
Chapter 12
Micro-Macro-Models for Two-Phase Flow
of Dilute Polymeric Solutions: Macroscopic
Limit, Analysis, and Numerics

Günther Grün and Stefan Metzger

Abstract We derive a diffuse-interfacemodel for two-phase flow of incompressible
fluids with dissolved noninteracting polymers. Describing the polymers as bead
chains governed by general elastic spring potentials, including in particular Hookean
and finitely extensible, nonlinear elastic (FENE) potentials, it couples a Fokker-
Planck type equation describing distribution and orientation of the polymer chains
with Cahn–Hilliard and Navier–Stokes type equations describing the balance
of mass and momentum. Allowing for different solubility properties which are
modelled by Henry type energy functionals, the presented model covers the case
of one Newtonian fluid and one non-Newtonian fluid as well as the case of two non-
Newtonian fluids. In the case of Hookean spring potentials, we derive a macroscopic
diffuse-interface model for two-phase flow of Oldroyd-B-type liquids.

In the case of dumbbell models, we show existence of solutions and present
numerical simulations in two space dimensions on oscillating polymeric droplets.

12.1 Introduction

We are concernedwith modelling and analysis of two-phase flow of dilute polymeric
solutions. For the ease of presentation, we focus initially on dumbbells to describe
polymer chains. These dumbbells consist of two beads which are connected by an
elastic spring with some spring potential U. We are not only interested in the spatial
distribution of the polymers, but also in their configuration, i.e. in their elongation
and orientation. Therefore, we have to distinguish between the spatial coordinate
x 2 ˝ referring to the barycenter of the dumbbell and the configurational coordinate
q 2 D describing its configuration. Consequently, we will use rx, divx, rq and divq
to denote the differential operators with respect to x and q, respectively.

In recent years, many authors have contributed to a mathematical theory for
multi-scale modeling of dilute polymeric flows (see [3–5, 9, 11, 15, 18–20, 22,
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23, 27, 29, 31] and the references therein). To describe dilute polymeric solutions,
different approaches are at hand. Without claiming to be exhaustive, we list
the concepts of the stochastic Brownian configuration field approaches coupling
stochastic differential equations describing the evolution of the polymer chains
with macroscopic equations describing the balance of momentum, deterministic
Fokker–Planck approaches, and purely macroscopic approaches like Oldroyd-B
type models. For the theoretical background, we refer to [17] and the references
therein. Information on the numerical treatment of these approaches can be found
e.g. in [13]. Focussing on Fokker–Planck–Navier–Stokes approaches, a generic
single phase model reads as

@tu C .u � rx/ u � divx f2�Dug C rxp D divx

�Z
D
 U0. 1

2
jqj2/q ˝ q �

Z
D
 1

�
;

(12.1a)

divx u D 0 in ˝ � .0;T/ ;
(12.1b)

@t C u � rx C divq f rxu � qg D cq divq
˚
 rq� 

� C cx divx
˚
 rx� 

�
;

(12.1c)

� D log
�
 

M

�
in˝ � D � .0;T/

(12.1d)

with �; cq > 0, cx � 0 and the symmetrized gradient D WD 1
2

�rx C rT
x

�
. The

function  .x; t/ W D ! RC
0 describes a distribution on the configuration space

D � Rd of admissible elongations/orientations of the polymers. In particular, the
marginal

!.x; t/ WD
Z
D
 .x; t;q/dq

gives the number density of the polymers. The function

M.q/ WD
	Z

D
exp

�
�U. 1

2
jqj2/

�
dq


�1
exp

�
�U. 1

2
jqj2/

�
(12.2)

denotes the Maxwellian associated with the spring potential U. Velocity and
pressure field are denoted by .u; p/. The tensor on the right-hand side of Eq. (12.1a)
is the Kramers stress tensor (see [7, 16] and the references therein) which models
effects exerted by the polymers on the solvent flow and gives rise to non-Newtonian
effects. Equation (12.1c) is the usual evolution equation for the probability density
on the configuration space. Note that divx

˚
 rx� 

�
describes the center-of-mass

diffusion of the dumbbells. Although the parameter cx is magnitudes smaller than
one, it seems reasonable to keep the corresponding diffusion term for mathematical
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reasons: It guarantees parabolicity of (12.1c). For approaches setting cx � 0, see
[22, 23] and the references therein.
In [14], we extend (12.1) to the case of two-phase flows with different mass
densities. Allowing for different solubility properties, the resulting model covers
the case of one Newtonian fluid and one non-Newtonian fluid as well as the case of
two non-Newtonian fluids.

12.2 The Governing Equations

12.2.1 Derivation of the Model: A Novel Approach Based
on Onsager’s Variational Principle

To derive a micro-macro model describing two-phase flow of dilute polymeric
solutions, we apply Onsager’s variational principle of minimum energy dissipation
(cf. [26]), which turned out to be an efficient workhorse in the derivation of
thermodynamically consistent models. There are various examples where it has
successfully been applied in fluid dynamics. First, Qian et al. [28] introduced it to
model contact line motion for two-phase flow with wall contact. Other applications
range from different models for two-phase flow with general mass densities (cf.
[21] and [2]) to models for species transport (cf. [2]), electrowetting and other
electrokinetic phenomena [8]. Onsager’s principle is supposed to provide the most
probable evolution of a dissipative process by postulating a linear relation between
the rates of displacement from the thermodynamic equilibrium and the applied
forces, i.e. the rate of energy (cf. (12.8) below).

In general, there are many examples of models having an underlying energetic
structure which may be derived by the Onsager formalism. It is worth mentioning
that the micro-macro model obtained in [4] to describe single-phase flows of dilute
polymeric solutions, can also be derived by the Onsager method.

Recapitulating the approach of [14], we start with general balance equations
and—based on the above observation—apply Onsager’s variational principle of
minimum energy dissipation to obtain a thermodynamically consistent model
for two-phase flow of polymeric solutions. Concerning the balance of mass and
momentum, we apply the diffuse-interface method which was used e.g. in [10, 21],
and [2] and which allows for a smooth transition between the fluid phases. Following
in particular the approach used in [2], we define volume fractions�i WD �i

Q�i (i D 1; 2),
where Q�i denotes the mass density of the ith fluid in a pure phase and �i denotes the
actual mass density in the two-phase flow. Assuming �1 C�2 � 1, the conservation
of the phase-field parameter� WD �2��1 implies also conservation of the individual
mass densities. Defining the momentum as .�u/, where u is the solenoidal, volume
averaged velocity field, and imposing that the momentum is transported with the
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same velocity as the mass—i.e. relative velocities are taken into account—yields

@t� C u � rx� C divx J� D 0 ; (12.3)

� .�/ @tu C
��
� .�/u C @�

@�
J�

�
� rx

�
u D divx S � rxp C k ; (12.4)

with the correction flux J� , the symmetric stress tensor S and the force term kwhich
still are to be determined. For further details, we refer to [2].

In the same spirit we state a balance equation for the configurational density  
on˝ � D,

@t C divx fQvx g C divq
˚Qvq 

� D 0 : (12.5)

The next step is to decompose Qvx into u C J ;x and Qvq into uq C J ;q with
correction fluxes J ;x and J ;q, respectively, which are unknowns at this stage of the
derivation. Note that there are two velocities to be distinguished—on the physical
space the hydrodynamic velocity u, on the configurational space a drift velocity uq
which is intended to model the drift caused by the different velocities experienced
by the dumbbell at head and tail. It is given by

uq.x;q; t/ WD u.x C "
2
q; t/ � u.x � "

2
q; t/

"
D rx

(
1
"

Z "
2

� "
2

u .x C �q; t/ d�

)
� q ;
(12.6)

where the parameter " reflects the different length scales in˝ and D.
Following the approach in [4], we replace the directional mollifier on the right-hand
side of (12.6) by an isotropic one which we denote by J" in the scalar case and
J" or J", if applied to vector-valued or matrix-valued quantities. Therefore, the last
balance equation reads

@t C u � rx C divq frxJ" fug � q g D � divx J ;x � divq J ;q : (12.7)

Imposing suitable, mass conserving boundary conditions, the unknown quantities
are determined using Onsager’s variational principle which is supposed to model
the most probable behavior of an irreversible process and postulates the relation

ı.J� ;J ;x;J ;q;S/

	
dE

dt
C ˚



ŠD 0 (12.8)

between thermodynamical forces (given by the rate of energy in the system) and
an appropriate dissipation function ˚ which will be defined in (12.9). In (12.8),
ı.J� ;J ;x;J ;q;S/ denotes the first variation with respect to the quantities J� , J ;x, J ;q,
and S.

The energy of the system is assumed to be the sum of the kinetic energy 1
2

R
˝ juj2,

a Cahn-Hilliard energy ı
2

R
˝ jrx�j2 C 1

ı

R
˝
W .�/, whereW .�/ D 1

4

�
1 � �2

�2
is a
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standard double-well potential, an entropic component
R
˝�D  

�
log

�
 

M

�
� 1

�
, and

the so called Henry energy
R
˝
ˇ .�/J"

˚R
D dq

�
dx. By choosing an appropriate

function ˇ, the latter energy component will allow to constrain the polymers to
one dedicated phase, and therefore allows for one Newtonian phase. Assuming a
dissipation functional of the form

˚
�
J�; J ;x; J ;q;S

� WD
Z
˝

jJ�j2
2m.�/ C

Z
˝�D

jJ ;xj2
2cx 

C
Z
˝�D

jJ ;qj2
2cq 

C
Z
˝

jSj2
4�.�/

(12.9)

with m; cx; cq; � > 0 leads to the following set of equations.

� .�/ @tu C
��
� .�/ u � m .�/ @�

@�
rx��

�
� rx

�
u � divx f2� .�/Dug C rxp

D ��rx� C
Z
D
� rx C divx

�
J"

�Z
D
Mrq

 

M ˝ q
��

; (12.10a)

divx u D 0 ; (12.10b)

@t� C u � rx� � divx
˚
m .�/rx��

� D 0 ; (12.10c)

�� D �ı�x� C 1
ı
W 0 .�/C ˇ0 .�/J"

�Z
D
 

�
; (12.10d)

@t C u � rx C divq f rxJ" fug � qg D divq
˚
cq rq� 

� C divx
˚
cx rx� 

�
;

(12.10e)

� D log
�
 

M

�
C J" fˇ .�/g ; (12.10f)

on˝ � RC or˝ � D � RC, respectively, with the boundary conditions

u D 0 on @˝ � RC; (12.11a)

rx� � nx D 0 on @˝ � RC; (12.11b)

rx�� � nx D 0 on @˝ � RC; (12.11c)

 rx� � nx D 0 on @˝ � D � RC; (12.11d)

 
�rxJ" fug � q � cqrq� 

� � nq D 0 on˝ � @D � RC: (12.11e)

Restricting (12.10) to the case of a single-phase flow, i.e. �, �, and � constant, allows
to recover the set of equations derived in [4]. In practical applications, the constant
cx is magnitudes smaller than cq. Therefore, some authors decided to neglect
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diffusion in x-direction (cf. [3], [22, 23]). As the x-diffusion guarantees parabolicity
of the Fokker–Planck type equation which is convenient for the analytical treatment,
we follow the ansatz used e.g. in [4] and keep the cx > 0.

It is straight forward to adapt this modeling approach to polymer models
consisting of K C 1 beads. In this case, we have to consider K elongation vectors
.qi/iD1;:::;K 2 NK

iD1Di DW D � RKd. Each of these vectors has its own entropic
potential Ui associated with a Maxwellian Mi. The Maxwellian of the complete
chain is defined as M.q/ WD ˘K

iD1Mi.qi/ (cf. [5]). Consequently, the momentum
and Fokker–Planck equations are changed to become

� .�/ @tu C
��
� .�/ u � m .�/ @�

@�
rx��

�
� rx

�
u � divx f2� .�/Dug C rxp

D ��rx� C
Z
D
� rx C divx

(
J"

( Z
D
M

KX
iD1

rqi
 

M ˝ qi

) )
; (12.12a)

@t C u � rx C
KX
iD1

divqi f rxJ" fug � qig

D
KX
iD1

KX
jD1

divqi
˚
Aij rqj� 

� C divx
˚
cx rx� 

�
; (12.12b)

� D log
�
 

M

�
C J" fˇ .�/g ; (12.12c)

on˝�RC or˝�D�RC, respectively. The matrix A D .Aij/
K
i;jD1 is the symmetric

positive definite Rouse matrix, or connectivity matrix. For further information we
refer to [25] and the references therein. Moreover, the boundary conditions need to
be adapted to guarantee conservation of particle number.

12.2.2 A Two-Phase Oldroyd-B Model

It is well known that micro-macro models may be used to derive deterministic
viscoelastic models by taking the expected value in the Fokker–Planck equation.
If the elastic potential is of Hookean type, i.e. U.s/ D s and D D Rd , particular
versions of the Oldroyd-B model are obtained (see [4] and the references therein).
As the elastic potential U and therefore the admissible configurational space D was
not specified in the derivation of our model, we may assume that our potential is of
Hookean type and formulate a Oldroyd-B typemodel for two-phase flow by deriving
an evolution equation for the additional stress tensor C WD R

D Mrq
 

M ˝ q. In [14]
the authors derived the following set of equations.
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� .�/ @tu C
��
� .�/ u � m .�/ @�

@�
rx��

�
� rx

�
u � divx f2� .�/Dug C rxp

D ��rx� C J" fˇ .�/g rx! C divx fJ" fC � !1gg ; (12.13a)

divx u D 0 ; (12.13b)

@t� C u � rx� � divx
˚
m .�/rx��

� D 0 ; (12.13c)

�� D �ı�x� C 1
ı
W 0 .�/C ˇ0 .�/J" f!g ; (12.13d)

@tC C .u � rx/C � rxJ" fugC � C .rxJ" fug/T

D 2cq!1 � 2cqC C cx�xC C cx divx
�
C ˝ rxJ" fˇ .�/g� ; (12.13e)

@t! C .u � rx/ ! � cx�x! D cx divx
˚
!rxJ" fˇ.�/g� ; (12.13f)

on˝ � RC.
Model (12.13) seems to be the first two-phase model for visco-elastic polymeric

flows which takes the density of the polymers in the different fluid phases and their
impact on the rheology into account. This way, it may serve to model two-phase
flow with Newtonian and visco-elastic phases, too. Conceptually, this approach is
different from other methods found in the literature (see e.g. [30]).

To point out this difference, we rewrite (12.13e) in terms of K WD C � !1.

@tK C .u � rx/K � rxJ" fug � K � K � .rxJ" fug/T � 2!DJ" fug
D �2cqK C cx�xK C cx divx

˚
K ˝ rxJ" fˇ.�/g� : (12.14)

Denoting the upper convected time derivative, i.e. the first four terms in (12.14), by
K� (cf. [4]), we obtain

K C 1
2cq

K� D !
cqDJ" fug ; (12.15)

as evolution equation for K after setting cx D 0. I.e. the velocity field u depends on
an additional stress tensorK in both fluids, but the back coupling of the velocity field
depends on the number density of the fluids which may be chosen fluid-dependent.
A different approach was used in [30]. Yue et al. used

K C �HK� D 2�PDu (12.16)

with two constants �H and �P as an evolution equation for the additional stress
tensor. As (12.16) is independent of the phase-field and the species concentration,
they had to distinguish between the Newtonian and the non-Newtonian fluid by
using 1

2
.1 C �/K on the right-hand side of (12.13a), i.e. they considered the
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additional stress tensor only in the non-Newtonian fluid indicated by � D 1. In
particular, the model in [30] does not allow for gradual changes in the rheology.

12.3 Existence of Solutions

One disadvantage of Hookean elasticity is well known—it permits arbitrarily large
polymer elongations. Instead, one may use the FENE ( f initely extensible, nonlinear
elastic) spring potential which reads

U.s/ WD �Q2max

2
log

	
1 � 2s

Q2max



: (12.17)

In this case the critical polymer length of Qmax may not be exceeded, i.e. D D
B.0;Qmax/. Making appropriate assumptions, the existence of weak solutions
to (12.10) was established in [14] for the case of equal mass densities and a constant
mobility m.
To describe the regularity of these solutions, we introduce the weighted Lebesgue
and Sobolev spaces

L2.˝ � DIM�1/ WD
�
� 2 L1loc.˝ � D/ W

Z
˝�D

M�1 j� j2 < 1
�
; (12.18)

X WD
�
� 2 L2.˝ � DIM�1/ W

Z
˝�D

M
ˇ̌rx

�
M

ˇ̌2 C
Z
˝�D

M
ˇ̌rq

�
M

ˇ̌2
< 1

�
;

(12.19)

XC WD f� 2 X W �.x;q/ � 0 for a.e. .x;q/ 2 ˝ � Dg : (12.20)

Furthermore, we denote the dual space of H1
0;div.˝/ WD fw 2 H1

0.˝/ W divx w D 0g
by .H1

0;div.˝//
0 and the associated dual pairing by h:; :i. The following result

was deduced in [14] by proving existence of solutions to a time discrete version
of (12.10) and passing to the limit. For a detailed list of assumptions, we refer to
[14].

Theorem 1 Let d 2 f2; 3g. Given initial data .�0;u0;  0/ 2 H2.˝/ � H1
0;div.˝/ �

L2.˝ � DIM�1/, there is a quadruple .�; �;u;  / which solves the equal-density
version of system (12.10) combined with the boundary conditions (12.11) in the
following weak sense.

Z
˝T

.�0 � �/ @t� �
Z
˝T

�u � rx� C
Z
˝T

rx�� � rx� D 0

8� 2 C1
�
Œ0;T	IH1 .˝/

�
with �.:;T/ � 0; (12.21a)
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Z
˝T

��� D
Z
˝T

ırx� � rx� C
Z
˝T

1
ı
W 0 .�/ � C

Z
˝T

ˇ0 .�/J"

�Z
D
 

�
�

8� 2 L2
�
0;TIH1 .˝/

�
; (12.21b)

Z T

0

h@tu;wi C
Z
˝T

.u � rx/ u � w C
Z
˝T

2� .�/Du W Dw

D
Z
˝T

divx

�
J"

�Z
D
 U0q ˝ q

��
� w C

Z
˝T

��rx� � w

C
Z T

0

Z
˝�D

J" fˇ .�/g rx � w

8w 2 L4=.4�d/
�
0;TIH1

0;div .˝/
�
;

(12.21c)

Z T

0

Z
˝�D

. 0 �  / @t
�
M C

Z T

0

Z
˝�D

M �
Mu � rx

 

M�
Z T

0

Z
˝�D

 .rxJ" fug � q/ � rq
�
M

C cq

Z T

0

Z
˝�D

Mrq
 

M � rq
�
M C cx

Z T

0

Z
˝�D

Mrx
 

M � rx
�
M

C cx

Z T

0

Z
˝�D

 rxJ" fˇ .�/g � rx
�
M D 0

(12.21d)

for all � such that �
M 2 C1

�
Œ0;T	IC1 �

˝ � D
��

and �.�;T/ � 0: Moreover, the
solution has the following regularity properties.

u 2 L1 �
0;TIL2.˝/� \ L2

�
0;TIH1

0;div .˝/
� \ W1;4=d

�
0;TI �

H1
0;div .˝/

�0�
;

(12.22a)

� 2 L1 �
0;TIH1.˝/

� \ L2
�
0;TIH2.˝/

�
; (12.22b)

�� 2 L2
�
0;TIH1.˝/

�
; (12.22c)

 2 L2 .0;TIXC/ \ L1 �
0;TIL2.˝ � DIM�1/

�
; (12.22d)

! WD
Z
D
 .�;q/dq 2 L1 �

0;TIL2.˝/� \ L2
�
0;TIH1.˝/

�
; (12.22e)

with ! � 0 a.e. in ˝T.

The above mentioned result relies on the mollification of certain terms to compen-
sate for the little regularity for the configurational density  provided by the first
stability result. For single-phase flow, this lack of regularity may also be overcome
by using a cut-off operator in the q-convective term, although revoking the cut-off
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when passing to the limit is not an easy task and requires an L1-bound on the
marginal

R
D  in space and time (cf. [5]). With a view to the numerical treatment of

the system, the application of the mollifier also seems to be preferable, as by now
the cut-off operator may not be revoked when passing to the limit simultaneously in
space and time (cf. [6]).

Similar considerations apply to the convolution in the Henry energy. The
strong nonlinear coupling between (12.10c) and (12.10e) requires some regular-
ization. Without mollification, a s-Dirichlet integral might be introduced in the
Cahn–Hilliard energy density (cf. [1, 12])—leading, however, to additional severe
nonlinearities in the chemical potential.

12.4 Simulations Based on a Convergent Finite Element
Scheme

A stable, fully discrete finite element scheme suitable for the numerical treatment
of model (12.10) is proposed in [24]. Simulations based on this scheme are used
for a qualitative validation of the presented model. Placing an elliptical shaped,
non-Newtonian droplet (� D 1) with axes of length 1:3 and 0:7 and barycenter
at .0; 0/ in a domain (˝ D .�1; 1/2) filled with a Newtonian fluid (� D �1), we
observe its oscillatory behaviour and compute the stresses induced by the additional
stress tensor (see Fig. 12.1). As the polymer chains are initially assumed to be
in equilibrium, i.e. their distribution on the configurational space D D B.0; 10/
is prescribed by the Maxwellian (i.e.  0.x;q/ D maxf0; �0.x/g3M.q/), there are
no additional stresses at the beginning of the simulation. The remaining physical
parameters are listed below, where 
 represents the surface tension and weights the
Cahn–Hilliard energy.


 ı m �.˙1/ �.˙1/ cx cq ˇ.�1/ ˇ.C1/ "

10 0:01 10�4 2 0:005 0:01 0:1 5 1 0:01

While the triangulation of ˝ is adaptive and consists of simplices with diameters
between approximately 0:0667 and 0:0083, the approximation of D is adapted to
the Maxwellian and consists of simplices with diameters between approximately
3:5355 and 0:3115. Concerning the discretization in time, we decided for a fixed
time increment � D 10�4. For the discrete scheme and discretization related
regularization parameters, we refer to [24] (in particular Sect. 4.3.1).

In the course of the simulation, the droplet tries to attain an energetically
more preferable circular shape and thereby gives rise to velocity fields. As these
velocity fields induce deviations in the configurational distribution of the polymers,
additional stresses arise. To visualize those stresses, we computed the eigenvalues
and eigenvectors of the stress tensor on every simplex of the triangulation and
depicted the eigenvector to the largest positive, real eigenvalue as a yellow line in
Fig. 12.1. In comparison to its initial state, the droplet is stretched vertically and
therefore the eigenvectors also point mainly in vertical direction.
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Fig. 12.1 Evolution of a non-Newtonian droplet. (a) t D 0:0. (b) t D 0:2. (c) t D 1:0. (d) t D 2:0
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Fig. 12.2 Length of the semiaxes of oscillating droplets

To compare the oscillatory behaviour of a Newtonian and a non-Newtonian
droplet, we measured and plotted the length of the x1- and x2-semiaxes of the
droplets (see Fig. 12.2). When comparing the evolution of the axes’ length, two
phenomena are noticeable. First, the damping of the oscillation is asymmetric for
the non-Newtonian droplet. In comparison to the axes of the Newtonian droplet, the
maximal elongation of the vertical axis is smaller, while the horizontal axis reaches
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almost the same length in the ensuing oscillation as the one of the Newtonian
droplet. Secondly, the shape of the non-Newtonian droplet is not completely circular
at the end of the simulation, as the stresses induced by the deformation of the
polymer chains are not completely released (cf. Fig. 12.1d).

Details on the scheme and the implementation, as well as the proof of stability
can be found in [24]. Given fluids with equal mass densities, the convergence of
discrete solutions towards solutions of a continuous weak formulation, which is
comparable to the one in Theorem 1, is also proven in [24].
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