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This book is dedicated to all those people
around the world

Who are passing baton to next generations
of mathematicians



Foreword

Mathematical competitions are a chance for mathematically talented young
scholars to experience mathematics as a research-oriented discipline. These
competitions offer the chance to get insight into the beauty of mathematical
structures at a high level, which many of these young mathematicians
usually will not experience at home. Furthermore, these competitions allow
to meet other talented young mathematicians, exchange their ideas with
them and experience that they are not singular and isolated youngsters, but
part of an important community.

Despite this high importance of mathematical competitions, either as
mathematical Olympiad or as mathematical tournament of towns or other
kinds of mathematical competitions, there exists hardly any scientific
research about mathematical competitions. This is surprising, because these
mathematical competitions have a long tradition and a high influence on the
promotion of young talented mathematicians.

At the occasion of the 13th International Congress on Mathematical
Education ICME-13) a Topic Study Group on Mathematics Competitions
took place, at which famous researchers working in this field met and
exchanged about the state-of-the-art in this field. This intensive work
together with papers from related groups forms the basis of this book.

The book provides an excellent overview about the current discussion,
topical themes and experiences with mathematical competitions. It starts
with reflections on goals of mathematics education, problems coming from
geometry or combinatorics being used in mathematical competitions. The
next parts reflect on the role of competitions in the classroom, this theme is
hardly researched so far. Then two examples of mathematical competitions
are analyzed. The last two parts focus on the present state of mathematical
competitions and its future and a bridge between competitions and ‘real’
mathematics.

vii



viil Foreword

To summarize, this book is more than overdue and reflects from an
academic perspective on the potential of mathematical competitions for
mathematics education in general.

I wish to congratulate the editor—Alexander Soifer—and the contributors
to this timely and excellent book.

Hamburg, Germany Gabriele Kaiser
Convenor of the 13th International Congress
on Mathematical Education, University of Hamburg



Preface

The role and usefulness of competitions in mathematics instruction has been
debated for decades. If memory holds, I attended a deep and entertaining
debate on this topic between a distinguished mathematician Peter John
Hilton and a renowned math educator Gilah C. Leder at ICME-6, held in
1988 in Budapest. As this volume demonstrates, competitions problems can
be used to enrich classroom instruction, to offer our students an exciting
pastime, to raise interest in mathematics, and to enable students to com-
mence their mathematical research. If not for Moscow State University
Olympiads and a mathematical circle conducted by Nikolai Konstantinov
(one of the authors in this volume!), I would have become a classical pianist
and composer and not a mathematician. (By no means am I suggesting here
that mathematics is better than music—they both belong to the Pantheon
of the Arts.)

I am duty bound to add one warning. If a student does consistently well in
mathematical Olympiads, s(he) clearly has a talent, and with a good measure
of interest and hard work will go far. However, no discouraging conclusion
could be made about a student, who has not sparkled in the Olympiads.
Young people develop at diverse speeds. Moreover, mathematics competi-
tions inevitably have an element of sports, the necessity to perform under
pressure and within a limited time. High speed of thinking is attractive, but it
is not an essential property for a future successful researcher.

This book includes plenary talks and some of the best presentations made
in the Topic Study Group 30: Mathematics Competitions of the International
Congress on Mathematical Education (ICME-13) in Hamburg, and some
of the best presentations from related groups, dedicated to work with gifted
students and mathematical enrichment. Each of the chapters, on request of
this editor, includes not only original ideas of pedagogy and state-of-the-art
methods of mathematical instruction, but also original problems and their

iX
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beautiful solutions. I believe that this volume will be a valuable addition to
the mathematics literature for secondary teachers and university professors
around the world, and their gifted students of all levels, from secondary to
graduate students, seeking problems to start their research careers.

The authors of this book comprise a group that impresses me enormously.
It includes seven laureates of the Paul Erdés Award and one of the David
Hilbert Award presented by the World Federation of National Mathematics
Competitions (WFNMC); three past or present Presidents of WFNMC; five
past or present WENMC’s Vice Presidents; three WFNMC’s Secretaries;
laureates of numerous other awards, leaders of and contributors to ICMI
studies; authors of many books and countless articles, organizers of the
International Mathematical Olympiad (IMO). In fact, in 1994 and 2016, K.
P. Shum was the Organizer of two IMO’s held in Hong Kong; while in 2013
Maria Falk de Losada served as the President of the International Jury at the
Colombian IMO. The authors include many leaders and deputy leaders of
national teams IMO teams, coordinators of IMO, organizers of numerous
national and international competitions, conferences and congresses, etc.

Each of the 14 chapters addresses many issues and contributes to a mul-
titude of directions, which makes a partition of the material into parts nearly
impossible. I attempted to identify the main direction of each chapter and thus
help the reader by partitioning the book into seven parts. As you can see,
Francisco Bellot-Rosado (Spain) and Kar-Ping Shum (P.R. China) present
problems of geometry; Kiril Bankov (Bulgaria), and Luis F. Céaceres-Duque,
Jose H. Nieto-Said, and Rafael Sanchez-Lamoneda (Puerto Rico) share
combinatorial problems. Role of competitions for a classroom is described by
Robert Geretschldger (Austria); Ingrid SemaniSinova, Matd§ Harminc, and
Martina Jesenska (Slovakia); and Iliana Tsvetkova (Bulgaria). Nikolai Kon-
stantinov and Sergei Dorichenko (Russia), describe their famous International
Mathematical Tournament of Towns; V.M. Sholapurkar (India) presents a
relatively recent competition for college students. Romas Kasuba (Lithuania)
shares his lifetime experiences with competitions; while Peter Taylor (Aus-
tralia) classifies problems of mathematics competitions. Maria Falk De
Losada (Colombia) collects valuable observations of the influence of math-
ematics competitions on their contestants, destined to become world’s leading
mathematical researchers. Alexander Soifer (USA) opens the book with his
view of goals and means of mathematics instruction and closes the book with
examples of bridges between problems of mathematical Olympiads and
research problems of ‘real’ mathematics.

It was a delight to organize and run the Topic Study Group jointly with
Maria Falk de Losada, thank you, Maria! My gratitude goes to my referees,
encompassing four continents, who helped the authors to improve their
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chapters in a significant way. I thank all the officials and volunteers of
ICME-13 in Hamburg, who allowed us all a pleasure of sharing knowledge
and experiences during this Olympics-like forum of nearly 4,000 profes-
sionals from 109 countries. My special thanks go to the Convenor and the
Chair of the International Program Committee of the ICME-13
Prof. Dr. Gabriele Kaiser for creating the Congress and arranging this
splendid opportunity for my group of 18 authors from five continents to
unite in a truly Olympic spirit and produce this volume, and to Springer for
making it possible for us to preserve the wonderful memories of the
Hamburg Congress in the form of this book.

On behalf of all the authors of this book, I wish you, our reader, to get
much pleasure of mathematical kind from this book and many other books
written by these 18 authors.

Colorado Springs, USA Alexander Soifer
January 2017
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Chapter 1
Goals of Mathematics Instruction: Seven
Thoughts and Seven Illustrations of Means

Alexander Soifer

Abstract The goal of this chapter is to present what the author sees as the
state-of-the-art approach to mathematics instruction, and the state-of-the-art
use of mathematical Olympiads in bringing instruction closer to ‘real’
mathematics and identifying young talents. One of the principle goals of
mathematics instruction ought to be showing in a classroom what mathe-
matics is and what mathematicians do. This cannot be achieved by teaching
but rather by creating an environment in which students learn mathematics
by doing it. As in ‘real’ mathematics, this ought to be done by solving
problems that require not just plugging numbers into memorized formulas
and one-step deductive reasoning, but also by experimenting, constructing
examples, and utilizing synthesis in a single problem of ideas from various
branches of mathematics, built on high moral foundations. The author’s
eight recent Springer books present fragments of ‘live’ mathematics, and
illustrations of these ideas. The chapter also describes the role of mathe-
matical olympiads in instruction and includes some problems used at the
Colorado Mathematical Olympiad over the past 34 years.

This essay is an expanded version of the Plenary Talk in the Topic Study Group 30:
Mathematics Competitions at the 13th International Congress on Mathematical Education,
Hamburg, Germany, July 2016. Prof. Dr. Gabriele Kaiser was the Convener of this very
successful Congress. The early version appeared in the journal of the World Federation of
National Mathematics Competitions 29(1), 2016, 7-30.

A. Soifer (=)

University of Colorado, 1420 Austin Bluffs Parkway, Osborne Center
for Science, Office A423, Colorado Springs, CO 80918, USA

e-mail: asoifer@uccs.edu

URL: http://www.uccs.edu/~asoifer/

© Springer International Publishing AG 2017 3
A. Soifer (ed.), Competitions for Young Mathematicians,
ICME-13 Monographs, DOI 10.1007/978-3-319-56585-9_1
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Keywords Colorado mathematical olympiad - Problem solving - Gifted
students - Goals of instruction - Goals of life

1.1 Part I: Seven Thoughts on Mathematics Instruction

Give a man a fish, and you will feed him for a day.
Teach a man how to fish, and you will feed him for a lifetime.
— % (Liozi, VI century BC)

1. The Purpose of Life Implies the Purpose of Instruction

Before we address the purpose of mathematics instruction, it makes sense to
ask ourselves, what is the purpose of life itself? It seems to me that the purpose
of life is to discover and express ourselves, and in so doing contribute to high
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culture of our planet. The ultimate purpose of instruction is therefore to aid our
students in their quest for self-discovery and self-expression.

2. A Typical Instruction: Dishing out a Collection of Facts a la “Give a
Man a Fish”

Instruction is often reduced to memorization of a certain collection of facts:
dates in history, theorems in mathematics, etc. While memorization and
knowledge are of value, they seem to be overestimated in instruction. I agree
with the great Chinese Sage Laozi: giving a man a fish will not solve man’s
problem of survival.

3. Laozi and a Skill Approach to Life: “Teach a Man How to Fish”

Laozi proposes to teach a man fishing as a method of solving the problem of
survival. This does go further than giving a man a fish. However, is it good
enough in today’s world?

4. Beyond Liozi: Enable a Man to Learn How to Solve Problems

Not every education is as good an investment as another. We ought to go
beyond Ldozi and his universally celebrated lines. Is teaching skills good
enough? Not quite, dear Sage, not in today’s rapidly changing world. What
if there is no more fish? What if the pond has dried out while your man has
only one skill, fishing?

A problem solver will not die if the fish disappears in a pond—he’ll
learn to hunt, grow crop, solve whatever problems life puts in his way.
And so, we will go a long way by putting emphasis not on training skills
but on creating environment for developing problem solving abilities and
attitudes. This is the state-of-the-art. The proverb for today‘s world ought
to be:

Give a man skills, and you will feed him in the short run.
Let a man learn solving problems, and you will feed him for a lifetime.

5. Mathematics and Life

Every day we confront and solve a myriad of problem. Life is about solv-
ing problems. And mistakes in solving life’s problems could be quite
costly: a bridge could collapse, electrical grid could get overloaded, traffic
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could get to a halt, etc. This is where mathematics comes in handy.
Mathematics allows us to learn how to think creatively, how to solve
problems. And once our student masters problem solving in mathematics,
s(he) will be better prepared to confront problems in any human endeavor.

6. Are the Two Popular Approaches to Mathematics Instruction Good
Enough?

Today’s discussions of mathematical instruction seem to be reduced to two
competing approaches, “Embrace the Technology” versus “Back to the
Basics.”

“Back to the Basics” is not the best solution, for it emphasizes mind
numbing drill, and treats students as robots, who need to be pre-programmed
with a set of skills. In the newer “Embrace the Technology” approach, I
support taking a teacher off the lectern and letting students work on their
own. This approach too more often than not treats students like robots, and
pre-programs them with skills of today. However, technology nowadays
changes rapidly, as do the societal demands for particular skills.

Providing public education is not only an ethical thing to do—it is a
profitable investment. Are there many jobs today for computer-illiterate
persons? And yet just one generation ago, computers were a monopoly of
researchers, and one generation before that did not exist at all. And so, we
will go a long way by putting emphasis not on training skills but on creating
atmosphere for developing problem solving abilities and attitudes.

Observe, one cannot teach mathematics, or anything else for that matter.
State-of-the-art in mathematics instruction is about creating an atmosphere
where students can learn mathematics by doing it, with a gentle guidance of
a teacher.

7. The True Goal of Mathematics Instruction is to Demonstrate What
Mathematics Is and What Mathematicians Do

Standardized three-letter tests, such as SAT, ACT, GRE, KGB, CIA
(well, the latter two triples are from a different opera:-) can only inform us
how well a student does on these tests. Is this the goal of instruction?
We ought to abandon standardized multiple choice testing of skills.
There are more important things to assess. Over the past 34 years,
The Colorado Mathematical Olympiad has been offering middle and high
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school students 5 original problems of increasing difficulty and 4 hours to
think, to invent, and to solve. We “test” predominantly not knowledge, not
skills, but creativity and originality of thought (Soifer 2011-2; Soifer 2017).

Is the goal “teaching to the test,” as the past USA President George W.
Bush believed? Not really. We all agree that problem solving is the means of
instruction. However, what is problem solving? A typical secondary school
problem asks to “find the hypotenuse of a right triangle, whose legs are 3
and 4, by using Pythagoras Theorem.” No, not any more, you would reply.
Nowadays, at the Age of Technology, a typical secondary school problem
asks to “find the hypotenuse of a right triangle, whose legs are 3.1 and 4.2,
by using Pythagoras Theorem and your smartphone.” Would you call it a
progress?

More generally, a secondary school problem has the structure A = B, i.e.,
given A prove B by using theorem C. In real life, no one gives a research
mathematician a B; it is discovered by intuition and is based on experi-
mentation. And of course, no one knows a C since nobody solved the
problem: a research mathematician is a pioneer, moving along an untraveled
path!

And so, we ought to bring our secondary and college mathematics, which
often looks so superficial, as close as possible to the ‘real’ mathematics. We
ought to let our students experiment in our classroom-laboratory. We ought
to let them develop intuition and use it to come up with a conjecture B. And
we ought to let our students find those tools C that do the job of deductive
proving the conjecture B. In my opinion, the true goal of mathematics
instruction is to demonstrate in the classroom what mathematics is, and what
mathematicians do.

8. What Can Mathematical Olympiads Bring to Mathematics
Instruction?

Let us first of all define the term. A mathematical olympiad is a competition
where contestants are required to write essay-type complete solutions of the
problems. Number of problems offered to Olympians is relatively small,
usually between 4 to 6, and the time allowed is relatively long, usually from
4 to 9 hours. This does not completely eliminate time as a factor affecting
performance, but substantially reduces it, especially compared to multiple
choice or answer-only competitions with their speed-guessing as the main
virtue. I often see best Olympians continuing to think about difficult prob-
lems after the Olympiad ends. In fact, I know some of them, who have been
thinking about a Colorado Mathematical Olympiad problem and its research
generalizations for many years. This process and the Olympiad influence
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may last a lifetime. While I see value in quick-type mathematical compe-
titions and its sporty attraction for television broadcasting, I personally do
not think they faithfully represent what mathematics is and what mathe-
maticians do.

Olympiads allow us to introduce secondary students to topics, ideas, and
methods of ‘real’ mathematics in the context and terminology of secondary
mathematics, in the form that is digestible by them. Problems of mathe-
matical Olympiads—as not much else—demonstrate beauty and elegance of
mathematics. At the age of 14, I switched from writing and performing
piano music to mathematics due exclusively to The Moscow Mathematical
Olympiad. In March 1989 in Colorado Springs, Paul Erd&s told me that “the
Olympiads create a new enthusiasm toward mathematics, and in this sense
are very valuable.”

At The Colorado Mathematical Olympiad, we have been often asked a
natural question: how does one create a mathematical Olympiad? This and
other related questions are clarified by the University of Colorado, which
produced the film “Thirtieth Colorado Mathematical Olympiad—30 Years
of Excellence” that can be found on the Olympiad’s homepage http://
olympiad.uccs.edu/.

9. The Moral Foundation Is Critical

There is an opinion shared by many of my colleagues that all that matters is
mathematics, Mathematik iiber Alles, if you will, above all moral concerns.
In my opinion, there is no good science or good art unless it is built on the
foundation of high ethical principles. Luitzen Egbertus Jan Brouwer, a great
Dutch mathematician and philosopher, wrote in his 1929 letter: “It is my
opinion that the tiniest moral matter is more important than all of science,
and that one can only maintain the moral quality of the world by standing up
to any immoral project.”

We have seen in history time and again how evil the usage of science
could be if it is not built on high moral foundation. Atrocities of Nazi
Germany alone provide countless examples of science, technology and even
art used for ill deeds. My book (Soifer 2015) is dedicated to moral dilemmas
of a scholar in the Third Reich and in the world of today. Lessons of history
ought to enter our classrooms and give moral guidance to our students
today. I value education, however, I must admit that

Fine education does not guarantee high culture,

And high culture does not guarantee humanity.


http://olympiad.uccs.edu/
http://olympiad.uccs.edu/
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In order for creative work to be good, it must also serve the good. It ought
to be humane. It has to be grounded in morality, empathy, compassion, and
kindness. The Great Russian poet Alexander Pushkin (1799-1837) beauti-
fully wrote about it. Let me translate his lines for you:'

And people will be pleased with me for years to come,
For I awakened kindness with my lyre,
For in my cruel age 1 Freedom praised and sang

And urged I mercy for the fallen people.

And so we ought to pass to our students the baton of mercy and
humanity, so that our students by their creative work contribute to the high
culture of our small endangered planet.

1.2 Part II: Seven Illustration of Means

Alright, but what kind of problems should we offer our students? What
approaches should we present in our classrooms? Permit me to illustrate
seven essential components of the state-of-the-art classroom.

1. Experiment in Mathematics

First of all, we ought to set up a mathematical laboratory, where students
conduct mathematical experiments, develop inductive reasoning and an
insight needed to create conjectures. Some illustrations of it can be found in
(Soifer 2010-1). For example, a short experiment allows us to conjecture a
formula for the sum of cubes of consecutive integers:

1°=1?

1P 423 =3

1423 +33=¢6
P42 43 +4° =10

We observe that the sums of consecutive cubes are perfect squares. But
squares of what numbers? If you are not able to develop a conjecture yet,
continue to experiment: 1° + 2% + 3% 4+ 4° + 57 = 15°. You will soon

"M nonro Gyny Tem moGeseH s Hapoay,

Yro wyBcTBa 106pHIE 51 TUPOU MPOOYKaa,

Uro B MO ecTokuil Bek BocciaBui s CBoGomy
W munocts K MmajuvM Ipru3biBal.
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notice that 1° + 2% + 3° + 4% + 5° = (1 + 2 + 3 + 4 + 5)% This kind of
equality holds for all the values in our experiment, and the conjecture is
ready:

P+ 4 4nd=(1+42+4-+n)

We can now prove, for example, by mathematical induction, that both the
left side and the right side of the conjectured equality is equal to

()" .

2. Construction of Examples in Mathematics

Construction of counterexamples is almost non-existent in secondary edu-
cation and even university, whereas counterexamples play a major role in
mathematics, amounting to circa 50% of its results. In fact, the Great Rus-
sian mathematician Israel M. Gelfand once said, “Theories come and go;
examples live forever.”

You would agree that practically the entire school mathematics consists
of analytical proofs. In order to bring instruction closer to the ‘real’ math-
ematics we ought to include in education construction of examples and
counterexamples. Let me share one example, where a construction solves
the problem (Soifer 2011-2).

Positive® (18th Colorado Mathematical Olympiad, Soifer 2001). Is there
a way to fill a 2001 x 2001 square table T with pluses and minuses, one
sign per cell of 7, such that no series of interchanging all signs in any
1000 x 1000 or 1001 x 1001 square of the table can fill 7 with all pluses?

Solution. Having created this problem and its solution for the 2001
Colorado Mathematical Olympiad, I felt that another solution was possible
using an invariant, but failed to find it. Two days after the Olympiad, on
April 22, 2001, the past double-winner of the Olympiad Matthew Kahle,
now a Professor at Ohio State University, found the solution that eluded me.
It is concise and beautiful.

Define (see Fig. 1.1) @ = {the set of all cells of T, except those in the
middle row}. Observe that no matter where a 1000 X 1000 square S is
placed in the table 7, it intersects @ in an even number of cells, because
there are 1000 equal columns in S. Observe also that no matter where a
1001 x 1001 square S’ is placed in 7, it also intersects @ in an even
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Fig. 1.1 .

Fig. 1.2 .

number of unit squares, because there are 1000 equal rows in S’ (one row is
always missing, since the middle row is omitted in S.)

Now we can easily create the required assignment of signs in 7 that cannot
be converted into all pluses. Let @ have any assignment with an odd number
of + signs, and the missing in @ middle row be assigned signs in any way. No
series of operations can change the parity of the number of pluses in @, and
thus no series of allowed operations can create all pluses in . [ |

3. Utilizing Analogy

A sense of analogy could be a powerful tool. Here is one example from
(Soifer 2009-2).

Problem 2 Prove that a map formed in the plane by finitely many circles
can be 2-colored (Fig. 1.2).
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(D
N\
69

Proof We partition regions of the map into two classes (Fig. 1.3): those
contained in an even number of circles (color them gray), and those con-
tained in an odd number of circles (leave them white). Clearly, neighboring
regions got different colors because when we travel across their boundary
line, the parity changes. [

I am sure you realize that the shape of a circle is of no consequence. We
can replace circles in problem 2 by simple closed curves. However, can we
replace simple closed curves by straight lines?

Problem 3 Prove that a map formed in the plane by finitely many straight
lines is 2-colorable (Fig. 1.4).

An inductive proof is well known, but, as is usually the case with proofs
by mathematical induction, it does not provide an insight. Decades ago I
found a ‘one-line’ proof that takes advantage of similarity between simple
closed curves and straight lines.

Proof Attach to each line a vector perpendicular to it (Fig. 1.5). Call the
half-plane inside if contains the vector, and outside otherwise. Repeat the
proof of problem 2 word-by-word to complete the proof (Fig. 1.6). [ |
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Fig. 1.5 .

Fig. 1.6 .

4. Method and Anti-method

Tiling with Dominoes. (Method). Can a chessboard with two diagonally
opposite squares missing, be tiled by dominoes (Fig. 1.7)?

Solution. Color the board in a chessboard fashion (Fig. 1.8). No matter
where a domino is placed on the board, vertically or horizontally, it would
cover one black and one white square. Thus, it is necessary for tileability to
have equal numbers of black and white squares in the board—but they are
not equal in our truncated board. Therefore, the required tiling does not
exist. [ |

It is impressive and unforgettable for a student to see for the first time
how coloring can solve a mathematical problem. However, I noticed that
once a student learns a coloring idea, s(he) always resorts to it when a
chessboard and dominoes are present in the problem. This is why I created
the following ‘Anti-Method’ Problem and used it in the Colorado Mathe-
matical Olympiad (Soifer 2011-2).



14 A. Soifer

Fig. 1.7 .

Fig. 1.8 .

The Tiling Game (Anti-method, 6th Colorado Mathematical Olympiad,
Soifer 1989). Mark and Julia are playing the following tiling game on a
1988 x 1989 chessboard. They in turn are putting 1 X 1 square tiles on
the board. After each of them made exactly 100 moves (and thus they



1 Goals of Mathematics Instruction ... 15

Fig. 1.9 . 13

Tiling template T for a 8 x 13 chessboard

Fig. 1.10 Winning 13
strategy

[SIE]

covered 200 squares of the board) a winner is determined as follows: Julia
wins if the tiling of the board can be completed with dominoes. Otherwise
Mark wins. (Dominoes are 1 X 2 rectangles, which cover exactly two
squares of the board.) Can you find a strategy for one of the players allowing
him to win regardless of what the moves of the other player may be? You
cannot? Let me help you: Mark goes first!

Solution. Julia (i.e., the second player) has a strategy that allows her to
win regardless of what Mark’s moves may be. All she needs is a bit of home
preparation: Julia creates a tiling template showing one particular way, call it
T, of tiling the whole 1988 Xx 1989 chessboard with dominoes. Figure 1.9
shows one such tiling template 7 for an 8 X 13 chessboard.

The strategy for Julia is now clear. As soon as Mark puts a 1 X 1 tile
M on the board, Julia puts her template T on the board to determine which
domino of the template 7 contains Mark’s tile M. She then puts her 1 X 1
tile J to cover the second square of the same domino (Fig. 1.10). When each



16 A. Soifer

player makes 100 moves, 100 dominoes will be covered, and the template
T will show how to complete the tiling of the board. [ |

5. Synthesis and Combinatorial Geometry

Secondary school mathematics consists predominantly of problems with
single-idea solutions, found by analysis. We ought to introduce a sense of
mathematical reality in the classroom by presenting synthesis, by offering
problems that require for their solution ideas from a number of mathematical
disciplines: geometry, algebra, number theory, trigonometry, linear algebra, etc.

And here comes Combinatorial Geometry to the rescue. It offers an
abundance of problems that sound like a ‘regular’ secondary school
geometry, but require for their solutions synthesis of ideas from geometry,
algebra number theory, trigonometry, ideas of analysis, etc. See for example
(Soifer 2009-1; 2009-3; 2011-1). Moreover, combinatorial geometry offers
us open-ended problems. It offers problems that any geometry student can
understand, and yet no one has yet solved! Let us stop this discrimination of
our students based on their young age, and allow them to touch and smell,
and work on ‘real’ mathematics and its unsolved problems. They may find a
partial advance into solutions; they may settle some open problems com-
pletely. And they will then know the answer to what ought to become the
fundamental questions of mathematical instruction: What is mathematics?
What do mathematicians do?

In fact, I would opine that every discipline is about problem solving. And
so the main goal of every discipline ought to be to enable students to learn
how to think within the discipline, how to solve problems of the discipline,
and finally what that discipline is about, and what the professionals within
the discipline do. And mathematics to all sciences does what gymnastic does
to all sports: Mathematics is gymnastics of the mind. Doing mathematics
develops a universal approach to problem solving and intuition that go a
long way in preparing our students for solving problems they will face in
their lives.

6. Open Ended and Open Problems

As a junior at the university, I approached my supervisor Professor Leonid
Yakovlevich Kulikov with an open problem I liked—he was my supervisor
ever since my freshman year. He replied, “Learn first, the time will come
later to enter research.” He meant well, but politically speaking, this was a
discrimination based on my young age. Seeing my disappointment, Kulikov
continued, “It does not look like I can stop you from doing research. All
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right, whatever results you obtain on this open problem, I will count as your
course paper.” Soon I received my first research results, and my life in
mathematics began.

We ought to allow our students to learn what mathematicians do by
offering them not just unrelated to each other exercises but rather series of
problems leading to a deeper and deeper understanding. And we ought to let
students ‘touch’ unsolved problems of mathematics, give them a taste of the
unknown, a taste of adventure and discovery. Combinatorial geometry
serves these goals well by providing us with easy-to-understand,
hard-to-solve—or even unsolved—problems. I will formulate here two
examples. You can find their solutions in my Springer books listed in
references.

Points in a Triangle (Soifer 2009-3). Out of any n points in or on the
boundary of a triangle of area 1, there are 3 points that form a triangle of
area at least V4.

(a) Prove this statement for n = 9.
(b) Prove this statement for n = 7.
(c) Prove this statement for n = 5.

(d) Show that the statement is not true for n = 4, thus making n = 5 best
possible.

Chromatic Number of the Plane (Soifer 2009-1). No matter how the
plane is colored in n colors, there are two points of the same color distance 1
apart.

(a) Prove this statement for n = 2.

(b) Prove this statement for n = 3.

(c) Disprove this statement for n = 7.

(d) The answer for n = 4, 5, and 6 is unknown to man—this is a forefront of
mathematics!

7. Beauty of ‘Real’ Mathematics Can Be Transplanted to Olympiads for

Secondary Schools

New Olympiad problems occur to us in mysterious ways. This problem
came to me one summer morning of 2003 as I was reading a never published
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1980s manuscript of a Ramsey Theory monograph, while sitting by a
mountain lake in Bavarian Alps. It all started with my finding a hole in a
lemma, which prompted a construction of a counterexample (part b of the
present problem). Problem (a) is a corrected particular case of that lemma,
translated, of course, into a language of a nice ‘real’ story of a chess tour-
nament. I found three distinct striking solutions of (a) and an even more
special solution of (b). As a result, this problem became for me the most
beautiful Olympiad problem I have ever created. What is more, the journey
that led me from Ramset Theory to problems of mathematical Olympiads,
continued to a mathematical problem of Finite Projective Planes! I will show
here only one of my three solutions—read other solutions in (Soifer 2004)
or (Soifer 2017).

Chess 7 x 7 (21st Colorado Mathematical Olympiad, April 16, 2004, A.
Soifer).

(a) Each member of two 7-member chess teams is to play once against each
member of the opposing team. Prove that as soon as 22 games have been
played, we can choose 4 players and seat them at a round table so that
each pair of neighbors has already played.

(b) Prove that 22 is the best possible; i.e., after 21 games the result of
(a) cannot be guaranteed.

Solution. This solution harnesses the power of combinatorics. In the
selection and editing process, Col. Dr. Bob Ewell suggested tousea 7 X 7
table to record the games played. We number the players in both teams. For
each player of the first team we allocate a row of the table, and for each
player of the second team a column. We place a checker on the table in the

Fig. 1.11 . - j
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location (i, j) if the player i of the first team played the player j of the second
team (Fig. 1.11).

If the required four players are found, this would manifest itself in the
table as a rectangle formed by four checkers, a checkered rectangle! (Sides
of the checkered rectangle are required to be parallel to the lines of the grid.)
The problem thus translates into the new language as follows:

A 7 X 7 table with 22 checkers must contain a checkered rectangle.

Assume that a table has 22 checkers but does not contain a checkered
rectangle. Since 22 checkers are contained in 7 rows, by the Pigeonhole
Principle, there is a row with at least 4 checkers in it. Observe that inter-
changing rows or columns does not affect the property of the table to have
or have not a checkered rectangle. By interchanging rows, we make the row
with at least 4 checkers first. By interchanging columns, we make all
checkers of the first row to appear consecutively from the left side of the
board. We consider two cases.

(1) Top column contains exactly 4 checkers (Fig. 1.12).

Draw a bold vertical line L after the first 4 columns. To the left from L,
top row contains 4 checkers, and all other rows contain at most 1 checker
each, for otherwise we would have a checkered rectangle (that includes the
top row). Therefore, to the left from L we have at most 4 + 6 = 10
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Fig. 1.13 . L
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checkers. This leaves at least 12 checkers to the right of L, thus at least one
of the three columns to the right of L contains at least 4 checkers; by
interchanging columns and rows we put them in the position shown in
Fig. 1.12. Then each of the two right columns contains at most 1 checker
total in the rows 2 through 5, for otherwise we would have a checkered
rectangle. We thus have at most4 + 1 + 1 = 6 checkers to the right of L in
rows 2 through 5 combined. Therefore, in the lower right 2 X 3 part C of
the table we have at least 22 — 10 — 6 = 6 checkers—thus C is completely
filled with checkers and we get a checkered rectangle in C in contradiction
with our assumption.

(2) Top column contains at least 5 checkers (Fig. 1.13).

Draw a bold vertical line L after the first 5 columns. To the left from L,
top row contains 5 checkers, and all other rows contain at most 1 checker
each, for otherwise we would have a checkered rectangle (that includes the
top row). Therefore, to the left from L we have at most 5 + 6 = 11
checkers. This leaves at least 11 checkers to the right of L, thus at least one
of the two columns to the right of L contains at least 6 checkers; by inter-
changing columns and rows we put 5 of these 6 checkers in the position
shown in Fig. 1.13. Then the last column contains at most 1 checker total in
the rows 2 through 6, for otherwise we would have a checkered rectangle.
We thus have at most 5 + 1 = 6 checkers to the right of L in rows 2 through
6 combined.

Therefore, the upper right 1 X 2 part D of the table plus the lower right
1 X 2 part C of the table have together at least 22 — 11 — 6 = 5 checkers—
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but they only have 4 cells, and we thus get a contradiction.

Solution of Part (b). Glue a cylinder (!) out of the board 7 X 7, and put
21 checkers on all squares of the 1st, 2nd, and 4th diagonals (Fig. 1.14
shows the cylinder with one such checkered diagonal; Fig. 1.15 shows, in a
plane representation, the cylinder with all three checkered diagonals).

Assume that 4 of the placed checkers form a rectangle on our 7 X 7
board. Since these four checkers lie on 3 diagonals, by the Pigeonhole
Principle, two checkers lie on the same (checkers-covered) diagonal D of the
cylinder. But this means that on the cylinder our 4 checkers form a square!
Two other (opposite) checkers a and b thus must be symmetric to each other
with respect to D, which implies that the diagonals of the cylinder that
contain a and b must be symmetric with respect to D—but no two
checker-covered diagonals in our checker placement are symmetric with
respect to D. (To see that, observe Fig. 1.16 which shows the top rim of the
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cylinder with bold dots for checkered diagonals: distances between the
checkered diagonals measured in unit squares clockwise, are 1, 2, and 4.)
This contradiction implies that there are no checkered rectangles in our
placement. Done! [ |

Observe: Obviously, any solution of part (b) can be presented in a form
of 21 checkers placed on a 7 X 7 board (see, for example, the left 7 X 7
part with 21 black checkers in Fig. 1.15). It is not at all obvious that the
solution is unique, i.e., by a series of interchanges of rows and columns, any
solution of this problem can be brought to match precisely the one I pre-
sented in Fig. 1.15! Of course, such interchanges mean merely renumbering
of players of the same teams.

The uniqueness of the solution of problem (b) is precisely another way of
stating the uniqueness of what is known in mathematics as the Projective
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Plane of Order 2, the so called “Fano Plane,” denoted by PG(2, 2). It was
named after Gino Fano (1871-1952), the Italian geometer who pioneered
the study of finite projective geometries.

The Fano Plane is an abstract construction, with symmetry (duality)
between points and lines: it consists of 7 points and 7 lines. You can think of
rows and columns of our 7 X 7 table as lines and points respectively, with 3
points on every line and 3 lines through every point. See in Fig. 1.17 a
traditional depiction of the Fano Plane where a circle depicts one of the
lines.

Observe that if on our 7 X 7 board we replace each of the 21 checkers by
1 and the rest of the squares fill with zeroes, we get the so-called Incidence
Matrix of the Fano Plane.

This problem reminds me Mary-Go-Round: it originates in a ‘real’
mathematics, Ramsey Theory, generates excitement of Olympiad kind, and
ends in another branch of ‘real’ mathematics, Finite Projective Planes!

Acknowledgements [ thank Col. Dr. Robert Ewell for converting my
hand-drawn sketches into computer-aided illustrations.
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Chapter 2
From a Mathematical Situation
to a Problem

Francisco Bellot-Rosado

Abstract The approach to problems creation starting from a mathematical
situation is developed, with several examples of such situations and prob-
lems arising from this, with solutions (if the problem is not open).

Keywords Geometrical situation - Mathematical problem

2.1 Introduction

The teaching of mathematics on the basis of problem solving is a periodi-
cally repeated subject in ICMEs, as TG or WG. Within this general frame,
we will consider in this chapter an approach to problems creation that we
will call “From a mathematical situation to a problem”.

In Mathematical Competitions, the journal of the WFNMC, the question
of the creation of problems has been studied many times; in particular,
between 1986 and 1999, more than 20 papers on this subject were been
published. The paper by Engel (1987) The creation of mathematical
Olympiad Problems, starts with the following sentence:

Dedication: To Eduardo Wagner (SBM, Brazil), from whom I learned to go
from a mathematical situation to a problem or a theorem, and how to solve
them.

F. Bellot-Rosado (=)

Royal Spanish Mathematical Society and WFNMC, Dos de Mayo street,
number 16, 8th floor, Apt. A, 47004 Valladolid, Spain

e-mail: franciscobellot@ gmail.com

© Springer International Publishing AG 2017 27
A. Soifer (ed.), Competitions for Young Mathematicians,
ICME-13 Monographs, DOI 10.1007/978-3-319-56585-9_2
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It is far more difficult to create problem than to solve it. There are very
few routine methods of problem creation. As far as I know no Polya
among problem creators who wrote a book with the title “How to
create it”.

When analyzing some examples of workshops about Learning based in
problems, we notice that, although the term “situation-problem” may be
used, the teacher actually presents a closed statement to the students. That is,
the teacher is helping the students to find a way to gather the details of the
solution of a problem from which the full statement is, sooner or later,
given. It’s clear that during the discussion, students can discover some
alternative statements which can became new problems, and this, no doubt,
improves the enrichment of the mathematical-didactical discussion which
must follow. In this sense, the treatment of the question given in the book
“Pour un enseignement problematisé des Mathématiques au Lycée” (2
vols.), APMEP, in French, no date of publication, a collective work of the
group “Problématiques Lycée”, is interesting.

To begin, we can take a look at an example included in the workshop
Aprendizaje basado en problemas (Learning based on problem-solving), by
Prof. Rolando Séenz, from Ecuador. This example was presented in 2006 in
Salinas (Ecuador), during the Iberoamerican Symposium (with emphasis in
problem solving), a didactical activity prior to the Iberoamerican Mathe-
matical Olympiad.

Example 1.1 ABCD is a square. We take points M, N, O and P, respectively
in AB, BC, CD and DA, in a such manner that AM = BN = CO = DP.
Determine the point M such that the quadrilateral MNOP have maximal
area.

Maybe if the last sentence was changed to something like this: Consider
the quadrilateral MNOP, some other statements, equally interesting, would
emerge during the discussion. We invite the readers to try it by themselves.

Many times, the reading of a paper about problem creation will provide
some very interesting problems, but there are rarely many explanations on
how they were created, that is, what was the process which gave birth to the
problem.

We can now take a look at some characteristics which a good problem
should have. Gardiner (1992, p. 59) wrote this:

(a) The ingredients (of the problem) should be simple and familiar, but the
problem should not be of any standard type.

(b) No method of solution should be immediately obvious, but a careful
survey of the given information should suggest one or two promising
points of attack.
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(c) And exploratory phase should then reveal how (or whether) these
approaches can be exploited.

(d) The final solution when it emerges should, in retrospect, have an
unexpected elegance or conceptual simplicity.

Example 1.2 The positive numbers x, y and z satisfy

2
X 4xy+ 5 =25
L42=9
3 TL=
Z+xz+x2=16

Find the value of xy + 2yz + 3zx.

Note: The sources of the problems will be included in the solutions
section

The readers are invited to think about this statement and to try by
themselves the “promising points of attack™ in the words of Gardiner.

As last part of this introduction, here is a quote of Branko Griinbaum in
his introduction to the book of Soifer (1990) How Does One Cut a
Triangle?.

Many people find mathematics attractive because it presents to the
mind the same challenge that other activities, such as sports, present to
the body. In mathematics, and specially in geometry, there are abun-
dance of topics that are accessible without much previous knowledge.
They present the exploring mind with opportunities to rise to that
challenge, and to experience the joy of discovery.

2.2 What Is a Mathematical Situation?

Searching in libraries, it is possible to find—at least—two types of books
which can be related to the topic of the chapter.

(1) Books where mathematical situations with problems are presented
(with or without solutions).

(2) Books where mathematical problems are discussed in detail, showing
what should be the way by which the solution must be presented to the
audience (much more detailed than the typical way in which the solution
seems to appears like riding a parachute, falling down from the sky).
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One of the earliest examples of books from type 1 is Geometry for
Advanced Pupils, by Maxwell (1949).

Dr. Maxwell presents here 47 configurations from which is possible to
deduce results, many problems and geometric properties of interest. He also
includes examples from the Oxford and Cambridge Examinations Papers.

An interesting paper, published in Quantum, January/February 2001 by
the late Prof. I. Sharygin, is Where do problems come from? (Sharygin
2001) (The art of problem composition). Sharygin explains in this paper
some of his own procedures for composing problems (Olympiad type): by
reformulation, problems built on other problems, considering special cases
of a theorem; varying the problem statement; by generalization of a problem
(or some result). And he says: However, the main source of new problems is
inquisitiveness, the desire to reveal the essence of a problem, the ability to
look at a well-known fact from an unusual point of view. This is when the
most interesting geometric problems appear, ones that can be called
discoveries.

Sharygin ends his paper with this assertion: You don’t have to be a
budding mathematical genius to make geometric discoveries—some prob-
lems show that any student can do it. And this includes you!

Another book of type 1 is Geometry in figures, by Akopyan (2011) (no
Editorial name, but the place is Lexington, KY). This is a collection of
theorems and problems of Euclidean geometry formulated in figures,
without text. This is a good illustration about what a geometrical situation is.
Recently (2015), the Union of Bulgarian Mathematicians published the
book by Dimitrov, Lichev and Chovanov 555 problems of Geometry (in
Bulgarian) with the solutions to the problems of the book by Akopyan.

To end with the examples of publications of type 1 it is worth mentioning
the book by Monk (2009). This is a very popular book among the partici-
pating countries in the IMO since it was published. The five categories of
problems of the book are E (easy), 18 problems; M (moderate difficulty), 20
problems; H (hard), 18 problems; C (Computational), 24 problems; and T
(Trigonometry), 18 problems.

For the books of Type 2 the situation seems to be better. There are many
publications about this subject (see the References section for more titles)
and some of them are really excellent. Here are a few examples:

Burns (2000).

Gardiner (1997).

Savchev and Andreescu (2003).
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Nevertheless, it seems there are not many titles in libraries and bookstores
which describe what a mathematical situation is. Paraphrasing Prof. Eduardo
Wagner, Brazilian expert in problem solving: As important as teaching
Mathematics is to create new problems, interesting and challenging.
Problems are new questions, of different aspect to the usual one and which
should stimulate the development of the reasoning. To create one problem a
big effort, enough time to try many attempts, and good luck are required.
With continued work and much reading, the ability to create problems is
developed and the ideas can emerge in our mind more easily. This work is
not different to other sciences or artistic work. To acquire any ability,
everybody needs specific training.

The “Office of creating problems”, promoted by the OEI (Iberoamerican
States Organization) in the years 1994 to 1997, is an introduction to the art
of creating problems. With its own methodology, the participants have the
opportunity of experimenting with real problem creation situations, and
they then developed their own methods.

A Mathematical situation is not yet a problem. It consists of a set of
mathematical objects, linked by some certain relations. With this basis, the
participants (in the Office) must investigate the properties of the proposed
situation, adding if necessary other elements, and to create one of more
problems. In this way, with the reasoning focused in a particular situation,
the activity was followed with the biggest interest by the participants and
some new problems of different degrees of difficulty were created. End of the
quote, taken from Wagner (1997).

Prof. Wagner was the coordinator of the “Office” in the years 1994, 1995
and 1996. The Mexican Prof. Alejandro Bravo was the coordinator in 1997.

The next section of the chapter provides examples of mathematical sit-
uations, which are deliberately left open, in order that readers can experi-
ment by themselves creating new problems (this would be truly excellent!).
In the subsequent sections, the problems arising from these situations are
presented and the section of detailed solutions will follow.
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2.3 Several Examples of Mathematical Situations

Situation 3.1 In the acute triangle ABC, let AM be the median (M belongs
to the side BC), and let AD be the internal bisector of angle A. (D belongs to
the side BC). From B the perpendicular to AD is drawn, meeting AD at J, to
AM at L and to AC at K.

Situation 3.2 The most important carpet seller of Orient is very worried.
His device to measure the carpets has been stolen and so he can’t measure
the new carpet recently received, for one of his best clients. The carpet is
rectangular, but the dimensions are unknown. If he display the carpet in the
floor of two of the rooms of his house, one after the other, in a convenient
way, the four corners of the carpet are located on each one of the 4 walls of
each room.

Situation 3.3 The quadrilateral ABCD has an inscribed circle, being K,
L. M and N the tangency points with the sides AB, BC, CD and DA,
respectively. The lines DA and CB intersect at S, and the lines BA and CD
intersect at P.

Situation 3.4 Let M and N be points of the side BC of the triangle ABC,
such that BM = CN (point M is located between B and N). Let P and Q be
points located respectively on AN and AM such that ZPMC=
£MAB and £QNB = #ZNAC.

Situation 3.5 Consider the sum Y/_, x;y;, where the values of the

2n variables xj, ..., X;; Y1, ..., Yo are only O either 1. Let I(n) be the
number of 2n-tuples xj, ..., X;; ¥1, ..., ¥» such that the sum is an odd
number, and P(n) the number of 2n-tuples xi, ..., X,; y1, ..., Y, such that

P(n)
HON

the sum is an even number. Consider

Situation 3.6 In the triangle ABC, G is the point of intersection of the
medians and K the point of intersection of the symmedians. The lines AG
and AK intersect again the circumcircle of ABC at M and N, respectively. Let
P =BCNGN,R =BCNKM and S = GRNKP.

Situation 3.7 The acute triangle ABC is inscribed in a circle. The point P is
inside the triangle. Lines AP, BP and CP intersect again the circumcircle of
ABC at X, Y and Z, respectively. Consider the triangle XYZ.

Situation 3.8 Consider the sequence of real numbers {x,} with x arbitrary
and x, 4.1 = 2()6,,)2 —1.
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Situation 3.9 Lines r and s lie mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A € r, B € s). Consider the
sphere of diameter AB. The points M €r and N €s are variable, with the
condition that MN is tangent to the sphere. Let 7" be the point of tangency.

Situation 3.10 Let ABC be a triangle inscribed in a circle, and [/ is the
incenter of the triangle. Lines Bl and CI intersect again the circumcircle at
M and N, respectively. Line MN intersect AB at P and AC at Q, respectively.

Situation 3.11 With center in the incenter / of the triangle ABC, a circle is
drawn, intersecting in two points each side of the triangle: to BC at D and
P (being D the most near to B), to CA at E and Q (being E the most near to
(), and to AB at F and R (being F' the most near to A). Let S be the point of
intersection of the diagonals of the quadrilateral EQFR, and T the point of
intersection of the diagonals of the quadrilateral FRDP. Finally, let U be the
intersection of the diagonals of the quadrilateral DPEQ.

Situation 3.12 ABCD is a convex quadrilateral, and M = ACNBD. The
internal  bisector of ZACD intersects BA at K. Suppose
MA-MC + MA-CD = MD - MB.

2.4 Some Problems Arising from the Mathematical
Situations of Sect. 2.3

Problem 4.1 In the acute triangle ABC, let AM be the median (M belongs to
the side BC), and let AD be the internal bisector of angle A (D belongs to the
side BC). From B the perpendicular to AD is drawn, meeting AD at J, to AM
at L and to AC at K. Show that AB and DM are parallel.

Problem 4.2 The most important carpet seller of Orient is very worried. His
device to measure the carpets has been stolen and so he can’t measure the
new carpet recently received, for one of his best clients. The carpet is
rectangular, but the dimensions are unknown. If he display the carpet in the
floor of two of the rooms of his house, one after the other, in a convenient
way, the four corners of the carpet are located on each one of the 4 walls of
each room. If the sides of the first room are 55 and 50, and those of the
second room are 55 and 38, find the dimensions of the carpet.

Problem 4.3 The quadrilateral ABCD has an inscribed circle, being K, L. M
and N the tangency points with the sides AB, BC, CD and DA, respectively.
The lines DA and CB intersect at S, and the lines BA and CD intersect at P. If
S, K and M are collinear, prove that P, N and L are also collinear.
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Problem 4.4 Let M and N be points of the side BC of the triangle ABC,
such that BM = CN (point M is located between B and N). Let P and Q be
points located respectively on AN and AM such that £PMC = 2MAB and
£ZONB=«NAC Would it be always true that £QBC = 2PCB?

Problem 4.5 Consider the sum Y.7_, x;y;, where the values of the 2n vari-

ables xi, ..., X5 y1, ..., y, are only O either 1. Let I(n) be the number of

2n-tuples x1, ..., Xu; Y1, ..., Y, such that the sum is an odd number, and P

(n) the number of 2n-tuples xj, ..., X,; Y1, --., ¥» such that the sum is an
P(n) _ 2"+1

even number. Show that o) = =1

Problem 4.6 In the triangle ABC, G is the point of intersection of the
medians and K the point of intersection of the symmedians. The lines AG
and AK intersect again the circumcircle of ABC at M and N, respectively. Let
P=BCNGN, R=BCNnKM and S = GRNnKP. Show that AGSK is a
parallelogram.

Problem 4.7 The acute triangle ABC is inscribed in a circle. The point P is
inside the triangle. Lines AP, BP and CP intersect again the circumcircle of
ABC at X, Y and Z, respectively. Determine the position of the point P for
that XYZ be equilateral.

Problem 4.8 Consider the sequence of real numbers {x,} with xq arbitrary
and x,41=2(x,)* — 1. Show that, if |xo| <1, then|x,|<1. Find a closed
expression for x,,.

Problem 4.9.1 Lines r and s are mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A € r, B € s). Consider the
sphere of diameter AB. The points M €r and N €s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.
Show that TM.TN is constant.

Problem 4.9.2 Lines r and s are mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A €, B €s). Consider the
sphere of diameter AB. The points M €r and N €s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.
Determine the geometrical locus of the point 7.

Problem 4.10 Let ABC be a triangle inscribed in a circle, and [ is the
incenter of the triangle. Lines Bl and CI intersect again the circumcircle at
M and N, respectively. Line MN intersect AB at P and AC at Q, respectively.
Show that /A is perpendicular to MN.

Problem 4.11 With center in the incenter / of the triangle ABC, a circle is
drawn, intersecting in two points each side of the triangle: to BC at D and
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P (being D the most near to B), to CA at E and Q (being E the most near to
(), and to AB at F and R (being F the most near to A). Let S be the point of
intersection of the diagonals of the quadrilateral EQFR, and T the point of
intersection of the diagonals of the quadrilateral FRDP. Finally, let U be the
intersection of the diagonals of the quadrilateral DPEQ. Show that the
circumcircles of the triangles FTR, DPU and EQS have one common point.

Problem 4.12 ABCD is a convex quadrilateral and M = ACNBD. The
internal bisector of ZACD intersects BA at K. Suppose MA-MC +
MA - CD = MD - MB. Show that 2BKC = «CDB.

2.5 Hints, Solutions and Comments to Some
of the Problems and Examples

2.5.1 Comment and Hint to Example 1.2

The right hand side of the three equations are numbers of a Pythagorean
triad. The left hand side of the equations represents the expressions of the
cosine law for some convenient angles. So, the advice is to locate one point
M inside a rectangle triangle with convenient sides in a such way the three
equations be fulfilled, and from this, evaluate more easily xy + 2yz + 3zx.

Source of the problem: Zhang Jung-da et al., Mathematics Competitions,
vol.10, number 2, 1997, pp. 52-63.

2.5.2 Solution to Problem 4.1

In the acute triangle ABC, let AM be the median (M belongs to the side BC),
and let AD be the internal bisector of angle A. (D belongs to the side BC).
From B the perpendicular to AD is drawn, meeting AD at J, to AM at L and
to AC at K. Show that AB and DM are parallel (Fig. 2.1).

Solution (by F. Bellot)

There is no loss of generality if we suppose that angle B is bigger than
angle C. First, being AD the internal bisector of angle A, ZBAD = %. And as
BJ is perpendicular to AD, ZABJ=90° — %‘. The same argument in the
triangle AJK gives us ZAKJ =90° — *2—‘. Then, triangle ABK is isosceles and
AK = AB = c. From this, we get KC = b — c.

To prove that AB and DM are parallel, it is enough to prove that % =
and the theorem of Thales will finish the problem.

BD
DE’
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Fig. 2.1 Figure for
Problem 4.1

First we will compute %. From the angular bisector theorem, we have

BD = . As E is the midpoint of BC, we have DE=BE —BD = ZEIC’;Z;
2c_

therefore 22 = 2¢
—C
To compute %, we can use the Menelaus theorem in triangle AEC with

the transversal KMB:

AM | EB | CK _ AM _ 2c
ME " BC " KA — 1©ME =3 and we are done. [
Source of the problem: Course on Euclidean Geometry I, University of

Costa Rica, 2012.

2.5.3 Solution of Problem 4.2

The most important carpet seller of Orient is very worried. His device to
measure the carpets has been stolen and so he can’t measure the new carpet
recently received, for one of his best clients. The carpet is rectangular, but
the dimensions are unknown. If he display the carpet in the floor of two of
the rooms of his house, one after the other, in a convenient way, the four
corners of the carpet are located on each one of the 4 walls of each room. If
the sides of the first room are 55 and 50, and those of the second room are
55 and 38, find the dimensions of the carpet.

Solution by Maria Ascension Lépez Chamorro, Valladolid (Spain)

We will solve the problem in a more general context, and then will apply
it to the case of the carpet with the given numerical measures.
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Fig. 2.2 First figure D 2 x
for Problem 4.2 x| T e 2 ¢
#
¥ b
T
. X
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Let ABCD be a rectangle, and let XYZT be another rectangle, inscribed in
the first, with Z on the side AB, T on BC, X on CD and finally Y on DA
(Fig. 2.2).

Suppose AB=CD =1;; AD=BC=0L; XY=ZT=a; YZ=TX =b.
(In terms of the problem, a, b are the dimensions of the carpet; /;, [, those of the
room).

Triangles XDY and ZBT are congruent, also YAZ and TXC. This means

XC=AZ=7;XD=7ZB=t;DY=BT=x;AY=TC=y

But moreover triangles XDY and YAZ are similar, and then § =i=1

This proportion can be written as bt=ay; bx=az; and moreover the
equalities z+y=1[; and x+y=1/, holds.
From this we obtain the two relations

bx
a

them in the unknowns x and y gives us (% - s)y=ll - lallz; (2 - %)x=

+ % =1;; x+y=1[, and solving

L= $h.
The final expressions for x, y, z, ¢ are the following:

_ a(alz - bl[) o b(ah —blz) L b(alz - bll) L a(ah —blz)

xX= 1) - ’Z_ ) -
at-b? Y at-b? at-b? ar-b?

But by Pythagora’s Theorem, x> + > =a?; y* 4+ z° = b*. Both equalities

. . — b2 _
given the same equation: (“Cfg_ﬁjél) + (acfi _Z?

ing and simplifying this can be written as

)2 =1; and developing, order-

(@®+ %) (B +B) -4l hab = (& — b*)*(*)
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If the rectangle XYZT also can be inscribed in another rectangle with
dimensions m; and m,, the same reasoning allows us to writing a second
equation

(a® +b%) (m7 +m3) —dmympab = (a* — b2)2(**)
Substracting (*) and (**) we get
(a®+b*) (5 + 5 —m} —m3) — 4ab(l,1, — mymy) = 0.
In order to simplify the notation we define
k=0L+5—mj —m3;h=lLil,—mmy; andu=(b/a).
With this we have the quadratic equation in u

(1+u?)k—4uh=0s ku* —4uh+ k=0

2h+/412 — k2
H=—.
k

Now we make the computations with the data of the problem (crossing
the fingers!):

[} =55; I, =50;m; =55; my =38.
We get in sequence:

k=88-12; h=55-12
4 —h* = (2h+k)(2h — k) =12%-11%-6°
u=2or(1/2)

and from this,

x=20;t=15=>a=25, b=50
and for the second rectangle we get

x1=7,t1 =24=>a=25, b=>50,

and so the same carpet can be placed in both rooms (Fig. 2.3). |
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Fig. 2.3 Second figure
for Problem 4.2

{
' < /i My
15 24 L{'
Lt =55 =M Me XY=k =25
Lity= 59 Y, Z =%2 250
My My ~ 38

Source of the problem: Course on Euclidean Geometry I, University of
Costa Rica, 2012.

2.5.4 Solution of the Problem 4.3

The quadrilateral ABCD has an inscribed circle, being K, L. M and N the
tangency points with the sides AB, BC, CD and DA, respectively. The lines
DA and CB intersect at S, and the lines BA and CD intersect at P. If S, K and
M are collinear, prove that P, N and L are also collinear.

Source of the problem: Belarusian Math Olympiad 1996 (TST). In the
booklet of this Olympiad no authorship attribution of the problem is given.
In the booklet the solution of the student M. Vronski, given during the test (a
long but nice metrical solution) is published. Some time after the 2002
Melbourne Conference of the WFNMC, where I presented this problem, I
received the following solution:

Solution (by Andy Liu)

Let O be the centre of the circle and r its radius. Then OS and LN are
perpendicular and let them meet at R. Also, OP and SKM are perpendicular
and let them meet at Q. Since triangles OLR and OSL are similar, we have
OS.OR = /. Similarly, OP.0Q = r*. Hence PQRS is cyclic. Now,
ZPRS = 2PQS =90° = «NRS. It follows that I, N and P are collinear. N
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2.5.5 Solution of the Problem 4.4

Let M and N be points of the side BC of the triangle ABC, such that BM = CN
(point M is located between B and N). Let P and Q be points located
respectively on AN and AM such that ZPMC = £ZMAB and £QNB = ZNAC
Would it be always true that ZQBC = 2PCB?

Source of the problem: National round of the Spanish Mathematical
Olympiad 2015, Problem 6 (Fig. 2.4).

Solution (official solution, slightly edited by F. Bellot)

The key idea of this solution is to consider the circles (BNQ) and (PMC).
If AM meet again the circle (BNQ) at X, and AN meet again the circle (PMC)
at Y, its trivial that quadrilaterals BONX and MPCY are cyclic. But being
£QBC = 20BN and £PCB = 2PCM, then the angles of the problem will be
equal if ZOBN =2ZPCM

But ZOBN = 2QXN = ZMXN and £PCM = £PYM = ZNYM

Then, the problem will be solved in affirmative sense if we prove the
equality

£ZMXN = 2NYM

and this means than the four points M, N, Y, X belong to the same circle.
So, we will try to prove that

AM AY
AM -AX=AN -AYe—= — 2.55.1
N QAN e (2.5.5.1)

Fig. 2.4 Figure for
Problem 4.4
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Our argument is the following:

Triangles ABM and CAN have the same area, because their basis are equal
by hypothesis and their altitudes from A are the same. So we have

AM -AB- sin a=AN-AC- sin j (2.55.2)

where a =MAB;  =NAC.

For another hand, two of the angles of the triangle ABX are a, and
£BXQ = £QNB = fincircle (BNQ)

Similarly, two angles of triangle ACY are  and a. Therefore triangles
ABX and ACY are similar, and we can write down the proportionality
between the homologous sides as

AY CY
= 2.
AX AB (23)
Finally, using the sinus law in triangle ACY, we get
AC  CY @sinﬁ_ cY
sina  sinf  sina AC
and (2.5.5.2) can be written as
AM AC-sinffp AC CY CY _ by(3) = cY
AN ~AB-sna AB AC_ AB_ T AC
and we are done. |

2.5.6 Solution to Problem 4.5

n

Consider the sum ) x;y;, where the values of the 2n variables
i=1

X1y - s X3 V15 - - -, Yy are only O either 1. Let /(n) be the number of 2n-tuples
X1y - s X031, - - -, Yu such that the sum is an odd number, and P(n) the
number of 2n-tuples xi, ...,X;; V1, --.,y, such that the sum is an even

P(n) _ 2741
I(n) — 2n-1"

number. Show that

Source of the problem: This problem, created jointly by the Mexican
mathematicians Gerardo Raggi and Humberto Céardenas, was awarded with
the Second Prize in the First Iberoamerican Contest of Creation of Problems,
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organized by the O.E.I. (Organization of Iberoamerican States for the
Education, the Science and the Culture). Before this award were announced,
the problem was included in the shortlist presented to the International Jury
of the XII Iberoamerican Mathematical Olympiad, held at Guadalajara,
Jalisco, Mexico, September 1997, and proposed to the students as problem
number 4.

Official solution

First observe that for each natural number n, the recursive formula P
(n + 1) = 3P(n) + 1 holds. This is so, because in any 2n-uple in which the
value is even, there are three possibilities of to choose the couple (x,41,
Yn+1) to obtain one 2(n + 1)-uple such that the value still be even; and
starting with one 2n-uple such that the value is odd, there are only one way
to choose the couple (x,.,1,V.1)—both values equal to 1—to complete to
get an even value.

Analogously we have I(n + 1) = 31(n) + P(n).

We will use these recursive formulas and the induction over n to get the
result.

The proposition is true if n = 1, because P(1) = 3 and /(1) = 1.

Suppose the result true for some n > 1 and we will prove it forn + 1. We
have

P(n+1) _3P(m)+1(n) _3(GED+1_3-2°43+2'—1 4242 2"*'+1
I(n+1)  31(n)+P(n) 3+ (&) 3.27-3+427+1 4.2-2 2n+1-1

2.5.7 Solution to Problem 4.6

In the triangle ABC, G is the point of intersection of the medians and K the
point of intersection of the symmedians. The lines AG and AK intersect
again the circumcircle of ABC at M and N, respectively. Let P = BCNGN,
R =BCNKM and S = GRN KP. Show that AGSK is a parallelogram.

Source of the problem: Problem proposed by Spain to the International Jury
of the 12th Iberoamerican Math. Olympiad. The Problem selection com-
mittee changed the statement to the problem, changing barycenter and
Lemoine’s point by circumcenter and orthocenter, making it more easy. This
is the originally proposed problem.
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Fig. 2.5 Figure for Problem 4.6

Solution by F. Bellot (Fig. 2.5).

Let E=BCNAG, F=BCNnAK, L=ABNCK and T = ACnBK.

Taking account that cevians AE and AF are isogonal, the arcs BM and NC
in the circle (ABC) are equal. From this we have that angles AEC and AMN
are supplementary, due to the equalities

1 1
£AEC = = (arcAC + arcBM); £LAMN = EarcAN =3 (arcAC +arcNC)

N —

This means that EF is parallel to MN, and as a consequence,

EM _FN

— =, 2.5.7.1
AM AN 257.1)
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For another hand, the power of point E with respect to the circle cir-
cumscribed to ABC can be written in two different ways:

BC?
AE -EM = ——,
4
Hence
BC?
EM = . 2.5.7.2
4.AE ( )
From (2.5.7.2) we get
4.AE*+BC?
AM= ————,
4.AE
whence, taking account that
2(AB? +AC?) — BC?
AR = (AB” + ) ’
4
we get
AB? + AC?
AM= ——— 25.7.3
2-AE ( )
From (2.5.7.2) and (2.5.7.3) we obtain
EM BC?
— = 2.5.7.4
AM  2(AB2+AC?) ( )
and by (2.5.7.2), we can write down
FN BC?
(2.5.7.5)

AN ~ 2(AB2+ACY)

As the cevians AF, CL and BT are concurrent at K, the Van Aubel
theorem allow us to write

AK_AL+Ar
KF LB TC’
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and by the Theorem of the Symmedian,
AL_AC AT AR
LB ABY’ TC AC*
So we get

AK _AB*+BC?

=B (2.5.7.6)

For another hand, the Menelaus theorem applied to the triangle AEF with
the transversal KM gives us

ER _AK EM
RF~ KF AM’
. . . _ _ 1
From this, with (2.5.7.4) and (2.5.7.6), we obtain ££ = 7, and as £8 = |
we have
EF EG
— = 2.5.7.7
RF GA ( )

and therefore GR is parallel to AF, whence GS is parallel to AK (2.5.7.8).
Again the Menelaus theorem at AEF with GN gives us
EP AN GE
PF FN AG’
which with (2.5.7.5) gives us
EP AK
PF  KF’
and this means KP is parallel to AE, or that is the same, KS parallel to AG

(2.5.7.9).
So (2.5.7.8) and (2.5.7.9) proves that AGSK is a parallelogram. |

2.5.8 Comments and Solution to Problem 4.7

The acute triangle ABC is inscribed in a circle. The point P is inside the
triangle. Lines AP, BP and CP intersect again the circumcircle of ABC at X,



46 F. Bellot-Rosado

Fig. 2.6 Figure for
Problem 4.7

Y and Z, respectively. Determine the position of the point P for that XYZ be
equilateral.

Comments

This problem, created in the Symposium held immediately before the IXth
Iberoamerican Math. Olympiad 1994, was included in the exam as problem
4. The solution below—slightly edited—was obtained by a Portuguese
student, Joao Menano, during the contest (Fig. 2.6).

Solution

Consider, for instance, the side AB and the diameter of the circle (ABC)
which is parallel to this side. Point C, then, must belong to the opposed
semicircle to that in which A and B are located, because triangle ABC is
acute. The same observation is valid for any other couple of vertices. Then
we can forget the point C. We will find all the points P such that y = 720°.
This condition is obviously necessary and sufficient for that X and Y be two
vertices of the equilateral triangle XYZ (the center of the equilateral triangle
must to be the center of the circle).

We have 2YOB=2-/YABand £ZXOA=2-4XBA. In order to get
£X0Y =120°. We need that

2XO0Y + 2YOB + #AOB + 2A0X =360°

£2AOB =180° — 2OAB — £OBA.
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Observing the Fig. 2.4, this means

60°+¢e+06

20+2=60°+e+5=>a+p= 5

The set of points P which verify this last equation are the points of an arc
of circle through A and B with this measure. By means of this construction
we get an arc of circle to which P belongs. Repeating this construction using
other vertices, say B, C, we will get another arc of circle. The intersection of
both arcs gives the position of searched point P. |

2.5.9 Solution to the Problems 4.8

Consider the sequence of real numbers {x,} with x, arbitrary and
Xp+1=2(x,)* — 1. Show that, if |xo| < 1, then |x,| < 1. Find a closed formula
for x,,.

Solution by F. Bellot

If |xo| < 1, we can write xo = cos 0, forsome 6 € [0, r).

Then we get x; =2(cos? @) — 1 = cos 26, and |x;| < 1. Continuing in this
approach, we obtain x; = cos(226), and by induction we can prove that
X, = cos(2"9), and we are done the two proposed problems. |

2.5.10 Solution to Problems 4.9.1 and 4.9.2

Lines r and s are mutually orthogonal and do not are in the same plane. Let
AB be its common perpendicular (A€r, B€s). Consider the sphere of
diameter AB. The points M € r and N € s are variable, with the condition
that MN is tangent to the sphere. Let T be the point of tangency. Show that
TM.TN is constant. Determine the geometrical locus of the point 7.

Both problems were also created during the Symposium on Creating
problems, previously to the 10th Iberoamerican Mathematical Olympiad,
Chili 1995. The problem was chosen by the International Jury and proposed
to the students as problem 3 (Fig. 2.7).

First we will prove that TM.TN is constant (this part was not included in
the text of the problem 3 of the Iberoamerican Olympiad 1995).The picture
can be simplified a bit (Fig. 2.8):
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Fig. 2.7 Figure for $
Problem 4.9.1

Fig. 2.8 Figure for 3
Problem 4.9.2

The argument is by Eduardo Wagner. If we take AB = 2, MA = MT = x,
NB = NT =y, then we get

NM?=NB*>+BM* & (x+y)’ =y* +4+ x> & xy=2

|

Going back to the Fig. 2.7, we will give an analytical solution of the
problem. (Solution by F. Bellot during the Symposium).

Suppose AB = 2. We will choose the midpoint O of AB as origin of a

Cartesian system of coordinates in the space, the line AB will be the x axis;

[T

the line through O parallel to the line s as “y” axis; and the perpendicular to

the plan xy through O (upwards) as “z” axis. OB is the positive “x” axis.
The equation of the sphere is x> +y? +z> = 1; the equations of the line

rare (x= —1,y=0); the equations of the line s are (x=1,z=0) and the

coordinates of points M and N are M(—1,0,m),N(1,n,0).
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The equations of the line MN are ’%21 =L =8y,
The condition of tangency of the line MN with the sphere is 4 = m?n?, that
is mn=42.
If mn=2, the -coordinates of the tangency point 7 are

m>=2 _2m 2m
m2+2° mr+2° m?+2

) and as the second and third coordinates of T are the

same, this means that 7 belong to the plane of equation y = z, and so this
plane contain the line AB and make an angle of 45° with the plan xy.

If mn = -2, the plane to which 7 belongs is y = —z, which is orthogonal
to the first one. Both planes pass through the center of the sphere, and
intersect it following two maximal circles through A and B, forming angles
of 45° with the plan xy. |

2.5.11 Solution to Problem 4.10

Let ABC be a triangle inscribed in a circle, and [ is the incenter of the
triangle. Lines Bl and CI intersect again the circumcircle at M and N,
respectively. Line MN intersect AB at P and AC at Q, respectively. Show
that /A is perpendicular to MN.

Source of the problem: Problem created during the Third Iberoamerican
Workshop about the creation of problems, held in San José, Costa Rica,
Sept. 1996, just before the 11th Iberoamerican Math Olympiad (Fig. 2.9).

Fig. 2.9 Figure for
Problem 4.10
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Let L be the midpoint of the arc BC which do not contains A. The per-
pendicular line from N on LA intersects AL at T. The perpendicular line from
N on ML intersects ML at W. Note that [ is the orthocenter of the triangle
LMN. The line WT is parallel to AC, and therefore is the line of the statement
of the problem.

Now, if from N draw the perpendicular to AM, intersecting AM at X, the
Simson line of N with respect to the triangle AML is the line which pass
through 7 and W, that is, X = AMNTW. |

2.5.12 Solution to Problem 4.11

With center in the incenter I of the triangle ABC, a circle is drawn, inter-
secting in two points each side of the triangle: to BC at D and P (being D the
most near to B), to CA at E and Q (being E the most near to C), and to AB at
F and R (being F the most near to A). Let S be the point of intersection of the
diagonals of the quadrilateral EQFR, and T the point of intersection of the
diagonals of the quadrilateral FRDP. Finally, let U be the intersection of the
diagonals of the quadrilateral DPEQ. Show that the circumcircles of the
triangles FTR, DPU and EQS have one common point.

Source of the problem: The problem was created during the 4th Workshop of
Creation of problems, held in Guadalajara, Jalisco, Mexico in September of
1997, just before the 12th Iberoamerican Mathematical Olympiad. The
workshop was conducted by Prof. Alejandro Bravo. The problem was chosen
by the International Jury and proposed to the students as problem number 3.

Solution by Alejandro Bravo.

As S belongs to the bisector of angle A of triangle ABC, the angles QIS
and SIF are equal. But angle QIF = 2(angle SIQ) is a central angle in the
circle, and QES is inscribed and subtend the same arc FQ; therefore angle
QES = angle SIQ and the four points Q, S, / and E are concyclic (Fig. 2.10).

Fig. 2.10 Figure for
Problem 4.11
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The same argument proves that U belong to this same circle. Repeating
the reasoning, the circles circumscribed to the triangles DPU, EQS and FRT
pass through the incenter / of the triangle ABC. |

2.5.13 Solution of the Problem 4.12

ABCD is a convex quadrilateral and M = AC N BD. The internal bisector of
ACD intersect BA at K. Suppose MA-MC + MA-CD = MD - MB. Show
that ZBKC = 2CDB.

Source of the problem: Course of Euclidean Geometry 1, University of
Costa Rica.

Solution by F. Bellot

First we will draw a figure in such a way that it meet the conditions of the
statement of the problem (Fig. 2.11):

Drawing first the dotted circle, choose on it arbitrary points B, C and
D. Choosing then the angle KCD, with K on the circle, joining K with B we
will get the straight line where the point A must to be. Then, with the
protractor the angle KCA equal to the angle KCD is drawn (because CK is
the bisector of ACD) and so the position of the point A is determinate.

The thesis of the problem is equivalent to say that the points B, C, D and
K are in the circle (and this justify the drawing) and furthermore gives an
interpretation of the strange condition

MA-MC+MA-CD=MD-MB (2.5.13.1)

Fig. 2.11 Figure for
Problem 4.12
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given in the statement of the problem.
First at all, as R is the foot of the internal bisector CK of triangle MDC,
we have, by the internal bisector theorem,
RM MC D= MC -RD
RD ~ CD MR
The value of CD is substituted in (2.5.13.1):
MA-MC+MA - YSRD = MD - MB.
The left hand side «can be written in the form
MA-MC- (1+ 82) =MD - MB, i.e.
MR +RD

MD
MA-MC- —— =MD -MB&MA-MC- — =MD -MB
MR MR

which reduces to M‘}V}yc =MB s MA-MC=MR -MB. This last equality
warranty that the points B, C, A and R are in the same circle (not drawn in
the picture above), and therefore the angles BAC and BRC are equal.
Consider now the triangles KAC and DRC. Both have equal the angle
C (because CK is the bisector of angle ACD), and for another hand
£2KAC=«DRC, because they are supplementary of the equal angles
£BAC = 2DRC. Therefore the third angles in both triangles should to be

equal, that is ZBRC = «BDC, and we are done. |
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Chapter 3
Techniques for Solving Problems
of Plane Geometry

K.P. Shum

Abstract In this paper, we present some problems in plane geometry,
which can be solved by using analytic geometry and quadratic equations.
Some of these problems have been taught to the high school students who
participated the preliminary HKIMO committee selection contest.
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3.1 Introduction

In many national and regional mathematical competitions of high school
mathematics, there are always problems in plane geometry in the exami-
nation. Usually, these problems are related with the collinear points, con-
cyclic points, the mid points, Angle bisectors, the centroid, the orthocenter,
the circumcenter, the in-center and some of the inequalities. Because many
students face difficulty in proceeding with proof to unfamiliar problems in
the contest, we (therefore) advise the students first to write down the
coordinates of the points in the given diagram.

The students are encouraged to use analytic geometry to tackle the
problem in case they fail to provide a proof for the given problem. We also
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observe that there are a number of geometry problems of IMO type, which
can be solved by using the relationship of roots and coefficients and the
discriminant of a quadratic equation. There are also plane geometry prob-
lems related to collinear points and concyclic points. In this paper, we will
present some interesting problems to demonstrate the applications of some
well known plane geometry theorems and techniques. We also propose
some exercises to the readers.

3.2 Plane Geometry Problems (Moise 1990; Encyclopedia
of the Solutions of Mathematics Problem 1983; Some
Geometry Problems in Mathematical Olympiad
Competitions 2015; Encyclopedia of Solved Problems
2016), Which Can be Solved by Analytic Geometry

In this section, we first present the following problems.

Example 2.1 In the following diagram, AD is the angle bisector of ZA of the
AABC, AM is the median of AABC. BF is the perpendicular line passing
through the point B to meet the X-axis at . Assume that the angle bisector
of «BAF meets BF at E. Join ED and prove that ED //AB (Diagram 3.1).

Proof Let |AB|=2c¢, |AC|=2b and 2CAB=20. Let the coordinates of M
be (XM, YM)
Then, we have

Diagram 3.1 .

e E

(0,0)
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B (2¢ cos6, 2c sind),

C (2bcosf, —2bsind),
Xy = (b+c)cosb,

Yy = (c—b)sind

Let the coordinates of E be (Xg, Yg). Then Xg =2c cos6.
(c=Db)sin®  Yg
(c+b)cos®  2c cos®

Because the points A, M, E are collinear, we have

2c(c—b
Ye= % sinf. Now, let the coordinates of D be (xp,0). Notice that the
c
points B, D, C are collinear, and therefore the slopes of BC and BD are the
We b 2(c+b)sind 2c¢ sin® i h )
same. e have = , an ence =2c,
2(c—=Db)cos®  2c-cos®—Xp P
2c(c—b 4b
cosO — M cosO = ¢ cos0.
c+b b+c
The slope of the line AB is obviously Kpg = tand.
2¢(c—b
7c(c+ b ) sind
_ Cc _
Compute the slope of DE, we have Kpgp= The cos0 =
2c cosO — —
, c+b
C —
————tan @ =tanf.
ctb_op YT

Because Kpg = Kap = tan@, therefore DE // AB.

Example 2.2 To Prove that two lines AB and CD are perpendicular. We
usually use the product of their slope is equal to —1 that is, K4p - Kcp= — 1
In the following trapezoid (Diagram 3.2),
Given AB+ CD=BC, DP=PA. Prove that PB 1L PC

Proof We simply let B=(0,0), A=(a,0), C=(b,c), D=(b+d,c)

Diagram 3.2 See 4
Encyclopedia of the

Solutions of

Mathematics Problem

(1983), problem 62

C D
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Because it is given that AB+ CD = BC, we have a+d=Vb?+ ¢?
Thus, we get (a+d)* —b* =c?. This means that the coordinates of the
a+b+d c
2 5)
The planes of BP and CP are

point P are (

c
) c
mcp = = >
1
b= (b+a+d) btatd
c
_ 2 _ ¢
=T b+a+d
2
(a+b+d)
c? 2
Hence, we have mgp-mcp= = = —1. This shows

P —(a+d? —c
that PB 1 PC.
The proof is completed.

The following example shows that we sometimes need to assign the
coordinates of the points in the diagram with some suitable numbers.

Example 2.3 Given a square ABCD. Draw a line through the corner point
D parallel to the diagonal CA of the square. On the bisector of the second
quadrant of the X-Y plane, find the point E so that CE = CA. Join the points
C and E to meet AD at F. Prove that |[AE|=|AF|.

Diagram 3.3 . Y

=<y
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Consider the above diagram (Diagram 3.3),

Proof In Diagram 3.3, the coordinates of A(0,a), B(a,0), C(a,0), D(0,0).
Because CA // DE, the point E lies in the bisector of the second quadrant
of the X-Y plane, we can write E = (x, —x), (x<0).

According to the give condition, we have |CE|=|AC|=+/2a, hence we
deduce that (x— a)2 +x>=2a> and so x= ; (1 - \/3) Therefore, the
coordinates of E is [g (1 - \/5), g (\/§ - 1)} . Let the coordinates of F be

(0,y). Because the points E, F, C are collinear, we have

g(lgﬂ) 5 (v3-1)

Therefore, gy<\/§+1> L (\/5—1) =0, and hence we find

y=(2-+3)a
Thus,

Therefore, |[AE| = |AF)|.
In closing this section, we propose the following exercise.

Exercise 2.4 (See Encyclopedia of the Solutions of Mathematics Problem
(1983), problem 61) Let ABC be a triangle. Construct a square ABDE on AB
and another square ACFG on AC. Suppose that K and L are the centers of
these two squares. Also, let M be the midpoint of the side BC in AABC.
Prove that KM 1 LM.

Hint

(I) First draw Diagram 3.4. Put the point A on the y-axis and the line BC
on the x-axis. Thus, we have

A=®ﬂLB=wﬁLC=@ﬂLM=<%;uO.

Let the center L of the square ACFG be (x,y).
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Diagram 3.4 .

(IT) Observe that AL L CL and |AL|=|CL|. Then we use the fact that the
product of the slope of AL and the slope CL is equal to —1. Thus, we have

y—a y

Hence, we deduce that x> + (y —a)” = (x —¢)* + .
Solving the above equation, we get the following set of equations

(III) Now, according to the position of L in the diagram, we can let the

coordinate of the point L be (C ; a, ¢ ; a>‘
b— -b
Similarly, the coordinate of the point K is ( > a’ 4 5 )

(IV) Calculate the length of ML, we have

c+a c+b\? jcta\?
i () 2
IML| \/< 2 2 ) AN

=%\/(a—b)2+(a+c)2
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This shows that |[ML| = |MK|
(V) Calculate

c+a a—>b
2 . 2 - _1
c+a b+c b—a b+c
2 2 2 2

Ny~ Mypx =

Hence KM 1 LM and the proof is completed.

3.3 Lattice Points and Collinear Points (see Liu 1979)

A point A is called a lattice point if the coordinates of A are integers.
A triangle ABC is called a lattice triangle if the points A, B, C are lattice
points.

The following theorem is easy to prove.

Theorem 3.1 A lattice triangle is not an equilateral triangle.

Proof Suppose on the contrary that the lattice triangle ABC is an equilateral
triangle. We first move the equilateral triangle to a new position so that one
of its vertices A is the point of origin of the XY coordinate plane, namely
A= (0, 0) Now, let B= (ml, I’l]), C= (mg, ng).

Because AABC is an equilateral triangle, all its angles are 60°. Hence,

ny ni
m m miny —man
tan£BOC = tan60° = /3= —2 "L = .
1+ L -2 mm+mn
mp  my

mn; — man

Because my,my,ni,ny are integers, is clearly a rational

mymy +nny
number. This is clearly a contradiction! Hence, we have proved that it is
impossible for a lattice triangle to be an equilateral triangle.
By using the argument in Theorem 3.1, we obtain the following corollary.

Corollary 3.2 Let S be the area of a lattice polyhedral. Then 2S must be an
integer.

Proof We first observe that the area of any lattice polyhedral can be
regarded as the area of some sum of several lattice triangles.
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Diagram 3.5 See YA N E
Encyclopedia of the b
Solutions of
Mathematics Problem B
(1983), problem 345 A
L/ M Jc
-
O X

We now consider three points A= (x1,y1), B=(x2,y2), C=(x3,y3).
Then the following criterion gives the condition for the three points A, B,
C to be collinear.

Criterion 3.3 Three points A, B, C are collinear if and only if

xi oy 1
X2 M 1{=0
x3 oy 1

This shows that the three points L, M, N are collinear. The following
example is an application of the above theorem.

Example 3.4 In Diagram 3.5, ABCO is a quadrilaterial with O be the point
of origin in the XY-plane. Let L and M be the mid points of the diagonals
OB and AC, respectively. Extend the side OC to meet AB at E and OA to
meet CB at D. Let N be the midpoint of DE. Prove that the points L, M,
N are collinear (see Diagram 3.5).

Proof Let
A=(0,2a), B=(2u,2v), C=(2¢,2kc), D=(0,2d), E=(2e,2ke).
Then the mid points of OB, AC and DE are
L= (u,0), M= (c,u+kc), N=(c,d+ke).

Because C, B, D are collinear, we have
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that is, co +du — cd — kcu =0.
On the other hand, we notice that the points A, B, E are collinear, so we have

0 2a 1
2u 2v 1|=0
2¢ 2ke 1

therefore, ae + keu — ev —au=0.
Now, we consider

u 1 1
c a+kc 1
e d+ke 1
=au+ kcu+ cd + cke + co —

— (ev+du—cd — kcu) — (ae + keu — ev — au) =0

This shows that the three points L, M, N are collinear.
To determine whether any three points in the plane are collinear, the
well-known Theorem of Menelaus is an important tool.

Theorem 3.5 (Menelaus’ Theorem) Let A', B, C' be three distinct points in
the three extension lines of the three sides of /\ABC. Then the points

BA' CB AC
A', B, C are collinear if and only ofA—C BA CB-

Because the Menelaus’ Theorem is a well-known theorem, we hence omit
the proof (see Benitez 2007; Grunbaum and Shephard 1955; Klamkin and
Liu 1992).

The application of Menelaus’ Theorem can be shown in the following
example. This example is one of the IMO examination questions in geometry
(The 35th IMO problem in Hong Kong, 1994).

Example 3.6 Let AABC be an isosceles triangle with AB=AC and M is the
mid point of BC. Suppose that O is a point in the extension of line AM.
Draw OB LAB. Let Q be an arbitrary point in BC which is a distinct point
from the points B and C. Also, let E be a point in AB and F a point in AC
such that E, Q, F are collinear (Diagram 3.6).

Prove that OQ is perpendicular to EF if and only if QF = QF.

Proof We first draw the following Diagram 3.6.

In Diagram 3.6, we observe that the four points O, E, B, Q are concyclic
points because £EBO = 2EQO =90°.

Thus, £OEQ = £20CQ = £OFQ = £OEQ and hence OF = OF.
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Diagram 3.6 .

Conversely, we suppose that EQ = QF and recall that AB=AC. In AAEF
with the cutting line BOC. We apply the Theorem of Menelaus, and we

AB EQ EC FC
immediately obtain 1= — Q that is, BE = CF.
BE QF "AC ~ BE

Thus the right angled AOBE is congruent to the right angled AOCF,
consequently OF = OF and therefore OQ 1 EF.
The proof is completed.

It is well known that Menelaus Theorem is a powerful tool in solving
problems involving collinear points. We present below another application
of this theorem in the following example.

Example 3.7 (IMO Preliminary contest problem of Hong Kong 2011) In the
following diagram the circle DEF is an inscribed circle inside the AABC
(Diagram 3.7).

Join lines BE and CF to meet the inscribed circle at P and Q respectively.
Prove that the points R, P, Q are collinear.

Proof Because F and E are the tangent points of the inscribed circle of
AABC, we have AE=AF. Because EFR is also a cutting line of AABC.
By applying the theorem of Menelaus, we have immediately

AF BR CE — 1. that BR FEA FB FB
at is,
FB RC EA RC  CE AF  CE

Since BE and CF meet at S, and given that AEFC ~ AQEC, AFEB ~

CQO CE FP _FE SP _FP
APFB, ASEQ ~ ASFP, we have — = —
EQ EF "PB FB’ SQ EQ

Consider ASBC and the points R, P, Q on its sides CB, SB and SC, we have
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A

R B D c

Diagram 3.7 .

SP BR CQ SP CQ BR _FP CQ FB _FP CQ FB

PB RC OS SO PB RC _EQ PB CE PB QE CE
_FE CE FB _
" FB EF CE

Then, by the converse part of Menelaus’ Theorem, we know that P, Q,
R are collinear points.

Now, we mention the Simpson line theorem, which is frequently used to
solve IMO problems in plane geometry. The following theorem is the
well-known Simpson line theorem.

Theorem 3.8 Let P be a point in the circumcircle of a AABC which is
distinct from points A, B, C. Draw the perpendicular lines from the point P
meeting the lines AB, BC and CA in N, L and M respectively. Then, the
points L, M, N are collinear.

Proof There are many methods to prove this theorem, we provide two
proofs (see Diagram 3.8).

() Draw Diagram 3.9. Join the points L, M, N, P, B, P, A and P, C. Then
we see that
2PMN = 2PAN = 4/PAB=2PCB=#ZPCL because P, N, A, M are
concyclic on the circle. Also, we notice that P, M, C, L four appoints
are concyclic on the circle; we have DML = 2PCL, thatis L, N, M are
collinear.

(II) In Diagram 3.9, we let «PBC=a, £PCB=f, £PCM=y.
Then, we have 2PAM =a, «PAN =p, «PBN =y. Clearly, BL=PB -
cosa; LC=PC cosf; CM = PC cosy, MA =PA - cosa, AN =PA -
cosfl, NB=PB - cosy
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Diagram 3.8 .

Diagram 3.9 .

Now, in AABC, by use Menelaus Theorem, we have

BL CM AN PB cos6 PC cosy PA cosﬂ
LC MA NB PCcosa PAcosa PB cosy

Thus, by the converse part of Menelaus Theorem, we know that the
perpendicular foot points L, N, M are collinear.

Remark 3.9 The converse of Simpson line theorem also holds.



3 Techniques for Solving Problems of Plane Geometry 67

Proof The proof is trivial. Just let P be a point not in AABC. From the point
P draw perpendicular lines meeting AB, BC and CA at the points N, M and
L, respectively. Then we see that P, B, L, N and P, N, A, M are concyclic
points. Finally, we notice that ZPBC = 2PBL = 2PNM. Then, we conclude
that the four points P, B, C, A are concyclic. Therefore, the point P must be
on the circumcircle of AABC. The proof is completed.

As an application of Simpson line theorem, we give the following
example.

Example 3.9 Let P be a point on the circumcircle of quadrilateral AjA,AzA,.
From the point P draw the perpendicular to the lines
A1Ay, ArA3z,A3Ay, AsA, at the pOil’ltS B, B, B3, By, respectively. Also, let
the projections of the point P on the lines BB, ByBj3, B4B,4 and B4B; be
Cy, Gy, C3, Cy, respectively. Prove that the four points Cj, Cp, Cs3, Cy are
collinear.

Proof We first draw Diagram 3.9.

Through the point P we draw the perpendicular lines to meet the lines
A1Az, A3Az, A3Ay, A4Ay, at By, By, B3, By

Draw the line through the point P perpendicular to the line B, B3, we get C,.
Draw the line through the point P perpendicular to the line B{B,, we get C;.
Draw the line through the point P perpendicular to the line B4B;, we get Cy.
Draw the line through the point P perpendicular to the line B4B3, we get Cs.

In AAA,A3, the Simpson line through the point is the line B;QB4 where
Q is the foot point of the perpendicular line through P L A;A3. Similarly, the
point P is a point on the Simpson line B;QB4 in AA;AA3.

Since £AB4P = 2ABP;, we see that the point P is on the circumcircle
of AQB,Bj;.

Hence, by Simpson line theorem, we see that the points C;, Cs, C4 are
collinear. Similarly, the three points C;, C,, C4 are collinear. Thus, the four
points Cy, Cy, C3, Cy4 are collinear.

The following exercises are applications of Simpson line theorem.

Exercise 3.10 From the vertex A of AABC, draw the perpendicular lines to
meet the internal and external angle bisectors at the points F, G, E, D. Prove
that these four points are collinear.

Hint: We first draw the diagram. Then, we extend the lines BE and CD to
meet at the point K. Suppose that CG and BE meet at I, with
£CKI=90° — £CIK =90° — ( £B+ } 2C) = 1 £A. The four points A, I, C,
K are concyclic. Apply the Simpson line theorem to the AICK and the point
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Diagram 3.10 .

A. Then we see that G, E, D three points are collinear. Similarly, for ABCL
and the point A, by Simpson line theorem, we know F, G, E are collinear.
Hence, the four points F, G, E, D are collinear (Diagram 3.10).

Exercise 3.11 (A part of an IMO problem) Let AABC be an acute-angled
triangle. CD is the altitude passing through the point C, M is the midpoint of
the side AB. The line passing through the point M meets CA and CB at K
and L, respectively with CK = CL. If S is the circumcenter of ACKL. Prove
that SD=SM.

We first draw the circumcenter of the AABC. Join the points C, S and
extend CS to meet the circumcircle of AABC at the point T. Join the points T
and M.

Construct TK LAC at the point K'°  and construct 7L LBC at L
(Diagram 3.11).

Notice that S is the circumcenter of AKLC and KC = KL. Therefore CS
is the angle bisector of ZKCL, and hence T is the mid point of the arc AB.

Further, we recall that M is the midpoint of AB. Then TM 1L AB. Apply
the Simpson line theorem, we know that K', M, L' three points are collinear.
Because CT is also the angle bisector 2K L'M and the points K', L', M are
collinear, then we have CK = CL'. This implies that the line K'ML ' is on the
perpendicular line passing through the point M to CT.

Likewisely, the line KML is also a perpendicular line passing through the
point M to CS. Hence, the points K and K are coincide, the points L and
L are coincide. That is, ZCKT = 2CLT =90°. This means that the four
points C, K, T, L are concyclic. (This is an important step).
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Diagram 3.11 .

By the above result, we know that S in the center of the circumcircle of
the quadrilateral CKTL. We obtain SC = ST. Hence, S is the midpoint of
the line TC. As CD L AB, we have CD // MT. Therefore, we have proved
that SM = SD. The proof is completed.

3.4 Some Applications of Quadratic Equations

The method of solving quadratic equations is taught in the course of ele-
mentary algebra in most high schools. In this section, we introduce the
method of solving plane geometry problems by using Vieta’s formulas and
the discriminants of quadratic equations.

We start with the following example.

Example 4.1 Given a line [: y =4x. The point P (6,4) is in the first quadrant
of the XY-plane. Through the point P, draw a line meeting the line /: y =4x
at the point Q (x1,y;) in [, and the x-axis at M. Then, draw AOMQ. When
the area of AOMQ is minimum, where should be the point Q be located?

Solution: In order to locate the point Q, we need to find the coordinates of
the point Q, that is Q(x;,y;) (Diagram 3.12).

The area of AOMQ varies according to the position of the point Q,
therefore we need to express the area of AOMQ in terms of the coordinates
of Q. Thus, we have to express the area of the AOMQ as a function of y, the
Y-coordinate of the point Q.
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Q (XI‘ )h)

P (6,4)

Diagram 3.12 .

Let Q= (x1,y1). Since the point Q is on the line [: y =4x. Therefore, we
have y; =4x;.

For the line QP, the equation of the line passing through the point P (6, 4)
is (x; —6)(y—4)=(y; —4)(x—6). Since the point P is in the first quadrant
of the XY-plane, y; > 4. The intersection point M of line PQ and the x-axis

is now M: (;_%,O), with y; > 4. Therefore, Sy —31 >0. Hence the area of

S—y%

AOMQ is S=1 - 2%

, that is, 2S(y; —4) =5y%, and so we have
5y2 —2Sy; +85=0. (3.1)

Clearly, the discriminant of the quadratic Eq. (3.1) is A =45% — 160S > 0.
Because S > 0, we have S >40. Cleraly, when S = 40, the area of AOMQ
is a minimum. Hence by Eq. (3.1), we get y; =8 which satisfies y; > 4.
Putting y; =8, we find x; =2.

Thus, the area of AOMQ is a minimum at the point Q (2, 8).

Example 4.2 Let 11,1, be the two real roots of the quadratic equation
P 4+x+y=0

Suppose that M, M, are the two real roots of the quadratic equation
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Diagram 3.13 See
Encyclopedia of the
Solutions of
Mathematics Problem
(1983), problem 168

M?* +My+x=0

If |4y — A2| =M, — M5|, find the locus of the point (x,y).
Solution: Clearly |4, — | = \/ (A1 +42)* —4didy = /22 — 4y;

|M1 —M2| = \/(Ml +M2)2—4M1M2= \/)72—4)6.

Because we require that A;,4, both be real roots, the discriminant of
P 4+ix4+y=0 is A=yx>—4y>0. Similarly, the discriminant of
M?>+My+y=0is A=y>—4x>0.

By |A1 — 4| = |M| — M5|, we have x* —4y=y> —4x>0.

Thus, we have (x—y)(x+y+4)=0 and so x—y=0 or (x+y+4)=0.

This means that the locus of the point (x, y) is the straight lines. x —y=0
and x+y+4=0 with x+ y+4 =0 not in the first quadrant of the XY-plane
(Diagram 3.13).

The following example is a typical application of the quadratic equations
for the parabola and a straight line.

Example 4.3 Find the area of the triangle bounded by the three straight lines

Ax* +2Bxy+cy* =0
Ix+my+n=0.

Solution: It is well known in plane geometry that the following equation
AxX* +2Bxy+¢y* =0 (3.2)

is the expression of two straight lines passing through the point of origin of
the XY-plane. Suppose that the line
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Llx+my+n=0 (3.3)

meets these two lines passing through the origin at the points P(x;,y;) and
0= (x2,y2). When m #0, then from (3.3), we have

y:_(lx+n)' (3.4)

m

Hence, we find y; = — lx'%,ygz - b‘z%

Let the area of the required triangle be denoted by Sapgr.
Then, we deduce that

x yn 0 |
Sapgr=15|% 2 0|=7 (x1y2%2)2)
0 0 1 (3.5)
(i +n)  xi(ly+n)\ 1/n
—§< ) =2 ()
Put (3.4) in (3.2), after simplification, we get
(Am* = 2Bml + c*)x* = 2n(Bm — cl)x + cn* =0 (3.6)

Because (3.6) in a quadratic equation, we can suppose x; and x, are its
two roots.
By Vieta’s formulas, we have

N 2n(Bm —cl)
X1 +x=
PR Am2 Z2Bml+ ¢
cn?
X1 Xy = 5
(Am? —2Bml + cI?)
Hence, we obtain
2|mn|VH? - AB
X1 —x2| =

|Am? — 2Bml + c[?|

Putting this result in (3.5), we have
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¢ _  MVB-AC (3.7)
APOR™(Am? = 2Bml + c2) '
When m =0, then /#0 and so by (3.3), we have
x=-"1 (3.8)
[
x1 =xp= — 4. Thus, the area of APQR is
1 /n
Sapor = 3 (7 1 —y2)> (3.9)
After rearrangement, we obtain
CPy* —2Bnly +4=0 (3.10)
Suppose the two roots of the quadratic Eq. (3.10) are y; and y;.
) 2Bn An?
Thus, by Vieta’s formulas, we have y; +y, = < Y-y = R
2|n|vVB? - AC
Therefore yj —yp = ———
el
n*vB*—AC

Putting the above result into (3.1), we obtain Sapog =

|cP?|
This formula corresponds to the case m = 0 in (3.5). Hence the required
area of APOQ is

n*vB*—AC
(Am? —2Bml + cI?)
In the following example, we consider parabolas.

Example 4.4 Let the parabola y> = 2px meet the line y=2x+ 1 at two points

A(x1,y1), B(x2,y2). With |[AB|=+/15. (2x+ 1)2 =2px, that is, 4x +4x+
1 =2px.
Hence we have

4x® +2(2 = p)x+1=0. (3.11)

Because the discriminate of the above quadratic equation is

A=4(2 —p)2 —16>0, we must have p>4 or p<0. Using Vieta’s formu-
las, we have
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Diagram 3.14 .

1
x1+x2=§(p—2) (3.12)
1
X1Xp = Z (313)
Therefore, we deduce that
2 2 1 2
(x1—=x) " =(x1+x)" —dxixp = Z(p—2) —1.

Because y, =2x, + 1(A=1,2), we have (y; —y,)* =4(x; —x3)°.
Also, \/(xl —x2)2 + (0 —y2)2 =+/15, so that 1/5(x; —xz)2 =+/15, that

1
is, ) (p—2)* —1=3, the roots of the equation are p= —2 or p =6. There-

fore, the parabola is y> = —4x, or y> = 12x (Diagram 3.14).

To find the coordinates of the intersection points, we usually first solve a
number of parametric equations. If we apply Vieta’s formulas for the
quadratic equation, we can sometimes simplify the tedious calculations. We
present the following example.

Example 4.5 Suppose that the parabola y?> =4ax meets the straight line
Ix+my+c=0 at the points P, O, and that F is the focus of the parabola. If
lines PF and QF meet the parabola y*> =4ax at points R and S, respectively,
find the equation of the line RS (Diagram 3.15).

Solution:

Because the points P, Q are on the parabola, we may assume that the
coordinates of the point P, Q are P(at?,2at), Q(at3,2a,). The coordinates
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Diagram 3.15 .

of the point R, S be (at?,2at,), (at?,2at,). Then the equation of the line
PR is

That is, 2x— (#; +1,)y+2at;1; =0
Since PR passes through the focus point F(a, 0), we have 2a + 2att, =0,

, ) ,
hence 1, = — E, similarly, 7, = — .

Therefore, we find the coordinates of R, S are <%, 2_a> . <%, —_2a>
non 15} 153
Observe that the points P, Q are on the straight line [x + my + n =0, hence
we have lat} +2amt) + n=0, lat> + 2amt + n=0.
This means that #,#, are the two roots of the quadratic equation

-2
alA? +2aml +n=0. Apply Vieta Theorem again, we have t; +#, = Tm’

tity= % If the equation of the required straight line RS is Ax+ By +¢=0,
a

Aa 2aB Aa 2aB
then 7T +c=0, 2T +c¢=0. Let #;, t, be the two roots of the
1 1 2 2

equation cu® —2aBM +Aa=0.
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aB Aa
Then, we have #H+6H,=—,tthp=— and consequently,
C
—-2m 2aB n Aa . B m A n
—=——, —=— thatis,— = — —, — = —.
l c al c c la C la
. . . . nx my .
Thus, the equation of the straight line RS is 2 T +1=0, that is
a a

nx —may + la* = 0.
Now, we mention again the usage of the discriminant of a quadratic
equation in the following example.

Example 4.6 Suppose that the length of the chord AB formed by the line

y=2x+k cutting the parabola y* =4x at 3+/5. If P is a point on the x-axis
which forms an equilateral triangle PAB and the area of APAB =39, find the
coordinates of the point P (Diagram 3.16).

Solution. Let A= (x1,y;), B=(x2,y2). Then y; =2x; +k,y, =2x, + k.

Then, substituting y=2x+k into (2x+k)’=4x, we get
4x* +4(k—1)x+k*=0.

Now, the discriminant of the above equation is A = 16(k — 1)* — 16k > 0,

. 1 . . .
that is, k < 5 If x;, x, are the two roots of the quadratic equation, by Vieta’s

2
Theorem, we have x; +x,=1—k, x;xp = T and y; —y, =2(x; — xp).

Hence (x, —x2)° + (y1 —y2) = (3\/3)2. Thus, we have 5(x; —x,)> =45,
sothat 1 —2k=9,k= —4.

Diagram 3.16 .
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2x—4
Now, let P=(x,0), then the distance from P to AB is d = | )iﬁ |
1 [2x—4 .
Hence TR -3v/5=39, from which we get |x—12|=13, and
x=15 or x= —11. Therefore, P=(15,0) or (—11,0).

Remark In this example, we consider the chord AB formed by the line
y=kx+ m to meet the quadratic curve y> = 4x. Hence the length of the chord
AB is

1=/ =)+ 01 =32 = (11 =30 4Ry =)
=VHK - \/(xl +)c2)2 —dxixp = \/(Hk)z\/<_7b)2— (%) =VHK2 - \/TK

Thus, to find the length of the chord AB, we only need to use the coef-
ficient k, the coefficients of the quadratic equation a, b and the value of the
discriminant, so there is no need to first find out the coordinates of the
intersection points.

3.5 Ceva’s Theorem and Its Application

In solving problems in plane geometry, Ceva’s Theorem is often used. In
this section, we briefly introduce Ceva’s Theorem and its application (see
Benitez 2007; Grunbaum and Shephard 1955).

Theorem 5.1 Let A, B, C be three points on the sides BC, AC, AB, re-
spectively, of AABC or on their extension lines. Then

BA' CB AC _

AC BA CB
Proof There are several situations of the theorem; we first draw the fol-
lowing three diagrams.

In Diagrams 3.17b, If AA',BB',CC' meet at the point P, then we draw a
line through A parallel to BC which meets BB', CC" on their extension lines

tD, E, tively. N t lear that cB _BC and AC _EA
al respective ow, it is clear that — — =
P ) Y , , A AD C'B BC

BA A P A C BA  AD

Also, from — we have — = —.
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(a)

—
iy

Diagram 3.17 .

BA" CB AC _AD BC EA _
Consequently, we have ——
AC BA CB EA AD BC

If, AA,BB and CC' are parallel lines, the theorem can be proved
similarly.
Remark 5.2 For the Diagram 3.17b and c, Ceva’s Theorem can also be
BA° CB AC _
AC BA CB~
=1. We usually call point P the Ceva Point of

proved by using “area”. That is by

Sapa Sapec  Sapca

Saprca " Sapas SAPBC
AABC.

Corollary 5.3 The collinear points of Ceva’s Theorem are equivalent to the
collinear points of Menelaus’ Theorem.

Proof Consider Diagram 3.17b and c. Then by Menelaus Theorem, the
points C', P, C are in the intercept C DC in AABA', we have

BA AP AC

el e (a)
CA PA CB

Secondly, for the intercept B PB in AAA'C, we have

AB CB AP _ (b)
BC BA PA
BA' CB AC
Multipl b therefi tain —— - ——
ultiply (a) and (b), we ereoreobalnAC BA CB

Thus, by using Menelaus’ Theorem, we can easily prove Ceva’s
Theorem.
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(a) A (b) y

Diagram 3.18 .

Menelaus’ Theorem can also be proved by using Ceva’s Theorem; we
now consider the following diagrams (Diagram 3.18).
In the above two diagrams, we observe the following facts:

i. Let C' be the Ceva point of ABCB'. Then by Ceva’s Theorem, we have

BA" CA B’X_1
AC AB XB

ii. Let A" be the Ceva point of ACAC'. Then by Ceva’s Theorem again, we
have

CB AB CY _
BC BC YC
iii. Let B' be the Ceva point of AABA’. Then by Ceva’s Theorem, we have

AC BC AZ _ .
BB CA ZA

iv. Let C be the Ceva point of ABBC . Then by Ceva’s Theorem, we have

BX BA CA _
XB AC AB

v. Let A be the Ceva point of ACC'A". Then by Ceva’s Theorem, we have
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CY CB AB _
YC' BA BC

vi. Let B be the Ceva point of AAA B. Then by Ceva’s Theorem, we have

AZ AC B’C_1
ZA' CB CA

N Itiplying the ab i ti t BA CB
ow, multiplyin e above six equations, we get |—— - —— -
plymg q g AC BA
ACN
cB)
BA' CB AC
Hence we have proved that — - — - —— =1. Thus, Ceva’s Theo-
AC BA CB
rem is proved. The following example can be regarded as the converse part
of Ceva’s Theorem.

Remark 5.4 If A", B, C’ are three points on the three sides of AABC or on
BA' CB AC
their extension lines of AABC such that — - — - —— =11, then the three
/ / , AC BA CB
lines AA, BB and CC are concurrent or mutually parallel.
Proof Suppose that the lines AA" and BB’ meet at P. Also, suppose that CP
and AB meet at C;.
BA" CB AC,
en by Ceva’s Theorem, we have AC CA CB
BA" CB AC
11 the gi ition— - — - —— =1 i iatel
Now, recall t /e given condition 1C FA CB , we immediately get
AC,  (AC) . AC, AC

that m = CE that is, A5 = 1B Hence AC; =AC'. This means that

the two points C; and C' coincide. Thus, we have proved that the lines
AA',BB,CC’ are concurrent.

, , CB _CB
If AA //BB, then —— = ——. Putting this equality into the given con-

'BA_ BA
.. . AC AC , , , , ,
dition, we obtain CB = B and hence CC //AA, AA //BB //CC.

In conclusion, we give the following criterion for concurrent points.
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Theorem 5.5 IfA',B', C are the points in the three sides of AABC in BC,
CA and AB respectively. Then the three lines AA',BB' and CC’ are con-
current or parallel if and only if

BA' CB AC _,
AC BA CB
In proving that the collinear points on lines are concurrent, Ceva’s

Theorem is a powerful tool in plane geometry. We now state the following
two different forms of Ceva’s Theorem (Grunbaum and Shephard 1955).

Theorem 5.6 (Ceva’s Theorem Form 1) Let A", B', C be the three points in
the three sides of AABC. Then the three lines AA',BB and CC' are con-
current or parallel if and only if

sinZBAA  sinZACC  sinzCBB’ _
sinZA'AC  sinzC'C'B  sinzB'BA ~

Proof We first notice that

BA"  Spapy _ AB-sinZBAA" CB_ BC-sinzCBB AC _ AC-sinZACC
A'C Spanc AC-sineBAC’ BA  AB-sinzBBA’ CB  BC-sinZC'CB’

By multiplying the above equalities and apply Theorem 5.5, the theorem
is proved.

Theorem 5.7 (Ceva’s Theorem Form 2) Let A, B',C' be the points in the
three sides of AABC and O is a point not in AABC. Then the three lines

AA',BB and CC' are concurrent or parallel if and only if

sinZBOA" sinfAOC' sinZCOB'
sintA'OC  sinzC'OB ~ sinZB'OA

Proof Applying the criterion of Ceva’s concurrent point Theorem 5.5, we
have

_ BA CB AC _ Sasoa  Sacos  Saroc

A'C BA CB Syroc Sapos Sacos
_ BO-sinzBOA" CO-s5inzCOB AO - sinZAOC
" CO-sinzA'OC  AO-sinzBOA  BO - sinzC OB

Hence, the theorem is proved.
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Note In applying Ceva’s Theorem above, the reader have to observe
whether there are points in the extension lines at the three sides of the AABC.

We point out here that Ceva’s Theorem has been frequently used to solve
many regional and national Olympiad problems. The following are some
examples:

Example 5.8 (China MO problem, 1997) In the following Diagram 3.19.
The quadrilateral ABCD is inscribed in the circle with the line AB and the
extension of the line DC meet at P, and AD and the extension of the line BC
meet at the point Q. Construct two tangent lines through the point Q to touch
the circle at the points £ and F. We prove that the points P, F, E are
collinear (Diagram 3.19).

We draw the diagram as shown in Diagram 3.19. Join the point £ and
F to meet AD, BC at M, N respectively. Also, we let AC to meet BD at
K. We first prove the points P, K, M are collinear and the another three
points P, N, K are collinear.

Now, we draw the diagram as shown in Diagram 3.19. We need to prove
that the lines AC, BD and PM are concurrent. Then by applying the converse

AB PC DM
of Ceva’s Theorem, we need to prove that — - — =1

BP CD MA
Because the line QCB cuts APDA, by Menelaus’ Theorem, we have
AB PC D DM D
P D Q_f{z =1. We only need to prove that yin é =1.
Because the line QCB cuts APDA, by Menelaus’ Theorem again, we
AB PC D
have — . —- bo =1. Thus, we only need to prove that
BP CD QA

Diagram 3.19 .
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DM DM . .

—— .- ——=1. Let the center of the circle be O. Join QO to meet EF at
AM MA

L. Also join LD, OD, OA. Then by using the tangent theorem and projection
theorem, we immediately have QD - QA= QE?=QL-OD. Thus, the four
points D, L, O, A are concyclic points. Consequently,
2DLQ =2DAO = 20ODA = £OLA. This shows that the line QL is the inte-
rior angle bisector of ZALD and is also the exterior angle bisector of ZALD

and hence EF 1 OQ. Thus, EL is the angle bisector of ZALD. Thus, we have
DM DL DQ
AM AL AQ’
The proof is completed.

Example 5.9 (IMO Problem 1983, Yugoslavia) Let M be a point inside
AABC such that ZMBA =30°, zMAB=10°. If ZACB=80° and AC =BA,
find ZAMC (Diagram 3.20).

Solution:

Let ZACM =a. Then ZMCB =80° — a. By Ceva’s theorem Form 1, we
immediately have

sina sinl0°  sin20°
sin(80° —a)  sind0°  sin30°

(3.14)

and hence sina - sin10° =sin(80° — a) - cos20°.
Therefore, we derive that 2sina - cos80° =2 sin(80° — a) - c0s20°.
Thus, we get
sin(a + 80°) + sin(a — 80°) =sin(100° — a) + sin(60° — a)and

sin(a —80°) —sin(60° — ) =sin(100° — &) — sin(a + 80°)
=2¢0s90° - sin(10° —a) =0.

Diagram 3.20 .
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We conclude that sin(a — 80°) =sin (60° — a).

Now observe that 0 < a < 80°,

we know that — 80° <a < —80°, 60° —a < 60°.

Hence, a — 80° =60° —a and so a=70°.

Therefore, we  obtain ZAMC=180°-MAC - 2ACM =180° —
40° —=70° =70°.

Remark This question can be solved directly by using (3.14), that is

sina = sin70°
sin10° =sin (80° — a),

where 0O<a, 80°—a<80°. Then we obtain a=70°, or by
sina sin10°  sin20°

sin(80° —a) sind0°  sin30°

=1, we have

sin(80° —a) sin10° sin20°  sin10° _ sin(80° —70°)
sina sin40° sin30°  cos20°  sin70°
=sin80° - cos70° — cos80°

sin(80° — a)
sina
As the function of a is strictly decreasing in the interval (0°,180°),
therefore, ACM =a =70, ZAMC =180° —40° —70° =70°.
Or for the point C and the AMAB, we can apply Ceva’s Theorem Form 1
again to get,

Because =sin80° - cosa — cos80°.

_ sinfAMC  sin#MBC  sinZBAC sinx (sin50°)  sin50°
~ sinZCMB  sinZCBA  sinZCAM ~ sin(220° —x)  sin50°  sin40°

Then,
in(220° — 1 in(220° —70°
sin( - %) = = sin - ) =sin220° = cos70° — cos20°
sinx 2c0s20° sin70°
in(220° —
Because sin(220° ~ %) = 5in220° - cos x — cos 220°(sin 220° < 0).

sinx
As the function of x is strictly decreasing in the interval (0°,180°),
therefore we derive that ZAMC =x="70°.
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Diagram 3.21 . c

Example 5.10 (A Proposed MO Problem of Canada) In
AABC, £BAC =40°, ZABC =60°. D and FE are the points on AC and AB
such that ZCBD =40° and £BCE =70°. The lines BD and CE meet at
F. Prove that AF 1 BC.

Proof Let 2BAF =a. Then, ZFAC =40° —a. Let F be the Ceva point of

in10°

AFAC and apply Ceva’s Theorem Form 1, we have sz.n70°'
sin
sina sind0° sin 10° sina

: —1. Hence, h . :
sin(40° —a)  sin20° enee, we Ve G700 sin(40° —a)
sin40°

sin20°

=1 and so in Diagram 3.21, we have
sin(40° — a) = 2sina - sin10° = 2sina - cos80° =sin(a + 80°) + tan (a — 80°)

It follows that

sin(a —80°) =sin(40° — a) —sin(a + 80°) =2c0s60° - sin( —20° — a)
=sin(—20° —a).

Observe that O<a<40°, we know that —80°< —-20°—a, —a
—80° <20°, so we have a — 80° = —20° —«a, and a=30°. Extend the line
AF to meet BC at H, then ZAHB=180° - 2FAB — zABH = 180° — 30°
—60°=90°.

Thus, we have shown that AF 1 BC.
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Diagram 3.22 . fE

The following example is a Hong Kong IMO preliminary contest prob-
lem that required students to know how to apply both the Menelaus’ The-
orem and Ceva’s Theorem.

Example 5.11 Let ABCD be a quadrilateral inscribed in a circle as shown in
Diagram 3.22. Prove that R, T, S are collinear.

BR EB PA
Hint: By AEBR~ AEPA, AFDS ~AFPA, we have — = —, — =
PP DA EP DS
7D Multiplying these two equations, we get
BR EB FP
— = . (3.15)
DS ED FD

Similarly, by AECR ~ AEPD, AFPD ~ AFAS, we derive that

BR AS EB FA
oroAs 58 A (3.16)
DS CR EC FD

DC
Multiplying (3.15) and (3.16) by 1B we get —
EB AF DC
BA FD CE’
Now, for the intercept BCF and AEAD, applying Menelaus’ Theorem, we

have @ . A—F . D—C = 1. Therefore, we have @ . Q . ﬁ =1.
BA FD CE RC DS AB
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Recall Ceva’s Theorem Form 1 and its corollary, we know immediately
that the three lines BD, RS and AC are concurrent at a point and hence R, 7,
S are collinear. The proof is completed.

3.6 Ptolemy’s Theorem and Stewart’s Theorem

Apart from the Simpson line theorem, Menelaus’ Theorem, Ceva’s Theo-
rem etc., Ptolemy’s Theorem, Stewart’s theorem and the Erdds-Mordell
inequalities are often used as tools in solving problems in plane geometry. In
this section, we briefly introduce the proofs of these tools (see Pech 2005;
Moise 1990; Some Geometry Problems in Mathematical Olympiad Com-
petitions 2015; Encyclopedia of Solved Problems 2016).

Theorem 6.1 (Ptolemy’s Theorem) If a convex quadrilateral ABCD is
inscribed in a circle, then

AB-CD+BC-AD=AC(BP+PD)=AC-BD.

Proof 1t is clear that ZPAB= 2CAD and so AABP ~ AACD.
Therefore

AB BP
— =——=>AB-CD=AC-BP. 3.17
AC CD > ( )
Similarly since AABC ~ AAPD, we have
BC-AD=AC-PD. (3.18)

Adding (3.17) and (3.18), we have AB- CD+ BC -AD=AC(BP + PD) =
AC-BD

Corollary 6.2 (Euler’s Theorem) A special case of Ptolemy’s Theorem is
the following. A, B, C, D are four ordered points on a line. Then, by
Ptolemy’s Theorem, we have AB-CD+ BC-AD=AC - BD.

The following example is a typical application of the Ptolemy’s Theo-
rem (CMO, China 2000).

Example 6.3 Let AABC be an acute-angled triangle. Also, let E, F be two
points on the line BC with ZBAE=«CAF. Construct the segments
FM 1 AB at the point M and FN LAC at N.
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Diagram 3.23 .

The extension of the line AE meets the circumcircle of AABC at D (see

Diagram 3.23). Prove that the area of AMDN and the area of AABC are
equal.

Proof Let £BAE = 2CAF =a, £EAF =f. Then

1 AF
Saasc= 5AB-AF -sin(a+p) + 5 AC-AF -sina= 7 (AB- CD+AC - BD).

where R is the radius of the circumcircle.
Now, we also find that

1
SaMDN = EAM-AD - sina + EAD -AN -sina+f

= EAD[AF -cos(a+p) - sina+AF - cosa - sin(a+ )]

) 4F
=1/2AD-AF -sin 2a+p) = EAD-BC.

Applying Ptolemy’s Theorem, we have AB- CD+AC - BD=AD - BC and
hence SAMDE = SAABC-
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Theorem 6.4 (Stewart’s Theorem) Let P be an arbitrary point on the side
BC of AABC. If point P is distinct from points A and C, then

AB*.PC+AC*-BP=AP*-BC+BP-BP-BC (3.19)
or
PC BP BP PC
AP?=AB*- — +AC*. — - BC* — 2
5c 7A€ Be B e B (3:20)

For the sake of convenience, let a, b, ¢ be the three sides of a AABC
opposite to LA, £ZB, £C, respectively. Also, we let d be the Ceva point lying
in the side BC which divides a into the ratio m:n with
b*m* +c*n=a (d* +mn).

[After rearrangement, we can write the above expression as
man + dad = bmb + cnc. “A man and his dad put a bomb into the sink”, a
form which invites mnemonic memorization. This expression yields a
relation between the lengths of the sides of the triangle].

Proof Without loss of generality, we may assume that ZAPC < 90°. Then
by using the Cosine Law, we have (Diagram 3.24)
AC?*=AP* + PC* —2AP- PC - cos£APC,
B?>=AP*+ BP* —2AP - BP - cos(180° — LAPC)
=AP? + BP? +2AP - BP - cos ZAPC

Multiplying (3.19) and (3.20) by BP, PC and adding up, we have proved
the theorem.

Diagram 3.24 .
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As the converse of Stewart Theorem, we let B, P, C be points on the

projective lines AB, AP, AC. Then we claim that if
AB-PC+AC?-BP=AP*-BC+BP-PC-BC

or

2 PC_ 2 BP ..o BP PC

AP>=AB*.
BC BC BC BC’

then the points B, P, C are collinear.
Corollary 6.5 (Stewart‘s Theorem)
(1) If P is a point on the extension line of BC, then

PC BP PC BP
— +AC?. — +BC?.

AP*= —AB?. )
BC Bct BC BC

(i) If P is a point in the opposite extension line of BC, then

PC BP PC BP
—AC?*- — +BC?-

AP>=AB*.
BC BC BC BC

Corollary 6.6 (see Pech 2005)

a. If AABC is an isosceles triangle and P is on BC,

AP>=AB?>—-BP-PC.
1

1 1
b. If AP is a median of side BC, then AP?> = EABZ + EACZ ~ 3

BC>.

then

c. If AP is the interior angel bisector of £A, then AP> =AB-AC —BP - PC.
d. If AP is the exterior angle Dbisector of ZA,

AP*= —AB-AC+BP-PC.
BP
e. If P divides BC such that BC =4, then

P>=1(A—1)BC*+ (1 = )AB* + AAC”.

BP 1 k k
f. If — =k, then AP>= —— -AB> + AC? -
Vpc =F then 1+k 1+k (1+k)

2

then

We give some examples to show the application of Stewart’s Theorem.
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Diagram 3.25 .

Example 6.7 (High school Math competition problem 1996 in Beijing) In
the convex quadrilateral ABCD, £ZABC =60°, ZBAD=90°, AB=2, CD=
1, AC and BD meet at O. Find ZAOB.

Solution:

Extend BA, CD to meet at the point P. Let BC=x. Then
PB=2x, PC=+/3x. For APBC and the point A on PB, by Stewart’s The-
orem, we have (Diagram 3.25)

AB PA
2 +BC?>—— —AB-PA
PB PB

2x—2
—(\/§x> -2—x+ T —2(2x—2)=x*—2x+4

CA*=PC*-

Now, since AADP ~ ACBP areright-angled A, we have PD - PC = PA - PB;
that is, (v3x—1)-v3x=(2x-2)-2x, and BC=x=4—+/3. Therefore,
'A% = 15 — 61/3. Recall that #~BCD is aright angle, BD> = x> + 1 =20 — 8+/3.

Hence BD - AC = \/4(5 —-2v/3)- \/3(5 - 2\/3) =10+/3 — 12. Moreover, we

\/,
have Supcp = Saasp + Sascp = (2v/3 —2) + (4 \/—)

1 3
Therefore, 2 (10\/§ — 12) -sinZAOB = %_, whence we find
15+ 6+/3
sinZAOB = %.

Example 6.8 (A summer camp MO problem, China, 2001) In the following

2
diagram, prove that PC-PA + ﬁ (Diagram 3.26).
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Diagram 3.26 .

Proof Because the lines EF and PB meet at the point C, we have
EC-CF=AC-CB.

Because PE = PF, applying Corollary 6.6(a) of Stewart’s Theorem, we
have

PC?>=PE?-EC-CF,
that is,
E>=PC?>+EC-CF=PC?>+AC-CB

=PC*+(PC—PA)-(PB-PC)
=PC*—PC*—PA-PB+PC-PB+PC-PA.
Hence, PE?=PA - PB, and consequently we have
2PA-PB=PA-PC+PB-PC.

2 1
Therefore, we deduce that — = — + — and the proof is completed.
PC~ PA " PB

3.7 Erdos-Mordell Inequality

We first state the following theorem.

Theorem 7.1 Let P be a point inside or on a side of AABC. Let the
distances from the point P to the three sides be |PD|, |PE| and |PF|. Then
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|PA| + |PB| +|PC > 2|PD| + |PE| + |PF|.

Proof We use polar coordinates to prove this theorem. Let P be the polar
point and |PA| be denoted by polar coordinates. Then, A= (¢;,0),
B= (§02> 291), C= ((p3, 260, +92). Thus 2CPA=20;=2r— (291 + 292),
|PA|=@,, |PB|=@,, |PC|=¢;. Let PQ, PR and PS be the bisectors of
ZAPB, #BPC and £CPA, respectively.

Write |PQ|=t1, |PR=1,, |PS| =1;. The polar coordinates of the points
O,R,S are (t1,601), (12,201 +6,), (13,27 —63). Because the points A, O,
B are collinear, by Ceva’s Theorem, we have

sin(0 —26,) N sin(20, — 60,) N sin(0; — o)

=0.
I P )
2 20, -6 6,-0
Hence 1= Y192 +sin( ! ) +sin( ! ) =0 and therefore,
5 h @ %)
Hh= Mcos91 <@ p,c050,.
@1+

Similarly, we have B (¢,,2601) and 1 <,/@,p5c050,, 13 <\ /@3¢,c050;
(Diagram 3.27).

By the triangle inequality, if a4+ f+y ==, and x,y,z are any real num-
bers, then

X% + 3% + 22 > 2xy cosa+2yz cosp + 2zx cosy.
Since we have shown that

11 </ @19200501, 1 <\/@193¢050,, 13 <\/p3¢0,c05053,

we can immediately verify that

@1+ @y + @3 2 2(\/910,0501 + \/P,03¢0502 + /P, c0503)
>2(t; +t, +13) > 2(|PD| + |DE| + | PF|).

We can also verify that the equality holds if and only if AABC is an
equilateral triangle and P is its centroid.

Erdos-Mordell inequality
We illustrate the Erdds-Mordell inequality by using diagram.
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B (P:.261)

C  (P:.26:6)

Diagram 3.27 .

Consider the diagram:
A

C

Erdos-Mordell inequality corresponds to proving that

x+y+z22(b+q+2z)

We rearrange the above diagram into the following diagram.

K.P. Shum
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b
cq AT

B ar C

In the above trapezoid, we observe that ax > br + cq. Similarly, we have
by>ar+cp and cz>aq + bp. Adding these inequalities yields

b a c a c b
x+y+z2| -+~ r+<—+—)q+ -+ —|p.
a b a c¢ b ¢

By using the well-known inequality AM >GM, the Erdds-Mordell
inequality is proved. If we apply AM >GM again to the Erdds-Mordell
inequality, we will derive that xyz > 8pgr.

Many inequalities can be solved by using points and lines of a triangle as
inspired by the proof of the Erdds-Mordell inequality.

Example 7.2 Suppose that a, b, ¢, x, y, z are positive numbers satisfying
a+x=b+y=c+z=k. Prove that ay + bz + cx <k’.

Proof Construct an equilateral triangle POK with side length k. On the three
sides of the triangle, let the points N, M, L be such that
OL=x, LK=a, KM=y, MP=b, PN =z, and NQ =c. Then it is clear that
Sarkm + Sampn + Sanrr < SAPQK (Diagram 3.28).

V3, V3

3 3
Therefore, \/T—ay+ sz+ 4 *< \/T—kz and ay + bz + cx <k

Example 7.3 Prove the inequality
Va2 +b2—ab+Vbh2+ct—bc>Va:+c2+ac for any positive real
numbers a, b, c.

Proof Draw lines OA, OB, OC, where O is a point such that
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Diagram 3.28 . A

=
=

2
|0A|=a, |OB|=b, |0C|=c, 4AOB=§, 430(;:%, moc:f.
In AAOB, by the law of Cosines, we have

|AB| = \/a2 +b? —2abco3ﬂ= Va2 +b*—ab.
Similarly, in AAOC and ABOC, use the law of Cosines to get

IAC| = Va? + 2 —ac and |BC| = Vb2 + 2 — be

Because in AABC, |AB|+|AC|>|A|, we have

Va2 +b2—ab+ Vb2 + 2 —bc>Va?+c2—ac,

and the inequality is proved. If points A, B, C are collinear,
|AB| + |BC| =|AC]|. Thus, the area sum of AAOB and ABOC equals the area
of AAOC.

1 1 1
This means that Eab sin 60° + Ebc sin 60° = Eac sin60°, that is,

I 1 1
ab+ bc=ac; or, in other words, — + — = b when equality holds.
a c

In closing this Chapter, we cite an interesting problem concerning five
points that are concyclic. This problem was proposed by Mr. Jiang Zemin,
the former chief Party Secretary of China, on 6th April 2000.

His problem asks to prove the five intersection points N, M, K, L, O, of
circles in the diagram are concyclic. This problem would be a challenge
problem for IMO.
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Hint:
(1) Because the four points F, C, K, J are concyclic,
2DCK = £FCK = 180° — 2JKJ = «KJE.
(2) Because the four points I, J, K, E are concyclic, therefore
<KJE = ZKIE.
(3) From (1) and (2), we know that ZDCK = «KIE, and therefore the four
points D, C, K, I are concyclic.
(4) Similarly, D, C, I, N are four concyclic points.
(5) From (3) and (4), we know that the four points D, C, K, I are
concyclic.
(6) From (5), we know 2KNI = 2KCI.
(7) Because K, C, L, J are four concyclic points, we know that
£KCI=2£KCJ = «£KLJ.
(8) In a similar way as in steps (1)—(5), we can prove that B, M, J, L are
four concyclic points.
(9) In particular, by (8), we know that B, M, J, L are four concyclic points
so that 2IBM = 2JBM = £JLM.
(10) Since the four points N, B, M, I are concyclic, we have
ZINM = 2IBM.
(11) From steps (6), (7), (9) and (10), we know that
2KNM = £KNI + £INM = 2KLJ + £4MLJ = 2KLM.
(12) From (11), we know that N, M, K, L are four concyclic points.
(13) Similarly, we can prove that N, M, K, O are four concyclic points.
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(14) From (12) and (13), we conclude that the five points N, M, K, L, O are
concyclic.
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Chapter 4

Arrangements and Transformations

of Numbers on a Circle: An Essay Inspired
by Problems of Mathematics Competitions

Kiril Bankov

Abstract There are contest problems dealing with the following situation:
several numbers are arranged on a circle and a certain admissible operation
can be consecutively done finite number of times; the task is to find con-
ditions under which a specific final arrangement of the numbers can be
obtained. The variety of these problems is determined by different initial and
final arrangements of the numbers and by the admissible operations with
them. The change of some of these elements often leads to interesting
generalizations. This chapter discusses several such examples. It also pre-
sents some other contest problems dealing with arrangements of numbers on
a circle. Didactical approaches to teaching how to solve such problem are
also considered.

Keywords Combinatorial situation - Admissible operation - Optimal
arrangements of numbers . Problems of mathematics competitions

4.1 Introduction

The intellectual treasure of every mathematics competition is the set of the
problems given to the participants. Competitions present variety of prob-
lems: from these that are closely connected to the school curriculum to those
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that deal with “non-standard” situations. The latter usually stimulate creative
thinking and remain in the minds for a long time. Finding their solutions
develops mathematical abilities. Many of these problems give rise to
numerous mathematical ideas. This chapter discusses such problems: some
are taken from mathematics competitions, others are inspired by competition
problems. In both cases, as some of the best examples of beauty in math-
ematics, they provoke an interest in mathematics that often begins with the
consideration of attractive problems.

4.2 Examples with Admissible Operations

The life is full of operations. Many times in a day we make decisions about
series of operations that have to be done in order to obtain a particular result.
The correctness of these decisions depends on the ability to estimate the
final results. Mathematics helps in modelling this reality by tasks using a
particular admissible operation to transform a given situation to a different
one. These problems lead to interesting generalizations by changing either
the admissible operation or the initial/final situations. This part presents such
examples taken from mathematics competitions in the context of arrange-
ments of numbers on a circle.

4.2.1 First Situation

Let n >3 cells be arranged into a circle. Each cell can be occupied by O or 1.
The following operation is admissible: choose any cell C occupied by a 1
and reverse the entries in the two cells adjacent to C (so that x, y become
1—x, 1-y).

In order to create problems using the above situation, it is useful first to
understand some of the properties of the admissible operation.

Property 1 The operation does not change the parity of 1s. Certainly, the
admissible operation either does not change the number of 1s (if the entries
of the two cells adjacent to C are different, 0 and 1), or changes it by 2 (two
more 1s if both cells adjacent to C contain Os, or two less s if they both
contain 1s).

Property 2 Let an even number (say 2k) of consecutive cells be occupied by
1s and Os elsewhere. If the admissible operation is consecutively performed
clockwise (or anticlockwise) on the 1-st, 3-th, 5-th, ..., (2k—1)-th 1s (or on
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the 2-d, 4-th, 6-th, ..., (2k)-th Is), the number of 1s does not change. The
group of these 1s moves one cell anticlockwise (or clockwise).

This property is demonstrated in Fig. 4.1. The operation starts clockwise
from the leftmost 1 and moves the group of the four 1s one cell
anticlockwise.

Fig. 4.1 Demonstration of property 2

Property 3 Let an odd number (say 2k+1) of consecutive cells be occupied
by Is and Os elsewhere. If the admissible operation is consecutively per-
formed clockwise (or anticlockwise) on the I-st, 3-th, 5-th, ..., (2k+1)-th Is,
the number of ls increases by 2 with two Is at the both ends of the initial
group of Is.

This property is demonstrated in Fig. 4.2. The operation starts clockwise
from the leftmost 1s and increases the group of five 1 to a group of seven 1s.

11l 1 o 1 1 1 10 11 1

1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 1
0 0 =>0 0 =>0 0 =>0 0

Fig. 4.2 Demonstration of property 3

Property 4 Let an odd number (say 2k+1) of consecutive cells be occupied
by Is and Os elsewhere. If the admissible operation is consecutively per-
formed clockwise (or anticlockwise) on the 2-d, 4-th, 6-th, ..., (2k)-th Is, the
number of 1s decreases by 2 by transferring to 0 the Is at the both ends of
the initial group.

This property is demonstrated in Fig. 4.3. The operation starts clockwise
from the second to the left 1 and decreases the group of five 1s to a group of
three 1s.
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Fig.

K. Bankov
11 19 1 g
1 1 0 1 0 0
0 0 0 0 0 0
0 0 =0 0 =0 0
4.3 Demonstration of property 4

It is now time to pose several problems. For each of them (Problems from
2.1 to 2.6) the First Situation is used.

Problem 2.1 (National competition in Bulgaria, 2016) Let n=20.

(A)
(B)
©)

(D)

Initially, there is a 1 in one cell and Os elsewhere. Is it possible to obtain
Is in all cells in a finite number of admissible steps?

Initially, there are 1s in two consecutive cells and Os elsewhere. Is it
possible to obtain 1s in all cells in a finite number of admissible steps?
Initially, there are 1s in two cells that stand in one and Os elsewhere. Is
it possible to obtain 1s in all cells in a finite number of admissible
steps?

Is it possible to choose two cells in such a way so that if initially there
are 1s in both of them and Os elsewhere to obtain 1s in all cells in a
finite number of admissible steps?

Solution

(A)
B)
©)

(D)

No. According to Property 1, the number of 1s will always be odd and
cannot be 20.

No. According to Property 2 the number of 1s will always be equal to
2.

No. After the first performance of the operation there will be four
consecutive 1s. According to Property 2, the number of 1s will always
be equal to 4.

Let initially there are 1s in two non-adjacent cells and Os elsewhere.
Start the operation from one of the 1s (Fig. 4.4) and continue adding 1s
until the second 1 is attached to the group of 1s (Property 3). We have
now even number of consecutive 1s. According to Property 2 their
number cannot be changed. In order not to have Os, the initial cells that
contain 1s must be diametrically opposite.
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1 0 0 1l 0 1] 1 1l 1
0, 0 1 0 1 0 1 1
0 I Property 3 0 I Pproperty 3 1 I Property 3 ! !
0 0 ———0 0 ———0 0 /———1 0
0

Fig. 4.4 Joining the two 1s

Clearly, for parts (A) and (D) what matters is the parity of n while for
parts (B) and (C) the answers are the same for any n.

Problem 2.2 (National competition in Bulgaria, 2016) Let n=21. Initially,
there is a 1 in one cell and Os elsewhere. Is it possible to obtain 1s in all cells
in a finite number of admissible steps?

Solution Yes. Apply Property 3.

Problem 2.3 Initially, there is a 1 in one cell and Os elsewhere. For which
values of n is it possible to obtain 1s in all cells in a finite number of
admissible steps?

Solution Because of Property 1, for even 7 it is not possible to obtain 1s in
all cells. Let now n be an odd number. By applying Property 3, it is possible
to obtain 1s in all cells. The required values of n are all odd numbers.
Problem 2.3 in cases n=1990 and n=1991 is given on a national
mathematics competition in Bulgaria, 1991 (Rakovska et al. 2007).

Problem 2.4 Initially, there is a 1 in one cell and Os elsewhere. For which
values of # is it possible to reverse the entries in all cells (i.e. to obtain O in
the cell where the initial 1 was, and 1s elsewhere) in a finite number of
admissible steps?

Solution Let n be such a number that it is possible to reverse the entries in
all cells in a finite number of admissible steps. Because of Property 1,
n must be an even number. By applying Property 3, it is possible to obtain
only one O that is in the cell diametrically opposite to the cell having
contained the initial 1, and 1s everywhere. After the admissible operation is
performed, the 0 “jumps” across one cell. Therefore, this single 0 may
occupy the cell where the initial 1 was if and only if # is divisible by 4.

Didactical consideration. It is always difficult to teach students solving
problems. It is much more difficult to teach them solving competition
problems. The difficulty is that these problems usually need a
“non-standard” approach. One of the first important steps in solving such
problems is to understand the situation. This is the basis for a good start in
considering the methods and strategies for moving ahead. In the case of the
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problems presented in this paper, understanding the properties of the ad-
missible operation is crucial. This is why the recommendation is to first
acquaint the students with the situation and the properties of the admissible
operation. Then the teacher may pose (or even ask the students to pose)
several problems, the ideas for which solutions are (more or less) already
explained in the properties of the operation.

The next problem can be considered as a “reverse” of Problem 2.3.

Problem 2.5 Initially, there are 1s in m cell and Os elsewhere. For which
values of m is it possible to obtain a 1 in one cell and Os elsewhere in a finite
number of admissible steps?

Solution Let m be such a number that it is possible to obtain a 1 in only one
cell in a finite number of admissible steps. Because of Property 1, m must be
an odd number. Let now m=2k+1 be an odd number. (i) If the m cells
containing 1s are consecutive, we apply Property 4 and decrease the number
of 1s by 2, i.e. we get m —2 =2k — 1 consecutive 1s. This way, step by step,
it is possible to obtain 1s in only one cell. (ii) Let now the m cells containing
Is are not consecutive. Choose a group A of odd number (say 2s—1) Is.
(Such a group exists, since m is an odd number.) Using Property 3 we can
get two more 1s to group A. If we continue this way, we can “integrate”
another group of 1s with A, i.e. we decrease the groups of 1s at the expense
of increasing of the number of the consecutive 1s. Using this procedure, we
can obtain one group of odd number consecutive 1s. Then we can proceed
as in (i). Therefore, the answer of Problem 2.3 is “all odd numbers”.

A similar situation can be examined in different shapes. For example,
consider a figure in shape of “eight”, namely:

Problem 2.6 Let n>3 and (2n—1) cells be arranged into two tangent
circles in such a way that one of the cells is in the tangent point (i.e. it is a
common cell for the both circles) and each circle has n cells. Initially, there
is a 1 in the cell that is common for both circles and Os elsewhere. The
following operation is admissible: choose any cell C occupied by a 1 and
reverse the entries in the two cells adjacent to C (so that x, y become 1 —x,
1 —y). Figure 4.5 represents the adjacent cells of Cy (the common cell for
the both circles)—they are either the cells C; and C5, or the cells C3 and Cj.
For which values of 7 is it possible to obtain 1s in all cells of the figure in a
finite number of admissible steps?



4  Numbers on a Circle 107

Fig. 4.5 Adjacent cells

Solution The next three cases are considered:

(i) Let n be an odd number. According to Problem 2.3, it is possible to
obtain Is in all cells of each of the circles separately in a finite number
of admissible steps. Therefore we can obtain 1s in all cells of the
figure.

(ii) Let n be divisible by 4. Following the procedure described in the
solution of Problem 2.4 for each of the circles, we may obtain two Os,
one in each of the circles in the cells that are diametrically opposite to
Co, and 1s everywhere. Because each of these Os may “jump” across
one cell, the most left situation in Fig. 4.6 can be obtained. Then we
consecutively apply the admissible operation on the cells C; and Cy
(Fig. 4.6), and obtain 1s in all cells.

Fig. 4.6 The case n divisible by 4
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(iii) Let n be an even number that is not divisible by 4. Assume that it is
possible to obtain 1s in all cells in a finite number of admissible steps.
Consider the last step: it should be applied on a cell containing 1, and
two Os only in its adjacent cells. Property 1 tells us that if we have only
two Os, they are situated one on each circle. In order to be able to
perform the last step, these two Os should be placed in a way that is
similar to what is shown on the central situation in Fig. 4.6, i.e. one of
the Os is in cell Cyy. Because after the admissible operation is performed,
the 0 “jumps” across one cell, this means that in a finite number of
admissible steps the only 0 in one of the circles (the upper circle in
Fig. 4.6) may occupy cell Cy, i.e. the cell where the initial 1 was.
According to Problem 2.4, n is divisible by 4, which is a contradiction.

Therefore, it is possible to obtain 1s in all cells in a finite number of
admissible steps if and only if # is an odd number or 7 is divisible by 4.

Another possible figure that could be examined with this situation is
formed by two intersecting circles with cells containing 1s in their inter-
secting points and Os elsewhere. The consideration of different arrangements
is left to the reader.

4.2.2 Second Situation

Let n >3 cells be arranged into a circle. Each cell can be occupied by O or 1.
The following operation is admissible: choose any cell C occupied by a 1,
change it into a 0 and simultaneously reverse the entries in the two cells
adjacent to C (so that x, y become 1 —x, 1 —y).

The difference with the First Situation is that the admissible operation
changes also the entry in the chosen cell C. Because of this, the Second
Situation has different properties.

Property 1 Any three consecutive Is can be transformed into three con-
secutive 0s.

Property 2 Using the admissible operation it is not possible to obtain Is in
all cells.

This is because each operation is performed in a cell containing 1, which
transfers into 0.

Property 3 If the admissible operation is performed clockwise (or anti-
clockwise) on a group of consecutive Is, the following arrangement is
obtained: the group of consecutive Is increases by one, following by one 0
and one 1, then a group of consecutive Os, decreasing by one.
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1 0 0 o I 0 1 0 1 1 1 0
0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0
— s —>

Fig. 4.7 Demonstration of property 3

This property is demonstrated in Fig. 4.7. The operation is performed
clockwise on the consecutive 1s.
The next two problems (Problems 2.7 and 2.8) use the Second Situation.

Problem 2.7 (4-th Austrian—Polish Mathematical Competition 1981) Ini-
tially, there is a 1 in one cell and Os elsewhere. For which values of n is it
possible to obtain Os in all cells in a finite number of admissible steps?

Solution Denote the cells by Cy, G, ..., C,. Let initially C; be occupied
by 1 and n be such a number that after a certain number of admissible steps
all cells are occupied by 0. Denote by s; the number of operations performed
in C; and by ag; the number of the changes in C; (i.e. when the admissible
operation is performed in C; or any of its neighbor cells C;_; or C;, ).
Since in the final arrangement all cells are occupied by 0, then a; = 1(mod2)
and a;=0(mod2) for i#1. It is clear that a;=s;,_1 +s;+ 5;+1(mod2) for
i=1,2,...,n. (We assume that sy =s, and s,,1=s51.)

(i) Ifnisdivisible by 3, then 1=a; +as+a7 + - +a,-2= Y si(mod2)
i—1
and O=a,+as+ag+--+a,-1= ) si(mod2), which is not
i—1
possible.
(i) Let n=1(mod3). Because of Property 3, after the execution of the
admissible operation clockwise on the consecutive cells, the arrange-

ment presented in Fig. 4.8 can be obtained. Cell C,, _, contains 0 and 1s

Fig. 4.8 Arrangement obtained in case (ii)
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elsewhere. There are 3k consecutive 1s. Using Property 1, they can be
grouped in k groups by 3 and Os can be obtained everywhere.

(iii) Let n=2(mod3). Because of Property 3, after the execution of the
admissible operation clockwise on the consecutive cells, the
arrangement presented in Fig. 4.9 can be obtained. Cells C,,_; and
C,_, contain 0 and 1s elsewhere. There are 3k consecutive 1s. Using
Property 1, they can be grouped in k groups by 3 and Os can be
obtained everywhere.

Fig. 4.9 Arrangement obtained in case (iii)

Therefore, it is possible to obtain Os in all cells in a finite number of
admissible steps if and only if # is not divisible by 3.

A possible change is to ask the same question under a different initial
arrangement. Here is an example.

Problem 2.8 Initially, all cells are occupied by 1. For which values of  is it
possible to obtain Os in all cells in a finite number of admissible steps?

Solution The answer is that for any # it is possible to obtain Os in all cells in
a finite number of admissible steps. Indeed, this is obvious if n=0(mod3)
(Property 1). If n=1(mod3), we may arrange several groups of three ones
and this way to obtain a situation in which there is a 1 in one cell and Os
elsewhere; now we may apply (ii) in problem 2.7. If n=2(mod3), we may
arrange several groups of three 1s and this way to obtain a situation in which
there is only two neighbor 1s and Os elsewhere; in the next step we will get a
1 in one cell and Os elsewhere; now we may apply (iii) in problem 2.7.

4.2.3 Third Situation

Let n >3 cells be arranged into a circle. Each cell can be occupied by 1 or 0.
The following operation is admissible: draw another n cells—one between
any two of the existing cells; in each of these new cells write O if the
numbers in the two neighbor existing cells are equal, and 1 if these numbers
are different; then delete the existing cells.
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Property 1 If n is an odd number and there is at least one 1, it is not
possible to obtain Os in all cells in a finite number of admissible steps.
Certainly, assume that in a finite number of admissible steps all cells
contain Os. Then in the second to the last arrangement all cells must contain
Is. Therefore, in the previous arrangement any two neighbor cells contain
different numbers, which is impossible, having an odd number of cells.

Property 2 Considering the modulo-2 arithmetic, the admissible operation
can be reworded the following way.: draw another n cells—one between any
two of the existing cells; in each of these new cells write the modulo-2 sum of
the numbers in the two neighbor existing cells; then delete the existing cells.

This is because in modulo-2 arithmetic, 1+1=04+0=0 and 1+0=
0+1=1.

Property 3 After the execution of the admissible operation k times, the
numbers in the cells are obtained as a sum of k+1 consecutive numbers
among the initially written numbers with coefficients that are the numbers in
the k-th row of the Pascal’s triangle modulo-2, known also as Sierpinski’s
triangle (Fig. 4.10).
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Fig. 4.10 Pascal’s triangle modulo-2 (or Sierpinski’s triangle)
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This is because of the way the numbers are obtained described in
Property 2.
Problems 2.9 and 2.10 use the Third Situation.

Problem 2.9 (Mathematics competition in former Yugoslavia, 1975 Ser-
geev 1987) Let n =9 and four of the cells be occupied by 1, the other five be
occupied by 0. Is it possible to obtain Os in all nine cells in a finite number
of admissible steps?

Solution No, because of Property 1.

This relatively simple problem gives birth to variety of generalizations.
There are different variations of the initial arrangements, depending on the
number of the cells and on the number and the positions of the initial 1s.
Here is an example.

Problem 2.10 Initially there is a 1 in one cell and Os elsewhere. For which
values of n is it possible to obtain Os in all cells in a finite number of
admissible steps?

Let’s call an eligible value a value of n for which it is possible to obtain Os
in all cells in a finite number of admissible steps. Property 1 tells us that an
odd number cannot be an eligible value. This is why we will consider only
even values of n. We will show that the eligible values are all powers of 2.

Because in the initial arrangement there is only one 1 and Os elsewhere, it
follows from Property 3 that the numbers in the cells of the circle after the
execution of the admissible operation & times for k <n can be obtained by
consecutively writing the numbers in the k-th row of the Sierpinski’s triangle
and completing the remaining cells with Os (if necessary). For k >n these
numbers can be obtained the following way: consider the numbers in the k-th
row of the Sierpinski’s triangle and roll them up around the cells of the circle;
then add modulo-2 the numbers that go into one and the same cell.

Let n be a power of 2, i.e. n=2" for any natural number m. If k < n, after
the execution of the admissible operation k times, the number 1 appears with
coefficient 1 modulo 2 at least once (i.e. the first coefficient in the k-th row of
the Sierpinski’s triangle). This means that it is not possible to obtain Os in all
cells in a number of admissible steps that is less than n. Since the row number
n=2" of the Sierpinski’s triangle consists of two 1s (at the both ends) and Os
elsewhere (see, for example, Proposition 4.1.11 on page 230 of Gross 2008),
after the execution of the admissible operation n=2" times, the number 1
appears with coefficient 0 everywhere. This is because the two 1s at the both
ends in the n-th row go into one and the same cell and their sum modulo 2 is
0. Therefore after the execution of the admissible operation n=2" times the
number in each cell is 0. This means that all powers of 2 are eligible values.

We will prove now that if n is not a power of 2, it is not an eligible value.
We will make use of the following
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Theorem Let n and k be non-negative integers. Then

0 mod 2 if niseven and k is odd
n
A LEJ
k X mod2 otherwise
5]

The proof of the theorem can be found on pp. 228-230 of Gross 2008.

The above theorem allows comparison of the entries in the s-th and (2s)-
th rows of the Sierpinski’s triangle, where s is a natural number. Because
<§z+ | > =0 mod 2 and <§i) = <z> mod 2, it follows that the entries
in the (2s)-th rows of the Sierpinski’s triangle can be obtained by writing Os
between any two of the numbers in the s-th row.

Lemma 2.1 Let n>?2 cells be arranged into a circle A. Each cell can be
occupied by 1 or 0. Initially there is a I in one cell and Os elsewhere. Let 2n
cells be arranged into another circle B. Each cell can also be occupied by 1
or 0. Initially there is a 1 in one cell and Os elsewhere. The admissible
operation described in the Third Situation is performed s > 1 times on circle
A and 2s times on circle B. Then the numbers on circle B can be obtained by
writing Os between any two numbers on circle A.

Lemma 2.1 follows from the comparison of the entries of the s-th and
(25)-th rows of the Sierpinski’s triangle and rolling up the numbers of the
corresponding rows around the cells of the circles.

Lemma 2.2 Let m> 2 be an eligible value. Then % is also an eligible value.

Proof Let m> 2 cells be arranged into a circle B. Each cell can be occupied
by 1 or O. Initially there is a 1 in one cell and Os elsewhere. Let after s steps
all cells contain Os in a finite number of admissible steps. Then after (s — 1)
steps all cells contain 1s. According to Lemma 2.1, (s— 1) cannot be an

. . m .
even number, i.e. s iS an even number. Let now 0} cells be arranged into a

circle A. Each cell can be occupied by 1 or 0. Initially there is a 1 in one cell
and Os elsewhere. Lemma 2.1 tells us that all Os in circle B can be obtained

.. . s .
by writing Os between any two numbers on circle A after 2 steps. This means

that all cells on circle A after § steps also contain Os, i.e. % is also an eligible

value.
We are now ready to show that if # is not a power of 2, it is not an eligible
value. Certainly, let n=¢2", where ¢ is an odd number, g>1 and r is a
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natural number. Suppose that n is an eligible value. Apply Lemma 2.2
r times. The result is that g is also an eligible value. This is not possible,
since g is an odd number. Therefore, n is not an eligible number.

Problem 2.10 gives rise to another issue that needs exploration. Let n is
not a power of 2. Since n is not an eligible number, the execution of the
admissible operation described in the Third Situation will never end. On the
other hand, there are finite number of arrangements of 0 and 1 in the cells of
the circle. This means that after a certain number of steps the arrangements
of the numbers will cyclically repeat. The least number of the steps in this
repetition is called a period. The reader may try to explore how the period
depends on n.

4.2.4 Fourth Situation

Let n >3 cells be arranged into a circle. Each cell contains either 1 or (—1).
The numbers in any two neighbor cells are multiplied, so that n products are
obtained and S is the sum of these products.

Denote the numbers in the cells consecutively by aj,a;, ...,a,. The
obtained products are p;=aja, pp=axas, ..., pp=aya;. Then
S=p1+pa+-+pu

Property 1 Each of the products py=aiaz, pp=axas, ..., pp=_a,a is
either 1 or (-1).
This is because each of the numbers ay, as, ...,a, is either 1 or (-1).

Property 2 There is an even number of (—1)s among the products
pl’ p29 . ’pn~
This follows from the equation P=pp,...p,= a%a% .. .aﬁ =1.
Problem 2.11 and the discussion after it use the Fourth Situation.

Problem 2.11 (Regional competition in Bulgaria) Prove that if § =0, then
n is divisible by 4.

Solution Each term of the sum S=p; +ps+:--+p, is either 1 or (-1).
Because S =0, the number of (-1)s is equal to the number of 1s. According
to Property 2 there is an even number (say 2k) of (—1)s among the products
ayar, aras, ...,a,a; and the same number (2k) are the 1s. Therefore, n,
which is the number of the terms in S, is the sum of one and the same even
number (2k + 2k =4k) and is divisible by 4.

An interesting phenomena is that the reverse statement is also true,
namely if n is divisible by 4, there is an arrangement of 1s and (-1 )s into the
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cells, so that S=0. Certainly, consecutively write the four {1,1,1, —1}
several times and this gives §=0.

The next step toward a possible extension is the observation that if S is
divisible by 4, then n is also divisible by 4. This is because if § is divisible by
4, there is an even number of (—1)s and also an even number of 1s among
the products aja;, aras, . ..,aya;. If we allocate one and the same number
(say 2k) of 1s and (—1)s to obtain a sum of 0, the sum of the remaining (—1)s
(or 1s) is divisible by 4, therefore their number is also divisible by 4—Iet
this number be 4m. Then n =2k + 2k + 4m =4(k + m) is divisible by 4. This
way we conclude that n is divisible by 4, if and only if S is divisible by 4.

Similar reasoning can be applied when n is not divisible by 4. The
conclusion is that n and S have one and the same remainder modulo 4.
Therefore the following assertion is true:

Statement. In the notation of the Forth Situation, n=S(mod4).

In line with the previous considerations, it seems worth mentioning one
more problem that uses the Fourth Situation. Let n > 3 cells be arranged into
a circle. Each cell can be occupied by 1 or (-1). The following operation is
admissible: draw another n cells—one between any two of the existing cells;
in each of these new cells write the product of the numbers in the two
neighbor existing cells; then delete the existing cells. Initially there is a (-1)
in one cell and 1s elsewhere. For which values of r is it possible to obtain 1s
in all cells in a finite number of admissible steps? By itself the task is
interesting, but it is actually analogous to problem 2.10.

4.3 Static Arrangements

Contest problems sometimes present interesting situations involving
arrangements of numbers on a circle that satisfy particular properties. Even
though this looks like “static arrangements”, some operations are also
involved in the justification of the properties of the arrangements. Two
examples are considered below.

4.3.1 Example 1

One of the aims of this paper is to give some guidance of how to teach
solving “non-standard” problems from mathematics competitions. For this
purpose we refer to Polya and his works on problem solving that are con-
sidered as masterpieces in the area. The discussion below is guided by the
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Polya’s phases for problem solving (Polya 1946). They are: (i) understand-
ing the problem; (ii) designing a plan; (iii) carrying out the plan; (iv) looking
back. It is strongly recommended to consider them when teaching problem
solving.

Problem 3.1 Let 2n+ 1, n>?2, cells be arranged into a circle. Each cell is
occupied by one of the numbers 1,2,3, ...,2n+ 1 and all these numbers are
used. The numbers in any two neighbor cells are multiplied, so that 2n + 1
products are obtained. Denote by S the sum of these products. Find an
arrangement of the numbers into the cells such that § has the largest possible
value.

Solution As promised, the solution follows the Polya’s phases for problem
solving.

(1) Understanding the problem. Larger values of S can be obtained if the
values of the terms of § are larger. Since each term is a product of two
natural numbers, larger values means that “smaller” numbers has to be
multiplied by “small” numbers; “larger” numbers—by “large” num-
bers. Therefore, the neighbors of 1 have to be 2 and 3. Then, 4 and 5
should go next to 2 and 3. Figure 4.11 shows the correct positions of 4
and 5—the one that is presented on the right circle.

2 1 3 2 1 3
5 4 4 S
Q > 5x2+2x1+1x3+3x4=27 Q > 4x2+2x1+1x3+3x5=28

Fig. 4.11 Positions of 4 and 5

(i) Designing a plan. The plan is to prove that the required optimal
arrangement is the one presented in Fig. 4.12.

Fig. 4.12 The optimal arrangement
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(iii) Carrying out the plan. We will use the Lemma 3.1 (see below, after
the completion of the solution of the problem). We may assume that
the cells divide the circle into 2n+ 1 equal arcs. Let the numbers
1,2,3, ...,2n+ 1 be arranged in an optimal way, i.e. S has the largest
possible value. Consider a diameter from one of the cells. According
to the Lemma 3.1, for each pair of numbers that are symmetrical
against this diameter, the smaller numbers are in one and the same of
the semicircles and the larger numbers are in the other semicircle. It
follows that numbers 1 and 2 are adjacent. This is because if they are
not, there is a diameter separating 1 and 2, such that 1 and 2 are not
symmetrical against this diameter. Denote by A and B the numbers
symmetrical to 1 and 2 respectively (Fig. 4.13). Then A>1 and 2 < B,

Fig. 4.13 Arrangements of numbers 1 and 2

which is a contradiction, because 1 and B are in one of the semicircles
but 2 and A are in the other semicircle. Using mathematical induction
we will prove that the required optimal arrangement is the one pre-
sented in Fig. 4.12. Assume that for any k, k<n, the numbers
2k,2k—-2,...4,2,1,3,5, ...,2k—1 are adjacent, as shown in
Fig. 4.14. Let A and B be the adjacent numbers to 2k and 2k — 1 as in
Fig. 4.14. Suppose that A>2k+1 and B>2k+ 1. Denote by C the

Fig. 4.14 Inductive process
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number adjacent to 2k + 1 as shown in Fig. 4.14. There is a diameter
such that the pairs (C,2k —1) and (2k + 1, B) are symmetrical. Since
C>2k—1 and 2k+1<B, this is a contradiction. Therefore either
A=2k+1 or B=2k+1. The same way we may prove that either
A=2k+2 or B=2k+?2. Because of the Lemma 3.1, the only possi-
bility is that A =2k + 2 and B =2k + 1. This completes the proof of the
optimal arrangement.

(iv) Looking back. Some people miss this phase by thinking that when the
solution is completed there is not a need to pay attention to the
problem. “Looking back” phase gives conviction that the solution is
correct. It also stimulate looking for “better” solutions (easier, more
effective, smarter, etc.). This phase considers questions like “What did
we do?”, “Which methods did we use?”, “What is important in the
solution?”, “Can something be improved?”, etc. Guided by the last
two questions we may realize that in the case of Problem 3.1 it is not
important that the terms of S are the products of two neighbor cells.
The reasoning is similar if the terms of S are the products of any given
number of neighbor cells. This way we approach a problem given in
the Moscow Mathematical Olympiad, 1999 (Fedorov et al. 2011).

Problem 3.2 Let 1999 cells be arranged into a circle. Each cell is occupied
by one of the numbers 1, 2, 3, ..., 1999 and all these numbers are used.
Denote by S the sum of the products of the numbers in all sets of 10
consecutive numbers. Find an arrangement of the numbers into the cells
such that S has the largest possible value.

Its solution is very similar to what was already done.

Here is the Lemma that was already used in the solution of Problem 3.1.

Lemma 3.1 Let 2n+1, n>2 cells be arranged into a circle. These cells
are occupied by different natural numbers ay,ay,as, ...,axy,+1 such that
a; > ap,. The numbers in any two neighbor cells are multiplied, so that
2n+1 products are obtained. Denote by S the sum of these products.
Consider the following operation: for each i=1,2, ...n, numbers a; and
ay+1—; change their places if a; < ary+1—-i, and do not change the places
otherwise (Fig. 4.15). Prove that if at least one pair of numbers change
their places, the value of S gets larger.
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Fig. 4.15 The operation

Proof Consider the diameter from the cell containing the number ay, ;.
The meaning of the operation is to arrange the numbers in such a way that
for each pair of numbers that are symmetrical against this diameter, the
smaller numbers are in one and the same of the semicircles and the larger
numbers are in the other semicircle. (For example, in Fig. 4.12, the smaller
numbers are on the left semicircle and the larger—on the right semicircle.)
Let the operation be completed and numbers a; and ay,+1—; change their
places. This means that a; < az, +1 —;. The sum of the products that contain a;
and ay, +1-; before the operation is

Si=a;_1a;+aiaj41+ Ay Q41—+ A2 1-iQn 42—
and after the operation it is
So=ai 1 41-i+Aui1-iGiv1 + a2 G+ AiG2 42—
Therefore,
Sy —=S1=(am+1-i—ai)(Gi—1 — Ant2-i)(Gis1 — Q2 —i).

The first factor is positive (because a; < ay,+1-;). The other two factors
are also positive, since theirs first terms are from the right semicircle
(Fig. 4.15) and the second terms are from the left semicircle. This is why
S>> S;.

4.3.2 Example 2

The solution to the last problem in this chapter uses the famous Unique
Factorization Theorem. It states that every integer greater than 1 either is
prime itself or is the product of prime numbers, and this product is unique,
up to the order of the factors.

Problem 3.3 Let 2n+1, n>?2 cells be arranged into a circle. Each cell is
occupied by a natural number. For the numbers in any two neighbor cells the
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ratio of the greater to the smaller is calculated, so that 2n + 1 quotients are
obtained. Is it possible to occupy these cells by natural numbers in such a
way that each of these quotients is a power of a prime number?

Solution Assume that the natural numbers ay, ay,ds, ...,d,+ are written
into the cells in the same order in such a way that each quotient
,i=1,2,...,2n+1, (az,+2 =ay) is either a power of a prime number
dj+1
or its reciprocal Let m of these quotients are powers of prime numbers and
they are p{',p5%, ..., por, and the other 2n+ 1 —m are reciprocal to the
1
owers of prime numbers and they are —— Then
p p y qﬂ qﬂ qﬂ2n+l—m
2n+1—-m
| = a ap a; Aop+1 —pal p p(lm 1 1 1
= —— =pIpS .. pin. o iy ~wemnt
a a3 disi a v e,

Therefore A =p{'.p3*...por = qﬁ qﬂ 2};’; 1 .. Because of the unique
factorization of number A, 1‘[ follows that m=2n+1—-—m, i.e. 2Zm=2n+1,
which is impossible. The contradiction shows that such arrangement is not

possible.

4.4 Problems to the Reader

Readers may try to find solutions to the following two problems. The first of
them is about an admissible operation, the other one deals with a static
arrangement.

Problem 4.1 Let 6 cells be arranged into a circle. Each cell is occupied by
one number. The following operation is admissible: add 1 to any three
neighbor numbers or subtract 1 from any three numbers that stand in one
number (i.e. stand on the places numbered 1, 3, and 5; or numbered 2, 4, and
6). Initially, numbers 1, 2, 3, 4, 5, and 6 are written in the cells in this order.
Is it possible to obtain one and the same number written in each cell in a
finite number of admissible steps?

Problem 4.2 Let n> 3 cells be arranged into a circle. Each cell is occupied
by one digit neither of which is 0. Albert writes a (n — 1)—digit number by
copying clockwise consecutively (n—1) of the digits. Betty also writes
(n — 1)—digit number the same way. Even if they both start from different
cells of the circle, their numbers are equal. Prove that the circle can be
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divided into several arcs in such a way that the numbers written by copying
clockwise consecutively all digits of each of the arcs are all equal.

4.5 Conclusion

The circle is an amazing geometric figure. It has been known since before
the beginning of recorded history. Natural circles would have been
observed, such as the Moon, Sun, and a short plant stalk blowing in the
wind on sand, which forms a circle shape in the sand. The circle is the basis
for the wheel, which, with related inventions such as gears, makes much of
modern machinery possible.

In mathematics, the study of the circle has helped inspire the development
of geometry, astronomy, and calculus. Even in 1700 BC year the Rhind
papyrus (the best example of Egyptian mathematics) gives a method to find

256
the area of a circular field. The result corresponds to 3L ~3.16049... as an

approximate value of x. In 300 BC years Book 3 of Euclid’s Elements deals
with the properties of circles.

Besides the many interesting geometrical properties, the circle is also a
close curve. This makes it possible to consider the problems in this paper.
An interesting feature of these problems is that they are not closely con-
nected with the curriculum usually taught at school. Actually, they are not
connected to any curricula because to understand the problems one does not
need to possess particular mathematical knowledge. However, finding
solutions needs a lot of mathematical reasoning, experience, and intuition. In
this respect these problems are one of the best examples of the beauty of
mathematics.

The German psychologist Karl Duncker said: ‘“Problem arises when
someone has a goal for which he/she does not know a path for its
achievement”. From this point of view this chapter presents excellent
examples of “problems”. They are in contrast with what is usually taught at
school: routine problems and exercises that are purposeful activities with
known path for its achievement.

Thanks to mathematics competitions such problems become known to
students, teachers and many others that are interested in mathematics. The
acquaintance and discovering of their solutions is the best way for students
to get involved in sensible mathematical activities. This is also a way to
present the students the beauty of mathematical ideas and to attract them to
mathematics.
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Chapter 5

Combinatorial Problems in the Mathematical
Olympiad of Central America and the
Caribbean

L.F. Caceres-Duque, J.H. Nieto Said and R.J. Sanchez Lamoneda

Abstract In this article we analyze the combinatorial problems proposed at
the Mathematical Olympiad of Central America and the Caribbean, during
its eighteen years of existence. The different types of combinatorial problems
(counting, existence, strategy games, etc.) are explained and illustrated with
various examples. Some original problems, submitted to the olympiad but not
selected in the papers, are also discussed.

Keywords Olympiad - Combinatorics - Problem - Solution - Central
America - Caribbean

5.1 Introduction

The Mathematical Olympiad of Central America and the Caribbean
(Centro) was created in 1999 with the aim of encouraging the participation of
countries of the region in international mathematical competitions, goal that
has been successfully achieved. The Centro is an International Mathematical
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Olympiad (IMO) type competition: the exam is applied in two consecutive
days; each day the contestants are allowed four and a half hours for solving
three problems, each one with a seven points value. Each country participates
with a delegation consisting of a Leader, a Deputy Leader and at most three
students. The contest is addressed to young high school students, less than
16 years old the year previous to the contest.

More information about the Centro and statistical data may be found in
Ciceres et al. (2016), Nieto and Sanchez (2005, 2009).

The main areas for the contest problems are algebra, combinatorics, geom-
etry and number theory. The proposed problems from 1999 to 2014, with
complete solutions, are found in Nieto (2015). In this article we focus on
combinatorial problems, for the following reasons:

1. Combinatorial problems are around one third of all the problems proposed
so far.

2. Combinatorics is the area less understood and developed in the high
school’s mathematical curricula in the region.

Our purpose is to analyze the set of combinatorial problems proposed in the
Centro, their types (counting problems, existence problems, strategy games,
etc.) and the main ideas involved. We will also include some original problems
from the bank of problems which were not selected for the competition.

5.2 Contest Problems

The contest problems in combinatorics, proposed from 1999 to 2016, may be
classified in five categories: strategy games, configuration problems, extremal
problems, counting problems and miscellaneous problems. In the following
pages we examine typical problems in each of these classes. As we mentioned
above, each year’s competition has six problems. We name the problems
specifying the year and the position of the problem on the exam. We should
mention that the difficulty of the problems is intended to be in the order 1, 4,
2,5, 3, 6, from the easiest to the most difficult.

5.2.1 Counting Problems

These problems ask to count the number of some kind of configurations.
This is one of the main concerns of combinatorics. To succeed in this task
it is necessary to know the basic counting principles: the addition
principle, the product principle and the inclusion-exclusion principle. In
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addition the students should know how to count several typical configura-
tions: subsets, functions, sequences, multisets, permutations, etc. A basic
knowledge of recurrence relations is also important. This material may be
found in many books, for example in Andreescu and Feng (2004).

Proposed problems in this area during the 18 years of the competition:
2003-5, 2004-6, 2008-4, 2011-1, 2014-4.

Problem 2003-5. An 8 x 8 square board is divided into 64 square cells, each
cell of side 1cm. Each cell can be colored either white or black. Find the total
number of ways to color the board such that each 2 x 2 square formed by
four cells with a common vertex contains two white cells and two black cells.

Solution: We start by painting the first row arbitrarily and then we try to
extend the coloring to the whole board satisfying the given conditions. If
two consecutive cells in the first row have the same color, we paint the two
cells below them with the opposite color; then it is easy to see that the only
admissible way to paint the second row is to color each cell with the opposite
color that the cell above it. We repeat this way to color the third, fourth, and
so on, up to the last row. On the other hand, if in the first row there are not
two consecutive cells with the same color, this means the cells are painted in
an alternating pattern, WBWBWBWB or BWBWBWBW; then the second
row can be coloured either WBWBWBWB or BWBWBWBW. The same is
true for the remaining rows. Hence any of the two alternating ways to color
the first row can be extended to 27 ways to color the whole board, and each
one of the 2% — 2 non alternating ways to color the first row can be extended
in an unique way. Therefore we will have 2 - 27 +2% —2 =2 —2 =510
different ways to paint the board.

Problem 2011-1. In each vertex of a cube there is a fly. When a whistle
sounds, each fly moves to a vertex located on some of the faces to which its
vertex belongs, but diagonally opposed to it. In how many ways can the flies
move, in such a way that no vertex ends with two or more flies?

Solution: Note first that the set of vertices of the cube can be partitioned into

two disjoint subsets: {A, C, F, H} (represented with white dots in Fig.5.1)

Fig. 5.1 Problem H (
2011-1 E

. -HC
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and {B, D, E, G} (represented with black dots in Fig.5.1), and each fly can
only move to a vertex belonging to the same set of its initial vertex.

Therefore it suffices to compute in how many ways the flies located in each
subset can move, and then multiply both numbers. A fly located in A has 3
possible destinations (C, F and H). Without loss of generality let us consider
that it moves to C. If the fly in C moves to A, then the flies in " and H also
have to interchange positions. If the fly in C moves to F, the fly in F must
move to H and this one to A (if the fly in F moves to A then the one in H
would not have a place to go). Similarly if the fly in C moves to H, the fly
in H must move to F and this one to A. Then there are 3 possibilities if A
moves to C, and of course another 3 if it moves to F' and another 3 if it moves
to H, making a total of 9 possibilities. The flies in B, D, E and G can also
move in 9 different ways and therefore by the product principle the answer is
9 x 9 =28I.

Note: The number of different ways that the flies located in A, C, F and H can
fly are the derangements of {A, C, F, H}, namely the number of permuta-
tions of 4 elements without fixed points, whose number is D4 = 4!(% — % +
1

=) =0.

al

5.2.2 Strategy Games

We have noticed that this type of problem is clearly a favorite in the Centro.
The games are mostly bipersonal, finite, complete information and without
tie. The statements ask to find a winning strategy for some of the players
(by Zermelo’s theorem, one of the players has a winning strategy). There are
two exceptions: 2010-3, which is a solitaire, and 2013-4, a game in which no
player has a winning strategy (Zermelo’s theorem does not apply because the
game is not finite).

To solve these problems a useful strategy is to examine simple cases and
look for a pattern. In some problems it is also useful to look for invariants.

Proposed problems in this area during the 18 years of the competition:
1999-3, 2001-1, 2003-1, 2004-1, 2005-4, 2008-3, 2009-3, 2010-3, 2013-4,
2015-4 and 2016-4.

Problem 2010-3. A player places atile (a1 x 1 square)onacellofanm x n
board divided into squares of size 1 x 1. The player moves the tile according
to the following rules:
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e In each move, the tile goes from the occupied cell to another cell having
one side in common with it.

e The tile cannot move to a previously occupied cell.

e Two consecutive movements cannot have the same direction.

The game ends when the player cannot move the tile. Determine all values
of m and n for which the player can place the tile on the board and move it in
such a way that the tile has occupied all the cells before finishing the game.

Solution: It will be shown that the possible values of (m, n) are (1, 1), (2, k)
and (k, 2), where k is any positive integer.

The case (m,n) = (1, 1) is clear, since by placing a tile on the board,
automatically the game ends and the tile has occupied all the cells.

For 2 x k boards, consider the moving pattern shown in Fig. 5.2, where the
o represents the initial location of the tile. This pattern will eventually fill the
2 X k board, ending the game. We proceed analogously for a k x 2 board.

It remains to show that other board sizes are not possible. If one side of
the board is of length 1 and the other is of length greater or equal than 3, it
is clear that the third condition (two consecutive movements cannot have the
same direction) makes impossible to visit all the cells in the board, because
after the first movement a turn is required, which is impossible.

If the lengths of the two sides of the board are greater than 2, it is possible
to isolate at least one corner as that shown in Fig.5.3, which satisfies the
following conditions:

(a) The tile has not started in cells 1, 2 or 3.
(b) The route of the tile will not end in cell 1.

According to condition (b), cell 1 must be reached from another cell and
from this cell you must go into another cell. Assume, without loss of gener-
ality, that the way around cell 1 is made in the order 2 — 1 — 3.

Now, as the tile has not started in cell 2, it must come from another cell,
and due to the prohibition of two consecutive moves in the same direction,

Fig. 5.2 Problem
2010-3 moving pattern

g’l e e,

Fig. 5.3 Special case
for Problem 2010-3
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it is necessary that the tile comes from the cell marked as 4. Thus, the route
can be traced backto4 — 2 — 1 — 3.

Note that cell 4 is already part of the route, so that the journey should end
in cell 3, since it is impossible to continue from cell 3 without continuing in
the same direction or repeating a cell.

The above paragraphs show that, of the four corners of the board, at least
two meet condition (a) and at least one meets both conditions. As shown,
that cell should be the penultimate cell of the route, and the last cell of the
route cannot be another corner. Thus, there is another corner that satisfies the
conditions, and we would have two corners of the board being simultaneously
the penultimate corner of the route, which is absurd. This concludes the proof.

Problem 2013-4. Ana and Beatriz alternate turns in a game that starts with a
square of side 1 drawn on an infinite board. A move is to draw a square that
does not overlap with the figure already drawn, so that one of the sides is a
(full) side of the rectangle which is already drawn. The player who draws a
figure whose area is a multiple of 5 is the winner. If Ana makes the first move,
is there a winning strategy for any player?

Solution: There is no winning strategy for any player. Suppose that at some
moment the figureis ana x b rectangle, where a, b and a + b are not multiples
of 5. The player X who has the turn in that moment can convert the rectangle
into an (a + b) x b rectangle or into ana x (a + b) rectangle. None of these
moves wins immediately, but at least one of them avoids losing in the next
turn. Indeed, if 5| 2a + b and 5 | a + 2b, then 5 | 3(a + b) and therefore
5| a + b, contrary to the assumption. Thus, if 51 a + 2b, X avoids losing
making up arectangle of (@ 4+ b) x b; otherwise they will have that5 { 2a + b
and X avoids losing making up an a x (a + b) rectangle. Since each player
can make a play that avoids losing in the next turn, neither of them has a
winning strategy.

Alternative solution: If at some moment the figure made is an a x b rectan-
gle, where a and b are not multiples of 5, the player with the turn can convert
itinto an (a + b) x b rectangle or into an a x (a + b) rectangle. If 5 | a + b
she wins, otherwise she must choose a move that avoids losing in the next
round. The first moves, if nobody wants to lose, are unique:

€1,1H)—-1,2)—» (1,3)—» 4,3) - 47— (11,7)—> (11,18) = (29,18) — - --

Since we only care if a or b are multiples of 5, we can work modulo 5 to
obtain

1€, -1,2)—- 1,3) - 4,3) - 4,2)—- (1,2) - (1,3) - 4,3) > ---
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We see that after the second move the cycle (1,2) — (1,3) — (4,3) —
(4, 2) repeats, therefore this sequence is periodic and there cannot be a win-
ning strategy.

Problem 2016-4. On the board the number 3 is written. Ana and Bernardo
play alternately, starting with Ana, as follows: if the number 7 is written on
the board, the player with the turn must replace it by any integer m that is
coprime with 7 and such that n < m < n?. The first player to write a number
greater or equal than 2016 looses the game. Determine which player has a
winning strategy and describe it.

Solution: Let us say that a number is a winner if any player who writes it
can ensure victory, otherwise it is a loser. Obviously 2015 =5-13-31isa
winner. The number 2005 = 5 - 401 is also a winner, because any possible
answer between 2006 and 2014 can be replied with 2015.

Let us show now that Ana has a winning strategy. In her first move she
writes 5. Then she can proceed in several ways, writing multiples of 5 up to
2005 or 2015. One way to do this is as follows: Bernardo must respond to
5 with an m; coprime with 5 and such that 5 < m; < 25. Then Ana writes
25 = 5%. Bernardo must respond with an m, coprime with 5 and such that
25 < m, < 625. Then Ana writes 625 = 5*. Bernardo must respond with an
m3 coprime with 5 and such that 625 < m3 < 5%, If m3 > 2016, Ana wins.
Obviously m3 cannot be 2015. If 2005 < m3 < 2015, Ana writes 2015 that
is a winner. If m3 is 802 = 2 - 401, 1203 = 3 - 401 or 1604 = 4 - 401, Ana
writes 2015 that is a winner. If 625 < m3 < 2005 and m3 is coprime with 5
and 401, Ana writes 2005 = 5 - 401 that is a winner.

5.2.3 Configuration Problems

In these problems one has to find (or prove the existence of) discrete con-
figurations with certain properties, or to prove some property of a class of
configurations.

Useful tools for these problems are existence results such as the pigeonhole
principle (if more than n objects are distributed among n boxes, then some
box contains more than one object) and its generalization, the Dirichlet’s
principle (if more than nk objects are distributed among n boxes, then some
box contains more than k objects). However, these problems often require
hard work to construct the desired configurations.

Proposed problems in this area during the 18 years of the competition:
2000-4, 2001-6, 2002-1, 2002-6, 2005-6, 2009-4 and 2015-1.
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Problem 2002-1. For which integers n > 3 is it possible to accommodate, in
some order, the numbers 1, 2, ..., n in a circle so that each number divides
the sum of the two following numbers in the clockwise direction?

Solution: Clearly it is possible for n = 3, and we will see that this is the only
possible case. If 1, 2,..., n may be accommodated satisfying the requested
condition, then there cannot be two consecutive even numbers, otherwise the
next one would also be even, and then all of them would be even. Also it is
not possible to have two even numbers with just one odd number in between.
Therefore after each even number there must be at least two odd numbers.
This implies that the amount of odd numbers is at least twice the amount of
even numbers, which only happens if n = 3.

Problem 2005-6. There are n cards numbered from 1 to n and p boxes to
store them, with p prime. Determine the possible values of n for which it is
possible to store all the cards so that the sum of the cards in each box is the
same.

Solution: We will say that a set A of integers is r-decomposable if there
exists a partition of A in r disjoint blocks, such that the sums of the elements
of each block are all equal. It is easy to see that any set of 2kr consecu-
tive integers {a,a + 1, ..., a + 2kr — 1} is r-decomposable since, as each
pair {a + j,a+2kr —1— j} (for j =0, 1, ..., kr — 1) has the same sum
2a 4 2kr — 1, joining these pairs in groups of k we obtain r blocks of equal
sum. It is also clear that the union of r-decomposable disjoint sets is also
r-decomposable.

The objective here is to determine for which positive integers n the set
A, ={1,2,...,n}is p-decomposable.

If p = 2, the solution is the positive integers n congruent with 0 or 3 mod-
ulo 4. Indeed, if n =1 (mod 4) orn =2 (mod 4) then 1 +2+---+n =
n(n+1)/2 is odd and A, is not 2-decomposable. As shown above Ay
is 2-decomposable. Since A3 = {1, 2} U {3} is 2-decomposable and so is
{4,5,...,4k 4 3} (because they are 4k consecutive integers), then their union
Ayjy3 is 2-decomposable.

If p > 2, the integers n such that A, is p-decomposable are those n >
2p — 1 congruent with 0 or —1 modulo p. Indeed, since 1 +2+---+n =
nn+1)/2,if A, is p-decomposable then p | n(n + 1)/2,1i.e., p | nor p |
(n 4+ 1), or equivalently n = 0 (mod p) orn = —1 (mod p).

But evidently neither A,_; nor A, are p-decomposables. However Ay, is
p-decomposable. Also A,,_; is p-decomposable because A,,_| = {1,2p —
2y U{2,2p =3}U---U{p—1, p}U{2p — 1},50 A,_1 is p-decomposable
since it is the union of A,,_; and {2p,2p +1,...,2kp — 1} (which are
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2(k — 1) p consecutive integers). It only remains to see that Ay, and Az,
are p-decomposable for k > 3 odd. Let us begin with k = 1 (that is to say
n=23p).
A3, is partitioned into the blocks:

{i,Bp—1)/2+i,3p+2—2i}forl <i <(p+1)/2and

{i, (p—1D/2+i,4p+2—-2i}for(p+3)/2<i <p.
Asp,_ is partitioned into the blocks:

{Bp—-1/2,3p -1},

i—1,Cp—-1/2+i—-1,3p+1-=2i}for2 <i <(p+1)/2,

and{i — 1, (p—3)/2+i,4p+1—-2i}for(p+3)/2 <i < p.

Nowfork =3 +2t,as Ay, = A3, U{3p+1,...,3p+2tp}land Ay, =
Az, 1 U{3p,...,3p+2tp — 1}, then Ay, and Ay, are p-decomposable,
being disjoint unions of p-decomposable sets.

If p=1 (mod 4), A3, can be partitioned into three different types of
blocks: (3p — 3)/4 blocks with two elements each, (p — 1)/4 blocks with
six elements each and an additional block with the remaining elements. Each
block has sum (9p + 3)/2. The blocks are:

{Bp+3)/2,3p},{Bp+5/2,3p —1}....{Op — 1)/4, Op + 1) /4},

{1,2,3,3p—5/2,3p —3)/2,Bp — 1)/2},

{4,5,6, Bp—11)/2,Bp—9/2,B3p —7/2}, ...,

{Bp—11)/4,Bp—7)/4,3p —3)/4,Bp+5/4 CBp+9)/4, Bp +13)/4}

and {(Bp +1)/4, Bp+1)/2, Op + 3)/4}.

For p =3 we have Ag = {1,2,3,4,5} U {6,9} U{7, 8}.

If p=3 (mod 4) and p > 7, A3, can be partitioned into the following
blocks:

{Bp+3)/2,3p}1,{Bp+5)/2,3p =1}, ... {Op + /4, Op + 5)/4},

{1,2,3,3p—5/2,38p—3)/2, Bp — D/2},

{4,5,6, 3p—11)/2, Bp—9)/2,3p—T17)/2}, ...,

{Bp—17)/4, Bp —13)/4, Bp —9)/4, Bp +11)/4, Bp + 15)/4, Bp + 19)/4}

and {3p —5)/4,Bp—1)/4,Bp+3)/4, Bp+7)/4, Bp + 1)/2}.

Similarly for A3,_;.If p =1 (mod 4), the blocks are:
{BGp—=1/2,3p-1}1{Bp+1/2,3p = 2},...{Op — 5)/4, Op — 1) /4],
{1,2,3,3p—7/2,3p —5)/2,3p —3)/2},

{4,5,6, B3p—13)/2,Bp—11)/2, Bp —9)/2}, ...,

{Bp—11)/4,B3p=7)/4,3p —3)/4,Bp+1)/4,3p +5)/4,. Bp +9)/4}.

For p = 3 we have Ag = {1,2,3,6} U {4,8} U{5,7}.
If p =3 (mod 4) and p > 7, the blocks are:
{(Bp—=1/2,3p=1}1L,{GBp+1)/2,3p =2}, ....{Op —=T7)/4, Op + 1)/4},

{1,2,3,3p—=7)/2,3p —5)/2,3p —3)/2},
{4,5,6, 3p —13)/2, Bp — 11)/2, Bp — 9)/2}, ...,

{Bp—=17)/4,3p—=13)/4,3p =9)/4,Bp +7/4, Bp +11)/4, Bp +15)/4}

and {3p —5)/4, Bp — 1)/4, Bp +3)/4, Op —3)/4}.
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Problem 2009-4. We want to place natural numbers around a circle satisfying
the following property: the differences between each pair of neighboring
numbers, in absolute value, are all different.

(a) Isitpossible to place the numbers from 1 to 2009 satisfying the property?
(b) Is it possible to remove one of the numbers from 1 to 2009, so that the
remaining 2008 numbers can be placed satisfying the property?

Solution: (a) It is not possible. There should be 2009 differences, but the
lowest possible difference is 1 and the highest possible difference is [2009 —
1| = 2008, hence by the pigeonhole principle some difference should appear
more than once.

(b) Yes. Suppose that a is withdrawn. If the remaining numbers are placed in
the order 1, 2009, 2, 2008, ...,a — 1,2011 —a, a + 1, 2010 — a, ..., 1005,
1006, the differences between neighbors are:

2008, 2007, ..., 2012 — 2a, 2010 — 2a, 2009 — 2a, ..., 2, 1,

and the difference between the first and the last numbers is 1005. In order to

have all of them different it suffices that 2011 — 2a = 1005, this is a = 503,
and we have the order

1, 2009, 2, 2008, ..., 502, 1508, 504, 1507, 505, 1506, ..., 1005, 1006.

Problem 2015-1. We want to write n different real numbers, with n > 3,
around a circle, so that each of them is equal to the product of his neighbor
on the right by his neighbor on the left. Determine all values of n for which
this is possible.

Solution: The only possible value is n = 6. Let ay, aa,..., a, be the numbers
ordered clockwise.

If n =3, then a; = azas (1) and a, = aja3 (2). Replacing a, from (2)
into (1) we obtain a; = (a;a3)as, then 1 = a% and a3 is 1 or —1. Similarly
a; = £1 and a, = %1. But by the pigeonhole principle at least two of these
numbers must be equal, therefore for n = 3 it is not possible.

If n = 4, we have a, = ajas = a4, which is not possible.

If n =5, we have a, = aya3 (1), as = araq (2) and a4 = azas (3). By
replacing a; from (1) and a4 from (3) in (2) we obtain a3 = (a;a3)(azas),
therefore ajazas = 1. Similarly, starting with a3 instead of a; we obtain
asasap = 1. Then ayaszas = asasa,, hence a; = a,, which is not possible.

For n = 6 there are solutions, for example 2, 6, 3, % é, %

Ifn > 7thenajasas = 1 (asseeninthen = 5 case) and similarly azasa; =
1, then a,azas = azasa; and a; = ay, therefore it is not possible.
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5.2.4 Extremal Problems

These problems may be viewed as a subclass of the preceding one, where
one is asked to find configurations which maximize or minimize a certain
function.

Proposed problems in this area during the 18 years of the competition:
1999-6, 2004-4, 2012-4, 2012-5 and 2015-6.

Problem 1999-6. Let S be a subset of {1, 2, 3, ..., 1000} such that the sum
of every two different elements of S does not belong to S. Find the maximum
number of elements of S.

Solution: Let S be a set which satisfies the condition given in the problem
and let m be its maximum element. If m is odd, the set {1,2,...,m — 1}
can be partitioned in pairs {x, m — x}, with 1 < x < (m — 1)/2, each one of
them can contain at most one element of S. Therefore | S| < (m — 1)/2 +1 <
499 + 1 = 500. Similarly if m is even, the set {1,2,...,m — 1} is parti-
tioned by the pairs {x,m — x}, with 1 <x <m/2 — 1, and the single set
{m/2}. In this case |S| < (m/2—-1)4+1+1=m/2+4+ 1 < 501. Since the
set {500, 501, ..., 1000} has the desired property, the maximum we are look-
ing for is 501. In fact, {500, 501, ..., 1000} is the only set with 501 elements
which has the property.

Problem 2004-4. We have a 10 x 10 board and each cell is painted either
white or black. Half of the cells are painted in white and the other half in
black. A common side between two neighbouring cells is called a border
side if these two cells have different colors. Determine the minimum and
the maximum numbers of border sides that the table can have. Justify your
answer.

Solution: The maximum is 180 and it can be obtained when we color the
table as a checkerboard. Indeed, the segments that can be border sides are the
interior segments (those who are not on the edge of the board) and all of them
are border sides when we color the board as a checkerboard.

The minimum number is 10 and we get it in the following way: let us
consider one of the lines which joins the middle points of two opposite sides
of the board. Let us paint in white all the cells in one of the sides of this line and
in black the cells on the other side. In order to show that 10 is the minimum, we
note that the number of vertical border sides between two adjacent columns
cannot be less than the difference (in absolute value) between the amount of
black cells in each column. Hence, if we modify each column moving all the
white cells to the top and the black cells to the bottom, the number of border
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Fig. 5.4 Problem 2004-4

segments does not increase. Repeating this procedure on the rows we obtain
a new coloring with the number of border segments less than or equal to the
number of border segments of the original. Even more, in this new coloring
if a cell is black, then the cells below it and to its left are also black. If there
is a whole row whose cells are white and another row with all the cells black
(or a whole column white and another one black), it is clear that there are at
least 10 border segments. Otherwise we will have one of the cases shown in
Fig.5.4. In each one of them the number of border segments is x + y, and in
both cases we have

x+y>2/xy>2+/50 > 14.

Problem 2015-6. In a Mathematical Olympiad 39 students participated. They
had to solve 6 problems and each problem was worth 1 point if it was correct
or 0 otherwise. For any three students there is at most one problem that was
not solved by any of them. Let B be the sum of the points obtained by the 39
students. Find the smallest possible value for B.

Solution: Let S; be the set of all students that did not solve problem i. By
hypothesis |S; N S;| <2 forevery 1 <i, j <6.Since B=39-6— > |Si],
minimizing B is the same as maximizing »_ |S;|. By the inclusion-exclusion
principle and Bonferroni’s inequality we have

39> US| =D ISI= D IS NS+ = D 18— D 18NSl
zZ|Si|—(§)-2.
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Then D> [S;| <394+30=69and B=39-6— > |S;| > 234 — 69 = 165.

Now let us see that it is possible to get 165 points. Let P be the 6 problems
set. For every subset Q C P with |Q| = 4, let us take 2 students who solved,
each one of them, the problems in Q and no other problem. Since there are
(%) = 15 subsets Q we have 30 students. Let us say that each one of the
other 9 students solved 5 problems. This configuration satisfies the problem
conditions and the total number of points is 30 -4 49 -5 = 165.

In conclusion the least possible value for B es 165.

5.2.5 Miscelaneous Problems

These problems include: (a) problems with a graph-theoretic flavor (1999-1,
2006-5); (b) tesselations (2000-2, 2010-4); (c) production rules in a formal
language (2007-4); (d) dynamic process (2013-2).

Graph Theory has not appeared formally in the Centro, with its language
and concepts. However there are some problems which may be conveniently
represented by graphs. For that reason we think that some familiarity with the
basic graph theoretic ideas would be an asset for any competitor. Tesselations
is a theme that appears frequently among the submitted problems. Coloring
techniques are usually useful for this type of problems.

Problem 2006-5. Olympia is a country formed by n islands. Every island has
a different number of inhabitants and Panacentro is the island with the biggest
population of all. They wish to build up bridges between the islands such that
each bridge can be travelled in both directions and, for every two islands, there
will be not more than one bridge connecting them. The following conditions
have to be satisfied:

e It is always possible to go from Panacentro to each other island, travelling
across the bridges.

e If one goes from Panacentro to any other island, crossing each bridge no
more than once, then the numbers of inhabitants in the visited islands must
be strictly decreasing.

Determine the number of ways to build up the bridges.

Solution: Let [, I,..., I, be the islands of Olympia in decreasing order
of inhabitants (/; is Panacentro). We claim that for every island I, with
2 < k < n, there exists a unique j < k such that /; and I; are connected by
a bridge. Indeed, by hypothesis we know that there is a path ¢ from I; to
I, and without loss of generality we may assume that it does not pass more
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than once by the same bridge. If the last island visited before arriving to I is
I;, by the second condition of the problem it must be j < k. Let us assume
now, by contradiction, that there is a bridge from another island /; to I, with
i < k. If ¢ does not pass by I;, then we could prolong c up to /;, but this is a
contradiction because /; has more inhabitants than ;. Otherwise if ¢ passes
by I; itmustbe i < j < k and the path c mustbe of the form I, ... [; ... I; ;.
But then we could build a new path touring the initial section /; ... [; of c,
going from there directly to /; and then to /;, and again it is a contradiction.

Hence I, must be directly joined to /;. /3 must be linked by a bridge either
to I, or I;. I, must be linked by a bridge either to I;, I, or I3, and so on.
By the multiplication principle the total number of possible ways to build the
bridgesis givenby 1 x 2 x3 x ---x (n—1) = (n — 1)L

Problem 2007-4. The inhabitants of an island speak a language in which
every word can be written with the following letters: a, b, ¢, d, e, f and g. A
word produces another word if it is possible to arrive from the first word to
the second one applying at least one of the following rules:

1. Change one letter for two letters according to the following rules:
a—bc,b—>cd,c—>de,d— ef,e > fg,f— ga,g — ab.

2. Iftwoequal letters surround another one you can eliminate the equal letters.
Example: dfd — f.

For example, cafcd produce bf cd, because
cafcd — cbcfcd — bfcd.

Show that in this island every word produces any other word.

Solution: Let us use the notation = to denote that one word produces another
word. We see that a — bc — cdc — d therefore a = d. Analogously d =
g g=c,c=f, f=b,b= eand e = a. Hence, since = is transitive,
each letter produces any other letter. This implies that any word with 7 letters,
just changing orderly each one of its letters by a, produces a word formed
by n letters a. Then, if n is odd, we can apply the second rule repeatedly to
obtain a word formed by just one a. If n is even, we can obtain the word aa.
But a produce g, so we have aa = ga — aba — b = a, and also in this
case we can obtain the word a.

Now observe that the first rule is reversible, in the sense that bc = a,
cd = b,...,ab = g. Indeed, from bc, cd,..., ga, ab we can produce a, and
from a we can produce b, c,..., g. Hence all instances of the first rule are
reversible.
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To reverse the second rule we first observe that a — bc — cdc. Now,
given two letters x and y, since any letter produces any other we can go from
X to a, from a to cdc and finally from cdc to yxy. Hence all instances of the
second rule are reversible.

Therefore, since any word produces a, we can reverse the process to pro-
duce any other word from a.

Problem 2010-4. We wish to tile an N x N square yard, with N a positive
integer. We have two kinds of tiles: square tiles with side equal to 5 and
rectangular tiles of size 1 x 3. Determine all the values of N for which it is
possible to tile the yard.

Note: The yard should be completely covered, without overlapping tiles.

Solution: It is possible to tile the yard for every natural number N except
1, 2 and 4. Obviously we cannot tile neither 1 x 1 nor 2 x 2 yards, because
we will not have space for the given tiles. It is also impossible for N = 4,
because the only tiles we could use are the rectangular 1 x 3 tiles, and the
yard area should be a multiple of 3, but 16 is not. Clearly it is possible to tile
the yard for N = 3 and N = 5. Then we can tile any rectangular yard with
integer sides such that at least one side is a multiple of 3, in particular the
6 x 6 yard.

For N = 7, Fig.5.5 shows how to tile the yard:

Given any N > 8 we always can write N = 5k + 3h, with k and & non
negative integers. Indeed, we can write N =5¢g +r, con 0 <r < 5. But
N > 8,hence g > 1,and if r < 2, then g > 2.

If r =0orr =3, we are done.

Ifr=1,then N=5¢+1=5@g—-1)+3-2.

Ifr=2,then N =5¢+2=5(g—2)+3-4.

Ifr =4,then N =59 +4=5(¢q—-1)+3-3.

Fig. 5.5 Problem
2010-4
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At this point we see that the N x N square, can be decomposed in a 5k x
5k square, another 3i x 3h square and two 5k x 3h rectangles. We tile the
5k x 5k square with k? tiles of size 5 x 5, and since the other figures have at
least one side multiple of 3, we can tile them with tiles of size 1 x 3.

5.3 Shortlisted Problems

We present now some problems that were in the short lists of some of the
competitions, but for some reason they were not selected for the corresponding
papers.

Problem SL1. (Shortlist 2014) In a certain country there are 9 towns. For
each pair of towns there is one and only one connecting flight, operated by
one of two airlines: AirSun and AirMoon. It is known that, given any three
towns, at least one of the flights between them is operated by AirMoon. Prove
that there are four towns such that all the flights between them are operated
by AirMoon.

Solution: Consider the complete graph K9 whose vertices are the towns and
whose edges represent connecting flights. Color an edge red if it is run by
AirSun or blue if it is run by AirMoon. Then the problem is equivalent to
prove that, if there is no blue triangle (K3) then there is at least a red K4. But
this is a known result: the Ramsey number R(3, 4) is 9. For that reason this
problem was not suitable for the contest.

Problem SL2. (Shortlist 2007) In Mathland’s market each merchant had an
item to sell. But some of them were unhappy with their item and wanted to
exchange it. Each item was desired by one and only one merchant. Every
day, they could exchange their product with another, but only once. Find the
minimum number of days after which all merchants may become satisfied.

Solution: This problem may be modeled with a directed graph (G, E), where
G is the set of merchants and uv € E if and only if # wants v’s item. Each
vertex has outdegree and indegree 1. Thus the merchants may be grouped
in one or more disjoint cycles (u1, us, ..., ug) such that u; wants u;,| item
(indexes are taken modulo k).

If all the cycles have length 1 then everyone is satisfied and no day is
needed. If the cycles have length 2 or 1 then clearly one day is enough.

If there is a 3-cycle (u, v, w), since each day only two of u, v, w may
exchange, we need at least 2 days. For example if # and v exchange their
items the first day and v and w the second day, the problem is solved.



5 Combinatorial Problems in the Mathematical Olympiad ... 139

A 4-cycle (u, v, w, x) may be solved in 2 days too, with the exchanges
v & x the first day and 4 = x, v &= w the second day.

A 5-cycle (u, v, w, x, y) may also be solved in 2 days, with the exchanges
u = yand v = x the first day and u = x, v = w the second day.

Now we will show by induction on n that any n-cycle (u1, us, ..., u,) with
n > 4 may be solved in two days, in such a way that u; does not exchange
the first day. The first day we make the exchanges u; = us and u, <= uy,
leaving for the second day u; <= u4 and u, = u3. We are left with the cycle
(us, ug, . . ., u,).Butthiscycle may be written as (u,, 1, U, Us, Ug, ..., Up_2),
which by induction hypothesis may be solved in 2 days without using us
the first day. Hence this cycle may be solved in parallel with the exchanges
between u 1, u,, us, us and us.

Problem SL3. (Shortlist 2011) Two cardboard regular decagons have their
vertices numbered from 1 to 10, but in any order (the order may be different
for each decagon). The first decagon is superposed over the second one so
that each vertex of one decagon is in contact with a vertex of the other one.
The numbers of the vertices in contact are multiplied, then the ten products
are added. Show that it is possible to superpose the decagons in such a way
that this sum is at least 303.

Solution. Select a vertex v in the first decagon and let ay, as,..., a, be the
numbers found when the vertices are traversed clockwise, beginning with
k. Analogously let by, by,..., b, denote the numbers found on the second
decagon when their vertices are traversed clockwise, beginning with one of
them. If vertex 1in the first decagon is over vertex j in the second, then the
sum of products is

Sj = albj —|—a2bj+1 +--- +6110bj+9,

where indexes are taken modulo 10. Hence

10

10 10 10 10 10 10
PIDEDIPICLIEED I ITWEE 3 [0 31 ]
=1 i=1  j=1 j=1

j=1 i=1 i=1

But 3% ai =32 b1 = >0, i = 55, therefore 310 | S; = 552. The
ten numbers S; cannot be all of them less than 552/10 (otherwise their sum
would be less than 552), thus S; > 55%/10 = 605/2 at least for one j, hence
S; > 303.

Problem SL4. (Shortlist 2011) Find all positive integers n such that it is
possible to tile an n x n square board with 1 x 2 rectangular tiles (without
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overlapping) in such a way that the board may not be divided in two parts
with a straight line cut, without breaking any tile.

Solution. The answer is: all even integers n > 8. Clearly if an n x n board
may be tiled, its area is even and n must be even. Let us call a tiling irreducible
if it is not possible to divide the board with a straight line without breaking
any tile. Let us call an integer nice if the n x n board admits an irreducible
tiling. Suppose that n is nice (hence even). Let (0, 0), (n, 0), (0, n) and (n, n)
be the coordinates of the board’s vertices. We affirm that the line y = k, with
ke{l,2,...,n— 1}, must go through an even number of tiles. Indeed, if
it crosses j tiles, the area occupied by the tiles which are completely below
y =k is kn — j, but that number is even, as kn, hence j is even. Thus the
n — 1 lines y = k go through at least 2(n — 1) tiles. The same thing happens
with vertical lines x = k. Since each tile is crossed by one and only one of
those lines, and there are n? /2 tiles, we have n>/2 > 4(n — 1), or equivalently
n*> > 8(n — 1). Hence n = 2, 4 and 6 are not nice. The first n which satisfies
the inequality is 8, and indeed 8 is nice, as the irreducible tiling in Fig.5.6
shows.

Now we will show that if n is nice then n + 4 is nice too. It suffices to
enlarge an irreducible tiling of the n x n board surrounding it as Fig.5.7
shows.

Since 8 is nice, so are the numbers 8 + 4k for k > 0. But 10 is also nice,
as shows the tiling in Fig.5.8.

Thus the numbers 10 + 4k for k£ > 0 are nice too. Therefore the nice num-
bers are all the even integers n > 8.

Fig. 5.6 Problem SL4
withn =8
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Fig. 5.7 Problem SL4
forn +4

n

Fig. 5.8 Problem SL4
withn = 10

5.4 Conclusions

The mathematics areas with more representation in the papers of the Centro
are combinatorics and geometry, each of them with 32.4% of the proposed
problems. Number theory problems are the 20.4%, and algebra problems
come just to 14.8%.

In the case of combinatorics, the basic concepts needed to solve the prob-
lems have not changed that much, but the difficulty of the problems has
increased over the years.

During the last 18 years the Centro has proved to be an excellent way to ini-
tiate the high school students of the region in international mathematical com-
petitions, preparing them for more demanding events such as the Iberoameri-
can, Asian-Pacific and International Mathematical Olympiads, among others.
In some cases the Centro has been the only opportunity for a country to expose
their students to an international mathematics contest.
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The Centro has fostered friendly relationships among students and teachers
of the participating countries, creating many opportunities for the exchange
of information and experiences on the teaching of mathematics in a region
with similar culture and common problems.
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Part IV
Role of Competitions in the Classroom



Chapter 6

The Rainbow of Mathematics—Teaching
the Complete Spectrum and the Role
Mathematics Competitions Can Play

Robert Geretschliger

Abstract Although it is clear to all of us with some stake in the teaching of
mathematics, that it is an important, valuable and fascinating pursuit, there
does not seem to be any real agreement concerning where its central value
lies with respect to what is taught in school. The core values of the subject
present themselves differently to teachers, math education researchers,
professional mathematicians and engineers, and this fact makes it difficult to
speak with a common vocabulary about what should be taught and how it
should be taught. In this paper, a model for the various aspects of mathe-
matics, ranging from “recreational” through “school” to “applied” is pre-
sented, and the role of mathematics competitions in the continuum of this
model is discussed. The various points raised in this model are then illus-
trated by a concrete example.

Keywords Mathematics competitions - Secondary schools - Recreational
mathematics - Applications of mathematics - History of mathematics

6.1 Introduction

When people from heterogeneous backgrounds get together to think about
the role of mathematics in schools, it is important to have some kind of
common starting point for the discussion. As things stand, it has been my
experience that such a common starting point does not necessarily exist.
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(Note that much of what is being said in this paper is derived from my
personal experience. I am therefore taking the liberty of putting some things
in the first person. I am fully aware that this goes against common practice
in such papers, but it is my hope that it will be helpful for further discussion
if my personal opinions and experiences are clearly recognizable as such.)

In dealing with people involved with the didactics of mathematics and
curriculum development in Austria, there is currently a wide consensus to
the effect that the important central aspect of school mathematics lies more
or less exclusively in the application of mathematics to the “real world*
(whatever that may be; a point I will be getting back to in a moment). It is
taken as given to this group, that “pure” math is not really worthy of deep
consideration in the classroom, other than what is needed to be able to deal
with the most elementary of everyday applications. From this, a commonly
derived opinion states that any calculations or algorithmic aspects of
mathematics in the school context can and should be left completely to
calculators or computers, and not be done by actual human thought at all,
except in the most trivial of circumstances.

Speaking to people in the math competition community on the other
hand, we have an utterly different view of what is important (and funda-
mental) in mathematics. While there is certainly also disagreement within
this group, it is clear for people involved in competitions that the funda-
mentals of mathematics are represented by that part which is commonly
called “elementary” mathematics. The term “advanced elementary mathe-
matics” is often bandied about among the members of this community,
despite the fact that the concept is utterly foreign to the application-oriented
group. Members of this group also tend to be in full agreement that
enjoyment of the study of mathematics is of central importance. The internal
disagreement here often manifests itself with respect to the question of
whether or not the specific skills obtained in preparing for competitions will
transfer to actual research mathematics. There is, however, definitely
agreement concerning the fact that subjects in pure mathematics, which for
the purposes of mathematics competitions normally include combinatorics,
Euclidean geometry, algebra and number theory, are the most important
things for students to learn about and study in order to form a useful base of
mathematical knowledge and competence. The logical skills acquired in the
somewhat deeper study of these elementary topics are considered most vital
in students’ academic development.

Finally, speaking to teachers at the university level, the expectations of
math skills that students should bring along from secondary school are
different again. Furthermore, they are quite dependent on the specific aca-
demic discipline. Students in economics are expected to have quite deep
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knowledge of statistical methods, for example, while students in the natural
sciences or engineering are expected to have some knowledge of things like
differential equations or matrices; topics that go beyond what both of the
previously mentioned groups generally consider fundamental.

Obviously, we are dealing with a huge disconnect here. The object of this
paper is to shed some light on this disconnect, and to offer a fresh per-
spective. My hope is that this will make it possible to reflect better on the
somewhat contradictory viewpoints held dear by the various groups of
players in this corner of academia, and to ultimately improve the discussion
to the benefit of the students in our secondary schools. It is my firm belief
that the viewpoint offered by the universe of mathematics competitions has a
great deal to offer in this respect.

In order to find a common denominator for fruitful discussion, we first
need to achieve some basic agreement on what it is exactly that we are
trying to decide. We must therefore find common answers, acceptable to all,
to some quite fundamental questions.

The first of these is existential. Why do we think that mathematics is an
important subject in school? What are our fundamental reasons for teaching
mathematics as a core discipline in secondary education? As mentioned, the
answer to this question seems to depend greatly on the circumstances of the
person formulating an answer, and it seems clear that the concerns of each
of these groups should addressed seriously.

A second important question to be answered in this context has to do with
methodology. How do we best get students interested in the type of math-
ematics we want them to learn? Answering this question depends to a great
extent on the individual tastes of the students in question. Different students
have utterly different ideas of what is interesting and what is not. Relating
my own personal experience in this matter, I can certainly state that my own
interests have always been defined by pure mathematics, and geometry in
particular. On the other hand, I have good friends, who also happen to be
mathematicians, whose interests lie almost purely in applications, and their
original impetus for becoming mathematicians was not derived from interest
in pure math at all. For them, the gateway into mathematical research
resulted from the applications first and foremost, and the idea of discovering
mathematical ideas was always totally dependent on these ideas being useful
to solve concrete problems. They might consider my own deep interest in
the subject as being not much more than the enjoyment of mathematical
puzzles, and not really worthy of total academic commitment. (Of course,
since they are my friends, they are willing to allow me this luxury.)

The third problem to be addressed is purpose oriented. What are we
ultimately preparing students for in their mathematics classes? To which
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extent are we teaching them mathematics for their own enjoyment? To
which extent is this even appropriate? Are we teaching them primarily to
prepare for a specific role in society? Are we primarily training their
capacity for systematic logical thought? Are we preparing them for uni-
versity entrance, for mathematical capability that will allow them to study
technical subjects, natural sciences, or finance? Do we want to prepare them
in a deep manner for what is known in German as “Allgemeinbildung®?
(The term is, of course, derived from the Humboldtian ideal of higher
education. The concept does not translate very easily into English, and has,
in fact, mutated a bit in common understanding over the decades. It certainly
goes quite a bit beyond the literal translation of “general knowledge”. Some
thoughts on this can be found, for instance, in Skovsmose 1994.)

6.2 Defining the Rainbow

In order to illustrate some of the ideas in this paper, let us take a look at the
following picture (Fig. 6.1).

We first note that the central shaded block is composed of three sections,
carrying the labels Recreational Mathematics, School Mathematics, and
Applications of Mathematics. Above these, there floats a cloud containing
the word History, and underneath, we see a box containing some tools
alongside the word Didactics. We can often find a rainbow underneath a
cloudy sky, and it is certainly possible to consider the three sections in the
center as aspects in a continuous rainbow, just as the full spectrum of a
rainbow can be represented in a basic way by red—yellow—blue. (Unfor-
tunately, we will have to make do with grayscale representation here, but we
can let our imaginations fill in the colors.) So, what could I mean by this in
the context of learning mathematics?

/ Didactics Z*

Recreational Mathematics Applications of Mathematics

Fig. 6.1 .
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Having the box with school mathematics in the center of the diagram (in
all capitals for extra emphasis) is meant to illustrate the fact that we are
talking about the teaching of mathematics as the central core of our discourse.
We are debating mathematical subjects that can and should be talked about in
the school context as well as methods that can best be used to engage the
interests of students in them. The box with Recreational Mathematics on the
left is meant to illustrate the aspects of mathematics that are done primarily
for fun. Of course, it is quite possible that there are aspects of mathematics
taught in school that students can find quite enjoyable. In fact, if the teaching
process is to be successful, we would hope that such topics would be quite
common. There are many aspects of so-called recreational mathematics that
are not normally dealt with in school. (A very common example of such an
aspect is the daily newspaper Sudoku that many people cannot imagine living
without. Sudokus are certainly not commonly taught in school, but this is a
perfect example of a mathematical topic that many people happily spend their
leisure time on, without thought to any external usefulness. We shall be
discussing the meaning of Sudoku in this context in greater depth later on.)
Still, in an emotionally positive learning environment, we would hope that
aspects from this side would spill over into the center.

On the right, we have a box labelled Applications of Mathematics. Many
topics commonly covered in school mathematics are taught with a view
toward practical applications either in everyday life (as is the case for
percentages, for instance), or as a necessary base for higher level applica-
tions as can occur in scientific, technical or economic applications. As was
the case on the left side however, there are many applications that are
certainly never taught in school. Again, we would hope that some ideas
from this side seep into the central core of school mathematics, even if
higher level applications are almost certainly too sophisticated for consid-
eration at a secondary level.

History hovering above the central boxes is meant to symbolize the fact
that all mathematical ideas have a past, and this past can and should have a
presence in school, at least up to a certain extent. Some mathematical
concepts had their historical start in physical applications (think of differ-
ential calculus, for example), while some that may seem very applied from a
modern standpoint may have originated in a recreational context (like
probability theory, which started from considerations of gambling games).
An awareness of this overarching historical aspect of a topic can and should
make it easier for the learner to grasp the context of what is being learned.
Furthermore, we can hope that an understanding of the historical context of
a topic can give many students the necessary motivation toward grappling
with its intricacies.
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Finally, having the tool-box (represented by the hammer and screwdriver)
of practical didactics as the underlying foundation is meant to represent the
idea that the entire building of the academic discipline Mathematics rests
upon the nuts and bolts of how it is taught. (Sorry about the mixed meta-
phors. Maybe we need to think of the rainbow as being painted on the side
of a grand building.)

In the sections that follow, I will attempt to be a bit more precise about
how this model of thinking about mathematical ideas can be useful in
thinking about the learning process. More specifically, I will attempt to
place mathematics competitions in their appropriate slot in this framework,
and illustrate how they can show the path to a more fruitful synthesis of
mathematics for enjoyment and useful application. I hope to be able to give
a good argument in favor of using mathematics competitions as a tool both
for popularizing mathematics as a discipline, and for preparing students for
many important aspects that relate to the reason we have the subject in such
prominence in the school curriculum.

6.3 Math Is Fun

We are so used to the popular notion of mathematics being called a dry,
boring and incomprehensible pursuit in popular discourse that a lot of
people outside the math community cannot even conceive of the truth of this
heading. But, as we in the community all know, math is indeed fun. And this
“fun” aspect of the subject can manifest itself in many different ways.

Why is there even such a thing as the abstract concept of Mathematics?
Human nature is such that people have been fascinated by the process of
abstraction for at least as long as there has been language. Discovering the
fact that there is something highly elementary in the connections between
utterly disparate objects exhibiting common traits that can be given a name,
like “three” (the leaves on a stalk of clover, or the corners of a triangle, or
the more abstract concept of past, present and future) or “circle” (the shape
of the sun or the moon in the sky, or a ripple on the surface of a pond when a
pebble is tossed in, or the shape you can draw with a stick in the sand by
holding one end steady and moving the other) is, simply put, fascinating.
And discovering that there are properties that can be found from the defi-
nition of such a concept that then turn out to be common to all objects fitting
the definition is certainly something wonderful. Realizing this leads us to
develop methods of finding such commonalities, resulting in concepts like
counting, calculation, axioms and proof. Falling prey to the fascination of
such intellectual pursuits is one way in which Math Is Fun.
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Another way is well known to all ardent puzzle solvers. There are logical
processes involved in solving anything from brainteasers and cryptic
crosswords to hidokus and Rubik’s Cubes. At first glance, the puzzles seem
to be indecipherable, but step-by-step application of logical thought,
sometimes combined with some trial and error, lets us inch ever nearer to a
solution. Finally, after some effort, the solution presents itself. In a good
puzzle, the fact that the result has been found is then completely obvious;
there is no doubt that we have succeeded. Most important, a feeling of deep
satisfaction results from having found the solution, by application of our
own wits, to something that seemed incomprehensible at first glance, but is
now utterly clear. This is another way, readily appreciated by any mathe-
matical researcher, of course, in which Math Is Fun.

Another path to enjoyment of mathematics comes from deeper under-
standing of ways in which mathematical methods allow us to comprehend
complex systems. A fine example of this path is the one followed by people
involved in high-level financial transactions. The complex mathematical
structures that they use make it possible for them to play their high stakes
games, and it goes without saying that they have found for themselves a
completely different way in which Math Is Fun.

Finally, for some people, simple mental calculation is enjoyable enough,
and they may go so far as to cultivate arcane skills involving such things as
mental division of huge numbers, memorization of the decimal digits of pi
to an incredible number of places or the capacity to manoeuvre freely
through hyper-cube cells in four-dimensional space in their minds. Not
everyone can appreciate this type of entertainment, but to those who can,
they are manifestly yet another way in which Math Is Fun.

Of course, any number of collections of mathematical puzzles is available
on the book market, mechanical puzzles are readily available for purchase,
and so on. It seems clear that a lot of people are actually quite aware of the
fact that mathematics is, indeed, fun.

If there are so many ways in which pure enjoyment of mathematics is
possible, isn’t it unfortunate that so many people pass through the school
system without being able to enjoy the subject in any such a way? In school,
we as a society want to help our children speed up the process of abstraction,
and expose them to as much as possible of the wealth of knowledge
humanity has developed over the millennia. During the course of this pro-
cess, we present a great deal of that knowledge in a pre-processed way,
reducing the elements of individual discovery to a minimum. Of course, this
is with good reason. It took humanity many generations to reach the level of
sophistication we have now, and it would not be feasible to expect every
youngster to figure everything out on his or her own. After all, it took the
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wisest brains of many generations to come up with what we, as a society,
know now. Unfortunately, the accelerated processes typically used in school
tend to suck much of the entertainment out of the subject.

Even knowing this, a lot of mathematics remains enjoyable. Sometimes,
we may not realize that we are doing mathematics while we are playing with
it. Not everyone solving a newspaper number puzzle is cognizant of doing
mathematics. Nor did every participant in the great puzzle crazes of the past
decades, from the 15-puzzle through Instant Insanity and Soma to the
Rubik’s Cube necessarily think of their hobbies as intrinsically mathematical,
even though they obviously were. It seems clear that any way to introduce
this type of enjoyment to the learning process must be advantageous.

Some mathematics competitions offer puzzle problems that give a large
number of contestants the opportunity to have some mathematical fun of this
type, and the millions of competitors taking part in competitions like the
Mathematical Kangaroo, the American Mathematics Competition, or the
Australian Mathematics Competitions (just to name a few) show that the
enjoyment to be derived from thinking about such questions is well known
to many. So, here we have an obvious way in which the math competitions
scene is helping to achieve the goals we aim for in regular mathematics
education. Helping students to see how enjoyable it can be to solve math-
ematical problems/puzzles (the distinction becomes quite blurry at times)
gives them the impetus to delve deeper into the subject.

Here is the first facet of the Rainbow. One big reason for us to do
mathematics is simply because it is fascinating and because it is enjoyable.
Next, let us have a look at the opposite end of the spectrum; the other reason
we should all be able to agree on for why mathematics is such an important
discipline.

6.4 Math Is Useful

On the opposite side of the spectrum of mathematics, we have the utility of
mathematical abstraction combined with practical calculation that makes
mathematics so useful. Of course, this is also a reason why many people are
fascinated by mathematics as a discipline in the first place. Many, for whom
mathematics may not have held any particularly high level of fascination in
school, become quite enamoured of the pursuit because of the surprising
connections it helps to uncover in practical applications. This can be derived
from physics, applications in engineering, financial transactions or any
number of other things.
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Unfortunately even research mathematicians cannot always agree on
what exactly is meant by “useful”’. As was already pointed out, pure
mathematicians have a quite different point of view from applied mathe-
maticians, and therefore often find different areas of elementary mathematics
to be of elementary importance to their work. Nevertheless, all can agree
that things can and should be taught in school because they are, simply,
useful. And in any case, the fact remains that mathematics is in some way
intrinsic to most any abstract discipline.

For many people, the day-to-day practical aspect of the subject is the
central, and perhaps only, justification for its inclusion in the school cur-
riculum in a central role. This is certainly currently the case in the Austrian
school system, which I know best from practical experience, and I shall
elaborate a bit on in the next section. In my opinion, it is however quite
unfortunate if this is considered to be the sole defining justification for the
subject. It does seem clear that the things we teach our students in school
should have some connections to future applications, of course, but this
statement can be interpreted in different ways. We can all agree that school
should certainly convey the capability for dealing with everyday calculation
to all students. They should learn how to deal with cash transactions in the
course of making their daily grocery purchases, calculating the savings
involved when something is advertised as being on sale at 10% off, or
figuring out how many cans of hi-gloss are required to repaint the garage,
and we are certainly all in agreement that the basic intellectual tools needed
to solve such problems should be acquired in school.

From the standpoint of preparing secondary school students for the ter-
tiary level, however, there does not seem to be so much common ground.
Most would agree that there is a certain amount of higher level mathematics
that must be taught in an effective manner, but what does this include? If we
want to prepare our high school graduates for studies in the sciences or
engineering, we will want them to have some accessible fundamental
knowledge of real functions and calculus, algebraic manipulation of poly-
nomials and solving equations, and so on. If we are worried about preparing
them for the necessities of anything involving statistical analysis, like
medicine, economics or the social sciences, we will want them to have some
skills in interpreting statistical tests and working with random distributions.
If we are worried about training future mathematicians and computer pro-
grammers, we will want them to have some understanding of mathematical
proof and algorithms. Or, in the extreme, we can take the position that we do
not want to train our students to understand deeply any of this, arguing that
they can pick up the necessary knowledge at the tertiary level, and limiting
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what is taught in secondary school to what is needed for “communication
with experts” (see Fischer 2001). This is the current basis for the Austrian
school system, and in my opinion this is not at all sufficient.

6.5 Math in School. Connecting the Fun
and the Usefulness

I would argue that all aspects of mathematics should be included in an ideal
secondary curriculum. In order to keep all students interested and motivated,
there should be aspects of recreational mathematics, applications of math-
ematics, and the history of the subject represented in the classroom. Grad-
uates of our schools should have a reasonably developed feel for numbers,
shapes, data and functions. They should understand the value of proof in an
axiomatic system and be somewhat schooled in abstract thought. There
should be room for the many fascinating aspects and the many uses of the
subject, as well as aiming toward achieving the ideal of educated people
having a well-grounded understanding of the subject.

Depending on their own point of view, many people think that only one
or the other of these aspects is appropriate for schools to worry about.
Limiting mathematics in school to practical applicability, however, leaves
no room at all for recreational aspects or for the development of pure
mathematics as a scientific discipline. Also, the reality of schools often does
not allow any kind of deeper insight or any kind of enjoyable work with
mathematics because the available time must be used to prepare students for
specific types of central exams, which typically test only the ability to deal
with highly specific problem formats. This is not good. A good school
system will not put undue emphasis on simple calculation, nor will it force
the majority of available classroom time to be spent on the study of specific
test formats. A good class is one in which the students’ minds are challenged
in many different ways and in which their individual preferences and
interests can find a home, whatever they may be.

Taking a closer look now at the current state of the Austrian school
system, we see that there has recently been a shift completely away from
anything involving operative mathematics in the secondary schools, and
oriented strictly toward applicability.

The opinion of some mathematics educators who feel that all mathe-
matics taught in school should be introduced through “real world” appli-
cations now completely dominates the discussion, even if many teachers put
up quite a bit of resistance in their classes. (It is worth noting that there is a
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good reason for the quotation marks here. What is considered the “real
world” in mathematical texts is, of necessity, always a stark simplification of
reality, with a strong element of pre-digestion having been introduced by the
problem authors. The real “real world” is invariably more complex than the
highly simplified mathematical models used in the school situation would
generally suggest.)

The pure enjoyment of mathematical pursuit is thrown out the window in
this educational model, as is the value of abstract thought in a liberal arts
education. Both aspects are sacrificed at the altar of applicability.

Furthermore, centralized testing has led to complete dominance of the
teaching-to-the-test phenomenon, to the detriment of all else. One can only
hope that this state of affairs, which has only come into full force in the last
few years, will soon pass, but the plan to move to stronger inclusion of
technological aids in mathematics instruction (graphing calculators, CAS
and spreadsheets) unfortunately suggests that things will get worse before
they get better.

This unfortunate development resulted from an attempt to improve
mathematics teaching, of course. Comparing any current textbook to one
used, say, in the 1960s, gives an excellent view of what has happened. It is
certainly true that there was formerly far too much emphasis placed on
calculation for its own sake. Looking at the old textbooks, we find any
number of difficult problems involving simplification of quite involved term
expressions, for example, and such things can no longer be found in current
textbooks. The argument given for the change was that students did not
actually gain any real understanding of what they were calculating, and there
is a great deal to be said for this. Unfortunately, in the process of reducing
this type of rote learning, some topics were eliminated completely, despite
the fact that the fascination emanating from them can certainly help a great
deal in giving students the motivation to learn.

Different people have different tastes, and while some are readily moti-
vated by pure abstraction and others by the wish to come to grips with
practical matters, there cannot be one singular path to motivation equally
applicable to all learners. Surely the aim of teaching is to optimize the
motivation to learn for as many students as possible, in order to maximize
the amount of knowledge students can absorb and develop. Since students
can be motivated by quite disparate pathways to such knowledge, it seems
quite obvious that all such paths should be reasonably represented.
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6.6 Mathematics Competitions: Great at Connecting

One of the main points I would like to get across with this paper is the idea
that mathematics competitions are uniquely suited to getting many (though,
of course, not all) students more deeply and more actively engaged in
mathematical pursuits. Parts of this argument have already been hinted at,
but in this section, I would like to present it in a more structured way.

When students get hooked on mathematics competitions, this means that
they have developed a feeling for the fascination of problem-solving on an
abstract level. Finding solutions to competition problems of progressively
higher levels of difficulty leads them on a journey to discovering and writing
proofs, and with this they are really learning to be active mathematicians
themselves. Compared to what they are confronted with in “regular” math
classes, there are some specific qualities to the style of mathematics they
encounter in the competitions world.

First of all, there is the feeling of accomplishment that comes from
solving a competition problem. This is the same feeling one gets from
successfully solving a puzzle or from proving a theorem, but in the context
of a competition, it can be reinforced by the fact that points are awarded, and
the student may have achieved something that others writing the competi-
tion have not. Regular classroom mathematics tends to negatively reinforce
not being able to solve a problem (which might even result in failing a test)
rather than positively reinforcing the solution of a problem that can be
considered at the outset as being optional. It goes without saying that
positive reinforcement of this type is preferable from a psychological
viewpoint. This positive reinforcement then usually transfers quite well to
regular classroom work. (This last claim is what I see quite commonly in my
own classrooms, but I am sure that anyone working both directly with
students in competition preparation and in a regular classroom setting will
agree.)

Essentially, this is part of the argument in favor of using recreational
mathematics to get students more actively involved in their classrooms. In
the Rainbow, this means that the left-hand box positively influences the
central box. The implication is that the participation of students in compe-
titions is therefore quite useful as part of the underlying Didactics tool-box.

Another strong influence of math competitions lies in getting the students
to accept the need for logical rigor in their work. If any of their calculations
or proofs is logically incomplete, they will simply not score full points, even
if they have understood all of the essential parts of an argument. This is
disappointing for a student who has become used to the feeling of success
that comes with solving a problem. Again, the positive reinforcement that
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then comes with understanding the need for a logically complete argument
in order to get full points in a competition is much better than the negative
reinforcement of just being criticized for something incomplete.

While this applies to any kind of mathematical argument, including
simple computation, it is especially true for learning to understand the
meaning of the axiomatic method in producing proof. Learning this in a
normal classroom is quite abstract and involved. In the context of a com-
petition, however, it is very natural (although perhaps not really any easier).
It is obvious to all competitors that an argument must be complete if a
student hopes to receive full points. It is quite easy to accept this in the
context of a competition, as a competitor’s more complete argument will
obviously be better than mine, if mine is missing some salient points.

For the purpose of learning the axiomatic method and the concept of what
constitutes complete proof, classic topics are certainly the best. There is an
obvious historical reason why the classic Euclidean topics of geometry and
number theory/arithmetic are the areas in which the axiomatic method was
developed, and this is certainly also the reason why there is still a wide
international consensus that these topics should be included in a central role
in competitions. The historical argument is quite strong, not just for
intrinsically historical reasons, but because historical development in this
area happened for a reason. These topics are basic to human abstract
thought, and taking this route during the learning process is as basic and
reasonable now as it ever was.

Starting on the right-hand side of the Rainbow, it can also be argued that
a similar path from the Applications box is offered by classes in mathe-
matical modelling. In many places around the world, students especially
interested in applied mathematical problems are offered participation in such
activities that are also competitions of a sort, even if there are generally no
“winners” declared. (I refer here specifically to the model of the “Mathe-
matical Modelling Week” as I know it in Styria, in the south of Austria, as
this is the one I am most familiar with. Similar programs are, however,
offered in many places.) As a path to applied math at a higher level, high
school students are invited to work for a week under the tutelage of pro-
fessional mathematicians on the modelling of some applied problem. These
can be from physics, medicine, economics, or any number of other areas,
but generally they will be derived from the research specialties of the tutors.
While these are not competitions in the traditional sense since there are no
winners, it can be argued that all participants in these workshops are
“winners” by virtue of their completion of the tasks at hand, and there are
simply no “losers”. Psychologically, this is certainly a good thing. Other-
wise, I would argue that the net positive results of such an activity are the
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same as those in a more typical competition format. Participants derive the
same sense of accomplishment in finding a path toward solving a problem
that they could not initially deal with. Through diligent application of logic,
they finally arrive at a result that they have every right to be proud of,
yielding a strong positive reinforcement.

This can be seen as giving added value to the middle box in the Rainbow
from both sides. The problems in such modelling projects can be considered
as both Applied and Recreational, at least from the point of view of the
active participants.

All told, the argument in favor of mathematical competitions of all types
in reinforcing the path to a deeper understanding of mathematics among
interested participants is quite strong.

6.7 History on Top; Didactics on the Bottom

Returning briefly now to the picture of the Rainbow (Fig. 6.2), we can
concern ourselves a bit more with the top and bottom bars.

The underlying bar labelled “Didactics” is more or less self-explanatory.
In school, everything is built up on a base of teaching methodology, and this
base is symbolized here by this one term. It includes matters of curriculum,
textbooks and worksheets, classroom organization, and so on, and is sym-
bolized here by very elementary tools, namely a screwdriver and a hammer.
No matter what we decide to teach in school, we must certainly worry about
how we are going to go about teaching it—the nuts and bolts of work in the
classroom.

Perhaps a bit more explanation is required for the History cloud. Its
floating above all else is meant to imply the fact that all areas of mathe-
matical thought not only have a genesis, but that this genesis is an important

intrinsic part of the area.
scHOOL
MATHEMATICS

/ Didactics /"

Recreational Mathematics Applications of Mathematics

Fig. 6.2 .
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No part of mathematics starts in school. Everything starts either as a game
like statistics or as an application for further development of something that
already existed. Much mathematics is derived from axiomatic interpretation
of some aspects of real life. Mathematics is in its core abstraction.

Let us take probability theory as an example. The roots of what we now
think of as probability reach back to the 17th century. Some of the biggest
thinkers of the day (Cardano, Fermat, Huygens, Pascal) were thinking about
games of chance, and the likelihood of winning and losing. While such
considerations can certainly have very practical applications for some
people, there is an argument to be made for placing these considerations
firmly in the realm of recreational mathematics. Throwing dice, flipping
coins or playing card games are certainly recreations for all but the most
hard-core professional gambler. From this beginning, however, there arose
an elaborate theory with applications in such disparate areas as medicine,
finance and opinion research.

As has already been alluded to, there are at least two strong arguments to
be made for the inclusion of at least some of the history of such a discipline
in its teaching.

For one, there is the motivational argument. Getting students interested in
a topic gets them invested in the learning process, and the consideration of
the historical process that led to the development of a topic can help get
students interested in the topic for the same reasons that the scientists that
originally developed the theories were interested in them. This is completely
independent of the question of applicability of the whole logical structure
once it has been developed. The a posteriori uses of a mathematical method
are generally not clear at the historical outset of its development.

Furthermore, there is also the methodological argument that a topic can
be better understood if it is learned at least in part by following the train of
thought that led historically to our current understanding of it. Skipping over
the history by reducing mathematics to a system of definition-theorem-proof
(which certainly has its place in the university) deprives the student of an
important level of understanding.

6.8 An Example from the Rainbow: Sudoku
to Graph Coloring

Let us now take a look at a specific topic, how various aspects of it are
represented in the different boxes of the Rainbow, and the role that math-
ematics competitions can play in developing understanding of it.
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Fig. 6.3 .

8a: A Popular Pastime: the Daily Sudoku

In the last ten years or so, sudokus have assumed a prominent place in the
public consciousness by their ubiquity in the daily papers and in puzzle
books available at any book store or news agents’. As is well known, the
idea is to fill in a grid of numbers satisfying certain constraints. In a classic
sudoku, the numbers from 1 through 9 must be placed in each row and in
each column of a 9 X 9 square grid, and each number must be present in
each of the nine 3 X 3 squares the 9 X 9 square is composed of. Several
numbers are already given in the grid, and the point of the puzzle is to find
the unique way to fill in the rest. An example of such a problem grid is
shown in Fig. 6.3.

There is no doubt that this is an incredibly popular pastime, and the fact
that there is at least a bit of mathematical content involved is already
obvious from the fact that numbers are used in the squares. There are many
related puzzle types that have found their way into some daily papers and
the public consciousness along with them, like Kakuro, Hidoku, Fillomino,
and so on.

The reason that such puzzles are so popular lies in the fact that solving
them gives the solver a distinct feeling of accomplishment. While we are
aware of the fact that we are doing something that isn’t really of any
immediate use to us (or anyone else for that matter), there is an intrinsic joy
in finding the solution. This is the basis for all so-called “recreational
mathematics”. If the only argument for doing it lies in the recreational
aspect, the external value of the actual mathematical content becomes
completely irrelevant for the time we spend on the problem.
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Of course, this is an aspect of competition mathematics. When students
are solving problems in a competition, they are not worried about appli-
cability. They are simply solving the problems for their own sake. The
problems themselves are considered interesting, independent of any mean-
ing they may take on in the “real world”, and finding the solution (and then
possibly being awarded points for it) is the reward they are seeking.

Notably, this is also often the main motivation behind more serious
mathematical research. Certainly, some research problems must just be
solved in order for a specific application to work, or to guarantee funding for
yet another financial period in some research institution. In general, how-
ever, anyone involved in any reasonably abstract mathematical research is
searching for the solutions because of an intrinsic interest in the problem
itself and the deep sense of achievement that comes with finding a solution
to a difficult problem.

8b: Mathematical Research and Applications related to Sudoku

Starting from the highly elementary content of Sudokus, there are several
different directions our thoughts can take in order to derive mathematical
research problems.

Perhaps the most obvious concerns itself with the internal mathematics of
the puzzles themselves. There are many questions that can be posed con-
cerning the statement of a sudoku problem or its solution. Some of these are
the following:

e What is the smallest number of numbers that can be given in a sudoku
grid, such that the solution is unique?

o What is the largest number of numbers that can be given in a sudoku grid,
such that the solution is not unique?

e How many minimal sudokus exist? (A “minimal” sudoku is one in which
the solution is unique from the given numbers, but in which no given
number can be deleted with the resulting sudoku remaining unique.)

Such questions are the focus of a certain strand of mathematical research,
and some prove much easier to answer than others. (Interested readers
are invited to find out the current state of knowledge concerning such
questions by checking Wikipedia (https://en.wikipedia.org/wiki/Mathemat-
ics_of_Sudoku) or other easily accessible internet sources.) Solving this type
of problem, however, does not stray far from the mathematical content of the
Sudokus themselves.

Taking a closer look at the sudoku concept, we see that there is another
path to abstraction we can take, that will lead us right into the heart of
research mathematics.
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3

Fig. 6.4 .

As it turns out, it is quite straight-forward to express the solution of a
sudoku as a graph coloring problem, and this idea connects the popular
puzzle both to cutting edge research in abstract mathematics and to
real-world mathematical applications. So, what do we mean when we say
that solving a sudoku is equivalent to solving a graph coloring problem?

In mathematics, a graph is, of course, a structure composed of points (or
vertices), that are joined by lines (or edges). These are commonly repre-
sented by pictures like the ones in Fig. 6.4:

We can consider a sudoku, composed of 81 cellsina 9 X 9 square grid,
to be represented by a graph with 81 vertices. Each vertex is to be colored
with one of 9 colors, corresponding to the numbers 1 through 9. Some of
these colors are given, with the rest to be determined.

The nine cells in a common row (or acommon column oracommon3 X 3
square) can be thought of as being joined pairwise by an edge. Solving the
sudoku then amounts to finding a coloring of the graph with the nine colors,
such that no two vertices with the same color are joined by a common edge.

When thought of in this way, it becomes clear that our daily newspaper
sudoku is completely equivalent to a seemingly much more abstract prob-
lem. With this, we are already firmly in the middle of a practical research
topic. The puzzle, considered purely for the sake of the enjoyment of finding
its solution, has led us directly into the world of mathematical applications.
Now that we understand this, we can strip away the camouflage and take a
look at where graph coloring can lead in mathematical research.

First, let us consider a practical application of graph coloring, namely the
problem of job scheduling.

Let us assume that we have a certain number of jobs that need to be done
in some order. Certain of these jobs may be in conflict with each other, i.e.
there may be some reason why they cannot be dealt with simultaneously.
(For instance, the same person may be required to fullfil two tasks or the
same machine may be needed for two distinct steps in production.) It is
possible to represent the scheduling problem by drawing vertices of a graph
corresponding to the jobs. Any two jobs that conflict with another can then
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be joined by an edge. The smallest number of colors with which it is
possible to color the vertices of the graph without like-colored vertices ever
being joined by a common edge then gives us information on the most
efficient way for the jobs to be scheduled. This model can translate not only
to concrete “jobs” that need to be done by people, but also to organizational
problems ranging from the assignment of vehicles to individual trips for a
delivery company to the assignment of frequencies to terrestrial television
broadcasters in geographically conflicting areas.

Next, let us have a look at a more theoretical graph coloring problem that
happens to be right at the cutting edge of modern mathematical research,
namely the question of the chromatic number of the plane, also known as
the Hadwiger-Nelson problem.

The problem can be stated in the following way. What is the smallest
number of colors with which it is possible to color the points of the plane in
such a way that no two points at unit distance have the same color?

Much has been written about this problem (see, for instance (Soifer 2008)),
but despite more than half a century of intense research, the problem has not
yet been solved. In fact, as easy as the problem is to state and understand, it is
one of those intractable mathematical questions that are really devilishly
difficult to grasp. It may well be that the problem cannot even be completely
solved without making some non-standard assumptions, like the validity of
the Axiom of Choice. It is relatively straight forward to show that the number
in question must be larger than 3 and it can also be shown that it must be
smaller than 8, but values of 4, 5, 6 or 7 are still possible.

A famous coloring problem of a related type, located somewhere on the
spectrum between purely theoretical and practical, is the four-color map
problem. For many years, there existed a conjecture, since famously proven
with the help of computer-based methods, that any map in the plane can be
colored by at most four colors in such a way that no two countries sharing a
common border have the same color.

We see that the same sudokus that we know so well from purely recre-
ational mathematics are related quite directly to problems both in concrete
applications of mathematics and in high-level research in pure mathematics.

8c: Sudoku, Graphs and Coloring in School.

Neither sudokus nor graph theory are a standard school topic in most
countries. Recently, many schools have taken to using something closely
related to sudoku in order to give students an opportunity to practice mental
calculation, namely kenken. (Note that KenKen is a registered trademark.
Interested readers can find a large number of such problems at (http://www.
kenkenpuzzle.com). The puzzles are sometimes also referred to under other
names, such as Kendoku.)
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For those not familiar with kenken, a brief introduction seems in order.
As is the case for sudoku, a kenken puzzle is a square grid, and the goal of
the puzzle is to place numbers in the grid in such a way that none of the
numbers repeat in any column or row. If the size of the grid is nxn, the
numbers from 1 through n are to be placed in the cells of the grid. Unlike
sudokus, however, no digits are given in advance. Instead, certain areas are
given, in which the numbers can be combined by addition, subtraction,
multiplication or division with some given result. For instance, if two cells
are joined to a2 X 1 rectangle with the symbol “4 + ”, this means that the
two cells are to contain two different digits with the sum 4, and therefore one
must contain the digit 3, and the other the digit 1. In some cases, there is
more than one combination possible, as for instance for “2-". This could be
the result of 3—1, 4-2, 5-3, and so on. Furthermore, if a single cell contains
only one number without an operation, this number can be considered as
given in that cell. An example of such a puzzle is shown in Fig. 6.5.

However, use of these puzzles in the classroom is not normally a path to
understanding about graph coloring. The didactic idea behind the use of this
in the classroom is for the students to get a better feel for number combi-
nations in simple elementary calculations, and kenken gives an amusing
context to such calculations.

Simple graph theoretical ideas are, however, also often championed for
inclusion in the school curriculum (see, for instance Smithers 2005), espe-
cially in schools that are preparing students for computer programming.
Most school systems, however, do not currently include this subject in their
curricula. Students preparing for mathematical olympiads do, however,
routinely deal with elementary graph theoretical ideas, as this is a common
topic of olympiad problems in the so-called Combinatorics category. An
example of such a problem will be given in 8e.

5+ 1- 7+
4 4x

1—
3 3—

Fig. 6.5 .
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Fig. 6.6 .
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8d: History and Didactics: Graph Theory and more

If any graph theoretical ideas make it to the classroom at all, a likely can-
didate for inclusion is the classic Konigsberg Bridge problem of Leonhard
Euler (1707-1783). This problem, asking whether it is possible to cross each
of the seven bridges in old-time Konigsberg exactly once in one walking
tour of the town, which straddles a river with islands as shown in Fig. 6.6 is
the starting point of modern graph theory.

Students may not know anything about the history of the city of
Konigsberg (now the Russian city of Kaliningrad), but the question is a very
practical one that can be readily understood. Also, its solution can be
developed by simple logic, without resorting to any high-level mathematical
tools. Giving some historical context can certainly make the topic more
interesting for many students, and this is also a good excuse to name-drop
Leonhard Euler in class.

Another interesting historical sidebar that might be mentioned in this
context, is the Latin Square. A Latin Square is an nxn array, with n symbols
written in the cells in such a way that each of the n symbols is represented
once in every row and in every column of the array. This is also a subject
studied by Euler, and the name is derived from his work, in which he used
Latin letters as his symbols. A 3 X 3 example, such as could be found there,
is shown in Fig. 6.7.

A Sudoku is, of course, a Latin square with some special restrictions, in
which the symbols are digits. These mathematical objects have been studied
to quite some extent since the 18th century. The idea behind them is closely
related to (but not to be confused with) the idea behind the so-called Magic
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Squares, in which the sums of numbers in all rows and columns (and often
also diagonals) are equal.

Both these topics are typically seen as purely recreational, but as shown
here, they are at the very foundation of an important section of mathematics
that ranges through the whole rainbow, from recreational to applicable.

8e: An example of a graph coloring problem from an international
competition.

An example of a nice competition problem concerning graph coloring is
the following problem from the International Tournament of the Towns
(Spring 1990, Senior O level):

(a) Some vertices of a dodecahedron are to be marked so that each face
contains a marked vertex. What is the smallest number of marked ver-
tices for which this possible?

(b) Answer the same question, but for an icosahedron.

(Recall that a dodecahedron has 12 pentagonal faces which meet in threes
at each vertex, while an icosahedron has 20 triangular faces which meet in
fives at each vertex).

In order for a student to solve this problem successfully, it is helpful to
realize that it is indeed a graph coloring problem. The vertices of the
polyhedron being considered can be thought of as the vertices of graphs, and
the edges of the polyhedron as edges of these graphs. Of course, this is a
three dimensional concept, but the graphs in 3-space can be projected onto a
plane (for instance, from a point on the circumscribed sphere of the poly-
hedron onto the tangent plane diametrically opposite to this point), resulting
in corresponding plane graphs with completely analogous properties. Since
we then wish to “mark” vertices, we can think of this as coloring all the
vertices of the graph with two colors, say black and white, with black
corresponding to “marked” vertices and white to “non-marked” vertices.

The solution to part (a) is then quite simple. Since each vertex lies on three
faces of the dodecahedron, marking any vertex gives three faces a marked
vertex. Since there are 12 faces, we must certainly mark at least 12:3 = 4
vertices. We can see in Fig. 6.8 (a graph representing the dodecahedron’s
vertices and edges), that a marking of four vertices (represented by the full
points) is indeed possible, such that each face has a marked vertex.

Part b is a bit more sophisticated. We can see in Fig. 6.9 that a marking of
six vertices such that each face has a marked vertex is possible.

It remains to be shown that such a marking of five (or less) vertices is not
possible. We can prove this by contradiction.

Let us assume that it is possible to mark five vertices in such a way that
each face has a marked vertex. We consider the graph (as shown above) and
delete all edges with the exception of those joining two marked vertices,
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Fig. 6.8 .

Fig. 6.9 .

and consider the number of components of the resulting graph. (Recall that a
“component” of a graph consists of a subset of the vertices, connected by
edges of the graph.) In any of these components, a first marked vertex
contributes to 5 faces, but any succeeding vertex in this component can only
contribute to at most 3 further faces that do not yet have a marked vertex. If
there are at most 5 marked vertices and at most two components, the marked
vertices can contribute to at most 5 + 5 + 3 + 3 + 3 = 19 faces. We see
that the graph must consist of at least three components. At least one of
these components must then consist of only one marked vertex. Let us
assume that this is vertex A in the figure above. This means that none of the
vertices B, C, D, E and F is marked, and four of the remaining vertices must
be marked. This is not possible, however, since these four would then
certainly all be in the same component, in contradiction to the assumption
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that they contribute to faces in at least two separate components. We see that
at least six vertices must be marked, as claimed, thus finishing the proof.

6.9 Conclusion

Mathematical instruction should include all aspects of the subject and
engage students in whatever way they can be led to be interested in the
subject. This is different for each person. Some will be excited by abstract
math problems independent of any applications in the real world. This
includes mathematical puzzles, mathematical games or individual pure math
research. Others will be excited by the opportunity for applications, for
instance in physics or other areas.

In this paper, I have attempted to argue that a complete treatment of any
mathematical topic in school should include aspects from the complete
Rainbow of Mathematics, in order to help every student of the subject find
something suited to her or his tastes. A mathematical topic can be intro-
duced starting from most any mathematical problem, be it a number puzzle
(number theory, coding), a triangle problem (olympiad geometry, school
trigonometry, land surveying) or a practical application. I have also tried to
argue the fact that the world of mathematical competitions offers a strong
tool, independent of where a student hops on board the math train.

Let us briefly return to the fundamental questions on the value of
mathematics as a core subject in secondary education as posed in the
introduction. Here are some answers I believe we could and should all agree
on, considering all that I have presented here.

Question 1: Why do we think that mathematics is an important subject in
school?

It seems clear to me that there are essentially three equally valid answers to
this question.

First of all, mathematics is necessary for many things. Some elementary
things, like basic number skills, are obvious prerequisites to life in a modern
industrial-technological world. Other things are not of such import to
everyone, but since school is meant to prepare students for their future
professions and for their tertiary studies, a great deal of mathematical
knowledge must be at their disposal when they leave high school, simply to
prepare them for this. This is the practical argument.

Secondly, mathematics is interesting and enjoyable. This is true in many
ways. Logical abstraction is a fundamental human thought process that has
fascinated humanity for EONS. Individual mathematical problems are often
interesting for their own sake, and finding their solutions is an enjoyable
process. Students should certainly be offered the opportunity to experience
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this enjoyment for themselves. Mathematics competitions can play a large
role in this, even if not every individual enjoys them in the same manner. Still,
math is important because math is fun. This is the recreational argument.

Finally, studying mathematics schools abstract rational thought. Ideally,
this should be true of most subjects in school, but the abstract world of pure
mathematics is certainly the optimal ecosystem for such things to flourish.
This is the abstract argument.

It is my firm belief that all three arguments are legitimate and strong, and
that the various aspects of mathematics must therefore all be strongly rep-
resented in any complete curriculum.

Question 2: How do we best get students interested in the type of mathe-
matics we want them to learn?

The answer to this question is, of course, dependent on the individual stu-
dent’s interests. Some students will be drawn in by the mathematical
abstractions themselves. For some, the most interesting aspect will lie in
potential applications. For yet others, it may be the historical context, the
development of human thought through the generations. And for some, it
may simply all be a game, and playing around with puzzles will prove the
best path to the subject. All of these gateways are perfectly legitimate, and it
seems clear to me that optimal teaching practices must offer at least a little
bit of everything.

Question 3: What are we ultimately preparing students for in their mathe-
matics classes?

Again, my answer to this question must necessarily be quite wide. We
certainly want students to enjoy mathematics. Whether this is the most
important aspect, or even important at all, will be up to individual teachers
to decide. To my way of thinking, this is the base of all else, and students
who do not have at least a semblance of enjoyment in their class work
cannot be expected to fully appreciate the subject.

We are certainly teaching our students to prepare them for their future
roles in society. This aspect cannot and should not be ignored. In this
context, we must also prepare them for university. The tertiary institutions
cannot be expected to start from scratch; human brains must have some
developed mathematical competence by the time puberty is over, otherwise
it is too late.

I would also argue that we should be training students’ capacity for
systematic logical thought and offering them as much general knowledge
(here is that pesky concept of “Allgemeinbildung” again) as possible. If this
is not to be imparted in the schools, then where?
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Chapter 7
Competition Aims to Develop Flexibility
in the Classroom

Ingrid SemaniSinova, Mati$ Harminc and Martina Jesenska

Abstract We present a method for an implementation of Multiple Solution
Tasks in the classroom in a way that should motivate students to solve
problems in different ways. The method concerns a competition in problem
solving for groups of students. Each group has to find and record such a
solution of a given problem that, in their opinion, appears with the least
frequency among the solutions of all groups in the class. For illustration, we
present a few problems and corresponding different strategies which arose in
the classroom and show how flexibility was demonstrated during a com-
petition. Additionally, we discuss other benefits of including competitions in
the classroom, namely creating connections among mathematical concepts
and stimulating deeper understanding of concepts for students. For the
teacher the method opens a possibility for developing flexibility and ana-
lysing the quality of students’ knowledge and their level of understanding of
mathematical concepts and relationships among them.
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7.1 Introduction and Motivation

The ability to solve diverse problems is considered as one of the most
important cognitive activities in professional and personal life. An important
component of the problem solving process is the ability that humans have of
adjusting their response to changing circumstances and conditions and
thereby exhibit flexibility. People who are characterized by more flexible
thinking than others have a greater ability to adapt to special features of the
environment and to produce more creative and appropriate solutions to
problems. The success in solving mathematical problems is also closely
related to the ability of students to use different problem solving strategies
and to be flexible in using them. According to Silver (1997), flexibility in
mathematical problem solving is the number of different ways that a student
uses to solve, express or justify a problem. During the study of mathematics,
students repeatedly face new situations that require the use of different
strategies. It is natural that the strategy which a student will learn and
successfully use in one situation may not be applicable in other situation,
although it is similar. Outstanding results in mathematics depend on
increasing the flexibility of a solver (Elia et al. 2009).

Including Multiple Solution Tasks (MSTs) in mathematics lessons is one
of the possibilities of developing flexibility during problem solving
(Levav-Waynberg and Leikin 2012). Flexibility, which is activated within a
problem, leads a solver to observe each of the components of a problem so
that the student’s knowledge of the components becomes more complete
and interconnected and she or he can more easily invent new strategies (Elia
et al. 2009). Consequently, it develops the ability to determine the most
efficient way to solve the problem and to make appropriate strategy choices
and demonstrate adaptivity (Warner et al. 2009).

On the other hand, mathematics teachers usually prefer to solve problems
in only one way in the classroom. They often argue that they do not have
enough time to solve the problems in different ways and they must provide
students with a secure tool to solve standard problems. They also often
claim that students do not want to solve a problem in other way, if they have
already solved the problem correctly. Therefore, it is difficult to motivate
them to look for other solutions and to understand different approaches.

Teachers’ arguments have motivated us to look for a method for an
implementation of MSTs in the classroom in such a way that almost all
students will be stimulated to solve a problem in different ways. We suggest
the game—MSTs competition to challenge students to consider multiple
solutions to a problem. In designing the competition our aim was to prepare
such rules for competition that would show mathematics educators that
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creativity is not the domain of only a few exceptional individuals, but rather
by using suitable mathematical activity, creativity can be fostered broadly in
the classroom.

7.2 MSTs Competition Rules and Suggestions

The base for the initial rules for the competition were observations which
were conducted during two school terms in four groups of pre-service
teachers (in the 3rd and the 4th year of study, there were 10—13 members per
group) and in one classroom of 16-year- old students with enhanced edu-
cation in mathematics (25 students in the group). On the basis of our
observations and corresponding forthcoming conclusions we designed the
process of preparation and realisation of MSTs competition.

Selection of problems for the competition

We recommend using four or five MSTs problems for one standard lesson.
Problems included in the competition could be both routine and non-routine.
The selected problems should be solvable within 5-10 min for a chosen
group of students, so that the students have enough time to look for other
solution strategies. Before the competition, the teacher should prepare
several possible solutions to the selected problems in order to show students
possible approaches to problem solutions when competition ends.

The rules of the competition

e Before we start to work in the classroom, we have to arrange three- or
four-member groups of students.

e Before the competition, students are asked to solve each problem in as
many ways as they can. Then they have to choose one solution, which
they consider to be the rarest in the class and pass it to the teacher.

e To avoid distraction, students receive only two problems at the beginning
of the competition (out of four or five chosen MSTs problems). From 5 to
10 min after the beginning of the competition, students can get next
problem, and after 15 min, students can get the last problem(s). If some
group does not take all the problems from the teacher, he/she will give
them to this group after 25 min from the beginning of the competition.
Our experience shows that this organization for obtaining problems
increases the chance that students in the group begin to communicate
with each other on different solution strategies for the problems received.
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If a group obtains all problems at once, the group has a tendency to assign
each problem to one member and it leads to limited communication
within group.

e Students may pass the solutions to the teacher at any time during the
competition.

o Evaluation: If the group solves the problem correctly it gets 1
point + “number of groups in the class”—“number of groups in the class
that had submitted the same solution”. If the group solves the problem
incorrectly it gets O points.

e The group that gets the most points wins.

Due to our empirical experience we recommend three member groups.
We have realised there is good cooperation between three students during
the solving process. Two member groups are very small to fulfil our goals.
Four or more students in the group might cause the activity of some students
to decrease.

If students have little experience with MSTs problems, we recommend
for the competition to choose problems for which it is expected that students
will easily find at least one solution strategy.

An example of a problem and its evaluation

Problem: Solve the quadratic equation x* = 4x.

Ist group solution: We use the factorisation x(x — 4) = 0 and we get two
solutions x = 0, x = 4.

2nd and 3rd group solution: Either x = 0 or x # 0 and then we can
divide equation by x and we get x = 4.

4th, 5th and 6th group solution: We move all the terms to one side of
equation, and we get x* — 4x = 0. Then we use the formula for finding the
roots of a quadratic equation.

According to the rules, the assignment of points is following:

Ist group gets 1 + 6 — 1 = 6 points.

2nd and 3rd groups get 1 + 6 — 2 = 5 points.

4th, 5th and 6th groups get 1 + 6 — 3 = 4 points.

All students may use paper for their private notes and calculations, but the
score of the group depends solely on the solution written on the paper which
is given by the students to the teacher and explicitly marked as the one
selected. It is expected that members of the group cooperate and discuss the
solutions of each problem and choose the solution which they anticipate to
be the rarest one.
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The teacher decides whether the problem solutions of different groups are
the same or not. Based on Leikin and Levav-Waynberg (2007), the differ-
ence between the solutions may be reflected in using:

(a) Different representations of a mathematical concept;

(b) Different properties (definitions or theorems) of mathematical concepts
from a particular mathematical topic; or

(c) Different mathematical tools and theorems from different branches of
mathematics.

7.3 Task Examples with Students’ Solutions

We present five problems from a competition and the different corre-
sponding strategies, which arose in two classrooms during this competition.
The classrooms are from two different Slovak secondary schools with
enhanced education in mathematics (52 seventeen- to eighteen-year-old
students). Two problems are routine (involving an absolute value equation
and a triangle), and the remaining three (involving cyclists, a hexagon and
children grouping) are non-routine. Students have 45 min to solve these
problems in groups (9 groups in each class).

Cyclists: Two cyclists raced around the football field. The average speed
of the first cyclist was 18 km/h and the average speed of the second one was
21 km/h. The second cyclist started to race when the first one already
passed 300 m. The race ended after completing six laps. How long is one
lap, if we know that both cyclists passed the finish line at the same time?

Solution strategies:

1. Comparing distance:

a. 18t+0.3=21t, x= 2 where t is the time, when both cyclists are
racing and x is the length of one lap.

b. 18t=21(t—43), x= 1% where t is the time, when the first cyclist is
racing and x is the length of one lap.

2. Comparing time: % = 62—’1‘, where x is the length of one lap.
3. Comparing speed: % = & which means that the speed of the first cyclist
is 300 m/min. Distance travelled by the second cyclist per minute is
% =0.35 km. Speed of the second cyclist is 350 m/min. The group drew

the picture (see Fig. 7.1).
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1st cyclist + 300 m:300 = +

2nd cyclist "350m  350m

Fig. 7.1 A group of students models the race using this picture

Icm (300, 350) = 2100 m. % =350 m. A lap is 350 m long.

4. One group first used the second strategy but then, to the end of finding a
rarer solution, the group handed into the teacher the following solution:
%—é -03= % -0.3=0.35. The lap is 350 m long. The method of solution
was incorrect but accidently leads to the correct answer.

Because of the unusual formulation of the problem, some groups did not
find any correct solution to the problem. Most groups solved the problem
using strategy la and had difficulty in finding any other strategy. Comparing
distance is the standard method to solve problems of this type. Strategy 3
was considered surprising by most of students because it uses number line
representation and also different mathematical content. Students also found
this strategy clear and easy to understand. This strategy was influenced and
stimulated by group interactions. One member of the group started to draw a
picture in order to understand the problem. Other members later found the
mathematical content which was used to find the correct answer. In strategy
4, students tried to utilise the speed ratio. They interpreted the expression
obtained, Z - 0.3, as a product of the speed ratio and 0.3 km as a head start.
However, this interpretation is incorrect. If the group realised that the ratio
of time is inverse to the speed ratio and used this fact to determine that the
first cyclist finished the race in 6 min and the second in 7 min, they could
also have realised that the product 7-0.3 is the length of whole race and
% -0.3 is the length of 1 lap. Using these arguments, the solution strategy
would be assessed as a correct one. Such a solution strategy occurred during
pre-research among pre-service teachers.

Absolute value equation: Solve the absolute-value equation:
Ix=3|=|x+35|.

Strategies of solution:

1. Utilisation of algebraic properties of absolute-value and solving linear
equations on the intervals
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(—o0, —=5),(—5,3)and (3, o).

2. Utilisation of geometric properties of absolute-value, searching for the
number which is the same distance from the numbers 3 and —5 on the
number line (see Fig. 7.2a).

3. Squaring the equation (both sides are positive) and solving the linear
equation (see Fig. 7.2b).

4. Using graphs of functions f:y=|x—3] and g:y=|x+35|.

Strategy 1 is a standard solution strategy to this type of task in our school.
Four groups found only this solution strategy. Groups that found strategy 2,
worked with a number line. But one of the groups used this strategy ana-
Iytically (with no picture). They wrote that the distance between numbers
—5 and 3 is 8, half of 8 is 4, so x=—-5+4= —1. Groups that found
strategy 3 were very proud of it. They thought this strategy would be rare,
but three groups in each class handed it into the teacher. As for strategy 4,
a lot of groups had it among their solutions but only one handed in this
solution to the teacher. This group achieved the maximum number of points
using a standard solution strategy. Most students chose this problem as the
easiest for finding more than one solution. Five groups found three different
solution strategies.

Hexagon: Let K, L, M, N, O, P be, respectively, the midpoints of the sides
of regular hexagon ABCDEF. Join the points K, L, M, N, O, P to get
hexagon KLMNOP. What is the ratio of the area of hexagon ABCDEF to
the area of hexagon KLMNOP?

(a) (b)

[
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Fig. 7.2 a Absolute value—strategy 2 b Absolute value—strategy 3
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Solution strategies:

1. Dividing both hexagons into six equilateral triangles and calculating the
lengths of the triangles’ sides and heights using the Pythagorean Theo-
rem. Calculating the area of the equilateral triangles and the ratio of the
areas of the hexagons.

2. Dividing both hexagons into six equilateral triangles and calculating the
lengths of triangles’ sides and heights using properties of trigonometric
functions in right-angled triangles. Calculating the area of the equilateral
triangles and the ratio of the areas of the hexagons.

3. Calculating the area of hexagon ABCDEEF as in strategy 1. Subtracting
the area of six isosceles triangles from the area of ABCDEEF in order to
calculate the area of the hexagon KLMNOP. Calculating the ratio of the
areas of the hexagons.

4. Using the property that the ratio of the areas of the hexagons is the same
as the ratio of the areas of the circumscribed circles.

5. Dividing the initial picture into congruent triangles using the properties
of the centroid of a triangle; students found two different possibilities—
18:24 and 36:48 (see Fig. 7.3).

Most of the groups solved the problem using strategy 1, 2 or 3. Some of
them made a mistake during calculation. Only one group used strategy 4.
They used intuitively the property that the ratio of the areas of the hexagons
is the same as the ratio of the areas of the circumscribed circles. During the
discussion about their solution they said they are not sure that this property
really works. It was a good opportunity to start looking for the proof of this

Fig. 7.3 Dividing the hexagon into the congruent triangles—two
possibilities
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property. Strategy 5 arose in two groups that first used strategy 1. One group
divided the larger hexagon into 24 triangles and got the ratio 18:24 and other
group divided it into 48 triangles and got the ratio 36:48. The fifth strategy
was considered by most of the students as very surprising and beautiful.
Only one group discovered three different solution strategies to this prob-
lem, namely strategies 1, 2 and 3.

Children grouping: Four children: Anna, Barbara, Cyril and Daniel
went to spend the night at their grandparents’ house. Their grandparents
have two separate bedrooms for them (one downstairs and another
upstairs). In how many different ways can the grandparents assign children
to bedrooms? For example: Anna, Barbara, Cyril and Daniel will sleep in
the room upstairs and nobody will sleep downstairs (Batanero et al. 1997).

Solution strategies:

1. The set of outcomes consists of the collection of all possibilities for
children to be downstairs, perhaps encoded as all subsets of the set { A,
B, C, D}.

2. In order to count the number of ways to arrange children in two rooms
students count the number of possibilities of arranging 3 children, 2
children and 4 children in some room (see Fig. 7.4a).

3. Students arrange children in one room, divide the possibilities into the

five subsets and then write the expression <g> + <4]L> + (3)

4 4 . .
+ 3 + 4 )ora similar expression.

All groups, except one, organised the set of outcomes (solution strategy 1)
into two columns. They considered it important to record the status in both
rooms (see Fig. 7.5, on the left). One group realised that the second room is
the complement of the first one and wrote possibilities for one room only

(a) (b)

e

¢ 1+ 4 o ; Lh 4] = 1OV (=16

Fig. 7.4 a Children grouping—strategy 2 b Children grouping—strategy 3
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Fig. 7.5 Children grouping—strategy 1

(see Fig. 7.5, on the right). Strategy 2 together with strategy 1 were the most
common strategies. Strategy 3 was used by five groups; one such solution
can be found in Fig. 7.4b.

During the competition, no group found the method of solution that leads
to the expression 2*. They realised this method of solution during the dis-
cussion after the competition when the teacher asked them not to distribute
children to rooms, but to distribute rooms to children (e.g. the grandparents
give room keys to each child). The set of outcomes that was created after the
reformulation of the problem is shown in Fig. 7.6.

After the presentation of this method of solution, some students dis-
covered the connection between the result of the strategy 3 and the 5th row
of Pascal triangle which they know is equal to 2*. Students said that the
discussion about this problem helped them to realise the possibility of
looking on the problem “conversely” and seeing the solution 2*. However,
many students had difficulty in writing the complete set of outcomes
matching this inverse view without help.

Triangle: The right-angled isosceles triangle has a base which measures
10 cm. Calculate its area.

Solution strategies:

1. Calculating the remaining sides using Pythagorean Theorem. Calculating
the area of the triangle.
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Fig. 7.6 Children grouping—set of outcomes after reformulation

Fig. 7.7 Triangle—strategy 4

2. Calculating the remaining sides using trigonometric functions. Calcu-
lating the area of the triangle.

3. Dividing the triangle by its height, calculating the height using
trigonometric functions and calculating the area of the triangle.

4. Utilising the fact that two congruent right-angled isosceles triangles
make a square and using the “diagonal” formula to calculate the area of
that square and consequently the area of the triangle (see Fig. 7.7).

5. Utilising the property that the height and median of an isosceles triangle
are the same and that the median is equal to half of the base (from the
Thales Theorem), we can directly identify necessary values and calculate
the area of triangle.
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This is the second routine problem we have used. Students usually found
strategies 1, 2 and 3. Strategy 4 was less common and strategy 5 was used
by only one group. This group found three different strategies for solving the
problem (strategies 1, 4 and 5). During the discussion many students
admitted that they forgot the relationship between the length of the median
and the length of the base, which can be deduced from Thales Theorem.
Three groups found three different solution strategies to this problem.

7.4 Discussion and Next Steps

We included both routine and non-routine problems in the competition. We
think that including routine problems in the competition helps weaker
groups to start thinking about different strategies. They have less trouble
finding one and consequently two or more different strategies. Strong groups
have enough time to look for an unexpected solution, e.g. squaring in
the absolute value equation problem or utilisation of Thales Theorem in the
triangle problem. Our experience shows that using routine problems in the
MSTs competition should help students develop the ability to use the most
appropriate approach for solution of the routine problem. Students may also
recognize that sometimes an application of a standard solving strategy is
disadvantageous.

Including non-routine problems might cause weaker groups to have a
problem finding one correct solution and cause stronger groups to find only
one solution strategy. However, the groups are likely to have different
solution strategies and therefore more groups will get a maximum of points.
For instance, using the hexagon problem in one class caused 4 groups to
have wrong solutions, while the remaining 5 groups, which each had a
correct solution, chose different strategies. That means that each of the 5
groups with a correct solution got 9 points. Moreover, solving non-routine
problems requires creative thinking and the application of a certain heuristic
strategy to understand the problem situation and find a way to solve the
problem.

During the realisation of these experiences we come across a difficulty
concerning the process of evaluation. For example, we think that the dif-
ference between strategies 1 and 5 is “bigger” than that between strategies 1
and 2 in the hexagon problem, although the groups got the same number of
points. Nevertheless, if we try to distinguish such solutions (for instance
classify solutions by their similarity, see e.g. Levav-Waynberg and Leikin
2012), the evaluation becomes unclear and difficult to understand for
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students. We also considered the possibility that, during the evaluation and
discussion, students choose one solution for each problem which would get
the maximum number of points, and that this solution be given one extra
point, but we did not try it in the classroom. This suggestion is based on the
experience that in the discussions students usually clearly expressed the
opinion that some solution surprised them and was beautiful and/or unex-
pected. We also expect that the opportunity to participate in the evaluation
motivates students to think more deeply about the solutions presented.

During the evaluation, the presentations of the different solutions were
very fruitful because they show students various representations and prop-
erties, and create mathematical connections, which, as a result, helps to
develop their flexibility. After presentations of different solutions to all of
the problems we asked students the following questions:

1. Choose a problem for which you found it easy to find more than one
solution.

2. In your opinion, which problem had a surprising solution?

3. Choose a problem which helped you to realise something new.

All students selected one of the routine problems as an answer to the first
question. Students’ responses to the second question helped us to identify
which representations, solution strategies and connections they consider as
unusual, exceptional, and original. Most students chose solutions that use
pictures or manipulations with a given geometric shape as surprising (cy-
clists—strategy 3, absolute value equation—strategy 2, hexagon—strategy 5
and triangle—strategy 5). Analytic solution strategies using equations or
calculation of areas or lengths and/or using standard formulas were not
considered as surprising although some of these strategies were rare in the
class. This confirms the claim formulated in Presmeg (1986) which states
that most of the teachers preferred an analytic method of solution when
solving mathematical problems.

For the mathematics teachers who would like to include MSTs compe-
tition in their lessons regularly, it could be useful to get a collection of
problems with expert solution spaces including the most complete set of
solutions to a problem. We think that such a collection could help teachers
recognise the different possibilities of how one could represent the problem,
to what mathematical content it can be assigned, and which mathematical
connections could be created.

We assume that when students become familiar with the rules of com-
petition, it is not necessary to spend the whole lesson on an MSTs com-
petition; we can include one or two problems each week and evaluate the
results of the groups, for example, every month.
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7.5 Conclusion

Our experience showed us that the method presented can help mathematics
teachers motivate students to look for new, non-standard solutions of the
problems. Students are usually well-motivated to understand the “winning”
solution strategy and to appreciate a nice one. During the process of repe-
tition and systematisation of the knowledge of some topic, it may help
students to organise and integrate the mathematical concepts, mathematical
theorems and methods of solving mathematical problems which are perti-
nent to the topic. It can stimulate deeper understanding of concepts and
principles and expand knowledge of the topic.

For the teacher, the method also opens a possibility of analysing the
quality of students’ knowledge and their level of understanding. When
looking for another solution strategy, students are forced to leave the safe
solution strategy of a problem preferred in the standard mathematics lesson.
Mistakes that occurred among the students while looking for a new strategy
may show the teacher that providing a secure tool for solving problems does
not lead the student to conceptual understanding of the solving strategy
presented.

Group work provides the opportunity to discuss ideas and listen to peers,
to exchange ideas and hence to develop students’ ability to communicate
and reason. Students may discuss strategies and solutions, ask questions,
and examine consequences and alternatives. The work in groups may also
involve cooperative as well as independent work.

Mathematics educators accept that solving problems in different ways
may help to develop students’ creativity, especially two of its components—
fluency and flexibility. In the current education system in Slovakia, gifted
students do not receive enough attention and do not have enough oppor-
tunities to develop their giftedness during standard mathematics lessons.
Teachers usually pay more attention to average students and to students who
have problems with mathematics and usually provide them one safe and
general solution strategy. The other reason for providing and training routine
strategies lies in the fact that there is an external testing of mathematical
knowledge in Slovakia (both in primary schools and secondary schools as
well). Therefore, teachers pay attention to the development of such
knowledge and algorithms that lead to a satisfactory test result.

We think that the method presented shows an approach that enables
development of creativity of gifted and regular students together with
stimulation of deeper understanding in students. The competition could be
used as a tool for examining the mathematical flexibility of students, as a
tool for analysis of how students discover, understand and use connections
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among mathematical ideas and, moreover, for nonstandard testing of stu-
dents’ knowledge. The exploitation of the method presented also allows
students to communicate, analyse and evaluate their mathematical thinking
and problem solving strategies.
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Chapter 8
Discovering, Development,
and Manifestation of Mathematical Talent

Iliana Tsvetkova

Abstract Most parents want to think their child a gifted. That is generally
considered a norm. But there is a difference between a high-achieving pupil
in school and a child who is intellectually gifted. Discovering giftedness in
the early school years is not always an easy task. However, gifted children
have special traits that may help identify them among other pupils. For the
last century thousands of papers and books have been written about gifted
pupils. There is hardly something that can be added to them. The contri-
bution of this paper is the Bulgarian experience in mathematics competitions
for the discovery, the progress, the development and the manifestation of
gifted pupils.

Keywords Mathematics competitions -« Discovering giftedness
Mathematical talent « Development of talent

8.1 Introduction

There are gifted pupils everywhere around the world but children have
different gifts. Some talents, like music for example, manifest in early
childhood. Others require children to gain some experience and knowledge
to help us first find and then develop talent. Mathematical talent is of the
latter type. Children have to learn how to read and think before we can
somehow find out in which little head a great mathematical talent is hidden.
The time in which children are in the primary school is appropriate to
provoke curiosity and to arouse interest in mathematics. The years between
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grades 5 and 7 is the time in which the mathematical talent, to a large extent,
is discovered and developed. In the upper secondary school this talent can
be displayed and manifested.

8.2 Stimulate Interest

Children of the 21-st century face many challenges for their curiosity. The
new technological inventions and the virtual world draw their attention like
a magnet and take up their time. This is why it is not easy to attract them to
do mathematics. From this point of view, mathematics competitions are a
field that may awake pupils’ interest. All kids love to compete, and win, of
course. To enlist them for mathematics, the most important thing is to make
them feel pleasure in solving problems.

The most enthusiastic to participate in mathematics competitions are the
students in the beginning of the schooling, grades 1-2. There are several
mathematics competitions for pupils in the early school years in Bulgaria.
Even for grade 1 there are two national and (at least) two regional mathe-
matics competitions. These events are the best places where the talented and
gifted students can be discovered. Parents who find their child gifted, or at
least exceptional, enter the child for these competitions. Certainly, parents
may not be aware of the giftedness of their child. Teachers can judge better
because they have broader view on the pupils’ abilities and their opinion is
much more objective. This is why teachers also help in this process.

Mathematics competitions for pupils in early school years last for about
120 min. Most of the problems are multiple choice items. These items are
suitable for grade 1 pupils by the end of the school year when they can read.
Nevertheless, there is a competition in the beginning of the school year (the
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Fig. 8.1 First example from Sofia Mathematical Tournament, 2014
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first days of November). At this time the pupils in grade 1 cannot read. This
is why the grade 1 items are presented pictorially. Figures 8.1 and 8.2
present examples from the Sofia Mathematical Tournament, 2014.
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Fig. 8.2 Second example from Sofia Mathematical Tournament, 2014

Here are examples of two items from a mathematics competition, grade 1
(Easter Mathematics Competition in Bulgaria, 2011).

On a playground there are balls, ropes, and hoops. Each child plays with one device
only. Three children do not play with balls and ropes. Six children do not play with
balls and hoops. Seven children do not play with ropes and hoops. How many children
are there on the playground?

A) 12 B) 13 Q)15 D) 16

In each O place either + or —, so that the number sentence is correct

203040506=12
What are the symbols place between 3 and 4, and 4 and 5, respectively?

A) +a+ B)7a+ C) B D) +’7

8.3 Discovery

The above mentioned competitions are the best stimulus for parents who
find their child exceptional or gifted to consider applying for extracurricular
activities offered by profile mathematical schools in Bulgaria. There are
about 30 profile oriented schools in Bulgaria. They are secondary schools
(grades from 8 to 12) situated in the provincial centers. Some of these



190 I. Tsvetkova

schools offer extracurricular activities for pupils in grades from 2 to 4. These
pupils study in different schools but attend the extracurricular activities on
Saturdays. Also, some profile oriented schools accept children from grade 5.
The entrance to these schools is based on an exam aiming to select the gifted
and the most talented candidates.

As a case study, the experience of one of these schools, Sofia Mathe-
matical School, is described below. It is a school specialized in training
pupils from grade 5 to grade 12 (11-19 years old), who have a marked
interest and talent in mathematics. The selection of the pupils is made on the
basis of their results on several mathematics competitions. The most
important of these is the one that is organized by the school itself. To be
trained in Sofia Mathematical School, pupils should show interest in
mathematics already in primary school and are directed to more specialized
mathematics training, which is needed because every talent should be
supported, developed and stimulated.

Sofia Mathematical School offers an opportunity to develop mathematical
skills for pupils in grades from 2 to 4 (officially trained in other schools) by
organizing extracurricular activities on Saturdays and Sundays. Highly
qualified teachers train these pupils to solve non-standard problems helping
them to develop their logical thinking. This training does not go beyond the
arithmetic knowledge acquired during compulsory schooling but empha-
sizes their non-standard application. Teachers use charts, tables, pictures,
etc. to activate pupils’ intellectual abilities. Here is an example of a problem
suitable for such training.

Problem A grandmother bought sweets to her three grandchildren. She
divided the sweets among the grandchildren the following way: the oldest got
half of all sweets and one more sweet; the second oldest got 2 sweets, then
half of the remaining sweets and finally 3 more candies; the younger got 4
sweets, then half of the remaining sweets and one more sweet. The grand-
mother ate the last two sweets. How many sweets did the grandmother buy?

The solution is based on the principle of inversion (back—forward), and
can be described by the following scheme:
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Most pupils attending these extracurricular activities preserve their
interest in mathematics and the development of their mathematical abilities.
After finishing grade 4 they apply for training in Sofia Mathematical School.
The competition that is used for the final selection test consists of 15
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multiple choice items, 5 open-ended short response items and 2 open
problems whose solution should be explained and justified in detail.
Here is an example of such a problem.

The snow was falling in huge flakes. Julia watched them through the window and counted
the most beautiful snowflakes. To not forget how many she counted, she decided to

record them in a notebook every five minutes. She drew - o represent 12 snowflakes.
Here is her drawing:

12:00 — 12:05 %, %

i
12:05 —12:10 =

adte sk
12:10 — 12:15 &%
12:15 - 12:20 &
(A) At what time interval did Julia count the most snowflakes?

(B) How many snowflakes did Julia count between 12:10 and 12:15?
(C) How many snowflakes in all were counted?

(D) A few snowflakes “landed” on Julia’s glove. Then of them melted. Then as many

snowflakes “landed” as there were at the moment and # more. The wind blew

half of snowflakes from the glove and
“landed” on the glove at the beginning?

emained. How many snowflakes

8.4 Progress

Students who are accepted to study at the Sofia Mathematical School may
attend additional training. For them the school organizes extracurricular work
in mathematics, 3—4 academic hours weekly, mostly on Saturdays. Mathe-
matics teachers from the school develop specially prepared programs for this
training. These programs expand the topics studied in school and also contain
some topics that are not studied in the compulsory curriculum. The partici-
pation in these “Saturday schools” is not compulsory and is free of charge for
the pupils. In younger age groups (grades 5—7) there are many students eager to
attend these activities. Later, when the difficulty of the studied material
increases, the number of participants decreases. Usually those that drop the
“Saturday schools” are pupils who achieve good results mainly thanks to their
diligence and hard work, without having special mathematical talent. Some
talented but lazy, sloppy and inconsistent pupils also leave these activities.
In order to get an idea of the work done in the “Saturday schools” a topic
called “invariants” that is not connected to the school curriculum is
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presented below. The study of the topic can start from grade 5 and continue
to the end of the secondary school. The problems that involve invariants are
typical examples of tasks that do not need particular mathematical knowl-
edge but whose solution requires a non-standard approach, logical thinking,
and a lot of creativity.

What follows below is a part of the “Invariants” topic that is suitable for
students in grades 5-7. Later in the chapter an extension of the topic that is
suitable for upper grades (9-12) will be presented.

An invariant is a quantity or an indication that remains unchanged under
certain transformation. The method of invariants for problem solving
requires the solver to discover a feature that is unchanged under a given
operation and to explain why a certain situation can be achieved or not.
Sometimes it is necessary to make additional constructions or considerations.

8.4.1 |Invariance and Parity (Kostadinova 2012)

Problem 4.1 Grasshopper jumps in a straight line. Every jump is 1 m. After
a while, he returns to his original position. What is the parity of the number
of jumps he made?

Problem 4.2 Not all alien beings have the same number of hands.
A number of such aliens hold hands so that no hand is left free. Prove that
the number of aliens with an odd number of hands is even.

Problem 4.3 Maya wrote 20 integers on the board, seven of which were
odd. She erased two of the numbers and wrote the sum of their squares
instead. Maya repeated this operation several times until only one number
remained. What is the parity of this number?

Solution Let a and b be the numbers erased. Table 8.1 shows the change in
the number of even and odd numbers after the execution of the operation.

Table 8.1 Change in the number of even and odd numbers

Erase a |Erase b | Write a®> +5*> |Number of even | Number of odd
Even Even Even Decrease by 1 No change
Odd Odd Even Increase by 1 Decrease by 2
Odd Even Odd Decrease by 1 No change
Even 0Odd Odd Decrease by 1 No change

Notice that the number of odd numbers either does not change or decreases
by 2. In the beginning there are an odd number of odd numbers. Therefore,
the last number is also an odd number
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8.4.2 Invariance and Coloring

Problem 4.4 In a small rectangular garden flowers are blooming in 3 lines
and there are 11 flowers per line. A bee starts from a flower adjacent to the
flower in the upper left corner and flies from flower to flower going only to
horizontally or vertically neighboring flowers. Is it possible for the bee to
visit each flower only once?

Fig. 8.3 The garden represented as a chessboard

Solution Figure 8.3 represents the garden as a chessboard. The bee starts
from a black square and alternately visits squares of different color. Since
the number of white squares is one more than the number of black squares, it
is not possible for the bee to visit each square only once.

8.4.3 Invariance and Divisibility

Problem 4.5 The teacher wrote the numbers 1, 2, 3, ..., 2015, 2016 on the
blackboard. Peter erases some of the numbers and writes the remainder of
their sum modulo 11 instead. After the execution of this operation several
times, only two numbers remain on the blackboard. One of them is 1001.
What is the other number?

Hint. The invariant is the remainder of the sum 1+2+3+---+2015+
2016 modulo 11. The answer is 6.
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8.5 Development

After grade 8, only the truly gifted, talented and hardworking pupils attend
“Saturday schools”. As in all areas, talented students who make systematic
efforts to develop and enrich their talent may perform well. And when it
comes to children, the teacher (or the trainer) plays an important role. He/she
must not only have excellent training (in mathematics, in this case), but also
teach pupils to continue the development of their abilities by themselves,
and find a way to motivate and encourage them when they have difficulties.

At this stage of the development of talent, motivation is the most
important trait, because the achievement of excellence requires a lot of work
and effort, denial of leisure and the usual teenage activities. In order to keep
up their interest in the increasingly difficult mathematics, the competitions
play an important role. They allow the pupils to prove themselves as “good
mathematicians™ and also to increase their prestige. Participation in national
and a number of regional mathematics competitions is only a step in the
development and the preparation of the talented students. It maintains their
competitive shape and helps them to assess their level of preparation.

Every school year the Bulgarian Ministry of Education publishes a cal-
endar of the national and regional school students’ competitions in Bulgaria.
The timetable of mathematics competitions is quite overloaded. The list
starts with the National Mathematics Olympiad—one of the oldest Olym-
piads of this type in the world. It has more than 60 years of history. The
Bulgarian Mathematics Olympiad consists of three rounds (for students in
grades 7-12) and two rounds (for students in grades from 4 to 6). The results
of the final round are important for the selection of the Bulgarian team for
the International Mathematics Olympiad. All Bulgarian mathematicians and
many other people whose profession is connected to mathematics partici-
pated in the Bulgarian Mathematics Olympiad.

There are two types of national mathematics competitions in Bulgaria:
popular and elite. The former focus on a broad group of students of different
ages (grades from 1 or 2 to 8 or 12), who do not necessarily have to have
additional mathematics preparation but only “good logical thinking”. These
competitions are held at the same time in different cities. Usually the contest
papers consist of 15-30 multiple choice items. Based on the results of these
competitions some students receive a diploma for participation and/or a
prize. This is a good way to stimulate students from regions that have not
developed a system for extracurricular work in mathematics or for which the
mathematics achievement of their students is not on a high level. The most
popular competitions of this type are: Chernorizets Hrabar (http://www.
math.bas.bg/ch/), Mathematical Tournament Ivan Salabashev (http://www.
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math.bas.bg/salabashev/), European Kangaroo (http://www.aksf.org/). The
last one is a type of international mathematics competitions held on the same
day in many European countries as well as in the USA and Canada.

Elite mathematical competitions are for students of grades from 5 to 12
(or from 8 to 12). The contest papers for the elite competitions consists of 3
or 4 mathematical problems. The participants should present complete and
well-grounded solutions. To enter such competition one needs not only
talent but should also be systematically well prepared in mathematics. This
is why most students that participate study in profile mathematical schools.
The well-known elite national competitions in Bulgaria are: Autumn
Mathematical Tournament, Winter Mathematical Competitions, Spring
Mathematical Tournament “Atanas Radev”, and Mathematics Competition
for Linguistic Profile Schools.

The larger goal, however, is the participation in international competi-
tions. Being selected for the team for such a competition is not an easy task.
Usually the selection of the team goes through several rounds of tests and
takes into account the results of the Bulgarian National Mathematical
Olympiad. Motivation is very important in this stage as well. Participation in
international contests is not only proof of abilities and talent, but can also be
an opportunity to visit other countries and network with young people with
similar interests.

The most prestigious of these opportunities is participation in the Interna-
tional Mathematics Olympiad (IMO) (https://www.imo-official.org/). It is
very difficult to be selected for the IMO, because the team consists of 6
students from grades 11 or 12, but there are many rivals. The situation is
similar for the Balkan Mathematical Olympiad (BMO) (http://en.wikipedia.
org/wiki/Balkan_Mathematical_Olympiad). BMO has a junior version for
students up to 15.5 years of age. For the last decade Bulgarian students have
taken part in the International Zhautykov Olympiad in Kazakhstan (http://
www.artofproblemsolving.com/community/c3241_international _
zhautykov_olympiad). These competitions are very demanding. Usually the
contestants have 3 or 4 mathematical problems for each of two consecutive
days. To solve these problems one needs deep mathematical knowledge that
goes far beyond the mathematics learned at school. The winners of these
competitions are usually accepted to study mathematics (or studies related to
mathematics) at many famous universities around the world.

International mathematics competitions for “younger students” (i.e. up to
age 15) are much more attractive for pupils. Many of them are organized in
Asia. The selection of the participants is made at the school level. This
makes it possible for more pupils to enter the competitions. Each country
may send up to 4 teams for a competition. It is not only the exotic
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destinations that attract pupils, but also the organization of the contests that
is different from Bulgarian traditions and therefore is interesting for the
participants. Usually there are two rounds (individual round and team
round) in these competitions. During the individual round students work
individually on a test consisting of short-answer and/or multiple-choice
items. The team round presents several open-ended mathematical problems
for each of the teams to solve. The students first distribute the problems
among the team members, so that each of them thinks about the solution of
at least one of the problems. Some of the solutions are developed by the
whole team. The team round is usually very attractive and emotional for the
contestants. Participation in cultural events that require students to present
songs, dances, etc. of their country is a part of these competitions. The
closing ceremony where the winners receive their prices are also magnifi-
cent and exciting. This way participation in these competitions play an
important role in motivating students to develop their mathematical talent.

Mathematics competitions, depending on their type and organization,
develop different aspects of talent. Competitions that present many problems
of multiple-choice or short-answer type develop promptness of thought,
intuitiveness, quick assessment of the situation, helpfulness of the memory
and even correct judgment when to take a calculated risk. Certainly, some of
these features are universal, not only mathematical.

Competitions that presents few but demanding mathematical problems
requiring complete, extended, well-grounded solutions develop deep logical
thinking, a high level of analysis and synthesis, a lot of mathematical
knowledge, skills to reformulate the task to reduce it to something familiar, the
finding of different ways to attack a completely unknown problem, etc. and all
these things happen within a few hours. The students that have developed their
talent in this direction usually become professional mathematicians.

The team competitions equally develop both mathematical and social
aspects of talent, for example, to know not only your own strengths but also
those of the other team members. These competitions require skills for
teamwork, ability to critically appreciate the work of the team members and
at the same time trust in their ability to think. The team competitions also
develop ability to quickly understand and perceive others’ solutions, to
compare them with your own or alternative solutions, and to make a choice,
to judge when to agree with the opinion of the other team members and
when to assert your own. All these things need to happen for the best
performance of the team.

The preparation of students in this ages (grades 8—12) in Sofia Mathe-
matical School continue in the “Saturday schools”. Some of the students
also take part in the specialized preparation conducted by the leaders of the
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Bulgarian national mathematics team. A variety of topics are learned in the
“Saturday schools” and they are demanding. Some of the topics are con-
tinuation of the topics learned earlier, in the lower secondary school. Such a
topic is “Invariants”, part of which is presented in part 4 of this chapter.
Here are some more problems from this topic suitable for the upper sec-
ondary school students.

8.5.1 Invariance and Divisibility

Problem 5.1 The teacher wrote the numbers 1,2,3, ...,n on the black-
board. Peter erases some of the numbers and writes the remainder of their
sum modulo k instead, where k is a natural number. After carrying out this
operation several times, only two numbers remain on the blackboard. One of
them is mk where m is any natural number. What is the other number that
remains? (This is a generalization of Problem 4.5.)

8.5.2 Invariance and Operations

Problem 5.2 A series of natural numbers x;, x», X3, ...,X, 1S written on the
blackboard. The following operation on the series is admissible: randomly
choose three of the numbers a, b, ¢ and substitute a with (a + 1) or (a — 1),
b with (b + 2) or (b — 2), ¢ with (¢ + 3) or (c — 3), and do not change the
rest of the numbers. Is it possible to obtain the following series
Xn+1,%,X%,-1, ..., X in a finite number of admissible steps?

Solution Denote by S the sum of the numbers in the series. After carrying
out the admissible operation, the value of S changes by one of the numbers
14243=6, 142-3=0, 1-24+3=2,1-2-3=—-4, —14+2+3=4,
—1+2-3=-2, —1-2+3=0, —1—-2-3= —6. Since all these num-
bers are even, the parity of S does not change. The parity of the sums of the
numbers of the initial and the final series are different, therefore the answer
is “no”.

Problem 5.3 (LIII Bulgarian National Olympiad in Mathematics, Final
round, 2004) Consider all possible strings consisting of the letters a and
b. In such string, the following substitutions are admissible: aba — b,
b — aba, bba — a, a — bba. The initial string is ga . . . a b. Is it possible

2003
obtain bgaa . .. a applying admissible substitutions?
o
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Solution We will show that the execution of any of the admissible sub-
stitution does not change the parity of the number of the letter a in even
(odd) positions in the string. Indeed, let the substitution aba — b be
applied over wiabaw,, where w; and w, represent the strings of letters
surrounding the place where the substitution takes place. The new string is
wibw,. All a’s belonging to wy stay in the same position, and all a’s from w,
move two positions to the left. Similarly, for any of the other substitutions—
the a’s before the substitution remain in the same position, and the ones after
it move either two position to the left or two positions to the right. The
number of a’s in even positions in bga . . . a is 1002, while in ga . . . a b there
— ——
2003 2003
are 1001. Therefore, it is not possible to obtain the final string from the
initial one.

8.5.3 Invariance and a Change in the Parity of the Number
of Elements

Problem 5.4 There are several zeroes, ones and twos written on the
blackboard. The following operation is admissible: delete two different
digits and write the third one instead (e.g. if 1 and 2 are deleted, O is written
instead; if O and 1 are deleted, 2 is written instead). Prove that if, after a
finite number of applications of the admissible operation, only one digit
remains on the blackboard, this digit does not depend on the order in which
these operations are executed.

Solution Let p be the number of 0’s, g the number of 1’s, and r the number
of 2’s in the initial arrangement. After the execution of the admissible
operation all three numbers p, ¢ and r, change by 1, so they all change their
parity simultaneously. If only one digit remains on the blackboard, then one
of the numbers p, g or r is equal to 1, and the other two are equal to O.
Therefore, the parity of one of these numbers is different from the parity of
the other two. The respective digit is the one that remains on the blackboard.

8.5.4 Other Invariants

Problem 5.5 Each of 20 given cards contains one of the digits 0, 1, 2, ..., 9,
so that each digit is written on exactly 2 cards. Is it possible to arrange these
cards in such a way that the two O s are next to each other, there is one card
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between the cards containing 1’s, there are two cards between the cards
containing 2’s, and so on, and finally there are nine cards between the cards
containing 9’s?

Solution Consider all possible arrangements of the cards with the numbers
a and b written on them. If between the a-cards, there is exactly one b-card,
then between the b-cards there is exactly one a-card. If between the a-cards
there are two b-cards, then » < a, and between the b-cards there are no a-
cards. If between the a-cards there are no b-cards, then between the b-cards
there are either two a-cards or none. This way we conclude that there are
even number of cards between every two cards with equal numbers written
on them. On the other hand, the total number of cards between every two
cardsis 1 + 2+ 3 + - - - + 9 =45, which is an odd number. This con-
tradiction proves that it is impossible to arrange all the cards in the desired
way.

Problem 5.6 A natural number is written on the blackboard. Every minute
this number is divided or multiplied by two or three, so that the result is a
natural number as well. The initial number is 12. Is it possible after an hour
to obtain the number 547

Solution Let’s represent 12 as 2*-3. Each number written on the black-
board is a product of powers of two and three. For the number A =2%.3%
denote by S(A) = a; + a, and let f{A) be the remainder of S(A) modulo 2, f
(A) € {0, 1}. Every minute, either a; or a, changes its parity, so the value of
ftA) also changes. The value of f{A) is the same as the initial value at every
even minute. We have S (12) =2 + 1 =3 and f(12) =1(mod 2), while
S (54)=3+1=4, f(54) = 0(mod 2). Since f(12) # f(54) and an even
number of minutes (1 h = 60 min) has passed, it is not possible to obtain 54
starting from 12.

8.6 Manifestation

Most of the students in Sofia Mathematical School spend 8 years studying
in the school (from grade 5 to grade 12). These are eight years of very
intensive preparation in mathematics both in the classroom and in the
“Saturday schools”. The best way to keep students motivated is to give them
the opportunity to manifest their talent. Mathematics competitions provide
an excellent opportunity in this respect. This is not only the International
Mathematical Olympiad where only 6 students per year from Bulgaria
participate. The good thing is that there are numerous national and
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international competitions that allow children of different ages and different
levels of training to express their talent.

The existence of some mass and attractive competitions accessible for
many students is needed because they increase interest in mathematics and
keep this interest alive. The best students can easily win these competitions.
They need to express and develop their talent in more demanding and elite
contests. The awards from participation in mathematics competitions, the
public attention from the school, the town, or the region, media attention,
and a sense of satisfaction from the achievements support the development
of talent. The number of contestants in the upper grades is diminishing
because the competition problems are more demanding and require more
effort. But the students that remain are really talented because the require-
ments for participation in the hardest competitions cannot be achieved only
through diligence and perseverance.

Those that reach a level of development of talent required to participate in
international competitions, usually continue their education in prestigious
universities in mathematics or in fields related to mathematics and its
applications, i.e. economics, finance, IT.

Below three of the very many examples of successful realization of
graduates of the Sofia Mathematical School are listed. They entered the
school from grade 5 and continued their education in the same school until
the end of grade 12, participated in many competitions, won awards and
have followed a career as professional mathematicians.

(i) Ljudmila Kamenova (http://www.math.sunysb.edu/~kamenova/):
Gold Medal in the 13th Balkan Mathematical Olympiad, 1996; Silver
Medal in the 37th International Mathematical Olympiad, 1996;
National Diploma for excellence in the fields of natural and mathe-
matical sciences, 1996; Over 20 first prizes in national and regional
mathematical competitions from 1990 to 1996; Second Prize in the
National Mathematical Olympiad for University Students, 1997; First
Prize in the 5th International Mathematics Competition for University
Students, 1998; Norman Levinson award for MIT graduate student,
September 2001-May 2002; Mentor recognition award for the
Siemens-Westinghouse Competition, 2003; Research Assistant Fel-
lowships with professor Gang Tian, MIT 2003, 2005, 2006; Elected
an honorary member in the Golden Key International Honour Society
in 2014.

(ii) Tzvetelina Tzeneva (https://www .linkedin.com/in/tzvetelina-tzeneva-
34450a25): Silver Medal at the International Mathematical Olympiad
2005; Bronze Medal at the International Mathematical Olympiad
2006; Silver Medal at the International Mathematical Olympiad 2007;
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https://www.linkedin.com/in/tzvetelina-tzeneva-34450a25
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Shapiro Prize for Academic Excellence Princeton University 2009;
The Peter A. Greenberg’77 Prize Princeton University 2011.

(iii) Bozhidar Velichkov (http://www.velichkov.it/): Silver medal winner
(2003) and a gold medal winner (2004) Zhautykov Mathematical
Olympiad Kazakhstan.

The discovery, the progress, and the development of mathematical talent
takes a long time. It needs enormous effort from both the student and the
teacher. Mathematics competitions play a very important role in this pro-
cess. Their influence on the development of some famous Bulgarian
mathematicians is described in Bankov (2013).
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Chapter 9
International Mathematical Tournament
of Towns

Nikolay Konstantinov and Sergey Dorichenko

Why do we conduct the Tournament of Towns?
Because we want everything to be well in our
house. And our house is the whole world.

N.N. Konstantinov

When a new problem is invented, what should
one do? Propose it at an olympiad or throw is out?
I think that the same question faces a composer
who has created a new melody: he offers it to
people if he believes that it will be a gift to them.
N.B. Vasyliev

Abstract This article is devoted to the International Mathematical Tourna-
ment of Towns, a high-level contest for high school students. We will tell you
how this contest appeared, what are its aims, features and distinctions from
other olympiads, what towns and countries participate in it and how one can
take part in this contest. A significant part of the article is devoted to exam-
ples of problems from the Tournament of Towns, and to solutions of some of
these problems

Keywords Mathematics - Competition - Olympiad - Tournament - Inter-
national - Mathematical - Tournament of towns - Mathematical problems -
Problem solving
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who was the jury chairman, gathered a team of bright young mathematicians,
who defined the spirit and style of this competition. But in 1979 government
officials disbanded the jury. Then a natural but ambitious idea appeared: to
create a new olympiad whose organization would be maximally independent
of official Soviet institutions, so that it could be controlled by the mathemati-
cal community. That is how the Tournament of Towns was created, and N.B.
Vasyliev took an active part in this work. He served as the chairman of the
Central Jury of the Tournament of Towns till his death in 1998: he selected
problems, and was the author of many of them. He also used problems sent by
the readers of “Kvant” (Quantum) magazine for its problem section. Thanks
to N.B. Vasyliev, the Tournament of Towns retained the scientific style of the
Soviet Union Mathematical Olympiad while avoiding some of its organiza-
tional shortcomings.

We dedicate this article to Nikolay Vasyliev.

Today the Tournament of Towns is conducted by a large group of strong
mathematicians and organizers, so the high quality of this olympiad is a team-
work result.

9.1 What Is the Tournament of Towns?

The Tournament of Towns is a worldwide problem solving competition in
mathematics for high school students. Its scale is illustrated by the list of par-
ticipating towns, see the end of this text. Each participating town has a place
where students come to solve the problems and write down their solutions;
then solutions are graded locally and the best of them are sent for central
grading.

So what is special about the Tournament of Towns? How is it different
from the many other mathematical competitions and why is it being held?

9.2 Goals of the Tournament

The Tournament organizers try to select interesting and beautiful problems
that require a nonstandard approach. Solving these problem during the com-
petition (or after the competition), they see mathematics from a different
angle. In Russia, as in other countries, the standard math classes do not inspire
creativity and often give the (wrong) impression that this science is a set of
boring recipes for solving standard problems. In general, the school curricu-
lum cannot keep up with the rapidly evolving modern world, which needs
more and more creative people.
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Unlike the International Mathematical Olympiad (where a student must
pass a series of other competitions in order to participate), anyone can partic-
ipate in the Tournament of Towns. Every year four rounds are held (a ordi-
nary and advanced level, in autumn and spring), students may participate in
all of them, and the final result depends only on the participant’s best per-
formance. Out of the many thousands participants of the multilevel Interna-
tional Mathematical Olympiad, only a few reach the final round. We believe
that such a system discourages some students from doing mathematics, rather
than attracting them.

9.3 We Are Looking for Talent!

The organizers of the Tournament of Towns, in Moscow and in other partic-
ipating towns, are interested in discovering talented young people, who will
later attend math schools and universities, and eventually work in scientific
institutions. We are not interested in checking what a person has learned, but
guessing what he can accomplish. This is why we use very liberal criteria
for checking the student’s work. The student’s work should be written so that
the jury can understand it, but in questionable situations, when it is uncer-
tain whether the student skipped a proof because he was unable to find it or
because it was obvious to him, the question is decided in the student’s favor.
This can lead to mistakes, when a solution is marked correct, while the stu-
dent doesn’t actually fully understand it. It is possible that we are doing a
disservice to the students, by encouraging them to write down their solutions
in a manner that will not be accepted in formal exams that they eventually
will have to take. This is why we warn the students that most exams have
stricter requirements for written solutions.

9.4 The Tournament of Towns and the Moscow
Mathematical Olympiad

The advanced level of the spring round of the Tournament of Towns takes
place on the same day as the Moscow Mathematical Olympiad, so the spring
round (A-level) isn’t held in Moscow. This system was implemented for sev-
eral reasons: first, the spring semester is overloaded with various olympiads,
secondly, for a long time there existed the idea of running the Moscow Math-
ematical Olympiad in other cities, and the Tournament of Towns partially
solves this. Holding these two olympiads on the same day allows them to
unite their bank of problems, and a lovely problem, suggested for one of
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these olympiads can be used for both. These two events are closely connected,
and the list of successful participants of both competitions is considered as a
whole.

9.5 The Tournament of Towns as a Sport

What attracts students to the Tournament? Not only the interesting problems,
but that the Tournament is a sports competition. The need to test one’s skills
and to compete with others is in the nature of many people, especially young-
sters. An athlete cannot expect his results to be kept a secret. One of the rules
of the Tournament is that all results and materials are open to the public.

The athletic side of the Tournament is in conflict with its scientific side.
For those who have just begun to be interested in mathematics, this conflict
will be unnoticeable. During the Tournament the student is given 5h. For
beginners this is more than enough time to demonstrate their skills, but for
a more advanced student, who is capable of solving the hardest problems of
the Tournament, 5h is not enough, and for them the Tournament becomes
a timed competition. This is in conflict with the spirit of science. To com-
pensate this flaw, the papers are graded by looking at three of the student’s
best solutions. The challenge of the Tournament is that solving three of the
hardest problems is comparable to winning the International Mathematical
Olympiad, so striving for an even higher results in olympiads is no longer
necessary.

9.6 The Tournament of Towns and Professional Science

What should a student who has reached such a high level aspire to? He
no longer needs olympiads, he needs unsolved mathematical problems. As
one of the founders of mathematical olympiads in Russia, Boris Nikolaevich
Delone, said: “An olympiad lasts only 5h, but you need 5000 h to solve a
serious mathematical problem”.

The Tournament of Towns is followed by a summer school, where the
students work in a format close to that of a professional mathematician. This
school is called the Summer Conference of the Tournament of Towns. Unfor-
tunately, it is held only for a small number of students (70-80 people of the
10 000 participants). Students spend a week there solving problems in a free
format. Some of these problems are unsolved problems.
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9.7 Summer Conference

The Tournament’s Summer conference are unlike scientific conferences in the
usual sense of the word. They do not have plenary lectures, sectional work-
groups or even official programs. These conferences are more like informal
gatherings to which students are invited along with accompanying teachers.
One of the purposes is to give gifted students the chance to work on research
problems. That is why the organizers propose very interesting projects—
difficult problems or cycles of problems frequently connected with real math-
ematical research. Even the presentation of the statements of such a project
can take up a whole lecture, and the presentation of all the projects takes
a whole day. Each participant chooses one or two projects, which he will
research as deeply as possible.

Solving such problems takes a long time and requires considerable intel-
lectual efforts. So the solving process is rather informal. Usually, several days
are given for its attempt, which can either be individual or collaborative.

The participant’s achievements in the Tournament is the main criterion
for the invitation to the Conference: those who achieve the highest results
are invited. Invitations are also sent to the winners of other prestigious com-
petitions such as All-Russian Olympiad and the IMO. Thus some students
from cities and towns where the Tournament is not held can also come to the
Conference.

Groups of students from different cities are usually headed by the teachers
who organise the Tournament in their city. Many of them take part in work of
the jury of the Conference. The composition of the jury is not predetermined.

All the participants of the Conference can enjoy sufficient rest, intensive
creative work and interesting contacts.

9.8 The Jury Does Not Assign Places

There are no formal competitions during the conference. The Jury simply
takes note of what problems are solved, and in the diplomas handed out to
the participants only contain the list of their achievements, but no comparison
to the other participants. The overall list of achievements is published, and
students can judge by themselves whose achievement is higher.

This is close to real life: there is no jury which can say who is better—
Galileo or Newton, Bohr or Einstein, Gauss or Euler. Such decisions would
be, firstly, of no use to anyone, and secondly, anyone who wants to know can
decide for himself.
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During the Tournament of Towns no ranking is performed. In the records
published at the end of the Tournament, each of winner’s diplomas only con-
tains the best results of the participant.

There is a level (12 points for the 2015/2016 school year) starting from
which students receive diplomas, but the maximal results are much higher.

9.9 Diplomas and Awards

In addition to the diplomas for the winners of the Tournament handed out by
the Central Jury, the local jury in each participating town can give out their
own awards based on their own criteria. In Moscow, students who got at least
5 points but less than 12 are awarded by the Moscow Jury.

Five points approximately corresponds to solving one problem (not the
easiest one). This has the following meaning: the difference between a stu-
dent who solved one problem of medium difficulty and a student who solved
nothing is a lot greater than the difference between the student who solved one
problem and the student who solved five problems. In the first case the dif-
ference is qualitative, in the second it is quantitative. Plus you can add to the
students who solved one problem during the Tournament, those who solved
it after the competition (for example, while riding the Moscow underground,
where, as one often hears, problem solving goes especially well).

9.10 Our Wish for the Participants

In conclusion we have the following request to our participants. All around
the world, including Moscow, educators are unjustly shifting their focus from
teaching to competitions. Olympiads, tournaments, math battles and other
events, which were intended as a means to check the mathematical abilities of
students, have gone way beyond the learning of mathematics needed to form
these abilities. We advise students to pay more attention to studying and less
to competitions. The main things in studying is to work systematically and
not to rush. The outstanding Russian mathematician Igor Rostislavovich Sha-
farevich once wrote that a wonderful trait of Moscow mathematical circles is
that every question is discussed for as long as it is needed, with no rush. Such
style of work is in conflict with the busy rhythm of our lives. To achieve this
style you only need to select all the interesting possibilities—the necessary
ones, and out of the necessary ones—the most interesting. Don’t spend your
time on nonsense, although this is not easy. Don’t go around with your eyes
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closed, try to look at the world with your own eyes, do not blindly follow the
authors of books and concepts. Good luck!

9.11 Regulations of the Tournament

The Tournament is held each year in two rounds—spring and fall. Students
and their cities can take part in either round or both, taking local conditions
into consideration. If a certain city participates in both rounds, a student in
this city has the right of choosing to take part in only one of them. This does
not prevent the student from achieving a good result, because the student’s
score for the Tournament is the maximum (and not the sum) of the scores in
the two rounds.

Each round has two levels—O-level (ordinary) and A-level (advanced).
They are scheduled approximately two weeks apart. Here students have the
right of choice as well. They may attempt either level or both. The score for
the round is the maximal (not the sum) of the scores in the two levels. The
questions in the O-level are less complicated and are accessible to beginners.
However, students are awarded less points for solving these questions. Nev-
ertheless, students can get enough points to win Diplomas if they solve the
hardest three O-level problems. Questions in the A-level are more compli-
cated. The most difficult ones are often solved only by a few participants. A
beginner probably has no chance of obtaining any points from these ques-
tions. On the other hand, an exceptional student can be awarded two or three
times as many points for them as for O-level questions.

Students who exceed a certain minimum score are awarded a Diploma
from the Central Jury. Also, each participating town obtains a certain score.
A town’s score is the average score of the town’s best NV students’ score, where
N is the town’s population divided by one hundred thousand. If a town’s pop-
ulation is less than 500,000, N is then taken to be 5; but the town’s score is
then multiplied by a handicap factor.

9.12 Towns that Participate in the Tournament

One of the key traits of the Tournament of Towns is the diversity of partici-
pating regions. Because of different cultures, school programs, quality of life
and many other factors, the local organizers of the Tournament do things in
their own way. For example, in many schools across Argentina the O-level
round serves as a qualifier for the A-level round, which is held in two cities—
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Buenos Aires and Bahia Blanca. In Iran, the Tournament is held as a team
competition, in Toronto the O-level is preceded by a set of problems from
math circles in Moscow. Taiwan is not a city, but a whole country (a politi-
cally independent part of China), but in the list below Taiwan is mentioned
as a city because the Taiwanese organizers requested to count their region as
one big city with a population of 22 million. Several cities in Bulgaria and
Israel participate in the Tournament, but they do not send the participant’s
work to the Central Jury.

The total population of the participating cities is around 100 million. Every
year around 1000 people are given a winner’s diploma of the Tournament, so
for the past 37 Tournaments around 35 thousand people were awarded.

Only a small part of all the students on Earth can participate in the Tour-
nament. If one takes into account that there are two million illiterate adults,
millions of children who cannot attend school, then it can be seen that our
event is still too small to make a difference in the overall mathematical cul-
ture of mankind.

Nevertheless some students are lucky enough to discover that mathemat-
ics is an endless world of the most refined intellectual creation, capable of
satisfying the need of a thinking person. It does not matter if they made this
discovery at some olympiad, the Tournament of Towns, at a math circle, or
any other way. Even if mathematics did not become their profession, it entered
their life forever, leaving a mark on their future work, no matter in which area
it might be.

9.13 List of Towns and Rating

Notations:

Pop/1000—Population of the town, divided by 1000

NoP—Number of Participants

Dipl—Number of Diplomas

Max—Maximum of points, received by participants of the town
Av—DMean score of the best student’s results

Coeff—Coefficient for towns with population less than 500 thousands peo-
ple

Rat—Rating of the town (For towns that sent to the Central Examination
papers of 5 or more students)
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36 tournament of towns
Town Location Pop/1000| NoP| Dipl| Max | Av | Coeff| Rat | Rank
Kurgan Russian Fed. 325 341 26 |37.5 (29.32]1.22 (35.77] 1
Troy Michigan, USA 82 12| 8 |24 |21.6 |1.52 [32.83]| 2
Dolgoprudny Moscow reg, 94 30| 29 |26.67(21.13|1.51 |[31.91| 3
Russian Fed.
Ulyanovsk Russian Fed. 615 19| 18 |34.67(29.39|1 29.39( 4
Jeju Rep. of Korea 435 29| 29 |30 [27.02]1.08 [29.18]| 5
Irvine California, USA 223 12| 7 |30 |21.25|1.35 [28.69| 6
Gwangmyeong |Rep. of Korea 341 14| 13 |26.25(23.32|1.2 [27.98| 7
Yaroslavl Russian Fed. 559 23| 18 |35 |25.95]|1 25.95| 8
Mokpo Rep. of Korea 247 14| 13 |25.33|19.6 |1.32 [25.87| 9
Kirov Russian Fed. 483 48| 46 (25.33|24.87|1.02 |25.36|10
Maikop Adygea, Russian| 144 27| 16 |22.5 (17.2 [1.44 [24.77|11
Fed.
Belgrade Serbia 1232 31| 26 |37.33|24.44|1 24.44|12
Novorossiysk-BC |Krasnodar  reg.,| 262 T 7 |22 18.7 (1.3 |24.31|13
Russian Fed.
Naberezhnye Tatarstan, 524 33| 26 |26 [24.03|1 24.03(14
Chelny Russian Fed.
Windsor Canada 5 51 3 (325 |14.2 [1.62 |23 |15
Novorossiysk-2 |Krasnodar reg.,| 262 7| 4 |25.33|17.6 |1.3  [22.88|16
Russian Fed.
Nizhny Tagil Sverdlovsk reg.,| 358 20| 13 |23 [19.13|1.18 |[22.58|17
Russian Fed.
Ulsan Rep. of Korea 1163 35| 35 |31.5 |22.21)1 22.21118
Zaporizhia Ukraine 768 43| 14 (29.33|22.14|1 22.14|19
Novosibirsk Russian Fed. 1547 27| 23 |32 [22.03|1 22.03(20
Zagreb Croatia 792 50 5 (25 (219 |1 21.9 |21
Saransk Mordovija, 299 17| 5 |21.25|17.32{1.25 [21.64(22
Russian Fed.
Vologda Russian Fed. 306 33| 15 |18.75|17.35|1.24 [21.51|23
Helm Poland 72 22| 11 |15 (14 |1.53 [21.42|24
Minsk Belarus 1912 68| 54 |29.33(21.25|1 21.25(25
Krasnodar-BC  |Russian Fed. 805 221 21 |26 [21.12]1 21.12)26
Kragujevac Serbia 150 23| 5 |17 [14.33]1.44 [20.64|27
Moscow Russian Fed. 12184 13821368 (33.33]20.24|1 20.2428
Omsk Russian Fed. 1160 32| 27 |26.25|20.17(1 20.17|29
Petropavlovsk-  |Kamchatka, 181 101 3 |18 14.37|1.4  |20.11{30
Kamchatsky Russian Fed.
Chelyabinsk Russian Fed. 1182 9 9 |29.33]19.95|1 19.95(31
Seongnam Rep. of Korea 994 9 7 (42 |19.78|1 19.78(32
Seosan Rep. of Korea 163 6| 3 [18.75[13.68(1.42 |19.43(33
Ufa Bashkortostan, 1077 35| 16 |30.67[18.33|1 18.33|34
Russian Fed.
Almaty Kazahstan 1485 32| 32 (225 [17.91]1 17.91(35
Ekaterinburg Russian Fed. 1396 35| 17 |22.67(17.79|1 17.79(36
Pereslavl- Yaroslavl  reg., 40 8| 2 (22.67|11.33|1.57 |17.79|37
Zalessky Russian Fed.
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Town Location Pop/1000| NoP| Dipl| Max | Av | Coeff| Rat | Rank
Kuala Lumpur  |Malaysia 1809 11| 10 |28.75({17.73|1 17.73(38
Changwon Rep. of Korea 1089 11 11 |29.33|17.47|1 17.47|39
Kostroma Russian Fed. 271 71 6 |15 13.5311.29 |[17.46{40
Daejeon Rep. of Korea 1535 20| 16 |24 [17.23|1 17.23|41
Graz Austria 276 70 4 |20 (134 [1.28 [17.15|42
Gwangju Rep. of Korea 1477 14| 12 |29.33|17.11|1 17.11)43
Zhukovsky Moscow reg.,| 107 8| 2 (20 |11.27(1.49 |16.79|44

Russian Fed.
Petrozavodsk Karelia, Russian| 268 71 3 |16 12.98(1.29 [16.75|45
Fed.
Novi Sad Serbia 341 16| 7 |16 [13.95|1.2 |[16.74|46
Sochi-BC Krasnodar reg.,| 473 6| 6 |17.33]16.17|1.03 |16.65|47
Russian Fed
Toronto Canada 2615 29| 20 |34.5 |16.58]|1 16.58|48
Erevan Armenia 1068 12 10 |23 16.57|1 16.5749
Kazan Tatarstan, 1176 10 7 |28 (16311 16.31(50
Russian Fed.
Elizovo Kamchatka, 38 51 2 [14.67]10.28[1.58 [16.25(51
Russian Fed.
Buenos Aires Argentina 2890 44| 23 |28.75[15.8 |1 15.8 (52
Vitebsk Belarus 373 15| 4 |16.25{13.52|1.16 [15.68|53
Saint Petersburg |Russian Fed. 5028 74| 34 |30.67|15.68|1 15.68|54
Calgary Canada 1096 13| 6 |28 [15.66]1 15.66(55
Perm Russian Fed. 1013 75| 15 |18.75[15.49|1 15.49(56
Charlotte North Carolina,| 792 50 2 |34.67(15.27|1 15.27|57
USA
Jeonju Rep. of Korea 654 6 5 (22 [15.14(1 15.14|58
Astana Kazahstan 828 31| 14 |16 15.09]1 15.09|59
Melbourne Australia 4250 40| 27 |30 |14.75|1 14.75160
Perth Australia 1832 13| 11 |22.67(14.68|1 14.68 |61
Samara Russian Fed. 1171 241 6 | 20 |14.65|1 14.65|62
Suwon Rep. of Korea 1170 10| 8 |22.5 [14.47|1 14.47(63
Goyang Rep. of Korea 1073 8| 5 [28.75(14.41]|1 14.41|64
Ivanovo Russian Fed. 409 51 3 (23 12.95(1.11 |14.37(65
Kiev Ukraine 2849 26| 21 |34.5 [14.27|1 14.27(66
Chita Russian Fed. 335 23| 2 |20 [11.35|1.21 |[13.73|67
Tomsk Russian Fed. 557 8] 3 |21 13.6 |1 13.6 |68
Malmdo Sweden 309 S 2 [15 |10.92(1.24 |13.54|69
Seoul Rep. of Korea 10117 45| 26 |33 13.24]1 13.24{70
Saratov Russian Fed. 840 7| 5 [17.33]13.08]1 13.08|71
Cheboksary Chuvashya, 464 6 4 [13.33|12.27(1.04 |12.76|72
Russian Fed.
Anyang Rep. of Korea 609 51 2 [18.75|124 |1 12.4 |73
Isfahan Iran 1583 16| 8 |18 (12 |1 12 |74
Pohang Rep. of Korea 520 5| 2 |23 11.85(1 11.85|75
Busan Rep. of Korea 3525 25| 11 |28 [11.73]1 11.73{76
Hamburg Germany 1718 221 7 |20 |11.71|1 11.71\77
Bremen Germany 544 8| 2 (14 11.35(1 11.35]|78
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Town Location Pop/1000| NoP| Dipl| Max | Av | Coeff| Rat | Rank

Gumi Rep. of Korea 374 6 1 [16.25|9.7 [1.16 |11.25|79

Daegu Rep. of Korea 2492 15 8 |18 11.08(1 11.08|80

Cheongju Rep. of Korea 838 70 2 |18 [10.71]1 10.7181

Yazd Iran 486 S 1 (13 |104 [1.02 |10.61|82

Voronezh Russian Fed. 1023 62| 2 |15 10.5 |1 10.5 |83

Rostov-on-Don  |Russian Fed. 1103 12| 4 |17.33|19.7 |1 9.7 |84

Kharkiv Ukraine 1449 10| 3 |20 (943 |1 9.43 |85

Penza Russian Fed. 521 200 1 |17 (8.8 |1 8.8 |86

Volzhsky Volgograd reg.,| 326 9] 0 [11.25|7 1.22 |8.54 (87
Russian Fed.

Kropotkin Krasnodar reg., 80 9] 0 [7.5 |[5.55 [1.52 |8.44 (88
Russian Fed.

Panama Panama 600 6 1 (19 [8.04 |1 8.04 |89

Incheon Rep. of Korea 2899 15| 5 |15 |8.04 |1 8.04 |90

Tabriz Iran 2383 6 2 (12 |8 1 8 91

Tyumen Russian Fed. 679 12| 0 |10.5 {7.92 |1 7.92 (92

Surgut Khanty-Mansiy 332 80| 0O |5 4.7 |1.21 [5.69 |93
AO, Russian Fed.

Sovetsk Kaliningrad reg., 41 54 0 |7.5 |3.33 [1.57 |5.23 |94
Russian Fed

Protvino Moscow reg., 37 5 0 [1.25 |0.85 [1.58 |1.34 |95
Russian Fed.

Ejsk-BC Krasnodar reg., 85 31 3 |16 14.67|1.52 |22.29|-
Russian Fed.

Vancouver Canada 603 4] 3|13 12.25]1 12.25|-

Yongin Rep. of Korea 909 4] 4 |24 [19.73]1 19.73 |-

Makhachkala Dagestan, 578 4| 4 [17.5 |15.38]|1 15.38|—
Russian Fed.

Volgograd Russian Fed. 1018 31 3 (16 |14 |1 14 |-

Lund Sweden 107 21 1 [16 |8.63 [1.49 |[12.85|—

Essentuki Stavropol  reg.,| 103 1| 0|0 0 1.5 |0 -
Russian Fed.

Luga Leningrad reg., 36 31 3 |18 15.67|1.58 (24.75|-
Russian Fed.

Kaliningrad Russian Fed. 448 1| 0 (8 8 1.06 |(8.48 |-

Nizhny Nov- |Russian Fed. 1259 21 2 [17.33]16.66(1 16.66 |-

gorod

Boroujen Iran 49 31 2 (12 10.33(1.56 |16.12|-

Khanty- Russian Fed. 90 31 3 [15 |13.67(1.51 |20.64|-

Mansiysk

Berkley California, USA 112 1 1 (12 |12 |[1.48 |[17.76|-

Kerman Iran 573 31 2 |15 11.33]1 11.33|-

Notes:

1. This rating is counted only for towns that sent to the Central examination
5 or more papers.
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2. In towns of the Krasnodar land with the note (BC) the Tournament was
held by the Bernoulli Centre (Krasnodar).

3. The results of Bremen only for the spring round. The results of Bremen
in the fall round are included into the results of Hamburg.

4. Every Iranian team is counted in this rating as one team-participant.

9.14 How to Enter the Tournament

The Tournament is open to all towns and cities anywhere in the world. If in
the city there is either an education organization (university, institute, school,
etc.) which would like to organize the Tournament there, or a group of lead-
ers or even a single teacher who can act as a town committee, this is quite
sufficient for the city’s participation in the Tournament.

CONTACTS to get the problems and perhaps to join the Tournament:
prof. Nikolay Konstantinov (President), Sergey Dorichenko (Chairman of the
Jury),
turnir.gorodov @ gmail.com, turgor @mccme.ru.

9.15 Selected Problems from Different Years of the
Tournament

During its existence the Tournament of Towns has presented its participants
over a thousand problems. We present here a select few of these problems for
a more meaningful introduction to the Tournament. There is no deep mean-
ing in the choice of problems or their ordering. We wanted to demonstrate
the variety of themes—what a participant sees, when he begins solving the
problems of yet another round. We tried to order them by increasing order of
difficulty (next to the problem is the number of points which was awarded for
its complete solution) The format of the present publication prevents us from
discussing the solutions. We warn you that:

1. In many of them the answer is surprising or even paradoxical.

2. Some problems are very difficult and were solved by very few partici-
pants.

The English version of the problems and solutions included into this article
mostly were written by Andy Liu; they are taken from website https://www.
math.toronto.edu/oz/turgor/ and from a series devoted to the Tournament of
Towns, published by Peter Taylor in the Australian Mathematics Trust. We
are very grateful to Andy Liu, Peter Taylor, Olga Zaitseva-Ivrii and Victor
Ivrii.


https://www.math.toronto.edu/oz/turgor/
https://www.math.toronto.edu/oz/turgor/
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TOURNAMENT 33, Fall 2011
Junior questions, O Level

1. [3 points] P and Q are points on the longest side AB of triangle ABC such
that AQ = AC and BP = BC. Prove that the circumcentre of triangle POQC
coincides with the incentre of triangle ABC.

V.V. Proizvolov

TOURNAMENT 17, Fall 1995
Senior questions, O Level

2. [3 points] A square is placed in the plane and a point P is marked in this
plane with invisible ink. A certain person can see this point through special
glasses. One can draw a straight line and this person will say on which side of
the line the point P lies. If P lies on the line, the person says so. What is the
minimal number of questions one needs to find out if P lies inside the squares
or not?

A.Ya. Kanel-Belov

TOURNAMENT 33, Spring 2012
Junior questions, O Level

3. [3 points] A treasure is buried under a square of an 8 X 8 board. Under
each other square there is a message which indicates the minimum number of
steps needed to reach the square with the treasure. Each step takes one from
a square to another square sharing a common side. What is the minimum
number of squares we must dig up in order to bring up the treasure for sure?

N. Strelkova

TOURNAMENT 14, Spring 1993
Junior questions, O Level

4. [3 points] Each of two houses A and B is divided into two flats. Several cats
and dogs live there. It is known that the fraction of cats in the first flat of A
(the ratio between the number of cats and the total number of animals in the
flat) is greater than the fraction of cats in the first flat of B, and the fraction of
cats in the second flat of A is greater than the fraction of cats in the second flat
of B. Is it true that the fraction of cats in house A is greater than the fractions
of cats in house B?

A. K. Kovaldji

TOURNAMENT 9, Spring 1988
Senior questions, O Level

5. [Variant for Moscow participants.] A point has been chosen in a 3-dimensional
space. Is it possible to arrange four balls in the space so that they do not touch
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either the point or each other, but “hide” the point in that any ray emanating
from the point meets one of the balls?
Problem from Leningrad

TOURNAMENT 4, Spring 1983
Junior questions, O Level

6. [8 points] A pedestrian walked for 3.5 h. In every period of 1 h duration he
walked 5 km. Is it true that his average speed was 5 km per hour?

N.N. Konstantinov
TOURNAMENT 10, Fall 1988
Junior questions, O Level

7. [3 points] It is known that the proportion of people with fair hair among
people with blue eyes is more than the proportion of people with fair hair
among all people. Which is greater, the proportion of people with blue eyes
among people with fair hair, or the proportion of people with blue eyes among
all people?

Folklore

TOURNAMENT 12, Fall 1990
Junior questions, O Level

8. [4 points] Suppose two positive real numbers are given. Prove that if their
sum is less than their product then their sum is greater than four.
N.B. Vasiliev

TOURNAMENT 17, Spring 1996
Junior questions, O Level

9. [4 points] The two tangents to the incircle of a right-angled triangle ABC
the are perpendicular to the hypotenuse AB intersect it at points P and Q. Find
£PCQ.

M.A. Evdokimov

TOURNAMENT 28, Fall 2006
Senior questions, O Level

10. [4 points] Three positive integers x, y and z are written on the blackboard.
Mary records in her notebook the product of any two of them and reduces
the third number on the blackboard by 1. With the new trio of numbers, she
repeats the process, and continues until one of the numbers on the blackboard
becomes zero. What will be the sum of the numbers in Mary’s notebook at
that point?

Ye. Gorsky, S.A. Dorichenko
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TOURNAMENT 30, Spring 2009
Junior questions, O Level

11. [4 points] Let a”b denote the number a”. The order of operations in the
expression 7°7"N7ATATATAT must be determined by parentheses (5 pairs of
parentheses are needed). Is it possible to put parentheses in two distinct ways
so that the value of the expression be the same?

A.K. Tolpygo

TOURNAMENT 31, Spring 2010
Junior questions, O Level

12. An angle is given in a plane. Using only a compass, one must find out
(a) [2 points] if this angle is acute. Find the minimal number of circles one
must draw to be sure.
(b) [2 points] if this angle equals 31°. (One may draw as many circles as one
needs.)

G. Feldman, D.V. Baranov

TOURNAMENT 32, Fall 2010
Senior questions, O Level

13. [5 points] From a police station situated on a straight road infinite in both
directions, a thief has stolen a police car. Its maximal speed equals 90% of the
maximal speed of a police cruiser. When the theft is discovered some time
later, a policeman starts to pursue the thief on a cruiser. However, he does not
know in which direction along the road the thief has gone, nor does he know
how long ago the car has been stolen. Is it possible for the policeman to catch
the thief?

G.A. Galperin

TOURNAMENT 26, Spring 2005
Junior questions, O Level

14. [5 points] M and N are the midpoints of sides BC and AD, respectively,
of a square ABCD. K is an arbitrary point on the extension of the diagonal
AC beyond A. The segment KM intersects the side AB at some point L. Prove
that ZKNA = ZLNA.

A.V. Akopyan

TOURNAMENT 35, Fall 2013
Junior questions, O Level

15. [6 points] Eight rooks are placed on a 8 X 8 chessboard so that no two
rooks attack each other. Prove that one can always move all rooks, each by a
move of a knight so that in the final position no two rooks attack each other
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as well. (In intermediate positions several rooks can share the same square).
E.V. Bakaev

TOURNAMENT 11, Fall 1989
Senior questions, O Level

21989 5 1989

16. [3 points] The numbers and are written out one after the other
(in decimal notation). How many digits are written altogether?
G.A. Galperin

TOURNAMENT 7, Spring 1986
Senior questions

17. [4 points] Vectors coincide with the edges of an arbitrary tetrahedron
(possibly non-regular). Is it possible for the sum of these six vectors to equal
the zero vector?

Problem from Leningrad

TOURNAMENT 8, Spring 1987
Junior questions, O Level

18. [3 points] We are given two three-litre bottles, one containing 1 litre of
water and the other containing 1 litre of 2% salt solution. One can pour lig-
uids from one bottle to the other and then mix them to obtain solutions of
different concentration. Can one obtain a 1.5% solution of salt in the bottle
which originally contained water?

S.V. Fomin

TOURNAMENT 4, Fall 1982
Junior questions, O Level

19. [12 points] There are 36 cards in a deck arranged in the sequence spades,
clubs, hearts, diamonds, spades, clubs, hearts, diamonds, etc. Somebody took
part of this deck off the top, turned it upside down, and cut this part into the
remaining part of the deck (i.e. inserted it between two consecutive cards).
Then four cards were taken off the top, then another four, etc. Prove that in
any of these sets of four cards, all the cards are of different suits

A. Merkov

TOURNAMENT 34, Spring 2013
Junior questions, O Level

20. [5 points] Eight rooks are placed on a 8 X 8 chessboard, so that no two
rooks attack one another. All squares of the board are divided between the
rooks as follows. A square where a rook is placed belongs to it. If a square is
attacked by two rooks then it belongs to the nearest rook; in case these two
rooks are equidistant from this square then each of them possesses a half of
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the square. Prove that every rook possesses the equal area.
E.V. Bakaev

TOURNAMENT 9, Spring 1988
Senior questions, O Level

21. Pawns are placed on an infinite chess board so that they form an infinite
square net (along any row or column containing pawns there is a pawn, three
free squares, pawn, three squares, and so on, with only every fourth row and
every fourth column containing pawns). Prove that it is not possible for a
knight to tour every free square once and only once.

An old problem of A.K .Toplygo

TOURNAMENT 38, Fall 2016
Senior questions, O Level

22. [5 points] Of the triangles determined by 100 points on a line plus an extra
point not on the line, at most how many of them can be isosceles?
E.V. Bakaev

TOURNAMENT 31, Spring 2010
Senior questions, O Level

23. [5 points] Assume that P(x) is a polynomial with integer nonnegative
coefficients, different from constant. Baron Munchausen claims that he can
restore P(x) provided he knows the values of P(2) and P(P(2)) only. Is the
baron’s claim valid?

S.V. Markelov
TOURNAMENT 35, Fall 2013
Senior questions, O Level

24.[6 points] A spacecraft landed on an asteroid. It is known that the asteroid
is either a ball or a cube. The rover started its route at the landing site and
finished it at the point symmetric to the landing site with respect to the center
of the asteroid. On its way, the rover transmitted its spatial coordinates to the
spacecraft on the landing site so that the trajectory of the rover movement
was known. Can it happen that this information is not sufficient to determine
whether the asteroid is a ball