in the cipher1);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕ MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key) is
applied, and in the last round the MixColumns operation can be omitted. For the
following, we assume that the last MixColumns operation is always omitted. In
the case in which the last MixColumns is not omitted, it is sufficient to exchange
the order of the last MixColumns operation and of the AddRoundKey operation
- they are linear.

Finally, as we don’t use the details of the AES key schedule in this paper, we
refer to [8] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. We denote by kr the key of the r-th round,
where k0 is the secret key. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of
AES, while we denote r rounds of AES by Rr. We sometimes use the notation
RK instead of R to highlight the round key K. If the MixColumns operation is
omitted in the last round, then we denote it by Rf .

2.1 Differential Trail over 2-round AES

For the following, we recall a 2-round truncated differential trail of AES (see [9]
or [10] for details), largely used in the paper and illustrated in Fig. 1.

Fig. 1. Differential Trail over 2-round AES.

1 SR makes sure column values are spread, MC makes sure each column is mixed.
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Let R2(·) denote two AES rounds with fixed random round keys. Consider
two plaintexts which are equal in all bytes except for the ones in the i-th diagonal
for a certain i = 0, 1, 2, 3, i.e. for the bytes in row j and column i + j for each
j = 0, 1, 2, 3 (the index i + j is taken modulo 4). After one round, the two texts
are equal in all bytes except for the ones in the i-th column, i.e. for the bytes in
row j and column i for each j. After the second and last round - assuming the
final MixColumns is omitted, the two texts are equal in all bytes except for the
ones in the i-th anti-diagonal, that is for the bytes in row j and column i− j for
each j (the index i − j is taken modulo 4) by definition of anti-diagonal.

For the following, we work with diagonal sets of 232 plaintexts, defined as
sets of texts which are equal in 3 diagonals, i.e. texts with active bytes in the i-th
diagonal for a certain i = 0, 1, 2, 3 and with constant bytes in the other three:

⎡

⎢

⎢

⎣

A C C C
C A C C
C C A C
C C C A

⎤

⎥

⎥

⎦

R(·)−−→

⎡

⎢

⎢

⎣

A C C C
A C C C
A C C C
A C C C

⎤

⎥

⎥

⎦

Rf (·)−−−→

⎡

⎢

⎢

⎣

A C C C
C C C A
C C A C
C A C C

⎤

⎥

⎥

⎦

,

where A denotes an active byte (i.e. a byte in which every value in F28 appears
the same number of times) and C denotes a constant byte (i.e. a byte in which
the value is fixed to a constant for all texts). For completeness, we label the last
set by inverse-diagonal set, i.e. a set of texts where the bytes in one (or more)
anti-diagonal(s) are active while the others are constant.

If the final MixColumns is not omitted, certain linear relations - which are
given by the definition of the MixColumns matrix - hold between the bytes of
the texts that lie in the same column:

⎡

⎢

⎢

⎣

A C C C
C A C C
C C A C
C C C A

⎤

⎥

⎥

⎦

R(·)−−→

⎡

⎢

⎢

⎣

A C C C
A C C C
A C C C
A C C C

⎤

⎥

⎥

⎦

R(·)−−→ MC ×

⎡

⎢

⎢

⎣

A C C C
C C C A
C C A C
C A C C

⎤

⎥

⎥

⎦

,

In this case, we label the last set by mixed set. As an example, consider two
plaintexts p1 and p2 which are equal in all bytes except for the ones in the
0-th diagonal, i.e. except for the bytes in positions (j, j) for each j = 0, 1, 2, 3.
After 2 (complete) rounds, there exist x, y, z, w ∈ F28 such that their difference
R2(p1) ⊕ R2(p2) can be re-written as:

R2(p1) ⊕ R2(p2) =

⎡

⎢

⎢

⎣

0 × 02 · x y z 0 × 03 · w
x y 0 × 03 · z 0 × 02 · w
x 0 × 03 · y 0 × 02 · z w

0 × 03 · x 0 × 02 · y z w

⎤

⎥

⎥

⎦

. (1)

Finally, the same truncated differential analysis of 2-round can be generalized
to the cases of an initial diagonal set with more than a single active diagonal,
i.e. a set of plaintexts which are equal in all bytes except for the ones that lie in
two or three diagonals (instead of only one).
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3 New 5-round Secret Key Distinguisher for AES

3.1 Statement of the Property

Consider a diagonal set of plaintexts - i.e. a set of 232 plaintexts which are
equal in all bytes except for the ones in i-diagonal for a certain i = 0, 1, 2, 3,
and the corresponding ciphertexts after 5 rounds. Assume the final MixColumns
operation is omitted. In order to set up the distinguisher on 5 rounds of AES, the
idea is to count the number of different pairs of ciphertexts which are equal in d
anti-diagonals for a certain 1 ≤ d ≤ 3 - that is the number of pairs of ciphertexts
with zero-difference in the bytes in positions (i, j − i) for all i = 0, 1, 2, 3 and
j ∈ J for a certain J ⊆ {0, 1, 2, 3} with |J | = d - and to exploit the property
that for an AES-like permutation this number is a multiple of 8 with prob. 1.

In more detail, given a set of plaintexts/ciphertexts (pi, ci) for i = 0, ..., 232 −
1 - where all the plaintexts are in the same diagonal set, the idea is to construct
all the possible pairs of ciphertexts (ci, cj) for i 
= j and to count the number
of different pairs2 of ciphertexts (ci, cj) for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and
the anti-diagonals are fixed in advance). It is possible to prove that for 5-round
AES this number has the special property to be a multiple of 8 independently
of d - that is on the number of considered anti-diagonals. Instead, for a random
permutation the same number does not have any special property (e.g. it has
the same probability to be even or odd). This allows to distinguish 5-round AES
from a random permutation.

Theorem 1. Given 232 plaintexts in the same diagonal set defined as before,
consider the corresponding ciphertexts after 5 rounds, that is (pi, ci) for i =
0, ..., 232 − 1 where ci = R5(pi) The number n of different pairs of ciphertexts
(ci, cj) for i 
= j for which the bytes of the difference ci ⊕ cj that lie in d anti-
diagonals are equal to zero (where 1 ≤ d ≤ 3 and the anti-diagonals are fixed in
advance) is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.

Idea of the Proof - Lemma 1. As we have seen in the previous section,
a diagonal set is always mapped after two rounds into a mixed set. In other
words, if two plaintexts have equal bytes expect for the ones in one diagonal,
then after two rounds some particular linear relationships (given in (1)) hold
among the bytes of the difference of these two texts that lie in the same column
with probability 1. In the same way, if two ciphertexts have equal bytes in d anti-
diagonals, then these two texts have equal bytes in d diagonals two rounds before
(due to the 2-round differential trail described in Sect. 2.1). In other words, a
inverse-diagonal set is mapped into a diagonal set two rounds before (assuming
the final MixColumns operation is omitted).

Assume for simplicity that the 232 plaintexts are chosen in a diagonal set
with the active bytes in the first diagonal (analogous for the other cases).
2 The two pairs (ci, cj) and (cj , ci) are considered equivalent. To formalize this concept,

one can consider the number of ciphertexts (ci, cj) with i < j for which the bytes of
the difference ci ⊕ cj that lie in d anti-diagonals are equal to zero.
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Due to these two previous considerations, Theorem 1 on 5 rounds of AES (and
its proof) is strongly related to the following lemma on 1-round AES.

Lemma 1. Given 232 plaintexts in a mixed set of the form

MC ·

⎡

⎢

⎢

⎣

A C C C
C C C A
C C A C
C A C C

⎤

⎥

⎥

⎦

, (2)

consider the corresponding ciphertexts after 1 round, that is (p̂i, ĉi) for i =
0, ..., 232 − 1 where ĉi = R(p̂i). The number n of different pairs of ciphertexts
(ĉi, ĉj) for i 
= j for which the bytes of the difference ci⊕cj that lie in d diagonals
are equal to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance) is a
multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.

The complete proof is provided in the next section - Sect. 4. We emphasize that
the proof of Theorem 1 follows immediately by the proof of Lemma 1, due to
the 2-round truncated differential trail described in Sect. 2.1. In particular, note
that considering 232 plaintexts in the same diagonal set (that is 232 plaintexts
which are equal in three diagonals and with active bytes in the other one) is
equivalent to consider 232 texts in the same mixed set as defined in (2) after two
rounds. In other words, all 232 plaintexts of Lemma 1 are definitely reachable in
2 rounds from the initial plaintext (diagonal) structure defined in Theorem 1.

To prove the lemma, the idea is show that given one pair of ciphertexts for
which the bytes that lie in d diagonals are equal, then also other pairs of cipher-
texts have the same property with probability 1. The complete proof is given in
Sect. 4. We highlight that the statement given in Theorem 1 (or Lemma 1) does
not depend on the details of the MixColumns matrix (with the exception that
the branch number must be five) or/and of the SubBytes operation. In other
words, the only property that the proof - given in the next section - exploits is
the branch number of the MixColumns matrix.

3.2 Setting up the Distinguisher

Our 5-round distinguisher exploits the property just described that the above
defined number n is a multiple of 8 for 5-round AES, while it can take any
possible value in the case of a random permutation. In the following we show
how to set up the previous distinguisher in an efficient way for the case d = 1
(analougos for the other cases).

To implement the distinguisher, one has to count the number of pairs of
ciphertexts for which the difference in d = 1 anti-diagonal is equal to zero (where
this anti-diagonal is fixed in advance). First of all, since the probability that two
ciphertexts satisfy this property is 2−32 (in general, 2−32·d for d anti-diagonals),
we expect that on average

(

232

2

)

· 2−32 = 231 · (232 − 1) · 2−32 � 231
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different pairs of ciphertexts have difference zero in one fixed anti-diagonal both
for an AES permutation and for a random one. However, while for an AES
permutation this number is a multiple of 8 with probability 1, for a random
permutation this happens only with probability 0.125 ≡ 2−3. In particular, con-
sider s initial arbitrary diagonal sets of plaintexts and for each of them count
the number of different pairs of ciphertexts that have difference zero in d anti-
diagonals. For an AES permutation, each of these numbers is a multiple of 8,
while the probability that this happens for a random permutation is only 2−3·s.
In order to distinguish the AES permutation from the random one with proba-
bility at least pr, it is sufficient that for a random permutation at least one of
these numbers is not a multiple of 8, which happens with probability pr:

pr = 1 − 2−3·s.

Thus, the probability of success of this distinguisher is greater than 99% (i.e.
pr ≥ 0.99) for s ≥ 3. Note that for each initial diagonal set, one can count
the above defined number n for each one of the four possible anti-diagonals.
In other words, there are four different anti-diagonals for which one can count
the number n of pairs of ciphertexts with zero difference in that anti-diagonal. It
follows that using a single initial diagonal set, it is possible to distinguish 5-round
AES from a random permutation with a probability of success of approximately
1 − (2−12) = 99.975%.

In conclusion, 232 chosen plaintexts in a single initial arbitrary diagonal set -
i.e. a set of 232 plaintexts which are equal in all bytes except for the ones in the
i-th diagonal for a certain i = 0, 1, 2, 3 - are sufficient to distinguish a random per-
mutation from an AES one. An approximation of the computational cost is given
in the following. For completeness, it is also possible to set up a distinguisher
for the cases d = 2 and d = 3 - i.e. the cases in which one count the number n
of pairs of ciphertexts for which the bytes in d = 2, 3 anti-diagonals are equal.
However, it should be noticed that the average number of collisions in these cases
are respectively 231 · (232 − 1) · 2−64 � 2−1 and 231 · (232 − 1) · 2−96 � 2−33. As
a consequence, the data and computational cost of these cases is not lower than
for the case d = 1.

3.3 The Computational Cost

We have just seen that 232 chosen plaintexts in a single diagonal set are sufficient
to distinguish a random permutation from 5 rounds of AES, simply counting the
number of pairs of ciphertexts with equal bytes in d anti-diagonal and checking
if it is a multiple of 8 or not. Here we give an estimation of the computational
cost of the distinguisher, which is approximately given by the sum of the cost to
construct all the pairs and of the cost to count the number of pairs of ciphertexts
with the previous property. As a result, the total computational cost can be well
approximated by 235.6 table look-ups.

Assume the final MixColumns operation is omitted. As we have just said,
for each initial diagonal set the two steps of the distinguisher are (1) construct
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all the possible pairs of ciphertexts and (2) count the number of collisions. First
of all, given pair of ciphertexts, note that the cost to check that the bytes in d
anti-diagonals are equal corresponds to the cost of a XOR operation3. As we are
going to show, the major cost of this distinguisher regards the construction of all
the possible different pairs, which corresponds to step (1). Since it is possible to
construct approximately 263 pairs for each initial diagonal set, the simplest way
to do it requires 263 table look-ups. In the following, we present a way to reduce
the total cost to approximately 235.6 table look-ups, where the used tables are
of size 232 texts (or equivalently 232 · 16 = 236 byte).

The basic idea is to implement the distinguisher using a data structure. The
goal is to count the number of pairs of ciphertexts (c1, c2) for which the bytes
in one of the anti-diagonal are equal, that is such that for a fixed j ∈ {0, 1, 2, 3}
the following condition is satisfied:

c1i,j−i = c2i,j−i ∀i = 0, 1, 2, 3 (3)

where the index is computed modulo 4. To do this, consider an array A of
232 elements completely initialized to zero. The element of A in position x for
0 ≤ x ≤ 232 − 1 - denote by A[x] - represents the number of ciphertexts c that
satisfy the following equivalence (in the integer field N):

x = c0,0−j + 256 · c1,1−j + c2,2−j · 2562 + c3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (3), then they
increment the same element x of the array A. It follows that given r ≥ 0 texts
that increment the same element x of the array A, then it is possible to construct

(

r

2

)

=
r · (r − 1)

2

different pairs of texts that satisfy (3). The complete pseudo-code of such an
algorithm is given in Algorithm 1.

What is the total computational cost of this procedure? Given a set of 232

(plaintexts, ciphertexts) pairs, one has first to fill the array A using the strategy
just described, and then to compute the number of total of pairs of ciphertexts
that satisfy the property, for a cost of 3 · 232 = 233.6 table look-ups - each one
of these three operations require 232 table look-ups. Since one has to repeat this
algorithm 4 times - one time for each one of the four anti-diagonal, the total cost
is of 4 · 233.6 = 235.6 table look-ups, or equivalently 229 five-round encryptions of
AES (using the approximation4 1 table look-up ≈ 1 round of AES).

3 As example, let J ⊆ {0, 1, 2, 3} with d = |J |. Given a pair (c1, c2), this operation can
be reduced to check that c̃k,j−k = 0 for each k = 0, ..., 3 and j ∈ J , where c̃ ≡ c1⊕c2.

4 We highlight that even if this approximation is not formally correct - the size of the
table of an S-Box look-up is lower than the size of the table used for our proposed
distinguisher, it allows to give a comparison between our proposed distinguisher and
the others currently present in literature. At the same time, we note that the same
approximation is largely used in literature.
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single
diagonal set.

Result: 1 for an AES permutation, 0 otherwise (prob. ≥ 99%)
Let (pi, ci) for i = 0, ..., 232 − 1 the (plaintext, ciphertext) pairs;
for all j ∈ {0, 1, 2, 3} do

Let A[0, ..., 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x ← 0;
for k from 0 to 3 do

x ← x+ cik,j−k · 256k; // cik,j−k denotes the byte of ci in row k
and column j − k mod 4

end
A[x] ← A[x] + 1; // A[x] denotes the value stored in the x-th
address of the array A

end
n ← 0;
for i from 0 to 232 − 1 do

n ← n + A[i] · (A[i] − 1)/2;
end
if (n mod 8) �= 0 then

return 0;
end

end
return 1.

Algorithm 1. Secret-Key Distinguisher for 5 rounds of AES which exploits a
property which is independent of the secret key - probability of success: ≥ 99%.

Another possible way to implement our distinguisher exploits a re-ordering
algorithm. The goal is again to count the number of pairs of ciphertexts for which
the bytes that lie in d fixed anti-diagonals are equal. In this case, the idea is to
re-order the texts using a particular numerical order which depends - in a “cer-
tain way” - on these d anti-diagonals. Then, given a set of ordered texts, the idea
is to work only on two consecutive elements in order to count the total number
of pairs of ciphertexts with the required property. In other words, given ordered
ciphertexts, one can work only on approximately 232 different pairs (composed of
consecutive elements with respect to the used order) instead of 263 for each ini-
tial diagonal set. All the details of this method are given in Appendix D of [13].
This second implementation could be in some cases more efficient than the one
proposed in details in this section when e.g. it is required to do further operations
on the pairs of ciphertexts which are equal in the d fixed anti-diagonals.

3.4 Practical Verification

Using a C/C++ implementation5, we have practically verified the distinguisher
on a small scale variant of AES, as presented in [6]. While in “real” AES, each
5 The source code is available at https://github.com/Krypto-iaik/AES 5round

SKdistinguisher.

https://github.com/Krypto-iaik/AES_5round_SKdistinguisher
https://github.com/Krypto-iaik/AES_5round_SKdistinguisher
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word is composed of 8 bits, in this variant each word is composed of 4 bits.
We refer to [6] for a complete description of this small-scale AES, and we limit
ourselves to describe the results of our 5-round distinguisher in this case.

First of all, note that Theorem 1 holds exactly in the same way also for this
small-scale variant of AES (the proof is independent by the fact that each word
of AES is of 4 or 8 bits). Thus, our verification on the small-scale variant of AES
is strong evidence for it to hold for the real AES.

We have verified the theorem for each possible value of d (i.e. for 1, 2, 3). For
the verification of the secret-key distinguisher, we have chosen plaintexts in the
diagonal sets with a single active diagonal and d = 1. As result, we have verified
that for 5-round AES the number of collisions is a multiple of 2, while this number
does not have any particular property for a random permutation. Moreover, we
have found that 2 initial diagonal sets are largely sufficient to distinguish a
random permutation from an AES permutation also from a practical point of
view, as predicted.

The differences between this small-scale AES and the real AES regard the
total number of pairs of ciphertexts that satisfy the required property (equal
bytes in 1 fixed diagonal), which in this case is well approximated by 215 · (216 −
1)·2−16 ≈ 215 for each diagonal set, and the lower computational cost, which can
be approximated by 217.6 · 4 ≈ 219.6 memory look-ups for each initial diagonal
set, besides the memory costs. The average practical results of our experiments
are in accordance with these numbers.

3.5 Generalizations of the Central Theorem

Until now we have considered only a particular case in order to set up our
distinguisher. However, here we show that it is possible to generalize Theorem1
as follows.

Firstly, note that the same distinguisher works also in the reverse direction
(i.e. in the decryption mode) with the same complexity. Assume that the final
MixColumns operation is omitted. In this case the strategy is to choose 232

ciphertexts in the same inverse-diagonal set, i.e. a set of 232 ciphertexts which
are equal in all the bytes expect for the ones in the i-th anti-diagonal for a
certain i = 0, 1, 2, 3 (similar definition of the diagonal set). As before, the idea
is to count the number of different pairs of plaintexts for which the bytes that
lie in d diagonals are equal, for d fixed diagonals with 1 ≤ d ≤ 3. This number
has the same properties given in Theorem 1, while for a random permutation it
can take any possible value.

Theorem 2. Assume the final MixColumns operation is omitted. Given 232

ciphertexts in the same inverse-diagonal set - that is, a set of texts with equal
bytes expect the ones in the i-th anti-diagonal for a certain i ∈ {0, 1, 2, 3},
consider the corresponding plaintexts 5 rounds before, that is (pi, ci) for i =
0, ..., 232 − 1 where pi = R−5(ci) The number n of different pairs of plaintexts
(pi, pj) for i 
= j for which the bytes of the difference pi ⊕ pj that lie in d diago-
nals are equal to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance)
is a multiple of 8, that is ∃n′ ∈ N such that n = 8 · n′.
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A complete proof of this Theorem can be found in AppendixA of the full version
of the paper [13].

Secondly, Theorem 1 can be generalized for the cases of diagonal sets in which
more than a single diagonal is active. As an example, diagonal sets with 2 or 3
active diagonals can be

⎡

⎢

⎢

⎣

A A C C
C A A C
C C A A
A C C A

⎤

⎥

⎥

⎦

or

⎡

⎢

⎢

⎣

A A A C
C A A A
A C A A
A A C A

⎤

⎥

⎥

⎦

.

It is possible to prove that the result given in Theorem 1 is completely inde-
pendent of the number of active diagonals. In other words, independently of the
number of active diagonals of the initial diagonal set of the plaintexts, then the
number of pairs of ciphertexts for which the bytes that lie in d anti-diagonals
are equal (for d fixed anti-diagonals with 1 ≤ d ≤ 3) is a multiple of 8. A formal
statement is the following:

Theorem 3. Given 232·D plaintexts in the same diagonal set with 1 ≤ D ≤ 3
active diagonals defined as before, consider the corresponding ciphertexts after 5
rounds, that is (pi, ci) for i = 0, ..., 232 − 1 where ci = R5(pi) The number n of
different pairs of ciphertexts (ci, cj) for i 
= j for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and the
anti-diagonals are fixed in advance) is a multiple of 8, that is ∃n′ ∈ N such that
n = 8 · n′.

The proof of this theorem is given in AppendixA - it is simply a generalization
of the proof of Theorem 1 given in the next section.

4 A Detailed Proof of Theorem 1 - Lemma 1

In this section we give a detailed and formal proof of Theorem 1. As we have
already said, since it is sufficient to prove Lemma 1 in order to prove the The-
orem, we focus on this Lemma, which is recalled in the following. Moreover, we
assume that for simplicity that the 232 plaintexts are chosen in a diagonal set
with the active bytes in the first diagonal (analogous for the other cases).

Lemma 1. Given 232 plaintexts in the same mixed set of the form (2)

MC ·

⎡

⎢

⎢

⎣

A C C C
C C C A
C C A C
C A C C

⎤

⎥

⎥

⎦

,

consider the corresponding ciphertexts after 1 round, that is (p̂i, ĉi) for i =
0, ..., 232 − 1 where ĉi = R(p̂i). The number n of different pairs of ciphertexts
(ĉi, ĉj) for which the bytes of the difference ci ⊕ cj that lie in d diagonals are
equal to zero (where 1 ≤ d ≤ 3 and the diagonals are fixed in advance) is a
multiple of 8, that is ∃n′ ∈ N s.t. n = 8 · n′.
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Proof. Consider two elements p1 and p2 in the set just defined. By definition,
there exist x, y, z, w ∈ F28 , x′, y′, z′, w′ ∈ F28 and a constant a ∈ F

4×4
28 such that:

p1 = a ⊕

⎡

⎢

⎢

⎣

2 · x y z 3 · w
x y 3 · z 2 · w
x 3 · y 2 · z w

3 · x 2 · y z w

⎤

⎥

⎥

⎦

, p2 = a ⊕

⎡

⎢

⎢

⎣

2 · x′ y′ z′ 3 · w′

x′ y′ 3 · z′ 2 · w′

x′ 3 · y′ 2 · z′ w′

3 · x′ 2 · y′ z′ w′

⎤

⎥

⎥

⎦

where 2 ≡ 0 × 02 and 3 ≡ 0 × 03. For the following, we say that p1 is “gen-
erated” by the variables 〈x, y, z, w〉 and that p2 is “generated” by the variables
〈x′, y′, z′, w′〉.

First Case. First, we consider the case in which three variables are equal.
W.l.o.g. we assume for example that y = y′, z = z′, w = w′ and x 
= x′

(the other cases are analogous). As we are going to show, in this case it is not
possible that after one round the bytes of one diagonal (e.g. the j-th diagonal
for j ∈ {0, 1, 2, 3}) of the two texts are equal). In other words, it is not possible
that (R(p1) ⊕ R(p2))i,j+i = 0 for each i = 0, ..., 3 (i.e. the four bytes of the j-th
diagonal of R(p1)⊕R(p2) are equal to zero), where the indexes are taken modulo
4. As we are going to show, this is due to the given hypothesis of this case and to
the fact that the branch number of the MixColumns operation is equal to five.

By simple computation, the first column (analogues for the other ones)
of SR◦ S-Box(p1) ⊕ SR◦ S-Box(p2) - denoted by (SR◦ S-Box(p1) ⊕ SR◦ S-
Box(p2))·,0 - is equal to:

(SR ◦ S-Box(p1) ⊕ SR ◦ S-Box(p2))·,0 =

⎡
⎢⎢⎣

S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0)
0
0
0

⎤
⎥⎥⎦ .

After the MixColumns operation (note R(p1)⊕R(p2) = MC(SR ◦ S-Box(p1)⊕
SR◦ S-Box(p2)) = MC◦SR◦ S-Box(p1)⊕MC◦SR◦ S-Box(p2)), since only one
input byte6 is different from zero, it follows that at least four output bytes must
be different from zero, that is all the output bytes are different from zero. This
simply implies that it is not possible that the bytes of one or more diagonals of
R(p1)⊕R(p2) are equal to zero. As a consequence, this case does not contribute
to the number n.

Second Case. Secondly, we consider the case in which two variables are equal,
that is w.l.o.g. we assume for example that z = z′ and w = w′, while x 
= x′ and
y 
= y′ (the other cases are analogous).

Assume there exist two elements p1 (generated by 〈x, y〉) and p2 (generated
by 〈x′, y′〉) defined as before such that they have zero-difference in the j-th

6 Note that S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0) = 0 if and only if x = x′, which
can never happen for hypothesis.
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diagonal after one round. In other words, let j ∈ {0, 1, 2, 3} and assume that
there exist x, y and x′, y′ such that the generated elements p1 and p2 satisfy
(R(p1) ⊕ R(p2))i,i+j = 0 for each i = 0, 1, 2, 3, where the indexes are taken
modulo 4.

This implies that other two elements p̂1 (generated by 〈x, y′〉) and p̂2 (gen-
erated by 〈x, y′〉), that is

p̂1 = a ⊕

⎡

⎢

⎢

⎣

2 · x′ y 0 0
x′ y 0 0
x′ 3 · y 0 0

3 · x′ 2 · y 0 0

⎤

⎥

⎥

⎦

and p̂2 = a ⊕

⎡

⎢

⎢

⎣

2 · x y′ 0 0
x y′ 0 0
x 3 · y′ 0 0

3 · x 2 · y′ 0 0

⎤

⎥

⎥

⎦

,

satisfy the condition (R(p̂1) ⊕ R(p̂2))i,i+j = 0 for each i = 0, 1, 2, 3 and for a
certain j after one round. To prove this fact, it is sufficient to compute R(p1) ⊕
R(p2) and R(p̂1) ⊕ R(p̂2), and to prove that they are equal, i.e.

R(p1) ⊕ R(p2) = R(p̂1) ⊕ R(p̂2).

Since (R(p1)⊕R(p2))i,i+j = 0 for each i = 0, 1, 2, 3, it also follows that (R(p̂1)⊕
R(p̂2))i,i+j = 0 for each i. In particular, by simple computation the first column
of R(p1) ⊕ R(p2) is given by:

(R(p1) ⊕ R(p2))0,0 = 2 · (S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0))⊕
⊕ 3 · (S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1)),

(R(p1) ⊕ R(p2))1,0 = S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0)⊕
⊕ 2 · (S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1)),

(R(p1) ⊕ R(p2))2,0 = S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0)⊕
⊕ S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1),

(R(p1) ⊕ R(p2))3,0 = 3 · (S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0))⊕
⊕ S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1).

Due to the definition of p̂1 and p̂2, it follows immediately that (R(p1) ⊕
R(p2))·,0 = (R(p̂1) ⊕ R(p̂2))·,0. The same happens for the other columns. Note
that the two elements p̂1 and p̂2 exist for sure since we are working with all
the 232 plaintexts in the same mixed set (2). This implies that the number of
collisions must be even, that is a multiple of 2.

Question: given p1 and p2 as before, is it possible that x, y, x′, y′ exist such
that (R(p1) ⊕ R(p2))i,i+j = 0 for each i = 0, 1, 2, 3? Yes, again because the
branch number of the MixColumns operation is five. Indeed, compute SR◦ S-
Box(p1)⊕SR◦ S-Box(p2) and analyze the first column (the others are analogous):

(SR ◦ S-Box(p1) ⊕ SR ◦ S-Box(p2))·,0 =

⎡
⎢⎢⎣

S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0)
S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1)

0
0

⎤
⎥⎥⎦ .
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After the MixColumns operation (note R(p1)⊕R(p2) = MC(SR ◦ S-Box(p1)⊕
SR ◦ S-Box(p2))), since two input bytes7 are different from zero, it follows that
at least three output bytes must be different from zero, or at most one output
byte could be equal to zero (similar for the other columns). Moreover, this also
implies that it is not possible that two or more output bytes in the same column
are equal to zero.

Moreover, observe that (R(p1) ⊕ R(p2))i,i+j = 0 for each i if and only if four
bytes (one per column) of R(p1) ⊕ R(p2) are equal to zero. Since there are four
“free” variables (i.e. x, y, x′, y′) and a system of four equations, such a system
can have a non-negligible solution.

Finally, since the previous result is independent of the values of z = z′ and
w = w′, it follows that the number of collisions for this case must be a multiple
of 217. Indeed, assume that for certain ẑ and ŵ there exist x, y, x′, y′ such that
the two elements p1 and p2 generated respectively by 〈x, y〉 by 〈x′, y′〉 satisfy
the condition that R(p1) ⊕ R(p2) has zero-difference in the j-th diagonal. By
simple computation, the difference R(p1) ⊕ R(p2) doesn’t depend on z = z′ and
on w = w′, that is for each byte of (R(p1) ⊕ R(p2))k,l for k, l = 0, 1, 2, 3 there
exist constant Ai, Bi, Ci for i = 0, 1, 2, 3 - that depend only on the coefficients
of the MixColumns matrix or/and of the secret-key - such that

(R(p1) ⊕ R(p2))k,l =A0 · (S-Box(B0 · x ⊕ C0) ⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕ A1 · (S-Box(B1 · y ⊕ C1) ⊕ S-Box(B1 · y′ ⊕ C1))⊕
⊕ A2 · (S-Box(B2 · z ⊕ C2) ⊕ S-Box(B2 · z′ ⊕ C2))⊕
⊕ A3 · (S-Box(B3 · w ⊕ C3) ⊕ S-Box(B3 · w′ ⊕ C3)) =

=A0 · (S-Box(B0 · x ⊕ C0) ⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕ A1 · (S-Box(B1 · y ⊕ C1) ⊕ S-Box(B1 · y′ ⊕ C1)).

It follows that - under the previous hypothesis - each pair of elements p1 and p2

respectively generated by (1) 〈x, y, z, w〉 and by 〈x′, y′, z, w〉 or (2) 〈x, y′, z, w〉
and by 〈x′, y, z, w〉 for each possible value of z and w satisfy the condition that
R(p1) ⊕ R(p2) has zero-difference in the j-th diagonal. Thus, the number of
collisions for this case must be a multiple of 2 · (28)2 = 217. As before, the
existence of all these elements is guaranteed by the fact that we are working
with all the 232 plaintexts in the same mixed set (2).

Third Case. Thirdly, we consider the case in which only one variable is equal,
that is w.l.o.g. we assume for example w = w′, while x 
= x′, y 
= y′ and z 
= z′

(the other cases are analogous).
Assume there exist two elements p1 (generated by 〈x, y, z〉) and p2 (generated

by 〈x′, y′, z′〉) defined as before and J ⊆ {0, 1, 2, 3} with 1 ≤ d = |J | ≤ 2 such
that the bytes of the two texts are equal after one round in the j-th diagonals

7 Note that S-Box(2 ·x⊕a0,0)⊕S-Box(2 ·x′ ⊕a0,0) = 0 if and only if x = x′, which can
never happen for hypothesis. In the same way, S-Box(y⊕a1,1)⊕S-Box(y′ ⊕a1,1) = 0
if and only if y = y′, which can never happen for hypothesis.
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for j ∈ J . In other words, assume there exist x, y, z and x′, y′, z′ such that
the generated elements p1 and p2 satisfy (R(p1) ⊕ R(p2))i,j+i for j ∈ J with
1 ≤ |J | ≤ 2. Similar to before, it follows that also the following three pairs of
plaintexts generated by:

– 〈x′, y, z〉 and 〈x, y′, z′〉
– 〈x, y′, z〉 and 〈x′, y, z′〉
– 〈x, y, z′〉 and 〈x′, y′, z〉
have the same property (that is, the bytes in the j-th diagonals for j ∈ J are
equal after one round), for a total of four different pairs. As before, in order to
prove this fact it is sufficient to show that R(p1)⊕R(p2) = R(p̂1)⊕R(p̂2), where
p̂1 and p̂2 are generated by the previous combinations of variables. Note that
the two elements p̂1 and p̂2 exist for sure since we are working with all the 232

plaintexts in the same mixed set (2). This implies that the number of collisions
must be a multiple of 4.

Finally, we have only to prove that such x, y, z and x′, y′, z′ can exist. As
before, we compute SR◦ S-Box(p1)⊕SR◦ S-Box(p2) and analyze the first column
(the others are analogous):

(SR ◦ S-Box(p1) ⊕ SR ◦ S-Box(p2))·,0 =

⎡
⎢⎢⎣

S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0)
S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1)

S-Box(2 · z ⊕ a2,2) ⊕ S-Box(2 · z′ ⊕ a2,2)
0

⎤
⎥⎥⎦ .

After the MixColumns operation, since three input bytes8 are different from
zero, it follows that at least two output bytes must be different from zero, or
at most two output bytes could be equal to zero. This implies that the event
(R(p1)⊕R(p2))i,j+i = 0 for all i = 0, 1, 2, 3 and j ∈ J with 1 ≤ |J | ≤ 2 is possible.
Moreover, this also implies that it is not possible that three output bytes (of the
same column) are equal to zero, or in other words that (R(p1) ⊕ R(p2))i,j+i = 0
for all i and all j ∈ J with d = |J | = 3 is not possible Also in this case, variables
x, y, z and x′, y′, z′ can exist since the number of equations is less or equal than
the number of variables.

Finally, since the previous result is independent of the values of w = w′, it
follows that the number of collisions for this case must be a multiple of 4·28 = 210.
As before, assume that for a certain ŵ there exist x, y, z, x′, y′, z′ such that the
two elements p1 and p2 generated respectively by 〈x, y, z〉 and by 〈x′, y′, z′〉
satisfy the condition that R(p1)⊕R(p2) has zero-difference in the j-th diagonals
for j ∈ J . Also in this case, the idea is to show that the difference R(p1)⊕R(p2)
doesn’t depend on w = w′, that is for each byte of (R(p1)⊕R(p2))i,j there exist
constant Ai, Bi, Ci for i = 0, 1, 2 - that depend only on the coefficients of the
MixColumns matrix or/and of the secret-key - such that

8 Note that S-Box(2·x⊕a0,0)⊕S-Box(2·x′⊕a0,0) = S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) =
S-Box(2 · z ⊕ a2,2) ⊕ S-Box(2 · z′ ⊕ a2,2) = 0 if and only if x = x′, y = y′ and z = z′,
which can never happen for hypothesis.
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(R(p1) ⊕ R(p2))i,j = A0 · (S-Box(B0 · x ⊕ C0) ⊕ S-Box(B0 · x′ ⊕ C0))⊕
⊕ A1 · (S-Box(B1 · y ⊕ C1) ⊕ S-Box(B1 · y′ ⊕ C1)⊕
⊕ A2 · (S-Box(B2 · z ⊕ C2) ⊕ S-Box(B2 · z′ ⊕ C2).

It follows that - under the previous hypothesis - each pair of elements p1 and p2

respectively generated by one of the four different combinations of the variables
〈x, y, z, w〉 and 〈x′, y′, z′, w〉 for each possible value of w satisfy the condition
that R(p1)⊕R(p2) has zero-difference in the j-th diagonals for j ∈ J . As before,
the existence of all these elements is guaranteed by the fact that we are working
with all the 232 plaintexts in the same mixed set (2).

Fourth Case. Fourthly, we consider the case in which all the variables are
different, that is w.l.o.g. we assume that x 
= x′, y 
= y′, z 
= z′ and w 
= w′.

Assume there exist two elements p1 (generated by 〈x, y, z, w〉) and p2 (gener-
ated by 〈x′, y′, z′, w′〉) defined as before and J ⊆ {0, 1, 2, 3} with 1 ≤ d = |J | ≤ 3
such that the bytes of the two texts are equal after one round in the j-th diago-
nals for j ∈ J . In other words, assume there exist x, y, z, w and x′, y′, z′, w′ such
that the generated elements p1 and p2 satisfy (R(p1) ⊕ R(p2))i,j+i = 0 for all
i = 0, 1, 2, 3 and for all j ∈ J with 1 ≤ d = |J | ≤ 3. Similar to before, it follows
that also the following seven pairs of plaintexts generated by:

– 〈x′, y, z, w〉 and 〈x, y′, z′, w′〉
– 〈x, y′, z, w〉 and 〈x′, y, z′, w′〉
– 〈x, y, z′, w〉 and 〈x′, y′, z, w′〉
– 〈x, y, z, w′〉 and 〈x′, y′, z′, w〉
– 〈x′, y′, z, w〉 and 〈x, y, z′, w′〉
– 〈x′, y, z′, w〉 and 〈x, y′, z, w′〉
– 〈x′, y, z, w′〉 and 〈x, y′, z′, w〉
have the same property (thta is, the bytes in the j-th diagonals for j ∈ J are
equal after one round), for a total of eight different pairs. As before, in order
to prove this fact it is sufficient to show that R(p1) ⊕ R(p2) = R(p̂1) ⊕ R(p̂2).
Moreover, as before note that the two elements p̂1 and p̂2 exist for sure since we
are working with all the 232 plaintexts in the same mixed set (2). This implies
that the number of collisions must be a multiple of 8.

Finally, we have only to prove that such x, y, z, w and x′, y′, z′, w′ can exist.
As before, we compute SR◦ S-Box(p1) ⊕ SR◦ S-Box(p2) and analyze the first
column (the others are analogous):

(SR ◦ S-Box(p1) ⊕ SR ◦ S-Box(p2))·,0 =

⎡
⎢⎢⎣

S-Box(2 · x ⊕ a0,0) ⊕ S-Box(2 · x′ ⊕ a0,0)
S-Box(y ⊕ a1,1) ⊕ S-Box(y′ ⊕ a1,1)

S-Box(2 · z ⊕ a2,2) ⊕ S-Box(2 · z′ ⊕ a2,2)
S-Box(w ⊕ a3,3) ⊕ S-Box(w′ ⊕ a3,3)

⎤
⎥⎥⎦ .
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After the MixColumns operation, since four input bytes9 are different from zero,
it follows that at least one output byte must be different from zero, or at most
three output bytes could be equal to zero. This implies that the event (R(p1) ⊕
R(p2))i,j+i = 0 for all i = 0, 1, 2, 3 and for all j ∈ J with 1 ≤ |J | ≤ 3 is possible.
Also in this case, variables x, y, z, w and x′, y′, z′, w′ can exist since the number
of equations is less or equal than the number of variables.

Conclusion. We summarize the previous results and we prove the lemma. Given
a set (2), we analyze the number of pairs of texts for which the bytes of d
diagonals are equal after one round.

If d = 3, it is possible to have a collision only in the case in which all the
variables that generate the two texts are different, that is x 
= x′, y 
= y′, and so
on. In this case, the number of collisions n must be a multiple of 8, that is there
exists n′ ∈ N such that n = 8 · n′.

If d = 2, it is possible to have a collision only if at least three variables that
generate the two texts are different (i.e. at most one variable can be equal). If
all the variables are different, the number of collisions is a multiple of 8, while if
one is equal then the number of collisions is a multiple of 1024 ≡ 210. In other
words, there exist n′, n′

2 ∈ N such that the total number of collisions n is equal
to n = 8 · n′ + 1024 · n′

2 = 8 · (n′ + 128 · n′
2), i.e. it is a multiple of 8.

If d = 3, it is possible to have a collision only if at least two variables that
generate the two texts are different (i.e. at most two variables can be equal). If
all the variables are different, the number of collisions is a multiple of 8, if one
is equal then the number of collisions is a multiple of 1024 ≡ 210, while if two
are equal then the number of collisions is a multiple of 131072 ≡ 217. In other
words, there exist n′, n′

2, n
′
3 ∈ N such that the total number of collisions n is

equal to n = 8 · n′ + 210 · n′
2 + 217 · n′

3 = 8 · (n′ + 27 · n′
2 + 214 · n′

3), i.e. it is a
multiple of 8.

This proves the lemma. ��
For completeness, we briefly recall why the proof of Lemma 1 implies Theo-

rem 1. As we have already seen, if two plaintexts are in the same diagonal set,
then after two rounds some particular linear relationships (given in (1)) hold
among the bytes of the two texts that lie in the same column with probability 1.
In the same way, if two ciphertexts have equal bytes in d anti-diagonals, then
two rounds before - assuming the final MixColumns operation is omitted - the
the two texts have equal bytes in d diagonals (due to the 2-round differential
trail described in Sect. 2.1). Thus, it is sufficient to prove that given a mixed set
of the form (2), the number of pairs of texts for which the bytes of d diagonals
are equal after one round is a multiple of 8, which is the statement of Lemma 1.
This finally proves the theorem.

9 Note that S-Box(2·x⊕a0,0)⊕S-Box(2·x′⊕a0,0) = S-Box(y⊕a1,1)⊕S-Box(y′⊕a1,1) =
S-Box(2·z⊕a2,2)⊕S-Box(2·z′⊕a2,2) = S-Box(w⊕a3,3)⊕S-Box(w′⊕a3,3) = 0 if and
only if x = x′, y = y′, z = z′ and w = w′, which can never happen for hypothesis.
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5 Conclusion, Applications and Open Problems

In this paper, we have presented a new non-random property for 5 rounds of
AES. Additionally, we showed how to set up an efficient 5-round secret-key dis-
tinguisher for AES which exploits this property, which is independent of the
secret key, improving the very recent results [21] and providing answers to the
questions posed in [21]. This distinguisher is structural in the sense that it is inde-
pendent of the details of the MixColumns matrix (with the exception that the
branch number must be five) and also independent of the SubBytes operation.
As such it will be straightforward to apply to many other AES-like constructions.
Starting from our results, a range of new questions arise for future investigations:

Application to Schemes that directly use round-reduced AES. Round-
reduced AES is a popular construction to build different schemes. For example,
in the on-going “Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness” (CAESAR) [1], which is currently at its third round,
several candidates are designed based on an AES-like SPN structure. Focusing
only on the third-round candidates10, among many others, AEGIS [15] uses four
AES round-functions in the state update functions while ELmD [20] recommends
to use round-reduced AES including 5-round AES to partially encrypt the data.
Although the security of these candidates does not completely depend on the
underlying primitives, we believe that a better understanding of the security of
round-reduced AES can help get insights to both the design and cryptanalysis
of authenticated encryption algorithms.

Further Extensions. Is it possible to set up a secret-key distinguisher for 6-
round of AES which exploits a property which is independent of the secret key?
Is it possible to set up efficient key recovery attacks for 6- or more rounds of AES
that exploits this new 5-round secret-key distinguisher proposed in this paper or
a modified version of it?

Permutation and Known-Key Distinguishers. The new 5-round property
(or its approach to derive it) might find applications to permutation distinguish-
ers or known-key distinguishers. Permutation distinguisher are usually set up by
combining two secret-key distinguishers in an inside-out fashion. It is not imme-
diately clear how the 5-round secret-key distinguisher presented in this paper
used in an inside-out approach would be able to maintain the property in both
directions simultaneously, but it seems interesting to investigate this direction
also.

Acknowledgments. The work in this paper has been partially supported by the
Austrian Science Fund (project P26494-N15).

10 Among previous-round candidates, it is also possible to include PRIMATEs [11]
which design is based on an AES-like SPN structure, while 4-round AES is adopted
by Marble [16] and used to build the AESQ permutation in PAEQ [2].
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A Generalization of Theorem 1

In Theorem 1 given in Sect. 3, we only considered the case of chosen plaintexts
in the same diagonal set with a single active diagonal - i.e. D = 1. A natural
question arises: is it possible to generalize the theorem also for D = 2 or/and
D = 3, that is for chosen plaintexts in the same diagonal set with two or three
active diagonals? The answer is yes, and it is given in Theorem 3 recalled in
the following. In particular, we prove in this section that the result obtained
in Theorem 1 is independent of the number of initial active diagonals D, or, in
other words, the property of n to be a multiple of 8 is independent of D.

Theorem 1. Given 232·D plaintexts in the same diagonal set with 1 ≤ D ≤ 3
active diagonals defined as before, consider the corresponding ciphertexts after 5
rounds, that is (pi, ci) for i = 0, ..., 232 − 1 where ci = R5(pi) The number n of
different pairs of ciphertexts (ci, cj) for i 
= j for which the bytes of the difference
ci ⊕ cj that lie in d anti-diagonals are equal to zero (where 1 ≤ d ≤ 3 and the
anti-diagonals are fixed in advance) is a multiple of 8, that is ∃n′ ∈ N such that
n = 8 · n′.

Since the proof for the case D = 1 is given in Sect. 4, we focus on the cases
D = 2 and D = 3. Also for these cases, the idea is to analyze the middle round
and to study each possible case, as done in Sect. 4. Thus, given pair of texts of
the form

MC ·

⎡

⎢

⎢

⎣

A A C C
A C C A
C C A A
C A A C

⎤

⎥

⎥

⎦

or MC ·

⎡

⎢

⎢

⎣

A A A C
A A C A
A C A A
C A A A

⎤

⎥

⎥

⎦

, (4)

we analyze the property of the number of pairs of texts which are equal in d
diagonals after one round.

Since the idea of the proof for D = 2 and D = 3 is analogous to that given for
D = 1, we limit ourselves to do some considerations which justify the theorem.
A complete proof can be easily obtained exploiting the following considerations
and using the same strategy proposed in Sect. 4.

First Consideration. As first consideration, note that we are considering pairs
of plaintexts/ciphertexts (p1, c1) and (p2, c2) such that the plaintexts are in the
same diagonal set with at least 2 active diagonals. On the other hand, such a
set can be seen as a collection of diagonal set with only 1 active diagonal. Since
Theorem 1 holds for each one of these sets, it follows that if n is a multiple of
2m then m must satisfy m ≤ 3. This follows immediately by Theorem 1 and the
corresponding proof of Sect. 4.

Thus, we have to prove that n is a multiple of 2m and that m = 3 also for
the cases D = 2 and D = 3.
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A.1 Case D = 2

We start studying the case D = 2. As we show in details in the following, the
same analysis can be simply modified and adapted for the case D = 3.

Consider two texts p1 and p2 in the same set (4) (the other cases are anal-
ogous). By definition, there exist x0, x1, y0, y1, z0, z1, w0, w1 ∈ F28 , x′

0, x
′
1, y

′
0,

y′
1, z

′
0, z

′
1, w

′
0, w

′
1 ∈ F28 and a ∈ F

4×4
28 such that:

p1 = a ⊕ MC ·

⎡

⎢

⎢

⎣

x0 y0 0 0
x1 0 0 w0

0 0 z0 w1

0 y1 z1 0

⎤

⎥

⎥

⎦

, p2 = a ⊕ MC ·

⎡

⎢

⎢

⎣

x′
0 y′

0 0 0
x′
1 0 0 w′

0

0 0 z′
0 w′

1

0 y′
1 z′

1 0

⎤

⎥

⎥

⎦

.

For the following, let 2 ≡ 0 × 02 and 3 ≡ 0 × 03.
Following the same strategy of Sect. 4, the idea is to consider all the possible

cases in which some or no-one variables of p1 are equal to the ones of p2. Note
that the case x1 = x′

1, y1 = y′
1, z1 = z′

1 and w1 = w′
1 (i.e. two texts that belong

into the same set (2)) has already been considered. In particular, by Theorem 1
it follows that in this case the number n is a multiple of 8.

First Case. W.l.o.g. we consider the case y1 = y′
1, wi = w′

i and zi = z′
i for

i = 0, 1, while y0 
= y′
0 and xi 
= x′

i for i = 0, 1 (the other cases are analogous).
Assume there exist x0, x1, y0 and x′

0, x
′
1, y

′
0 such that the generated elements

p1 and p2 satisfy the condition (R(p1) ⊕ R(p2))i,j+i = 0 for all i = 0, 1, 2, 3 and
for a certain j ∈ 0, 1, 2, 3 - i.e. the bytes of one diagonal of the two texts are equal
after one round. First of all, we show that such variables can exist. The condition
(R(p1) ⊕ R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} implies that four
bytes (one per column) of R(p1) ⊕ R(p2) must be equal to 0. Since there are six
independent variables, a solution can exist (note that the number of variables is
higher than the number of equations, so two variables are still “free”). Moreover,
this is also due to the branch number of the MixColumns operation, which is five.
Indeed, by simple computation the first column of SR(S-Box(p1)⊕ S-Box(p2))
(analogous for the others) is given by:

SR(S-Box(p1) ⊕ S-Box(p2))0,0 = S-Box(2 · x0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)
⊕ S-Box(2 · x′

0 ⊕ 3 · x′
1 ⊕ a0,0 ⊕ a1,0),

SR(S-Box(p1) ⊕ S-Box(p2))1,0 = S-Box(y0 ⊕ a1,1) ⊕ S-Box(y′
0 ⊕ a1,1),

SR(S-Box(p1) ⊕ S-Box(p2))2,0 = SR(S-Box(p1) ⊕ S-Box(p2))3,0 = 0.

Thus, if we compute MC ◦ SR(S-Box(p1)⊕ S-Box(p2)) (that is, R(p1) ⊕ R(p2)),
since at most two input bytes are different from zero, then it follows that at
least three output bytes must be different from zero, or equivalently at most
one output byte can be equal to zero. As a consequence, it is possible that
(R(p1) ⊕ R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3}. Note that the
same can not happen for d ≥ 2 diagonals. We emphasize that with respect to the
case D = 1, it is possible that one input byte of the MixColumns operation can be
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equal to zero. Indeed, it is possible that exist x0 and x′
0 such that SR(S-Box(p1)⊕

S-Box(p2))0,0 (analogous for the others columns).
As before, the idea is to consider the pairs of texts generated by all the

possible combinations of these six variables, as for example 〈x0, x1, y
′
0〉 and

〈x′
0, x

′
1, y0〉, 〈x0, x

′
1, y0〉 and 〈x′

0, x1, y
′
0〉, 〈x′

0, x1, y0〉 and 〈x0, x
′
1, y

′
0〉, 〈x1, x0, y

′
0〉

and 〈x′
0, x

′
1, y0〉 (note that the elements generated by 〈x0, x1, y

′
0〉 and by

〈x1, x0, y
′
0〉 are different) and so on.

We analyze these cases. It is simple to observe that if p1 generated by
〈x0, x1, y0〉 and p2 generated by 〈x′

0, x
′
1, y

′
0〉 satisfy the condition that (R(p1) ⊕

R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} - i.e. one diagonal of the two
texts are equal after one round, then also the elements generated by 〈x0, x1, y

′
0〉

and 〈x′
0, x

′
1, y0〉 have the same property. To prove this fact, it is sufficient to show

that R(p1) ⊕ R(p2) = R(p̂1) ⊕ R(p̂2). As an example, by simple computation, it
is simple to observe that for the first column:

SR(S-Box(p̂1) ⊕ S-Box(p̂2))i,0 = SR(S-Box(p1) ⊕ S-Box(p2))i,0 ∀i,

which implies the statement.
Consider now the elements p̂1 generated by 〈x0, x

′
1, y0〉 and p̂2 generated by

〈x′
0, x1, y

′
0〉 (similar for the elements generated by 〈x′

0, x1, y0〉 and 〈x0, x
′
1, y

′
0〉). By

simple computation, the first column of SR(S-Box(p̂1)⊕ S-Box(p̂2)) (analogous
for the others) is given by:

SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 = S-Box(2 · x0 ⊕ 3 · x′
1 ⊕ a0,0 ⊕ a1,0)

⊕ S-Box(2 · x′
0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)

and for i = 1, 2, 3

SR(S-Box(p̂1) ⊕ S-Box(p̂2))i,0 = SR(S-Box(p1) ⊕ S-Box(p2))i,0.

Since the S-Box is a non-linear operation, three different cases can happen:

1. SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 = 0;
2. SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 
= 0 and the elements p̂1 and p̂2 satisfy the

condition (R(p̂1) ⊕ R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3};
3. SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 
= 0 and the elements p̂1 and p̂2 don’t satisfy

the condition (R(p̂1) ⊕ R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3}.

We analyze in details these three cases, starting from the first one. As first thing,
note that this case can happen since the condition (R(p1) ⊕ R(p2))i,j+i = 0 for
all i and a certain j ∈ {0, 1, 2, 3} imposes a condition only on four out of six
variables, that is two variables are still “free”. If SR(S-Box(p̂1)⊕ S-Box(p̂2))0,0 =
0, it follows that only one byte (i.e. the second one) of the first column of
SR(S-Box(p̂1) ⊕ S-Box(p̂2)) is different from 0 (since y0 
= y′

0). Thus, since
MixColumns operation has branch number 5, all the bytes of the first column
of R(p̂1) ⊕ R(p̂2) must be different from zero, that is no diagonals of R(p̂1)
and R(p̂2) can be equal. However, note that also in this case it is possible to
deduce something. Indeed, by the previous consideration, it follows that the
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elements generated by 〈x0, x
′
1, y

′
0〉 and by 〈x′

0, x1, y0〉 don’t satisfy the condition
(R(p1) ⊕ R(p2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3}

Consider now the other two cases. Since the S-Box is a non-linear operation,
it is not possible to guarantee that

SR(S-Box(p̂1) ⊕ S-Box(p̂2))0,0 = SR(S-Box(p1) ⊕ S-Box(p2))0,0.

In other words, they can be equal (which implies that the condition (R(p̂1) ⊕
R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} - the same j of p1 and p2 -
holds) or different. In this second case, one can not say anything about the fact
that the elements p̂1 and p̂2 satisfy or not the condition (R(p̂1)⊕R(p̂2))i,j+i = 0
for all i and a certain j ∈ {0, 1, 2, 3} (the same j of p1 and p2). However, suppose
that p̂1 and p̂2 satisfy it after one round for the same j of p1 and p2 (which is
independent by the previous condition). In the same way of before, note that
also the elements generated by 〈x0, x

′
1, y

′
0〉 and p̂2 generated by 〈x′

0, x1, y0〉 have
the same property.

Thus, assume that p1 generated by 〈x0, x1, y0〉 and p2 generated by
〈x′

0, x
′
1, y

′
0〉 satisfy or not the condition (R(p1) ⊕ R(p2))i,j+i = 0 for all i and

a certain j ∈ {0, 1, 2, 3} after one round. By previous considerations, it follows
that also the p̂1 generated by 〈x0, x

′
1, y0〉 and p̂2 generated by 〈x′

0, x1, y
′
0〉 have

the same property. Thus, even if we can not do any claim for the other texts
generated by a different combination of these six variables, it is possible to con-
clude that - for fixed y1 = y′

1, wi = w′
i and zi = z′

i for i = 0, 1 - the number of
collisions must be a multiple of 2 for this case.

Finally, since we are working with the entire set of the form (4) - that is,
y1 = y′

1, wi = w′
i and zi = z′

i for i = 0, 1 can take any possible value - and due to
the same considerations of Sect. 4, it follows that the number of collisions must
be a multiple of 2 · (28)5 = 241 for this case.

Second Case. Similar considerations can be done for the case wi = w′
i and

zi = z′
i for i = 0, 1, while xi 
= x′

i and yi 
= y′
i for i = 0, 1 (the other cases are

analogous).
Assume there exist x0, x1, y0, y1 and x′

0, x
′
1, y

′
0, y

′
1 such that the generated

elements p1 and p2 satisfy the condition (R(p1) ⊕ R(p2))i,j+i = 0 for all i and a
certain j ∈ {0, 1, 2, 3}. As before, note that this is possible since this implies that
four bytes of R(p1) ⊕ R(p2) (one per column) must be equal to 0. Since there
are eight independent variables, a solution can exist (note that the number of
variables is higher than the number of equations, so four variables are still “free”).
Due to the branch number of the MixColumns operation, even if four variables
are still “free” it is not possible that the condition (R(p1) ⊕ R(p2))i,j+i = 0
for all i holds for two different j. Indeed, the first column of SR(S-Box(p1)⊕
S-Box(p2)) (analogous for the others) is given by:

SR(S-Box(p1) ⊕ S-Box(p2))0,0 = S-Box(2 · x0 ⊕ 3 · x1 ⊕ a0,0 ⊕ a1,0)
⊕ S-Box(2 · x′

0 ⊕ 3 · x′
1 ⊕ a0,0 ⊕ a1,0),

SR(S-Box(p1) ⊕ S-Box(p2))1,0 = S-Box(y0 ⊕ y1 ⊕ a0,1 ⊕ a3,0)
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⊕ S-Box(y′
0 ⊕ y′

1 ⊕ a0,1 ⊕ a3,0),

SR(S-Box(p1) ⊕ S-Box(p2))2,0 = SR(S-Box(p1) ⊕ S-Box(p2))3,0 = 0.

After the MixColumns operation MC◦SR(S-Box(p1)⊕ S-Box(p2)), since at most
two input bytes are different from zero, then it follows that at least three output
bytes must be different from zero.

Thus, given x0, x1, y0, y1 and x′
0, x

′
1, y

′
0, y

′
1, the idea is to consider all the

possible combinations as before. Also in this case, we can do a claim only on
one of them. In particular, if two elements p1 generated by 〈x0, x1, y0, y1〉 and p2

generated by 〈x′
0, x

′
1, y

′
0, y

′
1〉 satisfies the condition (R(p1) ⊕ R(p2))i,j+i = 0 for

all i and a certain j ∈ {0, 1, 2, 3}, we can only claim that also the elements p̂1

generated by 〈x′
0, x

′
1, y0, y1〉 and p̂2 generated by 〈x0, x1, y

′
0, y

′
1〉 have the same

property. Considerations for the other combinations are similar to the previous
case. Thus, we can claim that - for fixed wi = w′

i and zi = z′
i for i = 0, 1 - also

for this case the number of collisions is a multiple of 2.
Finally, since we are working with the entire set of the form (4) - that is,

wi = w′
i and zi = z′

i for i = 0, 1 can take any possible value - and due to the
same considerations of Sect. 4, it follows that the number of collisions must be
a multiple of 2 · (28)4 = 233 for this case.

Second Consideration. What can we deduce by the previous two cases?
Suppose to have two texts p1 generated by 〈x ≡ (x0, x1), y ≡ (y0, y1)〉
and p2 generated by 〈x′ ≡ (x′

0, x
′
1), y

′ ≡ (y′
0, y

′
1)〉 that satisfy the condition

(R(p̂1) ⊕ R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} and where
x, y ∈ F28 × F28 ≡ F

2
28 . We have seen that given these two elements, one can

only claim that also the texts p̂1 generated by 〈x′ ≡ (x′
0, x

′
1), y ≡ (y0, y1)〉 and

p̂2 generated by 〈x ≡ (x0, x1), y′ ≡ (y′
0, y

′
1)〉 have the same property, that is the

condition (R(p̂1) ⊕ R(p̂2))i,j+i = 0 for all i and a certain j ∈ {0, 1, 2, 3} for the
same j of p1 and p2.

As a consequence, the idea for the case D = 2 is not to consider the variables
that generate the texts and that are in the same column as independent. In
other words, the idea is to work with variables in F

2
28 and not in F28 , i.e. to

consider only all the possible combinations of x ≡ (x0, x1), y ≡ (y0, y1) and
x′ ≡ (x′

0, x
′
1), y

′ ≡ (y′
0, y

′
1), and not of x0, x1, y0, y1 and x′

0, x
′
1, y

′
0, y

′
1. Using this

strategy and working in the same way of Sect. 4, it is possible to analyze all the
possible cases.

For example, consider the case in which wi = w′
i for i = 0, 1 and x ≡

(x0, x1) 
= x′ ≡ (x′
0, x

′
1), y ≡ (y0, y1) 
= y′ ≡ (y′

0, y
′
1) and z ≡ (z0, z1) 
= z′ ≡

(z′
0, z

′
1). In the same way of before, it is only possible to prove that if there

exist p1 generated by 〈x, y, z〉 and p2 generated by 〈x′, y′, z′〉 such that (R(p1)⊕
R(p2))i,j+i = 0 for all i and certain j ∈ J where J ⊆ {0, 1, 2, 3} and |J | = 2 -
i.e. two diagonals are equal, then a total of four elements generated by

– 〈x, y, z〉 and 〈x′, y′, z′〉
– 〈x′, y, z〉 and 〈x, y′, z′〉
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– 〈x, y′, z〉 and 〈x′, y, z′〉
– 〈x, y, z′〉 and 〈x′, y′, z〉
have the same property. No claim can be made about other combinations of
variables (as before, this is due to the fact that the S-Box is non-linear). It
follows that - for fixed wi = w′

i for i = 0, 1- the number of collisions must be a
multiple of 4 for this case. As before, since we are working with the entire set
of the form (4) it follows that the number of collisions must be a multiple of
4 · (28)2 = 218. Moreover, since the branch number of the MixColumns operation
is five, note that it is not possible that (R(p1) ⊕ R(p2))i,j+i = 0 for all i and
certain j ∈ {0, 1, 2, 3} if wl = w′

l for l = 0, 1 (even if (R(p1) ⊕ R(p2))i,j+i = 0 for
all i and certain j ∈ J where J ⊆ {0, 1, 2, 3} imposes only 8 conditions while the
number of variables is 12, so 4 variables are still “free”).

Similar considerations can be done for the case in which all the variables are
different. As a consequence, the theorem is proved for the case |I| = 2.

A.2 Case D = 3

The case D = 3 is analogous to the case D = 2 and to the proof given in Sect. 4.
For this reason, we limit ourselves to show how to adapt the proof of the case
D = 2 for this case.

W.l.o.g consider two texts p1 and p2 in the same set (4) (the other cases are
analogous). By definition, there exist x0, x1, x2, y0, y1, y2, z0, z1, z2, w0, w1, w2 ∈
F28 , x′

0, x
′
1, x

′
2, y

′
0, y

′
1, y

′
2, z

′
0, z

′
1, z

′
2, w

′
0, w

′
1, w

′
2 ∈ F28 and a ∈ F

4×4
28 such that:

p1 = a ⊕ MC ·

⎡

⎢

⎢

⎣

x0 y0 z0 0
x1 y1 0 w0

x2 0 z1 w1

0 y2 z2 w2

⎤

⎥

⎥

⎦

, p2 = a ⊕ MC ·

⎡

⎢

⎢

⎣

x′
0 y′

0 z′
0 0

x′
1 y′

1 0 w′
0

x′
2 0 z′

1 w′
1

0 y′
2 z′

2 w′
2

⎤

⎥

⎥

⎦

.

Similarly to the case D = 2, the idea is to work with variables in F
3
28 ≡ F28 ×

F28 × F28 , e.g. x ≡ (x0, x1, x2), y ≡ (y0, y1, y2) and so on. In other words, the
idea is to consider the variables in the same column as not independent, that is
to consider the possible combinations only of variables in F

3
28 and not in F28 .
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Abstract. Committing integers and proving relations between them is
an essential ingredient in many cryptographic protocols. Among them,
range proofs have been shown to be fundamental. They consist in prov-
ing that a committed integer lies in a public interval, which can be seen
as a particular case of the more general Diophantine relations: for the
committed vector of integers x, there exists a vector of integers w such
that P (x,w) = 0, where P is a polynomial.

In this paper, we revisit the security strength of the statistically hid-
ing commitment scheme over the integers due to Damg̊ard-Fujisaki, and
the zero-knowledge proofs of knowledge of openings. Our first main con-
tribution shows how to remove the Strong RSA assumption and replace
it by the standard RSA assumption in the security proofs. This improve-
ment naturally extends to generalized commitments and more complex
proofs without modifying the original protocols.

As a second contribution, we design an interactive technique turning
commitment scheme over the integers into commitment scheme modulo
a prime p. Still under the RSA assumption, this results in more efficient
proofs of relations between committed values. Our methods thus improve
upon existing proof systems for Diophantine relations both in terms of
performance and security. We illustrate that with more efficient range
proofs under the sole RSA assumption.

Keywords: Public-key cryptography · Commitment schemes · Interac-
tive arguments of knowledge · Zero-knowledge proofs · RSA assumption

1 Introduction

Commitment Schemes. Commitments are one of the most fundamental and
widely used tools in cryptography. A commitment scheme allows a committer C
holding a secret value s to send a commitment c of s to a verifier V , and later on
to open this commitment to reveal the value s. Such a commitment should hide
the committed value s to the verifier, but binds the committer in opening only s.
A famous example of commitment scheme, that perfectly hides its input, is the
Pedersen commitment scheme [38], whose binding property relies on the discrete
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logarithm assumption: let G be a group of prime order p with two generators
(g, h). To commit to m ∈ Zp, C picks at random r ∈ Zp and sends c = gmhr.

Fujisaki and Okamoto introduced the first integer commitment scheme [23],
which was later generalized in [20]. Unlike classical commitment schemes, an
integer commitment scheme allows C to commit to any m ∈ Z. Intuitively, this
is done by committing to m in a group Zτ of unknown order τ , where division
by units cannot be performed in general.

Interactive Proofs of Knowledge. An interactive proof of knowledge is a two-
party protocol in which a proverP wants to convince a verifier V of his knowledge
of some values satisfying a public statement. It should be knowledge-extractable,
which means that an extractor can get values satisfying the statement when inter-
acting with a successful prover, and zero-knowledge, which means that no infor-
mation about these values leaks to the verifier (except that they satisfy the state-
ment). Such proofs of knowledge are useful in many cryptographic constructions.
Commitment schemes are a core component of zero-knowledge proofs of knowl-
edge. In particular, integer commitment schemes have been extensively used in
various interactive protocols involving zero-knowledge proofs of knowledge.

Assumptions for Proofs on Integer Commitments. The binding property
of the Damg̊ard-Fujisaki commitment scheme relies on the hardness of factoring
composite integers. Even though the intractability of factoring is widely consid-
ered as a mild computational assumption, the knowledge-extractability of the
proofs using these commitments relies on the Strong-RSA assumption [3,23],
which is a much stronger assumption than the classical RSA assumption. This
assumption states that, given a composite integer n and a random element
u ∈ Z

∗
n, it is hard to find a pair (v, e) such that u = ve mod n. Unlike the RSA

assumption [43], where the exponent e > 1 is imposed, there are exponentially
many solutions to a given instance of the Strong-RSA problem, the problem is
thus easier to solve. However, these commitments still provide the best solution
to prove relations over integers.

Range Proof. The most widespread reason to work over the integers is to prove
that a committed value x lies in a public integer range [[a ; b]]. Indeed, working
over the integers allows to show that x−a and b−x are positive by decomposing
them as sum of four squares, following the well-known Lagrange’s result. Boudot
in his Eurocrypy’00 talk, and Lipmaa [36], were the first to propose such a
method by relying on a commitment over the integers. As a consequence, the
knowledge extractability of this range proof requires the Strong-RSA assumption.

1.1 Our Contribution

First, we revisit the Damg̊ard-Fujisaki integer commitment scheme and show
that the security of arguments of knowledge of openings can be based on the
standard RSA assumption, instead of the Strong-RSA assumption. In the reduc-
tion, we use the rewinding technique in another way than in [20] as well as the
splitting lemma [39,40]. Our result extends to any protocols involving arguments
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or relations between committed integers which first prove the knowledge of the
inputs before proving that the relations are satisfied. This implies that the secu-
rity of numerous protocols, such as two-party computation [18,32], e-cash [12],
e-voting [25], secure generation of RSA keys [21,33], zero-knowledge primality
tests [14], password-protected secret sharing [31], and range proofs [36], among
many others, can be proven under the RSA assumption instead of the Strong-RSA
assumption at no computational cost. In addition, we believe that the ideas on
which our proof relies could be used in several other constructions whose security
was proven under the Strong-RSA assumption, and might allow to replace the
Strong-RSA assumption by the standard RSA assumption as well.

Second, we revisit a commitment scheme which was formally introduced
in [24]: c = gmRπ mod n, for a message m ∈ Zπ and R ∈ Z

∗
n. It is perfectly

hiding, and the binding property relies on the RSA assumption (with modulus
n, exponent π, and challenge g). We prove, as for the Damg̊ard-Fujisaki commit-
ment scheme, that the security of an argument of knowledge of an opening can
also be based on the classical RSA assumption. Therefore, we identify an interest-
ing property that is satisfied by this commitment, which corresponds informally
to the possibility to see this commitment scheme either as an integer commit-
ment scheme (i.e., c = gmhr mod n), or, after some secret has been revealed, as a
commitment scheme over Zπ for some prime π (i.e., c = gmRπ mod n). Without
additional assumption, we show how the unpredictability of π allows improving
the efficiency of zero-knowledge arguments over the integers as the knowledge
of the order π is delayed in the protocol. This method allows to save commu-
nication and greatly reduces the work of the verifier, compared with a classical
zero-knowledge argument for the same statement. We illustrate our method on
range proofs [36], a zero-knowledge argument of knowledge of an input to a
commitment such that the input belongs to some public interval.

Taken together, our contributions allow us to enhance both the security, by
removing the Strong-RSA assumption, and the efficiency of numerous crypto-
graphic protocols relying on integer commitment schemes.

1.2 Related Works

The Damg̊ard-Fujisaki commitment scheme [20,23] is the only known homo-
morphic statistically-hiding commitment scheme over the integers. Arguments
of knowledge over the integers were studied in [16,34,36].

Range proofs were introduced in [10]. They are a core component in numer-
ous cryptographic protocols, including e-cash [12], e-voting [25], private auc-
tions [37], group signatures [15], and anonymous credentials [13], among many
others. There are two classical methods for performing a range proof:

– Writing the number in binary notation [10,27] or u-ary notation [11], com-
mitting to its decomposition and performing a specific proof for each of these
commitments For example, membership to [[0 ; 2�]] is proven in communication
O(�/(log � − log log �)) in the protocol of [11], and in communication O(�1/3)
in the protocol of [27] (only counting the number of group elements).

– Using an integer commitment scheme [8,25,36].
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Note that protocols such as [17] do also allow to prove that a committed integer
x lies in a given interval [[0 ; a]] up to an accuracy parameter δ: actually only
membership to [[0 ; (1 + δ)a]] is proved.

Eventually, several papers have proposed signatures based on the standard
RSA assumption [7,29,30] as alternatives to classical signature schemes based
on the Strong-RSA assumption. Our work is in the same vein as these papers,
replacing the Strong-RSA assumption by the RSA assumption in arguments over
the integers. However, note that we do not actually propose a new argument
system to get rid of the Strong-RSA assumption, but rather show that the secu-
rity of the classical argument system is implied by the RSA assumption. As a
consequence, the schemes using arguments over the integers do not need to be
modified to benefit from our security analysis.

1.3 Organization

Section 2 introduces the necessary background for what follows, and namely
some useful facts on the RSA groups. Section 3 recalls the Damg̊ard-Fujisaki
commitment scheme, its properties, and the argument of knowledge of [20]. A
new security proof of the latter, under the standard RSA assumption, is given
in details in Sect. 4. Section 5 illustrates some extensions of our result. First, we
show how one can commit to vectors at once with generalized commitments.
And then, we show how one can make range proofs under the standard RSA
assumption. Section 6 revisits the commitment scheme of [24] and shows how, by
switching from the previous commitment to this one, we can get a new interactive
proof system for performing zero-knowledge arguments over the integers, that is
more efficient. Eventually, Sect. 7 illustrates our method on range proofs, with
concrete efficiency comparisons.

For the sake of completeness, in the full version [19] we exhibit a flaw in the
optimized version of Lipmaa’s range proof [36, Annex B]. We then propose a fix
as well as security proof.

2 Backgrounds

Throughout this paper, κ denotes the security parameter. An algorithm is effi-
cient when it runs in polynomial time in the (implicit) security parameter κ.
A positive function f is negligible if for any polynomial p there exists a bound
B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on
κ occurs with overwhelming probability when its probability is at least 1 − ε(κ)
for a negligible function ε.

2.1 Notations

Given a finite set S, the notation x ←R S means a uniformly random assignment
of an element of S to the variable x, then for any s ∈ S we have PrS [x = s] =
1/#S where #S denotes the cardinality of S. When an element s is represented
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by an integer, |s|b is the bit-length of the integer, and |s| denotes its absolute
value (or norm). Bold variables denote vectors. For a vector x = (x1, · · · , x�),
gx denotes (gx1 , · · · , gx�) and ‖x‖∞ = max1≤i≤� |xi|.

The integer range [[a ; b]] stands for {x ∈ Z | a ≤ x ≤ b}. For any integers
a ≤ b, the statistical distance between two uniform distributions, over Ua =
[[1 ; a]] and Ub = [[1 ; b]] respectively, is given by

∑b
i=1 |PrUa

[x = i] − PrUb
[x =

i]| =
∑a

i=1(1/a − 1/b) +
∑b

i=a+1 1/b = 2(b − a)/b.

2.2 Commitment Scheme

We first recall the basic definition of a commitment scheme on the message space
M . This is an essential primitive in cryptography, that is used to lock a value
in a box, so that the sender cannot change at the opening time (the binding
property) but still the receiver has no information about the value before the
opening (the hiding property). A non-interactive commitment scheme is defined
by three algorithms (Setup,Commit,Verify):

– Setup(1κ), generates the public parameters pp, which also specifies the message
space M , the commitment space C , the opening space D , and the random
source R;

– Commit(pp,m; r), given the message m ∈ M and some random coins r ∈ R,
outputs a commitment-opening pair (c, d). When there is no ambiguity, we
will abuse the notation (c, d) ←R Commit(m), for pp and r ←R R;

– Verify(pp, c, d,m), outputs a bit whose value depends on the validity of the
opening (m, d) with respect to the commitment c.

A commitment scheme must be

Correct. For any public parameters pp ←R Setup(1κ), any message m ∈ M ,
and any random coin r ∈ R, if (c, d) ← Commit(pp,m; r), then we necessarily
have Verify(pp, c, d,m) = 1.

Hiding. No probabilistic polynomial-time adversary A , that is first given
pp ←R Setup(1κ), can distinguish commitments on two messages (m0,m1)
of its choice. The commitment scheme is said statistically hiding if the indis-
tinguishability holds even for unbounded adversaries.

Binding. No probabilistic polynomial-time adversary A can open a commit-
ment c on two different messages m0 �= m1. The commitment scheme is said
statistically binding if this is infeasible even for unbounded adversaries.

A commitment scheme can also be homomorphic, if for a group law ⊕ on
the message space M , from pp, (c0, d0) ← Commit(pp,m0; r0) and (c1, d1) ←
Commit(pp,m1; r1), one can generate c and d so that Verify(pp, c, d,m0⊕m1) = 1.

2.3 Interactive Proof Systems

We now recall the second tool we will use in this paper, the zero-knowledge
proofs of knowledge, and their variants.
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Zero-Knowledge Proofs and Arguments. Let R be an NP-relation over a
set X defining an NP-language L = {x ∈ X | ∃w,R(x,w) = 1}, where a w such
that R(x,w) = 1 is called a witness for the statement x ∈ L .

A zero-knowledge proof of knowledge (ZKPoK) for a relation R and a word
x ∈ X is an interactive protocol 〈P(w),V 〉(x ∈ L ) between a prover P holding
a witness w for the statement x ∈ L , and a verifier V , both modeled as inter-
active probabilistic polynomial-time Turing machines. The purpose of a ZKPoK
is for P to convince V of its knowledge of some witness w of the statement
x ∈ L , without revealing any information about this witness. More formally,
let ViewV [〈P(w),V 〉(x ∈ L )] be the view of V during the execution of the
interactive protocol (i.e., all the messages it received when interacting with P).
A ZKPoK must be:

Correct. For every x ∈ L , if P knows a witness w, and both P and V behave
honestly, 〈P(w),V 〉(x ∈ L ) is accepted by V with overwhelming probability.

Knowledge Extractable. For any prover P ′ which succeeds in convincing V
of x ∈ L with non-negligible probability, there exists a simulator SimKE,
running in expected polynomial time, which extracts a witness w for x ∈ L
from P ′.

Zero-Knowledge. For any verifier V ′, there exists a simulator SimZK such
that for every x ∈ L , SimZK(x) and ViewV ′ [〈P(w),V ′〉(x ∈ L )], where w
is a witness for x ∈ L , are indistinguishable.

If the knowledge-extractability holds only for a computationally-bounded P ′,
the protocol is a zero-knowledge argument of knowledge (ZKAoK). If the verifier
is restricted to being honest in the zero-knowledge property, the proof is an
honest-verifier zero-knowledge proof.

Zero-Knowledge Arguments from Diophantine Relations. A Diophan-
tine set S ⊆ Z

k is a set of vectors over Z
k defined by a representing polynomial

PS(X,W ) with X = (X1, · · · ,Xk) and W = (Y1, · · · , Y�), i.e. a set of the form
S = {x ∈ Z

k | ∃w ∈ Z
�, PS(x,w) = 0} for some polynomial PS . It was shown

in [22] that any recursively enumerable set is Diophantine. An interesting class
for cryptographic applications is the class D of Diophantine sets S such that each
x ∈ S has at least one witness w satisfying ‖w‖∞ ≤ ‖x‖O(1)

∞ . It is widely con-
jectured that D = NP, as D contains several NP-complete problems, and it was
shown in [41] that if co-NLOGTIME ⊆ D, then D = NP. The class D was intro-
duced in [1] and its cryptographic relevance was pointed out in [36]. For example,
the set Z+ of positive integers is in D, as by a well-known result of Lagrange, it
can be defined as Z+ = {x ∈ Z | ∃(w1, w2, w3, w4) ∈ Z

4, x−(w2
1+w2

2+w2
3+w2

4) =
0}. In addition, each wi is of bounded size |wi| ≤ |x|.

Lipmaa [36] has shown that zero-knowledge arguments of membership to a
set S ∈ D, with representing polynomial P over k-vector inputs and �-vector
witnesses, can be constructed using an integer commitment scheme, such as [20].
The size of the argument (the communication between P and V ) depends on
k, �, and deg(P ), the degree of P . As noted in [36], intervals, unions of intervals,
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exponential relations (i.e., set of tuples (x, y, z) such that z = xy) and gcd
relation (i.e., set of tuples (x, y, z) such that z = gcd(x, y)) are all in D, with
parameters (k, � and deg(P )) small enough for cryptographic applications.

2.4 RSA Group Structure

In this paper we focus on Z
∗
n for a strong RSA modulus n = pq where p, q are

distinct safe primes. That means that p = 2p′ + 1 and q = 2q′ + 1 for two other
primes so that p, p′, q, q′ are all distinct, and ϕ(n) = 4p′q′. We write a = b mod n
to specify that a = b in Zn and we write a ← [b mod n] to affect the smallest
positive integer to a so that a = b mod n.

By GenMod(1κ), we denote a probabilistic efficient algorithm that, given the
security parameter κ, generates a strong RSA modulus n and secret parameters
(p, q) of at least κ bits each with the specification that n = pq. In the following,
we write (n, (p, q)) ←R GenMod(1κ). We will sometimes abuse the notation
n ←R GenMod(1κ) to say that the modulus n has been generated according to
this distribution.

The RSA Assumption. The RSA assumption states, informally, that given
an exponent e prime to ϕ(n), it is hard for any probabilistic polynomial-time
algorithm to find the e-th root modulo n of a random y ←R Z

∗
n. More formally,

let Pn be the subset of Zn of elements prime to ϕ(n). The RSA assumption does
in fact refer to a class of assumptions, depending of the distribution Dn over Pn

from which the exponent e is drawn.

Dn-RSA Assumption [43]. For n ←R GenMod(1κ) and e ←R Dn, it is hard
for any probabilistic polynomial-time algorithm to find the e-th root modulo
n of a random y ←R Z

∗
n. The triple (n, e, y) is the RSA instance.

Various flavours of the RSA assumption are standard in the literature. In
particular, the RSA assumption with a fixed small exponent (the most common
being 65537) is widely used in practical implementations. In theoretical papers,
it is common to consider the RSA assumption for exponents picked from the
uniform distribution over Pn (see [30] for example). In this paper, we use a
flavour of the RSA assumption which is somewhat intermediate between these
two standard variants: we will consider the RSA assumption for exponents picked
from the uniform distribution over [[3 ; a]] ∩ Pn for a value a polynomial in κ
(hence, we consider random small exponents). To simplify the notations, we will
denote by a-RSA this variant of the RSA assumption1.

Other Computational Assumptions. Other famous computational assump-
tions over RSA groups are the intractability of the factorization and the
Strong-RSA assumption:

1 It should be noted that in our proof, the bound a will depend on the success prob-
ability of the adversary.
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Integer Factorization Assumption. It states that finding a non-trivial fac-
tor of n ←R GenMod(1κ) is hard for any probabilistic polynomial-time algo-
rithm.

Strong-RSA Assumption [3,23]. It lets the choice of e to the algorithm: It
states that, for n ←R GenMod(1κ), this is hard to find the e-th root modulo
n, for a random y ←R Z

∗
n, for any probabilistic polynomial-time algorithm,

for an exponent e > 1 of its choice.

It is well-known that breaking the integer factorization assumptions allows
to break both the RSA and the Strong-RSA assumption. From the definition, it
is clear that the Strong-RSA assumption gives more degree of freedom to the
adversary, so it is seemingly much stronger. Indeed, for the RSA assumption, the
exponent is not chosen by the adversary, but can be fixed in any way in advance
by the challenger.

Properties of Strong RSA Groups. One can note that in groups modulo
n, where n = pq is a strong RSA modulus, p and q are Blum primes: p = q =
3 mod 4. If we denote QRn the subgroup of the squares, QRn = {a ∈ Z

∗
n | ∃b ∈

Z
∗
n, a = b2 mod n}, this is a cyclic subgroup of Z∗

n of order ϕ(n)/4 = p′q′.

Proposition 1. The following facts hold:

1. −1 �∈ QRn;
2. any square h ∈ QRn has four square roots, with exactly one in QRn;
3. for a random element h ∈ QRn, finding a square root of h is equivalent to

factoring the modulus n;
4. for random elements g, h ∈ QRn, finding non-zero integers a, b such that

ga = hb mod n is equivalent to factoring the modulus n;
5. for an RSA instance (n, e, y), finding x ∈ Z

∗
n and e′ prime to e such that

xe = ye′
mod n is equivalent to finding an e-th root of y modulus n.

Proof. Let us briefly explain why these facts hold, using the Jacobi symbol func-
tion Jn(x) = Jp(x)×Jq(x) in Z

∗
n, as the extension of the Legendre symbol on Z

∗
p

for prime p, Jp(x) = (x)(p−1)/2, which determines whether x is a square or not in
Z

∗
p. Since p and q are Blum primes, Jp(−1) = Jq(−1) = −1, and so Jn(−1) = 1,

but −1 is not in QRn, hence the Fact 1. The four square roots of 1, in Z
∗
n are

1 and −1, both with Jacobi symbol +1, but respectively (+1,+1) and (−1,−1)
for the Legendre symbols in Z

∗
p and Z

∗
q , and α, and −α, both with Jacobi symbol

-1, but respectively (+1,−1) and (−1,+1) for the Legendre symbols in Z
∗
p and

Z
∗
q . As a consequence, given a square h ∈ QRn, and a square root u, the four

square roots are u,−u, and αu,−αu, one of which being in QRn, since the four
kinds of Legendre symbols are represented. This leads to the Fact 2.

For Fact 3, if one chooses a random u ∈ Z
∗
n and sets h = u2 mod n, Jn(u)

is completely hidden. Another square root v has probability one-half to have
Jn(v) = −Jn(u). This means that u2 = v2 mod n, but u �= ±v mod n. Then,
gcd(u − v, n) gives a non-trivial factor of n.

For Fact 4, if one chooses a random u ∈ Z
∗
n and a large random scalar α and

sets h = u2 mod n and g = hα mod n, h is likely a generator of QRn, and then
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ga = hb mod n means that m = b − aα is a multiple of p′q′, the order of the
subgroup of the squares. Let us note m = 2v · t, for an odd t, then p′q′ divides
t: let us choose a random element u ∈ Z

∗
n, with probability close to one-half,

Jn(u) = −1, and so Jn(ut) = −1 while ut is a square root of 1. As in the proof
of the previous Fact 3, we can obtain a non-trivial factor of n.

Eventually, for Fact 5, using Bézout relation ue + ve′ = 1, then xve = yve′
=

y1−ue mod n. So y = (xvyu)e mod n. ��

3 Commitment of Integers Revisited

In [23], Okamoto and Fujisaki proposed a statistically-hiding commitment
scheme allowing commitment to arbitrary-size integers. Their commitment was
later generalized in [20]. It relies on the fact that when the factorization is
unknown, it is infeasible to know the order of the sub-group QRn of the squares in
Z

∗
n, where n is a strong RSA modulus. Hence, the only way for a computationally-

bounded committer to open a commitment is to do it over the integers.
In addition, [23] gave an argument of knowledge of an opening of a commit-

ment and proved that the knowledge extractability of the argument is implied by
the Strong-RSA assumption. A flaw in the original proof was later identified and
corrected in [20]. We will revisit the argument of knowledge of an opening due to
Damg̊ard-Fujisaki [20] and provide a new proof for its knowledge extractability,
in order to remove the requirement of the Strong-RSA assumption. Our proof
requires the standard RSA assumption only, with an exponent randomly chosen
in a polynomially-bounded set.

3.1 Commitments over the Integers

Description. Let us recall the commitment of one integer m:

– Setup(1κ) runs (n, (p, q)) ←R GenMod(1κ), and picks two random generators
g, h of QRn. It returns pp = (n, g, h);

– Commit(pp,m; r), for pp = (n, g, h), a message m ∈ Z, and some random coins
r ←R [[0 ;n]], computes c = gmhr mod n, and returns (c, d) with d = r;

– Verify(pp, c, d,m) parses pp as pp = (n, g, h) and outputs 1 if c = ±gmhd mod
n and 0 otherwise.

One should note that an honest user will always open such that c = gmhd mod n.
But the knowledge-extractability of the next ZKAoK of opening cannot exclude
the change of sign. In this description, we provide a trusted setup algorithm. But
as we see below, the guarantees for the committer (the hiding property of the
commitment) just rely on the existence of α such that g = hα mod n. For the
verifier to be convinced, one can just let him generate the parameters (n, g, h),
and prove the existence of such an α to the committer.
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Security Analysis. The above commitment scheme is obviously correct. The
hiding property relies on the existence of α such that g = hα mod n (they are
both generators of the same subgroup QRn), and so, for any m′ ∈ Z,

c = Commit(pp,m; r) = gmhr = hr+αm = h(r+α(m−m′))+αm′

= gm′
hr+α(m−m′) = Commit(pp,m′; r′),

with r′ ← [r + α(m − m′) mod p′q′], that is smaller than n and follows a dis-
tribution statistically close to the distribution of r. The binding property relies
on the Integer Factorization assumption: indeed, from two different openings
m0, d0,m1, d1 for a commitment c, with d1 > d0, the validity checks show that
gm0hd0 = ±gm1hd1 mod n, and so gm0−m1 = ±hd1−d0 mod n. Since g and h are
squares, and −1 is not a square, necessarily gm0−m1 = hd1−d0 mod n. The Fact 4
from Proposition 1 leads to a non-trivial factor of n.

3.2 Zero-Knowledge Argument of Opening

Let us now study the argument of knowledge of a valid opening for such a com-
mitment. The common inputs are the public parameters pp and the commitment
c = gxhr mod n, together with the bit-length kx of the message x, that is then
assumed to be in [[−2kx ; 2kx ]], while r ∈ [[0 ;n]] and x are the private inputs, i.e.
the witness of the prover. We stress that kx is chosen by the prover, since this
reveals some information about the integer x, while r is always in the same set,
whatever the committed element x is.

Description of the Protocol. The protocol works as follows:

Initialize: P and V decide to run the protocol on input (pp, κ, c, kx);
Commit: P computes d = gyhs mod n, for randomly chosen y ←R [[0 ; 2kx+2κ]]

and s ←R [[0 ; 2|n|b+2κ]], and sends d to the V ;
Challenge: V outputs e ←R [[0 ; 2κ]];
Response: P computes and outputs the integers z = ex + y and t = er + s;
Verify: V accepts the proof and outputs 1 if ced = gzht mod n. Otherwise, V

rejects the proof and outputs 0.

In the rest of this section, we prove this protocol is indeed a zero-knowledge
argument of knowledge of an opening. Which means it is correct, zero-knowledge,
and knowledge-extractable.

Correctness. First, the correctness is quite obvious: if c = gxhr mod n, with
z = ex + y and t = er + s, we have gzht = (gxhr)e · gyhs = ced mod n.

Zero-Knowledge. For the zero-knowledge property, in the honest-verifier set-
ting, the simulator Sim (that is SimZK in this case) can simply do as follows:

1. Sim chooses a random challenge e ←R [[0 ; 2κ]];
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Fig. 1. Distributions for the zero-knowledge property

2. Sim chooses random responses z ←R [[0 ; 2kx+2κ]] and t ←R [[0 ; 2|n|b+2κ]];
3. Sim sets d = gzhtc−e mod n.

The simulated transcript is the tuple (d, e, (z, t)), where the elements follow the
distribution D3 from Fig. 1, while the real transcript follows the distribution D0.

However, it is clear that D0 = D1 = D2, while the distance between D2 and
D3 is the sum of the distances between the distributions of z and t, respectively
in Z2 = [[xe ; 2kx+2κ + xe]] and Z3 = [[0 ; 2kx+2κ]], and T2 = [[re ; 2|n|b+2κ + re]]
and T3 = [[0 ; 2|n|b+2κ]]:

Δz =
2kx+2κ+xe

∑

Z=0

|Pr[z ←R Z2 : z = Z] − Pr[z ←R Z3 : z = Z]|

=
xe−1
∑

Z=0

2−kx−2κ +
2kx+2κ+xe

∑

Z=2kx+2κ+1

2−kx−2κ = 2 · xe · 2−kx−2κ ≤ 2 · 2kx+κ · 2−kx−2κ

that is bounded by 2 · 2−κ. Similarly, Δt ≤ 2 · 2−κ. Hence the statistical zero-
knowledge property, since the real distribution D0 and the simulated distribution
D3 have a negligible distance bounded by 2−κ+2.

Knowledge-Extractability. The last property is the most intricate, and this
is the one that required the Strong-RSA assumption in the original proof of
Damg̊ard and Fujisaki [20]. In the next section, we present a detailed proof of
the following theorem:

Theorem 2. Given a prover P ′ able to convince a verifier V of its knowledge
of an opening of c for random system parameters pp = (n, g, h) with probability
greater than ε within time t, one either breaks the 4/ε-RSA assumption with
expected time upper-bounded by 256t/ε3, or extracts a valid opening with expected
time upper-bounded by 16t/ε2.

4 Proof of Theorem 2

Since this proof is the main technical contribution of the paper, with many
practical applications, we provide it in details. We start with some preliminaries,
and then discuss various cases.
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4.1 Preliminaries

The proof will make use of the splitting lemma [39,40], that we recall below:

Lemma 3. Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ε. For any ε′ < ε, if one
defines B = {(x, y) ∈ X × Y | Pry′∈Y [(x, y′) ∈ A] ≥ ε − ε′}, then it holds that:

(i) Pr[B] ≥ ε′ (ii) ∀(x, y) ∈ B, Pr
y′∈Y

[(x, y′) ∈ A] ≥ ε − ε′ (iii) Pr[B | A] ≥ ε′/ε.

In the proof, we will consider an adversary with a random tape R who succeeds
with some probability ε in any run of the full argument. Our proof will make use
of rewinding: we will rewind the adversary several times to get several transcripts
of the protocol for the same random tape R, and various challenges. The purpose
of the splitting lemma is therefore to get a bound on the probability of getting
valid transcripts when we fix R and run the adversary on various challenges.

4.2 Detailed Proof

Let us suppose the extractor Sim (that is SimKE in this case) is given a 4/ε-RSA
challenge (n, e, u), which means that the exponents e is randomly chosen prime
to ϕ(n) but also in the set [1, 4/ε]. It sets h ← u2 mod n and g ← hα mod n
for a random exponent α ←R Zn2 . It sets pp = (n, g, h). Note that as u is
random in Z

∗
n, (g, h) are actually distributed as in the real protocol. We consider

an adversary A that provides a convincing proof of knowledge of an opening
of c (an accepted transcript) with probability ε, with the parameters (pp =
(n, g, h), κ, c, kx).

Note that the probability distribution of a protocol execution is D = (R, e),
where R is the adversary’s random tape that determines d, and e is the random
challenge from the honest verifier. Then, we can assume that on a random pair
(R, e0), its probability to output an accepted transcript (d, e0, z0, t0) is greater
than ε. We apply the splitting lemma with ε′ = ε/2 for the distribution D =
{R} × {e}: after one execution, with probability greater than ε, we obtain an
accepted transcript (d, e0, z0, t0). In such a case, with probability greater than
1/2, R is a good random tape, which means that another execution with the same
R but a random challenge e1 will lead to another accepted transcript (d, e1, z1, t1)
with probability ε′ = ε/2. Note that since R is kept unchanged, d is the same.
Globally, with probability greater than ε2/4, after 2 executions of the protocol,
one gets two related accepted transcripts: (d, e0, z0, t0) and (d, e1, z1, t1).

Without loss of generality, we may assume e0 ≥ e1. Writing e′
1 ← e0 − e1,

z′
1 ← z0 − z1, and t′1 ← t0 − t1, the two valid tuples lead to the relation ce′

1 =
gz′

1ht′
1 mod n.

Then, with our adversary A and a rewind, with random (R, e0, e1), we have
at least one of the two statements below that is true after a first execution of A
with (R, e0) and a rewind with (R, e1):

– Statement 1. one gets two related accepted transcripts (d, e0, z0, t0) and
(d, e1, z1, t1), and e′

1 divides both z′
1 and t′1 (with above notations) with prob-

ability greater than ε2/8;
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– Statement 2. one gets two related accepted transcripts (d, e0, z0, t0) and
(d, e1, z1, t1), and e′

1 does not divide both z′
1 and t′1 (with above notations)

with probability greater than ε2/8.

Statement 1: One gets two related accepted transcripts and e′
1 divides

both z′
1 and t′1 with probability greater than ε2/8. Sim simply outputs

the pair of integers (x1, r1) ← (z′
1/e′

1, t
′
1/e′

1). If e′
1 is odd, and thus prime to

ϕ(n), we have c = gx1hr1 mod n. However, if e′
1 = 2vρ for an odd ρ and v ≥ 1,

(c−1gx1hr1)2
v

= 1 mod n: from the Fact 2 from Proposition 1, (c−1gx1hr1)2 =
1 mod n:

– either c−1gx1hr1 = ±1 mod n, and so c = ±gx1hr1 mod n (valid opening);
– or we have a non-trivial square root of 1 modulo n, which leads to the factor-

ization of n (see Proposition 1). As the RSA assumption is stronger than the
factorization, when we solve the factorization, we can compute the solution to
the RSA challenge.

Statement 2: One gets two related accepted transcripts and e′
1 does

not divide both z′
1 and t′1 with probability greater than ε2/8. We first

show that, with reasonable probability, e′
1 does not divide αz′

1 + t′1 either (this
is exactly the case 2 from [20]). The intuition behind this argument is that the
only information that A can get about α is from g = hα mod n. However, this
leaks only α mod p′q′, while α was taken at random in Zn2 : all the information
on its most significant bits is perfectly hidden. We recall below the proof given
by Damg̊ard and Fujisaki, for completeness.

Let Q be a prime factor of e′
1 and j be the integer such that Qj divides e′

1

but Qj+1 does not divide e′
1, and at least one of z′

1 or t′1 is non-zero modulo Qj .
Since e′

1 does not divide both z′
1 and t′1, such a pair (Q, j) does necessarily exist.

Actually, if Qj divides z′
1, as it divides e′

1, it must also divide αz′
1 + t′1 and

therefore t′1, which was excluded (at least one of z′
1 or t′1 is non-zero modulo

Qj). Therefore, z′
1 �= 0 mod Qj .

We can write α = [α mod p′q′] + λp′q′ for some λ. Let us denote μ = [α mod
p′q′]. The tuple (n, g, h) uniquely determines μ, whereas λ is perfectly unknown
to the prover. As Qj divides e′

1, it also divides αz′
1 + t′1:

αz′
1 + t′1 = λz′

1p
′q′ + μz′

1 + t′1 = 0 mod Qj .

Note that p′q′ �= 0 mod Q, since p′ and q′ are κ-bit primes and the challenges
are less than 2κ. And from the view of the adversary, λ is uniformly distributed
in Zn, while it should satisfy the above equation. But since this equation has
at most gcd(z′

1p
′q′, Qj) solutions, which is a power of Q (and at most Qj−1),

and since n is larger than Qj by a factor (far) bigger than 2κ, the distribution
of λ mod Qj is statistically close to uniform in ZQj , and the probability that
λ satisfies the above equation is bounded by 1/Q − 2−κ ≤ 1/2, independently
of the actions of A . Hence, when Statement 2 holds (the global probability is
greater than ε2/8), e′

1 cannot divide αz′
1 + t′1 more than half the time. As a

consequence, we necessarily have a stronger statement
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One gets two related accepted transcripts and e′
1 does not divide

αz′
1 + t′1 with probability greater than ε2/16.

This allows Sim to solve an RSA instance, which is the difference with the
original proof. Let β1 = gcd(e′

1, αz′
1 + t′1). Since e′

1 does not divide αz′
1 + t′1, we

necessarily have 1 ≤ β1 < e′
1. Let Γ1 ← e′

1/β1 and F1 ← (αz′
1 + t′1)/β1: F1/Γ1 is

the irreducible fraction form of (αz′
1 + t′1)/e′

1 and e′
1 ≥ Γ1 > 1. We now consider

the following statements, among which at least one holds:

– Statement 2.a. One gets two related accepted transcripts, e′
1 does not divide

αz′
1 + t′1, and Γ1 ≤ 8/ε with probability at least ε2/32;

– Statement 2.b. One gets two related accepted transcripts, e′
1 does not divide

αz′
1 + t′1, and Γ1 > 8/ε with probability at least ε2/32.

Statement 2.a: One gets two related accepted transcripts, e′
1 does not

divide αz′
1 + t′1, and Γ1 ≤ 8/ε with probability at least ε2/32. If Γ1 ≤ 8/ε,

since β1 < e′
1, we must have Γ1 ∈ [[2 ; 8/ε]]. Let us recall we have (e′

1, z
′
1, t

′
1) so

that ce′
1 = gz′

1ht′
1 mod n and β1 = gcd(e′

1, αz′
1 + t′1) with 1 < Γ1 = e′

1/β1 ≤ 8/ε.
So we have e′

1 = β1Γ1 and αz′
1 + t′1 = β1F1 for relatively prime integers Γ1

and F1. Since h = u2 mod n, we have ce′
1 = u2(αz′

1+t′
1) mod n, which reduces

to cΓ1 = ce′
1/β1 = ±u2(αz′

1+t′
1)/β1 = ±u2F1 mod n, unless one finds a non-trivial

square root of 1 modulo n (which allows to solve any RSA instance modulo n,
see above). We now consider two additional statements, among which at least
one holds:

– Statement 2.a.1. One gets two related accepted transcripts, e′
1 does not

divide αz′
1 + t′1, Γ1 ≤ 8/ε, and Γ1 = 2a with a ≥ 1, with probability at least

ε2/64.
We thus have, with probability ε2/64, an odd k1 such that c2

a

= u2F1 mod n:
c2

a−1
and uF1 are two square roots of the same value. Since no information

leaks about the actual square roots {u,−u} known for h, nor for hF1 mod n, so
c2

a−1 �= ±uF1 mod n with probability 1/2, which leads to the factorization of
n with probability 1/2 (see Proposition 1). Hence, we solve the RSA challenge
with probability at least ε2/128.

– Statement 2.a.2. One gets two related accepted transcripts, e′
1 does not

divide αz′
1 + t′1, Γ1 ≤ 8/ε, and Γ1 = 2av with a ≥ 0 and an odd v > 1, with

probability at least ε2/64.
It thus holds, with probability ε2/64 (unless one finds a non-trivial square
root of 1 modulo n, which allows to solve any RSA instance modulo n, see
above), that Cv = u2F1 mod n, for C = ±c2

a

and gcd(v, 2F1) = 1, since
v | Γ1 and v is odd. Using the Fact 5 from Proposition 1, one gets the v-th
root of u modulo n, for v ∈ [[3 ; 8/ε]] ∩ Pn. Since our simulation that uses the
RSA challenge (n, u, e) does not leak any information about e, then v = e
with probability greater than ε/4, if the exponent e is randomly chosen in
[[2 ; 8/ε]]∩Pn (this set being exactly the set of odd integers smaller than 8/ε, it
contains approximately 4/ε elements). Hence, we solve an RSA challenge with
probability at least ε2/64 × ε/4 = ε3/256.
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Statement 2.b: One gets two related accepted transcripts, e′
1 does not

divide αz′
1 + t′1, and Γ1 > 8/ε with probability at least ε2/32. When Γ1 >

8/ε, the simulator rewinds the protocol once more, with a third challenge e2.
Let us consider all the possible challenges e2 for this rewinding (independently
of any success). Among all the possible challenges e2, and so the differences
e′
2 = |e0 −e2|, the number of differences that Γ1 divides is at most (2κ +1)/Γ1 <

8(2κ + 1)/ε. A given e′
2 appears with probability at most 2/2κ (since 0 ≤ e′

2 ≤
max{e0, 2κ − e0}). Therefore, the probability that Γ1 divides e′

2 for a random
e2 is less than ε/4. Recall that, from the splitting lemma (with a good R), one
gets a third related accepted transcript with probability greater than ε/2. Hence
globally, we get three related accepted transcripts, such that e′

1 does not divide
αz′

1 + t′1, Γ1 > 8/ε, and Γ1 does not divide e′
2, with probability at least ε3/128.

As above, for the third transcript (d, e2, z2, t2), we assume e0 ≥ e2, and
define e′

2 ← e0 − e2, z′
2 ← z0 − z2 (otherwise we change the signs). We also

define β2 = gcd(e′
2, αz′

2 + t′2). Note that we do not require that e′
2 does not

divide αz′
2 + t′2. We also set Γ2 ← e′

2/β2 and F2 ← (αz′
2 + t′2)/β2: F2/Γ2 is the

irreducible fraction form of (αz′
2 + t′2)/e′

2. Since Γ2 divides e′
2, it cannot be equal

to Γ1.
Since these are all accepted transcripts, so ce′

1 = gz′
1ht′

1 mod n and ce′
2 =

gz′
2ht′

2 mod n, and then ce′
1e′

2 = ge′
2z′

1he′
2t′

1 = ge′
1z′

2he′
1t′

2 mod n. This leads, for
Δz = e′

2z
′
1 − e′

1z
′
2 and Δt = e′

2t
′
1 − e′

1t
′
2, to

gΔz = ge′
2z′

1−e′
1z′

2 = he′
1t′

2−e′
2t′

1 = h−Δt mod n.

If Δz = Δt = 0, then it holds that z′
2/e′

2 = z′
1/e′

1 and t′2/e′
2 = t′1/e′

1:

F2

Γ2
=

αz′
2 + t′2
e′
2

= α · z′
2

e′
2

+
t′2
e′
2

= α · z′
1

e′
1

+
t′1
e′
1

=
αz′

1 + t′1
e′
1

=
F1

Γ1
.

Since they are both the irreducible notations of the same fraction, we necessarily
have Γ1 = Γ2 and F1 = F2, which contradicts the above remark that Γ2 �= Γ1.
Hence, the pair (Δz,Δt) is non-trivial, which leads to the factorization of n with
probability 1/2, from the Fact 4 from Proposition 1. Overall, we get a solution to
the RSA challenge with probability at least ε3/128×1/2 = ε3/256 (after getting
the factorization).

Overall Success Probability. All in all, if Statement 2 is true, we get a
solution to the RSA challenge with probability at least ε3/256. On the other
hand, if Statement 1 holds, there are two complementary situations: either we
get a valid opening with probability at least ε2/16, or we get a non-trivial square
root of 1 modulo n with probability at least ε2/16. Overall, we either get a valid
opening with probability at least ε2/16, or we solve an RSA challenge modulo n
with probability at least ε3/256. ��

5 Classical Extensions and Applications

We revisit the natural implications of the commitment scheme of Sect. 3 and
its argument of knowledge. More precisely, we generalize the results of previous
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sections while we commit to vectors of integers. Then, we also show the security
of Lipmaa’s range proofs [36] under the RSA assumption to illustrate how the
result of Sect. 4 extends to more general arguments over the integers.

5.1 Generalized Commitment of Integers

The following commitment scheme allows committing to a vector of integers
(m1, . . . ,m�) with a single element of the form c = gm1

1 · · · gm�

� hr mod n:

– Setup(1κ, �) runs (n, (p, q)) ←R GenMod(1κ), and picks �+1 random generators
(g1, . . . , g�, h) of QRn. It returns pp = (n, g1, . . . , g�, h);

– Commit(pp,m; r), for pp = (n, g1, . . . , g�, h), a vector m = (m1, . . . ,m�) ∈ Z
�,

and some random coins r ←R [[0 ;n]], computes c = gm1
1 · · · gm�

� hr mod n, and
returns (c, d) with d = r;

– Verify(pp, c, d,m) parses pp as pp = (n, g1, . . . , g�, h) and outputs 1 if c =
±gm1

1 · · · gm�

� hd mod n and 0 otherwise.

Again, the above commitment scheme is obviously correct. The hiding property
relies on the existence of αi such that gi = hαi mod n for i = 1, . . . , �, and so

c = Commit(pp,m; r) = gm1
1 · · · gm�

� hr = hr+
∑

αimi

= h(r+
∑

αi(mi−m′
i))+

∑

αim
′
i = g

m′
1

1 · · · gm′
�

� hr+
∑

αi(mi−m′
i)

= Commit(pp,m′; r′),

for any m′ = (m′
1, . . . ,m

′
�) ∈ Z, with r′ ← [r +

∑

αi(mi − m′
i) mod p′q′], that is

smaller than n.
The binding property relies on the Integer Factorization assumption: indeed,

from two different openings (m, d) and (m′, d′) for a commitment c, with d′ > d,
the validity checks show that gm1

1 · · · gm�

� hd = g
m′

1
1 · · · gm′

�

� hd′
mod n, and so, if

one has chosen βi such that gi = gβi mod n, for a random square g, then one
knows g

∑

βi(mi−m′
i) = hd′−d mod n. The Fact 4 from Proposition 1 leads to the

conclusion.
To avoid a trusted setup, one can note that the guarantees for the prover

(the hiding property) just rely on the existence of αi such that gi = hαi mod n
for i = 1, . . . , �. The well-formedness of the RSA modulus is for the security
guarantees against the verifier. It is important for him that the prover cannot
break the RSA assumption. So the setup can be run by the verifier, with an
additional proof of existence of αi such that gi = hαi mod n for i = 1, . . . , � to
the prover.

5.2 Zero-Knowledge Argument of Opening

An argument of knowledge of an opening of a commitment c = gx1
1 · · · gx�

� hr mod
n in the general case can be easily adapted from the normal case leading to a
transcript of the form (d, e, (z1, . . . , z�, t)) with d = gy1

1 · · · gy�

� hs, and ced =
gz1
1 · · · gz�

� ht mod n. As above, the knowledge-extractor rewinds the execution
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for the same d, but two different challenges e0 �= e1. Doing the quotient of the
two relations, d cancels out: ce′

= g
z′
1

1 · · · gz′
�

� ht′
mod n. Let us assume that one

would have set gi = gaihbi mod n, we would have

ce′
= g

∑

aiz
′
ih
∑

biz
′
i+t′

mod n.

Under the RSA assumption, the above Statement 1 (from the proof, in Sect. 4)
holds: e′ divides both

∑

aiz
′
1 and

∑

biz
′
i + t′ with non-negligible probability.

Since the coefficients ai’s and bi’s are random, this means that e′ divides all the
z′

i’s and t′. Hence, one can set μi = z′
i/e′, for i = 1, . . . , � and τ = t′/e′, and

c = ±gμ1
1 · · · gμ�

� hτ mod n is a valid opening of c, unless one finds a non-trivial
square-root of 1 modulo n.

5.3 Efficient Range Proofs from RSA

We show that Lipmaa’s range proof [36] also benefits from our technique as the
Strong-RSA assumption can also be avoided in the security analysis.

Range Proof from Integer Commitment Scheme. Let c = gxhr mod n be
a commitment of a value x and [[a ; b]] be a public interval. As the commitment
is homomorphic, one can efficiently compute a commitment ca of x − a and a
commitment cb of b − x from c. To prove that x ∈ [[a ; b]], this is enough to
show that ca and cb commit to positive values. Let us focus on the proof that
ca = gx−ahr mod n commits to a positive value, since the same method applies
for cb. To do so, the prover computes (x1, x2, x3, x4) such that x − a =

∑4
i=1 x2

i .
By a famous result from Lagrange, such a decomposition exists if and only if x−
a ≥ 0. Moreover, this decomposition can be efficiently computed by the Rabin-
Shallit algorithm [42], for which Lipmaa [36] also suggested some optimizations.
The prover commits to (x1, x2, x3, x4) in (c1, c2, c3, c4), where ci = gxihri mod n
for each i = 1 to 4. Now, the prover proves his knowledge of openings x − a,
x1, x2, x3, x4 (along with random coins r, r1, r2, r3, r4) of ca, c1, c2, c3, c4 satisfying
∑4

i=1 x2
i = x − a over the integers.

The reason allowing to solely rely on the RSA assumption in the range proof
comes from the fact that the first part of the argument reduces to an argument of
knowledge of openings x1, x2, x3, x4 of c1, c2, c3, c4 while the remaining part sim-
ply ensures the relation

∑4
i=1 x2

i = x − a to hold. Indeed, once the witnesses are
extracted, this is implied by the representation ca =

∏4
i=1 cxi

i hr−∑ xiri mod n
which can be seen as generalized commitment scheme with basis (c1, c2, c3, c4, h)
from which the opening cannot change. Therefore, the argument can be seen as
five parallel arguments of knowledge, the fifth one being an argument of knowl-
edge for a generalized commitment, where the opening for the last argument is
the vector of the openings for the other arguments. A formal proof of an opti-
mized version of this protocol under the intractability of the RSA assumption is
presented in the full version [19].
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Extension. Since most of the arguments of knowledge of a solution to a sys-
tem of equations over the integers [16] can be split into parallel arguments of
knowledge of values assigned to the variables and a proof of membership (in
the language composed of all the solutions of the system), which is expressed as
representations corresponding to generalized commitments, our analysis extends
to all “discrete-logarithm relation set” (see [34]): the description of the protocol
is unchanged but the security only relies on the standard RSA assumption.

6 Commitment with Knowledge-Delayed Order

Arguments of knowledge of openings for the Damg̊ard-Fujisaki commitment
scheme can rely on the RSA assumption rather than the Strong-RSA assump-
tion. In this section, we show that this scheme can be efficiently combined with
another RSA-based commitment scheme which, as far as we know, was proposed
by Gennaro [24]: we show how Damg̊ard-Fujisaki commitments (which are homo-
morphic over the integers) can be converted into Gennaro commitments (which
are homomorphic over Zπ for some prime π). We rely on this feature to design a
method to improve the efficiency of zero-knowledge arguments over the integers
on several aspects, by allowing the players to perform some of the computations
over Zπ rather than over the integers. We then illustrate our technique on the
famous example of range proofs.

6.1 RSA-Based Commitments with Known Order

We recall the homomorphic commitment scheme over Zπ of [24]. The order of
the commitment is a known prime π > 2κ.

Description of the Generalized Commitment Scheme. Let us describe
the commitment of vectors of integers (m1, . . . ,m�):

– Setup(1κ) runs (n, (p, q)) ←R GenMod(1κ), and picks � random generators
g1, . . . , g� of QRn. Then, it picks a random prime π ∈ [[2κ+1 ; 2κ+2]], and returns
pp = (n, g1, . . . , g�, π);

– Commit(pp,m; r), for pp = (n, g1, . . . , g�, π), a vector m = (m1, . . . ,m�) ∈ Z
�
π,

and some random coins r ←R Zn, computes c = gm1
1 · · · gm�

� rπ mod n, and
returns (c, d) with d = r;

– Verify(pp, c, d,m) parses pp as pp = (n, g1, . . . , g�, π) and outputs 1 if c =
gm1
1 · · · gm�

� rπ mod n, and 0 otherwise.

The above commitment scheme is obviously correct. The hiding property relies on
the bijectivity of the π-th power modulo n (as π is prime): for any message m′ =
(m′

1, . . . ,m
′
�) ∈ Z

�
π, we have c = g

m′
1

1 · · · gm′
�

� × g
m1−m′

i
1 · · · gm�−m′

i

� × rπ mod n.

By noting s the π-th root of g
m1−m′

i
1 · · · gm�−m′

i

� , c = Commit(pp,m′; rs). The
binding property uses an extension of the Fact 5 from Proposition 1: if one
has chosen βi such that gi = u2βi , for a challenge RSA u ∈ Z

∗
n, two distinct
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openings (m, r) �= (m′, s) satisfy gm1
1 · · · gm�

� rπ = g
m′

1
1 · · · gm′

�

� sπ mod n, and so
(s/r)π = u2a mod n, where a =

∑

βi(mi − m′
i) = a1π + a0, with 0 ≤ a0 < π.

Let us note α and β the integers such that απ + β2a0 = gcd(π, 2a0) = 1, and
output u0 := uα−2a1β · (s/r)β mod n, then

uπ
0 = uαπ−2a1βπ · (s/r)βπ = u1−2(a0+a1π)β · u2aβ = u mod n.

This breaks the RSA assumption with exponent π.

Homomorphic-Opening. In addition, this commitment scheme is homo-
morphic in Zπ: given c = gm1

1 · · · gm�

� rπ mod n and d = g
m′

1
1 · · · gm′

�

� sπ mod n
with known openings, we can efficiently open the commitment c · d mod n to
m̄ = (m̄1, . . . , m̄�), with m̄i = mi + m′

i mod π for 1 ≤ i ≤ �, and a random coin
rs

∏

g
(mi+m′

i)÷π
i mod n, where a÷b is the quotient of the Euclidean division. We

emphasize this property to be essential to avoid working with long integers in
the arguments of knowledge of an opening: the prover can “reduce” its openings
since π is known.

Argument of Opening. Given pp = (n, g1, . . . , g�, π) and c =
gx1
1 · · · gx�

� rπ mod n, with witness (x1, . . . , x�, r), we can describe a standard
argument of knowledge of an opening:

Initialize: P and V decide to run the protocol on input (pp, κ, c);
Commit: P computes d = gy1

1 · · · gy�

� sπ, for yi ←R Zπ, and s ←R Z
∗
n, and

sends d to V ;
Challenge: V outputs e ←R [[0 ; 2κ]];
Response: P computes ki, zi, t such that exi + yi = kiπ + zi, with 0 ≤ zi < π,

and t = gk1
1 · · · gk�

� · res mod n. P outputs (z = (zi)i, t);
Verify: V accepts the proof and outputs 1 if, for each i, 0 ≤ zi < π, and

ced = gz1
1 · · · gz�

� tπ mod n. Otherwise, V rejects the proof and outputs 0.

Completeness and zero-knowledge are straightforward. Then, let us focus on
the knowledge-extractability : From two related valid transcripts, for the same d,
we get as usual ce−e′

= g
z1−z′

1
1 · · · gz�−z′

�

� · (t/t′)π mod n. Since the prime π >
2κ ≥ |e − e′|, the simulator can compute α(e − e′) + βπ = 1 and we have

c1−βπ = cα(e−e′) = g
α(z1−z′

1)
1 · · · gα(z�−z′

�)
� · (t/t′)απ mod n.

Then, for α(zi − z′
i) = liπ + x′

i with 0 ≤ x′
i < π, and T = cβ · gl1

1 · · · gl�
� ·

(t/t′)α mod n, we have a valid opening (x′
1, . . . , x

′
�, T ) of c.

6.2 Commitment with Knowledge-Delayed Order

The above commitment scheme with known prime order π can temporarily pass
itself off as a commitment scheme of Sect. 3 with hidden order.



340 G. Couteau et al.

Description of the Commitment Scheme. The verifier sets up the parame-
ter pp of the commitment scheme with hidden order but hides a prime order π
in pp during this execution. To guarantee the hiding property, in the setup the
verifier also adds a proof that g = hα mod n for some α.

– Setup(1κ) runs (n, (p, q)) ←R GenMod(1κ), and picks h0 ←R QRn and a ran-
dom prime π ∈ [[2κ+1 ; 2κ+2]]. Then, it picks ρ ←R [[0 ;n2]], relatively prime to
π, and sets g ← hρ

0 mod n and h ← hπ
0 mod n. Finally, it returns pp = (n, g, h)

and keeps sk = (π, h0). Actually, we have hρ = gπ mod n. So, if one sets
α = ρ · π−1 mod ϕ(n), one has g = hα mod n, and proves it;

– Commit(pp,m; r) parses pp as above and commits to m ∈ Z by picking r ←R

Zn and computing c = gmhr mod n. It returns (c, r);
– Verify(pp, c,m, r) parses pp = (n, g, h) and outputs 1 if c = ±gmhr mod n and

0 otherwise;
– Reveal(pp, sk) returns sk = (π, h0);
– Adapt(pp, sk, c,m, r) first parses sk = (π, h0) and checks whether h = hπ

0 mod
n. Then, it adapts the opening by computing m = kπ + m̄ for 0 ≤ m̄ < π and
t = gkhr

0 mod n. It outputs (m̄, t);
– Verify′(pp, π, c, m̄, t) outputs 1 if c = gm̄tπ mod n, and 0 otherwise.

This construction easily extends to commitments of vectors. Note that from
gm̄tπ = c = gm̄′

t′π mod n, with m̄ �= m̄′ mod π, setting h0 = y2 from an RSA
challenge (n, y) of exponent π > 2κ, we obtain y2ρ(m̄−m̄′) = (t′/t)π mod n, with
2ρ(m̄−m̄′) �= 0 mod π, which leads to the π-th root of y modulo n (using Fact 5
from Proposition 1).

Switching Between Commitments. Let com denote the Damg̊ard-Fujisaki
integer commitment scheme, such that com(m; r) = gmhr mod n, and comπ

denote the Gennaro commitment scheme, such that comπ(m;R) = gmRπ mod n.
On the one-hand, only com leads to proof of relations over the integers. On the
other hand, comπ leads to much more efficient proofs of relation modulo π.
The above commitment with knowledge-delayed order allows generating pp =
(n, g, h) so that c = com(m; r) = gmhr mod n can be switched into

c = comπ(rπ(m); gqπ(m)hr
0), (1)

where qπ(m) and rπ(m) denote the quotient and remainder of the euclidean
division of m by π. This switching allows to keep some good properties over the
integers and working modulo π since pp gives no information about π until the
verifier reveals (π, h0).

6.3 Improving Zero-Knowledge Arguments over the Integers

The commitment with knowledge-delayed order provides a new technique to
zero-knowledge arguments for statements over the integers, while working mod-
ulo π. This technique leads to more efficient membership arguments, with a
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lower communication and a smaller verifier computation (some part of the cost
is delegated to the prover). We restrict our attention to statements that can be
expressed as membership to a set S ∈ D. The protocol we describe is honest-
verifier zero-knowledge. At the end of the section we recall standard methods to
get full-fledged zero-knowledge.

Membership Argument for D. Given S ∈ D, let PS be a representing
polynomial with k-vector input and �-vector witness (e.g., if S is the set of
positive integers, PS : (x,w1, w2, w3, w4) = x − (

∑

i w2
i )). We assume P and V

agreed on a bound t such that each x ∈ S has a witness w such that ‖w‖∞ ≤
‖x‖t

∞ (S ∈ D, so there is always such a t. As shown in [36], t < 2 is sufficient
for most cryptographic applications).

Let x be a secret vector held by P, and w be a witness for x ∈ S, mean-
ing that PS(x,w) = 0. Zero-knowledge argument for polynomial relations over
committed inputs usually demands committing to intermediate values, and prov-
ing additive and multiplicative relationships with the inputs, see e.g. [9]. To
prove a multiplicative relationship z = xy between values (x, y, z) committed in
(cx, cy, cz), P proves knowledge of inputs (x, y, z) and random coins (rx, ry, rz)
such that cx = gxrπ

x mod n, cy = gyrπ
y mod n, and cz = cy

xrπ
z .

We almost follow this principle except that we use the commitment scheme
of Sect. 6.2 to switch from com to comπ once P proved knowledge of both x and
w over the integers. Proving PS(x,w) = 0 over the integers is then replaced by
proving PS(x,w) = 0 modulo π.

Argument of knowledge of the inputs and witnesses.

1. V runs the setup from the Sect. 6.2, which generates pp = (n, g, h) and sk =
(π, h0): this defines com : (x; r) �→ gxhr mod n. It additionally proves the
existence of α such that g = hα mod n;

2. P picks random coins (rx, rw) and commits to (x,w) with (rx, rw) as
(cx, cw) ← (com(x; rx), com(w; rw));

3. P performs a ZKAoK{(x,w, rx, rw) | cx = gxhrx ∧ cw = gwhrw}, we there-
after refer to ZK1, with V . If the argument fails, V aborts the protocol.

Argument of knowledge of (x′,w′) such that PS(x′,w′) = 0 mod π.

1. V reveals (π, h0) to P who checks whether h = hπ
0 mod n or not, to switch

to comπ. Let (x′,w′) = (rπ(x), rπ(w)) = (x,w) mod π.
2. P performs a ZKAoK{(x′,w′,Rx,Rw)}, we thereafter refer to ZK2, such

that (cx, cw) = (comπ(x;Rx), comπ(w;Rw)) and PS(x,w) = 0 mod π. Note
that (cx, cw) are now seen as commitments over Zπ, using the fact that
com(x; rx) = comπ(rπ(x);Rx) and com(w; rw) = comπ(rπ(w);Rw), with
appropriate (Rx,Rw). If the argument succeeds, V returns accept.

Theorem 4. Under the RSA assumption, the above protocol is a statistical zero-
knowledge argument of knowledge of openings of (cx, cw) to vectors of integers
(x,w) such that PS(x,w) = 0: which proves that x ∈ S.
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Proof. The intuition behind Theorem 4 is that ZK1 proves that P knows (x,w)
in (cx, cw), and ZK2 proves that PS(x,w) = 0 mod π for a κ-bit prime π which
was revealed after (x,w) were committed. Hence, P knew vectors of integer
(x,w) such that PS(x,w) = 0 mod π for a random κ-bit prime π. This has a
negligible probability to happen unless PS(x,w) = 0 holds over the integers,
since PS is a polynomial. The full proof consists of the three properties: correct-
ness, zero-knowledge, and knowledge-extractability.

Correctness. It easily follows from the correctness of ZK1 and ZK2: if P knows
(x,w, rx, rw) such that (cx, cw) = (com(x; rx), com(w; rw)) and PS(x,w) =
0, then the argument of knowledge of (x, rx) such that cx = com(x; rx) will
succeed, and it holds that (cx, cw) = (comπ(x mod π; vqπ(x)h̃rx), comπ(w mod
π; vqπ(x)h̃rx)). Moreover, as PS is a polynomial, the modular reduction applies,
and leads to PS(x mod π,w mod π) = PS(x,w) = 0 mod π.

Zero-Knowledge. It also follows from the zero-knowledge of ZK1 and ZK2, and
the hiding property of the commitments. Let SimZK be the following simulator:
one first generates dummy commitments (cx, cw), which does not make any
difference under the hiding property, and runs the simulator of ZK1. Once (π, h0)
is revealed, SimZK runs the simulator of ZK2.

Since the commitment is statistically hiding, ZK1 is our statistically zero-
knowledge argument of knowledge of opening from Sect. 3 and ZK2 is an argu-
ment of relations on commitments with known order π (since h = hπ

0 mod n)
that is possible in statistical zero-knowledge, the full protocol is statistically
zero-knowledge.

Knowledge Extractability. Let P ′ outputing a convincing argument with prob-
ability ε, i.e. P ′ succeeds in ZK1 and ZK2 with probability greater than ε.

Under the RSA assumption, there is an extractor of ZK1 which computes
(x,w, rx, rw) such that cx = gxhrx and cw = gwhrw . Then, (π, h0) is revealed
in the protocol and still under the RSA assumption, there is another extractor
of ZK2 which computes (x′,w′,Rx,Rw) such that both relations (cx, cw) =
(comπ(x′;Rx), comπ(w′;Rw)) and PS(x′,w′) = 0 mod π are satisfied. Now, let
us consider two situations:

– If x′ = x mod π and w′ = w mod π, then the value committed over the
integers, before π was revealed, satisfy PS(x,w) = 0 mod π, for a random
π ∈ [[2κ+1 ; 2κ+2]]. We stress that the view of (n, g, h) does not reveal any
information on the prime π.
Since there are approximately 2κ+1/κ primes in this set, and this extraction
works with probability greater than ε2, PS(x,w) = 0 mod Q, for Q ≥ 22

κ/ε2
,

which is much larger than the values that can be taken in the integers, since
the inputs and the witnesses have a size polynomial in κ, and the polynomial
PS has a bounded degree.
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– If x′ �= x mod π or w′ �= w mod π, wlog, we can assume that x′ �= x mod π:
• we get (x, rx) such that cx = ±gxhrx = grπ(x)(±gqπ(x)hrx

0 )π mod n;
• and (x′,Rx) such that cx = gx

′
Rx

π mod n.
Hence, grπ(x)(±gqπ(x)hrx

0 )π = gx
′
Rx

π mod n, and so grπ(x)−x′
= Sπ mod n,

for S = Rx/(±gqπ(x)hrx
0 ) mod n. If one would have set h0 = y2 from an RSA

challenge (n, y, π) of exponent π > 2κ, and thus g = y2ρ, using Fact 5 from
Proposition 1, one gets the π-th root of y modulo n.

This concludes the proof of the knowledge-extractability of the protocol, under
the RSA assumption over Zn. ��

On the Efficiency of the Method. The advantages of this method compared
to the classical method are twofold. First, most of the work in the protocol comes
from the computation of exponentiations; and our technique transfers most of
this work from V to P. This comes from the fact that verifying an equation such
as c = com(x; r) involves exponentiations by integers of size O(log n + κ) while
verifying the equation c = comπ(x mod π;R) involves only two exponentiations
by κ-bit values, which greatly reduces V ’s work. However, to switch from com
to comπ P has to adapt the opening as in (1) of Sect. 6.2, which costs expo-
nentiations by integers of size O(log n + κ) to compute the random coin R. V
will still need to perform exponentiations by integers during ZK1, but his work
during this step can be made essentially independent of the number N of inputs
and witnesses (up to a small log N additive term) and completely independent
of the degree of the representing polynomial.

Second, our method separates the argument of knowledge of inputs to a Dio-
phantine equation from the argument that they do indeed satisfy the equation.
The arguments of knowledge of an opening of a commitment can be very effi-
ciently batched: if P commits to (x1, · · · , xN ) with random coins (r1, · · · , rN ) as
(c1, · · · , cN ), the verifier can simply send a random seed λ ←R {0, 1}κ from which
both players compute (λ1, · · · , λN ) using a pseudo-random generator2. Then, P
performs a single argument of knowledge of an opening (

∑

i λixi;
∑

i λiri) of the
commitment

∏

i cλi
i (see [5,6] for more details). Therefore, when performing mul-

tiple membership arguments, P and V will have to perform a single argument
for ZK1 (of size essentially independent of the number of committed values).

In general, the higher the degree of the representing polynomial is, the lower
will be the communication with our method. Still, we show in the next section
that even for the case of range proofs, which is a membership proof to a Dio-
phantine set whose representing polynomial is of degree 2, our method provides
efficiency improvements.

Further Improvements. V can set h to h
∏

i πi

0 for several primes πi instead
of hπ

0 . For some integer i, let pi ← ∏

j �=i πj . Doing so allows V to reveal (hpi

0 , πi)

2 The classical trick that consists of using λi = λi is not efficient here since we are in
the integers, and so no reduction can be applied.
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instead of (h0, π) in our method. Hence, in addition to allowing arbitrary parallel
arguments with a single prime π, a single setting is sufficient to perform a poly-
nomial number of sequential arguments (fixed in advance) with different primes
πi. In addition, we explained that commitments with knowledge-delayed order
allow splitting the arguments of knowledge of the witnesses, denoted ZK1, and
the argument that they indeed belong to a Diophantine set, denoted ZK2. The
arguments ZK1 can be batched as described above but, for efficiency reason,
we should not generate (λ1, λ2 . . . , λN ) as (λ, λ2, . . . , λN ). Indeed, |λj |b grows
linearly with j over the integers. However, for the argument ZK2, the order of
the commitment has been revealed. Hence, we can now use batching technique
with such λj = λj since the prover is able to reduce the exponents modulo π
at this stage. That means that our technique consisting of efficiently revealing
the order of the commitment between ZK1 and ZK2 allows to use any method
that crucially relies on batching coefficients expressed as powers of some λ, that
were only available for discrete-log based proofs of statement over (pairing-free)
known-order groups. For instance, we can get a sub-linear size argument to
show that a committed matrix is the Hadamard products over the integers of
two other committed matrices. Indeed, we can commit the rows of the matrices
using a generalized commitment and make a batch proof for ZK1, which remain
sub-linear in the number of entries, and then we can import the results of [4,26]
to ZK2, preserving its sub-linearity.

Full-Fledged Zero-Knowledge. With an honest verifier, there is no need
to prove the existence of α such that g = hα. In the malicious setting, this
proof guarantees the hiding property of the commitments to the prover, who
additionally checks h = hπ

0 mod n when they are revealed. Then we can use
classical techniques to convert the HVZK protocol into a ZK protocol, such as an
equivocable commitment of the challenge by the verifier, before the commitments
from the prover.

7 Application to Range Proofs

7.1 Lipmaa’s Compact Argument for Positivity

As explained before, Lipmaa [36] proposed an efficient argument for positivity,
using generalized Damg̊ard-Fujisaki commitments, and the proof that an integer
is positive if and only if it can be written as the sum of four squares. How-
ever, it appears that the explicit construction given in [36, annex B] is flawed —
although the high-level description is correct: any prover can provide a convinc-
ing argument for positivity, regardless of the sign of the committed integer, and
so without holding valid witnesses. This might raise some concerns as the proto-
col of Lipmaa is the “textbook” range proof based on hidden order groups. Hence
the protocol is suggested in several papers, and was implemented in e.g. [2]. In
the full version [19], we recall the argument of [36], identify its flaw, and provide
a correct optimized version with a full proof of security.
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In the following, we describe a range proof in the same vein as the positivity
argument of Lipmaa: an integer x belongs to an interval [[a ; b]] if and only if
(x − a)(b − x) ≥ 0. In addition, we take into account the following improvement
suggested by Groth [25]: x is positive if and only if 4x + 1 can be written as the
sum of three squares, and such a decomposition can be computed in polynomial
time by the prover. We view this range proof (we call the three-square range
proof, and denote it 3SRP) as an optimized version of the textbook range proof
with integer commitments, to which we will compare our new method with
knowledge-delayed order commitments (denoted 3SRP-KDO).

7.2 Three-Square Range Proof

To prove that x ∈ [[a ; b]], for x committed with an integer commitment scheme,
we prove that 4(x−a)(b−x)+1 can be written as the sum of three squares. Let
(n, g, h) be the public parameters of the Damg̊ard-Fujisaki commitment scheme,
generated by the verifier. The three-square range proof (3SRP) is described in
full details on Fig. 2. Basically, both P and V know that ca contains 4(x−a) and
c0 contains (b − x). The latter, with c1, c2, c3 containing respectively x1, x2, x3,
is proven in a classical way, and the last part of the proof shows that cx0

a g, which
implicitly contains 4(x − a)(b − x) + 1 also contains x2

1 + x2
2 + x2

3.
We then illustrate the technique introduced in Sect. 6.3 on this 3SRP protocol.

The full converted protocol, denoted 3SRP-KDO, is described on Fig. 3.

7.3 Results

Let B = log(b−a). Note that for all i ∈ {0, 1, 2, 3}, x2
i ≤ (b−a)2 hence log xi ≤ B.

An exponentiation by a t-bit value takes on average 1.5t multiplications using a

Fig. 2. Three-square range proof (3SRP)
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Fig. 3. Three-square range proof with knowledge-delayed order (3SRP-KDO)

square-and-multiply algorithm; we do not take into account possible optimiza-
tions from multi-exponentiation algorithms.

Table 1 sums up the communication complexity and the computational com-
plexity of both the 3SRP and the 3SRP-KDO arguments for the execution of
N parallel range proofs on the same interval [[a ; b]], as classical batch tech-
niques [5,6] allow to batch arguments of knowledge. Note that we omit constant
terms. The communication is given in bits, while the work is given as a number
of multiplications of elements of QRn. When comparing the work of the prover,
we also omit the cost of the decomposition in sum of squares, as it is the same in
both protocols. Similarly, we omit the cost of the initial proof of g = hα mod n
by the verifier to the prover.

Table 1. Complexities of 3SRP and 3SRP-KDO

3SRP 3SRP-KDO

Communication N(8 log n + 18κ + 5B) + 3κ N(8 log n + 4κ) + 10κ + 2 log n +
B + log N

Prover’s work 1.5N(8 log n + 12B + 26κ +
log a)

1.5(N(13 log n + 13B + 18κ +
log a) + log n + B + 6κ + log N)

Verifier’s work 1.5(N(5 log n + 9B + 30κ +
log a + log b) + κ)

1.5(N(12κ + log a + log b) + log n +
B + 10κ + log N)
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Efficiency Analysis. We now provide a detailed comparison between the 3SRP
and the 3SRP-KDO protocols. We set the order of the modulus n to 2048 bits and
the security parameter κ to 128. As the communication of the protocols does
also depend on the bound 2B on the size of the interval, we consider various
bounds in our estimation. For the sake of simplicity, we assume B = log b. We
evaluate the overhead of the 3SRP-KDO with respect to 3SRP, computed as
100 × (cost(3SRP-KDO) − cost(3SRP))/cost(3SRP), cost being either a number
of bits exchanged, or a number of exponentiations.

Small Intervals and Large Intervals. As pointed out in [11], several practical
applications of range proofs, such as e-voting [25] and e-cash [12], involve quite
small intervals (say, of size at most 230, and so B ≤ 30). However, in numer-
ous cryptographic schemes, range proofs on very large intervals are involved.
Examples include anonymous credentials [13], mutual private set intersection
protocols [35], secure generation of RSA keys [21,33], zero-knowledge primality
tests [14], and some protocols for performing non-arithmetic operations on Pail-
lier ciphertexts [18,28]. In such protocols, B typically range from 1024 to 8000.
We note that such intervals are exactly the ones for which range proofs based on
groups of hidden order are likely to be used, since for small intervals, protocols
based on some u-ary decomposition of the input [11,27] will in general have bet-
ter performances (essentially because they avoid the need of the Rabin-Shallit
algorithm, which is computationally involved).

Comparisons. Table 2 gives a summary of our results. As already noted, the
overhead of the work of the prover in 3SRP-KDO is measured by comparing the
works without considering the cost of the Rabin-Shallit algorithm; the latter one,
however, is by far the dominant cost when B is large (as it runs in expected
O(B2 log B · M(log B)) time, where M(log B) is the time taken to perform a
multiplication of (log B)-bit integers). Therefore, for a large B, the overhead
of the work of the prover in 3SRP-KDO is very small, whereas there is a huge
gain for the verifier. As expected, the 3SRP-KDO protocol provides interesting
performances in settings where the verifier is computationally weak (e.g. in secure

Table 2. Comparison between the 3SRP and the 3SRP-KDO

Communication Prover’s work Verifier’s work

overhead overhead overhead

B = 30, N = 1 +16% +60.2% −66%

B = 1024, N = 1 −3.7% +44% −71.7%

B = 2048, N = 1 −17% +36.4% −74.1%

B = 30, N = 10 −7.6% +47.5% −86.8%

B = 1024, N = 10 −26.5% +33.2% −87.7%

B = 2048, N = 10 −39.1% +26.5% −88%

This is for various interval sizes (2B) and numbers N of parallel executions



348 G. Couteau et al.

Cloud computing), and/or multiples range proofs are likely to be used in parallel,
and/or the intervals are large.
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Abstract. We prove that, assuming there exists an injective one-way
function f , at least one of the following statements is true:
– (Infinitely-often) Non-uniform public-key encryption and key agree-

ment exist;
– The Feige-Shamir protocol instantiated with f is distributional con-

current zero knowledge for a large class of distributions over any OR
NP-relations with small distinguishability gap.

The questions of whether we can achieve these goals are known to be
subject to black-box limitations. Our win-win result also establishes an
unexpected connection between the complexity of public-key encryption
and the round-complexity of concurrent zero knowledge.

As the main technical contribution, we introduce a dissection pro-
cedure for concurrent adversaries, which enables us to transform a
magic concurrent adversary that breaks the distributional concurrent
zero knowledge of the Feige-Shamir protocol into non-black-box con-
structions of (infinitely-often) public-key encryption and key agreement.

This dissection of complex algorithms gives insight into the fundamen-
tal gap between the known universal security reductions/simulations, in
which a single reduction algorithm or simulator works for all adversaries,
and the natural security definitions (that are sufficient for almost all cryp-
tographic primitives/protocols), which switch the order of qualifiers and
only require that for every adversary there exists an individual reduction
or simulator.

1 Introduction

The seminal work of Impagliazzo and Rudich [IR89] provides a methodology
for studying the limitations of black-box reductions. Following this methodol-
ogy, plenty of black-box barriers, towards building cryptographic systems on
simpler primitives/assumptions and achieving more efficient constructions, have
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been found in the last three decades. These findings have long challenged us
to develop new reduction methods and get around the limitations of black-box
reduction, however, the progress towards this goal is quite slow, and for most
of the known black-box barriers, it is still unclear whether they even hold for
arbitrary reductions.

We revisit two seemingly unrelated fundamental problems, for both of which
the black-box impossibility results are well known.

The first problem is to identify the weakest complexity assumptions required
for public-key encryption. Ever since the invention of public key cryptog-
raphy by Diffie and Hellman [DH76], the complexity of public-key cryp-
tography, i.e., lowering the underlying complexity assumptions for crypto-
graphic primitives/protocols, is one of the most basic problems. In the past
four decades, for some primitives, including pseudorandom generators, signa-
tures and statistically-hiding commitments, we witnessed huge success on this
line of research and can now base them on the existence of one-way func-
tions [Rom90,HILL99,HR07], which is the minimum assumption in the sense
that, as showed by [IL89], almost all cryptographic primitives/protocols imply
the existence of one-way functions.

But for public-key encryption and key agreement–the concepts that were
conceived in the original paper of Diffie and Hellman, we did not make that suc-
cessful progress yet. Impagliazzo and Rudich proved in their seminal work [IR89]
that there is no black-box reduction of one-way permutations to key agreement,
and since public-key encryption implies key agreement, their result also sepa-
rates one-way permutations from public-key encryption with respect to black-
box reduction.

In [Imp95] Impagliazzo describes five possible worlds of complexity theory.
The top two worlds among them are Cryptomania, where public-key cryptogra-
phy exists, and Minicrypt where there are one-way functions but no public-key
cryptography. Though the above black-box separation provides some strong neg-
ative evidences, they do not rule out the possibility of constructing public-key
encryption from one-way functions, i.e., do not prove that we live in Minicrypt.

The other fundamental problem we consider is that of the round-complexity
of concurrent zero knowledge. The notion of concurrent zero-knowledge, put
forward by Dwork, Naor and Sahai [DNS98], extends the standard-alone zero-
knowledge security notion [GMR89] to the case where multiple concurrent exe-
cutions of the same protocol take place and an adversarial verifier may corrupt
multiple verifiers and control the scheduling of the messages.

As observed in [DNS98], the traditional black-box simulator does not work
for the classic constant-round protocols (including the Feige-Shamir type pro-
tocol [FS89] and the Goldreich-Kahan type protocol [GK96]) in the concurrent
setting. Indeed, Canetti et al. [CKPR01] proved that concurrent zero-knowledge
with black-box simulation requires a logarithmic number of rounds for languages
outside BPP. Prabhakaran et al. [PRS02] later refined the analysis of the Kilian
and Petrank’s [KP01] recursive simulator and gave an (almost) logarithmic round
concurrent zero knowledge protocol for NP.
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In his breakthrough work, Barak [Bar01] introduced a non-black-box sim-
ulation technique based on PCP mechanism and constructed a constant-round
public-coin bounded-concurrent zero knowledge protocol for NP, which breaks
several known lower bounds for black-box zero knowledge. There has been a
vast body of work (see Sect. 1.4) since then on developing new non-black-box
techniques and reducing the round-complexity of zero knowledge protocol in the
concurrent setting. However, The problem of whether we can achieve constant-
round concurrent zero knowledge based on standard assumptions is still left
open.

Note also that the known constructions that beat the lower bound on the
black-box round-complexity are rather complicated and therefore impractical.
Given the current state of the art, a more ambitious question is whether we can
prove the concurrent zero knowledge property of the classic 4-round protocols
(such as the Feige-Shamir protocol), although it is known to be impossible to give
such a proof for these simple and elegant constructions via black-box simulations.

1.1 Universal Simulator “∃S∀A” Versus Individual Simulator
“∀a∃S”

We observe that almost all known reduction and simulation techniques are uni-
versal in the sense that, in the security proof of a protocol/premitive, the reduc-
tion R (or simulator S) works for all possible efficient adversaries and turn the
power of a given adversary A into the power of breaking the underlying assump-
tions (i.e., “∃R or S ∀A”). However, for most natural security definitions, it is
only required that for every adversary A there exists an individual reduction R
(or a simulator S) that works for A (i.e., “∀A∃R or S”).

This motivates us to step back and look at the concurrent security of the
simplest Feige-Shamir protocol. We will show that there is an individual simula-
tor for the specific adversarial verifier (and thus it is not a concrete “attacker”)
constructed by Canetti et al. [CKPR01], though it was shown that for such a
adversary the known black-box simulator fails. Sure, showing the existence of
a simulator for a specific verifier does not mean that the Feige-Shamir protocol
is concurrent zero knowledge, but this example does reveal a gap between the
universal simulation “∃S∀A” and the individual simulation “∀A∃S”.

The Feige-Shamir protocol for proving x ∈ L proceeds as follows. In the first
phase, the verifier picks two random strings α1 and α2, computes two images,
β1 = f(α1), β2 = f(α2), of a one-way function f , and then proves to the prover
via a constant-round witness indistinguishability protocol that he knows either
α1 or α2; in the second phase, the prover proves that either x ∈ L or he knows
one of α1, α2. The adversary V ∗ constructed in [CKPR01] adopts a delicate
scheduling strategy, and when computing a verifier message, it applies a hash
function h with high independence to the history hist sofar and generates the
randomness r = h(hist) for computing the current message. In our case, the
randomness for the first verifier step of a session includes the two pre-images α1

and α2.
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Canetti et al. showed that it is impossible for an efficient simulator to simulate
V ∗’s view when treating it as a black-box1. However, as mentioned before, the
natural concurrent zero knowledge condition does not require a universal (or
black-box) simulator that works for all adversarial verifiers, but just requires
that for every specific V ∗ there exists an individual simulator.

Note that the individual simulator may depends on the specific verifier, and
more importantly, since we are only required to show the mere existence of such
a simulator, we can assume that the individual simulator knows (or equivalently,
takes as input) the verifier’s functionality, randomness, etc.

Indeed, for the adversary V ∗ of [CKPR01], there exists, albeit probably not
efficiently constructible from a given (possibly obfuscated) code of V ∗, a simple
simulator for the above specific V ∗: Note that there exists an adversary V ′

that acts exactly in the same way as V ∗ except that at each step V ′ outputs
r = h(hist) together with the current message, and thus a trivial simulator
Sim(V ′), incorporating V ′ and using the fake witness (one of α1 and α2

2) output
by V ′ at the first verifier step of each session, can easily generate a transcript that
is indistinguishable from the real interaction between V ∗ and honest provers.

1.2 Our Work

We prove an unexpected connection between the complexity of public-key
encryption and the round-complexity of concurrent zero knowledge. Specifically,
we show how to transform an attacker that can break a weak version of dis-
tributional concurrent zero knowledge of the Feige-Shamir protocol instantiated
with injective one-way functions into (infinitely-often) constructions of public-
key encryption and key agreement. This means at least one of the two problems
(with respect to infinitely-often version and distributional version respectively)
mentioned above has a positive answer.

A formal statement of our result. Let L and RL be an arbitrary NP language
and its associated NP relation respectively. The OR language L ∨ L3 and the
corresponding relation RLOR

are defined in a natural way.
Given an arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N

over RL (each Dn is over Rn
L := {(x,w) : (x,w) ∈ RL ∧ |x| = n}), and an

arbitrary efficiently samplable distribution Zn over {0, 1}∗4, we define the joint
distribution {(Xn,Wn, Zn)}n∈N over RLOR

×{0, 1}∗ in the following way: Sample
(x1, w1) ← Dn,(x2, w2) ← Dn, z ← Zn, b ← {1, 2}, and output ((x1, x2), wb).

1 I.e., the simulator is given only oracle access to V ∗, and does not have knowledge
about its code, running time, etc.

2 Note that α1 and α2 are part of the randomness r used in the first verifier message
of a session.

3 For simplicity, we consider only the OR composition of the same NP language L,
but our result holds with respect to the OR composition of any two NP languages.

4 The element z from Zn will be given as auxiliary input to the verifier of Feige-Shamir
protocol.
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Theorem 1. Assume that there exists an injective one-way function f . Then,
at least one of the following statements is true:

– (Infinitely-often) Non-uniform public-key encryption and key agreement exist;
– For every inverse polynomial ε, the Feige-Shamir protocol instantiated with f

is distributional concurrent zero knowledge on {(Xn,Wn, Zn)}n∈N defined as
above with distinguishability gap bounded by ε.

In an infinitely-often version of a primitive, the correctness and security of
a construction are required to hold only for infinitely many security parame-
ter n. The notion of ε-distributional concurrent zero knowledge (first defined
in [CLP15b]) differs from the traditional zero knowledge in that its zero knowl-
edge property holds on average (i.e., holds for distributions over the statements),
and that the indistinguishability gap for any efficient distinguisher is bounded
by an arbitrary inverse polynomial (instead of a negligibly function).

Very roughly, Theorem 1 says the Feige-Shamir protocol is concurrent secure
in the Minicrypt: In the world where there are injective one-way functions but
no public-key encryption, the Feige-Shamir protocol satisfies certain version of
concurrent zero knowledge.

Remark 1. We note that the black-box lower bounds [IR89,CKPR01] also hold
for the infinitely-often version of public-key encryption and the ε-distributional
concurrent zero knowledge5. We stress that our public-key encryption (and the
key agreement) is based on the injective one-way function f and the specific
attacker against the Feige-Shamir protocol, and is non-uniform and non-black-
box in nature: The key generation, encryption and decryption algorithms in
our public-key encryption scheme are all non-uniform, and make non-black-box
usage of the underlying function f and the attacker.

Dissecting a complex adversary: Revealing the Creation of a Trap-
door. The basic proof strategy of Theorem 1 is to transform a magic verifier
against the Feige-Shamir protocol into constructions for (infinitely-often) public-
key encryption and key agreement. This proof idea is somewhat similar in spirit
to the one appeared in [DNRS03] but still quite unusual in cryptography. In our
setting, formalizing such a proof idea is very complicated and requires substan-
tially new techniques.

To deal with the complex concurrent adversary, we introduce a dissection
procedure to pinpoint where a supposed successful adversary magically endow a
set of images of the injective one-way function f with a trapdoor, which is the
key step towards our construction of public-key encryption via the Goldreich-
Levin Theorem. On the very high level, if an adversarial verifier V ∗ that can

5 Our result holds with respect to distributions that are not always over YES instances.
By applying the lower-bound proof strategy of [CKPR01], we conclude that the
Feige-Shamir protocol cannot be ε-distributional concurrent black-box zero knowl-
edge for any non-trivial distribution over hard problems, see the full version of this
work for more details.
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break concurrent zero knowledge of the Feige-Shamir protocol, then in the real
interaction there must exist a step i (verifier steps are ordered according to their
appearance in the concurrent setting) such that:

– With high probability, V ∗ will output a pair of images β1 and β2, i.e., the
first verifier message of some session j at this step i, and at a later time it
will reach its second step of session j, i.e., completes its 3-round proof that it
knows one pre-image of β1 and β2 under f .

– But for any efficient algorithm T , even taking the code of V ∗ and the history
prefix up to its i-th step, the probability that T inverts any one of these two
images β1 and β2 is bounded away from 1.

The intuition behind this observation is as follows. If the above two items does
not hold simultaneously, then at each verifier step, either V ∗ does not output a
pair of images of a session, or it outputs a pair of images of session j but will
never reach its second message of session j, or there is an efficient algorithm that
can find one of the corresponding pre-images. In each case we will have a simple
simulator that can simulate the view of the V ∗, which leads to a contradiction.

Thus, for a given successful adversary V ∗ the above two items must hold
simultaneously. This means V ∗ magically endow the images β1 and β2 output
at its step i with a trapdoor (i.e., the witness w to the common input x): With
the trapdoor w, one can play the role of honest prover until V ∗ completes his
3-round proof, then using standard rewinding technique to obtain one of the
pre-images; while, without the knowledge of w, no efficient algorithm can invert
any one of β1 and β2 with overwhelming probability. This is the key observation
that enables us to construct public key encryption and key agreement from the
injective one-way f .

The major challenge in the actual dissection is to show the existence of
infinitely many security parameter n for each of which the above conditions
hold (as required by infinitely-often public key encryption and key agreement).
To cope with this difficulty, we develop a set of techniques that convert concrete
security into asymptotic security, which may be of independent interest.

An overview of the proof. We divide the proof into four steps, which will
be presented in Sects. 3, 4, 5 and 6 respectively. Roughly, the proof proceeds as
follows.

Step I: We introduce a dissection procedure and prove that there must be
infinitely many n, for each of which there exists a step i of V ∗, such that the
above two items hold simultaneously. This illustrates the power of V ∗ that
magically endows the images of f output by V ∗ at its step i with a sort of
trapdoor.

Step II: Note that V ∗ outputs a pair of images of f at its step i. To avoid that
the sender and the receiver (both with a witness to x) may recover different
pre-images from V ∗, we construct a pair of non-interactive algorithms C and
E from the code of V ∗ such that for each (n, i) obtained in the above step:
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– C (with knowledge of a witness w to x) outputs a single image β of f
with high probability;

– E (with knowledge of a witness w to x) will extract the pre-image of β
output by C;

– No efficient algorithm can compute the pre-image of β with probability
close to 1.

Step III: Using standard techniques, we amplify the gap between the success
probability of E and the success probability of any efficient inverting algo-
rithm without knowing a witness to x, and obtain two algorithms M and
Find, where M takes a sequence of (x,w) as input and outputs a sequence of
images β of f , and Find takes the same sequence of (x,w) and outputs all
pre-images corresponding to the sequence of images β, both with probability
negligibly close to 1; further, there is no efficient algorithm that can invert
all the images output by M simultaneously with non-negligible probability.

Step IV: Note that the Feige-Shamir protocol is concurrent witness indistin-
guishable, and thus the above holds when M and Find use different witnesses.
Starting with a magic adversary V ∗ that breaks the distributional concur-
rent zero knowledge of the Feige-Shamir protocol for distribution over OR
NP-statements of the form (x1 ∨x2), we construct the public-key encryption
scheme (and key-exchange scheme) in a natural way: The receiver generates
a sequence of (x1, w1) as the public/secret key pair; to encrypt a bit, the
sender generates a sequence of (x2, w2) and runs M on input the sequence of
OR statements (x1 ∨ x2) and their corresponding witnesses w2 to generate a
set of images of f , computes the hard-core of the corresponding pre-images
and XOR the plaintext bit with the hardcore; to decrypt, the receiver runs
Find on input the ciphertext and the sequence of witnesses w1 to obtain
the corresponding pre-images, and then computes the hardcore and gets the
plaintext.

Remark 2. We use the code of V ∗ in our final construction of public-key encryp-
tion. However, what we actually need to construct public-key encryption is the
functionality of V ∗, that is, we can replace the code of V ∗ with any code6 of the
same functionality in the intermediate algorithms in each of above steps along
the way.

1.3 A Wide Perspective on Reductions

As mentioned, the mostly common used security proof techniques–black-box
techniques (see [RTV04,BBF13] for refined treatments) and the known non-
black-box techniques [Bar01,DGS09,BP15]–are universal, where a single univer-
sal reduction algorithm works for all possible adversaries. Here in this section we
abuse the term reduction and view simulation as a type of reduction. Note that
the description of an adversary that the reduction algorithm has access to prob-
ably is an obfuscated code. This causes a trouble in cases where the functionality

6 As long as it is of polynomial size.
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of the adversary is crucial for the reduction to go through (as showed in the above
example of simulation for the adversary in [CKPR01], and see also [DGL+16]),
since we cannot expect the efficient reduction algorithm to figure out the func-
tionality from a given obfuscated code of an arbitrary adversary.

However, in almost all cases, in a security proof the reduction can be arbi-
trary. This means the reduction is allowed to depend not only on the code of
the adversary, but also on any “nice” properties of the adversary (if exist), such
as functionality, good random tapes, etc. Furthermore, to show the mere exis-
tence of such an arbitrary reduction, we do not need to care about whether
such properties can be efficiently extracted from the code of the adversary, but
just assume that the reduction takes these properties as input. We refer to an
arbitrary reduction as individual reduction, which is also called non-constructive
reduction or non-uniform reduction in some previous work [BU08,CLMP13]. We
stress that it is not always possible to turn an individual reduction into a uni-
versal reduction with a non-uniform advice because, in many cases, even if we
can prove all possible adversaries share a certain property, this property may
not have a short description. (This will be clear in the following example.)

Recall that, to complete a security proof, we have to show for every adver-
sary there is an individual reduction. This would be impossible unless we can
prove that all possible adversaries have certain properties in common. Indeed, we
observe that a few exceptional individual reductions in complexity (e.g., [Adl78])
and hardness amplification (e.g., [GNW95,CHS05,HS11]) literature are based on
a property–the existence of “good” random tapes–shared by all possible adver-
saries. Let’s take the reduction for BPP ⊆ P/poly [Adl78] as an example. The
first step of the proof of [Adl78] is to show a common property that every machine
deciding a language L ∈ BPP must have at least one good random tape on which
this machine will make correct decisions on all instances of a given size. Using the
mere existence of a good random tape, we can then simply hardwire this good
random tape into the circuit family that decide the language L deterministically.
This circuit family can be thought of as a reduction, which varies depending on
the specific BPP machine since different machines may have different good ran-
dom taps.

Besides the structure (success/failure) of the random tapes, there seems
to be a more important structure of the adversaries, i.e., the structure of
the adversary’s computation, that would empower the individual reduction
greatly. In cryptography, we actually already exploited structures of this type,
such as the knowledge of exponent assumption and extractable one-way func-
tions [Dam91,BCPR14], but most of them are viewed as just non-standard
assumption. Our work seems to raise some hope that we may be able to prove
highly non-trivial structures of the adversary’s computation in some settings
under standard assumptions in the future.

1.4 Related Work

There have been numerous efficient constructions ([RSA78,Rab79,GM82,CS99,
Reg09,HKS03], to name a few) for public-key encryption with various security
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notions based on specific assumptions with various algebraic structures, and
some less efficient constructions [NY90,BHSV98,Sah99,Lin03a] based on more
abstract assumptions–enhanced trapdoor permutations or trapdoor functions
with polynomial pre-image size. Since public-key encryption implies key agree-
ment (secure against eavesdropping adversaries), the same assumptions are suf-
ficient for the latter. On the negative side, the recent work of [DS16] strengthens
the black-box separation of public-key encryption and general one-way functions
in [IR89] by allowing the reduction to take the code of the underlying primitive
as input.

In the line of research on concurrent zero knowledge, Goyal [Goy13] extended
Barak’s idea to achieve fully concurrent zero knowledge in polynomial rounds. In
the globe hash model, Canetti et al. [CLP13a] showed that public-coin concurrent
zero knowledge can be obtained with logarithmic round-complexity. Recently,
Chung et al. [CLP15a] (based on [CLP13b]) presented the first constant-
round concurrent zero knowledge protocol based on indistinguishability obfusca-
tion with super-polynomial security. Assuming the existence public-coin input-
differing obfuscation, Pandey et al. [PPS15] presented a 4-round concurrent zero
knowledge protocol. Over the last two decades, concurrent zero knowledge pro-
tocols have been used as a key building block in the construction of generally
composable cryptographic protocols [CLOS02,PR03,Lin03b,PR05,Pas04,Lin08,
GGJ13,GGJS12,GGS15,GLP+15].

2 Preliminaries

In this section we mainly present the definition of ε-distributional concurrent zero
knowledge and some related new notions and definitions that we will use, and
refer readers to [Gol01,KL07] for some other standard notions and definitions.

If D is a distribution (or random variable), we denote by x ← D the process
of sampling x according to D, and by {xi}k

i=1 ← D
⊗

k the process of sampling k

times x from D independently. Similarly, for a function f : {0, 1}n → {0, 1}�(n),
f
⊗

k denotes the function that maps (x1, x2, ..., xk) to (f(x1), f(x2), ..., f(xk)).
We abbreviate probabilistic polynomial-time with PPT. Throughout this

paper, all PPT algorithms/Turing machines are allowed to be non-uniform, and
we use non-uniform PPT algorithms/Turing machines interchangeably with cir-
cuit families of polynomial size. In our default setting, the circuit families are
also probabilistic.

Given a two-party protocol Π = (P1, P2), for i ∈ {1, 2}, we denote by
TransPi

(P1(x), P2(y)) the transcript of an execution of Π (including the input to
Pi) when P1’s input is x and P2’s input is y. For a joint distribution (X,Y ) over
the two parties’ inputs, TransPi

(P1(X), P2(Y )) naturally defines the distribution
over all possible view of Pi.

Throughout the paper, we let n be the security parameter and denote by
negl(n) a negligible function. We write {Xn}n∈N

c≈ {Yn}n∈N to indicate that the
two distribution ensembles {Xn}n∈N and {Yn}n∈N are computationally distin-
guishable.
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A zero knowledge argument system is an interactive argument for which the
view of the (even malicious) verifier in an interaction can be efficiently recon-
structed. In this paper, we consider distributional zero knowledge, defined by
Goldreich [Gol93], for which the indistinguishability between the real interac-
tion and the simulation is only required to hold for any distribution over the
inputs to each party, rather than to hold for every individual inputs. We fol-
low the definition of [CLP15b], which departs from the one of [Gol93] in that
it only requires that for each distribution over the inputs there exists an effi-
cient simulator7, and consider the case (following [DNRS03,CLP15b]) where the
indistinguishability gap between the simulation and the real interaction is less
than any inverse polynomial ε (instead of a negligible function). As we will show,
the size of encryption algorithm of our encryption scheme is polynomial in the
value 1

ε , which needs to be upper-bounded by a fixed (but arbitrary) polynomial.

Steps of the Concurrent Verifier and Steps of a Session. We also allow the
adversary V ∗ to launch a concurrent attack [DNS98,PRS02] in which it interacts
with a polynomial number of independent provers over an asynchronous network,
and fully controls over the scheduling of all messages in these interactions.

We refer to the action of sending a message by V ∗ as a step (of V ∗). In a real
concurrent interaction, we order the steps of V ∗ according to their appearance.
Note that in the concurrent setting, sessions of the Feige-Shamir protocol are
executed in interleaving way, and thus, “the second verifier step of a session”
refers to the second verifier step that appears in this specific session, not to the
second step of V ∗ in the real concurrent interaction.

Definition 1 (ε-Distributional Concurrent zero knowledge). We say that
an interactive argument (P, V ) for language L is ε-distributional concurrent zero
knowledge if for every concurrent adversary V ∗, and every distribution ensemble
{(Xn,Wn, Zn)}n∈N over Rn

L ×{0, 1}∗, there exists a non-uniform PPT Sim such
that for all non-uniform PPT D and sufficient large n it holds that

Pr[D(TransV ∗(P (Xn,Wn), V ∗(Zn)), Zn) = 1]
− Pr[D(Sim(V ∗,Xn, Zn), Zn) = 1] < ε(n),

where both distributions are over (Xn,Wn, Zn) and the random tapes of P
and V ∗.

The Feige-Shamir ZK Argument for NP. We here describe the Feige-
Shamir constant-round8 zero knowledge argument for NP based on an injective
one-way function f : {0, 1}n → {0, 1}�(n).

Protocol Feige-Shamir
Common input: x ∈ L.

7 Instead, the definition of [Gol93] requires an efficient simulator for all distributions
over the inputs.

8 By merging the first and the second prover messages, one can obtain a 4-round
Feige-Shamir protocol.
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The prover P ’s input: w such that (x,w) ∈ RL.
The verifier V ’s (auxiliary) input:z
First phase:
Execute the n-parallel-repetition of the 3-round Blum’s protocol in which V
plays the role of the prover:

V −→ P : Choose α1, α2 ← {0, 1}n independently and at random, compute
β1 = f(α1), β2 = f(α2), and compute the first prover message
a of the 3-round n-parallel-repetition of the Blum’s protocol in
which V proves to P that he knows one of α1, α2.
Send β1, β2 and a.

P −→ V : Send a random challenge e ← {0, 1}n.
V −→ P : Send t.

Second phase:
P and V execute the n-parallel-repetition of the 3-round Blum’s protocol in
which P proves to V that either x ∈ L or he knows one of α1, α2.

3 The Dissection of a Concurrent Verifier

In this section we develop a technique to dissect concurrent verifiers that reveals
where a supposed concrete attacker against the Feige-Shamir protocol magically
endows some images of an injective one-way function with a trapdoor. This is
the key step towards constructing public-key encryption (and key agreement)
from an injective one-way function.

As mentioned in the introduction, we show that a magic adversary V ∗ will
endow a set of images of f with a trapdoor in the following sense: there are
infinitely many n, for each of which there exists a step index in, such that
the images (β1, β2) output by V ∗ at its step in can only be inverted by PPT
algorithms with the trapdoor knowledge of a witness to the common input x
with overwhelming probability.

3.1 The Main Lemma

We need the following notations to give a formal statement of our main lemma:

– Transin and h ← Transin : The former denotes the distribution of the history
prefix in the view of V ∗ up to its in-th step in the real concurrent interac-
tion TransV ∗(P (Xn, Wn), V ∗(Zn)); the latter denotes the event of drawing a
history prefix h from Transin , i.e., the event of generating h in the real con-
current interaction between honest prover(s) and V ∗, where h consists of the
statement x, the auxiliary input z to V ∗ and the interaction history prefix
upto the step in of the verifier.

– V ∗ |h� (j, 2) denotes the event that, conditioned on the given history prefix
h, V ∗ reaches the second verifier step of session j in the real concurrent inter-
action, i.e., V ∗ completes its proof of knowledge of one pre-image in session j.
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– PartRh consists of the randomness used by V ∗ and the partial randomness
used by honest provers in those incomplete sessions in h (i.e., sessions in which
the last prover message does not appear in h) in a real concurrent interaction.
Observe that in a session of the Feige-Shamir protocol, the honest prover
uses the knowledge of corresponding witness w only in its last step, and the
transcript of a session before the prover last step is independent of w. Thus,
the transcript of an incomplete session together with the prover’s randomness
used do not help reveal the witness w, but this is not the case for a complete
session.

In the real concurrent interaction, given a history prefix h up to the in-th
step of V ∗, we denote by h = h′||(βj

1, β
j
2, a

j) the event that V ∗ outputs the first
verifier message (βj

1, β
j
2, a

j) of some session j at its in-th step, where “||” denotes
concatenation of messages.

Let ε be an arbitrary inverse polynomial, and poly(·) be an arbitrary poly-
nomial. Define

p(·) :=
ε(·)

2poly2(·) .

Lemma 1. (Main Lemma) Let ε, p, poly be as above, and f be the one-way func-
tion used in the Feige-Shamir protocol. Assume that there is a non-uniform PPT
verifier V ∗, running in at most poly(n) steps, that breaks ε-distributional concur-
rent zero knowledge of the Feige-Shamir protocol on a joint distribution ensemble
{(Xn,Wn, Zn)}n∈N over a NP relation RL

9 and auxiliary inputs. Then, there
exists an infinite set I = {(n, in)} for which the following two conditions simul-
taneously hold:

1. For a random history prefix generated in the real concurrent interaction,

Pr
[

h ← Transin :
h = h′||(βj

1, β
j
2, a

j) ∧
Pr[V ∗ |h� (j, 2)] ≥ p(n)

]

≥ p(n).

2. For every circuit family T of polynomial size, there is N0 such that for every
n > N0 (s.t. (n, ·) ∈ I) it holds that,

Pr
[

T (h,PartRh) ∈ {f−1(βj
1), f

−1(βj
2)}

∣

∣

∣

∣

h′||(βj
1, β

j
2, a

j) = h ← Transin

∧ Pr[V ∗ |h� (j, 2)] ≥ p(n)

]

≤ 1 − p(n).

Remark 3. Note that if, conditioned on outputting the first verifier message
(βj

1, β
j
2, a

j) of session j at its in-th step, V ∗ reaches the second verifier step
of session j (i.e., completes the proof of knowledge of one pre-image) in the
real concurrent interaction with probability greater than an inverse polynomial,
9 Though in our final construction of public-key encryption we need to assume

a magic adversarial verifier against the Feige-Shamir protocol for a distribution
{(Xn, Wn)}n∈N over some OR NP-relation, Lemma 1 and the results in Sects. 4
and 5 hold with respect to distribution {(Xn, Wn)}n∈N over any NP relation.
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we can construct an efficient algorithm, taking the corresponding witness w as
input and playing the role of the honest prover, that extracts one of pre-images
of (βj

1, β
j
2) from V ∗ by rewinding it with probability negligibly close to 1. The

first condition of our lemma asserts that it is relatively easy to obtain images
of f for which there is an efficient algorithm with knowledge of w can invert
one of them with overwhelming probability, while the second condition of the
above lemma guarantees that for any efficient algorithm without knowledge of
w the success probability of inversion is bounded away from 1. This illustrates
the magic power that the supposed adversary V ∗ endows the images output at
its step in with a sort of trapdoor.

As we shall see later, in the final construction of public key encryption, the
partial randomness PartRh together with some images of f will be part of cipher-
text, and to ensure the semantic security it is naturally required that for any
efficient algorithm with PartRh as input the success probability of inverting the
images of f is small. This is guaranteed by the second condition of the above
lemma.

Remark 4. (On the role of the value ε) The main reason we deal only with ε-
distributional concurrent zero knowledge, rather than the standard one, is that,
as we will see later, our approach will yield encryption algorithm that runs in
time poly( 1ε ), and thus the value 1

ε has to be upper-bounded by a fixed (but
arbitrarily) polynomial.

3.2 The Dissection Procedure Leading to a Proof of Lemma 1

Formally, if for an arbitrary inverse polynomial ε, V ∗ breaks ε-distributional
concurrent zero knowledge of Feige-Shamir protocol over distribution {(Xn,Wn,
Zn)}n∈N, then ∀ Sim ∃ D and infinitely many n, such that

Pr[D(TransV ∗(P (Xn,Wn), V ∗(Zn)), Zn) = 1]
−Pr[D(Sim(V ∗,Xn, Zn), Zn) = 1] > ε(n). (1)

As mentioned, the intuition behind Lemma 1 is quite straightforward: For a
successful V ∗, there must exist a step i at which V ∗ outputs a pair of images
and will complete the proof of knowledge of one pre-image at a later time in the
real concurrent interaction with high probability, but without knowledge of the
corresponding witness no efficient algorithm can invert one of the images, since
otherwise, if for every step of V ∗ there is an efficient algorithm that can extract
the target pre-images with overwhelming probability, we are able to show that
there exists a simulator, incorporating all these efficient inverting algorithms as
its subroutines, that will simulate the view of V ∗ successfully.

To formalize this intuition in the asymptotic setting, we view the behaviour
of V ∗ as an infinite table, in which the entry in the i-th row and n-th column
represents the i-th step of V ∗ (followed immediately by the response from the
honest prover) in its concurrent interaction on input the security parameter n
(c.f. Fig. 1).
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(P (w), V ∗)

1

2

i

V ∗’s steps

1 2 n

concurrent executions of FS on
security parameter n

n + 1
security
parameter

Fig. 1. V ∗’s behaviour.

With this table, we dissect V ∗ and examine its every step across all secu-
rity parameters n ∈ N, i.e., examine the set of entries {(n, in = i)}n∈N. A few
terminologies follow.

Imaginary steps. Note that for the i-th row of the table (i.e., V ∗’s step i), if a
security parameter n satisfies poly(n) < i, V ∗ on the input security parameter
n will never reach step i. To simplify the presentation, we think of the step i in
every n-th column with poly(n) < i as an imaginary step of V ∗ with

Pr
[

h ← Transi :
h = h′||(βj

1, β
j
2, a

j) ∧
Pr[V ∗ |h� (j, 2)] ≥ p(n)

]

= 0.

Significant/insignificant entries. Given a (possibly infinite) set K of security
parameters, and a set K ′ = {(n, in)}n∈K , we say the entry (n, in) ∈ K ′ is
significant if for which the first condition of Lemma 1 holds, i.e.,

Pr
[

h ← Transin :
h = h′||(βj

1, β
j
2, a

j) ∧
Pr[V ∗ |h� (j, 2)] ≥ p(n)

]

> p(n).

Otherwise, we call it insignificant.

Solving a set of entries. Given a set (possibly infinite) K of security parame-
ters, and a set K ′ = {(n, in)}n∈K , we say a circuit family T of size P solves the
set K ′, if for every significant entry (n, in) ∈ K ′, T breaks the second condition
of Lemma 1 on (n, in), i.e., for all n ∈ K,
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Pr
[

T (h,PartRh) ∈ {f−1(βj
1), f

−1(βj
2)}

∣

∣

∣

∣

h′||(βj
1, β

j
2, a

j) = h ← Transin

∧ Pr[V ∗ |h� (j, 2)] ≥ p(n)

]

> 1 − p(n). (2)

Otherwise, we say T fails to solve the set K ′, i.e., there are some entries in K ′

on which the above inequality does not hold for T . When we say T of size P fails
to solve any entry in the set K ′, we mean that every entry in K ′ is significant
and T cannot solve even a single entry in K ′.

Note that we don’t make any requirement on T for those insignificant entries
K ′ (i.e., those entries for which the first condition of Lemma 1 does not hold). To
take an extreme example, if for all (n, in) ∈ K ′ the first condition of Lemma 1
fails to hold, i.e.,

Pr
[

h ← Transin :
h = h′||(βj

1, β
j
2, a

j) ∧
Pr[V ∗ |h� (j, 2)] ≥ p(n)

]

< p(n),

then, by definition, any circuit family can solve the set K ′. For simplicity, we let
the circuit family that solves such a set K ′ to be a special dummy circuit family
denoted by φ, which is of size 0.

With these definitions, we observe the following fact.

Fact 1. Fix a verifier step i. If for any polynomial P, there does not exist a
circuit family of size P that solves the set {(n, in = i)}n∈N, then there is an
infinite set I on which both conditions of Lemma 1 hold.

Proof. Observe first that if for any polynomial P, there is no P-size circuit family
that solves the set {(n, i)}n∈N, then for every P-size circuit family T , there exists
an infinite set K of security parameters such that T cannot solve any entry in
the set {(n, i)}n∈K . To see this, suppose for the sake of contradiction that, there
is a P-size circuit family T for which there is a finite set K such that T solves
the set {(n, in = i)}n∈N\K . Let ck be the largest security parameter in K, and
the circuit family T ′ be the inverting algorithm that, upon receiving a pair of
images, inverts one of them by exhausting all possible pre-images. We now have
a new circuit family of size P(n) + 2ck , denoted by Ti, which applies T on the
security parameters n ∈ N \ K and T ′ on n ∈ K, can solve the set {(n, i)}n∈N,
which contradicts the hypothesis of this fact since P(n)+2ck is still a polynomial
in n.

We now fix a polynomial (monomial) nc, and construct a best possible nc-size
circuit family T := {Tn}: Each circuit Tn is of size nc and achieves the highest
success probability of inverting. It follows from the observation above that there
is an infinite set Kc of security parameters such that T cannot solve any entry
in {(n, i)}n∈Kc

.
Since for each security parameter n, the circuit Tn is best possible, we con-

clude that, for any nc-size circuit family T ′ := {T ′n}, T ′ cannot solve any entry
in {(n, i)}n∈Kc

(note that the success probability of the inverting circuit T ′n is
less than the one of Tn).
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Note that Kc ⊆ Kc−1 for all c ∈ N. The desired infinite set I can be con-
structed as follows. Let n0 = 0 and nc := min{Kc\{nc−1, nc−1, · · ·, n0}}10 for
each c ∈ N. We define I to be

I := {(nc, i)}c∈N.

It is easy to verify that the first condition of Lemma 1 holds on I.11 Consider
an arbitrary polynomial size circuit family T , say, of size P

†, and suppose that
P

†(n) ≤ nc′12. Then T cannot solve any entry (nc, i) ∈ I for any c > c′. Note
that c > c′ implies nc > nc′ , we have that T cannot solve any entry (nc, i) ∈ I
for any nc > nc′ . This establishes the second condition of Lemma 1. �

The following dissection procedure (c.f. Fig. 2) will yield an infinite set I as
desired.

The dissection procedure. Initially set I0 := {(n0 = 0, in0 = 0)}, S0 :=
{(T0 = φ,P0 = 0)}.

For i = 1, 2, ..., given Ii−1 = {(n0, in0), ..., (nk−1, ink−1)}13,Si−1 = {(T0,
P0), ..., (Ti−1,Pi−1)} and P = max{P0,P1, ...,Pi−1}, we check the i-th step of
V ∗ for all n ∈ N and do the following:

1. If for any polynomial P′ there is no P
′-size circuit family that solves the set

{(n, in = i)}n∈N, let I be as defined in the above Fact 1, and stop this process;
2. If there are a polynomial Pi such that Pi ≤ P, and a Pi-size circuit family Ti

that solves the set {(n, in = i)}n∈N, set Si ← Si−1 ∪ (Ti,Pi), and Ii ← Ii−1

(Note that we do not update the set Ii−1);
3. If there are a polynomial Pi such that Pi > P, and a Pi-size circuit family Ti

that solves the set {(n, in = i)}n∈N, but no circuit family of size less than P

that can solve the set {(n, in = i)}n∈N, then
(a) set Si ← Si−1 ∪ {(Ti,Pi)}, and,
(b) if i > poly(nk−1)14, find a nk > nk−1 on which the first condition of

Lemma 1 holds, but no circuit family of size less than P can solve the set
Ii−1 ∪ {(nk, ink

= i)}15. Set Ii ← Ii−1 ∪ {(nk, ink
= i)}.

Denote by I the set resulted from the above dissection procedure, which
is either of the form {(nc, i)}c∈N (when we encounter the first case during the
dissection procedure), or of the form {(nk, ink

)} (otherwise).
Lemma 1 follows from the following two claims. Due to space limitations, we

provide detailed proofs of these claims in the full version of this work [Den16].
10 Note that in case Kc is identical to Kc−1, then nc−1 ∈ Kc.
11 Note that for every c ∈ N, for any entry (n, i) in {(n, i)}n∈Kc , the first condition

of Lemma 1 holds for (n, i), since otherwise the entry (n, i) is insignificant, and by
definition can be solved by any circuit family.

12 A little bit oversimplified. In case that, for some N , P†(n) ≤ nc′
only when n > N ,

we should set N0 to be max{N, nc′} and conclude that T cannot solve any entry
(nc, i) ∈ I for any nc > N0.

13 Here k ≤ i − 1. Note that we may not update the set I at each step i.
14 This means that the current i-step is an imaginary step of V ∗ for those n ≤ nk−1.
15 As will be showed in proof of claim 1 in the next section, we can always find such

a nk.
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1

2

in1

ink−1

i

V ∗’s steps

1 2 n1

on input Ii−1 and Si−1, check if ∃Ti

that solves the i-th row for all n

nk−1 nk
security
parameter

Fig. 2. The dissection procedure. For a magic adversary V ∗ there must exist either a
single row (a step of V ∗) from which we find the desired infinite set I, or infinite many
rows from each of which we add a new entry to the set I.

Claim 1. If we encounter the first case during the above dissection, or there is
no polynomial P s.t. P = sup{Pi : i ∈ N}, i.e., there is no polynomial upper-
bound on the infinite set {Pi : i ∈ N}, then the set I is infinite and on which
both conditions of Lemma 1 hold.

Claim 2. If we will never encounter the first case during the above dissection,
and there is a polynomial P s.t. P = sup{Pi : i ∈ N}, then there is a non-uniform
PPT simulator that breaks the inequality (1).

Remark 5. (On the mere existence of Ti and the dependence between Ti’s) Note
that at each step of the dissection procedure we only ask if there exists a good
extractor Ti, and that these algorithms may depend on a specific verifier. It may
be the case that these Ti exist but we cannot construct them from the code V ∗

efficiently, as we showed for the concrete adversary from [CKPR01].
However, the mere existence of good extractors Ti, satisfying that all of them

have size upper-bounded by a fixed polynomial as in Claim 2, helps us show the
existence of a simulator for V ∗ under the natural security definition of “∀V ∗∃S”.

We stress that the dependence between the possible algorithms Ti’s is irrele-
vant here. Note that at each step i, we set a clear bar P and check if there exists
a circuit family Ti of size less than P that can solve all those significant entries
in the i-th row. If there exists a circuit family Ti that solves this row but the
minimal size Pi required is strictly greater than P, we record this new Pi and
when we enter the next step (i + 1), we have a higher bar on the circuit size for
checking the existence of Ti+1.
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Nevertheless, if one can construct a verifier V ∗ for which there is a deep
dependence between these Ti’s such that, say, the size of Ti−1 is twice that of Ti

for many i, then we will soon find a desired set I as required by Lemma 1.

4 Tuning in to the Same Channel

As showed in the previous section, the real concurrent interaction between the
honest prover and a successful adversary V ∗ will magically generate a history
prefix of the form h′||(β1, β2, a) for which only algorithms with knowledge of
the corresponding witness can extract one of the pre-images of (β1, β2) with
overwhelming probability. However, different algorithms using different wit-
nesses/randomness may recover different pre-images from this history. Thus,
to exploit the power of V ∗ in our setting, we first need to make sure that all
parties are in the same channel, i.e., recover the same pre-image from a given
history.

In this section we construct non-interactive algorithms C and E from the
magic adversary V ∗ such that, taking as input the witness to x, C generates a
β and E can obtain the pre-image of the same β. Detailed analyses of these two
algorithms can be found in [Den16].

Lemma 2. Let p, f , {(Xn,Wn, Zn)}n∈N , the infinite set I, and V ∗ be as in
Lemma 1. Then there exist two non-unifrom PPT algorithms C and E such that
for every (n, in) ∈ I the following conditions hold:

1. C generates β, α and an auxiliary string aux satisfying β = f(α) with prob-
ability

Pr[(x,w, z)← (Xn,Wn,Zn) : C(x,w,z) = (β,α,aux)] ≥ p2 −negl(n).

2. It is easy for E with knowledge of w to invert the image output by C with
probability

Pr
[

(x,w, z)←(Xn,Wn,Zn) :E(β, aux,w)=f−1(β)
∣

∣

∣

∣

C(x,w, z)
= (β,α,aux)

]

≥ 1−negl(n).

3. For any polynomial-size circuit family T without knowing w, there is N0 such
that for every n > N0 (s.t. (n, ·) ∈ I) it holds that:

Pr
[

(x,w, z)←(Xn,Wn,Zn) :T (β, aux) =f−1(β)
∣

∣

∣

∣

C(x,w, z)
= (β,α,aux)

]

≤ 1−p.

Fix (n, i) ∈ I (from here on we drop the n on in for simplicity). Incorporating
V ∗ and the honest prover P , (n, i) and the inverse polynomial p, the algorithm C,
on input (x,w, z), plays the role of the honest prover and extracts (by rewinding)
one-pre-image of the pair images of f output by V ∗ at its i-th step, and then
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The Algorithm C

input : (x, w, z) ← (Xn, Wn, Zn)

1. Run P and V ∗ on input (x, w, z) until obtain the history prefix h up to
the step i of V ∗. If the V ∗’s step i message vi is the first verifier message
of the form (β1, β2, a) in a session, say, session j, then continue; otherwise,
return ⊥.

2. Resume the interaction between P and V ∗ until V ∗ terminates. If the
second accepting verifier message t in session j appears in this interaction,
continue; otherwise, return ⊥.

3. Repeat the following two steps n
p

times (there are at most n2

p2
iterations

of step 2 within this step):
(a) Run the above step 2 using fresh randomness (based on the same

history prefix h) until either the second accepting verifier message
in session j appears twice or the n

p
-th iteration is reached. If two

accepting transcripts of the first phase in session j of the Feige-Shamir
protocol are obtained within these n

p
iterations (for the purpose of

simplifying the analysis of the algorithm E, here we don’t use the
transcript obtained in step 2), compute α such that βb = f(α) from
them; otherwise, return ⊥.

(b) Store (βb, α) in a list.
4. Set β to be βb for which the corresponding pair (βb, α) appears most often

in the above list, and aux to be (h, PartRh, x, z), where PartRh includes
only the randomness used by V ∗ and the randomness used by honest
provers in those incomplete sessions in producing h.

output: (β, α, aux).

outputs the pre-image extracted and the corresponding image (together with
some auxiliary information). To make sure that different algorithms can extract
the same pre-image, we have C repeat the extraction procedure many times
and output the image corresponding to the most-often extracted pre-image. See
below for the detailed description of C.

The algorithm E, taking (β, aux,w) as input, simply repeats n
p times the

step 3(a) of the algorithm C to extract the pre-image of β.

The Algorithm E

input : (β, aux, w)

1. Parse aux into (h, PartRh, x, z), and parse the last message vi in h into
(β1, β2, a).

2. Suppose that β = βb. Repeat the step 3(a) of C until the pre-image α of
βb is extracted or the n

p
-th iteration is reached, and if all iterations fail,

return ⊥.
output: α.
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5 Hardness Amplification and a Tailored Hard-Core
Lemma

For our applications, we need to increase the success probability of the algorithm
C significantly while decreasing T ’s success probability (as in the third condition
of Lemma 2) to a negligible level. In addition, if the statement x has multiple
witnesses, we also want the algorithm E to work when given an arbitrary one
(not necessarily the same as the one given as input to C) as input.

Our basic strategy for achieving these goals is to use classic hardness ampli-
fication method with some careful modifications. Let p be as in Lemma 1, and
define

q1 :=
n

(p)2
, q2 :=

n

p
and q := q1q2.

Given as input a q1×q2 matrix of simples from (Xn,Wn, Zn), M runs C on each
column and outputs a vector of q2 number of images of f (together with the
corresponding pre-images and some auxiliary strings). The formal descriptions
of algorithms M and Find are given below.

The Algorithm M

input : {(xk, wk, zk)}q
k=1

1. Arrange {(xk, wk, zk)}q
k=1

into q1 × q2 tuples, denoted by

{(xj
i , w

j
i , z

j
i )}q2,q1

i,j=1
.

2. For i = 1, 2, ..., q2, run C on each (xj
i , w

j
i , z

j
i ), j ∈ [1, q1], until C outputs

(β, α, aux). If for some i all these q1 runs of C fail, return ⊥; otherwise,
set (βi, αi, auxi) to be (β, α, aux).

output: {(βi, αi, auxi)}q2
i=1

.

The Algorithm Find

input : {(xk, wk, zk)}q
k=1

, {(βi, auxi)}q2
i=1

1. Arrange {(xk, wk, zk)}q
k=1

in the same way as M and obtain

{(xj
i , w

j
i , z

j
i )}q2,q1

i,j=1
.

2. For i = 1, 2, ..., q2, obtain the statement xi from auxi, find the j-th entry
(xj

i , w
j
i , z

j
i ) from {(xj

i , w
j
i , z

j
i )}q1

j=1
such that xj

i = xi and fetch the corre-

sponding wj
i , set wi = wj

i and run E on input (βi, auxi, wi). If E fails,
output ⊥, otherwise, set αi to be the output of E.

output: {αi}q2
i=1

.

It easily follows from Lemma 2 that the algorithms M and Find enjoys the
following security properties.

Lemma 3. The following properties hold for algorithms M and Find:

1. The probability that M outputs {(βi, αi, auxi)}q2
i=1 such that βi = f(αi) holds

for each i is negligibly close to 1.
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2. Conditioned on M outputting {(βi, αi, auxi)}q2
i=1 , the probability that Find

inverts all these βi’s successfully is negligibly close to 1.
3. Conditioned on M outputting {(βi, αi, auxi)}q2

i=1 , for any polynomial-size
circuit family T , given as input only ({(xk, zk)}q

k=1 , {(βi, auxi)}q2
i=1 ) (with-

out any witnesses to the xk’s), the probability that T inverts all these βi’s
successfully is negligible.

4. For any two inputs to Find with different witnesses, ({(xk, wk, zk)}q
k=1 , {(βi,

auxi)}q2
i=1 ) and ({(xk, w′

k, zk)}q
k=1 , {(βi, auxi)}q2

i=1 ) such that {wk}q
k=1 �=

{w′
k}q

k=1 , Find succeeds on each input with almost (negligibly close to each
other) the same probability.

The algorithm M generates q2 number of images (β1, β2, ..., βq2) of one-way
function f : {0, 1}n → {0, 1}�(n) in a way such that they are hard for any
polynomial-size circuit family (without knowing the corresponding witnesses) to
invert simultaneously. This enables us to apply Goldreich-Levin hard-core pred-
icate for the function of f

⊗

q2 with respect to the distribution on (β1, β2, ..., βq2)
generated by M. Formally, we need the following form of the Goldreich-Levin
theorem.

Lemma 4 (Goldreich-Levin). Let f : {0, 1}n → {0, 1}�(n) be a function com-
putable in polynomial time, G be a PPT algorithm. If for every polynomial-size
circuit family T ,

Pr[(f(x), aux) ← G(1n) : T (1n, f(x), aux) ∈ f−1(f(x))] ≤ negl(n),

then, the inner product of x and a random r modulo 2, denoted by 〈x, r〉, is a
hardcore predicate for f , i.e., for every polynomial-size circuit family T ′

Pr[(f(x), aux) ← G(1n), r ← {0, 1}n : T ′(1n, f(x), r, aux) = 〈x, r〉]
≤ 1

2
+ negl(n).

The Goldreich-Levin theorem typically states for the distribution f(U), i.e.,
for x being drawn from uniform distribution, but its proof ignores the distribu-
tion on the images of f and the auxiliary input (as long as both T and T ′ are
given the same auxiliary string as input) completely, so the same proof applies
to Lemma 4 (c.f. [Gol01]).

In our setting, this means that the inner product (modulo 2) 〈(α1, α2, ..., αq2),
r ← {0, 1}n×q2〉 is a hard core predicate for f

⊗

q2 : {0, 1}n×q2 → {0, 1}�(n)×q2

against arbitrary circuit families of polynomial size that takes as auxiliary input
({(xk, zk)}q

k=1 , {(βi, auxi)}q2
i=1 ).

6 Constructions for Public-Key Encryption
and Key Agreement

In this section, we construct semantic secure (under chosen-plaintext-attack)
public-key encryption and key agreement from a supposed adversary V ∗ against
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the Feige-Shamir protocol and an injective one-way function. This completes the
proof of Theorem 1.

Let ε, q, q2, M, Find and the infinite set I be as defined in previous sec-
tions. The final construction of public-key encryption scheme proceeds as follows.
The key generation algorithm generates q number of YES instances together
with their corresponding witnesses, {(x1,k, w1,k)}q

k=1 , where {w1,k}q
k=1 is kept

secret and {x1,k}q
k=1 is made public. To encrypt a bit m, the encryption

algorithm generates {(x2,k, w2,k)}q
k=1 , prepares a sequence of OR statements

{(x1,k∨x2,k)}q
k=1 (thus each {wb,k}q

k=1 , b ∈ [1, 2], are valid witnesses), and then
applies M on {w2,k}q

k=1 to generate an image of f
⊗

q2 and encrypts m using
Goldreich-Levin; to decrypt the cipher-text, the decryption algorithm applies
Find on {w1,k}q

k=1 as witnesses to obtain the corresponding pre-image and then
computes the plain-text.

Formally, we need to assume the following for our constructions of public-key
encryption and key agreement:

– An arbitrary injective one-way function f : {0, 1}n → {0, 1}�(n) (used in the
Feige-Shamir protocol). The injectiveness will be used for one party to recover
the same hardcore bit that generated by the other party.

– An arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N over
RL for an arbitrary NP language L.

– An arbitrary efficiently samplable distribution ensemble {Zn}n∈N over {0,1}∗.
– A joint distribution ensemble {(Xn,Wn, Zn)}n∈N on which the adversary V ∗

breaks the ε-distributional concurrent zero knowledge of Feige-Shamir proto-
col, where each distribution (Xn,Wn, Zn) defined in the following way: Sample
(x1, w1) ← Dn, (x2, w2) ← Dn, z ← Zn, b ← {1, 2}, and output ((x1, x2), wb).

We now construct public-key encryption for a single bit message on each security
parameter n s.t. (n, ·) ∈ I.

Key generation Gen(1n): {(x1,k, w1,k)}q
k=1 ← D

⊗

q
n , and set pk = {x1,k}q

k=1 ,
sk = {w1,k}q

k=1 .
Encryption Enc(pk = {x1,k}q

k=1 ,m) (m ∈ {0, 1}):
1. {(x2,k, w2,k)}q

k=1 ← D
⊗

q
n , {zk}q

k=1 ← Z
⊗

q
n .

2. for k ∈ [1, q], set xk to be a random order of the pair (x1,k, x2,k).
3. {(βi, αi, auxi)}q2

i=1 ← M({(xk, w2,k, zk)}q
k=1 ).

4. r ← {0, 1}n×q2 , h ← 〈(α1, α2, ..., αq2), r〉 ∈ {0, 1}.
5. Output c = ({(xk, zk)} q

k=1 , {(βi, auxi)}q2
i=1 , r, h

⊕

m).
Decryption Dec(sk = {w1,k}q

k=1 , c):
1. Parse c into {(xk, zk)} q

k=1 ||{(βi, auxi)}q2
i=1 ||r||c′.

2. {αi}q2
i=1 ← Find({(xk, w1,k, zk)} q

k=1 , {(βi, auxi)}q2
i=1 ).

3. h ← 〈(α1, α2, ..., αq2), r〉.
4. Output m = h

⊕

c′.

Notice that the input to M in the encryption algorithm can be viewed as being
drawn from (Xn,Wn, Zn) defined above. The correctness of this scheme follows
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from properties 1, 2, 4 of algorithms M and Find presented in the previous section.
It should be noted that our scheme is not perfectly correct since it is possible for
M/Find to fail during the encryption/decryption process. However, this happens
only with negligible probability.

It is also easy to verify the semantic security under chosen-plaintext-attack,
which is essentially due to the property 3 of M, together with the security of the
hardcore bit for f

⊗

q2 .
Following the well-known paradigm, one can transform a semantic secure

(under chosen-plaintext-attack) public-key encryption scheme into a key agree-
ment protocol (A,B) with security against eavesdropping adversary in a simple
way: the party A generates a public/secrete key pair and send the public-key to
B, and then B sends back a ciphertext of the session secret key under A’s public
key to A. This establishes a common session secret key between A and B.

Extensions to Multiparty Key Agreement. Our key agreement protocol
can be easily extended to the multiparty setting. Roughly, if V ∗ is able to break
ε-distributional concurrent zero knowledge of the Feige-Shamir protocol on a
distribution over instances of the form (x1 ∨ x2 ∨ ... ∨ xn), then the n parties
can establish a session secret key as follows. Each party Ai generates a sequence
of pairs {(xi,k, wi,k)}q

k=1 ). In their first round the parties A1, A2, ..., An−1 send
their sequences of {(xi,k)}n−1,q

i,k=1 ) to the n-th party, then the n-th party uses these
sequences as a public key of the above public-key encryption scheme to encrypt
the session secret key and send the ciphertext to all n−1 parties. Upon receiving
the ciphertext, each Ai, i = [1, n − 1], decrypts it and obtains the session secret
key using their own {(wi,k)}q

k=1 .

7 Concluding Remarks

We prove a win-win result regarding the complexity of public-key encryption and
the round-complexity of concurrent zero knowledge. We believe that when one
can prove one of these two statements listed in Theorem 1, one might obtain a
much stronger result (e.g., result with respect to the (nicer) standard definition)
than the ones stated therein. The ideas and techniques used here may be applied
to investigate some other black-box lower bounds in cryptography.

Our result can be viewed as a step toward breaking the known black-box or
universal reduction barriers, and a proof (or disproof) of either one of the two
statements in Theorem 1 will be exciting. A construction of public-key encryp-
tion (key agreement) from general one-way functions will, borrowing from the
Impagliazzo’s terminology [Imp95], rule out the world Minicrypt and build for
the first time the world Cryptomania from (trapdoor/algebraic) structure-free
hardness assumption, which definitely is a major achievement in cryptography.

On the other hand, a concurrent security proof of the Feige-Shamir proto-
col will also be an exciting breakthrough, both technically and conceptually.
On the technical level, such a proof will reveal a fascinating fact that all pos-
sible efficient adversaries against the Feige-Shamir protocol have in common
a highly non-trivial structure of computation–e.g., the existence of those good
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extractors {Ti}i∈N from the second claim in Sect. 3.2, which might shed light on
the longstanding open problem of constructing extractable one-way functions
from standard assumptions; on the conceptual level, it will bring a new individ-
ual reduction/simulation for cryptography and refute the impression that a new
reduction technique always gives more complicated and inefficient constructions.
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Abstract. It is widely known that double encryption does not sub-
stantially increase the security of a block cipher. Indeed, the classical
meet-in-the middle attack recovers the 2k-bit secret key at the cost of
roughly 2k off-line enciphering operations, in addition to very few known
plaintext-ciphertext pairs. Thus, essentially as efficiently as for the under-
lying cipher with a k-bit key.

This paper revisits double encryption under the lens of multi-user
security. We prove that its security degrades only very mildly with an
increasing number of users, as opposed to single encryption, where secu-
rity drops linearly. More concretely, we give a tight bound for the multi-
user security of double encryption as a pseudorandom permutation in
the ideal-cipher model, and describe matching attacks.

Our contribution is also conceptual: To prove our result, we enhance
and generalize the generic technique recently proposed by Hoang and
Tessaro for lifting single-user to multi-user security. We believe this tech-
nique to be broadly applicable.

Keywords: Symmetric security · Provable security · Multi-user
security · Double encryption

1 Introduction

A classical problem in cryptography is that of stretching the key length of a
block cipher. Namely, from a block cipher E with block length n and key length
k, we want to obtain a new one with key length k′ > k which is more secure
than E. The problem was naturally motivated by legacy designs – in particular,
DES – with inherently too-short keys (e.g., 56 bits), and the desire to stretch
this key length generically without resorting to designing a new cipher.

The common wisdom is that double encryption is not useful for key-stretching
purposes. Here, by double encryption, we mean the construction that, given an
n-bit plaintext M and two k-bit keys K1,K2, outputs EK1(EK2(M)). Indeed,
there is a well-known meet-in-the-middle attack recovering the key with only
marginally more than 2k operations given (very few) valid plaintext-ciphertext
pairs. This weakness has led to the widespread deployment (which continues to
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date in some niche areas) of Triple-DES [1], as well as a number of works on ana-
lyzing the theory of triple and multiple encryption [7,13–17,20], and alternative
constructions with extra whitening steps (and key material) [15,16,18–20].

In this paper, we revisit double encryption in the context of multi-user secu-
rity, where we give tight bounds, and show that it constitutes a sound and simple
method to mitigate multi-user attacks on block ciphers. However, this problem
will also serve as an application for a generic framework to provide good multi-
user security bounds, and which we hope to be of wider applicability.

Double Encryption in the Single User Setting. As in previous works, we
study the security of double encryption in the ideal-cipher model as a (strong)
pseudorandom permutation (PRP). The attacker A is given access to an ideal
cipher E to which it can issue p forward or backward queries for any chosen
key (these are usually referred to as “offline queries”), and up to q queries (in
either direction) to EK1 ◦EK2 (for random secret keys K1,K2) or a truly random
permutation on the n-bit strings (this being usually called “online queries”). The
attacker’s goal is to decide which of the two it is accessing. In this model, Aiello
et al. [2] proved that A’s distinguishing advantage satisfies

AdvprpDE[E](A) ≤
( p

2k

)2

. (1)

where DE[E] denotes double encryption. Note that for single encryption, the
bound is easily shown to be AdvprpE (A) ≤ p

2k
. Both advantages become non-

negligible for the same p ≈ 2k, although (1) is smaller when p � 2k.

The Multi-user Setting. In the multi-user (mu) setting, originally proposed
by Bellare, Boldyreva, and Micali [5] for public-key encryption, the attacker can
distribute its online queries adaptively across multiple independent key pairs (in
the real world) or independent permutations (in the ideal world). A few recent
block-cipher analyses [19,24,29] have focused on mu security, and the notion has
established itself as a more realistic security target.

One expects security to degrade as the number of users increases, and this
loss can be linear in the worst case. For example, for single-encryption, we do
have

Adv±mu-prp
E (A) ≤ u (p + u)

2k
≤ q (p + q)

2k
, (2)

where u is a bound on the number of users A queries, and this bound is tight,
i.e., there is a matching attack [10]. Also, we can only guarantee u ≤ q, as
the attacker can decide to only issue one query per user. However, for double
encryption, we can use a simple hybrid argument to show that

Adv±mu-prp
DE[E] (A) ≤ u

(

p + 2q

2k

)2

≤ q

(

p + 2q

2k

)2

. (3)
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This bound is already better than the one from (2) – for instance, for roughly
p = q = 2k/2, this latter bound is still O(2−k/2), but (2) gives Ω(1). However,
contrary to the single-encryption case, it is not clear that the bound is tight. We
will indeed show a much better bound.

Our Bounds. Our main result shows that the security of double encryption
does not degrade substantially in the multi-user setting, and that the bound
from (3) is overly pessimistic. In particular, we prove that

Adv±mu-prp
DE[E] (A) ≤ 1

2n
+

5q

2k+n/2
+

6qB2 + 222BQ2

22k

where Q = max{p, q} and B = 5max{n + k/2, 2q/2n}. This bound is rather
cumbersome, but the key observation is that third-degree monomials in p and q
all appear with denominator 22k+n, whereas any term with denominator 22k is
at most quadratic in p, q – very similar to the single-user case.

Recall that the meet-in-the-middle attack on the single user security of double
encryption succeeds with advantage p2/22k, and Biham’s key-collision attack [10]
achieves advantage q2/22k. Therefore for the setting that n ≥ k (such as DES
or AES), our bound is tight. For the setting n � k (which occurs in Format-
Preserving Encryption [6], and several block-cipher designs), finding matching
attacks is difficult, and we leave it as an open problem. However, as an interme-
diate step, we note that most proofs are in models where the keys are revealed
to the distinguisher at the end of the execution. In this model, we can give
a matching attack (based on the meet-in-the-middle paradigm) that achieves
distinguishing advantage

max{�n/8 lg(n)�, q/2n} · p2

3 · 22k
.

We discuss attacks below in Sect. 6.

A Disclaimer. We stress that the common wisdom that there is no security
increase is obviously still in place. However, the envisioned application is to
ciphers whose key length is not an issue in the single-user setting, but becomes
too short in a multi-user regime. For instance, a multi-user attack reduces the
security of (single) AES128 to 64 bits. Our result shows that iterating AES128
twice substantially mitigates the impact of a multi-user attack, and that in fact
we obtain almost optimal multi-user security, namely around 115 bits for a total
key length of 256 bits. (Also see Fig. 2.)

Techniques. Our result is obtained using new techniques we introduce and
that we believe to be of broad applicability in lifting existing analyses from the
single-user (su) to the mu setting.
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Hoang and Tessaro (HT) [19] already proposed a generic approach for this
purpose. It is illustrative to briefly review it, and see why it fails for double
encryption. HT’s idea is to show that the construction (e.g., double encryp-
tion) satisfies, in the su case, a property called point-wise proximity, a stronger
property than indistinguishability, already used in previous works (e.g., in [9]).
Concretely, this means that there exists a function ε = ε(p, q) of the query para-
meters p and q, such that for all transcripts τ containing p offline and q online
queries, we have

pSideal(τ) − pSreal(τ) ≤ ε(p, q) · pSideal(τ), (4)

where pSideal(τ) and pSreal(τ) are the so-called ideal and real interpolation prob-
abilities. Namely, they describe the probability that the real (pSreal) and the
ideal (pSideal) worlds behave consistently with the transcript when the queries
the transcript contains are asked in that order.

HT show that then point-wise proximity is achieved in the multi-user experi-
ment, where ε(p, q) is replaced by ε(p+qt, q), where t is the number of calls made
by the construction to the underlying primitive (in the case of double encryp-
tion, t = 2). This implies that the distinguishing advantage is also at most
ε(p + qt, q). For this argument to hold, however, ε needs to be super-additive,
i.e., ε(x, y) + ε(x, z) ≤ ε(x, x + y), and moreover, ε(·, y) and ε(x, ·) need to be
non-decreasing functions for all x, y ∈ N. For double encryption, no such ε can
be established. For instance, the natural candidate ε(p, q) =

(

p
2k

)2 is not super-
additive, as ε(x, y) + ε(x, z) = 2ε(x, y + z).

We take a different approach, by introducing a relaxed notion of almost
proximity, which in particular akin to the H-coefficient method (cf. e.g. [12,
26]), introduced a partition the set of single-user transcripts into good and bad
transcripts, and proximity guarantees are shown only on the former. Our main
technical insight is the introduction of a precise framework to mitigate the effects
of the growth of the probability of a bad transcript when increasing the number
of users. We dispense with a formulation here – the conditions are not concise
– and refer the reader to Sect. 3. We note that we also provide simplifications
of the framework in Sect. 4, one of which is in particular sufficient for analyzing
double encryption. We finally apply it in Sect. 5.

Further Related Work. Multiple encryption has been studied also in the
standard computational model, with respect to the question of how it amplifies
(weak) PRP security. Luby and Rackoff [21] initially studied double encryp-
tion, and bounds for multiple encryption were later provided by Myers [25] and
Tessaro [28].

Also, while above we have focused on block cipher analyses, recent works
have studied mu security in different contents, in particular for authentication
encryption [8] and message-authentication codes [3,4].
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2 Preliminaries

Notation. For a finite set S, we let x←$S denote the uniform sampling from S
and assigning the value to x. Let |x| denote the length of the string x, and
for 1 ≤ i < j ≤ |x|, let x[i, j] denote the substring from the ith bit to the
jth bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r) denote
running A with randomness r on inputs x1, . . . and assigning the output to y.
We let y ←$ A(x1, . . .) be the resulting of picking r at random and letting y ←
A(x1, . . . ; r).

Multi-user PRP Security of Blockciphers. Let Π : K × {0, 1}n → {0, 1}n

be a blockcipher, which is built on another blockcipher E : {0, 1}k × M → M.
We associate with Π a key-sampling algorithm Sample. Let A be an adversary.
Define

Adv±mu-prp
Π[E],Sample(A) = Pr[RealAΠ[E],Sample ⇒ 1] − Pr[RandA

Π[E],Sample ⇒ 1]

where games Real and Rand are defined in Fig. 1. If Sample is the uniform
sampling of K then we only write Adv±mu-prp

Π[E] (A).

Fig. 1. Games defining the multi-user security of a blockcipher Π : K ×
{0, 1}n → {0, 1}n. This blockcipher is based on another blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n. The game is associated with a key-sampling algorithm Sample.
Here Perm({0, 1}n) denotes the set of all permutations on {0, 1}n.

In the games above, we first use Sample to sample keys K1,K2, . . . ∈ K for
Π, and independent, random permutations f1, f2, . . . on M. The adversary is
given four oracles Prim,PrimInv, Enc, and Dec. In both games, the oracles
Prim and PrimInv always give access to the primitive E and its inverse respec-
tively. The Enc and Dec oracles give access to f1(·), f2(·), . . . and their inverses
respectively in game Rand, and access to Π[E](K1, ·),Π[E](K2, ·), . . . and their
inverses in game Real. The adversary finally needs to output a bit to tell which
game it is interacting with.



386 V.T. Hoang and S. Tessaro

Single and Double Encryption. Let k, n ∈ N and let E : {0, 1}k ×{0, 1}n →
{0, 1}n be a blockcipher. The Single Encryption of E is the blockcipher E itself.
The Double Encryption DE[E] of E is a blockcipher with keyspace ({0, 1}k)2 and
message space {0, 1}n. On key K = (J1, J2) and message x ∈ {0, 1}n, DEK [E](x)
returns EJ2(EJ1(x)).

Systems and Transcripts. Following up the notation from [19] (which was in
turn inspired by Maurer’s framework [22]), it is convenient to consider interac-
tions of a distinguisher A with an abstract system S which answers A’s queries.
The resulting interaction then generates a transcript τ = ((X1, Y1), . . . , (Xq, Yq))
of query-answer pairs. It is well known that S is entirely described by the prob-
abilities pS(τ) that if we make queries in τ to system S, we will receive the
answers as indicated in τ . We say in particular that S is stateless if pS(τ) is
invariant under permuting the orders of the input-output pairs it contains.

We will generally describe systems informally, or more formally in terms a set
of oracles they provide, and only use the fact that they define a corresponding
probabilities pS(τ) without explicitly giving these probabilities.

The Expectation Method. In this paper, we shall use the expectation method
of Hoang and Tessaro [19]. For a pair of systems Sreal and Sideal, this method
aims to bound the gap pSideal(τ) − pSreal(τ), for a fixed (su) transcript τ such
that pSideal(τ) > 0. Under this method, one extends the transcript with a random
variable S. In Sreal, this S is often a part of the key and suppose that it has
marginal distribution μ. In Sideal, we pick S of the same marginal distribution μ,
but independent of τ . Let pSreal(τ, s) denote the probability that Sreal behaves
according to τ , and S agrees with s. Let pSideal(τ, s) denote the probability that
Sideal behaves according to τ , and S ←$ μ agrees with s. Under the expectation
method, one partitions the range of S into two sets, Γgood and Γbad. For s such
that pSideal(τ, s) > 0, if s ∈ Γbad then we say that s is bad ; otherwise s is good.
We write Pr[S ∈ Γbad] to denote the probability that S ←$ μ independent of τ
is bad. Hoang and Tessaro give the following result.

Lemma 1 (The expectation method). [19] Fix a su transcript τ such that
pSideal(τ) > 0. Assume that there is a partition Γgood and Γbad of the range U of
S, as well as a function g : U → [0,∞) such that Pr[S ∈ Γbad] ≤ δ and for all
s ∈ Γgood,

1 − pSreal(τ, s)
pSideal(τ, s)

≤ g(s).

Then
pSideal(τ) − pSreal(τ) ≤ (δ + E[g(S)]) · pSideal(τ). ��

Note that in Lemma 1, the expectation is taken over all possible (good or bad)
values of S.
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3 A Generic Method to Bound Multi-user Security

In this section we present a generic method to prove information-theoretic mu
security bounds, based (mostly) on upper bounding single-user quantities. The
framework is very general, and in fact generalizes the approach by Hoang and
Tessaro [19] based on pointwise proximity.

The Generic Setting. We consider two (stateless) systems Sreal and Sideal,
called the real and ideal systems, respectively. Each of these two systems can be
invoked via two oracles Cons and Prim, allowing for construction and primitive
queries, respectively. First off, Prim gives access to an ideal primitive (for exam-
ple, an ideal cipher, a random function or permutation), whereas Cons’s role
depends on the context, but always answers queries of the form (i,X), where i
is the index of a user and X is the query for that user. More specifically:

1. In Sreal, the oracle Cons upon a query (i,X) invokes a construction Π which
makes calls to Prim, and additionally depends on some local, initially chosen
randomness (or key) Ki. That is, the output is ΠPrim(Ki,X).

2. In Sideal, the oracle Cons samples independent functions f1, f2, . . . from some
distribution, and answers a query (i,X) as fi(X).

For example, the game from Fig. 1 can be described as suitable systems Sreal

and Sideal: We would simply handle inversion queries (to Dec and PrimInv) by
specifying the direction of the query in the input given to Cons and Prim, i.e.,
X = (+, x) or X = (−, y). Also, we can model more complex scenarios, like the
security of authenticated encryption schemes, as long as we can map the security
notion to suitable Sreal and Sideal.

We generally will assume that there exists a metric of data complexity asso-
ciated with queries made to Cons. For instance, if Cons takes variable-length
inputs, σ could be number bits queried to it, whereas if the input length is
fixed, this could just be the number of queries. We assume that there exists a
parameter t indicating that when answering multiple queries with overall data
complexity σ, Π makes at most t · σ queries to Prim.

The Distinguishing Problem. For any adversary A and a system S, we let
Script(A,S) denote the random variable for the transcript of the interaction of A
and S. Recall that the advantage of the adversary in distinguishing two systems
Sreal and Sideal is at most the statistical distance between the distributions of
the adversary’s transcript in the real and ideal games, which is

AdvdistSreal,Sideal
(A) ≤

∑

τ

max{0, pSideal(τ) − pSreal(τ)}, (5)

where the sum is taken over all τ such that Pr[Script(A,Sideal) = τ ] > 0.
Note that there might be some context-dependent constraints on the adver-

sary’s queries. For example, if part of the inputs to Cons include nonces to a
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nonce-based authenticated encryption, then one might require that the nonces
will not repeat. This is easy to handle, since it will only restrict the set of valid
transcripts to be considered. We will usually capture the complexity of A in
terms of the number of Prim queries, p, the number of Cons queries q, and the
overall data complexity σ for the queries made to Cons. A security bound ε is
then viewed as a function ε(p, q, σ). We say that a function ε(·, ·, ·) : N3 → [0, 1]
is monotonic if ε(·, y, z), ε(x, ·, z), and ε(x, y, ·) are increasing functions, for any
x, y, z ∈ N. Often security bounds are monotonic functions, since increasing the
adversary’s resources can only help it.

Almost Proximity. We now establish a condition on Sreal that we call almost
proximity, which will allow us to establish mu security from a number of func-
tions, δ0, δ1 and δ2, we define next. In particular, some of these functions (δ1
and δ2) are defined with respect to single-user (su) transcript, i.e., transcripts
were all queries to Cons are of the form (i,X) for one single i.

One begins by defining a context-dependent, undesirable property on su tran-
scripts that we call bad, and if a su transcript is not bad then it is good. We
partition in particular the set of bad transcripts into two sets, S and S ′. In
many cases (such as our Double Encryption application below), one of the two
sets S and S ′ is simply the empty set, but we envision more general application
scenarios.

Further, we will assume that there exists a function Rate such that for any
good su transcript τ ,

pSideal(τ) − pSreal(τ) ≤ Rate(τ) · pSideal(τ) ,

where Rate is in particular an increasing function mapping a transcript to a
number in [0, 1], meaning that for any transcripts τ and τ ′ such that τ ′ contains
all the query-answer pairs of τ (possibly in a different order), we have Rate(τ ′) ≥
Rate(τ).

Then, we also assume that there is a monotonic function δ2 such that for
any adversary B attacking a single user via p Prim queries, q Enc queries with
overall data complexity σ, we have

Pr[Script(B,Sideal) ∈ S] ≤ δ2(p, q, σ).

Note that the bound above is with respect to the ideal system, Sideal, and thus
often easy to compute.

We also define another, context-dependent, desired property on mu tran-
scripts that we call nice — we let N be the set of all nice mu transcripts. (We
stress that niceness is with respect to mu transcripts, whereas being good/bad
is only with respect to su ones.) The notion of niceness involves only the Cons
query-answer pairs: for any two transcripts τ and τ ′ that have the same Cons
query-answer pairs (possibly in different orders), if τ ∈ N then so is τ ′. Also, for
a mu transcript τ involving queries to exactly r users, and for each i ∈ {1, . . . , r},
let Map(i, τ) denote the su transcript obtained by deleting the Cons(j, ·) queries
and answers for any j �= i. We require the following conditions:
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– For any transcript τ ∈ N and all i, Map(i, τ) �∈ S ′.
– There is a monotonic function δ0 such that for any mu adversary A making

pPrim queries, qCons queries, and data complexity σ,

Pr[Script(A,Sideal) �∈ N ] ≤ δ0(p, q, σ).

– There is a monotonic function δ1 such that for any τ ∈ N of r users that
contains p Prim, q Cons queries of total data complexity at most σ,

r
∑

i=1

Rate(Map(i, τ)) ≤ δ1(p, q, σ). (6)

We refer to this last property as mu-boundedness.

We refer to the existence of suitable functions δ0, δ1, δ2 for corresponding Rate,
Map, S, S ′ and N as meeting the almost-proximity conditions.

Mu Security via Almost Proximity. The following result bounds the mu
advantage in distinguishing Sreal and Sideal, granted the almost-proximity con-
ditions defined above are met.

Lemma 2 (Mu-security via almost proximity). Assume that the almost-
proximity conditions above are met, for some δ2, δ0 and δ1. Then for any adver-
sary A that makes at most q Cons queries of total data complexity σ, and p
Prim queries, we have

AdvdistSreal,Sideal
(A) ≤ δ0(p, q, σ) + 2δ1(p + tσ, q, σ) + 2q · δ2(p + tσ, q, σ).

Discussion. A meaningful question is why we need to separate the set of bad
su transcripts into S and S ′. The reason is that, when we move from su to mu
setting, under our method, the term δ2 will blow up to qδ2, which is similar to the
hybrid argument. To avoid an inferior mu bound, we would like to minimize the
term δ2 as much as possible, by carving out S ′ from the set of bad su transcripts.
Due to the requirement that Map(i, τ) �∈ S ′ for every nice mu transcript τ and
every i, the set S ′ and the notion of niceness needs to be chosen in tandem to
minimize qδ2 + δ0(p, q, σ). Bounding Pr[Script(A,Sideal) �∈ N ] requires working
directly in the mu setting, but recall that we are in the ideal game, which is
often simple to deal with.

Proof (of Lemma 2). Since we consider a computationally unbounded adversary,
without loss of generality, assume that the adversary is deterministic. For sim-
plicity, from this point, we will write δ2 and δ1 instead of δ2(p + tσ, q, σ) and
δ1(p + tσ, q, σ). Without loss of generality, assume that δ1 < 1/2; otherwise the
the claimed bound in the statement of this lemma is moot. We also assume that
the adversary’s transcript involves at most r users.
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Restricting to Nice Transcripts. Recall that in the ideal system, the prob-
ability that the adversary A can produce a mu transcript that is not nice is at
most δ0(p, q, σ). From Eq. (5), what is left is to show that

∑

τ

pSideal(τ) − pSreal(τ) ≤ 2δ1 + 2qδ2, (7)

where the sum in the left hand side is taken over all nice transcripts τ in the sup-
port supp(Script(A,Sideal)) of Script(A,Sideal) such that pSideal(τ) > pSreal(τ).
Below, when we talk about a valid transcript τ , this means that τ meets the
constraint above.

Building Hybrids. For each i ∈ {0, . . . , r}, consider the hybrid system Si that
provides the interface compatible with the real and ideal systems, but queries
for user uj are answered via the actual construction ΠPrim(Kj , ·) for j > i, and
via an independent, perfect simulation of the Cons(j, ·) oracle of the ideal game
if j ≤ i. Then S0 = Sreal and Sr = Sideal and thus for any valid transcript τ ,

pSideal(τ) − pSreal(τ) =
r

∑

i=1

pSi
(τ) − pSi−1(τ). (8)

Let Bi be the following hybrid su adversary. It samples key Kj for ΠPrim for every
i < j ≤ r, and then runs A. Queries for user uj are answered via ΠPrim(Kj , ·)
if j > i, and via the Cons(1, ·) oracle of Bi if j = i, and via an independent,
perfect simulation of the Cons(j, ·) oracle of the ideal game if j < i. In other
words, adversary Bi simulates system Si−1 in its su real game, and simulates
system Si in its su ideal game. It makes at most q Cons queries of total data
complexity σ and at most p + tσ Prim queries.

Reducing to Transcript-Wise Gap. Fix a valid transcript τ . Let T (i, τ)
denote the set of extended transcripts of Bi in its su ideal game that are enhanced
with the simulated Cons queries and answers as well as the simulated keys Kj ,
such that the corresponding simulated transcript for A is τ . For each τi ∈ T (i, τ),
let Tr(τi) be the transcript of Bi derived from τi. For S ∈ {Sreal,Sideal}, let pS(τi)
denote the probability that, when Bi interacts with S, its enhanced transcript
is τi. Note that compared to Tr(τi), the additional information τi contains is the
keys Kj , and the queries/answers on the simulated oracle Cons(j, ·) of the ideal
game for users j < i. Since this information is independent of Sreal and Sideal,

pSreal(τi)
pSideal(τi)

=
pSreal(Tr(τi))
pSideal(Tr(τi))

. (9)

Let Si be the set of extended transcripts τi of Bi such that Tr(τi) ∈ S. We claim
that
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pSideal(τ) − pSreal(τ) ≤ 2
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal(τi)
)

+ 2δ1
∑

τ1∈T (1,τ)

pSreal(τ1)

= 2
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal(τi)
)

+ 2δ1 · pSreal(τ)

≤ 2
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal(τi)
)

+ 2δ1 · pSideal(τ), (10)

where the last inequality is due to the assumption that τ is valid. This claim
will be justified later. By summing both sides of Eq. (10) over all valid τ , we can
bound the left-hand side of Eq. (7) by

2
(

r
∑

i=1

Pr[Script(Bi,Sideal) ∈ S]
)

+ 2δ1 ≤ 2q · δ2 + 2δ1

which is the right-hand side of Eq. (7). To justify Eq. (10), note that

pSideal(τ) − pSreal(τ) =
r

∑

i=1

pSi
(τ) − pSi−1(τ).

Moreover, for each i ≤ r,

pSi
(τ) =

∑

τi∈T (i,τ)

pSideal(τi),

whereas
pSi−1(τ) ≥

∑

τi∈T (i,τ)

pSreal(τi),

because (a) the left-hand side is the chance that adversary Bi in its real world
(recall that the real world of Bi is the ideal world of Bi−1) can generate τ , which
is

∑

τ ′ pSreal(τ
′) over all enhanced transcripts τ ′ that Bi can witness such that the

corresponding transcript for A is τ , and (b) the right-hand side is
∑

τ ′ pSreal(τ
′)

over some (but probably not all) such τ ′. Hence

pSideal(τ) − pSreal(τ) ≤
r

∑

i=1

∑

τi∈T (i,τ)

pSideal(τi) − pSreal(τi)

=
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal(τi)−pSreal(τi)
)

+
r

∑

i=1

∑

τi∈T (i,τ)\Si

pSideal(τi) − pSreal(τi)

≤
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal(τi)
)

+
r

∑

i=1

∑

τi∈T (i,τ)\Si

pSideal(τi) − pSreal(τi).
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What is left is to prove that

r
∑

i=1

∑

τi∈T (i,τ)\Si

pSideal(τi) − pSreal(τi)

≤
(

r
∑

i=1

∑

τi∈T (i,τ)∩Si

pSideal(τi)
)

+ 2δ1
∑

τ1∈T (1,τ)

pSreal(τ1). (11)

Now, recall that for each τi ∈ T (i, τ)\Si, the su transcript Tr(τi) is good. Since
the two systems satisfy the almost proximity condition,

pSideal(Tr(τi)) − pSreal(Tr(τi)) ≤ Rate(Tr(τi)) · pSideal(Tr(τi)).

Recall that from Eq. (9), the ratio between pSideal(Tr(τi)) and pSreal(Tr(τi)) is
exactly that between pSideal(τi) and pSreal(τi). Then

pSideal(τi) − pSreal(τi) ≤ Rate(Tr(τi)) · pSideal(τi). (12)

This in turn implies that

pSideal(τi) ≤ pSreal(τi)
1 − Rate(Tr(τi))

. (13)

To justify that the denominator of the right-hand side is nonzero so that Eq. (13)
above is well-defined, let τ ′ be the mu transcript that has the same Cons
queries/answers as τ , and the same Prim queries/answers as τi. Since τ is nice,
so is τ ′. Thus, 1 − Rate(Tr(τi)) = 1 − Rate(Map(i, τ ′)) ≥ 1 − δ1 > 0. From
Eq. (12), to justify Eq. (11), we need to bound each sum

∑

τi∈T (i,τ)\Si

Rate(Tr(τi)) · pSideal(τi),

for every i ∈ {1, . . . , r}. For 	 ≤ i, define Rate(i, τ�) as follows. Let τ ′ be the
su transcript induced by τ� in which we only keep Cons queries/answers for
user ui, and all Prim queries/answers. Let Rate(i, τ�) = Rate(τ ′). The special
case Rate(i, τi) coincides with Rate(Tr(τi)). We claim that for each i, the sum
above is at most

∑

τ1∈T (1,τ)

2Rate(i, τ1) · pSreal(τ1) +
i

∑

s=1

∑

τs∈T (s,τ)∩Ss

2Rate(i, τs) · pSideal(τs). (14)

Note that for any s ≥ 1 and any τs ∈ T (s, τ), if we let τ ′ be the mu transcript that
has the same Cons queries/answers as τ , and the same Prim queries/answers
as τs, then τ ′ is also nice, because τ is nice. Then

r
∑

i=s

Rate(i, τs) =
r

∑

i=s

Rate(Map(i, τ ′)) ≤ δ1. (15)
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From Eq. (15),
r

∑

i=1

∑

τ1∈T (1,τ)

2Rate(i, τ1) · pSreal(τ1) ≤
∑

τ1∈T (1,τ)

2δ1 · pSreal(τ1), (16)

and
r

∑

i=1

i
∑

s=1

∑

τs∈T (s,τ)∩Ss

2Rate(i, τs) · pSideal(τs)

=
r

∑

s=1

∑

τs∈T (s,τ)∩Ss

r
∑

i=s

2Rate(i, τs) · pSideal(τs) (17)

≤
r

∑

s=1

∑

τs∈T (s,τ)∩Ss

2δ1 · pSideal(τs) ≤
r

∑

s=1

∑

τs∈T (s,τ)∩Ss

pSideal(τs). (18)

Combining Eqs. (12), (14), (16), and (18) gives us Eq. (11).
To justify Eq. (14), fix i ∈ {1, . . . , r}. We create a binary tree whose weight

at the root is exactly the sum above for i. In this tree, for any two children of
a node, the left one must be a leaf node. Moreover, we will put weights on the
nodes so that the weight of a parent node is bounded by the sum of the weights
of its children. Hence the weight at the root is bounded by the total weight of
the leaves.

Starting at the root, from Eq. (13), we can bound the weight at the root by
a linear combination of pSreal(τi), where τi ∈ T (i, τ)\Si. For each such τi, if we
enhance it with the key of user ui and the internal Prim queries/answers due to
the Cons queries of user ui then we will get an extended transcript τi−1 for adver-
sary Bi−1. (Recall that the real world of Bi is the ideal world of Bi−1.) Hence
the linear combination of pSreal(τi) becomes a linear combination of pSideal(τi−1),
for τi−1 ∈ T (i − 1, τ). We divide this into two parts, one for τi−1 ∈ Si−1, and
another for τi−1 �∈ Si−1. The first partial sum will be the weight of the left child
of the root, and the second the weight of the right child. So far, we have placed
the weights up to the second level of the tree. We will repeat the process above,
starting at the right child of the root, until we reach the i-th level. At that
point, the weight of the right-most leaf is a linear combination of pSideal(τ1), for
τ1 ∈ T (1, τ).

Recall that the weight of each node of the binary tree above is a linear
combination. We now specify the coefficients. At the root, each coefficient for
pSideal(τi) is Rate(i, τi). We will have to bound pSideal(τi) via pSreal(τi) by Eq. (13),
so the coefficients for the left and right children of the root are at most

Rate(i, τi)
1 − Rate(i, τi)

≤ Rate(i, τi−1)
1 − Rate(τi−1)

,

where the inequality is due to the fact that Rate is increasing and τi−1 contains
all queries/answers of τi, and thus Rate(i − 1, τi−1) ≥ Rate(i, τi). By repeating
this process, for nodes at the (i + 1 − s)-th level, the coefficients are at most



394 V.T. Hoang and S. Tessaro

Rate(i, τs)
∏i

�=s+1

(

1 − Rate(	, τs)
) .

Now, for the right most leaf, its weight is currently a linear combination of
pSideal(τ1), but we want to have its weight as a linear combination of pSreal(τ1)
instead. To achieve this, we will again use Eq. (13) (but i replaced by 1), and
the new coefficients for this leaf are at most

Rate(i, τ1)
∏i

�=1

(

1 − Rate(	, τ1)
) .

Hence the coefficients for a leaf at the (i + 1 − s)-th level of the tree are at most

Rate(i, τs)
∏i

�=s

(

1 − Rate(	, τs)
) ≤ Rate(i, τs)

1 − ∑i
�=s Rate(	, τs)

≤ Rate(i, τs)
1 − δ1

≤ 2Rate(i, τs),

where the first inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − x − y for
any 0 ≤ x, y < 1, and the second inequality is due to Eq. (15). The total weight
of the leaves therefore is at most

∑

τ1∈T (1,τ)

2Rate(i, τ1) · pSreal(τ1) +
i

∑

s=1

∑

τs∈T (s,τ)∩Ss

2Rate(i, τs) · pSideal(τs).

This concludes the proof. ��

4 Simplification of the Framework for Specific Settings

Since the framework in Sect. 3 aims to provide an umbrella for all settings,
it appears unnecessarily complex in many important settings. To improve the
usability of our framework, in this section, we consider some simplified treat-
ments of our general framework for specific settings. Each such specialized result
is somewhat more limited in scope, but simpler to use.

4.1 A Simple Specialization of the Framework

We now describe a specialization of the framework that is very simple, but
might be powerful enough for typical real-world cryptographic schemes, such as
the authenticated encryption scheme GCM [23]. This simple treatment however
is not enough for Double Encryption, and thus in the next subsection, we will
consider another specialized result of the general framework to handle Double
Encryption.

The Setting. Here we still use the generic setting as stated in Sect. 3, but
make an assumption on the metric σ. For a mu transcript τ and each user ui

of τ , let Map(i, τ) be the induced su transcript for user ui that consists of the
Cons(i, ·) queries/answers and Prim(·) queries/answers of τ . We require that
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for any mu transcript τ , if the Cons queries in τ have data complexity σ, and
those in each Map(i, τ) have data complexity σi, then

∑

i

σi ≤ σ.

This requirement obviously holds if we let, for example, σ be the total length of
the Cons queries.

Super-Additivity. For a function δ : (N)3 → [0, 1], we say that it is super-
additive if

δ(x, y0, z0) + δ(x, y1, z1) ≤ δ(x, y0 + y1, z0 + z1)

for every x, y0, y1, z0, z1 ∈ N. In many schemes, the desired bounds (such as
δ(p, q, σ) = σ2/2n) are often super-additive.

The Technique. One begins by defining an undesirable property on su tran-
scripts that involves only Cons queries/answers. If a su transcript has this prop-
erty then we say that it is bad, otherwise it is good.1 A mu transcript τ is nice if
there is no user ui such that its induced su transcript Map(i, τ) is bad. Let N be
the set of nice mu transcripts. We require that there be a monotonic function δ
such that for any adversary A making p Prim queries and q Cons queries of data
complexity σ,

Pr[Script(A,Sideal) �∈ N ] ≤ δ(p, q, σ), (19)

where for any system S, Script(A,S) denotes the random variable for the tran-
script of the interaction of A and S. Moreover, we require that there be a
monotonic function ε′ and a super-additive, monotonic function ε such that
for any good su transcript τ of p Prim queries and q Cons queries of data
complexity σ,

pSideal(τ) − pSreal(τ) ≤ (ε(p, q, σ) + ε′(p, q, σ)) · pSideal(τ). (20)

Lemma 3. Assume that the systems Sreal and Sideal meet the conditions in
Eqs. (19) and (20). Then

AdvdistSreal,Sideal
(A) ≤ δ(p, q, σ) + 2ε(p + tσ, q, σ) + 2q · ε′(p + tσ, q, σ).

Proof. For a su transcript τ of p Prim queries and q Cons queries of data
complexity σ, let

Rate(τ) = ε(p, q, σ) + ε′(p, q, σ).

This function Rate is increasing, in the sense that if τ ′ contains all the query-
answer pairs of τ , then Rate(τ ′) ≥ Rate(τ). To use Lemma 2, we need to establish
1 In Sect. 3, we partitioned the set of bad su transcripts into S and S ′, and required

that it is unlikely for the adversary to produce a bad transcript in S. Here S is
simply the empty set.
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the mu-boundedness of Rate. We claim that for any nice mu transcript τ of r
users, using p Prim queries and q Cons queries of data complexity σ,

r
∑

i=1

Rate(Map(i, τ)) ≤ ε(p, q) + qε′(p, q).

To justify this, suppose that τi contains qi Cons queries of data-complexity σi.
Then

r
∑

i=1

Rate(Map(i, τ)) =
r

∑

i=1

ε(p, qi, σi) + ε′(p, qi, σi)

≤
r

∑

i=1

ε(p, qi, σi) + ε′(p, q, σ)

≤ ε(p, q, σ) + r · ε′(p, q, σ) ≤ ε(p, q, σ) + q · ε′(p, q, σ).

Finally, applying Lemma 2 for δ0 = δ, δ1 = ε + qε′, and δ2 = 0, leads to the
claimed advantage. ��

4.2 The Specialized Framework for Double Encryption and Beyond

We now specialize the general framework into a more specific result that covers
the case of Single Encryption, Double Encryption, and Key-Alternating Cipher
(KAC) [11]. This result explains why these constructions, despite being some-
what similar in the structure, have different blowups when we move from su
setting to mu one.

The Setting. Let Π[E] : K × {0, 1}n × {0, 1}n be a blockcipher construction
built on top of an ideal blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n such that a
single call to Π/Π−1 makes at most t calls to E/E−1. Let Sreal and Sideal be
two stateless systems implementing games RealΠ[E],Sample and RandΠ[E],Sample

in Fig. 1, respectively. We will measure adversaries’ resources in terms of q (the
number of Enc/Dec queries) and p (the number of Prim/PrimInv queries).
A transcript recording the interaction between an adversary and a system S ∈
{Sideal,Sreal} contains the following:

– Enc/Dec queries: A query to Enc(i, x) returning y is associated with an
entry (enc,+, i, x, y). Likewise, a query to Dec(i, y) returning x is associated
with an entry (enc,−, i, x, y).

– Prim/PrimInv queries: A query to Prim(J, u) returning v is recorded in the
transcript as (prim,+, J, u, v). Likewise, a query to PrimInv(J, v) returning
u is associated with an entry (prim,−, J, u, v).

Super-Additivity and Beyond. For a function δ : (N)2 → [0, 1], we say that
it is super-additive if δ(x, y) + δ(x, z) ≤ δ(x, y + z), for every x, y, z ∈ N. For
real numbers M > 0 and z ≥ 0, let Cost(M, z) = max{M, z} if z > 1, and
Cost(M, z) = M/ lg(M) if z ≤ 1.
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The Technique. One begins by defining an undesirable property on su tran-
scripts, which can involve both Enc/Dec and Prim/PrimInv queries/answers.
If a su transcript has this property, we say that it is bad ; otherwise it is good. Let
S be the set of all bad su transcripts.2 If a su transcript is not bad, we say that
it is good. We demand that there be a monotonic function ε∗ such that for any
su adversary A that makes at most qEnc/Dec queries and pPrim/PrimInv
queries,

Pr[Script(A,Sideal) ∈ S] ≤ ε∗(p, q) (21)

where for any system S, Script(A,S) denotes the random variable for the tran-
script of the interaction of A and S.

For any transcript τ in which the adversary attacks just a single user, let
Ent(τ) be the number of entries (prim, ·, ·, u, v) such that τ contains either an
entry (enc,+, 1, ·, x) or an entry (enc,−, 1, x, ·), for some x ∈ {u, v}. Suppose that
there are monotonic functions ε′, ε′′ and a monotonic, super-additive function ε
such that, for any good su transcript of q queries to Enc/Dec, and p queries to
Prim/PrimInv,

pSideal(τ) − pSreal(τ) ≤ (ε(p, q) + ε′(p, q) · Ent(τ) + ε′′(p, q)) · pSideal(τ). (22)

If Eqs. (21) and (22) are met, then we say that Π[E] has the (ε, ε′, ε′′, ε∗)-
proximity property.

Note that Ent(τ) ≤ min{p, 2k+2q}, where k is the key length of the primi-
tive E. Thus (ε, ε′, ε′′, ε∗)-proximity immediately implies that for any adversary
attacking a single user via qEnc/Dec queries and pPrim/PrimInv queries, its
su advantage is at most ε(p, q)+ ε′(p, q) ·min{p, q ·2k+2}+ ε′′(p, q)+ ε∗(p, q). The
following result bounds the mu security of Π[E].

Lemma 4. Assume that Π[E] has the (ε, ε′, ε′′, ε∗)-proximity property. Then for
any adversary A that makes at most qEnc/Dec queries, and pPrim/PrimInv
queries,

Adv±mu-prp
Π[E],Sample(A) ≤ 2−n + 2ε + 2q(ε′′ + ε∗) + Cost(4n, 8q/2n) · 10(p + qt)ε′,

where t is the number of calls to E/E−1 that a single call to Π/Π−1 makes, and
functions ε, ε′, ε′′, ε∗ all take arguments p + qt and q. ��

Discussion. Recall that our technique dissects a su bound into three compo-
nents: ε, ε′ · min{p, q · 2k+2}, and (ε′′ + ε∗). Lemma 4 above then lifts those to
ε, Cost(4n, 8q/2n) · (p + qt) · ε′, and q · (ε′′ + ε∗), respectively, for the corre-
sponding mu bound. This trisection captures different possibilities of security
loss when one moves from su to mu security: (i) Key-Alternating Cipher (where
ε is the dominant term in both the su and mu bounds) [19], (ii) Single Encryp-
tion (where ε′′ + ε∗ and q · (ε′′ + ε∗) are the dominant term in the su and mu
2 In Sect. 3, we factored the set of bad su transcripts into two disjoint sets S and S ′,

and required that it is unlikely for the adversary to produce a bad transcript in S.
Here S ′ is simply the empty set.
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bounds respectively), and (iii) Double Encryption (where ε′ · min{p, q · 2k+2}
and Cost(4n, 8q/2n) · (p + qt)ε′ are the dominant term in the su and mu bounds
respectively).

Given a su analysis, there might be multiple choices for ε and ε′′. However,
recall that when we move from su to mu security, the former term remains the
same, whereas the latter blows up with a factor q. Therefore, when we need to
pinpoint ε and ε′′, we will shift as much weight to ε as possible, and the optimal
choice of ε will often be clear from the context and the best mu attacks. On
the other hand, due to the q-blowup of ε′′, one may need a very fine-grained su
analysis to obtain a good mu bound.

The Proof of Lemma 4. We want to show that Lemma 2 implies the claimed
result. In order to do that, we need to define (i) function Rate(τ) for su tran-
scripts τ , and (ii) a niceness property for mu transcripts. The former is obvious:
for a su transcript τ of p Prim/PrimInv queries and q Enc/Dec queries, let

Rate(τ) = ε(p, q) + ε′(p, q) · Ent(τ) + ε′′(p, q).

This function Rate is increasing, in the sense that if τ ′ contains all the query-
answer pairs of τ then Rate(τ ′) ≥ Rate(τ). Next, let d = 5

4Cost(4n, 8q/2n). We
say that a mu transcript τ in the support of Script(A,Sideal) is nice if it satisfies
the following constraints:

– There are no d entries in τ of the form (enc,+, ·, ·, y), . . . , (enc,+, ·, ·, y).
– There are no d entries in τ of the form (enc,−, ·, x, ·), . . . , (enc,−, ·, x, ·).

Clearly, the definition of niceness involves only Enc/Dec query-answer pairs
of τ . Let N be the set of nice mu transcripts. The following bounds the chance
that A’s transcript is not nice; the proof is in the full version of this paper.

Lemma 5. For any adversary A that makes at most q Enc/Dec queries, and
p Prim/PrimInv queries,

Pr[Script(A,Sideal) �∈ N ] ≤ 1
2n

. ��

To use Lemma 2, we need to establish the mu-boundedness of Rate. Specifically,
we claim that, for any nice mu transcript τ of r users, using p Prim/PrimInv
queries and q Enc/Dec queries,

r
∑

i=1

Rate(Map(i, τ)) ≤ ε(p, q) + qε′′(p, q) + 4dpε′(p, q). (23)

Then using Lemma 2 for δ0 = 2−n and δ1 = ε + qε′′ + 4dpε′ and δ2 = ε∗ leads to
our claimed result.
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We now justify Eq. (23). Suppose that in τ , the adversary uses qi Enc/Dec
queries for the i-th user. Then

r
∑

i=1

Rate(Map(i, τ)) =
r

∑

i=1

(

ε(p, qi) + ε′′(p, qi) + Ent(Map(i, τ)) · ε′(p, qi)
)

≤ ε(p, q) + rε′′(p, q) +
r

∑

i=1

Ent(Map(i, τ)) · ε′(p, q)

≤ ε(p, q) + qε′′(p, q) +
r

∑

i=1

Ent(Map(i, τ)) · ε′(p, q),

where the first inequality is due to the superadditivity of ε and the monotone of
ε′ and ε′′. Thus to justify (23), what’s left is to prove that

r
∑

i=1

Ent(Map(i, τ)) ≤ 4dp.

Since τ is nice, for each entry (prim, ·, ·, u, v), there are at most 4d entries
(enc, ·, ·, ·, x) or (dec, ·, ·, x, ·), for x ∈ {u, v}. Since each Enc/Dec entry belongs
to exactly one user, for each Prim/PrimInv entry of τ , there are at most 4d
indices i such that Ent(Map(i, τ)) counts this entry, and thus summing over
pPrim/PrimInv entries of τ gives us

r
∑

i=1

Ent(Map(i, τ)) ≤ 4dp

as claimed.

5 Exact Multi-user Security of Double Encryption

5.1 Results and Discussion

Results. In this section, we give an exact mu security bound of Double Encryp-
tion via the specialized framework in Sect. 4.2; the key-sampling algorithm is
uniform. While it is relatively easy to give an exact su security bound of Double
Encryption [2,14], giving a good (ε, ε′, ε′′, ε∗)-proximity bound, as in Lemma 6
below, requires a much more fine-grained analysis. The proof, given in Sect. 5.2,
is based on the expectation method of Hoang and Tessaro [19].

Lemma 6. Let n ≥ 16 and k ≥ 1 be integers, and let E : {0, 1}k × {0, 1}n →
{0, 1}n be a blockcipher. Then DE[E] satisfies the (ε, ε′, ε′′, ε∗)-proximity prop-
erty, with ε(p, q) = 2q

2k+n/2 + 3qB2+2Bpq
22k

, ε′(p, q) = 2p
22k

, ε′′(p, q) = 5Bp
22k

, and
ε∗(p, q) = 1

2k+n , where B = 5
4 · Cost(4n + 2k, 8q/2n). ��

From Lemmas 4 and 6, we immediately obtain the following result.
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Theorem 1 (Mu security of Double Encryption). Let n, k ∈ N be integers,
and let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Then for any adversary
making only qEnc/Dec queries and pPrim/PrimInv queries,

Adv±mu-prp
DE[E] (A) ≤ 1

2n
+

5q

2k+n/2
+

6qB2 + 222BQ2

22k

where B = 5
4 · Cost(4n + 2k, 8q/2n) and Q = max{p, q}. ��

Discussion. Admittedly, the bound in Theorem 1 looks complicated. However,
for the “usual” setting n ≥ k ≥ 16 and q ≤ 2k

8 , the bound can be simplified
to Adv±mu-prp

DE[E] (A) ≤ 1
2n + (n+5)q

21.5k
+ 1554nQ2

lg(4n)·22k . On the other hand, recall that

the classical su bound of DE[E] by Aiello et al. [2] is Adv±prp
DE[E](A) ≤ p2

22k
. If

we apply the hybrid argument to this, we will get the following inferior bound
Adv±mu-prp

DE[E] (A) ≤ q(p+2q)2

22k
. While this bound is enough to show that Double

Encryption squarely beats Single Encryption in mu security,3 it is much worse
than the bound in Theorem 1, as illustrated in Fig. 2.
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Fig. 2. Mu and su security of Single and Double Encryption on AES. From left
to right: the mu bound of Single Encryption, the naive mu bound of Double Encryption
via the hybrid argument, the mu bound of Double Encryption via Theorem 1, the su
bound of Single Encryption, and the classical su bound of Double Encryption by Aiello
et al. [2]. We set p = q and n = k = 128. The x-axis gives the log (base 2) of p, and
the y-axis gives the security bounds.

5.2 Proof of Lemma 6

It is convenient to assume without loss of generality that the adversary doesn’t
make redundant queries. Our proof borrows the overall approach used by Hoang
and Tessaro [19] for key-alternating ciphers. We begin with some high-level setup.

Assumptions on the Transcript. We consider an arbitrary fixed transcript τ
which contains qEnc/Dec queries and pPrim/PrimInv queries. Moreover, for
a transcript τ , we also denote (following [14])

3 Recall that Adv±prp
E (A) ≤ p

2k
and Adv±mu-prp

E (A) ≤ p(p+q)

2k
for an adversary A mak-

ing only qEnc/Dec queries and pPrim/PrimInv queries.
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Fwd(τ) = max
y∈{0,1}n

∣

∣{(J, x) | (prim,+, J, x, y) ∈ τ}∣∣ ,

Bwd(τ) = max
x∈{0,1}n

∣

∣{(J, y) | (prim,−, J, x, y) ∈ τ}∣∣ .

Recall that to establish (ε, ε′, ε′′, ε∗)-proximity, we have to define bad transcripts.
A transcript is bad if either Fwd(τ) > B or Bwd(τ) > B, where

B :=
5
4

· Cost(4n + 2k, 8p/2n) .

Let S be the set of all bad transcripts. The following bounds the chance that
the adversary produces a bad transcript; the proof is in the full version of this
paper.

Lemma 7. For any adversary A that makes pPrim/PrimInv queries and
qEnc/Dec queries,

Pr[Script(A,Sideal) ∈ S] ≤ 1
2n+k

. ��

From now on, we assume that additionally τ /∈ S. We shall use the expectation
method to prove the claimed bound of the gap pSideal(τ) − pSreal(τ). We begin
with some combinatorial results on the transcript.

Type-1 Chains. Consider a pair of entries (prim, ·, ·, x1, y1), (prim, ·, ·, x2, y2)
in τ such that y1 = x2. We say that it is a positive type-1 chain if there’s an
entry (enc,+, x1, ·) in τ . We say that it is a negative type-1 chain if there’s an
entry (enc,−, ·, y2). The following lemma bounds the number of type-1 chains;
the proof is in Appendix A.

Lemma 8. The number of type-1 chains is at most 4Bp + 2B2q + 2Bpq. ��

Type-2 Chains. Consider a pair of entries (prim, ·, ·, x1, y1), (prim, ·, ·, x2, y2).
We say that it is a positive type-2 chain if there’s an entry (enc,+, x1, y2) in τ . We
say that it is a negative type-2 chain if there’s an entry (enc,−, x1, y2) in τ . The
following lemma bounds the number of type-2 chains; the proof is in AppendixB.

Lemma 9. The number of type-2 chains is at most 2p · Ent(τ). ��

Good and Bad Keys. We shall use the expectation method. Let S be the
random variable for the key. The key-space K is ({0, 1}k)2 and S is uniformly
distributed over K. For each key vector s = (K1,K2) ∈ K and each i ∈ {1, 2},
let pi[s] be the number of queries (prim, ·,Ki, ·, ·) in τ .

Definition 1 (Good and bad keys). We say that a key s = (K1,K2) is bad
if one the following happens:
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(i) K1 = K2 and p1[s] ≥ 1, or
(ii) K1 �= K2, p1[s] ≥ 1 and p2[s] ≥ 2n/4, or
(iii) K1 �= K2, p1[s] ≥ 2n/4 and p2[s] ≥ 1, or
(iv) K1 �= K2 and there’s a (type-1 or 2) chain (prim, ·,K1, ·, ·), (prim, ·,K2, ·, ·).
If a key is not bad then we say that it is good. Let Γbad be the set of bad keys,
and let Γgood = K\Γbad.

We first bound the probability that S is bad. First, the chance that S satisfies
condition (i) above is at most p

22k
. Next, we say that a subkey J ∈ {0, 1}k is

heavy if there are at least 2n/4 entries (prim, ·, J, ·, ·) in τ . Since there are at
most 4p/2n heavy subkeys, the chance that S satisfies condition (ii) above is at
most 4p/2n

2k
· p
2k

= 4p2

22k+n . Likewise, the chance that S satisfies condition (ii) above

is at most 4p2

22k+n . From Lemmas 8 and 9, there are at most 2p · Ent(τ) + 4Bp +
2qB2 + 2Bpq chains, and thus the chance that S satisfies condition (iii) above
is at most 2p·Ent(τ)+4Bp+2qB2+2Bpq

22k
. Summing up

Pr[S is bad] ≤ p + 8p2/2n

22k
+

2p · Ent(τ) + 4Bp + 2qB2 + 2Bpq

22k

≤ 2p · Ent(τ) + 5Bp + 2qB2 + 2Bpq

22k
.

Next, recall that in the expectation method, one needs to find a non-negative
function g : K → [0,∞) such that g(s) bounds 1 − pS0(τ, s)/pS1(τ, s) for all
s ∈ Γgood. Let U be the subset of Γgood such that for any (K1,K2) ∈ U , we
have K1 = K2. We will define g(s) such that g(s) = 2q/2n/2 for every s ∈ U ,
and g(s) = 4q·p1[s]·p2[s]

22n for every s ∈ K\U . We will show that g(s) bounds
1 − pS0(τ, s)/pS1(τ, s) later. Then

E[g(S)] =
1

22k

(

∑

s∈U

g(s) +
∑

s∈K\U

g(s)
)

=
1

22k

(

∑

s∈U

q

2n/2
+

∑

s∈K\U

4qp1[s]p2[s]
22n

)

≤ 1
22k

( q2k

2n/2
+

4qp2

22n

)

≤ q

2k+n/2
+

qB2

22k
.

Then from Lemma 1,

pSideal(τ) − pSreal(τ) ≤
(

Pr[S is bad] + E[g(S)]
)

pSideal(τ)

≤
( 2q

2k+n/2
+

2p · Ent(τ) + 5Bp + 3qB2 + 2Bpq

22k

)

pSideal(τ).

We now show that g(s) indeed bounds 1−pS0(τ, s)/pS1(τ, s) for every s ∈ Γgood.
We consider the following cases, depending on whether s ∈ Γgood\U or s ∈ U .
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Case 1: s ∈ Γgood\U . For this case, we have to consider two sub-cases, depending
on whether q ≤ N/4 or not.

Case 1.1: q ≤ N/4. Let s = (K1,K2). Since s ∈ Γgood\U , we must have
K1 �= K2. We now use the following result of Chen and Steinberger [12]. (Their
proof considered key-alternating ciphers, but we note that we are restricting
ourselves to the setting K1 �= K2, and and their proof also applies to the special
case that all sub-keys of the key-alternating cipher are 0n, which is equivalent
to our setting here.)

Lemma 10. [12] Assume that p1[s], p2[s], q < 2n/2. Then

1 − pS0(τ, s)
pS1(τ, s)

≤ q · p1[s] · p2[s]
(2n − q − p1[s])(2n − q − p2[s])

. ��

From Lemma 10, since p1[s], p2[s], q ≤ 2n/4,

1 − pS0(τ, s)
pS1(τ, s)

≤ 4q · p1[s] · p2[s]
22n

= g(s).

Case 1.2: N/4 < q ≤ N . Let Z be the random variable for the additional
(N −q) Enc queries that τ lacks. For we write pSreal(τ, s, z) to be the probability
that Sreal answers queries according to τ , and that S = s and Z = z. In this
case pSideal(τ, s, z) is the probability that Sideal behaves according to the entries
in (τ, z), and S ←$ {0, 1}2k agrees with s. We now show that pSideal(τ, s, z) ≤
pSreal(τ, s, z) for all choices of z such that pSideal(τ, s, z) > 0, and thus

pSideal(τ, s) − pSreal(τ, s) ≤
∑

z

pSideal(τ, s, z) − pSreal(τ, s, z) ≤ 0 ≤ g(s).

Let s = (K1,K2) and a = p1[s] and b = p1[s] + p2[s] < 2n. As s ∈ Γgood\U , the
entries in (τ, z) consist of the following categories:

(1) (enc, ·, 1, x1, y1), . . . , (enc, ·, 1, x2n , y2n),
(2) (prim, ·,K1, x1, u1), . . . , (prim, ·,K1, xa, ua) and (prim, ·,K2, ua+1, ya+1),

. . . , (prim, ·,K2, ub, yb), and
(3) (prim, ·, J, ·, ·), with J �∈ {K1,K2}.

Hence pSreal(τ, s, z) is the probability of the following events:

(i) If we make queries in category (3) above, we get the answers provided by τ .
(ii) S ←$ {0, 1}2k agrees with s.
(iii) For any i ∈ {1, . . . , a + b}, querying Prim(K1, xi) in Sreal yields ui, and

querying PrimInv(K2, yi) in Sreal yields ui. Moreover, for any j ∈ {b +
1, . . . , 2n}, in Sreal, the output of Prim(K1, xj) is the same as the output
of PrimInv(K2, yj).

Note that the three events above are independent, and the first two are indepen-
dent of the system. On the other hand, pSideal(τ, s, z) is likewise the probability
of events (i), (ii), and the following
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(iv) For any i ∈ {1, . . . , a}, querying Prim(K1, xi) in Sideal yields ui. For any
i ∈ {a + 1, . . . , b}, querying PrimInv(K2, yi) in Sideal yields ui. Moreover,
for any j ∈ {1, . . . , 2n}, querying Enc(1, xj) yields yj .

Again, note that events (i), (ii), and (iv) are independent. Hence we need only
show that the probability that event (iii) happens is at least the probability that
event (iv) happens. The chance that event (iii) is

1
(2n)! · 2n(2n − 1)(2n − a − b)

whereas the chance that event (iv) happens is

1
(2n)! · 2n(2n − 1) · · · (2n − a) · 2n(2n − 1) · · · (2n − b)

.

Hence the probability that event (iii) happens is indeed at least the probability
that event (iv) happens.

Case 2: s ∈ U . Then p1[s] = 0. Clearly if q ≥ 2n/2−1 then the claim vacuously
holds. Assume that q < 2n/2−1. Let s = (K1,K1). Let the Enc/Dec entries in
τ be (enc, ·, 1, x1, y1), . . . , (enc, ·, 1, xq, yq). Note that τ doesn’t contain any entry
(prim, ·,K1, ·, ·). Then pSideal(τ, s) is the probability of the following events:

(a) S ←$ {0, 1}2k agrees with s.
(b) If we make Prim/PrimInv queries in τ , we get the answers provided by τ .
(c) Sideal behaves according to the Enc/Dec queries in τ .

Note that the three events above are independent, and the first two are inde-
pendent of the system. On the other hand, pSreal(τ, s) is at least the probability
of events (a), (b), and the following:

(d) For every i ∈ {1, . . . , q}, if we query Prim(K,xi), we will get an answer
zi �∈ {x1, y1, . . . , xq, yq}, and the strings z1, . . . , zq are distinct. Moreover, if
we query Prim(K, zi), we will get yi.

Again, events (a), (b), and (d) are independent. Hence we only need to show
that, Pr[Event (d)] ≥ (1 − 2q/2n/2) Pr[Event (c)]. Note that event (c) happens
with probability

1
2n(2n − 1) · · · (2n − q + 1)

,

whereas event (d) happens with probability

(

q−1
∏

i=0

2n − 2q − i

2n − i

) 1
(2n − q) · · · (2n − 2q + 1)

.



The Multi-user Security of Double Encryption 405

Hence

Pr[Event (d)]
Pr[Event (c)]

=
q−1
∏

i=0

2n − 2q − i

2n − q − i
=

q−1
∏

i=0

(

1 − q

2n − q − i

)

≥ 1 −
q−1
∑

i=0

q

2n − q − i
≥ 1 − q2

2n − 2q
≥ 1 − 2q

2n/2
,

where the first inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − x − y for
any x, y ≥ 0, and the last inequality is due to the assumption that q < 2n/2−1.
This concludes the proof.

6 Matching Attacks

In this section, we give matching attacks for both Single Encryption and Dou-
ble Encryption, in which the adversary uses Θ(q) Enc/Dec queries and Θ(p)
Prim/PrimInv queries. Our attack on Single Encryption generalizes Biham’s
work [10] for all choices of the parameters p and q. For Double Encryption, recall
that one can launch a su attack with advantage p2

22k
, and Biham’s key-collision

attack [10] gives a mu attack with advantage q2

22k
. Thus those attacks already

give matching bounds in the usual case n ≥ k (such as DES or AES). Hence for
Double Encryption, the only interesting setting to find matching attacks is where
n � k (such as Format-Preserving Encryption or MISTY-1). We however only
know how to give matching attacks for this setting if the adversary is given all
the keys after it finishes querying, which is the model in our security proof and
many prior works [14,16]. Our attack yields the bound around p2s/22k, where
s = max{�n/8 lg(n)�, q/2n}, which is much better than the two known attacks
above. We leave as an open problem to find matching attacks for n � k without
key revelation.

A Useful Inequality. In the attacks, we often need to make use of the following
technical result.

Lemma 11. Let r ≥ 1 be an integer and 0 < a ≤ 1/r. Then (1−a)r ≤ 1−ar/2.

Proof. Clearly the claimed inequality holds for r = 1, and thus we need only
consider r ≥ 2. Let f(x) = xr/2+(1−x)r −1. Our goal is to show that f(a) ≤ 0.
The derivative and second derivative of the function f are f ′(x) = r

2 −r(1−x)r−1

and f ′′(x) = 1
2+r(r−1)(1−x)r−2 respectively. Since f ′′(x) > 0 for all x ∈ [0, 1/r],

the function f ′(x) is strictly increasing. We claim that f(a) ≤ max{f(0), f(1/r)}.
Since f(0) = 0 and

f(1/r) =
1
2

+ (1 − 1/r)r − 1 ≤ 1
e

− 1
2

< 0,

we have f(a) ≤ 0. To justify the claim above, note that if f ′(1/r) < 0 then func-
tion f is decreasing, and thus f(a) ≤ f(0) = max{f(0), f(1/r)}. If f ′(1/r) ≥ 0,



406 V.T. Hoang and S. Tessaro

since function f ′ is strictly increasing and f ′(0) = −r/2 < 0, there exists
b ∈ [0, 1/r] such that f ′(x) < 0 for every x ∈ [0, b) and f ′(x) ≥ 0 for every
x ∈ [b, 1/r]. Hence function f is decreasing in [0, b) and increasing in [b, 1/r],
and thus f(a) ≤ max{f(0), f(1/r)}. ��

6.1 Attacking Single Encryption

Let d = � k+2
n−1� and assume that d ≤ 2n−1, which holds for all practical values of

n and k. Then

2n(2n − 1) · · · (2n − d + 1) ≥ (2n−1)d ≥ 2k+2.

For all practical values of n and k, the value d will be very small. For example,
if n = 64 and k = 56 (meaning DES parameters), we have d = 1. Or if n = k =
128 (meaning AES parameters), we have d = 2. Let p, q ∈ N such that pq ≤
2k. Consider the following adversary A. It picks arbitrary distinct x1, . . . , xd ∈
{0, 1}n and queries Enc(i, x�) to get answer yi,�, for every i ∈ {1, . . . , q} and
	 ∈ {1, . . . , d}. It then picks p arbitrary distinct keys K1, . . . ,Kp ∈ {0, 1}k and
queries E(Kj , x�) to get answer zj,�, for every j ∈ {1, . . . , p} and 	 ∈ {1, . . . , d}. If
there are i and j such that yi,� = zj,� for every 	 ∈ {1, . . . , d} then the adversary
outputs 1, otherwise it outputs 0. In the real game, from Lemma 11, the chance
that the adversary outputs 1 is

1 −
(

1 − p

2k

)q

≥ pq

2k+1
.

In the ideal game, the chance that it outputs 1 is

pq

2n(2n − 1) · · · (2n − d + 1)
≤ pq

2k+2
.

Hence Adv±mu-prp
E (A) ≥ pq

2k+2 , and the adversary uses dq Enc queries and dp
Prim queries.

6.2 Attacking Double Encryption

Here we assume that 16 ≤ n < k, and aim to achieve advantage p2s/22k, where
s = max{�n/8 lg(n)�, q/2n}. We have the following restrictions on the parame-
ters p and q:

– Since there are attacks with advantage Q2/22k, where Q = max{p, q}, we need
only consider 2n/n ≤ q ≤ 2k.

– Since using p ≈ 2k/
√

s is already enough to get a constant advantage, without
loss of generality, we can assume that p ≤ 2k/

√
s.

Moreover, recall that we are in the model where the keys are given to the adver-
sary after it finishes querying.
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The Attack. For every i ∈ {1, . . . , q}, query (i, 0n) to Enc to receive answer yi.
View each string in {0, 1}n as a bin, and querying Enc(i, 0n) means throwing a
ball to those 2n bins at random. Let y be the bin of the most balls, and let S
be the set of indices i such that the corresponding ball falls into bin y. The
following lemma gives a strong concentration bound on |S| in both the real and
ideal games; see Appendix C for the proof.

Lemma 12. Let n ≥ 16 and q ≥ 2n/n be integers. Consider throwing q balls to
2n bins at random. Let X denote the random variable for the number of balls in
the bin of most balls. Then

Pr
[

X ≥ max{�n/8 lg(n)�, q/2n}
]

≥ 1 − 2−n/3. ��

Next, if |S| < s then the output a random guess to get advantage 0. If |S| ≥ s,
which happens with probability at least 1− 2−n/3 according to Lemma 12, then
adapt the meet-in-the-middle attack as follows. Pick distinct keys J1, . . . , J2p ∈
{0, 1}k, and query Prim(Ji, x) and PrimInv(Ji+p, y) to get answer ui and vi

respectively. When the keys are given, check if there are some i, j ∈ {1, . . . , p}
and 	 ∈ S such that (Ji, Jj+p) is the key of user 	. If such a triple (i, j, 	) exists
then output 1 if and only if ui = vj .

Analyses. Suppose that |S| ≥ s. Then the chance that there are i, j ∈ {1, . . . , p}
and 	 ∈ S such that (Ji, Jj+p) is the key of user 	 is

1 − (1 − p2/22k)|S| ≥ 1 − (1 − p2/22k)s ≥ p2s

22k+1
,

where the last inequality is due to Lemma 11. If this pair exists then in the ideal
game, the conditional probability that vi = ui is 1/2n, whereas in the real game,
vi = ui with conditional probability 1. Putting this all together, the adversary
wins with advantage at least

(1 − 2−n/3)(1 − 2−n) · p2s

22k+1
≥ max{�n/8 lg(n)�, q/2n} · p2

3 · 22k
.

Discussion. What’s the problem if we are not given keys at the end of the query-
ing process? Now we have many pairs (i, j) such that ui = vi. One such pair will
yield the key (Ji, Jj+p) for some user, but we don’t know which user. Moreover,
there are too many pairs (i, j)—one can show that in the ideal world, there are
on average O(p2/2n) such pairs—and most of them are just false positives.
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A Proof of Lemma 8

We claim that the number of positive type-1 chains is at most 2Bp+B2q +Bpq.
By symmetry, the number of negative type-1 chains is also at most 2Bp+B2q +
Bpq. Hence the total number of type-1 chains is at most 4Bp + 2B2q + 2Bpq.

To justify the claim above, consider a positive type-1 chain (prim, ·, ·, x1, y1),
(prim, ·, ·, x2, y2). There are four ways to assign the signs +/− to the entries.
Fix a specific way to assign the signs. We consider the following cases.

Case 1: Both entries have sign −. Then there are at most Bq choices for the
first entry, since τ �∈ S. Moreover, once the first entry is fixed, there are only
B choices for the second entry. Thus in this case, the total number of positive
type-1 chains is at most B2q.

Case 2: Both entries have sign +. There are at most p choices for the last entry.
Moreover, once the last entry is fixed, there are at most B choices for the first
entry. Thus in this case, the total number of positive type-1 chains is at most
Bp.

Case 3: The first entry has sign − and the second sign +. There are at most
Bq choices for the first entry and p choices for the last one. Thus in this case,
the total number of positive type-1 chains is at most Bpq.

Case 4: The first entries has sign + and the second sign −. Then there are at
most p choices for the first entry. Moreover, once the first entry is fixed, there
are at most B choices for the last entry. Thus in this case, the total number of
positive type-1 chains is at most Bp.

Summing up, the total number of positive type-1 chains is at most 2Bp +
B2q + Bpq.

B Proof of Lemma 9

We claim that the number of negative type-2 chains is at most p · Ent(τ). By
symmetry, the number of positive type-2 chains is also at most p ·Ent(τ). Hence
the total number of type-2 chains is at most 2p · Ent(τ).

To justify the claim above, consider a negative type-2 chain (prim, ·, ·, x1, y1),
(prim, ·, ·, x2, y2). Then there are at most Ent(τ) choices for the first entry, and
p choices for the last entry. Thus the total number of negative type-2 chains is
at most p · Ent(τ).

C Proof of Lemma 12

Let s = �n/8 lg(n)�. Clearly X ≥ q/2n, hence we only need to consider the case
that q/2n ≤ s. Our proof will closely follow the second-moment method in classic
balls-into-bins papers [27]. For any i ∈ {1, . . . , 2n}, the chance that the i-th bin
has at least s balls is
(

q

s

)

1
(2n)s

(

1− 1
2n

)q−s

≥
(q

s

)s 1
(2n)s

(

1− 1
2n

)q

≥
(q/2n

s

)s

·e−q/2n ≥ n−2s·e−q/2n .
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Moreover,

n−2s · e−q/2n ≥ 2−2s lg(n) · 2−1.5q/2n ≥ 2−n/4− 1.5n
8 lg(n) ≥ 2−n/3.

Let Yi be the Bernoulli random variable such that Yi = 1 if and only if the i-th
bin has at least s balls. Then E[Yi] = Pr[Yi = 1] ≥ 2−n/3. Let Y = Y1+ · · ·+Y2n ,
and thus

E[Y ] = E[Y1] + · · · + E[Y2n ] ≥ 22n/3.

Since

Pr[X ≥ s] = Pr[Y ≥ 1] = 1 − Pr[Y = 0] ≥ 1 − Pr
[

|Y − E[Y ]| ≥ E[Y ]
]

,

what’s left is to show that Pr
[

|Y − E[Y ]| ≥ E[Y ]
]

≤ 2−n/3. By Chebyshev’s
inequality,

Pr
[

|Y − E[Y ]| ≥ E[Y ]
]

≤ Var[Y ]
(E[Y ])2

≤ Var[Y ]
24n/3

.

It then suffices to show that Var[Y ] ≤ 2n. On the one hand, for any i �= j, each
Yi and Yj are negatively correlated, as some bin having more balls means that
it is less likely for another bin to be so. Therefore, each covariance Cov(Yi, Yi)
is at most 0. On the other hand, since each Yi is a Bernoulli random variable,
(Yi)2 = Yi, and thus

Var[Yi] ≤ E[(Yi)2] = E[Yi] ≤ 1.

Hence

Var[Y ] =
2n
∑

i=1

Var[Yi] +
∑

i�=j

Cov(Yi, Yj) ≤ 2n.
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Abstract. This paper initiates the study of standard-model assump-
tions on permutations – or more precisely, on families of permutations
indexed by a public seed. We introduce and study the notion of a public-
seed pseudorandom permutation (psPRP), which is inspired by the UCE
notion by Bellare, Hoang, and Keelveedhi (CRYPTO ’13). It considers a
two-stage security game, where the first-stage adversary is known as the
source, and is restricted to prevent trivial attacks – the security notion
is consequently parameterized by the class of allowable sources. To this
end, we define in particular unpredictable and reset-secure sources anal-
ogous to similar notions for UCEs.

We first study the relationship between psPRPs and UCEs. To start
with, we provide efficient constructions of UCEs from psPRPs for both
reset-secure and unpredictable sources, thus showing that most applica-
tions of the UCE framework admit instantiations from psPRPs. We also
show a converse of this statement, namely that the five-round Feistel con-
struction yields a psPRP for reset-secure sources when the round function
is built from UCEs for reset-secure sources, hence making psPRP and
UCE equivalent notions for such sources.

In addition to studying such reductions, we suggest generic instanti-
ations of psPRPs from both block ciphers and (keyless) permutations,
and analyze them in ideal models. Also, as an application of our notions,
we show that a simple modification of a recent highly-efficient gar-
bling scheme by Bellare et al. (S&P ’13) is secure under our psPRP
assumption.

Keywords: Symmetric cryptography · UCE · Permutation-based cryp-
tography · Assumptions · Indifferentiability

1 Introduction

Many symmetric cryptographic schemes are built generically from an underlying
component, like a hash function or a block cipher. For several recent examples
(e.g., hash functions [15,39], authenticated-encryption schemes [4], PRNGs [16],
garbling schemes [10]), this component is a (keyless) permutation, which is either
designed from scratch to meet certain cryptanalytic goals (as in the case of SHA-
3 and derived algorithms based on the sponge paradigm) or is instantiated by
fixing the key in a block cipher like AES (as in the garbling scheme of [10]).
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The security of these schemes is usually proved in the ideal-permutation
model, that is, the permutation is randomly chosen, and all parties are given
(black-box) access to it. Essentially no non-tautological assumptions on per-
mutations are known which are sufficient to imply security.1 This situation is
in sharp contrast to that of hash functions, where despite the popularity of
the random-oracle model, we have a good understanding of plausible security
assumptions that can be satisfied by these functions. This is particularly impor-
tant – not so much because we want to put ideal models in question, but because
we would like to assess what is really expected from a good permutation or hash
function that makes these schemes secure.

Our contributions, in a nutshell. This paper initiates the study of com-
putational assumptions for permutation-based cryptography. Akin to the case
of hash functions, we extend permutations with a public seed, that is, πs is used
in lieu of π, where s is a public parameter of the scheme. We introduce a new
framework – which we call public-seed pseudorandom permutations, or psPRPs,
for short – which we investigate, both in terms of realizability, as well as in
terms of applications. Our approach takes inspiration from Bellare, Hoang, and
Keelveedhi’s UCE framework [8], which we extend to permutations. As we will
see, psPRPs are both useful and interesting objects of study.

Beyond definitions, we contribute in several ways. First off, we build UCEs
from psPRPs via efficient permutation-based hash functions, and show con-
versely how to build psPRPs from UCEs using the Feistel construction. We
also discuss generic instantiations of psPRPs from block ciphers and keyless
permutations. Finally, we show a variant of the garbling scheme from [10] whose
security can be based on a psPRP assumption on the underlying block cipher,
without compromising efficiency. Our reductions between psPRPs and UCEs are
established by general theorems that connect them with a weak notion of indif-
ferentiability, which is of independent interest. We explain all of this in detail in
the remainder of this introduction; an overview of the results is in Fig. 1.

The UCE framework: A primer. Bellare, Hoang, and Keelveedhi (BHK) [8]
introduced the notion of a universal computational extractor (UCE). For a seeded
hash function H : {0, 1}s × {0, 1}∗ → {0, 1}h, the UCE framework considers a
two-stage security game. First, a source S is given oracle access to either H(s, ·)
(for a random, and for now secret, seed s), or a random function ρ : {0, 1}∗ →
{0, 1}h. After a number of queries, the source produces some leakage L ∈ {0, 1}∗.
In the second stage, the distinguisher D learns both L and the seed s, and needs
to decide whether S was interacting with H(s, ·) or ρ – a task we would like to
be hard. Clearly, this is unachievable without restrictions on S, as it can simply
set L = y∗, where y∗ is the output of the oracle on a fixed input x∗, and D then
checks whether H(s, x∗) = y∗, or not.

1 A notable exception is the line of work on establishing good bounds on the PRF-
security of MACs derived from sponge-based constructions, as e.g. in [3,26,37],
where one essentially assumes that the underlying permutation yields a secure Even-
Mansour [25] cipher.
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BHK propose to restrict the set of allowable sources – the security notion
UCE[S] corresponds to a function H being secure against all sources within a
class S. For example, unpredictable sources are those for which a predictor P ,
given the leakage L

$← Sρ, cannot guess any of S’s queries. They further distin-
guish between the class of computationally unpredictable sources Scup and the
class of statistically unpredictable sources Ssup, depending on the powers of P .
A somewhat stronger notion – referred to as reset-security – demands that a dis-
tinguisher R given L

$← Sρ accessing the random function ρ cannot tell whether
it is given access to the same oracle ρ, or to a completely independent random
oracle ρ′. One denotes as Ssrs and Scrs the classes of statistical and computational
reset-secure sources, respectively.

While UCE[Scup]-security (even under meaningful restrictions) was shown
impossible to achieve in the standard model [14,17] assuming indistinguishabil-
ity obfuscation (IO) [5], there is no evidence of impossibility for UCE[Ssup] and
UCE[Ssrs], and several applications follow from them. Examples include provid-
ing standard-model security for a number of schemes and applications previ-
ously only secure in the random-oracle model, including deterministic [8] and
hedged PKE [7], immunizing backdoored PRGs [24], message-locked encryp-
tion [8], hardcore functions [8], point-function obfuscation [8,13] simple KDM-
secure symmetric encryption [8], adaptively-secure garbling [8], and CCA-secure
encryption [34]. Moreover, as also pointed out by Mittelbach [36], and already
proved in the original BHK work, UCE[Scrs] and UCE[Scup] are achievable in
ideal models, and act as useful intermediate security notions for two-stage secu-
rity games, where indifferentiability does not apply [38].

psPRP[S�up]

psPRP[S�rs]

UCE[S�up]

UCE[S�rs]
ideal
cipher

random
permutation

Even-Mansour

?

direct keying

indiff.

5-round Feistel

Chop

?

Fig. 1. Relations established in this paper. Here, � is set consistently everywhere
either to c or to s. Lack of arrow indicates a separation, dashed lines indicate impli-
cations that are open and which we conjecture to hold true. Also note that in the
ideal-cipher model, a random permutation is obtained by fixing the cipher key (e.g., to
the all-zero string). We do not know whether the converse is true generically – indif-
ferentiable constructions of ideal ciphers from random permutations (e.g., [1]) do not
apply here [38].
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Public-seed PRPs. We extend the UCE approach to the case of a seeded per-
mutation π : {0, 1}s × {0, 1}n → {0, 1}n, that is, πs = π(s, ·) is an efficiently
invertible permutation on n-bit strings. As in the UCE case, the security game
will involve a source making queries to a permutation P and its inverse P−1. In
the real case, P/P−1 give access to πs and π−1

s , whereas in the ideal case they
give access to a random permutation ρ and its inverse ρ−1. Then, S passes on
the leakage L to the distinguisher D, which additionally learns s. The psPRP[S]
security notion demands indistinguishability of the real and ideal cases for all
PPT D and all S ∈ S.

This extension is straightforward, but it is not clear that it is useful at all. For
instance, UCEs naturally generalize the notion of an extractor, yet no such nat-
ural “generalization” exists here, except that of extending the PRP game (played
by the source) with a public-seed stage (and hence, the name psPRP). In addi-
tion, necessary source restrictions are somewhat less intuitive than in the UCE
case. For instance, for psPRPs, for statistically/computationally unpredictable
sources (we abuse notation, and denote the corresponding source classes also as
Ssup and Scup) it must be hard for a predictor to guess an input or an output of
the queries made by S.

UCEs from psPRPs. We first show that psPRPs are not only useful, but
essentially allow to recover all previous applications of UCEs through simple
constructions of UCEs from psPRPs.

Our first result shows that all permutation-based constructions which are
indifferentiable from a random oracle [20,35] transform a psPRP[S�rs]-secure per-
mutation into UCE[S�rs]-secure hash function, where � ∈ {c, s}.2 In particular,
this implies that the sponge paradigm by Bertoni et al. [15], which underlies the
SHA-3 hash function, can be used for such transformation, thus giving extra
validation for the SHA-3 standard. We note that the permutation underlying
SHA-3 is not seeded, but under the assumption that the underlying permuta-
tion is psPRP[S�rs]-secure when seeded via the Even-Mansour construction [25],
it is easy to enhance the sponge construction with a seed.

Note that S�rs is a strictly larger class than S�up (for both psPRP and UCE).
Therefore, when an application only needs UCE[S�up]-secure hashing, one may
ask whether the assumption on the underlying psPRP can also be reduced. We
will prove that this is indeed the case, and show that whenever π is psPRP[S�up]-
secure, then the simple construction that on input X outputs πs(X)[1 . . . r], that
is, the first r bits of πs(X) is a secure fixed-input length UCE[S�up] as long as
r < n − ω(log λ). This result can be combined with the domain extender of [9]
to obtain a variable-input-length UCE[S�up]-secure hash function.3

2 We note that the computational case, by itself, is not that useful, given we know
that UCE[Scup] and hence also UCE[Scrs] security is unachievable, unless IO does not
exist. However, we may want to occasionally apply these results in ideal models,
where the notion is achievable, and thus they are worth stating.

3 Their construction pre-processes the arbitrary-long input with an almost universal
hash function, as e.g. one based on polynomial evaluation.
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CP-sequential indifferentiability. The technique behind the above results
is inspired by Bellare, Hoang, and Keelveedhi’s work [9] on UCE domain exten-
sion. They show that every construction that transforms a fixed-input length
random oracle into a variable-input length one in the sense of indifferentiabil-
ity [20,35] is a good domain extender for UCEs.

We extend their result along three axes. First off, we show that it applies to
arbitrary pairs of ideal primitives – e.g., a fixed-input-length or variable-input
length random function or a random permutation. For example, a construction
using a permutation which is indifferentiable from a random oracle transforms
psPRP[S�rs]-secure permutations into UCE[S�rs]-secure functions. Through such
a general treatment, our above result on sponges is a corollary of the indifferen-
tiability analysis of [15].

Second, we show that a weaker version of indifferentiability, which we call
CP-sequential indifferentiability, suffices. Recall that indifferentiability of a con-
struction M transforming an ideal primitive I into an ideal primitive J means that
there exists a simulator Sim such that (MI, I) and (J,SimJ) are indistinguish-
able. CP-sequential indifferentiability only demands this for distinguishers that
make all of their construction queries to MI/J before they proceed to primitive
queries to I/SimJ. As we will see, this significantly enlarges the set of construc-
tions this result applies to. For example, truncating the permutation output to
r < n bits does not achieve indifferentiability, because a simulator on an inverse
query Y needs to fix π−1(Y ) to some X such that, for the given random function
ρ : {0, 1}n → {0, 1}r, ρ(X) is consistent with Y on the first r bits, which is infea-
sible. Yet, the same construction is CP-sequentially indifferentiable, intuitively
because there is no way for a distinguisher to catch an inconsistent random X, as
this would require an extra query to ρ. CP-sequential indifferentiability is dual
to the sequential indifferentiability notion of Mandal, Patarin, and Seurin [33],
which considers the opposite order of construction and primitive queries. In fact,
the two notions are incomparable, as we explain below.

Finally, we will also show that under suitable restrictions on the construction
M, the result extends from reset-secure sources to unpredictable ones. This will
allow to lift our result for truncation to unpredictable sources.

Constructing psPRPs. Obviously, a central question is whether the assump-
tion of being a psPRP is, by itself, attainable. Our general theorem answers this
question already – existing indifferentiability result for Feistel constructions [21–
23,29] imply already that the 8-round Feistel construction transforms a function
which is UCE[S�rs]-secure into a psPRP[S�rs]-secure permutation.

It is important however to assess whether simpler constructions achieve this
result. Here, we show that the five-round Feistel construction suffices. Our proof
heavily exploits our connection to CP-indifferentiability. Indeed, the six-round
lower bound of [21] does not apply for CP-indifferentiabiliy, as it requires the
ability to ask construction queries after primitive queries, and we show that CP-
indifferentiability is achieved at five rounds already. Our result is not merely a
simplification of earlier ones, and our simulation strategy is novel. In particular,
while we still follow the chain-completion approach of previous works, due to
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the low number of rounds, we need to introduce new techniques to bound the
complexity of the simulator. To our rescue will come the fact that no construction
queries can be made after primitive queries, and hence only a limited number of
chain types will need to be completed.

We also note that the we are not aware of any obvious lower bound that shows
that more than four rounds are really necessary – four rounds are necessary alone
to reach PRP security in the eyes of the source. We leave it as an open problem
to show whether four rounds are sufficient. We also note that our result only
deals with reset-secure sources, and we leave it as an open problem to find a
similar result for unpredictable sources. For reasons we explain in the body, it
seems reasonable to conjecture that a heavily unbalanced Feistel network with
Ω(n) rounds achieves this transformation.

Constructing psPRPs, in ideal models. While the main purpose of the
psPRP framework is that of removing ideal model assumptions, it is still valuable
to assess how psPRPs are built in the first place. To this end, we also show how
to heuristically instantiate psPRPs from existing cryptographic primitives, and
here validation takes us necessarily back to ideal models. Plus, for ideal-model
applications that require psPRP security as an intermediate notion (for instance,
because we are analyzing two-stage games), these provide instantiations.

We validate two strategies: (1) Using a block cipher, and seed it through the
key, and (2) Using a keyless permutation, and seeding via the Even-Mansour
construction [25]. We prove that the first approach is psPRP[Scrs]-secure in the
ideal-cipher model, and prove the second psPRP[Scup]-secure in the random per-
mutation model.4

Fixed-key block-cipher based garbling from psPRPs. As a benchmark
for psPRPs, we revisit the garbling schemes from [10] based on fixed-key block
ciphers, which achieve high degrees of efficiency by eliminating re-keying costs.
Their original security analysis was in the ideal-cipher model, and their simplicity
is unmatched by schemes with standard-model reductions.

We consider a simple variant of their Ga scheme and prove it secure under
the assumption the underlying block cipher, when seeded through its key input,
is psPRP[Ssup]-secure. Our construction is slightly less efficient than the scheme
from [10], since a different seed/key is used for every garbling. However, we
still gain from the fact that no re-keying is necessary throughout a garbling
operation, or the evaluation of a garbled circuit. We also note that our approach
also extends to the GaX scheme of [10] with further optimizations.

Extra related work. A few works gave UCE constructions. Brzuska and
Mittelbach [18] gave constructions from auxiliary-input point obfuscation
(AIPO) and iO. In a recent paper, under the exponential DDH assumption,
Zhandry [41] built a primitive (called an AI-PRG) which is equivalent to a
UCE for a subset of Scup which is sufficient for instantiating point obfuscators.
(The observation is not made explicit in [41], but the definitions are equivalent.)
4 Again, recall that IO-based impossibility for Scup and Scrs do not apply because we

are in ideal models.
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None of these results is sufficiently strong to instantiate our Feistel-based con-
struction of psPRPs.

The cryptanalysis community has studied block-cipher security under known
keys, albeit with a different focus. For example, Knuden and Rijmen [30] gave
attacks against Feistel networks and reduced-round versions of AES that find
input-output pairs with specific properties (given the key) in time faster than
it should be possible if the block cipher were a random permutation. Several
such attacks were later given for a number of block ciphers. We are not aware
of these attacks however invalidating psPRP security. Andreeva, Bogdanov, and
Mennink [2] gave formal models for known-key security in ideal models based
on a weak form of indifferentiability, where construction queries are to the con-
struction under a known random key. These are however unrelated.

Outline. Section 2 proposes a general framework for public-seed pseudoran-
dom notions, and Sect. 3 puts this to use to provide general reduction theorems
between pairs of such primitives, and defines in particular CP-sequential indiffer-
entiability. UCE constructions from psPRPs are given in Sect. 4, whereas Sect. 5
presents our main result on building psPRPs via the Feistel construction. Heuris-
tic constructions are presented in Sect. 6, and finally we apply psPRPs to the
analysis of garbling schemes in Sect. 7.

Notational preliminaries. Throughout this paper, we denote by Funcs
(X,Y ) the set of functions X → Y , and in particular use the shorthand
Funcs(m,n) whenever X = {0, 1}m and Y = {0, 1}n. We also denote by
Perms(X) the set of permutations on the set X, and analogously, Perms(n)
denotes the special case where X = {0, 1}n. We say that a function f : N → R≥0

is negligible if for all c ∈ N, there exists a λ0 such that f(λ) ≤ λ−c for all λ ≥ λ0.
Our security definitions and proofs will often use games, as formalized by

Bellare and Rogaway [12]. Typically, our games will have boolean outputs –
that is, either true or false – and we use the shorthand Pr [G] to denote the
probability that a certain game outputs the value true, or occasionally 1 (when
the output is binary, rather than boolean).

2 Public-Seed Pseudorandomness

We present a generalization of the UCE notion [8], which we term public-seed
pseudorandomness. We apply this notion to define psPRPs as a special case, but
the general treatment will be useful to capture transformations between UCEs
and psPRPs in Sect. 3 via one single set of theorems.

2.1 Ideal Primitives and Their Implementations

We begin by formally defining ideal primitives using notation inspired by [6,27].

Ideal primitives. An ideal primitive is a pair I = (Σ, T ), where Σ = {Σλ}λ∈N

is a family of sets of functions (such that all functions in Σλ have the same
domain and range), and T = {Tλ}λ∈N is a family of probability distributions,
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where Tλ’s range is a subset of Σλ for all λ ∈ N. The ideal primitive I, once the
security parameter λ is fixed, should be thought of as an oracle that initially
samples a function I as its initial state according to Tλ from Σλ. We denote this
sampling as I ←$ Iλ. Then, I provides access to I via queries, that is, on input
x it returns I(x).5

Examples. We give a few examples of ideal primitives using the above notation.
In particular, let κ,m, n : N → N be functions.

Example 1. The random function Rm,n = (ΣR, T R) is such that for all λ ∈
N, ΣR

λ = Funcs(m(λ), n(λ)), and T R
λ is the uniform distribution on ΣR

λ . We
also define R∗,n to be the same for Funcs(∗, n(λ)), that is, when the domain is
extended to arbitrary length input strings.6

Example 2. The random permutation Pn = (ΣP, T P) is such that for all λ ∈ N,

ΣP
λ =

{

P : {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∃π ∈ Perms(n(λ)) : P (+, x) = π(x), P (-, x) = π−1(x)
}

,

and moreover, T P
λ is the uniform distribution on ΣP

λ .

Example 3. The ideal cipher ICκ,n = (ΣIC, T IC) is such that

ΣIC
λ =

{

E : {0, 1}κ(λ) × {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∀k ∈ {0, 1}κ(λ)∃πk ∈ Perms(n(λ)) : E(k, +, x) = πk(x), E(k, -, x) = π−1
k (x)

}

,

and T IC
λ is the uniform distribution on ΣIC

λ .

Efficiency considerations. Usually, for an ideal primitive I = (Σ, T ), the
bit-size of the elements of Σλ grows exponentially in λ, and thus one would not
implement a primitive I by sampling I from Σλ, but rather using techniques such
as lazy sampling. An implementation of a primitive I is a stateful randomized
PPT algorithm A such that A(1λ, ·) behaves as I

$← Iλ for all λ ∈ N. We say
that I is efficiently implementable if such an A exists. All the above examples –
Rm,n,R∗,n,Pn, and ICκ,n – are efficiently implementable as long as m,n, κ are
polynomially bounded functions.

Σ-compatible function families. A function family F = (Kg,Eval) consists
of a key (or seed) generation algorithm F.Kg and an evaluation algorithm F.Eval.
In particular, F.Kg is a randomized algorithm that on input the unary represen-
tation of the security parameter λ returns a key k, and we let [F.Kg(1λ)] denote
5 The reader may wonder whether defining Σ is necessary, but this will allow us to

enforce a specific format on valid implementations below.
6 Note that this requires some care, because Σλ is now uncountable, and thus sampling

from it requires a precise definition. We will not go into formal details, similar to
many other papers, but it is clear that this can easily be done.
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MAIN psPRS,D
F,I (λ):

(1n, t) ←$ S(1λ, ε)
b ←$ {0, 1}
k1, . . . , kn ←$F.Kg(1λ)
f1, . . . , fn ←$ Iλ

L ←$ SO(1λ, t)
b′ ←$ D(1λ, k1, . . . , kn, L)
return b′ = b

ORACLE O(i,x):
if b = 1 then

return F.Eval(1λ, ki,x)
else

return fi(x)

Fig. 2. Game psPR used to define pspr-security for a primitive F that is Σ-compatible
with I. Here, S is the source and D is the distinguisher. Recall that the notation f ←$ Iλ

indicates picking a function from Σλ using Tλ.

the set of all possible outputs of F.Kg(1λ). Moreover, F.Eval is a deterministic
algorithm that takes three inputs; the security parameter in unary form 1λ, a
key k ∈ [F.Kg(1λ)] and a query x such that F.Eval(1λ, k, ·) implements a function
that maps queries x to F.Eval(1λ, k,x). We say that F is efficient if both Kg and
Eval are polynomial-time algorithms.

Definition 1 (Σ-compatibility). A function family F is Σ-compatible with
I = (Σ, T ) if F.Eval(1λ, k, ·) ∈ Σλ for all λ ∈ N and k ∈ [F.Kg(1λ)].

2.2 Public-Seed Pseudorandomness, PsPRPs, and Sources

We now define a general notion of public-seed pseudorandom implementations
of ideal primitives.

The general definition. Let F = (Kg,Eval) be a function family that is Σ-
compatible with an ideal primitive I = (Σ, T ). Let S be an adversary called
the source and D an adversary called the distinguisher. We associate to them,
F and I, the game psPRS,D

F,I (λ) depicted in Fig. 2. The source initially chooses
the number of keys n. Then, in the second stage, it is given access to an oracle
O and we require any query (i,x) made to this oracle be valid, that is, x is
a valid query for any fi ∈ Σλ and i ∈ [n], for n output by the first stage
of the source. When the challenge bit b = 1 (“real”) the oracle responds via
F.Eval under the key ki (F.Eval(1λ, ki, ·)) that is chosen by the game and not
given to the source. When b = 0 (“ideal”) it responds via fi where fi ←$ Iλ.
After its interaction with the oracle O, the source S communicates the leakage
L ∈ {0, 1}∗ to D. The distinguisher is given access to the keys k1, . . . , kn and
must now guess b′ ∈ {0, 1} for b. The game returns true iff b′ = b and we describe
the pspr-advantage of (S,D) for λ ∈ N as

Adv
pspr[I]
F,S,D(λ) = 2Pr

[

psPRS,D
F,I (λ)

]

− 1. (1)

In the following, we are going to use the shorthands UCE[m,n] for pspr[Rm,n],
UCE[n] for pspr[R∗,n], and psPRP[n] for pspr[Pn].
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Note that our security game captures the multi-key version of the security
notions, also considered in past works on UCE, as it is not known to be implied
by the single-key version, which is recovered by having the source initially output
n = 1.

Restricting sources. One would want to define F as secure if Advpspr[I]F,S,D(λ) is
negligible in λ for all polynomial time sources S and distinguishers D. However,
as shown already in the special case of UCEs [8], this is impossible, as one can
always easily construct (at least for non-trivial I’s) a simple source S which leaks
the evaluation of O on a given point, and D can check consistency given k.

Therefore to obtain meaningful and non-empty security definitions we restrict
the considered sources to some class S, without restricting the distinguisher class.
Consequently, we denote by psPR[I,S] the security notion that asks Advpspr[I]F,S,D(λ)
to be negligible for all polynomial time distinguishers D and all sources S ∈ S.
Following [8], we also use psPR[I,S] to denote the set of F’s which are psPR[I,S]-
secure. Note that obviously, if S1 ⊆ S2, then psPR[I,S2] ⊆ psPR[I,S1] where S1

and S2 are source classes for the ideal primitive I. We will use the shorthands
psPRP[n,S] for psPR[Pn,S] and UCE[m,n,S] for psPR[Rm,n,S], where m = ∗
if the domain is unbounded.

Below, we discuss two important classes of restrictions, which are fundamen-
tal for the remainder of this paper – unpredictable and reset-secure sources.

MAIN PredP
I,S(λ):

done ← false; Q ← ∅; (1n, t) ←$ S(1λ, ε)
f1, . . . , fn ←$ Iλ

L ←$ SO(1λ, t); done ← true
Q′ ←$ P O(1λ, 1n, L)
return (Q ∩ Q′ �= ∅)

ORACLE O(i,x):
if ¬done then Q ← Q ∪ {x}
return fi(x)

MAIN ResetRI,S(λ):

done ← false; (1n, t) ←$ S(1λ, ε)
f0
1 , f1

1 , . . . , f0
n, f1

n ←$ Iλ

L ←$ SO(1λ, t); done ← true
b ←$ {0, 1}; b′ ←$ RO(1λ, 1n, L)
return b′ = b

ORACLE O(i,x):

if ¬done then return f0
i (x)

else return fb
i (x)

Fig. 3. Games Pred and Reset are used to define the unpredictability and reset-security
of the source S respectively against the ideal primitive I. Here, S is the source, P is
the predictor and R is the reset adversary.

Unpredictable sources. Let S be a source. Consider the game PredP
I,S(λ)

of Fig. 3 associated to S and an adversary P called the predictor. Given the
leakage, the latter outputs a set Q′. It wins if this set contains any O-query of
the source. For λ ∈ N we let

Adv
pred[I]
S,P (λ) = Pr

[

PredP
I,S(λ)

]

. (2)

We say that P is a computational predictor if it is polynomial time, and it is
a statistical predictor if there exists polynomials q, q′ such that for all λ ∈ N,
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predictor P makes at most q(λ) oracle queries and outputs a set Q′ of size at
most q′(λ) in game PredP

I,S(λ). We stress that in this case the predictor need not
be polynomial time, even though it makes a polynomial number of queries. We
say S is computationally unpredictable if Advpred[I]S,P (λ) is negligible for all com-

putational predictors P . We say S is statistically unpredictable if Advpred[I]S,P (λ) is
negligible for all statistical predictors P . We let Scup be the class of all polyno-
mial time, computationally unpredictable sources and Ssup ⊆ Scup be the class
of all polynomial time statistically unpredictable sources.7

Reset-secure sources. Let S be a source. Consider the game ResetRI,S(λ) of
Fig. 3 associated to S and an adversary R called the reset adversary. The latter
wins if given the leakage L it can distinguish between f0 used by the source S
and an independent f1 where f0, f1 ←$ Iλ. For λ ∈ N we let

Adv
reset[I]
S,R (λ) = 2Pr

[

ResetRI,S(λ)
]

− 1. (3)

We say that R is a computational reset adversary if it is polynomial time, and
it is a statistical reset adversary if there exists a polynomial q such that for all
λ ∈ N, reset adversary R makes at most q(λ) oracle queries in game ResetRI,S(λ).
We stress that in this case the reset adversary need not be polynomial time. We
say S is computationally reset-secure if Advreset[I]S,R (λ) is negligible for all compu-

tational reset adversaries R. We say S is statistically reset-secure if Advreset[I]S,R (λ)
is negligible for all statistical reset adversaries R. We let Scrs be the class of all
polynomial time, computationally reset-secure sources and Ssrs ⊆ Scrs the class
of all polynomial time statistically reset-secure sources.

Relationships. For the case of psPRPs, we mention the following fact, which
is somewhat less obvious than in the UCE case, and in particular only holds if
the permutation’s domain grows with the security parameter.

Proposition 1. For all n ∈ ω(log λ), we have psPRP[n,S�rs] ⊆ psPRP[n,S�up]
where � ∈ {c, s}.
Proof (Sketch). In the reset secure game, consider the event that R queries its
oracle O on input (i, σ, x) which was queried by S already as an O(i, σ, x) query,
or it was the answer to a query O(i, σ, y). Here (like elsewhere in the paper), we
use the notational convention + = - and - = +. The key point here is proving
that as long as this bad event does not happen, the b = 0 and b = 1 case are hard
to distinguish. A difference with the UCE case is that due to the permutation
property, they will not be perfectly indistinguishable, but a fairly standard (yet
somewhat tedious) birthday argument suffices to show that indistinguishability
still holds as long as the overall number of O queries (of S and R) is below
2n(λ)/2, which is super-polynomial for n(λ) = ω(log λ). ��

7 We note that computational unpredictability is only meaningful for sufficiently
restricted classes of sources or in ideal models, as otherwise security against Scup

is not achievable assuming IO, using essentially the same attack as [17].
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MAIN CP[I → J]AM,Sim(λ):

b ←$ {0, 1}; f ←$ Iλ; g ←$Jλ

st ←$ AFunc
1 (1λ)

b′ ←$ APrim
2 (1λ, st)

return b′ = b

ORACLE Func(x):
if b = 1 then

return Mf (x)
else

return g(x)

ORACLE Prim(u):
if b = 1 then

return f(u)
else

return Simg(u)

Fig. 4. Game CP used to define cpi-security for a construction M implementing the
primitive J using primitive I. Here, Sim is the simulator and A = (A1, A2) is the
two-stage distinguisher.

3 Reductions and Indifferentiability

We present general theorems that we will use to obtain reductions between
psPRPs and UCEs. Our general notation for public-seed pseudorandom primi-
tives allows us to capture the reductions through two general theorems.

CP-sequential indifferentiability. Indifferentiability was introduced
in [35] by Maurer, Renner, and Holenstein to formalize reductions between ideal
primitives. Following their general treatment, it captures the fact that a (key-
less) construction M using primitive I (which can be queried by the adversary
directly) is as good as another primitive J by requiring the existence of a simu-
lator that can simulate I consistently by querying J.

Central to this paper is a weakening of indifferentiability that we refer to
as CP-sequential indifferentiability, where the distinguisher A makes all of its
construction queries to MI (or J) before moving to making primitive queries to
I (or SimJ, where Sim is the simulator). Note that this remains a non-trivial
security goal, since Sim does not learn the construction queries made by A, but
needs to simulate correctly nonetheless. However, the hope is that because A has
committed to its queries before starting its interaction with Sim, the simulation
task will be significantly easier. (We will see that this is indeed the case.)

More concretely, the notion is concerned with constructions which implement
J from I, and need to at least satisfy the following syntactical requirement.

Definition 2 ((I → J)-compatibility). Let I = (I.Σ, I.T ) and J = (J.Σ,J.T )
be ideal primitives. A construction M is called (I → J)-compatible if for every
λ ∈ N, and every f ∈ I.Σλ, the construction M implements a function x →
Mf (1λ, x) which is in J.Σλ.

The game CP is described in Fig. 4. For ideal primitives I,J, a two-stage
adversary A = (A1, A2), an (I → J)-compatible construction M, and simulator
Sim, as well as security parameter λ ∈ N, we define

Adv
cpi[I→J]
M,Sim,A(λ) = 2 · Pr [CP[I → J]AM,Sim(λ)

] − 1. (4)

We remark that the CP-sequential indifferentiability notion is the exact
dual of sequential indifferentiability as introduced by Mandal, Patarin, and
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Seurin [33], which postpones construction queries to the end. As we will show
below in Sect. 4.2, there are CP-indifferentiable constructions which are not
sequentially indifferentiable in the sense of [33].

Reductions. We show that CP-sequential indifferentiability yields a reduction
between public-seed pseudorandomness notions. A special case was shown in [9]
by Bellare, Hoang, and Keelvedhi for domain extension of UCEs. Our result
goes beyond in that: (1) It is more general, as it deals with arbitrary ideal
primitives, (2) It only relies on CP-sequential indifferentiability, as opposed to
full indifferentiability, and (3) The reduction of [9] only considered reset-secure
sources, whereas we show that under certain conditions on the construction, the
reduction also applies to unpredictable sources. Nonetheless, our proofs follow
the same approach of [9], and the main contribution is conceptual.

We let F = (F.Kg,F.Eval) be a function family which is Σ-compatible with an
ideal primitive I. Further, let M be an (I → J)-compatible construction. Then,
overloading notation, we define the new function family M[F] = (M.Kg,M.Eval),
where M.Kg = F.Kg, and for every k ∈ [M.Kg(1λ)], we let

M.Eval(1λ, k, x) = MO(1λ, x), (5)

where O(z) = F.Eval(1λ, k, z).

Reset-secure sources. The following is our general reduction theorem for the
case of reset-secure sources. Its proof follows similar lines as the one in [9] and
we refer the reader to the full version for details.

Theorem 1 (Composition theorem, reset-secure case). Let M, F, I, and
J be as above. Fix any simulator Sim. Then, for every source-distinguisher pair
(S,D), where S requests at most N(λ) keys, there exists a source-distinguisher
pair (S,D), and a further distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) + N(λ) · Advcpi[I→J]

M,Sim,A(λ). (6)

Here, in particular: The complexities of D and D are the same. Moreover, if S,
D, and M are polynomial time, and I, J are efficiently implementable, then A,
S and D are also polynomial-time.

Moreover, for every reset adversary R, there exists a reset adversary R′ and
a distinguisher B such that

Adv
reset[I]

S,R
(λ) ≤ Adv

reset[J]
S,R′ (λ) + 3N(λ) · Advcpi[I→J]

M,Sim,B(λ), (7)

where R′ makes a polynomial number of query/runs in polynomial time if R and
Sim make a polynomial number of queries/run in polynomial time, and I,J are
efficiently implementable. �

Query extractable constructions. Next, we show that under strong con-
ditions on the construction M, Theorem 1 extends to the case of unpredictability.
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GAME EXTS,P
M,I,Ext(λ) :

done ← false
QI, QM ← ∅
(1n, st) ←$ S(1λ, ε)
f1, . . . , fn ←$ Iλ

L ←$ SOM(1λ, 1n, st)
done ← true
Q ←$ P O(1λ, 1n, L); Q∗ ← ExtO(Q)
return ((Q ∩ QI �= ∅) ∧ (Q∗ ∩ QM = ∅))

ORACLE O(i, x) :

if ¬done then QI
∪← {x}

return fi(x)

ORACLE OM(i, x) :

if ¬done then QM
∪← {x}

y ← MO(i,·)(x)
return y

Fig. 5. Game EXTS,P
M,I,Ext(λ) in the definition of query extractability.

In particular, we consider constructions which we term query extractable.
Roughly, what such constructions guarantee is that every query made by M
to an underlying ideal primitive I can be assigned to a (small) set of possible
inputs to M that would result in this query during evaluation. Possibly, this set
of inputs may be found by making some additional queries to I. We define this
formally through the game EXTS,P

M,I,Ext(λ) in Fig. 5. It involves a source S and
a predictor P , as well as an extractor Ext. Here, S selects an integer n, which
results in n instances f1, . . . , fn of I being spawned, and then makes queries to
n instances of Mfi , gives some leakage to the predictor P , and the predictor
makes further query to the I-instances, until it outputs a set Q. Then, we run
the extractor Ext on Q, and the extractor can also make additional queries to
the I-instances, and outputs an additional set Q∗. We are interested in the event
that Q contains one of queries made to the fi’s by M in the first stage of the
game, yet Q∗ does not contain any of S’s queries to Mfi for some i. In particular,
we are interested in

Adv
ext[I]
M,S,P,Ext(λ) = Pr

[

EXTS,P
M,I,Ext(λ)

]

.

We say that M is query extractable with respect to I if there exists a polynomial
time Ext such that Adv

ext[I]
M,S,P,Ext(λ) is negligible for all PPT P and S. We say it

is perfectly query extractable if the advantage is 0, rather than simply negligible.
The next theorem provides an alternative to Theorem 1 for the case of unpre-

dictable sources whenever M guarantees query extractability.

Theorem 2 (Composition theorem, unpredictable case). Let M, F, I,
and J be as before. Fix any simulator Sim. Then, for every source-distinguisher
pair (S,D), where S requests at most N(λ) keys, there exists a source-
distinguisher pair (S,D), and a further distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) + N(λ) · Advcpi[I→J]

M,Sim,A(λ). (8)

Here, in particular: The complexities of D and D are the same. Moreover, if S,
D, and M are polynomial time, and I, J are efficiently implementable, then A,
S and D are also polynomial-time.
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Moreover, for every predictor P and extractor Ext, there exists a predictor
adversary P ′ and a distinguisher B such that

Adv
pred[I]

S,P
(λ) ≤ Adv

pred[J]
S,P ′ (λ) + Adv

ext[I]
M,S,P,Ext(λ) + N(λ) · Advcpi[I→J]

M,Sim,B(λ), (9)

where P ′ makes a polynomial number of query/runs in polynomial time if P ,
Sim and Ext make a polynomial number of queries/run in polynomial time, and
I,J are efficiently implementable. �

4 From psPRPs to UCEs

We consider the problem of building UCEs from psPRPs. On the one hand,
we want to show that all applications of UCEs can be recovered modularly by
instantiating the underlying UCE with a psPRP-based construction. Second, we
want to show that practical permutation-based designs can be instantiated by
assuming the underlying permutation (when equipped with a seed) is a psPRP.

4.1 Reset-Secure Sources and Sponges

The case of reset-secure sources follows by a simple application of Theorem 1:
A number of constructions from permutations have been proved indifferentiable
from a random oracle, and all of these yield a construction of a UCE for S�rs

when the underlying permutation is a psPRP for S�rs, where � ∈ {c, s}.8

Sponges. A particular instantiation worth mentioning is the sponge construc-
tion by Bertoni et al. [15], which underlies KECCAK/SHA-3. In particular,
let Spongen,r be the (Pn → R∗,r)-compatible construction which operates
as follows, on input 1λ, M ∈ {0, 1}∗, and given oracle access to a permu-
tation ρ : {0, 1}n(λ) → {0, 1}n(λ). The message M is split into r-bit blocks
M [1], . . . , M [�], and the computation keeps a state Si‖Ti, where Si ∈ {0, 1}r

and Ti ∈ {0, 1}n−r. Then, Spongeρ
n,r(1

λ,M) = S�[1..r], where

S0‖T0 ← 0n, Si‖Ti ← ρ((Si−1 ⊕ M [i])‖Ti−1) fori = 1, . . . , �.

Then, the following theorem follows directly from Theorem 1 and the indifferen-
tiability analysis of [15]. (We state here only the asymptotic version, but concrete
parameters can be obtained from these theorems.)

Theorem 3 (UCE-security for Sponges). For � ∈ {c, s} and n(λ) polyno-
mially bounded in λ, if F ∈ psPRP[n,S�rs], then Spongen,r[F] ∈ UCE[∗, r,S�rs]
whenever n(λ) − r(λ) = ω(log λ). �

8 One caveat is that some of these constructions use a few independent random per-
mutations, whereas Theorem 1 assumes only one permutation is used. We point out
in passing that Theorem 1 can easily be adapted to this case.
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Heuristic instantiation. We wish to say this validates SHA-3 as being a good
UCE. One caveat of Theorem 3 is that the actual sponge construction (as used
in SHA-3) uses a seedless permutation π. We propose the following assumption
on such a permutation π that – if true – implies a simple way to modify an
actual Sponge construction to be a secure UCE using Theorem 3. In particular,
we suggest using the Even-Mansour [25] paradigm to add a seed to π. Given
a family of permutations Π = {πλ}λ∈N, where πλ ∈ Perms(n(λ)), define then
EM[Π] = (EM.Kg,EM.Eval) where EM.Kg outputs a random n(λ)-bit string s
on input 1λ, and

EM.Eval(1λ, s, (+, x)) = s ⊕ πλ(x ⊕ s), EM.Eval(1λ, s, (-, y)) = s ⊕ π−1
λ (y ⊕ s)

for all s, x ∈ {0, 1}n(λ). Now, if Π is such that EM[Π] is psPRP[n,Ssrs]-secure,
then Sponge[EM[Π]] is UCE[∗, r,Ssrs]-secure by Theorem 3. We discuss the con-
jecture that EM is psPRP[n,Ssrs]-secure further below in Sect. 6.

The attractive feature of Sponge[EM[Π]] is that it can be implemented in a
(near) black-box way from Sponge[Π], that is, the original sponge construction
run with fixed oracle Π, by setting (1) The initial state S0‖T0 to the seed s
(rather than 0n(λ)), and (2) xoring the first r bits s[1 . . . r] of the seed s to the
output. The other additions of the seed s to the inner states are unnecessary,
as they cancel out. (A similar observation was made by Chang et al. [19] in the
context of keying sponges to obtain PRFs.)

4.2 Unpredictable Sources

Many UCE applications only require (statistical) unpredictability. In this
section, we see that for this weaker target a significantly simpler construction
can be used. In particular, we will first build a UCE[n, r,S�up]-secure compression
function from a psPRP[n,S�up]-secure permutation, where n(λ)−r(λ) = ω(log λ)
and � ∈ {c, s}. Combined with existing domain extension techniques [9], this can
be enhanced to a variable-input-length UCE for the same class of sources.

The chop construction. Let r, n : N → N be polynomially bounded func-
tions of the security parameter λ, where r(λ) ≤ n(λ) for all λ ∈ N. We con-
sider the following construction Chop[n, r] which is (Pn → Rn,r)-compatible.
On input 1λ, it expects a permutation π : {0, 1}n → {0, 1}n for n = n(λ), and
given additionally x ∈ {0, 1}n(λ), it returns

Chop[n, r]π(1λ, x) = π(x)[1 . . . r(λ)], (10)

that is, the first r = r(λ) bits of π(x). It is not hard to see that the construction
is (perfectly) query extractable using the extractor Ext which given oracle access
to O and a set Q of queries of the form (+, x) and (-, y), returns a set consisting of
all x such that (+, x) ∈ Q, and moreover adds x′ to the set obtained by querying
O(i, -, y) for every i ∈ [n] and (-, y) ∈ Q.

CP-sequential indifferentiability. The following theorem establishes CP-
sequential indifferentiability of the Chop construction. We refer the reader to the
full version for the proof but give some intuition about it after the theorem.
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Theorem 4 (CP-indifferentiability of Chop). Let r, n : N → N be such that
r(λ) ≤ n(λ) for all λ ∈ N. Let P = Pn and R = Rn,r be the random permutation
and random function, respectively. Then, there exists a simulator Sim such that
for all distinguishers A making at most q construction and p primitive queries,

Adv
cpi[P→R]
Chop[n,r],Sim,A(λ) ≤ (q + p)2

2n
+

p · q

2n−r
. (11)

Here, Sim makes at most one oracle query upon each invocation, and otherwise
runs in time polynomial in the number of queries answered. �

The dependence on r is necessary, as otherwise the construction becomes invert-
ible and cannot be CP-sequentially indifferentiable. Also, note that we cannot
expect full indifferentiability to hold for the Chop construction, and in fact, not
even sequential indifferentiability in the sense of [33]. Indeed, a distinguisher
A can simply first query Prim(-, y), obtaining x, and then query Func(x), that
yields y′. Then, A just checks that the first r bits of y equals y′, and if so outputs
1, and otherwise outputs 0. Note that in the real world, A always outputs 1, by
the definition of Chop. However, in the ideal world, an arbitrary simulator Sim
needs, on input y, to return an x for which the random oracle (to which it access)
returns the first r bits of y. This is however infeasible if n − r = ω(log λ), unless
the simulator can make roughly 2r queries.

The proof in full version shows this problem vanishes for CP-sequential indif-
ferentiability. Indeed, our simulator will respond to queries Sim(-, y) with a ran-
dom (and inconsistent) x. The key point is that due to the random choice, it is
unlikely that the distinguisher has already issued a prior query Func(x). More-
over, it is also unlikely (in the real world) that the distinguisher, after a query
Func(x), makes an inverse query on π(x). The combination of these two facts
will be enough to imply the statement.
UCE security. We can now combine Theorem 4 with the fact that the Chop
construction is (perfectly) query extractable, and use Theorem 2:

Corollary 1. For all n, r such that n(λ) − r(λ) = ω(log λ), if F is
psPRP[n,S�up]-secure, then Chop[F] is UCE[n, r,S�up]-secure, where � ∈ {c, s}.

The construction of [9] can be used to obtain variable-input-length UCE: It
first hashes the arbitrary-long input down to an n(λ)-bit long input using an
almost-universal hash function, and then applies Chop[F] to the resulting value.

5 Building psPRPs from UCEs

This section presents our main result on building psPRPs from UCEs, namely
that the five-round Feistel construction, when its round functions are instan-
tiated from a UCE[S�rs]-secure function family (for � ∈ {c, s}), yields a
psPRP[S�rs]-secure permutation family.

CP-indifferentiability of Feistel. Let n : N → N be a (polynomially
bounded) function. We define the following construction Ψ5, which, for secu-
rity parameter λ, implements an invertible permutation on 2n(λ)-bit strings,
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and makes calls to an oracle f : [5] × {0, 1}n(λ) → {0, 1}n(λ). In particular, on
input 1λ and X = X0‖X1, where X0,X1 ∈ {0, 1}n(λ), running Ψf

5 (1λ, (+,X))
outputs X5‖X6, where

Xi+1 ← Xi−1 ⊕ f(i,Xi) for all i = 1, . . . , 5. (12)

Symmetrically, upon an inverse query, Ψf
5 (1λ, (-, Y = X5‖X6)) simply com-

putes the values backwards, and outputs X0‖X1. Construction Ψ5 is clearly
(R5

n,n → P2n)-compatible, where we use the notation Rk
n,n to denote the k-fold

combination of independent random functions which takes queries of the form
(i, x) that are answered by evaluating on x the i-th function.

The following theorem establishes CP-indifferentiability for Ψ5. We discuss
below its consequences, and give a detailed description of our simulation strategy.
The full analysis of the simulation strategy – which employes the randomness-
mapping technique of [29] – is found in the full version.

Theorem 5 (CP-indifferentiability of Feistel). Let R = R5
n,n and P =

P2n. Then, there exists a simulator Sim (described in Fig. 6) such that for all
distinguisher A making at most q(λ) queries,

Adv
cpi[R→P]
Ψ5,Sim,A (λ) ≤ 360q(λ)6

2n(λ)
. (13)

Here, Sim makes at most 2q(λ)2 queries, and otherwise runs in time polynomial
in the number of queries answered, and n. �

This, together with Theorem 1, gives us immediately the following corollary:
Given a keyed function family F = (F.Kg,F.Eval), where for all λ ∈ N, k ∈
[F.Kg(1λ)], F.Eval(1λ, k, ·) is a function from n(λ)+3 bits to n(λ) bits, interpreted
as a function [5] × {0, 1}n(λ) → {0, 1}n(λ), then define the keyed function family
Ψ5[F] = (Ψ.Kg, Ψ.Eval) obtained by instantiating the round function using F.

Corollary 2. For any polynomially bounded n = ω(log λ), if F ∈ UCE[n +
3,S�rs], then Ψ5[F] ∈ psPRP[2n,S�rs], where � ∈ {c, s}. �

Remarks. Theorem 5 is interesting in its own right, as part of the line of works
on (full-fledged) indifferentiability of Feistel constructions. Coron et al. [21] show
that six rounds are necessary for achieving indifferentiability, and proofs of indif-
ferentiability have been given for 14, 10, and 8 rounds, respectively [21–23,29].
Thus, our result shows that CP-indifferentiability is a strictly weaker goal in
terms of round-complexity of the Feistel construction. (Also for sequential indif-
ferentiability as in [33], six rounds are necessary.) As we will see in the next
paragraph, our simulation strategy departs substantially from earlier proofs.

Two obvious problems remain open. First off, we know four rounds are neces-
sary (as they are needed for indistinguishability alone [32]), but we were unable
to make any progress on whether CP-sequential indifferentiability (or psPRP
security) is achievable. The second is the case of unpredictable sources. We
note that a heavily unbalanced Feistel construction (where each round function
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PROCEDURE Sim(k, X):
1: if Gk[X] = ⊥ then
2: if k = 2 then
3: Finner(k, X)
4: foreach (X1, X2) ∈ G1 × {X} do
5: if (X1, X2, 1) /∈ CompletedChains then
6: X0 ← Finner(1, X1) ⊕ X2

7: (X5, X6) ← Func(+, X0||X1)
8: C ← (X1, X2, 1)
9: if G5[X5] �= ⊥ then // Immediate Completion

10: Complete(C, (X5, X6))
11: else // Completion is delayed

12: X3 ← Finner(2, X2) ⊕ X1

13: Chains[3, X3] ← (5, X5), Chains[5, X5]
∪← {(C, (X5, X6))}

14: elseif k = 4 then
15: Finner(k, X)
16: foreach (X4, X5) ∈ {X} × G5 do
17: if (X4, X5, 4) /∈ CompletedChains then
18: X6 ← Finner(4, X4) ⊕ X5

19: (X0, X1) ← Func(-, X5||X6)
20: C ← (X4, X5, 4)
21: if G1[X1] �= ⊥ then // Immediate Completion

22: Complete(C, (X0, X1))
23: else // Completion is delayed

24: X3 ← Finner(4, X4) ⊕ X5

25: Chains[3, X3] ← (1, X1), Chains[1, X1]
∪← {(C, (X0, X1))}

26: elseif k ∈ {1, 5} then
27: Finner(k, X)
28: foreach (C, (U, V )) ∈ Chains[k, X] do
29: if C /∈ CompletedChains then // Delayed Completion

30: Complete(C, (U, V ))
31: elseif Chains[3, X] �= ⊥ then
32: Sim(Chains[k, X])
33: return Finner(k, X)

Fig. 6. The code for simulator Sim. Sim has access to the Func oracle and maintains
data structures Gk, Chains and CompletedChains as global variables.

outputs one bit) would be query extractable, as the input of the round func-
tion leaves little uncertainty on the inner state, and the extractor can evaluate
the round functions for other rounds to infer the input/output of the construc-
tion. Thus, if we could prove CP-indifferentiabilty, we could combine this with
Theorem 2. Unfortunately, such a proof appears beyond our current
understanding.

Simulator description. We explain now our simulation strategy, which is
described formally in Fig. 6. We note that our approach inherits the chain-
completion technique from previous proofs, but it will differ substantially in
how and when chains are completed.
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PROCEDURE Finner(i, Xi):
34: if Gi[Xi] = ⊥ then
35: Gi[Xi] ←$ {0, 1}n

36: return Gi[Xi]

PROCEDURE ForceVal(X, Y, l):
37: Gl[X] ← Y

PROCEDURE Complete(C, (U, V )):
38: (X, Y, i) ← C
39: if i = 1 then
40: X1 ← X, X2 ← Y , X3 ← Finner(2, X2) ⊕ X1

41: (X5, X6) ← (U, V )
42: X4 ← Finner(5, X5) ⊕ X6

43: ForceVal(X3, X4 ⊕ X2, 3), ForceVal(X4, X5 ⊕ X3, 4)
44: elseif i = 4 then
45: X4 ← X, X5 ← Y , X3 ← Finner(4, X4) ⊕ X5

46: (X0, X1) ← (U, V )
47: X2 ← Finner(1, X1) ⊕ X0

48: ForceVal(X3, X4 ⊕ X2, 3), ForceVal(X2, X1 ⊕ X3, 2)

49: CompletedChains
∪← {(X1, X2, 1), (X4, X5, 4)}

Fig. 7. The code for subroutines used by simulator Sim (continuation of Fig. 6).

Recall that in the ideal case, in the first stage of the CP-indifferentiability
game, A1 makes queries to Func implementing a random permutation, and then
passes the control of the game to A2 which interacts with Sim. Our Sim main-
tains tables Gk for k ∈ [5] to simulate the round functions. We denote by
Gk[X] = ⊥ that the table entry for X is undefined, and we assume all values
are initially undefined. Also, we refer to a tuple (Xk,Xk+1, k) as a partial chain
where Gk[Xk] �= ⊥ and Gk+1[Xk+1] �= ⊥ for k ∈ {1, 4}, Xk,Xk+1 ∈ {0, 1}n.

For any query (k,X) by A2, Sim checks if Gk[X] = ⊥. If not then the image
Gk[X] is returned. Otherwise, depending on the value of k, Sim takes specific
steps as shown in Figs. 6 and 7. If k ∈ {2, 4} then Sim sets Gk[X] to a uniformly
random n-bit string by calling the procedure Finner. At this point, Sim considers
newly formed tuples (X1,X2) ∈ G1 × {X} (when k = 2) and detects partial
chains C = (X1,X2, 1). The notation X1 ∈ G1 is equivalent to G1[X1] �= ⊥.
For every partial chain C that Sim detects, it queries Func on (X0,X1) and
receives (X5,X6) where X0 = G1[X1] ⊕ X2 . If (X0,X1) does not appear in
one of the queries/responses by/to A1 then it is unlikely for A2 to guess the
corresponding (X5,X6) pair. Therefore, if G5[X5] �= ⊥ then Sim assumes that
C is a chain that most likely corresponds to a query by A1. We refer to partial
chains that correspond to the queries by A1 as relevant chains. In this case, Sim
immediately completes C by calling the procedure Complete. C is completed by
forcing the values of G3[X3] and G4[X4] to be consistent with the Func query
where X3 ← G2[X2] ⊕ X1 and X4 ← G5[X5] ⊕ X6.
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If G5[X5] = ⊥ then either C is not a relevant chain or C is a relevant
chain but A2 has not queried (5,X5) yet. An aggressive strategy would be to
complete C, thereby asking Sim to complete every partial chain ever detected.
The resulting simulation strategy will however end up potentially managing an
exponential number of partial chains, contradicting our goal of efficient simula-
tion. Hence, Sim delays the completion and only completes C on A2’s query to
either (3,X3) or (5,X5) where X3 = G2[X2] ⊕ X1. The completion is delayed
by storing information about X3 and X5, that fall on the chain C, in the table
Chains. In particular, Sim stores a pointer to (5,X5) at Chains[3,X3]. The inputs
((X1,X2, 1), (X5,X6)) to the Complete call on C are stored in Chains[5,X5]. As
many chains can share the same X5, we allow Chains[5,X5] to be a set. The
idea of delaying the chain completions is unique to our simulation strategy and
it translates to an efficient Sim which consistently completes chains in the eyes
of A. Sim works symmetrically when k = 4.

For queries of the form (k,X) where k ∈ {1, 5}, Sim always assigns Gk[X]
to a uniform random n-bit string by calling Finner. Moreover as discussed ear-
lier, X could be on previously detected partial chains whose completion was
delayed. Therefore after the assignment, Sim picks up all partial chains C ′ (if
any) stored in Chains[k,X] and completes them. This is where Sim captures
a relevant partial chain which was delayed for completion. Finally for queries
(3,X), Sim checks if this X was on a partial chain that was detected but not
completed. If Chains[3,X] = ⊥ then Sim assigns G3[X] a uniform random n-bit
string otherwise it follows the pointer to Chains[3,X] to complete the chain X
was on. Since Chains[3,X] just stores a tuple (instead of a set) there can be at
most one chain C that Chains[3,X] can point to at any time. In the execution,
Chains[3,X] can get overwritten which may lead to inconsistencies in chain com-
pletions. However, we show that there are no overwrites in either tables Gk or
the data-structure Chains, except with negligible probability. This allows Sim to
Complete chains consistently in the eyes of A. Furthermore, to avoid completing
the same chains again, Sim maintains a set of all CompletedChains and com-
pletes any chain if it is not in CompletedChains. A pictorial description of Sim
is found in Fig. 8.

6 Ideal-Model PsPRP Constructions

We discuss two natural approaches to instantiate psPRPs. One is by taking any
block cipher, and using its key as a (now public) seed. The second is by using a
key-less permutation (e.g., the one within SHA-3), and adding the seed through
the Even-Mansour [25] construction. While the purpose of our psPRP framework
is to remove ideal-model assumptions, the only obvious way to validate (heuris-
tically) these methods is via ideal-model proofs, and this is what we do here.
Also, note that such ideal-model proofs are useful since, as in the case of UCE,
psPRP security can become a powerful intermediate notion within ideal-model
proofs for multi-stage security games [36].
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X1G1

X2G2

X3G3

X4G4

X5G5

X0

X6

forceVal

forceVal

set uniform

set uniform

X2 detect

X4 detect

Fig. 8. The 5-round Feistel where Sim sets G1[X1] and G5[X5] uniformly at random
(green). Sim detects chains at either (X1, X2) or (X4, X5) (blue) and adapts at (X3, X4)
and (X2, X3) respectively (red). (Color figure online)

PsPRPs from block ciphers. Given a family of block ciphers Eλ :
{0, 1}s(λ) × {0, 1}λ → {0, 1}λ, we consider the construction F = (F.Kg,F.Eval),
where F.Kg(1λ) outputs a random k ←$ {0, 1}s(λ), whereas

F.Eval(1λ, (k, +, x)) = E(k, x), F.Eval(1λ, (k, -, y)) = E−1(k, y). (14)

The following theorem establishes its security in the ideal cipher model, that
is, we assume (without overloading notation) that all parties (i.e., the source,
the distinguisher, and the reset adversary in the proof) are given access to a
randomly chosen block cipher E, which is also used within F. We refer the reader
to the full version for the proof which closely follows the proof from [8] that a
random oracle is UCE-secure.

Theorem 6 (Ideal Cipher as a psPRP). Let P be the random permutation
with input length n(λ) = λ. For every source-distinguisher pair S,D, where the
source S, in its first stage, outputs n which is at most N(λ) and makes q Prim
queries to its oracle, there exists R (described in the proof) such that

Adv
psPRP[n]
F,S,D (λ) ≤ Adv

reset[P]
S,R (λ) +

2qN(λ)
2s(λ)

+
2N(λ)2

2s(λ)
. (15)

In particular, if D is polynomial time, then so is R. �

Even-Mansour. We find it practically valuable to assess whether simple con-
structions can work. To this end, here, we show that the Even-Mansour con-
struction [25] yields a psPRP[Scup]-secure permutation family in the random
permutation model. In particular, we assume we are given a family of permuta-
tions Π = {πλ}λ∈N, where πλ : {0, 1}λ → {0, 1}λ, and consider the construction
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EM = (EM.Kg,EM.Eval) as defined in Sect. 4.1. Similar to the above, the follow-
ing theorem implicitly assumes all parties are given oracle access to a random
permutation which is used to sample the permutation inside EM.

Below, we give a few remarks on why the above approach to show psPRP[Scrs]
security does not extend to the case of Even-Mansour.

Theorem 7 (Even-Mansour as a psPRP). Let P be the random permuta-
tion with input length n(λ) = λ. For every source-distinguisher pair S,D, where
the source S, in its first stage, outputs n which is at most N(λ) and where S
and D jointly make at most q queries to their oracles, there exists P (described
in the proof) such that

Adv
psPRP[n]
EM,S,D (λ) ≤ Adv

pred[P]
S,P (λ) +

3q2

2λ
+

2N(λ)q2

2λ
. (16)

In particular, if D runs in polynomial time, then so does P . �

The proof of Theorem 7 can be found in the full version. It resembles the
original indistinguishability proof from [25], which bounds the advantage via
the probability of an intersection query, that is, a direct query (by the source
or by the distinguisher) to the random permutation that overlaps with one of
the queries to the random permutation made internally by oracle O invoked by
the source. Bounding the probability that S makes an intersection query pro-
ceeds as in [25] (exploiting lack of knowledge of the seed), whereas bounding the
probability that D makes such a query requires a reduction to unpredictability.

Why not reset-secure sources? We would like to extend Theorem 7 to
Scrs, as this would provide validation for the assumption from Sect. 4.1. While
we conjecture this to be true, the statement seems to evade a simple proof. The
proof approach behind Theorem 6 fails in particular, as it heavily exploits the
property that for each distinct seed, the construction F queries a disjoint portion
of the domain of the ideal cipher, which is not true for EM.

7 Efficient Garbling from PsPRPs

As an application of the psPRP framework, we study the security of the effi-
cient garbling schemes of Bellare, Hoang, Keelveedhi, and Rogaway [10], and in
particular, their simplest scheme (called Ga). It follows Yao’s general garbling
paradigm [40], but proposes a particular gadget to garble individual gates that
only relies on evaluating the underlying block cipher on a fixed key. In terms of
efficiency, this has been shown to be advantageous, as it avoids higher re-keying
costs. However, its security has only been proved in the ideal-cipher model,
and recent work by Gueron et al. [28] has debated this. Here, we show that a
minor variant of Ga (which still largely benefits from the lack of re-keying) is
secure assuming the underlying block cipher is psPRP[Ssup]-secure. While this
assumption is undoubtedly strong, it makes it clear what is expected from the
permutation. In particular, the main concern of [28] is the existence of fixed-key
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distinguishers (as in [30]), but these do not seem to affect psPRP-security, while
they may invalidate the permutation being ideal.

Simple circuit description. For representing circuits we adopt the SCD
notation of [11]. A circuit is a 6-tuple f = (n,m, q,W1,W2, G) where n ≥ 2 is the
number of inputs, m ≥ 1 is the number of outputs, q ≥ 1 is the number of gates,
and n+q is the number of wires. We let Inputs = [1, . . . , n], Wires = [1, . . . , n+q],
OutputWires = [n + q − m + 1, . . . , n + q] and Gates = [n + 1, . . . , n + q]. Then
W1 : Gates → Wires \ OutputWires is a function to identify each gate’s first
incoming wire and W2 : Gates → Wires \ OutputWires to identify each gate’s
second incoming wire. Finally G : Gates × {0, 1}2 → {0, 1} is a function that
determines the functionality of each gate i.e. Gg is a table storing the output of
gate g with input i and j at Gg[i, j]. We require that W1(g) < W2(g) < g for all
gates g.

Following [10], our definitions will be parameterized by the side information
about the circuit obtained from its garbled counterpart. We consider the topology
side information φtopo which maps f to its topology φtopo(f) = (n,m, q,W1,W2).
Another example is φxor, which maps f to a circuit φxor(f) = (n,m, q,W1,W2, G

′)
which obscures the functionality of non-xor gates. As shown in [11] and [10], an
important property is that φtopo and φxor are efficiently invertible, i.e., there
exists an efficient algorithm which given φ(f) and y, outputs (f ′, x′) such that
φ(f) = φ(f ′) and y = ev(f ′, x′).

Garbling schemes and their security. To describe a garbling scheme we
use the notation from [11]. A garbling scheme is a tuple of algorithms G =
(Gb,En,De,Ev, ev). The algorithm Gb is probabilistic and others are deter-
minisitic. Gb takes as inputs a circuit f = (n,m, q,W1,W2, G) represented in
the SCD notation and a security parameter 1λ and returns a tuple of strings
(F, e, d) where F is the garbled circuit, e is the input encoding information
and d is the output decoding information. En(e, ·) : {0, 1}n → {0, 1}∗ trans-
forms the n-bit input x to the garbled input X. Ev(F, ·) : {0, 1}∗ → {0, 1}∗

runs the garbled circuit F on garbled input X and returns the garbled output
Y . De(d, ·) : {0, 1}∗ → {0, 1}m ∪ {⊥} decodes the garbled output Y to return
y ∈ {0, 1}m. The algorithm ev is the canonical circuit-evaluation function where
ev(f, x) is the m-bit output one gets by feeding x to f . Finally, we require that
G is correct, that is, if f ∈ {0, 1}∗, λ ∈ N, x ∈ {0, 1}n and (F, e, d) ∈ [Gb(1λ, f)],
then De(d,Ev(F,En(e, x))) = ev(f, x). We require that all algorithms run in time
polynomial in the security parameter λ.

In this work, we are only concerned with indistinguishability-based privacy,
as defined in Game PrvIndA

G,φ in Fig. 9. Since both φtopo and φxor are efficiently
invertible, [11] show that it is sufficient to focus on this target, since simulation-
based security is implied. We say that G is prvind-secure over side information
function φ if for all PPT adversaries A,

Adv
prvind[φ]
G,A (λ) = 2Pr

[

PrvIndA
G,φ(λ)

]

− 1 (17)
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MAIN PrvIndA
G,φ(1λ)

b ←$ {0, 1}
b′ ←$ AGarble(1λ)
return (b′ = b)

PROCEDURE Garble(f0, f1, x0, x1)
if φ(f0) �= φ(f1) then return ⊥
if {x0, x1} � {0, 1}f0.n then return ⊥
if ev(f0, x0) �= ev(f1, x1) then return ⊥
(F, e, d) ←$Gb(1λ, fb), X ← En(e, xb)
return (F, X, d)

Fig. 9. PrvIndA
G,φ game for G with adversary A.

is negligible (in λ). Also, it is not hard to see (by a simple hybrid argument)
that it is sufficient to prove this for adversaries which make one single query to
their oracle.

Garbling scheme Ga[P]. Our garbling scheme resembles heavily that of [10].
The only modification is that we assume it uses a function family P meant to be
psPRP[Ssup]-secure (which could be instantiated from a block cipher, by letting
the key take the role of the seed.). During the garbling procedure, a fresh seed
for P is chosen and made part of the garbled circuit. Clearly, re-keying costs
are still largely avoided (especially for large circuits), even though re-keying is
necessary when garbling multiple circuits.

Concretely, the garbling scheme Ga[P] (Fig. 10) is a tuple of algorithms
Ga[P] = (Gb,En,De,Ev, ev) where P ∈ psPRP[k(λ),Ssup] for some polynomial
k(λ). Algorithm Gb transforms the input circuit f to a tuple of strings (F, e, d)
where the seed s for the permutation P sampled independently for each input f
is now part of F .

Though the Ga scheme of [10] comes in several variants, where each variant
is defined by the dual-key cipher used, we focus on a specific dual-key cipher
(namely A1 in [10]) that leads to the most efficient implementation of Ga.

In the following theorem we prove the prvind-security of Ga[P] and later dis-
cuss about the more efficient schemes GaX and GaXR from [10].

Theorem 8 (Garbling from psPRPs). Let P ∈ psPRP[k(λ),Ssup] then Ga[P]
is prvind-secure over φtopo. �

Proof. Let us assume that Ga[P] is not prvind-secure then there exists a PPT
adversary A that issues circuits with at most q(λ) gates and achieves a non-
negligible advantage ε(λ) in the PrvIndA

Ga[P],φ(λ) 9 game. Using A we construct a
pair (S,D) (Fig. 11) breaking the psPRP security of P, where S is a statistically
unpredictable source. Without loss of generality, we can assume that A queries
its oracle exactly once.

Let c be the challenge bit in the psPR game for P, and let Perm be the
oracle called by S. We allow S to sample the challenge bit b for the PrvIndA

Ga[P],φ

game. Further, for syntactic reasons we decompose A into (A0, A1) where A0

on input 1λ outputs (f0, x0, f1, x1) (inputs for Garble) and forwards a state st

9 We drop the subscript topo from φ for ease of notation.
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PROCEDURE En(e, x)

(X0
1 , X1

1 , . . . , X0
n, X1

n) ← e
x1, . . . , xn ← x
X ← (Xx1

1 , . . . , Xxn
n )

return X

PROCEDURE Ev(F, X)
(n, m, q, W1, W2, T, s) ← F
(X1, . . . , Xn) ← X

foreach g ∈ [n + 1, . . . , n + q] do
w1 ← W1(g), w2 ← W2(g)
α ← lsb(Xw1), β ← lsb(Xw2)
K ← Xw1 ⊕ Xw2 ⊕ g
Xg ← T [g, α, β]⊕P.Eval(s, K)⊕K

return (Xn+q−m+1, . . . , Xn+q)

PROCEDURE De(d, Y )
(d1, . . . , dm) ← d
(Y1, . . . , Ym) ← Y
foreach i ∈ [1, . . . , m] do

yi ← lsb(Yi) ⊕ di

return y ← y1, . . . , ym

PROCEDURE Gb(1λ, f)

s ←$P.Kg(1λ)
(n, m, q, A′, B′, G) ← f

foreach i ∈ [1, . . . , n + q] do
t ←$ {0, 1}
X0

i ←$ {0, 1}k−1t
X1

i ←$ {0, 1}k−1t

foreach g ∈ [n + 1, . . . , n + q] do
w1 ← W1(g), w2 ← W2(g)
foreach (i, j) ∈ {0, 1}2 do

A ← Xi
w1 , α ← lsb(A)

B ← Xi
w2 , β ← lsb(B)

K ← Xi
w1 ⊕ Xj

w2 ⊕ g

T [g, α, β] ← P.Eval(s, K) ⊕ K ⊕ X
Gg [i,j]
g

F ← (n, m, q, W1, W2, T, s)
e ← (X0

1 , X1
1 , . . . , X0

n, X1
n)

d ← (lsb(X0
n+1−m+1), . . . , lsb(X0

n+q))
return (F, e, d)

Fig. 10. Scheme Ga[P].

to A1. The result of Garble i.e. (F,X, d) is forwarded to A1 to guess the challenge
bit b in the PrvIndA

Ga[P],φ game. The source S nearly acts as Gb on input fb. To
satisfy unpredictability, the leakage L must give no information about the queries
made by S. Therefore, S refrains from compiling the rows in the garbled table
T which can be opened by A. S outputs this partially garbled circuit F - as
leakage in addition to (b, d, st). Moreover, since (S,D) must perfectly simulate
the PrvIndA

Ga[P],φ game for A, leakage also contains the vector X+ which is the set
of all visible tokens (one for each wire). Given s and L, D completes the garbled
circuit and invokes A1 with appropriate inputs. D then outputs b′ ⊕ b where b′

was the guess of A in the PrvIndA
Ga[P],φ game.

It is easy to see that when c = 1, (S,D) simulate the game PrvIndA
Ga[P],φ for A.

Furthermore, when c = 0 the leakage L can be transformed to be independent of
the bit b by modifying Perm to act like a random function. This allows rows in
the garbled table to be independent of the tokens X

Gg[i,j]
g which might depend

on bit b. Therefore, in this modified game A can do no better than guessing. For
a detailed analysis, we direct the reader to the full version.

To prove that S is statistically unpredictable we need to show that any (possi-
bly unbounded) predictor P making at most p(λ) number of queries to the oracle
Perm is unlikely to predict a query made by S given L = (F -,X+, b, d, st). The
idea is to swiftly transition to a game where L is independent of the queries made
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SOURCE SPerm(1λ):
b ←$ {0, 1}
(f0, x0, f1, x1, st) ← A0(1

λ)
(n, m, q, W1, W2) ← φ(fb)
G ← fb.G
foreach i ∈ [1, . . . , n + q] do

vi ← ev(fb, xb, i); ti ←$ {0, 1}
Xvi

i ←$ {0, 1}k−1ti

Xvi
i ←$ {0, 1}k−1ti

foreach g ∈ [n + 1, . . . , n + q] do
foreach (i, j) ∈ {0, 1}2 do

w1 ← W1(g), w2 ← W2(g)
A ← Xi

w1 , α ← lsb(A)
B ← Xj

w2 , β ← lsb(B)
K ← A ⊕ B ⊕ g
if i �= vw1 ∨ j �= vw2 then

T [g, α, β] ← Perm(K) ⊕ K ⊕ X
Gg [i,j]
g

F - ← (n, m, q, W1, W2, T )
X+ ← (Xv1

1 , . . . , X
vn+q

n+q )
return (F -, X+, d, b, st)

DISTINGUISHER D(1λ, s, L):

(F -, X+, d, b, st) ← L
(n, m, q, W1, W2, T ) ← F -

X1, . . . , Xn+q ← X+

for g ∈ [n + 1, . . . , n + q] do
w1 ← W1(g), w2 ← W2(g)
α ← lsb(Xw1), β ← lsb(Xw2)
K ← Xw1 ⊕ Xw2 ⊕ g
T [g, α, β] ← P.Eval(s, K)⊕K⊕Xg

F ← (n, m, q, W1, W2, T, s)
X ← (X1, . . . , Xn)
b′ ← A1(1

λ, st, F, X, d)
return (b′ ⊕ b)

Fig. 11. (S, D) in the psPR game of P where A0’s inputs are honest.

by S to Perm. This then reduces P to merely guess the queries. To achieve this,
we take a similar path as the psPRP game of P (c = 0). We transition to a game
G1 where F - is independent of bit b. However, unlike the psPRP case, P and S
share the same oracle Perm (to which P can also make inverse queries), and there-
fore it is non-trivial to argue about the independence of L and queries of S as we
desire. Therefore, we make a final transition to a game G2 where Perm returns ran-
dom strings for queries by S and refrains from storing any information about the
queries made by S. The resulting leakage can be viewed as being constructed by
S without making any queries to Perm. Then we exploit the fact X+ information
theoretically hides X- and hence queries by S are hidden from any P making only
polynomially many queries to Perm. Again we direct the reader to the full version
for a rigorous argument. (We also note that this argument is implicitly contained
in the original security proof in the ideal-cipher model.) ��
Related schemes. Along with Ga, [10] propose another scheme GaX which
achieves faster garbling and evaluation times using the free-xor technique [31].
We consider a variant GaX[P] of GaX where (like Ga[P]) the permutation is
replaced by a psPRP[Ssup]-secure permutation P and the seed for P is sampled
freshly for every new instantiation of Gb. The security proof of GaX[P] almost
readily follows from the security proof of GaX from [10] with slight modifications
as done in the proof of Ga[P].

The third scheme proposed by [10], called GaXR, further improves over GaX
in the size of the garbled table due to the use of row reduction technique at the
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cost of slower garbling and evaluation times. This means that for every gate,
GaXR serves only three rows in the garbled table. Here, we note that adapting
GaXR to be proved secure under a suitable psPRP assumption does not appear
to have a simple and clear solution, and we leave this as an open problem.

Acknowledgments. We wish to thank John Retterer-Moore for his involvement in an
earlier stage of this project. This research was partially supported by NSF grants CNS-
1423566, CNS-1528178, CNS-1553758 (CAREER), and IIS-152804, and by a Hellman
Fellowship.

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40041-4 29

2. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
348–366. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 18

3. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed
sponge constructions using a modular proof approach. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48116-5 18

4. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX8 and NORX16: authenticated
encryption for low-end systems. Cryptology ePrint Archive, Report 2015/1154
(2015). http://eprint.iacr.org/2015/1154

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

6. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC
and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 22

7. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 21

8. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random Oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 23

9. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression func-
tions: the UCE bridge to the ROM. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 169–187. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 10

10. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE Computer Society Press, May 2013

http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/978-3-662-43933-3_18
http://dx.doi.org/10.1007/978-3-662-48116-5_18
http://dx.doi.org/10.1007/978-3-662-48116-5_18
http://eprint.iacr.org/2015/1154
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://dx.doi.org/10.1007/978-3-662-46803-6_21
http://dx.doi.org/10.1007/978-3-642-40084-1_23
http://dx.doi.org/10.1007/978-3-662-44371-2_10
http://dx.doi.org/10.1007/978-3-662-44371-2_10


440 P. Soni and S. Tessaro

11. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.), ACM CCS 2012, pp. 784–796. ACM Press,
October 2012

12. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679 25

13. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 565–594. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 21

14. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 542–564. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 20

15. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: On the indifferentiability of the
sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
181–197. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 11

16. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Sponge-based pseudo-random
number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 33–47. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 3

17. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2 11

18. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 122–141.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 7

19. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A keyed sponge construc-
tion with pseudorandomness in the standard model. In: Proceedings of the Third
SHA-3 Candidate Conference (2012)

20. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). doi:10.1007/11535218 26

21. Coron, J.-S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol.
29(1), 61–114 (2016)

22. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 23

23. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 4

24. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 5

25. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)
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Abstract. Starting with the work of Bellare, Goldreich and Goldwasser
[CRYPTO’94], a rich line of work has studied the design of updata-
ble cryptographic primitives. For example, in an updatable signature
scheme, it is possible to efficiently transform a signature over a message
into a signature over a related message without recomputing a fresh sig-
nature.

In this work, we continue this line of research, and perform a sys-
tematic study of updatable cryptography. We take a unified approach
towards adding updatability features to recently studied cryptographic
objects such as attribute-based encryption, functional encryption, wit-
ness encryption, indistinguishability obfuscation, and many others that
support non-interactive computation over inputs. We, in fact, go further
and extend our approach to classical protocols such as zero-knowledge
proofs and secure multiparty computation.

To accomplish this goal, we introduce a new notion of updatable
randomized encodings that extends the standard notion of randomized
encodings to incorporate updatability features. We show that updata-
ble randomized encodings can be used to generically transform crypto-
graphic primitives to their updatable counterparts.

We provide various definitions and constructions of updatable ran-
domized encodings based on varying assumptions, ranging from one-way
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1 Introduction

The last decade has seen the advent of a vast array of advanced cryptographic
primitives such as attribute-based encryption [45,55], predicate encryption [20,
43,47,57], fully homomorphic encryption [36], fully homomorphic signatures [7,
17,44], functional encryption [19,41,54,55], constrained pseudorandom functions
[21,22,48], witness encryption [34,38], witness PRFs [60], indistinguishability
obfuscation [9,32], and many more. Most of these primitives can be viewed as
“cryptographic circuit compilers” where a circuit C can be compiled into an
encoding 〈C〉 and an input x can be encoded as 〈x〉 such that they can be
evaluated together to compute C(x). For example, in a functional encryption
scheme, circuit compilation corresponds to the key generation process whereas
input encoding corresponds to encryption. Over the recent years, cryptographic
circuit compilers have revolutionized cryptography by providing non-interactive
means of computing over inputs/data.

A fundamental limitation of these circuit compilers is that they only support
static compilation. That is, once a circuit is compiled, it can no longer be modi-
fied. In reality, however, compiled circuits may need to undergo several updates
over a period of time. For example, consider an organization where each employee
is issued a decryption key SKP of an attribute-based encryption scheme where
the predicate P corresponds to her access level determined by her employment
status. However, if her employment status later changes, then we would want
to update the predicate P associated with her decryption key. Known schemes,
unfortunately, do not support this ability.

Motivated by the necessity of supporting updates in applications, in this
work, we study and build dynamic circuit compilers. In a dynamic circuit com-
piler, it is possible to update a compiled circuit 〈C〉 into another compiled circuit
〈C ′〉 by using an encoded update string whose size only depends on the “differ-
ence” between the plaintext circuits C and C ′. For example, if the difference
between C and C ′ is simply a single gate change, then this should be reflected
in the size of the encoded update. Note that this rules out the trivial solution of
simply releasing a new compiled circuit at the time of update.

Background: Incremental Cryptography. The study of cryptography with
updates was initiated by Bellare, Goldreich and Goldwasser [10] under the
umbrella of incremental cryptography. They studied the problem of incremental
digital signatures, where given a signature of a message m, it should be possible
to efficiently compute a signature of a related message m′, without having to
recompute the signature of m′ from scratch. Following their work, the study of
incremental cryptography was extended to other basic cryptographic primitives
such as encryption and hash functions [10–12,24,31,52,53], and more recently,
indistinguishability obfuscation [5,35].

Our Goal. In this work, we continue this line of research, and perform a sys-
tematic study of updatable cryptographic primitives. We take a unified app-
roach towards adding updatability features to recently studied primitives such
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as attribute-based encryption, functional encryption and more generally, cryp-
tographic circuit compilers. We, in fact, go further and also study updatabil-
ity for classical protocols such as zero-knowledge proofs and secure multiparty
computation.

To accomplish this goal, we introduce a new notion of updatable randomized
encodings that extends the standard notion of randomized encoding [46] to incor-
porate updatability features. We show that updatable randomized encodings can
be used to generically transform cryptographic primitives (discussed above) to
their updatable counterparts.

Updatable Randomized Encodings. The notion of randomized encoding [46]
allows one to encode a “complex” computation C(x) into a “simple” randomized
function Encode(C, x; r) such that given the output 〈C(x)〉 of the latter, it is
possible to recover the value C(x) (by running a public Decode algorithm) but
it is impossible to learn anything else about C or x. The typical measure of
complexity studied in the literature is parallel-time complexity or circuit depth.
Such randomized encodings are known to exist for general circuits based on only
the existence of one-way functions [6] (also referred to as Yao’s garbled circuits
[59], where Encode(C, x; r) is in NC1).

In this work, we study updatable randomized encodings (URE): given a ran-
domized encoding 〈C(x)〉 of C(x), we want the ability to update it to an encoding
〈C ′(x′)〉 of C ′(x′), where C ′ and x′ are derived from C and x by applying some
“update” u. For now, we may think of this update as some small modification
to the circuit or input (e.g., change the output gate of C to AND and the second
bit of x to 1). We require that the update u can be encoded as 〈u〉 which can
then be used to transform 〈C(x)〉 into 〈C ′(x′)〉, a randomized encoding of C ′(x′).
A bit more precisely, a URE scheme consists of the following algorithms:

– Encode(C, x) takes as input a circuit C and an input x, and outputs an encod-
ing 〈C(x)〉 and a secret state st.

– GenUpd(st,u) takes as input an update u, and outputs an encoded update 〈u〉
and a possibly updated state st′.

– ApplyUpd (〈C(x)〉, 〈u〉) takes as input a randomized encoding 〈C(x)〉 and an
update encoding 〈u〉, and outputs an (updated) encoding 〈C ′(x′)〉.

– Decode (〈C(x)〉) takes as input a (possibly updated) randomized encoding
〈C(x)〉, and outputs the value y = C(x).

If we make no additional requirements, the above could be easily achieved.
For instance, let Encode output the state st = (C, x), and let GenUpd – which
now has access to C and x from st in addition to the update u – compute the
updated C ′ and x′ directly and output a as the encoded update 〈u〉 the stan-
dard randomized encoding of 〈C ′(x′)〉. ApplyUpd would correspondingly output
〈u〉 = 〈C ′(x′)〉. The drawback of this approach is that a fresh randomized encod-
ing is computed during every evaluation of GenUpd, irrespective of whether u
constitutes a minute or significant change to the underlying C and x.

Our key efficiency requirement is that the running time of the GenUpd algo-
rithm must be a fixed polynomial size of the update (and a security parameter),
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and independent of the size of the circuit and input being updated. This, in par-
ticular, implies that the size of an update encoding 〈u〉 is also a fixed polynomial
in the size of u (and the security parameter).

The above discussion immediately generalizes to the setting of multiple
sequential updates.1 Let 〈C0(x0)〉 denote an initial randomized encoding. Let
u1, . . . ,un denote a sequence of updates and let 〈ui〉 denote an encoding of ui.
In a URE scheme for multiple updates, 〈C0(x0)〉 can be updated to 〈C1(x1)〉
using 〈u1〉; the result can then be updated into 〈C2(x2)〉 using 〈u2〉, and so on,
until we obtain 〈Cn(xn)〉. We allow the number of updates n to be an arbitrary
polynomial in the security parameter.

Within this framework, two distinct notions naturally arise.

URE with multiple evaluations: Every intermediate encoding 〈Ci(xi〉 can
be decoded to obtain Ci(xi). For security, we require that given an initial
randomized encoding 〈C0(x0)〉 and a sequence of encoded updates {〈ui〉}n

i=1,
an adversary can learn only the outputs {Ci(xi)}n

i=0, and nothing else.
URE with single evaluation: Only the final encoding 〈Cn(xn)〉 can be

decoded. To enable this, we will consider an augmented decoding algorithm
that additionally requires an “unlocking key.”2 This unlocking key is pro-
vided after all the updates are completed, allowing the user to decode the
final encoding, but preventing her from decoding any intermediate values.
For security, we require that given an initial randomized encoding 〈C0(x0)〉
and a sequence of encoded updates {〈ui〉}n

i=1), an adversary can only learn
the final output Cn(xn), and nothing else.

Except where otherwise specified, we use URE to mean the multiple-evaluation
variant. For both conceptual reasons and to minimize confusion, we in fact con-
sider an alternative but equivalent formulation of single-evaluation URE which
we call updatable garbled circuits (UGC). A garbled circuit [59] is a “decom-
posable” randomized encoding, where a circuit C and an input x can be encoded
separately. In an updatable garbled circuit scheme, given an encoding 〈C0〉 of
a circuit C0 and a sequence of update encodings 〈u1〉, . . . , 〈un〉, it is possible
to compute updated circuit encodings 〈C1〉, . . . , 〈Cn〉, where Ci is derived from
Ci−1 using ui. Once all the updates are completed, an encoding 〈x〉 for an input
x is released. This input encoding can then be used to decode the final circuit
encoding 〈Cn〉 and learn Cn(xn). Intuitively, the input encoding can be viewed
as the unlocking key in single-evaluation URE.

It is easy to see that UGC is a weaker notion than multi-evaluation URE. In
particular, since UGC only allows for decoding “at the end,” it remains single-
use, while multi-evaluation URE captures reusability.

1 One may also consider an alternative notion of parallel updates, where every update
〈ui〉 is applied to the original encoding 〈C0(x0)〉. It turns out that URE with parallel
updates is closely connected to the notion of reusable garbled circuits [42]. We refer
the reader to the full version [2] for further discussion on this subject.

2 In the setting of bounded updates, this modification is unnecessary. We focus pri-
marily on the unbounded setting.
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We find the notions of URE and UGC to be of interest from a purely
complexity-theoretic perspective. Further, as we discuss later, they have powerful
applications to updatable cryptography.

1.1 Our Results

In this work, we initiate the study of updatable randomized encodings. We study
both simulation and indistinguishability-based security definitions and obtain
general positive results. We showcase URE as a central object for the study of
updatable cryptography by demonstrating applications to other updatable cryp-
tographic primitives. The technical ideas we develop for our constructions are
quite general, and may be applicable to future works on updatable cryptography.

Multi-evaluation URE for General Updates. Before stating our positive
results for multi-evaluation URE, we first informally describe which classes of
updates we can support. An update Update ∈ U represents some way to modify
any circuit C and an input x to some modified circuit C ′ and input x′. We denote
by u the procedure (C ′, x′) ← u(C, x,Update) which applies the update to C
and x. We consider all U and Update subject to two restrictions: (1) Update is
computed by a (family) of circuits, one for every circuit size |C|, and (2) Update
preserves circuit size (i.e., |C| = |C ′|). We refer to this very broad class of updates
as general circuit updates.

For general circuit updates, we construct URE from compact functional
encryption. The summary below focuses on indistinguishability-based security,
and concludes with a remark on achieving simulation-based security.

Theorem 1 (Informal). Assuming the existence of secret-key, compact func-
tional encryption supporting a single key query and B ciphertexts, there exists a
multi-evaluation URE scheme supporting B sequential general circuit updates.

A compact functional encryption is one where the running time of the encryp-
tion algorithm for a message m is a fixed polynomial in the size of m and the
security parameter, and independent of the complexity of the function family
supported by the FE scheme.

For the case of unbounded updates, a recent work of Bitansky et al.
[14] shows that secret-key compact functional encryption with unbounded-
many ciphertexts implies exponentially-efficient indistinguishability obfuscation
(XIO) [49]. Put together with the results of [49] and [3,15], it shows that sub-
exponentially secure secret-key compact FE that supports a single function key
query together with the learning with errors (LWE) assumption implies indis-
tinguishability obfuscation.

In contrast, in Theorem 1, we require secret-key compact FE with only
polynomial security. Such an FE scheme can be based on polynomial-hardness
assumptions on multilinear maps using the results of [33] and [4,15].

For the case of polynomially-bounded updates, we can, in fact, relax our
assumption to only one-way functions. We obtain this result by using a state-
ful single-key compact secret-key FE scheme for an a priori bounded number B
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of ciphertexts. A stateful single-key compact secret-key FE scheme can be con-
structed from garbled circuits: a functional key consists of B garbled circuits, ith

ciphertext consists of garbled wire keys corresponding to the ith garbled circuit.
This FE scheme is stateful since the encryption algorithm needs to store how
many messages it has encrypted so far.

Plugging in such an FE scheme in Theorem 1 yields the following corollary.

Corollary 1 (Informal). Assuming one-way functions, for any fixed polyno-
mial B, there exists a multi-evaluation URE scheme supporting B sequential
general circuit updates.

On the necessity of functional encryption. It is natural to ask whether
secret-key compact FE is necessary for building multi-evaluation URE with
unbounded updates. We show that if a (multi-evaluation) URE scheme is output
compact, then it implies XIO. Put together with the result of [49], we have that
a URE scheme with output compactness together with LWE implies a public-key
compact FE scheme that supports a single key query.

Theorem 2 (Informal). Assuming LWE, a multi-evaluation URE scheme with
unbounded output-compact updates implies a public-key compact FE scheme that
supports a single key query.

In an output-compact URE scheme, the running time of the GenUpd algorithm
is independent of the output length of the updated circuit. We remark that
the URE scheme obtained from Theorem 1 is, in fact, output compact. Our
construction in Theorem 1 is in this sense tight.
On output compactness. We study both indistinguishability and simulation-
based security notions for URE. In the context of FE, it is known from [1,26]
that simulation-secure FE with output compactness is impossible for general
functions. We observe that the same ideas as in [1,26] can be used to establish
impossibility of simulation-secure URE with output compact updates.

However, when we consider indistinguishability-based security, URE with out-
put compact updates is indeed possible. The results in Theorem 1 and Corollary 1
are stated for this case. Furthermore, using the trapdoor circuits technique of
[26], one can generically transform output-compact URE with indistinguishabil-
ity security to non-output-compact URE with simulation-based security.

Updatable garbled circuits with gate-wise updates. We now turn to
updatable garbled circuits, an alternate formulation of single-evaluation URE.
We consider the family of gate-wise updates, where an update u can modify a
single gate of a circuit or add or delete a gate. Below, we consider the case of
unbounded updates and bounded updates separately.
UGC with Unbounded Updates from Lattice Assumptions. Our first
result is a construction of UGC for general circuits that supports an unbounded
number of sequential updates from the family of gate-wise updates. We build
such a scheme from worst-case lattice assumptions.
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Theorem 3 (Informal). Let C be a family of general circuits. Assuming the
hardness of approximating either GapSVP or SIVP to within sub-exponential
factors, there exists a UGC scheme for C that supports an unbounded polynomial
number of sequential gate-wise updates.

We defer the proof of this theorem to the full version. [2] At the heart of
this result is a new notion of puncturable symmetric proxy re-encryption scheme
that extends the well-studied notion of proxy re-encryption [16]. In a symmetric
proxy re-encryption scheme, for any pair of secret keys SK1, SK2, it is possible
to construct a re-encryption key RK1→2 that can be used to publicly transform
a ciphertext w.r.t. SK1 into a ciphertext w.r.t. SK2. In our new notion of punc-
turable proxy re-encryption, re-encryption keys can be “disabled” on ciphertexts
CT∗ (w.r.t. SK1) s.t. the semantic security of CT∗ holds even if the adversary
is given the punctured key RKCT∗

1→2 and SK2. We give a construction of such
a scheme based on the hardness of approximating either GapSVP or SIVP to
within sub-exponential factors.

Given the wide applications of proxy re-encryption (see, e.g., [8] for a dis-
cussion), we believe that our notion of puncturable proxy re-encryption is of
independent interest and likely to find new applications in the future.
UGC with Bounded Updates from One-Way Functions. For the case of
a polynomially-bounded number of updates, we can relax our assumption to only
one-way functions. We obtain this result by using a puncturable PRF scheme
that can be based on one-way functions [40,56].

Theorem 4 (Informal). Let C be a family of general circuits, and λ be a secu-
rity parameter. Assuming one-way functions, for any fixed polynomial p, there
exists a UGC scheme for C that supports p(λ) sequential gate-wise updates. The
size of the initial garbled circuit as well as each update encoding is independent
of p. However, the initial circuit garbling time and update generation time grows
with p.

The construction of this scheme is quite simple and does not require a punc-
turable proxy re-encryption scheme. We provide an informal description of this
scheme in the technical overview Sect. 2.1.

Applications. We next discuss applications of our results.
Updatable Primitives with IND security. We start by discussing applica-
tion of multi-evaluation URE to dynamic circuit compilers. Here, we demonstrate
our main idea by a concrete example, namely, by showing how to use URE to
transform any (key-policy) attribute-based encryption (ABE) scheme into updat-
able ABE. The same idea can be used in a generic way to build dynamic circuit
compilers and obtain updatable functional encryption, updatable indistinguisha-
bility obfuscation, and so on. We refer the reader to the full version [2] for the
general case.

We briefly describe a generic transformation from any ABE scheme to one
where the policies associated with secret keys can be updated. The setup and
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encryption algorithms for the updatable ABE scheme are the same as in the
underlying ABE scheme. The key generation algorithm in the updatable ABE
scheme works as follows: to compute an attribute key for a function f , we com-
pute a URE 〈Cf 〉 of a circuit Cf where C runs the key generation algorithm of
the underlying ABE scheme using function f and outputs a key SKf . To decrypt
a ciphertext, a user can first decode 〈Cf 〉 to compute SKf and then use it to
decrypt the ciphertext.

In order to update an attribute key for a function f to another key for func-
tion f ′, we can simply issue an update encoding 〈u〉 for 〈Cf 〉 where u captures
the modification from f to f ′. To compute the updated attribute key, a user
can first update 〈Cf 〉 using 〈u〉 to obtain 〈Cf ′〉, and then decode it to obtain an
attribute key SKf ′ for f ′.

Let us inspect the efficiency of updates in the above updatable ABE scheme.
As in URE, we would like the size (as well as the generation time) of an update
encoding here to be independent of the size of the updated function. Note, how-
ever, that the output of the updated function Cf ′ is very large – an entire
attribute key SKf ′ ! Thus, in order to achieve the aforementioned efficiency, we
require that the URE scheme has updates with output compactness.

Recall that URE with output compact updates is only possible with indistin-
guishability based security. As such, the above idea is only applicable to crypto-
graphic primitives with indistinguishability-based security.
Updatable Primitives with SIM security. Next, we discuss applications
of URE to cryptographic primitives with simulation-based security. In the main
body of the paper, we describe two concrete applications, namely, updatable
non-interactive zero-knowledge proofs (UNIZK) and updatable multiparty com-
putation (UMPC). A notable feature of these constructions is that they only
require a URE scheme with non-output-compact updates and simulation-based
security. Below, we briefly describe our main idea for constructing UNIZKs.

Let (x,w) denote an instance and witness pair for an NP language L. Let u
denote an update that transforms (x,w) to another valid instance and witness
pair (x′, w′). In a UNIZK proof system for L, it should be possible for a prover
to efficiently compute an encoding 〈u〉 of u that allows a verifier to transform a
valid proof π for x into a proof π′ for x′ and verify its correctness.

We now briefly describe our transformation. A proof π for (x,w) in the
UNIZK scheme is computed as follows: we first compute a URE 〈Cx,w〉 for a
circuit Cx,w that checks whether (x,w) satisfies the NP relation associated with
L and outputs 1 or 0 accordingly. Furthermore, we also compute a regular NIZK
proof φ to prove that 〈Cx,w〉 is computed “honestly.” To verify π = (〈Cx,w〉, φ),
a verifier first verifies φ and if the check succeeds, it decodes 〈Cx,w〉 and outputs
its answer.

In order to update a proof π, we can simply issue an update encoding 〈u〉
for the randomized encoding 〈Cx,w〉, along with a regular NIZK proof φ′ that
〈u〉 was computed honestly. Upon receiving the update (〈u〉, φ′), a verifier can
first verify φ′ and then update 〈Cx,w〉 using 〈u〉 to obtain 〈Cx′,w′〉. Finally, it
can decode the updated URE 〈Cx′,w′〉 to learn whether x′ is in the language L
or not.
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It should be easy to see that the above idea can, in fact, be also used to make
interactive zero-knowledge proofs updatable. Finally, we note that the above is
a slightly oversimplified description and we refer the reader to the full version [2]
for further details on UNIZK and UMPC, respectively.

1.2 Related Work

Incremental Cryptography. The area of incremental cryptography was pioneered
by Bellare, Goldreich and Goldwasser [10]. While their work dealt with signature
schemes, the concept of incremental updates has been subsequently studied for
other basic cryptographic primitives such as hash functions, semantically-secure
encryption and deterministic encryption [11,24,31,52,53]. To the best of our
knowledge, all of these works only consider bit-wise updates, in which a single
bit of the message is modified.

While our work shares much in spirit with these works, we highlight one
important difference. In incremental cryptography, update operation is per-
formed “in house,” e.g., in the case of signatures, the entity who produces the
original signature also performs the update. In contrast, we consider a client-
server scenario where the client simply produces an update encoding, and the
actual updating process is performed by the server. This difference stipulates
different efficiency and security requirements. On the one hand, incremental
cryptography necessarily requires efficient updating time for the notion to be
non-trivial, while we consider the weaker property of efficient update encod-
ing generation time. On the other hand, our security definition is necessarily
stronger since we allow the adversary to view the update encodings – a property
not necessary when the updating is done “in house.”

Incremental/Patchable Obfuscation. Recently, [35] and [5] study the notion
of updatability in the context of indistinguishability obfuscation. The work of
[35] considers incremental (i.e., bit-wise) updates, while [5] allow for arbitrary
updates, including those that may increase the size of the program (modeled as
a Turing machine).

We note that one of our results, namely, URE with unbounded updates can be
derived from [5] at the cost of requiring sub-exponentially secure iO. In contrast,
we obtain our result by using polynomially secure secret-key compact FE.

Malleable NIZKs. Our notion of updatable NIZKs should be contrasted with
the notion of malleable NIZKs proposed by Chase et al. [28]. In a malleable
NIZK, it is possible to publicly “maul” a proof string π for a statement x into
a a proof string π′ for a related statement x′. In contrast, our notion of UNIZK
only allows for privately generated updates. To the best of our knowledge, mal-
leable NIZKs are only known either for a limited class of update relations from
standard assumptions [28], or for general class of update relations based on
non-falsifiable assumptions such as succinct non-interactive arguments [29]. In
contrast, we show how to build UNIZK for unbounded number of general updates
from compact secret-key FE and regular NIZKs, and for a bounded number of
general updates from regular NIZKs.
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Updatable Codes. The concept of updating was also studied in the context of
error correcting codes by [27]. In this context, it is difficult to model the problem
of updating – we should be able to change few bits of the code to correspond to
a codeword of a different message and at the same time we want the distance
between codewords of different messages to be far apart. We refer the reader
to their work for discussion on this seemingly contradictory requirement. In a
subsequent work, [30] studied this problem in the context of non-malleable codes.

2 Our Techniques

We start with the construction of UGC and present the main ideas underlying
the construction. We then build upon the intuition developed in the construction
of UGC, to construct (multi-evaluation) URE.

2.1 Construction of UGC

Below, we restrict our discussion to updates that correspond to a gate change.
A Lock-and-Release Mechanism for Single Update. Let us first start with
the simpler goal of building a UGC scheme that supports updating a single
gate. Let C be a circuit comprised of s-many gates C1,. . . ,Cs. Our starting idea
towards a UGC scheme with single update is as follows: in order to garble C, we
simply compute a garbling of C using a standard gate-by-gate garbling scheme
such as [59].3 We denote by 〈C〉gc the garbled circuit for C, and by 〈C〉i

gc the
garbled gate corresponding to gate Ci. Encrypt each garbled gate, and output
the resulting ciphertexts CT1, . . . ,CTs.

Now, suppose we wish to update garbling of C to garbling of C ′ where C ′ only
differs from C in the first gate. Then, a natural idea is to release a decryption key
that only decrypts the ciphertexts CT2, . . . ,CTs (but not CT1). The encoding of
the update is consists of these s−1 keys and, along with a garbled-version of the
new gate 〈C ′〉1gc. Using this information, the receiver can decrypt and recover
the garbled gates 〈C〉2gc,. . . ,〈C〉s

gc. Together with 〈C〉1gc, this forms a complete
garbled circuit for C ′.

The main remaining question is how to implement the aforementioned con-
ditional decryption mechanism. A naive way to achieve this is to encrypt each
ciphertext with an independent encryption key, and then release the decryption
key for every position i �= 1. However, note that in this naive solution, the size
of the update encoding is proportional to s = |C|. In terms of size, this is no
better than garbling C ′ from scratch.

To address this, we could instead use a (secret key) puncturable encryption
scheme. In such a scheme, for any ciphertext CT, it is possible to compute “punc-
tured decryption key” that enables one to decrypt all ciphertexts except CT.

3 In gate-by-gate garbling schemes such as [59], each boolean gate can be garbled
knowing only the circuit topology and the gate’s functionality, independently of the
remainder of the circuit.
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In order to be non-trivial, the size of punctured decryption keys must be indepen-
dent of the number of ciphertexts generated. Such an encryption scheme can be
built from puncturable pseudorandom functions [21,22,48,56] (c.f. Waters [58])
which in turn can be based on any one-way function. It is easy to verify that given
such an encryption scheme, we can efficiency we desire in above construction for
UGC supporting a single update.

We find it instructive to abstract the above idea as a lock-and-release mech-
anism. Roughly speaking, the encryption of the wire keys corresponding to C
constitutes the locking step, while the dissemination of the punctured decryption
key constitutes the (conditional) release step. We find this abstraction particu-
larly useful going forward, in order to develop our full solution for an unbounded
number of updates.

Multiple Updates: Main Challenges. The above solution does not offer any
security for multiple sequential updates – even for two. If the two updates for
two different gates would allow an adversary to recover a garbling of the original
circuit Additionally, the above scheme does not “connect” the two updates in any
manner; an adversary could choose to apply none, one, or both of the updates
before evaluating the circuit.

A Layered Lock-and-Release Mechanism for Bounded Updates. We
next consider the case of an a priori bounded number of updates (the setting of
Theorem 4). The key idea, in a nutshell, is to use layered punctured encryption,
or alternatively, a layered lock-and-release mechanism.

Suppose we wish to handle p-many of updates. When garbling the cir-
cuit C, instead of encrypting the garbled gates a single time, we instead use
p “onion” layers of encryption scheme, each using a punctured encryption
scheme. Let u1,. . . ,up be a sequence of gate updates, each consisting of a
gate g ∈ [s] to change and a new gate type. To generate an updatable gar-
bled circuit for C, first garble C̃ using a traditional gate-by-gate scheme. Sam-
ple p keys SK1,. . . ,SKp for a puncturable encryption scheme. Encrypt each
garbled gate 〈C〉i

gc of the garbled circuit in p layers, yielding a ciphertext
CTi = Enc(SK1,Enc(SK2, . . .Enc(SKp, 〈C〉i

gc))).
The encoding of the first update u1 = (g1, gateType1) simply corresponds

to releasing a decryption key for the outermost encryption layer that is punc-
tured at CTg1 , along with a layer (p− 1) encryption CT′

gi
= Enc(SK2,Enc(SK3,

. . .Enc(SKp, 〈C ′〉gi

gc))), where 〈C ′〉gi

gc is the new garbled gate corresponding to
replacing gate gi of C with gateType. Likewise, an encoding of the i-th update
ui corresponds to releasing a punctured decryption key for SKi, (i − 1) encryp-
tion of the new garbled gate.

The above idea of layered (punctured) encryption ensures that the receiver
cannot “skip” any update, and instead must apply all the updates one-by-one to
“peel-off” all the encryption layers from the garbled gates. Furthermore, since
the encryption layers can only be removed in a prescribed order, the receiver
must applies the updates in order. Finally, after all the decryption operations,
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the receiver only obtains a single garbled gate every location in the (updated)
circuit.

We now briefly argue that the above construction satisfies the efficiency prop-
erties stated in Theorem 4. We first note that punctured encryption scheme in
the above construction can simply correspond to a one-time pad where the ran-
domness for computing the ith ciphertext, for every i ∈ |C|, is generated by
evaluating a puncturable PRF over the index i. The PRF key (i.e., the secret
key for the punctured encryption scheme) is different for every layer. With this
instantiation, note that the size of the initial garbled circuit as well as every
update is independent of the total number of updates p; however, the garbling
time as well as update generation time depends on p.

A Relock-and-Eventual-Release Mechanism for Unbounded Updates.
The above solution is that it inherently requires the number of updates to be a
priori bounded. To support multiple updates, our main insight is to develop a
relock-and-eventual-release mechanism as opposed to the layered lock-and-
release mechanism discussed above. That is, instead of removing a lock at every
step, our idea is to change the lock at every step. In encryption terminology,
our idea is to replace the layered encryption in the above approach with a sym-
metric re-encryption scheme [16]. In a symmetric re-encryption scheme, given
two encryption keys SK1 and SK2, it is possible to issue a re-encryption key
RK1→2 that transforms any ciphertext w.r.t. SK1 into a ciphertext w.r.t. SK2.
In order to allow for updates, we, require the re-encryption scheme to support
key puncturing. That is, we require that it is possible to compute a punctured
re-encryption key RKCT∗

1→2 that allows one to transform any ciphertext w.r.t. SK1

into a ciphertext w.r.t. SK2, except the ciphertext CT∗ (computed under SK1).
From a security viewpoint, we require that the semantic security of CT∗ should
hold even if the adversary is given RKCT∗

1→2 and the terminal secret key SK2. We
refer to such an encryption scheme as a puncturable symmetric re-encryption
scheme. While the above description only refers to a “single-hop” puncturable
re-encryption scheme, we in fact consider a “multi-hop” scheme.

Armed with the above insight, we modify the previous solution template as
follows: the garbling of a circuit C consists of Ũ as before. The main difference
is that the wire keys wC = {wC1 , . . . , wCn

} corresponding to the circuit C are
now encrypted w.r.t. a puncturable re-encryption scheme. Let SK0 denote the
secret key used to encrypt the wire keys. In order to issue an update encoding for
an update ui, we release (a) a re-encryption key RKCT

i−1→i that is punctured at
ciphertext CT, where CT is the encryption of wC�

w.r.t. SKi−1 and � is the posi-
tion associated with update ui, along with (b) an encryption of wC̄�

w.r.t. SKi.
For the final update L, we simply release the Lth secret key SKL.

We argue the security of the construction by using the security of the punc-
turable re-encryption scheme and the garbling scheme (see the technical sections
for details). We note, however, that this construction does not hide the location
of the updates. Indeed, the correctness of the above scheme requires the evalu-
ator to know the locations that are being updated. To address this, we provide
a generic transformation from any UGC scheme (or in fact, any URE scheme)
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that does not achieve update hiding into one that achieves update hiding. Our
transformation uses non-interactive oblivious RAM in the same manner as in
[35]. Finally, we note that while the above only discusses single-bit updates, our
construction handles multi-bit updates as well.

The only missing piece in the above solution is a construction of a puncturable
symmetric re-encryption scheme. We discuss it next.

Puncturable Symmetric Re-encryption from Worst-case Lattice
Assumptions. The work of [18] constructs re-encryption schemes from key
homomorphic PRFs, which have the property that for all x, K1, and K2,
PRF(K1, x) + PRF(K2, x) = PRF(K1 + K2, x), where the keys and outputs of
the PRF lie in appropriate groups. A secret key for the encryption scheme is
simply a PRF key, and the encryption of a message m with secret key K1 and
randomness r is CT = (r,m + PRF(K1, r)).

A re-encryption key between between secret keys K1 and K2 is simply their
difference: RK1→2 = K2−K1. The key-homomorphism suggests a natural way to
re-encrypt ciphertexts, as (r,m+PRF(K1, r)+PRF(RK1→2, r)) = (r,m+(K2, r))
is a ciphertext w.r.t K2. Observe that successful re-encryption of a ciphertext
with randomness r relies on the ability to compute PRF(RK1→2, r).

We construct puncturable proxy re-encryption scheme following the above
approach, but instantiated with constrained key-homomorphic PRFs [23]. A
punctured re-encryption key RKCT∗

1→2 for a ciphertext CT∗ with randomness r∗

is the PRF key K2 − K1 punctured at the input r∗. This key, which can be
used to evaluate PRF(K2 − K1, r) for all r �= r∗, enables the re-encryption of all
ciphertexts except for the ciphertext CT∗.

For security, we require that the semantic security of CT∗ holds given both
RKCT∗

1→2 and K2. We reduce to the security of the constrained PRF, which guaran-
tees that y∗ := PRF(K2 −K1, r

∗) is pseudorandom. The key idea is that (partial
information about) y∗ can be computed given CT∗, K2, and (partial information
about) the message m.

2.2 Construction of URE

We now shift our focus on building multi-evaluation URE.

Relock-and-Release Mechanism. Recall that the main difference between
UGC and URE is that UGC only allows for a single evaluation after a sequence of
updates, while URE allows for evaluation after every update. As such, the relock-
and-eventual-release mechanism that we discussed above does not suffice for
building URE. Our starting insight is to instead develop a relock-and-release
mechanism that performs both relocking and release at every step. Intuitively,
relocking allows us to “carry over” the updates, while the release mechanism
allows us to evaluate the updated randomized encoding at every step.

Starting Idea: Garbled RAM with Persistent Memory. A natural starting
approach to implement such a relock-and-release mechanism is via the use of
garbled RAMs with persistent memory [37,51]. In a garbled RAM scheme, it is
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possible to encode a database D0 and later issue encodings for RAM programs
M1, . . . ,Mn. Each RAM program encoding ˜Mi updates the database encoding
from D̃i−1 to ˜Di, and outputs the result of some computation on Di.

Given this description, it is not difficult to see why such a notion is useful for
our purpose. Starting from a garbled RAM scheme and a standard randomized
encodings scheme without updates [59], we can build a candidate construction
of multi-evaluation URE as follows:

– We set the initial database D0 in garbled RAM to the initial circuit and input
pair (C0, x0) in the URE scheme. The initial updatable randomized encod-
ing of (C0, x0) is an encoding of D0, computed under garbled RAM scheme,
along with an encoding of (C0, x0) computed under the standard randomized
encoding scheme.

– In order to compute an encoding 〈ui〉 for an update ui, we compute an
encoding ˜Mi of a machine Mi w.r.t. the garbled RAM scheme where the
machine Mi has ui hardcoded in it. The machine Mi on input Di−1 =
(Ci−1, xi−1) first updates the database to Di = (Ci, xi), where (Ci, xi) ←
Update(Ci−1, xi−1;ui), and outputs a fresh standard randomized encoding of
(Ci, xi).

Let us inspect the above solution closely; specifically, the complexity of the
machine Mi corresponding to an update ui. Since Mi computes a fresh (stan-
dard) randomized encoding “on-the-fly,” in order to achieve the necessary effi-
ciency guarantee for URE, we will require that the encoding time for Mi is inde-
pendent of its running time. Such a garbled RAM scheme is called a succinct
garbled RAM scheme [13,25]. Furthermore, since the output of Mi consists of a
fresh randomized encoding, we will also require that the time of encode Mi is
independent of its output length. Such a garbled RAM scheme is referred to as
output-compressing [3,50].

Recent works [3,50] show that output-compressing succinct garbled RAM
(with sub-exponential security) imply indistinguishability obfuscation (iO). Fur-
thermore, the only known constructions for such a garbled RAM scheme are
based on iO, which, in turn seems to require sub-exponential hardness assump-
tions. Our goal, however, is to obtain a solution for URE using polynomial hard-
ness assumptions. As such, the above is not a viable solution for us.

Garbled RAM meets Delegation of Computation. Towards that end, our
next idea is to instantiate the above approach using a non-succinct garbled RAM
scheme where the size of the encoding of a machine Mi depends on the running
time and the output length of Mi. Such garbled RAM schemes are known to
exist based on only one-way functions. At first, it is not clear how to make this
approach work since the efficiency requirements of URE are immediately violated.

Towards that end, our next idea is to delegate the computation of the encod-
ing of Mi to the receiver. We implement this idea by using secret-key functional
encryption [19,54,55]. Roughly speaking, the initial encoding of C0(x0) now cor-
responds to a database encoding of D0 = (C0, x0) w.r.t. a non-succinct garbled
RAM scheme along with FE functional key for a circuit P that takes as input an
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update string ui and outputs an encoding ˜Mi of the machine Mi (as described
before). Encoding of an update ui now corresponds to an FE encryption of ui.

In order to achieve the necessary efficiency guarantee of URE, we require
that the secret-key FE scheme used above is compact, i.e., where the running
time of the encryption algorithm on a message m is a fixed polynomial in the
length of m and the security parameter, and in particular, independent of the
size complexity of any function f in the function family supported by the FE
scheme. Indeed, if this were not the case, then the encoding time for an update
ui in the above solution would depend on the size of the circuit C, which in
turn depends on the running time and output length of Mi. Therefore, if the FE
scheme were not compact, then the efficiency requirements of URE would once
again be violated.

As discussed earlier, a secret-key compact FE scheme with polynomial hard-
ness can be built from polynomial hardness assumptions on multilinear maps
using using the results of [33] and [4,15].

Challenges in Proving Security. While the above construction seems to
achieve correctness, it is not immediately clear how to argue security. Note that
the circuit P computed by an FE key in the above construction contains the
garbling key of the garbled RAM scheme hardwired inside it. Indeed, this is
necessary for it to compute the encodings corresponding to machines Mi as dis-
cussed above. In order to leverage security of garbled RAM, one approach is to
remove the garbling key from the FE function key. However, in order to maintain
functionality, this would require hardwiring the output of P , either in the FE
key, or in the FE ciphertext. We cannot afford to hardwire the output in the
ciphertext since that would violate the efficiency requirements of URE. Thus,
our only option is to hardwire the output in the FE key. Note, however, that
in the setting of multiple updates, we have to deal with multiple outputs. In
particular, the above approach would require hardwiring all the outputs (one
corresponding to each update) in the FE key. Doing so “at once” would require
putting a bound on the number of updates.

A better option is to hardwire the outputs “one-at-a-time,” analogous to
many proofs in the iO literature (see, e.g., [3,23,39]). Implementing this idea,
however, would require puncturing the garbling key. Such a notion of key punc-
turing is not supported by standard garbled RAM schemes.

Using Cascaded Garbled Circuits. Towards that end, we take a step back
and revisit our requirements from the garbled RAM scheme. Our first observation
is that in the above solution template, machine Mi need not be a RAM since we
are already requiring it to read the entire database! Instead, the key property of
garbled RAM with persistent memory that is used in the above template is its
ability to maintain updated state in the form of encoded database.

We now discuss how to implement this property in a more direct manner
by “downgrading” the garbled RAM to a cascaded garbled circuit. Along the
way, we will also address the security issues discussed above. Very briefly, we
modify the above construction as follows: consider a circuit Qi that has an
update string ui hardwired in its description. It takes as input (Ci−1, xi−1) and
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outputs two values. The first value is a fresh randomized encoding of Ci(xi)
where (Ci, xi) ← Update(Ci−1, xi−1;ui), and the second value is a set of wire
keys for the string (Ci, xi) corresponding to a garbling of the circuit Qi+1 (that
is defined analogously to Qi). The initial encoding of C0(x0) now corresponds
to the input wire keys for the string (C0, x0) corresponding to a garbling of
circuit Q1 as defined above, as well as an FE key for a function f that takes as
input ui and outputs a garbling a circuit Qi. The encoding of an update ui now
corresponds to an FE encryption of ui as before.

We prove the security of the above construction with respect to indistin-
guishability based security definition. Simulation-based security can be argued
via a generic transformation following [26]. Let C0

0 , C1
0 , x be the initial cir-

cuits and input submitted by the adversary in the security proof. And let,
(u0

1,u
1
1), . . . , (u

0
q ,u

1
q) be the tuple of updates. There are two “chains” of updat-

ing processes with the 0th chain starting from C0
0 and 1st chain starting from C1

1 .
The ith “bead” on 0th (resp., 1st) chain corresponds to update u0

i (resp., u1
i ).

In the security proof, we start with the real experiment where challenge
bit 0 is used. That is, the 0th chain is active in the experiment. In the next
step, we introduce the 1st chain, along with the already present 0th chain, into
the experiment. However even in this step, 0th chain is still active – that is,
generating the randomized encoding at every step is performed using the 0th

chain. In the next intermediate hybrids, we slowly switch from 0th chain being
activated to 1st chain being activated. In the ith intermediate step, the first i
beads on 1st chain are active and on the 0th chain, all except the first i beads are
active – this means that the first i updated randomized encodings are computed
using the 1st chain and the rest of them are computed using 0th chain. At the
end of these intermediate hybrids, we have the 1st chain to be active and 0th

chain to be completely inactive. At this stage, we can remove the 0th chain and
this completes the proof.

The two chains described above are implemented in a sequence of garbled
circuits, that we call cascaded garbled circuits. That is, every ith garbled circuit
in this sequence produces wire keys for the next garbled circuit. Every garbled
circuit in this sequence is a result of ApplyUpd procedure and encapsulates, for
some i, the ith beads on both the chains. In order to move from the ith interme-
diate step to (i + 1)th intermediate step, we use the security of garbled circuits.
But since these garbled circuits are not given directly, but instead produced by
a FE key, we need to make use of security of FE to make this switch work.

3 Preliminaries

We denote the security parameter by λ. The background for randomized encod-
ings and private key (function hiding) functional encryption can be found in the
full version [2].
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3.1 Updatable Circuits

A boolean circuit C is an directed acyclic graph of in-degree at most 2 with the
non-leaf nodes representing ∨ (OR), ∧ (AND) and ¬ (NOT) gates and the leaf
nodes representing the input variables and constants 0 and 1. The nodes with no
outgoing edges are designated to be output gates. The size of a circuit |C| is the
number of nodes in the graph. Each node is labeled with a different index between
1 and |C|. The evaluation of C on input x is performed by first substituting the
leaf nodes with the value x and then evaluating gate-by-gate till we reach the
output gates. The joint value of all the output gates determine the output of the
circuit. Circuit C is said to represent a function f : {0, 1}λ → {0, 1}�(λ) if for
every x ∈ {0, 1}λ we have C(x) = f(x). We assume that the class of all boolean
circuits for every fixed size |C| and n inputs has an efficient binary representation
binary(C) ∈ {0, 1}O(|C|). That is, there is an efficient algorithm that computes
C 
→ (n, |C|, binary(C)), and its inverse.

We define the notion of updatable circuits next. A family of updatable circuits
C has associated with it a class of updates U . Given any circuit C ∈ C we can
transform this circuit into another circuit C ′ ∈ C with the help of an update
u ∈ U . The updating process could, for instance, change one of the output gates
from ∨ to ¬, change all the gates to ∧ gates and so on. Formally,

Definition 1 (Updatable Circuits). Consider a circuit family C = {Cλ}λ∈N,
where Cλ contains poly(λ)-sized boolean circuits C : {0, 1}λ → {0, 1}�(λ). Con-
sider a set system of strings U = {Uλ}λ∈N, where Uλ is a set of strings of length
poly(λ). We define C to be (Upd,U)-updatable if C ′ ← Upd(C,u ∈ Uλ) is also
a boolean circuit with input domain {0, 1}λ and output domain {0, 1}�(λ).

The size of update u could potentially be much smaller than the size of the
circuit C. For instance, the length of the instruction to change all the gates in
C to ∧ gate is in fact independent of |C|.

4 Updatable Randomized Encodings

We define the notion of updatable randomized encodings (URE) next. Since this
notion deals with transforming circuits, this notion will be associated to a class of
updatable circuits. But to also capture the joint updatability of both the circuit
and the input together, we introduce the notion of hardwired circuits below.

Hardwired Circuits. A hardwired circuit, associated to a circuit C and input x,
takes no input but upon evaluation yields a fixed output C(x).

We provide the formal definition of hardwired circuits below.

Definition 2 (Hardwired Circuit). Consider a circuit C : {0, 1}λ →
{0, 1}�(λ) and x ∈ {0, 1}λ. We define a hardwired circuit, denoted by C[x], to
be a circuit such that,

– it takes no input.
– upon evaluation (always) outputs C(x).
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We interchangeably use C[x] to denote the circuit as well as the output C(x) it
computes.

Two hardwired circuits C0[x0] and C1[x1] are equivalent if and only if C0(x0) =
C1(x1) and |C0| = |C1|. If C0[x0] and C1[x1] are equivalent then they are denoted
by C0[x0] ≡ C1[x1]. We can generalize this notion and define a class of hardwired
circuits as stated below.

Definition 3 Consider a circuit family C = {Cλ}λ∈N. We define a hardwired
circuit family {C[X]λ}λ∈N where C[X]λ comprises of hardwired circuits of fixed
input length and is associated with a bijective function φ : Cλ × {0, 1}λ → C[X]λ
such that if φ (C ∈ Cλ, x) = C then the output of the hardwired circuit C is C(x).

We can now talk about updatability of hardwired circuits. Note that this cap-
tures joint updating of both the circuit as well as the input hardwired into it.

Definition 4 (Updatable Hardwired Circuits). Consider a family of hard-
wired circuits {C[X]λ}λ∈N, where C[X]λ contains poly(λ)-sized boolean circuits
C[X] : ⊥ → {0, 1}�(λ). Consider a set system of strings U = {Uλ}λ∈N, where
Uλ contains a set of strings of length poly(λ). We define C[X] to be (Upd,U)-
updatable if C ← Upd (C[x],u), where C[x] ∈ C[X]λ,u ∈ Uλ, then C is also a
hardwired circuit.

We now proceed to give a formal definition of URE.

Syntax. A scheme URE = (Encode,GenUpd,ApplyUpd,Decode) for a (Upd,U)-
updatable class of circuits C = {Cλ}λ∈N is defined below. We denote C[X] to be
the corresponding updatable hardwired circuit family.

– Encode, (〈C[x]〉ure, st) ← Encode
(

1λ, C, x
)

: On input security parameter λ,
circuit C ∈ Cλ, input x ∈ {0, 1}λ, it outputs the joint encoding 〈C[x]〉ure and
state st.

– Generating Secure Update, (〈u〉ure, st′) ← GenUpd (st,u): On input state
st, update u ∈ Uλ, output the secure update 〈u〉ure along with the new state st′.

– Apply Secure Update, 〈C ′[x′]〉ure ← ApplyUpd (〈C[x]〉ure, 〈u〉ure): On input
randomized encoding 〈C[x]〉ure, secure update 〈u〉ure, output the updated ran-
domized encoding 〈C ′[x′]〉ure.

– Evaluation, α ← Decode (〈C[x]〉ure): On input randomized encoding
〈C[x]〉ure, output the decoded value α.

We associate the above scheme with efficiency, correctness and security proper-
ties. We first talk about the efficiency requirement. Modeling of correctness and
security properties is tricky and we will deal with them in a separate subsection.
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Efficiency. We lay out different efficiency properties associated with the above
scheme.

– Encoding Time: This property requires that the encoding time of (C, x) is
significantly “simpler” than computing C(x). The efficiency aspect can be
quantified in many ways – in this work, we define encoding to be efficient if
the depth of Encode circuit is smaller than C.

– Secure Update Generation Time: This property requires that the runtime of
GenUpd (st,u) is p(λ, |u|), where p is an a priori fixed polynomial. In other
words, the update generation time is independent of the size of the encoded
circuit.

– State Size: This property requires that the size of the state maintained by the
authority is a fixed polynomial in the security parameter. That is, the size of
st output by Encode and GenUpd is always poly(λ) independent of the size of
the machines and the update sizes.

– Secure Update Size: This property states that the size of the secure version of
the update should solely depend on the size of the update. Formally, we have
the size of the secure update to be |〈u〉ure| = p(λ, |u|), where (〈u〉ure, st′) ←
GenUpd (st,u). Note that any URE scheme that satisfies the above secure
update generation time property also satisfies this property.

– Runtime of Update: Informally, this property states that the time to update the
secure encoding incurs a polynomial overhead in the time to update the plain-
text circuit. Formally, the runtime of ApplyUpd(〈C[x]〉ure, 〈u〉ure) is p(λ, t, |u|),
where t is the time taken to execute Upd(C[x],u).

Our constructions achieve a restricted version of the above properties. On the
positive side, our construction in Sect. 5 achieves the ‘Encoding Time’ property
and ‘Secure Update Generation Time’ properties. We use a term to define a
URE scheme that satisfies the secure update generation time property – we call
it output compact URE.

Definition 5 (Output Compact URE). An URE scheme that is said to be
output compact if it satisfies ‘Secure update generation time’ property.

In the case of indistinguishability security, our construction will be output-
compact, i.e., the updates will be independent of the output length of the circuit.
In the case of simulation-based security, our construction will not achieve out-
put compactness. This is, in fact, inherent and a formal lower bound to this
effect can be established along the same lines as in [1,26]. On the flip side, our
construction does not satisfy ‘Runtime of Update’ property.

In the full version [2], we provide a transformation from any URE scheme that
satisfies the ‘Secure Update Generation Time’ property to one that additionally
satisfies the ‘State Size’ property. This transformation uses non-succinct garbled
RAMs, and assumes only one-way functions.

4.1 Sequential Updating

We first consider sequential updating process that will be the main focus of this
work. For alternate updating processes, refer to the full version [2]. Sequential
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Updating process allows for updating a randomized encoding using multiple
patches in a sequential manner. That is, given secure updates 〈u1〉ure, . . . , 〈u�〉ure,
we can update a randomized encoding 〈C[x]〉ure by first applying 〈u1〉ure on
〈C[x]〉ure to obtain the updated encoding 〈C1[x1]〉ure; next we apply 〈u2〉ure on
〈C1[x1]〉ure to obtain the updated encoding 〈C2[x2]〉ure and so on. After all the
updates, we end up with the updated encoding 〈C�[x�]〉ure.
Correctness of Sequential Updating. Intuitively, the correctness property states
that computing the randomized encoding 〈C[x]〉ure, applying the secure updates
〈u1〉ure, . . . , 〈u�〉ure sequentially and finally decoding yields the same result as the
output of the circuit obtained by updating the hardwired circuit C[x] by applying
the updates u1, . . . ,u� sequentially. We give the formal description below.

Consider a circuit C ∈ Cλ, input x ∈ {0, 1}λ. Consider a vector of updates
U ∈ (Uλ)q, where q(λ) is a polynomial in λ. Consider the following two processes:

Secure updating process:

1. (〈C[x]〉ure, st0) ← Encode
(

1λ, C, x
)

.
2. For every i ∈ [q]; (〈ui〉ure, sti) ← GenUpd (sti−1,ui), where ui is the ith entry

in U.
3. Let 〈C0[x0]〉ure := 〈C[x]〉ure. For every i ∈ [q];

〈Ci[xi]〉ure ← ApplyUpd (〈Ci−1[xi−1]〉ure, 〈ui〉ure) .

Insecure updating process:

1. Let (C0, x0) := (C, x). For every i ∈ [q], we have Ci[xi] ←
Upd(Ci−1[xi−1],ui). The output of Cq[xq] is Cq(xq).

We have,

Decode
(

〈Cq[xq]〉ure
)

= Cq(xq)

Security of Sequential Updating. We consider two different security notions of
sequential updatable RE. First, we consider simulation-based notion and then
we consider the weaker indistinguishability-based notion.

Our security notions attempt to capture the intuition that an updateable
randomized encoding 〈C0[x0]〉ure and a sequence of updates 〈u1〉ure, . . . , 〈uq〉ure
should reveal only the outputs C0(x0), C1(x1),. . .Cq(xq) where Ci and Xi are
defined as in the preceding correctness definition. In addition to hiding the cir-
cuits and inputs as in traditional randomized encodings, a URE additionally
hides the sequence of updates. Our URE construction satisfies this update-hiding
property.

We could instead consider a relaxed notion, in which updates are partially or
wholly revealed (modifying the definitions appropriately). Indeed, this is what
we will do in the context of updatable garbled circuits. In the full version [2], we
provide a generic transformation from an update-revealing URE scheme to an
update-hiding URE scheme, assuming only the existence of one-way functions.
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Simulation-Based Security. We adopt the real world/ideal world paradigm in
formalizing the simulation-based security definition of sequential updatable RE.
In the real world, the adversary receives a randomized encoding and encodings
of updates. All the encodings are generated honestly as per the description of
the scheme. In the ideal world, the adversary is provided simulated randomized
encodings and encodings of updates. These simulated encodings are generated
as a function of the outputs and in particular, the simulation process does not
receive as input the circuit, input or the plaintext updates. A sequential updat-
able RE scheme is secure if an efficient adversary cannot tell apart real world
from the ideal world.

The ideal world is formalized by considering a simulator Sim that runs in
probabilistic polynomial time. Sim gets as input the output of circuit C(x), the
length of C and produces a simulated randomized encoding. We emphasize that
Sim does not receive as input C or x. After this, Sim simulates the update
encodings. On input length of update ui, value Ci(xi), it generates a simulated
encoding of ui. Here, Ci(xi) is obtained by first updating Ci−1[xi−1] using ui

to obtain Ci[xi], whose output is Ci(xi) and also, C0[x0] is initialized with C[x].
For this discussion, we consider the scenario where the circuit, input along with
the updates are fixed at the beginning of the experiment. This is termed as the
selective setting. We describe the formal experiment in Fig. 1.

We present the formal security definition below.

Definition 6 (SIM-secure Sequential URE). A sequential URE scheme
URE for (Upd,U)-updatable class of circuits C = {Cλ}λ∈N is said to be SIM-
secure if for every PPT adversary A, for every circuit C ∈ Cλ, updates
u1, . . . ,uq ∈ Uλ, there exists a PPT simulator Sim such that the following holds
for sufficiently large λ ∈ N,

∣

∣

∣Pr
[

0 ← IdealExptA
(

1λ, C, x, {ui}i∈[q]

)

]

− Pr
[

0 ← RealExptA
(

1λ, C, x, {ui}i∈[q]

)

]∣

∣

∣ ≤ negl(λ),

where negl is a negligible function.

We also define indistinguishability-based security notion. We show a transforma-
tion from indistinguishability-based security notion to simulation based security
notion. This can be found in the full version.

5 Output-Compact URE from FE

In this section, we present our construction of updatable randomized encodings
satisfying output compactness properties.

5.1 Construction

Our goal is to construct an updatable randomized encoding scheme,
URE = (Encode,GenUpd,ApplyUpd,Decode) for C. The main tools we use in
our construction are the following. We refer the reader to the preliminaries for
the definitions of these primitives.
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IdealExptA(1λ, C, x, {ui}i∈[q]):

(〈C[x]〉ure, st0) ← Sim(1λ, 1|C|, C(x)).

C0[x0] := hardwired circuit of (C, x).

∀i ∈ [q], Ci[xi] ← Upd(Ci−1[xi−1],ui).

∀i ∈ [q], (〈ui〉ure, sti) ← Sim(sti−1, 1
|ui|, Ci(xi)).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈uq〉ure

)
.

RealExptA(1λ, C, x, {ui}i∈[q]):

(〈C[x]〉ure, st0) ← Encode 1λ, C, x
)
.

∀i ∈ [q], (〈u〉ure, sti) ← GenUpd (sti−1,ui).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈uq〉ure

)
.

Fig. 1. Selective simulation-based definition of sequential URE.

– Randomized Encoding scheme, RE = (RE.Enc,RE.Dec) for the same class of
circuits C.

– Compact, Function-private, Single-Key, Secret-key functional encryption (FE)
scheme, FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

– Garbling Scheme for circuits, GC = (GrbCkt,GrbInp,EvalGC).

Remark 1. In the full version [2], we show that compact secret-key functional
encryption is necessary for our construction of updatable randomized encodings
if we believe that learning with errors assumption holds true.

We assume, without loss of generality, that all randomized algorithms require
only λ-many random bits. We use the above tools to design the algorithms of
URE as given below.

The updatable randomized encoding of (C, x) will consist of a (standard)
randomized encoding (C, x) and some additional information necessary to carry
out the updating process. This additional information consists of a garbled input
encoding of C and x with respect to GC, and a FE secret key for a function that
takes as input an update and outputs a garbled circuit mapping C and x to a
new randomized encoding and new garbled circuit input encodings of C ′ and
x′, which are the updated values. Henceforth, we denote by s the size of the
representation of the harwired circuit C[x].

Encode
(

1λ, C, x
)

: On input security parameter λ, perform the following opera-
tions.

1. Execute the setup of FE, FE.MSK ← FE.Setup(1λ).
2. Compute a functional key FE.SKRRGarbler ← FE.KeyGen(FE.MSK,RRGarbler),

where RRGarbler is as defined in Fig. 3.
3. In the next step, generate a randomized encoding of input (C, x). That is,

compute RE.Enc(1λ, C, x) to obtain 〈C[x]〉re.
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4. As stated earlier, let s be the size of the representation of C[x]. Generate
a garbled circuit input encoding of (C[x],⊥) by evaluating 〈C[x],⊥〉gc ←
GrbInp(C[x],⊥; rgc), where rgc is the randomness used to garble the input.
Here we view (C[x],⊥) as an input (to the circuit RelockRelease).

5. Output as the randomized encoding the tuple,

〈C[x]〉ure =
(

FE.SKRRGarbler, 〈C[x]〉re, 〈C[x],⊥〉gc
)

and set the state to be st = (FE.MSK, rgc).

GenUpd (sti, ui+1): It takes as input the state sti = (FE.MSK, rgc,i) and update
ui+1.

1. Sample random coins rre,i+1 and rgc,i+1. Let mode = 0.
2. Generate the FE ciphertext,

CTi+1 ← FE.Enc (FE.MSK, (ui+1, ⊥, rgc,i, rgc,i+1, rre,i+1, mode))

3. Set the new state sti+1 = (FE.MSK, rgc,i+1).
4. Output 〈ui+1〉ure = CTi+1.

ApplyUpd (〈Ci[xi]〉ure, 〈ui+1〉ure): On input circuit encoding 〈Ci[xi]〉ure and update
encoding 〈ui+1〉ure = CTi+1, execute the following (Fig. 2).

1. Parse the circuit encoding as:

〈Ci[xi]〉ure =
(

FE.SKRRGarbler, 〈Ci[xi]〉re, 〈Ci[xi],⊥〉gc
)

RelockReleasei+1

Input: C0
i [x0

i ], C
1
i [x1

i ]
Hard-coded values: u0

i+1, u
1
i+1, rgc,i+1, rre,i+1, and mode

– Update both the hardwired circuits Cb
i [xb

i ] using ub
i+1:

Cb
i+1[x

b
i+1] ← Upd(Cb

i [xb
i ],u

b
i+1)

– Encode the updated hardwired circuit Cmode
i+1 [xmode

i+1 :

〈Cmode
i+1 [xmode

i+1 ]〉re ← RE.Enc
(
Cmode

i+1 [xmode
i+1 ]; rre,i+1

)

– Compute the randomized encoding of the input C0
i+1[x

0
i+1], C1

i+1[x
1
i+1]

)
:

〈C0
i+1[x

0
i+1], C1

i+1[x
1
i+1]〉gc ← GrbInp

(
C0

i+1[x
0
i+1], C

1
i+1[x

1
i+1]

)
; rgc,i+1

)

– Output
(
〈Cmode

i+1 [xmode
i+1 ]〉re, 〈C0

i+1[x
0
i+1], C

1
i+1[x

1
i+1]〉gc

)

Fig. 2. RelockReleasei+1.



468 P. Ananth et al.

RRGarbler

Input: (u0
i+1, u

1
i+1, rgc,i, rgc,i+1, rre,i+1, mode)

Compute the garbled circuit encoding of RelockReleasei+1, which is defined in Figure 2:

〈RelockReleasei+1〉gc ← GrbCkt
(
RelockReleasei+1; rgc,i

)

Output 〈RelockReleasei+i〉gc.

Fig. 3. RRGarbler.

2. Execute the FE decryption, FE.Dec(FE.SKRRGarbler,CTi+1) to obtain:

〈RelockReleasei+1〉gc.

3. Execute the decode algorithm of the garbling scheme,

(〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc) ← EvalGC(〈RelockReleasei+1〉gc, 〈Ci[xi]〉gc)

That is, the decode algorithm outputs the randomized encoding of updated
hardwired circuit Ci+1[xi+1] and also wire keys of (Ci+1[xi+1],⊥) that will
be input to the next level garbled circuit.

4. Output
(

FE.SKRRGarbler, 〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc
)

.

Decode (〈Ci[xi]〉ure): On input encoding

〈Ci[xi]〉ure = (FE.SKRRGarbler, 〈Ci[xi]〉re, 〈Ci[xi],⊥〉gc),

decode the encoding 〈Ci[xi]〉re by executing RE.Dec(〈Ci[xi]〉re) to obtain α. Out-
put the value α.

In the full version [2], we show that the above scheme satisfies all the prop-
erties of an updatable randomized encodings scheme.
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Abstract. We revisit the security of cryptographic primitives in the
random-oracle model against attackers having a bounded amount of aux-
iliary information about the random oracle. This situation arises most
naturally when an attacker carries out offline preprocessing to generate
state (namely, auxiliary information) that is later used as part of an
on-line attack, with perhaps the best-known example being the use of
rainbow tables for function inversion. The resulting model is also critical
to obtain accurate bounds against non-uniform attackers when the ran-
dom oracle is instantiated by a concrete hash function.

Unruh (Crypto 2007) introduced a generic technique (called pre-
sampling) for analyzing security in this model: a random oracle for which
S bits of arbitrary auxiliary information can be replaced by a random
oracle whose value is fixed in some way on P points; the two are distin-
guishable with probability at most O(

√
ST/P ) by attackers making at

most T oracle queries. Unruh conjectured that the distinguishing advan-
tage could be made negligible for a sufficiently large polynomial P . We
show that Unruh’s conjecture is false by proving that the distinguishing
probability is at least Ω(ST/P ).

Faced with this negative general result, we establish new security
bounds, — which are nearly optimal and beat pre-sampling bounds, —
for specific applications of random oracles, including one-way functions,
pseudorandom functions/generators, and message authentication codes.
We also explore the effectiveness of salting as a mechanism to defend
against offline preprocessing, and give quantitative bounds demonstrat-
ing that salting provably helps in the context of one-wayness, collision-
resistance, pseudorandom generators/functions, and message authenti-
cation codes. In each case, using (at most) n bits of salt, where n is the
length of the secret key, we get the same security O(T/2n) in the random
oracle model with auxiliary input as we get without auxiliary input.
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At the heart of our results is the compression technique of Gennaro
and Trevisan, and its extensions by De, Trevisan and Tulsiani.

1 Introduction

The random-oracle model [4] often provides a simple and elegant way of ana-
lyzing the concrete security of cryptographic schemes based on hash functions.
To take a canonical example, consider (näıve) password hashing where a pass-
word pw is stored as H(pw), for H a cryptographic hash function, and we are
interested in the difficulty of recovering pw from H(pw) (i.e., we are interested
in understanding the one-wayness of H). It seems difficult to formalize a con-
crete assumption about H that would imply the difficulty of recovering pw for
all high-entropy distributions on pw; it would be harder still to come up with a
natural assumption implying that for all distributions on pw with min-entropy k,
recovering pw requires O(2k) work. If we model H as a random oracle, however,
then both these statements can be proven easily—and this matches the best
known attacks for many cryptographic hash functions.

Importantly, the above discussion assumes that no preprocessing is done.
That is, we imagine an attacker who does no work prior to being given H(pw) or,
more formally, we imagine that the attacker is fixed before the random oracle H
is chosen. In that case, the only way an attacker can learn information about H is
by making explicit queries to an oracle for H, and the above-mentioned bounds
hold. In practice, however, H is typically a standardized hash function that is
known in advance, and offline preprocessing attacks—during which the attacker
can query and store arbitrary information about H—can be a significant threat.

Concretely, let H : [N ] → [N ] and assume that pw is uniform in [N ]. The
obvious attack to recover pw from H(pw) is an exhaustive-search attack which
uses time T = N in the online phase (equating time with the number of queries
to H) to recover pw. But an attacker could also generate the entire function table
for H during an offline preprocessing phase; then, given H(pw) in the on-line
phase, the attacker can recover pw in O(1) time using a table lookup. The data
structure generated during the offline phase requires S = O(N) space (ignoring
log N factors), but Hellman [11] showed a more clever construction of a data
structure which, in particular, gives an attack using S = T = O(N2/3) (see [12,
Sect. 5.4.3] for a self-contained description). Rainbow tables implementing this
approach along with later improvements (most notably by Oechslin [14]), are
widely used in practice, and must be taken into account in any practical analy-
sis of password security. Further work has explored improving these result and
proving rigorous versions of them, as well as showing bounds on how well such
attacks can perform [2,6,8,9,14,18].

The above discussion in the context of function inversion gives a practical
example of where auxiliary information about a random oracle (in this case, in
the form of rainbow tables generated using the random oracle) can quantitatively
change the security of a given application that uses the random oracle. For a
more dramatic (but less practical) example, consider the case of collision finding.
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Given a random function H : [N ] → [N ], one can show that O(
√

N) queries are
needed in order to find a collision in H (i.e., distinct points x, x′ with H(x) =
H(x′)). But clearly we can find a collision in H during an offline pre-processing
phase and store that collision using O(1) space, after which it is trivial to output
that collision in an online phase in O(1) time. The conclusion is that in settings
where offline preprocessing is a possibility, security proofs in the random-oracle
model must be interpreted carefully. (We refer the reader to [5,16], as well as
many of the references below, for further discussion).

From a different viewpoint, another motivation for studying auxiliary infor-
mation comes from the desire for obtaining accurate security bounds against non-
uniform attackers when instantiating random oracle by a concrete hash function.
Indeed, non-uniform attackers are allowed to have some arbitrary ‘advice’ before
attacking the system. Translated to the random oracle model, this would require
the attacker to be able to compute some arbitrary function of the entire random
oracle, which cannot be done using only bounded number T of oracle queries.
This mismatch already led to considerable confusion among both theoreticians
and practitioners. We refer to [5,15] for some in-depth discussion, here only
mentioning two most well-known examples. (1) In the standard (non-uniform)
model, no single function can be collision-resistant, while a single random oracle
is trivially collision-resistant (without preprocessing); this is why in the stan-
dard model one considers a family of CRHFs, whose public key (which we call
salt) is chosen after the attacker gets his non-uniform advice. To the best of
our knowledge, prior to our work no meaningful CRHF bound was given for
salted random oracle if (salt-independent) preprocessing was allowed. (2) In the
standard (non-uniform) model, it is well known [1,5,7] that no pseudorandom
generator (PRG) H(x) can have security better than 2−n/2 even against linear-
time attackers, where n is the seed-length of x. In contrast, an expanding random
oracle can be trivially shown to be (T/2n)-secure PRG in the traditional random
oracle model, easily surpassing the 2−n/2 barrier in the standard model (even
for huge T up to 2n/2, let alone polynomial T ).

Random Oracle with Auxiliary Input. While somewhat different, the
two motivating applications above effectively reduce to the following identical
extension of the traditional random oracle model (ROM). A (computationally
unbounded) attacker A can compute arbitrary S bits of information z = z(O)
about the random oracle O before attacking the system, and then use additional
T oracle queries to O during the attack. Following Unruh [16], we call this the
Random Oracle Model with Auxiliary Input (ROM-AI), and this is the model
we thoroughly study in this work. As we mentioned, while the traditional ROM
only uses one parameter T , the ROM-AI is parameterized by two parameters,
S and T which roughly correspond to space (during off-line pre-processing) and
time (during on-line attack). For the application to non-uniform security, one
can also use the ROM-AI to get good estimates for non-uniform security against
(non-uniform) circuits of size C by setting S = T = C.1

1 Since circuit of size C can encode up to S = Ω(C) bits of information about a given
hash function H, as well as evaluate it close to T = Ω(C) times, assuming H is
efficient.
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1.1 Handling Random Oracles with Auxiliary Input

Broadly speaking, there are three ways one can address the issue of preprocess-
ing/auxiliary input in the random-oracle model: (1) by using a generic approach
to analyze existing or proposed schemes, (2) by using an application-specific app-
roach to analyze an existing or proposed scheme, or (3) by modifying existing
schemes in an attempt to defeat preprocessing/non-uniform attacks. We discuss
limited prior work on these three approaches below, before stating our results.

A generic approach. Unruh [16] was the first to propose a generic approach for
dealing with auxiliary input in the random-oracle model. We give an informal
overview of his results (a formal statement is given in Sect. 2). Say we wish
to bound the success probability ε (in some experiment) of an online attacker
making T random-oracle queries, and relying on S bits of (arbitrary) auxiliary
information about the random oracle. Unruh showed that it suffices to analyze
the success probability ε′(P ) of the attack in the presence of a “pre-sampled”
random oracle that is chosen uniformly subject to its values being fixed in some
adversarial way on P adversarial points (where P is a parameter), and no other
auxiliary information is given; ε is then bounded by ε′(P ) + O(

√

ST/P ), while
P is then chosen optimally as to balance out the resulting two terms (see an
example below).

This is an impressive result, but it falls short of what one might hope for. In
particular, P must be super-polynomial in order to make the “security loss”
O(
√

ST/P ) negligible, but in many applications if P is too large then the
bound ε′(P ) one can prove on an attacker’s success probability in the pres-
ence of a “pre-sampled” random oracle with P fixed points becomes too high.
Unruh conjectured that his bound was not tight, and that it might be possible
to bound the “security loss” by a negligible quantity for P a sufficiently large
polynomial.

An application-specific approach. Given that the generic approach might
lead to very sub-optimal bounds, one might hope to develop a much tighter
application-specific approach to get concrete bounds. To the best of our knowl-
edge, no such work was done for the random oracle model with preprocessing.
Indirectly, however, De et al. [6] adapted the beautiful compression “compres-
sion paradigm” introduced by Gennaro and Trevisan [9,10] to show nearly tight
security bounds for inverting inverting one-way permutations as well as specific
PRGs (based on one-way permutations and hardcore bits). This was done not
for the sake of analyzing security of these constructions,2 but rather to show
limitations of generic inversion/distinguishing attacks all one-way functions or
PRGs. Still, this elegant theoretical approach suggests that application-specific
techniques, such as the compression paradigm, might be useful in the analysis
of schemes based on real-world hash functions, such as SHA.

“Salting.” Even with optimal application-specific techniques, we have already
discussedhowpreprocessingattacks canbeeffective for tasks like function inversion
2 For which we currently have no real-world candidates, since we do not have any

candidates for efficient uninvertible “random permutations”.
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and collision finding, as well as non-trivial distinguishing attacks against pseudo-
random generators/functions.

A natural defense against preprocessing attacks, which has been explicitly
suggested [13] and is widely used to defeat such attacks in the context of password
hashing, is to use salting. Roughly, this involves choosing a random but public
value a and including it in the input to the hash function. Thus, in the context
of password hashing we would choose a uniform salt a and store (a,H(a, pw));
in the context of collision-resistant hashing we would choose and publish a and
then look at the hardness of finding collisions in the function H(a, ·); and in the
context of pseudorandom generators we would choose a and then look at the
pseudorandomness of H(a, x) (for uniform x) given a.

De et al. [6] briefly study the effect of salting for inverting one-way permu-
tations as well as specific PRGs (based on one-way permutations and hardcore
bits), but beyond that we are aware of no analysis of the effectiveness of salting
for defeating preprocessing in any other contexts, including the use of hash func-
tions which are not permutations.3 We highlight that although it may appear
“obvious” that salting defeats, say, rainbow tables, it is not at all clear what is
the quantitative security benefit of salting, and it is not clear whether rainbow
tables can be adapted to give a (possibly different) online/offline tradeoff when
salting is used.

1.2 Our Results

We address all three approaches outlined in the previous section. First, we inves-
tigate the generic approach to proving security in the random-oracle model
with auxiliary input, and specifically explore the extent to which Unruh’s pre-
sampling technique can be improved. Here, our result is largely negative: disprov-
ing Unruh’s conjecture, we show that there is an attack for which the “security
loss” stemming from Unruh’s approach is at least Ω(ST/P ). Although there
remains a gap between our lower bound and Unruh’s upper bound that will
be interested to close, as we discuss next the upshot is that Unruh’s technique
is not sufficient (in general) for proving strong concrete-security bounds in the
random-oracle model when preprocessing is a possibility.

Consider, e.g., the case of function inversion. One can show that the prob-
ability of inverting a random oracle H : [N ] → [N ] for which P points have
been “pre-sampled” is O(P/N + T/N). Combined with the security loss of
O(
√

ST/2P ) resulting from Unruh’s technique and plugging in the optimal value
of P , we obtain a security bound of O((ST/N)1/3+T/N) for algorithms making
T oracle queries and using S bits of auxiliary input about H. And our negative
result shows that the best bound one could hope to achieve by using Unruh’s
approach is O((ST/N)1/2 + T/N). Both bounds fall short of the best known
attacks, which succeed with probability Ω

(

min
{

T
N , (S2T

N2 )1/3
}

+ T
N

)

. Similar
gaps exist for other cryptographic primitives.
3 Bellare et al. [3] study security of salting for the purposes of multi-instance security,

but they do not address the issue of preprocessing.
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Faced with this, we turn to studying a more direct approach for proving
tighter bounds for specific important applications of hash functions, such as their
use as one-way functions, pseudorandom generators/functions (PRGs/PRFs) or
message authentication codes (MACs).4 Here we show much tighter, and in
many cases optimal bounds for all of these primitives, which always beat the
provable version of Unruh’s pre-sampling (see Table 1 with value K = 1). Not
surprisingly, our bounds are not as good as what is possible to show without pre-
processing, since those bounds are no longer true once pre-processing is allowed.
In particular, setting S = T = C we now get meaningful non-uniform security
bounds against circuits of size C for all of the above primitives, which often
match the existing limitations known for non-uniform attacks. (For example,
when C = S = T is polynomial in n, we get that the optimal non-uniform
PRG/PRF security is lower bounded by 2−n/2, matching existing attacks).

Given these inherent limitation as compared to the traditional ROM without
preprocessing, we formally examine the effects of “salting” as a way of mitigat-
ing or even defeating the effects of pre-processing/non-uniformity. As before,
we look at the natural, “salted” constructions of one-way functions, PRGs,
PRFs and MACs, but now can also examine collision-resistant hash functions
(CRHFs), which can be potentially secure against pre-processing, once the salt
is long-enough. In all these case we analyze the security of these constructions
in the presence of auxiliary information about the random oracle. In fact, the
“unsalted” results for one-way functions, PRGs, PRFs and MACs mentioned
above are simply special cases of salted result with the cardinality K of the
salting space is K = 1.

Our results are summarized in Table 1, where they are compared to the best
known attacks using preprocessing. Our bounds for inverting one-way functions
and distinguishing PRGs matches the bounds De et al. [6] for inverting one-
way permutations and distinguishing PRGs based on one-way permutations and
hardcore bits, but apply to real-world candidates for these primitives based on
existing hash functions. In the case of CRHFs, our bound is tight and matches
the best known attack of storing explicit collisions for roughly S distinct salts.
In the remaining cases, although our bounds are not tight (but close), it is
interesting to note that, assuming N ≥ T ≥ S, our results show that setting
the length of the salt equal to the length of the secret (i.e., setting K = N)
yields the same security bound O(T/N) that is achieved for constructions in
the standard random-oracle model without preprocessing. Summarizing a bit
informally: using an n-bit salt and an n-bit secret gives n-bit security even in
the presence of preprocessing. Namely, salts provably defeats pre-processing in
these settings.

All our new bounds are proven using the “compression paradigm” intro-
duced by Gennaro and Trevisan [9,10]. The main idea is to argue that if some
attacker succeeds with “high” probability, then that attacker can be used to
reversibly encode (i.e., compress) a random oracle beyond what is possible from

4 As we mentioned, collision-resistance is impossible without salting, which we discuss
shortly.
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Table 1. Security bounds and best known attacks using space S and time T for
“salted” constructions of primitives based on a random oracle. The first three (unkeyed)
primitives are constructed from a random oracle O : [K]× [N ] → [M ], where [K] is the
domain of the salt and [N ] is the domain of the secret; the final two (keyed) primitives
are constructed from a random oracle O : [K]×[N ]×[L] → [M ], where [L] is the domain
of the input. For simplicity, logarithmic factors and constant terms are omitted.

Security bounds (here) Best known attacks

OWFs ST
KN

+ T
N

min
{

ST
KN

, ( S2T
K2N2 )1/3

}
+ T

N

CRHFs S
K

+ T2

M
S
K

+ T2

M

PRGs ( ST
KN

)1/2 + T
N

( S
KN

)1/2 + T
N

PRFs ( ST
KN

)1/2 + T
N

( S
KN

)1/2 + T
N

MACs ST
KN

+ T
N

+ T
M

min
{

ST
KN

, ( S2T
K2N2 )1/3

}
+ T

N
+ 1

M

an information-theoretic point of view. Since we are considering attackers who
perform preprocessing, our encoding must include the S-bit auxiliary informa-
tion produced by the attacker. Thus, the main technical challenge we face is to
ensure that our encoding compresses by (significantly) more than S bits.

Outlook. In this work we thoroughly revisited the ROM with auxiliary input,
as we believe it has not gotten enough attention from the cryptographic commu-
nity, despite being simultaneously important for the variety of reasons detailed
above, and also much more interesting than the traditional ROM from a techni-
cal point in view. Indeed, even the most trivial one-line proof in the traditional
ROM is either completely false once preprocessing is allowed (e.g., CRHFs), or
becomes an interesting technical challenge (OWFs, PRGs, MACs) that requires
new techniques, and usually teaches us something new about the primitive in
question in relation to pre-processing.

Of course, given an abundance of works using random oracle, we hope our
work will generate a lot of follow-up research analyzing the effects of pre-
processing and non-uniformity for many other important uses of hash functions,
as well as other idealized primitives (e.g., ideal ciphers).

2 Limits on the Power of Preprocessing

For two distributions D1,D2 over universe Ω, we use Δ(D1,D2) to denote their
statistical distance 1

2 ·∑y∈Ω |Pr[D1 = y] − Pr[D2 = y]|.
In this section, we revisit the result of Unruh [16] that allows one to replace

arbitrary (bounded-length) auxiliary information about a random oracle O with
a (bounded-size) set fixing the value of the random oracle on some fraction of
points. For a set of tuples Z = {(x1, y1), . . .}, we let O′[Z] denote a random
oracle chosen uniformly subject to the constraints O′(xi) = yi.

Theorem 1 ([16]). Let P, S, T ≥ 1 be integers, and let A0 be an oracle algorithm
that outputs state of length at most S bits. Then there is an oracle algorithm Pre
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outputting a set containing at most P tuples such that for any oracle algorithm
A1 that makes at most T oracle queries,

Δ(AO
1 (AO

0 ), A
O′[PreO ]
1 (AO

0 )) ≤
√

ST

2P
.

This theorem enables proving various results in the random-oracle model
even in the presence of auxiliary input by first replacing the auxiliary input
with a fixed set of input/output pairs and then using standard lazy-sampling
techniques for the value of the random oracle at other points. However, applying
this theorem incurs a cost of

√

ST/2P , and so super-polynomial P is required in
order to obtain negligible advantage overall. It is open whether one can improve
the bound in Theorem 1; Unruh conjectures [16, Conjecture 14] that for all
polynomials S, T there is a polynomial P such that the statistical difference
above is negligible. We disprove this conjecture by showing that the bound in
the theorem cannot be improved (in general) below O(ST/P ). That is,

Theorem 2. Consider random oracles O : [N ] → {0, 1}, and let S, T, P ≥ 1
be integers with 4P 2/ST + ST ≤ N . Then there is an oracle algorithm A0 that
outputs S-bit state and an oracle algorithm A1 that makes T oracle queries such
that for any oracle algorithm Pre outputting a set containing at most P tuples,

Δ(AO
1 (AO

0 ), A
O′[PreO ]
1 (AO

0 )) ≥ ST

24P
.

Proof. Pick S disjoint sets X1, . . . , XS ⊂ [N ], where each set is of size t =
T · (4(P/ST )2 + 1). Partition each set Xi into t/T = 4(P/ST )2 + 1 disjoint
blocks Xi,1, . . . , Xi,t/T , each of size T . Algorithm AO

1 outputs an S-bit state
where the ith bit is equal to maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) where maj
is the majority function. Algorithm AO

1 (b1, . . . , bS) chooses a uniform block Xi,j

and outputs 1 iff ⊕x∈Xi,j
O(x) = bi.

We have

Pr[AO
1 (AO

0 ) = 1]
= Pr

O,i,j

[

maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T
O(x)) = ⊕x∈Xi,j

O(x)
]

= Pr
z1,...,zt/T ←{0,1},j←[t/T ]

[maj(z1, . . . , zt/T ) = zj ]

= E
j

⎡

⎣Pr

⎡

⎣

∑

i�=j

zi =
t/T − 1

2

⎤

⎦+
1
2

· Pr

⎡

⎣

∑

i�=j

zi �= t/T − 1
2

⎤

⎦

⎤

⎦

=
1
2

+
1
2

· Pr

[

∑

i>1

zi =
t/T − 1

2

]

=
1
2

+
(

t/T − 1
t/T−1

2

)

· 2−t/T

≥ 1
2

+
1

3
√

t/T − 1
=

1
2

+
ST

6P
,
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where the inequality uses
√

2πn (n/e)n ≤ n! ≤ e
√

n (n/e)n so that
(

n

n/2

)

≥
√

2πn (n/e)n

(e
√

n/2 (n/2e)n/2)2
=

2
√

2π

e2
√

n
· 2n ≥ 2

3
· 2n

√
n

.

On the other hand, for any algorithm Pre we have

Pr[AO′[PreO]
1 (AO

0 ) = 1]
= Pr

i,j,O,O′
[maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) = ⊕x∈Xi,j
O′(x)]

≤ P/T

St/T
+

1
2

·
(

1 − P/T

St/T

)

=
1
2

+
P

2St
≤ 1

2
+

ST

8P
.

The first inequality above holds since, for any fixed i, j,O,

Pr
O′

[

maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T
O(x)) = ⊕x∈Xi,j

O′(x)
]

= 1/2

unless the value of O′ is fixed by PreO at every point in Xi,j . But PreO can
ensure that the value of O′ is fixed in that way for at most P/T out of the St/T
blocks defined by i, j. This concludes the proof. �

3 Function Inversion

For natural number n, we define [n] = {1, . . . , n}. In this section, we prove
bounds on the hardness of inverting “salted” random oracles in the presence of
preprocessing. That is, consider choosing a random function O : [K]×[N ] → [M ]
and then allowing an attacker A0 (with oracle access to O) to perform arbitrary
preprocessing to generate an S-bit state st. We then look at the hardness of
inverting O(a, x), given st and a, for algorithms A1 making up to T oracle queries,
where a ∈ [K] and x ∈ [N ] are uniform. We consider two notions of inversion:
computing x itself, or the weaker goal of finding any x′ such that O(a, x′) =
O(a, x). Assuming N = M for simplicity in the present discussion, we show
that in either case the probability of successful inversion is O( ST

KN + T log N
N ). We

remark that the best bound one could hope to prove via a generic approach (i.e.,
using Theorem 1 with best-possible bound O(ST/P )) is5 O(

√

ST/KN +T/N).
By way of comparison, rainbow tables [2,6,8,11,14] address the case K = 0

(i.e., no salt), and give success probability O(min{ST/N, (S2T/N2)1/3} + T/N).
One natural way to adapt rainbow tables to handle salt is to compute K indepen-
dent rainbow tables, each using space S/K, for the K reduced functions O(a, ·).
5 Any such bound would take the form O(ST/P + P/KN + T/N), where the first

term is from application of the theorem, the second is the probability that the input
to A1 is from the set of fixed points, and the third is the success probability of a
trivial brute-force search. Setting P =

√
ST/KN optimizes this bound.
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Using this approachgives success probabilityO(min{ST/KN, (S2T/K2N2)1/3}+
T/N). This shows that our bound is tight when ST 2 < KN .

We begin with some preliminary lemmas that we will rely on in this and the
following sections.

Lemma 1. Say there exist encoding and decoding procedures (Enc,Dec) such
that for all m ∈ M we have Dec(Enc(m)) = m. Then Em[ |Enc(m)| ] ≥ log |M |.
Proof. For m ∈ M , let sm = |Enc(m)|. Define C =

∑

m 2−sm , and for m ∈
M let qm = 2−sm/C. Then Em[ |Enc(m)| ] = −Em[log qm] − log C. By Jensen’s
inequality,Em[log qm] ≤ logEm[qm] = − log |M |, and by Kraft’s inequality C ≤ 1.
The lemma follows. �

Following De et al. [6], we also consider randomized encodings (Enc,Dec) for
a set M . We say that an encoding has recovery probability δ if for all m ∈ M ,

Pr
r

[Dec(Enc(m, r), r) = m] ≥ δ.

(Note that Dec is given the randomness used by Enc). The encoding length of
(Enc,Dec) is defined to be maxm,r{ |Enc(m, r)|}.

Lemma 2 ([6]). Suppose there exist randomized encoding and decoding proce-
dures (Enc,Dec) for a set M with recovery probability δ. Then the encoding length
of (Enc,Dec) is at least log |M | − log 1/δ.

Proof. By a standard averaging argument, there exists an r and a set M ′ ⊆ M
with |M ′| ≥ δ · |M | such that Dec(Enc(m, r), r) = m for all m ∈ M ′. Let
Enc′,Dec′ be the deterministic algorithms obtained by fixing the randomness
to r. By Lemma 1, Em′ [ |Enc′(m′)| ] ≥ |M ′| ≥ |M | − log 1/δ, and hence there
exists an m′ with |Enc′(m′)| ≥ |M | − log 1/δ. �

We now state and prove the main results of this section. Let Func(A,B)
denote the set of all functions from A to B.

Theorem 3. Consider random oracles O ∈ Func ([K] × [N ], [M ]). For any ora-
cle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a,x

[AO
1 (AO

0 , a,O(a, x)) = x] = O

(

ST

KN
+

T log N

N

)

.

Theorem 4. Consider random oracles O ∈ Func ([K] × [N ], [M ]). For any ora-
cle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a,x

[AO
1 (AO

0 , a,O(a, x)) = x′ : O(a, x) = O(a, x′)] = ε,

if ε = Ω(log MN/N), then

ε = O

(

ST

K · α
+

T log N

α

)

where α = min{N/ log M,M}
To prove Theorem 3, we first prove the following lemma:
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Lemma 3. Consider random oracles O ∈ Func ([K] × [N ], [M ]). Assume there
exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries, and such that

Pr
O,a,x

[AO
1 (AO

0 , a,O(a, x)) = x] = ε.

Then there exists a randomized encoding for a set F ⊆ Func ([K] × [N ], [M ]) of
size at least ε

2 · MKN , with recovery probability at least 0.9 and encoding length
(in bits) at most

KN log M + S + K log N − εKN

100T
log
(

εN

100eT

)

.

Proof. By an averaging argument, there is a set F ⊆ Func ([K] × [N ], [M ]) of
size at least ε/2 · |Func ([K] × [N ], [M ]) | = ε

2 · MKN such that for all O ∈ F

Pr
a,x

[AO
1 (AO

0 , a,O(a, x)) = x] ≥ ε/2.

Fix arbitrary O ∈ F . We encode O as follows. Let stO be the output of AO
0

and, for a ∈ [K], let Ua ⊆ [N ] be the points x on which AO
1 (stO, a,O(a, x)) = x.

The high-level idea is that rather than encode the mapping {(x,O(a, x))}x∈Ua

explicitly, we will encode the set of points {O(a, x)}x∈Ua
and then use A1 to

recover the mapping. If we attempt this in the straightforward way, however,
then it may happen that A1 queries its oracle on a point for which the mapping
is not yet known. To get around this issue, we instead use this approach for a
random subset of Ua so that this only happens with small probability.

Specifically, the encoder uses randomness r to pick a set R ⊆ [K]×[N ], where
each (a, x) ∈ [K] × [N ] is included in R with probability 1/10T . For a ∈ [K],
let Ga ⊆ R be the set of (a, x) ∈ R such that AO

1 (stO, a,O(a, x)) = x and
moreover A1 does not query O on any (a′, x′) ∈ R (except possibly (a, x) itself).
Let G =

⋃

a Ga. Define Va = {O(a, x)}x∈Ga
, and note that |Va| = |Ga|.

As in De et al. [6], with probability at least 0.9 the size of G is at least
εKN/100T . To see this, note that by a Chernoff bound, R has at least εKN/40T
points with probability at least 0.95. The expected number of points (a, x) ∈ R
for which AO

1 (stO, a,O(a, x)) = x but A1 queries O on some point (a′, x′) ∈ R
(besides (a, x) itself) is at most εKN

2 · 1
10T · (1 − (1 − 1/10T )T

) ≤ εKN
2000T . By

Markov’s inequality, with probability at least 0.95 the number of such points is
at most εKN

100T . So with probability at least 0.9, we have |G| ≥ 3εKN
200T ≥ εKN

100T .
Assuming |G| ≥ εKN/100T , we encode O as follows:

1. Include stO and, for each a ∈ [K], include |Va| and a description of Va. This
uses a total of S + K log N +

∑

a∈[K] log
(

M
|Ga|
)

bits.
2. For each a and y ∈ Va (in lexicographic order), run AO

1 (stO, a, y) and include
in the encoding the answers to all the oracle queries made by A1 that have
not been included in the encoding so far, except for any queries in R. (By
definition of Ga, there will be at most one such query and, if so, it will be the
query (a, x) such that O(a, x) = y.)



484 Y. Dodis et al.

3. For each (a, x) ∈ ([K] × [N ]) \ G (in lexicographic order) for which O(a, x)
has not been included in the encoding so far, add O(a, x) to the encoding.

Steps 2 and 3 explicitly include in the encoding the value of O(a, x) for each
(a, x) ∈ ([K] × [N ]) \ G. Thus, the total number of bits added to the encoding
by those steps is (KN −∑a |Ga|) log M .

To decode, the decoder first uses r to recover the set R defined above. Then
it does the following:

1. Recover stO, {|Va|}a∈K , and {Va}a∈K .
2. For each a and y ∈ Va (in lexicographic order), run A1(stO, a, y) while answer-

ing the oracle queries of A1 using the values stored in the encoding. The only
exception is if A1 ever makes a query (a, x) ∈ R, in which case y itself is
returned as the answer. The output x of A1 will be such that O(a, x) = y.

3. For each (a, x) ∈ [K] × [N ] (in lexicographic order) for which O(a, x) is not
yet defined, recover the value of O(a, x) from the remainder of the encoding.

Assuming |G| ≥ εKN/100T , the encoding is not empty and the decoding
procedure recovers O. The encoding length is

S + K log N +
∑

a∈[K]

log
(

M

|Ga|
)

+

(

KN −
∑

a∈K

|Ga|
)

log M.

Because
(

M
|Ga|
) ≤
(

eM
|Ga|
)|Ga|

, the encoding length is bounded by

S + K log N + KN log M −
∑

a

|Ga| log
( |Ga|

e

)

≤ S + K log N + KN log M − |G| log
( |G|

eK

)

≤ S + K log N + KN log M − εKN

100T
log
(

εN

100eT

)

,

where the second line uses concavity of the function f(y) = −y log (y/e), and
the last line is because |G| ≥ εKN

100T . �

Lemma 3 gives an encoding for a set of size ε
2 ·MKN with recovery probabil-

ity 0.9, and encoding length at most NK log M +S +K log N − εKN
100T log

(

εN
100eT

)

bits. But Lemma 2 shows that any such encoding must have encoding length at
least NK log M − log 2

ε − log 10
9 bits. We thus conclude that

S + K log N + log
20
9ε

≥ εKN

100T
log
(

εN

100eT

)

.

This implies Theorem 3 since either ε < 200eT
N , or else it must be the case that

ε ≤ (100T
KN ) · (S + K log N + log N).
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We now prove Theorem 4. For fixed O and a ∈ [K], let YO,a ⊆ [M ] be the
set of points A1 successfully inverts, i.e.,

YO,a = {y : AO
1 (AO

0 , a, y) = x′ : O(a, x′) = y}.

Let XO,a ⊆ [N ] be the pre-images of the points in YO,a. That is,

XO,a = {x : O(a, x) ∈ YO,a}.

We show a deterministic encoding for Func([K]× [N ], [M ]). Given a function O,
we encode it by including for each a ∈ [K] the following information:

1. The set XO,a (along with its size), using log N +
(

N
|XO,a|

)

bits.
2. The set YO,a (along with its size), using log M +

(

M
|YO,a|

)

bits.
3. For each x ∈ XO,a, the value O(a, x) ∈ YO,a encoded using log |YO,a| bits.
4. For each x �∈ XO,a, the value O(a, x) encoded using log M bits.

Decoding is done in the obvious way. The encoding length of O (in bits) is

K log N + K log M

+
∑

a∈[K]

log

(
N

|XO,a|

)
+ log

(
M

|YO,a|

)
+ |XO,a| · log |YO,a| + (N − |XO,a|) · log M.

Using the inequality log
(

A
B

) ≤ B · log eA
B and the log-sum6 inequality, the

encoding length of O (in bits) is at most

K log N + K log M +

⎛

⎝

∑

a∈[K]

|XO,a|
⎞

⎠ · log
eN
∑

a∈[K] |YO,a|
M
∑

a∈[K] |XO,a|

+

⎛

⎝

∑

a∈[K]

|YO,a|
⎞

⎠ · log
eKM

∑

a∈[K] |YO,a| + KN log M. (1)

Let ε′ def= PrO,a,x[AO
1 (AO

0 , a,O(a, x)) = x], and note that EO[
∑

a |XO,a|] = εNK
and EO[

∑

a |YO,a|] = ε′NK. By averaging over O and log-sum inequality, the
average encoding length of O is upper bounded by replacing

∑

a∈K XO,a by
EO[
∑

a∈K |XO,a|] and
∑

a∈K YO,a by EO[
∑

a∈K |YO,a|] in (1), namely

K log N + K log M + (εNK) · log
eNε′NK

MεNK
+ (ε′NK) · log

eKM

ε′NK
+ KN log M.

Using the fact that (by Lemma 1) the encoding length must be at least KN log M
bits and rearranging the inequality, we obtain

log N + log M

N
+ ε′ · log

eM

ε′N
≥ ε · log

Mε

eNε′ .

6 The log-sum inequality states that for nonnegative t1, . . . , tn and w1, . . . , wn, it holds
that

∑n
i=1 ti log(wi/ti) ≤ (∑n

i=1 ti
) · log(

∑n
i=1 wi/

∑n
i=1 ti). It also implies the aver-

age of t1 log(w1/t1), . . . , tn log(wn/tn) is less that t log(w/t) where t is the average
of t1, . . . , tn and w is the average of w1, . . . , wn.
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If ε = Ω((log MN)/N), then there exists a sufficiently large constant C such
that εN ≥ (log MN)/C. If Mε/(eNε′) ≤ 2C+1, then ε = O(ε′N/M). Otherwise,
(Mε)/(eNε′) ≥ 2C+1, then

ε′ log
eM

ε′N
≥ ε(C + 1) − (log MN)/N ≥ ε,

which implies ε = O(ε′ log M) (here we assume ε′N ≥ 1). Overall we get ε =
O(ε′ max(log M,N/M)). By the bound on ε′ from Theorem 3, we obtain the
desired bound on ε.

4 Collision-Resistant Hash Functions

In this section, we prove the following theorem.

Theorem 5. Consider random oracles O ∈ Func ([K] × [N ], [M ]). For any ora-
cle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a

[(x, x′) := AO
1 (AO

0 , a) : x �= x′ ∧ O(a, x) = O(a, x′)] = O

(

S + log K

K
+

T 2

M

)

.

The bound in the above theorem matches (up to the K−1 log K term) the
parameters achieved by the following: A0 outputs collisions in O(ai, ·) for each
of a1, . . . , aS ∈ [K]. Then A1 outputs the appropriate collision if a = ai, and
otherwise performs a birthday attack in an attempt to find a collision.

To prove Theorem 5, we first prove the following lemma:

Lemma 4. Consider random oracles O ∈ Func ([K] × [N ], [M ]). Assume there
exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries, and such that

Pr
O,a

[(x, x′) := AO
1 (AO

0 , a) : x �= x′ ∧ O(a, x) = O(a, x′)] = ε.

Then there exists a deterministic encoding for the set Func ([K] × [N ], [M ]) with
expected encoding length (in bits) at most

S + KN log M + log K − εK

2
log
(

εM

8eT 2

)

.

Proof. Fix O : [K]×[N ] → [M ], and let stO = AO
0 . Let GO be the set of a ∈ [K]

such that AO
1 (stO, a) outputs a collision in O(a, ·). We assume, without loss of

generality, that if AO
1 (stO, a) outputs x, x′, then it must have queried O(a, x)

and O(a, x′) at some point in its execution. The basic observation is that we
can use this to compress O(a, ·) for a ∈ GO. Specifically, rather than store both
O(a, x) and O(a, x′) (using 2 log M bits), where x, x′ is the collision in O(a, ·)
output by A1, we instead store the value O(a, x) = O(a, x′) once, along with the
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indices i, j of the oracle queries O(a, x) and O(a, x′) made by A1 (using a total
of log M + 2 log T bits). This is a net savings if 2 log T < log M . Details follow.

A simple case. To illustrate the main idea, we first consider a simple case
where AO

1 (stO, a) never makes oracle queries O(a′, x) with a′ �= a. Under this
assumption, we encode O as follows:

1. Encode stO, |GO|, and GO. This requires S + log K + log
(

K
|GO|
)

bits.
2. For each a ∈ GO (in lexicographic order), run AO

1 (stO, a) and let the second
components of the oracle queries of A1 be x1, . . . , xT . (We assume without
loss of generality these are all distinct.) If x, x′ are the output of A1, let i < j
be such that {x, x′} = {xi, xj}. Encode i and j, along with the answers to
each of A1’s oracle queries (in order) except for the jth. Furthermore, encode
O(a, x) for all x ∈ [N ] \ {x1, . . . , xT } (in lexicographic order). This requires
(N − 1) · log M + 2 log T bits for each a ∈ GO.

3. For each a �∈ GO and x ∈ [N ] (in lexicographic order), store O(a, x). This
uses N log M bits for each a �∈ GO.

Decoding is done in the obvious way.
The encoding length of O (in bits) is

S + log K + log
(

K

|GO|
)

+ KN log M − |GO| · (log M − 2 log T ).

Using the inequality
(

K
|Gf |
) ≤ ( eK

|Gf | )
|Gf |, the expected encoding length (in bits)

is thus

S + log K + EO

[

|GO| · log
eK

|GO|
]

+ KN log M − EO[|GO|] · (log M − 2 log T )

≤ S + log K + EO[|GO|] · log
eK

EO[|GO|]
+ KN log M − EO[|GO|] · (log M − 2 log T )

= S + log K + KN log M − εK log
(

εM

eT 2

)

,

where the inequality uses concavity of the function y · log 1/y, and the third line
uses EO[|GO|] = εK.

The general case. In the general case, we need to take into account the fact
that A1 may make arbitrary queries to O. This affects the previous approach
because A1(stO, a) may query O(a′, x) for a value x that is output as part of a
collision by A1(stO, a′).

To deal with this, consider running AO
1 (stO, a) for all a ∈ GO. There are at

most T · |GO| distinct oracle queries made overall. Although several of them may
share the same prefix a ∈ [K], there are at most |GO|/2 values of a that are used
as a prefix in more than 2T queries. In other words, there is a set G′

O ⊆ GO of
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size at least |GO|/2 such that each a ∈ G′
O is used in at most 2T queries when

running AO
1 (stO, a) for all a ∈ G′

O.
To encode O we now proceed in a manner similar to before, but using G′

O
in place of GO. Moreover, we run AO

1 (stO, a) for all a ∈ G′
O (in lexicographic

order) and consider all the distinct oracle queries made. For each a ∈ G′
O, let

ia < ja ≤ 2T be such that the iath and jath oracle queries that use prefix a are
distinct but yield the same output. (There must exist such indices by assumption
on A1.) We encode (ia, ja) for all a ∈ G′

O, along with the answers to all the
(distinct) oracle queries made with the exception of the jath oracle query made
using prefix a for all a ∈ G′

O. The remainder of O(·, ·) is then encoded in the
trivial way as before.Decoding is done in the natural way.

Arguing as before, but with εK replaced by εK/2 and T replaced by 2T , we
see that the expected encoding length (in bits) is now at most

S + log K + KN log M − εK

2
log
(

εM

8eT 2

)

,

as claimed. �

Lemma 4 gives an encoding for Func ([K] × [N ], [M ]) with expected length
at most

S + log K + KN log M − εK

2
log
(

εM

8eT 2

)

bits. But Lemma 1 shows that any such encoding must have expected length at
least NK log M bits. We thus conclude that

S + log K ≥ εK

2
log
(

εM

8eT 2

)

.

This implies Theorem 5 since either ε ≤ 16eT 2

M or else ε ≤ 2S+2 log K
K .

5 Pseudorandom Generators and Functions

In this section, we prove the following theorems.

Theorem 6. Consider random oracles O ∈ Func ([K] × [N ], [M ]) where it
holds that M > N . For any oracle algorithms (A0, A1) such that A0 outputs
S-bit state and A1 makes at most T oracle queries,

∣

∣

∣

∣

Pr
O,a,x

[AO
1 (AO

0 , a,O(a, x)) = 1] − Pr
O,a,y

[AO
1 (AO

0 , a, y) = 1]
∣

∣

∣

∣

= O

(

log M ·
(
√

ST

KN
+

T log N

N

))

.
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Theorem 7. Consider random oracles O ∈ Func ([K] × [N ] × [L], {0, 1}). For
any oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries to O and at most q queries to its other oracle,

∣

∣

∣

∣

Pr
O,a,k

[AO,O(a,k,·)
1 (AO

0 , a) = 1] − Pr
O,a,f

[AO,f
1 (AO

0 , a) = 1]
∣

∣

∣

∣

= O

(

q ·
(
√

ST

KN
+

T log N

N

))

,

where f is uniform in Func ([L], {0, 1}).

Note that in both cases, an exhaustive-search attack (with S = 0) achieves
distinguishing advantage Θ(T/N). With regard to pseudorandom generators
(Theorem 6), De et al. [6] show an attack with T = 0 that achieves distinguishing

advantage Ω(
√

S
KN ). Their attack can be extended to the case of pseudorandom

functions (assuming q > log KN) to obtain distinguishing advantage Ω(
√

S
KN )

in that case as well.
In proving the above, we rely on the following [6, Lemma 8.4]:

Lemma 5. Fix a parameter ε, and oracle algorithms (A0, A1) such that A0 out-
puts S-bit state and A1 makes at most T queries to O but may not query its
input. Let F ⊆ Func ([K] × [N ], {0, 1}) be such that if O ∈ F then

Pr
a,x

[AO
1 (AO

0 , a, x) = O(a, x)] ≥ 1
2

+ ε.

Then there is a randomized encoding for F with recovery probability Ω(ε/T ) and
encoding length (in bits) at most KN + S − Ω

(

ε2NK
T

)

+ O(1).

We now prove Theorem 6.

Proof. Let

ε =
∣

∣

∣

∣

Pr
O,a,x

[AO
1 (AO

0 , a,O(a, x)) = 1] − Pr
O,a,y

[AO
1 (AO

0 , a, y) = 1]
∣

∣

∣

∣

.

We assume for simplicity that M is a power of 2. By Yao’s equivalence of distin-
guishability and predictability [17], there exist i ∈ [log M ] and oracle algorithms
(B0, B1) such that B0 outputs at most S +1 bits and B1 makes at most T oracle
queries, and such that

Pr
O,a,x

[BO
1 (BO

0 , a,O1(a, x), . . . ,Oi−1(a, x)) = Oi(a, x)] ≥ 1/2 + ε/ log M,

where Oi(a, x) denotes the ith bit of O(a, x). If B1 queries (a, x) with probability
at least ε/2 log M , we can turn B1 into an algorithm that inverts O(a, x) with
at least that probability; Theorem 3 then implies

ε = O

(

log M ·
(

ST

KN
+

T log N

N

))

. (2)

Otherwise, we may construct algorithms (C0, C1) such that
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– C1 makes at most T oracle queries, and never queries its own input;
– C0 runs B0 and also outputs as part of its state the truth table of a function

mapping [K] × [N ] to outputs of length at most (log M − 1) bits;

and such that

Pr
Oi,a,x

[COi
1 (COi

0 , a, x) = Oi(a, x)] ≥ 1/2 + ε/2 log M.

This means that for at least an (ε/4 log M)-fraction of Func ([K] × [N ], {0, 1}) it
holds that

Pr
a,x

[COi
1 (COi

0 , a, x) = Oi(a, x)] ≥ 1/2 + ε/4 log M.

Lemma 5 thus implies that we can encode that set of functions using at most
KN + KN · (log M − 1) + S − Ω

(

(ε/ log M)2KN
T

)

+ O(1) bits. By Lemma 2, this
means we must have

Ω

(

(ε/ log M)2KN

T

)

− log
( ε

T

)

− log
(

ε

4 log M

)

≤ S + O(1),

which in turn implies ε = O
(

log M ·
√

ST
KN

)

. This, combined with (2), implies
the theorem. �

As intuition for the proof of Theorem 7, note that we may view a pseudoran-
dom function as a pseudorandom generator mapping a key to the truth table for
a function, with the main difference being that the distinguisher is not given the
entire truth table as input but instead may only access parts of the truth table
via queries it makes. We may thus apply the same idea as in the proof of Theo-
rem 6, with the output length (i.e., log M) replaced by the number of queries the
distinguisher makes. However in this case, Lemma 5 cannot be directly applied
and a slightly more involved compression argument is required.

With this in mind, we turn to the proof of Theorem 7:

Proof. Let

ε =
∣

∣

∣

∣

Pr
O,a,k

[AO,O(a,k,·)
1 (AO

0 , a) = 1] − Pr
O,a,f

[AO,f
1 (AO

0 , a) = 1]
∣

∣

∣

∣

.

By Yao’s equivalence of distinguishability and predictability [17], there exist
i ∈ [q] and oracle algorithms (B0, B1) such that B0 outputs at most S + 1 bits
and B1 makes at most T oracle queries to O and i ≤ q distinct queries to the
second oracle, such that

Pr
O,a,k

[BO,O(a,k,·)
1 (BO

0 , a) outputs (x, b), s.t. O(a, k, x) = b] ≥ 1
2

+ ε/q,

where it is required that B1 not query x to its second oracle. If B1 queries O
on any query with prefix (a, k), with probability at least ε/2q, we can turn B1

into an algorithm that inverts random oracle O′ from [K] × [N ] to {0, 1}L with
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that probability where the output of O′(a, k) is the truth table of O(a, k, ·).
Theorem 3 then implies

ε = O

(

q ·
(

ST

KN
+

T log N

N

))

. (3)

Otherwise, we may construct algorithms C1 which behaves as B1 except when
B1 queries O on any query with prefix (a, k), C1 outputs a random guess. C1

satisfies that

Pr
O,a,k

[CO,O(a,k,·)
1 (BO

0 , a) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1/2 + ε/2q.

This means that for at least an (ε/4q)-fraction of Func
(

[K] × [N ], {0, 1}[L]
)

, it
holds that

Pr
O,a,k

[CO,O(a,k,·)
1 (BO

0 , a) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1/2 + ε/4q.

We can encode the set of functions using randomized encoding. Specifically, the
encoder uses randomness r to pick a set R ⊆ [K] × [N ], where each (a, k) ∈
[K] × [N ] is included in R with probability 1/10T . For a ∈ [K], let G ⊆ R be
the set of (a, k) ∈ R such that C

O,O(a,k,·)
1 (BO

0 , a) does not query O on any point
with prefix (a′, k′) ∈ G. Let G0 be the subset of G such that the output of C1 is
correct and G1 = G \ G0.

As in De et al. [6], with probability at least ε/160qT , |G0| − |G1| ≥ εKN
80qT

and |G| = Ω(KN
T ) hold. To see this, note by a Chernoff bound, G has Ω(KN

T )
points with probability at least 1−e− 2KN

T . The expected difference between |G0|
and |G1| is at least εKN

40qT . By averaging argument, with probability at least ε
80qT

their difference is at least εKN
80qT . So with probability at ε

80qT − e− 2KN
T ≥ ε

160qT ,
both events happen. Conditioned on that, we encode O as follows (otherwise we
output empty string):

1. Include BO
0 . This uses at most S + 1 bits.

2. For each (a, k) ∈ ([K] × [N ])\R (in lexicographic order), include the truth
table of O(a, k, ·). Then for each (a, k) ∈ R\G (in lexicographic order), include
the truth table of O(a, k, ·). This uses a total of (KN − |G|) · L bits.

3. Include a description of G0. This uses log
( |G|
|G0|
)

bits.
4. For each (a, k) ∈ G (in lexicographic order), include in the encoding the

answers to all the oracle queries made by C1 to the second oracle O(a, k, ·),
and for every x such that (a, k, x) is not queried by C1 to O(a, k, ·) and x
is not the output of C1, add O(a, k, x) to the encoding. This uses a total of
|G| (L − 1) bits.
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To decode, the decoder first uses r to recover the set R defined above. Then it
does the following:

1. Recover BO
0 .

2. For each (a, k) ∈ ([K]× [N ])\R, recover the truth table of O(a, k, ·). Identify
set G by running C1 with BO

0 on (a, k) ∈ R because if C1 on (a, k) only makes
query outside R, then (a, k) ∈ G. Go over (a, k) ∈ R \ G, and recover the
truth table of O(a, k, ·).

3. Recover G0.
4. For each (a, k) ∈ G,run C1(BO

0 , a) while answering the oracle queries to
the first oracle using recovered values and to the second oracle using the
values stored in the encoding. Suppose C1 outputs x, b, if (a, k) ∈ G0, recover
O(a, k, x) = b otherwise O(a, k, x) = 1 − b. After that for which O(a, k, x)
is not yet defined, recover the value of O(a, k, x) from the remainder of the
encoding.

Because we condition on |G| ≤ KN/T and |G0| − |G1| ≥ εKN/80qT which
implies log

( |G|
|G0|
) ≤ |G|H(1/2 + εKN/80T |G|) ≤ |G| − Ω((ε/q)2KN/T ), where

H is the binary entropy function. The maximal length is at most

KNL + S + 1 + log
( |G|

|G0|
)

− |G| ≤ KNL + S + O(1) − Ω((ε/q)2KN/T ).

By Lemma 2, we have

S ≥ Ω((ε/q)2KN/T ) − log Ω(
ε

160qT
) − log(

ε

4q
).

which implies ε ≤ O(q ·
√

ST
KN ). Overall we obtain ε ≤ O(q · (

√

ST
KN + T

N · log N)).
�

6 Message Authentication Codes (MACs)

In this section, we prove the following theorem.

Theorem 8. Consider random oracles O ∈ Func ([K] × [N ] × [L], [M ]). For
any oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T queries to O,

Pr
O,a,k

[

(m, t) := A
O,O(a,k,·)
1 (AO

0 , a) : O(a, k,m) = t
]

= O

(

ST

KN
+

T

M
+

T log N

N

)

,

where it is required that A1 not query m to its second oracle.
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Note that any generic inversion attack can be used to attack the above con-
struction of a MAC by fixing some m ∈ [L] and then inverting the function
O(a, ·,m) given a; in this sense, it is perhaps not surprising that the bound
above contains terms O

(

ST
KN + T log N

N

)

as in Theorem 3. There is, of course,
also a trivial guessing attack that achieves advantage 1/M .

Proof. If A1 queries O on any query with prefix (a, k), with probability at
least ε/2, we can turn A1 into an algorithm that inverts random oracle O′ from
[K] × [N ] to [ML] with that probability where the output of O′(a, k) is the
truth table of O(a, k, ·). Then by Theorem 3, we obtain ε ≤ O( ST

KN + T log N
N ).

Otherwise, we may construct algorithms B1 which behaves as A1 except when
B1 queries O on any query with prefix (a, k), B1 outputs a random guess. B1

satisfies that

Pr
O,a,k

[BO,O(a,k,·)
1 (AO

0 , a) outputs (m, t) s.t. O(a, k,m) = t] ≥ ε/2.

where it is required that B1 not query m to its second oracle.
Fix O : [K]×[N ]×[L] → [M ]. Let UO be the set of (a, k) such that B1 succeeds

on (a, k). Let GO be the subset of UO such that for every (a, k) ∈ GO, B
O,O(a,k,·)
1

does not query its first oracle with any query with prefix (a′, k′) ∈ GO. Because
B1 makes at most T queries, there exists GO with size at least |UO| /(T + 1).

We can encode O as follows.

1. Include AO
0 , |GO| and a description of GO. This uses a total of S +log KN +

log
(

NK
|GO|
)

bits.
2. For each (a, k) ∈ ([K] × [N ]) \ GO (in lexicographic order), include the truth

table of O(a, k, ·). This uses a total of (KN − |GO|) · L log M bits.
3. For each (a, k) ∈ GO (in lexicographic order), include in the encoding the

answers to all the oracle queries made by B1 to the second oracle O(a, k, ·),
and then for every m such that (a, k,m) is not queried by C1 to O(a, k, ·) and
m is not the output of C1, add O(a, k,m) to the encoding. This uses a total
of |G| (L − 1) log M bits.

Decoding is done in the obvious way. The encoding length is at most

KNL log M + S + log KN + log
(

KN

|GO|
)

− |GO| log M

By log
(

KN
|GO|
) ≤ |GO| log eKN

|GO| and log-sum inequality, the average length over all
possible O is at most

KNL log M + S + log KN + E[|GO|] log
eKN

M · Ef [|GO|] .

But Lemma 1 shows that any such encoding must have expected length at least
KNL log M bits. We thus conclude that

S + log KN ≥ E[|GO|] log
M E[|GO|]

eKN
≥ εNK

2(T + 1)
log

Mε

2e(T + 1)
.
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where the second inequality is due to the monotonicity of y log y for y ≥ 1 and
E[|GO|] ≥ E[ |UO|

T+1 ] ≥ εNK
2(T+1) . This implies Theorem 8 since either ε ≤ 4e(T+1)

M or

else ε ≤ 2(S+log KN)(T+1)
NK = O( ST

NK + T log N
N ). �
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Abstract. Assume that a symmetric encryption scheme has been
deployed and used with a secret key. We later must change the encryp-
tion scheme in a way that preserves the ability to decrypt (a subset
of) previously encrypted plaintexts. Frequent real-world examples are
migrating from a token-based encryption system for credit-card numbers
to a format-preserving encryption (FPE) scheme, or extending the mes-
sage space of an already deployed FPE. The ciphertexts may be stored
in systems for which it is not easy or not efficient to retrieve them (to
re-encrypt the plaintext under the new scheme).

We introduce methods for functionality-preserving modifications to
encryption, focusing particularly on deterministic, length-preserving
ciphers such as those used to perform format-preserving encryption. We
provide a new technique, that we refer to as the Zig-Zag construction,
that allows one to combine two ciphers using different domains in a way
that results in a secure cipher on one domain. We explore its use in the
two settings above, replacing token-based systems and extending mes-
sage spaces. We develop appropriate security goals and prove security
relative to them assuming the underlying ciphers are themselves secure
as strong pseudorandom permutations.

1 Introduction

We explore the ability to modify a deployed symmetric encryption scheme in a
way that preserves some of its previous input-output mappings. This may prove
useful in a variety of settings, but we are motivated and will focus on addressing
two specific ones that arise in the increasing deployment of format-preserving
encryption (FPE) schemes.

Modifying deployed FPE schemes. In a variety of settings conventional
symmetric encryption is difficult or impossible to utilize, due to unfortunate
constraints imposed by legacy software systems. A common problem is that
encryption produces ciphertexts whose format are ruled out by restrictive appli-
cation programming interfaces (APIs) and/or pre-existing database schema. This
problem prevented, for example, encryption of credit-card numbers (CCNs) in a
variety of settings. Format-preserving encryption (hereafter FPE) is a technique
aimed at such problems, allowing one to encrypt a plaintext item of some format
c© International Association for Cryptologic Research 2017
J.-S. Coron and J.B. Nielsen (Eds.): EUROCRYPT 2017, Part II, LNCS 10211, pp. 499–527, 2017.
DOI: 10.1007/978-3-319-56614-6 17
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to a ciphertext of the same format (16 digit CCN). It has seen wide academic
study [4,6,11,16,17,20] as well as widespread use in industry [12,18,23,25].

Before the advent of strong FPE schemes, companies often instead used what
are called tokenization systems to solve the format-constrained ciphertext prob-
lem. One generates a random token using generic techniques for creating ran-
dom strings with a certain format, i.e., sampling a token C uniformly from some
set M that defines the set of strings matching the format. A token table con-
taining plaintext-to-token mappings is stored in a database, and applications
which need access to data in the clear ask the database to do a lookup in this
table for the plaintext corresponding to a particular token. Often applications
reside in other organizations that have outsourced CCN management to a pay-
ments service. This technique can be viewed as a particularly inefficient FPE
implementing a permutation FKo : M → M for a “key” Ko that is a lazily
constructed map of plaintexts to random ciphertexts (tokens).

Now that we have better approaches to FPE, a common problem faced by
companies is upgrading from tokenization to an FPE scheme. This can be chal-
lenging when tokens have been distributed to various systems and users; there
may be no way to recall the old tokens. The challenge here is therefore to build
a new cipher that “completes” the domain of the cipher partially defined by the
token table thus far.

A second example arises in the use of FPE for encryption of data before
submission to restrictive cloud computing APIs. An instance of this arises with
Salesforce, a cloud provider that performs customer relations management —
at core they maintain on behalf of other companies databases of information
about the companies’ customers. As such, companies using Salesforce and desir-
ing encryption of data before uploading have a large number of data fields with
various format restrictions: email addresses, physical addresses, CCNs, names,
phone numbers, etc. While we now have in-use solutions for defining formats via
easy-to-use regular expressions [4,11,16], it is often the case that formats must
change later. As a simple example: one may have thought only 16-digit CCNs
were required, but later realized that 15-digit cards will need to be handled as
well. Here we would like to, as easily as possible, modify an FPE FKo : D → D
to one that works for an extended message space M ⊃ D. As with tokens and
for similar reasons, it would be useful to maintain some old mappings under F
in the new cipher.

Functionality-preserving modifications to encryption. The core challenge
underneath both examples above is to take an existing cipher FKo operating on
some domain and, using knowledge of Ko, build a new cipher EK such that
EK(M) = FKo(M) for M ∈ T ⊂ M. We refer to T as the preservation set. In
the tokenization example T could be the full set of messages for which entries in
the table exist, and in the format-extension example T could be a subset of D.

We note that trivial solutions don’t seem to work. As already explained, the
simplest solution of replacing old ciphertexts with new ones won’t work when
the old ciphertexts are unavailable (e.g., because other organizations have stored
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them locally). Furthermore, even when old ciphertexts can be revoked, the cost
of decrypting and re-encrypting the whole database may be prohibitive.

Alternatively, consider encrypting a new point M in the following way. First
check if M ∈ T and if so use the old cipher FKo(M). Otherwise use a fresh key K
for a new cipher E and apply EK(M). But this doesn’t define a correct cipher,
because different messages may encrypt to the same ciphertext: there will exist
M /∈ T and M ′ ∈ T for which EK(M) = FKo(M

′).

Our contributions. We explore for the first time functionality-preserving mod-
ifications to deployed ciphers. A summary of the settings and our constructions
is given in Fig. 1. Our main technical contribution is a scheme that we call the
Zig-Zag construction. It can be used both in the tokenization setting and, with
simple modifications, in the expanded format setting. It uses a new kind of cycle
walking to define the new cipher on M using the old cipher FKo and a helper
cipher EK : M → M. The old mappings on points in T are preserved.

We analyze security of Zig-Zag in two cases, corresponding to the two situ-
ations discussed: (1) in domain completion, F has ciphertexts in the range M
and (2) in domain extension, F works on a smaller domain D ⊂ M. For the first
case, we show that the Zig-Zag construction is provably a strong pseudoran-
dom permutation (SPRP) assuming that F and E both are themselves SPRPs.
Extending to deal with tweaks [13] is straightforward.

Setting Description Achievable security Construction

Domain completion Preserve partially defined cipher
T → M in new cipher M → M

SPRP Zig-Zag

Domain extension
Extend cipher D → D to M → M SEPRP Zig-Zag
Extend cipher D → D to M → M SPRP (unknown T ) Recursive Zig-Zag

Fig. 1. Summary of different settings, security goals, and constructions. The set M is
the new cipher’s domain, the set T is the set of preserved points, and D ⊂ M is the
original domain in the extension setting.

The second case is more nuanced. We first observe that no scheme can achieve
SPRP security when adversaries know T . The attack is straightforward: query
a point from T and see if the returned ciphertext is in D or not. Because it is
functionality preserving, the construction must always have a ciphertext in D,
whereas a random permutation will do so only with probability |D|/|M|. Since
we expect this ratio to usually be small, the attack will distinguish with high
probability.

This begs the question of what security level is possible in this context.
Investigating the attack ruling out SPRP security, we realize that the main issue
is that ciphers that preserve points will necessarily leak to adversaries that the
underlying plaintext is in T . We formalize a slightly weaker security goal, called
strong extended pseudorandom permutation (SEPRP) security in which a cipher
must be indistinguishable from an ideal extended random permutation. Roughly
this formalizes the idea that attackers should learn nothing but the fact that the
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distribution of points in T is slightly different from those in M \ T . We show
that the Zig-Zag construction meets this new notion.

SEPRP security does leak more information to adversaries than does tradi-
tional SPRP security, and so we investigate the implications of this for appli-
cations. We formally relate SEPRP security to two security notions for FPE
schemes from Bellare, Ristenpart, Rogaway, and Stegers [4], message recovery
(MR) and message privacy (MP). We highlight the main results regarding MR
here, and leave MP to the body. MR requires that an adversary, given the encryp-
tion of some challenge message as well as a chosen-plaintext encryption oracle,
cannot recover the message with probability better than a simulator can, given
no ciphertext and instead a test oracle that only returns one if the queried mes-
sage equals the challenge. We show that there exist settings for which SEPRP
security does not imply MR security, by way of an adversary whose success prob-
ability is 1, but any simulator succeeds with probability at most 1/2. The reason
is that the adversary can exploit knowledge of membership in T , whereas the
simulator cannot.

This result may lead us to pessimistically conclude that SEPRP provides very
weak security, but intuition states otherwise: an SEPRP-secure cipher should not
leak more than one bit of information about a plaintext (whether or not it is
in T ). The best MR attack one can come up with should therefore only have a
factor of two speedup over attacking an SPRP-secure cipher. The gap between
intuition and formalism lies in the strict way MR security was defined in [4]:
simulators can only make as many queries as adversaries make and simulators
receive nothing to aid in their attack. We therefore introduce a more general MR
security notion that we uncreatively call generalized MR (gMR) security. The
definition is now parameterized by both an auxiliary information function on
the challenge plaintext as well as a query budget for simulators. We show that
SEPRP security implies gMR security when the auxiliary information indicates
whether the challenge is in T or not. We then show a general result that gMR
security with this auxiliary information implies gMR security without any auxil-
iary information, as long as the simulator can make twice as many queries as the
adversary. This makes precise the security gap between SEPRP and SPRP, and
the interpretation is simply that adversaries get at most a factor of two speedup
in message recovery attacks.

Security and side-channel attacks. The Zig-Zag construction is not inher-
ently constant time, which suggests it may be vulnerable to timing or other
side-channel attacks. We prove in the body that timing leaks only whether a
message is in T or not, and nothing further. We also discuss possible implemen-
tation approaches that avoid even this timing attack.

The Recursive Zig-Zag construction. Above we argued that in the domain
extension setting SPRP security is unachievable should the adversary know (at
least one) point in T . In some scenarios, the attacker may be unable to learn
which points are in T , but is able to learn some information on T such as its size.
This might arise, for example, should an attacker learn the size of a database but
not have direct access to its contents. In this context the attack discussed above
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showing SPRP insecurity for all schemes no longer applies. We therefore explore
feasibility of SPRP security in the domain extension setting when attackers know
|T | but do not know T .

First we show that SPRP security is still ruled out if the gap between the
size of the old domain and the target domain is smaller than the number of new
points by which the domain was extended, namely |D| − |T | < |M \ D|. To gain
some intuition, consider the minimum number of points from D that map back
to points in D for both an extended cipher and for a random permutation. For
an extended cipher, at least |T | points are necessarily preserved, and so map to
points in D. For a random permutation, if the number of added points is large
enough there is a probability that no point in D is mapped back to D. Con-
sequently, for a large enough T or when we add many points, the distribution
of the number of points in D that map back to D differs sufficiently between
extended ciphers and random permutations to give an adversary distinguishing
advantage. For other ranges of parameters, however, with overwhelming proba-
bility a random permutation will have a subset of inputs that maps back to D.

Unfortunately, the Zig-Zag construction does not meet SPRP security in this
unknown T setting. Intuitively, the reason is that the construction biases the
number of sets of size |T | that map to D, with this bias growing as |T | grows.

We therefore provide a domain extension construction in the unknown T
setting. It starts with a helper cipher E on M, and utilizes the basic structure
of the Zig-Zag to patch it in order preserve the points of T . The patching occurs
by replacing mappings for a t-size subset of M that E maps to T . By patching
those points in that set, as opposed to arbitrary points as in done in Zig-Zag, we
preserve the distribution of sets of size |T | that are mapped to D. To make this
efficient we perform the patching recursively, handling the points in T one at
a time, hence the name Recursive Zig-Zag for the construction. We prove that
the construction works in expected time and space proportional (with a small
constant) to |T |, making it feasible for an application where T would need to be
stored anyway, and analyze its SPRP security.

A ranking-based approach. An anonymous reviewer pointed out a potential
alternative to our Zig-Zag construction that takes advantage of ranking func-
tions, which are efficiently computable and invertible bijections from a domain
M to Z|M|. Ranking underlies many FPE constructions, and in some ways the
reviewer’s construction is simpler than Zig-Zag. The reviewer gave us permission
to present the idea and discuss it in comparison to Zig-Zag. See Sect. 4.

Limitations and open problems. The approach we explore, of modifying a
scheme after deployment, has several limitations. First, it requires the ability to
perform membership tests against T and requires the old key Ko for the lifetime
of the updated cipher. These must both be protected (in the former case, since
it may leak some information about how people were using the cipher). In the
case that T is an explicit list, one could cryptographically hash each point to
provide some partial protection of plaintext data in case of key compromise, but
this would only provide marginal benefit in case of exposure since dictionary
attacks would be possible.
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Second, as points in T are submitted it would be convenient to gracefully
remove points from it and “refresh” them with new mappings. This would be
useful in the tokenization scenario should the client be able to update its token
after a query. But there is no way to make “local” modifications to a cipher
as any changed mapping necessarily affects at least one other domain point. We
leave how to modify schemes gradually over time as an interesting open problem.

Our work only considered updating ciphers, but it could be that other crypto-
graphic primitives might benefit from functionality-preserving updates. Future
work could determine whether compelling scenarios exist, and what solutions
could be brought to bear.

Full version. Due to space constraints, we had to omit a number of proofs.
These will be available in the full version, which will be available from the
authors’ websites.

2 Preliminaries

Let M be a set, called the domain, and K be a set called the key space. Later we
abuse notation and use sets to also denote efficient representations of them. A
cipher is a family of permutations E : K × M → M. This means that EK(·) =
E(K, ·) is a permutation for all K ∈ K. Both EK and its inverse E−1

K must
be efficient to compute. Block ciphers are a special case in which M = {0, 1}n
for some integer n, and format-preserving encryption [4] is a generalization of
ciphers that allows multiple lengths as well as tweaks [13]. Our results translate
to that more general setting as well, but for the sake of simple exposition we
focus on only a single domain, and use the term cipher instead of FPE.

For a function f and set X that is a subset of its domain, we write Imgf (X )
to denote the image of X under f , i.e., the set {f(x) | x ∈ X}.

main SPRP1A
E

K ←$ K
b′ ← AEnc,Dec

return b′

proc Enc(M)

return EK(M)

proc Dec(C)

return

E−1
K (C)

main SPRP0A
E

π ←$ Perm(D)

b′ ← AEnc,Dec

return b′

proc Enc(M)

return π(M)

proc Dec(C)

return

π−1(C)

Fig. 2. SPRP security games for
a cipher E.

SPRP security. Ciphers are considered secure
if they behave like strong pseudorandom per-
mutations (SPRPs). Let Perm(M) be the set
of all permutations on any set M. Consider
a cipher E : K × M → M. We define the
advantage of an adversary A in distinguish-
ing E and its inverse from a random per-
mutation and its inverse as Advsprp

E (A) =
∣

∣Pr
[

SPRP1A
E ⇒ 1

] − Pr
[

SPRP0A
E ⇒ 1

]∣

∣. The
two games SPRP1 and SPRP0 are defined in
Fig. 2 and the probabilities are taken over the
random coins used in the games. We will give
a concrete security treatment, meaning we will
explicitly relay the running time (in some RAM
model of computation) and number of queries made by adversaries.

We assume that adversaries do not repeat any oracle queries and do not
ask queries to which they already knows the answer, like querying a decryption
oracle with the result of a previous encryption oracle query.
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The hypergeometric distribution. A hypergeometrically distributed random
variable X has probability mass function

Pr [X = k ] =

(

K
k

)(

N−K
n−k

)

(

N
n

)

where N is the total number of samples, K is the number of marked samples, n
is the number of samples drawn, and k is the number of marked samples of the
n total samples.

The hypergeometric distribution has very strong tail bounds. We formalize
this as the following lemma. A full proof of this lemma can be found in [8,22]
but is omitted here.

Lemma 1. Let X be a hypergeometrically distributed random variable and n be
the number of samples. Then for any real number t, Pr[E[X]+tn ≤ X] ≤ e−2t2n,
where e is the base of the natural logarithm.

3 Extending Partially Used Message Spaces

We start by considering how to replace an existing cipher F : K×M → M with
a new one E : K × M → M, while maintaining backwards compatibility with
the subset of the message space T ⊂ M for which messages have already been
encrypted. Our motivation for this originates with the following situation that
arises in practice.

Updating tokenization deployments. Tokenization [27] is a set of tech-
niques whose purpose is to provide confidentiality for relatively small data values
(e.g., government ID numbers or credit card numbers). Usually tokenization is
employed to meet regulatory requirements imposed by governments or industry
standards bodies like PCI [10].

A tokenization system usually consists of a few parts: a server front-end which
accepts tokenize/detokenize requests from authenticated clients, a cryptographic
module that produces tokens for plaintext values, and a database backend that
stores the plaintext/token mapping table. Each time a new tokenize request
occurs for a plaintext M , a randomly generated value from M is chosen to

Fig. 3. Tokenization system after choosing random values C1, C2, C3 for plaintexts
T = {M1,M2,M3}.
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be FKo(M). Here Ko is just an explicitly stored table of message, token pairs.
The token FKo(M) is given back to the requester and stored for later use. Let
T ⊆ M be the set of all points for which tokens have been distributed. A diagram
is shown in Fig. 3.

Such tokenization systems are a bit clumsy. Primarily they do not scale very
well, requiring protected storage linear in the number of plaintexts encrypted
compared to FPE schemes that achieve this with just a small 128 bit key. (One
cannot just store a key for a pseudorandom number generator and recreate val-
ues; this doesn’t allow efficient decryption.) Companies therefore often want to
move from tokenization to a modern solution using an FPE E.

One could choose a new key for E but the problem is then that the previously
returned tokens will be invalidated, and this may cause problems down the road
when clients make use of these tokens. Hence the desire to perform what we
call domain completion: define EK(M) such that EK(M) = FKo(M) for all
M ∈ T . This ensures that previously distributed tokens are still valid even
under the new functionality. In deployment, any method for domain completion
would most likely retain the token table, but the crucial difference in terms of
performance is the immutability of the table. After switching to the keyed cipher,
the table can be made read-only and distributed with the FPE software as a file
with no expensive and complicated database needed to ensure consistency and
availability. In most contexts, one will want to keep the file secret since it may
leak information about previous use of F .

Domain completion, formally. A domain completion setting is defined to be
a tuple (F,M, T ) consisting of a cipher with domain M and the preservation set
T ⊆ M. Relative to some fixed domain completion setting (that later will always
be made clear from context), a domain-completed cipher DCC = (KT,E) con-
sists of an algorithm and a cipher. The algorithm is called a domain-completion
key transform. It is randomized, takes as input a key Ko for F and the preserva-
tion set T , and outputs a key for the cipher E. The cipher is assumed to have a
key space compatible with the output of KT . For some preservation set T , the
induced key generation algorithm for E consists of choosing a random key Ko

for F , running KT (Ko, T ) and returning the result.
A domain-completed cipher DCC preserves a point M if EK(M) = FKo(M)

with probability one over the experiment defined by running the induced key
generation for E. We say that KT preserves a set T if it preserves each M ∈ T .
The ability of a key transformation to achieve preservation implies that K must
somehow include (an encoding of) Ko. In the case where F is a tokenization
system, then Ko is a table of at least t = |T | points.

We measure security for a domain-completed cipher via the SPRP advantage
of the cipher E using its induced key generation algorithm. We will quantify over
all preservation sets or that security should hold even if the adversary knows T .
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4 Domain Completion via Rank-Encipher-Unrank

An anonymous reviewer pointed out an approach to domain completion for
schemes constructed using the rank-encipher-unrank approach of [4]. With per-
mission we reproduce it here. Recall that a rank-encipher-unrank construction
uses a ranking function rank : M → Zm, which is a bijection with inverse
unrank : Zm → M. Both must be efficiently computable. One additionally uses
cipher E that operates on domain Zm. (This is referred to as an integer FPE
in [4]). Then one enciphers a point X ∈ M via unrank(EK(rank(X))) and
decrypts a point Y via unrank(DK(rank(Y ))).

Now consider a domain completion setting (F,M, T ). Let D = M \ T be
the set of domain points not in the preservation set. Let R = M \ ImgFKo

(T ),
where ImgFKo

(T ) = {FKo(X) | X ∈ T }, be the set of range points not in
the image of FKo on T . The construction uses a cipher E : Zd → Zd and a
ranking function rank : M → Zm with inverse unrank . The construction builds
from rank rankings rankD : D → Zd and rankR : R → Zd. It then encrypts
by checking if a point X is in T and, if so, outputting FKo(X) and otherwise
outputting unrankR(EK(rankD(X))).

In detail, the domain-completed cipher RTE = (KT rte, Erte) is defined as
follows. The domain-completion key transform KT rte(Ko, T ) first computes the
set ImgFKo

(T ). Then it computes the set {rank(X) | X ∈ T } and sorts it to
obtain a list x = (x 1, . . . ,x t) ∈ Z

t
m. Similarly it computes {rank(Y ) | Y ∈

ImgFKo
(T )} and sorts it to obtain a list y = (y1, . . . ,y t) ∈ Z

t
m. It also chooses

a new key K for a helper cipher E on Zd and outputs K = (Ko,K,x ,y).
Enciphering is performed via Erte

K (X) = unrankR(EK(rankD(X))) for rank-
ings defined as follows. The first ranking, rankD(X), works for X ∈ D by comput-
ing x ← rank(X), then determining, via a binary search, the largest index i such
that x i < x, and finally outputting x−i. The inverse of rankD is unrankD(x′). It
works for x′ ∈ Zd by using a binary search to determine the largest index j such
that x j −j +1 ≤ x′, and then outputting X ← unrank(x′ +j). The construction
of rankR is similar, using y instead of x .

This domain-completed cipher can be shown to be SPRP secure and, looking
ahead, one can simply adapt it to the domain extension case to achieve SEPRP
security (as defined in Sect. 6). This approach relies on having a ranking for M.
While not all languages have efficient rankings [4], efficient rankings can be built
for most formats of practical interest [4,11,16,17]. The additional overhead of
removing the T (resp. ImgFKo

(T )) points requires time proportional to log t and
space equal to 2t multiplied by some representation-specific constant.

Our construction, to be presented in the next section, avoids the extra space
requirements and the binary search. It only requires the ability to determine
membership in T , which affords various flexibilities such as using an API to check
membership or representing T via a compact Bloom filter. It also allows, via
precomputation, a constant-time implementation using table look-up (assuming
constant time implementations of F , E).
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We note that the straightforward implementation of both approaches leaks,
via timing side-channels, whether a domain point is in T . The ranking-based
approach may leak more with a naive implementation of binary search. Ranking
itself may be in some cases tricky to implement without side-channels, if one
uses the table-based constructions for ranking regular languages [4,11,16] or
context-free grammars [17].

5 The Zig-Zag Construction for Domain Completion

In this section we will introduce an algorithm that achieves SPRP security in the
domain completion setting. Fix a domain completion setting (F,M, T ). Then the
Zig-Zag domain-completed cipher ZZ = (KT zz, Ezz) is defined as follows. The
key transform KT zz takes inputs Ko and T and outputs the tuple (T ,Ko,K)
where K is a randomly chosen key for a cipher E on domain M. We refer to
E as the helper cipher. The triple (T ,Ko,K) define a key for the enciphering
algorithm Ezz and deciphering algorithm Dzz, detailed in Fig. 4.

Ezz
T ,Ko,K

(M):

if (M ∈ T ):

return FKo (M)

else

i ← 1

M0 ← M

while ( Mi−1 ∈ T )

Yi ← EK(Mi−1)

Mi ← F −1
Ko

(Yi)

i ← i + 1

return Yi−1

Dzz
T ,Ko,K

(C):

if ( F −1
Ko

(C) ∈ T ):

return F −1
Ko

(C)

else

i ← 1

Mi ← DK(C)

while ( Mi ∈ T or i = 1 ):

Yi+1 ← FKo (Mi)

Mi+1 ← DK(Yi+1)

i ← i + 1

return Mi

Fig. 4. Zig-Zag encryption and decryption algorithms.

Towards building intuition about the Zig-Zag construction, we start by dis-
cussing why traditional cycle walking will not work for our context. Cycle
walking is a generic method for achieving format-preserving encryption on a
set by re-encrypting an input point until it falls in a desired subset of the
domain of the cipher [6]. Cycle-walking could ostensibly be used instead of zig-
zagging as follows. Consider an input point X ∈ M \ T , and suppose that
Y = EK(X) ∈ ImgFKo

(T ). Then since Y is already a point required for the
preservation set, we can’t map it to X, and instead cycle walk by computing
Y ′ = EK(Y ), Y ′′ = EK(Y ′) and so on, stopping the first time we find a point
not in the image of T and having X map to that final value. But the problem is
that, unlike with traditional cycle walking, the intermediate points Y, Y ′, Y ′′ are
themselves valid inputs to the cipher, and using them for the cycle walk obviates
using the obvious mapping of, e.g., EK(Y ).
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Fig. 5. Graphical depiction of a zig-zag. The domain (first row) has a target set T =
{3, 4}. We encrypt 1 to 3, which collides with the ciphertext in the image of T . We
then decrypt to get 4 ∈ T and re-encrypt 4 to get 2.

The Zig-Zag avoids this problem by only trying a different point of T each
time E returns a point in ImgF (T ). This ensures that as we do our search
for a point to which we will map the input X, we are only using E on points
Y, Y ′, Y ′′ ∈ T . A diagram depicting this process appears in the diagram of Fig. 5.
There M = {1, 2, 3, 4} and T = {3, 4}. The solid red lines signify encryption by
EK and the dashed black line represents F−1

Ko
. We start by calling EK(1), which

(say) gives us the image of a point in T . We call F−1 and find that the preimage
of this point is 4. We then call EK(4), which gives us Ezz

K
(1) = EK(4) = 2.

5.1 Running Time of the Zig-Zag Construction

The Zig-Zag construction, in the worst-case, requires |T | iterations of the while
loop. First, we note that if the algorithm enters the while loop, it must exit —
otherwise permutivity of EK would be violated. In the worst case, then, the
while loop will hit every point in T . In the full version we provide a formal proof
of this. We also show that, when encrypting the entire domain M under Ezz

K , E
is executed at most once per point in M. Roughly speaking, the aggregate cost of
enciphering the entire domain under Zig-Zag is almost the same as enciphering
with E (assuming |T | 
 |M|, otherwise it’s at most twice the cost).

This doesn’t mean that for individual points the running time is not signifi-
cantly delayed (in the worst case, requiring 2·|T | underlying cipher calls). But in
fact the expected running time for an arbitrary point is small, as captured by the
next theorem, and assuming the underlying ciphers are random permutations.

Theorem 1. Let Ezz be implemented as in Fig. 4 except with F replaced with
Π1 and E replaced with Π2, where Π1 and Π2 are random permutations over M.
Let I be a random variable denoting the number of iterations of the inner ‘while’
loop of Ezz with domain M and preservation set T taken when enciphering an
arbitrary point in M\T . Let |T | = t. Then, if t ≤ |M|/2, it holds that E [ I ] ≤ 2.

Proof. Consider an arbitrary M ∈ M. First if M ∈ T then the number of
iterations of the while loop is zero. Consider otherwise, and let the transcript of
points defined in the while loop be P = {M0, Y1,M1, Y2,M2, . . . , Yi,Mi}. Then
the size of this transcript is a random variable, over the coins used to choose
Π1,Π2, and we denote it by I. We have that Pr[I > t] = 0 by our arguments of
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correctness discussed above. Then for any 1 ≤ j ≤ t, because Π1,Π2 are random
permutations independent of M , we have that

Pr [ I = j ] =

[

j−1
∏

i=1

(t − i + 1)
(m − i + 1)

]

·
(

1 − t − j + 1
m − j + 1

)

.

Letting Pj =
∏j−1

i=1
t−i+1
m−i+1 , we can plug into the definition of expectation to get

that

E [ I ] =
t

∑

j=1

j

[

Pj − Pj · t − j + 1
m − j + 1

]

=
t

∑

j=1

jPj −
t

∑

j=1

jPj+1

where we’ve used the fact Pj · t−j+1
m−j+1 = Pj+1. Investigating the right-hand side of

the equation, we have that the left summand is one factor of Pj larger than the
right summand when the index of summation on the left is one greater than on
the right. Thus, for every Pj there will be a jPj term in the overall summation
and a −(j − 1)Pj term, so every term of the right summation is cancelled by a
term of the left summation except for the final one, tPt+1. Thus we can rewrite
the equation to get

E [ I ] =
t

∑

j=1

Pj − tPt+1 ≤ 1 +
t

∑

j=2

1
2j−1

.

To justify the final inequality, observe that the first term of the summation is
the empty product, which is by definition equal to 1. For the second summation,
noticing that for 2 ≤ j ≤ t, plugging t = m

2 into Pj gives us a summand which is
upper-bounded by 1

2j−1 . The rightmost term is bounded above by 1 so E [ I ] ≤ 2
for t ≤ m

2 .

For simplicity in the above we restricted to t ≤ m/2. For larger t, i.e. m
2 ≤

t ≤ m − 1, a similar analysis can be done using the sum of a geometric series
with ratio 1

2 ≤ t
m < 1 in the final step instead of 1

2 . Finally, a similar analysis
can be done for the run time of Dzz.

Security of the Zig-Zag construction. In the domain completion setting,
our Zig-Zag construction achieves SPRP security. We prove the following the-
orem in the full version. The proof proceeds via standard reductions to move
to an information-theoretic setting in which F and E are replaced by random
permutations. Then one performs an analysis to show that the Zig-Zag domain-
completed cipher, when using random permutations, exactly defines a random
permutation.

Theorem 2. Fix a domain completion setting (F,M, T ) and let ZZ =
(KT zz, Ezz) be the Zig-Zag domain-completed cipher using helper cipher E. Let
A be an SPRP adversary making at most q queries to its oracles. Then the proof
gives explicit adversaries B and C such that

Advsprp
Ezz (A) ≤ Advsprp

E
(B) + Advsprp

F (C) .



Modifying an Enciphering Scheme After Deployment 511

Adversaries B and C each run in time that of A plus negligible overhead and
each make at most q + |T | queries.

6 Domain Extenders for Deployed Ciphers

We now look at a distinct but related setting in which we want to extend the
message space of a cipher after it has been deployed. Suppose we have an FPE
FKo for some message space D that has already been used to encrypt a number
of plaintexts. We later learn that we need to be able to encrypt as well plaintexts
from a larger format M = N ∪ D.

Practical motivations for domain extension. While perhaps odd at first,
message space extension arises frequently in deployment. An example is the use
of encryption schemes in settings with constrained formatting on ciphertexts,
such as the traditional credit card number example. Say we have deployed an
FPE scheme for 16-digit credit card numbers only to later realize we must handle
15-digit credit card numbers as well. In this case it might be that |D| = 1015,
|N | = 1014 and |M| = 1015 + 1014. (Recall that the last digit of a credit card
number is a checksum, so a 15 digit CCN is only 14 digits of information.)

In deployment, such a format change is often precipitated by one of two
things: a change in customer requirements or a change in application behavior.
Changes in customer requirements often occur when businesses adopt FPE incre-
mentally, rather than all at once. For example, a business might deploy FPE for
users in the United States first, then later deploy it for users in China as well.
If the format of the FPE was English-only initially, the inclusion of Chinese
users will necessitate a change to this format. Sometimes customer requirements
change because of external changes in their industries. When computerized gift
cards gained widespread adoption, the credit card industry had to modify its
standard for assigning credit card numbers to include a reserved range for num-
bers corresponding to temporary gift cards.

Changes in application behavior are problematic for businesses that use FPE
in conjunction with cloud-hosted software. When FPE is deployed in such a set-
ting (in which, it is important to note, the users have no control over application
behavior) the formats are chosen to hew as closely as possible to the format val-
idation used by the application. If the software vendor changes the way formats
are validated, the FPE format must change as well or leave businesses with an
unusable application.

We can achieve the desired security trivially by using an FPE on M with a
fresh key. But this requires retrieving, decrypting, and re-encrypting all cipher-
texts already stored under the old format and key. In many contexts this is rather
expensive, and may not even be feasible should the ciphertexts be unavailable
for update (e.g., because they’ve been handed back to some client’s systems as
a token and no API exists for recalling them).

One way to handle this extension would be to use a separate FPE for 16-
digit credit card numbers and for 15-digit credit card numbers. The security of
this kind of solution is, a priori, unclear, as such a ciphertext later accessible
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to adversaries will trivially leak which portion of the message space a plaintext
sits. We will analyze the security of this formally below.

We might also be able to do better in the case that we have only used the
old FPE on a small portion T ⊂ D of the old message space. Ideally we’d like to
preserve the decryptability of the points in T while otherwise picking mappings
that are indistinguishable from a random permutation. We will formalize this
goal below.

It may seem odd to assume that a list of already-encrypted points T is
obtainable. After all, if we can extract a list of previously encrypted values, why
can’t we simply download and re-encrypt them? As discussed above, it is often
difficult to authoritatively change any value in a complex software system after it
has been created. It’s also possible a description of T (like a regular expression)
may be stored in a concise form in some application metadata that is stored on
the encryption server.

Domain extension, formally. A domain extension setting is defined as a tuple
(F,D, T ,M) consisting of a cipher F on domain D, an extended domain M, and
a preservation set T ⊆ D. A domain extended cipher DEC = (KT,E) is an algo-
rithm and a cipher. The randomized algorithm KT , called a domain extension
key transformation, takes as input a key Ko for F , the preservation set T , and
outputs a key K for the cipher E whose domain is M. The cipher E is assumed
to have a key space compatible with the output of KT . For some preservation
set T , the induced key generation algorithm for E consists of choosing a random
key Ko for F , running KT (Ko, T ) and returning the result.

A domain-extended cipher DEC preserves a point M if EK(M) = FKo(M)
with probability one over the experiment defined by running the induced key
generation for E. We say that DEC preserves a set T if it preserves each M ∈ T .

Impossibility of SPRP security. We can measure security for a domain-
completed cipher DEC = (KT,E) via the SPRP advantage of the cipher E using
its induced key generation algorithm. As before, we quantify over all preservation
sets, meaning that security must hold even if the adversary knows T .

This definition proves too strong for most domain extension settings of inter-
est. Roughly speaking, unless m is very close to d, the |T | is small, and d is large,
one can give simple SPRP adversaries successful against any construction. The
following theorem captures the negative result.

Theorem 3. Fix a domain extension setting (F,D, T ,M). Let DEC = (KT,E)
be a domain-extended cipher that preserves T . Let d = |D| and m = |M| and
t = |T |. Then we give a fast, specific SPRP adversary A that makes q ≤ t queries
for which

Advsprp
E (A) = 1 − d! · (m − q)!

m! · (d − q)!
.

Proof. Our adversary picks any size q subset of T and queries each point in
the subset to its encryption oracle. If any of the resulting ciphertexts are in
N = M \ D it outputs 0, because this violates the definition of preserving T .
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The adversary thus knows its oracle is a random permutation. If all q queries
are in D it outputs 1.

In the real world, it is obvious the adversary outputs 1 with probability 1. In
the case where the adversary’s oracle is a random permutation, we have to treat
the possibility of all the queries to the encryption oracle landing in D by chance.
If this happens, the adversary is fooled into thinking its oracle is an extended
FPE even though it’s actually a random permutation.

The probability that the first query’s ciphertext is in D is d
m . The probability

that the next one is also in D is d(d−1)
m(m−1) , because there are d−1 remaining points

in D and m − 1 points left in m. We multiply the probability of the first query
also being in D because this probability is conditioned on that also happening.
If we carry out this argument to q queries, we’ll get

d(d − 1) · · · (d − q)
m(m − 1) · · · (m − q)

=
d! · (m − q)!
m! · (d − q)!

.

main SEPRP1A
DEC,T

Ko ←$ K
K ←$ KT (Ko, T )

b′ ← AEnc,Dec(T )

return b′

proc Enc(M)

return EK(M)

proc Dec(C)

return E−1
K (C)

main SEPRP0A
DEC,T

π ←$ Perm(D)

π̃ ←$ ExtPerm(D, T , π)

b′ ← AEnc,Dec(T )

return b′

proc Enc(M)

return π̃(M)

proc Dec(C)

return π̃−1(C)

Fig. 6. Games defining SEPRP security.

SEPRP security. Given the neg-
ative result about SPRP security,
we turn to weaker, but still mean-
ingful, security notions. The first is
a relaxation of SPRP in which we
do not seek to hide from an adver-
sary that an extension has taken
place. For an domain extension
setting (F,D, T ,M), an adversary
A and domain-extended cipher
DEC = (KT,E), the SEPRP0A

DEC

and SEPRP1A
DEC games in Fig. 6

capture what we call “indistin-
guishability from an extended random permutation”. (The games are implicitly
parameterized by the domain extension setting). There ExtPerm(D, T , π) is the
set of all possible permutations π̃ such that for all X ∈ T it is the case that
π̃(X) = π(X). An adversary A’s SEPRP advantage against DEC is defined as

Advseprp
DEC (A) =

∣

∣Pr
[

SEPRP1A
DEC ⇒ 1

] − Pr
[

SEPRP0A
DEC ⇒ 1

]∣

∣ .

Zig-Zag for domain extension. We now consider the security of the Zig-
Zag construction in the domain extension setting. Fixing a setting (F,D, T ,M),
observe that the construction ZZ = (KT zz, Ezz) from Sect. 5 provides a domain-
extended cipher. The next theorem captures its SEPRP security. The proof
appears in the full version of the paper.

Theorem 4. Fix a domain-extension setting (F,D, T ,M) and let ZZ =
(KT zz, Ezz) be the Zig-Zag domain-extended cipher using helper cipher E.
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Let A be an SEPRP adversary making at most q queries to its oracles. Then
the proof gives explicit adversaries B and C for which

Advseprp
Ezz (A) ≤ Advsprp

F (B) + Advsprp

E
(C) .

The adversaries B, C each run in time at most that of A plus a negligible overhead
and each make at most q + |T | queries.

7 Understanding SEPRP Security

In this section we study SEPRP security in more detail, in particular understand-
ing its relationship with prior security definitions. In particular we’ll explore the
relationship between SEPRP and the notions of message recovery and message
privacy security for ciphers introduced by Bellare et al. [4]. Throughout this
section we fix a domain extension setting (F,D, T ,M), which is known to the
adversary.

7.1 Message Recovery Security

The weakest definition from [4] is message-recovery security. At a high level it
states that an attacker, given the encryption of some unknown message, should
not be able to recover that message with probability better than that achieved by
a simulator given no ciphertext. The adversary is additionally given an encryp-
tion oracle to which it can submit queries; the simulator is given access to an
equality oracle that checks if the submitted message equals the target one. This
latter reflects the fact that chosen-message attacks against an FPE scheme can
always rule out messages one at a time by obtaining encryptions and comparing
it to the challenge ciphertext.

We’ll present a generalization of the standard message recovery definition
called “generalized message recovery”. We use the games gMR and gMRI to
specify a simulation-style security target. The “real” game gMR tasks an adver-
sary A = (A1,A2) with recovering a message chosen by A1 given its encryption
under the domain-extended cipher DEC. We emphasize that A1 and A2 do not
share any state (otherwise the definition would be vacuous). The adversary A2

has the ability to obtain encryptions on messages of its choosing. The “ideal”
game gMRI tasks a simulator S to recover an identically distributed message
X∗ given some leakage aux(X∗) about it and the ability to query an equality
oracle Eq that returns whether or not the submitted message equals X∗.

The generalized MR-advantage of an adversary A = (A1,A2) against a
domain-extended cipher DEC is defined as

Advgmr
DEC(A, q′, aux) = Pr

[

gMRA
DEC ⇒ true

] − max
S∈Sq′

Pr
[

gMRIS,aux ⇒ true
]

where the rightmost term is defined over Sq′ , the set of all simulators making at
most q′ queries to their Eq oracles. In what follows, the simulator can depend
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main gMRDEC

Ko ←$ K
K ←$ KT (Ko, T )

X∗ ←$ A1(T )

Y ∗ ← EK(X∗)
X ← AEnc

2 (T , Y ∗)
return (X = X∗)

Enc(X)

return EK(X)

main gMRI

X∗ ←$ A1(T )

X ← SEq(T , aux(X∗))
return (X = X∗)

Eq(X)

return (X = X∗)

main gMPDEC

Ko ←$ K
K ←$ KT (Ko, T )

X∗ ←$ A1(T )

Y ∗ ← EK(X∗)
Z ← AEnc

2 (T , Y ∗)
return (Z = A3(X

∗))

Enc(X)

return EK(X)

main gMPI

X∗ ←$ A1(T )

X ← SEq(T , aux(X∗))
return (X = A3(X

∗))

Eq(X)

return (X = X∗)

Fig. 7. Generalized Message-recovery and message privacy games.

on an adversary A. The string aux is the description of a function which takes
a point of M and outputs either some information about it or ⊥.

The value q′ is a function of q, the number of queries the adversary makes in
its experiment. Below, q′ will be some small constant like 1 or 2 times q.1 When
q′ > q, it means that the security provided is weaker because the simulator
needs more queries to its ideal functionality to achieve the same probability of
success in its game. Intuitively, this means that the real oracle Enc leaks more
information than the ideal oracle. All reductions below are tight up to some
small constant factors (Fig. 7).

Since MR security is shown not to imply SPRP security in [4], we expect that
it does not imply SEPRP security. To demonstrate this, imagine we take an MR-
secure cipher E over a size-d domain and add one bit to its domain, making it
d + 1 bits. Define a new cipher E′(X) on this domain by calling E on the first d
bits of X and concatenating the d+1st bit (in the clear) to make the ciphertext
of X under E′. The MR-security of E′ is reducible to the MR-security of E by
a simple argument. However, this new cipher E′ does not meet SEPRP security,
because (with M and E′(M) interpreted as integers) the quantity |M − E′(M)|
is the same whether the top bit of M is 1 or 0.

We can also show that SEPRP does not imply MR security. Take a similar
setting in which the new domain M has |M| = m = 2 · d where |D| = d and
every point in D is preserved. We claim that for an SEPRP E, Advgmr

E (A, q,B) ≥
1
2 , where B is the function that always outputs ⊥ (meaning no information is
leaked). To see this, take A = (A1,A2) and have A2 first check if the point it
was given is in D. If so, it queries every point in D until it finds the right one.
Likewise for N . A wins the gMR game with probability 1, but any simulator
wins the gMRI game with probability at most 1

2 because it doesn’t receive any
information about the hidden point and only has q queries.

This is troubling, because we seem to have a separation in two directions
when q = q′: generalized MR does not imply SEPRP, and SEPRP does not imply
generalized MR. However, we can prove that SEPRP does imply generalized MR

1 Note that when q′ = q and aux is the function that always outputs ⊥, this definition
corresponds exactly to the message recovery definition from [4].
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when the simulator is given some auxiliary information about the hidden point,
namely whether or not it is in T .

Theorem 5. Fix a domain-extension setting (F,D, T ,M). For any domain-
extended cipher DEC and adversary A making q oracle queries, we give in the
proof an adversary B making q oracle queries such that

Advgmr
DEC(A, q, aux) ≤ Advseprp

DEC (B)

where aux(X) returns 1 if X ∈ T and 0 otherwise, for all X ∈ M.

Proof. Our adversary B is given the description of A = (A1,A2). It runs A1(T )
and gets a point X∗, then runs A2(T ,Enc(X∗)), simulating A2’s Enc oracle
using its own encryption oracle for the SEPRP game. When A2 outputs its
guess X, B returns 1 if (X = X∗) and 0 otherwise. By construction

Pr
[

gMRA
DEC ⇒ True

]

= Pr
[

SEPRP1B
DEC = 1

]

To complete the proof we must show that

max
S∈Sq

Pr
[

gMRIS,aux ⇒ true
] ≥ Pr

[

SEPRP0B
DEC = 1

]

Construct a simulator S by giving it the target set T and the leakage bit that
indicates whether the hidden point is in T . S runs A2(T ,X ′), where X ′ is a
random point of D if its leakage bit indicates that the hidden point is preserved,
and a random point of M otherwise. S simulates A’s Enc oracle by taking each of
A2’s queries and checking it against its own Eq oracle. If the Eq oracle returns
true, S returns X ′. Otherwise, S returns a random (subject to permutivity)
point of D if A2’s query is in T , and a random point of M otherwise. S returns
whatever A2 does. By inspection, S is simulating the same environment for A2

as B does in the ideal SEPRP game, because in either case the environment is
lazy-sampling a random ideal extended permutation. Thus, the probability of S
winning is exactly the probability of B guessing 1 in the SEPRP0 game. The max
value of the left-hand side is at least the success probability of this simulator, so
the inequality holds.

We can also prove the following relationship between different parameteriza-
tions of the generalized MR games. Intuitively, this theorem says that leaking
whether the hidden point is in T is roughly equivalent to speeding up a guessing
attack by a factor of two.

Theorem 6. Fix a domain-extension setting (F,D, T ,M). For any domain-
extended cipher DEC and adversary A making q queries,

Advgmr
DEC(A, 2(q + 1),B) ≤ Advgmr

DEC(A, q, aux)

where aux and B are as above.
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Proof. First, observe that

Pr
[

gMRA
DEC ⇒ true

]

= Pr
[

gMRA
DEC ⇒ true

]

This is tautological because the gMR game is the same in either case; only the
gMRI game changes.

To complete the proof we need to show that

max
S∈ S2q+2

Pr
[

gMRIS,B ⇒ true
] ≥ max

S′∈ Sq

Pr
[

gMRIS
′,aux ⇒ true

]

The simulator S is given a description of the S ′ that maximizes the right-hand
side and runs it twice — once with the leakage bit set to 0 and once with the bit
set to 1. S answers S ′’s Eq queries with its own Eq oracle. If one of S ′’s guesses
is correct, S returns that as its guess. Since S runs S ′ with the leakage bit set to
both possible values, if S ′ wins in either case, S wins as well. Thus, the success
probability of S is at least the success probability of S ′.

7.2 Message Privacy

In [4] a (strictly stronger) definition than message recovery is proposed. They
refer to this definition as message privacy. It says, roughly, that no adversary
can compute any function of the message given only its ciphertext. Message-
recovery security is a special case of message privacy where the function the
adversary wants to compute is the equality function. We define the generalized
MP-advantage of an adversary A as

Advgmp
E (A, q′, aux) = Pr

[

gMPA
DEC ⇒ true

] − max
S∈Sq′

Pr
[

gMPIS,aux ⇒ true
]

We will use this generalized definition instead of the one used in [4] because
extended permutations leak more information to adversaries than standard
SPRPs. To demonstrate the necessity of this generalized definition, we’ll prove
that SEPRP security does not imply the standard message privacy definition
from [4], which corresponds to our generalized definition when q = q′ and
aux = ⊥.

Theorem 7. Fix a domain-extension setting (F,D, T ,M) for which T = D,
i.e., every point is preserved. For any domain-extended cipher DEC, the proof
gives a specific adversary A = (A1,A2,A3) in the message privacy game such
that

Advgmp
DEC(A, 0,⊥) = 1 − max(

d

m
,

n

m
)

Proof. The algorithm A1 samples uniformly from its input space. The function
represented by A3 is

A3(m) =

{

1 The message is in D
0 The message is in M \ D
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A wins with probability 1 by checking whether the point Y ∗ it is given
is in D or M \ D. Because every point is preserved, A always computes the
function correctly. The simulator S does not get any Eq queries because A
used no encryption queries, and its auxiliary function always outputs ⊥, so the
simulator’s optimal strategy is to output 1 if d > n and 0 otherwise. A point from
the larger of the two sets is more likely, so the simulator wins with probability
max( d

m , n
m ).

We can, however, prove that SEPRP does imply generalized message privacy
when an oracle for membership in T is given to the simulator.

Theorem 8. Fix a domain-extension setting (F,D, T ,M). For any domain-
extended cipher DEC and adversary A making q oracle queries, we give in the
proof an adversary B making q queries such that

Advgmp
DEC(A, q, aux) ≤ Advseprp

DEC (B)

where aux returns 1 if its input is in T and 0 otherwise.

Proof. Our adversary B is given the description of A = (A1,A2,A3). It runs
A1(T ) and gets a point X∗, then runs A2(Enc(X∗)), simulating A2’s Enc oracle
using its own encryption oracle for the SEPRP game. When A2 outputs its guess
Z, B returns 1 if (Z = A3(X∗)) and 0 otherwise. By construction

Pr
[

gMPA
DEC ⇒ True

]

= Pr
[

SEPRP1B
DEC = 1

]

It suffices to show that

max
S∈Sq

Pr
[

gMPIS,aux ⇒ true
] ≥ Pr

[

SEPRP0B
DEC = 1

]

Define a simulator S that takes T and the value of aux(X∗). The simulator S
runs A2(X ′) where X ′ is a random point of D if the simulator’s leakage from aux
indicates the hidden point is in T and X ′ is a random point of M otherwise.
The simulator simulates A2’s Enc oracle by first using its own Eq oracle to
check if A2’s guess is equal to the hidden point. If S’s oracle returns true, S
returns X ′ in response to A2’s query. If it returns false, S checks if the queried
point is in T . If it is, S returns a random point of D, else S returns a random
point of M. The simulator makes both choices subject to permutivity. When A2

returns its guess for A3(X∗), S outputs the same guess. Since S is simulating
the same environment for A2 as B does in the case where B’s oracle is an ideal
extended permutation, the probability of this simulator S winning is exactly the
probability of B guessing 1 in the SEPRP0 game. The true max of the left-hand
side is at least the probability that this S we’ve constructed wins the gMPI
game, so the inequality holds.
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8 The Zig-Zag Construction and Side-Channel Resistance

One important question when designing any encryption scheme that contains
branches on secret data or has variable timing for different points (e.g. the Zig-
Zag construction) is whether this gives rise to any kind of side-channel attack.
Timing side-channels have proven particularly dangerous in applications [5,7] so
we would like to prove the Zig-Zag construction does not give rise to a timing
side-channel. In this section, we will prove that the time taken to encrypt or
decrypt with the Zig-Zag construction does not leak useful information to an
adversary about the encrypted message.

Fix some domain extension setting (F,D, T ,M) and let ZZ = (KT zz, Ezz)
be the Zig-Zag construction for it. We define two games, detailed in Fig. 8. The
first, RealAZZ, gives the adversary A access to a Zig-Zag enciphering oracle that
additionally reveals the number of iterations of the inner loop of Zig-Zag. The
second, IdealA gives the adversary A access to an oracle that returns random
permutation applied to the message as well as a simulated while-loop count
that only uses whether M ∈ T . Define the SPRP-with-timing advantage of an
adversary A against an ZZ as

Advsprp+t
ZZ (A) =

∣

∣

∣Pr
[

RealAZZ ⇒ 1
]

− Pr
[

IdealA ⇒ 1
]∣

∣

∣

The interpretation is that efficient adversaries should not be able to distinguish
Ezz from a random permutation, even with this additional information. In the
Sample procedures, the function B(x, y) generates a random bit that is 1 with
probability x

y .

main RealZZ

Ko ←$ K
(T , Ko, K) ←$ KT (Ko, T )

b ← AEnc

proc Enc(M)

c ← 0

If M ∈ T then

return (FKo (M), c)

else

X ← EK(M)

while F −1
Ko

(X) ∈ T :

X ← EK(F −1
Ko

(X))

c ← c + 1

return (X, c)

Main Ideal

z ← 0

q ← 0

π ← GetPerm(T )

b ← AEnc(T )

proc Sample(M, T )

If (M ∈ T ) then return 0

c ← 0

b ←$ B(t − z − c, m − q − z − c)

while b �= 0:

b ←$ B(t − z − c, m − q − z − c)

c ← c + 1

z ← z + c

q ← q + 1

return c

proc Enc(M)

c ←$ Sample(M, T )

return (π(M), c)

Fig. 8. Games defining SPRP-with-timing advantage for Zig-Zag.

The following theorem captures Zig-Zag’s security in this new model.
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Theorem 9. Fix a domain extension setting (F,D, T ,M) and let ZZ =
(KT zz, Ezz) be the Zig-Zag domain-extended cipher for it built using an under-
lying helper cipher E. Then for any A making at most q queries the proof gives
specific adversaries B and C such that

Advsprp+t
ZZ (A) ≤ Advsprp

E
(B) + Advsprp

F (C)

Adversaries B, C each run in time at most that of A plus a negligible overhead
and each make at most q + |T | queries.

We defer the proof to the full version. This theorem lets us say with that
information on how long encryption of a particular point takes leaks only whether
it is in T or not. Since in a chosen-plaintext attack the adversary already knows
whether M ∈ T , this means the adversary learns nothing. Intuitively this is
because, for every point M /∈ T the distribution of M ’s zig-zag lengths is the
same.

8.1 Other Sources of Side Information

Now that we have shown formally that the timing side-channel of the Zig-Zag
construction’s inner loop does not leak information to an adversary other than
whether or not a point is in T , we will discuss more coarse-grained side channels.
We first look at remote timing attacks, where the adversary learns how long it
takes to perform the encryption or decryption and from that deduces secret
information. For convenience, we only discuss leaks in the encryption algorithm.
Similar leaks exist in the decryption algorithm.

The main source of secret-dependent timing variations is the zig-zag opera-
tion. Each time the algorithm iterates through the while loop it performs two
more encryptions. Thus, timing information discloses the number of times the
algorithm iterates. Knowing that the algorithm iterates through the while loop
is an indication that M �∈ T . We prove above that this is the only information
about M leaked to an adversary by this timing information.

Other sources of timing variations that may leak secret information include:
the different code path taken for M ∈ T , the test for M ∈ T and potential
timing variations in the implementations of F and E.

A common technique for protecting against timing channels is to pad the
computation time. The implementation is modified to ensure that the time
between the start of the computation and the delivery of the result is fixed [3,9].
To avoid any side-channel information, this fixed time must be long enough to
accommodate any possible length of computation. Askarov et al. [3] suggest an
adaptive approach that ensures that only a small amount of information leaks
while adapting to the execution time of the computation.

As discussed in Sect. 5.1, the Zig-Zag construct iterates, on average, less than
one time per encryption. The worst-case scenario, however, is that it iterates t
times. Padding to the worst-case scenario incurs a significant performance loss.
Yet, failure to pad to the worst-case scenario may result in information leaks.
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To avoid both excessive padding and information leaks, we can pre-compute the
value of the new cipher Ezz on all the points that require zig-zagging. That is,
on the points of the set:

{

DK(FKo(M))|M ∈ T ∧ DK(FKo(M) �∈ T }

Informally, these are the points not in T whose encryptions under E are in
ImFKo

(T ).
Storing the precomputed values takes a space linear in t. However, as the

Zig-Zag construction needs to store T , the pre-computation only increases the
space requirements by a constant factor and, at the same time, guarantees that
the computation of Ezz requires at most a single application of either F or of
E. With the pre-computation, padding can provide an efficient countermeasure
for remote timing attacks.

Padding is not an efficient countermeasure for local side-channel attacks.
Local adversaries can monitor traces that software execution leaves in the cache
or in other microarchitectural components [1,2,15,19]. Constant-time implemen-
tations that perform no secret-dependent branches or memory accesses can pro-
vide protection for ciphers against local side channel attacks [5,19]. However,
such implementations need to access every table element when performing a
table access. Thus, for the Zig-Zag construction, the check whether M ∈ T
would require a time linear in t. Rather than using a constant-time implementa-
tion of the cipher, implementer can rely on hardware or operating system based
measure to provide protection against local side-channel attacks [14,21,24,26].

9 Domain Extension When Adversaries Do Not Know T
In a previous section we demonstrated that we cannot achieve SPRP security
while preserving a subset of the original domain if the adversary knows which
subset is preserved. One can naturally ask, then, if there are weaker adversarial
settings in which SPRP security can be attained. In particular, we may want to
know what the strongest “weaker” adversary is — namely, how much information
can we reveal about T before SPRP becomes provably impossible. In this section
we provide a constructive partial answer to this question by building an SPRP-
secure scheme in the setting where the adversary only knows |T | = t, the size of
the preserved set, but does not know which elements it contains. This weakening
of the adversary is motivated not only by theoretical questions, but by practical
settings in which the attacker, through application logs or other non-sensitive
information, is able to infer the number of ciphertexts in the database before an
extension has occurred.

In terms of security goal, we target SPRP security in a setting where the
adversary knows D but the preserved set is chosen uniformly from the subsets
of size t of the original domain D, and the random coins used to make this
choice are hidden from the adversary. (We leave treating other cases as an open
question).
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Observe that if t > d−n, a random permutation has a nonzero probability of
having fewer than t elements of D mapped into D. When a permutation maps a
point of D back to D, we say that it “domain-preserves” that point. Since one of
our goals for domain extension is to preserve mappings for points in T (which are
domain-preserved mappings) there must be at least t domain-preserved points
in our permutation. To make this more intuitive, consider how few points can
possibly be domain-preserved in any permutation. This occurs when (for d > n)
as many points as possible are mapped from D to N . Since this is a permutation,
only n points can have ciphertexts in N . The rest have to be domain-preserved.
If this happens, n points of D are not domain-preserved, so d − n points are. If
t is indeed greater than this strict lower bound, we are excluding some nonzero
number of possible permutations (i.e., the ones that domain-preserve between
t−1 and d−n points). This will give a distinguishing advantage to an adversary.

The Recursive Zig-Zag. For the case that t ≤ d − n, any permutation on M
domain-preserves at least t elements of D. We will use this fact to construct a Zig-
Zag algorithm that achieves SPRP security for domain extension. Since the key
transformation acts in a recursive fashion on its state, we will call the algorithm
the “Recursive Zig-Zag” (RZZ). The key transformation works by selecting a set
of points that are domain-preserved under the helper cipher and, for each point
τ in T , “swapping” the image of one of these points with the image of τ if τ is
not domain-preserved. This is done so the number of domain-preserved points
in the resulting permutation is unchanged. Points that are swapped are stored
in a lookup table Emap. Below, we will prove SPRP security of the RZZ and
demonstrate that the expected amortized cost of the KT rzz is constant for each
point of T .

To motivate the RZZ, it may be useful to give a concrete example of why
the previous Zig-Zag construction cannot be SPRP-secure for domain extension
when only t is known. Take d = 99, t = 98 and n = 1. In this case, Zig Zag will
have a 50% probability that the newly added element maps to itself. However, the
probability of that happening in a random permutation is 1%. The main cause
of the problem is that standard Zig-Zag may change the size of the domain-
preserved set. In KT rzz we guarantee that does not happen.

The construction. Figure 9 shows the encryption and decryption algorithms.
They consult the lookup table Emap for the existence of the value, returning
it if found. Otherwise they return the value of the helper cipher E. The new
key K = 〈Emap,K〉 output by KT rzz contains the lookup table Emap which

Erzz
Emap,K(M):

if ( Emap[M ] �=⊥ ):

return Emap[M ]

else

return EK(M)

Drzz
Emap,K

(M):

if ( Emap
−1

[M ] �=⊥ ):

return Emap
−1

[M ]

else

return E
−1
K

(M)

Fig. 9. Recursive Zig-Zag encryption and decryption algorithms
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KT rzz(Ko, T )

K ←$ K
for i from 0 to t:

τold ← Erzz
Emap,K(τi)

if ( τold = FKo (τi)) :

// Case 1: Do nothing

if ( τold ∈ D) :

// Case 2: set mapping for preimage of FKo (τi))

τm ← Drzz
Emap,K(FKo (τi))

Emap[τm] ← τold
else:

// Case 3: chose a pi and swap through it

τm ← Drzz
Emap,K(FKo (τi))

//Select a random pi

//that is domain-preserved under Erzz
Emap,K

do:

pi ←$ D \ {τ1, . . . , τi−1}
pold
i ← Erzz

Emap,K(pi)

while (pold
i ∈ N )

Emap[pi] ← τold
Emap[τm] ← pold

i

endif

// Always record τi
Emap[τi] ← FKo (τi)

endfor

return (Emap, K)

Fig. 10. The Recursive Zig-Zag key transformation. The original cipher is F . The
helper cipher is E.

is pre-calculated by the key transformation algorithm in Fig. 10. We use the
notation Emap[x] to refer to the mapping of the element x under Emap. The
notation Emap−1[y] returns the value X such that Emap[X] = y. If Emap does
not provide a mapping for x, the value of Emap[x] is ⊥. If there is no point
mapped to y in Emap, Emap−1[y] will likewise output ⊥.

The KT rzz algorithm. The key transformation algorithm records all the values
modified during the t iterations. At the start of the ith iteration of KT rzz, Emap
contains the values changed in all previous iterations. We begin the iteration by
computing τold ← Erzz

Emap,K
(τi) where Erzz

Emap,K
is computed as in Fig. 9. There

are then three cases. We will explain each in turn, referring to the case numbers
given in Fig. 10.

Case 1 (τold = FKo(τi))): This occurs if Erzz already contains the correct map-
ping for τi. That would happen if the helper cipher EK maps τi to FKo(τi).
We simply update Emap and continue.

Case 2 (τold ∈ D)): This occurs if Erzz domain-preserves τi. Here we do not
need to worry about biasing the number of domain-preserved points by pre-
serving τi’s mapping to FKo(τi) because both FKo(τi) and τold are in D. In
this case we can do a zig-zag as above, assigning τold to the decryption of
FKo(τi) under Drzz and τi to FKo(τi), as desired.
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Case 3 (τold ∈ N )): This occurs if Erzz does not domain-preserve τi. This
is the case that requires special handling, since if we patch Erzz to map
τi to FKo(τi) we may increase the number of domain-preserved points of
Erzz and give a distinguishing advantage to an adversary. We use rejection
sampling on points of D \ {τ1, . . . , τi−1} to find a point not in T that is
domain-preserved under Erzz. Such a point is guaranteed to exist by our
assumption that t ≤ d − n. When we find such a point pi, we record it with
its new image τold in Emap. Finally, we assign its old image under Erzz, poldi ,
to be the image of Drzz

Emap,K
(FKo(τi)) to preserve permutivity. Once we select

pi it cannot be selected in a subsequent iteration, since it will no longer be
domain-preserved under Erzz.

Note that we do not need special handling of the case that on the ith iteration
of KT rzz we assign Erzz

Emap,K
(τi) = τj for some j > i. We will change the value

of Erzz
Emap,K

(τj) on the ith iteration, but we will fix it in the jth iteration.
The number of points changed in each of the t transformations is at most 3.

Consequently, the number of points we need to pre-calculate is at most 3t and
with the result of precalculation we need to encode at most 6t values—6 times
as much as we need to encode to remember T .

9.1 Security of the Construction

To analyze the construction, we will assume tables for the adjusted points have
not been created, for ease of exposition. To begin, let E : M → M be a uni-
formly random permutation. For a preserved domain set T = {τ1, . . . , τt} and a
uniformly random permutation F : D → D we construct a sequence of permu-
tations R0, . . . ,Rt, such that R0 = E, Ri(τj) = F (τj) for all 1 ≤ j ≤ i ≤ t.
Each Ri corresponds to the lookup table Emap for Erzz after the ith iteration
of KT rzz. Note that we will abuse the notation slightly below, since if E and F
are random permutations there will be no keys generated in KT rzz; we refer to
the straightforward modification of KT rzz with random permutations.

We will now state the theorems showing Rt, the cipher Erzz
Emap,K

obtained
after the t iterations of KT rzz, is an SPRP. We defer their proofs to the full
version. First, we state the information-theoretic step. Intuitively, this theorem
shows that if E and F are uniformly random permutations, the permutation
Erzz

Emap resulting from constructing Emap from F and E as in KT rzz is also
uniformly random.

Theorem 10. Let T be a randomly-chosen subset of D, |T | = t, and t ≤ d −
n. Let Rt be a random variable denoting the permutation over M induced by
the RZZ algorithm after all t iterations of KT rzz, instantiated with E and F
as uniformly random permutations over M and D, respectively. For any fixed
permutation Π on M,

Pr [Rt = Π ] =
1
m!
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To complete the proof that Erzz
Emap,K

is an SPRP, we need to transition to
the computational setting. Our current proof establishing this uses a reduction
that requires exponential time in the worst case, but is efficient in expectation.
This is due to the rejection sampling in case 3 of KT rzz, which can take as many
as n queries in the worst case but this happens with small probability.

Theorem 11. Assume that E and F are ciphers on domains M and D, respec-
tively. Let t be a non-zero number, and let T be a random size t subset D. Let A
be an SPRP adversary against Erzz

Emap,K
making at most q queries to its oracles.

Then the proof gives an adversary B and an adversary C such that

Advsprp
Erzz

Emap,K

(A(t)) ≤ Advsprp
F (B) + Advsprp

E
(C)

Adversary B makes at most q queries and runs in time that of A plus a negligible
overhead. Adversary C runs in expected time c(q +8t) for a small constant c and
and makes q + 8t queries in expectation.

9.2 Efficiency of Recursive Zig-Zag’s KT

Now that we know our construction meets the desired security, we turn to ana-
lyzing the efficiency of the key transformation KT . Examining the algorithm,
we can see that with the exception of the random selection of pi, the algorithm
requires O(1) steps for each iteration, or a time linear in t for the whole calcula-
tion. Selecting the pi’s is, however, a bit more involved. As described above, the
pi’s are randomly-selected domain-preserved points in D \ {τ1, . . . , τi−1}.

One way of selecting a pi is to keep picking random points in D\{τ1, . . . , τi−1}
until a domain-preserved point is found. For a small i, there are many points
in D \ {τ1, . . . , τi−1} and we expect to find an acceptable pi within very few
tries. However, as i approaches d − n, for some permutations, the number of
domain-preserved elements in D \ {τ1, . . . , τi−1} may be very small, requiring a
large number of tries.

The next theorem shows that we can limit the number of points we need to
encrypt in order to generate the pi’s. More specifically, we show that with a high
probability, the number of encryptions required for finding the pi’s is linear in
t, with a reasonably small factor. Hence, the expected amortized cost of finding
each of the pi is constant.

Theorem 12. Let X be a random variable (over the probability space defined by
the keys of F and E and the random choices of the pi values) whose value is the
number of encryptions required to select all the pi values in the t transformations
of KT . Let d = |D|. Then Pr [X > 8t ] ≤ e−d/8.

Proof. If t > d/8, where d is the size of the original domain D, we can enumerate
S0 by calculating R(x) for every x ∈ D. This requires d < 8t encryptions.
Once enumerated, we can calculate Si during the generation of the extended
permutation without requiring any further encryptions.
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For smaller t we look at s′ = d − s as a random variable with a hypergeo-
metric distribution whose mean is E[s′] = d−d2/(d+n) < d/2. Hypergeometric
distributions are concentrated around the mean. Hence, by Lemma 1, we have

Pr [ d/4 > s ] = Pr [ d/2 + d/4 < s′ ] < Pr [E[s′] + d/4 < s′ ] < e−d/8

Thus, with a high probability, at the ith step in the construction we have a choice
of at least s − i ≥ d/4 − t ≥ d/8 elements of D as candidates for pi. We can,
now, repeatedly pick a random pi ∈ D and check whether pi ∈ Si. Each such try
requires one encryption. Because s− i ≥ d/8 the expected number of encryption
required is less than 8. Thus, with a high probability, the expected number of
encryption required to select the pi’s is less than 8t.

Acknowledgments. The authors thank Terence Spies for suggesting this problem
to them, and for discussions about how it impacts industry practice. The authors
also thank the anonymous reviewer whose observations led to Sect. 4, and for his or her
permission to include it. This work was supported in part by NSF grants CNS-1514163,
CNS-1330308, and CNS-1558500 as well as a generous gift by Microsoft.

References
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Abstract. In this work we separate private-key semantic security from
1-circular security for bit encryption using the Learning with Error
assumption. Prior works used the less standard assumptions of multilin-
ear maps or indistinguishability obfuscation. To achieve our results we
develop new techniques for obliviously evaluating branching programs.

1 Introduction

Over the past several years the cryptographic community has given considerable
attention to the notion of key-dependent message security. In key dependent
security we consider an attacker that gains access to ciphertexts that encrypt
certain functions of the secret key(s) of the user(s). Ideally, a system should
remain semantically secure even in the presence of this additional information.

One of the most prominent problems in key dependent message security is
the case of circular security. A circular secure system considers security in the
presence of key cycles. A key cycle of k users consists of k encryptions where the
i-th ciphertext cti is an encryption of the i+1 user’s secret key under user i’s
public key. That is ct1 = Encrypt(PK1,SK2), ct2 = Encrypt(PK2,SK3) . . . , ctk =
Encrypt(PKk,SK1). If a system is k circular secure, then such a cycle should be
indistinguishable from an encryption of k arbitrary messages. The notion also
applies to secret key encryption systems.

One reason that circular security has received significant attention is that the
problem has arisen in multiple applications [2,16,27], the most notable is that
Gentry [22] showed how a circular secure leveled homomorphic encryption can be
bootstrapped to homomorphic encryption that works for circuits of unbounded
depth. Stemming from this motivation there have been several positive results
[4–6,8,11,13,14,29] that have achieved circular and more general notations of
key dependent messages security from a variety of cryptographic assumptions.

On the flip side several works have sought to discover if there exist separations
between IND-CPA security and different forms of circular security. That is they
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sought to develop a system that was not circular secure, but remained IND-
CPA secure. For the case of 1-circular security achieving such a separation is
trivial. The (secret key) encryption system simply tests if the message to be
encrypted is equal to the secret key SK, if so it gives the message in the clear;
otherwise it encrypts as normal. (This example can be easily extended to public
key encryption.) Clearly, such a system is not circular secure and it is easy to
show it maintains IND-CPA security. More work is required, however, to achieve
separations of length greater than one. Separations were first shown for the case
of k = 2 length cycles using groups with bilinear maps [1,17] and later [10] under
the Learning with Errors assumption [34]. Subsequently, there existed works that
achieved separations for arbitrary length cycles [25,28], however, these required
the use obfuscation. All current candidates of general obfuscation schemes rely
on the relatively new primitive of multilinear maps, where many such multilinear
map candidates have suffered from cryptanalysis attacks [18,19]. Most recently
and Alamati and Peikert [3] and Koppula and Waters [26] showed separations
of arbitrary length cycles from the much more standard Learning with Errors
assumption.

Another challenging direction in achieving separations for circular security
is to consider encryptions systems where the message consist of a single bit.
Separating from IND-CPA is difficult even in the case of cycles of length 1 (i.e.
someone encrypts their own secret key). Consider a bit encryption system with
keys of length � = �(λ). Suppose an attacker receives an encryption of the secret
key in the form of � successive bit by bit encryptions. Can this be detected?

We observe that encrypting bit by bit seems to make detection harder. Our
trivial counterexample from above no longer applies since the single bit message
cannot be compared to the much longer key. The first work to consider such
a separation was due to Rothblum [35] who showed that a separation could
be achieved from multilinear maps under certain assumptions. One important
caveat, however, to his result was that the level of multilinearlity must be greater
than log(q) where q is the group order. This restriction appears to be at odds
with current multilinear map/encoding candidates which are based off of “noisy
cryptography” and naturally require a bigger modulus whose log is greater than
the number of multiplications allowed. Later, Koppula, Ramchen and Waters [25]
showed how to achieve a separation from bit encryption using indistinguishability
obfuscation. Again, such a tool is not known from standard assumptions.

In this work we aim to separate semantic security from 1-circular security
for bit encryption systems under the Learning with Errors assumption. Our
motivation to study this problem is two fold. First, achieving such a separation
under a standard assumption will significantly increase our confidence compared
to obfuscation or multilinear map-based results. Second, studying such a problem
presents the opportunity for developing new techniques in the general area of
computing on encrypted data and may lead to other results down the line.

To begin with, we wish to highlight some challenges presented by bit encryp-
tion systems that were not addressed in prior work. First, the recent results of
[3,26] both use a form of telescoping cancellation where the encryption algorithm
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takes in a message and uses this as a ‘lattice trapdoor’ [24,30]; if the message con-
tained the needed secret key then it cancels out the public key of an “adjacent”
ciphertext. We observe that such techniques require an encryption algorithm
that receives the entire secret key at once, and there is no clear path to leverage
this in the case where an encryption algorithm receives just a single bit mes-
sage. Second, while the level restriction in Rothblum’s result [35] appeared in
the context of multilinear maps, the fundamental issue will transcend to our
Learning with Errors solution. Looking ahead we will need to perform a com-
putation where the number of multiplication steps is restricted to be less than
log(q), where here q is the modulus we work in.

1.1 Separations from Learning with Errors

We will now describe our bit encryption scheme that is semantically secure but
not circular secure. Like previous works [3,10,26], we will take decryption out of
the picture, and focus on building an IND-CPA secure encryption scheme where
one can distinguish between an encryption of the secret key and encryptions of
zeroes.

The two primary ingredients of our construction are low-depth pseudoran-
dom functions (PRFs) and lattice trapdoors. In particular, we require a PRF
which can be represented using a permutation branching program of polyno-
mial length and polynomial width.1 Banerjee, Peikert and Rosen [7] showed
how to construct LWE based PRFs that can be represented using NC1 circuits,
and using Barrington’s theorem [9], we get PRFs that can be represented using
branching programs of polynomial length and width 5.

Next, let us recall the notion of lattice trapdoors. A lattice trapdoor gener-
ation algorithm outputs a matrix A together with a trapdoor TA. The matrix
looks uniformly random, while the trapdoor can be used to compute, for any
matrix U, a low norm matrix S = A−1(U) such that A · S = U.2 As a result,
the matrix S can be used to ‘transform’ the matrix A to another matrix U.
In this work, we will be interested in oblivious sequence transformation: we
want a sequence of matrices B1, . . . ,Bw such that for any sequence of matri-
ces U1, . . . ,Uw, we can compute a low norm matrix S such that Bi · S = Ui.
Note that the same matrix S should be able to transform any Bi to Ui; that is,
S is oblivious of i. This obliviousness property will be important for our solu-
tion, and together with the telescoping products/cascading cancellations idea of
[3,23,26], we get our counterexample.
1 Recall, a permutation branching program of length L and width w has w states at

each level, an accepting and rejecting state at the top level. Each level j ≤ L has two
permutations σj,0 and σj,1 associated, and there is an input-selector function which
determines the input read at each level. The program execution starts at state 1 of
level 0. Suppose, at level j, the state is st ∈ [w]. Let b be the input read at level j.
Then, the state at level j+1 is σj,b(st). Proceeding this way, the program terminates
at level L in either the accepting state or rejection state.

2 For simplicity, we use the notation A−1(·) to represent the pre-image S. In the formal
description of our algorithms, we use the pre-image sampling algorithm SamplePre.
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Oblivious Sequence Transformation. We first observe that one can easily obtain
oblivious sequence transformation, given standard lattice trapdoors. Consider
the following matrix B:

B =

⎡

⎢

⎣

B1

...
Bw

⎤

⎥

⎦
.

Let T denote the trapdoor of B (we will refer to T as the ‘joint trapdoor’ of
B1, . . ., Bw). Now, given any sequence U1, . . . ,Uw, we similarly define a new
matrix U which has the Ui stacked together, and set S = B−1(U). Clearly, this
satisfies our oblivious sequence transformation requirement.

Our Encryption Scheme. As mentioned before, we will only focus on the setup,
encryption and testing algorithms. Let PRF be a pseudorandom function family
with keys and inputs of length λ, and output being a single bit. For any input
i, we require that the function PRF(·, i) can be represented using a branching
program of length L and width 5 (we choose 5 for simplicity here; our formal
description works for any polynomial width w). The setup algorithm chooses a
PRF key s. Let nbp be a parameter which represents the number of points at
which the PRF is evaluated, and let ti = PRF(s, i) for i ≤ nbp. Finally, for each
i ≤ nbp, let BP(i) denote the branching program that evaluates PRF(·, i). Each
branching program BP(i) has L levels and 5 possible states at each level. At the
last level, there are only two valid states — acc(i) and rej(i), i.e. the accepting
and rejecting state. For each branching program BP(i) and level j, there are
two state transition functions σ

(i)
j,0, σ

(i)
j,1 that decide the transition between states

depending upon the input bit read. The setup algorithm also chooses, for each
branching program BP(i), level j ≤ L and state k ≤ 5, a matrix B(i)

j,k. At all

levels j �= L, the matrices B(i)
j,1, . . . ,B

(i)
j,5 have a joint trapdoor. At the top level,

the matrices satisfy the following relation:
∑

i : ti=0

B(i)

L,rej(i) +
∑

i : ti=1

B(i)

L,acc(i) = 0.

The secret key consists of the PRF key s and nbp · L trapdoors T
(i)
j .

The encryption algorithm is designed specifically to distinguish key encryp-
tions from encryptions of zeros. Each ciphertext consists of L sub-ciphertexts,
one for each level, and each sub-ciphertext consists of nbp sub-sub-ciphertexts.
The sub-sub-ciphertext corresponding to BP(i) at level j can be used to trans-
form B(i)

j,k to B(i)

j+1,σ
(i)
j,0(k)

or B(i)

j+1,σ
(i)
j,1(k)

, depending on the bit encrypted. This is

achieved via oblivious sequence transformation. Let b denote the bit encrypted,
and let D be the matrix constructed by stacking {B(i)

j,1, . . . ,B
(i)
j,5} according to

the permutation σ
(i)
j,b. The sub-sub-ciphertext ct(i)j for program BP(i) at level j is

simply (a noisy approximation of) B(i)
j

−1
(D). The ciphertext also includes the

base matrices {B(i)
0 } for each program.
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The testing algorithm is used to distinguish between an encryption of the
secret key and encryptions of zeros. It uses the first |s| = λ ciphertexts, which
are either encryptions of the PRF key s, or encryptions of zeros. Let us consider
the case where the λ ciphertexts are encryptions of s. At a high level, the testing
algorithm combines the ciphertext components appropriately, such that for each
i ≤ nbp, the result is B(i)

L,rej(i) if PRF(s, i) = 0, and B(i)

L,acc(i) otherwise. Once the
testing algorithm gets these matrices, it can sum them to check if it is (close to)
the zero matrix. The testing algorithm essentially mimics the program evalua-
tion on s using the encryption of s. Let us fix a program BP(i), and say it reads
bit positions p1, . . . , pL. At step 1, the program goes from state 1 at level 0 to
state st1 = σ

(i)
1,sp1

at level 1. The test algorithm has B(i)
0,1. It combines this with

the (i, 1) component of the pth
1 ciphertext to get B(i)

1,st1
. Next, the program reads

the bit at position p2 and goes to state st2 at level 2. The test algorithm, accord-
ingly, combines B(i)

1,st1
with the (i, 2) sub-sub-component of the pth

2 ciphertext

to compute B(i)
2,p2

. Proceeding this way, the actual program evaluation reaches

either acc(i) or rej(i), and the test algorithm accordingly reaches either B(i)

L,acc(i)

or B(i)

L,rej(i) .
The solution described above, however, is not IND-CPA secure. To hide the

encrypted bit without affecting the above computation, we will have to add some

noise to each sub-sub-ciphertext. In particular, instead of outputting B(i)
j

−1
(D)

for some matrix D, we will now have B(i)
j

−1
(S · D + noise),3 where S is a low

norm matrix. To prove IND-CPA security, we first switch the top level matrices
to uniformly random matrices. Once we’ve done that, we can use LWE, together
with the properties of lattice trapdoors, to argue that the top level sub-sub-
ciphertexts look like random matrices from a low-norm distribution. As a result,
we don’t need trapdoors for the matrices at level L − 1, and hence, they can be
switched to uniformly random matrices. Using LWE with trapdoor properties,
we can then switch the sub-sub-ciphertexts at level L − 1 to random matri-
ces. Proceeding this way, all sub-sub-ciphertexts can be made random Gaussian
matrices. This concludes our proof.

Separation from Chosen Ciphertext Security. One interesting question is whether
achieving chosen ciphertext security (as opposed to IND-CPA security) makes a
bit encryption system more likely to be resistant to circular security attacks. Here
we show generically that achieving a bit encryption system that is IND-CCA
secure, but not circular secure is no more difficult than our original separation
problem. In particular, we show generically how to combine a IND-CPA secure,
but not circular secure bit encryption with multi-bit CCA secure encryption to
achieve a single bit encryption system that is IND-CPA secure. We note that

3 Strictly speaking, if D consists of 5 components D1, . . . ,D5 stacked together, then

our sub-sub-ciphertext will be B
(i)
j

−1
(D′ +noise) where D′ consists of 5 components

S · Dk for k ≤ 5.
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Rothblum addressed CCA security, but used the more specific assumption of
trapdoor permutations to achieve NIZKs.

Our transformation is fairly simple and follows in a similar manner to how
an analogous theorem in Bishop, Hohenberger and Waters [10].

Relation to GGH15 Graph Based Multilinear Maps. Our counterexample con-
struction bears some similarities to the graph-induced multilinear maps scheme
of Gentry, Gorbunov and Halevi [23]. In a graph induced multilinear maps
scheme, we have an underlying graph G, and encodings of elements are rela-
tive to pairs of connected nodes in in the graphs. Given encodings of s1 and
s2 relative to connected nodes u � v, one can compute an encoding of s1 + s2
relative to u � v. Similarly, given an encoding of s1 relative to u � v and
an encoding of s2 relative to v � w, one can compute an encoding of s1 · s2
relative to u � w. Finally, one is allowed to zero-test corresponding to cer-
tain source-destination pairs. Gentry et al. gave a lattice based construction for
graph-induced encoding scheme, where each vertex u has an associated matrix
Au (together with a trapdoor Tu). The encoding of an element s corresponding
to the edge (u, v) is simply A−1

u (sAv + noise).
At a high level, our construction looks similar to the GGH15 multilinear

maps construction. In particular, while GGH15 uses the cascading cancellations
property to prove correctness, we use it for proving that the testing algorithm
succeeds with high probability. Our security requirements, on the other hand,
are different from that in multilinear maps. However, we believe that the ideas
used in this work can be used to prove security of GGH15 mmaps for special
graphs/secret distributions (note that GGH15 gave a candidate multilinear maps
construction, and it did not have a proof of security for general graphs).

Summary and Conclusions. To summarise, we show how to perform computation
using an outside primitive by means of our oblivious sequence transformation
approach. This allows us to show a separation between private-key semantic secu-
rity and circular security for bit encryption schemes. While such counterexamples
are contrived and do not give much insight into the circular security of existing
schemes, we see this as a primitive of its own. The tools/techniques used for
developing such counterexamples might have other applications. In particular,
these counterexamples share certain features with more advanced cryptographic
primitives such as witness encryption and code obfuscation.

2 Preliminaries

Notations. We will use lowercase bold letters for vectors (e.g. v) and uppercase
bold letters for matrices (e.g. A). For any finite set S, x ← S denotes a uniformly
random element x from the set S. Similarly, for any distribution D, x ← D
denotes an element x drawn from distribution D. The distribution Dn is used to
represent a distribution over vectors of n components, where each component is
drawn independently from the distribution D.



534 R. Goyal et al.

Min-Entropy and Randomness Extraction. The min-entropy of a random vari-
able X is defined as H∞(X) def= − log2(maxx Pr[X = x]). Let SD(X,Y ) denote
the statistical distance between two random variables X and Y . Below we state
the Leftover Hash Lemma (LHL) from [20,21].

Theorem 1. Let H = {h : X → Y }h∈H be a universal hash family, then for
any random variable W taking values in X, the following holds

SD ((h, h(W )) , (h,UY )) ≤ 1
2

√

2−H∞(W ) · |Y |.

We will use the following corollary, which follows from the Leftover Hash Lemma.

Corollary 1. Let � > m · n log2 q + ω(log n) and q a prime. Let R be an k × m
matrix chosen as per distribution R, where k = k(n) is polynomial in n and
H∞ (R) = �. Let A and B be matrices chosen uniformly in Z

n×k
q and Z

n×m
q ,

respectively. Then the statistical distance between the following distributions is
negligible in n.

{(A,A · R)} ≈s {(A,B)}
Proof. The proof of above corollary follows directly from the Leftover Hash
Lemma. Note that for a prime q the family of hash functions hA : Z

k×m
q → Z

n×m
q

for A ∈ Z
n×k
q defined by hA(X) = A · X is universal. Therefore, if R has suffi-

cient min-entropy, i.e. � > m ·n log2 q +ω(log n), then the Leftover Hash Lemma
states that statistical distance between the distributions (A,A · R) and (A,B)
is at most 2−ω(log n) which is negligible in n as desired.

2.1 Lattice Preliminaries

This section closely follows [26].
Given positive integers n,m, q and a matrix A ∈ Z

n×m
q , we let Λ⊥

q (A) denote
the lattice {x ∈ Z

m : A · x = 0 mod q}. For u ∈ Z
n
q , we let Λu

q (A) denote the
coset {x ∈ Z

m : A · x = u mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distrib-
ution Dσ with parameter σ is defined by the probability distribution function
ρσ(x) = exp(−π · ||x||2/σ2). For any set L ⊂ Rm, define ρσ(L) =

∑

x∈L ρσ(x).
The discrete Gaussian distribution DL,σ over L with parameter σ is defined by
the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.

The following lemma (Lemma 4.4 of [24,31]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Z
n×m
q

be a matrix of dimensions n × m, σ = Ω̃(n) and L = Λ⊥
q (A). Then

Pr[||x|| >
√

m · σ : x ← DL,σ] ≤ negl(n).
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Learning with Errors (LWE). The Learning with Errors (LWE) problem was
introduced by Regev [34]. The LWE problem has four parameters: the dimen-
sion of the lattice n, the number of samples m, the modulus q and the error
distribution χ(n).

Assumption 1 (Learning with Errors). Let n, m and q be positive inte-
gers and χ a noise distribution on Z. The Learning with Errors assumption
(n,m, q, χ)-LWE, parameterized by n,m, q, χ, states that the following distribu-
tions are computationally indistinguishable:

{

(A, s� · A + e) :
A ← Z

n×m
q ,

s ← Z
n
q , e ← χm

}

≈c

{

(A,u) :
A ← Z

n×m
q ,

u ← Z
m
q

}

Under a quantum reduction, Regev [34] showed that for certain noise distri-
butions, LWE is as hard as worst case lattice problems such as the decisional
approximate shortest vector problem (GapSVP) and approximate shortest inde-
pendent vectors problem (SIVP). The following theorem statement is from Peik-
ert’s survey [33].

Theorem 2 ([34]). For any m ≤ poly(n), any q ≤ 2poly(n), and any discretized
Gaussian error distribution χ of parameter α·q ≥ 2·√n, solving (n,m, q, χ)-LWE
is as hard as quantumly solving GapSVPγ and SIVPγ on arbitrary n-dimensional
lattices, for some γ = Õ(n/α).

Later works [15,32] showed classical reductions from LWE to GapSVPγ . Given
the current state of art in lattice algorithms, GapSVPγ and SIVPγ are believed
to be hard for γ = Õ(2nε

), and therefore (n,m, q, χ)-LWE is believed to be hard
for Gaussian error distributions χ with parameter 2−nε · q · poly(n).

LWE with Short Secrets. In this work, we will be using a variant of the LWE
problem called LWE with Short Secrets. In this variant, introduced by Apple-
baum et al. [6], the secret vector is also chosen from the noise distribution χ.
They showed that this variant is as hard as LWE for sufficiently large number of
samples m.

Assumption 2 (LWE with Short Secrets). Let n, m and q be positive inte-
gers and χ a noise distribution on Z. The LWE with Short Secrets assumption
(n,m, q, χ)-LWE-ss, parameterized by n,m, q, χ, states that the following distrib-
utions are computationally indistinguishable4:

{

(A,S · A + E) :
A ← Z

n×m
q ,

S ← χn×n,E ← χn×m

}

≈c

{

(A,U) :
A ← Z

n×m
q ,

U ← Z
n×m
q

}

.

4 Applebaum et al. showed that {(A, s� · A + e) : A ← Z
n×m
q , s ← χn, e ← χm} ≈c

{(A,u) : A ← Z
n×m
q ,u ← Z

m
q }, assuming LWE is hard. However, by a simple

hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.
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Lattices with Trapdoors. Lattices with trapdoors are lattices that are statistically
indistinguishable from randomly chosen lattices, but have certain ‘trapdoors’
that allow efficient solutions to hard lattice problems.

Definition 1. A trapdoor lattice sampler consists of algorithms TrapGen and
SamplePre with the following syntax and properties:

– TrapGen(1n, 1m, q) → (A, TA): The lattice generation algorithm is a random-
ized algorithm that takes as input the matrix dimensions n,m, modulus q, and
outputs a matrix A ∈ Z

n×m
q together with a trapdoor TA.

– SamplePre(A, TA,u, σ) → s: The presampling algorithm takes as input a
matrix A, trapdoor TA, a vector u ∈ Z

n
q and a parameter σ ∈ R (which

determines the length of the output vectors). It outputs a vector s ∈ Z
m
q .

These algorithms must satisfy the following properties:

1. Correct Presampling: For all vectors u, parameters σ, (A, TA) ←
TrapGen(1n, 1m, q), and s ← SamplePre(A, TA,u, σ), A · s = u and ‖s‖∞ ≤√

m · σ.
2. Well Distributedness of Matrix: The following distributions are statistically

indistinguishable:

{A : (A, TA) ← TrapGen(1n, 1m, q)} ≈s {A : A ← Z
n×m
q }.

3. Well Distributedness of Preimage: For all (A, TA) ← TrapGen(1n, 1m, q),
if σ = ω(

√
n · log q · log m), then the following distributions are statistically

indistinguishable:

{s : u ← Z
n
q , s ← SamplePre(A, TA,u, σ)} ≈s DZm,σ.

These properties are satisfied by the gadget-based trapdoor lattice sampler
of [30].

2.2 Branching Programs

Branching programs are a model of computation used to capture space-bounded
computations [9,12]. In this work, we will be using a restricted notion called
permutation branching programs.

Definition 2 (Permutation Branching Program). A permutation branch-
ing program of length L, width w and input space {0, 1}n consists of a sequence
of 2L permutations σi,b : [w] → [w] for 1 ≤ i ≤ L, b ∈ {0, 1}, an input selec-
tion function inp : [L] → [n], an accepting state acc ∈ [w] and a rejection state
rej ∈ [w]. The starting state st0 is set to be 1 without loss of generality. The
branching program evaluation on input x ∈ {0, 1}n proceeds as follows:

– For i = 1 to L,
• Let pos = inp(i) and b = xpos. Compute sti = σi,b(sti−1).

– If stL = acc, output 1. If stL = rej, output 0, else output ⊥.
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In a remarkable result, Barrington [9] showed that any circuit of depth d can
be simulated by a permutation branching program of width 5 and length 4d.

Theorem 3 ([9]). For any boolean circuit C with input space {0, 1}n and depth
d, there exists a permutation branching program BP of width 5 and length 4d such
that for all inputs x ∈ {0, 1}n, C(x) = BP(x).

Looking ahead, the permutation property is crucial for our construction in
Sect. 4. We will also require that the permutation branching program has a fixed
input-selector function inp. In our construction, we will have multiple branching
programs, and all of them must read the same input bit at any level i ≤ L.

Definition 3. A permutation branching program with input space {0, 1}n is said
to have a fixed input-selector inp(·) if for all i ≤ L, inp(i) = i mod n.

Any permutation branching program of length L and input space {0, 1}n can
be easily transformed to a fixed input-selector branching program of length nL.
In this work, we only require that all branching programs share the same input
selector function inp(·). The input selector which satisfies inp(i) = i mod n is
just one possibility, and we stick with it for simplicity.

2.3 Symmetric Key Encryption and Pseudorandom Functions

Symmetric Key Encryption. A symmetric key encryption scheme SKBE with
message space M consists of algorithms Setup, Enc, Dec with the following
syntax.

– Setup(1λ) → sk. The setup algorithm takes as input the security parameter
and outputs secret key sk.

– Enc(sk,m ∈ M) → ct. The encryption algorithm takes as input a secret key
sk and a message m ∈ M. It outputs a ciphertext ct.

– Dec(sk, ct) → y ∈ M. The decryption algorithm takes as input a secret key
sk, ciphertext ct and outputs a message y ∈ M.

A symmetric key encryption scheme must satisfy correctness and IND-CPA
security.

Correctness: For any security parameter λ, message m ∈ M, sk ← Setup(1λ),

Pr[Dec(sk,Enc(sk,m)) �= m] < negl(λ)

where the probability is over the random coins used during encryption and
decryption.

Security: In this work, we will be using the IND-CPA security notion.

Definition 4. Let SKBE = (Setup, Enc, Dec) be a symmetric key encryption
scheme. The scheme is said to be IND-CPA secure if for all security parameters λ,
all PPT adversaries A, Advind-cpaSKBE,A(λ) = |Pr[A wins the IND-CPA game ] − 1/2|
is negligible in λ, where the IND-CPA experiment is defined below:
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– The challenger chooses sk ← Setup(1λ), and bit b ← {0, 1}.
– The adversary queries the challenger for encryptions of polynomially many

messages mi ∈ M, and for each query mi, the challenger sends ciphertext
cti ← Enc(sk,mi) to A.

– The adversary sends two challenge messages m∗
0,m

∗
1 to the challenger. The

challenger sends ct∗ ← Enc(sk,m∗
b) to A.

– Identical to the pre-challenge phase, the adversary makes polynomially many
encryption queries and the challenger responds as before.

– A sends its guess b′ and wins if b = b′.

Pseudorandom Functions. A family of keyed functions PRF = {PRFλ}λ∈N
is

a pseudorandom function family with key space K = {Kλ}λ∈N, domain X =
{Xλ}λ∈N and co-domain Y = {Yλ}λ∈N if function PRFλ : Kλ × Xλ → Yλ

is efficiently computable, and satisfies the pseudorandomness property defined
below.

Definition 5. A pseudorandom function family PRF is secure if for every PPT
adversary A, there exists a negligible function negl(·) such that

∣

∣

∣Pr[APRFλ(s,·)(1λ) = 1] − Pr[AO(·)(1λ) = 1]
∣

∣

∣ < negl(λ),

where O is a random function and the probability is taken over the choice of
seeds s ∈ Kλ and the random coins of the challenger and adversary.

Theorem 4 (PRFs in NC1 [7]). For some σ > 0, suitable universal constant
C > 0, modulus p ≥ 2, any m = poly(n), let χ = DZ,σ and q ≥ p · k(Cσ

√
n)k ·

nω(1), assuming hardness of (n,m, q, χ)-LWE, there exists a function family PRF
consisting of functions from {0, 1}k to Z

m×n
p that satisfies pseudorandomness

property as per Definition 5 and the entire function can be computed in TC0 ⊆
NC1.

From Theorems 3 and 4, the following corollary is immediate.

Corollary 2. Assuming hardness of (n,m, q, χ)-LWE with parameters as in
Theorem 4, there exists a family of branching programs BP = {BPλ}λ∈N with
input space {0, 1}λ×{0, 1}λ of width 5 and length poly(λ) that computes a pseudo-
random function family.

3 Circular Security for Symmetric-Key Bit Encryption
and Framework for Generating Separations

In this section, we define the notion of circular security for symmetric-key bit-
encryption schemes. We also extend the BHW framework [10] to separate IND-
CPA and circular security for bit-encryption in the symmetric-key setting. Infor-
mally, the circular security definition requires that it should be infeasible for any
adversary to distinguish between encryption of the secret key and encryption
of all-zeros string. In the bit-encryption case, each secret key bit is encrypted
separately and independently.
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Definition 6 (1-Circular Security for Bit Encryption). Let SKBE = (Setup,
Enc, Dec) be a symmetric-key bit-encryption scheme. Consider the following
security game:

– The challenger chooses sk ← Setup(1λ) and b ← {0, 1}.
– The adversary is allowed to make following queries polynomially many times:

1. Encryption Query. It queries the challenger for encryption of message
m ∈ {0, 1}.

2. Secret Key Query. It queries the challenger for encryption of ith bit of
the secret key sk.

– The challenger responds as follows:
1. Encryption Query. For each query m, it computes the ciphertext ct ←

Enc(sk,m), and sends ct to the adversary.
2. Secret Key Query. For each query i ≤ |sk|, if b = 0, it sends the

ciphertext ct∗ ← Enc(sk, ski), else it sends ct∗ ← Enc(sk, 0).
– The adversary sends its guess b′ and wins if b = b′.

The scheme SKBE is said to be circular secure if it satisfies semantic secu-
rity (Definition 4), and for all security parameters λ, all PPT adversaries A,
Advbit-circSKBE,A(λ) = |Pr[A wins] − 1/2| is negligible in λ.

Next, we extend the BHW cycle tester framework for bit-encryption schemes.

3.1 Bit-Encryption Cycle Tester Framework

In a recent work, Bishop et al. [10] introduced a generic framework for separat-
ing IND-CPA and circular security. In their cycle tester framework, there are
four algorithms - Setup, KeyGen, Encrypt and Test. The setup, key generation
and encryption algorithms behave same as in any standard encryption scheme.
However, the cycle tester does not contain a decryption algorithm, but provides
a special testing algorithm. Informally, the testing algorithm takes as input a
sequence of ciphertexts, and outputs 1 if the sequence corresponds to an encryp-
tion cycle, else it outputs 0. The security requirement is identical to semantic
security for encryption schemes.

The BHW cycle tester framework is a useful framework for separating IND-
CPA and n-circular security as it allows us to focus on building the core testing
functionality without worrying about providing decryption. The full decryption
capability is derived by generically combining a tester with a normal encryption
scheme. The BHW framework does not directly work for generating circular
security separations for bit-encryption. Below we provide a bit-encryption cycle
tester framework for symmetric-key encryption along the lines of BHW frame-
work.

Definition 7 (Bit-Encryption Cycle Tester). A symmetric-key cycle tester Γ =
(Setup,Enc,Test) for message space {0, 1} and secret key space {0, 1}s is a tuple
of algorithms (where s = s(λ)) specified as follows:
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– Setup(1λ) → sk. The setup algorithm takes as input the security parameter λ,
and outputs a secret key sk ∈ {0, 1}s.

– Enc(sk,m ∈ {0, 1}) → ct. The encryption algorithm takes as input a secret key
sk and a message m ∈ {0, 1}, and outputs a ciphertext ct.

– Test(ct) → {0, 1}. The testing algorithm takes as input a sequence of s cipher-
texts ct = (ct1, . . . , cts), and outputs a bit in {0, 1}.
The algorithms must satisfy the following properties.

1. (Testing Correctness) There exists a polynomial p(·) such that for all secu-
rity parameters λ, the Test algorithm’s advantage in distinguishing sequence
of encryptions of secret key bits from encryptions of zeros, denoted by
Advbit-circSKBE,Test(λ) (Definition 6), is at least 1/p(λ).

2. (IND-CPA security) Let Π = (Setup,Enc, ·) be an encryption scheme with
empty decryption algorithm. The scheme Π must satisfy the IND-CPA secu-
rity definition (Definition 4).

Next, we prove that given a cycle tester, we can transform any semanti-
cally secure bit-encryption scheme to another semantically secure bit-encryption
scheme that is circular insecure.

3.2 Circular Security Separation from Cycle Testers

In this section, we prove the following theorem.

Theorem 5 (Separation from Cycle Testers). If there exists an IND-CPA
secure symmetric-key bit-encryption scheme Π for message space {0, 1} and
secret key space {0, 1}s1 and symmetric-key bit-encryption cycle tester Γ for mes-
sage space {0, 1} and secret key space {0, 1}s2 (where s1 = s1(λ) and s2 = s2(λ)),
then there exists an IND-CPA secure symmetric-key bit-encryption scheme Π ′

for message space {0, 1} and secret key space {0, 1}s1+s2 that is circular insecure.

The proof of the above theorem is provided in the full version of the paper.

4 Private Key Bit-Encryption Cycle Tester

In this section, we present our Bit-Encryption Cycle Tester E = (Setup,Enc,Test)
satisfying Definition 7. Before describing the formal construction, we will give
an outline of our construction and describe intuitively how the cycle testing
algorithm works.

Outline of Our Construction: To begin with, let us first discuss the tools required
for our bit-encryption cycle tester. The central primitive in our construction is a
low depth pseudorandom function family. More specifically, we require a pseudo-
random function PRF : {0, 1}λ × {0, 1}λ → {0, 1} (the first input is the PRF
key, and the second input is the PRF input) such that for all i < 2λ, PRF(·, i)5
5 Here i is represented as a binary string of length λ.
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can be computed using a permutation branching program of polynomial length
and polynomial width. Recall, from Corollary 2, there exist PRF constructions
[7] that satisfy this requirement. Let BP(i) denote a branching program of length
L and width w computing PRF(·, i). Each program BP(i) has an accept state
acc(i) ∈ [w] and a reject state rej(i) ∈ [w]. We will also require that at each level
j ≤ L, all branching programs BP(i) read the same input bit.

The setup algorithm first chooses the LWE parameters: the matrix dimen-
sions n,m, LWE modulus q and noise χ. It also chooses a parameter nbp which
is sufficiently larger than n,m and denotes the number of branching programs.
Next, it chooses a PRF key s. Finally, for each state of each branching program,
it chooses a ‘random looking’ matrix. In particular, it chooses matrices B(i)

j,k for
the state k at level j in BP(i), and all these matrices have certain ‘trapdoors’.
The top level matrices corresponding to the accept/reject state satisfy a spe-
cial constraint: for each branching program BP(i), choose the matrix B(i)

L,acc(i) if

PRF(s, i) = 1, else choose B(i)

L,rej(i) , and these chosen matrices must sum to 0.
The secret key consists of the PRF key s and the matrices, together with their
trapdoors.

Next, we describe the encryption algorithm. The ciphertexts are designed
such that given an encryption of the secret key, we can combine the components
appropriately in order to compute, for each i ≤ nbp, a noisy approximation of
either B(i)

L,acc(i) or B(i)

L,rej(i) depending on PRF(s, i). If PRF(s, i) = 1, then the

output of this combination procedure is B(i)

L,acc(i) , else it is B(i)

L,rej(i) . As a result,
adding these matrices results in the zero matrix. On the other hand, the same
combination procedure with encryptions of zeroes gives us a matrix with large
entries, thereby allowing us to break circular security. Let us now consider a
simple case where we have two branching programs BP(1), BP(2), each of length
L = 4, width w = 3 and reading two bit inputs (see Fig. 1).

Let us consider an encryption of a bit b. Each ciphertext consists of 4 sub-
ciphertexts, one for each level. At each level, each sub-ciphertext consists of 2
sub-sub-ciphertexts, one for each branching program. The sub-sub-ciphertext
ct

(i)
j at level j for program BP(i) has the following ‘propagation’ property: for

any state matrix B(i)
j−1,k corresponding to state k at level j −1 in program BP(i),

B(i)
j−1,k · ct(i)j = B(i)

j,σb(k)
. In our example (see Fig. 1), if

ct =
((

ct
(1)
1 , ct

(2)
1

)

,
(

ct
(1)
2 , ct

(2)
2

)

,
(

ct
(1)
3 , ct

(2)
3

)

,
(

ct
(1)
4 , ct

(2)
4

))

is an encryption of 0, then B(1)
2,3 · ct(1)3 = B(1)

3,1. To achieve this, we use the lattice
trapdoors. Finally, the ciphertext also contains the base level starting matrices
{B(i)

0,1}.
To see how the test algorithm works, let us consider an encryption of the

secret key. Recall, due to the cancellation property of the top level matrices,
all we need is a means to compute B(i)

L,acc(i) if BP(i)(x) = 1, else B(i)

L,rej(i)
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Fig. 1. Branching programs BP(1) and BP(2).

if BP(i)(x) = 0. Let us consider BP(2) in our example, and suppose we have
encryptions ct[1] and ct[2] of bits 0 and 1 respectively. Now, from the propagation
property, it follows that B(2)

0,1 · ct[1](2)1 = B(2)
1,3. Similarly, B(2)

1,3 · ct[2](2)2 = B(2)
2,3.

Continuing this way, we can see that B(2)
0,1 ·ct[1](2)1 ·ct[2](2)2 ·ct[1](2)3 ·ct[2](2)4 = B(2)

4,3.
As a result, we have our desired B2

4,rej(2) . We can add the matrices computed for
each i ≤ nbp, and see if they sum up to the zero matrix.

For proving security under LWE, we need to make some changes. Instead
of having an exact propagation property, we will have an approximate version,
where for any state matrix B(i)

j,k, B(i)
j,k · ct(i)j+1 ≈ Sj+1 · B(i)

j+1,σb(k)
. Here Sj+1 is a

random low norm matrix chosen during encryption, and is common for all sub-
sub-ciphertexts at level j + 1. As a result, given an encryption of the secret key,
at the top level, we either get an approximation of T · B(i)

L,acc(i) or T · B(i)

L,rej(i) .
Since T is a low norm matrix, adding the top-level outputs will be a low norm
matrix if we have an encryption of the secret key.

4.1 Our Construction

Let PRF = {PRFλ}λ∈N be a family of secure pseudorandom functions, where
PRFλ : {0, 1}λ × {0, 1}λ → {0, 1} and for all i ∈ {0, 1}λ, PRFλ(·, i) can be
computed by a fixed-input selector permutation branching program BP(i) of
length L = �-bp(λ) and width w = w-bp(λ), where �-bp(·) and w-bp(·) are fixed
polynomials and
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BP(i) =
(

{

σ
(i)
j,b : [w] → [w]

}

j∈[L],b∈{0,1}
, acc(i) ∈ [w], rej(i) ∈ [w]

)

.

Note that BP(i) are fixed-input selector permutation branching programs, there-
fore they share the same input selector function inp(·) defined as inp(i) = i mod n
(see Definition 3). For simplicity of notation, we will drop the dependence on
security parameter λ when it is clear from the context. Fix any ε < 1/2. Below
we describe our construction.

– Setup(1λ) → sk. The setup algorithm first chooses the following parameters:
matrix dimensions n, m, LWE modulus q, parameter σ for the Gaussian
noise distribution χ and an additional parameter nbp (which denotes the
number of branching programs). Let L = �-bp(λ) and w = w-bp(λ). Let
params = (n,m, q, σ, nbp). The different parameters must satisfy the following
constraints:

• n ≥ λ (for LWE security)
• m = Ω(n · w · log q) (for TrapGen)
• χ = DZ,σ and σ/q ≥ poly(n)/2nε

(for LWE noise/modulus ratio to be
greater than poly(n)/2nε

)
• nbp · L · (m · σ)L

< q/4 (for the correctness of our Test algorithm)
• nbp = Ω (m · n · log q) (for applying Leftover Hash Lemma)

One possible setting of parameters is as follows: set n such that w · L ≤ nε/2,
m = n · w · log q · log n, σ = nc for some constant c, q = 2nε

/nc and nbp =
m · n · log q · log n.
Next, it chooses a random string s ← {0, 1}λ and computes, for i = 1 to nbp,
ti = PRF(s, i).6 It then samples nbp·L matrices of dimensions (w·n)×m along
with their trapdoors (independently) as (B(i)

j , T
(i)
j ) ← TrapGen(1w·n, 1m, q) for

i = 1, . . . , nbp and j = 0, . . . , L − 1.
It also chooses nbp uniformly random matrices B(i)

L of dimensions (w ·n)×m,
such that the following constraint is satisfied

∑

i : ti=0

B(i)

L,rej(i) +
∑

i : ti=1

B(i)

L,acc(i) = 0.

Each matrix B(i)
j ∈ Z

w·n×m
q can be parsed as follows

B(i)
j =

⎡

⎢

⎢

⎣

B(i)
j,1
...

B(i)
j,w

⎤

⎥

⎥

⎦

where matrices B(i)
j,k ∈ Z

n×m
q for k ≤ w. Intuitively, the matrix B(i)

j,k corre-
sponds to state k at level j of branching program BP(i).

The algorithm sets secret key as sk =
(

s,
{

B(i)
j , T

(i)
j

}

i,j
, params

)

.

6 Here, i is represented as a λ bit string.
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– Encrypt(sk,m ∈ {0, 1}) → ct. The encryption algorithm takes as input the

secret key sk and message m, where sk =
(

s,
{

B(i)
j , T

(i)
j

}

i,j
, params

)

. It runs

the sub-encryption algorithm L times (SubEncrypt is defined in Fig. 2) to com-
pute L sub-ciphertexts.

SubEncrypt

Input: Secret key sk = (s, {B(i)
j , T

(i)
j }i≤nbp,j≤L, params), message m ∈

{0, 1}, level level ∈ [L]
Output: Sub-ciphertext ctlevel.

1. Choose matrices S ← χn×n and E(i) ← χw·n×m for i ≤ nbp.
2. Set matrix D(i) as a permutation of the matrix blocks of B

(i)
level

according to the permutation σ
(i)
level,m(·). More formally, for i ≤

nbp, set

D(i) =

⎡
⎢⎢⎢⎢⎣

B
(i)

level,σ
(i)
level,m

(1)

...

B
(i)

level,σ
(i)
level,m

(w)

⎤
⎥⎥⎥⎥⎦

.

3. Set C(i) = (Iw ⊗ S) · D(i) + E(i) for i ≤ nbp.

4. Compute ct(i) ← SamplePre(B
(i)
level−1, T

(i)
level−1, σ,C(i)) for i ≤ nbp.

5. Output ctlevel =
(
ct(1), . . . , ct(nbp)

)
.

Fig. 2. Routine SubEncrypt

For level = 1 to L, it computes the sub-ciphertexts at level level as

ctlevel =
(

ct
(1)
level, . . . , ct

(nbp)
level

)

← SubEncrypt(sk,m, level), ∀ level ∈ {1, . . . , L} .

Finally, it outputs the ciphertext as ct =
(

{

B(i)
0,1

}

i
,
{

ct
(i)
j

}

i,j

)

.

– Test(ct[1], . . . , ct[λ], . . . , ct[|sk|]) → {0, 1}. The testing algorithm takes as input
a sequence of |sk| ciphertexts (ct[1], . . . , ct[λ], . . .). We will assume the algo-
rithm also knows the LWE modulus q. It parses the first λ ciphertexts as

ct[k] =
(

{

B(i)
0,1

}

i
,
{

ct[k](i)j

}

i,j

)

for k ≤ λ. Next, it computes the following

sum =
nbp
∑

i=1

B(i)
0,1 ·

L
∏

j=1

ct[inp(j)](i)j .
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If each component of sum lies in (−q/4, q/4), then the algorithm outputs 1 to
indicate a cycle. Otherwise it outputs 0. We would like to remind the reader
that the starting state st0 of each branching program BP(i) is 1 (assumed
w.l.o.g. in Sect. 2.2), therefore the testing algorithm only requires the matrices
B(i)

0,1 to start oblivious evaluation of each branching program.

4.2 Proof of Correctness

In this section, we will prove correctness of our bit-encryption cycle tester. Con-
cretely, we show that the Test algorithm distinguishes between a sequence of
|sk| ciphertexts where kth ciphertext encrypts kth bit of the secret key, and a
sequence of encryptions of zeros with non-negligible probability. First, we show
that if Test algorithm is given encryptions of secret key bits, then it outputs 1
with all-but-negligible probability. Next, we show that if Test algorithm is run on
encryptions of zeros, then it outputs 0 with all-but-negligible probability. Using
these two facts, correctness of our cycle tester follows.

Testing Encryptions of Key Bits. Let ct = (ct[1], . . . , ct[λ], . . .) be the
sequence of |sk| ciphertexts where kth ciphertext encrypts bit skk, and it can

be parsed as ct[k] =
(

{

B(i)
0,1

}

i
,
{

ct[k](i)j

}

i,j

)

. Recall that the first λ bits of

secret key sk correspond to the PRF key s. Therefore, ct[k] is an encryption of
the bit sk for k ≤ λ. Also, ith branching program BP(i) computes the function
PRFλ(·, i). This could be equivalently stated as

∀ i ≤ nbp, σ
(i)
L,bL

(

· · ·
(

σ
(i)
1,b1

(1)
)

· · ·
)

=

{

rej(i) if PRF(s, i) = 0,
acc(i) if PRF(s, i) = 1

where bj = sinp(j) for j ≤ L. Let st
(i)
j denote the state of the ith branching

program after j steps. The initial state st
(i)
0 is 1 for all programs, and jth state

can be computed as st
(i)
j = σ

(i)
j,sinp(j)

(st(i)j−1).
Note that every ciphertext ct[k] consists of L sub-ciphertexts ct[k]j for each

level j ≤ L, and each sub-ciphertext consists of nbp short matrices, each for
a separate branching program. For constructing each sub-ciphertext, exactly
one short secret matrix Sj is chosen, and it is shared across all nbp branching
programs for generating LWE-type samples. It is crucial for testability that Sj ’s
stay same for all branching programs.

First, we will introduce some notations for this proof.

– S[k]j : matrix chosen at level j for computing ct[k](i)j

– E[k](i)j : error matrix chosen at level j, program i for computing ct[k](i)j

– inpj = inp(j): the input bit read at level j of the branching program

– Sj = S[inpj ]j , E(i)
j = E[inpj ]

(i)
j , CT(i)

j = ct[inpj ]
(i)
j
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– Γj∗ =
∏j∗

j=1 Sj

– Δ(i)
j∗ = B(i)

0,1 ·
(

∏j∗

j=1 CT
(i)
j

)

, ˜Δ
(i)

j∗ = Γj∗ · B(i)

j∗,st
(i)
j∗

, Err(i)j∗ = Δ(i)
j∗ − ˜Δ

(i)

j∗ .

The Test algorithm checks that
∥

∥

∥

∑nbp
i=1 Δ(i)

L

∥

∥

∥

∞
< q/4. Also, note that

nbp
∑

i=1

˜Δ
(i)

L =
nbp
∑

i=1

ΓL · B(i)

L,st
(i)
L

= ΓL ·
nbp
∑

i=1

B(i)

L,st
(i)
L

= 0.

Thus, it would be sufficient to show that, with high probability, Err(i)L =

Δ(i)
L − ˜Δ

(i)

L is bounded. We will show that for all i ≤ nbp, j∗ ≤ L, Err(i)j∗ is
bounded.

Lemma 2. ∀ i ∈ {1, . . . , nbp} , j∗ ∈ {1, . . . , L},
∥

∥

∥Err(i)j∗

∥

∥

∥

∞
≤ j∗ · (m · σ)j∗

with overwhelming probability.

Proof. The above lemma is proven by induction over j∗, and all arguments hold
irrespective of the value of i. Therefore, for simplicity of notation, we will drop
the dependence on i. We will slightly abuse the notation and use B(i)

j,σ
(i)
j,m

to

denote the following matrix.

B(i)

j,σ
(i)
j,m

=

⎡

⎢

⎢

⎢

⎣

B(i)

j,σ
(i)
j,m(1)

...
B(i)

j,σ
(i)
j,m(w)

⎤

⎥

⎥

⎥

⎦

.

Before proceeding to our inductive proof, we would like to note the following
fact.

Fact 1. For all j ≤ L, CT(i)
j ← SamplePre(B(i)

j−1, T
(i)
j−1, σ,C(i)

j ), where C(i)
j =

(Iw ⊗ Sj) · B(i)

j,σ
(i)
j,m

+ E(i)
j and m = sinpj

.

Base case (j∗ = 1). We know that Δ1 = B0,1 · (CT1). Therefore, using Fact 1,
we can say that Δ1 = S1 ·B1,st1 +E1,1 = ˜Δ1 +E1,1. Note that E1,1 is an n×m
submatrix consisting of first n rows of E1. Thus, we could write the following

‖Err1‖∞ =
∥

∥

∥Δ1 − ˜Δ1

∥

∥

∥

∞
= ‖E1,1‖∞ ≤ m · σ.

This completes the proof of base case. For the induction step, we assume that
the above lemma holds for j∗ − 1, and show that it holds for j∗ as well.
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Induction Step. We know that Δj∗ = Δj∗−1 · (CTj∗). Also, Δj∗−1 = ˜Δj∗−1 +
Errj∗−1. So, we could write the following

Δj∗ = ˜Δj∗−1 · CTj∗ + Errj∗−1 · CTj∗

= Γj∗−1 · (Bj∗−1,stj∗−1 · CTj∗
)

+ Errj∗−1 · CTj∗

= Γj∗−1 · (Sj∗ · Bj∗,stj∗ + Ej∗,stj∗−1

)

+ Errj∗−1 · CTj∗

= ˜Δ
(i)

j∗ + Γj∗−1 · Ej∗,stj∗−1 + Errj∗−1 · CTj∗

Here, Ej∗,stj∗−1 is an n × m submatrix of Ej∗ . Finally, we can bound Errj∗

as follows

‖Errj∗‖∞ =
∥

∥

∥Δj∗ − ˜Δj∗

∥

∥

∥

∞
=

∥

∥Γj∗−1 · Ej∗,stj∗−1 + Errj∗−1 · CTj∗
∥

∥

∞
≤ ∥

∥Γj∗−1 · Ej∗,stj∗−1

∥

∥

∞ + ‖Errj∗−1 · CTj∗‖∞

≤ (n · σ)j∗−1 · m · σ + (j∗ − 1) · (m · σ)j∗−1 · m · σ ≤ j∗ · (m · σ)j∗

This completes the proof.

Using Lemma 2, we can claim that for all i ≤ nbp,
∥

∥

∥

∥

Δ(i)
L − ˜Δ

(i)

L

∥

∥

∥

∥

∞
≤ L·(m · σ)L.

Therefore,

‖sum‖∞ =

∥

∥

∥

∥

∥

nbp
∑

i=1

Δ(i)
L

∥

∥

∥

∥

∥

∞
=

∥

∥

∥

∥

∥

nbp
∑

i=1

Δ(i)
L −

nbp
∑

i=1

˜Δ
(i)

L

∥

∥

∥

∥

∥

∞
≤ nbp · L · (m · σ)L

< q/4

Therefore, for our setting of parameters, if ciphertexts encrypt the secret key
bit-by-bit, then Test algorithm outputs 1 with high probability.

Testing Encryptions of Zeros

Lemma 3. If PRF is a family of secure pseudorandom functions and challenge
ciphertexts are encryptions of zeros, then Test outputs 0 with all-but-negligible
probability.

Proof. Since the ciphertexts are encryptions of zeros, each branching program
BP(i) computes the value t′i = PRFλ(0, i). Also, with high probability, t′i and ti
can not be equal for all i ≤ λ as otherwise PRFλ will not be a secure pseudo-
random function. Therefore, with high probability,

s̃um =
nbp
∑

i=1

˜Δ
(i)

L =

⎛

⎝

L
∏

j=1

Sj

⎞

⎠ ·
nbp
∑

i=1

B(i)

L,st
(i)
L

�= 0.

Now,
∑nbp

i=1 B(i)

L,st
(i)
L

will be a uniformly random matrix in Z
n×m
q as t′ �= t and

B(i)

L,st
(i)
L

are randomly chosen for i ≤ nbp. Let S denote the product
∏L

j=1 Sj and
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B denote the sum
∑nbp

i=1 B(i)

L,st
(i)
L

. We can write s̃um as s̃um = S ·B, where B is a

random n × m matrix. Thus, s̃um is a random n × m matrix as S, product of L
full rank matrices, is also full rank. So, with high probability, at least one entry
in matrix sum will have absolute value > q/4 which implies that Test outputs 0.

4.3 IND-CPA Proof

We will now show that the construction described above is IND-CPA secure. The
adversary queries for ciphertexts, and each ciphertext consists of L · nbp sub-
sub-ciphertexts. In our proof, we will gradually switch the sub-sub-ciphertexts to
random low-norm (Gaussian) matrices, starting with the top-level sub-ciphertext
and moving down. Once all sub-ciphertexts are switched to Gaussian matrices,
the adversary has no information about the challenge message.

Our proof proceeds via a sequence of hybrid games. First, we switch the
PRF evaluation to a truly random nbp bit string. Next, we switch the top level
matrices to truly random matrices. This is possible since nbp is much larger
than n,m, and as a result, we can use Leftover Hash Lemma. Once all top level
matrices are truly random, we can make the top-level sub-sub-ciphertexts to
be random low norm (Gaussian) matrices. This follows from the LWE security,
together with the Property 3 of lattice trapdoors. Once the top level sub-sub-
ciphertexts are Gaussian, we do not require the trapdoors at level L − 1. As a
result, we can choose uniformly random matrices at level L−1. This will allow us
to switch the sub-sub-ciphertexts at level L−1 to Gaussian matrices. Proceeding
this way, we can switch all sub-sub-ciphertexts to Gaussian matrices.

We will first define the sequence of hybrid games, and then show that they
are computationally indistinguishable. The first hybrid corresponds to the orig-
inal security game. In the subsequent hybrids, we only show the steps that are
modified.

Sequence of Hybrid Games
Game 0: This corresponds to the original security game.

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = �-bp(λ) and w = w-bp(λ).
2. Next, it chooses a uniformly random string s ← {0, 1}λ and sets ti =

PRF(s, i) for i ≤ nbp.
3. For i = 1 to nbp and j = 0 to L − 1, it chooses (B(i)

j , T
(i)
j ) ←

TrapGen(1w·n, 1m, q).
4. It chooses nbp uniformly random matrices B(i)

L of dimensions w · n × m,
such that the following constraint is satisfied

∑

i : ti=0

B(i)

L,rej(i) +
∑

i : ti=1

B(i)

L,acc(i) = 0.
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5. Finally, the challenger sets sk =
(

s,
{

B(i)
j , T

(i)
j

}

i,j

)

.

– Pre-Challenge Query Phase
1. The adversary requests polynomially many encryption queries. The chal-

lenger responds to each encryption query as follows.
For j = 1 to L, the challenger computes ctj ← SubEncrypt(sk,m, j) and

sends ct =
({

B(i)
0,1

}

i
, (ct1, . . . , ctL)

)

.

– Challenge Phase. The challenger chooses a bit b ← {0, 1}, and computes the
challenge ciphertext identical to any pre-challenge query ciphertext for bit b.

– Post-Challenge Query Phase. This is identical to the pre-challenge query
phase.

– Guess. The adversary finally sends the guess b′, and wins if b = b′.

Game 1: This hybrid experiment is similar to the previous one, except that
the string t = (t1, . . . , tnbp) is a uniformly random nbp bit string. Also, in place
of the PRF key in the secret key, we have an empty string ⊥. Note that this
does not affect the encryption algorithm since it works oblivious to the PRF key
(the PRF key is not used during encryption).

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = �-bp(λ) and w = w-bp(λ).
2. Next, it chooses t ← {0, 1}nbp.
3. For i = 1 to nbp and j = 0 to L − 1, it chooses (B(i)

j , T
(i)
j ) ←

TrapGen(1w·n, 1m, q).
4. It chooses nbp uniformly random matrices B(i)

L of dimensions w · n × m,
such that the following constraint is satisfied

∑

i : ti=0

B(i)

L,rej(i) +
∑

i : ti=1

B(i)

L,acc(i) = 0.

5. Finally, the challenger sets sk =
(

⊥,
{

B(i)
j , T

(i)
j

}

i,j

)

.

Game 2: In this hybrid experiment, the challenger chooses the top-level matrices
B(i)

L uniformly at random.

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = �-bp(λ) and w = w-bp(λ).
2. Next, it chooses t ← {0, 1}nbp.
3. For i = 1 to nbp and j = 0 to L − 1, it chooses (B(i)

j , T
(i)
j ) ←

TrapGen(1w·n, 1m, q).
4. For i = 1 to nbp, it chooses uniformly random matrices B(i)

L ← Z
w·n×m
q

of dimensions w · n × m.



550 R. Goyal et al.

5. Finally, the challenger sets sk =
(

⊥,
{

B(i)
j , T

(i)
j

}

i,j

)

.

Next, we have a sequence of 3L hybrid experiments Game 2.level. {1, 2, 3} for
level = L to 1.
Game 2.level.1: In hybrids Game 2.level.1, the sub-ciphertexts corresponding to
levels greater than level are Gaussian matrices. At level level, the sub-ciphertext
computation does not use SubEncrypt routine. Instead, it chooses a uniformly
random matrix and computes the SamplePre of the uniformly random matrix.
Also, for levels greater than level − 1, matrices B(i)

j are chosen uniformly at
random instead of being sampled using TrapGen.

– Pre-Challenge Query Phase
1. The adversary requests polynomially many encryption queries. The chal-

lenger responds to each encryption query as follows.
2. For j = 1 to level−1, the challenger computes ctj ← SubEncrypt(sk,m, j).
3. For j = level, the challenger chooses uniformly random matrix C(i)

j ←
Z

w·n×m
q and sets ct

(i)
j ← SamplePre(B(i)

j−1, T
(i)
j−1, σ,C(i)

j ). It sets ctj =

(ct(1)j , . . . , ct
(nbp)
j ).

4. For i = 1 to nbp and j = level + 1 to L, the challenger chooses ct
(i)
j ←

χm×m. It sets ctj = (ct(1)j , . . . , ct
(nbp)
j ).

5. Finally, it sets ct =
({

B(i)
0,1

}

i
, (ct1, . . . , ctL)

)

and sends ct to the adver-
sary.

Game 2.level.2: In hybrids Game 2.level.2, the sub-ciphertexts corresponding
to levels greater than level − 1 are Gaussian matrices.

– Pre-Challenge Query Phase
1. The adversary requests polynomially many encryption queries. The chal-

lenger responds to each encryption query as follows.
2. For j = 1 to level− 1, the challenger computes ctj ← SubEncrypt(sk,m, j).
3. For i = 1 to nbp and j = level to L, the challenger chooses ct

(i)
j ← χm×m.

It sets ctj = (ct(1)j , . . . , ct
(nbp)
j ).

4. Finally, it sets ct =
({

B(i)
0,1

}

i
, (ct1, . . . , ctL)

)

and sends ct to the adversary.

Game 2.level.3: In hybrids Game 2.level.3, matrices B(i)
j are chosen uniformly at

random instead of being sampled using TrapGen for levels greater than level− 2.

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = �-bp(λ) and w = w-bp(λ).
2. Next, it chooses t ← {0, 1}nbp.
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3. For i = 1 to nbp and j = 0 to level − 2, it chooses (B(i)
j , T

(i)
j ) ←

TrapGen(1w·n, 1m, q).
4. For i = 1 to nbp and j = level − 1 to L, it chooses uniformly random

B(i)
j ← Z

w·n×m
q of dimensions w · n × m.

5. Finally, the challenger sets sk =
(

⊥,
{

B(i)
j , T

(i)
j

}

i,j

)

.

Indistinguishability of Hybrid Games. We now establish via a sequence of
lemmas that no PPT adversary can distinguish between any two adjacent games
with non-negligible advantage. To conclude, we show that the advantage of any
PPT adversary in the last game is 0.

Let A be a PPT adversary that breaks the security of our construction in the
IND-CPA security game (Definition 4). In Game i, advantage of A is defined as
Advi

A = |Pr[A wins] − 1/2|. We show via a sequence of claims that A’s advan-
tage is distinguishing between any two consecutive games must be negligible,
otherwise there will be a poly-time attack on the security of some underlying
primitive. Finally, in last game, we show that A’s advantage in the last game is 0.

Lemma 4. If PRF is a family of secure pseudorandom functions, then for any
PPT adversary A, |Adv0A−Adv1A| ≤ negl(λ) for some negligible function negl(·).
Proof. We describe a reduction algorithm B which plays the indistinguishability
based game with PRF challenger. B runs the Setup Phase as in Game 0, except
it does not choose a string s ← {0, 1}λ. B makes nbp queries to the PRF chal-
lenger, where in the ith query it sends i to the PRF challenger and sets ti as
the challenger’s response. B performs remaining steps as in Game 0, and sends 1
to the PRF challenger if A guesses the bit correctly, otherwise it sends 0 to the
PRF challenger as its guess.

Note that when PRF challenger honestly evaluates the PRF on each query,
then B exactly simulates the view of Game 0 for A. Otherwise if PRF challenger
behaves as a random function, then B exactly simulates the view of Game 1.
Therefore, if |Adv0A − Adv1A| is non-negligible, then PRF is not secure pseudo-
random function family.

Lemma 5. For any adversary A, |Adv1A − Adv2A| ≤ negl(λ) for some negligible
function negl(·).
Proof. The proof of this lemma follows from Corollary 1 which itself follows from
the Leftover Hash Lemma Theorem 1. Note that the difference between Game 1
and 2 is the way top level matrices B(i)

L are sampled during Setup Phase. In
Game 1, matrix B(nbp)

L,st
(i)
L

is chosen as

B(nbp)

L,st
(nbp)
L

= −
⎛

⎝

∑

i≤nbp−1 : ti=0

B(i)

L,rej(i) +
∑

i≤nbp−1 : ti=1

B(i)

L,acc(i)

⎞

⎠ ,
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where st
(nbp)
L is acc(nbp) if tnbp = 1, and rej(nbp) otherwise. It can be equivalently

written as follows

B(nbp)

L,st
(nbp)
L

= −A·R, A =
[

B(1)

L,rej(1)
||B(1)

L,acc(1)
|| . . . ||B(nbp−1)

L,rej(nbp−1) ||B(nbp−1)

L,acc(nbp−1)

]

where R = u⊗Im ∈ Z
2m(nbp−1)×m
q , u = (u1, . . . , u2nbp−2)� ∈ {0, 1}2nbp−2 and for

all i ≤ nbp−1, u2i = ti and u2i−1 = 1−ti. That is, matrix R consists of 2nbp−2
submatrices where if ti = 1, then its 2ith submatrix is identity and (2i − 1)th

submatrix is zero, otherwise it is the opposite. Let R denote the distribution
of matrix R as described above with t drawn uniformly from {0, 1}nbp. Note
that H∞(R) = nbp − 1 (min-entropy of R), and nbp > m · n log2 q + ω(log n).
Therefore, it follows (from Corollary 1) that

{(

A,B(nbp)

L,st
(nbp)
L

= −A · R
)

: A ← Z
n×2m(nbp−1)
q ,R ← R

}

≈s
{(

A,B(nbp)

L,st
(nbp)
L

)

: A ← Z
n×2m(nbp−1)
q ,B(nbp)

L,st
(nbp)
L

← Z
n×m
q

}

Thus, |Adv1A − Adv2A| is negligible in the security parameter for all PPT adver-
saries A.

Lemma 6. If (n, nbp · w · m, q, χ)-LWE-ss assumption holds (Assumption 2),
then for any PPT adversary A, |Adv2A −Adv2.L.1

A | ≤ negl(λ) for some negligible
function negl(·).
Proof. The difference between Game 2 and 2.L.1 is the way top-level sub-
ciphertexts (ctL) are created for all encryption queries (including challenge
query). Recall that ctL contains nbp short matrices ct(i)L , and each ct

(i)
L is sampled

as ct
(i)
L ← SamplePre(B(i)

L−1, T
(i)
L−1, σ,C(i)

L ). In Game 2, matrix C(i)
L is computed

as C(i)
L = (Iw ⊗ SL) · D(i)

L + E(i)
L , where D(i)

L is a permutation of B(i)
L and E(i)

L

is chosen as E(i)
L ← χw·n×m. On the other hand, in Game 2.L.1, it is chosen as

C(i)
L ← Z

w·n×m
q .

For proving indistinguishability of Game 2 and 2.L.1, we need to sketch q
intermediate hybrids, where q is the total number of queries made by A.7 In kth

hybrid, the challenger proceeds as Game 2.L.1 while answering first k queries,
and proceeds as in Game 2 for answering remaining queries. Indistinguishability
between any two consecutive intermediate hybrids follows directly from LWE-ss
assumption. Below we describe a reduction algorithm B which plays the LWE-ss
indistinguishability game.

First, B receives as LWE-ss challenge two n×(nbp·w·m) matrices (F,G). It parses
F into nbp submatrices of dimensions n × (w · m) as [F(1) || . . . ||F(nbp)] = F.

7 Here q includes the challenge query as well.
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Further, each matrix F(i) is parsed into w matrices of dimensions n × m as
[F(i)

1 || . . . ||F(i)
w ] = F(i). Similarly, it parses G as well. Next, it runs the Setup

phase as in Game 2, except instead of choosing matrices B(i)
L uniformly at ran-

dom, it sets them as B(i)
L,v = F(i)

v for i ≤ nbp and v ≤ w.
B answers the first i−1 queries as in Game 2.L.1. On receiving kth query mk,

it computes L − 1 sub-ciphertexts ctj (j ≤ L − 1) honestly using sub-encrypt
routine.8 For computing sub-ciphertext ctL, it first sets matrices C(i)

L for i ≤ nbp
as follows

C(i)
L =

⎡

⎢

⎢

⎢

⎣

G(i)

σ
(i)
L,mk

(1)

...
G(i)

σ
(i)
L,mk

(w)

⎤

⎥

⎥

⎥

⎦

.

Next, it computes ct
(i)
L ← SamplePre(B(i)

L−1, T
(i)
L−1, σ,C(i)

L ) for i ≤ nbp, and sets
ctL = (ct(1)L , . . . , ct

(nbp)
L ). B answers kth query as ct = (ct1, . . . , ctL). Now, B

answers remaining queries as in Game 2. Finally, A sends b′ as its guess to B. If
b = b′, then B sends 1 to LWE-ss challenger to indicate that G consists of LWE
samples, otherwise it sends 0.

Since, LWE-ss chooses F uniformly at random, therefore B simulates the
distribution of B(i)

L for i ≤ nbp exactly. Next, if G = S ·F+E for some matrices
S ← χn×n and E ← χn×(nbp·w·m), then B simulates the view of Game 2 for A,
otherwise it simulates the view of Game 2.L.1. Therefore, if |Adv2A −Adv2.L.1

A | is
non-negligible, then LWE-ss assumption does not hold.

Lemma 7. If the preimage well-distributedness property of lattice trapdoor
sampler (TrapGen,SamplePre) holds (Definition 1), then for every adversary A,
for any level level ∈ [L], |Adv2.level.1

A − Adv2.level.2
A | ≤ negl(λ) for some negligible

function negl(·).
Proof. To prove indistinguishability of Game 2.level.1 and 2.level.2, we need to
sketch q intermediate hybrids as in Lemma 6. In kth intermediate hybrid, the
challenger proceeds as Game 2.level.2 while answering first k queries, and pro-
ceeds as in Game 2.level.1 for answering remaining queries. Indistinguishability
between any two consecutive intermediate hybrids follows from preimage well-
distributedness property of lattice trapdoor sampler.

Observe that in (k − 1)th intermediate hybrid, ct
(i)
level is chosen as ct

(i)
level ←

SamplePre(B(i)
level−1, T

(i)
level−1, σ,C(i)

level) for i ≤ nbp, where C(i)
level ← Z

w·n×m
q . On

the other hand, in kth intermediate hybrid, they are chosen as ct
(i)
level ← χm×m

for i ≤ nbp. By a simple hybrid argument, we canrestate the preimage

8 If kth query is the challenge query, then mk = b. In other words, mk will be the
random challenge bit.
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well-distributedness property for matrices instead of vectors such that for all
i ≤ nbp, the following holds

{

ct
(i)
level :

(B(i)
level−1, T

(i)
level−1) ← TrapGen(1w·n, 1m, q), C(i)

level ← Z
w·n×m
q ,

ct
(i)
level ← SamplePre(B(i)

level−1, T
(i)
level−1, σ,C(i)

level)

}

≈s
{

ct
(i)
level : ct

(i)
level ← χw·n×m

}

.

Thus, by a hybrid argument over i, we can switch the nbp short matrices in
sub-ciphertext ctlevel from being sampled using SamplePre to Gaussian matri-
ces. Therefore, intermediate hybrid k − 1 and k are statistically indistinguish-
able. Hence, using nbp intermediate hybrids between Game 2.level.1 and 2.level.2,
we can switch level level sub-ciphertexts to low-norm Gaussian matrices for all
queries such that if preimage well-distributedness property of lattice trapdoor
sampler holds, then Game 2.level.1 and 2.level.2 are statistically indistinguishable
for all level ≤ L.

Lemma 8. If the matrix well-distributedness property of lattice trapdoor sam-
pler (TrapGen,SamplePre) holds (Definition 1), then for every adversary A, for
any level level ∈ [L], |Adv2.level.2

A −Adv2.level.3
A | ≤ negl(λ) for some negligible func-

tion negl(·).
Proof. The proof of this lemma follows directly from the matrix well-
distributedness property of lattice trapdoor sampler. First, note that in both
Games 2.level.2 and 2.level.3 sub-ciphertexts at level level (for all queries) con-
sist of nbp random low-norm Gaussian matrices. Thus, the challenger does not
need to know the trapdoor of matrices at level (level−1), that is matrices B(i)

level−1

for all i ≤ nbp can be sampled without trapdoor. The matrix well-distributedness
property states that for all i ≤ nbp

{B(i)
level−1 : (B(i)

level−1, T
(i)
level−1) ← TrapGen(1w·n, 1m, q)}

≈s

{B(i)
level−1 : B(i)

level−1 ← Z
w·n×m
q }.

Therefore, by a simple hybrid argument over i, we can move from Game 2.level.2
to 2.level.3 using matrix well-distributedness property of lattice trapdoor sampler
with only negligible drop in the advantage.

Lemma 9. If (n, nbp · w · m, q, χ)-LWE-ss assumption holds (Assumption 2),
then for any PPT adversary A, for any level level ∈ [L − 1], |Adv2.(level+1).3

A −
Adv2.level.1

A | ≤ negl(λ) for some negligible function negl(·).
Proof. The proof of this lemma is similar to that of Lemma 6.

Lemma 10. For any PPT adversary A, Adv2.1.3
A = 0.
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Proof. The proof of this lemma follows from the fact that in Game 2.1.3, each
ciphertext contains nbpL random low-norm Gaussian matrices irrespective of the
message bit being encrypted. Therefore, the distribution of ciphertexts when 0 is
encrypted is identical to the distribution of ciphertexts when 1 is encrypted, thus
they do not contain any information about the encrypted message bit. Hence,
the advantage of any adversary is this game is exactly 0.
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Abstract. We address the problems of whether t-circular-secure encryp-
tion can be based on (t − 1)-circular-secure encryption or on semantic
(CPA) security, if t = 1. While for t = 1 a folklore construction, based on
CPA-secure encryption, can be used to build a 1-circular-secure encryp-
tion with the same secret-key and message space, no such constructions
are known for the bit-encryption case, which is of particular importance
in fully-homomorphic encryption. Also, all constructions of t-circular
encryption (bitwise or otherwise) are based on specific assumptions.

We make progress toward these problems by ruling out all fully-
blackbox constructions of
– 1-seed-circular-secure bit encryption from CPA-secure encryption;
– t-seed-circular-secure encryption from (t − 1)-seed-circular secure

encryption, for any t > 1.
Informally, seed-circular security is a variant of the circular security
notion in which the seed of the key-generation algorithm, instead of the
secret key, is encrypted. We also show how to extend our first result to
rule out a large and non-trivial class of constructions of 1-circular-secure
bit encryption, which we dub key-isolating constructions. Our separations
follow the model of Gertner, Malkin and Reingold (FOCS’01), which is
a weaker separation model than that of Impagliazzo and Rudich.

1 Introduction

A public-key encryption scheme is 1-circular secure if it is CPA secure in the
presence of an encryption of the secret key under its corresponding public key.
A more general notion is that of t-circular security under which CPA security
under t public keys pk0, . . . , pkt−1 should be maintained even when each pki is
used to encrypt the secret key of pk(i+1 mod t). These notions are a special case
of the general notion of key-dependent-message (KDM) security, under which
more general functions of the secret key(s) may be encrypted.
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A primary foundational application of the notion of circular security (for
any t) is in the context of fully homomorphic encryption. Currently, with the
exception of [11], all constructions of pure fully homomorphic encryption go
through a bootstrapping procedure, requiring a circular-security assumption on
a bootstrappable scheme built along the way.

When discussing circular security for an encryption scheme with secret-key
space {0, 1}τ and plaintext space {0, 1}η, an important feature is the relation
between τ and η: we call a scheme full-length if τ = η. It is straightforward
to build a full-length 1-circular-secure scheme from any CPA-secure scheme.1

Informally, this folklore construction is based on the idea that the underlying
plaintext m and public key pk can “communicate” to see if m is pk’s secret key.
Attempts in extending this idea to the t-circular security setting (for t > 1)
have so far met with less success and in fact to date all constructions of t-
circular secure schemes (full-length or otherwise) are based on assumptions with
certain algebraic properties or obfuscation assumptions [3,7,9,30,31,43]. One of
the goals of our work is to explain this state of difficulty.

Unfortunately, the full-length assumption is not the end of the story since in
many applications of circular security, the secret key is indeed encrypted bit-by-
bit or block-by-block, where the size of each block is considerably smaller than
the secret-key size (e.g., [16,42]). In such cases the above folklore construction
(for t = 1) no longer applies: the main difficulty is that since the secret key is no
longer encrypted as a whole, but as short blocks, we cannot perform the simple
check described above. Of particular importance in such settings is the notion
of circular security for single-bit encryption schemes (which we call bit-circular
security), which, beyond FHE applications, is fundamental for the following rea-
son: as shown by Applebaum [2], projection security, a notion slightly extending
bit-circular security by also allowing for encryptions of negated secret-key bits,
is sufficient to obtain KDM security w.r.t. any (a priori fixed) function fam-
ily. Thus, understanding basic forms of KDM security in the bitwise setting is
essential for the general understanding of KDM security.

Toward understanding the notion of circular security, several papers based
on various specific assumptions have given schemes that are CPA secure, but not
t-circular secure (for various values of t), [1,6,12,27]. We remark that although
these works provide evidence that t-circular security of any scheme cannot be
reduced to the CPA security of the same scheme, they do not shed light on the
impossibility of positive constructions.

Finally, we mention that despite the foundational importance of the notion
of bit-circular security, our understanding of what it takes to obtain this notion
(without relying on specific assumptions) is still lacking, and there is little previ-
ous addressing the problem. Haitner and Holenstein [21] rule out fully-blackbox
constructions of KDM-secure encryption w.r.t. quite large function families from

1 Assume, w.l.o.g, the CPA-secure scheme (G, E, D) has plaintext space {0, 1}n and
that G uses an n-bit seed, which is also the outputted secret key. Briefly, the idea
is to modify E so that E(pk, m) will first check whether G(m) produces pk as the
public key, in which case it returns an encryption of an innocuous message.
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trapdoor permutations. Rothblum [39] shows no fully-blackbox reduction can
prove that CPA security of a bit-encryption scheme implies circular security of
the same scheme. We stress that the result of [39] only considers reductions to
and from the same scheme, as opposed to the results of this paper which are
concerned with constructions.

Before moving on, we remind the reader of the simple fact that bit t-circular
security implies full-length t-circular security. Briefly, the state of knowledge
regarding circular security can be summarized as follows:

– Full-length t-circular security based on CPA security: we have a simple con-
struction for t = 1, but no known constructions for t > 1.

– For bit t-circular security: all constructions (for t = 1 or beyond) are based
on specific assumptions [7,9] and there is a preliminary separation for t = 1
from CPA security [39].

In this work we ask the following two questions

(1) Can bit 1-circular security be based on CPA security?
(2) Can full-length t-circular security (for t > 1) be based on CPA security?

1.1 Our Contributions and Discussion

In this paper we make progress toward answering both questions above in the
negative, by considering the stronger notion of seed-circular security. In its sim-
plest form, an encryption scheme is 1-seed-circular secure if it is CPA secure
in the presence of an encrypted version of the seed (of the key-generation algo-
rithm) under its corresponding public key. Similarly, we may define bit/full-
length) t-seed circular security. Note that the assumption of t-seed-circular secu-
rity is indeed at least as strong as that of t-circular security since any scheme
meeting the former can slightly be changed to meet the latter by altering the
key-generation algorithm to return the underlying seed as its secret-key output.
We first describe our main results and then discuss them in detail.

1. We prove there exists no fully blackbox construction (in the sense of [36]) of 1-
seed-circular-secure bit encryption from CPA-secure encryption (Theorem 6.)
We also show that this separation holds so long as the constructed scheme
has plaintext space {0, 1}c log n for any constant c (Sect. 5.6).

2. We prove that full-length (t + 1)-seed-circular security cannot be based in a
fully-blackbox way on bit t-seed circular security, for any t ≥ 1 (Theorem 9).

Our first result already rules out certain types of constructions for 1-circular-
secure encryption, namely those in which seeds and secret keys are the same.
We show how to adapt this result to the setting of circular security, to rule out
a large and non-trivial class of constructions of circular-secure encryption that
we call key-isolating constructions. Due to technicalities involved we refer the
reader to Sect. 7 for this notion. (A similar adaptation may be given for the
second result, but we do not pursue it in this paper.)
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For our second result, choosing the target notion to be full-length (t+1)-seed
circular security (as opposed to bit (t + 1)-seed circular security) and the base
notion to be bit t-seed circular security (as opposed to full-length t-seed-circular
security) only makes our result stronger.

Discussion of results and notions. We first start by discussing the signifi-
cance of the second result. We note that the folklore CPA-security-based con-
struction alluded to earlier indeed results in a full-length 1-seed-circular secure
scheme, since the constructed scheme has the same seed and secret-key space.
This shows that the notion of seed-circular security (at least for the full-length
case) is not so far fetched, reinforcing the significance of the separation result
and providing partial justification for the lack of success in basing full-length
t-circular security, for t > 1, on CPA security. In fact, it suggests that a less
ambitious goal than that of Question (2), namely of basing t-circular security on
(t − 1)-circular security, may still be too much to hope for.

As for the first result, we mention the following fact regarding the notion of
bit 1-seed-circular security. Since one of the main applications of this notion is
in the context of FHE, it is worth mentioning that if E is fully homomorphic
(or homomorphic enough to evaluate G), then if E is 1-seed-circular secure it
is also 1-circular secure, since one can use the homomorphic properties of E to
evaluate G homomorphically, thereby producing an encrypted secret key from
an encrypted seed. (This simple proof is, however, non-blackbox.)

From a practical point of view, the notion of seed circular security for spe-
cific schemes is not very natural since such schemes typically come with public
parameters (e.g., a group), and it is not very meaningful to talk about, say,
encrypting the bits used to generate those parameters. Nevertheless, if public-
parameter generation is thought of as a separate process, many specific schemes
have the property that their secret keys are just the same as their seeds (e.g.,
ElGamal). For example, both circular-secure schemes of [7,9] have the property
that w.r.t. fixed public parameters (which are a group plus l group elements),
their secret keys are just random l-bit-strings, being the same as their seeds.
Thus, as a step toward proving full blackbox impossibility for circular-secure
encryption, it may be worthwhile to formulate a notion of encryption with pub-
lic parameters, and investigate whether our results extend to this case. We have
not, however, carried this out at this moment.

We conclude the discussion with the following observation. Our first result
leaves us with an unexplained gap, namely to what extent the plaintext size
of the constructed scheme could be made bigger before obtaining a positive
(seed-)circular security result? For example, what happens if the construction is
allowed to have plaintexts of ω(log n) bits long? We believe that filling this gap
will further improve our understanding of the notion of 1-(seed-)circular security.

Our separation model. All our separations follow the model of [19]. We discuss
the model for the first result. For any candidate 1-seed-circular-secure construc-
tion E = (G,E,D) we show the existence of two oracles O = (g, e,d) and T such
that (a) there exists a PPT oracle adversary AO,T that breaks the (supposed)
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seed-circular security of EO and (b) no PPT oracle adversary BO,T can break the
CPA security of O. This immediately implies that there exists no fully-blackbox
reduction. As common in separation models we show the existence of O and T
non-constructively by proving results w.r.t. randomly chosen O and T. We give
an overview of our techniques and separation model in Sect. 4.

Most separation results in the literature indeed rule out the existence of
relativizing reductions, e.g., [8,17,25,40,41], which constitute a broader class
of constructions than fully-blackbox ones. We stress that our results do not
rule out relativizing reductions. Nonetheless, we are not aware of any “natural”
cryptographic construction that is relativizing but not fully-blackbox. Finally,
we mention that there exists separation results in the literature that also only
rule out fully-blackbox reductions, e.g., [21,24,28,29].

Blackbox versus non-blackbox techniques. We note that there are non-
blackbox reductions in cryptography, for which a blackbox-counterpart may or
may not (both provably and ostensibly) exist. (Here by non-blackbox we are
referring to the construction, not to the security proof.) We mention [14,26] as
two examples of blackbox constructions that replaced their earlier non-blackbox
counterparts [20,35]. Classical examples of non-blackbox constructions with no
known blackbox counterparts are [15,34], giving non-blackbox constructions of
CCA1- and CCA2-secure encryption from enhanced trapdoor permutations. The
state of our knowledge regarding the blackbox status of CCA-secure encryption
versus other “classical” public-key primitives is arguably limited, and the only
known works are the work of Gertner et al. [18], ruling out sheilding blackbox
constructions of CCA1-secure encryption from CPA-secure encryption, and that
of Myers and shelat [33] proving equivalence of one-bit and many-bit CCA2
secure encryption. Finally, we mention that the work of Mahmoody and Pass
[29] shows the existence of a non-blackbox construction (that of non-interactive
commitment schemes from so called hitting one-way functions) for which prov-
ably no blackbox counterpart exists.

Other related work. The question of what “general” assumptions may be used
to obtain KDM security is addressed in [23], where it is shown that projection-
secure public-key encryption (PKE) can be built from any CPA-secure PKE with
some structural properties. The power of circular-secure encryption is addressed
in [22], where it is shown that in combination with a so-called reproducibil-
ity property, bit circular security implies the existence of powerful primitives
including correlation-secure trapdoor functions [38], CCA2-secure encryption
and deterministic encryption. The body of work on blackbox separations is exten-
sive, some of which were mentioned earlier. We also mention the progress that
has been made in understanding the limitations of some of the common non-
blackbox techniques, e.g., [4,10].

Open Problems. The main open problem is to extend our impossibility results
to the circular-security setting. We explain in Sect. 8 why we were not able to do
this. Another interesting problem is to see to what extent our techniques extend
to obtain separations based on other classical public-key primitives.
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Note on proofs. Due to space constraints, proofs for some results have been
omitted. In all cases, proofs for these results appear in the full version.

2 Preliminaries

If R(x1, . . . , xi; r) is a randomized algorithm using randomness r, by
R(a1, . . . , ai) we mean the random variable obtained by sampling r uniformly
at random and returning R(a1, . . . , ai; r). If D is a distribution x ∈ D means
x ∈ support(D).

The notion of a public-key encryption scheme (PKE) (G,E,D) is standard.
The only convention we make is that the order of keys produced by G is as
a secret/public key pair (as opposed to a public/secret key pair). We refer to
the randomness space of G as the seed space of the scheme. We assume the
decryption algorithm is deterministic, and always decrypts correctly, and refer
to this as the correctness condition. (Our separation results will hold even if the
constructed scheme is allowed to make a small decryption error. However, for
the sake of simplicity we assume the stated condition.) All schemes in this paper
are many-bit or single-bit encryption schemes. If E’s plaintext space is {0, 1}η

by E(PK,M) for M ∈ {0, 1}∗ we mean that M is encrypted in blocks of size η,
augmenting M with enough zero bits to make |M | a multiple of η, if necessary.
In particular, when η = 1, this will denote the bit-by-bit encryption of M .

We shall use lowercase letters (g, e,d) to denote base (i.e., blackbox) schemes
and uppercase letters (G,E,D) to denote constructions.

Oracle convention. Whenever we talk about an oracle adversary/algorithm A
we adopt the following conventions: we say A is efficient (or PPT) if A can be
implemented as a PPT oracle algorithm; we say A is query-efficient if A always
makes at most a poly-number of oracle queries (but unlimited otherwise, and
may run exponential local computations). Whenever we put no restriction on an
adversary it means that it is not restricted in any way.

We define when an adversary breaks the (seed-)circular security of a bit-
encryption scheme. The definition naturally extends to the many-bit case.

Definition 1. Let E = (G,E,D) be a bit PKE with seed space {0, 1}n. Let

InpSeed = (PK1, . . . , PKt, EPK1(S2), . . . , EPKt−1(St), EPKt
(S1))

InpSec = (PK1, . . . , PKt, EPK1(SK2), . . . , EPKt−1(St), EPKt
(SK1))

b ← {0, 1}, C ← EPK1(b),

where Si ← {0, 1}n and (SKi, PKi) = G(Si), for 1 ≤ i ≤ t. Then we say

– A breaks the t-seed-circular security of E if Pr[A(InpSeed, C) = b] is non-
negligibly greater than 1/2.

– A breaks the t-circular security of E if Pr[A(InpSec, C) = b] is non-negligibly
greater than 1/2.

We now define the assumptions underlying our results in this paper.
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Terminology 1. The assumption of “bit t-seed-circular security” refers to the
existence of a t-seed-circular secure single-bit PKE. Also, “full-length t-seed-
circular security” refers to the existence of a t-seed-circular secure PKE with the
same seed and plaintext space. We have the following simple implications: (a)
CPA security ⇒ full-length 1-seed circular security and (b) bit t-seed-circular
security ⇒ full-length t-seed-circular security.

We define a notion of blackbox reductions between encryption primitives.
See [5,36] for more general notions of blackbox reductions.

Definition 2. A fully-blackbox reduction of P -secure (e.g., circular-secure)
encryption to Q-secure (e.g., CPA-secure) encryption consists of two PPT oracle
algorithms (E , Red), satisfying the following: for any PKE O = (g, e,d),

1. EO = (GO, EO,DO) forms a PKE, and
2. for any adversary A breaking the P -security of (GO, EO,DO), the oracle

algorithm RedA,O breaks the Q-security of O.

3 PKE Oracle Distribution

Convention. Whenever we say a function f : D → R with property P (e.g.,
injectivity) is a randomly chosen function we mean f is chosen uniformly at
random from the space of all functions from D to R having property P .

We describe a distribution under which a PKE oracle (with some auxiliary
oracles) is sampled. These oracles will be used to model “ideal” base primitives
in our separations. We largely follow the notational style of [18]. As notation,
if f is a function whose output is a tuple, say a pair, we write f(x) = (∗, y) to
indicate that f(x) = (y′, y), for some y′.

Definition 3. We define an oracle distribution Ψ which produces a PKE oracle
with certain length parameters, plus two auxiliary oracles. Formally, Ψ produces
an ensemble of oracles On = (On,un,wn)n∈N

, where for every n ∈ N, On =
(gn, en,dn) and (un,wn) are chosen as follows.

– gn : {0, 1}n → {0, 1}5n is a random one-to-one function, mapping a secret key
to a public key.

– en : {0, 1}5n × {0, 1} × {0, 1}n → {0, 1}7n is a function, where for every pk ∈
{0, 1}5n, en(pk, ·, ·) is a random one-to-one function.

– dn : {0, 1}n × {0, 1}7n → {0, 1} ∪ {⊥} is defined by letting dn(sk, c) = b if and
only if en(gn(sk), b, r) = c, for some r ∈ {0, 1}n; otherwise, dn(sk, c) = ⊥.

– un : {0, 1}5n × {0, 1}7n → ({0, 1} × {0, 1}n) ∪ {⊥} is defined as un(pk, c) =
(b, r) if en(pk, b, r) = c, and un(pk, c) = ⊥ if for no (b, r) does it hold that
en(pk, b, r) = c. That is, un(pk, c) decrypts c relative to pk, and if successful,
also returns the unique randomness used to produce c. (The oracle u is not
typically allowed to be freely used. See Definition 4.)

– wn : {0, 1}5n → {⊥,�} is defined as wn(pk) = � if for some sk gn(sk) = pk,
and wn(pk) = ⊥, otherwise. That is, wn(pk) checks whether pk is a valid
public key.



568 M. Hajiabadi and B.M. Kapron

Definition 4. In all settings where access to u is granted this access is limited
and is determined based on the underlying challenge inputs. Specifically, we call
Ag,e,d,u,w CCA-valid if Ag,e,d,u,w on input (pk, c) never calls 〈u, (pk, c)〉. This
definition naturally generalizes to the case in which A’s input consists of several
challenge public keys with several challenge ciphertexts for each public key, e.g.,
the t-seed circular security setting.

Omitting the security parameter. We define g(sk) = gn(sk), for every n
and sk ∈ {0, 1}n, and use a similar convention for other functions in Definition 3.
Sometimes when we need to emphasize under what security parameter a query is
made, we put in the sub-index n; in other places we typically omit the sub-index.

Ψ-valid oracles. We call a triple of functions (g, e,d) Ψ -valid if (g, e,d) is
part of a possible output of Ψ , i.e., the domains and ranges of g, e and d are
as specified in Definition 3, and also all the corresponding injectivity conditions
hold. Similarly, we may use the same convention to call, say, g, Ψ -valid.

Notation. For oracles O = (O1, . . . , Om) and an oracle algorithm AO, we let
qry = 〈Oi, q〉 denote an A’s query q to oracle Oi; if u = Oi(q) we use (〈Oi, q〉, u)
to indicate that A calls Oi on q and receives u; we also define O(qry) = u. If Que
is a set of such query/response pairs we use shorthands like (〈Oj , ∗〉, u) ∈ Que
to mean that for some q, (〈Oj , q〉, u) ∈ Que. Thus, (〈Oj , ∗〉, u) /∈ Que indicates
that for no q, we have (〈Oj , q〉, u) ∈ Que.

Symbolic representation of oracle queries. Sometimes we need to talk
about sets containing query/response pairs generated under some oracle, and
later on check them against another oracle. For this reason, we may sometimes
talk about symbolic query/response pairs. For example, the symbolic form of a
concrete query/response pair (〈g, sk〉, pk) is denoted (〈g, sk〉, pk).

4 General Overview of Techniques

We give an overview of our approaches for the two main results: separating bit
1-seed circular security (see Terminology 1) from CPA security and separating
full-length (t + 1)-seed-circular security from bit t-seed-circular security.

4.1 CPA Security �⇒ Bit 1-seed-circular Security

Summary of approach. First, note a random O = (g, e,d), chosen as
(O,u,w) ← Ψ will be “ideally” secure w.r.t. all notions security discussed in
this paper. One idea for proving separations is to add some weakening compo-
nents v to O and show that relative to (O,v) the base primitive exists, but
not the target primitive. We could not make this approach work. Instead, we
follow the model of [19], by defining a weakening oracle T, for every candidate
construction (G,E,D), in such a way that T breaks the claimed security of
(GO, EO,DO), for a random O, but not the base security of O. We emphasize
that T depends on (G,E,D).
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Let E = (G,E,D) be a candidate bit-encryption construction,
(g, e,d,u,w) ← Ψ and O = (g, e,d). Our goal is to give an oracle T s.t.
(I) T is helpful in breaking the (alleged) seed-circular-security of EO and (II)
T is not helpful in breaking the CPA security of O. The most obvious idea is
that on inputs of the form (PK,C1, . . . , Cn), an alleged public key PK and a
bit-by-bit encryption of PK’s seed under EO(PK, ·), T will check whether PK
is a valid public key under GO and if so decrypt C1, . . . , Cn under a secret key
corresponding to PK to get some string S and return S if GO(S) produces PK.

There are two problems with the above raw approach. First, even doing a
simple check, namely whether PK is a valid public key, can potentially grant a
CPA adversary against O much power, violating Condition (II) above. (It is not
hard to think of contrived constructions E for which this is the case.) Second,
even if we assume a CPA-adversary AO,T(pk, c)—against O—always calls T on
valid PK’s, we still have to make sure that A cannot come up with a clever
query T(PK,C1, . . . , Cn) whose response leaks information about g−1(pk) or
about c’s plaintext bit.

Our approach starts by resolving the first problem, using an idea from
[19] (also used in some subsequent works [18,41]): the oracle T performs
the decryption of (C1, . . . , Cn) not relative to O, but relative to some ˜O =
(g̃, ẽ, ˜d), under which PK is indeed a valid public key (i.e., T decrypts using
D
˜O(SK ′, C1 . . . Cn), where (SK ′, PK) ∈ G

˜O). Without further restrictions on ˜O
the result of decryption is most likely a random noise, as ẽ and ˜d can behave arbi-
trarily. Thus, we need to ensure that w.h.p. over a random R, EO(PK, b;R) =
E
˜O(PK, b;R), for any bit b. This would ensure that D

˜O(SK ′, C1 . . . Cn) w.h.p.
will be the real output, if (PK,C1, . . . , Cn) were “honestly” generated, showing
that T is useful in breaking 1-seed-circular security of (Gg, Ee,Dd).

Specifically, we construct ˜O by super-imposing a poly number of
query/response pairs Qs, which serve as a certificate of PK’s validity, on O.
More precisely, we first sample (offline) a set of query/response pairs Qs in such
a way that GQs = (∗, PK); then, we super-impose (Definition 5) Qs on O to
obtain ˜O. (Sometimes Qs needs to also agree with some previous information.)

To resolve the second problem the oracle T will refuse to decrypt queries
deemed “dangerous”: those that can be issued by a CPA adversary A against
O, and whose responses may leak information about A’s challenge secrets. The
main challenge is to formulate these dangerous queries in such a way that T is
provably of no use to any CPA adversary against O, while guaranteeing that T
still decrypts w.h.p. a randomly encrypted random seed chosen relative to EO.

Concrete overview. We now give a concrete overview of the above approach
for a simple class of constructions. We first start by defining the task of super-
imposing a set of g-type query/response pairs on an oracle (g, e,d).

Definition 5. We define the following procedure we call KeyImpose.

– Input: (g, e,d) and a set Qs = {(〈g, sk1〉, pk1), . . . , (〈g, skw〉, pkw)}, satisfying
ski �= skj for all distinct i and j.
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– Output: (g̃, ˜d), where

g̃(sk) =
{

g(sk) if sk /∈ {sk1, . . . , skw}
pki if sk = ski for some 1 ≤ i ≤ w

(1)

˜d(sk, c) is defined as follows: if there exist b and r such that e(g̃(sk), b, r) = c

then ˜d(sk, c) = b; otherwise, ˜d(sk, c) = ⊥.

Note that in the above definition if (g, e,d) is a valid PKE scheme and Qs

satisfies the required condition then (g̃, e, ˜d) is also a valid PKE scheme. The
resulting g̃, however, will not be injective if there are “collisions” between Qs

and g. Nonetheless, the resulting (g̃, e, ˜d) is still both well-defined and valid.
We will use the following fact over and over again in the paper. Informally, it

shows one particular situation where ˜d queries, defined as above, can be handled
using full access to (g, e,d) and partial access to u.

Fact 1. Let (g, e,d,u,w) be a Ψ -valid oracle and let Bg,e,d,u,w(pk, . . . ) be a
CCA-valid adversary (Definition 4) with a challenge public key pk. (The set
of B’s challenge ciphertexts is not important for this discussion.) Let Qs be a
set of query/response pairs meeting the condition of Definition 5 and (g̃, ˜d) =
KeyImpose(g, e,d,Qs). Assuming (〈g, ∗〉, pk) /∈ Qs, then Bg,e,d,u,w(pk, . . . ), by
having Qs as a separate input, can efficiently compute ˜d(sk′, c′), for all sk′ and
c′ without violating the CCA condition.

Proof. For any query qu = 〈˜d, (sk′, c′)〉, either (i) (〈g, sk′〉, ∗) /∈ Qs or (ii) for
some pk′ �= pk, (〈g, sk′〉, pk′) ∈ Qs. If (i) holds then ˜d(sk′, c′) = d(sk′, c′) and so
B can reply to qu by calling 〈d, (sk′, c′)〉. If (ii) holds, the answer to qu can be
determined by calling 〈u, (pk′, c′)〉, which is a valid query for B as pk′ �= pk. ��
We make the following two assumptions for any construction (G,E,D) discussed
throughout.

Assumption 1. For any Ψ -valid O = (g, e,d) we assume GO, EO and DO, on
inputs corresponding to security parameter n make exactly nϑ oracle calls (for
ϑ ≥ 1) and that GO(1n) uses exactly n random bits.2

Assumption 2. We assume G, E and D, on inputs relative to security para-
meter 1n only call their oracles under the same security parameter 1n. This
assumption is only made to simplify our exposition. Indeed, we are not aware of
any construction that does not satisfy this assumption.

2 Note that we do not claim that there exists a universal ϑ that works for all construc-
tions E = (G, E, D). Rather, for any fixed construction (G, E, D) which we want to
rule out (i.e., define a breaking oracle T for), we fix a ϑ that satisfies the stated
conditions. Also, the assumption that G relative to any Ψ valid oracle uses n coins
is not necessary; it can indeed be any fixed p(n) number of coins, but assuming it
to be n allows us to dispense with an additional parameter p.
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We now describe our techniques for a simple class of constructions, those
with oracle access of the form (Gg, Ee,Dd). We first give the oracle T, defined
w.r.t. a fixed (g, e,d) and a fixed construction (G,E,D), which helps us to
break the seed-circular security of (Gg, Ee,Dd). Fix (G,E,D) throughout this
section, so we make the dependence of T on (G,E,D) implicit below. The oracle
T is selected from a class of oracles, but it is convenient to define the output
distribution of a randomly chosen T on an arbitrary given input, as we do below.

Description of T:
Oracles: (g, e,d,w)
Input: (1n, PK,C1, . . . , Cn)

1. Choose (g′, S′) uniformly at random from the set of all pairs satisfying (a) g′

is Ψ -valid and (b) Gg′
(1n, S′) = (∗, PK). If no such a pair exists return ⊥.

Otherwise, let SK ′ be the secret key output by Gg′
(1n, S′).

2. Let Qs contain the symbolic versions of all query/response pairs made in the
execution of Gg′

(1n, S′). Define (g̃, ˜d) = KeyImpose(g, e,d,Qs). Let QPub
include any pk such that w(pk) = � and (〈g, ∗〉, pk) ∈ Qs.

3. Compute Sout = D
˜d(SK ′, C1 . . . Cn). Execute Gg(Sout) and if for all pk ∈

QPub the query/response (〈g, ∗〉, pk) is made during the execution, then
return Sout; otherwise, return ⊥.

We now informally discuss why T provides the “desired” properties.

4.1.1 T Does Not Break CPA Security of a Random (g, e, d)
We show that any adversary AO,T(1n, pk, c) against the CPA-security of O can
be fully simulated without T, by a CCA-valid adversary BO,u,w(1n, pk, c) (See
Definition 4). We then show any such B has a very small chance of breaking the
security of O, by relying on a special case of the following lemma which shows
a random O is t-seed-circular secure in a strong sense. As notation whenever we
write f1(n) ≤ f2(n) we mean that this holds asymptotically.

Lemma 1. Let t = t(n) be a poly. Let B be a CCA-valid oracle adversary (Def-
inition 4), which has access to some Ψ -valid oracle (g, e,d,u,w), and which
makes at most 2n/4 queries and outputs a bit. It then holds that

Pr
[
BO,u,w(1n, pk1, . . . , pkt, e(pk1, sk2), . . . , e(pkt, sk1), e(pk1, b)) = b

]
≤ 1

2
+

1

2n/4
,

where O = (g, e,d,u,w) ← Ψ , O = (g, e,d), b ← {0, 1}, ski ← {0, 1}n and
pki = g(ski) for 1 ≤ i ≤ t.

Fix a Ψ -valid oracle (O,u,w). We show that any adversary AO,T(1n, pk, c),
against the CPA-security of O = (g, e,d), can be perfectly simulated by a CCA-
valid adversary BO,u,w(1n, pk, c) that makes a poly-related number of queries.
The crux of our techniques lies in showing how B, using u and w, can simulate
A’s T access.
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Specifically, BO,u,w(1n, pk, c) starts running AO,T(1n, pk, c) and forwards all
A’s O = (g, e,d) queries to its own corresponding oracles.

To respond to a T query of the form Tqu
def= 〈T, (1n1 , PK,C1, . . . , Cn1)〉

made by A, B acts as follows (note it may be that n1 �= n, as A can make
queries under different security parameters): B forms SK ′ and Qs exactly as
in Steps 1 and 2 of T’s computation. It is able to do so since during these
two computations no queries are made to the real oracles (though, a massive
offline search is involved). Next, B starts simulating D

˜d(SK ′, C1, . . . , Cn1), where
(g̃, ˜d) = KeyImpose(g, e,d,Qs). Since it is not clear how B can perform this
decryption by only making a polynomial number of queries and without ever
calling 〈u, (pk, c)〉, we consider two possible cases:

(A) (〈g, ∗〉, pk) /∈ Qs: In this case B can fully execute D
˜d(SK ′, C1, . . . , Cn1),

since by Fact 1 B can handle all encountered queries, which are all of
type ˜d. (Recall that pk is B’s challenge public key.) Now if Sout =
D
˜d(SK ′, C1, . . . , Cn1), then B performs the rest of Step 3 of T, which B

can fully do since the rest only involves making g and w queries. Thus, B
can find the answer to Tqu.

(B) (〈g, ∗〉, pk) ∈ Qs: In this case, recalling the definition of Qpub, we have
pk ∈ QPub, since pk is B’s challenge public key and so by definition w(pk) =
�. Thus, by the condition given in Step 3 of T’s description, if Sout =
D
˜d(SK ′, C1, . . . , Cn1) then at least one of the following holds:

(a) The answer to Tqu is ⊥; or
(b) The query/response pair (〈g, ∗〉, pk) will show up during Gg(Sout), i.e.,

g−1(pk), B’s challenge secret key, is revealed during Gg(Sout).
We now claim that B can find two strings S0 and S1 such that Sout ∈
{S0, S1}. If this is the case, B can execute both Gg(S0) and Gg(S1); if dur-
ing either execution a query/response (〈g, ∗〉, pk) is observed, B has learned
g−1(pk), winning the game; otherwise, B in response to Tqu returns ⊥,
which is indeed the correct response.
It remains to demonstrate the claim. To find S0 and S1, B attempts to sim-
ulate D

˜d(SK ′, C1, . . . , Cn1). For any query qu = 〈˜d, (sk′, c′)〉 encountered
in the simulation, one of the following holds
(i) (〈g, sk′〉, ∗) /∈ Qs; or
(ii) (〈g, sk′〉, pk′) ∈ Qs for pk′ �= pk; or
(iii) (〈g, sk′〉, pk) ∈ Qs and c′ �= c; or
(iv) (〈g, sk′〉, pk) ∈ Qs and c′ = c.
B can find the answer to qu by querying 〈d, (sk′, c′)〉 for Case (i), querying
〈u, (pk′, c′)〉 for Case (ii), and querying 〈u, (pk, c′)〉 for Case (iii). The latter
two are legitimate u queries (see Definition 4).
For Case (iv) B continues the execution of D

˜d(SK ′, C1, . . . , Cn1) in two
parallel branches BR0 and BR1, where B replies to qu with b on BRb.
On both branches B replies to queries for which Cases (i), (ii) and (iii)
hold exactly as above. If on some branch BRb′ , still during the execu-
tion of D

˜d(SK ′, C1, . . . , Cn1), for a query qu′ Case (iv) holds again (i.e.,
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qu′ = 〈˜d, (sk′, c)〉 and (〈g, sk′〉, pk) ∈ Qs) B replies to qu′ with b′, making it
consistent with the previous reply. Thus, these two branches result in two
strings S0, S1 satisfying the claim.

By invoking Lemma 1 we deduce that for random O = (g, e,d) and T, any
AO,T(pk, c) that makes at most, say, 2n/5 queries (basically any number m of
queries where 2n/4/m is super-polynomial) has advantage at most 1

2 + 1
2n/4 of

computing b, where sk ← {0, 1}n, pk = g(sk) and c ← e(pk, b).

4.1.2 T Breaks Seed-Circular Security of (G,E,D)
We show

CLAIM A. T is useful if used honestly: For O = (g, e,d,u,w) ← Ψ , S ←
{0, 1}n, (SK,PK) = Gg(S) and (C1, . . . , Cn) ← Ee(PK,S), the probability
that T(1n, PK,C1, . . . , Cn) does not return S is exponentially small.

To prove CLAIM A, we need the following simple information-theoretic
lemma, showing that the probability that an adversary can “forge” a public
key is small.

Lemma 2. Let B be an oracle adversary, which has access to some Ψ -valid
oracle O = (g, e,d,u,w), and which on input 1n makes a list Que of at most 2n

queries and outputs a public key pkout ∈ {0, 1}5n. It then holds that

Pr
O←Ψ

[w(pkout) = � and (〈g, ∗〉, pkout) /∈ Que] ≤ 1
22n

.

Proof of CLAIM A. Let the variables g′, S′, Qs, SK ′, g̃, ˜d and Sout be sampled
as in T(1n, PK,C1, . . . , Cn). Recall that (SK ′, PK) = GQs(1n, S′), that (g̃, ˜d) =
KeyImpose(g, e,d,Qs) and that Sout = D

˜d(SK ′, C1 . . . Cn).
Recall the way S, PK,C1, . . . , Cn are chosen in the claim. We first claim

Sout = S. This follows since (a) (C1, . . . , Cn) ← Ee(PK,S), (b) (g̃, e, ˜d) is a
correct PKE, and (c) (SK ′, PK) = Gg̃(1n;S′), since g̃ agrees with Qs. Thus,
by the correctness of (G,E,D), Sout = S. Thus, T(1n, PK,C1, . . . , Cn) either
returns S or ⊥.

Let Fail be the event T(PK,C1, . . . , Cn) = ⊥. We show how to successfully
forge a public pk ∈ {0, 1}5n whenever Fail holds. By Lemma 2 we will then have
Pr[Fail] ≤ 1

22n , implying that with probability at least 1− 1
22n , T(PK,C1, . . . , Cn)

returns S. We first start with some intuition behind the forgery.
Recall that Sout = S. By definition, Fail occurs if there exists pk s.t. (a)

w(pk) = �, (b) pk is embedded in Qs (i.e., (〈g, ∗〉, pk) ∈ Qs) and (c) the
query/response (〈g, ∗〉, pk) does not show up during Gg(1n, S). Now the forgery
is enabled by the fact that Qs is produced based on PK in offline mode. (Recall
that (SK,PK) = Gg(1n, S)). The only thing left is to prove that the forged pk is
indeed in {0, 1}5n. The reason is the following: since (〈g, ∗〉, pk) ∈ Qs, the pub-
lic key pk shows up as the response to a g′ query during Gg′

(1n, S′). Recalling
that g′ is Ψ -valid (see Step 1 of T’s computation), by Assumption 2 we have
pk ∈ {0, 1}5n. Given this intuition, the forging adversary A works as follows.
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AO(1n) generates S ← {0, 1}n and (SK,PK) = Gg(S); it then samples a Ψ -
valid function g′ and a seed S′ in such a way that Gg′

(1n, S′) = (∗, PK) and lets
Qs contain the symbolic versions of all query/response pairs made to g′. Denoting
by Que the set of all query/response pairs of A so far (which was populated only
during Gg(S)), for all pk s.t. (〈g, ∗〉, pk) ∈ Qs and (〈g, ∗〉, pk) /∈ Que, A calls
〈w, pk〉: as soon as A receives � in response, it returns pk. ��
We can now, using standard techniques, combine the two facts above about T
to rule out fully-blackbox reductions for the construction type considered.

We conclude this subsection with a remark. The separation proved in this
subsection will hold even if the candidate construction E is full length. This can
easily be checked, considering nowhere in our analysis do we use the fact that
E is a single-bit encryption algorithm. This may briefly be thought of as con-
tradicting the positive construction basing full-length 1-seed circular security on
CPA security! However, the catch here is that the positive construction alluded
to earlier does not belong in the class of constructions ruled out here, since the
constructed E calls the base key-generation algorithm. When discussing the gen-
eral separation result in Sect. 5 we will point out exactly where our separation
fails if the constructed scheme is full-length.

4.2 Bit t-seed-circular Security �⇒ Full-Length (t + 1)-seed-circular
Security

For simplicity, we show how to separate full-length 2-seed-circular security from
bit 1-seed circular security, as this case already captures most of the underlying
techniques. Since in this case the seed in the constructed scheme is encrypted as a
whole we denote a seed encryption as C ← EPK(S). Fix the proposed full-length
encryption construction (G,E,D), for which we will define a weakening oracle
T2 in such a way that T2 breaks the 2-seed circular security of (Gg, Ee,Dd),
but not the 1-seed circular security of (g, e,d).

For this new setting, we cannot use the previous approach, mainly because
the analysis there for showing that T is simulatable by a CCA-valid adversary
against (g, e,d) (Subsect. 4.1.1) heavily relies on the fact that only one challenge
ciphertext is present, whose value can be guessed in two branches. That simu-
lation trick will fail here because an adversary against the bit 1-seed circular
security of (g, e,d), which will have access to T2 and which we want to simulate
without T2, is provided with n + 1 ciphertexts. Thus, we need some new ideas
for the oracle T2, outlined below. We also use some of the previous ideas.

T2 accepts inputs of the form (PK0, PK1, C0, C1), where purportedly Ci,
for i = 0, 1, is the encryption of PK1−i’s seed under E(PKi, ·). Intuitively, T2

will decrypts C0 and C1 relative to, respectively, oracles ˜O0 and ˜O1, obtained
by superimposing two sampled sets Q0

s and Q1
s , meeting a certain condition,

on O. Specifically, T2 samples two sets of query/response pairs Q0
s and Q1

s in
such a way that for i = 0, 1 (a) GQi

s = (SK ′
i, PKi) for some SK ′

i and (b) the
sets of embedded public keys in Q0

s and Q1
s are disjoint, namely for all pk: if

(〈g, ∗〉, pk) ∈ Q0
s then (〈g, ∗〉, pk) /∈ Q1

s . (If such Q0
s and Q1

s cannot be found,
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T2 returns ⊥.) Then, T2 forms (g̃i, ˜di) = KeyImpose(g, e,d,Qi
s), and S0

out =
D
˜d1(SK ′

1, C1) and S1
out = D

˜d0(SK ′
0, C0). Finally, T2 returns S0

out if for both
i = 0, 1 all embedded public keys in Qi

s appear during the execution of Gg(Si
out).

The check (b) above is aimed at making T2 simulatable using u
and w oracles: namely, to make any 1-seed circular security adversary
AO,T2(pk, c1, . . . , cn, c) against O = (g, e,d) simulatable by CCA-valid adver-
sary BO,u,w(pk, c1, . . . , cn, c). The main idea behind the simulation is that, for
any query 〈T2, (PK0, PK1, C0, C1)〉 of A, the adversary B will be able to decrypt
at least one of Ci’s, specifically the one for which (〈g, ∗〉, pk) /∈ Qi

s. This follows
by Fact 1. (Recall pk is B’s challenge public key.) If for the other index (i.e.,
1− i) it holds that (〈g, ∗〉, pk) ∈ Q1−i

s then as before we can show that either the
answer to the underlying T2 query is ⊥, or B will learn its challenge secret key
(i.e., g−1(pk)) along the way.

The check (b) however may make the oracle T2 too weak to break the 2-
seed circular security of (GO, EO,DO). In particular, if there are pk’s that occur
w.h.p. as responses to g queries during a random execution of Gg(1n), then T2,
even on “honest” inputs, may return ⊥ too often. To resolve this problem, we
first sample a large number of executions of GO, record all the query/response
pairs and make Q0

s and Q1
s be consistent with this information.

We now describe the oracle T2.

Description of T2:
Oracles: (g, e,d,w)
Input: (1n, PK0, PK1, C0, C1)

1. Learning heavy key-generation queries: Execute Gg(1n) � times inde-
pendently at random and record all query/response pairs to Freq. (We instan-
tiate � later.) For any (〈g, ∗〉, pk) ∈ Freq add pk to FreqPub.

2. Sampling oracles/secret keys consistent with Freq, PK1 and PK2. For
i = 0, 1:
– choose (g′

i , S
′
i) uniformly at random from the set of all pairs satisfying (a)

g′
i is Ψ -valid and is consistent with Freq and (b) Gg′

i(1n, S′
i) = (∗, PKi).

(If no such a pair exists return ⊥.) Let SK ′
i be the secret key output by

Gg′
i(1n, S′

i).
– Let Qi

s contain the symbolic versions of all query/response pairs made in
the execution of Gg′

i(1n, S′
i). Define (g̃i, ˜di) = KeyImpose(g, e,d,Qi

s). Let
QPubi have any pk s.t. w(pk) = � and (〈g, ∗〉, pk) ∈ Qi

s.
3. If (QPub0 ∩ QPub1) \ FreqPub �= ∅ then halt and return ⊥.
4. Compute S1

out = D
˜d0(SK ′

0, C0) and S0
out = D

˜d1(SK ′
1, C1). Return S0

out if
the following condition holds for both i = 0, 1, and return ⊥, otherwise: For
all pk ∈ QPubi \ FreqPub the query/response (〈g, ∗〉, pk) is made during the
execution of Gg(Si

out).

T2 does not break 1-seed-circular security of O. We show any adversary
AO,T2(1n, pk, c1, . . . , cn, c), against 1-seed-circular-security of O = (g, e,d) can
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be simulated by a CCA-valid adversary BO,u,w(1n, pk, c1, . . . , cn, c) that makes
a poly-related number of queries. By Lemma 1 we then obtain our desired result.

The main challenge for B is to handle A’s T2 queries. Fix a T2 query Tqu =
〈T2, (1n1 , PK,C1, C2)〉 of A. To reply to Tqu, B forms FreqPub, Q0

s , Q
1
s , SK ′

0

and SK ′
1 as in T2’s computation, which B can perfectly do. Without loss of

generality assume pk /∈ FreqPub, since otherwise B has found its challenge secret
key. Also, assume for some i ∈ {0, 1} pk /∈ QPubi because otherwise by Line 3 the
answer to Tqu is ⊥. In what follows assume pk /∈ QPub1. (The same argument
goes through if pk /∈ QPub0.)

B forms S0
out = D

˜d1(SK ′
1, C1), where (g̃1, ˜d1) = KeyImpose(g, e,d,Q1

s ). By
Fact 1, B is perfectly able to run this decryption. Now consider two cases:

1. pk /∈ QPub0: in this case again B can compute S1
out = D

˜d0(SK ′
0, C0), where

(g̃0, ˜d0) = KeyImpose(g, e,d,Q0
s ). Having both S0

out and S1
out B can easily

perform the rest of T2’s computation (which only involves g queries).
2. pk ∈ QPub0: in this case by Line 4 of T2’s computation, either the answer

to Tqu is ⊥ or pk’s corresponding secret key turns up during the execution
of GO(S0

out). (Recall that pk /∈ FreqPub.) Thus, B either finds its challenge
secret key or finds out that the answer to Tqu is ⊥.

T2 breaks 2-seed-circular security: For O = (g, e,d,u,w) ← Ψ , Si ←
{0, 1}n, (SKi, PKi) = Gg(Si) for i = 0, 1, and C1 ← Ee(PK1, S0) and
C0 ← Ee(PK0, S1) we show the probability that T2(1n, PK0, PK1, C0, C1) does
not return S0 is exponentially small. First, as in the corresponding proof in Sub-
sect. 4.1 we can easily show it is always the case that Si = Si

out for i = 0, 1.
Thus, the probability that T2(1n, PK0, PK1, C0, C1) does not return S0 is the
probability that one of the bad events in Lines 3 and 4 of T2’s computation
holds. Let Ev be the event that T2(1n, PK0, PK1, C0, C1) does not return S0.

The bad events in Lines 3 and 4 correspond to events Ev1 and Ev2, defined
as follows: Ev1 = (QPub0 ∩ QPub1) \ FreqPub �= ∅ and

Ev2 = ((QPub0 �⊆ RealPub0 ∪ FreqPub) ∨ (QPub1 �⊆ RealPub1 ∪ FreqPub)), (2)

where RealPubi = {pk | the query/response (〈g, ∗〉, pk) occurs during Gg(Si)}.
Note that for Ev2 we use the fact that Si = Si

out. We have Pr[Ev] ≤ Pr[Ev2] +
Pr[Ev1 ∧ Ev2].

First, using the same technique as in Subsect. 4.1.2 we can show Pr[Ev2] is
exponentially small. To bound Pr[Ev1∧Ev2], note whenever Ev1∧Ev2 happens,
the event Ev3, defined below, happens:

Ev3 = (RealPub0 ∩ RealPub1) \ FreqPub �= ∅.

Thus, we show how to bound the probability of Ev3. That is, the probability
that there exists pk such that pk ∈ RealPub0∩RealPub1, but pk /∈ FreqPub. Intu-
itively, this probability should be small because if pk ∈ RealPub0 ∩ RealPub1—
namely, the query/response (〈g, ∗〉, pk) occurs during both Gg(S0) and Gg(S1)—
then (〈g, ∗〉, pk) should also occur at least once during the many random exe-
cutions of Gg(1n) performed in Step 1 of T2’s computation, and thus it should
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be that pk ∈ FreqPub. Using this line of reasoning we can use Chernoff Bounds
to upperbound the probability of Ev3 by any arbitrary inverse-polynomial, by
instantiating the value of � (Step 1 of T2’s computation) accordingly.

5 CPA Security �⇒ Bit 1-seed-circular Security: General

In this section we describe the oracle T for general bit-encryption constructions
of 1-seed circular security, and in the following two sections we prove that this
oracle provides a separation.

Intuition. As in the previous section the main idea is to have T, on input
(PK,C1, . . . , Cn), decrypt C1, . . . , Cn relative to some ˜O = (g̃, ẽ, ˜d), satisfying
(a) G

˜O produces (∗, PK) and (b) for any b with high probability EO(PK, b,R) =
E
˜O(PK, b,R). To obtain ˜O we may be tempted to proceed exactly as before,

by sampling a set of query/response pairs Q and a seed S′ such that GQ(S′) =
(∗, PK) and then superimposing Q (which now has all types of queries) on O.
While the resulting ˜O satisfies Condition (a) it is not clear if Condition (b) is
satisfied: The problem is there may be queries q asked quite frequently during
random executions of EO(PK, b) (call them heavy), and which may also occur in
Q and receive a different response there. To overcome this problem we first run
EO(PK, b) for b = 0, 1 many times and collect all observed query/response pairs
in a set Freq. (This is formalized in Definition 6.) We then force the sampled set
Q to be consistent with Freq. Finally, we show how to superimpose Q on O to
obtain ˜O.

Setting things up. Fix the proposed construction (G,E,D). We now give an
assumption to make our analysis easier and then give definitions formalizing the
steps sketched above. We then use these definitions to define the oracle T.

Assumption 3. We assume any oracle algorithm that has access to both g and
d always queries 〈g, sk〉 before querying 〈d, (sk, ∗)〉. Also, we assume w.l.o.g.
that G never calls the decryption algorithm of the base scheme, O = (g, e,d).
(For 〈d, (sk, c)〉: letting pk = g(sk), either the query/response (〈e, (pk, ∗, ∗)〉, c)
was already made in which case G knows the answer, or the answer w.h.p. is ⊥.)
For ease of notation we keep d as a superscript to G and write GO.

Definition 6. We define the following probabilistic procedure, FreqQue.

– Oracles: O = (g, e,d,u)
– Input: A security parameter 1n (left implicit), public key PK and p ∈ N.
– Output: A set Freq formed as follows. For both b = 0, 1 run EO(1n, PK, b)

independently p times and add the symbolic versions of all query/response pairs
to Freq. Moreover, for any (〈d, (sk, c)〉, ∗) ∈ Freq if u(g(sk), c) = (b′, r′) �= ⊥
add (〈e, (pk, b′, r′)〉, c) to Freq.
Note that by Assumption 1 |Freq| ≤ 2pnϑ + 2pnϑ = 4pnϑ.
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In the above definition apart from the actual observed query/response
pairs we also enhanced Freq with some pairs obtained based on (〈d, (sk, c)〉, ∗)
query/response pairs. This enhancement is only made to make some of the proofs
simpler.

We say that oracle O = (g, e,d) is consistent with (or agrees with) a symbolic
query/response pair (〈g, sk〉, pk) if g(sk) = pk. The same definition can be given
for other types of query/response pairs. We say O is consistent with a set of
query/response pairs if O agrees with each element in the set.

Definition 7. We define the following procedure we call ConsOrc.

– Input: a public key PK and a set Freq of symbolic query/response pairs.
– Output: a secret key SK ′ and query/response sets Qs, Qc sampled as follows.

• Sample (g′, e′,d′, S′) uniformly at random under the constraints that
O′ = (g′, e′,d′) is Ψ -valid and is consistent with Freq and that GO′

(S′) =
(∗, PK). If no such a tuple exists, return ⊥.

• Let SK ′ be the secret-key outputted by GO′
(S′) and let the sets Qs and

Qc contain, respectively, the symbolic versions of all query/response pairs
made to g′ and e′. (Recall by Assumption 3 no d′-query is made.)

In Definition 5 we defined the task of superimposing a set of g type
query/response pairs on an oracle (g, e,d). We now define the task of superim-
posing a set Qc of e queries on (g, e,d): the result will be (eimp,dimp), perturbed
versions of (e,d). Intuitively, we want (g, eimp,dimp) to form a PKE, eimp to
agree with Qc and (eimp,dimp) to agree as much as possible with (e,d).

Definition 8. We define the following procedure we call EncImpose.

– Input: a Ψ -valid (g, e,d) and a set

Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)} ,

Note that pki’s above are not necessarily distinct.
– Output: (eimp,dimp), defined as follows. First, let W = {(pk1, c1), . . . ,

(pkp, cp)} and W′ = {(pk1, e(pk1, b1, r1)), . . . , (pkp, e(pkp, bp, rp))}. Define

eimp(pk, b, r) =

⎧

⎨

⎩

ci if (pk, b, r) = (pki, bi, ri), for some 1 ≤ i ≤ p
ĉ if (pk, e(pk, b, r)) ∈ W
e(pk, b, r) otherwise

(3)
where ĉ is defined as follows: Letting x be the smallest integer such that
(pk, e(pk, b, r + x)) /∈ W ∪ W′ we set ĉ = e(pk, b, r + x). Here, r + x is done
using a standard method.

dimp(sk, c) =
{

bi if g(sk) = pki and c = ci for some 1 ≤ i ≤ p
d(sk, c) otherwise (4)
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We justify the second case of eimp’s definition: if (pk, e(pk, b, r)) ∈ W, say
(pk, e(pk, b, r)) = (pki, ci), we cannot set eimp(pk, b, r) = e(pk, b, r) as we have
already set ci = eimp(pki, bi, ri): in particular, eimp will be rendered incorrect
if bi �= b. Thus, we keep shifting e(pk, b, r) (by adding x to r) until we hit a
ciphertext ĉ s.t. (pk, ĉ) /∈ W∪W′. The requirement (pk, ĉ) /∈ W′ is stronger than
necessary, but will simplify some proofs. Note eimp is not necessarily injective.

Description of T. We define the oracle T. We first describe the output dis-
tribution of a random T on a single input-call, (1n, PK,C1, . . . , Cn), and then
describe the underlying distribution from which T is chosen.
Oracles: O = (g, e,d,u,w). Denote O = (g, e,d).
Input: (1n, PK,C1, . . . , Cn) Operations:

1. Learning frequent queries: Let Freq ← FreqQueO,u(PK,n23ϑ). Define
FreqPub to be the set of public keys pk such that (〈g, ∗〉, pk) ∈ Freq.

2. Sampling oracle/secret-key consistent with PK and Freq: Sample

(SK ′,Qs,Qc) ← ConsOrc(PK,Freq). (5)

3. Defining intermediate oracles: Define

(eimp,dimp) = EncImpose(g, e,d,Qc)

(g̃, ˜d) = KeyImpose(g, eimp,dimp,Qs).

Let ẽ = eimp, and ˜O = (g̃, ẽ, ˜d). Let QPub contain any pk such that w(pk) =
� and (〈g, ∗〉, pk) ∈ Qs.

4. Decrypting the encrypted input: Compute Sout = D
˜O(SK ′, C1 . . . Cn).

5. Returning Sout subject to a check: Run GO(Sout) and let EmbedPub con-
tain any pk such that the query/response (〈g, ∗〉, pk) is made during GO(Sout).
If QPub ⊆ EmbedPub ∪ FreqPub return Sout; else, return ⊥.

Notation. TvarsO(PK) denotes the random variable (Freq, SK ′,Qs,Qc, ˜O)
obtained in the execution of T above w.r.t. O and PK. Note none of these
random variables depend on (C1, . . . , Cn). For the reader’s convenience, we pro-
vide a table summary of how all these variables sampled in the last page of the
paper.

Remark about T. Note that the only part of the oracle T that involves making
random choices are Step 1 (sampling from FreqQueO,u(PK,n23ϑ)) and Step 2
(sampling from ConsOrc(PK,Freq)). The number of random coins required to
do the sampling in Step 1 is obviously finite. For Step 2 recall that the output
of ConsOrc(PK,Freq) is formed based on sampling a Ψ -valid random oracle O′

that is consistent with Freq and also that GO′
(1n) generates PK (based on some

seed). By default, O′ should be defined for all security parameters. However, by
Assumption 2 it suffices to sample O′ only for security parameters n. Thus,
for any fixed input (1n, PK,C1, . . . , Cn), the amount of randomness used by a
random T to compute T(1n, PK,C1, . . . , Cn) is finite.
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Sampling space of T. We now explain how to choose a random T. In par-
ticular, we would like a randomly chosen T, if queried under a single input
many times, to always return the same output. To this end, every possible T
comes with a collection of random-coin strings, where for every possible query
qu = (1n, PK,C1, . . . , Cn) to T, the collection has a corresponding random-coin
string Coinqu, used by T to make the random choices that appear during the
computation of T(qu). When we write PrT[] we mean the probability is com-
puted over a T chosen uniformly at random from the above-mentioned space.

5.1 T Breaks 1-seed-circular Security of (G,E,D)

We show if T is called honestly (i.e., on a random public key and a random
encryption of the underlying seed) it will return the seed with high probability.
To formalize the statement we define the following environment that specifies a
random choice of (O,u,w) plus those underlying an honest random input to T.

Environment: Env(n): Output (O,u,w, S, PK,C1, . . . , Cn), where:

1. (g, e,d,u,w) ← Ψ and O = (g, e,d);
2. S ← {0, 1}n, (SK,PK) ← GO(S) and (C1, . . . , Cn) ← EO(PK,S).

Convention. Sometimes that we are interested only in a specific part of the
output of Env(n) we may use notation such as (O,u,w, PK) ← Env(n).

The following theorem shows T’s usefulness in breaking seed-circular security.

Theorem 2. It holds that

Pr
Env,T

[T(PK,C1, . . . , Cn) = S] ≥ 1 − 1
n5

, (6)

where
Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n).

Proof layout. The proof consists of two parts. First, we show (Lemma 3) that
with high probability Sout = S, where Sout is the string decoded in Step 5 of
the execution of T(PK,C1, . . . , Cn). Next we show, conditioned on Sout = S,
the probability that T(PK,C1, . . . , Cn) outputs ⊥ is small (Lemma 4).

Lemma 3. It holds that

α(n) = Pr[D ˜O(SK ′, C1 . . . Cn) �= S] ≤ 1
2n5

,

where the probability is taken over (O,u,w, S, PK,C1, . . . , Cn) ← Env(n) and
(Freq, SK ′,Qs,Qc, ˜O) ← TvarsO,u,w(PK).

Lemma 4. It holds that

α(n)
def
= Pr

Env,T

[(

D
˜O(SK ′, C1 . . . Cn) = S

)

∧ (T(PK,C1, . . . , Cn) = ⊥)
]

≤ 1
22n

,

where Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n), and SK ′ and ˜O are the
random variables sampled inside T(PK,C1, . . . , Cn).

The proof of Theorem 2 follows in a straightforward way by combining Lem-
mas 3 and 4. We prove Lemma 3 in Subsect. 5.2 and Lemma 4 in Subsect. 5.3.
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5.2 Proof of Lemma 3

We start with a simple fact: Informally, it states, in particular, that the string
SK ′ built during an execution of T(PK,C1, . . . , Cn) is a matching secret key of
PK relative to G

˜O.

Fact 3. For any (O,u,w, PK) ∈ Env(n) and any (Freq, SK ′,Qs,Qc, ˜O) ∈
TvarsO(PK), (a) ˜O is a correct PKE, and (b) (SK ′, PK) ∈ G

˜O(1n).

Equipped with Fact 3, toward proving Lemma 3 we bound the probability
that EO(PK,S;R) �= E

˜O(PK,S;R), for a random R. If this probability is
small then with high probability D

˜O(SK ′, C1 . . . Cn) results in S, as desired.
We will actually bound a related probability, where S above is replaced with
0n1n. (Recall that |S| = n.) To this end we need the following lemma.

Lemma 5. Fix (O,u,w, PK) ∈ Env(n) and let M = 0n1n. Let
(qu1, . . . , qu2nϑ+1) denote the oracle queries asked during the execution of
EO(PK,M ;R), for a random R. Then, for any query index 1 ≤ i ≤ 2nϑ+1

(A) Pr
[
(qui is g- or e-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
O(qui) �= Õ(qui)

)]
≤ 1

n8ϑ
,

(B) Pr
[
(qui is d-type) ∧

(
∀j < i,O(quj) = Õ(quj)

)
∧
(
d(qui) �= d̃(qui)

)]
≤ 1

n8ϑ
,

where (Freq, SK ′,Qs,Qc, ˜O) ← TvarsO(PK) and R chosen at random.

We slightly abused notation above by writing ˜O(quj), since quj is a query
to O (e.g., quj = 〈g, sk′〉); the meaning, however, should be clear.

We first show how to derive Lemma 3 from Lemma 5.

Proof of Lemma 3. All probabilities that appear below are taken over the
choices (O,u,w, S, PK,C1, . . . , Cn) ← Env(n) and (Freq, SK ′,Qs,Qc, ˜O) ←
TvarsO,u,w(PK). Let QS be the set of all queries asked during the execution
under which (C1, . . . , Cn) ← EO(PK,S) was produced. We claim

Pr[D ˜O(SK ′, C1 . . . Cn) �= S] ≤ β(n) def= Pr
[

∃qu ∈ QS : O(qu) �= ˜O(qu)
]

.

The reason is: if the event inside the right-hand side probability does not hold,
then (C1, . . . , Cn) is also a valid output of E

˜O(PK,S). Also, by Fact 3 we know
that (SK ′, PK) ∈ G

˜O(1n) and that ˜O is a correct PKE. Thus, by the correctness
of the blackbox construction (G,E,D), we obtain D

˜O(SK ′, C1 . . . Cn) = S.
Let QS′ denote the set of all queries asked during a random execution of

EO(PK,M), where M = 0n1n. We claim

β(n) ≤ β′(n) def= Pr[∃qu ∈ QS′ : O(qu) �= ˜O(qu)]. (7)

Equation 7 holds because: if S has k 0’s, then QS is identically distributed to the
set of queries asked during a random execution of EO(PK, 0k1n−k). Moreover,
since k ≤ n, the probability that during a random execution of EO(PK, 0k1n−k)
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a query qu, with O(qu) �= ˜O(qu), is asked is less than the probability that during
a random execution of EO(PK,M) a query qu, with O(qu) �= ˜O(qu), is asked.

To conclude the proof of Lemma 3 we show β′(n) ≤ 1
2n5 . We have

β′(n) = Pr
[

∃qu ∈ QS′ : O(qu) �= ˜O(qu)
]

≤ 2nϑ+1 × 1
n8ϑ

≤ 1
2n5

;

the first inequality is obtained by applying Lemma 5 and a union bound. ��
We now describe the main lemma and tools we need to prove Lemma 5.

Lemma 6. For any (O,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, ˜O) ∈
TvarsO(PK) all the following hold: (1) for any h ∈ {g, e} if (〈h, q〉, ans) ∈
Freq, then h(q) = ˜h(q) = ans; (2) if g(sk) �= g̃(sk) for some sk then
(〈g, sk〉, ∗) ∈ Qs; (3) if e(pk, b, r) �= ẽ(pk, b, r) for some pk, b and r then
either (a) (〈e, (pk, b, r)〉, ∗) ∈ Qc or (b) for some c: (〈e, (pk, ∗, ∗)〉, c) ∈ Qc and
u(pk, c) = (b, r).

We require the following standard result [32].

Theorem 4. (A Chernoff-Hoeffding bound) Let x1, . . . , xnt be independent
boolean random variables all identically distributed to x, and suppose Pr[x =
1] = p. Then for xav = (x1 + · · · + xnt)/nt

Pr[|xav − p| ≥ 1
nk

] ≤ 1
22nt−2k . (8)

We defer the proof of Lemma 5 to the full version.

5.3 Proof of Lemma 4

Proof. Let α(n) be as in the lemma. To bound α(n), suppose T(PK,

C1, . . . , Cn) = ⊥ and D
˜O(SK ′, C1 . . . Cn) = S. Then by Step 5 of T’s com-

putation it must hold

QPub �⊆ EmbedPub ∪ FreqPub. (9)

Thus,
α(n) ≤ Pr

Env,T
[QPub �⊆ EmbedPub ∪ FreqPub)], (10)

where Env = (O,u,w, S, PK,C1, . . . , Cn) ← Env(n). We show whenever Eq. 9
holds we can forge a public key in the sense of Lemma 2. Specifically, our forger B,
provided with random oracles (O,u,w), samples all the variables pertaining to
T by itself and checks whether Eq. 9 holds. Details follow.

The adversary BO,u,w(1n) works as follows:

1. B samples S ← {0, 1}n and runs GO(S) to get (SK,PK), and for any
query/response (〈g, ∗〉, pk) made, it adds pk to EmbedPub.

2. B samples Freq ← FreqQueO,u(PK,n23ϑ) and then samples (SK ′,Qs,Qc) by
running ConsOrc(PK,Freq).
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3. B forms FreqPub = {pk | (〈g, ∗〉, pk) ∈ Freq} and QPub = {pk | (〈g, ∗〉, pk) ∈
Qs and w(pk) = �}. If there is pk ∈ QPub\(EmbedPub∪FreqPub), B returns
pk; else it returns pk ← {0, 1}5n.

Let Que be the set of all query/response pairs that B makes and note that
|Que| is poly-bounded. To analyze B’s success probability, note that for all pk:
pk ∈ EmbedPub∪FreqPub iff (〈g, ∗〉, pk) ∈ Que. Also, by definition if pk ∈ QPub
then w(pk) = �. Thus, from Eq. 10, B’s success probability is at least α(n).
Applying Lemma 2 the desired bound for α(n) follows. ��

5.4 T Does Not Break the CPA Security of the Base Scheme

Theorem 5. Suppose A is a CPA adversary with access to oracles O = (g, e,d)
and T that makes at most 2n/8 queries. We have

Pr
O,T,b,sk,c

[Ag,e,d,T(1n, pk, c) = b] ≤ 1
2

+
1

2n/4
, (11)

where O = (g, e,d,u,w) ← Ψ , b ← {0, 1}, sk ← {0, 1}n, pk = g(sk) and
c ← e(pk, b).

The following lemma is used in the proof of Theorem 5: it shows how to simulate
responses to queries to ˜O via oracle access to (O,u,w).

Lemma 7. Fix (g, e,d,u,w, PK) ∈ Env(n) and (Freq, SK ′,Qs,Qc, g̃, ẽ, ˜d) ∈
TvarsO(PK). Assuming Qc = {(〈e, (pk1, b1, r1)〉, c1) , . . . , (〈e, (pkp, bp, rp)〉, cp)}
let W = {(pki, ci) : 1 ≤ i ≤ p} and W′ = {(pki, e(pki, bi, ri)) : 1 ≤ i ≤ p}. Then

(a) Both g̃ and ẽ can be computed efficiently (on all points) given access to
oracles O = (g, e,d) and having Qs and Qc as input.

(b) For any (sk, c), if (〈g, sk〉, ∗) /∈ Qs, the value ˜d(sk, c) can be efficiently com-
puted given access to oracle O and having Qc as input.

(c) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs for some pk and that (pk, c) /∈
W ∪ W′, then ˜d(sk, c) can be determined as follows: if u(pk, c) = (b, ∗) �= ⊥
then ˜d(sk, c) = b; otherwise, ˜d(sk, c) = ⊥.

(d) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) ∈
W′ \ W, then ˜d(sk, c) = ⊥.

(e) If for (sk, c) it holds that (〈g, sk〉, pk) ∈ Qs, for some pk, and that (pk, c) =
(pki, ci) for some i ≤ p, then ˜d(sk, c) = bi.

Proof sketch of Theorem 5. As in Sect. 4 the idea is to give an adversary
B, where BO(1n, pk, c) can simulate responses to T queries of AO,T(1n, pk, c),
without calling 〈u, (pk, c)〉. Let Tqu = 〈T, (1n, PK,C1, . . . , Cn)〉 be an A’s query.
As per T’s computation, B first samples Freq ← FreqQueO,u(PK,n23ϑ). This
may seem problematic since this step involves making u queries. By inspecting
Definition 6, however, we can see for any query 〈u, (pk′, ∗)〉 that needs to be
made, B already knows g−1(pk′). Finally, let FreqPub contain any pk′ such that
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(〈g, ∗〉, pk′) ∈ Freq, and assume w.l.o.g. pk /∈ FreqPub (because otherwise B has
already found g−1(pk).)

Next, B samples (SK ′,Qs,Qc, ˜O) as in T’s execution and starts simulat-
ing D

˜O(SK ′, C1 . . . , Cn). Again the idea is to see if (〈g, ∗〉, pk) ∈ Qs or not. If
(〈g, ∗〉, pk) /∈ Qs: by Lemma 7 we can see B can handle all ˜O queries. In particu-
lar, B will never need to call 〈u, (pk, ∗)〉. After the decryption B performs Step 5
of T’s computation, which B can efficiently do, since no u queries are involved.

If, however, (〈g, ∗〉, pk) ∈ Qs, assuming Sout = D
˜O(SK ′, C1 . . . , Cn), since

pk /∈ FreqPub, the answer to Tqu is ⊥ unless (〈g, ∗〉, pk) occurs during GO(Sout).
Now as before the idea is to show B can find S0 and S1 s.t. Sout ∈ {S0, S1}.
To this end B starts simulating D

˜O(SK ′, C1 . . . , Cn). By Lemma 7 all g̃ and ẽ
queries can be handled. Let the sets W and W′ be formed based on Qc as in
Lemma 7. For ˜d queries: B will be unable to simulate the answer to a query
qu = ˜d(sk′, c′) only if (〈g, sk′〉, pk) ∈ Qs, c′ = c and (pk, c) /∈ W∪W′ (Case (c) of
Lemma 7): in this case, knowing that the answer is the challenge bit b, B starts
two branches of simulation, where it replies to qu with 0 on one branch and with
1 on the other. As before, we need to make sure B provides a consistent reply on
either branch if the same query shows up in the future. The two strings decoded
on the two branches at the end satisfy the above claim. ��

5.5 Putting All Together

We may now use our two main established results to obtain our main result.

Theorem 6. There exists no fully-blackbox construction of 1-seed-circular-
secure bit-encryption schemes from CPA-secure encryption schemes.

5.6 Extensions of the Separation Result

We briefly discuss why our separation holds even if E is a (c log n)-bit encryption
scheme and where our separation fails if E is allowed to be full length.

Remark 1. We first sketch how to adjust T to make our separation work for the
case that (G,E,D) is an η-bit PKE, for η = c log n. To this end, we need to
change Definition 6 (i.e., the procedure FreqQue), so that instead of encrypting
0 and 1 many times (as in the bit encryption case), it encrypts all messages m ∈
{0, 1}η, each many times. The total number of queries still remains polynomial.
The description of the oracle T remains unchanged except that in the first step
we call this new version of FreqQue. We can now prove the exact same version
as Lemma 5, by changing M to have n copies of each string z ∈ {0, 1}η (instead
of having n copies of 0 and n of 1 as in the bit-encryption case). Now the proofs
of the rest of the lemmas that lead up to Theorem 2, as well as the proof of
Theorem 5, remain unchanged.

Finally, note that the above extension heavily relies on the fact that the
message size is O(log n), and so it does not apply if the constructed scheme is
full-length, as expected.
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6 Bit t-seed-circular Security �⇒ Full-Length
(t + 1)-seed-circular Security

In this section we present our results for separating full-length (t + 1)-seed-
circular security from bit t-seed-circular security. To this end we define a weak-
ening oracle Tt+1, for a fixed candidate construction (G,E,D), generalizing a
similar oracle given in Subsect. 4.2. Throughout this section note that (G,E,D)
has the same plaintext and seed space. Mots of the tools underlying Tt+1 have
been presented before, but we need the following extension of Definition 6.

Definition 9. We define the following probabilistic procedure, ExtFreqQue.

– Oracles: O = (g, e,d,u)
– Input: A security parameter 1n (left implicit), public key PK and p ∈ N.
– Output: A set Freq formed as follows.

• Do the following independently p times and add the symbolic versions of
all query/response pairs to Freq: Sample S ← {0, 1}n, and run GO(S) and
EO(1n, PK, S).

• Finally, for any (〈d, (sk, c)〉, ∗) ∈ Freq if u(g(sk), c) = (b, r) �= ⊥ add
(〈e, (pk, b, r)〉, c) to Freq.

Remark 2. Throughout the remaining sections we continue to use Assumption 1.
In particular, since our focus right now is on schemes (G,E,D) with plaintext
space {0, 1}n (i.e., the same as the seed space) we assume that E on any plaintext
m ∈ {0, 1}n makes exactly nϑ queries.

Description of Tt+1: We present the oracle Tt+1. This new oracle shares many
aspects with the oracle T, and so we leave out details whenever appropriate.
Notation. Let t0 be such that t ≤ nt0 .
Oracles: O = (g, e,d,u,w). Denote O = (g, e,d).
Input: (1n, PK1, . . . , PKt+1, C1, . . . , Ct+1)

1. Learning heavy queries: For i ≤ t + 1 let Freqi ← ExtFreqQueO,u

(PKi, n
23ϑ+4t0), and let FreqPubi be the set of public keys pk s.t. (〈g, ∗〉, pk) ∈

Freqi.
2. Sampling consistent oracles/secret-keys: For i ≤ t + 1 sample

( ˜SKi,Q
i
s,Q

i
c) ← ConsOrc(PKi,Freqi), (12)

and let QPubi contain any pk such that w(pk) = � and (〈g, ∗〉, pk) ∈ Qi
s.

3. If for some distinct i, j ∈ [t + 1] (QPubi ∩ QPubj) \ (FreqPubi ∪ FreqPubj) �= ∅
halt and return ⊥.

4. Defining intermediate oracles: For i ≤ t + 1 define

(eimp,i,dimp,i) = EncImpose(g, e,d,Qi
c)

(g̃i, ˜di) = KeyImpose(g, eimp,i,dimp,i,Q
i
s).

Let ẽi = eimp,i, and ˜Oi = (g̃i, ẽi, ˜di).
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5. Decrypting the ciphertexts: Set S1
out = DÕt+1(S̃Kt+1, Ct+1) and for 2 ≤

i ≤ t + 1 set Si
out = DÕi−1(S̃Ki−1, Ci−1).

6. Forming the output. For i ≤ t+1 run GO(Si
out) and let EmbedPubi contain

any pk such that the query/response (〈g, ∗〉, pk) is made during the execution.
If for all i ≤ t+1, QPubi ⊆ EmbedPubi∪FreqPubi, then return S1

out; otherwise,
return ⊥.

To state the main results we define the following environment, specifying a
random choice of (O,u,w) plus those underlying an honest input to Tt+1.

Environment: Envt(n): Output

(O,u,w, S1, . . . , St, PK1, . . . , PKt, E
O(PK1, S2), . . . , EO(PKt, S1)),

where (g, e,d,u,w) ← Ψ , O = (g, e,d), Si ← {0, 1}n and (SKi, PKi) =
GO(Si), for 1 ≤ i ≤ t.

We now state the two main results leading to our claimed separation.

Theorem 7. It holds that

Pr
Env,Tt+1

[Tt+1(PK1, . . . , PKt+1, C1, . . . , Ct+1) = S1] ≥ 1 − 1
n5

, (13)

where

Env = (O,u,w, S1, . . . , St+1, PK1, . . . , PKt+1, C1, . . . , Ct+1) ← Envt+1(n).

Theorem 8. Suppose A is a t-seed circular security adversary with access to
oracles O = (g, e,d) and T that makes at most 2n/8 queries. We have

Pr
O,T,b,sk1,...,skt

[AO,T(1n, pk1, . . . , pkt, e(pk1, sk2), . . . , e(pkt, sk1), e(pk1, b)) = b] ≤ 1

2
+

1

2n/4
,

where O = (O,u,w) ← Ψ , b ← {0, 1}, sk1, . . . , skt ← {0, 1}n and pki = g(ski)
for i ≤ t.

By combining the above two theorems we have the following.

Theorem 9. There exists no fully-blackbox construction of full-length (t + 1)-
seed-circular secure encryption from t-seed-circular secure bit encryption.

7 Constructions Based on Circular Security

We show how our results on seed-circular security extend to rule out a class of
constructions for circular security that we call key-isolating constructions. To
define this class we first define it in a related model we call the canonical model,
and then we define it in the standard model. We start with some definitions.

Canonical-Form (CF) PKE. We call O = (gs,gp, e,d) a CF PKE if
the domain of gp (excluding 1n) is the range of gs and (g, e,d), where
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g(s) = (gs(s),gp(gs(s))), is a PKE. That is, the key-generation algorithm of
a CF scheme first deterministically maps a seed to a secret key, and then deter-
ministically maps the secret key to a public key.

CF-based blackbox model. A blackbox construction in the CF model is a
tuple of oracle algorithms (GS,GP,E,D) s.t. for any CF PKE O = (gs,gp, e,d),
(GSO, GPO, EO,DO) is a CF PKE. Proving a syntactically-unrestricted impos-
sibility result in the CF model implies one in the standard model, since any
CPA-secure CF PKE can be turned into a CPA-secure standard PKE and that
any circular-secure standard PKE can be put into a circular-secure CF PKE.

CF Key-isolating constructions. We call (GS,GP,E,D) key-isolating if GS
never calls gp of the base scheme, i.e., GS only has access to (gs, e,d).

Ruling-out key-isolating constructions. Our earlier results extend to rule
out CF key-isolating constructions for circular security. To do this, we first need
to change the distribution of Ψ , by replacing g with (gs,gp), for gsn : {0, 1}n →
{0, 1}3n and gpn : {0, 1}3n → {0, 1}5n. As for T, which now takes as input a
public key and an encryption of a PK’s secret key, all we need to change is that
in Step 5 of T’s description the set EmbedPub should be formed by executing
GPO on the intermediate, decrypted string (which is now a secret key). All our
proofs about T not breaking the semantic security of the base scheme go through
with only making obvious modifications. The proofs about T being helpful in
breaking the circular security of the constructed scheme follow by noting that all
access to gp during key generation is only made by GP . This fact only becomes
essential in the proof of Lemma 4, and is the reason behind the above way of
defining EmbedPub. Other lemmas follow by making only obvious changes.

Interpretation w.r.t. standard constructions. Our above result also rules
out standard key-isolating constructions. To define this notion for a standard
construction (G,E,D) we first need to slightly change the standard model so
that (G,E,D) takes as oracles a CF PKE. Again, as explained above this is
w.l.o.g. Now we call E = (G,E,D) a standard key-isolating construction if E
admits a key-isolating CF counterpart in the following sense: there exists algo-
rithms GS and GP s.t. (GS,GP,E,D) is key-isolating and (GS,GP ) induces
the same distribution as G, i.e., for any O = (gs,gp, e,d) it holds that
(SK,PK) is identically distributed to (SK ′, PK ′), where (SK,PK) ← GO(1n),
SK ′ ← GSgs,e,d(1n) and PK ′ = GPO(SK ′). Now the impossibility of CF key-
isolating constructions extends to standard ones, by how the notion counterpart
is defined.

Examples. Any standard construction E = (G,E,D) under which seeds
and secret keys are the same is key-isolating: defining GS(S) = S and
GP gs,gp,e,d(S) = Ggs,gp,e,d

2 (S), where G2 is the algorithm corresponding to the
public-key output of G, the construction (GS,GP,E,D) is the CF-counterpart of
(G,E,D) and is key-isolating since GS makes no oracle calls at all. The class of
key-isolating constructions is larger than this; we only wanted to give a concrete
example.

We leave a more comprehensive and formal discussion to the full version.
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8 Discussion Related to Impossibility for Circular
Security

In this section we briefly explain why we were not able to fully extend our
results to the circular-security case. For simplicity, we highlight the difficulties
encountered w.r.t. the simple type of constructions discussed in Sect. 4. In what
follows all mentions of the oracle T for the seed-circular-security case refers to
the oracle T defined in Sect. 4.

As discussed previously, the main challenge in designing an appropriate Ora-
cle T is to make sure that responses to queries to T do not leak information
about the challenge secrets of a CPA adversary A against O = (g, e,d). We
proved this for the seed-circular-security case by providing a CCA2 adversary B
in such a way that BO,u,w(pk, c) is able to simulate AO,T(pk, c).

Roughly speaking, the only part of the execution of T(PK,C1, . . . , Cn) that
is not simulatable by a CCA2-adversary BO,u,w(pk, c) is when during the compu-
tation of D

˜d(SK ′, C1 . . . Cn) a query ˜d(sk′, c) shows up and (〈g, sk′〉, pk) ∈ Qs.
We fixed this non-simulatability problem by adding an extra check at the end of
T’s computation that ensures the following: either the value of g−1(pk) is embed-
ded in Sout (i.e., the query/response pair (〈g, ∗〉, pk) shows up during Gg(Sout))
or the answer to the underlying T query is ⊥.

To define a circular-security weakening oracle T we may be tempted to
proceed as before: T accepts inputs of the form (PK,C1, . . . , Cn), where now
C1, . . . , Cn are (supposedly) bit-wise encryption of a PK’s secret key under
PK itself. (For simplicity, assume that the length of the secret key is n.)
Then, everything remain unchanged, as in T in Sect. 4, until T obtains Sout =
D
˜d(SK ′, C1 . . . Cn), which now is supposedly a PK’s matching secret key. Now

in order to make sure that the oracle T is simulatable (i.e., it does not leak
non-simulatable information to a CPA adversary against O) it seems that, as
before, we need to make sure that g−1(Qpub) is “embedded” in Sout, before
releasing Sout. (Recall the definition of Qpub from T’s definition in Sect. 4.) But
this “embedding condition” seems hard to check. This check was easy for the
seed-circular-security case since we can simply run Gg(Sout) and monitor all
sk′ for which we observe a query/response (〈g, sk′〉, ∗). For the circular-security
case one idea is to run Dd(Sout, ·) on many random encryptions produced as
C ← Ee(PK, b;R) for randomly chosen b and R, and record in a set EmbedSec
all sk′ for which we encounter a query 〈d, (sk′, ∗)〉. We then return Sout if
Qpub ⊆ g(EmbedSec); otherwise, we return ⊥. While this check makes the oracle
T simulatable, it makes T unfortunately too weak in that we cannot anymore
guarantee in general that T(PK,C1 . . . Cn) will return SK with non-negligible
probability, for (SK,PK) ← Gg(1n) and (C1, . . . , Cn) ← Ee(PK,SK), i.e., T
is not useful in general for breaking circular security. (Contrived constructions
(G,E,D) for which this is the case can be given.)

Acknowledgements. We would like to thank Mohammad Mahmoody for useful con-
versations in an early stage of this work.
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Abstract. We show a general compiler that transforms a large class of
erroneous cryptographic schemes (such as public-key encryption, indis-
tinguishability obfuscation, and secure multiparty computation schemes)
into perfectly correct ones. The transformation works for schemes that
are correct on all inputs with probability noticeably larger than half, and
are secure under parallel repetition. We assume the existence of one-way
functions and of functions with deterministic (uniform) time complexity
2O(n) and non-deterministic circuit complexity 2Ω(n).

Our transformation complements previous results that showed how
public-key encryption and indistinguishability obfuscation that err on a
noticeable fraction of inputs can be turned into ones that for all inputs
are often correct.

The technique relies on the idea of “reverse randomization” (Naor,
Crypto 1989) and on Nisan-Wigderson style derandomization, pre-
viously used in cryptography to remove interaction from witness-
indistinguishable proofs and commitment schemes (Barak, Ong and Vad-
han, Crypto 2003).

1 Introduction

Randomized algorithms are often faster and simpler than their state-of-the-art
deterministic counterparts, yet, by their very nature, they are error-prone. This
gap has motivated a rich study of derandomization, where a central avenue has
been the design of pseudo-random generators [BM84,Yao82a,NW94] that could
offer one universal solution for the problem. This has led to surprising results,
intertwining cryptography and complexity theory, and culminating in a deran-
domization of BPP under worst-case complexity assumptions, namely, the exis-
tence of functions in E = Dtime(2O(n)) with worst-case circuit complexity 2Ω(n)

[NW94,IW97].
For cryptographic algorithms, the picture is somewhat more subtle. Indeed,

in cryptography, randomness is almost always necessary to guarantee any sense
of security. While many cryptographic schemes are perfectly correct even if ran-
domized, some do make errors. For example, in some encryption algorithms,
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notably the lattice-based ones [AD97,Reg05], most but not all ciphertexts can
be decrypted correctly. Here, however, we cannot resort to general derandomiza-
tion, as a (completely) derandomized version will most likely be totally insecure.

It gets worse. While for general algorithms infrequent errors are tolerable in
practice, for cryptographic algorithms, errors can be (and have been) exploited
by adversaries (see [BDL01] and a long line of followup works). Thus, the ques-
tion of eliminating errors is ever more important in the cryptographic context.
This question was addressed in a handful of special contexts in cryptography.
In the context of interactive proofs, [GMS87,FGM+89] show how to turn any
interactive proof into one with perfect completeness. In the context of encryption
schemes, Goldreich, Goldwasser, and Halevi [GGH97] showed how to partially
eliminate errors from lattice-based encryption schemes [AD97,Reg05]. Subse-
quent works, starting from that of Dwork, Naor and Reingold [DNR04a], show
how to partially eliminate errors from any encryption scheme [HR05,LT13]. Here,
“partial” refers to the fact that they eliminate errors from the encryption and
decryption algorithms, but not the key generation algorithm. That is, in their
final immunized encryption scheme, it could still be the case that there are bad
keys that always cause decryption errors. In the context of indistinguishability
obfuscation (IO), Bitansky and Vaikuntanathan [BV16] recently showed how to
partially eliminate errors from any IO scheme: namely, they show how to convert
any IO scheme that might err on a fraction of the inputs into one that is correct
on all inputs, with high probability over the coins of the obfuscator.

This Work. We show how to completely immunize a large class of cryptographic
algorithms, turning them into algorithms that make no errors at all. Our most
general result concerns cryptographic algorithms (or protocols) that are “secure
under parallel repetition”. We show:

Theorem 1.1 (Informal). Assume that one-way functions exist and functions
with deterministic (uniform) time complexity 2O(n) and non-deterministic cir-
cuit complexity 2Ω(n) exist. Then, any encryption scheme, indistinguishability
obfuscation scheme, and multiparty computation protocol that is secure under
parallel repetition can be completely immunized against errors.

More precisely, we show that perfect correctness is guaranteed when the
transformed scheme or protocol are executed honestly. The security of the trans-
formed scheme or protocol is inherited from the security of the original scheme
under parallel repetition. In the default setting of encryption and obfuscation
schemes, encryption and obfuscation are always done honestly, and security
under parallel repetition is well known to be guaranteed automatically. Accord-
ingly, we obtain the natural notion of perfectly-correct encryption and obfusca-
tion. In contrast, in the setting of MPC, corrupted parties may in general affect
any part of the computation. In particular, in the case of corrupted parties,
the transformed protocol does not provide a better correctness guarantee, but
only the same correctness guarantee as the original (repeated) protocol. We find
that perfect correctness is a natural requirement and the ability to generically
achieve it for a large class of cryptographic schemes is aesthetically appealing.
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In addition, while in many applications almost perfect correctness may be suffi-
cient, some applications do require perfectly correct cryptographic schemes. For
example, using public-key encryption as a commitment scheme requires perfect
correctness, the construction of non-interactive witness-indistinguishable proofs
in [BP15] requires a perfectly correct indistinguishability obfuscation, and the
construction of 3-message zero knowledge against uniform verifiers [BCPR14],
requires perfectly correct delegation schemes.

Our tools, perhaps unsurprisingly given the above discussion, come from the
area of derandomization, in particular we make heavy use of Nisan-Wigderson
(NW) type pseudorandom generators. Such NW-generators were previously used
by Barak, Ong and Vadhan [BOV07] to remove interaction from commitment
schemes and ZAPs. We use it here for a different purpose, namely to immunize
cryptographic algorithms from errors. Below, we elaborate on the similarities
and differences.

1.1 The Basic Idea

We briefly explain the basic idea behind the transformation, focusing on the
case of public-key encryption. Imagine that we have an encryption scheme given
by randomized key-generation and encryption algorithms, and a deterministic
decryption algorithm (Gen,Enc,Dec), where for any message m ∈ {0, 1}n, there
is a tiny decryption error:

Pr
(rg,re)←{0,1}poly(n)

[Decsk(Encpk(m; re)) �= m | (pk, sk) = Gen(rg)] ≤ 2−n .

Can we deterministically choose “good randomness” (rg, re) that leads to cor-
rect decryption? This question indeed seems analogous to the question of deran-
domizing BPP. There, the problem can be solved using Nisan-Wigderson type
pseudo-random generators [NW94]. Such generators can produce a poly(n)-long
pseudo-random string using a short random seed of length d(n) = O(log n).
They are designed to fool distinguishers of some prescribed polynomial size t(n),
and may run in time 2O(d) � t. Derandomization of the BPP algorithm is then
simply done by enumerating over all 2d = nO(1) seeds and taking the majority.

We can try to use NW-type generators to solve our problem in a similar way.
However, the resulting scheme wouldn’t be secure – indeed, it will be determin-
istic, which means it cannot be semantically secure [GM84]. To get around this,
we use the idea of reverse randomization from [Lau83,Nao91,DN07,DNR04a].
For each possible seed i ∈ {0, 1}d for the NW-generator NWPRG, we derive
corresponding randomness

(ri
e, r

i
g) = NWPRG(i) ⊕ (

BMYPRG(si
e),BMYPRG(si

g)
)

.

Here BMYPRG is a Blum-Micali-Yao (a.k.a cryptographic) pseudo-random
generator [BM82,Yao82b], and the seeds (si

g, s
i
e) ∈ {0, 1}� are chosen indepen-

dently for every i, with the sole restriction that their image is sparse enough
(say, they are of total length � = n/2). Encryption and decryption for any given
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message are now done in parallel with respect to all 2d copies of the original
scheme, where the final result of decryption is defined to be the majority of the
2d decrypted messages.

Security is now guaranteed by the BMY-type generators and the fact that
public-key encryption can be securely performed in parallel. Crucially, the
pseudo-randomness of BMY strings is guaranteed despite the fact that their
image forms a sparse set. The fact that the set of BMY string is sparse will
be used to the perfect correctness of the scheme. In particular, when shifted at
random, this set will evade the (tiny) set of “bad randomness” (that lead to
decryption errors) with high probability 1 − 2�−n ≥ 1 − 2−n/2.

In the actual construction, the image is not shifted truly at random, but
rather by an NW-pseudo-random string, and we would like to argue that this
suffices to get the desired correctness. To argue that NW-pseudo-randomness is
enough, we need to show that with high enough probability (say 0.51) over the
choice of the NW string, the shifted image of the BMY generator still evades “bad
randomness”. This last property may not be efficiently testable deterministically,
but can be tested non-deterministically in fixed polynomial time, by guessing the
seeds for the BMY generator that would lead to bad randomness. We accordingly
rely on NW generators that fool non-deterministic circuits. Such pseudo-random
generators are known under the worst case assumption that there exist functions
in E with non-deterministic circuit complexity 2Ω(n) [SU01].

Relation to [BOV07]. Barak, Ong, and Vadhan were the first to demonstrate
how NW-type derandomization can be useful in cryptography. They showed how
NW generators can be used to derandomize Naor’s commitments [Nao91] and
Dwork and Naor’s ZAPs [DN07]. In the applications they examined, “reverse
randomization” is already encapsulated in the constructions of ZAPs and com-
mitments that they start from, and they show that “the random shift” can be
derandomized, using the fact that ZAPs and commitments are secure under
parallel repetition.

There, they were not interested in the correctness of a specific computation
per se, but rather in the existence of an “incorrect object”, namely an accepting
proof for a false statement in ZAPs, or a commitment with inconsistent open-
ings. Another difference is that in the applications they consider, it is in fact
enough to use hitting set generators (against co-non-determinism) rather than
pseudorandom generators. Intuitively, the reason is that in these applications
there is one-sided error. For example, in a ZAP system, one already assumes
that true statements are always accepted by the verifier, so when derandomizing
they only need to recognize false statements. This is analogous to having an
encryption system that is always correct on encryptions of zero, but may make
mistakes on encryptions of one.

Organization. In Sect. 2, we give the required preliminaries. Section 3 presents
the transformation itself. In Sect. 4, we discuss several examples of interest where
the transformation can be applied.



596 N. Bitansky and V. Vaikuntanathan

2 Preliminaries

In this section, we give the required preliminaries, including standard computa-
tional concepts, cryptographic schemes and protocols, and the derandomization
tools that we use.

2.1 Standard Computational Concepts

We recall standard computational concepts concerning Turing machines and
Boolean circuits.

– By algorithm we mean a uniform Turing machine. We say that an algorithm
is PPT if it is probabilistic and polynomial time.

– A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N
, such

that each circuit Cλ is of polynomial size λO(1) and has λO(1) input and output
bits.

– We follow the standard habit of modeling any efficient adversary strategy A
as a family of polynomial-size circuits. For an adversary A corresponding to
a family of polynomial-size circuits {Aλ}λ∈N

, we often omit the subscript λ,
when it is clear from the context. For simplicity, we shall simply call such an
adversary a polynomial-size adversary.

– We say that a function f : N → R is negligible if it decays asymptotically
faster than any polynomial.

– Two ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
said to be computationally indistinguishable, denoted by X ≈c Y, if for all
polynomial-size distinguishers D, there exists a negligible function ν such that
for all λ,

|Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| ≤ ν(λ).

2.2 Cryptographic Schemes and Protocols

We consider a simple model of cryptographic schemes and protocols that will
allow to describe the transformation generally. In Sect. 4, we give several exam-
ples of such schemes and protocols.

Executions: Let λ be a security parameter and let m = m(λ), n = n(λ), � =
�(λ) be polynomially-bounded functions. An (honest) execution of an m-party
scheme (or protocol) Π involves interaction between m PPT parties with inputs
(x1, . . . , xm) ∈ {0, 1}n×m and randomness (r1, . . . , rm) ∈ {0, 1}�×m, at the end
of which they each produce outputs (y1, . . . , ym) ∈ {0, 1}n×m. Abstracting out,
we will think of Π as a single PPT process that runs in some fixed polynomial
time and denote it by y ← Π(1λ, x, r), where x = (x1, . . . , xm), y = (y1, . . . , ym),
and r = (r1, . . . , rm).



A Note on Perfect Correctness by Derandomization 597

Definition 2.1 ((1 − α)-Correctness). Let f : {0, 1}n×m → {0, 1}n×m be a
polynomial-time computable function. Π computes f (1 − α)-correctly if for any
λ and any x ∈ {0, 1}n×m,

Pr
r←{0,1}�×m

[

y �= f(x)
∣

∣ y ← Π(1λ, x, r)
] ≤ α(λ) .

Repeated Executions: For a function k = k(λ), inputs x = (x1, . . . , xm) ∈
{0, 1}n×m and randomness r = (rij)i∈[m],j∈[k], and ri,j ∈ {0, 1}�, the repeated
execution y ← Π⊗k(1λ, x, r) consists of executing Π(1λ, x, r1), . . . , Π(1λ, x, rk),
where rj = (r1j , . . . , rmj), in parallel and obtaining the corresponding outputs,
namely, y = (yij)i∈[m],j∈[k].

2.3 NW and BMY PRGs

We now define the basic tools required for the main transformation — NW-type
PRGs [NW94] and BMY-type PRGs [BM82,Yao82b]. The transformation itself
is given in the next section.

Definition 2.2 (Nondeterministic Circuits). A nondeterministic boolean
circuit C(x,w) takes x as a primary input and w as a witness. We define
C(x) := 1 if and only if there exists w such that C(x,w) = 1.

Definition 2.3 (NW-Type PRGs against Nondeterministic Circuits).
An algorithm NWPRG : {0, 1}d(n) → {0, 1}n is an NW-generator against non-
deterministic circuits of size t(n) if it is computable in time 2O(d(n)) and any
non-deterministic circuit C of size at most t(n) distinguishes U ← {0, 1}n from
NWPRG(s), where s ← {0, 1}d(n), with advantage at most 1/t(n).

We shall rely on the following theorem by Shaltiel and Umans [SU01] regard-
ing the existence NW-type PRGs as above assuming worst-case hardness for
non-deterministic circuits.

Theorem 2.4 ([SU01]). Assume there exists a function f : {0, 1}n → {0, 1}
in E = Dtime(2O(n)) with nondeterministic circuit complexity 2Ω(n). Then,
for any polynomial t(·), there exists an NW-generator against non-deterministic
circuits of size t(n) NWPRG : {0, 1}d(n) → {0, 1}n, where d(n) = O(log n).

We remark that the above is a worst-case assumption in the sense that the
function f needs to be hard in the worst-case (and not necessarily in the average-
case). The assumption can be seen as a natural generalization of the assumption
that EXP �⊆ NP. We also note that there is a universal candidate for the
corresponding PRG, by instantiating the hard function with any E-complete
language under linear reductions. See further discussion in [BOV07].

We now define BMY-type (a.k.a cryptographic) PRGs.

Definition 2.5 (BMY-Type PRGs). An algorithm BMYPRG : {0, 1}d(n) →
{0, 1}n is a BMY-generator if it is computable in time poly(d(n)) and any
polynomial-size adversary distinguishes U ← {0, 1}n from BMYPRG(n), where
s ← {0, 1}d(n), with negligible advantage n−ω(1).
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Theorem 2.6 ([HILL99]). BMY-type pseudo-random generators can be con-
structed from any one-way function.

3 The Error-Removing Transformation

We now describe a transformation from any (1 − α)-correct scheme Π for a
function f into a perfectly correct one. For a simpler exposition, we restrict
attention to the case that the error α is tiny. We later explain how this restriction
can be removed.

Ingredients. In the following, let λ be a security parameter, let m = m(λ), n =
n(λ), � = �(λ) be polynomials, and α = α(λ) ≤ 2−λm−2. We rely on the following:

– A (1−α)-correct scheme Π computing f : {0, 1}n×m → {0, 1}n×m where each
party uses randomness of length �.

– A BMY-type pseudo-random generator BMYPRG : {0, 1}λ → {0, 1}�.
– An NW-type pseudo-random generator NWPRG : {0, 1}d → {0, 1}�×m against

nondeterministic circuits of size t = t(λ), where t and d depend on the parame-
ters m,n, �,Π, f,BMYPRG, t = λO(1), d(λ) = O(log λ), and will be specified
later on. We shall denote k = 2d.

The New Scheme:

Given security parameter 1λ and input x ∈ {0, 1}n×m:

1. Randomness Generation: Each party i ∈ [m]
– samples k BMY strings (rBMY

i1 , . . . , rBMY
ik ), where rBMY

ij = BMYPRG(sij)
and sij ← {0, 1}λ.

– computes (all) k NW strings (rNW1 , . . . , rNWk ), where rNWj = NWPRG(j),
and derives (rNWi1 , . . . , rNWik ), where rij is the i-th �-bit block of rNWj .

– compute ri1, . . . , rik where rij = rBMY
ij ⊕ rNWij .

2. Emulating the Parallel Scheme:
– the parties emulate the repeated scheme Π⊗k(1λ, x, r), with randomness

r = (rij)i∈[m],j∈[k].
– each party i obtains outputs (yi1, . . . , yik), and in turn computes and

outputs yi = majority(yi1, . . . , yik).

Correctness. We now turn to show that the new scheme is perfectly correct.

Proposition 3.1. The new scheme is perfectly-correct.

Proof. We first note that had rNW been chosen at truly random (instead of using
NWPRG) then for any input, with high probability over the choice of rNW, the
corresponding scheme would have been perfectly correct.
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Claim. For any x ∈ {0, 1}n×m,

Pr
rNW←{0,1}�×m

[

∃s1, . . . , sm ∈ {0, 1}λ :
f(x) �= Π(1λ, x, r)
r = rBMY

s ⊕ rNW

]

≤ 1
4

,

where rBMY
s = (BMYPRG(s1), . . . ,BMYPRG(sm)).

Proof. Fixing any such x and s = (s1, . . . , sm), the string r = rBMY
s ⊕ rNW is

distributed uniformly at random. In this case, the scheme is guaranteed to err
with probability at most α ≤ 2−λm/4. The claim now follows by taking a union
bound over all 2λm tuples s1, . . . , sm. �

We now claim that a similar property holds with roughly the same probability
when rNW is pseudorandom as in the actual transformation.

Claim. For any x ∈ {0, 1}n×m,

Pr
j←{0,1}d

[

∃s1, . . . , sm ∈ {0, 1}λ :
f(x) �= Π(1λ, x, r)
r = rBMY

s ⊕ rNWj

]

≤ 1
4

+
1
t

,

where rBMY
s = (BMYPRG(s1), . . . ,BMYPRG(sm)) and rNWj = NWPRG(j).

Proof. Assume towards contradiction that the claim does not hold for some x ∈
{0, 1}n×m. We construct a non-deterministic distinguisher that breaks NWPRG.
The distinguisher, given rNW, non-deterministically guesses s1, . . . , sm, computes
rBMY = (BMYPRG(s1), . . . ,BMYPRG(sm)), r = rNW⊕rBMY, and checks whether
f(x) �= Π(1λ, x, r). As we just proved in the previous claim, when rNW is truly
random, such a witness s1, . . . , sm exists with probability at most 1/4, whereas,
by our assumption towards contradiction, when rNW is pseudo-random such a
witness exists with probability larger than 1

t + 1
4 .

The size of the above distinguisher is some fixed polynomial t′(λ) that
depends only on m,n, � and the time required to compute Π, f,BMYPRG. Thus,
in the construction we choose t > max (t′, 8), meaning that the constructed
distinguisher indeed breaks NWPRG. �

With the last claim, we now conclude the proof of Proposition 3.1. Indeed, for
any input x, when emulating the k-fold repetition Π⊗k(1λ, x, r), the randomness
used for the j-th copy Π(1λ, x, rj) is rj = rNWj ⊕ rBMY

sj
where rNWj = NWPRG(j)

and rBMY
sj

= (BMYPRG(sj1), . . . ,BMYPRG(sj1)). By the last claim, for all but
a 1

4 + 1
t ≤ 3

8 fraction of the NW-seeds j, any choice of BMY-seeds sj yields
the correct result yj = f(x) in the corresponding execution Π(1λ, x, rj). In
particular, it is always the case that the majority of executions results in y =
f(x), as required. �
Security. We now observe that the randomness generated according to the
transformation is indistinguishable from real randomness. Intuitively, this means
that if the original scheme was secure under parallel-repetition, when the honest
parties use real randomness, it will remain as secure when using randomness gen-
erated according to the transformation. Examples are given in the next section.
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Concretely, we consider two distributions rtra and runi on randomness for the
parties in Π⊗k:

1. In rtra =
(

rtraij : i ∈ [m], j ∈ [k]
)

, each rtraij is computed as in the above trans-
formation; namely rij = rBMY

ij ⊕ rNWij , where rBMY
i,j = BMYPRG(sij) for a

random seed sij ← {0, 1}λ and rNWij is the i-th �-bit block of NWPRG(j).
2. In runi =

(

runiij : i ∈ [m], j ∈ [k]
)

, each runiij is sampled uniformly at random;
namely runiij ← {0, 1}�.

Proposition 3.2. rtra and runi are computationally indistinguishable.

Proof. By the security of the BMY PRG, for any i, j:

rtraij = rBMY
ij ⊕ rNWij = BMYPRG(sij) ⊕ rNWij ≈c runiij ⊕ rNWij ≡ runiij .

Since rtraij (respectively runiij ) is generated independently from all other rtrai′j′

(respectively runii′j′), the proposition follows by a standard hybrid argument.

Removing the Assumption Regarding Tiny Error. Above we assumed
that α(λ) ≤ 2−λm−2. We can start from any α ≤ 1

2 − η, for η = λ−O(1), per-
form k′ = O(λmη−2) repetitions to reduce the error, and then apply the above
transformation.

The amount of randomness �(λ), and the execution time, grow proportionally,
but are still polynomial in λ. Also, the same security guarantee as above holds,
except that we should consider the (k × k′)-fold repetition of Π, rather than the
k-fold one. This is sufficient as long as the original scheme was secure for any
polynomial number of repetitions.

4 Examples of Interest

We now discuss three examples of interest.

Public-Key Encryption. Our first example concerns public-key encryption.
We start by recalling the definition.

Definition 4.1 (Public-Key Encryption). For a message space M, and
function α(·) ≤ 1, a triple of algorithms (Gen,Enc,Dec), where the first two
are PPT and third is deterministic polynomial-time, is said to be a public-key
encryption scheme for M with (1 − α)-correctness if it satisfies:

1. (1 − α)-Correctness: for any m ∈ M and security parameter λ,

Pr
Gen,Enc

[

Decsk(Encpk(m)) = m
∣

∣ (pk, sk) ← Gen(1λ)
] ≥ 1 − α(λ) .
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2. Semantic security: for any polynomial-size distinguisher D there exists a
negligible function μ(·), such that for any two messages m,m′ ∈ M of the
same size:

|Pr[D(Encpk(m)) = 1] − Pr[Encpk(m′)) = 1]| ≤ μ(λ) ,

where the probability is over the coins of Enc and the choice of pk sampled by
Gen(1λ).

Public-key encryption can be modeled as a three-party scheme Π consisting of a
generator, an encryptor, and a decryptor. The generator has no input, and uses
its randomness r1 to generate pk and sk, which are sent to the encryptor and
decryptor, respectively. The encryptor has as input a message m, and uses its
randomness r2 in order to generate an encryption Encpk(m; r2), which is sent to
the decryptor. The decryptor has no input nor randomness, it uses the secret
key to decrypt and outputs the decrypted message. (In this case the function
computed by Π is f(⊥,m,⊥) = (⊥,⊥,m).)

In the repeated scheme Π⊗k, the generator Gen(1λ; r1j) is applied k indepen-
dent times, with fresh randomness r1j for each j ∈ [k], to generate corresponding
keys pk = {pkj} , sk = {skj}. Encryption involves k independent encryptions:

Enc⊗k
pk (m; r2) := Encpk1(m; r21), . . . ,Encpkk

(m; r2k) .

As defined in Sect. 3, when applying the error-removal transformation, the ran-
domness r = (rij : i ∈ [2], j ∈ [k]) is sampled according to rtra instead of truly
at random according to runi. Decryption is done by decrypting each encryption
with the corresponding skj and outputting the majority.

The correctness of the new scheme given by the transformation, follows as in
Proposition 3.1. We next observe that the new scheme is also secure. Concretely,
for any (infinite sequence of) two messages m,m′ ∈ M,

Enc⊗k
pk (m; rtra2 ) ≈c Enc⊗k

pk (m; runi2 ) ≈c Enc⊗k
pk (m′; runi2 ) ≈c Enc⊗k

pk (m′; rtra2 ) .

The fact that Enc⊗k
pk (m; runi2 ) ≈c Enc⊗k

pk (m′; runi2 ) follows from the semantic secu-
rity of the underlying encryption scheme and a standard hybrid argument. The
first and last indistinguishability relations follow from the fact that rtra2 ≈c runi2

(by Proposition 3.2).
In [DNR04a], Dwork, Naor, and Reingold show how public-key encryption

where decryption errors may even occur for a large fraction of messages, can be
transformed into ones that only have a tiny decryption error over the randomness
of the scheme. Applying our transformation, we can further turn such schemes
into perfectly correct ones.

Indistinguishability Obfuscation. Our second example concerns indistin-
guishability obfuscation (IO) [BGI+12]. We start by recalling the definition.

Definition 4.2 (Indistinguishability Obfuscation). For a class of circuits
C, and function α(·) ≤ 1, a PPT algorithm O is said to be an indistinguishability
obfuscator for C with (1 − α)-correctness if it satisfies:
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1. (1 − α)-Correctness: for any C ∈ C and security parameter λ,

Pr
O

[∀x : O(C, 1λ)(x) = C(x)
] ≥ 1 − α(λ) .

2. Indistinguishability: for any polynomial-size distinguisher D there exists a
negligible function μ(·), such that for any two circuits C,C ′ ∈ C that compute
the same function and are of the same size:

∣

∣Pr[D(O(C, 1λ)) = 1] − Pr[D(O(C ′, 1λ)) = 1]
∣

∣ ≤ μ(λ) ,

where the probability is over the coins of D and O.

IO can be modeled as a two-party scheme Π consisting of an obfuscator and an
evaluator. The obfuscator has as input a circuit C, and uses its randomness r1
in order to create an obfuscated circuit ˜C = O(C, 1λ; r1), which is sent to the
evaluator. The evaluator has an input x for the circuit, and no randomness, it
computes ˜C(x) and outputs the result. (In this case the function computed by
Π is f(C, x) = (⊥, C(x)).)

In the repeated scheme Π⊗k, obfuscation involves k independent obfusca-
tions:

O⊗k(C, 1λ; r1) := O(C, 1λ; r11), . . . ,O(C, 1λ; r1k) .

As defined in Sect. 3, when applying the error-removal transformation, the ran-
domness r = (r1j : j ∈ [k]) is sampled according to rtra instead of truly at ran-
dom according to runi. Evaluation for input x is done by running each obfuscated
circuit on the input x and outputting the majority of outputs.

The correctness of the new scheme given by the transformation, follows as in
Proposition 3.1. We now observe that the new scheme is also secure, which follows
similarly to the case of public-key encryption considered above. Concretely, for
any (infinite sequence of) two equal-size circuits C,C ′ ∈ C,

O⊗k(C, 1λ; rtra1 ) ≈c O⊗k(C, 1λ; runi1 ) ≈c O⊗k(C ′, 1λ; runi1 ) ≈c O⊗k(C ′, 1λ; rtra1 ) .

The fact that O⊗k(C, 1λ; runi1 ) ≈c O⊗k(C ′, 1λ; runi1 ) follows from the security of
the underlying obfuscation scheme and a standard hybrid argument. The first
and last indistinguishability relations follow from the fact that rtra1 ≈c runi1 (by
Proposition 3.2).

In [BV16], Bitansky and Vaikuntanathan show how indistinguishability
obfuscation [BGI+12] where the obfuscated circuit may err also on a large frac-
tion of inputs can be transformed into one that only has a tiny error over the
randomness of the obfuscator as required here. Applying our transformation, we
can further turn such schemes into perfectly correct ones.

MPC. Our third and last example concerns multi-party computation (MPC)
protocols. There are several models for capturing the adversarial capabilities in
an MPC protocol. Roughly speaking, our transformation can be applied when-
ever the protocol is secure against parallel repetition. In the new protocol, perfect
correctness will be guaranteed when all the parties behave honestly. The security



A Note on Perfect Correctness by Derandomization 603

guarantee given by the new protocol will be inherited from the original repeated
protocol. We stress that, in the case of corrupted parties, the transformed pro-
tocol does not provide any correctness guarantees beyond those given by the
original (repeated) protocol. In particular, if the adversary can inflict a certain
correctness error in the original (repeated) protocol, it may also be able to do
so in the transformed protocol.

We now give more details. Since we rely on standard MPC conventions, we
shall keep our description relatively light (for further reading, see for instance
[Can01,Gol04]). We consider protocols with security against static corruptions
according to the real-ideal paradigm. For simplicity of exposition, we restrict
attention to the single-execution setting. (Later, we explain how the transforma-
tion can also be applied in the setting of multiple executions, for example, in the
UC model [Can01].) In this setting, the adversary A corrupts some set of parties
C ⊆ [m], which it fully controls throughout the protocol, and can also choose the
inputs for honest parties at the onset of the computation. The adversarial view
in the protocol consists of all the communication generated by the honest parties
and their respective outputs. We denote by RealAΠ(1λ, z; r) the polynomial-time
process that generates the adversarial view and the outputs of the honest par-
ties in [m] \ C when these parties execute protocol Π for functionality f with
randomness r = (ri1 , . . . , rim−|C|), and a PPT adversary A with auxiliary input
z controlling the parties in C.

The requirement is that the output of this process can be simulated by a PPT
process IdealSf (1λ, z) called the ideal process where A is replaced by an efficient
simulator S. The simulator can only submit inputs x1, . . . , xm to f , learn the
outputs of the corrupted parties in C, and has to generate the adversarial view.
The ideal process outputs the view generated by the simulator as well as the
output generated by f for the honest parties.

As before, we denote by Π⊗k the k-fold parallel repetition of a protocol Π for
computing f⊗k(x) = (f(x))k, where each honest party i ∈ [m] \ C, given input
xi, runs k parallel copies of Π, all with the same input xi and obtains outputs
yi1, . . . , yik. We consider protocols that are secure under parallel repetition in
the following sense.

Definition 4.3. We say that an MPC protocol Π (for some functionality f) is
secure under parallel repetition with respect to an ideal process Ideal if for any
PPT adversary A and polynomial k(λ) there exists a PPT simulator S such that
for any (infinite sequence of) security parameter λ ∈ N and auxiliary input in
z ∈ {0, 1}∗,

RealAΠ⊗k
(1λ, z) ≈c IdealSf⊗k

(1λ, z) .

We denote by Π tra the protocol Π for computing f after applying the trans-
formation from Sect. 3 where Π is repeated in k times in parallel, the random-
ness of parties is derived as defined in the transformation, and the final output
of party i is set to majority(yi1, . . . , yik). When all the parties act honestly, the
correctness of the new protocol Π tra given by the transformation, follows as in
Proposition 3.1.
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We show that if the original protocol is secure under parallel repetition then
the transformed protocol is as secure.

Claim. Assume that Π is a protocol for f that is secure under parallel repetition
(in the sense of Definition 4.3). For any PPT adversary A against Π tra, viewing
A as an adversary against Π⊗k, let S be its simulator given by Definition 4.3.
Then for any (infinite sequence of) security parameter λ, and auxiliary input z,

RealAΠtra(1λ, z) ≈c IdealSf (1λ, z) .

Proof. Let Πmaj
⊗k be the protocol where the parties first execute the k-fold repe-

tition of Π⊗k and then each party sets its final output to be the majority of the
outputs obtained in that execution. Then we first note that

RealAΠtra(1λ, z) ≡ RealA
Πmaj

⊗k

(1λ, z; rtra) ,

where rtra is the randomness of the honest parties, generated according to our
transformation. By Proposition 3.2, it holds that:

RealAΠtra(1λ, z) ≡ RealA
Πmaj

⊗k

(1λ, z; rtra) ≈c RealA
Πmaj

⊗k

(1λ, z; runi) ,

where rtra is randomness generated according to our transformation and runi is
truly random. It is left to note that

RealA
Πmaj

⊗k

(1λ, z; runi) ≈c IdealSf (1λ, z) .

Indeed, recall that by Definition 4.3,

RealΠ⊗k

A(1λ, z; runi) ≈c IdealSf⊗k
(1λ, z) ,

and each of the first two distributions can be efficiently computed from the
respective distribution in the second two, by fixing the (single) output of each
honest party to be the majority of its outputs.

Applying the Transformation in More General Models. Above, we have
considered a model with a single execution. The analysis naturally extends to
more general models such as the model of universally composable (UC) protocols
[Can01], where multiple executions controlled by an adversarial environment can
be performed. Indeed, the only feature of the model we have relied on is that
the real world view can be generated using the randomness of honest parties as
external input (regardless of how the randomness was generated), which is the
case as long corruptions are static, and the adversary is never exposed to the
randomness of honest parties, but only to the communication between parties.
This is also the case in the UC model.
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Abstract. Micropayments (payments worth a few pennies) have numer-
ous potential applications. A challenge in achieving them is that payment
networks charge fees that are high compared to “micro” sums of money.

Wheeler (1996) and Rivest (1997) proposed probabilistic payments as
a technique to achieve micropayments: a merchant receives a macro-value
payment with a given probability so that, in expectation, he receives
a micro-value payment. Despite much research and trial deployment,
micropayment schemes have not seen adoption, partly because a trusted
party is required to process payments and resolve disputes.

The widespread adoption of decentralized currencies such as Bitcoin
(2009) suggests that decentralized micropayment schemes are easier to
deploy. Pass and Shelat (2015) proposed several micropayment schemes
for Bitcoin, but their schemes provide no more privacy guarantees than
Bitcoin itself, whose transactions are recorded in plaintext in a public
ledger.

We formulate and construct decentralized anonymous micropayment
(DAM) schemes, which enable parties with access to a ledger to conduct
offline probabilistic payments with one another, directly and privately.
Our techniques extend those of Zerocash (2014) with a new privacy-
preserving probabilistic payment protocol. One of the key ingredients of
our construction is fractional message transfer (FMT), a primitive that
enables probabilistic message transmission between two parties, and for
which we give an efficient instantiation.

Double spending in our setting cannot be prevented. Our second con-
tribution is an economic analysis that bounds the additional utility gain
of any cheating strategy, and applies to virtually any probabilistic pay-
ment scheme with offline validation. In our construction, this bound
allows us to deter double spending by way of advance deposits that are
revoked when cheating is detected.

1 Introduction

We formulate and construct decentralized anonymous micropayments, by way of
probabilistic payments.
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Micropayments. A micropayment is a payment of a small amount, e.g., a frac-
tion of a penny [Whe96,Riv97]. Micropayments have many potential applica-
tions, including advertisement-free content delivery, spam protection, rewarding
nodes of P2P networks, and others. Achieving micropayments involves at least
two main challenges. First, payment processing fees dwarf “micro” payment val-
ues. Second, micropayment applications often require fast merchant responses,
which, in many settings, are achieved via offline payments, which are vulnerable
to double spending.

Probabilistic Payments. A technique to reduce processing fees is to amortize
them over multiple payments by way of probabilistic payments [Whe96,Riv97].1

These are protocols that enable a customer to pay V units of currency to a
merchant with probability p: with probability 1 − p the merchant receives a
nullpayment that is not processed, and with probability p the merchant receives
a macropayment that is processed. In expectation, the merchant receives pV
units per micropayment, but the overhead and processing fees of these “lottery
tickets” is p times smaller as only the infrequently generated macropayments are
actually handled by the payment network. Constructing probabilistic payments
is an area of ongoing interest in cryptography.

Centralized vs. decentralized systems. Despite extensive research and trial
deployments [Whe96,Riv97,LO98,MR02,Riv04,Mic14], micropayment schemes
have not seen widespread usage. This is perhaps due to them being centralized
systems: a trusted third party is tasked with processing payments and punishing
cheaters. Appointing such a party raises deployment costs, requires establishing
complex business relationships between all involved (the trusted party, mer-
chants, and customers), and makes participation conditional on certain require-
ments being met [vOR+03].

Recent work in digital currencies has focused on decentralized systems, as the
cost of entry and deployment appears to be lower. The most notable such cur-
rency is Bitcoin [Nak09], a widely adopted peer-to-peer payment system. Unlike
traditional banking and e-cash schemes [Cha82,CHL05,ST99] where transac-
tions are processed by a trusted party, Bitcoin utilizes a distributed public ledger
known as the blockchain to store all transactions; these transactions are verified
by network nodes in a peer-to-peer fashion.

Decentralized systems are thus potentially attractive for micropayments,
because the overhead involving trusted parties is no longer a factor. However,
Bitcoin processing fees are still relatively high (as of May 2016 the fee for a
1kB-transaction is ≈ $0.20), with present fees believed to be well below the cost
of performing a transaction on the Bitcoin network [MB15]. Thus, fee amortiza-
tion is still necessary. Caldwell [Cal12] first sketched probabilistic payments for
Bitcoin. Recently, Pass and Shelat [PS15,PS16] also proposed three probabilistic
payment schemes for Bitcoin, where, informally, the customer first puts V bit-
coins in escrow, and then the customer and merchant engage in a coin-flipping
protocol that allows the merchant to retrieve the escrow with probability p.

1 Another technique is micropayment channels, which we discuss in Sect. 1.2.
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Their three schemes differ in how payments are processed and how disputes are
resolved.

Our privacy goal and limitations of prior work. We study the question
of how to construct decentralized anonymous micropayments via the technique
of (offline) probabilistic payments. The aforementioned prior work [PS15,PS16]
provides no more privacy than the underlying Bitcoin protocol. And Bitcoin
itself provides little to no privacy because every transaction is publicly broad-
cast and contains a payment’s origin, destination, and amount; a user’s pay-
ment history is thus readily available to any passive observer who can can link
pseudonyms together or to real world identities.2 This lack of privacy is partic-
ularly dangerous for micropayment applications because they typically involve
high-volume pattern-rich payments (e.g., per-click payments while surfing the
web), and sometimes necessitate user anonymity (e.g., bandwidth payments for
Tor relays [BP15]).

Privacy is not merely an issue of individual users: if each coin’s history is
public, a customer may not be able to spend a coin at its ‘declared’ value due
to its past. For example, a merchant may not accept coins whose past owners
include certain political organizations. Privacy thus ensures a fundamental prop-
erty of the currency: fungibility, which means that any two sets of coins with the
same ‘declared’ total value are interchangeable, regardless of their provenance.

Prior work on privacy-preserving analogues of Bitcoin [MGGR13,DFKP13,
BCG+14] does not achieve probabilistic payments, and merely “plugging” these
schemes into [PS15,PS16]’s approach results in subtle problems. Consider the fol-
lowing natural modification to Pass and Shelat’s coin-flipping protocol: instead
of a Bitcoin transaction, the sender probabilistically transmits to the merchant
a Zerocash transaction [BCG+14]. Despite the strong anonymity guarantees
provided by Zerocash, merchants still learn information about their customers’
spending habits, because each Zerocash transaction includes a unique serial num-
ber corresponding to the spent “coin”. Since the customer sends to the merchant
information about the escrow, this serial number is revealed in each micropay-
ment. Since the same escrow is used across multiple probabilistic payments (to
amortize fees), privacy of the customer is compromised because the merchant
learns (1) which (macro or null) payments to him were made with the same
escrow; and (2) which macropayments to other merchants were made with an
escrow used for payments to him. This breach of privacy worsens if merchants
share information with one another. In sum, while the above natural approach
achieves “macropayment unlinkability”, micropayments are still linkable, and
thus customers have little privacy.

Double spending in offline probabilistic payments. Micropayment appli-
cations often require fast responses. In many settings, these in turn require offline
validation: a merchant responds to a payment after only a local “offline” check,

2 This is not merely a theoretical concern: extracting information from Bitcoin trans-
actions is the subject of applied research [RH11,BBSU12,RS13,MPJ+13] and com-
mercial ventures [Ell13,Blo14,Cha15].
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because he cannot wait for the payment network to validate the payment (this
validation instead completes after the merchant’s response). For example, valida-
tion takes a few minutes in Bitcoin, while responding to unconfirmed zero-conf
transactions takes only a few seconds. We thus focus on offline probabilistic
payments.

However, such payments are vulnerable to double spending, as we now explain.
First, double spending cannot be prevented for offline payments, because, to
prevent it, a merchant would have to refrain from responding to any payment
before all payments up to, and including, this payment have been validated.
One fallback is to detect and punish all double-spending customers. However,
for offline probabilistic payments, not all double spending can even be detected.

Indeed, there are two types of double spending when using the same lottery
ticket in two probabilistic payments: (1) both payments result in macropay-
ments; or (2) the first payment results in a macropayment (thereby ‘consuming’
the ticket) while the second payment results in a nullpayment. While detecting
the first type is easy, detecting the second type requires the payment network to
‘know’ the temporal order of all payments, because whether the nullpayment or
the macropayment occurred first determines whether the two payments corre-
spond to honest behavior (nullpayment first) or not (macropayment first). But
knowing the global order of all payments (with high precision) is a strong syn-
chronization property that is unrealistic in many decentralized settings, includ-
ing that of Bitcoin, because information does not instantly reach everyone in the
network.

Given that not all double spending can be detected, the “detect-and-punish”
approach is effective only if the disadvantages of being punished (upon detection)
outweigh the advantages of double spending. This may be plausible in the cen-
tralized setting, where customers have registered with a trusted party that can
permanently ban and legally prosecute them. In the decentralized setting, how-
ever, banning has few consequences, if any: anyone can abandon old identities
and use fresh new identities in their place.

Ruffing, Kate, and Schröder [RKS15] introduce “accountable assertions”,
which enable timelocked deposits in Bitcoin that are revoked upon evidence of
double spending. Pass and Shelat [PS16] also suggest a Bitcoin-specific penalty
mechanism to deter rational customers and merchants from cheating.3 Unfortu-
nately, both of these works do not provide an economic analysis to indicate how
large a penalty should be to deter double spending. Such an analysis is crucial:
how could detect-and-punish be a deterrent if double spending were to yield
unbounded additional utility?

1.1 Our Contributions

We overcome the aforementioned limitations via a combination of cryptographic
and economic techniques. We adopt a “detect-and-punish” approach in which
3 We also note that two of the three schemes in [PS15] do not support offline payments,

and the remaining one only provides “fast online payments” where an online (publicly
verifiable) trusted party assists the ledger by processing macropayments faster.
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cryptography is used to retroactively detect and economically punish double
spending and, separately, an economic analysis clarifies how much to punish so
as to deter double spending in the first place. More precisely, we present the
following three contributions.

1.1.1 Economic Analysis of Double Spending for Offline
Probabilistic Payments

We characterize the additional utility that can be gained by double spending via
offline probabilistic payments. We suppose that: (i) every probabilistic payment
is backed by an advance deposit;4 (ii) all macropayment double spends can be
detected; and (iii) if a merchant detects a double spend then he reports it,
and doing so results in the revocation of the cheating customer’s deposit. (Our
cryptographic constructions will provide suitable mechanisms for these tasks.)
We then ask: how large must the deposit be in order to deter double spending?

We provide a simple yet powerful analysis that answers this question under
reasonable network behavior. Namely, let T denote the time it takes to catch a
macropayment double spend (e.g., in Bitcoin one could take T to be the net-
work’s broadcast time). Within any period of time T , let A denote the maxi-
mum cumulative value of probabilistic payments and W the maximum cumu-
lative value of macropayments; our analysis will show that imposing bounds on
these quantities is necessary. To simplify discussions, we make the assumption
that only macropayment (and not nullpayment) double spends are detectable;
our analysis extends to the case where nullpayment double spends may also be
detected eventually (see Remark 1).

Below we informally state our theorem, for simplicity in the special case where
the macropayment value V and the payment probability p are fixed across all
probabilistic payments, and all merchants share the same detection time T . The
formal statement that we prove is in fact more general, because it applies even
when these quantities are chosen dynamically and arbitrarily across different
payments.

Theorem 1 (informal statement of Theorem 4)

(a) If the deposit is at least W , then there is no worst-case utility gain in double
spending.

(b) If the deposit is at least (1 − p)V + A, then there is no average-case utility
gain in double spending.

(c) Both bounds above are tight.

Our theorem has a simple interpretation: the required deposit amount equals
the maximum financial activity that can happen within any time period of T .
Namely, if macropayments have maximum total worth W within time T , the
deposit must be at least W (w.r.t. worst-case utility); and if probabilistic pay-
ments have maximum total worth A within time T , the deposit must be at
4 One deposit may back multiple payments; in particular, an honest customer may

use a single deposit to back all of his payments.
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least ≈A (w.r.t. average-case utility). Note that it is unsurprising that the two
statements in the theorem depend on the two different quantities W and A,
because they target different notions of utility; also note that, while one can
take pW ≤ A without loss of generality, a bound on W does not always imply a
bound on A (there could still be arbitrarily many probabilistic payments, though
with extremely small probability).

But which of the two bounds should one use in practice? Naturally, the
worst-case bound is safer than the average-case bound; however, an appropriate
setting of W will be Ω(1/p) larger than A, which implies a substantial increase
in the required deposit. The choice between the two depends on whether one
cares about malicious customers that are lucky with even very small probability
(as opposed to focusing on their average gains possibly across many deposits).

As already mentioned, bounding the value of probabilistic payments (via A)
or macropayments (via W ) within time T is necessary because our bounds
are tight (i.e., there exist double-spending strategies that achieve them). In the
“real world” these bounds may be imposed by the environment (e.g., limited
network throughput), or the merchants (e.g., they accept up to a given number
of payments within time T ).

In terms of analysis, our proof shows that any additional utility gained via
double spending must come from macropayment double spending. This may
be surprising because, superficially, one may think that nullpayment double
spending also contributes to additional utility; e.g., one may think that a mali-
cious customer gains pV for every nullpayment double spend. This proposition
is alarming: in the worst case there could be infinitely-many nullpayment double
spends (which imply infinite additional utility); and in the average case there
could be clever strategies that leverage double spends across multiple merchants
to lower the probability of detection. We prove that this is not the case: we use a
simulation argument to show that the naive strategy of double spending as much
as possible is the best strategy (i.e., maximizes additional utility), both in the
worst case and in the average case. In particular, we learn that the best strategy
always leads to detection (after a time period of T ) and that additional utility
is finite even in the worst case (if W is finite). Details of our analysis are in
Sect. 3.

We believe our theorem to be of independent interest because it applies
to virtually any (centralized or decentralized) setting that enforces a deposit
mechanism for offline payments. One such setting could be probabilistic smart
contracts (an application suggested by [PS15,PS16]). A thorough understanding
of the economic benefits of double spending is necessary to ensure that such
smart contracts, as well as other applications, function as intended.

Example. As a demonstration, we invoke our theorem on parameters that could
fit the application of advertisement-free content delivery, to see what conclu-
sions our economic analysis gives us. Suppose that we consider a Bitcoin-like
setting, where (i) transaction fees are typically a few cents; and (ii) we could
take the detection time T to be, e.g., 20 min, which is typically two blocks (ideal
block generation follows an exponential distribution with a mean of 10 min).
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Suppose further that we fix the deposit to be D := $200 and the expected value
of the probabilistic payment to be $0.1 (similar size as a transaction fee); con-
centration bounds then suggest that, subject to the condition pV = $0.1, good
choices are V := $10 and p := 1%. Note that these settings imply that we can
take W up to D = $200 and A up to D − (1 − p)V = $190.1. Then our theorem
implies that: (1) Even the luckiest double spending user has no extra utility gain
if the cumulative value of macropayments every 20 min is less than $200 (that is,
the number of macropayments every 20 min is less than 20), regardless of how
much nullpayment double spending occurred. (2) A double spending user has no
extra utility gain on average if the cumulative value of probabilistic payments
every 20 min is less than $190.1 (that is, the number of probabilistic payments
every 20 min is less than 1901).

1.1.2 Decentralized Anonymous Micropayments
We formulate the notion of a decentralized anonymous micropayment (DAM)
scheme. This notion formalizes the functionality and security properties of an
offline probabilistic payment scheme that enables parties with access to a ledger
to conduct transactions with one another, directly and privately. To realize the
requirements of our economic analysis, a DAM scheme enables parties to set up
deposits, which are revoked when macropayments reveal that double spending
has occurred. Crucially, the security guarantees of a DAM scheme guarantee
anonymity not only across macropayments but also across nullpayments, so that
even the “offline stream of payments” remains unlinkable.

We construct a DAM scheme and prove its security under specific crypto-
graphic assumptions. Our two main building blocks are decentralized anonymous
payment (DAP) schemes [BCG+14] and fractional message transfer schemes (see
below).

Theorem 2 (informal). Given a decentralized anonymous payment scheme
and a fractional message transfer scheme (and other standard cryptographic
primitives) there exists a DAM scheme.

Formally capturing the notion of a DAM scheme and proving security of our
construction was quite challenging due to the combination of rich functionality
and strong anonymity guarantees. Parties can mint standard coins, deposits, or
lottery tickets; they can withdraw deposits; they can pay each other with deter-
ministic payments, switch coin types; they can also pay each other with proba-
bilistic payments; they can revoke deposits of cheating parties — all of this while
essentially revealing no information about origins, destinations, and amounts of
money transfers. In particular, two features of our construction required partic-
ular attention: (1) revocation of an unknown cheating party’s deposit when two
macropayments with the same ticket are detected; and (2) monitoring of payment
value rates (as required by our economic analysis) despite deposits being anony-
mous. Deterministic payments in our construction are non-interactive, while
probabilistic payments consist of a 3-message protocol between a sender and
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a receiver; it is an interesting open question whether these can be made non-
interactive as well.

We express the security of a DAM scheme via the ideal-world/real-world par-
adigm, specifying a suitable ideal functionality, and we prove our construction’s
security via a simulator against non-adaptive corruptions of parties. We consider
security in the standalone setting, and leave security under composition to future
work (that perhaps can build upon the work of [KMS+16]).

1.1.3 Fractional Message Transfer
A key ingredient in our construction of DAM schemes is fractional message trans-
fer (FMT): a primitive that enables probabilistic message transmission between
two parties, called the ‘sender’ and the ‘receiver’. Informally, FMT works as
follows: (i) the receiver samples a one-time key pair based on a transfer prob-
ability p; (ii) the sender uses the receiver’s public key to encrypt a message m
into a ciphertext c; (iii) the receiver uses the secret key to decrypt c, thereby
learning m, but only with the pre-defined probability p (and otherwise learns no
information about m).

We thus (1) formulate the notion of an FMT scheme, which formally captures
the functionality and security of probabilistic message transmission, and (2)
present an efficient construction that works for probabilities that are inverses of
positive integers.

Theorem 3 (informal). In the random oracle model and assuming the hard-
ness of DDH in prime-order groups, there exists an FMT scheme that works for
transfer probabilities p = 1/n with n ∈ N. Moreover, the number of group ele-
ments and scalars in the public key and ciphertext is constant (independent of
n); see Table 1.

Our definition of FMT is closely related to non-interactive fractional oblivious
transfer (NFOT), which was studied in the context of ‘translucent cryptography’
as an alternative to key escrow [BM89,BR99]. Namely, prior definitions target
one-way security, which protects random messages. While one-way security suf-
fices to encapsulate random secret keys (the setting of translucent cryptogra-
phy), it does not suffice for probabilistically transmitting non-random messages
(as needed in our construction). Therefore, our definition of an FMT scheme
targets a fractional variant of semantic security, which we express via two prop-
erties: fractional hiding and fractional binding. Furthermore, since in our system
any party can act as both sender and receiver, we require the FMT scheme to
be composable. Our construction achieves this via simulation-extractability.

Our construction of FMT is loosely related to the constructions in [BM89,
BR99], which (like our construction) build on the Elgamal encryption scheme
[Elg85]. In fact, such constructions, if analyzed under the hardness of DDH rather
than CDH, are likely to yield FMT according to our stronger definition. We did
not carry out such an analysis, but instead chose to construct a scheme that
is more efficient than prior work for the case of p = 1/n (these probabilities
suffice for our application); we assume hardness of DDH and work in the random



Decentralized Anonymous Micropayments 617

Table 1. Comparison of prior NFOT schemes vs. our FMT scheme. All constructions
assume a common random string.

scheme security assumption
transfer

probability
size of public key size of ciphertext # exponentiations
group elts. scalars group elts. scalars to encrypt to decrypt

[BM89] one-way CDH 1/2 2 — 2 — 2 1

[BR99, § 5.1] one-way CDH 1/n n — 2 — 2 1

[BR99, § 5.1] one-way CDH (n − 1)/n n — 2 — 2 1

[BR99, § 5.2] one-way CDH a/n * 2 log2 n — 2 log2 n — 4 log2 n 2 log2 n

[BR99, § 5.3] one-way CDH a/n a + n — 2 — 2 1

our FMT semantic DDH + RO 1/n 2 3 2 2 4 4

∗ n is restricted to be a power of 2.

oracle model in order to take advantage of certain Σ-protocols. See Table 1 for
a comparison of our construction with prior work.

1.2 Prior Work on Micropayment Channels

Micropayment channels were introduced by Hearn and Spilman [HS12,Bit13],
and further studied by Poon and Dryja [PD16] and Decker and Wattenhofer
[DW15]. Roughly, a micropayment channel enables a sender and a receiver to
set up a contract by way of an online (slow) transaction that escrows funds, after
which the sender and receiver can update the contract, and thus the relative split
of the escrowed funds, without recording the new contract on the blockchain.
Thus payments can be made instantaneously. These can be dynamically com-
bined to obtain multi-hop “payment channel networks” that go through several
intermediaries, by using hashed timelock contracts; this technique amortizes the
cost of setting up a new channel for new receivers. From the perspective of our
work, micropayment channels have several limitations in terms of economics,
functionality, and privacy.

Economic limitations of payment channels. First, payment channels in
general require a channel to be established in advance with a party: payments
are only instantaneous with advanced preparation. To alleviate this constraint,
payment channel networks allow transactions with arbitrary new parties pro-
vided there exists a path of existing channels between the payer and payee.

Such networks have limitations. First, considerable capital is escrowed in
the many pairwise channels forming the network. The capital requirements may
exceed those required for deposits in probabilistic micropayments. Both settings
require escrowed funds proportional to a user’s economic activity (either for
the double spend deposit or the “last mile” channel between the user and the
payment network), but payment channel networks escrow similar amounts in
each edge of the network. Second, a variety of pressures, including minimizing
the capital escrowed, may centralize such networks into a hub-and-spoke model.
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Privacy limitations of payment channels. Payment channels reveal to the
world that a given pair of parties have a channel between them, the opening
value of that channel, and the final closing value. More importantly, especially for
applications like advertisement-free content delivery, payment channels provide
no privacy between the parties on the channel: if Alice pays say Wikipedia every
time she views a page, then each of those views is linked to the channel she
established just as effectively as if she had a tracking cookie in her browser.

Attempts to add privacy, either from intermediate nodes in the network
[HAB+16] or from recipients and intermediaries [GM16], to payment channels hit
some seemingly fundamental limitations of the payment channel setting. First,
the anonymity set when paying a given receiver is composed only of those users
who have opened channels with the receiver. This is likely far smaller than the
global anonymity set provided by probabilistic payments. Moreover, the receiv-
ing party can arbitrarily reduce the anonymity set further by closing channels.
This leaves open a range of attacks that are not present in a system with a global
anonymity set.

Finally it is unclear if non-hub-and-spoke private payment networks are scal-
able or can provide privacy for payment values from intermediary nodes in the
network. When a payment is made via two intermediaries (i.e. A → I1 → I2 →
B), some combination of I1 and I2 must know the balance of their pairwise chan-
nel at any given time or they could not close the channel. Thus the value of any
payment relayed through multiple parties cannot be completely private. More-
over, discovering a multi-hop route between two parties in a diverse and large
network without leaking any identifying information seems costly at scale. While
[GM16] extend their point-to-point channel protocol to a hub-and-spoke model
that alleviates both these concerns, such a network is inherently centralized.

2 Techniques

We discuss the intuition and techniques behind our results, first for our cryp-
tographic construction (Sect. 2.1) and then for our economic analysis of double
spending (Sect. 2.2).

2.1 Constructing Decentralized Anonymous Payments

We discuss our design of a decentralized anonymous micropayment (DAM)
scheme via a sequence of candidate constructions, each fixing problems of the
previous one; the last one is a sketch of our construction.

2.1.1 Attempt 1: Non-anonymous Probabilistic Payments + DAP
We begin with a natural candidate construction for a DAM scheme. The idea is
to combine two primitives, one providing probabilistic payments and the other
anonymity. For example, consider: (1) the scheme MICROPAY1 of [PS15], which
provides probabilistic payments for Bitcoin; and (2) a decentralized anonymous
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payment (DAP) scheme [BCG+14], which provides privacy-preserving payments
for Bitcoin-like currencies.

To make MICROPAY1 privacy-preserving, we could try to replace its Bitcoin
payments with DAP payments, which hide the payment’s origin, destination, and
amount. Thus, when a probabilistic payment goes through, and the correspond-
ing DAP (macro-)payment is broadcast, others cannot learn this information
about the payment. However, this idea does not provide the strong anonymity
guarantees that we seek, as we now explain.

Problem: not fully anonymous. Despite the anonymity guarantees provided
by the DAP scheme, merchants still learn information about their customers’
spending habits. Each DAP payment includes a unique serial number corre-
sponding to the underlying “coin” that was spent by that payment; this is
used to prevent double spending of DAP coins. In the above proposal, the cus-
tomer sends the merchant this serial number regardless of whether the payment
becomes a nullpayment or a macropayment. Since the same underlying DAP
payment and serial number are used across multiple probabilistic payments (to
amortize fees), this compromises customer anonymity because a merchant learns
(1) which (macro or null) payments to him were made with the same escrow;
and (2) which macropayments to other merchants were made with an escrow
used for payments to him. This compromise in anonymity gets even worse if
merchants share such information with one another.

Moreover, recall (from Sect. 1.1) that it is not possible to prevent double
spending in the setting of offline probabilistic payments. Pass and Shelat note
this in the full version of their paper [PS16], and propose adding a ‘penalty
escrow’ to the scheme MICROPAY1; the escrow is burned upon evidence of dou-
ble spending. But observe that anonymity for penalty escrows poses a similar
challenge: to prove that a penalty escrow is unspent, a merchant reveals its ser-
ial number, once again enabling merchants to link probabilistic payments by
learning about their escrows.

Overall, while the above ideas do achieve unlinkability of macropayments,
customers have little meaningful privacy until nullpayments and escrows are
also unlinkable.

2.1.2 Attempt 2: Commit to DAP Payment + Probabilistic
Opening + Private Deposit Coins

One way to address the anonymity problems of the previous attempt is to ensure
that the merchant learns the serial number only when the payment turns into a
macropayment (and, conversely, learns nothing otherwise). Then, to enable the
aforementioned penalty escrow mechanism, a customer creates a special ‘deposit’
coin.

Then, the modified protocol works as follows: (1) the customer sends to
the merchant a commitment to a DAP payment and to a 2-out-of-n share of
the deposit serial number; (2) the customer and merchant engage in a protocol
that opens the commitment with probability p (opening thus corresponds to
a macropayment, and not opening corresponds to a nullpayment); (3) when
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publishing a macropayment to the ledger, the merchant also publishes the secret
share.

The probabilistic opening hides the serial number of the coin in the DAP
payment until a macropayment occurs, and the secret share hides the deposit
serial number until a macropayment double spend occurs. To punish a double
spending customer, the merchant obtains (from the network or from the ledger)
two secret shares of the deposit serial number from two macropayments and
reconstructs the serial number. He then publishes this to the ledger, thereby
blacklisting the deposit.

One issue that must be addressed is ensuring that the secret shared deposit
serial number corresponds to a valid deposit. To do this, first notice that there
are two kinds of blacklisted deposits: those whose serial number appears on the
ledger (in previous ‘punish’ transactions), and those that have been revoked in
the current epoch. The serial numbers of the latter kind are broadcast across
the network, but have not yet appeared on the ledger.

To prevent users from using blacklisted deposits of the first kind, a customer
must prove to the merchant that his deposit’s serial number does not appear
on the ledger (this can be done efficiently [MRK03]). To prevent use of deposits
of the second kind, customers must also send to the merchant a tag derived
from the deposit’s serial number. Since anyone with access to this serial number
can compute this tag, merchants can deduce if a deposit has been revoked by
checking if this tag has been computed with a blacklisted deposit’s serial number.
The customer accompanies the tag with a zero-knowledge proof that the deposit
used for this tag is consistent with the share inside the commitment.

The aforementioned proposal, however, is still vulnerable to attacks.

Problem: front-running deposit revocation. While deposits are intended
to deter double spending, customers may try to withdraw a deposit before it is
blacklisted, thereby rendering punishment ineffective.

Problem: merchant aborts. At the end of the commitment opening pro-
tocol, the merchant can refuse to inform the customer of whether or not the
commitment was opened. This poses a problem for the customer because if the
commitment was in fact opened, the merchant has learned the serial number
and a share of the deposit, enabling him to: (i) track the customer and learn
when they spend the coin with another merchant, and (ii) revoke the customer’s
deposit after the (honest) customer next spends the coin, with another merchant
or the same one.

2.1.3 Outline of Our Construction
The deposit mechanism described so far is insufficient to deter double spend-
ing. The problem is that there is no restriction on how and when coins used
for probabilistic payments and for deposits can be transferred; in particular, a
cheating customer can double spend these back to himself while at the same time
engaging in a probabilistic payment with a merchant. We address this problem
by (i) partitioning coins into different types depending on their different uses,
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and (ii) restricting transfers between coins depending on their types. We now
outline how we carry out this plan.

First, we extend the notion of a DAP scheme to allow users to associate
public and private information strings when minting a coin. Users can now store
a coin’s type in its public information string, and we allow three types of coins: in
addition to the “standard” coin type, we introduce deposits and tickets. A ticket
is bound to a deposit by storing the deposit inside the ticket’s private information
string. We thus have the following semantics:

– Coins are used for deterministic DAP payments (whose processing fees are
not amortized).

– Deposits are used to back tickets and are revoked when two macropayments
using the same ticket are detected.

– Tickets are used for probabilistic payments; every ticket is bound to a single
deposit at minting time, and can be spent provided that the associated deposit
is valid (i.e., has not be transferred to a coin, or revoked).

We also restrict the set of possible transactions depending on the types of coins
involved, as follows.

– Transactions with coins: Coins can be used to create other coins, deposits,
or tickets. In particular, coin-to-coin transactions preserve the deterministic
payment functionality of the underlying DAP scheme.

– Transactions with deposits: Deposit-to-coin transactions let customers with-
draw deposits, though not immediately, since these transactions become active
only after an activation delay Δw that is a parameter of the system.

– Transactions with tickets: Ticket-to-coin transactions enable probabilistic pay-
ments; they are associated with a secret share of the ticket’s deposit and with a
deposit-derived tag that allows merchants to detect the validity of the ticket’s
deposit. Ticket-to-ticket transactions omit the secret share and tag and (like
deposit-to-coin transactions) become active only after an activation delay Δr

that is a parameter of the system.

Restrictions on inter-type transactions are achieved via a pour predicate that
checks that input and output coin types satisfy the above restrictions. Having
made these modifications, we can now resolve the issues of the previous proposal.

Preventing deposit theft. Deposit-to-coin transactions now have a delayed
activation, so customers can no longer withdraw deposits before they are black-
listed, as merchants have enough time to post deposit revocations to the ledger.

Recovering from merchant aborts. Since we cannot know what is the utility
gain of a merchant for learning about the spending patterns of a customer, we
cannot effectively deter merchant aborts by economic means. Instead, at the end
of our commitment opening protocol, we require the merchant to prove to the
customer whether or not he could open the commitment. If the merchant fails
to do so, we allow customers to “refresh” their tickets by creating a ticket-to-
ticket payment to themselves. Since the new ticket has a different serial number



622 A. Chiesa et al.

that merchants have not yet seen, they cannot track the new ticket’s transaction
history. Finally, since ticket-to-ticket transactions become active only after a
delay, the new tickets cannot be spent immediately, thus allowing merchants to
post macropayments over the old ticket.

The above sketch omits many technical details, including how a DAM scheme
interacts with the economic analysis. See the full version.

2.2 Intuition for Our Economic Analysis of Double Spending

Our economic analysis characterizes the additional utility that customers can
gain by double spending in offline probabilistic payments. We discuss the intu-
ition for the analysis via an example; details of the analysis are in Sect. 3 (the
formal statement is Theorem 4). Recall that we assume that: (i) every proba-
bilistic payment is backed by an advance deposit, and (ii) macropayment double
spends are detected within time T , and result in deposit revocation.

At a high level, the deposit must be at least as large as the additional utility
that a malicious customer gains by double spending until that deposit is revoked;
additional utility occurs when the customer double spends, and accumulates
until cheating is detected and every merchant has blacklisted the customer. If
we can bound the value of payments in this period of time, then we can derive
a corresponding bound on the additional utility gained, and thus bound the
deposit.

A naive analysis, however, yields an impractically large bound, because the
natural definition of “additional utility” is too coarse. We illustrate this issue
via an example: a malicious customer C̃ selects two merchants M1,M2, and uses
the same “lottery ticket” to conduct parallel probabilistic payments p̃ay1, p̃ay2 to
M1,M2 respectively. The merchants cannot immediately detect that C̃ is cheating
because C̃ is indistinguishable from an honest user so far. If both p̃ay1 and p̃ay2
become macropayments, which happens with probability p2, then the merchants
(eventually) catch C̃ cheating, and revoke C̃’s deposit of value D. Consider the
following two analyses.

(i) A naive analysis. The malicious customer C̃ earns an additional utility
of pV compared to an honest customer, and is caught and punished by D with
probability p2. Hence, to deter C̃ from cheating, the deposit amount should be
such that p2D > pV , which is equivalent to D > V/p.

(ii) A better analysis. The average-case utility E[U(C)] of an honest customer
C for any probabilistic payment is zero: C gains pV with probability 1 − p, and
pV − V with probability p. Instead, the utility U(C̃) of the malicious customer
C̃ has four cases, as given in Table 2; also, C̃ is caught and punished by D with
probability p2. Thus, the deposit amount should be such that p2D > E[U(C̃)] =
2pV − (1 − (1 − p)2)V , which is equivalent to D > V .

How do the two analyses differ? The first analysis states that the deposit
amount D must be greater than V/p while the second states that it must be
greater than V , which is a much smaller lower bound. This is because the first
analysis adopted an intuitive, but coarse, definition of additional utility, which
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Table 2. Utility U(C̃) of the malicious
customer C̃.

Table 3. Utility U(C) of the honest
customer C.

did not consider the fact that a malicious customer does not gain additional
utility unless two macropayments with the same ticket occur. Indeed, the utility
U(C) of an honest user C that uses two different tickets to make two parallel
probabilistic payments pay1, pay2 is in Table 3. By comparing U(C̃) and U(C),
one can see that the utility function differs only when two macropayments occur,
where, if there is no deposit/punishment, C̃ gains extra utility of V by paying
only one macropayment instead of paying two as C does. In sum, any additional
utility gained via double spending must come from macropayment double spends.

Towards a general analysis. The above discussion suggests that the additional
utility of C̃, which we denote by U ′(C̃), should be defined as follows:

U ′(C̃) :=
{

V if p̃ay1, p̃ay2 are macropayments
0 otherwise .

More generally, the additional utility of any malicious customer C̃ is the extra
gain compared to an honest customer achieving the same outcome. This can be
computed by considering an honest customer C that simulates the behavior of C̃
while only using unspent tickets; the extra gain arises from the fact that C has
“paid” for these other unspent tickets while C̃ has not. By understanding the
maximum of this refined notion of additional utility we can derive the minimum
amount of deposit needed such that, for any double spending attack, there is
a non-double-spending strategy that achieves better utility, in the worst-case
and in the average-case respectively. See Sect. 3 for a formal argument of this
intuition, as well as a discussion of the implications of our economic analysis.

3 Economic Analysis of Double Spending for Offline
Probabilistic Payments

We provide the economic analysis that characterizes the additional utility that
can be gained by double spending via offline probabilistic payments. This section
is organized as follows. First, we informally describe dynamics that model offline
probabilistic payments (Sect. 3.1). Then, we define a formal game that captures
these dynamics and analyze this game (Sect. 3.2). Finally, we discuss the inter-
pretation and consequences of our economic analysis (Sect. 3.3).
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3.1 Informal Description of Payment Dynamics

We informally describe the dynamics of arbitrary probabilistic payments from
customers to merchants. A concrete example is the setting of advertisement-free
Internet : a customer is a user surfing the Internet; a merchant is a web server;
every HTTP request by a user to a web server is accompanied by a probabilistic
payment from that user to the web server (to buy an ad-free HTTP response).

Abstraction of probabilistic payments. A probabilistic payment is an inter-
active protocol between a customer and a merchant. The customer’s input is a
ticket t = (t, p, V,d) where t ∈ {0, 1}∗ is the unique ticket identifier, p ∈ [0, 1] is
the payment probability, V ∈ R≥0 is the macropayment value, and d = (d,D) is
the deposit, which consists of a unique deposit identifier d ∈ {0, 1}∗ and a deposit
value D ∈ R≥0. Informally, the customer first convinces the merchant that the
deposit is not “invalid”, and then the customer pays V to the merchant with
probability p. The two outcomes are called a nullpayment and a macropayment,
and involve different protocol outputs.

Detectable double spends. At any moment in time, a deposit is in one of two
states: valid or invalid. Each deposit is initially valid. When two macropayments
occur on the same ticket t, the associated deposit d becomes invalid, once and
for all. We call this event a macropayment double spend, and we assume that,
in this case, the underlying probabilistic payment protocol enables merchants to
eventually learn that d (more precisely, its identifier) has become invalid;5 we
denote by TM the time for merchant M to learn this from the moment the macro-
payment double spend occurred. The fact that maxM TM > 0 is the fundamental
reason that allows a malicious customer to gain any additional utility.

Finally, we make the simplifying assumption that, while macropayment dou-
ble spends are detectable, nullpayment double spends are undetectable. Our
analysis does extend to the case where (not necessarily all) nullpayment double
spends are also detectable; see Remark 1.

Honesty of merchants. We assume that merchants behave honestly. Thus,
every merchant (a) rejects aborted payments (e.g., due to invalid deposits);
(b) honors successful payments (e.g., replies with an ad-free HTTP response)
regardless of whether the payment resulted in a nullpayment or macropayment;
(c) reports detected double spends; more generally, (d) follows the probabilistic
payment protocol (e.g., uses fresh randomness in each instance of the protocol,
broadcasts any messages to all other merchants as instructed, and so on).

In principle, merchants may deviate from the aforementioned honest behavior
in a variety of ways. For instance, a merchant may “honor” an aborted payment
(e.g., regardless of the validity of the customer’s deposit); or the merchant may
not honor a successful payment (e.g., does not reply to the HTTP request); or
the merchant may abort and prevent the customer from learning the payment’s
outcome; or the merchant may not report a detected double spend.
5 Exactly how merchants learn d’s identifier depends on the details of a construction,

and is orthogonal to our economic analysis; ditto for exactly how the monetary funds
escrowed in d are revoked after d becomes invalid.
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However, we assume that all merchants behave honestly because the only
incentive for a merchant to deviate comes from colluding with malicious cus-
tomers, and we cannot prevent such collusions. Indeed, if a merchant does not
collude with any malicious customer, then for the merchant it is individually
rational to behave honestly, because: (i) some malicious merchant behavior (e.g.,
“honoring” an aborted payment, or using correlated randomness across pay-
ments) does not increase the merchant’s utility; (ii) other malicious merchant
behavior (e.g., not honoring a successful payment) decreases the customer’s util-
ity, but taking into account this possibility does not affect a customer’s maximum
additional utility (the quantity we study) and ruling it out significantly simpli-
fies the analysis. However, a malicious customer could convince a merchant to
not report a double spend by offering side payments as compensation; if the
merchant has already replied to the customer’s payment then this collusion may
indeed be economically attractive, but we cannot systematically prevent such
side payments in all applications. (In the setting of micropayments, V is small
so a merchant may prefer to see the malicious customer punished, after losing V ,
rather than receiving compensation.)

Honest vs. malicious customers. Our goal is to characterize the additional
utility obtained by any malicious customer, when compared to what is possible
by honest customers. We now discuss both kinds of customers.

Honest customers. For an honest customer, a ticket t is in one of three states:
it is spent if a probabilistic payment on it has resulted in a macropayment;
otherwise, it is occupied if it is being used in a probabilistic payment; otherwise,
it is unspent (i.e., it never resulted in a macropayment, nor is it being used in a
probabilistic payment).

At any moment in time, an honest customer may select any number of mer-
chants, and initiate any number of probabilistic payments in parallel to every one
of them. Each probabilistic payment uses a distinct unspent ticket, which imme-
diately becomes occupied, and at the end of the payment protocol becomes either
unspent or spent. The selected tickets may or may not have different deposits
that back them; deposits are never invalidated for honest customers. In sum,
an honest customer maintains the invariant that an occupied ticket does not
participate in more than one payment at a time, and a spent ticket does not
participate in future payments.

Malicious customers. A malicious customer may deviate from the aforemen-
tioned honest behavior in a variety of ways, as we now describe. Like an honest
customer, a malicious customer owns an arbitrary number of tickets and deposits;
unlike an honest customer, a malicious customer may use an occupied ticket in
multiple payments, or may use a spent ticket in future payments (hence, a ticket
of a malicious customer could be in both spent and occupied states at the same
time). We give some examples of malicious behavior.

– One-ticket-one-merchant attack. A malicious customer C̃ has a ticket t
and selects a merchant M; then C̃ initiates multiple probabilistic payments
to M in parallel, and continues using the same ticket t even after it is spent.
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The merchant M cannot detect that C̃ is cheating until M receives two macro-
payments relative to the same ticket t.

– One-ticket-multiple-merchant attack. A malicious customer C̃ has a
ticket t and selects two merchants M1,M2; then C̃ conducts a sequence of
probabilistic payments to M1, using t until it is spent to M1. In parallel, C̃
adopts the same strategy with M2, until t is spent to M2. Observe that C̃ acts
like an honest customer to M1 and M2 individually; hence, the two merchants
cannot detect that C̃ is cheating until they communicate.

– Multiple-ticket-multiple-merchant attack. More generally, a malicious
customer C̃ has multiple tickets t1, t2, . . . and selects multiple merchants
M1,M2, . . . ; then C̃ conducts a sequence of probabilistic payments to M1,
using t1 until it is spent to M1. Then C̃ switches to t2 and continues making
probabilistic payments to M1 until t2 is spent. The customer C̃ continues in
this way until all the tickets are spent to M1. In parallel, C̃ adopts the same
strategy with every other merchant. Observe again that C̃ acts like an honest
customer to each merchant individually; hence, the merchants cannot detect
that C̃ is cheating until they communicate.

Recall that, no matter what a malicious customer does, whenever two macro-
payments relative to the same ticket t occur, the deposit of t becomes invalid,
and eventually (after at most time maxM TM) all merchants learn about this.

Towards a formal game. The above discussion leads us to the following
informal description of arbitrary dynamics of probabilistic payments from a
potentially-malicious customer to honest merchants; this description is only an
intermediate step that we provide for intuition, because we formally define an
abstract game in Sect. 3.2 below.

For each time t, let I(t) denote the set of deposit identifiers of invalid deposits
at time t. This set is not maintained by anyone: by definition it contains the
correct identifiers at any time. It is public and, hence, known to the customer.

Suppose that a customer initiates a probabilistic payment with merchant M
at time t, using a ticket t = (t, V, p, (d,D)). If d ∈ I(t−TM) (the deposit identifier
belongs to an invalid deposit) then the payment aborts. Otherwise, (i) with
probability 1 − p, both parties receive the output null; (ii) with probability p,
both parties receive the output macro.

Crucially, the decision of whether a payment aborts depends only on the
global information from TM units of time “into the past”, because, in the worst
case, there is a delay of TM for merchant M to learn that a deposit has been
invalidated. Of course, the merchant M may happen to learn this information
faster than that; though modeling this fact does not ultimately change the max-
imum additional utility, so we ignore this for simplicity. This means that all
merchants “behave the same” and thus we replace them with a single abstract
player, ‘Nature’, in the next section.

Note that a construction of a probabilistic payment should also involve a
check of whether the deposit value D is “large enough” to back the payment (as
informed by our economic analysis). We ignore this check (and how it can be
performed) because it is irrelevant to the economic analysis.
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3.2 The Game and Its Analysis

We define a single-player game against Nature that captures the dynamics
described in Sect. 3.1, namely, the dynamics of a customer C̃ conducting arbi-
trary probabilistic payments with all merchants. We prove tight bounds on C̃’s
additional utility, in the worst case and in the average case. Note that, due to
the additive nature of utility, we only need to analyze C̃’s additional utility per
deposit ; hence, we restrict C̃ to backing all his probabilistic payments with a
single deposit.

As mentioned in Sect. 1.1.1, our analysis involves two parameters A and W ,
which denote the (per-deposit) maximum value of probabilistic payments and
of macropayments, within any “detection time period”. More precisely, let TM

denote the time for a merchant M to detect a detectable double spend, and let
aM(t) be the (cumulative) value of probabilistic payments accepted by M within
the time period [t, t + TM]; similarly, let wM(t) be the (cumulative) value of
macropayments accepted by M within the time period [t, t+TM]. The parameters
A and W are defined as maxt

∑

M aM(t) and maxt

∑

M wM(t) respectively. We
defer to Sect. 3.3 a discussion of the interpretation of these parameters, and for
now we focus on analyzing the additional utility in terms of these.

We argue that it suffices to study C̃’s additional utility across merchants
within a certain time period, and to consider only probabilistic payments that
use spent tickets.

– Starting point. It suffices to analyze C̃’s additional utility from the first time
when two macropayments occur relative to the same ticket; denote by p̃ay the
payment among these that terminates later (if they terminate simultaneously
then break ties arbitrarily). Indeed, recall that C̃’s additional utility is the
extra gain compared to any honest customer achieving the same outcome. So
consider the honest customer C that uses unspent tickets for every probabilistic
payment that terminates before p̃ay does: the utilities up to then for C̃ and C
are the same. Thus, we only need to consider C̃’s additional utility from when
p̃ay terminates.

– Ending point. It suffices to analyze C̃’s additional utility from when p̃ay termi-
nates until when every merchant M has detected C̃’s cheating. Indeed, p̃ay is a
detectable double spend, so within time TM merchant M detects C̃’s cheating
(i.e., has learned that C̃’s deposit is invalid) and will not accept C̃’s proba-
bilistic payment anymore. Moreover, C̃’s deposit is eventually revoked.

– Which payments. It suffices to consider every probabilistic payment that ter-
minates within the aforementioned time period and uses a ticket that is spent
before the termination of that payment (if multiple payments terminate simul-
taneously then pick an arbitrary termination order for them). Throughout this
section we say that these probabilistic payments use spent tickets, and say that
the other probabilistic payments use unspent tickets. Indeed, consider again
the honest customer C that uses unspent tickets for every probabilistic pay-
ment: the utilities for C̃ and C are the same on probabilistic payments that
use unspent tickets.
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In conclusion, we only need to worry about C̃’s additional utility from when p̃ay
terminates until when every merchant has detected C̃’s cheating, and it suffices
to consider only probabilistic payments that use spent tickets.

Suppose that during this time period C̃ has finished C + 1 probabilistic pay-
ments, including p̃ay, using spent tickets: p̃ay is fixed to be a macropayment,
while the remaining C payments are probabilistic (i.e., turn into nullpayments
or macropayments with the appropriate probability). Perhaps C̃ only made C+1
payments, or perhaps the merchants accepted only the first C + 1 and rejected
the rest due to invalid or insufficient deposit. (We assume C < ∞ for ease of
exposition, but we could replace C with ∞ and our analysis would still hold.)
Either way, note that C̃ may select the payment probability and macropayment
value of a probabilistic payment based on the outcomes of prior probabilistic
payments. Below we define a game that captures these payments.

Definition 1. Consider the following single-player game against Nature.

– The set of randomness choices is [0, 1]C ; Nature samples λ uniformly at ran-
dom from [0, 1]C . We denote by λ<i the first (i − 1) coordinates of λ (and
define λ<0 and λ<1 to be the empty string).

– The player strategies Σ consist of tuples σ = (pi, Vi)C
i=0 consisting of com-

putable functions that, based on Nature’s randomness choice, output parame-
ters for all the probabilistic payments. More precisely, for each i, pi(λ<i) ∈
[0, 1] is the payment probability of the i-th probabilistic payment, and Vi(λ<i) ∈
R≥0 is its macropayment value.

The game proceeds as follows. The player selects a strategy σ ∈ Σ; afterwards,
Nature samples λ, whose coordinates are revealed to the player round by round.
More precisely, the game is played in rounds, as follows: in round i, the player
learns λ<i, and conducts a probabilistic payment (using a spent ticket) with pay-
ment probability pi(λ<i) and macropayment value Vi(λ<i). The outcome of the
i-th round is given by the indicator I [λi ≤ pi(λ<i)], stating whether the pay-
ment resulting in a macropayment (the indicator equals 1) or nullpayment (the
indicator equals 0).

Observe that all strategies in the above game are double-spending strategies:
as discussed, it suffices to consider only probabilistic payments that use spent
tickets. We now turn to define additional utility. Comparing an honest customer
with a malicious one, we observe that any additional utility comes only from
macropayments that involve spent tickets. More precisely, the first such macro-
payment (which is p̃ay) contributes additional utility V0 and, after that, if the
i-th probabilistic payment results in a macropayment then additional utility
increases by Vi(λ<i). As for nullpayments, neither an honest nor a malicious
customer loses tickets, hence additional utility does not increase. Therefore, we
define additional utility as follows.
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Definition 2. The additional utility of a strategy σ ∈ Σ on randomness
λ ∈ [0, 1]C is

U ′
λ(σ) := V0 +

C
∑

i=1

I [λi ≤ pi(λ<i)]Vi(λ<i).

(Additional utility is a random variable, as it depends on Nature’s randomness
λ, which is a random variable.)

We analyze the maximum additional utility achievable by any strategy, in
the worst case and in the average case, for the game from Definition 1; these
maximum values bound from below the required deposit value D (for the goal of
deterring double spending). Below we define two subsets of strategies in which
the bounds A or W are respected. (Note that if C < ∞, then (min{pi}C

i=0)·W ≤
A so that if A is bounded then so is W .)

Definition 3. We define the following two sets of strategies, which respectively
capture the condition that the total worth of probabilistic payments is at most A
and the total worth of macropayments is most W :

Σpp
A :=

{

σ ∈ Σ : ∀λ, p0V0 +
C

∑

i=1

pi(λ<i)Vi(λ<i) ≤ A
}

,

Σmp
W :=

{

σ ∈ Σ : ∀λ, V0 +
C

∑

i=1

I [λi ≤ pi(λ<i)]Vi(λ<i) ≤ W
}

.

We now state and prove our worst-case and average-case bounds on additional
utility. (Recall that, by Yao’s minimax principle, it suffices to consider only
deterministic strategies [Yao77], and thus we ignore randomized ones.)

Theorem 4 (formal statement of Theorem 1). For the game described
above, the following holds.

(a) Worst case: for every randomness choice λ ∈ [0, 1]C and strategy σ ∈
Σmp

W , it holds that U ′
λ(σ) ≤ W .

(b) Average case: for every strategy σ ∈ Σpp
A , it holds that Eλ

[U ′
λ(σ)

] ≤
(1 − p0)V0 + A.

(c) Both bounds are tight.

Proof. We prove the three statements in order.

Part (a). By definition of Σpp
A (see Definition 3), for every random-

ness choice λ ∈ [0, 1]C and strategy σ ∈ Σmp
W , it holds that V0 +

∑C
i=1 I [λi ≤ pi(λ<i)]Vi(λ<i) ≤ W ; but the quantity on the left-hand side of

the inequality is U ′
λ(σ) (see Definition 2), and the claimed statement follows.

Part (b). Recall that Nature samples λ uniformly at random from [0, 1]C , so
the coordinates of λ are independent from one another. Therefore, for every
strategy σ ∈ Σpp

A ,
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Eλ

[U ′
λ(σ)

]
= V0 + Eλ

[
C∑

i=1

I [λi ≤ pi(λ<i)]Vi(λ<i)

]

= V0 + Eλ1 · · · EλC

[
C∑

i=1

I [λi ≤ pi(λ<i)]Vi(λ<i)

]
(by independence)

= V0 +

C∑
i=1

Eλ<i [pi(λ<i)Vi(λ<i)]

≤ (1 − p0) V0 + A. (by definition of Σpp
A )

as claimed.

Part (c). Consider the following two strategies consisting of a single probabilistic
payment after p̃ay (of value V0):

– Choose σ such that C := 1, p1 := 1, and V1 := W − V0. Note that σ ∈ Σmp
W

and, for every randomness choice λ ∈ [0, 1]C , it holds that U ′
λ(σ) = W .

– Choose σ such that C := 1, p1 := 1, and V1 := A − p0V0. Note that σ ∈ Σpp
A

and Eλ

[

U ′
λ(σ)

]

= (1 − p0) V0 + A.

In sum, the first strategy shows that our worst-case bound is tight, while the
second strategy shows that our average-case bound is tight.

Remark 1 (detectable nullpayment double spends). So far our analysis assumes
that macropayment double spends are detectable, but nullpayment double
spends are not. What if some nullpayment double spends are detectable? For
example, merchants could maintain a partial order of all payments via a synchro-
nous clock that ticks every second, even if the broadcast time is 10 s; this partial
order would give chronological information on some nullpayment vs. macropay-
ment pairs. But does such a stronger detection guarantee improve the economic
bounds?

Our analysis does extend to this setting, and the answer is yes, but not by
much. First, if some nullpayment double spends are also detectable, the addi-
tional utility of a malicious customer can only go down, so the upper bounds
of our theorem continue to hold. However, the upper bounds are not tight; nev-
ertheless, below we sketch modifications to our analysis that do recover a tight
result.

– Starting point: the first time a detectable double spend occurs, i.e., a macro-
payment or detectable nullpayment occurs after another macropayment on the
same ticket.

– Ending point: every merchant has detected that double spend.
– Additional utility: if the starting point is a macropayment double spend, the

additional utility is the same, but if the starting point is a detectable nullpay-
ment double spend, the additional utility goes down by V0.
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The rest of the analysis follows, for parameters A and W that are now defined for
this new time interval. The only difference is in the initial cost of detection, due
to different detection guarantees. Afterwards, only macropayment double spends
provide additional utility, which are detectable in both settings. Overall, even
if we had the stronger guarantee of detecting all nullpayment double spends, it
would only save V0 in the average-case bound.

3.3 Interpreting the Payment Value Rates

Our analysis in Sect. 3.2 can be viewed as a reduction from the required deposit
amount to certain per-deposit payment value rates: A (for the average case
analysis), which is the maximum cumulative value of probabilistic payments
across merchants within any detection time period; or W (for the worst case
analysis), which is the maximum cumulative value of macropayments across
merchants within the same period. Our analysis is tight, so leaving these para-
meters unbounded enables a malicious customer to gain unbounded additional
utility (and rules out the possibility of deterring malicious behavior via economic
means such as advance deposits). The purpose of this section is to discuss the
meaning of bounding payment value rates, and what are the implications of such
bounds. Throughout, recall that our analysis is per deposit, so we fix a single
deposit d that backs all the probabilistic payments discussed below.

Interpretation of the parameters. We first discuss the detection time (used
to define the rate), and then discuss how W and A may arise as a sum, across
all merchants, of corresponding payment value rates.

– Detection time. We denote by TM the time for a merchant M to detect a
detectable double spend. For example, TM can be the network’s broadcast time,
that is, the time for a message sent by a merchant to reach all other merchants
(this is true, e.g., if the network contains enough honest nodes to provide reli-
able and timely broadcast, or if merchants have the same view of the ledger).
In a Bitcoin-like system the broadcast time is much smaller than the valida-
tion time (the time for a broadcast transaction to appear in the ledger): a few
seconds as opposed to a few minutes.

– Merchants (per deposit). We denote by N the number of merchants that accept
probabilistic payments (backed by the deposit d). For example, N could be
the number of all merchants. (Though this need not be the case, see below.)

– Payment value rates (per deposit). For every merchant M, aM := maxt aM(t)
is the maximum (cumulative) value of probabilistic payments (backed by the
deposit d) accepted by M within any time period of TM; similarly, wM :=
maxt wM(t) is the maximum (cumulative) value of macropayments accepted
by M within any time period of TM. Then one sets A equal to

∑

M aM, and W
equal to

∑

M wM (or consider these as upper bounds to A and W ).

Necessity of bounds. We now explain why simultaneous bounds on the afore-
mentioned parameters are necessary. First, if there is no bound on the number
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N of merchants that accept probabilistic payments backed by d, a malicious cus-
tomer can use d to gain unbounded additional utility via a one-ticket-multiple-
merchant attack (see Sect. 3.1), even in the average case. Second, even if N
is bounded (and greater than 1) but maxM TM is unbounded (e.g., a large-scale
eclipse attack is underway [HKZG15]), a malicious customer can gain unbounded
additional utility via a multiple-ticket-multiple-merchant attack (see Sect. 3.1),
even in the average case. Third, even if N and maxM TM are bounded but some
aM is unbounded, our analysis implies that a malicious customer can again
gain unbounded additional utility in the average case; similarly, if some wM

is unbounded, our analysis implies that a malicious customer can again gain
unbounded additional utility in the worst case. In sum, if either maxM TM or N
are unbounded, then A =

∑

M aM and W =
∑

M wM are also unbounded; but
even if maxM TM and N are bounded, either A or W could still be unbounded,
and so we must explicitly bound A or W (depending if we target average or
worst case, or both).

Finally, observe that the above discussion assumes that there is no a-priori
bound on how many tickets a single deposit can back; see Remark 2 below for a
discussion of what happens if a deposit is restricted to only back macropayments
up to a certain maximum total value.

Respecting the bounds. Whose responsibility is it to ensure that the bounds
A or W are respected? One answer to this question could be that there are
exogenous reasons (e.g., spending patterns, network behavior, and so on) that
justify this statement. Another answer to this question is to say that every
merchant M is responsible “for his own share”: he needs to monitor that aM and
wM are locally respected for him (and if they are about to be exceeded, he defers
further payments to the next period of time TM). This second answer raises an
interesting technical problem: how does M know which payments are backed by
the same deposit? If a payment’s deposit is not private (as in [PS16]) this is not a
problem. But if a payment’s deposit is private, this could be tricky. In our DAM
scheme construction, when engaging in a probabilistic payment, a merchant does
not learn any information about the deposit that backs it, beyond the bit of
whether the deposit is valid or not. Nevertheless, we still enable a merchant to
get around this problem, by leveraging the notion of a rate limit tag within a
probabilistic payment.

Implications: good news and bad news. The good news about our economic
analysis is that it gives a tight characterization of the additional utility that
can be gained via double spending. The bad news is that bounding A or W
may impact usability. (Perhaps this is not surprising because offline probabilistic
payments are a “tough” setting since double spending cannot be fully prevented.)
Namely, if all aM (resp., wM) are large, then A (resp., W ) is even larger; but this
impacts usability because the required deposit is large. Conversely, if many aM
(resp., wM) are small then A (resp., W ), and thus the required deposit, is not as
large; but the amount of value transacted with many merchants is limited, and
this impacts usability because a user may not be able to transact large amounts
with his “favorite” merchants.
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Mitigations. A way to mitigate the above problem is to associate to each
deposit a subset R of allowed “receiver merchants” so that the sum is taken
only over this subset: A =

∑

M∈R aM and W =
∑

M∈R wM. Then, any particular
user would only have to cover his spending habits with one (or more) deposits
that cover one (or more) not-too-large subsets of merchants. The subset R can
even be private and chosen by the user; in fact, we take this approach both when
defining and constructing a DAM scheme.

Another way to mitigate the above problem is for merchants to
group together into micropayment agencies. Such an agency acts as a proxy
to the subset of merchants it serves, and its only task is to “monitor” the cumu-
lative values of aM and wM for merchants in the agency. This approach does not
affect any privacy guarantees from the perspective of the customer (since every
probabilistic payment is anonymous from the perspective of a single merchant
or any coalition of merchants). In the extreme, one could even think of a single
micropayment agency, and the only obstacle would be coordinating and keeping
track of A and W across the network.

Remark 2 (bounded macropayments per deposit). So far we have assumed that
there is no a-priori bound on how many tickets a single deposit can back. Suppose
instead that a deposit d can only back tickets with total macropayment value
up to Vtot. To analyze this other setting, we can reuse ideas from our economic
analysis: again, one can define additional utility by comparing the utilities of a
malicious merchant and a corresponding honest merchant. We omit the analysis
and simply state that the additional utility is bounded by (2N − 1)Vtot, where
N is the number of merchants that accept probabilistic payments backed by
d (note that in this case maxM TM,A,W could all be unbounded). Moreover,
the bound is tight; intuitively, the maximum additional utility is achieved via
a multiple-ticket-multiple-merchant attack until two macropayments with the
same ticket occur for each of the N merchants.

4 Efficient Fractional Message Transfer

A key ingredient in our construction of a DAM scheme is fractional message
transfer (FMT): a primitive that enables probabilistic message transmission
between two parties, called the ‘sender’ and the ‘receiver’. Informally, the receiver
samples a one-time key pair based on a transfer probability p; then, the sender
uses the receiver’s public key to encrypt a message m into a ciphertext c; finally,
the receiver uses the secret key to decrypt c, thereby learning m, but only with
the pre-defined probability p (and learns no information about m with proba-
bility 1− p). Our definition and construction of FMT are closely related to non-
interactive fractional oblivious transfer (NFOT), which was studied in the con-
text of ‘translucent cryptography’ as an alternative to key escrow [BM89,BR99];
see Sect. 1.1.3 for a discussion.

In this work we formulate the notion of an FMT scheme, which formally
captures the functionality and security of probabilistic message transmission; we
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rely on this tool (and others) in our construction of a DAM scheme. Moreover,
we give an efficient construction of an FMT scheme that works for transfer
probabilities p = 1/n with n ∈ N; this construction is in the random oracle
model and assumes the hardness of the DDH problem in prime-order groups.
Finally, since probabilistic message transmission is of independent interest, we
also define the notion of an FMT protocol via an ideal functionality, and show
that the security definition of FMT schemes does imply security relative to that
ideal functionality. (Our DAM scheme relies on an FMT scheme, rather than
an FMT protocol, because we interleave the FMT scheme with other building
blocks.)

We defer the definitions, constructions, and proofs about FMT to the full
version. In the rest of this section, we informally describe the syntax, correctness,
and security of FMT schemes, and then sketch our FMT construction.

Syntax. An FMT scheme is a quintuple of algorithms (FMT.Setup,FMT.Keygen,
FMT.Encrypt,FMT.Decrypt) with the following syntax.

– Parameter setup (executed by a trusted party): FMT.Setup(1λ) → ppFMT. On
input a security parameter λ, FMT.Setup outputs the public parameters ppFMT

for the scheme.
– Key generation (executed by the receiver): FMT.Keygen(ppFMT, p) →

(pkFMT, skFMT). On input public parameters ppFMT and a transfer probabil-
ity p, FMT.Keygen outputs a one-time key pair (pkFMT, skFMT).

– Message encryption (executed by the sender): FMT.Encrypt(ppFMT,
pkFMT,m) → c. On input public parameters ppFMT, a public key pkFMT and a
message m, FMT.Encrypt outputs a ciphertext c.

– Message decryption (executed by the receiver): FMT.Decrypt(ppFMT,
skFMT, c) → m′. On input public parameters ppFMT, a secret key skFMT and
a ciphertext c, FMT.Decrypt outputs a message m′ that equals m or ∅. (The
special symbol ∅ denotes that decryption resulted in no message.)

An FMT scheme satisfies the correctness and security properties defined below.

Correctness. An FMT scheme is correct if for every security parameter λ,
public parameters ppFMT ∈ FMT.Setup(1λ), transfer probability p ∈ P ⊆ [0, 1],
key pair (pkFMT, skFMT) ∈ FMT.Keygen(ppFMT, p), and message m ∈ M,

FMT.Decrypt(ppFMT, skFMT,FMT.Encrypt(ppFMT, pkFMT, m)) =

{
m w.p. p

∅ w.p. 1 − p

where the probability is taken over the randomness of FMT.Encrypt (and
FMT.Decrypt is deterministic).

Security. An FMT scheme is secure if it has the properties of fractional hiding
and fractional binding. Informally, fractional hiding says that an honest encryp-
tor transferring a message m can be sure that the decryptor, who knows the
secret key, learns m with probability exactly p (and ∅ with probability 1 − p),
even if the public key was generated maliciously. Fractional binding says that,
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for every p′ 	= p, a malicious encryptor cannot produce a valid ciphertext that
decrypts with probability p′ to a valid message (i.e., not ∅).

An efficient FMT scheme. Our construction of an FMT scheme targets the
case where p equals 1/n for some positive integer n; this case suffices within
our construction of a DAP scheme. As in prior work [BM89,BR99], our starting
point is the Elgamal encryption scheme [Elg85], whose semantic security relies
on the hardness of DDH in prime-order groups. We now give an informal sketch
of our construction.

– FMT.Setup(1λ): sample a group G of prime order q (depending on λ), along
with two generators g, g0 ∈ G.

– FMT.Keygen(ppFMT, p): the public key contains a Pedersen commitment
[Ped91] to a random s in {1, . . . , n} and the secret key contains the com-
mitment’s randomness; that is, the commitment is h = g−s

0 gα for random
α ∈ Zq.

– FMT.Encrypt(ppFMT, pkFMT,m): sample random r ∈ Zq and random t ∈
{1, . . . , n}, and use h as an Elgamal public key to encrypt the message
m′ := m · grt

0 ; the resulting ciphertext is c = (t, c1, c2) = (t, gr,m′hr).
– FMT.Decrypt(ppFMT, skFMT, c): use the secret key α to decrypt the ciphertext

by setting m′′ := c2/cα
1 = mg

r(t−s)
0 .

The above sketch omits several important details. In particular, our construction
also includes NIZKs (obtained via the Fiat–Shamir transform applied to simple
Σ-protocols) to prove correctness of key generation and encryption. Informally,
our FMT’s correctness and security follow from the fact that m′′ = m only when
t = s, which occurs with probability p = 1/n. The full construction and proof of
security (based on hardness of DDH) are the full version.

5 Informal Construction Description

Recall that a DAM scheme is a tuple of algorithms:

DAM =

⎛

⎜

⎝

Setup
CreateAddr
ReceiveL

MintCoinL

MintDepositL

MintTicketL

PourCoinToCoinL

PourCoinToDepositL

PourCoinToTicketL

PourTicketL

WithdrawDepositL

RefreshTicketL
Punish
VerifyTransactionL

⎞

⎟

⎠
.

We sketch the construction of these in Sects. 5.1 and 5.2, and then separately
discuss security intuition in Sect. 5.3 and ‘pour regulation’ in Sect. 5.4.

5.1 Informal Algorithm Descriptions

Setup. The algorithm DAM.Setup samples public parameters for the various
building blocks that we use, which includes DAP schemes and FMT schemes, as
well as one-time signature schemes and NIZKs

Creating addresses. The algorithm DAM.CreateAddr samples a new address
key pair by running DAP.CreateAddr with the address information set to the
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probabilistic payment specification and outputting its result; in other words,
DAM addresses are simply addresses of the underlying DAP scheme. Receivers
must bind their intended payment rates, probability, and value to the address
by passing it as input to DAM.CreateAddr (other users can set it to ⊥ if they do
not intend to receive probabilistic payments).

Receiving coins. The algorithm DAM.Receive, given an address key pair,
retrieves all the unspent coins sent to this address by simply running
DAP.Receive. Indeed, DAM pour-coin, pour-ticket, withdraw, and refresh trans-
actions can be viewed as DAP pour transactions, and so DAP.Receive may
retrieve from these any relevant coins.

Minting notes. Each of the minting algorithms DAM.MintCoin,
DAM.MintDeposit, and DAM.MintTicket first sets the public information string
pub to the type of the note being minted (respectively, cn, dp, or tk), and sets
the secret information string sec accordingly: for coins, sec equals ⊥; for deposits,
sec is a commitment to the deposit’s receiver address set R; for tickets, sec equals
the (already-minted) deposit that backs it. Then, the algorithm mints the note
by running DAP.Mint.

Pouring coins. Each of the algorithms DAM.PourCoinToCoin,
DAM.PourCoinToDeposit, DAM.PourCoinToTicket first sets the public and secret
information strings similarly to above, and then runs DAP.Pour to generate the
new notes. A DAM scheme also includes a protocol for pouring tickets into coins,
which we discuss separately in Sect. 5.2 because it is the most complex part of
the construction.

Withdrawing deposits. The algorithm DAM.WithdrawDeposit, given a deposit
d (and its address secret key) and address public key apk, pours the deposit
into a new coin c with address apk by running DAP.Pour. The output consists
of the new coin c, as well as a withdraw transaction txwd that is just a DAP
pour transaction having activation delay Δw. Since pour transactions reveal the
serial numbers of input notes, it is easy to blacklist the withdrawn deposit (see
Sect. 5.2).

5.2 A 3-message Protocol for Probabilistic Payments

We outline the construction of DAM.PourTicket, a 3-message protocol that real-
izes an offline probabilistic payment between a sender (customer) and receiver
(merchant). For simplicity, we only discuss enforcement of the worst-case pay-
ment rate bounds; enforcement of the average-case bound is achieved via essen-
tially the same ideas. Recall that the worst-case bound limits the number of
macropayments that occur in a particular time window tw.

1st message (sender ← receiver). The first message of the protocol is from
the receiver to the sender and consists of the receiver’s session identifier sid,
session public key spk, the list of deposits D that have been blacklisted in
this epoch, and the desired public value vpub. These are constructed as follows.
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Suppose that the receiver has an address key pair (apkc, askc) and wishes to
receive payments at this address with payment probability pr and macropayment
value Vr; moreover, suppose that the receiver’s per-deposit maximum cumulative
average-case payment value rate is ar. Then the receiver constructs his session
identifier as sid := (apkc, twr). To construct the session public key, the receiver
samples a new key pair (pkSIG, skSIG) for the one-time signature scheme, and a
new key pair (pkFMT, skFMT) for the fractional message transfer scheme and sets
spk := (pkFMT, pkSIG). Finally, the deposit blacklist D consists of the identifiers
of deposits seen in punish transactions within the current epoch.

2nd message (sender → receiver). The sender now pours his ticket t into a
new coin c using DAP.Pour, and then uses fractional message transfer to prob-
abilistically transmit the new coin c to the receiver, while also proving, in zero
knowledge, that he did so correctly. We now expand on this description, which
hides subtle aspects of our construction.

After pouring his ticket t into a new coin c (which results in a DAP pour
transaction txp), the sender uses the deposit d backing t to generate two cru-
cial quantities: the worst-case rate limit tag wrlt and the double spend tag
dst. The rate limit tag allows the receiver to enforce the payment value rate
bounds required by the economic analysis. The double spend tag allows the
receiver to extract deposit revocation information if and only if t is spent in two
macropayments.

A natural strategy would be for the sender to send to the receiver, in the
clear, the rate limit tag wrlt, and a FMT ciphertext cFMT containing txp and
dst, along with a non-interactive zero knowledge proof that both were generated
correctly. However, doing so does not preserve privacy. Indeed, to ensure that
the sender cannot double spend the ticket to herself and escape punishment,
the ledger needs to check that the double spend tag was generated correctly.
This can be done by verifying the NIZK proof, but to do this would require
including the FMT ciphertext, blacklist detection tag, and rate limit tag as part
of the NP instance being verified. This is problematic, since publishing these leaks
information about the transfer probability pr and the deposit, both of which are
private information.

To fix this problem, the sender hides wrlt and cFMT inside two commitments
ω0 and ω1, and then computes a proof of correctness relative to these commit-
ments. More precisely, the first commitment ω0 hides m0 := (sid, spk, vpub, cFMT),
where sid, spk, and vpub are the receiver’s session identifier, session public key, and
public value respectively, and cFMT is a FMT ciphertext. The FMT ciphertext
cFMT, as before, contains wrlt, txp and dst, but now also contains randomness r1
that opens the second commitment ω1, which in turn hides m1 := (txp, dst,wrlt).
Thus opening the FMT ciphertext allows the receiver to open ω1 and obtain the
correct txp, dst,wrlt. Next, the sender generates a non-interactive zero knowledge
proof of knowledge πpt asserting that he performed all these steps correctly. The
NIZK also asserts (a) that the deposit d’s receiver address set R contains the
receiver’s address public key apk, (b) that d’s identifier has not appeared in
punish transactions in the current epoch, and (c) that d’s serial number has not
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appeared on the ledger prior to the current epoch (that is, d was not revoked or
withdrawn in prior epochs).

Finally, he sends (ω0,m0, ω1, πpt) and randomness r0 for opening ω0 to the
receiver. Since the proof is now computed relative to ω0 and ω1, and not cFMT

and wrlt, it can safely be published to the ledger.

3rd message (sender ← receiver). The receiver uses r0 and m0 to open ω0 and
checks that the committed sid, spk and vpub are indeed the correct ones (which
were sent in the first message). Next, he checks the correctness of πpt, and finally,
using the rate limit tag, he checks that the payment value rate ar has not been
exceeded. If these checks pass, he tries to open the FMT ciphertext cFMT inside
ω0. If he is able to successfully open it, he can open ω1 to obtain txp and dst.
If the ticket t has already been spent (i.e., the deposit d has been blacklisted),
the receiver recovers the deposit and creates a punish transaction txpun. If not,
he posts txp to obtain his payment. Finally, he sends to the sender the secret
key skFMT used for decryption, and m′, which is the outcome of decryption, to
communicate whether the outcome was ‘macropayment’ or ‘nullpayment’.

Outcome verification. Upon receiving the FMT secret key, the sender checks
that the FMT ciphertext cFMT decrypts to claimed message m′ under the key
skFMT; this reveals whether the claimed outcome was the correct one. If the
receiver sends an incorrect secret key, or does not send anything at all, the
sender refreshes his ticket, thereby generating a new ticket t′ and a refresh
transaction txref .

5.3 Security Considerations

We give an intuitive justification of why the probabilistic payment protocol is
secure.

Sender security. The fractional hiding property of the FMT scheme ensures
that the receiver can only open cFMT with probability pr. Since the commitment
ω1 is hiding and the proof πpt is zero knowledge, the rest of the sender’s message
is indistinguishable from random. Finally, the security of the “outcome verifica-
tion” step is guaranteed by the fractional hiding property of the FMT scheme;
if the receiver could generate two different secret keys that can decrypt the
same FMT ciphertext to different messages, then he could bias the probability
of opening the ciphertext in his favor, thus breaking fractional hiding.

The above ensures “intra-protocol” sender security. Post-protocol security
requires that the receiver cannot compromise the honest sender’s anonymity or
cause monetary loss by aborting. This is achieved by allowing the sender to
refresh tickets by pouring them into new ones. This breaks the link between the
ticket that the receiver has seen and the ticket that the sender can now spend,
enabling the sender to freely spend his new ticket.

Receiver security. Opening ω0 allows the receiver to check that the sender
generated the rate limit tags relative to the true session identifier and public
key. The fractional binding property of the FMT scheme ensures that the sender
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cannot alter the probability of opening cFMT. The NIZK proof ensures the cor-
rectness of each step.

The above ensures “intra-protocol” receiver security. Achieving post-protocol
security is trickier, since we need to ensure that the sender can only create double
spend tags that are consistent across independent pour-ticket transactions. In our
construction, the sender can attempt to bypass this requirement by manipulating
the three inputs that create a double spend tag: the randomness x used for
generating the tag, and the deposit d that is hidden in the tag, and the ticket t
that d backs.

Preventing reuse of randomness. To prevent recovery of the deposit serial
number from multiple double spend tags, the sender could attempt to reuse
randomness across each tag. This would prevent recovery, since each receiver
would possess the same tag. To prevent this, our construction of a double
spend tag dst uses a special one-time signature public key pkSIG as random-
ness. Later, upon receiving the tag, the receiver signs the tag (among other
things) with the secret key skSIG corresponding to pkSIG. To create two differ-
ent pour-ticket transactions with the same double spend tag (one to an honest
receiver and one back to himself), the sender would thus have to forge a sig-
nature, which is computationally infeasible by the security of the signature
scheme.
Ensuring d backs t. The NIZK proof created by the sender ensures that the
deposit d hidden in the double spend tag is the one backing t.
‘Identical’ tickets backed by different deposits. In principle, one could construct
two tickets t, t′ that have the same serial number (and are thus indistinguish-
able from the point of view of double spending), but are backed by different
deposits. Since t and t′ would share serial numbers, only one of the two could
be successfully spent. This could lead to the following attack: the sender gen-
erates two such tickets, and pays himself with one, and pays a receiver with
the other. When a macropayment occurs, he front runs the receiver to get his
self-payment onto the ledger first. The receiver is then robbed of his payment,
but also cannot punish the sender, since the double spend tags hide different
deposits, making revocation impossible.
However, our construction prevents such an attack by ensuring that the serial
number of a note is derived (in part) from its secret information string sec.
This property is guaranteed by the DAP scheme.

5.4 Regulating Type Transitions When Pouring

The definition of a DAM scheme restricts fund transfers between different note
types: coins can be poured into coins, deposits, or tickets; a deposit can be
poured into a coin; a ticket can be poured into a coin or ticket. Moreover, some
type transitions are handled differently from others: for example, pouring from
a set of coins yields a pour-coin transaction that is immediately valid, while
pouring from a ticket to a ticket yields a refresh transaction that only becomes
valid after a waiting period (the activation delay). We realize most of these fund
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transfers via DAP pours, but we must also somehow meet the aforementioned
restrictions.

The first obstacle is that a note’s type is not necessarily known, because
we store the type of note in its public information string pub, which is not
revealed by a DAP pour transaction. But remember that a DAP scheme allows
us to choose, at parameter setup time, a pour predicate that regulates all pour
transactions. We thus engineer a pour predicate Π∗

p , tailored for our application,
that (i) allows only the aforementioned type transitions, and (ii) ensures that
the information string info in a DAP pour transaction correctly exposes the type
of the note from which we are pouring.
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Abstract. Nakamoto’s famous blockchain protocol enables achieving
consensus in a so-called permissionless setting—anyone can join (or
leave) the protocol execution, and the protocol instructions do not
depend on the identities of the players. His ingenious protocol prevents
“sybil attacks” (where an adversary spawns any number of new players)
by relying on computational puzzles (a.k.a. “moderately hard functions”)
introduced by Dwork and Naor (Crypto’92).

The analysis of the blockchain consensus protocol (a.k.a. Nakamoto
consensus) has been a notoriously difficult task. Prior works that analyze
it either make the simplifying assumption that network channels are fully
synchronous (i.e. messages are instantly delivered without delays) (Garay
et al. Eurocrypt’15) or only consider specific attacks (Nakamoto’08; Sam-
polinsky and Zohar, FinancialCrypt’15); additionally, as far as we know,
none of them deal with players joining or leaving the protocol.

In this work we prove that the blockchain consensus mechanism sat-
isfies a strong forms of consistency and liveness in an asynchronous net-
work with adversarial delays that are a-priori bounded, within a formal
model allowing for adaptive corruption and spawning of new players,
assuming that the computational puzzle is modeled as a random ora-
cle. (We complement this result by showing a simple attack against the
blockchain protocol in a fully asynchronous setting, showing that the
“puzzle-hardness” needs to be appropriately set as a function of the
maximum network delay; this attack applies even for static corruption.)

As an independent contribution, we define an abstract blockchain
protocol and identify appropriate security properties of such protocols;
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we prove that Nakamoto’s blockchain protocol satisfies them and that
these properties are sufficient for typical applications; we hope that this
abstraction may simplify further applications of blockchains.

1 Introduction

Distributed systems have been historically analyzed in a closed setting in which
both the number of participants in the system, as well as their identities, are
common knowledge. A departure from this model started with the design of
peer-to-peer systems, e.g. with systems such as Napster and Gnutella for file
sharing. The success of those systems led to academically designed systems such
as Freenet [CSWH00], CAN [RFH+00], Chord [SMK+01], and Pastry [DR01]
which offered redundant file storage, distributed hashing, selection of nearby
servers, and hierarchical naming.

A novel aspect of these peer systems is that they are permissionless—anyone
can join (or leave) the protocol execution (without getting permission from a
centralized or distributed authority), and the protocol instructions do not depend
on the identities of the players. As participants may continuously join and leave
the system, successful permissionless systems require a fault-tolerant design.
Unfortunately, the mentioned systems, while “robust” with respect to measures
such as connectivity [DLN02], were not designed to tolerate against adversarial
behavior. For example, there were no guarantee that one participant’s experience
with the system was consistent with another’s: Two participants requesting the
same file may end up receiving different versions and never know that they did.
At first, one may think that using standard consensus/Byzantine agreement
methods (e.g., [CL99,MA05,Lam10,Lam11]) could help overcome this issue. The
problem is that such protocols require that a large fraction of the participating
players are honest, but in the permissionless setting an attacker can trivially
mount a “sybil attack”—it simply spawns players (that it controls) and can thus
ensure that it controls a majority of all players. Indeed, Barak et al. [BCL+05]
prove that this is a fundamental problem with the permissionless model.

Nakamoto’s Blockchain. In 2008, Nakamoto [Nak08] proposed his celebrated
“blockchain protocol” which overcomes the above-mentioned problems by rely-
ing on the idea of computational puzzles—a.k.a. moderately hard functions or
proofs of work—put forth by Dwork and Naor [DN92]. Rather than attempt-
ing to provide robustness whenever the majority of the participants are hon-
est (since participants can be easily spawned in the permissionless setting), it
attempts to provide robustness as long as a majority of the computing power is
held by honest participants. It explicitly claims consistency properties that are
strong enough to support a financial transaction system; indeed, the first appli-
cation of a blockchain is the Bitcoin digital currency which needs strong proper-
ties to prevent fraud and double-spending attacks. A number of follow-up digi-
tal currencies [Lit], micro-payment schemes [PS15,PD15], time-stamping [BTP],
naming [Nam], fair secure computation [BK14] and secure messaging and PKI
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applications [FVY14] are based on the blockchain idea. Additionally, financial
firms have announced intentions of using the blockchain to lower transaction
costs, remove geopolitical barriers to transferring assets, and reconcile differ-
ences between systems.

The core blockchain protocol (a.k.a. “Nakamoto consensus”, or the “Bare-
bones blockchain protocol”), roughly speaking, is a method for maintaining a
public, immutable and ordered ledger of records (for instance, in the bitcoin appli-
cation, these records are simply transactions); that is, records can be added to
the end of the ledger at any time (but only to the end of it); additionally, we
are guaranteed that records previously added cannot be removed or reordered
and that all honest users have a consistent view of the ledger. While standard
consensus/Byzantine agreement mechanisms could be used to achieve such an
immutable ordered sequence of records, the amazing aspect of Nakamoto’s con-
sensus mechanism is that it functions in a fully permissionless setting.

Roughly speaking, in his protocol each participant maintains its own local
“chain” of “blocks” of records/messages—called the blockchain. Each block con-
sist of a triple (h−1, η,m) where h−1 is a pointer to the previous block in chain,
m is the record component of the block, and η is a “proof-of-work”—a solution
to a computational puzzle that is derived from the pair (h−1,m). The proof of
work can be thought of as a “key-less digital signature” on the whole blockchain
up until this point.

Concretely, Nakamoto’s protocol is parametrized by a parameter p—which
we refer to as the mining hardness parameter, and a proof-of-work is deemed
valid if η is a string such that H(h−1, η,m) < Dp, where H is a hash function
(modeled as a random oracle) and Dp is set so that the probability that an
input satisfies the relation is less than p. In practice, the hardness parameter p is
adaptively modified through some external process to incorporate an estimate of
the number of participants in the system and the network delays; we shall return
to the choice of p later. At any point of the protocol execution, each participant
attempts to increase the length of its own chain by “mining” for a new block:
upon receiving some record m, it picks a random η and checks whether η is a
valid proof of work w.r.t. m and h−1, where h−1 is a pointer to the last block of
its current chain; if so, it extends is own local chain and broadcast it to the all
the other participants (the broadcast takes places through some gossip protocol,
which we do not discuss here). Whenever a participant receives a chain that is
longer than its own local chain, it replaces its own chain with the longer one.

The fundamental question with such an approach is whether honest partic-
ipants eventually end up with the same longest chain of blocks, and thus, the
same ordered list of records, or whether the system devolves into a state where
participants have inconsistent local chains.

1.1 Does Nakamoto’s Protocol Achieve Consistency?

Requiring that all participants agree on the whole chain is a too strong consis-
tency requirement if the protocol is executed on a network with message delays
(as Nakamoto’s protocol is intended to be)—for instance, some players may
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have received the last block whereas other have not. Rather, as discussed by
Nakamoto [Nak08], the appropriate notion of consistency for the blockchain—
which we refer to as T-consistency—should require that honest players agree
on the current chain, except for potentially a small number, T , of unconfirmed
blocks at the end of the chain. If we can show this property holds except with
exponentially small probability in T , honest parties are guaranteed that for a
sufficiently large choice of T (except with tiny probability), confirmed blocks
will never be lost from the chain (which is the property needed for all the above-
mentioned applications; for instance, in bitcoin, it ensures that players cannot
double-spend money).

Nakamoto provides an initial analysis of consistency assuming that the adver-
sary only mounts a particular attack strategy (namely, an attacker tries to gen-
erate a chain faster than the honest players); for instance, his analysis does not
consider more sophisticated attack strategies where the adversary may attempt
to “split the players” and have them work on different chains.

A beautiful recent work by Garay, Kiayas and Leonardos [GKL15] provides a
more formal model for studying Nakamoto’s blockchain protocol; their analysis,
however, only considers a synchronous network with a rushing adversary—that
is, messages sent in a particular round arrive in the next round without any
delays, but the adversary sees all messages sent by honest parties before having to
send its own message. In this model, they demonstrate that the blockchain proto-
col satisfies consistency (under appropriate assumptions on the mining hardness
and the relative computational power held by the attacker), in a setting with a
fixed number of players (but the protocol is not aware of the exact number of
players).

Assuming a synchronous network, however, is a very strong, possibly unreal-
istic assumption; indeed, Nakamoto’s protocol is explicitly designed to work in
a network with message delays, and indeed is executed on such a network (i.e.,
the Internet).

The Power of Network Delays. Consequently, we are interested in analyzing to
what extent the blockchain protocol satisfies consistency in the more realistic
setting of an asynchronous network in which an adversary controls the schedul-
ing/delivery of messages between honest parties. As we observe (and formally
prove in Theorem10), in a fully asynchronous setting, where an adversary can
arbitrarily delay messages, consistency cannot be satisfied: an adversary control-
ling a small percentage of the computational power can simply delay messages
from honest parties for sufficiently long to ensure that the adversary can find
its own chain (containing any set of records it desires) which is longer than
the chain held by all honest players, and consequently it can make the honest
players switch to the adversarial chain at any point. In fact, our attack works
even in the setting of partial synchrony (see e.g. [DLS88]) where there is an
a-priori bound Δ on the network latency (that is, the adversary may arbitrary
delay messages as long as it delivers them within time Δ), as long as the mining
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hardness parameter p exceeds1 1
ρnΔ , where ρ is the fraction of the computational

power held by the adversary and n is the number of players. Indeed, Decker and
Wattenhofer [DW13] already experimentally observed that increasing the net-
works delays in Nakamoto’s protocol leads to increased forks, and they noted
(through heuristic calculations) that an attacker could use these delays to violate
consistency with an attack that requires less than 50% of the mining power.

Motivated by the work by Decker and Wattenhofer, an elegant work by
Sompolinsky and Zohar [SZ15] provides some initial analysis of the blockchain
protocol even in a network with (bounded) delays. They show how to extend
Nakamoto’s analysis to deal with (bounded) delays, but again (just like
Nakamoto) they only consider particular attack strategies—e.g., they do not
consider “block-withholding or pre-mining attacks” where the attacker withholds
blocks for later use [mtg10,ES14]; furthermore, their analysis only shows that
consistency holds in the limit (when T goes to infinity), and consequently their
bounds (even for the restricted attacker setting) are not useful for applications.

This leaves open the question of analyzing Nakamoto’s blockchain protocol—
or in fact any consensus protocol in the permissionless setting—with respect to
arbitrary attack strategies in networks with Δ-bounded delays.

Does Nakamoto’s blockchain protocol satisfy consistency when executed in
asynchronous networks with Δ-bounded delays?

As mentioned above, Garay et al. provide a positive answer for the special case
when Δ = 1 (i.e., messages are delivered in the next time step2), and Sam-
polinsky and Zohar show that certain (natural, but restricted) strategies cannot
be employed to break consistency of Nakamoto’s protocol (in the limit) in Δ-
bounded delay networks.

Let us highlight why dealing with network delays in the “proof-of-work” set-
ting (where we assume that a majority of the computing power is honest) is
significantly more challenging than in the standard permissioned setting. In the
standard model, any synchronous protocol can be turned into a protocol that
is secure also in Δ-delay networks by simply requiring that all honest players
always wait (without doing anything) for Δ time steps before responding to any
message, effectively emulating synchronous rounds. This approach completely
fails in the proof-of-work setting—the adversary can now increase its computa-
tional resources by a factor Δ (since it can try to solve puzzles when the honest
players are waiting).

1.2 Main Results

In this paper, we resolve the above-mentioned problem and demonstrate that
(assuming puzzles are modeled as random oracles) Nakamoto’s protocol satisfies
1 Recall that a larger hardness parameter means that it is easier to find a block.
2 Alternatively, one way to interpret the result of Garay et al.is that it shows con-

sistency of Nakamoto’s protocol also with Δ delays, but with a particular delay
structure where time is divided into intervals of length Δ, and any message sent
within an interval is delayed to the end of it.
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consistency (under appropriate assumptions on the mining hardness and the rel-
ative computational power held by the attacker) also in networks with message
delays. We emphasize that our analysis is not just a combination of the tech-
niques/ideas from [GKL15] and [SZ15]—in fact, the bulk of our proof consists of
dealing with the attack strategies which are omitted from the analysis in [SZ15],
and dealing with them requires us to consider an altogether different proof tech-
nique. Additionally, our analysis considers adaptive corruption and spawning of
new players (i.e., new players joining); as far as we know, it is the first analysis
to formally deal with spawning of new players (which is a crucial desiderata of
the blockchain protocol).

A Consistency Theorem with Delays. We provide a rough overview of our model
and consistency theorem. Consider Nakamoto’s protocol with mining-hardness
p (that is, a single random oracle query is successful “in mining” with proba-
bility p), and consider an execution with n players, each of them with identical
computing power—we assume the protocol proceeds in rounds (timesteps), and
in each round each player gets a single random oracle query and the adversary
controlling a ρ fraction of the players gets ρn random oracles queries (as in
[GKL15], the honest players need to make their queries in parallel, but we allow
the adversary to makes the queries sequentially). Let α = 1−(1−p)(1−ρ)n be the
probability that some honest player succeeds in solving a puzzle in one round,
and let β = ρnp be the expected number of blocks that an attacker can mine in
a round. When p � 1/n (which is the case considered in practice), we have that
α ≈ p(1 − ρ)n and thus α

β ≈ 1−ρ
ρ .

Theorem 1. Assume there exists some δ > 0 such that

α(1 − (2Δ + 2)α) ≥ (1 + δ)β.

Then, except with exponentially small probability (in T ), Nakamoto’s proto-
col satisfies T -consistency in the random oracle model, assuming the network’s
latency is bounded by Δ.

As a consequence we have that as long as ρ < 1
2 (i.e., the adversary controls

less than half of the computational power), for every Δ there exists some (suffi-
ciently small) p, such that Nakamoto’s protocol satisfies consistency. (Note that
as mentioned above, if p > 1

ρnΔ , Nakamoto’s protocol fails to satisfy consistency.)

1.3 What Is a Blockchain?

As an independent contribution, we formally define an abstract notion of a
blockchain (as opposed to the blockchain protocol proposed by Nakamoto)
and put forward desired security properties of such a blockchain. We believe
that having such a notion will (a) simplify applications of blockchains (as
we can ignore the implementation details of the blockchain protocol) and (b)
enable formally studying to what extent the protocol can be improved. (As we
explain below, both of these points have been illustrated in subsequent works
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[PS16a,PS16b].) We mention that while abstract models for higher-level appli-
cations of the blockchain (e.g., a “smart contract” abstraction) were provided in
the UC framework—see [KMS+15,BK14]—it is not clear to what extent those
abstractions can be satisfied by Nakamoto’s protocol; rather, we are here inter-
ested in having a simple notion of the blockchain itself that we can prove is
satisfied by Nakamoto’s protocol and yet is useful for applications.

Roughly speaking, a blockchain is an interactive protocol where each par-
ticipant has a local variable state which contains a list of messages �m, called
the “chain”. Players receive inputs, called records/batches/messages, that they
attempt to include in the chain of themselves and of others. We require the
following properties from a secure blockchain:

– consistency : with overwhelming probability (in T ), at any point, the chains of
two honest players can differ only in the last T blocks;

– future self-consistence: with overwhelming probability (in T ), at any two
points r, s the chains of any honest player at r and s differ only within the
last T blocks;

– g-chain-growth: with overwhelming probability (in T ), at any point in the
execution, the chain of honest players grows by at least T messages in the last
T
g rounds; g is called the chain-growth of the protocol.

– the μ-chain quality with overwhelming probability (in T ), for any T consecu-
tive messages in any chain held by some honest player, the fraction of messages
that were “contributed by honest players” is at least μ.

The consistency property is just the plain one considered by Nakamoto [Nak08]
(and formalized by Garay et al. [GKL15]). As we note, however, this consistency
property is typically not sufficient for applications. In particular, it does not
rule out a protocol that oscillates between two different chains �m1, �m2; on even
rounds all players have �m1 as their chain, and on odd rounds �m2. Clearly such
a protocol does not suffice for typical applications (e.g., bitcoin, or achieving
a public ledger). Thus, to prevent it, we introduce the future self-consistency
property.

The lower bound on chain-growth was explicitly considered by Sampolin-
sky and Zohar [SZ15] (but they only consider growth in expectation); Garay
et al. [GKL15] implicitly show a lower bound on chain growth within one of their
proofs, and [KP15] explicitly introduce it as a desideratum. In this paper, we addi-
tionally introduce an upper-bound on chain growth as a desirable property; as
shown in subsequent work [PS16a,PS16b], this property is useful in applications.

Finally, the chain quality property was first discussed on the Bitcoin forum
[mtg10] and made explicit in the selfish mining attacks by Eyal and Sirer [ES14]
with respect to the bitcoin application of the blockchain.3 The property was first
formalized, and given the name “chain quality” by Garay et al. who also show
new applications of it (as we discuss shortly).

3 In the bitcoin application of the blockchain, each player receives a reward whenever
if mines a block; the chain quality thus dictates a bound on how much more reward
an adversary can get by deviating from the protocol.
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We show the usefulness of these properties by demonstrating that any
blockchain protocol satisfying them can be used to achieve a public ledger (i.e.,
consensus) satisfying (a) persistence (namely, if a message gets added to the pub-
lic ledger, it never gets removed) and (b) liveness (that is, if all honest players
want to add a some message to the ledger, the message should eventually appear
on it). We mention that Garay et al. already noted that, intuitively, the chain
quality property implies liveness (since, by chain quality the adversary cannot
monopolize the chain), and consistency implies persistence. However, although
they show how to use Nakamoto’s protocol to obtain a public ledger (in the syn-
chronous model), they use those two properties and additional properties of the
concrete protocol to establish it. Kiayias and Panagiotakos [KP15] demonstrate
that additionally requiring chain growth suffices to prove liveness in a black-box
way, but proving persistence still requires an analysis of the concrete protocol.
We highlight that it is our notion of future-self consistency that allows us to
obtain also persistence in a black-box way. Subsequent works by Pass and Shi
[PS16a,PS16b] give further evidence to the usefulness of our abstract notion of
a blockchain (and its security properties).

Main theorem. Our main result demonstrates that Nakamoto’s protocol achieves
consistency as well as all of our other desiderata. Let γ = α

1+Δα ; think of γ as a
“discounted” version of α due to delays on the network. Intuitively, by delaying
messages the adversary gets additional computation time.

Theorem 2. Assume there exists some δ > 0 such that

α(1 − 2(Δ + 1)α) ≥ (1 + δ)β.

Let g = γ
1+δ and μ = 1−(1+δ)β

γ . Then Nakamoto’s protocol satisfies consistency,
future self consistency, μ-chain quality and g-chain growth.

Note that when p � 1/nΔ (which is the case considered in practice), we have
that γ ≈ α ≈ (1 − ρ)np and thus γ

β ≈ 1−ρ
ρ . As a consequence, we have the

following corollary:

Corollary 3. Assume ρ < 1
2 . Then for every n,Δ, there exists some sufficiently

small p0 = Θ( 1
Δn ) such that Nakamoto’s protocol with mining parameter p ≤ p0

satisfies consistency, future self consistency, 1− ρ
1−ρ -chain quality and pn

2 -growth.

Thus, as long as ρ < 1
2 , Nakamoto’s protocol guarantees that messages con-

tributed by honest players will eventually end up on the chain, and as long as
ρ < 1

3 , we have that half of the messages on the chain will be contributed by
honest players. We mention that our chain quality bound matches that estab-
lished by Garay et al. assuming no delays (i.e., Δ = 1), and is tight due to the
selfish mining (a.k.a. “mining-cartel”) attacks of [mtg10,ES14]).

A natural question left open by our main theorem is whether there exist
protocols satisfying our abstract notion of a blockchain that improve upon the
parameters achieved by Nakamoto’s protocol (i.e., is Nakamoto’s protocol “opti-
mal”?). A subsequent result by Pass and Shi [PS16a] shows how we can “amplify”
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the chain quality in Nakamoto’s protocol to achieve a “close-to-optimal” chain
quality of 1−(1−δ)ρ, where δ is an arbitrary small constant.4 We highlight that
the results in [PS16a] relies on the analysis from this paper in a blackbox way.

1.4 Is Nakamoto’s Protocol Really Permissionless?

Our theorem only shows that for every n,Δ, there exists some mining-hardness
parameter p that makes the protocol secure, so it might seem like the protocol
needs to know n and therefore cannot be “permissionless”; see Sect. 1.5 for an
experimental evaluation of how the level of security depends on the choice of p.
As we pointed out above, this is not an anomaly of our analysis; when p > 1

nρΔ
the protocol is insecure. The point, however, is that the protocol only needs to
know a very rough upper-bound on the number of players n (but the worse the
upper-bound gets, the worse the efficiency of the protocol becomes.)

We additionally remark that our theorem regarding the lower bound on the
chain growth actually does not make any assumption about p; this means that
the honest players can use an initial set-up phase to estimate the chain growth
and from this deduce a weak upper-bound on the number of players n, and then
use this new upperbound to run the protocol. Indeed, as we hinted to before,
the bitcoin protocol recalibrates the mining hardness parameter p every 2016
blocks (roughly 2 weeks) based on the time it took to find 2016 blocks. We leave
a formal analysis of this update procedure for future work.

1.5 An Experimental Interpretation

In this section, we provide an experimental interpretation of our theorems by
using estimates of parameters in a real world setting. Using estimates of hardware
hashing rates (1012 h/s), we consider n = 105 participants and Δ = 1013, which
corresponds to roughly 10s delay for the network at the given hashing rates.
These numbers roughly coincide with estimates of the number of hash opera-
tions per second occurring in the Bitcoin network (7 × 1017) at the beginning
of 2016 [Blo16]. The 10 s estimation, under network assumptions, roughly aligns
with the empirical measurements made by Decker and Wattenhofer [DW13] and
their bitcoinstats.com website.5

The hardness parameter p in Nakamoto’s protocol reflects the expected time
between the discovery of blocks among all participants. Here, we explore how
consistency is related to this parameter p = 1

nΔ·c by changing c. One can inter-
pret c as the scale-free expected block-time in terms of the number of network
delays.

4 An “optimal” chain quality of 1 − ρ means a ρ fraction attacker gets a ρ fraction of
the blocks.

5 However, in both cases, they measure connectivity by number of nodes instead of by
computational resources; thus their “95th percentile” estimations are biased larger
because they include many hobby nodes which are connected by slow network con-
nections and do not contribute any noticeable computation to the system.

http://www.bitcoinstats.com
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Fig. 1. For n = 105 and Δ = 1013 (i.e., 10 s delays at 1TH/s for commercially available
mining hardware—these parameters roughly coincide with estimates of hashrate at
the start of 2016), we set hardness parameter p = 1

c·nΔ
where c varies along the

x-axis. We can interpret c as the expected blocktime in terms of the network delay
Δ. The blue graph depicts a numerically-computed maximum value of ρ for which
α(1 − (2Δ + 2)α) > β, i.e. parameters under which Theorem 6 shows consistency of
the Nakamoto protocol. The red plot shows when our best attack succeeds in violating
consistency. When c = 60, the hardness roughly corresponds to an expected 10-minute
blocktime, and our theorem shows that Nakamoto tolerates a ρ < 49.57% attack, and
our best attack succeeds when ρ > 49.79%. (Color figure online)

For these choices, Fig. 1 depicts when our consistency theorem holds in
Nakamoto’s protocol by graphing c against the fraction (ρ) of computation con-
trolled by the adversary. The blue graph depicts a numerically-computed max-
imum value of ρ for which α(1 − (2Δ + 2)α) > β, i.e. parameters under which
our Theorem 6 shows consistency of the Nakamoto protocol. The red plot shows
when our best attack succeeds in violating consistency.

Nakamoto’s protocol attempts to maintain a 10-minute blocktime by varying
hardness p. For a delay Δ ∼ 10 s, this corresponds to a setting of c = 60. In this
range, the Nakamoto protocol, as well as our attack give essentially the same
result: Nakamoto tolerates an adversary with ρ < 49.57% and our best attack
succeeds when ρ > 49.79%. If we make a very conservative estimate of network
delays being 1m, then c = 10, and Nakamoto remains consistent with respect to
a 47.2% coalition.

Finally, our analysis is not tight when c is small because our attack only
analyzes the probability that the adversary is able to completely control the
chain. When c is small, there is also a large probability that honest players do
not converge on a chain even without any adversarial messages.

1.6 Proof Highlights

Although our high-level approach follows similar intuitions as the analyses from
Garay et al. [GKL15] and Sompolinsky and Zohar [SZ15], our actual proof uses
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a quite different strategy. The bulk of our proof consists of dealing with the
attack strategies which are omitted from the analysis in [SZ15], and dealing with
them requires us to consider an altogether different proof technique: instead of
directly analyzing the whole blockchain process, we consider a sequence of sim-
plified processes which are “dominated” by the original one but are simpler to
analyze. For instance, we aim to show that in the optimal attack, the adversary
should always delay messages for as long as possible (so that messages are always
delivered after Δ steps). An obstacle in performing such a stochastic domination
analysis is that once we start delaying messages, honest parties start to “mine”
different blocks and the executions of our two processes diverge and become hard
to compare: Ideally, to perform the domination argument we would like to con-
sider a fixed execution (where the randomness of all parties are fixed) and to show
by induction that delaying messages less than Δ never helps the attacker in that
particular execution. The problem is that such a domination claim is not true: in
some lucky scenarios (where the randomness is fixed), delaying messages in fact
improves the situation for the honest parties (they now start mining blocks that
magically lead to more successes). Of course, the probability of this happening
should be small, but formally showing this would require us to somehow couple
the experiments with and without maximum delays which is non-trivial (due to
dependencies created by the random oracle).

The Ftree model. To overcome this issue, we rely on “simulation techniques” from
the cryptographic literature on secure computation [GMW87,Can00]: we first
consider an idealized scenario where the players do not mine blocks but instead
have access to an idealized “mining” functionality, which we call Ftree. This
functionality determines whether honest parties succeed in mining (at random)
and the success probability is independent of the current chain an honest party is
trying to extend. In this model, we can now perform a domination argument for
every fixed randomness for the experiment. One of our main technical lemmas,
which turns out to be quite subtle to prove, shows that any attack that succeeds
in the “real-life” protocol in the random oracle model can be turned into (i.e.,
simulated by) an attack in the idealized Ftree model. The key technical issue
here is to deal with the dependencies created by the random oracle. (As an
independent contribution, we believe that our Ftree simulation lemma can be
helpful in formalizing some steps left informal in e.g., [GKL15,KP15,SZ15].)

The chain growth lowerbound. Armed with the above-mentioned techniques, the
next crucial step is demonstrating a lowerbound on the chain growth. Roughly
speaking, we prove by induction that (in the Ftree model) the chain grows at
least as fast in the real execution of the protocol, as in a “hybrid” experiment
where (a) all messages are maximally delayed, (b) honest parties “freeze” and
stop mining for Δ steps whenever some honest player mines a block and (c)
all messages sent by the adversary are removed. The advantage of this hybrid
experiment is that the chain growth process can now be described as a simple
Markov chain—there are no longer any “adversarial transitions” and due to
the “freezing”, honest players never have any chain conflict. This process can
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next be analyzed using standard Chernoff bounds. We emphasize that for the
induction proof to work, we crucially rely on the fact that our analysis is in the
Ftree-model.

No “long” block withholding. We next use the chain growth lowerbound to
demonstrate a central property of the blockchain protocol, which we refer to
as the “no long block withholding” property: an adversary cannot withhold a
block that it has mined for too long. Unless the adversary broadcasts the block to
the honest players within some short amount of time, the block becomes “irrel-
evant” and will never be accepted by the honest players. Roughly speaking, we
prove this by showing that, assuming that the adversary controls less than half
of the computational power in the network, the chain of honest players will grow
at a faster rate than any private chain the adversary can create, and thus unless
it releases any block it finds quickly, the honest players’ chain will be too long
for the block to ever be relevant.

Proving consistency. Finally, proving consistency is the most challenging part
of our proof. We start by first considering an execution without adversarial mes-
sages, and with deterministic delays, and identify a “pattern” which ensures that
the chain of honest players converges: roughly, the pattern—which we refer to
as a “convergence opportunity”—is that (1) there is a period of “silence” for Δ
rounds where no honest player mines a block, (2) this is followed by a round
where a single honest player mines a block, (3) which is followed by another Δ
rounds of silence. (This notion of a convergence opportunity is closely related
to a notion considered in [SZ15], and can be thought of a generalization of the
notion of a “uniquely successful round” considered in the synchronous setting
in [GKL15].) Whenever such a pattern occurs, all honest players converge on the
chain (thus we call it a convergence opportunity): after the first period of silence,
they all agree on the length of the chain (but may still have different chains), and
thus the lone miner who finds a new block extends this longest chain by 1, and
finally after the second period of silence this chain has propagated to all honest
players (and since it is longer than all their current chains, they will switch to
it). We are now interested in understanding how many times this patterns occurs
within some specific period of time t. The crucial point here is that the process
we now analyze is memoryless, and thus can be described by a (somewhat sim-
ple) Markov chain. On the negative side, the Markov chain that arises from this
problem is too complicated to be analyzed with standard concentration bounds
for Markov chains (see e.g., [CLLM12]); we instead, provide a direct analysis
of a simplified experiment (which, roughly speaking, instead analyzes the times
between successful mining of honest players.) and we then use this to provide a
lower bound on the number of convergence opportunities.

Finally, once we have established a strong concentration bound on the number
of convergence opportunities, we argue that the only way that an attacker can
ruin such a pattern is by itself mining a block that is accepted by the honest
players during it. We here rely on the block-withholding lemma to argue that
any block that the attacker can use to ruin a convergence opportunity must
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have been mined by the adversary not long before the beginning of the period
of time we are analyzing; we then show that the number of adversarial block
mined during this (slightly extended) period of time is smaller than the number
of convergence opportunities, and thus conclude that at least one convergence
opportunity will remain even in the presence of the adversary, and thus honest
parties still converge on their chain.

1.7 Related Work

The problem of reaching agreement in the presence of faulty participants,
described first by Pease, Shostak, and Lamport [PSL80], and also known as
distributed consensus has been very well studied over the past 40 years. The
basic problem considers a set of n parties connected by reliable and authen-
ticated pairwise network channels who wish to agree on a common output in
the presence of an adversary who controls a fraction of the participants. Many
aspects of the problem have been studied, with relaxations concerning the frac-
tion of corrupted parties, the channels available to the participants, whether
the protocols are deterministic or randomized and whether the participants are
computationally bounded. Some protocols only consider fail-stop adversaries,
while others consider a Byzantine setting in which some of the participants are
malicious adversaries who attempt to disrupt the agreement. In the Byzantine
agreement (BA) version of the problem, Castro and Liskov [CL99] implemented
a replication library that was practical enough to use for a file system; sub-
sequently, other works have considered fast or simpler versions of the Paxos
protocol [MA05,Lam10,Lam11]. All of these works assume common knowledge
of the number of participants n, as well as identities for the participants.

Okun [Oku05a,Oku05b,OB08] considers BA in an “anonymous [synchronous]
model without port awareness” in which processors do not have identifiers and
cannot correlate messages to their sources; Okun shows both an impossibility
result for deterministic protocols, and a feasibility result for probabilistic ones.
Aspnes et al. [AJK05] shows how to use a proof-of-work in a pre-processing step
for this model to assign interim identities to parties so that the number of identi-
ties assigned is proportional to computational power. After the pre-processing, a
standard authenticated BA protocol is used. Neither results, however, are in the
peer-to-peer setting in which new users can join and leave during the execution.

Miller and LaViola [ML14] show that a variant of Nakamoto’s protocol can
be used to solve the single-shot Byzantine agreement problem in the presence of
a minority of faults in an asynchronous setting. The single-shot setting is sub-
stantially easier, since the adversary is limited, and for example, cannot mount
block-withholding attacks. Garay, Kiayias, and Leonardas [GKL15] provide a
better analysis of Nakamoto’s protocol, and also propose two protocols based
on Nakamoto’s protocol that satisfy all the properties of BA in the multiple-
instance setting. They only consider synchronous networks (and no spawning
of new honest players). As mentioned above, in synchronous networks, simpler
solutions are possible.
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2 Blockchain Protocols and Executions

In this section, we present an abstract model for blockchain protocols which aims
to cover many variants of blockchain protocols.

2.1 Blockchain Protocols

A blockchain protocol is a pair of algorithms (Π, C) where Π is a stateful algo-
rithm that receives a security parameter κ as inputs and maintains a local
state state. The algorithm C(κ, state) outputs an ordered sequence of “records”,
or “batches”, �m (e.g., in the bitcoin protocol, each such record is an ordered
sequence of transactions). We call C(κ, state) the “record chain” of a player with
security parameter κ and local variable state; to simplify notation, whenever κ
is clear from context we often write C(state) to denote C(κ, state).

Algorithm Π is parameterized by a validity predicate V (denoted by ΠV )
that encapsulates the semantic properties (e.g., “no double spending”) that a
blockchain application aims to achieve. V (�m) returns 1 if and only if the chain
�m is valid for some notion of validity.

A Blockchain Execution. Following the framework for Universal Composability
[Can00], we consider the execution of a blockchain protocol (ΠV , C) that is
directed by an environment Z(1κ) (where κ is a security parameter), which
activates a number of parties 1, 2, . . . , n as either “honest” or corrupted parties.
Honest parties execute Π on input 1κ with an empty local state state; corrupt
parties are controlled by an attacker A which reads all their inputs/message and
sets their outputs/messages to be sent.

– The execution proceeds in rounds that model time steps. In round r, each
honest player i receives a message (a “record”) m from Z (that it attempts
to “add” to its chain) and potentially receives incoming network messages
(delivered by A). It may then perform any computation, broadcast a message
to all other players (which will be delivered by the adversary; see below) and
update its local state statei.

– A is responsible for delivering all messages sent by parties (honest or cor-
rupted) to all other parties. A cannot modify the content of messages broad-
cast by honest players, but it may delay or reorder the delivery of a message
as long as it eventually delivers all messages. (Later, we shall consider restric-
tions on the delivery time.) The identity of the sender is not known to the
recipient.6

– At any point, Z can communicate with adversary A or access C(statei) (i.e.,
the current record chain of the player) where statei is the local state of player i.

6 We could also consider a seemingly weaker model where messages sent by corrupted
parties need not be delivered to all honest players. We can easily convert the weaker
model to the stronger model by having honest parties “gossip” all messages they
receive.



Analysis of the Blockchain Protocol in Asynchronous Networks 657

– At any point, Z can corrupt an honest party j which means that A gets access
to its local state and subsequently, A controls party j. (In particular, this
means we consider a model with “erasures”; random coin tosses that are no
longer stored in the local state of j are not visible to A.)7

– At any point, Z can uncorrupt a corrupted player j, which means that A no
longer controls j and instead player j starts executing Π(1κ) with a fresh
state statej . (This is also how we model Z spawning a “new” honest player.)
A gets informed of all such uncorrupt messages and is required to deliver all
messages previously sent by (currently alive) honest players.8

Let EXEC(ΠV ,C)(A,Z, κ) be a random variable denoting the joint view of all
parties (i.e., all their inputs, random coins and messages received, including
those from the random oracle) in the above execution; note that this joint view
fully determines the execution.

Admissible Environments. We consider executions with restricted adversaries
and environments; these restrictions will be specified by a predicate Γ (·, ·, ·).
Definition 1 (Admissible Environments). We say that the tuple of para-
meters (n(·), ρ,Δ(·), A, Z) is Γ -admissible w.r.t. (ΠV , C) if A and Z are non-
uniform probabilistic polynomial-time algorithms, Γ (n(·), ρ,Δ) = 1 and for every
κ ∈ N , every view view in the support of EXEC(ΠV ,C)(A,Z, κ), the following
holds:

1. Z activates n = n(κ) parties in view;
2. A delays messages by at most Δ = Δ(κ) rounds (and in the case of newly

spawned players, instantly delivers messages that were sent more than Δ
rounds ago);

3. at any round r in view, A controls at most ρ · n(κ) parties; and
4. in every round r in view, Z only sends local inputs m to an honest player i, if

V (C(statei)||m) = 1, where statei is player i’s local state at round r in view.

Whenever the protocol (ΠV , C) is clear from context, we simply call
(n, ρ,Δ,A,Z) Γ -admissible.

2.2 A Remark About the Communication Model

Our model assumed that any player can send a message to all other players in
the network, and that those messages arrive within Δ rounds, no matter how
long they are. This is clearly not a realistic model. In real-life, players commu-
nicate their messages through a gossip network, and thus we need to assume
7 Our proof actually extends also to the model “without erasures”.
8 This models the fact that a player is not considered “honest” before it has joined the

network and gotten “initialized”. In the real-life execution of bitcoin, new players
joining send out a message to the network, request to be initialized and download
the longest chain known to the network. We only consider them honest once this
process is over.
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that this network is sufficiently connected and has sufficiently many honest
players to ensure Δ delivery time. This model remains infeasible if messages
can be arbitrary long. However, in the applications we consider—assuming that
records m provided by the environment are of length O(κ) (i.e., there is a “block-
size limit”9)—honest players only communicate messages that differ in the last
O(κ) bits from messages that they have previously received. For such cases it
seems reasonable to assume that a sufficiently connected routing network has
the desired property of ensuring delivery of all messages within Δ rounds.

2.3 Blockchain Protocols in the ROM

To study Nakamoto’s blockchain protocol, we need to extend the model with a
random oracle. In an execution with security parameter κ, we assume all par-
ties have access to a random function H : {0, 1}∗ → {0, 1}κ which they can
access through two oracles: H(x) simply outputs H(x) and H.ver(x, y) output 1
iff H(x) = y and 0 otherwise. In any round r, the players (as well as A) may
make any number of queries to H.ver. On the other hand, in each round r, hon-
est players can make only a single query to H, and an adversary A controlling q
parties, can make q sequential queries to H. (This modeling is meant to capture
the assumption that we only charge for the effort of finding a solution to a proof
of work [DN92], but checking the validity of a solution is cheap. We discuss this
further after introducing Nakamoto’s protocol.) We emphasize that the environ-
ment Z does not get direct access to the random oracle (but can instruct A to
make queries).

2.4 Nakamoto’s Protocol

We turn to describing Nakamoto’s protocol [Nak08], which we refer to as
(Πp

Nak, Cp
Nak). The local state state maintained by Πp

Nak is a sequence of (mined)
blocks �b, where each mined block is a tuple (h−1, η,m, h) that consists of a
hash h−1 (a pointer to the previous record), a nonce η, a record m, and a hash
h (a pointer to the current record10) and is initialized to a special “genesis”
block: (0, 0,⊥),H(0, 0,⊥). Let C(state) be the sequence of records �m contained
in the sequence of blocks state. The protocol is parameterized by a hardness
function p(·) which defines a constant Dp = p(κ) · 2κ such that for all (h, b),
Prη[H(h, η, b) < Dp] = p(κ). Whenever p is clear for context, we simply denote
the protocol (ΠNak, CNak) (without the p superscript); additionally, whenever κ
is clear from context, we let p = p(κ).

9 In Bitcoin’s instantiation of the blockchain protocol, there is currently a severe
restriction on the block-size. There is currently an active debate whether to raise
the block-size limit or to leave it small.

10 In reality (as well as in the description in the introduction), h is not included in the
block (as it can be easily determined from the remaining elements); we include it to
ensure that we can verify validity of a block using only H.ver.
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We say a block b = (h−1, η,m, h) is valid with respect to (a predecessor block)
b−1 = (h′

−1, η
′,m′, h′) if three conditions hold:

1. h−1 = h′,
2. h = H(h−1, η,m),
3. and h < Dp.

A sequence of blocks state = (b0, . . . , b�) is valid if (a) b0 = (0, 0,⊥,H(0, 0,⊥))
is the genesis block, (b) for all i ∈ [�], bi is valid with respect to bi−1, and (c)
V (C(state)) = 1.
Each round of ΠV

Nak proceeds as follows:

– Read all incoming messages (delivered by A). If any incoming message state′

is a valid sequence of blocks that is longer than its local state state, replace
state by state′. (Note that checking the validity of state′ can be done using
only H.ver queries)

– Read local message m (from Z). If m is such that V (C(state)||m) 
= 1, proceed
to the next round. Otherwise, pick a random nonce η ∈ {0, 1}κ and issue
query h = H(h−1, η,m) where h−1 is the 4’th element in the last block in
state. If h < Dp, then Π adds the newly mined block (h−1, η, b, h) to state and
broadcasts the updated state.

Depending on the definition of V , one can instantiate either Bitcoin, e.g., by
having V enforce that m can be parsed into a sequence of well-formed transac-
tions each of which is authorized and spends money from a source account to
a destination account at most once without deficit, etc., as well as other cryp-
tocurrencies with different semantics such as Namecoin. We may also consider a
simpler predicate VL that simply accepts all messages; that is VL(�m) = 1; such
a predicate is useful, for instance, to use a blockchain to provide a public ledger.

A Remark on our use of the Random Oracle. Recall that in our model, we
restrict players to a single evaluation query H per round, but allow them any
number of verification queries H.ver in the same round. We do this to model the
fact that checking the validity of mined blocks is “cheap” whereas the mining
process is expensive. (To enable this, we have included a pointer h to the current
record in every mined block in the description of Nakamoto; thus a player need
not spend an H query to compute the pointer to the previous record.)

In practice, the cost of evaluating a hash function (which is used to instan-
tiate the random oracle) is the same as verifying its outputs, but our modeling
attempts to capture the phenomena that a miner typically use various heuristics
(such as black lists of IP addresses that have sent invalid blocks) and different
hardware to check the validity of a mined block versus to mine a new block.
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3 Formal Definitions of the Desiderata

In this section, we provide formal definitions of the desiderata mentioned in the
introduction. We start with some notation and preliminaries.

Notation. For some A,Z, consider some view in the support of EXEC(ΠV ,C)

(A,Z, κ). We use the notation |view| to denote the number of rounds in the
execution, viewr to denote the prefix of view up until round r, statei(view) denotes
the local state of player i in view, Ci(view) = C(statei(view)) and Cr

i (view) =
Ci(viewr).

(Strongly) Negligible Functions. A function ε(·) is said to be negligible if for every
polynomial p(·), there exists some κ0 such that ε(κ) ≤ 1

p(κ) for all κ ≥ κ0. Our
bounds will actually also apply to an exponentially-strong interpretation of what
it means for a function to be negligible. A function ε(·) is said to be (strongly)
negligible if there exists constants c0 > 0, c1 such that for all κ, ε(κ) ≤ e−c0κ+c1 .
In the rest of the paper, we simply use the term “negligible”, but all uses of it
can be replaced by strongly negligible. We often use the shorthand neg(κ) to
denote a function that is negligible as a function of κ.

3.1 Chain Growth

Our first desiderata is that the chain grows proportionally with the number
of rounds of the protocol. This intuitive property was explicitly considered by
Sompolinsky and Zohar [SZ15] but only in expectation; it was also implicitly
considered in Garay et al. within one of their proofs (but was not highlighted as
a desideratum), and it was explicitly highlighted as a desideratum by Kiayias and
Panagiotakos [KP15]. We here generalize these definitions to abstract blockchain
protocols, and add a useful length-consistency property.11 (Looking forward, in
Sect. 3.4, we also consider an upper-bound on chain growth.) Let,

min-chain-increaser,t(view) = min
i,j

|Cr+t
j (view)| − |Cr

i (view)|

where we quantify over players i, j such that i is honest at viewr and j is honest
at viewr+t.
Let growtht(view,Δ, T ) = 1 iff the following two properties hold:

– (consistent length) for all rounds r, r′ such that r ≤ |view|−Δ and r +Δ ≤
r′ ≤ |view|, for every two players i, j such that in view, i is honest at r and j
is honest at r′, we have that

|Cr′
j (view)| ≥ |Cr

i (view)|
11 The length-consistency requirement is actually not needed for any of our applica-

tions, but having it enables achieving sharper bounds, and this property is trivially
satisfied by Nakamoto’s protocol.
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– (chain growth) for every round r ≤ |view| − t, we have

min-chain-increaser,t(view) ≥ T.

In other words, growtht is a predicate which tests that (a) honest parties have
chains of roughly the same length, and (b) during any t rounds in the execution,
all honest parties’ chains increase by at least T .

Definition 2. A blockchain protocol (Π, C) has chain growth rate g(·, ·, ·, ·) in
Γ -environments if for all Γ -admissible (n(·), ρ,Δ(·), A, Z), there exists some con-
stant c and negligible functions ε1, ε2 such that for every κ ∈ N, T ≥ c log(κ),
and t ≥ T

g(n(κ),ρ,Δ(κ)) , the following holds:

Pr
[

view ← EXEC(ΠV ,C)(A,Z, κ) : growtht(view,Δ(κ), T ) = 1
]

≥ 1−ε1(κ)−ε2(T )

If ε1 = 0, we say that (Π, C) has error-less chain growth rate g in Γ -
environments.

3.2 Chain Quality

Our second desideratum is that the number of records contributed by the adver-
sary is proportional to its relative power. This property was first discussed on
the Bitcoin forum [mtg10] and made explicit in the selfish mining attacks by
Eyal and Sirer [ES14] w.r.t. the bitcoin application of the blockchain.12 The
property was first formalized, and given the name “chain quality” by Garay
et al. [GKL15]. We generalize their definition to abstract blockchain protocols.
Doing so is somewhat non-trivial in that it is not directly clear what it means for
a record to be adversarial (Garay et al. only provide a definition of an adversarial
block for the particular protocol of Nakamoto, and their definition only applies
in the random oracle model).

We say that a record m is non-adversarial (or honest) w.r.t. view and prefix
�m if there exists a player j and some round r′ such that in viewr′

, j is honest,
the environment provided m as input to j, and �m is a prefix of Ci(viewr′

). (That
is, there exists some honest player that received m as an input when their chain
contained �m).

Let qualityT (view, μ) = 1 iff for every round r and every player i such that i
is honest in viewr, among any consecutive sequence of T records M in Cr

i (view),
the fraction of records m that are honest w.r.t. viewr and �m, where �m is the
prefix of Cr

i (view) preceeding M , is at least μ.

12 In the bitcoin application of the blockchain, each player receives a reward whenever
if mines a block; the chain quality thus dictates a bound on how much more reward
an adversary can get by deviating from the protocol.
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Definition 3. A blockchain protocol (Π, C) has chain quality μ(·, ·, ·, ·) in Γ
environments, if for all Γ -admissible (n(·), ρ,Δ(·), A, Z), there exists some con-
stant c and negligible functions ε1, ε2 such that for every κ ∈ N, T > c log(κ) the
following holds:

Pr
[

view ← EXEC(ΠV ,C)(A,Z, κ) : qualityT (view, μ(κ, n(κ), ρ,Δ(κ))) = 1
]

≥ 1 − ε1(κ) − ε2(T )

If ε1 = 0, we say that (Π, C) has errorless chain quality μ in Γ -environments.

3.3 Consistency

The common-prefix property by Garay et al. [GKL15], which was already con-
sidered and studied by Nakamoto [Nak08], requires that in any round r, the
record chains of any two honest players i, j agree on all, but potentially the last
T , records. We note that this property (even in combination with the other two
desiderata) provides quite weak guarantees: even if any two honest parties per-
fectly agree on the chains, the chain could be completely different on, say, even
rounds and odd rounds. We here consider a stronger notion of consistency which
additionally stipulates players should be consistent with their “future selves”.13

Let consistentT (view) = 1 iff for all rounds r ≤ r′, and all players i, j (poten-
tially the same) such that i is honest at viewr and j is honest at viewr′

, we have
that the prefixes of Cr

i (view) and Cr′
j (view) consisting of the first � = |Cr

i (view)|−T

records are identical.14

Definition 4. A blockchain protocol (Π, C) satisfies consistency in Γ environ-
ments, if for all Γ -admissible (n(·), ρ,Δ(·), A, Z), there exists some constant c
and negligible functions ε1, ε2 such that for every κ ∈ N, T > c log(κ) the follow-
ing holds:

Pr
[

view ← EXEC(ΠV ,C)(A,Z, κ) : consistentT (view) = 1
]

≥ 1 − ε1(κ) − ε2(T )

If ε1 = 0, we say that (Π, C) has errorless consistency in Γ -environments.

Note that a direct consequence of consistency is that the chain length of any two
honest players can differ by at most T (except with negligible probability in T ).

13 This stronger notion of consistency combines what we called “plain” consistency and
“future-self” consistency in the introduction.

14 Pedantically, the “first � records of Cr′
j (view) is not defined if Cr′

j (view) < �; to
formalize it, we may represent the chains as infinite sequences of records, where all
records after the end of the chain is a special “nil” symbol. In particular, this ensures
that consistentT (view) = 0 if Cr′

j (view) < �.
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3.4 Chain Growth Upperbound

Our final desiderata is the existence of an upperbound on the chain growth. While
we do not present any applications of this property in the current paper, it is an
intuitively useful property—for instance, combined with the chain growth lower
bound, it implies we can use a blockchain as a “partially-synchronized clock”.
(Additionally, subsequent work by Pass and Shi [PS16a,PS16b] demonstrate the
usefulness of this property.)

Let,

max-chain-increaser,t(view) = max
i,j

|Cr+t
j (view)| − |Cr

i (view)|

where we quantify over players i, j such that i is honest at viewr and j is honest
at viewr+t. Let upper-growtht(view,Δ, T ) = 1 iff for every round r ≤ |view| − t,
we have

max-chain-increaser,t(view) ≤ T.

Definition 5. A blockchain protocol (Π, C) has upper-bound on chain growth
rate g′(·, ·, ·, ·) in Γ -environments if for all Γ -admissible (n(·), ρ,Δ(·), A, Z),
there exists some constant c and negligible functions ε1, ε2 such that for every
κ ∈ N, T ≥ c log(κ), and t = T

g′(n(κ),ρ,Δ(κ)) , the following holds:

Pr
[

view ← EXEC(ΠV ,C)(A,Z, κ) : upper-growtht(view,Δ(κ), T ) = 1
]

≥ 1 − ε1(κ) − ε2(T )

If ε1 = 0, we say that (Π, C) has error-less upper-bound on chain growth rate g′

in Γ -environments.

4 Main Theorem Statements

Our main results will be most convenient to parameterize in the following two
quantities (which are defined for some fixed mining hardness function p(·); recall
that Nakamoto’s protocol is parametrized by p):

– let α(κ, n, ρ,Δ) = 1− (1−p(κ))(1−ρ)n. That is, α is the probability that some
honest player succeeds in mining a block in a round;

– let β(κ, n, ρ,Δ) = ρnp(κ). That is, β is the expected number of blocks that
an attacker can mine in a round.

Whenever κ, n, ρ,Δ are clear from the context, we simply write α, β. In essence,
the quantities capture the per-round expected increase in chain length by the
honest parties and the adversary; the reason the quantities are defined differ-
ently is that we assume that the adversary can sequentialize its queries in a
round, whereas honest players make a single parallel query (they each act inde-
pendently), and thus even if they manage to mine several blocks, the longest
chain held by honest players can increase by at most 1. Note, however, that
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when p is small (in comparison to 1/n), which is case for the Bitcoin protocol, α
is well-approximated by (1−ρ)np and thus α

β ≈ 1−ρ
ρ , so this difference is minor.

We also consider the following quantity:

– let γ(κ, n, ρ,Δ) = α
1+Δα (When clear from context, we simply write γ.)

Roughly speaking, γ should be thought of a discounted version of α due to the
fact that messages sent by honest parties can be delayed by Δ rounds and this
may lead to honest players redoing work; γ corresponds to their effective mining
power. Note that if p is sufficiently small then γ ≈ α and thus γ

β ≈ 1−ρ
ρ .

We are now ready to state our main theorems. The proof of these theorems
are all given in the Appendix (see Sect. 1.6 for a high-level overview of key ideas).
We will consider two environments:

– In the least restrictive environment, Γ0, we make no restrictions on the para-
meters (more than them being “valid”). Namely, let Γ0(n(·), ρ,Δ(·)) = 1 iff
n(·),Δ(·) are functions N → N+ and 0 ≤ ρ ≤ 1.

– In the more restrictive environment, we additionally assume that the adver-
sary controls a sufficiently small fraction of the computational power. Let
Γ p

λ (n(·), ρ,Δ(·)) = 1 iff Γ0(n(·), ρ,Δ(·))) = 1 and for all κ, n = n(κ),Δ =
Δ(k),

α(1 − 2(Δ + 1)α) ≥ λβ

The following three theorems formalize Theorem 2 from the introduction
(which in turn implies Theorem 1). We first prove a lower bound on the chain
growth.

Theorem 4 (Chain growth). For any δ > 0, any p(·), (Πp
Nak, Cp

nak) has
chain growth rate

gp
δ (κ, n, ρ,Δ) = (1 − δ)γ

in Γ0 environments.

We next prove a lower bound on the chain quality.

Theorem 5 (Chain quality). For all δ > 0, any p(·), (Πp
Nak, Cp

nak) has chain
quality

μp
δ(κ, n, ρ,Δ) = 1 − (1 + δ)

β

γ

in Γ0 environments.

We finally show consistency.

Theorem 6 (Consistency). For any λ > 1, any p(·), (Πp
nak, Cp

nak) satisfies
consistency in Γ p

λ environments.
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Chain growth upperbound. We additionally present an upperbound on the chain
growth. (As mentioned before, this property is not needed for any of the appli-
cations that we present in the current paper, nor for the statement of the
main result in the introduction, but may be useful in other contexts such as
[PS16a,PS16b].)

Theorem 7 (Upper-bound on Chain growth). For any δ > 0, any p(·),
(Πp

Nak, Cp
nak) has the upper-bound on chain growth rate

ĝp
δ (κ, n, ρ,Δ) = (1 + δ)np

in Γ p
λ environments.

5 Application: Public Ledger

In this section, we demonstrate how to use any blockchain satisfying the growth,
quality, and consistency properties defined in Sect. 3 to construct a secure public
ledger system. Garay et al. [GKL15] show a similar theorem, in the synchronous
setting, for the specific blockchain of Nakamoto.

Informally, a public ledger serves as an immutable “bulletin board” to which
anyone can post a message, and everyone can read all messages posted. As
described by Garay et al. [GKL15], such a bulletin board ought to satisfy two
properties, liveness and persistence:15

– Liveness: The liveness property stipulates that from any given round r, if a
sufficiently long period of time t elapses—we refer to this time as the wait-
time of the ledger—every honest player will output a message m as part of
their (local) ledger, where m was provided as an input to some honest player
between rounds r and r + t. (In particular, this implies the liveness condition
of [GKL15] which requires that if the same message was provided to all honest
players between rounds r and r+t, this messages will be output in the ledger.)

– Persistence: The persistence property stipulates that if some honest player i
outputs a message m at position i in its local ledger, then (1) m is the only
message that can ever be output at position i of any other honest player’s
ledger and (2) every honest player will eventually output m at position i.

Let us turn to a formal definition.

5.1 Definition of a Public Ledger

Just like the blockchain protocol, a public ledger is pair of algorithms (Π,L)
where Π is a stateful algorithm that maintains a local state state. The algo-
rithm L(κ, state) outputs ordered sequence of messages �m. We call L(κ, state)
15 The notion of Garay et al. [GKL15] is actually somewhat different and weaker: for

instance, (1) they only require these properties to hold for records that are sufficiently
“deep” in the ledger (we feel it is more natural/simpler to require it for all records
in the ledger), and (2) they only require the liveness property to hold if all players
received the same message.
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the (local) ledger of a player with security parameter κ and local variable state.
We define the execution of a public ledger protocol in exactly the same way as
the execution of a blockchain protocol (see Sect. 2.1), and define the random
variable EXEC(Π,L)(A,Z, κ) in exactly the same way. Let Li(view) denote the
ledger of player i in the view view and let Lr

i (view) = Li(viewr).

Liveness. Let live(view, t) = 1 iff for any t consecutive rounds r, . . . , r + t in view
there exists some round r′ ∈ [r, r + t] and players i such that in view, (1) i is
honest at r′, (2) i received a message m as input at round r′, and (3) for every
player j that is honest at r + t in view, m ∈ Lr+t

j (view).

Definition 6 (Liveness). We say that public ledger (Π,L) is live with wait-
time w(·, ·, ·, ·) in Γ environments if for all Γ -admissible (n(·), ρ,Δ(·), A, Z),
there exists a negligible function ε in the security parameter κ ∈ N, such that

Pr
[

view ← EXEC(Π,L)(A,Z, κ) : live(view, w(κ, n(κ), ρ,Δ(κ)) = 1
]

≥ 1 − ε(κ)

Persistence. Let persistΔ(view) = 1 iff for every round r ≤ |view|−Δ, every player
i that is honest at viewr and every position pos ≤ |Lr

i (view)|, if Lr
i (view) contains

the message m at position pos, then for every round r′ such that r + Δ ≤ r′ and
every honest player j (possibly the same as i) we have that m is also at position
pos in Lr′

j (view).

Definition 7 (Persistence). We say that (Π,L) is persistent in Γ environ-
ments if for all Γ -admissible (n(·), ρ,Δ(·), A, Z), there exists a negligible function
ε such that for every security parameter κ ∈ N,

Pr
[

view ← EXEC(Π,L)(A,Z, κ) : persistΔ(κ)(view) = 1
]

≥ 1 − ε(κ)

5.2 Constructing a Public Ledger from a Blockchain

We turn to constructing a public ledger from any blockchain protocol. Let TRUE
be the predicate that always outputs 1 (on any input).

Definition 8. Given a blockchain protocol (Π, C), we call (Π ′,L) the public
ledger T (κ)-induced by (Π, C), where Π ′ = ΠTRUE and L(κ, state) computes
C(κ, state), truncates the last T (κ) records of it, and outputs the results.

Theorem 8. Let T (·) be a strictly positive, super-constant, polynomial, (Π, C)
a blockchain protocol satisfying chain growth g, chain quality μ and chain con-
sistency in Γ -environments, where μ and g are strictly positive. Then, for every
δ > 0, the public ledger (Π ′,L) T (·)-induced by (Π, C) is persistent and live with
wait-time w(κ, n, ρ,Δ) = (1 + δ) T (κ)

g(κ,n,ρ,Δ) in Γ -environments.16

Proof. Consider Γ -admissible n(·), ρ,Δ(·), A, Z, some δ > 0, some κ, and some
view view ← EXEC(Π,L)(A,Z, κ). Let n = n(κ),Δ = Δ(κ), g = g(κ, n, ρ,Δ) and
μ = μ(κ, n, ρ,Δ), T = T (κ). We now separately show liveness and persistence.
16 We are grateful to Elaine Shi for pointing out that a variant of our proof for the

liveness property works with a sharper wait-time bound. Our original theorem and
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Liveness. Let T ′ = (1 + δ)T and let t = T ′
g . Pick δ′ such that 0 < δ′ < δ. Con-

dition on the events that growtht(view,Δ(κ), T ′) = 1, consistentδ
′T−1(view) = 1,

and qualityT ′−T (view) = 1; by our assumptions and the union bound, these events
occur with probability 1−neg(T ); since T is polynomial in κ, these events occur
except with probability neg(κ). Let j, j′ be players such that in view, j′ is honest
at r and j is honest at r + t such that r + t ≤ |view|.

By the conditioning, we have that:

– By chain growth, |Cr+t
j (view)|−|Cr

j′(view)| ≥ T+δT ; thus |Cr+t
j (view)| ≥ T+δT

– By “truncation”, at least δT records that were not part of the chain of j′ at
r are thus output as part of j’s ledger.

– By consistency, before round r, no honest player has ever had a chain whose
length exceeds |Cr

j′(view)| + δ′T − 1.
– Thus, we have a segment of length at least (δ − δ′)T of records in Cr+t

j (view)
which is output as part of j’s ledger such that each record appears at a position
which exceeds |Cr

j′(view)| + δ′T . By (strictly positive) chain quality, at least
(δ − δ′)Tμ > 0 records at a position exceeding |Cr

j′(view)| + δ′T are “non-
adversarial”; since no honest player ever had a chain of length |Cr

j′(view)|+δ′T
before round r, these non-adversarial records must have been provided by the
environment at or after round r.

Persistence. Let t = T
g . Condition on the events that growtht(view,Δ(κ), T ) = 1

and consistentT (view) = 1; by our assumptions and the union bound, these events
occur with probability 1−neg(T ); since T is polynomial in κ, these events occur
except with probability neg(κ).

Consider players i, j such that in view, i is honest at round r, and j is honest
at round r′ such that r′ ≥ r + Δ. By the conditioning, we have that:

– Because consistentT (view) = 1, prefixes of Cr
i (view) and Cr′

j (view) consisting of
the first |Cr

i (view)| − T records are identical.
– By the consistent-length property of the chain-growth property, it also follows

that |Cr′
j (view)| ≥ |Cr

i (view)|.
By the above two statements, and the fact that L simply truncates the last T
records of the chain, it follows that Lr

i (view) is a prefix of Lr′
j (view). Therefore,

if Lr
i (view) contains a message m at position p, then so does Lr′

j (view). Because
this holds for all such r, r′ > r + Δ, i, j, it follows that persistΔ(κ)(view) = 1.

proof (which set parameters in a non-optimal way) only claimed w(κ, n, ρ, Δ) =
(1+δ)T (κ)

μ(κ,n,ρ,Δ)·g(κ,n,ρ,Δ)
. The reason we do not need a dependency on μ is that by our

definition of chain quality, it suffices for the fraction of non-adversarial blocks to be
positive (as opposed to greater than 1

T
) to conclude the existence of at least one

non-adversarial block.



668 R. Pass et al.

Corollary 9. For any λ > 1, any δ > 0, any p(·), and any strictly posi-
tive, super-constant, polynomial T (·), the public ledger (ΠNak,LNak) that is T (·)-
induced by the blockchain protocol (Πp

Nak, Cp
Nak) is persistent and live with wait-

time

w(n, κ, ρ,Δ) = (1 + δ)
T (κ)

γ

in Γ p
λ environments.

Proof. From Theorems 4, 5 and 6, for every δ′, δ′′, (Πp
Nak, Cp

Nak) has growth (1 −
δ′)γ, chain quality 1 − (1 + δ′′)β

γ , and satisfies consistency. It can be shown
that the chain quality is thus strictly positive. From Theorem8, for every δ′′,
(ΠNak,LNak) thus has rate

w(n, κ, ρ,Δ) = (1 + δ′′′)
T (κ)

(1 − δ′)γ
< (1 + δ)

T (κ)
γ

where the last inequality follows by picking sufficiently small δ′, δ′′′.

6 An Attack on Nakamoto with Long Delays

In this section, we formally demonstrate that Nakamoto’s protocol satisfies nei-
ther consistency nor positive chain quality in a fully asynchronous network with-
out an upperbound Δ on the network delay, even if the adversary controls just a
tiny fraction of computational power. More specifically, we show that for every
hardness parameter p, Πp

Nak, Cp
Nak, satisfies neither consistency nor chain quality

when Δ = 1+δ
ρnp for some δ > 0. This demonstrates why our consistency theorem

needs to rely on the assumption that p ≤ Θ(1)
Δn , and why the chain quality is

1 − β
γ as opposed to just 1 − β

α (recall that γ = α
1+Δα is a discounted version of

α that takes delays into account.) In particular, we present a “51%” attack a la
Nakamoto in which the attacker at some point in the future replaces the whole
chain with a chain of its choice, even if it only controls a small fraction of the
computational power.

Intuitively, in every segment of Δ rounds, if we delay all messages between
honest players until the end of the segment, honest players are effectively “mining
on their own” and thus are unlikely to extend their chain by more than 1. The
adversary, on the other hand, coordinates its mining and thus in expectation
extends its chain by Δ · ρnp; if we set Δ > ρnp the adversary can mine its own
longer chain (without sending it to the honest player).

Theorem 10 (Inconsistency of Nakamoto with Unbounded Delays).
Let ̂Γ p

ρ′,δ(κ, n, ρ,Δ) = 1 iff (1) n = 2
ρ2 ·κ, (2) ρ = ρ′ and (3) Δ = 1+δ

ρnp . For every
0 < δ < 1

2 , 0 < ρ′ < 1, and every inverse polynomial p(·), (Πp
Nak, Cp

Nak) does
not satisfy neither consistency nor chain quality q in ̂Γ p

ρ′,δ-valid environments,
where q > 0.
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Proof. Consider an environment Z that invokes n = 2
ρ2 · κ players, a fraction ρ

of them being adversarial, and sends messages m1,m2 . . . to the honest players;
for simplicity, assume mi = 0 for all i. The environment runs for κΔ + 1 steps.

The attacker A proceeds as follows:

– A divides the rounds into κ segments of Δ rounds and delays all messages
sent by honest players within such a segment to the end of it (note that this
means no messages are delayed more than Δ);

– A ignores the content of the messages sent by honest players and tries to
independently build its own chain Ĉ with messages m′

1,m
′
2, . . . such that mi 
=

m′
i for κΔ rounds (for simplicity, assume m′

i = 1 for all i);
– In the next to last round r = κΔ, it sends Ĉ to any (strict) subset of the

honest players (and delivers it instantly).

Note that in any view view ∈ EXEC(ΠV ,C)(A,Z, κ) where (1) |Ĉ| > κ and (2)
Ĉ is longer than the longest chain known to the honest players, we have that
consistentκ(view) = 0 and qualityκ(view, 1) = 0. We show that the probability
that both events happen is constant, which proves the theorem.

The following two claims bound the probability that either event does not
happen; by a union bound we can then conclude that the probability that both
happen is constant.

Claim. Let Ĉ(view) denote the length of the adversary’s chain in the next to
last round (i.e., round κΔ) of view. Then,

Pr[view ← EXEC(ΠV ,C)(A,Z, κ) : |Ĉ(view)| < (1 +
δ

2
)κ] ≤ e−Ω(κ).

Proof. In the κΔ rounds, the adversary has ρnp · κΔ chances to mine a block;
each chance succeeds with probability p; since Δ = (1+δ)

ρnp , the expected number
of mined blocks is thus (1 + δ)κ. The desired bound thus follows directly from
the Chernoff bound.

Claim. Let �(view) denote the length of the longest chain known to the honest
players in the last round of view. Then,

Pr[view ← EXEC(ΠV ,C)(A,Z, κ) : �(view) ≥ κ] ≤ 3
4
.

Proof. In every fixed segment of Δ rounds, the number of blocks mined by a
single honest player is distributed as a binomial distribution with parameters
Δ (trials) and p (success probability). Let X be such a random variable. The
probability that some fixed single honest player mines more than 1 block in any
fixed segment is

Pr[X > 1] = 1 − Pr[X ≤ 1] = 1 − Pr[X = 0] − Pr[X = 1]

= 1 − (1 − p)Δ − Δp(1 − p)Δ−1

= 1 − (1 − p)Δ−1(1 + (Δ − 1)p)
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≤ 1 − (1 − (Δ − 1)p)(1 + (Δ − 1)p)

= (Δ − 1)2p2 ≤ (1 + δ)
ρ2n2

≤ (1 + δ)
2nκ

By a union bound over the number of players n and the number of segments
κ, we have that except with probability 1+δ

2 ≤ 3
4 , no honest player mines more

than one block in any segment, and whenever that happens, the length of the
longest chain grows by at most 1 for each segment and thus becomes of length
at most κ after κ segments.

Remark 11. We note that our proof applies even in the setting of static corrup-
tions, and already to a weaker notion of consistency which ignores “future-self
consistency”. In addition, the attacker never looks at the messages sent by honest
players.

Remark 12. We additionally point out that at the cost of complicating the proof
(and increasing the number of players), we can obtain an even stronger attack—
which works also when Δ > 1

c·np where 1
c > 1

ρ − 1
1−ρ (as opposed to just 1

ρ

as in our previous proof)—as follows: instead or partitioning the rounds into
segments, simply always delay messages between honest players by Δ. Intuitively
(but significantly over-simplifying), when we delay the messages between honest
parties by Δ, the expected time they need to wait until finding and propagating
a block is roughly 1

(1−ρ)np + Δ, whereas the adversary only needs to wait 1
ρnp

in expectation; thus, the attacker succeeds whenever it mines faster (i.e., when
1
ρ < 1

1−ρ + Δnp), and since Δnp = 1
c , the attack succeeds when 1

c > 1
ρ − 1

1−ρ .

We turn to describe how to formalize this attack (following the proof of the
second claim above). We, in fact, show an attack that works as long as β > γ (i.e.,
the adversary mining rate is higher than the “discounted” honest player mining
rate), and then use this to deduce that the attack applies when 1

c > 1
ρ − 1

1−ρ .
It follows using exactly the same proof as the lowerbound on chain growth in

the “hybrid” model (see the full version of this paper) that we can get (1 + δ)γ
as an upperbound on the chain growth of the honest players in a modified game
where all honest players “freeze” for Δ rounds whenever some honest player
mines a block. Since successes in each round are independent, it follows that
conditioned on no single player ever mining two blocks within Δ rounds, the
chain growth of honest players is upperbounded by (1 + δ)γ, whereas the chain
growth of the adversary is lowerbounded by (1−δ)β. Thus when β > (1+δ′)γ, if
we run the experiment for t steps (and condition on no single player ever mining
two blocks within Δ rounds), we get an attack except with probability e−Ω(γt).
Since γ is monotonically increasing in α and α ≤ (1 − ρ)np, it follows that the
above also holds when17

β = ρnp >
(1 − ρ)np

1 + Δ(1 − ρ)np

17 For readability, we ignore the (1 + δ′) term.
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and thus when
Δnp >

1
ρ

− 1
1 − ρ

So if we set Δ = 1
cnp , we get an attack (conditioned on no single player ever

mining two blocks within Δ rounds) when 1
c > 1

ρ − 1
1−ρ .

Finally, as in the proof of the second Claim above we have that at any given
round r, for any fixed player j, the probability of j mining more that 1 block
within the next Δ rounds is upperbounded by (Δ − 1)2p2 ≤ 1

c2n2 . Thus, if we
set n > 2t, it follows that no player every mines more than 1 block within Δ
rounds, except with probability 1/2 (by the union bound).

Acknowledgements. We are extremely grateful to Elaine Shi for many helpful com-
ments on an earlier draft of this paper, and in particular for suggestion of how to
sharpen the parameters in the construction of a public ledger from a blockchain.
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