
Chapter 4
The Intrinsic Geometry of Statistical Models

4.1 Extrinsic Versus Intrinsic Geometric Structures

In geometry, an extrinsic and intrinsic perspective can be distinguished. Differen-
tial geometry started as the geometry of curves and surfaces in three-dimensional
Euclidean space. Of course, this can be generalized to higher dimensions and codi-
mensions, but Gauss had a deeper insight [102]. His Theorema Egregium says that
the curvature of a surface, now referred to as Gauss curvature, only depends on in-
trinsic measurements within the surface and does not refer to the particular way the
surface is embedded in the ambient three-dimensional Euclidean space. Although
this theorem explicitly refers to the curvature of surfaces, it highlights a more gen-
eral paradigm of geometry. In fact, Riemann developed a systematic approach to
geometry, now called Riemannian geometry, that treats geometric quantities intrin-
sically, as metric structures on manifolds without referring to any embedding into
some Euclidean space [225]. Nevertheless, geometry can also be developed extrinsi-
cally, because Nash’s embedding theorem [196] tells us that any Riemannian man-
ifold can be isometrically embedded into some Euclidean space, that is, it can be
realized as a submanifold of some Euclidean space, and its intrinsic Riemannian
metric then coincides with the restriction of the extrinsic Euclidean metric to that
submanifold. It is therefore a matter of convenience whether differential geometry
is developed intrinsically or extrinsically. In most cases, after all, the intrinsic view
is the more convenient and transparent one. (In algebraic geometry, the situation is
somewhat similar, although more complicated. A projective variety is a subvariety
of some complex projective space, and inherits the latter’s structures; in particular,
we can restrict the Fubini–Study metric to a projective variety, and when the lat-
ter is smooth, it thus becomes a Riemannian manifold. On the other hand, there is
the abstract notion of an algebraic variety. In contrast to the differential geomet-
ric situation, however, not every abstract algebraic variety can be embedded into
some complex projective space, that is, realized as a projective variety. Neverthe-
less, many algebraic varieties can be so embedded, and for those thus also both an
intrinsic and an extrinsic perspective are possible.)
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Nevertheless, the two approaches are not completely equivalent. This stems from
the fact that the isometric embedding produced by Nash’s theorem is in general not
unique. Submanifolds of a Euclidean space need not be rigid, that is, there may
exist different isometric embeddings of the same manifold into the same ambient
Euclidean space that cannot be transformed into each other by a Euclidean isom-
etry of that ambient space. In many cases, submanifolds can even be continuously
deformed in the ambient space while keeping their intrinsic geometry. In general,
the rigidity or non-rigidity of submanifolds is a difficult topic that depends not
only on the codimension—the higher the codimension, the more room we have
for deformations—, but also on intrinsic properties. For instance, closed surfaces
of positive curvature in 3-space are rigid, but there exist other closed surfaces that
are not rigid. We do not want to enter into this topic here, but simply point out that
the non-uniqueness of isometric embeddings means that such an embedding is an
additional datum that is not determined by the intrinsic geometry.

Thus, on the one hand, the intrinsic geometry by its very definition does not
depend on an isometric embedding. Distances and notions derived from them, like
that of a geodesic curve or a totally geodesic submanifold, are intrinsically defined.
On the other hand, the shape of the embedded object in the ambient space influences
constructions like projections from the exterior onto that object.

Also, the intrinsic and the extrinsic geometry are not equivalent, in the sense
that distances measured intrinsically are generally larger than those measured ex-
trinsically, in the ambient space. The only exception occurs for convex subsets of
affine linear subspaces of Euclidean spaces, but compact manifolds cannot be iso-
metrically embedded in such a manner. We should point out, however, that there
is another, stronger, notion of isometric embedding where intrinsic and extrinsic
distances are the same. For that, the target space can no longer be chosen as a finite-
dimensional Euclidean space, but it has to be some Banach space. More precisely,
every bounded metric space (X,d) can be isometrically embedded, in this stronger
sense, into an L∞-space. We simply associate to every point x ∈ X the distance
function d(x, ·),

X → L∞(X)

x �→ d(x, ·). (4.1)

Since by the triangle inequality
∥
∥d(x1, ·) − d(x2, ·)

∥
∥

L∞ = sup
y∈X

∣
∣d(x1, y) − d(x2, y)

∣
∣ = d(x1, x2),

this embedding does indeed preserve distances.
In information geometry, the situation is somewhat analogous, as we shall now

explain. In Chap. 2, we have developed an extrinsic approach, embedding our pa-
rameter spaces into spaces of measures and defining the Fisher metric in terms of
such embeddings, like the restriction of the Euclidean metric to a submanifold. The
same holds for Chap. 3, where, however, we have mainly addressed the complica-
tions arising from the fact that our space of measures was of infinite dimension. In
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our formal Definition 3.4 of statistical models, we explicitly include the embedding
p : M →P+(Ω) and thereby interpret the points of M as being elements of the am-
bient set of strictly positive probability measures.1 This way we can pull back the
natural geometric structures on P+(Ω), not only the Fisher metric g, but also the
Amari–Chentsov tensor T, and consider them as natural structures defined on M .
The question then arises whether information geometry can also alternatively be de-
veloped in an intrinsic manner, analogous to Riemannian geometry. After all, some
important aspects of information geometry are completely captured in terms of the
structures defined on M . For instance, we have shown that the m-connection and the
e-connection on P+(Ω) are dual with respect to the Fisher metric. If we equip M

with the pullback g of the Fisher metric and the pullbacks ∇ and ∇∗ of the m-and
the e-connection, respectively, then it is easy to see that the duality of ∇ and ∇∗
with respect to g, which is an intrinsic property, is inherited from the duality of the
corresponding objects on the bigger space. This duality already captures important
aspects of information geometry, which led Amari and Nagaoka to the definition of a
dualistic structure (g,∇,∇∗) on a manifold M . It turns out that much of the theory
presented so far can indeed be derived based on a dualistic structure, without as-
suming that the metric and the dual connections are distinguished as natural objects
such as the Fisher metric and the m- and e-connections. Alternatively, Lauritzen
[160] proposed to consider as the basic structure of information geometry a mani-
fold M together with a Riemannian metric g and a 3-symmetric tensor T , where g

corresponds to the Fisher metric and T corresponds to the Amari–Chentsov tensor.
He referred to such a triple (M,g,T ) as a statistical manifold, which, compared to
a statistical model, ignores the way M is embedded in P+(Ω) and therefore only
refers to intrinsic aspects captured by g and T . Note that any torsion-free dualistic
structure in the sense of Amari and Nagaoka defines a statistical manifold in terms
of T (A,B,C) := g(∇∗

AB −∇AB,C). Importantly, we can also go back from this in-
trinsic approach to an extrinsic one, analogously to Nash’s theorem. In Sect. 4.5 we
shall derive Lê’s theorem which says that any statistical manifold that is compact,
possibly with boundary, can be embedded, in a structure preserving way, in some
P+(Ω) so that it can be interpreted as a statistical model, even with a finite set Ω of
elementary events. Although we cannot expect such an embedding to be naturally
distinguished, there is a great advantage of having an intrinsically defined structure
similar to the dualistic structure of Amari and Nagaoka or the statistical manifold of
Lauritzen. Such a structure is general enough to be applicable to other contexts, not
restricted to our context of measures. For instance, quantum information geometry,
which is not a subject of this book, can be treated in terms of a dualistic structure.
It turns out that the dualistic structure also captures essential information-geometric
aspects in many other fields of application [16].

As in the Nash case, the embedding produced by Lê’s theorem is not unique
in general. Therefore, we also need to consider such a statistical embedding as an
additional datum that is not determined by the intrinsic geometry. Therefore, our

1Here, for simplicity of the discussion, we restrict attention to strictly positive probability mea-
sures, instead of finite signed measures.
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notion of a parametrized measure model includes some structure not contained in the
notion of a statistical manifold. The question then is to what extent this is relevant
for statistics. Clearly, different embeddings, that is, different parametrized measure
models based on the same intrinsic statistical manifold, constitute different families
of probability measures in parametric statistics. Nevertheless, certain aspects are
intrinsic. For instance, whether a submanifold is autoparallel w.r.t. a connection ∇
depends only on that connection, but not on any embedding. Intrinsically, the two
connections ∇ and ∇∗ play equivalent roles, but extrinsically, of course, exponential
and mixture families play different roles. By the choice of our embedding, we can
therefore let either ∇ or ∇∗ become the exponential connection. When, however,
one of them, say ∇ , is so chosen then it becomes an intrinsic notion of what an
exponential subfamily is. Therefore, even if we embed the same statistical manifold
differently into a space of probability measures, that is, let it represent different
parametrized families in the sense of parametric statistics, the corresponding notions
of exponential subfamily coincide.

We should also point out that the embedding produced in Lê’s theorem is dif-
ferent from that on which Definition 3.4 of a signed parametrized measure model
depends, because for the latter the target space S(Ω) is infinite-dimensional (un-
less Ω is finite), like the L∞-space of (4.1). The strength of Lê’s theorem derives
precisely from the fact that the target space is finite-dimensional, if the statistical
manifold is compact (possibly with boundary). In any case, in Lê’s theorem, the
structure of a statistical manifold is given and the embedding is constructed. In con-
trast, in Definition 3.4, the space P(Ω) is used to impose the structure of a statistical
model onto M . The latter situation is also different from that of (4.1), because the
embedding into P(Ω) is not extrinsically isometric in general, but rather induces a
metric (and a pair of connections) on M in the same manner as a submanifold of a
Euclidean space inherits a metric from the latter.

In this chapter, we first approach the structures developed in our previous chap-
ters from a more differential-geometric perspective. In fact, with concepts and tools
from finite-dimensional Riemannian geometry, presented in Appendix B, we can
identify and describe relations among these structures in a very efficient and trans-
parent way. In this regard, the concept of duality plays a dominant role. This is
the perspective developed by Amari and Nagaoka [16] which we shall explore in
Sects. 4.2 and 4.3. The intrinsic description of information geometry will naturally
lead us to the definition of a dualistic structure. This allows us to derive results solely
based on that structure. In fact, the situation that will be analyzed in depth is when
we not only have dual connections, but when we also have two such distinguished
connections that are flat. Manifolds that possess two such dually flat connections
have been called affine Kähler by Cheng–Yau [59] and Hessian manifolds by Shima
[236]. They are real analogues of Kähler manifolds, and in particular, locally the
entire structure is encoded by some strictly convex function. The second derivatives
of that function yield the metric. In particular, that function then is determined up
to some affine linear term. The third derivatives yield the Christoffel symbols of the
metric as well as those of the two dually flat connections. In fact, for one of them,
the Christoffel symbols vanish, and it is affine in the coordinates w.r.t. which we



4.2 Connections and the Amari–Chentsov Structure 189

have defined and computed the convex function. By a Legendre transform, we can
pass to dual coordinates and a dual convex functions. With respect to those dual
coordinates, the Christoffel symbols, now derived from the dual convex function, of
the other flat connection vanish, that is, they are affine coordinates for the second
connection. Also, the second derivatives of the dual convex function yield the in-
verse of the metric. This structure can also be seen as a generalization of the basic
situation of statistical mechanics where one of our convex functions becomes the
free energy and the other the (negative of the) entropy, see [38]. We’ll briefly return
to that aspect in Sect. 4.5 below.

Finally, we return to the general case of a dualistic structure that is not necessarily
flat and address the question to what extent such a dualistic structure, more precisely
a statistical manifold, is different from our previous notion of a statistical model.
This question will be answered by Lê’s embedding theorem, whose proof we shall
present.

4.2 Connections and the Amari–Chentsov Structure

Let now p(ξ) be a d-dimensional smooth family of probability measures depending
on the parameter ξ . The base measure will not play an important role, and so we
shall simply write integration as

∫

dx in this chapter. The family p(ξ) then has to
define a statistical model in the sense of Definition 3.4 with a logarithmic deriva-
tive in the sense of Definition 3.6, and it has to be 2-integrable when we compute
the Fisher metric and 3-integrable for the Amari–Chentsov tensor, in the sense of
Definition 3.7. The latter simply means that the integrals underlying the expectation
values in (4.2) and (4.3) below exist; see, for instance, (4.6). We shall henceforth
assume that.

For the Fisher metric (3.41), we then have

gij (ξ) = Ep(ξ)

(
∂

∂ξ i
logp(·; ξ)

∂

∂ξj
logp(·; ξ)

)

=
∫

Ω

∂

∂ξ i
logp(x; ξ)

∂

∂ξj
logp(x; ξ) p(x; ξ) dx, (4.2)

and so

∂

∂ξk
gij (ξ) = Ep

(
∂

∂ξk

∂

∂ξ i
logp

∂

∂ξj
logp

)

+Ep

(
∂

∂ξ i
logp

∂

∂ξk

∂

∂ξj
logp

)

+Ep

(
∂

∂ξ i
logp

∂

∂ξj
logp

∂

∂ξk
logp

)

. (4.3)
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Therefore, by (B.45),

Γ
(0)
ijk = Ep

(
∂2

∂ξ i∂ξj
logp

∂

∂ξk
logp + 1

2

∂

∂ξ i
logp

∂

∂ξj
logp

∂

∂ξk
logp

)

(4.4)

yields the Levi-Civita connection ∇(0) for the Fisher metric. More generally, we can
define a family ∇(α), −1 ≤ α ≤ 1, of connections via

Γ
(α)
ijk = Ep

(
∂2

∂ξ i∂ξj
logp

∂

∂ξk
logp + 1 − α

2

∂

∂ξ i
logp

∂

∂ξj
logp

∂

∂ξk
logp

)

= Γ
(0)
ijk − α

2
Ep

(
∂

∂ξ i
log p

∂

∂ξj
logp

∂

∂ξk
logp

)

. (4.5)

We also recall the Amari–Chentsov tensor (3.42)

Ep

(
∂

∂ξ i
logp

∂

∂ξj
logp

∂

∂ξk
logp

)

=
∫

Ω

∂

∂ξ i
logp(x; ξ)

∂

∂ξj
logp(x; ξ)

∂

∂ξk
logp(x; ξ) p(x; ξ) dx. (4.6)

We note the analogy between the Fisher metric tensor (4.2) and the Amari–
Chentsov tensor (4.6). The family ∇(α) of connections thus is determined by a com-
bination of first derivatives of the Fisher tensor and the Amari–Chentsov tensor.

Lemma 4.1 All the connections ∇(α) are torsion-free.

Proof A connection is torsion-free iff its Christoffel symbols Γijk are symmetric in
the indices i and j , see (B.32). Equation (4.5) exhibits that symmetry. �

Lemma 4.2 The connections ∇(−α) and ∇(α) are dual to each other.

Proof

Γ
(−α)
ijk + Γ

(α)
ijk = 2Γ

(0)
ijk

yields 1
2 (∇(−α) + ∇(α)) = ∇(0). As observed in (B.50), this implies that the two

connections are dual to each other. �

The preceding can also be developed in abstract terms. We shall proceed in sev-
eral steps in which we shall successively narrow down the setting. We start with a
Riemannian metric g. During our subsequent steps, that metric will emerge as the
abstract version of the Fisher metric. g determines a unique torsion-free connection
that respects the metric, the Levi-Civita connection ∇(0). The steps then consist in
the following:

1. We consider two further connections ∇,∇∗ that are dual w.r.t. g. In particular,
∇(0) = 1

2 (∇ + ∇∗).
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2. We assume that both ∇ and ∇∗ are torsion-free. It turns out that the tensor T

defined by T (X,Y,Z) = g(∇∗
XY − ∇XY,Z) is symmetric in all three entries.

(While connections themselves do not define tensors, the difference of connec-
tions does, see Lemma B.1.) The structure then is compactly encoded by the
symmetric 2-tensor g and the symmetric 3-tensor T . T will emerge as an ab-
stract version of the Amari–Chentsov tensor. Alternatively, the structure can be
derived from a divergence, as we shall see in Sect. 4.4. Moreover, as we shall see
in Sect. 4.5, any such structure can be isostatistically immersed into a standard
structure as defined by the Fisher metric and the Amari–Chentsov tensor.

3. We assume furthermore that ∇ and ∇∗ are flat, that is, their curvatures vanish.
In that case, locally, there exists a convex function ψ whose second derivatives
yield g and whose third derivatives yield T . Moreover, passing from ∇ to ∇∗
then is achieved by the Legendre transform of ψ . The primary examples of this
latter structure are exponential and mixture families. Their geometries will be
explored in Sect. 4.3.

The preceding structures have been given various names in the literature, and we
shall try to record them during the course of our mathematical analysis.

We shall now implement those steps. First, following Amari and Nagaoka [16],
we formulate

Definition 4.1 A triple (g,∇,∇∗) on a differentiable manifold M consisting of a
Riemannian metric g and two connections ∇,∇∗ that are dual to each other with
respect to g in the sense of Lemma 4.2 is called a dualistic structure on M .

(We might then call the quadruple (M,g,∇,∇∗) a dualistic space or dualistic
manifold, but usually, the underlying manifold M is fixed and therefore need not be
referred to in our terminology.)

Of particular importance are dualistic structures with two torsion-free dual con-
nections. According to the preceding, when g is the Fisher metric, then for any
−1 ≤ α ≤ 1, (g,∇(α),∇(−α)) is such a torsion-free dualistic structure. As we shall
see, any torsion-free dualistic structure is equivalently encoded by a Riemannian
metric g and a 3-symmetric tensor T , leading to the following notion, introduced
by Lauritzen [160] and generalizing the pair consisting of the Fisher metric and the
Amari–Chentsov tensor.

Definition 4.2 A statistical structure on a manifold M consists of a Riemannian
metric g and a 3-tensor T that is symmetric in all arguments. A statistical manifold
is a manifold M equipped with a statistical structure.

We shall now develop the relation between the preceding notions.

Definition 4.3 Let ∇,∇∗ be torsion-free connections that are dual w.r.t. the Rie-
mannian metric g. Then the 3-tensor

T = ∇∗ − ∇ (4.7)

is called the 3-symmetric tensor of the triple (g,∇,∇∗).



192 4 The Intrinsic Geometry of Statistical Models

Remark 4.1 The tensor T has been called the skewness tensor by Lauritzen [160].

When the Christoffel symbols of ∇ and ∇∗ are Γijk and Γ ∗
ijk , then T has com-

ponents

Tijk = Γ ∗
ijk − Γijk. (4.8)

By Lemma B.1, T is indeed a tensor, in contrast to the Christoffel symbols, be-
cause the non-tensorial term in (B.29) drops out when we take the difference of two
Christoffel symbols. We now justify the name (see [8] and [11, Thm. 6.1]).

Theorem 4.1 The 3-symmetric tensor Tijk is symmetric in all three indices.

Proof First, Tijk is symmetric in the indices i, j , since Γijk and Γ ∗
ijk are, because

they are torsion-free.
To show symmetry w.r.t. j, k, we compare (B.43), that is,

Zg(V,W) = g(∇ZV,W) + g
(

V,∇∗
ZW

)

(4.9)

which expresses the duality of ∇ and ∇∗, with

Zg(V,W) = (∇Zg)(V,W) + g(∇ZV,W) + g(V,∇ZW) (4.10)

which follows from the product rule for the connection ∇ . This yields

(∇Zg)(V,W) = g
(

V,
(∇∗

Z − ∇Z

)

W
)

, (4.11)

and since the LHS is symmetric in V and W , so then is the RHS. Writing this out in
indices yields the required symmetry of T . Indeed, (4.11) yields

(∇ ∂

∂xi
g)jk = g

(
∂

∂xj
,
(∇∗ − ∇)

∂

∂xi

∂

∂xk

)

=: g

(
∂

∂xj
, T �

ij

∂

∂x�

)

,

and hence

Tijk = gk�T
�
ij (4.12)

is symmetric w.r.t. j, k. �

Conversely, we have the result of Lauritzen [160].

Theorem 4.2 A metric g and a symmetric 3-tensor T yield a dualistic structure
with torsion-free connections.
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Proof Let ∇(0) be the Levi-Civita connection for g. We define the connection ∇ by

g(∇ZV,W) := g
(∇(0)

Z V,W
) − 1

2
T (Z,V,W), (4.13)

or equivalently, with T defined by

g
(

T (Z,V ),W
) = T (Z,V,W), (4.14)

∇ZV = ∇(0)
Z V − 1

2
T (Z,V ). (4.15)

Then ∇ is linear in Z and V and satisfies the product rule (B.26), because ∇(0) does
and T is a tensor. It is torsion free, because T is symmetric. Indeed,

∇ZV − ∇V Z − [Z,V ] = ∇ZV − ∇V Z − [Z,V ] − 1

2

(

T (Z,V ) − T (V ,Z)
) = 0.

Moreover,

∇∗
ZV = ∇(0)

Z V + 1

2
T (Z,V ) (4.16)

is a torsion free connection that is dual to ∇ w.r.t. g:

g(∇ZV,W) + g
(

V,∇∗
ZW

)

= g
(∇(0)

Z V,W
) + g

(

V,∇(0)
Z W

) − 1

2
T (Z,V,W) + 1

2
T (Z,W,V )

= g
(∇(0)

Z V,W
) + g

(

V,∇(0)
Z W

)

by the symmetry of T

= Zg(V,W)

since ∇(0) is the Levi-Civita connection, see (B.46). �

The pair (g,T ) represents the structure more compactly than the triple (g,∇,∇∗),
because in contrast to the connections, T transforms as a tensor by Lemma B.1. In
fact, from such a pair (g,T ), we can generate an entire family of torsion free con-
nections

∇(α)
Z V = ∇(0)

Z V − α

2
T (Z,V ) for − 1 ≤ α ≤ 1, (4.17)

or written with indices

Γ
(α)
ijk = Γ

(0)
ijk − α

2
Tijk. (4.18)

The connections ∇(α) and ∇(−α) are then dual to each other. And

∇(0) = 1

2

(∇(α) + ∇(−α)
)

(4.19)

then is the Levi-Civita connection, because it is metric and torsion free.
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Such statistical structures will be further studied in Sects. 4.3 and 4.5.
We now return to an extrinsic setting and consider families of probability distri-

butions, equipped with their Fisher metric. We shall then see that for α = ±1, we
obtain additional properties. We begin with an exponential family (3.31),

p(x;ϑ) = exp
(

γ (x) + fi(x)ϑi − ψ(ϑ)
)

. (4.20)

So, here we require that the function exp(γ (x) + fi(x)ϑi − ψ(ϑ)) be integrable
for all parameter values ϑ under consideration, and likewise that expressions like
fj (x) exp(γ (x) + fi(x)ϑi − ψ(ϑ)) or fj (x)fk(x) exp(γ (x) + fi(x)ϑi − ψ(ϑ)) be
integrable as well. In particular, as analyzed in detail in Sects. 3.2 and 3.3, this
is a more stringent requirement than the fi(x) simply being L1-functions. But if
the model provides a family of finite measures, i.e., if it is a parametrized measure
model, then it is always ∞-integrable, so that all canonical tensors and, in partic-
ular, the Fisher metric and the Amari–Chentsov tensor are well-defined; cf. Exam-
ple 3.3. We observe that we may allow for points x with γ (x) = −∞, as long as
those integrability conditions are not affected. The reason is that exp(γ (x)) can be
incorporated into the base measure.

When we have such integrability conditions, then differentiability w.r.t. the pa-
rameters ϑj holds.

We compute

∂

∂ϑj
logp(x;ϑ) = (

fj (x) −Ep(fj )
)

p(x;ϑ). (4.21)

In particular,

Ep

(
∂

∂ϑk
logp

)

= 0, (4.22)

because Ep(fj (x) − Ep(fj )) = 0 or because of the normalization
∫

pdx = 1. We
then get

Γ
(1)
ijk = Ep

(
∂2

∂ϑi∂ϑj
logp

∂

∂ξk
logp

)

= − ∂2

∂ϑi∂ϑj
ψ(ϑ) Ep

(
∂

∂ϑk
logp

)

= 0.

Thus, ϑ yields an affine coordinate system for the connection ∇(1), and we have

Lemma 4.3 The connection ∇(1) is flat.

Proof See (B.34) in the Appendix. �

Definition 4.4 The connection ∇(1) is called the exponential connection, abbrevi-
ated as e-connection.
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We now consider a family

p(x;η) = c(x) +
d

∑

i=1

gi(x)ηi, (4.23)

an affine family of probability measures, a so-called mixture family. (We might wish
to add a term ν(η) in order to achieve the normalization

∫

p(x;η)dx = 1, but as one
readily computes that this ν is given by ν(η) = 1 − ∫

(c(x) + ∑
gi(x)ηi) dx, which

is linear in η, it can simply be incorporated by a redefinition of the functions c(x)

and gi(x). Here, we require that the functions c(x) and gi(x) be integrable, and
the expressions (4.25) and (4.26) below as well. Again, differentiability w.r.t. the
parameters ηj is then obvious.

We then have
∫

c(x) dx = 1,

∫

gi(x) dx = 0 for all i.) (4.24)

And then,

∂

∂ηi

logp(x;η) = gi(x)

p(x;η)
, (4.25)

and

∂2

∂ηi∂ηj

logp(x;η) = −gi(x)gj (x)

p(x;η)2
. (4.26)

Consequently,

∂2

∂ηi∂ηj

logp + ∂

∂ηi

logp
∂

∂ηj

logp = 0.

This implies

Γ
(−1)
ijk = 0. (4.27)

In other words, now η is an affine coordinate system for the connection ∇(−1), and
analogously to Lemma 4.3, (4.27) implies

Lemma 4.4 The connection ∇(−1) is flat. �

Definition 4.5 ∇(−1) is called the mixture or m-connection.

These connections have already been described in more concrete terms in
Sect. 2.4. Amari and Nagaoka [16] call a triple (g,∇,∇∗) consisting of a Rieman-
nian metric g and two connections that are dual to each other and both flat a dually
flat structure.

We shall now develop an intrinsic perspective, that is, no longer speak about
families of probability distributions, but simply consider a triple consisting of a
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Riemannian metric and two torsion-free flat connections that are dual to each other.
Let ∇ and ∇∗ be dually flat connections. We choose affine coordinates ϑ1, . . . , ϑd ,
for ∇; the vector fields ∂i := ∂

∂ϑi are then parallel. We define vector fields ∂j via

〈

∂i, ∂
j
〉 = δ

j
i

(

=
{

1 for i = j

0 else

)

. (4.28)

We have for any vector V

0 = V
〈

∂i, ∂
j
〉 = 〈∇V ∂i, ∂

j
〉 + 〈

∂i,∇∗
V ∂j

〉

,

and since ∂i is parallel for ∇ , we conclude that ∂j is parallel for ∇∗. Since ∇∗ is
torsion-free, then also [∂j , ∂k] = 0 for all j and k, and so, we may find ∇∗-affine
coordinates ηj with ∂j = ∂

∂ηj
. Here and in the following, the position of the indices,

i.e., whether we have upper or lower indices, is important because it indicates the
transformation behavior under coordinate changes. For example, if when changing
the ϑ -coordinates ∂i transforms as a vector (contravariantly), then ∂j transforms as
a 1-form (covariantly). For changes of the η-coordinates, the rules are reversed. In
particular, we have

∂j = (

∂jϑi
)

∂i and ∂i = (∂iηj )∂
j (4.29)

as the transition rules between the ϑ - and η-coordinates. Writing then the metric
tensor in terms of the ϑ - and η-coordinates, resp., as

gij := 〈∂i, ∂j 〉, gij := 〈

∂i, ∂j
〉

, (4.30)

we obtain from 〈∂i, ∂
j 〉 = δ

j
i

∂ηj

∂ϑi
= gij ,

∂ϑi

∂ηj

= gij . (4.31)

Theorem 4.3 There exist strictly convex potential functions ϕ(η) and ψ(ϑ) satis-
fying

ηi = ∂iψ(ϑ), ϑi = ∂iϕ(η), (4.32)

as well as

gij = ∂i∂jψ, (4.33)

gij = ∂i∂jϕ. (4.34)

Proof The first equation of (4.32) can be solved locally iff

∂iηj = ∂jηi . (4.35)
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From the preceding equation, this is nothing but the symmetry

gij = gji, (4.36)

and so, local solvability holds; moreover, we obtain

gij = ∂i∂jψ. (4.37)

Thus, ψ is strictly convex. ϕ can be found by the same reasoning or, more elegantly,
by duality; in fact, we simply put

ϕ := ϑiηi − ψ (4.38)

from which

∂iϕ = ϑi + ∂ϑj

∂ηi

ηj − ∂ϑj

∂ηi

∂

∂ϑj
ψ = ϑi. �

Since ψ and ϕ are strictly convex, the relation

ϕ(η) + ψ(ϑ) = ϑiηi (4.39)

means that they are related by Legendre transformations,

ϕ(η) = max
ϑ

(

ϑiηi − ψ(ϑ)
)

, (4.40)

ψ(ϑ) = max
η

(

ϑiηi − φ(η)
)

. (4.41)

Of course, all these formulae are valid locally, i.e., where ψ and ϕ are defined. In
fact, the construction can be reversed, and all that is needed locally is a convex
function ψ(ϑ) of some local coordinates.

Remark 4.2

(1) Cheng–Yau [59] call an affine structure that is obtained from such local convex
functions a Kähler affine structure and consider it a real analogue of Kähler
geometry. The analogy consists in the fact that the Kähler form of a Kähler
manifold can be locally obtained as the complex Hessian of some function, in
the same manner that here, the metric is locally obtained from the real Hessian.
In fact, concepts that have been developed in the context of Kähler geometry,
like Chern classes, can be transferred to this affine context and can then be used
to derive restrictions for a manifold to carry such a dually flat structure. Shima
[236] speaks of a Hessian structure instead. For instance, Amari and Armstrong
in [13] show that the Pontryagin forms vanish on Hessian manifolds. This is a
strong local constraint.

(2) In the context of decision theory, this duality was worked out by Dawid and
Lauritzen [81]. This includes concepts like the Bregman divergences.
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(3) In statistics, so-called curved exponential families also play a role; see, for in-
stance, [16]. A curved exponential family is a submanifold of some exponential
family. That is, we have some mapping M ′ → M,ξ �→ ϑ(ξ) from some param-
eter space M ′ into the parameter space M of an exponential family as in (4.20)
and consider a family of the form

p(x; ξ) = exp
(

γ (x) + fi(x)ϑi(ξ) − ψ
(

ϑ(ξ)
))

(4.42)

parametrized by ξ ∈ M ′. The family is called curved because M ′ does not need
to carry an affine structure here, and even if it does, the mapping ξ �→ ϑ(ξ) does
not need to be affine.

In order to see that everything can be derived from a strictly convex function
ψ(ϑ), we define the metric

gij = ∂i∂jψ

and the α-connection through

Γ
(α)
ijk = Γ

(0)
ijk − α

2
∂i∂j ∂kψ

where Γ
(0)
ijk is the Levi-Civita connection for gij . Since

Γ
(0)
ijk = 1

2
(gik,j + gjk,i − gij,k) = 1

2
∂i∂j ∂kψ, (4.43)

we have

Γ
(α)
ijk = 1

2
(1 − α)∂i∂j ∂kψ, (4.44)

and since this is symmetric in i and j , ∇(α) is torsion free. Since Γ
(α)
ijk + Γ

(−α)
ijk =

2Γ
(0)
ijk , ∇(α) and ∇(−α) are dual to each other. Recalling (4.18),

Tijk = ∂i∂j ∂kψ (4.45)

is the 3-symmetric tensor.
In particular, Γ

(1)
ijk = 0, and so ∇(1) defines a flat structure, and the coordinates ϑ

are affine coordinates for ∇(1).

Remark 4.3 As an aside, we observe that in the ϑ -coordinates, the curvature of the
Levi-Civita connection becomes

Rk
lij = 1

2
gkngmr

(

∂j ∂n∂rψ ∂i∂l∂mψ − ∂j ∂l∂mψ ∂i∂n∂rψ

+ 1

2
∂j ∂l∂rψ ∂i∂m∂nψ − 1

2
∂j ∂m∂nψ ∂i∂l∂rψ

)

= 1

4

(

T k
jrT

r
�i − T k

irT
r
�j

)
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when writing it in terms of the 3-symmetric tensor. Remarkably, the curvature tensor
can be computed from the second and third derivatives of ψ ; no fourth derivatives
are involved. The reason is that the derivatives of the Christoffel symbols in (B.37)
drop out by symmetry because the Christoffel symbols in turn can be computed
from derivatives of ψ , see (4.43), and those commute. The curvature tensor thus
becomes a quadratic expression of coefficients of the 3-symmetric tensor.

In particular, if we subject the ϑ -coordinates to a linear transformation so that at
the point under consideration,

gij = δij ,

we get

Rk
lij = 1

4
(∂j ∂m∂kψ ∂i∂m∂lψ − ∂j ∂m∂lψ ∂i∂m∂kψ)

= 1

4
(TjkmTi�m − Tj�mTikm) (4.46)

(where we sum over the index m on the right). In a terminology developed in the
context of mirror symmetry, we thus have an affine structure that in general is not a
Frobenius manifold (see [86] for this notion) because the latter condition would re-
quire that the Witten–Dijkgraaf–Verlinde–Verlinde equations hold, which are equiv-
alent to the vanishing of the curvature. Here, we have found a nice representation
of these equations in terms of the 3-symmetric tensor. While this vanishing may
well happen for the potential functions ψ for certain dually flat structures, it does
not hold for the Fisher metric as we have seen already that it has constant positive
sectional curvature.

The dual connection then is ∇(−1), with Christoffel symbols

Γ
(−1)
ijk = ∂i∂j ∂kψ (4.47)

with respect to the ϑ -coordinates. The dually affine coordinates η can be obtained
as before:

ηj = ∂jψ, (4.48)

and so also

gij = ∂iηj . (4.49)

The corresponding potential is again obtained by a Legendre transformation

ϕ(η) = max
ϑ

(

ϑiηi − ψ(ϑ)
)

, ψ(ϑ) + ϕ(η) − ϑ · η = 0, (4.50)

and

ϑj = ∂jϕ(η), gij = ∂ϑj

∂ηi

= ∂i∂jϕ(η). (4.51)
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We also remark that the Christoffel symbols for the Levi-Civita connection for the
metric gij with respect to the ϑ -coordinates are given by

Γ̃ ijk = −Γijk = −1

2
∂i∂j ∂kψ, (4.52)

and so

Γ̃ (α)ijk = Γ̃ ijk − α

2
∂i∂j ∂kψ = −Γ

(−α)
ijk ,

and so, with respect to the dual metric gij , α and −α reverse their rules. So,
Γ̃ (1) = −Γ (−1) vanishes in the η-coordinates.

In conclusion, we have shown

Theorem 4.4 A dually flat structure, i.e., a Riemannian metric g together with
two flat connections ∇ and ∇∗ that are dual with respect to g is locally equivalent
to the datum of a single convex function ψ , where convexity here refers to local
coordinates ϑ and not to any metric.

As observed at the end of Appendix B, it suffices that the connections ∇ and
∇∗ are dual with respect to g and torsion-free and that the curvature of one of
them vanishes, because this then implies that the other curvature also vanishes, see
Lemma B.2.

One should point out, however, in order to get a global structure from such lo-
cal data, compatibility conditions under coordinate changes need to be satisfied. In
general, this is a fundamental point in geometry, but for our present purposes, this is
not so relevant as the manifolds of probability distributions do not exhibit nontrivial
global phenomena. For example, in the case of a finite underlying space, the prob-
ability distributions are represented by a simplex or a spherical sector, as we have
seen above, and so, the topology is trivial.

For a dually flat structure, completeness of one of the connections does not imply
completeness of the other one. In fact, in information geometry, the exponential con-
nection is complete (under appropriate assumptions) while the mixture connection
is not. (In this regard, see also the example constructed from (B.41) in Appendix B
of an incomplete connection on a complete manifold.)

Finally, we observe that in a dually flat structure, the assumption that a subman-
ifold be autoparallel implies the seemingly stronger property that it is itself dually
flat w.r.t. the induced structure (see [16]).

Lemma 4.5 Let (g,∇,∇∗) be a dually flat structure on the manifold M , and let S

be a submanifold of M . Then, if S is autoparallel for ∇ or ∇∗, then it is dually flat
w.r.t. the metrics and connections induced from (g,∇,∇∗).

Proof That S is autoparallel w.r.t., say, ∇ means that the restriction of ∇ to vector
fields tangent to S is a connection of S, as observed after (B.42), which then is also
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flat. And by (B.43), the connection ∇S,∗ induced by ∇∗ on S satisfies

Z〈V,W 〉 = 〈∇ZV,W 〉 + 〈

V,∇∗
ZW

〉

(4.53)

for all tangent vectors Z of S and vector fields V , W that are tangent to S. Since ∇∗
is torsion-free, so then is ∇S,∗, and since the curvature of ∇S = ∇ vanishes, so then
does the curvature of the dual connection ∇S,∗ by Lemma B.2. Thus, both ∇S and
∇S,∗ are flat, and S is dually flat w.r.t. the induced metric and connections. �

4.3 The Duality Between Exponential and Mixture Families

In this section, we shall assume that the parameter space M is a (finite-dimensional)
differentiable manifold. Instead of considering ϕ and ψ as functions of the coordi-
nates η and ϑ , resp., we may consider them as functions on our manifold M , i.e.,
for p ∈ M , instead of

ψ
(

ϑ(p)
)

,

we simply write

ψ(p)

by abuse of notation.
We now discuss another important concept of Amari and Nagaoka, see Sect. 3.4

in [16].

Definition 4.6 For p,q ∈ M , we define the canonical divergence

D(p‖q) := ψ(p) + ϕ(q) − ϑi(p)ηi(q). (4.54)

(Note the contrast to (4.39) where all expressions were evaluated at the same
point.) From (4.40) or (4.41), we have

D(p‖q) ≥ 0, (4.55)

and

D(p‖q) = 0 ⇐⇒ p = q (4.56)

by (4.39) and strict convexity. In general, however, D(p‖q) is not symmetric in
p and q . Thus, while D(p‖q) behaves like the square of a distance function in a
certain sense, it is not a true squared distance function. Also, for a derivative with



202 4 The Intrinsic Geometry of Statistical Models

respect to the first argument2

D
(

(∂i)p
∥
∥q

) : = ∂iD(p‖q)

= ∂iψ(p) − ηi(q)

= ηi(p) − ηi(q) by (4.32). (4.57)

This vanishes for all i precisely at p = q . Again, this is the same behavior as shown
locally by the square of a distance function on a Riemannian manifold which has
a global minimum at p = q . Likewise for a derivative with respect to the second
argument

D
(

p
∥
∥
(

∂j
)

q
) = ∂jD(p‖q) = ∂jϕ(q) − ϑj (p). (4.58)

Again, this vanishes for all j iff p = q .
For the second derivatives

D
(

(∂i∂j )p
∥
∥q

)

|q=p
= ∂i∂jD(p‖q)|q=p = gij (p) by (4.37) (4.59)

and

D
(

p
∥
∥
(

∂i∂j
)

q
)

|p=q
= ∂i∂jD(p‖q)|p=q = gij (q). (4.60)

Thus, the metric is reproduced from the distance-like 2-point function D(p‖q).

Theorem 4.5 The divergence is characterized by the relation

D(p‖q) + D(q‖r) − D(p‖r) = (

ϑi(p) − ϑi(q)
)(

ηi(r) − ηi(q)
)

, (4.61)

using (4.39), i.e., ψ(q) + ϕ(q) = ϑi(q)ηi(q).

This is the product of the two tangent vectors at q . Equation (4.61) can be seen
as a generalization of the cosine formula in Hilbert spaces,

1

2
‖p − q‖2 + 1

2
‖q − r‖2 − 1

2
‖p − r‖2 = 〈p − q, r − q〉.

Proof To obtain (4.61), we have from (4.54)

D(p‖q) + D(q‖r) − D(p‖r)
= ψ(p) + ϕ(q) − ϑi(p)ηi(q) + ψ(q) + ϕ(r) − ϑi(q)ηi(r)

− ψ(p) − ϕ(r) + ϑi(p)ηi(r)

2The notation employed is based on the convention that a derivative involving ϑ -variables operates
only on those expressions that are naturally expressed in those variables, and not on those expressed
in the η-variables. Thus, it operates, for example, on ψ , but not on ϕ.
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using (4.39), i.e., ψ(q) + ϕ(q) = ϑi(q)ηi(q). Conversely, if (4.61) holds, then
D(p‖p) = 0 and, by differentiating (4.61) w.r.t. p and then setting r = p,
D((∂i)p‖q) = ηi(p) − ηi(q). Since a solution of this differential equation is
unique, D has to be the divergence. Thus, the divergence is indeed characterized
by (4.61). �

The following conclusions from (4.61), Corollaries 4.1, 4.2, and 4.3, can be seen
as abstract instances of Theorem 2.8 (note, however, that Theorem 2.8 also handles
situations where the image of the projection is in the boundary of the simplex; this
is not covered by the present result).

Corollary 4.1 The ∇-geodesic from q to p is given by tϑi(p) + (1 − t)ϑi(q),
since ϑi are affine coordinates for ∇ , and likewise, the ∇∗-geodesic from q to r is
tηi(r) + (1 − t)ηi(q). Thus, if those two geodesics are orthogonal at q , we obtain
the Pythagoras relation

D(p‖r) = D(p‖q) + D(q‖r). (4.62)

�

In particular, such a q where these two geodesics meet orthogonally is the point
closest to p on that ∇∗-geodesic. We may therefore consider such a q as the pro-
jection of p on that latter geodesic. By the same token, we can characterize the pro-
jection of p ∈ M onto an autoparallel submanifold N of M by such a relation. That
is, the unique point q on N minimizing the canonical divergence D(p‖r) among
all r ∈ N is characterized by the fact that the ∇-geodesic from p to N meets N

orthogonally. This observation admits the following generalization:

Corollary 4.2 Let N be a differentiable submanifold of M . Then q ∈ N is a sta-
tionary point of the function D(p‖·) : N → R, r �→ D(p‖r) iff the ∇-geodesic from
p to q meets N orthogonally.

Proof We differentiate (4.61) w.r.t. r ∈ N and then put q = r . Recalling that (4.58)
vanishes when the two points coincide, we obtain

−D
(

p
∥
∥∂j r

) = (

ϑi(p) − ϑi(q)
)

∂jηi(r).

Thus, when we consider a curve r(t), t ∈ [0,1] with r(0) = q in N , we have

− d

dt
D

(

p
∥
∥r(t)

) = (

ϑi(p) − ϑi(q)
)∂ηi(r)

∂ηj

dηj (t)

dt
.

For t = 0, this is the product between the tangent vector of the geodesic from p to
q and the tangent vector of the curve r(t) at q = r(0), as in (4.61). This yields the
claim. �

We now turn to a situation where we can even find and characterize minima for
the projection onto a submanifold.
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Corollary 4.3 Let N be a submanifold of M that is autoparallel for the connec-
tion ∇∗. Let p ∈ M . Then q ∈ N satisfies

q = argmin
r∈N

D(p‖r) (4.63)

precisely if the ∇-geodesic from p to q is orthogonal to N at q .

Proof This follows directly from Corollary 4.1, see (4.61). �

Corollary 4.4 Let N1 ⊆ N2 be differentiable submanifolds of M which are au-
toparallel w.r.t. to ∇∗, and assume that N2 is complete w.r.t. ∇ .3 Let qi be the pro-
jection in the above sense of some distribution p onto Ni, i = 1,2. Then q1 is also
the projection of q2 onto N1, and we have

D(p‖q1) = D(p‖q2) + D(q2‖q1). (4.64)

Proof Since q1 ∈ N1 ⊆ N2, we may apply Corollary 4.1 to get the Pythagoras re-
lation (4.64). By Lemma 4.5, both N2 and N1 are dually flat (although here we ac-
tually need this property only for N2). Therefore, the minimizing ∇-geodesic from
q2 to N1 (which exists as N2 is assumed to be ∇-complete) stays inside N2, and it
is orthogonal to N1 at its endpoint q∗

1 by Corollary 4.3, and by Corollary 4.1 again,
we get the Pythagoras relation

D
(

p
∥
∥q∗

1

) = D(p‖q2) + D
(

q2
∥
∥q∗

1

)

. (4.65)

Since D(p‖q∗
1 ) ≥ D(p‖q1) and D(q2‖q∗

1 ) ≤ D(q2‖q1) by the respective mini-
mizing properties, comparing (4.64) and (4.65) shows that we must have equal-
ity in both cases. Likewise, we may apply the Pythagoras relation in N1 to get
D(q2‖q1) = D(q2‖q∗

1 ) + D(q∗
1 |q1) to then infer D(q∗

1 ‖q1) = 0 which by the prop-
erties of the divergence D (see (4.56)) implies q∗

1 = q1. This concludes the proof. �

We now return to families of probability distributions and consider the prime
example to which we want to apply the preceding theory, the exponential family
(4.20)

p(x;ϑ) = exp
(

γ (x) + fi(x)ϑi − ψ(ϑ)
)

, (4.66)

with

ψ(ϑ) = log
∫

exp
(

γ (x) + fi(x)ϑi
)

dx, (4.67)

that is,

p(x;ϑ) = 1

Z(ϑ)
exp

(

γ (x) + fi(x)ϑi
)

(4.68)

3We shall see in the proof why this assumption is meaningful.
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with the expression

Z(ϑ) :=
∫

exp
(

γ (x) + fi(x)ϑi
)

dx = eψ(ϑ), (4.69)

which is called the zustandssumme or partition function in statistical mechanics.
According to the theory developed in Sect. 4.2, such an exponential family carries
a dually flat structure with the Fisher metric and the exponential and the mixture
connection. We can therefore explore the implications of Theorem 4.4. Also, ex-
ponential subfamilies, that is, when we restrict the ϑ -coordinates to some linear
subspace, inherit such a dually flat structure, according to Lemma 4.5.

There are two special cases of (4.66) where the subsequent formulae will simplify
somewhat. The first case occurs when γ (x) = 0. In fact, the general case can be
reduced to this one, because exp(γ (x)) can be incorporated in the base measure
μ(x), compare (3.12). Nevertheless, the function γ will play a role in Sect. 6.2.3.
We could also introduce f0(x) = γ (x) and put the corresponding coefficient ϑ0 = 1.

The other simple case occurs when there are no fi . Anticipating some of the
discussion in Sect. 6.4, we call

Γ
(

p(·;ϑ)
) := −

∫

p(x;ϑ)γ (x) dx (4.70)

the potential energy and obtain the relation

ψ = logZ(ϑ)

=
∫

exp
(

γ (x) − ψ(ϑ)
)

ψ(ϑ)dx since
∫

p(x;ϑ)dx = 1

= −
∫

p(x;ϑ) logp(x;ϑ)dx +
∫

p(x;ϑ)γ (x) dx

= −ϕ − Γ, (4.71)

where −ϕ is the entropy. Thus, the free energy, defined as −ψ , is the difference
between the potential energy and the entropy.4

We return to the general case (4.66). We have the simple identity

∂kZ(ϑ)

∂ϑi1 . . . ∂ϑik
=

∫

fi1 · · ·fik exp
(

γ (x) + fi(x)ϑi
)

dx, (4.72)

and hence

Ep(fi1 · · ·fik ) = 1

Z(ϑ)

∂kZ(ϑ)

∂ϑi1 · · ·∂ϑik
, (4.73)

an identity that will appear in various guises in the rest of this section. Of course, by
(4.69), we can and shall also express this identity in terms of ψ(ϑ). Thus, when we

4The various minus signs here come from the conventions of statistical physics, see Sect. 6.4.
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know Z, or equivalently ψ , we can compute all expectation values of the “observ-
ables” fi .

First, we put

ηi(ϑ) :=
∫

fi(x)p(x;ϑ)dx = Ep(fi),

the expectation of the coefficient of ϑi w.r.t.

the probability measure p(·;ϑ), (4.74)

and have from (4.73)

ηi = ∂iψ, (4.75)

as well as, recalling (3.34),

gij = ∂i∂jψ for the Fisher information metric, (4.76)

as computed above. For the dual potential, we find

ϕ(η) = ϑiηi − ψ(ϑ)

=
∫

(

logp(x;ϑ) − γ (x)
)

p(x;ϑ)dx,
(4.77)

involving the entropy − ∫

logp(x;ϑ) p(x;ϑ)dx; this generalizes (4.71). For the
divergence, we get

D(p‖q) = ψ(ϑ) − ϑi

∫

fi(x)q(x;η)dx +
∫

(

logq(x;η) − γ (x)
)

q(x;η)dx

= ψ(ϑ) −
∫

(

logp(x;ϑ) − γ (x) + ψ(ϑ)
)

q(x;η)dx

+
∫

(

logq(x;η) − γ (x)
)

q(x;η)dx

=
∫

(

logq(x) − logp(x)
)

q(x)dx, (4.78)

the dual of the Kullback–Leibler divergence DKL introduced in (2.154).
Equation (4.74) is a linear relationship between η and p, and so, by inverting

it, we can express the p(·;ϑ) as linear combinations of the ηi . (We assume here,
as always, that the fi are independent, i.e., that the parametrization of the family
p(x;ϑ) is non-redundant.) In other words, when replacing the coordinates ϑ by η,
we obtain a mixture family

p(x;η) = c(x) + gi(x)ηi .

(Obviously, we are abusing the notation here, because the functional dependence of
p on η will be different from the one on ϑ .)
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We check the consistency

ηi(ϑ) =
∫

fi(x)p(x;ϑ)dx =
∫

fi(x)
(

c(x) + gj (x)ηj

)

dx

from (4.74), from which we obtain
∫

fi(x)c(x) dx = 0,

∫

fi(x)gj (x) dx = δ
j
i . (4.79)

If we consider the potential ϕ(η) given by (4.77), for computing the inverse of
the Fisher metric through its second derivatives as in (4.51), we may suppress the
term − ∫

γ (x) p(x;η)dx as this is linear in η. Then the potential is the negative of
the entropy, and

∂2

∂ηi∂ηj

∫

logp(x;η) p(x;η)dx

=
∫

∂

∂ηi

logp(x;η)
∂

∂ηj

logp(x;η) p(x;η)dx

=
∫

gi(x)gj (x)
1

c(x) + gk(x)ηk

dx

is the inverse of the Fisher metric.
Thus, we have

Theorem 4.6 With respect to the mixture coordinates, (the negative of) the entropy
is a potential for the Fisher metric. �

It is also instructive to revert the construction and go from the ηi back to the ϑi ;
namely, we have

ϑj = ∂

∂ηj

∫
(

c(x) + gi(x)ηi

)(

log
(

c(x) + gi(x)ηi

) − γ (x)
)

dx

=
∫

gj (x)
(

log
(

c(x) + gi(x)ηi

) − γ (x) + 1
)

dx

=
∫

gj (x)
(

logp(x;η) − γ (x) + 1
)

dx

=
∫

gj (x)
(

logp(x;η) − γ (x)
)

dx

because
∫

gj (x) dx = 0. This is a linear relationship between ϑ and logp(x;η) −
γ (x), and so, we can invert it and write

logp(x;ϑ) = γ (x) + fi(x)ϑi (4.80)
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to express logp as a function of ϑ , except that then the normalization
∫

p(x;ϑ)dx = 1 does not necessarily hold, and so, we need to subtract a term
ψ(ϑ), i.e.,

logp(x;ϑ) = γ (x) + fi(x)ϑi − ψ(ϑ). (4.81)

The reason that ψ(ϑ) is undetermined comes from
∫

gj (x) dx = 0; namely, we
must have the consistency

ϑj =
∫

gj (x)
(

fi(x)ϑi − ψ(ϑ) + 1
)

dx

from the above, and this holds because of
∫

gj (x) dx = 0 and
∫

gj (x)fi(x) dx = δ
j
i .

For our exponential family

p(x;ϑ) = exp
(

γ (x) + fi(x)ϑi − ψ(ϑ)
)

, (4.82)

with ψ(ϑ) = log
∫

exp(γ (x) + fi(x)ϑi)dx, we also obtain a relationship between
the expectation values ηi for the functions fi and the expectation values ηij of the
products fifj (this is a special case of the general identity (4.73)):

ηij =
∫

fi(x)fj (x) exp
(

γ (x) + fk(x)ϑk − ψ(ϑ)
)

dx

= exp
(−ψ(ϑ)

) ∂2

∂ϑi∂ϑj

∫

exp
(

γ (x) + fk(x)ϑk
)

dx

= exp
(−ψ(ϑ)

) ∂

∂ϑi

∫

fj (x) exp
(

γ (x) + fk(x)ϑk
)

dx

= exp
(−ψ(ϑ)

) ∂

∂ϑi

(

exp
(

ψ(ϑ)
)

ηj

)

= exp
(−ψ(ϑ)

)

ηj

∂

∂ϑi

∫

exp
(

γ (x) + fk(x)ϑk
)

dx + ∂ηj

∂ϑi

= ηiηj + gij , (4.83)

see (4.49). We thus have the important result

Theorem 4.7

gij = ηij − ηiηj . (4.84)

Thus, when we consider our coordinates ϑi as the weights given to the observables
fi(x) on the basis of γ (x), our metric gij (ϑ) is then simply the covariance matrix
of those observables at the given weights or coordinates. �

To put this another way, if our observations yield not only the average values ηi

of the functions fi , but also the averages ηij of the products fifj —which in general
are different from the products ηiηj of the average values of the fi—, and we wish
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to represent those in our probability distribution, we need to introduce additional
parameters ϑij and construct

p
(

x;ϑi,ϑij
) = exp

(

γ (x) + fi(x)ϑi + fi(x)fj (x)ϑij − ψ(ϑ)
)

(4.85)

with

ϑij = ∂

∂ηij

ϕ(ηi, ηij ), (4.86)

ϕ(ηi, ηij ) =
∫

(

logp(x;ηi, ηij ) − γ (x)
)

p(x;ηi, ηij ) dx (4.87)

analogously to the above considerations.
Our definition (4.54) can also be interpreted in the sense that for fixed ϕ, D(p‖q)

can be taken as our potential ψ(ϑ) as ϕ(η) is independent of ϑ and ϑ · η is linear in
ϑ so that neither of them enters into the second derivatives. Of course, this is (4.59).
Here, p = q then corresponds to η = 0. From (4.57) and Theorem 4.3 (see (4.32) or
(4.75)), we obtain the negative gradient flow for this potential ψ(p) = D(p‖q),

ϑ̇ i = −gij ∂jψ(ϑ) = −gij ηj , (4.88)

or, since

η̇j = gji ϑ̇
i , (4.89)

η̇j = −ηj . (4.90)

This is a linear equation, and the solution moves along a straight line in the η-
coordinates, i.e., along a geodesic for the dual connection ∇∗ (see Proposition 2.5),
towards the point η = 0, i.e., p = q . In particular, the gradient flow for the Kullback–
Leibler divergence DKL moves on a straight line in the mixture coordinates.

A special case of an exponential family is a Gaussian one. Let A = (Aij )i,j=1,...,n

be a symmetric, positive definite n × n-matrix and let ϑ ∈ R
n be a vector. The

observables here are the components x1, . . . , xn of x ∈R
n. We shall use the notation

ϑtx = ∑n
i=1 ϑixi and so on.

The Gaussian integral is

I (A,ϑ) : =
∫

dx1 · · ·dxn exp

(

−1

2
xtAx + ϑtx

)

= exp

(
1

2
ϑtA−1ϑ

)∫

exp

(

−1

2
ytAy

)

dy1 · · ·dyn

= exp

(
1

2
ϑtA−1ϑ

)(
(2π)n

detA

) 1
2

(4.91)
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(with the substitution x = A−1ϑ + y; note that the integral exists because A is pos-
itive definite). Thus, with

ψ(ϑ) := 1

2
ϑtA−1ϑ + 1

2
log

(2π)n

detA
, (4.92)

we have our exponential family

p(x;ϑ) = exp

(

−1

2
xtAx + ϑtx − ψ(ϑ)

)

. (4.93)

Since ψ is a quadratic function of ϑ , all higher derivatives vanish, and in particu-
lar the connection Γ (−1) = 0 and also the curvature tensor R vanishes, see (4.47),
(4.46).

By (3.34), the metric is given by

gij = ∂2

∂ϑi∂ϑj
ψ = (

A−1)

ij
(4.94)

and is thus independent of ϑ . This should be compared with the results around
(3.35). In contrast to those computations, here A is fixed, and not variable as σ 2.
Equation (4.93) is equivalent to (3.35), noting that μ = ϑ1σ 2 there. It can also be
expressed in terms of moments

〈

xi1 · · ·xim
〉 : = Ep

(

xi1 · · ·xim
)

=
∫

xi1 · · ·xim exp(− 1
2xtAx + ϑtx) dx1 · · ·dxn

∫

exp(− 1
2xtAx + ϑtx) dx1 · · ·dxn

= 1

I (A,ϑ)

∂

∂ϑi1
· · · ∂

∂ϑim
I (A,ϑ). (4.95)

In fact, we have
〈

xixj
〉 − 〈

xi
〉〈

xj
〉 = (

A−1)

ij
(4.96)

by (4.91), in agreement with the general result of (4.84). (In the language of sta-
tistical physics, the second-order moment 〈xixj 〉 is also called a propagator.) For
ϑ = 0, the first-order moments 〈xi〉 vanish because the exponential is then quadratic
and therefore even.

4.4 Canonical Divergences

4.4.1 Dual Structures via Divergences

In this chapter we have studied the intrinsic geometry of statistical models, leading
to the notion of a dualistic structure (g,∇,∇∗) on M . Of particular interest are
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dualistic structures with torsion-free dual connections ∇ and ∇∗. As we have proved
in Sect. 4.2, see Theorems 4.1 and 4.2, such a structure is equivalently given by
(g,T ), where g is a Riemannian metric and T a 3-symmetric tensor. This is an
abstract and intrinsically defined version of the pair consisting of the Fisher metric
and the Amari–Chentsov tensor. A natural approach to such a structure has been
proposed by Eguchi [93] based on divergences.

Definition 4.7 Let M be a differentiable manifold. A divergence or contrast func-
tion on M is a real-valued smooth function D : M × M → R, (p, q) �→ D(p‖q),
satisfying

D(p‖q) ≥ 0, D(p‖q) = 0 ⇔ p = q, (4.97)

and moreover,

VpVqD(p‖q)|p=q > 0 (4.98)

for any smooth vector field V on M that is non-zero at p. Given a divergence D, its
dual

D∗ : M × M →R, D∗(p‖q) := D(q‖p) (4.99)

also satisfies the conditions (4.97) and (4.98) and is therefore a divergence (contrast
function) on M .

In Sect. 2.7, we have introduced and discussed various divergences defined
on M+(I ) and P+(I ), respectively, including the relative entropy and the α-
divergence. These divergences were tightly coupled with the Fisher metric and the
α-connection. Furthermore, we have seen the tight coupling of a dually flat structure
with the canonical divergence of Definition 4.6.

In what follows, we elaborate on how divergences induce dualistic structures.
We use the following notation for a function on M defined by the value of the
partial derivative in M ×M with respect to the smooth vector fields V1, . . . , Vn, and
W1, . . . ,Wm on M :

D(V1 · · ·Vn‖W1 · · ·Wm)(p) := (V1)p · · · (Vn)p(W1)q · · · (Wm)qD(p‖q)|p=q .

We note that by (4.97), cf. (4.57)

VqD(p‖q)|p=q = VpD(p‖q)|p=q = 0. (4.100)

By (4.98) the tensor g(D)

g(D)(V ,W) := −D(V ‖W) (4.101)

is a Riemannian metric on M (compare with (4.59)). (Note that this expression is
symmetric, that is, D(V ‖W) = D(W‖V ), in contrast to D(p‖q) which in general
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is not symmetric.) In addition to this metric, the divergence induces a connection
∇(D), given by

g(D)
(∇(D)

X Y,Z
) := −D(XY‖Z). (4.102)

Applying (4.102) to the dual divergence D∗ and noting that g(D) = g(D∗), we obtain
a connection ∇(D∗) that satisfies

g(D)
(∇(D∗)

X Y,Z
) = −D∗(XY‖Z) = −D(Z‖XY) (4.103)

for all smooth vector fields Z on M .

Theorem 4.8 The two connections ∇(D) and ∇(D∗) are torsion-free and dual with
respect to g(D) = g(D∗).

Proof We shall appeal to Theorem 4.2 and show that the tensor

T (D)(X,Y,Z) := g(D)
(∇(D∗)

X Y − ∇(D)
X Y,Z

)

(4.104)

is a symmetric 3-tensor.
We first observe that T (D) is a tensor. It is linear in all its arguments, and for any

f ∈ C∞(M) we have

T (D)(f X,Y,Z) = f T (D)(X,Y,Z),

because, by Lemma B.1, the difference of two connections is a tensor. Moreover, by
the symmetry of D(X‖Y), we have

T (D)(X,Y,Z) − T (D)(Y,X,Z) = D
([X,Y ]∥∥Z

) − D
(

Z
∥
∥[X,Y ])

= 0,

−T (D)(X,Z,Y ) + T (D)(X,Y,Z) = D(XY‖Z) + D(Y‖XZ)

− D(XZ‖Y) − D(Z‖XY)

= X
(

D(Y‖Z) − D(Z‖Y)
)

= 0,

and hence T (D) is symmetric. �

We say that a torsion-free dualistic structure (g,∇,∇∗) is induced by a diver-
gence D if

g = g(D), ∇ = ∇(D), and ∇∗ = ∇(D∗). (4.105)
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4.4.2 A General Canonical Divergence

We have the following inverse problem:

Given a torsion-free dualistic structure (g,∇,∇∗), is there always a corresponding diver-
gence D that induces that structure?

This question has been positively answered by Matumoto [173]. His result also
follows from Lê’s embedding Theorem 4.10 of Sect. 4.5 (see Corollary 4.5). On
the one hand, it is quite satisfying to know that any torsion-free dualistic structure
can be encoded by a divergence in terms of (4.105). For instance, in Sect. 2.7 we
have shown that the Fisher metric g together with the m- and e-connections can be
encoded in terms of the relative entropy. More generally, g together with the ±α-
connections can be encoded by the α-divergence (see Proposition 2.13). Clearly,
these divergences are special and have very particular meanings within information
theory and statistical physics. The relative entropy generalizes Shannon informa-
tion as reduction of uncertainty and the α-divergence is closely related to the Rényi
entropy [223] and the Tsallis entropy [248, 249]. Indeed, these quantities are cou-
pled with the underlying dualistic structure, or equivalently with g and T, in terms
of partial derivatives, as formulated in Proposition 2.13. However, the relative en-
tropy and the α-divergence are more strongly coupled with g and T than expressed
by this proposition. In general, we have many possible divergences that induce a
given torsion-free dualistic structure, and there is no way to recover the relative
entropy and the α-divergence without making stronger requirements than (4.105).
On the other hand, in the dually flat case there is a distinguished divergence, the
canonical divergence as introduced in Definition 4.6, which induces the underlying
dualistic structure. This canonical divergence represents a natural choice among the
many possible divergences that satisfy (4.105). It turns out that the canonical diver-
gence recovers the Kullback–Leibler divergence in the case of a dually flat statistical
model (see Eq. (4.78)), which highlights the importance of a canonical divergence.
But which divergence should we choose, if the manifold is not dually flat? For in-
stance in the general Riemannian case, where ∇ and ∇∗ both coincide with the
Levi-Civita connection of g, we do not necessarily have dual flatness. The need for
a general canonical divergence in such cases has been highlighted in [35]. We can
reformulate the above inverse problem as follows:

Given a torsion-free dualistic structure (g,∇,∇∗), is there always a corresponding “canon-
ical” divergence D that induces that structure?

We use quotation marks because it is not fully clear what we should mean by
“canonical.” Clearly, in addition to the basic requirement (4.105), such a divergence
should coincide with those divergences that we had already identified as “canonical”
in the basic cases of Sect. 2.7 and Definition 4.6. We therefore impose the following
two
Requirements:

1. In the self-dual case where ∇ = ∇∗ coincides with the Levi-Civita connection
of g, the canonical divergence should simply be D(p ‖q) = 1

2d2(p, q).
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2. We already have a canonical divergence in the dually flat case. Therefore, a gen-
eralized notion of a canonical divergence, which applies to any dualistic struc-
ture, should recover the canonical divergence of Definition 4.6 if applied to a
dually flat structure.

In [23], Ay and Amari propose a canonical divergence that satisfies these re-
quirements, following the gradient-based approach of Sect. 2.7.1 (see also the re-
lated work [14]). Assume that we have a manifold M equipped with a Riemannian
metric g and an affine connection ∇ . Here, we are only concerned with the lo-
cal construction of a canonical divergence and assume that for each pair of points
q,p ∈ M , there is a unique ∇-geodesic γq,p : [0,1] → M satisfying γq,p(0) = q

and γq,p(1) = p. This is equivalent to saying that for each pair of points q and
p there is a unique vector X(q,p) ∈ TqM satisfying expq(X(q,p)) = p, where
exp denotes the exponential map associated with ∇ (see (B.39) and (B.40) in Ap-
pendix B). Given a point p, this allows us to consider the vector field q �→ X(q,p),
which we interpreted as difference field in Sect. 2.7.1 (see Fig. 2.5). Now, if this vec-
tor field is the (negative) gradient field of a function Dp , in the sense of Eq. (2.95),
then Dp(q) = D(p ‖q) can be written as an integral along any path from q to p

(see Eq. (2.96)). Choosing the ∇-geodesic γq,p as a particular path, we obtain

D(p ‖q) =
∫ 1

0

〈

X
(

γq,p(t),p
)

, γ̇q,p(t)
〉

dt. (4.106)

Since the geodesic connecting γq,p(t) and p is a part of the geodesic connecting q

and p, corresponding to the interval [t,1], we have

X
(

γq,p(t),p
) = (1 − t) γ̇q,p(t). (4.107)

Using also the reversed geodesic γp,q(t) = γq,p(1 − t), this leads to the following
representations of the integral (4.106), which we use as a

Definition 4.8 We define the canonical divergence associated with a Riemannian
metric g and an affine connection ∇ locally by

D(p ‖q) := D∇(p ‖q)

:=
∫ 1

0
(1 − t)

∥
∥γ̇q,p(t)

∥
∥2

dt (4.108)

=
∫ 1

0
t
∥
∥γ̇p,q(t)

∥
∥2

dt. (4.109)

It is obvious from this definition that D(p ‖q) ≥ 0, and D(p ‖q) = 0 if and
only if p = q , which implies that D is actually a divergence. In the self-dual case,
∇ = ∇∗ is the Levi-Civita connection with respect to g. In that case, the velocity
field γ̇p,q is parallel along the geodesic γp,q , and therefore

∥
∥γ̇p,q(t)

∥
∥

γ (t)
= ∥

∥γ̇p,q(0)
∥
∥

p
= ∥

∥X(p,q)
∥
∥

p
= d(p,q),
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where d(p,q) denotes the Riemannian distance between p and q . This implies that
the canonical divergence has the following natural form:

D(p ‖q) = 1

2
d2(p, q) . (4.110)

This shows that the canonical divergence satisfies Requirement 1 above. In the gen-
eral case, where ∇ is not necessarily the Levi-Civita connection, we obtain the en-
ergy of the geodesic γp,q as the symmetrized version of the canonical divergence:

1

2

(

D(p ‖q) + D(q ‖p)
) = 1

2

∫ 1

0

∥
∥γ̇p,q(t)

∥
∥2

dt. (4.111)

Remark 4.4

(1) We have defined the canonical divergence based on the affine connection ∇
of a given dualistic structure (g,∇,∇∗). We can apply the same definition to
the dual connection ∇∗ instead, leading to a canonical divergence D(∇∗). Note
that, in general we do not have D(∇∗)(p ‖q) = D(∇)(q ‖p), a property that is
satisfied for the relative entropy and the α-divergence introduced in Sect. 2.7
(see Eq. (2.111)). In Sect. 4.4.3, we will see that this relation generally holds
for dually flat structures. On the other hand, the mean

D̄(∇)(p ‖q) := 1

2

(

D(∇)(p ‖q) + D(∇∗)(q ‖p)
)

always satisfies D̄(∇∗)(p ‖q) = D̄(∇)(q ‖p), suggesting yet another definition
of a canonical divergence [11, 23]. For a comparison of various notions of di-
vergence duality, see also the work of Zhang [260].

(2) Motivated by Hooke’s law, Henmi and Kobayashi [119] propose a canonical
divergence that is similar to that of Definition 4.109.

(3) In the context of a dually flat structure (g,∇,∇∗) and its canonical divergence
(4.54) of Definition 4.6, Fujiwara and Amari [100] studied gradient fields that
are closely related to those given by (2.95).

In what follows, we are going to prove that the canonical divergence also satisfies
Requirement 2.

4.4.3 Recovering the Canonical Divergence of a Dually Flat
Structure

In the case of a dually flat structure (g,∇,∇∗), a canonical divergence is well-
known, which is given by (4.54) in Definition 4.6. This is a distinguished divergence
with many natural properties, which we have elaborated on in Sect. 4.3. We are now
going to show that the divergence given by (4.109) coincides with the canonical
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divergence of Definition 4.6 in the dually flat case. In order to do so, we consider
∇-affine coordinates ϑ = (ϑ1, . . . , ϑd) and ∇∗-affine coordinates η = (η1, . . . , ηd).
In the ϑ -coordinates, the ∇-geodesic connecting p with q has the form

ϑ(t) := ϑ(p) + t
(

ϑ(q) − ϑ(p)
)

. (4.112)

Hence, the velocity is constant

ϑ̇(t) = ϑ(q) − ϑ(p) =: z. (4.113)

The canonical divergence of ∇ is given by

D(∇)(p ‖q) =
∫ 1

0
t gij

(

ϑ(t)
)

zizj dt. (4.114)

Since gij (ϑ) = ∂i∂jψ(ϑ) according to (4.33), where ψ is a strictly convex potential
function, we have

D(∇)(p ‖q) =
∫ 1

0
t ∂i∂jψ

(

ϑ(p) + t z
)

zizj dt

=
∫ 1

0
t

d2

dt2
ψ

(

ϑ(t)
)

dt

= −
∫ 1

0

d

dt
ψ

(

ϑ(t)
)

dt +
[

t
d

dt
ψ

(

ϑ(t)
)
]1

0

= ψ
(

ϑ(p)
) − ψ

(

ϑ(q)
) + ∂iψ

(

ϑ(q)
)(

ϑi(q) − ϑi(p)
)

(4.48)= ψ
(

ϑ(p)
) − ψ

(

ϑ(q)
) + ηi(q)

(

ϑi(q) − ϑi(p)
)

(4.39)= ψ
(

ϑ(p)
) + ϕ

(

η(q)
) − ϑi(p)ηi(q). (4.115)

Thus, we obtain exactly the definition (4.54) where ψ(ϑ(p)) is abbreviated by ψ(p)

and ϕ(η(q)) by ϕ(q).
We derived the canonical divergence D for the affine connection ∇ based on

(4.109). We now use the same definition, in order to derive the canonical divergence
D(∇∗) of the dual connection ∇∗. The ∇∗-geodesic connecting p with q has the
following form in the η-coordinates:

η(t) = η(p) + t
(

η(q) − η(p)
)

. (4.116)

Hence, the velocity is constant

η̇(t) = η(q) − η(p) =: z∗. (4.117)

The divergence D(∇∗) is given by

D(∇∗)(p ‖q) =
∫ 1

0
t gij

(

η(t)
)

z∗
i z

∗
j dt. (4.118)
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Since gij (η) = ∂i∂jϕ(η), we have

D(∇∗)(p ‖q) =
∫ 1

0
t ∂i∂jϕ

(

η(p) + tz∗)z∗
i z

∗
j dt

=
∫ 1

0
t

d2

dt2
ϕ
(

η(t)
)

dt

= −
∫ 1

0

d

dt
ϕ
(

η(t)
)

dt +
[

t
d

dt
ϕ
(

η(t)
)
]1

0

= ϕ
(

η(p)
) − ϕ

(

η(q)
) + ∂iϕ

(

η(q)
)(

ηi(q) − ηi(p)
)

(4.51)= ϕ
(

η(p)
) − ϕ

(

η(q)
) + ϑi(q)

(

ηi(q) − ηi(p)
)

(4.39)= ϕ
(

η(p)
) + ψ

(

ϑ(q)
) − ϑi(q)ηi(p).

A comparison with (4.115) shows

D(∇∗)(p ‖q) = D(∇)(q ‖p). (4.119)

This proves that ∇ and ∇∗ give the same canonical divergence except that p and
q are interchanged because of the duality. Instances of this general relation in the
dually flat case are given by the α-divergences, see (2.111).

4.4.4 Consistency with the Underlying Dualistic Structure

We have defined our canonical divergence D based on a metric g and an affine
connection ∇ (see (4.109)). It is natural to require that the corresponding dualistic
structure (g,∇,∇∗) is encoded by this divergence in terms of (4.105), or, in local
coordinates ξ = (ξ1, . . . , ξn), by

gij = −D(∂i‖∂j ), Γijk = −D(∂i∂j‖∂k), Γ ∗
ijk = −D(∂k‖∂i∂j ). (4.120)

Since the geometry is determined by the derivatives of D(p ‖q) at p = q , we
consider the case where p and q are close to each other, that is

zi = ξ i(q) − ξ i(p) (4.121)

is small for all i. We evaluate the divergence by Taylor expansion up to O(‖z‖3).
Note that X(p,q) is of order ‖z‖.

Proposition 4.1 When ‖z‖ = ‖ξ(q) − ξ(p)‖ is small, the canonical divergence
(4.109) is expanded as

D(p ‖q) = 1

2
gij (p) zizj + 1

6
Λijk(p) zizj zk + O

(‖z‖4) (4.122)
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where

Λijk = 2 ∂igjk − Γijk. (4.123)

Proof The Taylor series expansion of the local coordinates ξ(t) of the geodesic
γp,q(t) is given by

ξ i(t) = ξ i(p) + t Xi − t2

2
Γ i

jk XjXk + O
(

t3‖X‖3), (4.124)

where X(p,q) = Xi∂i . This follows from γp,q(0) = p, γ̇p,q(0) = X(p,q), and
∇γ̇p,q γ̇p,q = 0 (see the geodesic equation (B.38) in Appendix B). When ‖z‖ is small,
X is of order O(‖z‖). Hence, we regard (4.124) as a Taylor expansion with respect
to X and t ∈ [0,1] when z is small. When t = 1, we have

zi = Xi − 1

2
Γ i

jkX
j Xk + O

(‖X‖3). (4.125)

This in turn gives

Xi = zi + 1

2
Γ i

jk zj zk + O
(‖z‖3). (4.126)

We calculate D(p ‖q) by using the representation (4.109). The velocity at t is given
as

ξ̇ i (t) = Xi − t Γ i
jk XjXk + O

(

t2‖X‖3) (4.127)

= zi + 1

2
(1 − 2t)Γ i

jk zj zk + O
(

t2‖z‖3). (4.128)

We also use

gij

(

γp,q(t)
) = gij (p) + t ∂kgij (p) zk + O

(

t2‖z‖2). (4.129)

Collecting these terms, we obtain

t gij

(

γp,q(t)
)

ξ̇ i (t) ξ̇ j (t)

= t gij (p) zizj + {

t2 ∂igjk(p) + (−2t2 + t)Γijk(p)
}

zizj zk + O
(

t3‖z‖4).

By integration, we have

D(p ‖q) =
∫ 1

0
t gij

(

γp,q(t)
)

ξ̇ i (t) ξ̇ j (t) dt (4.130)

= 1

2
gij (p) zizj + 1

6
Λijk(p) zizj zk + O

(‖z‖4), (4.131)

where indices of Λijk are symmetrized by means of multiplication with zizj zk . �
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Theorem 4.9 ([23, Theorem 1]) Let (g,∇,∇∗) be a torsion-free dualistic struc-
ture. Then the canonical divergence D(∇)(p ‖q) of Definition 4.8 is consistent with
(g,∇,∇∗) in the sense of (4.105).

Proof Without loss of generality, we restrict attention to the connection ∇ and con-
sider only the canonical divergence D = D(∇). By differentiating equation (4.122)
with respect to ξ(p), we obtain

∂i D(p ‖q)

= 1

2
∂igjk(p) zj zk − gij (p) zj − 1

2
Λijk(p) zj zk + O

(‖z‖3), (4.132)

∂i∂jD(p ‖q)

= 1

2
∂i∂j gkl(p) zkzl − 2 ∂igjk(p) zk + gij + Λijk(p) zk + O

(‖z‖2). (4.133)

We need to symmetrize the indexed quantities of the RHS with respect to i, j . By
evaluating ∂i∂jD(p ‖q) at p = q , i.e., z = 0, we have

g
(D)
ij = −D(∂i ‖ ∂j ) = D(∂i∂j ‖ ·) = gij , (4.134)

proving that the Riemannian metric derived from D is the same as the original one.
We further differentiate (4.133) with respect to ξ(q) and evaluate it at p = q . This
yields

Γ
(D)
ijk = −D(∂i∂j ‖ ∂k) = 2 ∂igjk − Λijk

= Γijk. (4.135)

Hence, the affine connection ∇(D) derived from D coincides with the original affine
connection ∇ , given that ∇ is assumed to be torsion-free. �

4.5 Statistical Manifolds and Statistical Models

In Sect. 4.2 we have analyzed the notion of a statistical manifold (Definition 4.2),
introduced by Lauritzen [160] as a formalization of the notion of a statistical model
and showed the equivalence between a statistical manifold and a manifold provided
with a torsion-free dualistic structure. In this section, we shall analyze the rela-
tion between the Lauritzen question, whether any statistical manifold is induced
by a statistical model, and the existence of an isostatistical immersion (Defini-
tion 4.9, Lemma 4.8). The main theorem of this section asserts that any statistical
manifold is induced by a statistical model (Theorem 4.10). The proof will occupy
Sects. 4.5.3, 4.5.4. In Sect. 4.5.2 we shall study some simple obstructions to the
existence of isostatistical immersions, which are helpful for understanding the strat-
egy of the proof of Theorem 4.10. Finally, in Sect. 4.5.5 we shall strengthen our
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immersion theorem by showing that we can embed any compact statistical manifold
(possibly with boundary) into (P+([N ]),g,T) for some finite N (Theorem 4.11).
An analogous (but weaker) embedding statement for non-compact statistical mani-
folds will also follow.

All manifolds in this section are assumed to have finite dimension.

4.5.1 Statistical Manifolds and Isostatistical Immersions

In Definition 4.2, we have introduced Lauritzen’s notions of a statistical manifold,
that is, a manifold M equipped with a Riemannian metric g and a 3-symmetric
tensor T .

Remark 4.5 As in the Riemannian case [195], we call a smooth manifold M pro-
vided with a statistical structure (g,T ) that are Ck-differentiable a Ck-statistical
manifold. Occasionally, we shall drop “Ck” before “statistical manifold” if there is
no danger of confusion.

The Riemannian metric g generalizes the notion of the Fisher metric and the
3-symmetric tensor T generalizes the notion of the Amari–Chentsov tensor. Statis-
tical manifolds also encompass the class of differentiable manifolds supplied with a
divergence as we have introduced in Definition 4.7.

As follows from Theorem 4.1, a torsion-free dualistic structure (g,∇,∇∗) de-
fines a statistical structure. Conversely, by Theorem 4.2 any statistical structure
(g,T ) on M defines a torsion-free dualistic structure (g,∇,∇∗) by (4.15) and the
duality condition ∇AB + ∇∗

AB = 2∇(0)
A B , where ∇(0) is the Levi-Civita connec-

tion, see (4.16). As Lauritzen remarked, the representation (M,g,T ) is practical for
mathematical purposes, because as a symmetric 3-tensor, T has simpler transforma-
tional properties than ∇ [160].

Lauritzen raised in [160, §4, p. 179] the question of whether any statistical man-
ifold is induced by a statistical model. More precisely, he wrote after giving the def-
inition of a statistical manifold: “The above defined notion could seem a bit more
general than necessary, in the sense that some Riemannian manifolds with a sym-
metric trivalent tensor T might not correspond to a particular statistical model.”
Turning this positively, the question is whether for a given (Ck)-statistical manifold
(M,g,T ) we can find a sample space Ω and a (Ck+1-)smooth family of probability
distributions p(x; ξ) on Ω with parameter ξ ∈ M such that (cf. (4.2), (4.6))

g(ξ ;V1,V2) = Ep(·;ξ)

(
∂

∂V1
logp(·; ξ)

∂

∂V2
logp(·; ξ)

)

, (4.136)

T (ξ ;V1,V2,V3) = Ep(·;ξ)

(
∂

∂V1
logp(·; ξ)

∂

∂V2
logp(·; ξ)

∂

∂V3
logp(·; ξ)

)

.

(4.137)
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If (4.136) and (4.137) hold, we shall call the function p(x; ξ) a probability density
for g and T , see also Remark 3.7. We regard the Lauritzen question as the existence
question of a probability density for the tensors g and T on a statistical manifold
(M,g,T ).

Our approach in solving the Lauritzen question is to reduce the existence prob-
lem of probability densities on a statistical manifold to an immersion problem of
statistical manifolds.

Definition 4.9 A smooth (resp. C1) map h from a smooth (resp. C0) statistical
manifold (M1, g1, T1) to a statistical manifold (M2, g2, T2) will be called an isosta-
tistical immersion if h is an immersion of M1 into M2 such that g1 = h∗(g2), T1 =
h∗(T2).

Of course, the notion of an isostatistical immersion is an intrinsic counterpart
of that of a sufficient statistic. In fact, a sufficient statistic as defined in (5.1) or in
Definition 5.8 is characterized by the fact that it preserves the Fisher metric and the
Amari–Chentsov tensor, see Theorems 5.5 and 5.6.

Lemma 4.6 Assume that h : (M1, g1, T1) → (M2, g2, T2) is an isostatistical im-
mersion. If there exist a measure space Ω and a function p(x; ξ2) : Ω × M2 → R

such that p is a probability density for the tensors g2 and T2 then h∗(p)(x; ξ1) :=
p(x;h(ξ1)) is a probability density for g1 and T1.

Proof Since h is an isostatistical immersion, we have

g1(ξ ;V1,V2) = g2
(

h(ξ);h∗(V1), h∗(V2)
)

=
∫

Ω

∂

∂h∗(V1)
logp

(

x;h(ξ)
) ∂

∂h∗(V2)
logp

(

x;h(ξ)
)

p
(

x;h(ξ)
)

dx

= Eh∗(p)

(
∂

∂V1
logh∗(p)(·; ξ)

∂

∂V2
logh∗(p)(·; ξ)

)

.

Thus h∗(p) is a probability density for g1. In the same way, h∗(p) is a probability
density for T1. This completes the proof of Lemma 4.6. �

Example 4.1

(1) The statistical manifold5 (P+([n]),g,T) has a natural probability density p ∈
C∞([n] ×P+([n])) defined by p(x; ξ) := ξ(x).

(2) Let g0 denote the Euclidean metric on R
n as well as its restriction to the positive

sector Rn+. Let {ei} be an orthonormal basis of Rn. Denote by {xi} the dual basis

5P+([n]) is the interior of the probability simplex Σn−1.
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of (Rn)∗. Set

T ∗ :=
n

∑

i=1

2dx3
i

xi

.

Then (Rn+, g0, T
∗) is a statistical manifold. By Proposition 2.1 the embedding

π1/2 : P+
([n]) → R

n+, ξ =
n

∑

i=1

p(i; ξ) δi �→ 2
n

∑

i=1

√

p(i; ξ) ei,

where δi is the Dirac measure concentrated at i ∈ [n], is an isometric embed-
ding of the Riemannian manifold (P+([n]),g) into the Riemannian manifold
(Rn+, g0).

Now let us compute (π1/2)∗(T ∗). Since xi(π
1/2(ξ)) = 2

√
p(i; ξ), we obtain

(

π1/2)∗(
T ∗)(ξ ;V1,V1,V1) =

n
∑

i=1

2
(∂V (2

√
p(i; ξ)))3

2
√

p(i; ξ)

=
n

∑

i=1

(∂V p(i; ξ))3

p(i; ξ)2

=
n

∑

i=1

(

∂V logp(i; ξ)
)3

p(i; ξ) = T(ξ ;V1,V1,V1).

This shows that π1/2 is an isostatistical immersion of the statistical manifold
(P+([n]),g,T) into the statistical manifold (Rn+, g0, T

∗).

Now we formulate our answer to Lauritzen’s question.

Theorem 4.10 (Existence of isostatistical immersions (cf. [162])) Any smooth
(resp. C0) compact statistical manifold (M,g,T ) (possibly with boundary) admits
an isostatistical immersion into the statistical manifold (P+([N ]),g,T) for some
finite number N . Any non-compact statistical manifold (M,g,T ) admits an immer-
sion I into the space P+(N) of all positive probability measures on the set N of
all natural numbers such that g is equal to the Fisher metric defined on I (M) and
T is equal to the Amari–Chentsov tensor defined on I (M). Hence any statistical
manifold is a statistical model.

This theorem then links the abstract differential geometry developed in this chap-
ter with the functional analysis established in Chap. 3.

This result will be proved in Sects. 4.5.3, 4.5.4. In the remainder of this section,
compact manifolds may have non-empty boundary.

Since the statistical structure (g,T) on P+([N ]) is defined by the canonical diver-
gence [16, Theorem 3.13], see also Proposition 2.13, we obtain from Theorem 4.10
the following result due to Matumoto.
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Corollary 4.5 (Cf. [173, Theorem 1]) For any statistical manifold (M,g,T ) we
can find a divergence D of M which defines g and T by the formulas (4.101),
(4.103).

Proof Assume that a statistical manifold (M,g,T ) is compact. By Theorem 4.10
(M,g,T ) admits an isostatistical immersion I into a statistical manifold
(P+([N ]),g,T) for some finite number N . This statistical manifold is compatible
with the KL-divergence (compare with Proposition 2.13 for α = −1), which implies
that the contrast function M × M → R, (p, q) �→ DKL(I (p)‖ I (q)), is compatible
with (M,g,T ).

Now assume that (M,g,T ) is a non-compact manifold. It is known that
(M,g,T ) admits a countable locally finite open cover {Ui} such that each Ui is
a subset of a compact subset in M . By the argument above, each statistical manifold
(Ui, g|Ui

, T|Ui
) admits a compatible divergence Di . With a partition of unity we can

glue the divergence functions Di and define a smoothly extended contrast function
on M × M , thereby following Matumoto’s final step of his construction [173]. �

4.5.2 Monotone Invariants of Statistical Manifolds

Before going to develop a strategy for a proof of Theorem 4.10 we need to under-
stand what could be an obstruction for the existence of an isostatistical immersion
between statistical manifolds.

Definition 4.10 Let K(M,e) denote the category of statistical manifolds M with
morphisms being embeddings. A functor of this category is called a monotone in-
variant of statistical manifolds.

Remark 4.6 Since any isomorphism between statistical manifolds defines an in-
vertible isostatistical immersion, any monotone invariant is an invariant of statistical
manifolds.

In this subsection we study some simple monotone invariants of statistical mani-
folds and refer the reader to [163] for more sophisticate monotone invariants.

Let f : (M1, g1, T1) → (M2, g2, T2) be a statistical immersion. Then for any
x ∈ M1 the differential df : (TxM1, g1(x), T1(x))→(Tf (x)M2, g2(f (x)), T2(f (x)))

defines an isostatistical immersion of the statistical manifold (TxM1, g1(x), T1(x))

into the statistical manifold (Tf (x)M2, g2(f (x)), T2(f (x))).
A statistical manifold (Rm,g,T ) is called a linear statistical manifold if g and

T are constant tensors.
Thus we start our study by investigating functors of the subcategory Kl(M,e) of

linear statistical manifolds M = (Rn, g,T ). Such a functor will be called a linear
monotone invariant.
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Given a linear statistical manifold M = (Rn, g,T ) we set

M3(T ) := max
|x|=1,|y|=1,|z|=1

T (x, y, z),

M2(T ) := max
|x|=1,|y|=1

T (x, y, y),

M1(T ) := max
|x|=1

T (x, x, x).

Clearly, we have

0 ≤M1(T ) ≤ M2(T ) ≤M3(T ).

Proposition 4.2 The comasses Mi , i ∈ [1,3], are non-negative linear monotone
invariants, which vanish if and only if T = 0.

Proof Clearly Mi (T ) ≥ 0 for i = 1,2,3. Now we are going to show that M1 van-
ishes at T only if T = 0. Observe that M1 = 0 if and only if T (x, x, x) = 0 for
all x ∈ R

n. Writing T in coordinate expression T (x, y, z) = ∑
aijkx

iyj zk , we note
that T (x, x, x) = 0 if and only if T = 0, since T is symmetric.

Next we shall show that Mi (T ) is a linear monotone invariant for i = 1,2,3. As-
sume that e is a linear embedding (Rn, g,T ) into (Rm, ḡ, T̄ ). Then T is a restriction
of the 3-symmetric tensor T̄ . Hence we have

Mi (T ) ≤Mi (T̄ ), for i = 1,2,3.

This implies that Mi are linear monotone invariants. �

Thus Mi is a functor from the category Kl(M,e) of linear statistical manifolds
to the category (R,≤) of real numbers with morphism being the relation “≤”.

Using the linear statistical monotone invariant M1, we define for any statistical
manifold (M,g,T ) the following number

M1
0(T ) := sup

x∈M

M1(T (x)
)

.

Since the restriction of M1
0 to the subcategory Kl(M,e) is equal to M1, we shall

abbreviate M1
0 as M1, if there is no danger of confusion.

By Proposition 4.2 we obtain immediately

Proposition 4.3 The comass M1 is a non-negative monotone invariant, which van-
ishes if and only if T = 0.

Thus M1 is a functor from the category K(M,e) of statistical manifolds to the
category (R,≤) of real numbers with morphism being the relation “≤”.

In what follows we shall show two applications of the monotone invariant M1.
Proposition 4.4 below will guide our strategy of the proof of Theorem 4.10 in the
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later part of this section. The equality (4.138) below suggests that the statistical
manifold (P+([N ]),g,T) might be a good candidate for a target of isostatistical
embeddings of statistical manifolds.

Proposition 4.4 A statistical line (R, g0, T ) can be embedded into a linear statis-
tical manifold (RN,g0, T

′) if and only if M1(T ) ≤ M1(T ′).

Proof The “only” assertion of Proposition 4.4 is obvious. Now we shall show
that we can embed (R, g0, T ) into (RN,g0, T

′) if we have M1(T ) ≤ M1(T ′).
We note that T ′(v, v, v) defines an anti-symmetric function on the sphere
SN−1(|v| = 1) ⊆ R

N . Thus there is a point v ∈ SN−1 such that T ′(v, v, v) =
M1(T ). Clearly, the line {t · v| t ∈ R} defines the required embedding. �

The example of the family of normal distributions treated on page 132 yields the
normal Gaussian statistical manifold (Γ 2,g,T). Recall that Γ 2 is the upper half
of the plane R

2(μ,σ ), g is the Fisher metric and T is the Amari–Chentsov tensor
associated to the probability density

p(x;μ,σ) = 1√
2π σ

exp

(−(x − μ)2

2σ 2

)

,

where x ∈ R.

Proposition 4.5 The statistical manifold (P+([N ]),g,T) cannot be embedded into
the Cartesian product of m copies of the normal Gaussian statistical manifold
(Γ 2,g,T) for any N ≥ 4 and finite m.

Proof By Lemma 4.9 proved below, we obtain for N ≥ 4

M1(P+
([N ]),g,T

) = ∞. (4.138)

(In chronological order Lemma 4.9 has been invented for proving (4.138). We
decide to move Lemma 4.9 to a later subsection for a better understanding of the
proof of Theorem 4.10.)

The tensor g of the manifold (Γ 2,g,T) has been computed on p. 132. T can be
computed analogously. (The formulas are due to [160].)

g

(
∂

∂μ
,

∂

∂μ

)

= 1

σ 2
,

g

(
∂

∂μ
,

∂

∂σ

)

= 0,

g

(
∂

∂σ
,

∂

∂σ

)

= 2

σ 2
,

T
(

∂

∂μ
,

∂

∂μ
,

∂

∂μ

)

= 0 = T
(

∂

∂μ
,

∂

∂σ
,

∂

∂σ

)

,
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T
(

∂

∂μ
,

∂

∂μ
,

∂

∂σ

)

= 2

σ 3
, T

(
∂

∂σ
,

∂

∂σ
,

∂

∂σ

)

= 8

σ 3
.

M1(R2(μ,σ )) < ∞. It follows that the norm M1 of a direct product of finite
copies of R

2(μ,σ ) is also finite. Since M1 is a monotone invariant, the space
P+([N ]) cannot be embedded into the direct product of m copies of the normal
Gaussian statistical manifold for any N ≥ 4 and any m < ∞. �

After investigating obstructions to the existence of isostatistical immersions, we
now return to the proof of Theorem 4.10.

4.5.3 Immersion of Compact Statistical Manifolds into Linear
Statistical Manifolds

We denote by T0 the “standard” 3-tensor on R
m:

T0 =
m

∑

i=1

dx3
i .

One important class of linear statistical manifolds are those of the form
(Rm,g0,A · T0) where A ∈R.

In the first step of our proof of Theorem 4.10 we need the following

Proposition 4.6 Let (Mm,g,T ) be a compact smooth (resp. C0) statistical
manifold. Then there exist numbers N ∈ N

+ and A > 0 as well as a smooth
(resp. C1) immersion f : (Mm,g,T ) → (RN,g0,A · T0) such that f ∗(g0) = g and
f ∗(A · T0) = T .

The constant A enters into Proposition 4.6 to ensure that the monotone invariants
Mi (RN,g0,A · T0) can be sufficiently large.

Our proof of Proposition 4.6 uses the Nash immersion theorem, the Gromov im-
mersion theorem and an algebraic trick. We also note that, unlike the Riemannian
case, Proposition 4.6 does not hold for non-compact statistical manifolds. For exam-
ple, for any n ≥ 4, the statistical manifold (P+([n]),g,T) does not admit an isosta-
tistical immersion to any linear statistical manifold. This follows from the theory of
monotone invariants of statistical manifolds developed in [163], where we showed
that the monotone invariant M1 of (P+([n]),g,T) is infinite, and the monotone in-
variant M1 of any linear statistical manifold is finite [163, §3.6, Proposition 4.2],
or see the proof of Proposition 4.5 above.

Nash’s embedding theorem ([195, 196]) Any smooth (resp. C0) Riemannian man-
ifold (Mn,g) can be isometrically embedded into (RN(n), g0) for some N(n) de-
pending on n and on the compactness property of Mn.
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Remark 4.7 One important part in the proof of the Nash embedding theorem for
C0-Riemannian manifolds (Mn,g) is his immersion theorem ([195, Theorems 2, 3,
4, p. 395]), where the dimension N(n) of the target Euclidean space depends on the
dimension W(n) of Whitney’s immersion [256] of Mn into R

W(n) and hence N(n)

can be chosen not greater than min(W(n) + 2,2n − 1). If Mn is compact (resp.
non-compact), then Nash proved that (Mn,g) can be C1-isometrically embedded in
(R2n, g0) (resp. (R2n+1, g0)). Nash’s results on C1-embedding have been sharpened
by Kuiper in 1955 by weakening the dependency of N(n) on the dimension of the
Whitney embedding of Mn into R

W ′(n) [154].
Nash proved his isometric embedding theorem for smooth (actually Ck , k ≥ 3)

Riemannian manifolds (Mn,g) in 1956 for N(n) = (n/2)(3n + 11) if Mn is
compact [196, Theorem 2, p. 59], and for N(n) = 3

2n3 + 7n2 + 5
2n if Mn is

non-compact [196, Theorem 3, p. 63]. The best upper bound estimate N(n) ≤
max{n(n+5)/2, n(n+3)/2+5} for the smooth (compact or non-compact) case has
been obtained by Günther in 1989, using a different proof strategy [114, pp. 1141,
1142]. Whether the isometric immersion theorem is also true for C2-Riemannian
manifolds remains unknown. The problem is that the C0-case and the case of
C2+α,α > 0 (including the smooth case) are proved by different methods. The C0-
case is proved by a limit process, where we have control on the first derivatives but
no control on higher derivatives of an immersion. So the limit immersion may not be
smooth though the original immersion is smooth. On the other hand, the C2+α-case
is proved by the famous Nash implicit function theorem, which was developed later
by Gromov in [112, 113].

Gromov’s immersion theorem ([113, 2.4.9.3’ (p. 205), 3.1.4 (p. 234)]) Suppose
that Mm is given with a smooth (resp. C0) symmetric 3-form T . Then there exists a
smooth immersion f : Mm → R

N1(m) with N1(m) = 3(n + (
n+1

2

) + (
n+2

3

)

) (resp. a
C1-immersion f with N1(m) = (m + 1)(m + 2)/2 + m) such that f ∗(T0) = T .

Proof of Proposition 4.6 First we choose an immersion f1 : (Mm,g,T ) →
(RN1(m), g0, T0) such that

f ∗
1 (T0) = T . (4.139)

The existence of f1 follows from the Gromov immersion theorem.
Then we choose a positive (large) number A such that

g − A−1 · f ∗
1 (g0) = g1 (4.140)

is a Riemannian metric on M , i.e., g1 is a positive symmetric bilinear form. Such a
number A exists, since M is compact.

Next we choose an isometric immersion

f2 : (Mm,g1
) → (

R
N(m), g0

)

.

The existence of f2 follows from the Nash isometric immersion theorem.
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Lemma 4.7 For all N there is a linear isometric embedding LN : (RN,g0) →
(R2N,g0) such that L∗

N(T0) = 0.

Proof For x = (x1, . . . , xN) ∈R
N we set

LN(x1, . . . , xN) := (

f 1(x1), . . . , f
N(xN)

)

where f i embeds the statistical line (R(xi), (dxi)
2,0) into the statistical plane

(R2(x2i−1, x2i ), (dx2i−1)
2 + (dx2i )

2, (dx2i−1)
3 + (dx2i )

3) as follows:

f i(xi) := 1√
2
(x2i−1 − x2i ).

Since fi is an isometric embedding of (R(xi), (dxi)
2) into (R2(x2i−1, x2i ),

(dx2i−1)
2 + (dx2i )

2), LN is an isometric embedding of (RN,g0) into (R2N,g0).
Set T 2i

0 := (dx2i−1)
3 + (dx2i )

3. Clearly, (f i)∗T 2i
0 = 0. Since T0 = ∑N

i=1 T 2i
0 , it

follows that L∗
N(T0) = 0. This completes the proof of Lemma 4.7. �

Completion of the proof of Proposition 4.6 We choose an immersion

f3 : Mm → R
N1(m) ⊕R

2N(m)

as follows

f3(x) := A−1 · f1(x) ⊕ (LN(m) ◦ f2)(x).

Using (4.140) and the isometry property of f2, we obtain

(f3)
∗(g0) = A−1 · f ∗

1 (g0|RN1(m) ) + f ∗
2 (g0|R2N(m)) = (g − g1) + g1 = g,

which implies that f3 is an isometric embedding. Using (4.139) and Lemma 4.7, we
obtain

(f3)
∗(A · T0) = A−1 · f ∗

1 (A · T0|RN1(m) ) = f ∗
1 (T0) = T .

This implies that the immersion f3 satisfies the condition of Proposition 4.6. �

4.5.4 Proof of the Existence of Isostatistical Immersions

Proposition 4.6 plays an important role in the proof of Theorem 4.10. Using it, we
deduce Theorem 4.10 from the following

Proposition 4.7 For any linear statistical manifold (Rn, g0,A · T0) there exists an
isostatistical immersion of (Rn, g0,A · T0) into (P+([4n]),g,T).
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Proof We shall choose a very large positive number

Ā = Ā(n,A), (4.141)

which will be specified later in the proof of Lemma 4.8. First, Ā in (4.141) is re-
quired to be so large that there exists a number 1 < λ = λ(Ā) < 2 satisfying the
following equation:

λ2 + 3n

(2Ā)2
= 4. (4.142)

Equation (4.142) implies that (λ, (2Ā)−1, (2Ā)−1, (2Ā)−1) ∈R
4 is a point in the

positive sector S3
2/

√
n,+.

Hence there exists a positive number r(Ā) such that for all 0 < r ≤ r(Ā) the ball
U(Ā, r) of radius r in the sphere S3

2/
√

n
centered at the point

(

λ, (2Ā)−1, (2Ā)−1, (2Ā)−1)

also belongs to the positive sector S3
2/

√
n,+. For such r the Cartesian product

×n times U(Ā, r) is a subset in S4n−1
2,+ ⊆ R

4n. This geometric observation helps
us to reduce the proof of Proposition 4.7 to the proof of the following simpler state-
ment.

Lemma 4.8 For given positive number A > 0 there exist a positive number Ā,
satisfying (4.142) and depending only on n and A, a positive number r < r(Ā) and
an isostatistical immersion h from (Rn, g0,A · T0) into (P+([4n]),g,T) such that
h(Rn, g0,A · T0) ⊆×n times U(Ā, r).

Proof Since (U(Ā, r), g0|U(Ā,r), T
∗|U(Ā,r)) is a statistical submanifold of

(R4+, g0, T
∗), the Cartesian product

(

×
n times

U(Ā, r),

n
⊕

i=1

(g0)|U(Ā,r),

n
⊕

i=1

T ∗∣∣
U(Ā,r)

)

is a statistical submanifold of the statistical manifold (R4n+ , g0, T
∗). Taking into

account Example 4.1.2, we conclude that

( ×
n times

U(Ā, r),

n
⊕

i=1

(g0)|U(Ā,r),

n
⊕

i=1

T ∗∣∣
U(Ā,r)

)

is a statistical submanifold of (P+([4n]),g,T). Hence, to prove Lemma 4.8, it suf-
fices to show that there are positive numbers Ā = Ā(n,A), r < r(Ā) and an isostatis-
tical immersion f : ([0,R], dx2,A · dx3) → (U(Ā, r), (g0)|U(Ā,r), T

∗|U(Ā,r)). On
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U(Ā, r), for any given ρ > 0 we consider the distribution D(ρ) ⊆ T U(Ā, r) defined
by

Dx(ρ) := {

v ∈ TxU(Ā, r) : |v|g0 = 1, T ∗(v, v, v) = ρ
}

.

Clearly, the existence of an isostatistical immersion f : (R, dx2,A · dx3) →
(U(Ā, r), (g0)|U(Ā,r), T

∗|U(A,r)) is equivalent to the existence of an integral curve

of the distribution D(A) on U(Ā, r). Intuitively, Ā should be as large as possible
to ensure that the monotone invariant M1(U) is as large as possible for a small
neighborhood U � x in (P+([4n]),g,T), see Corollary 4.6 below.

We shall search for the required integral curve using the following geometric
lemma.

Lemma 4.9 There exist a positive number Ā = Ā(n,A) and an embedded torus
T 2 in U(Ā, r) which is provided with a unit vector field V on T 2 such that
T ∗(V ,V,V ) = A.

Proof of Lemma 4.9 Set

x0 = x0(Ā) := (

λ, (2Ā)−1, (2Ā)−1, (2Ā)−1) ∈ S3
2/

√
n,+,

where λ = λ(Ā) is defined by (4.142). The following lemma is a key step in the
proof of Lemma 4.9.

Lemma 4.10 There exists a positive number Ā = Ā(n,A) such that the following
assertion holds. Let H be any 2-dimensional subspace in Tx0U(Ā, r) ⊆ R

4. Then
there exists a unit vector w ∈ H such that T ∗(w,w,w) ≥ √

2A.

Proof of Lemma 4.10 Denote by �x0 the vector in R
4 with the same coordinates as

those of the point x0. For any given H as in Lemma 4.10 there exists a unit vector
�h in R

4, which is not co-linear with �x0 and which is orthogonal to H , such that a
vector w ∈R

4 belongs to H if and only if w is a solution to the following two linear
equations:

〈w, �x0〉 = 0, (4.143)

〈w, �h〉 = 0. (4.144)

Adding a multiple of �x0 to �h if necessary, and taking the normalization, we can
assume that

�h = (0 = h1, h2, h3, h4) and
∑

i

h2
i = 1.

Case 1. Suppose that not all the coordinates hi of �h are of the same sign. Since
the statistical manifold (Rn, g0, T

∗) as well as the positive sector S3
2/

√
n,+ are invari-

ant under the permutation of coordinates (x2, x3, x4), observing that the last three
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coordinates of x0 are equal, w.l.o.g. we assume that h2 ≤ 0, h3 > 0. We put

k2 := −h2
√

(h2)2 + (h3)2
, k3 := h3

√

(h2)2 + (h3)2
.

We shall search for the required vector w for Lemma 4.10 in the following form:

w := (

w1,w2 = (1 − ε2)k3,w3 = (1 − ε2)k2,0 = w4
) ∈R

4. (4.145)

Recall that w must satisfy (4.144) and (4.143). We observe that for any choice
of w1 and ε2 Eq. (4.144) for w is satisfied. Now we need to find the parameters
(w1, ε2) of w in (4.145) such that w satisfies (4.143). For this purpose we choose
(w1, ε2) to be a solution of the following system of equations

λ · w1 + (1 − ε2) · (2Ā)−1 · (k2 + k3) = 0, (4.146)

w2
1 = (

2ε2 − ε2
2

)

. (4.147)

Note that (4.146) is equivalent to (4.143), and (4.147) normalizes w so that |w|2 = 1.
From (4.146) we express w1 in terms of ε2 as follows:

w1 = − (1 − ε2)(k2 + k3)

λ · 2Ā
. (4.148)

Substituting the value of w1 from (4.148) into (4.147), we get the following equation
for ε2:

(
(k2 + k3)

2

(λ · 2Ā)2
+ 1

)

ε2
2 −

(

2 + 2(k2 + k3)
2

(λ · 2Ā)2

)

ε2 +
(

k2 + k3

λ · 2Ā

)2

= 0,

which we simplify as follows:

ε2
2 − 2ε2 + (k2 + k3)

2

(k2 + k3)2 + 4λ2Ā2
= 0. (4.149)

Clearly, the following choice of ε2 is a solution to (4.149):

ε2 = 1 − 2λĀ
√

(k2 + k3)2 + 4λ2Ā2
. (4.150)

By our assumption on h2 and h3, we have 0 ≤ k2, k3 ≤ 1. Since 1 < λ < 2 by
(4.142), we conclude that when Ā goes to infinity, the value ε2 goes to zero. Hence
there exists a number N1 > 0 such that if Ā > N1 then

ε2 > 0 and (1 − ε2)
2 ≥ 3

4
. (4.151)
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We shall show that for ε2 in (4.150) that also satisfies (4.151) if Ā is sufficiently
large, and for w1 defined by (4.148), the vector w defined by (4.145) satisfies the re-
quired condition of Lemma 4.10. Since x0 = (λ, (2Ā)−1, (2Ā)−1, (2Ā)−1) we have

T ∗
x0

(w,w,w) = 2w3
1

λ
+ (4Ā)

(

w3
2 + w3

3

)

. (4.152)

Now assume that Ā > N1. Noting that ε2 is positive and close to zero, and using
k2 ≥ 0, k3 ≥ 0, we obtain from (4.145)

w2 ≥ 0, w3 ≥ 0. (4.153)

Since 0 < ε < 1, 0 < k2 + k3 < 2, and λ, Ā are positive, we obtain from (4.148)

w1 < 0 and |w1| < 1

λĀ
. (4.154)

Taking into account (4.145) and (4.151), we obtain

w2
2 + w2

3 = (1 − ε2)
2 ≥ 3

4
. (4.155)

Using (4.154), we obtain from (4.152)

T ∗
x0

(w,w,w) ≥ −2

λ4Ā3
+ (4Ā) · (w3

2 + w3
3

)

. (4.156)

Observing that the function x3/2 + (c − x)3/2 is convex on the interval [0, c] for any
c > 0, and therefore (w3

2 + w3
3) reaches the minimum under the constraints (4.153)

and (4.155) at w2 = w3 = √
3/

√
2, we obtain from (4.156)

T ∗
x0

(w,w,w) ≥ −2

λ4Ā3
+ (4Ā) · 2

(√
3√
2

)3

= −2

λ4Ā3
+ 8

(√

3

2

)3

Ā. (4.157)

Increasing Ā if necessary, noting that 1 < λ = λ(A), Eq. (4.157) implies that there
exists a large positive number Ā(n,A) depending only on n and A such that any
subspace H defined by Eqs. (4.143) and (4.144), where h is in Case 1, contains a
unit vector w that satisfies the condition in Lemma 4.10, i.e., the RHS of (4.157) is
larger than

√
2A.

Case 2. Without loss of generality we assume that h2 ≥ h3 ≥ h4 > 0 and there-
fore we have

α := h2 + h3

h4
≥ 2. (4.158)

We shall search for the required vector w for Lemma 4.10 in the following form:

w := (

w1,w2 = −(1 − ε2),w3 = −(1 − ε2),w4 = α(1 − ε2)
)

. (4.159)
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Equations (4.159) and (4.158) ensure that 〈w, �h〉 = 0 for any choice of param-
eters (w1, ε2) of w in (4.159). Next we require that the parameters (w1, ε2) of w

satisfy the following two equations:

λ · w1 + (1 − ε2)(α − 2)

2Ā
= 0, (4.160)

w2
1 + (1 − ε2)

2(2 + α2) = 1. (4.161)

Note that (4.160) is equivalent to (4.143) and (4.161) normalizes w. From (4.160)
we express w1 in terms of ε2 as follows:

w1 = − (1 − ε2)(α − 2)

λ2Ā
. (4.162)

Set

B := (

2 + α2) + (α − 2)2

4λ2Ā2
. (4.163)

Plugging (4.162) into (4.161) and using (4.163), we obtain the following equation
for ε2:

(1 − ε2)
2B − 1 = 0,

which is equivalent to the following equation:

(1 − ε2)
2 = 1

B
. (4.164)

Since α ≥ 2 by (4.158), from (4.163) we have B > 0. Clearly,

ε2 := 1 − 1√
B

(4.165)

is a solution to (4.164).
Since α ≥ 2 and ε2 ≤ 1 by (4.165), we obtain from (4.162) that w1 ≤ 0. Tak-

ing into account 1 < λ, Ā > 0, we derive from (4.162) and (4.165) the following
estimates:

T ∗
x0

(w,w,w) = 2w3
1

λ
+ (4Ā)(1 − ε2)

3(α3 − 2
)

> 2w3
1 + (4Ā)

(

α3 − 2
)

(1 − ε2)
3

= − (α − 2)3

4Ā3(
√

B)3
+ 4Ā

(α3 − 2)

(
√

B)3

≥ − α3 − 2

4Ā3(
√

B)3
+ 4Ā

(α3 − 2)

(
√

B)3
(since α ≥ 2)

= α3 − 2

(
√

B)3

(

− 1

4Ā3
+ 4Ā

)

. (4.166)
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Lemma 4.11 There exists a large number Ā = Ā(n,A) depending only on n such
that for all choices of α ≥ 2 we have

(α3 − 2)

(
√

B)3
≥ 1

102
.

Proof To prove Lemma 4.11, it suffices to show that for α ≥ 2 we have

104(α3 − 2
)2 ≥ B3. (4.167)

Clearly, there exists a positive number N2 such that if Ā > N2, then by (4.163), we
have

B <
3

2

(

2 + α2) (4.168)

for any α ≥ 2. Hence (4.167) is a consequence of the following relation:

104(α3 − 2
)2 ≥

[
3

2

(

2 + α2)
]3

, (4.169)

which we shall establish now. To prove (4.169), it suffices to show that

103(α3 − 2
)2 ≥ (

2 + α2)3
. (4.170)

The inequality (4.170) is equivalent to the following:

999α6 − 6α4 − 4000α3 − 12α2 + 3992 ≥ 0. (4.171)

Since α ≥ 2, it follows that α3 ≥ 8 and hence

999α6 − 4000α3 = 499α6 + 500α3(α3 − 8
) ≥ 499α6. (4.172)

Using 2α6 ≥ 6α4, we obtain

499α6 − 6α4 ≥ 497α6. (4.173)

Using a4 ≥ 16, we obtain

497α6 − 12α2 = 496α6 + α2(α4 − 12
)

> 496α6 > 496α6. (4.174)

From (4.172), (4.173) and (4.174), we obtain

999α6 − 6α4 − 4000α3 − 12α2 + 3992 ≥ 496α6 + 3992 > 0. (4.175)

This proves (4.170) and hence completes the proof of Lemma 4.11. �
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Lemma 4.11 implies that when Ā = Ā(A,n) is sufficiently large, the RHS of
(4.166) is larger than

√
2A. This proves the existence of Ā, which depends only on

n and A, for Case 2.
This completes the proof of Lemma 4.10. �

From Lemma 4.10 we immediately obtain the following.

Corollary 4.6 There exists a small neighborhood U1 � x0 in Ū (Ā, r) such that
the following statement holds. For any x ∈ U1 and any two-dimensional subspace
H ⊆ TxU1, we have

max
{

T ∗(v, v, v)
∣
∣ v ∈ H and |v|g0 = 1

} ≥ 5

4
A.

Completion of the proof of Lemma 4.9 Let Ā = Ā(n,A) satisfy the condition of
Lemma 4.10. Now we choose a small embedded torus T 2 in U1 ⊆ U(Ā, r). By
Corollary 4.6, for all x ∈ T 2 we have

max
{

T ∗(v, v, v)
∣
∣ v ∈ TxT

2 and |v|g0 = 1
} ≥ 5

4
A. (4.176)

Denote by T1T
2 the bundle of the unit tangent vectors of T 2. Since T 2 = R

2/Z2

is parallelizable, we have T1T
2 = T 2 × S1. Thus the existence of a vector field

V required in Lemma 4.9 is equivalent to the existence of a function T 2 → S1

satisfying the condition of Lemma 4.9. Next we claim that there exists a unit vector
field W on T 2 such that T ∗(W,W,W) = 0. First we choose some orientation for T 2,
that induces an orientation on T1T

2 and hence on the circle S1. Take an arbitrary
unit vector field W ′ on T 2, equivalently we pick a function W ′ : T 2 → S1. Now
we consider the fiber bundle F over T 2 whose fiber over x ∈ T 2 consists of the
interval [W ′,−W ′] defined by the chosen orientation on the circle of unit vectors
in TxS

2. Since T ∗(W ′,W ′,W ′) = −T ∗(W,W,W), for each x ∈ T 2 there exists a
value W on F(x) such that T ∗(W,W,W) = 0 and W is closest to W ′. Using W we
identify the circle S1 with the interval [0,1). The existence of W implies that the
existence of a function V : T 2 → [0,1), regarded as a unit vector field V on T 2,
that satisfies the condition of Lemma 4.9 is equivalent to the existence of a function
f : T 2 → [0,1) satisfying the same condition. Now let V (x) be the smallest value
of unit vector V (x) ∈ [0,1) ⊆ S1(TxT

2) such that

T ∗(V (x),V (x),V (x)
) = A

for each x ∈ T 2. The existence of V (x) follows from (4.176). This completes the
proof of Lemma 4.9. �

As we have noted, Lemma 4.9 implies Lemma 4.8. �

This finishes the proof of Proposition 4.7. �
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Proof of Theorem 4.10 Case I. M is a compact manifold. In this case, the ex-
istence of an isostatistical immersion of a statistical manifold (M,g,T ) into
(P+([N ]),g,T) for some finite N follows from Proposition 4.6 and Proposition 4.7.

Case II. M is a non-compact manifold. We shall reduce the existence of an im-
mersion of (Mm,g,T ) into P+(N) satisfying the condition of Theorem 4.10 to
Case I, using a partition of unity and Nash’s trick. (The Nash trick is a bit more
complicated and can be used to embed a non-compact Riemannian manifold into
a finite-dimensional Euclidean manifold.) Since (Mm,g,T ) is finite-dimensional,
there exists a countable locally finite open bounded cover Ui , i = 1,∞, of Mm.
We can then find compact submanifolds with boundary Ai ⊆ Ui whose union also
covers Mm.

Let {vi} be a partition of unity subjected to the cover {Ui} such that vi is strictly
positive on Ai . Let Si be a sphere of dimension m.

The following lemma is based on a trick that is similar to Nash’s trick in [196,
part D, pp. 61–62].

Lemma 4.12 For each i there exists a smooth map φi : Ai → Si with the following
properties:

(i) φi can be extended smoothly to the whole Mm.
(ii) For each Si there exists a statistical structure (gi, Ti) on Si such that

g =
∑

i

(

φi
)∗

(gi), (4.177)

T =
∑

i

(

φi
)∗

(Ti). (4.178)

Proof Let φi map the boundary of Ui into the north point of the sphere Si . Further-
more, we can assume that this map φi is injective in Ai . Clearly, φi can be extended
smoothly to the whole Mn. This proves assertion (i) of Lemma 4.12.

(ii) The existence of a Riemannian metric gi on Si that satisfies (4.177)

g =
∑

i

(

φi
)∗

(gi)

has been proved in [196, part D, pp. 61–62]. For the reader’s convenience, and for
the proof of the last assertion of Lemma 4.12, we shall repeat Nash’s proof.

Let γi be a Riemannian metric on Si . Set

g0 =
∑

i

(

φi
)∗

(γi), (4.179)

where by Lemma 4.12 φi is a smooth map from Mm to Si . This is a well-defined
metric, since the covering {Ui} is locally finite. By rescaling the metric γi , we can
assume that g − g0 is a positive metric. Now we set

gi := (

φi
)∗

(γi) + vi · (g − g0). (4.180)
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We claim that there is a Riemannian metric γ̃i on Si such that
(

φi
)∗

(γ̃i) = gi. (4.181)

Note gi −(φi)∗(γi) has a support on Ui since supp(vi) ⊆ Ui . Since φi is injective
in Ai , ((φi)−1)∗(gi − (φi)∗(γi)) is a non-negative quadratic form on Si . Hence

γ̃i := ((

φi
)−1)∗(

gi − (

φi
)∗

(γi)
) + γi

is a Riemannian metric on Si that satisfies (4.181).
Now we compute

∑

i

(

φi
)∗

(γ̃i) =
∑

i

gi (by (4.181))

=
∑

i

(

φi
)∗

(γi) + vi · (g − g0) (by (4.180))

= g0 + (g − g0) = g (by (4.179)).

This proves (4.177).
The proof of the existence of Ti that satisfies (4.178) follows the same scheme,

as for the proof of the existence of gi ; it is even easier, since we do not have the
issue of positivity of Ti . So we leave it to the reader as an exercise. �

Continuation of the proof of Theorem 4.10 Let a1, . . . , a∞ be a sequence of positive
numbers with

∞
∑

i=1

a2
i = 4.

By the proof of Theorem 4.10, there exist a large number l(m) depending only on
m and an isostatistical immersion

ψi : (Si, gi, Ti) → (

S
4l(m)−1
ai ,+ , g0, T

∗)

for any i ∈ N. Here the sphere S
4l(m)−1
ai

has radius smaller than 2, so we have to
adjust the number Ā in the proof of Case 1. The main point is that the value λ = λ(Ā)

defined by a modified Eq. (4.142), where the RHS is replaced by a2
i , is bounded from

below and from above by a number that depends only on l(m) and the radius ai .
Thus the RHS of (4.157) goes to infinity, when Ā goes to infinity. Similarly, the
RHS of (4.166) goes to infinity when Ā goes to infinity.

Set

I i := ψi ◦ φi : Mm → (

S
4l(m)−1
ai ,+ , g0, T

∗) ⊆ (

R
4l(m), g0, T

∗).

Clearly, the map I := (I 1 ×· · ·×I∞) maps Mm into the Cartesian product of the
positive sectors S

4l(m)−1
ai ,+ , that is, a subset of the positive sectors S∞√

2,+ of all positive
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probability measures on N. Since ψi are isostatistical immersions, by (4.177) and
(4.178) the map I satisfies the required condition of Theorem 4.10. �

4.5.5 Existence of Statistical Embeddings

Theorem 4.11 Any smooth (resp. C0) compact statistical manifold (Mn,g,T ) ad-
mits an isostatistical embedding into the statistical manifold (P+([N ]),g,T) for
some finite number N . Any smooth (resp. C0) non-compact statistical manifold
(Mn,g,T ) admits an embedding I into the space P+(N) of all probability measures
on N such that g and T coincide with the Fisher metric and the Amari–Chentsov
tensor on I (Mn), respectively.

Proof To prove Theorem 4.11, we repeat the proof of Theorem 4.10, replacing the
Nash immersion theorem by the Nash embedding theorem. First we observe that
our immersion f3 constructed in Sect. 4.5.3 is an embedding, if f2 is an isometric
embedding. The existence of an isometric embedding f2 is ensured by the Nash the-
orem. Hence, if Mn is compact, to prove the existence of an isostatistical embedding
of (Mn,g,T ) into (P+([N ]),g,T), it suffices to prove the strengthened version of
Proposition 4.7, where the existence of an isostatistical immersion is replaced by
the existence of an isostatistical embedding, but we need only to embed a bounded
domain D in a statistical manifold (Rn, g0,A · T0) into (P+([N ]),g,T).

As in the proof of Proposition 4.7, the proof of the new strengthened version of
Proposition 4.7 is reduced to the proof of the existence of an isostatistical immersion
of a bounded statistical interval ([0,R], dt2,A · dt3) into a torus T 2 of a small
domain in (S7

2/
√

n,+,g, T ∗) ⊆ (R8, g0, T
∗), see the proof of Lemma 4.8.

The statistical immersion produced with the help of Lemma 4.9 will be an
embedding if not all the integral curves of the distribution D(A) on the torus
T 2 are closed curves. Now we shall search for an isostatistical embedding of
([0,R], dt2,A · dt3) into a torus T 2 × T 2 of a small domain in (S3

1/
√

n,+, g0, T
∗) ×

(S3
1/

√
n,+, g0, T

∗) ⊆ (S7
2/

√
n,+,g, T ∗) ⊆ (R8, g0, T

∗). Since T 4 is parallelizable, re-
peating the argument at the end of the proof of Lemma 4.8, we choose a distribution
D(A) ⊆ T T 4 such that D(A) = T 4 × S2 and

DxA = {

v ∈ TxT
4
∣
∣ |v|g0 = 1, and T ∗(v, v, v) = A

}

.

Now assume that the integral curves of D(A) that lie on the first factor T 2 × y for
all y ∈ S3

1/
√

n,+ are closed. Since T 2 is compact, there is a positive number p1 such
that the periods of these integral curves are at least p1.

Now let us consider the following integral curve γ (t) of D(A) on T 4. The curve
γ (t) begins at a point (0,0,0,0) ∈ T 4. Here we identify T 1 with [0,1]/(0 = 1).
The integral curve lies on T 2 × (0,0) until it approaches (0,0,0,0) again. Since
Dx(A) = S2, we can slightly modify the direction of γ (t) and let it leave the torus
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T 2 × (0,0) and after a very short time γ (t) must stay on the torus T 2 × (ε, ε)

where ε is sufficiently small. Without loss of generality we assume that the pe-
riod of any closed curve of the distribution D(A) ∩ T (T 2 × (ε, ε)) is at least p1.
Repeating this procedure, since R and p1 are finite, we produce an embedding of
([0,R], dt2,A · dt3) into T 4 ⊆ (S3

1/
√

n,+, g0, T
∗) × (S3

1/
√

n,+, g0, T
∗).

This completes the proof of Theorem 4.11 in the case when Mn is compact.
It remains to consider the case where Mn is non-compact. Using the existence

of isostatistical embeddings for the compact case we can assume that ψi is an em-
bedding for all i. Now we shall show that the map I is an embedding. Assume that
x ∈ M . By the assumption, there exists an Ai such that x is an interior point of Ai .
Then for any y ∈ M , I i(x) �= I i(y), since ψi is an embedding, φi is injective in the
interior of Ai and maps the boundary of Ai to the north pole of Si . �

Remark 4.8 There are many open questions concerning immersions of Ck-
statistical manifolds. One important problem is to find a class of statistical manifolds
(M,g,T) of exponential type (i.e., M are exponential families as in (3.31)) that ad-
mit an isostatistical embedding into linear statistical manifolds (Rn, g0,A · T0) or
into statistical manifolds (P+([N ]),g,T). This is a difficult problem, if dimM ≥ 2.
A version of this problem is to find an explicit embedding of the Riemannian man-
ifold (M,g) underlying a statistical manifold (M,g,T) of exponential type into
Euclidean spaces. The problem of embedding of hyperbolic Riemannian spaces
into Euclidean spaces has been considered by many geometers. We refer the reader
to [52] for a survey.
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