
Chapter 2
Finite Information Geometry

The considerations of this chapter are restricted to the situation of probability distri-
butions on a finite number of symbols, and are hence of a more elementary nature.
We pay particular attention to this case for two reasons. On the one hand, many ap-
plications of information geometry are based on statistical models associated with
finite sets, and, on the other hand, the finite case will guide our intuition within the
study of the infinite-dimensional setting. Some of the definitions in this chapter can
and will be directly extended to more general settings.

2.1 Manifolds of Finite Measures

Basic Geometric Objects We consider a non-empty and finite set I .1 The real
algebra of functions I → R is denoted by F(I ), and its unity 1I or simply 1 is
given by 1(i)= 1, i ∈ I . This vector spans the space R · 1 := {c · 1 ∈F(I ) : c ∈R}
of constant functions which we also abbreviate by R. Given a function g : R→ R

and an f ∈F(I ), by g(f ) we denote the composition i �→ g(f )(i) := g(f (i)).
The space F(I ) has the canonical basis ei , i ∈ I , with

ei(j)=
{

1, if i = j ,
0, otherwise,

and every function f ∈F(I ) can be written as

f =
∑
i∈I

f i ei ,

where the coordinates f i are given by the corresponding values f (i). We natu-
rally interpret linear forms σ : F(I )→ R as signed measures on I and denote the

1This set I will play the role of the no longer necessarily finite space Ω in Chap. 3.
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26 2 Finite Information Geometry

corresponding dual space F(I )∗, the space of R-valued linear forms on F(I ), by
S(I ). In a more general context, this interpretation is justified by the Riesz repre-
sentation theorem. Here, it allows us to highlight a particular geometric perspective,
which makes it easier to introduce natural information-geometric objects. Later in
the book, we will treat general signed measures, and thereby have to carefully dis-
tinguish between various function spaces and their dual spaces.

The space S(I ) has the dual basis δi , i ∈ I , defined by

δi(ej ) :=
{

1, if i = j ,
0, otherwise.

Each element δi of the dual basis corresponds, interpreted as a measure, to the Dirac
measure concentrated in i. A linear form μ ∈ S(I ), with μi := μ(ei), then has the
representation

μ=
∑
i∈I

μi δ
i

with respect to the dual basis. This representation highlights the fact that μ can be
interpreted as a signed measure, given by a linear combination of Dirac measures.
The basis ei , i ∈ I , allows us to consider the natural isomorphism between F(I )

and S(I ) defined by ei �→ δi . Note that this isomorphism is based on the existence
of a distinguished basis of F(I ). Information geometry, on the other hand, aims at
identifying structures that are independent of such a particular choice of a basis.
Therefore, the canonical basis will be used only for convenience, and all relevant
information-geometric structures will be independent of this choice.

In what follows, we introduce several submanifolds of S(I ) which play an im-
portant role in this chapter and which will be generalized and studied later in the
book:

Sa(I ) :=
{∑

i∈I

μi δ
i :
∑
i∈I

μi = a

}
(for a ∈R),

M(I ) := {μ ∈ S(I ) : μi ≥ 0 for all i ∈ I
}
,

M+(I ) := {μ ∈M(I ) : μi > 0 for all i ∈ I
}
,

P(I ) :=
{
μ ∈M(I ) : μi ≥ 0 for all i ∈ I, and

∑
i∈I

μi = 1

}
,

P+(I ) :=
{
μ ∈P(I ) : μi > 0 for all i ∈ I, and

∑
i∈I

μi = 1

}
.

(2.1)

Obviously, we have the following inclusion chain of submanifolds of S(I ):

P+(I )⊆M+(I )⊆ S(I ).
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In Sect. 3.1, we shall also alternatively interpret P+(I ) as the set of measures in
M+(I ) that are defined up to a scaling factor, that is, as the projective space asso-
ciated with M+(I ). From that point of view, P+(I ) is a positive spherical sector
rather than a simplex.

Tangent and Cotangent Bundles We start with the vector space S(I ). Given a
point μ ∈ S(I ), clearly the tangent space is given by

TμS(I )= {μ} × S(I ). (2.2)

Consider the natural identification of S(I )∗ =F(I )∗∗ with F(I ):

F(I )−→ S(I )∗, f �−→ (S(I )→R,μ �→ μ(f )
)
. (2.3)

With this identification, the cotangent space of S(I ) in μ is given by

T ∗μS(I )= {μ} ×F(I ). (2.4)

As an open submanifold of S(I ), M+(I ) has the same tangent and cotangent space
at a point μ ∈M+(I ):

TμM+(I )= {μ} × S(I ), T ∗μM+(I )= {μ} ×F(I ). (2.5)

Finally, we consider the manifold P+(I ). Obviously, for μ ∈P+(I ) we have

TμP+(I )= {μ} × S0(I ). (2.6)

In order to specify the cotangent space, we consider the natural identification map
(2.3). In terms of this identification, each f ∈ F(I ) defines a linear form on S(I ),
which we now restrict to S0(I ). We obtain the map ρ : F(I )→ S0(I )∗ that as-
signs to each f the linear form S0(I )→ R, μ �→ μ(f ). Obviously, the kernel of ρ

consists of the space of constant functions, and we obtain the natural isomorphism
ρ : F(I )/R→ S0(I )∗, f + R �→ ρ(f + R) := ρ(f ). It will be useful to express
the inverse ρ−1 in terms of the basis δi , i ∈ I , of S(I ). In order to do so, assume
f ∈ S0(I )∗, and consider an extension f̃ ∈ S(I )∗. One can easily see that, with
f i := f̃ (δi), i ∈ I , the following holds:

ρ−1(f )=
(∑

i∈I

f i ei

)
+R. (2.7)

Summarizing, we obtain

T ∗μP+(I )= {μ} × (F(I )/R
)

(2.8)

as the cotangent space of P+(I ) at μ.
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Fig. 2.1 Illustration of the
chart ϕ for n= 2, with the
two coordinate vectors
δ1 − δ3 and δ2 − δ3

After having specified tangent and cotangent spaces at individual points μ, we
finally list the corresponding tangent and cotangent bundles:

T S(I ) = S(I )× S(I ), T ∗S(I ) = S(I )×F(I ),

TM+(I ) =M+(I )× S(I ), T ∗M+(I ) =M+(I )×F(I ),

TP+(I ) = P+(I )× S0(I ), T ∗P+(I ) = P+(I )× (F(I )/R
)
.

(2.9)

Example 2.1 (Local coordinates) In this example we consider a natural coordinate
system of P+(I ) which is quite useful (see Fig. 2.1). We assume I = [n + 1] =
{1, . . . , n, n+ 1}. With the open set

U :=
{

x = (x1, . . . , xn) ∈R
n : xi > 0 for all i, and

n∑
i=1

xi < 1

}
,

we consider the map

ϕ :P+(I )→U, μ=
n+1∑
i=1

μi δ
i �→ ϕ(μ) := (μ1, . . . ,μn)

and its inverse

ϕ−1 :U → P+(I ), (x1, . . . , xn) �→
n∑

i=1

xi δ
i +
(

1−
n∑

i=1

xi

)
δn+1.

We have the coordinate vectors

∂

∂xi

∣∣∣∣
μ

= ∂ϕ−1

∂xi

∣∣∣∣
ϕ(μ)

= δi − δn+1, i = 1, . . . , n,
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which form a basis of S0(I ). Formula (2.7) allows us to identify its dual basis with
the following basis of F(I )/R:

dxi := ei +R, i = 1, . . . , n.

Each vector f +R in F(I )/R can be expressed with respect to dxi , i = 1, . . . , n:

f +R =
(

n+1∑
i=1

f i ei

)
+R

=
n+1∑
i=1

f i (ei +R)

=
n∑

i=1

f i (ei +R)+ f n+1(en+1 +R)

=
n∑

i=1

f i (ei +R)+ f n+1

((
1−

n∑
i=1

ei

)
+R

)

=
n∑

i=1

f i(ei +R)−
n∑

i=1

f n+1(ei +R)

=
n∑

i=1

(
f i − f n+1)(ei +R).

The coordinate system of this example will be useful for explicit calculations later
on.

2.2 The Fisher Metric

The Definition Given a measure μ ∈M+(I ), we have the following natural L2-
product on F(I ):

〈f,g〉μ = μ(f · g), f, g ∈F(I ). (2.10)

This product allows us to consider the vector space isomorphism

F(I )−→ S(I ), f �−→ f μ := 〈f, ·〉μ. (2.11)

The notation f μ emphasizes that, via this isomorphism, functions define linear
forms on F(I ) in terms of densities with respect to μ. The inverse, which we de-
note by φ̃μ, maps linear forms to functions and represents a simple version of the
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Radon–Nikodym derivative with respect to μ:

φ̃μ : S(I )−→F(I )= S(I )∗, a =
∑

i

ai δ
i �−→ da

dμ
:=
∑

i

ai

μi

ei . (2.12)

This gives rise to the formulation of (2.10) on the dual space of F(I ):

〈a, b〉μ = μ

(
da

dμ
· db

dμ

)
=
∑

i

1

μi

aibi, a, b ∈ S(I ). (2.13)

With this metric, the orthogonal complement of S0(I ) in S(I ) is given by R · μ=
{λ · μ : λ ∈ R}, and we have the orthogonal decomposition a = Π


μ a + Π⊥
μ a of

vectors a ∈ S(I ), where

Π

μ (a)=

∑
i∈I

(
ai −μi

∑
j∈I

aj

)
δi, Π⊥

μ (a)=
∑
i∈I

(
μi

∑
j∈I

aj

)
δi . (2.14)

If we restrict this metric to S0(I )⊆ S(I ), then we obtain the following identification
of S0(I ) with the dual space:

φμ : S0(I )−→F(I )/R= S0(I )∗, a �−→ da

dμ
+R. (2.15)

With the natural inclusion map ı : S0(I )→ S(I ), and ıμ := φ̃μ ◦ ı ◦ φμ
−1, the fol-

lowing diagram commutes:

S(I )
φ̃μ

S(I )∗

S0(I )

ı

φμ

S0(I )∗

ıμ

(2.16)

This diagram defines linear maps between tangent and cotangent spaces in the in-
dividual points of M+(I ) and P+(I ). Collecting all these maps to corresponding
bundle maps, we obtain a commutative diagram between the tangent and cotangent
bundles:

TM+(I )
φ̃

T ∗M+(I )

TP+(I )

ı

φ

T ∗P+(I )

ı

(2.17)
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The inner product (2.13) defines a Riemannian metric on M+(I ), on which the
maps φ̃ and φ are based.

Definition 2.1 (Fisher metric) Given two vectors A= (μ,a) and B = (μ,b) of the
tangent space TμM+(I ), we consider

gμ(A,B) := 〈a, b〉μ. (2.18)

This Riemannian metric g on M+(I ) is called the Fisher metric.

The Fisher metric was introduced as a Riemannian metric by Rao [219]. It is
relevant for estimation theory within statistics and also appears in mathematical
population genetics where it is known as the Shahshahani metric [123, 124]. We
shall outline the biological perspective of this metric in Sect. 6.2.

We now express the Fisher metric with respect to the coordinates of Example 2.1,
where we concentrate on the restriction of the Fisher metric to P+(I ). With respect
to the chart ϕ of Example 2.1, the first fundamental form of the Fisher metric is
given as

gij (μ)=
n∑

k=1

1

μk

δki δkj + 1

μn+1
=
{ 1

μi
+ 1

μn+1
, if i = j ,

1
μn+1

, otherwise.
(2.19)

The inverse of this matrix is given as

gij (μ)=
{

μi (1−μi), if i = j ,
−μi μj , otherwise.

(2.20)

Written as matrices, we have

G(μ) := (gij )(μ)= 1

μn+1

⎛
⎜⎜⎜⎝

μn+1
μ1

+ 1 1 · · · 1
1 μn+1

μ2
+ 1 · · · 1

...
...

. . .
...

1 1 · · · μn+1
μn

+ 1

⎞
⎟⎟⎟⎠ , (2.21)

G−1(μ)= (gij
)
(μ)=

⎛
⎜⎜⎜⎝

μ1 (1−μ1) −μ1 μ2 · · · −μ1 μn

−μ2 μ1 μ2 (1−μ2) · · · −μ2 μn

...
...

. . .
...

−μn μ1 −μn μ2 · · · μn (1−μn)

⎞
⎟⎟⎟⎠ .

(2.22)
This is nothing but the covariance matrix of the probability distribution μ, in the
following sense. We draw the element i ∈ {1, . . . , n} with probability μi , and we
put Xi = 1 and Xj = 0 for j = i when i happens to be drawn. We then have the
expectation values

μi = E(Xi)= E
(
X2

i

)
, (2.23)
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and hence, the variances and covariances are

Var(Xi)= μi(1−μi), Cov(XiXj )=−μiμj for j = i, (2.24)

that is, (2.22). In fact, this is the statistical origin of the Fisher metric as a covariance
matrix [219].

The Fisher metric is an example of a covariant 2-tensor on M , in the sense of the
following definition (see also (B.16) and (B.17) in Appendix B).

Definition 2.2 A covariant n-tensor Θ on a manifold M is a collection of n-
multilinear maps

Θξ :
n×TξM −→R, (V1, . . . , Vn) �−→Θξ(V1, . . . , Vn)

which is continuous in the sense that for continuous vector fields Vi the function
ξ �→Θξ(V1, . . . , Vn) is continuous.

If f :M1 →M2 is a differentiable map between the manifolds M1 and M2, then
it can be used to pull back covariant n-tensors. That is, if Θ is a covariant n-tensor
on M2, then its pullback to M1 by f is defined to be the tensor f ∗(Θ) on M1 given
as

f ∗(Θ)ξ (V1, . . . , Vn) :=Θf (ξ)

(
∂f

∂V1
, . . . ,

∂f

∂Vn

)
. (2.25)

Information geometry deals with statistical models, that is, submanifolds of
P+(I ). Instead of considering submanifolds directly, we take a slightly different
perspective here. We consider statistical models as a manifold together with an
embedding into P+(I ), or more generally, into M+(I ). To be more precise, let
be M an n-dimensional (differentiable) manifold and M ↪→M+(I ), ξ �→ p(ξ)=∑

i∈I pi(ξ) δi , an embedding. The pullback (2.25) of the Fisher metric g defines a
metric on M . More precisely, for A,B ∈ TξM we set

gξ (A,B) := p∗(g)ξ (A,B)

(2.25)= gp(ξ)

(
∂p

∂A
,

∂p

∂B

)

=
∑

i

1

pi(ξ)

∂ pi

∂A
(ξ)

∂ pi

∂B
(ξ)

=
∑

i

pi(ξ)
∂ logpi

∂A
(ξ)

∂ logpi

∂B
(ξ). (2.26)

This representation of the Fisher metric is more familiar within the standard
information-geometric treatment.
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Fig. 2.2 Mapping from simplex to sphere

Extending the Fisher Metric to the Boundary As is obvious from (2.13) and
also from the first fundamental form (2.19), the Fisher metric is not defined at the
boundary of the simplex. It is, however, possible to extend the Fisher metric to
the boundary by identifying the simplex with a sector of a sphere in R

I = F(I ).
In order to be more precise, we consider the following sector of the sphere with
radius 2 (or, equivalently (up to the factor 2, of course), the positive part of the
projective space, according to the interpretation of the set of probability measures
as a projective version of the space of positive measures alluded to above and taken
up in Sect. 3.1):

S2,+(I ) :=
{
f ∈F(I ) : f (i) > 0 for all i ∈ I, and

∑
i

f 2(i)= 4

}
.

As a submanifold of F(I ) it carries the induced standard metric 〈·, ·〉 of F(I ). We
consider the following diffeomorphism (see Fig. 2.2):

π1/2 : P+(I )→ S2,+(I ), μ=
∑

i

μi δ
i �→ 2

∑
i

√
μiei .

Note that ‖π1/2(μ)‖ =
√∑

i (2
√

μi)2 = 2
√∑

i μi = 2.

Proposition 2.1 The map π1/2 is an isometry between P+(I ) with the Fisher met-
ric g and S2,+(I ) with the induced canonical scalar product of F(I ):

〈
∂ π1/2

∂A
(μ),

∂ π1/2

∂B
(μ)

〉
= gμ(A,B), A,B ∈ TμP+(I ).

That is, the Fisher metric coincides with the pullback of the standard metric on F(I )

by the map π1/2. In particular, the extension of the standard metric on S2,+(I ) to
the boundary can be considered as an extension of the Fisher metric.
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Proof With a, b ∈ S0(I ) such that A= (μ,a) and B = (μ,b), we have

〈
∂ π1/2

∂A
(μ),

∂ π1/2

∂B
(μ)

〉
=
〈

d

dt
π1/2(μ+ ta)

∣∣∣∣
t=0

,
d

dt
π1/2(μ+ tb)

∣∣∣∣
t=0

〉

=
∑

i

1√
μi

ai · 1√
μi

bi

= gμ(A,B). �

Fisher and Hellinger Distance Proposition 2.1 allows us to give an explicit for-
mula for the Riemannian distance between two points μ,ν ∈ P+(I ) which is de-
fined as

dF (μ, ν) := inf
γ :[r,s]→P+(I )
γ (r)=μ,γ (s)=ν

L(γ ),

where L(γ ) denotes the length of a curve γ : [r, s]→P+(I ) given by

L(γ )=
∫ s

r

∥∥γ̇ (t)
∥∥

γ (t)
dt =

∫ s

r

√
gγ (t)

(
γ̇ (t), γ̇ (t)

)
dt.

We refer to dF as the Fisher distance. With Proposition 2.1 we directly obtain the
following corollary.

Corollary 2.1 Let d : S2,+(I ) × S2,+(I ) → R denote the metric that is induced
from the standard metric on F(I ). Then

dF (μ, ν)= d
(
π1/2(μ),π1/2(ν)

)= 2 arccos

(∑
i

√
μi νi

)
. (2.27)

Proof We have

cosα = 〈π1/2(μ),π1/2(ν)〉
‖π1/2(μ)‖ · ‖π1/2(ν)‖ =

∑
i (2
√

μi)(2
√

νi)

2 · 2 =
∑

i

√
μi νi .

This implies

dF (μ, ν)

2
= α = arccos

(∑
i

√
μi νi

)
. �

A distance measure that is closely related to the Fisher distance is the Hellinger
distance. It is not induced from F(I ) onto S2,+(I ) but restricted to S2,+(I ):

dH (μ, ν) :=
√∑

i

(
√

μi −√νi)
2
. (2.28)
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Fig. 2.3 Illustration of the
relation between the Fisher
distance dF (μ, ν) and the
Hellinger distance dH (μ, ν)

of two probability measures
μ and ν, see Eq. (2.29)

We have the following relation between dF and dH (see Fig. 2.3):

dH (μ, ν) =
√∑

i

(
√

μi −√νi)2

=
√∑

i

(μi − 2
√

μi νi + νi)

=
√√√√2

(
1−
∑

i

√
μi νi

)

=
√

2

(
1− cos

(
1

2
dF (μ, ν)

))
. (2.29)

Chentsov’s Characterization of the Fisher Metric In what follows, we present
a classical characterization of the Fisher metric through invariance properties. This
is due to Chentsov [64].

Consider two non-empty and finite sets I and I ′. A Markov kernel is a map

K : I →P
(
I ′
)
, i �→Ki :=

∑
i′∈I ′

Ki
i′ δ

i′ . (2.30)

Particular examples of Markov kernels are given in terms of (deterministic) maps
f : I → I ′. Given such a map, we simply define Kf by i �→ δf (i). Each Markov
kernel K induces a corresponding map between probability distributions:

K∗ :P(I )→ P
(
I ′
)
, μ=

∑
i∈I

μi δ
i �→
∑
i∈I

μi K
i. (2.31)
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The map K∗ is called the Markov morphism induced by K . Note that K∗ may also
be regarded as a linear map K∗ : S(I )→ S(I ′). Given a map f : I → I ′, we use
f∗ := (Kf )∗ as short-hand notation.

Now assume that |I | ≤ |I ′|. We call a Markov kernel K congruent if there is a
partition Ai , i ∈ I , of I ′, such that the following condition holds:

Ki
i′ > 0 ⇔ i′ ∈Ai. (2.32)

If K is congruent and μ ∈ P+(I ) then K∗(μ) ∈P+(I ′). This implies a differentiable
map

K∗ :P+(I )→ P+
(
I ′
)
,

and the differential in μ is given by

dμK∗ : TμP+(I )→ TK∗(μ)P+
(
I ′
)
, (μ, ν −μ) �→ (K∗(μ),K∗(ν)−K∗(μ)

)
.

The following theorem has been proven by Chentsov.

Theorem 2.1 (Cf. [65, Theorem 11.1]) We assign to each non-empty and finite set
I a metric hI on P+(I ). If for each congruent Markov kernel K : I → P(I ′) we
have invariance in the sense

hI
p(A,B)= hI ′

K∗(p)

(
dpK∗(A), dpK∗(B)

)
,

or for short (K∗)∗(hI ′)= hI in the notation of (2.25), then there is a constant α > 0,
such that hI = α gI for all I , where the latter is the Fisher metric on P+(I ).

Proof Step 1: First we consider permutations π : I → I . The center cI :=
1
|I |
∑

i∈I δi is left-invariant, that is, π∗(cI ) = cI . With Ei := (cI , δ
i − cI ) ∈

TcI
P+(I ), we also have

dcI
π∗(Ei)=Eπ(i), i ∈ I.

For each i, j ∈ I , i = j , choose a transposition π of i and j , that is, π(i) = j ,
π(j)= i, and π(k)= k if k /∈ {i, j}. This implies

hI
ii(cI ) = hI

cI
(Ei,Ei)= hI

π∗(cI )

(
dcI

π∗(Ei), dcI
π∗(Ei)

)= hI
cI

(Eπ(i),Eπ(i))

= hI
cI

(Ej ,Ej )= hI
jj (cI )=: f1(n),

where we set n := |I |. In a similar way, we obtain that all hI
ij (cI ) with i = j coin-

cide. We denote them by f2(n). The functions f1(n) and f2(n) have to satisfy the
following:

f1(n)+ (n− 1)f2(n)=
∑
j∈I

hI
ij (cI )=

∑
j∈I

hI
cI

(Ei,Ej )

= hI
cI

(
Ei,
∑
j∈I

Ej

)
= hI

cI
(Ei,0)= 0.
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Consider two vectors

a =
∑
i∈I

ai δ
i , b=

∑
i∈I

bi δ
i .

Assuming a, b ∈ S0(I ), we have
∑

i∈I ai = 0 and
∑

i∈I bi = 0 and therefore

a =
∑
i∈I

ai

(
δi − cI

)
, b=

∑
i∈I

bi

(
δi − cI

)
.

This implies for A= (cI , a) and B = (cI , b)

hI
cI

(A,B) =
∑
i,j∈I

ai bj hI
ij (cI )=

∑
i∈I

ai bi h
I
ii(cI )+

∑
i,j∈I
i =j

ai bj hI
ij (cI )

= f1(n)
∑
i∈I

ai bi + f2(n)
∑
i,j∈I
i =j

ai bj

= −(n− 1)f2(n)
∑
i∈I

ai bi + f2(n)
∑
i,j∈I
i =j

ai bj

= f2(n)

{
−n
∑
i∈I

ai bi +
∑
i,j∈I

ai bj

}

= −f2(n)
∑
i∈I

1
1
n

ai bi

= −f2(n)gI
cI

(A,B).

Step 2: In this step, we show that the function f (n) is actually independent of
n and therefore a constant. In order to do so, we divide each element i ∈ I into
k elements. More precisely, we set I ′ := I × {1, . . . , k}. With the partition Ai :=
{(i, j) : 1≤ j ≤ k}, i ∈ I , we define the Markov kernel K by

i �→Ki = 1

k

k∑
j=1

δ(i,j).

This kernel satisfies K∗(cI )= cI ′ , and we have

dcI
K∗(Ei) = dcI

K∗
(
cI , δ

i − cI

)

=
(

cI ′ ,
1

k

k∑
j=1

(
δ(i,j) − 1

n

∑
i′∈I

δ(i′,j)

))
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=
(

cI ′ ,
1

k

k∑
j=1

(
δ(i,j) − 1

nk

∑
i′∈I

k∑
j ′=1

δ(i′,j ′)
))

= 1

k

k∑
j=1

E′(i,j).

With r, s ∈ I , r = s, this implies

f2(n) = hI
cI

(Er,Es)= hI ′
cI ′

(
1

k

k∑
j=1

E′r,j ,
1

k

k∑
j=1

E′s,j

)

= 1

k2

k∑
j1,j2=1

hI ′
cI ′
(
E′r,j1

,E′s,j2

)

= 1

k2
k2 f2(n · k)= f2(n · k).

Exchanging the role of n and k, we obtain f2(k)= f2(k · n)= f2(n) and therefore
−f2(n) is a positive constant in n, which we denote by α. In the center cI , we have
shown that

hI
cI

(A,B)= α g
I
cI

(A,B)= 0, A,B ∈ TcI
P+(I ).

It remains to show that this equality also holds for all other points. This is our next
step.

Step 3: First consider a point μ ∈ P+(I ) that has rational coordinates, that is,

μ=
∑
i∈I

ki

n
δi,

with
∑

i ki = n. We now define a set I ′ and a congruent Markov kernel K : I →
P(I ′) so that K∗(μ)= cI ′ . With

I ′ :=
⊎
i∈I

({i} × {1, . . . , ki}
)
,

(“
⊎

” denotes the disjoint union) we consider the Markov kernel

K : i �→ 1

ki

ki∑
j=1

δ(i,j).

Obviously, we have

dμK∗ :A=
(

μ,
∑
i∈I

ai δ
i

)
�→ dμK∗(A)=

(
cI ′ ,
∑
i∈I

ki∑
j=1

ai

ki

δ(i,j)

)
.
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This implies

hI
μ(A,B) = hI ′

K∗(μ)

(
dμK∗(A), dμK∗(B)

)= α gI ′
cI ′
(
dμK∗(A), dμK∗(B)

)

= α
∑
i∈I

ki∑
j=1

1
1
n

ai

ki

bi

ki

= α
∑
i∈I

ki

1
1
n

ai

ki

bi

ki

= α
∑
i∈I

1

μi

ai bi

= α g
I
μ(A,B).

We have this equality for all probability vectors μ with rational coordinates. As
we assume continuity with respect to the base point μ, the equality of hI

μ(A,B)=
α gI ′

μ (A,B) holds for all μ ∈ P+(I ). �

2.3 Gradient Fields

In this section, we are going to study vector and covector fields on M+(I ) and
P+(I ). We begin with the first case, which is the simpler one, and consider covector
fields given by a differentiable function V :M+(I )→ R. The differential in μ is
defined as the linear form

dμV : S(I )→R, a �→ dμV (a)= ∂V

∂a
(μ).

In terms of the canonical basis, we have

dμV =
∑

i

∂iV (μ) ei ∈F(I ), (2.33)

where ∂iV (μ) := ∂V
∂μi

(μ) := ∂V
∂δi (μ). This defines the covector field

dV :M+(I )→F(I ), μ �→ dμV.

The Fisher metric g allows us to identify dμV with an element of TμM+(I ) in
terms of the map φ̃μ, the gradient of V in μ:

gradμV := φ̃−1
μ (dμV )=

∑
i

μi ∂iV (μ) δi . (2.34)

Given a function f :M+(I ) → F(I ), μ �→ f (μ) =∑i∈I f i(μ) ei , we can ask
whether there exists a differentiable function V such that f (μ)= dμV . In this case,
f is called exact. It is easy to see that f is exact if and only if the condition

∂f i

∂μj

= ∂f j

∂μi

(2.35)

holds on M+(I ) for all i, j ∈ I .
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Now we come to vector and covector fields on P+(I ). The commutative diagram
(2.17) allows us to relate sections to each other. Of particular interest are sections
in T ∗P+(I )= P+(I )× (F(I )/R) (covector fields) as well as sections in TP+(I )

(vector fields). As all bundles are of product form P+(I )×V , sections are given by
functions f : P+(I )→ V . We assume that f is a C∞ function. We will also use
C∞ extensions f̃ : U → V , where U is an open subset of S(I ) containing P+(I ),
and f̃ |U = f . To simplify the notation, we will also use the same symbol f for the
extension f̃ . Given a section f : P+(I )→ F(I ), we assign various other sections
to it:

f : P+(I )→R, μ �→ f (μ) := μ(f (μ))=∑i μi f
i(μ),

[f ] : P+(I )→ (F(I )/R), μ �→ f (μ)+R,

φ̃(f ) : P+(I )→ S(I ), μ �→ f (μ)μ=∑i μi f
i(μ) δi,

f̂ : P+(I )→ S0(I ), μ �→ (f (μ)− f (μ))μ=∑i μi(f
i(μ)− f (μ))δi .

In what follows, we consider covector fields given by a differentiable function V :
P+(I )→R. The differential in μ is defined as the linear form

dμV : TμP+(I )→R, a �→ dμV (a)= ∂V

∂a
(μ),

which defines a covector field dV : μ �→ dμV ∈ T ∗μP+(I ). In order to interpret it as
a vector in F(I )/R, consider an extension Ṽ : U→R of V to an open neighborhood
of P+(I ). This yields a corresponding extension dμṼ : S(I )→R, and according to
(2.7) we have

dμV =
∑

i

∂i Ṽ (μ) ei +R, (2.36)

where ∂iṼ (μ) = ∂Ṽ
∂δi (μ). The Fisher metric g allows us to identify dμV with an

element of TμP+(I ) via the map φμ, the gradient of V in μ:

gradμV := φ−1
μ (dμV ). (2.37)

(See (B.22) in Appendix B for the general construction.)

Proposition 2.2 Let V :P+(I )→R be a differentiable function, U an open subset
of S(I ) that contains P+(I ), and Ṽ : U → R a differentiable continuation of V ,
that is, Ṽ |P+(I ) = V . Then the coordinates of gradμ V with respect to δi are given
as

(gradμ V )i = μi

(
∂iṼ (μ)−

∑
j

μj ∂j Ṽ (μ)

)
, i ∈ I.
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Proof This follows from (2.36), (2.37), and the definition of φμ. Alternatively, one
can show this directly: We have to verify

gμ(gradμ V,a) = dμV (a), a ∈ TμP+(I ).

gμ(gradμ V,a) =
∑

i

1

μi

(
μi

(
∂iṼ (μ)−

∑
j

μj ∂j Ṽ (μ)

))
ai

=
∑

i

ai ∂i Ṽ (μ)−
∑

i

ai

∑
j

μj ∂j Ṽ (μ)

︸ ︷︷ ︸
=0

= ∂Ṽ

∂a
(μ)

= lim
t→0

Ṽ (μ+ ta)− Ṽ (μ)

t

= lim
t→0

V (μ+ ta)− V (μ)

t

= ∂V

∂a
(μ)

= dμV (a). �

Proposition 2.3 Consider a map f : U → F(I ), μ �→ f (μ)=∑i∈I f i(μ) ei , de-
fined on a neighborhood of P+(I ). Then the following statements are equivalent:

(1) The vector field f̂ is a Fisher gradient field on P+(I ).
(2) The covector field [f ] : P+(I )→F(I )/R, μ �→ [f ](μ) := f (μ)+R, is exact,

that is, there exists a function V : P+(I )→R satisfying dμV = [f ](μ).
(3) The relation

∂f i

∂μj

+ ∂f j

∂μk

+ ∂f k

∂μi

= ∂f i

∂μk

+ ∂f k

∂μj

+ ∂f j

∂μi

(2.38)

holds on P+(I ) for all i, j, k ∈ I .

Proof (1)⇔ (2) This is clear.
(2)⇔ (3) The covector field f + R is exact if and only if it is closed. The lat-

ter property is expressed in local coordinates. Without restriction of generality we
assume I = {1, . . . , n,n+ 1} and choose the coordinate system of Example 2.1.

∂ϕ−1

∂xi

∣∣∣∣
ϕ(p)

= δi − δn+1, i = 1, . . . , n.

This family is a basis of S0(I ). The dual basis in F(I )/R is given as

ei +R, i = 1, . . . , n.
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We now express the covector field [f ] in these coordinates:

f (μ)+R =
(

n+1∑
i=1

f i(p) ei

)
+R

=
n∑

i=1

(
f i(μ)− f n+1(μ)

)
(ei +R).

The covector field f +R is closed, if the coefficients f i−f n+1 satisfy the following
integrability condition:

∂(f i − f n+1)

∂(δj − δn+1)
(μ)= ∂(f j − f n+1)

∂(δi − δn+1)
(μ), i, j = 1, . . . , n.

This is equivalent to

∂f i

∂δj
+ ∂f j

∂δn+1
+ ∂f n+1

∂δi
= ∂f j

∂δi
+ ∂f i

∂δn+1
+ ∂f n+1

∂δj
.

Replacing n+ 1 by k yields the integrability condition (2.38). �

2.4 The m- and e-Connections

The tangent bundle TM+(I ) and the cotangent bundle T ∗M+(I ) are of product
structure. Given two points μ and ν in M+(I ), this allows for the following natural
identification of TμM+(I ) with TνM+(I ) and T ∗μM+(I ) with T ∗ν M+(I ):

Π̃(m)
μ,ν : TμM+(I )−→ TνM+(I ), (μ,a) �−→ (ν, a), (2.39)

Π̃(e)
μ,ν : T ∗μM+(I )−→ T ∗ν M+(I ), (μ,f ) �−→ (ν, f ). (2.40)

Note that these identifications of fibers is not a consequence of the triviality of the
vector bundles only. In general, a trivial vector bundle has no distinguished trivial-
ization. However, in our case the bundles have a natural product structure.

With the bundle isomorphism φ̃ (see diagram (2.17)) one can interpret Π̃
(e)
μ,ν as a

parallel transport in TM+(I ), given by

Π̃(e)
μ,ν : TμM+(I )−→ TνM+(I ), (μ,a) �−→ (ν,

(
φ̃−1

ν ◦ φ̃μ

)
(a)
)
.

Here, one has

(
φ̃−1

ν ◦ φ̃μ

)
(a)= da

dμ
ν =
∑

i

νi

ai

μi

δi .
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One immediately observes the following duality of the two parallel transports with
respect to the Fisher metric. With A= (μ,a) and B = (ν, b):

gν

(
Π̃(e)

μ,νA, Π̃(m)
μ,ν B

)=∑
i

1

νi

(
νi

ai

μi

)
bi =

∑
i

1

μi

aibi = gμ(A,B). (2.41)

The correspondence of tangent spaces can be encoded more effectively in terms of
an affine connection, which is a differential version of the parallel transport that
specifies the directional derivative of a vector field in the direction of another vector
field. To be more precise, let A and B be two vector fields M+(I )→ TM+(I ).
There exist maps a, b :M+(I )→ S(I ) satisfying Bμ = (μ,bμ) and Aμ = (μ,aμ).
With a curve γ : (−ε, ε)→M+(I ), γ (0)= μ and γ̇ (0)=Aμ the covariant deriva-
tive of B in the direction of A can be obtained from the parallel transports as follows
(see Eq. (B.33) in Appendix B):

∇̃(m,e)
A B

∣∣
μ
:= lim

t→0

1

t

(
Π̃

(m,e)
γ (t),μ(Bγ (t))−Bμ

) ∈ TμM+(I ). (2.42)

The pair (2.42) of affine connections ∇̃(m) and ∇̃(e) corresponds to two kinds of
straight line, the so-called geodesic, and exponential maps which specify a natural
way of locally identifying the tangent space in μ with a neighborhood of μ (in
M+(I )).

Proposition 2.4

(1) The affine connections ∇̃(m) and ∇̃(e), defined by (2.42), are given by

∇̃(m)
A B

∣∣
μ
=
(

μ,
∂b

∂aμ

(μ)

)
,

∇̃(e)
A B
∣∣
μ
=
(

μ,
∂b

∂aμ

(μ)−
(

daμ

dμ
· dbμ

dμ

)
μ

)
.

(2) As corresponding (maximal) m- and e-geodesic with initial point μ ∈M+(I )

and initial velocity a ∈ TμM+(I ) we have

γ (m) : ]t−, t+
[→M+(I ), t �→ μ+ ta,

with

t− := −min

{
μi

ai

: i ∈ I, ai > 0

}
, t+ :=min

{
μi

|ai | : i ∈ I, ai < 0

}

(we use the convention min∅ =∞), and

γ (e) :R→M+(I ), t �→ exp

(
t

da

dμ

)
μ.
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(3) As corresponding exponential maps ẽxp(m) and ẽxp(e), we obtain

ẽxp(m) : T →M+(I ), (μ,a) �→ μ + a, (2.43)

with T := {(μ, ν −μ) ∈ TM+(I ) : μ,ν ∈M+(I )}, and

ẽxp(e) : TM+(I )→M+(I ), (μ,a) �→ exp

(
da

dμ

)
μ. (2.44)

Proof The m-connection:

∇̃(m)
A B

∣∣
μ
= lim

t→0

1

t

(
Π̃

(m)
γ (t),μ(Bγ (t))−Bμ

)

=
(

μ, lim
t→0

1

t
(bγ (t) − bμ)

)

=
(

μ,
∂b

∂aμ

(μ)

)
.

In order to get the geodesic of the m-connection we consider the corresponding
equation:

γ̈ = 0 with γ (0)= μ, γ̇ (0)= a.

Its solution is given by

t �→ μ+ t a

which is defined for the maximal time interval ]t−, t+[. Setting t = 1 gives us the
corresponding exponential map ẽxp(m).

The e-connection: Now we consider the covariant derivative induced by the ex-
ponential parallel transport Π̃(e):

∇̃(e)
A B
∣∣
μ
:= lim

t→0

1

t

(
Π̃

(e)
γ (t),μ(Bγ (t))−Bμ

)

=
(

μ, lim
t→0

1

t

∑
i

(
μi

bγ (t),i

γi(t)
− bμ,i

)
δi

)

=
(

μ,
∑

i

d

dt

{
μi

bγ (t),i

γi(t)

}∣∣∣∣
t=0

δi

)

=
(

μ,
∑

i

(
∂bi

∂aμ

(μ)− 1

μi

aμ,ibμ,i

)
δi

)
.

The equation for the corresponding e-geodesic is given as

γ̈ − γ̇ 2

γ
= 0 with γ (0)= μ, γ̇ (0)= a. (2.45)
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One can easily verify that the solution of (2.45) is given by the following curve γ :

t �→
∑

i

μi e
t

ai
μi δi . (2.46)

Setting t = 1 in (2.46), we obtain the corresponding exponential map ẽxp(e) which
is defined on the whole tangent bundle TM+(I ):

(μ,a) �→ exp

(
da

dμ

)
μ=
∑

i

μi e
ai
μi δi .

�

In what follows, we restrict the m- and e-connections to the simplex P+(I ).
First consider the m-connection. Given a point μ ∈ P+(I ) and two vector fields
A,B : P+(I )→ TP+(I ), we observe that the covariant derivative in μ is already
in the tangent space of P+(I ) in μ, that is, ∇̃(m)

A B|μ ∈ TμP+(I ). This allows us to
define the m-connection on P+(I ) simply by

∇(m)
A B

∣∣
μ
:= ∇̃(m)

A B
∣∣
μ
. (2.47)

The situation is different for the e-connection. There, we have in general ∇̃(e)
A B|μ /∈

TμP+(I ). In order to obtain an e-connection on the simplex, we have to project

∇̃(e)
A B|μ onto TμP+(I ) with respect to the Fisher metric gμ in μ, which leads to the

following covariant derivative on the simplex (see (2.14)):

∇(e)
A B
∣∣
μ
=
(

μ,
∂b

∂aμ

(μ)−
(

daμ

dμ
· dbμ

dμ

)
μ+ gμ(Aμ,Bμ)μ

)
. (2.48)

Proposition 2.5 Consider the affine connections ∇(m) and ∇(e) defined by (2.47)
and (2.48), respectively. Then the following holds:

(1) The corresponding (maximal) m- and e-geodesic with initial point μ ∈ P+(I )

and initial velocity a ∈ TμP+(I ) are given by

γ (m) : ]t−, t+
[→ P+(I ), t �→ μ+ ta,

with

t− := −min

{
μi

ai

: i ∈ I, ai > 0

}
, t+ :=min

{
μi

|ai | : i ∈ I, ai < 0

}
,

and

γ (e) :R→ P+(I ), t �→ exp(t da
dμ

)

μ(exp(t da
dμ

))
μ.
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(2) As corresponding exponential maps exp(m) and exp(e) we have

exp(m) : T →P+(I ), (μ,a) �→ μ+ a,

with T := {(μ, ν −μ) ∈ TP+(I ) : μ,ν ∈P+(I )}, and

exp(e) : TP+(I )→P+(I ), (μ,a) �→ exp( da
dμ

)

μ(exp( da
dμ

))
μ.

Proof Clearly, we only have to prove the statements for the e-connection. From the
definition (2.48), we obtain the equation for the corresponding e-geodesic:

γ̈ − γ̇ 2

γ
+ γ
∑

i

γ̇ 2
i

γi

= 0 with γ (0)= μ, γ̇ (0)= a. (2.49)

The solution of (2.49) is given by the following curve γ :

t �→
∑

i

μi e
t

ai
μi

∑
j μj e

t
aj
μj

δi . (2.50)

We now verify this: Obviously, we have γ (0)= μ. Furthermore, a straightforward
calculation gives us

γ̇i (t) = γi(t)

(
ai

μi

−
∑
j

γj (t)
aj

μj

)

and

γ̈i (t) = γ̇i (t)

(
ai

μi

−
∑
j

γj (t)
aj

μj

)
− γi(t)

∑
j

γ̇j (t)
aj

μj

= γi(t)

(
ai

μi

−
∑
j

γj (t)
aj

μj

)2

− γi(t)
∑
j

γ̇j (t)
aj

μj

.

This implies γ̇ (0)= a and

γ̈i (t)− γ̇i (t)
2

γi

− γi(t)
∑
j

(
γ̈j (t)− γ̇j (t)

2

γj (t)

)

=−γi(t)
∑
j

γ̇j (t)
aj

μj

+ γi(t)
∑
j

γj (t)
∑

k

γ̇k(t)
ak

μk

= 0,
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Fig. 2.4 m- and e-geodesic
in P+({1,2,3}) with initial
point μ and velocity a

which proves that all conditions (2.49) are satisfied. Setting t = 1 in (2.50), we
obtain the corresponding exponential map exp(e) which is defined on the whole
tangent bundle TP+(I ):

(μ,a) �→ exp( da
dμ

)

μ(exp( da
dμ

))
μ=
∑

i

μie
ai
μi

∑
j μj e

aj
μj

δi .

�

As an illustration of the m- and e-geodesic of Proposition 2.5(1), see Fig. 2.4.

2.5 The Amari–Chentsov Tensor and the α-Connections

2.5.1 The Amari–Chentsov Tensor

We consider a covariant 3-tensor using the affine connections ∇̃(m) and ∇̃(e): For
three vector fields A : μ �→ Aμ = (μ,aμ), B : μ �→ Bμ = (μ,bμ), and C : μ �→
Cμ = (μ, cμ) on M+(I ), we define

Tμ(Aμ,Bμ,Cμ) := gμ

(∇̃(m)
A B

∣∣
μ
− ∇̃(e)

A B
∣∣
μ
,Cμ

)

=
∑
i∈I

μi

aμ,i

μi

bμ,i

μi

cμ,i

μi

. (2.51)

We refer to this tensor as the Amari–Chentsov tensor. Note that for vector fields
A,B,C on P+(I ) and μ ∈P+(I ) we have

Tμ(Aμ,Bμ,Cμ)= gμ

(∇(m)
A B

∣∣
μ
−∇(e)

A B
∣∣
μ
,Cμ

)
.

We have seen that the Fisher metric g on P+(I ) is uniquely characterized in terms
of invariance (see Theorem 2.1). Following Chentsov, the same uniqueness property
also holds for the tensor T on P+(I ), which is the content of the following theorem.
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Theorem 2.2 We assign to each non-empty and finite set I a (non-trivial) covariant
3-tensor SI on P+(I ). If for each congruent Markov kernel K : I →P(I ′) we have
invariance in the sense that

SI
μ(A,B,C)= SI ′

K∗(μ)

(
dμK∗(A), dμK∗(B), dμK∗(C)

)

then there is a constant α > 0 such that SI = α TI for all I , where TI denotes the
Amari–Chentsov tensor on P+(I ).2

One can prove this theorem by following the same steps as in the proof of The-
orem 2.1. Alternatively, it immediately follows from the more general result stated
in Theorem 2.3.

By analogy, we can extend the definition (2.51) to a covariant n-tensor for all
n≥ 1:

τn
μ

(
V (1), V (2), . . . , V (n)

) :=∑
i∈I

μi

v
(1)
μ,i

μi

v
(2)
μ,i

μi

· · · v
(n)
μ,i

μi

=
∑
i∈I

1

μi
n−1

v
(1)
μ,i v

(2)
μ,i · · · v(n)

μ,i . (2.52)

Obviously, we have

τ 2 = g, and τ 3 = T.

It is easy to extend the representation (2.26) of the Fisher metric g to the covariant n-
tensor τn. Given a differentiable manifold M and an embedding p :M ↪→M+(I ),
one obtains as pullback of τn the following covariant n-tensor, defined on M :

τn
ξ (V1, . . . , Vn) :=

∑
i

pi(ξ)
∂ logpi

∂V1
(ξ) · · · ∂ logpi

∂Vn

(ξ).

As suggested by (2.52), the tensor τn is closely related to the following multi-
linear form:

Ln
I :F(I )× · · · ×F(I )︸ ︷︷ ︸

n times

→R,

(f1, . . . , fn) �→ Ln
I (f1, . . . , fn) :=

∑
i

f1
i · · ·fn

i .

(2.53)

In order to see this, consider the map

π1/n :M+(I )→F(I ), μ=
∑

i

μi δ
i �→ π1/n(μ) := n

∑
i

μi

1
n ei .

2Note that we use the abbreviation T if corresponding statements are clear without reference to the
set I , which is usually the case throughout this book.
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This implies

Ln
I

(
∂π1/n

∂v(1)
(μ), . . . ,

∂π1/n

∂v(n)
(μ)

)
=
∑

i

(
μ
− n−1

n

i v
(1)
i

) · · · (μ− n−1
n

i v
(n)
i

)

= τn
μ

(
V (1), . . . , V (n)

)
.

This proves that the tensor τn is nothing but the π1/n-pullback of the multi-linear
form Ln

I . In this sense, it is a very natural tensor. Furthermore, for n= 2 and n= 3,
we have seen that the restrictions of g and T to the simplex P+(I ) are naturally
characterized in terms of their invariance with respect to congruent Markov em-
beddings (see Theorem 2.1 and Theorem 2.2). This raises the question whether the
tensors τn on M+(I ), or their restrictions to P+(I ), are also characterized by in-
variance properties. It is easy to see that for all n, τn is indeed invariant. However,
τn are not the only invariant tensors. In fact, Chentsov’s results treat the only non-
trivial uniqueness cases. Already for n = 2, Campbell has shown that the metric g

is not the only one that is invariant if we consider tensors on M+(I ) rather than
on P+(I ) [57]. Furthermore, for higher n, there are other possible invariant tensors,
even when restricting to P+(I ). For instance, for n= 4 we can consider the tensors

τ {1,2},{3,4}(V1,V2,V3,V4) := τ 2(V1,V2) τ 2(V3,V4) = g(V1,V2)g(V3,V4),

τ {1,3},{2,4}(V1,V2,V3,V4) := τ 2(V1,V3) τ 2(V2,V4) = g(V1,V3)g(V2,V4),

τ {1,4},{2,3}(V1,V2,V3,V4) := τ 2(V1,V4) τ 2(V2,V3) = g(V1,V4)g(V2,V3).

It is obvious that all of these invariant tensors are mutually different and also differ-
ent from τ 4. Similarly, for n= 5 we have, for example,

τ {1,2},{3,4,5}(V1,V2,V3,V4,V5) := τ 2(V1,V2) τ 3(V3,V4,V5)

= g(V1,V2)T(V3,V4,V5),

τ {1,4},{2,3,5}(V1,V2,V3,V4,V5) := τ 2(V1,V4) τ 3(V2,V3,V5)

= g(V1,V4)T(V2,V3,V5).

From these examples it becomes evident that for each partition

P= {{i1
1 , . . . , i

n1
1

}
, . . . ,

{
i1
l , . . . , i

nl

l

}}

of the set {1, . . . , n} with n = n1 + · · · + nl one can define an invariant n-tensor
τP(V1, . . . , Vn) in a corresponding fashion, see Definition 2.6 below. Our general-
ization of Chentsov’s uniqueness results, Theorem 2.3, will state that any invariant
n-tensor will be a linear combination of these, i.e., the dimension of the space of
invariant n-tensors depends on the number of partitions of the set {1, . . . , n}. In
fact, this result will even hold if we consider arbitrary (infinite) measure spaces (see
Theorem 5.6).
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2.5.2 The α-Connections

The Amari–Chentsov tensor T is closely related to a family of affine connections,
defined as a convex combination of the m- and the e-connections. As in our previous
derivations we first consider the affine connections on M+(I ) and then restrict them
to P+(I ). Given α ∈ [−1,1], we define the following convex combination, the α-
connection:

∇̃(α) := 1− α

2
∇̃(m) + 1+ α

2
∇̃(e) = ∇̃(m) + 1+ α

2

(∇̃(e) − ∇̃(m)
)
. (2.54)

Obviously, for vector fields A, B , and C we have

g
(∇̃(α)

A B,C
)= g

(∇̃(m)
A B,C

)− 1+ α

2
T(A,B,C).

More explicitly, we have

∇̃(α)
A B
∣∣
μ
=
(

μ,
∑

i

(
∂bi

∂aμ

(μ)− 1+ α

2

aμ,ibμ,i

μi

)
δi

)
. (2.55)

This allows us to determine the geodesic and the exponential map of the α-
connection. The differential equation for the α-geodesic with initial point μ and
initial velocity a follows from (2.55):

γ̈ − 1+ α

2

γ̇ 2

γ
= 0, γ (0)= μ, γ̇ (0)= a. (2.56)

It is easy to verify that the following curve satisfies this equation:

γ (α)(t)=
(

μ
1−α

2 + t
1− α

2
μ−

1+α
2 a

) 2
1−α

. (2.57)

By setting t = 1, we can define the corresponding exponential map:

ẽxp(α) : (μ,a) �→
(

μ
1−α

2 + 1− α

2
μ−

1+α
2 a

) 2
1−α

. (2.58)

Finally, the α-geodesic with initial point μ and endpoint ν has the following more
symmetric structure:

γ (α)(t)= ((1− t)μ
1−α

2 + t ν
1−α

2
) 2

1−α . (2.59)

Now we come to the α-connection∇(α) on P+(I ) by projection of ∇̃(α) (see (2.14)).
For μ ∈ P+(I ) and two vector fields A and B that are tangential to P+(I ), we obtain
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as projection

∇(α)
A B
∣∣
μ
=
(

μ,
∑

i

(
∂bi

∂aμ

(μ)− 1+ α

2

{
aμ,ibμ,i

μi

−μi

∑
j

aμ,j bμ,j

μj

})
δi

)
.

(2.60)
This implies the following corresponding geodesic equation:

γ̈ − 1+ α

2

{
γ̇ 2

γ
− γ
∑
j

γ̇ 2
j

γj

}
= 0, γ (0)= μ, γ̇ (0)= a. (2.61)

It is reasonable to make a solution ansatz by normalization of the unconstrained
geodesic (2.57) and (2.59). However, it turns out that, in order to solve the geodesic
Eq. (2.61), both normalized curves have to be reparametrized. More precisely, it has
been shown in [187] (Theorems 14.1 and 15.1) that, with appropriate reparametriza-
tions τμ,a and τμ,ν , we have the following forms of the α-geodesic in the simplex
P+(I ):

γ (α)(t)=
∑
i∈I

μi(1+ τμ,a(t)
1−α

2
ai

μi
)

2
1−α

∑
j∈I μj (1+ τμ,a(t)

1−α
2

aj

μj
)

2
1−α

δi (2.62)

and

γ (α)(t)=
∑
i∈I

(μ
1−α

2
i + τμ,ν(t)(ν

1−α
2

i −μ
1−α

2
i ))

2
1−α

∑
j∈I (μ

1−α
2

j + τμ,ν(t)(ν
1−α

2
i −μ

1−α
2

i ))
2

1−α

δi . (2.63)

An explicit expression for the reparametrizations τμ,a and τμ,ν is unknown. In gen-
eral, we have the following implications:

γ (α)(0)= μ,
dγ (α)

dt
(0)= τ̇μ,a(0) a = a ⇒ τμ,a(0)= 0, τ̇μ,a(0)= 1,

and

γ (α)(0)= μ, γ (α)
μ,ν(1)= ν ⇒ τμ,ν(0)= 0, τμ,ν(1)= 1.

As the two expressions (2.62) and (2.63) of the geodesic γ (α) yield the same velocity
a at t = 0, we obtain, with

∑
i∈I ai = 0,

a = 1

τμ,a(1)

2

1− α

∑
i∈I

μi

(
(

νi

μi
)

1−α
2

∑n
j=1 μj (

νj

μj
)

1−α
2

− 1

)
δi (2.64)

and

a = τ̇μ,ν(0)
2

1− α

∑
i∈I

μi

((
νi

μi

) 1−α
2 −

∑
j∈I

μj

(
νj

μj

) 1−α
2
)

δi . (2.65)
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A comparison of (2.64) and (2.65) yields

τ̇μ,ν(0)
∑
j∈I

μj

(
νj

μj

) 1−α
2 = 1

τμ,a(1)
. (2.66)

2.6 Congruent Families of Tensors

In Theorem 2.1 we showed that the Fisher metric g on P+(I ) is characterized by
the property that it is invariant under congruent Markov kernels. In this section,
we shall generalize this result and give a complete description of all families of
covariant n-tensors on P+(I ) or, more general, on M+(I ) with this property.

Before doing this, we need to introduce some more notation. Recall that for a
non-empty finite set I we defined S(I ) as the vector space of signed measures on I

on page 26, that is,

S(I )=
{∑

i∈I

aiδ
i : ai ∈R

}
,

where δi is the Dirac measure supported at i ∈ I . On this space, we define the norm

‖μ‖1 := |μ|(I )=
∑
i∈I

|ai |, where μ=
∑
i∈I

aiδ
i . (2.67)

Remark 2.1 The norm defined in (2.67) is the norm of total variation, which we
shall define for general measure spaces in (3.1).

Moreover, recall the subsets P(I )⊆M(I )⊆S(I ) introduced in (2.1), where P(I )

denotes the set of probability measures and M(I ) the set of finite measures on I ,
respectively. By (2.67), we can also write

P(I )= {m ∈M(I ) : ‖m‖1 = 1
}=M(I )∩ S1(I ).

By (2.1), P+(I )⊆S1(I ) and M+(I )⊆S(I ) are open subsets, where S1(I )⊆S(I )

is an affine subspace with underlying vector spaces S0(I ). Thus, the tangent bundles
of these spaces can be naturally given as in (2.9).

For each μ ∈M+(I ), there is a decomposition of the tangent space

TμM+(I )= TμP+(I )⊕Rμ= S0(I )⊕Rμ. (2.68)

Indeed, TμP+(I ) = S0(I ) has codimension one in TμM+(I ) = S(I ), and Rμ ∩
S0(I )= 0.

We also define the projection

πI :M+(I )−→ P+(I ), πI (μ)= 1

‖μ‖1
μ,
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which rescales an arbitrary finite measure on I to become a probability measure.
Obviously, πI (μ) = μ if and only if μ ∈ P+(I ). Clearly, πI is differentiable. To
calculate its differential, we let V ∈ TμM+(I )= S , and use

dμπI (V )= d

dt

∣∣∣∣
t=0

πI (μ+ tV )= d

dt

∣∣∣∣
t=0

1

‖μ+ tV ‖1
(μ+ tV ).

If V ∈ S0(I )⊆S , then ‖μ+ tV ‖1 = ‖μ‖1 by the definition of S0(I ). On the other
hand, if V = c0μ, then πI (μ+ tV ) = πI (1+ tc0)μ = πI (μ) is constant, whence
for the differential we obtain

dμπI (V )=
{

1
‖μ‖1

V for V ∈ TμP+(I )= S0(I ),

0 for V ∈Rμ.
(2.69)

Definition 2.3 (Covariant n-tensors on M+(I ) and P+(I ))

(1) A covariant n-tensor on P+(I ) is a continuous map

Θn
I : P+(I )×

n×S0(I )−→R, (μ;V1, . . . , Vn) �−→
(
Θn

I

)
μ
(V1, . . . , Vn)

such that (Θn
I )μ is n-linear on×n S0(I ) for fixed μ ∈P+(I ).

(2) A covariant n-tensor on M+(I ) is a continuous map

Θ̃n
I :M+(I )×

n×S −→R, (μ;V1, . . . , Vn) �−→
(
Θ̃n

I

)
μ
(V1, . . . , Vn)

such that (Θ̃n
I )μ is n-linear on×n S for fixed μ ∈M+(I ).

(3) Given a covariant n-tensor Θn
I on P+(I ), we define the extension of Θn

I to
M+(I ) to be the covariant n-tensor

(
Θ̃n

I

)
μ
(V1, . . . , Vn) :=

(
Θn

I

)
πI (μ)

(
dμπI (V1), . . . , dμπI (Vn)

)
.

(4) Given a covariant n-tensor Θ̃n
I on M+(I ), we define its restriction to P+(I ) to

be the tensor (
Θ̃n

I

)
μ
(V1, . . . , Vn) :=

(
Θ̃n

I

)
μ
(V1, . . . , Vn).

Remark 2.2 By convention, a covariant 0-tensor on P+(I ) and M+(I ) is simply a
continuous function Θ0

I :P+(I )→R and Θ̃0
I :M+(I )→R, respectively.

The extension of Θn
I is merely the pull-back of Θn

I under the map πI :M+(I )→
P+(I ); the restriction of Θ̃n

I is the pull-back of the inclusion P+(I ) ↪→M+(I ) as
defined in (2.25).

In general, in order to describe a covariant n-tensor Θ̃n
I on M+(I ), we define for

a multiindex �i := (i1, . . . , in) ∈ In

θ
�i
I ;μ :=

(
Θ̃n

I

)
μ

(
δi1, . . . , δin

)=: (Θ̃n
I

)
μ

(
δ
�i). (2.70)
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Clearly, these functions are continuous in μ ∈M+(I ), and they uniquely deter-
mine Θ̃n

I , since for arbitrary vectors Vk =∑i∈I vk;iδi ∈ S the multilinearity implies

(
Θ̃n

I

)
μ
(V1, . . . , Vn)=

∑
�i=(i1,...,in)∈In

θ
�i
I ;μv1,i1 · · ·vn,in . (2.71)

Let K : I → P(I ′) be a Markov kernel between the finite sets I and I ′, as de-
fined in (2.30). Such a map induces a corresponding map between probability dis-
tributions as defined in (2.31), and as was mentioned there, this formula also yields
a linear map

K∗ : S(I )−→ S
(
I ′
)
, μ=

∑
i∈I

μiδ
i �−→

∑
i∈I

μiK
i,

where

Ki :=K(i)=
∑
i′∈I ′

Ki
i′δ

i′ .

Clearly, K∗ is a linear map between S(I ) and S(I ′), and Ki
i′ ≥ 0, implies K∗μ ∈

M(I ′) for all μ ∈M(I ). Moreover,
∑

i′∈I ′ K
i
i′ = 1 implies that for all μ ∈M(I ),

‖K∗μ‖1 =
∥∥∥∥
∑

i∈I,i′∈I ′
μiK

i
i′δ

i′
∥∥∥∥

1
=
∑

i∈I,i′∈I ′
μiK

i
i′ =
∑
i∈I

μi = ‖μ‖1.

That is,

‖K∗μ‖1 = ‖μ‖1 for all μ ∈M(I ). (2.72)

This also implies that the image of P(I ) under K∗ is contained in P(I ′). In partic-
ular, it follows that for μ ∈M(I ),

K∗(πIμ)=K∗
(

1

‖μ‖1
μ

)
= 1

‖K∗μ‖1
K∗μ= πI ′(K∗μ),

i.e.,

K∗(πIμ)= πI ′(K∗μ) for all μ ∈M(I ). (2.73)

Definition 2.4 (Tensors invariant under congruent embeddings) A congruent fam-
ily of covariant n-tensors is a collection {Θ̃n

I : I finite}, where Θ̃n
I is a covariant n-

tensor on M+(I ), which is invariant under congruent Markov kernels in the sense
that

K∗∗ Θ̃n
I ′ = Θ̃n

I (2.74)

for any congruent Markov kernel K : I →P(I ′) with the definition of the pull-back
in (2.25).
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A restricted congruent family of covariant n-tensors is a collection {Θn
I :

I finite}, where Θn
I is a covariant n-tensor on P+(I ), which is invariant under con-

gruent Markov kernels in the sense that (2.74) holds when replacing Θ̃n
I and Θ̃n

I ′ by
Θn

I and Θn
I ′ , respectively.

Proposition 2.6 There is a correspondence between congruent families of covari-
ant n-tensors and restricted congruent families of covariant n-tensors in the follow-
ing sense:

(1) Let {Θ̃n
I : I finite} be a congruent family of covariant n-tensors, and let Θn

I be
the restriction of Θ̃n

I to P+(I ).
Then {Θn

I : I finite} is a restricted congruent family of covariant n-tensors.
Moreover, any restricted congruent family of covariant n-tensors can be de-
scribed in this way.

(2) Let {Θn
I : I finite} be a restricted congruent family of covariant n-tensors, and

let Θ̃n
I be the extension of Θn

I to M+(I ).
Then {Θ̃n

I : I finite} is a congruent family of covariant n-tensors.

Proof This follows from unwinding the definitions. Namely, if {Θ̃n
I : I finite} is

a congruent family of covariant n-tensors, then the restriction is given as Θn
I :=

Θ̃n
I |P(I ). Now if K : I → P(I ′) is a congruent Markov kernel, then because of

(2.72), K∗ maps P(I ) to P(I ′), whence if (2.74) holds, it also holds for the restric-
tion of both sides to P(I ) and P(I ′), respectively, showing that {Θn

I : I finite} is a
restricted congruent family of covariant n-tensors.

For the second assertion, let {Θn
I : I finite} be a restricted congruent family of

covariant n-tensors. Then the extension of Θn
I is given as Θ̃n

I := π∗I Θn
I , whence for

a congruent Markov kernel K : I → P(I ′) we get from (2.73)

K∗∗ Θ̃n
I ′ =K∗∗π∗I ′Θ

n
I ′ = (πI ′K∗)∗Θn

I ′ = (K∗πI )
∗Θn

I ′ = π∗I K∗∗Θn
I ′ = π∗I Θn

I = Θ̃n
I ,

so that (2.74) holds. �

In the following, we shall therefore mainly deal with the description of congruent
families of covariant n-tensors, since by virtue of Proposition 2.6 this immediately
yields a description of all restricted congruent families as well.

Example 2.2 (Congruent families of covariant 0-tensors) Let {Θ̃0
I :M+(I )→ R :

I finite} be a congruent family of covariant 0-tensors, i.e., of continuous functions
Θ̃0

I :M+(I )→ R (cf. Remark 2.2). Let μ ∈M+(I ) and ρ := πI (μ) ∈ P+(I ) be
the normalization of μ, so that μ= ‖μ‖1ρ. Define the congruent embedding deter-
mined by

K : S({0}) �−→ S(I ), δ0 �−→ ρ.

Then by the congruence condition,

Θ̃0
I (μ)= Θ̃0

I

(‖μ‖1ρ
)= Θ̃0

I

(
K∗
(‖μ‖1δ

0))= Θ̃0
{0}
(‖μ‖1δ

0)=: a(‖μ‖1
)
.
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That is, a congruent family of covariant 0-tensors is given as

Θ̃0
I (μ)= a

(‖μ‖1
)

(2.75)

for some continuous function a : (0,∞)→R. Conversely, every family given as in
(2.75) is congruent, since Markov morphisms preserve the total mass by (2.72).

In particular, a restricted congruent family of covariant 0-tensors is given by a
constant.

Definition 2.5

(1) Let Θ̃n
I be a covariant n-tensor on M+(I ) and let σ be a permutation of

{1, . . . , n}. Then the permutation of Θ̃n
I by σ is defined by

(
Θ̃n

I

)σ
(V1, . . . , Vn) :=Θn

I (Vσ1 , . . . , Vσn).

(2) Let Θ̃n
I and Ψ̃ m

I be covariant n- and m-tensors on M+(I ), respectively. Then
the tensor product of Θ̃n

I and Ψ̃ m
I is the covariant (n+ m)-tensor on M+(I )

defined by
(
Θ̃n

I ⊗ Ψ̃ m
I

)
(V1, . . . , Vn+m) := Θ̃n

I (V1, . . . , Vn) · Ψ̃ m
I (Vn+1, . . . , Vn+m).

The permutation by σ and the tensor product of covariant tensors on P+(I ) is de-
fined analogously.

Observe that the tensor product includes multiplication by a continuous function,
which is regarded as a covariant 0-tensor.

By the definition of the pull-back K∗∗ in (2.25) it follows immediately that

K∗∗
(
c1Θ̃

n
I + c2Ψ̃

n
I

)= c1K
∗∗
(
Θ̃n

I

)+ c2K
∗∗
(
Ψ̃ n

I

)
,

K∗∗
((

Θ̃n
I

)σ )= (K∗∗
(
Θ̃n

I

))σ
,

K∗∗
(
Θ̃n

I ⊗ Ψ̃ m
I

)=K∗∗
(
Θ̃n

I

)⊗K∗∗
(
Ψ̃ m

I

)
.

This implies the following statement.

Proposition 2.7

(1) Let {Θ̃n
I : I finite} and {Ψ̃ n

I : I finite} be two congruent families of covariant
n-tensors. Then any linear combination {c1Θ̃

n
I + c2Ψ̃

n
I : I finite} is also a con-

gruent family of covariant n-tensors.
(2) Let {Θ̃n

I : I finite} be a congruent family of covariant n-tensors. Then for any
permutation σ of {1, . . . , n}, {(Θ̃n

I )σ : I finite} is a congruent family of covariant
n-tensors.

(3) Let {Θ̃n
I : I finite} and {Ψ̃ m

I : I finite} be two congruent families of covariant
n- and m-tensors, respectively. Then the tensor product {Θ̃n

I ⊗ Ψ̃ m
I : I finite} is

also a congruent family of covariant (n+m)-tensors.
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The analogous statements hold for restricted congruent family of covariant n-
tensors.

The following introduces an important class of congruent families of covariant
n-tensors.

Proposition 2.8 For a finite set I define the canonical n-tensor τn
I as

(
τn
I

)
μ
(V1, . . . , Vn) :=

∑
i∈I

1

mn−1
i

v1;i · · ·vn;i , (2.76)

where Vk =∑i∈I vk;iδi ∈ S(I ) and μ=∑i∈I miδ
i ∈M+(I ). Then {τn

I : I finite}
is a congruent family of covariant n-tensors.

The component functions of this tensor from (2.70) are therefore given as

θ
i1,...,in
I ;μ =

{
1

mn−1
i

if i1 = · · · = in =: i,
0 otherwise.

(2.77)

This is well defined since mi > 0 for all i as μ ∈M+(I ). Observe that the restriction
of τn

I to P+(I ) coincides with the definition in (2.52), so that, in particular, the
restriction of τ 1

I to P+(I ) vanishes, while τ 2
I and τ 3

I are the Fisher metric and the
Amari–Chentsov tensor on P+(I ), respectively.

Proof Let K : I → P(I ′) be a congruent Markov kernel with the partition (Ai)i∈I

of I ′ as defined in (2.32). That is, K(i) := Ki
i′δ

i′ with Ki
i′ = 0 if i′ /∈ Ai . If μ =∑

i∈I miδ
i , then

μ′ :=K∗μ=
∑

i∈I,i′∈Ai

miK
i
i′δ

i′ =:
∑
i′∈I ′

m′i′δ
i′ .

Thus,

m′i′ =miK
i
i′ for the (unique) i ∈ I with i′ ∈Ai. (2.78)

Then with the notation from before

(
τn
I ′
)
μ′
(
K∗δi1, . . . ,K∗δin

) = (τn
I ′
)
μ′

( ∑
i′1∈Ai1

K
i1
i′1

δi′1 , . . . ,
∑

i′n∈Ain

K
in
i′n

δi′n
)

=
∑

i′k∈Aik

K
i1
i′1
· · ·Kin

i′n
θ

i′1,...,i′n
I ′;μ′ .

By (2.77), the only summands with θ
i′1,...,i′n
I ′;μ′ = 0 are those where i′1 = · · · = i′n =: i′.

If we let i ∈ I be the index with i′ ∈Ai , then, as K is a congruent Markov morphism,
we have K

ik
i′ = 0 unless ik = i.
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That is, K
i1
i′1
· · ·Kin

i′n
θ

i′1,...,i′n
I ′;μ′ = 0 only if i′1 = · · · = i′n =: i′ and i1 = · · · = in =: i

with i′ ∈Ai . In particular, if not all of i1, . . . , in are equal (2.74) holds for Vk = δik ,
since in this case,

(
τn
I ′
)
μ′
(
K∗δi1, . . . ,K∗δin

)= 0= (τn
I

)
μ

(
δi1, . . . , δin

)
.

On the other hand, if i1 = · · · = in =: i, then the above sum reads

(
τn
I ′
)
μ′
(
K∗δi, . . . ,K∗δi

) = ∑
i′∈Ai

Ki
i′ · · ·Ki

i′θ
i′,...,i′
I ′;μ′

(2.77)=
∑
i′∈Ai

(
Ki

i′
)n 1

(m′
i′)

n−1

(2.78)=
∑
i′∈Ai

(
Ki

i′
)n 1

(miK
i
i′)

n−1

= 1

mn−1
i

∑
i′∈Ai

Ki
i′ =

1

mn−1
i

∑
i′∈I ′

Ki
i′

︸ ︷︷ ︸
=1

= 1

mn−1
i

= (τn
I

)
μ

(
δi, . . . , δi

)
,

so that (2.74) holds for V1 = · · · = Vn = δi as well. Thus, the n-linearity of the
tensors shows that (2.74) always holds, which shows the claim. �

By Propositions 2.7 and 2.8, we can therefore construct further congruent fami-
lies which we shall now describe in more detail.

For n ∈ N, we denote by Part(n) the collection of partitions P = {P1, . . . ,Pr}
of {1, . . . , n}, that is,

⋃
k Pk = {1, . . . , n}, and these sets are pairwise disjoint. We

denote the number r of sets in the partition by |P|.
Given a partition P= {P1, . . . ,Pr } ∈ Part(n), we associate to it a bijective map

πP :
⊎

i∈{1,...,r}

({i} × {1, . . . , ni}
)−→ {1, . . . , n}, (2.79)

where ni := |Pi |, such that πP({i} × {1, . . . , ni})= Pi . This map is well defined, up
to permutation of the elements in Pi .

Part(n) is partially ordered by the relation P ≤ P′ if P is a subdivision of P′.
This ordering has the partition {{1}, . . . , {n}} into singleton sets as its minimum and
{{1, . . . , n}} as its maximum.

Definition 2.6 (Canonical tensor of a partition) Let P ∈ Part(n) be a partition, and
let πP be the bijective map from (2.79). For each finite set I , the canonical n-tensor
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of P is the covariant n-tensor defined by

(
τP
I

)
μ
(V1, . . . , Vn) :=

r∏
i=1

(
τ

ni

I

)
μ
(VπP(i,1), . . . , VπP(i,ni )) (2.80)

with the canonical tensor τ
ni

I from (2.76).

Observe that this definition is independent of the choice of the bijection πP, since
τ

ki

I is symmetric.

Example 2.3

(1) If P= {{1, . . . , n}} is the trivial partition, then

τP
I = τn

I .

(2) If P= {{1}, . . . , {n}} is the partition into singletons, then

τP
I (V1, . . . , Vn)= τ 1

I (V1) · · · τ 1
I (Vn).

(3) To give a concrete example, let n= 5 and P= {{1,3}, {2,5}, {4}}. Then

τP
I (V1, . . . , V5)= τ 2

I (V1,V3) · τ 2
I (V2,V5) · τ 1

I (V4).

Observe that the restriction of τP to P+(I ) vanishes if P contains a singleton set,
since τ 1

I vanishes on P+(I ) by (2.52). Thus, the restriction of the last two examples
to P+(I ) vanishes.

Proposition 2.9

(1) Every family of covariant n-tensors given by

(
Θ̃n

I

)
μ
=
∑

P∈Part(n)

aP
(‖μ‖1

)(
τP
I

)
μ

(2.81)

with continuous functions aP : (0,∞)→R is congruent. Likewise, every family
of restricted covariant n-tensors given by

Θn
I =

∑
P∈Part(n)
|Pi |≥2

cPτP
I (2.82)

with cP ∈R is congruent.
(2) The class of congruent families of (restricted) covariant tensors in (2.81) and

(2.82), respectively, is the smallest such class which is closed under taking lin-
ear combinations, permutations, and tensor products as described in Proposi-
tion 2.7, and which contains the canonical n-tensors {τn

I } and the covariant
0-tensors from (2.75).
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(3) For any congruent family of this class, the functions aP and the constants cP in
(2.81) and (2.82), respectively, are uniquely determined.

Proof Evidently, the class of families of (restricted) covariant tensors in (2.81) and
(2.82), respectively, is closed under taking linear combinations and permutations.
To see that it is closed under taking tensor products, note that

τP
I ⊗ τP′

I = τP∪P′
I ,

where P∪P′ ∈ Part(n+m) is the partition of {1, . . . , n+m} obtained by regarding
P ∈ Part(n) and P′ ∈ Part(m) as partitions of {1, . . . , n} and {n+ 1, . . . , n+ m},
respectively.

Moreover, if P= {P1, . . . ,Pr} ∈ Part(n), we may—after applying a permutation
of {1, . . . , n}—assume that

P1 = {1, . . . , k1},P2 = {k1 + 1, . . . , k1 + k2}, . . . ,Pr = {n− kr + 1, . . . , n},
with ki = |Pi |, and in this case, (2.80) and Definition 2.5 imply that

τP
I =
(
τ

k1
I

)⊗ (τ k2
I

)⊗ · · · ⊗ (τ kr

I

)
.

Therefore, all (restricted) families given in (2.81) and (2.82), respectively, are con-
gruent by Proposition 2.7, and any class containing the canonical n-tensors and
congruent 0-tensors which is closed under linear combinations, permutations and
tensor products must contain all families of the form (2.81) and (2.82), respectively.
This proves the first two statements.

In order to prove the third part, suppose that

∑
P∈Part(n)

aP
(‖μ‖1

)(
τP
I

)
μ
= 0 (2.83)

for all finite I and μ ∈M+(I ), but there is a partition P0 with aP0 ≡ 0. In fact,
we pick P0 to be minimal with this property, and choose a multiindex �i ∈ In with
P(�i)= P0. Then

0 =
∑

P∈Part(n)

aP
(‖μ‖1

)(
τP
I

)
μ

(
δ
�i)= ∑

P≤P0

aP
(‖μ‖1

)(
τP
I

)
μ

(
δ
�i)

= aP0

(‖μ‖1
)(

τ
P0
I

)
μ

(
δ
�i).

The first equation follows since (τP
I )μ(δ

�i ) = 0 only if P≤ P(�i)= P0 by Lemma 2.1,
whereas the second follows since aP ≡ 0 for P < P0 by the minimality assumption
on P0.

But (τ
P0
I )μ(δ

�i ) = 0 again by Lemma 2.1, since P(�i)= P0, so that aP0(‖μ‖1)= 0
for all μ, contradicting aP0 ≡ 0.
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Thus, (2.83) occurs only if aP ≡ 0 for all P, showing the uniqueness of the func-
tions aP in (2.81).

The uniqueness of the constants cP in (2.82) follows similarly, but we have to
account for the fact that δi /∈ S0(I )= TμP+(I ). In order to get around this, let I be
a finite set and J := {0,1,2} × I . For i ∈ I , we define

Vi := 2δ(0,i) − δ(1,i) − δ(2,i) ∈ S0(J ),

and for a multiindex �i = (i1, . . . , in) ∈ In we let

(
τP
J

)
μ

(
V
�i) := (τP

J

)
μ
(Vi1 , . . . , Vin).

Multiplying this term out, we see that (τP
J )μ(V

�i ) is a linear combination of terms
of the form (τP

J )μ(δ(a1,i1), . . . , δ(an,in)), where ai ∈ {0,1,2}. Thus, from Lemma 2.1
we conclude that (

τP
J

)
μ

(
V
�i) = 0 only if P≤ P(�i). (2.84)

Moreover, if P(�i)= {P1, . . . ,Pr} with |Pi | = ki , then by Definition 2.6 we have

(
τ

P(�i)
J

)
cJ

(
V
�i) =

r∏
i=1

(
τ

ki

J

)
cJ

(Vi, . . . , Vi)

=
r∏

i=1

(
2ki + 2(−1)ki

)|J |ki−1 = |J |n−|P(�i)|
r∏

i=1

(
2ki + 2(−1)ki

)
.

In particular, since 2ki + 2(−1)ki > 0 for all ki ≥ 2 we conclude that

(
τ

P(�i)
J

)
cJ

(
V
�i) = 0, (2.85)

as long as P(�i) does not contain singleton set.
With this, we can now proceed as in the previous case: assume that

∑
P∈Part(n),|Pi |≥2

cPτP
I = 0 when restricted to×n S0(I ), (2.86)

for constants cP which do not all vanish, and we let P0 be minimal with cP0 = 0.
Let �i = (i1, . . . , in) ∈ In be a multiindex with P(�i)= P0, and let J := {0,1,2} × I

be as above. Then

0 =
∑

P∈Part(n),|Pi |≥2

cP
(
τP
J

)
μ

(
V
�i) (2.84)=

∑
P≤P0,|Pi |≥2

cP
(
τP
J

)
μ

(
V
�i)

= cP0

(
τ

P0
J

)
μ

(
V
�i),



62 2 Finite Information Geometry

where the last equality follows by the assumption that P0 is minimal. But
(τ

P0
J )μ(V

�i ) = 0 by (2.85), whence cP0 = 0, contradicting the choice of P0.
This shows that (2.86) can happen only if all cP = 0, and this completes the

proof. �

In the light of Proposition 2.9, it is thus reasonable to use the following terminol-
ogy.

Definition 2.7 The class of covariant tensors given in (2.81) and (2.82), respec-
tively, is called the class of congruent families of (restricted) covariant tensors
which is algebraically generated by the canonical n-tensors {τn

I }.

We are now ready to state the main result of this section.

Theorem 2.3 (Classification of congruent families of covariant n-tensors) The
class of congruent families of covariant n-tensors on finite sets is the class alge-
braically generated by the canonical n-tensors {τn

I }. That is, any (restricted) con-
gruent family of covariant n-tensors is of the form (2.81) and (2.82), respectively.

For n= 2, there are only two partitions, {{1}, {2}} and {{1,2}}. Thus, in this case
the theorem states that each (restricted) congruent family of invariant 2-tensors must
be of the form

(
Θ̃2

I

)
μ
(V1,V2) = a

(‖μ‖1
)
g(V1,V2)+ b

(‖μ‖1
)
τ 1(V1)τ

1(V2),

(
Θ2

I

)
μ
(V1,V2) = cg(V1,V2).

Therefore, we recover the theorems of Chentsov (cf. Theorem 2.1) and Campbell
(cf. [57] or [25]).

In the case n= 3, there is no partition with |Pi | ≥ 2 other than {{1,2,3}}, whence
it follows that the only restricted congruent family of covariant 3-tensors is—up to
multiplication by a constant—the canonical tensor τ 3

I , which coincides with the
Amari–Chentsov tensor T (cf. Theorem 2.2, see also [25] for the non-restricted
case).

On the other hand, for n= 4, there are several partitions with |Pi | ≥ 2, hence a
restricted congruent family of covariant 4-forms is of the form

Θ4
I (V1, . . . , V4) = c0τ

4(V1, . . . , V4)+ c1g(V1,V2)g(V3,V4)

+ c2g(V1,V3)g(V2,V4)+ c3g(V1,V4)g(V2,V3)

for constants c0, . . . , c3, where g= τ 2
I is the Fisher metric. Thus, in this case there

are more invariant families of such tensors. Evidently, for increasing n, the dimen-
sion of the space of invariant families increases rapidly.

The rest of this section will be devoted to the proof of Theorem 2.3 and will be
split up into several lemmas.
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A multiindex �i = (i1, . . . , in) ∈ In induces a partition P(�i) of the set {1, . . . , n}
into the equivalence classes of the relation k ∼ l ⇔ ik = il . For instance, for
n = 6 and pairwise distinct elements i, j, k ∈ I , the partition induced by �i :=
(j, i, i, k, j, i) is

P(�i)= {{1,5}, {2,3,6}, {4}}.
Lemma 2.1 Let τP

I be the canonical n-tensor from Definition 2.6, and define the
center

cI := 1

|I |
∑
i∈I

δi ∈P+(I ), (2.87)

as in the proof of Theorem 2.1. Then for any λ > 0 we have

(
τP
I

)
λcI

(
δ
�i)=
{

(
|I |
λ

)n−|P| if P≤ P(�i),
0 otherwise.

(2.88)

Proof Let P= {P1, . . . ,Pr} with |Pi | = ki , and let πP be the map from (2.79). Then
by (2.80) we have

(
τP
I

)
μ

(
δ
�i)=

r∏
i=1

(
τ

ki

I

)
μ

(
δiπP(i,1) , . . . , δiπP(i,ki )

)=
r∏

i=1

θ
iπP(i,1),...,iπP(i,ki )

I ;μ .

Thus, (τP
I )μ(δ

�i ) = 0 if and only if θ
iπP(i,1),...,iπP(i,ki )

I ;μ = 0 for all i, and by (2.77)
this is the case if and only if iπP(i,1) = · · · = iπP(i,ki ) for all i. But this is equivalent

to saying that P≤ P(�i), showing that (τP
I )λcI

(δ
�i )= 0 if P � P(�i).

For μ= λcI , the components mi of μ all equal mi = λ/|I |, whence in this case
we have for all multiindices �i with P≤ P(�i),

(
τP
I

)
λcI

(
δ
�i) =

r∏
i=1

θ
i,...,i
I ;λcI

(2.77)=
r∏

i=1

( |I |
λ

)ki−1

=
( |I |

λ

)k1+···+kr−r

=
( |I |

λ

)n−|P|
,

showing (2.88). �

Now let us suppose that {Θ̃n
I : Ifinite} is a congruent family of covariant n-

tensors, and define θ
�i
I,μ as in (2.70) and cI ∈ P+(I ) as in (2.87). The following

lemma generalizes Step 1 in the proof of Theorem 2.1.

Lemma 2.2 Let {Θ̃n
I : I finite} and θ

�i
I,μ be as before, and let λ > 0. If �i, �j ∈ In are

multiindices with P(�i)= P( �j), then

θ
�i
I,λcI

= θ
�j
I,λcI

.
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Proof If P(�i)= P( �j), then there is a permutation σ : I → I such that σ(ik)= jk for
k = 1, . . . , n. We define the congruent Markov kernel K : I → P(I ) by Ki := δσ(i).
Then evidently, K∗cI = cI , and (2.74) implies

θ
�i
I,λcI

= (Θ̃n
I

)
λcI

(
δi1, . . . , δin

)
= (Θ̃n

I

)
K∗(λcI )

(
K∗δi1, . . . ,K∗δin

)

= (Θ̃n
I

)
λcI

(
δj1 , . . . , δjn

)= θ
�j
I,λcI

,

which shows the claim. �

By virtue of this lemma, we may define

θP
I,λcI

:= θ
�i
I,λcI

, where �i ∈ In is a multiindex with P(�i)= P.

The following two lemmas generalize Step 2 in the proof of Theorem 2.1.

Lemma 2.3 Let {Θ̃n
I : I finite} and θP

I,λcI
be as before, and suppose that P0 ∈

Part(n) is a partition such that

θP
I,λcI

= 0 for all P < P0, λ > 0 and I. (2.89)

Then there is a continuous function fP0 : (0,∞)→R such that

θ
P0
I,λcI

= fP0(λ)|I |n−|P0|. (2.90)

Proof Let I, J be finite sets, and let I ′ := I × J . We define the congruent Markov
kernel

K : I −→ P
(
I ′
)
, i �−→ 1

|J |
∑
j∈J

δ(i,j)

with the partition ({i} × J )i∈I of I ′. Then K∗cI = cI ′ is easily verified. Moreover,
if �i = (i1, . . . , in) ∈ In is a multiindex with P(�i)= P0, then

θ
P0
I,λcI

= (
Θ̃n

I

)
λcI

(
δi1 , . . . , δin

)
(2.74)= (

Θ̃n
I ′
)
K∗(λcI )

(
K∗δi1, . . . ,K∗δin

)

= (
Θ̃n

I ′
)
λcI ′

(
1

|J |
∑
j1∈J

δ(i1,j1), . . . ,
1

|J |
∑
jn∈J

δ(in,jn)

)

= 1

|J |n
∑

(j1,...,jn)∈Jn

θ
P((i1,j1),...,(in,jn))

I ′,λcI ′
.
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Observe that P((i1, j1), . . . , (in, jn)) ≤ P(�i) = P0. If P((i1, j1), . . . , (in, jn)) < P0,
then θ

P((i1,j1),...,(in,jn))

I ′,λcI ′
= 0 by (2.89).

Moreover, there are |J ||P0| multiindices (j1, . . . , jn) ∈ Jn for which
P((i1, j1), . . . , (in, jn))= P0, and since for all of these θ

P((i1,j1),...,(in,jn))

I ′,λcI ′
= θ

P0
I ′,λcI ′

,
we obtain

θ
P0
I,λcI

= 1

|J |n
∑

(j1,...,jn)∈Jn

θ
P((i1,j1),...,(in,jn))

I ′,λcI ′
= |J |

|P0|

|J |n θ
P0
I ′,λcI ′

,

and since |I ′| = |I ||J |, it follows that

1

|I |n−|P0| θ
P0
I,λcI

= 1

|I |n−|P0|

(
1

|J |n−|P0| θ
P0
I ′,λcI ′

)
= 1

|I ′|n−|P0| θ
P0
I ′,λcI ′

.

Interchanging the roles of I and J in the previous arguments, we also get

1

|J |n−|P0| θ
P0
J,λcJ

= 1

|I ′|n−|P0| θ
P0
I ′,λcI ′

= 1

|I |n−|P0| θ
P0
I,λcI

,

whence fP0(λ) := 1
|I |n−|P0| θ

P0
I,λcI

is indeed independent of the choice of the finite

set I . �

Lemma 2.4 Let {Θ̃n
I : I finite} and λ > 0 be as before. Then there is a congruent

family {Ψ̃ n
I : I finite} of the form (2.81) such that

(
Θ̃n

I − Ψ̃ n
I

)
λcI
= 0 for all finite sets I and all λ > 0.

Proof For a congruent family of covariant n-tensors {Θ̃n
I : I finite}, we define

N
({

Θ̃n
I

}) := {P ∈ Part(n) : (Θ̃n
I

)
λcI

(
δ
�i)= 0 whenever P(�i)≤ P

}
.

If N({Θ̃n
I })� Part(n), then let

P0 = {P1, . . . ,Pr} ∈ Part(n)\N({Θ̃n
I

})

be a minimal element, i.e., such that P ∈N({Θ̃n
I }) for all P < P0. In particular, for

this partition (2.89) and hence (2.90) holds. Let

(
Θ̃ ′n

I

)
μ
:= (Θ̃n

I

)
μ
− ‖μ‖n−|P0|

1 fP0

(‖μ‖1
)(

τ
P0
I

)
μ

(2.91)

with the function fP0 from (2.90). Then {Θ̃ ′n
I : I finite} is again a covariant family

of covariant n-tensors.
Let P ∈N({Θ̃n

I }) and �i be a multiindex with P(�i)≤ P. If (τ
P0
I )λcI

(δ
�i ) = 0, then

by Lemma 2.1 we would have P0 ≤ P(�i) ≤ P ∈ N({Θ̃n
I }) which would imply that

P0 ∈N({Θ̃n
I }), contradicting the choice of P0.
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Thus, (τ
P0
I )λcI

(δ
�i )= 0 and hence (Θ̃ ′n

I )λcI
(δ
�i )= 0 whenever P(�i)≤ P, showing

that P ∈N({Θ̃ ′n
I }).

Thus, what we have shown is that N({Θ̃n
I })⊆N({Θ̃ ′n

I }). On the other hand, if
P(�i)= P0, then again by Lemma 2.1

(
τ

P0
I

)
λcI

(
δ
�i)=
( |I |

λ

)n−|P0|
,

and since ‖λcI‖1 = λ, it follows that

(
Θ̃ ′n

I

)
λcI

(
δ
�i) (2.91)= (

Θ̃n
I

)
λcI

(
δ
�i)− λn−|P0|fP0(λ)

(
τ

P0
I

)
λcI

(
δ
�i)

= θ
P0
I,λcI

− λn−|P0|fP0(λ)

( |I |
λ

)n−|P0|

= θ
P0
I,λcI

− fP0(λ)|I |n−|P0| (2.90)= 0.

That is, (Θ̃ ′n
I )λcI

(δ
�i )= 0 whenever P(�i)= P0. If �i is a multiindex with P(�i) < P0,

then P(�i) ∈ N({Θ̃ ′n
I }) by the minimality of P0, so that Θ̃n

I (δ
�i ) = 0. Moreover,

(τ
P0
I )λcI

(δ
�i )= 0 by Lemma 2.1, whence

(
Θ̃ ′n

I

)
λcI

(
δ
�i)= 0 whenever P(�i)≤ P0,

showing that P0 ∈N({Θ̃ ′n
I }). Therefore,

N
({

Θ̃n
I

})
� N
({

Θ̃ ′n
I

})
.

What we have shown is that given a congruent family of covariant n-tensors {Θ̃n
I }

with N({Θ̃n
I }) � Part(n), we can enlarge N({Θ̃n

I }) by subtracting a multiple of the
canonical tensor of some partition. Repeating this finitely many times, we conclude
that for some congruent family {Ψ̃ n

I } of the form (2.81)

N
({

Θ̃n
I − Ψ̃ n

I

})= Part(n),

and this implies by definition that (Θ̃n
I − Ψ̃ n

I )λcI
= 0 for all I and all λ > 0. �

Finally, the next lemma generalizes Step 3 in the proof of Theorem 2.1.

Lemma 2.5 Let {Θ̃n
I : I finite} be a congruent family of covariant n-tensors such

that (Θ̃n
I )λcI

= 0 for all I and λ > 0. Then Θ̃n
I = 0 for all I .

Proof The proof of Step 3 in Theorem 2.1 carries over almost literally. Namely,
consider μ ∈M+(I ) such that πI (μ)= μ/‖μ‖1 ∈ P+(I ) has rational coefficients,
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i.e.,

μ= ‖μ‖1

∑
i

ki

n
δi

for some ki, n ∈N and
∑

i∈I ki = n. Let

I ′ :=
⊎
i∈I

({i} × {1, . . . , ki}
)
,

so that |I ′| = n, and consider the congruent Markov kernel

K : i �−→ 1

ki

ki∑
j=1

δ(i,j).

Then

K∗μ= ‖μ‖1

∑
i

ki

n

(
1

ki

ki∑
j=1

δ(i,j)

)
= ‖μ‖1

1

n

∑
i

ki∑
j=1

δ(i,j) = ‖μ‖1cI ′ .

Thus, (2.74) implies

(
Θ̃n

I

)
μ
(V1, . . . , Vn)=

(
Θ̃n

I ′
)
‖μ‖1cI ′︸ ︷︷ ︸
=0

(K∗V1, . . . ,K∗Vn)= 0,

so that (Θ̃n
I )μ = 0 whenever πI (μ) has rational coefficients. But these μ form a

dense subset of M+(I ), whence (Θ̃n
I )μ = 0 for all μ ∈M+(I ), which completes

the proof. �

Proof of Theorem 2.3 Let {Θ̃n
I : I finite} be a congruent family of covariant n-

tensors. By Lemma 2.4 there is a congruent family {Ψ̃ n
I : I finite} of the form (2.81)

such that (Θ̃n
I − Ψ̃ n

I )λcI
= 0 for all finite I and all λ > 0.

Since {Θ̃n
I − Ψ̃ n

I : I finite} is again a congruent family, Lemma 2.5 implies that
Θ̃n

I − Ψ̃ n
I = 0 and hence Θ̃n

I = Ψ̃ n
I is of the form (2.81), showing the first part of

Theorem 2.3.
For the second part, observe that by Proposition 2.6 any restricted congruent fam-

ily of covariant n-tensors is the restriction of a congruent family of n-tensors, that
is, by the first part of the theorem, the restriction of a family of the form (2.81).
This restriction takes the form (2.82) with cP := aP(1), observing that the restric-
tion of τP

I with a partition containing a singleton set vanishes as τ 1
I vanishes when

restricted to P+(I ). �
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Fig. 2.5 Illustration of (A) the difference vector p − q in R
n pointing from q to p; and (B) the

difference vector X(q,p)= γ̇q,p(0) as the inverse of the exponential map in q

2.7 Divergences

In this section, we derive distance-like functions, so-called divergences, that are
naturally associated with a manifold, equipped with a Riemannian metric g and an
affine connection ∇ , possibly different from the Levi-Civita connection of g. In our
context, this will lead to the relative entropy and its extensions, the α-divergences,
on M+(I ). These divergences are special cases of canonical divergences which will
be defined in Sect. 4.3.

2.7.1 Gradient-Based Approach

We begin our motivation of a divergence in terms of a simple example where the
manifold is Rn, equipped with the standard Euclidean metric and its corresponding
connection, the Levi-Civita connection. Consider a point p ∈ R

n, and the vector
field pointing to p (see Fig. 2.5(A)):

R
n→R

n, q �→ p− q. (2.92)

Obviously, the difference field (2.92) can be seen as the negative gradient of the
squared distance

Dp :Rn→R, q �→Dp(q) :=D(p ‖q) := 1

2
‖p− q‖2 = 1

2

n∑
i=1

(pi − qi)
2,

that is,

p− q =−gradq Dp. (2.93)

Here, the gradient gradq is taken with respect to the canonical inner product on R
n.

We shall now generalize the relation (2.93) between the squared distance Dp and
the difference of two points p and q to the more general setting of a differentiable
manifold M . Given a point p ∈M , we want to define a vector field q �→X(q,p), at
least in a neighborhood of p, that corresponds to the difference vector field (2.92).
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Obviously, the problem is that the difference p − q is not naturally defined for a
general manifold M . We need an affine connection ∇ in order to have a notion of
a difference. Given such a connection ∇ , for each point q ∈M and each direction
X ∈ TqM we consider the geodesic γq,X , with the initial point q and the initial
velocity X, that is, γq,X(0) = q and γ̇q,X(0) = X (see (B.38) in Appendix B). If
γq,X(t) is defined for all 0 ≤ t ≤ 1, the endpoint p = γq,X(1) is interpreted as the
result of a translation of the point q along a straight line in the direction of the
vector X. The collection of all these translations is summarized in terms of the
exponential map

expq :Uq →M, X �→ γq,X(1), (2.94)

where Uq ⊆ TqM denotes the set of tangent vectors X, for which the domain of
γq,X contains the unit interval [0,1] (see (B.39) and (B.40) in Appendix B).

Given two points p and q , one can interpret any X with expq(X) = p as a dif-
ference vector X that translates q to p. For simplicity, we assume the existence and
uniqueness of such a difference vector, denoted by X(q,p) (see Fig. 2.5(B)).

This is a strong assumption, which is, however, always locally satisfied. On the
other hand, although being quite restrictive in general, this property will be satis-
fied in our information-geometric context, where g is given by the Fisher metric
and ∇ is given by the m- and e-connections and their convex combinations, the
α-connections. We shall consider these special but important cases in Sects. 2.7.2
and 2.7.3.

If we attach to each point q ∈M the difference vector X(q,p), we obtain a vector
field that corresponds to the vector field (2.92) in R

n. In order to interpret the vector
field q �→X(q,p) as a negative gradient field of a (squared) distance function, and
thereby generalize (2.93), we need a Riemannian metric g on M . We search for a
function Dp satisfying

X(q,p)=−gradq Dp, (2.95)

where the Riemannian gradient is taken with respect to g (see Appendix B). Ob-
viously, we may set Dp(p) = 0. In order to recover Dp from (2.95), we consider
any curve γ : [0,1] →M that connects q with p, that is, γ (0) = q and γ (1) = p,
and integrate the inner product of the curve velocity γ̇ (t) with the vector X(γ (t),p)

along the curve:

∫ 1

0

〈
X
(
γ (t),p

)
, γ̇ (t)

〉
dt = −

∫ 1

0

〈
gradγ (t) Dp, γ̇ (t)

〉
dt

= −
∫ 1

0
(dγ (t)Dp)

(
γ̇ (t)
)
dt

= −
∫ 1

0

d Dp ◦ γ

d t
(t) dt

=Dp

(
γ (0)
)−Dp

(
γ (1)
)

=Dp(q)−Dp(p)=Dp(q). (2.96)
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This defines, at least locally, a function Dp that is assigned to the Riemannian metric
g and the connection ∇ . In what follows, we shall mainly use the standard notation
D(p ‖q)=Dp(q) of a divergence as a function D of two arguments.

2.7.2 The Relative Entropy

Now we apply the idea of Sect. 2.7.1 in order to define divergences for the m- and
e-connections on the cone M+(I ) of positive measures. We consider a measure
μ ∈M+(I ) and define two vector fields on M+(I ) as the inverse of the exponential
maps given by (2.43) and (2.44):

ν �→ X̃(m)(ν,μ) :=
∑
i∈I

νi

(
μi

νi

− 1

)
δi,

ν �→ X̃(e)(ν,μ) :=
∑
i∈I

νi log
μi

νi

δi .

(2.97)

We can easily verify that these vector fields are gradient fields: The functions

f i(ν) := μi

νi

− 1 and gi(ν) := log
μi

νi

trivially satisfy the integrability condition (2.35), that is, ∂f i

∂νj
= ∂f j

∂νi
and ∂gi

∂νj
= ∂gj

∂νi

for all i, j . Therefore, for both connections there are corresponding divergences that
satisfy Eq. (2.95).

We derive the divergence of the m-connection first, which we denote by D(m).
We consider a curve γ : [0,1]→M+(I ) connecting ν with μ, that is, γ (0)= ν and
γ (1)= μ. This implies

〈
X̃(m)

(
γ (t),μ

)
, γ̇ (t)

〉=∑
i∈I

1

γi(t)

(
μi − γi(t)

)
γ̇i (t) (2.98)

and

D(m)(μ‖ν)=
∫ 1

0

〈
X̃(m)

(
γ (t),μ

)
, γ̇ (t)

〉
dt

=
∑
i∈I

∫ 1

0

1

γi(t)

(
μi − γi(t)

)
γ̇i (t) dt

=
∑
i∈I

[
μi logγi(t)− γi(t)

]1
0

=
∑
i∈I

(μi logμi −μi −μi logνi + νi)

=
∑
i∈I

(
νi −μi +μi log

μi

νi

)
.
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With the same calculation for the e-connection, we obtain the corresponding diver-
gence, which we denote by D(e). Again, we consider a curve γ connecting ν with μ.
This implies

〈
X̃(e)
(
γ (t),μ

)
, γ̇ (t)

〉=∑
i∈I

γ̇i (t) log
μi

γi(t)
(2.99)

and

D(e)(μ‖ν) =
∫ 1

0

〈
X̃(e)
(
γ (t),μ

)
, γ̇ (t)

〉
dt

=
∑
i∈I

∫ 1

0
γ̇i (t) log

μi

γi(t)
dt

=
∑
i∈I

[
γi(t)

(
1+ log

μi

γi(t)

)]1

0

=
∑
i∈I

(
μi − νi

(
1+ log

μi

νi

))

=
∑
i∈I

(
μi − νi + νi log

νi

μi

)

= D(m)(ν ‖μ).

These calculations give rise to the following definition:

Definition 2.8 (Kullback–Leibler divergence ([155, 156])) The function DKL :
M+(I )×M+(I )→R defined by

DKL(μ‖ν) :=
∑
i∈I

νi −
∑
i∈I

μi +
∑
i∈I

μi log
μi

νi

(2.100)

is called the relative entropy, information divergence, or Kullback–Leibler diver-
gence (KL-divergence). Its restriction to the set of probability distributions is given
by

DKL(μ‖ν)=
∑
i∈I

μi log
μi

νi

. (2.101)

Proposition 2.10 The following holds:

X̃(m)(ν,μ)=−gradν DKL(μ‖ ·),
X̃(e)(ν,μ)=−gradν DKL(· ‖μ),

(2.102)
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where DKL is given by (2.100) in Definition 2.8. Furthermore, DKL is the only func-
tion on M+(I )×M+(I ) that satisfies the conditions (2.102) and DKL(μ‖μ)= 0
for all μ.

Proof The statement is obvious from the way we introduced DKL as a potential
function of the gradient field ν �→ X̃(m)(ν,μ) and ν �→ X̃(e)(ν,μ), respectively. The
following is an alternative direct verification. We first compute the partial deriva-
tives:

∂DKL(μ‖ ·)
∂ νi

(ν)=−μi

νi

+ 1,
∂DKL(· ‖μ)

∂ νi

(ν)=− log
μi

νi

.

With the formula (2.34), we obtain

(
gradν DKL(μ‖ ·))

i
= νi

(
−μi

νi

+ 1

)
=−μi + νi,

(
gradν DKL(· ‖μ)

)
i
= −νi log

μi

νi

.

A comparison with (2.97) verifies (2.102) which uniquely characterize DKL(μ‖ ·)
and DKL(· ‖μ), up to a constant depending on μ. With the additional assumption
DKL(μ‖μ)= 0 for all μ, this constant is fixed. �

We now ask whether the restriction (2.101) of the Kullback–Leibler divergence
to the manifold P+(I ) is the right divergence function in the sense that (2.102) also
holds for the exponential maps of the restricted m- and e-connections. It is easy to
verify that this is indeed the case. In order to elaborate on the geometric reason for
this, we consider a general Riemannian manifold M and a submanifold N . Given
an affine connection ∇̃ on M , we can define its restriction ∇ to N . More precisely,
denoting the projection of a vector Z in TpM onto TpN by Π


p (Z), we define
∇XY |p := Π


p (∇̃XY |p), where X and Y are vector fields on N . Furthermore, we
denote the exponential map of ∇ by expp and its inverse by X(p,q).

Now, given p ∈ N , we consider a function D̃p on M that satisfies Eq. (2.95).
With the restriction Dp of D̃p to the submanifold N , this directly implies

Π

q

(
X̃(q,p)

)=−Π

q (gradq D̃p)=−gradq Dp.

However, in order to have X(q,p)=−gradq Dp , which corresponds to Eq. (2.95)
on the submanifold N , the following equality is required:

X(q,p)=Π

q

(
X̃(q,p)

)
. (2.103)
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We now verify this condition for the m- and e-connections on M+(I ) and its
submanifold P+(I ). One can easily show that the vector fields

ν �→X(m)(ν,μ) :=
∑
i∈I

νi

(
μi

νi

− 1

)
δi = X̃(m)(ν,μ),

ν �→X(e)(ν,μ) :=
∑
i∈I

νi

(
log

μi

νi

−
∑
j∈I

νj log
μj

νj

)
δi

(2.104)

satisfy

exp(m)
(
ν,X(m)(ν,μ)

)= μ and exp(e)
(
ν,X(e)(ν,μ)

)= μ, (2.105)

respectively, where the exponential maps are given in Proposition 2.5. On the other
hand, if we project the vectors X̃(m)(ν,μ) and X̃(e)(ν,μ) onto S0(I )∼= TνP+(I ) by
using (2.14), we obtain

X(m)(ν,μ)=Π

ν

(
X̃(m)(ν,μ)

)
(2.106)

and

X(e)(ν,μ)=Π

ν

(
X̃(e)(ν,μ)

)
. (2.107)

This proves that the condition (2.103) is satisfied, which implies

Proposition 2.11 The following holds:

X(m)(ν,μ)=−gradν DKL(μ‖ ·),
X(e)(ν,μ)=−gradν DKL(· ‖μ),

(2.108)

where DKL is given by (2.101) in Definition 2.8. Furthermore, DKL is the only func-
tion on P+(I )×P+(I ) that satisfies the conditions (2.108) and DKL(μ‖μ)= 0 for
all μ.

2.7.3 The α-Divergence

We now extend the derivations of Sect. 2.7.2 to the α-connections, leading to a
generalization of the relative entropy, the so-called α-divergence (Definition 2.9 be-
low). In order to do, so we define the following vector field as the inverse of the
α-exponential map on the manifold M+(I ) given by (2.58):

ν �→ X̃(α)(ν,μ) := 2

1− α

∑
i∈I

νi

((
μi

νi

) 1−α
2 − 1

)
δi . (2.109)
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Again, we can easily verify that the vector field ν �→ X̃(α)(ν,μ) is a gradient field by

observing that the integrability condition (2.35) is trivially satisfied, that is, ∂f i

∂νj
=

∂f j

∂νi
for all i, j , where

f i(ν) :=
(

μi

νi

) 1−α
2 − 1.

In order to derive the divergence D(α) of the α-connection, we consider a curve
γ : [0,1]→M+(I ) connecting ν with μ. We obtain

〈
X̃(α)
(
γ (t),μ

)
, γ̇ (t)

〉= 2

1− α

∑
i∈I

γ̇i (t)

((
μi

γi(t)

) 1−α
2 − 1

)
(2.110)

and

D(α)(μ‖ν) =
∫ 1

0

〈
X̃(α)
(
γ (t),μ

)
, γ̇ (t)

〉
dt

=
∑
i∈I

∫ 1

0

2

1− α
γ̇i(t)

((
μi

γi(t)

) 1−α
2 − 1

)
dt

=
∑
i∈I

[
4

1− α2
γi(t)

1+α
2 μi

1−α
2 − 2

1− α
γi(t)

]1

0

=
∑
i∈I

(
2

1+ α
μi −

(
4

1− α2
ν

1+α
2

i μ
1−α

2
i − 2

1− α
νi

))

=
∑
i∈I

(
2

1− α
νi + 2

1+ α
μi − 4

1− α2
ν

1+α
2

i μ
1−α

2
i

)
.

Obviously, we have

D(−α)(μ‖ν)=D(α)(ν ‖μ). (2.111)

These calculations give rise to the following definition:

Definition 2.9 (α-Divergence) The function D(α) :M+(I )×M+(I )→R defined
by

D(α)(μ‖ν) := 2

1− α

∑
i∈I

νi + 2

1+ α

∑
i∈I

μi − 4

1− α2

∑
i∈I

ν
1+α

2
i μ

1−α
2

i (2.112)

is called the α-divergence. Its restriction to probability measures is given by

D(α)(μ‖ν)= 4

1− α2

(
1−
∑
i∈I

ν
1+α

2
i μ

1−α
2

i

)
. (2.113)
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Proposition 2.12 The following holds:

X̃(α)(ν,μ)=−gradν D(α)(μ‖ ·), (2.114)

where D(α) is given by (2.112) in Definition 2.9. Furthermore, D(α) is the only func-
tion on M+(I )×M+(I ) that satisfies the conditions (2.114) and D(α)(μ‖μ)= 0
for all μ.

Proof The statement is obvious from the way we introduced D(α) as a potential
function of the gradient field ν �→ X̃(α)(ν,μ). The following is an alternative direct
verification. We compute the partial derivative:

∂D(α)(μ‖ ·)
∂ νi

(ν)= 2

1− α

(
1− ν

1+α
2 −1

i μ
1−α

2
i

)
.

With the formula (2.34), we obtain

(
gradν D(α)(μ‖ ·))

i
= νi · 2

1− α

(
1− ν

1+α
2 −1

i μ
1−α

2
i

)

= 2

1− α

(
νi − ν

1+α
2

i μ
1−α

2
i

)
.

A comparison with (2.109) verifies (2.114) which uniquely characterizes the func-
tion D(α)(μ‖ ·), up to a constant depending on μ. With the additional assumption
D(α)(μ‖μ)= 0 for all μ, this constant is fixed. �

With L’Hopitâl’s rule, one can easily verify

lim
α→−1

D(α)(μ‖ν)=D(m)(μ‖ν)=DKL(μ‖ν) (2.115)

and

lim
α→1

D(α)(μ‖ν)=D(e)(μ‖ν)=DKL(ν ‖μ), (2.116)

where DKL is relative entropy defined by (2.100).
In what follows, we use the notation D(α) also for α ∈ {−1,1} by setting

D(−1)(μ‖ν) :=DKL(μ‖ν) and D(1)(μ‖ν) :=DKL(ν ‖μ). This is consistent with
the definition of the α-connection, given by (2.54), where we have the m-connection
for α =−1 and the e-connection for α = 1. Note that D(0) is closely related to the
Hellinger distance (2.28):

D(0)(μ‖ν)= 2
(
dH (μ, ν)

)2
. (2.117)

We would like to point out that the α-divergence on the simplex P+(I ),−1 < α < 1,
based on (2.95) does not coincide with the restriction of the α-divergence on
M+(I ). To be more precise, we have seen that the restriction of the relative en-
tropy, defined on M+(I ), to the submanifold P+(I ) is already the right divergence
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for the projected m- and e-connections (see Proposition 2.11). The situation turns
out to be more complicated for general α. From Eq. (2.65) we obtain

X(α)(ν,μ)= τ̇ν,μ(0)Π

ν

(
X̃(α)(ν,μ)

)
.

This equality deviates from the condition (2.103) by the factor τ̇ν,μ(0), which proves
that the restriction of the α-divergence, which is defined on M+(I ), to the subman-
ifold P+(I ) does not coincide with the α-divergence on P+(I ). As an example, we
consider the case α = 0, where the α-connection is the Levi-Civita connection of the
Fisher metric. In that case, the canonical divergence equals 1

2 (dF (μ, ν))2, where dF

denotes the Fisher distance (2.27). Obviously, this divergence is different from the
divergence D(0), given by (2.117), which is based on the distance in the ambient
space M+(I ), the Hellinger distance. On the other hand, 1

2 (dF )2 can be written as
a monotonically increasing function of D(0):

1

2

(
dF (μ, ν)

)2 = 2 arccos2
(

1− 1

4
D(0)(μ‖ν)

)
. (2.118)

2.7.4 The f -Divergence

Our derivation of D(α) was based on the idea of a squared distance function associ-
ated with the α-connections in terms of the general Eq. (2.95). However, it turns out
that, although being naturally motivated, the functions D(α) do not share all prop-
erties of the square of a distance, except for α = 0. The symmetry is obviously not
satisfied. On the other hand, we have D(α)(μ‖ν) ≥ 0, and D(α)(μ‖ν) = 0 if and
only if μ= ν. One can verify this by considering D(α) as being a function of a more
general structure, which we are now going to introduce. Given a strictly convex
function f :R+ →R, we define

Df (μ‖ν) :=
∑
i∈I

μi f

(
νi

μi

)
. (2.119)

This function is known as the f -divergence, and it was introduced and studied by
Csiszár [70–73]. Jensen’s inequality immediately implies

Df (μ‖ν) =
(∑

j∈I

μj

)∑
i∈I

μi∑
j∈I μj

f

(
νi

μi

)

≥
(∑

j∈I

μj

)
f

(∑
i∈I

μi∑
j∈I μj

νi

μi

)

=
(∑

j∈I

μj

)
f

( ∑
i∈I νi∑
j∈I μj

)
,



2.7 Divergences 77

where the equality holds if and only if μ= ν. If f (x) is non-negative for all x, and
f (1)= 0, then we obtain

Df (μ‖ν)≥ 0, and Df (μ‖ν)= 0 if and only if μ= ν. (2.120)

In order to reformulate D(α) as such a function Df , we define

f (α)(x) :=

⎧⎪⎨
⎪⎩

4
1−α2 ( 1−α

2 + 1+α
2 x − x

1+α
2 ), if α /∈ {−1,1},

x − 1− logx, if α =−1,

1− x + x logx, if α = 1.

(2.121)

With this definition, we have D(α) =Df (α) . Furthermore, it is easy to verify that for

each α ∈ [−1,1], the function f (α) is non-negative and vanishes if and only if its
argument is equal to one. This proves that the functions D(α) satisfy (2.120), which
is a property of a metric. In conclusion, we have seen that, although D(α) is not
symmetric and does not satisfy the triangle inequality, it still has some important
properties of a squared distance. In this sense, we have obtained a distance-like
function that is associated with the α-connection and the Fisher metric on M+(I ),
coupled through Eq. (2.95). The following proposition suggests a way to recover
these two objects from the α-divergence.

Proposition 2.13 The following holds:

gμ(X,Y ) = ∂2D(α)(μ‖ ·)
∂Y∂X

(ν)

∣∣∣∣
ν=μ

, (2.122)

Tμ(X,Y,Z) = − 2

3− α

∂3D(α)(μ‖ ·)
∂Z ∂Y ∂X

(ν)

∣∣∣∣
ν=μ

. (2.123)

The proof of this proposition is by simple calculation. This implies that the Fisher
metric can be recovered through the partial derivatives of second order (see (2.122)).
In particular, this determines the Levi-Civita connection ∇̃(0) of g, and we can use
T to derive the α-connection based on the definition (2.54):

g
(∇̃(α)

X Y,Z
)= g

(∇̃(0)
X Y,Z

)− α

2
T(X,Y,Z). (2.124)

Thus, we can recover the Fisher metric and the α-connection from the partial deriva-
tives of the α-divergence up to the third order. We obtain the following expansion
of the α-divergence:

D(α)(μ‖ν) = 1

2

∑
i,j

gμ(δi, δj )(μ) (νi −μi)(νj −μj )

+ 1

6

α − 3

2

∑
i,j,k

Tμ(δi, δj , δk)(νi −μi)(νj −μj )(νk −μk)

+O
(‖ν −μ‖4). (2.125)
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Any function D that satisfies the positivity (2.120) and for which the bilinear form

gμ(X,Y ) := ∂2D(μ‖ ·)
∂Y∂X

(ν)

∣∣∣∣
ν=μ

is positive definite, is called a divergence or contrast function (see [93, 173]). In
Chap. 4, we will revisit divergence functions and related expressions between ten-
sors and affine connections in terms of partial derivatives of potential functions from
a more general perspective. We highlight a few important facts already in this sec-
tion. The coupling between the divergence function D(α) and the tensors g and T
through the above expansion (2.125) is clearly not one-to-one, as the derivatives of
order greater than three are not fixed. For instance, one could simply neglect the
higher-order terms in order to obtain a divergence function that has the same expan-
sion up to order three. A more interesting divergence for g and T is given in terms
of the f -divergence. One can easily prove that

Df (μ‖ν) = 1

2
f ′′(1)

∑
i,j

gμ

(
δi, δj

)
(μ) (νi −μi)(νj −μj )

+ 1

6
f ′′′(1)

∑
i,j,k

Tμ

(
δi, δj , δk

)
(νi −μi)(νj −μj )(νk −μk)

+O
(‖ν −μ‖4). (2.126)

If we choose a function f that satisfies f ′′(1) = 1 and f ′′′(1) = α−3
2 , then this

expansion coincides with (2.125) up to the third order. Clearly, f (α), as defined
in (2.121), satisfies these two conditions. However, this is only one of infinitely
many possible choices. This shows that the coupling between a divergence function
and an affine connection through (2.95), which uniquely characterizes the relative
entropy and the α-divergence on M+(I ), is stronger than the coupling through the
specification of the partial derivatives up to the third order.

2.7.5 The q-Generalization of the Relative Entropy

There is a different way of relating the α-divergence to the relative entropy. Instead
of verifying the consistency of DKL and D(α) in terms of (2.115) and (2.116), one
can rewrite D(α) so that it resembles the structure of the relative entropy (2.100).
This approach is based on Tsallis’ so-called q-generalization of the entropy and
the relative entropy [248, 249]. Here, q is a parameter with values in the unit
interval ]0,1[ which directly corresponds to α = 1 − 2q ∈ ]−1,+1[. With this
reparametrization, the α-divergence (2.112) becomes

D(1−2q)(μ‖ν)= 1

q

∑
i

νi + 1

1− q

∑
i

μi − 1

q(1− q)

∑
i

ν
1−q
i μ

q
i . (2.127)
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This can be rewritten in a way that resembles the structure of the relative entropy
DKL. In order to do so, we define the q-exponential function and its inverse, the
q-logarithmic function:

expq(x) := (1+ (1− q)x
) 1

1−q , logq(x) := 1

1− q

(
x1−q − 1

)
. (2.128)

For q → 1, these definitions converge to the ordinary definitions. Now we can
rewrite (2.127) as follows:

D(1−2q)(μ‖ν)= 1

q

(∑
i

νi −
∑

i

μi −
∑

i

μi logq

(
νi

μi

))
. (2.129)

This resembles, up to the factor 1
q

, the Kullback–Leibler divergence (2.100). In this
sense, the α-divergence can be considered as a q-generalization of the Kullback–
Leibler divergence. These generalizations turn out to be relevant in physics, leading
to the field of nonextensive statistical mechanics as a generalization of Boltzmann–
Gibbs statistical mechanics [198, 249]. Information geometry contributes to a better
geometric understanding of this new field of research [197, 204, 205]. (For a detailed
overview of related information-geometric works, see [11].)

2.8 Exponential Families

2.8.1 Exponential Families as Affine Spaces

In Sects. 2.4 and 2.5 we introduced the m- and e-connections and their convex com-
binations, the α-connections. In general, the notion of an affine connection extends
the notion of an affine action of a vector space V on an affine space E. Given a
point p ∈ E and a vector v ∈ V , such an action translates p along v into a new
point p + v. On the other hand, for each pair of points p,q ∈ E, there is a vec-
tor v, called the difference vector between p and q , which translates p into q , that
is, q = p + v. The affine space E can naturally be interpreted as a manifold with
tangent bundle E × V . The translation map E × V → E is then nothing but the
exponential map exp of the affine connection given by the natural parallel transport
Πp,q : (p, v) �→ (q, v). Clearly, this is a very special parallel transport. It is, how-
ever, closely related to the transport maps (2.39) and (2.40), which define the m- and
e-connections. Therefore, we can ask the question whether the exponential maps of
the m- and e-connections define affine actions on M+(I ) and P+(I ). This affine
space perspective of M+(I ) and P+(I ), and their respective extensions to spaces of
σ -finite measures (see Remark 3.8(1)), has been particularly highlighted in [192].

Obviously, M+(I ), equipped with the m-connection, is not an affine space,
simply because the corresponding exponential map is not complete. For each
μ ∈M+(I ) there is a vector v ∈ S(I ) so that μ+ v /∈M+(I ). Now, let us come
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to the e-connection. The exponential map ẽxp(e) is defined on the tangent bundle
TM+(I ) and translates each point μ along a vector Vμ ∈ TμM+(I ). In order to in-
terpret it as an affine action, we identify the tangent spaces TμM+(I ) and TνM+(I )

in two points μ and ν in terms of the corresponding parallel transport. More pre-
cisely, we introduce an equivalence relation ∼ by which we identify two vectors
Aμ = (μ,a) ∈ TμM+(I ) and Bν = (ν, b) ∈ TνM+(I ) if Bν is the parallel trans-

port of Aμ from μ to ν, that is, Bν = Π̃
(e)
μ,νAμ. Also, the equivalence class of a

vector (μ,a) can be identified with the density da
dμ

, which is an element of F(I ).
Obviously,

Aμ ∼ Bν ⇔ b= da

dμ
⇔ db

dν
= da

dμ
.

Now we show that F(I ) acts affinely on M+(I ). Consider a point μ and a vector f ,
interpreted as translation vector. This defines a vector (μ,f μ) ∈ TμM+(I ), which
is mapped via the exponential map to

ẽxp(e)
μ (f μ)= ef μ.

Altogether we have defined the map

M+(I )×F(I )→M+(I ), (μ,f ) �→ μ+ f := ef μ, (2.130)

which satisfies

(μ+ f )+ g = ef μ+ g = eg
(
ef μ
)= ef+gμ= μ+ (f + g).

Furthermore, with the vector vec(μ, ν) := log( dν
dμ

) we obviously have μ +
vec(μ, ν)= ν, and this is the only vector that translates μ to ν. This verifies that +
is an affine action of F(I ) on M+(I ).

We apply the same derivation in order to define an affine structure on P+(I ). This
leads to the following version of the map (2.130) defined for the simplex P+(I ) (see
Fig. 2.6):

P+(I )× (F(I )/R
)→ P+(I ), (μ,f +R) �→ μ+ (f +R) := ef

μ(ef )
μ.

(2.131)
This is an affine action of the vector space F(I )/R on P+(I ) with difference

vector

vec : P+(I )×P+(I )→F(I )/R, (μ, ν) �→ vec(μ, ν)= log

(
dν

dμ

)
+R.

Therefore, P+(I ) is an affine space over F(I )/R.
The corresponding affine subspaces play a central role within information geom-

etry.
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Fig. 2.6 The affine action of
F(I )/R on the simplex
P+(I )

Definition 2.10 (Exponential family) An affine subspace E of P+(I ) with respect
to + is called an exponential family. Given a measure μ0 ∈M+(I ) and a linear
subspace L of F(I ), the following submanifold of P+(I ) is an exponential family:

E(μ0,L) :=
{

ef

μ0(ef )
μ0 : f ∈ L

}
. (2.132)

To simplify the notation, in the case where μ0 is the counting measure, that is,
μ0 =∑i∈I δi , we simply write E(L) instead of E(μ0,L).

Clearly, all exponential families have the structure (2.132). We always assume
1 ∈ L and thereby ensure uniqueness of L. Furthermore, with this assumption we
have dim(E)= dim(L)− 1.

Given two points μ,ν ∈ P+(I ), the m- and e-connections provide two kinds of
straight lines connecting them:

γ (m)
μ,ν : [0,1] → P+(I ), t �→ (1− t)μ+ t ν,

γ (e)
μ,ν : [0,1] → P+(I ), t �→ ( dν

dμ
)t

μ(( dν
dμ

)t )
μ.

This allows us to consider two kinds of geodesically convex sets. A set S is said to
be m-convex if

μ,ν ∈ S ⇒ γ (m)
μ,ν (t) ∈ S for all t ∈ [0,1],

and e-convex if

μ,ν ∈ S ⇒ γ (e)
μ,ν(t) ∈ S for all t ∈ [0,1].

Exponential families are clearly e-convex. On the other hand, they can also be
m-convex. Given a partition S of I and probability measures μA with support A,
A ∈S, the following set is an m-convex exponential family:

M :=M(μA :A ∈S) :=
{ ∑

A∈S
ηA μA : ηA > 0,

∑
A∈S

ηA = 1

}
. (2.133)
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To see this, define the base measure as μ0 :=∑A∈S μA and L as the linear hull
of the vectors 1A, A ∈S. Then the elements of M(μA : A ∈S) are precisely the
elements of the exponential family E(μ0,L), via the correspondence

∑
A∈S

ηA μA =
∑
A∈S

ηA∑
B∈S ηB

μA

=
∑
A∈S

elogηA∑
B∈S elogηB

μA

=
∑
A∈S

eλA∑
B∈S eλB

μA

=
∑
A∈S

∑
i∈A

eλA∑
B∈S eλB

μi δ
i

=
∑
i∈I

e
∑

A∈S λA1A(i)∑
j∈I e

∑
A∈S λA1A(j)μj

μi δ
i

= e
∑

A∈S λA1A

μ0(e
∑

A∈S λA1A)
μ0, (2.134)

where λA = log(ηA), A ∈ S. It turns out that M(μA : A ∈ S) is not just one in-
stance of an m-convex exponential family. In fact, as we shall see in the following
theorem, which together with its proof is based on [179], (2.133) describes the gen-
eral structure of such exponential families. Note that for any set S of subsets A of
I and corresponding distributions μA with support A, the set (2.133) will be m-
convex. However, when the sets A ∈S form a partition of I , this set will also be an
exponential family.

Theorem 2.4 Let E = E(μ0,L) be an exponential family in P+(I ). Then the fol-
lowing statements are equivalent:

(1) The exponential family E is m-convex.
(2) There exists a partition S ⊆ 2I of I and elements μA ∈ P+(A), A ∈S, such

that

E =M(μA :A ∈S), (2.135)

where the RHS of this equation is defined by (2.133).
(3) The linear space L is a subalgebra of F(I ), i.e., closed under (pointwise) mul-

tiplication.

The proof of this theorem is based on the following lemma.

Lemma 2.6 The smallest convex exponential family containing two probability
measures μ =∑i∈I μi δ

i and ν =∑i∈I νi δ
i with the supports equal to I coin-
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cides with M(μA :A ∈Sμ,ν) where Sμ,ν is the partition of I having i, j ∈ I in the
same block if and only if μiνj = μjνi and μA equals the conditioning of μ to A,
that is,

μA =
∑
i∈I

μA,i δ
i, with μA,i :=

{ μi∑
j∈A μj

, if i ∈A,

0 otherwise.

Proof Let Sμ,ν have n blocks and an element iA of A be fixed for each A ∈Sμ,ν .
The numbers μiA

kνiA
−k , A ∈ Sμ,ν , 0 ≤ k < n, are elements of a Vandermonde

matrix which has nonzero determinant because μiA/νiA , A ∈ Sμ,ν , are pairwise
different. Therefore, for 0 ≤ k < n the vectors (μiA

kνiA
−k)A∈Sμ,ν

are linearly in-
dependent, and so are the vectors (μi

kνi
−k)i∈I . Then the probability measures pro-

portional to (μi
k+1νi

−k)i∈I are independent. These probability measures belong to
any exponential family containing μ and ν and, in turn, their convex hull is con-
tained in any convex exponential family containing μ and ν. In particular, it is
contained in M =M(μA : A ∈ Sμ,ν) because μ and ν, the latter being equal to∑

A∈S(
∑

j∈A νj )μA, belong to M by construction. Since the convex hull has the
same dimension as M, any m-convex exponential family containing μ and ν in-
cludes M. �

Proof of Theorem 2.4 (1)⇒ (2) Let S be a partition of I with the maximal number
of blocks such that E = E(μ0,L) contains M(μA : A ∈ S) for some probability
measures μA. For any probability measure μ with the support equal to I and i ∈A,
j ∈ B , belonging to different blocks A,B of S, denote by Hμ,i,j the hyperplane of
vectors (tC)C∈S satisfying

tA ·μi μA,j − tB ·μj μB,i = 0.

Since no such Hμ,i,j contains the hyperplane given by
∑

A∈S tA = 1, a probability
measure ν =∑A∈S tA μA in M exists such that all equations μiνj = μjνi with i, j

in different blocks of S are simultaneously violated. This implies that each block of
S is a union of blocks of Sμ,ν . If, additionally, μ ∈ E then M(μA : A ∈Sμ,ν) is
contained in E on account of Lemma 2.6. By maximality of the number of blocks,
Sμ,ν =S. Hence, μ=∑A∈S(

∑
j∈A μj )μA belongs to M, and thus E =M.

(2)⇒ (3) Given the equality (2.135), we can represent E in terms of (2.134). This
implies that L is spanned by the vectors 1A, A ∈S. The linear space L obviously
forms a subalgebra of F(I ). This is because the multiplication of two indicator
functions 1A and 1B , where A,B ∈ S, equals 1A if A = B , and equals the zero
function otherwise.

(3) ⇒ (1) Assume μ,ν ∈ E(μ0,L). This means that there exist functions
f,g ∈ L with μ = ef

μ0(e
f )

μ0 and ν = eg

μ0(e
g)

μ0. Now consider a convex combina-

tion (1− t)μ+ t ν, 0≤ t ≤ 1. With f and g, the function h := log((1− t) ef

μ0(e
f )
+
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t eg

μ0(e
g)

) is also an element of the algebra L. Therefore

(1− t)μ+ t ν = (1− t)
ef

μ0(ef )
μ0 + t

eg

μ0(eg)
μ0 = eh

μ0(eh)
μ0 ∈ E(μ0,L). �

2.8.2 Implicit Description of Exponential Families

We have introduced exponential families as affine subspaces with respect to the
translation (2.131). In many applications, however, it is important to consider not
only strictly positive probability measures but also limit points of a given exponen-
tial family. In order to incorporate such distributions, we devote this section to the
study of closures of exponential families, which turns out to be particularly conve-
nient in terms of implicit equations. Classical work on various extensions of expo-
nential families is due to Chentsov [65], Barndorff-Nielsen [39], Lauritzen [159],
and Brown [55]. The theory has been considerably further developed more recently
by Csiszár and F. Matúš [76, 77], going far beyond our context of finite state spaces.

Implicit equations play an important role within graphical model theory, where
they are related to conditional independence statements and the Hammersley–
Clifford Theorem 2.9 (see [161]). We will address graphical models and their gen-
eralizations, hierarchical models, in Sect. 2.9. The following material is based on
[222] and touches upon the seminal work of Geiger, Meek, and Sturmfels [103].

Let us start with the exponential family itself, without the boundary points. To
this end, consider a reference measure μ0 =∑i∈I μ0,i δ

i and a subspace L of F(I )

with 1 ∈ L. Throughout this section, we fix a basis f0 := 1, f1, . . . , fd , of L, where
d is the dimension of E(μ0,L). Obviously, a probability measure μ is an element
of E(μ0,L) if and only if

vec(μ0,μ) ∈ L/R,

which is equivalent to

log

(
dμ

dμ0

)
∈ L, (2.136)

or 〈
log

(
dμ

dμ0

)
, n

〉
= 0 for all n ∈ L⊥, (2.137)

where L⊥ is the orthogonal complement of L with respect to the canonical scalar
product 〈·, ·〉 on F(I ).

Exponentiating both sides of (2.137) yields

∏
i

(
μi

μ0,i

)n(i)

= 1 for all n ∈ L⊥.
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Fig. 2.7 Two examples of exponential families. Reproduced from [S. Weis, A. Knauf (2012) En-
tropy distance: New quantum phenomena, Journal of Mathematical Physics 53(10) 102206], with
the permission of AIP Publishing

This is equivalent to ∏
i

μi
n(i) =

∏
i

μ0,i
n(i) for all n ∈ L⊥.

We define n+ :=max{n(i),0} and n− :=max{−n(i),0} and reformulate this con-
dition by∏

i

μi
n+(i)
∏
i

μ0,i
n−(i) =

∏
i

μi
n−(i)
∏
i

μ0,i
n+(i) for all n ∈ L⊥. (2.138)

With the abbreviation μn :=∏i μi
n(i), (2.138) can be written as

μn+μ0
n− = μn−μ0

n+ for all n ∈ L⊥. (2.139)

This proves that μ ∈ E(μ0,L) if and only if (2.139) is satisfied. Theorem 2.5 below
states that the same criterion holds also for all elements μ in the closure of E(μ0,L).
Before we come to this result, we first have to introduce the notion of a facial set.

Non-empty facial sets are the possible support sets that distributions of a given
exponential family can have. There is an instructive way to characterize them. Given
the basis f0 := 1, f1, . . . , fd of L, we consider the affine map

E :P(I )→R
d+1, μ �→ (1,μ(f1), . . . ,μ(fd)

)
. (2.140)

(Here, μ(fk) = Eμ(fk) denotes the expectation value of fk with respect to μ.)
Obviously, the image of this map is a polytope, the convex support cs(E) of E ,
which is the convex hull of the images of the Dirac measures δi in P(I ), that is,
E(δi) = (δi(f0), δ

i(f1), . . . , δ
i(fd)) = (1, f1(i), . . . , fd(i)), i ∈ I . The situation is

illustrated in Fig. 2.7 for two examples of two-dimensional exponential families. In
each case, the image of the simplex under the map E, the convex support of E , is
shown as a “shadow” in the horizontal plane, a triangle in one case and a square in
the other case. We observe that the convex supports can be interpreted as “flattened”
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versions of the individual closures E , where each face of cs(E) corresponds to the
intersection of E with a face of the simplex P(I ). Therefore, the faces of the convex
support determine the possible support sets, which we call facial sets. In order to
motivate their definition below, note that a set C is a face of a polytope P in R

n if
either C = P or C is the intersection of P with an affine hyperplane H such that
all x ∈ P , x /∈ C, lie on one side of the hyperplane. Non-trivial faces of maximal
dimension are called facets. It is a fundamental result that every polytope can equiv-
alently be described as the convex hull of a finite set or as a finite intersection of
closed linear half-spaces (corresponding to its facets) (see [261]).

In particular we are interested in the face structure of cs(E). Since we assumed
that 1 ∈ L, the image of E is contained in the affine hyperplane x1 = 1, and we
can replace every affine hyperplane H by an equivalent central hyperplane (which
passes through the origin). For the convex support cs(E), we want to know which
points from E(δi), i ∈ I , lie on each face. This motivates the following definition.

Definition 2.11 A set F ⊆ I is called facial if there exists a vector ϑ ∈R
d+1 such

that

d∑
k=0

ϑkfk(i)= 0 for all i ∈ F ,

d∑
k=0

ϑkfk(i)≥ 1 for all i ∈ I \ F . (2.141)

Lemma 2.7 Fix a subset F ⊆ I . Then we have:

(1) F is facial if and only if for any u ∈ L⊥:

supp
(
u+
)⊆ F ⇔ supp

(
u−
)⊆ F (2.142)

(here, we consider u as an element of F(I ), and for any f ∈F(I ), supp(f ) :=
{i ∈ I : f (i) = 0}).

(2) If μ is a solution to (2.139), then supp(μ) is facial.

Proof One direction of the first statement is straightforward: Let u ∈ L⊥ and sup-
pose that supp(u+)⊆ F . Then

∑
i∈F

u(i)fk(i)=−
∑
i /∈F

u(i)fk(i), k = 0,1, . . . , d,

and therefore

0=
∑
i∈F

u(i)

d∑
k=0

ϑkfk(i)=−
∑
i /∈F

u(i)

d∑
k=0

ϑkfk(i).

Since
∑d

k=0 ϑkfk(i) > 1 and u(i) ≤ 0 for i /∈ F it follows that u(i) = 0 for i /∈ F ,
proving one direction of the first statement.

The opposite direction is a bit more complicated. Here, we present a proof us-
ing elementary arguments from polytope theory (see, e.g., [261]). For an alter-
native proof using Farkas’ Lemma see [103]. Assume that F is not facial. Let
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F ′ be the smallest facial set containing F . Let PF and PF ′ be the convex hulls
of {(f0(i), . . . , fd(i)) : i ∈ F } and {(f0(i), . . . , fd(i)) : i ∈ F ′}. Then PF con-
tains a point g from the relative interior of PF ′ . Therefore g can be represented
as gk = ∑i∈F α(i)fk(i) = ∑i∈F ′ β(i)fk(i), where α(i) ≥ 0 for all i ∈ F and
β(i) > 0 for all i ∈ F ′. Hence u(i) := α(i) − β(i) (where α(i) := 0 for i /∈ F

and β(i) := 0 for x /∈ F ′) defines a vector u ∈ L⊥ such that supp(u+) ⊆ F and
supp(u−)∩ (I \ F)= F ′ \ F = ∅.

The second statement now follows immediately: If μ satisfies (2.139) for some
u ∈ L⊥, then the LHS of (2.139) vanishes if and only if the RHS vanishes, and by
the first statement this implies that supp(μ) is facial. �

Theorem 2.5 A distribution μ is an element of the closure of E(μ0,L) if and only
if it satisfies (2.139).

Proof The first thing to note is that it is enough to prove the theorem when μ0,i = 1
for all i ∈ I . To see this observe that μ ∈ E(L) if and only if λ

∑
i μ0,iμi δ

i ∈
E(μ0,L), where λ > 0 is a normalizing constant, which does not appear in (2.139)
since they are homogeneous.

Let ZL be the set of solutions of (2.139). The derivation of Eqs. (2.139) was
based on the requirement that E(L) ⊆ ZL, which also implies E(L) ⊆ ZL = ZL.
It remains to prove the reversed inclusion E(L)⊇ ZL. Let μ ∈ ZL \ E(L) and put
F := supp(μ). We construct a sequence μ(n) in E(L) that converges to μ as n→∞.
We claim that the system of equations

d∑
k=0

bkfk(i)= logμi for all i ∈ F (2.143)

in the variables bk , k = 0,1, . . . , d , has a solution. Otherwise we can find a function
v(i), i ∈ I , such that

∑
i∈I v(i) logμi = 0 and

∑
i∈I v(i)fk(i) = 0 for all k. This

leads to the contradiction μv+ = μv− . Fix a vector ϑ ∈R
d+1 with property (2.141).

For any n ∈N define

μ(n) := 1

Z

∑
i

e−n
∑

k ϑkfk(i)e
∑

k bkfk(i) δi ∈ E(L), (2.144)

where Z is a normalization factor. By (2.141) and (2.143) it follows that
limn→∞μ(n) = μ. This proves the theorem. �

The last statement of Lemma 2.7 can be generalized by the following explicit
description of the closure of an exponential family.

Theorem 2.6 (Closure of an exponential family) Let L be a linear subspace of
F(I ), and let S(L) denote the set of non-empty facial subsets of I (see Defini-
tion 2.11, and Lemma 2.7). Define for each set F ∈ S(L) the truncated exponential
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family as

EF := EF (μ0,L) :=
{

1∑
j∈F μj

∑
i∈F

μi δ
i : μ=

∑
i∈I

μi δ
i ∈ E(μ0,L)

}
. (2.145)

Then the closure of the exponential family E is given by

E(μ0,L)=
⋃

F∈S(L)

EF . (2.146)

Proof “⊆” Let μ be in the closure of E(μ0,L). Clearly, μ satisfies Eqs. (2.139)
and therefore, by Lemma 2.7, its support set F is facial. Furthermore, the same
reasoning that underlies Eq. (2.143) yields a solution of the equations

d∑
k=0

ϑk fk(i)= log
μi

μ0,i

, i ∈ F.

Using these ϑ values for k = 1, . . . , d , we extend μ by

μ̃i := 1

Z(ϑ)
exp

(
d∑

k=1

ϑk fk(i)

)
, i ∈ I,

to a distribution μ̃ with full support. Obviously, μ̃ defines μ through truncation.
“⊇” Let μ ∈ EF for some non-empty facial set F . Then μ has a representation

μi :=
{

μ2,i exp(
∑d

k=0 ϑk fk(i)), if i ∈ F ,

0, otherwise.

With a vector ϑ ′ = (ϑ ′0, ϑ ′1, . . . , ϑd) ∈R
d+1 that satisfies (2.141), the sequence

μ
(n)
i := exp

(
d∑

k=0

(
ϑk − nϑ ′k

)
fk(i)

)
∈ E(μ0,L)

converges to μ, proving μ ∈ E(μ0,L). �

Example 2.4 (Support sets of an exponential family) In this example, we apply
Theorem 2.6 to the exponential families shown in Fig. 2.7. These are families
of distributions on I = {1,2,3,4}, and we write the elements of F(I ) as vectors
(x1, x2, x3, x4). In order to determine the individual facial subsets of I , we use the
criterion given in the first part of Lemma 2.7.

(1) Let us start with the exponential family shown in Fig. 2.7(A). The space L of
this exponential family is the linear hull of the orthogonal vectors

(1,1,1,1), (1,1,−2,0), (1,−1,0,0).
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Its one-dimensional orthogonal complement L⊥ is spanned by the vector
(1,1,1,−3). This implies the following pairs (supp(u+), supp(u−)), u= u+ −
u− ∈ L⊥, of disjoint support sets:

(∅,∅), ({1,2,3}, {4}), ({4}, {1,2,3}). (2.147)

The criterion (2.142) for a subset F of I to be a facial set simply means that
for any of the support set pairs (M,N) in (2.147), either M and N are both
contained in F or neither of them is. This yields the following set of facial sets:

∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3,4}.

Obviously, these sets, except ∅, are exactly the support sets of distributions that
are in the closure of the exponential family (see Fig. 2.7(A)).

(2) Now let us come to the exponential family shown in Fig. 2.7(B). Its linear space
L is spanned by

(1,1,1,1), (1,1,−1,−1), (1,−1,−1,1),

with the orthogonal complement L⊥ spanned by (1,−1,1,−1). As possible
support set pairs, we obtain

(∅,∅), ({1,3}, {2,4}), ({2,4}, {1,3}).
Applying criterion (2.142) finally yields the facial sets

∅, {1}, {2}, {3}, {4}, {1,2}, {1,4}, {2,3}, {3,4}, {1,2,3,4}.

Also in this example, these sets, except ∅, are the possible support sets of dis-
tributions that are in the closure of the exponential family (see Fig. 2.7(B)).

Theorem 2.5 provides an implicit description of the closure of an exponential
family E(μ0,L). Here, however, we have to test the equations with infinitely many
elements n of the orthogonal complement L⊥ of L. Now we ask the question
whether the test can be reduced to a finite number of vectors n ∈ L⊥. For an el-
ement μ ∈ E(μ0,L), clearly the orthogonality (2.137) has to be tested only for a
basis n1, . . . , nc, c= |I | − dim(L), of L, which is equivalent to

μn+k μ0
n−k = μn−k μ0

n+k for all k = 1, . . . , c. (2.148)

This criterion is sufficient for the elements of E(μ0,L). It turns out, however, that it
is not sufficient for describing elements in the boundary of E(μ0,L). But it is still
possible to reduce the number of equations to a finite number. In order to do so,
we have to replace the basis n1, . . . , nc by a so-called circuit basis, which is still a
generating system but contains in general more than c elements.
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Definition 2.12 A circuit vector of the space L is a nonzero vector n ∈ L⊥ with
inclusion minimal support, i.e., if n′ ∈ L⊥ satisfies supp(n′) ⊆ supp(n), then n′ =
λn for some λ ∈R. A circuit is the support set of a circuit vector. A circuit basis is
a subset of L⊥ containing precisely one circuit vector for every circuit.

This definition allows us to prove the following theorem.

Theorem 2.7 Let E(μ0,L) be an exponential family. Then its closure E(μ0,L)

equals the set of all probability distributions that satisfy

μc+μ0
c− = μc−μ0

c+ for all c ∈ C, (2.149)

where C is a circuit basis of L.

The proof is based on the following two lemmas.

Lemma 2.8 For every vector n ∈ L⊥ there exists a sign-consistent circuit vector
c ∈ L⊥, i.e., if c(i) = 0 = n(i) then sign c(i)= signn(i), for all i ∈ I .

Proof Let c be a vector with inclusion-minimal support that is sign-consistent with
n and satisfies supp(c) ⊆ supp(n). If c is not a circuit vector, then there exists a
circuit vector c′ with supp(c′) ⊆ supp(c). A suitable linear combination c + αc′,
α ∈R, gives a contradiction to the minimality of c. �

Lemma 2.9 Every vector n ∈ L⊥ is a finite sign-consistent sum of circuit vectors
n=∑r

k=1 ck , i.e., if ck(i) = 0 then sign ck(i)= signn(i), for all i ∈ I .

Proof Use induction on the size of supp(n). In the induction step, use a sign-
consistent circuit vector, as in the last lemma, to reduce the support. �

Proof of Theorem 2.7 Again, we can assume μ0,i = 1 for all i ∈ I . By Theo-
rem 2.5 it suffices to show the following: If μ satisfies (2.149), then it also satisfies
μn+ = μn− for all n ∈ L⊥. Write n =∑r

k=1 ck as a sign-consistent sum of circuit
vectors ck , as in the last lemma. Without loss of generality, we can assume ck ∈ C

for all k. Then n+ =∑r
k=1 c+k and n− =∑r

k=1 c−k . Hence μ satisfies

μn+ −μn− = μ
∑r

k=2 c+k
(
μc+1 −μc−1

)+ (μ∑r
k=2 c+k −μ

∑r
k=2 c−k

)
μc−1 ,

so the theorem follows easily by induction. �

Example 2.5 Let I := {1,2,3,4}, and consider the vector space L spanned by the
following two functions (here, we write functions on I as row vectors of length 4):

f0 = (1,1,1,1) and f1 = (−α,1,0,0),
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where α /∈ {0,1} is arbitrary. This generates a one-dimensional exponential family
E(L). The kernel of L is then spanned by

n1 = (1, α,−1,−α) and n2 = (1, α,−α,−1),

but these two vectors do not form a circuit basis: They correspond to the two rela-
tions

μ1μ2
α = μ3μ4

α and μ1μ2
α = μ3

αμ4. (2.150)

It follows immediately that

μ3μ4
α = μ3

αμ4. (2.151)

If μ3μ4 is not zero, then we conclude that μ3 = μ4. However, on the boundary this
does not follow from Eqs. (2.150): Possible solutions to these equations are given
by

μ(a) = (0, a,0,1− a) for 0≤ a < 1. (2.152)

However, μ(a) does not lie in the closure of the exponential family E(L), since all
members of E(L) satisfy μ3 = μ4.

A circuit basis of A is given by the vectors

(0,0,1,−1), (1, α,0,−1− α), and (1, α,−1− α,0),

which have the following corresponding equations:

μ3 = μ4, μ1μ2
α = μ4

1+α, and μ1μ2
α = μ3

1+α. (2.153)

By Theorem 2.7, these three equations characterize E(L).

Using arguments from matroid theory, the number of circuits can be shown to
be less than or equal to

(
m

d+2

)
, where m= |I | is the size of the state space and d is

the dimension of E(μ0,L), see [83]. This gives an upper bound on the number of
implicit equations describing E(μ0,L). Note that

(
m

d+2

)
is usually much larger than

the codimension m−d−1 of E(μ0,L) in the probability simplex. In contrast, if we
only want to find an implicit description of all probability distributions of E(μ0,L),
which have full support, then m− d − 1 equations are enough.

It turns out that even in the boundary the number of equations can be further re-
duced: In general we do not need all circuits for the implicit description of E(μ0,L).
For instance, in Example 2.5, the second and third equation of (2.153) are equivalent
given the first one, i.e., we only need two of the three circuits to describe E(μ0,L).

2.8.3 Information Projections

In Sect. 2.7.2 we have introduced the relative entropy. It turns out to be the right
divergence function for projecting probability measures onto exponential families.
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These projections, referred to as information projections, are closely related to large-
deviation theory and maximum-likelihood estimation in statistics. The foundational
work on information projections is due to Chentsov [65] and Csiszár [75] (see also
the tutorial by Csiszár and Shields [78]). Csiszár and Matúš revisited the classical
theory of information projections within a much more general setting [76]. The
differential-geometric study of these projections and their generalizations based on
dually flat structures (see Sect. 4.3) is due to Amari and Nagaoka [8, 16, 194].

In order to treat the most general case, where probability distributions do not
have to be strictly positive, we have to extend the relative entropy or KL-divergence
(2.101) of Definition 2.8 so that it is defined for general probability distribu-
tions μ,ν ∈ P(I ). It turns out that, although DKL is continuous on the prod-
uct P+(I ) × P+(I ), there is no continuous extension to the Cartesian product
P(I )×P(I ). As DKL is used for minimization problems, it is reasonable to consider
the following lower semi-continuous extension of DKL with values in the extended
line R+ := {x ∈R : x ≥ 0}∪ {∞} (considered as a topological space where U ⊆R+
is a neighborhood of ∞ if it contains an interval (x,∞)):

DKL(μ‖ν) :=
{∑

i∈I μi log μi

νi
, if supp(μ)⊆ supp(ν),

∞, otherwise.
(2.154)

Here, we use the convention μi log μi

νi
= 0 whenever μi = 0. Defining μi log μi

νi
to

be ∞ if μi > νi = 0 allows us to rewrite (2.154) as DKL(μ‖ν) =∑i∈I μi log μi

νi
.

Whenever appropriate, we use this concise expression.
We summarize the basic properties of this (extended) relative entropy or KL-

divergence.

Proposition 2.14 The function (2.154) satisfies the following properties:

(1) DKL(μ‖ν)≥ 0, and DKL(μ‖ν)= 0 if and only if μ= ν.
(2) The functions DKL(μ‖ ·) and DKL(· ‖ν) are continuous for all μ,ν ∈ P(I ).
(3) DKL is lower semi-continuous, that is, for all (μ(k), ν(k))→ (μ, ν), we have

DKL(μ‖ν)≤ lim inf
k→∞ DKL

(
μ(k)
∥∥ν(k)

)
. (2.155)

(4) DKL is jointly convex, that is, for all μ(j), ν(j), λj ∈ [0,1], j = 1, . . . , n, satis-
fying

∑n
j=1 λj = 1,

DKL

(
n∑

j=1

λj μ(j)
∥∥∥

n∑
j=1

λj ν(j)

)
≤

n∑
j=1

λj DKL
(
μ(j)
∥∥ν(j)

)
. (2.156)

The proof of Proposition 2.14 involves the following basic inequality.
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Lemma 2.10 (log-sum inequality) For arbitrary non-negative real numbers
a1, . . . , am and b1, . . . , bm, we have

m∑
k=1

ak log
ak

bk

≥
(

m∑
k=1

ak

)
log

∑m
k=1 ak∑m
k=1 bk

, (2.157)

where equality holds if and only if ak

bk
is independent of k. Here, a log a

b
is defined to

be 0 if a = 0 and ∞ if a > b= 0.

Proof We set a :=∑m
k=1 ak and b :=∑m

k=1 bk . With the strict convexity of the
function f : [0,∞)→R, f (x) := x logx for x > 0 and f (0)= 0, we obtain

m∑
k=1

ak log
ak

bk

=
m∑

k=1

bk

ak

bk

log
ak

bk

= b

m∑
k=1

bk

b
f

(
ak

bk

)

≥ b f

(
m∑

k=1

bk

b

ak

bk

)
= bf

(
a

b

)
= a log

a

b
.

�

Proof of Proposition 2.14

(1) In the case of probability measures, the log-sum inequality (2.157) implies

∑
i∈I

μi log
μi

νi

≥
(∑

i∈I

μi

)
log

∑
i∈I μi∑
i∈I νi

= 0,

where equality holds if and only if μi = c νi for some constant c, which, in this
case, has to be equal to one.

(2) This follows directly from the continuity of the functions logx, where
log 0 := −∞, and x logx, where 0 log 0 := 0.

(3) If νi > 0, we have

lim
k→∞μ

(k)
i log

μ
(k)
i

ν
(k)
i

= μi log
μi

νi

. (2.158)

If νi = 0 and μi > 0,

lim
k→∞μ

(k)
i log

μ
(k)
i

ν
(k)
i

=∞= μi log
μi

νi

. (2.159)

Finally, if νi = 0 and μi = 0,

lim inf
k→∞ μ

(k)
i log

μ
(k)
i

ν
(k)
i

≥ lim inf
k→∞

(
μ

(k)
i − ν

(k)
i

)= 0= μi log
μi

νi

, (2.160)



94 2 Finite Information Geometry

since logx ≥ 1− 1
x

for x > 0. Altogether, (2.158), (2.159), and (2.160) imply

lim inf
k→∞

∑
i∈I

μ
(k)
i log

μ
(k)
i

ν
(k)
i

≥
∑
i∈I

lim inf
k→∞ μ

(k)
i log

μ
(k)
i

ν
(k)
i

≥
∑
i∈I

μi log
μi

νi

,

which equals∞ whenever there is at least one i ∈ I satisfying μi > νi = 0.
(4) We use again the log-sum inequality (2.157):

DKL

(
n∑

j=1

λj μ(j)
∥∥∥

n∑
j=1

λj ν(j)

)
=
∑
i∈I

(
n∑

j=1

λj μ
(j)
i

)
log

∑n
j=1 λj μ

(j)
i∑n

j=1 λj ν
(j)
i

≤
∑
i∈I

n∑
j=1

λj μ
(j)
i log

λj μ
(j)
i

λj ν
(j)
i

=
n∑

j=1

λj

∑
i∈I

μ
(j)
i log

μ
(j)
i

ν
(j)
i

=
n∑

j=1

λj DKL
(
μ(j)
∥∥ν(j)

)
.

�

We consider information projections onto exponential and corresponding mix-
ture families. They are assigned to a linear subspace L of F(I ) and measures
μ1 ∈ P(I ), μ2 ∈ P+(I ). Without loss of generality, we assume 1 ∈ L and choose a
basis f0 := 1, f1, . . . , fd of L. The mixture family through μ1 is simply the set of
distributions that have the same expectation values of the fk as the distribution μ1,
that is,

M :=M(μ1,L) := {ν ∈ P(I ) : ν(fk)= μ1(fk), k = 1, . . . , d
}
. (2.161)

The corresponding exponential family E := E(μ2,L) through μ2 is given as the
image of the parametrization

ϑ = (ϑ1, . . . , ϑd) �→ 1

Z(ϑ)

∑
i∈I

μ2,i exp

(
d∑

k=1

ϑk fk(i)

)
δi, (2.162)

where

Z(ϑ) :=
∑
j

μ2,j exp

(
d∑

k=1

ϑk fk(j)

)
.

Theorem 2.8 For any distribution μ̂ ∈ P(I ), the following statements are equiva-
lent:

(1) μ̂ ∈M∩ E .
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(2) For all ν1 ∈ M, ν2 ∈ E : DKL(ν1 ‖ μ̂) < ∞, DKL(ν1 ‖ν2) < ∞ iff
DKL(μ̂‖ν2) <∞, and

DKL(ν1 ‖ν2)=DKL(ν1 ‖ μ̂)+DKL(μ̂‖ν2). (2.163)

In particular, the intersection M∩ E consists of the single point μ̂.
(3) μ̂ ∈M, and DKL(μ̂‖ν2)= infν∈M DKL(ν ‖ν2) for all ν2 ∈ E .
(4) μ̂ ∈ E , and DKL(ν1 ‖ μ̂)= inf

ν∈E DKL(ν1 ‖ν) for all ν1 ∈M.

Furthermore, there exists a unique distribution μ̂ that satisfies one and therefore all
of these conditions.

Proof (1) ⇒ (2) We choose ν1 ∈M and ν2 ∈ E (strict positivity). As μ̂ ∈ E , there
is a sequence μ(n) ∈ E , μ(n) → μ̂. This implies

∑
i∈I

(ν1,i − μ̂i) log
μ

(n)
i

ν2,i

= 0. (2.164)

This is because log dμ(n)

dν2
∈ L, and ν1, μ̂ ∈M. By continuity,

∑
i∈I

(ν1,i − μ̂i) log
μ̂i

ν2,i

= 0. (2.165)

This equality is equivalent to

DKL(ν1 ‖ν2)=DKL(ν1 ‖ μ̂)+DKL(μ̂‖ν2). (2.166)

As we assumed ν2 to be strictly positive, this means that DKL(ν1 ‖ν2) and
DKL(μ̂‖ν2) are finite, so that DKL(ν1 ‖ μ̂) has to be finite. This is only the case
if supp(μ̂)⊇ supp(ν1) for all ν1 ∈M. By continuity, (2.166) also holds for ν2 ∈ E .
Note, however, that we do not exclude the case where DKL(ν1 ‖ν2) and DKL(μ̂‖ν2)

become infinite when ν2 does not have full support. We finally prove unique-
ness: Assume μ̂′ ∈ M ∩ E . Then the Pythagorean relation (2.163) implies for
ν1 = ν2 = μ̂′

0=DKL(ν1 ‖ν2)=DKL(ν1 ‖ μ̂)+DKL(μ̂‖ν2)=DKL
(
μ̂′
∥∥ μ̂
)+DKL

(
μ̂
∥∥ μ̂′
)
,

and therefore μ̂′ = μ̂, that is, M∩ E = {μ̂}.
(2) ⇒ (3) For all ν1 ∈M and ν2 ∈ E , we obtain

DKL(ν1 ‖ν2)=DKL(ν1 ‖ μ̂)+DKL(μ̂‖ν2)≥DKL(μ̂‖ν2)≥ inf
ν∈M

DKL(ν ‖ν2).

This implies

inf
ν1∈M

DKL(ν1 ‖ν2)≥DKL(μ̂‖ν2)≥ inf
ν∈M

DKL(ν ‖ν2).
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(2) ⇒ (4) For all ν1 ∈M and ν2 ∈ E , we obtain

DKL(ν1 ‖ν2)=DKL(ν1 ‖ μ̂)+DKL(μ̂‖ν2)≥DKL(ν1 ‖ μ̂)≥ inf
ν∈E

DKL(ν1 ‖ν).

This implies

inf
ν2∈E

DKL(ν1 ‖ν2)≥DKL(ν1 ‖ μ̂)≥ inf
ν∈E

DKL(ν1 ‖ν).

(3) ⇒ (1) We consider the KL-divergence for ν2 = μ2, the base measure of the
exponential family E = E(μ2,L) which we have assumed to be strictly positive:

M→R, ν �→DKL(ν ‖μ2). (2.167)

This function is strictly convex and therefore has μ̂ ∈M as its unique minimizer. In
what follows, we prove that μ̂ is contained in the (relative) interior of M so that we
can derive a necessary condition for μ̂ using the method of Lagrange multipliers.
This necessary condition then implies μ̂ ∈ E . We structure this chain of arguments
in three steps:

Step 1: Define the curve [0,1] →M, t �→ ν(t) := (1− t) μ̂+ t ν, and consider
its derivative

d

dt
DKL
(
ν(t)
∥∥μ2
)∣∣∣∣

t=t0

=
∑
i∈I

(νi − μ̂i) log
νi(t0)

μ2,i

(2.168)

for t0 ∈ (0,1). If μ̂i = 0 for some i with νi > 0 then the derivative (2.168) converges
to −∞ when t0 → 0. As μ̂ is the minimizer of DKL(ν(·)‖μ2), this is ruled out,
proving

supp(ν) ⊆ supp(μ̂), for all ν ∈M. (2.169)

Step 2: Let us now consider the particular situation where M has a non-empty
intersection with P+(I ). This is obviously the case, when we choose μ1 to be
strictly positive, as μ1 ∈M=M(μ1,L) by definition. In that case supp(μ̂)= I , by
(2.169). We consider the restriction of the function (2.167) to M∩P+(I ) and intro-
duce Lagrange multipliers ϑ0, ϑ1, . . . , ϑd , in order to obtain a necessary condition
for μ̂ to be its minimizer. More precisely, differentiating

∑
i∈I

νi log
νi

μ2,i

− ϑ0

(
1−
∑
i∈I

νi

)
−

d∑
k=1

ϑk

(
μ1(fk)−

∑
i∈I

νifk(i)

)
(2.170)

with respect to νi leads to the necessary condition

logνi + 1− logμ2,i − ϑ0 −
∑

k

ϑkfk(i)= 0, i ∈ I,
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which is equivalent to

νi = μ2,i exp

(
ϑ0 − 1+

d∑
k=1

ϑkfk(i)

)
, i ∈ I. (2.171)

As the minimizer, μ̂ has this structure and is therefore contained in E , proving μ̂ ∈
M∩ E .

Step 3: In this final step, we drop the assumption that μ1 is strictly positive and
consider the sequence

M(n) :=M
(
μ

(n)
1 ,L

)
, (2.172)

where μ
(n)
1 = (1− 1

n
)μ1 + 1

n
μ2, n ∈ N. Each of these distributions μ

(n)
1 is strictly

positive so that, according to Step 2, we have a corresponding sequence μ̂(n) of
distributions in M(n) ∩ E . The limit of any convergent subsequent is an element of
M∩ E and, by uniqueness, coincides with μ̂.

(4)⇒ (1) Define S := supp(μ̂). Then μ̂ is contained in the family ES (see Theo-
rem 2.6), defined in terms of the parametrization

νi(ϑ) := νi(ϑ1, . . . , ϑd) :=
{

1
ZS(ϑ)

μ2,i exp(
∑d

k=1 ϑk fk(i)), if i ∈ S,

0, otherwise,

with

ZS(ϑ) :=
∑
j∈S

μ2,j exp

(
d∑

k=1

ϑk fk(j)

)
.

Note that ν(ϑ̂)= μ̂ for some ϑ̂ . With this parametrization, we obtain the function

DKL
(
ν1
∥∥ν(ϑ)

) =DKL(ν1 ‖μ2)−
d∑

k=1

ϑk ν1(fk)+ log
(
ZS(ϑ)

)
,

and its partial derivatives

∂DKL(ν1 ‖ν(·))
∂ϑk

= ν(ϑ)(fk)− ν1(fk), k = 1, . . . , d. (2.173)

As μ̂ = ν(ϑ̂) is the minimizer, ϑ̂ satisfies Eqs. (2.173), which implies that μ̂ is
contained in M.

Existence: We proved the equivalence of the conditions for any distribution μ̂,
which, in particular, implies the uniqueness of a distribution that satisfies one and
therefore all of these conditions. To see that there exists such a distribution, consider
the function (2.167) and observe that it has a unique minimizer μ̂ ∈M∩ E (see the
proof of the implication “(3) ⇒ (1)”). �
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Let us now use Theorem 2.8 in order to define projections onto mixture and
exponential families, referred to as the I -projection and rI -projection, respectively
(see [76, 78]).

Let us begin with the I -projection. Consider a mixture family M =M(μ1,L)

as defined by (2.161). Following the criterion (3) of Theorem 2.8, we define the
distance from M by

DKL(M‖ ·) : P(I )→R, μ �→DKL(M‖μ) := inf
ν∈M

DKL(ν ‖μ). (2.174)

Theorem 2.8 implies that there is a unique point μ̂ ∈M that satisfies DKL(μ̂‖μ)=
DKL(M‖μ). It is obtained as the intersection of M(μ1,L) with the closure of
the exponential family E(μ,L). This allows us to define the I -projection πM :
P(I )→M, μ �→ μ̂.

Now let us come to the analogous definition of the rI -projection, which will play
an important role in Sect. 6.1. Consider an exponential family E = E(μ2,L), and,
following criterion (4) of Theorem 2.8, define the distance from E by

DKL(· ‖E) :P(I )→R, μ �→DKL(μ‖E) := inf
ν∈E

DKL(μ‖ν)= inf
ν∈E

DKL(μ‖ν),

(2.175)
where the last equality follows from the continuity of DKL(μ‖ ·). Theorem 2.8 im-
plies that there is a unique point μ̂ ∈ E that satisfies DKL(μ‖ μ̂) = DKL(μ‖E). It
is obtained as the intersection of the closure of E(μ2,L) with the mixture family
M(μ,L). This allows us to define the projection πE : P(I )→ E , μ �→ μ̂.

Proposition 2.15 Both information distances, DKL(M‖ ·) and DKL(· ‖E), are
continuous functions on P(I ).

Proof We prove the continuity of DKL(M‖ ·). One can prove the continuity of
DKL(· ‖E) following the same reasoning.

Let μ be a point in P(I ) and μn ∈ P(I ), n ∈N, a sequence that converges to μ.
For all ν ∈M, we have DKL(M‖μn)≤DKL(ν ‖μn), n ∈N, and by the continuity
of DKL(ν ‖ ·) we obtain

lim sup
n→∞

DKL(M‖μn)≤ lim sup
n→∞

DKL(ν ‖μn)= lim
n→∞DKL(ν ‖μn)=DKL(ν ‖μ).

(2.176)
From the lower semi-continuity of the KL-divergence DKL (Lemma 2.14), we ob-
tain the lower semi-continuity of the distance DKL(M‖ ·) (see [228]). Taking the
infimum of the RHS of (2.176) then leads to

lim sup
n→∞

DKL(M‖μn)≤ inf
ν∈M

DKL(ν ‖μ)=DKL(M‖μ)≤ lim inf
n→∞ DKL(M‖μn),

(2.177)
proving limn→∞DKL(M‖μn)=DKL(M‖μ). �

In Sects. 2.9 and 6.1, we shall study exponential families that contain the uniform
distribution, say μ0,i = 1

|I | , i ∈ I . In that case, the projection μ̂= πE (μ) coincides
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with the so-called maximum entropy estimate of μ. To be more precise, let us con-
sider the function

ν �→DKL(ν ‖μ0)= log |I | −H(ν), (2.178)

where

H(ν) := −
∑
i∈I

νi logνi . (2.179)

The function H(ν) is the basic quantity of Shannon’s theory of information [235],
and it is known as the Shannon entropy or simply the entropy. It is continuous and
strictly concave, because the function f : [0,∞)→ R, f (x) := x logx for x > 0
and f (0) = 0, is continuous and strictly convex. Therefore, H assumes its maxi-
mal value in a unique point, subject to any linear constraint. Clearly, ν minimizes
(2.178) in a linear family M if and only if it maximizes the entropy on M. There-
fore, assuming that the uniform distribution is an element of E , the distribution μ̂ of
Theorem 2.8 is the one that maximizes the entropy, given the linear constraints of
the set M. This relates the information projection to the maximum entropy method,
which has been proposed by Jaynes [128, 129] as a general inference method, based
on statistical mechanics and information theory. In order to motivate this method,
let us briefly elaborate on the information-theoretic interpretation of the entropy as
an information gain, due to Shannon [235]. We assume that the probability measure
ν represents our expectation about the outcome of a random experiment. In this in-
terpretation, the larger νi is the higher our confidence that the events i will be the
outcome of the experiment. With expectations, there is always associated a surprise.
If an event i is not expected prior to the experiment, that is, if νi is small, then it
should be surprising to observe it as the outcome of the experiment. If that event,
on the other hand, is expected to occur with high probability, that is, if νi is large,
then it should not be surprising at all to observe it as the experiment’s outcome. It
turns out that the right measure of surprise is given by the function νi �→ − logνi .
This function quantifies the extent to which one is surprised by the outcome of an
event i ∈ I , if i was expected to occur with probability νi . The entropy of ν is the
expected (or mean) surprise and is therefore a measure of the subjective uncertainty
about the outcome of the experiment. The higher that uncertainty, the less informa-
tion is contained in the probability distribution about the outcome of the experiment.
As the uncertainty about this outcome is reduced to zero after having observed the
outcome, this uncertainty reduction can be interpreted as information gain through
the experiment. In his influential work [235], Shannon provided an axiomatic char-
acterization of information based on this intuition.

The interpretation of entropy as uncertainty allows us to interpret the distance be-
tween μ and its maximum entropy estimate μ̂= πE (μ) as reduction of uncertainty.

Lemma 2.11 Let μ̂ be the maximum entropy estimate of μ. Then

DKL(μ‖E)=DKL(μ‖ μ̂)=H(μ̂)−H(μ). (2.180)
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Proof It follows from (2.163) that

DKL(μ‖μ0)=DKL(μ‖ μ̂)+DKL(μ̂‖μ0).

If we choose μ0 to be the uniform distribution, this amounts to

(
log |I | −H(μ)

)=DKL(μ‖ μ̂)+ (log |I | −H(μ̂)
)
. �

This will be further explored in Sect. 6.1.2. See also the discussion in Sect. 4.3
of the duality between exponential and mixture families.

2.9 Hierarchical and Graphical Models

We have derived and studied exponential families E(μ0,L) from a purely geometric
perspective (see Definition 2.10). On the other hand, they naturally appear in statis-
tical physics, known as families of Boltzmann–Gibbs distributions. In that context,
there is an energy function which we consider to be an element of a linear space L.
One typically considers a number of particles that interact with each other so that the
energy is decomposed into a family of interaction terms, the interaction potential.
The strength of interaction, for instance, then parametrizes the space L of energies,
and one can study how particular system properties change as result of a parame-
ter change. This mechanistic description of a system consisting of interacting units
has inspired corresponding models in many other fields, such as the field of neural
networks, genetics, economics, etc.

It is remarkable that purely geometric information about the system can reveal
relevant features of the physical system. For instance, the Riemannian curvature
with respect to the Fisher metric can help us to detect critical parameter values
where a phase transition occurs [54, 218]. Furthermore, the Gibbs–Markov equiv-
alence in statistical physics [191], the equivalence of particular mechanistic and
phenomenological properties of a system, can be interpreted as an equivalence of
two perspectives of the same geometric object, its explicit parametrization and its
implicit description as the solution set of corresponding equations. This close con-
nection between geometry and physical systems allows us to assign to the developed
geometry a mechanistic interpretation.

In this section we want to present a more refined view of exponential families that
are naturally defined for systems of interacting units, so-called hierarchical mod-
els. Of particular interest are graphical models, where the interaction is compatible
with a graph. For these models, the Gibbs–Markov equivalence is then stated by the
Hammersley–Clifford theorem. The material of this section is mainly based on Lau-
ritzen’s monograph [161] on graphical models. However, we shall confine ourselves
to discrete models with the counting measure as the base measure. The next section
on interaction spaces incorporates work of Darroch and Speed [80].
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2.9.1 Interaction Spaces

Consider a finite set V of units or nodes. To simplify the notation we sometimes
choose V to be the set [N ] = {1, . . . ,N}. We assign to each node a correspond-
ing (non-empty and finite) set of configurations Iv . For every subset A ⊆ V , the
configurations on A are given by the Cartesian product

IA :=×
v∈A

Iv. (2.181)

Note that in the case where A is the empty set, the product space consists of the
empty sequence ε, that is, I∅ = {ε}. We have the natural projections

XA : IV → IA, (iv)v∈V �→ (iv)v∈A. (2.182)

Given a distribution p ∈P(I ), the XA become random variables and we denote the
XA-image of p by pA and use the shorthand notation

p(iA) := pA(iA)=
∑
iV \A

p(iA, iV \A), iA ∈ IA. (2.183)

Given an iA with p(iA) > 0, we define

p(iB |iA) := p(iA, iB)

p(iA)
. (2.184)

By FA we denote the algebra of real-valued functions f ∈ F(IV ) that only de-
pend on A, that is, the image of the algebra homomorphism F(IA) → F(IV ),
g �→ g ◦ XA (see the first paragraph of Sect. 2.1). This is called the space of A-
interactions. Clearly this space has dimension

∏
v∈A |Iv|. Note that we recover the

one-dimensional space of constant functions on IV for A= ∅.
We consider the canonical scalar product on FV = F(IV ), defined by 〈f,g〉 :=∑
i f

igi , which coincides with the scalar product (2.10) for the counting measure
μ=∑i δ

i . With the A-marginal

f (iA) :=
∑
i′V \A

f
(
iA, i′V \A

)
, iA ∈ IA, (2.185)

of a function f ∈ FV , the orthogonal projection PA onto FA with respect to 〈·, ·〉
has the following form.

Proposition 2.16

PA(f )(iA, iV \A)= f (iA)

|IV \A| , iA ∈ IA, iV \I ∈ IV \I . (2.186)



102 2 Finite Information Geometry

(Note that, according to our convention, |I∅| = 1.)

Proof We have to show

〈
f − PA(f ), g

〉 = 0 for all g ∈FA.〈
f − PA(f ), g

〉 = 〈f,g〉 − 〈PA(f ), g
〉

=
∑

iA,iV \A
f (iA, iV \A)g

(
iA, i′V \A

)− ∑
iA,iV \A

f (iA)

|IV \A| g
(
iA, i′V \A

)

=
∑
iA

g
(
iA, i′V \A

)∑
iV \A

f (iA, iV \A)

︸ ︷︷ ︸
=f (iA)

−
∑
iA

f (iA)

|IV \A|
∑
iV \A

g
(
iA, i′V \A

)

=
∑
iA

g
(
iA, i′V \A

)
f (iA)−

∑
iA

f (iA)

|IV \A| |IV \A|g
(
iA, i′V \A

)

= 0. �

Note that

PAPB = PBPA = PA∩B for all A,B ⊆ V . (2.187)

We now come to the notion of pure interactions. The vector space of pure A-
interactions is defined as

F̃A :=FA ∩
( ⋂

B�A

FB
⊥
)

. (2.188)

Here, the orthogonal complements are taken with respect to the scalar product 〈·, ·〉.
The space F̃A consists of functions that depend on arguments in A but not only on
arguments of a proper subset B of A. Obviously, the following holds:

f ∈ F̃A ⇔ f ∈FA and f (iB)= 0 for all B �A and iB ∈ IB, (2.189)

where f (iB) is defined by (2.185). We denote the orthogonal projection of f onto
F̃A by P̃A. The following holds:

PAP̃B =
{

P̃B, if B ⊆A,

0, otherwise.
(2.190)

The first case is obvious. The second case follows from (2.189) (and B � A ⇒
A∩B � B):

PAP̃B = PAPBP̃B = PA∩BP̃B = 0.
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Proposition 2.17

(1) The spaces F̃A, A⊆ V , of pure interactions are mutually orthogonal.
(2) For all A⊆ V , we have

P̃A =
∑
B⊆A

(−1)|A\B|PB, PA =
∑
B⊆A

P̃B. (2.191)

(3) The space of A-interactions, A⊆ V , has the following orthogonal decomposi-
tion into spaces of pure interactions:

FA =
⊕
B⊆A

F̃B. (2.192)

(4) For A⊆ V , the dimension of the space of pure A-interactions is given by

dim(F̃A)=
∑
B⊆A

(−1)|A\B|
∏
v∈B

|Iv| =
∏
v∈A

(|Iv| − 1
)
. (2.193)

For the proof of Proposition 2.17 we need the Möbius inversion formula, which
we state and prove first.

Lemma 2.12 (Möbius inversion) Let Ψ and Φ be functions defined on the set of
subsets of a finite set V , taking values in an Abelian group. Then the following
statements are equivalent:

(1) For all A⊆ V, Ψ (A)=∑B⊆A Φ(B).
(2) For all A⊆ V, Φ(A)=∑B⊆A(−1)|A\B|Ψ (B).

Proof ∑
B⊆A

Φ(B) =
∑
B⊆A

∑
D⊆B

(−1)|B\D|Ψ (D)

=
∑

D⊆A,C⊆A\D
(−1)|C|Ψ (D)

=
∑
D⊆A

Ψ (D)
∑

C⊆A\D
(−1)|C|

= Ψ (A).

The last equality results from the fact that the inner sum equals 1, if A \D = ∅. In
the case A \D = ∅ we set n := |A \D| and get

∑
C⊆A\D

(−1)|C| =
n∑

k=1

∣∣{C ⊆A \D : |C| = k
}∣∣(−1)k

=
n∑

k=0

(
n

k

)
(−1)k
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= (1− 1)n

= 0.

For the proof of the second implication, we use the same arguments:

∑
B⊆A

(−1)|A\B|Ψ (B) =
∑

D⊆B⊆A

(−1)|A\B|Φ(D)

=
∑
D⊆A

Φ(D)
∑

C⊆A\D
(−1)|C|

= Φ(A). �

The Möbius inversion formula is of independent interest within discrete mathe-
matics and has various generalizations (see [1]). We now come to the proof of the
above proposition.

Proof of Proposition 2.17

(1) First observe that ⋂
B�A

FB
⊥ =
⋂
v∈A

FA\{v}⊥. (2.194)

Here, the inclusion “⊆” follows from the corresponding inclusion of the index
sets: {A \ {v} : v ∈A} ⊆ {B ⊆A : B =A}. The opposite inclusion “⊇” follows
from the fact that any B �A is contained in some A \ {v}, which implies FB ⊆
FA\{v} and therefore FB

⊥ ⊇FA\{v}⊥.
From (2.194) we obtain

F̃A =FA ∩
⋂

B�A

FB
⊥ =FA ∩

⋂
v∈A

FA\{v}⊥,

and therefore

P̃A = PA

∏
v∈A

(idFV
− PA\{v}). (2.195)

This implies that P̃A and PB commute. As a consequence, we derive

P̃AP̃B = PAP̃AP̃B = P̃APAP̃B = 0 if A = B.

The last equality follows from PAP̃B = 0 according to (2.190), where A = B

implies A� B or B � A. This yields

P̃AP̃B = P̃BP̃A if A = B,

and therefore the spaces F̃A, A⊆ V , are mutually orthogonal.
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(2) We use (2.195):

P̃A = PA

∏
v∈A

(idFV
− PA\{v})

= PA

∑
B⊆A

(−1)|B|
∏
v∈B

PA\{v} (by direct multiplication)

= PA

∑
B⊆A

(−1)|B|PA\B

(
iteration of (2.187), together with

⋂
v∈B

(
A \ {v})=A \B

)

= PA

∑
B⊆A

(−1)|A\B|PB (change of summation index)

=
∑
B⊆A

(−1)|A\B|PAPB

=
∑
B⊆A

(−1)|A\B|PB. (FB subspace of FA)

This proves the first part of the statement. For the second part, we use the
Möbius inversion of Lemma 2.12. It implies

PA =
∑
B⊆A

P̃B,

which is the second part of the statement.
(3) The inclusion “⊇” is clear. We prove the opposite inclusion “⊆”:

f ∈FA ⇒ f = PA(f )=
∑
B⊆A

P̃B(f )︸ ︷︷ ︸
∈F̃B

∈
⊕
B⊆A

F̃B.

(4) From (2.192) we know

dim(FA)=
∑
B⊆A

dim(F̃B), A⊆ V.

The Möbius inversion formula implies

dim(F̃A) =
∑
B⊆A

(−1)|A\B|dim(FB)

=
∑
B⊆A

(−1)|A\B|
∏
v∈B

|Iv|

=
∏
v∈A

(|Iv| − 1
)
.

�
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In the remaining part of this section, we concentrate on binary nodes v ∈ V with
state spaces Iv = {0,1} for all v ∈ V . In this case, by (2.193),

dim(F̃A)=
∏
v∈A

(|Iv| − 1
)= 1.

We are now going to define a family of vectors eA : IV = {0,1}V →R that span the
individual spaces F̃A and thereby form an orthogonal basis of FV . In order to do so,
we interpret the symbols 0 and 1 as the elements of the group Z2, with group law
determined by 1+1= 0. (Below, we shall interpret 0 and 1 as elements of R, which
will then lead to a different basis of FV .) The set of group homomorphisms from
the product group IV = Z2

V into the unit circle of the complex plane forms a group
with respect to pointwise multiplication, called the character group. The elements
of that group, the characters of IV , can be easily specified in our setting. For each
v ∈ V , we first define the function

ξv : IV = {0,1}V →{−1,1}, ξv(i) := (−1)Xv(i) =
{

1, if Xv(i)= 0,

−1, if Xv(i)= 1.

The characters of IV are then given by the real-valued functions

eA(i) :=
∏
v∈A

ξv(i), A⊆ V. (2.196)

With E(A, i) := |{v ∈A :Xv(i)= 1}|, we can rewrite (2.196) as

eA(i)= (−1)E(A,i), A⊆ V. (2.197)

These vectors are known as Walsh vectors [127, 253] and are used in various ap-
plications. In particular, they play an important role within Holland’s genetic algo-
rithms [110, 166]. If follows from general character theory (see [120, 158]) that the
eA form an orthogonal basis of the real vector space FV . We provide a more direct
derivation of this result.

Proposition 2.18 (Walsh basis) The vector eA spans the one-dimensional vector
space F̃A of pure A-interactions. In particular, the family eA, A ⊆ V , of Walsh
vectors forms an orthogonal basis of FV .

Proof For A= ∅, we have e∅ =∑i 1 · ei = 1 which spans F̃∅.
Now let A = ∅, and observe

f ∈ F̃A ⇔ f ∈FA and PB(f )= 0 for all B �A. (2.198)

Below, we verify (2.198) by using
∑

i∈{0,1}V
(−1)E(A,i) = 0. (2.199)
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To see this, let v be an element of A and define

I− :=
{
i :Xv(i)= 1

}
, I+ :=

{
i :Xv(i)= 0

}
.

Obviously, E(A, i)=E(A \ {v}, i) if i ∈ I+. This implies (2.199):

∑
i

(−1)E(A,i) =
∑
i∈I+

(−1)E(A\{v},i) −
∑
i∈I−

(−1)E(A\{v},i) = 0.

Now we verify (2.198). For eA ∈FA we have

PA(eA)(iA, iV \A) = 1

2|V \A|
∑

i′V \A∈IV \A

eA

(
iA, i′V \A

)

= eA(iA, iV \A),

which follows from the fact that E(A, i) does not depend on iV \A. Furthermore,
PB(eA)= 0 for B � A:

PB(eA)(iB, iV \B)

= 1

2|V \B|
∑
i′V \B

eA(iB, i′V \B)

= 1

2|V \B|
∑
i′V \B

(−1)
E(A,(iB ,i′V \B))

= 1

2|V \B|
∑
i′V \B

(−1)
{E(A,(iB ,iV \B))+E(A,(iB ,i′V \B))}

= 1

2|V \B|
(−1)E(B,(iB ,iV \B)) · 2|V \B| ·

∑
i′V \B

(−1)
E(A\B,(iB ,i′V \B))

︸ ︷︷ ︸
=0,

according to (2.199), since A \B = ∅

= 0. �

Remark 2.3 (Characters of finite groups for the non-binary case) Assuming that
each set Iv has the structure of the group Znv = Z/nvZ, that is, Iv = {0,1, . . . ,

nv − 1}, nv = |Iv|, we denote its nv characters by

χv, iv : Iv →C, jv �→ χv, iv (jv) := exp

(
i

2π iv jv

nv

)
.
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(Here, i denotes the imaginary number in C.) We can write any function f : IV →R

on the Abelian group IV =×v∈V
Znv uniquely in the form

f =
∑

i=(iv)v∈V ∈IV

ϑi

∏
v∈V

χv, iv

with complex coefficients ϑi satisfying ϑ−i = ϑ̄i (the bar denotes the complex con-
jugation). This allows us to decompose f into a unique sum of l-body interactions

∑
A⊆V,|A|=l

∑
i=(iv)v∈V ∈IV
iv =0 iff v∈A

ϑi

∏
v∈A

χv, iv .

In many applications, functions are decomposed as

f =
∑
A⊆V

fA, for suitable fA ∈FA,A⊆ V, (2.200)

where the family fA, A ⊆ V , of functions is referred to as the interaction poten-
tial. However, it is not always natural to assume that the fA are elements of the
spaces F̃A, A ⊆ V . One frequently used way of decomposing f assumes for each
node v ∈ V a distinguished state ov ∈ Iv , the so-called vacuum state. Having this
state, one requires that the family (fA)A⊆V is normalized in the following sense:

(i) f∅ = 0, and

(ii) fA(i)= 0 if there is a v ∈A satisfying Xv(i)= ov.
(2.201)

With these requirements, the decomposition (2.200) is unique and can be obtained in
terms of the Möbius inversion (Lemma 2.12, for details see [258], Theorem 3.3.3).

If we work with binary values 0 and 1, interpreted as elements in R, it is natural
to set ov = 0 for all v. In that case, any function f can be uniquely decomposed as

f =
∑
A⊆V

ϑA

∏
v∈A

Xv. (2.202)

Obviously, fA = ϑA

∏
v∈A Xv ∈ FA and the conditions (2.201) are satisfied. Note

that, despite the similarity between the monomials
∏

v∈A Xv and those defined
by (2.196), the decomposition (2.202) is not an orthogonal one, and, for A = ∅,∏

v∈A Xv /∈ F̃A. Clearly, by rewriting ξv = (−1)Xv as 1− 2Xv (where the values of
Xv are now interpreted as real numbers), we can transform one representation of a
function into the other.

2.9.2 Hierarchical Models

We are now going to describe the structure of the interactions in a system. This
structure sets constraints on the interaction potentials and the corresponding Gibbs
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distributions. Although pairwise interactions are most commonly used in applica-
tions, which is associated with the edges of a graph, we have to incorporate, in
particular, higher-order interactions by considering generalizations of graphs.

Definition 2.13 (Hypergraph) Let V be a finite set, and let S be a set of subsets
of V . We call the pair (V ,S) a hypergraph and the elements of S hyperedges.
(Note that, at this point, we do not exclude the cases S= ∅ and S= {∅}.) When V

is fixed we usually refer to the hypergraph only by S. A hypergraph S is a simplicial
complex if it satisfies

A ∈S,B ⊆A ⇒ B ∈S. (2.203)

We denote the set of all inclusion maximal elements of a hypergraph S by Smax.
A simplicial complex S is determined by Smax. Finally, we can extend any hy-
pergraph S to the simplicial complex S by including any subset A of V that is
contained in a set B ∈S.

For a hypergraph S, we consider the sum

FS :=
∑
A∈S

FA. (2.204)

Note that for S = ∅, this space is zero-dimensional and consists of the constant
function f ≡ 0. (This follows from the usual convention that the empty sum equals
zero.) For S= {∅}, we have the one-dimensional space of constant functions on IV .
In order to evaluate the dimension of FS in the general case, we extend S to the
simplicial complex S and represent the vector space as the inner sum of the orthog-
onal sub-spaces F̃A (see Proposition 2.17),

FS =
⊕
A∈S

F̃A, (2.205)

which directly implies

dim(FS)=
∑
A∈S

∏
v∈A

(|Iv| − 1
)
. (2.206)

For the particular case of binary nodes we obtain the number |S| of hyperedges of
the simplicial complex S as the dimension of FS.

Definition 2.14 (Hierarchical model) For a hypergraph S, we define a hierarchical
model as the exponential family generated by the vector space FS (see Defini-
tion 2.10):

ES := E(FS)=
{∑

i∈IV

ef (i)∑
i′∈IV

ef (i′) δi : f ∈FS

}
. (2.207)
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Fig. 2.8 Exponential family
of product distributions

Note that for S = ∅ and S = {∅}, the hierarchical model ES consists of only
one element, the uniform distribution, and is therefore zero-dimensional. In order
to remove this ambiguity, we always assume S = ∅ in the context of hierarchical
models (but still allow S= {∅}). With this assumption, the dimension of ES is one
less than the dimension of FS:

dim(ES)=
∑

∅=A∈S

∏
v∈A

(|Iv| − 1
)
. (2.208)

Example 2.6

(1) (Independence model) A hierarchical model is particularly simple if the hy-
pergraph is a partition S = {A1, . . . ,An} of V . The corresponding simplicial
complex is then given by

S=
n⋃

k=1

2Ak . (2.209)

The hierarchical model ES consists of all strictly positive distributions that fac-
torize according to the partition S, that is,

p(i)=
n∏

k=1

p(iAk
). (2.210)

We refer to this hierarchical model as an independence model. In the special
case of binary units, it has the dimension

dim(ES)=
n∑

k=1

(
2|Ak | − 1

)
. (2.211)

(2) (Interaction model of order k) In this example, we want to model interactions up
to order k. For that purpose, it is sufficient to consider the hypergraph consisting
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of the subsets of cardinality k:

Sk :=
(

V

k

)
. (2.212)

The corresponding simplicial complex is given by

Sk :=
{
A⊆ V : 0≤ |A| ≤ k

}=
k⋃

l=0

(
V

l

)
. (2.213)

This defines the hierarchical model

E (k) := ESk
(2.214)

with dimension

dim
(
E (k)
)=

k∑
l=1

(
N

l

)
, (2.215)

and we obviously have

E (1) ⊆ E (2) ⊆ · · · ⊆ E (N). (2.216)

The information geometry of this hierarchy has been developed in more detail
by Amari [10]. The exponential family E (1) consists of the product distributions
(see Fig. 2.8). The extension to E (2) incorporates pairwise interactions, and E (N)

is nothing but the whole set of strictly positive distributions. Within the field of
artificial neural networks, E (2) is known as a Boltzmann machine [15].

In Sect. 6.1, we shall study the relative entropy distance of a distribution p from
a hierarchical model ES, that is, infq∈ES D(p ‖q). This distance can be evaluated
with the corresponding maximum entropy estimate p̂ (see Sect. 2.8.3). More pre-
cisely, consider the set of distributions q that have the same A-marginals as p for
all A ∈S:

M :=M(p,S) :=
{
q ∈ P(IV ) :

∑
iV \A

q(iA, iV \A)=
∑
iV \A

p(iA, iV \A)

for all A ∈S and all iA ∈ IA

}
.

Obviously, M is a closed and convex subset of P(IV ). Therefore, the restriction of
the continuous and strictly concave Shannon entropy H(q)=−∑i q(i) logq(i) to
M attains its maximal value in a unique distribution p̂ ∈M. We refer to this distri-
bution p̂ as the maximum entropy estimate (of p) with respect to S. The following
lemma provides a sufficient condition for a distribution to be the maximum entropy
estimate with respect to S.
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Lemma 2.13 (Maximum entropy estimation for hierarchical models) Let S be a
non-empty hypergraph and let p ∈ P(IV ). If a distribution p̂ satisfies the following
two conditions then it is the maximum entropy estimate of p with respect to S:

(1) There exist functions φA ∈FA, A ∈Smax, satisfying

p̂(iV )=
∏

A∈Smax

φA(iV ). (2.217)

(2) For all A ∈Smax, the A-marginal of p̂ coincides with the A-marginal of p, that
is, ∑

iV \A
p̂(iA, iV \A)=

∑
iV \A

p(iA, iV \A), for all iA ∈ IA. (2.218)

Proof We prove that p̂ is in the closure of ES. As p̂ is also in M(p,S), the state-
ment follows from Theorem 2.8.

p̂(iV )=
∏

A∈Smax

φA(iV )= lim
ε→0

∏
A∈Smax(φA(iV )+ ε)∑

jV

∏
A∈Smax(φA(jV )+ ε)

= lim
ε→0

p(ε)(iV ),

where obviously p(ε) ∈ ES. �

For a strictly positive distribution p, the conditions (2.217) and (2.218) of
Lemma 2.13 are necessary and sufficient for a distribution p̂ to be the maximum
entropy estimate of p with respect to S. This directly follows from Theorem 2.8.
In general, however, Lemma 2.13 provides only a sufficient condition, but not a
necessary one, as follows from the following observation. If the maximum entropy
estimate p̂ lies in the boundary of the hierarchical model ES, it does not necessarily
have to admit the product structure (2.217).

In Sect. 6.1, we shall use Lemma 2.13 for the evaluation of a number of examples.

2.9.3 Graphical Models

Graphs provide a compact way of representing a particular kind of hierarchi-
cal models, the so-called graphical models [161]. In this section we present the
Hammersley–Clifford theorem which is central within the theory of graphical mod-
els.

We consider an undirected graph G = (V ,E), with node set V and edge set
E ⊆ (V2). If {v,w} ∈ E then we write v ∼ w and call v and w neighbors. Given
a node v the set {w ∈ V : v ∼ w} of neighbors is called the boundary of v and
denoted by bd(v). For an arbitrary subset A of V , we define the boundary bd(A) :=
∪v∈A(bd(v) \ A) of A and its closure cl(A) := A ∪ bd(A). Note that according to
this definition, A and bd(A) are always disjoint.
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A path in V is a sequence γ = (v1, . . . , vn) satisfying vi ∼ vi+1 for all i =
1, . . . , n− 1. Let A, B , and S be three disjoint subsets of V . We say that S sep-
arates A from B if for every path γ = (v1, . . . , vn) with v1 ∈A and vn ∈ B there is
a vi ∈ S. Note that bd(A) separates A from V \ cl(A).

A subset C of V is called a clique (of G), if for all v,w ∈ C, v =w, it holds that
v ∼ w. The set of cliques is a simplicial complex in the sense of Definition 2.13,
which we denote by C(G). A hierarchical model that only includes interactions of
nodes within cliques of a graph has very special properties.

Definition 2.15 Let G be a graph, and let C(G) be the simplicial complex consist-
ing of the cliques of G. Then the hierarchical model E(G) := EC(G), as defined by
(2.207), is called a graphical model.

A graph encodes natural conditional independence properties, so-called Markov
properties, which are satisfied by all distributions of the corresponding graphical
model. In Definition 2.16 below, we shall use the notation XA ⊥⊥ XB |XC for
the conditional independence statement “XA and XB are stochastically indepen-
dent given XC .” This clearly depends on the underlying distribution which is not
mentioned explicitly in this notation. Formally, this conditional independence with
respect to a distribution p ∈P(IV ) is expressed by

p(iA, iB | iC)= p(iA | iC)p(iB | iC) whenever p(iC) > 0, (2.219)

where we apply the definition (2.184). If we want to use marginals only, we can
rewrite this condition as

p(iA, iB, iC)= p(iA, iC)p(iB, iC)

p(iC)
whenever p(iC) > 0. (2.220)

This is equivalent to the existence of two functions f ∈ FA∪C and g ∈ FB∪C such
that

p(iA, iB, iC)= f (iA, iC)g(iB, iC), (2.221)

where we can ignore “whenever p(iC) > 0” in (2.219) and (2.220).

Definition 2.16 Let G be a graph with node set V , and let p be a distribution on IV .
Then we say that p satisfies the

(G) global Markov property, with respect to G, if

A,B,S ⊆ V disjoint, S separates A from B ⇒ XA ⊥⊥XB |XS;
(L) local Markov property, with respect to G, if

v ∈ V ⇒ Xv ⊥⊥XV \v |Xbd(v);
(P) pairwise Markov property, with respect to G, if

v,w ∈ V,v �w ⇒ Xv ⊥⊥Xw |XV \{v,w}.



114 2 Finite Information Geometry

Proposition 2.19 Let G be a graph with node set V , and let p be a distribution
on IV . Then the following implications hold:

(G) ⇒ (L) ⇒ (P).

Proof (G) ⇒ (L) This is a consequence of the fact that bd(v) separates v from
V \ cl(v), as noted above.

(L)⇒ (P) Assuming that v,w ∈ V are not neighbors, one has w ∈ V \ cl(w) and
therefore

bd(v)∪ ((V \ cl(v)
) \ {w})= V \ {v,w}. (2.222)

From the local Markov property (L), we know that

Xv ⊥⊥XV \cl(v) |Xbd(v). (2.223)

We now use the following general rule for conditional independence statements:

XA ⊥⊥XB |XS,C ⊆ B ⇒ XA ⊥⊥XB |XS∪C.

With (2.223) and (V \ cl(v)) \ {w} ⊆ V \ cl(v), this rule implies

Xv ⊥⊥XV \cl(v) |Xbd(v)∪[(V \cl(v))\{w}].

Because of (2.222), this is equivalent to

Xv ⊥⊥XV \cl(v) |XV \{v,w}.

With w ∈ V \ cl(v) we finally obtain

Xv ⊥⊥Xw |XV \{v,w},

which proves the pairwise Markov property. �

Now we provide a criterion for a distribution p that is sufficient for the global
Markov property. We say that p factorizes according to G or satisfies the

(F) factorization property, with respect to G, if there exist functions fC ∈FC , C a
clique, such that

p(i)=
∏

C clique

fC(i). (2.224)

Proposition 2.20 Let G be a graph with node set V , and let p be a distribution
on IV . Then the factorization property implies the global Markov property, that is,

(F) ⇒ (G).
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Proof We assume that S separates A from B and have to show

XA ⊥⊥XB |XS.

The complement V \ S of S in V can be written as the union of its connected
components Vi , i = 1, . . . , n:

V \ S = V1 ∪ · · · ∪ Vn.

We define

Ã :=
⋃

i∈{1,...,n}
Vi∩A=∅

Vi, B̃ :=
⋃

i∈{1,...,n}
Vi∩A=∅

Vi.

Obviously, A ⊆ Ã, and B ⊆ B̃ (S separates A from B). Furthermore, a clique C

is contained in Ã ∪ S or B̃ ∪ S. Therefore, we can split the factorization of p as
follows:

p(i) =
∏

C clique

fC(i)

=
∏

C clique
C⊆Ã∪S

fC(i) ·
∏

C clique
C�Ã∪S

fC(i)

=: g(iÃ, iS) · h(iB̃ , iS).

With (2.221), this proves XÃ ⊥⊥XB̃ |XS . Since A⊆ Ã and B ⊆ B̃ , we finally obtain
XA ⊥⊥XB |XS . �

Generally, there is no equivalence of the above Markov conditions. On the other
hand, if we assume strict positivity of a distribution p, that is, p ∈ P+(IV ), then
we have equivalence. This is the content of the Hammersley–Clifford theorem of
graphical model theory.

Theorem 2.9 (Hammersley–Clifford theorem) Let G be a graph with node set V ,
and let p be a strictly positive distribution on IV . Then p satisfies the pairwise
Markov property if and only if it factorizes according to G.

Proof We only have to prove that (P) implies (F), since the opposite implication
directly follows from Propositions 2.19 and 2.20.

We assume that p satisfies the pairwise Markov property (P). As p is strictly
positive, we can consider logp(i). We choose one configuration i∗ ∈ IV and define

HA(i) := logp
(
iA, i∗V \A

)
, A⊆ V.
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Here (iA, i∗V \A) coincides with i on A and with i∗ on V \A. Clearly, HA does not
depend on iV \A, and therefore HA ∈FA. We define

φA(i) :=
∑
B⊆A

(−1)|A\B|HB(i).

Also, the φA depend only on A. With the Möbius inversion formula (Lemma 2.12),
we obtain

logp(i)=HV (i)=
∑
A⊆V

φA(i). (2.225)

In what follows we use the pairwise Markov property of p in order to prove that
in the representation (2.225), φA = 0 whenever A is not a clique. This obviously
implies that p factorizes according to G and completes the proof.

Assume A is not a clique. Then there exist v,w ∈ A, v = w, v � w. Consider
C :=A \ {v,w}. Then

φA(i)=
∑
B⊆A

(−1)|A\B|HB(i)

=
∑
B⊆A

v,w/∈B

(−1)|A\B|HB(i)+
∑
B⊆A

v∈B,w/∈B

(−1)|A\B|HB(i)

+
∑
B⊆A

v/∈B,w∈B

(−1)|A\B|HB(i)+
∑
B⊆A

v,w∈B

(−1)|A\B|HB(i)

=
∑
B⊆C

(−1)|C\B|+2HB∪{v,w}(i)+
∑
B⊆C

(−1)|C\B|+1HB∪{v}(i)

+
∑
B⊆C

(−1)|C\B|+1HB∪{w}(i)+
∑
B⊆C

(−1)|C\B|HB(i)

=
∑
B⊆C

(−1)|C\B|
(
HB(i)−HB∪{v}(i)−HB∪{w}(i)+HB∪{v,w}(i)

)
.

(2.226)

We now set D := V \ {v,w} and use the pairwise Markov property (P) in order to
show that (2.226) vanishes:

HB∪{v,w}(i)−HB∪{v}(i)

= log
p(iB, iv, iw, i∗D\B)

p(iB, iv, i∗w, i∗D\B)

= log
p(iB, iw, i∗D\B) · p(iv | iB, iw, i∗D\B)

p(iB, i∗w, i∗D\B) · p(iv | iB, i∗w, i∗D\B)
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= log
p(iB, iw, i∗D\B) · p(iv | iB, i∗D\B)

p(iB, i∗w, i∗D\B) · p(iv | iB, i∗D\B)

= log
p(iB, iw, i∗D\B) · p(i∗v | iB, i∗D\B)

p(iB, i∗w, i∗D\B) · p(i∗v | iB, i∗D\B)

= log
p(iB, iw, i∗D\B) · p(i∗v | iB, iw, i∗D\B)

p(iB, i∗w, i∗D\B) · p(i∗v | iB, i∗wi∗D\B)

= log
p(iB, i∗v , iw, i∗D\B)

p(iB, i∗v , i∗w, i∗D\B)

=HB∪{w}(i)−HB(i).

This implies φA(i) = 0 and, with the representation (2.225), we conclude that p

factorizes according to G. �

The Hammersley–Clifford theorem implies that for strictly positive distributions,
all Markov properties of Definition 2.16 are equivalent. The set of strictly positive
distributions that satisfy one of these properties, and therefore all of them, is given
by the graphical model E(G). Its closure E(G) is sometimes referred to as the ex-
tended graphical model. We want to summarize the results of this section by an
inclusion diagram. In order to do so, for each property (prop) ∈ {(F), (G), (L), (P)},
we define

M(prop) := {p ∈P(IV ) : p satisfies (prop)
}
,

and

M(prop)
+ :=M(prop) ∩P+(IV ).

Clearly, the set of strictly positive distributions that factorize according to G, that is,
M(F)

+ , coincides with the graphical model E(G). One can easily verify that M(G),
M(L), and M(P) are closed subsets of P(IV ) that contain the extended graphical
model E(G) as a subset. However, the set M(F) is not necessarily closed: limits of
factorized distributions do not have to be factorized. Furthermore, it is contained in
E(G) (see the proof of Lemma 2.13).

These considerations, Propositions 2.19 and 2.20, and the Hammersley–Clifford
theorem (Theorem 2.9) can be summarized in terms of the following diagram.

M(F)
+ = E(G) = M(G)

+ = M(L)
+ = M(P)

+

⊆ ⊆ ⊆ ⊆ ⊆

M(F) ⊆ E(G) ⊆ M(G) ⊆ M(L) ⊆ M(P)

(2.227)

The upper row of equalities in this diagram summarizes the content of the
Hammersley–Clifford theorem (Theorem 2.9). The lower row of inclusions in this
diagram follows from Propositions 2.19 and 2.20. Each of the horizontal inclusions
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can be strict in the sense that there exists a graph G for which the inclusion is strict.
Corresponding examples are given in Lauritzen’s monograph [161], referring to
work by Moussouris [191], Matúš [174], and Matúš and Studený [181].

Remark 2.4

(1) Conditional independence statements give rise to a natural class of models,
referred to as conditional independence models (see the monograph of Stu-
dený [241]). This class includes graphical models as prime examples. By the
Hammersley–Clifford theorem, on the other hand, graphical models are also
special within the class of hierarchical models. A surprising and important re-
sult of Matúš highlights the uniqueness of graphical models within both classes
([178], Theorem 1). If a hierarchical model is specified in terms of conditional
independence statements, then it is already graphical. This means that one
cannot specify any other hierarchical model in terms of conditional indepen-
dence statements. Furthermore, the result of Matúš also provides a new proof
of the Hammersley–Clifford theorem ([178], Corollary 1). It is not based on the
Möbius inversion of the classical proof which we have used in our presentation.

(2) Graphical model theory has been further developed by Geiger, Meek, and
Sturmfels using tools from algebraic statistics [103]. In their work, they de-
velop a refined geometric understanding of the results presented in this section.
This understanding is not restricted to graphical models but also applies to gen-
eral hierarchical models. Let us briefly sketch their perspective. All conditional
independence statements that appear in Definition 2.16 can be reformulated in
terms of polynomial equations. Each Markov property can then be associated
with a corresponding set of polynomial equations, which generates an ideal I
in the polynomial ring R[x1, . . . , x|IV |]. (The indeterminates are the coordinates
p(i), i ∈ IV , of the distributions in P(IV ).) This leads to the ideals I (G), I (L),
and I (P) that correspond to the individual Markov properties, and we obviously
have

I (P) ⊆I (L) ⊆I (G). (2.228)

Each of these ideals fully characterizes the graphical model as its associated
variety in P+(IV ), which follows from the Hammersley–Clifford theorem. The
respective varieties M(G), M(L), and M(P) in the full simplex P(IV ) differ in
general and contain the extended graphical model E(G) as a proper subset. On
the other hand, one can fully specify E(G) in terms of polynomial equations
using Theorems 2.5 and 2.7. Denoting the corresponding ideal by I (G), we
can extend the above inclusion chain (2.228) by

I (G) ⊆I (G). (2.229)

Stated differently, the ideal I (G) encodes all Markov properties in terms of
elements of an appropriate ideal basis. Let us now assume that we are given
an arbitrary hierarchical model ES with respect to a hypergraph S, and let us
denote by IS the ideal that is generated by the corresponding Eqs. (2.139) or,
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equivalently, (2.149). Geiger, Meek, and Sturmfels interpret the elements of a
finite ideal basis of IS as generalized conditional independence statements and
prove a version of the Hammersley–Clifford theorem for hierarchical models.
Note, however, that the above mentioned result of Matúš implies that there is
a correspondence between ideal basis elements and actual conditional indepen-
dence statements only for graphical models.
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