Identification of Defects in Pipelines
Through a Combination of FEM and ANN
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Abstract Defects identification method in the pipeline system is proposed. The
method is based on a combination of finite element method (FEM) and artificial
neural networks (ANNs). A finite element modeling of the monitoring system of the
damaged state of the pipeline, which is a fragment of a pipe with a defect and
piezoelectric actuators and sensors is carried out. The direct problem is reduced to
initial boundary value problem of the theory of elasticity and electrodynamics. The
inverse problem of identification of defects is reduced to the inverse geometrical
problem. As additional information for the solution of inverse problems is the
amplitude—time response (ATR) of electric potential on the free electrode sensors,
the sensors were located before and after a defect, for measuring the reflected and
transmitted acoustic waves excited by the actuators. Using this model, a set of direct
problems is solved and a training set for the ANN is constructed. As the ANN
architecture, we select a multilayer perceptron and back propagation learning
algorithm is considered. The algorithm for the identification of defects contains
several steps: (i) the location of a defect (determining the distance between the
actuators and sensors and defect); (ii) determining the type of the defect (crack,
volumetric defect); and (iii) the determination of the defect parameters (depth, slope
of the crack, geometric parameters of the volume defect). A series of numerical
experiments, in which the optimal ANN architecture, defined for each identification
step, is performed.
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1 Introduction

Reconstruction of defects in the pipeline caused by corrosion or by mechanical
action is an important technical problem, the successful solution of which can
prevent breakage of the pipes. Such identification may be carried out with instru-
ments, which move along a pipeline and perform their monitoring. A more
attractive way of detection is the use of acoustic sensors and receivers (piezoelectric
transducer). They are mounted on a pipe and detect damage based on the reflected
signals. Such a system should be equipped with software that allows us to identify
the damage and its extent based on the analysis of the reflected or transmitted
signal. Such software can be developed through the use of ANN [1]. Application of
ANN in the problems of reconstruction of the damaged state of structural elements
was described in works [2—-8]. The use of different ANN architectures and algo-
rithms was described in works [2—7]. Identification of defects in anisotropic plates
by using ANN was present in work [8]. In work [4], the authors pointed out the
advantages of identification methods that do not require the prior constructing of a
mathematical model of the studied object.

In this paper, we developed a method of reconstruction of surface defects in
pipes. Mathematically, the problem is reduced to the inverse geometrical problem
of elasticity theory [9]. It is assumed that the defects locate on the outer or inner
surfaces of the pipe and have axisymmetric configuration. Nonstationary acoustic
signal is processed by actuator, located at some distance from the defect. The
receiver locates there as well. The problem is solved in axisymmetric case using
FEM. Finite element model of the pipeline track is built in the ANSYS. The signal
(in the form of amplitude time response (ATR) of the radial and axial displace-
ments) reflected from the defect is measured over time. The waves, reflected from
the ends of the pipe segment, do not have time to come back to the receiver. In this
way, the real conditions of an extended pipeline are modeled.

Analysis of the measured ATRs shows the possibility of their use in the inverse
problems of identification of defects. The identification of defects may be carried
out in two stages. At the first stage, the registration of a defect and the determination
of the distance from the sensor to the defect are carried out. The problem of the first
stage is solved on the base of the difference between the measured values of ATR
for construction without defect and with the defect. Calculations show that the
distance to the defect can be found using the signal arrival time, which is reflected
by the defect. Thus, task of the first stage may be achieved by using hardware. The
second stage provides the identification of the defect parameters (type, size, shape,
volume, etc.). This task is much more difficult than the previous. Depending on the
input information, it may have more than one solution. Artificial neural networks
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are used as a tool for solving the inverse problem of the reconstruction of defects
parameters. Artificial neural networks were originally designed for solving the
problem of finding nonlinear dependencies. Unlike other algorithmic structures,
there are not programmable, but trained on the data set, based on the different defect
parameters. Training sets are constructed by solving direct problems in ANSYS.
The trained network is able to correctly identify defect parameters. Input data for
training ANN can be transformed by the FFT [10], which improves the identifi-
cation process. The ANN architecture, ways of representing information, and the
influence of defects sizes on the accuracy of the identification were studied in this
chapter.

2 Formulation of Direct and Inverse Problems

2.1 Direct Problem

Formulation of direct problems is reduced to the initial boundary value problem of
elasticity theory taking into account the energy dissipation adopted in finite element
packages such as ANSYS, ACELAN, etc. The formulation consists of the fol-
lowing equations [11]:

ojj = piti+pouy;, i=1,2,3 (2.1)
i = cij(en + Péx)- (2.2)
1

=5 (Mk,z + l/ll‘,k) (2.3)

boundary conditions:
uilg, = u? (2.4)
L= Gij”j|5k =Dpi (2.5)

and initial conditions:
uil,_o = 8i(x) tti],_y = vi(x) x € V. (2.6)

Here p is the material density; u; are the unknown components of the dis-
placement vector; u?, p;i are the known components of the displacement vector and
surface loads; ¢;;, ¢, are the components of the stress tensor and elastic constants;
si 1s the internal surface of the crack and the hole; and ¢ are the components of the
strain tensor. The factors «, § describe dissipative properties of the solid and are
used in modern finite element analysis packages such as ANSYS, ABAQUS,
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ACELAN, and so on. These factors are coupled with property of Q-linear oscillator
through the following relationships [12]:

2nfiifro 1

t O(f1 +12)’ f=ta= 2nQ(fr1 +fr2)’ @7

where f;; and f;, are the first and second resonance frequencies, and Q is the quality
factor.

The wave excitation and reception of the signal by using actuators and sensors,
based on piezoelectric elements, are carried out. In this case, the linear theory of
electrodynamics, taking into account the energy dissipation, is used. It is also taken
into account in the ANSYS and ACELAN packages that

piti + opi; — 0y; = fi;  Dij =0 (2.8)
i = cylen + Pén) — ewEr;  Di+ caDi = ea(en + Caiu) + D Ex,  (2.9)
e = (et +win) /2 Ex = —dy, (2.10)

where f; are the components of the vector of the density of mass forces; D; are the
components of the electric induction vector; e are the third-rank tensor compo-
nents of piezomoduli; E; are the components of the electric field vector; ¢ is the
electric potential function; >; are the second-rank components of the tensor of
dielectric permittivity; and «, f8, ¢, are negative damping coefficients [12].

Among the electrical boundary conditions, we note the conditions on the elec-
trodes of actuator S, and on the sensor electrode S., which is connected to an
external electric circuit, or free:

@ls, = @of (t) (2.11)

/Dnds =1, (2.12)

Se

where [ is the current in the circuit (in the considered cases of free electrode it is
equal to zero); ¢, is the maximum value of the electric potential; and f(z) is the
function, describing the shape of the pulse (single step, used in the numerical
results).

2.2 Inverse Problems

The inverse geometric problem of identification of cracks on the external or internal
surface of the pipe is considered. The excitation of waves is carried out by the



Identification of Defects in Pipelines ... 95

piezoelectric actuator. As additional information, it used the ATR of electrical
potential, measured by the piezoelectric sensors, disposed on the external surface of
the pipe.

The solution of direct nonstationary problems for pipe fragment (Fig. 1, right)
with a circular crack of depth dr (Fig. 1, left) on the outer or inner surface of the
pipe is searched. Let % is the pipe length, r is the inner radius, #r is the thickness, s;
is the distance between the first piezosensor and the defect, /; is the distance
between the defect and edge of the pipe, s, is the distance from the piezoactuator to
the second piezosensor, and I, is the distance from the second piezosensor to the
edge of the pipe.

A fragment of pipe is considered, which in cylindrical coordinate system
(r:,0,z.) occupies an area Q : r — % <r,<r+%, 0<0<2n, 0<z, <L

A system of differential equations, describing wave processes in the pipe
Eqgs. (2.1)~(2.3), is used. The lower edge plane z, = 0 is fixed; the upper edge plane
and the inner cylindrical surface are free of stresses; the outer surface of the pipe
also is free of stresses, too. Crack faces do not interact with each other; so they are
free from mechanical stresses, too. The initial conditions correspond to the non-
deformed tube at rest. Dynamic processes in the electroelastic environment
(piezoactuators and piezosensors) are described by Egs. (2.8)—(2.10). On the
electrodes of piezoactuator, a potential difference (2.11) is given. One electrode of
the piezosensor, which gives information on ATR of electric potential (2.10), is

(a) (b) (c)
b > 2
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Fig. 1 a Pipe model with crack-like defect and shown dimensions; b pipe model without liquid;
¢ pipe model with liquid (/, 3 metal, 2 liquid)
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free. Wave processes that occur in the fluid filling the pipe are considered as
acoustic ones. The impedance boundary conditions at the edges of the pipe simulate
infinite acoustic environment.

Additional information for the solution of the inverse problem of identification
of the crack is ATRs of electric potentials at the free electrode sensors (Fig. 1b, c):

Q.= t
;I; 28 t€[0,n)] (2.39)
where 51,5, are the free electrodes of sensors 1 and 2, respectively (Fig. 1).

The values of s, dr, y are required to identify; they characterize the crack (Fig. 1a).
The distance from the first sensor to crack s; is determined at the first step; the crack
penetration depth dr perpendicular to the surface is determined at the second
step. Identification of defects is carried out by using ANN. The direct nonstationary
problem for the pipe segment is solved for ANN training (Fig. 1, right). Let dr is the
penetration depth and y is the angle of the semicircular crack on the external or internal
surface of the pipe (Fig. 1, left). The geometric parameters of the pipe are length 7 = 2
m, inner radius r = 0.19 m, thickness # = 0.02 m, the distance from the first
piezosensor to the defect s; = 0.5 m, the distance from the defect to the edge of the
pipe I; = 0.5 m, the distance from the piezoactuator to the second piezosensor
s, = 0.7 m, and the distance from the second piezosensor to the edge of the pipe
I, = 0.3 m. Axisymmetric finite element model is built in ANSYS for Young’s
modulus E = 2.0 x 10'! Pa, density p = 7800 kg/m3, and Poisson’s ratio v = 0.3.

Excitation of the waves is performed by setting potential difference on the elec-
trodes of the piezoactuator with step-like time dependence (the duration of action is
1 x 107%5). The measured data are the ATRs of the electric potential at the free
piezosensor electrode, located on the external surface of the pipe. There are two cases
of its location: (i) near to the piezoactuator, and (ii) at a distance from it. We assume
that a defect locates between actuator and sensor (Fig. 1). Measurement of the signal,
reflected from defect, is produced in the time interval [, 7;]. We assumed, that 7, is the
time, when a reflected signal reaches sensor, #; is the time, when the signal, reflected
from the pipe edges, reaches sensor: t; = 2s1/v, t, =2(s1+1)/v, At =1, — 1
(where v is the speed of the signal). For the second piezoelectric sensor, this interval is
= Sz/v, I = (S2+2lz)/v, At =1 —1.

3 Identification of Defects with the Use of Artificial
Neural Networks

3.1 ANN Architecture

Multilayer network with back propagation is applied (Fig. 2). This architecture is
perfectly suited for the task and combines the ease of implementation and
performance.
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Fig. 2 Explanation of the weight change

. Error
back propagation

weight change

~ Error

Two hundred data vectors were formed, 90% of which were used for training
and 10% for testing. Then the computer experiments were performed using ANN.

The square error, er, for a particular network configuration is determined by
providing a network of all existing observations (n) and comparing the actual output
values with the desired (target) values:

er:%i(di—yi)z, (3.1)

i=1

where d is the desired network output; y is the real network output.
After training, the network can be used to predict output values. The accuracy of
prediction is calculated according to the formula:

100 R & ( dz, J — Vi
1), (32)
N*MZJZ L

where n is the number of samples for testing; m is the number of output data; df is
the desired network output at testing; and yr is the actual network output at testing.

3.2 The Processing of Input Data for ANN

Figure 3a presents ATR of electric potential ¢, measured by piezoelectric sensor
(curve 1 represents the data that correspond to the case of the pipe without defect;
curve 2 represents the data that correspond to the case of the pipe with defect
dr = 5 mm; curve 3 is the difference between 1 and 2). Moreover, the time interval
used for ANN training is specified.

Case 1. The input data for the neural network is the ATR of ¢ per the period of
time [, 1,], marked by a dotted line in Fig. 3a.
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Fig. 3 a ATRs of electric potential ¢ for the pipe without the defect, with defect and their
differences (input data for ANN correspond to case 1); b example of the ANN input data in case 2

Case 2. FFT algorithm is applied. Inputs to the neural network are values of the
real parts of FFT (RFFT) (shown in Fig. 3b). In this case, the size of the input data
decreases, so the training time will be less than in the first case.

4 Numerical Experiments

4.1 Determination of Distance to the Defect by Using
Hardware

Figure 4 shows the difference between ATR of electric potential ¢ measured by the
second piezosensor. Curve 1 represents the difference between ¢ for the empty pipe
without defect and with it. Curve 2 represents the difference between ¢ of the pipe
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Fig. 4 Comparison of the difference between ATRs of the electric potential ¢ for the empty tube
and the tube with the fluid
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Fig. 5 Comparison of ¢ for the different defect positions

without defect filled with fluid and with the defect. The amplitudes and informative
signal for empty pipe and filled with fluid are comparable, so further the ANN
technology in the problem of identification of the defect is applied to an empty tube.

Figure 5 shows the difference between ATRs of electric potential ¢ measured by
the first piezosensor. This case corresponds to an empty pipe with the different
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distances s between the sensor and the defect. Curve 1 represents the difference
between ¢ for the pipe without defect and with it on the external surface of the pipe.
In the case of curve 1, s; = 400 mm. In the case of curve 2, s, = 600 mm. Using
the time of arrival of the reflected signal ¢, or t,,, we can estimate the distance to the
defect. It is the first step in the identification of its parameters.

4.2 Determination of Distance to the Defect Using ANN

It was noted that the distance to the defect can be determined by using hardware
according to the arrival time of the reflected signal. There is a possibility of the
determination by using a trained neural network. It does not analyze the defect
parameters, but identifies its location.

Table 1 shows the results of the identification of distance s to the defect by using
ANN. The ANN structure is “200-20-1”. It uses 2000 training iterations and 200
input vectors (180—training, 20—testing); we assume that s € [1300, 1700] mm.
The defects locate on the outer surface of the pipe. The line number indicates the
type of the defect in Table 2.

The data, presented in Table 1, show that the error of determining the distance
value equals 5% for “small” defects and reduces to 1.5% for “large” defects.

4.3 Determination of Defect Parameters Using ANN

The second step is to determine the crack depth, which is defined from range
dr € [0, 9)mm in a numerical experiment. The discussed defects are roughly
divided into three classes (see Table 2). This separation can be associated with

Table 1 Results of the identification of the distance to defect

Ne Depth of the defect (dr) (mm) Accuracy of identification (%)
2 94.92
5 97.11

3 8 98.67

Table 2 Defect classes

Ne The depth of the defect (dr) (mm)
0-3

2 3-6

3 6-9
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classification of defects according to the degree of damage and the danger of the
destruction of the pipe. For each class within the training and testing, we analyzed
200 defects.

The reconstruction of defect parameters was performed for two cases: (i) defects,
located on the outer surface of the pipe; and (ii) defects, located on the inner surface
of the pipe.

4.3.1 Reconstruction of Perpendicular Cracks

Let us first consider the crack perpendicular to the pipe surface. In this case, the
depth of the defect, dr, shall be identified. Two hundred data vectors were formed,
90% of which were used for training and 10% for testing. Thereafter, the computer
experiments are performed using the ANN. Error,er (Fig. 6), and prediction
accuracy were defined by the formulae (3.1) and (3.2).

The results of the training and testing in the case of the second sensor are shown
in Tables 3, 4, 5 and 6.

Table 3 shows the ANN structures, which give the best identification results,
namely 51 input neurons, 10 hidden neurons, and one output neuron.

Table 4 shows that the best result is obtained with 2000 training iterations.

The results of training and testing in the Case 2, using the first sensor, are shown
in Tables 7 and 8.

The results of Tables 5, 6, 7 and 8 listed in rows 1-3 correspond to Table 2.

0.016

0.014 0016

0.012 o012 f{

0.010

0.008 s

er

0.006 0.00

0.004

0.002

0.000 L
0

500 1000 1500 2000
Epochs

Fig. 6 Training error
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Table 3 Results of training and testing ANN, using 2000 epochs and 200 input vectors (RFFT);

A.N. Soloviev et al.

different hidden layers are used and defects locate on the outer surface of the pipe

No. ANN structure Error (er) Accuracy (ex) (%)
1 51-5-1 12 x 107 99.58
2 51-10-1 8.6 x 1077 99,67
3 51-20-1 25 % 107° 99.22
4 51-30-1 19 x 107 98.80
5 51-5-5-1 13 x 1074 96.97
6 51-10-10-1 1.2 x 107° 99.43
7 51-15-15-1 3.2 x 107¢ 99.17
8 51-20-20-1 3.5 % 107° 99.13

Table 4 Results of training and testing of ANN, using 200 input vectors (RFFT); different

numbers of epochs are used and defects locate on the outer surface of the pipe

No. ANN structure Error (er) Accuracy (ex) (%)
1 51-10-1 1000 99.37
2 51-10-1 2000 99.67
3 51-10-1 3000 99.46
4 51-10-1 4000 99.21

Table 5 Results of training and testing ANN using 2000 epochs; different values of the defect

depth are used and defects locate on the outer surface of the pipe

No. Amount of data ANN structure Error (er) Accuracy (ex) (%)
1 200-all 100-20-1 2.1 x10°¢ 99.35
200-RFFT 51-10-1 8.6 x 1077 99.67
2 200-all 100-20-1 3.8 x 107° 98.90
200-RFFT 51-10-1 5.1 x 1077 99.64
3 200-all 100-20-1 35 x10°¢ 99.29
200-RFFT 51-10-1 1.3 x 1077 99.87

Table 6 Results of training and testing ANN using 2000 epochs; different values of the defect

depth are used and defects locate on the inner surface of the pipe

No. Amount of data ANN structure Error (er) Accuracy (ex) (%)
1 200-all 100-20-1 42 % 10°° 99.24
200-RFFT 51-10-1 6.1 x 107° 99.48
2 200-all 100-20-1 1.5 x 107° 99.71
200-RFFT 51-10-1 7.0 x 1077 99.75
3 200-all 100-20-1 9.5 x 1077 99.70
200-RFFT 51-10-1 9.8 x 1077 99.39
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Table 7 Results of training and testing ANN using 2000 epochs; different values of the defect

depth are used and defects locate on the outer surface of the pipe

No. Amount of data ANN structure Error (er) Accuracy (ex) (%)
1 200-all 100-20-1 8.4 x 107° 98.52
200-RFFT 51-10-1 6.3 x 107¢ 98.62
2 200-all 100-20-1 27 x 107¢ 99.34
200-RFFT 51-10-1 6.4 x 107° 99.07
3 200-all 100-20-1 7.7 x 1077 99.41
200-RFFT 51-10-1 13 x 107° 99.27

Table 8 Results of training and testing ANN using 2000 epochs; different values of the defect

depth are used and defects locate on the inner surface of the pipe

No. Amount of data ANN structure Error (er) Accuracy (ex) (%)
1 200-all 100-20-1 3.8 x 107° 98.95
200-RFFT 51-10-1 6.5 x 107¢ 98.74
2 200-all 100-20-1 3.4 % 107° 99.26
200-RFFT 51-10-1 4.1 x 107° 99.44
3 200—all 100-20-1 3.1 x 1077 99.68
200-RFFT 51-10-1 25 x 1077 99.71
(3] Accurancy dr (outer) (b) Accurancy dr (inner)

I\ [/ L
\ / \ /
Vo T
{7 V

7\
X

f—%
/

\/

\/"\\" Ay \ /’\/'ul ;.-‘M /

!\ _JII
V

1 2 3 4 5 6 7 8 910111221314 1516171819 20 1 2 3 4 5 6 7 8 9 1011 12151415 161718 19 20

Fig. 7 Test results of identification of the defect depth

Figure 7 shows the test results of ANN (depth identification), displaying 20
examples with “10-01-51" architecture. The plots, shown in Fig. 7a, b, are built on
the data, obtained by using the second row of Tables 5 and 6, respectively.

Figure 8 shows the results of identification in the case of using “noisy data” from
formula (4.1). It is modeled the measurement error as

X(1) = X(t) + SP(t)MAX (X (1)), (4.1)

where 0 ranges from 1 to 10%, and P(¢) is the random variable uniformly dis-
tributed in the range [—1, 1].
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Fig. 8 Results of identification by using “noisy data”

Table 9 Results of training and testing ANN using 2000 epochs; different values of the defect
depth and angle are used

No. ANN structure Error Accuracy (%) Sensor
1 100-10-2 0.0032 92.27 1
2 100-10-2 7.89 x 107° 95.95 1
3 100-10-2 0.3253 89.28 1
4 100-10-2 0.0119 97.39 2
5 100-10-2 391 x 107° 98.11 2
6 100-10-2 0.7315 84.47 2

4.3.2 Reconstruction of Inclined Cracks

In this section, we consider the identification of inclined cracks. Also as previously,
defects are roughly divided into three classes (Table 2). We consider inclined
cracks on the outer surface of the pipe. The inclination angle of the crack varies in
the range [—45°; 45°]. Two hundred defects are used for each of the considered
classes. The results of identification are shown in Tables 9, 10 and 11.

The numerical results showed that the identification error of inclined cracks does
not exceed 10%. The architecture of trained ANN is 200-20-2 and 101-10-2. Thus,
using the data, based on RFFT, accelerates more than two times speed of the
learning process. For a more accurate reconstruction of defect parameters, the
piezoelectric actuators and sensors, if it is possible in practice, should be located in
the vicinity of the defect.
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Table 10 Results of training N, ANN Error Accuracy Sensor
and testing ANN using 2000 structure (%)
epochs; different values of the 200202 0.0024 05.32 2
defect depth and angle are St : : >
used 2 200-20-2 148 x 107°  |99.48 1,2

3 200-20-2 0.0146 92.52 1,2
Table 11 Results of training N, ANN Error Accuracy Sensor
and testing ANN using 2000 structure (%)
epochs and 200 input vectors 101-102 0.00059 96.75 12
(RFFT); different values of B : — : >
the defect depth and angle are 2 101-10-2 8.71 x 1077 99.59 1,2
used 3 101-10-2 0.07695 92.19 1,2

5 Conclusion

In the result of this study, the method of the parameter identification of cracks on
the outer or inner surface of the pipe, based on a combination of the finite element
method and ANN, is developed. Additional information for the solution of the
inverse problem of identification of the crack is ATRs of a radial and axial dis-
placements and electric potential of piezosensor. This allows one to use the
developed method in practice without complicated measurements. The study found
that the preparation of the input data is the cornerstone in solving the problem. The
most successful is the identification of the defect, based on the ATR, obtained by
FFT. It is shown that the problem of identifying defects may be performed in two
stages: (i) by determining the distance to the defect, and (ii) by determining its
parameters.

Accuracy of determining the defect depth for the outer surface defect became
99.41 and 99.71% for the inner surface defect. Note that as additional information
for the solution of inverse problems was used ATR of electrical potential of
piezosensors, these sensors were located before the defect (for reflected signal) and
after the defect (for passed signal). The results of numerical experiments showed
that accuracy of the identification of defect parameters with trained ANN exceeded
95% at both locations of piezosensors. In the result of numerical experiments, we
revealed ANN architectures that gave the best identification results, namely, 51
input neurons, 10 hidden neurons, and 1 output neuron.

In this architecture, we used the data, processed by the FFT. The size of input
data was reduced, so the learning process became faster than in the case of using
ATR data. Analysis of the input data showed that the ATR data could be used for
identification defects in pipes, filled with fluid. The proposed identification algo-
rithm was resistant to the error of input information.
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Based on the foregoing, we conclude that the artificial neural network approach
can be successfully used to identify defects on the surface of pipes by using the
acoustic sensing of far field.
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