
Chapter 19
Taylor Bubbles in Small Channels: A Proper
Guiding Measure for Validation of Numerical
Methods for Interface Resolving Simulations

Martin Wörner

Abstract Taylor bubbles moving in a vertical pipe are elongated, bullet-shaped
bubbles that almost fill the channel cross-section and are separated from the wall
by a thin liquid film. Taylor bubbles and Taylor flow, which consists of a sequence
of Taylor bubbles separated by liquid slugs, are of interest for various technical
applications. This article introduces some characteristic features of Taylor bubbles
and laminar Taylor flow in small channels to facilitate the understanding of the
subsequent chapters in this book. Furthermore, the specific advantages of Taylor
flow as guiding measure for the DFG Priority Programme SPP 1506 “Transport
Processes at Fluidic Interfaces” are highlighted.

19.1 Introduction

Sir Geoffrey Ingram Taylor (1886–1975) [4] was—together with Ludwig Prandtl
(1875–1953)—theprobablymost influential individual in the field of fluid dynamics
in the central period of the last century. Among the various phenomena that
today bear his name are Taylor-Couette flow, Rayleigh-Taylor instability, Taylor
dispersion, and Taylor bubbles. Concerning the last topic, Taylor studied in two
seminal papers the motion of large bubbles rising through tubes [9] and the
displacement of liquid in a tube by a bubble [23]. An important earlier contribution
on the topic originates from Dumitrescu [10], a student of Prandtl. The earliest
photos of Taylor bubbles are probably due to Gibson [13], Fig. 19.1, who noted
more than a century ago

: : : when the diameter is about 0.75 that of the tube the bubble begins to adopt a more or less
cylindrical form with an ogival head and a flat stern, and the motion becomes steady. Any
further increase in the volume is mainly effective in increasing the length of the cylindrical
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Fig. 19.1 Photos of Taylor bubbles rising in a vertical tube (diameter d). Left: d D 1:68 cm,
reprinted from [13], with permission from Taylor & Francis Ltd. Right: d D 7:9 cm, reprinted
from [9], with permission from The Royal Society

portion of the body, the form of the head remaining sensibly unchanged, and the mean
diameter, although increasing with length, not altering greatly.

Taylor bubbles are encountered in various industrial applications such as aerated
chemical or bio-chemical reactors and boiling of water in nuclear rod bundles, and
in natural phenomena such as in volcanic eruptions [22], where they are usually
called gas slugs.

With the significant advancement of microfabrication techniques during the
last decades, gas-liquid two-phase flows in small channels came into focus in
various fields like micro process engineering, lab-on-a-chip systems and material
synthesis. In these applications, rather than a single bubble, a sequence of Taylor
bubbles is of interest where the neighboring bubbles are separated by liquid
slugs, see Fig. 19.2. This flow pattern is known as Taylor flow but is sometimes
also referred to as bubble-train flow, segmented flow or capillary slug flow. The
hydraulic diameter is typically below a few mm so that gravitational effects are
often negligible. The flow is, therefore, usually pressure-driven and, due to the small
dimensions, laminar. Taylor flow has distinct advantages especially for chemical
process engineering:

• Large interfacial area per unit volume ! efficient heat and mass transfer.
• Axial segmentation of the liquid phase ! reduced axial dispersion and narrow

residence time distribution.
• Recirculation in liquid slug! goodmixing and wall-normal convective transport

in laminar flow.
• Thin liquid film ! short diffusion path of educts from the bubble to the catalytic

wall.
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Fig. 19.2 Bubble formation for different volumetric flow rates of water (QL) and air (QG) in a
100�m square channel leading to Taylor flow. In subfigures (1)–(4), QL is decreased while QG is
increased. Reprinted figure with permission from [8] © 2005 by the American Physical Society,
doi: 10.1103/PhysRevE.72.037302

Several aspects of this list will be detailed in the sequel. For a more complete
discussion than is possible in this short overview, and for topics not covered here,
such as pressure drop, heat transfer, etc., the interested reader is referred to recent
reviews on gas-liquid Taylor flow [2, 14, 15].

19.2 Hydrodynamics

The hydrodynamics of Taylor bubbles in small channels is dominated by viscous
forces and surface tension forces. The capillary number Ca D �LUB=� represents
the ratio of both forces and is the relevant non-dimensional parameter. Here, UB is
the bubble velocity, �L the dynamic viscosity of the liquid and � is the coefficient
of surface tension. At higher velocities, inertial effects become important which can
be characterized by the Reynolds number Re D �LdhUB=�L. Here, �L is the liquid
density and dh the hydraulic diameter. The influence of gravitational forces can be
estimated by the Eötvös number Eo D .�L � �G/gd2

h=� . Due to the proportionality
Eo / d2

h, the importance of gravity diminishes quickly as the channel size is
reduced.
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19.2.1 Bubble Shape and Liquid Film Thickness

Figure 19.3a, b shows a sketch of Taylor flow in a circular channel and related
geometrical dimensions. A key parameter for technical applications with Taylor
flow is the thickness of the liquid film ıF. In circular channels, the liquid film is
azimuthally uniform and its thickness is well described by the relation

ıF

d
D 0:66Ca2=3

1 C 3:33Ca2=3
(19.1)

This correlation is valid for capillary numbers below about 1, supposed inertia
is negligible [3]. For capillary numbers smaller than 0.001, Eq. (19.1) approaches
the result ıF=d D 0:66Ca2=3 from Bretherton’s lubrication analysis for a semi-
infinite bubble [6]. The effect of inertia (Re) on the film thickness is small but
non-monotonic, see e.g. [2] for a detailed discussion.
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Fig. 19.3 Sketch of Taylor flow. (a) Lateral view for Taylor flow in a circular channel. (b) Cross-
sectional view in the middle of a Taylor bubble in a circular channel (dh D d). (c) Cross-sectional
view in the middle of a Taylor bubble in a square channel (dh D h)
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The capillary number also has a large influence on the shape of the front and
rear meniscus of the Taylor bubble. At very small capillary numbers, the bubble
front and rear form hemispherical caps. As Ca increases, the curvature of the front
meniscus increases so that the bubble nose gets more pointed while the curvature
of the rear meniscus decreases (i.e., the bubble rear flattens) and may become even
negative (concave shape). While inertia has a small effect on the shape of the front
meniscus, the influence of Re on the rear meniscus can be quite substantial [12].

The bubble length LB and the liquid slug length LS depend both on the gas and
liquid volumetric flow rates, cf. Fig. 19.2, and on the type of device used for bubble
generation, see e.g. [15]. Often, T-junctions, Y-junctions or cross-junctions such as
in Fig. 19.2 are used. One bubble and one liquid slug form a unit cell of the Taylor
flow with length LUC.

In square channels, the liquid film thickness is azimuthally non-uniform and the
situation is more complex than in circular tubes. Concerning the bubble shape, two
regimes can be distinguished. When the capillary number is larger than about 0.04,
the bubble is axisymmetric and its cross-sectional shape is circular. For smaller
capillary numbers, the bubble is not axisymmetric. In this case there exist liquid
regions in the four channel corners which are connected by thin flat films at the
channel sides, see Fig. 19.3c. Correlations for the lateral and diagonal film thickness
and bubble diameter are given by Kreutzer et al. [18].

The velocity US in Fig. 19.3a denotes the mean liquid axial velocity in a cross-
section within the slug, while UF denotes the mean liquid axial velocity in a cross-
section within the film. By a liquid mass balance in a frame of reference moving
with the bubble it follows that

.US � UB/A D .UF � UB/AF (19.2)

Here, A is the area of the channel cross-section and AF is the cross-sectional area
of the liquid film. Equation (19.2) is valid for circular and square channels and any
other cross-sectional channel shapes as well. It reveals that the area of the liquid film
and the mean velocity in the liquid film are closely related to the bubble velocity and
to US, which is in Taylor flow equal to the total superficial velocity .QL CQG/=A of
the two-phase flow.

19.2.2 Recirculation in the Liquid Slug

In his 1961 paper, Taylor [23] proposed qualitative sketches of the flow streamlines
in the liquid slug ahead of the bubble. At high Ca, the bubble velocity is larger
than the maximum velocity in the liquid slug on the axis of the tube (UL;max).
In a reference frame co-moving with the bubble, then complete bypass flow
occurs, see Fig. 19.4a. At small Ca, it is UB < UL;max and a recirculation pattern
occurs in the tube center, see Fig. 19.4b. Both patterns have later been confirmed
experimentally [7] and numerically [20, 25].
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Fig. 19.4 Sketch of possible liquid streamlines in a reference frame co-moving with the bubble.
(a) Complete bypass flow, (b) recirculation flow with paths for mass transfer. Figure adapted from
[18, 23]

For a liquid slug with a fully developed laminar velocity profile it is UL;max D
C � US. The value of the constant C depends on the shape of the channel cross-
section. For a circular channel it isC D 2 while for a square channel it is C D 2:096.
The condition for recirculation flow thus becomes UL;max < C � US and occurs at
Ca � 0:7 in horizontal circular tubes.

The cross-sectional regions with bypass flow close to the wall and with recircu-
lation flow in the channel center are separated by the “dividing streamline” [24], see
Fig. 19.4b. The position of the dividing streamline is obtained from the condition
that the total flow rate within the recirculation area is zero in the moving frame of
reference. In a cross-section of a liquid slug with fully developed velocity profile,
the size of the recirculation region depends on the velocity ratio UB=US and C only,
and increases as the velocity ratio decreases [17].

19.3 Mass Transfer and Marangoni Effects

The large interfacial area per unit volume, the thin liquid film, and the recirculation
vortex in the liquid slug make Taylor flow attractive for mass transfer applications
as well as for heterogeneous chemical reactions, where the channel walls are coated
with a catalytic washcoat layer. A detailed review on the latter topic is given by
Haase et al. [15]. The mass transfer of chemical species (educts) from the gas bubble
to the solid wall takes place by two different paths, see Fig. 19.4b. The first path is
given by the mass transfer from the bubble body into the liquid film and through
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Fig. 19.5 Sketch of the surface concentrations and the interaction with the fluid flow. Reprinted
from [18], © (2005), with permission from Elsevier

the liquid film toward the wall. The second path is given by the mass transfer from
the front and rear caps of the bubble into the liquid slug and from the liquid slug
towards the wall.

In the second path, the educts need to cross the dividing streamline which is
possible only by diffusion. Important in this context is the speed at which the liquid
in the vortex inside the recirculation zone moves, as this will affect mixing. The
intensity of this recirculation can be quantified by the dimensionless recirculation
time [24]. This quantity is defined as the ratio of the time needed by a liquid fluid
element to move from one end of the liquid slug to the other end, and the time
needed by the liquid slug to travel a distance of its own length.

As Taylor flow is dominated by surface tension effects, even small amounts of
surface-active agents (surfactants) or contaminants can have a large impact. The
presence of surfactants or contaminants on the gas-liquid interface changes surface
tension and, therefore, the capillary number. Gradients of the concentration of
surfactants cause gradients in surface tension which induces so-called Marangoni
stresses. The largest concentration gradients are found near the stagnation rings on
the bubble nose where the dividing streamline reaches the interface, see Fig. 19.5.
Due to these effects, surfactants and contaminants can locally modify the “boundary
conditions” at the interface, which may vary between the limits free-slip and no-slip.

19.4 Guiding Measure Taylor Flow in the SPP 1506

For interface resolving simulations of two-phase flows, various numerical methods
are available, see e.g. [26]. Among the most often used methods are the volume-
of-fluid method, the level-set method and the front-tracking method. For testing the
accuracy of interface resolving simulation methods, artificial test problems such as
the rotation of Zalesak’s slotted disk are often used. Furthermore, two benchmark
configurations which model two-dimensional bubbles rising in liquid columns have
been proposed for quantitative comparison of interfacial flow codes [16]. While
these test cases are certainly useful, they are essentially pure numerical exercises.
For the advancement of numerical methods for interfacial flows towards valuable
tools for engineering applications, however, a validation by experimental data for
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real physical flow problems is desirable. Clearly, there is a lack in literature as
suitable local experimental data which allow for a detailed validation on practical
flow problems are missing.

One goal of the guiding measure in SPP 1506 was, therefore, to undertake a
step to fill this gap by providing such data for the flow of Taylor bubbles in small
channels. This specific flow problem was chosen for the following reasons:

• Taylor flow is of practical technical relevance.
• Taylor flow is of fundamental physical interest as it constitutes a prototypical

problem for the non-linear interaction between viscous, inertial and surface
tension forces under geometric constraints.

• Taylor flow allows the study of hydrodynamics and mass transfer in a relatively
simple experimental set-up.

• Taylor flow allows for an increase in the complexity of the flow and bubble shape
by variation of the channel cross-section (circular and square).

• Taylor flow hydrodynamics is controlled by one main parameter, i.e., the
capillary number. For a certain liquid phase, Ca can be varied by about 1–2
orders of magnitude by variation of the bubble velocity. An even larger variation
is possible by using liquids of different viscosity.

For serving as a suitable measure for validation of numerical methods and
computer codes, the experiments and measurements—which will be presented in
the next two chapters of this book—fulfill the following requirements:

• Experiments are performed in circular [5] and square channels [5, 21] under well-
defined and well-documented conditions which allow a detailed recalculation.
This encompasses information about:

– Thermo-physical properties of both phases.
– Liquid and gas volumetric flow rates of both phases.
– Geometrical flow parameters such as the volume of a single Taylor bubble and

LB and LS for Taylor flow. The variation of both lengths in the experiment is
sufficiently small to resemble “ideal” Taylor flow.

– Conditions to be applied at all boundaries of the computational domain.

• Measurements provide detailed local experimental data which allow for a
quantitative validation of numerical methods and computer codes:

– Local profiles of bubble shape (in square channel: lateral and diagonal) [5].
– Local profiles of velocity field in liquid film and liquid slug (in square channel:

lateral and diagonal) [21].

For numerical computations, there exist the following advantages (first two
bullets) as well as challenges (last bullet) of Taylor flow:

• The numerical simulations can be either 2D axisymmetric (circular channel,
which limits the computational costs) or 3D (square channel with optional
symmetry assumptions).
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• Both, a single Taylor bubble and Taylor flow can well be represented in numerical
computations by using either inlet/outlet conditions in combination with a
co-moving reference frame (single Taylor bubble) or by considering a unit cell
in combination with periodic boundary conditions (ideal Taylor flow).

• Challenging for numerical simulations are the adequate resolution of the thin
liquid film and the large local interface curvature at the rear part of the liquid film
as well as very thin concentration boundary layers if mass transfer is considered.

An overview of the numerical simulations [1, 11, 19] performed within the SPP
1506 concerning the guiding measure Taylor flow are presented in two subsequent
chapters of this book. One chapter covers 2D planar simulations as well as
axisymmetric simulations for circular pipes, while the other chapter is on 3D
simulations for square channels.

19.5 Conclusions

The laminar flow of Taylor bubbles in small channels is of interest for vari-
ous technical applications. Taylor flow in circular and square channels is also
well suited to study complex interfacial hydrodynamics in confined geometry
resulting from the interplay between surface tension, viscous forces and inertia
in a relatively simple set-up. Carefully designed experiments on single Taylor
bubbles and Taylor flow are well suited for providing local experimental data
on the bubble shape and liquid velocity field which are needed for a detailed
quantitative validation of numerical methods and computer codes for interface
resolving simulations.

In the following chapters, the progress achieved in this context within the
SPP 1506 is highlighted. The experimental data and selected numerical data
gained in the course of the SPP 1506 guiding measure Taylor flow are provided
online on the website of the SPP 1506, see www.dfg-spp1506.de. It is hoped
that they will be useful for the entire computational multiphase fluid dynamic
community.

The subject is further developed in the DFG Priority Programme SPP 1740
“Reactive Bubbly Flows” where Taylor flow serves as a guiding measure as well.
Taylor flow is also attractive to investigate further interfacial phenomena not covered
in both SPPs. These include the controlled coalescence of two Taylor bubbles with
different volumes. The trailing smaller Taylor bubble is moving in regions with
larger velocity as compared to the leading larger bubble so that the distance between
both bubbles decreases and finally leads to contact and coalescence. Furthermore,
thermal Marangoni effects in Taylor flow could be studied by heating one or more
walls of a square channel.

www.dfg-spp1506.de
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