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This book is dedicated to all those people
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Who are passing baton to next generations
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Foreword

Mathematical competitions are a chance for mathematically talented young
scholars to experience mathematics as a research-oriented discipline. These
competitions offer the chance to get insight into the beauty of mathematical
structures at a high level, which many of these young mathematicians
usually will not experience at home. Furthermore, these competitions allow
to meet other talented young mathematicians, exchange their ideas with
them and experience that they are not singular and isolated youngsters, but
part of an important community.

Despite this high importance of mathematical competitions, either as
mathematical Olympiad or as mathematical tournament of towns or other
kinds of mathematical competitions, there exists hardly any scientific
research about mathematical competitions. This is surprising, because these
mathematical competitions have a long tradition and a high influence on the
promotion of young talented mathematicians.

At the occasion of the 13th International Congress on Mathematical
Education (ICME-13) a Topic Study Group on Mathematics Competitions
took place, at which famous researchers working in this field met and
exchanged about the state-of-the-art in this field. This intensive work
together with papers from related groups forms the basis of this book.

The book provides an excellent overview about the current discussion,
topical themes and experiences with mathematical competitions. It starts
with reflections on goals of mathematics education, problems coming from
geometry or combinatorics being used in mathematical competitions. The
next parts reflect on the role of competitions in the classroom, this theme is
hardly researched so far. Then two examples of mathematical competitions
are analyzed. The last two parts focus on the present state of mathematical
competitions and its future and a bridge between competitions and ‘real’
mathematics.
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To summarize, this book is more than overdue and reflects from an
academic perspective on the potential of mathematical competitions for
mathematics education in general.

I wish to congratulate the editor—Alexander Soifer—and the contributors
to this timely and excellent book.

Hamburg, Germany Gabriele Kaiser
Convenor of the 13th International Congress

on Mathematical Education, University of Hamburg
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Preface

The role and usefulness of competitions in mathematics instruction has been
debated for decades. If memory holds, I attended a deep and entertaining
debate on this topic between a distinguished mathematician Peter John
Hilton and a renowned math educator Gilah C. Leder at ICME-6, held in
1988 in Budapest. As this volume demonstrates, competitions problems can
be used to enrich classroom instruction, to offer our students an exciting
pastime, to raise interest in mathematics, and to enable students to com-
mence their mathematical research. If not for Moscow State University
Olympiads and a mathematical circle conducted by Nikolai Konstantinov
(one of the authors in this volume!), I would have become a classical pianist
and composer and not a mathematician. (By no means am I suggesting here
that mathematics is better than music—they both belong to the Pantheon
of the Arts.)

I am duty bound to add one warning. If a student does consistently well in
mathematical Olympiads, s(he) clearly has a talent, and with a good measure
of interest and hard work will go far. However, no discouraging conclusion
could be made about a student, who has not sparkled in the Olympiads.
Young people develop at diverse speeds. Moreover, mathematics competi-
tions inevitably have an element of sports, the necessity to perform under
pressure and within a limited time. High speed of thinking is attractive, but it
is not an essential property for a future successful researcher.

This book includes plenary talks and some of the best presentations made
in the Topic Study Group 30: Mathematics Competitions of the International
Congress on Mathematical Education (ICME-13) in Hamburg, and some
of the best presentations from related groups, dedicated to work with gifted
students and mathematical enrichment. Each of the chapters, on request of
this editor, includes not only original ideas of pedagogy and state-of-the-art
methods of mathematical instruction, but also original problems and their
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beautiful solutions. I believe that this volume will be a valuable addition to
the mathematics literature for secondary teachers and university professors
around the world, and their gifted students of all levels, from secondary to
graduate students, seeking problems to start their research careers.

The authors of this book comprise a group that impresses me enormously.
It includes seven laureates of the Paul Erdős Award and one of the David
Hilbert Award presented by the World Federation of National Mathematics
Competitions (WFNMC); three past or present Presidents of WFNMC; five
past or present WFNMC’s Vice Presidents; three WFNMC’s Secretaries;
laureates of numerous other awards, leaders of and contributors to ICMI
studies; authors of many books and countless articles, organizers of the
International Mathematical Olympiad (IMO). In fact, in 1994 and 2016, K.
P. Shum was the Organizer of two IMO’s held in Hong Kong; while in 2013
Maria Falk de Losada served as the President of the International Jury at the
Colombian IMO. The authors include many leaders and deputy leaders of
national teams IMO teams, coordinators of IMO, organizers of numerous
national and international competitions, conferences and congresses, etc.

Each of the 14 chapters addresses many issues and contributes to a mul-
titude of directions, which makes a partition of the material into parts nearly
impossible. I attempted to identify the main direction of each chapter and thus
help the reader by partitioning the book into seven parts. As you can see,
Francisco Bellot-Rosado (Spain) and Kar-Ping Shum (P.R. China) present
problems of geometry; Kiril Bankov (Bulgaria), and Luis F. Cáceres-Duque,
Jose H. Nieto-Said, and Rafael Sánchez-Lamoneda (Puerto Rico) share
combinatorial problems. Role of competitions for a classroom is described by
Robert Geretschläger (Austria); Ingrid Semanišinová, Matúš Harminc, and
Martina Jesenská (Slovakia); and Iliana Tsvetkova (Bulgaria). Nikolai Kon-
stantinov and Sergei Dorichenko (Russia), describe their famous International
Mathematical Tournament of Towns; V.M. Sholapurkar (India) presents a
relatively recent competition for college students. Romas Kasuba (Lithuania)
shares his lifetime experiences with competitions; while Peter Taylor (Aus-
tralia) classifies problems of mathematics competitions. Maria Falk De
Losada (Colombia) collects valuable observations of the influence of math-
ematics competitions on their contestants, destined to becomeworld’s leading
mathematical researchers. Alexander Soifer (USA) opens the book with his
view of goals and means of mathematics instruction and closes the book with
examples of bridges between problems of mathematical Olympiads and
research problems of ‘real’ mathematics.

It was a delight to organize and run the Topic Study Group jointly with
Maria Falk de Losada, thank you, Maria! My gratitude goes to my referees,
encompassing four continents, who helped the authors to improve their
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chapters in a significant way. I thank all the officials and volunteers of
ICME-13 in Hamburg, who allowed us all a pleasure of sharing knowledge
and experiences during this Olympics-like forum of nearly 4,000 profes-
sionals from 109 countries. My special thanks go to the Convenor and the
Chair of the International Program Committee of the ICME-13
Prof. Dr. Gabriele Kaiser for creating the Congress and arranging this
splendid opportunity for my group of 18 authors from five continents to
unite in a truly Olympic spirit and produce this volume, and to Springer for
making it possible for us to preserve the wonderful memories of the
Hamburg Congress in the form of this book.

On behalf of all the authors of this book, I wish you, our reader, to get
much pleasure of mathematical kind from this book and many other books
written by these 18 authors.

Colorado Springs, USA Alexander Soifer
January 2017
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Chapter 1
Goals of Mathematics Instruction: Seven
Thoughts and Seven Illustrations of Means

Alexander Soifer

Abstract The goal of this chapter is to present what the author sees as the
state-of-the-art approach to mathematics instruction, and the state-of-the-art
use of mathematical Olympiads in bringing instruction closer to ‘real’
mathematics and identifying young talents. One of the principle goals of
mathematics instruction ought to be showing in a classroom what mathe-
matics is and what mathematicians do. This cannot be achieved by teaching
but rather by creating an environment in which students learn mathematics
by doing it. As in ‘real’ mathematics, this ought to be done by solving
problems that require not just plugging numbers into memorized formulas
and one-step deductive reasoning, but also by experimenting, constructing
examples, and utilizing synthesis in a single problem of ideas from various
branches of mathematics, built on high moral foundations. The author’s
eight recent Springer books present fragments of ‘live’ mathematics, and
illustrations of these ideas. The chapter also describes the role of mathe-
matical olympiads in instruction and includes some problems used at the
Colorado Mathematical Olympiad over the past 34 years.

This essay is an expanded version of the Plenary Talk in the Topic Study Group 30:
Mathematics Competitions at the 13th International Congress on Mathematical Education,
Hamburg, Germany, July 2016. Prof. Dr. Gabriele Kaiser was the Convener of this very
successful Congress. The early version appeared in the journal of the World Federation of
National Mathematics Competitions 29(1), 2016, 7–30.

A. Soifer (✉)
University of Colorado, 1420 Austin Bluffs Parkway, Osborne Center
for Science, Office A423, Colorado Springs, CO 80918, USA
e-mail: asoifer@uccs.edu
URL: http://www.uccs.edu/∼asoifer/

© Springer International Publishing AG 2017
A. Soifer (ed.), Competitions for Young Mathematicians,
ICME-13 Monographs, DOI 10.1007/978-3-319-56585-9_1
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Keywords Colorado mathematical olympiad ⋅ Problem solving ⋅ Gifted
students ⋅ Goals of instruction ⋅ Goals of life

1.1 Part I: Seven Thoughts on Mathematics Instruction

Give a man a fish, and you will feed him for a day.

Teach a man how to fish, and you will feed him for a lifetime.

– 老子 (Lǎozǐ, VI century BC)

1. The Purpose of Life Implies the Purpose of Instruction

Before we address the purpose of mathematics instruction, it makes sense to
ask ourselves, what is the purpose of life itself? It seems to me that the purpose
of life is to discover and express ourselves, and in so doing contribute to high
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culture of our planet. The ultimate purpose of instruction is therefore to aid our
students in their quest for self-discovery and self-expression.

2. A Typical Instruction: Dishing out a Collection of Facts a la “Give a
Man a Fish”

Instruction is often reduced to memorization of a certain collection of facts:
dates in history, theorems in mathematics, etc. While memorization and
knowledge are of value, they seem to be overestimated in instruction. I agree
with the great Chinese Sage Lǎozǐ: giving a man a fish will not solve man’s
problem of survival.

3. Lǎozǐ and a Skill Approach to Life: “Teach a Man How to Fish”

Lǎozǐ proposes to teach a man fishing as a method of solving the problem of
survival. This does go further than giving a man a fish. However, is it good
enough in today’s world?

4. Beyond Lǎozǐ: Enable a Man to Learn How to Solve Problems

Not every education is as good an investment as another. We ought to go
beyond Lǎozǐ and his universally celebrated lines. Is teaching skills good
enough? Not quite, dear Sage, not in today’s rapidly changing world. What
if there is no more fish? What if the pond has dried out while your man has
only one skill, fishing?

A problem solver will not die if the fish disappears in a pond—he’ll
learn to hunt, grow crop, solve whatever problems life puts in his way.
And so, we will go a long way by putting emphasis not on training skills
but on creating environment for developing problem solving abilities and
attitudes. This is the state-of-the-art. The proverb for today‘s world ought
to be:

Give a man skills, and you will feed him in the short run.

Let a man learn solving problems, and you will feed him for a lifetime.

5. Mathematics and Life

Every day we confront and solve a myriad of problem. Life is about solv-
ing problems. And mistakes in solving life’s problems could be quite
costly: a bridge could collapse, electrical grid could get overloaded, traffic
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could get to a halt, etc. This is where mathematics comes in handy.
Mathematics allows us to learn how to think creatively, how to solve
problems. And once our student masters problem solving in mathematics,
s(he) will be better prepared to confront problems in any human endeavor.

6. Are the Two Popular Approaches to Mathematics Instruction Good
Enough?

Today’s discussions of mathematical instruction seem to be reduced to two
competing approaches, “Embrace the Technology” versus “Back to the
Basics.”

“Back to the Basics” is not the best solution, for it emphasizes mind
numbing drill, and treats students as robots, who need to be pre-programmed
with a set of skills. In the newer “Embrace the Technology” approach, I
support taking a teacher off the lectern and letting students work on their
own. This approach too more often than not treats students like robots, and
pre-programs them with skills of today. However, technology nowadays
changes rapidly, as do the societal demands for particular skills.

Providing public education is not only an ethical thing to do—it is a
profitable investment. Are there many jobs today for computer-illiterate
persons? And yet just one generation ago, computers were a monopoly of
researchers, and one generation before that did not exist at all. And so, we
will go a long way by putting emphasis not on training skills but on creating
atmosphere for developing problem solving abilities and attitudes.

Observe, one cannot teach mathematics, or anything else for that matter.
State-of-the-art in mathematics instruction is about creating an atmosphere
where students can learn mathematics by doing it, with a gentle guidance of
a teacher.

7. The True Goal of Mathematics Instruction is to Demonstrate What
Mathematics Is and What Mathematicians Do

Standardized three-letter tests, such as SAT, ACT, GRE, KGB, CIA
(well, the latter two triples are from a different opera:-) can only inform us
how well a student does on these tests. Is this the goal of instruction?
We ought to abandon standardized multiple choice testing of skills.
There are more important things to assess. Over the past 34 years,
The Colorado Mathematical Olympiad has been offering middle and high
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school students 5 original problems of increasing difficulty and 4 hours to
think, to invent, and to solve. We “test” predominantly not knowledge, not
skills, but creativity and originality of thought (Soifer 2011–2; Soifer 2017).

Is the goal “teaching to the test,” as the past USA President George W.
Bush believed? Not really. We all agree that problem solving is the means of
instruction. However, what is problem solving? A typical secondary school
problem asks to “find the hypotenuse of a right triangle, whose legs are 3
and 4, by using Pythagoras Theorem.” No, not any more, you would reply.
Nowadays, at the Age of Technology, a typical secondary school problem
asks to “find the hypotenuse of a right triangle, whose legs are 3.1 and 4.2,
by using Pythagoras Theorem and your smartphone.” Would you call it a
progress?

More generally, a secondary school problem has the structure A⇒B, i.e.,
given A prove B by using theorem C. In real life, no one gives a research
mathematician a B; it is discovered by intuition and is based on experi-
mentation. And of course, no one knows a C since nobody solved the
problem: a research mathematician is a pioneer, moving along an untraveled
path!

And so, we ought to bring our secondary and college mathematics, which
often looks so superficial, as close as possible to the ‘real’ mathematics. We
ought to let our students experiment in our classroom-laboratory. We ought
to let them develop intuition and use it to come up with a conjecture B. And
we ought to let our students find those tools C that do the job of deductive
proving the conjecture B. In my opinion, the true goal of mathematics
instruction is to demonstrate in the classroom what mathematics is, and what
mathematicians do.

8. What Can Mathematical Olympiads Bring to Mathematics
Instruction?

Let us first of all define the term. A mathematical olympiad is a competition
where contestants are required to write essay-type complete solutions of the
problems. Number of problems offered to Olympians is relatively small,
usually between 4 to 6, and the time allowed is relatively long, usually from
4 to 9 hours. This does not completely eliminate time as a factor affecting
performance, but substantially reduces it, especially compared to multiple
choice or answer-only competitions with their speed-guessing as the main
virtue. I often see best Olympians continuing to think about difficult prob-
lems after the Olympiad ends. In fact, I know some of them, who have been
thinking about a Colorado Mathematical Olympiad problem and its research
generalizations for many years. This process and the Olympiad influence
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may last a lifetime. While I see value in quick-type mathematical compe-
titions and its sporty attraction for television broadcasting, I personally do
not think they faithfully represent what mathematics is and what mathe-
maticians do.

Olympiads allow us to introduce secondary students to topics, ideas, and
methods of ‘real’ mathematics in the context and terminology of secondary
mathematics, in the form that is digestible by them. Problems of mathe-
matical Olympiads—as not much else—demonstrate beauty and elegance of
mathematics. At the age of 14, I switched from writing and performing
piano music to mathematics due exclusively to The Moscow Mathematical
Olympiad. In March 1989 in Colorado Springs, Paul Erdős told me that “the
Olympiads create a new enthusiasm toward mathematics, and in this sense
are very valuable.”

At The Colorado Mathematical Olympiad, we have been often asked a
natural question: how does one create a mathematical Olympiad? This and
other related questions are clarified by the University of Colorado, which
produced the film “Thirtieth Colorado Mathematical Olympiad—30 Years
of Excellence” that can be found on the Olympiad’s homepage http://
olympiad.uccs.edu/.

9. The Moral Foundation Is Critical

There is an opinion shared by many of my colleagues that all that matters is
mathematics, Mathematik über Alles, if you will, above all moral concerns.
In my opinion, there is no good science or good art unless it is built on the
foundation of high ethical principles. Luitzen Egbertus Jan Brouwer, a great
Dutch mathematician and philosopher, wrote in his 1929 letter: “It is my
opinion that the tiniest moral matter is more important than all of science,
and that one can only maintain the moral quality of the world by standing up
to any immoral project.”

We have seen in history time and again how evil the usage of science
could be if it is not built on high moral foundation. Atrocities of Nazi
Germany alone provide countless examples of science, technology and even
art used for ill deeds. My book (Soifer 2015) is dedicated to moral dilemmas
of a scholar in the Third Reich and in the world of today. Lessons of history
ought to enter our classrooms and give moral guidance to our students
today. I value education, however, I must admit that

Fine education does not guarantee high culture,

And high culture does not guarantee humanity.

8 A. Soifer
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In order for creative work to be good, it must also serve the good. It ought
to be humane. It has to be grounded in morality, empathy, compassion, and
kindness. The Great Russian poet Alexander Pushkin (1799–1837) beauti-
fully wrote about it. Let me translate his lines for you:1

And people will be pleased with me for years to come,

For I awakened kindness with my lyre,

For in my cruel age I Freedom praised and sang

And urged I mercy for the fallen people.

And so we ought to pass to our students the baton of mercy and
humanity, so that our students by their creative work contribute to the high
culture of our small endangered planet.

1.2 Part II: Seven Illustration of Means

Alright, but what kind of problems should we offer our students? What
approaches should we present in our classrooms? Permit me to illustrate
seven essential components of the state-of-the-art classroom.

1. Experiment in Mathematics

First of all, we ought to set up a mathematical laboratory, where students
conduct mathematical experiments, develop inductive reasoning and an
insight needed to create conjectures. Some illustrations of it can be found in
(Soifer 2010–1). For example, a short experiment allows us to conjecture a
formula for the sum of cubes of consecutive integers:

13 = 12

13 + 23 = 32

13 + 23 + 33 = 62

13 + 23 + 33 + 43 = 102

We observe that the sums of consecutive cubes are perfect squares. But
squares of what numbers? If you are not able to develop a conjecture yet,
continue to experiment: 13 + 23 + 33 + 43 + 53 = 152. You will soon

1И долго буду тем любезен я народу,
Что чувства добрые я лирой пробуждал,
Что в мой жестокий век восславил я Свободу
И милость к падшим призывал.
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notice that 13 + 23 + 33 + 43 + 53 = (1 + 2 + 3 + 4 + 5)2. This kind of
equality holds for all the values in our experiment, and the conjecture is
ready:

13 + 23 +⋯+ n3 = 1+2+⋯+ nð Þ2.

We can now prove, for example, by mathematical induction, that both the
left side and the right side of the conjectured equality is equal to
n n+1ð Þ

2

� �2
. ■

2. Construction of Examples in Mathematics

Construction of counterexamples is almost non-existent in secondary edu-
cation and even university, whereas counterexamples play a major role in
mathematics, amounting to circa 50% of its results. In fact, the Great Rus-
sian mathematician Israel M. Gelfand once said, “Theories come and go;
examples live forever.”

You would agree that practically the entire school mathematics consists
of analytical proofs. In order to bring instruction closer to the ‘real’ math-
ematics we ought to include in education construction of examples and
counterexamples. Let me share one example, where a construction solves
the problem (Soifer 2011–2).

Positive2 (18th Colorado Mathematical Olympiad, Soifer 2001). Is there
a way to fill a 2001 × 2001 square table T with pluses and minuses, one
sign per cell of T, such that no series of interchanging all signs in any
1000 × 1000 or 1001 × 1001 square of the table can fill T with all pluses?

Solution. Having created this problem and its solution for the 2001
Colorado Mathematical Olympiad, I felt that another solution was possible
using an invariant, but failed to find it. Two days after the Olympiad, on
April 22, 2001, the past double-winner of the Olympiad Matthew Kahle,
now a Professor at Ohio State University, found the solution that eluded me.
It is concise and beautiful.

Define (see Fig. 1.1) Φ = {the set of all cells of T, except those in the
middle row}. Observe that no matter where a 1000 × 1000 square S is
placed in the table T, it intersects Φ in an even number of cells, because
there are 1000 equal columns in S. Observe also that no matter where a
1001 × 1001 square S’ is placed in T, it also intersects Φ in an even
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number of unit squares, because there are 1000 equal rows in S’ (one row is
always missing, since the middle row is omitted in S.)

Now we can easily create the required assignment of signs in T that cannot
be converted into all pluses. LetΦ have any assignment with an odd number
of + signs, and the missing inΦmiddle row be assigned signs in any way. No
series of operations can change the parity of the number of pluses in Φ, and
thus no series of allowed operations can create all pluses in Φ. ■

3. Utilizing Analogy

A sense of analogy could be a powerful tool. Here is one example from
(Soifer 2009–2).

Problem 2 Prove that a map formed in the plane by finitely many circles
can be 2-colored (Fig. 1.2).

Fig. 1.1 .

Fig. 1.2 .
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Proof We partition regions of the map into two classes (Fig. 1.3): those
contained in an even number of circles (color them gray), and those con-
tained in an odd number of circles (leave them white). Clearly, neighboring
regions got different colors because when we travel across their boundary
line, the parity changes. ■

I am sure you realize that the shape of a circle is of no consequence. We
can replace circles in problem 2 by simple closed curves. However, can we
replace simple closed curves by straight lines?

Problem 3 Prove that a map formed in the plane by finitely many straight
lines is 2-colorable (Fig. 1.4).

An inductive proof is well known, but, as is usually the case with proofs
by mathematical induction, it does not provide an insight. Decades ago I
found a ‘one-line’ proof that takes advantage of similarity between simple
closed curves and straight lines.

Proof Attach to each line a vector perpendicular to it (Fig. 1.5). Call the
half-plane inside if contains the vector, and outside otherwise. Repeat the
proof of problem 2 word-by-word to complete the proof (Fig. 1.6). ■

Fig. 1.3 .

Fig. 1.4 .
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4. Method and Anti-method

Tiling with Dominoes. (Method). Can a chessboard with two diagonally
opposite squares missing, be tiled by dominoes (Fig. 1.7)?

Solution. Color the board in a chessboard fashion (Fig. 1.8). No matter
where a domino is placed on the board, vertically or horizontally, it would
cover one black and one white square. Thus, it is necessary for tileability to
have equal numbers of black and white squares in the board—but they are
not equal in our truncated board. Therefore, the required tiling does not
exist. ■

It is impressive and unforgettable for a student to see for the first time
how coloring can solve a mathematical problem. However, I noticed that
once a student learns a coloring idea, s(he) always resorts to it when a
chessboard and dominoes are present in the problem. This is why I created
the following ‘Anti-Method’ Problem and used it in the Colorado Mathe-
matical Olympiad (Soifer 2011–2).

Fig. 1.5 .

Fig. 1.6 .

1 Goals of Mathematics Instruction … 13



The Tiling Game (Anti-method, 6th Colorado Mathematical Olympiad,
Soifer 1989). Mark and Julia are playing the following tiling game on a
1988 × 1989 chessboard. They in turn are putting 1 × 1 square tiles on
the board. After each of them made exactly 100 moves (and thus they

Fig. 1.7 .

Fig. 1.8 .

14 A. Soifer



covered 200 squares of the board) a winner is determined as follows: Julia
wins if the tiling of the board can be completed with dominoes. Otherwise
Mark wins. (Dominoes are 1 × 2 rectangles, which cover exactly two
squares of the board.) Can you find a strategy for one of the players allowing
him to win regardless of what the moves of the other player may be? You
cannot? Let me help you: Mark goes first!

Solution. Julia (i.e., the second player) has a strategy that allows her to
win regardless of what Mark’s moves may be. All she needs is a bit of home
preparation: Julia creates a tiling template showing one particular way, call it
T, of tiling the whole 1988 × 1989 chessboard with dominoes. Figure 1.9
shows one such tiling template T for an 8 × 13 chessboard.

The strategy for Julia is now clear. As soon as Mark puts a 1 × 1 tile
M on the board, Julia puts her template T on the board to determine which
domino of the template T contains Mark’s tile M. She then puts her 1 × 1
tile J to cover the second square of the same domino (Fig. 1.10). When each

Tiling template T for a 8 x 13 chessboard

13

8

Fig. 1.9 .

13

8

M
J

Fig. 1.10 Winning
strategy
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player makes 100 moves, 100 dominoes will be covered, and the template
T will show how to complete the tiling of the board. ■

5. Synthesis and Combinatorial Geometry

Secondary school mathematics consists predominantly of problems with
single-idea solutions, found by analysis. We ought to introduce a sense of
mathematical reality in the classroom by presenting synthesis, by offering
problems that require for their solution ideas from a number of mathematical
disciplines: geometry, algebra, number theory, trigonometry, linear algebra, etc.

And here comes Combinatorial Geometry to the rescue. It offers an
abundance of problems that sound like a ‘regular’ secondary school
geometry, but require for their solutions synthesis of ideas from geometry,
algebra number theory, trigonometry, ideas of analysis, etc. See for example
(Soifer 2009–1; 2009–3; 2011–1). Moreover, combinatorial geometry offers
us open-ended problems. It offers problems that any geometry student can
understand, and yet no one has yet solved! Let us stop this discrimination of
our students based on their young age, and allow them to touch and smell,
and work on ‘real’ mathematics and its unsolved problems. They may find a
partial advance into solutions; they may settle some open problems com-
pletely. And they will then know the answer to what ought to become the
fundamental questions of mathematical instruction: What is mathematics?
What do mathematicians do?

In fact, I would opine that every discipline is about problem solving. And
so the main goal of every discipline ought to be to enable students to learn
how to think within the discipline, how to solve problems of the discipline,
and finally what that discipline is about, and what the professionals within
the discipline do. And mathematics to all sciences does what gymnastic does
to all sports: Mathematics is gymnastics of the mind. Doing mathematics
develops a universal approach to problem solving and intuition that go a
long way in preparing our students for solving problems they will face in
their lives.

6. Open Ended and Open Problems

As a junior at the university, I approached my supervisor Professor Leonid
Yakovlevich Kulikov with an open problem I liked—he was my supervisor
ever since my freshman year. He replied, “Learn first, the time will come
later to enter research.” He meant well, but politically speaking, this was a
discrimination based on my young age. Seeing my disappointment, Kulikov
continued, “It does not look like I can stop you from doing research. All
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right, whatever results you obtain on this open problem, I will count as your
course paper.” Soon I received my first research results, and my life in
mathematics began.

We ought to allow our students to learn what mathematicians do by
offering them not just unrelated to each other exercises but rather series of
problems leading to a deeper and deeper understanding. And we ought to let
students ‘touch’ unsolved problems of mathematics, give them a taste of the
unknown, a taste of adventure and discovery. Combinatorial geometry
serves these goals well by providing us with easy-to-understand,
hard-to-solve—or even unsolved—problems. I will formulate here two
examples. You can find their solutions in my Springer books listed in
references.

Points in a Triangle (Soifer 2009–3). Out of any n points in or on the
boundary of a triangle of area 1, there are 3 points that form a triangle of
area at least ¼.

(a) Prove this statement for n = 9.

(b) Prove this statement for n = 7.

(c) Prove this statement for n = 5.

(d) Show that the statement is not true for n = 4, thus making n = 5 best
possible.

Chromatic Number of the Plane (Soifer 2009–1). No matter how the
plane is colored in n colors, there are two points of the same color distance 1
apart.

(a) Prove this statement for n = 2.

(b) Prove this statement for n = 3.

(c) Disprove this statement for n = 7.

(d) The answer for n = 4, 5, and 6 is unknown to man—this is a forefront of
mathematics!

7. Beauty of ‘Real’Mathematics Can Be Transplanted to Olympiads for
Secondary Schools

New Olympiad problems occur to us in mysterious ways. This problem
came to me one summer morning of 2003 as I was reading a never published
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1980s manuscript of a Ramsey Theory monograph, while sitting by a
mountain lake in Bavarian Alps. It all started with my finding a hole in a
lemma, which prompted a construction of a counterexample (part b of the
present problem). Problem (a) is a corrected particular case of that lemma,
translated, of course, into a language of a nice ‘real’ story of a chess tour-
nament. I found three distinct striking solutions of (a) and an even more
special solution of (b). As a result, this problem became for me the most
beautiful Olympiad problem I have ever created. What is more, the journey
that led me from Ramset Theory to problems of mathematical Olympiads,
continued to a mathematical problem of Finite Projective Planes! I will show
here only one of my three solutions—read other solutions in (Soifer 2004)
or (Soifer 2017).

Chess 7 × 7 (21st Colorado Mathematical Olympiad, April 16, 2004, A.
Soifer).

(a) Each member of two 7-member chess teams is to play once against each
member of the opposing team. Prove that as soon as 22 games have been
played, we can choose 4 players and seat them at a round table so that
each pair of neighbors has already played.

(b) Prove that 22 is the best possible; i.e., after 21 games the result of
(a) cannot be guaranteed.

Solution. This solution harnesses the power of combinatorics. In the
selection and editing process, Col. Dr. Bob Ewell suggested to use a 7 × 7
table to record the games played. We number the players in both teams. For
each player of the first team we allocate a row of the table, and for each
player of the second team a column. We place a checker on the table in the

Fig. 1.11 .
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location (i, j) if the player i of the first team played the player j of the second
team (Fig. 1.11).

If the required four players are found, this would manifest itself in the
table as a rectangle formed by four checkers, a checkered rectangle! (Sides
of the checkered rectangle are required to be parallel to the lines of the grid.)
The problem thus translates into the new language as follows:

A 7 × 7 table with 22 checkers must contain a checkered rectangle.

Assume that a table has 22 checkers but does not contain a checkered
rectangle. Since 22 checkers are contained in 7 rows, by the Pigeonhole
Principle, there is a row with at least 4 checkers in it. Observe that inter-
changing rows or columns does not affect the property of the table to have
or have not a checkered rectangle. By interchanging rows, we make the row
with at least 4 checkers first. By interchanging columns, we make all
checkers of the first row to appear consecutively from the left side of the
board. We consider two cases.

(1) Top column contains exactly 4 checkers (Fig. 1.12).

Draw a bold vertical line L after the first 4 columns. To the left from L,
top row contains 4 checkers, and all other rows contain at most 1 checker
each, for otherwise we would have a checkered rectangle (that includes the
top row). Therefore, to the left from L we have at most 4 + 6 = 10

Fig. 1.12 .
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checkers. This leaves at least 12 checkers to the right of L, thus at least one
of the three columns to the right of L contains at least 4 checkers; by
interchanging columns and rows we put them in the position shown in
Fig. 1.12. Then each of the two right columns contains at most 1 checker
total in the rows 2 through 5, for otherwise we would have a checkered
rectangle. We thus have at most 4 + 1 + 1 = 6 checkers to the right of L in
rows 2 through 5 combined. Therefore, in the lower right 2 × 3 part C of
the table we have at least 22 – 10 – 6 = 6 checkers—thus C is completely
filled with checkers and we get a checkered rectangle in C in contradiction
with our assumption.

(2) Top column contains at least 5 checkers (Fig. 1.13).

Draw a bold vertical line L after the first 5 columns. To the left from L,
top row contains 5 checkers, and all other rows contain at most 1 checker
each, for otherwise we would have a checkered rectangle (that includes the
top row). Therefore, to the left from L we have at most 5 + 6 = 11
checkers. This leaves at least 11 checkers to the right of L, thus at least one
of the two columns to the right of L contains at least 6 checkers; by inter-
changing columns and rows we put 5 of these 6 checkers in the position
shown in Fig. 1.13. Then the last column contains at most 1 checker total in
the rows 2 through 6, for otherwise we would have a checkered rectangle.
We thus have at most 5 + 1 = 6 checkers to the right of L in rows 2 through
6 combined.

Therefore, the upper right 1 × 2 part D of the table plus the lower right
1 × 2 part C of the table have together at least 22 – 11 – 6 = 5 checkers—

Fig. 1.13 .
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but they only have 4 cells, and we thus get a contradiction. ■

Solution of Part (b). Glue a cylinder (!) out of the board 7 × 7, and put
21 checkers on all squares of the 1st, 2nd, and 4th diagonals (Fig. 1.14
shows the cylinder with one such checkered diagonal; Fig. 1.15 shows, in a
plane representation, the cylinder with all three checkered diagonals).

Assume that 4 of the placed checkers form a rectangle on our 7 × 7
board. Since these four checkers lie on 3 diagonals, by the Pigeonhole
Principle, two checkers lie on the same (checkers-covered) diagonal D of the
cylinder. But this means that on the cylinder our 4 checkers form a square!
Two other (opposite) checkers a and b thus must be symmetric to each other
with respect to D, which implies that the diagonals of the cylinder that
contain a and b must be symmetric with respect to D—but no two
checker-covered diagonals in our checker placement are symmetric with
respect to D. (To see that, observe Fig. 1.16 which shows the top rim of the

Fig. 1.14 .
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cylinder with bold dots for checkered diagonals: distances between the
checkered diagonals measured in unit squares clockwise, are 1, 2, and 4.)
This contradiction implies that there are no checkered rectangles in our
placement. Done! ■

Observe: Obviously, any solution of part (b) can be presented in a form
of 21 checkers placed on a 7 × 7 board (see, for example, the left 7 × 7
part with 21 black checkers in Fig. 1.15). It is not at all obvious that the
solution is unique, i.e., by a series of interchanges of rows and columns, any
solution of this problem can be brought to match precisely the one I pre-
sented in Fig. 1.15! Of course, such interchanges mean merely renumbering
of players of the same teams.

The uniqueness of the solution of problem (b) is precisely another way of
stating the uniqueness of what is known in mathematics as the Projective

Fig. 1.15 .

Fig. 1.16 .
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Plane of Order 2, the so called “Fano Plane,” denoted by PG(2, 2). It was
named after Gino Fano (1871–1952), the Italian geometer who pioneered
the study of finite projective geometries.

The Fano Plane is an abstract construction, with symmetry (duality)
between points and lines: it consists of 7 points and 7 lines. You can think of
rows and columns of our 7 × 7 table as lines and points respectively, with 3
points on every line and 3 lines through every point. See in Fig. 1.17 a
traditional depiction of the Fano Plane where a circle depicts one of the
lines.

Observe that if on our 7 × 7 board we replace each of the 21 checkers by
1 and the rest of the squares fill with zeroes, we get the so-called Incidence
Matrix of the Fano Plane.

This problem reminds me Mary-Go-Round: it originates in a ‘real’
mathematics, Ramsey Theory, generates excitement of Olympiad kind, and
ends in another branch of ‘real’ mathematics, Finite Projective Planes!

Acknowledgements I thank Col. Dr. Robert Ewell for converting my
hand-drawn sketches into computer-aided illustrations.
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Chapter 2
From a Mathematical Situation
to a Problem

Francisco Bellot-Rosado

Abstract The approach to problems creation starting from a mathematical
situation is developed, with several examples of such situations and prob-
lems arising from this, with solutions (if the problem is not open).

Keywords Geometrical situation ⋅ Mathematical problem

2.1 Introduction

The teaching of mathematics on the basis of problem solving is a periodi-
cally repeated subject in ICMEs, as TG or WG. Within this general frame,
we will consider in this chapter an approach to problems creation that we
will call “From a mathematical situation to a problem”.

In Mathematical Competitions, the journal of the WFNMC, the question
of the creation of problems has been studied many times; in particular,
between 1986 and 1999, more than 20 papers on this subject were been
published. The paper by Engel (1987) The creation of mathematical
Olympiad Problems, starts with the following sentence:

Dedication: To Eduardo Wagner (SBM, Brazil), from whom I learned to go
from a mathematical situation to a problem or a theorem, and how to solve
them.

F. Bellot-Rosado (✉)
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e-mail: franciscobellot@gmail.com

© Springer International Publishing AG 2017
A. Soifer (ed.), Competitions for Young Mathematicians,
ICME-13 Monographs, DOI 10.1007/978-3-319-56585-9_2
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It is far more difficult to create problem than to solve it. There are very
few routine methods of problem creation. As far as I know no Polya
among problem creators who wrote a book with the title “How to
create it”.

When analyzing some examples of workshops about Learning based in
problems, we notice that, although the term “situation-problem” may be
used, the teacher actually presents a closed statement to the students. That is,
the teacher is helping the students to find a way to gather the details of the
solution of a problem from which the full statement is, sooner or later,
given. It’s clear that during the discussion, students can discover some
alternative statements which can became new problems, and this, no doubt,
improves the enrichment of the mathematical-didactical discussion which
must follow. In this sense, the treatment of the question given in the book
“Pour un enseignement problematisé des Mathématiques au Lycée” (2
vols.), APMEP, in French, no date of publication, a collective work of the
group “Problématiques Lycée”, is interesting.

To begin, we can take a look at an example included in the workshop
Aprendizaje basado en problemas (Learning based on problem-solving), by
Prof. Rolando Sáenz, from Ecuador. This example was presented in 2006 in
Salinas (Ecuador), during the Iberoamerican Symposium (with emphasis in
problem solving), a didactical activity prior to the Iberoamerican Mathe-
matical Olympiad.

Example 1.1 ABCD is a square. We take points M, N, O and P, respectively
in AB, BC, CD and DA, in a such manner that AM = BN = CO = DP.
Determine the point M such that the quadrilateral MNOP have maximal
area.

Maybe if the last sentence was changed to something like this: Consider
the quadrilateral MNOP, some other statements, equally interesting, would
emerge during the discussion. We invite the readers to try it by themselves.

Many times, the reading of a paper about problem creation will provide
some very interesting problems, but there are rarely many explanations on
how they were created, that is, what was the process which gave birth to the
problem.

We can now take a look at some characteristics which a good problem
should have. Gardiner (1992, p. 59) wrote this:

(a) The ingredients (of the problem) should be simple and familiar, but the
problem should not be of any standard type.

(b) No method of solution should be immediately obvious, but a careful
survey of the given information should suggest one or two promising
points of attack.
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(c) And exploratory phase should then reveal how (or whether) these
approaches can be exploited.

(d) The final solution when it emerges should, in retrospect, have an
unexpected elegance or conceptual simplicity.

Example 1.2 The positive numbers x, y and z satisfy

x2 + xy+ y2

3 = 25
y2

3 + z2 = 9
z2 + xz+ x2 = 16

Find the value of xy + 2yz + 3zx.
Note: The sources of the problems will be included in the solutions

section
The readers are invited to think about this statement and to try by

themselves the “promising points of attack” in the words of Gardiner.
As last part of this introduction, here is a quote of Branko Grünbaum in

his introduction to the book of Soifer (1990) How Does One Cut a
Triangle?.

Many people find mathematics attractive because it presents to the
mind the same challenge that other activities, such as sports, present to
the body. In mathematics, and specially in geometry, there are abun-
dance of topics that are accessible without much previous knowledge.
They present the exploring mind with opportunities to rise to that
challenge, and to experience the joy of discovery.

2.2 What Is a Mathematical Situation?

Searching in libraries, it is possible to find—at least—two types of books
which can be related to the topic of the chapter.

(1) Books where mathematical situations with problems are presented
(with or without solutions).

(2) Books where mathematical problems are discussed in detail, showing
what should be the way by which the solution must be presented to the
audience (much more detailed than the typical way in which the solution
seems to appears like riding a parachute, falling down from the sky).
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One of the earliest examples of books from type 1 is Geometry for
Advanced Pupils, by Maxwell (1949).

Dr. Maxwell presents here 47 configurations from which is possible to
deduce results, many problems and geometric properties of interest. He also
includes examples from the Oxford and Cambridge Examinations Papers.

An interesting paper, published in Quantum, January/February 2001 by
the late Prof. I. Sharygin, is Where do problems come from? (Sharygin
2001) (The art of problem composition). Sharygin explains in this paper
some of his own procedures for composing problems (Olympiad type): by
reformulation, problems built on other problems, considering special cases
of a theorem; varying the problem statement; by generalization of a problem
(or some result). And he says: However, the main source of new problems is
inquisitiveness, the desire to reveal the essence of a problem, the ability to
look at a well-known fact from an unusual point of view. This is when the
most interesting geometric problems appear, ones that can be called
discoveries.

Sharygin ends his paper with this assertion: You don’t have to be a
budding mathematical genius to make geometric discoveries—some prob-
lems show that any student can do it. And this includes you!

Another book of type 1 is Geometry in figures, by Akopyan (2011) (no
Editorial name, but the place is Lexington, KY). This is a collection of
theorems and problems of Euclidean geometry formulated in figures,
without text. This is a good illustration about what a geometrical situation is.
Recently (2015), the Union of Bulgarian Mathematicians published the
book by Dimitrov, Lichev and Chovanov 555 problems of Geometry (in
Bulgarian) with the solutions to the problems of the book by Akopyan.

To end with the examples of publications of type 1 it is worth mentioning
the book by Monk (2009). This is a very popular book among the partici-
pating countries in the IMO since it was published. The five categories of
problems of the book are E (easy), 18 problems; M (moderate difficulty), 20
problems; H (hard), 18 problems; C (Computational), 24 problems; and T
(Trigonometry), 18 problems.

For the books of Type 2 the situation seems to be better. There are many
publications about this subject (see the References section for more titles)
and some of them are really excellent. Here are a few examples:

Burns (2000).
Gardiner (1997).
Savchev and Andreescu (2003).
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Nevertheless, it seems there are not many titles in libraries and bookstores
which describe what a mathematical situation is. Paraphrasing Prof. Eduardo
Wagner, Brazilian expert in problem solving: As important as teaching
Mathematics is to create new problems, interesting and challenging.
Problems are new questions, of different aspect to the usual one and which
should stimulate the development of the reasoning. To create one problem a
big effort, enough time to try many attempts, and good luck are required.
With continued work and much reading, the ability to create problems is
developed and the ideas can emerge in our mind more easily. This work is
not different to other sciences or artistic work. To acquire any ability,
everybody needs specific training.

The “Office of creating problems”, promoted by the OEI (Iberoamerican
States Organization) in the years 1994 to 1997, is an introduction to the art
of creating problems. With its own methodology, the participants have the
opportunity of experimenting with real problem creation situations, and
they then developed their own methods.

A Mathematical situation is not yet a problem. It consists of a set of
mathematical objects, linked by some certain relations. With this basis, the
participants (in the Office) must investigate the properties of the proposed
situation, adding if necessary other elements, and to create one of more
problems. In this way, with the reasoning focused in a particular situation,
the activity was followed with the biggest interest by the participants and
some new problems of different degrees of difficulty were created. End of the
quote, taken from Wagner (1997).

Prof. Wagner was the coordinator of the “Office” in the years 1994, 1995
and 1996. The Mexican Prof. Alejandro Bravo was the coordinator in 1997.

The next section of the chapter provides examples of mathematical sit-
uations, which are deliberately left open, in order that readers can experi-
ment by themselves creating new problems (this would be truly excellent!).
In the subsequent sections, the problems arising from these situations are
presented and the section of detailed solutions will follow.
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2.3 Several Examples of Mathematical Situations

Situation 3.1 In the acute triangle ABC, let AM be the median (M belongs
to the side BC), and let AD be the internal bisector of angle A. (D belongs to
the side BC). From B the perpendicular to AD is drawn, meeting AD at J, to
AM at L and to AC at K.

Situation 3.2 The most important carpet seller of Orient is very worried.
His device to measure the carpets has been stolen and so he can’t measure
the new carpet recently received, for one of his best clients. The carpet is
rectangular, but the dimensions are unknown. If he display the carpet in the
floor of two of the rooms of his house, one after the other, in a convenient
way, the four corners of the carpet are located on each one of the 4 walls of
each room.

Situation 3.3 The quadrilateral ABCD has an inscribed circle, being K,
L. M and N the tangency points with the sides AB, BC, CD and DA,
respectively. The lines DA and CB intersect at S, and the lines BA and CD
intersect at P.

Situation 3.4 Let M and N be points of the side BC of the triangle ABC,
such that BM = CN (point M is located between B and N). Let P and Q be
points located respectively on AN and AM such that ∠PMC=
∠MAB and∠QNB=∠NAC.

Situation 3.5 Consider the sum ∑n
i=1 xiyi, where the values of the

2n variables x1, . . . , xn; y1, . . . , yn are only 0 either 1. Let I(n) be the
number of 2n-tuples x1, . . . , xn; y1, . . . , yn such that the sum is an odd
number, and P(n) the number of 2n-tuples x1, . . . , xn; y1, . . . , yn such that
the sum is an even number. Consider P nð Þ

I nð Þ .

Situation 3.6 In the triangle ABC, G is the point of intersection of the
medians and K the point of intersection of the symmedians. The lines AG
and AK intersect again the circumcircle of ABC atM and N, respectively. Let
P = BC∩GN, R = BC∩KM and S = GR∩KP.

Situation 3.7 The acute triangle ABC is inscribed in a circle. The point P is
inside the triangle. Lines AP, BP and CP intersect again the circumcircle of
ABC at X, Y and Z, respectively. Consider the triangle XYZ.

Situation 3.8 Consider the sequence of real numbers xnf g with x0 arbitrary
and xn+1 = 2 xnð Þ2 − 1.
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Situation 3.9 Lines r and s lie mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A∈ r, B∈ s). Consider the
sphere of diameter AB. The points M∈ r and N∈ s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.

Situation 3.10 Let ABC be a triangle inscribed in a circle, and I is the
incenter of the triangle. Lines BI and CI intersect again the circumcircle at
M and N, respectively. Line MN intersect AB at P and AC at Q, respectively.

Situation 3.11 With center in the incenter I of the triangle ABC, a circle is
drawn, intersecting in two points each side of the triangle: to BC at D and
P (being D the most near to B), to CA at E and Q (being E the most near to
C), and to AB at F and R (being F the most near to A). Let S be the point of
intersection of the diagonals of the quadrilateral EQFR, and T the point of
intersection of the diagonals of the quadrilateral FRDP. Finally, let U be the
intersection of the diagonals of the quadrilateral DPEQ.

Situation 3.12 ABCD is a convex quadrilateral, and M = AC∩BD. The
internal bisector of ∠ACD intersects BA at K. Suppose
MA ⋅MC + MA ⋅CD = MD ⋅MB.

2.4 Some Problems Arising from the Mathematical
Situations of Sect. 2.3

Problem 4.1 In the acute triangle ABC, let AM be the median (M belongs to
the side BC), and let AD be the internal bisector of angle A (D belongs to the
side BC). From B the perpendicular to AD is drawn, meeting AD at J, to AM
at L and to AC at K. Show that AB and DM are parallel.

Problem 4.2 The most important carpet seller of Orient is very worried. His
device to measure the carpets has been stolen and so he can’t measure the
new carpet recently received, for one of his best clients. The carpet is
rectangular, but the dimensions are unknown. If he display the carpet in the
floor of two of the rooms of his house, one after the other, in a convenient
way, the four corners of the carpet are located on each one of the 4 walls of
each room. If the sides of the first room are 55 and 50, and those of the
second room are 55 and 38, find the dimensions of the carpet.

Problem 4.3 The quadrilateral ABCD has an inscribed circle, being K, L. M
and N the tangency points with the sides AB, BC, CD and DA, respectively.
The lines DA and CB intersect at S, and the lines BA and CD intersect at P. If
S, K and M are collinear, prove that P, N and L are also collinear.
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Problem 4.4 Let M and N be points of the side BC of the triangle ABC,
such that BM = CN (point M is located between B and N). Let P and Q be
points located respectively on AN and AM such that ∠PMC=∠MAB and
∠QNB=∠NAC Would it be always true that ∠QBC=∠PCB?

Problem 4.5 Consider the sum ∑n
i=1 xiyi, where the values of the 2n vari-

ables x1, . . . , xn; y1, . . . , yn are only 0 either 1. Let I(n) be the number of
2n-tuples x1, . . . , xn; y1, . . . , yn such that the sum is an odd number, and P
(n) the number of 2n-tuples x1, . . . , xn; y1, . . . , yn such that the sum is an
even number. Show that P nð Þ

I nð Þ =
2n +1
2n − 1.

Problem 4.6 In the triangle ABC, G is the point of intersection of the
medians and K the point of intersection of the symmedians. The lines AG
and AK intersect again the circumcircle of ABC atM and N, respectively. Let
P = BC∩GN, R = BC∩KM and S = GR∩KP. Show that AGSK is a
parallelogram.

Problem 4.7 The acute triangle ABC is inscribed in a circle. The point P is
inside the triangle. Lines AP, BP and CP intersect again the circumcircle of
ABC at X, Y and Z, respectively. Determine the position of the point P for
that XYZ be equilateral.

Problem 4.8 Consider the sequence of real numbers xnf g with x0 arbitrary
and xn+1 = 2 xnð Þ2 − 1. Show that, if x0j j≤ 1, then xnj j≤ 1. Find a closed
expression for xn.

Problem 4.9.1 Lines r and s are mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A∈ r, B∈ s). Consider the
sphere of diameter AB. The points M∈ r and N∈ s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.
Show that TM.TN is constant.

Problem 4.9.2 Lines r and s are mutually orthogonal and do not are in the
same plane. Let AB be its common perpendicular (A∈ r, B∈ s). Consider the
sphere of diameter AB. The points M∈ r and N∈ s are variable, with the
condition that MN is tangent to the sphere. Let T be the point of tangency.
Determine the geometrical locus of the point T.

Problem 4.10 Let ABC be a triangle inscribed in a circle, and I is the
incenter of the triangle. Lines BI and CI intersect again the circumcircle at
M and N, respectively. Line MN intersect AB at P and AC at Q, respectively.
Show that IA is perpendicular to MN.

Problem 4.11 With center in the incenter I of the triangle ABC, a circle is
drawn, intersecting in two points each side of the triangle: to BC at D and
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P (being D the most near to B), to CA at E and Q (being E the most near to
C), and to AB at F and R (being F the most near to A). Let S be the point of
intersection of the diagonals of the quadrilateral EQFR, and T the point of
intersection of the diagonals of the quadrilateral FRDP. Finally, let U be the
intersection of the diagonals of the quadrilateral DPEQ. Show that the
circumcircles of the triangles FTR, DPU and EQS have one common point.

Problem 4.12 ABCD is a convex quadrilateral and M = AC∩BD. The
internal bisector of ∠ACD intersects BA at K. Suppose MA ⋅MC +
MA ⋅CD = MD ⋅MB. Show that ∠BKC=∠CDB.

2.5 Hints, Solutions and Comments to Some
of the Problems and Examples

2.5.1 Comment and Hint to Example 1.2

The right hand side of the three equations are numbers of a Pythagorean
triad. The left hand side of the equations represents the expressions of the
cosine law for some convenient angles. So, the advice is to locate one point
M inside a rectangle triangle with convenient sides in a such way the three
equations be fulfilled, and from this, evaluate more easily xy + 2yz + 3zx.

Source of the problem: Zhang Jung-da et al., Mathematics Competitions,
vol.10, number 2, 1997, pp. 52–63.

2.5.2 Solution to Problem 4.1

In the acute triangle ABC, let AM be the median (M belongs to the side BC),
and let AD be the internal bisector of angle A. (D belongs to the side BC).
From B the perpendicular to AD is drawn, meeting AD at J, to AM at L and
to AC at K. Show that AB and DM are parallel (Fig. 2.1).

Solution (by F. Bellot)
There is no loss of generality if we suppose that angle B is bigger than

angle C. First, being AD the internal bisector of angle A, ∠BAD= A
2. And as

BJ is perpendicular to AD, ∠ABJ =90◦ − A
2. The same argument in the

triangle AJK gives us ∠AKJ =90◦ − A
2. Then, triangle ABK is isosceles and

AK = AB = c. From this, we get KC = b – c.
To prove that AB and DM are parallel, it is enough to prove that AMME = BD

DE,
and the theorem of Thales will finish the problem.
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First we will compute BD
DE. From the angular bisector theorem, we have

BD= ac
c+ b. As E is the midpoint of BC, we have DE=BE−BD= a b− cð Þ

2 c+ bð Þ,

therefore BD
DE = 2c

b− c.
To compute AM

ME, we can use the Menelaus theorem in triangle AEC with
the transversal KMB:

AM
ME ⋅ EB

BC ⋅ CK
KA =1⇔ AM

ME = 2c
b− c, and we are done. ∎

Source of the problem: Course on Euclidean Geometry I, University of
Costa Rica, 2012.

2.5.3 Solution of Problem 4.2

The most important carpet seller of Orient is very worried. His device to
measure the carpets has been stolen and so he can’t measure the new carpet
recently received, for one of his best clients. The carpet is rectangular, but
the dimensions are unknown. If he display the carpet in the floor of two of
the rooms of his house, one after the other, in a convenient way, the four
corners of the carpet are located on each one of the 4 walls of each room. If
the sides of the first room are 55 and 50, and those of the second room are
55 and 38, find the dimensions of the carpet.

Solution by María Ascensión López Chamorro, Valladolid (Spain)
We will solve the problem in a more general context, and then will apply

it to the case of the carpet with the given numerical measures.

Fig. 2.1 Figure for
Problem 4.1
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Let ABCD be a rectangle, and let XYZT be another rectangle, inscribed in
the first, with Z on the side AB, T on BC, X on CD and finally Y on DA
(Fig. 2.2).

Suppose AB = CD = l1; AD = BC = l2; XY = ZT = a; YZ = TX = b.
(In terms of the problem, a, b are the dimensions of the carpet; l1, l2 those of the
room).

Triangles XDY and ZBT are congruent, also YAZ and TXC. This means

XC=AZ = z ;XD= ZB= t;DY =BT = x;AY =TC= y

But moreover triangles XDY and YAZ are similar, and then t
y =

x
z =

a
b.

This proportion can be written as bt= ay; bx= az; and moreover the
equalities z+ y= l1 and x+ y= l2 holds.

From this we obtain the two relations bx
a + ay

b = l1; x+ y= l2 and solving
them in the unknowns x and y gives us a

b −
b
a

� �
y= l1 − b

a l2;
b
a −

a
b

� �
x=

l1 − a
b l2.

The final expressions for x, y, z, t are the following:

x=
a al2 − bl1ð Þ
a2 − b2

; y=
b al1 − bl2ð Þ
a2 − b2

; z=
b al2 − bl1ð Þ
a2 − b2

; t=
a al1 − bl2ð Þ
a2 − b2

.

But by Pythagora’s Theorem, x2 + t2 = a2; y2 + z2 = b2. Both equalities

given the same equation: al2 − bl1
a2 − b2

� �2
+ al1 − bl2

a2 − b2
� �2

= 1; and developing, order-
ing and simplifying this can be written as

a2 + b2
� �

l21 + l22
� �

− 4l1l2ab= a2 − b2
� �2ð*Þ

Fig. 2.2 First figure
for Problem 4.2
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If the rectangle XYZT also can be inscribed in another rectangle with
dimensions m1 and m2, the same reasoning allows us to writing a second
equation

a2 + b2
� �ðm2

1 +m2
2Þ− 4m1m2ab= a2 − b2

� �2
**ð Þ

Substracting (*) and (**) we get

a2 + b2
� �ðl21 + l22 −m2

1 −m2
2Þ− 4abðl1l2 −m1m2Þ=0.

In order to simplify the notation we define

k= l12 + l22 −m2
1 −m2

2; h= l1l2 −m1m2; and u= b ̸að Þ.

With this we have the quadratic equation in u

1+ u2
� �

k− 4uh=0⇔ ku2 − 4uh+ k=0

u=
2h±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2 − k2

p

k
.

Now we make the computations with the data of the problem (crossing
the fingers!):

l1 = 55; l2 = 50;m1 = 55; m2 = 38.

We get in sequence:

k=88 ⋅ 12; h=55 ⋅ 12

4k2 − h2 = 2h+ kð Þ 2h − kð Þ=122 ⋅ 112 ⋅ 62

u=2 or ð1 ̸2Þ

and from this,

x=20; t=15⇒ a=25, b=50

and for the second rectangle we get

x1 = 7; t1 = 24⇒ a=25, b=50,

and so the same carpet can be placed in both rooms (Fig. 2.3). ∎
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Source of the problem: Course on Euclidean Geometry I, University of
Costa Rica, 2012.

2.5.4 Solution of the Problem 4.3

The quadrilateral ABCD has an inscribed circle, being K, L. M and N the
tangency points with the sides AB, BC, CD and DA, respectively. The lines
DA and CB intersect at S, and the lines BA and CD intersect at P. If S, K and
M are collinear, prove that P, N and L are also collinear.

Source of the problem: Belarusian Math Olympiad 1996 (TST). In the
booklet of this Olympiad no authorship attribution of the problem is given.
In the booklet the solution of the student M. Vronski, given during the test (a
long but nice metrical solution) is published. Some time after the 2002
Melbourne Conference of the WFNMC, where I presented this problem, I
received the following solution:

Solution (by Andy Liu)
Let O be the centre of the circle and r its radius. Then OS and LN are

perpendicular and let them meet at R. Also, OP and SKM are perpendicular
and let them meet at Q. Since triangles OLR and OSL are similar, we have
OS.OR = r2. Similarly, OP.OQ = r2. Hence PQRS is cyclic. Now,
∠PRS=∠PQS=90◦ =∠NRS. It follows that L, N and P are collinear. ∎

Fig. 2.3 Second figure
for Problem 4.2
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2.5.5 Solution of the Problem 4.4

LetM and N be points of the side BC of the triangle ABC, such that BM = CN
(point M is located between B and N). Let P and Q be points located
respectively on AN and AM such that ∠PMC=∠MAB and∠QNB=∠NAC
Would it be always true that ∠QBC=∠PCB?

Source of the problem: National round of the Spanish Mathematical
Olympiad 2015, Problem 6 (Fig. 2.4).

Solution (official solution, slightly edited by F. Bellot)
The key idea of this solution is to consider the circles (BNQ) and (PMC).

If AM meet again the circle (BNQ) at X, and AN meet again the circle (PMC)
at Y, its trivial that quadrilaterals BQNX and MPCY are cyclic. But being
∠QBC=∠QBN and∠PCB=∠PCM, then the angles of the problem will be
equal if ∠QBN =∠PCM

But ∠QBN =∠QXN =∠MXN and∠PCM =∠PYM =∠NYM

Then, the problem will be solved in affirmative sense if we prove the
equality

∠MXN =∠NYM

and this means than the four points M, N, Y, X belong to the same circle.
So, we will try to prove that

AM ⋅AX =AN ⋅AY⇔
AM
AN

=
AY
AX

ð2:5:5:1Þ

B

O

Fig. 2.4 Figure for
Problem 4.4
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Our argument is the following:

Triangles ABM and CAN have the same area, because their basis are equal
by hypothesis and their altitudes from A are the same. So we have

AM ⋅AB ⋅ sin α=AN ⋅AC ⋅ sin β ð2:5:5:2Þ

where α=MAB; β=NAC.
For another hand, two of the angles of the triangle ABX are α, and

∠BXQ=∠QNB= β in circle BNQð Þ
Similarly, two angles of triangle ACY are β and α. Therefore triangles

ABX and ACY are similar, and we can write down the proportionality
between the homologous sides as

AY
AX

=
CY
AB

. ð2:3Þ

Finally, using the sinus law in triangle ACY, we get

AC
sin α

=
CY
sin β

⇔
sin β

sin α
=

CY
AC

and (2.5.5.2) can be written as

AM
AN

=
AC ⋅ sin β

AB ⋅ sin α
=

AC
AB

⋅
CY
AC

=
CY
AB

= by(3) =
CY
AC

and we are done. ∎

2.5.6 Solution to Problem 4.5

Consider the sum ∑
n

i=1
xiyi, where the values of the 2n variables

x1, . . . , xn; y1, . . . , yn are only 0 either 1. Let I(n) be the number of 2n-tuples
x1, . . . , xn; y1, . . . , yn such that the sum is an odd number, and P(n) the
number of 2n-tuples x1, . . . , xn; y1, . . . , yn such that the sum is an even
number. Show that P nð Þ

I nð Þ =
2n +1
2n − 1.

Source of the problem: This problem, created jointly by the Mexican
mathematicians Gerardo Raggi and Humberto Cárdenas, was awarded with
the Second Prize in the First Iberoamerican Contest of Creation of Problems,
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organized by the O.E.I. (Organization of Iberoamerican States for the
Education, the Science and the Culture). Before this award were announced,
the problem was included in the shortlist presented to the International Jury
of the XII Iberoamerican Mathematical Olympiad, held at Guadalajara,
Jalisco, Mexico, September 1997, and proposed to the students as problem
number 4.

Official solution

First observe that for each natural number n, the recursive formula P
(n + 1) = 3P(n) + 1 holds. This is so, because in any 2n-uple in which the
value is even, there are three possibilities of to choose the couple (xn+1,
yn+1) to obtain one 2(n + 1)-uple such that the value still be even; and
starting with one 2n-uple such that the value is odd, there are only one way
to choose the couple (xn+1,yn+1)—both values equal to 1—to complete to
get an even value.

Analogously we have I(n + 1) = 3I(n) + P(n).
We will use these recursive formulas and the induction over n to get the

result.
The proposition is true if n = 1, because P(1) = 3 and I(1) = 1.
Suppose the result true for some n≥ 1 and we will prove it for n + 1. We

have

P n+1ð Þ
I n+1ð Þ =

3P nð Þ+ I nð Þ
3I nð Þ+P nð Þ =

3 2n +1
2n − 1

� �
+1

3+ 2n +1
2n − 1

� � =
3 ⋅ 2n +3+2n − 1
3 ⋅ 2n − 3+ 2n +1

=
4 ⋅ 2n +2
4 ⋅ 2n − 2

=
2n+1 + 1
2n+1 − 1

.

∎

2.5.7 Solution to Problem 4.6

In the triangle ABC, G is the point of intersection of the medians and K the
point of intersection of the symmedians. The lines AG and AK intersect
again the circumcircle of ABC at M and N, respectively. Let P = BC∩GN,
R = BC∩KM and S = GR∩KP. Show that AGSK is a parallelogram.

Source of the problem: Problem proposed by Spain to the International Jury
of the 12th Iberoamerican Math. Olympiad. The Problem selection com-
mittee changed the statement to the problem, changing barycenter and
Lemoine’s point by circumcenter and orthocenter, making it more easy. This
is the originally proposed problem.
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Solution by F. Bellot (Fig. 2.5).
Let E = BC∩AG, F = BC∩AK, L = AB∩CK and T = AC∩BK.
Taking account that cevians AE and AF are isogonal, the arcs BM and NC

in the circle (ABC) are equal. From this we have that angles AEC and AMN
are supplementary, due to the equalities

∠AEC=
1
2

arcAC+ arcBMð Þ; ∠AMN =
1
2
arcAN =

1
2

arcAC+ arcNCð Þ

This means that EF is parallel to MN, and as a consequence,

EM
AM

=
FN
AN

. ð2:5:7:1Þ

Fig. 2.5 Figure for Problem 4.6
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For another hand, the power of point E with respect to the circle cir-
cumscribed to ABC can be written in two different ways:

AE ⋅EM =
BC2

4
,

Hence

EM =
BC2

4 ⋅AE
. ð2:5:7:2Þ

From (2.5.7.2) we get

AM =
4 ⋅AE2 +BC2

4 ⋅AE
,

whence, taking account that

AE2 =
2 AB2 +AC2ð Þ−BC2

4
,

we get

AM =
AB2 +AC2

2 ⋅AE
. ð2:5:7:3Þ

From (2.5.7.2) and (2.5.7.3) we obtain

EM
AM

=
BC2

2 AB2 +AC2ð Þ , ð2:5:7:4Þ

and by (2.5.7.2), we can write down

FN
AN

=
BC2

2 AB2 +AC2ð Þ . ð2:5:7:5Þ

As the cevians AF, CL and BT are concurrent at K, the Van Aubel
theorem allow us to write

AK
KF

=
AL
LB

+
AT
TC

;
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and by the Theorem of the Symmedian,

AL
LB

=
AC2

AB2 ;
AT
TC

=
AB2

AC2 .

So we get

AK
KF

=
AB2 +BC2

BC2 . ð2:5:7:6Þ

For another hand, the Menelaus theorem applied to the triangle AEF with
the transversal KM gives us

ER
RF

=
AK
KF

⋅
EM
AM

.

From this, with (2.5.7.4) and (2.5.7.6), we obtain EF
RF = 1

2, and as EG
GA = 1

2
we have

EF
RF

=
EG
GA

ð2:5:7:7Þ

and therefore GR is parallel to AF, whence GS is parallel to AK (2.5.7.8).
Again the Menelaus theorem at AEF with GN gives us

EP
PF

=
AN
FN

⋅
GE
AG

,

which with (2.5.7.5) gives us

EP
PF

=
AK
KF

,

and this means KP is parallel to AE, or that is the same, KS parallel to AG
(2.5.7.9).

So (2.5.7.8) and (2.5.7.9) proves that AGSK is a parallelogram. ∎

2.5.8 Comments and Solution to Problem 4.7

The acute triangle ABC is inscribed in a circle. The point P is inside the
triangle. Lines AP, BP and CP intersect again the circumcircle of ABC at X,
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Y and Z, respectively. Determine the position of the point P for that XYZ be
equilateral.

Comments

This problem, created in the Symposium held immediately before the IXth
Iberoamerican Math. Olympiad 1994, was included in the exam as problem
4. The solution below—slightly edited—was obtained by a Portuguese
student, Joao Menano, during the contest (Fig. 2.6).

Solution

Consider, for instance, the side AB and the diameter of the circle (ABC)
which is parallel to this side. Point C, then, must belong to the opposed
semicircle to that in which A and B are located, because triangle ABC is
acute. The same observation is valid for any other couple of vertices. Then
we can forget the point C. We will find all the points P such that γ = 120º.
This condition is obviously necessary and sufficient for that X and Y be two
vertices of the equilateral triangle XYZ (the center of the equilateral triangle
must to be the center of the circle).

We have ∠YOB=2 ⋅ ∠YAB and∠XOA=2 ⋅ ∠XBA. In order to get
∠XOY =120◦. We need that

∠XOY +∠YOB+∠AOB+∠AOX =360◦

∠AOB=180◦ −∠OAB−∠OBA.

Fig. 2.6 Figure for
Problem 4.7
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Observing the Fig. 2.4, this means

2α+2β=60◦ + ε+ δ⇒ α+ β=
60◦ + ε+ δ

2
.

The set of points P which verify this last equation are the points of an arc
of circle through A and B with this measure. By means of this construction
we get an arc of circle to which P belongs. Repeating this construction using
other vertices, say B, C, we will get another arc of circle. The intersection of
both arcs gives the position of searched point P. ∎

2.5.9 Solution to the Problems 4.8

Consider the sequence of real numbers xnf g with x0 arbitrary and
xn+1 = 2 xnð Þ2 − 1. Show that, if x0j j≤ 1, then xnj j≤ 1. Find a closed formula
for xn.

Solution by F. Bellot
If x0j j≤ 1, we can write x0 = cos θ, for some θ∈ 0, π½ Þ.
Then we get x1 = 2 cos2 θð Þ− 1= cos 2θ, and x1j j≤ 1. Continuing in this

approach, we obtain x2 = cos 22θð Þ, and by induction we can prove that
xn = cos 2nϑð Þ, and we are done the two proposed problems. ∎

2.5.10 Solution to Problems 4.9.1 and 4.9.2

Lines r and s are mutually orthogonal and do not are in the same plane. Let
AB be its common perpendicular (A∈ r, B∈ s). Consider the sphere of
diameter AB. The points M ∈ r and N∈ s are variable, with the condition
that MN is tangent to the sphere. Let T be the point of tangency. Show that
TM.TN is constant. Determine the geometrical locus of the point T.

Both problems were also created during the Symposium on Creating
problems, previously to the 10th Iberoamerican Mathematical Olympiad,
Chili 1995. The problem was chosen by the International Jury and proposed
to the students as problem 3 (Fig. 2.7).

First we will prove that TM.TN is constant (this part was not included in
the text of the problem 3 of the Iberoamerican Olympiad 1995).The picture
can be simplified a bit (Fig. 2.8):
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The argument is by Eduardo Wagner. If we take AB = 2, MA = MT = x,
NB = NT = y, then we get

NM2 =NB2 +BM2 ⇔ x+ yð Þ2 = y2 + 4+ x2⇔ xy=2

∎
Going back to the Fig. 2.7, we will give an analytical solution of the

problem. (Solution by F. Bellot during the Symposium).
Suppose AB = 2. We will choose the midpoint O of AB as origin of a

Cartesian system of coordinates in the space, the line AB will be the x axis;
the line through O parallel to the line s as “y” axis; and the perpendicular to
the plan xy through O (upwards) as “z” axis. OB is the positive “x” axis.

The equation of the sphere is x2 + y2 + z2 = 1; the equations of the line
r are x= − 1, y=0ð Þ; the equations of the line s are x=1, z=0ð Þ and the
coordinates of points M and N are M − 1, 0,mð Þ,N 1, n, 0ð Þ.

Fig. 2.7 Figure for
Problem 4.9.1

Fig. 2.8 Figure for
Problem 4.9.2
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The equations of the line MN are x+1
− 2 = y

− n =
z−m
m = t.

The condition of tangency of the lineMN with the sphere is 4 =m2n2, that
is mn=±2.

If mn = 2, the coordinates of the tangency point T are
m2 − 2
m2 + 2 ,

2m
m2 + 2 ,

2m
m2 + 2

� �
and as the second and third coordinates of T are the

same, this means that T belong to the plane of equation y = z, and so this
plane contain the line AB and make an angle of 45º with the plan xy.

If mn = –2, the plane to which T belongs is y = –z, which is orthogonal
to the first one. Both planes pass through the center of the sphere, and
intersect it following two maximal circles through A and B, forming angles
of 45º with the plan xy. ∎

2.5.11 Solution to Problem 4.10

Let ABC be a triangle inscribed in a circle, and I is the incenter of the
triangle. Lines BI and CI intersect again the circumcircle at M and N,
respectively. Line MN intersect AB at P and AC at Q, respectively. Show
that IA is perpendicular to MN.

Source of the problem: Problem created during the Third Iberoamerican
Workshop about the creation of problems, held in San José, Costa Rica,
Sept. 1996, just before the 11th Iberoamerican Math Olympiad (Fig. 2.9).

Fig. 2.9 Figure for
Problem 4.10
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Let L be the midpoint of the arc BC which do not contains A. The per-
pendicular line from N on LA intersects AL at T. The perpendicular line from
N on ML intersects ML at W. Note that I is the orthocenter of the triangle
LMN. The lineWT is parallel to AC, and therefore is the line of the statement
of the problem.

Now, if from N draw the perpendicular to AM, intersecting AM at X, the
Simson line of N with respect to the triangle AML is the line which pass
through T and W, that is, X = AM∩ TW. ∎

2.5.12 Solution to Problem 4.11

With center in the incenter I of the triangle ABC, a circle is drawn, inter-
secting in two points each side of the triangle: to BC at D and P (being D the
most near to B), to CA at E and Q (being E the most near to C), and to AB at
F and R (being F the most near to A). Let S be the point of intersection of the
diagonals of the quadrilateral EQFR, and T the point of intersection of the
diagonals of the quadrilateral FRDP. Finally, let U be the intersection of the
diagonals of the quadrilateral DPEQ. Show that the circumcircles of the
triangles FTR, DPU and EQS have one common point.

Source of the problem: The problem was created during the 4th Workshop of
Creation of problems, held in Guadalajara, Jalisco, Mexico in September of
1997, just before the 12th Iberoamerican Mathematical Olympiad. The
workshop was conducted by Prof. Alejandro Bravo. The problem was chosen
by the International Jury and proposed to the students as problem number 3.

Solution by Alejandro Bravo.
As S belongs to the bisector of angle A of triangle ABC, the angles QIS

and SIF are equal. But angle QIF = 2(angle SIQ) is a central angle in the
circle, and QES is inscribed and subtend the same arc FQ; therefore angle
QES = angle SIQ and the four points Q, S, I and E are concyclic (Fig. 2.10).

Fig. 2.10 Figure for
Problem 4.11
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The same argument proves that U belong to this same circle. Repeating
the reasoning, the circles circumscribed to the triangles DPU, EQS and FRT
pass through the incenter I of the triangle ABC. ∎

2.5.13 Solution of the Problem 4.12

ABCD is a convex quadrilateral and M = AC∩BD. The internal bisector of
ACD intersect BA at K. Suppose MA ⋅MC + MA ⋅CD = MD ⋅MB. Show
that ∠BKC=∠CDB.

Source of the problem: Course of Euclidean Geometry 1, University of
Costa Rica.

Solution by F. Bellot
First we will draw a figure in such a way that it meet the conditions of the

statement of the problem (Fig. 2.11):
Drawing first the dotted circle, choose on it arbitrary points B, C and

D. Choosing then the angle KCD, with K on the circle, joining K with B we
will get the straight line where the point A must to be. Then, with the
protractor the angle KCA equal to the angle KCD is drawn (because CK is
the bisector of ACD) and so the position of the point A is determinate.

The thesis of the problem is equivalent to say that the points B, C, D and
K are in the circle (and this justify the drawing) and furthermore gives an
interpretation of the strange condition

MA ⋅MC+MA ⋅CD=MD ⋅MB ð2:5:13:1Þ

Fig. 2.11 Figure for
Problem 4.12
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given in the statement of the problem.
First at all, as R is the foot of the internal bisector CK of triangle MDC,

we have, by the internal bisector theorem,

RM
RD

=
MC
CD

⇒CD=
MC ⋅RD

MR
.

The value of CD is substituted in (2.5.13.1):
MA ⋅MC+MA ⋅ MC ⋅RD

MR =MD ⋅MB.
The left hand side can be written in the form

MA ⋅MC ⋅ 1+ RD
MR

� �
=MD ⋅MB, i.e.

MA ⋅MC ⋅
MR+RD

MR
=MD ⋅MB⇔MA ⋅MC ⋅

MD
MR

=MD ⋅MB

which reduces to MA ⋅MC
MR =MB⇔MA ⋅MC=MR ⋅MB. This last equality

warranty that the points B, C, A and R are in the same circle (not drawn in
the picture above), and therefore the angles BAC and BRC are equal.

Consider now the triangles KAC and DRC. Both have equal the angle
C (because CK is the bisector of angle ACD), and for another hand
∠KAC=∠DRC, because they are supplementary of the equal angles
∠BAC=∠DRC. Therefore the third angles in both triangles should to be
equal, that is ∠BRC=∠BDC, and we are done. ∎
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Chapter 3
Techniques for Solving Problems
of Plane Geometry

K.P. Shum

Abstract In this paper, we present some problems in plane geometry,
which can be solved by using analytic geometry and quadratic equations.
Some of these problems have been taught to the high school students who
participated the preliminary HKIMO committee selection contest.
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3.1 Introduction

In many national and regional mathematical competitions of high school
mathematics, there are always problems in plane geometry in the exami-
nation. Usually, these problems are related with the collinear points, con-
cyclic points, the mid points, Angle bisectors, the centroid, the orthocenter,
the circumcenter, the in-center and some of the inequalities. Because many
students face difficulty in proceeding with proof to unfamiliar problems in
the contest, we (therefore) advise the students first to write down the
coordinates of the points in the given diagram.

The students are encouraged to use analytic geometry to tackle the
problem in case they fail to provide a proof for the given problem. We also
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observe that there are a number of geometry problems of IMO type, which
can be solved by using the relationship of roots and coefficients and the
discriminant of a quadratic equation. There are also plane geometry prob-
lems related to collinear points and concyclic points. In this paper, we will
present some interesting problems to demonstrate the applications of some
well known plane geometry theorems and techniques. We also propose
some exercises to the readers.

3.2 Plane Geometry Problems (Moise 1990; Encyclopedia
of the Solutions of Mathematics Problem 1983; Some
Geometry Problems in Mathematical Olympiad
Competitions 2015; Encyclopedia of Solved Problems
2016), Which Can be Solved by Analytic Geometry

In this section, we first present the following problems.

Example 2.1 In the following diagram, AD is the angle bisector of ∠A of the
▵ABC, AM is the median of ▵ABC. BF is the perpendicular line passing
through the point B to meet the X-axis at F. Assume that the angle bisector
of ∠BAF meets BF at E. Join ED and prove that ED ̸ ̸ AB (Diagram 3.1).

Proof Let ABj j=2c, ACj j=2b and ∠CAB=2θ. Let the coordinates of M
be ðXM , YMÞ.

Then, we have

Diagram 3.1 .
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B ð2c cosθ, 2c sinθÞ,
C ð2b cosθ, − 2b sinθÞ,
XM = b+ cð Þcosθ,
YM = ðc− bÞsinθ

Let the coordinates of E be ðXE, YEÞ. Then XE =2c cosθ.

Because the points A, M, E are collinear, we have
c− bð Þsinθ
c+ bð Þcosθ =

YE
2c cos θ

,

YE =
2cðc− bÞ
c+ b

sinθ. Now, let the coordinates of D be ðxD, 0Þ. Notice that the
points B, D, C are collinear, and therefore the slopes of BC and BD are the

same. We have
2 c+ bð Þsinθ
2 c− bð Þcosθ =

2c sinθ
2c ⋅ cosθ−XD

, and hence XD =2c,

cosθ−
2c c− bð Þ
c+ b

cosθ=
4bc
b+ c

cosθ.

The slope of the line AB is obviously KDE = tanθ.

Compute the slope of DE, we have KDE =

2c c− bð Þ
c+ b

sinθ

2c cosθ−
4bc cosθ
c+ b

=

c− b
c+ b− 2b

tan θ= tanθ.

Because KDE =KAB = tanθ, therefore DE ̸ ̸ AB.

Example 2.2 To Prove that two lines AB and CD are perpendicular. We
usually use the product of their slope is equal to −1 that is, KAB ⋅KCD = − 1

In the following trapezoid (Diagram 3.2),
Given AB+CD=BC, DP=PA. Prove that PB⊥PC

Proof We simply let B= ð0, 0Þ, A= ða, 0Þ, C= ðb, cÞ, D= ðb+ d, cÞ
Diagram 3.2 See
Encyclopedia of the
Solutions of
Mathematics Problem
(1983), problem 62
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Because it is given that AB+CD=BC, we have a+ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + c2

p

Thus, we get ða+ dÞ2 − b2 = c2. This means that the coordinates of the

point P are
a+ b+ d

2
,
c
2

� �
The planes of BP and CP are

mCP =

c
2

b−
1
2

b+ a+ dð Þ
=

c
b+ a+ d

,

mBP =

c
2
1
2

ða+ b+ dÞ

=
c

b+ a+ d
.

Hence, we have mBP ⋅mCP =
c2

b2 − a+ dð Þ2 =
c2

− c2
= − 1. This shows

that PB⊥PC.
The proof is completed.

The following example shows that we sometimes need to assign the
coordinates of the points in the diagram with some suitable numbers.

Example 2.3 Given a square ABCD. Draw a line through the corner point
D parallel to the diagonal CA of the square. On the bisector of the second
quadrant of the X-Y plane, find the point E so that CE=CA. Join the points
C and E to meet AD at F. Prove that AEj j= AFj j.

A B

CD

E F

y

x

Diagram 3.3 .
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Consider the above diagram (Diagram 3.3),

Proof In Diagram 3.3, the coordinates of A 0, að Þ, B a, 0ð Þ, Cða, 0Þ, Dð0, 0Þ.
Because CA ̸ ̸DE, the point E lies in the bisector of the second quadrant

of the X–Y plane, we can write E= ðx, − xÞ, ðx<0Þ.
According to the give condition, we have CEj j= ACj j= ffiffiffiffiffi

2a
p

, hence we

deduce that x− að Þ2 + x2 = 2a2 and so x=
a
2

1−
ffiffiffi
3

p� �
. Therefore, the

coordinates of E is
a
2

1−
ffiffiffi
3

p� �
,
a
2

ffiffiffi
3

p
− 1

� �h i
. Let the coordinates of F be

ð0, yÞ. Because the points E, F, C are collinear, we have

a
2

1−
ffiffiffi
3

p� � a
2

ffiffiffi
3

p
− 1

� �
1

0 y 1
a 0 1

�������
�������=0.

Therefore,
a
2
y

ffiffiffi
3

p
+1

� �
⋅
a2

2

ffiffiffi
3

p
− 1

� �
=0, and hence we find

y= ð2− ffiffiffi
3

p Þa.
Thus,

AEj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4

ffiffiffi
3

p
− 1

� �2
+

3a2

4

ffiffiffi
3

p
− 1

� �2
r

=
ffiffiffi
3

p
− 1

� �
a

Therefore, AEj j= AFj j.
In closing this section, we propose the following exercise.

Exercise 2.4 (See Encyclopedia of the Solutions of Mathematics Problem
(1983), problem 61) Let ABC be a triangle. Construct a square ABDE on AB
and another square ACFG on AC. Suppose that K and L are the centers of
these two squares. Also, let M be the midpoint of the side BC in ▵ABC.
Prove that KM ⊥ LM.

Hint

(I) First draw Diagram 3.4. Put the point A on the y-axis and the line BC
on the x-axis. Thus, we have

A= ð0, aÞ, B= ðb, 0Þ, C= ðc, 0Þ, M =
b+ c
2

, 0
� �

.

Let the center L of the square ACFG be ðx, yÞ.

3 Techniques for Solving Problems of Plane Geometry 59



(II) Observe that AL⊥CL and jALj= jCLj. Then we use the fact that the
product of the slope ofAL and the slopeCL is equal to –1. Thus, we have

y− a
x

⋅
y

x− c
= − 1.

Hence, we deduce that x2 + y− að Þ2 = x− cð Þ2 + y2.
Solving the above equation, we get the following set of equations

x=
1
2
ðc− aÞ

y=
1
2
ða− cÞ

;
x=

1
2
ðc+ aÞ

y=
1
2
ðc+ aÞ

8><>:
8><>:

(III) Now, according to the position of L in the diagram, we can let the

coordinate of the point L be
c+ a
2

,
c+ a
2

� �
.

Similarly, the coordinate of the point K is
b− a
2

,
a− b
2

� �
.

(IV) Calculate the length of ML, we have

MLj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c+ a
2

−
c+ b
2

� �2

+
c+ a
2

� �2
s

=
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a− bð Þ2 + a+ cð Þ2

q

Diagram 3.4 .
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This shows that MLj j= MKj j
(V) Calculate

mmL ⋅mmx =

c+ a
2

c+ a
2

−
b+ c
2

⋅

a− b
2

b− a
2

−
b+ c
2

= − 1

Hence KM ⊥ LM and the proof is completed.

3.3 Lattice Points and Collinear Points (see Liu 1979)

A point A is called a lattice point if the coordinates of A are integers.
A triangle ABC is called a lattice triangle if the points A, B, C are lattice
points.

The following theorem is easy to prove.

Theorem 3.1 A lattice triangle is not an equilateral triangle.

Proof Suppose on the contrary that the lattice triangle ABC is an equilateral
triangle. We first move the equilateral triangle to a new position so that one
of its vertices A is the point of origin of the XY coordinate plane, namely
A= ð0, 0Þ. Now, let B= ðm1, n1Þ, C= ðm2, n2Þ.

Because ▵ABC is an equilateral triangle, all its angles are 60◦. Hence,

tan∠BOC= tan60◦ =
ffiffiffi
3

p
=

n2
m2

−
n1
m1

1 +
n1
m1

−
n2
m2

=
m1n2 −m2n1
m1m2 + n1n2

.

Because m1,m2, n1, n2 are integers,
m1n2 −m2n1
m1m2 + n1n2

is clearly a rational

number. This is clearly a contradiction! Hence, we have proved that it is
impossible for a lattice triangle to be an equilateral triangle.

By using the argument in Theorem 3.1, we obtain the following corollary.

Corollary 3.2 Let S be the area of a lattice polyhedral. Then 2S must be an
integer.

Proof We first observe that the area of any lattice polyhedral can be
regarded as the area of some sum of several lattice triangles.
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D

N
E

B

A

M

O

CL

y

x

Diagram 3.5 See
Encyclopedia of the
Solutions of
Mathematics Problem
(1983), problem 345

We now consider three points A= x1, y1ð Þ, B= x2, y2ð Þ, C= x3, y3ð Þ.
Then the following criterion gives the condition for the three points A, B,
C to be collinear.

Criterion 3.3 Three points A, B, C are collinear if and only if

x1 y1 1
x2 y2 1
x3 y3 1

������
������=0

This shows that the three points L, M, N are collinear. The following
example is an application of the above theorem.

Example 3.4 In Diagram 3.5, ABCO is a quadrilaterial with O be the point
of origin in the XY-plane. Let L and M be the mid points of the diagonals
OB and AC, respectively. Extend the side OC to meet AB at E and OA to
meet CB at D. Let N be the midpoint of DE. Prove that the points L, M,
N are collinear (see Diagram 3.5).

Proof Let
A= 0, 2að Þ, B= 2u, 2υð Þ, C= 2c, 2kcð Þ, D= 0, 2dð Þ, E= 2e, 2keð Þ.

Then the mid points of OB, AC and DE are

L= u, υð Þ, M = c, u+ kcð Þ, N = c, d+ keð Þ.

Because C, B, D are collinear, we have

2c 2kc 1
2u 2v 1
a 2a 1

������
������=0,
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that is, cυ+ du− cd− kcu=0.
On the other hand, we notice that the pointsA,B,E are collinear, sowe have

0 2a 1
2u 2v 1
2e 2ke 1

������
������=0

therefore, ae+ keu− eυ− au=0.
Now, we consider

u v 1

c a+ kc 1

e d+ ke 1

�������
�������

= au+ kcu+ cd+ cke+ cυ−
= − cv+ du− cd− kcuð Þ− ae+ keu− eυ− auð Þ=0

This shows that the three points L, M, N are collinear.
To determine whether any three points in the plane are collinear, the

well-known Theorem of Menelaus is an important tool.

Theorem 3.5 (Menelaus’ Theorem) Let A′, B′,C′ be three distinct points in
the three extension lines of the three sides of △ABC. Then the points

A′, B′,C′ are collinear if and only of
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1

Because the Menelaus’ Theorem is a well-known theorem, we hence omit
the proof (see Benitez 2007; Grunbaum and Shephard 1955; Klamkin and
Liu 1992).

The application of Menelaus’ Theorem can be shown in the following
example. This example is one of the IMO examination questions in geometry
(The 35th IMO problem in Hong Kong, 1994).

Example 3.6 Let ▵ABC be an isosceles triangle with AB=AC and M is the
mid point of BC. Suppose that O is a point in the extension of line AM.
Draw OB⊥AB. Let Q be an arbitrary point in BC which is a distinct point
from the points B and C. Also, let E be a point in AB and F a point in AC
such that E, Q, F are collinear (Diagram 3.6).

Prove that OQ is perpendicular to EF if and only if QE=QF.

Proof We first draw the following Diagram 3.6.
In Diagram 3.6, we observe that the four points O, E, B, Q are concyclic

points because ∠EBO=∠EQO=90◦.
Thus, ∠OEQ=∠OCQ=∠OFQ=∠OEQ and hence OE=OF.
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Conversely, we suppose that EQ=QF and recall that AB=AC. In ▵AEF
with the cutting line BQC. We apply the Theorem of Menelaus, and we

immediately obtain 1=
AB
BE

⋅
EQ
QF

⋅
EC
AC

=
FC
BE

, that is, BE=CF.

Thus the right angled ▵OBE is congruent to the right angled ▵OCF,
consequently OE=OF and therefore OQ⊥EF.

The proof is completed.

It is well known that Menelaus Theorem is a powerful tool in solving
problems involving collinear points. We present below another application
of this theorem in the following example.

Example 3.7 (IMO Preliminary contest problem of Hong Kong 2011) In the
following diagram the circle DEF is an inscribed circle inside the ▵ABC
(Diagram 3.7).

Join lines BE and CF to meet the inscribed circle at P and Q respectively.
Prove that the points R, P, Q are collinear.

Proof Because F and E are the tangent points of the inscribed circle of
▵ABC, we have AE=AF. Because EFR is also a cutting line of ▵ABC.
By applying the theorem of Menelaus, we have immediately
AF
FB

⋅
BR
RC

⋅
CE
EA

=1, that is,
BR
RC

=
EA
CE

⋅
FB
AF

=
FB
CE

.

Since BE and CF meet at S, and given that ▵EFC∼▵QEC, ▵FEB∼

▵PFB, ▵SEQ∼▵SFP, we have
CQ
EQ

=
CE
EF

⋅
FP
PB

=
FE
FB

,
SP
SQ

=
FP
EQ

.

Consider ▵SBC and the points R, P,Q on its sides CB, SB and SC, we have

C

F

E

Q

O

B

A

M

Diagram 3.6 .
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SP
PB

⋅
BR
RC

⋅
CQ
QS

=
SP
SQ

⋅
CQ
PB

⋅
BR
RC

=
FP
EQ

⋅
CQ
PB

⋅
FB
CE

=
FP
PB

⋅
CQ
QE

⋅
FB
CE

=
FE
FB

⋅
CE
EF

⋅
FB
CE

=1.

Then, by the converse part of Menelaus’ Theorem, we know that P, Q,
R are collinear points.

Now, we mention the Simpson line theorem, which is frequently used to
solve IMO problems in plane geometry. The following theorem is the
well-known Simpson line theorem.

Theorem 3.8 Let P be a point in the circumcircle of a ▵ABC which is
distinct from points A, B, C. Draw the perpendicular lines from the point P
meeting the lines AB, BC and CA in N, L and M respectively. Then, the
points L, M, N are collinear.

Proof There are many methods to prove this theorem, we provide two
proofs (see Diagram 3.8).

(I) Draw Diagram 3.9. Join the points L, M, N, P, B, P, A and P, C. Then
we see that
∠PMN =∠PAN =∠PAB=∠PCB=∠PCL because P, N, A, M are
concyclic on the circle. Also, we notice that P, M, C, L four appoints
are concyclic on the circle; we have ∠DML=∠PCL, that is L, N, M are
collinear.

(II) In Diagram 3.9, we let ∠PBC= α, ∠PCB= β, ∠PCM = γ.
Then, we have ∠PAM = α, ∠PAN = β, ∠PBN = γ. Clearly, BL=PB ⋅
cosα; LC=PC cosβ; CM =PC cosγ, MA=PA ⋅ cosα, AN =PA ⋅
cosβ, NB=PB ⋅ cosγ

BR D C

Q

E

A

F
S

P

Diagram 3.7 .
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Now, in ▵ABC, by use Menelaus Theorem, we have

BL
LC

⋅
CM
MA

⋅
AN
NB

=
PB cosθ
PC cosα

⋅
PC cosγ
PA cosα

⋅
PA cosβ
PB cosγ

=1

Thus, by the converse part of Menelaus Theorem, we know that the
perpendicular foot points L, N, M are collinear.

Remark 3.9 The converse of Simpson line theorem also holds.

M

γ
β

β

α

A

CLB

N

P

Diagram 3.8 .

Diagram 3.9 .

66 K.P. Shum



Proof The proof is trivial. Just let P be a point not in ▵ABC. From the point
P draw perpendicular lines meeting AB, BC and CA at the points N, M and
L, respectively. Then we see that P, B, L, N and P, N, A, M are concyclic
points. Finally, we notice that ∠PBC=∠PBL=∠PNM. Then, we conclude
that the four points P, B, C, A are concyclic. Therefore, the point P must be
on the circumcircle of ▵ABC. The proof is completed.

As an application of Simpson line theorem, we give the following
example.

Example 3.9 Let P be a point on the circumcircle of quadrilateral A1A2A3A4.
From the point P draw the perpendicular to the lines
A1A2, A2A3,A3A4, A4A1 at the points B1,B2,B3,B4, respectively. Also, let
the projections of the point P on the lines B1B2,B2B3,B4B4 and B4B1 be
C1,C2,C3,C4, respectively. Prove that the four points C1,C2,C3,C4 are
collinear.

Proof We first draw Diagram 3.9.

Through the point P we draw the perpendicular lines to meet the lines
A1A2, A3A2, A3A4, A4A1, at B1,B2,B3,B4

Draw the line through the point P perpendicular to the line B2B3, we get C2.
Draw the line through the point P perpendicular to the line B1B2, we get C1.
Draw the line through the point P perpendicular to the line B4B1, we get C4.
Draw the line through the point P perpendicular to the line B4B3, we get C3.

In ΔA1A2A3, the Simpson line through the point is the line B3QB4 where
Q is the foot point of the perpendicular line through P⊥A1A3. Similarly, the
point P is a point on the Simpson line B3QB4 in ΔA1A2A3.

Since ∠A1B4P=∠A1BP1, we see that the point P is on the circumcircle
of ΔQB1B4.

Hence, by Simpson line theorem, we see that the points C1, C3,C4 are
collinear. Similarly, the three points C1,C2,C4 are collinear. Thus, the four
points C1,C2,C3,C4 are collinear.

The following exercises are applications of Simpson line theorem.

Exercise 3.10 From the vertex A of ▵ABC, draw the perpendicular lines to
meet the internal and external angle bisectors at the points F, G, E, D. Prove
that these four points are collinear.

Hint: We first draw the diagram. Then, we extend the lines BE and CD to
meet at the point K. Suppose that CG and BE meet at I, with
∠CKI= 90◦ −∠CIK =90◦ − 1

2∠B+ 1
2∠C

� 	
= 1

2∠A. The four points A, I, C,
K are concyclic. Apply the Simpson line theorem to the ▵ICK and the point
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A. Then we see that G, E, D three points are collinear. Similarly, for ▵BCL
and the point A, by Simpson line theorem, we know F, G, E are collinear.
Hence, the four points F, G, E, D are collinear (Diagram 3.10).

Exercise 3.11 (A part of an IMO problem) Let ▵ABC be an acute-angled
triangle. CD is the altitude passing through the point C, M is the midpoint of
the side AB. The line passing through the point M meets CA and CB at K
and L, respectively with CK = CL. If S is the circumcenter of ▵CKL. Prove
that SD= SM.

We first draw the circumcenter of the ▵ABC. Join the points C, S and
extend CS to meet the circumcircle of ▵ABC at the point T. Join the points T
and M.

Construct TK ′ ⊥AC at the point K ′ and construct TL′ ⊥BC at L′

(Diagram 3.11).
Notice that S is the circumcenter of ▵KLC and KC = KL. Therefore CS

is the angle bisector of ∠KCL, and hence T is the mid point of the arc cAB.
Further, we recall that M is the midpoint of AB. Then TM ⊥AB. Apply

the Simpson line theorem, we know that K ′,M,L′ three points are collinear.
Because CT is also the angle bisector ∠K′L′M and the points K′, L′, M are
collinear, then we have CK ′ =CL′. This implies that the line K ′ML′ is on the
perpendicular line passing through the point M to CT.

Likewisely, the line KML is also a perpendicular line passing through the
point M to CS. Hence, the points K ′ and K are coincide, the points L′ and
L are coincide. That is, ∠CKT =∠CLT =90◦. This means that the four
points C, K, T, L are concyclic. (This is an important step).

AL

K

G

I

B C

D
EF

Diagram 3.10 .
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By the above result, we know that S in the center of the circumcircle of
the quadrilateral CKTL. We obtain SC = ST. Hence, S is the midpoint of
the line TC. As CD⊥AB, we have CD ̸ ̸MT . Therefore, we have proved
that SM = SD. The proof is completed.

3.4 Some Applications of Quadratic Equations

The method of solving quadratic equations is taught in the course of ele-
mentary algebra in most high schools. In this section, we introduce the
method of solving plane geometry problems by using Vieta’s formulas and
the discriminants of quadratic equations.

We start with the following example.

Example 4.1 Given a line l: y=4x. The point P ð6, 4Þ is in the first quadrant
of the XY-plane. Through the point P, draw a line meeting the line l: y=4x
at the point Q ðx1, y1Þ in l2 and the x-axis at M. Then, draw ΔOMQ. When
the area of ΔOMQ is minimum, where should be the point Q be located?

Solution: In order to locate the point Q, we need to find the coordinates of
the point Q, that is Q x1, y1ð Þ (Diagram 3.12).

The area of ΔOMQ varies according to the position of the point Q,
therefore we need to express the area of ΔOMQ in terms of the coordinates
of Q. Thus, we have to express the area of the ΔOMQ as a function of y, the
Y-coordinate of the point Q.

Diagram 3.11 .
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Let Q= x1, y1ð Þ. Since the point Q is on the line l: y=4x. Therefore, we
have y1 = 4x1.

For the line QP, the equation of the line passing through the point P ð6, 4Þ
is x1 − 6ð Þ y− 4ð Þ= ðy1 − 4Þðx− 6Þ. Since the point P is in the first quadrant
of the XY-plane, y1 > 4. The intersection point M of line PQ and the x-axis

is now M: 5y1
y− 4 , 0

� �
, with y1 > 4. Therefore, 5− y1

y− 4 > 0. Hence the area of

ΔOMQ is S= 1
2 ⋅

5− y21
y1 − 4, that is, 2S y1 − 4ð Þ=5y21, and so we have

5y21 − 2Sy1 + 8S=0. ð3:1Þ

Clearly, the discriminant of the quadratic Eq. (3.1) is Δ=4S2 − 160S>0.
Because S > 0, we have S≥ 40. Cleraly, when S = 40, the area of ΔOMQ
is a minimum. Hence by Eq. (3.1), we get y1 = 8 which satisfies y1 > 4.
Putting y1 = 8, we find x1 = 2.

Thus, the area of ΔOMQ is a minimum at the point Q ð2, 8Þ.
Example 4.2 Let λ1, λ2 be the two real roots of the quadratic equation

λ2 + λx+ y=0

Suppose that M1,M2 are the two real roots of the quadratic equation

Diagram 3.12 .
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M2 +My+ x=0

If λ1 − λ2j j= jM1 −M2j, find the locus of the point ðx, yÞ.
Solution: Clearly λ1 − λ2j j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 + λ2ð Þ2 − 4λ1λ2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4y

p
;

M1 −M2j j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 +M2ð Þ2 − 4M1M2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4x

p
.

Because we require that λ1, λ2 both be real roots, the discriminant of
λ2 + λx+ y=0 is Δ= yx2 − 4y≥ 0. Similarly, the discriminant of
M2 +My+ y=0 is Δ= y2 − 4x≥ 0.

By jλ1 − λ2 =j jM1 −M2j, we have x2 − 4y= y2 − 4x≥ 0.
Thus, we have x− yð Þ x+ y+4ð Þ=0 and so x− y=0 or x+ y+4ð Þ=0.
This means that the locus of the point ðx, yÞ is the straight lines. x− y=0

and x+ y+4=0 with x+ y+4=0 not in the first quadrant of the XY-plane
(Diagram 3.13).

The following example is a typical application of the quadratic equations
for the parabola and a straight line.

Example 4.3 Find the area of the triangle bounded by the three straight lines

Ax2 + 2Bxy+ cy2 = 0

lx+my+ n=0.

Solution: It is well known in plane geometry that the following equation

Ax2 + 2Bxy+ cy2 = 0 ð3:2Þ

is the expression of two straight lines passing through the point of origin of
the XY-plane. Suppose that the line

Diagram 3.13 See
Encyclopedia of the
Solutions of
Mathematics Problem
(1983), problem 168
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l: lx+my+ n=0 ð3:3Þ

meets these two lines passing through the origin at the points P x1, y1ð Þ and
Q= x2, y2ð Þ. When m≠ 0, then from (3.3), we have

y= −
lx+ nð Þ
m

. ð3:4Þ

Hence, we find y1 = − lx1 + n
m , y2 = − lx2 + n

m .
Let the area of the required triangle be denoted by SΔPQR.
Then, we deduce that

SΔPQR =
1
2

x1 y1 0

x2 y2 0

0 0 1

�������
�������=

1
2

x1y2x2y2ð Þ

=
1
2

x2 lx1 + nð Þ
m

−
x1 lx1 + nð Þ

m

� �
=

1
2

n
m

x2 − x1ð Þ
� � ð3:5Þ

Put (3.4) in (3.2), after simplification, we get

Am2 − 2Bml+ cl2
� 	

x2 − 2n Bm− clð Þx+ cn2 = 0 ð3:6Þ

Because (3.6) in a quadratic equation, we can suppose x1 and x2 are its
two roots.

By Vieta’s formulas, we have

x1 + x2 =
2n Bm− clð Þ

Am2 − 2Bml+ cl2

x1 ⋅ x2 =
cn2

Am2 − 2Bml+ cl2ð Þ2

Hence, we obtain

x1 − x2j j= 2 mnj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 −AB

p

Am2 − 2Bml+ cl2j j

Putting this result in (3.5), we have
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SΔPOR =
n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

ðAm2 − 2Bml+ cl2Þ ð3:7Þ

When m=0, then l≠ 0 and so by (3.3), we have

x= −
n
l

ð3:8Þ

x1 = x2 = − n
l . Thus, the area of ΔPQR is

SΔPQR =
1
2

n
l
y1 − y2ð Þ

� �
ð3:9Þ

After rearrangement, we obtain

Cl2y2 − 2Bnly+4=0 ð3:10Þ

Suppose the two roots of the quadratic Eq. (3.10) are y1 and y2.

Thus, by Vieta’s formulas, we have y1 + y2 =
2Bn
Cl

, y1 ⋅ y2 =
An2

Cl2
.

Therefore y1 − y2 =
2 nj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

clj j
Putting the above result into (3.1), we obtain SΔPOQ =

n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

cl2j j
This formula corresponds to the case m = 0 in (3.5). Hence the required

area of ΔPOQ is

n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −AC

p

Am2 − 2Bml+ cl2ð Þ
In the following example, we consider parabolas.

Example 4.4 Let the parabola y2 = 2px meet the line y=2x+1 at two points
A x1, y1ð Þ,Bðx2, y2Þ. With ABj j= ffiffiffiffiffi

15
p

. 2x+1ð Þ2 = 2px, that is, 4x2 + 4x+
1=2px.

Hence we have

4x2 + 2 2− pð Þx+1=0. ð3:11Þ

Because the discriminate of the above quadratic equation is
Δ=4 2− pð Þ2 − 16> 0, we must have p>4 or p<0. Using Vieta’s formu-
las, we have
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x1 + x2 =
1
2

p− 2ð Þ ð3:12Þ

x1x2 =
1
4
. ð3:13Þ

Therefore, we deduce that

x1 − x2ð Þ2 = x1 + x2ð Þ2 − 4x1x2 =
1
4

p− 2ð Þ2 − 1.

Because y⋏ =2x⋏ +1 ⋏=1, 2ð Þ, we have y1 − y2ð Þ2 = 4 x1 − x2ð Þ2.
Also,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2

q
=

ffiffiffiffiffi
15

p
, so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 x1 − x2ð Þ2

q
=

ffiffiffiffiffi
15

p
, that

is,
1
4

p− 2ð Þ2 − 1= 3, the roots of the equation are p= − 2 or p=6. There-

fore, the parabola is y2 = − 4x, or y2 = 12x (Diagram 3.14).
To find the coordinates of the intersection points, we usually first solve a

number of parametric equations. If we apply Vieta’s formulas for the
quadratic equation, we can sometimes simplify the tedious calculations. We
present the following example.

Example 4.5 Suppose that the parabola y2 = 4ax meets the straight line
lx+my+ c=0 at the points P, Q, and that F is the focus of the parabola. If
lines PF and QF meet the parabola y2 = 4ax at points R and S, respectively,
find the equation of the line RS (Diagram 3.15).

Solution:
Because the points P, Q are on the parabola, we may assume that the

coordinates of the point P, Q are Pðat21, 2at1Þ, Q at22, 2at2
� 	

. The coordinates

Diagram 3.14 .
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of the point R, S be ðat′21 , 2at′1Þ, ðat′22 , 2at′2Þ. Then the equation of the line
PR is

y− 2at1 =
2a t1 − t′1
� 	

a t21 − t′21
� 	 ⋅ x− at21

� 	
.

That is, 2x− t1 + t′2
� 	

y+2at1t′1 = 0
Since PR passes through the focus point F a, 0ð Þ, we have 2a+2at1t′1 = 0,

hence t′1 = −
1
t1
, similarly, t′2 = −

1
t2
.

Therefore, we find the coordinates of R, S are
a
t21
,
2a
t1

� �
⋅

a
t22
,
− 2a
t2

� �
.

Observe that the points P, Q are on the straight line lx+my+ n=0, hence
we have lat21 + 2amt1 + n=0, lat2 + 2amt2 + n=0.

This means that t1, t2 are the two roots of the quadratic equation

alλ2 + 2amλ+ n=0. Apply Vieta Theorem again, we have t1 + t2 =
− 2m
l

,

t1t2 =
n
al
. If the equation of the required straight line RS is Ax+By+ c=0,

then
Aa
t21

−
2aB
t1

+ c=0,
Aa
t22

−
2aB
t2

+ c=0. Let t1, t2 be the two roots of the

equation cu2 − 2aBM +Aa=0.

Diagram 3.15 .
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Then, we have t1 + t2 =
2aB
c

, t1t2 =
Aa
c
, and consequently,

− 2m
l

=
2aB
c

,
n
al

=
Aa
c
, that is,

B
c
= −

m
la
,
A
C

=
n
la
.

Thus, the equation of the straight line RS is
nx
la2

−
my
la

+1=0, that is

nx−may+ la2 = 0.
Now, we mention again the usage of the discriminant of a quadratic

equation in the following example.

Example 4.6 Suppose that the length of the chord AB formed by the line
y=2x+ k cutting the parabola y2 = 4x at 3

ffiffiffi
5

p
. If P is a point on the x-axis

which forms an equilateral triangle PAB and the area of ΔPAB=39, find the
coordinates of the point P (Diagram 3.16).

Solution. Let A= x1, y1ð Þ,B= x2, y2ð Þ. Then y1 = 2x1 + k, y2 = 2x2 + k.
Then, substituting y=2x+ k into 2x+ kð Þ2 = 4x, we get

4x2 + 4 k− 1ð Þx+ k2 = 0.
Now, the discriminant of the above equation is Δ=16 k− 1ð Þ2 − 16k2 > 0,

that is, k<
1
2
. If x1, x2 are the two roots of the quadratic equation, by Vieta’s

Theorem, we have x1 + x2 = 1− k, x1x2 =
k2

4
and y1 − y2 = 2 x1 − x2ð Þ.

Hence x1 − x2ð Þ2 + y1 − y2ð Þ= 3
ffiffiffi
5

p� 	2
. Thus, we have 5 x1 − x2ð Þ2 = 45,

so that 1− 2k=9, k= − 4.

Diagram 3.16 .
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Now, let P= ðx, 0Þ, then the distance from P to AB is d=
2x− 4j jffiffiffi

5
p .

Hence
1
2
⋅
2x− 4j jffiffiffi

5
p ⋅ 3

ffiffiffi
5

p
=39, from which we get jx− 12j=13, and

x=15 or x= − 11. Therefore, P= ð15, 0Þ or ð− 11, 0Þ.
Remark In this example, we consider the chord AB formed by the line
y= kx+m to meet the quadratic curve y2 = 4x. Hence the length of the chord
AB is

l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + k2 x1 − x2ð Þ2

q
=

ffiffiffiffiffiffiffiffi
Hk2

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 + x2ð Þ2 − 4x1x2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffi
Hkð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− b
k

� �2

−
4c
a

� �s
=

ffiffiffiffiffiffiffiffi
Hk2

p
⋅

ffiffiffiffi
Δ

p

a

Thus, to find the length of the chord AB, we only need to use the coef-
ficient k, the coefficients of the quadratic equation a, b and the value of the
discriminant, so there is no need to first find out the coordinates of the
intersection points.

3.5 Ceva’s Theorem and Its Application

In solving problems in plane geometry, Ceva’s Theorem is often used. In
this section, we briefly introduce Ceva’s Theorem and its application (see
Benitez 2007; Grunbaum and Shephard 1955).

Theorem 5.1 Let A′,B′,C′ be three points on the sides BC, AC, AB, re-
spectively, of ΔABC or on their extension lines. Then

BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1.

Proof There are several situations of the theorem; we first draw the fol-
lowing three diagrams.

In Diagrams 3.17b, If AA′,BB′,CC′ meet at the point P, then we draw a
line through A parallel to BC which meets BB′,CC′ on their extension lines

at D, E, respectively. Now, it is clear that
CB′

B′A
=

BC
AD

and
AC′

C′B
=

EA
BC

.

Also, from
BA′

AD
=

A′P
PA

=
A′C
EA

, we have
BA′

A′C
=

AD
EA

.
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Consequently, we have
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=

AD
EA

⋅
BC
AD

⋅
EA
BC

=1.

If, AA′,BB′ and CC′ are parallel lines, the theorem can be proved
similarly.

Remark 5.2 For the Diagram 3.17b and c, Ceva’s Theorem can also be

proved by using “area”. That is by
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=

SΔPAB
SΔPCA

⋅
SΔPBC
SΔPAB

⋅
SΔPCA
SΔPBC

=1. We usually call point P the Ceva Point of

ΔABC.

Corollary 5.3 The collinear points of Ceva’s Theorem are equivalent to the
collinear points of Menelaus’ Theorem.

Proof Consider Diagram 3.17b and c. Then by Menelaus Theorem, the
points C′,P,C are in the intercept C′DC in ΔABA′, we have

BA
CA′

⋅
A′P
PA

⋅
AC′

C′B
=1 ðaÞ

Secondly, for the intercept B′PB in ΔAA′C, we have

A′B
BC

⋅
CB′

B′A
⋅
AP
PA′

=1 ðbÞ

Multiply (a) and (b), we therefore obtain
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1.

Thus, by using Menelaus’ Theorem, we can easily prove Ceva’s
Theorem.

Diagram 3.17 .
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Menelaus’ Theorem can also be proved by using Ceva’s Theorem; we
now consider the following diagrams (Diagram 3.18).

In the above two diagrams, we observe the following facts:

i. Let C′ be the Ceva point of ΔBCB′. Then by Ceva’s Theorem, we have

BA′

A′C
⋅
CA
AB′

⋅
B′X
XB

=1.

ii. Let A′ be the Ceva point of ΔCAC′. Then by Ceva’s Theorem again, we
have

CB′

B′C
⋅
AB
BC′

⋅
C′Y
YC

=1.

iii. Let B′ be the Ceva point of ΔABA′. Then by Ceva’s Theorem, we have

AC′

B′B
⋅
BC
CA′

⋅
A′Z
ZA

=1.

iv. Let C be the Ceva point of ΔBBC′. Then by Ceva’s Theorem, we have

BX
XB

⋅
B′A′

A′C′
⋅
C′A
AB

=1.

v. Let A be the Ceva point of ΔCC′A′. Then by Ceva’s Theorem, we have

Diagram 3.18 .
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CY
YC′

⋅
C′B′

B′A′
⋅
A′B
BC

=1.

vi. Let B be the Ceva point of ΔAA′B. Then by Ceva’s Theorem, we have

AZ
ZA′

⋅
A′C′

C′B
⋅
B′C
C′A

=1.

Now, multiplying the above six equations, we get
BA′

A′C
⋅
CB′

B′A
⋅

�
AC′

C′B

�2

= 1.

Hence we have proved that
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1. Thus, Ceva’s Theo-

rem is proved. The following example can be regarded as the converse part
of Ceva’s Theorem.

Remark 5.4 If A′,B′,C′ are three points on the three sides of ΔABC or on

their extension lines of ΔABC such that
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1, then the three

lines AA′,BB′ and CC′ are concurrent or mutually parallel.

Proof Suppose that the lines AA′ and BB′ meet at P. Also, suppose that CP
and AB meet at C1.

Then by Ceva’s Theorem, we have
BA′

A′C
⋅
CB′

C′A
⋅
AC1

C1B
=1.

Now, recall the given condition
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1, we immediately get

that
AC1

C1B
=

AC′

� 	
C′B′

, that is,
AC1

AB
=

AC′

AB
. Hence AC1 =AC′. This means that

the two points C1 and C′ coincide. Thus, we have proved that the lines
AA′,BB′,CC′ are concurrent.

If AA′ ̸ ̸ BB′, then
CB′

B′A
=

CB
B′A

. Putting this equality into the given con-

dition, we obtain
AC′

C′B
=

A′C
CB

, and hence CC′ ̸ ̸ AA′, AA′ ̸ ̸ BB′ ̸ ̸CC′.

In conclusion, we give the following criterion for concurrent points.
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Theorem 5.5 If A′,B′,C′ are the points in the three sides of ΔABC in BC,
CA and AB respectively. Then the three lines AA′,BB′ and CC′ are con-
current or parallel if and only if

BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=1.

In proving that the collinear points on lines are concurrent, Ceva’s
Theorem is a powerful tool in plane geometry. We now state the following
two different forms of Ceva’s Theorem (Grunbaum and Shephard 1955).

Theorem 5.6 (Ceva’s Theorem Form 1) Let A′,B′,C′ be the three points in
the three sides of ΔABC. Then the three lines AA′,BB′ and CC′ are con-
current or parallel if and only if

sin∠BAA′

sin∠A′AC
⋅
sin∠ACC′

sin∠C′C′B
⋅
sin∠CBB′

sin∠B′BA
=1

Proof We first notice that

BA′

A′C
=

SΔABA′

SΔAA′C
=

AB ⋅ sin∠BAA′

AC ⋅ sin∠B′AC
,
CB′

B′A
=

BC ⋅ sin∠CBB′

AB ⋅ sin∠B′BA
,
AC′

C′B
=

AC ⋅ sin∠ACC′

BC ⋅ sin∠C′CB
.

By multiplying the above equalities and apply Theorem 5.5, the theorem
is proved.

Theorem 5.7 (Ceva’s Theorem Form 2) Let A′,B′,C′ be the points in the
three sides of ΔABC and O is a point not in ΔABC. Then the three lines
AA′,BB′ and CC′ are concurrent or parallel if and only if

sin∠BOA′

sin∠A′OC
⋅
sin∠AOC′

sin∠C′OB
⋅
sin∠COB′

sin∠B′OA
=1.

Proof Applying the criterion of Ceva’s concurrent point Theorem 5.5, we
have

1=
BA′

A′C
⋅
CB′

B′A
⋅
AC′

C′B
=

SΔBOA′

SΔA′OC
⋅
SΔCOB′

SΔB′OA
⋅
SΔAOC′

SΔC′OB

=
BO ⋅ sin∠BOA′

CO ⋅ sin∠A′OC
⋅
CO ⋅ sin∠COB′

AO ⋅ sin∠B′OA
⋅
AO ⋅ sin∠AOC′

BO ⋅ sin∠C′OB′

Hence, the theorem is proved.
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Note In applying Ceva’s Theorem above, the reader have to observe
whether there are points in the extension lines at the three sides of the ΔABC.

We point out here that Ceva’s Theorem has been frequently used to solve
many regional and national Olympiad problems. The following are some
examples:

Example 5.8 (China MO problem, 1997) In the following Diagram 3.19.
The quadrilateral ABCD is inscribed in the circle with the line AB and the
extension of the line DC meet at P, and AD and the extension of the line BC
meet at the point Q. Construct two tangent lines through the point Q to touch
the circle at the points E and F. We prove that the points P, F, E are
collinear (Diagram 3.19).

We draw the diagram as shown in Diagram 3.19. Join the point E and
F to meet AD, BC at M, N respectively. Also, we let AC to meet BD at
K. We first prove the points P, K, M are collinear and the another three
points P, N, K are collinear.

Now, we draw the diagram as shown in Diagram 3.19. We need to prove
that the lines AC, BD and PM are concurrent. Then by applying the converse

of Ceva’s Theorem, we need to prove that
AB
BP

⋅
PC
CD

⋅
DM
MA

=1.

Because the line QCB cuts ΔPDA, by Menelaus’ Theorem, we have
AB
BP

⋅
PC
CD

⋅
DQ
QA

=1. We only need to prove that
DM
AM

=
DQ
AQ

=1.

Because the line QCB cuts ΔPDA, by Menelaus’ Theorem again, we

have
AB
BP

⋅
PC
CD

⋅
DQ
QA

=1. Thus, we only need to prove that

Q

E

L

D

M
C

F

AB

P

N

O

K

Diagram 3.19 .
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DM
AM

⋅
DM
MA

=1. Let the center of the circle be O. Join QO to meet EF at

L. Also join LD, OD, OA. Then by using the tangent theorem and projection
theorem, we immediately have QD ⋅QA=QE2 =QL ⋅OD. Thus, the four
points D, L, O, A are concyclic points. Consequently,
∠DLQ=∠DAO=∠ODA=∠OLA. This shows that the line QL is the inte-
rior angle bisector of ∠ALD and is also the exterior angle bisector of ∠ALD
and hence EF ⊥OQ. Thus, EL is the angle bisector of ∠ALD. Thus, we have

DM
AM

=
DL
AL

=
DQ
AQ

.

The proof is completed.

Example 5.9 (IMO Problem 1983, Yugoslavia) Let M be a point inside
ΔABC such that ∠MBA=30◦,∠MAB=10◦. If ∠ACB=80◦ and AC=BA,
find ∠AMC (Diagram 3.20).

Solution:
Let ∠ACM =α. Then ∠MCB=80◦ − α. By Ceva’s theorem Form 1, we

immediately have

sinα
sin 80◦ −αð Þ ⋅

sin10◦

sin40◦
⋅
sin20◦

sin30◦
=1 ð3:14Þ

and hence sinα ⋅ sin10◦ = sin 80◦ − αð Þ ⋅ cos20◦.
Therefore, we derive that 2sinα ⋅ cos80◦ =2 sin 80◦ − αð Þ ⋅ cos20◦.
Thus, we get
sin α+80◦ð Þ+ sin α− 80◦ð Þ= sin 100◦ − αð Þ+ sin 60◦ − αð Þand

sin α− 80◦ð Þ− sin 60◦ − αð Þ= sin 100◦ − αð Þ− sin α+80◦ð Þ
=2 cos 90◦ ⋅ sin 10◦ − αð Þ=0.

Diagram 3.20 .
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We conclude that sin α− 80◦ð Þ= sin ð60◦ − αÞ.
Now observe that 0 < α<80◦,
we know that − 80◦ < α< − 80◦, 60◦ − α<60◦.
Hence, α− 80◦ =60◦ − α and so α=70◦.
Therefore, we obtain ∠AMC=180◦ −MAC−∠ACM =180◦ −

40◦ − 70◦ =70◦.

Remark This question can be solved directly by using (3.14), that is

sinα= sin70◦

sin10◦ = sin ð80◦ − αÞ,

where 0< α, 80◦ − α<80◦. Then we obtain α=70◦, or by
sinα

sin 80◦ − αð Þ ⋅
sin10◦

sin40◦
⋅
sin20◦

sin30◦
=1, we have

sin 80◦ − αð Þ
sinα

=
sin10◦

sin40◦
⋅
sin20◦

sin30◦
=

sin10◦

cos20◦
=

sin 80◦ − 70◦ð Þ
sin70◦

= sin80◦ ⋅ cos70◦ − cos80◦

Because
sin 80◦ − αð Þ

sinα
= sin80◦ ⋅ cosα− cos80◦.

As the function of α is strictly decreasing in the interval 0◦, 180◦ð Þ,
therefore, ACM = α=70, ∠AMC=180◦ − 40◦ − 70◦ =70◦.

Or for the point C and the ΔMAB, we can apply Ceva’s Theorem Form 1
again to get,

1 =
sin∠AMC
sin∠CMB

⋅
sin∠MBC
sin∠CBA

⋅
sin∠BAC
sin∠CAM

=
sinx

sin 220◦ − xð Þ ⋅
sin50◦ð Þ
sin50◦

⋅
sin50◦

sin40◦
.

Then,

sin 220◦ − xð Þ
sin x

=
1

2cos20◦
=

sin 220◦ − 70◦ð Þ
sin70◦

= sin220◦ = cos70◦ − cos20◦

Because
sin 220◦ − xð Þ

sin x
= sin220◦ ⋅ cos x− cos 220◦ðsin 220◦ <0Þ.

As the function of x is strictly decreasing in the interval 0◦, 180◦ð Þ,
therefore we derive that ∠AMC= x=70◦.
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Example 5.10 (A Proposed MO Problem of Canada) In
ΔABC, ∠BAC=40◦, ∠ABC=60◦. D and E are the points on AC and AB
such that ∠CBD=40◦ and ∠BCE=70◦. The lines BD and CE meet at
F. Prove that AF ⊥BC.

Proof Let ∠BAF = α. Then, ∠FAC=40◦ − α. Let F be the Ceva point of

ΔFAC and apply Ceva’s Theorem Form 1, we have
sin10◦

sin70◦
⋅

sinα
sin 40◦ − αð Þ ⋅

sin40◦

sin20◦
=1. Hence, we have

sin 10◦

sin70◦
⋅

sinα
sin 40◦ − αð Þ ⋅

sin40◦

sin20◦
=1 and so in Diagram 3.21, we have

sin 40◦ − αð Þ=2sinα ⋅ sin10◦ =2sinα ⋅ cos80◦ = sin α+80◦ð Þ+ tan ðα− 80◦Þ

It follows that

sin α− 80◦ð Þ= sin 40◦ −αð Þ− sin α+80◦ð Þ=2cos60◦ ⋅ sin − 20◦ − αð Þ
= sin − 20◦ − αð Þ.

Observe that O< α<40◦, we know that − 80◦ < − 20◦ − α, −α
− 80◦ <20◦, so we have α− 80◦ = − 20◦ − α, and α=30◦. Extend the line
AF to meet BC at H, then ∠AHB=180◦ −∠FAB−∠ABH =180◦ − 30◦

− 60◦ =90◦.
Thus, we have shown that AF ⊥BC.

Diagram 3.21 .
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The following example is a Hong Kong IMO preliminary contest prob-
lem that required students to know how to apply both the Menelaus’ The-
orem and Ceva’s Theorem.

Example 5.11 Let ABCD be a quadrilateral inscribed in a circle as shown in
Diagram 3.22. Prove that R, T, S are collinear.

Hint: By ΔEBR∼ΔEPA, ΔFDS∼ΔFPA, we have
BR
DA

=
EB
EP

,
PA
DS

=

FP
FD

. Multiplying these two equations, we get

BR
DS

=
EB
ED

⋅
FP
FD

. ð3:15Þ

Similarly, by ΔECR∼ΔEPD, ΔFPD∼ΔFAS, we derive that

BR
DS

⋅
AS
CR

=
EB
EC

⋅
FA
FD

. ð3:16Þ

Multiplying (3.15) and (3.16) by
DC
AB

, we get
BR
RC

⋅
CD
DS

⋅
SA
AB

=

EB
BA

⋅
AF
FD

⋅
DC
CE

.

Now, for the intercept BCF and ΔEAD, applying Menelaus’ Theorem, we

have
EB
BA

⋅
AF
FD

⋅
DC
CE

=1. Therefore, we have
BR
RC

⋅
CD
DS

⋅
SA
AB

=1.

E

F

C

D

SP

A

T

B
R

Diagram 3.22 .
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Recall Ceva’s Theorem Form 1 and its corollary, we know immediately
that the three lines BD, RS and AC are concurrent at a point and hence R, T,
S are collinear. The proof is completed.

3.6 Ptolemy’s Theorem and Stewart’s Theorem

Apart from the Simpson line theorem, Menelaus’ Theorem, Ceva’s Theo-
rem etc., Ptolemy’s Theorem, Stewart’s theorem and the Erdös-Mordell
inequalities are often used as tools in solving problems in plane geometry. In
this section, we briefly introduce the proofs of these tools (see Pech 2005;
Moise 1990; Some Geometry Problems in Mathematical Olympiad Com-
petitions 2015; Encyclopedia of Solved Problems 2016).

Theorem 6.1 (Ptolemy’s Theorem) If a convex quadrilateral ABCD is
inscribed in a circle, then

AB ⋅CD+BC ⋅AD=AC BP+PDð Þ=AC ⋅BD.

Proof It is clear that ∠PAB=∠CAD and so ΔABP∼ΔACD.
Therefore

AB
AC

=
BP
CD

⇒AB ⋅CD=AC ⋅BP. ð3:17Þ

Similarly since ΔABC∼ΔAPD, we have

BC ⋅AD=AC ⋅PD. ð3:18Þ

Adding (3.17) and (3.18), we have AB ⋅CD+BC ⋅AD=AC BP+PDð Þ=
AC ⋅BD

Corollary 6.2 (Euler’s Theorem) A special case of Ptolemy’s Theorem is
the following. A, B, C, D are four ordered points on a line. Then, by
Ptolemy’s Theorem, we have AB ⋅CD+BC ⋅AD=AC ⋅BD.

The following example is a typical application of the Ptolemy’s Theo-
rem (CMO, China 2000).

Example 6.3 Let ΔABC be an acute-angled triangle. Also, let E, F be two
points on the line BC with ∠BAE=∠CAF. Construct the segments
FM ⊥AB at the point M and FN ⊥AC at N.
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The extension of the line AE meets the circumcircle of ΔABC at D (see
Diagram 3.23). Prove that the area of AMDN and the area of ΔABC are
equal.

Proof Let ∠BAE=∠CAF = α, ∠EAF = β. Then

SΔABC =
1
2
AB ⋅AF ⋅ sin α+ βð Þ+ 1

2
AC ⋅AF ⋅ sinα=

AF
4R

AB ⋅CD+AC ⋅BDð Þ,

where R is the radius of the circumcircle.
Now, we also find that

SAMDN =
1
2
AM ⋅AD ⋅ sinα+

1
2
AD ⋅AN ⋅ sinα+ β

=
1
2
AD AF ⋅ cos α+ βð Þ ⋅ sinα+AF ⋅ cosα ⋅ sin α+ βð Þ½ �

=1 ̸2 AD ⋅AF ⋅ sin ð2α+ βÞ= 4F
4R

AD ⋅BC.

Applying Ptolemy’s Theorem, we have AB ⋅CD+AC ⋅BD=AD ⋅BC and
hence SAMDE = SΔABC.

Diagram 3.23 .
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Theorem 6.4 (Stewart’s Theorem) Let P be an arbitrary point on the side
BC of ▵ABC. If point P is distinct from points A and C, then

AB2 ⋅PC+AC2 ⋅BP=AP2 ⋅BC+BP ⋅BP ⋅BC ð3:19Þ

or

AP2 =AB2 ⋅
PC
BC

+AC2 ⋅
BP
BC

−BC2 ⋅
BP
BC

⋅
PC
BC

. ð3:20Þ

For the sake of convenience, let a, b, c be the three sides of a ΔABC
opposite to ∠A,∠B,∠C, respectively. Also, we let d be the Ceva point lying
in the side BC which divides a into the ratio m: n with
b2m2 + c2n= a ðd2 +mnÞ.

[After rearrangement, we can write the above expression as
man+ dad= bmb+ cnc. “A man and his dad put a bomb into the sink”, a
form which invites mnemonic memorization. This expression yields a
relation between the lengths of the sides of the triangle].

Proof Without loss of generality, we may assume that ∠APC<90◦. Then
by using the Cosine Law, we have (Diagram 3.24)

AC2 =AP2 +PC2 − 2AP ⋅PC ⋅ cos∠APC,

AB2 =AP2 +BP2 − 2AP ⋅BP ⋅ cosð180◦ −∠APCÞ
=AP2 +BP2 + 2AP ⋅BP ⋅ cos∠APC

Multiplying (3.19) and (3.20) by BP, PC and adding up, we have proved
the theorem.

Diagram 3.24 .
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As the converse of Stewart Theorem, we let B, P, C be points on the
projective lines AB, AP, AC. Then we claim that if

AB ⋅PC+AC2 ⋅BP=AP2 ⋅BC+BP ⋅PC ⋅BC

or

AP2 =AB2 ⋅
PC
BC

+AC2 ⋅
BP
BC

−BC2 ⋅
BP
BC

⋅
PC
BC

,

then the points B, P, C are collinear.

Corollary 6.5 (Stewart‘s Theorem)

(i) If P is a point on the extension line of BC, then

AP2 = −AB2 ⋅
PC
BC

+AC2 ⋅
BP
BC

+BC2 ⋅
PC
BC

⋅
BP
BC

.

(ii) If P is a point in the opposite extension line of BC, then

AP2 =AB2 ⋅
PC
BC

−AC2 ⋅
BP
BC

+BC2 ⋅
PC
BC

⋅
BP
BC

Corollary 6.6 (see Pech 2005)

a. If ▵ABC is an isosceles triangle and P is on BC, then
AP2 =AB2 −BP ⋅PC.

b. If AP is a median of side BC, then AP2 =
1
2
AB2 +

1
2
AC2 −

1
4
BC2.

c. If AP is the interior angel bisector of ∠A, then AP2 =AB ⋅AC−BP ⋅PC.
d. If AP is the exterior angle bisector of ∠A, then

AP2 = −AB ⋅AC+BP ⋅PC.

e. If P divides BC such that
BP
BC

= λ, then

AP2 = λ λ− 1ð ÞBC2 + 1− λð ÞAB2 + λAC2.

f. If
BP
PC

= k, then AP2 =
1

1+ k
⋅AB2 +

k
1+ k

AC2 −
k

1+ kð Þ2 ⋅BC2.

We give some examples to show the application of Stewart’s Theorem.
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Example 6.7 (High school Math competition problem 1996 in Beijing) In
the convex quadrilateral ABCD, ∠ABC=60◦, ∠BAD=90◦, AB=2, CD=
1, AC and BD meet at O. Find ∠AOB.

Solution:
Extend BA, CD to meet at the point P. Let BC= x. Then

PB=2x, PC=
ffiffiffi
3

p
x. For ▵PBC and the point A on PB, by Stewart’s The-

orem, we have (Diagram 3.25)

CA2 =PC2 ⋅
AB
PB

+BC2 PA
PB

−AB ⋅PA

=
ffiffiffi
3

p
x

� �2
⋅
2
2x

+ x2 ⋅
2x− 2
2x

− 2ð2x− 2Þ= x2 − 2x+4

Now, since▵ADP∼▵CBP are right-angled▵, we havePD ⋅PC=PA ⋅PB;
that is,

ffiffiffi
3

p
x− 1

� 	
⋅

ffiffiffiffiffi
3x

p
= ð2x− 2Þ ⋅ 2x, and BC= x=4−

ffiffiffi
3

p
. Therefore,

CA2 = 15− 6
ffiffiffi
3

p
. Recall that∠BCD is a right angle,BD2 = x2 + 1= 20− 8

ffiffiffi
3

p
.

Hence BD ⋅AC=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð5− 2

ffiffiffi
3

p Þ
q

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð5− 2

ffiffiffi
3

p Þ
q

=10
ffiffiffi
3

p
− 12. Moreover, we

have SABCD = SΔABD + SΔBCD = ð2 ffiffiffi
3

p
− 2Þ+ 1

2
ð4−

ffiffiffi
3

p
Þ= 3

ffiffiffi
3

p

2
.

Therefore,
1
2

10
ffiffiffi
3

p
− 12

� �
⋅ sin∠AOB=

3
ffiffiffi
3

p

2
, whence we find

sin∠AOB=
15+6

ffiffiffi
3

p

26
.

Example 6.8 (A summer camp MO problem, China, 2001) In the following

diagram, prove that
2
PC

=
1
PA

+
1
PB

(Diagram 3.26).

Diagram 3.25 .
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Proof Because the lines EF and PB meet at the point C, we have
EC ⋅CF =AC ⋅CB.

Because PE=PF, applying Corollary 6.6(a) of Stewart’s Theorem, we
have

PC2 =PE2 −EC ⋅CF,

that is,

PE2 =PC2 +EC ⋅CF =PC2 +AC ⋅CB

=PC2 + ðPC−PAÞ ⋅ ðPB−PCÞ
=PC2 −PC2 −PA ⋅PB+PC ⋅PB+PC ⋅PA.

Hence, PE2 =PA ⋅PB, and consequently we have
2PA ⋅PB=PA ⋅PC+PB ⋅PC.

Therefore, we deduce that
2
PC

=
1
PA

+
1
PB

and the proof is completed.

3.7 Erdős-Mordell Inequality

We first state the following theorem.

Theorem 7.1 Let P be a point inside or on a side of ▵ABC. Let the
distances from the point P to the three sides be PDj j, PEj j and PFj j. Then

Diagram 3.26 .
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PAj j+ PBj j+ PC≥ 2j jPDj+ PEj j+ PFj j.
Proof We use polar coordinates to prove this theorem. Let P be the polar
point and PAj j be denoted by polar coordinates. Then, A= φ1, 0ð Þ,
B= ðφ2, 2θ1Þ, C= ðφ3, 2θ1 + θ2Þ. Thus ∠CPA=2θ3 = 2π − 2θ1 + 2θ2ð Þ,
PAj j=φ1, PBj j=φ2, PCj j=φ3. Let PQ, PR and PS be the bisectors of
∠APB, ∠BPC and ∠CPA, respectively.

Write PQj j= t1, PR= t2j , PSj j= t3. The polar coordinates of the points
θ,R, S are ðt1, θ1Þ, ðt2, 2θ1 + θ2Þ, ðt3, 2π − θ3Þ. Because the points A, Q,
B are collinear, by Ceva’s Theorem, we have

sin 0− 2θ1ð Þ
t1

+
sin 2θ1 − θ1ð Þ

φ1
+

sin θ1 − oð Þ
φ2

= 0.

Hence t1 =
2φ1φ2

t1
+ sin

2θ1 − θð Þ
φ1

+ sin
θ1 − 0ð Þ
φ2

= 0 and therefore,

t1 =
2φ1φ2

φ1 +φ2
cosθ1 ≤

ffiffiffiffiffiffiffiffiffiffi
φ1φ2

p
cosθ1.

Similarly, we have B ðφ2, 2θ1Þ and t2 ≤
ffiffiffiffiffiffiffiffiffiffi
φ2φ3

p
cosθ2, t3 ≤

ffiffiffiffiffiffiffiffiffiffi
φ3φ1

p
cosθ3

(Diagram 3.27).
By the triangle inequality, if α+ β+ γ = π, and x, y, z are any real num-

bers, then

x2 + y2 + z2 ≥ 2xy cosα+2yz cosβ+2zx cosγ.

Since we have shown that

t1 ≤
ffiffiffiffiffiffiffiffiffiffi
φ1φ2

p
cosθ1, t2 ≤

ffiffiffiffiffiffiffiffiffiffi
φ1φ3

p
cosθ2, t3 ≤

ffiffiffiffiffiffiffiffiffiffi
φ3φ1

p
cosθ3,

we can immediately verify that

φ1 +φ2 +φ3 ≥ 2
ffiffiffiffiffiffiffiffiffiffi
φ1φ2

p
cosθ1 +

ffiffiffiffiffiffiffiffiffiffi
φ2φ3

p
cosθ2 +

ffiffiffiffiffiffiffiffiffiffi
φ2φ1

p
cosθ3

� 	
≥ 2ðt1 + t2 + t3Þ≥ 2ðjPDj+ jDEj+ jPFjÞ.

We can also verify that the equality holds if and only if ΔABC is an
equilateral triangle and P is its centroid.

Erdös-Mordell inequality
We illustrate the Erdös-Mordell inequality by using diagram.
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Consider the diagram:

Erdös-Mordell inequality corresponds to proving that

x+ y+ z≥ 2 ðb+ q+ zÞ

We rearrange the above diagram into the following diagram.

Diagram 3.27 .
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In the above trapezoid, we observe that ax≥ br+ cq. Similarly, we have
by≥ ar+ cp and cz≥ aq+ bp. Adding these inequalities yields

x+ y+ z≥
b
a
+

a
b

� �
r+

c
a
+

a
c

� �
q+

c
b
+

b
c

� �
p.

By using the well-known inequality AM ≥GM, the Erdös-Mordell
inequality is proved. If we apply AM ≥GM again to the Erdös-Mordell
inequality, we will derive that xyz≥ 8pqr.

Many inequalities can be solved by using points and lines of a triangle as
inspired by the proof of the Erdös-Mordell inequality.

Example 7.2 Suppose that a, b, c, x, y, z are positive numbers satisfying
a+ x= b+ y= c+ z= k. Prove that ay+ bz+ cx≤ k2.

Proof Construct an equilateral triangle PQK with side length k. On the three
sides of the triangle, let the points N, M, L be such that
QL= x, LK = a, KM = y, MP= b, PN = z, and NQ= c. Then it is clear that
SΔLKM + SΔMPN + SΔNRL < SΔPQK (Diagram 3.28).

Therefore,

ffiffiffi
3

p

4
ay+

ffiffiffi
3

p

4
bz+

ffiffiffi
3

p

4
cx<

ffiffiffi
3

p

4
k2 and ay+ bz+ cx< k2.

Example 7.3 Prove the inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 − ab

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + c2 − bc

p
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + c2 + ac

p
for any positive real

numbers a, b, c.

Proof Draw lines OA, OB, OC, where O is a point such that
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OAj j= a, OBj j= b, OCj j= c, ∠AOB=
π

3
, ∠BOC=

π

3
, ∠AOC=

2π
3
.

In ΔAOB, by the law of Cosines, we have

ABj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 − 2ab

cosπ
3

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 − ab

p
.

Similarly, in ΔAOC and ΔBOC, use the law of Cosines to get

ACj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + c2 − ac

p
and BCj j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + c2 − bc

p

Because in ΔABC, ABj j+ ACj j> Aj j, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2 − ab

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 + c2 − bc

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + c2 − ac

p
,

and the inequality is proved. If points A, B, C are collinear,
ABj j+ BCj j= ACj j. Thus, the area sum of ΔAOB and ΔBOC equals the area
of ΔAOC.

This means that
1
2
ab sin 60◦ +

1
2
bc sin 60◦ =

1
2
ac sin 60◦, that is,

ab+ bc= ac; or, in other words,
1
a
+

1
c
=

1
b
when equality holds.

In closing this Chapter, we cite an interesting problem concerning five
points that are concyclic. This problem was proposed by Mr. Jiang Zemin,
the former chief Party Secretary of China, on 6th April 2000.

His problem asks to prove the five intersection points N, M, K, L, O, of
circles in the diagram are concyclic. This problem would be a challenge
problem for IMO.

Diagram 3.28 .
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Hint:

(1) Because the four points F, C, K, J are concyclic,
∠DCK =∠FCK =180◦ −∠JKJ =∠KJE.

(2) Because the four points I, J, K, E are concyclic, therefore
∠KJE=∠KIE.

(3) From (1) and (2), we know that ∠DCK =∠KIE, and therefore the four
points D, C, K, I are concyclic.

(4) Similarly, D, C, I, N are four concyclic points.
(5) From (3) and (4), we know that the four points D, C, K, I are

concyclic.
(6) From (5), we know ∠KNI =∠KCI.
(7) Because K, C, L, J are four concyclic points, we know that

∠KCI =∠KCJ =∠KLJ.
(8) In a similar way as in steps (1)–(5), we can prove that B, M, J, L are

four concyclic points.
(9) In particular, by (8), we know that B, M, J, L are four concyclic points

so that ∠IBM =∠JBM =∠JLM.
(10) Since the four points N, B, M, I are concyclic, we have

∠INM =∠IBM.
(11) From steps (6), (7), (9) and (10), we know that

∠KNM =∠KNI +∠INM =∠KLJ +∠MLJ =∠KLM.

(12) From (11), we know that N, M, K, L are four concyclic points.
(13) Similarly, we can prove that N, M, K, O are four concyclic points.
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(14) From (12) and (13), we conclude that the five points N, M, K, L, O are
concyclic.
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Chapter 4
Arrangements and Transformations
of Numbers on a Circle: An Essay Inspired
by Problems of Mathematics Competitions

Kiril Bankov

Abstract There are contest problems dealing with the following situation:
several numbers are arranged on a circle and a certain admissible operation
can be consecutively done finite number of times; the task is to find con-
ditions under which a specific final arrangement of the numbers can be
obtained. The variety of these problems is determined by different initial and
final arrangements of the numbers and by the admissible operations with
them. The change of some of these elements often leads to interesting
generalizations. This chapter discusses several such examples. It also pre-
sents some other contest problems dealing with arrangements of numbers on
a circle. Didactical approaches to teaching how to solve such problem are
also considered.

Keywords Combinatorial situation ⋅ Admissible operation ⋅ Optimal
arrangements of numbers ⋅ Problems of mathematics competitions

4.1 Introduction

The intellectual treasure of every mathematics competition is the set of the
problems given to the participants. Competitions present variety of prob-
lems: from these that are closely connected to the school curriculum to those
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that deal with “non-standard” situations. The latter usually stimulate creative
thinking and remain in the minds for a long time. Finding their solutions
develops mathematical abilities. Many of these problems give rise to
numerous mathematical ideas. This chapter discusses such problems: some
are taken from mathematics competitions, others are inspired by competition
problems. In both cases, as some of the best examples of beauty in math-
ematics, they provoke an interest in mathematics that often begins with the
consideration of attractive problems.

4.2 Examples with Admissible Operations

The life is full of operations. Many times in a day we make decisions about
series of operations that have to be done in order to obtain a particular result.
The correctness of these decisions depends on the ability to estimate the
final results. Mathematics helps in modelling this reality by tasks using a
particular admissible operation to transform a given situation to a different
one. These problems lead to interesting generalizations by changing either
the admissible operation or the initial/final situations. This part presents such
examples taken from mathematics competitions in the context of arrange-
ments of numbers on a circle.

4.2.1 First Situation

Let n≥ 3 cells be arranged into a circle. Each cell can be occupied by 0 or 1.
The following operation is admissible: choose any cell C occupied by a 1
and reverse the entries in the two cells adjacent to C (so that x, y become
1− x, 1− y).

In order to create problems using the above situation, it is useful first to
understand some of the properties of the admissible operation.

Property 1 The operation does not change the parity of 1s. Certainly, the
admissible operation either does not change the number of 1s (if the entries
of the two cells adjacent to C are different, 0 and 1), or changes it by 2 (two
more 1s if both cells adjacent to C contain 0s, or two less 1s if they both
contain 1s).

Property 2 Let an even number (say 2k) of consecutive cells be occupied by
1s and 0s elsewhere. If the admissible operation is consecutively performed
clockwise (or anticlockwise) on the 1-st, 3-th, 5-th, …, (2k–1)-th 1s (or on
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the 2-d, 4-th, 6-th, …, (2k)-th 1s), the number of 1s does not change. The
group of these 1s moves one cell anticlockwise (or clockwise).

This property is demonstrated in Fig. 4.1. The operation starts clockwise
from the leftmost 1 and moves the group of the four 1s one cell
anticlockwise.

Property 3 Let an odd number (say 2k+1) of consecutive cells be occupied
by 1s and 0s elsewhere. If the admissible operation is consecutively per-
formed clockwise (or anticlockwise) on the 1-st, 3-th, 5-th, …, (2k+1)-th 1s,
the number of 1s increases by 2 with two 1s at the both ends of the initial
group of 1s.

This property is demonstrated in Fig. 4.2. The operation starts clockwise
from the leftmost 1s and increases the group of five 1 to a group of seven 1s.

Property 4 Let an odd number (say 2k+1) of consecutive cells be occupied
by 1s and 0s elsewhere. If the admissible operation is consecutively per-
formed clockwise (or anticlockwise) on the 2-d, 4-th, 6-th, …, (2k)-th 1s, the
number of 1s decreases by 2 by transferring to 0 the 1s at the both ends of
the initial group.

This property is demonstrated in Fig. 4.3. The operation starts clockwise
from the second to the left 1 and decreases the group of five 1s to a group of
three 1s.
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It is now time to pose several problems. For each of them (Problems from
2.1 to 2.6) the First Situation is used.

Problem 2.1 (National competition in Bulgaria, 2016) Let n=20.

(A) Initially, there is a 1 in one cell and 0s elsewhere. Is it possible to obtain
1s in all cells in a finite number of admissible steps?

(B) Initially, there are 1s in two consecutive cells and 0s elsewhere. Is it
possible to obtain 1s in all cells in a finite number of admissible steps?

(C) Initially, there are 1s in two cells that stand in one and 0s elsewhere. Is
it possible to obtain 1s in all cells in a finite number of admissible
steps?

(D) Is it possible to choose two cells in such a way so that if initially there
are 1s in both of them and 0s elsewhere to obtain 1s in all cells in a
finite number of admissible steps?

Solution

(A) No. According to Property 1, the number of 1s will always be odd and
cannot be 20.

(B) No. According to Property 2 the number of 1s will always be equal to
2.

(C) No. After the first performance of the operation there will be four
consecutive 1s. According to Property 2, the number of 1s will always
be equal to 4.

(D) Let initially there are 1s in two non-adjacent cells and 0s elsewhere.
Start the operation from one of the 1s (Fig. 4.4) and continue adding 1s
until the second 1 is attached to the group of 1s (Property 3). We have
now even number of consecutive 1s. According to Property 2 their
number cannot be changed. In order not to have 0s, the initial cells that
contain 1s must be diametrically opposite.
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Fig. 4.3 Demonstration of property 4
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Clearly, for parts (A) and (D) what matters is the parity of n while for
parts (B) and (C) the answers are the same for any n.

Problem 2.2 (National competition in Bulgaria, 2016) Let n=21. Initially,
there is a 1 in one cell and 0s elsewhere. Is it possible to obtain 1s in all cells
in a finite number of admissible steps?

Solution Yes. Apply Property 3.

Problem 2.3 Initially, there is a 1 in one cell and 0s elsewhere. For which
values of n is it possible to obtain 1s in all cells in a finite number of
admissible steps?

Solution Because of Property 1, for even n it is not possible to obtain 1s in
all cells. Let now n be an odd number. By applying Property 3, it is possible
to obtain 1s in all cells. The required values of n are all odd numbers.

Problem 2.3 in cases n=1990 and n=1991 is given on a national
mathematics competition in Bulgaria, 1991 (Rakovska et al. 2007).

Problem 2.4 Initially, there is a 1 in one cell and 0s elsewhere. For which
values of n is it possible to reverse the entries in all cells (i.e. to obtain 0 in
the cell where the initial 1 was, and 1s elsewhere) in a finite number of
admissible steps?

Solution Let n be such a number that it is possible to reverse the entries in
all cells in a finite number of admissible steps. Because of Property 1,
n must be an even number. By applying Property 3, it is possible to obtain
only one 0 that is in the cell diametrically opposite to the cell having
contained the initial 1, and 1s everywhere. After the admissible operation is
performed, the 0 “jumps” across one cell. Therefore, this single 0 may
occupy the cell where the initial 1 was if and only if n is divisible by 4.

Didactical consideration. It is always difficult to teach students solving
problems. It is much more difficult to teach them solving competition
problems. The difficulty is that these problems usually need a
“non-standard” approach. One of the first important steps in solving such
problems is to understand the situation. This is the basis for a good start in
considering the methods and strategies for moving ahead. In the case of the
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problems presented in this paper, understanding the properties of the ad-
missible operation is crucial. This is why the recommendation is to first
acquaint the students with the situation and the properties of the admissible
operation. Then the teacher may pose (or even ask the students to pose)
several problems, the ideas for which solutions are (more or less) already
explained in the properties of the operation.

The next problem can be considered as a “reverse” of Problem 2.3.

Problem 2.5 Initially, there are 1s in m cell and 0s elsewhere. For which
values of m is it possible to obtain a 1 in one cell and 0s elsewhere in a finite
number of admissible steps?

Solution Let m be such a number that it is possible to obtain a 1 in only one
cell in a finite number of admissible steps. Because of Property 1, m must be
an odd number. Let now m=2k+1 be an odd number. (i) If the m cells
containing 1s are consecutive, we apply Property 4 and decrease the number
of 1s by 2, i.e. we get m− 2= 2k− 1 consecutive 1s. This way, step by step,
it is possible to obtain 1s in only one cell. (ii) Let now the m cells containing
1s are not consecutive. Choose a group A of odd number (say 2s− 1) 1s.
(Such a group exists, since m is an odd number.) Using Property 3 we can
get two more 1s to group A. If we continue this way, we can “integrate”
another group of 1s with A, i.e. we decrease the groups of 1s at the expense
of increasing of the number of the consecutive 1s. Using this procedure, we
can obtain one group of odd number consecutive 1s. Then we can proceed
as in (i). Therefore, the answer of Problem 2.3 is “all odd numbers”.

A similar situation can be examined in different shapes. For example,
consider a figure in shape of “eight”, namely:

Problem 2.6 Let n≥ 3 and 2n− 1ð Þ cells be arranged into two tangent
circles in such a way that one of the cells is in the tangent point (i.e. it is a
common cell for the both circles) and each circle has n cells. Initially, there
is a 1 in the cell that is common for both circles and 0s elsewhere. The
following operation is admissible: choose any cell C occupied by a 1 and
reverse the entries in the two cells adjacent to C (so that x, y become 1− x,
1− y). Figure 4.5 represents the adjacent cells of C0 (the common cell for
the both circles)—they are either the cells C1 and C2, or the cells C3 and C4.
For which values of n is it possible to obtain 1s in all cells of the figure in a
finite number of admissible steps?
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Solution The next three cases are considered:

(i) Let n be an odd number. According to Problem 2.3, it is possible to
obtain 1s in all cells of each of the circles separately in a finite number
of admissible steps. Therefore we can obtain 1s in all cells of the
figure.

(ii) Let n be divisible by 4. Following the procedure described in the
solution of Problem 2.4 for each of the circles, we may obtain two 0s,
one in each of the circles in the cells that are diametrically opposite to
C0, and 1s everywhere. Because each of these 0s may “jump” across
one cell, the most left situation in Fig. 4.6 can be obtained. Then we
consecutively apply the admissible operation on the cells C2 and C4

(Fig. 4.6), and obtain 1s in all cells.
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(iii) Let n be an even number that is not divisible by 4. Assume that it is
possible to obtain 1s in all cells in a finite number of admissible steps.
Consider the last step: it should be applied on a cell containing 1, and
two 0s only in its adjacent cells. Property 1 tells us that if we have only
two 0s, they are situated one on each circle. In order to be able to
perform the last step, these two 0s should be placed in a way that is
similar to what is shown on the central situation in Fig. 4.6, i.e. one of
the 0s is in cellC0. Because after the admissible operation is performed,
the 0 “jumps” across one cell, this means that in a finite number of
admissible steps the only 0 in one of the circles (the upper circle in
Fig. 4.6) may occupy cell C0, i.e. the cell where the initial 1 was.
According to Problem 2.4, n is divisible by 4, which is a contradiction.

Therefore, it is possible to obtain 1s in all cells in a finite number of
admissible steps if and only if n is an odd number or n is divisible by 4.

Another possible figure that could be examined with this situation is
formed by two intersecting circles with cells containing 1s in their inter-
secting points and 0s elsewhere. The consideration of different arrangements
is left to the reader.

4.2.2 Second Situation

Let n≥ 3 cells be arranged into a circle. Each cell can be occupied by 0 or 1.
The following operation is admissible: choose any cell C occupied by a 1,
change it into a 0 and simultaneously reverse the entries in the two cells
adjacent to C (so that x, y become 1− x, 1− y).

The difference with the First Situation is that the admissible operation
changes also the entry in the chosen cell C. Because of this, the Second
Situation has different properties.

Property 1 Any three consecutive 1s can be transformed into three con-
secutive 0s.

Property 2 Using the admissible operation it is not possible to obtain 1s in
all cells.

This is because each operation is performed in a cell containing 1, which
transfers into 0.

Property 3 If the admissible operation is performed clockwise (or anti-
clockwise) on a group of consecutive 1s, the following arrangement is
obtained: the group of consecutive 1s increases by one, following by one 0
and one 1, then a group of consecutive 0s, decreasing by one.
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This property is demonstrated in Fig. 4.7. The operation is performed
clockwise on the consecutive 1s.

The next two problems (Problems 2.7 and 2.8) use the Second Situation.

Problem 2.7 (4-th Austrian–Polish Mathematical Competition 1981) Ini-
tially, there is a 1 in one cell and 0s elsewhere. For which values of n is it
possible to obtain 0s in all cells in a finite number of admissible steps?

Solution Denote the cells by C1,C2, . . . ,Cn. Let initially C1 be occupied
by 1 and n be such a number that after a certain number of admissible steps
all cells are occupied by 0. Denote by si the number of operations performed
in Ci and by ai the number of the changes in Ci (i.e. when the admissible
operation is performed in Ci or any of its neighbor cells Ci− 1 or Ci+1).
Since in the final arrangement all cells are occupied by 0, then a1 ≡ 1ðmod2Þ
and ai ≡ 0ðmod2Þ for i≠ 1. It is clear that ai ≡ si− 1 + si + si+1ðmod2Þ for
i=1, 2, . . . , n. (We assume that s0 = sn and sn+1 = s1.)

(i) If n is divisible by 3, then 1≡ a1 + a4 + a7 +⋯+ an− 2 ≡ ∑
n

i− 1
siðmod2Þ

and 0≡ a2 + a5 + a8 +⋯+ an− 1 ≡ ∑
n

i− 1
siðmod2Þ, which is not

possible.
(ii) Let n≡ 1ðmod3Þ. Because of Property 3, after the execution of the

admissible operation clockwise on the consecutive cells, the arrange-
ment presented in Fig. 4.8 can be obtained. CellCn− 2 contains 0 and 1s
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Fig. 4.7 Demonstration of property 3
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elsewhere. There are 3k consecutive 1s. Using Property 1, they can be
grouped in k groups by 3 and 0s can be obtained everywhere.

(iii) Let n≡ 2ðmod3Þ. Because of Property 3, after the execution of the
admissible operation clockwise on the consecutive cells, the
arrangement presented in Fig. 4.9 can be obtained. Cells Cn− 1 and
Cn− 2 contain 0 and 1s elsewhere. There are 3k consecutive 1s. Using
Property 1, they can be grouped in k groups by 3 and 0s can be
obtained everywhere.

Therefore, it is possible to obtain 0s in all cells in a finite number of
admissible steps if and only if n is not divisible by 3.

A possible change is to ask the same question under a different initial
arrangement. Here is an example.

Problem 2.8 Initially, all cells are occupied by 1. For which values of n is it
possible to obtain 0s in all cells in a finite number of admissible steps?

Solution The answer is that for any n it is possible to obtain 0s in all cells in
a finite number of admissible steps. Indeed, this is obvious if n≡ 0ðmod3Þ
(Property 1). If n≡ 1ðmod3Þ, we may arrange several groups of three ones
and this way to obtain a situation in which there is a 1 in one cell and 0s
elsewhere; now we may apply (ii) in problem 2.7. If n≡ 2ðmod3Þ, we may
arrange several groups of three 1s and this way to obtain a situation in which
there is only two neighbor 1s and 0s elsewhere; in the next step we will get a
1 in one cell and 0s elsewhere; now we may apply (iii) in problem 2.7.

4.2.3 Third Situation

Let n≥ 3 cells be arranged into a circle. Each cell can be occupied by 1 or 0.
The following operation is admissible: draw another n cells—one between
any two of the existing cells; in each of these new cells write 0 if the
numbers in the two neighbor existing cells are equal, and 1 if these numbers
are different; then delete the existing cells.
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Property 1 If n is an odd number and there is at least one 1, it is not
possible to obtain 0s in all cells in a finite number of admissible steps.

Certainly, assume that in a finite number of admissible steps all cells
contain 0s. Then in the second to the last arrangement all cells must contain
1s. Therefore, in the previous arrangement any two neighbor cells contain
different numbers, which is impossible, having an odd number of cells.

Property 2 Considering the modulo-2 arithmetic, the admissible operation
can be reworded the following way: draw another n cells—one between any
two of the existing cells; in each of these new cells write the modulo-2 sum of
the numbers in the two neighbor existing cells; then delete the existing cells.

This is because in modulo-2 arithmetic, 1 + 1= 0+0=0 and 1+ 0=
0+1=1.

Property 3 After the execution of the admissible operation k times, the
numbers in the cells are obtained as a sum of k+1 consecutive numbers
among the initially written numbers with coefficients that are the numbers in
the k-th row of the Pascal’s triangle modulo-2, known also as Sierpinski’s
triangle (Fig. 4.10).

Fig. 4.10 Pascal’s triangle modulo-2 (or Sierpinski’s triangle)
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This is because of the way the numbers are obtained described in
Property 2.

Problems 2.9 and 2.10 use the Third Situation.

Problem 2.9 (Mathematics competition in former Yugoslavia, 1975 Ser-
geev 1987) Let n=9 and four of the cells be occupied by 1, the other five be
occupied by 0. Is it possible to obtain 0s in all nine cells in a finite number
of admissible steps?

Solution No, because of Property 1.
This relatively simple problem gives birth to variety of generalizations.

There are different variations of the initial arrangements, depending on the
number of the cells and on the number and the positions of the initial 1s.
Here is an example.

Problem 2.10 Initially there is a 1 in one cell and 0s elsewhere. For which
values of n is it possible to obtain 0s in all cells in a finite number of
admissible steps?

Let’s call an eligible value a value of n for which it is possible to obtain 0s
in all cells in a finite number of admissible steps. Property 1 tells us that an
odd number cannot be an eligible value. This is why we will consider only
even values of n. We will show that the eligible values are all powers of 2.

Because in the initial arrangement there is only one 1 and 0s elsewhere, it
follows from Property 3 that the numbers in the cells of the circle after the
execution of the admissible operation k times for k< n can be obtained by
consecutively writing the numbers in the k-th row of the Sierpinski’s triangle
and completing the remaining cells with 0s (if necessary). For k≥ n these
numbers can be obtained the following way: consider the numbers in the k-th
row of the Sierpinski’s triangle and roll them up around the cells of the circle;
then add modulo-2 the numbers that go into one and the same cell.

Let n be a power of 2, i.e. n=2m for any natural number m. If k< n, after
the execution of the admissible operation k times, the number 1 appears with
coefficient 1 modulo 2 at least once (i.e. the first coefficient in the k-th row of
the Sierpinski’s triangle). This means that it is not possible to obtain 0s in all
cells in a number of admissible steps that is less than n. Since the row number
n=2m of the Sierpinski’s triangle consists of two 1s (at the both ends) and 0s
elsewhere (see, for example, Proposition 4.1.11 on page 230 of Gross 2008),
after the execution of the admissible operation n=2m times, the number 1
appears with coefficient 0 everywhere. This is because the two 1s at the both
ends in the n-th row go into one and the same cell and their sum modulo 2 is
0. Therefore after the execution of the admissible operation n=2m times the
number in each cell is 0. This means that all powers of 2 are eligible values.

We will prove now that if n is not a power of 2, it is not an eligible value.
We will make use of the following
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Theorem Let n and k be non-negative integers. Then

n

k

 !
≡

0 mod 2 if n is even and k is odd

⌊
n
2
⌋

⌊
k
2
⌋

0
B@

1
CA mod 2 otherwise

8>>><
>>>:

The proof of the theorem can be found on pp. 228–230 of Gross 2008.
The above theorem allows comparison of the entries in the s-th and (2s)-

th rows of the Sierpinski’s triangle, where s is a natural number. Because
2s
2k+1

� �
≡ 0 mod 2 and

2s
2k

� �
≡ s

k

� �
mod 2, it follows that the entries

in the (2s)-th rows of the Sierpinski’s triangle can be obtained by writing 0s
between any two of the numbers in the s-th row.

Lemma 2.1 Let n>2 cells be arranged into a circle A. Each cell can be
occupied by 1 or 0. Initially there is a 1 in one cell and 0s elsewhere. Let 2n
cells be arranged into another circle B. Each cell can also be occupied by 1
or 0. Initially there is a 1 in one cell and 0s elsewhere. The admissible
operation described in the Third Situation is performed s≥ 1 times on circle
A and 2s times on circle B. Then the numbers on circle B can be obtained by
writing 0s between any two numbers on circle A.

Lemma 2.1 follows from the comparison of the entries of the s-th and
(2s)-th rows of the Sierpinski’s triangle and rolling up the numbers of the
corresponding rows around the cells of the circles.

Lemma 2.2 Let m>2 be an eligible value. Then
m
2
is also an eligible value.

Proof Let m>2 cells be arranged into a circle B. Each cell can be occupied
by 1 or 0. Initially there is a 1 in one cell and 0s elsewhere. Let after s steps
all cells contain 0s in a finite number of admissible steps. Then after s− 1ð Þ
steps all cells contain 1s. According to Lemma 2.1, s− 1ð Þ cannot be an

even number, i.e. s is an even number. Let now
m
2
cells be arranged into a

circle A. Each cell can be occupied by 1 or 0. Initially there is a 1 in one cell
and 0s elsewhere. Lemma 2.1 tells us that all 0s in circle B can be obtained

by writing 0s between any two numbers on circle A after
s
2
steps. This means

that all cells on circle A after s
2 steps also contain 0s, i.e.

m
2
is also an eligible

value.
We are now ready to show that if n is not a power of 2, it is not an eligible

value. Certainly, let n= q2r, where q is an odd number, q>1 and r is a
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natural number. Suppose that n is an eligible value. Apply Lemma 2.2
r times. The result is that q is also an eligible value. This is not possible,
since q is an odd number. Therefore, n is not an eligible number.

Problem 2.10 gives rise to another issue that needs exploration. Let n is
not a power of 2. Since n is not an eligible number, the execution of the
admissible operation described in the Third Situation will never end. On the
other hand, there are finite number of arrangements of 0 and 1 in the cells of
the circle. This means that after a certain number of steps the arrangements
of the numbers will cyclically repeat. The least number of the steps in this
repetition is called a period. The reader may try to explore how the period
depends on n.

4.2.4 Fourth Situation

Let n≥ 3 cells be arranged into a circle. Each cell contains either 1 or (–1).
The numbers in any two neighbor cells are multiplied, so that n products are
obtained and S is the sum of these products.

Denote the numbers in the cells consecutively by a1, a2, . . . , an. The
obtained products are p1 = a1a2, p2 = a2a3, . . . , pn = ana1. Then
S= p1 + p2 +⋯+ pn.

Property 1 Each of the products p1 = a1a2, p2 = a2a3, . . . , pn = ana1 is
either 1 or (–1).

This is because each of the numbers a1, a2, . . . , an is either 1 or (–1).

Property 2 There is an even number of (–1)s among the products
p1, p2, . . . , pn.

This follows from the equation P= p1p2 . . . pn = a21a
2
2 . . . a

2
n =1.

Problem 2.11 and the discussion after it use the Fourth Situation.

Problem 2.11 (Regional competition in Bulgaria) Prove that if S=0, then
n is divisible by 4.

Solution Each term of the sum S= p1 + p2 +⋯+ pn is either 1 or (–1).
Because S=0, the number of (–1)s is equal to the number of 1s. According
to Property 2 there is an even number (say 2k) of (–1)s among the products
a1a2, a2a3, . . . , ana1 and the same number (2k) are the 1s. Therefore, n,
which is the number of the terms in S, is the sum of one and the same even
number (2k+2k=4k) and is divisible by 4.

An interesting phenomena is that the reverse statement is also true,
namely if n is divisible by 4, there is an arrangement of 1s and (–1)s into the
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cells, so that S=0. Certainly, consecutively write the four f1, 1, 1, − 1g
several times and this gives S=0.

The next step toward a possible extension is the observation that if S is
divisible by 4, then n is also divisible by 4. This is because if S is divisible by
4, there is an even number of (–1)s and also an even number of 1s among
the products a1a2, a2a3, . . . , ana1. If we allocate one and the same number
(say 2k) of 1s and (–1)s to obtain a sum of 0, the sum of the remaining (–1)s
(or 1s) is divisible by 4, therefore their number is also divisible by 4—let
this number be 4m. Then n=2k+2k+4m=4ðk+mÞ is divisible by 4. This
way we conclude that n is divisible by 4, if and only if S is divisible by 4.

Similar reasoning can be applied when n is not divisible by 4. The
conclusion is that n and S have one and the same remainder modulo 4.
Therefore the following assertion is true:

Statement. In the notation of the Forth Situation, n≡ Sðmod4Þ.
In line with the previous considerations, it seems worth mentioning one

more problem that uses the Fourth Situation. Let n≥ 3 cells be arranged into
a circle. Each cell can be occupied by 1 or (–1). The following operation is
admissible: draw another n cells—one between any two of the existing cells;
in each of these new cells write the product of the numbers in the two
neighbor existing cells; then delete the existing cells. Initially there is a (–1)
in one cell and 1s elsewhere. For which values of n is it possible to obtain 1s
in all cells in a finite number of admissible steps? By itself the task is
interesting, but it is actually analogous to problem 2.10.

4.3 Static Arrangements

Contest problems sometimes present interesting situations involving
arrangements of numbers on a circle that satisfy particular properties. Even
though this looks like “static arrangements”, some operations are also
involved in the justification of the properties of the arrangements. Two
examples are considered below.

4.3.1 Example 1

One of the aims of this paper is to give some guidance of how to teach
solving “non-standard” problems from mathematics competitions. For this
purpose we refer to Polya and his works on problem solving that are con-
sidered as masterpieces in the area. The discussion below is guided by the
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Polya’s phases for problem solving (Polya 1946). They are: (i) understand-
ing the problem; (ii) designing a plan; (iii) carrying out the plan; (iv) looking
back. It is strongly recommended to consider them when teaching problem
solving.

Problem 3.1 Let 2n+1, n≥ 2, cells be arranged into a circle. Each cell is
occupied by one of the numbers 1, 2, 3, . . . , 2n+1 and all these numbers are
used. The numbers in any two neighbor cells are multiplied, so that 2n+1
products are obtained. Denote by S the sum of these products. Find an
arrangement of the numbers into the cells such that S has the largest possible
value.

Solution As promised, the solution follows the Polya’s phases for problem
solving.

(i) Understanding the problem. Larger values of S can be obtained if the
values of the terms of S are larger. Since each term is a product of two
natural numbers, larger values means that “smaller” numbers has to be
multiplied by “small” numbers; “larger” numbers—by “large” num-
bers. Therefore, the neighbors of 1 have to be 2 and 3. Then, 4 and 5
should go next to 2 and 3. Figure 4.11 shows the correct positions of 4
and 5—the one that is presented on the right circle.

(ii) Designing a plan. The plan is to prove that the required optimal
arrangement is the one presented in Fig. 4.12.

12
45

3 12
54

3

5x2+2x1+1x3+3x4=27 4x2+2x1+1x3+3x5=28 

Fig. 4.11 Positions of 4 and 5

12

76
54

3

Fig. 4.12 The optimal arrangement
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(iii) Carrying out the plan. We will use the Lemma 3.1 (see below, after
the completion of the solution of the problem). We may assume that
the cells divide the circle into 2n+1 equal arcs. Let the numbers
1, 2, 3, . . . , 2n+1 be arranged in an optimal way, i.e. S has the largest
possible value. Consider a diameter from one of the cells. According
to the Lemma 3.1, for each pair of numbers that are symmetrical
against this diameter, the smaller numbers are in one and the same of
the semicircles and the larger numbers are in the other semicircle. It
follows that numbers 1 and 2 are adjacent. This is because if they are
not, there is a diameter separating 1 and 2, such that 1 and 2 are not
symmetrical against this diameter. Denote by A and B the numbers
symmetrical to 1 and 2 respectively (Fig. 4.13). Then A>1 and 2<B,

which is a contradiction, because 1 and B are in one of the semicircles
but 2 and A are in the other semicircle. Using mathematical induction
we will prove that the required optimal arrangement is the one pre-
sented in Fig. 4.12. Assume that for any k, k< n, the numbers
2k, 2k− 2, . . . 4, 2, 1, 3, 5, . . . , 2k− 1 are adjacent, as shown in
Fig. 4.14. Let A and B be the adjacent numbers to 2k and 2k− 1 as in
Fig. 4.14. Suppose that A>2k+1 and B>2k+1. Denote by C the

1

2

A

B

A > 1

2 < B

Fig. 4.13 Arrangements of numbers 1 and 2

12

2 1k –2k

54
3

C

BA

2 +1k

Fig. 4.14 Inductive process
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number adjacent to 2k+1 as shown in Fig. 4.14. There is a diameter
such that the pairs C, 2k− 1ð Þ and 2k+1,Bð Þ are symmetrical. Since
C>2k− 1 and 2k+1<B, this is a contradiction. Therefore either
A=2k+1 or B=2k+1. The same way we may prove that either
A=2k+2 or B=2k+2. Because of the Lemma 3.1, the only possi-
bility is that A=2k+2 and B=2k+1. This completes the proof of the
optimal arrangement.

(iv) Looking back. Some people miss this phase by thinking that when the
solution is completed there is not a need to pay attention to the
problem. “Looking back” phase gives conviction that the solution is
correct. It also stimulate looking for “better” solutions (easier, more
effective, smarter, etc.). This phase considers questions like “What did
we do?”, “Which methods did we use?”, “What is important in the
solution?”, “Can something be improved?”, etc. Guided by the last
two questions we may realize that in the case of Problem 3.1 it is not
important that the terms of S are the products of two neighbor cells.
The reasoning is similar if the terms of S are the products of any given
number of neighbor cells. This way we approach a problem given in
the Moscow Mathematical Olympiad, 1999 (Fedorov et al. 2011).

Problem 3.2 Let 1999 cells be arranged into a circle. Each cell is occupied
by one of the numbers 1, 2, 3, …, 1999 and all these numbers are used.
Denote by S the sum of the products of the numbers in all sets of 10
consecutive numbers. Find an arrangement of the numbers into the cells
such that S has the largest possible value.

Its solution is very similar to what was already done.
Here is the Lemma that was already used in the solution of Problem 3.1.

Lemma 3.1 Let 2n+1, n≥ 2 cells be arranged into a circle. These cells
are occupied by different natural numbers a1, a2, a3, . . . , a2n+1 such that
a1 > a2n. The numbers in any two neighbor cells are multiplied, so that
2n+1 products are obtained. Denote by S the sum of these products.
Consider the following operation: for each i=1, 2, . . . n, numbers ai and
a2n+1− i change their places if ai < a2n+1− i, and do not change the places
otherwise (Fig. 4.15). Prove that if at least one pair of numbers change
their places, the value of S gets larger.
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a2 1n+

ai
a2 1–n+ i

If a  < ai n+ i2 1–

Fig. 4.15 The operation

Proof Consider the diameter from the cell containing the number a2n+1.
The meaning of the operation is to arrange the numbers in such a way that
for each pair of numbers that are symmetrical against this diameter, the
smaller numbers are in one and the same of the semicircles and the larger
numbers are in the other semicircle. (For example, in Fig. 4.12, the smaller
numbers are on the left semicircle and the larger—on the right semicircle.)
Let the operation be completed and numbers ai and a2n+1− i change their
places. This means that ai < a2n+1− i. The sum of the products that contain ai
and a2n+1− i before the operation is

S1 = ai− 1ai + aiai+1 + a2n− ia2n+1− i + a2n+1− ia2n+2− i

and after the operation it is

S2 = ai− 1a2n+1− i + a2n+1− iai+1 + a2n− iai + aia2n+2− i.

Therefore,

S2 − S1 = a2n+1− i − aið Þ ai− 1 − a2n+2− ið Þ ai+1 − a2n− ið Þ.

The first factor is positive (because ai < a2n+1− i). The other two factors
are also positive, since theirs first terms are from the right semicircle
(Fig. 4.15) and the second terms are from the left semicircle. This is why
S2 > S1.

4.3.2 Example 2

The solution to the last problem in this chapter uses the famous Unique
Factorization Theorem. It states that every integer greater than 1 either is
prime itself or is the product of prime numbers, and this product is unique,
up to the order of the factors.

Problem 3.3 Let 2n+1, n≥ 2 cells be arranged into a circle. Each cell is
occupied by a natural number. For the numbers in any two neighbor cells the
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ratio of the greater to the smaller is calculated, so that 2n+1 quotients are
obtained. Is it possible to occupy these cells by natural numbers in such a
way that each of these quotients is a power of a prime number?

Solution Assume that the natural numbers a1, a2, a3, . . . , a2n+1 are written
into the cells in the same order in such a way that each quotient
ai

ai+1
, i=1, 2, . . . , 2n+1, (a2n+2 = a1) is either a power of a prime number

or its reciprocal. Let m of these quotients are powers of prime numbers and
they are pα11 , pα22 , . . . , pαmm , and the other 2n+1−m are reciprocal to the

powers of prime numbers and they are
1

qβ11
,
1

qβ22
, . . . ,

1

qβ2n+1−m
2n+1−m

. Then

1=
a1
a2

⋅
a2
a3

⋅⋯ ⋅
ai

ai+1
⋅⋯ ⋅

a2n+1

a1
= pα11 .pα22 . . . pαmm .

1

qβ11
⋅
1

qβ22
⋅⋯ ⋅

1

qβ2n+1−m
2n+1−m

.

Therefore A= pα11 .pα22 . . . pαmm = qβ11 .q
β2
2 . . . qβ2n+1−m

2n+1−m. Because of the unique
factorization of number A, it follows that m=2n+1−m, i.e. 2m=2n+1,
which is impossible. The contradiction shows that such arrangement is not
possible.

4.4 Problems to the Reader

Readers may try to find solutions to the following two problems. The first of
them is about an admissible operation, the other one deals with a static
arrangement.

Problem 4.1 Let 6 cells be arranged into a circle. Each cell is occupied by
one number. The following operation is admissible: add 1 to any three
neighbor numbers or subtract 1 from any three numbers that stand in one
number (i.e. stand on the places numbered 1, 3, and 5; or numbered 2, 4, and
6). Initially, numbers 1, 2, 3, 4, 5, and 6 are written in the cells in this order.
Is it possible to obtain one and the same number written in each cell in a
finite number of admissible steps?

Problem 4.2 Let n≥ 3 cells be arranged into a circle. Each cell is occupied
by one digit neither of which is 0. Albert writes a n− 1ð Þ—digit number by
copying clockwise consecutively n− 1ð Þ of the digits. Betty also writes
n− 1ð Þ—digit number the same way. Even if they both start from different
cells of the circle, their numbers are equal. Prove that the circle can be
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divided into several arcs in such a way that the numbers written by copying
clockwise consecutively all digits of each of the arcs are all equal.

4.5 Conclusion

The circle is an amazing geometric figure. It has been known since before
the beginning of recorded history. Natural circles would have been
observed, such as the Moon, Sun, and a short plant stalk blowing in the
wind on sand, which forms a circle shape in the sand. The circle is the basis
for the wheel, which, with related inventions such as gears, makes much of
modern machinery possible.

In mathematics, the study of the circle has helped inspire the development
of geometry, astronomy, and calculus. Even in 1700 BC year the Rhind
papyrus (the best example of Egyptian mathematics) gives a method to find

the area of a circular field. The result corresponds to
256
81

≈ 3.16049 . . . as an

approximate value of π. In 300 BC years Book 3 of Euclid’s Elements deals
with the properties of circles.

Besides the many interesting geometrical properties, the circle is also a
close curve. This makes it possible to consider the problems in this paper.
An interesting feature of these problems is that they are not closely con-
nected with the curriculum usually taught at school. Actually, they are not
connected to any curricula because to understand the problems one does not
need to possess particular mathematical knowledge. However, finding
solutions needs a lot of mathematical reasoning, experience, and intuition. In
this respect these problems are one of the best examples of the beauty of
mathematics.

The German psychologist Karl Duncker said: “Problem arises when
someone has a goal for which he/she does not know a path for its
achievement”. From this point of view this chapter presents excellent
examples of “problems”. They are in contrast with what is usually taught at
school: routine problems and exercises that are purposeful activities with
known path for its achievement.

Thanks to mathematics competitions such problems become known to
students, teachers and many others that are interested in mathematics. The
acquaintance and discovering of their solutions is the best way for students
to get involved in sensible mathematical activities. This is also a way to
present the students the beauty of mathematical ideas and to attract them to
mathematics.
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Chapter 5
Combinatorial Problems in the Mathematical
Olympiad of Central America and the
Caribbean

L.F. Cáceres-Duque, J.H. Nieto Said and R.J. Sánchez Lamoneda

Abstract In this article we analyze the combinatorial problems proposed at
the Mathematical Olympiad of Central America and the Caribbean, during
its eighteen years of existence. The different types of combinatorial problems
(counting, existence, strategy games, etc.) are explained and illustrated with
various examples. Some original problems, submitted to the olympiad but not
selected in the papers, are also discussed.

Keywords Olympiad · Combinatorics · Problem · Solution · Central
America · Caribbean

5.1 Introduction

The Mathematical Olympiad of Central America and the Caribbean
(Centro) was created in 1999 with the aim of encouraging the participation of
countries of the region in international mathematical competitions, goal that
has been successfully achieved. The Centro is an International Mathematical
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Olympiad (IMO) type competition: the exam is applied in two consecutive
days; each day the contestants are allowed four and a half hours for solving
three problems, each one with a seven points value. Each country participates
with a delegation consisting of a Leader, a Deputy Leader and at most three
students. The contest is addressed to young high school students, less than
16 years old the year previous to the contest.

More information about the Centro and statistical data may be found in
Cáceres et al. (2016), Nieto and Sánchez (2005, 2009).

Themain areas for the contest problems are algebra, combinatorics, geom-
etry and number theory. The proposed problems from 1999 to 2014, with
complete solutions, are found in Nieto (2015). In this article we focus on
combinatorial problems, for the following reasons:

1. Combinatorial problems are around one third of all the problems proposed
so far.

2. Combinatorics is the area less understood and developed in the high
school’s mathematical curricula in the region.

Our purpose is to analyze the set of combinatorial problems proposed in the
Centro, their types (counting problems, existence problems, strategy games,
etc.) and themain ideas involved.Wewill also include some original problems
from the bank of problems which were not selected for the competition.

5.2 Contest Problems

The contest problems in combinatorics, proposed from 1999 to 2016, may be
classified in five categories: strategy games, configuration problems, extremal
problems, counting problems and miscellaneous problems. In the following
pages we examine typical problems in each of these classes. Aswementioned
above, each year’s competition has six problems. We name the problems
specifying the year and the position of the problem on the exam. We should
mention that the difficulty of the problems is intended to be in the order 1, 4,
2, 5, 3, 6, from the easiest to the most difficult.

5.2.1 Counting Problems

These problems ask to count the number of some kind of configurations.
This is one of the main concerns of combinatorics. To succeed in this task
it is necessary to know the basic counting principles: the addition
principle, the product principle and the inclusion-exclusion principle. In
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addition the students should know how to count several typical configura-
tions: subsets, functions, sequences, multisets, permutations, etc. A basic
knowledge of recurrence relations is also important. This material may be
found in many books, for example in Andreescu and Feng (2004).

Proposed problems in this area during the 18 years of the competition:
2003-5, 2004-6, 2008-4, 2011-1, 2014-4.

Problem 2003-5. An 8 × 8 square board is divided into 64 square cells, each
cell of side 1cm. Each cell can be colored either white or black. Find the total
number of ways to color the board such that each 2 × 2 square formed by
four cells with a common vertex contains two white cells and two black cells.

Solution: We start by painting the first row arbitrarily and then we try to
extend the coloring to the whole board satisfying the given conditions. If
two consecutive cells in the first row have the same color, we paint the two
cells below them with the opposite color; then it is easy to see that the only
admissible way to paint the second row is to color each cell with the opposite
color that the cell above it. We repeat this way to color the third, fourth, and
so on, up to the last row. On the other hand, if in the first row there are not
two consecutive cells with the same color, this means the cells are painted in
an alternating pattern, WBWBWBWB or BWBWBWBW; then the second
row can be coloured either WBWBWBWB or BWBWBWBW. The same is
true for the remaining rows. Hence any of the two alternating ways to color
the first row can be extended to 27 ways to color the whole board, and each
one of the 28 − 2 non alternating ways to color the first row can be extended
in an unique way. Therefore we will have 2 · 27 + 28 − 2 = 29 − 2 = 510
different ways to paint the board.

Problem 2011-1. In each vertex of a cube there is a fly. When a whistle
sounds, each fly moves to a vertex located on some of the faces to which its
vertex belongs, but diagonally opposed to it. In how many ways can the flies
move, in such a way that no vertex ends with two or more flies?

Solution: Note first that the set of vertices of the cube can be partitioned into
two disjoint subsets: {A,C, F, H} (represented with white dots in Fig. 5.1)

Fig. 5.1 Problem
2011-1
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and {B, D, E,G} (represented with black dots in Fig. 5.1), and each fly can
only move to a vertex belonging to the same set of its initial vertex.

Therefore it suffices to compute in howmany ways the flies located in each
subset can move, and then multiply both numbers. A fly located in A has 3
possible destinations (C , F and H ). Without loss of generality let us consider
that it moves to C . If the fly in C moves to A, then the flies in F and H also
have to interchange positions. If the fly in C moves to F , the fly in F must
move to H and this one to A (if the fly in F moves to A then the one in H
would not have a place to go). Similarly if the fly in C moves to H , the fly
in H must move to F and this one to A. Then there are 3 possibilities if A
moves toC , and of course another 3 if it moves to F and another 3 if it moves
to H , making a total of 9 possibilities. The flies in B, D, E and G can also
move in 9 different ways and therefore by the product principle the answer is
9 × 9 = 81.

Note: The number of different ways that the flies located in A,C , F and H can
fly are the derangements of {A,C, F, H}, namely the number of permuta-
tions of 4 elements without fixed points, whose number is D4 = 4!( 1

2! − 1
3! +

1
4!) = 9.

5.2.2 Strategy Games

We have noticed that this type of problem is clearly a favorite in the Centro.
The games are mostly bipersonal, finite, complete information and without
tie. The statements ask to find a winning strategy for some of the players
(by Zermelo’s theorem, one of the players has a winning strategy). There are
two exceptions: 2010-3, which is a solitaire, and 2013-4, a game in which no
player has a winning strategy (Zermelo’s theorem does not apply because the
game is not finite).

To solve these problems a useful strategy is to examine simple cases and
look for a pattern. In some problems it is also useful to look for invariants.

Proposed problems in this area during the 18 years of the competition:
1999-3, 2001-1, 2003-1, 2004-1, 2005-4, 2008-3, 2009-3, 2010-3, 2013-4,
2015-4 and 2016-4.

Problem 2010-3. A player places a tile (a 1 × 1 square) on a cell of anm × n
board divided into squares of size 1 × 1. The player moves the tile according
to the following rules:
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• In each move, the tile goes from the occupied cell to another cell having
one side in common with it.

• The tile cannot move to a previously occupied cell.
• Two consecutive movements cannot have the same direction.

The game ends when the player cannot move the tile. Determine all values
of m and n for which the player can place the tile on the board and move it in
such a way that the tile has occupied all the cells before finishing the game.

Solution: It will be shown that the possible values of (m, n) are (1, 1), (2, k)
and (k, 2), where k is any positive integer.

The case (m, n) = (1, 1) is clear, since by placing a tile on the board,
automatically the game ends and the tile has occupied all the cells.

For 2 × k boards, consider the moving pattern shown in Fig. 5.2, where the
◦ represents the initial location of the tile. This pattern will eventually fill the
2 × k board, ending the game. We proceed analogously for a k × 2 board.

It remains to show that other board sizes are not possible. If one side of
the board is of length 1 and the other is of length greater or equal than 3, it
is clear that the third condition (two consecutive movements cannot have the
same direction) makes impossible to visit all the cells in the board, because
after the first movement a turn is required, which is impossible.

If the lengths of the two sides of the board are greater than 2, it is possible
to isolate at least one corner as that shown in Fig. 5.3, which satisfies the
following conditions:

(a) The tile has not started in cells 1, 2 or 3.
(b) The route of the tile will not end in cell 1.

According to condition (b), cell 1 must be reached from another cell and
from this cell you must go into another cell. Assume, without loss of gener-
ality, that the way around cell 1 is made in the order 2 → 1 → 3.

Now, as the tile has not started in cell 2, it must come from another cell,
and due to the prohibition of two consecutive moves in the same direction,

Fig. 5.2 Problem
2010-3 moving pattern

Fig. 5.3 Special case
for Problem 2010-3
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it is necessary that the tile comes from the cell marked as 4. Thus, the route
can be traced back to 4 → 2 → 1 → 3.

Note that cell 4 is already part of the route, so that the journey should end
in cell 3, since it is impossible to continue from cell 3 without continuing in
the same direction or repeating a cell.

The above paragraphs show that, of the four corners of the board, at least
two meet condition (a) and at least one meets both conditions. As shown,
that cell should be the penultimate cell of the route, and the last cell of the
route cannot be another corner. Thus, there is another corner that satisfies the
conditions, and wewould have two corners of the board being simultaneously
the penultimate corner of the route, which is absurd. This concludes the proof.

Problem 2013-4. Ana and Beatriz alternate turns in a game that starts with a
square of side 1 drawn on an infinite board. A move is to draw a square that
does not overlap with the figure already drawn, so that one of the sides is a
(full) side of the rectangle which is already drawn. The player who draws a
figure whose area is a multiple of 5 is the winner. If Ana makes the first move,
is there a winning strategy for any player?

Solution: There is no winning strategy for any player. Suppose that at some
moment thefigure is ana × b rectangle,wherea,b anda + b are notmultiples
of 5. The player X who has the turn in that moment can convert the rectangle
into an (a + b) × b rectangle or into an a × (a + b) rectangle. None of these
moves wins immediately, but at least one of them avoids losing in the next
turn. Indeed, if 5 | 2a + b and 5 | a + 2b, then 5 | 3(a + b) and therefore
5 | a + b, contrary to the assumption. Thus, if 5 � a + 2b, X avoids losing
making up a rectangle of (a + b) × b; otherwise theywill have that 5 � 2a + b
and X avoids losing making up an a × (a + b) rectangle. Since each player
can make a play that avoids losing in the next turn, neither of them has a
winning strategy.

Alternative solution: If at some moment the figure made is an a × b rectan-
gle, where a and b are not multiples of 5, the player with the turn can convert
it into an (a + b) × b rectangle or into an a × (a + b) rectangle. If 5 | a + b
she wins, otherwise she must choose a move that avoids losing in the next
round. The first moves, if nobody wants to lose, are unique:

(1, 1)→ (1, 2)→ (1, 3)→ (4, 3)→ (4, 7)→ (11, 7)→ (11, 18)→ (29, 18)→ · · ·

Since we only care if a or b are multiples of 5, we can work modulo 5 to
obtain

(1, 1) → (1, 2) → (1, 3) → (4, 3) → (4, 2) → (1, 2) → (1, 3) → (4, 3) → · · ·
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We see that after the second move the cycle (1, 2) → (1, 3) → (4, 3) →
(4, 2) repeats, therefore this sequence is periodic and there cannot be a win-
ning strategy.

Problem 2016-4. On the board the number 3 is written. Ana and Bernardo
play alternately, starting with Ana, as follows: if the number n is written on
the board, the player with the turn must replace it by any integer m that is
coprime with n and such that n < m < n2. The first player to write a number
greater or equal than 2016 looses the game. Determine which player has a
winning strategy and describe it.

Solution: Let us say that a number is a winner if any player who writes it
can ensure victory, otherwise it is a loser. Obviously 2015 = 5 · 13 · 31 is a
winner. The number 2005 = 5 · 401 is also a winner, because any possible
answer between 2006 and 2014 can be replied with 2015.

Let us show now that Ana has a winning strategy. In her first move she
writes 5. Then she can proceed in several ways, writing multiples of 5 up to
2005 or 2015. One way to do this is as follows: Bernardo must respond to
5 with an m1 coprime with 5 and such that 5 < m1 < 25. Then Ana writes
25 = 52. Bernardo must respond with an m2 coprime with 5 and such that
25 < m2 < 625. Then Ana writes 625 = 54. Bernardo must respond with an
m3 coprime with 5 and such that 625 < m3 < 58. If m3 ≥ 2016, Ana wins.
Obviously m3 cannot be 2015. If 2005 < m3 < 2015, Ana writes 2015 that
is a winner. If m3 is 802 = 2 · 401, 1203 = 3 · 401 or 1604 = 4 · 401, Ana
writes 2015 that is a winner. If 625 < m3 < 2005 and m3 is coprime with 5
and 401, Ana writes 2005 = 5 · 401 that is a winner.

5.2.3 Configuration Problems

In these problems one has to find (or prove the existence of) discrete con-
figurations with certain properties, or to prove some property of a class of
configurations.

Useful tools for these problems are existence results such as the pigeonhole
principle (if more than n objects are distributed among n boxes, then some
box contains more than one object) and its generalization, the Dirichlet’s
principle (if more than nk objects are distributed among n boxes, then some
box contains more than k objects). However, these problems often require
hard work to construct the desired configurations.

Proposed problems in this area during the 18 years of the competition:
2000-4, 2001-6, 2002-1, 2002-6, 2005-6, 2009-4 and 2015-1.
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Problem 2002-1. For which integers n ≥ 3 is it possible to accommodate, in
some order, the numbers 1, 2, …, n in a circle so that each number divides
the sum of the two following numbers in the clockwise direction?

Solution: Clearly it is possible for n = 3, and we will see that this is the only
possible case. If l, 2,…, n may be accommodated satisfying the requested
condition, then there cannot be two consecutive even numbers, otherwise the
next one would also be even, and then all of them would be even. Also it is
not possible to have two even numbers with just one odd number in between.
Therefore after each even number there must be at least two odd numbers.
This implies that the amount of odd numbers is at least twice the amount of
even numbers, which only happens if n = 3.

Problem 2005-6. There are n cards numbered from 1 to n and p boxes to
store them, with p prime. Determine the possible values of n for which it is
possible to store all the cards so that the sum of the cards in each box is the
same.

Solution: We will say that a set A of integers is r -decomposable if there
exists a partition of A in r disjoint blocks, such that the sums of the elements
of each block are all equal. It is easy to see that any set of 2kr consecu-
tive integers {a, a + 1, . . . , a + 2kr − 1} is r -decomposable since, as each
pair {a + j, a + 2kr − 1 − j} (for j = 0, 1, . . . , kr − 1) has the same sum
2a + 2kr − 1, joining these pairs in groups of k we obtain r blocks of equal
sum. It is also clear that the union of r -decomposable disjoint sets is also
r -decomposable.

The objective here is to determine for which positive integers n the set
An = {1, 2, . . . , n} is p-decomposable.
If p = 2, the solution is the positive integers n congruent with 0 or 3 mod-

ulo 4. Indeed, if n ≡ 1 (mod 4) or n ≡ 2 (mod 4) then 1 + 2 + · · · + n =
n(n + 1)/2 is odd and An is not 2-decomposable. As shown above A4k

is 2-decomposable. Since A3 = {1, 2} ∪ {3} is 2-decomposable and so is
{4, 5, . . . , 4k + 3} (because they are 4k consecutive integers), then their union
A4k+3 is 2-decomposable.
If p > 2, the integers n such that An is p-decomposable are those n ≥

2p − 1 congruent with 0 or −1 modulo p. Indeed, since 1 + 2 + · · · + n =
n(n + 1)/2, if An is p-decomposable then p | n(n + 1)/2, i.e., p | n or p |
(n + 1), or equivalently n ≡ 0 (mod p) or n ≡ −1 (mod p).

But evidently neither Ap−1 nor Ap are p-decomposables. However A2kp is
p-decomposable. Also A2p−1 is p-decomposable because A2p−1 = {1, 2p −
2} ∪ {2, 2p − 3} ∪ · · · ∪ {p − 1, p} ∪ {2p − 1}, so A2kp−1 is p-decomposable
since it is the union of A2p−1 and {2p, 2p + 1, . . . , 2kp − 1} (which are
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2(k − 1)p consecutive integers). It only remains to see that Akp and Akp−1

are p-decomposable for k ≥ 3 odd. Let us begin with k = 1 (that is to say
n = 3p).
A3p is partitioned into the blocks:

{i, (3p − 1)/2 + i, 3p + 2 − 2i} for 1 ≤ i ≤ (p + 1)/2 and
{i, (p − 1)/2 + i, 4p + 2 − 2i} for (p + 3)/2 ≤ i ≤ p.

A3p−1 is partitioned into the blocks:
{(3p − 1)/2, 3p − 1},
{i − 1, (3p − 1)/2 + i − 1, 3p + 1 − 2i} for 2 ≤ i ≤ (p + 1)/2,
and {i − 1, (p − 3)/2 + i, 4p + 1 − 2i} for (p + 3)/2 ≤ i ≤ p.

Nowfor k = 3 + 2t , as Akp = A3p ∪ {3p + 1, . . . , 3p + 2tp} and Akp−1 =
A3p−1 ∪ {3p, . . . , 3p + 2tp − 1}, then Akp and Akp−1 are p-decomposable,
being disjoint unions of p-decomposable sets.

If p ≡ 1 (mod 4), A3p can be partitioned into three different types of
blocks: (3p − 3)/4 blocks with two elements each, (p − 1)/4 blocks with
six elements each and an additional block with the remaining elements. Each
block has sum (9p + 3)/2. The blocks are:

{(3p + 3)/2, 3p}, {(3p + 5)/2, 3p − 1},…, {(9p − 1)/4, (9p + 7)/4},
{1, 2, 3, (3p − 5)/2, (3p − 3)/2, (3p − 1)/2},
{4, 5, 6, (3p − 11)/2, (3p − 9)/2, (3p − 7)/2}, …,
{(3p − 11)/4, (3p − 7)/4, (3p − 3)/4, (3p + 5)/4, (3p + 9)/4, (3p + 13)/4}
and {(3p + 1)/4, (3p + 1)/2, (9p + 3)/4}.
For p = 3 we have A9 = {1, 2, 3, 4, 5} ∪ {6, 9} ∪ {7, 8}.
If p ≡ 3 (mod 4) and p ≥ 7, A3p can be partitioned into the following

blocks:
{(3p + 3)/2, 3p}, {(3p + 5)/2, 3p − 1}, …, {(9p + 1)/4, (9p + 5)/4},
{1, 2, 3, (3p − 5)/2, (3p − 3)/2, (3p − 1)/2},
{4, 5, 6, (3p − 11)/2, (3p − 9)/2, (3p − 7)/2}, …,
{(3p − 17)/4, (3p − 13)/4, (3p − 9)/4, (3p + 11)/4, (3p + 15)/4, (3p + 19)/4}
and {(3p − 5)/4, (3p − 1)/4, (3p + 3)/4, (3p + 7)/4, (3p + 1)/2}.
Similarly for A3p−1. If p ≡ 1 (mod 4), the blocks are:

{(3p − 1)/2, 3p − 1}, {(3p + 1)/2, 3p − 2},…,{(9p − 5)/4, (9p − 1)/4},
{1, 2, 3, (3p − 7)/2, (3p − 5)/2, (3p − 3)/2},
{4, 5, 6, (3p − 13)/2, (3p − 11)/2, (3p − 9)/2}, …,
{(3p − 11)/4, (3p − 7)/4, (3p − 3)/4, (3p + 1)/4, (3p + 5)/4, (3p + 9)/4}.
For p = 3 we have A8 = {1, 2, 3, 6} ∪ {4, 8} ∪ {5, 7}.
If p ≡ 3 (mod 4) and p ≥ 7, the blocks are:
{(3p − 1)/2, 3p − 1}, {(3p + 1)/2, 3p − 2}, . . . , {(9p − 7)/4, (9p + 1)/4},
{1, 2, 3, (3p − 7)/2, (3p − 5)/2, (3p − 3)/2},
{4, 5, 6, (3p − 13)/2, (3p − 11)/2, (3p − 9)/2}, …,
{(3p − 17)/4, (3p − 13)/4, (3p − 9)/4, (3p + 7)/4, (3p + 11)/4, (3p + 15)/4}
and {(3p − 5)/4, (3p − 1)/4, (3p + 3)/4, (9p − 3)/4}.
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Problem 2009-4. Wewant to place natural numbers around a circle satisfying
the following property: the differences between each pair of neighboring
numbers, in absolute value, are all different.

(a) Is it possible to place the numbers from 1 to 2009 satisfying the property?
(b) Is it possible to remove one of the numbers from 1 to 2009, so that the

remaining 2008 numbers can be placed satisfying the property?

Solution: (a) It is not possible. There should be 2009 differences, but the
lowest possible difference is 1 and the highest possible difference is |2009 −
1| = 2008, hence by the pigeonhole principle some difference should appear
more than once.

(b) Yes. Suppose that a is withdrawn. If the remaining numbers are placed in
the order 1, 2009, 2, 2008, …, a − 1, 2011 − a, a + 1, 2010 − a, …, 1005,
1006, the differences between neighbors are:

2008, 2007, …, 2012 − 2a, 2010 − 2a, 2009 − 2a, …, 2, 1,

and the difference between the first and the last numbers is 1005. In order to
have all of them different it suffices that 2011 − 2a = 1005, this is a = 503,
and we have the order

1, 2009, 2, 2008, …, 502, 1508, 504, 1507, 505, 1506, …, 1005, 1006.

Problem 2015-1. We want to write n different real numbers, with n ≥ 3,
around a circle, so that each of them is equal to the product of his neighbor
on the right by his neighbor on the left. Determine all values of n for which
this is possible.

Solution: The only possible value is n = 6. Let a1, a2,…, an be the numbers
ordered clockwise.

If n = 3, then a1 = a2a3 (1) and a2 = a1a3 (2). Replacing a2 from (2)
into (1) we obtain a1 = (a1a3)a3, then 1 = a23 and a3 is 1 or −1. Similarly
a1 = ±1 and a2 = ±1. But by the pigeonhole principle at least two of these
numbers must be equal, therefore for n = 3 it is not possible.

If n = 4, we have a2 = a1a3 = a4, which is not possible.
If n = 5, we have a2 = a1a3 (1), a3 = a2a4 (2) and a4 = a3a5 (3). By

replacing a2 from (1) and a4 from (3) in (2) we obtain a3 = (a1a3)(a3a5),
therefore a1a3a5 = 1. Similarly, starting with a3 instead of a1 we obtain
a3a5a2 = 1. Then a1a3a5 = a3a5a2, hence a1 = a2, which is not possible.

For n = 6 there are solutions, for example 2, 6, 3, 1
2 ,

1
6 ,

1
3 .

If n ≥ 7 then a1a3a5 = 1 (as seen in the n = 5 case) and similarly a3a5a7 =
1, then a1a3a5 = a3a5a7 and a1 = a7, therefore it is not possible.
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5.2.4 Extremal Problems

These problems may be viewed as a subclass of the preceding one, where
one is asked to find configurations which maximize or minimize a certain
function.

Proposed problems in this area during the 18 years of the competition:
1999-6, 2004-4, 2012-4, 2012-5 and 2015-6.

Problem 1999-6. Let S be a subset of {1, 2, 3, . . . , 1000} such that the sum
of every two different elements of S does not belong to S. Find the maximum
number of elements of S.

Solution: Let S be a set which satisfies the condition given in the problem
and let m be its maximum element. If m is odd, the set {1, 2, . . . ,m − 1}
can be partitioned in pairs {x,m − x}, with 1 ≤ x ≤ (m − 1)/2, each one of
them can contain at most one element of S. Therefore |S| ≤ (m − 1)/2 + 1 ≤
499 + 1 = 500. Similarly if m is even, the set {1, 2, . . . ,m − 1} is parti-
tioned by the pairs {x,m − x}, with 1 ≤ x ≤ m/2 − 1, and the single set
{m/2}. In this case |S| ≤ (m/2 − 1) + 1 + 1 = m/2 + 1 ≤ 501. Since the
set {500, 501, . . . , 1000} has the desired property, the maximumwe are look-
ing for is 501. In fact, {500, 501, . . . , 1000} is the only set with 501 elements
which has the property.

Problem 2004-4. We have a 10 × 10 board and each cell is painted either
white or black. Half of the cells are painted in white and the other half in
black. A common side between two neighbouring cells is called a border
side if these two cells have different colors. Determine the minimum and
the maximum numbers of border sides that the table can have. Justify your
answer.

Solution: The maximum is 180 and it can be obtained when we color the
table as a checkerboard. Indeed, the segments that can be border sides are the
interior segments (those who are not on the edge of the board) and all of them
are border sides when we color the board as a checkerboard.

The minimum number is 10 and we get it in the following way: let us
consider one of the lines which joins the middle points of two opposite sides
of the board. Let us paint inwhite all the cells in one of the sides of this line and
in black the cells on the other side. In order to show that 10 is theminimum,we
note that the number of vertical border sides between two adjacent columns
cannot be less than the difference (in absolute value) between the amount of
black cells in each column. Hence, if we modify each column moving all the
white cells to the top and the black cells to the bottom, the number of border
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Fig. 5.4 Problem 2004-4

segments does not increase. Repeating this procedure on the rows we obtain
a new coloring with the number of border segments less than or equal to the
number of border segments of the original. Even more, in this new coloring
if a cell is black, then the cells below it and to its left are also black. If there
is a whole row whose cells are white and another row with all the cells black
(or a whole column white and another one black), it is clear that there are at
least 10 border segments. Otherwise we will have one of the cases shown in
Fig. 5.4. In each one of them the number of border segments is x + y, and in
both cases we have

x + y ≥ 2
√
xy ≥ 2

√
50 > 14.

Problem 2015-6. In aMathematical Olympiad 39 students participated. They
had to solve 6 problems and each problem was worth 1 point if it was correct
or 0 otherwise. For any three students there is at most one problem that was
not solved by any of them. Let B be the sum of the points obtained by the 39
students. Find the smallest possible value for B.

Solution: Let Si be the set of all students that did not solve problem i . By
hypothesis |Si ∩ Sj | ≤ 2 for every 1 ≤ i, j ≤ 6. Since B = 39 · 6 − ∑ |Si |,
minimizing B is the same as maximizing

∑ |Si |. By the inclusion-exclusion
principle and Bonferroni’s inequality we have

39 ≥ | ∪ Si | =
∑

|Si | −
∑

|Si ∩ Sj | + · · · ≥
∑

|Si | −
∑

|Si ∩ Sj |

≥
∑

|Si | −
(
6

2

)

· 2.
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Then
∑ |Si | ≤ 39 + 30 = 69 and B = 39 · 6 − ∑ |Si | ≥ 234 − 69 = 165.

Now let us see that it is possible to get 165 points. Let P be the 6 problems
set. For every subset Q ⊂ P with |Q| = 4, let us take 2 students who solved,
each one of them, the problems in Q and no other problem. Since there are(6
4

) = 15 subsets Q we have 30 students. Let us say that each one of the
other 9 students solved 5 problems. This configuration satisfies the problem
conditions and the total number of points is 30 · 4 + 9 · 5 = 165.

In conclusion the least possible value for B es 165.

5.2.5 Miscelaneous Problems

These problems include: (a) problems with a graph-theoretic flavor (1999-1,
2006-5); (b) tesselations (2000-2, 2010-4); (c) production rules in a formal
language (2007-4); (d) dynamic process (2013-2).

Graph Theory has not appeared formally in the Centro, with its language
and concepts. However there are some problems which may be conveniently
represented by graphs. For that reason we think that some familiarity with the
basic graph theoretic ideas would be an asset for any competitor. Tesselations
is a theme that appears frequently among the submitted problems. Coloring
techniques are usually useful for this type of problems.

Problem 2006-5. Olympia is a country formed by n islands. Every island has
a different number of inhabitants and Panacentro is the island with the biggest
population of all. They wish to build up bridges between the islands such that
each bridge can be travelled in both directions and, for every two islands, there
will be not more than one bridge connecting them. The following conditions
have to be satisfied:

• It is always possible to go from Panacentro to each other island, travelling
across the bridges.

• If one goes from Panacentro to any other island, crossing each bridge no
more than once, then the numbers of inhabitants in the visited islands must
be strictly decreasing.

Determine the number of ways to build up the bridges.

Solution: Let I1, I2,…, In be the islands of Olympia in decreasing order
of inhabitants (I1 is Panacentro). We claim that for every island Ik , with
2 ≤ k ≤ n, there exists a unique j < k such that I j and Ik are connected by
a bridge. Indeed, by hypothesis we know that there is a path c from I1 to
Ik , and without loss of generality we may assume that it does not pass more
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than once by the same bridge. If the last island visited before arriving to Ik is
I j , by the second condition of the problem it must be j < k. Let us assume
now, by contradiction, that there is a bridge from another island Ii to Ik , with
i < k. If c does not pass by Ii , then we could prolong c up to Ii , but this is a
contradiction because Ii has more inhabitants than Ik . Otherwise if c passes
by Ii it must be i < j < k and the path cmust be of the form I1 . . . Ii . . . I j Ik .
But then we could build a new path touring the initial section I1 . . . Ii of c,
going from there directly to Ik and then to I j , and again it is a contradiction.

Hence I2 must be directly joined to I1. I3 must be linked by a bridge either
to I1 or I2. I4 must be linked by a bridge either to I1, I2 or I3, and so on.
By the multiplication principle the total number of possible ways to build the
bridges is given by 1 × 2 × 3 × · · · × (n − 1) = (n − 1)!.
Problem 2007-4. The inhabitants of an island speak a language in which
every word can be written with the following letters: a, b, c, d, e, f and g. A
word produces another word if it is possible to arrive from the first word to
the second one applying at least one of the following rules:

1. Change one letter for two letters according to the following rules:

a → bc, b → cd, c → de, d → e f, e → f g, f → ga, g → ab.

2. If two equal letters surround another one you can eliminate the equal letters.
Example: d f d → f .

For example, ca f cd produce b f cd , because

ca f cd → cbc f cd → b f cd .

Show that in this island every word produces any other word.

Solution: Let us use the notation⇒ to denote that one word produces another
word. We see that a → bc → cdc → d therefore a ⇒ d. Analogously d ⇒
g, g ⇒ c, c ⇒ f , f ⇒ b, b ⇒ e and e ⇒ a. Hence, since ⇒ is transitive,
each letter produces any other letter. This implies that any word with n letters,
just changing orderly each one of its letters by a, produces a word formed
by n letters a. Then, if n is odd, we can apply the second rule repeatedly to
obtain a word formed by just one a. If n is even, we can obtain the word aa.
But a produce g, so we have aa ⇒ ga → aba → b ⇒ a, and also in this
case we can obtain the word a.

Now observe that the first rule is reversible, in the sense that bc ⇒ a,
cd ⇒ b,…, ab ⇒ g. Indeed, from bc, cd ,…, ga, ab we can produce a, and
from a we can produce b, c,…, g. Hence all instances of the first rule are
reversible.
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To reverse the second rule we first observe that a → bc → cdc. Now,
given two letters x and y, since any letter produces any other we can go from
x to a, from a to cdc and finally from cdc to yxy. Hence all instances of the
second rule are reversible.

Therefore, since any word produces a, we can reverse the process to pro-
duce any other word from a.

Problem 2010-4. We wish to tile an N × N square yard, with N a positive
integer. We have two kinds of tiles: square tiles with side equal to 5 and
rectangular tiles of size 1 × 3. Determine all the values of N for which it is
possible to tile the yard.
Note: The yard should be completely covered, without overlapping tiles.

Solution: It is possible to tile the yard for every natural number N except
1, 2 and 4. Obviously we cannot tile neither 1 × 1 nor 2 × 2 yards, because
we will not have space for the given tiles. It is also impossible for N = 4,
because the only tiles we could use are the rectangular 1 × 3 tiles, and the
yard area should be a multiple of 3, but 16 is not. Clearly it is possible to tile
the yard for N = 3 and N = 5. Then we can tile any rectangular yard with
integer sides such that at least one side is a multiple of 3, in particular the
6 × 6 yard.

For N = 7, Fig. 5.5 shows how to tile the yard:
Given any N ≥ 8 we always can write N = 5k + 3h, with k and h non

negative integers. Indeed, we can write N = 5q + r , con 0 ≤ r < 5. But
N ≥ 8, hence q ≥ 1, and if r ≤ 2, then q ≥ 2.

If r = 0 or r = 3, we are done.
If r = 1, then N = 5q + 1 = 5(q − 1) + 3 · 2.
If r = 2, then N = 5q + 2 = 5(q − 2) + 3 · 4.
If r = 4, then N = 5q + 4 = 5(q − 1) + 3 · 3.

Fig. 5.5 Problem
2010-4
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At this point we see that the N × N square, can be decomposed in a 5k ×
5k square, another 3h × 3h square and two 5k × 3h rectangles. We tile the
5k × 5k square with k2 tiles of size 5 × 5, and since the other figures have at
least one side multiple of 3, we can tile them with tiles of size 1 × 3.

5.3 Shortlisted Problems

We present now some problems that were in the short lists of some of the
competitions, but for some reason theywere not selected for the corresponding
papers.

Problem SL1. (Shortlist 2014) In a certain country there are 9 towns. For
each pair of towns there is one and only one connecting flight, operated by
one of two airlines: AirSun and AirMoon. It is known that, given any three
towns, at least one of the flights between them is operated by AirMoon. Prove
that there are four towns such that all the flights between them are operated
by AirMoon.

Solution: Consider the complete graph K9 whose vertices are the towns and
whose edges represent connecting flights. Color an edge red if it is run by
AirSun or blue if it is run by AirMoon. Then the problem is equivalent to
prove that, if there is no blue triangle (K3) then there is at least a red K4. But
this is a known result: the Ramsey number R(3, 4) is 9. For that reason this
problem was not suitable for the contest.

Problem SL2. (Shortlist 2007) In Mathland’s market each merchant had an
item to sell. But some of them were unhappy with their item and wanted to
exchange it. Each item was desired by one and only one merchant. Every
day, they could exchange their product with another, but only once. Find the
minimum number of days after which all merchants may become satisfied.

Solution: This problemmay be modeled with a directed graph (G, E), where
G is the set of merchants and uv ∈ E if and only if u wants v’s item. Each
vertex has outdegree and indegree 1. Thus the merchants may be grouped
in one or more disjoint cycles (u1, u2, . . . , uk) such that ui wants ui+1 item
(indexes are taken modulo k).

If all the cycles have length 1 then everyone is satisfied and no day is
needed. If the cycles have length 2 or 1 then clearly one day is enough.

If there is a 3-cycle (u, v, w), since each day only two of u, v, w may
exchange, we need at least 2 days. For example if u and v exchange their
items the first day and v and w the second day, the problem is solved.
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A 4-cycle (u, v, w, x) may be solved in 2 days too, with the exchanges
v � x the first day and u � x , v � w the second day.

A 5-cycle (u, v, w, x, y)may also be solved in 2 days, with the exchanges
u � y and v � x the first day and u � x , v � w the second day.

Nowwewill show by induction on n that any n-cycle (u1, u2, . . . , un)with
n > 4 may be solved in two days, in such a way that u3 does not exchange
the first day. The first day we make the exchanges u1 � u5 and u2 � u4,
leaving for the second day u1 � u4 and u2 � u3. We are left with the cycle
(u5, u6, . . . , un). But this cyclemaybewritten as (un−1, un, u5, u6, . . . , un−2),
which by induction hypothesis may be solved in 2 days without using u5
the first day. Hence this cycle may be solved in parallel with the exchanges
between u1, u2, u3, u4 and u5.

Problem SL3. (Shortlist 2011) Two cardboard regular decagons have their
vertices numbered from 1 to 10, but in any order (the order may be different
for each decagon). The first decagon is superposed over the second one so
that each vertex of one decagon is in contact with a vertex of the other one.
The numbers of the vertices in contact are multiplied, then the ten products
are added. Show that it is possible to superpose the decagons in such a way
that this sum is at least 303.

Solution. Select a vertex v in the first decagon and let a1, a2,…, an be the
numbers found when the vertices are traversed clockwise, beginning with
k. Analogously let b1, b2,…, bn denote the numbers found on the second
decagon when their vertices are traversed clockwise, beginning with one of
them. If vertex 1 in the first decagon is over vertex j in the second, then the
sum of products is

Sj = a1b j + a2b j+1 + · · · + a10b j+9,

where indexes are taken modulo 10. Hence

10∑

j=1

Sj =
10∑

j=1

10∑

i=1

aibi+ j−1 =
10∑

i=1

ai

10∑

j=1

bi+ j−1 =
( 10∑

i=1

ai
)( 10∑

j=1

bi+ j−1

)
.

But
∑10

i=1 ai = ∑10
j=1 bi+ j−1 = ∑10

i=1 i = 55, therefore
∑10

j=1 Sj = 552. The
ten numbers Sj cannot be all of them less than 552/10 (otherwise their sum
would be less than 552), thus Sj ≥ 552/10 = 605/2 at least for one j , hence
Sj ≥ 303.

Problem SL4. (Shortlist 2011) Find all positive integers n such that it is
possible to tile an n × n square board with 1 × 2 rectangular tiles (without
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overlapping) in such a way that the board may not be divided in two parts
with a straight line cut, without breaking any tile.

Solution. The answer is: all even integers n ≥ 8. Clearly if an n × n board
may be tiled, its area is even and nmust be even. Let us call a tiling irreducible
if it is not possible to divide the board with a straight line without breaking
any tile. Let us call an integer nice if the n × n board admits an irreducible
tiling. Suppose that n is nice (hence even). Let (0, 0), (n, 0), (0, n) and (n, n)
be the coordinates of the board’s vertices. We affirm that the line y = k, with
k ∈ {1, 2, . . . , n − 1}, must go through an even number of tiles. Indeed, if
it crosses j tiles, the area occupied by the tiles which are completely below
y = k is kn − j , but that number is even, as kn, hence j is even. Thus the
n − 1 lines y = k go through at least 2(n − 1) tiles. The same thing happens
with vertical lines x = k. Since each tile is crossed by one and only one of
those lines, and there are n2/2 tiles, we have n2/2 ≥ 4(n − 1), or equivalently
n2 ≥ 8(n − 1). Hence n = 2, 4 and 6 are not nice. The first n which satisfies
the inequality is 8, and indeed 8 is nice, as the irreducible tiling in Fig. 5.6
shows.

Now we will show that if n is nice then n + 4 is nice too. It suffices to
enlarge an irreducible tiling of the n × n board surrounding it as Fig. 5.7
shows.

Since 8 is nice, so are the numbers 8 + 4k for k ≥ 0. But 10 is also nice,
as shows the tiling in Fig. 5.8.

Thus the numbers 10 + 4k for k ≥ 0 are nice too. Therefore the nice num-
bers are all the even integers n ≥ 8.

Fig. 5.6 Problem SL4
with n = 8
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Fig. 5.7 Problem SL4
for n + 4

Fig. 5.8 Problem SL4
with n = 10

5.4 Conclusions

The mathematics areas with more representation in the papers of the Centro
are combinatorics and geometry, each of them with 32.4% of the proposed
problems. Number theory problems are the 20.4%, and algebra problems
come just to 14.8%.

In the case of combinatorics, the basic concepts needed to solve the prob-
lems have not changed that much, but the difficulty of the problems has
increased over the years.

During the last 18 years the Centro has proved to be an excellent way to ini-
tiate the high school students of the region in international mathematical com-
petitions, preparing them for more demanding events such as the Iberoameri-
can, Asian-Pacific and InternationalMathematical Olympiads, among others.
In some cases theCentro has been the only opportunity for a country to expose
their students to an international mathematics contest.
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TheCentro has fostered friendly relationships among students and teachers
of the participating countries, creating many opportunities for the exchange
of information and experiences on the teaching of mathematics in a region
with similar culture and common problems.
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Chapter 6
The Rainbow of Mathematics—Teaching
the Complete Spectrum and the Role
Mathematics Competitions Can Play

Robert Geretschläger

Abstract Although it is clear to all of us with some stake in the teaching of
mathematics, that it is an important, valuable and fascinating pursuit, there
does not seem to be any real agreement concerning where its central value
lies with respect to what is taught in school. The core values of the subject
present themselves differently to teachers, math education researchers,
professional mathematicians and engineers, and this fact makes it difficult to
speak with a common vocabulary about what should be taught and how it
should be taught. In this paper, a model for the various aspects of mathe-
matics, ranging from “recreational” through “school” to “applied” is pre-
sented, and the role of mathematics competitions in the continuum of this
model is discussed. The various points raised in this model are then illus-
trated by a concrete example.

Keywords Mathematics competitions ⋅ Secondary schools ⋅ Recreational
mathematics ⋅ Applications of mathematics ⋅ History of mathematics

6.1 Introduction

When people from heterogeneous backgrounds get together to think about
the role of mathematics in schools, it is important to have some kind of
common starting point for the discussion. As things stand, it has been my
experience that such a common starting point does not necessarily exist.
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(Note that much of what is being said in this paper is derived from my
personal experience. I am therefore taking the liberty of putting some things
in the first person. I am fully aware that this goes against common practice
in such papers, but it is my hope that it will be helpful for further discussion
if my personal opinions and experiences are clearly recognizable as such.)

In dealing with people involved with the didactics of mathematics and
curriculum development in Austria, there is currently a wide consensus to
the effect that the important central aspect of school mathematics lies more
or less exclusively in the application of mathematics to the “real world“
(whatever that may be; a point I will be getting back to in a moment). It is
taken as given to this group, that “pure” math is not really worthy of deep
consideration in the classroom, other than what is needed to be able to deal
with the most elementary of everyday applications. From this, a commonly
derived opinion states that any calculations or algorithmic aspects of
mathematics in the school context can and should be left completely to
calculators or computers, and not be done by actual human thought at all,
except in the most trivial of circumstances.

Speaking to people in the math competition community on the other
hand, we have an utterly different view of what is important (and funda-
mental) in mathematics. While there is certainly also disagreement within
this group, it is clear for people involved in competitions that the funda-
mentals of mathematics are represented by that part which is commonly
called “elementary” mathematics. The term “advanced elementary mathe-
matics” is often bandied about among the members of this community,
despite the fact that the concept is utterly foreign to the application-oriented
group. Members of this group also tend to be in full agreement that
enjoyment of the study of mathematics is of central importance. The internal
disagreement here often manifests itself with respect to the question of
whether or not the specific skills obtained in preparing for competitions will
transfer to actual research mathematics. There is, however, definitely
agreement concerning the fact that subjects in pure mathematics, which for
the purposes of mathematics competitions normally include combinatorics,
Euclidean geometry, algebra and number theory, are the most important
things for students to learn about and study in order to form a useful base of
mathematical knowledge and competence. The logical skills acquired in the
somewhat deeper study of these elementary topics are considered most vital
in students’ academic development.

Finally, speaking to teachers at the university level, the expectations of
math skills that students should bring along from secondary school are
different again. Furthermore, they are quite dependent on the specific aca-
demic discipline. Students in economics are expected to have quite deep
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knowledge of statistical methods, for example, while students in the natural
sciences or engineering are expected to have some knowledge of things like
differential equations or matrices; topics that go beyond what both of the
previously mentioned groups generally consider fundamental.

Obviously, we are dealing with a huge disconnect here. The object of this
paper is to shed some light on this disconnect, and to offer a fresh per-
spective. My hope is that this will make it possible to reflect better on the
somewhat contradictory viewpoints held dear by the various groups of
players in this corner of academia, and to ultimately improve the discussion
to the benefit of the students in our secondary schools. It is my firm belief
that the viewpoint offered by the universe of mathematics competitions has a
great deal to offer in this respect.

In order to find a common denominator for fruitful discussion, we first
need to achieve some basic agreement on what it is exactly that we are
trying to decide. We must therefore find common answers, acceptable to all,
to some quite fundamental questions.

The first of these is existential. Why do we think that mathematics is an
important subject in school? What are our fundamental reasons for teaching
mathematics as a core discipline in secondary education? As mentioned, the
answer to this question seems to depend greatly on the circumstances of the
person formulating an answer, and it seems clear that the concerns of each
of these groups should addressed seriously.

A second important question to be answered in this context has to do with
methodology. How do we best get students interested in the type of math-
ematics we want them to learn? Answering this question depends to a great
extent on the individual tastes of the students in question. Different students
have utterly different ideas of what is interesting and what is not. Relating
my own personal experience in this matter, I can certainly state that my own
interests have always been defined by pure mathematics, and geometry in
particular. On the other hand, I have good friends, who also happen to be
mathematicians, whose interests lie almost purely in applications, and their
original impetus for becoming mathematicians was not derived from interest
in pure math at all. For them, the gateway into mathematical research
resulted from the applications first and foremost, and the idea of discovering
mathematical ideas was always totally dependent on these ideas being useful
to solve concrete problems. They might consider my own deep interest in
the subject as being not much more than the enjoyment of mathematical
puzzles, and not really worthy of total academic commitment. (Of course,
since they are my friends, they are willing to allow me this luxury.)

The third problem to be addressed is purpose oriented. What are we
ultimately preparing students for in their mathematics classes? To which
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extent are we teaching them mathematics for their own enjoyment? To
which extent is this even appropriate? Are we teaching them primarily to
prepare for a specific role in society? Are we primarily training their
capacity for systematic logical thought? Are we preparing them for uni-
versity entrance, for mathematical capability that will allow them to study
technical subjects, natural sciences, or finance? Do we want to prepare them
in a deep manner for what is known in German as “Allgemeinbildung“?
(The term is, of course, derived from the Humboldtian ideal of higher
education. The concept does not translate very easily into English, and has,
in fact, mutated a bit in common understanding over the decades. It certainly
goes quite a bit beyond the literal translation of “general knowledge”. Some
thoughts on this can be found, for instance, in Skovsmose 1994.)

6.2 Defining the Rainbow

In order to illustrate some of the ideas in this paper, let us take a look at the
following picture (Fig. 6.1).

We first note that the central shaded block is composed of three sections,
carrying the labels Recreational Mathematics, School Mathematics, and
Applications of Mathematics. Above these, there floats a cloud containing
the word History, and underneath, we see a box containing some tools
alongside the word Didactics. We can often find a rainbow underneath a
cloudy sky, and it is certainly possible to consider the three sections in the
center as aspects in a continuous rainbow, just as the full spectrum of a
rainbow can be represented in a basic way by red—yellow—blue. (Unfor-
tunately, we will have to make do with grayscale representation here, but we
can let our imaginations fill in the colors.) So, what could I mean by this in
the context of learning mathematics?

Fig. 6.1 .

148 R. Geretschläger



Having the box with school mathematics in the center of the diagram (in
all capitals for extra emphasis) is meant to illustrate the fact that we are
talking about the teaching of mathematics as the central core of our discourse.
We are debating mathematical subjects that can and should be talked about in
the school context as well as methods that can best be used to engage the
interests of students in them. The box with Recreational Mathematics on the
left is meant to illustrate the aspects of mathematics that are done primarily
for fun. Of course, it is quite possible that there are aspects of mathematics
taught in school that students can find quite enjoyable. In fact, if the teaching
process is to be successful, we would hope that such topics would be quite
common. There are many aspects of so-called recreational mathematics that
are not normally dealt with in school. (A very common example of such an
aspect is the daily newspaper Sudoku that many people cannot imagine living
without. Sudokus are certainly not commonly taught in school, but this is a
perfect example of a mathematical topic that many people happily spend their
leisure time on, without thought to any external usefulness. We shall be
discussing the meaning of Sudoku in this context in greater depth later on.)
Still, in an emotionally positive learning environment, we would hope that
aspects from this side would spill over into the center.

On the right, we have a box labelled Applications of Mathematics. Many
topics commonly covered in school mathematics are taught with a view
toward practical applications either in everyday life (as is the case for
percentages, for instance), or as a necessary base for higher level applica-
tions as can occur in scientific, technical or economic applications. As was
the case on the left side however, there are many applications that are
certainly never taught in school. Again, we would hope that some ideas
from this side seep into the central core of school mathematics, even if
higher level applications are almost certainly too sophisticated for consid-
eration at a secondary level.

History hovering above the central boxes is meant to symbolize the fact
that all mathematical ideas have a past, and this past can and should have a
presence in school, at least up to a certain extent. Some mathematical
concepts had their historical start in physical applications (think of differ-
ential calculus, for example), while some that may seem very applied from a
modern standpoint may have originated in a recreational context (like
probability theory, which started from considerations of gambling games).
An awareness of this overarching historical aspect of a topic can and should
make it easier for the learner to grasp the context of what is being learned.
Furthermore, we can hope that an understanding of the historical context of
a topic can give many students the necessary motivation toward grappling
with its intricacies.
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Finally, having the tool-box (represented by the hammer and screwdriver)
of practical didactics as the underlying foundation is meant to represent the
idea that the entire building of the academic discipline Mathematics rests
upon the nuts and bolts of how it is taught. (Sorry about the mixed meta-
phors. Maybe we need to think of the rainbow as being painted on the side
of a grand building.)

In the sections that follow, I will attempt to be a bit more precise about
how this model of thinking about mathematical ideas can be useful in
thinking about the learning process. More specifically, I will attempt to
place mathematics competitions in their appropriate slot in this framework,
and illustrate how they can show the path to a more fruitful synthesis of
mathematics for enjoyment and useful application. I hope to be able to give
a good argument in favor of using mathematics competitions as a tool both
for popularizing mathematics as a discipline, and for preparing students for
many important aspects that relate to the reason we have the subject in such
prominence in the school curriculum.

6.3 Math Is Fun

We are so used to the popular notion of mathematics being called a dry,
boring and incomprehensible pursuit in popular discourse that a lot of
people outside the math community cannot even conceive of the truth of this
heading. But, as we in the community all know, math is indeed fun. And this
“fun” aspect of the subject can manifest itself in many different ways.

Why is there even such a thing as the abstract concept of Mathematics?
Human nature is such that people have been fascinated by the process of
abstraction for at least as long as there has been language. Discovering the
fact that there is something highly elementary in the connections between
utterly disparate objects exhibiting common traits that can be given a name,
like “three” (the leaves on a stalk of clover, or the corners of a triangle, or
the more abstract concept of past, present and future) or “circle” (the shape
of the sun or the moon in the sky, or a ripple on the surface of a pond when a
pebble is tossed in, or the shape you can draw with a stick in the sand by
holding one end steady and moving the other) is, simply put, fascinating.
And discovering that there are properties that can be found from the defi-
nition of such a concept that then turn out to be common to all objects fitting
the definition is certainly something wonderful. Realizing this leads us to
develop methods of finding such commonalities, resulting in concepts like
counting, calculation, axioms and proof. Falling prey to the fascination of
such intellectual pursuits is one way in which Math Is Fun.
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Another way is well known to all ardent puzzle solvers. There are logical
processes involved in solving anything from brainteasers and cryptic
crosswords to hidokus and Rubik’s Cubes. At first glance, the puzzles seem
to be indecipherable, but step-by-step application of logical thought,
sometimes combined with some trial and error, lets us inch ever nearer to a
solution. Finally, after some effort, the solution presents itself. In a good
puzzle, the fact that the result has been found is then completely obvious;
there is no doubt that we have succeeded. Most important, a feeling of deep
satisfaction results from having found the solution, by application of our
own wits, to something that seemed incomprehensible at first glance, but is
now utterly clear. This is another way, readily appreciated by any mathe-
matical researcher, of course, in which Math Is Fun.

Another path to enjoyment of mathematics comes from deeper under-
standing of ways in which mathematical methods allow us to comprehend
complex systems. A fine example of this path is the one followed by people
involved in high-level financial transactions. The complex mathematical
structures that they use make it possible for them to play their high stakes
games, and it goes without saying that they have found for themselves a
completely different way in which Math Is Fun.

Finally, for some people, simple mental calculation is enjoyable enough,
and they may go so far as to cultivate arcane skills involving such things as
mental division of huge numbers, memorization of the decimal digits of pi
to an incredible number of places or the capacity to manoeuvre freely
through hyper-cube cells in four-dimensional space in their minds. Not
everyone can appreciate this type of entertainment, but to those who can,
they are manifestly yet another way in which Math Is Fun.

Of course, any number of collections of mathematical puzzles is available
on the book market, mechanical puzzles are readily available for purchase,
and so on. It seems clear that a lot of people are actually quite aware of the
fact that mathematics is, indeed, fun.

If there are so many ways in which pure enjoyment of mathematics is
possible, isn’t it unfortunate that so many people pass through the school
system without being able to enjoy the subject in any such a way? In school,
we as a society want to help our children speed up the process of abstraction,
and expose them to as much as possible of the wealth of knowledge
humanity has developed over the millennia. During the course of this pro-
cess, we present a great deal of that knowledge in a pre-processed way,
reducing the elements of individual discovery to a minimum. Of course, this
is with good reason. It took humanity many generations to reach the level of
sophistication we have now, and it would not be feasible to expect every
youngster to figure everything out on his or her own. After all, it took the
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wisest brains of many generations to come up with what we, as a society,
know now. Unfortunately, the accelerated processes typically used in school
tend to suck much of the entertainment out of the subject.

Even knowing this, a lot of mathematics remains enjoyable. Sometimes,
we may not realize that we are doing mathematics while we are playing with
it. Not everyone solving a newspaper number puzzle is cognizant of doing
mathematics. Nor did every participant in the great puzzle crazes of the past
decades, from the 15-puzzle through Instant Insanity and Soma to the
Rubik’s Cube necessarily think of their hobbies as intrinsically mathematical,
even though they obviously were. It seems clear that any way to introduce
this type of enjoyment to the learning process must be advantageous.

Some mathematics competitions offer puzzle problems that give a large
number of contestants the opportunity to have some mathematical fun of this
type, and the millions of competitors taking part in competitions like the
Mathematical Kangaroo, the American Mathematics Competition, or the
Australian Mathematics Competitions (just to name a few) show that the
enjoyment to be derived from thinking about such questions is well known
to many. So, here we have an obvious way in which the math competitions
scene is helping to achieve the goals we aim for in regular mathematics
education. Helping students to see how enjoyable it can be to solve math-
ematical problems/puzzles (the distinction becomes quite blurry at times)
gives them the impetus to delve deeper into the subject.

Here is the first facet of the Rainbow. One big reason for us to do
mathematics is simply because it is fascinating and because it is enjoyable.
Next, let us have a look at the opposite end of the spectrum; the other reason
we should all be able to agree on for why mathematics is such an important
discipline.

6.4 Math Is Useful

On the opposite side of the spectrum of mathematics, we have the utility of
mathematical abstraction combined with practical calculation that makes
mathematics so useful. Of course, this is also a reason why many people are
fascinated by mathematics as a discipline in the first place. Many, for whom
mathematics may not have held any particularly high level of fascination in
school, become quite enamoured of the pursuit because of the surprising
connections it helps to uncover in practical applications. This can be derived
from physics, applications in engineering, financial transactions or any
number of other things.
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Unfortunately even research mathematicians cannot always agree on
what exactly is meant by “useful”. As was already pointed out, pure
mathematicians have a quite different point of view from applied mathe-
maticians, and therefore often find different areas of elementary mathematics
to be of elementary importance to their work. Nevertheless, all can agree
that things can and should be taught in school because they are, simply,
useful. And in any case, the fact remains that mathematics is in some way
intrinsic to most any abstract discipline.

For many people, the day-to-day practical aspect of the subject is the
central, and perhaps only, justification for its inclusion in the school cur-
riculum in a central role. This is certainly currently the case in the Austrian
school system, which I know best from practical experience, and I shall
elaborate a bit on in the next section. In my opinion, it is however quite
unfortunate if this is considered to be the sole defining justification for the
subject. It does seem clear that the things we teach our students in school
should have some connections to future applications, of course, but this
statement can be interpreted in different ways. We can all agree that school
should certainly convey the capability for dealing with everyday calculation
to all students. They should learn how to deal with cash transactions in the
course of making their daily grocery purchases, calculating the savings
involved when something is advertised as being on sale at 10% off, or
figuring out how many cans of hi-gloss are required to repaint the garage,
and we are certainly all in agreement that the basic intellectual tools needed
to solve such problems should be acquired in school.

From the standpoint of preparing secondary school students for the ter-
tiary level, however, there does not seem to be so much common ground.
Most would agree that there is a certain amount of higher level mathematics
that must be taught in an effective manner, but what does this include? If we
want to prepare our high school graduates for studies in the sciences or
engineering, we will want them to have some accessible fundamental
knowledge of real functions and calculus, algebraic manipulation of poly-
nomials and solving equations, and so on. If we are worried about preparing
them for the necessities of anything involving statistical analysis, like
medicine, economics or the social sciences, we will want them to have some
skills in interpreting statistical tests and working with random distributions.
If we are worried about training future mathematicians and computer pro-
grammers, we will want them to have some understanding of mathematical
proof and algorithms. Or, in the extreme, we can take the position that we do
not want to train our students to understand deeply any of this, arguing that
they can pick up the necessary knowledge at the tertiary level, and limiting
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what is taught in secondary school to what is needed for “communication
with experts” (see Fischer 2001). This is the current basis for the Austrian
school system, and in my opinion this is not at all sufficient.

6.5 Math in School. Connecting the Fun
and the Usefulness

I would argue that all aspects of mathematics should be included in an ideal
secondary curriculum. In order to keep all students interested and motivated,
there should be aspects of recreational mathematics, applications of math-
ematics, and the history of the subject represented in the classroom. Grad-
uates of our schools should have a reasonably developed feel for numbers,
shapes, data and functions. They should understand the value of proof in an
axiomatic system and be somewhat schooled in abstract thought. There
should be room for the many fascinating aspects and the many uses of the
subject, as well as aiming toward achieving the ideal of educated people
having a well-grounded understanding of the subject.

Depending on their own point of view, many people think that only one
or the other of these aspects is appropriate for schools to worry about.
Limiting mathematics in school to practical applicability, however, leaves
no room at all for recreational aspects or for the development of pure
mathematics as a scientific discipline. Also, the reality of schools often does
not allow any kind of deeper insight or any kind of enjoyable work with
mathematics because the available time must be used to prepare students for
specific types of central exams, which typically test only the ability to deal
with highly specific problem formats. This is not good. A good school
system will not put undue emphasis on simple calculation, nor will it force
the majority of available classroom time to be spent on the study of specific
test formats. A good class is one in which the students’ minds are challenged
in many different ways and in which their individual preferences and
interests can find a home, whatever they may be.

Taking a closer look now at the current state of the Austrian school
system, we see that there has recently been a shift completely away from
anything involving operative mathematics in the secondary schools, and
oriented strictly toward applicability.

The opinion of some mathematics educators who feel that all mathe-
matics taught in school should be introduced through “real world” appli-
cations now completely dominates the discussion, even if many teachers put
up quite a bit of resistance in their classes. (It is worth noting that there is a
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good reason for the quotation marks here. What is considered the “real
world” in mathematical texts is, of necessity, always a stark simplification of
reality, with a strong element of pre-digestion having been introduced by the
problem authors. The real “real world” is invariably more complex than the
highly simplified mathematical models used in the school situation would
generally suggest.)

The pure enjoyment of mathematical pursuit is thrown out the window in
this educational model, as is the value of abstract thought in a liberal arts
education. Both aspects are sacrificed at the altar of applicability.

Furthermore, centralized testing has led to complete dominance of the
teaching-to-the-test phenomenon, to the detriment of all else. One can only
hope that this state of affairs, which has only come into full force in the last
few years, will soon pass, but the plan to move to stronger inclusion of
technological aids in mathematics instruction (graphing calculators, CAS
and spreadsheets) unfortunately suggests that things will get worse before
they get better.

This unfortunate development resulted from an attempt to improve
mathematics teaching, of course. Comparing any current textbook to one
used, say, in the 1960s, gives an excellent view of what has happened. It is
certainly true that there was formerly far too much emphasis placed on
calculation for its own sake. Looking at the old textbooks, we find any
number of difficult problems involving simplification of quite involved term
expressions, for example, and such things can no longer be found in current
textbooks. The argument given for the change was that students did not
actually gain any real understanding of what they were calculating, and there
is a great deal to be said for this. Unfortunately, in the process of reducing
this type of rote learning, some topics were eliminated completely, despite
the fact that the fascination emanating from them can certainly help a great
deal in giving students the motivation to learn.

Different people have different tastes, and while some are readily moti-
vated by pure abstraction and others by the wish to come to grips with
practical matters, there cannot be one singular path to motivation equally
applicable to all learners. Surely the aim of teaching is to optimize the
motivation to learn for as many students as possible, in order to maximize
the amount of knowledge students can absorb and develop. Since students
can be motivated by quite disparate pathways to such knowledge, it seems
quite obvious that all such paths should be reasonably represented.
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6.6 Mathematics Competitions: Great at Connecting

One of the main points I would like to get across with this paper is the idea
that mathematics competitions are uniquely suited to getting many (though,
of course, not all) students more deeply and more actively engaged in
mathematical pursuits. Parts of this argument have already been hinted at,
but in this section, I would like to present it in a more structured way.

When students get hooked on mathematics competitions, this means that
they have developed a feeling for the fascination of problem-solving on an
abstract level. Finding solutions to competition problems of progressively
higher levels of difficulty leads them on a journey to discovering and writing
proofs, and with this they are really learning to be active mathematicians
themselves. Compared to what they are confronted with in “regular” math
classes, there are some specific qualities to the style of mathematics they
encounter in the competitions world.

First of all, there is the feeling of accomplishment that comes from
solving a competition problem. This is the same feeling one gets from
successfully solving a puzzle or from proving a theorem, but in the context
of a competition, it can be reinforced by the fact that points are awarded, and
the student may have achieved something that others writing the competi-
tion have not. Regular classroom mathematics tends to negatively reinforce
not being able to solve a problem (which might even result in failing a test)
rather than positively reinforcing the solution of a problem that can be
considered at the outset as being optional. It goes without saying that
positive reinforcement of this type is preferable from a psychological
viewpoint. This positive reinforcement then usually transfers quite well to
regular classroom work. (This last claim is what I see quite commonly in my
own classrooms, but I am sure that anyone working both directly with
students in competition preparation and in a regular classroom setting will
agree.)

Essentially, this is part of the argument in favor of using recreational
mathematics to get students more actively involved in their classrooms. In
the Rainbow, this means that the left-hand box positively influences the
central box. The implication is that the participation of students in compe-
titions is therefore quite useful as part of the underlying Didactics tool-box.

Another strong influence of math competitions lies in getting the students
to accept the need for logical rigor in their work. If any of their calculations
or proofs is logically incomplete, they will simply not score full points, even
if they have understood all of the essential parts of an argument. This is
disappointing for a student who has become used to the feeling of success
that comes with solving a problem. Again, the positive reinforcement that
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then comes with understanding the need for a logically complete argument
in order to get full points in a competition is much better than the negative
reinforcement of just being criticized for something incomplete.

While this applies to any kind of mathematical argument, including
simple computation, it is especially true for learning to understand the
meaning of the axiomatic method in producing proof. Learning this in a
normal classroom is quite abstract and involved. In the context of a com-
petition, however, it is very natural (although perhaps not really any easier).
It is obvious to all competitors that an argument must be complete if a
student hopes to receive full points. It is quite easy to accept this in the
context of a competition, as a competitor’s more complete argument will
obviously be better than mine, if mine is missing some salient points.

For the purpose of learning the axiomatic method and the concept of what
constitutes complete proof, classic topics are certainly the best. There is an
obvious historical reason why the classic Euclidean topics of geometry and
number theory/arithmetic are the areas in which the axiomatic method was
developed, and this is certainly also the reason why there is still a wide
international consensus that these topics should be included in a central role
in competitions. The historical argument is quite strong, not just for
intrinsically historical reasons, but because historical development in this
area happened for a reason. These topics are basic to human abstract
thought, and taking this route during the learning process is as basic and
reasonable now as it ever was.

Starting on the right-hand side of the Rainbow, it can also be argued that
a similar path from the Applications box is offered by classes in mathe-
matical modelling. In many places around the world, students especially
interested in applied mathematical problems are offered participation in such
activities that are also competitions of a sort, even if there are generally no
“winners” declared. (I refer here specifically to the model of the “Mathe-
matical Modelling Week” as I know it in Styria, in the south of Austria, as
this is the one I am most familiar with. Similar programs are, however,
offered in many places.) As a path to applied math at a higher level, high
school students are invited to work for a week under the tutelage of pro-
fessional mathematicians on the modelling of some applied problem. These
can be from physics, medicine, economics, or any number of other areas,
but generally they will be derived from the research specialties of the tutors.
While these are not competitions in the traditional sense since there are no
winners, it can be argued that all participants in these workshops are
“winners” by virtue of their completion of the tasks at hand, and there are
simply no “losers”. Psychologically, this is certainly a good thing. Other-
wise, I would argue that the net positive results of such an activity are the
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same as those in a more typical competition format. Participants derive the
same sense of accomplishment in finding a path toward solving a problem
that they could not initially deal with. Through diligent application of logic,
they finally arrive at a result that they have every right to be proud of,
yielding a strong positive reinforcement.

This can be seen as giving added value to the middle box in the Rainbow
from both sides. The problems in such modelling projects can be considered
as both Applied and Recreational, at least from the point of view of the
active participants.

All told, the argument in favor of mathematical competitions of all types
in reinforcing the path to a deeper understanding of mathematics among
interested participants is quite strong.

6.7 History on Top; Didactics on the Bottom

Returning briefly now to the picture of the Rainbow (Fig. 6.2), we can
concern ourselves a bit more with the top and bottom bars.

The underlying bar labelled “Didactics” is more or less self-explanatory.
In school, everything is built up on a base of teaching methodology, and this
base is symbolized here by this one term. It includes matters of curriculum,
textbooks and worksheets, classroom organization, and so on, and is sym-
bolized here by very elementary tools, namely a screwdriver and a hammer.
No matter what we decide to teach in school, we must certainly worry about
how we are going to go about teaching it—the nuts and bolts of work in the
classroom.

Perhaps a bit more explanation is required for the History cloud. Its
floating above all else is meant to imply the fact that all areas of mathe-
matical thought not only have a genesis, but that this genesis is an important
intrinsic part of the area.

Fig. 6.2 .
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No part of mathematics starts in school. Everything starts either as a game
like statistics or as an application for further development of something that
already existed. Much mathematics is derived from axiomatic interpretation
of some aspects of real life. Mathematics is in its core abstraction.

Let us take probability theory as an example. The roots of what we now
think of as probability reach back to the 17th century. Some of the biggest
thinkers of the day (Cardano, Fermat, Huygens, Pascal) were thinking about
games of chance, and the likelihood of winning and losing. While such
considerations can certainly have very practical applications for some
people, there is an argument to be made for placing these considerations
firmly in the realm of recreational mathematics. Throwing dice, flipping
coins or playing card games are certainly recreations for all but the most
hard-core professional gambler. From this beginning, however, there arose
an elaborate theory with applications in such disparate areas as medicine,
finance and opinion research.

As has already been alluded to, there are at least two strong arguments to
be made for the inclusion of at least some of the history of such a discipline
in its teaching.

For one, there is the motivational argument. Getting students interested in
a topic gets them invested in the learning process, and the consideration of
the historical process that led to the development of a topic can help get
students interested in the topic for the same reasons that the scientists that
originally developed the theories were interested in them. This is completely
independent of the question of applicability of the whole logical structure
once it has been developed. The a posteriori uses of a mathematical method
are generally not clear at the historical outset of its development.

Furthermore, there is also the methodological argument that a topic can
be better understood if it is learned at least in part by following the train of
thought that led historically to our current understanding of it. Skipping over
the history by reducing mathematics to a system of definition-theorem-proof
(which certainly has its place in the university) deprives the student of an
important level of understanding.

6.8 An Example from the Rainbow: Sudoku
to Graph Coloring

Let us now take a look at a specific topic, how various aspects of it are
represented in the different boxes of the Rainbow, and the role that math-
ematics competitions can play in developing understanding of it.
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8a: A Popular Pastime: the Daily Sudoku
In the last ten years or so, sudokus have assumed a prominent place in the
public consciousness by their ubiquity in the daily papers and in puzzle
books available at any book store or news agents’. As is well known, the
idea is to fill in a grid of numbers satisfying certain constraints. In a classic
sudoku, the numbers from 1 through 9 must be placed in each row and in
each column of a 9 × 9 square grid, and each number must be present in
each of the nine 3 × 3 squares the 9 × 9 square is composed of. Several
numbers are already given in the grid, and the point of the puzzle is to find
the unique way to fill in the rest. An example of such a problem grid is
shown in Fig. 6.3.

There is no doubt that this is an incredibly popular pastime, and the fact
that there is at least a bit of mathematical content involved is already
obvious from the fact that numbers are used in the squares. There are many
related puzzle types that have found their way into some daily papers and
the public consciousness along with them, like Kakuro, Hidoku, Fillomino,
and so on.

The reason that such puzzles are so popular lies in the fact that solving
them gives the solver a distinct feeling of accomplishment. While we are
aware of the fact that we are doing something that isn’t really of any
immediate use to us (or anyone else for that matter), there is an intrinsic joy
in finding the solution. This is the basis for all so-called “recreational
mathematics”. If the only argument for doing it lies in the recreational
aspect, the external value of the actual mathematical content becomes
completely irrelevant for the time we spend on the problem.

Fig. 6.3 .
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Of course, this is an aspect of competition mathematics. When students
are solving problems in a competition, they are not worried about appli-
cability. They are simply solving the problems for their own sake. The
problems themselves are considered interesting, independent of any mean-
ing they may take on in the “real world”, and finding the solution (and then
possibly being awarded points for it) is the reward they are seeking.

Notably, this is also often the main motivation behind more serious
mathematical research. Certainly, some research problems must just be
solved in order for a specific application to work, or to guarantee funding for
yet another financial period in some research institution. In general, how-
ever, anyone involved in any reasonably abstract mathematical research is
searching for the solutions because of an intrinsic interest in the problem
itself and the deep sense of achievement that comes with finding a solution
to a difficult problem.

8b: Mathematical Research and Applications related to Sudoku
Starting from the highly elementary content of Sudokus, there are several
different directions our thoughts can take in order to derive mathematical
research problems.

Perhaps the most obvious concerns itself with the internal mathematics of
the puzzles themselves. There are many questions that can be posed con-
cerning the statement of a sudoku problem or its solution. Some of these are
the following:

• What is the smallest number of numbers that can be given in a sudoku
grid, such that the solution is unique?

• What is the largest number of numbers that can be given in a sudoku grid,
such that the solution is not unique?

• How many minimal sudokus exist? (A “minimal” sudoku is one in which
the solution is unique from the given numbers, but in which no given
number can be deleted with the resulting sudoku remaining unique.)

Such questions are the focus of a certain strand of mathematical research,
and some prove much easier to answer than others. (Interested readers
are invited to find out the current state of knowledge concerning such
questions by checking Wikipedia (https://en.wikipedia.org/wiki/Mathemat-
ics_of_Sudoku) or other easily accessible internet sources.) Solving this type
of problem, however, does not stray far from the mathematical content of the
Sudokus themselves.

Taking a closer look at the sudoku concept, we see that there is another
path to abstraction we can take, that will lead us right into the heart of
research mathematics.
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As it turns out, it is quite straight-forward to express the solution of a
sudoku as a graph coloring problem, and this idea connects the popular
puzzle both to cutting edge research in abstract mathematics and to
real-world mathematical applications. So, what do we mean when we say
that solving a sudoku is equivalent to solving a graph coloring problem?

In mathematics, a graph is, of course, a structure composed of points (or
vertices), that are joined by lines (or edges). These are commonly repre-
sented by pictures like the ones in Fig. 6.4:

We can consider a sudoku, composed of 81 cells in a 9 × 9 square grid,
to be represented by a graph with 81 vertices. Each vertex is to be colored
with one of 9 colors, corresponding to the numbers 1 through 9. Some of
these colors are given, with the rest to be determined.

The nine cells in a common row (or a common column or a common 3 × 3
square) can be thought of as being joined pairwise by an edge. Solving the
sudoku then amounts to finding a coloring of the graph with the nine colors,
such that no two vertices with the same color are joined by a common edge.

When thought of in this way, it becomes clear that our daily newspaper
sudoku is completely equivalent to a seemingly much more abstract prob-
lem. With this, we are already firmly in the middle of a practical research
topic. The puzzle, considered purely for the sake of the enjoyment of finding
its solution, has led us directly into the world of mathematical applications.
Now that we understand this, we can strip away the camouflage and take a
look at where graph coloring can lead in mathematical research.

First, let us consider a practical application of graph coloring, namely the
problem of job scheduling.

Let us assume that we have a certain number of jobs that need to be done
in some order. Certain of these jobs may be in conflict with each other, i.e.
there may be some reason why they cannot be dealt with simultaneously.
(For instance, the same person may be required to fullfil two tasks or the
same machine may be needed for two distinct steps in production.) It is
possible to represent the scheduling problem by drawing vertices of a graph
corresponding to the jobs. Any two jobs that conflict with another can then

Fig. 6.4 .
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be joined by an edge. The smallest number of colors with which it is
possible to color the vertices of the graph without like-colored vertices ever
being joined by a common edge then gives us information on the most
efficient way for the jobs to be scheduled. This model can translate not only
to concrete “jobs” that need to be done by people, but also to organizational
problems ranging from the assignment of vehicles to individual trips for a
delivery company to the assignment of frequencies to terrestrial television
broadcasters in geographically conflicting areas.

Next, let us have a look at a more theoretical graph coloring problem that
happens to be right at the cutting edge of modern mathematical research,
namely the question of the chromatic number of the plane, also known as
the Hadwiger-Nelson problem.

The problem can be stated in the following way. What is the smallest
number of colors with which it is possible to color the points of the plane in
such a way that no two points at unit distance have the same color?

Much has been written about this problem (see, for instance (Soifer 2008)),
but despite more than half a century of intense research, the problem has not
yet been solved. In fact, as easy as the problem is to state and understand, it is
one of those intractable mathematical questions that are really devilishly
difficult to grasp. It may well be that the problem cannot even be completely
solved without making some non-standard assumptions, like the validity of
the Axiom of Choice. It is relatively straight forward to show that the number
in question must be larger than 3 and it can also be shown that it must be
smaller than 8, but values of 4, 5, 6 or 7 are still possible.

A famous coloring problem of a related type, located somewhere on the
spectrum between purely theoretical and practical, is the four-color map
problem. For many years, there existed a conjecture, since famously proven
with the help of computer-based methods, that any map in the plane can be
colored by at most four colors in such a way that no two countries sharing a
common border have the same color.

We see that the same sudokus that we know so well from purely recre-
ational mathematics are related quite directly to problems both in concrete
applications of mathematics and in high-level research in pure mathematics.

8c: Sudoku, Graphs and Coloring in School.
Neither sudokus nor graph theory are a standard school topic in most
countries. Recently, many schools have taken to using something closely
related to sudoku in order to give students an opportunity to practice mental
calculation, namely kenken. (Note that KenKen is a registered trademark.
Interested readers can find a large number of such problems at (http://www.
kenkenpuzzle.com). The puzzles are sometimes also referred to under other
names, such as Kendoku.)

6 Rainbow of Mathematics 163



For those not familiar with kenken, a brief introduction seems in order.
As is the case for sudoku, a kenken puzzle is a square grid, and the goal of
the puzzle is to place numbers in the grid in such a way that none of the
numbers repeat in any column or row. If the size of the grid is nxn, the
numbers from 1 through n are to be placed in the cells of the grid. Unlike
sudokus, however, no digits are given in advance. Instead, certain areas are
given, in which the numbers can be combined by addition, subtraction,
multiplication or division with some given result. For instance, if two cells
are joined to a 2 × 1 rectangle with the symbol “4 + ”, this means that the
two cells are to contain two different digits with the sum 4, and therefore one
must contain the digit 3, and the other the digit 1. In some cases, there is
more than one combination possible, as for instance for “2-”. This could be
the result of 3–1, 4–2, 5–3, and so on. Furthermore, if a single cell contains
only one number without an operation, this number can be considered as
given in that cell. An example of such a puzzle is shown in Fig. 6.5.

However, use of these puzzles in the classroom is not normally a path to
understanding about graph coloring. The didactic idea behind the use of this
in the classroom is for the students to get a better feel for number combi-
nations in simple elementary calculations, and kenken gives an amusing
context to such calculations.

Simple graph theoretical ideas are, however, also often championed for
inclusion in the school curriculum (see, for instance Smithers 2005), espe-
cially in schools that are preparing students for computer programming.
Most school systems, however, do not currently include this subject in their
curricula. Students preparing for mathematical olympiads do, however,
routinely deal with elementary graph theoretical ideas, as this is a common
topic of olympiad problems in the so-called Combinatorics category. An
example of such a problem will be given in 8e.

Fig. 6.5 .
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Fig. 6.6 .

Fig. 6.7 .

8d: History and Didactics: Graph Theory and more
If any graph theoretical ideas make it to the classroom at all, a likely can-
didate for inclusion is the classic Königsberg Bridge problem of Leonhard
Euler (1707–1783). This problem, asking whether it is possible to cross each
of the seven bridges in old-time Königsberg exactly once in one walking
tour of the town, which straddles a river with islands as shown in Fig. 6.6 is
the starting point of modern graph theory.

Students may not know anything about the history of the city of
Königsberg (now the Russian city of Kaliningrad), but the question is a very
practical one that can be readily understood. Also, its solution can be
developed by simple logic, without resorting to any high-level mathematical
tools. Giving some historical context can certainly make the topic more
interesting for many students, and this is also a good excuse to name-drop
Leonhard Euler in class.

Another interesting historical sidebar that might be mentioned in this
context, is the Latin Square. A Latin Square is an nxn array, with n symbols
written in the cells in such a way that each of the n symbols is represented
once in every row and in every column of the array. This is also a subject
studied by Euler, and the name is derived from his work, in which he used
Latin letters as his symbols. A 3 × 3 example, such as could be found there,
is shown in Fig. 6.7.

A Sudoku is, of course, a Latin square with some special restrictions, in
which the symbols are digits. These mathematical objects have been studied
to quite some extent since the 18th century. The idea behind them is closely
related to (but not to be confused with) the idea behind the so-called Magic
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Squares, in which the sums of numbers in all rows and columns (and often
also diagonals) are equal.

Both these topics are typically seen as purely recreational, but as shown
here, they are at the very foundation of an important section of mathematics
that ranges through the whole rainbow, from recreational to applicable.

8e: An example of a graph coloring problem from an international
competition.

An example of a nice competition problem concerning graph coloring is
the following problem from the International Tournament of the Towns
(Spring 1990, Senior O level):

(a) Some vertices of a dodecahedron are to be marked so that each face
contains a marked vertex. What is the smallest number of marked ver-
tices for which this possible?

(b) Answer the same question, but for an icosahedron.

(Recall that a dodecahedron has 12 pentagonal faces which meet in threes
at each vertex, while an icosahedron has 20 triangular faces which meet in
fives at each vertex).

In order for a student to solve this problem successfully, it is helpful to
realize that it is indeed a graph coloring problem. The vertices of the
polyhedron being considered can be thought of as the vertices of graphs, and
the edges of the polyhedron as edges of these graphs. Of course, this is a
three dimensional concept, but the graphs in 3-space can be projected onto a
plane (for instance, from a point on the circumscribed sphere of the poly-
hedron onto the tangent plane diametrically opposite to this point), resulting
in corresponding plane graphs with completely analogous properties. Since
we then wish to “mark” vertices, we can think of this as coloring all the
vertices of the graph with two colors, say black and white, with black
corresponding to “marked” vertices and white to “non-marked” vertices.

The solution to part (a) is then quite simple. Since each vertex lies on three
faces of the dodecahedron, marking any vertex gives three faces a marked
vertex. Since there are 12 faces, we must certainly mark at least 12:3 = 4
vertices. We can see in Fig. 6.8 (a graph representing the dodecahedron’s
vertices and edges), that a marking of four vertices (represented by the full
points) is indeed possible, such that each face has a marked vertex.

Part b is a bit more sophisticated. We can see in Fig. 6.9 that a marking of
six vertices such that each face has a marked vertex is possible.

It remains to be shown that such a marking of five (or less) vertices is not
possible. We can prove this by contradiction.

Let us assume that it is possible to mark five vertices in such a way that
each face has a marked vertex. We consider the graph (as shown above) and
delete all edges with the exception of those joining two marked vertices,
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Fig. 6.8 .

Fig. 6.9 .

and consider the number of components of the resulting graph. (Recall that a
“component” of a graph consists of a subset of the vertices, connected by
edges of the graph.) In any of these components, a first marked vertex
contributes to 5 faces, but any succeeding vertex in this component can only
contribute to at most 3 further faces that do not yet have a marked vertex. If
there are at most 5 marked vertices and at most two components, the marked
vertices can contribute to at most 5 + 5 + 3 + 3 + 3 = 19 faces. We see
that the graph must consist of at least three components. At least one of
these components must then consist of only one marked vertex. Let us
assume that this is vertex A in the figure above. This means that none of the
vertices B, C, D, E and F is marked, and four of the remaining vertices must
be marked. This is not possible, however, since these four would then
certainly all be in the same component, in contradiction to the assumption
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that they contribute to faces in at least two separate components. We see that
at least six vertices must be marked, as claimed, thus finishing the proof.

6.9 Conclusion

Mathematical instruction should include all aspects of the subject and
engage students in whatever way they can be led to be interested in the
subject. This is different for each person. Some will be excited by abstract
math problems independent of any applications in the real world. This
includes mathematical puzzles, mathematical games or individual pure math
research. Others will be excited by the opportunity for applications, for
instance in physics or other areas.

In this paper, I have attempted to argue that a complete treatment of any
mathematical topic in school should include aspects from the complete
Rainbow of Mathematics, in order to help every student of the subject find
something suited to her or his tastes. A mathematical topic can be intro-
duced starting from most any mathematical problem, be it a number puzzle
(number theory, coding), a triangle problem (olympiad geometry, school
trigonometry, land surveying) or a practical application. I have also tried to
argue the fact that the world of mathematical competitions offers a strong
tool, independent of where a student hops on board the math train.

Let us briefly return to the fundamental questions on the value of
mathematics as a core subject in secondary education as posed in the
introduction. Here are some answers I believe we could and should all agree
on, considering all that I have presented here.

Question 1: Why do we think that mathematics is an important subject in
school?
It seems clear to me that there are essentially three equally valid answers to
this question.

First of all, mathematics is necessary for many things. Some elementary
things, like basic number skills, are obvious prerequisites to life in a modern
industrial-technological world. Other things are not of such import to
everyone, but since school is meant to prepare students for their future
professions and for their tertiary studies, a great deal of mathematical
knowledge must be at their disposal when they leave high school, simply to
prepare them for this. This is the practical argument.

Secondly, mathematics is interesting and enjoyable. This is true in many
ways. Logical abstraction is a fundamental human thought process that has
fascinated humanity for EONS. Individual mathematical problems are often
interesting for their own sake, and finding their solutions is an enjoyable
process. Students should certainly be offered the opportunity to experience
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this enjoyment for themselves. Mathematics competitions can play a large
role in this, even if not every individual enjoys them in the samemanner. Still,
math is important because math is fun. This is the recreational argument.

Finally, studying mathematics schools abstract rational thought. Ideally,
this should be true of most subjects in school, but the abstract world of pure
mathematics is certainly the optimal ecosystem for such things to flourish.
This is the abstract argument.

It is my firm belief that all three arguments are legitimate and strong, and
that the various aspects of mathematics must therefore all be strongly rep-
resented in any complete curriculum.

Question 2: How do we best get students interested in the type of mathe-
matics we want them to learn?
The answer to this question is, of course, dependent on the individual stu-
dent’s interests. Some students will be drawn in by the mathematical
abstractions themselves. For some, the most interesting aspect will lie in
potential applications. For yet others, it may be the historical context, the
development of human thought through the generations. And for some, it
may simply all be a game, and playing around with puzzles will prove the
best path to the subject. All of these gateways are perfectly legitimate, and it
seems clear to me that optimal teaching practices must offer at least a little
bit of everything.

Question 3: What are we ultimately preparing students for in their mathe-
matics classes?
Again, my answer to this question must necessarily be quite wide. We
certainly want students to enjoy mathematics. Whether this is the most
important aspect, or even important at all, will be up to individual teachers
to decide. To my way of thinking, this is the base of all else, and students
who do not have at least a semblance of enjoyment in their class work
cannot be expected to fully appreciate the subject.

We are certainly teaching our students to prepare them for their future
roles in society. This aspect cannot and should not be ignored. In this
context, we must also prepare them for university. The tertiary institutions
cannot be expected to start from scratch; human brains must have some
developed mathematical competence by the time puberty is over, otherwise
it is too late.

I would also argue that we should be training students’ capacity for
systematic logical thought and offering them as much general knowledge
(here is that pesky concept of “Allgemeinbildung” again) as possible. If this
is not to be imparted in the schools, then where?
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Chapter 7
Competition Aims to Develop Flexibility
in the Classroom

Ingrid Semanišinová, Matúš Harminc and Martina Jesenská

Abstract We present a method for an implementation of Multiple Solution
Tasks in the classroom in a way that should motivate students to solve
problems in different ways. The method concerns a competition in problem
solving for groups of students. Each group has to find and record such a
solution of a given problem that, in their opinion, appears with the least
frequency among the solutions of all groups in the class. For illustration, we
present a few problems and corresponding different strategies which arose in
the classroom and show how flexibility was demonstrated during a com-
petition. Additionally, we discuss other benefits of including competitions in
the classroom, namely creating connections among mathematical concepts
and stimulating deeper understanding of concepts for students. For the
teacher the method opens a possibility for developing flexibility and ana-
lysing the quality of students’ knowledge and their level of understanding of
mathematical concepts and relationships among them.
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7.1 Introduction and Motivation

The ability to solve diverse problems is considered as one of the most
important cognitive activities in professional and personal life. An important
component of the problem solving process is the ability that humans have of
adjusting their response to changing circumstances and conditions and
thereby exhibit flexibility. People who are characterized by more flexible
thinking than others have a greater ability to adapt to special features of the
environment and to produce more creative and appropriate solutions to
problems. The success in solving mathematical problems is also closely
related to the ability of students to use different problem solving strategies
and to be flexible in using them. According to Silver (1997), flexibility in
mathematical problem solving is the number of different ways that a student
uses to solve, express or justify a problem. During the study of mathematics,
students repeatedly face new situations that require the use of different
strategies. It is natural that the strategy which a student will learn and
successfully use in one situation may not be applicable in other situation,
although it is similar. Outstanding results in mathematics depend on
increasing the flexibility of a solver (Elia et al. 2009).

Including Multiple Solution Tasks (MSTs) in mathematics lessons is one
of the possibilities of developing flexibility during problem solving
(Levav-Waynberg and Leikin 2012). Flexibility, which is activated within a
problem, leads a solver to observe each of the components of a problem so
that the student’s knowledge of the components becomes more complete
and interconnected and she or he can more easily invent new strategies (Elia
et al. 2009). Consequently, it develops the ability to determine the most
efficient way to solve the problem and to make appropriate strategy choices
and demonstrate adaptivity (Warner et al. 2009).

On the other hand, mathematics teachers usually prefer to solve problems
in only one way in the classroom. They often argue that they do not have
enough time to solve the problems in different ways and they must provide
students with a secure tool to solve standard problems. They also often
claim that students do not want to solve a problem in other way, if they have
already solved the problem correctly. Therefore, it is difficult to motivate
them to look for other solutions and to understand different approaches.

Teachers’ arguments have motivated us to look for a method for an
implementation of MSTs in the classroom in such a way that almost all
students will be stimulated to solve a problem in different ways. We suggest
the game—MSTs competition to challenge students to consider multiple
solutions to a problem. In designing the competition our aim was to prepare
such rules for competition that would show mathematics educators that

172 I. Semanišinová et al.



creativity is not the domain of only a few exceptional individuals, but rather
by using suitable mathematical activity, creativity can be fostered broadly in
the classroom.

7.2 MSTs Competition Rules and Suggestions

The base for the initial rules for the competition were observations which
were conducted during two school terms in four groups of pre-service
teachers (in the 3rd and the 4th year of study, there were 10–13 members per
group) and in one classroom of 16-year- old students with enhanced edu-
cation in mathematics (25 students in the group). On the basis of our
observations and corresponding forthcoming conclusions we designed the
process of preparation and realisation of MSTs competition.

Selection of problems for the competition

We recommend using four or five MSTs problems for one standard lesson.
Problems included in the competition could be both routine and non-routine.
The selected problems should be solvable within 5–10 min for a chosen
group of students, so that the students have enough time to look for other
solution strategies. Before the competition, the teacher should prepare
several possible solutions to the selected problems in order to show students
possible approaches to problem solutions when competition ends.

The rules of the competition

• Before we start to work in the classroom, we have to arrange three- or
four-member groups of students.

• Before the competition, students are asked to solve each problem in as
many ways as they can. Then they have to choose one solution, which
they consider to be the rarest in the class and pass it to the teacher.

• To avoid distraction, students receive only two problems at the beginning
of the competition (out of four or five chosen MSTs problems). From 5 to
10 min after the beginning of the competition, students can get next
problem, and after 15 min, students can get the last problem(s). If some
group does not take all the problems from the teacher, he/she will give
them to this group after 25 min from the beginning of the competition.
Our experience shows that this organization for obtaining problems
increases the chance that students in the group begin to communicate
with each other on different solution strategies for the problems received.
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If a group obtains all problems at once, the group has a tendency to assign
each problem to one member and it leads to limited communication
within group.

• Students may pass the solutions to the teacher at any time during the
competition.

• Evaluation: If the group solves the problem correctly it gets 1
point + “number of groups in the class”−“number of groups in the class
that had submitted the same solution”. If the group solves the problem
incorrectly it gets 0 points.

• The group that gets the most points wins.

Due to our empirical experience we recommend three member groups.
We have realised there is good cooperation between three students during
the solving process. Two member groups are very small to fulfil our goals.
Four or more students in the group might cause the activity of some students
to decrease.

If students have little experience with MSTs problems, we recommend
for the competition to choose problems for which it is expected that students
will easily find at least one solution strategy.

An example of a problem and its evaluation

Problem: Solve the quadratic equation x2 = 4x.
1st group solution: We use the factorisation x(x − 4) = 0 and we get two

solutions x = 0, x = 4.
2nd and 3rd group solution: Either x = 0 or x ≠ 0 and then we can

divide equation by x and we get x = 4.
4th, 5th and 6th group solution: We move all the terms to one side of

equation, and we get x2 − 4x = 0. Then we use the formula for finding the
roots of a quadratic equation.

According to the rules, the assignment of points is following:
1st group gets 1 + 6 − 1 = 6 points.
2nd and 3rd groups get 1 + 6 − 2 = 5 points.
4th, 5th and 6th groups get 1 + 6 − 3 = 4 points.
All students may use paper for their private notes and calculations, but the

score of the group depends solely on the solution written on the paper which
is given by the students to the teacher and explicitly marked as the one
selected. It is expected that members of the group cooperate and discuss the
solutions of each problem and choose the solution which they anticipate to
be the rarest one.

174 I. Semanišinová et al.



The teacher decides whether the problem solutions of different groups are
the same or not. Based on Leikin and Levav-Waynberg (2007), the differ-
ence between the solutions may be reflected in using:

(a) Different representations of a mathematical concept;
(b) Different properties (definitions or theorems) of mathematical concepts

from a particular mathematical topic; or
(c) Different mathematical tools and theorems from different branches of

mathematics.

7.3 Task Examples with Students’ Solutions

We present five problems from a competition and the different corre-
sponding strategies, which arose in two classrooms during this competition.
The classrooms are from two different Slovak secondary schools with
enhanced education in mathematics (52 seventeen- to eighteen-year-old
students). Two problems are routine (involving an absolute value equation
and a triangle), and the remaining three (involving cyclists, a hexagon and
children grouping) are non-routine. Students have 45 min to solve these
problems in groups (9 groups in each class).

Cyclists: Two cyclists raced around the football field. The average speed
of the first cyclist was 18 km/h and the average speed of the second one was
21 km/h. The second cyclist started to race when the first one already
passed 300 m. The race ended after completing six laps. How long is one
lap, if we know that both cyclists passed the finish line at the same time?

Solution strategies:

1. Comparing distance:

a. 18t + 0.3= 21t, x = 21t
6 , where t is the time, when both cyclists are

racing and x is the length of one lap.
b. 18t = 21 t− 0.3

18

� �
, x = 18t

6 , where t is the time, when the first cyclist is
racing and x is the length of one lap.

2. Comparing time: 6x− 300
18 = 6x

21, where x is the length of one lap.
3. Comparing speed: 0.318 = 1

60 which means that the speed of the first cyclist
is 300 m/min. Distance travelled by the second cyclist per minute is
21
60 = 0.35 km. Speed of the second cyclist is 350 m/min. The group drew
the picture (see Fig. 7.1).

7 Competition Aims to Develop Flexibility … 175



lcm (300, 350) = 2100 m. 2100
6 = 350 m. A lap is 350 m long.

4. One group first used the second strategy but then, to the end of finding a
rarer solution, the group handed into the teacher the following solution:
21
18 ⋅ 0.3=

7
6 ⋅ 0.3= 0.35. The lap is 350 m long. The method of solution

was incorrect but accidently leads to the correct answer.

Because of the unusual formulation of the problem, some groups did not
find any correct solution to the problem. Most groups solved the problem
using strategy 1a and had difficulty in finding any other strategy. Comparing
distance is the standard method to solve problems of this type. Strategy 3
was considered surprising by most of students because it uses number line
representation and also different mathematical content. Students also found
this strategy clear and easy to understand. This strategy was influenced and
stimulated by group interactions. One member of the group started to draw a
picture in order to understand the problem. Other members later found the
mathematical content which was used to find the correct answer. In strategy
4, students tried to utilise the speed ratio. They interpreted the expression
obtained, 76 ⋅ 0.3, as a product of the speed ratio and 0.3 km as a head start.
However, this interpretation is incorrect. If the group realised that the ratio
of time is inverse to the speed ratio and used this fact to determine that the
first cyclist finished the race in 6 min and the second in 7 min, they could
also have realised that the product 7 ⋅ 0.3 is the length of whole race and
7
6 ⋅ 0.3 is the length of 1 lap. Using these arguments, the solution strategy
would be assessed as a correct one. Such a solution strategy occurred during
pre-research among pre-service teachers.

Absolute value equation: Solve the absolute-value equation:
x− 3j j= x+5j j.
Strategies of solution:

1. Utilisation of algebraic properties of absolute-value and solving linear
equations on the intervals

Fig. 7.1 A group of students models the race using this picture
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−∞, − 5ð Þ, ⟨− 5, 3Þ and ⟨3,∞Þ.

2. Utilisation of geometric properties of absolute-value, searching for the
number which is the same distance from the numbers 3 and −5 on the
number line (see Fig. 7.2a).

3. Squaring the equation (both sides are positive) and solving the linear
equation (see Fig. 7.2b).

4. Using graphs of functions f : y= x− 3j j and g: y= x+5j j.
Strategy 1 is a standard solution strategy to this type of task in our school.

Four groups found only this solution strategy. Groups that found strategy 2,
worked with a number line. But one of the groups used this strategy ana-
lytically (with no picture). They wrote that the distance between numbers
−5 and 3 is 8, half of 8 is 4, so x= − 5+ 4= − 1. Groups that found
strategy 3 were very proud of it. They thought this strategy would be rare,
but three groups in each class handed it into the teacher. As for strategy 4,
a lot of groups had it among their solutions but only one handed in this
solution to the teacher. This group achieved the maximum number of points
using a standard solution strategy. Most students chose this problem as the
easiest for finding more than one solution. Five groups found three different
solution strategies.

Hexagon: Let K, L, M, N, O, P be, respectively, the midpoints of the sides
of regular hexagon ABCDEF. Join the points K, L, M, N, O, P to get
hexagon KLMNOP. What is the ratio of the area of hexagon ABCDEF to
the area of hexagon KLMNOP?

Fig. 7.2 a Absolute value—strategy 2 b Absolute value—strategy 3
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Solution strategies:

1. Dividing both hexagons into six equilateral triangles and calculating the
lengths of the triangles’ sides and heights using the Pythagorean Theo-
rem. Calculating the area of the equilateral triangles and the ratio of the
areas of the hexagons.

2. Dividing both hexagons into six equilateral triangles and calculating the
lengths of triangles’ sides and heights using properties of trigonometric
functions in right-angled triangles. Calculating the area of the equilateral
triangles and the ratio of the areas of the hexagons.

3. Calculating the area of hexagon ABCDEF as in strategy 1. Subtracting
the area of six isosceles triangles from the area of ABCDEF in order to
calculate the area of the hexagon KLMNOP. Calculating the ratio of the
areas of the hexagons.

4. Using the property that the ratio of the areas of the hexagons is the same
as the ratio of the areas of the circumscribed circles.

5. Dividing the initial picture into congruent triangles using the properties
of the centroid of a triangle; students found two different possibilities—
18:24 and 36:48 (see Fig. 7.3).

Most of the groups solved the problem using strategy 1, 2 or 3. Some of
them made a mistake during calculation. Only one group used strategy 4.
They used intuitively the property that the ratio of the areas of the hexagons
is the same as the ratio of the areas of the circumscribed circles. During the
discussion about their solution they said they are not sure that this property
really works. It was a good opportunity to start looking for the proof of this

Fig. 7.3 Dividing the hexagon into the congruent triangles—two
possibilities
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property. Strategy 5 arose in two groups that first used strategy 1. One group
divided the larger hexagon into 24 triangles and got the ratio 18:24 and other
group divided it into 48 triangles and got the ratio 36:48. The fifth strategy
was considered by most of the students as very surprising and beautiful.
Only one group discovered three different solution strategies to this prob-
lem, namely strategies 1, 2 and 3.

Children grouping: Four children: Anna, Barbara, Cyril and Daniel
went to spend the night at their grandparents’ house. Their grandparents
have two separate bedrooms for them (one downstairs and another
upstairs). In how many different ways can the grandparents assign children
to bedrooms? For example: Anna, Barbara, Cyril and Daniel will sleep in
the room upstairs and nobody will sleep downstairs (Batanero et al. 1997).

Solution strategies:

1. The set of outcomes consists of the collection of all possibilities for
children to be downstairs, perhaps encoded as all subsets of the set {A,
B, C, D}.

2. In order to count the number of ways to arrange children in two rooms
students count the number of possibilities of arranging 3 children, 2
children and 4 children in some room (see Fig. 7.4a).

3. Students arrange children in one room, divide the possibilities into the

five subsets and then write the expression
4
0

� �
+

4
1

� �
+

4
2

� �

+
4
3

� �
+

4
4

� �
or a similar expression.

All groups, except one, organised the set of outcomes (solution strategy 1)
into two columns. They considered it important to record the status in both
rooms (see Fig. 7.5, on the left). One group realised that the second room is
the complement of the first one and wrote possibilities for one room only

Fig. 7.4 a Children grouping—strategy 2 b Children grouping—strategy 3
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(see Fig. 7.5, on the right). Strategy 2 together with strategy 1 were the most
common strategies. Strategy 3 was used by five groups; one such solution
can be found in Fig. 7.4b.

During the competition, no group found the method of solution that leads
to the expression 24. They realised this method of solution during the dis-
cussion after the competition when the teacher asked them not to distribute
children to rooms, but to distribute rooms to children (e.g. the grandparents
give room keys to each child). The set of outcomes that was created after the
reformulation of the problem is shown in Fig. 7.6.

After the presentation of this method of solution, some students dis-
covered the connection between the result of the strategy 3 and the 5th row
of Pascal triangle which they know is equal to 24. Students said that the
discussion about this problem helped them to realise the possibility of
looking on the problem “conversely” and seeing the solution 24. However,
many students had difficulty in writing the complete set of outcomes
matching this inverse view without help.

Triangle: The right-angled isosceles triangle has a base which measures
10 cm. Calculate its area.

Solution strategies:

1. Calculating the remaining sides using Pythagorean Theorem. Calculating
the area of the triangle.

Fig. 7.5 Children grouping—strategy 1
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2. Calculating the remaining sides using trigonometric functions. Calcu-
lating the area of the triangle.

3. Dividing the triangle by its height, calculating the height using
trigonometric functions and calculating the area of the triangle.

4. Utilising the fact that two congruent right-angled isosceles triangles
make a square and using the “diagonal” formula to calculate the area of
that square and consequently the area of the triangle (see Fig. 7.7).

5. Utilising the property that the height and median of an isosceles triangle
are the same and that the median is equal to half of the base (from the
Thales Theorem), we can directly identify necessary values and calculate
the area of triangle.

Fig. 7.6 Children grouping—set of outcomes after reformulation

Fig. 7.7 Triangle—strategy 4
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This is the second routine problem we have used. Students usually found
strategies 1, 2 and 3. Strategy 4 was less common and strategy 5 was used
by only one group. This group found three different strategies for solving the
problem (strategies 1, 4 and 5). During the discussion many students
admitted that they forgot the relationship between the length of the median
and the length of the base, which can be deduced from Thales Theorem.
Three groups found three different solution strategies to this problem.

7.4 Discussion and Next Steps

We included both routine and non-routine problems in the competition. We
think that including routine problems in the competition helps weaker
groups to start thinking about different strategies. They have less trouble
finding one and consequently two or more different strategies. Strong groups
have enough time to look for an unexpected solution, e.g. squaring in
the absolute value equation problem or utilisation of Thales Theorem in the
triangle problem. Our experience shows that using routine problems in the
MSTs competition should help students develop the ability to use the most
appropriate approach for solution of the routine problem. Students may also
recognize that sometimes an application of a standard solving strategy is
disadvantageous.

Including non-routine problems might cause weaker groups to have a
problem finding one correct solution and cause stronger groups to find only
one solution strategy. However, the groups are likely to have different
solution strategies and therefore more groups will get a maximum of points.
For instance, using the hexagon problem in one class caused 4 groups to
have wrong solutions, while the remaining 5 groups, which each had a
correct solution, chose different strategies. That means that each of the 5
groups with a correct solution got 9 points. Moreover, solving non-routine
problems requires creative thinking and the application of a certain heuristic
strategy to understand the problem situation and find a way to solve the
problem.

During the realisation of these experiences we come across a difficulty
concerning the process of evaluation. For example, we think that the dif-
ference between strategies 1 and 5 is “bigger” than that between strategies 1
and 2 in the hexagon problem, although the groups got the same number of
points. Nevertheless, if we try to distinguish such solutions (for instance
classify solutions by their similarity, see e.g. Levav-Waynberg and Leikin
2012), the evaluation becomes unclear and difficult to understand for
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students. We also considered the possibility that, during the evaluation and
discussion, students choose one solution for each problem which would get
the maximum number of points, and that this solution be given one extra
point, but we did not try it in the classroom. This suggestion is based on the
experience that in the discussions students usually clearly expressed the
opinion that some solution surprised them and was beautiful and/or unex-
pected. We also expect that the opportunity to participate in the evaluation
motivates students to think more deeply about the solutions presented.

During the evaluation, the presentations of the different solutions were
very fruitful because they show students various representations and prop-
erties, and create mathematical connections, which, as a result, helps to
develop their flexibility. After presentations of different solutions to all of
the problems we asked students the following questions:

1. Choose a problem for which you found it easy to find more than one
solution.

2. In your opinion, which problem had a surprising solution?
3. Choose a problem which helped you to realise something new.

All students selected one of the routine problems as an answer to the first
question. Students’ responses to the second question helped us to identify
which representations, solution strategies and connections they consider as
unusual, exceptional, and original. Most students chose solutions that use
pictures or manipulations with a given geometric shape as surprising (cy-
clists—strategy 3, absolute value equation—strategy 2, hexagon—strategy 5
and triangle—strategy 5). Analytic solution strategies using equations or
calculation of areas or lengths and/or using standard formulas were not
considered as surprising although some of these strategies were rare in the
class. This confirms the claim formulated in Presmeg (1986) which states
that most of the teachers preferred an analytic method of solution when
solving mathematical problems.

For the mathematics teachers who would like to include MSTs compe-
tition in their lessons regularly, it could be useful to get a collection of
problems with expert solution spaces including the most complete set of
solutions to a problem. We think that such a collection could help teachers
recognise the different possibilities of how one could represent the problem,
to what mathematical content it can be assigned, and which mathematical
connections could be created.

We assume that when students become familiar with the rules of com-
petition, it is not necessary to spend the whole lesson on an MSTs com-
petition; we can include one or two problems each week and evaluate the
results of the groups, for example, every month.

7 Competition Aims to Develop Flexibility … 183



7.5 Conclusion

Our experience showed us that the method presented can help mathematics
teachers motivate students to look for new, non-standard solutions of the
problems. Students are usually well-motivated to understand the “winning”
solution strategy and to appreciate a nice one. During the process of repe-
tition and systematisation of the knowledge of some topic, it may help
students to organise and integrate the mathematical concepts, mathematical
theorems and methods of solving mathematical problems which are perti-
nent to the topic. It can stimulate deeper understanding of concepts and
principles and expand knowledge of the topic.

For the teacher, the method also opens a possibility of analysing the
quality of students’ knowledge and their level of understanding. When
looking for another solution strategy, students are forced to leave the safe
solution strategy of a problem preferred in the standard mathematics lesson.
Mistakes that occurred among the students while looking for a new strategy
may show the teacher that providing a secure tool for solving problems does
not lead the student to conceptual understanding of the solving strategy
presented.

Group work provides the opportunity to discuss ideas and listen to peers,
to exchange ideas and hence to develop students’ ability to communicate
and reason. Students may discuss strategies and solutions, ask questions,
and examine consequences and alternatives. The work in groups may also
involve cooperative as well as independent work.

Mathematics educators accept that solving problems in different ways
may help to develop students’ creativity, especially two of its components—
fluency and flexibility. In the current education system in Slovakia, gifted
students do not receive enough attention and do not have enough oppor-
tunities to develop their giftedness during standard mathematics lessons.
Teachers usually pay more attention to average students and to students who
have problems with mathematics and usually provide them one safe and
general solution strategy. The other reason for providing and training routine
strategies lies in the fact that there is an external testing of mathematical
knowledge in Slovakia (both in primary schools and secondary schools as
well). Therefore, teachers pay attention to the development of such
knowledge and algorithms that lead to a satisfactory test result.

We think that the method presented shows an approach that enables
development of creativity of gifted and regular students together with
stimulation of deeper understanding in students. The competition could be
used as a tool for examining the mathematical flexibility of students, as a
tool for analysis of how students discover, understand and use connections
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among mathematical ideas and, moreover, for nonstandard testing of stu-
dents’ knowledge. The exploitation of the method presented also allows
students to communicate, analyse and evaluate their mathematical thinking
and problem solving strategies.
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Chapter 8
Discovering, Development,
and Manifestation of Mathematical Talent

Iliana Tsvetkova

Abstract Most parents want to think their child a gifted. That is generally
considered a norm. But there is a difference between a high-achieving pupil
in school and a child who is intellectually gifted. Discovering giftedness in
the early school years is not always an easy task. However, gifted children
have special traits that may help identify them among other pupils. For the
last century thousands of papers and books have been written about gifted
pupils. There is hardly something that can be added to them. The contri-
bution of this paper is the Bulgarian experience in mathematics competitions
for the discovery, the progress, the development and the manifestation of
gifted pupils.

Keywords Mathematics competitions ⋅ Discovering giftedness ⋅
Mathematical talent ⋅ Development of talent

8.1 Introduction

There are gifted pupils everywhere around the world but children have
different gifts. Some talents, like music for example, manifest in early
childhood. Others require children to gain some experience and knowledge
to help us first find and then develop talent. Mathematical talent is of the
latter type. Children have to learn how to read and think before we can
somehow find out in which little head a great mathematical talent is hidden.
The time in which children are in the primary school is appropriate to
provoke curiosity and to arouse interest in mathematics. The years between
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grades 5 and 7 is the time in which the mathematical talent, to a large extent,
is discovered and developed. In the upper secondary school this talent can
be displayed and manifested.

8.2 Stimulate Interest

Children of the 21-st century face many challenges for their curiosity. The
new technological inventions and the virtual world draw their attention like
a magnet and take up their time. This is why it is not easy to attract them to
do mathematics. From this point of view, mathematics competitions are a
field that may awake pupils’ interest. All kids love to compete, and win, of
course. To enlist them for mathematics, the most important thing is to make
them feel pleasure in solving problems.

The most enthusiastic to participate in mathematics competitions are the
students in the beginning of the schooling, grades 1–2. There are several
mathematics competitions for pupils in the early school years in Bulgaria.
Even for grade 1 there are two national and (at least) two regional mathe-
matics competitions. These events are the best places where the talented and
gifted students can be discovered. Parents who find their child gifted, or at
least exceptional, enter the child for these competitions. Certainly, parents
may not be aware of the giftedness of their child. Teachers can judge better
because they have broader view on the pupils’ abilities and their opinion is
much more objective. This is why teachers also help in this process.

Mathematics competitions for pupils in early school years last for about
120 min. Most of the problems are multiple choice items. These items are
suitable for grade 1 pupils by the end of the school year when they can read.
Nevertheless, there is a competition in the beginning of the school year (the

Fig. 8.1 First example from Sofia Mathematical Tournament, 2014
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first days of November). At this time the pupils in grade 1 cannot read. This
is why the grade 1 items are presented pictorially. Figures 8.1 and 8.2
present examples from the Sofia Mathematical Tournament, 2014.

Here are examples of two items from a mathematics competition, grade 1
(Easter Mathematics Competition in Bulgaria, 2011).

On a playground there are balls, ropes, and hoops. Each child plays with one device 
only. Three children do not play with balls and ropes. Six children do not play with 
balls and hoops. Seven children do not play with ropes and hoops. How many children 
are there on the playground? 

A) 12 B) 13 C) 15 D) 16

In each □ place either + or –, so that the number sentence is correct 
2 □ 3 □ 4 □ 5 □ 6 = 12 

What are the symbols place between 3 and 4, and 4 and 5, respectively? 

A) +, + B) –, +  C) –, –  D) +, –

8.3 Discovery

The above mentioned competitions are the best stimulus for parents who
find their child exceptional or gifted to consider applying for extracurricular
activities offered by profile mathematical schools in Bulgaria. There are
about 30 profile oriented schools in Bulgaria. They are secondary schools
(grades from 8 to 12) situated in the provincial centers. Some of these

Fig. 8.2 Second example from Sofia Mathematical Tournament, 2014
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schools offer extracurricular activities for pupils in grades from 2 to 4. These
pupils study in different schools but attend the extracurricular activities on
Saturdays. Also, some profile oriented schools accept children from grade 5.
The entrance to these schools is based on an exam aiming to select the gifted
and the most talented candidates.

As a case study, the experience of one of these schools, Sofia Mathe-
matical School, is described below. It is a school specialized in training
pupils from grade 5 to grade 12 (11–19 years old), who have a marked
interest and talent in mathematics. The selection of the pupils is made on the
basis of their results on several mathematics competitions. The most
important of these is the one that is organized by the school itself. To be
trained in Sofia Mathematical School, pupils should show interest in
mathematics already in primary school and are directed to more specialized
mathematics training, which is needed because every talent should be
supported, developed and stimulated.

Sofia Mathematical School offers an opportunity to develop mathematical
skills for pupils in grades from 2 to 4 (officially trained in other schools) by
organizing extracurricular activities on Saturdays and Sundays. Highly
qualified teachers train these pupils to solve non-standard problems helping
them to develop their logical thinking. This training does not go beyond the
arithmetic knowledge acquired during compulsory schooling but empha-
sizes their non-standard application. Teachers use charts, tables, pictures,
etc. to activate pupils’ intellectual abilities. Here is an example of a problem
suitable for such training.

Problem A grandmother bought sweets to her three grandchildren. She
divided the sweets among the grandchildren the following way: the oldest got
half of all sweets and one more sweet; the second oldest got 2 sweets, then
half of the remaining sweets and finally 3 more candies; the younger got 4
sweets, then half of the remaining sweets and one more sweet. The grand-
mother ate the last two sweets. How many sweets did the grandmother buy?

The solution is based on the principle of inversion (back–forward), and
can be described by the following scheme:

Most pupils attending these extracurricular activities preserve their
interest in mathematics and the development of their mathematical abilities.
After finishing grade 4 they apply for training in Sofia Mathematical School.
The competition that is used for the final selection test consists of 15
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multiple choice items, 5 open-ended short response items and 2 open
problems whose solution should be explained and justified in detail.

Here is an example of such a problem.

The snow was falling in huge flakes. Julia watched them through the window and counted 
the most beautiful snowflakes. To not forget how many she counted, she decided to 
record them in a notebook every five minutes. She drew    to represent 12 snowflakes. 
Here is her drawing:

12:00 – 12:05   ,  

12:05 – 12:10  , , , ,   

12:10 – 12:15  , ,  

12:15 – 12:20   

(A) At what time interval did Julia count the most snowflakes? 
(B) How many snowflakes did Julia count between 12:10 and 12:15? 
(C) How many snowflakes in all were counted? 
(D) A few snowflakes “landed” on Julia’s glove. Then of them melted. Then as many 

snowflakes “landed” as there were at the moment and ,  more. The wind blew 
half of snowflakes from the glove and , ,  remained. How many snowflakes 
“landed” on the glove at the beginning? 

8.4 Progress

Students who are accepted to study at the Sofia Mathematical School may
attend additional training. For them the school organizes extracurricular work
in mathematics, 3–4 academic hours weekly, mostly on Saturdays. Mathe-
matics teachers from the school develop specially prepared programs for this
training. These programs expand the topics studied in school and also contain
some topics that are not studied in the compulsory curriculum. The partici-
pation in these “Saturday schools” is not compulsory and is free of charge for
the pupils. In younger age groups (grades 5–7) there aremany students eager to
attend these activities. Later, when the difficulty of the studied material
increases, the number of participants decreases. Usually those that drop the
“Saturday schools” are pupils who achieve good results mainly thanks to their
diligence and hard work, without having special mathematical talent. Some
talented but lazy, sloppy and inconsistent pupils also leave these activities.

In order to get an idea of the work done in the “Saturday schools” a topic
called “invariants” that is not connected to the school curriculum is
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presented below. The study of the topic can start from grade 5 and continue
to the end of the secondary school. The problems that involve invariants are
typical examples of tasks that do not need particular mathematical knowl-
edge but whose solution requires a non-standard approach, logical thinking,
and a lot of creativity.

What follows below is a part of the “Invariants” topic that is suitable for
students in grades 5–7. Later in the chapter an extension of the topic that is
suitable for upper grades (9–12) will be presented.

An invariant is a quantity or an indication that remains unchanged under
certain transformation. The method of invariants for problem solving
requires the solver to discover a feature that is unchanged under a given
operation and to explain why a certain situation can be achieved or not.
Sometimes it is necessary to make additional constructions or considerations.

8.4.1 Invariance and Parity (Kostadinova 2012)

Problem 4.1 Grasshopper jumps in a straight line. Every jump is 1 m. After
a while, he returns to his original position. What is the parity of the number
of jumps he made?

Problem 4.2 Not all alien beings have the same number of hands.
A number of such aliens hold hands so that no hand is left free. Prove that
the number of aliens with an odd number of hands is even.

Problem 4.3 Maya wrote 20 integers on the board, seven of which were
odd. She erased two of the numbers and wrote the sum of their squares
instead. Maya repeated this operation several times until only one number
remained. What is the parity of this number?

Solution Let a and b be the numbers erased. Table 8.1 shows the change in
the number of even and odd numbers after the execution of the operation.

Table 8.1 Change in the number of even and odd numbers

Erase a Erase b Write a2 + b2 Number of even Number of odd

Even Even Even Decrease by 1 No change
Odd Odd Even Increase by 1 Decrease by 2
Odd Even Odd Decrease by 1 No change
Even Odd Odd Decrease by 1 No change
Notice that the number of odd numbers either does not change or decreases
by 2. In the beginning there are an odd number of odd numbers. Therefore,
the last number is also an odd number
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8.4.2 Invariance and Coloring

Problem 4.4 In a small rectangular garden flowers are blooming in 3 lines
and there are 11 flowers per line. A bee starts from a flower adjacent to the
flower in the upper left corner and flies from flower to flower going only to
horizontally or vertically neighboring flowers. Is it possible for the bee to
visit each flower only once?

Solution Figure 8.3 represents the garden as a chessboard. The bee starts
from a black square and alternately visits squares of different color. Since
the number of white squares is one more than the number of black squares, it
is not possible for the bee to visit each square only once.

8.4.3 Invariance and Divisibility

Problem 4.5 The teacher wrote the numbers 1, 2, 3, …, 2015, 2016 on the
blackboard. Peter erases some of the numbers and writes the remainder of
their sum modulo 11 instead. After the execution of this operation several
times, only two numbers remain on the blackboard. One of them is 1001.
What is the other number?
Hint. The invariant is the remainder of the sum 1+2+3+⋯+2015+
2016 modulo 11. The answer is 6.

Fig. 8.3 The garden represented as a chessboard
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8.5 Development

After grade 8, only the truly gifted, talented and hardworking pupils attend
“Saturday schools”. As in all areas, talented students who make systematic
efforts to develop and enrich their talent may perform well. And when it
comes to children, the teacher (or the trainer) plays an important role. He/she
must not only have excellent training (in mathematics, in this case), but also
teach pupils to continue the development of their abilities by themselves,
and find a way to motivate and encourage them when they have difficulties.

At this stage of the development of talent, motivation is the most
important trait, because the achievement of excellence requires a lot of work
and effort, denial of leisure and the usual teenage activities. In order to keep
up their interest in the increasingly difficult mathematics, the competitions
play an important role. They allow the pupils to prove themselves as “good
mathematicians” and also to increase their prestige. Participation in national
and a number of regional mathematics competitions is only a step in the
development and the preparation of the talented students. It maintains their
competitive shape and helps them to assess their level of preparation.

Every school year the Bulgarian Ministry of Education publishes a cal-
endar of the national and regional school students’ competitions in Bulgaria.
The timetable of mathematics competitions is quite overloaded. The list
starts with the National Mathematics Olympiad—one of the oldest Olym-
piads of this type in the world. It has more than 60 years of history. The
Bulgarian Mathematics Olympiad consists of three rounds (for students in
grades 7–12) and two rounds (for students in grades from 4 to 6). The results
of the final round are important for the selection of the Bulgarian team for
the International Mathematics Olympiad. All Bulgarian mathematicians and
many other people whose profession is connected to mathematics partici-
pated in the Bulgarian Mathematics Olympiad.

There are two types of national mathematics competitions in Bulgaria:
popular and elite. The former focus on a broad group of students of different
ages (grades from 1 or 2 to 8 or 12), who do not necessarily have to have
additional mathematics preparation but only “good logical thinking”. These
competitions are held at the same time in different cities. Usually the contest
papers consist of 15–30 multiple choice items. Based on the results of these
competitions some students receive a diploma for participation and/or a
prize. This is a good way to stimulate students from regions that have not
developed a system for extracurricular work in mathematics or for which the
mathematics achievement of their students is not on a high level. The most
popular competitions of this type are: Chernorizets Hrabar (http://www.
math.bas.bg/ch/), Mathematical Tournament Ivan Salabashev (http://www.
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math.bas.bg/salabashev/), European Kangaroo (http://www.aksf.org/). The
last one is a type of international mathematics competitions held on the same
day in many European countries as well as in the USA and Canada.

Elite mathematical competitions are for students of grades from 5 to 12
(or from 8 to 12). The contest papers for the elite competitions consists of 3
or 4 mathematical problems. The participants should present complete and
well-grounded solutions. To enter such competition one needs not only
talent but should also be systematically well prepared in mathematics. This
is why most students that participate study in profile mathematical schools.
The well-known elite national competitions in Bulgaria are: Autumn
Mathematical Tournament, Winter Mathematical Competitions, Spring
Mathematical Tournament “Atanas Radev”, and Mathematics Competition
for Linguistic Profile Schools.

The larger goal, however, is the participation in international competi-
tions. Being selected for the team for such a competition is not an easy task.
Usually the selection of the team goes through several rounds of tests and
takes into account the results of the Bulgarian National Mathematical
Olympiad. Motivation is very important in this stage as well. Participation in
international contests is not only proof of abilities and talent, but can also be
an opportunity to visit other countries and network with young people with
similar interests.

The most prestigious of these opportunities is participation in the Interna-
tional Mathematics Olympiad (IMO) (https://www.imo-official.org/). It is
very difficult to be selected for the IMO, because the team consists of 6
students from grades 11 or 12, but there are many rivals. The situation is
similar for the Balkan Mathematical Olympiad (BMO) (http://en.wikipedia.
org/wiki/Balkan_Mathematical_Olympiad). BMO has a junior version for
students up to 15.5 years of age. For the last decade Bulgarian students have
taken part in the International Zhautykov Olympiad in Kazakhstan (http://
www.artofproblemsolving.com/community/c3241_international_
zhautykov_olympiad). These competitions are very demanding. Usually the
contestants have 3 or 4 mathematical problems for each of two consecutive
days. To solve these problems one needs deep mathematical knowledge that
goes far beyond the mathematics learned at school. The winners of these
competitions are usually accepted to study mathematics (or studies related to
mathematics) at many famous universities around the world.

International mathematics competitions for “younger students” (i.e. up to
age 15) are much more attractive for pupils. Many of them are organized in
Asia. The selection of the participants is made at the school level. This
makes it possible for more pupils to enter the competitions. Each country
may send up to 4 teams for a competition. It is not only the exotic
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destinations that attract pupils, but also the organization of the contests that
is different from Bulgarian traditions and therefore is interesting for the
participants. Usually there are two rounds (individual round and team
round) in these competitions. During the individual round students work
individually on a test consisting of short-answer and/or multiple-choice
items. The team round presents several open-ended mathematical problems
for each of the teams to solve. The students first distribute the problems
among the team members, so that each of them thinks about the solution of
at least one of the problems. Some of the solutions are developed by the
whole team. The team round is usually very attractive and emotional for the
contestants. Participation in cultural events that require students to present
songs, dances, etc. of their country is a part of these competitions. The
closing ceremony where the winners receive their prices are also magnifi-
cent and exciting. This way participation in these competitions play an
important role in motivating students to develop their mathematical talent.

Mathematics competitions, depending on their type and organization,
develop different aspects of talent. Competitions that present many problems
of multiple-choice or short-answer type develop promptness of thought,
intuitiveness, quick assessment of the situation, helpfulness of the memory
and even correct judgment when to take a calculated risk. Certainly, some of
these features are universal, not only mathematical.

Competitions that presents few but demanding mathematical problems
requiring complete, extended, well-grounded solutions develop deep logical
thinking, a high level of analysis and synthesis, a lot of mathematical
knowledge, skills to reformulate the task to reduce it to something familiar, the
finding of different ways to attack a completely unknown problem, etc. and all
these things happenwithin a few hours. The students that have developed their
talent in this direction usually become professional mathematicians.

The team competitions equally develop both mathematical and social
aspects of talent, for example, to know not only your own strengths but also
those of the other team members. These competitions require skills for
teamwork, ability to critically appreciate the work of the team members and
at the same time trust in their ability to think. The team competitions also
develop ability to quickly understand and perceive others’ solutions, to
compare them with your own or alternative solutions, and to make a choice,
to judge when to agree with the opinion of the other team members and
when to assert your own. All these things need to happen for the best
performance of the team.

The preparation of students in this ages (grades 8–12) in Sofia Mathe-
matical School continue in the “Saturday schools”. Some of the students
also take part in the specialized preparation conducted by the leaders of the
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Bulgarian national mathematics team. A variety of topics are learned in the
“Saturday schools” and they are demanding. Some of the topics are con-
tinuation of the topics learned earlier, in the lower secondary school. Such a
topic is “Invariants”, part of which is presented in part 4 of this chapter.
Here are some more problems from this topic suitable for the upper sec-
ondary school students.

8.5.1 Invariance and Divisibility

Problem 5.1 The teacher wrote the numbers 1, 2, 3, . . . , n on the black-
board. Peter erases some of the numbers and writes the remainder of their
sum modulo k instead, where k is a natural number. After carrying out this
operation several times, only two numbers remain on the blackboard. One of
them is mk where m is any natural number. What is the other number that
remains? (This is a generalization of Problem 4.5.)

8.5.2 Invariance and Operations

Problem 5.2 A series of natural numbers x1, x2, x3, . . . , xn is written on the
blackboard. The following operation on the series is admissible: randomly
choose three of the numbers a, b, c and substitute a with (a + 1) or (a – 1),
b with (b + 2) or (b – 2), c with (c + 3) or (c – 3), and do not change the
rest of the numbers. Is it possible to obtain the following series
xn +1, xn, xn− 1, . . . , x1 in a finite number of admissible steps?

Solution Denote by S the sum of the numbers in the series. After carrying
out the admissible operation, the value of S changes by one of the numbers
1+ 2+ 3=6, 1+ 2− 3= 0, 1− 2+ 3=2, 1− 2− 3= − 4, − 1+ 2+ 3=4,
− 1+ 2− 3= − 2, − 1− 2+ 3= 0, − 1− 2− 3= − 6. Since all these num-
bers are even, the parity of S does not change. The parity of the sums of the
numbers of the initial and the final series are different, therefore the answer
is “no”.

Problem 5.3 (LIII Bulgarian National Olympiad in Mathematics, Final
round, 2004) Consider all possible strings consisting of the letters a and
b. In such string, the following substitutions are admissible: aba → b,
b → aba, bba → a, a → bba. The initial string is aa . . . a

|fflfflffl{zfflfflffl}

2003

b. Is it possible

obtain b aa . . .
|fflffl{zfflffl}

2003

a applying admissible substitutions?
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Solution We will show that the execution of any of the admissible sub-
stitution does not change the parity of the number of the letter a in even
(odd) positions in the string. Indeed, let the substitution aba → b be
applied over w1abaw2, where w1 and w2 represent the strings of letters
surrounding the place where the substitution takes place. The new string is
w1bw2. All a’s belonging to w1 stay in the same position, and all a’s from w2

move two positions to the left. Similarly, for any of the other substitutions—
the a’s before the substitution remain in the same position, and the ones after
it move either two position to the left or two positions to the right. The
number of a’s in even positions in b aa . . . a

|fflfflffl{zfflfflffl}

2003

is 1002, while in aa . . . a
|fflfflffl{zfflfflffl}

2003

b there

are 1001. Therefore, it is not possible to obtain the final string from the
initial one.

8.5.3 Invariance and a Change in the Parity of the Number
of Elements

Problem 5.4 There are several zeroes, ones and twos written on the
blackboard. The following operation is admissible: delete two different
digits and write the third one instead (e.g. if 1 and 2 are deleted, 0 is written
instead; if 0 and 1 are deleted, 2 is written instead). Prove that if, after a
finite number of applications of the admissible operation, only one digit
remains on the blackboard, this digit does not depend on the order in which
these operations are executed.

Solution Let p be the number of 0’s, q the number of 1’s, and r the number
of 2’s in the initial arrangement. After the execution of the admissible
operation all three numbers p, q and r, change by 1, so they all change their
parity simultaneously. If only one digit remains on the blackboard, then one
of the numbers p, q or r is equal to 1, and the other two are equal to 0.
Therefore, the parity of one of these numbers is different from the parity of
the other two. The respective digit is the one that remains on the blackboard.

8.5.4 Other Invariants

Problem 5.5 Each of 20 given cards contains one of the digits 0, 1, 2,…, 9,
so that each digit is written on exactly 2 cards. Is it possible to arrange these
cards in such a way that the two 0 s are next to each other, there is one card
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between the cards containing 1’s, there are two cards between the cards
containing 2’s, and so on, and finally there are nine cards between the cards
containing 9’s?

Solution Consider all possible arrangements of the cards with the numbers
a and b written on them. If between the a-cards, there is exactly one b-card,
then between the b-cards there is exactly one a-card. If between the a-cards
there are two b-cards, then b < a, and between the b-cards there are no a-
cards. If between the a-cards there are no b-cards, then between the b-cards
there are either two a-cards or none. This way we conclude that there are
even number of cards between every two cards with equal numbers written
on them. On the other hand, the total number of cards between every two
cards is 1 + 2 + 3 + ⋅ ⋅ ⋅ + 9 = 45, which is an odd number. This con-
tradiction proves that it is impossible to arrange all the cards in the desired
way.

Problem 5.6 A natural number is written on the blackboard. Every minute
this number is divided or multiplied by two or three, so that the result is a
natural number as well. The initial number is 12. Is it possible after an hour
to obtain the number 54?

Solution Let’s represent 12 as 22 ⋅ 3. Each number written on the black-
board is a product of powers of two and three. For the number A=2a1 .3a2
denote by S(A) = a1 + a2 and let f(A) be the remainder of S(A) modulo 2, f
(A)∈ {0, 1}. Every minute, either a1 or a2 changes its parity, so the value of
f(A) also changes. The value of f(A) is the same as the initial value at every
even minute. We have S (12) = 2 + 1 = 3 and f(12) ≡ 1(mod 2), while
S (54) = 3 + 1 = 4, f(54) ≡ 0(mod 2). Since f(12) ≠ f(54) and an even
number of minutes (1 h = 60 min) has passed, it is not possible to obtain 54
starting from 12.

8.6 Manifestation

Most of the students in Sofia Mathematical School spend 8 years studying
in the school (from grade 5 to grade 12). These are eight years of very
intensive preparation in mathematics both in the classroom and in the
“Saturday schools”. The best way to keep students motivated is to give them
the opportunity to manifest their talent. Mathematics competitions provide
an excellent opportunity in this respect. This is not only the International
Mathematical Olympiad where only 6 students per year from Bulgaria
participate. The good thing is that there are numerous national and
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international competitions that allow children of different ages and different
levels of training to express their talent.

The existence of some mass and attractive competitions accessible for
many students is needed because they increase interest in mathematics and
keep this interest alive. The best students can easily win these competitions.
They need to express and develop their talent in more demanding and elite
contests. The awards from participation in mathematics competitions, the
public attention from the school, the town, or the region, media attention,
and a sense of satisfaction from the achievements support the development
of talent. The number of contestants in the upper grades is diminishing
because the competition problems are more demanding and require more
effort. But the students that remain are really talented because the require-
ments for participation in the hardest competitions cannot be achieved only
through diligence and perseverance.

Those that reach a level of development of talent required to participate in
international competitions, usually continue their education in prestigious
universities in mathematics or in fields related to mathematics and its
applications, i.e. economics, finance, IT.

Below three of the very many examples of successful realization of
graduates of the Sofia Mathematical School are listed. They entered the
school from grade 5 and continued their education in the same school until
the end of grade 12, participated in many competitions, won awards and
have followed a career as professional mathematicians.

(i) Ljudmila Kamenova (http://www.math.sunysb.edu/∼kamenova/):
Gold Medal in the 13th Balkan Mathematical Olympiad, 1996; Silver
Medal in the 37th International Mathematical Olympiad, 1996;
National Diploma for excellence in the fields of natural and mathe-
matical sciences, 1996; Over 20 first prizes in national and regional
mathematical competitions from 1990 to 1996; Second Prize in the
National Mathematical Olympiad for University Students, 1997; First
Prize in the 5th International Mathematics Competition for University
Students, 1998; Norman Levinson award for MIT graduate student,
September 2001–May 2002; Mentor recognition award for the
Siemens-Westinghouse Competition, 2003; Research Assistant Fel-
lowships with professor Gang Tian, MIT 2003, 2005, 2006; Elected
an honorary member in the Golden Key International Honour Society
in 2014.

(ii) Tzvetelina Tzeneva (https://www.linkedin.com/in/tzvetelina-tzeneva-
34450a25): Silver Medal at the International Mathematical Olympiad
2005; Bronze Medal at the International Mathematical Olympiad
2006; Silver Medal at the International Mathematical Olympiad 2007;
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Shapiro Prize for Academic Excellence Princeton University 2009;
The Peter A. Greenberg’77 Prize Princeton University 2011.

(iii) Bozhidar Velichkov (http://www.velichkov.it/): Silver medal winner
(2003) and a gold medal winner (2004) Zhautykov Mathematical
Olympiad Kazakhstan.

The discovery, the progress, and the development of mathematical talent
takes a long time. It needs enormous effort from both the student and the
teacher. Mathematics competitions play a very important role in this pro-
cess. Their influence on the development of some famous Bulgarian
mathematicians is described in Bankov (2013).
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Chapter 9
International Mathematical Tournament
of Towns

Nikolay Konstantinov and Sergey Dorichenko

Why do we conduct the Tournament of Towns?

Because we want everything to be well in our

house. And our house is the whole world.

N.N. Konstantinov

When a new problem is invented, what should

one do? Propose it at an olympiad or throw is out?

I think that the same question faces a composer

who has created a new melody: he offers it to

people if he believes that it will be a gift to them.

N.B. Vasyliev

Abstract This article is devoted to the International Mathematical Tourna-

ment of Towns, a high-level contest for high school students. We will tell you

how this contest appeared, what are its aims, features and distinctions from

other olympiads, what towns and countries participate in it and how one can

take part in this contest. A significant part of the article is devoted to exam-

ples of problems from the Tournament of Towns, and to solutions of some of

these problems
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who was the jury chairman, gathered a team of bright young mathematicians,

who defined the spirit and style of this competition. But in 1979 government

officials disbanded the jury. Then a natural but ambitious idea appeared: to

create a new olympiad whose organization would be maximally independent

of official Soviet institutions, so that it could be controlled by the mathemati-

cal community. That is how the Tournament of Towns was created, and N.B.

Vasyliev took an active part in this work. He served as the chairman of the

Central Jury of the Tournament of Towns till his death in 1998: he selected

problems, and was the author of many of them. He also used problems sent by

the readers of “Kvant” (Quantum) magazine for its problem section. Thanks

to N.B. Vasyliev, the Tournament of Towns retained the scientific style of the

Soviet Union Mathematical Olympiad while avoiding some of its organiza-

tional shortcomings.

We dedicate this article to Nikolay Vasyliev.

Today the Tournament of Towns is conducted by a large group of strong

mathematicians and organizers, so the high quality of this olympiad is a team-

work result.

9.1 What Is the Tournament of Towns?

The Tournament of Towns is a worldwide problem solving competition in

mathematics for high school students. Its scale is illustrated by the list of par-

ticipating towns, see the end of this text. Each participating town has a place

where students come to solve the problems and write down their solutions;

then solutions are graded locally and the best of them are sent for central

grading.

So what is special about the Tournament of Towns? How is it different

from the many other mathematical competitions and why is it being held?

9.2 Goals of the Tournament

The Tournament organizers try to select interesting and beautiful problems

that require a nonstandard approach. Solving these problem during the com-

petition (or after the competition), they see mathematics from a different

angle. In Russia, as in other countries, the standard math classes do not inspire

creativity and often give the (wrong) impression that this science is a set of

boring recipes for solving standard problems. In general, the school curricu-

lum cannot keep up with the rapidly evolving modern world, which needs

more and more creative people.
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Unlike the International Mathematical Olympiad (where a student must

pass a series of other competitions in order to participate), anyone can partic-

ipate in the Tournament of Towns. Every year four rounds are held (a ordi-

nary and advanced level, in autumn and spring), students may participate in

all of them, and the final result depends only on the participant’s best per-

formance. Out of the many thousands participants of the multilevel Interna-

tional Mathematical Olympiad, only a few reach the final round. We believe

that such a system discourages some students from doing mathematics, rather

than attracting them.

9.3 We Are Looking for Talent!

The organizers of the Tournament of Towns, in Moscow and in other partic-

ipating towns, are interested in discovering talented young people, who will

later attend math schools and universities, and eventually work in scientific

institutions. We are not interested in checking what a person has learned, but

guessing what he can accomplish. This is why we use very liberal criteria

for checking the student’s work. The student’s work should be written so that

the jury can understand it, but in questionable situations, when it is uncer-

tain whether the student skipped a proof because he was unable to find it or

because it was obvious to him, the question is decided in the student’s favor.

This can lead to mistakes, when a solution is marked correct, while the stu-

dent doesn’t actually fully understand it. It is possible that we are doing a

disservice to the students, by encouraging them to write down their solutions

in a manner that will not be accepted in formal exams that they eventually

will have to take. This is why we warn the students that most exams have

stricter requirements for written solutions.

9.4 The Tournament of Towns and the Moscow
Mathematical Olympiad

The advanced level of the spring round of the Tournament of Towns takes

place on the same day as the Moscow Mathematical Olympiad, so the spring

round (A-level) isn’t held in Moscow. This system was implemented for sev-

eral reasons: first, the spring semester is overloaded with various olympiads,

secondly, for a long time there existed the idea of running the Moscow Math-

ematical Olympiad in other cities, and the Tournament of Towns partially

solves this. Holding these two olympiads on the same day allows them to

unite their bank of problems, and a lovely problem, suggested for one of
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these olympiads can be used for both. These two events are closely connected,

and the list of successful participants of both competitions is considered as a

whole.

9.5 The Tournament of Towns as a Sport

What attracts students to the Tournament? Not only the interesting problems,

but that the Tournament is a sports competition. The need to test one’s skills

and to compete with others is in the nature of many people, especially young-

sters. An athlete cannot expect his results to be kept a secret. One of the rules

of the Tournament is that all results and materials are open to the public.

The athletic side of the Tournament is in conflict with its scientific side.

For those who have just begun to be interested in mathematics, this conflict

will be unnoticeable. During the Tournament the student is given 5 h. For

beginners this is more than enough time to demonstrate their skills, but for

a more advanced student, who is capable of solving the hardest problems of

the Tournament, 5 h is not enough, and for them the Tournament becomes

a timed competition. This is in conflict with the spirit of science. To com-

pensate this flaw, the papers are graded by looking at three of the student’s

best solutions. The challenge of the Tournament is that solving three of the

hardest problems is comparable to winning the International Mathematical

Olympiad, so striving for an even higher results in olympiads is no longer

necessary.

9.6 The Tournament of Towns and Professional Science

What should a student who has reached such a high level aspire to? He

no longer needs olympiads, he needs unsolved mathematical problems. As

one of the founders of mathematical olympiads in Russia, Boris Nikolaevich

Delone, said: “An olympiad lasts only 5 h, but you need 5000 h to solve a

serious mathematical problem”.

The Tournament of Towns is followed by a summer school, where the

students work in a format close to that of a professional mathematician. This

school is called the Summer Conference of the Tournament of Towns. Unfor-

tunately, it is held only for a small number of students (70–80 people of the

10 000 participants). Students spend a week there solving problems in a free

format. Some of these problems are unsolved problems.
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9.7 Summer Conference

The Tournament’s Summer conference are unlike scientific conferences in the

usual sense of the word. They do not have plenary lectures, sectional work-

groups or even official programs. These conferences are more like informal

gatherings to which students are invited along with accompanying teachers.

One of the purposes is to give gifted students the chance to work on research

problems. That is why the organizers propose very interesting projects—

difficult problems or cycles of problems frequently connected with real math-

ematical research. Even the presentation of the statements of such a project

can take up a whole lecture, and the presentation of all the projects takes

a whole day. Each participant chooses one or two projects, which he will

research as deeply as possible.

Solving such problems takes a long time and requires considerable intel-

lectual efforts. So the solving process is rather informal. Usually, several days

are given for its attempt, which can either be individual or collaborative.

The participant’s achievements in the Tournament is the main criterion

for the invitation to the Conference: those who achieve the highest results

are invited. Invitations are also sent to the winners of other prestigious com-

petitions such as All-Russian Olympiad and the IMO. Thus some students

from cities and towns where the Tournament is not held can also come to the

Conference.

Groups of students from different cities are usually headed by the teachers

who organise the Tournament in their city. Many of them take part in work of

the jury of the Conference. The composition of the jury is not predetermined.

All the participants of the Conference can enjoy sufficient rest, intensive

creative work and interesting contacts.

9.8 The Jury Does Not Assign Places

There are no formal competitions during the conference. The Jury simply

takes note of what problems are solved, and in the diplomas handed out to

the participants only contain the list of their achievements, but no comparison

to the other participants. The overall list of achievements is published, and

students can judge by themselves whose achievement is higher.

This is close to real life: there is no jury which can say who is better—

Galileo or Newton, Bohr or Einstein, Gauss or Euler. Such decisions would

be, firstly, of no use to anyone, and secondly, anyone who wants to know can

decide for himself.
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During the Tournament of Towns no ranking is performed. In the records

published at the end of the Tournament, each of winner’s diplomas only con-

tains the best results of the participant.

There is a level (12 points for the 2015/2016 school year) starting from

which students receive diplomas, but the maximal results are much higher.

9.9 Diplomas and Awards

In addition to the diplomas for the winners of the Tournament handed out by

the Central Jury, the local jury in each participating town can give out their

own awards based on their own criteria. In Moscow, students who got at least

5 points but less than 12 are awarded by the Moscow Jury.

Five points approximately corresponds to solving one problem (not the

easiest one). This has the following meaning: the difference between a stu-

dent who solved one problem of medium difficulty and a student who solved

nothing is a lot greater than the difference between the student who solved one

problem and the student who solved five problems. In the first case the dif-

ference is qualitative, in the second it is quantitative. Plus you can add to the

students who solved one problem during the Tournament, those who solved

it after the competition (for example, while riding the Moscow underground,

where, as one often hears, problem solving goes especially well).

9.10 Our Wish for the Participants

In conclusion we have the following request to our participants. All around

the world, including Moscow, educators are unjustly shifting their focus from

teaching to competitions. Olympiads, tournaments, math battles and other

events, which were intended as a means to check the mathematical abilities of

students, have gone way beyond the learning of mathematics needed to form

these abilities. We advise students to pay more attention to studying and less

to competitions. The main things in studying is to work systematically and

not to rush. The outstanding Russian mathematician Igor Rostislavovich Sha-

farevich once wrote that a wonderful trait of Moscow mathematical circles is

that every question is discussed for as long as it is needed, with no rush. Such

style of work is in conflict with the busy rhythm of our lives. To achieve this

style you only need to select all the interesting possibilities—the necessary

ones, and out of the necessary ones—the most interesting. Don’t spend your

time on nonsense, although this is not easy. Don’t go around with your eyes
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closed, try to look at the world with your own eyes, do not blindly follow the

authors of books and concepts. Good luck!

9.11 Regulations of the Tournament

The Tournament is held each year in two rounds—spring and fall. Students

and their cities can take part in either round or both, taking local conditions

into consideration. If a certain city participates in both rounds, a student in

this city has the right of choosing to take part in only one of them. This does

not prevent the student from achieving a good result, because the student’s

score for the Tournament is the maximum (and not the sum) of the scores in

the two rounds.

Each round has two levels—O-level (ordinary) and A-level (advanced).

They are scheduled approximately two weeks apart. Here students have the

right of choice as well. They may attempt either level or both. The score for

the round is the maximal (not the sum) of the scores in the two levels. The

questions in the O-level are less complicated and are accessible to beginners.

However, students are awarded less points for solving these questions. Nev-

ertheless, students can get enough points to win Diplomas if they solve the

hardest three O-level problems. Questions in the A-level are more compli-

cated. The most difficult ones are often solved only by a few participants. A

beginner probably has no chance of obtaining any points from these ques-

tions. On the other hand, an exceptional student can be awarded two or three

times as many points for them as for O-level questions.

Students who exceed a certain minimum score are awarded a Diploma

from the Central Jury. Also, each participating town obtains a certain score.

A town’s score is the average score of the town’s best N students’ score, where

N is the town’s population divided by one hundred thousand. If a town’s pop-

ulation is less than 500,000, N is then taken to be 5; but the town’s score is

then multiplied by a handicap factor.

9.12 Towns that Participate in the Tournament

One of the key traits of the Tournament of Towns is the diversity of partici-

pating regions. Because of different cultures, school programs, quality of life

and many other factors, the local organizers of the Tournament do things in

their own way. For example, in many schools across Argentina the O-level

round serves as a qualifier for the A-level round, which is held in two cities—
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Buenos Aires and Bahia Blanca. In Iran, the Tournament is held as a team

competition, in Toronto the O-level is preceded by a set of problems from

math circles in Moscow. Taiwan is not a city, but a whole country (a politi-

cally independent part of China), but in the list below Taiwan is mentioned

as a city because the Taiwanese organizers requested to count their region as

one big city with a population of 22 million. Several cities in Bulgaria and

Israel participate in the Tournament, but they do not send the participant’s

work to the Central Jury.

The total population of the participating cities is around 100 million. Every

year around 1000 people are given a winner’s diploma of the Tournament, so

for the past 37 Tournaments around 35 thousand people were awarded.

Only a small part of all the students on Earth can participate in the Tour-

nament. If one takes into account that there are two million illiterate adults,

millions of children who cannot attend school, then it can be seen that our

event is still too small to make a difference in the overall mathematical cul-

ture of mankind.

Nevertheless some students are lucky enough to discover that mathemat-

ics is an endless world of the most refined intellectual creation, capable of

satisfying the need of a thinking person. It does not matter if they made this

discovery at some olympiad, the Tournament of Towns, at a math circle, or

any other way. Even if mathematics did not become their profession, it entered

their life forever, leaving a mark on their future work, no matter in which area

it might be.

9.13 List of Towns and Rating

Notations:

Pop/1000—Population of the town, divided by 1000

NoP—Number of Participants

Dipl—Number of Diplomas

Max—Maximum of points, received by participants of the town

Av—Mean score of the best student’s results

Coeff—Coefficient for towns with population less than 500 thousands peo-

ple

Rat—Rating of the town (For towns that sent to the Central Examination

papers of 5 or more students)
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36 tournament of towns

Town Location Pop/1000 NoP Dipl Max Av Coeff Rat Rank

Kurgan Russian Fed. 325 34 26 37.5 29.32 1.22 35.77 1

Troy Michigan, USA 82 12 8 24 21.6 1.52 32.83 2

Dolgoprudny Moscow reg,

Russian Fed.

94 30 29 26.67 21.13 1.51 31.91 3

Ulyanovsk Russian Fed. 615 19 18 34.67 29.39 1 29.39 4

Jeju Rep. of Korea 435 29 29 30 27.02 1.08 29.18 5

Irvine California, USA 223 12 7 30 21.25 1.35 28.69 6

Gwangmyeong Rep. of Korea 341 14 13 26.25 23.32 1.2 27.98 7

Yaroslavl Russian Fed. 559 23 18 35 25.95 1 25.95 8

Mokpo Rep. of Korea 247 14 13 25.33 19.6 1.32 25.87 9

Kirov Russian Fed. 483 48 46 25.33 24.87 1.02 25.36 10

Maikop Adygea, Russian

Fed.

144 27 16 22.5 17.2 1.44 24.77 11

Belgrade Serbia 1232 31 26 37.33 24.44 1 24.44 12

Novorossiysk-BC Krasnodar reg.,

Russian Fed.

262 7 7 22 18.7 1.3 24.31 13

Naberezhnye

Chelny

Tatarstan,

Russian Fed.

524 33 26 26 24.03 1 24.03 14

Windsor Canada 5 5 3 32.5 14.2 1.62 23 15

Novorossiysk-2 Krasnodar reg.,

Russian Fed.

262 7 4 25.33 17.6 1.3 22.88 16

Nizhny Tagil Sverdlovsk reg.,

Russian Fed.

358 20 13 23 19.13 1.18 22.58 17

Ulsan Rep. of Korea 1163 35 35 31.5 22.21 1 22.21 18

Zaporizhia Ukraine 768 43 14 29.33 22.14 1 22.14 19

Novosibirsk Russian Fed. 1547 27 23 32 22.03 1 22.03 20

Zagreb Croatia 792 5 5 25 21.9 1 21.9 21

Saransk Mordovija,

Russian Fed.

299 17 5 21.25 17.32 1.25 21.64 22

Vologda Russian Fed. 306 33 15 18.75 17.35 1.24 21.51 23

Helm Poland 72 22 11 15 14 1.53 21.42 24

Minsk Belarus 1912 68 54 29.33 21.25 1 21.25 25

Krasnodar-BC Russian Fed. 805 22 21 26 21.12 1 21.12 26

Kragujevac Serbia 150 23 5 17 14.33 1.44 20.64 27

Moscow Russian Fed. 12184 1382 368 33.33 20.24 1 20.24 28

Omsk Russian Fed. 1160 32 27 26.25 20.17 1 20.17 29

Petropavlovsk-

Kamchatsky

Kamchatka,

Russian Fed.

181 10 3 18 14.37 1.4 20.11 30

Chelyabinsk Russian Fed. 1182 9 9 29.33 19.95 1 19.95 31

Seongnam Rep. of Korea 994 9 7 42 19.78 1 19.78 32

Seosan Rep. of Korea 163 6 3 18.75 13.68 1.42 19.43 33

Ufa Bashkortostan,

Russian Fed.

1077 35 16 30.67 18.33 1 18.33 34

Almaty Kazahstan 1485 32 32 22.5 17.91 1 17.91 35

Ekaterinburg Russian Fed. 1396 35 17 22.67 17.79 1 17.79 36

Pereslavl-

Zalessky

Yaroslavl reg.,

Russian Fed.

40 8 2 22.67 11.33 1.57 17.79 37
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Town Location Pop/1000 NoP Dipl Max Av Coeff Rat Rank

Kuala Lumpur Malaysia 1809 11 10 28.75 17.73 1 17.73 38

Changwon Rep. of Korea 1089 11 11 29.33 17.47 1 17.47 39

Kostroma Russian Fed. 271 7 6 15 13.53 1.29 17.46 40

Daejeon Rep. of Korea 1535 20 16 24 17.23 1 17.23 41

Graz Austria 276 7 4 20 13.4 1.28 17.15 42

Gwangju Rep. of Korea 1477 14 12 29.33 17.11 1 17.11 43

Zhukovsky Moscow reg.,

Russian Fed.

107 8 2 20 11.27 1.49 16.79 44

Petrozavodsk Karelia, Russian

Fed.

268 7 3 16 12.98 1.29 16.75 45

Novi Sad Serbia 341 16 7 16 13.95 1.2 16.74 46

Sochi-BC Krasnodar reg.,

Russian Fed

473 6 6 17.33 16.17 1.03 16.65 47

Toronto Canada 2615 29 20 34.5 16.58 1 16.58 48

Erevan Armenia 1068 12 10 23 16.57 1 16.57 49

Kazan Tatarstan,

Russian Fed.

1176 10 7 28 16.31 1 16.31 50

Elizovo Kamchatka,

Russian Fed.

38 5 2 14.67 10.28 1.58 16.25 51

Buenos Aires Argentina 2890 44 23 28.75 15.8 1 15.8 52

Vitebsk Belarus 373 15 4 16.25 13.52 1.16 15.68 53

Saint Petersburg Russian Fed. 5028 74 34 30.67 15.68 1 15.68 54

Calgary Canada 1096 13 6 28 15.66 1 15.66 55

Perm Russian Fed. 1013 75 15 18.75 15.49 1 15.49 56

Charlotte North Carolina,

USA

792 5 2 34.67 15.27 1 15.27 57

Jeonju Rep. of Korea 654 6 5 22 15.14 1 15.14 58

Astana Kazahstan 828 31 14 16 15.09 1 15.09 59

Melbourne Australia 4250 40 27 30 14.75 1 14.75 60

Perth Australia 1832 13 11 22.67 14.68 1 14.68 61

Samara Russian Fed. 1171 24 6 20 14.65 1 14.65 62

Suwon Rep. of Korea 1170 10 8 22.5 14.47 1 14.47 63

Goyang Rep. of Korea 1073 8 5 28.75 14.41 1 14.41 64

Ivanovo Russian Fed. 409 5 3 23 12.95 1.11 14.37 65

Kiev Ukraine 2849 26 21 34.5 14.27 1 14.27 66

Chita Russian Fed. 335 23 2 20 11.35 1.21 13.73 67

Tomsk Russian Fed. 557 8 3 21 13.6 1 13.6 68

Malmö Sweden 309 5 2 15 10.92 1.24 13.54 69

Seoul Rep. of Korea 10117 45 26 33 13.24 1 13.24 70

Saratov Russian Fed. 840 7 5 17.33 13.08 1 13.08 71

Cheboksary Chuvashya,

Russian Fed.

464 6 4 13.33 12.27 1.04 12.76 72

Anyang Rep. of Korea 609 5 2 18.75 12.4 1 12.4 73

Isfahan Iran 1583 16 8 18 12 1 12 74

Pohang Rep. of Korea 520 5 2 23 11.85 1 11.85 75

Busan Rep. of Korea 3525 25 11 28 11.73 1 11.73 76

Hamburg Germany 1718 22 7 20 11.71 1 11.71 77

Bremen Germany 544 8 2 14 11.35 1 11.35 78
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Town Location Pop/1000 NoP Dipl Max Av Coeff Rat Rank

Gumi Rep. of Korea 374 6 1 16.25 9.7 1.16 11.25 79

Daegu Rep. of Korea 2492 15 8 18 11.08 1 11.08 80

Cheongju Rep. of Korea 838 7 2 18 10.71 1 10.71 81

Yazd Iran 486 5 1 13 10.4 1.02 10.61 82

Voronezh Russian Fed. 1023 62 2 15 10.5 1 10.5 83

Rostov-on-Don Russian Fed. 1103 12 4 17.33 9.7 1 9.7 84

Kharkiv Ukraine 1449 10 3 20 9.43 1 9.43 85

Penza Russian Fed. 521 20 1 17 8.8 1 8.8 86

Volzhsky Volgograd reg.,

Russian Fed.

326 9 0 11.25 7 1.22 8.54 87

Kropotkin Krasnodar reg.,

Russian Fed.

80 9 0 7.5 5.55 1.52 8.44 88

Panama Panama 600 6 1 19 8.04 1 8.04 89

Incheon Rep. of Korea 2899 15 5 15 8.04 1 8.04 90

Tabriz Iran 2383 6 2 12 8 1 8 91

Tyumen Russian Fed. 679 12 0 10.5 7.92 1 7.92 92

Surgut Khanty-Mansiy

AO, Russian Fed.

332 80 0 5 4.7 1.21 5.69 93

Sovetsk Kaliningrad reg.,

Russian Fed

41 54 0 7.5 3.33 1.57 5.23 94

Protvino Moscow reg.,

Russian Fed.

37 5 0 1.25 0.85 1.58 1.34 95

Ejsk-BC Krasnodar reg.,

Russian Fed.

85 3 3 16 14.67 1.52 22.29 –

Vancouver Canada 603 4 3 13 12.25 1 12.25 –

Yongin Rep. of Korea 909 4 4 24 19.73 1 19.73 –

Makhachkala Dagestan,

Russian Fed.

578 4 4 17.5 15.38 1 15.38 –

Volgograd Russian Fed. 1018 3 3 16 14 1 14 –

Lund Sweden 107 2 1 16 8.63 1.49 12.85 –

Essentuki Stavropol reg.,

Russian Fed.

103 1 0 0 0 1.5 0 –

Luga Leningrad reg.,

Russian Fed.

36 3 3 18 15.67 1.58 24.75 –

Kaliningrad Russian Fed. 448 1 0 8 8 1.06 8.48 –

Nizhny Nov-

gorod

Russian Fed. 1259 2 2 17.33 16.66 1 16.66 –

Boroujen Iran 49 3 2 12 10.33 1.56 16.12 –

Khanty-

Mansiysk

Russian Fed. 90 3 3 15 13.67 1.51 20.64 –

Berkley California, USA 112 1 1 12 12 1.48 17.76 –

Kerman Iran 573 3 2 15 11.33 1 11.33 –

Notes:

1. This rating is counted only for towns that sent to the Central examination

5 or more papers.
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2. In towns of the Krasnodar land with the note (BC) the Tournament was

held by the Bernoulli Centre (Krasnodar).

3. The results of Bremen only for the spring round. The results of Bremen

in the fall round are included into the results of Hamburg.

4. Every Iranian team is counted in this rating as one team-participant.

9.14 How to Enter the Tournament

The Tournament is open to all towns and cities anywhere in the world. If in

the city there is either an education organization (university, institute, school,

etc.) which would like to organize the Tournament there, or a group of lead-

ers or even a single teacher who can act as a town committee, this is quite

sufficient for the city’s participation in the Tournament.

CONTACTS to get the problems and perhaps to join the Tournament:

prof. Nikolay Konstantinov (President), Sergey Dorichenko (Chairman of the

Jury),

turnir.gorodov@gmail.com, turgor@mccme.ru.

9.15 Selected Problems from Different Years of the
Tournament

During its existence the Tournament of Towns has presented its participants

over a thousand problems. We present here a select few of these problems for

a more meaningful introduction to the Tournament. There is no deep mean-

ing in the choice of problems or their ordering. We wanted to demonstrate

the variety of themes—what a participant sees, when he begins solving the

problems of yet another round. We tried to order them by increasing order of

difficulty (next to the problem is the number of points which was awarded for

its complete solution) The format of the present publication prevents us from

discussing the solutions. We warn you that:

1. In many of them the answer is surprising or even paradoxical.

2. Some problems are very difficult and were solved by very few partici-

pants.

The English version of the problems and solutions included into this article

mostly were written by Andy Liu; they are taken from website https://www.

math.toronto.edu/oz/turgor/ and from a series devoted to the Tournament of

Towns, published by Peter Taylor in the Australian Mathematics Trust. We

are very grateful to Andy Liu, Peter Taylor, Olga Zaitseva-Ivrii and Victor

Ivrii.

https://www.math.toronto.edu/oz/turgor/
https://www.math.toronto.edu/oz/turgor/
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TOURNAMENT 33, Fall 2011
Junior questions, O Level

1. [3 points] P and Q are points on the longest side AB of triangle ABC such

that AQ = AC and BP = BC. Prove that the circumcentre of triangle PQC
coincides with the incentre of triangle ABC.

V.V. Proizvolov

TOURNAMENT 17, Fall 1995
Senior questions, O Level

2. [3 points] A square is placed in the plane and a point P is marked in this

plane with invisible ink. A certain person can see this point through special

glasses. One can draw a straight line and this person will say on which side of

the line the point P lies. If P lies on the line, the person says so. What is the

minimal number of questions one needs to find out if P lies inside the squares

or not?

A.Ya. Kanel-Belov

TOURNAMENT 33, Spring 2012
Junior questions, O Level

3. [3 points] A treasure is buried under a square of an 8 × 8 board. Under

each other square there is a message which indicates the minimum number of

steps needed to reach the square with the treasure. Each step takes one from

a square to another square sharing a common side. What is the minimum

number of squares we must dig up in order to bring up the treasure for sure?

N. Strelkova

TOURNAMENT 14, Spring 1993
Junior questions, O Level

4. [3 points] Each of two houses A and B is divided into two flats. Several cats

and dogs live there. It is known that the fraction of cats in the first flat of A
(the ratio between the number of cats and the total number of animals in the

flat) is greater than the fraction of cats in the first flat of B, and the fraction of

cats in the second flat of A is greater than the fraction of cats in the second flat

of B. Is it true that the fraction of cats in house A is greater than the fractions

of cats in house B?

A. K. Kovaldji

TOURNAMENT 9, Spring 1988
Senior questions, O Level

5. [Variant for Moscow participants.] A point has been chosen in a 3-dimensional

space. Is it possible to arrange four balls in the space so that they do not touch
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either the point or each other, but “hide” the point in that any ray emanating

from the point meets one of the balls?

Problem from Leningrad

TOURNAMENT 4, Spring 1983
Junior questions, O Level

6. [8 points] A pedestrian walked for 3.5 h. In every period of 1 h duration he

walked 5 km. Is it true that his average speed was 5 km per hour?

N.N. Konstantinov
TOURNAMENT 10, Fall 1988
Junior questions, O Level

7. [3 points] It is known that the proportion of people with fair hair among

people with blue eyes is more than the proportion of people with fair hair

among all people. Which is greater, the proportion of people with blue eyes

among people with fair hair, or the proportion of people with blue eyes among

all people?

Folklore

TOURNAMENT 12, Fall 1990
Junior questions, O Level

8. [4 points] Suppose two positive real numbers are given. Prove that if their

sum is less than their product then their sum is greater than four.

N.B. Vasiliev

TOURNAMENT 17, Spring 1996
Junior questions, O Level

9. [4 points] The two tangents to the incircle of a right-angled triangle ABC
the are perpendicular to the hypotenuse AB intersect it at points P and Q. Find

∠PCQ.

M.A. Evdokimov

TOURNAMENT 28, Fall 2006
Senior questions, O Level

10. [4 points] Three positive integers x, y and z are written on the blackboard.

Mary records in her notebook the product of any two of them and reduces

the third number on the blackboard by 1. With the new trio of numbers, she

repeats the process, and continues until one of the numbers on the blackboard

becomes zero. What will be the sum of the numbers in Mary’s notebook at

that point?

Ye. Gorsky, S.A. Dorichenko
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TOURNAMENT 30, Spring 2009
Junior questions, O Level

11. [4 points] Let a∧b denote the number ab
. The order of operations in the

expression 7∧7∧7∧7∧7∧7∧7 must be determined by parentheses (5 pairs of

parentheses are needed). Is it possible to put parentheses in two distinct ways

so that the value of the expression be the same?

A.K. Tolpygo

TOURNAMENT 31, Spring 2010
Junior questions, O Level

12. An angle is given in a plane. Using only a compass, one must find out

(a) [2 points] if this angle is acute. Find the minimal number of circles one

must draw to be sure.

(b) [2 points] if this angle equals 31◦. (One may draw as many circles as one

needs.)

G. Feldman, D.V. Baranov

TOURNAMENT 32, Fall 2010
Senior questions, O Level

13. [5 points] From a police station situated on a straight road infinite in both

directions, a thief has stolen a police car. Its maximal speed equals 90% of the

maximal speed of a police cruiser. When the theft is discovered some time

later, a policeman starts to pursue the thief on a cruiser. However, he does not

know in which direction along the road the thief has gone, nor does he know

how long ago the car has been stolen. Is it possible for the policeman to catch

the thief?

G.A. Galperin

TOURNAMENT 26, Spring 2005
Junior questions, O Level

14. [5 points] M and N are the midpoints of sides BC and AD, respectively,

of a square ABCD. K is an arbitrary point on the extension of the diagonal

AC beyond A. The segment KM intersects the side AB at some point L. Prove

that ∠KNA = ∠LNA.

A.V. Akopyan

TOURNAMENT 35, Fall 2013
Junior questions, O Level

15. [6 points] Eight rooks are placed on a 8 × 8 chessboard so that no two

rooks attack each other. Prove that one can always move all rooks, each by a

move of a knight so that in the final position no two rooks attack each other
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as well. (In intermediate positions several rooks can share the same square).

E.V. Bakaev

TOURNAMENT 11, Fall 1989
Senior questions, O Level

16. [3 points] The numbers 21989 and 51989 are written out one after the other

(in decimal notation). How many digits are written altogether?

G.A. Galperin

TOURNAMENT 7, Spring 1986
Senior questions

17. [4 points] Vectors coincide with the edges of an arbitrary tetrahedron

(possibly non-regular). Is it possible for the sum of these six vectors to equal

the zero vector?

Problem from Leningrad

TOURNAMENT 8, Spring 1987
Junior questions, O Level

18. [3 points] We are given two three-litre bottles, one containing 1 litre of

water and the other containing 1 litre of 2% salt solution. One can pour liq-

uids from one bottle to the other and then mix them to obtain solutions of

different concentration. Can one obtain a 1.5% solution of salt in the bottle

which originally contained water?

S.V. Fomin

TOURNAMENT 4, Fall 1982
Junior questions, O Level

19. [12 points] There are 36 cards in a deck arranged in the sequence spades,

clubs, hearts, diamonds, spades, clubs, hearts, diamonds, etc. Somebody took

part of this deck off the top, turned it upside down, and cut this part into the

remaining part of the deck (i.e. inserted it between two consecutive cards).

Then four cards were taken off the top, then another four, etc. Prove that in

any of these sets of four cards, all the cards are of different suits

A. Merkov

TOURNAMENT 34, Spring 2013
Junior questions, O Level

20. [5 points] Eight rooks are placed on a 8 × 8 chessboard, so that no two

rooks attack one another. All squares of the board are divided between the

rooks as follows. A square where a rook is placed belongs to it. If a square is

attacked by two rooks then it belongs to the nearest rook; in case these two

rooks are equidistant from this square then each of them possesses a half of
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the square. Prove that every rook possesses the equal area.

E.V. Bakaev

TOURNAMENT 9, Spring 1988
Senior questions, O Level
21. Pawns are placed on an infinite chess board so that they form an infinite

square net (along any row or column containing pawns there is a pawn, three

free squares, pawn, three squares, and so on, with only every fourth row and

every fourth column containing pawns). Prove that it is not possible for a

knight to tour every free square once and only once.

An old problem of A.K .Toplygo

TOURNAMENT 38, Fall 2016
Senior questions, O Level
22. [5 points] Of the triangles determined by 100 points on a line plus an extra

point not on the line, at most how many of them can be isosceles?

E.V. Bakaev

TOURNAMENT 31, Spring 2010
Senior questions, O Level
23. [5 points] Assume that P(x) is a polynomial with integer nonnegative

coefficients, different from constant. Baron Munchausen claims that he can

restore P(x) provided he knows the values of P(2) and P(P(2)) only. Is the

baron’s claim valid?

S.V. Markelov
TOURNAMENT 35, Fall 2013
Senior questions, O Level
24. [6 points] A spacecraft landed on an asteroid. It is known that the asteroid

is either a ball or a cube. The rover started its route at the landing site and

finished it at the point symmetric to the landing site with respect to the center

of the asteroid. On its way, the rover transmitted its spatial coordinates to the

spacecraft on the landing site so that the trajectory of the rover movement

was known. Can it happen that this information is not sufficient to determine

whether the asteroid is a ball or a cube?

E.V. Bakaev

TOURNAMENT 11, Fall 1989
Senior questions, A Level
25. [3 points] Is it possible to choose a sphere, a triangular pyramid and a

plane so that every plane, parallel to the chosen one, intersects the sphere

and the pyramid in sections of equal area?

Problem from Latvia
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TOURNAMENT 38, Fall 2016
Junior questions, A Level

26. [5 points] The diagram shows an arbitrary triangle dissected into congru-

ent triangles by lines parallel to its sides. Prove that the orthocentres of the

six shaded triangles are concyclic.

E.V. Bakaev

TOURNAMENT 24, Fall 2002
Senior questions, A Level

27. [6 points] A cube is cut by a plane so that the cross-section is a pentagon.

Prove that the length of one of the sides of the pentagon differs from 1 m by

at least 20 cm.

G.A. Galperin

TOURNAMENT 5, Spring 1984
Junior questions, A Level

28. [12 points] The two pairs of consecutive natural numbers (8, 9) and

(288, 289) have the following property: in each pair, each number contains

each of its prime factors to a power not less than 2. Prove that there are infi-

nitely many such pairs.

A.V. Andjans
TOURNAMENT 17, Fall 1995
Junior questions, A Level

29. A journalist is looking for a person Z at a meeting of n persons. He has

been told that Z knows all the other people at the meeting but none of them

knows Z. The journalist may ask any person about any other person: “Do you

know that person?” One person can be questioned many times. All answers

are truthful.

(a) [3 points] Can the journalist always find Z by asking less than n questions?

(b) [3 points] What is the minimal number of questions which are needed to

find Z?

G.A. Galperin
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TOURNAMENT 6, Spring 1985
Senior questions, A Level

30. [8 points] The convex set F does not cover a semi-circle of radius R. Is it

possible that two sets, congruent to F, cover the circle of radius R? What if

F is not convex?

N.B. Vasiliev, A.G. Samosvat

TOURNAMENT 6, Spring 1985
Junior questions, A Level

31. [4 points] A square is divided into 5 rectangles in such way that its 4

vertices belong to 4 of the rectangles, whose areas are equal, and the fifth

rectangle has no points in common with the sides of the square (see diagram).

Prove that the fifth rectangle is a square.

V.V. Proizvolov

TOURNAMENT 4, Fall 1982
Senior questions

32. [15 points] Prove that for all natural numbers greater than 1

[
√

n] + [ 3
√

n] +⋯ + [ n
√

n] = [log2 n] + [log3 n] +⋯ + [logn n].

V.V. Kisil
TOURNAMENT 4, Fall 1982
Senior questions

33. [8 points] Does there exist a polyhedron (not necessary convex) which

could have the following complete list of edges?

AB,AC,BC,BD,CD,DE,EF,EG,FG,FH,GH,AH

B

A

C

D

F

H

G

E

Folklore
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TOURNAMENT 8, Spring 1987
Senior questions, A Level
34. [5 points] In a certain city only simple (pairwise) exchanges of apartments

are allowed (if two families exchange flats, they are not allowed to participate

in another exchange on the same day). Prove that any compound exchange

may be effected in two days. It is assumed that under any exchange (simple

or compound) each family occupies one flat before and after the exchange

and the family cannot split up.

A. Shnirelman, N.N. Konstantinov

TOURNAMENT 16, Fall 1994
Senior questions, A Level
35. [4 points] The median AD of triangle ABC intersects its inscribed circle

(with center O) at the points X and Y . Find the angle XOY if AC = AB + AD.

A. Fedotov

TOURNAMENT 28, Fall 2006
Senior questions, A Level
36. [6 points] Is it possible to split a prism into disjoint set of pyramids so

that each pyramid has its base on one base of the prism, while its vertex on

another base of the prism?

S. Slobodnik

TOURNAMENT 6, Spring 1985
Senior questions, A Level
37. A square is divided into rectangles. A “chain” is a subset K of the set of

these rectangles such that there exists a side of the square which is covered by

projections of rectangles of K and such that no point of this side is a projection

of two inner points of two different rectangles of K.

(a) [12 points] Prove that every two rectangles in such a division are members

of a certain “chain”.

(b) [12 points] Solve the similar problem for a cube, divided into rectangular

parallelepipeds (in the definition of chain, replace “side” by “edge”).

A.I. Golberg, V.A. Gurevich

TOURNAMENT 9, Fall 1987
Junior questions, A Level
38. [8 points] There are 2000 apples, contained in several baskets. One can

remove baskets and/or remove apples from the baskets. Prove that it is possi-

ble to then have an equal number of apples in each of the remaining baskets,

with the total number of apples being not less than 100.

A.A. Razborov
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TOURNAMENT 11, Spring 1990
Senior questions, A Level
39. [10 points] A cake is prepared for a dinner party to which only p or q
persons will come (p and q are given co-prime integers). Find the minimum

number of pieces (not necessary equal) into which the cake must be cut in

advance so that the cake may be equally shared between the persons in either

case.

D. Fomin, Leningrad
TOURNAMENT 10, Spring 1989
Senior questions, A Level
40. [6 points] A club of 11 people has a committee. At every meeting of the

committee a new committee is formed which differs by 1 person from its

predecessor (either one new member is included or one member is removed).

The committee must always have at least three members and, according to

the club rules, the committee membership at any stage must differ from its

membership at every previous stage. Is it possible that after some time all

possible compositions of the committee will have already occurred?

S.V. Fomin
TOURNAMENT 29, Fall 2007
Junior questions, A Level
41. [6 points] Michael is at the centre of a circle of radius 100 metres. Each

minute, he will announce the direction in which he will be moving. Catherine

can leave it as is, or change it to the opposite direction. Then Michael moves

exactly 1 metre in the direction determined by Catherine. Does Michael have

a strategy which guarantees that he can get out of the circle, even though

Catherine will try to stop him?

A.I. Bufetov
TOURNAMENT 17, Fall 1995
Senior questions, A Level
42. [7 points]

Version for Nordic Countries
Six pine trees grow on the shore of a circular lake. It is known that a treasure is

submerged at the mid-point T between the intersection points of the altitudes

of two triangles, the vertices of one being at three of the six pines, and the

vertices of the second one at the other three pines. At how many points T
must one dive to find the treasure?

Version for Tropical Countries
A captain finds his way to Treasure Island, which is circular in shape. He

knows that there is treasure buried at the midpoint of the segment joining the
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orthocentres of triangles ABC and DEF, where A, B, C, D, E and F are six

palm trees on the shore of the island, not necessarily in cyclic order. He finds

the trees all right, but does not know which tree is denoted by which letter.

What is the maximum number of points at which the captain has to dig in

order to recover the treasure?

S.V. Markelov

TOURNAMENT 7, Spring 1986
Junior questions, A Level

43. [8 points] (“Sisyphian labour”) There are 1001 steps going up a hill, with

rocks on some of them (no more than 1 rock on each step). Sisyphus may pick

up any rock and raise it one or more steps up to the nearest empty step. Then

his opponent Aid rolls a rock (with an empty step directly below it) down one

step. There are 500 rocks, originally located on the first 500 steps. Sisyphus

and Aid move rocks in turn, Sisyphus making the first move. His goal is to

place a rock on the top step. Can Aid stop him?

S. Yeliseyev

TOURNAMENT 26, Fall 2004
Junior questions, A Level

44. [7 points] Point K belongs to side BC of triangle ABC. Incircles of tri-

angles ABK and ACK touch BC at points M and N respectively. Prove that

BM ⋅ CN > KM ⋅ KN.

S.V. Markelov

TOURNAMENT 28, Spring 2007
Senior questions, A Level

45. [5 points] A convex figure F is such that any equilateral triangle with side

1 has a parallel translation that takes all its vertices to the boundary of F. Is

F necessarily a circle?

S.V. Markelov

TOURNAMENT 28, Spring 2007
Junior questions, A Level

46. Nancy shuffles a deck of 52 cards and spreads the cards out in a circle

face up, leaving one spot empty. Andy, who is in another room and does not

see the cards, names a card. If this card is adjacent to the empty spot, Nancy

moves the card to the empty spot, without telling Andy; otherwise nothing

happens. Then Andy names another card and so on, as many times as he likes,

until he says “stop.”

(a) [5 points] Can Andy guarantee that after he says “stop,” no card is in its

initial spot?
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(b) [5 points] Can Andy guarantee that after he says “stop,” the Queen of

Spades is not adjacent to the empty spot?

A.V. Shapovalov, L.E. Mednikov

TOURNAMENT 26, Fall 2004
Senior questions, A Level

47. [6 points] A circle with the center I is entirely inside of a circle with center

O. Consider all possible chords AB of the larger circle which are tangent to

the smaller one. Find the locus of the centers of the circles circumscribed

about the triangle AIB.

A.A. Zaslavsky

TOURNAMENT 29, Fall 2007
Junior questions, A Level

48. [7 points] Two players take turns entering a symbol in an empty cell of a

1 × n chessboard, where n is an integer greater than 1. Aaron always enters

the symbol X and Betty always enters the symbol O. Two identical symbols

may not occupy adjacent cells. A player without a move loses the game. If

Aaron goes first, which player has a winning strategy?

B.R. Frenkin

TOURNAMENT 30, Spring 2009
Junior questions, A Level

49. (a) [2 points] Find a polygon which can be cut by a straight line into

two congruent parts so that one side of the polygon is divided in half while

another side at a ratio of 1 ∶ 2.

(b) [3 points] Does there exist a convex polygon with this property?

S.V. Markelov

TOURNAMENT 19, Spring 1998
Senior questions, A Level

50. (a) [6 points] Two people perform a card trick. The first performer takes

5 cards from a 52-card deck (previously shuffled by a member of the audi-

ence), looks at them, and arranges them in a row from left to right: one face

down (not necessarily the first one), the others face up. The second performer

guesses correctly the card which is face down. Prove that the performers can

agree on a system which always makes this possible.

A problem of M. Gardner
(b) [6 points] For their second trick, the first performer arranges four cards in

a row, face up; the fifth card is kept hidden. Can they still agree on a system

which enables the second performer to correctly guess the hidden card?

G.A. Galperin
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TOURNAMENT 33, Fall 2011
Junior questions, A Level
51. [7 points] A car goes along a straight highway at the speed of 60 Km per

hour. A 100 m long fence is standing parallel to the highway. Every second,

the passenger of the car measures the angle of vision of the fence. Prove that

the sum of all angles measured by him is less than 1100 degrees.

A. Shen
TOURNAMENT 30, Spring 2009
Senior questions, A Level
52. [6 points] Three planes dissect a parallelepiped into eight hexahedrons

such that all of their faces are quadrilaterals (each plane intersects two corre-

sponding pairs of opposite faces of the parallelepiped and does not intersect

the remaining two faces). One of the hexahedrons has a circumscribed sphere.

Prove that each of these hexahedrons has a circumscribed sphere.

V.V. Proizvolov
TOURNAMENT 32, Fall 2010
Senior questions, A Level
53. Two dueling wizards are at an altitude of 100 above the sea. They cast

spells in turn, and each spell is of the form “decrease the altitude by a for me

and by b for my rival” where a and b are real numbers such that 0 < a < b.

Different spells have different values for a and b. The set of spells is the same

for both wizards, the spells may be cast in any order, and the same spell may

be cast many times. A wizard wins if after some spell, he is still above water

but his rival is not. Does there exist a set of spells such that the second wizard

has a guaranteed win, if the number of spells is

(a) [2 points] finite;

(b) [5 points] infinite?

I.V. Mitrofanov
TOURNAMENT 31, Fall 2009
Senior questions, A Level
54. [8 points] Denote by [n]! the product 1 ⋅ 11 ⋅ 111 ⋅ · · · ⋅ 11...11

⏟⏟⏟

n ones

(n factors

in total). Prove that [n + m]! is divisible by [n]! ⋅ [m]!.
M.A. Bershtein

TOURNAMENT 31, Spring 2010
Junior questions, A Level
55. N horsemen are riding in the same direction along a circular road. Their

speeds are constant and pairwise distinct. There is a single point on the road
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where the horsemen can surpass one another. Can they ride in this fashion

for arbitrarily long time? Consider the cases:

(a) [3 points] N = 3;

(b) [5 points] N = 10.

A.Klyachko, E. Frenkel

TOURNAMENT 25, Fall 2003
Senior questions, A Level

56. [7 points] An ant crawls on the outer surface of the box in a shape of

rectangular parallelepiped. From ant’s point of view, the distance between

two points on a surface is defined by the length of the shortest path ant need

to crawl to reach one point from the other. Is it true that if ant is at vertex then

from ant’s point of view the opposite vertex be the most distant point on the

surface?

S.V. Markelov

TOURNAMENT 38, Fall 2016
Senior questions, A Level

57. [9 points] Is it possible to cut a 1 × 1 square into two pieces which can

cover a disk of diameter greater than 1?

A.V. Shapovalov

TOURNAMENT 31, Spring 2010
Senior questions, A Level

58. [8 points] Quadrilateral ABCD is circumscribed around the circle with

centre I. Let points M and N be the midpoints of sides AB and CD respectively

and let
IM
AB = IN

CD . Prove that ABCD is either a trapezoid or a parallelogram.

N. Beluhov, A. Zaslavsky

TOURNAMENT 26, Fall 2004
Senior questions, A Level

59. [8 points] Let ∠AOB be obtained from ∠COD by rotation (ray AO trans-

forms into ray CO). Let E and F be the points of intersection of the circles

inscribed into these angles. Prove that ∠AOE = ∠DOF.

I.I. Bogdanov, P.A. Kozhevnikov

TOURNAMENT 25, Spring 2004
Senior questions, A Level

60. [7 points] The parabola y = x2 intersects a circle at exactly two points A
and B. If their tangents at A coincide, must their tangents at B also coincide?

S.V. Markelov
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TOURNAMENT 27, Fall 2005
Senior questions, A Level

61. [7 points] In triangle ABC bisectors AA1, BB1 and CC1 are drawn. Given

∠A ∶ ∠B ∶ ∠C = 4 ∶ 2 ∶ 1,

prove that A1B1 = A1C1.

S.I. Tokarev

TOURNAMENT 28, Fall 2006
Senior questions, A Level

62. [7 points] Let

1 + 1
2
+ 1

3
+ · · · + 1

n
=

an
bn

,

where an and bn are relatively prime. Show that there exist infinitely many

positive integers n, such that bn+1 < bn.

S.V. Markelov

TOURNAMENT 9, Fall 1987
Senior questions, A Level

63. [8 points] A certain town is represented as an infinite plane, which is

divided by straight lines into squares. The lines are streets, while the squares

are blocks. Along a certain street there stands a policeman on each 100th

intersection. Somewhere in the town there is a bandit, whose position and

speed are unknown, but he can move only along the streets. The aim of the

police is to see the bandit. Does there exist an algorithm available to the police

to enable them to achieve their aim?

A.V. Andjans

TOURNAMENT 2, Spring 1981
Senior questions

64. On an infinite “squared” sheet six squares are shaded as in the diagram.

On some squares there are pieces. It is possible to transform the positions

on the pieces according to the following rule: if the neighbour squares to the

right and above a given piece are free, it is possible to remove this piece and

put pieces on these free squares.
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The goal is to have all the shaded squares free of pieces. Is it possible to

reach this goal if

(a) [8 points] In the initial positions there are 6 pieces and they are placed on

the 6 shaded squares?

(a) [8 points] In the initial positions there is only one piece, located in the

bottom left shaded square?

M. Kontsevich
TOURNAMENT 30, Spring 2009
Senior questions, A Level
65. [9 points] Initially the number 6 is written on a blackboard. At nth step

an integer k on the blackboard is replaced by k + gcd(k, n). Prove that at each

step the number on the blackboard increases either by 1 or by a prime number.

M. Frank
TOURNAMENT 29, Fall 2007
Junior questions, A Level
66. The audience arranges n coins in a row. The sequence of heads and tails

is chosen arbitrarily. The audience also chooses a number between 1 and n
inclusive. Then the assistant turns one of the coins over, and the magician

is brought in to examine the resulting sequence. By an agreement with the

assistant beforehand, the magician tries to determine the number chosen by

the audience.

(a) [4 points] Prove that if this is possible for some n, then it is also possible

for 2n.

(b) [5 points] Determine all n for which this is possible.

S. Gribok
TOURNAMENT 32, Fall 2010
Senior questions, A Level
67. [14 points] A square is divided into congruent rectangles with sides of

integer lengths. A rectangle is important if it has at least one point in common

with a given diagonal of the square. Prove that this diagonal bisects the total

area of the important rectangles.

V.V. Proizvolov
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TOURNAMENT 4, Spring 1983
Senior questions, A Level

68. [30 points] k vertices of a regular n-gon P are coloured. A colouring is

called almost uniform if for every positive integer m the following condition

is satisfied:

If M1 is a set of m consecutive vertices of P and M2 is another such set then
the number of coloured vertices of M1 differs from the number of coloured
vertices of M2 at most by 1.
Prove that for all positive integers k and n (k ≤ n) an almost uniform colouring

exists and that it is unique within a rotation.

M. Kontsevich

TOURNAMENT 38, Fall 2016
Senior questions, A Level

69. [12 points] A finite number of frogs are placed on distinct integer points

on the real line. At each move, a single frog jumps by 1 to the right provided

that the new location is unoccupied. Altogether, the frogs make n moves, and

this can be done in m ways. Prove that if they jump by 1 to the left instead of

to right, they can still make n moves in m ways.

F. Petrov

TOURNAMENT 35, Fall 2013
Senior questions, A Level

70. [14 points] A closed broken self-intersecting line is drawn in the plane.

Each of the links of this line is intersected exactly once and no three links

intersect at the same point. Further, there are no self-intersections at the ver-

tices and no two links have a common segment. Can it happen that every

point of self-intersection divides both links in halves?

A.V. Shapovalov, A. Lebedev
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Some Answers, Hints and Solutions

2. The answer is 3.

3. The answer is 3.

Hint: Let the first two squares we dig up be at the lower left corner and the

lower right corner.

4. The answer is no.

5. The answer is yes.

6. The answer is no.

7. The proportion of people with blue eyes among people with fair hair is

more than the proportion of people with blue eyes among all people.

9. The answer is 45◦.

10. The answer is xyz.

11. The answer is yes.

Hint: (7∧(7∧7))∧7 = (7∧7)∧(7∧7).
12. (a) (Solution by Olga Ivrii.) Let O be the vertex of the given angle. Let P
be any point on one arm of the angle other than O. Draw a circle with centre

P and radius OP. If the other arm is tangent to the circle, then the given angle

is a right angle. If the other arm intersects the circle in two points, then the

given angle is acute. If the other arm misses the circle, then the given angle

is obtuse. Hence the task can be accomplished using the compass only once.

(b) (Solution by Wen-Hsien Sun.)
Let O be the vertex of the given angle. Draw a circle 𝜔 with centre O and

arbitrary radius, cutting the two arms of the angle at A0 and A1 respectively.

Using A1A2 as radius, mark off on 𝜔 successive points A2, A3, . . . so that

A0A1 = A1A2 = A2A3 = … . Then ∠A0OA1 = 31◦ if and only if A360 = A0
but Ak ≠ A0 for 1 ≤ k ≤ 359, and we have gone around 𝜔 exactly 31 times.

13. The answer is yes.

14. Let AC cut MN at O, and extend BA to cut KN at P. Since PL is parallel

to NM and O is the midpoint of NM, A is the midpoint of PL. Hence triangles

PAN and LAN are congruent to each other, so that ∠KNA = ∠LNA.

15. Observe that condition “no two rooks attack one another” means exactly

that

(a) Each horizontal has 1 rook,

(b) Each vertical has 1 rook.

We break movement into two steps:
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Step 1: Rooks from verticals 1, 2, 5, 6 move 2 squares right—to verticals

3, 4, 7, 8 respectively; rooks from verticals 3, 4, 7, 8 move 2 squares left—to

verticals 1, 2, 5, 6 respectively. Obviously both conditions (a), (b) remains

fulfilled.

Step 2: Rooks from horizontals 1, 3, 5, 7 move 1 square up—to horizon-

tals 2, 4, 7, 8; rooks from horizontals 2, 4, 7, 8 move 1 square down—to

horizontals 1, 3, 5, 7 respectively. Obviously both conditions (a), (b) remains

fulfilled.

As a result each rook made a knight’s move.

16. The answer is 1990.

Suppose that 21989 has m digits and 51989 has n digits. Then 10m−1
<

21989 < 10m
and 10n−1

< 51989 < 10n
. Therefore

10m+n−2
< 21989 ⋅ 51989 = 101989 < 10m+n

.

Hence 1989 = m + n − 1 and m + n = 1990.

17. The answer is no.

18. The answer is no.

22. The answer is 150.

23. The answer is yes.

Let P(x) = a0xn + a1xn−1 + · · · + an, where the coefficients are non-negative

integers. Suppose P(2) = b. Then b = a02n + a12n−1 +⋯ + an > a0 + a1 +
⋯ + an. It follows that we have bn

> bn−1(a0 + a1 +⋯ + an) ≥ a1bn−1 +
⋯ + an−1b + an. Now

P(b)
bn = a0 +

a1bn−1+⋯+an−1b+an
bn . Then a0 = ⌊P(b)

bn ⌋, where

n is the largest integer for which P(b) ≥ bn
. In an analogous manner, a1 =

⌊P(b)−a0bn

bn−1 ⌋, and so on. It follows that P(x) is uniquely determined, and the

Baron is right!

24. The answer is yes.

Consider a sphere of radius r and a surface of cube with the side a with

the same center. Observe that if a =
√
2r the sphere touches each edge at

its midpoint and therefore it intersects each face of the cube along circle of

radius r∕
√
2 in its center like on the figure below (we draw only three visible

faces):
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Then any path consisting of arcs of these circles belongs to both sphere and

the surface of the cube and one can connect two symmetric points marked on

the figure by such path. Therefore it can happen that such information is not
sufficient to determine whether the asteroid is a ball or a cube.

25. The answer is yes.

27. Proof by a contradiction. Assume that pentagon has sides ranging from

0.8 to 1.2. To get a pentagon in cross-section of a cube, a plane has to cross

five faces, two pairs of which are parallel. Therefore the pentagon has two

pairs of parallel sides. Let us consider pentagon BCDKL with BC ∥ DK
and CD ∥ LB. Then A be a point of intersection of BL and KD (extended).

Note that ABCD is a parallelogram. Due to triangle inequality AL + AK >

LK, then AB + AD > BL + LK + KD. So, BC + CD > BL + LK + KD. Then

even if BC and CD are two longest sides, BC + CD ≤ 2 ⋅ 1.2 = 2.4 while

BL + LK + KD ≥ 3 ⋅ 0.8 = 2.4 which is contradiction.

28. A number is said to be desirable if it contains each of its prime factors

to a power not less than 2. We construct an infinite sequence (an) by defining

a1 = 8 and an+1 = 4an(an + 1). We use induction on n to prove that both an
and an + 1 are desirable for all n. For n = 1, both a1 = 8 and a1 + 1 = 9 are

desirable. Suppose the result holds for all n ≤ k. Then ak+1 = 4ak(ak + 1)
is desirable since each of 4, ak and ak+1 is. Also, ak+1 + 1 = (2ak + 1)2 is

desirable. Hence the result holds for all n.

29. (a) The answer is yes.

(b) The answer is n − 1.

30. The answers is yes.

33. The answers is yes.

35. The answers is 120◦.

36. The answer is no.

39. The answer is p + q − 1.

40. The answer is no.
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41. The answer is yes.

42. The answer is one point.

Label the trees A, B, C, D, E and F arbitrarily. Consider triangles ABC
and DEF. Denote the centroids of these triangles by T1 and T2, and their

orthocentres by H1 and H2. Then the homothety with centre T1 and coefficient

−2 maps the centre O of the island to H1 (because it maps ABC to the triangle

A′B′C′
such that A, B, C are the midpoints of B′C′

, C′A′
, A′B′

and H1 is the

circumcentre of A′B′C′
), the homothety with centre T2 and coefficient −2

maps O to H2. So the midpoint T between T1 and T2 lies on the segment OH
where H is the midpoint between H1 and H2 and OH = 3OT . Since T is the

centre of gravity for all six given points and does not depend on the way we

label the six trees, the Captain needs to dig only one hole.

43. The answer is yes.

45. (Solution by Olga Zaitseva-Ivrii.) No, the convex figure does not have to

be a circle. Let AB be a horizontal segment of length 2. Draw a semicircle

with diameter AB above AB. For any equilateral triangle of side 1, place its

lowest vertex at the midpoint O of AB. If there are two choices, place either

one at O. The other two vertices of the equilateral triangle always lie on the

semicircle. Hence the convex figure bounded by AB and the semicircle has

the desired property

46. (a) The answer is yes. Andy can call the cards out in order starting with

the Ace of Spades, two of Spades down to the King of Spades, followed by

the Hearts, the Diamonds and the Clubs. We refer to this as one cycle. In

each cycle, each card can move at most once since it is called exactly once,

and at least one card must move. Andy then makes another 51 cycles of calls.

We claim that all moves are in the same direction, either all clockwise or all

counter-clockwise. This is clear within each cycle. Consider the card X which

is the last to move in a cycle, and let Y be the other card adjacent to the empty

spot. Since Y does not move after X in this cycle, it must have been called

before X. So in the next cycle, Y will be called before X, and follows X in the

same direction. This justifies our claim. To go once around and return to its

initial spot, a card must have moved 53 times, and this is not possible since

Andy makes only 52 cycles of calls. If it is to be in its initial spot, it must

not have moved at all. However, this is also impossible as otherwise at most

1 move could have been made, but in 52 cycles, at least 52 moves have been

made. Therefore, after 52 cycles of calls, every card is in a spot different from

its initial one.

(b) The answer is no. Construct a graph where each of the vertices rep-

resents one of the 52! permutations of the cards, with the first and the last

adjacent to the empty spot. Two vertices are joined by an edge if and only if
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a call by Andy changes the two permutations to each other. Label the edge

with the card called by Andy. In this graph, each vertex has degree 2, and

the graph is a union of disjoint cycles. Consider the cycle containing the ver-

tex representing the initial permutation. For each vertex, let a person starts

there. Whenever Andy makes a call, the person moves along an edge labelled

with that card to an adjacent vertex if possible, and stays put otherwise. We

call a vertex safe if and only if in the permutation it represents, the Queen

of Spades is not adjacent to the empty spot. By shifting each card clockwise

into the empty spot in turns, we will arrive at permutations represented by

safe vertices as well as permutations represented by unsafe vertices. Note that

after each call, there is still one person on each vertex. Thus no matter what

sequence of calls Andy may employ, he cannot get everyone to a safe vertex.

It follows that there is an initial permutation for which Andy’s sequence will

leave the Queen of Spades adjacent to the empty spot.

48. Betty can guarantee a win.

49. (Solution by Daniel Spivak.) Divide the sides of a square in counter-

clockwise order in the ratio 1 ∶ 2. If we connect both pairs of points of divi-

sion on opposite sides, the square is dissected into four congruent parts. If we

connect only one pair, we have two congruent convex quadrilaterals. Disre-

gard one of them, and the line connecting the other pair of points of division

will dissect the remaining convex quadrilateral into two congruent part.

50. (b) The answer is yes.

51. Divide the points of observation into six groups cyclically, so that the

points in each group are 100 m apart, the same as the length of the bill-

board.The diagram below shows the angles of visions from the points of a

group.

−3 −2 −1 0 1 2 3 4

We now parallel translate all these points to a single point, along with their

billboards and angles of vision, as shown in the diagram below.
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−3−2−101234

The sum of all these angles is clearly at most 180◦. Since there are six

groups of points of observations, the sum of all angles of vision is at most

6 ⋅ 180◦ < 1100◦.

53. (a) The answer is no. With a finite number of spells, there is one for

which b − a is maximum. If the first wizard keeps casting this spell, the best

that the second wizard can do is to maintain status quo by casting the same

spell. Hence the second wizard will hit the water first, giving the first wizard

a win.

(b) The answer is yes. In the nth spell, let a = 1
n and b = 100 − 1

n . By sym-

metry, we may assume that the first wizard casts the nth spell. He is then

100 − 1
n above water while the second wizard is

1
n above water. However, the

second wizard wins immediately by casting the (n + 1)-st spell. He will still

be
1
n − 1

n+1 = 1
n(n+1) above water while the first wizard is submerged in water

since (100 − 1
n ) − (100 − 1

n+1) = − 1
n(n+1) .

55. (Solution by Jonathan Zung.) We use induction on the number n of run-

ners. For n = 1, there is nothing to prove. Suppose the result holds for some

n ≥ 1, each with a distinct integer speed. Let M be the least common multi-

ple of these speeds. If we add an (n + 1)-st runner with speed 0 at the passing

point, the result still holds. Now increase the speed of each of the n + 1 run-

ners by M. Since their relative speeds remain the same, the result continues

to hold. In particular, it holds for n = 3 and n = 10.

56. The answer is no.

57. The answer is yes.

58. (Solution by Jonathan Zung.) Let P, Q, R and S be the points of tan-

gency of the circle with AB, BC, CD and DA respectively. Let ∠AIS =
∠AIP = 𝛼, ∠BIP = ∠BIQ = 𝛽, ∠CIQ = ∠CIR = 𝛾 and ∠DIR = ∠DIS = 𝛿.

Then ∠AIB + ∠CID = 𝛼 + 𝛽 + 𝛾 + 𝛿 = 180◦. If ∠AIB > 90◦, then ∠CID <

90◦. The point I will be inside the circle with AB as diameter but outside the

circle with CD as diameter. Hence
IM
AB <

1
2 <

IN
CD . Similarly, if ∠AIB < 90◦,

then
IM
AB >

1
2 >

IN
CD . Both contradict the hypothesis that

IM
AB = IN

CD . Hence

𝛼 + 𝛽 = ∠AIB = 90◦ so that Q, I and S are collinear. Since both BC and DA
are perpendicular to QS, they are parallel to each other.
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60. The answer is no.

63. The answer is yes.

64. (a) The answer is no. (b) The answer is no.

65. Let us write down few first terms in the sequence:

Step # 1 2 3 4 5 6 7 8 9 10 11 12
Number in the cell 6 7 8 9 10 15 18 19 20 21 22 33 36
Increment 1 1 1 1 5 3 1 1 1 1 11 3 ...

Let us denote by n the number of the step, A(n) the number in the cell,

I(n) = A(n) − A(n − 1) its increment.

One can notice the following pattern: If on some step n, I(n) ≠ 1 then

A(n) = 3n. (In the table corresponding columns are in bold).

Let A(n) = 3n for some n. On the next step the number increases by

I(n + 1) = gcd(n + 1, 3n) and since n and n + 1 are coprimes then I(n + 1) =
gcd(n + 1, 3). Thus, increment is either I(n + 1) = 1 or I(n + 1) = 3. In the

latter case we have that n + 1 is divisible by 3 so on the next step I(n + 2) = 1
for certain.

This observation leads us to the following

Conjecture. Let A(n) = 3n for some n, and the next increment be I(n +
1) = 1. Consider the nearest step n + k when increment will be different from
1: I(n + k) ≠ 1. Then I(n + k) is a prime number and A(n + k) = 3(n + k).

To prove conjecture we use induction. We already checked the base for

small numbers n. Let A(n) = 3n for some n and n + k be the nearest number

with I(n + k) ≠ 1:

Step # n n + 1 n + 2 . . . n + k − 1 n + k
Number in the cell 3n 3n + 1 3n + 2 . . . 3n + k − 1 ?

For increment I(n + k)we have (using here and below gcd(a, b) = gcd(a, a −
b)):

I(n + k) = gcd(n + k, 3n + k − 1) = gcd(n + k, 3(n + k) − (3n + k − 1)) = gcd(n + k, 2k + 1).

Hence, I(n + k) is divisor of 2k + 1.

Assume that 2k + 1 is not a prime and p is a prime divisor of gcd(n +
k, 2k + 1). Since 2k + 1 is odd then p ≤ (2k + 1)∕3. Therefore p < k. Let us

look at step n + k − p. At this step an increment is
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I(n + k − p) = gcd(n + k − p, 3n + k − p − 1) = gcd(n + k − p, 3(n + k − p) − (3n + k − p − 1))
= gcd(n + k − p, 2k + 1 − 2p).

But since both n + k − p and 2k + 1 − 2p are divisible by p we see that on

step n + k − p increment differs from 1. This contradicts to the assumption

that n + k is the nearest step.

Therefore, 2k + 1 is a prime number and I(n + k) = 2k + 1 and then A(n +
k) = A(n + k − 1) + I(n + k) = (3n + k − 1) + (2k + 1) = 3(n + k).

Our conjecture is proven by induction and the problem solved.

66. (a) Given a row of n coins arbitrarily arranged heads and tails, and a

number between 1 and n inclusive, the assistant can flip exactly one coin so

that the magician can tell which number has been chosen. With a row of 2n
coins and a number m between 1 and 2n, the magician and the assistant place

the numbers 1 to n in order in the first row of a 2 × n array, and the numbers

from n + 1 to 2n in order in the second row. If the row number h and the

column number k of the location of m are determined, then m = (h − 1)n + k.

The magician and the assistant also consider the 2n coins as in a 2 × n array.

Code each coin with heads up as 0 and each coin with tails up as 1. Compute

the sum of the codes of the two coins in each column modulo 2 and regard the

result as a linear array of n coded coins. By the hypothesis, the assistant can

flip the qth coded coin to signal the number k to the magician. This can be

achieved by flipping either of the two coins in the qth column. To signal the

number h to the magician, the assistant will just use the bottom coin of the

qth column, code 0 meaning h = 1 and code 1 meaning h = 2. If the bottom

coin is not correct, flip it. Otherwise, flip the top coin.

(b) For n = 1, the assistant must flip the only coin. However, the chosen

number can only be 1, and the magician does not require any assistance.

Hence the task is possible. For n = 2, let the coins be coded as in (a). The

assistant will just use the second coin, code 0 meaning h = 1 and code 1

meaning h = 2. If the second coin is not correct, flip it. Otherwise, flip the

first coin. Hence the task is also possible. By (a), the task is possible whenever

n is a power of 2. We now show that the converse also holds. Each of the 2n

arrangement of the coins codes a specific number between 1 and n. If n is not a

power of 2, then 2n = qn + r where q and r are the quotient and the remainder

obtained from the Division Algorithm, with r > 0. By the Pigeonhole Princi-

ple, some number is coded by at most q arrangements. Each may be obtained

by the flip of a single coin from exactly n other arrangements. The yields a

total count of qn < 2n
. On the other hand, from each of the 2n

arrangements,

we must be able to obtain one of these q arrangements by the flip of a single

coin. This contradiction shows that the task is impossible unless n is a power

of 2.
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67. Divide the square into unit cells. Enumerate the (checkered) diagonals

parallel to AC, starting from the lower left corner B. The rectangles from the

condition of the problem, such that their lower left corner belongs to the kth

diagonal will be called bricks of the kth sort.

Lemma 1 The number of bricks of each sort does not depend of dissection.

Proof Observe that the number of cells on the kth diagonal occupied by a

brick of an nth sort depends only on n and k and not on the location of the

brick.

There is a single brick of the 1st sort. Suppose the assertion is true for

bricks of the first k − 1 sorts. Then the number of cells occupied by them on

the kth diagonal is independent of dissection. But the number of brick of the

kth sort equals the number of the remaining cells of this diagonal. The lemma

is proven.

Now we return to the problem. The bricks under diagonal AC are just

bricks of several first sorts. Thus their number is independent of dissection.

Reflect the square in its center to get a new dissection with this number of

bricks over AC. Hence in the original dissection, the number of bricks under
and over diagonal AC is the same. This clearly implies the assertion of the

problem.

69. Let S = {a1, a2,… , an}, where each ak, 1 ≤ k ≤ n, is either 𝓁 or r. It

denotes a sequence of jumps where the kth jump is to the left if an = 𝓁 and to

the right if ak = r. Let f (S) be the number of possible ways of carrying out S
from the initial configuration of frogs. We claim that f (𝓁𝓁…𝓁) = f (rr … r).
Note that f (S𝓁) = f (Sr) for any S. Clearly, we have equality up to the last

jump, and the number of possible last jumps depends only on the number of

groups of adjacent frogs at that point. We also have f (S𝓁rS′) = f (Sr𝓁S′) for

any S and S′. Again, we have equality up to the completion of S. Consider

S𝓁rS′. If the two switched jumps are made by different frogs, we can just

switch their order and continues. If they are made by the same frog but not the

leftmost one, we can replace them with jumps r and 𝓁 by the frog immediately

to its left, with at least one space in between. Finally, if both jumps are made

by the leftmost frog, we can replace them with jumps r and 𝓁 by the rightmost

frog. These transformations allow us to conclude that f (S) depends only on

the length of S.

70. The answer is no.
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Abstract This article presents a survey of the Madhava Mathematics

Competition, a recently started Mathematics competition for undergraduate

students in India. The competition was started in the academic year 2009–10

and has received a tremendous response in last eight years. It can be seen

as an extension of the Olympiad competitions to undergraduate classes. We

therefore take a review of Olympiads in India and then discuss the various

aspects of this new competition.
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10.1 Introduction

In this article, we propose to present a recent initiative in India in the field of

Mathematical Competitions. We shall present an account of Madhava Math-

ematics Competition—a mathematics competition for the students of under-

graduate classes. The crux of the presentation lies in the discussion of the

problems used for the competition and responses of the students in terms of

some beautiful solutions to these problems. In the process, we shall also dis-

cuss the overall Indian scenario in the context of mathematics education at

the school and college levels, the decisive role of this competition in enhanc-

ing the mathematical abilities of students, and some statistics, depicting the

trends in the competition. A feedback of the competition from the student fra-

ternity, teachers and senior mathematicians is an integral part of the article.
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In Sect. 10.2, a survey of the impact of Mathematical Olympiad in India

has been taken. The Mathematical Olympiad has provided a necessary impe-

tus and motivation for launching the Madhava Mathematics Competition.

In Sect. 10.3, we shall focus on the evolution of Madhava Competition, its

growth and the nitty-gritties of organising the competition at the national

level. This section also includes a brief Bio-Mathography of the 14th cen-

tury Indian mathematician Madhava. In Sect. 10.4, some sample problems

that appeared in the competition along with their solutions will be discussed.

Some elegant solutions devised by the students while writing the competi-

tion have also been included. We shall see that a comparative analysis of

the understanding of students in variety of topics at the undergraduate level

is extremely illuminating. Section 10.5 is devoted to description of Nurture

Camps—a distinctive feature of the competition. In Sect. 10.6, a feedback of

participants and mathematics teachers involved in the competition as well

as comments of senior mathematician of the country have been included. In

Sect. 10.7, we conclude with an epilogue and the future plans of expansion.

10.2 Mathematical Olympiads—A Precursor to Madhava
Competition

India started participating in the International Mathematical Olympiad (IMO)

in 1989. Following a few years of its being based in Bangalore, the nodal

center of the activity was shifted to the Homi Bhabha Center for Science

Education (HBCSE), Mumbai which is now in-charge of the competitions

at all levels. The selection of the Indian team for IMO takes place in three

stages. A regional level competition, called Regional Mathematical Olympiad

(RMO) is conducted in about twenty five regions and then thirty students

from each region are selected to participate in the Indian National Mathe-

matical Olympiad (INMO). Only those students who are selected in RMO

and those who have received an INMO certificate of merit are eligible to

appear for the INMO provided they are in class XI or below. On the basis of

the INMO, the top 30 students in merit from all over the country are chosen

as INMO awardees. In addition to INMO awardees, the next 45 students who

are in grade XI or lower and have done well in INMO, but have not qualified

as INMO awardee are awarded INMO certificate of merit. These students

are eligible to appear for INMO of the next year directly without qualifying

through RMO, provided they are not in grade XII.

The INMO awardees are invited for a month long training camp in April–

May each year at HBCSE, Mumbai. The INMO awardees of the previous
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years who are eligible for IMO 2016 and, in addition, who have satisfactorily

gone through postal tuition throughout the year, are invited to the training

camp as senior students. The junior students receive INMO certificate and a

prize in the form of books. The senior students receive a prize in the form of

books and cash. On the basis of a number of selection tests during the Camp,

a team of the best six students is selected from the combined pool of junior

and senior batch participants.

We now present sample problems, one from each of the tests—RMO,

INMO and Selection Test.

Problem 10.2.1 RMO Problem1
Find all integers k such that all the roots

of the following polynomial are also integers:

f (x) = x3 − (k − 3)x2 − 11x + (4k − 8)

Solution 1. Suppose that for some value of k, all the roots of f (x) are integers.

We observe that the coefficient of k in the expression of the polynomial is

(−x2 + 4); meaning that for x = 2 and x = −2, the value of the polynomial

does not depend on k.

We get: f (−2) = 18 which is positive; and f (2) = −10 which is negative. So

at least one root lies between −2 and 2.

Case 1: One of the roots is −1. This implies f (−1) = 3k + 5 = 0; so k = −5
3 ,

which is not an integer.

Case 2: One of the roots is 0. This implies f (0) = 4k − 8 = 0; implying k = 2.

In this case, the polynomial is: f (x) = x3 + x2 − 11x = x(x2 + x − 11). But the

quadratic expression inside the bracket does not have integer roots.

Case 3: One of the roots is 1. This implies f (1) = 3k − 15 = 0; implying k =
5. In this case, the polynomial is f (x) = x3 − 2x2 − 11x + 12 = (x − 1)(x2 −
x − 12) = (x − 1)(x − 4)(x + 3). So the roots of the polynomial are 1, 4,−3
which are all integers, as required.

Hence, the only solution is k = 5; giving f (x) = x3 − 2x2 − 11x + 12 with

roots 1, 4 and −3.

Solution 2. Consider the polynomial g(x) = f (x + 2).
If the roots of f (x) are p, q, r, then the roots of g(x) are p − 2, q − 2, r − 2.

Also, we note that the constant term of g(x) is equal to g(0) = f (2) = −18;

and its leading coefficient is still 1.

Hence the product of the roots of g(x) is

(p − 2)(q − 2)(r − 2) = −18 (10.1)

1
The problem is designed by Prashant Sohani, Regional Coordinator, Math

Olympiad and Bronze Medalist in IMO in the year 2008.
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Since p, q, r are all integers, so are (p − 2), (q − 2), (r − 2). For each possi-

ble factorization of (10.1), we will only check if p, q, r satisfy the correct

relationship with the coefficient of x in f (x), or in other words, whether

pq + qr + rp = −11.

Accordingly, we get the following cases:

(p + 2, q + 2, r + 2) pq + qr + rp
(1, 1,−18) 41

(1,−1, 18) −61
(1, 2,−9) 11

(1,−2, 9) −31
(−1, 2,−9) 33

(1, 3,−6) −1
(1,−3, 6) −19
(−1, 3, 6) −11
(2,−3, 3) −5
(−2, 3, 3) −7

We see that only the case of (−1, 3, 6) satisfies the requirement of pq +
qr + rp = −11.

It corresponds to the values of p, q, r as −3, 1, 4, and f (x) = x3 − 2x2 − 11x +
12.

Importantly, there exists a value of k, namely k = 5, that yields this polyno-

mial.

Thus k = 5 is the only solution.

The reader must have observed that the first solution is more elegant for it

makes a crucial observation about the coefficient of k. Once that is done, the

problem becomes considerably easy! On the contrary, the second solution is

somewhat routine.

Problem 10.2.2 INMO Problem Let ABC be a right angled triangle with

∠B = 90◦. Let AD be the bisector of ∠A with D on BC. Let the circumcircle

of triangle ACD intersect AB again in E and let the circumcircle of triangle

ABD intersect AC again in F. Let K be the reflection E in the line BC. Prove

that FK = BC.

The reader is urged to solve the problem. (Hint: Show that ACDE and

AFDB are cyclic quadrilaterals. Alternatively, one may also observe that

K,D,F are collinear and further triangles AKF and ABC are similar.)
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Problem 10.2.3 Shortlisted for IMO2

(1) There are n circles drawn on a piece of paper in such a way that any

two circles intersect in two points and no three circles pass through the

same point. Turbo the snail slides along the circles in the following fash-

ion: Initially he move on one of the circles in clockwise direction. Turbo

always keep sliding along the current circle until he reaches intersection

with another circle. Then he continues his journey along this new circle

and also changes the direction of moving i.e. from clockwise to anti-

clockwise or vice versa.

Suppose that Turbo’s path entirely covers all circles. Prove that n must

be odd.

(2) Let r be a positive integer and a0, a1,… be an infinite sequence of real

numbers. Assume that for all no-negative integers m and s, there exists

a positive integer n in [m + 1,m + r] such that

am + am+1 +⋯ + am+s = an + an+1 +⋯ + an+s.

Prove that the sequence is periodic i.e. there exists some p ≥ 1 such that

an+p = an for all n ≥ 0.

The solutions of the shortlisted problems are not included here and inter-

ested reader may refer to the official website of IMO.

In the last 28 years, the Olympiad competitions have become very pres-

tigious and competitive in India. The impact of Olympiads in the country

has been multifold. The competitions provide a rigorous exposure to stu-

dents with a very high mathematical aptitude and help in generating more

interest in the subject. The difficulty level of problems in the Olympaid con-

tests, as compared to that of problems appearing in their school examina-

tions, is considerably high. As a result, bright students are motivated by this

challenge and end up learning the mathematics with more zeal and enthu-

siasm. On the other hand, a large number of students who appear for RMO

but do not necessarily make it to further levels, still learn more mathematics

than what their school curriculum demands. As a consequence, the general

mathematical know-how at the school level in the country has consistently

increased in the post-Olympiad period. The Olympiad movement has evolved

as one of the most treasured educational instrument in mathematical circles at

school level. Yet another decisive contribution of Olympiad contests has been

the strengthening of mathematical abilities of teachers who were involved in

2
Both the problems are constructed by Dr. Tejaswi, ex-member of Math

Olympiad Cell in India.
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training the Olympiad students. In India, the knowledge of the mathemat-

ics teachers in school is generally restricted to the school curriculum which

essentially deals with basic algebra, geometry and routine arithmetic involv-

ing applications in everyday life. Thus, these teachers are generally not in

position to tackle problems in Number Theory and Combinatorics and also

more advanced Olympiad topics in algebra and geometry. The pool of teach-

ers working for the cause of Olympiad therefore, mainly consists of teachers

teaching in undergraduate colleges.

10.3 Madhava Mathematics Competition:
Concept and Scope

Before we proceed to discuss about Madhava Mathematics Competition in

detail, the reader, we hope, would be delighted to know about the 14th Cen-

tury Indian Mathematician Madhava and his work in nutshell.

10.3.1 Madhava—The Inventor of Calculus

Madhava is regarded as the founder of the most influential mathematical

tradition in India that began in the middle of fourteenth century and contin-

ued for about next 250 years. Madhava and his disciples were from Kerala

(on the south–west coast of India) and their writings are mainly in Sanskrit

and local vernacular language, Malayalam. The Madhava school is a typi-

cal example of Indian ‘Guru-Shishya Parampara’ characterized by flow of

knowledge through a chain of teachers and their disciples, from one gener-

ation to the next. The only known pupil of Madhava was Parameswara, a

very prolific mathematician and an authority in Astronomy. He wrote about

twenty-five texts on astronomy and was known for his contributions in eclipse

observations. The tradition continued with Parameswara’s son Damodara and

his disciples Nilakantha and Jyesthadeva. Nilakantha is known for his work

‘Tantra-sangraha’ and Jyesthadeva for his masterly text ‘Yuktibhasa’. Their

pupil Sankara wrote a commentary based on Yuktibhasa. All these works

mention the contributions of Madhava. The major achievements of Mad-
hava are astonishing. In particular, one can trace back the invention of
Calculus and its applications to trigonometric functions in Madhava’s
work.
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Some of his major accomplishments have been listed below:

(1) Madhava-Leibniz Series For 𝜋

𝜋

4
= 1 − 1

3
+ 1

5
− 1

7
+⋯

The Madhava-Leibnitz series being slow in converging, and hence not

useful in computing 𝜋, an ingenious sequence of correction terms for

its partial sums was introduced, using which the computation could be

effected efficiently.

(2) Arc-tangent Series For 0 ≤ 𝜃 ≤
𝜋

4 ,

𝜃 = tan 𝜃 − tan3 𝜃
3

+ tan5 𝜃
5

−⋯

(3) Madhava’s Numerical Value For 𝜋: A numerical value of 𝜋 as found

by Madhava is 3.14159265359 which is correct to eleven decimal places.

In fact they has a great fascination for determining values of 𝜋 to great

accuracy.

(4) Series expansion for Sine and Cosine

sin 𝜃 = 𝜃 − 𝜃

3

3!
+ 𝜃

5

5!
−⋯

cos 𝜃 = 1 − 𝜃

2

2!
+ 𝜃

4

4!
+⋯

It is extremely illuminating and interesting to understand the recursive meth-

ods employed by the mathematicians of the Kerala School to arrive at these

and other such results, especially in the light of the fact that the work was

carried out in the Pre-Newtonian period. For a comprehensive account on the

mathematics of Kerala School and in particular the contributions of Madhava,

the reader is refereed to Plofker (2009), Diwakaran (2007), Joseph (2009).

We now present a detailed account of the establishment of Madhava Math-

ematics Competition and its emergence as a national level competition at the

undergraduate level.

10.3.2 Mathematics Competitions: A Prologue to Madhava
Competition

In the cultural history of any society, it is observed that several artists, authors,

musicians, athletes, etc. have started their careers with a competition at an
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early age. In the realm of Science, mathematics included, competitions held

at early age help in generating curiosity and interest in the subject and triggers

the mind for pursuing intellectual quest. The competitions allow students to

stretch their capacities and go beyond the regular curriculum. We sincerely

feel that rather than the end result of a competition, the preparation for the

competition has far greater value in developing a permanent interest in the

subject. Competitions, taken in right spirit, teaches one to face competitive

situations in life and inculcates the healthy spirit of accepting defeats with an

open mind as well as enjoying the success in a dignified manner. An ultimate

objective of a mathematics competition is to provide a platform for students,

outside the regular structure of teaching-learning processes that would allow

them to become good at mathematics. Thus a well designed Math Competi-

tion is certainly an effective educational tool and assumes a very high poten-

tial in creating a society with a better perspective for mathematics. Several

mathematicians and educationists have therefore taken a keen interest in orga-

nizing a good math competition at all stages of learning mathematics. There

are literally thousands of math competitions that take place across the globe.

The nature of these competitions display a huge variety in terms of level of

mathematics, objective type or writing solutions of problems, online or paper

based, regional, national or international, prize money involved, supported

by government or not, etc. In this labyrinth of mathematics competitions, we

shall now localize to Indian scenario and set up a context for introducing

Madhava Mathematics Competition for undergraduate students in India.

India stands for pluralism in terms languages, food, dress codes, cultural

ethos, etc. and educational system is not an exception. The country is divided

into 29 states with each state having their own School Boards that governs

school education in the state. There are a few central boards that cater to

schools across the country and implement a uniform curriculum in all states.

Students have a choice to take their school education either in English or in

a regional language as also to chose a state board or a central board. This

multi-parametric educational system poses several challenges in designing

a competition at a national level. Many states in the country have associ-

ation of mathematics teachers or mathematical forums that conduct local

level mathematics competitions. For example, in the state of Maharashtra

in India, Mathex competitions are being conducted across the state for last

50 years. These competitions have gained a very good reputation and many

students have been motivation to study more mathematics through these com-

petitions. These local level competitions are very crucial in preparing the

mind-set of students (and parents) for reaching out to competitive examina-

tions beyond school horizons. Many of these competitions are held at early

stages of schooling. In last 25 years, these local competitions have began to
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emerge as a precursor to Math Olympiad competitions. As mentioned earlier,

Olympiad competitions, at both regional and national levels, have attracted

the attention of school students and their parents in a substantial way. A suc-

cess in Olympiads is considered to be a remarkable achievement in the career

of a student and are justly proud of their accomplishment! The name, fame

and charisma of Olympiads is phenomenal and the obvious reason for this

growing impact is the high quality of intriguing mathematical problems offer-

ing students an opportunity to scratch their brain and bring in their innovation

to arrive at beautiful solutions. This excitement of disentangling the knot (or

knots!) in a problem is the crux of the Olympiad mathematics. One of the

main motives for extending the Olympiad competition from school to under-

grad level is to retain the continuity of experiencing the charm of solving

challenging problems and therefore generate enthusiasm and love for the sub-

ject the among students at a right level, from where they would probably take

up mathematics as their life-time intellectual pursuit.

10.3.3 The Madhava Mathematics Competition:
Operational Aspects

The Madhava Mathematics Competition was started in the academic year

2009–10, 20 years after India first participated in IMO. In India, XIIth grade is

a crucial year for students in the sense that after XIIth grade they have variety

of options to go for professional courses such as Engineering, Architecture,

Medicine, Law, Management etc. These courses are job oriented and gen-

erally students aspire to get admission to one of these professional courses.

Most of the students who shine in Olympiad competitions prefer to join elite

institutes such as Indian Institute of Technology (IIT). As a result, students

entering into undergraduate stream and not getting into professional courses

are generally thought of as academically poor. Of course, in recent years the

trend is encouraging because many Olympiad toppers are opting for career in

pure sciences through the opportunities provided by the national level elite

institutions such as Indian Institute of Science (IISc), Chennai Mathematical

Institute (CMI), etc. All these undergrads pursuing pure sciences, especially

those who are interested in mathematics were in a way deprived of having

math competition like Olympiads. The Madhava Competition has attempted

to remedy the situation in a modest way.
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The commitment, enthusiasm and drive of teachers of Department of

Mathematics, S. P. College, Pune, led to the enterprise of initiating a mathe-

matics competition at the undergraduate level. At this point the reader should

note that S. P. College, Pune is a hundred year old, highly reputed educa-

tional institute in India catering to the needs and aspirations of more than

7000 students. These teachers submitted a proposal for financial assistance

to the National Board for Higher Mathematics (NBHM), a board of math-

ematicians monitoring the funding of several activities across the country.

The NBHM readily agreed to support the activity. Professor S.G. Dani, a

renowned mathematician from TIFR and then Chairman of NBHM took keen

interest in promoting such a competition. In fact, he named the competition

as Madhava Mathematics Competition with a view to spread the name and

work of Madhava.

As a pilot project in the first year, the competition was launched in two

cities Pune and Mumbai, both located in the state of Maharashtra in the west-

ern part of the country. Right in the first year, the competition received very

good response, This prompted the organizers to expand it outside the state

of Maharashtra and turn it into a National level competition. Any expansion

plan certainly demands a lot of active manpower and fortunately, many col-

lege teachers came forward and coordinated the event in their regions. The

following table indicates the growth of the competition in diverse parts of the

country:

Year 2009 - 2010 2010 - 2011 2011 - 2012 2012 - 2013 2013-2014 2014-2015 13 th Dec. 2015

Date of Exam. 3/1/2010 9/1/2011 8/1/2012 6/1/2013 5/1/2014 4/1/2015 13/12/2015

Total No. of students
appeared for exam. 820 2644 3880 5151 7672 8327 9041

No. of Regions 2 6 12 17 18 17 19
Pune Pune Pune Nanded Nanded Ahmedabad Ahmedabad

Mumbai Mumbai Mumbai Hyderabad Hyderabad Ahmednagar Ahmednagar
Ahmednagar Ahmednagar Kolkata Kolkata Allahabad Allahabad

Nasik Nasik Allahabad Allahabad Almora Almora
Ahmedabad Ahmedabad Ahmedabad Ahmedabad Bhuvaneswar Bhuvaneswar

Baroda Baroda
Ahmednagar Ahmednagar Darjiling

(North Bengal)
Darjiling (North

Bengal)
Nanded Mumbai Mumbai Goa Goa
Kolkata Baroda Baroda Hyderabad Hyderabad

Hyderabad Nashik Nashik Indore Indore

Ernakulum Jharkhand Jharkhand Jarkhand
(Chattisgad)

Jarkhand
(Chattisgad)

Allahabad Pune Pune Kerla Kerla
Goa Almora Almora Kolkata Kolkata

Kerala Kerala Mumbai Mumbai
Indore Indore Nanded Nanded
Goa Goa Nashik Nashik

Varanasi Varanasi Pune Pune
Bhuvaneswar Bhuvaneswar Varanasi Varanasi

Darjiling - Delhi
Banglore

Madhava Competition - No of appeared students

Regions

Though the competition is yet to reach all states of the country, the over-

whelming response from students and teachers is an encouraging indicator

that in the near future it will reach all parts of the country.
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We now turn our attention to three major aspects of the competition viz.

Rules for the Competition, Curriculum for the competition and Sample prob-

lems of the competition.

10.3.4 Rules for the Competition

The following set of rules have been laid down for the competition:

(1) A three hour competition with maximum score 100

(2) Questions of three types: Objective (Multiple Choice), Short Answer

Problems (Less Difficult) and Long Answer Problems (More Difficult)

(3) Meant for second year undergrad students, but interested students of

lower standards may also appear

(4) First, Second and Third Prizes and several Cheer Prizes

(5) All participants would get certificates

(6) Prize winners to be invited for a Nurture Camp

(7) Spot entries are allowed

10.3.5 Topics for the Competition

As mentioned earlier, in India, there is no common curriculum for all under-

grad students. Every University has the autonomy to frame their own
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curriculum. Therefore it is difficult to set up a common set of topics for the

competition. However, we decided include the following topics, because they

typically characterize undergraduate mathematics:

(1) Calculus of one variable: Continuity and differentiability of a function of

one real variable, integration (as anti derivative), elementary differential

equations

(2) Matrices: Rank and determinant of a matrix, system of linear equations

(3) Coordinate geometry of two and three dimensions

(4) Elementary number theory: divisibility, modular arithmetic, Fermat’s lit-

tle theorem

(5) Elementary Combinatorics: Permutations and combinations

(6) Algebra: Polynomials-relation between roots and coefficients, sets, func-

tions etc.

(7) General logical puzzles

Note that the topics for the competition include Calculus of one variable.

In India, Calculus enters the curriculum in XIth grade. The secondary school

education ends in Xth grade and the XIth and XIIth gardes constitute Higher

Secondary Education. After XIIth grade, as mentioned earlier, students have

several choices for pursuing their career. Students willing to go for career in

pure sciences have option of entering into a 3 year Bachelor of Science (B.Sc.)

course. The students of these classes are termed as Undergraduate Students.

The Madhava competition is typically meant for these undergrads. Thus the

undergrads have already learned Calculus for a couple of years and they also

undergo a more regiourous course on Calculus of one variable in the first

year of their undergraduation. In fact, the emphasis of Madhava Competition

is more on typical undergrad topics such as Calculus, Matrices, etc.

10.4 Sample Problems and Analysis of Results

10.4.1 Sample Problems

We now present the sample problems, a few of each types for understanding

the level of the questions that have appeared in the competition. We place

on record that at this early stage of the competition, we have used various

sources (generally not available to undergrad students in India) like Larson

(1984), Zeitz (1999), for setting up the questions in the competition. Thus the

problems posed in the competition are not necessarily new ones and here we

have tried to cite the references of the original sources wherever possible. But

the absence of a reference does not mean the originality on the part of author.
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Problem 10.4.1 Objective Type

(1) The value of lim
n→∞

1 ⋅ 1! + 2 ⋅ 2! +⋯ + n ⋅ n!
(n + 1)!

(a) 1 (b) 2 (c)
1
2

(d) does not exist. [2 Marks]

(2) Let A =
⎛
⎜
⎜
⎜
⎝

1 2 … n
n + 1 n + 2 … 2n
⋮ ⋱ ⋮

(n − 1)n + 1 (n − 1)n + 2 … n2

⎞
⎟
⎟
⎟
⎠

. Select any entry and call it

x1. Delete row and column containing x1 to get an (n − 1) × (n − 1)
matrix. Then select any entry from the remaining entries and call it x2.

Delete row and column containing x2 to get (n − 2) × (n − 2)matrix. Per-

form n such steps. Then x1 + x2 +⋯ + xn is

(A) n (B)
n(n + 1)

2
(C)

n(n2 + 1)
2

(D) None of these. [2 Marks]

Problem 10.4.2 Short Answer Problem
(1) Let H be a finite set of distinct positive integers none of which has a

prime factor greater than 3. Show that the sum of the reciprocals of the

elements of H is smaller than 3. Find two different such sets with sum of

the reciprocals equal to 2.5. [6 Marks]

(2) Let f ∶ [0, 1] → [0, 1] be a function defined as follows:

f (1) = 1 and if a = 0.a1a2a3⋯ is the decimal representation of a (which

does not end with a chain of 9’s), then f (a) = 0.0a10a20a4⋯. Discuss

the continuity of f at 0.392. [6 Marks]

Problem 10.4.3 Long Answer Problem
(1) Let p(x) be a polynomial with positive integer coefficients. You can ask

the question: What is p(n) for any positive integer n? What is the min-

imum number of questions to be asked to determine p(x) completely?

Justify. [13 Marks]

(2) Give an example of a function which is continuous at exactly two points

and differentiable at exactly one of them. Justify your answer. [13]

(3) In an m × n matrix over N the only operations allowed are multiplying a

row by 2 or subtract 1 from every member of a column. Can you reach a

zero matrix in finitely many steps? Justify your answer. [12]

Readers are encouraged to tackle these problems and not to refer to the

Sect. 10.4.3 where we discuss the solutions of the problems. We shall not

discuss the solutions of the objective type problems here. For some of the

problems, we shall also get a chance to see a solution given by a students

which is different from the official solution.
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We shall now take a look at the overall performance of the students in the

competition.

10.4.2 Analysis of the Results

The following table indicates the performance of students in last three years.

Students’ performance

Year Total no. of students Marks above 30

December 2015 9041 37

January 2015 8327 61

January 2014 7672 59

The performance chart clearly reveals that the competition is very chal-

lenging for most of the students. There are several reasons for the low scores

of students in the competition. A few main points causing the undesirable

performances have been listed below:

(1) Students of undergraduate classes in India are generally not exposed to a

competitive problem solving situation either in classrooms or in exami-

nations.

(2) The emphasis of the teaching-Learning processes at the undergrad level

is unfortunately not inclined towards problem solving.

(3) Not more than 5% of the students participating in Madhava competition

have gone through Olympiad competitions. As mentioned earlier, most

of the Olympiad students enter into professional courses and thus move

outside the net of this competition.

(4) The University examinations are memory based, predictable and not ori-

ented to test the problem solving capacities. For example, most of the

universities ask to state and prove Lagrange’s mean Value Theorem and

many students end up solving it correctly. However, in Madhava compe-

tition we observed that not even 10% of the students are able to solve a

problem based on mean value theorem.

(5) Students have fear for topics in Calculus, mainly due to 𝜖 − 𝛿 definitions.

In the year 2011, we took a review of the performance of the students. It

was revealed that even the better students have not done so well in Calculus

problems. The following diagram clearly indicates this fact.
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In fact, these students from higher academic bracket are typically past

Olympiad students and they tend to capitalize on their Olympiad mathemat-

ics and solve problems on Number Theory and Combinatorics. With a view

to encourage students to solve Calculus problems, we then decided to dimin-

ish the level of Calculus problems. The performance on Calculus problems

then got enhanced as can be seen from the table given below indicating the

topic-wise distribution of top 25 students.

Year Algebraic problems Puzzles Calculus

December 2015 16 15 10

January 2015 18 0 08

The number of prizes offered every year varies according to the frequency

of marks. The number of Cheer Prizes vary accordingly. The following table

gives the information about the number of prizes awarded every year, the

highest score in the competition and the cut-off for winning a prize.

Year No. of prize winners Highest score Cut-off for a prize

2010 16 69 25

2011 19 64 43

2012 25 74 40

2013 32 80 38

2014 10 74 47

January 2015 14 85 44

December 2015 8 92 47
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The overall topper in all these years has scored 92 marks. We wish to men-

tion that the student scoring 92 marks Mr. Pranav Nuti, has a strong Olympiad

background and in fact has won a Bronze Medal in the IMO, 2013.

We now discuss the solutions of the problems stated earlier. We shall

present official solution as well as elegant solutions given by students wher-

ever possible.

10.4.3 Solutions

(1) Let H be a finite set of distinct positive integers none of which has a

prime factor greater than 3. Show that the sum of the reciprocals of the

elements of H is smaller than 3. Find two different such sets with sum of

the reciprocals equal to 2.5.

Solution: The given condition implies that every n ∈ H, n is of the form

n = 2𝛼3𝛽 , 𝛼, 𝛽 ≥ 0. Since H is finite, ∃k ∈ ℕ such that 𝛼 ≤ k, 𝛽 ≤ k for

each n ∈ H. This implies [6 Marks]

∑

n∈H

1
n
≤ 1 +

k∑

i=1

1
2i

+
k∑

j=1

1
3j

+
k∑

i=1

k∑

j=1

1
2i3j

= 1 +
k∑

i=1

1
2i

+
k∑

j=1

1
3j

+

( k∑

i=1

1
2i

)( k∑

j=1

1
3j

)

=
(
1 + 1

2
+⋯ + 1

2k
)(

1 + 1
3
+⋯ + 1

3k
)

= (
1 − 1

2k+1

1 − 1∕2
)(
1 − 1

3k+1

1 − 1∕3
) < ( 1

1∕2
)( 1
2∕3

) = 2(3
2
) = 3.

Let H = {1, 2, 3, 4, 6, 8, 12, 24}. Then

∑

n∈H

1
n
= 2.5.

Let H = {1, 2, 3, 4, 6, 8, 12, 36, 72}. Then

∑

n∈H

1
n
= 2.5.

(2) Let p(x) be a polynomial with positive integer coefficients. You can ask

the question: What is p(n) for any positive integer n? What is the min-

imum number of questions to be asked to determine p(x) completely?

Justify. [13]

Solution: Let p(x) be a polynomial with positive integer coefficients say,

p(x) = a0 + a1x + a2x2 +⋯ + akxk. We can ask the question: what is

p(1)?
Let p(1) = N.
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Then N = a0 + a1 + a2 +⋯ + ak > ai, ∀i.
Then p(N) = a0 + a1N + a2N2 +⋯ + akNk

.

Now express p(N) to base N, then ith digit gives ai, ∀i which determines

p(x).
Alternatively, one may ask questions (i) what is value of p(10)? and (ii)

what is value of p(10n)?, where n is the number of digits of p(10). These

two questions also determine the polynomial completely. The reader can

check that the coefficients of p(x) can be determined from the answers to

these questions. Also, it is easy to prove that one question is not enough.

(3) Give an example of a function which is continuous at exactly two points

and differentiable at exactly one of them. Justify your answer. [13]

Solution:

Define the function f ∶ ℝ → ℝ thus:

f (x) =

{
x2 if x is rational

x3 if x is irrational

We show that f is continuous only at 0 and 1, and differentiable only at 0.

For this, consider a real number a. Then as x → a through rational values,

f (x) = x2 → a2, and as x → a through irrational values, f (x) = x3 → a3.

So the limit limx→a f (x) will exist if and only if the above two limits are

equal i.e. if and only if a2 = a3 i.e. a2(a − 1) = 0 i.e. a = 0 or a = 1.

Thus f is continuous at 0 since lim f (x) = lim x2 = 0 = f (0). Similarly, f
is continuous at 1. But when a ≠ 0, 1, limx→a f (x) does not exist; so f is

discontinuous at a.

Next, let g(x) = [f (x) − f (a)]∕(x − a). Let a be rational. As x → a through

irrational values, lim g(x) = lim{[x3 − a2]∕(x − a)} is not finite if lim
[x3 − a2] ≠ 0 i.e. if a3 ≠ a2 i.e. if a ∉ {0, 1}. Hence f ′(a) does not exist

(finitely) if a ∉ {0, 1}. Let a = 0. Then limx→0 g(x) = limx→0[f (x)∕x] =
0. So f ′(0) exists and is 0.

But as x → 1 through rational values, lim g(x) = x2 − 1
x − 1

= 2, while as

x → 1 through irrational values, lim g(x) = lim x3 − 1
x − 1

= 3. Hence f ′(1)
does not exist.

Let a be irrational. As x → a through rational values,

lim g(x) = lim{[x2 − a3]∕(x − a)}
is not finite if lim[x2 − a3] ≠ 0 i.e. if a2 ≠ a3 i.e. if a ∉ {0, 1}. Hence

f ′(a) does not exist.
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There are several equivalent ways of defining such a function. For exam-

ple the following function would also serve the purpose:

f (x) =

{
x2(x − 1) if x is rational

0 if x is irrational

(4) In an m × n matrix over N the only operations allowed are multiplying a

row by 2 or subtract 1 from every member of a column. Can you reach a

zero matrix in finitely many steps? Justify your answer. [12]

Solution: Yes, one method is as follows: Let A = [aij] be the matrix.

Let m be the minimum element in the first column C1. In fact, let m
occur s times i.e. let m = ai11 = ⋯ = ais1. We may assume that m = 1.

For if m ≥ 2, subtract 1 from each element of C1 m − 1 times so that the

minimum element in C1 is 1.

Multiply each of the s rows i1, i2,… , is of A by 2. This forces the minimum

element in C1 to be 2. Subtract 1 from each element of C1. The effect of these

steps on C1 is this: the s elements ai11, ai21,… , ais1 of C1 are still equal to 1,

but the remaining elements of C1 have all become smaller though they are

all still ≥1. Hence in a finite number of steps all elements of C1 will become

1. Then subtracting 1 from each element of C1 makes C1 a column of zeros.

Next make the second column C2 a column of zeros as in the above. Note

that the operations on C2 have no effect on C1 and C1 remains a column of
zeros. Hence in a finite number of steps A becomes the zero matrix.

10.5 Nurture Camp

The organisation of a nurture camp for prize winners of the competition is

a distinctive feature of the competition. The duration of nurture camp varies

from one week to ten days. The purpose of having a nurture camp is to pro-

vide insights to talented undergrads to advanced mathematics in the presence

of distinguished mathematicians of the country. The camp also provides a

unique opportunity to students to interact with their peers. The emphasis of

the camp is on discussions and problem solving. The lectures in the camp are

highly interactive and students are prompted to ask relevant questions. Some

of the topics discussed in the camp are

(1) Killing-Hopf Theorem on the characterization of locally Euclidean sur-

faces

(2) Poncelet’s Theorem in Geometry
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Fig. 10.1 Nurture Camp 2016

(3) Rational Points on Quadratic Forms

(4) Curvature of Curves and Surfaces

(5) Parametrization of Conics and Quadrics

Also information about pursuing a serious career in mathematics is given

to students and they are told about various options in India and abroad for

graduation in mathematics. Eminent mathematicians, Professor C.S. Rajan

and Professor Raja Shridharan have been regularly participating in the nur-

ture camp as resource persons. In the next section a feedback from Professor

Rajan, especially about nurture camps has been recorded (Fig. 10.1).

10.6 Feedback

Any new initiative, especially a competition, needs to have a continuous feed-

back mechanism. The feedback helps in improving the academic as well as

organizational matters associated with the event. Here, we record a sample

feedback of Madhava Competition from both students and teachers involved

in the competition.

We shall also include comments of two eminent mathematicians, Professor

S.G. Dani and Professor C.S. Rajan who have been closely monitoring all the

activities of Madhava Competition.
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10.6.1 Feedback of Students

Here we record the feedback of two talented students who participated in the

competition and won a prize.

Aditya Garg from Mumbai says:

The exam is a really good platform for talented, motivated and pas-

sionate students to showcase their talent in Mathematics. The problems

were generally on the tougher side but really very interesting and well-

designed and I thoroughly enjoyed solving them. I think this is one of

the top-notch Mathematics competitions in the country and I really feel

there should be more such competitions to motivate and find out tal-

ented students in Mathematics. And the nurture camp was even better. I

got to interact with so many eminent professors, a number theorist and

so many brilliant students. We had really good Mathematics sessions of

problem solving and also gave presentations. We traded our knowledge

of Mathematics with each other. I love Mathematics very much. And

the camp was really very good. I still remember all the interactions and

discussions we used to have with the teachers and the students in the

camp.

Adway Gupta from Mumbai quotes:

As I spoke during the day of the felicitation, I believe that Madhava

Mathematics Competition is a genuinely good medium for both the pro-

fessional and amateur mathematician. I, as a student graduating with

Physics, still found Madhava to be a very engaging paper. To be hon-

est, the difficulty of MMC is definitely higher than your usual mathe-

matics examinations. however, I believe that it is by design and that is

exactly what makes it an extremely fun exam to sit for. The questions

are designed in a way that knowing hardcore mathematical formulations

isn’t a prerequisite for doing well, a general mathematical intuition is

enough. I think for the same reason I enjoyed taking the exam probably

more than I did doing well in it.

10.6.2 Feedback from Teachers

A competition of this magnitude cannot be run without the support and help

from colleagues across the country. In all the twenty one regions where the

competition is being conducted, a dedicated teacher shoulders the responsi-
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bility as a Regional Coordinator. The comments of two regional coordinators

have been included here.

My student and colleague Geetanjali Phatak has been closely associated

with the competition right from its inception. Her reaction about the compe-

tition has been quoted below:

My relation with Madhava Mathematics Competition (MMC) has been

multidimensional. I have contributed to MMC as a member of paper set-

ting committee, coordinator of Pune Region and as a Tutor at Madhava

nurture camp. As a mathematics teacher, I sincerely feel that students

deserve an opportunity to face challenging problems in mathematics

and MMC certainly fulfills this need. The group of students appearing

for MMC is heterogeneous. However, majority of the students appear-

ing for MMC are studying in colleges and as such do not have much of

exposure. These students find the level of difficulty of problems posed

at MMC as very high when compared to their university examinations.

With the emergence of MMC, our undergraduate students have now

started referring additional books other than the prescribed text books.

We have also observed progress in terms of mutual discussions between

the students as well as with the teachers. MMC helps students to gener-

ate interest in Mathematics. From the funds generated through registra-

tion fees, we can arrange various activities like guest lectures, summer

workshops, etc. Nurture camp provides students an opportunity to dis-

cuss Mathematics with students from various parts of the country and

experts from different institutes. I am sure that MMC will increase inter-

est of students in Mathematics and I wish very best for the success of

MMC.

Needless to mention that Madhava competition takes place in Kerala, the

land where Madhava himself lived. The regional coordinator of Kerala region

Dr. Aparna offered her comments:

Though Madhava Mathematics Competition began in 2010, center in

Kerala region was established in the year 2012. In 2012, 869 students

wrote MMC in 10 different centers in Kerala. Through years MMC

became popular not only among Mathematics students in Kerala, but

students from our neighboring state Tamil Nadu is also writing exam

at various sub-centers in Kerala. Last year the number of students who

applied for the examination at various sub-centers in Kerala reached

nearly 2000 and due to the increasing demand from the Mathematics

community, we have increased the number of sub-centers to 14. For all

registered students in Kerala region, a free training programme to enrich
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their Mathematical abilities is organized from last year onwards. Also

we are giving motivational prizes to the state level winners.

We shall now present the views of two reputed mathematicians of the coun-

try who took keen interest in Madhava Competition and helped in enhancing

the quality of the competition. It is important to record their opinion about

this new initiative.

10.6.3 Feedback from Mathematicians

Professor S.G. Dani, a renowned mathematician, retired from TIFR, Mumbai

and currently working at IIT (Powai) is well known for his contributions in

Ergodic Theory. He is also a scholarly figure in the field of History of Math-

ematics. Professor Dani was the Chairman of NBHM when the proposal for

the Madhava Competition was sent to NBHM for the financial assistance.

He took keen interest in the proposal and recognized the potential in it. In

all these years, he has been a constant source of encouragement and support.

The author immensely values the comments offered by him. Professor Dani’s

thoughts are given below:

Competitions on a wider scale than in a limited learning group like in

a school or college facilitate in generating interest in the subject and

invigorate the studies as a whole. This applies especially to mathemat-

ics and has been fruitfully applied in various contexts and in various

ways around the world. In India mathematical competitions at school

level have flourished in the form of Olympiads, both in the main chan-

nel connected with the International Mathematical Olympiad and also

outside it. A need was felt to introduce a similar activity at the under-

graduate level, in colleges, in order to vitalize the interest in mathe-

matics, especially among students with mathematical aptitude. A major

step in this direction occurred when the S. P. College of Pune presented

a proposal along the, spearheaded by Prof. Sholapurkar, to the National

Board for Higher Mathematics for financial support. The Board recog-

nized the immense potential in the proposal and after some tweaking

of the original scheme, and gradual expansion the Madhava Mathemat-

ical Competition took shape. There has been a rapid expansion of the

activity, both in numbers and the geographical spread around the coun-

try, within the short span of its existence. One would hope that it would

become a defining feature of undergraduate studies in mathematics, and

also expand to other countries.
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Professor C.S. Rajan is a well known mathematician from TIFR, Mumbai.

He works in Algebraic Number Theory. Prof. Rajan showed interest in the

Competition right from the beginning. Especially, he liked the idea of having

nurture camps for students. He participated in the nurture camps and gave

deep insights to students. The points emphasized by Prof. Rajan have been

recorded here.

(1) It helps in recognizing mathematical talent from the vast pool of under-

graduate students in India.

(2) The nurture camp lets the selected students come into contact with their

peers from across colleges and universities in India. Such contacts enable

them to learn mathematics better; to encourage them and to maintain

their interest in mathematics. Also it has the possibility of setting up long

term (mathematical) friendships, which can be useful in future for col-

laborative work.

(3) The Indian undergraduate teaching is done mainly in colleges, many of

which lack resources in terms of personnel, access to books and modern

material.

(4) The nurture camp gives an opportunity for the students to come in contact

with mathematics faculty drawn in from some of the best places in the

country.

(5) The structure of the nurture program has been designed so that it can

illustrate the use of the undergraduate mathematics they are learning in

their curricula to interesting mathematical problems accessible with the

material they have learnt.

(6) Thus the camps give exposure for the students to some advanced mathe-

matics and material that are not readily accessible; to expose them to the

way mathematics is done by working mathematicians.

(7) It also helps in molding the tastes and interests of the students, naturally

dictated by the faculty involved in the nurture camps. This is an extremely

important but subtle aspect of the nurturing process.

(8) For the faculty, it allows them to come into contact with promising under-

graduate students from across the country. This is quite satisfying for a

faculty to be able to reach across to a wider cross section of students than

he/she normally faces in their respective places.

10.7 Epilogue and Future Plans

The Madhava competition is a relatively new initiative in the area of Mathe-

matics Competitions. Looking at the size of the country and heterogeneity in

terms of language, academic background, geographical diversity, etc. it will
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take another few years to reach out to all parts of the country. Opening a cen-

ter in the country mainly involves the appointment of a devoted mathematics

teacher who would be willing to coordinate the event in the respective region.

So far, the teachers have showed tremendous interest and enthusiasm in the

activity and have extended their wholehearted support to the activity.

The competition has already reached major cities in India like Delhi, Mum-

bai, Kolkata, Ahmedabad, Hyderbad, Pune, Cochin, etc. This year the com-

petition has reached to North-Eastern part of the country. Next year, we shall

add a few more centers such as Tamilnadu, located in the southern part.

The setting of question paper for the competition is the most crucial aspect

of the competition. We have tried our best to maintain a very high standard

in setting up of questions. Though, so far we are borrowing questions from

sources (and try to modify them wherever possible) that are not available

to students, we would like to improve the situation by designing totally new

questions.

The result analysis reveals that we need to improve the problem solving

abilities of the students to a great extent. We plan to bring out a consolidated

report on the competition and bring it to the notice of the government and

university authorities. We hope that the curriculli of the universities would

be designed so that the conceptual understanding is strengthened and as a

result, students would be in position to tackle tough mathematical problems.

The nurture camp has been very useful for the students. We plan to extend

the duration of the camp for better results. We shall also invite more students

in the camp in coming years and propose to conduct more such camps in

different parts of the country.

All in all, we have received a very positive feedback from students, teach-

ers, mathematicians and math lovers in the country. We are sure that the activ-

ity will further flourish in the days to come and in turn, benefit the students

community in the country. Organising such a competition has been a very

rewarding experience and we sincerely hope that the activity would help in

enhancing the mathematical aptitude of students of undergraduate level. On a

larger sphere, the competition would certainly contribute, in its modest way,

in generating a mathematically and logically strong human resource.
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Chapter 11
From the Lifetime Experience
of a Seasoned Math Educator—Thoughts,
Hopes, Views and Impressions

Romualdas Kašuba

Abstract This paper traces the author’s evolution as a problem poser,
especially for younger students, from crisp, abbreviated sentences to long,
embellished artistry and, in the telling, takes the reader on a journey through
a mathematical fantasy land.

Keywords Number imagination ⋅ Reformulation of problems ⋅ Small
data analysis ⋅ Fantazy in mathematics

The author of any paper showcasing remarkable mathematical content ought
to be exact; consequently, the materials proposed ought to be well-structured
and easily accessible. This is how things should be arranged and this author
will try to achieve that. Still, on the other hand, when speaking about such a
vivid matter as problem solving, it is almost impossible to avoid some
influence of a subjective or humanist component. That is, according to the
author’s personal view, not always bad. Sometimes it may even add addi-
tional charm and be quite attractive for students and readers.

If you succeed in understanding this after a while, then the door to the
world of math problems will almost surely open wide for you

Let’s start with the so-called classroom problem. In a classroom, one or
more pupils always tell the truth. The other pupils sometimes do, and other
times do not. The pupils were asked how many of them always tell the truth.
The answers were: 5, 6, 2, 3, 4, 6, 3, 6, 3, 4, 6, 5, 4, 3 and 6.
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So, in reality, how many pupils do always tell the truth?

ðAÞ 2 ðBÞ 3 ðCÞ 4 ðDÞ 5 ðEÞ 6

This problem is taken from the Dutch Mathematical Olympiad AD (2011).
It would be difficult to overestimate the usefulness of a problem of this kind.

What formulation of a problem might be regarded as nice or otherwise
attractive?

First of all, problems must be short and, at the same time, not exactly
100-percent known. All non-standard problems that might be formulated in
a single sentence are nice in that way. For instance, such is Problem 1, taken
from the Cayley Paper Olympiad (UK 2013).

What is the smallest non-zero multiple of 2, 4, 7 and 8, which is a square?
Another example of that type might be the Problem B1, taken from the

Dutch Mathematical Olympiad (2013).
What is the smallest positive integer, consisting of the digits 2, 4 and 8,

such that each digit occurs at least twice and the number is not divisible by 4?
Anyone who reads the text of that problem more or less carefully might

notice that all the numbers mentioned in the text are even, but this still does
not guarantee divisibility by the second smallest even number, namely—4.

The reader should not think that problems formulated in a few words are
automatically easy to solve. Below is an example.

Find an integer that is divisible by 10 and such that the sum of its digits
decreases by 10% when the number itself increases by 10%.

Needless to say, the beauty or the attractiveness of the problem stems
from the fact that all the numbers explicitly mentioned in the text of the
problem clearly coincide.

Sometimes the text of a problem is expressed in one sentence, and in
another one, which is usually much shorter, the task, or what we expect from
the problem, is defined. We might say that such problems are formulated in
“one and a half” sentences. Some such problems might be rather challenging
or, at least, demand careful counting. An example of this might be a problem
formulated while looking at problem B4, taken from the aforementioned
Dutch Mathematical Olympiad:

We write down the numbers from 1 to 30,000 one after the other to form
a long string of digits:

1 2 3 4 5 6 7 8 9 10 11 12 . . . 30000.

How many times does 2016 occur in this sequence?
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This is a shortly formulated, yet attractive problem, since the task is
non-trivial, or unexpected. It would be easy to add an embellishment to such
a problem. Here are two examples of that—the first of which the author has
recently used as a problem proposed for the Lithuanian competition for
grades 7 and 8 AD2015 (based on Problem 320, taken from one of the
marvelous Ukrainian problem books (2013/14), edited by the famous
composer, B.V. Rublyov (2015)).

A natural number is said to be round in the Thai way if it is greater than 10
and is divisible by the product of its digits. What is the maximum number of
consecutive natural numbers such that each of them is round in the Thai way?

It is absolutely clear what kind of embellishment is used; it is enough to
mention that the International Mathematical Olympiad of the corresponding
year happened to take place in Thailand. The same might be equally well
seen in the following problem from the same contest, proposed as the last
problem, Problem 6 (based on the Problem C2, taken from the Dutch
Mathematical Olympiad (2014)).

Problem 6 The natural integer N is said to be extraordinarily smart, or, in
short, a Thai pearl, if it is possible to find another integer k having at least
two digits, which are all the same (like, say, 999, or 222222), and such that
the product N ⋅ k also consists of equal digits. For instance, the natural
number 3 is clearly a Thai pearl, because 3 ⋅ 222 = 666. (A) Show us a
10-digit number which appears to you to be a Thai pearl and prove that this
is indeed the case. (B) Prove that the number 11 is not a Thai pearl.
(C) Prove or disprove the same question concerning the number 143 and
clarify your answer.

Concerning the length of an interesting formulation

Not all problems which we regard as formulated in a challenging way are
that short. Some of them are expressed in much longer texts. First, we will
present such problems; again, an attempt to add some Thai flavor is
undertaken. The reader may judge how successful that attempt is. After that
presentation the author will explain what kind of psychological advantages
this kind of formulation might bring to the solver.

You the reader surely won’t believe or may otherwise express your
doubts, but for the author, despite that, one thing is completely clear and will
not be argued about. That summer in Thailand we saw an elephant that was
able, in spite of the large the number of spectators, always successfully to
mark some fields on a 6 × 6 table in such a way that in any row there were
always exactly three marked fields and, in any column, always either one or
four. We would like to repeat that we understand that for some this would be
too difficult to believe; if we hadn’t seen it, we also wouldn’t believe it.
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But we have seen it, and we really enjoyed it, frankly speaking, many times.
There are two things that make this situation so challenging: firstly, it is
amazing that this might be realized, and secondly, that this might be
achieved, and repeatedly, by an animal so modest and peaceful looking.

We should, and willingly do, repeat what is required: some fields of the
square table 6 × 6 are to be marked in such a way, that in any row there are
always exactly three marked fields and in any column—always either one or
four.

If you come to the conclusion that this is possible, then we will expect
you to present us the picture of the table with the fields marked so that we
could, if there is some need for it, check your table.

We would like to explain why such a formulation might not be very
short. There may be extenuating circumstances that make its length right and
acceptable.

When proposing a challenging problem, we create quite difficult cir-
cumstances for the solver. He may be stressed. He may be afraid that he will
not be able to deal with the problem properly. He may be hesitant to attempt
it. So, he must become somewhat interested. He must decide that this is a
problem worth mastering and that the process in itself may be beneficial for
him. In short, he must believe that the proposed problem is worth the effort.

How might a possible future solver be challenged, or otherwise
engaged?

Not being in the easiest of situations, we may need some help. Frankly
speaking, when we are in any non-standard situation, any help is precious
and it makes sense to take it. Help may come in the form of nice words,
characters, structure and many other things and circumstances that we will
try to mention later.

Let us review some examples of the problems where some elements, which
we often encounter in the telling or retelling of stories, are used. All of them
are taken from the recent Lithuanian Olympiad for younger grades. Below are
several examples showing how we have tried to achieve attractive wording.
First let us see the wording of a rather easy problem (Grade 5 and 6).

Simple counting

In order to enumerate the most admirable elephants in Thailand, all the
integers which are greater than 111 and smaller than 222 were used. All that
were connected with that marvelous activity were deeply astonished when it
became known that those elephants, and only those, from the enumeration
tagged with integers with two repeating digits, could freely fly. For instance,
elephants numbered with 119, 181 and 211 could fly freely. What is the
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number of freely flying elephants amongst all these most admirable ele-
phants in Thailand?

ðAÞ 30 ðBÞ 29 ðCÞ 28 ðDÞ 27 ðEÞ 26
Dividing into groups

There are 36 elephants and each of them holds a balloon on which exactly
one of the numbers from 1 to 36 is painted. Unrest was anticipated in such a
large group of otherwise so peacefully acting animals, so the need to divide
them somehow effectively into groups was commonly recognized. For the
division of the elephants to be well thought out and effective—otherwise no
one could guarantee their behavior, since it is easy to imagine what wilds
elephants could do when enraged—it was decided to divide them into
groups based on the following two rules:

(a) The sum of any two numbers in any of these groups must be divisible
by 3;

(b) There must be at least two elephants in any group.

Let us answer the following technical, but also philosophical, question:
What is the smallest number of groups the elephants will form, if we

divide them according to the rules mentioned above?

A simple, but obviously true, remark

The author has written or adapted such problems for approximately 20 years
and enjoyed many compliments and remarks when speaking about both the
advantages and shortcomings of such problem posing. There have been
some remarks that should be regarded as completely correct. One of them is
the following: the telling of the story might even be the best imaginable, but
in the end, if the problem only has that going for it, it would be wise to
rewrite the task presented in the text in a shorter fashion.

How did all that process of posing and embellishment start?

The author feels it is now his duty, as someone who often poses and
embellishes problems, to explain how he happened to start using such a
form of presentation. In the beginning, the author was a simple University
teacher with no real connections to any math contest. That involvement
started to grow after the author had successfully completed his Ph.D. studies
in Greifswald (Germany) and, as the Doctor rerum naturalium Universitatis
Greifswaldensis with estimation magna cum laude, returned to his
home alma mater in Vilnius, the capital of Lithuania, this new evolution,
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which was participation in the jury of the Lithuanian MO, took up only a
few days each year.

After several years, the author had become even more involved in various
Mathematical Olympiads and other contests by undertaking organizing
duties in the Lithuanian team-contest. That essential step was connected to
the fact that in 1995 the author was appointed leader of the Lithuanian team
in the Baltic Way team contest. That contest was inspired by the Lithuanian
team contest and, after Lithuania regained independence, had quickly
become the competition of all the countries surrounding the Baltic Sea. The
internal Lithuanian team contest remained, however, and in 1999, by the
initiative of the author, evolved to encompass a competition for younger
grades as well. Ever since then the author has been selecting problems for
that competition.

About the influence of the long term selection, preparation and
embellishment of problems from the perspective of someone involved in
that process

Looking back, it is clear that although the sets of the problems for the first
newly initiated contests were not bad, the fact remains that the problems
selected sometimes appeared to be rather hard for the solvers. As years
passed, the wording of problems lengthened considerably during the process
of selection. The main reason for this development was probably the simple
fact that the author devoted much more time to the selection, which is no
surprise, since his understanding of the needs and abilities of the audience
had become considerably higher. The first milestone better: feature was the
fact that in the texts of proposed problems some names of heroes appeared.
Nothing more, at first it was just first names. Then the role of these heroes
expanded; you might say that the heroes managed to win a more central role
in the actions described in the texts of problems. It wasn’t the original
intention of the author, rather it was, as the author has come to understand
recently, essentially influenced by the desire to increase the comprehension
of the audience, the strong wish to come closer to the solvers involved and
attempt to touch the audience more deeply. That is a common situation of
proper teaching when you try to make an impression upon your listeners.
The situation is the same in problem posing, adapting and embellishing,
except that, when you are teaching, you have much better means of grasping
the attention of your listeners. When proposing problems for competitions
and the like, you have more or less only the text of a task proposed as the
unique tool to influence your audience.
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De gustibus non est disputandum or, in matters of taste, there can be no
dispute. Is this definitely so?

As mentioned before, not all persons approve of presenting problems in
such a way. At first, the author was surprised to hear that he should
undertake concrete investigation into the validity of the new methods
applied. First, he was quite astonished, because he was convinced without
any scientific corroboration that his way was typical, meaning that it was of
remarkable use for the audience. On the other hand, the author would like to
stress strongly that he is always glad and thankful for all who express their
views and attitudes, even if they strongly disagree with what the author
regards as valuable and otherwise useful for so many students despite their
age.

It is probably similar to the situation in which you ask a writer to prove
that his way of expression or his approach to connect with his audience is
proper.

Such demands are understandable and natural. To prove that his way is
important, the author may base his answer not only upon the fact that he has
been providing problems for contests for 20 years, but also on his lectures at
Vilnius University available to students of all departments. For formulation
of problems similar methods are applied, let us mention humbly, with quite
remarkable success.

The lector is like an artist when he believes that his art is still alive and
current and his methods are suited to the essential part of the problems he
proposes to his students—despite where it may take place: at university,
high school or (especially) kindergarten. Because everyone knows that the
memories of small children may last forever.

Using foreign languages

Many things might be said about the ability to speak well in languages that
are not the mother-tongue of the person who intends to formulate a problem
using fictitious elements. There are persons who are against it because they
say that it is, in general, impossible. That is, if you write in the language that
is not your own, then you cannot achieve excellent results. They also say,
that if the author of such problem writes using embellishments, as a real
fiction writer does, he must only write in his mother-tongue. Afterwards,
another person must translate it.

The author doesn’t agree with such an opinion. If the author is posing the
problem in a language that is not his mother-tongue, then it is better that he,
only if he is really well versed, should translate his texts himself.
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But afterwards, it is absolutely necessary to give the text to a native speaker
for the final check of the wording.

This adheres to the motto: nice posing shouldn’t be almost nice, but really
nice.

Having said that, the author feels he knows Russian well enough and,
having a book (Kašuba 2012) written in Russian and printed in Moscow in
such a well-known publishing house as “Prosveshchenie”, always welcomes
anyone to check the language in any of his texts.

More remarks concerning translating various problems with embel-
lishments into other languages

First of all, the author prepares the wording of a well-adapted problem in his
mother-tongue, that is, in Lithuanian. Only then the translation to English
follows. So far, the author has been able to edit five books and booklets in
English. All these aforementioned books and booklets were either translated
by the author (“What to do when you do not know what to do”, Parts I and
II, published in Riga (Latvia)), or originally compiled in English (these were
devoted especially to attractive representation of problems as well as their
solutions and appeared in Latvia under the title “Once upon a time I saw a
puzzle” in a well-known LAIMA series.) (Kašuba 2006, 2007, 2008a, b,
2009).

Then, there usually are the translations of problems adapted for the
competition for youngsters (that was initiated by the author in 1999 and
linked to the Lithuanian team contest). Those problems are usually trans-
lated into English as well as Russian, German and Polish after the
competition.

Needless to say that the posing and decoration of problems has its own
specifics in every language; please do not forget that success in creative
posing, design and any kind of decoration is heavily dependent on the skills
in the particular language, which are never absolute, even with the
mother-tongue.

It ought to be stressed that the author’s adventures with writing (not
translating, as one might suppose looking at the similar titles) did start as a
kind of translation. But, after some time, a better understanding of the
situation followed—thank God—that may be expressed by saying that one
should avoid the strict translations of one’s own books into other languages.
He should simply write another, although related, book, if only he is skilled
enough to accomplish it. That especially applies when the author is eager to
paint the problems in a different light by using a wide range of the
embellishments that may vary from language to language.
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The series of adapted problems which are devoted to the Bremen City
musicians

As deputy leader of the Lithuanian IMO team, the author was quite happy to
be present at the 50th IMO in Bremen. As a child, he enjoyed the marvelous
fairy tales about the adventures of the four smart and brave animals of
Bremen lore. Upon returning home, the author tried to compose a problem
with an impression of what he had seen in Bremen, as well as using all of his
sentiments and childhood memories. This was one of the first times when
the texts of problems proposed for the Lithuanian competition for young-
sters became considerably longer.

This is also one of the reasons that the representation of the essential parts
of the whole sample exist in five languages. The author feels obliged to say
that although the Bremen musicians are of clearly German origin, thanks to
various historic and cultural circumstances, they are more than well estab-
lished in the Russian common conscience.

The immortal Bremen heroes mentioned by name

The immortal quartet of Bremen, namely the Donkey, the Dog, the Cat and
the Rooster, after becoming absolute classics of hard-beat music, could no
longer perform all together. On very rare occasions when three of them
performed, it was treated as an occasion commanding absolute respect. Such
performances and only these were called the Bremen ecstasies. When in a
recent summer the World Session of Beautiful Young Math Minds took
place in Bremen, the immortal four performed several sensational Bremen
ecstasies in its honor. The soul of the city, Roland, who, naturally, took part
in all the Bremen ecstasies, certified that Maestro Rooster participated more
times than any other of them, 8 times, and Maestro Donkey participated less
than any other, only 5 times. Then, without uttering a word, Roland made
them believe that any clever mind, if it was able to concentrate at least a bit,
could calculate how many Bremen ecstasies were provided by the members
of the immortal quartet of Bremen. Would you be able to explain how many
Bremen ecstasies were performed at the World Session of Beautiful Young
Math Minds by the members of that immortal quartet of Bremen?

Above, you see an attempt to decorate a classic, simple, but nevertheless
challenging problem using Bremen lore.

The eternal Roland meets Maestro Cat in a struggle of minds

On silent winter nights, when the last lonely pedestrians have disappeared
from the streets, Roland, the eternal patron of Bremen city, climbs down
from his monument and together with maestro Cat they arrange what they
call the silent Bremen-17 game. For it 7 cards numbered 0, 1, 2, 3, 4, 5, 6 are
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necessary (with each number written on exactly one card). Roland and the
Cat take one card each in turn; Roland usually starts first. The player who is
able, by using only his own cards, to present a number divisible by 17
sooner than his opponent is declared the winner. On the news portal
ihaha.com, there were furious quarrels about whether any of them would be
able to select his cards in such a way that he would always be sure to win, in
spite of what his opponent selected.

There appeared a wiseacre named Rex, who kept claiming that

(A) If either of them would really be able to win despite what his oppo-
nent chose, then that person was the person who started first. Is the
wiseacre Rex right? Explain your answer.

(B) So, how about that? Was one of them indeed able to win, in spite of
what his opponent selected?

Explain your answer.
This is a simple, yet challenging, problem from the famous Russian

mathematical and linguistic educator I.S. Rubanov, exhibited after attempts
to dress it in new wardrobe.

Careful counting of the paths in Bremen

On their infrequent leisure time, the immortal quartet of Bremen divided the
usual chess board into four equal parts and started to examine one of these
parts containing 16 fields (8 white and 8 black fields, colored in the usual
chess order), i.e., a 4 × 4 square.

A zigzag path, consisting of 4 white fields, one from each row and such
that any two neighboring fields shared only a common corner was called by
them a Bremen path. A heated discussion immediately began about how
many versions of Bremen paths could be made in that small 4 × 4 square.
Roland, the patron of Bremen City, testified that they talked well into the
night and couldn’t come to a common conclusion about how many Bremen
paths could thus be made.

Can you explain in an understandable way to that immortal quartet of
Bremen how many Bremen paths could be formed in that (rather small)
4 × 4 square?

Here you see an attempt at posing the well-known and typical repre-
sentation of a problem called “Careful Count” in a new way.
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Soccer tournament

Yesterday, the Cup ofNations, a soccer tournament inwhich each teamplayed
exactly once against every other team, came to an end in Bremen. Thematches
were played according to rules that generated a health hazard: 3 points were
awarded for awin, 1 point for a tie and no points for a loss.After all thematches
were over, it wasmentioned that all the teams togetherwere rewarded a total of
21 points. The troubadour of theCup,MaestroRooster, spent thewhole 3 days
absolutely confident that, knowing only what has been said right here, it was
still impossible either to conclude howmany teams participated in that Cup of
Nations or to establish howmany points each teamwas awarded (according to
its final classification). Was the troubadour of that Cup, Rooster, right in his
belief? Is it possible to detect how many teams participated in that Cup of
Nations and to establish howmany points each teamwas awarded? (Compare
(Mazanik et al. 2005), Problem 49.)

Tournament problems, as we all know, are one of the cornerstones of
challenging mathematics.

Some things that many of us, if not all, know

Let us start from a very simple situation or an attractive notion, which is
widely known and called a “Magic Square”. Most have heard of them
because in life, as well as in arithmetic, a coincidence is a rather curious
matter which is mentioned almost everywhere, and in the case of Magic
Squares, we enjoy an extreme number of coincidences of sums.

You may recall that a Magic Square is a square where, roughly speaking,
the sums of the numbers in all rows as well as in all columns and even on
the two main diagonals do nothing more than simply coincide.

In a classic case, the first nine natural numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9
are located in the nine cells of the 3 × 3 square. If you deal with a freshman
who is at least a bit curious, it may be interesting not only to make him
believe that such a curious thing indeed exists, but also to demonstrate for
him quickly how it may be detected.

To persuade such a person, you have two possibilities: either you
immediately show such a table while asking to check out whether that table
indeed has all the announced properties, or choose another option. Of
course, this other option takes more time, but it is also more useful. Before
acting in the manner “Deus ex machine”, it is always worth trying to take at
least one intermediate step and ask the following question, or even two that
are closely linked. These questions are: assume that the numbers from 1 to 9
can be arranged in the Magic Square. How big then may the sums of
elements in all rows, columns, and on these two diagonals be? Waiting until
the natural and quick answer, 15, appears, one can then ask another question
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about what number might appear in the very center of that table? A couple
of minutes later, the audience will come up with the answer 5. After that one
can simply propose to take the 3 × 3 table with 5 in the very middle of the
table and locate the rest of numbers in a timely manner.

What kind of attitude may even a good student often possess?

Even good students sometimes show an unseemly attitude, which in our
case might be expressed thus: what is so valuable about knowing what
happens in the 3 × 3 table when everything is so well established and has
been discussed more than once? As a partial answer to what might happen,
some concrete tasks might be suitable, representing some new aspects of
such seemingly well-known a situation. Here are some attempts concerning
how this might be developed. The author deeply believes that there are
many ways to enrich and develop this kind of situation. Remember the Latin
phrase “Verba docent, exampla trahunt”—“Words instruct, illustrations
lead”.

Some related examples

1. Here are some possible examples for the enrichment of the situation
taken from the literature. The first problem we mention is taken from the
Dutch Mathematical Olympiad 2011.

 2  

?   

  9 

In this Magic Square, the three rows, the three columns, and the two
diagonals all have the same sum (so this is a Magic Square, but the reader
may notice that there is no requirement that the material used for that square
be a number from 1 to 9!). Which number is represented by the question
mark? (A) 5 (B) 6 (C) 7 (D) 10 (E) 16.

For any effective solution it is important to remember that, although in the
Magic Square all cells are important, there may be one that is even more
important than all the others.

Some modifications to the notion of being or not being Magic might be
proposed and developed, as often happens in literature. Below is another
example taken from South African sources (Laurie and Merry 2000).

2. A 4 × 4 “anti-magic” square is a square containing the numbers from 1
to 16, such that the sum of the numbers in each of the four rows and four
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columns and two diagonals are ten consecutive numbers in some order.
The diagram shows an incomplete “anti-magic” square. Complete the
“anti-magic” square shown below.
   14 

 9 3 7 

 12 13 5 

10 11 6 4 

Instead of the usual requirements of equality of sums we can investigate a
slightly different situation that might occur and we see that a great variety of
questions can arise even in these simple-looking situations.

Sometimes instead of a table, the gathering place for our numbers in
question might also be the dial of a traditional clock.

3. The dial of a clock has been cracked into three pieces so that the sum of
the numbers on each piece is the same. Given that none of the cracks
separates the digits of a number, which of the following statements is
correct? (A) 12 and 3 are not on the same piece (B) 8 and 4 are on the
same piece (C) 7 and 5 are not on the same piece (D) 11, 1 and 5 are on
the same piece (E) 2, 11 and 9 are on the same piece.

4. Nine light bulbs are put in a square formation. Each bulb can be either on
or off. We can make a move by pressing a bulb. Then, the pressed bulb
and the bulbs in the same row and column change their state from on to
off or vice versa. Initially, all light bulbs are on. What is the minimum
number of moves needed to turn off all the light bulbs? (A) 3 (B) 4 (C) 5
(D) 9 (E) This is impossible (compare Problem 5 (Kašuba 2010)).

An attempt at a nice posing of a problem, as may be done in fiction

Below we present an attempt to pose a simple problem nicely, which seems
very natural in the 4 × 4 dimension. It was proposed in 2011 in a
Lithuanian contest for youngsters in lower grades in the exact formulation as
is presented below.

The White Horse, although he was rather seldom seen in the company of
other animals, was in fact highly regarded as a devoted partner and trusted
friend of the Hedgehog in the Fog. Also the Horse liked to appear as if
descending from high above by always bringing strange problems of
complicated origins. Solemnly speaking, from first glance the Hedgehog in
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the Fog was usually not that enthusiastic about solving them or even reading
their formulations.

But in time he got used to getting involved in the process of solving, was
always doing his best, but if he wasn’t able to achieve at least slight pro-
gress, he would get very irritated and lose his temper with outbursts of anger
that were not always predictable.

Today in the daily post the White Horse also received a puzzle that
looked quite difficult. It consisted of 16 pieces of letters joined with num-
bers. They looked exactly as indicated below:

a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4.

In the fog, the call of the Owl was clearly distinguishable and, at the same
time, an invitation for all who were of some scientific importance in that
forest of clever animals, at least to attempt to fulfill the following chal-
lenging scientific task: put these letters joined with numbers into the 16 cells
of 4 × 4 square in such a way that in each row as well as in each column all
these four letters

a, b, c, d,

as well as all these four integers

1, 2, 3, 4

were represented exactly once.
The Grizzly Bear, who appeared immediately, expressed his sincere

doubts concerning the possibility of solving it. The Hedgehog in the Fog, on
the other hand, eagerly believed in the possibility of solving it, although
without any scientific basis. He simply said that the puzzle was too nice not
to be solvable. Only imagine: in every row, as well as in every column, all
the digits and all letters without any repetition in any row or in any column.

Is that really possible? Or it is too good to be true?

Some changes to the situation, helpfully illustrating that not everything
is so simple

One should not think that the situation in low-dimensional tables is always
so easy to deal with. Here we present some examples taken from the lit-
erature and used in the mathematical contest in Lithuania. The first problem
is taken from the Dutch Mathematical Olympiad and the second one was
apparently used in the UK Mathematical Olympiad but rewritten in the
South Africa MO.
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1. We consider 5 × 5-tables containing a number in each of the 25 cells.
The same number may occur in different cells, but no row or column may
contain five equal numbers. Such a table is called pretty if in each row
the cell in the middle contains the average of the numbers in that row,
and in each column the cell in the middle contains the average of the
numbers in that column. The score of a pretty table is the number of cells
that contain a number that is smaller than the number in the cell in the
very middle of the table. What is the smallest possible score of a pretty
table?

2. A 5 × 5 square is divided into 25 unit squares. One of the numbers 1, 2,
3, 4, 5 is inserted into each of the unit squares in such a way that each
row, each column and each of the two diagonals contains each of the five
numbers once and only once. The sum of the numbers in the four squares
immediately below the diagonal from top left to bottom right is called a
score. Show that it is impossible for the score to be 20. What is the
highest possible score?

If we wished, this might be made to appear as a Kangaroo problem. Then,
instead of the question about the impossibility of the score to be 20, one
might gradually finish by asking: What is the highest possible score: (A) 20
(B) 19 (C) 18 (D) 17 (E) 16

To be or not to be and if so how?

In his genial way he proceeded to say
(Forgetting all laws of propriety,
And that giving instruction, without introduction,
Would have caused quite a thrill in Society).
Lewis Carroll, Hunting of the Snark.

The phrase “to be or not be” in early-childhood education

The famous saying is deeply connected with the main question of what
exactly a child is able to understand and especially what he does not. It
demands constant verification of a child’s understanding and achievements.
Having such sure notions, or at least some commonly acceptable ideas, we
may move to the structuring of the situation. We must also give some
explanation about the way that child should be instructed in order to help
manage the situation. And an optimist would also immediately add the
condition “sine qua non” that the child ought to learn with pleasure.

And what the author means by “pleasure” in this case is not the typical
meaning, which we try to achieve simply by saying “oh, how brave
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you are”, but the more profound pleasure that you, for instance,
must unavoidably feel after you have finished building a house (or cracking
the problem, that you were not able to do yesterday, or a week or even a
year before).

The problem of what exactly a child is able to achieve and how to prepare
him for it, is a most subtle question, because we may so quickly come to a
conclusion that even in early years a child can achieve practically everything
and understand even more—when properly instructed, naturally.

There is a common view that the child can understand, even invent,
everything that might be expressed using very few words, avoiding special
terms and tricky ideas. For tricky ideas mankind has founded the
universities.

First of all, we strongly believe that a child, just like any other normal
person, especially likes to do what at least for a time appears to him as
especially difficult and, most importantly, attractive. Many problems of that
kind are problems dealing with numbers, arrangements of numbers and their
combinations.

Instructing a child about solving something that he finds attractive is
not very difficult

The next step is assisting him, or maintaining the situation. It helps a lot that
a normal child is used to operate with numbers, even with large ones. Just as
many people, it seems, believe even more that, consciously or not, a child is
eager to demonstrate somehow for all those concerned, that the difference
between him and any adult is considerably smaller than many try to believe
or have experienced it to be.

So let us assume that a normal child is not afraid of any numbers and,
what may be even more important, he is very eager to demonstrate that he is
not that young. Let us also assume that he is able to proceed constructively,
quite often in an astonishingly logical way, and that instead of making long
theoretical reflections he prefers concrete actions.

We would like to discuss with the reader how to deal with some prob-
lems. When speaking about solving them, we strongly believe that we will
be able to give some insight into effectively stimulating the challenging and
inspiring process of reaching a solution.

The author has spent many years first learning how to solve problems and
then afterwards learning specifically how to help the process. He has written
a few books, which will be mentioned in the list of references.

The first problem the author will present, could, we believe, be presented
for practically any age, after some instruction, of course. We humbly admit
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that we possess quite a lot of experience with instructing and preparing the
process of solution for a child in his tenth year.

Besides the original formulation, we will also try to present the reader
with a problem that he will find more attractive and then we will report on
our attempts to achieve the solution. We believe that attempts to formulate
the problem more attractively, so that more people will be interested, are
also good for people of other age groups, not just children.

As the author has witnessed many times, if something is suitable for a
normal child then the same problem will be suitable for any normal uni-
versity student as well.

An example of the usual representation of a problem and how it may be
embellished

We are asked to find the minimal positive integer that can be represented in
two different ways as a sum of three addends in such a manner that the six
addends mentioned would all be different.

Find means detect, and detect is something that Mr. Sherlock Holmes
with Dr. Watson used to do every day, with great success.

This is not a difficult problem, but nevertheless let us look for some
“more attractive representation”, as we just did by adding two popular
names that for a normal child may not add anything worth mentioning.

What object could be attractively proposed to the child as a multitude
that can be split into three parts in two different ways?

What multitudes does the child see and enjoy every day? We may choose
and propose some possibilities, e.g., it could be the clouds in the sky. Any
natural number may be represented as a separate group of clouds. So we
may have the whole set of clouds in the sky divided into separate groups of
clouds. And then we may ask how to apply that language in order to present
another representation of the very same natural number or the same multi-
tude of clouds. How could we do that? The answer is simple, because the
winds blow and when wind is blowing the skies change their configuration.
We might point out to his attention the fact that we silently assume that no
cloud disappears, but the multitude of clouds in the sky may still easily
change its configuration.

As mentioned before, we strongly believe—because of our experience—
that any child who is alert is able to count exactly and, moreover, is eager
not only to add numbers, but to split them as well. Also, he will be very fond
of us if we are able to present a task in good style.

So, in order to begin looking properly for a solution, we may ask him for
an example and the child will immediately respond. A child of any age is
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strongest when answering a concrete question. So, we may ask him: do you
know such a number, which possess the miraculous ability and can be split
in two different ways into the sum of three different addends, so that all six
numbers of these numbers are different? The examples are not difficult to
find, in fact, they are everywhere; for instance, such is the very regular
number 111 and just as regular, but more usual because of its size, is the
number 21:

111= 100+ 10+ 1=104+ 4+3,

21= 1+9+10= 2+4+15.

Now we just have to detect the smallest number among all such “cha-
meleonic” integers.

Children are natural investigators

Because of their constructive nature, children are always curious to detect
what integer will lose that property first.

The author has gained some experience by presenting and explaining this
problem, especially at the very end of its solution. There it is rather inter-
esting, because some kind of abstract reasoning or something of proof-like
thoughts would be highly welcomed. But, according to the author’s expe-
rience in a recent year in Grade 3, that abstract end was taken more as the
bare statement and as the dominion of the teacher. Because the teacher said
that the process must naturally stop at some number and, moreover, the
teacher indicated we would find that number when we wouldn’t be able to
find constructively that double split into three addends, all different. Frankly
speaking their reasoning ran along the lines of “it must be because it is”.
And nothing more needed to be said in Grade 3. Yet, in Grade 4 of the very
same school on the very same day it was possible to achieve so much more;
evidently, approximately a third of the pupils present were able to under-
stand even that abstract philosophical part of the proof that 10 is that
number. After experimenting with numbers, the proof that 10 is the number
followed. The usual words of proof or abstract reasoning were pronounced.
These words were pronounced and they were understood by a good third or
possibly even a half of the audience—in Grade 4.

These words were: take the six smallest positive integers
Namely

1, 2, 3, 4, 5, 6.
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Because their sum is

1+ 2+ 3+4+5+6=21,

we can see that this is more than twice as big as 10, so the number 10 clearly
can’t possess such a double-thrice split or representation. Following this
train of thought, we tentatively state that 11 may be the smallest integer with
the double split. And 11 is indeed such a number, because it can be written
either as

2+ 4+ 5

or

1+ 3+ 7.

So, in conclusion, 11 is indeed the smallest such integer and the rest
follows.

After experiencing the natural joy of the teacher that his students are so
smart
The saying “repetitio est mater magistrum” followed. Because these pupils
of Grade 4 also understood that they have achieved something. Then it was
high time to repeat that main sentence, which at the same time is the short
version of the proof, several times. For the first time it was done immedi-
ately after finding the solution and for the second time, after some 5 min.
Then, again, the clouds were mentioned and the wind that scatters clouds
remembered.

The Second Example is About the Magic of Suitable Instruction

The following ought to convince the reader that subtle advice at the right
time may indeed appear to be extremely magical.

Let us take an apparently standard problem which might for a time be
connected with our plans to set 9 numbers

15, 16, 17, 18, 19, 20, 21, 22 and 23

into the 9 cells of 3 × 3 table in such a way that for each pair of numbers
whose cells happen to share a common side, the sum of both integers in the
pair is always different.

It ought to be mentioned that this is a problem from the Saint-Petersburg
competition. Please, do not ask us the grade it was meant for because,
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knowing the grade, you may be afraid that the problem may not be suitable
for early grades, or that it might even be presented as a pre-school problem,
after suitable instruction of course.

Assume that we would like—and this is what the author, as any teacher,
is always potentially trying to aspire to—to give some effective support in
the form of subtle and short advice. The intended advice must be so per-
fectly worded, that afterwards each student in each grade would be able to
achieve what the task has asked him to achieve.

Actually, after reading the text of the problem

It is not immediately apparent why this problem might be proposed, and was
proposed, in the Saint-Petersburg Math Olympiad (Berlov et al. 2011).
What’s more, it was not presented in the lowest grade either. What could be
the reason for that?

Looking back, we must mention that it is completely clear that this
problem is not too difficult. We can start simply with uninspired attempts to
place the numbers; we might even succeed without having any kind of a
system. Now, we could proceed as a smart child would: do something, enjoy
what happens and simply gather experience. After several attempts, each
child would have an unavoidable feeling that he must proceed by applying
some system of placement and not letting things happen chaotically.

Let us not be, however, still uninspired and write down the numbers in
the most common way—by starting from the smallest one upwards like this:

15 16 17 

18 19 20 

21 22 23 

Remembering that we must pair wisely in order to obtain different
answers when summing all pairs of numbers sharing a common side, we
start by adding neighboring integers, consequently getting:

15+ 16, 16+ 17, 15+ 18.

We notice that we are not able to fulfill our requirement immediately—
we have just started with calculations and already have gotten the number
33 twice.

So the way of placing numbers in the most common manner proved itself
to be unsuitable.

Now, in the spirit of the everlasting dance, or the mutual, careful assis-
tance between construction and instruction, we would like to ask: is it
possible and how should we proceed in order to provide effective support
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for our pupil, yet formally do very little? What kind of impulse might we
give? Are there some wonderful means for that?

The effect of achieving much by doing very little is quite memorable; the
child at each age is very fond of rapid success and, moreover, he never
forgets it. Rapid success and how to deal with it might be a really valuable
chapter in the theory of effective and, especially, joyful teaching.

In our situation all that effectiveness

Is due to the idea of a slight rotation of the whole table around its center.
Nothing more is needed at this time. After that very small rotation the idea
comes to mind: help the diagonals to be at least a bit more like the hori-
zontals. Then the same standard placement in this new setting will prove
itself to be the solution. But before we begin, let us help the formal diag-
onals look like the horizontals—the best means for that is the 45° rotation.

That brings us almost immediately to the desired solution presented in the
table below:

After rotating backwards, we’ll have the answer presented in the usual
form, or

15 17 20 

16 19 22 

18 21 23 
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Let us note that now all 12 of the neighboring pairs do indeed provide
different sums:

15+ 17= 32, 17+ 20=37, 15+ 16= 31, 17+ 19= 36,

20+ 22= 42, 16+ 19=35, 19+ 22= 41, 16+ 18= 34,

19+ 21= 40, 22+ 23=45, 18+ 21= 39, 21+ 23= 44.

So, once again, we must state that in the eternal dance of instruction and
construction or, in other words, in the everlasting mutual assistance between
the “normal reality” and “possibilities which we possess to shape that
reality”, vast, inexhaustible potential remains. According to the under-
standing of the author, it is one of the most powerful resources of any skilled
teacher. It enforces the hold of such teacher at school and serves as one of
the main resources for his pedagogical and natural human enthusiasm.

You might sometimes be lucky enough to express infinity by saying
practically nothing, as we have just been rewarded with in our case with the
rotation. And that was enough for complete success in dealing with the
problem proposed.

Early childhood with all its infinite possibilities and boundaries is a
constant challenge for instruction and construction

In the extremes, this statement may lead to the crucial question: how difficult
can the problems be so that a child will still be able to deal with them
effectively? Here we would like say that to deal effectively might not nec-
essarily mean to solve them. It is enough to be able to achieve some progress
and, of course, to feel the satisfaction of being really involved. Experienced
math educators know that the feeling of being involved is the reason that
makes math education such a precious and sought-after subject.

How inexhaustible are the real possibilities for a child? What are the
effective boundaries of an alert child with some seemingly difficult task? What
might make even the most exacting problem accessible and even attractive?

There are no definite answers to these questions. There also are no simple
answers to the question of what makes a good problem into a piece of the
irresistible art of human challenge and possibilities.
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Let us try to illustrate some of our thoughts and impressions while, at
the same time, discussing an astonishing Kangaroo problem

First, we’d like to present the text of the problem (Kangaroo problems for
the Year 2012).

In our opinion, this is a problem that may be shown to any child who can
read the text in order to illustrate the following truth: a math problem can be
ready for reading, yet not necessarily ready for solving. There are some
problems which are as nice as fairy tales are in literature. According to the
author’s opinion, this proves the following: a mathematical problem may be
more than just a mathematical problem. Such a concept might seem unusual
in math education but, on the other hand, expressions of that sort are well
enough known in art, literature and other fields (including sport).

Every cat in Wonderland is either wise or mad. If a wise cat happens to
be in one room with 3 mad ones it turns mad. If a mad cat happens to be in
one room with 3 wise ones it is exposed by them as being mad. Three cats
entered an empty room. Soon after the 4th cat entered, the 1st one went out.
After the 5th cat entered, the 2nd one went out, etc. After the 2012th cat
entered, it happened for the first time that one of the cats was exposed as
mad. Which of the cats could both have been mad after entering the room?

(A) The 1st one and the 2011th one (B) The 2nd one and the 2010th one
(C) The 3rd one and the 2009th one (D) The 4th one and the last one
(E) The 2nd one and the 2011th one.

That is a typical answer in Kangaroo style, 5 alternatives are proposed
with exactly one of them being correct.

From first glance, the proposed task does not appear to be easy

Yet, it does introduce some structure into the world, borrowing from a fairy
tale. That structure is exotic, but the way the problem plays out is arranged
following some predictable rules. From that point of view, the presentation
of the problem, that may seem lengthy for the Kangaroo competition, is not
so because of the magic in the presentation. As a whole, it looks more like a
fairy tale than a mathematical problem. The heroes named wise and mad
cats immediately presuppose tension. The possibilities of transition and
exposition described guarantee additional excitement for the fantasy of a
child. So, let us try to mention all the remarkable circumstances that could
inspire us to recommend these problems for radically young minds. As
stated before, simply by reading the text of a problem we might be pre-
disposed to think that the problem possesses a mystical flavor. At the same
time, the action lasts for quite a while, for a remarkably long time one cat
enters and another leaves. So, as we are told, cats are not only filling the
scene, but also performing by following defined rules. These cats, a lot of
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them, form a long line and act under strictly fixed rules thus making the
magical situation partly predictable and, consequently, more attractive. But
we must mention that, just like in fairy tales, the circumstances that allow
the hero to win, or for the situation to take a suitable turn, must be analyzed
rather carefully.

That special turn of our situation is the moment when, for the first time, a
child must understand that he is dealing with a situation where, if the first
three cats are mad, the fourth must be so as well.

In many such cases, when dealing with a problem with a bit of magic,
attractive and yet not that easy to solve, we may raise the following ques-
tion: what is the first remarkable observation that a child can make regarding
the particular situation? The first observation of a child quite often later
proves to be the main idea of solution, or at least a big part of it.

That is, the first thought of a child when dealing with good problems is
usually excellent or otherwise worth mentioning.

And, like in every fairy tale, the child is hoping, sometimes even
unconsciously, for a happy end

Which in our case also includes the essential understanding of the whole
situation. From that moment the desired solution usually follows. Some-
times this is where we, who believe that we and the child can both clearly
grasp the whole process of solving, may start to think that, after suitable
instructions, this problem could be accessible for all those interested or
involved.

So, what could be the first remarkable observation of the child in our
dance of understanding and explaining the problem? What could be the first
words that the child might utter after some consideration? Sometimes the
first words are those that describe or investigate some of the “peculiar
cases”.

What might the worst case be in our situation? The one which eliminates
the situation presented in the problem.

Such a situation might of course be the situation with three consecutive
mad cats happening somewhere in that long line of 2012 cats. The situation
with 3 “consecutive” mad cats would completely and definitely change
everything. These 3 cats would make all other cats mad even if they weren’t
before. We believe understanding that might be the first serious thought of
the child and the first remarkable stone upon which the solution will be built.
The situation with three consecutive mad cats is clearly the “drastic” case
after which it would be impossible to reach the outcome described in the text.

We dare to imagine, that a clear concept of that situation is not too
complicated for any sensible child to reach.
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So let’s assume that the child clearly understands that three consecutive
mad cats anywhere in that long line of cats eliminates the outcome
described, and this is what the child must never forget.

The child is also expected to be aware of the following circumstance,
which is similar to every good fairy tale: that the most important things
are often mentioned in the end

In our case, the most optimistic reality occurs, if the first mad cat was
exposed only after the 2012th cat entered. What are the circumstances that
would allow delaying this for so long?

Returning to the initial situation, the child sooner or later decides to
examine the situation carefully with the first three cats (immediately before
the fourth one appears). Three (or even four) cats won’t be too much for any
child, so long as they do not all live in the same flat.

So, let the child examine the situation with the first 3 cats. If all of them
had been mad, oh, this would bring the bright child to the worst case, which
we have already examined above.

We will repeat the important observations again: if the 4th cat is mad,
then everything will remain as bad as it was; if the 4th cat isn’t mad when
entering, he will very quickly become mad. Afterwards it is of no impor-
tance which cat leaves. So, it is quite obvious that the first cat that leaves has
to be mad. Then, if the situation with three mad cats occurred, it would
remain the same until the end of the line.

Because of that, it is clear that not all 3 of consecutive cats can be mad.

Now, the child could regard the “opposite situation”

What if all three initial consecutive cats were all wise ones? If all of them
were wise ones, then the fourth cat, when entering or before entering,
couldn’t be mad, because otherwise, immediately after entering, he would
be exposed as mad. But we are informed in the text of problem that this
happened much later. So, according to the fable of the whole story, if three
initial cats are all wise and if no case of madness is exposed until the 2012th
cat enters, then this means that all “intermediate” cats that enter have to be
wise. In that situation, when the supposedly mad 2012th cat entered,
everything would happen as described.

And what then? The situation is indeed possible but none of the five alter-
natives proposed, none of them, suit the situation. But that is not necessarily an
error, because in the text of problem we read: “which of the cats could both
have been mad after entering the room?” “Could” doesn’t mean “must be”.
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It allows both us and the child to cross off both extreme situations, when all
three initial cats are either “mad” or “wise”. In the latter case the situation is
possible, but none of 5 choices mentioned in the answers suits it completely.

Now we are expected to regard the “intermediate situation” with the
initial cats being a mix of mad and wise. That means that among these 3 first
cats there is at least one mad and at least one wise cat. We have to admit that
after the 4th cat entered (and the 1st left) the situation couldn’t be allowed to
go to extremes, for reasons we already examined.

Consequently, let us regard these last two possible cases. In the first case,
2 cats of the 3 are mad and in the second 2 of the 3 are wise.

In the first case the child understands that the 4th cannot be mad when
entering, because, as shown and mentioned, this would create again the
situation with 3 mad cats among consecutive 4, and this would make all
remaining cats mad after entering thus determining the whole happening “ad
infinitum” and not as expected.

Again, if 2 cats among the first 3 are wise, then the 4th cat, when
entering, can’t be wise, because then 3 of the 4 cats would be wise and the
exposition of madness would immediately follow—and this contradicts the
fable of our problem.

Having investigated both cases, the child may conclude that when the 4th
cat enters he must create a “fifty-fifty situation” with two cats being wise
and another two cats being mad. Keeping this in mind, the child could start
to list all possible variations. These are the following (where W naturally
denotes a wise cat and M a mad one):

MMWW ,MWMW ,MWWM,WMMW ,WMWM,WWMM.

Now in all of these situations, it is high time for the 1st cat to bid farewell
to the society of cats. When the 1st cat is leaving then the possibility for the
5th one to introduce itself appears. Now the main concern is whether we
realize that if the cat leaving the room is wise, then mad cats will form a
majority and that majority is what the 5th cat must neutralize. To put it
simply, if the 1st cat leaving the room is wise, then the one entering will
have to be wise too. On the other hand, if the 1st cat leaving the room is
mad, then the cat entering has to be mad too.

All of these deductions prove that the situation is circling itself, or
behaving in a cyclic fashion, or as arithmeticians would say, can be thought
of as being modulo 4, so we have 6 possible sequences:
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1. MMWW MMWWMMWW . . .

2. MWMW MWMWMWMW . . .

3. MWWMMWWMMWWM . . .

4. WMMW WMMWWMMW . . .

5. WMWMWMWMWMWM . . .

6. WWMMWWMMWWMM . . .

Finally, the solution

Once again, according to the fable of the problem, after the 2012th cat
enters, M must be in the room. What’s crucial is to realize that this mad cat
is not necessarily the one who entered. Exposing a mad cat takes 3 wise
ones. 3 mad ones would have eliminated wise ones completely and
destroyed the fable. But we already spent a lot of time proving there must be
a cycle of any four consecutive cats and why. But the 2012th cat has to
break a pattern, because it exposes madness for the first time. So, a situation
must be achieved where before 2012th cat enters, there must be 2 wise cats
and 1 mad cat in the room. Because of that, we can eliminate the 1st, 2nd
and the 4th sequence.

Only these remain:

MWWMMWWMMWWM . . .MWWW

WMWMWMWMWMWM . . .WMWW

WWMMWWMMWWMM . . .WWMW

So now we can easily check that only in second of remaining cases the
only answer B is possible.

Some simple words practically before the end

The author believes that a young child is able to understand the first three
sentences which may express a solution of a not very complicated mathe-
matical (or arithmetical) problem. For this to be so, the problem, of course,
could not require specific methods or formulas, just logic and common
sense.

So, if the problem is not overspecialized, then practically all that can be
expressed in the first three clever sentences is potentially understandable for
any alert child, yet the dance of inspiration and time is necessary for the
solution to be properly arranged.

The child must have enough time. Then he may achieve much more than
he imagines and even more than we, as educators, might expect.
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The final part, or some story about what you might gain from the
problem and what you might not

This is a fragment which, under the title of “Lawn tennis or the bright
musketeer D’Artagnan”, is taken from the author’s book “What to do when
you don’t know what to do?”

Once these three musketeers were training on the tennis court—don’t
forget that they all were warriors of King Louis XIII, the counterpart of
Cardinal Richelieu.

Meanwhile they all were involved in a tennis game. The game was
arranged in the following manner: two were playing one set and the third
was their judge. After the game was over the loser became the judge and the
former judge would then play with the winner, and so the whole affair ran
on.

After this long time for play was over, it was stated that Athos had played
15 sets or 15 times, Porthos 10 and Aramis 17. D’Artagnan, who had just
arrived, seeing that the entire statistics consisted of 3 numbers, declared his
ability to determine the losers of many sets.

• But how on earth can one determine the loser of so many sets having
these 3 numbers only?

• Many facts may be gleaned from these 3 numbers.
• For instance, which facts exactly?
• For example, I could tell you who lost the second set you played.
• Might you be able to tell also who won the second set?
• I beg your pardon; I’m not speaking about who won the second set but

I’m speaking now about who lost it.
• Does it make any difference?
• Yes, it does. I repeat that I’m not claiming to be able to determine

everything in France having only these 3 numbers, but I insistently repeat
with all my might that I can say for sure who lost the second set.

• Can you say also who lost the third set?
• No, I’m not talking about that.
• What else could you say having these numbers 10, 15 and 17?
• Many things. For instance, I can tell who lost the 16th set.
• And maybe you can tell us also who won this 16th set?
• Again I am not speaking about who won it but about who lost it.
• So what is this? You who are such an excellent fighter and perhaps the

first amongst the king’s warriors suddenly became a specialist on losing?
• I do what I can.
• Please explain to us how you are doing it?
• Let us sit down on the bank and, please, listen for a while.
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Dear reader, we understand that not all of you nor I would be very fond of
such artfulness in the popularization of so simple a problem. Not everyone
likes such adaptations. But still it’s always worth trying.

On the other hand, if I’m willing to deal with a problem, I’m expected to
know what the problem I chanced to meet is about and also to be able to
keep in mind all essential circumstances of the deal.

The adaptation can also be slightly irritating and not convincing when
I’m running around with a serious face repeating that one jump of a kan-
garoo can be 100 km long or that a horse can leap over a fence that is 15 m
high. Or it’s a poor fantasy that is still at least a bit attractive?

Still the author would never give up his opinion and will go on repeating
that any at least somewhat successful adaptation or more vivid presentation
of the possible task makes the sense of the whole happening more attractive
to the possible future solver. It simply and naturally makes the possible
future solver cleverer and keeps up his spirit, and that, together with all other
useful things, is the most valuable thing that education may bring and
propose.

To make the solver cleverer than he’d been before, and so to keep up his
spirit—this is the most honorable duty of every human art, especially
mathematics

Sometimes we are too shy to say it expressis verbis, or express it in words.
Let us go back to explanation of D’Artagnan. In a curious way he was

speaking about the simplest things. Let’s listen to him and figure out what
he meant.

First he suggested adding up these 3 numbers, 10, 15 and 17. Summing
up we’ve got

10+ 15+17= 42.

What can we extract from this prosaic, banal sum 42? It gives us the
common number of all persons involved in all provided sets.

Now we ought to emphasize strongly that one and the same person from
any 3 of them will be counted several or many times.

Two players make a set. Two players mean 1 set. So 42 players mean

42: 2= 21

sets exactly. So from that prosaic sum we extract the fact that there were 21
sets to play.

Take a glimpse at the 3 given numbers again.
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Athos had played 15 sets or times, Porthos 10 and Aramis 17. There were
21 sets as has been said and repeated. Who was the most successful player?
Again the most natural thing is to assume that the person who played most is
the strongest. He was not eliminated so often. There remains practically no
doubt that the person who played most is the strongest one among them. So
according to the numbers Aramis seems to be the strongest, Athos almost as
strong as Aramis, and finally Porthos is the weakest. So perhaps he, as the
weakest, is that one who lost the second set. Why must it necessarily be
him? What’s the reason? Everyone, even the strongest player, can lose.

Only God Can’t lose

Indeed, will it really turn out that it was Porthos?
Look again at the number of games Porthos played. Porthos played 10

times or sets. There were 21 set. It is clear that each musketeer was playing
at least every second time. That means that in two neighbouring sets each of
them must have played at least once. But only 10 participations in 21 sets
leaves Porthos only one possibility to realize such a game configuration.
This possibility is necessarily to have played the second set, then the fourth,
the sixth, the eight, the tenth, the twelfth, the fourteenth, the sixteenth, the
eighteenth and the twentieth set.

And unfortunately the only possibility to obtain such a game configu-
ration or to play 10 times in 21 sets, means also that he has lost all these sets.

Otherwise he would have participated in some 2 neighbouring sets. But
he did not. He lost them all.

We remember now that D’Artagnan spoke only about losers and not
about winners. He spoke also about who’d lost the 16th set. He avoided any
talk about possible winners.

Nothing more can be figured out with the exception that in the other
21 – 10 = 11 sets, Athos was playing versus Aramis and that Aramis
should have won more games.

Question to the reader:
Can you deduce from these three numbers 10, 15 and 17 how many times

Athos won and how many times Aramis did?
For deep studies see Vygotsky (1978).
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Chapter 12
Future Directions for Research
in Mathematics Competitions

Peter James Taylor

Abstract In this chapter I outline two major areas for future research on
competitions and mathematics enrichment generally. The first is a devel-
opment of better classification of problems, and an evaluation of their
effectiveness, particularly those at the level which can lead a student with
classroom knowledge to a deeper mathematics experience. The second area
is the gathering and analysis of more data on competition and Olympiad
alumni, in order to help gauge the effectiveness of competitions on choice of
and success in future careers.

Keywords Competition ⋅ Olympiad ⋅ Problem ⋅ Classification ⋅
Alumni

12.1 Introduction

Competitions have a unique role in the education system. Because the
problems are usually composed externally to any particular school, and can
test a student’s ability to use the mathematics they have learned in the
classroom in new contexts, they can help a student to be increasingly useful
in later studies and in ultimate careers.

The modern existence of competitions for schools commenced in 1894 in
Hungary (Romania may have started earlier), Olympiad style competitions
started in the Soviet Union in the 1930s (Leningrad and Moscow), and large
inclusive-style competitions first appeared in the US in the 1950s, and
spread from then to Canada, Australia, Europe and elsewhere.
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By 1984 there were so many competitions in various forms nationally,
regionally and internationally that a professional society, the World Fed-
eration of National Mathematics Competitions (WFNMC), was established
at a meeting held at ICME-5 (International Congress on Mathematics
Education, Number 5) in Adelaide. A detailed history of WFNMC can be
found in Kenderov (2009). The role of competitions in mathematics edu-
cation generally was part of ICMI Study 16, which was reported on in
Barbeau and Taylor (2009).

12.2 Research

There has been some research on competitions, and some has been pub-
lished in the WFNMC’s Journal Mathematics Competitions. What I will
discuss in this chapter are two broad areas which would be useful on a larger
and systematic way, to help practitioners have a clearer understanding of
what they are doing and help in their planning. To this end I will quote
known results from projects on smaller scales.

12.2.1 Competition Syllabus

There are many programs around the world for gifted students in mathe-
matics, but those with greatest commonality would be competition-related
activities, so I feel that a study of student performance in competitions can
give us the best insight into what sort of mathematics is best for extending
students’ experience beyond the classroom. At the highest end the Inter-
national Mathematical Olympiad (IMO) has a defined set of 4 topics
(Algebra, Number Theory, Geometry and Combinatorics, with Calculus as
the main omission) but does not attempt to define a more detailed syllabus
below this.

If we assume that this syllabus is an ultimate goal (and it is about the only
international one available) then it is a long way from classroom experience
and I am interested in identifying the first steps on this path, which can be
used in the classroom, the starting point for competitions.

In my paper Taylor (2015) I attempted to identify and define a suitable set
of mathematics topics, all used in school competitions. I have also examined
this idea on my web site Taylor (2014). I will now consider my breakdown
of competition topics, with typical examples and solutions, as well as dis-
cussion on some pedagogical aspects.
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1. Diophantine Equations
Diophantine equations are linear equations in which we look for integer
solutions. Finding such solutions under various restrictions can be a very
accessible task for school students. Even if students have not seen Dio-
phantine equations per se in the classroom, students have shown they can
use intuition to adapt to these situations.

An example, from the Australian Mathematics Competition (AMC) 2010
is

Problem 1
Eric and Marina each wrote two or three poems every day. Over a period of
time, Eric wrote 43 poems while Marina wrote 61. How many days were in
this period of time?

Note: This problem, as is the case in some others below, were set as
multi-choice. But large inclusive competitions use multi-choice not because
they like the format, but it is the only practical way of assessing hundreds of
thousands of scripts in a short time. In this and the cases below I will not
pose as multi-choice.

Solution 1
Suppose the number of days is z, with Eric writing three poems on x days
and Marina on y days. Then we have the equations 3x + (z − x)2 = 43 and
3y + (z − y)2 = 61. These simplify to x + 2z = 43 and y + 2z = 61. This
leads to y = x + 18. From the first equation it is apparent that x is odd. For
x ≥ 3, y ≥ 21 but z ≤ 20, which is not possible. This leaves the only
solution (x, y, z) = (1, 19, 21).

Note: This problem was not too difficult. A total of 41% of Australian
Year 8 entrants in the Competition were successful. Whereas the above
solution is probably the most direct, an important part of mathematics is that
you get the same solution no matter which valid method is used and it is my
view we need to demonstrate mathematics as a rich subject with integrity by
providing alternative solutions when known. The above problem has two
nice alternatives, given below.

Solution 1, Alternative 2
It could not be less than 21 days, as in 20 days no one could write more than
60 poems.

It could not be more than 21 days, as in 22 days each one of them would
have written at least 44 poems.

So the time period must be 21 days. It is possible if Eric writes three
poems on just 1 occasion and Marina on 19 occasions.
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Solution 1, Alternative 3
Since Marina wrote 18 more poems than Eric, there were at least 18 days
when Eric wrote 2 poems and Marina wrote 3.

Now 43 = 18 × 2 + 2 + 2 + 3 and 61 = 18 × 3 + 2 + 2 + 3.
So there were 21 days.

2. Pigeonhole Principle
Also known as Dirichlet’s Principle, it is very easy to explain and provides a
powerful tool for simplifying an argument.

Often a problem lending itself to a Pigeonhole proof will have some form
of constraint, with phrases somewhere like “at most”, “at least”, “more than”
or “less than”. If so, one looks to identify pigeons and pigeonholes.

An excellent example is the following Tournament of Towns problem, in
which the problem is attributed to Hungarian High School student M. Vora,
and solution to Canadian mathematician Andy Liu.

Problem 2
In a football tournament of one round (each team plays each other once, 2
points for win, 1 point for draw and 0 points for loss), 28 teams compete.
During the tournament more than 75% of the matches finished in a draw.
Prove that there were two teams who finished with the same number of
points.

Note: The proof below starts in the normal way by calculating the
number of games and hence the minimum number of games which can end
as draws. For each team the difference between the difference between the
number of wins and defeats is seen to be a device as they must be different.
This enables the Pigeonhole Principle to be employed as the number of
positive or negative differences must then be at least half.

Solution 2
There are 28C2 = 378 games in all, at least 284 of which end in draws. Thus
there are at most 94 victories, and at most 94 defeats. For each team,
compute the difference between its number of victories and its number of
defeats. In order for all teams to have distinct scores, these 28 differences
must be distinct. At most one of them can be 0.

Of the remaining 27, the Pigeonhole Principle dictates that either at least
14 are positive or at least 14 are negative. By symmetry, we may assume the
former is the case. The number of victories of these teams must be at least
1 + 2 + ⋅ ⋅ ⋅ + 14 = 105. Since there at most 94 victories in all, this sit-
uation is impossible. Hence at least two teams finish with the same score.
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3. Discrete Optimization
This is a method of proof with two parts, one showing an upper or lower
bound, and the display of an example satisfying this bound. Students in
most countries will not normally learn this method in the classroom, but it is
a nice structural idea which can be easily explained to an able student.

This method is often needed in solving Olympiad problems, but the
Australian experience shows it can well be used in inclusive classroom
competitions. The following problem was set in the 2007 AMC and 17% of
the entrants successfully solved it.

Problem 3
A 1 × 1 × 1 cube is cut out of a 10 × 10 × 10 cube. Then a 2 × 2 × 2
cube is cut from the remainder followed by a 3 × 3 × 3 cube and so on.
What is the largest cube which can be cut out?

Note: Such a solution will need to prove optimality, and also find an
example to show existence of the optimal. Quite often optimality is the more
difficult part of the proof, but here, optimality is fairly obvious and to tidy up
it is a little work to show how it can be done.

Solution 3
Part 1: Optimality

We cannot cut out a 6 × 6 × 6 cube and a 5 × 5 × 5 cube at the same
time, as there would have to be overlap on at least one layer, as 5 + 6 > 10,
the number of layers in the large cube.
Part 2: Existence

The end on view shows how cubes 1 × 1 × 1, 2 × 2 × 2,
3 × 3 × 3, 4 × 4 × 4 and 5 × 5 × 5 can be cut from the larger cube,
so the largest possible is 5 × 5 × 5.

Note: This shows a 5 × 5 × 5 is possible, but it does depend on the
smaller ones being taken out in certain ways, such as the one shown.

4. Proof by Cases
This is an exhaustive method of proof involving breaking down a situation
to mutually exclusive cases, where separate proofs apply within each case.
The mutually exclusive cases must include each possible outcome. The
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following is an example set in the AMC in 2010, which 6% of the entrants
were successful.

Problem 4
An ascending number is one in which each successive digit is greater than
the one before. A descending number is one in which each digit is less than
the one before.

Find the 3-digit descending number which is the square of an ascending
number.

Note: In this solution we resort to finding each case of a possible 3-digit
descending number which can be a square and identifying the one from
these cases which is the square of an ascending number.

Solution 4
A 3-digit descending number will be at least 210 and at most 987, so it will
be the square of an ascending number n which is at least 15 and at most 31.
Also n2 cannot end in 9, so n cannot end in 3 or 7. So, the possible values
for n are:

n 15 16 18 19 24 25 26 28 29
n2 225 256 324 361 576 625 676 784 841

We note that 292 = 841 is the only three-digit descending number which
is the square of an ascending number.

5. Proof by Contradiction
This is a well-established method of proof using logical reasoning used in
several popular proofs, such as that the square root of 2 is irrational, and that
the number of primes is not finite. School students are familiar with this
method in some countries.

I illustrate the method with a problem set in the very first Tournament of
Towns, in 1980, by Agnis Andjans, of Riga, and solution by Jordan Tabov,
of Sofia. The solution does require some graph theory, which will be dis-
cussed later.

Problem 5
In an N × N array of numbers, all rows are different (two rows are said to
be different even if they differ only in one entry). Prove that there is a
column which can be deleted in such a way that the resulting rows will still
be different.

Note: Whereas there are other methods of solution, contradiction presents
as an obvious option, by assuming the result is not possible.
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Solution 5
Suppose the contrary, i.e. that if we delete any column of the given array
then among the resulting rows there are two identical rows.

Consider a graph G, whose vertices are the rows of the given array, and
whose edges are determined by the columns of the array, each column
determining exactly one edge according to the following rule: after deleting
any column ci (i = 1, 2, …, n), there is at least one pair of equal resulting
rows; choose one of these pairs, and connect the rows in this pair by an
edge; the edge so obtained corresponds to ci.

Note that an edge cannot correspond to different columns ci and cj,
because otherwise the rows connected by this edge must be equal, which is
not true.

So we obtain a graph G with n vertices and n edges. But every such graph
contains a cycle, i.e. a sequence of vertices r1, r2, …, rm, r1 (pairwise
distinct), each two consecutive of which are connected by an edge.

Let ci be the column corresponding to the edge riri+1, i = 1, 2, …, m − 1,
and let cm be the column corresponding to the edge rmr1. Then r1 and r2
differ only in the number lying in c1, and hence their numbers in cm are
equal. Similarly the numbers of r2 and r3 in cm are equal, …, the numbers of
rm−1 and rm in cm are equal. Together with the fact that rmr1 corresponds to
cm this leads to the conclusion that r1 and rm are equal, which contradicts the
given property of the array.

Consequently our assumption is false, i.e. there is such a column that
after deleting it from the array all the resulting rows are still different.

Note: This is a method of proof and can’t be tested properly in an
inclusive competition with multiple choices, but the method is accessible to
students showing talent in the classroom.

6. Counting by Exhaustion
Counting problems are commonly used in competitions, especially if the
number of cases is small enough to not make the process too laborious as to
lose the structure of the situation. They are not normally discussed in the
classroom, but can be used in inclusive multiple choice problems, as they do
not normally require much formal instruction. Rather, they can test a stu-
dent’s intuitive ability to organize and find a systematic pathway. Certainly
the Australian Mathematics Competition has a history of setting problems of
this type, with reasonable success rates. The following is an example.

Problem 6
In the school band, five children each own their own trumpet. In how many
ways can exactly three of the children take home the wrong trumpet, while
the other two take home the right trumpet?
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Solution 6
Suppose the students taking home the wrong trumpet are called A, B and
C. These can take the wrong trumpets in two ways, e.g. A takes trumpet B,
B takes trumpet C and C takes trumpet A, or A takes trumpet C, B takes
trumpet A and C takes trumpet B.

We need also to know how many ways A, B and C can be chosen from
the five. This is the same as the number of ways in which the two with the
right trumpets can be chosen, this being ten (e.g. if the students are called A,
B, C, D and E these are):

A andB,A andC,A andD,A andE,

B andC,B andD,B andE,

C andD,C andE, and

D andE,

or a student familiar with combinatorics would know the number of ways of
choosing 2 objects from 5 is

5
2

� �
=

5!
2! 5− 2ð Þ! =

5!
2! 3ð Þ! =

120
ð2Þð6Þ =10.

Thus the answer is 10 × 2 = 20.
Notes: There are various types of systematic counting. One in which we

try to count the number of ways in which every member of a set is placed in
the wrong order is called a derangement problem. In the above problem only
some of the members are in the wrong order, so it is called a partial
derangement problem. There are many other types of problem in which
systematic counting will work when the numbers are small enough to be
manageable. I explore this further in the next discussion.

7. Counting Systematically
The above problem was of manageable size. But could we solve the
problem if there were 100 students and trumpets and 79 exactly took home
the wrong trumpet? Clearly we get quickly to a complicated situation. It
would be convenient if we could explore for patterns and find a formula.
Well, a full derangement formula can be found via the inclusion-exclusion
(see Niven 1965), and associated with this there is a formula for solving
partial derangement problems as above.

The full derangement formula is, if D(n) is the number of ways a set of
n numbers can all be placed in the wrong position,
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D nð Þ= n! 1−
1
1!

+
1
2!

−
1
3!

+⋯+ ð− 1Þn 1
n!

� �
.

For example, the number of ways of placing 4 numbers in a way that
none are in the right position is

D 4ð Þ=4! 1−
1
1!

+
1
2!

−
1
3!

+
1
4!

� �
=24− 24+12− 4+ 1=9.

Alternative Solution 6
The formula for a derangement problem, giving N(n, r), the number of ways
of arranging n numbers with r placed in the wrong order, is

Nðn, rÞ= n
r

� �
×D rð Þ.

In the case of the trumpet problem, n = 5 and r = 3, and so the answer is

5
3

� �
×D 3ð Þ= 5!

2!3!
× 3! 1−

1
1!

+
1
2!

−
1
3!

� �
=

120
12

× 9− 9+ 3− 1ð Þ=10× 2=20,

as before.

Comment
In fact the inclusion-exclusion principle is a rich way of generalizing
counting problems to large numbers. There are other cases of counting
generalizations we have used in the Australian Mathematics Competition is
the necklace formula of George Pólya, where the number of ways of making
a necklace with n beads of k colors is k − (kn − k)/n.

8. Inverse Thinking
Sometimes in dynamical problems, where the state of a system changes step
by step to a new state, it can become simpler to identify the final state and
identify the change mechanism in reverse.

The following problem, taken from the Mathematics Challenge for
Young Australians, illustrates this.

Problem 8
A Fibonacci sequence is one in which each term is the sum of the two
preceding terms. The first two terms can be any positive integers. An
example of a Fibonacci sequence is 15, 11, 26, 37, 63, 100, 163,…. We will
assume that terms must be positive.
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1. Find a Fibonacci sequence which has 2000 as its fifth term.
2. Find a Fibonacci sequence which has 2000 as its eighth term.
3. Find the greatest value of n such that 2000 is the nth term of a Fibonacci

sequence.

Notes: This problem clearly invites inverse thinking, that is starting with
the last term in the sequence and finding terms which can lead to it. The term
before can be anything, but once that has been chosen the preceding ones
are fixed. So all depends on the choice of the term before 2000.

Solution 8
Part 1. One can easily find second last terms which lead backwards to a
negative term rather quickly. But it is not too difficult to find one, such as
choosing 1250 as the fourth term, leading to 250, 500, 750, 1250, 2000.
Part 2. It is now a much tighter choice for the fourth term. Systematic
trialing will show that only the choice of a number between 1231 and 1249
will yield a sequence with 8 positive terms.
Part 3. The only way of getting 10 terms is the following (showing
sequences in reverse).

2000, 1236, 764, 472, 292, 180, 112, 68, 44, 24

2000, 1237, 763, 474, 289, 185, 104, 81, 23, 58

2000, 1238, 762, 476, 286, 190, 96, 94, 2, 92

Note that the last two cannot be extended as the next term would be
negative. But the first one can be extended 20, 4, 16 before going negative.
So the answer is n = 13.

Note: This problem had an added bonus in that it can lead to the golden
ratio. This can be found by looking at the solution of the recurrence relation
an+2 = an+1 + an.

9. Invariance
Sometimes in a dynamical system where the state changes step by step, a
useful insight into the problem can be found by looking for a condition
which does not change as the system progresses. An example might be
noting that parity of a number, or remainder when divided by a given
number, might be unchanged.

The following well-known problem typifies the idea in this method.

Problem 9
On the island of Camelot live 13 grey, 15 brown and 17 crimson chame-
leons. If two chameleons of different colors meet, they both simultaneously
change color to the third color (e.g. if a grey and brown chameleon meet
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they both become crimson). Is it possible they will all eventually be the
same color?

Comment
When I tried to solve this problem I experimented working forwards from
the beginning data but made little progress. Then I tried inverse thinking,
starting with a successful end point, and this helped me finally to identify the
pattern leading to the invariant.

Solution 9
The starting configuration has populations 0, 1, and 2 modulo 3. This sit-
uation remains invariant no matter which two chameleons touch noses. So
the desired configuration, which has all three equal to zero modulo 3 is not
possible.

10. Coloring
Sometimes, such as in a tiling problem, an insight can be obtained by
coloring tiles according to a set of rules (some might see it as a similar thing
to finding a construction line in geometry). A very simple example of such a
problem is the following well-known one.

Problem 10
An 8 by 8 checkerboard has it top-left and bottom-right squares removed.
Can 31 dominoes (1 by 2) can be placed over the remaining 62 squares?

Comment
One can try this problem for some time trying to get dominoes to fit and not
succeed nor necessarily get a reason for why not. But coloring provides a
very simple explanation.

Solution 10
Each domino necessarily has one of each color in the normal checkerboard
coloring scheme. However the two squares removed are of the same color,
leaving an imbalance.

Further Comment
This example provides a coloring with two colors on a chessboard, but in
fact the idea can be extended to more colors in richer situations.

11. Geometry
Geometry is an important part of the syllabus, not because of an expectation
that various theorems will really be used by the average person in later life,
but because it provides accessible methods for developing systematic
thought processes. It is often unpopular with teachers who are not

12 Future Directions for Research … 313



well-trained, and hence it has declined in many syllabi, but once getting past
a certain point, good students can be trained in it.

Geometry is a very common component of competitions, and in most it is
expected a student has a reasonable knowledge of line and circle geometry.
It provides problems for instance which are successfully solved by students
at International Mathematical Olympiads. The following problem, com-
posed by Bob Bryce, of the Australian National University, was set in the
Australian Mathematics Competition, and shows how the line and circle
geometry can be used to solve useful and practical problems.

Problem 11
The latitude of Canberra is 35°19′S. At its highest point in the sky when
viewed from Canberra the lowest star in the Southern Cross is 62°20′ above
the southern horizon. It can be assumed that rays of light from this star to
any point on the earth are parallel.

What is northernmost latitude at which the complete Southern Cross can
be seen?

Comment
The solution follows fairly readily after drawing a diagram and recognizing
a cyclic quadrilateral.

Solution 11

The northernmost point is where a ray of light from the star is tangential
to the earth’s surface, i.e. point A in the diagram. The object is to determine
the value of x in the diagram.

Consider the quadrilateral OABC in the diagram.
Because the angles at A and C are 90°, the remaining two angles must add

to 180°.
Therefore x° + 35°19′ + ∠ABC = 180°.
Because the rays reaching points A and C are parallel it is clear that

∠ABC = 180° − 62°20′. Therefore x° + 35°19′ + 180° − 62°20′ = 180°,
giving x° = 62°20′ − 35°19′ = 27°01′.
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Comment
It is worth noting that this means the Southern Cross can be seen from just
over 27° north and this was used by French navigators pioneering air routes
over the Sahara desert to South America.

12. Graphical Methods
When an algebraic problem looks messy to solve as such, the problem
solver can often gain great insight by attempting to sketch components in a
problem. Sometimes a function with several terms can have its graph built
up in stages by graphing its various components and combining them. This
is well illustrated by the following problem.

Problem 12
Find all the solutions of x2 − [x] − 2 = 0.

Comment
Initially algebraic methods look complex, while even drawing the graph of
the function on the left hand side is difficult. However the solution follows
more quickly if we note that the equation is equivalent to x2 − 2 = [x] and
draw the graphs of the functions on each side, looking for where they cross.

Solution 12
We have the following diagram.

This leads to a clear discovery that there are three solutions, two of which
are integer, (−1, −1) and (2, 2) and the one where y = 1 and it turns out
using symbolic calculation that this root is at (√3, 1).

13. Probability
Probability is a very important, and neat branch of mathematics, but our
experience is that great care needs to be taken in formulating the problem
statement, as such problems can easily be worded in a way to lead to double
meaning, especially if there is a Bayesian context. Many good problems can
be formulated without broaching the Bayesian and solutions often require
skills overlapping with other methods, such as finding mutually exclusive
cases and counting methods.
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A good example of an AMC question with Bayesian flavor, which was
set in multi-choice mode, is the following.

Problem 13
A deck of 16 cards contains the four aces, four kings, four queens and four
jacks. The 16 cards are thoroughly shuffled and my opponent (who always
tells the truth) draws two cards simultaneously and at random from the deck.
I ask him if he has drawn at least one ace. He looks at the cards simulta-
neously and replies ‘yes’. What is the chance that he holds two aces in his
hand?

Comments
This was a difficult question, beyond the student with average classroom
experience, and set as a challenge to the talented student. The number of
cards, and outcomes, is too large to count the outcomes exhaustively, so a
structural solution is needed.

Solution 13
Let C1 be card 1 (drawn first) and C2 be card 2 (drawn second).

Then the total number N1 of pairs which include exactly one ace equals
the number of pairs for which C1 is one of the four aces and C2 is one of the
12 non-aces or C1 is one of the 12 non-aces and C2 is one of the four aces.
This equals 4 × 12 + 12 × 4 = 96.

The total number N2 of pairs for which both cards are aces equals
4 × 3 = 12.

Therefore the probability of 2 aces given that at least one is an ace is the
number N2 of pairs with two aces divided by the number N1 + N2 of pairs
with at least one ace, i.e.

12
96+ 12

=
1
9

or 1 in 9.

14. Logic
Inclusive competitions like the Australian Mathematics Competition often
pose problems which require finding strings of logical implications from
given statements to finding a broader one. They can be rather intuitive. An
example of one which was correctly answered by 55% of Year 8 students is

Problem 14
If, in the Republic of Utopia, the statement ‘all citizens have two legs’ is
false, which of the following statements must be true?
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I. All citizens have more than two legs.
II. Not all citizens have two legs.
III. No citizen has two legs.
IV. There are some citizens with more than two legs.

Solution 14
It is self-evident that Statements I, III and IV need not be true.

15. Graph Theory
This is a popular subject, but does need some instruction. However students
can be quickly led into some rather powerful concepts, such as those Euler
discovered when solving the Königsberg bridges problem. The following
problem, based on Muscovite folklore, is a nice example from the Tour-
nament of Towns, set in 1984.

Problem 15
A village is constructed in the form of a square, consisting of 9 blocks, each
of side length l, in a 3 × 3 formation. Each block is bounded by a bitumen
road.

If we commence at a corner of the village, what is the smallest distance
we must travel along bitumen roads, if we are to pass along each section of
bitumen road at least once and finish at the same corner?

Comment
Whereas the solution relies on Euler’s discovery, the following proof, by
Andy Liu, of Edmonton, is also a classic example of a discrete optimization
proof, with an optimization component and an existence component.

Solution 15
(Existence) The diagram shows a closed tour of length 28 and we claim this
to be a minimum.

(Minimality) Each of the four corners is incident with two roads and
requires at least one visit. Each of the remaining twelve intersections is
incident with three or four roads and requires at least two visits.

Hence the minimum is at least 4 + 12 × 2 = 28.
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16. Mechanics
This is important, but not popular. Also, of the various methods referred to
here, we found it to be the one topic in which boys do significantly better
than girls. Gender issues are discussed in more detail below.

17. Cutting Edge
Contrary perhaps to some perceptions, problem solving is an evolving
branch of mathematics. Sometimes long-forgotten methods re-emerge. The
most remarkable of these is the re-emergence, in Western mathematics of
the use of Barycentric Coordinates, developed by Möbius, which can sim-
plify solution of some geometry problems such as proving collinearity.

Also, new problem solving methods and methods of teaching problem
solving, evolve, and the process of solving or composing problems can lead
to new discoveries in mathematics. I note that in Olympiad training the
emergence of Muirhead’s Inequality has streamlined the required knowl-
edge, and members for example of the Problems Committee of the Math-
ematics Challenge for Young Australians have written a number of refereed
papers as a result of discoveries during problem composition.

New methods can especially evolve via national school problem-solving
journals such as Kvant in Russia and KöMal in Hungary, sometimes taking
advantage of research discoveries in mathematics.

To the author the nicest such development in recent years was that of the
method of moving parallels, which enables the solution of certain problems
when tessellating within polygons. It is illustrated here by the following
problem from the International Mathematics Tournament of Towns. It was
used in 1983, composed by VV Proizvolov of Moscow, and the solution is
by Andy Liu, of Edmonton.

Problem 17
A regular 4k-gon is cut into parallelograms.

(a) Prove that among these there are at least k rectangles.
(b) Find the total area of the rectangles in (a) if the lengths of the sides of the

4k-gon equal a.

Comment
This is a highly unconventional type of geometry problem. Students with
classroom geometry tools might try some of them but traditional Euclidean
methods are not really available. The solution below illustrates how moving
parallels inside the polygons can be used.
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Solution 17

(a) Let the regular 4k-gon be dissected into parallelograms.
Let x1 and x2 be a pair of opposite sides. The set of all parallelograms
with one side parallel to x1, starts from x1 and eventually reaches x2,
possibly subdividing into several streams. The diagram illustrates the
case of a regular octagon.

Since the regular polygon has 4k sides, there is a pair of opposite sides
y1 and y2 perpendicular to x1 and x2. The set of parallelograms with one
side parallel to y1 starts from y1 and eventually reaches y2, again pos-
sibly subdividing into several streams.
Now these two sets of parallelograms must cross each other.
This is only possible at parallelograms with one pair of opposite sides
parallel to x1 and the other to y1.
Since x1 and y1 are perpendicular, this parallelogram is actually a rect-
angle (due to subdividing into several streams, four such rectangles
based on x1, x2, y1, y2 in the diagram exist and are shaded).
In the regular 4k-gon, there are k sets of mutually perpendicular pairs of
opposite sides. Hence there must be at least k rectangles in the
dissection.
Note that in the diagram we can also identify a rectangle (in fact three
exist) based on the two other pairs of opposite sides.

(b) Since the sides of the 4k-gon are all of length a, the width of each set of
parallelograms in (a), in the direction of the side of the 4k-gon defining
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the set, is equal to a. It follows that the sum of the areas of all rectangles
in the set is a2.
It follows that the total area of the rectangles is ka2.

12.2.2 Research Directions

The above journey through a number of problem solving methods and topics
is intended to ask research questions and answer them when possible.
Before doing this I make one general observation, and that is that these
methods increase the student’s ability to think structurally and have nothing
to do with dealing with calculation intensity. I also believe that proficiency
with these methods which can be implemented beyond the classroom better
equip the student for their experiences in later life. I feel there is a great role
for researchers, most likely through the WFNMC as the relevant interna-
tional professional society in developing this list and studying the effects on
students, both by analyzing results in competitions, but also interviewing or
surveying students not only in the wake of their competition experiences,
but on reflection later in life.

The more such material can be developed, the more it will help future
people design better competitions and better problems. But it should not
imply there is only one way of doing things. On the contrary, it should be in
an innovative setting, with the understanding that mathematics is not a dead
and immovable object, but in a discipline in which new things are discov-
ered. This purpose is reflected in “17. Cutting edge” where examples from
Tournament of Towns and corresponding discussions in student Journals
such as Kvant have seen problem solving methods evolve.

There are a number of other similar areas where WFNMC should build
up more formal knowledge about the effect of different types of problems on
different categories of students. One of the most recent papers analyzing
these sort of issues is Leder and Taylor (2010). This contains some gender
and some topic analysis.

12.2.3 Gender Issues

It is a well-documented fact that boys tend to outnumber girls in IMO teams
and competition medal lists. This tends to happen despite girls being equal
in number in the initial entry group. It is true that our previous studies
showed slight (not statistically significant, normally) average scores in favor
of boys, we did an analysis of standard deviations, and discovered boys’
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standard deviations to be consistently higher than that for girls across the
board.

In this paper we also looked at gender scores by topic, including that at
primary schools. This study is of scores in the Australian Mathematics
Competition for the years 2004–2008. We categorized questions by arith-
metic, algebra and geometry, each subdivided into basic (single-step) and
advanced (multi-step). We also looked at problem solving, where a situation
was described in words, both in familiar and unexpected situations. With
geometry we also looked at problems with and without diagrams provided
and those in 2 dimensions and others in 3 dimensions. We also looked at
special other categories such as mechanics, enumeration and ratio. The data
involves several hundreds of thousands of students.

We found that at the secondary levels boys were ahead in all categories
but in all except mechanics not significantly ahead. With mechanics we
found the results for boys were significantly better than for girls.

The results were similar in most topics at primary schools, but girls
narrowly outscored boys in primary schools in most geometric topics,
probably against conventional wisdom.

12.2.4 Risk-Taking Patterns

A further area in which competitions have helped provide useful information
is in measuring risk taking. This can, and has been done in situations where a
penalty is applied for incorrect response. The Australian Mathematics
Competition applied such penalties until 2002, under the assumption that it
would discourage guessing and encourage responding only when the student
believed they had solved a problem. Atkins et al. (1991) used the Ziller
statistic and other measures devised by the authors to analyze risk taking in
the 1988 and 1989 AMC papers. They did deduce that risk taking declined as
students grew older, but left an open result on gender, contrary to popular
belief that boys take more risks than girls. If anything girls were more likely
to take more risks when younger, and boys more likely when older.

12.3 Alumni

I have found it very useful to have statistics of what careers competition
winners take up in later life, but also to have their own reflections on how
their competition experience influenced their decisions. Olympiad programs

12 Future Directions for Research … 321



are intense and expensive, and often involve travel and living away from
home expenses. Many families cannot afford this, especially when a talented
student is likely to be attending two long camps away from home for
domestic training, and then international airfares. In Australia we particu-
larly have felt this, because of distances within our own country, and our
distance from most other countries.

So it was important for us to obtain government funding, to enable
participation by all selected students and not just those from wealthy fam-
ilies. Whereas we had a lot of information for the last 3-year funding cycles
while I was Director of the Australian Mathematics Trust, in order to justify
funding the Australian Government provided extra funds for significant
surveys, the first just on alumni, the second a major external review which
was conducted by international accounting firm PricewaterhouseCoopers.
No one should fear such reviews. Alumni enjoy their experience and there is
no doubt all such experience will improve their skill and knowledge base,
and their confidence.

12.3.1 National Competition Winners Alumni—Australia

I will come to them but first I look at our own follow-ups on alumni from
our national competition. Many papers have been written on the medalists
from the Australian Mathematics Competition (AMC), which started in
1978 and attracts several hundred thousands of entries each year, mostly
from Australia, but also from about 40 countries, mainly in the Asia Pacific
region and is now held under the auspices of the Australian Mathematics
Trust. In Australia, and in some other countries, this event, which is easy to
organize in schools, and involves multi-choice questions, is used as a first
identifier of students who might enter invitational Olympiad training.

We have conducted research analyzing many features of student activity
in the AMC, including gender issues, risk taking behavior and student
interests and ambitions. The key one which reflects on the students as
alumni would be Leder (2011), in which we conducted a large scale survey
of former medalists. In the period between 1978 and 2006 there were 420
different students who received medals, the top award. Of the 420 letters
sent out 52 were returned as undeliverable, leaving 368 possible respon-
dents. In all we received 90 useable responses, which at over 25% of the
possible population we felt was good. A small subset of these who were
mathematicians and indicated willingness to be interviewed further were
followed up with more in-depth questioning.
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About 40% of the respondents said they were in professions which used
their mathematics. Responses to questions such as how they felt about the
experience was overwhelmingly favorable, with comments such as

• A source of pride—we were immensely competitive in a good-natured
way at school and there were 3 or 4 students in my year who won AMC
medals in various years. We still get together every year to do the…AMC
competition paper over dinner (our 15th year this year).

• Selection into the Mathematical Olympiad training programme, with
many flow on benefits, including: learning much more mathematics and
at a higher level, meet like-minded people many of whom are now good
friends, encouragement to continue with mathematics.

• I think (it) got me an invitation to participate in the Tournament of the
Towns—which in turn meant regular exposure to (a) more challenging
mathematics, and (b) other extremely talented students. I gained a great
deal from this program. At school, I got somewhat embarrassed by the
fuss and teacher pride, but on the other hand my teachers were happy to
let me do other things in class once I finished class work.

These types of response definitely indicate that students felt their expe-
rience in the competition added value to their educational profiles. I do note
that the students discussed above are the elite. My own personal interest
though goes to the wider class of average standard student who we were
unable to survey. I accept that below-average students will not enjoy a
competition experience, but I would hope that average students can, and that
some discover talent that the classroom was unable to detect.

The Leder (2011) paper was also one of a number in which we built a
profile of the gifted student. When winning a medal students complete a
survey which canvases their other interests and their aspirations. We found
that there was a very high correlation between AMC medalists and students
competent with a musical interest, and also with sport (some appearing to
hold sporting records).

12.3.2 Olympiad Alumni—Australia

I now move on to our former Olympians. The best record I have of Aus-
tralian IMO alumni from 1981 to 2012 is at Taylor (2013). I just consider
those to 2007, as the later ones have not had an opportunity to establish a
career. Some are difficult to classify as the have changed careers in
mid-stream or they have worked over more than one discipline at the same
time.
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Altogether there are 118 different students who have participated at IMO
for Australia. Of these we are not aware of what happened to 5 of them,
mainly from the earliest three years. But 99 of them undoubtedly moved into
seriously good careers, involving mainly mathematics, but sometimes
informatics, physics, a career in finance or technology specially using their
mathematics knowledge, or in a couple of cases full professors of philos-
ophy at prestige universities. A further 12 moved into medicine or law,
although in some cases they combined the professions with some form of
quantitative work (mathematical biology, still training IMO students etc.).
Just 2 are known to have moved out of mathematics for most of their
careers, but both had mathematical components in their earlier careers.

Some might say this is not surprising, and that such students would
expect to go on to mathematics anyway. But in the follow up studies it
becomes apparent they were not headed to mathematics until the out of
school opportunities arose, and always when asked they are emphatic that
their career choice was positively influenced by their Olympiad experience.
Example comments from our 2006 (government funded) survey:

• Significantly. It was one of the influences that eventually resulted in my
pursuing a Pure Mathematics major in my science degree.

• I was probably always going to do Maths & Computer science, but the
amount I learnt at the training camps meant I was able to accelerate my
subject choices.

• It showed me how there is much more intellectual depth to Maths than
what is taught at school.

12.3.3 Olympiad Alumni—Germany

Another country which has a similar alumni data base is Germany. Germany
has published a book Engel et al. (2009) which lists all its IMO alumni, in a
similar way to Australia, from the inception of IMO in 1959–2008. If later
activity is known it says whether or not the alumnus studied further math-
ematics at University, whether or not this led to a doctorate, it will state later
employment if known also. I did not count the ones after 2002 because then
it is not reasonable to expect a doctorate before 2008 where the data ceases.
It seems that the German (East and West, and unified) programs have been a
bigger pathway to a doctorate in mathematics or related subject in physical
sciences or engineering or philosophy than Australia.

I counted 158 East German alumni, but a large number (30) where
unknown afterwards, these being in particular from earlier years. Of the 128
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known students no less than 93 went on to receive doctorates in mathe-
matics or closely related disciplines, and a further 28 studied for a mathe-
matics or related degree and then had a degree based on that, such as in the
teaching or finance professions. Of the remaining seven, 5 had worthy
professions such as medicine or other non-mathematical areas.

It is similar for those in West German or later unified German teams. Of
these there are 95 alumni (West Germany started at IMO much later), of
whom 15 later careers are unknown. Of the known 80 alumni, 55 achieved
mathematics-related doctorates, 22 obtained mathematics related degrees
and went on to appropriate later careers such as teaching or finance, and all
of the remaining 3 went into respectable professions such as medicine.

One observes from both the Australian and German experiences that IMO
training has at least held these students in high level mathematics and if the
attitudinal Australian surveys are indeed reflective, the experience of IMO
training and involvement influenced these career choices. I am sure these
data can be extrapolated to show that IMO programs are good for a coun-
try’s economy. In fact in the PricewaterhouseCoopers report for the study
commissioned by the Australian Government referred to above, which is
confidential, it is assumed that building up a higher level knowledge base in
mathematics is good for a country’s economy.

12.4 Concluding Remarks

I have reflected on the achievements and current status and operations of
WFNMC and outlined two major areas where large scale systematic
research can benefit the quality of competitions, enhance their image and
justify support from government and other sponsors. Building up a large
body of knowledge on the effects of various types of problems on various
classes of students, and development of a similar body of knowledge on the
effects of competition experience on later careers of students can lead to a
better understanding on why we run competitions and how we might do it
better.

References

Atkins, W. J., Leder, G. C., O’Halloran, P. J., Pollard, G. H., & Taylor,
P. J. (1991). Measuring risk taking. Education Studies in Mathematics,
22, 297–308.

12 Future Directions for Research … 325



Barbeau, E. J., & Taylor, P. J. (2009). Challenging mathematics in and
beyond the classroom: The 16th ICMI study. New York: Springer.

Engel, W., Gronau, H.-D., Langmann, H.-H., & Sewerin, H. (2009). The
German teams at the international mathematical Olympiads 1959–2008.
Bad Honnef: KH Bock.

Kenderov, P. (2009). Competitions and mathematical education. ICM
Bulletin and WFNMC. http://www.wfnmc.org/history.pdf.

Leder, G. (2011). Mathematics taught me Einstein’s old cocktail of
inspiration and perspiration: Mathematically talented teenagers as adults.
Canadian Journal of Mathematics, Science and Technology Education,
11(1), 29–38.

Leder, G. C., & Taylor, P. J. (2010). Are Raelene, Marjorie and Betty still in
the race? The Australian Mathematics Teacher. 66(2), 17–24.

Niven, I. (1965). Mathematics of choice—How to count without counting.
Mathematical Association of America.

Taylor, P. (2013). IMO students. https://sites.google.com/site/pjt154/home/
a2-imo-students.

Taylor, P. (2014). Mathematics content. https://sites.google.com/site/pjt154/
mathematics-content.

Taylor, P. (2015). Classifying methods of problem solving—And my
favourites. Mathematics Competitions, 28(1), 7–27.

326 P.J. Taylor

http://www.wfnmc.org/history.pdf
https://sites.google.com/site/pjt154/home/a2-imo-students
https://sites.google.com/site/pjt154/home/a2-imo-students
https://sites.google.com/site/pjt154/mathematics-content
https://sites.google.com/site/pjt154/mathematics-content


Part VII
A Bridge Between Competitions and ‘Real’

Mathematics



Chapter 13
Are Mathematics Competitions Changing
the Mathematics that Is Being Done
and the Way Mathematics Is Done?

María Falk de Losada

Abstract The relation between mathematics competitions, as a branch of
mathematics education, and mathematics is examined with the aim of
establishing a particularly strong influence of competitions over mathe-
matics itself. It is argued that mathematics competitions have generated a
school that spread from Hungary all over the world and changed the face of
mathematics, especially in the last half of the twentieth century, and that
competitions such as the IMO have helped to form mathematicians who
have rethought mathematics itself.

Keywords Mathematical competitions ⋅ Problem solving ⋅ Contempo-
rary mathematics ⋅ Hungarian school ⋅ IMO-International Mathematical
Olympiad ⋅ Epistemology ⋅ Methodology

13.1 Introduction

Parallel to our 35 years of experience with mathematical olympiads, at the
national, Iberoamerican and international levels we have witnessed changes
to mathematics itself. In this paper we wish to explore the question of
whether or not mathematics education can have an impact on mathematics.
The particular branch of mathematics education that we will examine is that
related to mathematics competitions, competitions of solving original and
challenging mathematical problems.
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Mathematical problem solving competitions are not new. For example, in
the twelfth century on the occasion of the visit of the Holy Roman Emperor
to Sicily, the local Norman king launched a competition to solve a particular
problem, a cubic equation, as part of the celebration. Leonardo de Pisa, also
known as Fibonacci, took part in the competition. The equation (in modern
notation) was

x3 + 2x2 + 10x=20

Now cubic equations have been solved at least since the classic era of
Greek mathematics, and the original methods involved finding the inter-
section of two conic sections. Similar methods were employed by Arab
mathematicians in the tenth and eleventh centuries. And although Leonardo
learned his mathematics from Arab scholars, his approach to this particular
problem was novel. First, he factored 10 to obtain

10 ðx+1 ̸10 x3 + 1 ̸5 x2Þ=20 or x+1 ̸10 x3 + 1 ̸5 x2 = 2.

Since mathematics only worked with positive numbers at the time, this
last equation implies that x < 2. But if we substitute x = 1 in the original
equation, we obtain 1 + 2 + 10 = 13 < 20, so that x > 1. Leonardo
observes that the equation must have a root between 1 and 2, a thoroughly
modern observation in which notions of continuity and the intermediate
value theorem are implicit. He then proves that the root cannot be rational,
and that it does not belong to any of Euclid’s categories for numbers con-
structible by ruler and compass. Leonardo then goes on to approximate the
value of x using sexagesimal fractions as x ≈ 1º22′7″42′″33″″4′″″40″″″.

The implication is that in algebra it is possible to encounter numbers that
are not encountered geometrically (de Manrique and de Losada 1997). Or to
put it more broadly, the Greek’s identification of positive real numbers with
magnitudes of segments is correct, but the concomitant supposition that
these segments can be constructed with ruler and compass is incorrect.
Leonardo published his results in his Flos.

The impact of Leonardo’s work on the solution of this competition
problem was felt for centuries. It includes the impulse given to work in
algebra and solution of the cubic and quartic equations by the great Italian
algebraists of the sixteenth century, the shift toward an algebraic foundation
for mathematics as opposed to a geometric one, the notion of algebra as a
source for numbers that are not geometrically constructible, the considera-
tion of the idea of a polynomial function and its continuity, the represen-
tation of functions by power series (“infinite polynomials”), among many
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other features of renaissance and early modern mathematics. This shift
occurred over centuries and, clearly, was not at once noticeable.

Coming closer to our topic in today’s world, what was the relationship of
mathematics to mathematics education at the time mathematical problem
solving competitions reappeared in the second half of the nineteenth century
in the setting of school mathematics? We believe that the most relevant
feature was the increasing specialization in mathematical research, the
necessity of studying a specialized branch of mathematics deeply in order to
do research and solve original mathematical problems. In other words,
mathematics itself had gone beyond the scope of what both aficionados
from the general public and students could understand and work on. We
believe this is what led both mathematicians and mathematics teachers to
look for interesting, genuine and challenging problems that young minds
could understand and solve, and become involved, sometimes passionately
involved, in mathematics.

What we wish to argue in this paper is that, in a similar way to the case of
Leonardo de Pisa, mathematical problem solving competitions are changing
the mathematics that is being done and the way mathematics is being done,
and we anticipate that their impact will extend into the future.

13.2 A Word About the Hungarian School

Mathematical problem solving competitions, as a branch of mathematics
education, has a feature that distinguishes the work being done from every
other initiative in the field. And this has its roots in Hungary in the Eötvös
and Kürschák competitions and the journal of problems in mathematics and
physics, Középiskolai Matematikai Lapok or KöMaL. With common roots
in these pioneering competitions, a school was formed that produced out-
standing figures in mathematics, in methodology and in epistemology.

Beginning with the work and leadership of Lipót Fejér (Leopold Weiss)
who grew up solving problems from KöMaL and who placed second in the
Eötvös competition of 1897, a school was formed that came to include, in
varying degrees, Paul Erdős, George Pólya and Imre Lakatos, the great
mathematician and collaborator with mathematicians around the globe, the
influential thinker on problem solving and method, and the philosopher–
epistemologist who dared to question formalist mathematics proposing an
alternative interpretation of the character, origins, structure and justification
of mathematical knowledge and its historic evolution. These three stand out
among the many great Hungarian mathematicians whose mathematical
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formation began in or was intimately related to the competitions, especially
because they migrated to England and the United States and worked and
published in English, thus opening their ideas and results and bringing them
to bear on the worldwide community of mathematicians and mathematics
educators. In what follows we outline their contributions.

Lipót Fejér (1880–1959), precursor

Once competitions devoted to solving challenging mathematical problems
were well established in Hungary, a new school of mathematics began to
take form in that country rooted in the competitions. One of the first winners
of the Eötvös Competition was Leopold Weiss (Lipót Fejér), and he was
destined to become one of the mathematicians who were highly instrumental
in forming the new generations of the Hungarian school.

Fejér’s attitude towards mathematics changed dramatically in secondary
school when he began solving problems from KöMaL and in 1897, the year
in which he graduated from secondary school in Pécs, Fejér won second
prize in the Eötvös Competition. That same year, Fejér began his studies in
the Polytechnic University of Budapest where he studied mathematics and
physics until 1902. Among his professors in Budapest were József Kürschak
and Lórand Eötvös, whose names are well known to all who have worked in
mathematics olympiads.

Pólya said the following of Fejér (Albers and Anderson 1985).

Why was it that Hungary produced so many mathematicians in our
time? Many people have asked this question which, I think, cannot be
fully answered. However, there were two factors whose influence on
Hungarian mathematics is clear and undeniable, one of these was
Leopold Féjer, his work, his personality. The other factor was the
combination of a competitive examination in mathematics with a
problem solving journal.

In what follows we offer some considerations to answer the question:
What is the relationship between Erdős, Pólya and Lakatos and why is it
important to the ideas we wish to express?

Paul Erdős (1913–1996), the great mathematician, problem poser and
solver

Erdős got his first formation in mathematics from his parents who were
mathematics teachers. He won a national competition in problem solving
(Jószef Pelikán has informed us that it was not the Eötvös), which allowed
him to study mathematics at university. He wrote his thesis under the
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direction of Fejér. He was awarded a postgraduate scholarship in Manch-
ester and then in Princeton.

Asked if he believed that his mathematical development had been
influenced by Középiskolai Matematikai Lapok (KöMaL), Erdős answered
(Freud 1993):

Yes, of course, you really learn to solve problems in KöMaL. And
many good mathematicians realize early on that they have mathe-
matical ability.

Asked to what he attributed the great advance in Hungarian mathematics,
Erdős said (Albers and Anderson 1985):

There must have been many reasons. There was a journal for sec-
ondary school, and the competitions, that began before Féjer. And
once they began, they self perpetuated up to a certain point … But
such things probably have more than a single explanation …

Erdős’ contributions were great in quantity and importance, and cover a
great range of topics. Erdős was primarily a problem solver, not a theory
builder. He was attracted principally by problems in combinatorics, graph
theory and number theory. For Erdős a proof must provide insight into why
the result is valid and not be only a sequence of steps that lead to a formal
proof without providing understanding.

Several of the results associated with Erdős had been proved previously
by other mathematicians. One of these is the prime number theorem: the
number of primes not exceeding x is asymptotic to x/ln x.

The theorem had been conjectured in the eighteenth century, Chebyshev
got close to a proof, and it was proved in 1896 independently by Hadamard
and de la Vallée Poussin using complex analysis. In 1949 Erdős and Atle
Selberg found an elementary proof, one which did indeed provide insight
into why the theorem was true. The result is typical of the kind of mathe-
matics that Erdős worked on. He proposed and solved problems that were
elegant and simple to understand, but very difficult to prove.

In 1952 Erdős received the Cole Award from the American Mathematical
Society for his several results in number theory, but in particular for his
article On a new method in elementary number theory which leads to an
elementary proof of the prime number theorem which contained this very
proof.

George Pólya (1887–1985), mathematician, educator and methodologist

At university in Budapest, Pólya learned physics with Lórand Eötvös and
mathematics with Fejér. Pólya stated (Albers and Anderson 1985).
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Féjer was a great influence on me, as he was on all of the mathe-
maticians of my generation, and, in fact, once or twice I collaborated
with Féjer on small things.

Pólya was awarded his doctoral title in mathematics in the academic year
1911–1912 having studied, essentially without supervision, a problem in
geometric probability. In the problem-solving book in analysis that he wrote
jointly with Gabor Szegö, Pólya had the idea of grouping the problems
according to the method of solution used rather than the usual grouping by
topics. He explained why he approached mathematics in a way that differed
from the usual treatment in the following terms (Albers and Anderson
1985):

I came to mathematics very late … as I got close to mathematics and
began to learn something about it, I thought: Well, this is true, I see,
the proof seems conclusive, but how is it that people can find such
results? My difficulty in understanding mathematics was how was it
discovered?

Although the book of solutions to problems of analysis that he wrote with
Szegö was a masterpiece that would make both authors famous, Pólya
continued to look for answers to this question, publishing his three
well-known works: How to solve it, Mathematics and plausible reasoning
(1954), and Mathematical discovery in two volumes (1962, 1965).

Pólya maintained that in order to work on problem solving it is necessary
to study heuristics, stating (Pólya 1945) that

the purpose of heuristics is the study of the rules of discovery and
invention… As an adjective heuristic means ‘that which allows one to
discover’ … its purpose is that of discovering the solution to a problem
that one is studying…. What is good education? It is systematically
giving the student the opportunity to discover for himself.

Speaking in general about teaching, Pólya said (http://www-history.mcs.
st-andrews.ac.uk/Biographies/Polya.html):

Teaching is not a science, it’s an art. If it were a science there would be
a best way of teaching and everyone would have to teach that way.
Since teaching is not a science, there is room to accommodate different
personalities…. Let me say what I think teaching is. Perhaps the first
point, which is widely accepted, is that teaching should be active, or
better that learning should be active…. The main point of teaching
mathematics is developing problem solving strategies.
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Imre Lakatos (1922–1974), philosopher and epistemologist

In 1953 Lakatos was supporting himself translating mathematical books into
Hungarian. One of the books he translated at that time was Pólya’s How to
Solve It.

In the Hungarian Revolution of 1956 and the Soviet repression that
followed, Lakatos realized that he was about to be imprisoned and escaped
to Vienna, going from there to England where he began a doctoral program
in philosophy. The ideas of Popper and Pólya were greatly influential in his
work and his thesis Essays on the Logic of Mathematical Discovery was
completed in 1961. It was following a suggestion of Pólya that the thesis
took its theme from the history of Euler’s formula V − E + F = 2. Lakatos
never published his thesis as a book because he intended to improve it. In
1976, after his death (1974) the book was published by J. Worrall and
E.G. Zahar (eds.), I. Lakatos. Proofs and Refutations: The Logic of Math-
ematical Discovery.

Worrall (Lakatos 1976) described this work in the following terms.

The thesis of ‘Proofs and Refutations’ is that the development of
mathematics does not consist (as conventional philosophy of mathe-
matics tells us it does) in the steady accumulation of eternal truths.
Mathematics develops, according to Lakatos, in a much more dramatic
and exciting way - by a process of conjecture, followed by attempts to
‘prove’ the conjecture (i.e. to reduce it to other conjectures) followed
by criticism via attempts to produce counter-examples both to the
conjectured theorem and to the various steps in the proof.

Of high importance to the present analysis with regard to Proofs and
Refutations is its attack on formalism in the style of Hilbert, although it is
worthwhile noting that Hilbert himself always recognized the importance of
singular, unique problems in attracting young minds to mathematics, and his
famous list of problems was made known precisely with that objective in
mind.

An article that Lakatos wrote and that was originally published in The
Mathematical Intelligencer (Lakatos 1978) entitled “Cauchy and the Con-
tinuum: The Significance of Non-Standard Analysis for the History and
Philosophy of Mathematics” shows, in Hersh’s interpretation (Hersh 1978),
the objective that Lakatos pursued in his approach to the history of
mathematics.

The point is not merely to rethink the reasoning of Cauchy, not merely
to use the mathematical insight available from Robinson’s
non-standard analysis to re-evaluate our attitude towards the whole
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history of the calculus and the notion of the infinitesimal. The point is
to lay bare the inner workings of mathematical growth and change as a
historical process, as a process with its own laws and its own ‘logic’,
one which is best understood in its rational reconstruction, of which
the actual history is perhaps only a parody.

With these three figures, formed in one way or another in the Hungarian
school of mathematical problem solving competitions, the key ingredients
have been readied that constitute the theoretical framework of the mathe-
matics education related to competitions and that would allow a change in
the way that mathematics is being done or, at least, a change in the math-
ematics that is being done. First, a prolific mathematician, foremost a
problem solver rather than a theory builder, who worked his entire life with
mathematicians throughout the world. That is to say, a view of the nature of
mathematics. Second, an epistemologist who theorized about the nature of
mathematical knowledge and broke with the formalist tradition that had
dominated mathematics for much of the twentieth century. That is to say, a
view of the nature of mathematical knowledge. Third, a methodologist who
led change on the level of education. That is to say, a view of how such
mathematics can (and should) be learned.

These are the underpinnings of the work done in creating the mathe-
matical challenges of competitions.

13.3 The Role of the International Mathematical
Olympiad

Rumania has also been highly influential in mathematical problem solving
competitions, its competition activity beginning on the level of primary
school even before the Eötvös and Kurschak competitions in Hungary. And
in 1959 Rumania founded the International Mathematical Olympiad which
has spread mathematics competitions all over the world. In particular, it is
not only the IMO itself, but the selection process of the participants rep-
resenting each country, which is usually done vía the realization of a
national Olympiad, that gives thousands and even millions of students the
experience of solving Olympiad problems, problems that are original,
challenging, many of them beautiful, and that open the student’s horizons to
include experiences in which his/her own thinking is considered a highly
valued contribution.

Thus the IMO and the different national contests and Olympiads have
been the means for attracting young scholars to the field of mathematics,
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although not all participants choose to follow mathematics. Many of these
young scholars have been attracted to mathematics, as was Erdős, by the
challenge of solving very beautiful and very difficult problems. While
pursuing their advanced studies in mathematics, most experience the rites of
initiation into a mathematical establishment in which theory building,
heavily influenced by thinkers in the tradition of Bourbakí, is predominant.
Is this predominance fading, or at least being offset?

The question has to be answered cautiously. There are other important
factors at work, key among them the use of computers in doing mathematics
and in producing mathematical proofs, leading to new emphases and
entirely new fields, as well as new philosophical perspectives.

13.3.1 Distinctions Made by Timothy Gowers and Freeman
Dyson

Several protagonists have emerged who have unequivocally attempted to
legitimate the work of those who emphasize the solving of beautiful and
difficult problems, and especially the beautiful solving of beautiful prob-
lems, above (or course, not to the exclusion of) the work of building the-
ories. Among these is Timothy Gowers, IMO gold medalist and winner of
the Fields Medal, who over the first decade of the present century has
championed in several scenarios the necessity for taking a new look at the
doing of mathematics. Gowers in a chapter that he wrote for the book
Mathematics: Frontiers and Perspectives published by the AMS in 2000,
spoke clearly about the important changes that have taken place in the way
mathematics is being done.

In his writing Gowers (2000), following C.P. Snow, talks about the two
cultures he perceives in the mathematical community and maintains that, on
one side, a group of mathematicians continue to work in the formalist
tradition, whereas there are others whose primary interest is in problem
solving.

Loosely speaking, I mean the distinction between mathematicians who
regard their central aim as being to solve problems, and those who are
more concerned with building and understanding theories…. it
involves a certain oversimplification, but not so much as to make it
useless. If you are unsure to which class you belong, then consider the
following two statements.
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(i) The point of solving problems is to understand mathematics
better.

(ii) The point of understanding mathematics is to become better able
to solve problems.

Most mathematicians would say that there is truth in both (i) and (ii).

So when I say that mathematicians can be classified into
theory-builders and problem-solvers, I am talking about their
priorities.

In the material he prepared for the AMS Einstein Lecture in 2008,
Freeman Dyson (2009) makes a similar, though clearly different, distinction
as follows.

Some mathematicians are birds, others are frogs. Birds fly high in the
air and survey broad vistas of mathematics out to the far horizon. They
delight in concepts that unify our thinking and bring together diverse
problems from different parts of the landscape. Frogs live in the mud
below and see only the flowers that grow nearby. They delight in the
details of particular objects, and they solve problems one at a time….
Mathematics needs both birds and frogs. Mathematics is rich and
beautiful because birds give it broad visions and frogs give it intricate
details. Mathematics is both great art and important science, because it
combines generality of concepts with depth of structures…. The world
of mathematics is both broad and deep, and we need birds and frogs
working together to explore it.

Dyson goes on to classify historical figures such as Francis Bacon and
René Descartes, and notes that

For me, as a Baconian, the main thing missing in the Bourbaki pro-
gram is the element of surprise. The Bourbaki program tried to make
mathematics logical (In the Bourbaki scheme of things, mathematics is
the abstract structure included in the Bourbaki textbooks. What is not
in the textbooks is not mathematics. Concrete examples, since they do
not appear in the textbooks, are not mathematics. The Bourbaki pro-
gram was the extreme expression of the Cartesian style. It narrowed
the scope of mathematics by excluding the beautiful flowers that
Baconian travellers might collect by the wayside.).
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13.3.2 Timothy Gowers

Gowers (2000) considers himself to be a mathematician whose priority (in
the tradition of Paul Erdős) is problem solving, and he comments on some
of the areas in which one or the other of the two cultures he had identified
predominates. In particular, he mentions

… graph theory, where the basic object, a graph, can be immediately
comprehended. One will not get anywhere in graph theory by sitting in
an armchair and trying to understand graphs better. Neither is it par-
ticularly necessary to read much of the literature before tackling a
problem: it is of course helpful to be aware of some of the most
important techniques, but the interesting problems tend to be open
precisely because the established techniques cannot easily be applied.

He continues, saying

My main purpose here is to defend some of the less fashionable
subjects against criticisms commonly made of them. I shall devote
most of my attention to combinatorics, since this is the area I know
best. However, what I say applies to other areas as well. I often use the
word “combinatorics” not quite in its conventional sense, but as a
general term to refer to problems that it is reasonable to attack more or
less from first principles. … Such problems need not be discrete in
character or have much to do with counting.… Nevertheless, there is a
considerable overlap between this sort of mathematics and combina-
torics as it is conventionally understood. Why should problem-solving
subjects be less highly regarded than theoretical ones?

Appraising the situation, Gowers cites Sir Michael Atiyah, who takes the
opposing position

that so much mathematics is produced that it is not possible for all of it
to be remembered. The processes of abstraction and generalization are
therefore very important as a means of making sense of the huge mass
of raw data (that is, proofs of individual theorems) and enabling at
least some of it to be passed on. The results that will last are the ones
that can be organized coherently and explained economically to future
generations of mathematicians. Of course, some results will be
remembered because they solve very famous problems, but even these,
if they do not fit into an organizing framework, are unlikely to be
studied in detail by more than a handful of mathematicians.
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Gowers’ objective is to answer this criticism. He maintains that,
according to Atiyah,

… it is useful to think not so much about the intrinsic interest of a
mathematical result as about how effectively that result can be com-
municated to other mathematicians, both present and future. Combi-
natorics appears to many to consist of a large number of isolated
problems and results, and therefore to be at a disadvantage in this
respect. Each result individually may well require enormous ingenuity
…, and future generations of combinatorialists will not have the time
or inclination to read and admire more than a tiny fraction of their
output.

Gowers affirms that the difference is to be found in that

The important ideas of combinatorics do not usually appear in the form
of precisely stated theorems, but more often as general principles of
wide applicability. An example will help to make this point more
clearly. One form of Ramsey’s theorem is the following statement.
Theorem. For every positive integer k there is a positive integer N,
such that if the edges of the complete graph on N vertices are all
coloured either red or blue, then there must be k vertices such that all
edges joining them have the same colour.

Gowers proceeds to present a proof and speak about a result due to Erdős,
that places a lower bound on N. Now the line of reasoning that Erdős
follows uses probability arguments in this problem of combinatorics. The
crux of the argument is the idea of metric concentration, an idea that turns
out to be fertile and that is later capitalized on in various other situations.

Gowers comments that

My main point about such principles is .. that they play the organizing
role in combinatorics that deep theorems of great generality play in
more theoretical subjects.

And he sums up his points saying

I have been trying to counter the suggestion that the subject of com-
binatorics has very little structure and consists of nothing but a large
number of problems. While the structure is less obvious than it is in
many other subjects, it is there in the form of somewhat vague general
statements that allow proofs to be condensed in the mind, and therefore
more easily memorized and more easily transmitted to others.
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Note here how this echoes the organization that Pólya gave to his book
coauthored with Szegö on the solution of problems in analysis.

Gowers has continued to sustain this idea, notably as editor of an out-
standing compendium, The Princeton Companion to Mathematics (Prince-
ton University Press, 2006). Gowers characterizes himself as a vigorously
interventionalist editor. In the Introduction of the book, he states

The most obvious way of classifying mathematics is by its subject
matter…. Another approach is to try to classify the kinds of questions
that mathematicians like to think about. This gives a usefully different
view of the subject.

In a section titled “The general goals of mathematical research”, Gowers
concentrates on “what mathematicians do with concepts and the kinds of
questions they ask about them”. The point he wishes to make once again is
that certain thinking strategies cross artificial frontiers erected between
mathematical topics and theories, organizing mathematical thought in a new
and valuable way.

13.3.3 IMO 50, Bremen 2009 and Beyond

In 2009 Gowers was one of several invited speakers at a special event
organized in Bremen to celebrate the 50th anniversary of the IMO. Other
speakers included Terry Tao and Lászlo Lovász, also IMO gold medalists as
well as winners of the Fields Medal. We contacted both of them concerning
the question that is the title of the present paper, and received very different
responses. We also contacted two combinatorialists ex-members of
Colombian IMO teams, and also received two very different responses.

Terry Tao and Federico Ardila. Terry Tao and Federico Ardila seem to
coincide in their thinking, and that thinking seems to address the direct
influence of participation in the IMO on future mathematicians. We give
their views. Tao, referring to his blog, says:

My impression is that the impact of mathematics competitions on
mathematical research is primarily indirect, in that it helps encourage
bright students to develop their mathematical interests; in a few cases
(notably in combinatorics) some Olympiad training is directly helpful
in research, but more for solving individual subproblems in a project
(e.g. proving a tricky lemma) rather than guiding the overall research
from a high-level perspective.
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From the context of the blog that Tao maintains, it appears correct to
claim that the position he has taken is that a young mathematician must learn
all the basics of the great corpus of mathematical knowledge that has been
built up and study very deeply those parts that are pertinent to a certain
specialized area in order to write his or her doctoral thesis. His appreciation
concerns a direct link between problem solving training for participation in
the IMO and the solving of the problem of a doctoral dissertation, while
Gowers is analyzing the situation from a much ampler perspective.

Ardila, also speaking about olympiad training, states (translation ad hoc)

that it is excellent for developing technique and confidence. Without
reference to how profound the mathematics is that one is doing, I
believe that problem solving teaches a great arsenal of techniques that
can later help to solve small parts of big problems. … On the other
hand, the Olympiad participant comes to have great ability to solve
problems without necessarily understanding them. Observing and
studying the nature of mathematics, letting the mathematics reveal
itself, carefully and without haste nor trying to be ingenious, teaches a
lot. … Some ex Olympiad participants find it difficult to have such
patience.

Lászlo Lovász. Lovász answers that he does not have time to write to the
question although he considers it a very interesting one. But in several of his
statements, he has made it clear what the entire mathematical olympiad
experience, including his personal preparation for competitions, meant to
him as a mathematician and how it influenced him. Lovász at age 14
encountered an article written by Paul Erdős in KöMaL and was so taken
with it that he read it at least 20 times. The following year he met Erdős
personally and has this to say about that meeting:

I had the great fortune to meet Paul Erdős as a high school student in
1963. In those days the cold war was quieting down a little, and he
began to visit Hungary more and more often. … It is an understate-
ment to say that I have learned a lot from him, not only mathematics in
the technical sense, and not even only elements of the fine art of
problem solving, but also his way of pursuing knowledge….

Luis Serrano. Luis Guillermo Serrano, another IMO medalist from
Colombia, states that “in the olympiads we take really simple concepts, such
as high school algebra and Euclidean geometry, and do really complicated
things with them”, thus echoing Gowers’ description of combinatorics and
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problem solving in combinatorics. Serrano recognizes the division of
mathematicians into theory builders and problem solvers; for him the former
are those who ask the deep questions, trying to generalize or reduce
hypotheses, and the latter those who help to answer them, qualifying this
distinction by stating that every successful mathematician is a bit of both,
but in most cases is geared towards one or the other, and classifies himself
first as a problem solver. He believes that the mathematical olympiad
experience attracts many problem solvers to mathematics who might
otherwise have attempted other professional fields where problem solving is
the principal strength required. This will, of course, be reflected in the
mathematics that they do and the way they do mathematics. He also states
that theory builders are rare so that the Olympiad experience naturally
attracts more problem solvers and coincides with Ardila in stating that
problem solvers can begin to prove theorems without fully understanding
the objects involved, and to actually learn by working on things.

Finally, he believes

there is a bias in looking at contemporary mathematicians and seeing a
change in orientation with regard to the past because only the theory
builders tend to be remembered,…that it has become harder and harder
to be a generalist as are most problem solvers, and… that any engine
(like the olympiads) that brings people in mass towards doing math-
ematics, will naturally bring more problem solvers than theory builders
to mathematics. Maybe the theory builders would be the only ones
who may still become mathematicians even if they don’t do olym-
piads, … so it is a sampling bias. And this shows a positive influence
of the olympiads towards mathematics, in the sense that they discover
many mathematicians who would not have become mathematicians
otherwise.

A sound summary of the ideas expressed by Tao, Ardila and Serrano is
that they speak to the influence of mathematics olympiads in terms of the
young people they attract to mathematics. Serrano echoes Gowers in linking
combinatorics to an emphasis on problem solving over theory building, but
states clearly that the theory builders will be the ones most remembered.
Gowers searches for a new way of organizing mathematical knowledge so
that the work of problem solvers will be remembered equally; the others do
not address this issue.
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13.4 Following the Trail Between Competitions Problems
and Mathematics

In this section we follow the trail that leads from mathematics competitions
to mathematics, and also look briefly at the road leading from mathematics
to competition problems. The protagonists are Serrano and Ardila. The
question asked is what are the most memorable or favorite Olympiad
problems for you, and do they have any relation with the work you are doing
in mathematics? Although several well-known ex-Olimpians were con-
tacted, only the responses from Serrano y Ardila actually addressed these
questions and their answers indeed show close relations with their mathe-
matical work, although in significantly different ways. However, the con-
texts in which this work is being done are notable and pertain directly to the
questions we are attempting to answer in this article.

Luis Serrano does not remember the exact wording of the problem that he
considers most memorable, but rather the general strategies of his solution to
it (translation ad hoc).

While training with Titu Andreescu in Bogotá, he proposed a problem
that had to do with maximizing a sum of the form a1x1 + . . . + anxn
with some constraints. It looked hard. The next day I was sick and did
not go to training, but I spent the entire day trying to solve the
problem. None of the known methods worked, but after trying for a
long time, I noticed that with a small change in the ai there was a shift
from the family a1, . . . , anð Þ to a new a′1, . . . , a′n

� �
that increased the

weighted sum of the aixi, and in some way, repeating this process, a
maximal solution was attained and there the process stabilized. This
method was completely new to me and, in fact, it seemed to me to be a
bit strange, so I tried for a long while to find a more classic solution
without success. The next day I showed my solution on the blackboard
and Titu applauded. Others told me that they had liked my solution a
lot, and ever since then I acquired confidence with inequalities, and
whenever I saw one, I would immediately set myself to solve it.

This has a lot to do with what I am doing now! Twenty years later, I
came to learn that the crux of machine learning optimization, and other
related topics is finding the correct parameters to maximize a function
that contains them (for example, the ai in the sum of the aixi). And
what is one of the methods most used to maximize (or minimize)
machine learning? The answer is gradient descent which is precisely
that, beginning with any parameters, iterate and iterate in such a way
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that the function continues to increase, until a point is found where it
stabilizes and the solution is (or is very close to being) a maximum.

Federico Ardila answered by showing a problem he met with in sixth or
seventh grade and which he worked on in different ways for over 10 years.
The problem, originally posed on a math Olympiad paper in China in 1962,
is stated in the following way.

1. Given 2n + 1 points in general position in the plane, prove that there is
at least one “halving circle”, that passes through 3 of the points and has
n − 1 of the points in its interior and n − 1 of the points in its exterior.

Another version of the same problem appeared in Crux Mathematicorum
in 1995 (and on the IMO 1999 short list).

2. Prove that any set of 5 points in general position in the plane has exactly
4 halving circles.

Ardila writes that his solution to the problem in Crux revealed another
related problem that he proposed in the APMO (Asian-Pacific Mathe-
matical Olympiad) in 1998 and that states:

3. For any set of 2n + 1 points in general position in the plane, the number
of halving circles has the same parity as n.

He says (translation ad hoc).

However, I still didn’t see the relation between problems 2 and 3.
I kept on thinking about it in Colombia in the summer of 1998 during
training for IMO 1998 and finally I understood. The answer appeared
as “The number of halving circles” (Amer. Math. Monthly 111 (2004)
586–592).

For any set of 2n + 1 points in general position in the plane, the number
of halving circles is exactly n2.

Continuing, he says.

It seems to me that this is a very surprising result. In problems in
discrete geometry of this sort it is habitual to find bounds but not exact
results. For example, the number of “halving lines” of a set of 2n
points is not constant, and the problem of finding the best upper and
lower bounds for this number has received a lot of attention.

Although I know of several proofs of this theorem, and I have dis-
cussed it with many experts, I do not know of any truly satisfactory
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and transparent explanation. Why is the number constant? Why is it so
simple?

Here we have a fine example of the impact of competition problems on
research.

Proceeding along the same trail in the opposite direction, Ardila then
shows how a problem proposed for IMO 2006 stemmed from a result
obtained in research he did with Sara Billey.

The research of Ardila and Billey was looking to clarify a construction
given in an article in algebraic geometry written by Billey and Ravi Vakil
concerning “Schubert calculus of the flag manifold”. They needed to
understand the following problem.

A flag is a sequence of subspaces 0f g=F1 ⊆F2 ⊆⋯Fd− 1⊆Rd with dim
Fi = i.

Consider 3 generic flags E, F, G in R d and all of the lines Ei ∩Fj ∩Gk

that are determined by them when they are intersected. There are
Cðd, 2Þ of these lines.

Question: Which d-subsets of these lines generate R ͩ ? Let’s call them
E-F-G bases.

Ardila recounts that

Curiously, the first solution found to this question depended on the
solution of a problem of tessellations of a triangle that I then proposed
for IMO 2006 and that states: A holey triangle is an upward equi-
lateral triangle of side length n with n upward unit triangular holes cut
out. A diamond is a 60◦ − 120◦ unit rhombus. Prove that a holey
triangle T can be tiled with diamonds if and only if the following
condition holds: Every upward equilateral triangle of side length k in
T contains at most k holes, for1 ≤ k ≤ n.

The connection is the following. There is a bijection between E-F-
G bases and holey triangles that can be tessellated.

The result can be generalized to n flags and tessellations of holey n − 1
simplices and led to a conjecture, the “Spread Out Simplices Conjecture”
that, despite having been studied by experts, has remained open for
10 years.

In the context of the questions posed by this article, these accounts are
remarkable precisely because they allow us to see clearly that there exists a
cycle of competition problem posing and research that is impacting (and
most probably changing the nature of) the mathematics that is being done
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and the way mathematics is being done, our supposition being that problems
of this sort can captivate a young student and lead her or him to dedicate
significant time to studying the problem and its possible generalizations,
leading to new research results (and when it is possible to explain why it is
true, perhaps leading to insights into new theoretical ideas).

13.5 Balance

Is this revolutionary? It is not. Gowers is convinced but conciliatory; for him
and the others there is room for both mathematical cultures. Atiyah on the
other hand is confrontational; for him there is no way to organize the
thousands upon thousands of results attributed to the problem solvers; an
organized body of knowledge, a system, is needed to relate these results and
the arguments they contain. Systematic, for Atiyah, is tantamount to orga-
nized in a theory. Systematic for Pólya and Szegö, as well as for Gowers,
can also be applied to ways of thinking and arguing.

New solution methods, new ways of thinking. Erdős’ use of a probability
argument in a combinatorics problem relates directly, for example, to a
student’s solving an algebra problem with a geometric argument, or to
Leonardo de Pisa’s introduction of entirely new ideas that expand or extend
geometric arguments to algebra, exactly what mathematics competitions set
the stage for students to do. While myriad schools of mathematics education
follow the established body of mathematical knowledge, mathematics
competitions open the doors continually to new connections and new
arguments gleaned from new solutions given to original problems as well as
new proofs from first principles of old results frequently founded on labo-
riously elaborate theories.

Thus Erdos’ brilliant proof of the prime number theorem. What will the
future hold for, say, Fermat’s last theorem? A proof has been given based
intricately on advanced theories. Will it too eventually yield to arguments
stemming from first principles?

Each beautiful olympiad problem solved by a budding young mathe-
matician builds the expertise to do mathematics in the way preferred by
Gowers, to stress thinking strategies and arguments as being as meaningful
anchors for organizing mathematics as systems and theories can be.

And perhaps this is exactly the way in which human mathematicians and
human made mathematics will differentiate themselves from computer
generated mathematics as the mathematical community marches confidently
into the future.
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The stress put by Ardila and Serrano on being able to prove something in
olympiads about mathematical entities that one does not fully understand
conveys a profound aspect of contemporary mathematics (and contemporary
mathematics education). This is the mutual enrichment provided by
addressing simultaneously the two major components of mathematical
reasoning, that have been identified as being mathematical understanding
and mathematical thinking. Frequently math educators suppose that it is
indispensable to understand a concept fully in order to be able to confront
successfully a problem that concerns that concept, that one must progress
from understanding to thinking. The solution of challenging problems
reveals however, that mathematical thinking about a concept—thinking
autonomously, solving a problem that involves the concept—can enrich the
understanding of that concept. This is especially clear when the solution is
found outside of the realm of normal applicability of the concept, and
reinforces Erdős’ insistence that a proof should show clearly why a result is
true.

This is an important observation for mathematics education, and it is
essentially the claim made by Gowers when he comments that certain
ignorance can be an asset when addressing a problem of combinatorics that
remains open despite many attempts to solve it.

13.6 Some Conclusions

The influence of Leonardo de Pisa’s ideas, developed in the context of a
problem-solving competition, reverberated through at least six centuries and
eventually changed the basic mathematical perspective from geometric to
algebraic.

The long-termed influence of thinkers like Erdős and Gowers, formed in
the tradition of addressing difficult problems whose comprehension does not
require extensive previous knowledge, a tradition renewed and enriched by
mathematics competitions, has yet to be gauged. Currently, the impact has
been both deep and wide, nudging aside the great theory builders such as
Bourbaki in order to open up some space for combinatorics as defined by
Gowers. The extent of that influence in time may well depend on achieving
new organizational principles of mathematical knowledge based on rea-
soning strategies rather than topical categories.
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Chapter 14
Classic Conjectures Allow Young
Mathematicians to Commence Research

Alexander Soifer

Abstract The four classic conjectures of mathematics presented here are
still open. They appear together with trains of thought that lead to them and
relevant partial results. This material shows how strongly problems of
mathematical Olympiads in general, and the Colorado Mathematical
Olympiad in particular, are interwoven with the forefront of mathematics,
and influence each other. These conjectures are “classic” because they are
easy to understand and hard to prove or disprove. They are accessible to
young high school and college mathematicians and allow students to
commence research and creative work in mathematics.

Keywords Open problem ⋅ Conjecture ⋅ Mathematics ⋅ Research ⋅
Combinatorics ⋅ Chromatic number ⋅ The plane ⋅ Paul Erdős

14.1 Part Naught: Overture

What is creating conjectures about?

This essay was first read as the Closing Plenary Talk at the 7th Congress of
the World Federation of National Mathematics Competitions, very
successfully organized in Barranquilla, Colombia by Maria Falk de
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In my opinion, it is the art of predicting the future.

Niels Bohr took such predicting jokingly:

Predicting is very difficult, especially the future.

Albert Einstein—nonchalantly:

I never think of the future – it comes soon enough.

In conjecturing, we use the power of intuition to envision the result
without being able to prove it.

After the 1989 Paul Erdős’ lecture here at the University of Colorado,
Professor of Mathematics Gene Abrams was unimpressed. “What is a big
deal about posing problems? Proving results is much more important,” he
declared. “Without someone posing problems, and moreover predicting
results by conjectures, as Erdős has done, there will be nothing to prove,” I
replied. When we commence research, we do not know what is true, and let
our intuition lead the way. We have to rely on insight or good luck in
choosing a conjecture to prove. And if we choose a conjecture that is not
true, it would take a very long time to prove it, an infinite time!

I oppose discrimination of young high school and college mathematicians
based on their youth and inexperience. Thus, we ought to share with them
unsolved problems and conjectures that are waiting for their conquerors.
There is plenty of contemporary mathematics, dealing with an elaborate
maze of definitions, and sometimes consisting of merely juggling with them.
This kind of juggling does not interest me much. I prefer classic problems.
By ‘classic’ I do not necessarily mean problems that are centuries old, but
rather problems that are easy to understand by anyone, including a middle
school student or a layman, but tantalizingly difficult if at all possible to
solve. There are additional conditions on admission of a problem into
‘classic’ category: an aesthetic appeal of the problem is essential, as are
expectations that the result may defy our intuition.

In this essay I will demonstrate interaction between Olympiad and
research problems, and present ‘live’ fragments of mathematics, centered on
predicting the future by formulating classic conjectures. I am offering you a
journey on a mathematical train of thought through problems, conjectures,
and results. I hope you will enjoy the ride!
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14.2 Conjecture I. Squares in a Square (Erdős 1932)1

We are in Budapest, Hungary, year 1932. The 19-year old Paul Erdős poses
the following problem. Inscribe in a unit square r squares, which have no
interior points in common. Denote by f(r) the maximum of the sum of side
lengths of the r squares. (We allow side lengths to be zero.) The problem is
to evaluate the function f (r):

Open Problem 1 For every positive integer r find the value of f (r).

In fact, this formulation came about later, in 1992, when Paul Erdős and I
commenced joint efforts to settle this problem. Originally Paul formulated
the following narrow but surprisingly difficult conjecture. When he shared
the conjecture with me, he offered a $50 price for its first proof or disproof.

Fifty Dollar Squares in a Square Conjecture 2 (Paul Erdős 1932). For
any positive integer k,

f ðk2 + 1Þ= k.

The conjecture is still open today, in the year 2017, waiting, as Paul
Erdős used to say, “for stronger arms, or, perhaps, brains” to be settled.
However, Paul and I reached a progress in a broader problem of describing
the function f(r). First of all, we observed the following lower and upper
bounds for f(r). Symbol ⌊x⌋ as usual denotes the largest integer that is not
greater than x.

Result 3 (Erdős and Soifer 1995). The following inequality is true for any
positive integer r:

⌊
ffiffi
r

p
⌋≤ f rð Þ≤ ffiffi

r
p

.

Proof

1. The Upper Bound. The celebrated Cauchy Inequality states that

∑
r

i=1
aibi

� �2

≤ ∑
r

i=1
a2i

� �
∑
r

i=1
b2i

� �
.

1This chapter is based on sections E14 and E15 of the author’s book (Soifer
2011).
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Setting bi =1 for every i = 1, 2, …, r we get

∑
r

i=1
ai

� �2

≤ ∑
r

i=1
a2i

� �
r. ð�Þ

Let r squares of side lengths ai, i = 1, 2, …, r with no interior points in
common be placed in a unit square. Then the combined area of the r squares
does not exceed the area of the unit square: ∑r

i=1 a
2
i ≤ 1, and we get from

the inequality (*) above the required upper bound:

f rð Þ= ∑
r

i=1
ai ≤

ffiffi
r

p
.

2. The Lower Bound. Surely, the function f(r) is non-decreasing, therefore,
r≥ ⌊

ffiffi
r

p
⌋2 implies f rð Þ≥ f ⌊

ffiffi
r

p
⌋2

� �
.

Now let us partition the unit square into ⌊
ffiffi
r

p
⌋2 congruent squares, each

of the side length 1
⌊
ffiffi
r

p
⌋, and calculate the sum of side lengths of these ⌊

ffiffi
r

p
⌋2

squares: we get 1
⌊
ffiffi
r

p
⌋ × ⌊

ffiffi
r

p
⌋2 = ⌊

ffiffi
r

p
⌋. Observe that this partition and the

calculation demonstrate the inequality f ⌊
ffiffi
r

p
⌋2

� �
≥ ⌊

ffiffi
r

p
⌋. By combining the

two inequalities of this and the preceding paragraphs, we get the required
lower bound:

f rð Þ≥ f ⌊
ffiffi
r

p
⌋2

� �
≥ ⌊

ffiffi
r

p
⌋.

∎
Result 3 has the following consequence:

Corollary 4 If r= k2 for a positive integer k, then we get the equality
f rð Þ= k.

Corollary 4 allows us to see the Erdős Fifty Dollar Squares in a Square
Conjecture in a slightly different light:

Fifty Dollar Squares in a Square Conjecture, Second Version 5
(P. Erdős). At perfect square numbers r= k2 (k is an integer), the function
f (r) does not increase:

f k2 + 1
� �

= f k2
� �

.
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Paul Erdős and I were able to prove that the function f(r) is strictly
increasing everywhere else. But to prove that we needed to find a much
sharper lower bound for f(r).

Theorem 6 (Erdős and Soifer 1995). Any positive integer r can be pre-
sented in a form r = k2 + m, where 0 ≤ m ≤ 2k. Accordingly, the fol-
lowing inequalities hold:

(A) If m = 2t + 1, where 0 ≤ t < k, then f rð Þ≥ k+
t
k
;

(B) If m = 2t, where 0 ≤ t ≤ k, then f rð Þ≥ k+
t

k+1
.

Proof Given a positive integer r, we can present it in a form r = k2 + m,
where 0 ≤ m ≤ 2k. Indeed, it suffices to choose k= ⌊

ffiffi
r

p
⌋. If r is a perfect

square, r= k2, then m = t = 0, and Corollary 4 provides the exact value
f rð Þ= k, which is a part of the required inequality (B). We can assume now
that r is not a perfect square, i.e., m≠ 0. The parity of m dictates two cases.

(A). m = 2t + 1 and 0 ≤ t < k. Let us first partition the unit square into
k2 congruent squares; we get a k × k square grid, call it G; and then replace
a t × t subgrid of the grid G with a (t + 1) × (t + 1) square grid of the
same total size as the removed subgrid (Fig. 14.1).

Fig. 14.1
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We end up with a partition of the unit square into k2 − t2 + t+1ð Þ2 =
k2 + 2t+1 little squares, some of which [the original ones] have side length
1
k, and others [the squares of the inserted (t + 1) × (t + 1) square grid] of
the side length t

k t+1ð Þ. Let us calculate the sum of side lengths of all these
k2 + 2t + 1 little squares, we get:

1
k
k2 −

1
k
t2 +

t
k t+1ð Þ t+1ð Þ2 = k+

t
k
.

This partition and the calculation deliver the following lower bound for
f (r):

f rð Þ≥ k+
t
k
.

(B). m = 2t and 0 < t ≤ k. We first partition the unit square into
(k + 1)2 congruent squares; we get a (k + 1) × (k + 1) square grid, call it
G; and then replace a (k − t + 1) × (k − t + 1) subgrid of the grid G with a
(k − t) × (k − t) square grid of the same total size as the removed subgrid
(Fig. 14.2).

We end up with a partition of the unit square into k+1ð Þ2 − k− t+1ð Þ2
+ k− tð Þ2 = k2 + 2t little squares, some of which [the original ones] have

Fig. 14.2
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side length 1
k+1, and others [the squares of the inserted (k − t) × (k − t)

square grid] of the side length k− t+1
k+1ð Þ k− tð Þ. Let us calculate the sum of side

lengths of all these k2 + 2t little squares, we get:

1
k+1

k+1ð Þ2 − 1
k+1ð Þ k− t+1ð Þ k− t+1ð Þ2 + k− t+1

k+1ð Þ k− tð Þ k− tð Þ2 = k+
t

k+1
.

This partition and calculation deliver the following lower bound for f (r):

f rð Þ≥ k+
t

k+1
.

Done! ∎

Result 7 (Erdős and Soifer 1995). The function f(r) is strictly increasing
everywhere except possibly at perfect square points, i.e., if r ≠ k2 for an
integer k, then f r+1ð Þ> f rð Þ.
Proof Once again parity of m and Theorem 6 dictate two cases.

(A). m = 2t + 1 and 0≤ t< k. In this case t+1≤ k, and by substituting
t + 1 for t in the lower bound found in part 2 of Result 3, we get:

f k2 + 2t+2
� �

≥ k+
t+1
k+1

.

This inequality and result 1 deliver the necessary chain of inequalities:

f rð Þ= f k2 + 2t+1
� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 2t+1

p
< k+

t+1
k+1

≤ f k2 + 2t+2
� �

= f r+1ð Þ.

(B). m = 2t and 0< t≤ k. By using result 1 and the lower bound found in
part 1 of result 3 above, we get the necessary chain of inequalities:

f rð Þ= f k2 + 2t
� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 2t

p
< k+

t
k
≤ f k2 + 2t+1

� �
= f r+1ð Þ.

Result 7 is proven.
Note: In the proof above I omitted a demonstration of two inequalities:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 2t+1

p
< k+ t+1

k+1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 2t

p
< k+ t

k. I hope their verification would
be a welcome exercise in secondary algebra for the reader. ∎

Paul Erdős and I believed that the lower bounds in Theorem 6 were quite
good, and conjectured that they just may be the best possible:
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The Erdős–Soifer Conjecture 8 (Erdős and Soifer 1995). Any positive
integer r can be presented in a form r = k2 + m, where 0≤m≤ 2k.
Accordingly, we conjecture the following equalities:

(A) If m = 2t + 1, where 0 ≤ t < k, then f rð Þ= k+
t
k
;

(B) If m = 2t, where 0 ≤ t ≤ k, then f rð Þ= k+
t

k+1
.

We also observed that our examples in Theorem 6 completely tiled the
unit square, and thus posed the following open problem:

Open Problem 9 (Erdős and Soifer 1995). Is it true that for any positive
integer r, the value of f(r) can be attained by a set of r squares that form a
complete tiling of the unit square by themselves or with an addition of at
most one extra square?

As I thought about Paul Erdős’ problem, it appeared natural for me to pose
a ‘dual’ problem, and thus give birth to theNew Squares in a Square Problem.

Let □ stand for a square shape and r > 1 a positive integer. Denote by
S(□, r) the smallest area of a square Q such that any r squares whose areas
add up to at most 1, can be packed in Q (i.e., embedded in Q with no interior
points in common).

In 1997 I offered this conjecture for small values of r at the 14th Colorado
Mathematical Olympiad.

Squares in A Square Problem 10 (Soifer 2011).

(A) Prove that any two squares whose areas add up to 1 can be inscribed
with no interior points in common in a square of area 2.

(B) Prove that any four squares whose areas add up to 1 can be inscribed
with no interior points in common in a square of area 2.

(C) Prove that any five squares whose areas add up to 1 can be inscribed
with no interior points in common in a square of area 2.

This Olympiad assertion shows that for any r in the range 2≤ r≤ 5,
S(□, r) = 2. I then formulated the following conjecture:

New Squares in a Square Conjecture 11 (Soifer 1996). For any positive
integer r > 1, S(□, r) = 2, or to simplify notations, S(□) = 2.

Two years have passed since I created this conjecture. In May 1997, I
was in Lincoln, Nebraska grading papers of the USA Mathematical
Olympiad, together with other members of the USA Mathematics Olympiad
Subcommittee. During a break, I put the New Squares in a Square Con-
jecture on the blackboard. Later the same day Richard Stong told me “I
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proved your conjecture.” Indeed, he did! Richard devised a simple ‘greedy’
algorithm and a nice, clever proof that his algorithm works, and thus New
Squares in a Square Conjecture became a theorem, which I happily pub-
lished in Geombinatorics:

Theorem 12 (Stong 1997). Any finite set of squares of the combined area 1
can be packed in a square of area 2.

Later I discovered that Conjecture 11 and Theorem 12 were not new, and
although Stong’s proof was better, he was preceded by 30 years by
J. W. Moon and Leo Moser of Edmonton, Alberta, Canada (Moon and
Moser 1967). Ecclesiastes (1:9–14 NIV) comes to mind:

What has been will be again, what has been done will be done again;
there is nothing new under the sun.

On a positive side, I brought a new excitement and new players to the
problem. Moreover, I was already riding toward the next station on my train
of thought, the one, it seems, no one has traveled before. I conjectured (Soifer
1998a) that the identical result was true for circular discs (I will use here the
word “disc” to mean a circular disc). This 1998 conjecture is still open today:

Discs in a Disc Conjecture 13 (Soifer 1998a). Any finite set of circular
discs of combined area 1 can be packed in a circular disc of area 2: S(O) = 2.

What about triangles? In working with similar to each other triangles we
encounter issues that did not exist for circular discs—limitations on the way
‘clones’ are embedded. We can place no limitations on embedding at all and
end up with our original function S(Δ) defined as the smallest area of a
triangle T such that any r triangles whose areas add up to at most 1, can be
packed in T (i.e., embedded in Q with no interior points in common). Or we
can limit embedding to translations, and thus define a function ST(Δ) as the
smallest area of a triangle T such that any r triangles whose areas add up to at
most 1, can be embedded by translations in T with no interior points in
common. Of course, SðΔÞ≤ STðΔÞ as in the latter case we impose limitations
on acceptable embeddings. It was not at all obvious whether these two values
are equal. In 1995 T. J. Richardson calculated the easier of the two values:

Packing Triangles Theorem 14 (Richardson 1995). Any finite set of
similar to each other triangles of combined area 1 can be packed in a similar
to them triangle of area 2, i.e., in my notations SðΔÞ≤ 2.

In 1999 I pointed out the difference in triangular embedding case and
posed these ‘triangular problems’ in Geombinatorics (Soifer 1999). In 2003
the Polish geometer Janusz Januszewski improved Richardson’s result on
the pages of Geombinatorics:
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Theorem 15 (Januszewski 2003). S(Δ) = 2 if and only if the triangle Δ is
equilateral.

On January 27, 2009, Januszewski informed me that he calculated the
harder value ST(Δ) that I asked for in 1999 (Januszewski 2009):

Packing Triangles by Translations Theorem 16 (Januszewski 2009). For
any triangle Δ, ST(Δ) = 2, i.e., any finite set of similar to each other tri-
angles of combined area 1 can be packed in a similar to them triangle of area
2 by translations alone.

Let us roll the time back 19 years. By 1998 I felt it was time to generalize
these observations to include all geometric figures in our ‘games.’ I got busy.

Definition (Soifer 1998b). Given figures f and F; it is convenient to call a
figure f an F-clone if f is homothetic to F.

Definition (Soifer 1998b). Given a figure F. Let S(F) be the minimum real
number such that any finite set of F-clones of the combined area 1 can be
packed in an F-clone of area S(F).

Theorems 11 and 13–14 can be written in these notations as follows:

For a square□, Sð□Þ=2;

For any triangleΔ, SðΔÞ=2.

However, it is easy to see that numbers S(F) are not even bounded if we
impose no limitation on figures F in the study:

Result 17 (Soifer 1998b). For any number r, there is a figure F such that
S Fð Þ> r.

Proof Indeed, for any r, we can construct a cross C thin enough so that only
one of the two C-clones of area 1

2 can be inscribed in a C-clone of area
r (Fig. 14.3). ∎

Thus, it makes sense to limit the scope of our games to convex figures.
The main problem then can be formulated as follows:

Main Open Problem 18 (Soifer 1998b). For any convex figure F, find S(F).

This is a difficult problem that in full generality may withstand centuries.
However, partial solutions are possible and welcome.

Our journey is not over: in fact, it has only begun. We got a sense of
packing some particular shapes, and are now ready to commence a search
for its essence, a result encompassing all convex figures. In 1998 I came up
with a bold conjecture:
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Clones in Convex Figures Conjecture 19 (Soifer 1998b). For any convex
figure F, any set of F-clones F1, F2, …, Fn whose areas add up to at most 1,
can be packed in a clone F0 of area 2, i.e.,

S Fð Þ≤ 2.

However, when I wrote up this conjecture for Geombinatorics (Soifer
1998b), I inadvertently put it as S(F) = 2. As the Russian proverb has it,
There is no bad without some good in it! Three years later, in 2001, the
Slovak geometer Pavel Novotný constructed a counterexample to the pub-
lished equality S(F) = 2:

Novotný’s Example 20 (Novotný 2002). For rectangle R0 of size
ffiffi
3
2

8
q

×
ffiffi
2
3

8
q

we get S R0ð Þ=
ffiffi
8
3

q
<2.

Novotný understood my typo, as he wrote “Soifer’s conjecture could be
changed to S Fð Þ≤ 2.”

A year later, in 2002, Janusz Januszewski (2003), beautifully completed
the above result of Novotný:

Januszewski’s Theorem 21 (Januszewski 2003). For any rectangle R,
S Rð Þ≤ 2. Moreover, S(R) = 2 if and only if the rectangle R is a square.

Januszewski gave the main conjecture its final attribution:

The Soifer–Novotný Conjecture 22 (Januszewski 2003). For any convex
figure F, S Fð Þ≤ 2.

Fig. 14.3
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Finally, Januszewski posed a natural problem that is a particular case of
problem 18:

Januszewski’s Problem 23 (Januszewski 2003). Classify convex figures
F for which S(F) = 2.

He among others noticed (Januszewski 2003) that, perhaps, the Soifer–
Novotný Conjecture 22 can be generalized to n-dimensional Euclidean
spaces:

n-Dimensional Conjecture 24 Let F be a convex body in an n-dimensional
Euclidean space. Then any set of F-clones of the combined volume 1 can be
packed in an F-clone of volume 2n−1.

I would also like to know the minimum value of S(F):

Open Problem 25 Find minS(F) over all convex figures F in the
n-dimensional Euclidean space En and classify figures F for which this
minimum is attained. In particular, solve this problem for the plane E2.

Most of these series of results appeared on pages of Geombinatorics, a
quarterly dedicated to problem posing essays in combinatorial and discrete
geometry (hence its title). Peter Winkler of Dartmouth University dedicated
a section of his book (Winkler 2004, pp. 146 and 157) to the Discs in a Disc
Conjecture:

This lovely conjecture is due to Alexander Soifer of the University of
Colorado, Colorado Springs. It and its relatives have been the subject
of a dozen of articles in the journal Geombinatorics; it is known, for
example, that squares of total area 1 can be packed into a square of
total area 2. The generalization to higher dimension was suggested by
your author, among others; the case of two balls, each of volume 1/2,
shows that 2d−1 is best possible.

I hope you have enjoyed your ride on this train of mathematical thought.
Out of the window of our train you noticed the terrain that has been con-
tinuously changing, with one problem giving birth to another. However, the
original 1932 conjecture is still open 85 years later, in the year 2017. It is
time to double the prize:

Conjecture I. Hundred Dollar Squares in a Square Conjecture
(P. Erdős). At perfect square numbers the function f(r) does not increase:
f k2 + 1ð Þ= f k2ð Þ.
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14.3 Conjecture II. The Happy End Problem
(Erdős–Szekeres 1933)

During the winter of 1932–33, two young friends, mathematics student Paul
Erdős, aged 19, and chemistry student George (György) Szekeres, 21,
solved the problem posed by their young lady friend Esther Klein, 22, but
did not send it to a journal for a year and a half (Erdős and Szekeres 1935).

Erdős–Szekeres’s Theorem 26 (Erdős and Szekeres 1935). For any pos-
itive integer n ≥ 3 there is an integer ES(n) such that any set of at least
ES(n) points in the plane in general position2 contains n points that form a
convex polygon.

The authors knew only two values, obtained by the members of their
group of Jewish–Hungarian friends:

Esther Klein:ES 4ð Þ=5.

E.Makai and Paul Turań independently:ES 5ð Þ=9.

It is fascinating how sure Erdős and Szekeres were of their conjecture. In
one of his last, posthumously published problem papers (Erdős 1997), Paul
Erdős attached the prize and modestly attributed the conjecture to Szekeres:
“I would certainly pay $500 for a proof of Szekeres’s conjecture.”

Conjecture II: The Erdős–Szekeres Happy End $500 Conjecture
ES nð Þ=2n− 2 + 1.

In 1933 Erdős and Szekeres proved lower and upper bounds for ES(n);
the conjectured above value is their lower bound. The upper bound has only
recently been improved first by Ronald L. Graham and Fan Chung and then
by others, but is still far from the conjectured value. Paul Erdős named it The
Happy End Problem. He explained the name often in his talks. On June 4,
1992 in Kalamazoo I took notes of his talk:

I call it The Happy End Problem. Esther captured George, and they
lived happily ever after in Australia. The poor things are even older
than me.

This paper also convinced George Szekeres to become a mathematician.
For Paul Erdős the paper had a happy end too: it became one of his early
mathematical gems, Paul’s first of the numerous contributions to and

2I.e., no three points lie on a line.
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leadership of the Ramsey Theory and, as Szekeres put it, of “a new world of
combinatorial set theory and combinatorial geometry.”

The personages of The Happy End Problem appear to me like heroes of
Shakespeare’s plays. Paul, very much like Tempest’s Prospero, gave up all
his property, including books, to be free. George and Esther were so close,
that they ended their lives together, like Romeo and Juliette. In the late
summer 2005 e-mail, Tony Guttmann conveyed to the world the sad news
from Adelaide, Australia:

George and Esther Szekeres both died on Sunday morning [August 28,
2005]. George, 94, had been quite ill for the last 2–3 days, barely
conscious, and died first. Esther, 95, died an hour later. George was
one of the heroes of Australian mathematics, and, in her own way,
Esther was one of the heroines.

On May 28, 2000, during a dinner in the restaurant of the Rydges North
Sydney Hotel in Australia, George Szekeres told me “my student and I
proved Esther’s Conjecture for 17 with the use of computer,” i.e.,
ES(6) = 17. “Which computer did you use?” asked I. “I don’t care how
pencil is made,” answered George.

14.4 Conjecture III. Chromatic Number Conjecture
(Soifer 2008)

In 1986, the Third Colorado Mathematical Olympiad included the following
problem from our typical category: its solution is easy to see, especially
when somebody shows it to you.

Problem 27 Santa Claus and his elves paint the plane in two colors, red and
green. Prove that the plane contains two points of the same color exactly one
mile apart.

Solution. Toss on the plane an equilateral triangle with side lengths equal to
one mile. Since its three vertices (pigeons) are painted in two colors (pi-
geonholes), there are two vertices painted in the same color (at least two
pigeons in a hole). These two vertices are one mile apart. ∎

You can prove (do) the same result about a 3-colored plane:

No matter how the plane is 3-colored, it contains two points of the same
color exactly one mile apart.
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One may think that we know everything about the Euclidean plane. What
else can there be after Pythagoras and Euclid? First of all, the Ancient
Greeks did not think about these kinds of problems, where nothing is known
about the coloring. Secondly, these simple problems are the starting points
of a deep and still unresolved train of thought. For instance, try to push the
problem to the next natural step, a 4-colored plane:

Is it true that no matter how the plane is 4-colored, it contains two points
of the same color exactly one mile apart?

Imagine, nobody knows!

Chromatic Number of the Plane Problem 28 What is the smallest number
of colors with which we can color the plane in such a way that no color
contains two points distance 1 apart?

This number is called the chromatic number of the plane and is often
denoted by χ. We can easily show (do) that 7 colors suffice, and thus χ ≤ 7.
And so we know that χ =4 or 5 or 6 or 7. Which is it?

In August 1987 I attended an inspiring talk by the member of the U.S.
National Academy of Sciences Paul Halmos at Chapman College in Cali-
fornia. It was entitled “Some problems you can solve, some you cannot.”
This problem was an example of a problem “you cannot solve.” So far
Halmos is correct.

While writing The Mathematical Coloring Book (Soifer 2009), in ca.
2007, I formulated the following conjecture:

Chromatic Number of the Plane Conjecture 29 (A. Soifer 2007). χ =7.

If you are familiar with 3- and more generally n-dimensional Euclidean
space En, you will readily see that this problem straight-forwardly gener-
alizes to n dimensions, and we can ask a more general question of the
chromatic number χ(En) of En. In (Soifer 2009) I conjectured a simple
formula for the chromatic number of the n-dimensional Euclidean space En:

Conjecture III: Chromatic Number of n-Space χðEnÞ=2n+1 − 1.

As Paul Erdős used to say, “If true, this conjecture may take centuries to
prove, but we shall see!”

14.5 Conjecture IV. Triangular Covering
(Conway–Soifer 2004)

In 2004 we held the 21st Colorado Mathematical Olympiad, for which I
created the following problem (Soifer 2011):
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Problem 30: To Have a Cake

(A) We need to protect from the rain a cake that is in the shape of an
equilateral triangle of side 2.1. All we have are identical tiles in the
shape of an equilateral triangle of side 1. Find the smallest number of
tiles needed.

(B) Suppose the cake is in the shape of an equilateral triangle of side 3.1.
Will 11 tiles be enough to protect it from the rain?

Solution (A). Mark 6 points in the equilateral triangle of side 2.1: its vertices
and midpoints of the sides (Fig. 14.4). A tile can cover at most one such
point, therefore we need at least 6 tiles.

On the other hand, 6 tiles can do the job. There are different ways to
achieve it. Here is one. We can first cover the three corners (Fig. 14.5a), and
then use 3 more tiles to cover the remaining hexagon (Fig. 14.5b).

(B). We can use 4 tiles to cover the top triangle of side 2, and then use the
remaining 7 tiles for a bottom trapezoid (Fig. 14.6). ∎

Have you noticed that I did not ask the Olympians to prove that 11
covering tiles are necessary? At the Olympiad, I could only ask what I can
prove myself!

Fig. 14.4
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Fig. 14.5

Fig. 14.6
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Upon my return to Princeton, where I worked at the time, I shared a more
general form of this problem with John H. Conway. Imagine, we both found
proofs of the sufficient condition, which were markedly different. And so
John and I decided to set a world record: to publish an article containing just
one word in its text. Let me reproduce here our submission to The American
Mathematical Monthly.

Can N2 + 1 Unit Equilateral Triangles Cover an Equilateral
Triangle of Side > N, Say n + ε?

John H. Conway and Alexander Soifer
Mathematics, Princeton University, Fine Hall, Princeton NJ 08544, USA
e-mail: conway@math.princeton.edu; e-mail: asoifer@princeton.edu

n2 + 2 can (Fig. 14.7):

Fig. 14.7

Fig. 14.8
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The American Mathematical Monthly was puzzled. On April 30, 2004,
Editorial Assistant of the Monthly Margaret A. Combs sent me an e-mail:

The Monthly publishes exposition of mathematics at many levels, and
it contains articles both long and short. Your article, however, is a bit
too short to be a good Monthly article … A line or two of explanation
would really help.

Having learned fromme aboutTheMonthly reply, JohnConway exclaimed,
“Do not give up too easily!” And so, I replied the same day as follows:

I respectfully disagree that a short paper in general – and this paper in
particular – merely due to its size must be “a bit too short to be a good
Monthly article.” Is there a connection between quantity and quality?
… We have posed a fine (in our opinion) open problem and reported
two distinct ‘behold-style’ proofs of our advance on this problem.
What else is there to explain?

The American Mathematical Monthly published our article (Conway and
Soifer 2005), but spoiled our single-word world record by unilaterally
including our title in the body of the article!

John Conway believed that since his and my coverings were so vastly dis-
tinct, the problem was too hard to continue fighting with it. However, shortly
after, the Columbia University undergraduate student Dmytro Karabash joined
me in working on this problem. We generalized the problem to covering an
arbitrary triangle T. Tiling triangles will be similar to T and their corresponding
sides will be n+ ε times smaller—let us call them 1 ̸ðn+ εÞ-clones of T.
Result 31 (Karabash–Soifer 2005). Any non-equilateral triangle T can be
covered by n2 +1 1 ̸ðn+ εÞ-clones of T.
Proof An appropriate affine transformation maps equilateral triangle on
Fig. 14.8 onto T. This transformation gives a covering of T with n2 + 2
tiling clones, but now we can cover the transformed top triangle (see
Fig. 14.8) with 2 clones instead of 3 as shown in Fig. 14.9, thus reducing
the total number of covering clones to n2 + 1. ∎

Dmytro and I also generalized the problem by introducing trigons
(Karabash and Soifer 2005). But we were unable to prove the Conway–
Soifer Conjecture that the equilateral triangle requires n2 + 2 covering tri-
angles. Imagine, the equilateral triangle proved to be the hardest of all! You
have a chance to prove it yourselves—sharpen your pencils!
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Triangular Covering Conjecture IV (Conway–Soifer 2004). An equilat-
eral triangle of side n cannot be covered by n2 + 1 equilateral triangles of
side 1− ε.

The ‘smallest’ open case is the following conjecture:

The Hexagon Conjecture 32 (Karabash–Soifer 2005). Seven equilateral
triangles of side 1− ε cannot cover an equilateral hexagon of side 1.

You will find 10 more bridges from the problems of the Colorado
Mathematical Olympiad to open problems of mathematics in my forth-
coming book (Soifer 2017).

Acknowledgements I thank Col. Dr. Robert Ewell for converting my
hand-drawn sketches into computer-aided illustrations.
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