
Chapter 6
The Rainbow of Mathematics—Teaching
the Complete Spectrum and the Role
Mathematics Competitions Can Play

Robert Geretschläger

Abstract Although it is clear to all of us with some stake in the teaching of
mathematics, that it is an important, valuable and fascinating pursuit, there
does not seem to be any real agreement concerning where its central value
lies with respect to what is taught in school. The core values of the subject
present themselves differently to teachers, math education researchers,
professional mathematicians and engineers, and this fact makes it difficult to
speak with a common vocabulary about what should be taught and how it
should be taught. In this paper, a model for the various aspects of mathe-
matics, ranging from “recreational” through “school” to “applied” is pre-
sented, and the role of mathematics competitions in the continuum of this
model is discussed. The various points raised in this model are then illus-
trated by a concrete example.
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6.1 Introduction

When people from heterogeneous backgrounds get together to think about
the role of mathematics in schools, it is important to have some kind of
common starting point for the discussion. As things stand, it has been my
experience that such a common starting point does not necessarily exist.
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(Note that much of what is being said in this paper is derived from my
personal experience. I am therefore taking the liberty of putting some things
in the first person. I am fully aware that this goes against common practice
in such papers, but it is my hope that it will be helpful for further discussion
if my personal opinions and experiences are clearly recognizable as such.)

In dealing with people involved with the didactics of mathematics and
curriculum development in Austria, there is currently a wide consensus to
the effect that the important central aspect of school mathematics lies more
or less exclusively in the application of mathematics to the “real world“
(whatever that may be; a point I will be getting back to in a moment). It is
taken as given to this group, that “pure” math is not really worthy of deep
consideration in the classroom, other than what is needed to be able to deal
with the most elementary of everyday applications. From this, a commonly
derived opinion states that any calculations or algorithmic aspects of
mathematics in the school context can and should be left completely to
calculators or computers, and not be done by actual human thought at all,
except in the most trivial of circumstances.

Speaking to people in the math competition community on the other
hand, we have an utterly different view of what is important (and funda-
mental) in mathematics. While there is certainly also disagreement within
this group, it is clear for people involved in competitions that the funda-
mentals of mathematics are represented by that part which is commonly
called “elementary” mathematics. The term “advanced elementary mathe-
matics” is often bandied about among the members of this community,
despite the fact that the concept is utterly foreign to the application-oriented
group. Members of this group also tend to be in full agreement that
enjoyment of the study of mathematics is of central importance. The internal
disagreement here often manifests itself with respect to the question of
whether or not the specific skills obtained in preparing for competitions will
transfer to actual research mathematics. There is, however, definitely
agreement concerning the fact that subjects in pure mathematics, which for
the purposes of mathematics competitions normally include combinatorics,
Euclidean geometry, algebra and number theory, are the most important
things for students to learn about and study in order to form a useful base of
mathematical knowledge and competence. The logical skills acquired in the
somewhat deeper study of these elementary topics are considered most vital
in students’ academic development.

Finally, speaking to teachers at the university level, the expectations of
math skills that students should bring along from secondary school are
different again. Furthermore, they are quite dependent on the specific aca-
demic discipline. Students in economics are expected to have quite deep
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knowledge of statistical methods, for example, while students in the natural
sciences or engineering are expected to have some knowledge of things like
differential equations or matrices; topics that go beyond what both of the
previously mentioned groups generally consider fundamental.

Obviously, we are dealing with a huge disconnect here. The object of this
paper is to shed some light on this disconnect, and to offer a fresh per-
spective. My hope is that this will make it possible to reflect better on the
somewhat contradictory viewpoints held dear by the various groups of
players in this corner of academia, and to ultimately improve the discussion
to the benefit of the students in our secondary schools. It is my firm belief
that the viewpoint offered by the universe of mathematics competitions has a
great deal to offer in this respect.

In order to find a common denominator for fruitful discussion, we first
need to achieve some basic agreement on what it is exactly that we are
trying to decide. We must therefore find common answers, acceptable to all,
to some quite fundamental questions.

The first of these is existential. Why do we think that mathematics is an
important subject in school? What are our fundamental reasons for teaching
mathematics as a core discipline in secondary education? As mentioned, the
answer to this question seems to depend greatly on the circumstances of the
person formulating an answer, and it seems clear that the concerns of each
of these groups should addressed seriously.

A second important question to be answered in this context has to do with
methodology. How do we best get students interested in the type of math-
ematics we want them to learn? Answering this question depends to a great
extent on the individual tastes of the students in question. Different students
have utterly different ideas of what is interesting and what is not. Relating
my own personal experience in this matter, I can certainly state that my own
interests have always been defined by pure mathematics, and geometry in
particular. On the other hand, I have good friends, who also happen to be
mathematicians, whose interests lie almost purely in applications, and their
original impetus for becoming mathematicians was not derived from interest
in pure math at all. For them, the gateway into mathematical research
resulted from the applications first and foremost, and the idea of discovering
mathematical ideas was always totally dependent on these ideas being useful
to solve concrete problems. They might consider my own deep interest in
the subject as being not much more than the enjoyment of mathematical
puzzles, and not really worthy of total academic commitment. (Of course,
since they are my friends, they are willing to allow me this luxury.)

The third problem to be addressed is purpose oriented. What are we
ultimately preparing students for in their mathematics classes? To which
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extent are we teaching them mathematics for their own enjoyment? To
which extent is this even appropriate? Are we teaching them primarily to
prepare for a specific role in society? Are we primarily training their
capacity for systematic logical thought? Are we preparing them for uni-
versity entrance, for mathematical capability that will allow them to study
technical subjects, natural sciences, or finance? Do we want to prepare them
in a deep manner for what is known in German as “Allgemeinbildung“?
(The term is, of course, derived from the Humboldtian ideal of higher
education. The concept does not translate very easily into English, and has,
in fact, mutated a bit in common understanding over the decades. It certainly
goes quite a bit beyond the literal translation of “general knowledge”. Some
thoughts on this can be found, for instance, in Skovsmose 1994.)

6.2 Defining the Rainbow

In order to illustrate some of the ideas in this paper, let us take a look at the
following picture (Fig. 6.1).

We first note that the central shaded block is composed of three sections,
carrying the labels Recreational Mathematics, School Mathematics, and
Applications of Mathematics. Above these, there floats a cloud containing
the word History, and underneath, we see a box containing some tools
alongside the word Didactics. We can often find a rainbow underneath a
cloudy sky, and it is certainly possible to consider the three sections in the
center as aspects in a continuous rainbow, just as the full spectrum of a
rainbow can be represented in a basic way by red—yellow—blue. (Unfor-
tunately, we will have to make do with grayscale representation here, but we
can let our imaginations fill in the colors.) So, what could I mean by this in
the context of learning mathematics?

Fig. 6.1 .
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Having the box with school mathematics in the center of the diagram (in
all capitals for extra emphasis) is meant to illustrate the fact that we are
talking about the teaching of mathematics as the central core of our discourse.
We are debating mathematical subjects that can and should be talked about in
the school context as well as methods that can best be used to engage the
interests of students in them. The box with Recreational Mathematics on the
left is meant to illustrate the aspects of mathematics that are done primarily
for fun. Of course, it is quite possible that there are aspects of mathematics
taught in school that students can find quite enjoyable. In fact, if the teaching
process is to be successful, we would hope that such topics would be quite
common. There are many aspects of so-called recreational mathematics that
are not normally dealt with in school. (A very common example of such an
aspect is the daily newspaper Sudoku that many people cannot imagine living
without. Sudokus are certainly not commonly taught in school, but this is a
perfect example of a mathematical topic that many people happily spend their
leisure time on, without thought to any external usefulness. We shall be
discussing the meaning of Sudoku in this context in greater depth later on.)
Still, in an emotionally positive learning environment, we would hope that
aspects from this side would spill over into the center.

On the right, we have a box labelled Applications of Mathematics. Many
topics commonly covered in school mathematics are taught with a view
toward practical applications either in everyday life (as is the case for
percentages, for instance), or as a necessary base for higher level applica-
tions as can occur in scientific, technical or economic applications. As was
the case on the left side however, there are many applications that are
certainly never taught in school. Again, we would hope that some ideas
from this side seep into the central core of school mathematics, even if
higher level applications are almost certainly too sophisticated for consid-
eration at a secondary level.

History hovering above the central boxes is meant to symbolize the fact
that all mathematical ideas have a past, and this past can and should have a
presence in school, at least up to a certain extent. Some mathematical
concepts had their historical start in physical applications (think of differ-
ential calculus, for example), while some that may seem very applied from a
modern standpoint may have originated in a recreational context (like
probability theory, which started from considerations of gambling games).
An awareness of this overarching historical aspect of a topic can and should
make it easier for the learner to grasp the context of what is being learned.
Furthermore, we can hope that an understanding of the historical context of
a topic can give many students the necessary motivation toward grappling
with its intricacies.
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Finally, having the tool-box (represented by the hammer and screwdriver)
of practical didactics as the underlying foundation is meant to represent the
idea that the entire building of the academic discipline Mathematics rests
upon the nuts and bolts of how it is taught. (Sorry about the mixed meta-
phors. Maybe we need to think of the rainbow as being painted on the side
of a grand building.)

In the sections that follow, I will attempt to be a bit more precise about
how this model of thinking about mathematical ideas can be useful in
thinking about the learning process. More specifically, I will attempt to
place mathematics competitions in their appropriate slot in this framework,
and illustrate how they can show the path to a more fruitful synthesis of
mathematics for enjoyment and useful application. I hope to be able to give
a good argument in favor of using mathematics competitions as a tool both
for popularizing mathematics as a discipline, and for preparing students for
many important aspects that relate to the reason we have the subject in such
prominence in the school curriculum.

6.3 Math Is Fun

We are so used to the popular notion of mathematics being called a dry,
boring and incomprehensible pursuit in popular discourse that a lot of
people outside the math community cannot even conceive of the truth of this
heading. But, as we in the community all know, math is indeed fun. And this
“fun” aspect of the subject can manifest itself in many different ways.

Why is there even such a thing as the abstract concept of Mathematics?
Human nature is such that people have been fascinated by the process of
abstraction for at least as long as there has been language. Discovering the
fact that there is something highly elementary in the connections between
utterly disparate objects exhibiting common traits that can be given a name,
like “three” (the leaves on a stalk of clover, or the corners of a triangle, or
the more abstract concept of past, present and future) or “circle” (the shape
of the sun or the moon in the sky, or a ripple on the surface of a pond when a
pebble is tossed in, or the shape you can draw with a stick in the sand by
holding one end steady and moving the other) is, simply put, fascinating.
And discovering that there are properties that can be found from the defi-
nition of such a concept that then turn out to be common to all objects fitting
the definition is certainly something wonderful. Realizing this leads us to
develop methods of finding such commonalities, resulting in concepts like
counting, calculation, axioms and proof. Falling prey to the fascination of
such intellectual pursuits is one way in which Math Is Fun.
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Another way is well known to all ardent puzzle solvers. There are logical
processes involved in solving anything from brainteasers and cryptic
crosswords to hidokus and Rubik’s Cubes. At first glance, the puzzles seem
to be indecipherable, but step-by-step application of logical thought,
sometimes combined with some trial and error, lets us inch ever nearer to a
solution. Finally, after some effort, the solution presents itself. In a good
puzzle, the fact that the result has been found is then completely obvious;
there is no doubt that we have succeeded. Most important, a feeling of deep
satisfaction results from having found the solution, by application of our
own wits, to something that seemed incomprehensible at first glance, but is
now utterly clear. This is another way, readily appreciated by any mathe-
matical researcher, of course, in which Math Is Fun.

Another path to enjoyment of mathematics comes from deeper under-
standing of ways in which mathematical methods allow us to comprehend
complex systems. A fine example of this path is the one followed by people
involved in high-level financial transactions. The complex mathematical
structures that they use make it possible for them to play their high stakes
games, and it goes without saying that they have found for themselves a
completely different way in which Math Is Fun.

Finally, for some people, simple mental calculation is enjoyable enough,
and they may go so far as to cultivate arcane skills involving such things as
mental division of huge numbers, memorization of the decimal digits of pi
to an incredible number of places or the capacity to manoeuvre freely
through hyper-cube cells in four-dimensional space in their minds. Not
everyone can appreciate this type of entertainment, but to those who can,
they are manifestly yet another way in which Math Is Fun.

Of course, any number of collections of mathematical puzzles is available
on the book market, mechanical puzzles are readily available for purchase,
and so on. It seems clear that a lot of people are actually quite aware of the
fact that mathematics is, indeed, fun.

If there are so many ways in which pure enjoyment of mathematics is
possible, isn’t it unfortunate that so many people pass through the school
system without being able to enjoy the subject in any such a way? In school,
we as a society want to help our children speed up the process of abstraction,
and expose them to as much as possible of the wealth of knowledge
humanity has developed over the millennia. During the course of this pro-
cess, we present a great deal of that knowledge in a pre-processed way,
reducing the elements of individual discovery to a minimum. Of course, this
is with good reason. It took humanity many generations to reach the level of
sophistication we have now, and it would not be feasible to expect every
youngster to figure everything out on his or her own. After all, it took the
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wisest brains of many generations to come up with what we, as a society,
know now. Unfortunately, the accelerated processes typically used in school
tend to suck much of the entertainment out of the subject.

Even knowing this, a lot of mathematics remains enjoyable. Sometimes,
we may not realize that we are doing mathematics while we are playing with
it. Not everyone solving a newspaper number puzzle is cognizant of doing
mathematics. Nor did every participant in the great puzzle crazes of the past
decades, from the 15-puzzle through Instant Insanity and Soma to the
Rubik’s Cube necessarily think of their hobbies as intrinsically mathematical,
even though they obviously were. It seems clear that any way to introduce
this type of enjoyment to the learning process must be advantageous.

Some mathematics competitions offer puzzle problems that give a large
number of contestants the opportunity to have some mathematical fun of this
type, and the millions of competitors taking part in competitions like the
Mathematical Kangaroo, the American Mathematics Competition, or the
Australian Mathematics Competitions (just to name a few) show that the
enjoyment to be derived from thinking about such questions is well known
to many. So, here we have an obvious way in which the math competitions
scene is helping to achieve the goals we aim for in regular mathematics
education. Helping students to see how enjoyable it can be to solve math-
ematical problems/puzzles (the distinction becomes quite blurry at times)
gives them the impetus to delve deeper into the subject.

Here is the first facet of the Rainbow. One big reason for us to do
mathematics is simply because it is fascinating and because it is enjoyable.
Next, let us have a look at the opposite end of the spectrum; the other reason
we should all be able to agree on for why mathematics is such an important
discipline.

6.4 Math Is Useful

On the opposite side of the spectrum of mathematics, we have the utility of
mathematical abstraction combined with practical calculation that makes
mathematics so useful. Of course, this is also a reason why many people are
fascinated by mathematics as a discipline in the first place. Many, for whom
mathematics may not have held any particularly high level of fascination in
school, become quite enamoured of the pursuit because of the surprising
connections it helps to uncover in practical applications. This can be derived
from physics, applications in engineering, financial transactions or any
number of other things.
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Unfortunately even research mathematicians cannot always agree on
what exactly is meant by “useful”. As was already pointed out, pure
mathematicians have a quite different point of view from applied mathe-
maticians, and therefore often find different areas of elementary mathematics
to be of elementary importance to their work. Nevertheless, all can agree
that things can and should be taught in school because they are, simply,
useful. And in any case, the fact remains that mathematics is in some way
intrinsic to most any abstract discipline.

For many people, the day-to-day practical aspect of the subject is the
central, and perhaps only, justification for its inclusion in the school cur-
riculum in a central role. This is certainly currently the case in the Austrian
school system, which I know best from practical experience, and I shall
elaborate a bit on in the next section. In my opinion, it is however quite
unfortunate if this is considered to be the sole defining justification for the
subject. It does seem clear that the things we teach our students in school
should have some connections to future applications, of course, but this
statement can be interpreted in different ways. We can all agree that school
should certainly convey the capability for dealing with everyday calculation
to all students. They should learn how to deal with cash transactions in the
course of making their daily grocery purchases, calculating the savings
involved when something is advertised as being on sale at 10% off, or
figuring out how many cans of hi-gloss are required to repaint the garage,
and we are certainly all in agreement that the basic intellectual tools needed
to solve such problems should be acquired in school.

From the standpoint of preparing secondary school students for the ter-
tiary level, however, there does not seem to be so much common ground.
Most would agree that there is a certain amount of higher level mathematics
that must be taught in an effective manner, but what does this include? If we
want to prepare our high school graduates for studies in the sciences or
engineering, we will want them to have some accessible fundamental
knowledge of real functions and calculus, algebraic manipulation of poly-
nomials and solving equations, and so on. If we are worried about preparing
them for the necessities of anything involving statistical analysis, like
medicine, economics or the social sciences, we will want them to have some
skills in interpreting statistical tests and working with random distributions.
If we are worried about training future mathematicians and computer pro-
grammers, we will want them to have some understanding of mathematical
proof and algorithms. Or, in the extreme, we can take the position that we do
not want to train our students to understand deeply any of this, arguing that
they can pick up the necessary knowledge at the tertiary level, and limiting
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what is taught in secondary school to what is needed for “communication
with experts” (see Fischer 2001). This is the current basis for the Austrian
school system, and in my opinion this is not at all sufficient.

6.5 Math in School. Connecting the Fun
and the Usefulness

I would argue that all aspects of mathematics should be included in an ideal
secondary curriculum. In order to keep all students interested and motivated,
there should be aspects of recreational mathematics, applications of math-
ematics, and the history of the subject represented in the classroom. Grad-
uates of our schools should have a reasonably developed feel for numbers,
shapes, data and functions. They should understand the value of proof in an
axiomatic system and be somewhat schooled in abstract thought. There
should be room for the many fascinating aspects and the many uses of the
subject, as well as aiming toward achieving the ideal of educated people
having a well-grounded understanding of the subject.

Depending on their own point of view, many people think that only one
or the other of these aspects is appropriate for schools to worry about.
Limiting mathematics in school to practical applicability, however, leaves
no room at all for recreational aspects or for the development of pure
mathematics as a scientific discipline. Also, the reality of schools often does
not allow any kind of deeper insight or any kind of enjoyable work with
mathematics because the available time must be used to prepare students for
specific types of central exams, which typically test only the ability to deal
with highly specific problem formats. This is not good. A good school
system will not put undue emphasis on simple calculation, nor will it force
the majority of available classroom time to be spent on the study of specific
test formats. A good class is one in which the students’ minds are challenged
in many different ways and in which their individual preferences and
interests can find a home, whatever they may be.

Taking a closer look now at the current state of the Austrian school
system, we see that there has recently been a shift completely away from
anything involving operative mathematics in the secondary schools, and
oriented strictly toward applicability.

The opinion of some mathematics educators who feel that all mathe-
matics taught in school should be introduced through “real world” appli-
cations now completely dominates the discussion, even if many teachers put
up quite a bit of resistance in their classes. (It is worth noting that there is a
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good reason for the quotation marks here. What is considered the “real
world” in mathematical texts is, of necessity, always a stark simplification of
reality, with a strong element of pre-digestion having been introduced by the
problem authors. The real “real world” is invariably more complex than the
highly simplified mathematical models used in the school situation would
generally suggest.)

The pure enjoyment of mathematical pursuit is thrown out the window in
this educational model, as is the value of abstract thought in a liberal arts
education. Both aspects are sacrificed at the altar of applicability.

Furthermore, centralized testing has led to complete dominance of the
teaching-to-the-test phenomenon, to the detriment of all else. One can only
hope that this state of affairs, which has only come into full force in the last
few years, will soon pass, but the plan to move to stronger inclusion of
technological aids in mathematics instruction (graphing calculators, CAS
and spreadsheets) unfortunately suggests that things will get worse before
they get better.

This unfortunate development resulted from an attempt to improve
mathematics teaching, of course. Comparing any current textbook to one
used, say, in the 1960s, gives an excellent view of what has happened. It is
certainly true that there was formerly far too much emphasis placed on
calculation for its own sake. Looking at the old textbooks, we find any
number of difficult problems involving simplification of quite involved term
expressions, for example, and such things can no longer be found in current
textbooks. The argument given for the change was that students did not
actually gain any real understanding of what they were calculating, and there
is a great deal to be said for this. Unfortunately, in the process of reducing
this type of rote learning, some topics were eliminated completely, despite
the fact that the fascination emanating from them can certainly help a great
deal in giving students the motivation to learn.

Different people have different tastes, and while some are readily moti-
vated by pure abstraction and others by the wish to come to grips with
practical matters, there cannot be one singular path to motivation equally
applicable to all learners. Surely the aim of teaching is to optimize the
motivation to learn for as many students as possible, in order to maximize
the amount of knowledge students can absorb and develop. Since students
can be motivated by quite disparate pathways to such knowledge, it seems
quite obvious that all such paths should be reasonably represented.
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6.6 Mathematics Competitions: Great at Connecting

One of the main points I would like to get across with this paper is the idea
that mathematics competitions are uniquely suited to getting many (though,
of course, not all) students more deeply and more actively engaged in
mathematical pursuits. Parts of this argument have already been hinted at,
but in this section, I would like to present it in a more structured way.

When students get hooked on mathematics competitions, this means that
they have developed a feeling for the fascination of problem-solving on an
abstract level. Finding solutions to competition problems of progressively
higher levels of difficulty leads them on a journey to discovering and writing
proofs, and with this they are really learning to be active mathematicians
themselves. Compared to what they are confronted with in “regular” math
classes, there are some specific qualities to the style of mathematics they
encounter in the competitions world.

First of all, there is the feeling of accomplishment that comes from
solving a competition problem. This is the same feeling one gets from
successfully solving a puzzle or from proving a theorem, but in the context
of a competition, it can be reinforced by the fact that points are awarded, and
the student may have achieved something that others writing the competi-
tion have not. Regular classroom mathematics tends to negatively reinforce
not being able to solve a problem (which might even result in failing a test)
rather than positively reinforcing the solution of a problem that can be
considered at the outset as being optional. It goes without saying that
positive reinforcement of this type is preferable from a psychological
viewpoint. This positive reinforcement then usually transfers quite well to
regular classroom work. (This last claim is what I see quite commonly in my
own classrooms, but I am sure that anyone working both directly with
students in competition preparation and in a regular classroom setting will
agree.)

Essentially, this is part of the argument in favor of using recreational
mathematics to get students more actively involved in their classrooms. In
the Rainbow, this means that the left-hand box positively influences the
central box. The implication is that the participation of students in compe-
titions is therefore quite useful as part of the underlying Didactics tool-box.

Another strong influence of math competitions lies in getting the students
to accept the need for logical rigor in their work. If any of their calculations
or proofs is logically incomplete, they will simply not score full points, even
if they have understood all of the essential parts of an argument. This is
disappointing for a student who has become used to the feeling of success
that comes with solving a problem. Again, the positive reinforcement that
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then comes with understanding the need for a logically complete argument
in order to get full points in a competition is much better than the negative
reinforcement of just being criticized for something incomplete.

While this applies to any kind of mathematical argument, including
simple computation, it is especially true for learning to understand the
meaning of the axiomatic method in producing proof. Learning this in a
normal classroom is quite abstract and involved. In the context of a com-
petition, however, it is very natural (although perhaps not really any easier).
It is obvious to all competitors that an argument must be complete if a
student hopes to receive full points. It is quite easy to accept this in the
context of a competition, as a competitor’s more complete argument will
obviously be better than mine, if mine is missing some salient points.

For the purpose of learning the axiomatic method and the concept of what
constitutes complete proof, classic topics are certainly the best. There is an
obvious historical reason why the classic Euclidean topics of geometry and
number theory/arithmetic are the areas in which the axiomatic method was
developed, and this is certainly also the reason why there is still a wide
international consensus that these topics should be included in a central role
in competitions. The historical argument is quite strong, not just for
intrinsically historical reasons, but because historical development in this
area happened for a reason. These topics are basic to human abstract
thought, and taking this route during the learning process is as basic and
reasonable now as it ever was.

Starting on the right-hand side of the Rainbow, it can also be argued that
a similar path from the Applications box is offered by classes in mathe-
matical modelling. In many places around the world, students especially
interested in applied mathematical problems are offered participation in such
activities that are also competitions of a sort, even if there are generally no
“winners” declared. (I refer here specifically to the model of the “Mathe-
matical Modelling Week” as I know it in Styria, in the south of Austria, as
this is the one I am most familiar with. Similar programs are, however,
offered in many places.) As a path to applied math at a higher level, high
school students are invited to work for a week under the tutelage of pro-
fessional mathematicians on the modelling of some applied problem. These
can be from physics, medicine, economics, or any number of other areas,
but generally they will be derived from the research specialties of the tutors.
While these are not competitions in the traditional sense since there are no
winners, it can be argued that all participants in these workshops are
“winners” by virtue of their completion of the tasks at hand, and there are
simply no “losers”. Psychologically, this is certainly a good thing. Other-
wise, I would argue that the net positive results of such an activity are the
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same as those in a more typical competition format. Participants derive the
same sense of accomplishment in finding a path toward solving a problem
that they could not initially deal with. Through diligent application of logic,
they finally arrive at a result that they have every right to be proud of,
yielding a strong positive reinforcement.

This can be seen as giving added value to the middle box in the Rainbow
from both sides. The problems in such modelling projects can be considered
as both Applied and Recreational, at least from the point of view of the
active participants.

All told, the argument in favor of mathematical competitions of all types
in reinforcing the path to a deeper understanding of mathematics among
interested participants is quite strong.

6.7 History on Top; Didactics on the Bottom

Returning briefly now to the picture of the Rainbow (Fig. 6.2), we can
concern ourselves a bit more with the top and bottom bars.

The underlying bar labelled “Didactics” is more or less self-explanatory.
In school, everything is built up on a base of teaching methodology, and this
base is symbolized here by this one term. It includes matters of curriculum,
textbooks and worksheets, classroom organization, and so on, and is sym-
bolized here by very elementary tools, namely a screwdriver and a hammer.
No matter what we decide to teach in school, we must certainly worry about
how we are going to go about teaching it—the nuts and bolts of work in the
classroom.

Perhaps a bit more explanation is required for the History cloud. Its
floating above all else is meant to imply the fact that all areas of mathe-
matical thought not only have a genesis, but that this genesis is an important
intrinsic part of the area.

Fig. 6.2 .
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No part of mathematics starts in school. Everything starts either as a game
like statistics or as an application for further development of something that
already existed. Much mathematics is derived from axiomatic interpretation
of some aspects of real life. Mathematics is in its core abstraction.

Let us take probability theory as an example. The roots of what we now
think of as probability reach back to the 17th century. Some of the biggest
thinkers of the day (Cardano, Fermat, Huygens, Pascal) were thinking about
games of chance, and the likelihood of winning and losing. While such
considerations can certainly have very practical applications for some
people, there is an argument to be made for placing these considerations
firmly in the realm of recreational mathematics. Throwing dice, flipping
coins or playing card games are certainly recreations for all but the most
hard-core professional gambler. From this beginning, however, there arose
an elaborate theory with applications in such disparate areas as medicine,
finance and opinion research.

As has already been alluded to, there are at least two strong arguments to
be made for the inclusion of at least some of the history of such a discipline
in its teaching.

For one, there is the motivational argument. Getting students interested in
a topic gets them invested in the learning process, and the consideration of
the historical process that led to the development of a topic can help get
students interested in the topic for the same reasons that the scientists that
originally developed the theories were interested in them. This is completely
independent of the question of applicability of the whole logical structure
once it has been developed. The a posteriori uses of a mathematical method
are generally not clear at the historical outset of its development.

Furthermore, there is also the methodological argument that a topic can
be better understood if it is learned at least in part by following the train of
thought that led historically to our current understanding of it. Skipping over
the history by reducing mathematics to a system of definition-theorem-proof
(which certainly has its place in the university) deprives the student of an
important level of understanding.

6.8 An Example from the Rainbow: Sudoku
to Graph Coloring

Let us now take a look at a specific topic, how various aspects of it are
represented in the different boxes of the Rainbow, and the role that math-
ematics competitions can play in developing understanding of it.
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8a: A Popular Pastime: the Daily Sudoku
In the last ten years or so, sudokus have assumed a prominent place in the
public consciousness by their ubiquity in the daily papers and in puzzle
books available at any book store or news agents’. As is well known, the
idea is to fill in a grid of numbers satisfying certain constraints. In a classic
sudoku, the numbers from 1 through 9 must be placed in each row and in
each column of a 9 × 9 square grid, and each number must be present in
each of the nine 3 × 3 squares the 9 × 9 square is composed of. Several
numbers are already given in the grid, and the point of the puzzle is to find
the unique way to fill in the rest. An example of such a problem grid is
shown in Fig. 6.3.

There is no doubt that this is an incredibly popular pastime, and the fact
that there is at least a bit of mathematical content involved is already
obvious from the fact that numbers are used in the squares. There are many
related puzzle types that have found their way into some daily papers and
the public consciousness along with them, like Kakuro, Hidoku, Fillomino,
and so on.

The reason that such puzzles are so popular lies in the fact that solving
them gives the solver a distinct feeling of accomplishment. While we are
aware of the fact that we are doing something that isn’t really of any
immediate use to us (or anyone else for that matter), there is an intrinsic joy
in finding the solution. This is the basis for all so-called “recreational
mathematics”. If the only argument for doing it lies in the recreational
aspect, the external value of the actual mathematical content becomes
completely irrelevant for the time we spend on the problem.

Fig. 6.3 .

160 R. Geretschläger



Of course, this is an aspect of competition mathematics. When students
are solving problems in a competition, they are not worried about appli-
cability. They are simply solving the problems for their own sake. The
problems themselves are considered interesting, independent of any mean-
ing they may take on in the “real world”, and finding the solution (and then
possibly being awarded points for it) is the reward they are seeking.

Notably, this is also often the main motivation behind more serious
mathematical research. Certainly, some research problems must just be
solved in order for a specific application to work, or to guarantee funding for
yet another financial period in some research institution. In general, how-
ever, anyone involved in any reasonably abstract mathematical research is
searching for the solutions because of an intrinsic interest in the problem
itself and the deep sense of achievement that comes with finding a solution
to a difficult problem.

8b: Mathematical Research and Applications related to Sudoku
Starting from the highly elementary content of Sudokus, there are several
different directions our thoughts can take in order to derive mathematical
research problems.

Perhaps the most obvious concerns itself with the internal mathematics of
the puzzles themselves. There are many questions that can be posed con-
cerning the statement of a sudoku problem or its solution. Some of these are
the following:

• What is the smallest number of numbers that can be given in a sudoku
grid, such that the solution is unique?

• What is the largest number of numbers that can be given in a sudoku grid,
such that the solution is not unique?

• How many minimal sudokus exist? (A “minimal” sudoku is one in which
the solution is unique from the given numbers, but in which no given
number can be deleted with the resulting sudoku remaining unique.)

Such questions are the focus of a certain strand of mathematical research,
and some prove much easier to answer than others. (Interested readers
are invited to find out the current state of knowledge concerning such
questions by checking Wikipedia (https://en.wikipedia.org/wiki/Mathemat-
ics_of_Sudoku) or other easily accessible internet sources.) Solving this type
of problem, however, does not stray far from the mathematical content of the
Sudokus themselves.

Taking a closer look at the sudoku concept, we see that there is another
path to abstraction we can take, that will lead us right into the heart of
research mathematics.
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As it turns out, it is quite straight-forward to express the solution of a
sudoku as a graph coloring problem, and this idea connects the popular
puzzle both to cutting edge research in abstract mathematics and to
real-world mathematical applications. So, what do we mean when we say
that solving a sudoku is equivalent to solving a graph coloring problem?

In mathematics, a graph is, of course, a structure composed of points (or
vertices), that are joined by lines (or edges). These are commonly repre-
sented by pictures like the ones in Fig. 6.4:

We can consider a sudoku, composed of 81 cells in a 9 × 9 square grid,
to be represented by a graph with 81 vertices. Each vertex is to be colored
with one of 9 colors, corresponding to the numbers 1 through 9. Some of
these colors are given, with the rest to be determined.

The nine cells in a common row (or a common column or a common 3 × 3
square) can be thought of as being joined pairwise by an edge. Solving the
sudoku then amounts to finding a coloring of the graph with the nine colors,
such that no two vertices with the same color are joined by a common edge.

When thought of in this way, it becomes clear that our daily newspaper
sudoku is completely equivalent to a seemingly much more abstract prob-
lem. With this, we are already firmly in the middle of a practical research
topic. The puzzle, considered purely for the sake of the enjoyment of finding
its solution, has led us directly into the world of mathematical applications.
Now that we understand this, we can strip away the camouflage and take a
look at where graph coloring can lead in mathematical research.

First, let us consider a practical application of graph coloring, namely the
problem of job scheduling.

Let us assume that we have a certain number of jobs that need to be done
in some order. Certain of these jobs may be in conflict with each other, i.e.
there may be some reason why they cannot be dealt with simultaneously.
(For instance, the same person may be required to fullfil two tasks or the
same machine may be needed for two distinct steps in production.) It is
possible to represent the scheduling problem by drawing vertices of a graph
corresponding to the jobs. Any two jobs that conflict with another can then

Fig. 6.4 .
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be joined by an edge. The smallest number of colors with which it is
possible to color the vertices of the graph without like-colored vertices ever
being joined by a common edge then gives us information on the most
efficient way for the jobs to be scheduled. This model can translate not only
to concrete “jobs” that need to be done by people, but also to organizational
problems ranging from the assignment of vehicles to individual trips for a
delivery company to the assignment of frequencies to terrestrial television
broadcasters in geographically conflicting areas.

Next, let us have a look at a more theoretical graph coloring problem that
happens to be right at the cutting edge of modern mathematical research,
namely the question of the chromatic number of the plane, also known as
the Hadwiger-Nelson problem.

The problem can be stated in the following way. What is the smallest
number of colors with which it is possible to color the points of the plane in
such a way that no two points at unit distance have the same color?

Much has been written about this problem (see, for instance (Soifer 2008)),
but despite more than half a century of intense research, the problem has not
yet been solved. In fact, as easy as the problem is to state and understand, it is
one of those intractable mathematical questions that are really devilishly
difficult to grasp. It may well be that the problem cannot even be completely
solved without making some non-standard assumptions, like the validity of
the Axiom of Choice. It is relatively straight forward to show that the number
in question must be larger than 3 and it can also be shown that it must be
smaller than 8, but values of 4, 5, 6 or 7 are still possible.

A famous coloring problem of a related type, located somewhere on the
spectrum between purely theoretical and practical, is the four-color map
problem. For many years, there existed a conjecture, since famously proven
with the help of computer-based methods, that any map in the plane can be
colored by at most four colors in such a way that no two countries sharing a
common border have the same color.

We see that the same sudokus that we know so well from purely recre-
ational mathematics are related quite directly to problems both in concrete
applications of mathematics and in high-level research in pure mathematics.

8c: Sudoku, Graphs and Coloring in School.
Neither sudokus nor graph theory are a standard school topic in most
countries. Recently, many schools have taken to using something closely
related to sudoku in order to give students an opportunity to practice mental
calculation, namely kenken. (Note that KenKen is a registered trademark.
Interested readers can find a large number of such problems at (http://www.
kenkenpuzzle.com). The puzzles are sometimes also referred to under other
names, such as Kendoku.)
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For those not familiar with kenken, a brief introduction seems in order.
As is the case for sudoku, a kenken puzzle is a square grid, and the goal of
the puzzle is to place numbers in the grid in such a way that none of the
numbers repeat in any column or row. If the size of the grid is nxn, the
numbers from 1 through n are to be placed in the cells of the grid. Unlike
sudokus, however, no digits are given in advance. Instead, certain areas are
given, in which the numbers can be combined by addition, subtraction,
multiplication or division with some given result. For instance, if two cells
are joined to a 2 × 1 rectangle with the symbol “4 + ”, this means that the
two cells are to contain two different digits with the sum 4, and therefore one
must contain the digit 3, and the other the digit 1. In some cases, there is
more than one combination possible, as for instance for “2-”. This could be
the result of 3–1, 4–2, 5–3, and so on. Furthermore, if a single cell contains
only one number without an operation, this number can be considered as
given in that cell. An example of such a puzzle is shown in Fig. 6.5.

However, use of these puzzles in the classroom is not normally a path to
understanding about graph coloring. The didactic idea behind the use of this
in the classroom is for the students to get a better feel for number combi-
nations in simple elementary calculations, and kenken gives an amusing
context to such calculations.

Simple graph theoretical ideas are, however, also often championed for
inclusion in the school curriculum (see, for instance Smithers 2005), espe-
cially in schools that are preparing students for computer programming.
Most school systems, however, do not currently include this subject in their
curricula. Students preparing for mathematical olympiads do, however,
routinely deal with elementary graph theoretical ideas, as this is a common
topic of olympiad problems in the so-called Combinatorics category. An
example of such a problem will be given in 8e.

Fig. 6.5 .
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Fig. 6.6 .

Fig. 6.7 .

8d: History and Didactics: Graph Theory and more
If any graph theoretical ideas make it to the classroom at all, a likely can-
didate for inclusion is the classic Königsberg Bridge problem of Leonhard
Euler (1707–1783). This problem, asking whether it is possible to cross each
of the seven bridges in old-time Königsberg exactly once in one walking
tour of the town, which straddles a river with islands as shown in Fig. 6.6 is
the starting point of modern graph theory.

Students may not know anything about the history of the city of
Königsberg (now the Russian city of Kaliningrad), but the question is a very
practical one that can be readily understood. Also, its solution can be
developed by simple logic, without resorting to any high-level mathematical
tools. Giving some historical context can certainly make the topic more
interesting for many students, and this is also a good excuse to name-drop
Leonhard Euler in class.

Another interesting historical sidebar that might be mentioned in this
context, is the Latin Square. A Latin Square is an nxn array, with n symbols
written in the cells in such a way that each of the n symbols is represented
once in every row and in every column of the array. This is also a subject
studied by Euler, and the name is derived from his work, in which he used
Latin letters as his symbols. A 3 × 3 example, such as could be found there,
is shown in Fig. 6.7.

A Sudoku is, of course, a Latin square with some special restrictions, in
which the symbols are digits. These mathematical objects have been studied
to quite some extent since the 18th century. The idea behind them is closely
related to (but not to be confused with) the idea behind the so-called Magic
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Squares, in which the sums of numbers in all rows and columns (and often
also diagonals) are equal.

Both these topics are typically seen as purely recreational, but as shown
here, they are at the very foundation of an important section of mathematics
that ranges through the whole rainbow, from recreational to applicable.

8e: An example of a graph coloring problem from an international
competition.

An example of a nice competition problem concerning graph coloring is
the following problem from the International Tournament of the Towns
(Spring 1990, Senior O level):

(a) Some vertices of a dodecahedron are to be marked so that each face
contains a marked vertex. What is the smallest number of marked ver-
tices for which this possible?

(b) Answer the same question, but for an icosahedron.

(Recall that a dodecahedron has 12 pentagonal faces which meet in threes
at each vertex, while an icosahedron has 20 triangular faces which meet in
fives at each vertex).

In order for a student to solve this problem successfully, it is helpful to
realize that it is indeed a graph coloring problem. The vertices of the
polyhedron being considered can be thought of as the vertices of graphs, and
the edges of the polyhedron as edges of these graphs. Of course, this is a
three dimensional concept, but the graphs in 3-space can be projected onto a
plane (for instance, from a point on the circumscribed sphere of the poly-
hedron onto the tangent plane diametrically opposite to this point), resulting
in corresponding plane graphs with completely analogous properties. Since
we then wish to “mark” vertices, we can think of this as coloring all the
vertices of the graph with two colors, say black and white, with black
corresponding to “marked” vertices and white to “non-marked” vertices.

The solution to part (a) is then quite simple. Since each vertex lies on three
faces of the dodecahedron, marking any vertex gives three faces a marked
vertex. Since there are 12 faces, we must certainly mark at least 12:3 = 4
vertices. We can see in Fig. 6.8 (a graph representing the dodecahedron’s
vertices and edges), that a marking of four vertices (represented by the full
points) is indeed possible, such that each face has a marked vertex.

Part b is a bit more sophisticated. We can see in Fig. 6.9 that a marking of
six vertices such that each face has a marked vertex is possible.

It remains to be shown that such a marking of five (or less) vertices is not
possible. We can prove this by contradiction.

Let us assume that it is possible to mark five vertices in such a way that
each face has a marked vertex. We consider the graph (as shown above) and
delete all edges with the exception of those joining two marked vertices,
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Fig. 6.8 .

Fig. 6.9 .

and consider the number of components of the resulting graph. (Recall that a
“component” of a graph consists of a subset of the vertices, connected by
edges of the graph.) In any of these components, a first marked vertex
contributes to 5 faces, but any succeeding vertex in this component can only
contribute to at most 3 further faces that do not yet have a marked vertex. If
there are at most 5 marked vertices and at most two components, the marked
vertices can contribute to at most 5 + 5 + 3 + 3 + 3 = 19 faces. We see
that the graph must consist of at least three components. At least one of
these components must then consist of only one marked vertex. Let us
assume that this is vertex A in the figure above. This means that none of the
vertices B, C, D, E and F is marked, and four of the remaining vertices must
be marked. This is not possible, however, since these four would then
certainly all be in the same component, in contradiction to the assumption

6 Rainbow of Mathematics 167



that they contribute to faces in at least two separate components. We see that
at least six vertices must be marked, as claimed, thus finishing the proof.

6.9 Conclusion

Mathematical instruction should include all aspects of the subject and
engage students in whatever way they can be led to be interested in the
subject. This is different for each person. Some will be excited by abstract
math problems independent of any applications in the real world. This
includes mathematical puzzles, mathematical games or individual pure math
research. Others will be excited by the opportunity for applications, for
instance in physics or other areas.

In this paper, I have attempted to argue that a complete treatment of any
mathematical topic in school should include aspects from the complete
Rainbow of Mathematics, in order to help every student of the subject find
something suited to her or his tastes. A mathematical topic can be intro-
duced starting from most any mathematical problem, be it a number puzzle
(number theory, coding), a triangle problem (olympiad geometry, school
trigonometry, land surveying) or a practical application. I have also tried to
argue the fact that the world of mathematical competitions offers a strong
tool, independent of where a student hops on board the math train.

Let us briefly return to the fundamental questions on the value of
mathematics as a core subject in secondary education as posed in the
introduction. Here are some answers I believe we could and should all agree
on, considering all that I have presented here.

Question 1: Why do we think that mathematics is an important subject in
school?
It seems clear to me that there are essentially three equally valid answers to
this question.

First of all, mathematics is necessary for many things. Some elementary
things, like basic number skills, are obvious prerequisites to life in a modern
industrial-technological world. Other things are not of such import to
everyone, but since school is meant to prepare students for their future
professions and for their tertiary studies, a great deal of mathematical
knowledge must be at their disposal when they leave high school, simply to
prepare them for this. This is the practical argument.

Secondly, mathematics is interesting and enjoyable. This is true in many
ways. Logical abstraction is a fundamental human thought process that has
fascinated humanity for EONS. Individual mathematical problems are often
interesting for their own sake, and finding their solutions is an enjoyable
process. Students should certainly be offered the opportunity to experience
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this enjoyment for themselves. Mathematics competitions can play a large
role in this, even if not every individual enjoys them in the samemanner. Still,
math is important because math is fun. This is the recreational argument.

Finally, studying mathematics schools abstract rational thought. Ideally,
this should be true of most subjects in school, but the abstract world of pure
mathematics is certainly the optimal ecosystem for such things to flourish.
This is the abstract argument.

It is my firm belief that all three arguments are legitimate and strong, and
that the various aspects of mathematics must therefore all be strongly rep-
resented in any complete curriculum.

Question 2: How do we best get students interested in the type of mathe-
matics we want them to learn?
The answer to this question is, of course, dependent on the individual stu-
dent’s interests. Some students will be drawn in by the mathematical
abstractions themselves. For some, the most interesting aspect will lie in
potential applications. For yet others, it may be the historical context, the
development of human thought through the generations. And for some, it
may simply all be a game, and playing around with puzzles will prove the
best path to the subject. All of these gateways are perfectly legitimate, and it
seems clear to me that optimal teaching practices must offer at least a little
bit of everything.

Question 3: What are we ultimately preparing students for in their mathe-
matics classes?
Again, my answer to this question must necessarily be quite wide. We
certainly want students to enjoy mathematics. Whether this is the most
important aspect, or even important at all, will be up to individual teachers
to decide. To my way of thinking, this is the base of all else, and students
who do not have at least a semblance of enjoyment in their class work
cannot be expected to fully appreciate the subject.

We are certainly teaching our students to prepare them for their future
roles in society. This aspect cannot and should not be ignored. In this
context, we must also prepare them for university. The tertiary institutions
cannot be expected to start from scratch; human brains must have some
developed mathematical competence by the time puberty is over, otherwise
it is too late.

I would also argue that we should be training students’ capacity for
systematic logical thought and offering them as much general knowledge
(here is that pesky concept of “Allgemeinbildung” again) as possible. If this
is not to be imparted in the schools, then where?
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