
Chapter 14
Use of Input–Output Analysis in LCA

Tuomas J. Mattila

Abstract Input–output analysis can be used as a tool for complementing the tra-
ditionally process-based life cycle assessment (LCA) with macroeconomic data
from the background systems. Properly used, it can result in faster and more
accurate LCA. It also provides opportunities for streamlining the LCA inventory
collection and focusing resources. This chapter reviews the main uses of input–
output analysis (IO) to ensure consistent system boundaries, to evaluate the com-
pleteness of an LCA study and to form a basis for in-depth inventory collection.
The use of IO as a data source for social and economic sustainability metrics is also
discussed, as are the limitations of the approach. All aspects are demonstrated
through examples and references both to recent scientific literature and publicly
available datasets are provided. The aim of the chapter is to present the basic tools
for applying IO in practical LCA studies.

Learning Objectives
After studying this chapter, the reader should be able to:

• Understand the historical background of input–output analysis and how it relates
to LCA.

• Understand the basic equations of input–output analysis.
• Use input–output datasets to find background information on product systems

and processes.
• Use hybrid input–output analysis to identify hotspots and the effect of cut-off in

process-LCA.
• Use input–output analysis to improve process-LCA dataset.
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• Use input–output analysis as a basis for collecting more detailed process-LCA
data.

• Find social and economic data to supplement environmental LCA.
• Understand the strengths and the limitations of using input–output analysis as

supplement to process-LCA.

14.1 Introduction

This chapter introduces how to use input–output analysis (IO) in life cycle
assessment (LCA). IO was initially developed for macroeconomic systems analysis
and planning, but it shares many approaches and methods with process-based LCA.
After decades of separate methodological development, the recent trend is to
combine the tools into environmentally extended input–output analysis (EEIO),
hybrid IO-LCA and comprehensive sustainability assessment. The application of IO
together with LCA is assisted by the fact, that it shares the same structure as
attributional LCA, linking environmental impacts to economic demand through a
product system.

An important problem in conventional process-based LCA is cut-off, or the
omission of certain parts of the product system (see Chap. 9). LCA attempts to
model every environmental, social and economic impact caused by a product
throughout its life cycle from “cradle to grave”, integrated over time and space. In
practice, this is impossible, and certain simplification for the system boundaries
have to be introduced. Everything outside those system boundaries is considered to
be “cut-off” from the analysis. If this cut-off is allowed to be subjective, it ruins the
idea of comparable and repeatable results. Therefore detailed cut-off criteria, pro-
duct category rules, standards and handbooks have been developed for standard-
ising and harmonising system boundary setting (EC-JRC 2010).

The product system of an LCA can be thought of as a branching tree. It starts
from the functional unit and branches out to the first tier of inputs needed to supply
the functionality. Each of these first tier inputs then branches out into second tier
inputs and so forth (EC-JRC 2010). This branching out is repeated until all the
identified inputs and outputs are either resources extracted or emissions emitted to
the environment (i.e. “elementary flows”). In practice, only a part of this branching
out is done in an individual study. In a typical study, primary data is collected for
the foreground processes, which are closest to the final user (see more about
foreground process in Sect. 8.2.3). The remaining inputs are connected to LCA
databases, which include product systems from previous studies. This forms the
background system. The result is a branching process diagram, which proceeds
from an individual product towards more general background processes. In addi-
tion, there are processes and flows for which no data can be found, and they are
considered cut-off. This dataset is then used to estimate, how much environmental
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impacts should be allocated to the product system in question. In comparison to this
branching bottom-up approach, IO ends up with the same result from the top-down,
starting from economy wide statistics and narrowing down to industries and product
systems.

The IO-based sustainability assessment does not start from a product, but
inventory data are collected at the whole economy level. Then the total environ-
mental, social and economic results are allocated to specific industries. This will
give a set of “satellite accounts”, which describe how much direct impacts each
sector causes during a year of production. Using economic allocation, these direct
impacts are then combined into embodied impacts for each produced good or
service (i.e. how much impact is caused by the whole upstream processing of a
good or service). This results in a simultaneous IO-based LCA of all the products in
the macroeconomic system. The embodied impact intensities for each product or
service can then be used to calculate footprints for subsystems of the economy (e.g.
countries, sectors, individual consumers).

A key assumption in IO is that the relationship between production and impacts
is linear. This same assumption is shared by attributional LCA but not by conse-
quential LCA. The attributional LCA proceeds by attributing a certain share of the
global impacts to a product (e.g. “What fraction of airplane emissions is attributed
to an air-freight package?”). Consequential LCA estimates the consequences of
changing a part of the economy (e.g. “How much do global emissions change in
response to one additional package? What if airfreight increases tenfold?”) (see
more about attributional and consequential LCA in Sect. 8.5.3). Thus far, attribu-
tional LCA has been used much more than consequential LCA. While the conse-
quential approach may be more relevant for decision-making, it also produces
nonlinear models which are challenging to integrate with linear models such as IO.
As the focus of this chapter is on introducing IO and its applications, the following
will include applications to only attributional LCA.

The IO-based approach has two main benefits: it is fast and it is comprehensive.
Unlike a process-based LCA, which includes choices about system boundaries and
is limited by the resources for inventory collection, an IO-based LCA has the whole
economy as its system boundary. It shows indirect and feedback relationships
among processes and sectors and is rapid and inexpensive to conduct. Therefore, it
is a good screening level tool. In spite of these benefits, it also has several draw-
backs. Because IO relies on readily available statistics, the resolution of products is
limited by the availability of statistics. This results in aggregation errors when the
footprint of “steel products” is used instead of the footprint of “an office chair, of
specified make and manufacturer”. In addition, the data is usually at least a few
years old, as it takes time for the statistical office to collect and harmonise the data
from individual companies. These problems are also present in process-LCA
databases, but usually the product disaggregation and technology mixes are more
diverse. A major drawback is also the limited coverage of environmental impact
categories. Sector specific emissions for toxic substances especially are highly
limited compared to the accuracy commonly found in process-LCA databases.
Using process-LCA together with IO can utilise the benefits of IO and minimise the
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problems. In a hybrid-LCA, process-LCA data is used for foreground systems and
for reliable process-LCA datasets. IO-LCA is then used to capture all the missing
flows. Ideally, this results in a comprehensive system boundary and high data
quality.

The structure of the chapter is to first give an outline of IO, starting from the
background where it rose from. This gives perspective on the current applications.
Then the three main uses of IO in LCA are discussed: filling gaps in process-LCA,
providing a first draft template to identify hotspots for process-LCA data collection
and using IO as a data source for economic and social sustainability assessment.
The approach is practical more than theoretical. Each topic has a worked out
example using real data to highlight the use of IO. A more mathematical description
of IO and an application to the Finnish economy can be found from the dissertation
of the author (Mattila 2013).

14.2 Introductory Examples to Environmentally Extended
Input–Output Analysis (EEIO)

The origins of IO are in economic planning and the analysis of multiplier effects.
These effects can be demonstrated with a very simple example.

“Assume that a farmer needs to supply 1000 kg of grain. Each 1000 kg of grain
requires 30 kg of grain as seed. How much total grain has been produced to supply
1000 kg to a consumer?” This problem presents a loop: the outputs of the process
are used as its inputs. This results in an infinite series of tiers in the supply chain.
For producing 1000 kg of grain, 30 kg of grain is needed for seed (1st tier), the
production of 30 kg of grain requires 0.9 kg of seed (2nd tier), for which 0.027 kg
of seed (3rd tier) was needed, etc. As each tier is much smaller than the previous
tier, the total amount can be approximated by calculating a few tiers and then
adding the results. For an accurate answer, the solution can be found from the
input–output relations. If the production of 1000 kg requires 30 kg of seed, the
input–output ratio is 30/1000 = 0.03. The net output per unit of production is then
1 − 0.03 = 0.97. The total amount of grain needed for a net output of 1000 kg is
then (1/0.97) � 1000 kg = 1030.928 kg. In this case, there is a very small multiplier
effect (0.03 units of additional production for each unit of demand). In historical
times when yields were lower and part of the grain was used as feed for the working
animals, the input–output ratio was much higher and much of the production of
grain was used to meet the inputs of producing that grain. In more general terms,
the total amount of production x ¼ y= 1� að Þ, where x is the total amount of
production, y is the final demand and a is the input coefficient.

These kinds of feedback loops are simple, when a process uses its own outputs as
inputs. The problem becomes more challenging, when a process supplies outputs
across the economy and uses inputs from several sources. The same feedback loops
are present, but they can cycle through several tiers of production. These delayed
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feedback loops are very common in complex supply chains (or more accurately
supply networks), and make economic planning difficult. The problems of planned
economies were what made Wassily Leontief develop input–output analysis. He
studied in the USSR and Germany, but later moved to the United States, where the
wartime economy and subsequent restructuring of the economy provided a good
testing ground and plenty of resources for applying the theory. His work with
development of input–output analysis earned him a Nobel prize in economy in
1973.

In order to understand IO, let us look at an imaginary production system in a
planned economy (Fig. 14.1). Assume that the goal is to build 1,000,000 trucks,
and that needs inputs from four economic sectors: truck manufacture, metal man-
ufacture, machine manufacture and ore mining. The sectors are deeply intercon-
nected with trucks needing inputs from metals and machinery; metals needing
metals, machinery and ores; machinery needing metals and machines; and ores
needing machinery. In addition, each sector needs trucks to transport goods and raw
materials. The system clearly has several feedback loops at different levels. It could
be solved stepwise, following each loop until the additional production needed
would be very small. In a sense, it reminds us of life cycle assessment and inter-
connected unit processes. A stepwise approach is feasible, if the system is quite
small, but what if the system has thousands of sectors and millions of interactions
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A   =
Trucks

Metals

Machines

Ores

Y   =

Trucks

MetalsMachines

Ores
1 000 000

Trucks

Metals

Machines

Ores

(a)

(b)

Fig. 14.1 The same product
system described as a
flowchart and an input
coefficient matrix (A) and
final demand vector (y)
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like the world economy? Fortunately, the solution is almost as simple as in the case
of the grain and seed, and almost all of IO can be summarised in a single equation.

The economic system can be described by using an input coefficient table (A in
Fig. 14.1). Each column represents a sector, showing the inputs needed to produce
one unit of output from that sector. For example, it takes 0.1 units of ores to make
one unit of metals in the imaginary truck example. The outputs from the economic
system are accounted separately in a final demand vector (y). It does not matter
what the units are, although commonly a single unit of monetary value is used for
each sector.

Now the total amount of produced goods (x) is the sum of final demand y and the
amount of production needed for intermediate demand (i.e. for making all the
intermediate products needed to supply the final product). The amount of inter-
mediate production is in direct relation to the total production in each sector (x) and
the amount of intermediate inputs each sector needs from other sectors. Written as
an equation:

x ¼ yþAx ð14:1Þ

If we have only a single sector, this results in the same solution as in the grain
example: x = y/(1 − a). When there are several sectors, the structure of the equation
is the same but matrix inversion replaces scalar division. This gives the core
equation of economic input–output analysis:

x ¼ I � Að Þ�1y ð14:2Þ

where I is an identity matrix, which has ones on the diagonal and zeros elsewhere.
In linear algebra, it has the same role as one in scalar algebra. (I − A)−1 is the
inverse of (I − A), which can be thought of as the equivalent of division in matrix
algebra. (The example can be followed in a spreadsheet program by using the
functions MMULT() for matrix multiplication and MINVERSE() for inversion).
This inverse of the input coefficient table is commonly known as the Leontief
inverse, and it shows the system wide interconnections of each sector with other
sectors in its supply chain.

Applying Eq. (14.2) to the system in Fig. 14.1 gives a solution to the truck
problem (Fig. 14.2). In order to produce 1,000,000 trucks for final demand,
1,012,608 trucks need to be manufactured. The elements of (I − A)−1 describe the
total production needed to provide one unit of final demand from the sector. These
are often called indirect multipliers. For example, it takes 0.26 units of metals to
produce a truck, while the direct input (A matrix in Fig. 14.1) is only 0.15. The
indirect inputs take into account all the feedback loops in the system and are always
bigger than the direct inputs.

However, how does this relate to sustainability assessment, since many of the
“sustainability aspects” are externalities or outside the economic sectors? This has
been solved through the introduction of “satellite accounts” and environmental
extensions, thus resulting in an environmentally extended input–output table
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(EEIO). The environmental extension describes how much emissions or resources
are used for each unit of production on a sector. These “direct emission intensities”
are often collected as part of national statistics, especially for greenhouse gases and
energy consumption. While the extension may sound difficult, it makes only minor
additions to Eq. (14.2):

g ¼ Bx ¼ B I � Að Þ�1y ð14:3Þ

where g is a vector of embodied environmental impacts associated with final
demand y, and B is a matrix of direct environmental impact multipliers for each
sector.

If we were interested in land use and assume that the manufacturing sectors each
require 0.01 m2 of land area and mining requires 1.0 m2 of land area (i.e. B = [0.01
0.01 0.01 1.0]), the total land area demand of the truck example is g = 0.01
1,012,608 + 0.01 � 264,734 + 0.01 � 299,480 + 1.0 � 26,473 = 42,241 m2, with
26,473 m2 or 63% coming from the mining sector.

The same equation can also be written in a different form:

g ¼ Bx ¼ B I � Að Þ�1y ¼ Cy ð14:4Þ

where C is a matrix of embodied environmental impact intensity (impact/monetary
unit) for all products in the system. It can be thought of as a life cycle inventory
(LCI) dataset and is a very valuable in constructing hybrid LCAs and making first
estimates for products and services for which process-LCA data is hard to find (e.g.
insurance services).

This simple example contains all the basic elements of EEIO and IO, which are
used in all common applications of input–output analysis ranging from product
level to societal level. However, the example is deceptively simple, the actual
usefulness of IO becomes more obvious when one uses a real world example.

Example 14.1 Compare Danish and Chinese steel industry inputs from WIOD
datasets 2000 and 2008. Look at total volume of inputs, direct input coefficients and
indirect input coefficients.

Trucks Metals Machines Ores

Trucks

Metals

Machines

Ores

=

YX (I-A)-1

Fig. 14.2 A linear algebra solution to the system in Fig. 14.1
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The WIOD (World Input–Output Database) is one of the publicly available
multiple region input–output (MRIO) datasets. It is available from wiod.org. The
dataset includes both the input–output tables as well as the socio-economic and
environmental accounts. For this example, we will have a look at the monetary
input–output table and derive the direct and indirect inputs for Danish and Chinese
steel industries.

The WIOT (world input–output table) is arranged in a sector-by-sector format,
with all the sectors for a given country in one unit (Fig. 14.3). For the excel file, the
country code and sector codes for Danish steel are DNK 27t28 “Basic metals and
fabricated metal”. In the spreadsheet, the total output (x vector) is the last of the
columns and was $5753 M in year 2000 and $13 141 M in 2008. For Chinese steel
production (CHN 27t28), the output was $211,880 M in 2000 and $1,251,139 M in
2008. Therefore, the Chinese metal production is considerably larger than the
Danish and is growing at a rapid pace. However, has the production technology
changed as well?

The emissions of a sector can be considered from a production and life cycle
perspective. For the production perspective, a key indicator is the direct emission
intensity, which describes the fuel consumption of that sector per monetary unit of
output. The direct emission intensity of Chinese metal production has decreased. In
2000, the emissions were 272 Mt CO2 (1.28 kg CO2/$) and in 2008 they were 578
Mt CO2 (0.46 kg CO2/$). For Danish metal industry, the corresponding figures
were 0.4 Mt CO2 (0.07 kg CO2/$) in 2000 and 0.4 Mt CO2 (0.03 kg CO2/$) in
2008. Both industries had obtained considerable reductions in emission intensity,
but was this at the cost of increased outsourcing and more embodied emissions in
the inputs? For this, we need the life cycle perspective of a sector level carbon
footprint.

A first step in calculating the carbon footprint is to convert the monetary flow
data into input coefficients (i.e. how much inputs are needed to provide one unit of
output; the A matrix). This is obtained by dividing each column j of the monetary
flows by the corresponding total output (xj). (In this case, the x contains zero
elements reflecting that some of the sectors are not active in the country, which
results in an error. This can be avoided by replacing the zeros with a very small
number such as 1/1000,000,000.) The input coefficients can be used for a rough
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Fig. 14.3 A screenshot from a subset of the WIOT table from WIOD-database. Intra-country
transactions are on the diagonal, while trade between countries is arranged on a grid. Each country
has 35 sectors
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comparison of the value added and input intensity of the sectors. The sum of all
input coefficients for Danish steel in 2000 was 0.55 and for Chinese steel it was
0.77. This indicated that the Danish steel industry was able to produce more value
added (i.e. less inputs needed for outputs produced) for each unit than Chinese. By
2008, the input coefficients for the industries had increased further to 0.62 for
Denmark and 0.80 for China. This indicated that the industries had outsourced their
input production to other sectors or countries and/or moved to lower refinement
value products.

The trend to outsourcing can be seen from the highest input coefficients
(Table 14.1). For both countries, the Basis Metals and Fabricated Metal sector has a
considerable amount of inputs from companies within itself. In addition, China has
its own mining operations and imports ores from Australia (input coefficient
increased by 140% from 2000 to 2008). In contrast, the Danish steel industry has
most of its purchases from retail and wholesaletrade services, and imports mainly
processed metals from Germany. The largest change in the Danish steel industry
has been the increase of recycling (input coefficient change of 100%).

The monetary inputs are interesting, but as we are interested in the carbon
footprint, a few more stages are necessary. The first stage involves calculating the
Leontief inverse (I − A)−1. The identity matrix I can be constructed in a spread-
sheet by defining a table, where the elements are set to 1 if the row and the column
have the same index [i.e. (1,1) or (2,2)] and 0 elsewhere. After this each element of
A is subtracted from the corresponding element of I and the resulting matrix is
inverted (MINVERSE() function in spreadsheet programs). For the WIOD, the
inversion will take a lot of memory and some time on most desktop computers.
Closing additional programs and copying I and A matrices to a new spreadsheet
document will help conserve memory. After the inversion, it makes sense to copy
the inverted matrix to a new spreadsheet to avoid the program from repeating the
calculation every time the document is changed.

Table 14.1 A comparison of top 5 direct input coefficients of Chinese and Danish steel products
in 2000 and 2008

Sector Country In 2000 In 2008 Change (%)

Input coefficient—China basic metals

Basic metals and fabricated metal CHN 0.33 0.33 1

Mining and quarrying CHN 0.07 0.09 29

Electricity, gas and water supply CHN 0.04 0.05 25

Machinery, nec CHN 0.02 0.03 50

Mining and quarrying AUS 0.01 0.02 140

Input coefficient—Denmark basic metals

Wholesale trade and commission trade DNK 0.06 0.08 33

Basic metals and fabricated metal DNK 0.07 0.06 −14

Basic metals and fabricated metal DEU 0.05 0.07 40

Retail trade DNK 0.03 0.03 0

Manufacturing, nec; recycling DNK 0.01 0.02 100
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The second stage involves some manual work (or macro programming) in
collecting the emissions for each sector in the economy. The CO2 emissions for
each sector in each country have to be collected into a column, which has the same
ordering as the sectors and countries in the input–output table. The WIOD has this
dataset arranged in separate files for each country, which means that the files need
to be combined. After this step, the emissions are divided by the corresponding total
output x to yield the B matrix (in this case we have only CO2 emissions, so it is a
vector instead of a matrix). After this the B matrix is arranged to be vertical (a row
vector, using TRANSPOSE() function) and is multiplied with the (I − A)−1 matrix
(MMULT() function). The result is a row vector, which contains the carbonfoot-
print of all the products in the world (C matrix). It is a very useful dataset for
recalculation of the examples in this chapter and in other applications.

For Chinese metal products in 2008, the carbon footprint was 2.20 kg CO2/$, or
almost five times the direct emission intensity. For Danish metal products, the
carbon footprint was 0.32 kg CO2/$ or almost ten times the direct emission
intensity. Both industries have most of their carbon emissions in the supply chain.
A first step in locating those emissions is multiplying the input coefficients of the
sectors (in A matrix) with the carbon footprint intensities to have a look, which
inputs have the highest embodied emissions.

For Denmark, the emissions diverge globally at the first tier of the supply chain
(Table 14.2). The top 5 embodied emissions include metal products from Germany,
Russia, Denmark and Rest of the World (RoW; a statistical grouping of economies
which were not included in the detailed country analysis of WIOD). If a top 20
listing of emissions had shown, it would have included several more countries in
and outside Europe. In contrast, the Chinese metal production has its supply chain
focused in China. Most of the inputs were energy, machinery and raw materials for
metal production.

Although the metal product sectors of China and Denmark are so different that
direct comparison is not meaningful, they provided an example of the use of EEIO to
learn about global supply chains and their technological differences. This example
also serves as a kind of a warning for using EEIO results in LCA without looking at
the product mix in the sector. Using the Chinese industry average for a finished metal
product would probably result in a major overestimation of the impact.

Table 14.2 The inputs with the highest share of the carbon footprint of the basic metals sectors in
Denmark and China in 2008

Denmark kg CO2e/$ China kg CO2e/$

Direct emission 0.03 Direct emission 0.46

Basic metals DEU 0.04 Basic metals CHN 0.74

Basic metals RoW 0.02 Electricity CHN 0.49

Basic metals RUS 0.02 Mining CHN 0.16

Basic metals DNK 0.02 Non-metallic mineral CHN 0.05

Electricity DNK 0.01 Machinery CHN 0.05

Total upstream 0.28 Total upstream 1.73
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14.3 Avoiding Cut-Off Through Comprehensive
System Boundaries

Most modern supply chains branch out globally, as was seen in the example of
Danish metal products. Collecting process-LCA data on a supply chain, which
rapidly spreads over several countries and continents, is difficult. Also wholesale
and retail trade, which may cover 10–20% of all the inputs to a product manu-
facturing, often have no process-LCA datasets. The practical consequence of global
supply chains and a shift to more services is an increase of cut-off in process-LCA.

Cut-off has always been unavoidable. Usually, it was assumed that the cut-off
flows would be insignificant, but later studies have shown that the omission is often
30% or even much larger in some impact categories (Suh et al. 2004).

In principle, there are two sources of cut-off: the identified cut-off and the
non-identified cut-off. The identified cut-off consists of flows that are identified
during the process-LCA, but which have no LCI data available. The unidentified
cut-off is flows which are omitted, since they are intangible (not related to energy or
material flows) or simply overlooked. A real-life example of the latter would be
ignoring maintenance services in a pulp and paper mill, although the maintenance
services consume tools and specialty metals, with considerable impacts to metal
depletion (Mattila 2013). Other classical examples would be ignoring insurance,
facility rent, retail trade, marketing or software development. Although they may be
below a specified cut-off limit at each stage, if these are omitted in all parts of the
process-LCA product system, the complete omission will be significant. If eco-
nomic or social indicators are considered, the omission will be even larger. In a case
study of smartphone sustainability assessment, much of embodied child labour was
in trade services and warehouse work in developing countries in the parts of the
supply chain that supplied parts for smartphone assembly. This came as a surprise
both to the analysts and the social responsibility people of the smartphone manu-
facturers, wholesale trade had previously been ignored in the inventory for child
labour.

Fortunately, IO can be used to estimate both identified and non-identified cut-off
flows. The first case is termed missing inventories and the second is termed
checking for completeness. Both are applications of so-called hybrid-LCA. For a
more detailed description of different ways of constructing a hybrid-LCA, see (Suh
and Huppes 2005).

A critique for using the IO dataset to fill gaps is that it usually contains very few
LCIA impact categories, most often climate impacts from fossil fuels. However, for
some types of products and technologies there is a strong correlation between this
category and many other LCIA impact categories (excluding toxic impacts and land
use) (Laurent et al. 2012), so one approach is to use the ratio of process-LCA
climate impact to cut-off impact as a “correction factor” or estimate of cut-off
magnitude.
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14.3.1 Estimating Missing Inventories from IO Data

Process-LCA has traditionally focused on physical processes and products.
Consequently most LCA databases lack services. It is quite straightforward to
complete these missing inventory items by using input–output results in a tiered
analysis. The analysis consists of four stages:

1. Convert physical flows to monetary flows using price data or for example import
statistics, which report both mass and price flows

2. Find an appropriate IO dataset (good geographical and year coverage, relevant
environmental extensions included)

3. Convert consumer prices to producer prices (by removing value added tax as
well astrade and transport margins)

4. Convert the monetary flow to the currency and year of the IO dataset using
producer price indexes

5. Multiply the monetary flows with the corresponding LCI results from the IO
dataset (matrix C in Eq. 14.4).

It is easiest to describe this process again through an example.

Example 14.2 Estimate the carbon footprint for a wedding trip planned to be from
Denmark to San Francisco. The planned flight distance is 18,000 km, some esti-
mated costs would be $40 for public transportation, $3000 for hotels and $1000 for
restaurants and $100 for travel insurance.

Assuming that the emission intensity of airplane travel is 0.11 kg CO2-eq/tkm
(ecoinvent 2.2), the climate impact of the flight would be 3960 kg CO2-eq. We will
use the USEIO-LCA model for the economic flows (www.eiolca.net). The
EIO-LCA model has a base year of 2002 both in producers and purchasers prices.
For the purposes of this example, we will use the purchasers price model, which
avoids translating the prices to producers prices (for now).

In order to use the model the prices have to be converted to year 2002 prices.
This can be achieved through the detailed consumer price indexes (CPI), available
from the US Bureau of Labor Statistics (www.bls.gov). Finding the right statistical
category for each commodity requires some research and guesswork. For this
example the CPI are presented in Table 14.3. Since prices have increased consid-
erably from year 2002, the purchases of $4440 in 2014 would have been only
$3265 in 2002.

Using the converted prices, the carbon intensities from the EIO-LCA can be used
to calculate the carbon footprint from the monetary flows (Table 14.3). Based on
the results the overall footprint associated with the monetary flows would be
1844 kg CO2-eq, thus, compared to the emissions from the flight (3960 kg CO2-eq)
the emissions of the monetary flows would be considerable. The major contributor
is the stay at the hotel, contributing 1367 kg CO2-eq. The EIO-LCA presents a
detailed description of the components for each of the carbon footprints. In the case
of hotels, the main contribution is from the power generation and supply sector
(59%), followed by direct emissions from hotel heating (14%).

360 T.J. Mattila



Based on the quick calculation, a good leverage point for reducing the emissions
of the trip would be choosing a hotel with high energy efficiency and renewable
energy. However, this example has two oversimplifications: first of all the
process-based inventory for the flight probably has cut-off, so it represents an
underestimation of the total impact; second, the emissions which occur high in the
atmosphere have a larger radiative forcing than those close to the ground (therefore
the contribution of the other purchases to the whole impact are probably less than
the example indicates, and it would be best to avoid the flight altogether).

Example 14.3 The EIO-LCA dataset used in Example 14.2 is quite old (2002).
How much would the results change if WIOD year 2008 data would be used
instead?

Let us repeat the calculation, but with a different base year (2008) and with
producer’s prices, since WIOD is based on those. For the conversion from pur-
chasers’ to producers’ prices, we will just remove the California sales tax (9%), by
dividing the costs with 1.09. Since none of the purchases included transportation or
retailtrade, we avoided the difficulty of finding the statistics for those.

The results are presented in Table 14.4. Based on the results, the carbonfootprint
for the monetary flows would be 1291 kg CO2-eq, much lower than with EIO-LCA
but still significant. The main reasons for the difference are the reduced emission
intensity from 2002 to 2008 and the aggregation errors introduced by the WIOD
dataset. The EIO-LCA has 428 sectors, with a very detailed disaggregation.

Table 14.3 Commodity price indexes for 2014 and 2002 for the four goods in the example, their
carbon intensities and the contribution to the overall carbon footprint (excluding the flight)

Commodity CPI
2014

CPI
2002

Purchase
in 2014

In
2002
prices

Carbon intensity
(kg CO2-eq/
$2002)

Carbon
footprint (kg
CO2-eq)

Taxi 297 184 $40 $25 1.870 46

Hotels 308 251 $3000 $2445 0.559 1367

Restaurants 155 113 $1000 $729 0.580 423

Insurance 318 211 $100 $66 0.117 8

Total $4440 $3265 1844

Table 14.4 Commodity price indexes for 2014 and 2002, correction to producers’ prices and the
carbon footprint using WIOD 2008 data

Commodity CPI
2014

CPI
2008

Purchase
in 2014

In 2002
producers
prices

Carbon
intensity (kg
CO2-eq/$2002)

Carbon
footprint
(kg CO2-eq)

Taxi 297 240 $40 $30 0.75 24

Hotels 308 301 $3000 $2690 0.33 968

Restaurants 155 135 $1000 $799 0.33 287

Insurance 318 271 $100 $78 0.14 12

Total $4440 $3597 1291
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In comparison, the WIOD only has 35 sectors for each country. Consequently,
restaurant and hotel services are in the same category and have the same emission
factor. Similar aggregation errors are common in the WIOD dataset in all supply
chains, resulting in a more “blurry” image of the supply chain and its hotspots.

14.3.2 Estimating Completeness of the Process-LCA Dataset

Input–output can be useful for finding inventory data on flows that are commonly
not found in process-LCA databases, such as insurance, financial services and
hotels. However, it can also be used to estimate, how complete the process-LCA
dataset is. This is based on estimating the input coefficient and value added in the
process-LCA dataset. In Example 14.1, the Danish and Chinese basic metal
industries were compared, and it was found that the Danish industry has a much
lower sum of input coefficients (0.62) than the Chinese (0.8). It means that for each
unit of production, the Danish industry produced value added for 0.38 units. If one
calculates the input coefficients and value added for a process-LCA dataset and
finds that the value added would be much higher (e.g. 0.9 units per unit of pro-
duction) it either indicates a very profitable process, or much more likely an
omission of some important costs (e.g. infrastructure rent, repairs, insurance and
transport).

In constructing a process-LCA, it is straightforward to get financial data for the
foreground processes, as one is collecting primary data from companies in any case.
However, it may be much more difficult to collect financial data from the companies
in the supply chain, since they are most likely not willing to reveal their production
cost breakdown to a purchaser of their products. In this case, the input coefficients
of the IO-table can be used as a template. The list of physical inputs from an LCA
unit process database can be compared with the amounts found in the IO-table
inputs, taking note of the main differences in inputs in the two datasets. The
IO-table inputs can also be circulated to the companies providing the data with a
questionnaire, so they can indicate if their inputs differ considerably from the
industry average inputs (this can also be a benchmarking process for the partici-
pating companies, increasing their interest for participation).

A third approach for estimating the completeness of the process-LCA is to
compare the carbon footprint composition between the process-LCA and the sector
average carbon footprint. The formal tools for doing this are contribution analysis
and structural path analysis (SPA). Contribution analysis maps out the location of
direct emissions in the supply network, which contribute the most to the life cycle
impacts. Structural path analysis converts the matrix representation of an IO-LCA
into a description of process flows, which cause most of the impacts. The full details
for these methods can be found in Heijungs and Suh (2002), but they are also
incorporated into most LCA software. For the IO dataset, the EIO-LCA has a
contribution analysis included in the toolbox and some IO datasets can be imported
into LCA software. If neither case is applicable, one has to follow the approach
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presented in Example 14.1 (i.e. calculate the carbon footprint matrix C and multiply
the elements of A with it to give a first tier breakdown of the supply chain). If the
IO-LCA-based results show a significant carbon footprint from trade services, they
probably should be included in the process-LCA inventory.

A problem in this straightforward approach is the lack of environmental
extensions in IO-LCA. A given input might be highly significant for a single impact
category (for example repair services for metal depletion), but if the impact cate-
gory is not included in the IO dataset, it will not be identified as important. This
problem will gradually be resolved as more impact categories are included in
environmentally extended input–output (EEIO) models. The process is now
underway in impacts related to land use and biodiversity, hopefully sometime soon
global inventories for toxic emissions would be published.

14.3.3 Using Input–Output Analysis as a Template for LCA

Thus far, we have been discussing how to use IO-LCA to fill the gaps in
process-LCA. However, the process may be reversed: start from IO-LCA and focus
the process-LCI collection work on the parts of the IO-product system, which have
the highest environmental impacts. This approach is known as the path exchange
method (Lenzen and Crawford 2009). It is a highly effective way of collecting LCI
inventories.

In practice, one performs a so-called Accumulative Structural Path Analysis
(ASPA) (Suh and Heijungs 2007). The ASPA is conceptually simple: one multi-
plies all the direct inputs (A matrix) with the corresponding embodied impact
intensities (C matrix). Then top ranking inputs are screened to the next step based
on either a specified cut-off level (e.g. more than 1% of total impact) or a specified
inclusion limit (together the included inputs must cover >90% of total impact).
After the screening, the process is repeated for each of the selected inputs for the
second tier. This results in a branching tree structure of the process system, which
can be visualised with a Sankey diagram or a flow chart (Fig. 14.4). After the path
analysis has extracted the most critical pathways, process-LCA is used to check
how much the actual inputs in the foreground system differ from those assumed in
the IO-table. Then the LCA proceeds by replacing the most critical inputs with
process-LCA collected inventory data.

LCA software (such as SimaPro or OpenLCA) includes tools for drawing
Sankey diagrams. If the IO dataset has been imported to the software, the path
exchange method is straightforward (for import of IO data the reader is referred to
instructional material for the respective LCA software). There is however a hidden
risk in this simplicity. With the software, it is easy to overwrite the background IO
data with the process-LCA which is collected. Because IO systems are so inter-
connected, this results in the change of every background process. For example, let
us assume the studied product is in the basic chemicals sector, and electricity use is
a critical input. If the process-LCI result for electricity consumption is much lower,
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we need to change the default from the IO. If we just replace the input coefficient in
the identified process, we automatically change the amount of electricity needed in
all the companies in the basic chemicals sector! This will influence all the inputs for
the product system, for example, the packaging materials probably needed card-
board, which needed some basic chemicals to manufacture. Therefore, it is
important to make copies of the identified processes before changing them.

It is possible to do the whole process manually in a spreadsheet (although using
a mathematical programming language will make the work less tedious). The fol-
lowing example presents a simple iteration in carbon footprinting for a new product.

Example 14.4 Using IO to create a template LCA system boundary for an
underwater exploration robot. The OpenROV is an open sourced underwater
exploration robot kit.

The bill of materials and the estimated costs are found in the project web page
(www.openrov.org). For the purposes of this example, the bill of materials of 35
items was aggregated to IO classifications (Table 14.5). From this onwards, the
analysis proceeded by calculating the carbon footprint (using WIOD 2008) for each
of the materials, ranking the results, choosing a new set of inputs for the second tier
and repeating. In each tier, the input coefficients in the A matrix were multiplied
with the monetary flow of the inputs from that sector. For example: $141 were from
the rubber and plastics sector, which had an input coefficient of 0.22 for “Chemicals
and chemical products”. Therefore, the input coefficients for the chemicals sector
were multiplied with $31.

Using a coarse cut-off limit of 5% of the total footprint, the following diagram
was obtained in 30 min using spreadsheet software and drawing tools (Fig. 14.4). It
highlights that from the bill of materials, the electronics, plastics and metals are the
most relevant. Within the electronics supply chain, there are three components that
should be investigated in detail: supply of basic metals, electricity and imported
electronics. Within the plastic parts, inputs from chemical industry should be
investigated, as should the electricity use. For metals, the direct emissions of metal
manufacturing and the metal product inputs should be investigated. The only third
tier input included (and it was just at the margin of 5% cut-off) was the direct
emissions from the chemical manufacture needed for the plastic components.

Overall, the identified processes cover only 52% of the total footprint. Repeating
the analysis with a lower cut-off limit (e.g. 1%) would result in a significantly
higher number of highlighted processes.

Even with the coarse cut-off limit, the IO-based template seems reasonable. The
main identified inputs were similar to what would have been identified using a

Table 14.5 A cost breakdown for the OpenROV 2.7 underwater exploration robot classified to
WIOD IO-sector classes. For simplicity, it was assumed all purchases would be from USA

Input Cost

Electronic and optical equipment $313

Rubber and plastics $141

Basic metals and fabricated metals $56

Manufacturing, unspecified $6
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process-LCA, but having a relative importance score added to them assists in
priority setting for further inventory collection.

14.4 Using IO as a Source for Social and Economic
Sustainability Assessment

While few IO datasets include many indicators on environment, almost all of them
have detailed socio-economic accounts. This can be used as a comprehensive
background dataset for social and economic sustainability assessment.

All national accounts include data on employment and value added. Some
include the employment by worker category (gender, age and salary level). This can
be used to find data for triple bottom line sustainability assessment (see Chap. 5),
mapping out where economic activities are happening, where added value goes to
and what kinds of salaries are paid to maintain and create the product system.

For example, the WIOD dataset includes the number of employees and the
number of persons engaged, and the hours worked by these people and the amount
of compensation paid. In addition, it includes a disaggregated dataset for
high-medium and low-skilled labour (hours worked and compensation paid). This
data can be used to map out, where in the product system work is being done, and
the fairness of the compensation compared to the rest of the value added. Average
pay in a given country or region is also straightforward to calculate from the data in
order to facilitate interpretation.

The social hotspots database (SHDB, socialhotspot.org) has taken this analysis a
step further. The database includes inventory and characterisation matrices for
social issues (see more about Social LCA in Chap. 16). They are based on risks
associated with worker conditions in a given country and sector. These are then
used to multiply the hours worked in the supply chain in each sector and country to

Metals 
20%

Plastics 
37%

Electronics
42%

Basic metals, USA 7%
Electricity, USA 5%

Electronics, CHN 5%

Chemicals, USA 12%
Electricity, USA 8%

Direct emission 4%

Direct emission 6%, 
Metals, USA 5%

OpenROV
210 kg CO2e

Fig. 14.4 A first estimate of the critical parts of the supply chain for an underwater exploration
robot prototype using WIOD data and accumulative structural path analysis with a cut-off of 5%
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give an overall risk score for social sustainability, as well as individual indicator
(137 indicators) and risk score results (134 risk scores). As more characterisation
models become available for social life cycle assessment, there is increased
opportunity to use them together with IO-LCA.

One of the benefits of using LCA and IO together is that the analytical tools
created for LCA are also applicable to the IO datasets. It is as straightforward to do
structural path analysis or a contribution diagram for employment or employee
compensation as it is for climate impacts. For example, using the example of the
underwater robot the work hour footprint is 13.27 h of work, with the majority of it
being 8 h in the electronics supply chain. Of that embodied work, 2.5 h were in
USA and 1.4 in the Chinese electronics sector. Approximately 45% of workers in
the Chinese electronics sector were low-skilled and 8% were high skilled in 2008.
The manufacture of components created some knowledge intensive work, which
might be considered beneficial. The value added per hour worked in that sector was
4.7 $/h, of which 33% was wages (labour compensation), equalling 1.6 $/h wages.
This is in line with the average manufacturing wages in 2008 in China (Bureau of
Labor Statistics, USA), so the sector pays average wage. The calculation could be
taken further, by using structural path analysis to map out the entire value tree and
the hours worked and the wages paid. These could then be compared to the average
wages in the country to evaluate whether the operation is increasing the average
wages in the country.

The analysis presented above is based on average statistics. This is a limitation
for companies that have a strong policy of social responsibility in the supply chain,
as their suppliers might be very different from the overall average figure. For those
cases, the benefit of this kind of analysis is to provide a checklist of potential
hotspots and to make sure these are addressed in choosing suppliers and negotiating
policies.

As the tools for social LCA become more widespread and sophisticated, the IO
dataset provide a testing ground for using them. Relatively simple calculations can
reveal valuable information about the amount and wages of workers.
Complemented with other statistics collected for example by the United Nations
International Labour Organization, the analysis can be taken deeper and more
focused on issues such as work injuries or child labour.

14.5 Data Sources

14.5.1 Publicly Available EEIO Datasets

There are several publicly available EEIO datasets (Table 14.6), many of them are
available for free through an academic license. The datasets however differ in the
amount of regions they cover, their sector disaggregation and number of impact
categories.
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The WIOD (www.wiod.org) introduced in the examples of this chapter is a
simple to use, relatively small and compact EEIO database. It has a resolution of 40
regions and 35 sectors, which makes it very aggregated and prone to aggregation
errors. It also has very few impact categories (6).

In comparison, the EORA (www.worldmrio.com) has a much higher resolution
for sectors (on average 85 but ranging from 25 to 428 depending on country) and
regions (190 regions). In spite of extensive disaggregation of emission types and
sources, the database includes only greenhouse gases, energy, ecological footprint,
human appropriation of net primary production (HANPP) and some resource
extraction impacts. The cost of a larger sector and country disaggregation is also
that the full resolution multiple region input–output analysis (MRIO) cannot be
processed with a spreadsheet, but has to be operated through a mathematical pro-
gramming language (e.g. MATLAB or R). EORA however has a large amount of
footprint results precalculated and it has time series of the data, improving analysis
possibilities further.

EIO-LCA (www.eio-lca.net) contains some other datasets, but the core dataset is
an input–output table of the US in 2002. The resolution is considerable with 428
sectors and the amount of impact categories (the LCIA method TRACI is used) is
fairly high for an EEIO model. The web interface (www.eio-lca.net) makes using
the tool relatively easy.

CEDA 4.0 (www.cedainformation.net) is based on the same data as EIO-LCA
but is much more detailed on the environmental emissions. It has 14
pre-characterised impact categories and 2500 emission and resource depletion
categories (LCI inventory level). Currently CEDA 4.0 is available for 6 countries,
but the version 5.0 is planned to have global coverage.

The Waste Input–Output Table is a single country input–output table for Japan
in 2000. For environmental impact assessment, it has only four impact categories,
but the model has a unique approach to waste. Waste generation, processing and
reuse have been modelled using separate sectors and technology specific coeffi-
cients. Although the data is not very useful in most analyses since it is old and
focuses on a single country, the modelling approach is worth considering, espe-
cially if one is interested in circular economy research. Another dataset with

Table 14.6 A comparison of publicly available EEIO datasets

Database Latest data
year

Time
series

Regions Sectors Impact
categories

WIOD 2009 x 40 35 6

EIO-LCA 2002 1 428 20

EXIOBASE 2.0 2007 48 163 98

Waste input–
output

2000 1 103 4

EORA 2011 x 190 Average
85

10

CEDA 4.0 2002 6 428 12
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detailed waste modelling is the FORWAST dataset, integrated in SimaPro for EU
and representing year 2003 data.

The EXIOBASE 2.0 (www.exiobase.eu) is a freely available update on the
previous commercial EXIOBASE 1.0 database. It has data for the year 2007 for 48
regions and 163 sectors. The dataset has a large amount of impact categories,
although many of them would be grouped into the same midpoint in LCIA (e.g.
land use). EXIOBASE 3.0 is under development and is planned to have time series
from 1995 to 2011.

14.5.2 Publicly Available Economic Accounts

In addition to specific EEIO datasets, there are some well-known datasets for
economic IO. For multiple region assessments (MRIO) the Global Trade Analysis
Project (GTAP) is one of the most used datasets. The current version 8 contains 129
regions and 57 sectors. The relatively coarse sector disaggregation limits analysis as
does the data year (2007).

OECD maintains an input–output database, which has a harmonised set of
country level input–output tables with a 58 regions and 48 sectors resolution. The
database is well documented and harmonised, similar to the Eurostat database,
which contains 60 sector databases for EU27 countries, candidate countries and
Norway. The Eurostat datasets are updated with a three year delay, the latest dataset
being for the year 2011. In addition to individual countries, the Eurostat also
publishes an aggregated table for EU27. OECD also maintains an inter-country IO
dataset, which has harmonised the trade flows across countries. Depending on the
type of analysis, this can offer some benefits if the focus is on global supply chains.
Compared to the single country dataset, the trade-flows can be used to connect
several countries together into a multiple region input–output model (MRIO).

14.5.3 Adding New Environmental Extensions to Economic
Input–Output Analysis

Since LCIA is progressing, many of the EEIO datasets do not contain the necessary
inventory data or the characterisation models for including the relevant flows.
Fortunately, it is rather straightforward to include new extensions to an IO dataset.

First the data demands of the LCIA model need to be defined. Should the input
data be spatially explicit? What kind of resolution is needed? Then the country total
emission and resource use amounts are gathered. In the next stage, these total
amounts are disaggregated to sectors using appropriate allocation rules. The same
rules as for dividing LCA processes apply here: it is usually better to use technical
information to do the division, when that fails, physical and monetary allocation can
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be used. For example, in the case of disaggregating the EU-wide land cover clas-
sification data (CORINE) of industrial and commercial buildings a first step might
be to find national statistics on industrial sites. After this, the industrial sites can be
divided to the industrial sectors based on accounts on raw material extraction or
material flow, and the commercial sites can be allocated to commercial sectors
based on economic output. As always, it is useful to perform a sensitivity analysis
to see whether the choices made in this stage influence the final outcomes of the
research question (Most often not. It is the minor details, which take most of the
time in disaggregation, but which provide the least benefit for the overall result).

Presented as a list, the process is the following:

1. Identify the data needs of the LCIA model (spatial resolution, resolution in
regard to emission source, location and sink, most relevant emissions for the
impact categories)

2. Collect statistics on total emission in the defined region
3. Use auxiliary data to disaggregate the total into sectors
4. Check the impact of choices made during disaggregation through LCIA.

A much more straightforward approach is to use emission factors or a ratio to
another component already included in the EEIO dataset. For example, if black
carbon emissions from combustion need to be added to the model, the energy
consumption data of diesel fuel may be used, especially if additional data on the
vehicle fleet of different sectors is available and can be used to justify different
emission factors for different sectors (e.g. agriculture, forestry, freight road trans-
portation, ship transportation and households). As the diesel fuel consumption is
already divided by sector, the same aggregation can be used for the new emission
category.

Adding new LCIA categories requires manual work, estimation and creativity.
Eventually the impact category may become so critical to environmental policy,
that it is integrated to the IO satellite accounts by the statistical offices. Currently
this has happened mainly with energy consumption, land use and greenhouse gas
emissions.

14.6 Shortcomings of EEIO

While EEIO has many benefits for LCA, it also has its shortcomings. From the
viewpoint of LCA, a major flaw in most IO datasets is that they do not cover the life
cycle from cradle to grave. Quite often, the end-of-life stage is missing, as is the
construction of the infrastructure. These are considered as separate accounts in IO
(construction investments and recycling). Some datasets (such as the CEDA 4.0)
have integrated the capital investments into the input coefficients in order to give a
more comprehensive picture of the overall inputs. In addition, the Japanese Waste
Input–Output Table has a disaggregated waste treatment sector and the impacts of
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waste treatment for each sector. However, these are not common in EEIO datasets,
and would have to be added through process-LCA in order to get a full
cradle-to-grave assessment.

A related problem is that the IO dataset includes data for a given year. But what
if the infrastructure needed has been built a long time ago and is no longer
maintained? Moreover, what about the eventual demolition and recycling of the
infrastructure? Although IO datasets are spatially complete, they are not temporally
complete pictures of the life cycle. This is good to keep in mind, especially when
comparing options that are very spread out over time. Mining and energy pro-
duction systems are typical examples. Ignoring the impacts to future generations
undermines the whole purpose of sustainability assessment.

As mentioned earlier, most EEIO datasets are based on a single year of pro-
duction, while the emission intensities develop over time. For example, the carbon
footprint of electricity production in China almost halved from 2002 to 2010 and
the electricity production footprint in USA decreased by 37% (Fig. 14.5). Since the
base year of EIO-LCA is 2002 and electricity generation is a major contributor to
most of the carbon footprints, this means that many of the carbon footprints are now
overestimated with the 2002 data. The rate of change is even more rapid in de-
veloping countries. This however is a problem which is common to both process
and IO-LCA as background datasets are never up to date. A solution is to apply the
path exchange method to update the emission intensities for the paths which are
identified as important.

The aggregation of sectors is another problem in using the IO datasets for LCA.
This can be outlined with an example. The WIOD dataset has 40 sectors and one
metal product sector. We used WIOD to estimate the LCA for the underwater
exploration robot in Example 14.4, where the main source of emissions was the
electronics. The carbon footprint of “electronic and optical equipment” from USA
was 0.28 kg CO2-eq according to the WIOD dataset. The EORA dataset has a much
more detailed classification, with 42 products listed under the category electronic
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and measurement equipment. The carbon footprint of those products ranges from
0.38 kg CO2-eq (electricity and signal testing) to 1.09 kg CO2-eq (carbon and
graphite products). The circuit boards and electronic components, which were most
relevant for the example, would have a carbon footprint of approximately 0.58 kg
CO2-eq, which is almost twice the value obtained from the WIOD. The aggregation
of expensive goods and cheaper products and components in one sector results in an
underestimation of the impacts of the latter. While the aggregation has benefits in
making the database easier to handle, it also results in loss of precision. The loss
depends on the sector and the product, which is analysed, as well as the impact
category considered. The effect is magnified, when the characterisation factors of
emissions have a large spread and single substance emissions can dominate the
whole result (as is the case for the toxicity-related impact categories). The more the
product differs from the bulk of the sector’s production, the larger the aggregation
error. Fortunately, having access to a dataset like EORA means that we can double
check the results from a more aggregated model against the disaggregated results, at
least for the few impact categories which are included inEORA.

14.7 Summary

This chapter has outlined the application of IO in making better LCAs. The
applications of IO have progressed from the research of late 1990s to applicability
in case studies. The increased data availability in recent years has increased the
possibilities for applying IO.

The main applications of IO in LCA are estimating inventories for flows, which
are otherwise cut-off, evaluating the completeness of the LCA, highlighting
potential hotspots for inventory collection and providing background data for social
and economic sustainability assessment. In addition, the data sources in IO data-
bases make it possible to evaluate the completeness and relevance of process-LCA
datasets, by comparing the base year and country of the technology with the
emission intensities recorded in the IO statistics.

IO-tables can be daunting at first, since they contain massive amounts of data.
Once one gets used to them, they are a valuable addition to the toolbox of a LCA
practitioner.
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