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Abstract Early key research milestones for sulfate transport in plants include the

first description of kinetics of sulfate uptake into plant roots (Leggett and Epstein,

Plant Physiol 31:222–226, 1956), nutritionally regulated sulfate uptake into plants

(Clarkson et al., J Exp Bot 34:1463–1483, 1983), and the first gene for a plant

sulfate transporter (Smith et al., Proc Natl Acad Sci U S A 92:9373–9377, 1995a).

Since then a well-described gene family encoding putative sulfate transporters has

been characterized in multiple species, initially most notably in Arabidopsis but

subsequently for a number of other models or important crops (examples: Brassica,

wheat, rice, poplar and Medicago, see Buchner et al., Genome 47:526–534, 2004a;

Buchner et al., Plant Physiol 136:3396–3408, 2004b; Buchner et al., Mol Plant

3:374–389, 2010; Kumar et al., Plant Signal Behav 10:e990843, 2015; Dürr et al.,
Plant Mol Biol 72:499–517, 2010; Gao et al., Planta 239:79–96, 2014). Regulation

of expression has been well documented and this regulation is both a useful marker

of sulfur-nutritional status and a model for the elucidation of control pathways. The

complexity of the gene family in relation to functional, regulatory and spatial

distribution indicates an apparent whole plant management system for sulfur,

coordinated with growth and demand and interacting with nutrient availability. In

addition to sulfate, there is direct involvement of this transporter family in the

uptake and accumulation of both selenate and molybdate, with clear consequences

for nutritional quality. Is the story now complete almost 60 years since the first

transport description and 20 years since the first sulfate transporter gene isolation,

and a plethora of research projects and publications? Do we know how sulfur is

acquired and appropriately distributed within the plant? Do we know the critical

signals that control these processes? Are we even sure that these processes are

coordinated? This review documents research progress and assesses to what extent

the key questions have been addressed.
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Introduction

All plants require sulfur for growth and for land plants is most is acquired from the

external environment as sulfate. For land plants this from the soil via the roots.

Typically concentrations are low and often extremely variable. Thus, transport

needs to be active to facilitate uptake against a concentration gradient, specific

for sulfate and regulated to optimize uptake to growth and ensure optimal energy

utilization in this process. For vascular plants transport is not only across a single

membrane at the soil-root interface but also across many other plasma membranes

to facilitate distribution, across the chloroplast membrane to the site of reduction

and also across the tonoplast to allow transport in and out of the vacuole for the

transient storage of excess sulfate taken up.

Progress on the understanding of plant sulfate transporters has been substantial

and reported in successive volumes of the Sulfur Workshop series, with key

landmark papers from a number of groups being published throughout this period.

Some early key milestones in the development of the plant sulfate transporter

research field are illustrated as a timeline in Fig. 1.

The first suggestion for active absorption was in an analysis of whole plant

uptake of sulfate into barley roots. An enzyme based description of affinities and

competition by selenate but not nitrate or phosphate unequivocally demonstrated

the activity of a transmembrane ion transporter (Leggett and Epstein 1956). It

would be 40 years before the molecular components would be identified in plants

(Smith et al. 1995b). Prior to this key elements of regulation by de-repression (that

is induction upon starvation) were described in a topical legume (Clarkson et al.

1983) and suggestion for involvement of a metabolite linking N and S metabolism,

namely O-acetylserine (OAS), was described in maize (Clarkson et al. 1999). The

importance of OAS as a regulator of gene expression for a cluster of genes has been

described, separating S-related and other regulation (Hubberten et al. 2012, 2015).

Mechanistic evidence for transport being driven by proton gradients was obtained

in a duckweed (Lass and Ullrich-Eberius 1984).

The first substantial progress on the identification of sulfate transporters genes

was inevitably for bacteria (Ohta et al. 1971; Sirko et al. 1990), fungi and yeast

(Ketter et al. 1991; Smith et al. 1995b; Cherest et al. 1997), mammalian systems

(Schweinfest et al. 1993; Hästbacka et al. 1994; Silberg et al. 1995) and finally in

plants (Kouchi and Hata 1993; Smith et al. 1995a, 1997 ; Takahashi et al. 1996).

Similarities in the sequence of many of the genes, some not identified as sulfate

transporters was first noted by Sandal and Marcker (1994). Much of this work has

been reviewed in previous volumes in this series: Kredich 1993 (bacteria); Thomas

et al. 1997 (yeast); Davidian et al. 2000, Hawkesford et al. 2003, Buchner et al.

2010, Hawkesford 2012 (plants) and elsewhere (Markovich 2001) for mammalian

transporters. These transporters are now recognised to be part of a large family of

transmembrane ion transporters known as SulP (see also Price et al. 2004).
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A Family of Sulfate Transporters

In a series of papers predominantly from the Takahashi group but with notable

contributions from a number of others including the Davidian group it became

apparent that a gene family of up to 14 genes encoded a group of related proteins in

Arabidopsis (Takahashi et al. 1996, 1997; Vidmar et al. 2000). Similar gene

families were subsequently identified in Brassica (Buchner et al. 2004b), in rice

(Kumar et al. 2015), poplar (Dürr et al. 2010), Medicago (Gao et al. 2014) and in

wheat (Buchner et al. 2004a).

Phylogenetic analysis of plant sulfate transporter sequences indicates discrete

clades within the family (Fig. 2) and it has been proposed that these align with

discrete functions and that within clades there may be some functional redundancy

(Hawkesford 2003). In summary, Group 1 represents high affinity types responsible

for up take into the cell, particularly in the roots, and are subject to nutritional

regulation. Group 2 are lower affinity, less regulated and distributed throughout the

plant. Group 3 are somewhat more enigmatic (see below), Group 4 are uniquely

tonoplast located and responsible to vacuolar efflux. Group 5 are the most distantly

related to the rest of the family and the 2 members are quite distinct from each

other, lack a STAS domain and remain something of a puzzle. They seem to be

involved in Mo accumulation, perhaps transport and as such have been name mot1

and mot2 (Tomatsu et al. 2007; Baxter et al. 2008; Gasber et al. 2011).

Fig. 1 Key early milestones in the development of the understanding of sulfate transport in plants

placed in relation to the first 5 Sulfur Workshops
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The Transporter Itself: Recent Structural Insights

Early analysis of the amino acid sequences of the transporter was suggestive of

12 transmembrane domains, based on hydrophobicity plots and occurrence of

charged amino acids (Clarkson et al. 1993; Smith et al. 1995a; Takahashi et al.

1996). More recent analysis of transporters in the same superfamily (SulP/SLC26

family) combining both topology mapping of for example the BicA transporter (see

Price and Howitt 2014) and for prestin, homology modelling, molecular dynamics

simulations and cysteine accessibility scanning are strongly supportive of a com-

plex 14 transmembrane model (Gorbunov et al. 2014). In this analysis a
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Fig. 2 Phylogenetic relationship of the wheat and Arabidopsis sulfate transporter gene families:

Neighbour-Joining Tree (Mega 6, Tamura et al. 2013) from Multiple Alignment (ClustalX V.2.1,

Larkin et al. 2007) of coding cDNAs of the Triticum aestivum cv. Chinese spring D-genome (white
bold – black highlighted) and Arabidopsis thaliana (square framed white highlighted) sulfate
transporter gene family. The bootstrap values, expressed as percentage, were obtained from 1000

replicate trees (Courtesy of Peter Buchner)
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3-dimensional model has been derived which also proposes a central cavity as the

substrate-binding site, midway in an anion permeation channel. Features of this

cavity are almost certainly involved in substrate specificity and could potentially be

modified to further increase selectivity, for example between sulfate and selenate,

opening up the potential for designer crops.

An additional feature of members of this family is the STAS domain (Aravind

and Koonin 2000; Rouached et al. 2005). Activity is totally dependent upon its

presence and it is strongly suggested that is it involved in protein:protein interaction

regulating activity, probably involving phosphorylation of a threonine residue.

The question of whether the transport acts as a monomer or oligomer is of

interest and it has been suggested that heterodimers are required for activity or may

have an import regulatory role. Maximal sulfate uptake and growth were obtained

when a Group 3 transporter was co-expressed with a Group 2 transporter from

Arabidopsis in yeast complementation approach, suggestive of the activity of a

heterodimer (Kataoka et al. 2004a). No activity of the Group 3 when expressed

alone was seen in this study. In contrast Group 3 transporter isolated from Lotus

root nodules was able to complement a yeast mutant when expressed by itself

(Krussell et al. 2005) indicating some variability for this oligomer requirement.

Specificity for Sulfate, Selenate and Molybdate

The non-specificity of the transporter was exploited in early studies, particularly

with yeast, to obtain sulfate transporter-less mutants by harassing the toxic nature of

oxyanion analogues of sulfate, particularly selenate but also chromate (Breton and

Surdin-Kerjan 1977; Smith et al. 1995b). Selenate has also been applied as a

selection agent for the isolation of Arabidopsis mutants by several groups (see for

example, Shibagaki et al. 2002).

As the anions sulfate, selenate and molybdate are all transported by the same

transporters, it is not surprising that their respectively accumulations in plant tissues

are connected. Analysis of what grain from mildly sulfate deficient plots at

Rothamsted showed a remarkable accumulation of Se and Mo (Shinmachi et al.

2010; Stroud et al. 2010). The S-deficient plots had a reduced grain yield and

reduced grain S-content, both decreasing by about 10%, but several-fold increases

in Se and Mo content. This could be partially explained by the observed induction

of sulfate transporters in the roots of these field-grown plants, increasing uptake,

and a more favourable ration of selenate and molybdate relative to sulfate in the soil

solution. Whilst Se generally flows the distribution of sulfate in term of redistribu-

tion during grain filling and in relation to storage protein distribution in the grain,

some enriched sub-cellular regions were indicative of specific accumulation on

non-protein Se, possibly in vacuoles (Moore et al. 2010). Mo was less efficiently

remobilized to the grain than Se during grain filling indicating either a fixation of

the mineral in the vegetative tissue or a limitation to its later transportation

(Shinmachi et al. 2010; Stroud et al. 2010).
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Where Now?

Much has been determined about the nature of sulfate transporters in plants, not

only in model species but also in crops. A knowledge of the regulation and

properties of the transporters helps explain many physiological phenomena and

some agronomic responses of crops. The question remains of how may this aid in

breeding better genotypes or in informing agronomic treatments.

A previously stated ideotype for optimum S use involves uptake and storage

during fluctuating supply, effective remobilization upon demand and appropriate

partitioning to ensure healthy and nutritious crops (Hawkesford 2012). Breeding or

biotechnology may help deliver such germplasm and the acquired knowledge is an

essential prerequisite for such developments. Sulfur will always be required for

crop growth so effective capture and utilization are worthy targets.

Acquisition is an important issue. Certainly the adaptation of de-repression will

aid scavenging, but only in conjunction with root proliferation. Prospects for

improving efficiency of uptake are limited, although constitutive uptake and over-

accumulation, followed by storage and effective remobilization remains one key

strategy. In relation to this strategy, challenges still exist in the understanding of

movement of sulfate within the plant from organ to organ, distribution within

specific tissues and finally within individual cells between organelles. It is still

unclear as to how S moves into and out of the chloroplast, the key point of entry into

the biosynthetic pathway. One reports indicated a chloroplast localizing isoform of

the family (Takahashi et al. 1999) but this remains to be corroborated. Clearer is the

involvement of Group 3 transporters in release of sulfate from vacuoles, a key

storage site (Kataoka et al. 2004b).

David Clarkson proposed the idea of a black box (Fig. 3) in a foreword to the

proceedings of the 3rd Workshop (Clarkson 1997). Substantial progress has been

made in determining detail within this box since then, but the question of how to

improve sulfur nutrient use efficiency remains. Sulfur is required for growth and

health, for resistance to biotic and abiotic stresses, and contributes to nutritional

properties of food and feed. Decreasing requirements is unlikely to be an option,

optimizing agronomic inputs remains the key practical approach, although in the

future this may be complemented with plants optimized genetically for specific

qualities. Some investigations into natural variation in Arabidopsis have been made

Fig. 3 Clarkson’s Black
Box (Clarkson 1997). A

modified representation of

the simple representation of

nutrient use efficiency, but

inevitably complex in the

detail
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(Loudet et al. 2007) but there has been little investigation in crop plants and this is a

key area for development.
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