Chapter 11
Phase Field Models for Two-Phase Flow

with Surfactants and Biomembranes
Sebastian Aland

Abstract We give an overview on recent developments of phase field models
for two-phase flows with surfactants and lipid bilayer membranes. Starting from
the two-phase flow model of a clean fluid-fluid interface we discuss the time
discretization and boundary conditions for dynamic and static contact angles. Using
the adsorption models of Henry and Langmuir, soluble surfactants are included in
the diffuse interface formulation. To consider lipid bilayer membranes the model is
extended by membrane bending stiffness and membrane inextensibility. We present
phase field models to include these elastic effects, with a particular focus on the
inextensibility constraint for which we discuss different phase field variants from
the literature and present numerical tests.

11.1 Introduction

A large collection of fluid problems involve moving interfaces. The simplest
examples include everyday phenomena, such as when pouring water in an empty
glass filled with ambient air. While the dynamics at the interface between water and
air are mostly governed by surface tension, things become more subtle if molecules
of an additional chemical species are present at the interface. Such species can range
from single surfactant molecules that locally lower the surface tension, to dense
structures of elastic lipid molecules that completely isolate the two fluids from each
other.

Many numerical techniques are available to handle such two-phase flow prob-
lems with additional interfacial particles [48, 49, 59, 60]. One of the simplest and
most flexible among these is the phase field (or diffuse interface) method. The
method has a sound physical background and can easily handle topological changes
of the fluid phases, as well as contact of the fluids with a solid body (or boundary).

In this chapter, we give an overview on recent developments of phase field
models for two-phase flow with interfacial particles, be it surfactants or lipid
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molecules. Both cases can be handled quite similar by additional surface and bulk
equations and their coupling to the flow dynamics. We start in Sect. 11.2 with
the two phase flow model of a clean fluid-fluid interface and discuss the time
discretization and boundary conditions for dynamic and static contact angles. Then,
we include soluble surfactants and focus on the adsorption models of Henry and
Langmuir. In Sect. 11.3 we switch to fluidic membranes where surfactants are
replaced by a dense layer of lipid molecules. These molecules give rise to elastic
properties, in particular bending stiffness and membrane inextensibility. We present
phase field models to include these elastic effects, with a particular focus on the
inextensibility constraint. We present different modeling approaches to include this
constraint in phase field models and compare them in numerical tests.

11.2 The Diffuse Interface Model for Two Phase Flow
with Surfactants

We consider isothermal, incompressible flow of two immiscible fluids. The interface
between both fluids is usually considered as a free boundary that evolves in time.
Instead of explicitly tracking the fluid-fluid interface, the phase field method uses an
auxiliary function (the phase field) and the interface position is implicitly described
by a level-set of this function. As opposed to the level-set method, the phase field
¢ takes distinct values in each of the fluid phases (e.g. ¢ = —1 and ¢ = 1) with
a smooth transition in between, around the interface. Hence, the interface is diffuse
with a finite width and an intermediate level set of the phase field (e.g. ¢ = 0) may
be used to get a discrete interface location. Figure 11.1 illustrates the corresponding
sharp and diffuse interface settings.

A fine computational grid is needed to numerically resolve the transition layer
of thickness &, which makes phase field computations often more expensive than
other interface capturing methods. On the other hand, phase field methods offer

Q

Fig. 11.1 Comparison of a sharp interface model (/eft) with a diffuse interface model (right). In
the diffuse interface model the domains 21, §2, are implicitly defined by regions where ¢ ~ 1,
¢ ~ —1, respectively. The interface I" is smeared out to an interface region of finite thickness &,
where —1 < ¢ < 1



11 Phase Field Models for Two-Phase Flow with Surfactants and Biomembranes 273

many advantages in the mathematical modeling. One distinct advantage is their
simplicity. As opposed to Level-Set methods, mass is conserved and reinitialization
or convection stabilization are not necessary for the interface advection. Phase field
methods naturally admit physical energy laws which makes it possible to develop
energy stable discretization schemes. Also topological changes, such as during
vesicle fission and fusion, are naturally captured and additional physical processes
can be easily included within the phase field formulation.

11.2.1 Phase Field Equations

Given a sharp interface I, the surface energy of a fluid-fluid interface can be written
as

EszfodA, (11.1)
r

where o is the surface tension. Van der Waals was the first who realized that real
interfaces are not sharp but diffuse with a finite thickness [53]. Based on physical
arguments, Cahn and Hilliard [16] formulated the diffuse interface version of a fluid-
fluid interface,

E, =[ 5 (8|V¢|2+ 1W(qs)) av, (112)
Q 2 &

where 5 = 30/2+/2 is a scaled surface tension. The scaling factor depends on the
chosen double-well potential W, which is here W(¢) = , (¢* — 1).

Hohenberg and Halperin [36] were the first to couple the idea of a diffuse
interface to flow dynamics. The simplest form of the resulting Navier-Stokes-Cahn-
Hilliard equations is,

pdsv+ Vp—V - (n(Vv+ (Vv)')) = —eV-(6V¢ ® V) + F, (11.3)
V.v=0, (11.4)
di¢p =V -(MP)Vp), (11.5)
1
w= SW’(q&) —eAg. (11.6)

Here v, p, 1 and F are the (volume-averaged) velocity, pressure, chemical potential
and body force, respectively. The parameter ¢ defines the interface thickness,
07 = 0; + v - V is the material derivative. The term —&V - (6V¢ ® V¢) provides
the surface tension force, many other forms of this term are possible, see, e.g.,
[401].
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The density p(¢) and viscosity 1n(¢) are interpolations of the corresponding
values in the two fluids, e.g.

p(@) = pi(1 +¢)/2+ p2(l — $)/2, @) =m+¢)/2+nml—¢)/2
(11.7)

The Mobility M(¢) The function M(¢) is a mobility. In practice, M is often
either a constant or a double well potential similar to W. In general for the diffuse
interface fluid method, it is desirable to keep M small such that the interface position
is primarily advected. At the same time the mobility needs to be big enough to
ensure that the interface profile stays accurately modeled and the interface thickness
is approximately constant. Asymptotic analysis [1] and numerical benchmarks [6]
show that this can be achieved by taking M = O (¢).

Non-matched Densities For matched densities, i.e., p; = p,, the above system
is thermodynamically consistent, i.e., there exist physical energy estimates. This
property is not maintained for non-matched densities (p; # p;) which has led to
different extensions of the model [1, 15, 45]. The model described in [1] involves
an additional term in the momentum equation. The model in [45], defines v as the
mass-average of the two fluid velocities, which leads to a relaxed incompressibility
condition around the interface. However, in many practical applications, the physical
interface thickness is very small compared to the domain size. In this case the diffuse
interface model aims to approximate the sharp interface solution and the interface
thickness ¢ needs to be chosen very small. For small ¢ the error introduced by
the diffuse interface itself becomes larger than the differences between the various
diffuse interface models [6]. In this case, the different diffuse-interface models
provide equally good approximations to the sharp-interface solution.

11.2.2 Boundary Conditions

The boundary conditions to the above defined system are particularly interesting
when 052 is a solid boundary. In this case the fluid-fluid interface may touch the solid
wall which leads to a moving contact line problem [5]. The Generalized-Navier-
Boundary-Condition (GNBC) holds for the fluid velocity [50]

[{@)(V = Voa) + 1(@)(VV + VV') -ng — L($) V]| x ng = 0. (11.8)
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Here I(¢) is the phase-dependent inverse of the slip length, vy is the wall velocity,
ny, is the outer normal to 9§2. The function L(¢) is defined as

30
L@y = 232

where y’(¢) is the first derivative of the fluid-wall energy potential

eng - Vo —y'(9), (11.9)

() = Zcos(e) sin(gqb), (11.10)

with the equilibrium contact angle 6. Note, that y describes the energy density
associated with a fluid touching the wall. In particular, the difference in y between
the two phases is y(1) — y(—1) = o cos(f), which is the difference in the wall
energies of fluid 1 and fluid 2, respectively, due to Young’s law, o cos(f) = o1 —02.
The different wall potential y(¢) = o cos(#) (3¢ —¢*)/4 has been used in [7, 56],
which leads to equal static contact angles for all level-sets of the phase field [2].

Additionally, the movement of the contact line is determined by the dynamic
contact line boundary condition [37, 50]

0 +v-V¢p =—BL(¢p)  (dynamic angle BC), (11.11D)

for a relaxation parameter . Hence, the actual contact angle is dynamic and relaxes
to the equilibrium angle 6 with a speed controlled by S. If this relaxation is very
fast, i.e. B — oo, Eq.(11.11) reduces to L(¢) = 0 which implies the following two
boundary conditions from Eqgs. (11.8), (11.9):
[1{(@)(V = Vaan) + 1(@)(VV+ VV') -ng] xng =0 (Navier BC),
(11.12)

30

eng - Vo =y (static angle BC).
222 ¢ =y(p) g )

(11.13)

If additionally the slip length is close to zero, i.e., [(¢) — o0, the Navier condition
reduces to the common no slip condition

V = Vyal (no slip BC). (11.14)

To close the system and to ensure conservation of fluid masses, a no flux condition
is specified for the chemical potential,

ne-Vu =0. (11.15)
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11.2.3 Numerical Discretization

Most numerical methods for the Navier-Stokes-Cahn-Hilliard system (11.3)-(11.6)
focus on the no slip boundary condition with no contact lines or a static 90° contact
angle, i.e., ng - V¢ = 0. In this case a lot of different discretization techniques are
available for the individual subsystems, see, for example, [38, 51] for Navier-Stokes
and [14, 31, 58] for the Cahn-Hilliard system.

Coupling Between Navier-Stokes and Cahn-Hilliard Only in recent years,
efficient discretization techniques have been proposed for the coupled Navier-
Stokes-Cahn-Hillard system [26, 39]. For small capillary numbers, the surface
tension force introduces a strong coupling between the Navier-Stokes equation
providing the flow field and the Cahn-Hilliard equation evolving the phase field. In
[3] it was shown by numerical tests, that an explicit coupling of these two problems
can result in a time step restriction of the form

dtmax < ep*PM"V36713, (11.16)

where dt is the time step and M and p are assumed to be constant. In contrast to
other numerical models for two-phase flow, this time step restriction is independent
of the grid size but strongly dependent on ¢. It is suspected that this dependence
is a consequence of the smallest capillary wavelength that can be resolved in a
diffuse interface model. Given the grid resolution is high enough to resolve the
diffuse interface properly, this wavelength is proportional to the interface thickness
and independent of the grid size. Special techniques have been introduced in [3]
to lift the time step constraint, including additional stabilizing terms as well as
monolithic coupling of both subproblems. Apart from increasing the computational
performance, such improved time integration schemes allow to choose lower
mobility, which reduces the non-physical interface movement due to the Cahn-
Hilliard dynamics.

Energy-Stable Schemes One advantage of phase field models is that they admit
physical energy laws which makes it possible to develop energy stable discretization
schemes. Energy stable schemes for the fully discrete Navier-Stokes-Cahn-Hilliard
system have been proposed, both in linear form [28] and nonlinear form [29, 30].
Liu et al. [44] also presented an energy stable scheme where the Navier-Stokes and
Cahn-Hilliard system are completely decoupled during the solution process. For a
modified energy law, even second order convergence in time could be established
[32].

Energy stable schemes for the moving contact line problem with the Generalized-
Navier-Boundary-Condition have been proposed in [33]. A linear scheme was
developed in [5] which enables a very robust unconditionally energy-stable approx-
imation of the Navier-Stokes-Cahn-Hilliard system.
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11.2.4 Inclusion of Surfactants

Surfactants are amphiphilic molecules that tend to adsorb at fluid-fluid interfaces.
Their presence lowers the surface tension locally and thus has a significant effect on
the flow dynamics. A relation between the surfactant concentrations and the local
surface tension is given by Gibbs adsorption equation. Let ¢y, ¢3, cr the surfactant
concentrations in phase 1, phase 2 and on the surface, respectively. Gibbs adsorption
equation states that

=-RT ", (11.17)

and analogously for ¢;, where RT is gas constant times temperature. The functional
dependence between cr and cy,c; is also called isotherm and depends on the
underlying assumptions of the considered physical system. The two most important
isotherms are the laws of Henry and Langmuir, discussed in the next sections.

The evolution of surfactant concentrations cj, ¢; and ¢ can be determined by
additional equations in the bulk phases and on the surface. Phase field modeling
provides an easy way to account for such equations by use of the characteristic
functions yi, y» and § indicating phase 1, phase 2 and the surface, respectively. A
popular choice to approximate these functions in the diffuse interface context is

_1+9¢ -9

1
, = R §= _|Val. 11.18
X1 5 X2 5 2| @ ( )

By use of these characteristic functions, equations given in one of the bulk domains
or on the surface, can be extended to the full computational domain §2 which greatly
simplifies their discretization. To illustrate this, let us consider a surface advection
equation

dcr + V- (ver) =0 on T, (11.19)

which describes mass conservation of the concentration ¢y on the surface. Now
multiply with a test function ¥ and integrate over I" to obtain the weak form of this
equation. Subsequently, we can conclude

/ orcry + V- (vep)y = d,/ cry —/ crosy (Leibnitz rule)
r r r
= d,/ créy —/ créary (delta function)
2 2
=/ d;(crd)y —/ crév-Vy  (since 3, = 0)
fo) fo)

_ /Q B(crd)Y + V- (crov)y.
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The strong form of the latter expression is,
0;(6¢) + V- (8cv) =0 in £2. (11.20)

Hence, Eq.(11.20) provides an extended form of the surface advection equa-
tion (11.19) that is now valid in the whole domain £2.

Similar reformulations can be done for a large variety of bulk and surface
equations, see [42, 52] for examples and justification by matched asymptotic
analysis. In the following, we will focus on such diffuse interface formulations for
the mass balance equations for the surfactants. The detailed form of these equations
depends on the chosen isotherm. We refer to [27] for an overview of different
adsorption isotherms and the corresponding diffuse interface formulations for two-
phase flow with soluble surfactants.

11.2.4.1 The Henry Model

Based on experimental findings the Henry model assumes that the amount of
molecules that are adsorbed at an interface is proportional to the concentration of
these molecules in the ambient bulk phase [35]. This condition, also called Henry’s
law, means mathematically that the concentrations in the bulk phases, ¢, ¢, and on
the interface, c, are related by the Henry constants H, Hr as follows:

Cy) = HCl, cr = HrCl onl. (1121)

This condition allows to define a single continuous field ¢ : £2 — Rx( describing
the surfactant concentration in the whole domain by

€1 =qg, cz:Hc‘Qz, cr =Hrer, (11.22)

Consequently, the total surfactant mass can be expressed as |, o X1+ x2H + 8Hr]
¢ dV and one can derive the mass balance equation,

0; (Ix1 + x2H + 8Hr]c) — V- ([x1D1 + x2HD> + 8HrDr]Ve) = 0,
(11.23)

where D1, Dy, D are the diffusion constants in the corresponding phases. Approx-
imating the characteristic functions by Eq. (11.18) allows to handle the surfactant
concentrations in the two phases and on the interface by solving a single equation.

Henry’s law together with Gibb’s isotherm (11.17) yields the surfactant-
dependent surface tension

o0 =09—RT Hrec. (11.24)

Hence, Eqgs. (11.3)-(11.6), (11.23)—(11.24) form a coupled system for two-phase
flow with soluble surfactants.
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The underlying assumptions restrict the use of Henry’s law to situations of
very low surface concentrations. However, due to its simplicity the model is still
widely used and, even if further simplified, can explain many complicated flow
phenomena. For example, in [54] it is assumed that surfactants do not dissolve
in phase 2 (H = 0) and that interfacial adsorption is very low (Hr ~ 0). Still,
the model was able to explain and qualitatively describe the surprising relaxation
oscillations that occur at droplet surfaces exposed to an ambient fluid with a
surfactant gradient.

11.2.4.2 Langmuir Model

The Langmuir model is probably the most popular adsorption isotherm. It can be
derived from statistical physics and provides not only a stationary isotherm but also
a rate of exchange between surfactant molecules in the bulk and on the surface.
Accordingly, the flux from phase i to the surface is defined by

Jii=aici(1 —cr/coo) — dicr i=1,2. (11.25)

Here, a;,d; are adsorption and desorption rates and the saturation constant co
defines the concentration of maximal interface coverage. The mass balance equa-
tions for the phase-dependent surfactant concentrations become,

7 (xici) = DiV - (xiVei) = —=6ji i=12, (11.26)
a;((SCp)—DrV(SVCr) = 5(]1 +]2) (1127)

Evaluating the Gibbs isotherm (11.17) at equilibrium (j; = j» = 0) yields the
surfactant-dependent surface tension

0 =00 + RTcoo In(1 — ¢ /Coo). (11.28)

Hence, Egs. (11.3)—(11.6), (11.25)-(11.28) compose a diffuse interface model for
two-phase flows with soluble surfactants based on the Langmuir isotherm.

In reality, also the Langmuir isotherm is limited by some underlying assumptions.
In particular it accounts only for a monolayer of interfacial surfactants which is often
doubtful as frequently more molecules adsorb to the monolayer. However, despite
its limitations, Langmuir’s isotherm is often the first choice for many practical
applications.

The model has been used to describe soluble surfactants on droplets [55] and
for Taylor bubbles, see the corresponding Chapter of this book [10]. An improved
thermodynamically consistent form has been proposed and tested in [27]. In [8] the
model was adapted for elastic interfacial nano-particles. There, ¢ defines a particle
number density instead of a concentration and elastic particle interactions give rise
to additional surface forces.
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11.3 Phase Field Models for Fluidic Elastic Membranes

Fluid membranes are one of the essential building blocks of biological cells. They
separate the interior of all cells from the outside environment and divide intracellular
regions into different functional compartments. The membrane itself consists of a
dense bilayer of lipid molecules (and other proteins) and is mostly impermeable for
fluids, see Fig. 11.2.

Although, the mathematical description by a phase field is identical to previous
case of two-phase flow with surfactants, the dense packing of the lipids along the
membrane gives now rise to elastic properties. Assuming the membrane to behave
like a thin elastic shell leads to two essential elastic contributions: the membranes
tendency to assume a preferred curvature (bending stiffness) and its tendency to
locally conserve its surface area (inextensibility). In the following we will discuss
how these constraints can be included in phase field models.

11.3.1 Bending Stiffness

In separated pioneering work, Helfrich [34] and Canham [17] assumed a Hookean
response of the membrane to bending and derived the bending energy, also called
Helfrich or Canham-Helfrich energy,

1
Ep = / 2kB(H—HO)2 dA. (11.29)
r

Here, kg is the bending stiffness, H the total curvature and H, the preferred curvature
of the membrane. For a homogeneous lipid bilayer Hy = 0.

Given a phase field that describes the membrane position, curvature as well as the
interface delta function can be expressed in terms of ¢, which allows to define the a

two-phase fluid system o caal lipid bilayer membrane
- fluid
0
P
v hydrophilic head
/ ‘ !
: RGO L L i 2y A0 I 1 hydrophobic tails
\ |
N 1 - hydrophilic head
N 1
\
\\ + fluid
Q N

Fig. 11.2 Tllustration of a closed fluid membrane. Left: Sharp interface setting, the membrane
surface I separates two fluid phases §2, and §2,. Right: A close-up shows the physical form of the
membrane as a lipid bilayer. Image adapted from [4]
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phase field variant of the bending energy. Du et al. proposed the following energy,

A (8A¢—1W’(¢))2dv (11.30)
"7 ) 8v2e g O ’ ‘

where W) (¢) = (¢*> — 1)(¢ + V/2eHy) is the first derivative of a modified double
well potential [22]. In [21] and more rigorous in [57] convergence of Ep toward the
sharp interface bending energy Ep was shown as ¢ — 0.

Early phase field methods for biomembranes were used without the coupling to
hydrodynamics of the surrounding fluids. Such models were subject of numerical
studies to describe equilibrium shapes of vesicles [20, 23] as well as analytical
studies on existence and convergence of the proposed equations [19, 22]. Topolog-
ical considerations including the calculation of the Euler number are addressed in
[23,25]. Reviews of existing phase field models for the minimization of the Helfrich
energy can be found in [18, 41].

The coupling of the membrane dynamics with the fluid flow is typically derived
by an energy variation approach. The resulting Navier-Stokes equations with
additional bending stiffness force are [9, 24],

pAV + Vp—V - (n(Vv + VvT)) = —eV - (6V¢ ® V) + 581;3 Ve,  (11.31)

V.v=0, (11.32)

where the surface tension o acts now as a Lagrange multiplier to enforce inextensi-
bility, see Sect. 11.3.2. Further

SE 3k [1
5¢>B - 4j2 [szuwg(@ - AM] (1139
1
w= 5W6(¢) —eAg. (11.34)

Additionally, the phase field needs to be advected with the flow which is usually
realized by an advected Willmore flow equation with or without volume conserva-
tion,

di¢p +v-Vop = —M 88? (non-conserved), (11.35)
SEg
dp+v-Vo=V.|MV 56 (conserved). (11.36)

Both choices for the advection of ¢ ensure thermodynamic consistency in the case of
matched densities. Other approaches to advect the phase field include the advected
field approach [11, 12] where a modified Allen-Cahn equation is used.
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For the system of equations (11.31)—(11.35) without surface tension and inex-
tensibility, existence of global weak solutions and uniqueness under extra regularity
were proven [24]. Local time existence and uniqueness of strong solutions is shown
in Liu et al. [43].

11.3.2 Inextensibility

The presence of the lipid molecules at the interface introduces a local inextensibility
constraint, since the lipids resist interfacial compression and stretching. The local
form of the inextensibility constraint reads

Vrv=0, (11.37)

which describes a surface incompressibility, similar to the bulk incompressibility
condition in the fluid. The necessary Lagrange multiplier to enforce this condition,
o, enters Eq.(11.31) as a surface tension force, similar to the pressure in the
Navier-Stokes equation to enforce incompressibility. Different approaches have
been presented to realize the inextensibility constraint in phase field models. In the
following we discuss and compare the approaches given in [4, 9, 12, 13, 24].

Global Inextensibility (Model A) In [24] the local inextensibility constraint is
approximated by a weaker global constraint, i.e., a global conservation of surface
area. To realize this, a penalty method is proposed and the total energy of the system
is augmented by the penalty term

k
Ep =) (($) = ), (11.38)
1
S@)= [ 51V + Wy, (11.39)

where .o is the initial value of </ (¢). The corresponding global surface tension is
o = ky(($) — ), (11.40)

which is positive if the surface area <7(¢) is too big and negative if .o/ (¢) is
too small. The approach ensures conservation of the surface area given the factor
kp is large enough. A similar approach with penalty terms coupled to Lagrange
multipliers has been presented in [23] and gives identical results for large k. In [9]
it has been shown that the global and local inextensibility constraints may lead to
significantly different membrane dynamics. In particular for situations of multiple
approaching membranes the global constraint is not a good approximation and may
lead to incorrect flow dynamics.

Local Inextensibility (Model B) A phase field model to account for the full
local inextensibility, has been proposed in [9]. Therefore, the following regularized



11 Phase Field Models for Two-Phase Flow with Surfactants and Biomembranes 283

extension of the inextensibility constraint over the whole domain was introduced,
£’V - (¢°Vo) + [V$|Vr - v = 0, (11.41)
where the diffuse inextensibility constraint is defined as
Vr-v=-n-Vv-n. (11.42)

Here, n = V¢/|V¢@| represents the membrane normal, £ is a regularization
parameter independent of ¢. Eq. (11.41) becomes Vi-v =Vp-v =0at the
interface where ¢ ~ 0, and reduces to Ao = 0 away from I" since ¢*> ~ 1 and
|[V¢| ~ 0. This provides a harmonic extension of o off I", while maintaining the
local inextensibility constraint near I". Eq. (11.41) and the Navier-Stokes equation
are coupled implicitly to determine velocity and surface tension simultaneously.
The formulation of diffuse inextensibility is validated by asymptotic analysis and
numerical tests in [9]. In [47] the model has been used to simulate the interaction
between red and white blood cells within a blood vessel.

Local Inextensibility with Relaxation (Model C) The use of the regularization
term in Eq. (11.41) can introduce small errors that may accumulate over time and
thus lead to spurious local stretching and compression of the membrane. To correct
these errors and drive a slightly stretched or compressed surface back to equilibrium,
a relaxation mechanism has been proposed in [9]. A field c is introduced to measure
local stretching of the interface. Setting the initial value ¢(x,0) = 1 and taking
¢ to evolve by a surface mass conservation equation (11.19), locations where ¢
deviates from 1 represent regions of compression (¢ > 1) or stretching (¢ < 1).
As seen earlier the surface mass conservation equation can be approximated in
the diffuse interface context by use of the characteristic delta function § = |V¢|.
Additional normal diffusion ensures that the concentration is constantly extended
off the interface and leads to the evolution equation

3,(IVole) + V- (IVélev) — D,V - (|[Vlnn - Ve) = 0. (11.43)

Here, D, is the normal diffusion constant and the use of |V¢| in the diffusion opera-
tor ensures that the bulk concentration does not influence the surface concentration.

Hooke’s law can be used to relax the local changes in interfacial area, which
amounts in replacing the inextensibility constraint by Vi - v = ¢(c — 1)/c for a
relaxation constant ¢. Within the diffuse interface formulation this means replacing
Eq.(11.41) by

£e2V - (Vo) + [V@|Vr - v = {|V|(c— 1)/c, (11.44)
The inextensibility with relaxation has been proven very effective with almost

zero stretching and compression of the membrane [9]. Recently, the model has
been applied to simulate the formation of a membrane vesicle from a larger
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membrane during endocytosis [46]. There, curvature-inducing molecules sit on a
part of the membrane and induce strong tangential forces which makes the process
strongly dependent on the accuracy of the inextensibility constraint. Due to the size
difference between the forming vesicle and the large membrane, only a part of the
latter is considered and a special boundary condition for c is applied to regulate the
influx of membrane area from the domain boundary.

Inextensibility from Membrane Stretch Elasticity (Model D) An alternative
approach can be constructed from the physical origin of the membrane inextensi-
bility, namely the membrane stretch energy. Assuming a Hookean response of lipid
molecules against compression and stretching leads to the additional stretch energy

1
Estreten = / zks(J_ l)szs (11.45)
r

where J is the local area stretch of the membrane and k; the stretching modulus.
The local area stretch J is defined as the current area of a surface element divided
by the initial area of the same material part of the surface: J/ = A/A, hence, J = 1
corresponds to the reference state [4].

The above energy was already present in the famous paper of Helfrich [34] and
leads, in first order, to a surface tension

o=k -1), (11.46)

see [4]. The common inextensibility constraint and corresponding surface tension
can actually be seen as approximations to this stretching tension for very large k;.

The evolution of the local area stretch is determined by the surface evolution
equation

dJ+v-VJ=JVr.v on . (11.47)

However it might be more favorable to introduce the inverse of the stretch, c = 1/J,
which leads to a conservative evolution

dic+Vr-(ve) =0 on I (11.48)

Approximating this with a diffuse interface model results in Eq.(11.43) again,
but contrary to model C this equation is now used to provide the surface tension
directly [without involving Eq. (11.44)]. Accordingly, from Eq. (11.46) we obtain
o =k(l—c)/c.

The model is quite similar to the approach described in [12, 13], where a non-
conserved evolution equation for ¢ was used. However, the conservation property
of Eq. (11.43) is quite desirable since it can be carried over to the discretized model
and hence ensures highly accurate conservation of the local membrane area for all
times.
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11.3.3 Model Comparison

In the following, we perform numerical simulations to test models A, B, C and D in
two dimensions. Therefore, the conserved Willmore flow equation (11.36) is cou-
pled to the Navier-Stokes equation (11.31)—(11.32) and the respective inextensibility
constraint. We simulate shear flow around a single elliptical vesicle and compare
the four models in terms of vesicle dynamics and accuracy of the inextensibility
constraint.

Discretization and Parameters We use a Finite-Element discretization with semi-
implicit Euler timestepping. P2 elements are used to discretize the velocity, phase
field, chemical potential and concentration while the pressure is discretized with P1
elements. Details on the discretization of the Willmore and Navier-Stokes problem
can be found in [9], the handling of the surface equation (11.43) for c¢ is described
in [46].

A vesicle with major axis of length 45 um and minor axis of length 15 um is
placed in the center of a domain £2 = [0, 60 um]?>. We prescribe a shear rate
of 0.2s7! at the domain boundary. Typical experimental parameters are used for
density, p, = 103 kg/m3, p1 = 1.125p,, viscosity 1, = 10~3Pas, m = 20m,,
spontaneous curvature Hy = 0 and bending stiffness k3 = 107'° Nm.

The mobility M = 5 - 1072 m3s/kg is chosen small enough that the interface
is primarily advected. The parameters for model B and C are discussed further
in [9], here we use £ = 1.33-10*m~'s7!, ¢ = 20s7!, D, = 3-10 m/s.
The penalty coefficient, kK, = 3 - 10*N/m?, and stretching coefficient, k;, =
6.8 - 107®N/m, are chosen large enough to guarantee proper global and local
inextensibility, respectively. Finally, the time step size is t = 5ms, the interface
thickness is ¢ = 0.45 um and the spatial mesh is adaptive with a minimum grid
size of h = 0.5um around the interface. Note that this ensures a resolution of
approximately 7 degrees of freedom across the interface, since the corresponding
thickness of the interface region (where —0.9 < ¢ < 0.9) is 1.87 um and due to the
use of P2 elements.

The use of the conserved Willmore equation (11.36) already leads to a very good
conservation of vesicle volume. To ensure even perfect volume conservation we
add a growth relaxation term. To this end, we specify the vesicle volume as ¥ =
Jo(¢ + 1)/2dV and denote the initial value of #" by ¥. The term [Vo|(¥ — ¥)
is added to the left-hand side of Eq. (11.36) aiming to compensate small changes in
vesicle volume by growing or shrinking the vesicle around the interface. Note that
the restriction of this growth to the interface can be derived from the corresponding
sharp interface volume constraint. This restriction is an essential difference to other
models which simply add constant values to the phase field to conserve the integral
of the phase field, e.g. in [9, 23, 24, 47].
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11.3.3.1 Inextensibility Test

As seen in Fig. 11.3, the vesicle volume and the total interface area are conserved
very well for all four models. Model B exhibits the largest errors of up to 0.16%,
which is still very small. Note, that the area conservation in model B is a pure result
of a diffusely inextensible velocity field since there is no relaxation mechanism. To
reduce the small error further, a global area conservation mechanism as in model A
can be added to model B, like proposed in [9, 47]. For the vesicle volume, we find
extremely good conservation due to the above growth relaxation term. Without this
term a slight volume loss of up to 0.1% is observed.

The accumulated stretching is presented in Fig. 11.4. To this end, the value of
the concentration c is plotted over the arc length of the interface at time r = 35,
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Fig. 11.3 Relative change in vesicle surface area (left) and volume (right) over time. The relative
change in surface area is measured by (< (¢p) — %)/ %%, the relative change in vesicle volume is
(7 (¢) — %)/ . All models show very good global conservation. Errors in surface area are less
than 0.2%, errors in volume are less than 0.01%
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Fig. 11.4 The accumulated local stretching at + = 35s. Left: The concentration ¢ over the arc
length of the interface. Model A exhibits interfacial stretching of up to 17%, model B reduces
local stretching/compression significantly, models C and D show perfect inextensibility (¢ = 1).
Right: Spatial distribution of ¢ along the interface for model A showing compression at the tips
and stretching along the sides. Numbers around the vesicle indicate the arc length
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Fig. 11.5 Vesicle shapes (left) and inclination angles (right) over time. The local inextensibility
constraints in models B, C, D significantly delays the tumbling time as compared to model A.
Models C and D give almost identical results

when the vesicle is in all models in an almost horizontal state. Note, that the
total length of the initial elliptical vesicle is almost exactly 100 pm. For Model
A we find strong interface compression (up to 17%) around the tips of the vesicle
while the sides of the vesicle are stretched (up to 11%). This behavior was also
observed in [9]. The local inextensibility constraint in models B,C,D suppresses
these compression/stretching errors. In particular models C and D show absolutely
no local stretching or compression. The relatively large values for model B are
actually inherited from the first time steps and might result from the slight interfacial
stretching and compression during the initial equilibration of the interface.

11.3.3.2 Model Comparison

The time evolution of the vesicle shapes and the corresponding inclination angles
are depicted in Fig. 11.5. For the given parameter set, the vesicle is in the tumbling
regime. We find that the vesicle rotates significantly faster in model A than in
the locally inextensible models. While models C and D lead to almost identical
evolutions, the vesicle dynamics is slightly accelerated in model B.

We conclude that the accurate incorporation of local inextensibility is important
to obtain reliable vesicle dynamics in numerical simulations. The global inexten-
sibility constraint in model A is not sufficient and leads to accelerated vesicle
dynamics in shear flow. The inextensible models B, C and D provide much more
accurate solutions, in particular models C and D seem to completely eliminate
local stretching or compression. From a numerical point of view, models B and C
are typically coupled monolithically to the Navier-Stokes equation, which makes
these models very stable. For model B also energy laws can be shown, see [9]
for the matched density case. Model D is explicitly coupled to the Navier-Stokes
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equations which compromises the stability, hence, for large k, time step constraints
will appear. However, for moderate k;, model D provides a simple and yet very
effective numerical model for highly accurate local inextensibility. Since model D
is based on the stretching energy (11.45), it might be possible to derive energy stable
numerical schemes for this model as well.
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