
Chapter 1
ALE-FEM for Two-Phase and Free Surface
Flows with Surfactants

Sashikumaar Ganesan, Andreas Hahn, Kristin Simon, and Lutz Tobiska

Abstract We study two-phase and free surface flows with soluble and insoluble
surfactants. A numerical analysis of the contained convection-diffusion equations
is carried out. The surface equation is stabilized by Local Projection Stabilization.
The benefit of Local Projection Stabilization on surfaces is shown by a numerical
example. An advanced finite element method that allow for a robust and accurate
numerical simulation is presented. The arbitrary Langrangian-Eulerian framework is
utilized to capture the moving surface. This allows the usage of a fitted finite element
mesh. A decoupling strategy is used to divide the origin problem into subproblems
easier to solve. Different time discretizations are considered and the problem of
spurious velocities for the spatial discretization is discussed. Numerical examples
in 2d and 3d illustrate the potential of the proposed algorithm. The comparison to
mathematical predicted values validates the obtained results.

1.1 Introduction

The influence of surface active agents (surfactants) on the deformation of droplets
and on the dynamics of the surrounding flow field is an active research area with
numerous applications [12, 43]. In weak flows a nearly uniform concentration of the
surfactants on the surface takes place and the behaviour of the flow is (after a suitable
scaling) similar to flows without surfactants, but with reduced surface tension.
Suppose that the flow field becomes stronger, thinning effects appear due to the
stretching of the surface. This changes the surface tension locally. The convective
transport induced by the flow field generates a local accumulation of surfactants and
the resulting Marangoni forces may lead to a destabilization of the interface with
essential consequences on the flow dynamics. This is a complex process, whose
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tailored use in applications requires a fundamental understanding of the mutual
interplay.

We present advanced finite element methods that allow for a robust and accurate
numerical solution of the underlying system of partial differential equations. A
complete model of two-phase and free surface flows with surfactants is stated in
Sect. 1.2. We consider adsorption and desorption of surfactants at the sharp interface
between two fluids and their transport and diffusion in the fluid phases and along
the interface. One way to solve two-phase problems is to use a diffusive interface
and consider the limit when the thickness of the interface goes to zero. This type
of approach will not be considered here. For a detailed discussion we refer to
[1, 16, 17]. Alternatively, sharp interface models can be discretized by fitted or
unfitted finite elements. An overview on the general framework of unfitted or so-
called CutFEM has recently been given in [10]. Using the CutFEM approach is
convenient since the same finite element spaces defined on a background mesh
can be used for solving the partial differential equations in the bulk and on the
surface. However, a drawback is that the finite element matrices become arbitrarily
ill-conditioned depending on the position of the surface in the background mesh.
Therefore, although the fact that moving meshes have to be handled, we prefer
fitted finite element discretizations, in which the interface is aligned with the mesh
[19, 21, 24, 25].

In Sect. 1.3 we summarize the principles of discretizing partial differential equa-
tions on surfaces. The numerical analysis for the solution of a scalar convection-
diffusion equation on a surface is discussed. We also consider the Local Projection
Stabilization (LPS) to suppress spurious oscillations in convection dominated cases.
Finally, we summarize our studies on a system of convection-diffusion equations in
bulk domains coupled with a convection-diffusion equation on an embedded fixed
surface as a model for the surfactant transport.

In Sect. 1.4 we compare interface capturing and interface tracking methods
that handle partial differential equations on moving domains. The Arbitrary
Langrangian–Eulerian (ALE) method is described and some techniques to retain
the mesh quality without remeshing are discussed. We use discretizations of second
order in space and time and propose a semi-implicit splitting of the two-phase flow
problem with surfactants into smaller problems, a Navier–Stokes type problem and
a problem for the transport of surfactants.

Selected test examples demonstrate in Sect. 1.5 the challenges and the potential
of numerical simulations for a better understanding of the mutual interplay of
different phenomena at fluidic interfaces.

1.2 Two-Phase and Free Surface Flows

We state a system of partial differential equations modeling two-phase and free
surface flows. The weak formulation of the problem is given for a fixed domain.
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1.2.1 Mathematical Model

We consider an incompressible two-phase flow with surfactants in a fixed bounded
domain˝ � R

d, d D 2; 3. Let the liquid filling the domain˝1.t/ at time t 2 Œ0;T�
be completely surrounded by another liquid filling ˝2.t/ D ˝n˝1.t/. We assume
that the two liquids are immiscible and separated by the sharp interface � .t/ D
@˝1.t/. The model consists of the time-dependent incompressible Navier-Stokes
equation in each phase

�i .@tu C u � ru/� r � S.u; p/ D �ige; r � u D 0 in˝i.t/ � .0;T�; (1.1)

for i D 1; 2, the initial conditions

˝i.0/ D ˝i;0; u.�; 0/ D u0; (1.2)

the kinematic and force balance conditions

w � n D u � n; Œu� D 0; ŒS.u; p/� � n D �.c� /K n C r� �.c� / on � .t/; (1.3)

and homogeneous Dirichlet-type boundary conditions on the fixed (in time) bound-
ary @˝ . Here, u D .u1; : : : ; ud/ denotes the fluid velocity, p is the pressure, �i,
i D 1; 2, are the densities of the corresponding fluid phases, g is the gravitational
constant, and e is a unit vector in the direction of the gravitational force. Further,
w on � .t/ denotes the velocity of the interface, n is the outer unit normal vector
(on � .t/ directed outward of ˝1.t/), K is the sum of principal curvatures, Œ��
denotes the jump across the interface � .t/, c� is the surfactant concentration on
the interface, �.c� / is the surface tension coefficient depending on c� , and r� is
the surface gradient.

The stress tensor S.u; p/ for a Newtonian incompressible fluid and the velocity
deformation tensor D are given by

Si.u; p/ D 2�iD.u/� pI; D.u/ D 1

2

�ru C .ru/T
�
; i D 1; 2;

where �i denotes the dynamic viscosity of the corresponding fluid phase, and I is
the identity tensor.

In case of a free surface flow, we assume that the effect of the flow field in
the surrounding phase is negligible and thus, ˝.t/ WD ˝1.t/. The kinematic force
balance condition (1.3) becomes

w � n D u � n; S.u; p/ � n D �.c� /K n C r� �.c� / on � .t/: (1.4)

Note that in case of a two-phase flow (in contrast to a free surface flow) the pressure
is determined only up to an additive constant. For a detailed discussion on the
uniqueness of the pressure, we refer to [22].
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The model has to be completed by a set of equations that describe the surfactant
transport in the bulk phases and on the interface. Let us assume that the surfactant
is soluble in both phases. Then, for the surfactant concentration ci, i D 1; 2, in the
bulk phases we have

@tci C u � rci D r � .Dirci/ in˝i.t/ � .0;T�; (1.5)

completed by the initial conditions

ci
ˇ
ˇ
tD0 D ci;0 in˝i.0/; (1.6)

and the boundary conditions

.�1/in � .Dirci/ D Si.ci; c� / on � .t/; n � .D2rc2/ D 0 on @˝: (1.7)

Here, Di is the diffusion coefficient in phase i and Si is the source term. The
surfactant concentration c� on the evolving surface satisfies the initial condition
c�
ˇ
ˇ
tD0 D c�;0 and the partial differential equation

Pc� C .r� � w/ c� C r� � Œc� .u � w/� D r� � .D� r� c� /C
2X

iD1
Si.ci; c� / (1.8)

on � .t/ � .0;T�, where Pc� denotes the material derivative with respect to w and
D� is the surface diffusion coefficient. It is assumed that the interface � is a closed
surface, therefore no boundary condition is needed for (1.8).

Suppose the surfactant is soluble only in one phase or is even insoluble. Then,
the corresponding equations in the other phase or in both phases are removed from
the model (1.5)–(1.8).

Finally, the effect of the surfactant on the surface tension and the transport of
surfactant between the interface and the bulk phase is modelled [15]. We consider
the linear Henry equation of state

Si.ci; c� / D ka;iC
1
� ci � kd;ic� and �.c� / D �0

�
1C E

�
1 � c�

C1
�

��
; (1.9)

or the nonlinear Langmuir equation of state

Si.ci; c� / D ka;i.C
1
� � c� /ci � kd;ic� and �.c� / D �0

�
1C E ln

�
1 � c�

C1
�

��
:

(1.10)

Here, ka;i and kd;i are the adsorption and desorption constants, respectively, �0 a
reference surface tension, E the surface elasticity constant, and C1

� a reference
surfactant concentration (linear case) or the maximum surface surfactant packing
concentration (nonlinear case).
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1.2.2 Dimensionless Weak Formulation in Fixed Domains

We introduce dimensionless variables by setting

Qx D x
L
; Qu D u

U1
; Qw D w

U1
; Qt D U1t

L
; Qp D p

�1U21
; Qc� D c�

C1
�

; Qci D ci
C1

;

where L is a characteristic length, U1 is a characteristic velocity, and C1 is a
characteristic surfactant concentration in the bulk regions. In order to simplify the
notations we drop the tilde afterwards. Then, the model equations are parameterised
by the following dimensionless numbers: the Reynolds number Re, the Weber
number We, the Froude number Fr, the Peclet numbers for the bulk surfactant
transport Pei, the Peclet number for the surface surfactant transport Pe� , the Biot
numbers Bii, the Damköhler numbers Dai, the surface elasticity E, the surfactant
scaling ˇ, and the dimensionless scaling factors �2=�1 and �2=�1. In more detail,
the dimensionless numbers are given by

Re D
�
Re1 x 2 ˝1

Re1�1=�2 x 2 ˝2

; where Re1 D �1U1L

�1
;

We D �1U21L

�0
; Fr D U21

Lg
; Pei D U1L

Di
; Pe� D U1L

D�
;

Bii D kd;iL

U1
; Dai D ka;iC1

�

U1
; ˇ D C1

�

LC1
;

with i D 1; 2; and � D
�
1 x 2 ˝1

�2=�1 x 2 ˝2

:

The weak formulation of the problem is derived as usual. Multiplying with test
functions v 2 V.˝/ WD H1

0.˝/
d, q 2 Q.˝/ WD L20.˝/, ' 2 G.˝/ WD H1.˝1/ �

H1.˝2/,  2 M.� / WD H1.� /, applying integration by parts to remove the highest
order of differentiation, and incorporating the boundary conditions, we obtain the
weak formulation of the two-phase problem:

Problem 1 Find .u; p; c; c� / 2 V � Q � G � M such that for all .v; q; ';  / 2
V � Q � G � M

.�@tu; v/C a.u;u; v/� b. p; v/C b.q;u/ D f .c� ; v/;

.@tc; '/C ac.u; c; '/ D fc.c; c� ; '/;

d

dt

Z

�

c�  d� C a� .u � w; c� ;  / D f� .c; c� ;  /:
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For the case of a free surface flow we set ˝.t/ D ˝1.t/, Q.˝/ WD L2.˝/, and the
equations on˝2.t/ are omitted. The above forms are given by

a.z;u; v/ D
�
2

Re
D.u/; D.v/

�
C .�.z � r/u; v/

b.q; v/ D .q;r � v/

f .c� ; v/ D 1

Fr
. �e; v/� 1

We
h�.c� /.I � n ˝ n/;r� vi�

ac.z; c; '/ D
2X

iD1

�
1

Pei
.rci;r'i/˝i C .z � rci; 'i/˝i

�

fc.c; c� ; '/ D �ˇ
2X

iD1
hSi.ci; c� /; 'ii�

a� .z; c� ;  / D 1

Pe�
hr� c� ;r�  i� � hc� z;r�  i�

f� .c; c� ;  / D
2X

iD1
hSi.ci; c� /;  i� :

Further, .�; �/, .�; �/˝i , and h�; �i� denote the inner product in L2.˝/, L2.˝i/,
and L2.� /, respectively, as well as its vector- and tensor-valued versions. The
dimensionless surface tension law and the dimensionless source terms are given by

�.c� / D 1C E.1� c� /; S.ci; c� / D Dai
ˇ

ci � Bii c�

in case of the Henry sorption isotherm and by

�.c� / D 1C E ln.1 � c� /; S.ci; c� / D Dai
ˇ

ci.1 � c� /� Bii c�

for the Langmuir sorption isotherm.

1.3 Finite Element Methods on Fixed Surfaces

The weak formulation of the two-phase or free surface flow contains an convection-
diffusion type surface equation. Whereas finite element methods for bulk equations
are well studied, the extension of these techniques to curved surfaces is an area of
current research. The development of finite elements on surfaces started with the
study of the Laplace-Beltrami equation on a fixed surface in [13]. An overview of
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the recent state of the art including different approaches and moving surfaces is
given in [14].

In this section we present a finite element method for surface equations of
convection-diffusion type. Additionally, we introduce a LPS technique for surface
equations to reduce oscillations occurring at interior layers. The last part of this
section handles a coupled convection-diffusion problem in the bulk phases and on
the surface. Discretization techniques, solvability and error estimates are given.

1.3.1 Advection-Diffusion Problem

We study a steady state convection-diffusion equation on a given closed surface �
instead of the surface equation (1.8) of the origin problem. By partial integration of
the diffusion term we get the following problem

Problem 2 Find u 2 H1 .� / such that for all v 2 H1 .� /

" hr� u;r� vi� C hr� u;wvi� C h�u; vi� D h f ; vi� :

Here, w and f are the given velocity field and right hand side, and " the diffusion
coefficient. We set � D r� � w C c with c being the reaction coefficient. Since �
is not moving in time, we assume w � n D 0 on � . Further, we suppose 0 < �0 �
� � 1

2
r� � w � �1 to get unique solvability of the problem.

1.3.2 Surface Approximation and Discrete Problem

In the discretization of the surface equation in Problem 2 using finite elements
several additional particularities have to be taken into account.

The given surface � is discretized by �h, such that all nodes of �h are on � .
The geometric error introduced by the different integration domains and surface
operators is estimated in [14]. We consider isoparametric surface approximation of
order k � 1. In the simplest case, k D 1, the isoparametric surface �h is a linear
interpolation of � by flat simplices. In the general case, �h is the union of curved
simplices K, which are given as the image of a bijective mapping FK 2 Pk.bK/d of
the reference simplex bK � R

d�1. Thereby, Pk.bK/ is the space of polynomials of
degree less than or equal to k. Hence, FK is a parametrisation of the element K over
the reference triangle bK, which has to be taken into account. Additionally, we need
to extend the quantities given on � to a neighbourhood U of � including �h. The
extension operator :e is given as the constant extension along the surface normal.
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Introducing a mapped Lagrangian surface finite element space of order k via

Vh D fvh 2 H1 .�h/ jvh ı FK 2 Pk.bK/ for all elements K in �hg (1.11)

the discretized problem reads:

Problem 3 Find uh 2 Vh such that for all vh 2 Vh

ah .uh; vh/ D fh .vh/

with

ah .uh; vh/ D " hr�huh;r�hvhi�h C hr�huh;w
evhi�h C h�euh; vhi�h

fh .vh/ D h f e; vhi�h :

We want to point out that � is discretized by �e D .r� � w/e C ce instead of
r�h � we C ce. This transfers the assumptions from � on � to �e on �h. However,
an estimate of the difference between the discrete divergence r�h � we and the
discretized divergence .r� � w/e can be shown

kr�h � we � .r� � w/e k1;�h � Chkkr�wk1;� : (1.12)

1.3.3 Standard Galerkin FE Method

Using (1.12) the coercivity of the bilinear form ah in Vh equipped with the standard
H1-norm is proven for h being small enough uniformly in " and unique solvability
follows. Considering convection dominated problems one is interested in error
estimates uniformly in ". We get coercivity of ah in Vh equipped with the norm

jjjvjjj WD �
"kr�hvk20;�h C �0kvk20;�h

�1=2
:

with a constant independent of ".
The solution u W � ! R of the continuous problem and the solution uh W �h ! R

are defined on different domains, thus cannot be compared directly. Therefore, the
error between uh and the extension of u onto �h is evaluated. Using an isoparametric
Galerkin approach of order k we obtain

jjjue � uhjjj � C
�
hkC1 .kukk;� C k fk0;� /C hkkukkC1;�

�

with a geometric error of order k C 1 and a finite element error of order k.
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1.3.4 Local Projection Stabilization

For convection-diffusion equations in the bulk, it is well known that standard
Galerkin finite element methods can lead to unphysical oscillations, if convection
dominates diffusion and layers are unresolved by the mesh. Several stabilization
techniques as Streamline Upwind Petrov Galerkin [29, 35], Continuous Interior
Penalty [8, 9], and LPS [5, 33] have been developed for bulk equations. However, for
surface equations only the Streamline Upwind Petrov Galerkin method on unfitted
finite elements has been studied so far [38]. We present a LPS technique for fitted
finite elements on surfaces.

LPS is based on an additional control over the gradient of the solution by adding
a stabilization term to the discrete bilinear form ah. To define the stabilization term
a discontinuous projection space Dh is needed. The restriction of Dh to one element
K is denoted by DK . We introduce an elementwise L2 projection �K W L2 .K/ ! DK

into the projection space. We define the fluctuation operator 	K W L2 .K/ ! L2 .K/
as 	K D id � �K and set the stabilization term to

LPS .uh; vh/ D
X

K2�h
�K h	K .r�huh/ ; 	K .r�hvh/iK :

Here �K are the stabilization parameters. The error analysis of the method provides
that �K has to be chosen as �K D �2hK with a fixed � to get the optimal convergence
order. The best value of � is problem dependent and has to be found empirically. The
stabilized problem reads:

Problem 4 Find uh 2 Vh such that for all vh 2 Vh

as .uh; vh/ WD ah .uh; vh/C LPS .uh; vh/ D fh .vh/ :

According to the bilinear form as we introduce the s-triple norm

jjjvjjjs D
 

"kr�hvk20;�h C �0kvk20;�h C
X

K

�Kk	K .r�hv/ k20;K
!1=2

:

By construction we get the coercivity of as in Vh equipped with the s-triple norm
under the same restriction for h as in the standard Galerkin case. Using the Lax-
Milgram lemma the unique solvability of Problem 4 is shown.

We can improve the error estimate from Sect. 1.3.3 utilize the stronger s-triple
norm following the idea from [33]. To this end, we assume the existence of a Dh-
orthogonal interpolator jh W H2 .�h/ ! Vh with interpolation order k. The existence
of such an interpolator depends on the choice of Vh and Dh and is related to a local
inf-sup condition. Common pairs on triangles are Vh D P

C
k , e.g. Pk enriched by

b �Pk�1 where bjK 2 H1
0.K/, 8K 2 �h, is a piecewise cubic function, andDh D P

disc
k�1

[33].
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For an isoparametric approach, e.g. Vh D P
C
k , Dh D P

disc
k�1 and surface

approximation with polynomials of degree k, we get the following convergence
estimate

jjjue � uhjjjs � ChkC1 .kukr;� C k fk0;� /C Chk
�
"1=2 C �h1=2

� kukkC1;� :

Thus, for LPS we have stability in the stronger s-triple norm and an improved kC1=2
order of convergence in the convection dominated case " < h.

1.3.5 Coupled Bulk-Surface Transport Problem

The next step is to couple the investigated surface equation on � to steady-state
convection-diffusion equations in the bulk domains˝i. We study the problem

� "i
ui C w � rui D fi in˝i; i D 1; 2; (1.13)

�"� 
� u� C w � r� u� D L
P2

iD1 Si .ui; u� /C f� on �; (1.14)

.�1/i "i @ui
@n

D Si .ui; u� / on �; i D 1; 2; (1.15)

"2
@u2
@n

D 0 on @˝ (1.16)

using the linear Henry source term, compare Sect. 1.2.1.We assume that the velocity
fieldw satisfies r �w D 0 in the bulk phases˝i, i D 1; 2, r� �w D 0 on the interface
� , w � n D 0 on � [ @˝ and f D . f1; f2; f� / fulfilling the solvability condition

Z

˝1

f1 dx C
Z

˝2

f2 dx C 1

L

Z

�

f� d� D 0:

The solution u D .u1; u2; u� / of this problem is only fixed up to an additive
constant �k, with k D .k1; k2; k� / and Si .ki; k� / D 0, i D 1; 2. To get uniqueness
the condition of a given massM is added.

We build the weak formulation summing up scaled weak formulations of the
single equations such that the terms coming from the source term become symmetric
in u and v. We end up with the bilinear form

a .u; v/ WD
2X

iD1
˛i
	
"i .rui;rvi/˝i

C .w � rui; vi/˝i




C˛� Œ"� hr� u� ;r� v� i� C hw � r� u� ; v� i� �
Ckd;2 hS1 .u1; u� / ; S1 .v1; v� /i� C kd;1 hS2 .u2; u� / ; S2 .v2; v� /i� ;
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where we set ˛1 WD ka;1kd;2, ˛2 WD ka;2kd;1 and ˛� WD kd;1kd;2=L. One can easily
check that under the additional mass condition the weak formulation is uniquely
solvable.

For discretization we use an interface fitted triangulation of ˝ . Let �h be the
piecewise linear approximation of � as described in Sect. 1.3.2. The polygonal
approximations˝1;h and˝2;h of˝1 and˝2 are aligned to �h, e.g.˝1;h\˝2;h D �h.
The linear surface approximation leads to a geometric error of order two for the
surface terms but for bulk terms we get only an order of 3=2.

The approximation space Vh is build by linear continuous finite elements in
the bulk and on the surface. Then, introducing a discretized mass condition the
discretized problem reads:

Problem 5 Find uh 2 Vh fulfilling the discretized mass condition such that

ah .uh; vh/ D f .vh/ WD
2X

iD1
˛i . fi; vh;i/˝i

C ˛� h f� ; vh;� i� for all vh 2 Vh

with

ah .uh; vh/ WD
2X

iD1
˛i"i .ruh;i;rvh;i/˝h;i

C ˛� "� hr�huh;� ;r�hvh;� i�h

C
2X

iD1

˛i

2

h
.we � ruh;i; vh;i/˝h;i

� .we � rvh;i; uh;i/˝h;i

i

C ˛�

2

	hwe � r�huh;� ; vh;� i�h � hwe � r�hvh;� ; uh;� i�h



C k2;d hS1 .uh;1; uh;� / ; S1 .vh;1; vh;� /i�h
C k1;d hS2 .uh;2; uh;� / ; S2 .vh;2; vh;� /i�h :

In the space Vh restricted to the functions fulfilling the discretized mass condition
and equipped with the corresponding energy norm coercivity of ah is shown. Unique
solvability follows directly.

Unfortunately, for this coupled bulk surface transport problem we do not have
L2-control uniformly in the diffusion parameters "1, "2, "� as for the Problem 2.
Nevertheless, numerical tests show that the LPS improves stability and for fixed "
first order convergence can be established.

In [28] a slightly different weak formulation of (1.13)–(1.16), leading to a non-
coercive bilinear form, has been studied for an unfitted finite element method
without stabilization. In addition to energy-type estimates an optimal L2-estimate
has been established.
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1.4 Finite Element Methods in Moving Domains

We describe the numerical scheme developed for the two-phase model (1.1)–(1.10).
One of the main characteristic is the application of the ALE method to handle
unknown moving interfaces.

1.4.1 Interface Capturing and Tracking Methods

The interface position has to be determined by the solution of the model equations.
Two main classes of methods have been developed in the past, the interface
capturing methods and the interface tracking methods.

Both methods have their advantages and disadvantages. The interface capturing
methods can handle topological changes, like break-up and coalescence of phases,
well and automatically. On the other hand, the handling of the marker function
and the reconstruction of the interface induces several difficulties, like the accurate
incorporation of surface tension forces, due to the implicit nature of the method.
On the contrary, handling topological changes is very difficult with the tracking
methods, but incorporation of surface properties, like surface tension, is quite easy.

In the class of tracking methods, the distinction in unfitted and fitted schemes
gives further choice with correlated advantages and disadvantages. The unfitted
methods are easy to implement, since the marker grid is independent from the bulk
grid, hence existing code can be extended easily. But, since unfitted methods cut
cells, they introduce discontinuities in the interior of a mesh cell. Special methods,
like XFEM, had to be developed to handle those discontinuities. The fitted schemes
do not cut cells, hence discontinuities appear only across cell boundaries and are
easy to handle. But, special treatment is need for the bulk mesh, otherwise the
alignment is lost. The bulk grid can no longer be a fixed grid, therefore special
methods, like the ALE method, had to be developed.

1.4.2 Arbitrary Lagrangian-Eulerian Method

The ALE method is an interface tracking method [36]. The tracking grid, i.e. the
discrete interface, is part of the bulk grid itself, consisting of faces of it.

At each instance of time t, the evolving domain is described by a mapping At W
Ő ! ˝.t/ from a reference domain Ő onto the domain ˝.t/. A point x in the
domain ˝.t/ is given by x D At.Ox/. Functions Ov.t; Ox/ on the reference domain and
functions v.t; x/ on the evolving domain are related through Ov.t; Ox/ D v.t;At.Ox//.
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Time derivatives can be expressed in a Lagrangian frame, respective the domain
velocity w, such that a differential equation can be given regarding the evolving
domain. In case of a convection-diffusion equation, the ALE form is given as

.@t Oc/ ı A �1
t C D
c C .u � w/ � rc D 0:

Similarly, the Navier-Stokes equations are transformed as

.@t Ou/ ı A �1
t C .u � w/ � ru � r � S.u; p/ D ge

In both cases an additional convection term with the domain velocity w occurs.
The time derivative is now a material derivative with respect to w. Note that the
equations are evaluated on the evolving domain, also called Eulerian frame. The
ALE form of the partial differential equations becomes the starting point for our
finite element discretization.

The domain velocity is, to a certain degree, arbitrary, since the model prescribes
only the normal component on the interface. The choice for the extension of w into
the bulk domain is of importance for the stability of the scheme. Different choices
and their advantages and disadvantages are discussed in the next subsection.

1.4.3 Computation of the Domain Velocity

During the evolution of the domain the grid quality may undergo a strong deteri-
oration. Since the grid quality is important for the accuracy of the finite element
solution, this has to be avoided. If the grid quality becomes poor, a remeshing has
to be done, which is essentially a restart of the simulation. A new grid with good
quality is generated from the old grid, the current solution is transferred to the new
grid, and the simulation continues. This step is very costly and introduces additional
errors. Thus, it is best to have as few remeshing steps as possible.

The freedom in the domain velocity, introduced by the ALE method, is used to
decrease the number of remeshing steps, or to avoid them at all. Two choices are
important, how to advance of the interface and how to extend the interface velocity
to the bulk domain velocity.

A simple method to extend the domain velocity is to do a harmonic extension
of the interface velocity. The harmonic extension is very fast, since it has a special
block structure, which allows to solve for each component of w with one smaller
system. Further, it can be shown that the harmonic extension is the method which
shows minimal distortion in a L2-sense [37].

A second method, that was used, is the linear elastic extension, where the grid
is treated as a linear elastic body. The solution of the resulting system is more
expensive, due to the coupling of the velocity components. But, under certain cir-
cumstances, the method shows better results in regions of large deformations [32].
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In both cases, the additional problem of the domain velocity extension is solved
by a first order finite element method. Since the velocity extension step has to be
done in each nonlinear iteration step of the Navier-Stokes solver, the performance
of the velocity extension step is crucial. We prefer the harmonic extension method,
due to its features: being fast and overall good.

More important for the grid quality, than the velocity extension into the bulk,
is the choice of the interface velocity. Since the interface velocity is coupled to
the fluid motion, most of the domain deformation happens there. However, the
freedom of choice for the tangential surface velocity can be used to optimize the
point distribution and grid cell shape on the interface.

An obvious method to advance the interface is by moving the grid nodes in a
classic way, as a function of the fluid velocity

Px D wj� D F.u/ on �: (1.17)

F can be chosen to be, either the full fluid velocity F.u/ D uj� , or the normal
component of the fluid velocity F.u/ D .n � uj� /n. The classical discretization of
this equation, e.g. with an Euler method, results in a stepping scheme for the n-th
grid node xin at time step i

xiC1n D xin C
tF.uiC1n /:

In the continuous setting, both choices for F fulfill the kinematic interface
condition of the model and result in identical interfaces, since they distinguish in
the tangential component only. In the discrete setting, moving in normal direction
only, can prevent local accumulation or coarsening of nodes. On the other hand, a
local accumulation is often appreciated in order to resolve the local structure of the
interface, hence full velocity has to be favored in those cases. The decision, which
version is best, is not obvious and has to be taken from case to case. However, both
versions suffer from the general problem that there is absolute no control of the node
distribution and of the shape of surface cells.

In order to get more control over the node distribution, a new method has been
developed by Barrett et al. [4]. A weak formulation of (1.17) with F.u/ D .n �uj� /n
was used and completed with an equation for the curvature using the weak form of
Laplace-Beltrami identity�� id D K n.

Problem 6 For given xn 2 Pk.�h/
d find .xnC1;K / 2 Pk.�h/

d � Pk.�h/ such that
for all .
; �/ 2 Pk.�h/

d � Pk.�h/

˝
xnC1 � xn; �n

˛h
�

�
tn hu; �ni� D 0;

hK n; 
ih� C ˝r� xnC1;r� 

˛
�

D 0:

By using piecewise linear finite elements and a lumped version h�; �ih of the bilinear
form of certain terms it can be shown that the semi-discrete, time continuous
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problem has the property of equi distributed nodes in the 2d case. The fully discrete
scheme reaches equi distribution of nodes after a few steps [3].

This approach has been extended to piecewise quadratic isoparametric finite
elements. Unfortunately, it turned out that the good properties are not transferring.
The equi distribution of nodes is lost or takes an unrealistic amount of iteration steps
and therefore cannot keep up with the fluid motion. A solution to keep the very good
properties of the scheme for piecewise linear elements for isoparametric elements
too, is to apply the scheme on a refined piecewise linear grid defined by all nodes of
the isoparametric grid and piecewise linear elements. Further, using the full bilinear
forms instead of the lumped ones, the nodes distribute according to the curvature of
the interface. In regions of high curvature a higher number of nodes accumulate than
in regions of low curvature, which is a beneficial property, since it uses the existing
nodes efficiently for problems with varying curvature.

By using a linear combination of the lumped and non-lumped scheme, the user
gets a parameter to control the node distribution from equi distributed to curvature
dependent.

1.4.4 Discretization in Time and Space

We consider the time discretization now. Let 0 D t0 < t1 < � � � < tN D T be a
decomposition of a time interval Œ0;T� and 
tn D tnC1 � tn be the time step size
from time tn to tnC1. Discrete functions and domains at time tn, n D 0; : : : ;N get a
superscript n, e.g. un and ˝n. To emphasize the integration domain the forms get a
superscript too. A generalized semi-discrete in time scheme of the two-phase flow
problem with soluble surfactants reads:

Problem 7 For given ˝n
k , k D 1; 2, un, wn, pn, cn and cn� find

�
unC1; pnC1;

cnC1; cnC1
�

� 2 V.˝nC1/ � Q.˝nC1/ � G.˝nC1/ � M.� nC1/ such that for all
.v; p; ';  / 2 V.˝nC1/ � Q.˝nC1/ � G.˝nC1/ � M.� nC1/

�
�unC1; v

�nC1 C ˛
tn
	
anC1 �unC1 � wnC1;unC1; v

�
˝nC1 � f nC1.cnC1

� ; v/



C
tn
	
bnC1.q;unC1/� bnC1. pnC1; v/




D .�un; v/n � ˇ
tn
	
an .un � wn;un; v/� f n.cn� ; v/



(1.18)

�
cnC1; '

�nC1 C ˛
tn
	
anC1
c

�
unC1 � wnC1; cnC1; '

� � f nC1
c .cnC1; cnC1

� ; '/



D .cn; '/n � ˇ
tn
	
anc .u

n � wn; cn; '/� f nc .c
n; cn� ; '/



(1.19)

˝
cnC1
� ;  

˛nC1 C ˛
tn
	
anC1
�

�
unC1 � wnC1; cnC1

� ;  
� � f nC1

� .cnC1; cnC1
� ;  /




D ˝
cn� ;  

˛n � ˇ
tn
	
an�
�
un � wn; cn�  

� � f n� .c
n; cn� ;  

�
� (1.20)
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Table 1.1 Coefficients for time stepping schemes

Fractional step-�
Forward Euler Backward Euler Crank-Nicolson Substep 1 Substep 2 Substep 3

˛ 0 1 0.5 0.585786 0.414214 0.585786

ˇ 1 0 0.5 0.414214 0.585786 0.414214

For different coefficients ˛ and ˇ, different time stepping methods are obtained.
In particular, the backward Euler scheme, the forward Euler scheme and the Crank-
Nicolson scheme, see Table 1.1. By combining three time steps, of size � , 1 � 2� ,
and � , to one step .t3n; t3.nC1// and with � D 1� p

2=2 and choosing the coefficient
according to Table 1.1 the fractional-step-� scheme is obtained [42].

The equation system given in Problem 7 is highly nonlinear. Decoupling
strategies are developed in order to split the problem into several smaller and
simpler problems. Considering c� explicit in the Navier-Stokes equations, they
decouple from the surfactant transport equations. Further, the integration domains
˝ and � are taken explicit in the Navier-Stokes step, but the domain velocity w is
updated. The resulting problem is a standard Navier-Stokes problemwith a modified
convective velocity unC1 � wnC1.

Problem 8 For given˝n
k , k D 1; 2, un,wn, pn, and cn� find .unC1; pnC1/ 2 V.˝n/�

Q.˝n/ such that for all .v; p/ 2 V.˝n/ � Q.˝n/

�
�unC1; v

�n C ˛
tn
	
an
�
unC1 � wnC1;unC1; v

� � f n.cn� ; v/



C
tn
	
bn.q;unC1/� bn. pnC1; v/




D .�un; v/n � ˇ
tn
	
an .un � wn;un; v/ � f n.cn� ; v/



: (1.21)

Having the solution of the Navier-Stokes step given in Problem 8, the grid can be
updated to ˝nC1

i , i D 1; 2, and � nC1. The functions unC1, wnC1 and pnC1 are
transferred implicit to the new grid.

After the Navier-Stokes step the surfactant transport is solved on the new grid
˝nC1 and � nC1, using the updated velocity fields unC1 and wnC1. The surfactant
transport equations for the bulk and the surface are decoupled likewise. For each
equation the remaining information is taken explicit. Although, this would not be
necessary for the linear Henry sorption law, in the case of the non-linear Langmuir
sorption law a nonlinear iteration is required anyway.

Problem 9 For given ˝nC1, � nC1, unC1, wnC1, cnC1
0 D cn, cnC1

�;0 D cn� find
.cnC1

j ; cnC1
�;j / 2 G.˝nC1/�M.� nC1/, such that for all .';  / 2 G.˝nC1/�M.� nC1/

and i D 1; 2; : : : ;M

�
cnC1
j ; '

�nC1 C ˛
tn
h
anC1
c

�
unC1 � wnC1; cnC1

j ; '
�

� f nC1
c .cnC1

j ; cnC1
�;j�1; '/

i

D .cn; '/n � ˇ
tn
	
anc .u

n � wn; cn; '/� f nc .c
n; cn� ; '/



(1.22)
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D
cnC1
�;j ;  

EnC1 C ˛
tn
h
anC1
� .unC1 � wnC1; cnC1

�;j ;  / � f nC1
� .cnC1

j ; cnC1
�;j ;  /

i

D ˝
cn� ; '

˛n � ˇ
tn
	
an� .u

n � wn; cn� ;  / � f n� .c
n; cn� ;  /



: (1.23)

Here, j is the nonlinear iteration step and M the number of nonlinear iterations,
resulting from the stopping criterion.

Finally, we take a closer look to the spatial discretization. Pressure discontinuities
across the interface are an inherent property of two-phase flows with surface
stresses. A finite element space that resolves this discontinuities is essential to get an
acceptable approximation order and to suppress spurious velocities and oscillations
at the interface [23].

In the unfitted approach the finite element space is enriched by the XFEM finite
element method [27] in order to resolve discontinuities in pressure and kinks in
the velocity fields. If the grid is fitted to the interface velocity kinks are resolved
automatically and pressure jumps are resolved by having either a classical element-
wise discontinuous pressure space or by taking a continuous pressure but allow
jumps across the interface. By the so called node doubling, where the degrees of
freedom are not identified at the interface, the pressure can have different values for
each phase at the interface.

For a polyhedral domain it can be shown that node doubling the pressure space
at the interface results in an inf-sup stable pair of finite element spaces, as long
the underlying finite element pair is inf-sup stable in each phase. For the standard
Taylor-Hood finite element family this is the case, under the usual assumptions to
the subdomains and their triangulations. For a smooth interface a corresponding
result is still left open.

Apart from spurious velocities and a poor approximation, not allowing a
discontinuous pressure also results in a poor mass conservation. In fact, the mass
conservation can only be guaranteed having a phase-wise discontinuous pressure. If
this is not the case, it can happen that one phase vanishes.

We use the standard isoparametric Taylor-Hood element P2=P1 with node
doubling in the pressure space, which can avoid the above-mentioned problems.

1.5 Numerical Results

The codes for numerical studies are all in-house developments. For the fully coupled
time dependent Problem 1, a code based on MooNMD was developed. MooNMD is an
in-house finite element code base written in C++. While the less demanding 2d and
3d axisymmetric computations are done with serial codes, the fully 3d computations
are done with a parallelized version of the code base. The parallelization is done by
domain decomposition and using the MPI standard. A numerical study of the fully
coupled two-phase Problem 1 is given in [2] and will not repeated here. The fully
coupled numerical studies presented in the following are free surface flows.
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For the static shape computations in Sect. 1.5.2 a standalone code was developed
in Matlab. This code is fully independent from the code developed for the fully
coupled time dependent problems.

For the studies of surface equation in Sect. 1.5.1 a code in the language
Julia [7], was developed. The code handles general differential equations on
hypersurfaces in two or three dimensions. Stabilization by Local Projection is
implemented.

1.5.1 Stabilized Advection-Diffusion Transport on a Surface

This example is inspired by Example 2 from [20], where a circular counter-
clockwise flow in the domain Œ0; 1�2 is simulated. The problem is transferred to
a curved surface, and Problem 2 is solved.

Given a cylinder of radius 0:5 around the axis x D 0:5 parallel to the y-axis with
height one. We set � to the half of the cylinder, where z � 0. The velocity field
.�y; x/ in the plane case [20] is transferred to the curved surface resulting in

w D
�

��yz; 1
�
arccos.1� 2x/;��

2
.1 � 2x/

�T

:

The right hand side, diffusion and reaction coefficient are set to f D 0, " D 10�8
and c D 0, respectively. Along the outflow boundary, f.0; y; 0/ jy 2 .0; 1/g, we
impose homogeneous Neumann conditions. On the remaining part of the boundary
the following discontinuous Dirichlet-type boundary condition is prescribed

uD.x; y; z/ WD
�
1; if y D 0 and x 2 � 1

3
; 2
3

�

0; else
:

For the standard Galerkin approximation P1 surface finite element space is used.
This is compared to the LPS stabilized formulation using Vh D P

C
1 and Dh D P

disc
0

on the same mesh. The stabilization parameter is chosen as �2 D 1:0 (high), �2 D
0:1 (optimal), and �2 D 0:01 (low).

The discontinuous Dirichlet-type boundary conditions lead to interior layers
of the solution. As observed for bulk equations numerical oscillations around the
layers occur for the unstabilized Galerkin method, compare Fig. 1.1 (left). LPS
can reduce and localize these oscillations, see Fig. 1.1 (right). The influence of the
stabilization parameter is visualized in Fig. 1.2. For small " we expect the outflow
profile to approximate a step function. We observe a tendency of smearing out for
the (too) low stabilization parameter and increasing oscillations for the (too) high
stabilization parameter [41].
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Fig. 1.1 P1 part of the solutions of the transport problem on a surface for the standard P1 (left)
and the LPS-stabilized FEM with optimal stabilization parameter (right). View on x-y-plane
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Fig. 1.2 P1 part of the solutions of the transport problem on a surface at the outflow boundary for
the LPS-stabilized FEM with low, optimal and high stabilization parameter

1.5.2 Equilibrium Shape of a Pending Drop

In order to study the accuracy of the implemented algorithm we evaluate the shape
of axisymmetric pendant droplets at a tip of a capillary. This is a typical situation in
profile analysis tensiometry (PAT) for measuring the surface tension of liquids. In
PAT a pendant drop is growing up to a certain volume at a capillary tip by a dosing
system. The profile is then extracted from a picture of the drop by image processing
and fitted to a solution of the Young-Laplace equation. It turns out that the shape
of a dynamically generated drop differs considerably from the static shape, see e.g.
[30]. We consider here the relaxation of clean and contaminated pendant drops at a
tip of a capillary to the equilibrium state. For this two numerical schemes and are
developed.
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In [26] four different methods have been proposed to compute the static shape of
axisymmetric drops at a tip of a capillary for a given drop volume and a given Bond
number Bo D We=Fr. The method used in this section is based on an equivalent
formulation of the problem as a constrainedminimization problem: Find the surface
of minimal energy which encloses a given fixed drop volume Vol. Applying the
method of Lagrange multiplier and using a discretization by continuous, piecewise
linear finite elements, we have to solve a nonlinear algebraic system of equations. As
the initial guess for the Newton method we chose a piecewise linear approximation
of a spherical shape enclosing the given volume. More details on this method and
alternatives can be found in [26].

A 3d axisymmetric version of the 3d code based on the techniques described in
Sects. 1.2–1.4 has been developed. Instead of starting with the strong axisymmetric
form of the partial differential equation and deriving a weak formulation in suitable
weighted Sobolev spaces we follow the approach in [18] where the 3d axisymmetric
forms are developed directly from the 3d Cartesian forms. One advantage of
this technique is that the boundary conditions at the artificial boundary along the
symmetry axis appear in a natural way.

The geometric configuration of our test problem is as follows. The dimensionless
radius of the capillary tip is equal to one its height equals also one. The axisymmetric
pendant drop is assumed to have a pinned contact line (circle of radius one). The
volume of the drop below the capillary is chosen to be Vol D 60. We start our test
series with a surfactant free drop in equilibrium for Bo D 0:006708. As expected
the drop stays in equilibrium and the bottom position remains unchanged, compare
Table 1.2. Now we assume that the surface tension is suddenly reduced (uniformly
over the surface � ) leading to the Bond numbers Bo=0.013416 and Bo=0.03354, for
two different values of surface tension. Since the drop is no longer in equilibrium, it
starts to oscillate. In the dynamic computations with the 3d axisymmetric code,
we chose Re D Fr D 1 such that We D Bo. We observe a perfect fit of the
bottom position (Table 1.2 and Fig. 1.3) and the shape of the drop (Fig. 1.4 left)
computed by the static code and the dynamic computations for t ! 1. Note
that larger amplitudes appear for the larger Bond number (larger reduction of
surface tension). For the largest Bond number of Bo=0.067080 there exist a static
equilibrium, however, due to the large amplitudes the dynamic computations predict
the detachment of the drop. Our interpretation is that the static equilibrium is not
stable with respect to large perturbations. We close this test series with a surfactant
free droplet in equilibrium for Bo D 0:006708 and Vol D 60. Two uniform initial
states for the bulk surfactant concentration are considered: .c0; c�;0/ D .1; 0/ and
.c0; c�;0/ D .3; 0/. The dimensionless parameters are Re D Fr D 1, Pe D 1,
Pe� D 10, Bi D 0, Da D 10, E D 0:5, ˇ D 100, and the Henry sorption law

Table 1.2 Bottom positions
in equilibrium for different
Bond numbers

Bo 0.006708 0.013416 0.033540 0.067080

ymin �4.7222 �4.7968 �5.0477 �5.6648

ydynmin �4.7222 �4.7969 �5.0477 –
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Fig. 1.3 Bottom position of a clean drop with suddenly reduced surface tension. Dynamic
computations for Re D Fr D 1, We D Bo D 0:013416 (left) and We D Bo D 0:033540
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Fig. 1.4 Left: Clean drop with suddenly reduced surface tension. Initial, equilibrium, and final
shape after relaxation for Re D Fr D 1, We D Bo D 0:033540. Right: Uniform surface surfactant
concentration over time for a clean drop and two different initial bulk concentrations

is used. Since Bi D 0 we have no desorption and only adsorption takes place. The
increase of the surface surfactant concentration c� in the time interval Œ0; 5� can be
seen in Fig. 1.4 right.

The surfactant at the surface leads to a reduction in the surface tension and the
drop is no longer in equilibrium. As it can be seen from Figs. 1.4 and 1.5 the time
scale for the adsorption is much shorter than the time scale to attain the equilibrium.
We see from Fig. 1.5 and Table 1.3 that even for a very small change in the surface
tension, due to surfactant, our numerical scheme accurately captures the dynamics
and the equilibrium bottom position. We do not compare the shapes of the relaxed
drop with the shape of the equilibrium in an extra figure since they are practically
identical.
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Fig. 1.5 Relaxation of a drop with soluble surfactant with different initial bulk concentrations.
c0 D 1 (left) and c0 D 3 (right)

Table 1.3 Influence of
adsorption of surfactants at
the interface

c� We ymin ydynmin

c0 D 1 0.094106 0.007039 �4.7258 �4.7259

c0 D 3 0.298672 0.007886 �4.7350 �4.7351

1.5.3 Freely Oscillating Droplet

A wide variety of analytical investigations of oscillating droplets make it an
excellent choice for validation of numerical schemes and codes [31, 34, 40]. Here we
will compare the theoretical models of oscillating droplets with soluble surfactant
[40] and insoluble surfactant [34] to our fully three dimensional numerical scheme.

In the numerical computations gravity is neglected and the initial drop is in rest.
The shape is given by a sphere of radius one perturbed with a spherical harmonic
of second order and an amplitude of a2 D 0:1. The drop is not in equilibrium and
starts to oscillate. The Weber number is fixed to We D 0:0081 in all examples,
which will induce roughly five oscillations in the time interval Œ0; 1�. The timestep
size is 
t D 10�4, i.e. 10,000 steps per computation.

We consider two examples, an insoluble case with a Reynolds number of Re D
10:684 and a soluble case with Re D 1:0684. The Reynolds numbers are chosen
such that the dimensionless viscosity

p
WeRe�1 < 0:1, a bound given in [6, 39]

where nonlinear viscous effects become negligible and the analytic approximations
are valid. In both examples, the bulk and surface Peclet, the Damköhler and Biot
numbers are Pe D 1, Pe� D 1, Da D 1 and Bi D 1, respectively. The surface
surfactant scaling factor ˇ is set to one. The bulk surfactant concentration and the
equilibrium surface surfactant concentration for the initial droplet is set to ceq D
0:1111 and ceq� D 0:1, respectively.

From the linearized theory for small-amplitude oscillations of a drop, we can
predict the angular frequency and the damping rate of the oscillation [6, 11, 31, 39].
The results are given in Table 1.4, where !0;2 is the Lamb frequency,!2 the angular
frequency, and ı2 the damping rate of the second mode.
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Table 1.4 Lamb frequency,
angular frequency and
damping rate for different
Reynolds numbers

Re !0;2 !2 ı2

Soluble 1:0684 31.4270 31.0766 4.6799

Insoluble 10:684 31.4270 31.4235 0.4682
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Fig. 1.6 Comparison of the course of the second mode of an freely oscillation drop with soluble
surfactant (left) and insoluble surfactant (right), between the numerical simulation (sim) and the
analytic prediction (pred), for .Re;E/ D .1:0684; 1:0/ and .Re;E/ D .10:684; 1:0/, respectively

Theoretical results for an oscillating droplet with insoluble surfactants are
derived in [34]. A set of differential equations for the amplitude al of the l-th mode
of shape oscillation and amplitude gl of the l-th mode of the surface surfactant
concentration are given. In order to compare the insoluble theory with the results
here, the differential equations given in [34] are solved numerically with a Matlab
code using the ode45 routine.

Results for higher viscosities and a soluble surfactant case are given in [40]. For
the dimensionless complex frequency ˛ an first order approximation ˛ D i.1C "C
O."2//, is given, where " is specified by an explicit correlation from the material
properties. The damping rate is given by the real part, and the frequency by the
imaginary part of !0;2˛

In Fig. 1.6 (left) a comparison of the normalized amplitudes of the shape
oscillation in the soluble case is shown. Normalized means a2.t/ is scaled with
a2.0/�1 such that the graph starts at one. In the figure, the graph (sim) is the
shape oscillation by our numerical computation and the graph (pred) is the shape
oscillation obtain in [40]. We see a good agreement, although the prediction runs a
little ahead.

In Fig. 1.6 (right) a comparison of the normalized amplitudes of the shape
oscillation in the insoluble case is shown. The graph (pred) is the prediction of
the shape oscillation obtained by solving the equations in [34]. We see a good
agreement, the prediction runs ahead again and shows less damping.

In Fig. 1.7 (left) the damping rates versus different surface elasticities for the
numerical simulation (sim) and the prediction (pred) after [40] is shown. In
Fig. 1.7 (right) the same is shown for the frequencies.We see a quite good agreement
in the frequencies over the considered range of surface elasticities. The agreement
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Fig. 1.7 Damping rate versus surface elasticity (left) and angular frequency versus surface
elasticity (right) for Re D 1:0684 and soluble surfactant (left), for the numerical simulation (sim)
and the analytic prediction (pred)
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Fig. 1.8 Damping rate versus surface elasticity (left) and angular frequency versus surface
elasticity (right) for Re D 10:684 and insoluble surfactant, for the numerical simulation (sim)
and the analytic prediction (pred)

gets better for low surface elasticities. Contrary, we see an increasing disagreement
in the damping rates for lower surface elasticities and a better agreement for higher
surface elasticities.

In the case of insoluble surfactant, shown in Fig. 1.8, one gets a better agreement
for the damping rates at lower surface elasticities. The angular frequencies are in
good agreement for lower elasticities. Both, the mismatch in damping rate and the
frequency increases with higher surface elasticities.

This numerical example confirms, as expected, that the linear theory by Lamb
[31] fails to predict damping rates and frequencies for the case of viscous fluids and
fluids with surfactants present.

In both cases the numerical simulation overestimates the damping. The disagree-
ment increases with the surface elasticity in the insoluble case, what one might
expect, since the theory chosen from [34] is for small surface elasticities. Also,
the backward Euler scheme used in the numerical simulation introduces numerical
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damping. Contrary, in the soluble case, the disagreement increases with lower
surface elasticities, thus we expect a problem with the numerical damping, and a
lower time step size or a time discretization which introduce less numerical damping
could be necessary.

1.6 Summary

We summarize our main contributions within the SPP 1506:

• Numerical analysis and implementation of a surface finite element method for
convection-diffusion-reaction equations stabilized by local projection.

• Extension of the local projection stabilization to a coupled bulk-surface transport
problem. Error analysis and implementation.

• Development and implementation of a higher order, fitted finite element method
for two-phase and free surface flows with soluble and insoluble surfactants in 2d,
3d, and axisymmetric 3d cases.

• Application and validation of the developed algorithms in drop profile analysis
tensiometry.

• Validation of different schemes within the SPP 1506 based on the Taylor flow
problem. Comparison of numerical data and measurements of Taylor bubbles
[2].
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