
Chapter 18
Structure Formation in Thin Liquid-Liquid
Films

Sebastian Jachalski, Dirk Peschka, Stefan Bommer, Ralf Seemann,
and Barbara Wagner

Abstract We revisit the problem of a liquid polymer that dewets from another
liquid polymer substrate with the focus on the direct comparison of results from
mathematical modeling, rigorous analysis, numerical simulation and experimental
investigations of rupture, dewetting dynamics and equilibrium patterns of a thin
liquid-liquid system. The experimental system uses as a model system a thin
polystyrene (PS)/polymethylmethacrylate (PMMA) bilayer of a few hundred nm.
The polymer systems allow for in situ observation of the dewetting process by
atomic force microscopy (AFM) and for a precise ex situ imaging of the liquid-
liquid interface. In the present study, the molecular chain length of the used
polymers is chosen such that the polymers can be considered as Newtonian liquids.
However, by increasing the chain length, the rheological properties of the polymers
can be also tuned to a viscoelastic flow behavior. The experimental results are
comparedwith the predictions based on the thin film models. The system parameters
like contact angle and surface tensions are determined from the experiments and
used for a quantitative comparison. We obtain excellent agreement for transient
drop shapes on their way towards equilibrium, as well as dewetting rim profiles
and dewetting dynamics.

18.1 Introduction

Even though liquid-liquid dewetting has been investigated to a certain extend in
the past, there is still a lack of the underpinning understanding of the precise
morphology and dynamics of the interfaces involved in such systems. A fundamen-
tal understanding is however crucial for many important nanofluidic problems in
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nature and technology ranging from rupture of the human tear film to the interface
dynamics of donor/acceptor polymer solutions used in organic solar cells.

Indeed, in contrast to the large body of literature in the field of liquid-solid
dewetting, theoretical investigations, after the early fundamental works of Brochard-
Wyart et al. [1], are rather limited. Notable exceptions are in particular the works by
Pototsky et al. [2, 3], the work by Fisher and Golovin [4, 5] and by Bandyopadhyay
et al. [6] and Bandyopadhyay and Sharma [7]. Linear stability analysis and
numerical simulations of the short- and long-time evolution have been performed by
Pototsky et al. [3], Fisher and Golovin [4], and by Bandyopadhyay et al. [6], even
in the presence of surfactants [5]. However, the mathematical theory of the fully
non-linear evolution towards rupture of the liquid-liquid system is poorly developed
as compared to the liquid-solid dewetting. Similarly, stationary droplet solutions for
liquid-liquid systems and their stability have been studied numerically by Pototsky
et al. [3]. Generalizations to higher dimensions, rigorous proofs are missing and
convergence results are still not completely understood. Some of the first results
will be given in this work. Moreover, theoretical and experimental investigations
suggest that interfacial slip plays a role between liquid layers [8–12]. A systematic
derivation of appropriate thin-film models will be given here.

On the experimental side there are some studies on dewetting and film instabil-
ities of liquid-liquid systems [13]. The instability of the liquid-liquid interface are
probed either directly in the reciprocal space by neutron reflectometry but without
considering the liquid-air interface, or indirectly by the resulting deformation of the
liquid-air interface probed by scanning force microscopy [14]. Other groups studied
the breakup and the hole growth of a liquid-liquid system, where the viscosity of
one of the liquids is much larger than the viscosity of the other liquid [15] and
in a very special case, where the resulting dewetting morphologies are all coated
with a thin layer of the underlying liquid [16], whereas the characteristic shape of
the liquid-liquid interface was not explored in detail. The shape of an underlying
liquid polymethylmethacrylate (PMMA) substrate and the liquid polystyrene (PS)
rim profile dewetting from this substrate has been studied first in the pioneering
work of the group of G. Krausch [17, 18]. As a result, they found a characteristic
rim shape and dewetting dynamics, depending on the relative viscosity of the two
liquids. The experimentally observed behavior was claimed to be in agreement with
Brochard et al. [1] which is surprising since the dewetting velocity strongly depends
on film thickness as we will show and which is not considered in [1]. However, the
used polymers in [17, 18] are above the entanglement of the respective chain length
and viscoelastic properties cannot be ruled out. Here, we explore the dewetting
dynamics and undertake a systematic variation of the physical parameters to make
quantitative comparisons with our theoretical models. In addition we develop new
thin-film models that include nonlinear viscoelastic rheologies.
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18.2 Mathematical Model for the Polymer Liquid-Liquid
System

We begin this section by introducing the basic setup and notations. Firstly, notice
that we consider a two-dimensional situation with the x-axis pointing in horizontal
and the z-axis pointing in vertical direction. Later, we give a remark on the
generalisation of the models to three dimensions.

We investigate a system of two layered, immiscible fluids on a flat solid substrate
which are surrounded by a gas phase (see Fig. 18.1). The lower liquid, which
occupies the domain

˝1.t/ WD f.x; z/ 2 R
2I 0 � z < h1.x; t/g; (18.1)

we call liquid 1 or layer 1. Mass density �1, viscosity �1, pressure p1 as well as
horizontal and vertical velocity components, u1 and w1, are associated with this
layer. Similarly, the upper liquid, occupying

˝2.t/ WD f.x; z/ 2 R
2I h1.x; t/ � z < h2.x; t/g; (18.2)

is denoted by liquid 2 or layer 2, with corresponding quantities �2; �2; p2; u2 and
w2. For Newtonian liquids the stresses in the nth layer, n D 1; 2, are given by

�n D �pnI C �n

�
2@xun @zun C @xwn

@zun C @xwn 2@zwn

�
: (18.3)
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Fig. 18.1 Sketch of a two-layer system
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In the case of a viscoelastic upper layer we assume that the symmetric stress tensor
�2 obeys the corotational Jeffreys model with the constitutive equation

�2 C �21

D

Dt
�2 D �2

�
P�2 C �22

D

Dt
P�2

�
; (18.4)

and where the Jaumann derivativeD=Dt is defined by

D�

Dt
D d�

dt
C 1

2
.!2� � �!2/ ; (18.5)

for an arbitrary tensor field �. The strain rate P�2 is given by

P�2 D
�

2@xu2 @zu2 C @xw2

@zu2 C @xw2 2@zw2

�
; (18.6)

and the vorticity tensor is

!2 D
�

0 @xw2 � @zu2

@zu2 � @xw2 0

�
: (18.7)

In this work we assume �21 and �22 to be constant material parameters. The
relaxation parameter �21 typically denotes a measure of the time required for the
stress to relax to some limiting value, whereas �22 is a measure of the retardation to
return to the equilibrium state, see for example [19].

We assume that the system contains three interfaces. The first one between the
solid and liquid 1 is located at z D 0 and does not change in time t. We call it
solid-liquid interface. The tangential and normal vectors of this interface are simply
given by ts D .1; 0/ and ns D .0; 1/. The other two interfaces evolve in time.
The one between the two liquids (liquid-liquid interface) is at z D h1.x; t/ while
the free surface between liquid 2 and the gas phase (liquid-gas interface) is at z D
h2.x; t/. The unit tangential and normal vectors and the curvatures of the liquid-
liquid interface (subindex 1) and the liquid-gas interface (subindex 2) are given by

nn D .�@xhn; 1/q
1 C .@xhn/

2
; tn D .1; @xhn/q

1 C .@xhn/
2
; �n D @xxhn�

1 C .@xhn/2

�3=2
: (18.8)

Moreover, we denote the surface tensions for the liquid-liquid and the liquid-gas
interface by 	1 and 	2, respectively. For convenience, we also introduce

h.x; t/ D h2.x; t/ � h1.x; t/; (18.9)

the thickness of the top layer as a variable.



18 Structure Formation in Thin Liquid-Liquid Films 535

Next, we discuss the hydrodynamic equations which describe the evolution
of such a system. Then, we introduce a suitable scaling for the variables in
this system and obtain a set of nondimensional equations. Finally, using formal
asymptotic analysis, we reduce the latter equations to thin film equations for the
layer thicknesses, h1 and h.

18.2.1 Hydrodynamic Equations

In each layer we suppose the Cauchy momentum equations

0 D @xun C @zwn; (18.10)

�n
d

dt
un D �@xpn C @x�n;11 C @z�n;12; (18.11)

�n
d

dt
wn D �@zpn C @x�n;12 C @z�n;22; (18.12)

where

�2 C �21

D

Dt
�2 D �2

�
P�2 C �22

D

Dt
P�2

�
; (18.13)

in the upper layer and

�1 D �1

�
2@xu1 @zu1 C @xw1

@zu1 C @xw1 2@zw1

�
; (18.14)

in the lower layer. If �21 D �22 D 0 we are a pure Newtonian case else the upper
layer is viscoelastic.

The equations are coupled to each other and to the surrounding solid and gas
phase by boundary conditions at the interfaces. At the solid-liquid interface (i.e.
z D 0), we impose the Navier-slip condition. It says that the tangential component
of the velocity is proportional to the shear stress at the interface, or

.u1;w1/ � ts D b

�1

ns � �1 � ts: (18.15)

The constant b denotes the slip-length. We plug the concrete expressions for ts and
ns into condition (18.15) and obtain

u1 D b @zu1: (18.16)
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Besides this we also assume the impermeability condition,

w1 D 0: (18.17)

At the liquid-liquid interface, z D h1.x; t/, we have a kinematic condition. It
balances the normal component of the velocity of liquid 1 at the interface with the
velocity of the interface itself, i.e.

.0; @th1/ � n1 D .u1;w1/ � n1: (18.18)

Next, we consider capillary forces. These act to reduce the area of the interface and
are compensated by the jump of the stress tensors times unit normal vector and also
by intermolecular forces, which we explain later,

�
�1 � �2 � 
0.h/I

� � n1 D 	1�1n1:

Since the last relation is vector valued we obtain two boundary conditions from it,

t1 � ��1 � �2 � 
0.h/I
� � n1 D 0; (18.19)

n1 � ��1 � �2 � 
0.h/I
� � n1 D 	1�1: (18.20)

These are called tangential and normal stress condition, respectively. At this
interface we also suppose a slip condition. In contrast to (18.15) the left hand side
of the equation depends on the jump of the velocities,

.u2 � u1;w2 � w1/ � t1 D b1

�
1

�1

C 1

�2

�
n1 � �2 � t1: (18.21)

Notice, the factor .1=�1 C1=�2/ could be chosen in a different way. The advantage
of our choice is that slip length b1 has the unit of a length. Furthermore, in the
limit �1 ! 1, i.e. liquid 1 becomes solid, condition (18.15) is restored. The
impermeability condition at this surface reads

.u2 � u1;w2 � w1/ � n1 D 0: (18.22)

The free surface z D h2.x; t/ also evolves according to a kinematic condition,

.0; @th2/ � n2 D .u2;w2/ � n2: (18.23)

Here, the tangential and normal stress conditions are

t2 � ��2 C 
0.h/I
� � n2 D 0; (18.24)

n2 � ��2 C 
0.h/I
� � n2 D 	2�2: (18.25)
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Now let us discuss the intermolecular forces we introduced before (18.19). We
investigate a situation in which intermolecular interactions in the layered system
give contributions to the surface forces. These additional forces can drive dewetting
of the upper liquid. On the other hand, we neglect interactions between liquids 1

and 2 with the solid substrate, which might lead to the breakup of layer 1.
The intermolecular potential for the interactions is given by


.h/ D 8

3

�

 
1

8

�
h�
h

�8

� 1

2

�
h�
h

�2
!

: (18.26)

This potential consists of two competing terms, which represent long-range, h�2,
and short-range, h�8, forces. The long-range term is the disjoining pressure
contribution from the van-der-Waals potential. This force drives the dewetting. Only
when the thickness h becomes very small the short-range term has an impact. In fact,
it stabilises and prevents layer 2 from complete rupture, i.e. no interface between
liquid 1 and the gas phase appears. There remains a layer of liquid 2 of very small
height. This height is associated with the value h� for which potential (18.26) has
a minimum of 
� < 0. Notice that while the long-range part in (18.26) can be
derived from a Lennard-Jones potential, where also other choices for the form of the
stabilising part are possible. A discussion referring to this subject can be found e.g.
in Oron et al. [20]. In (18.26) the short-range part of the potential is chosen in order
to produce a minimum for a particular thickness of the film. The potential (18.26)
gives a contribution to the energy of the system. Variations of h1 and h2 change
this contribution by �
0.h/ıh1 and 
0.h/ıh2, respectively, which produces the extra
terms 
0.h/ in (18.20) and (18.25).

The main purpose of the intermolecular potential is to account for the interactions
responsible for spinodal dewetting as observed in experiments. This feature will be
discussed in the linear stability. With the short-range repulsion term such a potential
ensures positivity of solutions, which is a major advantage for the analysis. From
a modelling point of view, it also allows to set the equilibrium contact angle and
to pass to the � -limit of zero precursor thickness, as we will discuss for stationary
solutions. However, as this limit is still open for time-dependent solutions, we also
discuss algorithms for both situations, i.e. global solutions with precursor and free-
boundary problems for the expected sharp-interface model.

18.2.2 Nondimensional Problem

Let H and W be typical scales for the height and the vertical velocity components,
respectively. Then, we write

z D HQz; hn D H Qhn; b D H Qb; b1 D H Qb1 and wn D W Qwn: (18.27)
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Analogously, we denote the characteristic scales for the lateral length and the
horizontal velocity by L and U,

x D LQx; un D U Qun: (18.28)

For the characteristic time scale T we suppose T D L=U and set

t D L

U
Qt; �21 D L

U
Q�21; �22 D L

U
Q�22: (18.29)

For the stress tensors we set

�
�n;11 �n;12

�n;21 �n;22

�
D �n

T

 
��
n;11

L
H ��

n;12
L
H ��

n;21 ��
n;22

!
: (18.30)

Furthermore, we assume that the typical scale for the pressure is equal to the one for
the intermolecular forces and denote it by P,

pn D PQpn; 
0 D P Q
0: (18.31)

Be aware that in the following we drop ‘�’. At this point we can choose some of
the introduced scales freely. In view of the structure of potential (18.26) we set

P D 8

3


�
H

; (18.32)

which results in a rather simple form for 
0,


0.h/ D 1

"

�
�
� "

h

�9 C
� "

h

�3
�

; where " D h�
H

: (18.33)

Usually, the minimum point of (18.26), h�, is much smaller than the characteristic
height H. Hence, we suppose " � 1. In the following we use the notations

"` D H

L
; Re D �2UH

�2

; � D �1

�2

; � D �1

�2

; 	 D 	1

	2

; ˛ D PH

�2U
;

(18.34)

and we obtain

"`�Re .@tu1 C u1@xu1 C w1@zu1/ D �˛ "`@xp1 C �
�
"2

`@xxu1 C @zzu1

�
; (18.35a)

"2
`�Re .@tw1 C u1@xw1 C w1@zw1/ D �˛ @zp1 C �

�
"3

`@xxw1 C "`@zzw1

�
; (18.35b)

0 D @xu1 C @zw1; (18.35c)
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and analogously

"` Re .@tu2 C u2@xu2 C w2@zu2/ D �˛ "`@xp2 C "2
`@x�2;11 C @z�2;12; (18.35d)

"2
` Re .@tw2 C u2@xw2 C w2@zw2/ D �˛ @zp2 C "`@x�2;21 C "`@z�2;22; (18.35e)

0 D @xu2 C @zw2; (18.35f)

where the stress tensor of the upper liquids fulfil

�
1 C �21

d

dt

�
�2;11 � �21

�
1

"2
@zu2 � @xw2

�
�2;12

D 2

�
1 C �22

d

dt

�
@xu2 � �22

 �
1

"
@zu2

�2

� ."@xw2/2

!
; (18.35g)

�
1 C �21

d

dt

�
�2;22 C �21

�
1

"2
@zu2 � @xw2

�
�2;12

D 2

�
1 C �22

d

dt

�
@zw2 C �22

 �
1

"
@zu2

�2

� ."@xw2/2

!
; (18.35h)

�
1 C �21

d

dt

�
�2;12 C �21

2

�
@zu2 � "2@xw2

�
.�2;11 � �2;22/

D
�

1 C �22

d

dt

��
@zu2 C "2@xw2

�C 2�22

�
@zu2 � "2@xw2

�
@xu2: (18.35i)

The boundary conditions at the substrate, i.e. the impermeability and the Navier-slip
condition, now read

u1 D b @zu1; w1 D 0: (18.36a)

At the liquid-liquid interface, z D h1, we get the following nondimensional
equations. For the normal, tangential stresses and the kinematic condition,

0 Dp1 � p2 C 
0.h/ C 2
"`

˛

.�@zu1C"2
`�@xw1��2;12/@xh1

1C"2
`
.@xh1/2 C : : :

� "`

˛

.1�"2
`
.@xh1/2/.2�@zw1��2;22/

1C"2
`
.@xh1/2 C 	 @xxh1

.1C"2
`
.@xh1/2/

3=2 ; (18.36b)

0 D �
@zu1 C "2

`�@xw1 � �2;12

� �
1 � "2

` .@xh1/
2
�C : : :

� "2
` .4�@xu1 � 2�2;11/ @xh1; (18.36c)

@th1 Dw1 � u1@xh1: (18.36d)
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The slip condition becomes

.u2 � u1/ C "2
` .w2 � w1/ @xh1 D b1

�C1

�

�2;12.1�"2
`
.@xh1/2/�2"2

`�2;11@xh1q
1C"2

`
.@xh1/2

; (18.36e)

and the impermeability condition is given by

.w2 � w1/ � .u2 � u1/ @xh1 D 0: (18.36f)

Finally, at the liquid-gas interface, z D h2, normal and tangential stresses and the
kinematic conditions are

0 D p2 � 
0.h/ � "`

˛

.1�"2
`
.@xh2/2/�2;22�2�2;12@xh2

1C"2
`
.@xh2/2 C @xxh2

.1C"2
`
.@xh2/2/

3=2 ; (18.36g)

0 D �2;12

�
1 � "2

` .@xh2/
2
�

� 2"2
`�2;11@xh2; (18.36h)

@th2 D w2 � u2@xh2: (18.36i)

Note, to write (18.36g) in this form, without loss of generality, we used the balance

	2H

PL2
D 1 (18.37)

This, together with (18.32), determines parameter "`,

"` D H

L
D
s

8

3


�
	2

: (18.38)

To derive thin film equations for the layer thicknesses h1 and h we assume that
"` � 1. In other words, we suppose that the characteristic scale for the height is
much smaller than the typical length scale. Equation (18.35a) still depend on several
parameters. In the pure Newtonian case we suppose �21 D 0 and �22 D 0. While we
assume �, Re, � and 	 to be of order one w.r.t. "`, we consider various magnitudes
for the slip lengths b and b1. For these different magnitudes, we have to choose
alternate ˛’s and obtain different models. In the viscoelastic case we assume �21,
�22, �, Re and 	 to be of order one but � of order O."2

`/. We note that this order
of magnitude of � is the only choice to incorporate the full nonlinear viscoelastic
model into an asymptotically consistent thin-film model.
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18.3 Thin-Film Model

For no-slip or small interfacial slip we expect that the profile of the lateral velocity
component in layer 1 is parabolic. Therefore, we balance the pressure gradient @xp1

with the dominant viscous term @zzu1 in (18.35a),

˛ D 1

"`

: (18.39)

This fixes the velocity scale and hence, the capillary number,

Ca D �2U

	2

D "3
`: (18.40)

After having all the scales fixed we can now derive a thin-film model from (18.35)
and (18.36) assuming that "` � 1 and assuming the solutions can be written in
asymptotic expansions in "`. Using only the leading order terms in the expansions
the derivation of thin-film equations from the underlying hydrodynamic model is
straight forward, see e.g. [21]. The coupled scaled system of nonlinear fourth order
partial differential equations for the profiles of the free surfaces h1 and h2 takes the
form

@th D r � .Q � rp/ ; (18.41)

where h D .h1; h2/
> is the vector of liquid-liquid interface profile and liquid-air

surface profile. The components of the vector p D . p1; p2/
> are the interfacial

pressures given by

p1 D �	�h1 � 

0

.h2 � h1/; p2 D ��h2 C 

0

.h2 � h1/; (18.42)

The gradient of the pressure vector is multiplied by the mobility matrix Q which is
given by

Q D 1

�

0
BBB@

h3
1

3

h3
1

3
C h2

1.h2 � h1/

2

h3
1

3
C h2

1.h2 � h1/

2

�

3
.h2 � h1/

3 C h1h2.h2 � h1/ C h3
1

3

1
CCCA :

(18.43)

where 	 D 	1=	2 and � D �1=�2 denote surface tension and viscosity ratios for
the lower and upper layer and  D h�=hmax is a small parameter with hmax being the
maximal distance between the polymer-air and polymer-polymer interface.
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The energy functional associated to the gradient flow of the lubrication equation
can then be given by

E".h1; h2/ D
Z L

0

�
	

2
j@xh1j2 C 1

2
j@xh2j2 C 
.h2 � h1/

	
dx (18.44)

where the potential function 
 denotes the scaled potential with .n; `/ D .2; 8/.
The relation to the thin-film equations is pi D ıE"=ıhi.

18.3.1 Mathematical Theory

18.3.1.1 Stationary States

Even though in an actual experiment stationary states represent the late stage of the
dewetting process, we begin our analysis with this state, since it allows to identify
important quantities, such as the equilibrium Neumann triangle conditions, surface
tension and interfacial tensions, by careful comparisons of our mathematical and
numerical results with specifically designed experiments. The results of this analysis
can then be used in the dynamic models, where other quantities, such as dewetting
rates, evolution of interfacial morphologies can be investigated.

We investigated stationary solutions of a thin-film model for liquid two-layer
flows with the aim to achieve a rigorous understanding of the contact-angle
conditions for such two-layer systems. For this we considered an appropriate
energetic formulation that is motivated by its gradient flow structure. We pursued
this by investigating a corresponding energy that favors the upper liquid to dewet
from the lower liquid substrate, leaving behind a layer of thickness h�, given by the
intermolecular potential


.h2 � h1/ D 
�
` � n

"
`

�
h�

h2 � h1

�n

� n

�
h�

h2 � h1

�`
#

; (18.45)

where h1 is the height of the liquid-liquid interface, h2 the height of the free surface
and its minimal value 
� < 0 is attained at h�. We note that other energies are
possible but this one corresponds more closely to the experimental set-up.

One can then obtain that any positive stationary solution of (18.42)–(18.43)
satisfies @xp1 D @xp2 D 0 in ˝ . This in turn is equivalent to

	@xxh1 D �
0
.h2 � h1/ � �2 C �1; (18.46a)

@xxh2 D 
0
.h2 � h1/ � �1; (18.46b)

where constants �2 and �1 are Lagrange multipliers associated with conservation
of mass. We then first established existence of a global minimizer to the energy
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functional (18.44) and showed that it satisfies (18.46) with

@xh1 D @xh2 D @xxxh1 D @xxxh2 D 0 for x 2 @˝: (18.47)

Theorem 1 Let ˝ be a bounded domain of class C0;1 in R
d; d � 1 and let m D

.m1;m2/ with m1;m2 > 0. Then a global minimizer of E.�; �/ defined in (18.44)
exists in the class

Xm WD



.h1; h2/ 2 H1.˝/2 W m1 D
Z

˝

h1; m2 D
Z

˝

.h2 � h1/; h2 � h1

�
;

(18.48)
For d D 1 and ˝ D .0; L/ the function h2 � h1 is strictly positive and .h1; h2/

are smooth solutions to the ODE system (18.46) with (18.47) and

�1 D 1

L

Z
˝


0
.h2 � h1/ dx; �2 D 0: (18.49)

After proving existence of stationary solutions which is a generalisation of the proof
for single-layer thin films [22], we focussed on the limit h� ! 0 via matched
asymptotic analysis in order to recapture the Neumann triangle construction together
with the corresponding sharp-interfacemodel. Our analysis shows, that the complete
matching of the asymptotic solution requires the inclusion of so-called logarithmic
switch-back terms. This is also interesting, in view of the fact that as a limiting case
our analysis also includes the case of equilibrium droplets on solid substrates.

We then showed existence and uniqueness of the limit h� ! 0 within the
framework of � -convergence and show

Theorem 2 For the family of energies E" the � -limit is

E0.h1; h/ D
Z

˝

	

2
jrh1j2 C 1

2
jr.h1 C h/j2 C j˚.1/j �fh > 0g

Theorem 3 (Minimizer of Sharp Interface Energy) Let ˝ D BR.0/ and X D
f.h1; h/ 2 Xm.˝/ W hj@˝ D 0g and energy

E.h1; h/ WD
Z

˝

	

2
jrh1j2 C 1

2
jr.h1 C h/j2 C j˚.1/j�fh>0gdx:

Then using �.x/ WD ˛.s2 � jxj2/C minimizers of E with mass .m1;m2/ are

h1 D � 1

	 C 1
�.x � x0/ C h1; h.x/ D �.x � x0/;

with constant x0 2 ˝ and s; ˛; h1 2 R. Prescribing the mass .m1;m2/ fixes s and
h1, whereas ˛ is fixed by the contact angle (Neumann triangle)

	.rh1/
2 C .r.h1 C h//2 D 2j˚.1/j; at jxj D s:
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Comparison with the sharp-interface model obtained from the � -limit agrees with
the one obtained via matched asymptotics. Our results on the stationary solutions
are published in [23].

18.3.1.2 Existence Theory for the Dynamic Problem

While the existence theory for single layer thin film equations is well established,
beginning with the seminal paper by Bernis and Friedman [24], for two-layer
systems this seems not to be the case. Only recently, Barrett and El Alaoui [25]
introduced a finite element scheme for a similar system including surfactants and
investigated existence of weak solutions. However their proof relied on the presence
of intermolecular forces in the equations.

In [26] we showed existence of weak solution of the dynamic problem of liquid-
liquid thin films and in addition prove non-negativity for the system of degenerate
parabolic equations:

h1;t C .M11p1;x C M12p2;x/x D 0 in QT0 D ˝ � .0;T0/;

ht C .M21p1;x C M22p2;x/x D 0 in QT0 D ˝ � .0;T0/;
(18.50)

where

p1 D .	 C 1/h1;xx C hxx; p2 D h1;xx C hxx; M D 1

�

�
1
3
h3

1
1
2
h2

1h
1
2
h2

1h
�

3
h3 C h1h2

�
:

(18.51)

For the existence proof for (18.50) we introduce a suitable regularised system.

h1;t C ..M11 C ı/p1;x C M12p2;x/x D 0 in QT0 ; (18.52)

ht C .M21p1;x C .M22 C "/p2;x/x D 0 in QT0 ; : (18.53)

where ı > 0 and

M D 1

�

�
1
3
jh1j3 1

2
jh1j2jhj

1
2
jh1j2jhj �

3
jhj3 C jh1jjhj2

�
(18.54)

This is parabolic in sense of Petrovskiy. Also, initial conditions h1;0 and h0 are
approximated in the H1.˝/-norm by C4C˛ functions h1;0;ı and h0;ı,

h1.x; 0/ D h1;0;ı.x/; h.x; 0/ D h0ı.x/: (18.55)

We assume boundary conditions

h1;x D h1;xxx D hx D hxxx D 0 on x 2 @˝; : (18.56)
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For these conditions using a result by Eidelman [27] shows that (18.52),(18.53),
(18.55),(18.56) has a unique solution in a small time interval, say in Q� for some
� > 0.

The derivation of uniform upper bounds on the C
1
2 ; 1

8
x;t -norm of these solutions

in Q� establishes a priori bounds that allow the conclusion that the solutions can be
extended step-by-step to a solution of (18.56), (18.52), (18.53), (18.55) in all ofQT0 .
Finally, taking the limit " ! 0 existence of weak solutions to (18.50) is established.

Moreover, by exploiting the entropy functional Gı, which is defined by

Gı.s/ D �
AZ

s

gı.r/dr; where gı.s/ D �
AZ

s

dr

.jrjn C ı/1=2
; (18.57)

non-negativity of the weak solutions is shown in [26].

18.3.2 Numerical Methods for Liquid-Liquid Dewetting

The goal of this subsection is to discuss different ways of solving the aforemen-
tioned free boundary problems numerically. Some care will be taken in emphasizing
on how the contact line is dealt with in these approaches. To start with, assume
that the dynamics of the two liquids is parameterized by a flow map �t with
˝i.t/ D �

�
t; ˝i.0/

�
for i D 1; 2. Incompressibility implies that the velocity

u D @t� obeys r � u D 0 in the Eulerian reference frame. For fixed time assume
that the domains can be parameterized by functions h1 and h using

˝1.t/ WD f.x; z/ 2 R � R
C W 0 < z < h1.t; x/g;

˝2.t/ WD f.x; z/ 2 R � R
C W h1.t; x/ < z < h1.t; x/ C h.t; x/g:

Based on this representation of a state of the domains we are going to discuss
different strategies to solve the transient problem numerically. Geometrical features
can be now discussed in terms of h; h1.

18.3.2.1 Stokes Flow with Free Boundaries

For Newtonian viscous liquids i D 1; 2 with viscosities �i occupying the domains
˝i it is straightforward to see that the Stokes system admits a variational formu-
lation. Here we restrict to the situation without slip. There one needs to find a
(continuous) velocity u 2 V D H1.˝1 [ ˝2IR2/ \ fu W r � u D 0g, such

a.u; v/ D
2X

iD1

Z
˝i

�i

2
D.u/ W D.v/dx D

X
˛

	˛

Z
�˛

Nrid W Nrv ds D f .v/ (18.58)
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Fig. 18.2 Evolution of a liquid droplet on a liquid substrate into equilibrium �1 D �2 D 	1 D
	2 D 	3 D 1. Colors indicate ju.x; z/j, whereas arrows the direction u.x; z/=kuk1

for all v 2 V , where 	˛ denotes the surface tension of the interface �˛ . We used
the well-known representation of surface tension by the Laplace-Beltrami-operator,
which we can write in two dimensions using tangential gradients Nr, cf. [28, 29].
Once the velocity is known the domain is moved using the flow map generated by
u. The advantage of (18.58) for the bilayers is that the contact angles (Neumann
triangle) can be encoded in energetic structure of the formulation in f .v/.

For the numerical discretisation of (18.58) one often employs a finite element
(FE) method. Here, one usually transforms the minimization problem into a saddle
point problem which, by introducing the pressure as a Lagrange multiplier, enforces
the incompressibility r � u D 0. The saddle point problem requires inf-sup stable
elements, e.g., Taylor-Hood elements. For this application it makes sense to enrich
the pressure space by elements, which allow for a pressure-jump at the liquid-liquid
interface. In order to ensure stability of the resulting scheme, one replaces id  
id C �u to create a semi-implicit time-discretisation [28]. After the computation of
u one can move the domain (or all vertices xn of the underlying FE mesh) with
the Lagrangian velocity field using xn.t C �/ D xn.t/ C �ui. A snapshot of the
solution of the upper layer as it evolves into a stationary liquid lens, is shown in
Fig. 18.2. However, the great disadvantage of this approach in our context is the
potential inefficiency in situations, where we have a separation of length scales as
indicated in the thin-film approximation before.1 In such a situation the horizontal
velocity ux is basically quadratic in z and the vertical component uz can be neglected.
Then, thin-film models such as (18.41) admit an effective description of the Stokes

1Typical lengths scales in experiments Œx� D 2 � 104 nm and Œz� D 102 nm.
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flow (18.58). The velocity field can be reconstructed from the function h; h1 and
their derivatives with respect to x.

18.3.2.2 Numerical Methods for Thin Film Models

Global Solutions

The corresponding model we need to solve is

@t

�
h
h1

�
D r � M.h; h1/r

�
�

�1

�
; (18.59)

for � D ıE=ıh and �1 D ıE=ıh1 for some given driving energy E.h; h1/, cf., [30].
Typical energies are of the form

E.h; h1/ D
Z O	

2
jr.h1 C h/j2 C O	1

2
jrh1j2dx C V.h; h1/: (18.60)

The fact how one is going to treat the support of h1; h and the question, if (18.59) is
still a free boundary problem is reflected in the choice of V . For simplicity we are
only going to discuss the dependence on h, the discussion for h1 or composite terms
is entirely analogous. When V 	 0 the liquid spreads over the liquid substrate with
zero contact angle. Similarly as in [31–33] one might expect that one can construct
algorithmswhich preserve non-negativity of solutions. These solution might be even
smooth enough to be globally (in space) well-defined. Another case, for which we
derived a model earlier, is when

V.h/ D
Z


".h/ dx (18.61)

with 
" as in (18.26). These models admit a standard variational formulation, for
which the semi-implicit time-discretisation is given by

Z
hkC1v C hkC1

1 v1 C
X
i;j

�Mijr�irvj dx D
Z

hkv C hk1v1dx (18.62a)

Z
�w C �1w1dx D

Z
O	r.h1 C h/ � r.w C w1/ C O	2rh1 � rw1 C 
0

"w dx

(18.62b)

with hk.x/ D h.�k; x/, hk1.x/ D h1.�k; x/, and M;V are evaluated at t D �k. The
specific choice of 
" should generally ensure strictly positive solutions which are
defined globally in space. However, the kink in the stationary solution for " !
0 already suggests that (local) refinement might be required where the precursor
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h 
 " meets the support h � ". We solve this problem with standard P1 FEM in
one and two space dimensions with natural boundary conditions n � rh D 0 andP

j Mijn � r�j D 0.

The Thin-Film Free Boundary Problem

Kriegsmann and Miksis [34] introduced a thin-film model with a sharp triple
junction, in which the support of h, i.e., !.t/ D fx W h.t; x/ > 0g, is part of the
unknowns. For quasi-stationary traveling-wave solutions they constructed a scheme
to numerically compute h; h1. Later, Karapetsas et al. [35] developed a scheme
to solve the transient scheme with sharp triple-junctions numerically. However,
they needed to use mass conservation as a global property to resolve a numerical
singularity near the contact line. Now we are going to explain how this problem can
be overcome by systematically using local properties of the variational formulation.
Similar to the Stokes equation (18.58) we want to find a variational formulation,
which enforces contact angles in a natural way and where the contact line motion is
contained in a robust way. For single thin layers such an algorithm has been shown
to work in higher dimensions [36] and even for zero contact angle [37].

In contrast to globally defined solutions we have h W ! 7! R
C and h1 W R 7!

R
C, where we expect kinks in h1 at triple-junctions @!. First note that the driving

functional for this model is

V.h/ D j!j D
Z

�.h/ dx; �.h/ D
(

1 h > 0

0 else
: (18.63)

Since the exact statement of the discrete variational formulation is quite involved,
we only state the main differences compared to the standard formulation in (18.62).
When we have an evolution of two functions h1; h encoding domains ˝1; ˝2 as
explained before, then it is necessary that at the triple junction .xc.t/; zc.t// we have

lim
x&xc

h1.t; x/ D lim
x%xc

h1.t; x/ D zc.t/; lim
x&xc

h.t; x/ D lim
x%xc

h.t; x/ D 0;

(18.64)

at all times t. This leads to a condition for time-derivatives Ph; Ph1 of h; h1

lim
x&xc

Ph1.t; x/ C Pxc � rh1 D lim
x%xc

Ph1.t; x/ C Pxc � rh1; (18.65)

and another condition Ph C Pxc � rh D 0. These are two conditions defining Pxc
and at the same time defining a jump for the time-derivative. This shows that P1
FEM are not suited if we use the Eulerian time-derivatives Ph; Ph1 as unknowns.
We solve this dilemma by allowing the time-derivatives to jump at xc and enforce
the constraints on the jump (18.65) using Lagrange multipliers. As a result this
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Fig. 18.3 (left) Transient solution of sharp triple-junction problem at various spatial resolutions
but same moment in time near a droplet solution and (right) dewetting rim from sharp triple-
junction problem with reconstructed velocity fields

condition also delivers the contact line velocity Pxc without the need to reconstruct it
using conservation of mass.

Another non-standard twist is the proper computation of � . Since we define
the pressures � as the derivative with respect to h; h1, we need to consistently
take motion of the domain into account. This is done properly by using Reynolds’
transport theorem

d

dt

Z
!

f .t; x/dx D
Z

!

@t fdx C
Z

@!

f .Pxc � n/ds (18.66)

D
Z

!

@t fdx C
Z

@!

f
Ph

jrhjds; (18.67)

where we used n D �rh=jrhj and PhCPxc �rh D 0. By replacing f with the integrand
of the energy E.h; h1/ and setting V.h/ D .�˙/j!j with spreading coefficient
˙ this allows the equilibrium contact angle to be included in the variational
formulation. Note that the jump condition (18.65) only affects the FE space for
Ph; Ph1, whereas the FE space for the pressures is continuous. In Fig. 18.3 we show
exemplary numerical solutions of such a free boundary problem near a stationary
state (left) and during dewetting with reconstructed velocity fields (right).

18.4 Experimental Methods and Comparisons to Theoretical
Predictions

For the liquid-liquid dewetting experiments thin polystyrene (PS) films are prepared
in their glassy state on top of also glassy thin polymethyl methacrylate (PMMA)
films which are supported by silicon wafers. In our various experiments presented
here, thicknesses of the underlying PMMA substrate are varied from h1 
 50 nm
to 700 nm, and the thickness of the dewetting PS film h2 range from about 5 nm to
250 nm. To prepare those samples, first small rectangular pieces of about 2 cm2 are
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cut from 500-wafers with h100i orientation. These silicon rectangles are pre-cleaned
by a fast CO2-stream (snow-jet, Tectra) to remove particles. Subsequently, the pre-
cleaned silicon wafers are sonicated in ethanol, acetone and toluene, followed by a
bath in peroxymonosulfuric acid (piranha etch) to remove organic contaminations.
Remains from the peroxymonosulfuric acid are removed by a careful rinse with
hot MilliporeTM water. After this cleaning procedure PMMA films are spun from
toluene solution on top of the silicon support having a homogeneous thicknesses.
To achieve the desired film thickness range, toluene solutions with different polymer
concentrations (10–100)mg/ml were used. The resulting film thickness is fine tuned
by adjusting the rotation speed between 2000 and 6000 rpm using a spin coater
from Laurell Technologies (USA). The acceleration of the spin coater was always
set at maximum and the spin coating time was about 120 s to make sure that the
solvent evaporated during that time. The top PS films can not be spun directly onto
the PMMA and are, in a first step, spun from toluene solution onto freshly cleaved
mica sheets, following the same protocol as described for the PMMA film. In a
second step, the glassy PS films are transferred from mica onto a MilliporeTM water
surface and picked up from above with the PMMA coated silicon substrates. During
the transfer process, the initially closed PS film ruptures into patches which are
transferred onto the PMMA substrate.

For our different experiments presented here, PS and PMMA of different
molecular chain weights are used, purchased from Polymer Standard Service Mainz
(PSS-Mainz,Germany). PS is used with molecular weights of Mw D 9:6 kg=mol
(PS(9.6k)) and Mw D 64 kg=mol (PS(64k)), with polydispersities of Mw=Mn D
1:03, and Mw=Mn D 1:05, respectively. The used PMMA had a molecular weight
of Mw D 9:9 kg=mol (PMMA(9.9k)) and a corresponding polydispersities of
Mw=Mn D 1:03.

The glass transition temperatures of the polymers are Tg,PS(9.6k) D 90 ˙ 5 °C,
Tg,PS(64k) D 100˙5 °C, and Tg,PMMA(9.9k) D 115˙5 °C. The dewetting experiments
are typically conducted at a temperature of T D 140 °C resulting in PS viscosities
of �PS(9.6k) 
 2:5 kPa s and �PS(64k) 
 700 kPa s and a PMMA viscosity of
�PMMA(9.9k) 
 675 kPa s. The viscosity values are measured using the self-similarity
in stepped polymer films as presented in [38, 39]. The measured values are in
good agreement with viscosities extracted from [40, 41] of �PS(9.6k) 
 2 kPa s and
�PMMA(9.9k) D 675 kPa s, respectively. For the numerical calculations of transient
droplet profiles we used the viscosities measured by us. The liquid/liquid dewetting
process is started by heating the sample above the glass transition temperature
and monitored in situ by atomic force microscopy (AFM) at 140 °C in Fastscan
ModeTM (Bruker, Germany). To additionally determine the shape of the liquid
PS/PMMA interface, the dewetting process is stopped at a desired dewetting stage
by quenching the sample from the dewetting temperature T D 140 °C down to
room temperature. At room temperature both polymers are glassy and the sample
can be easily stored and handled. Subsequently the glassy PS structures are removed
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Fig. 18.4 Profile of an equilibrated PS(9.6k) drop swimming on a 700 nm PMMA(9.9k) substrate
as determined by AFM. Top: The height scales in nanometres are shown to the right of each panel.
(left) bottom profile h1 scanned at room temperature and (right) top profile h2 scanned at dewetting
temperature. Bottom: Two cross sections cut perpendicular through the droplet in x-direction (dark
symbols) and y-direction (light symbols) shown together with the fit using Eq. (18.70) (dashed
line) in a 1:1 scaling. The inset shows a close up of the top AFM topography with spherical fit. The
initially prepared PS and PMMA film thicknesses are 20 and 700 nm, respectively

by a selective solvent (cyclohexane, Sigma Aldrich, Germany) and the formerly
PS/PMMA interface is imaged by AFM. The full three dimensional shape of the
dewetting PS structures are obtained by combining the subsequently imaged PS/air
and PS/PMMA surfaces. The protocol was carefully tested and evaluated to yield
accurate results, as described in detail in [42]. To obtain series of such 3D snapshots
at different times multiple samples with identical film heights are prepared, each
stopped at a different dewetting state and imaged by the above described protocol.

An example for an equilibrium 3d drop shape obtained by the above described
protocol is shown in Fig. 18.4. Using the three dimensional PS drop profiles we
derived the contact angles and the surface tensions from the equilibrium shapes.
These values will serve as input parameters for the simulation of transient droplet
morphologies. The corresponding values found in literature [43, 44] are not precise
enough and do not provide conclusive predictions on the sign of the spreading
coefficient 	 . The analysis of the experimental equilibrium drop shapes is given
in [42] and leads to the expression for the Neumann-triangle [45], a local condition
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Fig. 18.5 Sketch of an axisymmetric equilibrium droplet

stating that contact angles fulfil the condition

3X
˛D1

	˛n�˛ D 0; (18.68)

and each interface �˛ has constant mean curvature H˛. The normalised vector n˛

is tangential to the corresponding interface �˛ and normal to the contact line � as
indicated in Fig. 18.5. For the planar axisymmetric droplets which we observe in
the experiments we have n�1 D �er cos �b � ez sin �b, n�2 D �er cos �t C ez sin �t,
n�3 D er.

One can easily verify that equilibrium droplets as in Eq. (18.68) only exist if
the spreading coefficient 	 < 0 and 	1; 	2 > �	=2. From a measured equilibrium
configurationwe can thus extract the values for the surface tensions from Eq. (18.68)
using n�i as follows: If for instance 	3 is given, then one can determine the other
two surface tensions by plugging into solving the linear equation

�
cos �t cos �b

� sin �t sin �b

��
	2

	1

�
D
�

	3

0

�
; (18.69)

where �t; �b > 0 are determined from experimental drop profiles. For contact angles
�t; �b � 90° a liquid lens has the following axisymmetric equilibrium shape

h2.x; y/ D h1 C
�q

H�2
2 � r2 �

q
H�2

2 � a2

�
; (18.70a)

h1.x; y/ D h1 �
�q

H�2
1 � r2 �

q
H�2

1 � a2

�
; (18.70b)

for r � a and h1.x; y/ D h2.x; y/ D h1 for r > a. We use the cylindrical coordinates
with r2 D .x � x0/

2 C .y � y0/
2 and call a the in plane radius of the droplet. A
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least-squares fit of (18.70) to the measured AFM profiles shown in Fig. 18.4 return
the six parameters h1, H1, H2, a, x0 and y0.

Since both interfaces, i.e. h1 and h2 are measured independently and the AFM
can only measure height differences, h1, x0, y0 have no absolute value, so one might
define x0 D y0 D 0 and h1 as the values set by the preparation of the PMMA layer
and as determined independently. Thus even though a is defined absolutely, due
to experimental scatter, one finds slightly varying droplet radii a depending on the
analysed AFM profiles h1 or h2 but which agree within the experimental resolution
of ˙10 nm. Using the values for the constant curvatures H˛ and the in-plane radius
a the contact angles can be directly computed as r-derivatives of the interfaces h1; h2

in Eq. (18.70) at r D a:

�b D arctan

�
a=

q
H�2

1 � a2

�
; (18.71a)

�t D arctan

�
a=

q
H�2

2 � a2

�
: (18.71b)

Fitting spherical caps (18.70) to the top and bottom profiles of several droplets,
see Fig. 18.4, we obtain a relationship between a and H1;H2, respectively which
is shown in Fig. 18.6. For constant contact angles Eq. (18.71) suggest that the
relationship between curvature and radius must be linear which is true within the
accuracy of the experimental data. From the linear relationship between radius and
curvature shown in Fig. 18.6 and using Eq. (18.71) we obtain for the top angle
�t 
 .1:98 ˙ 0:07/° and for the bottom angle �b 
 .64 ˙ 2/° where the
error is composed from the statistical error in the fit and the systematic error in
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Fig. 18.6 Profiles of PS(9.6k) drops on PMMA(9.9k) substrates. Top: Curvature of the top
spherical caps and bottom: curvature of the bottom spherical caps as a function of droplet radius
a measured from equilibrium droplets on 400 nm thick PMMA substrates (circles) and 700 nm
thick PMMA substrates (crosses) with linear fit (shaded area 95% confidence interval) gives
H�1

1 D .1:11 ˙ 0:02/a and H�1
2 D .29 ˙ 1/a and corresponding contact angles �b D .64 ˙ 2/°

and �t D .1:98 ˙ 0:07/°



554 S. Jachalski et al.

the determination of the droplet radius. Top spherical caps with a < 150 nm are not
considered in Fig. 18.6 as the height of these drops . 2 nm is comparable to the
roughness of the polymer layer. Using Eq. (18.69) we obtain the surface tensions of
the PS(9.6k)/PMMA(9.9k) interfaces to

	1 D .0:038 ˙ 0:002/ � 	3 D .1:22 ˙ 0:07/ mN=m;

and of the PS/air interface to

	2 D .0:984 ˙ 0:001/ � 	3 D .31:49 ˙ 0:03/ mN=m;

based on the PMMA(9.9k)/air surface tension 	3 D 32mN=m at T D 140 °C taken
from [44]. The corresponding spreading coefficient is

	 D .�0:022 ˙ 0:003/	3 D .�0:7 ˙ 0:1/mN=m:

The surface tension for the PS(64k)/PMMA(9.9k) combination was determined
similarly to 	` D 32:3mN=m [46], where the surface tension 	`;s D 1:22 ˙
0:07mN=m is unchanged. Note that these values and the modification of 	s are
compatible with the literature, e.g. [44].

18.4.1 Nonequilibrium Droplet Shapes

A purely experimental evaluation of the transient droplet shapes using AFM is
limited as one can not continuously image the 3d top and bottom shape of a droplet
on its journey into equilibrium. In particular the dependence on randomly shaped
initial PS patches makes it difficult to describe and understand the morphological
evolution on droplets systematically.

To address the question on the dependence of the evolving droplet shapes on
the particular choice of the initial configuration theoretically, we choose as initial
conditions different cylindrical PS patches of identical volume and fixed thickness
of the underlying PMMA film. These patches are then followed numerically towards
their respective equilibrium states. A typical example of a time series showing
the evolution of the PS droplets with different initial conditions is displayed in
Fig. 18.8 for different liquid PS volumes. The chosen initial data correspond to
typical droplet volumes observed in our experiments. It is evident from Fig. 18.8
that the characteristic time scale for equilibration strongly depend on the PS volume.
For the same dewetting time, a smaller droplet is closer to its equilibrium than
a larger one. The results show that for the larger PS volumes (Fig. 18.8) the
thicker PS patch quickly develops a characteristic droplet-like shape, with the PS/air
interface having almost constant curvature. In contrast, the PS/PMMA interface
shows characteristic deformations which are localised around the triple junction and
which are evidently different from the equilibrium shape. As discussed before in
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dewetting experiments and numerical simulations in [17, 47], surface forces make it
energetically favourable to pull the triple junction slightly upward. Note however
that this upward-deformation has not been observed for any of the equilibrium
states studied in the previous section and is characteristic for the transient nature
of the droplet shape. During the further equilibration progress the footprint of the
droplet is slightly reduced and the corrugations of the PS/PMMA interface grow
in amplitude. The pronounced dents of the PS/PMMA interface finally meet each
other forming a dome-like shape of the PS/PMMA interface curved towards the
air phase, see t D 3 h in the left column and t D 5min in the right column.
Remarkably, the curvature of this dome is opposite to the equilibrium drop shape
due to the flow squeezing out the PMMA under the droplet. Provided the thickness
of the PMMA layer is sufficiently large, the dome-like shape is finally transferred
into its equilibrium shape, i.e. a spherical cap curved towards the solid substrate.
In case the PMMA film thickness is below this equilibrium penetration depth, the
dome-like interface will flatten and touch the solid substrate h1 ! 0 as t ! 1,
whereas the further equilibration is infinitely slow and self-similar in theory. This
self-similar rupture h1 ! 0 in infinite time has been discussed previously e.g. by
Craster and Matar in [47].

When following the transient droplet shapes for the thinner PS patch (dashed
lines in the left column of Fig. 18.8) it is evident that the evolution of the drop
morphology rather starts from an axisymmetric rim growing inwards the centre
of the patch at r D 0. The shape of the PS/PMMA interface that forms close
to the triple junction is very similar to that for the thicker patch, whereas the
PS/air interface develops differently. The initially corners of the PS/air interface
are rounded and develop a characteristic profile which are similar to dewetting rim
profiles. The initially prepared film thickness remains constant in the centre of the
patch until the rim profiles merge and form a drop like profile similar to that of the
thick PS patch.

Surprisingly, the transient drop morphologies for a fixed volume and different
start configuration synchronise after a certain time and cannot be distinguished any
more on their further way into equilibrium. In the examples presented in Fig. 18.8,
the synchronisation occurs after about 45min for the larger PS volume whereas
the synchronisation already occurs after about 1min for the smaller PS volume.
For times larger than the synchronisation time the transient droplet morphologies
are independent from the specific initial configuration. Moreover, smaller droplets
rather have the chance to develop the typical stationary lens shape not touching the
underlying substrate. The general behaviour that drops synchronise onto their way
towards equilibrium however is not affected by the PS volume.

Finally, the experimentally obtained drop shapes shall be compared to the
theoretical predictions. Similar as in the simulations, early stages of droplet-
like configurations observed in experiments will depend on the history of the
dewetting process and the initial shape of the PS patches and give rise to complex
intermediate states, e.g. see Fig. 18.7. Later on, the experimentally observed droplets
become axisymmetric with their specific shape independent from that history—
at this point the shape is mostly determined by the droplet volume and the total
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Fig. 18.7 AFM measurement (phase signal) of flower-shaped droplet at early times, where the
shape is not yet axisymmetric and depends on the history of the dewetting process

dewetting time. At this point a comparison with simulations makes sense. In the
right column of Fig. 18.8 experimentally obtained drop shapes are displayed on top
of the theoretical drop shapes for identical volumes after 45min of dewetting. A
visual inspection reveals good agreement of the characteristic morphologies of the
transient drop shapes and the time-scales which also emphasises the quality of the
(Newtonian) viscosity and the surface tension data. The good agreement between
the experimentally determined transient drop shapes and dewetting times indicate
moreover that the exact details of the contact angle are not crucial for the drop
shape and can be captured precisely by the used thin film model.

18.4.2 Dewetting Rim Profiles

Being able to accurately describe the comparably slow transient drop shapes, we will
extend our comparison in the following to the much faster transient rim shapes and
their dewetting dynamics. For these experiments the combination of PMMA(9.9k)
as liquid substrate and PS(64k) as dewetting liquid is used having about equal
viscosities of � 
 700 kPa s. The largest Weissenberg number Wi D � P� for the
system is calculated, where � D �=G is the relaxation time with G D 0:2MPa s
[48] being the shear modulus of PS. The maximal shear stress for the initial stage of
the dewetting is P� D 0:05 s�1 as extracted from the numerical simulations. Taking
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Fig. 18.8 Approach to equilibrium for three different droplet volumes (top to bottom row) and
two different initial conditions (red and black). Initial data in simulations are h1.r; 0/ D Nh1 and
h.r; 0/ D Nh for r < r0 and h.r; 0/ � 0 (precursor) for r � r0 such that the volume �r2

0
Nh matches

the experiment. The right column compares simulation (red) to AFM measurements (blue) after
45min dewetting

all this into account we obtain a Weissenberg number Wi D 6:25 � 10�3 � 1 and
we can safely assume the polymer as purely Newtonian [49].

While most of the experimental parameters are known with an uncertainty fewer
than 4%, the viscosity of the used polymers is the main source of uncertainty with
the main effect on the timescale of experiment and simulation. Matching experi-
mental and numerical timescales quantitatively by fitting the experimental contact
line dynamics, i.e. xc as a function of time, cf. Fig. 18.9, we obtain a numerical
viscosity �` D 1100 kPa s for both PMMA(9.9k) and PS(64k), which is within
experimental accuracy. This viscosity value can be used to quantitatively match
experimental and theoretical results for all film thickness ratios and absolute film
thicknesses, which are obtained for the same system and at the same temperature.
The theoretical prediction that for a fixed film thickness ratio the influence of the
absolute height scales linearly is experimentally confirmed by two samples with
aspect ratio 1W1 but film thicknesses Nh 
 100 nm and Nh 
 240 nm. The dewetting
rate appears linear xc � t, however, there is no theoretical indication that for aspect
ratios and viscosity ratios of order one there should be a power-law dewetting rate.
Indeed, further analysis in [46] proves that the velocity slowly decreases over time
with transient rates depending on the aspect ratio at hand. This finding confirms
previous speculations by Lambooy et al. [50] about the transient nature of the
observed dewetting dynamics.
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Fig. 18.9 Dewetted distance xc for aspect ratios 1W1 (240 nmW240 nm), 2W1 (90 nmW45 nm), 1W2
(45 nmW90 nm) from experiment (circles with error) and simulation (dashed lines)

Fig. 18.10 Interfaces from theory (red) and experiment (black) for an aspect ratio of 1:1 and
absolute film thicknesses of 240�m. The experimental cross section is averaged over 30 scan lines
of a straight front

In Fig. 18.10 we show the almost perfect alignment of the experimentally
measured and theoretically computed interface profiles at identical dewetting times,
for equal PMMA and PS film height. The contact line of the dewetting profile
is elevated by the flow, a dynamic feature not observed in stationary droplets for
sufficiently thick substrates, cf. Figs. 18.4 and 18.6. The material of the dewetting
liquid (PS) accumulates in a rim which, by conservation of mass, grows in time
when the liquid retracts from the substrate, cf. Fig. 18.10. Also some material of
the substrate (PMMA) is dragged along generating a depletion on the “dewetted
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side” near the three phase contact line x < xc, and an accumulation of substrate
material at the “film side” near the three phase contact line x > xc. Right next to the
contact line, some part of the dewetting liquid extends deeply into the substrate and
generates a trench and thereby produces additional resistance against the dewetting
motion. Note that the size of the trench does not or only weakly depends on the
size of the dewetting rim. An equally good agreement between experimental and
theoretical rim profiles are obtained also for other film thickness ratios, which can be
found in cf. [46]. The only influence of the film thickness ratio on the rim profiles is
that for thicker substrates the described features grow, while they shrink for thinner
substrates. Away from the rim the interfaces decay in an oscillatory fashion into
their prepared constant states h1.t; x/; h.t; x/ ! Nh1; Nh.

We could thus show via quantitative comparisons with experimental results that
the thin-film model accurately predicts not only dewetting speeds but also rime
shapes of the liquid-liquid dewetting in case of Newtonian liquids and which obey
a no-slip boundary condition.

18.5 Role of Interfacial Slip

It has been shown that a for polymer films such as PS that dewets from a substrate
coated with a hydrophobic molecular monolayer of grafted polymer chains, the
dewetting dynamics may exhibit large “apparent” slip [51, 52]. This has been
associated with a distinct motion of the polymer chains within a thin region near
the boundary of the substrate, as has been argued in Brochard and De Gennes [53],
where they showed that for entangled polymer melts an “apparent” slip length b can
be related to a microscopic coil-stretch transition into a disentangled state within
a thin boundary layer, where the viscosity is much lower. The effect of such an
“apparent” slip was investigated in [54, 55], where they showed that slip can control
the morphology, dynamics and stability of the system.

For liquid-liquid systems Lin [56] suggested the possibility of interfacial slip.
Experimental evidence of slip at polymer-polymer interfaces was given in Zhao
and Macosko [10], who investigated PS on PMMA interfaces. A microscopic
theory for immiscible blends was developed in Brochard-Wyart and De Gennes
[57] and Ajdari [58], and extended by Goveas and Fredrickson [8] and Adhikari
and Goveas [9], investigating entangled, unentangled polymer melts as well as
polymer emulsions. In particular, expressions for the interfacial viscosity based on
the appropriate chain dynamics in this region were derived and the ratio of the bulk
and interfacial viscosity was then related to the size of an “apparent” slip length. In
summary one can conclude that for two-layer immiscible polymer films the higher
shear rate within a thin interfacial region and the associated interfacial viscosity
introduces an apparent velocity discontinuity leading to the concept of “apparent”
slip.
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In the article [59] we have derived thin-film models for the polymer-polymer-
solid substrate system and taking account of slip at the solid-polymer as well as the
polymer-polymer interfaces. There are a number of cases to consider, such as weak-
slip at the polymer-solid interface and weak-slip at the polymer-polymer interface or
the case where we assume strong-slip at both interfaces. Then there are also mixed
cases and limiting intermediate-slip cases.

18.5.1 The Strong-Slip Case

As we learn from the derivations of single-layer thin film models (see [55]), another
distinguished limit for the slip lengths is the order O."�2

` /. Therefore, we consider
slip parameters at the solid-liquid and liquid-liquid interface of the form,

b D ˇ

"2
`

; b1 D ˇ1

"2
`

; (18.72)

where ˇ and ˇ1 are of orderO.1/. Again, we are motivated by the derivations in [55]
and assume plug-flow for the vertical velocity component in layer 1. This leads to

˛ D "`: (18.73)

Hence, the capillary number is Ca D "`. We also introduce the reduced Reynolds
number Re� by

Re D �2UH

�2

D "`

�2 	2H

�2
2

D "`Re�: (18.74)

We note that the derivation of the thin-filmmodel for the strong slip case involves
also the next-to-leading order in the expansions of the variables in order to obtain a
closed model.

18.5.1.1 Leading Order Problem

The leading order bulk equations for layer 1 are given by

0 D @zzu
.0/
1 ; 0 D �@zp

.0/
1 C �@zzw

.0/
1 ; 0 D @xu

.0/
1 C @zw

.0/
1 ; (18.75)

and for layer 2 they read

0 D @zzu
.0/
2 ; 0 D �@zp

.0/
2 C @zzw

.0/
2 ; 0 D @xu

.0/
2 C @zw

.0/
2 : (18.76)
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For the boundary conditions at the substrate, z D 0, we obtain

@zu
.0/
1 D 0; w.0/

1 D 0: (18.77)

At the liquid-liquid interface z D h.0/
1 , normal stress, tangential stress and kinematic

condition become

p.0/
1 � p.0/

2 C 
0.h.0// C 	 @xxh
.0/
1

� 2
��

�@zw
.0/
1 � @zw

.0/
2

�
�
�
�@zu

.0/
1 � @zu

.0/
2

�
@xh

.0/
1

�
D 0; (18.78)

@z

�
�u.0/

1 � u.0/
2

�
D 0; (18.79)

@th
.0/
1 D w.0/

1 � u.0/
1 @xh

.0/
1 : (18.80)

The slip condition and the impermeability condition at this interface are given by

@zu
.0/
2 D 0;

�
w.0/

2 � w.0/
1

�
�
�
u.0/

2 � u.0/
1

�
@xh

.0/
1 D 0: (18.81)

At the free surface z D h.0/
2 we get for the normal, tangential and kinematic

condition,

p.0/
2 � 
0.h.0// C @xxh

.0/
2 � 2

�
@zw

.0/
2 � @zu

.0/
2 @xh

.0/
2

�
D 0; (18.82)

@zu
.0/
2 D 0; (18.83)

@th
.0/
2 D w.0/

2 � u.0/
2 @xh

.0/
2 : (18.84)

We observe that the statement

u.0/
1 D u.0/

1 .x; t/; u.0/
2 D u.0/

2 .x; t/; (18.85)

results from the first equations in (18.75), (18.76) and boundary condi-
tions (18.77), (18.83). That means that the horizontal velocity components are
independent of z. Using this, the continuity equations in (18.75), (18.76) and the
impermeability conditions in (18.77), (18.81), we find

w.0/
1 D �z@xu

.0/
1 ; (18.86)

w.0/
2 D �

�
z � h.0/

1

�
@xu

.0/
2 � @xu

.0/
1 h.0/

1 C .u.0/
2 � u.0/

1 /@xh
.0/
1 : (18.87)
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Combining the second equations in (18.75) and (18.76) with (18.86) we see that the
leading order pressures are also independent of z, i.e.

p.0/
2 D p.0/

2 .x; t/; p.0/
1 D p.0/

1 .x; t/: (18.88)

Thus we can rewrite the normal stress conditions as

p.0/
1 D �.	 C 1/@xxh

.0/
1 � @xxh

.0/ � 2�@xu
.0/
1 ; (18.89)

p.0/
2 D �@xxh

.0/
1 � @xxh

.0/ C 
0 �h.0/
� � 2@xu

.0/
2 : (18.90)

To obtain the latter (18.86) is used, too. Next, we derive equations for the thicknesses
h.0/

1 and h.0/ from the leading order kinematic boundary conditions (18.80), (18.84)
and formulas (18.86),

@th
.0/
1 D �@x

�
u.0/

1 h.0/
1

�
; @th

.0/ D �@x

�
u.0/

2 h.0/
�

: (18.91)

In contrast to the weak-slip case, we cannot deduce closed forms for u.0/
1 and u.0/

2

from the leading order system. Therefore we have to look at the next order.

18.5.1.2 Next Order Problem

Here, we only state the equations which are necessary in order to fix u.0/
1 and u.0/

2 ,
and neglect the complete next order problem.

We start with the next order equations in the bulk,

�Re�

�
@tu

.0/
1 C u.0/

1 @xu
.0/
1

�
D �@xp

.0/
1 C �@xxu

.0/
1 C �@zzu
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1 ; (18.92)
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1 ; (18.93)
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0 D @xu
.1/
2 C @zw

.1/
2 : (18.97)

Moreover, we consider the next order of the slip conditions, both at the solid-liquid
interface, z D 0,

u.0/
1 D ˇ @zu

.1/
1 ; (18.98)
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and at the liquid-liquid interface, z D h.0/
1 ,

u.0/
2 � u.0/

1 D ˇ1

� C 1

�

�
@zu

.1/
2 C @xw

.0/
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.0/
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.0/
1

�
: (18.99)

We also make use of the next order tangential stress boundary conditions at liquid-
liquid and the liquid-gas interface,
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.0/
2 D 0: (18.101)

Notice, in the equations above we have already used that the z-derivatives of u.0/
1

and u.0/
2 vanish. When we integrate (18.92) and (18.95) w.r.t. z, we obtain
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and, similarly,
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(18.103)

Combining (18.89) and (18.98)–(18.103) leads to

�Re�
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Recalling (18.91), the full model for the leading order velocity fields the leading
order layer thicknesses is given by,

�Re� .@tu1 C u1@xu1/ D �@x.�.	 C 1/@xxh1 � @xxh/

C4�

h1

@x.@xu1h1/ C �.u2 � u1/
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ˇh1

; (18.106)
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@th1 D �@x.h1u1/; (18.107)

Re� .@tu2 C u2@xu2/ D �@x.�@xxh1 � @xxh C 
0.h//

C4

h
@x.@xu2h/ � �.u2 � u1/

.� C 1/ˇ1h
; (18.108)

@th D �@x.hu2/; (18.109)

where we drop the ‘.0/’.
In many applications, e.g. dewetting of micro- and nanoscopic polymer films,

inertia are negligibly small. Therefore, we assume Re� D 0 in the following.
Then, (18.106) reads
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@th1 D �@x.h1u1/; (18.111)
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@th D �@x.hu2/: (18.113)

We call (18.110) strong-slip model.

18.5.2 The Intermediate-Slip Case

We consider the limits ˇ; ˇ1 ! 0 in (18.110) by introducing the scaling

u1 D ˇ Qu1; u2 D ˇ Qu2; t D Qt
ˇ

: (18.114)

We obtain

0 D �@x.�.	 C 1/@xxh1 � @xxh/

C4�ˇ

h1

@x.@x Qu1h1/ C �ˇ.Qu2 � Qu1/

.� C 1/ˇ1h1

� �Qu1

h1

; (18.115)

@Qth1 D �@x.h1 Qu1/; (18.116)
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h
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@Qth D �@x.hQu2/: (18.118)
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Now, let ˇ and ˇ1 be of order O."`/, i.e.

ˇ D "`
Q̌; ˇ1 D "`

Q̌
1; (18.119)

with Q̌ and Q̌
1 order one. Than, the leading order in (18.115) is
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@Qth1 D �@x.h1 Qu1/; (18.121)
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@Qth D �@x.hQu2/: (18.123)

Solving (18.120) and (18.122) for Qu1 and Qu2 and plugging the result into (18.121)
and (18.123), we obtain (dropping ‘�’):

@th1 D @x .M11@xp1 C M22@xp2/ ; (18.124)

@th D @x .M21@xp1 C M22@xp2/ ; (18.125)

with the mobility matrix,
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and the pressures

p1 D �.	 C 1/@xxh1 C @xxh; (18.127)

p2 D �@xxh1 � @xxh C 
0.h/: (18.128)

We refer to (18.124) as intermediate-slip model. Notice, rescaling the time by

t D �

ˇ
Qt; (18.129)

we can write the mobility matrixM as
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ˇ
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566 S. Jachalski et al.

18.5.3 Linear Stability: Influence of Slip

We considered linear stability about the flat states to investigate the spinodal
wavelength of the unstable modes.

A rather complex scenario arises, where dispersion curves show transitions from
dominant long-wave zig-zag modes to shorter wave varicose modes, depending
on the relative thicknesses, viscosities, surface tensions of the layers. What is
most interesting is that the presence of interfacial slip can completely change the
transitions and the wavelengths of the unstable modes, and hence needs to be
accounted for when interpreting experimental results. As an example we show two
dispersion relations that demonstrate the impact of slip, from weak to strong, on the
spinodal wavelength.

Consider the cases of strong slip at solid/polymer interface, with slip length ˇ1

and strong slip at polymer-polymer interface, with slip length ˇ2. For the new model

@th D �@xŒhu2�; @th1 D �@x.h1u1/;

0 D �@x.

0.h/ � @xxh1 � @xxh/ C 4

h
@xŒ@xu2.h/� � �.u2 � u1/

.� C 1/ˇ2h/
;

0 D �@x.�.	 C 1/@xxh1 � @xxh/ C 4�

h1

@x.@xu1h1/ C �.u2 � u1/

.� C 1/ˇ2h1

� � u1

ˇ1h1

;

we derived the dispersion relation:

!1;2 D �k2

2
Tr. NQ � E/ ˙ k2

s
Tr. NQ � E/2

4
� Det. NQ � E/; NQ D �Q1T

�1Q2

Q1 D
�
h1 0

0 h

	
; Q2 D

�
ˇ1ˇh1 0

0 ˇh

	
; E D

2
4 .	 C 1/k2 k2

k2 k2 C 
h

3
5

where ˇ D .1 C �/ˇ2. This we compare to the case for weak slip at both interfaces
in Fig. 18.11 below, with dispersion relation

!1;2 D �k2

2
Tr. NQ � E/ ˙ k2

s
Tr. NQE/2

4
� Det. NQE/
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Fig. 18.11 For h1 D 10: Dispersion relations and components of the perturbation vector at both
interfaces. For weak-slip with slip length b D 0; : : : ; 104 (left, rescaled by 1 C b). Arrows point to
increasing b. For the strong-slip model for ˇ D 10, for ˇ1 D 10�4; : : : ; 104 (right)

18.6 The Viscoelastic Case

In this case we consider neither slip nor inertia. Hence, we set b1 D b D 0 as well
as Re D 0. Balancing the terms in the stress force conditions yields

�2U

	2

D "`; (18.131)

and therefore ˛ D "`. Furthermore we assume

� WD �1

�2

"�2 D O.1/; (18.132)

keeping the ratio of the surface tensions 	 WD 	1=	2 D O.1/.
We will now show that to leading order in " the free boundary problem can be

integrated and reduced to a system of coupled partial differential equations for the
height h, h1, u2 and S. To leading order the equations in the bulk of the lower liquid
and in the upper liquid are

@xu1 C @zw1 D 0; 0 D �@xp1 C �@zzu1; 0 D �@zp1 (18.133)

and

@xu2 C@zw2 D 0; 0 D @z�2;12; 0 D �@zp2 C@x�2;12 C@z�2;22; (18.134)

where

�21@zu2�2;12 D �22 .@zu2/
2 (18.135)
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and
�

1 C �21

d

dt

�
�2;12 C �21

2
@zu2.�2;11 � �2;22/ D

�
1 C �22

d

dt

�
@zu2 C 2�22@zu2@xu2:

(18.136)

The boundary conditions are

u1 D 0; w1 D 0 (18.137)

at z D 0,

@th1 D w1 � @xh1u1; (18.138)

�2;12 D 0; �p1 C p2 � 
0.h/ � �2;22 D 	@xxh1; (18.139)

u2 � u1 D 0; �.u2 � u1/@xh1 C .w2 � w1/ D 0; (18.140)

at z D h1 and

@th2 D w2 � @xh2u2; (18.141)

�2;12 D 0; �p2 C 
0.h/ C �2;22 D @xxh2 (18.142)

at z D h2.
In order to obtain a closed set of equationwe also need to account for the relations

for the stress tensor from the next order problem, where we have expanded the
variables ui, wi, pi, �i;jk with i; j; k 2 1; 2 as ui D u.0/

i C "2 u.1/
i C O."4/ and likewise

with the other variables. For ease of notation we then dropped the index .0/ from the
leading order variables. The relations we need are,

0 D �@xp2 C @x�2;11 C @z�
.1/
2;12; (18.143)�

1 C �21

d

dt

�
�2;11 D 2

�
1 C �22

d

dt

�
@xu2; (18.144)

�
1 C �21

d

dt

�
�2;22 D 2

�
1 C �22

d

dt

�
@zw2; (18.145)

which hold for .x; z; t/ 2 ˝2 as well as

.�@zu1 � �
.1/
2;12/ � .�2;22 � �2;11/@xh1 D 0; (18.146)
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at z D h1 and

�
.1/
2;12 C .�2;22 � �2;11/ @xh2 D 0; (18.147)

at z D h2.
Our first observation is that integrating the leading order momentum balance

equations for the upper layer (18.134) w.r.t. z and using the boundary condi-
tion (18.142) gives

p2 D �2;22 � @xxh1 � @xxh C 
0.h/: (18.148)

Combining this expression with the next order momentum balance (18.143) we
obtain

0 D @x.@xxh1 C @xxh � 
0.h// C @x.�2;11 � �2;22/ C @z�
.1/
2;12: (18.149)

We set

N�2 WD �2;11 � �2;22: (18.150)

Then integration of Eq. (18.149) gives

0 D h@x.@xxh1 C @xxh � 
0.h// C
Z h2

h1

@x N�2dzC �
.1/
2;12jzDh2 � �

.1/
2;12jzDh1 : (18.151)

If we use this expression together with the next order boundary conditions (18.146)–
(18.147) and set

S WD 1

4h

Z h2

h1

N�2dz; (18.152)

we obtain

0 D h@x.@xxh1 C @xxh � 
0.h// C 4@x.hS/ � �@zu1jzDh1 : (18.153)

In the next step we derive an equation for S. We first note that because
of (18.134)–(18.135) and (18.139) u2 D u2.x; t/ does not depend on z. We
combine (18.144) and (18.145) to

�
1 C �21

d

dt

�
N�2 D 4 .1 C �22@t C �22u2@x/ @xu2: (18.154)
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Integration of the left hand side of this equation yields

R h2

h1

�
1 C �21

d
dt

� N�2dz (18.155)

D R h2

h1
.1 C �21@t C �21u2@x C �21w2@z/ N�2dz (18.156)

D R h2

h1
.1 C �21@t C �21u2@x C �21.�z@xu2 C @th1 C @x.u2h1//@z/ N�2dz (18.157)

D 4h.1 C �21@t C �21u2@x/S (18.158)

Hence, we obtain the equation for S

.1 C �21@t C �21u2@x/S D .1 C �22@t C �22u2@x/ @xu2: (18.159)

The kinematic and impermeability conditions imply the equation for h

@th D �@x.h u2/: (18.160)

In the last step we consider the evolution of the lower fluid and the interface h1.
From (18.133) and (18.137) we first obtain

u1 D 1

2�
@xp1z

2 C c z; (18.161)

which we use for the evolution equation for h1

@th1 D �@x

Z h1

0

u1dz D �@x

�
1

6�
h3

1@xp1 C 1

2
h2

1c

�
: (18.162)

and determine the constant c from equation

1

2�
@xp1h

2
1 C c h1 D u2 (18.163)

and by using (18.140). We finally obtain the closed system of equations for h1, h, S
and u2.

@th D �@x.h u2/; (18.164)

@th1 D 1

12�
@x
�
h3

1@xp1

� � 1

2
@x .h1u2/ ; (18.165)

0 D �1

2
h1@xp1 � h@x p2 C 4@x.hS/ � �

h1

u2; (18.166)

0 D .1 C �21@t C �21u2@x/S � .1 C �22@t C �22u2@x/ @xu2: (18.167)
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where

p1 D �.	 C 1/@xxh1 � @xxh; and p2 D �@xxh1 � @xxh C 
0.h/: (18.168)

The above model is the first model that incorporates the full nonlinear corota-
tional Jeffrey’s model into a thin-film theory. Using this model it is now possible
to analyse and numerically investigate the nonlinear behaviour and long-time
morphological evolution of dewetting liquid-liquid films. This will be subject of
future work.

18.7 Conclusion

In this chapter, we considered the liquid-liquid dewetting, where a thin liquid film
retracts from an also thin liquid substrate. Mathematical models based on the thin
film equation are derived including models that take account of interfacial apparent
slip and nonlinear viscoelastic effects. For the Newtonian case, existence results for
the stationary and dynamic problems as well as numerical methods for the thin-
film as well as the underlying free boundary problem for the Stokes equations were
presented.

For the case of Newtonian liquids the theoretical predictions were quantitatively
compared to experimental results obtained by polystyrene (PS) dewetting from
polymethyl-methacrylate (PMMA). Both polymers were used with sufficiently short
molecular chain length and could be considered as Newtonian liquids. The relevant
system parameters like viscosity, contact angel and surface tension were determined
for the experimental system and used as input parameters for the mathematical
model. The quantitative comparison proved that thin-film models are adequate to
describe transient dewetting rim and droplet shapes as well as dewetting dynamics
which result from a complex interaction of substrate and liquid flow.

Another important problem that is currently being investigated concerns the
spinodal dewetting process, investigating the self-similar evolution towards rupture.
An interesting question is if this occurs in finite time. In the future we also will carry
out comparisons of solutions of our viscoelastic thin-film model with experimental
results by repeating our experiments for different chain length of both polymers to
vary the rheological properties.
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