
Domain-Specific Modeling Environment
for Developing Domain Specific Modeling
Languages as Lightweight General Purpose

Modeling Language Extensions

Igor Zečević1(&), Petar Bjeljac1, Branko Perišić1, Vladimir Maruna2,
and Danijel Venus1

1 Faculty of Technical Sciences, University of Novi Sad,
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

{igor.zecevic,pbjeljac,

perisic,danijelvenus}@uns.ac.rs
2 MD&Profy, Čarlija Čaplina 37, 11000 Belgrade, Serbia

vladimir.maruna@mdprofy.com

Abstract. Compared to General Purpose Modeling Languages (GPMLs),
Domain Specific Modeling Languages (DSMLs) have brought increasing
expressivity and conciseness through the use of concepts and notations, which
are customized by the characteristics of a specific problem domain. However,
the creation of completely new languages can significantly increase software
development costs. An alternative approach to creating new DSMLs refers to a
customization of existing modeling languages. The DSML creation process
through a customization of existing languages is a special case of Language
Embedding. The embedding provides customization of an inherited infrastruc-
ture to a given domain. This paper elaborates a Domain-Specific Modeling
environment for embedding an arbitrary DSML into an arbitrary GPML. The
environment enables uniform development of DSMLs in the form of a light-
weight extension of existing modeling languages.

Keywords: Model-Driven Engineering � Domain-specific modeling
languages � Metamodel extension � Language embedding � UML profiles

1 Introduction

Model-Driven Engineering (MDE) [1–3] is a methodological approach to software
development, in which models represent formal specifications of the solution auto-
matically transformed into an executable specification for the selected target platform.
In specific MDE paradigm implementations, such as Model-Driven Architecture
(MDA) [4], Domain-Specific Modeling (DSM) [5, 6], or Model-Driven Software
Development (MDSD) [7], appropriate modeling languages [8] take the central role.

Modeling languages enable a direct and formal expression of concepts related to a
given domain through the use of base modeling constructs [9]. The use of relevant
concepts and relations (domain conceptualization) enables expressing a mental model

© Springer International Publishing AG 2017
Á. Rocha et al. (eds.), Recent Advances in Information Systems and Technologies,
Advances in Intelligent Systems and Computing 569, DOI 10.1007/978-3-319-56535-4_85



(domain abstraction) related to the state of certain real world segments. Conceptual-
ization dependency level of a specific domain classifies languages into two categories:
General Purpose Modeling Languages (GPML), applicable in any domain, and Domain
Specific Modeling Languages (DSML) [10], which are designed for a specific domain,
context or industry.

For many years, the Unified Modeling Language (UML) [11] as a GPML has been
a de-facto standard in the field of software modeling, and the main building block in
MDA approach. Presented as a solution for the issues related to incompatibility of
hundreds of various modeling languages, UML resulted in complexity and imprecise
interpretation, which were some of the issues [12–14] of its practical use.

Compared to UMLs and other GPMLs, DSMLs have brought increasing expres-
sivity and conciseness through the use of concepts and notations, which are cus-
tomized, but also limited, by the characteristics of a specific problem domain. DSMLs
also ensure higher productivity, increase of final product quality, as well as direct
inclusion of end users to the software development process [5, 6]. However, the cre-
ation of completely new languages can significantly increase software development
costs [15, 16]. Furthermore, without proper tools, the language capabilities become
limited [17], resulting in the implementation and maintenance of additional tools which
already exists in the context of GPMLs.

An alternative approach to creating new DSMLs refers to extending or customizing
existing modeling languages. The use of models, created on the basis of an extension of
existing languages, has its advantages and strong arguments in the use of already tested
tools, technologies and experiences of users in the implementation of an MDE approach.
Extension specification mechanisms have already been embedded in certain modeling
languages. The UML Profiles [18], as an extension mechanism of the UML language,
belong to the group of “lightweight” extensions [19, 20]. They provide a mechanism for
adding constraints and new elements without modifying the base metamodel.

The DSML creation process through a customization of existing modeling lan-
guages is a special case of Language Embedding [21, 22]. Embedding, as a variant of
language synthesis [23], provides customization of an inherited infrastructure to a given
domain. An embedded (guest) language uses the existing syntax, libraries, as well as
the associated tools of a host language. Although a significant number of professional
papers address the problem of DSML development using UML [24–26], there is still
no possibility for a formal description of embedding a DSML into GPML.

This paper elaborates a DSM environment for embedding an arbitrary DSML into an
arbitrary GPML. The environment enables uniform development of DSMLs in the form of
an extension of existing modeling languages. To suite the needs of this environment, the
KM3eXtension language, a textual DSML intended for formal specification of embedding
DSMLs into GPMLs, has been designed. KM3eXtension generalises and customises the
concepts of “lightweight” language extensions for general purpose modeling, and uses
them for metamodel descriptions derived from the metamodels of existing modeling
languages. Unlike the known mechanisms for extension specification, such as UML
Profile and EMF Profile [27], KM3eXtension is a generic language, also applicable to
languages in which metamodels do not conform to the MOF specification [28].

The rest of the paper is structured as follows. Section 2 gives a brief overview of
bases of KM3eXtension language and describes architecture of the environment for

General Purpose Modeling Language Extensions 873



embedding DSMLs into GPMLs. In Sect. 3 a KM3eXtension application in the DSM
environment for language embedding is presented. The conclusions and future work
are presented in Sect. 4.

2 DSM Framework for DSML Development

Development of a DSM environment for DSML development in the form of light-
weight GPML extensions is directed by the following requirements:

R1: Each DSML can be represented as a guest language;
R2: Each GPML can be represented as a host language; and
R3: A definition of correspondence between the concepts of the host language and

guest language, as well as their integration, has to conform to the principles of “light-
weight” GPML extensions. The requirements which managed the UML Profile devel-
opment [29] have been adopted as referent principles for “lightweight” extensions.

KM3eXtension is a language intended for a domain within the framework for
DSML development in the form of “lightweight” GPML extensions. Generators,
implemented as part of the framework, automatically transform valid KM3eXtension
models into extension specifications of the original GPMLs.

2.1 KM3eXtension: A Textual DSML for Language Embedding
Specification

The motive for development of the KM3eXtension language has been to formulate and
implement a simple mechanism for specification related to extension of valid KM3
models. KM3 (Kernel MetaMetaModel) [30] is a textual DSL intended for specification
of the metamodel for a description related to a domain of domain specific languages.
KM3eXtension has been designed as an extension of the KM3 language, from which it
inherits the semantics, abstract and concrete syntax.

KM3eXtension has been defined through a set of coordinated models:
M1: KM3eXtension domain definition metamodel (Metamodel) is a self-defining

(meta-metamodel) metamodel, obtained as a result of extending the original KM3
metamodel. An class model of KM3eXtension metamodel is shown in Fig. 1.

M2: Concrete syntax is in textual form. A definition of the textual syntax1 is
available under KM3eXtension Project2. It enables “lightweight” extension of an
arbitrary metamodel to be specified in any textual editor.

M3: Semantics of the KM3eXtension language is defined by mapping elements of
KM3eXtension metamodel and UML Profile specification. A definition of these
transformations3 in the ATL language [32] is available under KM3eXtension Project.

1 Formal Syntax of KM3eXtension - http://km3e.ftn.uns.ac.rs/specification/?segment=
KM3eXtension-Formal-Syntax.

2 KM3eXtensionProject is an infrastructure necessary for modeling process in Technical Space
[31] of KM3eXtension meta-metamodel: http://km3e.ftn.uns.ac.rs/.

3 ATL Definition of KM3eXtension Metamodel to UML Profile Transformation - http://km3e.ftn.
uns.ac.rs/specification/?segment=KM3eXtension2UMLProfile.

874 I. Zečević et al.

http://km3e.ftn.uns.ac.rs/specification/%3fsegment%3dKM3eXtension-Formal-Syntax
http://km3e.ftn.uns.ac.rs/specification/%3fsegment%3dKM3eXtension-Formal-Syntax
http://km3e.ftn.uns.ac.rs/
http://km3e.ftn.uns.ac.rs/specification/?segment=KM3eXtension2UMLProfile
http://km3e.ftn.uns.ac.rs/specification/?segment=KM3eXtension2UMLProfile


In comparison with the base KM3 metamodel, KM3eXtension introduces three new
metaelements (Extension and Stereotype classes and Refines relation). They are sim-
plifications of concepts describing the UML metamodel extensions. The new
metaelements are marked with different colors in Fig. 1.

Extension is a Package specialization and defines a constrained extension of a base
metamodel. Stereotype metaelements are defined as components of Extension, through
the package content which Extension inherits and additionally constrains. Stereotype is
the principal extension mechanism of an initial metamodel. Each Stereotype can refine
one or more classes via its Refines relations. Refines is a relation which introduces
extensions of structural class properties using the Stereotype concept.

2.2 Architecture of DSM Environment for Embedding DSMLs
into GPMLs

Figure 2 shows the architecture model of the DSM environment for embedding
DSMLs into GPMLs, as well as its relations with an external environment.

The DSM environment architecture from Fig. 2 consists of:
Web Editor – An editor for KM3eXtension model. It enables creation, maintenance,

validation and formatting of textual KM3eXtension models. Web editor is

Fig. 1. KM3eXtension metamodel

General Purpose Modeling Language Extensions 875



automatically generated, based on the KM3eXtension Abstract Syntax Tree, from the
Xtext4 framework for DSL development;

Generators of metamodel extensions – Program components which transform valid
KM3eXtension models into extension specifications of original GPMLs. The genera-
tors implement model transformations [33], that is, automatically generate a target
model (metamodel extension specification) from a source model (KM3eXtension
model) according to a definition of transformation. For including new GPMLs in the
framework, it is sufficient to define a transformation which maps the elements of a
KM3eXtension metamodel into the metamodel elements of a new GPML. The
framework currently supports generation of UML Profiles for Papyrus5, UML Exten-
sions for Power Designer6, as well as EMF Profiles for the EMF7 framework;

Fig. 2. Architecture model of the DSM environment for language embedding specification

4 Xtext - https://eclipse.org/Xtext/.
5 Papyrus - https://eclipse.org/papyrus/.
6 SAP Power Designer - http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.
html.

7 Eclipse Modeling Framework (EMF) - https://eclipse.org/modeling/emf/.

876 I. Zečević et al.

https://eclipse.org/Xtext/
https://eclipse.org/papyrus/
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
https://eclipse.org/modeling/emf/


Library of valid KM3 models (KM3 Library) - A repository of models conforming
to base KM3 metamodel. The library contains metamodel definitions for some of the
most popular GPMLs, such as various versions of UML modeling languages.

3 Example of Use

In the process of embedding, a guest language inherits the concrete syntax of a host
language, while semantics is, as a general rule, defined translationally8, by mapping the
elements of an original DSML into elements of the GPML extension. For an embed-
ding specification it is sufficient to establish a correspondence between the host lan-
guage concepts and guest language concepts, that is, it is necessary to integrate their
metamodels.

A specific example of using KM3eXtension model is illustrated using the speci-
fication of embedding a DSML for the description of a WikiTable in the UML
Component Model. WikiTable9 metamodel is used for representing a simple Table in
Wiki. The Ecore metamodel of the WikiTable is shown in Fig. 3.

The embedding process starts by selecting the GPML which will be subjected to
extension. A metamodel of the selected GPML has to be represented by a valid KM3
model, which is also a base metamodel in the KM3eXtension model. A segment of the
UML2 metamodel represented in KM3 format is specified in Listing 1. Due to the
limited space, only a minimum part of the UML2 metamodel is shown.

After the base model is created, the DSML metamodel is translated into a base
model extension. The WikiTable metamodel classes (LocatedElement, Table, Caption,
Row and Cell) are translated into stereotypes with identical names. All structural
properties of classes (attributes and references) are translated into structural properties
of corresponding stereotypes. Enumeration (BorderStyle) and data types (Boolean and
String) are represented by corresponding KM3eXtension elements.

A correspondence definition between the host language concepts and guest lan-
guage concepts is established by a refinement relation between an extension stereotype
and base metamodel classes. The establishment of refinement relations depends on the
needs of a modeler, as well as on the level of his knowledge about the language
metamodels involved in the process of embedding.

8 Domain-Specific Languages from Javier Canovas - http://modeling-languages.com/useful-
presentations-model-driven-engineering-dsls-uml-eclipse-modeling-technologies-2/#dsl.

9 https://meta.wikimedia.org/wiki/Help:Table.

General Purpose Modeling Language Extensions 877

http://modeling-languages.com/useful-presentations-model-driven-engineering-dsls-uml-eclipse-modeling-technologies-2/#dsl
http://modeling-languages.com/useful-presentations-model-driven-engineering-dsls-uml-eclipse-modeling-technologies-2/#dsl
https://meta.wikimedia.org/wiki/Help:Table


package uml2 {
abstract class NamedElement extends Element {…}
class Class extends EncapsulatedClassifier,BehavioredClassifier {…}
class Component extends Class{…}
class Property extends StructuralFeature,ConnectableElement,DeploymentTarget{…}
…

}
extension WikiTable {

abstract stereotype LocatedElement refines NamedElement {
attribute location : String;
attribute commentsBefore[*] : String;
attribute commentsAfter[*] : String;

}
stereotype Table extends LocatedElement refines Component{

attribute border[1-1] : BorderStyle;
attribute style[1-1] : String;
attribute "class"[1-1] : String;
reference caption container : Caption;
reference rows[*] container : Row;

}
stereotype Caption extends LocatedElement refines Property {

attribute content[1- 1] : String;
}
stereotype Row extends LocatedElement refines Component{

reference cells[*] container : Cell;
}
stereotype Cell extends LocatedElement refines Component{

attribute isHeading[1-1] : Boolean;
attribute align[1-1] : String;
attribute style[1-1] : String;
attribute content[1-1] : String;

}
datatype Boolean;
datatype String;
enumeration BorderStyle{

literal solid;
literal dotted;
literal double;
literal dashed;

}
}

Listing 1. KM3eXtension model: WikiTable to UML2 Specification

Generators implemented as part of the DSM environment transform a valid
KM3eXtension model to an extension specification for the selected GPML. Specifi-
cations of WikiTable UML Profile for Papyrus10 and WikiTable Extension for Pow-
erDesigner11 are available as part of the KM3eXtension Project.

10 http://km3e.ftn.uns.ac.rs/examples/WikiTable/?segment=WikiTableUMLProfile.
11 http://km3e.ftn.uns.ac.rs/examples/WikiTable/?segment=WikiTablePDExtension.

878 I. Zečević et al.

http://km3e.ftn.uns.ac.rs/examples/WikiTable/?segment=WikiTableUMLProfile
http://km3e.ftn.uns.ac.rs/examples/WikiTable/?segment=WikiTablePDExtension


4 Results and Conclusion

DSM environment for DSML development in the form of lightweight GPML exten-
sions was successfully tested through fast and uniform development of several DSMLs
(from various application domains) in the form of an extension of several different
GPMLs. Initial versions of the KM3eXtension language and framework for an auto-
matic translation of the KM3eXtension model into UML and EMF Profiles were
implemented in the period 2013-2014 at the Computing and Control Department of the
Faculty of Technical Sciences, University of Novi Sad. The first versions of the
framework had exclusively educational purpose. Students had the opportunity to
develop simple domain languages in the form of UML Profiles, without the need for
expert level knowledge of the complex UML language metamodel.

In cooperation with the MD&Profy12 company, the framework has been subse-
quently upgraded with a generator of metamodel extensions for SAP Power Designer
tool. In the period 2015–2016, the environment was commercially used during the
development of several DSMLs intended for various industry branches. The last
example is the Bussines Process Transformation Framework implementation (BPTF)
[34] in the form of the PowerDesigner metamodel extension [35].

The current drawback of KM3eXtension is the inability to introduce constraints on
metamodels of languages included in embedding. The plan is to extend the
KM3eXtension to include specifications of the OCL constraints [36], as well as the
language editor and language parser extensions to provide a mechanism for validating
the entered constraints.

Fig. 3. Ecore definition of a WikiTable metamodel

12 http://www.mdprofy.com/en/home/.

General Purpose Modeling Language Extensions 879

http://www.mdprofy.com/en/home/


References

1. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)
2. Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd Workshop in

Software Model Engineering, WiSME, pp. 262–271 (2004)
3. France, R., Rumpe, B.: Model-driven development of complex software: a research

roadmap. In: 2007 Future of Software Engineering. IEEE Computer Society, pp. 37–54
(2007)

4. Watson, A.: A brief history of MDA. Upgrade Eur. J. Inform. Prof. 9(2), 7–11 (2008)
5. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation.

Wiley, New York (2008)
6. Wegeler, T., Gutzeit, F., Destailleur, A., Dock, B.: Evaluating the benefits of using

domain-specific modeling languages: an experience report. In: Proceedings of the 2013
ACM Workshop on Domain-Specific Modeling, pp. 7–12 (2013)

7. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development:
Technology, Engineering, Management. Wiley, New York (2013)

8. Selic, B.: The theory and practice of modeling language design for model-based software
engineering—a personal perspective. In: Fernandes, João M., Lämmel, R., Visser, J.,
Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 290–321. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-18023-1_7

9. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta)
models. Front. Artif. Intell. Appl. 155, 18–39 (2007)

10. Kelly, S., Tolvanen, J.P.: Visual domain-specific modeling: benefits and experiences of
using metaCASE tools. In: International Workshop on Model Engineering, at ECOOP, vol.
2000 (2000)

11. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Professional, Boston (2004)

12. Petre, M.: UML in practice. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 722–731 (2013)

13. Lange, C.F., Chaudron, M.R., Muskens, J.: In practice: UML software architecture and
design description. IEEE Softw. 23(2), 40–46 (2006)

14. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using
UML 2.0: promises and pitfalls. Computer 39(2), 59–66 (2006)

15. Fowler, M.: Domain-Specific Languages. Addison Wasley, Boston (2010)
16. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific languages.

ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)
17. Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., Tolvanen, J.P.: DSLs: the good, the

bad, and the ugly. In: Companion to the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications, pp. 791–794. ACM
(2008)

18. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An introduction to UML profiles. UML
Model Eng. 2(2), 6–13 (2004)

19. Evans, A., Maskeri, G., Sammut, P., Willans, J.S.: Building families of languages for
model-driven system development. In: Proceedings of WiSME, Joint with UML (2003)

20. Bruck, J., Hussey, K.: Customizing UML: which technique is right for you. White paper,
Eclipse UML Project (2007)

21. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv. (CSUR) 28
(4), 196–202 (1996)

880 I. Zečević et al.

http://dx.doi.org/10.1007/978-3-642-18023-1_7


22. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic embedding of DSLs. In:
Proceedings of the 7th International Conference on Generative Programming and
Component Engineering, pp. 137–148 (2008)

23. Vallecillo, A.: On the combination of domain specific modeling languages. In: Kühne, T.,
Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 305–320.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13595-8_24

24. Selic, B.: A systematic approach to domain-specific language design using UML. In: 10th
IEEE International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC 2007), pp. 2–9 (2007)

25. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S.: Improving UML profile design practices
by leveraging conceptual domain models. In: Proceedings of the Twenty-Second
IEEE/ACM International Conference on Automated Software Engineering, pp. 445–448
(2007)

26. Giachetti, G., Marín, B., Pastor, O.: Using UML as a domain-specific modeling language: a
proposal for automatic generation of UML profiles. In: International Conference on
Advanced Information Systems Engineering, pp. 110–124 (2009)

27. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: EMF profiles: a lightweight extension
approach for EMF models. J. Obj. Technol. 11(1), 1–29 (2012)

28. OMG: OMG Meta Object Facility (MOF) Core Specification Version 2.5. OMG Document
formal/2015-06-05 (2015)

29. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1,
OMG Document formal/2011-08-06 (2011)

30. Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidelberg
(2006). doi:10.1007/11768869_14

31. Bézivin, J., Kurtev, I.: Model-based technology integration with the technical space concept.
In: Metainformatics Symposium, vol. 20, pp. 44–49 (2005)

32. Jouault, F., Kurtev, I.: Transforming models with ATL. In: International Conference on
Model Driven Engineering Languages and Systems, pp. 128–138 (2005)

33. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: Proceed-
ings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the Model
Driven Architecture, vol. 45(3), pp. 1–17 (2003)

34. Mercer, T., Groves, D., Drecun, V.: Part III – Practical BPTF Application, Business Process
Trends (2010). http://www.bptrends.com/publicationfiles/FOUR%2011-02-10-ART-BPTF
%20Framework–Part%203-Mercer%20et%20al%20–final1.pdf

35. Maruna, V., Mercer, T., Zečević, I., Perišić, B., Bjeljac, P.: The business process
transformation framework implementation through metamodel extension. In: Proceedings of
the 6th International Conference on Information Society and Technology, (ICIST 2016),
pp. 11–17 (2016)

36. OMG: OMG Object Constraint Language (OCL) Version 2.4, OMG Document
formal/2014-02-03 (2014)

General Purpose Modeling Language Extensions 881

http://dx.doi.org/10.1007/978-3-642-13595-8_24
http://dx.doi.org/10.1007/11768869_14
http://www.bptrends.com/publicationfiles/FOUR%2011-02-10-ART-BPTF%20Framework%e2%80%93Part%203-Mercer%20et%20al%20%e2%80%93final1.pdf
http://www.bptrends.com/publicationfiles/FOUR%2011-02-10-ART-BPTF%20Framework%e2%80%93Part%203-Mercer%20et%20al%20%e2%80%93final1.pdf

	Domain-Specific Modeling Environment for Developing Domain Specific Modeling Languages as Lightweight General Purpose Modeling Language Extensions
	Abstract
	1 Introduction
	2 DSM Framework for DSML Development
	2.1 KM3eXtension: A Textual DSML for Language Embedding Specification
	2.2 Architecture of DSM Environment for Embedding DSMLs into GPMLs

	3 Example of Use
	4 Results and Conclusion
	References


