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Abstract. Efficiency of the next generation pairing based security pro-
tocols rely not only on the faster pairing calculation but also on efficient
scalar multiplication on higher degree rational points. In this paper we
proposed a scalar multiplication technique in the context of Ate based
pairing with Kachisa-Schaefer-Scott (KSS) pairing friendly curves with
embedding degree k = 18 at the 192-bit security level. From the system-
atically obtained characteristics p, order r and Frobenious trace t of KSS
curve, which is given by certain integer z also known as mother parame-
ter, we exploit the relation #E(Fp) = p+1− t mod r by applying Frobe-
nius mapping with rational point to enhance the scalar multiplication. In
addition we proposed z-adic representation of scalar s. In combination of
Frobenious mapping with multi-scalar multiplication technique we effi-
ciently calculate scalar multiplication by s. Our proposed method can
achieve 3 times or more than 3 times faster scalar multiplication com-
pared to binary scalar multiplication, sliding-window and non-adjacent
form method.
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1 Introduction

The intractability of Elliptic Curve Discrete Logarithm Problem (ECDLP) spurs
on many innovative pairing based cryptographic protocols. Pairing based cryp-
tography is considered to be the basis of next generation security. Recently a
number of unique and innovative pairing based cryptographic applications such
as identity based encryption scheme [17], broadcast encryption [8] and group
signature authentication [7] surge the popularity of pairing based cryptography.
In such consequence Ate-based pairings such as Ate [9] and Optimal-ate [20],
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twisted Ate [13] and χ-Ate [15] pairings has gained much attention. To make
such cryptographic applications practical, these pairings need to be computed
efficiently and fast. This paper focuses on such Ate-based pairings.

Pairing is a bilinear map from two rational point G1 and G2 to a multiplica-
tive group G3 [19] typically denoted by G1 ×G2 → G3. In the case of Ate-based
pairing, G1, G2 and G3 are defined as follows:

G1 = E(Fpk)[r] ∩ Ker(πp − [1]),
G2 = E(Fpk)[r] ∩ Ker(πp − [p]),
G3 = F

∗
pk/(F∗

pk)r,

α : G1 × G2 → G3,

where α denotes Ate pairing. In general, pairings are only found in certain exten-
sion field Fpk , where p is the prime number, also know as characteristics and the
minimum extension degree k is called embedding degree. The rational points
E(Fpk) are defined over a certain pairing friendly curve of embedded extension
field of degree k. Security level of pairing based cryptography depends on the
sizes of both r and pk, where r generally denotes the largest prime number that
divides the order #E(Fp). The next generation security of pairing-based cryp-
tography needs log2 r ≈ 256 bits and log2 pk ≈ 3000 to 5000 bits. Therefore
taking care of ρ = (log2 p)/(log2 r), k needs to be 12 to 20. This paper has
considered Kachisa-Schaefer-Scott (KSS) [12] pairing friendly curves of embed-
ding degree k = 18 described in [10]. Pairing on KSS curve is considered to
be the basis of next generation security as it conforms 192-bit security level.
Making the pairing practical over KSS curve depends on several factors such
as efficient pairing algorithm, efficient extension field arithmetic and efficiently
performing scalar multiplication. Many researches have conducted on efficient
pairing algorithms [4] and curves [5] along with extension field arithmetic [2].
This paper focuses on efficiently performing scalar multiplication in G2 by scalar
s, since scalar multiplication is required repeatedly in cryptographic calculation.
Scalar multiplication is also considered to be the one of the most time consuming
operation in cryptographic scene. Moreover in asymmetric pairing such as Ate-
based pairing, scalar multiplication in G2 is important as no mapping function
is explicitly given between G1 to G2. By the way, as shown in the definition, G1

is a set of rational points defined over prime field and there are many researches
for efficient scalar multiplication in G1.

Scalar multiplication by s means (s − 1) times elliptic additions of a given
rational point on the elliptic curve. This elliptic addition is not as simple as
addition of extension field, but it requires 3 multiplications plus an inversion of
the extension field. General approaches to accelerate scalar multiplication are
log-step algorithm such as binary and non-adjacent form (NAF) methods, but
more efficient approach is to use Frobenius mapping in the case of G2 that is
defined over Fpk . Frobenious map π : (x, y) �→ (xp, yp) is the p-th power of
the rational point (x, y) defined over Fpk . In this paper we also exploited the
Frobenious trace t, t = p + 1 − #E(Fp) defined over KSS curve. In the previous
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work on optimal-ate pairing, Aranha et al. [1] derived an important relation:
z ≡ −3p + p4 mod r, where z is the mother parameter of KSS curve and z is
about six times smaller than the size of order r. We have utilized this relation
to construct z-adic representation of scalar s which is introduced in Sect. 3. In
addition with Frobenius mapping and z-adic representation of s, we applied
the multi-scalar multiplication technique to compute elliptic curve addition in
parallel in the proposed scalar multiplication. We have compared our proposed
method with three other well studied methods named binary method, sliding-
window method and non-adjacent form method. The comparison shows that
our proposed method is at least 3 times or more than 3 times faster than above
mentioned methods in execution time. The comparison also reveals that the
proposed method requires more than 5 times less elliptic curve doubling than
any of the compared methods.

As shown in the previous work of scalar multiplication on sextic twisted BN
curve by Nogami et al. [16], we can consider sub-field sextic twisted curve in the
case of KSS curve of embedding degree 18. Let us denote the sub-field sextic
twisted curve by E′. It will include sextic twisted isomorphic rational point
group denoted as G

′
2. In KSS curve, G2 is defined over Fp18 whereas its sub-

field isomorphic group G
′
2 is defined over Fp3 . Important feature of this sextic

twisted isomorphic group is, all the scalar multiplication in G2 is mapped with
G

′
2 and it can be efficiently carried out by applying skew Frobenious map. Then,

the resulted points can be re-mapped to G2 in Fp18 . This above mentioned skew
Frobenious mapping in sextic twisted isomorphic group will calculate more faster
scalar multiplication. However, the main focus of this paper is presenting the
process of splitting the scalar into z-adic representation and applying Frobenius
map in combination with multi-scalar multiplication technique.

2 Preliminaries

In this section we will go through the fundamental background of elliptic curves
and its operations. We will briefly review elliptic curve scalar multiplication.
After that pairing friendly curve of embedding degree k = 18, i.e., KSS curve
and its properties will be introduced briefly.

2.1 Elliptic Curve [21]

Let Fp be a prime field. Elliptic curve over Fp is defined as,

E/Fp : y2 = x3 + ax + b, (1)

where 4a3 + 27b2 �= 0 and a, b ∈ Fp. Points satisfying Eq. (1) are known as
rational points on the curve.
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Point Addition. Let E(Fp) be the set of all rational points on the curve defined
over Fp and it includes the point at infinity denoted by O. The order of E(Fp)
is denoted by #E(Fp) where E(Fp) forms an additive group for the elliptic
addition. Let us consider two rational points L = (xl, yl), M = (xm, ym), and
their addition N = L+M , where N = (xn, yn) and L,M,N ∈ E(Fp). Then, the
x and y coordinates of N is calculated as follows:

(xn, yn) = ((λ2 − xl − xm), (xl − xn)λ − yl), (2a)

where λ is given as follows:

λ =

⎧
⎪⎨

⎪⎩

(ym − yl)(xm − xl)−1 (L �= M and xm �= xl),

(3x2
l + a)(2yl)−1 (N = M and yl �= 0) ,

(2b)

λ is the tangent at the point on the curve and O it the additive unity in E(Fp).
When L �= M then L + M is called elliptic curve addition (ECA). If L = M
then L + M = 2L, which is known as elliptic curve doubling (ECD).

Scalar Multiplication. Let s is a scalar where 0 ≤ s < r, where r is the order
of the target rational point group. Scalar multiplication of rational points M ,
denoted as [s]M can be done by (s − 1)-times additions of M as,

[s]M = M + M + · · · + M
︸ ︷︷ ︸

s−1 times additions

. (3)

If s = r, where r is the order of the curve then [r]M = O. When [s]M = N , if s
is unknown, then the solving s from M and N is known as elliptic curve discrete
logarithm problem (ECDLP). The security of elliptic curve cryptography lies on
the difficulty of solving ECDLP.

2.2 KSS Curve

KSS curve is a non super-singular pairing friendly elliptic curve of embedding
degree 18 [12]. The equation of KSS curve defined over Fp18 is given by

E : Y 2 = X3 + b, (b ∈ Fp), (4)

where b �= 0 and X,Y ∈ Fp18 . Its characteristic p, Frobenius trace t and order r
are given systematically by using an integer variable z as follows:

p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2

+1763z + 2401)/21, (5a)
r(z) = (z6 + 37z3 + 343)/343, (5b)
t(z) = (z4 + 16z + 7)/7, (5c)
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where z is such that z ≡ 14 (mod 42) and the co-factor is ρ = (log2 p/ log2 r) is
about 4/3. The order of rational points #E(Fp18) on KSS curve can be obtained
by the following relation.

#E(Fp18) = p18 + 1 − t18, (6)

where t18 = α18 + β18 and α, β are complex numbers such that α + β = t and
αβ = p. Since Aranha et al. [1] and Scott et al. [18] has proposed the size of the
characteristics p to be 508 to 511-bit with order r of 384-bit for 192-bit security
level, therefore this paper considered p = 511-bit.

Frobenius Mapping of Rational Point in E(Fp18). Let (x, y) be the ratio-
nal point in E(Fp18). Frobenious map πp : (x, y) �→ (xp, yp) is the p-th power
of the rational point defined over Fp18 . Some previous work [11] has been done
on constructing Frobenius mapping and utilizing it to calculate scalar multipli-
cation. Nogami et al. [16] showed efficient scalar multiplication in the context
of Ate-based pairing in BN curve of embedding degree k = 12. This paper has
exploited Frobenius mapping for efficient scalar multiplication for the case of
KSS curve.

2.3 Fp18 Extension Field Arithmetic

In context of pairing, it is required to perform arithmetic in higher extension
fields, such as Fpk for moderate value of k [19]. Therefore it is important to con-
struct the field as a tower of extension fields [6] to perform arithmetic operation
efficiently. Higher level computations can be calculated as a function of lower
level computations. Because of that an efficient implementation of lower level
arithmetic results in the good performance of arithmetic in higher degree fields.

In this paper extension field Fp18 is represented as a tower of sub field to
improve arithmetic operations. In some previous works, such as Bailey et al. [3]
explained tower of extension by using irreducible binomials. In what follows, let
(p − 1) is divisible by 3 and θ is a quadratic and cubic non residue in Fp. Then
for case of KSS-curve [12], where k = 18, Fp18 is constructed as tower field with
irreducible binomial as follows:

⎧
⎪⎨

⎪⎩

Fp3 = Fp [i]/(i3 − θ),where θ = 2 is the best choice,
Fp6 = Fp3 [v]/(v2 − i),
Fp18 = Fp6 [w]/(w3 − v).

According to previous work such as Aranha et al. [1], the base extension field is
Fp3 for the sextic twist of KSS curve.

3 Efficient Scalar Multiplication

In this section we will introduce our proposal for efficient scalar multiplication in
G2 rational point for Ate-based pairing on KSS curve. Before going to detailed
procedure, an overview about how the proposed method will calculate scalar
multiplication efficiently of G2 rational point is given.



226 M.A.-A. Khandaker et al.

Overview. At first G1, G2 and G3 groups will be defined. Then a rational
point Q ∈ G2 will be considered. In context of KSS curve, properties of Q will
be obtained to define the Eq. (9) relation. Next, a scalar s will be considered
for scalar multiplication of [s]Q. After that, as Fig. 1, (t− 1)-adic representation
of s will be considered, where s will be divided into two smaller parts SH , SL.
The lower bits of s, represented as SL, will be nearly equal to the size of (t − 1)
while the higher order bits SH will be the half of the size of (t − 1). Next,
z-adic representation of SH and SL will be considered. Figure 2, shows the z-
adic representation from where we find that scalar s is divided into 6 coefficients
of z, where the size of z is about 1/4 of that of (t − 1) as Eq. (5c). Next we
will pre-compute the Frobenius maps of some rational points defined by detailed
procedure. As shown in Eq. (12), considering 3 pairs from the coefficients we will
apply the mult-scalar multiplication in addition with Frobenious mapping, as
shown in Fig. 3 to calculate scalar multiplication efficiently. Later part of this
section will provide the detailed procedure of the proposal.

Figure 1 shows (t − 1)-adic representation of scalar s.

Fig. 1. (t− 1) -adic representation of scalar s.

Figure 2 shows the final z-adic representation of scalar s.

Fig. 2. z-adic and (t− 1)-adic representation of scalar s.

Figure 3 shows, an example of multi-scalar multiplication process, imple-
mented in the experiment.
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Fig. 3. Multi-scalar multiplication of s with Frobenius mapping.

G1, G2 and G3 groups. In the context of pairing-based cryptography, especially
on KSS curve, three groups G1,G2, and G3 are considered. From [14], we define
G1, G2 and G3 as follows:

G1 = E(Fpk)[r] ∩ Ker(πp − [1]),
G2 = E(Fpk)[r] ∩ Ker(πp − [p]),
G3 = F

∗
pk/(F∗

pk)r,

α : G1 × G2 → G3, (7)

where α denotes Ate pairing. In the case of KSS curve, G1,G2 are rational point
groups and G3 is the multiplicative group in Fp18 . They have the same order r.

Let us consider a rational point Q ∈ G2 ⊂ E(Fp18). In the case of KSS curve,
it is known that Q satisfies the following relations,

[
p + 1 − t

]
Q = O,

[
t − 1

]
Q =

[
p
]
Q. (8)

[πp − p]Q = O,

πp(Q) = [p]Q. (9)

Thus, these relations can accelerate a scalar multiplication in G2. Substituting
[p]Q in Eq. (8) we find [t − 1]Q = πp(Q).

z -adic representation of scalar s. From the previous work on optimal-ate
pairing, Aranha et al. [1] derived the following relation from parameters Eq. (5a),
(5b) and (5c) of KSS curve.

z + 3p − p4 ≡ 0 mod r. (10)

Here z is the mother parameter of KSS curve and z is about six times smaller
than the size of order r.
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Let us consider scalar multiplication [s]Q, where 0 ≤ s < r. From Eq. (5b)
we know r is the order of KSS curve where [r]Q = O. Here, the bit size of s is
nearly equal to r. In KSS curve t is 4/6 times of r. Therefore, let us first consider
(t − 1)-adic representation of s as follows:

s = SH(t − 1) + SL, (11)

where s will be separated into two coefficients SH and SL. Size of SL will be
nearly equal to the size of (t − 1) and SH will be about half of (t − 1). Now we
consider z-adic representation of SH and SL as follows:

SH = s5 + s4,

SL = s3z
3 + s2z

2 + s1z + s0.

Finally s can be represented as 6 coefficients as follows:

s =
3∑

i=0

siz
i + (s4 + s5z)(t − 1),

s = (s0 + s1z) + (s2 + s3z)z2 + (s4 + s5z)(t − 1). (12)

Reducing the Number of ECA and ECD for Calculating [s]Q. Let us
consider a scalar multiplication of Q ∈ G2 in Eq. (12) as follows:

[s]Q = (s0 + s1z)Q + (s2 + s3z)z2Q + (s4 + s5z)(t − 1)Q. (13)

Let us denote z2Q, (t−1)Q of Eq. (13) as Q1 and Q2 respectively. From Eqs. (9)
and (10) we can derive the Q1 as follows:

Q1 = z2Q,

= (9p2 − 6p5 + p8)Q,

= 9π2(Q) − 6π5(Q) + π8(Q). (14)

Using the properties of cyclotomic polynomial Eq. (14) is simplified as,

Q1 = 8π2(Q) − 5π5(Q),
= π2(8Q) − π5(5Q). (15)

And from the Eqs. (8) and (9), Q2 is derived as,

Q2 = π(Q). (16)

Substituting Eqs. (15) and (16) in Eq. (13), the following relation is obtained.

s[Q] = (s0 + s1z)Q + (s2 + s3z)Q1 + (s4 + s5z)Q2. (17)

Using z ≡ −3p+p4 (mod r) from Eq. (10), z(Q) can be pre-computed as follows:

z(Q) = π(−3Q) + π4(Q). (18)
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Table 1 shows all the pre-computed values of rational points for the proposed
method. In this paper pre-computed rational points are denoted such as < Q +
Q2 >. Finally applying the multi-scalar multiplication technique in Eq. (17) we
can efficiently calculate the scalar multiplication. Figure 3 shows an example of
this multiplication. Suppose in an arbitrary index, from left to right, bit pattern
of s1, s3, s5 is 101 and at the same index s0, s2, s4 is 111. Therefore we apply
the pre-computed points < z(Q) + z(Q2) > and < Q + Q1 + Q2 > as ECA in
parallel. Then we perform ECD and move to the right next bit index to repeat
the process until maximum length z-adic coefficient becomes zero.

Table 1. Pre-computed values of rational point for efficient scalar multiplication

z(Q)

Q1 z(Q1)

Q2 z(Q2)

Q1 + Q2 z(Q1) + z(Q2)

Q + Q2 z(Q) + z(Q2)

Q + Q1 z(Q) + z(Q1)

Q + Q1 + Q2 z(Q) + z(Q1) + z(Q2)

As shown in Fig. 3, during scalar multiplication in parallel, we are consid-
ering Eq. (12) like 3 pair of coefficients of z-adic representation. If we consider
6-coefficients for parallelization, we will need to calculate 26 × 2 pre-computed
points. The chance of appearing each pre-computed point in parallel calculation
will be only once which will make the pre-calculated points redundant.

4 Experimental Result Evaluation

In order to demonstrate the efficiency of the proposal, this section shows some
experimental result with the calculation cost. In the experiment we have com-
pared the proposed method with three well studied method of scalar multipli-
cation named binary method, sliding-window method and non-adjacent form
(NAF) method.

In the experiment the following parameters are considered for the KSS curve
y2 = x3 + 11.

z = 65-bit,
p = 511-bit,
r = 378-bit,
t = 255-bit.

Themother parameter z is also selected accordingly to find outG2 rational pointQ.
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500 scalar numbers of size (about 377-bit) less than order r is generated
randomly in the experiment. Then average number of ECA and ECD for the
proposed method and the three other methods is calculated for a scalar mul-
tiplication. 13 pre-computed ECA is taken into account while the average is
calculated for the proposed method. In case of sliding-window method window
size 4-bit is considered. Therefore 14 pre-computed ECA is required. In addition,
average execution time of the proposed method and the three other methods is
also compared.

Table 2 shows the environment, used to experiment and evaluate the proposed
method.

Table 2. Computational environment

PC iPhone6s

CPUa 2.7 GHz Intel Core i5 Apple A9 Dual-core 1.84 GHz

Memory 16GB 2 GB

OS Mac OS X 10.11.4 iOS 9.3.1

Compiler gcc 4.2.1 gcc 4.2.1

Programming Language C Objective-C, C

Library GNU MP 6.1.0 GNU MP 6.1.0
aOnly single core is used from two cores.

Analyzing Table 3 we can find that our proposed method requires more than
5 times less ECD than binary method, sliding-window method and NAF method.
The number of ECA is also reduced in the proposed method by about 30% than
binary method.

In this experiment, execution time may seems slower than other efficient
algorithm such as Montgomery reduction. But the main purpose of this execution
time comparison is to compare the ratio of the execution time of the proposed
method with other well studied methods. The result shows that proposed method
is at least 3 times faster than the other methods. Other acceleration techniques

Table 3. Comparative result of average number of ECA and ECD and execution time
in [ms] for scalar multiplication

Average ECA, ECD and execution time [ms] comparison

PC PC iPhone 6s

Methods #ECA #ECD Execution time Execution time

Binary 187 376 1.15 × 103 1.3 × 103

Sliding-window 103 376 1.14 × 103 1.10 × 103

NAF 126 377 1.03 × 103 1.13 × 103

Proposed 124 64 3.36 × 102 3.76 × 102
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such as Montgomery reduction, Montgomery trick and efficient coordinates can
be applied to this proposed method to enhance its execution time.

5 Conclusion and Future Work

In this paper we have proposed an efficient method to calculate elliptic curve
scalar multiplication using Frobenious mapping over KSS curve in context of
pairing based cryptography. We have also applied (t − 1)-adic and z-adic rep-
resentation on the scalar and have applied multi-scalar multiplication technique
to calculate scalar multiplication in parallel. We have evaluated and analyzed
the improvement by implementing a simulation for large size of scalar in 192-
bit security level. The experimented result shows that our proposed method is
at least 3 times efficient in context of execution time and takes 5 times less
number of elliptic curve doubling than binary method, sliding-window method
and non-adjacent form method. As a future work we would like to enhance its
computation time by applying not only Montgomery reduction but also skew
Frobenius map in sub-field isomorphic rational point group technique and test
the effect of the improvement in some pairing application for practical case.
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Affairs and Communications, Japan.
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