
Faster K-Means Cluster Estimation

Siddhesh Khandelwal and Amit Awekar(B)

Indian Institute of Technology Guwahati, Guwahati, India
siddhesh166@gmail.com, awekar@iitg.ernet.in

Abstract. There has been considerable work on improving popular clus-
tering algorithm ‘K-means’ in terms of mean squared error (MSE) and
speed, both. However, most of the k-means variants tend to compute
distance of each data point to each cluster centroid for every iteration.
We propose a fast heuristic to overcome this bottleneck with only mar-
ginal increase in MSE. We observe that across all iterations of K-means,
a data point changes its membership only among a small subset of clus-
ters. Our heuristic predicts such clusters for each data point by looking
at nearby clusters after the first iteration of k-means. We augment well
known variants of k-means with our heuristic to demonstrate effective-
ness of our heuristic. For various synthetic and real-world datasets, our
heuristic achieves speed-up of up-to 3 times when compared to efficient
variants of k-means.

Keywords: K-means · Clustering · Heuristic

1 Introduction

K-means is a popular clustering technique that is used in diverse fields such
as humanities, bio-informatics, and astronomy. Given a dataset D with n data
points in R

d space, K-means partitions D into k clusters with the objective to
minimize the mean squared error (MSE). MSE is defined as the sum of the
squared distance of each point from its corresponding centroid. The K-means
problem is NP-hard. Polynomial time heuristics are commonly applied to obtain
a local minimum.

One such popular heuristic is the Lloyd’s algorithm [6] that selects certain
initial centroids (also referred as seeds) at random from the dataset. Each data
point is assigned to the cluster corresponding to the closest centroid. Each cen-
troid is then recomputed as mean of the points assigned to that cluster. This
procedure is repeated until convergence. Each iteration involves n ∗ k distance
computations. Our contribution is to reduce this cost to n∗k′, (k′ << k) by gen-
erating candidate cluster list (CCL) of size k′ for each data point. The heuristic
is based on the observation that across all iterations of K-means, a data point
changes its membership only among a small subset of clusters. Our heuristic
considers only a subset of nearby cluster as candidates for deciding membership
for a data point. This heuristic has advantage of speeding up K-means cluster-
ing with marginal increase in MSE. We show effectiveness of our heuristic by
extensive experimentation using various synthetic and real-world datasets.
c© Springer International Publishing AG 2017
J.M. Jose et al. (Eds.): ECIR 2017, LNCS 10193, pp. 520–526, 2017.
DOI: 10.1007/978-3-319-56608-5 43



Faster K-Means Cluster Estimation 521

2 Our Work: Candidate Cluster List for Each Data Point

Our main contribution is in defining a heuristic that can be used as augmentation
to current variants of k-means for faster cluster estimation. Let algorithm V be
a variant of k-means and algorithm V ′ be the same variant augmented with our
heuristic. Let T be the time required for V to converge to MSE value of E.
Similarly, T ′ is the time required for V ′ to converge to MSE value of E′. We
should satisfy following two conditions when we compare V with V ′:

– Condition 1: T ′ is lower than T , and
– Condition 2: E′ is either lower or only marginally higher than E.

In short, these conditions state that a K-means variant augmented with our
heuristic should converge faster without significant increase in final MSE.

Major bottleneck of K-means clustering is the computation of data point to
cluster centroid distance in each iteration of K-means. For a dataset with n data
points and k clusters, each iteration of K-means performs n ∗ k such distance
computations. To overcome this bottleneck, we maintain a CCL of size k′ for
each data point. We assume that k′ is significantly smaller than k. We discuss
the effect of various choices for the size of CCL in Sect. 4. We build CCL based
on top k′ nearest clusters to the data point after first iteration of K-means. Now
each iteration of K-means will perform only n ∗ k′ distance computations.

Consider a data point p1 and cluster centroids represented as c1, c2..., ck.
Initially all centroids are chosen randomly or using one of the seed selection
algorithms mentioned in Sect. 3. Let us assume that k′ = 4, and k′ << k. After
first iteration of K-means c8, c5, c6, and c1 are the top four closest centroids to
p1 in the increasing order of distance. This is the candidate cluster list for p1. If
we run K-means for second iteration, p1 will compute distance to all k centroids.
After second iteration, top four closest centroid list might change in two ways:

1. Members of the list do not change but only ranking changes among the
members. For example, top four closest centroid list for p1 might change
to c1, c6, c8, and c5 in the increasing order of distance.

2. Some of the centroids in the previous list are replaced with other centroids
which were not in the list. For example, top four closest list for p1 might
change to c5, c2, c9, and c8 in the increasing order of distance.

For many synthetic and real world datasets we observe that the later case
rarely happens. That is, the set of top few closest centroids for a data point
remains almost unchanged even though order among them might change. There-
fore, CCL is a good enough estimate for the closest cluster when K-means con-
verges [1]. For each data point, our heuristic involves computation overhead of
O(k.log(k)) for creating CCL and memory overhead of O(k′) to maintain CCL.
For a sample dataset consisting 100,000 points in 54 dimensions and the value
of k = 100 and k′ = 40, this overhead is approximately 30 MB.



522 S. Khandelwal and A. Awekar

3 Related Work

In last three decades, there has been significant work on improving Lloyd’s algo-
rithm [6] both in terms of reducing MSE and running time. The follow up work
on Lloyd’s algorithm can be broadly divided into three categories: Better seed
selection [2,5], Selecting ideal value for number of clusters [8], and Bounds on
data point to cluster centroid distance [3,4,7]. Arthur and Vassilvitskii [2] pro-
vided a better method for seed selection based on a probability distribution over
closest cluster centroid distances for each data point. Likas et al. [5] proposed
the Global k-means method for selecting one seed at a time to reduce final mean
squared error. Pham et al. [8] designed a novel function to evaluate goodness of
clustering for various potential values of number of clusters. Elkan [3] use triangle
inequality to avoid redundant computations of distance between data points and
cluster centroids. Pelleg and Moore [7] and Kanungo et al. [4] proposed similar
algorithms that use k-d trees. Both these algorithms construct a k-d tree over
the dataset to be clustered. Though these approaches have shown good results,
k-d trees perform poorly for datasets in higher dimensions.

Seed selection based K-means variants differ from Lloyd’s algorithm only in
the method of seed selection. Our heuristic can be directly used in such algo-
rithms. K-means variants that find appropriate number of clusters in data, eval-
uate the goodness of clustering for various potential values of number of clusters.
Such algorithms can use our heuristic while performing clustering for each poten-
tial value of k. K-means variants in third category compute exact distances only
to few centroids for each data point. However, they have to compute bounds on
distances to rest of the centroids for each data point. Our heuristic can help such
K-means variants to further reduce distance and bound calculations.

4 Experimental Results

Our heuristic can be augmented to multiple variants of K-means mentioned in
Sect. 3. When augmented to Lloyd’s algorithm, our heuristic provides a speedup
of upto 9 times with the error within 0.2% of that of Lloyd’s algorithm [1]. How-
ever to show the effectiveness of our heuristic, we present results of augmenting
it to faster variants of K-means such as K-means with triangle inequality (KMT)
[3]. Due to lack of space, we present results of augmenting our heuristic with only
this variant. Augmenting KMT with our heuristic is referred as algorithm HT.
Code and datasets used for our experiments are available for download [1].

During each iteration of KMT, a data point computes distance to the cen-
troid of its current cluster. KMT uses triangle inequality to compute efficient
lower bounds on distances to all other centroids. A data point will compute
exact distance to any other centroid only when the lower bound on such dis-
tance is smaller than the distance to the centroid of its current cluster. During
each iteration of HT, a data point will also compute distance to the centroid
of its current cluster. However, HT will compute lower bounds on distances to
centroids only in its CCL. A data point will compute exact distance to any other



Faster K-Means Cluster Estimation 523

centroid in the candidate cluster list only when the lower bound on such distance
is smaller than the distance to the centroid of its current cluster.

Experimental results are presented on five datasets, four of which were used
by Elkan [3] to demonstrate the effectiveness of KMT and one is a syntheti-
cally generated dataset by us. These datasets vary in dimensionality from 2 to
784, indicating applicability of our heuristic for low as well as high dimensional
data (please refer to Table 1). Our evaluation metrics are chosen based on two
conditions mentioned in Sect. 2: Speedup to satisfy Condition 1 and Percentage
Increase in MSE (PIM) to satisfy Condition 2. Speedup is calculated as T/T ′.
PIM is calculated as (100 ∗ (E′ −E))/E. We tried two different methods for ini-
tial seed selection: random [6] and K-means++ [2]. Both seed selection methods
gave similar trends in results. To ensure fair comparison, the same initial seeds
are used for both KMT and HT. For some experiments, HT achieves smaller
MSE than KMT (E′ ≤ E). This happens because our heuristic jumps the local
minima by not computing distance to every cluster centroid. Only in such cases,
HT requires more iterations to converge and runs slower than KMT.

Effect of Varying k′: Please refer to Table 2. The value of the total number
of clusters k is set to 100 for all datasets. Running time and MSE of KMT is
independent of value of k′. Speed up of HT over KMT increases with reduction
in value of k′. This is expected as for small value of k′, HT can avoid many
redundant distance computations using small CCL. Speed up of HT over KMT
is not same as the ratio k/k′. Reason for reduced speed up is that KMT also
avoids some distance computations using its own filtering criteria of triangle
inequality. Our heuristic achieves ideal speed of k/k′ when compared against
basic K-means algorithm [1]. E′ increases with reduction in value of k′. However,
E′ is only marginally higher than E as PIM value never exceeds 1.5.

Effect of Varying k: Please refer to Table 3. Here, we report results for value
of k′ set to 0.4 ∗ k. With increasing value of k, HT achieves better speed up
over KMT and difference between MSE of HT and MSE of KMT reduces. With
increasing value of k, most of the centroid to data point distance calculations
become redundant as data-point is assigned only to the closest centroid. In such
scenario, our heuristic avoids distance computations with reduced PIM. This
shows that our heuristic can be used for datasets having only few as well as
large number of clusters.

Table 1. Datasets used in experiment

Name Cardinality Dimensionality Description

Birch 100000 2 10 by 10 grid of Gaussian clusters

Covtype 150000 55 Remote soil cover measurements

Mnist 60000 784 Original NIST handwritten digit training data

KDDCup 95412 481 KDD Cup 1998 data

Synthetic 100000 100 Uniform random dataset



524 S. Khandelwal and A. Awekar

Effect of Seeding: Please refer to Tables 2 and 3. For each value of k′ in
Table 2 and k in Table 3, we used two different initial seedings - random (RND)
and Kmeans++ [2]. If we compare the results, we observe that better seed-
ing (KMeans++) generally gives better results in terms of PIM. Randomly
selected seeds are not necessarily well distributed across the dataset. In such
cases, successive iterations of K-means causes significant changes in cluster cen-
troids. Improved seeding methods such as KMeans++ ensure that the initial
centroids are spread out more uniformly. Thus centroids shift is less significant
in successive iterations. In such scenario, CCL computed after first iteration is

Table 2. Effect of varying k′ on HT performance. The value of k = 100. RND =
Random initialization; KPP = Initialization using Kmeans++[2]

k′ = 20 k′ = 30 k′ = 40 k′ = 50 k′ = 60

RND KPP RND KPP RND KPP RND KPP RND KPP

Birch PIM (%) -0.11 0 0.04 0 0 0 0 0 0 0

Speedup 3.05 3.14 2.48 2.26 2.01 1.93 1.68 1.67 1.41 1.31

Covtype PIM (%) 0.21 0.03 0.02 0 0 0 0 0 0 0

Speedup 2.32 2.02 1.81 1.82 1.61 1.63 1.55 1.38 1.42 1.20

Mnist PIM (%) 1.30 1.36 0.60 0.71 0.36 0.36 0.30 0.18 0.23 0.09

Speedup 1.89 1.47 1.60 1.44 1.42 1.26 1.38 1.19 1.37 1.15

KDDCup PIM (%) 0.81 0.70 0.11 0.15 0.08 0.02 -0.18 -0.01 0 0

Speedup 1.44 1.60 1.33 1.15 1.42 1.02 0.88 0.99 1.18 1.02

Synthetic PIM (%) 0.19 0.15 0.11 0.08 0.06 0.04 0.03 0.01 0.01 0.01

Speedup 2.90 2.45 2.28 1.97 1.87 1.71 1.51 1.35 1.36 1.17

Table 3. Effect of varying k on HT performance. The value of k′ = 0.4 ∗ k. RND =
Random initialization; KPP = Initialization using Kmeans++[2]

k = 50 k = 100 k = 500 k = 1000

RND KPP RND KPP RND KPP RND KPP

Birch PIM (%) 0.31 0 0 0 0 0 0 0

Speedup 1.65 1.71 1.98 1.97 2.14 2.10 2.12 2.15

Covtype PIM (%) 0.01 0.02 0.26 0 0 0 0 0

Speedup 1.35 1.31 1.65 1.50 1.94 1.87 1.97 1.90

Mnist PIM (%) 0.94 0.87 0.38 0.52 0.09 0.23 0.13 0.07

Speedup 1.10 1.20 1.23 1.45 1.28 1.24 1.29 1.19

KDDCup PIM (%) 0.51 0.99 -0.06 0.15 0 0.03 0 0.02

Speedup 1.02 1.38 0.85 1.18 1.13 1.33 1.19 1.37

Synthetic PIM (%) 0.09 0.07 0.05 0.04 0.03 0.01 0.01 0.01

Speedup 2.03 1.63 1.76 1.56 1.75 1.45 1.56 1.51



Faster K-Means Cluster Estimation 525

a better estimate for final cluster membership. Thus our heuristic is expected to
perform better with newer variants of K-means that provide improved seeding.

Effect of Cluster Well-Separateness: We also performed experiments on
synthetic datasets in two dimensions. These datasets were generated using a
mixture of Gaussians. The Gaussian centers are placed at equal angles on a cir-
cle of radius r (angle = 2π

k ), and each center is assigned equal number of points
(n

k ). The experiment was done on synthetic datasets of 100000 points generated
using the method described above with variance set to 0.25. The value of k is set
to 100 and the value of k′ is set to 40. We generated nine datasets by varying the
radius from zero to forty in steps of five units. We ran KMT and HT over these
nine datasets to check how our heuristic performs with change in well separate-
ness of clusters. We observed that when clusters are close, both the algorithms
converge quickly as initial seeds happen to be close to actual cluster centroids.
With higher radius, initial seeds might be far off from the actual cluster cen-
troids and KMT takes longer to converge. However, HT performs significantly
better for higher values of radius as HT can quickly discard far away clusters.
HT achieves a speedup of around 2.31 for higher radius values. For all experi-
ments over these synthetic datasets, we observed that PIM value never exceeds
0.01 [1]. This indicates that our heuristic remains relevant even with variation
in degree of separation among the clusters.

5 Conclusion

We presented a heuristic to attack the bottleneck of redundant distance com-
putations in K-means. Our heuristic limits distance computations for each data
point to CCL. Our heuristic can be augmented with diverse variants of K-means
to converge faster without any significant increase in MSE. With extensive exper-
iments on real-world and synthetic datasets, we showed that our heuristic per-
forms well with variations in dataset dimensionality, CCL size, number of clus-
ters, and degree of separation among clusters. This work can be further improved
by making the CCL dynamic to achieve better speed up while reducing the PIM
value.

References

1. The code and dataset for the experiments can be found at: https://github.com/
siddheshk/Faster-Kmeans

2. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
ACM-SIAM Symposium on Discrete algorithms, pp. 1027–1035 (2007)

3. Elkan, C.: Using the triangle inequality to accelerate k-means. In: International
Conference on Machine Learning, pp. 147–153 (2003)

4. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE
Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

https://github.com/siddheshk/Faster-Kmeans
https://github.com/siddheshk/Faster-Kmeans


526 S. Khandelwal and A. Awekar

5. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pat-
tern Recogn. 36(2), 451–461 (2003)

6. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

7. Pelleg, D., Moore, A.: Accelerating exact k-means algorithms with geometric rea-
soning. In: ACM SIGKDD, pp. 277–281. ACM (1999)

8. Pham, D.T., Dimov, S.S., Nguyen, C.: Selection of k in k-means clustering. J. Mech.
Eng. Sci. 219(1), 103–119 (2005)


	Faster K-Means Cluster Estimation
	1 Introduction
	2 Our Work: Candidate Cluster List for Each Data Point
	3 Related Work
	4 Experimental Results
	5 Conclusion
	References


