
Selection of Information Sources Using
a Genetic Algorithm

Fatma Zohra Lebib1,2(B), Habiba Drias1, and Hakima Mellah2

1 USTHB, LRIA, Algiers, Algeria
zmatouk@cerist.dz

2 CERIST, Algiers, Algeria

Abstract. We address the problem of information sources selection in
a context of a large number of distributed sources. We formulate the
sources selection problem as a combinatorial optimization problem in
order to yield the best set of relevant information sources for a given
query. We define a solution as a combination of sources among a huge pre-
defined set of sources. We propose a genetic algorithm to tackle the issue
by maximizing the similarity between a selection and the query. Exten-
sive experiments were performed on databases of scientific research docu-
ments covering different domains such as computer science and medicine.
The results based on the precision measure are very encouraging.
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1 Introduction

Even though the web can be seen as a single network of distributed repositories,
many of traditional information retrieval approaches became difficult to put
into practice. One of the most important raisons is the variety, heterogeneity and
distributivity of information sources. The pervasive sources are asked for a query
at the same time. This operation will certainly, returns a huge of information
and consumes a considerable time. Distributed Information Retrieval (DIR) [1,2]
provides a solution to the problem of searching on several dispersed information
sources. The DIR system consists of three phases, namely source description [3],
source selection [4,5], and result merging [6]. In the first phase, representations
of available remote sources are created, containing important information about
the sources such as their contents and their sizes. In the second phase, the DIR
system selects a subset of sources which are most useful for users’ queries. The
source description is used to estimate the relevance of each source, and to classify
sources accordingly. The third phase combines documents retrieved from selected
sources into a single ranked list which will be presented to the users.

We aim in this paper to address the source selection problem in a context of
a large number of sources. Previous research [7] showed that the source selection
phase is vital for the overall effectiveness of DIR system. We formalized the
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problem of sources selection as a combinatorial optimization problem, which
consists in finding the optimal combination (a selection) in a prohibitive search
space containing all possible solutions (combinations). We search the solution,
which maximizes similarity between sources composing a selection and the user
query. We address this problem by the use of intelligent methods, in particular
the Genetic Algorithms (GAs) [8], which are considered robust and efficient [9]
and outperform the analytical methods for the large scale data [10].

2 Related Work

2.1 Sources Selection Approaches in a Distributed Environment

The first generation of source selection approaches, known as big document
approaches, represents each source as a concatenation of its documents. The
big documents obtained are classified according to their lexical similarity with
the query using standard information retrieval techniques based on tf (term fre-
quency) and idf (inverse document frequency). In sources selection, df (document
frequency) is used instead of tf and icf (inverse collection frequency) instead of
idf. The most well-known approaches are CORI [1,4] and GlOSS [11]. The sec-
ond generation or small document approaches use a centralized index of sampled
documents from different sources. The sources are selected based on the ranking
of their documents for a given query. The documents relevance is estimated to
classify sources according to the number and position of their documents in a
centralized ranking. Examples of these approaches are CRCS [12] and [5,13].
Finally, a classification-based approach combines the above approaches with a
number of other query-based and corpus-based features in a machine learning
framework [7,14].

2.2 Genetic Algorithm in Information Retrieval

In the last few years, there has been a growing interest of designing GAs in
different areas of Information Retrieval (IR) [15]. GAs were used to modify
document descriptors [16] or user queries [17–22] and are used to optimize the
web crawling [23,24], to optimize parameters independently of retrieval models
[15,25]. Others works used GAs to address the adaptive information retrieval
problem that relies on evolutionary user-modeling [26] and to generate and adapt
user’s profile for filtering documents that match the user’s interests [27]. To our
knowledge, very few works that address the DIR problem using evolutionary
methods, for example the work in [28] authors proposed an algorithm to select
the appropriate search engine in meta-search engine for the user query using GA.
The proposed search engine selection algorithm is based on the relevance between
a search engine and the query introduced by the user, which represents the fitness
function of the proposed algorithm. His experiments are based on a simulation
in MATLAB.
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3 A Genetic Algorithm for Information Sources Selection

In this work, we propose an approach based on genetic algorithms to select with
the optimal possible way, information sources to be interrogated.

3.1 Problem Definition

We define the problem of sources selection with a pair (instance, question) as
follows:

Instance: S = {s1, s2, .., sn} a set of n information sources and the user query q.

Question: determine a subset S’ of S such that the similarity between its elements
and q is maximal, where |S′| = k < |S| = n; k is the number of selected sources
for a query.

3.2 Search Space

The search space includes all possible solutions of the problem. As a solution is
a combination of k sources from n total sources, the size of the search space is

expressed as: Ck
n=

(
n
k

)
= n!

k!(n−k)!

When n is very large, the number of possible combinations is enormous and
no complete method is able to yield a solution of good quality. One approach
to cope with this issue is the use of artificial intelligence techniques such as a
genetic algorithm.

3.3 Genetic Algorithm

We propose a Generic Algorithm for Sources Selection called GASS with the aim
to find the optimal selection for a user query. GASS is initiated by a population of
solutions represented by subsets of sources each, representing possible solutions
to the problem. Each solution or chromosome is evaluated by the fitness function.
Genetic operators (selection, crossing and mutation) are used to generate a new
population from the current population. Once a new generation is created, the
genetic process is repeated iteratively until an optimal solution or as default, a
solution of good quality is found (Fig. 1).

Solution Encoding. A solution to the problem defined above is a set of k
sources. The solution is represented by a vector of length k containing informa-
tion sources. The latter will be encoded by integers to simplify their manipu-
lation. Thus a source si is between 1 and n and a possible solution is a vector
of k integers between 1 and n. For example, if the number of sources is equal
to 5 and the number of sources to be selected is equal to 3, a solution can be:
{1, 4,5} or {2, 3,5}, {3, 4,5} etc.
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Fig. 1. Source selection approach

Fitness Function. The solutions evaluation function is a performance measure
function that evaluates the quality of each solution. We evaluate a solution called
sol by the average of the similarities between the sources of this solution and
the user query. To calculate the similarity between a solution and the query
q we consider sol as a collection of documents representing the sources. This
similarity is calculated using the following formula:

Similarity(sol, q) =
∑

h∈sol Similarity(h, q)
k

(1)

Similarity (sol, q): similarity between a solution and the query q.
Similarity (h, q): similarity between source h in the solution and the query q.
k: number of sources in the solution.
The similarity between a source and the query can be calculated by the cosine

measure of the vector search model. The source is considered as a set of terms.
We represent the query and the source by vectors of terms weights in an m-
dimensional space corresponding to the terms present in the search space. Thus
the similarity between a source h and a query q is given as follows:

Similarity(sh, q) =

∑
j=1,m(thj ∗ tqj)√∑

j=1,m(thj)2 ∗ ∑
j=1,m(tqj)2

(2)

where thj and tqj are the weights of the term j in the source h and query q
respectively, calculated using the tf-idf approach [29] by replacing tf (the term
frequency) with df and idf (inverted document frequency) with icf. It is defined
as follows:

Weight(q/c) = df ∗ icf (3)

where df: document frequency, icf: inverse collection frequency, calculated as
follows: log(N/cf). Where N is the number of all collections and cf is the number
of collections that contain the term t.
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Algorithm 1 outlines the proposed genetic algorithm for the selection of infor-
mation sources.

Algorithm 1. GASS: a Genetic Algorithm for Sources Selection
Input: a set of n sources and a user query q,
Output: the optimal selection of sources (soloptimal) for the query q
Process:
1: Generate randomly an initial population of PopSize size from the possible
combinations of sources
2: Evaluate each solution in the initial population using the fitness function
given by formula (1)
3: Create a new population

a. Select the appropriate chromosomes for reproduction (parents)
b. Apply the crossover operator to the parents according to crossover prob-

ability to produce new chromosomes (offspring)
c. Apply the mutation operator on the offspring chromosomes according to

a mutation probability. Add the new chromosomes to the new population
d. While the new population size is smaller than current population size

return to (a)
e. Replace the current population with the new population

4: Evaluate the current population using fitness function (1)
5: Check the termination criterion (maximum number of iteration is reached);
If the criterion is not met go to (3)

In the following, we describe the different components of the algorithm.

Initial Population. The evolution process starts with an initial population
of size PopSize generated randomly from the set of possible combinations. It
consists of a set of chromosomes; each denotes a solution to the problem and is
represented by a vector of k sources encoded by integer numbers from 1 to n.
During the population generation, the same sources (duplicate genes) are avoided
in the same chromosome. For example in the chromosome {2,5,3,2}, the number
2 is repeated, such construction of chromosomes must be avoided. We should
also avoid to repeat the same chromosome in the population (duplicate chromo-
somes), for example {3,4,5,8} is the same as {8,3,5,4} because the order is not
important.

Genetic Operators (a) Selection. The selection operator simulates the
“survival-of-the-fittest”. There are various mechanisms to implement this oper-
ator, and the idea is to give preference to the better chromosomes. We used
natural selection that takes the best chromosomes in the next generation. The
best chromosomes are identified by evaluating their fitness value.

(b) Crossover. It is a genetic operator that combines two chromosomes together
to form new offspring. It occurs only with crossover probability Pc. Chromosomes
that are not subjected to crossover remain unmodified. The intuition behind
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crossover is the exploration of new solutions and exploitation of old solutions.
We use single-point crossover without “duplicate”. Thus, the gene values in the
generated chromosome must not be repeated (see Algorithm 2).

Example. Let consider n = 9 and k = 6. S = {1, 2, 3, 4, 5, 6, 7, 8, 9}, S’ is
subset of S of length 6. Figure 2 shows an example of crossover.

Fig. 2. Single-point crossover

Algorithm 2. Crossover Algorithm
Let Y = (y1, y2, ... yk) and X = (x1, x2, ..., xk) two chromosomes to be crossed
1: Choose a random number r on the set {0, 1, 2 ... k-1}, two new chromosomes
X’ and Y’ are created according to the following rule:

x′
i = {xi if i < r

yi otherwise y′
i = {yi if i < r

xi otherwise
2: Remove, before the cutting point (r), the sources which are already placed
after the cutting point
3: Identify sources that do not appear in each of the two chromosomes
4: Randomly fill the holes in each chromosome

(c) Mutation. Mutation is the process of randomly altering the genes in a
particular chromosome. Mutation involves the modification of the gene values of
a solution with some probability Pm. The objective of mutation is restoring lost
and exploring variety of data. We used a single-point mutation. A gene is changed
with a certain probability by a random number generated in the interval [1, n],
while avoiding genes duplication (see Algorithm 3). Figure 3 shows example of
mutation.
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Fig. 3. A single mutation (on the 4th gene)

Algorithm 3. Mutation Algorithm
1: for each chromosome in the current population do
2: Generate a random number r on the interval [0 1] // to select the chromosome
//to be mutated
3: if (r < pm) then // apply the mutation operator to this chromosome
4: begin
5: Select the gene to be modified (generate a random number i between 0 and
k-1)
6: Choose the new value to be placed (generate a random number v between 1
and n; v must be different from the values already existing in the chromosome
if not repeat the generation)
7: Change the value of gene i by the value v
8: Insert the new chromosome into the new population
9: end if
10: else insert the chromosome into the new population // the chromosome is
//inserted into the new population without change
11: end while

There is no simple way to configure the GA parameters. We defined these
parameters (population size, crossover and mutation probabilities) during the
experiments.

Termination Criterion. The generation process is repeated until a termina-
tion criterion is reached. The termination criterion is the maximum number of
generations to reach the convergence of the algorithm.

4 Experiments

We have implemented the proposed genetic algorithm in a java environment
using JGAP1. In this section we describe the data and measures used in the
experiments.

1 Java Genetic Algorithms and Genetic Programming (http://jgap.sourceforge.net/).

http://jgap.sourceforge.net/
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Table 1. Sources test

Source number Source Domain

1 ACM Digital Library Computer science

2 ClinicalKey Medicine

3 Edward Elgar Products Economics, finance, business and
management, law and public policy

4 IEEE, Institute of Electrical
and Electronics Engineers

Computer science, Electronics,
Telecommunications

5 IOP science Extra of IOP
Publishing

Physics, Materials Science, Applied
Mathematics

6 JSTOR Multidisciplinary

7 Royal Society of Chemistry Chemistry, Materials Science,
Environment, Biology

8 ScienceDirect of Elsevier Multidisciplinary

9 SpringerLink Multidisciplinary

10 SpringerProtocols Science and technology, Life and
earth sciences

4.1 Test Sources

We used databases of scientific research documents covering different domains
(computer science, medicine, law...). The access to these libraries is ensured
through a user account by a platform called SNDL2. The databases used are
described in Table 1.

The Query-Based Sampling method (QBS) [3] is used to construct the sources
description. Probe queries composed of a single term are sent to each of the
sources. Queries are chosen according to the domains to which the sources belong.
For each query (in a set of 15 queries) the top 4 documents are downloaded from
the source. These documents are used to represent the source. We used Indri3

to index these sources and search for documents. We set the following genetic
algorithm parameters: Crossover rate: 60% Mutation rate: 10% and Generation
number: 1500. A set of 20 test queries is selected manually. We choose general
queries that return results and we avoid queries that do not return any response.
We have varied the number of sources to select (k = 2, 4, 6, 8, 9).

4.2 Evaluation Function

Since all the relevant documents for a query is difficult to know for our data set
we used the precision to evaluate our algorithm which is given by the following
formula:

Precision =
|Selected Relevant Sources|

|Selected Sources| (4)

2 https://www.sndl.cerist.dz/.
3 Indexing and information searching system, http://www.lemurproject.org/indri.

https://www.sndl.cerist.dz/
http://www.lemurproject.org/indri
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Table 2. Average precision of GASS and CORI algorithms

Sources (k) algorithm 2 4 6 8 9

GASS 0.875 0.875 0.79165 0.733 0.68345

CORI 0.95 0.8375 0.76665 0.7125 0.68345

Fig. 4. Precision values for GASS and CORI algorithms on SNDL sources

To identify relevant sources, a user query is sent to each selected source and
we only count the returned documents that are relevant. We analyze the first
20 documents returned by each source. We asked users to judge the relevance
of the returned documents. A source is marked relevant if it returns at least
3 documents relevant to the query. The average precision is calculated over
20 test queries. We compared the proposed Algorithm (GASS) with the CORI
algorithm [4]. The default parameters of the CORI algorithm are used.

4.3 Experiment Results

Table 2 shows the average precision reached by each algorithm over 20 queries.
Figure 4 shows that the proposed algorithm is better than CORI algorithm in
terms of precision. It can be concluded that the proposed algorithm provides a
solution to sources selection problem in distributed environment being better or
at least as efficient as other state-of-the-art source selection algorithms (CORI
algorithm).

5 Conclusion

We have shown in this work how bio-inspired methods and more precisely genetic
algorithms can provide solutions to the problem of source selection in a multi-
source environment. First, we designed a genetic algorithm to find the best
sources for the user query. Experiments showed a performance improvement in
terms of precision of our algorithm in comparison with the CORI algorithm. This
asserts that this approach can be efficient in distributed information retrieval. In
future work, we plan to improve the experimental parameter values that allow
to achieve better results. Further experiments are needed to demonstrate our
proposal by increasing the number of sources.
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