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Preface

Biological systems are extremely complex and contain millions of molecules within

the system. The rapid development of high throughput technologies enables us to

capture the molecular interplays of molecules in the system as so-called ‘OMICS’
data. This leads to the need for systematic cataloguing and organization of the

enormous amount of data generated and shared within the scientific community.

Linking these molecules and evaluating their interactions following “Network

Biology” approaches enable the insightful understanding of cellular functions

from the emerging properties of the network. This special volume focuses on the

state of the art, current status, and applications of Network Biology.

The volume covers broad topics on network biology such as gene networks,

transcription networks, regulatory networks, protein–protein interaction networks,

metabolic networks, and phylogenetic networks. I am very grateful to the authors

who have contributed to this special volume by sharing their experience and

expertise in the different chapters. These diverse topics should be very useful for

readers to gain an overview of Network Biology.

Oak Ridge, TN, USA Intawat Nookaew
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ChIP-Seq Data Analysis to Define

Transcriptional Regulatory Networks

Giulio Pavesi

Abstract The first step in the definition of transcriptional regulatory networks is to

establish correct relationships between transcription factors (TFs) and their target

genes, together with the effect of their regulatory activity (activator or repressor).

Fundamental advances in this direction have been made possible by the introduc-

tion of experimental techniques such as Chromatin Immunoprecipitation, which,

coupled with next-generation sequencing technologies (ChIP-Seq), permit the

genome-wide identification of TF binding sites. This chapter provides a survey

on how data of this kind are to be processed and integrated with expression and

other types of data to infer transcriptional regulatory rules and codes.

Keywords ChIP-Seq, RNA-Seq, Transcription factors, Transcription regulation
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1 Introduction: Chromatin Immunoprecipitation

and Next-Generation Sequencing

The introduction of next-generation sequencing (NGS) technologies has opened up
new avenues for every type of genetic and genomic research [1, 2]. One of the fields

in which the impact of NGS has been more relevant is perhaps the study of gene

regulation at the transcriptional level, and the subsequent analysis steps such as the

construction of regulatory networks.

It is essential for the definition of transcription regulatory networks to establish

correct relationships between regulators such as transcription factors (TFs) and the

genes they regulate [3], together with the effect of the activity of the TFs (activator

or repressor) [4]. A fundamental step forward in this direction has been made

possible by lab techniques enabling the large-scale identification of TF-DNA

binding sites on the genome, with experiments simply impossible to perform just

a few years ago.

Chromatin is a complex of DNA and proteins that forms chromosomes within

the nucleus of eukaryotic cells. Chromatin Immunoprecipitation (ChIP) [5] is a

technique enabling the extraction from the cell nucleus of a specific protein-DNA

chromatin complex, including DNA binding proteins such as TFs. The different

steps of a ChIP experiment are summarized in Fig. 1. First of all, the DNA-bound

proteins are cross-linked, that is, fixed to the DNA. The cross-linked chromatin is

usually sheared by sonication, providing fragments of 300–1,000 base pairs (bps) in

length. Then a specific antibody that recognizes only the protein (TF) of interest is

employed, and the antibody, bound to the TF which in turn is bound to the DNA,

permits the selective extraction and isolation of the chromatin complex. At this

point, DNA is released from the TF by reverse-crosslinking and purified, and the

result is a DNA sample enriched in regions corresponding to the genomic locations

of the sites that were bound in vivo by the TF (or, in general, the DNA-binding

protein) studied. The experiment is performed on thousands of cells at the same

time so as to have a quantity of DNA suitable for further analysis and to have

enough “enrichment” in the sample, that is, enough copies of each of the DNA

regions bound by the TF, to discriminate them from experimental noise.

The next phase is quite logically the identification of the DNA regions them-

selves – and of their corresponding location in the genome. The introduction of

“tiling arrays” had permitted for the first time the analysis of the DNA extracted on

a whole-genome scale (ChIP on Chip [4, 6]) by using probes designed to cover the

sequence of a whole genome, or a subset of genomic regions of interest (such as

with promoter arrays). The introduction of NGS technologies has enabled this type

of experiment to move one step further by providing at reasonable cost perhaps the

simplest solution: to identify the DNA extracted by the cell by immunoprecipita-

tion, sequence the DNA itself (ChIP Sequencing, or ChIP-Seq [5, 7]).

Without delving into technical details, given a double-stranded DNA fragment

derived as just described, sequencing determines the nucleotide sequence on either

strand, moving from the 50 to 30 direction, or both strands simultaneously (paired-
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Fig. 1 Chromatin

immunoprecipitation

workflow (adapted from

Wikipedia)
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end sequencing). For technical limitations, current NGS platforms can determine

the sequence of only a fragment of each region, usually ranging from 50 to 150 bps.

Thus, the output is a huge collection of millions of short sequences (called reads),
which mark the beginning of either or both strands of a DNA region of the sample.

The overall number of sequence reads obtained varies from experiment to exper-

iment, and depends on several factors such as the TF involved, sample preparation,

experiment replicates, and so on. Suffice it to say that it usually ranges from a few to

dozens of millions of short sequence reads.

Once the sequencing has been completed, computational analysis of the data

determines which were the DNA regions enriched in the sample (see Fig. 2). First of

all, the reads are aligned or “mapped” on the genome to determine their original

Fig. 2 Schematic view of the result of a ChIP-Seq experiment on a genomic region bound by a

TF. DNA is fragmented at random by sonication, and thus the ends of sequenced DNA fragments

map on different positions on the genome. Each fragment is assumed to be the 50 of a 200–300 bps
region, and therefore extended. The resulting signal plot (“coverage”) shows a typical “peak”

shape. The actual DNA sequence bound by the TF should be located in correspondence of the point

of maximum of the coverage plot (bottom)
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position, using one of the several tools available for this task [8]. It is common, at

this stage, to have mismatches in the alignment, that is, sequence reads differ from

the reference genome sequence usually in single nucleotides. This is for both

biological (sequence polymorphisms) and technical (sequencing errors) reasons.

Thus, alignment is usually performed allowing for two or three substitutions per

read, with no insertions or deletions. In addition, a non-negligible number of

sequence reads align at multiple positions, that is, correspond to repetitive regions

of the genome. Although originally these were discarded from further processing, it

has indeed been shown that TFs can bind repetitive elements of the genome

[9]. Thus, reads mapping at multiple positions should also be considered in the

remainder of the analysis, for example also keeping those that map at most in ten

different positions.

Once read mapping is complete, regions bordered by reads on both ends

(on opposite strands) in numbers high enough to represent a “significant enrich-

ment” and not sample contamination or random noise are singled out. This latter

step should be performed with respect to a “control” experiment, aimed at produc-

ing “random DNA” and thus a random background model. In other words, if

“random” genomic DNA was included in immunoprecipitated samples, another

experiment producing only “random” DNA from the same type of cell should give

the opportunity to filter the results from false positives and artifacts. The control

experiment can be performed in different ways by using an antibody not specific for

any TF or, if possible, by using a cell in which the gene encoding the TF studied has

been “knocked out,” or its expression “knocked down” in order to remove the

immunoprecipitated protein from cells [10].

An ideal example of enriched region is shown in Fig. 2. A “true positive” should

correspond to a genomic region bordered by several reads on both strands, and the

reads on the two ends should be at a distance “typical” of experiments of this kind,

that is, a few hundred bps. By plotting the number of reads falling in each genomic

position, the region should be comprised between two “peaks,” one made by reads

on the positive strand and one on the negative. Each read mapped on the genome

can also be extended by the estimated length of the immunoprecipitated DNA

fragments. The latter, following a size-selection step before sequencing, is usually

about 200 bps. The result is a signal plot estimating how many times each nucle-

otide of the genome is covered by an “extended read.” Then a “significantly

enriched” region should correspond to a peak in the signal plot, usually located in

the middle of the region itself. As in experiments such as ChIP-Seq enrichment is

essential to obtain reliable results, single-end sequencing is preferred over paired-

end, which would produce at the same cost exactly one half of the sequences, and

thus less enrichment.

On the other hand, the same region should not appear – at least with the same

number of bordering reads or with the same height of the central peak – in the

control experiment. Given the shape of the enriched regions as shown in Fig. 2, this

part of the analysis is usually referred to as “peak calling,” that is, identifying all the

“peak shaped” regions whose enrichment can be considered to be statistically

significant. From the introduction of ChIP-Seq experiments, several different

ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks 5



methods for peak calling have been introduced, all following the above consider-

ations but differing in the statistical approaches employed in the definition of

significant enrichment. The latter is computed according to the overall number of

reads that can be associated with a candidate peak, their distribution on the two

DNA strands, and the height of the peak summit. These values are in turn compared

to background expected values that might or might not be derived from a control

experiment. In a quite ample literature, a few methods have emerged over the years

as de facto standards, such as, for example, MACS [11, 12], SPP [13], and PeakSeq

[14], which have been employed in the large scale analysis of hundreds of ChIP-Seq

experiments performed in the framework of the ENCODE project [15, 16].

The output of peak-calling is a list of genomic regions, likely to be bound by the

TF studied in vivo, with p-values and false discovery rates (FDRs) associated with

each one. Thus, not only is a “yes/no” output provided but also an estimate of the

probability of each region to be considered a false positive call, and hence an

estimate of its actual enrichment in the sample. The latter can be employed to

restrict, for example, downstream analyses only to the “most likely” or “most

significantly enriched” candidates (e.g., only those for which the estimated FDR

is under a given threshold). In addition, the “summit” point of each region is usually

included in the output, that is, the genomic coordinate of the single base pair where

the signal plot associated with the peak is maximum (see Fig. 2). As the actual point

of contact with DNA of the TF or the complex investigated should be present in all

the regions extracted, the latter should be close to the summit point, which can thus

be used to approximate the binding site of the TF within the region for downstream

analyses.

2 Finding Transcription Factor Binding Sites

The actual DNA region bound by a TF usually ranges in size from 8–10 to 16–20

bps [3]. TFs bind the DNA in a sequence-specific fashion, that is, they recognize

sequences that are similar but not identical, differing in a few nucleotides from one

another. As peak regions bound by a TF identified through ChIP-Seq are usually

several hundreds of bps long, further processing is needed to identify the actual

binding sites within them. Motif discovery or enrichment tools can be employed for

this task [17, 18]. The general idea is that the regions identified by the ChIP-Seq,

should contain a subset of oligos appearing in all or most of the sequences (thus

allowing for experimental errors and the presence of false positives in the set)

similar enough to one another to be instances of sites recognized by the same

TF. The same set of similar oligos should also not appear with the same frequency

and/or the same degree of similarity in a set of sequences selected at random or built

at random with a generator of “biologically feasible” DNA sequences [19]. This set

of similar and over-represented oligos collectively build a motif recurring in the

input sequences, describing the binding specificity of the TF itself. Instances of the

motif within the enriched regions can then be used to identify the actual binding

6 G. Pavesi



sites within them. A motif enrichment analysis might also be useful for the

identification of additional motifs enriched within the regions which could corre-

spond to binding sites for additional TFs binding DNA in close proximity to the one

investigated [20], and thus likely to co-associate with it forming regulatory

modules.

3 Associating Binding Sites with Target Genes

The results of ChIP-Seq experiments provide a map of the binding sites on the

genome for the TF investigated, but obviously no information regarding genes

whose transcription is affected by each of the binding sites. For building regulatory

networks it is therefore essential to associate each region with one or more “target”

genes.

The first logical step is to single out binding sites located within promoters.

There is no unique definition of what constitutes the “promoter” of a gene or of its

size. It is usually described as a region of a few hundred or thousand base pairs

located upstream of its transcription start site (TSS). ChIP-Seq experiments

performed on histone modifications, however, revealed that active promoters

have a very precise chromatin signature, that is, a pattern of modifications such

as H3K4me3 or H3K9ac covering a few nucleosomes upstream and downstream of

the TSS itself [21]. Hence, even if it narrows down the number of binding sites that

can be assigned to promoters, it is advisable not to define a region too broad around

TSSs as “promoter” and avoid going beyond 1 kbp upstream or downstream of the

TSS. Indeed, TF binding regions outside these “core promoters” (e.g., within the

first intron or further than 1 kbp upstream of the TSS) exhibit a different chromatin

signature, with modifications such as H3K27ac or H3K4me1 that are indicators of

distal “enhancer” or “silencer” regions but not of promoters.

Associating distal binding sites, not close to TSSs, with the “right” target genes

is perhaps the hardest part of this type of analysis. Even factors usually associated

with promoters and TSSs such as NF-Y [9, 22] have the majority of their binding

sites located in distal regulatory regions. Thus, restricting the analysis only to

binding sites located in promoters has the effect of missing several target genes

regulated by the binding of the TF to distal elements; on the other hand, associating

a distal regulatory element with the wrong gene produces wrong data.

In the absence of further information, this step usually follows the “nearest

neighbor rule”: a distal binding site is associated with the closest TSS on the

genome. If the binding site is within a gene body (the transcribed region of a

gene) then it is attributed to the gene itself. Given a reference annotation providing

the genomic coordinates of genes that can be retrieved from any genome browser

[23, 24], this analysis can be performed with in-house developed scripts, or with

tools such as HOMER [25] or GREAT [26]. On the other hand, as a typical ChIP-

Seq experiment returns several thousands of bound regions, associating every peak

with the closest TSS results in a very sizable portion of the annotated genes to be

ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks 7



considered targets of the TF investigated. Hence, further criteria are employed to

reduce their number, usually by establishing a threshold on the distance from the

TSS of the binding sites. For example, in the large-scale analysis performed in the

Roadmap Epigenomics project [21], an enhancer region was associated with the

closest gene if its TSS was located at less than 30 kbp from the enhancer itself.

Otherwise, no association was defined.

Modern experimental techniques based on immunoprecipitation and NGS, the

most relevant being ChIA-PET or ChIA-Seq experiments [27, 28], have enabled

light to be shed on this aspect too. The ChIA-PET (or -Seq) method combines ChIP-

Seq methods and Chromosome conformation capture techniques such as 3C [29]

for the identification of long-range chromatin regulatory interactions [30]. The

immunoprecipitation is performed against a protein usually found in complexes

connecting enhancers to the respective TSSs, such as p300, to be pulled down

together with all the DNA regions bound to it. Before sequencing, linker sequences

are incorporated onto the free ends of the DNA fragments tethered to the protein

complexes. To build connectivity of the DNA fragments, the linker sequences are

ligated by nuclear proximity ligation. The resulting DNA sequences is thus formed

by both the enhancer and the promoter, connected by a linker sequence. Application

of NGS paired-end sequencing produces sequence pairs coming from each of the

two connected regions. Subsequent mapping on the genome finally results not in

single peaks but in “paired” peaks, located at different positions of the genome,

where reads in one peak are found to be paired in sequencing with reads in the other.

Paired peaks correspond to pairs of genomic regions connected by the protein

complex immunoprecipitated. These experiments thus enable the identification of

unique, functional chromatin interactions between distal and proximal regulatory

transcription-factor binding sites and the promoters of the genes with which they

interact. Remarkably, their application has revealed the serious limitations of the

application of the “nearest neighbor” rule introduced before: for example, in mouse

stem cells only about one-third of the long-distance enhancer-promoter interactions

have been shown to be associated with the gene nearest to the enhancer [31]. An

enhancer located within a transcribed region can also regulate a distal gene. Finally,

a sizable number of the enhancers (about 30% of the total) were even associated

with genes located on different chromosomes. All in all, then, in the absence of

long-distance interaction data, all the enhancer-promoter associations should be

taken with a pinch of salt.

4 Assessing TF Activity from Expression Data

TFs can have the effect of both activating and repressing the transcription of target

genes. Thus, the activity of any TF can be assessed by performing experiments in

which the expression of the TF is limited or, vice versa, amplified. Then the activity

of the TF on target genes can be measured by identifying those genes that change

their expression level as a consequence of the TF inactivation or over-expression.

8 G. Pavesi



Before the introduction of genome-wide techniques such as ChIP-Seq this was

indeed the method of choice for the identification of putative target genes for TFs. It

is, however, important to stress the fact that this approach, alone, might also

identify genes that are not direct targets. In other words, the TF directly affects

the expression of a subset of differentially expressed genes; some of the direct

targets can in turn regulate further genes, also found to be differentially expressed,

and so on.

Before the advent of NGS technologies, expression studies were usually

performed with oligonucleotide microarrays. Then the application of NGS to

RNA (RNA-Seq) was shown to be able not only to reconstruct and assemble

whole transcriptomes, but also to provide a reliable quantification of the expression

level of each gene [32, 33].

One of the key advantages of RNA-Seq over microarrays is that they enable one

to identify and reconstruct the single alternative transcripts of the same gene, as

well as estimate their expression level. This, in turn, has revealed alternative

splicing and alternative transcript production to be ubiquitous features of eukaryotic

genes [34]. From the viewpoint of transcription regulation it is worth mentioning

that alternative promoters and transcription start sites have emerged as a wide-

spread feature. This is a very important point in the association between TF binding

and promoters, as a TF-gene association could be missed if the alternative promoter

bound by the TF is not included in the analysis. For a TF binding only one of the

alternative promoters of a gene, its effect on gene transcription should be assessed

only for the corresponding transcripts. Techniques such as Cap Analysis Gene

Expression (CAGE [35]), coupled with NGS sequencing [36], enable one to

identify more reliably alternative TSSs and the relative transcription level.

It is worth mentioning that the usual measures of transcript level employed are

concentration measures. That is, the “expression level” of a transcript or gene is an

estimate of the fraction of the RNA sample that can be assigned to it, described by

normalized measures such as “reads per kilobase of exon per million reads”

(RPKM) or “transcripts per million” (TPM). This, in turn, can produce incorrect

conclusions when applied to experiments resulting from TF inactivation or over-

expression. Suppose, for example, that a TF acts purely as an activator, targeting

10% of the genes of the genome studied. Upon inactivation of the TF, the transcript

level of its target genes is decreased and the rest of the genome remains unchanged.

As expression measures used are relative and describe concentration with respect to

the overall sample, we observe a marked reduction of the transcript levels for the

target genes, but at the same time an increase of the expression estimate of

non-target genes, some of which might also finally be “significantly over-

expressed” by statistical analysis. Hence, the TF is incorrectly observed to act

both as an activator and a repressor. Other than previous knowledge about the TF

activity, indicators of the possible presence of this effect for an activator TF are a

large majority of genes significantly down-regulated with just a few over-

expressed, the latter having very high expression estimates. Vice versa for repressor

TFs. In case of doubt, special techniques should be employed in the design and

analysis of the expression experiment, as shown, for example, in [37].

ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks 9



5 Mining Available Data

The ever decreasing cost of next-generation sequencing has led to the widespread

application of the techniques described in this chapter, such as ChIP- and RNA-Seq.

It has indeed become common practice to study simultaneously more than one TF

in a given condition in order to have more meaningful results and to identify

co-associations and modules of key regulators [38, 39]. The last few years have

also witnessed the completion of large-scale general purpose projects in which

hundreds of TFs have been tested in several different cell lines. The most relevant

example is perhaps the (still ongoing) ENCODE project [40], in which hundreds of

human and mouse TFs have been analyzed through ChIP-Seq in several different

cell lines, or the modENCODE project for model organisms such as Drosophila
melanogaster or Caenorhabditis elegans [41]. TF ChIP-Seq data are integrated by

other data relevant for transcriptional regulation analysis such as chromatin struc-

ture, histone modifications, DNA methylation, expression profiles from RNA-Seq

and CAGE experiments, and ChIA-PET data for long-distance chromosomal inter-

actions. Analysis of co-occurrence of TF binding sites of the genome revealed that

TFs tend to associate, forming distinct co-regulatory modules [15], giving rise to

many enriched regulatory network motifs (e.g., noise-buffering feed-forward

loops). Hence, any TF should not be viewed as a separate entity whose interactions

with other regulatory factors happen only by chance, but should be considered as

part of more complex regulatory modules, and the construction of regulatory

networks should consider this point.

Other than the deluge of information they contain, these data, or those contained

in large repositories such as Cistrome [42], constitute a perfect benchmark set for

any bioinformatics or systems biology approach to the study of transcriptional

regulation. They can also be retrieved to complement data produced locally.

There also exist resources in which data have already been processed, for example

tools such as Cscan [43] or Enrichr [44], which already have pre-computed asso-

ciations between TFs and target genes for hundreds of experiments.

6 Conclusions

The introduction and the creative use of next-generation sequencing technologies

have opened new avenues for every aspect of genetic and epigenetic research.

Perhaps the field that has benefited most from them is regulation of gene expression

at the transcriptional and post-transcriptional level. This chapter provides a brief

survey of the experimental and bioinformatic techniques currently employed for the

study of transcription factors, summarized in Fig. 3, from the identification of target

genes to the characterization of their activity, and all fundamental steps for subse-

quent studies such as the definition and analysis of transcriptional regulatory

networks.

10 G. Pavesi
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Gene Expression Analysis Through Network

Biology: Bioinformatics Approaches

Kanthida Kusonmano

Abstract Following the availability of high-throughput technologies, vast

amounts of biological data have been generated. Gene expression is one example

of the popular data that has been utilized for studying cellular systems in the tran-

scriptional level. Several bioinformatics approaches have been developed to ana-

lyze such data. A typical expression analysis identifies a ranked list of individual

significant differentially expressed genes between two conditions of interest. How-

ever, it has been accepted that biomolecules in a living organism are working

together and interacting with each other. Study through network analysis could be

complementary to typical expression analysis and provides more contexts to under-

standing the biological systems. Conversely, expression data could provide clues to

functional links between biomolecules in biological networks. In this chapter,

bioinformatics approaches to analyze expression data in network levels including

basic concepts of network biology are described. Different concepts to integrate

expression data with interactome data and example studies are explained.

Keywords Biological network analysis, Data integration, Gene expression

analysis, Interactome, Network biology
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1 Introduction

Mapping relationships between genotype and phenotype helps us to understand the

biological mechanisms in an organism. The availability of high-throughput tech-

nologies allows us to study biomolecules (e.g., RNAs, proteins, metabolites) in a

living cell as a whole under specified conditions. The measurements result in high-

dimensional data of thousand of biomolecules (or variables) of a number of sam-

ples, which is usually much smaller than the number of biomolecules. In the last

decade these data have been produced in vast amounts and the analysis is far from

easy. Bioinformatics approaches play a key role in analyzing such data to extract

biological information, leading to a better understanding of molecular processes.

Gene expression data are one of the most popular and has been utilized for

studying cellular systems at the transcriptional level, also known as transcriptomics.

Well-known techniques to measure RNAs are microarray and RNA sequencing.

Thousands of transcripts could be measured in one sample. Several bioinformatics

methods have been developed to analyze the expression data. Similar principles,

especially in downstream analyses, have also been applied to analyze other

omics data. The typical approach of expression analysis is to identify differential

expressed genes between two conditions of interest. The approach provides a

ranked list of differentially expressed genes, where each gene is individually tested

for significant difference. Functional enrichment of these genes can then be

performed to provide biological context for interpretation [1, 2].

Network analysis is another way to study biological system. The approach facili-

tates studies of biomolecules and their interactions, which could be physical inter-

actions, functional relations, and/or co-regulations. In network analysis, a system of

biomolecules could be represented as a graph where a node is a biomolecule (e.g.,

DNA, RNA, protein, and metabolite) and an edge or a link between nodes is an

interaction between them. The methods mainly try to identify distinct modules or

subnetworks driving a common biological process [3]. These modules are extracted

from the resulting responses of perturbed systems [4].
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Network analysis can complement typical expression analysis as it provides

more information on the relations between biomolecules. Rather than getting a

ranked list of individual differentially expressed genes, functional modules of inter-

acting biomolecules (or genes if expression data is used) can be identified. For

example, differentially expressed subnetworks could be detected, representing

modules containing differentially expressed genes and their interactions. In addi-

tion, by using the network-based approach, genes that are not individually differ-

entially expressed but are interacting with differentially expressed genes and still

important for the process can be detected.

Conversely, expression data can provide context of functional links between

biomolecules in interactome networks. By overlaying expression data on inter-

action networks, for example, protein-protein interactions (PPI) networks, regulatory

networks, and metabolic networks, the functional relations between biomolecules

can be revealed based on expression patterns under the studied conditions. Thus,

both expression and network analyses complement each other to study biological

processes. Even though this chapter mainly discusses the integration between

expression data and interaction networks, other types of genomics and other

omics data can also be integrated to study biological system as a network.

The concept and different types of interactome networks are first described

including techniques to detect the interactions. Then the principle of graph theory

important for biological networks analysis is introduced. Here different bioinfor-

matics approaches to utilize expression data in network analysis are explained. This

includes integration of expression data with other interactome networks and exam-

ple studies. Finally, the perspective of expression and network analyses are

discussed.

2 Interactome Networks

It has been accepted that biomolecules in a living organism work together and

interact with each other [5]. The word interactome refers to a whole set of inter-

actions between biomolecules within a cell. In some contexts, interactome specifi-

cally refers only to physical interactions. There are several types of interactions, for

example, protein–protein interactions, protein–DNA interactions, and RNA inter-

actions [6]. These biomolecules and their interactions can be represented as net-

works or graphs where nodes are biomolecules and edges (i.e., links between nodes)

are interactions between these biomolecules.

Nodes and edges in biological networks represent different types of biomole-

cules and their interactions according to the types of the networks. Here different

types of interactome networks are briefly explained, namely protein–protein inter-

action networks, regulatory networks, and metabolic networks, respectively. The

contents include experimental techniques to study the networks and available

databases containing the interactome data. The databases of these interactions are

invaluable resources, facilitating analyses and studies of biology as a linking
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system. Functional interaction networks are also described, being inferred from

expression data and providing functional relations between biomolecules.

2.1 Protein–Protein Interaction Networks

Protein–protein interaction (PPI) networks describe proteins and their interactions

in a cellular system. The networks contain information on how proteins operate

with each other to enable the biological process. In PPI networks, nodes represent

proteins and edges represent physical interactions between two proteins.

One popular approach to detect PPI is yeast two-hybrid (Y2H) [7]. The method

detects physical interaction between two protein pairs. Several projects have uti-

lized Y2H technologies to construct the PPI maps, mainly in model organisms,

for example, Saccharomyces cerevisiae, Caenorhabditis elegans, Arabidopsis
thaliana, including Homo sapiens [8–12]. Another approach is affinity purification

followed by mass spectrometry (AP-MS), which isolates protein complexes and

identifies the constituents of the identified complexes, respectively [13]. Compre-

hensive efforts to generate PPI networks have been developed. The AP-MS tech-

nique is mainly used in unicellular organisms such as yeast [14] and mycoplasma

[15], whereas Y2H is implemented in both unicellular and complex multicellular

organisms [16].

With the availability of experimental techniques and a large amount of PPI data,

several databases have been constructed to collect and provide such interaction data

(Table 1). There has been much effort to curate PPIs data from the literature and

collect it into databases [17–25]. Some databases provide the interactions specifi-

cally for organisms such as drosophila [22] and humans [19, 20]. STRING [26] is a

more unique database and contains both experimental and predicted PPIs. The

predicted interactions from computational methods for both physical and functional

interactions are, for example, from knowledge transfer between organisms, from

interactions aggregated from other databases, and from functional association.

Despite these intensive efforts, the PPI data are still incomplete and require further

investigation and systematic ways of detection [8]. The completeness of the data is

an invaluable factor for studying living organisms.

2.2 Regulatory Networks

Regulatory networks contain information about the regulation of biomolecules in a

cellular system such as regulation of gene expression, post-translational modifi-

cation, and regulation by RNAs. This type of network is represented by a directed

graph as the relations between nodes show the directions of regulation (see the

graph definition in the next section).
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Table 1 Interactome databases

Databases URLs Reference

Protein–protein interaction networks

Biological General Repository for Interaction

Database (BioGRID)

http://thebiogrid.org/ [18]

Biomolecular Interaction Network Database

(BIND)

http://binddb.org [17]

CCSB Interactome Database http://interactome.dfci.harvard.

edu

[8]

Database of Interacting Proteins (DIP) http://dip.mbi.ucla.edu/dip/ [24]

Drosophila Interactions Database (DroID) http://www.droidb.org/ [22]

IntAct Molecular Interaction Database http://www.ebi.ac.uk/intact/ [23]

Molecular Interaction Database (MINT) http://mint.bio.uniroma2.it/

mint/Welcome.do

[21]

MIPS mammalian protein–protein interaction

database (MPPI)

http://mips.gsf.de/proj/ppi/ [25]

The Human Protein Interaction

Database (HPID)

http://www.hpid.org [19]

Human Protein Reference Database (HPRD) http://www.hprd.org/ [20]

STRING http://string-db.org/ [26]

Regulatory networks

Gene regulatory networks

JASPAR http://jaspar.genereg.net/ [35]

TRANSFAC http://www.biobase-interna

tional.com/gene-regulation

[36]

Universal PBM Resource for Oligonucleotide

Binding Evaluation (UniPROBE)

http://thebrain.bwh.harvard.edu/

uniprobe/

[34]

Post-translational modification networks

NetPhorest http://netphorest.info/ [39]

PhosphoNetworks http://www.phosphonetworks.

org/

[30]

PhosphoSitePlus http://www.phosphosite.org/ [31]

Phospho.ELM http://phospho.elm.eu.org/ [37]

Posttranslational Modification Database

(PHOSIDA)

http://www.phosida.com [38]

RNA networks

miRecords http://miRecords.umn.edu/

miRecords

[41]

miRBase http://www.mirbase.org/ [43]

miRDB http://mirdb.org/miRDB/ [44]

TarBase http://microrna.gr/tarbase [40]

TargetScan http://www.targetscan.org/ [42]

Metabolic networks

Biochemical Genetic and Genomic

knowledgebase (BiGG)

http://bigg.ucsd.edu [50]

BioCyc http://biocyc.org/ [48]

(continued)
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For gene regulatory networks, nodes are either transcription factors or DNA

regulatory elements, and edges are physical bindings of a transcription factor and a

regulatory element. To map protein–DNA interactions, two main techniques have

been utilized, which are yeast one-hybrid (Y1H) [27] and chromatin immuno-

precipitation (ChIP) [28]. The ChIP technique can then be followed by microarray

(ChIP-chip) or sequencing (ChIP-seq). Y1H and ChIP methods can be comple-

mentary. The Y1H approach can discover novel transcription factors relying on

known regulatory regions, and the ChIP method can discover novel regulatory

regions based on the availability of reagents specific to transcription factors [6].

Phosphorylation network is one of well-known networks for post-translational

modifications [29, 30]. The relations in this type of network are interactions

between kinases and their substrates. Mapping of kinases and phosphorylation

sites are displayed in phosphorylation networks. The networks provide global

insight into kinase-mediated signaling pathways, which open up opportunities to

a better understanding of cellular signaling processes. Furthermore, other types of

post-translational modifications, such as ubiquitination, acetylation and methyl-

ation, have also been studied [31].

RNA networks have been investigated [32, 33]. This network displays expres-

sion regulation by RNAs such as small non-coding microRNAs (miRNAs) and

small interfering RNAs (siRNAs). The mapping between RNA–RNA interactions

and RNA–DNA interactions can be demonstrated in the RNA networks such as

interactions between miRNAs and their targets. Protein-RNA networks have also

been revealed [33].

Various types of databases providing regulatory interactions are currently avail-

able (Table 1). For example, UniPROBE [34], JASPAR [35], and TRANSFAC [36]

collect useful data of gene regulatory networks, mainly from ChIP experiments.

Several databases provide the data of post-translational modifications [31, 37–

39]. For RNA networks, some databases, such as miRecords and TarBase, contain

experimentally supported miRNA-target interactions [40, 41], whereas some con-

tain only predicted targets [42–44].

Table 1 (continued)

Databases URLs Reference

Kyoto Encyclopedia of Genes and Genomes

(KEGG)

http://www.genome.jp/kegg/ [49]

MetaCyc http://metacyc.org/ [48]

metaTIGER http://www.bioinformatics.

leeds.ac.uk/metatiger/

[51]
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2.3 Metabolic Networks

Metabolic networks explain the system of biochemical reactions in a particular cell

or organism [45]. There are two main graph types of metabolic network, a reaction

graph and a substrate graph [46]. For a reaction graph, nodes represent enzymes and

edges represent metabolites that are substrates or products of the enzymes. In a

substrate graph, nodes are biochemical metabolites, and edges represent reactions

converting one metabolite into another or enzymes that catalyze the reaction.

The metabolic networks seem to be the most likely comprehensive networks

containing discovered biochemical pathways and reactions. However, the comple-

tion with curation of metabolic network maps is still required. This could be ful-

filled by having full genome sequencing with gene annotation and experimental

investigations [47]. Several databases provide information on metabolic mapping

as shown in Table 1. They provide comprehensive information on metabolic

pathway, metabolites, enzymes, and reactions [48–51].

2.4 Functional Interaction Networks

The three network types detailed above contain physical interactions or biochem-

ical interactions representing scaffold information of cellular systems [6]. Another

main type of network focuses on functional links between biomolecules. This type

of network infers functional associations between biomolecules that contain pat-

terns of molecular profiles, for example, gene expression profiles. Very many

bioinformatics attempts have been carried out to study and infer the functional

interactions [26, 52–54]. Gene expression data have been widely applied to detect

such relationships. STRING [26] is one of the databases that provide functional

interactions data. As mentioned above, the database covers both experimentally

detected interactions and computational predicted interactions. For computational

prediction, STRING infers interactions between two proteins by, for example,

co-expression and gene context analyses.

Functional interaction networks are often integrated with other types of net-

works. The three types of networks described above (PPI, regulatory, and metabolic

networks) containing physical interactions or biochemical interactions are used as a

network scaffold. Functional links can be overlaid on the scaffold network to infer

functional associated modules according to the data of the conditions of interest.

For example, co-expression networks (i.e., networks having nodes as genes and

edges as correlations between genes) can be integrated with PPI networks. Edges in

a network can represent both co-expression and PPIs. This can reveal PPI sub-

networks, which are also co-expressed under the studied conditions.

Furthermore, the genetic interactions, showing relation of mutations that are

related to the studied phenotype, could also be studied. Even though the genetic
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interaction network is not focused in this chapter, it contains another type of

information that could be integrated into other types of networks as well.

3 Graph Concepts for Network Analysis

To analyze the biological networks, the system of biomolecules can be represented

in a graph format. In computer science or mathematics, a graph represents a struc-

ture that models pairwise relations between items. Graph theory has been applied to

analyze biological system, revealing network features and biological properties.

Here the graph concepts that have been widely used in network analysis are briefly

explained.

3.1 Graph Definition

A graph G¼ (V, E) consists of a set of V and E, where V represents a set of vertices

or nodes and E represents a set of unordered pairs of distinct elements of V called

edges (i.e., links between nodes). As described previously, in interactome networks,

nodes represent biomolecules and edges represent interactions between them. This

type of graph is known as a simple graph or undirected graph (Fig. 1a). Edges

between nodes do not have a direction. This type of graph is used to demonstrate

PPI networks and some functional interaction networks, for example, co-expression

networks.

A directed graph (V, E) consists of a set of vertices V and a set of edges E that

are ordered pairs of elements of V (Fig. 1b). In other words, an edge in a directed

graph has a direction. The directed graph is used to describe regulatory networks

and metabolic networks, displaying direction of regulation and sequential path-

ways, respectively.

In an undirected graph G, two nodes u and v are adjacent or neighbors if e¼ {v,
u} is an edge of G. The edge e connects u and v. The degree of a node in an

undirected graph is the number of edges incident with it, or the number of neighbor

nodes. For a directed graph, each node has two types of degree, which are in-degree

a c b 
4 

5.5 2 

Fig. 1 Examples of (a) undirected, (b) directed, and (c) weighted graphs
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and out-degree. For a given node in a directed graph, in-degree is the number of

incoming edges and out-degree is the number of outgoing edges.

A weighted graph is a graph that has a number assigned to its edges (Fig. 1c).

The weighted graph is often used in network analysis as a way of giving importance

or confidence of interactions. For example, computational prediction interactions

might be weighted with a smaller score than experimentally detection

interaction [26].

A subgraph of a graph G¼ (V, E) is a graph H¼ (W, F) whereW�V and F�E.
This concept is an essence for studying biological networks, as a molecular system

is believed to be modular [3, 55]. A functionalmodule is a subgraph or a subnetwork
from a whole network that contains nodes having a joint role or a common function.

The concept of identification of subnetworks is explained below.

3.2 Network Properties

Network topology, an arrangement of a network, often reveals information and

characteristic of the network. Scale-free topology is usually found in biological

networks [6, 16]. For a scale-free network, the degree distribution follows a power-

law tail P kð Þ � kγ , where k is a node degree (i.e., the number of links on a given

node), P(k) is the degree distribution, and γ is the degree exponent. The topology is
often found in real world networks including biological networks [56], which

contain a small number of highly connected hubs that hold the whole network

together [57]. A hub is defined as a node that has a high degree. A scale-free

network is different from a random network, where most nodes have approximately

the same degree and the highly connected nodes or hubs are rare [56].

Hubs have been found to play an important role in biological systems. Hub

proteins were found to be essential in a biological process, having slower evolution

and yielding a larger diversity of resulting phenotypes with their deletions [57–

59]. In addition, hubs have been found to arise as a disease-related gene, for exam-

ple, in cancer [6].

Furthermore, hubs have been categorized into date hubs and party hubs
[60]. Party hubs are highly co-expressed with their interacting partners and likely

to interact with their partners at all times and under all conditions. Date hubs are

more dynamically regulated relative to their partners and interact at different times

and under different conditions [16]. In addition, date hubs and party hubs are

sometimes called inter-module and intra-module hubs, respectively [61]. This is

because date hubs seem to be functional modules connected to each other whereas

party hubs appear to be inside functional modules.

These network properties have been discovered, leading to a better understand-

ing of biological networks. Importantly, the concepts, especially scale-free topo-

logy and hubs, have been used for network analysis. For instance, Zhang and

Horvath [52] proposed a computational method to identify functional modules

based on scale-free topology assumptions.
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4 Identification of Modules or Subnetworks

From large-scale interaction networks, it has been accepted that a cellular system is

modular [3, 55]. The concept of functional modules has been introduced to provide

meaningful interacting subgroups of biomolecules that share the same functions.

Several computational methods for extracting informative subnetworks have been

introduced. These methods are mainly based on topological or functional modular-

ity of the networks, or both.

A topological module is defined as part of network that tends to link to a node

within the same local neighborhood rather than to a node outside it. The methods

search for subgraphs containing nodes that share locally dense neighbors. The topo-

logical modules are believed to carry specific functions. This also leads to the

concept of the functional module, where nodes have related functions [62].

The concept of functional modularity is often considered to identify subnet-

works. Many studies utilize molecular profiles, for example, expression profiles to

reveal functionally related subnetworks. Often scoring and searching for high score/

significant subnetworks are carried out. Different approaches define scores on

nodes, edges, both nodes and edges, or some signal contents. It is known that

searching for active modules is computational expensive. Heuristic approaches for

searching to optimize computing time have been utilized, for instance, greedy algo-

rithms [63, 64], simulated annealing [65], genetic algorithms [53], and exact

methods [66, 67].

Another strategy identifies subnetworks by seeding node-containing genetic

information related to the studied phenotype (e.g., it could be a disease-related

gene). Both topological and functional modularity can be utilized by searching

genes associated with the conditions of interest through interactome networks. The

method aims to identify subnetworks that contain most of the condition-associated

genes and have a compact structure of topological modules [62].

5 Expression Analysis Through Network Biology and Data

Integration

As mentioned above, the typical approach of expression analysis is to identify a list

of differential expressed genes between two conditions of interest. The differential

expression of each individual gene is usually measured by using a statistical method

to determine mean expression changes between the two conditions [68]. These

genes are then ranked according to their differentially expressed scores and a

significant set of genes that passes a cut-off criterion is considered. However,

deriving only a ranked list of differentially expressed genes is still difficult for

interpretation. Functional analyses such as mapping to biological pathway or gene

set analyses (e.g., enrichment analysis [1] and Gene Set Enrichment analysis

(GSEA) [2]) play a role to provide more meaningful biological results.
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A network-based approach is one of the key approaches that could complement

the typical differential expression analysis. The approach can identify a group of

functionally related genes with their interactions. It is known that genes or bio-

molecules often work together, and detecting genes as a functional group (i.e.,

submodules or subnetworks) helps us to understand biology mechanisms and makes

things easier to interpret. The approach can also identify genes that are not

individually differentially expressed but are still important for dysregulation pro-

cesses and interacting dysregulated genes. Furthermore, detecting genes as a

module could enhance statistical power to detect differentially expressed sub-

modules, even though individual genes might not be statistically significant [54].

Network-based approaches for utilizing expression data are described based on

gene expression patterns and correlations. The methods can be performed based on

expression data only to construct functional interaction networks. However, the

methods are often applied and integrate expression data with other interactome

networks. Usually the interactome networks are used as a network template and

then overlaid with the expression data to identify functional modules of conditions

of interests. With the power of data integration, the detected subnetworks reveal

more layers of information, providing stronger evidence of the discovered physical

interactions or reactions and a layer of correlated gene expression of the study. Even

though the interactome and functional networks might not be from the same condi-

tional experiments, integration analysis is still believed to provide some clues to

study cellular systems at molecular levels.

Although the analysis of expression data or transcriptome analysis is focused

upon in this chapter, it should be noted that the method is not limited just to this

level. The same principles can be applied to analyze the data at other levels, for

example, proteome and metabolome. In addition, more than one type of interaction

network could be integrated, depending on the biological question and expected

output of the study.

5.1 Identification of Differential Expression Subnetworks

The main idea of an approach for identification of differentially expressed sub-

networks is to identify subnetworks/modules containing connections of differen-

tially expressed genes. These approaches require computational methods for

scoring and searching for candidate modules. The methods measure a significance

of differentially expressed genes as a connected set. The measurement relies on

scoring of nodes and sometimes their connectivity. Aggregation of scoring sub-

networks of linking differentially expressed genes can be computed. Various

searching methodologies have been applied to identify high score candidate mod-

ules of differentially expressed genes.

One of the very first examples of scoring-based methods to identify active

subnetworks has been developed by Ideker et al. [65]. They integrated protein–
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protein and protein–DNA interactions with expression data, and identified

connected subnetworks showing significant changes in expression over particular

subsets of conditions. The method combines measurement of scoring subnetworks

with searching algorithm to find high score subnetworks. The algorithm,

jActiveModules, is also provided as a Cytoscape [69] plugin.

Another example shows the application of differentially expressed subnetworks

for classification purposes. Chuang et al. [63] integrated PPI network and expres-

sion data to identify differentially expressed subnetworks that give high discrimi-

nation power between metastatic and non-metastatic in breast cancer. They

overlayed expression profiles between the two states of cancer on a PPI network.

The scoring differentially expressed subnetworks according to their discrimination

power and was measured and searched using a greedy algorithm. The identified

subnetworks were used for the disease classification.

Other than the scoring-based approach mentioned above, another approach for

identification of differential expressed subnetworks is a set cover-based approach

[54]. The methods have proved to be successful in capturing heterogeneity among

patients in complex diseases such as cancer [70, 71]. The set cover-based methods

take into account connected sets of genes that are significantly enriched with genes

that are differentially expressed in samples of the disease. The method is based on a

concept that each disease sample has some differentially expressed genes, and in

heterogeneous diseases different samples have different covering genes. A gene is

considered to cover a disease sample if it is differentially expressed in the sample.

The methods search for a representative set of connected covering genes.

An example of set cover-based approach is the study of Ulitksy et al., named

DEGAS (DysrEgulated Gene set Analysis via Subnetworks) [70]. They integrated

expression data and interaction networks. The method aims to find the smallest

subset of genes covering disease samples on connected subnetworks. The method

was demonstrated in analyzing human diseases such as Parkinson’s disease,

Alzheimer’s disease, and cancer.

5.2 Identification of Co-expression Subnetworks

Instead of focusing on differential expression, several approaches consider the

co-expression pattern or expression correlation between genes. If the expression

changes between two genes are correlated (or anti-correlated), it may be assumed

that the two genes have functional relations. In this type of network, a link between

nodes indicates an expression correlation between them. The correlation between

genes in each sample group can be measured using statistical methods, usually

Pearson’s correlation. The method measures a linear correlation between two

genes, giving a correlation coefficient between +1 and �1, where +1 is a total

positive correlation, 0 indicates no correlation, and �1 is a total negative correl-

ation or anti-correlation. One could define only correlated subnetworks and/or anti-

correlated subnetworks. However, several studies consider subnetworks with both
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types of correlation. In this case, a correlation value could be considered as an

absolute value of correlation coefficient ranging from 0 to 1. The network can be

represented as a weighted graph having edges as correlation values.

An important issue in analyzing correlation-based networks is to determine a

threshold for drawing a link of correlation between genes’ hard and soft thresholds.
In the hard threshold criterion, a link between nodes is determined to be either 1 or

0, connected or unconnected. A threshold is set to define a link, usually based on

statistical significance of a correlation between nodes across samples. However, it

has been questioned whether the binary information is meaningful enough to

encode a biological network. Instead of using a binary value, another method called

soft threshold suggested a way to weight a correlation having a value range in [0,1].

The method has been found to provide more robust results [52] with more infor-

mation than using hard threshold.

One example of a method to identify weighted co-expression subnetworks is the

study of Zhang and Horvath [52]. They proposed a soft threshold criterion as an

adjacency function converting co-expression measure to a connection weight. Para-

meters of the adjacency function (e.g., power or sigmoid functions) were deter-

mined by using scale-free topology criteria. The chosen parameter values should

lead to scale-free topology networks, as they have been known to provide meaning-

ful biological results. The method is also implemented and provided in an

R package [72].

5.3 Identification of Differential Co-expression Subnetworks

Other than focusing on only differentially expressed genes/nodes or co-expression

patterns between nodes, another approach focuses on the changing of co-expression

patterns between nodes. The approach is called differential co-expression analysis,

searching for loss and gain of correlations in different states. An edge in this type of

network indicates a change of correlation between two genes in different condi-

tions. Several scenarios could be counted as differential co-expression between

genes, for example, two genes both have correlation in each sample group but

different sign (correlated and anti-correlated), and one gene has a correlation in one

sample group but no correlation in another, or vice versa. For instance, if we study

expression patterns between healthy and disease samples, gene a might have a

positive correlation with gene b in healthy samples but both genes have a negative

correlation in disease samples, or vice versa (a negative correlation in healthy

samples, but a positive correlation in disease samples). Another scenario might be

that gene a might have a positive (or negative) correlation with gene b in healthy

samples but there is no correlation among them in disease samples, or vice versa.

The differential co-expression analysis itself has been shown to complement

differential expression analysis [73]. Some known transcriptional regulators

involved in cancer appeared to be not significantly differently expressed but were

highly differentially co-expressed [61, 74, 75]. Hudson et al. showed an example of
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identification of casual mutations and perturbations using expression data by con-

trasting network connections and examining regulators in the network changes [74].

They demonstrated the method in microarray data between two stages of myostatin

mutation. The gene did not significantly differ as its regulation is post-translational;

however, the gene happened to be in a top rank among transcriptional regulators

when considering differential co-expression. The method was suggested as another

way to identify important transcription factors which might be overlooked by

differential expression analysis.

Another example of a network-based method for considering differential

co-expression is Interactome Dysregulation Enrichment Analysis (IDEA) [76].

Mani et al. developed an approach to identify genes enriched for perturbed inter-

actions displaying changes in co-expression patterns. They integrated interactome

(predicted protein–protein, protein–DNA interactions and post-translational modi-

fications) with expression data of B-cell lymphomas. By utilizing the expression

data, network edges of gain and loss of correlations were drawn. Genes were scored

according to the enrichment of the perturbed edges. They demonstrated the identifi-

cation of known oncogenic lesions and downstream effectors for three malignant

B-cell phenotypes.

6 Conclusion and Perspectives

Integration of expression data and interactome networks provide a very powerful

tool to study biological systems. The interactome networks display relationships

between biomolecules, and expression data show contexts of gene expression

changes. The patterns of gene expression could be inferred for functional links

between biomolecules under the studied conditions.

Most of the network strategies have been employed for describing only static

and partial snapshots of biological systems at different times and conditions.

However, it is known that the biological systems are dynamic. Currently, several

approaches are being developed, moving toward the strategy to study the dynamic

of cellular system. The concept is known as differential network [77]. The strategy

tries to capture dynamic re-wiring of cellular stages. For example, nodes could

contain information of the changes, for example, different intensity of gene expres-

sion, and only edges showing changes between different stages could be drawn. A

number of algorithms and tools for differential molecular networks have been

developed [78, 79]. The studies via differential networks provide a promising

way to study biological systems. A strategy that provides more details to explain

biological system would lead to a greater understanding of the living cell.
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Abstract Protein–protein interactions play core roles in living cells, especially in

the regulatory systems. As information on proteins has rapidly accumulated on

publicly available databases, much effort has been made to obtain a better picture

of protein–protein interaction networks using protein tertiary structure data.

Predicting relevant interacting partners from their tertiary structure is a challenging

task and computer science methods have the potential to assist with this. Protein–

protein rigid docking has been utilized by several projects, docking-based

approaches having the advantages that they can suggest binding poses of predicted

binding partners which would help in understanding the interaction mechanisms

and that comparing docking results of both non-binders and binders can lead to

understanding the specificity of protein–protein interactions from structural view-

points. In this review we focus on explaining current computational prediction

methods to predict pairwise direct protein–protein interactions that form protein

complexes.
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1 Introduction

1.1 Protein–Protein Interaction Network

Protein–protein interactions (PPI) play crucial roles in living cells such as signal

transduction and regulation of metabolic pathways. Information on proteins has

rapidly accumulated on publicly available databases. There are more than 10million

non-redundant protein sequences in the database UniProt [1]. Protein Data Bank

(PDB) (http://www.rscb.org) [2] stores 105,849 structural data of proteins

corresponding to 29,824 protein clusters, each of which has 95% sequence identity

(accessed 25 November 2015).

Proteins exert their function by interacting with other molecules. For protein–

protein interactions there are combinatorial numbers of possible interactors. This

information is available from public databases such as BioGRID (56,086 gene

products, 415,624 non-redundant, physical interactions) [3], DIP (28,215 proteins,

80,286 interactions) [4], HPRD (30,047 proteins, 41,327 interactions, accessed

25 November 2015) [5], IntAct (89,430 interactors, 564,831 interactions) [5, 6],

and MINT (35,553 proteins, 241,458 interactions) [7] (note: all database statistics

were obtained on 25 November 2015). There are continuous efforts to compile and

analyze the interactome of each species. For example, Schwikowski et al. [8]

assembled a Saccharomyces cerevisiae direct protein–protein interactome from

published interactions and constructed a large protein network of 2,358 interactions

for 1,548 proteins. A number of studies reported assessments of model organism

PPIs such as yeast and humans [9] [10]. Considering the numerous interactions

among multiple proteins, our current knowledge of PPI networks is nowhere near

complete, with many novel possible interactions not yet discovered.
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A better picture of PPI networks has many potential applications. PPI networks

can provide insights into mechanisms governing various cellular processes, and PPI

networks have also been used to estimate important modules related to diseases and

lethality [11].

PPI networks are also investigated as inter-species networks, for example, virus–

host protein interactions. Franzosa and Xia analyzed available virus–host protein

complex interface structures and showed that inter-species PPI networks have

distinct structural, functional, and evolutionary principles from the within-host

PPI network [12]. A combined network of host–pathogen PPIs was analyzed by

Rachita and Nagarajaram to show that viruses not only tend to target bottlenecks,

hubs, and rich clubs of host PPI networks but also make use of peripheral nodes of

host networks by bridging them to larger host network components, thus realizing

virus-specific use of host machinery [13]. Such inter-species PPI network analyses

would contribute to the understanding of disease-causing mechanisms produced by

a variety of pathogens in addition to viruses.

In general, a protein–protein interaction network represents two types of protein

organizations: protein complexes and functional modules. Functional modules are

the group of proteins that contribute to a specific cellular process. Proteins in the

same functional group can be in the different location, and timing of expression

may differ. Because of the lack of pairwise protein interaction data, discrimination

of protein complex and functional modules is a difficult task. In this review we

focus on pairwise direct protein-protein interactions that form protein complexes.

1.2 Computational Methods to Predict Pairwise Direct PPIs

Computational approaches to predict pairwise direct PPIs have been developed

using various types and levels of information [14]. Major sources of information

include sequence homology, gene ontology, and gene co-expression. Machine-

learning approaches utilize protein features such as amino acid sequence-based

features and physicochemical features as input. Structural information was also

shown to be useful to improve accuracy of the prediction [15]. The two approaches

mentioned are examples of powerful methods that (1) use a known interaction

surface structure as ‘template’ and construct a model of interaction by

superimposing query protein pair structures and then (2) use the information of

how well the model fits the known interaction surfaces to evaluate the potential of

interaction. The PRISM protocol evaluates the well-fitting pairs by consecutive soft

docking and predicts the input pair’s binding possibility by using the docking score
[16]. Another method called PrePPI combines the superimposed model evaluations

to other non-structural features such as co-expression and functional and evolu-

tionary similarities by Bayesian classification and evaluates the possibility of

PPIs [17].
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1.3 Exploiting Protein Docking for PPI Prediction

Although these heuristic methods show good prediction power, other emerging

approaches using de novo docking to predict whether input of two proteins have the

potential to interact, which does not directly use information of known complex

structures, may have notable advantages. A protein–protein docking approach

searches the entire surface of each of the target protein pair structures for presum-

able binding sites and then it outputs docking models with the docking score,

usually evaluated by shape complementarity and physicochemical features for

each model. Possibilities of interaction of the input of two proteins are evaluated

by several aspects, such as the docking score of the top-rated model and docking

score distribution [18–20].

An advantage of a docking-based method over a template-based method is that it

searches entire surfaces of target proteins, and thus it has the potential to discover

novel PPIs with currently unknown interacting surfaces.

A second advantage is that we can obtain and utilize the information of so-called

‘decoys’ (false docking poses) generated by docking calculations. A typical use of

docking decoys may be for binding site prediction [21, 22]. Assuming that the high-

scoring decoys are seen frequently near the true binding site, the intensity of high-

scoring decoys is incorporated to predict binding sites for protein interactions.

Information regarding decoys has been exploited for several purposes. Wass

et al. suggested that decoy interaction surfaces might provide information regarding

binding partners [19]. They successfully discriminated binders from non-binders by

using high averaged docking scores of 20,000 best scoring models for prediction.

They discussed whether it might reflect a concept of the binding process of two

proteins; the binding is initiated by the formation of nonspecific complexes

followed by rearrangements of them to more stable and specific interactions.

Based on this concept, binders may yield high docking scores not only for the

final binding surfaces but also for the non-binding surfaces. Torchara et al. adopted

an approach related to this idea to distinguish the near-native complex structures

among generated docking decoys [23]. They assumed the funnel-like interaction

energy distribution for the binding of two proteins and built a post-docking eval-

uation model to find near native poses using a Markov model, which states that

transition probabilities are defined by docking score differences.

On a more general note, the protein docking community has been adding criteria

of docking score optimization to improve correlation to binding affinities. Tradi-

tionally, the docking score was not necessarily reflective of the actual binding

energy. It was used to rank the docking decoys in each docking process. Docking

methods were evaluated based on whether the nearby native complex structure was

obtained in high ranked decoy sets. However, a recent study performed on multiple

docking and re-ranking methods and to reevaluate high scored decoys based on

more detailed calculations than in the initial docking showed that, although no

scoring methods had strong correlation with experimentally determined binding

affinities, some methods were capable of categorizing each protein pair to three
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categories of binding strength (high, medium, and low) [24]. This study led to the

proposal of a new dataset of protein pairs and their binding affinity values as a

protein affinity benchmark, which was later integrated with the most widely known

protein docking benchmark dataset [25]. Another recent study proposed a regres-

sion model of input protein pair features and their binding affinity that does not

require protein tertiary structures [26], which is useful for large-scale predictions.

High-scoring models generated by a protein docking calculation can be a useful

data source, as a sampling of probable transient binding modes and functional,

‘correct’ binding modes would help elucidate the protein–protein interaction mech-

anism and specificity. Developments of such analysis methods are still in their early

stages.

Docking-based approaches have several limitations. First, the target protein’s
tertiary structure is required, which would narrow down the target from the whole

interactome space. Some studies tried to overcome this by employing homology

modeling [27]. However, this approach cannot be applied to intrinsically disordered

regions, which are considered to be important for the specificity of PPIs. The second

difficulty is that it involves expensive calculation costs compared to other

approaches without docking. For this reason, less time-consuming rigid-docking

approaches that do not consider protein flexibility have been used for this purpose.

Moreover, docking tools used for large-scale PPI analyses have been developed to

run effectively in massive parallel computing environments [28, 29].

Even with these limitations, given that there are already widely available protein

tertiary structure data, it seems to be an interesting direction of the PPI research

field to exploit protein docking for large-scale PPI studies. In this chapter we mainly

focus on the application of rigid docking in the context of PPI network predictions.

2 Computational Protein–Protein Docking

Protein–protein interactions can provide valuable insights for understanding the

principles of biological systems and for elucidating the causes of incurable diseases.

Although many structures of interacting proteins have been determined by X-ray

crystallography and NMR spectroscopy, there are still many protein complexes

undetermined experimentally because of cost and experimental limitations.

Protein–protein docking is a computational method for predicting the structure of

a protein complex from known component structures and is a powerful approach

that can result in otherwise unattainable discoveries.

In the field of protein complex structure prediction with computational protein–

protein docking, users have a variety of choices of methods and must consider the

trade-off of computing time and the prediction power. Furthermore, users must

consider whether using known crystalline complex structures as templates

(template-based method) or not (non-template-based, template-free, or de novo

methods) is best for their analyses. InterPreTS [30], 3D-Partner [31], HOMCOS

[32], and Interactome3D [33] are the template-based prediction tools whose
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templates are built using the complete surface area of known complex structures.

Input protein structures are then examined by searching structural similarity with all

the data in the template dataset. On the other hand, PRISM [16, 34, 35] uses only the

interface structure to build a template dataset. By contrast, in the de novo prediction

methods, which do not require template data, users start with the simulated 3D

structures of the two unbound component proteins. Assuming that the complex

formed has limited conformational changes, the target two-protein structures are

regarded as rigid bodies, and a 3D rotational and 3D translational search

(6D search) is performed over all possible associations. Then a re-ranking of the

resultant complexes may be undertaken, possibly using computationally more

intensive calculations. Conformational flexibility may be introduced into the algo-

rithm to refine the few remaining candidates when there are only a limited number

of complexes to consider. A method that explicitly introduces structural flexibility

also exists and is called soft docking. Typical tools and publications on protein

docking tools are shown in Table 1.

Although various protein–protein docking methods have been developed, de

novo docking is the most mainstream one, and the initial sampling of conformations

by the rigid-body search, which is one of the de novo docking methods, is employed

Table 1 Representative computational protein–protein docking (complex structure modeling)

tools

Template-based docking

Homology-based modeling:
InterPreTS [30], 3D-Partner [31], HOMCOS [32], Interactome3D [33]

Using interface structure template:
PRISM [16, 34, 35]

De novo docking

Exhaustive search with FFT (fast Fourier transform):
ZDOCK [36–39], MEGADOCK [28, 29, 40, 41], PIPER/ClusPro [42–44], FTDock [45],

SDOCK [46], GRAMMX [47, 48], MolFit [49, 50], F2DOCK [51], DOT [52, 53], ASPDock [54]

Exhaustive search with spherical Fourier transform:
Hex [55–57], FRODOCK [58]

Local matching search:
LZerD [59, 60], PatchDock [61], CS [62], shDock [63], SP-Dock [64]

Monte Carlo search:
HADDOCK [65, 66], RosettaDock [67–70]

Randomized search with swarm intelligence:
SwarmDock [71, 72]

Post-docking analysis

Structure refinement:
FiberDock [73], EigenHex [74], RDOCK [75], FireDock [76]

Docking pose rescoring:
ZRANK [77, 78], SIPPER [79], SPIDER [80], pyDock [81, 82], DARS [83], PIE [84, 85],

GB-Rerank [86]¸ BACH-SixthSense [87]

Other reranking methods:
PISA [88], CyClus [89], CONSRANK [90, 91], IFP [92], DockRank [93]

Integrated server:
CCharPPI [94]
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in most cases as an important process. A number of algorithms and many different

scoring functions have been developed in the last 20 years, as recently reviewed by

Eisenstein and Katchalski [95], Ritchie [96], Janin [97], Vakser [98], Vajda

et al. [99], and Huang [100]. The scoring functions for protein–protein conforma-

tion searches and the methods for rescoring candidate structures generated by the

initial docking have been reported by Moal et al. [101] and Vajda et al. [99]. Moal

et al. also performed a large-scale comparative study [102] that serves as a powerful

informative guide to choose suitable methods. The various template-based methods

have been reviewed by Szilagyi and Zhang [103]. Details of the comparison of

template-based and de novo docking have been mentioned by Vreven et al. in 2014

[104]. The applicability of the template-based methods has been discussed by

Kundrotas et al. [105] and Negroni et al. [106].

Figure 1 illustrates the de novo docking procedure using the fast Fourier

transform (FFT)-based exhaustive search algorithm. In this method, as in

FFT-based docking software such as ZDOCK, MEGADOCK, and PIPER, the

protein structure is projected onto a 3D grid space N3, and the scoring function is

calculated by discrete Fourier transform (DFT) and inverse discrete Fourier trans-

form (DFT�1) using the correlation of two discrete functions (protein grids), as

follows:

S tð Þ ¼
X

v2N3

R vð Þ � L vþ tð Þ ¼ DFT�1 DFT R vð Þ½ �* � DFT L vð Þ½ �
h i

where R(v) and L(v) are the discrete functions of the receptor (R) and ligand (L)
proteins, respectively, v¼ (l, m, n) is a coordinate in the 3D grid space N3, and t¼
(α, β, γ) is the parallel translation vector of the ligand protein. The asterisk operator

receptor
protein

ligand
protein

voxelizevoxelize

static grid mobile grid

FFT FFT

Modulation FFT-1 Post Process

rotate ligand protein

voxelize

predicted
complex

Fig. 1 Typical de novo protein–protein docking procedure using the FFT-based exhaustive search

algorithm
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∗ indicates the complex conjugate of a complex number. To execute directly the

simple convolution sums in S(t) per ligand rotation pattern, O(N6) calculations are

required; however, this is reduced to O(N3 log N ) using the FFT as DFT.

The discrete functions R and L usually take into account multiple effects, such as

shape complementarity, electrostatic interaction, and desolvation free energy (e.g.,

ZDOCK [36, 37], PIPER [43], and MEGADOCK [40]). The total scoring function

is the weighted sum of the partial scoring functions, according to the following

example:

Stotal tð Þ ¼ wshapeSshape tð Þ þ welecSelec tð Þ þ wdesolSdesol tð Þ
Sshape tð Þ ¼ DFT�1 DFT Rshape vð Þ� �* � DFT Lshape vð Þ� �h i

Selec tð Þ ¼ DFT�1 DFT Relec vð Þ½ �* � DFT Lelec vð Þ½ �
h i

Sdesol tð Þ ¼ DFT�1 DFT Rdesol vð Þ½ �* � DFT Ldesol vð Þ½ �
h i

In this example, the total scoring function is calculated based on three correla-

tion functions. In actuality, the desolvation free energy function Sdesol also often

comprises multiple correlation functions. For example, ZDOCK uses six correla-

tion functions and PIPER uses nine for the calculation of Sdesol. In general,

computational time required for docking increases with the number of correlation

functions. To enable faster calculation, MEGADOCK employs a score function that

requires only one correlation function by compressing three terms (shape comple-

mentarity, electrostatic interaction, and desolvation free energy) into one correla-

tion function. The total scoring function is represented by the functions as follows:

R vð Þ ¼ RrPSC vð Þ þ wRDERRDE vð Þ þ iRelec vð Þ
L vð Þ ¼ LrPSC&RDE vð Þ � iwelecLelec vð Þ

Stotal tð Þ ¼ SrPSC tð Þ þ wRDESRDE tð Þ þ welecSelec tð Þ
¼ ℜ DFT�1 DFT½ ½R vð Þ�* � DFT L vð Þ½ �� ��

where SrPSC is a shape complementarity term, SRDE is a desolvation free energy

term, and Selec is an electrostatic term. Stotal consists of one correlation function.

3 Computational PPI Prediction

PPI prediction is used to predict the binding partner protein of one protein (and thus

to predict two physically interacting pairs of proteins). In general, computational

methods for PPI prediction fall into two categories, one with and one without

protein docking. Methods using docking conduct docking calculations of input of

two protein tertiary structures and evaluate how probable is the two input proteins

binding. Methods without docking are represented by those with supervised
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machine learning. In many cases they learn and build a prediction model by input of

a variety of protein features and output the possibility of the input proteins’ ability
for physical interaction. A docking-based model is usually more computationally

intensive and limited to application to proteins whose tertiary structures are solved.

However, they can provide not only the prediction of PPI possibility but also the

probable binding poses that can help further discussions on the biological meaning

of the interaction. This context is similar to that in the cheminformatics and

medicinal chemistry fields [107–109]. In structure-based virtual screening, the

compounds interacting with a target protein are predicted using a protein–ligand

docking method; in ligand-based virtual screening they are predicted using super-

vised machine learning.

3.1 PPI Prediction Using Protein Docking

The PPI prediction problem can be defined as that of finding the binding partner

protein that obtained optimal binding free energy ΔG. Thus, the naı̈ve prediction

method uses docking results to identify a protein pair with the better docking score

than a threshold as interacting and one with a worse score as not interacting.

However, docking score functions and conformational search spaces are coarse-

grained, and docking scores are biased by their size and shape. Therefore, accurate

prediction simply using raw docking scores is difficult.

So far, some PPI prediction methods use rigid-body docking techniques and are

proposed and applied to real biological problems. The first such approaches were

reported by Tsukamoto and Yoshikawa et al. [110–113] and Matsuzaki et al. [18] in

2008–2009. All of them used ZDOCK’s docking scores [37]. Yoshikawa et al. and

Matsuzaki et al. mainly used clustering of high-scoring conformations. The stan-

dardized docking score of representative structure by the clustered structures has

been shown to improve the PPI prediction accuracy. Sacquin-Mora et al. also

tackled this problem around the same time [114]. They considered a set of six

complexes, and found that the correct interaction partners could be identified from

12 proteins if the residues forming the interface are known.

Yoshikawa et al. proposed a new scoring system [115] based on statistical

analysis of interaction affinity score distributions sampled by their protein functions

in 2010. Wass et al. used the rigid-body docking software Hex to predict interaction

partners in 2011 [19, 116]. The complexes can be identified from the decoy

dockings for approximately 50% of the complexes. In 2012, Ohue et al. presented

a more accurate method with re-ranking techniques [40, 41] and proposed high-

performance computing implementation called MEGADOCK to conduct a large-

scale PPI prediction [28, 29]. With this software, predictions of PPIs in the human

apoptosis pathway [117] and the bacterial chemotaxis signaling pathway [18, 118]

were conducted. For prediction of bacterial chemotaxis-related PPIs, 101 protein

structures corresponding to 13 proteins with structural variations were examined by

exhaustive docking. It is a small well-known pathway and comprised of relatively
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stable protein binding pairs such as the receptor complex and transient protein, and

binding occurs during phosphate transfer reactions. In 2013 Lopes

et al. demonstrated a large-scale analysis of PPIs based on protein docking and

showed that binding site predictions resulting from evolutionary sequence analysis

are possible and realizable on the 168 proteins of the ZLAB Benchmark 2.0

[119]. They evaluated the quality of the interaction signal and the contribution of

docking information compared to evolutionary information, showing that the com-

bination of the two improves partner identification. Zhang et al. considered both the

binding affinity and features of the binding energy landscape to distinguish binding

pairs from non-binding pairs. The lowest docking score, the average Z-score, and

convergence of the low-score solutions by SDOCK [46] were incorporated in their

analysis [20]. Their method was used to screen for proteins that bind to tumor

necrosis factor-α (TNFα). Out of 67 candidates, 16 proteins were validated by

biochemical experiments (surface plasmon resonance binding assay), and 2 of these

proteins showed significant binding affinity to TNFα. Ongoing studies include

enrichment of the epidermal growth factor receptor (EGFR) pathway by predicting

novel PPIs with non-small cell lung cancer related proteins, for which the predicted

binding pairs are filtered by examining the expression data correlation for cancer

cells (in preparation).

Although there are some interesting results obtained by computational predic-

tions, the validation and discussion of possible roles of novel PPIs is crucial to

broaden our knowledge of PPIs. For this purpose, we need to pursue collaborations

between bioinformaticians and biologists. To expose predicted PPIs to the broader

scientific community, web servers providing predicted PPIs and probable binding

pose data might be a useful tool.

3.2 PPI Prediction Without Docking

To predict PPIs, not only de novo docking-based methods but also template-based

methods based on similarity searches against known crystal complex structures can

be used. Examples of well-known template-based PPI prediction methods are

3D-partner [31] and HOMCOS [32], which are based on whole sequence homology

and structural similarity (called dimeric threading), PRISM [34, 35], which is based

on interface template structures, and PrePPI [17, 120], which is based on structural

matching and other experimental results such as co-expression, functional similar-

ity, and evolutionary information. These methods can become more powerful as

known interaction information and complex structures accumulate.

PRISM has been applied to a large number of pathways: human apoptosis

pathway [121], MAPK signaling pathway [122], Toll-like receptor pathway

[123–125], interleukin-1 initiated signaling pathway [126], and the interleukin-10

interaction network [127].

PRISM and PrePPI predict binding partners and predict the complex structure.

By contrast, when a user just needs to predict whether a pair of proteins interact or
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not, it is also possible to utilize homology search tools such as BLAST and

machine-learning techniques. If interacting proteins a and b in organism s1 are

found, their orthologs a0 and b0 in another organism s2 also interact. Such conserved
interaction proteins are called interologs [128–131]. Support vector machine

(SVM) [132] is used in many machine-leaning techniques-based studies [133–

140]. Prediction web servers are also available, for example, SPPS [141], which

is based on the method by Shen et al. [135], and PRED_PPI [142], which is based

on the method by Guo et al. [137]. Trigrams of amino acid sequences thus have

vectors of 203¼ 8,000 dimensions and of the compressed amino acid alphabet,

wherein similar amino acids are grouped into seven categories, as reported by Shen

et al. [135]. Thus, in this study, the vectors have 73¼ 343 dimensions and are used

as feature vectors for supervised learning. Pairwise kernel [136, 140] and S-kernel

[135] are used as a kernel function of SVM in addition to Gaussian kernel (also

known as the radial basis function kernel) [139].

Such machine learning-based predictions contain some difficulties on prediction

performance assessment of PPI predictions. One is the quality of training data used

for the supervised learning. Because experimentally determined PPIs data can have

false positives and false negatives, especially those obtained by high-throughput

methods, one needs to choose reliable experimental data carefully if one needs to

build a highly precise prediction model [143]. Another difficulty lies in obtaining

negative samples (experimental information that shows a particular pair is ‘not’
interacting). High-quality negative PPI data are equally important for learning and

validation processes. The Negatome database [144, 145] has some data of such

negative samples, although this is still not enough. At present, pseudo negative

pairs (those not found in the positive PPI database that could be selected as

candidates for pseudo negative pairs) are mainly used in machine learning. It is

known that the choice of non-interactors in the training set affects the evaluation of

accuracy of PPI predictions, and many of the reported PPI prediction accuracies

tend to be overestimated [146]. This fact makes PPI prediction performance

evaluation difficult, and there has been considerable debate on this matter

[147, 148].

4 Profile Methods in Post-Docking Processes

In the previous sections we reviewed some prediction methods and software for

protein–protein interactions (PPI), with the main focus being on protein docking. In

this section we discuss an example of post-docking analysis using interaction

profiles and future perspectives to apply it to PPI predictions. Protein docking

methods are useful and generally used to search near-native complex structures of

an input of two proteins known to interact. Rigid-body docking software generates

thousands of protein complex poses, or decoys, including not only true but also

many false positives, which are eliminated after post-docking analysis (see ‘post-
docking analysis’ in Table 1). There are some post-docking works for predicting
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protein interaction surfaces by algorithms combined with multiple scoring func-

tions [102, 149].

From other viewpoints, a set of decoys can be used as a set of interface samples

to approach analysis of PPI mechanisms. In the post-docking process, cluster

analysis is typically used for classifying decoys with various parameters, such as

3D structures of root mean square deviation (RMSD), interaction properties, and

interaction fingerprints. RMSD is generally used for measuring similarities with the

native structure, especially for evaluating accuracy of predicted complexes with the

native crystal structures. On the other hand, interaction properties are used for

estimating interaction scores with electrostatic, hydrophobic, and desolvation inter-

actions. Fingerprint methods represent the residues included in the interface area of

each decoy’s conformations in a compact data structure. They are useful for

investigating protein interaction interfaces, which are often combined with inter-

action properties [150, 151].

The rigid-body docking process does not consider molecular conformation

changes. However, after obtaining multiple structure data for a target protein,

often called ensemble conformations, multiple rigid-body docking processes may

be able to overcome this issue. In this case, it is necessary to perform post-docking

analysis for sets of decoys. When analyzing a set of decoys generated by multiple

dockings using different structure data, it is difficult to compare the decoy struc-

tures by RMSD, whose values depend on alignment locations using 3D structures.

The interaction profile method is introduced in the post-docking process when the

protein interaction surfaces are the main focus of an investigation. Profiles are

composed of interaction amino acid residues. Similarities between profiles are

evaluated much more easily than when using 3D structures, such as RMSD,

because there is no need to align their 3D structures. When the interaction profile

is defined as an interaction amino acid pattern, similarity is calculated by, for

example, the Tanimoto index. In cluster analysis, post-docking analysis with the

profile method worked better than that with RMSD because classified groups with

smaller energy score deviations are obtained by the profile method [152].

The rigid-body docking process explores docking space. However, in some

cases, near-native structures cannot be found in a set of decoys generated by the

rigid-body process because the exploration space is not enough. Such problems are

found even in bound state cases. This serious problem of rigid-body docking could

be solved by observing the interaction surfaces of decoys. Using the interaction

profile with interacting amino acids in the Re-docking scheme [92], several candi-

dates of the correct interface surfaces can be obtained after cluster analysis. Each

surface is made by assembling interaction fingerprints of the decoys classified in the

same decoy group. If the initial docking process could not explore enough docking

space, near-native interactions were not found, even in areas including native

interactions. Then docking processes are performed in each surface iteratively,

indicating that multiple docking processes explored larger docking spaces. The

re-docking scheme successfully obtained near-native structures in the cases of no

near-natives after an initial docking process [92].
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We have been describing interaction profile methods from the viewpoint of

applying them to post-docking analysis to discriminate near-native conformations

from false positive conformations. Interaction profiles can also be useful to inves-

tigate proteomes and PPI networks. On the docking-based PPI prediction

(predicting interacting pairs of protein), conventional methods use post-docking

analysis and rely heavily on docking scores. However, the docking score is still

insufficient to represent binding energy itself [24], and it is difficult to pinpoint the

most favorable binding pose only from docking scores. Thus, for predicting the

PPIs, information regarding multiple decoys (usually high-scoring decoys) are

examined. Interface profiles are useful for this analysis process because they

make comparisons of decoys easier and emphasize the similarity of interface

residue composition, which is important to discuss functionality of the interactions.

Another interesting application of using interface profiles is to analyze data

obtained by dockings of one ‘receptor’ protein to multiple ‘interactor candidate’
proteins. In this case, interaction profiles are built for the receptor protein. Statis-

tical comparison of the interaction fingerprints distribution of high-scoring decoys

generated by dockings against different candidate binders would provide valuable

data to investigate different types of protein contacts, for example specific and

non-specific and transient and permanent.

Moreover, because the interaction profile is based on amino acid sequences, it is

possible that this method can be applied to genome and proteome studies. There are

findings that suggest related genes or domains are located relatively close in the

genomes. For example, genes categorized into gene fusion, or Rosetta Stone are

involved in protein interactions [153–156]. Analysis of decoy sets with interaction

profiles can be connected to sequence-based analysis, for example, mapping of

frequently interacting sites to the genome sequence using profiles.

In conclusion, interaction fingerprints allow fast and interface-focused analysis

capable of analyzing large-scale data obtained by exhaustive dockings. It could be

an approach to understand mechanisms of PPIs in the context of genome structures

and evolutions.

5 Implementation of Docking Software on Supercomputing

Environments

In this section we discuss the computational techniques that enable large numbers

of exhaustive rigid dockings that feasibly cover the interactome scale. Analyses of

part of an interactome may require large numbers of dockings. For example, to

identify the drug-induced pathway of epidermal growth factor receptor (EGFR)

signaling, about 200 proteins needed to be examined. In our preliminary survey on

the EGFR pathway and related proteins data, we identified about 2,000 structures

corresponding to these proteins. Therefore, the PPI network prediction system

needs to handle about 2,000� 2,000 combinations of protein structures.
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To solve such large-scale problems, a highly efficient computing system is

necessary. Developments of massively parallel supercomputing environments

have continued to grow over the past decade. Some top ranked supercomputers

have shown a peak performance of 27 petaflops (Titan, Oak Ridge National

Laboratory, USA) and 11 petaflops (K computer, RIKEN, Advanced Institute of

Computer Science (AICS), Japan) in November 2015 (http://top500.org).

An example of the docking software designed for usage on a supercomputer is

MEGADOCK [28, 29]. It enables the performance of mega-scale numbers of

protein–protein rigid dockings at once on massively parallel supercomputing sys-

tems. It is incorporated in a novel scoring function ‘real Pairwise Shape Comple-

mentarity’ (rPSC) in an FFT-based rigid docking scheme. rPSC represents the

surface shape complementarities, the electrostatic interactions, and the desolvation

free energy in a single complex number. Thus, the calculation using rPSC requires

only one FFT calculation for a docking process. It makes each docking faster than

conventional software and has multiple correlation functions that require multiple

FFT calculations. Second, to conduct a large number of docking calculations

effectively in parallel computing environments, MEGADOCK employs a hybrid

parallelization (MPI/OpenMP) technique where a number of docking processes are

distributed among the nodes by MPI, with each docking process also being calcu-

lated in parallel by threads by OpenMP within one node. The current version of

MEGADOCK also implements parallelization on Graphics Processing Unit (GPU)

[157] and Many Integrated Core (MIC) [158]. Users can choose a suitable imple-

mentation depending on their computing environments.

This data parallelizing system was scalable as shown by measurements carried

out on two supercomputing environments. On the K computer, RIKEN AICS,

Japan, a strong scaling efficiency of 91% on 82,944 nodes (when compared to the

calculation time of the same problem on 41,472 nodes) was observed. It was also

shown to have sufficient parallelization scalability on TSUBAME 2.5, Tokyo

Institute of Technology, Japan, for both parallelization using MPI/OpenMP and

on GPUs [29].

Studies aiming at incorporating protein structure and docking to the whole-

genome scale are now actively conducted by researchers using supercomputers.

Some pioneering studies have been performed by taking advantage of this large

computational power. For example, Mosca et al. presented all the docking models

generated by dockings of over 3,000 protein–protein pairs of S. cerevisiae. They
used 217 proteins with experimentally determined crystal structures and 1,023

proteins structure models using homology modeling among roughly 6,000 putative

S. cerevisiae proteins [27]. For larger scale dockings, along with MEGADOCK, a

docking software Hex is well-known for its fast calculation and capable of

parallelized calculation on GPUs [56].
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6 Conclusion

The protein–protein interaction (PPI) network is a rich data source for systems

biology analyses and is useful for various purposes such as inter-species PPI

network comparison, drug target detection, and understanding the molecular mech-

anisms underlying specific cellular functions. However, current knowledge of PPI

networks is quite incomplete, and thus prediction of novel PPIs by efficient

computational methods is an important task. In this review we have described

current computational methods to predict pairwise direct PPIs (binder predictions),

with the main focus on the methods based on rigid-docking and post-processing.

Although there is no perfect method of PPI prediction, both in the de novo docking-

based and other heuristic methods, some have shown promising prediction perfor-

mance. They have been applied to the discovery of novel PPIs related to important

biological pathways such as mammalian signal transduction.

In this review we have explained the advantages and disadvantages of docking-

based methods and current approaches to overcome the disadvantages. We have

also emphasized that the docking decoys information previously unexplored thor-

oughly as false positive conformations can potentially be a valuable data source for

analyzing PPIs from the viewpoint of interaction paths or interaction mechanisms.
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Protein–Protein Interface and Disease:

Perspective from Biomolecular Networks

Guang Hu, Fei Xiao, Yuqian Li, Yuan Li, and Wanwipa Vongsangnak

Abstract Protein–protein interactions are involved in many important biological

processes and molecular mechanisms of disease association. Structural studies of

interfacial residues in protein complexes provide information on protein–protein

interactions. Characterizing protein–protein interfaces, including binding sites and

allosteric changes, thus pose an imminent challenge. With special focus on protein

complexes, approaches based on network theory are proposed to meet this chal-

lenge. In this review we pay attention to protein–protein interfaces from the

perspective of biomolecular networks and their roles in disease. We first describe

the different roles of protein complexes in disease through several structural aspects

of interfaces. We then discuss some recent advances in predicting hot spots and

communication pathway analysis in terms of amino acid networks. Finally, we

highlight possible future aspects of this area with respect to both methodology

development and applications for disease treatment.
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1 Introduction

Proteins are the most important biological macromolecules within living organ-

isms. However, proteins rarely act alone and perform a vast array of biological

functions in collaboration with other molecules, not only proteins but also DNA and

RNA. Indeed, protein–protein interactions form the molecular basis of signaling

and metabolic pathways, which are affected in multiple human diseases such as

Creutzfeld–Jacob disease, Alzheimer’s disease, and cancer [1–3]. As increasing

numbers of structures for protein–protein complexes have been determined, the

interactions between different protein chains within them provide detailed struc-

tural information for large-scale protein–protein interactions [4]. In particular, the

analysis of protein–protein interfaces has enormous potential for understanding the

molecular mechanism of diseases. For example, disease-associated mutation is

always located at protein–protein interfaces of complexes [5]. In some cases,

diseases are also related to allosteric changes affected by pathways because of the

alterations in protein–protein interfaces [6, 7]. Thus, the means for targeting hot

spots in protein interfaces and allosteric pathways through protein interfaces are

becoming essential tools in drug discovery. The detection and modulation of

protein–protein interfaces can also help to predict the drug side-effects [8].

Protein–protein interfaces are defined based on three different measures, includ-

ing arithmetic distances between residue pairs, accessibility surface area, and

Voronoi polyhedra [9]. Accordingly, current methods characterizing interfaces

are mainly based on sequence data and some geometrical and physicochemical
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parameters, such as interface size, shape complementarity, hydrophobicity, and

secondary structure on complex formation [10]. Apart from these methods, dynam-

ical models were also used to investigate other interesting properties of interfacial

residues, such as their fluctuation dynamics [11] and druggability [12]. Dynamical

analysis shows that interfacial residues are more conserved and they have higher

packing density than other surface residues [13]. The interfaces are considered as

mostly ‘undruggable’ because of their large, flat, and featureless properties. How-

ever, the hot spots are key residues in the interfaces that contribute to most of the

binding free energy, often forming central regions of the interface and thus possibly

binding with small molecules as the drug targets [14]. The hot spots at protein–

protein interfaces also proved to be disease-associated non-synonymous SNPs [15],

whose mutation could dysregulate interactions. Interestingly, the network-based

method was proposed to analyze interface properties of cancer-related proteins

[16], which opened a door to study the structures of protein–protein interfaces from

the perspective of biomolecular network.

Indeed, the method of representing biomolecular structures as networks is ever

increasingly employed to investigate protein structures and functions

[17, 18]. These networks could be named ‘protein structure networks (PSNs),’
‘protein contact networks (PCNs),’ ‘amino acid networks (AANs),’ or ‘residue
interaction networks (RINs).’ Here, we prefer to use AANs, which can be

constructed from the Cartesian coordinates or the ensemble of protein structures.

Each node represents a residue or a Cα atom, and each edge can be unweighted, just

based on cut-off, or weighted, such as the Van der Waals contact score. Unlike

other computational methods, AANs can describe protein structures and functions

from the global prospective in terms of different topological parameters [19]. The

clustering coefficient Ci is the normalized number of edges between the first

neighbors of the vertex i by dividing it through the maximal number of such

edges, which describe the hierarchical structure of proteins. The characteristic

path length, L, is defined as the average shortest paths through which the two

concerned nodes are connected by the smallest number of intermediate nodes.

The analysis of Ci and L has revealed that proteins display small-world behavior

[20]. The betweenness and the closeness are two more important parameters for

descriptive network centrality. The betweenness centrality Bk of a node k is the

number of times that a node is included in the shortest path between each pair of

nodes, normalized by the total number of pairs [21]. The betweenness centrality of a

node reflects the amount of control that this node exerts over the interactions of

other nodes in the network. The closeness centrality Ck of a node k is the reciprocal
of the average shortest path length, which is a measure of how quickly information

spreads from a given node to other reachable nodes in the network [22].

AANs have utilized their small-world properties and centrality measures in the

study of protein folding, protein stability and the prediction of functionally impor-

tant residue [23]. There are several publications that demonstrate state-of-the-art of

ANNs, from applications in protein allostery [24, 25] to therapeutic drug discovery

[26–28]. More recently, AAN studies have been extended to protein complexes

[29], especially focusing on their interactions including protein–protein interfaces

and protein–DNA/RNA interfaces [30, 31]. Figure 1 shows an example of AANs
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for p53 protein complex. The network study of interfacial residues is of particular

importance, not only because interfacial residues show special modular topological

structures and sequence evolution but also because they participate in the interac-

tion and have intrinsic communication ability [33].

In this chapter we focus on the protein–protein interfaces in different protein

complexes from the perspective of biomolecular network and their roles in disease.

We first describe the role of protein complexes in disease, taking advantage of the

structural aspects of interfaces. Next, we review some network methods for

predicting hot spots, and provide examples of using network theory for the com-

munication pathway analysis through protein interfaces. Finally, we highlight

possible future aspects of this area, such as mapping the structure of protein

interface into disease-related protein–protein interaction networks.

2 Protein Complexes and Impact on Disease Association

Protein complexes are polymerized from chains or monomers, providing structural

data to study their oligomerization mechanism and protein–protein interaction,

which might associate with a wide spectrum of diseases and offer potentially

therapeutic targets [34, 35]. Although there are many protein complexes associated

Fig. 1 Different structures of p53 dimer (PDB code: 3EXJ). (a) Cartoon representation of p53

dimer bound with DNA. (b) AAN representation of p53 dimer. (c) Sub-network of the p53 dimer

interface. The AAN was generated by RINalyzer [32] based on the cut-off of 7 Å, in which red
nodes represent helix structures, blue nodes represent sheet structures, and gray nodes represent
loops. In the sub-network, node representations also include chain identifiers
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with diseases, the application of biomolecular networks in the study of relations

between protein–protein interfaces and disease is just beginning. In this section,

some disease-related protein complexes which have been investigated by our group

and others are listed, including G-protein-coupled receptors (GPCRs), toroidal

proteins, the p53 tumor suppressor protein, and heat shock protein 90 (Hsp 90).

2.1 G Protein–Coupled Receptors

GPCRs form the largest superfamily of signal transduction membrane proteins

[36]. A GPCR monomer consists of seven-transmembrane helices (H1–H7)

which are connected by three intracellular and extracellular loops. It is known

that many GPCRs exit as oligomers, and their oligomeric state plays a crucial role

in many essential physiological processes as diverse as neurotransmission, cellular

metabolism, cellular secretion, cell growth, immune defense, and cell differentia-

tion. GPCRs provide about half of the total targets for existing drugs, and are

involved in many illnesses such as retinal diseases and Alzheimer’s disease [37].
AANs have been used to investigate structural communication of GPCRs,

including GTPase, rhodopsin, β2- and β1-adrenergic receptors (ARs), and A2A

adenosine receptor (A2AR). The network analysis of dynamical ensemble of

GTPase has shown that the observed slight reduction of the RGS9-catalyzed

GTPase activity of transducin depends on both perturbed communication between

RGS9 and GTP binding site and inter-protein communication involving the nucle-

otide [38]. These results show that interactions both within and between proteins

play key roles in the functions of GPCRs. Thus, mutations in protein–protein

interactions of GPCRs can lead to many diseases.

2.2 Toroidal Proteins

Toroidal proteins are a family of proteins with donut-shaped or ring-shaped pro-

teins, which are quite common forms for enzymes [39]. Toroidal proteins are

known as oligomers assembled from two or more protein chains, forming a central

hole that embraces DNAmolecules inside or binds RNAmolecules at the outside of

the ring. These particular topological structures have the advantage of generating

multiple identical binding sites for DNA or RNA. They have topologically different

quaternary structures but share similar protein–protein interfaces.

On the other hand, toroidal proteins are also involved in various diseases.

Proliferating Cell Nuclear Antigen (PCNA) is the most common toroidal trimer,

which not only provides a scaffold for DNA replication but is also involved in DNA
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repair and cell cycle control. The direct inhibition of PCNA interacting with other

proteins has been considered as an important step to treat diseases, including

prostate cancer [40] and breast cancer [41]. p97 is another toroidal protein with a

homohexameric structure [42], and chaperonins are toroidal proteins consisting of

7, 8, or 9 subunits, which assist in other proteins for their correct folding [43]. Their

tertiary structures are formed by the help of ATP hydrolysis, and leading to the

disease upon disturbing this process. For examples, p97 has been found implicated

in Huntington’s disease, Machado–Joseph disease, leukemia, and various cancers,

chaperonins 60 are involved in arthritis, atherosclerosis, and prion diseases, and

group 2 chaperonins are involved in neurodegenerative disorders, cardiovascular

diseases, and cancer.

2.3 p53 Tumor Suppressor Protein

In the cell system, p53 regulates cell cycle progression and apoptosis, acting as a

tumor suppressor by preventing DNA damage and oncogene activation [44]. The

p53 tumor suppressor protein is a transcription factor which exists as a dimer or a

tetramer. However, when binding with DNA, the p53 tetramer is more stable. Some

diseases such as Alzheimer’s disease and cancer can not only be caused by the fail

replication of bound DNA, but also be associated with a conformational change or

misfolding of the p53 tumor suppressor. The p53 tumor suppressor can therefore be

considered as a key protein in a disease-related protein–protein interaction network.

In this network, p53 interacts with partner proteins through different types of

interfaces. Different diseases have different interactions caused by mutations of

p53 at interfaces [45]. The identification of mutated hot spots at p53 interfaces and

their mutated effects on interactions are important for p53 gene therapy.

2.4 Heat Shock Protein 90

Heat Shock Protein 90 (Hsp90) is also a chaperone protein, but does not belong to

toroidal topology. Hsp90 chaperones demonstrate a common structure as

homodimers, including N-terminal domain, middle domain, and C-terminal

domain, named Hsp90-NTD, Hsp90-MD, and Hsp90-CTD, respectively

[46]. These three domains carry out their own functions, binding ATP and client

proteins and participating in dimerization, respectively. Hsp90 exits in different

conformations that aid binding with ATP and other substrates, and has emerged as

an important therapeutic target by focusing on the signal communication pathway

caused by conformational change. The interactions between Hsp90 and client
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proteins are associated with all six hallmarks of cancer [47]. Thus, network

approaches are used to perform the systems investigation of Hsp90–client proteins

interactions, which could provide advance understanding of the molecular chaper-

one mechanisms underlying cancer at network level.

3 Network Approaches for Hot Spots Identification

Hot spots are key residues in protein–protein binding regions, providing a mechan-

ical insight into interfaces. It has been found that hot spots always relate to disease-

related mutations and drug binding sites [48]. AANs and their network topology

properties can be used to predict hot spots, including graph theoretical analysis,

machine learning algorithms based on network parameters, and network connec-

tivity of interface residues. Knowledge of hot spots is extremely important for the

understanding of molecular mechanisms of diseases. In the following we describe

different network approaches for hot spots identification.

3.1 Graph Theoretical Analysis

To the best of our knowledge, the first type of AAN was proposed by Vishveshwara

and co-workers [49], in which edges are defined based on strength of interaction Iij
between residues i and j. In this way, a protein can be represented as a ‘Laplacian
matrix’ to encode connectivity information among residues. From this matrix, we

can obtain their eigenvectors and eigenvalues as graph spectral information on

AANs. The side chain interactions are captured at different threshold values of

interaction strength cut-off Imin. The first application of the graph spectral approach

is to detect a variety of side-chain clusters.

Such analysis has also been carried out on protein interfaces, where the eigen-

values and eigenvectors of the Laplacian matrix can identify hot spots. Applying

this approach to the α–α dimer interface of a kind of RNA polymerase can indicate

hot regions, including nine residues (i.e., Phe8, Leu31, Glu32, Phe35, Thr38T,

Leu39, Ile46, Ser50, and Gln227), in which Phe35 and Ile46 are two hot spots

[50]. The graph spectral theory was further applied to a larger dataset of

homodimers to predict interface hot spots. In comparison with dimeric proteins

[51], the legume lectin family provides the higher oligomeric protein models for

analyzing the role of interface residues. AANs for galectins, pentraxins, calnexin,

calreticulin, and rhesus rotavirus Vp4 sialic-acid-binding domains were

constructed, and the following analysis was carried out in terms of amino acid

clusters with special emphasis on protein–protein interfaces [52–54]. These studies
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showed hot spots associated with highly connected residues at the interface, also

called interfacial hubs.

3.2 Machine Learning Algorithms Based on Network
Parameters

Network parameters of AANs can be used to predict key residues in proteins.

Another kind of un-weighted AANs just based on cut-offs was used to investigate

a set of 48 dimers [21] and a set of 18 protein–protein complexes [54, 55]. The

small-world network was further applied to find hot spots of protein complexes by

ranking clustering coefficients and betweenness. It was found that highly central

residues in the network were most probably hot spots, and betweenness showed

particularly high accuracy in predicting key interface residues in dimerization

[21]. By further rewiring of the small-world networks, they have generated cluster

structures of central residues at protein–protein interfaces [55]. AANs can also be

weighted by energy function derived from knowledge-based potentials. If we

construct some minimum cut trees from such AANs, one can predict hot spots

just using the most simple network parameters, degree, directly. This means that the

most connected node in the minimum cut tree for protein complexes corresponded

to key residues in protein interfaces [56].

Machine learning algorithms can be used to combine and train these network

features to improve further the prediction performance. Support vector machines

(SVMs) and neural networks are strongly associated with machine learning in

bioinformatics [57]. Although these methods are less used to predict hot spots,

we still found a relevant work. In 2014, Li et al. [58] proposed an SVM model that

includes network parameters such as degree, closeness, and betweenness in both

bound and unbound proteins for the prediction of hot spots. A satisfactory accuracy

(ACC) value of 79.0% and a Matthew’s correlation coefficient (MCC) value of

0.470 were obtained for independent hot spots sets.

3.3 Network Connectivity of Interface Residues

Gemini constitutes a series of programs and databases based on network theory

to investigate network connectivity of interface residues in oligomeric proteins

[59]. It contains four components: GeminiDistances, GeminiRegions, Gemini-

Graph, and GeminiData. First, GeminiDistances selects residues of the protein–

protein interface based on minimal interactions. Then, GeminiRegions divides the
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protein–protein interfaces into different regions consisting of elementary interac-

tion networks between residues of two adjacent monomers. Finally, GeminiGraph

constructs a network for these interface regions, and thus a bi-colored graph for the

protein–protein interface is obtained. The results obtained from GeminiDistances,

GeminiRegions, and GeminiGraph are stored in GeminiData. Accordingly, Gemini

offers quite a useful method to characterize protein interfaces quantitatively by

using network theory.

Gemini has been applied to the analysis of hot spots of β-strand interfaces from a

set of protein oligomers [60] and the tumor suppressor p53 tetramer [61]. The

interface networks for β-strand interfaces contain two types of sub-networks. The

backbone (BB) and side chain (SC) networks involve interactions between main

chain atoms and between side chain atoms, respectively. Hot spots in the BB
network are mostly hydrophobic residues, whereas in the SC network there are

charged residues such as Arg and Glu. The charge distribution of hot spots helps the

assembly through the intermolecular β-strands, which might be more sensitive to

the disease mutations. Gemini networks were built for both p53 WT and mutant

structures to explore the changes of networks upon single mutation. The G334V

mutant is accompanied by the rewiring of the WT network, which not only leads to

the dissociation of the p53 tetramer but also has a strong global effect on the

network. Thus, Glu 334 was predicted as a hot spot and its mutation associated

with cancer.

3.4 Amino Acid Networks Based on Contact Energy

Amino acid contact energy networks (AACENs) are the newest AANs [62], in

which nodes are represented as residues and edges are established when

environment-dependent residue–residue contact energies are less than zero. The

AACENs was first proposed to study protein evolution. In comparison with other

AANs, an AACEN use a different definition whose connections are based on

contact energy. On the other hand, hot spots are defined as critical interfacial

residues that contribute most to the binding energy. According to the similarity of

the two definitions, we have suggested that the AACEN may provide a straightfor-

ward way to detect hot spots. By extracting sub-networks only including interface

residues between different chains, it may provide a simple but straightforward

method to identify hot spots of protein complexes.

More recently, we have extended AACENs to study the oligomerization of

toroidal proteins [63]. Using the hot spots predicted by HotRegion as a reference

data set, the performance values of sub-network nodes are S 66%, C 74%, P 62%,

and A 71% for sensitivity, specificity, precision, and accuracy, respectively. In the

case of the β clamp dimer (Fig. 2), the sub-network of the interface between chain A

and chain B contains 13 nodes, and 7 out of 9 hot spots have been predicted

successfully. Among them, Phe106 has the largest degree and mutation of this

residue mostly leads to the destabilization of the interface.
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4 Communication Pathways Through Protein–Protein

Interfaces

Allostery is a common phenomenon in protein complexes whereby a perturbation by

an effector at one site of the monomer leads to a functional change at another through

protein–protein interfaces. Therefore, the investigation of communication pathways

between different protein subunits is important to understand the molecular basis of

disease caused by allostery regulation [64]. As described below, we revisit commu-

nication pathways of three respective proteins in Sect. 2, including GPCR dimers,

Hsp90 complexes, and a toroidal protein. It should be noted that p53 participates in

protein–protein interaction networks for signal transduction, and thus includes higher

level communications which is discussed from various perspectives.

4.1 GPCR Dimerization Pathways

GPCRs are allosteric proteins whose biological functions are regulated by allosteric

communication between the extracellular and intracellular poles of the helix

Fig. 2 Hot spots in the AB interface of the β clamp (PDB code: 2POL) predicted by AACENs,

which are shown as Van der Waals representations in three-dimensional structure and as nodes in

the sub-network (adopted from [63])
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bundle, or across monomers in the dimerization and oligomerization states. The

AAN representation of structural ensembles from molecular dynamics

(MD) simulation has proved to be a meaningful way to enumerate these pathways

in GPCRs [65]. The dimerization has an effect on the structural communication

within the monomer. Network analysis found that the helix 1 (H1) plays an

important role in A2AR dimerization [66], and the conservation of helices 1, 2,

6, and 7 between the two poles of the helix bundle. In addition, allosteric commu-

nications across three types of dimerization interfaces were investigated. The

topology of pathways across H1–H1/H2–H2 and H1–H4/H2–H2 dimer interfaces

remain, but the number of hub-involving links and paths increase significantly from

the monomer. D2R forms higher-order oligomers, and H1, H4, and H8 from

different inter-monomer interfaces [67]. Of course, the higher-order oligomeriza-

tion has different impacts on such communication. The information flow between

different D2R monomers is mediated by H1–H1, H1–H2, and H8–H8 contacts.

Indeed, Table 5.1 in [68] has listed dimeric and oligomeric interfaces involved in

various GPCRs. Thus, the communication analysis of these dimer interfaces can

explain how oligomerization affects the functional dynamics of GPCRs.

As an AIDS- and HIV-1-related GPCR protein, human CXC chemokine receptor

type 4 (CXCR4) provides a new structural model to investigate dimerization. In this

special case, sequence information has been introduced to combine with the

network to investigate the structural communication in CXCR4 [69]. First, statis-

tical coupling analysis was used to quantify pairwise correlation of amino acid

evolution. Second, MDwas performed to obtain structural information on the dimer

interface. Then the co-evolutionary relationship was to weight networks for

CXCR4 dimer. This combined network analysis has found that three helixes,

TMs 3, 4, and 5, are considered as co-evolution sectors and play key roles in the

communication through the dimer interface.

4.2 Hsp90-Client Protein Pathways

Hsp90 molecular chaperone represents a typical paradigm that signals transduction

pathways control functionally important biological processes and relate to serious

human cancer. The Hsp90-CTD region, for example, participates in the Hsp90

dimerization, and involves the inter-domain communication pathways from the

nucleotide binding site to the allosteric binding site. The interaction between Hsp90

and the diverse array of client proteins (p53 and oncogenic kinases) is the principle

of these molecular mechanisms. AANs combined fluctuation dynamics have given

novel insight of their functional dynamics and allosteric communications for

Hsp90-client protein complexes [47]. AANs of Hsp90 interaction networks show

small-world organization, and thus the centrality analysis enables the quantitative

modeling of signal propagation mechanisms. Such analyses have been performed

on Hsp90-p53, Hsp90-p23, Hsp90-Aha1, Hsp90-Cdc37, Hsp90-Sgt1, and Hsp90-

Sgt1-Rar1 complexes [70–73]. The interfaces of these Hsp90 complexes were

identified by network parameters, including clusters, hubs, cliques, and
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communities. These local topological features give clues to key residues for

mediating allosteric communication pathways. In general, two conserved residues

with high centrality are found to appear most on pathways. These studies showed

that AANs enable not only global topological analysis but also communication

analysis of Hsp90–client proteins interactions.

4.3 Pathways Across β Clamp Dimer

The β clamp is a PCNA-like toroidal dimer. We have previously used the weighted

AAN based on the Van der Waals contact score [74] to explore structural commu-

nications encoded by global topology of the β clamp [75]. First, the communication

pathway across the dimer interface in the β clamp can be identified from AANs

using the Floyd–Warshall algorithm. Six shortest paths have been predicted through

the interface between chain A and chain B: (1) A: Pro71 (α1)!A: Lys74!B:

Ile272!B: Arg269 (α2), as show in Fig. 3; (2) A: Gly81!B: Arg269!B: Ile

272; (3) A: Gly81!A: Ile78!B: 273!B: Glu300; (4) A: Leu82!B:

Arg269!B: Ile272; (5) A: Leu82!A: Phe106!B: Leu273!B: Glu300; (6)

B: Gly81!B: Asp77!B: Lys74!A: Glu300!A: Gln299. These pathways

Fig. 3 Communication pathway at the AB interface of the β clamp obtained by the shortest path

analysis of AAN based on Van der Waals contact score (adopted from [75])
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through the AB interface could mediate long-range communication between two

monomers. Second, z-scores based on betweenness and closeness were used to

evaluate the importance of each residue along these pathways. In our case, for

example, Lys74 in chain A and Ile272 in chain B are two interface hot spots for the

first pathway.

5 Perspectives

Protein–protein interactions form the molecular basis of very many diseases at the

level of systems biology, providing putative new targets for drug discovery. How-

ever, protein–protein interaction networks are always constructed based on the

protein associations, in which one protein could connect with many other proteins.

Such kinds of networks miss structural details of individual protein and their

binding information, and thus they are too abstract to reflect biological reality.

Fortunately, the growing number of structures for protein complexes gives enough

structural information on how proteins interact on a genome-wide scale. If protein–

protein interactions include binding information from protein three-dimensional

structures, the related networks move from static and abstract representations to

physical and dynamical interactions, which are more reasonable to identify indi-

vidual proteins as drug targets in a protein–protein interaction network. Therefore,

how integrating protein interfaces into protein–protein interaction networks is

becoming a major challenge in future development [76]. Indeed, this object belong

to the goals of structural systems biology [77], which was proposed about 10 years

ago but its development has not been as rapid as expected. This concept is

summarized in Fig. 4, in which p53 interacts with a multitude of protein partners

and their hot spots information can been integrated into a protein–protein interac-

tion network. Further systems biological analyses of the protein–protein interaction

network, such as mapping gene expression patterns or GeneGo pathway analysis,

can predict effective disease-associated biomarkers [79].

As a final perspective, the following two breakthroughs in methods might have

potential applications to refresh this field:

1. PRISM is a structural matching-based method for predicting protein–protein

interactions [80]. The main idea of this approach is that two proteins may

interact if their unbound surface pairs can find a known protein interface with

similar structure. To complement this method, a database with 22,604 unique

interface structures has been built to provide a rich resource for template-based

docking [81]. This method has also recently been formalized as a web

server [82].

2. Another method for predicting PPIs based on structures of protein complexes is

called PrePPI [83]. It uses an algorithm based on Bayesian statistics to combine

structural and non-structural interaction clues, which give fine details of the

interaction between proteins and their interacting partners.
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Of course, this research area is just starting. There are many open questions both

in methodology development and applications in disease treatment. We only list

two of them for the coming years. Protein–protein interactions at interfaces are

dynamic, so how to develop and apply computational methods for investigating

these dynamical features remains a challenge. The elastic network model is effi-

cient for high-throughput investigations of protein dynamics and thus represents a

promising approach [84]. So far, there are many databases for protein–protein

interactions related to diseases [85]. Therefore, knowing how to annotate these

interactions by interface information, such as that on binding sites and signal

transduction, would improve our understanding of molecular mechanisms of

diseases.
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Abstract Cyanobacteria, the phototrophic microorganisms, have attracted much

attention recently as a promising source for environmentally sustainable biofuels

production. However, barriers for commercial markets of cyanobacteria-based

biofuels concern the economic feasibility. Miscellaneous strategies for improving

the production performance of cyanobacteria have thus been developed. Among

these, the simple ad hoc strategies resulting in failure to optimize fully cell growth

coupled with desired product yield are explored. With the advancement of geno-

mics and systems biology, a new paradigm toward systems metabolic engineering

has been recognized. In particular, a genome-scale metabolic network reconstruc-

tion and modeling is a crucial systems-based tool for whole-cell-wide investigation
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and prediction. In this review, the cyanobacterial genome-scale metabolic models,

which offer a system-level understanding of cyanobacterial metabolism, are

described. The main process of metabolic network reconstruction and modeling

of cyanobacteria are summarized. Strategies and developments on genome-scale

network and modeling through the systems metabolic engineering approach are

advanced and employed for efficient cyanobacterial-based biofuels production.

Keywords Biofuels, Cyanobacteria, Genome-scale metabolic model, Metabolic

network reconstruction, Systems metabolic engineering
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1 Introduction

The rapid consumption of global energy has caused an environmental crisis and

fossil fuel depletion. In turn, the need for sustainable biofuel production and

development has become clear. Gradually, photosynthetic organisms are being

promoted as they can recycle the greenhouse gas emitted from daily activities

into a usable form of energy known as biofuel [1, 2]. Biofuel is defined as gaseous,

liquid, or solid fuels produced directly or indirectly from organic matter. The first

generation of biofuel is basically derived from food crops such as oil-palm,

soybean, corn, and sugarcane. However, the production process leads to potential

stress involving issues of land, water, and food scarcity [3, 4]. To overcome the

increasing controversy in terms of ‘food vs. fuel’, the second generation of biofuel

has developed using non-food lignocellulosic materials, which include agricultural

residues, municipal and industrial wastes, and grasses. Unfortunately, this genera-

tion appears unsustainable because it requires high energy intensive conversion

processes leading to increased CO2 emission [5]. Further, the third and fourth

generations involve more advanced technologies. These generations produce

algae-based biofuels, which have great potential to capture and reduce CO2 in the

global atmosphere [6]. The third generation of biofuel involves improvement of

biomass yield via the cultivation process and the fourth generation aims to use
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metabolic engineering and post-genomics tools for enhancing algae-to-biofuels

production [7].

Considering algae, they use natural sunlight, CO2, water, and nutrients to make

their own biomass and hence carbon-based biofuels. The mechanism of photosyn-

thesis in algae is similar to that in higher plants. However, algae have a distinctive

growth yield, efficient CO2 fixation, and less land requirements compared to

terrestrial crops [8–10]. Algae are comprised of two major groups, namely

multicellular macroalgae (e.g., seaweeds) and unicellular microalgae. One example

of microalgae, often called cyanobacteria (blue-green algae), is known to produce a

crucial amount of oxygen (around 30%) on Earth [11]. They can grow in a variety

of habitats including aquatic and terrestrial environments [12]. Their capacity for

oxygen production through a unique carbon-concentrating mechanism is appealing

for enhancing photosynthetic CO2 fixation in crops [13, 14]. Compared to the other

algae, the cultivation and transformation systems of cyanobacteria have progressed

and been extensively developed [15–18]. Regarding the trends and progress of the

fourth biofuel generations through genetic engineering, cyanobacteria have

recently been studied as the potential cell factory for supporting energy needs

with economic and environmental sustainability.

Despite their great potential, the big challenge is how to increase productivity

and lower cost in order to compete economically with fossil fuels. To address these

obstacles, strain isolation and improvement, cultivation optimization, nutrient

utilization, and downstream processing have been developed [19, 20]. However,

several technical bottlenecks exist through using only traditional biological tech-

niques resulting in trial-and-error solutions [7]. With recent advances in genome

sequencing and the emergence of systems metabolic engineering, development of

genome-scale cellular networks and modeling serve as a key tool for understanding

the genotype–phenotype relationship. The genome-scale metabolic models (GEMs)

are derived from genome information, biochemical characterization, and multi-

level omics data. GEMs, thereby, offer insight into cellular function and organiza-

tion at a molecular level. Moreover, they also provide a technological framework to

accelerate the modification of existing pathways and the creation of new pathways

to obtain desired products [21–23]. Hence, employment of GEMs through systems

metabolic engineering provides a promising technology for strain design strategies

for cyanobacterial biofuels production.

In the first section the different strategies using traditional and advanced

approaches toward enhancement of cyanobacterial biofuels production are

described. Emphasizing the advanced approach, the development of cyanobacterial

metabolic network and modeling is later discussed. In the last section the challenges

and directions for cyanobacteria improvement as versatile cellular factories for

biofuels through the systems metabolic engineering strategies are discussed.
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2 Miscellaneous Strategies Toward Enhancement

of Cyanobacterial Biofuels Production

Cyanobacteria are promising sources for renewably produced fuel because of their

key advantages, such as fast growth, high photosynthetic efficiency, genetic trac-

tability, and genome availability. Cyanobacterial cells exhibit certain properties

that are able to directly produce and secrete various important biochemical and

biofuel feedstocks, for example isobutyraldehyde [24], isobutanol [24],

2,3-butanediol [25], 1-butanol [26], 2-methyl-1-butanol [27], acetone [28], ethylene

[29], and fatty acids [30]. Moreover, the biomass itself is also considered to be a

suitable raw material for sustainable biofuels production [15]. Despite their great

potential, the big challenge is how to increase biofuels productivity and compete

with the low cost of fossil fuels. To overcome the limitations and challenges,

different strategies developed to improve cyanobacterial biofuels production,

categorized as traditional (e.g., cultivation process and genetic modification)

and advanced (e.g., systems metabolic engineering) strategies are described.

To present biofuels production with miscellaneous strategies under different

growth conditions, five different types of biofuels, namely biodiesel, bioethanol,

biogas, biohydrogen, and bioelectricity are selected for discussion as listed in

Table 1.

2.1 Traditional Strategies

The process of cyanobacteria cultivation demands favorable environmental condi-

tions including light, nutrient, salinity, temperature, and pH. An adjustment of these

factors could impact their biomass composition [52]. Several pieces of research

showed that the improvement of cyanobacterial biomass by cultivation techniques

has been used for cyanobacterial bioethanol and biogas production as listed in

Table 1. Markou et al. [53] reported that nutrient limitation, especially phosphorus,

is one of the most influential factors enhancing glycogen accumulation in

Arthrospira platensis. Subsequently, Aikawa et al. [54] demonstrated efficient

bioethanol production using a direct conversion method of this glycogen-enriched

cyanobacterium. Greater amounts of lipid or carbohydrate content (up to 60–65%

of dry weight) were also observed in other cyanobacteria under stress conditions

[52, 55]. Growth environments and media can also enhance the productivity of

biohydrogen, for example. Cyanothece sp. ATCC 51142 [41] and Anabaena
cylindrica [44]. Moreover, alteration of growth conditions was also applied in the

production of biodiesel and bioelectricity (Table 1). The technique for cell cultiva-

tion under stress conditions may become an interesting strategy to generate poten-

tial biofuels feedstocks. However, a serious concern for the cultivation of

cyanobacteria under stress is growth rate restriction, which results in a dramatic

decrease in total biomass production.
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Table 1 List of miscellaneous strategies for improving cyanobacterial biofuels productivity under

different growth conditions

Biofuels

Cyanobacterial

strains

Strategy for biofuels

production

Biofuel

productivity References

Biodiesel Synechocystis
sp. PCC 6803

Genetic modification/Δ
phaAB, sll1951, Δslr2001-
slr2002, Δslr1710, Δslr2132

197� 14 mg/L [30]

Synechococcus
elongatus PCC
7942

Genetic modification/tesA

and Δaas, Promoter trc

80� 10 mg/

DCW

[31]

Arthrospira
platensis

Cultivated in nitrogen

deprivation

8% increased [32]

Bioethanol Synechocystis
sp. PCC 6803

Metabolic engineering

targeted pdc and slr1192;

ΔphaAB, Promoter rbc

5.50 g/L [16]

Synechococcus
elongatus PCC
7942

Synthetic metabolic

pathway

26.5 mg/L [33]

Synechococcus
sp. PCC 7002

Cultivated in nitrate

limitation

30 g/L [34]

Synechococcus
elongatus PCC
7942

Genetic modification/pdc

and adhII, Promoter rbcLS

54 nmol/L/day [35]

Arthrospira
platensis

Cultivated in stress

condition

1.08 g/L/day [36]

Arthrospira
platensis

Mutagenesis 20% increased [37]

Biohydrogen Synechocystis
sp. PCC 6803

Genetic modification/Δ
narB, ΔnirA

186 nmol/mg

Chl-a/h

[38]

Synechococcus
sp. PCC 7002

Genetic modification/ΔldhA 14.1 mol/day/

1017 cells

[39]

Synechococcus
elongatus PCC
7942

Genetic modification/

hydEF, hydG, hydA, Pro-

moter psbA1, lac

2.8 μmol/h/mg

Chl-a

[40]

Cyanothece
sp. ATCC

51142

Cultivated in continuous

light

300 μmol H2/

mg Chl-a/h

[41]

Arthrospira
maxima

Batch culture 400 μmol/L/h [42]

Arthrospira
platensis

Anaerobic in the dark 1 μmol H2/

12 h/mg

[43]

Anabaena
cylindrical

Cultivated in light limitation 30 ml H2/L/h [44]

Biogas Arthrospira
maxima

Biomass feedstock 0.4 L/day [45]

Biomass feedstock 350 ml CH4

gVS�1
[46]

Arthrospira
platensis

Biomass feedstock 293 ml CH4

gVS�1
[47]

Biomass feedstock 203 ml CH4

gVS�1
[36]

(continued)
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Recently, genetic engineering has been employed for improving biofuel produc-

tion. Conventional gene modification is a direct change of genetic material of

interest without consideration of other biological elements. Attempts to increase

biofuel content by means of genetic change were presented in the reviews by

Rosgaard et al. [56]. A number of exogenous gene transfer methods have been

investigated and progressed in cyanobacteria, mainly including natural transforma-

tion, electroporation, conjugation, and particle guns [57–59]. The continuous

development of these genetic tools are used to generate transformants for enhancing

cyanobacterial biofuels, namely biodiesel, bioethanol, biogas, biohydrogen, and

bioelectricity production, such as Synechocystis sp. PCC 6803 [30, 38],

Synechococcus elongatus PCC 7942 [31, 35], and Synechococcus sp. PCC 7002

[39, 60] as also seen in Table 1. Nonetheless, there are some cyanobacterial trains,

particularly the important commercial genus Arthrospira, which are resistant to

common genetic modification techniques [61, 62]. Therefore, a genetic control

system for the desired pathways of cyanobacteria is needed for establishment of

transformation protocols suitable for specific desired products and certain different

types of species.

2.2 Advanced Strategies

The emergence of metabolic engineering has enabled the improvement of

cyanobacterial strains for bioethanol production. With the recent wealth of geno-

mics and post genomics data available, there is growing interest in integrating the

conventional metabolic engineering and multi-level omics data in the discipline

of systems biology. With the paradigm shift, metabolic engineering has evolved

into systems metabolic engineering with a systems-level understanding of the

cellular function [63, 64]. Systems metabolic engineering, which deals with

analysis, design, and synthesis with integrative systems and synthetic biology,

was employed to make strain engineering efficient for cyanobacterial biofuels

Table 1 (continued)

Biofuels

Cyanobacterial

strains

Strategy for biofuels

production

Biofuel

productivity References

Bioelectricity Synechocystis
sp. PCC 6803

CO2 limitation and excess

light

5 mA/m2 [48]

Synechococcus
elongatus PCC
7942

Cultivated in light 0.3–0.4 W/m2 [49]

Anabaena
variabilis M-2

Cultivated in anaerobic 0.4 V [50]

Taihu Lake

cyanobacteria

SMFC in acidic fermenta-

tion broth

72 mW/m2 [51]
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production [65–67]. Therefore, systems metabolic engineering offers a conceptual

and technological framework to speed the optimization of cyanobacterial biofuels

production as depicted in Fig. 1. It is clear that this powerful framework is applied

based on the multi-level omics data and computational model known as GEMs.

In terms of genomics data, there are 301 cyanobacteria genomes deposited from

the NCBI database (August 2015). Of these, 95 species are reported for completed

genomes (http://www.ncbi.nlm.nih.gov/bioproject). Based on genomic informa-

tion, the genome-wide comparative analysis was performed to identify the genetic

conservation and the variation, together with metabolic diversity [68, 69]. This

resulted in feasible designed cyanobacterial strains with the potential to improve

biofuels production. There has also been research on transcriptomics conducted

to understand the global response of cyanobacteria metabolism [70, 71]. Using

Fig. 1 Diagram illustrating the revolution of systems metabolic engineering for strain design

strategies toward improving cyanobacterial biofuels production. GEMs are reconstructed based on

integrative multi-level omics data. The cyanobacterial model is then applied to analyze the

metabolic capabilities in the discipline of systems biology. Once the metabolic engineering targets

are identified, the results of analysis are subsequently employed to guide in the cyanobacterial

strains design. Finally, the cyanobacterial strains are synthesized according to the in silico analysis

through synthetic biology. The cyanobacterial strains leave the cycle whenever they show desired

phenotypes fitting with the requirement of industrial biotechnology
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high-resolution DNA microarrays, the transcriptomics study of engineered

Synechocystis sp. PCC 6803 strain cultured under continuous biofuel/ethanol pro-

duction in fully automated photobioreactors (PBRs) was investigated. The

transcriptomics results afterward provided in-depth characterization of the cellular

response of long-term ethanol production in Synechocystis sp. PCC 6803

[72]. Using transcriptomics RNA-sequencing with the gene knockout technique,

the possible target genes involved in ethanol tolerance in Synechocystis sp. PCC
6803 were presented [65]. This indicates that transcriptomics can be used to reveal

key expressed genes associated with bioethanol production in cyanobacteria.

With regard to proteomics, it has been performed to elucidate the cellular

responses to biofuel stress in cyanobacteria, which proves challenging for the

host’s tolerance to the toxic biofuels [73, 74]. There are several conditions using

the proteomic approach for studying expressed protein in the cells treated with

ethanol [75], butanol [76], hexane [77], salt [78], and subjected to N-starvation

[79]. The report presented by Pei et al. [80] showed that the constructed protein

network identified a core set of proteins that commonly respond to both biofuel

stress and environmental perturbation. This result was previously classified as a

core transcriptional response (CTR) by Sigh et al. [81]. Hence, the results from

multi-level omics studies provide more understanding in the cellular process and

underlined molecular keys for making sustainable fuels from cyanobacteria.

With regard to GEMs, large-scale metabolic networks and models serve as the

crucial tools for systems biology. They represent information infrastructures describ-

ing the whole relationship of gene-protein-reaction in cells. They offer not only

powerful analytical tools for quantitative, structural, and design analysis of cellular

metabolism, but also provide a computational framework to integrate high-throughput

datasets [82]. For this reason, GEMs have been extensively utilized in systems

metabolic engineering strategies [21, 83]. Successful applications of GEMs for

improving the desired products have been widely reported for several industrial

microorganisms, particularly, Escherichia coli [84]. To date, an overall increasing

numbers of cyanobacterial models have been published as shown schematically in

Fig. 2. This dramatic progress enables researchers to gain insights into metabolic

capacity and develop strategies for manipulation of cyanobacterial metabolism and

regulation. However, the comparative characteristics of each cyanobacterial meta-

bolic model are different in aspects of the total number of genes, reactions, metabo-

lites, and cellular compartments (Table 2). In the following sections, the descriptions

of how to develop and utilize cyanobacterial models as a major tool for understanding

whole-cell-wide metabolism toward biofuels production are highlighted.

3 Development of Cyanobacterial Metabolic Network

and Modeling

Cyanobacterial metabolism is the central biochemical machinery that enables

biological structures to sustain their cellular functions. A better understanding of

the metabolism of cyanobacteria plays a pivotal role in optimizing cell growth and
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biofuel yields. However, unlike the heterotrophs that utilize single organic com-

pounds as sources of carbon and energy, cyanobacteria make their own food by

utilizing light for energy and inorganic carbon, for example CO2 or bicarbonate, as

a carbon source. Furthermore, cyanobacteria also perform a circadian cycle with

daily light. With this double complex and specific mechanism of cyanobacteria, the

GEMs have been developed for a system-level understanding of cyanobacterial

metabolism. In this section we review the reconstruction of genome-scale meta-

bolic network and modeling of cyanobacteria. A description of simulation

approaches that have been used for gaining insights into cyanobacterial metabolism

is provided. Strain design strategies revealed by cyanobacterial GEMs are also

proposed.

3.1 Construction of Cyanobacterial Genome-Scale Metabolic
Model

A typical construction process of cyanobacterial genome-scale metabolic model is

divided into four main steps [107]: (1) reconstruction of a draft cyanobacterial

metabolic network, (2) refinement of cyanobacterial network, (3) conversion of

network to cyanobacterial model, and (4) evaluation of cyanobacterial model. For

further details, the four main steps are described below and in Fig. 3.

Step 1: Reconstruction of a draft cyanobacterial metabolic network. The aim is

to obtain every possible candidate for metabolic reactions and pathways without

Fig. 2 Historical timeline and increase in the number of developed cyanobacterial metabolic

models. Each circle represents an individual cyanobacterial model along with the different circle

sizes indicating the numbers of reaction in the model. In particular, cyanobacterial strains are

discriminated in the respective lines and marked with different colors
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considering the complete reconstruction. This step starts with genome annotation.

The connections between identified metabolic genes encoding enzymes and their

corresponding biochemical reactions are subsequently determined. Gene-protein-

reaction (GPR) associations of the network are obtained. Then all gathered GPR

relationships are assembled to generate a draft network of cyanobacteria. It should

be noted that the draft network may contain incorrect or missing assignments of

species-specific metabolic processes because of incomplete annotation and data-

base information. To provide information for creation of a draft cyanobacterial

metabolic network, the databases and tools listed in Table 3 are usually used.

Step 2: Refinement of cyanobacterial network. After obtaining the draft

cyanobacterial metabolic network it is important to perform manual curation to

achieve a high-quality metabolic network. In general, each pathway within the

network has to be curated in a canonical manner, from the clear pathway assign-

ment to the ambiguous one. Certain information should be checked during

performing manual correction, for example information about the reaction includ-

ing reaction name, substrate and cofactor usage, balanced reaction stoichiometry,

directionality, reaction identifier of the reference database, spontaneous reaction,

demand and sink reaction, type of transportation, exchange reaction,

ATP-maintenance reaction, and the biomass formation equation. In addition, infor-

mation about the metabolite including metabolite name and abbreviation, neutral

and charged formula, charge value, and metabolite identifier as well as information

Fig. 3 Diagram illustrating four main steps for construction of a cyanobacterial genome-scale

metabolic model
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Table 3 List of different databases and tools for creating cyanobacterial genome-scale metabolic

model

Databases/tools FTP links Description References

MetaCyc http://metacyc.org/ A highly curated metabolic

database

[108]

BioCyc http://biocyc.org/ Organism-specific database [108]

KEGG http://www.genome.jp/

kegg/

Database resource for cell

metabolism

[109]

Reactome http://www.reactome.org A database of biological

processes

[110]

UniProt http://www.uniprot.org/ Protein database [111]

CyanoBase http://genome.microbedb.

jp/cyanobase

Cyanobacterial genome

database

[112]

CyanoClust http://cyanoclust.c.u-tokyo.

ac.jp

Cyanobacterial homolog pro-

teins database

[113]

Cyanobacterial

KnowledgeBase

http://nfmc.res.in/ckb/

index.html

Cyanobacterial genome and

proteome database

[114]

CyanoCOG http://www2.sbi.kmutt.ac.

th/orthoCOG/

cyanoCOGnew/home

Cyanobacterial orthologous

proteins database

[115]

CyanoPhyChe http://bif.uohyd.ac.in/cpc A database for Physico-

chemical properties of

cyanobacterial proteins

[116]

SpirPro http://spirpro.sbi.kmutt.ac.

th

Spirulina proteome database [115]

CyanOmics http://lag.ihb.ac.cn/

cyanomics

Omics database of

Synechococcus sp. PCC 7002

[117]

CyanoEXpress http://cyanoexpress.

sysbiolab.eu

Transcriptome database of

Synechocystis sp. PCC 6803

[118]

ProPortal http://proportal.mit.edu/ Cyanobacterium

Prochlorococcus database

[119]

BLAST http://blast.ncbi.nlm.nih.

gov/Blast.cgi

Functional annotation tool [120]

Pfam http://pfam.xfam.org/ Database and tool for protein

families

[121]

PUBMED http://www.ncbi.nlm.nih.

gov/pubmed/

Literature database [122]

Pathway Tools http://bioinformatics.ai.sri.

com/ptools/

A comprehensive symbolic sys-

tems biology software

[123]

KASS KEGG http://www.genome.jp/

tools/kaas/

KEGG automatic annotation

server

[124]

Model SEED http://www.theseed.org/

wiki/Main_Page

Annotation and reconstruction

tool for microbial genomes

[125]

SuBliMinal

Toolbox

http://www.mcisb.org/

subliminal/

Metabolic network reconstruc-

tion tool

[126]

RAVEN

Toolbox

http://biomet-toolbox.org/

index.php?

page¼downtools-raven

Reconstruction, analysis and

visualization of metabolic

networks

[127]

(continued)
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of enzyme and reaction localization cellular compartments involving in the deter-

mination of for each subsystem are refined Information on missing functions/

reactions may be obtained from experiments and metabolic pathway databases.

Information on growth requirements is also concerned. Other issues encountered

during metabolic network reconstruction are listed by Feist et al. [136]. The end of

the manual refinement process results in a refined network reflecting strain specific

physiology.

Step 3: Conversion of network to cyanobacterial model. Conversion of the

reconstructed network of cyanobacteria is transformed to a mathematically consis-

tent form known as the stoichiometric matrix, S (m � n) (Fig. 3) [137]. This matrix

is a rectangular array of stoichiometric coefficients, which are the number written in

front of metabolites involved in the particular chemical reaction, arranged in

m rows and n columns. Considering a simple network, m rows correspond to the

number of compound species and n columns represent the number of reactions. The

intersection of row and column in S expresses the relative quantity of metabolites

taking part in such a reaction. After generation of S, automatically achieved using

tools, a constraint-based simulation approach is applied to access the function of the

reconstructed metabolic network [23]. This modeling approach provides a static

model built upon principles of biological systems with physical and chemical laws.

Imposition of constraints usually includes the connection of metabolites within the

given system, thermodynamics (reaction reversibility), and upper and lower bounds

of individual reaction fluxes. With the pseudo-steady assumption, cellular metab-

olites must be produced and consumed in a mass-balanced conservation with short

timescales. The equation of system-wide metabolism should be written as S � v¼ 0,

where v is vector of conversion rate of reaction fluxes (mole. unit biomass�1.h�1).

Flux balance analysis (FBA) is the most widely used technique for investigating

Table 3 (continued)

Databases/tools FTP links Description References

GEMSiRV http://sb.nhri.org.tw/

GEMSiRV

Reconstruction, visualization,

and simulation of metabolic

networks

[128]

OptFlux http://www.optflux.org/ Metabolic modeling tool [129]

MicrobesFlux http://tanglab.engineering.

wustl.edu/static/

MicrobesFlux.html

Metabolic modeling tool [130]

MetaNET http://metanet.osdd.net Metabolic modeling tool [131]

MOST http://most.ccib.rutgers.

edu/

Metabolic modeling and strain

design

[132]

COBRA

Toolbox

https://opencobra.github.io/ Metabolic modeling tool [133]

DRUM Metabolic modeling tool for

Non-Balanced Growth

[134]

DFBAlab http://yoric.mit.edu/dfbalab MATLAB code for dynamic

flux balance analysis

[135]
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metabolic state and balances on a large-scale network. In the FBA, the objective

function (Z ) is set to obtain a single optimal flux distribution inside the edge of the

solution space. The objective function can be minimized or maximized. Using

linear programming, the values of the objective function, typically the biomass

constituents (Z= vbiomass), and other metabolic fluxes can be calculated [137].

Step 4: Evaluation of cyanobacterial model. This stage often involves testing

and correcting. After the created GEMs are simulated, the amount of biomass

growth is shown. Despite this, network gaps are common errors found when

modeling large-scale networks. This result presents no growth observation. The

analysis and closure of gaps in pathways becomes an intractable task. Thus, gap

filling algorithms are necessary. Other modeling errors linked to incorrect reac-

tion constraints were exchanging substance across compartments and no con-

sumption and production of metabolites. The analysis and solution in GEMs

development has been extensively reviewed [107]. To debug modeling problems,

all improved data are manually added to the refined metabolic network (step 2)

and then repeated in steps 3 and 4 (Fig. 3). Once the model shows biomass flux

prediction, the model validation can eventually be performed using independent

published experiments. These validations may result in filling phenotypic gaps

and complementing additional biological information to the model. The recon-

struction process can be iteratively performed until simulated data are in agree-

ment with the experimental data and are consistent with the physiology of the

cyanobacteria observed.

3.2 Modeling Aided Strategies for Cyanobacterial Biofuels
Production

During 2002–2007 the metabolic network reconstruction of cyanobacteria was

initially performed on a small scale (Fig. 2 and Table 2). The reconstruction was

based on either inferring the enzyme information from biochemical knowledge

or adapting the network of known organisms, including the metabolic models of

Synechocystis sp. PCC 6803 [85–87] and A. platensis [98]. After the availability
of genome sequences, genome-scale metabolic networks were created by apply-

ing the reconstruction process shown in Fig. 3. The first GEM of cyanobacteria

was Synechocystis sp. PCC 6803 which was built and published by Fu

et al. [89]. To date, more than 15 GEMs of cyanobacterial species have been

developed and studied for different purposes, including Synechocystis sp. PCC
6803 [91–93, 95–97, 138], A. platensis [100], Synechococcus elongatus PCC

7942 [106], Synechococcus sp. PCC 7002 [101–103], and six Cyanothece strains,
Cyanothece sp. ATCC 51142 [95, 104, 105], Cyanothece sp. PCC 7424, 7425,

7822, 8801, and 8802 [105] (Table 2). The release of these GEMs provides

opportunity to gain new biological knowledge and assist design strategies for

biofuels production.
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3.2.1 Overview of the Cyanobacterial GEMs

The published GEMs share some general principles of the network pathway

involved in central carbon metabolisms, namely glycolysis, citric acid cycle, and

pentose phosphate pathways and photosynthesis as well as nitrogen assimilation.

These cellular processes are the main components to serve the incorporation of

inorganic substrates, which produce precursor metabolites and the energy for

cellular functions. These core metabolic pathways are similar to the model of

heterotrophic microorganisms, such as E. coli. However, the major difference of

metabolic content in each model depends on the degree of details in cellular

compartments, photosynthesis, pathway for secondary metabolites, the definition

and organization within the reconstructed network, and biomass constitution.

The presence of cellular compartments in the reconstructed network has been

identified based on cyanobacterial cell structure dependent on the purpose of the

model. Most of the published models have at least two compartments, namely the

cytosol and the extracellular space (Table 2). The increase in the number of

compartments is related to the detail of photosynthesis. Nogales et al. [138] built

GEM comprising four different cellular compartments of Synechocystis sp. PCC
6803, namely extracellular, periplasm, cytoplasm, and thylakoid. This work aims to

reveal key photosynthetic processes in mechanistic detail under various lights. The

photosynthesis and respiration were situated in the thylakoid membrane of this in

silico model. The photosynthetic linear electron flow (LEF), photosystem I

(700 nm) and photosystem II (at 680 nm), and alternate electron flow pathways

(AEF) accounted for balancing the ATP/NADPH ratio [102, 104]. Nevertheless,

some simple models present photophosphorylation as a single reaction, where

harvested photons convert H2O into ATP and NADP [89]. Another extensive

study into cellular compartments was made by Knoop et al. [96]. They developed

GEM of Synechocystis sp. PCC 6803 consisting of six cellular compartments,

cytosol, thylakoid membrane, thylakoid lumen, plasma membrane, periplasmic

space, carboxysomes, and extracellular space.

The GEMs of cyanobacteria also present a different degree of detail in secondary

metabolites biosynthesis pathway. It seems to be that the most present secondary

metabolite in the model is chlorophyll a [91, 98, 139]. However, researchers have

attempted to incorporate the other secondary metabolites into a developing model

of Synechocystis sp. PCC 6803 [96, 138]. Further, the degree of difference of

cyanobacterial network was observed in the context of definition and organization

of metabolic network within the model. For example, the reactions were duplicated

when several alternative enzymes were involved [96], and some models used

Boolean gene-protein-reaction rules to merge such reactions into a single one.

Some metabolic networks also include the isomeric forms of metabolites, such as

alpha D-glucose and beta-D-glucose. The difference in organization of the

reconstructed metabolic network causes a difficulty for comparisons of multiple

cyanobacterial species. Formulation of the biomass-constituting equation of the

model was carried out using literature data and analytical measurements [96]. It is
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an approximation of the cellular macromolecule composition, such as proteins,

carbohydrates, lipids, DNA, RNA, cell wall components, cofactors, and secondary

metabolites identified within the cell. It has been demonstrated that cellular com-

position directly responds to environmental conditions and the cellular genotype

[52]. As the details regarding the reactions and the metabolites in reconstructed

metabolic networks are strongly related to the detail in biomass-constituting equa-

tion, the set of macromolecules constituting biomass may have an impact on

accurate predictions of product production [140]. Therefore, organism-specific

biomass- constituting equations are necessary, but many broad approximations

can possibly be made.

3.2.2 Cyanobacterial GEM Simulations

Even though the models have been constructed in great detail for the different

purposes of each study, similar simulations were performed by way of a static

approach under three metabolic modes, namely autotrophy, heterotrophy, and

mixotrophy. This allows a better understanding of which cellular processes enable

cyanobacteria to live in a broad variety of environmental conditions. Most of the

studies have applied Flux Balance Analysis (FBA) [141] with maximized biomass

formation as an objective function to simulate the model. Additionally, Flux

Variability Analysis (FVA) [142] is usually used to determine the maximum and

minimum flux values found in FBA and to identify the blocked or non-essential

reactions of the metabolic models. However, the balanced growth assumption of

FBA cannot handle some bioprocesses, such as the circadian cycle where some

internal metabolites are accumulated and consumed under day/night cycles. Thus,

the investigation of metabolic state under these dynamic conditions was proposed

for growth under day/night cycles [90]. In the following we review various simu-

lation studies of the cyanobacterial GEMs under the three principle metabolic

modes by using static modeling and the dynamic modeling approaches. A

system-level understanding of cyanobacterial metabolism supported by GEMs

allows systems metabolic engineering strategies to optimize biofuel production.

3.2.3 Autotrophy

Photoautotrophic condition is characterized by simulation where energy and carbon

sources come from light and CO2, respectively. All GEMs are demonstrated by

simulating autotrophic growth to represent their basic metabolic capabilities of

cellular systems. The availability of light intensity is represented by photon flux.

Generally, a constant number of photons used per photosystem are assumed [86, 87,

89]. In fact, this quantity can be affected by the physiological status of the cellular

harvesting processes where the energy of photons is captured and transferred via

pigment to the proteins of the reaction centers. Moreover, the absorption of a

photon depends on a particular wavelength, which can fluctuate throughout the
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day. Simulation results of light influence upon the cell growth suggesting a high

impact on qualitative flux distribution was observed under excessive light and

limiting carbon sources [138]. To meet energy and carbon cellular requirements,

AEF was developed to restore ATP/NADPH ratio [138] and act as energy valves in

the case of excessive light [102, 104]. AEF is represented as either cyclic of electron

flow (ferredoxin plastoquinone reductase), the NADPH dehydrogenase complexes,

plastoquinone oxidase, cytochrome oxidase, or the Mehler and hydrogenase reac-

tions [143]. Typically, the ATP/NADPH ratio was set in a genome-scale metabolic

model since the fixation of one molecule of CO2 through the Calvin cycle in

cyanobacteria required 3 ATP and 2 NADPH [89]. Another interesting simulation

was performed in terms of the effect of the light quality on the autotrophic

metabolism. However, an attempt to develop the detail of light harvesting mecha-

nisms was performed in green algae, Chlamydomonas [144]. This would be the first
step in challenging the light harvesting process model in cyanobacterial GEMs. As

main cellular metabolism is related to photosynthesis, it is necessary to expand the

explicit action of photon harvesting, chlorophyll fluorescence, photoinhibition,

photoacclimation, and non-photochemical quenching.

3.2.4 Heterotrophy

Although cyanobacteria are photoautotrophs, some of them have the capability for

heterotrophic growth in the dark, supported by an organic carbon source. However,

how cyanobacteria regulate this heterotrophic activity still remains largely

unknown. Metabolic flux predictions under heterotrophic conditions are of consid-

erable interest for almost all cyanobacterial GEMs. The significant differences

between autotrophy and heterotrophy are carbon source types. Glucose, acetate,

and glycogen are the major sources of carbon for in silico simulation. Based on a

given set of constraints on the exchange rate of nitrate, phosphate, sulfur, and

possible external parameters, the maximal growth yield as well as flux distribution

can be obtained. Under heterotrophic growth, simulation results showed that the

reaction fluxes in the glycolysis pathway move forward to synthesize precursor

metabolites for downstream pathways. Comparing the metabolic state between

autotrophy and heterotrophy, the degree of active reactions are different in the

central carbon pathways (glycolysis, TCA cycle, Calvin cycle, and pentose phos-

phate pathway) whereas the synthesis of amino acids, lipids, DNA, and RNA does

not vary significantly [100, 145]. The main energy source was produced from

glycolysis, the TCA cycle, and the oxidative pentose phosphate pathway instead

of the photosynthesis system and AEF. Highly active fluxes of the oxidative pentose

phosphate process indicated that NADPH was the key metabolite under heterotro-

phic growth. Moreover, results showed that dark respiration utilized carbon at

approximately 40% [91].
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3.2.5 Mixotrophy

Mixotrophy is a combination of metabolic modes where an organism can obtain its

energy from light, carbon dioxide, and sugars. This is also a common phenomenon

in cyanobacteria, in particular response from environments under light- or nutrient-

limitation [146]. Understanding the ability to switch between autotrophy and

mixotrophy is now being recognized and challenged [147]. Computational analysis

revealed that the metabolic state of the cell system under mixotrophic conditions is

varied between autotrophy and heterotrophy [100]. However, the results also

depend on the ratio of light and organic carbon set for the simulation

[93, 104]. In addition, Knoop et al. [90] showed that flux distribution resulting

from simulation during mixotrophic growth agrees well with experimental analysis.

An illustration of an autotrophic, heterotrophic, and mixotrophic central metabo-

lism flux map of the GEM of Synechocystis sp. PCC 6803 is provided by Baroukh

et al. [148].

3.2.6 Day/Night Cycle

Although the FBA could fulfill basic insights into the three metabolic modes in

cyanobacteria, it cannot be used to capture the transition of metabolic process of the

cellular system. Knoop et al. [90] attempted to simulate a day/night cycle through

FBA by decreasing the light intensity and increasing the carbon source at the same

time. The results showed a shift in metabolic state between autotrophy- and

heterotrophy-like conditions. Currently, a framework for providing dynamic met-

abolic modeling has been developed (Table 3) such as Dynamic Flux Balance

Analysis (DFBA) [149]. However, DFBA is also based on the assumption that

there is no intracellular accumulation of compounds to circumvent the large

accumulation of particular metabolites during the day and their consumption during

the night. Knoop et al. [90] employed DFBA to compute dynamic metabolic fluxes

for a full diurnal cycle. In simulation, a different biomass composition

corresponding to the metabolism shifted from a night-time, heterotrophic metabo-

lism, to a day-time, autotrophic metabolism, was used for predicting all metabolic

flux dynamics. Another modeling framework named DRUM [134] was developed

based on Elementary Flux Mode analysis. This technique splits the full network

into sub-networks and allows the accumulation and generation of connected metab-

olites in each sub-network. The software was used to demonstrate the metabolic

flux of lipid and carbohydrate accumulation under the diurnal cycle of Tisochrysis
lutea. In the context of cyanobacterial biofuel production, dynamic metabolic

modeling is crucial in understanding the outdoor dynamics of cell metabolism.
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3.2.7 Modeling Toward Strain Design Strategies for Biofuel Production

To investigate the cyanobacterial metabolism provided by GEMs, Erdrich

et al. [150] used the GEM of Synechocystis sp. PCC 6803 to identify and charac-

terize systematically suitable strain design strategies for ethanol and isobutanol

synthesis. This work demonstrated that cyanobacterial GEM has been developed

and applied as a vital tool for rational metabolic engineering to improve biofuel

production. The team utilized the original GEM of Synechocystis sp. PCC 6803

published by Knoop et al. [96]. The alternate electron transport pathways and

reactions of both ethanol and isobutanol synthesis pathway and transportation

were added. They used two different computational methods, CASOP [151] and

Constrained Minimal Cut Sets [152], to identify intervention strategies that enforce

coupled biomass and high-yield product synthesis under phototrophic growth

concerning the diurnal rhythm of cyanobacteria. This research revealed the suitable

knockout gene set target routes to reduce the ratio of ATP/NADPH in the photo-

synthetic electron transport chain. Here, proof-of-concept in using cyanobacterial

GEM toward biofuel production has been established. However, further develop-

ment of tailored modeling approaches is of crucial importance for gaining insight to

cyanobacterial metabolism and supporting strain design strategies.

4 Conclusions and Perspectives

With the amount of fossil fuels continually decreasing, biofuels could soon become

vital sources of the world’s energy. Much research has been carried out seeking

ways to produce biofuels that are economically feasible. Not until recently did

cyanobacteria become leading candidates as excellent sources for biofuels produc-

tion because they can simply take free energy from sunlight and atmospheric carbon

dioxide and subsequently convert them into valuable fuels, namely biodiesel,

bioethanol, biohydrogen, biogas, and bioelectricity. Cyanobacteria can also be

used as cell factories for production of bio-based chemicals, that is, short chain

alcohols. Although not yet feasible in term of production cost, we believe that

cyanobacteria have far greater advantages over other organisms in many ways and

they are worthy of investing more research efforts. Systems metabolic engineering

(Fig. 4) offers great promise for rational strain improvement of cyanobacteria with

desirable phenotype, overproduction of biofuels in this case. This approach, con-

sidered as a means for the fourth generation of biofuels production, includes

working in a cycle of analysis, design, and synthesis steps. It can be realized by

the employment of cyanobacterial genomes to reconstruct a precise network which

is then converted to a GEM. Along with multi-level omics information, a

cyanobacterial GEM helps facilitate systematic analysis of biofuel pathways and

in silico prediction of metabolic capabilities of various designed strains. Next, some

selected designs guided by the model are subject to further strain construction in the
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laboratory, aiming to obtain super-cyanobacterial strains. Though the future of

cyanobacteria can be bright, as witnessed by the availability of many

cyanobacterial GEMs, there are still some challenges needing to be addressed,

especially molecular biology tools for genetic construction of engineered strains.

Nevertheless, with recent efforts in synthetic biology field, we believe that efficient

genetic tools for simple construction of genetically engineered cyanobacteria can

soon be made available.
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Abstract Thermophilic microorganisms are of increasing interest for many indus-

tries as their enzymes and metabolisms are highly efficient at elevated tempera-

tures. However, their metabolic processes are often largely different from their

mesophilic counterparts. These differences can lead to metabolic engineering

strategies that are doomed to fail. Genome-scale metabolic modeling is an effective

and highly utilized way to investigate cellular phenotypes and to test metabolic

engineering strategies. In this review we chronicle a number of thermophilic

organisms that have recently been studied with genome-scale models. The micro-

organisms spread across archaea and bacteria domains, and their study gives

insights that can be applied in a broader context than just the species they describe.

We end with a perspective on the future development and applications of genome-

scale models of thermophilic organisms.
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1 Introduction to Thermophilic Microorganisms

According to Brock, thermophiles are organisms that can grow and reproduce at

high temperatures [1]. Generally, 50–60�C is regarded as the minimal temperature

for bacteria and archaea to be considered thermophiles, because this is the known

upper limit for eukaryotes. Even within thermophiles there is a distinction between

hypothermophiles and hyperthermophiles based on their optimum temperature.

Hypothermophiles prefer temperatures of up to 80�C whereas hyperthermophiles

can have a temperature preference of up to 100�C.
Thermophilic microorganisms can be found in various habitats such as geother-

mal hot springs in places such as Yellowstone National Park where Thermus
aquaticus was discovered [2]. Another major known habitat is the area around

deep-sea vents from whichMethanococcus jannaschii was found [3]. Nutritionally,
thermophiles which span the metabolic range from phototrophy to chemotrophy,

from autotrophy to heterotrophy, and from aerobic to anaerobic capabilities have

been described in the literature [4].

Generally, studies have shown that, at optimal temperatures, thermophiles show

lower growth yield compared to their mesophilic counterparts at their respective

optimal temperatures. The lower yield is attributed to a higher energy for mainte-

nance requirements such as turnover of proteins and nucleotides, cell mobility, and

ionic maintenance. Because of their high temperature growth conditions, thermo-

philes require more energy for maintaining these conditions [5]. There are some

exceptions to the rule, such as Thermothrix thiopara [6]. The observed reduced

growth efficiency and higher maintenance requirements have made these organisms

interesting in research as these organisms tend to produce various catabolic prod-

ucts in larger quantities than other organisms [7].
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2 Uses of Thermophilic Microorganisms in Industry

Thermophilic organisms have been utilized in several industrial areas such as the

fuel industry, waste management, and mining. Thermophiles and their enzymes

have been widely regarded as the most efficient way to generate biofuels from

lignocellulose (contains cellulose, hemicellulose, and lignin). The use of thermo-

stable organisms and enzymes provides several advantages such as faster conver-

sion of substrates, decreased risk of contaminations, and more compound recovery.

Several thermophile-produced enzymes have been proposed for degradation of

cellulosic biomass. Some of the enzymes are cellulases (which degrade cellulose)

and xylanases (which degrade hemicellulose). Furthermore, thermophilic organ-

isms have been suggested to be the microbial cell factory for consolidated

bioprocessing (CBP) in which degradation of lignocellulose and fermentation of

sugars are accomplished in one step. Examples of these organisms are Clostridium
thermocellum, Caldicellulosiruptor saccharolyticus, and Caldicellulosiruptor
bescii.

In addition to biofuels, thermophilic organisms also find their use in the area of

waste management [8–11]. Studies have shown that the use of both mesophilic and

thermophilic digesters could help recover energy from biowastes such as livestock

manure and food waste. Furthermore, the use of thermophiles for the recovery

of metals from industrial and municipal wastes has also been proposed

[12, 13]. Bioleaching is the process through which microorganisms are used to

extract metals from ores and waste products. This process has been used for the

extraction of metals such as zinc, copper, gold, and molybdenum using organisms

such as Metallosphaera sedula [14, 15], Sulfolobus [14, 15], Sulfobacillus [16], or
Ferroplasma [17].

3 Genome-Scale Modeling of Metabolism

Genome-scale modeling is a powerful tool that has been used for many applica-

tions, such as the prediction of cellular phenotypes, elucidation of biological

principles, rational strain design for metabolic engineering, simulation of

co-cultures, and the interpretation of OMICs and other high-throughput datasets

[18]. The most common method for analyzing a genome-scale metabolic network is

called Flux Balance Analysis (FBA). In general, a metabolic network can be

represented by a stoichiometric matrix S 2 ℝm�n, consisting of m metabolites and

n reactions, such that the entry si,j is the stoichiometric coefficient of metabolite i in

reaction j. A valid flux distribution vector v 2 ℝn�1 satisfies a steady-state condition

S � v ¼ 0
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and is thus constrained by mass balance. The flux distribution vector is also

constrained by thermodynamics such that

vj � 0

for all irreversible reactions j. FBA relies on the stoichiometric and thermodynamic

constraints to optimize a cellular objective, such as maximizing cell growth,

maximizing product synthesis, or minimizing ATP hydrolysis [19].

Using this framework, optimization problems can be coupled in a multitude of

ways to probe cellular metabolism, and multiple software packages have been

developed to facilitate the construction and analysis of genome-scale models

[20, 21]. In addition, many curated models of thermophiles and non-thermophiles

have been deposited in the BiGG database [22]. As the metabolism of thermophiles

are typically less well-understood than that of their mesophilic counterparts, and the

challenges of living at higher temperatures favors alternative metabolic pathways,

genome-scale models are effective tools to study thermophiles. The following

section outlines several curated genome-scale models and how they have been

used to study thermophilic metabolism, in particular increasing the understanding

of deviations from model organisms and generating hypotheses for further study.

4 Genome-Scale Modeling of Thermophilic

Microorganisms

4.1 Clostridium thermocellum

C. thermocellum is a gram-positive bacterium of great interest for consolidated

bioprocessing of lignocellulose to biofuels because it exhibits one of the fastest

growth rates on crystalline cellulose which it directly converts to the biofuels such

as ethanol, hydrogen, and isobutanol.

The first genome-scale model of C. thermocellum was created for strain ATCC

27405 by Roberts et al. [23]. The model, called iSR432, consists of 577 reactions,

525 metabolites, and 432 genes. The model consists of the cellulosome data

contained in its proteomic information. The cellulosome is a large extracellular

protein complex, which is optimized for hydrolyzing cellulose into glucose oligo-

mers of length 2–6. The draft reconstruction was based on the genome annotations

from databases such as IMG, UniProt, and KEGG [24]. Additional transport

reactions were added based on a reciprocal BLAST hit between C. thermocellum
genome and the Transport Classification Database (TCDB) [25]. In the draft

reconstruction, the investigators discovered that there were missing gaps, especially

because of species-specific metabolism such as cellulosome production, cellulose

and chitin degradation, biosynthesis of teichoic acid and peptidoglycan, steroid

metabolism, and transport reactions. Therefore a manual gap-filling was carried out
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on the reconstruction to fill additional gaps using literature and experimental data.

Furthermore, several other gaps were resolved using reciprocal blast hit between all

the genes containing the missing Enzyme Commission (EC) number and the

C. thermocellum ATCC 27405 genome. The process was iteratively performed

until a positive flux for biomass synthesis was observed. The model was tested

against data for growth on minimal media containing either cellobiose or fructose in

continuous or batch cultures and was able to reproduce some phenotypes, although

most fermentation product flux profiles were inaccurate. However, the addition of

RNA-Seq data allowed for better predictions [26].

Following the construction of the model iSR432, much has been learned about

the metabolism of C. thermocellum, particularly dealing with its atypical central

carbon metabolism and redox processes [27, 28]. With these updates in mind,

Thompson et al. have constructed and curated a new genome-scale model of

C. thermocellum, this time of the genetically tractable strain DSM 1313 [29–31].

This new model of C. thermocellum DSM 1313 also incorporates a more dynamic

cellulosome component, which allowed the researchers to predict more accurately

the growth on soluble versus insoluble substrates. This is a key distinction because

different substrates lead to different fermentation profiles and energetic require-

ments for growth. Using this updated model, the authors delved into the changes in

metabolism between various substrates to propose a regulatory mechanism that

explains the difference. The authors also used a strain design algorithm for optimal

production of ethanol, hydrogen, and isobutanol, paving the way for future meta-

bolic engineering [31]

4.2 Thermotoga maritima

T. maritima is a hyperthermophilic anaerobic bacterium believed to be one of the

most ancient of eubacteria [32]. Its metabolism is classified as chemoorganotrophic,

catabolizing sugars to produce CO2, acetate, lactate, and hydrogen [33]. For a free-

living organism, it has one of the smallest genomes [34]. Zhang et al. created the

first metabolic reconstruction of T. maritima [35]. This model integrated structural

information to examine the evolution of protein folds in the metabolism, and

consists of 478 genes, 503 metabolites, and 645 reactions. The model was able to

reproduce experimental results for growth and secretion profiles on different sub-

strates. The protein information was gathered through literature data first followed

by homology-based annotation databases. Finally, FBA and gap-filling were itera-

tively carried out until the model was able to replicate experimental growth results.

One important conclusion from the integration of structural data was the

strengthening of the ‘patchwork’ hypothesis, which states that gene duplication

events result in proteins that evolve to function in a similar manner to each other but

in different pathways [36]. Furthermore, this study discovered that specific folds

dominate the proteins involved in central metabolism, which suggests divergent

evolution of ancient proteins. The core essential proteins, however, have relatively
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diverse folds because they catalyze highly specific reactions, which require partic-

ular enzymes.

Nogales et al. expanded the model created by Zhang et al. to study hydrogen

production in T. maritima [37]. As T. maritima is a hyperthermophile and produces

large amounts of hydrogen from various complex sugar polymers, it is an ideal

candidate for microbial hydrogen bioproduction. The model expansion consists of

modifying reactions involving hydrogen production and ferredoxin based on recent

findings in T. maritima. Similarly, reactions are added for secretion of certain

metabolites and in the Entner–Doudoroff (ED) pathway to improve the model.

The predictive capability of the new reconstruction was found to be better than that

of the original as determined by its ability to replicate more experimental results in

silico. According to the model and experimental data, it was confirmed that

T. maritima grows faster on polysaccharides than on other carbon sources. More-

over, it was determined that this organism mainly uses Embden–Meyerhoff

(EM) and ED rather than the oxidative branch of the pentose phosphate pathway

(OPP) to catabolize sugars for growth-coupled production of hydrogen. Further-

more, it was demonstrated that acetate production results in improved growth and

hydrogen yield. The authors also concluded that sulfur is one of the important

electron sinks in this organism based on model prediction and literature

information.

The model was further used for developing an understanding of the redox

balancing in the organism. The analysis suggested that carbon metabolism leads

to surplus NADH, which is consumed in ED pathway coupled with sulfur reduction

and subsequently causes the stoichiometric ratio of ferredoxin to NADH to be less

than two. This result suggests the role of ED pathway in internal redox balancing.

The investigators also used in silico knockouts to determine the mutants that have

improved hydrogen yield on various substrates and limited sulfur condition. The

simulations suggested that double mutants of acetate thiokinase (ACKr, converts

acetyl phosphate to acetate) and L-lactate dehydrogenase (LDH_L, converts pyru-

vate to lactate) have improved hydrogen production. Mutation in either triose

phosphate isomerase (TPI) or fructose bisphosphate aldolase (FBPA) also led to

an increase in hydrogen yield when grown on glucose but at the expense of growth

rate. Furthermore, it was determined that the addition of an efficient NADP+

regenerating enzyme could drive glucose metabolism through the OPP pathway

and lead to more hydrogen production. The knock-in in combination with certain

double knockouts resulted in a very high hydrogen yield. An additional confirma-

tion from in silico simulation was that the introduction of NADP+ regenerating

enzyme enabled the organism to grow on glycerol, on which the wild type cannot

sustain growth. This knock-in coupled with triple mutations in FBPA, 2-dehydro-3-

deoxy-phosphogluconate aldolase (EDA_R) and TPI led to improved hydrogen

production of up to 5 mol per mole of glycerol [37].
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4.3 Thermus thermophilus

T. thermophilus is a gram-negative organism that grows aerobically and anaerobi-

cally with the help of exogenous electron acceptors such as nitrate. It can consume a

wide variety of protein substrates and carbohydrates, which is facilitated by a suite

of proteases, glucosidases, and lipases to allow ideal growth between the temper-

atures of 65 and 72�C. Lee et al. created the first genome-scale model of this

organism, which incorporates several distinct features present in thermophiles

and is specific to T. thermophilus [38]. The reconstruction, called iTT548, contains
548 genes, 796 reactions, and 635 metabolites. The draft metabolic reconstruction

was carried out in the usual manner, but the gap-filling required organism-specific

information or knowledge from related organisms. Specifically, the pathways for

carotenoid synthesis and those relating to the growth on various substrates were

incorporated. One of the most distinct features of this model was that the biomass

composition was determined using experimental results and literature information

exclusive to thermophilic organisms.

When iTT548 was compared with iAF1260, the then most recent genome-scale

model of Escherichia coli, it was determined that the amino acid biosynthesis

pathways for lysine and methionine were different in these two organisms. Simi-

larly, the model also clearly demonstrated that the carotenoid and polyamine

biosynthesis were some of the unique characteristics of this organism compared

to other gram-negative bacteria. These two groups of metabolites enable this

organism to withstand high temperatures [39–42]. Furthermore, the model also

predicted that the organism utilized amino acids to synthesize branched chain fatty

acid. When constraint-based flux analysis was carried out on minimal and rich

glucose media, the simulation results were consistent with experimental data for

growth rate. The simulation demonstrated that certain amino acids were consumed

at a higher rate than others to synthesize fatty acids. This pattern was distinct

compared to E. coli because T. thermophilus consumed nutrients to drive fluxes

more toward fatty acid synthesis rather than toward energy production.

Finally, gene essentiality was determined in this organism. It was demonstrated

that genes involved in carotenoid biosynthesis were the most essential genes in both

rich and minimal media. Most of the amino acid metabolism genes were found to be

essential in minimal media except for genes involved in biosynthesis of tryptophan,

proline, and tyrosine. Moreover, the model also showed that genes involved in

oxidative phosphorylation and the citric acid cycle were also essential because

T. thermophilus is an obligate aerobe. Finally, the simulations showed that

T. thermophilus has a higher proportion of essential genes compared to E. coli. It
was concluded that the more rigid network of Thermus thermophilus helps it to

survive in higher temperatures.
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4.4 Sulfolobus solfataricus

S. solfataricus is a hyperthermoacidophilic organism within the phylum

Crenarchaeota found in volcanic hot springs [43]. It is strictly aerobic and can

grow either autotrophically or heterotrophically. It also has the ability to oxidize

sulfur. Moreover, its metabolism is very diverse, containing a bicarbonate fixation

pathway, so it can grow chemolithoautotrophically and has the ability to grow on

phenol [44, 45].

Ulas et al. created the first ever genome-scale model of S. solfataricus [43]. It
was created by compiling the information from annotations created by

EnzymeDetector software [46], various databases such as KEGG [47], MetaCyc

[48], BRENDA [49], Sulfolobus-specific literature, and experimental data. Follow-

ing this initial step, manual gap-filling was carried out and resulted in a genome-

scale model iTU515 which contains 831 reactions involving 705 metabolites. The

model was able to depict accurately the broad range of metabolism of

S. solfataricus.
Following the reconstruction, the predictive capabilities of the model were

determined. The organism was grown in silico on various carbon sources and

FBA was carried out to compare with experimental results. S. solfataricus has a
very low growth rate and utilizes only 25% of carbon toward biomass production,

which the model was able to predict accurately. S. sofataricus has a modified ED

pathway such that the glucose flux can go toward either semi-phosphorylative or

non-phosphorylative branch. The model demonstrated that the carbon flux of

glucose was divided in a ratio of 1:4 between the semi-phosphorylative/reverse

ribulose monophosphate pathway and the non-phosphorylative/TCA cycle. In

another analysis using this model, the effect of exopolysaccharide (EPS) on the

growth of the organism was investigated. S. solfataricus produces EPS using the

imported carbon flux. The model clearly demonstrated that when EPS-producing

reactions were added, the growth rate decreased when grown on glucose media.

Therefore, according to the model, the production of EPS causes lower

biomass flux.

When flux variability analysis (FVA) was carried out on the model, it was

determined that for an optimal flux toward biomass, 79 reactions showed variabil-

ity. Most of the significant flux variation appeared because of the semi-

phosphorylative and non-phosphorylative branches of the ED pathway. Similarly,

FVA analysis for suboptimal analysis (in which up to 95% of optimal growth is

considered) caused the number of reactions to increase from 79 to 352 that showed

flux variability.

The ability of the organism to grow chemolithotrophically using the

hydroxypropionate-hydroxybutyrate cycle under aerobic conditions was demon-

strated on a bicarbonate source. FBA showed that the ED pathway was inactive and

sulfur metabolism and the hydroxypropionate-hydroxybutyrate cycle was active

when grown on bicarbonate. Furthermore, the model predicted the growth rate to be

higher than that on glucose. In a similar analysis, growth on phenol was determined.
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The FBA demonstrated some significant differences between growth on glucose

and on phenol such as active phenol uptake and degradation and inactive ED

pathways. Biomass production on phenol was determined to be one of the lowest

possibly because of the requirement of ATP for the production of pyruvate from

phenol.

Additionally, the model was used for the analysis of growth on various other

carbon sources. Using FBA and normalization of carbon uptake rate for each carbon

source to 1 mmol of carbon atoms per gram dry weight per hour, the model

predicted growth on 35 different substrates. Around 13 of the substrates produced

more biomass than on glucose. It was determined that carbon sources entering the

central pathway through the TCA cycle resulted in lower biomass production,

except 2-oxoglutarate which showed a higher yield. Glycerol was determined to

be the source of highest biomass production because metabolism of glycerol

produced twice the amount of ATP per six carbon atoms than other substrates.

Finally, a gene essentiality analysis on glucose media was carried out on this

model. Around 18% of genes were determined to be essential because the in silico

deletion of these genes resulted in biomass production of less than 2% of the

original. The genes involved in the central metabolism such as the reverse

ribulose-monophosphate pathway and gluconeogenesis were determined to be

essential. The model predicted only some genes in ED pathway and TCA cycle to

be crucial.

4.5 Thermobifida fusca

T. fusca is an aerobic, gram-positive bacterium of the Actinomycetes phylum

[50]. Because of its stability at high pH and temperature, and possession of an

efficient cellulolytic system consisting of several endo- and exocellulases, T. fusca
could be useful in consolidated bioprocessing of lignocellulose for biofuel produc-

tion. Deng and Fong demonstrated that T. fusca could be manipulated and opti-

mized to produce propanol from untreated biomass [51]. Vanee et al. created three

different genome-scale models of T. fusca through (1) an automated approach using

Model SEED, (2) a semi-automated approach using KEGG, and (3) a proteomics-

based model using proteome data for cells grown on cellobiose [52]. The Model

SEED (Tfu_v1)-based reconstruction contains 1,302 reactions, but cannot predict

growth on cellobiose. Similarly, the semi-automated approach (Tfu_v2) produced a

model with 1,002 reactions, but it also could not predict the growth on cellobiose

accurately. The proteomics-based genome-scale model (iTfu296) consists of

975 reactions with 296 genes. The simulation with iTfu296 predicted a growth

rate similar to that experimentally derived. Between Tfu_v2 and iTfu296, vast
differences were observed in functions, and the study suggested that iTfu296 was

much closer to the in vivo phenotype. During growth on cellobiose, the iTfu296
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predicted 110 active reactions among which the majority of reactions were involved

in carbohydrate and amino acid metabolism (Table 1).

The investigators were interested in terpenoid biosynthesis in T. fusca, and hence
added 16 reactions to compute the feasibility of flux through the terpenoid back-

bone pathway. The objective function used for FBA was biomass production.

Except for one reaction, all reactions in the mevalonate pathway were found to be

active, and provided investigators with a hypothesis to test the presence of this

pathway experimentally. The experimental results, in contrast, demonstrated that

the non-mevalonate pathway is present in T. fusca. This further emphasizes the

importance of genome-scale models because, with the help of the model, the

researchers were able to investigate quickly the terpenoid biosynthesis pathway in

T. fusca.

4.6 Moorella thermoacetica

M. thermoacetica is a strict anaerobe that can use both electron transport phosphor-
ylation and substrate level phosphorylation to produce energy. It has the ability to

convert substrates such as carbon dioxide, glucose, or fructose into acetate and

produce ATP [53]. It primarily utilizes the Wood–Ljungdahl (WLD) pathway to

produce acetate from CO2 and hydrogen, and as such it has for decades been widely

studied as a model organism in acetogenesis. A genome-scale reconstruction of

M. thermoacetica was created by Islam et al. and was called iAI558. The model

contains 558 genes and 705 reactions [53]. The highest number of active reactions

was determined to be involved in the cofactor metabolism subsystem.

iAI558 was used for simulation of growth on various substrates such as H2, CO2,

CO, and methanol for autotrophic growth and glucose, fructose, and xylose for

heterotrophic growth. Additionally, ATP production and yield were also computed.

The growth simulation was compared to experimental data. The model accurately

predicted growth rates on H2-CO2 (syngas) and CO. The growth rate and yield for

CO was determined to be the highest among autotrophic substrates. Growth on

heterotrophic substrates produced higher yield, growth rate, and ATP production

than that on autotrophic substrates.

Simulation of growth on syngas and glucose were also compared. The study

demonstrated that for syngas, M. thermoacetica mainly used WLD and gluconeo-

genesis and conserved energy through electron transport phosphorylation (ETP) or

anaerobic respiration. During growth on glucose, glycolysis was the most dominant

process, but the WLD pathway was also highly active. The energy conservation/

production was carried out by substrate level phosphorylation in glycolytic reac-

tions. Because substrate level phosphorylation is more efficient in ATP generation

[53], heterotrophic growth produces higher ATP yield, which was corroborated by

the model simulation.

The model was further used for study of ATP generation during autotrophic

growth. Reactions were added to the model based on hypotheses proposed by
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previous studies. The first mechanism proposed by Mock et al. was the production

of ATP through formate-hydrogen lyase (FHL) and methylene-tetrahydrofolate

reductase (MTHFR), which act together to generate a proton gradient for electron

transport phosphorylation [54]. The bifurcating ferredoxin:NAD hydrogenase

(HYDFDNr} and electron bifurcating ferredoxin:NADP oxidoreductase

(FRNDPRr) are also considered important for ATP generation during autotrophic

growth. To investigate this mechanism, the investigators changed exchange fluxes

for CO2 and H2 and monitored ATP flux. The study found that there was no change

in ATP flux when such changes were made. The second mechanism proposed by

Schuchmann and Muller assumes that ferredoxin hydrogenase (FRHD) is the

enzyme required for energy conservation [55]. For this mechanism, HYDFDNr

reaction with different stoichiometries than that used in the first mechanism is

proposed. Using this hypothesis, the simulations were carried out. Similar results

for ATP production were observed when the exchange fluxes for CO2 and H2 were

varied. However, when the stoichiometry of reactions catalyzed by FRHD and

HYDFDNr was changed that, the simulation results were comparable to experi-

mental results for ATP production. A linear relationship between ATP flux and CO2

and H2 supply was observed during the simulation of the model containing the

stoichiometric changes. Hence, the investigators have proposed that for energy

conservation on autotrophic substrates, the proposed second mechanism requires

modification.

4.7 Streptococcus thermophilus

S. thermophilus is an important organism in the dairy industry, especially in the

production of yoghurt and cheese [56]. It is a borderline thermophile with an

optimum growth temperature of 45�C [56]. The genome-scale reconstruction of

S. thermophilus LMG18311 was constructed by Pastnik et al. to study its amino

acid metabolism. The reconstruction was based on closely related organisms such

as L. planatarum and L. lactis. Through a manual gap-filling procedure using

literature and experimental evidence, the reconstruction was completed. The

model consists of 429 genes and 522 reactions. The biomass was determined in

the study itself, and hence makes this model more relevant.

The model could accurately predict that the organism cannot grow on histidine

because of the lack of histidine biosynthesis genes. Similarly, the model analysis

also determined that ychE, a gene involved in the synthesis of cysteine from

methionine in L. lactis, is truncated in S. thermophilus, which could explain its

apparent auxotrophy to either of these amino acids. Furthermore, the model could

correctly suggest that homofermentative lactic acid production is the primary

metabolism in S. thermophilus.

114 S. Dahal et al.



4.8 Thermoanaerobacterium saccharolyticum

T. saccharolyticum is a gram-positive anaerobe that is chemoorganotrophic in

nature. It is known for high ethanol yields from hexoses and pentoses. Curie

et al., to study the metabolic capabilities of T. saccharolyticum, created a

genome-scale metabolic model of the organism by parsing information from the

reconstruction of C. thermocellum ATCC 27405 [57]. After the construction of the

initial model, gap-filling was carried out using literature information and FBA-Gap

[57]. This gap-filling algorithm proposes a minimal set of reactions from a curated

reactome database to be added to the model to support biomass synthesis. The

refined model consists of 516 reactions, 315 genes, and 528 metabolites [57].

The investigators used experimental data to constrain hydrogenase reactions that

contributed less toward hydrogen production. Specifically, the energy-conserving

hydrogenase (ECH) was blocked, the bifurcating hydrogenase (BIFH2) and NADH

hydrogenase (NADH2) were made irreversible, and the hydrogen export was

constrained to reflect the experimental data. These constraints were shown to

alter fluxes dramatically, and more accurately predicted the higher ethanol produc-

tion observed experimentally.

The model was tested for gene knockouts to enhance the production of ethanol.

The simulation predicted that the deletion of lactate dehydrogenase (LDH) and

phosphotransacetylase (PTA) leads to optimal growth and high ethanol yield. The

model also suggested that the deletion of reactions catalyzed by LDH and ferre-

doxin hydrogenase (HFS) leads to high ethanol yield at the expense of growth rate.

The predictions were consistent with experimental results. Furthermore, the model

indicated that the deletion of LDH, HFS, and glutamate dehydrogenase (GDH)

leads to a marginal increase in ethanol production compared to that of LDH and

HFS only. Overall, the model was successful in predicting the metabolic behavior

of T. saccharolyticum when grown on cellobiose.

4.9 Models Deposited in BioModels Database

In addition to the curated models above, there have been a number of models of

thermophiles automatically generated using genome annotations and deposited in

the BioModels Database [58, 59]. These include Pyrolobus fumarii ([60],

BMID:140676), Pyrococcus furiosus ([61], BMID:141276), Archaeoglobus
fulgidus ATCC 49558 ([62], BMID:140871), Methanococcus jannaschii ([63],

BMID:140493), Aeropyrum pernix ([64], BMID:142009), Aquifex aeolicus ([65],
BMID:141549), Hyperthermus butylicus ([66], BMID:140823), Desulfurococcus
kamchatkensis ([67], BMID:141539), Desulfurococcus mucosus ([68],

BMID:141869), Staphylothermus hellenicus ([69], BMID:140958), and

Alicyclobacillus acidocaldarius ([70], BMID:140735). As with all automatic
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reconstructions, these models need more curation, but they serve as a platform for

further development and can only increase in applicability.

5 Conclusion

The range of metabolisms exemplified by thermophilic microorganisms is quite

wide, considering the relatively few places on Earth where they thrive. Metabolic

network modeling is an effective way to study the metabolism of thermophiles and

to compare their metabolism to their mesophilic counterparts. We have chronicled

several cases where thermophilic microorganisms have been studied with genome-

scale models. However, there are still many challenges for expanding the scope of

metabolic network models of thermophiles, such as estimating thermodynamic

parameters at higher temperatures, measuring kinetic parameters of key metabolic

enzymes, and fully understanding how cofactor usage changes at high temperature

(e.g., the preference of ATP versus pyrophosphate as an energy carrier).

Despite the aforementioned issues, genome-scale models of thermophilic organ-

isms are very useful tools for understanding and engineering the metabolisms of

non-model strains to enhance their ability for use in the biofuel, waste management,

and mining industries. As more data are acquired for thermophiles, in particular

large OMICs datasets, the metabolic models continue to improve.
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Networking Omic Data to Envisage Systems

Biological Regulation

Saowalak Kalapanulak, Treenut Saithong, and Chinae Thammarongtham

Abstract To understand how biological processes work, it is necessary to explore

the systematic regulation governing the behaviour of the processes. Not only

driving the normal behavior of organisms, the systematic regulation evidently

underlies the temporal responses to surrounding environments (dynamics) and

long-term phenotypic adaptation (evolution). The systematic regulation is, in effect,

formulated from the regulatory components which collaboratively work together as

a network. In the drive to decipher such a code of lives, a spectrum of technologies

has continuously been developed in the post-genomic era. With current advances,

high-throughput sequencing technologies are tremendously powerful for facilitat-

ing genomics and systems biology studies in the attempt to understand system

regulation inside the cells. The ability to explore relevant regulatory components

which infer transcriptional and signaling regulation, driving core cellular processes,

is thus enhanced. This chapter reviews high-throughput sequencing technologies,

including second and third generation sequencing technologies, which support the

investigation of genomics and transcriptomics data. Utilization of this high-

throughput data to form the virtual network of systems regulation is explained,

particularly transcriptional regulatory networks. Analysis of the resulting
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regulatory networks could lead to an understanding of cellular systems regulation at

the mechanistic and dynamics levels. The great contribution of the biological

networking approach to envisage systems regulation is finally demonstrated by a

broad range of examples.

Keywords High throughput sequencing, Network biology, Network

reconstruction, Systems regulation
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1 Introduction

Studying the biology of organisms in the context of networks is a promising

strategy to decipher the code of systems regulation in modern life science research.

With the advances in omics technologies and a growing number of sequenced

genomes in public databases, the systems biology approach has been applied to

integrate all jigsaw information and demonstrate the global view of the regulation

system. The omics data are exploited beyond their primary implication of the static

expression and are utilized to infer rather dynamic regulation in the systems context

(e.g., [1]). Here, we pursue the perspective of using network biology as a means to

touch the systems regulation of a cell. The review highlights development of high-

throughput sequencing technology and its applications to acquire a biological

network. Lastly, we recapitulate our review using evidence from many success

cases studied in a wide range of organisms from a simple single cell to a complex

multi cell. These examples illustrate the synergized contribution of high-throughput

sequencing technology and network biology approach to raising current biological

research to the level of systems regulation inference.
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2 High-Throughput Sequencing Technology to Discover

Regulatory Elements

During the past few decades, technological advancement contributing to life sci-

ences has been progressing rapidly. Among “systems technologies,” high-

throughput sequencing is one of the potent drivers of biological research. High-

throughput sequencing technology has emerged over the last decade, after comple-

tion of the first human genome draft. Many genomics research scientists and

genome research centers, including the National Human Genome Research Institute

(NHGRI), have considered high-throughput sequencing technology as a core for

driving genomics and systems biology research [2]. In addition to the vast sequence

data (per run) obtained from this sequencing technology, the cost per base of

sequencing is substantially lower compared to the traditional Sanger sequencing

technology. A milestone of high-throughput sequencing was to achieve whole

genome sequencing of an individual person at a cost of 1,000 US$ [3–5]. This

produces a major type of omic data from sequencing data, which can be applied to

various biological research. Interestingly, the emerging sequencing technology

nowadays not only promotes genomic study but also makes an immense contribu-

tion to driving the transcriptomic, that is RNAseq [6, 7], and interatomic, for

example ChIP-seq [8, 9], research. As a ground-breaking technology that broadly

supports all dimensions of biological study, especially cellular regulation, the

principles of high-throughput sequencing technologies have been described in

several specific review articles [10–13] during recent years. At least three signifi-

cant improvements in the technology are considered to shift the paradigm of high-

throughput sequencing measurement and, as a consequence, empowering the

accessibility to observe what really happens in a cell. Briefly, the GS instrument

was launched on the market in 2005 by 454 Life Sciences. It was the first Next

Generation Sequencing (NGS) system based on pyrosequencing. Later, other plat-

forms of second generation sequencing technologies, namely AB SOLiD, Ion

Torrent, and Illumina platforms, were introduced.

2.1 Second Generation Sequencing: Early Age of High-
Throughput Sequencing Technology

In the pre-genomic era, a huge effort was required to obtain a gene sequence, where

it was nearly impossible to attain whole genome sequences and to follow the

abundance of expressed nucleotide sequences simultaneously. The introduction of

the first high-throughput sequencing technology, 454 pyrosequencing, has changed

the methods of biological study as it significantly pushes the limit of genetic

decoding experimentation. The pyrosequencing-based GS instrument was intro-

duced by 454 Life Sciences in 2005. At that time, the high-throughput of this

technology made known the term “next generation sequencing.” One year later the
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alternative platform of high-throughput sequencing, AB SOLiD (Sequencing by

Oligo Ligation Detection) system, came onto the market. The key technology for

the released AB SOLiD is ligation sequencing. Although earlier generations of

SOLiD reads was 35 bp in length, but was also based on a two-base sequencing

method, SOLiD could give high accuracy up to 99.9% [14]. Later, SOLiD produced

longer reads (85 bp) with higher accuracy and a larger throughput of data.

A well-known sequencing system from Illumina is HiSeq 2000 which was

brought to the market in 2010. Previously, the Genome Analyzer system was

launched by Solexa in 2006. The company was then purchased by Illumina in

2007. This system platform is based on sequencing by synthesis technology. HiSeq

2000 gives 600 Gigabases (Gb) output per run when on high output run mode. It

was claimed that HiSeq 2000 is the cheapest in terms of sequencing cost per

Megabase compared to 454 and SOLiD [15]. A smaller scale system, Illumina

MiSeq, which is based on similar technology, was released in 2011. The MiSeq

system takes less running time, only 24 h, generating 4.5 Gb of sequence data using

MiSeq reagent kit version 2. MiSeq can generate 250 bp reads with paired-end

sequencing. The current platform of Illumina is HiSeq 2500 which can give up to

1 TB output based on HiSeq v4 chemistry. Although HiSeq was considered the

industry standard for high-throughput sequencing technology according to its

throughput, the read length obtained from this platform is approximately

250 bases or less. The required amplification of the template prior to sequencing

can cause content-bias base error. Currently, Illumina offers a novel Illumina

TruSeq synthetic long read strategy as an improved technology, which can give

read lengths of 1.5–18.5 kbp with a very low error rate [16]. This technology was

proposed to be a powerful technique for de novo whole genome assemblies.

The Ion Torrent platform was introduced by PostLight Sequencing Technology

in 2010. This technology was later acquired and commercialized by Life Technol-

ogies Corp. Ion Torrent sequencing depends on monitoring hydrogen ions released

as a by-product during nucleotide incorporation [17]. The sequencing reaction is

performed within the micro-wells of the Ion Chip, a silicon semiconductor-sensing

chip specifically designed to detect pH changes using hydrogen ion sensors at the

base of the wells. This type of sensing eliminates the light, scanning, and cameras

required for detecting sequencing process signals which reduce time for sequenc-

ing. In Ion Torrent sequencing reactions, native (unlabeled) nucleotides are used for

polymerization. Therefore, the noise caused by fluorescence or blocking substances

on the reactants is omitted. Sequences with homopolymer bases are a major concern

for Ion Torrent sequencing, causing insertion or deletion errors [11]. In addition,

errors of base substitution can arise. Nowadays, the throughput can average up to

1 Gb per run using the high well density Ion Chip. With 200-base reads, the Ion

Proton platform can perform several sequencing applications, including

transcriptome and multiplexing amplicons paired-end sequencing.
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2.2 Third Generation Sequencing: Empowering Detection
of a Regulatory Molecule

With the advent of second generation sequencing technology, much genome

sequence data including the genomes of non-model organisms has been produced.

However, short read-lengths and bias genome coverage may lead to fragmented

genome assemblies. Therefore, third generation sequencing is being introduced

with new technology for DNA sequencing. The key features of third generation

sequencing include amplification-independent technology and real-time signal

detection along with the sequencing reaction [18, 19]. Third generation sequencing

technology has the potential to generate terabase-scale sequence data at little

cost [20].

Pacific BioSciences introduced Single Molecule Real Time (SMRT) PacBio RS,

a third generation sequencing platform. With this technology, during the enzymatic

reaction of nucleotide incorporation into the complementary strand, the fluorescent

dye linked with the incorporated nucleotide is cleaved off and detected for the

signal immediately [21]. The explicit advantages over second generation sequenc-

ing technology include no amplification step, which reduces time and error of the

polymerase chain reaction (PCR), a short sequencing run time within 1 day, and

average longer (more than 1 kb) reads compared to the second generation sequenc-

ing. Although PacBio RS gives a lower throughput compared to those of the second

generation sequencing, this platform receives much attention because of its longer

read length and lower error. For the PacBio platform, the errors observed in

sequencing reads are random errors, not context specific errors as found in the

reads of other platforms [15, 22]. The error rates of single pass sequence reads are

approximately 11%, according to company information. However, the consensus

error rate is significantly lower as template DNA molecules are sequenced several

times when the circular consensus mode is run. The single pass errors are reduced

during the consensus building step, giving assembled contigs with high consensus

accuracy (99.999%, Q50) regardless of the sequence context or GC content of the

DNA templates [23, 24]. The non-sequence context bias is a key feature of the

PacBio platform involved in producing high accuracy sequencing reads. This

makes it possible to overcome sequencing of long tandem repeat regions [25]. Sev-

eral studies have focused on the performance of the Pacific BioSciences sequencing

platform. A portion of error-free sequencing reads without a single mismatch or

indel, and was found to be 0% compared to reads of other sequencing platforms

[15]. An evaluation performing chloroplast sequencing, contigs assembled from

PacBio data concur mostly with Illumina contigs generated and can resolve unam-

biguous and misassemblies [26]. In a comparative study, the performance of this

platform was considered to be outperforming the other platforms in terms of contig

length obtained from de novo assembly [27]. With the recent advances, PacBio read

lengths have been improved with the median and maximum of 10 kbp and 50 kbp,

respectively [28]. Reasonably, PacBio sequencing platform is considered to be

useful for both genome re-sequencing and de novo genome sequencing and
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assembly because the long sequencing reads are considered to be able to solve gap

closing of the genome finishing process [29].

Oxford Nanopore MinION is another platform for third generation sequencing

technology. This type of sequencing exploits nanopores of a particular protein,

alpha hemolysin, facilitating the sequencing [30]. It is a thumb-drive sized device

rather than a traditional sequencing instrument. Nanopore sequencing offers several

advantages over other high-throughput sequencing platforms including its small

size and low cost. Sequencing of single strand DNA is processed during depoly-

merization, not polymerization or synthesis, and therefore no PCR amplification.

Several biochemical steps are not required, only exonuclease is used for depoly-

merization. In addition, fluorescent labeling is omitted as the detection is based on

voltage disruption across the nanopore by different sized deoxyribinucleoside

monophosphate released during DNA strand depolymerization. This results in a

reduced time required for sample preparation. Another interesting advantage is that

the Nanopore sequencing technique generates very long reads, potentially more

than 5 kb at significantly high speed (1 bp/10 ns) [21]. Access to the MinION

devices was available only for members of the testing program and little data are

publicly available. Improvements for better quality accurate results have been

made, including a hybrid method for read assembly [31].

These advanced sequencing technologies have facilitated the discovery or iden-

tification of several types of gene expression regulators and their functions, which

are difficult to identify by traditional techniques. For example, the mechanism of a

pathogenic bacterium regulator involved in stress response and chemotaxis has

been studied [32]. Many regulatory genes related to activation of developmental

processes have been identified in a non-model animal [33]. Wood plant long

non-coding RNAs, an emerging type of regulator, involved in growth development

and wood formation, have been identified from high-throughput sequencing data

[34]. A number of regulatory elements in humans have been identified via high-

throughput sequencing [35]. These are only a few examples of high-throughput

sequencing-based identification contributing to the complex regulatory network of

biological systems. As large numbers of regulatory elements remain undiscovered,

further development of high-throughput sequencing technologies is key to

unraveling many other regulatory components.

With the emergence of the high-throughput sequencing technology, life science

research has progressed rapidly using a genomics and systems biology approach.

Several techniques have been applied to various areas, namely medicine, clinical

diagnosis, drug development, agricultural improvement, environmental investiga-

tion, and industrial biotechnology development of microbial products. Such tech-

niques include whole genome re-sequencing, de novo genome assembly,

transcriptome sequencing analysis, epigenomics, and metagenomics. To move the

current understanding of cellular regulation forward, from component-based to

systems-based, high-throughput technology was employed beyond the identifica-

tion task. An example is the applications of RNAseq to explore the gene regulatory

network through detection of gene expression patterns [36, 37].
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3 Approaches to Link Regulatory Components to Reflect

a Network of Systems Regulation

The first step to untangle the intracellular regulation underlying the behavioral

phenotypes of an organism is the exploration and identification of the components

involved (Fig. 1). The wide spectra of advanced and high-throughput technologies

have been developed to provide a precise and accurate measurement when captur-

ing exhaustive molecular components inside cellular space. As the progress of

technology development is in a good position and direction, the greatest challenge

is supporting the capability of analyzing large amounts of data. The interesting

molecular components believed to play an important role in the studied conditions

have been successfully identified many times via high-throughput data and

advanced bioinformatics methods. However, how these molecular components

interact, leading to the observed phenotypes such as high-disease resistant cultivars

in plants [38–41] and high ethanol-producing strain in yeast [42, 43], is still a

mystery. Understanding the interactions between intracellular components inside

the cell is crucial for exploring biological regulation in each particular biological

process across transcription, translation, and performing functions. One gene or one

protein cannot perform the functions, but they work together as a network to

demonstrate the phenotypes. Network biology has become an important field in

systems biology research [44, 45]. Not only do biological networks contribute as an

overview of the system under investigation but they are also an integration platform

for combining biological data from many different studies into a single framework.

3.1 Biological Networks

Intracellular components, including genes, proteins, mRNAs, microRNAs, and

metabolites, work together elaborately as a network. The relationships between

these components are, therefore, usually represented in the form of a biological

network where nodes of components are linked to their interactive partners. There

are different types of biological networks which basically describe the nature of the

regulatory activities occurring in each level of biological regulation. Table 1 pre-

sents examples of biological networks, their corresponding biological components

in the networks, and the vital information for network reconstruction. Metabolic

networks demonstrate the interactions between metabolites catalyzed by enzymes

in the metabolism [46, 47]. Gene regulatory networks provide the matrix of gene-

gene relationship which is normally inferred by their co-expression evidence in

several conditions. Transcriptional regulatory networks (TRN), which emphasize

more the gene transcription control, usually exhibit the functional association

between transcription factors (TFs) and their target genes (TGs). For instance,

TRN of yeast, a model organism of eukaryote, was constructed from the 12,873

known regulatory interactions between 157 TFs and their 4,410 target genes, shown
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as a graph in Fig. 2. The complex transcriptional regulatory interactions were

demonstrated even in the very simple eukaryotic cell organism. To investigate

inside the network, network decomposition into the small sub-networks, called

network motifs, was examined to explore the function of each TF. The network

Fig. 1 Schematic of network-based regulatory study
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motifs, basic units making up the network structure, are often occurring patterns of

interactions among the regulatory proteins. The instances of regulatory network

motifs often found in the transcriptional regulation of cells are auto-regulation,

feed-forward loop, multi-component loop, single input, multiple input, and regula-

tor chain (Fig. 2) [50]. For example, auto-regulation is where a TF-encoding gene

translates to a TF protein and the TF protein itself functions as a regulator binding to

the promoter region of the TF-coding gene. Moreover, the multiple input motif is

described as one target gene that can be controlled by many transcription factors.

Besides the two networks mentioned above, cell signaling network, kinase-

substrate networks, protein–protein interaction networks, disease-gene networks,

and drug-target networks have been reconstructed for several purposes [51–53] and

visualized via many useful free software tools including Pajek [54], Cytoscape [55],

Genes2Networks [56], and FANMOD [57].

Table 1 Examples of biological networks

Types of biological network

Biological/molecular components

in the network

Required information for

biological network

reconstruction

1. Metabolic network • Metabolites

• Enzymes

• Substrates and products

of each enzyme

• Direction of each enzy-

matic reaction

• Compartmentalization of

each reaction inside the cell

2. Gene regulatory network/

transcription regulatory

network

• Transcription factor-coding

genes

• Promoter of target genes such as

protein-coding genes, non-protein

coding genes etc.

• Transcription factor

(TF)–DNA interactions

• Promoter region of target

genes

• Transcription factor

binding sites (TFBS)

• Condition specific for

TF–DNA interactions

3. Cell signaling network • Signal such as external metabo-

lites, temperature, light, etc.

• Signaling receptor proteins

• Protein kinase

• Protein phosphatases

• Ligand–receptor interac-

tions

• Receptor–intracellular

component interactions

• Protein–protein interac-

tions

• Protein–DNA

interactions

4. Disease-gene network • Distinct disorder or disease

• Disorder-corresponding genes

• Genes causing disease for

each disorder

5. Drug-target network • Drugs

• Target genes

• Drug–target interactions

Networking Omic Data to Envisage Systems Biological Regulation 129



3.2 Paths from Molecular Components to Biological
Network

Systems biology approaches can allow biologists to move beyond a reductionistic

approach. Biological networks derived from genome-wide information provide the

global view of molecular components and their association under certain condi-

tional contexts. They can expand the vision of researchers over the set of just a few

genes within the scope of their experience. Furthermore, as an integrative approach,

the systematic view could be achieved by linking the biological networks to

conjecture the interactions of multiple levels of biological regulation through the

relationship between communicating molecular components, such as metabolites,

enzymes, genes, and transcription factors. A useful reconstructed framework has

been provided for biologists to reveal the organization of life. Several different

methods have been employed to exploit biological networks. Here, this review is

more focused on the transcriptional regulatory networks (TRN) demonstrating the

interactions between transcription factors and their target genes. There are three

main computational approaches for TRN reconstruction as summarized in Table 2.

First, the template-based method is derived based on the hypothesis that the

relationship between genes and their transcriptional regulators could be inherited

through evolutionary lineage. The orthologous transcription factors, in principle,

regulate the expression of the corresponding orthologous target genes in the same

manner as their templates. For this approach, a known regulatory network from a

well-studied organism transfers the information about interactions to genes that

have been determined to be orthologous in a target genome of interest [67]. How-

ever, the interested organisms should be closely related to the model organisms in

terms of evolution to reduce the false positive in the inferred TRN. This approach

Fig. 2 Transcriptional regulatory network of yeast constructed from 12,873 known relationships

between transcription factors and their target genes [48, 49] can be decomposed to be several

common motifs [50]
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has been applied to reconstruct the TRN of simple prokaryotic organism such as

Escherichia coli and some multi-cellular organisms including plants [58–60]. Sec-

ond, the networks are inferred by prediction of cis-regulatory elements in gene

promoters. Based on the evolutionarily conserved transcription factor binding sites

(TFBS), the promoter regions in the genome of interest are scanned using the

known binding site profiles of characterized transcription factors. On the other

hand, the novel transcription factor binding sites of the interested organism can be

identified through the phylogenetic footprinting method [61]. The conserved

sequences in the upstream region of orthologous genes from multiple organisms

have been proposed as transcription factor binding sites of each gene in the

investigated genome. It is based on the hypothesis that functional non-coding

elements tend to evolve at a slower rate than non-functional surrounding elements

Table 2 Systems biology-based approaches for constructing transcriptional regulatory networks

(TRNs)

Approaches and required

information Limitations Advantages

Examples/

applications

1. Template-based method

Required information
• The well-characterized

TRN of template organism

• Whole genome

sequences of template and

interested organisms

• Closely-related organ-

isms in terms of evolution

between template and

interested organism are

required

• Simple

method

• Evolution study of

prokaryotic TRNs

[58]

• Proposing the

transcription factors

controlling Rubisco

genes in cassava [59]

• Bacterial TRNs

construction

[60]

2. Inferring network by predicting cis-regulatory elements

Required information
• Experimental-character-

ized TFBSs of related

organisms

• Upstream region of

orthologous genes in mul-

tiple organisms for identi-

fying conserved TFBS

• Scanning only known

TFBSs on the promoter

regions of interested

organism

• Novel

TFBSs can

be identified

• Prediction of

microbial regulatory

elements controlling

gene expression [61]

• TRN construction

of Staphylococcus
aureus [62]
• Identification of

cis-regulatory in

Shewanella genomes

[63]

• Identification of

transcriptional regu-

latory region in Dro-
sophila [64]

3. Reverse engineering using gene expression data

Required information
• Series-transcriptome

data from microarray or

RNA-sequencing platform

• Required more than two

data points for gene

co-expression profile

analysis

• Condition-

specific for

TRNs

• TRN construction

in human B cells [65]

• TRN identification

in bats [66]
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because of the selective pressure, therefore demonstrating higher conservation

during the time of evolution. Subsequently, the investigated genes predicted to

have a binding site are hypothesized to be regulated by the corresponding tran-

scription factor [62, 68, 69]. This approach has been widely applied for analysis of

the cis-regulatory elements on the promoter regions in both prokaryotic and

eukaryotic genomes, for instance Shewanella genomes [63] and Drosophila
genome [64]. For these two approaches, comparative genomics has been employed

to infer the unknown transcriptional regulation linkages between transcription

factors and their target genes in the organisms of interest from well- characterized

organisms such as Arabidopsis, a model of plants. Nevertheless, the gene regulation

not only depends on evolutionary conservation but is also influenced by exposed

conditions (i.e., biotic or abiotic stresses). Accordingly, the third method is devel-

oped based upon the transcriptional response under the studied conditions. It is

named reverse engineering as it infers the TRN network using gene expression

data. In this approach, patterns of gene expression from time-series experiments or

from experiments conducted across several different conditions are employed for

proposing the gene co-expression network. Normally, if a gene is upregulated

following an increased expression of a transcription factor, or downregulated

following the knockout of a transcription factor, a regulatory interaction between

the two of them is inferred. On the other hand, for expression analysis over different

experimental conditions, sets of genes with a similar expression profile across many

conditions have been inferred to be co-regulated by the same set of transcription

factors [65, 66, 70]. However, the inferences are more accurate if the number of

expression data resolution increases because the distinguished direct regulatory

interaction appears from the indirect or multi-step of regulation. The effect of the

number of data points of gene expression data on the inferred TRN topology was

investigated using two similar gene expression datasets of the Arabidopsis time-

series microarray [71]. The TRN inference from high resolution datasets obtained

significantly lower numbers of gene relationships than the other with low numbers

of data points resulting in reduction of false positives in the inference network.

Moreover, the TRN reconstructed from a high resolution dataset performed as a

usual structure as in any biological network, namely with scale-free properties, in

contrast to the TRN reconstructed from a low resolution dataset.

Although the aforementioned approaches were mainly developed from a single

based principle, a great effort has been contributed to create a combinatorial

strategy to increase the reliability of the predicted regulatory interactions

[72, 73]. For example, a co-expression network constructed from microarray gene

expression analysis has been combined with the scanning of all possible transcrip-

tional factor binding sites on a promoter region of a particular gene member in the

network [72]. Not only is the accuracy of predicted gene regulatory networks

increased; directly regulated genes and undirected interactions between regulators

and target genes can also be distinguished.
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4 Network Analysis to Envisage the Systems Regulation:

Inference and Applications

4.1 Inference of System Regulation by Means of Biological
Networks

A biological network conveys more information than just the association of the

relevant components (Fig. 1). It is the atlas of the cellular regulatory circuit,

demonstrating the orchestration of molecular components to modulate the devel-

opment and homeostasis of cells under an exposed environment. The characteristics

of the biological network, including size, constituents, organization, and topology,

relate to the nature of the cellular regulation [74, 75], whereas the dynamics of the

network alteration infer the adaptive regulatory responses behind the observed

phenotypes [76–78]. For decades analytical methods have, thus, been developed

not only for investigating the relationship of the involved components but also for

attempting to decipher the code of biological regulation inherent in the finding of

networks (e.g., [75, 79]). The primary rationale is to learn the systems regulation
derived from the collaborative actions of the regulatory components. The subse-

quent comprehensive study is to pinpoint the key components and to understand

their crucial role in the context of systems regulation under the observed conditions.

This comprehension enables us to envisage the landscape of the cellular regulatory

systems which finally bring an understanding of the behavioral responses and overt

phenotypes of the living organisms. Ultimately, the knowledge of the cellular
regulatory landscape is conceptually transferred from a well-studied organism to

gain more insight into the system of others on the basis of evolutionary conserva-

tion. Exploitations of biological networks to unravel the regulation inside the cells

have been reported in extensive organisms and diverse aspects, for example

(1) identification of a genetic mediator for prostate cancer [80] on which current

research is moving toward the elucidation of the disease mechanism through

network biology and modeling [81] and (2) investigation of the transcriptional

regulation underlying storage root initiation of cassava [82]. Although biological

networking is evidently an advantage for investigating the systems regulation of

cells, its power is often constrained by the computational techniques and the quality

and quantity of data [83, 84]. The precise inference of the biological networks

always relies on the availability of data and methods of analysis.

4.1.1 Biological Networks Infer the Collaboration of Regulatory

Components Underlying System Regulation

As a means of component-association networking, the regulation is primarily

acquired from the predicted relationships between the molecular constituents. The

biological network is a great demonstration of the complexity of cellular regulation.

It shows that a single regulatory component could not accomplish the whole
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mechanistic process for cell response. Many studies have employed biological

networks to describe the failure in demanding a cell behavior through one-gene

attenuation [85, 86]. On the other hand, the biological networking approach com-

plements the measured omics data to emphasize the highly elaborated regulatory

mechanism driven by a large number of components. The associated pairs and their

relationships comprising the network, which are deduced from the correlation of the

measurable expression patterns, are presumed to indicate the mechanism of their

cooperative function contributing to the regulatory system. Not only the closely

related components but also the network are also obviously useful in discovering

the connection between the distant components, enabling us to capture unexpected

linkages between regulatory components which help improve the understanding of

regulation thoroughly (Fig. 1, bottom-left).

4.1.2 Biological Networks Infer the Potential Key Regulator

Modulating the System Regulation

Besides a map of the relationships, the biological network also brings identification

of a key regulator (Fig. 1, bottom-middle) and dissection of characteristics of the

regulatory system (Fig. 1, bottom-right). The key regulator is basically defined as a

regulatory component with a high impact on the overall regulatory system. It can be

acquired from the association network through various analytical approaches.

Network topology analysis is one of the most used methods, which usually suggests

the significance of a component based upon its number of associations (e.g., node

degree and network modularity) [48, 49, 87, 88]. It is hypothesized that the

important component should be tightly regulated so that it is expected to associate

with many neighboring components. Despite a simple principle, these techniques

successfully uncovered the predominant regulators in many studies and in broad

organisms [87–90]. Finding the key regulators may reveal important components in

the network, yet provide limited understanding about characteristics of the systems

regulation. Analysis of the network module, such as feed-forward and feedback

regulatory motifs, could access the properties of the regulatory system, which is

believed to determine the dynamics and efficiency of the systems regulation

[75, 91].

4.2 Applications of Biological Network Analysis
to Understand the System Regulation: From Unicellular
Organisms to Plants

These research practices have been successfully applied to acquire regulation of a

range of biological systems and across taxa. Success has been found with pro-

karyotes, simple eukaryotes, humans, and plants. For example, transcriptional
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regulatory network (TRN) of Escherichia coli, one of the best-characterized pro-

karyotic organisms, has been constructed from both experiments and computational

predictions and deposited in the useful resource database, namely RugulonDB

[92]. Yan et al. analyzed the transcriptional regulatory network of E. coli and
compared it with the computer operating systems in terms of topology and evolu-

tion of the regulatory control networks [93]. Based on the basic topology and

hierarchical structure of the network, TRN of E. coli exhibited a characteristic

pyramidal hierarchical layout. Only a few master transcriptional factors (master

regulators) were on the top and most transcription factors were at the middle

(middle managers), controlling a set of non-TF target genes as a workhorse. The

master regulators or middle managers were identified and were useful to target

genetic engineering with desired proposes. Not only have single-cell organisms

been investigated; complex multi-cell organisms such as plants have also been

explored to investigate their gene regulatory networks. Arabidopsis thaliana tran-

scriptional regulatory networks under changing environmental conditions were

inferred via the reverse-engineering approach [94]. Meta-analyses of several micro-

array data collections, including several growth conditions, developmental stages,

biotic and abiotic stresses, and a variety of mutant genotypes, allowed us to identify

regulatory and robust genetic structures. Moreover, TRN of starch metabolism in

Arabidopsis were inferred using microarray data under a diurnal cycle and graph-

ical Gaussian model [72]. Starch synthase 4 and its two predicted TFs were further

validated with mutant lines. The knockout of two TFs led to the deformation of

chloroplast and its contained starch granules. This systematic approach of micro-

array analysis promised successful discovery of the TRN of starch metabolism in

Arabidopsis leaves. Besides the model plant, Arabidopsis, gene regulatory net-

works of important starchy crops, namely cassava, have been investigated [59, 78,

82]. The gene regulatory network of Arabidopsis comprising 11,354 interactions

from 67 TFs and their gene targets was applied as the template inferring TRN of the

starch metabolism in cassava [59]. cis-Regulatory element analysis on each pro-

moter of target genes was verified through PlantPAN database, resulting in a basic-

leucine zipper (bZIP) transcription factor family (cassava4.1_017720m.g) control-

ling two Rubisco genes in cassava (cassava4.1_017170m.g and

cassava4.1_017243m.g). The predicted result may shed light into photosynthesis

improvement in cassava. In addition to the TRN of metabolic regulation, analysis of

the genome-wide microarray experiment revealed the transcription regulation

underlying the storage root initiation of cassava, whereby development of fibrous

root toward storage root were examined in 8-week-old plants [82]. Based on the

reverse engineering approach and cis-regulatory element analysis, KNOX1 gene

and phytohormones were proposed as the key regulators to modulate the transition

of cassava root toward storage stage. The hypothesis on transcriptional regulation

of cassava storage root initiation was validated through hormone treatment exper-

iments. Correspondingly, the exogenous treatment of phytohormones could induce

the storage root initiation stage in the in vitro experiment. Furthermore, network

inference approaches are capable of acquiring the transcriptional regulation in

response to surrounding stresses. Transcriptional regulation underlying the adaptive
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development of cassava roots in different planting seasons was investigated through

the time-series gene expression data, measured by semi-quantitative RT-PCR

[78]. Gene expression in storage roots of cassava grown in two different seasons,

beginning and end of rainy season (i.e., wet and dry seasons) was analyzed. The

gene co-expression networks inferred transcriptional regulation governing the

cassava root development under different exposed climates of the planting seasons.

As a result, AP2-EREBP transcription factor (ERF1) was suggested to play an

important role in regulating the cellular responses allowing cassava root develop-

ment to adapt to wet and dry seasonal climates.

5 Conclusions

As the cellular processes are very complicated, regulation contributes to such

complexity. Biological network analysis is considered an approach for exploring

the mesh of regulatory elements association in cells and to reflect on how they work

together. By virtue of advanced high-throughput sequencing technology and

methods for constructing and analyzing available biological networks, the systems

biology approach has been utilized for network investigation, leading to gene-to-

phenotype mapping, in a wide range of organisms. These network analyses enhance

our understanding of cellular regulation and could open the way for various

applications.
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Abstract We explore the use of a network meta-modeling approach to compare

the effects of similarity metrics used to construct biological networks on the

topology of the resulting networks. This work reviews various similarity metrics
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for the construction of networks and various topology measures for the character-

ization of resulting network topology, demonstrating the use of these metrics in the

construction and comparison of phylogenomic and transcriptomic networks.

Keywords Network comparison, Network topology, Similarity metrics
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1 Introduction

Meta-modeling involves creating models of models to compare the outcomes of a

model when different parameters are used. Network models involve modeling the

similarity between pairs of objects of interest [1]. A parameter of such a network

model could be the similarity metric chosen to quantify the similarity between

nodes in order to weight the edges. Many similarity metrics exist, and were

developed to quantify different aspects of similarity. Thus, using different
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similarity metrics to construct a network model should result in different results and

thus affect the end biological interpretation.

This chapter focuses on network meta-modeling, exploring a selection of

approaches for the comparison of networks. In particular, network models of

particular datasets constructed using different similarity metrics are compared to

investigate the effect the choice of similarity metric has on the resulting network

topology.

2 Similarity Metrics

2.1 Overview

Networks are often constructed to represent the similarities and relationships

between objects within biological systems. Objects are often represented as a vector

of quantities. For example, when constructing gene co-expression networks, objects

(genes) are represented by expression profiles. Networks are thus often constructed

by performing an all-vs-all comparison of a set of objects of interest by calculating

the similarity between all pairs of vectors representing the objects. To achieve this,

similarity metrics are needed to provide a measure of similarity between two

vectors. Various similarity metrics exist which all quantify different aspects of

similarity.

2.2 Pearson Correlation Coefficient

Pearson’s Correlation Coefficient was first introduced by Karl Pearson in 1895 [2]

and is a widely used correlation metric. Pearson’s correlation coefficient r between
two variables X and Y can be expressed as

r ¼
X

i
Xi � X
� �

Yi � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
Xi � X
� �2X

I
Yi � Y
� �2q ð1Þ

where X and Y are the means of variables X and Y, respectively. Pearson’s
correlation coefficient takes on values between �1 and 1 and measures the linear

association between two vectors [3]. Equation (1) can be expressed in an alternative

form giving Pearson’s correlation coefficient of vectors X and Y in terms of the

covariance of the two vectors, scaled by their standard deviations (2):
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r ¼ Cov X; Yð Þ
SXSY

ð2Þ

where Cov(X,Y ) is the covariance of X and Y and SX and SY are the standard

deviations of X and Y, respectively [3].

2.3 Spearman Correlation Coefficient

The Spearman Correlation Coefficient [4] rs for variables X and Y has a formula

similar to the Pearson Correlation Coefficient except that, instead of using the

actual values of the entries in the vectors, the ranks of the entries in the vectors

are used. For vectors X and Y, let Ri denote the rank of value i in X, and let Qi denote

the rank of value i in Y. The Spearman Correlation Coefficient is then given by

rs ¼
X

i
Ri � R
� �

Qi � Q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
Ri � R
� �2X

i
Qi � Q
� �2q ð3Þ

where R and Q are the means of rank variables R and Q, respectively [5]. The

Spearman Correlation Coefficient measures the monotonicity of two vectors, that

is, to what extent the values in the vector increase as the values in the other vector

increase. Unlike the Pearson Correlation Coefficient, it does not measure the extent

of a linear relationship between the two vectors [5].

2.4 Jaccard’s Index

Jaccard’s Index is a similarity index which was originally referred to as the

“Coefficient of Community” [6]. It was developed to quantify the similarity

between the plant species content of two areas. It is easily defined in terms of set

intersects. Given two sets A and B, Jaccard’s Index J(A,B) is defined as [6]

J A;Bð Þ ¼ A \ Bj j
A [ Bj j ð4Þ

Jaccard’s Index can also be defined in terms of vectors. Let the two sets be two

binary vectors, X and Y. Jaccard’s Index J(X,Y ) can then be defined in terms of

inner products as [7]
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J X; Yð Þ ¼ X; Yh i
X;Xh i þ Y; Yh i � X; Yh i ð5Þ

Jaccard’s Index takes on values between 0 and 1.

To apply Jaccard’s Index to non-binary vectors, a vector X of integers can easily

be converted to a binary vector XB as follows:

XBi ¼ 1 if Xi � 1

0 if Xi ¼ 1

�
ð6Þ

2.5 Cosine Similarity

The Cosine similarity of two vectors X and Y simply involves taking the cosine of

the angle between the two vectors (7):

Cosine Similarity ¼ cos ΘXYð Þ ð7Þ

where ΘXY is the angle between vectors X and Y. This equation can also be written

in inner-product form, in which the cosine of the angle between two vectors is

expressed in terms of the inner product of the vectors, divided by their norms [8]

(8):

cos ΘXYð Þ ¼ X; Yh i
X
��������Y�� ���� �� ð8Þ

Cosine similarity takes on values between 0 and 1 [8], assuming that both vectors

contain only positive values. This is the case with most biological data.

2.6 Sørensen Index

The Sørensen Index [9] (also known as the Dice Coefficient [10]) is a similarity

index developed for ecological purposes and (similar to Jaccard’s Index) is also

based on set intersections. For two sets A and B the Sørensen Index S(A,B) is

defined as

S A;Bð Þ ¼ A \ Bj j
A
��þ ��B�� �� ð9Þ
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where
��A�� is the number of elements in A and

��B�� is the number of elements in B. The

Sørensen Index can also be formulated in terms of vector algebra. For two binary

vectors X and Y the Sørensen Index S(X, Y) is defined as

S X; Yð Þ ¼ 2 X; Yh iX
i
xi þ

X
i
yi

ð10Þ

¼ 2min X; Yð ÞX
i
xiþ

X
i
yi

ð11Þ

where xi is the ith element of X and yi is the ith element of Y.

2.7 Czekanowski Index and Bray–Curtis Index

The Czekanowski Index is a quantitative version of the Sørensen Index. For vectors

X and Y the Czekanowski Index is defined as [11]

Cz ¼
X

i
2min Xi; Yið ÞX
i
Xi þ Yið Þ ð12Þ

where Xi is the ith element of X and Yi is the ith element of Y. The similarities

between the forms of (11) and (12) are easy to see, indicating the relationship

between the Czekanowski Index and the Sørensen Index.

The Bray–Curtis [12] Index is often confused with the Czekanowski Index

[11]. Although the Bray–Curtis Index has the same form as the Czekanowski

Index (12), the underlying normalization assumptions are different. The Bray–

Curtis Index assumes that all vectors are normalized by the total sum of each

vector, that is, the sum of all the entries in a vector is 1. Thus the Bray–Curtis

Index BC(X, Y) simplifies to [11, 12]

BC X; Yð Þ ¼
X

i
2min Xi;Yið ÞX
i
Xi þ Yið Þ ð13Þ

¼
2
X

i
min Xi; Yið ÞX

i
Xi þ

X
i
Yi

ð14Þ

¼
2
X

i
min Xi; Yið Þ
1þ 1

ð15Þ
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¼
2
X

i
min Xi; Yið Þ
2

ð16Þ

¼
X
i

min Xi; Yið Þ ð17Þ

2.8 Canberra Distance

The Canberra distance Cb(X,Y ) is a distance metric described as being the com-

plement of Czekanowski’s Index, and defined as [13]

Cb X; Yð Þ ¼
X

i
Xi � Yij jX

i
Xi þ Yið Þ ð18Þ

Thus, the Canberra distance can be defined as

Cb X;Yð Þ ¼ 1� Cz X; Yð Þ ð19Þ

or, equivalently,

Cz X; Yð Þ ¼ 1� Cb X; Yð Þ ð20Þ

This can be derived as follows:

1� Cb X; Yð Þ ¼ 1�
X

i
Xi � Yij jX

i
Xi þ Yið Þ ð21Þ

¼
X

i
Xi þ Yið Þ �

X
i
Xi � Yij jX

i
Xi þ Yið Þ ð22Þ

¼
X

i
Xi þ Yið Þ � ��Xi � Yi

��� �
X

i
Xi þ Yið Þ ð23Þ

It should be noted that (23) has the same denominator as the Czekanowski Index in

(12). Thus, to show that 1� Cb X; Yð Þ ¼ Cz X; Yð Þ, we need to show that the

numerators of (23) and (12) are equal. To do this, consider the diagram in Fig. 1.

Assume that for a given i, Xi > Yi. Then

X
i

Xi þ Yið Þ � ��Xi � Yi

��� � ¼ X
i

2Yi: ð24Þ

Similarly, if for a given i, Yi > Xi, then
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X
i

Xi þ Yið Þ � ��Xi � Yi

��� � ¼ X
i

2Xi: ð25Þ

Thus, combining the above two cases,

X
i

Xi þ Yið Þ � ��Xi � Yi

��� � ¼ X
i

2min Xi; Yið Þ; ð26Þ

which is indeed the numerator of (12). Thus, the Czekanowski Index Cz(X,Y ) is the
complement of the Canberra distance Cb(X,Y ) related as 1� Cb X; Yð Þ ¼ Cz X; Yð Þ.

2.9 Jaccardized Czekanowski Index

The Jaccardized Czekanowski Index [14] is a new similarity metric which attempts

to formulate a quantitative version of Jaccard’s Index in the same sense that the

Czekanowski Index is a quantitative version of the Sørensen Index. The Jaccardized

Czekanowski Index is derived as follows [14]. First, the Jaccard Index J is related to
the Sørensen Index S by the following equation:

S ¼ 2J

J þ 1
ð27Þ

Rearranging (27) to make J the subject of the equation yields:

Fig. 1 Canberra distance

vs Czekanowski similarity.

A visual aid in the

relatedness of the

Czekanowski similarity

index and the Canberra

distance
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J ¼ S

2� S
ð28Þ

Replacing the Sørensen Index S in (28) with the Czekanowski Index Cz thus yields
a quantitative version of Jaccard’s Index called the Jaccardized Czekanowski

Index:

JCz ¼ Cz

2� Cz
ð29Þ

The Jaccardized Czekanowski Index was then found not to be novel but actually the

same as the Ružička Index developed in 1958 [15].

2.10 Maximum Information Coefficient

The Maximum Information Coefficient (MIC) between two vectors X and Y is a

similarity metric which, unlike the Pearson Correlation Coefficient, can detect

nonlinear correlations. The MIC is calculated as follows. Consider a set of ordered

pairs (xi, yi) where xi is the ith value in X and yi is the ith value in Y. A partition is

then created on the ordered pairs (xi, yi). This can be visualized as plotting a

scatterplot of X vs Y, drawing a grid m� n on this scatter plot, and partitioning

the points ((xi, yi) pairs) into blocks. Grids of different dimensions are drawn. Each

grid results in a characteristic probability distribution of each variable, allowing the

Mutual Information of the variables to be created. The Maximum Information

Coefficient is the maximum Mutual Information Coefficient obtained across all

grids of all dimensions considered [16, 17].

3 Network Topology Measures

Once networks have been constructed for a certain set of objects of interest within a

system using a particular similarity metric and have been pruned to select for the

most highly weighted edges, the networks exhibit certain topologies. Network

topology can be described quantitatively through a number of network properties

or network measures [18]. These measures quantify local properties of individual

nodes within a network and topological properties of the entire network as a whole.
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3.1 Node-Based Topology Measures

The following network measures are defined per node or per node pair for a given

network, and include adjacency, connectivity, maximum adjacency ratio, topolog-

ical overlap, TOM-connectivity, clustering coefficient, betweenness, and effi-

ciency, as defined below.

3.1.1 Adjacency

For two nodes i and j, the adjacency aij is the entry ij in the adjacency matrix of the

network. In an unweighted network, aij is 1 if nodes i and j are connected by an

edge, and 0 otherwise. In a weighted network, aij is equal to the strength of the

connection (i.e., the edge weight) between nodes i and j [19].

3.1.2 Connectivity

The connectivity ki for a node i is defined as [18]

ki ¼
X
j 6¼i

aij ð30Þ

where aij is the adjacency of nodes i and j. It is an indication of how well-connected

a node is to the network. For an unweighted network, the connectivity ki of node i is
the number of edges connected to node i, that is, the degree of the node. For a

weighted network, the connectivity of node i it is the sum of the weights of the

edges connected to node i.

3.1.3 Maximum Adjacency Ratio

The Maximum Adjacency Ratio (MARi) for a node i is an extension of the

connectivity of a node and is defined as [18]

MARi ¼
X

j 6¼i
aij
� �2

X
j 6¼i
aij

ð31Þ

MAR describes the extent to which a node has strong connections with its neigh-

bors. Assuming that the network edges have weights between 0 and 1, the Maxi-

mum Adjacency Ratio obtains a maximum value of 1 when all the connections of a

node have the maximum weight of 1 [18].
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3.1.4 Topological Overlap

The Topological Overlap ωij between two nodes i and j quantifies how connected

the two nodes are by taking into consideration the direct connection between the

nodes and indirect connection via neighbors of the nodes [20], and is defined as [19]

ωij ¼
X

u
aiuauj

� �
þ aij

min ki; kj
� �þ 1� aij

ð32Þ

where aiu and auj are the adjacencies and ki and kj are the connectivities of nodes

i and j, respectively [19]. In an unweighted network, the term
X

u
aiuauj is equal to

the number of neighbors shared between nodes i and j. Consider two nodes i and
jwith ki < kj. For an unweighted network, the topological overlap ωij is equal to 1 if

every neighbor of i is also a neighbor of j and if aij is equal to 1. Put simply, this

means that for the topological overlap between two nodes i and j to be 1, all

neighbors of the node with smaller degree need to be neighbors of the node with

larger degree, and the nodes i and j need to be directly connected. For the

topological overlap to be zero, the nodes must not be connected and they must

have no common neighbors [19].

3.1.5 TOM-Based Connectivity

The TOM-connectivity of a node is based on the topological overlap between nodes

and is defined as [19]

ki ¼
X
j6¼i

ωij ð33Þ

where ωij is the topological overlap (32) between nodes i and j. A node thus has a

high TOM-connectivity if it has a high topological overlap with its neighbors, that

is, a node is connected to and shares a lot of neighbors with its neighbors [19].

3.1.6 Clustering Coefficient

The Clustering Coefficient [21] for a node is a measure indicating the local structure

around the node, in particular how densely connected (cliquish) the node and its

neighbors are [18]. For an unweighted network, the Clustering Coefficient Ci for a

node i is defined as the number of edges present in the neighborhood around node

i over the total possible number of edges in that neighborhood:
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Ci ¼
X

l 6¼i

X
m 6¼i, l

ailalmami

ki ki � 1ð Þ ð34Þ

The Clustering Coefficient reaches its maximum value when each pair of a node’s
neighbors are connected to each other [18]. Zhang et al. [19] extended the Cluster-

ing Coefficient to apply to weighted networks:

Ci ¼
X

l 6¼i

X
m 6¼i, l

ailalmamiX
l6¼i
ail

� �2X
l 6¼i

ailð Þ2
ð35Þ

3.1.7 Betweenness

The Betweenness of a node i is the number of shortest paths between other pairs of

nodes which run through node i [22]. This measure could indicate the importance of

the node and how much it would affect the network should it be removed [22].

3.1.8 Efficiency

The Efficiency Eij of a path between two nodes i and j is calculated as the inverse of
the length of the shortest path between two nodes [23]:

Eij ¼ 1

dij
ð36Þ

where dij is the length of the shortest path between nodes i and j. The shorter the

path between two nodes, the more efficient the path. If no path between nodes i and
j exists in the graph, the distance dij between nodes i and j is defined to be dij ¼ 1
and thus the efficiency Eij ¼ 0 [23].

3.2 Global Network Topology Measures

The following network measures are global network measures calculated for a

network as a whole and not on an individual node or node pair level, and include

density, centralization, heterogeneity, path length, and degree correlation.
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3.2.1 Network Density

The Density D of a network is a quantification of how densely connected the

network is. For an unweighted network, Network Density is defined as the fraction

of the number of edges in the network divided by the total number of possible edges

given the number of nodes [24]:

D ¼ s

n n� 1ð Þ ð37Þ

where s is the number of edges in the network and n is the number of nodes in the

network. Network density can easily be extended for weighted networks and can be

calculated as the mean of all the off-diagonal entries in the adjacency matrix [25]:

D ¼
X

i
ki

n n� 1ð Þ ð38Þ

¼
X

i

X
j 6¼i
aij

n n� 1ð Þ ð39Þ

where ki is the connectivity of node i and aij is the entry ij in the adjacency matrix of

the network.

3.2.2 Network Centralization

Network Centralization measures the extent to which there is a point in the network

more central than all other points [26]. It has a maximum value of 1 when the

network has a star topology (very centralized) and 0 if the connectivity of each node

in the network is the same, for example, a square [18]. The Centralization C of a

network is defined as [25]

C ¼ n

n� 2

kmax

n� 1
� DN

	 

ð40Þ

where n is the number of nodes in the network, kmax is the maximum connectivity of

the network, and DN is the network density.

3.2.3 Network Heterogeneity

Network heterogeneity H quantifies how much the connectivity of the nodes in the

network varies throughout the network in terms of the variance of the connectivities

[24] and is defined as [25]
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H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var kð Þp

mean kð Þ ð41Þ

where var(k) is the variance in the connectivity of the network and mean(k) is the
mean connectivity of the network. A very heterogeneous network has a large

variation in the connectivities of the nodes whereas in a homogeneous network,

connectivity is evenly distributed throughout the network.

3.2.4 Path Length

The Path Length of a network is the average length of all shortest paths between

pairs of vertices [21].

3.2.5 Degree Correlation

The Degree Correlation quantifies how correlated the degrees of neighboring nodes

are. Assortative networks arise if nodes of high degree are mostly connected to

other nodes of high degree, whereas disassortative networks arise when nodes of

high degree are mostly connected to nodes of low degree [22].

4 Network Comparison and Network Overlap

Once networks have been created, various methods exist to compare them to each

other, based on how they cluster or on their topological characterization.

4.1 Clustering Comparison

A clustering C is a partition of a set of objects consisting of non-overlapping sets of

objects [27]. These sets are called clusters which can be generated by clustering

algorithms such as MCL [28, 29]. Sets of clusters can then be compared using

clustering overlap metrics.

4.1.1 Jaccard Overlap

Several clustering overlap metrics are based on counting pairs of elements and how

often pairs of elements fall in the same cluster or in different clusters [30]. An
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example of a pair counting metric is the Jaccard index for clustering overlaps. The

Jaccard overlap between two clusterings Ci and Cj is calculated as [30, 31]

J Ci;Cj

� � ¼ N11

N11 þ N01 þ N10

ð42Þ

where N11 is the number of pairs of elements (x, y) which are in the same cluster in

Ci and Cj, N10 is the number of pairs of elements (x, y) which are in the same cluster

in Ci but not Cj, and N01 is the number of pairs of elements (x, y) which are in the

same cluster in Cj but not Ci.

4.1.2 Mutual Information

Other clustering overlap measures include those based on mutual information.

These measures quantify the extent to which information about one clustering

provides information about another clustering [31]. It is derived from the entropies

of two clusterings as follows.

Let S denote the sample space of n objects. Let Ci and Cj denote clusterings of S.
The Normalized Mutual Information between two clusterings Ci and Cj is defined as

[30]

NMI Ci;Cj

� � ¼ I Ci;Cj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Cið ÞH�Cj

�q ð43Þ

where I(Ci,Cj) is the Mutual Information between clusterings Ci and Cj,H(Ci) is the

entropy of Ci, and H(Cj) is the entropy of Cj. The Mutual Information between two

clusterings I(Ci,Cj) and the entropies H(Ci) and H(Cj) are defined as [31]:

I Ci;Cj

� � ¼ X
a

X
b

P a; bð Þlog2
P a; bð Þ
P að ÞP bð Þ

	 

ð44Þ

H Cið Þ ¼ �
X
a

P að Þlog2 P að Þð Þ ð45Þ

H Cj

� � ¼ �
X
b

P bð Þlog2 P bð Þð Þ ð46Þ

where a is a cluster in clustering Ci and b is a cluster in clustering Cj. P(a) is defined

as
aj j
n , P(b) is defined as

bj j
n , and P(i, j) is defined as

a\bj j
n .

Entropy ((45) and (46)) is a measure of the amount of uncertainty present in a

clustering. This is best understood by the following thought experiment. Consider a

clustering of n points and consider picking an arbitrary point from any cluster.

Assuming each point has an equal chance of being picked, the probability of the

point being in cluster k of size nk is nk
n [31]. If there is only one cluster in the
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clustering, then nk
n ¼ 1, causing the entropy (uncertainty) to be zero ((45) and (46)).

Thus, if there is only one cluster, there is no uncertainty/information present in the

clustering. However, if the clustering contains more clusters with a more non-trivial

probability distribution, the entropy (and information present in the clustering)

increases. Mutual information is then derived from entropy, calculated as the

information shared between two clusterings.

4.2 Network Profile Comparison

Another approach for comparing networks is implemented in a method called

NetSimile [32]. This approach compares networks based on their topologies. For

a set of networks to be compared, a selection of network topology measures are

calculated for each network. These measures are compiled into a signature vector

for each network. Network comparison then simply reduces to calculating the

Canberra distance between the network’s signature topology vectors [32].

5 Similarity Metric Effect on Network Topology: Results

and Discussion

5.1 Overview

Two types of datasets were used for the exploration of network comparison

approaches. The first dataset on which Clustering and Network topology profile

comparisons were performed was a large grapevine microarray dataset, consisting

of 472 microarray experiments, each containing 16,602 probesets. The

co-expression networks generated from this dataset were very large, containing

thousands of nodes and edges. The second type of dataset included the fully

sequenced genomes of 71 fungi and 211 bacteria. The networks resulting from

these two datasets were smaller and simpler, allowing visual inspection of the

results of a new network comparison technique we developed, namely Cross-

Network Topological Overlap.

5.2 Metric Comparison Though Network Topology Profiles
and Clustering Comparison

Seven similarity metrics, namely the Pearson and Spearman Correlation Coeffi-

cients, Jaccard, Sørensen, Czekanowski, SPS Indices, and Euclidean Similarity

(Table 1) were used as measures for gene co-expression across several grapevine
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microarray experiments. The SPS (Stringent Proportional Similarity) Index is a

metric we created by modifying the Czekanowski Index (also known as the

Proportional Similarity Index [33]) with the aim of creating a similarity metric

which was still a quantitative overlap index similar to the Czekanowski Index, but

more stringent, in that vectors have to be more similar in quantitative overlap to

achieve the same score as with the Czekanowski Index.

The distributions of the co-expression values for each metric are shown in Fig. 2.

It is evident that the different similarity metrics have very different distributions,

although certain patterns do come forward. The Jaccard and Sørensen distributions

are similar. This is to be expected as both of these metrics are based on set overlaps.

For two sets A and B, the set overlap formulation of the Sørensen Index So(A,B) and
the Jaccard Index J(A,B) are defined as [14]

So A;Bð Þ ¼ 2
��A \ B

��
A
��þ ��B�� �� ð47Þ

J A;Bð Þ ¼ A \ Bj j
A [ Bj j ð48Þ

The Sørensen and Jaccard Indices are related to each other by the following

equation [14]:

Table 1 Similarity metrics

Similarity metric Formula

Pearson correlation [3]
P X;Yð Þ ¼

X
i
Xi�Xð Þ Yi�Yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
Xi�Xð Þ2

X
i
Yi�Yð Þ2

q
Spearman correlation [5]

Sp X;Yð Þ ¼
X

i
Ri�Rð Þ Qi�Qð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
Ri�Rð Þ2

X
i
Qi�Qð Þ2

q
Sørensen Index [14]

So X;Yð Þ ¼ 2

X
i
min XBi;YBið ÞX
i
XBiþYBið Þ

Jaccard Index [7, 14] J X;Yð Þ ¼ X;Yh i
X;Xh iþ Y;Yh i� X;Yh i

Czekanowski Index [11, 33]
Cz X; Yð Þ ¼ 2

X
i
min Xi ;Yið ÞX
i
XiþYið Þ

SPS Index
SPS X; Yð Þ ¼ 1� 1

n

X
i

X2
i �Y2

ij j
X2
i þY2

i

MIC [17] Maximum mutual information

Euclidean Similarity E X;Yð Þ ¼ 1� D X;Yð Þ
maxX,Y D X;Yð Þð Þ

Definitions of similarity metrics. X and Y are vectors of length n. XB and YB are the binary vectors

associated with vectors X and Y, respectively, R and Q are the rank vectors associated with vectors

X and Y, respectively, D(X, Y ) is the Euclidean distance between vectors X and Y, and hX,Yi is the
inner product of vectors X and Y
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Fig. 2 Distributions. Frequency distributions of co-expression values for each of the similarity

metrics when applied to the grapevine microarray expression dataset
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So ¼ 2J

J þ 1
ð49Þ

This relationship is reflected in the distributions in that the Jaccard distribution is

skewed, having a longer right tail than the Sørensen distribution.

The Pearson and Spearman distributions are very similar. This seems logical as

both are correlation coefficients with similar formulations (Table 1) and both

measure to what extent the elements of two vectors follow the same pattern, the

difference being that Pearson measures the linear relationship between two vectors

and Spearman, being less stringent, measures the monotonic relationship between

two vectors.

The SPS and Czekanowski distributions are similar in that they follow the same

pattern of inflection points, although the SPS distribution is flatter, having less of a

spike on the right side of the distribution, indicating that it is indeed more stringent

than the Czekanowski Index.

5.2.1 Network Topology Profile Comparison

A network comparison method based on the principles of NetSimile [32] was

developed, allowing the comparison of a set of networks in a pairwise manner.

This method involved the calculation of several topology indices for each network.

Local indices are calculated per node, and include clustering coefficients, connec-

tivities, scaled connectivities, and maximum adjacency ratios. Global indices are
calculated for a network as a whole, and include maximum connectivity, density,

centralization, heterogeneity, and degree correlation (see Table 2). These topology

indices form the variables in a topology profile for each network. Perl programs

were written to calculate a series of local and global topology indices for a given set

of networks and to construct topology profiles for these networks. Certain Perl

programs made use of the Statistics::Basic Perl Module (Paul Miller, http://www.

cpan.org/). The topology profiles form the rows of a matrix in which each row

represents one of the input networks and each column represents a network topol-

ogy index. Four different topology profile matrices were created with different sets

of variables, namely:

1. Weighted global indices

2. Unweighted global indices

3. Weighted local indices

4. Unweighted local indices

These topology profiles can be further compared using multivariate methods

such as Principal Components Analysis (PCA). To investigate further the relation-

ships between and the effect of different similarity metrics on network topology,

our network comparison method was used to compare grapevine co-expression

networks generated using the seven different similarity metrics. Each co-expression

network was pruned to maintain only the top 1% of edges. This pruning strategy
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was applied instead of a hard thresholding approach because the metrics have such

varied distributions (Fig. 2).

Global and local topology indices were then calculated for each network. This

resulted in the four topology profile matrices described above, each of which was

analyzed with PCA. The score plot for the weighted local index matrix is shown in

Fig. 3a. SPS-metric and Czekanowski Index cluster together, as do Pearson and

Spearman Correlation Coefficients and Sørensen and Jaccard Indices. Intuitively,

these groupings seem logical. Pearson and Spearman Correlation are both correla-

tion coefficients and are calculated in a similar manner, except that Spearman uses

ranks instead of actual variable values. Sorensen and Jaccard Indices are both set

overlap measures and are calculated in a similar manner and thus would be

expected to be similar. Lastly, the SPS Index was derived from the Czekanowski

Index and thus it makes sense that they are similar. The score plot for the weighted

global index matrix is shown in Fig. 3c. Similar groupings of metrics are seen in this

score plot. It is interesting to note that the number of variables in the topology

profile matrix in which the variables are local indices is vastly greater than that in

which the variables are global indices. Because local indices are calculated for each

node and there are thousands of nodes in each network, the number of variables in

the local index topology profile matrix is very large. However, global indices are

calculated only once per network, thus there are only five variables in the global

index topology profile matrix. It is interesting that even though there are far fewer

variables in the global index topology profile matrix than in the local index

Table 2 Network topology

indices
Topology index Definition

Local indices

Connectivity ki ¼
X

j6¼i
aij

Scaled connectivity
k scaled
i ¼

X
j6¼i

aij

kmax

Maximum adjacency ratio
MARi ¼

X
j6¼i

aijð Þ2X
j6¼i

aij

Clustering coefficient
CCi ¼

X
l6¼i

X
m6¼i, l

ailalmamiX
l6¼i

ail

� �2

�
X

l6¼i
ailð Þ2

Global indices

Maximum connectivity kmax ¼ max kið Þ
Density

DN ¼
X

i

X
j 6¼i

aij

n n�1ð Þ
Centralization CN ¼ n

n�2
kmax

n�1
� DN

� �
Heterogeneity

HN ¼
ffiffiffiffiffiffiffiffiffi
var kð Þ

p
mean kð Þ

Degree correlation Pearson (S,T )

Definitions of network indices [18, 22], where i and j are nodes,
aij is the adjacency of nodes i and j, S is the vector of degrees of

all source nodes, and T is the vector of degrees of all target nodes
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topology profile matrix, both give similar groupings in their respective PCA score

plots.

In general, the score plots resulting from PCA of the matrices with unweighted

indices as variables (Fig. 3b, d) have similar but tighter groupings than those

resulting from PCA of matrices with weighted indices as variables (Fig. 3a, c).

The Jaccard and Sørensen scores are in fact identical in both score plots resulting

from using unweighted indices as variables (Fig. 3b, d).

Fig. 3 Score plots: PCA of topology profiles. Score plots resulting from PCA of the topology

profile matrices in which variables are (a) weighted local topology indices, (b) unweighted local

topology indices, (c) weighted global topology indices, and (d) unweighted global topology

indices. Scores of the Jaccard and Sørensen Index networks in (b) and (d) are identical, and thus

their points in the score plots are superimposed and cannot both be visualized or labeled. Score

plots were generated using Qlucore [34]
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5.2.2 Network Clustering Comparison

The seven pruned similarity networks were all clustered using MCL [28, 29] and

the resulting clusterings were compared using three clustering comparison metrics,

namely Average-Maximum Overlap, Jaccard Overlap, and Normalized Mutual

Information (see Methods). This resulted in three all-vs-all networks in which

each node represented a similarity metric and each edge represented similarity

between those two similarity metrics, based on how similar the clusterings of the

two respective co-expression networks were. These three clustering comparison

networks are show in Fig. 4. All three clustering comparison approaches give

similar results. From the thickness of the edges, it can be seen that the Pearson

network clustering is most similar to the Spearman clustering, Jaccard is most

similar to Sørensen, SPS is most similar to Czekanowski, and Euclidean is quite

different from all other metrics. These are the same groupings which were seen in

the score plots resulting from PCA of the network topology profiles and suggested

by the distributions of the metrics.

5.3 Metric Comparison Through Network Merging
and Cross-Network Topological Overlap

Phylogenomic networks were constructed to represent the evolutionary relation-

ships and similarities between 71 fungal species and 211 bacterial species based on

gene family content. For the fungal dataset, 8 similarity metrics were used to

calculate the similarity between the gene family content of 71 fungal species. A

similar procedure was used to calculate the similarity between the gene family

content of 211 bacterial species, using 7 different similarity metrics.

This resulted in eight fungal MSTs and seven bacterial MSTs in which each node

represented a species (either fungal or bacterial) and each edge represented simi-

larity between the gene family content of the two species the edge connected,

quantified using a particular similarity metric. In the fungal MSTs (Fig. 5), nodes

were colored according to high order taxonomic groupings, whereas in the bacterial

MSTs (Fig. 6), nodes were colored according to genus. From the MSTs it can be

seen that, in general, all similarity metrics seem to group the species within their

taxonomic groupings or genera. Thus, globally, the choice of similarity metric does

not make much difference. However, locally, the choice of similarity metric results

in different topologies. To visualize this better, all fungal MSTs and all bacterial

MSTs were merged into two Union MSTs, one for fungi (Fig. 5i) and one for

bacteria (Fig. 6h). These merged views give a good visualization on how much the

similarity metrics agree on a global and a local scale. The presence of multiple

edges between nodes indicates that multiple similarity metrics place these two

nodes adjacent in their respective MSTs. From the Union networks in Figs. 5i

and 6h, it can clearly be seen through the color distributions that these similarity
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metrics generally agree on a global scale, grouping species within their taxonomic/

genera groupings. However, the similarity metrics differ on a local scale. This is

illustrated by the connections between nodes which are present in only a few of the

MSTs.

Fig. 4 Clustering similarity. Each node represents a network (in particular a gene-co-expression

network) constructed using a particular similarity metric as the measure of gene co-expression.

The similarity between these seven similarity metrics (nodes) is quantified by calculating the

similarity between the MCL clusterings of these networks through the use of (a) Maximum

Average Clustering Overlap, (b) Jaccard Clustering Overlap, and (c) Normalized Mutual Infor-

mation between clusterings. Edge thickness corresponds to the weight of the edges based on the

particular clustering similarity measure. Network visualizations were created using Cytoscape [35]

Network Metamodeling: Effect of Correlation Metric Choice. . . 165



5.3.1 Cross-Network Topological Overlap

Topological Overlap [20] is a network measure which quantifies the extent to which

two nodes within a network are connected through direct connections between the

two nodes and indirect connections through shared neighbors of the two nodes. We

Fig. 5 Fungal Gene Family Content MSTs. Each MST shows the similarity between the gene

family content of fungal species, each calculated using a different similarity metric. In each

network, each node represents a fungal species and each edge represents similarity between the

gene family content of two species calculated using a different similarity metric, namely (a)

Czekanowski Index, (b) SPS Index, (c) Euclidean Similarity, (d) Jaccard Index, (e) Maximum

Information Coefficient, (f) Pearson Correlation Coefficient, (g) Sorensen Index, and (h) Spear-

man Correlation Coefficient. (i) Union of the MSTs in (a)–(h). Species nodes are colored

according to their taxonomic groupings. Network visualizations were created using Cytoscape

[35]
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Fig. 6 Bacterial Gene Family Content MSTs. Each MST shows the similarity between the gene

family content of bacterial species, each calculated using a different similarity metric. In each

network, each node represents a bacterial species and each edge represents similarity between the

gene family content of two species calculated using a different similarity metric, namely (a)

Pearson Correlation Coefficient, (b) Czekanowski Index, (c) SPS Index, (d) Spearman Correlation

Coefficient, (e) Euclidean Similarity, (f) Jaccard Index, and (g) Sorensen Index. (h) Union of the

MSTs in (a)–(g). Species nodes are colored according to their genus. Network visualizations were

created using Cytoscape [35]
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extended this concept and introduce a formulation of Topological Overlap, called

Cross-Network Topological Overlap, which calculates the topological overlap

between nodes in different networks, quantifying the similarity between the neigh-

borhoods of two nodes in different networks (Fig. 7). Selecting best-hits for a node

in another network thus selects nodes which are topologically most similar to that

node. This provides a node-by-node based approach for comparing networks.

Consider two networks, A and B. Let Ai denote the ith node in network A and Bj

denote the jth node in network B. We define Cross-Network Topological Overlap

(CNTO) in a directional manner. Let CNTO(Ai,Bj) be the CNTO of node Ai onto
node Bj. Then, the two directional CNTOs are defined as

CNTO Ai;Bj

� � ¼ nAi,Bj
þ dAi,Bj

kAi
þ 1

ð50Þ

CNTO Bi;Aj

� � ¼ nAi,Bj
þ dAi,Bj

kBj
þ 1

ð51Þ

where nAi,Bj
is the number nodes which are neighbors of both Ai and Bj, kAi

is the

connectivity of node Ai, kBj
is the connectivity of node Bj, and dAi,Bj

is defined by

dAi,Bj
¼ 1 if i ¼ j

0 if i 6¼ j

�
ð52Þ

Thus, the directed CNTO is equal to 1 if the two nodes are in fact the same node,

and if they share all their neighbors. The symmetrical CNTO of two nodes is then

defined as the average of the two respective directional topological overlaps.

Fig. 7 Cross-Network Topological Overlap. Subnetworks of the neighborhood of node i in two

hypothetical networks are shown. Solid edges represent edges within a network and dashed edges
represent edges constructed to link each node with its corresponding node in the other network
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Fig. 8 CNTO Networks: Comparison of Fungal MSTs. CNTO networks resulting from the

comparison of fungal MSTs. Each node represents a fungal species from an MST corresponding

to one similarity metric and is connected to the node(s) in an MST from another metric with which

it has the highest CNTO. (a) CNTO network from the comparison of Jaccard and Sørensen fungal

MSTs. Black-bordered nodes represent fungal species nodes from the Jaccard MST and gray
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To investigate this new CNTO measure and how it can be used to compare

networks, we applied it to compare the phylogenomic MSTs as these networks were

simple and small enough for the output to be visually inspected.

CNTO was used to compare the Jaccard and Sørensen and the Pearson and

Sørensen fungal MSTs. The Pearson and Sørensen networks were chosen for

comparison because these metrics have very different definitions and were shown

to result in very different network topologies when applied to the transcriptomic

dataset. For a given pair of MSTs, A and B, the CNTO was calculated for all pairs of

nodes i and j in which i is a node in A and j is a node in B. For each node i in an MST

A, the node(s) in MST B with the highest topological overlap with node i were
selected. Pairwise CNTO networks were then constructed. These networks

contained two copies of each node, one from each of the two MSTs being com-

pared, and each node is connected to the node(s) from the other MST with which

they have the highest CNTO. The CNTO networks for the comparison of the

Jaccard and Sørensen and the Pearson and Sørensen MSTs can be seen in Fig. 8a,

b, respectively. These networks very clearly show the degree of similarity in the

topologies of two networks. Figure 8a shows that the topologies of the Jaccard MST

and the Sørensen MST are identical, as each node from the Jaccard MST (black

bordered nodes) connects only to its corresponding node in the Sørensen MST (gray

bordered nodes) with CNTO ¼ 1. Figure 8b illustrates the similarities and differ-

ences in the topologies of the Pearson and Sørensen MSTs. Certain nodes are

topologically similar between these two MSTs (illustrated by the pairs of nodes at

the bottom of the network in Fig. 8b), although the disagreement of the two

similarity metrics is shown largely in the top half of the network.

To illustrate how CNTO selects the most topologically similar node in another

network, consider the three labeled nodes in Fig. 8b. The network shows that the

nodes in the Sørensen MST most topologically similar to the species node

Capaspora owczarzaki in the Pearson MST are Lodderomyces elongisporus and

Schizosaccharomyces octosporus. The position of Capaspora owczarzaki in the

Pearson MST is illustrated in Fig. 9a. The only information we have topologically

about this node is that it is a neighbor of the node Schizosaccharomyces japonicus.
Thus, logically, the most topologically similar nodes in the Sørensen MST should

be neighbors of Schizosaccharomyces japonicus. Consider the Sørensen MST in

Fig. 9b. Neighbors of Schizosaccharomyces japonicus are Schizosaccharomyces
octosporus, Lodderomyces elongisporus, or Cryptococcus neoformans. CNTO

chose Schizosaccharomyces octosporus and Lodderomyces elongisporus as more

topologically similar than Cryptococcus neoformans, as their degrees are lower and

Fig. 8 (continued) bordered nodes represent fungal species nodes from the Sørensen MST. (b)

CNTO network from the comparison of Pearson and Sørensen fungal MSTs. Black-bordered
nodes represent fungal species nodes from the Pearson MST and gray bordered nodes represent

fungal species nodes from the Sørensen MST. Solid edges represent CNTO ¼ 1 (nodes are

identical and share all their neighbors) whereas dashed edges represent CNTO < 1. Network

visualizations were created using Cytoscape [35]
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Fig. 9 Pearson and Sørensen Fungal MSTs. Fungal MSTs in which nodes represent fungal species

and edges represent similarity between the gene family content of species quantified using (a) the

Pearson Correlation Coefficient and (b) the Sørensen Index. Network visualizations were created

using Cytoscape [35]
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thus they have a higher fraction of shared neighbors with Capaspora owczarzaki
than does Cryptococcus neoformans.

As illustrated, for a given node in a particular network, CNTO selects the node

(s) in a corresponding network with the most similar topological surroundings in

terms of fraction of shared neighbors. CNTO networks such as those in Fig. 8 reveal

different information than would be gained from simply merging the two networks

being compared. For example, consider the merged fungal Sørensen MST and

Pearson MST shown in Fig. 10. This merged view gives an indication of shared

edges, but does not easily show which nodes are most topologically similar in terms

of shared neighbors as is shown by the CNTO networks.

MSTs, in general, have very simple topologies. They have no cycles and are very

minimalistic in topology. They were chosen as example networks to develop and

explore this method of network comparison because of their simplicity and ease of

visualization. To explore the results of this method on networks with more complex

topology, the Pearson and Sørensen all-vs-all bacterial networks were pruned to

maintain the top 2.5% of edges. The resulting networks can be seen in Fig. 11.

These networks have more complex topologies than the MSTs, having a much

larger variance in node connectivities. CNTO was then calculated between all pairs

of nodes in these two pruned networks, and a CNTO network constructed (Fig. 12).

This network clearly indicates the differences in the local topologies of nodes in the

two pruned bacterial networks being compared.

Fig. 10 Union of Pearson and Sørensen MSTs. Merged Sørensen and Pearson fungal MSTs from

Fig. 9. Network visualizations were created using Cytoscape [35]
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Fig. 11 Pearson and Sørensen Pruned Bacterial Networks. Pruned phylogenomic networks in

which nodes represent bacterial species and edges represent similarity between the gene family

content of bacterial species quantified using (a) the Pearson Correlation Coefficient and (b) the
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Consider the labeled nodes in Fig. 12. The species nodes in the Sørensen

bacterial network (Fig. 11b) most similar to Lactobacillus acidophilus in the

Pearson bacterial network (Fig. 11a) are Enterococcus faecium and Lactococcus
lactis. The common and uncommon neighbors of these nodes are illustrated in

Fig. 13. On the left of each panel is the node in question, Lactobacillus acidophilus
connected to its neighbors in the Pearson bacterial network in (Fig. 11a). On the

right of each panel is a node from the Sørensen bacterial network (Fig. 11b)

connected to its neighbors. The neighbors shared between Lactobacillus acidoph-
ilus from the Pearson network and the node from the Sørensen network in the right

panel are enclosed in a rectangle. This figure illustrates why the CNTO measure

selected Enterococcus faecium and Lactococcus lactis in the Sørensen network as

more topologically similar to Lactobacillus acidophilus in the Pearson network

rather than its equivalent node, Lactobacillus acidophilus, in the Sørensen network.
As can be seen in Fig. 13, Lactobacillus acidophilus from the Pearson network

shares proportionally many more neighbors with Enterococcus faecium and

Lactococcus lactis in the Sørensen network than with Lactobacillus acidophilus
from the Sørensen network.

6 Conclusions

In this study, different similarity metrics were applied to construct networks from

three different datasets, and the effect of different similarity metrics on the resulting

network topology was investigated through various network comparison

approaches. Two new network comparison approaches and one existing approach

were investigated, including PCA of network topology profiles, Cross Network

Topological Overlap, and Clustering Comparison [30]. It is evident from all these

investigations that the similarity metric chosen can have a large impact on the

topology of the resulting network. These differences in network topology also carry

through to the results of further analysis, such as clustering. The choice of similarity

metric could thus greatly impact the resulting biological interpretation of the

networks. A potential limitation of using network topology measures to compare

networks is that certain topology measures, such as shortest path, are computation-

ally time consuming to calculate and may become infeasible for very large net-

works. However, with the appropriate High Performance Computing resources,

they can be applied to larger networks.

The fact that different similarity metrics result in different biological interpre-

tations can be exploited as an advantage. As each similarity metric describes and

quantifies a different aspect of similarity, the use of multiple similarity metrics

Fig. 11 (continued) Sørensen Index. Nodes are colored according to genus. These networks are

pruned to maintain only the top 2.5% of edges. Network visualizations were created using

Cytoscape [35]

174 D.A. Weighill and D. Jacobson



provides multiple perspectives on the data, each of which is valuable. An agglom-

erative approach in which many different similarity metrics are used to gain

different perspectives and insights into a dataset is thus appealing.

Furthermore, with the Cross-Network Topological Overlap method presented

here, it is relatively easy to identify the portions of the network affected by the

choice of similarity metric. This approach provides different information than

would be gained from merging two or more networks being compared. CNTO

specifically highlights areas of the networks with conflicting topologies in a node-

based manner, connecting nodes to their most topologically similar nodes in

another network, whereas network merging is an edge-based approach, simply

revealing shared edges between the two networks.

This ability of CNTO to highlight and zoom in on these areas of interest is a very

useful attribute, especially when comparing large networks. In addition, CNTO

Fig. 12 CNTO Network: Pearson and Sørensen Bacterial Networks. Comparison of the pruned

bacterial networks in Fig. 11 through CNTO. Black bordered nodes represent nodes from the

pruned Pearson bacterial network (Fig. 11a) and gray bordered nodes represent nodes from the

pruned Sørensen bacterial network (Fig. 11b). Each node is connected to the node(s) in the other

network with which it has the highest CNTO. Solid edges representCNTO ¼ 1 (nodes are identical

and share all their neighbors) and dashed edges representCNTO < 1. Network visualizations were

created using Cytoscape [35]
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potentially has broader applications to network comparisons in a wide variety of

real-world networks, including communication networks, transport networks, and

social networks. This approach can be used to compare any kind of network with

another of its kind, highlighting regions of the networks with conflicting topologies.

The further application of CNTO in the comparison of various types of networks is

suggested for future work.

Fig. 13 Shared Neighbors. Neighbors of Lactobacillus acidophilus in the Pearson network, as

shown in Fig. 11a, which are shared with nodes in the Sørensen network, as shown in Fig. 11b, are

illustrated within this figure. Lactobacillus acidophilus and its neighbors in the Pearson network

are shown on the left side, nodes in the Sørensen network and their neighbors are shown on the

right side, and neighbors shared between the node on the left and the node on the right are enclosed
in rectangles. Network visualizations were created using Cytoscape [35]
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7 Similarity Metric Effect on Network Topology: Methods

7.1 Metric Comparison Though Network Topology Profiles
and Clustering Comparison

7.1.1 Co-Expression Similarity Network Construction

A total of 472 grapevine Affymetrix microarray experiments were downloaded

from Gene Expression Omnibus and normalized using RMA [36]. In the resulting

expression matrix E, the columns represented microarray experiments, rows

represented probesets, and each entry Xi represented the log2(expression) value

of probeset X in experiment i. Seven metrics were then used to calculate the

similarity (“co-expression”) between all pairs of probesets.

Let X and Y denote rows of the expression matrix E corresponding to the

expression profiles of genes x and y, respectively. Let XB and YB denote the binary

vectors corresponding to X and Y, calculated as

XBi ¼ 1 if Xi � X
0 if Xi ¼ 0

�
: ð53Þ

where XBi is the ith entry of XB and X is the mean of X. Seven similarity metrics

(defined in Table 1) were then calculated between all pairs of genes. The Pearson

and Spearman Correlation Coefficients and Czekanowski, SPS, and Euclidean

Distance Indices were calculated using the original vectors, and Sørensen and

Jaccard Indices were calculated using the binary vectors defined in (53). The

mcxarray program from MCL-Edge [28] available from http://micans.org/mcl/

was used to calculate the Pearson and Spearman correlation coefficients. Custom-

ized Perl scripts were written to calculate the other similarity metrics. This resulted

in seven similarity networks (one for each similarity metric) in which each node

represented a probeset and each edge represented similarity between the expression

profiles of the probesets the edge was connecting, according to a particular simi-

larity metric. These similarity networks were subsequently pruned to maintain only

the top 1% of edges, including reciprocal edges but not including self-loops.

Network visualizations were created using Cytoscape [35].

7.1.2 Metric Distribution Construction

A distribution was constructed for each similarity metric using a bin size of 0.05.

All similarity metrics with a range of 0 to 1 (Sørensen, Jaccard, Czekanowski, and

SPS Indices and Euclidean Similarity) thus had 20 bins. Pearson and Spearman

Correlation Coefficients have a range of �1 to 1 and thus needed 40 bins.
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7.1.3 Network Comparison Through Topology Indices

For each of the seven pruned co-expression networks, a series of network topology

indices were calculated. Weighted versions of the topology indices use the actual

similarity value as the weight of the edges, whereas unweighted topology indices do

not acknowledge edge weights, only the presence or absence of edges in the pruned

networks.

The weighted and unweighted versions of the following global (whole-network)

indices were calculated for each of the co-expression networks:

1. Density

2. Centralization

3. Heterogeneity

4. Degree Correlation

5. Maximum Connectivity

The following weighted local (node-based) indices were calculated for each

node in each network:

1. Clustering Coefficient

2. Scaled Connectivity

3. Connectivity

4. Maximum Adjacency Ratio

The same unweighted local indices were calculated for each network, with the

exception of Maximum Adjacency Ratio, which is meaningless in the context of an

unweighted network.

Topology profile matrices were then constructed in which each row represents

one of the input networks and columns represent topology indices. Four topology

profile matrices were constructed for which the variables were weighted local

indices, unweighted local indices, weighted global indices, and unweighted global

indices, respectively. PCA was performed on these matrices using Qlucore [34].

7.1.4 Network Comparison Through Clustering Comparison

The pruned similarity networks were clustered using MCL [28, 29] available from

http://micans.org/mcl/. This produced a clustering (a set of clusters) for each

similarity network. Perl scripts were then written to compare all pairs of clusterings

using three measures, namely Average-Maximum Overlap, Jaccard Clustering

Overlap, and Normalized Mutual Information.

Let Ci and Cj be two clusterings. Then the Average-Maximum Overlap between

clusterings Ci and Cj was calculated as follows. For each pair of clusters (a, b)
where a 2 Ci and b 2 Cj, the Jaccard Index was calculated as

178 D.A. Weighill and D. Jacobson

http://micans.org/mcl/


J a; bð Þ ¼ a \ bj j
a [ bj j ð54Þ

This results in the matrix in which the rows represent clusters from clustering Ci,

columns represent clusters from clustering Cj, and each entry (a, b) is the Jaccard

overlap of a from clustering Ci and b from clustering Cj. The maximum value of

each row is then taken, representing the “best hit” overlap for each cluster in

clustering Ci. The average of these maxima is then taken, giving a score for how

similar clustering Ci is to Cj. The matrix is then transposed and the process repeated,

as this similarity score is not symmetric. A network was then created in which each

node represented a co-expression network (constructed using a specific similarity

metric) and each edge represented the Average-Maximum Overlap score between

the clusterings of the two nodes (networks) the edge is connecting. The network

was visualized in Cytoscape [35] and can be seen in Fig. 4a.

The Jaccard clustering overlap between clusterings Ci and Cj was calculated as

[31]:

J Ci;Cj

� � ¼ N11

N11 þ N01 þ N10

ð55Þ

where N11 is the number of pairs of elements (x, y) which are in the same cluster in

Ci and Cj, N10 is the number of pairs of elements (x, y) which are in the same cluster

in Ci but not Cj, and N01 is the number of pairs of elements (x, y) which are in the

same cluster in Cj but not Ci. A network was created in which each node represented

a co-expression network (constructed using a specific similarity metric) and each

edge represented the Jaccard overlap between the clusterings of the two nodes

(networks) which the edge is connecting. The network was visualized in Cytoscape

[35] and can be seen in Fig. 4b.

The normalized Mutual Information clustering overlap between clusterings Ci

and Cj was calculated as [30]

NMI Ci;Cj

� � ¼
X

a

X
b
P a; bð Þlog2

P a; bð Þ
P að ÞP bð Þ

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

a
P að Þlog2 Pað Þ

X
b
P bð Þlog2 Pbð Þ

q ð56Þ

where a is a cluster in clustering Ci, b is a cluster in clustering Cj, P(a) is defined as
aj j
n , P(b) is defined as

bj j
n , and P(a, b) is defined as

a\bj j
n . The Normalized Mutual

Information was calculated between all pairs of the seven clusterings (one for each

co-expression network) and a network was constructed in which each node

represented a co-expression network (calculated using a specific similarity metric)

and each edge represented the normalized mutual information between the cluster-

ings of the two nodes (networks) connected by that edge. The resulting network was

visualized in Cytoscape and can be seen in Fig. 4c.
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7.2 Metric Comparison Through Network Merging
and Cross-Network Topological Overlap

Two datasets, one consisting of the fully sequenced genomes of 71 fungal species

(downloaded from the Broad Institute [http://www.broadinstitute.org/] and the

Saccharomyces Genome Database [http://www.yeastgenome.org/download-data]

and the other consisting of the fully sequenced genomes of 211 bacterial species

(downloaded from NCBI, [http://www.ncbi.nlm.nih.gov/]) were obtained and gene

families were constructed.

7.2.1 Gene Family Construction

Gene families were constructed across 71 fungal species using a parallel version of

OrthoMCL [37]. Gene families were constructed across the 211 bacterial species

using TribeMCL [38]. TribeMCL constructs less stringent families does than

OrthoMCL, although TribeMCL is faster and was thus chosen for the larger dataset

of 211 bacterial genomes. In both cases, an inflation value of 2 was used during the

MCL [28] clustering step. All families of size 2 or less were excluded from further

analysis. From the resulting gene families, two matrices (named Species-Family

Matrices or SF-matrices) of gene family content profiles were constructed, one

containing fungal gene family profiles and the other containing bacterial gene

family profiles. In both matrices, each column represented a species, each row

represented a gene family, and each entry ij represented the number of genes in

gene family i present in species j.

7.2.2 Phylogenomic Network Construction and Pruning

The similarity between the gene family content of all pairs of fungal species was

calculated using eight different similarity metrics. Let Xi and Yi represent the ith
element in column X and column Y in the SF-matrix (i.e., the number of members of

gene family i in species X and species Y, respectively. Let XB be the binary vector

associated with vector X and YB be the binary vector associated with vector Y,
calculated as

XBi ¼ 1S ifi X � 1

0 ifXi ¼ 0

�
ð57Þ

Eight similarity metrics (defined in Table 1) were then used to calculate the

similarity between the gene family content of all pairs of fungal species X and Y.
Pearson and Spearman Correlation Coefficients, MIC, Euclidean Similarity, and

Czekanowski and SPS Indices were calculated using the original vectors, and the
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Sørensen and Jaccard Indices were calculated using the binary vectors defined in

(57).

The same procedure was performed to calculate the similarity between all pairs

of bacterial species, although, in this case, only seven similarity metrics were used,

as the MINE package which is used to calculate MIC failed to run on the bacterial

dataset because of memory limitations.

The mcxarray program from MCL-Edge [28, 29] available from http://micans.

org/mcl/ was used to calculate the Pearson and Spearman correlation coefficients.

The MINE Java program [17] was used to calculate the Maximum Information

Coefficient.

Applying each of these similarity metrics yielded eight all-vs-all similarity

networks for the fungal dataset and seven all-vs-all similarity networks for the

bacterial dataset in which each node represented a species and each edge

represented the similarity between the two species which the edge connected

based on the particular similarity metric. The all-vs-all networks were then pruned

by calculating a Maximum Spanning Tree (MST) for each similarity network using

the Perl program for MST construction used in [39]. This Perl program calculates

MSTs by converting each edge weight w from a similarity value to distance value

w0 ¼ 1� w and calculating a Minimum Spanning Tree on the resulting distance

network using the Dijkstra algorithm from the Graph Perl Module (Jarkko

Hietaniemi, http://www.cpan.org/). The resulting fungal MSTs were visualized

using Cytoscape [35] and are shown in Fig. 5 and the bacterial MSTs are shown

in Fig. 6. The fungal species nodes were colored by their taxonomic groupings

determined using the NCBI Taxonomy Browser [40]. Bacterial species nodes were

colored according to genus. The default color is gray, and thus the color gray does

not indicate any specific genus or taxonomic grouping.

Two other pruned networks were created from the all-vs-all Sørensen and

Pearson bacterial networks. Each of these networks were pruned by selecting the

top 2.5% of edges (not including reciprocal edges or self-loops).

7.2.3 MST Merging

The two Union MSTs (Figs. 5i and 6h) were constructed by merging all fungal and

bacterial MSTs, respectively, using the Cytoscape Advanced Network Merge

Plugin.

7.2.4 Cross-Network Topological Overlap Networks

The Cross-Network Topological Overlap was calculated between all pairs of nodes

for a selection of pairs of networks, namely:

1. Jaccard Fungal MST vs Sørensen Fungal MST

2. Pearson Fungal MST vs Sørensen Fungal MST
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3. Pearson Bacterial pruned network vs Sørensen Bacterial pruned network (net-

works pruned to maintain only the top 2.5% of edges)

Pairs of nodes which shared no neighbors across two networks in question were

excluded. For each node, the nodes in the other network with the highest topolog-

ical overlap were selected, and the resulting CNTO networks were visualized in

Cytoscape [35].
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31. Meilă M (2007) Comparing clusterings - an information based distance. J Multivar Anal 98

(5):873–895

32. Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C. A scalable approach to size-independent

network similarity. Available: http://arxiv.org/pdf/1209.2684.pdf

33. Bloom SA (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol Prog

Ser 5(2):125–128

34. Qlucore (2008) http://www.qlucore.com/. Accessed 14 Feb 2013

35. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B,

Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular

interaction networks. Genome Res 13(11):2498–2504

36. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003)

Exploration, normalization, and summaries of high density oligonucleotide array probe level

data. Biostatistics 4(2):249–264

37. Li L, Stoeckert C, Roos D (2003) Orthomcl: identification of ortholog groups for eukaryotic

genomes. Genome Res 13(9):2178–2189

38. Enright A, Van Dongen S, Ouzounis C (2002) An efficient algorithm for large-scale detection

of protein families. Nucleic Acids Res 30(7):1575–1578

39. Setati ME, Jacobson D, Andong UC, Bauer F (2012) The vineyard yeast microbiome, a mixed

model microbial map. PLoS One 7(12):e52609

40. Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40(D1):D136–D143

41. Weighill DA (2014) Exploring the topology of complex phylogenomic and transcriptomic

networks. Master’s thesis, Stellenbosch University

Network Metamodeling: Effect of Correlation Metric Choice. . . 183

http://www.sciencemag.org/content/334/6062/1518/suppl/DC1
http://arxiv.org/pdf/1209.2684.pdf
http://www.qlucore.com/


Adv Biochem Eng Biotechnol (2017) 160: 185–196
DOI: 10.1007/10_2016_49
© Springer International Publishing AG 2016
Published online: 26 October 2016

Molecular Phylogenetics: Concepts

for a Newcomer

Pravech Ajawatanawong

Abstract Molecular phylogenetics is the study of evolutionary relationships

among organisms using molecular sequence data. The aim of this review is to

introduce the important terminology and general concepts of tree reconstruction to

biologists who lack a strong background in the field of molecular evolution. Some

modern phylogenetic programs are easy to use because of their user-friendly

interfaces, but understanding the phylogenetic algorithms and substitution models,

which are based on advanced statistics, is still important for the analysis and

interpretation without a guide. Briefly, there are five general steps in carrying out

a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment,

(3) choosing a phylogenetic reconstruction method, (4) identification of the best

tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp

the basic ideas behind phylogenetic analysis and also help provide a sound basis for

discussions with expert phylogeneticists.

Keywords Evolutionary trees, Molecular phylogenetics, Phylogenetic analysis,

Phylogenetic markers, Phylogeny
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1 Introduction

Biological research has changed rapidly in the last decade, particularly following

the launch of next-generation sequencing (NGS) technology [1]. This is because

NGS dramatically reduces sequencing prices, speeds up the process, and generates

high-throughput DNA sequencing results. Moreover, the advancements in several

“-omic” areas also drive biological research in the new era of bioinformatics,

systems biology and networking biology. Because the generation of data is easy

today, the bioresearch paradigm has shifted from the generation of sequence data to

analysis efficacy and power.

Molecular phylogenetics is a disciplinary study of evolutionary relationships

amongst organisms using molecular sequences. The analysis methods used in

molecular phylogenetics were originally developed to reveal evolutionary path-

ways, yet today molecular phylogenetics is used in several fields, such as systematic

biology and biodiversity [2], molecular epidemiology [3–5], identification of gene

functions [6], and microbe identification in microbiome studies [7–9]. For these

reasons, molecular phylogenetics is a fundamental field in science of which most

biologists require background knowledge.

This review aims to introduce network biologists who are new to the field of

molecular phylogenetics to the basic concepts and ideas behind phylogenetic

analysis. It begins with the frequently used terminology, characteristics of sequenc-

ing markers, and general methods for tree reconstruction and tree evaluation. It then

discusses some popular computer programs and critical points that need to be

considered in the analysis.

2 Phylogenetic Tree

A phylogenetic tree or phylogeny is a tree-like diagram used to visualize evolu-

tionary relationships among a set of operational taxonomic units (OTUs). The OTU

generally represents a species, but can also represent individual organisms in a

population, a gene or protein sequence or a taxon at any taxonomic rank (e.g.,

family, order, class, phylum). The tree is composed of nodes and branches (Fig. 1).

Nodes at the tips of the tree are called ‘external nodes.’ These are used to represent

the OTUs. Another type of node, called ‘internal nodes,’ represents a recent

common ancestor (RCA). Between these are lines, called ‘branches,’ used to

connect newer and older nodes and show the evolutionary relationships among
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the taxa. A branch linking two internal nodes is an ‘internal branch,’ which shows

an ancient relationship. Conversely, the branch joining an internal node with an

external node to show a modern relationship is called an ‘external branch.’
The deepest branch of the tree represents the ‘root’ or the ‘most recent common

ancestor’ (MRCA) of all taxa in the tree. Generally, phylogenetic software can only

reconstruct an ‘unrooted tree’ or a tree showing who is closely related to whom. To

give the tree more meaning in an evolutionary context, the ‘rooted tree’ is

reconstructed by identifying the origin of all taxa. The best way to root a phylo-

genetic tree is by adding an ‘outgroup’ in the dataset. Theoretically, the root of the

tree is located between the outgroup and the remaining taxa. So the best outgroup is

an organism or group of organisms recently diverged from the remainder of the

organisms in the tree. If an outgroup is unknown or if an ideal outgroup is

unavailable (e.g., if there are no data or closely related specimen available), the

middle point of the longest branch on the tree can be used as the root of the tree.

The branching pattern dividing the two new nodes is called a ‘bifurcation’ or a
‘dichotomy.’ This fits with the concept of speciation, in which organisms split from

one ancestor into two new species. The tree that contains only bifurcating nodes is a

‘fully resolved tree.’ If a deeper node branches into more than two new nodes (three

or more), this branching pattern is said to be ‘multifurcating’ or a ‘polytomy.’
To read a tree properly, one needs to understand that all branches on the tree can

be rotated around a node while retaining the same meaning in the context of

evolutionary relatedness (Fig. 2a). Sometimes unrooted phylogenies are drawn in

a star-like shape, also called a ‘star tree.’ In this case, all branches can be rotated too
(Fig. 2b) and the angles of all nodes are meaningless. A phylogenetic tree clusters

taxa based on their evolutionary relationships. The closely related taxa are grouped

together and share an RCA, whereas more distantly related taxa share a deeper

(earlier) common ancestor. All taxa that are descended from the same ancestor

human

mouse

yeast

mushroom

operational 
taxonomic units 

(OTUs)

external branch

internal branch

internal node

external node

root

hypothetical 
taxonomic units 

(HTUs)

Fig. 1 Composition of a phylogenetic tree. Terminology frequently used in phylogenetic trees is

labeled on the tree
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make up a ‘monophyletic group’ or ‘clade’ (Fig. 3a). However, a group of organ-

isms that shares the same ancestor, but does not include all members descending

from that ancestor, is called a ‘paraphyletic group’ or ‘glade’ (Fig. 3b). Another
type of group in phylogenetics is a ‘polyphyletic group’ (Fig. 3c). This term refers

to a group of taxa that are homoplasy. This means that they are not derived from the

same ancestor and the term is usually uses for describing convergent evolution.

Molecular phylogenetic analysis must begin with a set of homologous

sequences. The homology in molecular sequences is based on the sequences

being derived from the same ancestor. With this in mind, molecular homology

can be classified into three different types based on genetic mechanisms that

separate the daughter sequences. The first type is ‘orthologous genes.’ This

means that the sequence was once present in the genome of an ancestor, and was

Fig. 2 A phylogenetic tree is similar to a mobile. Rotating the branches on the tree does not

change the topology (branching pattern) and meaning of the evolutionary relationship in both

rooted (a) and unrooted (b) phylogenies
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Fig. 3 Examples of a monophyletic group (a), a paraphyletic group (b), and a polyphyletic group

(c) are shown in gray
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transferred to the new species by speciation. This kind of gene is potentially

informative for molecular phylogeny. Conversely, some genes are duplicates of

other genes in the same genome and are called ‘paralogous genes.’ They can cause

confusion in the tree reconstruction. Finally, the type of homologous genes that

must be avoided in molecular phylogenetic reconstructions are ‘xenologous genes.’
These arise from horizontal gene transfer from one species to another. This type of

gene can be problematic for a gene tree reconstruction and so usually are best

avoided.

3 Molecular Markers for Building a Tree

Over the last few decades, DNA sequences have been accepted and widely used as

molecular characters for phylogenetic tree reconstructions, surpassing the use of

morphological characters [10]. This is because the sequence states of DNA, which

can be only adenine, thymine, cytosine, or guanine, are clearer than morphological

states. Molecular sequences also provide a large number of characters for phylo-

genetic analysis. For example, a phenotype regulated by single gene or a group of

genes can be recognized as one character, but almost all positions in a gene’s DNA
sequence are useful characters for phylogenetic analysis. In addition, sequence-

based phylogeny allows scientists to compare organisms across higher taxonomic

ranks, such as class, phylum, or even kingdom, despite a lack of comparable

morphology (see [11] for further discussion).

Ribosomal RNA (rRNA) sequences in the small subunit (SSU) of the ribosome

(16S rDNA sequences for prokaryotes and 18S rDNA sequences for eukaryotes) are

the most widely used molecular region for phylogenetic analyses [12–15]. There

are several reasons why the SSU is a very powerful marker [16, 17]. First, it is an

ancient molecule which emerged during the very early stages of life and it codes for

a function necessary for the survival of all cellular organisms. It is therefore present

in all organisms. This allows different organisms with no morphology in common

to be compared. Second, this molecule is vertically transferred with a low rate of

mutation. This means the SSU is very conserved in its sequence, structure, and

function. Third, the SSU sequence has multiple variable regions (V1–V9) which are

all flanked with conserved blocks. This is convenient for finding oligonucleotide

primers to amplify a piece of the SSU DNA for testing the diversity of sequences. In

addition to the SSU, there are many other sequence markers which are potentially

useful and have been used for phylogenetic analyses. Generally, a potentially useful

marker sequences should be single copy and located in either the genome of the

nucleus or organelles [18] such as the mitochondrial or plastid genomes (see further

details in [19]). They can be either coding or non-coding sequences.

The tree built from a gene is called a ‘gene tree.’ Normally, a gene tree can

illustrate the evolutionary history of that gene, which is not necessarily the same as

the story of the species’ evolution. As such, it is probable that the topology

(branching pattern) of the gene tree might not be identical to the ‘species tree.’
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Phylogenetic tree reconstruction based on multiple genes is an alternative way to

improve the resolution of a gene tree and avoid the biases that come with a tree

generated from a single gene. Phylogenetic signals from different genes can be

combined by concatenating all the aligned sequences. This approach aims to

integrate the signal from each gene to make it more intense.

Rokas and Holland [20] proposed the term ‘rare genomics changes’ (RGCs),
which refers to regions in the genomes of organisms in a particular clade that have

rare mutational changes, which can be used as novel markers in molecular phylo-

geny and evolution. Some examples of RGCs include indels (insertions/deletions),

sequence signatures, and amino acid composition changes, which show the poten-

tial of RGCs as evolutionarily informative markers [21–24]. There have been some

attempts to use RGCs as data for phylogenetic tree reconstruction, but it is very

difficult to measure the rate of evolution in these markers and there is also no

accepted weighting method for them.

4 Sequence Alignment

DNA and protein sequences are the most frequently used data types in molecular

phylogenetic analysis. To study deep phylogeny, one needs ancient, universal,

orthologous sequences to form the dataset. However, these sequences might be

very diverse and may not align properly. To circumvent this problem, protein

sequences are a better choice. This is because mutations appear to have fewer

effects on protein sequences. On the other hand, the study of recent evolution or

phylogenetic analysis of OTUs within the same species needs DNA sequences,

which are less conserved in their sequences than are proteins. Moreover, the

analysis of non-coding sequences can be carried out on DNA sequences only.

Molecular phylogenetic analysis relies heavily on the accuracy of the sequence

alignment. The programs used for the alignment of sequences are developed from

several algorithmic approaches. One of the most popular algorithms is ‘progressive
sequence alignment,’ which has been implemented in several software packages,

such as MUSCLE [25, 26], MAFFT [27, 28], and Clustal Omega [29]. The general

concept on which progressive sequence alignment is based is the construction of a

‘guide tree,’ which is not meant to be accurate. The guide tree is used to identify

sequences with the highest similarity to align first. That is because they are the

easiest sequences to align. Then the algorithm keeps adding less similar sequences

to the previous alignment. If a gap is needed, it is inserted into the previous

sequence alignment and added to all sequences. Once all sequences are aligned, a

better tree, which is built from more sophisticated methods, is created and used as a

guideline for improving the final alignment.

Most alignment algorithms were developed to perform a good alignment of

conserved regions, but none are powerful enough to handle indel (insertion/dele-

tion) regions properly. Moreover, most tree reconstruction methods are developed

based on substitution models. Therefore, all indel regions should be removed from
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the alignment to avoid errors in the analysis. There are some programs that can

identify conserved regions and help the user eliminate indel regions from an

analysis, such as SeqFIRE [30] and GBLOCKS [31, 32].

5 Phylogenetic Reconstruction

Methods for phylogenetic reconstruction can be classified into two main

approaches: distance-based methods and character-based methods. The concept

behind the former is the transformation of all sequence information into a distance

matrix, which is then analyzed using an algorithm for clustering the taxa. Building a

tree with this method is fast but all sequence information is lost in the process. The

latter method is time-consuming because all the sequence information is used for

the evaluation of the best phylogenetic tree. The calculation of phylogenetic trees

using this method can be carried out using several approaches, such as maximum

parsimony (MP), maximum likelihood (ML), or Bayesian analyses.

5.1 Distance-Based Approach

The key concept behind distance matrix methods is the conversion of a pairwise

sequence alignment into distant values. Because a multiple sequence alignment

(MSA) must contain three or more sequences, distance values from all possible

pairwise sequences generate a distance matrix. Once a matrix is developed, the

alignment is no longer used for the phylogenetic reconstruction. At this point, the

matrix is used as the input for the tree building. Different tree building approaches

used include the unweighted pair group method with arithmetic mean (UPGMA),

weighted pair group method with arithmetic mean (WPGMA), neighbor-joining

(NJ), least square (LS), and minimum evolution (ME) methods.

To infer sequence evolution, substitution models are used to calculate a distance

value. The simplest method, which can infer the distance from both nucleotide and

protein sequences, is p-distance. This is based on the level of sequence similarity

for each pair in the alignment. Jukes–Cantor’s one-parameter (JC69) model

assumes that all changes in nucleotides occur at the same rate [33], whereas

Kimura’s two parameters (K80) model treats the occurrence of transitions and

transversions as different rates [34]. The JC69 and K80 models both assume

nucleotide substitution moves toward an equilibrium, which means the frequency

of each nucleotide is close to 0.25. In the case of disequilibrium, one needs to

employ another substitution model which fits the observed mutations. Some other

models include F81 [35], HKY85 [36], TN93 [37], and more (see details in

[38, 39]). Using an appropriate model for phylogenetic tree reconstruction is

important to avoid errors in the clustering step. There are a number of software
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packages used for testing the applicability of the relevant model against the MSA,

such as ModelTest [40] and jModelTest [41].

It is more complicated to infer protein substitutions. This is because changes in

protein sequences result from substitutions in the DNA. However, there have been

some attempts to observe amino acid substitutions in protein sequences by using a

protein substitution matrix. There are two main matrix approaches generally used in

sequence analysis software, including those used in phylogenetic analysis. One of

these is called the percentage accepted mutation (PAM) matrix [42] and the other is

the blocks substitution matrix or BLOSUM [43]. The PAM models with a

higher number (e.g., PAM250) and the lower number BLOSUM matrices (e.g.,

BLOSUM30) are suitable for more diverse amino acid sequences, whereas the

PAMmodels with a lower number (e.g., PAM60) and the higher number BLOSUM

matrices (e.g., BLOSUM90) are suitable for the highly conserved amino acid

sequences.

The major advantage of distance matrix methods is their rapid calculation speed.

This is possible because the method dramatically reduces the amount of data from a

long sequence alignment into a single distance matrix. Moreover, this method may

give reliable results if homoplasy is rare and randomly distributed throughout the

tree. However, reduction of the data leads to a loss of sequence information and can

sometime generate negative branch lengths, which lack biological meaning.

Instead, distance-based approaches (e.g., the NJ method) are recommended for

large datasets (>1,000 sequences) with high sequence similarity.

5.2 Character-Based Approach

There are several methods that have been developed from character-based

approaches, such as maximum parsimony (MP), maximum likelihood (ML), and

Bayesian inference methods. These approaches aim to reconstruct a phylogeny

directly from the sequence data, without any transformation. They make extremely

slow calculations but the final tree is said to be very accurate. Briefly, the algorithm

used in these begins with scoring all possible phylogenies that can be generated

from the n taxa. Then the optimal tree is assumed to be the tree with the best score.

However, it is nearly impossible to score all of the individual trees when the number

of taxa is larger than 20 (as this means the number of possible trees is larger than

2.21� 1018) by using a greedy method that searches all possible trees. Some

computational search algorithms allow the user to score and select from all possible

trees simultaneously. They also reduce the number of possible trees by skipping the

theoretically impossible topologies from the possible trees, resulting in an increased

search speed. Two popular search algorithms, which are implemented in most

current phylogenetic software, are the ‘branch-and-bound’ and ‘heuristic’methods.

The process of the former method starts with the generation of a core tree: a three-

taxa phylogeny. Then a random new taxon from the dataset is added into the core

tree, and the only the new trees with an improved score have the fifth taxon added to

192 P. Ajawatanawong



them. This process is continued until the algorithm reaches the last taxon. The

heuristic method is generally similar to the branch-and-bound method, but instead

of adding new taxa into the tree with an improved score over the previous tree,

the heuristic method uses only the tree with the best score in each round of taxon

addition.

The maximum parsimony (MP) method—the oldest phylogenetic method—is a

substitution model-free method for phylogenetic tree reconstruction. It is mostly

used for building trees from morphology-based data, where it is difficult to measure

the rate of evolutionary change. When this method is applied to molecular

sequences, each column in the MSA is treated as a individual character. Even

though each molecular sequence contains numerous characters, not every position

is useful in the MP analysis (e.g., invariable sites). Characters (columns in the

MSA) having at least two states (more than two types of nucleotide or amino acid)

are called ‘parsimony informative sites,’ and only these are included in the MP

analysis. The MP method searches for the ‘the most parsimonious tree’ or ‘the
maximum parsimony tree,’ which requires the minimum number of steps to build.

Phylogenetic tree reconstruction using this method can give a reliable result if

homoplasy occurs in the sequence data either randomly or infrequently. Moreover,

this method can be easily applied to any novel type of data, such as indel positions.

However, most sequences do not simply evolve at a low rate, and as a result

sequences can be difficult to align, which makes MP less efficient, particularly

when alignment patterns are complicated. MP is a time-consuming method, and it is

not recommended when multiple-gene sequences are concatenated or with

sequences with high levels of variation [44].

The second popular method for phylogenetic tree reconstruction is maximum

likelihood (ML). ML is a statistical method used to estimate the parameters of a

model given the data, and was first applied in phylogenetic analyses of DNA and

protein sequences by Felsenstein [35]. In phylogenetic analysis, the ML method

estimates the branch lengths and topology of the tree based on the substitution

model and the sequence alignment. The numerical output of the ML analysis is the

probability that a tree topology and model fit to the sequences. The calculation is

repeated for all possible tree topologies that can be generated from n taxa. The tree

topology with the highest maximum likelihood value is then reported as the best

tree or the ‘maximum likelihood tree.’ The strong point of the ML method is that it

is claimed to be very accurate. This is because the analysis relies heavily on the

evolutionary model. Because of this, all substitution models that can be used in the

distance matrix methods can also be used for tree selection. Unlike the MP method,

the ML method uses all the information in the sequences to calculate the maximum

likelihood value. However, this results in a slow calculation time. Likewise, another

weak point of the ML method is that it is impractical for large data sets. This is

because the calculation is robust and requires significant computational resources.

Bayesian statistics is the newest method, which was first used for phylogenetic

tree reconstruction about two decades ago [45]. This method depends on Bayesian

statistics, and aims to search for the tree that maximizes the chance of seeing the

model given the data (see details in [46–48]). In brief, the Bayesian phylogenetic
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algorithm searches for the tree that has the highest posterior probability. To deal

with the enormous number of possible trees, Bayesian phylogenetic inference uses

a Markov chain Monte Carlo (MCMC) algorithm to search for the best tree. This

technique is more sophisticated than that used in the ML method because every new

tree that is explored can produce a lower score than the tree in the previous step.

This allows the Bayesian inference algorithm to find the best tree efficiently. There

are some popular programs that implement the Bayesian inference algorithm,

such as MrBayes [49, 50], PhyloBayes [51, 52], and BEAST [53].

Once a tree is reconstructed it is necessary to visualize it. There are no set rules

for presenting a tree, but using color and renaming taxa to something easy to

understand are always beneficial to the reader. Generally it is best to try to avoid

using sequence codes or accession numbers to label OTUs. Likewise, it is critical to

write a summary of the method used to build the tree to present in the figure legend.

This helps the user to understand the tree more easily [54].

6 Conclusion

Phylogenetic analysis is one of the important techniques in the networking bio-

logist’s toolbox. It can be used to identify the evolutionary relationships among

organisms, as well as gene or protein sequences. To analyze an evolutionary path-

way, one needs to start with orthologous sequences and perform the analysis

properly. However, single gene phylogenies generally have less evolutionary sig-

nal. As genomes are now being widely sequenced, the possibility of tree recon-

struction based on entire or nearly complete genomes is emerging. This approach

may replace traditional techniques in molecular evolution in the near future.
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38. Liò P, Goldman N (1998) Models of molecular evolution and phylogeny. Genome Res 8:

1233–1244

39. Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annu Rev Ecol Evol Syst 36:

445–466

40. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution.

Bioinformatics 14:817–818

41. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

42. Dayhoff MO, Schwartz R, Orcutt BC (1978) A model of evolutionary change in proteins.

In: Atlas of protein sequence and structure, vol 5, supplement 3rd edn. Nat Biomed Res Found.

pp 345–358

43. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks.

Proc Natl Acad Sci U S A 89:10915–10919

44. Stewart CB (1993) The powers and pitfalls of parsimony. Nature 361:603–607

45. RannalaB,YangZ (1996) Probability distribution ofmolecular evolutionary trees: a newmethod

of phylogenetic inference. J Mol Evol 43:304–311

46. Alfaro ME, Holder MT (2006) The posterior and the prior in Bayesian phylogenetics.

Annu Rev Ecol Evol Syst 37:19–42

47. Holder M, Lewis PO (2003) Phylogeny estimation: traditional and Bayesian approaches.

Nat Rev Genet 4:275–284

48. Huelsenbeck JP, Ronquist F, NielsenR, Bollback JP (2001)Bayesian inference of phylogeny and

its impact on evolutionary biology. Science 294:2310–2314

49. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees.

Bioinformatics 7:754–755

50. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, H€ohna S, Larget B, Liu L,

SuchardMA,Huelsenbeck JP (2012)MrBayes 3.2: efficient Bayesian phylogenetic inference and

model choice across a large model space. Syst Biol 61:539–542

51. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for

phylogenetic reconstruction and molecular dating. Phylogenetics 25:2286–2288

52. Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the

amino-acid replacement process. Mol Biol Evol 21:1095–1109

53. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti

and the BEAST 1.7. Mol Biol Evol 29:1969–1973

54. Baldauf SL (2003) Phylogeny for the faint of heart: a tutorial. Trends Genet 19:345–351

196 P. Ajawatanawong



Index

A
AACENs. See Amino acid contact energy

networks (AACENs)

Acetate thiokinase, 108

Acetone, 78

Adjacency, 152

AEF. See Alternate electron flow pathways

(AEF)

Aeropyrum pernix, 115
Alicyclobacillus acidocaldarius, 115
Alternate electron flow pathways (AEF), 89

Alzheimer’s disease, 58
Amino acid contact energy networks

(AACENs), 65

Amino acids, 43, 57, 91

biosynthesis, 109

evolution, 67

metabolism, 109, 112, 113

networks (AANs), 57, 59, 65

sequences, 43, 192

Anabaena
cylindrica, 78, 79
variabilis, 80

Apoptosis, 41, 42, 62

Aquifex aeolicus, 115
Archaeoglobus fulgidus ATCC 49558, 115

Arthritis, 62

Arthrospira platensis, 78, 79, 84, 88
Atherosclerosis, 62

Autotrophy, 90, 91, 104, 112, 114

B
Basic-leucine zipper (bZIP) transcription factor

family, 135

Bayesian inference, 192

BEAST, 194

Betweenness, 154

Bifurcating hydrogenase, 115

Binding sites, 6–7

Bioelectricity, 78

Bioethanol, 78

Biofuels, 75–102

Biogas, 78–80, 93

BioGRID, 34

Biohydrogen, 78–80, 93

Biological networks, 127

analysis, 15

BioModels Database, 115

Biomolecular networks, 57

Biowastes, 105

Bray–Curtis Index, 148

2, 3-Butanediol, 78

1-Butanol, 78, 82

C
CAGE. See Cap Analysis Gene Expression

(CAGE)

Caldicellulosiruptor
bescii, 105
saccharolyticus, 105

Canberra distance, 149

Cancer, 23, 26, 27, 42, 58, 133

Cap Analysis Gene Expression (CAGE), 9

Capaspora owczarzaki, 170, 172
Carotenoids, 109

CASOP, 93

Cassava, 135

CBP. See Consolidated bioprocessing (CBP)

197



Cellobiose, 111, 113

Cell signaling network, 129

Cellular regulatory landscape, 133

Cellulose, 105, 106, 113

Cellulosome, 106, 107

Chaperones, 62

Chemolithoautotroph, 110

Chemoorganotrophs, 107, 115

Chemotrophy, 104

ChIA-PET, 8

ChIP-Seq, 1

Chlorophyll, 89

fluorescence, 91

Chromatin, 1–10

immunoprecipitation (ChIP), 1–10, 20

Cistrome, 10

Clostridium thermocellum, 105–107
Clustering coefficient (Ci), 59, 64, 152–154,

161, 162, 178

Clustering comparison, 156, 158, 164, 174

Coefficient of Community, 146

Co-expression subnetworks, 26

Communication pathways, 57

Connectivity, 152

Consolidated bioprocessing (CBP), 105, 106,

111

Core transcriptional response (CTR), 82

Correlation metrics, 143

Cosine similarity, 147

Creutzfeld–Jacob disease, 58

Cryptococcus neoformans, 172
Cscan, 10

CTR. See Core transcriptional response (CTR)
CXC chemokine receptor, 67

Cyanobacteria, 75–102

Cyanothece sp., 78, 88
Cytochrome oxidase, 91

Czekanowski Index, 148, 159

D
Database of Interacting Proteins (DIP), 34

Data integration, 15

Day/night cycle, 92

2-Dehydro-3-deoxy-phosphogluconate

aldolase, 108

Deoxyribinucleoside monophosphate, 126

Desulfurococcus
kamchatkensis, 115
mucosus, 115

DFBA. See Dynamic flux balance analysis

(DFBA)

Dichotomy, 187

Differential expression subnetworks, 25

Digesters, 105

DIP. SeeDatabase of Interacting Proteins (DIP)
Directed graph, 22

Disease-gene network, 129

Diseases, 57, 60–63, 69

Draft reconstruction, 103

Drug-target network, 129

DRUM, 92

Dynamic flux balance analysis (DFBA), 92

E
ECH. See Energy-conserving hydrogenase

(ECH)

EGFR. See Epidermal growth factor receptor

(EGFR)

ENCODE, 6, 10

Energy-conserving hydrogenase (ECH), 115

Enrichr, 10

Enterococcus faecium, 174
Entner–Doudoroff (ED) pathway, 108

Epidermal growth factor receptor (EGFR), 42,

45

Epigenomics, 8, 126

EPS. See Exopolysaccharides (EPS)
Escherichia coli, 82, 109
Ethanol, 78, 82, 115, 127

Ethylene, 78

Euclidean Similarity, 159

Evolutionary trees, 185

Exopolysaccharides (EPS), 110

F
False discovery rates (FDRs), 6

Fatty acids, 78, 109

FBA. See Flux balance analysis (FBA)

FBPA. See Fructose bisphosphate aldolase
(FBPA)

FDRs. See False discovery rates (FDRs)

Ferredoxin, 108

plastoquinone reductase, 91

Ferredoxin hydrogenase (FRHD), 114, 115

Ferredoxin:NAD hydrogenase (HYDFDNr),

114

Ferredoxin:NADP oxidoreductase

(FRNDPRr), 114

Ferroplasma thermophilum, 105
FHL. See Formate-hydrogen lyase (FHL)

Flux balance analysis (FBA), 87, 90, 103–110

Flux variability analysis (FVA), 90, 103, 110

Food waste, 105

198 Index



Formate-hydrogen lyase (FHL), 114

FRHD. See Ferredoxin hydrogenase (FRHD)

FRNDPRr. See Ferredoxin:NADP
oxidoreductase (FRNDPRr)

Fructose bisphosphate aldolase (FBPA), 108

Functional interaction networks, 21

G
Gap-filling, 103

GDH. See Glutamate dehydrogenase (GDH)

Gene

expression analysis, 15

regulatory network, 129

Gene-protein-reaction (GPR), 85

Gene Set Enrichment analysis (GSEA), 24

Genome-scale models, 76, 77, 103–116

Gluconeogenesis, 112

Glucosidases, 109

Glutamate dehydrogenase (GDH), 115

Glycerol, 108, 111

Glycolysis, 89, 91, 112

GPCRs. See G-protein-coupled receptors

(GPCRs)

GPR. See Gene-protein-reaction (GPR)

G-protein-coupled receptors (GPCRs), 61–67

dimerization pathways, 66

Graph concepts, 22

GREAT, 7

GSEA. See Gene Set Enrichment analysis

(GSEA)

GTPase, 61

H
Heat shock protein 90 (Hsp90), 62

client protein pathways, 67

Hemicellulose, 105

Heterotrophy, 91

Hexane, 82

High throughput sequencing, 121, 123

Histidine, biosynthesis, 114

HOMCOS, 37, 42

HOMER, 7

Hot spots, 57, 63

Hsp90. See Heat shock protein 90 (Hsp90)

Human Protein Reference Database (HPRD),

34

Huntington’s disease, 62
HYDFDNr. See Ferredoxin:NAD hydrogenase

(HYDFDNr)

Hydrogen, 108

Hydrogenase, 91, 115

bifurcating, 115

Hydroxypropionate-hydroxybutyrate cycle,

110

Hyperthermophiles, 104

Hyperthermus butylicus, 115
Hypothermophiles, 104

I
IDEA. See Interactome Dysregulation

Enrichment Analysis (IDEA)

IntAct, 34

Interactome, 15, 17, 37

Interactome Dysregulation Enrichment

Analysis (IDEA), 28

Interleukin, 42

InterPreTS, 37

Isobutanol, 78, 93, 106, 107

Isobutyraldehyde, 78

J
Jaccard Index, 146, 147, 150, 159–167, 177,

178

Jaccardized Czekanowski Index, 150

Jaccard overlap, 156, 164, 179

JASPAR, 20

K
Kimura’s two parameters (K80) model, 191

L
Lactate dehydrogenase (LDH), 108, 115

Lactobacillus acidophilus, 174
Lactococcus

lactis, 114, 174
planatarum, 114

LDH. See Lactate dehydrogenase (LDH)
Least square (LS), 191

Leukemia, 62

Lignin, 105

Lignocellulose, 76, 105, 106, 111

Lipases, 109

Livestock manure, 105

Lodderomyces elongisporus, 170
LS. See Least square (LS)

M
Machado–Joseph disease, 62

MACS, 6

Index 199



MAPK signaling pathway, 42

MARi. See Maximum adjacency ratio (MARi)

Markov chain Monte Carlo (MCMC), 194

Matthew’s correlation coefficient (MCC), 64

Maximum adjacency ratio (MARi), 152

Maximum information coefficient (MIC), 151

Maximum likelihood (ML), 192

Maximum parsimony (MP), 192

MCC. See Matthew’s correlation coefficient

(MCC)

MCMC. See Markov chain Monte Carlo

(MCMC)

MD. See Molecular dynamics (MD)

ME. See Minimum evolution (ME)

MEGADOCK, 39

Metabolic networks, 21, 76, 129

Metabolism genome-scale, modeling, 105

Metallosphaera sedula, 105
Methanococcus jannaschii, 104, 115
Methanol, 112

2-Methyl-1-butanol, 78

Methylene-tetrahydrofolate reductase

(MTHFR), 114

MIC. See Maximum information coefficient

(MIC)

Minimum evolution (ME), 191

MINT. See Molecular Interaction Database

(MINT)

Mixotrophy, 92

Molecular dynamics (MD), 67

Molecular epidemiology, 186

Molecular Interaction Database (MINT), 34

Molecular phylogenetics, 185

Monophyletic group, 188

Moorella thermoacetica, 112
Most parsimonious tree, 193

Most recent common ancestor (MRCA), 187

MrBayes, 194

MST merging, 181

MTHFR. See Methylene-tetrahydrofolate

reductase (MTHFR)

Multiple sequence alignment (MSA), 191

Mutual information, 157

N
NADH2. See NADH hydrogenase (NADH2)

NADH hydrogenase (NADH2), 115

NADPH, 89, 91, 93

dehydrogenase complexes, 91

Nearest neighbor rule, 7

Neighbor-joining (NJ), 191

Network

biology, 15, 121

comparison, 47, 144, 156, 178

connectivity, 63, 64

metamodeling, 143

parameters, 63, 64, 67

profile comparison, 158

reconstruction, 75, 76, 87, 121, 127, 129

topology, 144, 151, 170, 174–181

Next-generation sequencing (NGS), 1, 2, 10,

123, 186

NJ. See Neighbor-joining (NJ)

Non-photochemical quenching, 92

O
Omics, 17, 77, 80–82, 93, 116, 121, 134

Orthologous genes, 188

Outgroup, 187

2-Oxoglutarate, 111

P
Paralogous genes, 189

Paraphyletic group, 188

Parsimony, 191–193

informative sites, 193

PCNA. See Proliferating cell nuclear antigen

(PCNA)

PCNs. See Protein contact networks (PCNs)

PCR. See Polymerase chain reaction (PCR)

PeakSeq, 6

Pearson’s Correlation Coefficient (r), 145, 159
Percentage accepted mutation (PAM) matrix,

192

Phenol, 110, 111

Phosphotransacetylase (PTA), 115

Photoacclimation, 92

Photoautotrophs, 90, 91

Photobioreactors, 82

Photoinhibition, 91, 92

Photon harvesting, 91, 92

Photophosphorylation, 89

Photosynthesis, 77, 89–91, 135

efficiency, 78

Photosystem I/II, 89

Phototrophy, 75, 93, 104

PhyloBayes, 194

Phylogenetic

analysis, 185

footprinting, 131

markers, 185

reconstruction, 191

Phylogeny, 185

200 Index



PIPER, 39

Plastoquinone oxidase, 91

Polymerase chain reaction (PCR), 125, 126

Polyphyletic group, 188

Polytomy, 187

Post-docking, 43

PrePPI, 42

Prion diseases, 62

PRISM, 38

Proliferating cell nuclear antigen (PCNA), 61

Proteases, 109

Protein contact networks (PCNs), 59

Protein–ligand docking, 41

Protein–protein docking, 37–47

Protein–protein interactions (PPI), 18, 33, 34,

57

Protein–protein interfaces, 57, 66

Proteins, 2, 18, 58, 90, 127

DNA-binding, 2

docking, 33–47

regulatory, 129

toroidal, 61, 62, 65

Protein structure networks (PSNs), 59

Proteomics, 82, 111

PTA. See Phosphotransacetylase (PTA)
p53 tumor suppressor protein, 62

Pyrococcus furiosus, 115
Pyrolobus fumarii, 115
Pyrosequencing, 123

R
Recent common ancestor (RCA), 186

Regulatory networks, 1–14, 17–22, 121–131

Residue interaction networks (RINs), 59

Reverse engineering, 131, 132, 135

Rhodopsin, 61

RNAseq, 1, 9, 126

S
Saccharomyces cerevisiae, 18, 34
Schizosaccharomyces

japonicus, 170
octosporus, 170

SDOCK, 42

SEED model, 111

Sequence

alignment, 190

polymorphisms, 5

Sequencing, 1, 121

errors, 5

genome, 21, 77

high-throughput, 121, 123, 186

next-generation (NGS), 1, 2, 10, 123, 186

pyro-, 123

RNA, 16

Sanger, 123

third-generation, 125

Similarity metrics, 144, 159

Sørensen Index, 147, 159

Spearman Correlation Coefficient (rs), 146,
159

SPP, 6

Staphylothermus hellenicus, 115
Star tree, 187

Stoichiometric matrix, 103

Streptococcus thermophilus, 114
Subgraph, 23, 24

Subnetworks, 16–27, 60, 65, 92, 128, 168

Sulfobacillus thermosulfidooxidans, 105
Sulfolobus solfataricus, 105, 110
Supercomputing, 33, 34

Support vector machines (SVMs), 43, 64

Synechococcus elongatus, 79, 88
Syngas, 112

Systems

metabolic engineering, 76

regulation, 121, 133

T
TCDB. See Transport Classification Database

(TCDB)

Template-based method, 130

Thermoanaerobacterium saccharolyticum, 115
Thermobifida fusca, 111
Thermophiles, 104

Thermothrix thiopara, 104
Thermotoga maritima, 107
Thermus aquaticus, 104
Thermus thermophilus, 109
Third-generation sequencing, 125

Tisochrysis lutea, 92
TNFα. See Tumor necrosis factor-α (TNFα)
Topology measures, node-based, 152

topological overlap, 153

Toroidal proteins, 61

TPI. See Triose phosphate isomerase (TPI)

Transcriptional regulatory networks (TRN),

127–131

Transcription factors, 1, 62, 127–136

binding sites (TFBS), 6, 129, 131

Transcription regulation, 1, 121, 128–136

Transcription start site (TSS), 7

Transcriptomics, 16

Index 201



TRANSFAC, 20

Transport Classification Database (TCDB),

106

Triose phosphate isomerase (TPI), 108

TRN. See Transcriptional regulatory networks

(TRN)

Tryptophan, 109

TSS. See Transcription start site (TSS)

Tumor necrosis factor-α (TNFα), 42

U
Undirected graph, 22

Universal PBM Resource for Oligonucleotide

Binding Evaluation (UniPROBE), 20

Unweighted pair group method with arithmetic

mean (UPGMA), 191

V
Voronoi polyhedra, 58

W
Weighted graph, 23

Weighted pair group method with arithmetic

mean (WPGMA), 191

Wood–Ljungdahl (WLD) pathway, 112

X
Xenologous genes, 189

Xylan, 113

Xylanases, 105

Xylose, 112

Y
Yeast one-hybrid (Y1H), 20

Z
ZDOCK, 39

202 Index


	Preface
	Contents
	ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks
	1 Introduction: Chromatin Immunoprecipitation and Next-Generation Sequencing
	2 Finding Transcription Factor Binding Sites
	3 Associating Binding Sites with Target Genes
	4 Assessing TF Activity from Expression Data
	5 Mining Available Data
	6 Conclusions
	References

	Gene Expression Analysis Through Network Biology: Bioinformatics Approaches
	1 Introduction
	2 Interactome Networks
	2.1 Protein-Protein Interaction Networks
	2.2 Regulatory Networks
	2.3 Metabolic Networks
	2.4 Functional Interaction Networks

	3 Graph Concepts for Network Analysis
	3.1 Graph Definition
	3.2 Network Properties

	4 Identification of Modules or Subnetworks
	5 Expression Analysis Through Network Biology and Data Integration
	5.1 Identification of Differential Expression Subnetworks
	5.2 Identification of Co-expression Subnetworks
	5.3 Identification of Differential Co-expression Subnetworks

	6 Conclusion and Perspectives
	References

	Rigid-Docking Approaches to Explore Protein-Protein Interaction Space
	1 Introduction
	1.1 Protein-Protein Interaction Network
	1.2 Computational Methods to Predict Pairwise Direct PPIs
	1.3 Exploiting Protein Docking for PPI Prediction

	2 Computational Protein-Protein Docking
	3 Computational PPI Prediction
	3.1 PPI Prediction Using Protein Docking
	3.2 PPI Prediction Without Docking

	4 Profile Methods in Post-Docking Processes
	5 Implementation of Docking Software on Supercomputing Environments
	6 Conclusion
	References

	Protein-Protein Interface and Disease: Perspective from Biomolecular Networks
	1 Introduction
	2 Protein Complexes and Impact on Disease Association
	2.1 G Protein-Coupled Receptors
	2.2 Toroidal Proteins
	2.3 p53 Tumor Suppressor Protein
	2.4 Heat Shock Protein 90

	3 Network Approaches for Hot Spots Identification
	3.1 Graph Theoretical Analysis
	3.2 Machine Learning Algorithms Based on Network Parameters
	3.3 Network Connectivity of Interface Residues
	3.4 Amino Acid Networks Based on Contact Energy

	4 Communication Pathways Through Protein-Protein Interfaces
	4.1 GPCR Dimerization Pathways
	4.2 Hsp90-Client Protein Pathways
	4.3 Pathways Across beta Clamp Dimer

	5 Perspectives
	References

	Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling
	1 Introduction
	2 Miscellaneous Strategies Toward Enhancement of Cyanobacterial Biofuels Production
	2.1 Traditional Strategies
	2.2 Advanced Strategies

	3 Development of Cyanobacterial Metabolic Network and Modeling
	3.1 Construction of Cyanobacterial Genome-Scale Metabolic Model
	3.2 Modeling Aided Strategies for Cyanobacterial Biofuels Production
	3.2.1 Overview of the Cyanobacterial GEMs
	3.2.2 Cyanobacterial GEM Simulations
	3.2.3 Autotrophy
	3.2.4 Heterotrophy
	3.2.5 Mixotrophy
	3.2.6 Day/Night Cycle
	3.2.7 Modeling Toward Strain Design Strategies for Biofuel Production


	4 Conclusions and Perspectives
	References

	Genome-Scale Modeling of Thermophilic Microorganisms
	1 Introduction to Thermophilic Microorganisms
	2 Uses of Thermophilic Microorganisms in Industry
	3 Genome-Scale Modeling of Metabolism
	4 Genome-Scale Modeling of Thermophilic Microorganisms
	4.1 Clostridium thermocellum
	4.2 Thermotoga maritima
	4.3 Thermus thermophilus
	4.4 Sulfolobus solfataricus
	4.5 Thermobifida fusca
	4.6 Moorella thermoacetica
	4.7 Streptococcus thermophilus
	4.8 Thermoanaerobacterium saccharolyticum
	4.9 Models Deposited in BioModels Database

	5 Conclusion
	References

	Networking Omic Data to Envisage Systems Biological Regulation
	1 Introduction
	2 High-Throughput Sequencing Technology to Discover Regulatory Elements
	2.1 Second Generation Sequencing: Early Age of High-Throughput Sequencing Technology
	2.2 Third Generation Sequencing: Empowering Detection of a Regulatory Molecule

	3 Approaches to Link Regulatory Components to Reflect a Network of Systems Regulation
	3.1 Biological Networks
	3.2 Paths from Molecular Components to Biological Network

	4 Network Analysis to Envisage the Systems Regulation: Inference and Applications
	4.1 Inference of System Regulation by Means of Biological Networks
	4.1.1 Biological Networks Infer the Collaboration of Regulatory Components Underlying System Regulation
	4.1.2 Biological Networks Infer the Potential Key Regulator Modulating the System Regulation

	4.2 Applications of Biological Network Analysis to Understand the System Regulation: From Unicellular Organisms to Plants

	5 Conclusions
	References

	Network Metamodeling: Effect of Correlation Metric Choice on Phylogenomic and Transcriptomic Network Topology
	1 Introduction
	2 Similarity Metrics
	2.1 Overview
	2.2 Pearson Correlation Coefficient
	2.3 Spearman Correlation Coefficient
	2.4 Jaccard´s Index
	2.5 Cosine Similarity
	2.6 Sørensen Index
	2.7 Czekanowski Index and Bray-Curtis Index
	2.8 Canberra Distance
	2.9 Jaccardized Czekanowski Index
	2.10 Maximum Information Coefficient

	3 Network Topology Measures
	3.1 Node-Based Topology Measures
	3.1.1 Adjacency
	3.1.2 Connectivity
	3.1.3 Maximum Adjacency Ratio
	3.1.4 Topological Overlap
	3.1.5 TOM-Based Connectivity
	3.1.6 Clustering Coefficient
	3.1.7 Betweenness
	3.1.8 Efficiency

	3.2 Global Network Topology Measures
	3.2.1 Network Density
	3.2.2 Network Centralization
	3.2.3 Network Heterogeneity
	3.2.4 Path Length
	3.2.5 Degree Correlation


	4 Network Comparison and Network Overlap
	4.1 Clustering Comparison
	4.1.1 Jaccard Overlap
	4.1.2 Mutual Information

	4.2 Network Profile Comparison

	5 Similarity Metric Effect on Network Topology: Results and Discussion
	5.1 Overview
	5.2 Metric Comparison Though Network Topology Profiles and Clustering Comparison
	5.2.1 Network Topology Profile Comparison
	5.2.2 Network Clustering Comparison

	5.3 Metric Comparison Through Network Merging and Cross-Network Topological Overlap
	5.3.1 Cross-Network Topological Overlap


	6 Conclusions
	7 Similarity Metric Effect on Network Topology: Methods
	7.1 Metric Comparison Though Network Topology Profiles and Clustering Comparison
	7.1.1 Co-Expression Similarity Network Construction
	7.1.2 Metric Distribution Construction
	7.1.3 Network Comparison Through Topology Indices
	7.1.4 Network Comparison Through Clustering Comparison

	7.2 Metric Comparison Through Network Merging and Cross-Network Topological Overlap
	7.2.1 Gene Family Construction
	7.2.2 Phylogenomic Network Construction and Pruning
	7.2.3 MST Merging
	7.2.4 Cross-Network Topological Overlap Networks


	References

	Molecular Phylogenetics: Concepts for a Newcomer
	1 Introduction
	2 Phylogenetic Tree
	3 Molecular Markers for Building a Tree
	4 Sequence Alignment
	5 Phylogenetic Reconstruction
	5.1 Distance-Based Approach
	5.2 Character-Based Approach

	6 Conclusion
	References

	Index

