
Chapter 3
Parametrized Measure Models

3.1 The Space of Probability Measures and the Fisher Metric

This section has a more informal character. It introduces the basic concepts
and problems of information geometry on—typically—infinite sample spaces and
thereby sets the stage for the more formal considerations in the next section. The
perspective here will be somewhat different from that developed in Chap. 2, as the
constructions for the probability simplex presented there did not have to grapple
with the measure theoretical complications that we shall encounter here. Neverthe-
less, the analogy with the finite-dimensional case will guide our intuition.

Let Ω be a set with a σ -algebra B of subsets;1 for example, Ω can be a topo-
logical space and B the σ -algebra of Borel sets, i.e., the σ -algebra generated by the
open sets. Later on, Ω will also have to carry a differentiable structure.

For a signed measure μ on Ω , we have the total variation

‖μ‖T V := sup
n∑

i=1

∣∣μ(Ai)
∣∣, (3.1)

where the supremum is taken over all finite partitions Ω = A1 � · · · � An with dis-
joint sets Ai ∈B. If ‖μ‖T V < ∞, the signed measure μ is called finite. We consider
the Banach space S(Ω) of all signed finite measures on Ω with the total variation
as Banach norm. The subsets of all finite non-negative measures and of probability
measures on Ω will be denoted by M(Ω) and P(Ω), respectively.

The null sets of a measure μ are those subsets A of Ω with μ(A) = 0. A finite
non-negative measure μ1 dominates another finite measure μ2 if every null set of
μ1 is also a null set of μ2. Two finite non-negative measures are called compatible
if they dominate each other, i.e., if they have the same null sets. Spaces of such
measures will be the basis of our subsequent constructions, and we shall therefore

1Ω will take over the role of the finite sample space I in Sect. 2.1.
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now formalize these notions. We take some σ -finite non-negative measure μ0. Then

S(Ω,μ0) :=
{
μ = φ μ0 : φ ∈ L1(Ω,μ0)

}

is the space of signed measures dominated by μ0. This space can be identified in
terms of the canonical map

ican : S(Ω,μ0) → L1(Ω,μ0)

μ �→ dμ

dμ0
, (3.2)

where the latter is the Radon–Nikodym derivative of μ w.r.t. μ0. Note that

‖μ‖T V = ‖φ‖L1(Ω,μ0)
=

∥∥∥∥
dμ

dμ0

∥∥∥∥
L1(Ω,μ0)

.

As we see from this description that ican is a Banach space isomorphism, we refer
to the topology of S(Ω,μ0) also as the L1-topology.

If μ1, μ2 are compatible finite non-negative measures, they are absolutely contin-
uous with respect to each other in the sense that there exists a non-negative function
φ that is integrable with respect to either of them, such that

μ2 = φμ1, or, equivalently, μ1 = φ−1μ2. (3.3)

As noted before, φ is then the Radon–Nikodym derivative of μ2 with respect to μ1.
Being integrable, φ is finite almost everywhere (with respect to both μ1 and μ2)

on Ω , and since the situation is symmetric between φ and φ−1, φ is also positive
almost everywhere. Thus, for any finite non-negative measure μ on Ω , we let

F+(Ω,μ) := {
φ ∈ L1(Ω,μ), φ > 0 μ-a.e.

}
(3.4)

be the space of integrable functions on Ω that are positive almost everywhere with
respect to μ. (The reason for the notation will become apparent in Sect. 3.2 below.)
In fact, in later sections, we shall find it more convenient to work with the space of
measures

M+(Ω,μ) := {
φμ : φ ∈ L1(Ω,μ), φ > 0 μ-a.e.

}
(3.5)

than with the space F+(Ω,μ) of functions. Of course, these two spaces can easily
be identified, as they simply differ by multiplication with μ.

In particular, the topology of S(Ω,μ0) is independent of the particular choice of
the reference measure μ0 within its compatibility class, because if

φ ∈ L1(Ω,μ0) and ψ ∈ L1(Ω,φμ0), then ψφ ∈ L1(Ω,μ0). (3.6)

Compatibility is an equivalence relation on the space of finite non-negative mea-
sures on Ω , and that space is therefore partitioned into equivalence classes. The set
of such equivalence classes is quite large. For instance, the Dirac measure at any
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point of Ω generates its own such class. More generally, in Euclidean space, we can
consider Hausdorff measures of subsets of possibly different Hausdorff dimensions.
In the sequel, we shall usually work within a single such compatibility class with
some base measure μ0. The basic example that one may have in mind is of course
the Lebesgue measure on a Euclidean or Riemannian domain, or else the Hausdorff
measure on some fixed subset.

Any other finite non-negative measure μ that is compatible with μ0 is thus of the
form

μ = φμ0 for some φ ∈F+(Ω,μ0), (3.7)

and therefore, by (3.3),

μ0 = φ−1μ with φ−1 ∈F+(Ω,μ). (3.8)

This yields the identifications

F+(Ω,μ) = F+(Ω,μ0) = :F+,

M+(Ω,μ) = M+(Ω,μ0) = :M+,
(3.9)

where we use F+ and M+ if there is no ambiguity over which base measure μ0 is
used. Moreover, if

μ1 = φμ0, μ2 = ψμ1, with φ ∈F+(Ω,μ0), ψ ∈F+(Ω,μ1)

then by (3.6)

μ2 = ψφμ0 with ψφ ∈F+(Ω,μ0).

F+(Ω,μ), however, is not a group under pointwise multiplication since for φ1, φ2 ∈
L1(Ω,μ0), their product φ1φ2 need not be in L1(Ω,μ0).

The question arises, however, whether F+ possesses an—ideally dense—subset
that is a group, perhaps even a Lie group. That is, to what extent can we linearize
the partial multiplicative group structure via an exponential map, in the same man-
ner as z �→ ez maps the additive group (R,+) to the multiplicative group (R+, ·)?
Formally, we might be inclined to identify the tangent space TμF+ of F+ at any
compatible μ with

Bμ := {
f : Ω →R∪ {±∞}, e±f ∈ L1(Ω,μ)

}
. (3.10)

We should point out that here we attempt to revert the construction of
Sects. 2.1, 2.2. However, we immediately run into the difficulty that the set Bμ

is in general not a vector space, but only a convex subset of L1(Ω,μ). Thus, a
reasonable definition of TμF+ would be to define it as the vector space generated
by Bμ.

We now switch to working with the space M+ of measures instead of the space
F+ of functions, where, as mentioned, φ ∈ F+ corresponds to φμ ∈ M+. One
approach to provide some structure on M+ has been pursued by Pistone and Sempi
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who constructed a Banach norm on TμM+ such that Bμ becomes a convex open
subset. The Banach norm is—up to equivalence—independent of the choice of μ so
that in this way M+ becomes a Banach manifold. The topology which is imposed
on M+ in this way is called the e-topology. We shall describe this in detail in
Sect. 3.3.

Let us return to our discussion of the analogy between the general situation and
the construction of Sects. 2.1, 2.2. There the space of functions was the cotangent
space of a measure m in the space of measures, and the tangent and the cotangent
space were then identified through a scalar product (and the scalar product chosen
then was the Fisher metric). Here, we take the duality between functions and mea-
sures

(φ,m) �→
∫

φ dm

as a starting point and vary a measure via m �→ Fm for some non-negative func-
tion F . This duality will then induce the scalar product

〈f,F 〉m =
∫

f F dm

which we shall then use to define the Fisher metric.
The construction is tied together by the exponential map

exp : TμF+⊇Bμ →F+

f → ef
(3.11)

that converts arbitrary functions into non-negative ones. In other words, we apply
the exponential function z �→ ez to each value f (x) of the function f .

Here, in fact, the underlying structure is even an affine one, in the following
sense. When we take a measure μ′ = φμ in place of μ, then an exponential image
ef μ from TμF+ is also an exponential image egμ′ = egφμ from Tμ′F+, and the
relationship is

f = g + logφ. (3.12)

Thus, f and g are related by adding the function logφ which is independent of both
of them.

Also, of course,

log : M+ → Bμ⊆TμM+
φμ → logφ

(3.13)

is the inverse of the exponential map.2

2For reasons of integrability, this structure need not define an affine space in the sense of Sect. 2.8.1.
We only have the structure of an affine manifold, in the sense of possessing affine coordinate
changes. This issue will be clarified in Sect. 3.2 below.
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There is also another, likewise ultimately futile, approach to a putative tangent
space TμM+ of M+ which is based on a duality relation between M+ and those f

that are not only integrable (L1) w.r.t. μ, but even of class L∞(Ω,μ). This duality
is given by

(f,φμ) :=
∫

f φ dμ, (3.14)

which exists since φ ∈ L1(Ω,μ).
On this space, T ∞

μ M+, we then have a natural scalar product, namely the L2-
product

〈f,g〉μ :=
∫

fg dμ for f,g ∈ T ∞
μ M+. (3.15)

However, the completion of T ∞
μ M+ with respect to the norm ‖ ·‖ induced by 〈·, ·〉μ

is the Hilbert space T 2
μM+ of functions f of class L2 with respect to μ, which is

larger than those for which e±f are of class L1.
Thus, by this construction, we do not quite succeed in making M+ into a Lie

group. Nevertheless, (3.15) yields a natural Riemannian metric on M+ that will
play an important role in the sequel. A Riemannian structure on a differentiable
manifold X assigns to each tangent space TpX a scalar product, and this product has
to depend differentiably on the base point. At this point, this is only formal, how-
ever. When Ω is not finite, spaces of measures or functions are infinite-dimensional
in general because the value at every point is a degree of freedom. Only when Ω

is a finite set do we obtain a finite-dimensional measure or function space. Thus,
we need to deal with infinite-dimensional manifolds, e.g., compatibility classes of
measures. In Appendix C, we discuss the appropriate concept, that of a Banach
manifold. As mentioned, in the present discussion, we only have a weak such struc-
ture, however, as our space is not complete w.r.t. the L2-structure of the metric. In
other words, the topology induced by the metrics on the tangent spaces is weaker
than the Banach space topology that we are working with. For the moment, we shall
therefore proceed in a formal way. Below, in Sect. 3.2, we shall provide a rigorous
construction that avoids these issues.

The natural identification between the spaces T 2
μM+ and T 2

μ′M+ (which for
the moment will take the role of tangent spaces—and we shall therefore omit the
superscript 2) with μ′ = φμ is given by

f → 1√
φ

f ; (3.16)

we then have
〈

1√
φ

f,
1√
φ

g

〉

μ′
=

∫
1√
φ

f · 1√
φ

gφ dμ =
∫

fg dμ = 〈f,g〉μ.

In particular, if Ω is a differentiable manifold and

κ : Ω → Ω
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is a diffeomorphism, then μ is transformed into κ∗μ, called the push-forward of μ

under κ , with

κ∗μ(V ) := μ
(
κ−1V

)
for all V ∈B. (3.17)

Since
∫
V

1
|detdκ(x)|μ(d(κ(x))) = ∫

κ−1V
μ(dx) by the transformation formula, we

have

κ∗μ
(
κ(x)

)∣∣detdκ(x)
∣∣= μ(y) for y = κ(x).

We thus have

〈f,g〉κ∗μ = 〈
κ∗f,κ∗g

〉
μ

(3.18)

with

κ∗f (x) = f
(
κ(x)

)
.

In other words, if we employ this transformation rule for tangent vectors, then the
diffeomorphism group of Ω acts by isometries on M+ with respect to the met-
ric given by (3.15). Thus, our metric is invariant under diffeomorphisms of Ω . One
might then wish to consider the quotient of M+ by the action of the diffeomorphism
group D(Ω). Of course, if Ω is finite, then D(Ω) is simply the group of permuta-
tions of the elements of Ω . This group has a fixed point, namely the probability
measure with

p(xi) = 1

n
for i = 1, . . . , n

(assuming Ω consists of the n elements x1, . . . , xn), and its scalar multiples. We
therefore expect that the quotient M+/D(Ω) will have singularities.

In the infinite case, the situation is somewhat different (although we still get
singularities). Namely, if Ω is a compact oriented differentiable manifold, then a
theorem of Moser [190] says that any two probability measures μ,ν that are vol-
ume forms, i.e., are smooth and positive on all open sets, (in local coordinates
(x1, . . . , xn) on Ω , they are thus smooth positive multiples of dx1 ∧ · · · ∧ dxn)
are related by a diffeomorphism κ ,

ν = κ∗μ,

or equivalently,

μ = (
κ−1)

∗ν =: κ∗ν.

Thus, the diffeomorphism group acts transitively on the space of volume forms of
total measure 1, and the quotient by the diffeomorphism group of this space is there-
fore a single point.

We recall that a finite non-negative measure μ1 dominates another finite non-
negative measure μ2 if every null set for μ1 also is a null set for μ2. Of course, two
mutually dominant finite non-negative measures are compatible.
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In the finite case, i.e., for Ω = {x1, . . . , xn}, μ1 then dominates μ2 if

μ1(xi) = 0 implies μ2(xi) = 0 for any i = 1, . . . , n.

In particular, a measure μ with

μ(xi) > 0 for all i

dominates every other measure on Ω .
This is different in the infinite case; for example, if Ω is a compact oriented

differentiable manifold, then a volume form which is positive on every open set no
longer dominates a Dirac measure supported at some point in Ω .

In information geometry, one wishes to study only probability measures, that is,
measures that satisfy the normalization

μ(Ω) =
∫

Ω

dμ = 1. (3.19)

It might seem straightforward to simply impose this condition upon measures and
then study the space of those measures satisfying it as a subspace of the space of all
measures. A somewhat different point of view, however, emerges from the following
consideration. The normalization (3.19) can simply be achieved by rescaling a given
measure μ, that is, by multiplying it by some appropriate λ ∈R. λ is simply obtained
as μ(Ω)−1. The freedom of rescaling a measure now expresses that we are not
interested in absolute “sizes” μ(A) of subsets of Ω , but rather only in relative ones,
like μ(A)

μ(Ω)
or μ(A1)

μ(A2)
. Therefore, we identify the space P(Ω) of probability measures

on Ω as the projective space

P
1M(Ω),

i.e., the space of all equivalence classes in M(Ω) under multiplication by positive
real numbers. Of course, elements of P(Ω) can be considered as measures satis-
fying (3.19), but more appropriately as equivalence classes of measures giving the
same relative sizes of subsets of Ω .

Our above metric then also induces a metric on P(Ω) as a quotient of M(Ω)

which is different from the one obtained by identifying P
1M(Ω) with the subspace

of M(Ω) consisting of metrics satisfying (3.19). Let us recall from Proposition 2.1
in Sect. 2.2 the case where Ω is finite, Ω = {1, . . . , n}. In that case, the probability
measures on Ω are given by

Σn−1 :=
{

(p1, . . . , pn) : pi ≥ 0 for i = 1, . . . , n, and
n∑

i=1

pi = 1

}
.

These form an (n − 1)-dimensional simplex in the positive cone R
n+ of R

n. The
projective space

P
1
R

n+,
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however, is naturally identified with the corresponding spherical sector

Sn−1+ :=
{

(z1, . . . , zn) : zi ≥ 0 for i = 1, . . . , n,

n∑

i=1

z2
i = 1

}
.

There is a natural bijection

Σn−1 → Sn−1+
(p1, . . . , pn) �→ (

√
p1, . . . ,

√
pn).

(3.20)

Let us now try to carry this over to the infinite-dimensional case, under the assump-
tion that Ω is a differentiable manifold of dimension n. In that case, we can consider
each (Radon) measure μ as a density. This means that for each x ∈ Ω , if we con-
sider the space Gl(n,R) as the space of all bases of TxΩ (again, the identification is
not canonical as we need to select one basis V = (v1, . . . , vn) that is identified with
id ∈ Gl(n,R)),3

μ(x)(XV ) = |detX|μ(x)(V ).

Likewise, we call ρ a half-density, if we have

ρ(x)(XV ) = |detX|1/2ρ(x)(V )

for all X ∈ Gl(n,R) and bases V . Below, in Definition 3.54, we shall give a precise
definition of the space of half-densities (in fact, of any r th power of a measure with
0 < r ≤ 1).

In this interpretation, our above L2-product on M+(Ω) becomes an L2-product
on the space of half-densities

〈ρ,σ 〉 :=
∫

Ω

ρσ,

where we no longer need a base measure μ. And the diffeomorphism group of Ω

then acts by isometries on the Hilbert space of half-densities of class L2.
If we now have a probability measure μ, then its square root

√
μ is a half-density

that is contained in the unit sphere of that Hilbert space. Conversely, up to the is-
sue of regularity, the part of that unit sphere that corresponds to non-negative half-
densities can be identified with the probability measures on Ω . As mentioned, it
carries a metric that is invariant under the action of the diffeomorphism group of Ω ,
i.e., under relabeling of the points of Ω .

3Again, we are employing a fundamental mathematical principle here: Instead of considering ob-
jects in isolation, we rather focus on the transformations between them. Thus, instead of an individ-
ual basis, we consider the transformation that generates it from some (arbitrarily chosen) standard
basis. This automatically gives a very powerful structure, that of a group (of transformations).
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The duality relation (3.14) for a probability measure μ′ = φμ then becomes

(
f,μ′)= Eμ′(f ), (3.21)

the expectation value of f w.r.t. the probability measure μ′. This is a linear operation
on the space of functions f and an affine operation on the space of probability
measures μ′.

Let us clarify the relation with our previous construction of the metric: If f is a
tangent vector to a probability measure μ, then it generates the curve

etf μ, t ∈R,

through μ. By taking the square root as before, we obtain the curve

e
1
2 tf √μ, t ∈R,

in the space of half-densities that has the expansion in t

√
μ + 1

2
tf

√
μ+ O

(
t2).

Thus, the tangent vector that corresponds to f in the space of half-densities is

1

2
f
√

μ.

The inner product of two such tangent vectors is

∫
1

2
f
√

μ · 1

2
g
√

μ = 1

4

∫
fgμ.

Thus, up to the inessential factor 1
4 , we regain our original Riemannian metric on

M+(Ω). In order to eliminate that factor, in Proposition 2.1, we had used the sphere
with radius 2 instead of that of radius 1. Therefore, we should also modify (3.20) in
the same manner if we want to have an isometry.

Let us now translate this into the usual statistical interpretation: We have a family
p(x; s) of probability measures depending on a parameter s, −ε < s < ε. Then the
squared norm of the tangent vector to this family at s = 0 is (up to some factor 4)

4
∫

d

ds

√
p(x; s) d

ds

√
p(x; s)|s=0 dx

=
∫

d

ds
logp(x; s) d

ds
logp(x; s)p(x;0)|s=0 dx

= Ep

((
d

ds
logp(x; s)

)2∣∣∣∣
s=0

)
, (3.22)
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where Ep denotes the expectation with respect to the probability measure p =
p(·;0). By polarization, if s = (s1, . . . , sn) is now n-dimensional, we obtain the
Fisher information metric

Ep

(
∂

∂sμ
logp(x; s) ∂

∂sν
logp(x; s)

)
. (3.23)

We can also rewrite the above formula to obtain

Ep

(
∂

∂sμ
logp(x; s) ∂

∂sν
logp(x; s)

)

=
∫

∂

∂sμ
logp(x; s) ∂

∂sν
logp(x; s)p(x;0) dx

=−
∫

∂2

∂sμ∂sν
logp(x; s)p(x;0) dx (3.24)

since
∫

∂
∂sμ

logp(x; s)p(x;0) dx= ∂
∂sμ

∫
logp(x; s)p(x;0) dx= ∂

∂sμ

∫
p(x; s) dx =

∂
∂sμ

1 = 0, which implies

0 = ∂

∂sν

∫
∂

∂sμ
logp(x; s) p(x; s) dx =

∫
∂2

∂sμ∂sν
logp(x; s) p(x; s) dx

+
∫

∂

∂sμ
logp(x; s) ∂

∂sν
logp(x; s) p(x; s) dx.

This step also admits the following interpretation:

∂

∂sν
logp(x; s) (3.25)

which is called the score of the family with respect to the parameter sν . Our above
computation then gives

Ep

(
∂

∂sν
logp(x; s)

)
= 0, (3.26)

that is, the expectation value of the score vanishes. (This expresses the fact that the
cross-entropy

−
∫

p(x) logq(x) dx (3.27)

is minimal w.r.t. q precisely for q = p.)
The Fisher metric (3.22) then expresses the covariance matrix of the score.
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Returning to (3.24), (3.26) yields the formula

Ep

(
∂

∂sμ
logp(x; s) ∂

∂sν
logp(x; s)

)

=−Ep

(
∂2

∂sμ∂sν
logp(x; s)

)
(3.28)

as another representation of the Fisher metric (3.23).
We can also write our metric as

∫
1

p(x;0)

∂

∂sμ
p(x; s) ∂

∂sν
p(x; s) dx.

In the finite case, this becomes

n∑

i=1

1

pi

∂

∂sμ
pi

∂

∂sν
pi .

Remark 3.1 This metric is called the Shashahani metric in mathematical biology,
see Sect. 6.2.1.

As verified in Proposition 2.1, this is simply the metric obtained on the sim-
plex Σn−1 when identifying it with the spherical sector Sn−1

2,+ via the map 4p = q2,

q ∈ Sn−1
2,+ . If the second derivatives ∂2

∂sμ∂sν
p vanish, i.e., if p(x; s) is linear in s, then

n∑

i=1

1

pi

∂

∂sμ
pi

∂

∂sν
pi = ∂2

∂sμ∂sν

n∑

i=1

pi logpi.

As will be discussed below, this means that the negative of the entropy is a potential
for the metric. This will be applied in Theorem 6.4.

The Fisher metric then induces a metric on any smooth family of probability mea-
sures on Ω . To understand the Fisher metric, it is often useful to write a probability
distribution in exponential form,

p(x; s) = exp
(−H(x, s)

)
, (3.29)

where the normalization required for
∫

p(x; s) dx = 1 is supposed to be contained
in H . The Fisher metric is then simply given by

Ep

(
∂

∂sμ
logp(x; s) ∂

∂sν
logp(x; s)

)
= Ep

(
∂H

∂sμ

∂H

∂sν

)
=

∫
∂H

∂sμ

∂H

∂sν
p(x; s) dx.

(3.30)
Particularly important in this regard are the so-called exponential families (cf. Defi-
nition 2.10).
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Definition 3.1 An exponential family is a family of probability distributions of the
form

p(x;ϑ) = exp

(
γ (x) +

n∑

i=1

fi(x)ϑi −ψ(ϑ)

)
μ(x), (3.31)

where ϑ = (ϑ1, . . . , ϑn) is an n-dimensional parameter, γ (x) and f1(x), . . . , fn(x)

are functions and μ(x) is a measure on Ω .

(Of course, γ could be absorbed into μ, but this would be inconvenient for our
subsequent discussion of examples.) The function ψ simply serves to guarantee the
normalization

∫

Ω

p(x;ϑ) = 1;

namely

ψ(ϑ) = log
∫

exp
(
γ (x) +

∑
fi(x)ϑi

)
μ(dx).

Here, the family is defined only for those ϑ for which

∫
exp

(
γ (x) +

∑
fi(x)ϑi

)
μ(dx) < ∞.

The set of those ϑ for which this is satisfied is convex, but can otherwise be quite
complicated.

Exponential families will yield important examples of the parametrized measure
models introduced in Sect. 3.2.4.

Example 3.1 The normal distribution N (μ,σ 2) = 1√
2πσ

exp(− (x−μ)2

2σ 2 ) on R, with
Lebesgue measure dx, with parameters μ, σ can easily be written in this form by
putting

γ (x) = 0, f1(x) = x, f2(x) = x2, ϑ1 = μ

σ 2
, ϑ2 =− 1

2σ 2
,

ψ(ϑ) = μ2

2σ 2
+ log

√
2πσ =− (ϑ1)2

4ϑ2
+ 1

2
log

(
− π

ϑ2

)
,

and analogously for multivariate normal distributions N (y,Λ), i.e., Gaussian dis-
tributions on R

n. See [169] for a systematic analysis.

For an exponential family, we have

∂

∂ϑi
logp(x;ϑ) = fi(x) − ∂

∂ϑi
ψ(ϑ) (3.32)
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and

∂2

∂ϑi∂ϑj
logp(x;ϑ) =− ∂2

∂ϑi∂ϑj
ψ(ϑ). (3.33)

This expression no longer depends on x, but only on the parameter θ . Therefore, the
Fisher metric on such a family is given by

gij (p) =−Ep

(
∂2

∂ϑi∂ϑj
logp(x;ϑ)

)

=
∫

∂2

∂ϑi∂ϑj
ψ(ϑ) p(x;ϑ)dx

= ∂2

∂ϑi∂ϑj
ψ(ϑ) since

∫
p(x;ϑ)dx = 1. (3.34)

For the normal distribution, we compute the metric in terms of ϑ1 and ϑ2, using
(3.33) and transform the result to the variables μ and σ with (B.16) and obtain at
μ = 0

g

(
∂

∂μ
,

∂

∂μ

)
= 1

σ 2
, (3.35)

g

(
∂

∂μ
,

∂

∂σ

)
= 0, (3.36)

g

(
∂

∂σ
,

∂

∂σ

)
= 2

σ 2
. (3.37)

As the Fisher metric is invariant under diffeomorphisms of Ω = R, and since x →
x − μ is such a diffeomorphism, it suffices to perform the computation at μ = 0.
The metric computed there, however, up to a simple scaling is the hyperbolic metric
of the half-plane

H := {
(μ,σ ) : μ ∈R, σ > 0

}
,

and so, the Fisher metric on the family of normal distributions is the hyperbolic
metric.

Let us summarize some points that will be important for the sequel. We have
constructed the Fisher metric as the natural Riemannian metric in the space of lines
of (finite non-negative) measures, i.e., on a projective space over a linear space. In
the finite case, this projective space is simply a spherical sector. In particular, our
metric is then the standard metric on the sphere, and it therefore has sectional cur-
vature κ ≡ 1 (or, more precisely, 1

4 if we utilize the sphere of radius 2, to get the
normalizations right). This, in fact, carries over to the general case (see [99] for
an explicit computation). Therefore, the Fisher metric is not Euclidean. By way of
contrast, our space of probability measures can be viewed as a linear space in two
different manners. On the one hand, as in the finite case, it can be represented as
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a simplex in a vector space. Thus, any probability measure can be represented as a
convex linear combination of certain extremal measures. More precisely, when Ω

is a metrizable topological space, then the map Ω → P(Ω), x �→ δ(x) that assigns
to every x ∈ Ω the delta measure supported at x is an embedding. If Ω is also sep-
arable, then the image is a closed subspace of P(Ω). Also, in this case, this image
contains precisely the extreme points of the convex set P(Ω). See [5], Sect. 15.2,
for details.

We shall call this representation as a convex linear combination of extremal mea-
sures a mixture representation. On the other hand, our space of probability mea-
sures can be represented as the exponential image of a linear tangent space. This
gives the so-called exponential representation. We shall see below that these two
linear structures are dual to each other, in the sense that each of them is the under-
lying affine structure for some connection, and the two corresponding connections
are dual with respect to the Fisher metric. Of course, neither of these connections
can be the Levi-Civita connection of the Fisher metric as the latter does not have
vanishing curvature.

The Fisher metric also allows the following construction: If Σ is a set with a
measure σ(u) on it, and if we have a mapping

h : Σ → P(Ω),

i.e., if we have a family of measures on Ω parametrized by u ∈ Σ , we may then
consider variations

h(u; s) : Σ × (−ε, ε) → P(Ω),

e.g.,

h(u; s) = exph(u;0) sϕ(u)

for some function ϕ.
If we have two such variations ϕ1, ϕ2, we can use the Fisher metric and the

measure σ to form their L2-product
∫

Σ

Eh(u)

(
ϕ1, ϕ2)σ(du)

=
∫

Σ

(∫

Ω

ϕ1(u)(x) ϕ2(u)(x) h(u)(dx)

)
σ(du).

In other words, we integrate the Fisher product with respect to the measure on our
family of measures. The Fisher metric can formally be considered as a special case
of this construction, namely when Σ is a singleton. The general construction allows
us to average over a family of measures. For example, if we have a Markov pro-
cess with transition probability p(·|y) for each y ∈ Ω , we consider this as a family
h : Ω → P(Ω), with h(y) = p(·|y), and we may average the Fisher products taken
with respect to the measures p(·|y) with respect to some initial probability distribu-
tion p0(y) for y. Thus, if we have families of such transition probabilities p(·|y; s),
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we get the averaged Fisher product

gij (s) :=
∫ (∫

∂

∂si
logp(·|y; s) ∂

∂sj
logp(·|y; s) dx

)
p0(dy). (3.38)

Under sufficient conditions, this metric is usually obtained from the distributions

p(n)(x0, x1, . . . , xn; s) := p0(x0; s)p(x1|x0; s) · · ·p(xn|xn−1; s), n = 0,1,2, . . .

Denoting the Fisher metric for s �→ p(n)(·; s) by g
(n)
ij , we can consider the limit

gij (s) := lim
n→∞

1

n
g

(n)
ij (s), (3.39)

if it exists. A sufficient condition for the existence of this limit is given by the sta-
tionarity of the process. In that case, the metric g defined by (3.39) reduces to the
metric g defined by (3.38). We shall take up this issue in Sect. 6.1.

3.2 Parametrized Measure Models

In this section, we shall give the formal definitions of parametrized measure mod-
els, providing solutions to some of the issues described in Sect. 3.1, improving
upon [26]. First of all, the intuitive definition of a statistical model is to regard it as
a family p(ξ)ξ∈M of probability measures on some sample space Ω which varies in
a differentiable fashion with ξ ∈ M . To make this formal, we need to provide some
kind of differentiable structure on the space P(Ω) of probability measures. This is
done by noting that P(Ω) is contained in the Banach space S(Ω) of finite signed
measures on Ω , provided with the Banach norm ‖ ·‖T V of total variation from (3.1).
Therefore, we shall regard a statistical model as a C1-map between Banach man-
ifolds p : M → S(Ω), as described in Appendix C, whose image is contained in
P(Ω).

Since P(Ω) may also be regarded as the projectivization of the space of finite
measures M(Ω) via rescaling, any C1-map p : M → M(Ω) induces a statistical
model p0 : M → P(Ω) by

p0(ξ) = p(ξ)

‖p(ξ)‖T V

. (3.40)

It is often more convenient to study C1-maps p : M →M(Ω), called parametrized
measure models, and then use (3.40) to obtain a statistical model p0. In case we
consider C1-maps p : M → S(Ω), also allowing for non-positive measures, we call
it a signed parametrized measure model.

Let us assume for simplicity that all measures p(ξ) are dominated by some fixed
measure μ0, even though later we shall show that this assumption is inessential. As
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it turns out, a dominating measure μ0 exists if M contains a countable dense subset
which is the case, e.g., if M is a finite-dimensional manifold. In this case,

p(ξ) = p(·; ξ)μ0,

where p : Ω × M → R is called the density function of p w.r.t. μ0. Evidently,
p(·; ξ) ∈ L1(Ω,μ0) for all ξ . The differential of p in the direction of a tangent
vector V ∈ TξM is then given by

dξ p(V ) = ∂V p(·; ξ)μ0 ∈ L1(Ω,μ0),

where for simplicity we assume that the partial derivative of the density function
exists, even though we shall show that this condition may be weakened as well.

Attempting to define an inner product on TξM analogous to the Fisher metric
in (2.18), we have to regard dξ p(V ) as an element of Tp(ξ)S(Ω) ∼= L1(Ω,p(ξ)),
which leads to

gξ (V ,W) = (
dξp(V ), dξp(W)

)
p(ξ)

=
∫

Ω

d{dξp(V )}
dp(ξ)

d{dξp(W)}
dp(ξ)

dp(ξ) (3.41)

=
∫

Ω

∂V p(·; ξ)

p(·; ξ)

∂Wp(·; ξ)

p(·; ξ)
dp(ξ)

=
∫

Ω

∂V logp(·; ξ) ∂W logp(·; ξ) dp(ξ).

We immediately encounter two problems. The first one is that—unlike in the
case of a finite sample space Ω—the above integral may diverge, if we only assume
that ∂V logp(·; ξ) ∈ L1(Ω,p(ξ)); rather, we should demand that ∂V logp(·; ξ) ∈
L2(Ω,p(ξ)) which in the case of an infinite sample space Ω is a proper subset.

The second problem is that the functions logp(·; ξ) used in (3.41) to define the
Fisher metric are not defined if we drop the assumption that p > 0, i.e., that all
measures have the same null sets as μ0. This is the reason why in most defini-
tions of differentiable families of measures the equivalence of the measures p(ξ) in
the family and hence the positivity of the density function p is required; cf., e.g.,
[9, 16, 25, 219]. For instance, if Ω is a finite sample space, then the description of the
Fisher metric on M(Ω) or on P(Ω) in its canonical coordinates develops singular-
ities outside the sets M+(Ω) and P+(Ω), respectively, cf. (2.13) and (2.19). How-
ever, if we use the coordinates (

√
pi(ξ))i∈I instead, then this metric coincides—

up to a constant factor—with the standard inner product on Euclidean space and
hence extends to all of M(Ω) and P(Ω), respectively, cf. Proposition 2.1. That
is, the seeming degeneracy of the Fisher metric near the boundary of P+(Ω,μ0)

is only due to an inconvenient choice of coordinates, while with the right choice
(
√

pi(ξ))i∈I it becomes the Euclidean metric on the sphere. Formulating it slightly
differently, the point is that not all the individual factors under the integral in (3.41)
need to be well-defined, but it suffices that their product is.
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Generalizing this approach, let us introduce half-densities, by which we mean
formal square roots of measures. That is, we let

√
p(ξ) :=√

p(·; ξ)
√

μ0,

where for the moment we regard
√

μ0 merely as a formal symbol. Taking derivatives
of this yields

dξ
√

p(V ) = 1

2

∂V p(·; ξ)√
p(·; ξ)

√
μ0 = 1

2
∂V logp(·; ξ)

√
p(ξ),

whence

dξ
√

p(V ) · dξ
√

p(W) = 1

4
∂V logp(·; ξ)∂W logp(·; ξ)p(·; ξ)μ0,

and so

gξ (V ,W) = 4
∫

Ω

d
(
dξ

√
p(V ) · dξ

√
p(W)

)
,

as in (3.22). Analogously, if we define 3
√

p(ξ) := 3
√

p(·; ξ) 3
√

μ0, again regarding
3
√

μ0 as a formal symbol, then

dξ
3
√

p(V ) = 1

3

∂V p(·; ξ)√
p(·; ξ)

2
3
√

μ0 = 1

3
∂V logp(·; ξ) 3

√
p(ξ),

so that the Amari–Chentsov tensor T from (2.51) can be written as

Tξ (V ,W,U) =
∫

Ω

∂V logp(·; ξ)∂W logp(·; ξ)∂U logp(·; ξ) dp(ξ)

= 27
∫

Ω

d
(
dξ

3
√

p(ξ)(V ) · dξ
3
√

p(ξ)(W) · dξ
3
√

p(ξ)(U)
)
. (3.42)

This suggests that we should try to make formal sense of the objects
√

μ0, 3
√

μ0

and hence of p(ξ)1/2 =√
p(ξ), p(ξ)1/3 = 3

√
p(ξ), etc. The idea of taking r th powers

of a measure p(ξ) with 0 < r < 1 has been introduced in a less rigorous way by
Amari in [8, p. 66], where such powers are called α-representations.

We shall use a more formal approach and for 0 < r ≤ 1 construct the Banach
spaces Sr (Ω) in Sect. 3.2.3 by a certain direct limit construction, as well as the
subsets

Pr (Ω)⊆Mr (Ω)⊆Sr (Ω).

The elements of these sets are called r th powers of probability measures (finite
measures, signed finite measures, respectively), and they have the feature that one
can formally take the (1/r)th power of them to obtain a probability measure (finite
measure, signed finite measure, respectively), and raising to the (1/r)th power is a
C1-regular map between Banach spaces.
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Once we have done this, we call a parametrized measure model k-integrable if
the map

p1/k : M −→M1/k(Ω)⊆S1/k(Ω), ξ �−→ p(ξ)1/k (3.43)

is a C1-map as defined in Appendix C. If p(ξ) = p(·; ξ)μ0 is dominated by μ0, then
the differential of this map is given by

∂V p1/k = dξ p1/k(V ) := 1

k
∂V logp(·; ξ)p1/k(ξ),

and in order for this to be the kth root of a measure, we have to require that
∂V logp(·; ξ) ∈ Lk(Ω,p(ξ)).

We call such a model weakly k-integrable if the map p1/k : M → M1/k(Ω)

is a weak C1-map, cf. Appendix C for a definition. As we shall show in Theo-
rem 3.2, the model is k-integrable if and only if the k-norm V �→ ‖∂V p1/k‖k de-
pends continuously on V ∈ T M , and it is weakly k-integrable if and only if the map
V �→ ∂V p1/k is weakly continuous. Thus, our definition of k-integrability coincides
with that given in [25, Definition 2.4].

In general, on an n-integrable parametrized measure model we may define the
canonical n-tensor

(
τn
M

)
ξ
(V1, . . . , Vn) =

∫

Ω

∂V1 logp(·; ξ) · · ·∂Vn logp(·; ξ) dp(ξ), (3.44)

which is a generalization of the Fisher metric g = τ 2
M (3.41) and the Amari–

Chentsov tensor T = τ 3
M (3.42). In fact, we show that τn

M is the pullback of a
naturally defined covariant n-tensor Ln

Ω on S1/n(Ω) via the map p1/n : M →
M1/n(Ω)⊆S1/n(Ω), where k ≥ n. In particular, τn

M := (p1/n)∗Ln
Ω is well defined

for a k-integrable parametrized measure model with k ≥ n, even if p is not a positive
function, in which case (3.44) has to be interpreted with care.

While for most applications it will suffice to consider statistical models which are
dominated by some measure μ0, our development of the theory will show that this
is an inessential condition. Intuitively, it is plausible that the quantity ∂V p(·; ξ)μ0

which measures the change of measure w.r.t. the background measure μ0 is not
a significant quantity, but rather the rate of change of p(ξ) relative to the measure
p(ξ) itself. That is, the relevant quantity to consider as a derivative is the logarithmic
derivative

∂V logp(·; ξ) = d{dξ p(V )}
dp(ξ)

,

where the fraction stands for the Radon–Nikodym derivative. An important obser-
vation is that for any parametrized measure model, this Radon–Nikodym derivative
always exists, so that the logarithmic derivative ∂V log p(ξ) may be defined also in
the absence of a dominating measure μ0. This is all that is needed to define the
notions of k-integrability and the canonical tensors mentioned above.
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3.2.1 The Structure of the Space of Measures

The aim of this section is to provide the formal set-up of parametrized measure
models in order to make the discussion in the preceding section rigorous. As before,
let Ω be a measurable space. We let

P(Ω) := {μ : μ a probability measure on Ω},
M(Ω) := {μ : μ a finite measure on Ω},
S(Ω) := {μ : μ a signed finite measure on Ω},

S0(Ω) :=
{
μ ∈ S(Ω) :

∫

Ω

dμ = 0

}
.

(3.45)

Clearly, P(Ω)⊆M(Ω)⊆S(Ω), and S0(Ω),S(Ω) are real vector spaces. In fact,
both S0(Ω) and S(Ω) are Banach spaces whose norm is given by the total variation
‖ · ‖T V (3.1), whence any subset carries a canonical topology which is determined
by saying that a sequence (νn)n∈N in (a subset of) S(Ω) converges to ν∞ if and only
if

lim
n→∞‖νn − ν∞‖T V = 0.

With respect to this topology, the subsets

P(Ω)⊆M(Ω)⊆S(Ω)

are closed.

Remark 3.2 Evidently, for the applications we have in mind, we are interested
mainly in statistical models. However, we can take the point of view that P(Ω) =
P(M(Ω)) is the projectivization of M(Ω) via rescaling. Thus, given a parametrized
measure model (M,Ω,p), normalization yields a statistical model (M,Ω,p0) de-
fined by

p0(ξ) := p(ξ)

‖p(ξ)‖T V

,

which is again a C1-map. Indeed, the map μ �→ ‖μ‖T V on M(Ω) is a C1-map,
being the restriction of the linear (and hence differentiable) map μ �→ ∫

Ω
dμ on

S(Ω).
Observe that while S(Ω) is a Banach space, the subsets M(Ω) and P(Ω) do

not carry a canonical manifold structure.

By the Jordan decomposition theorem, each measure μ ∈ S(Ω) can be decom-
posed uniquely as

μ = μ+ −μ− with μ± ∈M(Ω), μ+ ⊥ μ−. (3.46)
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The latter means that we have a disjoint union Ω = P � N with μ+(N) =
μ−(P ) = 0. Thus, if we define

|μ| := μ+ + μ− ∈M(Ω),

then (3.46) implies

∣∣μ(A)
∣∣≤ |μ|(A) for all μ ∈ S(Ω) and A ∈ Σ, (3.47)

so that

‖μ‖T V = ∥∥ |μ| ∥∥
T V

= |μ|(Ω).

In particular,

P(Ω) = {
μ ∈M(Ω) : ‖μ‖T V = 1

}
.

Moreover, fixing a measure μ0 ∈M(Ω), we define

M(Ω,μ0) =
{
μ = φ μ0 : φ ∈ L1(Ω,μ0), φ ≥ 0

}
,

M+(Ω,μ0) =
{
μ = φ μ0 : φ ∈ L1(Ω,μ0), φ > 0

}
,

P(Ω,μ0) =
{
μ ∈M(Ω,μ0) :

∫

Ω

dμ = 1

}
,

P+(Ω,μ0) =
{
μ ∈M+(Ω,μ0) :

∫

Ω

dμ = 1

}
,

S(Ω,μ0) =
{
μ = φ μ0 : φ ∈ L1(Ω,μ0)

}
.

(3.48)

By the Radon–Nikodym theorem, P(Ω,μ0)⊆M(Ω,μ0)⊆S(Ω,μ0) consist of
those measures in P(Ω)⊆M(Ω)⊆S(Ω) which are dominated by μ0, and the
canonical isomorphism, ican : S(Ω,μ0) → L1(Ω,μ0) in (3.2) given by taking the
Radon–Nikodym derivative w.r.t. μ0 yields an isomorphism whose inverse is given
by

ı−1
can : L1(Ω,μ0) −→ S(Ω,μ0), φ �−→ φ μ0.

Observe that ıcan is an isometry of Banach spaces, since evidently

‖φ‖L1(Ω,μ0)
=

∫

Ω

|φ| dμ0 = ‖φ μ0‖T V .

3.2.2 Tangent Fibration of Subsets of Banach Manifolds

In this section, we shall use the notion of differentiable maps between Banach
spaces, as described in Appendix C. In particular, a curve in a Banach space
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(V ; ‖ · ‖) is a differentiable map c : I → V with an (open) interval I⊆R. That is,
for each t0 ∈ I there exists the limit

d

dt

∣∣∣∣
t=t0

c(t) = ċ(t0) := lim
t→t0

c(t) − c(t0)

t − t0
. (3.49)

Definition 3.2 Let (V ; ‖ · ‖) be a Banach space, X⊆V an arbitrary subset and
x0 ∈ X. Then v ∈ V is called a tangent vector of X at x0, if there is a curve c :
(−ε, ε) → X⊆V such that c(0) = x0 and ċ(0) = v.

The set of all tangent vectors at x0 is called the tangent double cone of X at x0
and is denoted by Tx0X. We also define the tangent fibration of X as

T X :=
⊎

x0∈X

Tx0X⊆X × V⊆V × V,

equipped with the induced topology and with the canonical projection map
T X → X.

Remark 3.3 The reader should be aware that, unlike in some texts, we do not use
tangent fibration as a synonym for the tangent bundle, since for general subsets
X⊆V , Tx0X⊆V may fail to be a vector subspace, and for x0 �= x1, the tangent
cones Tx0X and Tx1X need not be homeomorphic.

For instance, let X := {(x, y)� ∈R
2 : xy = 0}⊆R

2, so that X is the union of the
two coordinate axes. Then T(x,0)X and T(0,y)X with x, y �= 0 are the x-axis and the
y-axis, respectively, and hence linear subspaces of V =R

2, but T(0,0)X = X is not a
subspace. This example also shows that Tx0X and Tx1X need not be homeomorphic
if x0 �= x1, whence the projection T X → X mapping Tx0X to x0 is in general only
a topological fibration, but not a vector bundle or a fiber bundle.

But at least, Tx0X is invariant under multiplication by (positive or negative)
scalars and hence is a double cone. This is seen by replacing the curve c in Def-
inition 3.2 by c̃(t) := c(t0t) ∈ X for some t0 ∈R, so that c̃(0) = x0 and ˙̃c(0) = t0v ∈
Tx0X.

If X⊆V is a submanifold, however, then Tx0X and T X coincide with the standard
notion of the tangent space at x0 and the tangent bundle of X, respectively. Thus,
in this case the tangent cone is a linear subspace, and the tangent fibration is the
tangent bundle of X.

For instance, if X = U⊆V is an open set, then Tx0U = V for all x0 and hence,
T U = U × V . Indeed, the curve c(t) = x0 + tv ∈ U for small |t | satisfies the prop-
erties required in the Definition 3.2. In this case, the tangent fibration U × V → U

is a (trivial) vector bundle.

If M is a Banach manifold and F : M → V is a C1-map whose image is
contained in X⊆V , then by the chain rule, for any v ∈ Tx0M and any curve
c : (−ε, ε) → M with c(0) = x0, ċ(0) = v,

d

dt

∣∣∣∣
t=0

F
(
c(t)

)= dx0F(v),
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and as t �→ F(c(t)) is a curve in X with F(c(0)) = F(x0), it follows that dx0F(v) ∈
TF(x0)X for all v ∈ T M . That is, a C1-map F : M → X⊆V induces a continuous
map

dF : T M −→ T X, (x0, v) �−→ dx0F(v).

Theorem 3.1 Let V = S(Ω) be the Banach space of finite signed measures on Ω .
Then the tangent cones of M(Ω) and P(Ω) at μ are TμM(Ω) = S(Ω,μ) and
TμP(Ω) = S0(Ω,μ), respectively, so that

TM(Ω) =
⊎

μ∈M(Ω)

S(Ω,μ)⊆M(Ω) × S(Ω)

and

TP(Ω) =
⊎

μ∈P(Ω)

S0(Ω,μ)⊆P(Ω) × S(Ω).

Proof Let ν ∈ Tμ0M(Ω) and let (μt )t∈(−ε,ε) be a curve in M(Ω) with μ̇0 = ν. Let
A⊆Ω be such that μ0(A) = 0. Then as μt(A) ≥ 0, the function t �→ μt(A) has a
minimum at t = 0, whence

0 = d

dt

∣∣∣∣
t=0

μt(A) = μ̇0(A) = ν(A),

where the second equation is evident from (3.49). That is, ν(A) = 0 whenever
μ0(A) = 0, i.e., μ0 dominates ν, so that ν ∈ S(Ω,μ0). Thus, Tμ0M(Ω)⊆S(Ω,μ0).

Conversely, given ν = φμ0 ∈ S(Ω,μ0), define μt := p(ω; t)μ0 where

p(ω; t) :=
{

1 + tφ(ω) if tφ(ω) ≥ 0,

exp(tφ(ω)) if tφ(ω) < 0.

As p(ω; t) ≤ max(1 + tφ(ω),1), it follows that μt ∈M(Ω), and as the derivative
∂tp(ω; t) exists for all t and its absolute value is bounded by |φ| ∈ L1(Ω,μ0),
it follows that t �→ μt is a C1-curve in M(Ω) with μ̇0 = φμ0 = ν, whence ν ∈
Tμ0M(Ω) as claimed.

To show the statement for P(Ω), let (μt )t∈(−ε,ε) be a curve in P(Ω) with
μ̇0 = ν. Then as μt is a probability measure for all t , we conclude that

∣∣∣∣
∫

Ω

dν

∣∣∣∣=
∣∣∣∣
∫

Ω

1

t
d(μt −μ0 − tν)

∣∣∣∣≤
‖μt − μ0 − tν‖T V

|t |
t→0−−→ 0,

so that ν ∈ S0(Ω). Since P(Ω)⊆M(Ω), it follows that Tμ0P(Ω)⊆Tμ0M(Ω) ∩
S0(Ω) = S0(Ω,μ0) for all μ0 ∈P(Ω).

Conversely, given ν = φμ0 ∈ S0(Ω,μ0), define the curve λt := μt‖μt‖−1
T V ∈

P(Ω) with μt from above, which is a C1-curve in P(Ω) as ‖μt‖T V > 0, and it is
straightforward that λ0 = μ0 and λ̇0 = φμ0 = ν. �
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Remark 3.4

(1) Even though the tangent cones of the subsets P(Ω)⊆M(Ω)⊆S(Ω) at each
point μ are closed vector subspaces of S(Ω), these subsets are not Banach
manifolds, and hence in particular not Banach submanifolds of S(Ω). This is
due to the fact that the spaces S0(Ω,μ) need not be isomorphic to each other
for different μ.

This can already be seen for finite Ω = {ω1, . . . ,ωk}. In this case, we may
identify S(Ω) with R

k by the map
∑k

i=1 xiδ
ωi ∼= (x1, . . . , xk), and with this,

TM(Ω) ∼=
{
(x1, . . . , xk;y1, . . . , yk) ∈R

k ×R
k : xi ≥ 0,

xi = 0 ⇒ yi = 0

}
,

and this is evidently not a submanifold of R2k . Indeed, in this case the dimension
of TμM(Ω) = S(Ω,μ) equals |{ω ∈ Ω | μ(ω) > 0}|, which varies with μ. Of
course, this simply reflects the geometric stratification of the closed probability
simplex in terms of the faces of various dimensions. Theorem 3.1 then describes
such a stratification also in infinite dimensions.

(2) Observe that the curves μt and λt , respectively, used in the proof of Theo-
rem 3.1 are contained in M+(Ω,μ0) and P+(Ω,μ0), respectively, whence it
also follows that

Tμ0M+(Ω,μ0) = S(Ω,μ0) and Tμ0P+(Ω,μ0) = S0(Ω,μ0).

But if μ1 ∈ M+(Ω,μ0), then μ1 and μ0 are compatible measures (i.e.,
they have the same null sets), whence in this case, S(Ω,μ0) = S(Ω,μ1)

and S0(Ω,μ0) = S0(Ω,μ1). That is, the subset M+(Ω,μ0)⊆S(Ω,μ0)

has at each point all of S(Ω,μ0) as its tangent space, but in general,
M+(Ω,μ0)⊆S(Ω,μ0) is not open.4 This is a quite remarkable and unusual
phenomenon in Differential Geometry.

That is, neither on M(Ω) nor on M+(Ω,μ0) is there a canonical manifold
structure in general, and the same is true for P(Ω) and P+(Ω,μ0), respectively.
Nevertheless, Definition 3.2 and Theorem 3.1 allow us to speak of the tangent
fibration of M(Ω) and P(Ω), respectively.

3.2.3 Powers of Measures

Let us now give the formal definition of roots of measures. On the set M(Ω) we
define the preordering μ1 ≤ μ2 if μ2 dominates μ1. Then (M(Ω),≤) is a directed
set, meaning that for any pair μ1,μ2 ∈ M(Ω) there is a μ0 ∈ M(Ω) dominating
both of them (e.g., μ0 := μ1 + μ2).

4More precisely, M+(Ω,μ0) is not open unless Ω is the disjoint union of finitely many μ0-atoms,
where A⊆Ω is a μ0-atom if for each B⊆A either B or A\B is a μ0-null set.
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For fixed r ∈ (0,1] and measures μ1 ≤ μ2 on Ω we define the linear embedding

ıμ1
μ2

: L1/r (Ω,μ1) −→ L1/r (Ω,μ2), φ �−→ φ

(
dμ1

dμ2

)r

.

Observe that

∥∥ıμ1
μ2

(φ)
∥∥

1/r
=

(∫

Ω

∣∣ıμ1
μ2

(φ)
∣∣1/r

dμ2

)r

=
(∫

Ω

|φ|1/r dμ1

dμ2
dμ2

)r

=
(∫

Ω

|φ|1/r dμ1

)r

= ‖φ‖1/r , (3.50)

so that ı
μ1
μ2 is an isometry. Moreover, ı

μ1
μ2 ı

μ2
μ3 = ı

μ1
μ3 whenever μ1 ≤ μ2 ≤ μ3. Then

we define the space of r th roots of measures on Ω to be the directed limit over the
directed set (M(Ω),≤)

Sr (Ω) := lim−→L1/r (Ω,μ). (3.51)

Let us give a more concrete definition of Sr (Ω). On the disjoint union of the
spaces L1/r (Ω,μ) for μ ∈M(Ω) we define the equivalence relation

L1/r (Ω,μ1) � φ ∼ ψ ∈ L1/r (Ω,μ2) ⇐⇒ ıμ1
μ0

(φ) = ıμ2
μ0

(ψ)

⇐⇒ φ

(
dμ1

dμ0

)r

= ψ

(
dμ2

dμ0

)r

for some μ0 ≥ μ1,μ2. Then Sr (Ω) is the set of all equivalence classes of this
relation, cf. Fig. 3.1.

Let us denote the equivalence class of φ ∈ L1/r (Ω,μ) by φμr , so that μr ∈
Sr (Ω) is the equivalence class represented by 1 ∈ L1/r (Ω,μ). Then the equiva-
lence relation yields

μr
1 =

(
dμ1

dμ2

)r

μr
2 as elements of Sr (Ω) (3.52)

whenever μ1 ≤ μ2, justifying this notation. In fact, from this description in the case
r = 1 we see that

S1(Ω) = S(Ω).

Observe that by (3.50) ‖φ‖1/r is constant on equivalence classes, whence there is a
norm on Sr (Ω), also denoted by ‖ · ‖1/r , for which the inclusions

Sr (Ω,μ) ↪→ Sr (Ω) and L1/r (Ω,μ) −→ Sr (Ω), φ �−→ φμr (3.53)

are isometries. For r = 1, we have ‖ · ‖1 = ‖ · ‖T V . Thus,

∥∥φμr
∥∥

1/r
= ‖φ‖1/r =

(∫

Ω

|φ|1/r dμ

)r

for 0 < r ≤ 1. (3.54)
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Fig. 3.1 Natural description of Sr (Ω) in terms of powers of the Radon–Nikodym derivative

Note that the equivalence relation also preserves non-negativity of functions,
whence we may define the subsets

Mr (Ω) := {
φμr : μ ∈M(Ω),φ ≥ 0

}
,

Pr (Ω) := {
φμr : μ ∈ P(Ω),φ ≥ 0,‖φ‖1/r = 1

}
.

(3.55)

In analogy to (3.48) we define for a fixed measure μ0 ∈M(Ω) and r ∈ (0,1] the
spaces

Sr (Ω,μ0) :=
{
φ μr

0 : φ ∈ L1/r (Ω,μ0)
}
,

Mr (Ω,μ0) :=
{
φ μr

0 : φ ∈ L1/r (Ω,μ0),φ ≥ 0
}
,

Pr (Ω,μ0) :=
{
φ μr

0 : φ ∈ L1/r (Ω,μ0),φ ≥ 0,‖φ‖1/r = 1
}
,

Sr
0(Ω,μ0) :=

{
φμr

0 : φ ∈ L1/r (Ω,μ0),

∫

Ω

φ dμ = 0

}
.

The elements of Pr (Ω,μ0),Mr (Ω,μ0),Sr (Ω,μ0) are said to be dominated
by μr

0.

Remark 3.5 The concept of r th roots of measures has been indicated in [200,
Ex. IV.1.4]. Moreover, if Ω is a manifold and r = 1/2, then S1/2(Ω) is even a
Hilbert space which has been considered in [192, 6.9.1]. This Hilbert space is also
related to the Hilbert manifold of finite-entropy probability measures defined in
[201].
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The product of powers of measures can now be defined for all r, s ∈ (0,1) with
r + s ≤ 1 and for measures φμr ∈ Sr (Ω,μ) and ψμs ∈ Ss(Ω,μ):

(
φμr

) · (ψμs
) := φψμr+s .

By definition φ ∈ L1/r (Ω,μ) and ψ ∈ L1/s(Ω,μ), whence Hölder’s inequality
implies that ‖φψ‖1/(r+s) ≤ ‖φ‖1/r‖ψ‖1/s < ∞, so that φψ ∈ L1/(r+s)(Ω,μ) and
hence, φψμr+s ∈ Sr+s(Ω,μ). Since by (3.52) this definition of the product is in-
dependent of the choice of representative μ, it follows that it induces a bilinear
product

· : Sr (Ω)× Ss(Ω) −→ Sr+s(Ω), where r, s, r + s ∈ (0,1], (3.56)

satisfying the Hölder inequality

‖νr · νs‖1/(r+s) ≤ ‖νr‖1/r‖νs‖1/s, (3.57)

so that the product in (3.56) is a bounded bilinear map.

Definition 3.3 (Canonical pairing) For r ∈ (0,1) we define the pairing

(·; ·) : Sr (Ω)× S1−r (Ω) −→R, (ν1;ν2) :=
∫

Ω

d(ν1 · ν2). (3.58)

It is straightforward to verify that this pairing is non-degenerate in the sense that

(νr ; ·) = 0 ⇐⇒ νr = 0. (3.59)

Lemma 3.1 (Cf. [200, Ex. IV.1.3]) Let {νn : n ∈ N}⊆S(Ω) be a countable family
of (signed) measures. Then there is a measure μ0 ∈M(Ω) dominating νn for all n.

Proof We assume w.l.o.g. that νn �= 0 for all n and define

μ0 :=
∞∑

n=1

1

2n‖νn‖T V

|νn|.

Since ‖νn‖T V = |νn|(Ω), it follows that this sum converges, so that μ0 ∈M(Ω) is
well defined. Moreover, if μ0(A) = 0, then |νn|(A) = 0 for all n, showing that μ0
dominates all νn as claimed. �

From Lemma 3.1, we can now conclude the following statement:

Any sequence in Sr (Ω) is contained in Sr (Ω,μ0) for some μ0 ∈M(Ω).

In particular, any Cauchy sequence in Sr (Ω) is a Cauchy sequence in
Sr (Ω,μ0) ∼= L1/r (Ω,μ0) for some μ0 and hence convergent. Thus,
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(Sr (Ω),‖ · ‖1/r ) is a Banach space. It also follows that Sr (Ω,μ0) is a closed
subspace of S(Ω) for all μ0 ∈M(Ω).

In analogy to Theorem 3.1, we can also determine the tangent cones of the sub-
sets Pr (Ω)⊆Mr (Ω)⊆Sr (Ω).

Proposition 3.1 For each μ ∈M(Ω) (μ ∈ P(Ω), respectively), the tangent cone
of Pr (Ω)⊆Mr (Ω)⊆Sr (Ω) at μr are TμrMr (Ω) = Sr (Ω,μ) and TμrPr (Ω) =
Sr

0(Ω,μ), respectively, so that the tangent fibrations are given as

TMr (Ω) =
⊎

μr∈Mr (Ω)

Sr (Ω,μ)⊆Mr (Ω) × Sr (Ω)

and

TPr (Ω) =
⊎

μr∈Pr (Ω)

Sr
0(Ω,μ)⊆Pr (Ω) × Sr (Ω).

Proof We have to adapt the proof of Theorem 3.1. The proof of the statements
Sr (Ω,μ)⊆TμrMr (Ω) and Sr

0(Ω,μ)⊆TμrPr (Ω) is identical to that of the corre-
sponding statement in Theorem 3.1; just as in that case, one shows that for φ ∈
L1/r (Ω,μ0) the curves μr

t := p(ω; t)μr
0 with p(ω; t) := 1 + tφ(ω) if tφ(ω) ≥ 0

and p(ω; ξ) = exp(tφ(ω)) if tφ(ω) < 0 is a differentiable curve in Mr (Ω), and
λr

t := μr
t /‖μr

t ‖1/r is a differentiable curve in Pr (Ω), and their derivative is φμr
0 at

t = 0.
In order to show the other direction, let (μr

t )t∈(−ε,ε) be a curve in Mr (Ω). Then
Q ∩ (−ε, ε) is countable, whence by Lemma 3.1 there is a measure μ̂ such that
(μr

t ) ∈ Mr (Ω, μ̂) for all t ∈ Q, and since Sr (Ω, μ̂)⊆Sr (Ω) is closed, it follows
that μr

t ∈M(Ω, μ̂) for all t . Now we can apply the argument from Theorem 3.1 to
the curve t �→ (μr

t · μ̂1−r )(A) for A⊆Ω . �

Remark 3.6 Just as in the case of r = 1, we may take two points of view on the
relation of Mr (Ω) and Pr (Ω). The one is that Pr (Ω) may be regarded as a subset
of Mr (Ω), but also, the normalization map

Mr (Ω) −→Pr (Ω), μr �−→ μr

‖μr‖1/r

allows us to regard Pr (Ω) as the projectivization P(Mr (Ω)). It will depend on the
context which point of view is better adapted.

Besides multiplying roots of measures, we also wish to take their powers. Here,
we have two possibilities for dealing with signs. For 0 < k ≤ r−1 and νr = φμr ∈
Sr (Ω) we define

|νr |k := |φ|kμrk and ν̃k
r := sign(φ)|φ|kμrk. (3.60)
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Since φ ∈ L1/r (Ω,μ), it follows that |φ|k ∈ L1/kr (Ω,μ), so that |νr |k, ν̃k
r ∈

Srk(Ω). By (3.52) these powers are well defined, independent of the choice of the
measure μ, and, moreover,

∥∥ |νr |k
∥∥

1/(rk)
= ∥∥ν̃k

r

∥∥
1/(rk)

= ‖νr‖k
1/r . (3.61)

Proposition 3.2 Let r ∈ (0,1] and 0 < k ≤ 1/r , and consider the maps

πk, π̃k : Sr (Ω) −→ Srk(Ω),
πk(ν) := |ν|k,
π̃k(ν) := ν̃k.

Then πk, π̃k are continuous maps. Moreover, for 1 < k ≤ 1/r they are C1-maps
between Banach spaces, and their derivatives are given as

dνr π̃
k(ρr) = k |νr |k−1 · ρr and dνr π

k(ρr) = k ν̃k−1
r · ρr . (3.62)

Observe that for k = 1, π1(νr ) = |νr | fails to be C1, whereas π̃1(νr ) = νr , so that
π̃1 is the identity and hence a C1-map.

Proof Let us first assume that 0 < k ≤ 1. We assert that for all x, y ∈R we have the
estimates

∣∣|x + y|k − |x|k∣∣≤ |y|k and
∣∣sign(x + y)|x + y|k − sign(x)|x|k∣∣≤ 21−k|y|k.

(3.63)

For k = 1, (3.63) is obvious. If 0 < k < 1, then by homogeneity it suffices to show
these for y = 1. Note that the functions

x �−→ |x + 1|k − |x|k and x �−→ sign(x + 1)|x + 1|k − sign(x)|x|k

are continuous and tend to 0 for x → ±∞, and then (3.63) follows by elementary
calculus.

Let ν1, ν2 ∈ Sr (Ω), and choose μ0 ∈M(Ω) such that ν1, ν2 ∈ Sr (Ω,μ0), i.e.,
νi = φiμ

r
0 with φi ∈ L1/r (Ω,μ0). Then

∥∥πk(ν1 + ν2) − πk(ν1)
∥∥

1/rk
= ∥∥|φ1 + φ2|k − |φ1|k

∥∥
1/rk

≤ ∥∥ |φ2|k
∥∥

1/rk
by (3.63)

= ‖ν2‖k
1/r by (3.61),

so that lim‖ν2‖1/r→0 ‖πk(ν1 + ν2) − πk(ν1)‖1/rk = 0, showing the continuity of πk

for 0 < k ≤ 1. The continuity of π̃ k follows analogously.
Now let us assume that 1 < k ≤ 1/r . In this case, the functions

x �−→ |x|k and x �−→ sign(x)|x|k
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with x ∈R are C1-maps with respective derivatives

x �−→ k sign(x)|x|k−1 and x �−→ k|x|k−1.

Thus, if we pick νi = φiμ
r
0 as above, then by the mean value theorem we have

πk(ν1 + ν2) − πk(ν1) =
(|φ1 + φ2|k − |φ1|k

)
μrk

0

= k sign(φ1 + ηφ2)|φ1 + ηφ2|k−1φ2μ
rk
0

= k sign(φ1 + ηφ2)|φ1 + ηφ2|k−1μ
r(k−1)
0 · ν2

for some function η : Ω → (0,1). If we let νη := ηφ2μ
r
0, then ‖νη‖1/r ≤ ‖ν2‖1/r ,

and we get

πk(ν1 + ν2) − πk(ν1) = kπ̃k−1(ν1 + νη) · ν2.

With the definition of dν1 π̃
k from (3.62) we have

∥∥πk(ν1 + ν2) − πk(ν1) − dν1π
k(ν2)

∥∥
1/(rk)

= ∥∥k
(
π̃ k−1(ν1 + νη) − π̃ k−1(ν1)

) · ν2
∥∥

1/(rk)

≤ k
∥∥π̃ k−1(ν1 + νη) − π̃ k−1(ν1)

∥∥
1/(r(k−1))

‖ν2‖1/r

and hence,

‖πk(ν1 + ν2) − πk(ν1) − dν1π
k(ν2)‖ 1

rk

‖ν2‖ 1
r

≤ k
∥∥π̃ k−1(ν1 + νη) − π̃ k−1(ν1)

∥∥ 1
r(k−1)

.

Thus, the differentiability of πk will follow if

∥∥π̃ k−1(ν1 + νη) − π̃ k−1(ν1)
∥∥

1/(r(k−1))

‖ν2‖1/r→0−−−−−−→ 0,

and because of ‖νη‖1/r ≤ ‖ν2‖1/r , this is the case if π̃ k−1 is continuous.
Analogously, one shows that π̃ k is differentiable if πk−1 is continuous.
Since we already know continuity of πk and π̃ k for 0 < k ≤ 1, and since C1-

maps are continuous, the claim now follows by induction on �k . �

Thus, (3.62) implies that the differentials of πk and π̃ k (which coincide on
Pr (Ω) and Mr (Ω)) yield continuous maps

dπk = dπ̃k : TPr (Ω) −→ TPrk(Ω)

TMr (Ω) −→ TMrk(Ω),
(μ,ρ) �−→ kμrk−r · ρ.
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3.2.4 Parametrized Measure Models and k-Integrability

In this section, we shall now present our notion of a parametrized measure model.

Definition 3.4 (Parametrized measure model) Let Ω be a measurable space.

(1) A parametrized measure model is a triple (M,Ω,p) where M is a (finite or
infinite-dimensional) Banach manifold and p : M → M(Ω)⊆S(Ω) is a C1-
map in the sense of Definition C.3.

(2) The triple (M,Ω,p) is called a statistical model if it consists only of probability
measures, i.e., such that the image of p is contained in P(Ω).

(3) We call such a model dominated by μ0 if the image of p is contained in
M(Ω,μ0). In this case, we use the notation (M,Ω,μ0,p) for this model.

If a parametrized measure model (M,Ω,μ0,p) is dominated by μ0, then there
is a density function p : Ω × M →R such that

p(ξ) = p(·; ξ)μ0. (3.64)

Evidently, we must have p(·; ξ) ∈ L1(Ω,μ0) for all ξ . In particular, for fixed ξ ,
p(·; ξ) is defined only up to changes on a μ0-null set. The existence of a dominating
measure μ0 is not a strong restriction, as the following shows.

Proposition 3.3 Let (M,Ω,p) be a parametrized measure model. If M contains a
countable dense subset, e.g., if M is a finite-dimensional manifold, then there is a
measure μ0 ∈M(Ω) dominating the model.

Proof Let (ξn)n∈N⊆M be a dense countable subset. By Lemma 3.1, there is a
measure μ0 dominating all measures p(ξn) for n ∈ N, i.e., p(ξn) ∈ M(Ω,μ0).
If ξnk

→ ξ , so that p(ξnk
) → p(ξ), then as the inclusion S(Ω,μ0) ↪→ S(Ω)

is an isometry by (3.53), it follows that (p(ξnk
))k∈N is a Cauchy sequence in

S(Ω,μ0), and as the latter is complete, it follows that p(ξ) ∈ S(Ω,μ0)∩M(Ω) =
M(Ω,μ0). �

Definition 3.5 (Regular density function) Let (M,Ω,μ0,p) be a parametrized
measure model dominated by μ0. We say that this model has a regular density func-
tion if the density function p : Ω × M → R satisfying (3.64) can be chosen such
that for all V ∈ TξM the partial derivative ∂V p(·; ξ) exists and lies in L1(Ω,μ0).

Remark 3.7 The standard notion of a statistical model always assumes that it is
dominated by some measure and has a positive regular density function (e.g., [9,
§2 , p. 25], [16, §2.1], [219], [25, Definition 2.4]). In fact, the definition of a
parametrized measure model or statistical model in [25, Definition 2.4] is equiv-
alent to a parametrized measure model or statistical model with a positive regular
density function in the sense of Definition 3.5. In contrast, in [26], the assumption
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of regularity and, more importantly, of the positivity of the density function p is
dropped.

It is worth pointing out that the density function p of a parametrized measure
model (M,Ω,μ0,p) does not need to be regular, so that the present notion is indeed
more general. The formal definition of differentiability of p implies that for each
C1-path ξ(t) ∈ M with ξ(0) = ξ , ξ̇ (0) =: V ∈ TξM , the curve t �→ p(·; ξ(t)) ∈
L1(Ω,μ0) is differentiable. This implies that there is a dξ p(V ) ∈ L1(Ω,μ0) such
that

∥∥∥∥
p(·; ξ(t)) − p(·; ξ)

t
− dξ p(V )(·)

∥∥∥∥
1

t→0−−−−−−→ 0.

If this is a pointwise convergence, then dξ p(V ) = ∂V p(·; ξ) is the partial derivative
and whence, ∂V p(·; ξ) lies in L1(Ω,μ0), so that the density function is regular.

However, in general convergence in L1(Ω,μ0) does not imply pointwise conver-
gence, whence there are parametrized measure models in the sense of Definition 3.4
without a regular density function, cf. Example 3.2.3 below. Nevertheless, we shall
use the following notations interchangeably,

dξ p(V ) = ∂V p = ∂V p(·; ξ) μ0, (3.65)

even if p does not have a regular density function and the derivative ∂V p(·; ξ) does
not exist.

Example 3.2

(1) The family of normal distributions on R

p(μ,σ ) := 1√
2πσ

exp

(
− (x −μ)2

2σ 2

)
dx

is a statistical model with regular density function on the upper half-plane H =
{(μ,σ ) : μ,σ ∈R, σ > 0}.

(2) To see that there are parametrized measure models without a regular density
function, consider the family (p(ξ))ξ>−1 of measures on Ω = (0,π)

p(ξ) :=
{

(1 + ξ (sin2(t − 1/ξ))1/ξ2
) dt for ξ �= 0,

dt for ξ = 0.

This model is dominated by the Lebesgue measure dt , with density function
p(t; ξ) = 1 + ξ (sin2(t − 1/ξ))1/ξ2

for ξ �= 0, p(t;0) = 1. Thus, the partial
derivative ∂ξp does not exist at ξ = 0, whence the density function is not regu-
lar.

On the other hand, p : (−1,∞) →M(Ω,dt) is differentiable at ξ = 0 with
d0p(∂ξ ) = 0, so that (M,Ω,p) is a parametrized measure model in the sense of
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Definition 3.4. To see this, we calculate
∥∥∥∥

p(ξ) − p(0)

ξ

∥∥∥∥
T V

= ∥∥(sin2(t − 1/ξ)
)1/ξ2

dt
∥∥

1

=
∫ π

0

(
sin2(t − 1/ξ)

)1/ξ2
dt

=
∫ π

0

(
sin2 t

)1/ξ2
dt

ξ→0−−→ 0,

which shows the claim. Here, we used the π -periodicity of the integrand for
fixed ξ and dominated convergence in the last step.

Since for a parametrized measure model (M,Ω,p) the map p is C1, it follows
that its derivative yields a continuous map between the tangent fibrations

dp : T M −→ TM(Ω) =
⊎

μ∈M(Ω)

S(Ω,μ).

That is, for each tangent vector V ∈ TξM , its differential dξ p(V ) is contained in
S(Ω,p(ξ)) and hence dominated by p(ξ). Therefore, we can take the Radon–
Nikodym derivative of dξ p(V ) w.r.t. p(ξ).

Definition 3.6 Let (M,Ω,p) be a parametrized measure model. Then for each
tangent vector V ∈ TξM of M , we define

∂V log p(ξ) := d{dξ p(V )}
dp(ξ)

∈ L1(Ω,p(ξ)
)

(3.66)

and call this the logarithmic derivative of p at ξ in the direction V .

If such a model is dominated by μ0 and has a positive regular density function p

for which (3.64) holds, then we calculate the Radon–Nikodym derivative as

d{dξ p(V )}
dp(ξ)

= d{dξ p(V )}
dμ0

·
(

dp(ξ)

dμ0

)−1

= ∂V p(·; ξ)
(
p(·; ξ)

)−1 = ∂V logp(·; ξ).

This justifies the notation in (3.66) even for models without a positive regular density
function.

For a parametrized measure model (M,Ω,p) and k > 1 we consider the map

p1/k := π1/kp : M −→M1/k(Ω)⊆S1/k(Ω), ξ �−→ p(ξ)1/k.

Since π1/k is continuous by Proposition 3.2, it follows that p1/k is continuous as
well. We define the following notions of k-integrability.
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Definition 3.7 (k-Integrable parametrized measure model) A parametrized mea-
sure model (M,Ω,p) (statistical model, respectively) is called k-integrable if the
map

p1/k : M −→M1/k(Ω)⊆S1/k(Ω)

is a C1-map in the sense of Definition C.1. It is called weakly k-integrable if this
map is a weak C1-map, again in the sense of Definition C.1.

Furthermore, we call the model (weakly) ∞-integrable if it is (weakly) k-
integrable for all k ≥ 1.

Evidently, every parametrized measure model is 1-integrable by definition.
Moreover, since for 1 ≤ l < k we have p1/l = πk/lp1/k and πk/l is a C1-map by
Proposition 3.2, it follows that (weak) k-integrability implies (weak) l-integrability
for 1 ≤ l < k.

Example 3.3 An exponential family, as defined by (3.31), generalizes the family of
normal distributions and represents an extremely important statistical model. It will
play a central role throughout this book.

Adapting (3.31) to the notation in this context, we can write it for ξ =
(ξ1, . . . , ξn) ∈ U⊆R

n as

p(ξ) = exp

(
γ (ω)+

n∑

i=1

fi(ω)ξ i −ψ(ξ)

)
μ(ω), (3.67)

for suitable functions fi, γ on Ω and ψ on U . Therefore, for V = (v1, . . . , vn),

∂V p1/k(ξ) = 1

k

(
n∑

i=1

vifi(ω) + ∂V ψ(ξ)

)

× exp

(
γ (ω)/k +

n∑

i=1

fi(ω)ξ i/k −ψ(ξ)/k

)
μ(ω)1/k,

and the k-integrability of this model for any k is easily verified from there. There-
fore, exponential families provide a class of examples of ∞-integrable parametrized
measure models. See also [216, p. 1559].

Remark 3.8

(1) In Sect. 2.8.1, we have introduced exponential families for finite sets as affine
spaces. Let us comment on that structure for the setting of arbitrary measurable
spaces as described in [192]. Consider the affine action (μ,f ) �→ ef μ, defined
by (2.130). Clearly, multiplication of a finite measure μ ∈M+(Ω) with ef will
in general lead to a positive measure on Ω that is not finite but σ -finite. As we
restrict attention to finite measures, and thereby obtain the Banach space struc-
ture of S(Ω), it is not possible to extend the affine structure of Sect. 2.8.1 to the
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general setting of measurable spaces. However, we can still define exponential
families as geometric objects that correspond to a “section” of an affine space,
leading to the expression (3.31).

(2) Fukumizu [101] proposed the notion of a kernel exponential family, based on
the theory of reproducing kernel Hilbert spaces. In this approach, one considers
a Hilbert space H of functions Ω → R that is defined in terms of a so-called
reproducing kernel k : Ω × Ω → R. In particular, the inner product on H is
given as

〈f,g〉H =
∫ ∫

f (ω)g
(
ω′)k

(
ω,ω′)μ0(dω)μ0

(
dω′).

We will revisit this product again in Sect. 6.4 (see (6.196)). Within this
framework, the sum

∑n
i=1 fi(ω) ξ i in (3.67) is then replaced by an integral∫

k(ω,ω′) ξ(ω′)μ0(dω′), leading to the definition of a kernel exponential fam-
ily.

Proposition 3.4 Let (M,Ω,p) be a (weakly) k-integrable parametrized measure
model. Then its (weak) derivative is given as

∂V p1/k(ξ) := 1

k
∂V log p(ξ) p1/k(ξ) ∈ S1/k

(
Ω,p(ξ)

)
, (3.68)

and for any functional α ∈ S1/k(Ω)′ we have

∂V α
(
p(ξ)1/k

)= α
(
∂V p1/k(ξ)

)
. (3.69)

Observe that if p(ξ) = p(·; ξ)μ0 with a regular density function p, the derivative
∂V p1/k(ω; ξ) is indeed the partial derivative of the function p(ω; ξ)1/k .

Proof Suppose that the model is weakly k-integrable, i.e., p1/k is weakly differen-
tiable, and let V ∈ TξM and α ∈ S(Ω)′. Then

α
(
∂V log p(ξ)p(ξ)

) = α(∂V p)
(3.66)= α

(
∂V

(
πkp1/k

))

(3.62)= α
(
kp(ξ)1−1/k · ∂V p1/k

)
,

whence

α
((

k∂V p1/k − ∂V log p(ξ)p1/k
) · p(ξ)1−1/k

)= 0

for all α ∈ S(Ω)′. On the other hand, ∂V log p ∈ Tp1/k(ξ)M1/k(Ω) = S1/k(Ω,p(ξ))

according to Proposition 3.1, and from this, (3.68) follows.
The identity (3.69) is simply the definition of ∂V p1/k(ξ) being the weak Gâteaux-

derivative of p1/k , cf. Proposition C.2. �

The following now gives a description of (weak) integrability in terms of the
(weak) derivative.
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Theorem 3.2 Let (M,Ω,p) be a parametrized measure model. Then the following
hold:

(1) The model is k-integrable if and only if the map

V �−→ ∥∥∂V p1/k
∥∥

k
(3.70)

defined on T M is continuous.
(2) The model is weakly k-integrable if and only if the weak derivative of p1/k is

weakly continuous, i.e., if for all V0 ∈ T M

∂V p1/k ⇀ ∂V0 p1/k as V → V0.

Remark 3.9 In [25, Definition 2.4], k-integrability (in case of a positive regular den-
sity function) was defined by the continuity of the norm function in (3.70), whence
it coincides with Definition 3.7 by Theorem 3.2.

Our motivation for also introducing the more general definition of weak k-
integrability is that it is the weakest condition that ensures that integration and dif-
ferentiation of kth roots can be interchanged, as explained in the following.

If (M,Ω,μ0,p) has the density function p : Ω × M →R given by (3.64), then
for ξ ∈ M and V ∈ TξM we have

p1/k(ξ) = p(·; ξ)1/kμ
1/k

0 and ∂V p1/k = ∂V p(·; ξ)1/kμ
1/k

0 ,

where

∂V p(·; ξ)1/k := 1

k

∂V p(·; ξ)

p(·; ξ)1−1/k
∈ Lk(Ω,μ0). (3.71)

Thus, if we let α(·) := (·;μ1−1/k

0 ) with the canonical pairing from (3.58), then (3.69)
takes the form

∂V

∫

A

p(ω; ξ)1/k dμ0(ω) =
∫

A

∂V p(ω; ξ)1/k dμ0(ω). (3.72)

Evidently, if p is a regular density function, then the weak partial derivative is
indeed the partial derivative of p, in which case (3.72) is obvious, as integration and
differentiation may be interchanged under these regularity conditions.

Example 3.4 For arbitrary k > 1, the following is an example of a parametrized
measure model which is l-integrable for all 1 ≤ l < k, weakly k-integrable, but not
k-integrable.

Let Ω = (−1,1) with the Lebesgue measure dt , and let f : [0,∞) −→ R be a
smooth function such that

f (u) > 0, f ′(u) < 0 for u ∈ [0,1), f (u) ≡ 0 for u ≥ 1.
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For ξ ∈R, define the measure p(ξ) = p(ξ ; t) dt , where

p(ξ ; t) :=

⎧
⎪⎨

⎪⎩

1 if t ≤ 0 and ξ ∈R arbitrary,

|ξ |k−1f (t |ξ |−1)k dt if ξ �= 0 and t > 0,

0 otherwise.

Since on its restrictions to (−1,0] and (0,1) the density function p as well as pr

with 0 < r < 1 are positive with bounded derivative for ξ �= 0, it follows that p is
∞-integrable for ξ �= 0. For ξ = 0, we have

∥∥p(ξ) − p(0)
∥∥

1 = |ξ |k−1
∫ |ξ |

0
f
(
t |ξ |−1)k dt = |ξ |k

∫ 1

0
f (u)k du,

whence, as k > 1,

lim
ξ→0

‖p(ξ) − p(0)‖1

|ξ | = 0,

showing that p is also a C1-map at ξ = 0 with differential ∂ξ p(0) = 0. That is,
(R,Ω,p) is a parametrized measure model with d0p = 0.

For 1 ≤ l ≤ k and ξ �= 0 we calculate

∂ξ p1/l = χ(0,1)(t) ∂ξ

(|ξ |(k−1)/ lf
(
t |ξ |−1)k/l)

dt1/l

= χ(0,1)(t) sign(ξ)|ξ |(k−l−1)/ l

(
k − 1

l
f (u)k/l − u

(
f k/l

)′
(u)

)∣∣∣∣
u=t |ξ |−1

dt1/l .

Thus, it follows that

∥∥∂ξ p1/l(ξ)
∥∥l

l
= |ξ |k−l

∫ 1

0

(
k − 1

l
f (u)k/l − u

(
f k/l

)′
(u)

)l

du,

so that

limξ→0
∥∥∂ξ p1/l(ξ)

∥∥
l
= 0 = ∥∥∂ξ p1/l(0)

∥∥
l

for 1 ≤ l < k,

limξ→0
∥∥∂ξ p1/k(ξ)

∥∥
k

> 0 = ∥∥∂ξ p1/k(0)
∥∥

k
.

That is, by Theorem 3.2 the model is l-integrable for 1 ≤ l < k, but it fails to be
k-integrable. On the other hand,

∥∥∂ξ p1/k(ξ) · dt1−1/k
∥∥

1 = |ξ |1−1/k

∫ 1

0

((
1 − 1

k

)
f (u) − uf ′(u)

)
du,

so that limξ→0 ‖∂ξ p1/k(ξ) · dt1−1/k‖1 = 0. As we shall show in Lemma 3.3 below,
this implies that ∂ξ p1/k(ξ) ⇀ 0 = ∂ξ p1/k(0) as ξ → 0. Thus, the model is weakly
k-integrable by Theorem 3.2.



3.2 Parametrized Measure Models 157

The rest of this section will be devoted to the proof of Theorem 3.2 which is
somewhat technical and therefore will be divided into several lemmas.

Before starting the proof, let us give a brief outline of its structure.
We begin by proving the second statement of Theorem 3.2. Note that for a weak

C1-map the differential is weakly continuous by definition, so one direction of the
proof is trivial. The reverse implication is the content of Lemmata 3.2 through 3.6.

We give a decomposition of the dual space S1/k(Ω)′ in Lemma 3.2 and a suffi-
cient criterion for the weak convergence of sequences in S1/k(Ω,μ0) in Lemma 3.3
as well as a criterion for weak k-integrability in terms of interchanging differentia-
tion and integration along curves in M in Lemma 3.4.

Unfortunately, we are not able to verify this criterion directly for an arbitrary
model p. The technical obstacle is that the measures of the family p(ξ) need not
be equivalent. We overcome this difficulty by modifying the model p to a model
pε(ξ) := p(ξ)+ εμ0, where ε > 0 and μ0 ∈M(Ω) is a suitable measure, so that pε

has a positive density function. Then we show in Lemma 3.5 that the differential of
pε remains weakly continuous, and finally in Lemma 3.6 we show that pε is weakly
k-integrable as it satisfies the criterion given in Lemma 3.4; furthermore it is shown
that taking the limit ε → 0 implies the weak k-integrability of p as well, proving the
second part of Theorem 3.2.

The first statement of Theorem 3.2 is proven in Lemmata 3.7 and 3.8. Again, one
direction is trivial: if the model is k-integrable, then its differential is continuous by
definition, whence so is its norm (3.70). That is, we have to show the converse.

In Lemma 3.7 we show that the continuity of the map (3.70) implies the weak
continuity of the differential of p1/k . This implies, on the one hand, that the model
is weakly k-integrable by the second part of Theorem 3.2 which was already shown,
and on the other hand, the Radon–Riesz theorem (cf. Theorem C.3) implies that
the differential of p1/k is even norm-continuous. Then in Lemma 3.8 we give the
standard argument that a weak C1-map with a norm-continuous differential must be
a C1-map, and this will complete the proof.

Lemma 3.2 For each μ0 ∈M(Ω), there is an isomorphism

(
S1/k(Ω)

)′ ∼= (
S1/k(Ω,μ0)

)⊥ ⊕ Sk/(k−1)(Ω,μ0), (3.73)

where (S1/k(Ω,μ0))
⊥ denotes the annihilator of S1/k(Ω,μ0)⊆S1/k(Ω) and

where Sk/(k−1)(Ω,μ0) is embedded into the dual via the canonical pairing (3.58).
That is, we can write any α ∈ (S1/k(Ω))′ uniquely as

α(·) = (·;φαμ
1−1/k

0

)+ βμ0(·), (3.74)

where φα ∈ Lk/(k−1)(Ω,μ0) and βμ0(S1/k(Ω,μ0)) = 0.

Proof The restriction of α to S1/k(Ω,μ0) yields a functional on Lk(Ω,μ0) given
as ψ �→ α(ψμ

1/k

0 ). Since the dual of Lk(Ω,μ0) is Lk/(k−1)(Ω,μ0), there is a φα
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such that

α
(
ψμ

1/k

0

)=
∫

Ω

ψφα dμ0 = (
ψμ

1/k

0 ;φαμ
1−1/k

0

)
,

and then (3.74) follows by letting βμ0(·) := α(·) − (·;φαμ
1−1/k

0 ). �

Lemma 3.3 Let ν
1/k
n = ψnμ

1/k

0 be a bounded sequence in S1/k(Ω,μ0), i.e.,

lim sup‖ν1/k
n ‖k < ∞. If lim

∫
Ω
|ψn|dμ0 = 0, then

ν
1/k
n ⇀ 0,

i.e., limα(ν
1/k
n ) = 0 for all α ∈ (S1/k(Ω))′.

Proof Suppose that
∫
Ω
|ψn|dμ0 → 0 and let φ ∈ Lk/(k−1)(Ω,μ0) and τ ∈ L∞(Ω).

Then

lim sup
∣∣(ν1/k

n ;φμ
1−1/k

0

)∣∣≤ lim sup

(∫

Ω

|ψn||φ − τ |dμ0 + ‖τ‖∞
∫

Ω

|ψn|dμ0

)

≤ lim sup‖ψn‖k‖φ − τ‖k/(k−1),

using Hölder’s inequality in the last estimate. Since ‖ν1/k
n ‖k = ‖ψn‖k and hence,

lim sup‖ψn‖k < ∞, the bound on the right can be made arbitrarily small as
L∞(Ω)⊆Lk/(k−1)(Ω,μ0) is a dense subspace. Therefore, lim(ν

1/k
n ;φμ

1−1/k

0 ) = 0

for all φ ∈ Lk/(k−1), and since β(ν
1/k
n ) = 0 for all β ∈ (S1/k(Ω,μ0))

⊥, the assertion
follows from (3.74). �

Before we go on, let us introduce some notation. Let (M,Ω,p) be a parametrized
measure model such that ∂V log p(ξ) ∈ Lk(Ω,p(ξ)) for all V ∈ TξM , and let (ξt )t∈I

be a curve in M . By Proposition 3.3, there is a measure μ0 ∈M(Ω) dominating all
p(ξt ). For t, t0 ∈ I and 1 ≤ l ≤ k we define the remainder term as

rl (t, t0) := p1/l(ξt+t0) − p1/l(ξt0) − t∂ξ ′
t0

p1/l ∈ S1/l(Ω), (3.75)

and we define the functions pt , qt ∈ L1(Ω,μ0) with pt ≥ 0 and qt;l , rt,t0;l ∈
Ll(Ω,μ0) such that

p(ξt ) = ptμ0 and ∂ξ ′
t
p = qtμ0,

qt;l := qt

lp
1−1/l
t

so that ∂ξ ′
t
p1/l = qt;lμ1/l

0 ,

rt,t0;l := p
1/l
t+t0

− p
1/l
t0

− tqt0;l so that rl (t, t0) = rt,t0;lμ
1/l

0 .

(3.76)

Lemma 3.4 Let (M,Ω,p) be a parametrized measure model such that
∂V log p(ξ) ∈ Lk(Ω,p(ξ)) for all V ∈ TξM and the function V �→ ∂V p1/k ∈
S1/k(Ω) is weakly continuous.
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Then the model is weakly k-integrable if for any curve (ξt )t∈I in M and the
measure μ0 ∈M(Ω) and the functions pt , qt , qt;l defined in (3.76) and any A⊆Ω

and t0 ∈ I

d

dt

∣∣∣∣
t=t0

∫

A

p
1/k
t dμ0 =

∫

A

qt0;k dμ0 (3.77)

or, equivalently, for all a, b ∈ I

∫

A

(
p

1/k
b − p

1/k
a

)
dμ0 =

∫ b

a

∫

A

qt;k dμ0 dt. (3.78)

Proof Note that the right-hand side of (3.77) can be written as
∫

A

qt0;k dμ0 = (
∂ξ ′

t0
p1/k;χAμ

1−1/k

0

)

with the pairing from (3.58), whence it depends continuously on t0 by the weak
continuity of V �→ ∂V p1/k . Thus, the equivalence of (3.77) and (3.78) follows from
the fundamental theorem of calculus.

Now (3.78) can be rewritten as

(
p1/k(ξb)− p1/k(ξa);φμ

1−1/k

0

)=
∫ b

a

(
∂ξ ′

t
p1/k;φμ

1−1/k

0

)
dt (3.79)

for φ = χA, and hence, (3.79) holds whenever φ = τ is a step function. But now,
if φ ∈ Lk/(k−1) is given, then there is a sequence of step functions (τn) such that
sign(φ)τn ↗ |φ|, and since (3.79) holds for all step functions, it also holds for φ by
dominated convergence.

If β ∈ S1/k(Ω,μ0)
⊥, then clearly, β(p1/k(ξt )) = β(∂ξ ′

t
p1/k) = 0, whence by

(3.74) we have for all α ∈ (S1/k(Ω,μ0))
′

α
(
p1/k(ξb)− p1/k(ξa)

)=
∫ b

a

α
(
∂ξ ′

t
p1/k

)
dt,

and since the function t �→ α(∂ξ ′
t
p1/k) is continuous by the assumed weak continu-

ity of V �→ ∂V p1/k , differentiation and the fundamental theorem of calculus yield
(3.69) for V = ξ ′

t , and as the curve (ξt ) was arbitrary, (3.69) holds for arbitrary
V ∈ T M .

But (3.69) is equivalent to saying that ∂V p1/k(ξ) is the weak Gâteaux-differential
of p1/k (cf. Definition C.1), and since this map is assumed to be weakly continuous,
it follows that p1/k is a weak C1-map, whence (M,Ω,p) is weakly k-integrable. �

Lemma 3.5 Let (M,Ω,p) be a parametrized measure model for which the map
V �→ ∂V p1/k is weakly continuous. Let (ξt )t∈I be a curve in M , and let μ0 ∈M(Ω)

be a measure dominating p(ξt ) for all t . For ε > 0, define the parametrized measure
model pε as

pε(ξ) := p(ξ) + εμ0. (3.80)



160 3 Parametrized Measure Models

Then the map t �→ ∂ξ ′
t
p1/k

ε ∈ S1/k(Ω) is weakly continuous, and for all t0 ∈ I ,

1

t
rε
k(t, t0) ⇀ 0 as t → 0,

where rε
k(t, t0) is defined analogously to (3.75).

Proof We define the functions pε
t , qε

t , qε
t;l and rε

t,t0;l satisfying (3.76) for the
parametrized measure model pε , so that pε

t = pt + ε and qε
t = qt . For t, t0 ∈ I

we have
∣∣qε

t;k − qε
t0;k

∣∣ =
∣∣∣∣

qt

k(pε
t )

1−1/k
− qt0

k(pε
t0
)1−1/k

∣∣∣∣

≤ 1

k(pε
t0
)1−1/k

|qt − qt0 | +
∣∣∣∣

1

k(pε
t )

1−1/k
− 1

k(pε
t0
)1−1/k

∣∣∣∣|qt |

≤ 1

k(pε
t0
)1−1/k

(|qt − qt0 | + k
∣∣(pε

t0

)1−1/k − (
pε

t

)1−1/k∣∣∣∣qε
t;k

∣∣)

(3.63)≤ 1

kε1−1/k

(|qt − qt0 | + k|pt0 − pt |1−1/k|qt;k|
)
.

Thus,
∫

Ω

∣∣qε
t;k − qε

t0;k
∣∣ dμ0 ≤ 1

kε1−1/k

∫

Ω

(|qt − qt0 | + k|pt0 − pt |1−1/k|qt;k|
)
dμ0

≤ 1

kε1−1/k

(‖qt − qt0‖1 + k‖pt0 − pt‖1−1/k

1 ‖qt;k‖k

)

and since ‖qt − qt0‖1 = ‖dξ ′
t
p − dξ ′

t0
p‖1 and ‖pt0 − pt‖1 = ‖p(ξt ) − p(t0)‖1 tend

to 0 for t → t0 as p is a C1-map by the definition of parametrized measure model,
and ‖qt;k‖k = ‖∂ξ ′

t
p1/k‖k is bounded for t → t0 by (C.1) as ∂ξ ′

t
p1/k ⇀ ∂ξ ′

t0
p1/k , it

follows that the integral tends to 0 and hence, Lemma 3.3 implies that ∂ξ ′
t
p1/k

ε ⇀

∂ξ ′
t0

p1/k
ε as t → t0, showing the weak continuity of t �→ ∂ξ ′

t
p1/k

ε .

For the second claim, note that by the mean value theorem there is an ηt between
pε

t+t0
and pε

t0
(and hence, ηt ≥ ε) for which

∣∣rε
t,t0;k

∣∣ =
∣∣∣∣
(
pε

t+t0

)1/k − (
pε

t0

)1/k − t
qt0

k(pε
t0
)1−1/k

∣∣∣∣=
∣∣∣∣
pt+t0 − pt0

kη
1−1/k
t

− t
qt0

k(pε
t0
)1−1/k

∣∣∣∣

≤ |rt,t0;1|
kη

1−1/k
t

+ |t |
∣∣∣∣

qt0

kη
1−1/k
t

− qt0

k(pε
t0
)1−1/k

∣∣∣∣

= |rt,t0;1|
kη

1−1/k
t

+ |t ||qt0 ||(pε
t0
)1−1/k − η

1−1/k
t |

k(pε
t0
)1−1/kη

1−1/k
t

(3.63)≤ C
(|rt,t0;1| + |t ||qt0;k||pt+t0 − pt0 |1−1/k

)
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for C := 1/kε1−1/k > 0 depending only on k and ε. Thus,

∫

Ω

∣∣rε
t,t0;k

∣∣ dμ0 ≤ C

(∫

Ω

|rt,t0;1| dμ0 + |t |
∫

Ω

|qt0;k||pt+t0 − pt0 |1−1/k dμ0

)

≤ C
(‖rt,t0;1‖1 + |t |‖qt0;k‖k‖pt+t0 − pt0‖1−1/k

1

)

= C
(∥∥r1(t, t0)

∥∥
1 + |t |∥∥∂ξ ′

t
p1/k

∥∥
k

∥∥p(t + t0)− p(t0)
∥∥1−1/k

1

)
,

using Hölder’s inequality in the second line. Since p is a C1-map, ‖r1(t, t0)‖1/|t |
and ‖p(t + t0) − p(t0)‖1 tend to 0, whereas ‖∂ξ ′

t
p1/k‖k is bounded close to t0 by

(C.1) since t �→ ∂ξ ′
t
p1/k is weakly continuous, so that

1

|t |
∫

Ω

∣∣rε
t,t0;k

∣∣ dμ0
t→0−−→ 0,

which by Lemma 3.3 implies the second assertion. �

Since by definition the derivative of V �→ ∂V p1/k is weakly continuous for any
k-integrable model, the second assertion of Theorem 3.2 will follow from the fol-
lowing.

Lemma 3.6 Let (M,Ω,p) be a parametrized measure model for which the map
V �→ ∂V p1/k is weakly continuous. Then (M,Ω,p) is weakly k-integrable.

Proof Let (ξt )t∈I be a curve in M , let μ0 ∈M(Ω) be a measure dominating p(ξt )

for all t , and define the parametrized measure model pε(ξ) and rk(t, t0) as in (3.80).
By Lemma 3.5, we have for any A⊆Ω and t0 ∈ I and the pairing (·; ·) from (3.58)

0 = lim
t→0

1

t

(
rk(t, t0);χAμ

1−1/k

0

)= lim
t→0

1

t

∫

A

((
pε

t+t0

)1/k − (
pε

t0

)1/k − tqε
t0;k

)
dμ0

= d

dt

∣∣∣∣
t=t0

∫

A

(
pε

t

)1/k
dμ0 −

∫

A

qε
t0;k dμ0,

showing that

d

dt

∣∣∣∣
t=t0

∫

A

(
pε

t

)1/k
dμ0 =

∫

A

qε
t0;k dμ0 (3.81)

for all t0 ∈ I . As we observed in the proof of Lemma 3.4, the weak continuity of the
map t �→ ∂ξ ′

t
p1/k

ε implies that the integral on the right-hand side of (3.81) depends
continuously on t0 ∈ I , whence integration implies that for all a, b ∈ I we have

∫

A

((
pε

b

)1/k − (
pε

a

)1/k)
dμ0 =

∫ b

a

∫

A

qε
t;k dμ0 dt. (3.82)
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Now |qε
t;k| ≤ |qt;k| and |(pε

b)
1/k − (pε

a)
1/k‖ ≤ |pb − pa|1/k by (3.63), whence we

can use dominant convergence for the limit as ε ↘ 0 in (3.82) to conclude that (3.78)
holds, so that Lemma 3.4 implies the weak k-integrability of the model. �

We now have to prove the first assertion of Theorem 3.2. We begin by showing
the weak continuity of the differential of p1/k .

Lemma 3.7 Let (M,Ω,p) be a parametrized measure model with ∂V log p(ξ) ∈
Lk(Ω,p(ξ)) for all ξ , and suppose that the function (3.70) is continuous. Then the
map V �→ ∂V p1/k is weakly continuous, so that the model is weakly k-integrable.

Proof Let (Vn)n∈N be a sequence, Vn ∈ TξnM with Vn → V0 ∈ Tξ0M , and let μ0 ∈
M(Ω) be a measure dominating all p(ξn). In fact, we may assume that there is a
decomposition Ω = Ω0 �Ω1 such that

p(ξ0) = χΩ0μ0.

We adapt the notation from (3.76) and define pn, qn ∈ L1(Ω,μ0) and qn;l ∈
Ll(Ω,μ0), replacing t ∈ I by n ∈ N0 in (3.76). In particular, p0 = χΩ0 . Then on
Ω0 we have

|qn;k − qn;0| =
∣∣∣∣

qn

kp
1−1/k
n

− q0

k

∣∣∣∣≤
1

k
|qn − q0| + |qn|

k

∣∣∣∣
1

p
1−1/k
n

− 1

∣∣∣∣

= 1

k
|qn − q0| + |qn;k|

∣∣1 − p
1−1/k
n

∣∣

(3.63)≤ 1

k
|qn − q0| + |qn;k||1 − pn|1−1/k

= 1

k
|qn − q0| + |qn;k||pn − p0|1−1/k.

Thus,
∫

Ω0

|qn;k − qn;0| dμ0 ≤ 1

k

∫

Ω0

|qn − q0| dμ0 +
∫

Ω0

|qn;k||pn − p0|1−1/k dμ0

≤ 1

k
‖qn − q0‖1 + ‖qn;k‖k‖pn − p0‖1−1/k

1

= 1

k
‖∂Vnp − ∂V0 p‖1 + ∥∥∂Vnp1/k

∥∥
k

∥∥p(ξn) − p(ξ0)
∥∥1−1/k

1 .

Since p is a C1-map, both ‖∂Vnp− ∂V0 p‖1 and ‖p(ξn)− p(ξ0)‖1 tend to 0, whereas
‖∂Vnp1/k‖k tends to ‖∂V0 p1/k‖k by the continuity of (3.70). Moreover, ∂V0 p is dom-
inated by p(ξ0) = χΩ0μ0, whence q0 and q0;k vanish on Ω1. Thus, we conclude
that

0 = lim
∫

Ω0

|qn;k − qn;0| dμ0 = lim
∫

Ω

|χΩ0qn;k − qn;0| dμ0. (3.83)
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By Lemma 3.3, this implies that χΩ0∂Vnp1/k ⇀ ∂V0p1/k , whence by (C.1) we
have

‖∂V0 p‖k ≤ lim inf‖χΩ0∂Vnp‖k ≤ lim sup‖χΩ0∂Vnp‖k

≤ lim sup‖∂Vnp‖k = ‖∂V0 p‖k,

using again the continuity of (3.70). Thus, we have equality in these estimates, i.e.,

‖∂V0 p‖k = lim‖χΩ0∂Vnp‖k = lim‖∂Vnp‖k,

and since ‖∂Vnp‖k
k = ‖χΩ0∂Vnp‖k

k + ‖χΩ1∂Vnp‖k
k , this implies that

lim‖χΩ1∂Vnp‖k = 0.

Thus,

lim
∫

Ω1

|qn;k − qn;0| dμ0 = lim
∫

Ω1

|qn;k| dμ0 = lim‖χΩ1∂Vnp‖1 = 0

as ‖χΩ1∂Vnp‖k → 0, so that together with (3.83) we conclude that

lim
∫

Ω

|qn;k − qn;0| dμ0 = 0,

and now, Lemma 3.3 implies that ∂Vnp1/k ⇀ ∂V0 p1/k for an arbitrary convergent se-
quence (Vn) ∈ T M , showing the weak continuity, and the last assertion now follows
from Lemma 3.6. �

Lemma 3.8 The first assertion of Theorem 3.2 holds.

Proof By the definition of k-integrability, the continuity of the map p1/k for a k-
integrable parametrized measure model is evident from the definition, so that the
continuity of (3.70) follows.

Thus, we have to show the converse and assume that the map (3.70) is continuous.
By Lemma 3.7, this implies that the map V �→ ∂V p1/k is weakly continuous and
hence, the model is weakly k-integrable by Lemma 3.6. In particular, (3.69) holds
by Proposition 3.4.

Together with the continuity of the norm, it follows from the Radon–Riesz theo-
rem (cf. Theorem C.3) that the map V �→ ∂V p1/k is continuous even in the norm of
S1/k(Ω).

Let (ξt )t∈I be a curve in M and let V := ξ ′
0 ∈ Tξ0M , and recall the definition of

the remainder term rk(t, t0) from (3.75). Thus, what we have to show is that

1

|t |
∥∥rk(t, t0)

∥∥
k

t→0−−→ 0. (3.84)
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By the Hahn–Banach theorem (cf. Theorem C.1), we may for each pair t, t0 ∈ I

choose an α ∈ S1/k(Ω)′ with α(rk(t, t0)) = ‖rk(t, t0)‖k and ‖α‖k = 1. Then we
have

∥∥rk(t, t0)
∥∥

k
= ∣∣α

(
rk(t, t0)

)∣∣= ∣∣α
(
p1/k(ξt+t0)− p1/k(ξt0)

)− t∂ξ ′
t0

p1/k))
∣∣

(3.69)=
∣∣∣∣
∫ t+t0

t0

α
(
∂ξ ′

s
p1/k − ∂ξ ′

t0
p1/k

)
ds

∣∣∣∣

≤
∫ t+t0

t0

‖α‖k

∥∥∂ξ ′
s
p1/k − ∂ξ ′

t0
p1/k

∥∥
k
ds

≤ |t | max|s−t0|≤t

∥∥∂ξ ′
s
p1/k − ∂ξ ′

t0
p1/k

∥∥
k

Thus,

‖rk(t, t0)‖k

|t | ≤ max|s−t0|≤t

∥∥|∂ξ ′
s
p1/k − ∂ξ ′

t0
p1/k

∥∥
k
,

and by the continuity of the map V �→ ∂V p1/k in the norm of S1/k(Ω), the right-
hand side tends to 0 as t → 0, showing (3.84) and hence the claim. �

3.2.5 Canonical n-Tensors of an n-Integrable Model

We begin this section with the formal definition of an n-tensor on a vector space.

Definition 3.8 Let (V ,‖ ·‖) be a normed vector space (e.g., a Banach space). A co-
variant n-tensor on V is a multilinear map Θ :×n

V → R which is continuous
w.r.t. the product topology.

We can characterize covariant n-tensors by the following proposition.

Proposition 3.5 Let (V ,‖ · ‖) be a Banach space and Θ :×n
V →R a be multi-

linear map. Then the following are equivalent.

(1) Θ is a covariant n-tensor on V , i.e., continuous w.r.t. the product topology.
(2) There is a C > 0 such that for V1, . . . , Vn ∈ V

∣∣Θ(V1, . . . , Vn)
∣∣≤ C‖V1‖ · · · ‖Vn‖. (3.85)

Proof To see that the first condition implies (3.85), we proceed by induction on n.
For n = 1 this is clear as a continuous linear map Θ : V → R is bounded. Suppose

that (3.85) holds for all n-tensors and let Θn+1 : ×n+1
V → R be a covariant

(n+1)-tensor. For fixed V1, . . . , Vn ∈ V , the map Θn+1(·,V1, . . . , Vn) is continuous
and hence bounded linear.
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On the other hand, for fixed V0, the map Θn+1(V0,V1, . . . , Vn) is a covariant
n-tensor and hence by induction hypothesis,

∣∣Θn+1(V0,V1, . . . , Vn)
∣∣≤ CV0 if ‖Vi‖ = 1 for all i > 0. (3.86)

The uniform boundedness principle (cf. Theorem C.2) now shows that the constant
CV0 in (3.86) can be chosen to be C‖V0‖ for some fixed C ∈R, so that (3.85) holds
for Θn+1, completing the induction.

Next, to see that (3.85) implies the continuity of Θn, let (V
(k)
i )k∈N ∈ V , i =

1, . . . , n be sequences converging to V 0
i . Then

∣∣Θ
(
V

(k)
1 , . . . , V (k)

n

)−Θ
(
V 0

1 , . . . , V 0
n

)∣∣ =
∣∣∣∣∣

n∑

i=1

Θ(V
(k)
1 , . . . , V

(k)
i − V 0

i , . . . , V 0
n )

∣∣∣∣∣

(3.85)≤
n∑

i=1

C
∥∥V

(k)
1

∥∥ · · ·∥∥V
(k)
i − V 0

i

∥∥ · · ·∥∥V 0
n

∥∥,

and this tends to 0 as ‖V (k)
i ‖ k→∞−−−→ ‖V 0

i ‖ and ‖V (k)
i − V 0

i ‖
k→∞−−−→ 0. Thus, Θ is

continuous in the product topology. �

Definition 3.9 (Covariant n-tensors on a manifold) Let M be a C1-manifold. A co-
variant n-tensor field on M is a family (Θξ )ξ∈M of covariant n-tensor fields on TξM

which are weakly continuous, i.e., such that for continuous vector fields V1, . . . , Vn

on M the function Θ(V1, . . . , Vn) is continuous on M .

An important example of such a tensor is given by the following

Definition 3.10 (Canonical n-tensor) For n ∈ N, the canonical n-tensor is the co-
variant n-tensor on S1/n(Ω), given by

Ln
Ω(ν1, . . . , νn) = nn

∫

Ω

d(ν1 · · ·νn), where νi ∈ S1/n(Ω). (3.87)

Moreover, for 0 < r ≤ 1/n the canonical n-tensor τn
Ω;r on Sr (Ω) is defined as

(
τn
Ω;r

)
μr

(ν1, . . . , νn) :=
⎧
⎨

⎩

1
rn

∫
Ω

d(ν1 · · ·νn · |μr |1/r−n) if r < 1/n,

Ln
Ω(ν1, . . . , νn) if r = 1/n,

(3.88)

where νi ∈ Sr (Ω) = TμrSr (Ω).

Observe that for a finite set Ω = I , the definition of Ln
I coincides with the co-

variant n-tensor given in (2.53).
For n = 2, the pairing (·; ·) : S1/2(Ω)× S1/2(Ω) →R from (3.58) satisfies

(ν1;ν2) = 1

4
L2

Ω(ν1, ν2).
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Since (ν;ν) = ‖ν‖2
2 by (3.54), it follows:5

(
S1/2(Ω),

1

4
L2

Ω

)
is a Hilbert space with norm ‖ · ‖2. (3.89)

For a C1-map Φ : M1 → M2 and a covariant n-tensor field Θ on M2, the pull-
back Φ∗Θ given by

Φ∗Θ(V1, . . . , Vn) := Θ
(
dΦ(V1), . . . , dΦ(Vn)

)
(3.90)

is a covariant n-tensor field on M1. If Φ : M1 → M2 and Ψ : M2 → M3 are differ-
entiable, then this immediately implies for the composition Ψ Φ : M1 → M3:

(Ψ Φ)∗Θ = Φ∗Ψ ∗Θ. (3.91)

Proposition 3.6 Let n ∈N and 0 < s ≤ r ≤ 1/n. Then

τn
Ω;r =

(
π̃1/rn

)∗
Ln

Ω (3.92)

and
(
π̃ r/s

)∗
τn
Ω;r = τn

Ω;s , (3.93)

with the C1-maps π̃1/rn and π̃ r/s from Proposition 3.2, respectively.

Proof Unwinding the definition we obtain for k := 1/rn ≥ 1:
((

π̃ k
)∗

Ln
Ω

)
μr

(
ν1
r , . . . , νn

r

) = Ln
Ω

(
dμr π̃

k
(
ν1
r

)
, . . . , dμr π̃

k
(
νn
r

))

(3.62)= Ln
Ω

(
k|μr |k−1 · ν1

r , . . . , k|μr |k−1 · νn
r

)

= knnn

∫

Ω

d
((|μr |k−1 · ν1

r

) · · · (|μr |k−1 · νn
r

))

= 1

rn

∫

Ω

d
(
ν1
r · · ·νn

r · |μr |1/r−n
)

= (
τn
Ω;r

)
μr

(
ν1
r , . . . , νn

r

)
,

showing (3.92). Thus,
(
π̃ r/s

)∗
τn
Ω;r = (

π̃ r/s
)∗(

π̃1/rn
)∗

Ln
Ω = (

π̃1/rnπ̃ r/s
)∗

Ln
Ω = (

π̃1/sn
)∗

Ln
Ω

= τn
Ω;s ,

showing (3.93). �

5Observe that the factor 1/4 in (3.89) by which the canonical form differs from the Hilbert in-
ner product is responsible for having to use the sphere of radius 2 rather than the unit sphere in
Proposition 2.1.
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Remark 3.10 If Ω = I is a finite measurable space, then Mr+(I ) is an open subset
of Sr (I ) and hence a manifold. Moreover, the restrictions π̃ k :Mr+(I ) →Ms+(I )

is a C1-map even for k ≤ 1, so that we may use (3.92) to define τn
Ω;r for all r ∈ (0,1]

on M+(I ).
That is, if μ =∑

i∈I miδ
i ∈M+(I ) and Vk =∑

i∈I vk;iδi ∈ S(I ), then

τn
I ;r (V1, . . . , Vn) = 1

rn

∫

I

v1;i · · ·vn;im1/r−n
i δi =

∑

i∈I

1

rnm
n−1/r
i

v1;i · · ·vn;i .

(3.94)
For r = 1, the tensor τn

I ;1 coincides with the tensor τn
I in (2.76).

This explains on a more conceptual level why τn
I = τn

I ;1 cannot be extended from

M+(I ) to S(I ), whereas L2
I = π̃1/2τn

I can be extended to a tensor on S2(I ), cf.
(2.52).

If (M,Ω,p) is an n-integrable parametrized measure model, then we define the
canonical n-tensor of (M,Ω,p) as

τn
M = τn

(M,Ω,p) :=
(
p1/n

)∗
Ln

Ω, (3.95)

so that by (3.68)

τn
M(V1, . . . , Vn) := Ln

Ω

(
dξ p1/n(V1), . . . , dξ p1/n(Vn)

)

=
∫

Ω

∂V1 log p(ξ) · · ·∂Vn log p(ξ) dp(ξ), (3.96)

where the second line follows immediately from (3.68) and (3.87). That is, τn
M co-

incides with the tensor given in (3.44).
Observe that τn

M is indeed continuous, since τn
M(V, . . . , V ) = nn‖dξ p1/n(V )‖n

n

is continuous for all V .

Example 3.5

(1) For n = 1, the canonical 1-form is given as

τ 1
M(V ) :=

∫

Ω

∂V log p(ξ) dp(ξ) = ∂V

∥∥p(ξ)
∥∥. (3.97)

Thus, it vanishes if and only if ‖p(ξ)‖ is locally constant, e.g., if (M,Ω,p) is a
statistical model.

(2) For n = 2, τ 2
M coincides with the Fisher metric g from (3.41).

(3) For n = 3, τ 3
M coincides with the Amari–Chentsov 3-symmetric tensor T from

(3.42).

Remark 3.11 While the above examples show the statistical significance of τn
M for

n = 1,2,3, we shall show later that the tautological forms of even degree τ 2n
M can
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be used to measure the information loss of statistics and Markov kernels, cf. Theo-
rem 5.5. Moreover, in [160, p. 212] the question is posed if there are other significant
tensors on statistical manifolds, and the canonical n-tensors may be considered as
natural candidates.

3.2.6 Signed Parametrized Measure Models

In this section, we wish to comment on the generalization of Definition 3.4 to fami-
lies of finite signed measures (p(ξ))ξ∈M , i.e., dropping the assumption that p(ξ) is
a non-negative measure. That is, we may simply consider C1-maps p : M → S(Ω).

However, with this approach there is no notion of k-integrability or of canoni-
cal tensors, as the term ∂V log p(ξ) from (3.66), which is necessary to define these
notions, cannot be given sense without further assumptions.

For instance, if Ω = {ω} is a singleton and p(ξ) := ξδω for ξ ∈R, then p :R→
S(Ω) is certainly a C1-map, but log p(ξ) = log ξ cannot be continuously extended
at ξ = 0.

Therefore, we shall make the following definition.

Definition 3.11 Let Ω be a measurable space and M be a (Banach-)manifold.

(1) A signed parametrized measure model is a triple (M,Ω,p), where M is a (finite
or infinite-dimensional) Banach manifold and p : M → S(Ω) is a C1-map in
the sense of Sect. 3.2.2.

(2) A signed parametrized measure model (M,Ω,p) is said to have a logarithmic
derivative if for each ξ ∈ M and V ∈ TξM the derivative dξ p(V ) ∈ S(Ω) is
dominated by |p(ξ)|. In this case, we define analogously to (3.66)

∂V log
∣∣p(ξ)

∣∣ := d{dξ p(V )}
dp(ξ)

. (3.98)

Here, for signed measures μ,ν ∈ S(Ω) such that |μ| dominates ν, the Radon–

Nikodym derivative
dν

dμ
is the unique function in L1(Ω, |μ|) such that

ν = dν

dμ
μ.

Just as in the non-signed case, we can now consider the (1/k)th power of p.
Here, we shall use the signed power in order not to lose information on p(ξ). That
is, we consider the (continuous) map

p̃1/k : M −→ S1/k(Ω), ξ �−→ π̃1/kp(ξ) =: p̃(ξ)1/k.
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Assuming that this map is differentiable and differentiating the equation p = π̃ kp̃1/k

just as in the non-signed case, we obtain in analogy to (3.68)

dξ p̃1/k(V ) := 1

k
∂V log

∣∣p(ξ)
∣∣ p̃1/k(ξ) ∈ S1/k

(
Ω,

∣∣p(ξ)
∣∣) (3.99)

so that, in particular, ∂V log |p(ξ)| ∈ Lk(Ω, |p(ξ)|), and in analogy to Definition 3.7
we define the following.

Definition 3.12 (k-Integrable signed parametrized measure model) A signed
parametrized measure model (M,Ω,p) is called k-integrable for k ≥ 1 if it has
a logarithmic derivative and the map p̃1/k : M → S1/k(Ω) is a C1-map. Further-
more, we call the model ∞-integrable if it is k-integrable for all k ≥ 1.

Just as in the non-signed case, this allows us to define the canonical n-tensor
for an n-integrable signed parametrized measure model. Namely, in analogy to
(3.95) and (3.96) we define for an n-integrable signed parametrized measure model
(M,Ω,p) the canonical n-tensor of (M,Ω,p) as

τn
M = τn

(M,Ω,p) :=
(
p̃1/n

)∗
Ln

Ω, (3.100)

so that by (3.99) and (3.87)

τn
M(V1, . . . , Vn) := Ln

Ω

(
dξ p̃1/n(V1), . . . , dξ p̃1/n(Vn)

)

=
∫

Ω

∂V1 log
∣∣p(ξ)

∣∣ · · · ∂Vn log
∣∣p(ξ)

∣∣ dp(ξ).

Example 3.6

(1) For n = 1, the canonical 1-form is given as

τ 1
M(V ) :=

∫

Ω

∂V log
∣∣p(ξ)

∣∣dp(ξ) = ∂V

(
p(ξ)(Ω)

)
. (3.101)

Thus, it vanishes if and only if p(ξ)(Ω) is locally constant, but of course, as
p(ξ) is a signed measure, in general this quantity does not equal ‖p(ξ)‖T V =
|p(ξ)|(Ω).

(2) For n = 2 and n = 3, τ 2
M and τ 3

M coincide with the Fisher metric and the Amari–
Chentsov 3-symmetric tensor T from (3.41) and (3.42), respectively. That is,
for signed parametrized measure models which are k-integrable for k ≥ 2 or
k ≥ 3, respectively, the tensors gM and T, respectively, still can be defined.
Note, however, that gM may fail to be positive definite. In fact, it may even be
degenerate, so that gM does not necessarily yield a Riemannian (and possibly
not even a pseudo-Riemannian) metric on M for signed parametrized measure
models.
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3.3 The Pistone–Sempi Structure

The definition of (k-integrable) parametrized measure models (statistical models,
respectively) discussed in Sect. 3.2 is strongly inspired by the definition of Amari
[9]. There is, however, another beautiful concept of geometrizing the space of finite
measures (probability measures, respectively) which was first suggested by Pistone
and Sempi in [216].

This approach is, on the one hand, more restrictive, since instead of geometrizing
all of M(Ω), it only geometrizes the subset M+ =M+(Ω,μ0) of finite measures
compatible with a fixed measure μ0, where two measures are called compatible if
they have the same null sets. On the other hand, it defines on M+ the structure
of a Banach manifold, whence a much stronger geometric structure than that of
M(Ω) defined in Sect. 3.2. We shall refer to this as the Pistone–Sempi structure on
M+(Ω,μ0).

The starting point is to define a topology on M+, called the topology of e-
convergence or e-topology, cf. Definition 3.13 below. For this topology, the inclu-
sion M+ =M+(Ω,μ0) ↪→M(Ω) is continuous, where M(Ω) is equipped with
the L1-topology induced by the inclusion M(Ω,μ0) ↪→ S(Ω).

Since M+ is a Banach manifold, it is natural to consider models which are given
by C1-maps p : M → M+ from a (Banach-)manifold M to the Banach manifold
M+. As it turns out, such a map, when regarded as a parametrized measure model
p : M → M+ ↪→ M(Ω) is ∞-integrable in the sense of Definition 3.7. The con-
verse, however, is far from being true in general, see Example 3.8 below.

In fact, we shall show that in the e-topology, the set M+ decomposes into several
connected components each of which can be canonically identified with a convex
open set in a Banach space, and this induces the Banach manifold structure estab-
lished in [216].

We shall begin our discussion by introducing the notion of the e-topology, which
is defined using the notion of convergence of sequences. We shall then recall some
basic facts about Orlicz spaces and show that to each μ ∈M+ there is an associated
exponential tangent space TμM+ which is an Orlicz space. It then turns out that the
image of the injective map

logμ0
: ef μ0 �−→ f

maps the connected component of μ in M+ into an open convex subset of TμM+.
We also refer to the results in [230] where this division of M+ into open cells is
established as well.

3.3.1 e-Convergence

Definition 3.13 (Cf. [216]) Let (gn)n∈N be a sequence of measurable functions in
the finite measure space (Ω,μ), and let g ∈ L1(Ω,μ) be such that gn, g > 0 μ-
a.e. We say that (gn)n∈N is e-convergent to g if the sequences (gn/g) and (g/gn)
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converge to 1 in Lp(Ω,gμ) for all p ≥ 1. In this case, we also say that the sequence
of measures (gnμ)n∈N is e-convergent to the measure gμ.

It is evident from this definition that the measure μ may be replaced by a compat-
ible measure μ′ ∈M+(Ω,μ) without changing the notion of e-convergence. There
are equivalent reformulations of e-convergence given as follows.

Proposition 3.7 (Cf. [216]) Let (gn)n∈N and g be as above. Then the following are
equivalent:

(1) (gn)n∈N is e-convergent to g.
(2) For all p ≥ 1, we have

lim
n→∞

∫

Ω

∣∣∣∣

(
gn

g

)p

− 1

∣∣∣∣g dμ = lim
n→∞

∫

Ω

∣∣∣∣

(
g

gn

)p

− 1

∣∣∣∣g dμ = 0.

(3) The following conditions hold:

(a) (gn) converges to g in L1(Ω,μ),
(b) for all p ≥ 1 we have

lim sup
n→∞

∫

Ω

(
gn

g

)p

g dμ < ∞ and lim sup
n→∞

∫

Ω

(
g

gn

)p

g dμ < ∞.

For the proof, we shall use the following simple

Lemma 3.9 Let (fn)n∈N be a sequence of measurable functions in (Ω,μ) such
that

(1) limn→∞‖fn‖1 = 0,
(2) lim supn→∞‖fn‖p < ∞ for all p > 1.

Then limn→∞‖fn‖p = 0 for all p ≥ 1, i.e., (fn) converges to 0 in Lp(Ω,μ) for
all p ≥ 1.

Proof For p ≥ 1, we have by Hölder’s inequality

‖fn‖p
p =

∫

Ω

|fn|pdμ =
∫

Ω

|fn|1/2|fn|p−1/2 dμ

≤ ∥∥f
1/2
n

∥∥
2

∥∥f
p−1/2
n

∥∥
2 = ‖fn‖1/2

1 ‖fn‖(2p−1)/2
2p−1 .

Since ‖fn‖1 → 0 and ‖fn‖2p−1 is bounded, ‖fn‖p → 0 follows. �

Proof of Proposition 3.7 (1) ⇒ (2) Note that the expressions |(gn/g)p − 1| and
|(g/gn)

p − 1| are increasing in p, hence we may assume w.l.o.g. that p ∈ N. Let
fn := gn/g − 1, so that by hypothesis limn→∞

∫
Ω
|fn|pg dμ = 0 for all p ≥ 1.
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Then

∫

Ω

∣∣∣∣

(
gn

g

)p

− 1

∣∣∣∣g dμ =
∫

Ω

∣∣(1 + fn)
p − 1

∣∣g dμ

≤
p∑

k=1

(
p

k

)∫

Ω

|fn|kg dμ −→ 0,

and the other assertion follows analogously.
(2) ⇒ (3) The first equation in (2) for p = 1 reads

0 = lim
n→∞

∫

Ω

∣∣∣∣
gn

g
− 1

∣∣∣∣g dμ = lim
n→∞

∫

Ω

|gn − g|dμ,

so that (3)(a) is satisfied. Moreover, it is evident that the convergence conditions in
(2) imply the boundedness of (gn/g) and (g/gn) in Lp(Ω,gμ).

(3) ⇒ (1) Again, let fn := gn/g − 1. Then (3)(a) implies that (fn) converges
to 0 in L1(Ω,gμ), and the first condition in (3)(b) implies that (fn) is bounded in
Lp(Ω,gμ) for all p > 1. This together with Lemma 3.9 implies that (fn) converges
to 0 and hence (gn/g) to 1 in Lp(Ω,gμ) for all p ≥ 1.

Note that g/gn − 1 =−fn · (g/gn). By the above, (fn) tends to 0 in L2(Ω,gμ),
and (g/gn) is bounded in that space by (3)(b). Thus, by Hölder’s inequality,
(g/gn − 1) =−fn · (g/gn) tends to 0 in L1(Ω,gμ) and, moreover, this sequence is
bounded in Lp(Ω,gμ) for all p ≥ 1 by the second condition in (3)(b). Thus, (g/gn)

tends to 1 in Lp(Ω,gμ) for all p ≥ 1 by Lemma 3.9. �

3.3.2 Orlicz Spaces

In this section, we recall the theory of Orlicz spaces which is needed in Sect. 3.3.3
for the description of the geometric structure on M(Ω). Most of the results can be
found, e.g., in [153].

A function φ : R → R is called a Young function if φ(0) = 0, φ is even, con-
vex, strictly increasing on [0,∞) and limt→∞ t−1φ(t) =∞. Given a finite measure
space (Ω,μ) and a Young function φ, we define the Orlicz space

Lφ(μ) :=
{
f : Ω →R

∣∣∣
∫

Ω

φ(εf )dμ < ∞ for some ε > 0

}
.

The elements of Lφ(μ) are called Orlicz functions of (φ,μ). Convexity of φ and
φ(0) = 0 implies

φ(cx) ≤ cφ(x) and φ
(
c−1x

)≥ c−1φ(x) for all c ∈ (0,1), x ∈R. (3.102)
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We define the Orlicz norm on Lφ(μ) as

‖f ‖φ,μ := inf

{
a > 0

∣∣∣
∫

Ω

φ

(
f

a

)
dμ ≤ 1

}
.

If f is an Orlicz function and ε > 0 and K ≥ ∫
Ω

φ(
f
a
) dμ ≥ 1, then

∫

Ω

φ(εf )dμ ≤ K ⇒
∫

Ω

φ
(
K−1εf

)
dμ

(3.102)≤ K−1
∫

Ω

φ(εf )dμ = 1,

whence
∫

Ω

φ(εf )dμ ≤ K ⇒‖f ‖φ,μ ≤ K

ε
, (3.103)

as long as K ≥ 1. In particular, every Orlicz function has finite norm.
Observe that the infimum in the definition of the norm is indeed attained, as for

a sequence (an)n∈N descending to ‖f ‖φ,μ the sequence gn := φ(f/an) is mono-
tonically increasing as φ is even and increasing on [0,∞). Thus, by the monotone
convergence theorem,

∫

Ω

φ

(
f

‖f ‖φ,μ

)
dμ = lim

n→∞

∫

Ω

φ

(
f

an

)
dμ ≤ 1.

We assert that ‖ · ‖φ,μ is indeed a norm on Lφ(μ). For the positive definiteness,
suppose that ‖f ‖φ,μ = 0. Then

∫
Ω

φ(nf )dμ ≤ 1 for all n ∈ N, and again by the
monotone convergence theorem,

1 ≥ lim
n→∞

∫

Ω

φ(nf )dμ =
∫

Ω

lim
n→∞φ(nf )dμ,

so that, in particular, limn→∞ φ(nf (ω)) < ∞ for a.e. ω ∈ Ω . But since
limt→∞ φ(t) =∞, this implies that f (ω) = 0 for a.e. ω ∈ Ω , as asserted.

The homogeneity ‖cf ‖φ,μ = |c| ‖f ‖φ,μ is immediate from the definition. Fi-
nally, for the triangle inequality let f1, f2 ∈ Lφ(Ω,μ) and let ci := ‖fi‖φ,μ. Then
the convexity of φ implies

∫

Ω

φ

(
f1 + f2

c1 + c2

)
dμ =

∫

Ω

φ

(
c1

c1 + c2

f1

c1
+ c2

c1 + c2

f2

c2

)
dμ

≤ c1

c1 + c2

∫

Ω

φ

(
f1

c1

)
dμ+ c2

c1 + c2

∫

Ω

φ

(
f2

c2

)
dμ

≤ 1.

Thus, ‖f1 + f2‖φ,μ ≤ c1 + c2 = ‖f1‖φ,μ + ‖f2‖φ,μ so that the triangle inequality
holds.

Example 3.7 For p > 1, let φ(t) := |t |p . This is then a Young function, and
Lφ(μ) = Lp(Ω,μ) as normed spaces.
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In this example, we could also consider the case p = 1, even though φ(t) = |t | is
not a Young function as it fails to meet the condition limt→∞ t−1φ(t) = ∞. How-
ever, this property of Young functions was not used in the verification of the norm
properties of ‖ · ‖φ,μ.

Proposition 3.8 Let (fn)n∈N be a sequence in Lφ(μ). Then the following are
equivalent:

(1) limn→∞ fn = 0 in the Orlicz norm.
(2) There is a K > 0 such that for all c > 0, lim supn→∞

∫
Ω

φ(cfn) dμ ≤ K .
(3) For all c > 0, limn→∞

∫
Ω

φ(cfn) dμ = 0.

Proof Suppose that (1) holds. Then for any c > 0 and ε ∈ (0,1) we have

ε ≥ ε lim sup
n→∞

∫

Ω

φ
(
cε−1fn

)
dμ

︸ ︷︷ ︸
≤1 if ‖fn‖φ,μ ≤ ε/c

(3.102)≥ lim sup
n→∞

∫

Ω

φ(cfn) dμ,

and since ε ∈ (0,1) is arbitrary, (3) follows. Obviously, (3) implies (2), and if (2)
holds for some K , then assuming w.l.o.g. that K ≥ 1, we conclude from (3.103) that
lim supn→∞‖fn‖φ,μ ≤ Kc−1 for all c > 0, whence limn→∞‖fn‖φ,μ = 0, which
shows (1). �

Now let us investigate how the Orlicz spaces behave under a change of the Young
function φ.

Proposition 3.9 Let (Ω,μ) be a finite measure space, and let φ1, φ2 : R→ R be
two Young functions. If

lim sup
t→∞

φ1(t)

φ2(t)
< ∞,

then Lφ2(μ)⊆Lφ1(μ), and the inclusion is continuous, i.e., ‖f ‖φ1,μ ≤ c ‖f ‖φ2,μ

for some c > 0 and all f ∈ Lφ2(μ). In particular, if

0 < lim inf
t→∞

φ1(t)

φ2(t)
≤ lim sup

t→∞
φ1(t)

φ2(t)
< ∞,

then Lφ1(μ) = Lφ2(μ), and the Orlicz norms ‖ · ‖φ1,μ and ‖ · ‖φ2,μ are equivalent.

Proof By our hypothesis, φ1(t) ≤ Kφ2(t) for some K ≥ 1 and all t ≥ t0. Let f ∈
Lφ2(μ) and a := ‖f ‖φ2,μ. Moreover, decompose

Ω := Ω1 �Ω2 with Ω1 := {
ω ∈ Ω

∣∣ ∣∣f (ω)
∣∣≥ at0

}
.
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Then

K ≥ K

∫

Ω

φ2

( |f |
a

)
dμ ≥

∫

Ω1

Kφ2

( |f |
a

)
dμ

≥
∫

Ω1

φ1

( |f |
a

)
dμ as

|f |
a

≥ t0 on Ω1

=
∫

Ω

φ1

( |f |
a

)
dμ−

∫

Ω2

φ1

( |f |
a

)
dμ

≥
∫

Ω

φ1

( |f |
a

)
dμ−

∫

Ω2

φ1(t0) dμ as
|f |
a

< t0 on Ω2

≥
∫

Ω

φ1

( |f |
a

)
dμ− φ1(t0)μ(Ω).

Thus,
∫
Ω

φ1(
|f |
a

) ≤ K + φ1(t0)μ(Ω) =: c, hence f ∈ Lφ1(μ). As c ≥ 1, (3.103)
this implies that ‖f ‖φ1,μ ≤ ca = c‖f ‖φ2,μ, and this proves the claim. �

The following lemma is a straightforward consequence of the definitions and we
omit the proof.

Lemma 3.10 Let (Ω,μ) be a finite measure space, let φ : R → R be a Young
function, and let φ̃(t) := φ(λt) for some constant λ > 0.

Then φ̃ is also a Young function. Moreover, Lφ(μ) = Lφ̃(μ) and ‖ · ‖φ̃,μ =
λ‖ · ‖φ,μ, so that these norms are equivalent.

Furthermore, we investigate how the Orlicz spaces relate when changing the mea-
sure μ to another measure μ′ ∈M(Ω,μ).

Proposition 3.10 Let 0 �= μ′ ∈ M(Ω,μ) be a measure such that dμ′/dμ ∈
Lp(Ω,μ) for some p > 1, and let q > 1 be the dual index, i.e., p−1 + q−1 = 1.
Then for any Young function φ we have

Lφq

(μ)⊆Lφ
(
μ′),

and this embedding is continuous.

Proof Let h := dμ′/dμ ∈ Lp(Ω,μ) and c := ‖h‖p > 0. If f ∈ Lφq
(μ) and a :=

‖f ‖φq,μ, then by Hölder’s inequality we have

∫

Ω

φ

( |f |
a

)
dμ′ =

∫

Ω

φ

( |f |
a

)
hdμ ≤ c

∥∥∥∥φ

( |f |
a

)∥∥∥∥
q

= c

∥∥∥∥φq

( |f |
a

)∥∥∥∥
1/q

1︸ ︷︷ ︸
≤1

≤ c.

Thus, f ∈ Lφ(μ′), and (3.103) implies that ‖f ‖φ,μ′ ≤ ca = c‖f ‖φq,μ, which shows
the claim. �
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Finally, we show that the Orlicz norms are complete.

Theorem 3.3 Let φ be a Young function. Then (Lφ(μ),‖ · ‖φ,μ) is a Banach space.

Proof Since limt→∞ φ(t)/t = 0, Proposition 3.9 implies that we have a continu-
ous inclusion (Lφ(μ),‖ · ‖φ,μ) ↪→ L1(Ω,μ). In particular, any Cauchy sequence
(fn)n∈N in Lφ(μ) is a Cauchy sequence in L1(Ω,μ), and since the latter space is
complete, it L1-converges to a limit function f ∈ L1(Ω,μ). Therefore, after pass-
ing to a subsequence, we may assume that fn → f pointwise almost everywhere.

Let ε > 0. Then there is an N(ε) such that for all n,m ≥ N(ε) we have ‖fn −
fm‖φ,μ < ε, that is, for all n,m ≥ N(ε) we have

∫

Ω

φ
(
ε−1(fm − fn)

)
dμ ≤ 1.

Taking the pointwise limit n →∞, Fatou’s lemma yields
∫

Ω

φ
(
ε−1(fm − f )

)
dμ ≤ lim inf

n→∞

∫

Ω

φ
(
ε−1(fm − fn)

)
dμ ≤ 1,

which implies that fm − f ∈ Lφ(μ) and ‖fm − f ‖φ,μ ≤ ε for all m ≥ N(ε). There-
fore, f ∈ Lφ(μ) and limm→∞‖fm − f ‖φ,μ = 0. �

3.3.3 Exponential Tangent Spaces

For an arbitrary μ ∈M+, we define the set

B̂μ(Ω) := {
f : Ω →[−∞,+∞], |f | < ∞ μ-a.e. : ef ∈ L1(Ω,μ)

}
,

which by Hölder’s inequality is a convex subset of the space of measurable functions
Ω →[−∞,+∞]. For μ0, there is a bijection

logμ0
:M+ −→ B̂μ0(Ω), φ μ0 �−→ log(φ).

That is, logμ0
canonically identifies M+ with a convex set. Replacing μ0 by a

measure μ′
0 ∈M+, we have logμ′

0
= logμ0

−u, where u := logμ′
0
μ0. Moreover, we

let

Bμ(Ω) := B̂μ(Ω) ∩ (−B̂μ(Ω)
)

= {
f : Ω →[−∞,∞] ∣∣ e±f ∈ L1(Ω,μ)

}

= {
f : Ω →[−∞,∞] ∣∣ e|f | ∈ L1(Ω,μ)

}

and

B0
μ(Ω) := {

f ∈ Bμ(Ω)
∣∣ (1 + s)f ∈ Bμ(Ω) for some s > 0

}
.

The points of B0
μ(Ω) are called inner points of Bμ(Ω).
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Definition 3.14 Let μ ∈M+. Then

TμM+ := {
f : Ω →[−∞,∞] ∣∣ tf ∈ Bμ(Ω) for some t �= 0

}

is called the exponential tangent space of M+ at μ.

Evidently, f ∈ TμM+ iff
∫
Ω

(exp |tf | − 1) dμ < ∞ for some t > 0. Thus,

TμM+ = Lexp |t |−1(μ),

and hence is an Orlicz space, i.e., it has a Banach norm.6 If ‖f ‖Lexp |t |−1(μ) < 1, then

∫

Ω

(exp |f | − 1) dμ ≤ 1 =⇒
∫

Ω

e|f | dμ < ∞=⇒ f ∈ Bμ(Ω).

That is, Bμ(Ω)⊆TμM+ contains the unit ball w.r.t. the Orlicz norm and hence is a
neighborhood of the origin. Furthermore, limt→∞ tp/(exp |t |−1) = 0 for all p ≥ 1,
so that Proposition 3.9 implies that

L∞(Ω,μ)⊆TμM+⊆
⋂

p≥1

Lp(Ω,μ), (3.104)

where all inclusions are continuous.
Observe that the inclusions in (3.104) are proper, in general. As an example, let

Ω = (0,1) be the unit interval, and let μ = dt be the Lebesgue measure.
Let f (t) := (log t)2. Since

∫ 1
0 | log t |ndt = n! for all n ∈ N, it follows that f ∈

Lp((0,1), dt) for all p. However, for x > 0 we have

∫ 1

0
exp

(
xf (t)

)
dt =

∞∑

n=0

1

n!x
n

∫ 1

0
log(t)2n dt =

∞∑

n=0

(2n)!
n! xn.

But this power series diverges for all x �= 0, hence (log t)2 /∈ Tμ(Ω,μ).
For the first inclusion, observe that | log t | ∈ Tμ(Ω,μ) as exp(α| log t |) = t−α ,

which is integrable for α < 1. However, | log t | is unbounded and hence not in
L∞((0,1), dt).

Remark 3.12 In [106, Definition 6], TμM+ is called the Cramer class of μ. More-
over, in [106, Proposition 7] (see also [216, Definition 2.2]), the centered Cramer
class is defined as the functions u ∈ TμM+ with

∫
Ω

u dμ = 0. Thus, the centered
Cramer class is a closed subspace of codimension one.

6In [216] the Young function cosh t − 1 was used instead of exp |t | − 1. However, these produce
equivalent Orlicz spaces by Proposition 3.9.
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In order to understand the topological structure of M+ with respect to the e-
topology, it is useful to introduce the following preorder on M+:

μ′ % μ if and only if μ′ = φμ with φ ∈ Lp(Ω,μ) for some p > 1. (3.105)

In order to see that % is indeed a preorder, we have to show transitivity, as the
reflexivity of % is obvious. Thus, let μ′′ % μ′ and μ′ % μ, so that μ′ = φμ and
μ′′ = ψμ′ with φ ∈ Lp(Ω,μ) and ψ ∈ Lp′

(Ω,μ′), then φp,ψp′
φ ∈ L1(Ω,μ) for

some p,p′ > 1. Let λ := (p′−1)/(p+p′−1) ∈ (0,1). Then by Hölder’s inequality,
we have

L1(Ω,μ1) �
(
ψp′

φ
)1−λ(

φp
)λ = ψp′(1−λ)φ1+λ(p−1) = (ψφ)p

′′
,

where p′′ = pp′/(p + p′ − 1) > 1, so that ψφ ∈ Lp′′
(Ω,μ), and hence, μ′′ % μ as

μ′′ = ψφμ.
From the preorder % we define the equivalence relation on M+ by

μ′ ∼ μ if and only if μ′ % μ and μ % μ′, (3.106)

in which case we call μ and μ′ similar, and hence we obtain a partial ordering on
the set of equivalence classes M+/∼

[
μ′]% [μ] if and only if μ′ % μ.

Proposition 3.11 Let μ′ % μ. Then TμM+⊆Tμ′M+ is continuously embedded
w.r.t. the Orlicz norms on these tangent spaces.

In particular, if μ ∼ μ′, then TμM+ = Tμ′M+ with equivalent Banach norms.
If we denote the isomorphism class of these spaces as T[μ]M+, then there are con-
tinuous inclusions

T[μ]M+ ↪→ T[μ′]M+ if
[
μ′]% [μ]. (3.107)

Proof Let μ′ = φμ with φ ∈ Lp(Ω,μ), p > 1, and let q > 1 be the dual index, i.e.,
p−1 + q−1 = 1. Then by Hölder’s inequality,

∫

Ω

(
exp |tf | − 1

)
dμ′ =

∫

Ω

(
exp |tf | − 1

)
φ dμ

≤ ‖φ‖p

(∫

Ω

(
exp |tf | − 1

)q
dμ

)1/q

. (3.108)

Let ψ : R → R, ψ(t) := ‖φ‖q
p(exp |t | − 1)q , which is a Young function. Let f ∈

Lψ(μ) and a := ‖f ‖Lψ(μ). Then the right-hand side of (3.108) with t := a−1 is
bounded by 1, whence so is the left-hand side, so that f ∈ Lexp |t |−1(μ′) = Tμ′M+
and ‖f ‖Lψ(μ) = a ≥ ‖f ‖Lexp |x|−1(μ′). Thus, there is a continuous inclusion

Lψ(μ) ↪→ Lexp |x|−1(μ′)= Tμ′M+(Ω).
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But now, as limt→∞ ψ(t)
exp |qt |−1 = ‖φ‖q

p ∈ (0,∞), Proposition 3.9 implies that

as Banach spaces, Lψ(μ) ∼= Lexp |qt |−1(μ) and furthermore, Lexp |qt |−1(μ) ∼=
Lexp |t |−1(μ) = Tμ′M+(Ω) by Lemma 3.10. �

Proposition 3.12 The subspace in (3.107) is neither closed nor dense, unless
μ ∼ μ′, in which case these subspaces are equal. In fact, f ∈ T[μ′]M+ lies in the
closure of T[μ]M+ if and only if

(|f | + ε log
(
dμ′/dμ

))
+ ∈ T[μ]M+ for all ε > 0. (3.109)

Here, the subscript refers to the decomposition of a function into its non-negative
and non-positive part, i.e., to the decomposition

ψ = ψ+ −ψ− with ψ± ≥ 0,ψ+ ⊥ ψ−.

Proof Let p > 1 be such that φ := dμ′/dμ ∈ Lp(Ω,μ), and assume w.l.o.g. that
p ≤ 2. Furthermore, let u := logφ. Then

K :=
∫

Ω

(
exp

(
(p − 1)|u|)− 1

)
dμ′ = e−1

∫

Ω

max
(
φp−1, φ1−p

)
dμ′

= e−1
∫

Ω

max
(
φp,φ2−p

)
dμ ≤ e−1

∫

Ω

max
(
φp,1

)
dμ < ∞.

If we let ψ(t) := K−1(exp |t | − 1), then ψ is a Young function, and by Proposi-
tion 3.9, Lψ(μ′) = Lexp |t |−1(μ′) = T[μ′]M+. For f ∈ T[μ′]M+ we have

∣∣|f | − (|f | + εu
)
+
∣∣≤ ε|u|

and therefore
∫

Ω

ψ

( ||f | − (|f | + εu)+|
ε(p − 1)−1

)
dμ′ ≤

∫

Ω

ψ
(
(p − 1)|u|) dμ′

= K−1
∫

Ω

(
exp(p − 1)|u| − 1

)
dμ′ = 1,

so that ‖|f |− (|f |+εu)+‖Lψ(μ′) ≤ ε(p−1)−1 by the definition of the Orlicz norm.
That is, limε→0(|f | + εu)+ = |f | in Lψ(μ′) = Lexp |t |−1(μ′) = T[μ′]M+.

In particular, if (3.109) holds, then |f | lies in the closure of T[μ′]M+. Observe
that (f±+εu)+ ≤ (|f |+εu)+, whence (3.109) implies that (f±+εu)+ ∈ T[μ′]M+,
whence f± lie in the closure of T[μ′]M+, and so does f = f+ − f−.

On the other hand, if (fn)n∈N is a sequence in T[μ]M+ converging to f , then
min(|f |, |fn|) is also in T[μ]M+ converging to |f |, whence we may assume w.l.o.g.
that 0 ≤ fn ≤ f . Let ε > 0 and choose n such that ‖f − fn‖ < ε in T[μ′]M+. Then
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by the definition of the Orlicz space we have

1 ≥
∫

Ω

(
exp

(
ε−1(f − fn)

)− 1
)
dμ′ =

∫

Ω

exp
(
ε−1(f − fn + εu)

)
dμ− μ′(Ω)

≥
∫

Ω

exp
(
ε−1(f − fn + εu)+

)
dμ−μ′(Ω),

so that
∫
Ω

(exp(ε−1(f − fn + εu)+) − 1) dμ < ∞, whence (f − fn + εu)+ ∈
T[μ]M+. On the other hand,

(f + εu)+ ≤ (f + εu − fn)+ + fn,

and since the summands on the right are contained in T[μ]M+, so is (f + εu)+ as
asserted.

Thus, we have shown that f lies in the closure of T[μ′]M+ iff (3.109) holds.
Let us assume from now on that μ′

� μ. It remains to show that in this case,
T[μ]M+⊆T[μ′]M+ is neither closed nor dense. In order to see this, let Ω+ := {ω ∈
Ω | u(ω) ≥ 0} and Ω− := Ω\Ω+. Observe that

∫

Ω

exp(pu+) dμ = μ(Ω−) +
∫

Ω+
φp dμ < ∞,

as φ ∈ Lp(Ω,μ), whence u+ ∈ T[μ]M+.
We assert that |u|a ∈ T[μ′]M+, but /∈ T[μ]M+ for all a > 0. Namely, pick t > 0

such that ta < min(1,p − 1) and calculate
∫

Ω

exp
(
t |u|a)dμ′ =

∫

Ω+
φta dμ′ +

∫

Ω−
φ−ta dμ′

≤
∫

Ω+
φ1+ta dμ+

∫

Ω−
φ1−ta

︸ ︷︷ ︸
≤1

dμ ≤
∫

Ω

max
{
φp,1

}
dμ < ∞.

Thus, |u|a ∈ T[μ′]M+ for all a > 0. On the other hand, if t > 0, then
∫

Ω

exp
(
t |u|a)dμ =

∫

Ω+
φta dμ+

∫

Ω−
φ−ta dμ

≥
∫

Ω+
1dμ+

∫

Ω−
φ−(1+ta) dμ′ ≥

∫

Ω

φ−(1+ta) dμ′,

and the last integral is finite if and only if φ−1 ∈ L1+ta(Ω,μ′) for some t > 0, if
and only if μ % μ′ and hence μ ∼ μ′. Since this case was excluded, it follows that∫
Ω

exp(t |u|a)dμ =∞ for all t > 0, whence |u|a /∈ T[μ]M+ as asserted.
Thus, our assertion follows if we can show that |u|a is contained in the closure

of T[μ]M+ for 0 < a < 1, but it is not in the closure of T[μ]M+ for a = 1.
For a = 1 and ε ∈ (0,1), (|u| + εu)+ = (1 + ε)u+ + (1 − ε)u− = 2εu+ +

(1 − ε)|u|. Since u+ ∈ T[μ]M+ and |u| /∈ T[μ]M+, it follows that (|u| + εu)+ /∈
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T[μ]M+, which shows that (3.109) is violated for f = |u| ∈ T[μ′]M+, whence |u|
does not lie in the closure of T[μ]M+, so that the latter is not a dense subspace.

If 0 < a < 1, then (|u|a + εu)+ = ua+ + εu+ + (ua− − εu−)+. Now ua+ + εu+ ≤
(a + ε)u+ + 1, whereas ua− − εu− ≥ 0 implies that u− ≤ ε1/(a−1), so that (ua− −
εu−)+ ≤ Cε , where Cε := max{ta − εt | 0 ≤ t ≤ ε1/(a−1)}.

Thus, (|u|a + εu)+ ≤ (a + ε)u+ + 1 + Cε , and since u+ ∈ T[μ]M+ this implies
that (|u|a + εu)+ ∈ T[μ]M+, so that |u|a lies in the closure of T[μ]M+, but not in
T[μ]M+ for 0 < a < 1. Thus, T[μ]M+ is not a closed subspace of T[μ′]M+. �

The following now is a reformulation of Propositions 3.4 and 3.5 in [216].

Proposition 3.13 A sequence (gnμ0)n∈N ∈ M(Ω,μ0) is e-convergent to g0μ0 ∈
M(Ω,μ0) if and only if gnμ0 ∼ g0μ0 for large n, and un := loggn ∈ Tg0μ0M+
converges to u0 := logg0 ∈ Tgμ0M+ in the Banach norm on Tgμ0M+ described
above.

Proof If (gnμ0)n∈N ∈ M(Ω,μ0) e-converges to g0μ0 ∈ M(Ω,μ0), then for
large n, (gn/g0) and (g0/gn) are contained in Lp(Ω,g0μ0), so that gnμ0 ∼ g0μ0
and hence, un := log |gn| ∈ Tg0μ0M+.

Moreover, by Proposition 3.7 (gnμ0)n∈N ∈ M(Ω,μ0) e-converges to g0μ0 ∈
M(Ω,μ0) if and only if for all p ≥ 1

0 = lim
n→∞

∫

Ω

{∣∣∣∣

(
gn

g0

)p

− 1

∣∣∣∣+
∣∣∣∣

(
g0

gn

)p

− 1

∣∣∣∣

}
g0 dμ0

= lim
n→∞

∫

Ω

{∣∣ep(un−u0) − 1
∣∣+ ∣∣ep(u0−un) − 1

∣∣}g0 dμ0

= lim
n→∞

∫

Ω

2 sinh
(
p|un − u0|

)
g0 dμ0.

By Proposition 3.8, this is equivalent to saying that (un)n∈N converges to u0 in the
Orlicz space Lsinh |t |(g0μ0).

However, Lsinh |t |(g0μ0) = Lexp |t |−1(g0μ0) = Tg0μ0M+ by Proposition 3.9,
since limt→∞ sinh |t |

exp |t |−1 = 1/2 ∈ (0,∞). �

By virtue of this proposition, we shall refer to the topology on TμM+ obtained
above as the topology of e-convergence or the e-topology. Note that the first state-
ment in Proposition 3.13 implies that the equivalence classes of ∼ are open and
closed in the e-topology.

Theorem 3.4 Let K⊆M+ be an equivalence class w.r.t. ∼, and let T := T[μ]M+
for μ ∈ K be the common exponential tangent space, equipped with the e-topology.
Then for all μ ∈ K ,

Aμ := logμ(K)⊆T
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is open convex, and logμ : K → Aμ is a homeomorphism where K is equipped
with the e-topology. In particular, the identification logμ : Aμ → K allows us to
canonically identify K with an open convex subset of the affine space associated
to T .

Remark 3.13 This theorem shows that the equivalence classes w.r.t. ∼ are the con-
nected components of the e-topology on M(Ω,μ0), and since each such component
is canonically identified as a subset of an affine space whose underlying vector space
is equipped with a family of equivalent Banach norms, it follows that M(Ω,μ0) is
a Banach manifold. This is the affine Banach manifold structure on M(Ω,μ0) de-
scribed in [216], therefore we refer to it as the Pistone–Sempi structure.

The subdivision of M+(Ω) into disjoint open connected subsets was also noted
in [230].

Proof of Theorem 3.4 If f ∈ Aμ, then, by definition, (1 + s)f,−sf ∈ B̂μ(Ω) for
some s > 0. In particular, sf ∈ Bμ(Ω), so that f ∈ T and hence, Aμ⊆T . Moreover,
if f ∈ Aμ then λf ∈ Aμ for λ ∈ [0,1].

Next, if g ∈ Aμ, then μ′ := egμ ∈ K . Therefore, f ∈ Aμ′ if and only if K �
ef μ′ = ef+gμ if and only if f + g ∈ Aμ, so that Aμ′ = g + Aμ for a fixed g ∈ T .
From this, the convexity of Aμ follows.

Therefore, in order to show that Aμ⊆T is open, it suffices to show that 0 ∈ Aμ′
is an inner point for all μ′ ∈ K . For this, observe that for f ∈ B0

μ′(Ω) we have

(1 + s)f ∈ Bμ′(Ω) and hence e±(1+s)f ∈ L1(Ω,μ′), so that ef ∈ L1+s(Ω,μ′)
and e−f ∈ L2+s(Ω, ef μ′), whence ef μ′ ∼ μ′ ∼ μ, so that ef μ′ ∈ K and hence,
f ∈ Aμ′ . Thus, 0 ∈ B0

μ′(Ω)⊆Aμ′ , and since B0
μ′(Ω) contains the unit ball of the

Orlicz norm, the claim follows. �

In the terminology which we developed, we can formulate the relation of the
Pistone–Sempi structure on M+ with k-integrability as follows.

Proposition 3.14 The parametrized measure model (M+(Ω,μ),Ω, i) is ∞-
integrable, where i : M+(Ω,μ) ↪→ M(Ω) is the inclusion map and M+(Ω,μ)

carries the Banach manifold structure from the e-topology.

Proof The measures in M+(Ω,μ) are dominated by μ, and for the inclusion map
we have

∂V log i
(
exp(f )μ

)= ∂V i

and the inclusion i : TμM+(Ω) ↪→ Lk(Ω,μ) is continuous for all k ≥ 1 by (3.104).
Thus, (M+(Ω,μ),Ω, i) is k integrable for all such k. �

Example 3.8 Let Ω := (0,1), and consider the 1-parameter family of finite mea-
sures

p(ξ) = p(ξ, t) dt := exp
(−ξ2 (log t)2) dt ∈M+

(
(0,1), dt

)
, x ∈R.
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Since ∂ξ logp(ξ, t) =−2ξ(log t)2 and

∫ 1

0

∣∣∂ξ logp(ξ, t)
∣∣k dp(ξ) = 2k|ξ |k

∫ 1

0
(log t)2k exp

(−ξ2 (log t)2) dt < ∞

and this expression depends continuously on ξ for all k, it follows that this
parametrized measure model is ∞-integrable.

However, p is not even continuous w.r.t. the e-topology. Namely, in this topology
p(ξ) → p(0) as ξ → 0 would imply that

∫ 1

0

(
p(0, t)

p(ξ, t)
− 1

)
dp(0)

ξ→0−−→ 0.

Since p(0) = dt , this is equivalent to

∫ 1

0
exp

(
ξ2 (log t)2) dt

ξ→0−−→ 1.

However,

∫ 1

0
exp

(
ξ2 (log t)2) dt =

∞∑

k=0

1

n!ξ
2n

∫ 1

0
(log t)2n dt =

∞∑

k=0

(2n)!
n! ξ2n =∞

for all ξ �= 0, so that this expression does not converge.

We end this section with the following result which illustrates how the ordering
% provides a stratification of B̂μ0(Ω).

Proposition 3.15 Let μ′
0,μ

′
1 ∈M+ with fi := logμ0

(μ′
i ) ∈ B̂μ0(Ω), and let μ′

λ :=
exp(f0 + λ(f1 − f0))μ0 for λ ∈ [0,1] be the segment joining μ′

0 and μ′
1. Then the

following hold:

(1) The measures μ′
λ are similar for λ ∈ (0,1).

(2) μ′
λ % μ′

0 and μ′
λ % μ′

1 for λ ∈ (0,1).
(3) Tμ′

λ
M+ = Tμ′

0
M+ + Tμ′

1
M+ for λ ∈ (0,1).

Proof Let δ := f1 − f0 and φ := exp(δ). Then for all λ1, λ2 ∈ [0,1], we have

μ′
λ1

= φλ1−λ2μ′
λ2

. (3.110)

For λ1 ∈ (0,1) and λ2 ∈ [0,1], we pick p > 1 such that λ2 + p(λ1 − λ2) ∈ (0,1).
Then by (3.110) we have

φp(λ1−λ2)μ′
λ2

= μ′
λ2+p(λ1−λ2)

∈M+,

so that φp(λ1−λ2) ∈ L1(Ω,μ′
λ2

) or φλ1−λ2 ∈ Lp(Ω,μλ2) for small p−1 > 0. There-
fore, μ′

λ1
% μ′

λ2
for all λ1 ∈ (0,1) and λ2 ∈ [0,1], which implies the first and second

statement.
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This implies that Tμ′
i
M+⊆Tμ′

λ
M+ = Tμ′

1/2
M+ for i = 0,1 and all λ ∈ (0,1)

which shows one inclusion in the third statement.
In order to complete the proof, observe that

Tμ′
1/2
M+ = Tμ′

1/2
M+(Ω+,μ0) ⊕ Tμ′

1/2
M+(Ω−,μ0),

where Ω+ := {ω ∈ Ω | δ(ω) > 0} and Ω− := {ω ∈ Ω | δ(ω) ≤ 0}. If g ∈
Tμ′

1/2
M+(Ω+,μ0), then for some t �= 0

∫

Ω

exp
(|tg|)dμ′

0 ≤
∫

Ω+
exp

(
|tg| + 1

2
δ

)
dμ′

0 +
∫

Ω−
dμ′

0

=
∫

Ω+
exp

(|tg|)dμ′
1/2 +

∫

Ω−
dμ′

0 < ∞,

so that g ∈ Tμ′
0
(Ω,μ0) and hence, Tμ′

1/2
M+(Ω+,μ0)⊆Tμ′

0
(Ω,μ0). Analogously,

one shows that Tμ′
1/2
M+(Ω−,μ0)⊆Tμ′

0
(Ω,μ1), which completes the proof. �
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