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A Periodically Pulsed Bioreactor Model

In recent work of Ballyk et al. [27], it is argued that the plug-flow reactor, aside
from its importance in chemical and bioengineering, is a good candidate as a
surrogate model of the mammalian large intestine. In that work, a model of
competition between different strains of microorganisms for a scarce nutrient
in a plug-flow reactor, formulated by Kung and Baltzis [207], was studied with
special attention given to the effects of random motility of the organisms on
their ability to persist in the reactor and be good competitors in a mixed
culture. The growth-limiting nutrient is assumed to enter the reactor tube
at constant concentration at the upstream end of the reactor, so that the
model equations take the form of a time-independent system of reaction–
advection–diffusion equations. However, if the plug-flow reactor is to stand as
a surrogate model of the intestine, then it is much more realistic to consider
input nutrient concentration as being time-dependent. In the present chapter
we consider this competition model with periodically varying input nutrient
concentration, including pulsed input where the concentration may fall to zero
over part of the cycle.

In Section 8.1 we briefly introduce the model and then discuss the well-
posedness of the initial–boundary value problem and the positivity of its so-
lutions. Section 8.2 is devoted to the special case of the model system with
identical diffusivities and vanishing cell death rates. After consideration of
the washout solution, we establish a conservation principle. We then consider
single-population growth in the reactor, showing that when the washout solu-
tion is linearly stable, then it is globally stable, and when it is unstable, there
is a unique, single-population periodic solution that attracts all solutions with
nonzero initial data and is asymptotically stable in the linear approximation.
Finally, we show that for two competing populations, where each single pop-
ulation periodic solution is unstable to invasion by the other population, we
have persistence of both populations and the existence of a positive periodic
solution representing coexistence. Section 8.3 is devoted to the perturbed sys-
tem with different diffusivities and inclusion of cell death rates. We carry over
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214 8 A Periodically Pulsed Bioreactor Model

the bulk of the results of Section 8.2 to the case where the random motility
coefficients do not differ much from the diffusion constant of the nutrient and
the cell death rates are small.

8.1 The Model

The plug-flow reactor may be thought of as a tube, of length L, through which
a liquid medium flows with constant (small) velocity v. At the upstream end
of the tube, x = 0, the nutrient concentration in the medium is maintained at
the periodically varying concentration S0(t) = S0(t + ω). Downstream, bac-
teria consume nutrient, grow, divide, and die or leave the reactor at x = L.
Bacteria are assumed to be motile, but their motility is random in the sense
that it is modeled by an effective diffusion coefficient and is independent of nu-
trient concentration (chemotaxis is not considered here). The concentrations
of nutrient S and microbial strains ui, i = 1, 2, are governed by the equations
(we have scaled variables so that L = 1)

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S),

∂ui

∂t
= di

∂2ui

∂x2
− v

∂ui

∂x
+ ui(fi(S)− ki), i = 1, 2,

(8.1)

where the di are the random motility coefficients of strain ui, ki is its death
rate, and fi(S) is its uptake and growth rate. The quantity d0 is the diffusion
constant for nutrient S. Since the rate of change of the total nutrient con-
centration equals the difference between the inflow and outflow rates of the
nutrient minus the consumption of the nutrient, we have

d

dt

∫ 1

0

S(x, t)dx = v
(
S0(t)− S(1, t)

)−
2∑

i=1

∫ 1

0

ui(x, t)fi(S(x, t))dx.

On the other hand,

d

dt

∫ 1

0

S(x, t)dx =

∫ 1

0

∂S(x, t)

∂t
dx

=

∫ 1

0

(
d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S)

)
dx

=

(
d0

∂S(1, t)

∂x
− vS(1, t)

)
−
(
d0

∂S(0, t)

∂x
− vS(0, t)

)

−
2∑

i=1

∫ 1

0

ui(x, t)fi(S(x, t))dx.
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It then follows that

d0
∂S

∂x
(0, t)− vS(0, t) = −vS0(t) and

∂S

∂x
(1, t) = 0.

Since the rate of change of the total concentration of species ui is the difference
between the natural growth and death rates of the species minus the washout
rate of the species, we have

d

dt

∫ 1

0

ui(x, t)dx =

∫ 1

0

ui(x, t)(fi(S(x, t))− ki)dx− vui(1, t).

On the other hand,

d

dt

∫ 1

0

ui(x, t)dx =

∫ 1

0

∂ui(x, t)

∂t
dx

=

∫ 1

0

(
di
∂2ui

∂x2
− v

∂ui

∂x
+ ui(fi(S)− ki)

)
dx

=

(
di
∂ui(1, t)

∂x
− vui(1, t)

)
−
(
di
∂ui(0, t)

∂x
− vui(0, t)

)

+

∫ 1

0

ui(x, t)(fi(S(x, t))− ki)dx.

Thus we get

di
∂ui

∂x
(0, t)− vui(0, t) = 0 and

∂ui

∂x
(1, t) = 0.

Consequently, we impose on the model system the boundary conditions

d0
∂S

∂x
(0, t)− vS(0, t) = −vS0(t),

di
∂ui

∂x
(0, t)− vui(0, t) = 0, i = 1, 2,

∂S

∂x
(1, t) =

∂ui

∂x
(1, t) = 0, i = 1, 2,

(8.2)

and nonnegative initial conditions

S(x, 0) = S0(x), ui(x, 0) = u0i(x), 0 ≤ x ≤ 1. (8.3)

Next we discuss the well-posedness of the initial–boundary value problem
(8.1)–(8.3) and the positivity of its solutions. Assume that the initial data
in (8.3) satisfy (S0, u01, u02) ∈ X+ = C([0, 1],R3

+), the positive cone in the
Banach space X = C([0, 1],R3) with uniform norm. For local existence and
positivity of solutions in the space X+, we follow [243], where existence and
uniqueness and positivity are treated simultaneously, ignoring issues related
to time delays treated there. The idea is to consider mild solutions of the
system of abstract integral equations (we set u0 = S and u00 = S0 to simplify
notation)



216 8 A Periodically Pulsed Bioreactor Model

u0(t) = V (t, 0)u00 +

∫ t

0

T0(t− r)B0(u(r))dr,

ui(t) = Ti(t)u0i +

∫ t

0

Ti(t− r)Bi(u(r))dr, i = 1, 2,

(8.4)

where u(t) = (u0(t), u1(t), u2(t)) ≡ (S(·, t), u1(·, t), u2(·, t)) ∈ X+. Ti(t) is the
positive, nonexpansive, analytic semigroup on C([0, 1],R) (see [326, Chapter
8]) such that u = Ti(t)u0i satisfies the linear initial value problem

∂u

∂t
= di

∂2u

∂x2
− v

∂u

∂x
,

− di
∂u

∂x
(0, t) + vu(0, t) = 0 =

∂u

∂x
(1, t),

u(x, 0) = u0i(x),

(8.5)

V (t, s), t > s, is the family of affine operators on C([0, 1],R) such that u =
V (t, s)u00 satisfies the linear system with inhomogeneous, periodic boundary
conditions, with start time s, given by

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
, t > s,

− d0
∂u

∂x
(0, t) + vu(0, t) = vS0(t), t > s,

∂u

∂x
(1, t) = 0, t > s,

u(x, s) = u00(x).

(8.6)

Due to the periodicity of the inhomogeneity in the boundary conditions, S0(t+
ω) = S0(t), we have that V (t, s) = V (t + ω, s + ω) for t > s. The nonlinear
operator Bi : C([0, 1],R+) → C([0, 1],R) is defined by

B0(u) = −u1f1(u0)− f2(u0)u2,

Bi(u) = [fi(u0)− ki]ui, i = 1, 2.

The result [243, Theorem 1] can be used to give local existence and positivity of
noncontinuable solutions of (8.1)–(8.3), although the elliptic operator in that
setting is slightly different. The reason is that the semigroups Ti and evolution
operator V defined above have the same properties as those in [243] (so [243,
Corollary 4] may be applied). Indeed, V (t, s) satisfies V (t, s)C([0, 1],R+) ⊂
C([0, 1],R+) for t > s, by standard maximum principle arguments, and sim-
ilarly (see [326, Chapter 8]), Ti(t)C([0, 1],R+) ⊂ C([0, 1],R+) for t > 0. The
operator V and semigroup T0 are related as below (1.9) in [243] on setting
γ(x, t) = S0(t). Since we assume that fi(0) = 0, it follows that Bi(u)(x) = 0
whenever ui(x) = 0 for some x; hence, B = (B0, B1, B2) is quasi-positive.
Thus, [243, Theorem 1 and Remark 1.1] imply that (8.1)–(8.3) has a unique
nonnegative noncontinuable solution that satisfies (8.1)–(8.2) in the classical
sense for t > 0.
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8.2 Unperturbed Model

Consider the system of equations with identical diffusivities and vanishing cell
death rates

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S), 0 < x < 1, t > 0,

∂ui

∂t
= d0

∂2ui

∂x2
− v

∂ui

∂x
+ uifi(S), i = 1, 2, 0 < x < 1, t > 0,

(8.7)

with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

d0
∂ui(0, t)

∂x
− vui(0, t) = 0, i = 1, 2, t > 0,

∂S(1, t)

∂x
=

∂ui(1, t)

∂x
= 0, i = 1, 2, t > 0,

(8.8)

and initial value conditions

S(x, 0) = S0(x) ≥ 0, ui(x, 0) = u0i(x) ≥ 0, i = 1, 2, 0 ≤ x ≤ 1, (8.9)

where d0 > 0, v > 0, and S0(·) ∈ C2(R+,R), with S0(t) ≥ 0, S0(·) �≡ 0,
S0(t + ω) = S0(t) for some real number ω > 0, and fi(·) ∈ C2(R+,R+)
satisfies

(H) fi(0) = 0, f ′
i(S) > 0, ∀S ∈ R+, i = 1, 2.

Let n be the outward normal to the boundary of (0, 1). Clearly, for any
φ(·) ∈ C1([0, 1],R),

∂φ(0)

∂n
= −∂φ(0)

∂x
and

∂φ(1)

∂n
=

∂φ(1)

∂x
.

Therefore, the boundary condition (8.8) is equivalent to the following one:

d0
∂S(0, t)

∂n
+ vS(0, t) = vS0(t), t > 0,

d0
∂ui(0, t)

∂n
+ vui(0, t) = 0, i = 1, 2, t > 0,

∂S(1, t)

∂n
=

∂ui(1, t)

∂n
= 0, i = 1, 2, t > 0.

(8.10)

Let X+ = C([0, 1],R3
+). As mentioned in Section 8.1, [243, Theorem 1 and

Remark 1.1] imply that for any φ = (S0(·), u01(·), u02(·)) ∈ X+, there exists a
unique (mild) solution (S(x, t, φ), u1(x, t, φ), u2(x, t, φ)) of (8.7)-(8.8), defined
on its maximal interval of existence [0, σφ), satisfying

S(x, t, φ) ≥ 0, ui(x, t, φ) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ), i = 1, 2.

Moreover, (S(x, t, φ), u1(x, t, φ), u2(x, t, φ)) is a classical solution of (8.7)–
(8.8) for t ∈ (0, σφ).
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8.2.1 Conservation Principle

Since we have scaled the ui in nutrient-equivalent units, the total nutrient
W (x, t) = S(x, t)+u1(x, t)+u2(x, t) should eventually come into balance with
the input S0(t). Then W (x, t) satisfies the following scalar linear equation

∂W

∂t
= d0

∂2W

∂x2
− v

∂W

∂x
, 0 < x < 1, t > 0,

d0
∂W (0, t)

∂n
+ vW (0, t) = vS0(t), t > 0,

∂W (1, t)

∂n
= 0, t > 0.

(8.11)

Note that equations (8.7)–(8.8) reduce to (8.11) for W = S when ui =
0, i = 1, 2. In what follows, we use Bφ = 0 to denote the homogeneous

boundary conditions d0
∂φ(0)
∂n + vφ(0) = 0 and ∂φ(1)

∂n = 0.

Proposition 8.2.1. System (8.11) admits a unique positive ω-periodic solu-
tion W ∗(x, t) > 0, and for any W0(·) ∈ C([0, 1],R), the unique (mild) solution
W (x, t) of (8.11) with W (·, 0) = W0(·) satisfies limt→∞(W (x, t)−W ∗(x, t)) =
0 uniformly for x ∈ [0, 1].

Proof. Let u(x, t) = W (x, t)−S0(t) and S1(t) = −dS0(t)
dt , t ≥ 0. Then u(x, t)

satisfies
∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ S1(t), 0 < x < 1, t > 0,

d0
∂u(0, t)

∂n
+ vu(0, t) = 0, t > 0,

∂u(1, t)

∂n
= 0, t > 0.

(8.12)

Since the boundary conditions in (8.12) are homogeneous, (8.12) can then be
written as an abstract ordinary differential equation in C([0, 1],R) given by

du

dt
= Au(t) + S1(t), t > 0,

u(0) = φ ∈ C([0, 1]),R),
(8.13)

where A is the closure in C([0, 1],R) of A0 = d0∂/∂x
2 − v∂/∂x with

D(A0) =
{
φ ∈ C2((0, 1)) ∩ C1([0, 1]) : A0φ ∈ C([0, 1]), Bφ = 0

}
.

For any φ ∈ C([0, 1],R), the mild solution of (8.12) can be expressed as

u(t) = T (t)φ+

∫ t

0

T (t− s)S1(s)ds, (8.14)

where T (t) is the analytic semigroup generated by A in C([0, 1],R) (see, e.g.,
[272] and [326, Chapter 7.1]). It easily follows that u(t) is an ω-periodic solu-
tion of (8.13) if and only if u0 = u(0) satisfies
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(I − T (ω))u0 =

∫ ω

0

T (t− s)S1(s)ds. (8.15)

By an argument similar to that in [326, Section 8.1], it follows that σ =
sup{Reλ : λ ∈ σ(A)} < 0. Then the radius of the spectrum of the compact
operator T (ω) satisfies r(T (ω)) < 1, and hence (8.13) admits a unique ω-
periodic solution u∗(t). Let v(t) = u(t)− u∗(t). Then v(t) satisfies

dv(t)

dt
= Av(t), t > 0. (8.16)

By [272, Theorem 4.4.3], there exist M > 0 and μ > 0 such that ‖T (t)‖ ≤
Me−μt, t ≥ 0, and hence limt→∞ v(t) = 0 in C([0, 1],R). Then limt→∞(u(x, t)−
u∗(x, t)) = 0 uniformly for x ∈ [0, 1].

Let W ∗(x, t) = u∗(x, t) + S0(t), x ∈ [0, 1], t ≥ 0. It then follows that
W ∗(x, t) is an ω-periodic solution of (8.11), and for any W0(·) ∈ C([0, 1],R),
the unique (mild) solution W (x, t) of (8.11) with W (·, 0) = W0(·) satisfies

lim
t→∞(W (x, t)−W ∗(x, t)) = 0, uniformly forx ∈ [0, 1]. (8.17)

For anyW0(·) ∈ C([0, 1],R+), by [243, Theorem 1 and Remark 1.1], the unique
solution W (x, t) of (8.11) with W (·, 0) = W0(·) satisfies

W (x, t) ≥ 0, ∀x ∈ [0, 1], t ≥ 0. (8.18)

It remains to prove that W ∗(x, t) > 0, for all x ∈ [0, 1] and t ≥ 0. For
any t ≥ 0, by (8.17) we have limn→∞(W (x, t + nω) − W ∗(x, t + nω)) =
limn→∞(W (x, t + nω) − W ∗(x, t)) = 0, uniformly for x ∈ [0, 1]. Then
W ∗(x, t) = limn→∞ W (x, t + nω) ≥ 0, ∀x ∈ [0, 1], t ≥ 0. Since S0(t) ≥
0, S0(·) �≡ 0, there exists t0 > 0 such that S0(t0) > 0. It is easy to see

that d0
∂u∗(0,t0)

∂n + vu∗(0, t0) = 0 implies u∗(·, t0) �≡ −S0(t0). Then W ∗(·, t0) =
u∗(·, t0)+S0(t0) �≡ 0. By the standard parabolic maximum principle, it follows
that

W ∗(x, t) > 0, ∀x ∈ [0, 1], t > t0. (8.19)

Then, by the ω-periodicity of W ∗(x, ·), we have W ∗(x, t) > 0, ∀x ∈ [0, 1],
t ≥ 0.

8.2.2 Single Species Growth

If only one microbial species is present in the reactor, we have the single
species model

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− uf(S), 0 < x < 1, t > 0,

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf(S), 0 < x < 1, t > 0,

(8.20)
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with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) = 0, t > 0,

∂S(1, t)

∂x
=

∂u(1, t)

∂x
= 0, t > 0,

(8.21)

and initial conditions

S(x, 0) = S0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0, ∀x ∈ [0, 1], (8.22)

where d0 > 0, v > 0, f(·) ∈ C2(R+,R+) satisfies (H) and S0(·) is as in (8.8).
Let Y + = C([0, 1],R2

+). It then follows that for any φ = (S0(·), u0(·)) ∈ Y +,
(8.20)–(8.22) admits a unique (mild) solution (S(x, t, φ), u(x, t, φ)), defined on
its maximal interval of existence [0, σφ), satisfying S(x, t, φ) ≥ 0, u(x, t, φ) ≥
0, ∀x ∈ [0, 1], t ∈ [0, σφ). By the conservation principle in Subsection 8.2.1, for
each φ ∈ Y +, σφ = ∞.

We determine stability of periodic solutions in the following way. For any
m ∈ C1([0, 1] × R,R) with m(x, t + ω) = m(x, t), ∀x ∈ [0, 1], t ∈ R, let
μ(m(·, ·)) be the unique principal eigenvalue of the periodic–parabolic eigen-
value problem (see [152, Section II.14])

∂ϕ

∂t
= d0

∂ϕ

∂x2
− v

∂ϕ

∂x
+m(x, t)ϕ+ μϕ, x ∈ (0, 1), t ∈ R,

d0
∂ϕ(0, t)

∂x
− vϕ(0, t) =

∂ϕ(1, t)

∂x
= 0, t ∈ R,

ϕ ω-periodic in t.

(8.23)

The main result of this subsection says that if the washout periodic solution
(S, u) = (W ∗, 0) is stable or neutrally stable in the linear approximation then
it is globally stable, while if it is unstable then there exists a unique positive
periodic solution representing survival of the population to which all other
solutions with u0 �= 0 approach asymptotically.

Theorem 8.2.1. Let W ∗(x, t) be as in Proposition 8.2.1.

(a) If μ(f(W ∗(x, t))) ≥ 0, then for any φ = (S0(·), u0(·)) ∈ Y +,
limt→∞(S(x, t, φ) − W ∗(x, t)) = 0 and limt→∞ u(x, t, φ) = 0
uniformly for x ∈ [0, 1];

(b) If μ(f(W ∗(x, t))) < 0, then (8.20)–(8.21) admits a unique positive ω-
periodic solution (S∗(x, t), u∗(x, t)) and for any φ = (S0(·), u0(·)) ∈ Y +

with u0(·) �≡ 0, limt→∞(S(x, t, φ)− S∗(x, t)) = 0 and limt→∞(u(x, t, φ)−
u∗(x, t)) = 0 uniformly for x ∈ [0, 1]. Moreover, (S∗(x, t), u∗(x, t)) is lin-
early asymptotically stable for (8.20)–(8.21).
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Proof. Let f̂(·) : R → R be a smooth extension of f(·) : R+ → R+ such that

f̂(0) = 0, f̂ ′(s) > 0, ∀s ∈ R, and f̂(s) = f(s), ∀s ∈ R+. Let W = S + u.
Then system (8.20) with (8.21) is equivalent to the system

∂W

∂t
= d0

∂2W

∂x2
− v

∂W

∂x
, 0 < x < 1, t > 0,

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf(W − u), 0 < x < 1, t > 0,

(8.24)

with boundary conditions

d0
∂W (0, t)

∂x
− vW (0, t) = −vS0(t), t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) = 0, t > 0,

∂W (1, t)

∂x
=

∂u(1, t)

∂x
= 0, t > 0.

(8.25)

Given φ = (S0(·), u0(·)) ∈ Y +, let (W (x, t), u(x, t)) be the unique solution of
(8.24)–(8.25) satisfying (W (x, 0), u(x, 0)) = (S0(x) + u0(x), u0(x)), x ∈ [0, 1].
Then U(x, t) = u(x, t + ω), x ∈ [0, 1], t ≥ 0, satisfies the nonautonomous
scalar parabolic equation

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf̂(W (x, t+ ω)− u), 0 < x < 1, t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) =

∂u(1, t)

∂x
= 0, t > 0.

(8.26)

By the conservation principle, limt→∞(W (x, t)−W ∗(x, t)) = 0 uniformly for
x ∈ [0, 1], and hence (8.26) is asymptotic to the following periodic scalar
parabolic equation

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf̂(W ∗(x, t)− u), 0 < x < 1, t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) =

∂u(1, t)

∂x
= 0, t > 0.

(8.27)

Let 1 < p < ∞, and let X0 = Lp(0, 1) and X1 = W 2
p,B(0, 1). For β ∈

(1/2 + 1/(2p), 1), let Xβ be the fractional power space of X0 with respect to
(A0, B) (see, e.g., [150]). Then X1 ⊂ Xβ ⊂ X0 and Xβ ↪→ C1+λ[0, 1] for some
λ > 0. Clearly, U(·, 0) = u(·, ω) ∈ X1 ⊂ Xβ . By Theorem 3.2.2, it follows
that

(a) If μ(f(W ∗(x, t))) ≥ 0, limt→∞ U(x, t) = 0, and hence limt→∞ u(x, t) = 0,
uniformly for x ∈ [0, 1];

(b) If μ(f(W ∗(x, t))) < 0, (8.27) admits a unique positive ω-periodic solution
u∗(x, t) and limt→∞(U(x, t) − u∗(x, t)) = 0, and hence limt→∞(u(x, t) −
u∗(x, t)) = limt→∞(U(x, t−ω)−u∗(x, t−ω)) = 0, uniformly for x ∈ [0, 1].
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In case (a), limt→∞(S(x, t) − W ∗(x, t)) = limt→∞[(W (x, t) − W ∗(x, t)) − u
(x, t)] = 0 uniformly for x ∈ [0, 1]; In case (b), let S∗(x, t) = W ∗(x, t) − u∗

(x, t). Then limt→∞(S(x, t) − S∗(x, t)) = limt→∞[(W (x, t) − W ∗(x, t)) −
(u(x, t) − u∗(x, t))] = 0 uniformly for x ∈ [0, 1]. We further claim that
(S∗(x, t), u∗(x, t)) is a positive ω-periodic solution of (8.20)–(8.21). It then

suffices to prove that W ∗(x, t) > u∗(x, t), ∀x ∈ [0, 1], t ≥ 0. Since d0
∂W∗(0,t)

∂n +

vW ∗(x, t) = vS0(t) ≥ 0 and ∂W∗(1,t)
∂n = 0, t > 0, W ∗(x, t) is an upper solution

of (8.27). Let u0(x, t) be the unique solution of (8.27) with u0(·, 0) = W ∗(·, 0).
Then u0(x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. It then follows that

u0(x, t+ nω) ≤ W ∗(x, t+ nω) = W ∗(x, t), ∀t ≥ 0, n ≥ 0. (8.28)

Since limt→∞(u0(x, t) − u∗(x, t)) = 0 uniformly for x ∈ [0, 1], letting n → ∞
in (8.28), we have

u∗(x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0.

Let t0 > 0 be such that S0(t0) > 0. Clearly, the boundary conditions for
W ∗(x, t) and u∗(x, t) in (8.11) and (8.27) imply that u∗(·, t0) �≡ W ∗(·, t0).
Then, by the parabolic maximum principle, we get

u∗(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t > t0,

and hence by the ω-periodicity of u∗(x, t) and W ∗(x, t),

u∗(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0.

Let P : Y + → Y + be the Poincaré map associated with (8.20)–(8.21);
that is, P (φ) = (S(·, ω, φ), u(·, ω, φ)), ∀φ = (S0(·), u0(·)) ∈ Y +. Let φ0 =
(S∗(·, 0), u∗(·, 0)). Clearly, P (φ0) = φ0. It remains to prove the linear asymp-
totic stability of the positive periodic solution (S∗(x, t), u∗(x, t)) in the sense
that r(DφP (φ0)) < 1. Let S̄ = S−S∗, ū = u−u∗. We then get the linearization
of (8.20)–(8.21) at (S∗(x, t), u∗(x, t)) given by

∂S̄

∂t
= d0

∂2S̄

∂x2
− v

∂S̄

∂x
− u∗(x, t)f ′(S∗(x, t))S̄ − f(S∗(x, t))ū,

∂ū

∂t
= d0

∂2ū

∂x2
− v

∂ū

∂x
+ u∗(x, t)f ′(S∗(x, t))S̄ + f(S∗(x, t))ū,

(8.29)

with homogeneous boundary conditions

d0
∂S̄(0, t)

∂x
− vS̄(0, t) = 0, t > 0,

d0
∂ū(0, t)

∂x
− vū(0, t) = 0, t > 0,

∂S̄(1, t)

∂x
=

∂ū(1, t)

∂x
= 0, t > 0.

(8.30)
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Let U(t, s), t ≥ s ≥ 0, be the evolution operator of linear system (8.29)–
(8.30). It easily follows thatDφP (φ0) = U(ω, 0). Under the change of variables
w = S̄ + ū, z = ū, that is,

(
w
z

)
=

(
1 1
0 1

)(
S̄
ū

)
,

(8.29)–(8.30) is then transformed into the system

∂w

∂t
= d0

∂2w

∂x2
− v

∂w

∂x
, 0 < x < 1, t > 0,

∂z

∂t
= d0

∂2z

∂x2
− v

∂z

∂x
+ u∗(x, t)f ′(S∗(x, t))w

+ (f(S∗(x, t))− u∗(x, t)f ′(S∗(x, t))) z, 0 < x < 1, t > 0,

(8.31)

with boundary conditions

d0
∂w(0, t)

∂x
− vw(0, t) = 0, t > 0,

d0
∂z(0, t)

∂x
− vz(0, t) = 0, t > 0,

∂w(1, t)

∂x
=

∂z(1, t)

∂x
= 0, t > 0.

(8.32)

Let U1(t, s), t ≥ s ≥ 0, be the evolution operator of the linear equation

∂w

∂t
= d0

∂2w

∂x2
− v

∂w

∂x
, 0 < x < 1, t > 0,

d0
∂w(0, t)

∂x
− vw(0, t) =

∂w(1, t)

∂x
= 0, t > 0,

(8.33)

and let U2(t, s), t ≥ s ≥ 0, be the evolution operator of the periodic linear
equation

∂z

∂t
= d0

∂2z

∂x2
− v

∂z

∂x
+ (f(S∗(x, t))− u∗(x, t)f ′(S∗(x, t))) z,

d0
∂z(0, t)

∂x
− vz(0, t) =

∂z(1, t)

∂x
= 0.

(8.34)

Then

U(t, s) =

(
U1(t, s) 0∫ t

s
U2(t, τ)u

∗(·, τ)f ′(S∗(·, τ))U1(τ, s)dτ U2(t, s)

)
(8.35)

is the evolution operator of periodic linear system (8.31)–(8.32). In particular,

U(ω, 0) =

(
U1(ω, 0) 0∫ ω

0
U2(ω, τ)u

∗(·, τ)f ′(S∗(·, τ))U1(τ, 0)dτ U2(ω, 0)

)
. (8.36)
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As claimed in Subsection 8.2.1, r(U1(ω, 0)) < 1. By the definition of principal
eigenvalue (see [152, Proposition 14.4]), we have

μ(f(S∗(x, t)− u∗(x, t)f ′(S∗(x, t))) = − 1

ω
ln(r(U2(ω, 0))).

Since (S∗(x, t), u∗(x, t)) is an ω-periodic solution of (8.20)–(8.21), u∗(x, t) sat-
isfies the periodic linear equation

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ f(S∗(x, t))u, 0 < x < 1, t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) =

∂u(1, t)

∂x
= 0, t > 0.

(8.37)

Then, by the uniqueness of the principal eigenvalue, we have μ(f(S∗(x, t))) =
0. Since f(S∗(x, t)) − u∗(x, t)f ′(S∗(x, t)) < f(S∗(x, t)), by the monotonicity
of the principal eigenvalue ([152, Lemma 15.5]),

μ (f∗(S∗(x, t)− u∗(x, t)f ′(S∗(x, t))) > μ (f(S∗(x, t))) = 0.

Therefore, r(U2(ω, 0)) < 1. Clearly, U(ω, 0) : Y = C([0, 1], R)×C([0, 1],R2) →
Y is a compact and positive operator. We further claim that r(U(ω, 0)) < 1.
Indeed, let α = r(U(ω, 0)). If α = 0, obviously we have r(U(ω, 0)) < 1.
In the case where α > 0, by the Krein–Rutman theorem (see, e.g., [152,

Theorem 7.1]), there exists φ =

(
φ1

φ2

)
> 0 in Y such that

U(ω, 0)

(
φ1

φ2

)
= α

(
φ1

φ2

)
.

Then U1(ω, 0)φ1 = αφ1. If φ1 > 0, then α = r(U1(ω, 0)) < 1. If φ1 = 0, then
φ2 > 0 and U2(ω, 0)φ2 = αφ2, and hence, α = r(U2(ω, 0)) < 1. Clearly,

U(ω, 0) =

(
1 −1
0 1

)
U(ω, 0)

(
1 −1
0 1

)−1

.

It then follows that r(DφP (φ0)) = r(U(ω, 0)) = r(U(ω, 0)) < 1.

8.2.3 Two-Species Competition

For any φ = (S0(·), u01(·), u02(·)) ∈ X+, let

Φ(x, t, φ) = (S(x, t), u1(x, t), u2(x, t))

be the unique (mild) solution of (8.7)–(8.8) with Φ(·, 0, φ) = φ. Then S(x, t) ≥
0, ui(x, t) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ), i = 1, 2. By the conservation principle,
for each φ ∈ Y +, σφ = ∞.
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In the case where μ(fi(W
∗(x, t))) < 0, i = 1, 2, according to Theo-

rem 8.2.1, let (S∗
i (x, t), u

∗
i (x, t)) be the unique positive ω-periodic solution

of (8.20)–(8.21) with f(·) = fi(·), i = 1, 2, respectively. As shown in the proof
of Theorem 8.2.1, for each 1 ≤ i ≤ 2,

W ∗(x, t) > u∗
i (x, t), S∗

i (x, t) = W ∗(x, t)− u∗
i (x, t), ∀x ∈ [0, 1], t ≥ 0,

and u∗
i (x, t) is the unique positive ω-periodic solution of the periodic-parabolic

equation

∂ui

∂t
= d0

∂2ui

∂x2
− v

∂ui

∂x
+ uifi(W

∗(x, t)− ui), 0 < x < 1, t > 0,

d0
∂ui(0, t)

∂x
− vui(0, t) =

∂ui(1, t)

∂x
= 0, t ≥ 0.

We now show that if each population can survive in the bioreactor in the
absence of competition and if each population can invade the other’s single-
population periodic solution, then there exist two, not necessarily distinct,
positive periodic solutions, each representing coexistence of the two popula-
tions, and system (8.7)–(8.8) is uniformly persistent.

Theorem 8.2.2. Assume that

(1) μ(fi(W
∗(x, t))) < 0, ∀i = 1, 2;

(2) μ(f1(S
∗
2 (x, t))) < 0 and μ(f2(S

∗
1 (x, t))) < 0.

Then system (8.7)–(8.8) admits two positive ω-periodic solutions
(S̄∗

1 (x, t), ū1∗(x, t), ū∗
2(x, t)) and (S̄∗

2 (x, t), ū
∗
1(x, t), ū2∗(x, t)) with

ū∗
i (x, t) ≥ ūi∗(x, t), ∀x ∈ [0, 1], t ∈ R+, i = 1, 2,

and for any φ = (S0(·), u01(·), u02(·)) ∈ X+ with u0i(·) �≡ 0, ∀i = 1, 2,
Φ(x, t, φ) = (S(x, t), u1(x, t), u2(x, t)) satisfies

lim
t→∞ d(ui(x, t), [ūi∗(x, t), ū∗

i (x, t)]) = 0, i = 1, 2, uniformly for x ∈ [0, 1].

Proof. For each 1 ≤ i ≤ 2, let f̂i(·) : R → R be a smooth extension of fi(·) :
R+ → R such that f̂i(0) = 0, f̂ ′

i(s) > 0, ∀s ∈ R, and f̂i(s) = fi(s), ∀s ∈ R+.
Let W = S+u1+u2. Then system (8.7) with (8.8) is equivalent to the system

∂W

∂t
= d0

∂2W

∂x2
− v

∂W

∂x
, 0 < x < 1, t > 0,

∂ui

∂t
= d0

∂2ui

∂x2
− v

∂ui

∂x
+ uifi(W − u1 − u2), i = 1, 2, 0 < x < 1, t > 0,

(8.38)

with boundary conditions
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d0
∂W (0, t)

∂x
− vW (0, t) = −vS0(t), t > 0,

d0
∂ui(0, t)

∂x
− vui(0, t) = 0, i = 1, 2, t > 0,

∂W (1, t)

∂x
=

∂ui(1, t)

∂x
= 0, i = 1, 2, t > 0.

(8.39)

Given φ = (S0(·), u01(·), u02(·)) ∈ X+, let

Φ(x, t, φ) = (S(x, t), u1(x, t), u2(x, t)), ∀x ∈ [0, 1], t ≥ 0,

and let

(U1(x, t), U2(x, t)) = (u1(x, t+ ω), u2(x, t+ ω)), ∀x ∈ [0, 1], t ≥ 0.

Then (U1(x, t), U2(x, t)) satisfies the following nonautonomous parabolic sys-
tem

∂ui

∂t
= d0

∂2ui

∂x2
− v

∂ui

∂x
+ uif̂i(W (x, t+ ω)− u1 − u2), i = 1, 2,

Bui = 0, i = 1, 2.

(8.40)

By the conservation principle, limt→∞(W (x, t)−W ∗(x, t)) = 0 uniformly for
x ∈ [0, 1], and hence (8.40) is asymptotic to the following periodic-parabolic
system

∂ui

∂t
= d0

∂2ui

∂x2
− v

∂ui

∂x
+ uif̂i(W

∗(x, t)− u1 − u2), i = 1, 2,

Bui = 0, i = 1, 2.

(8.41)

LetXβ be as in the proof of Theorem 8.2.1, let Z = Xβ×Xβ , and let Z+ be
the usual positive cone of Z. Since (U1(·, 0), U2(·, 0)) = (u1(·, ω), u2(·, ω)) ∈ Z,
we consider systems (8.40) and (8.41) with initial values in Z+. Let Δ =
{(t, s) : 0 ≤ s ≤ t < ∞}. Define Φ̃ : Δ × Z+ → Z+ by Φ̃(t, s, ψ) =
ũ(·, t, s, ψ), t ≥ s ≥ 0, ψ ∈ Z+, where ũ(x, t, s, ψ) = (ũ1(x, t, s, ψ), ũ2(x, t, s, ψ))
is the unique solution of (8.40) with ũ(·, s, s, ψ) = ψ. Define Tn : Z+ →
Z+, n ≥ 0, by Tn(ψ) = Φ̃(nω, 0, ψ), ψ ∈ Z+. Let T (t) : Z+ → Z+, t ≥ 0,
be the periodic semiflow generated by periodic system (8.41), i.e., T (t)ψ =
u(·, t, ψ), where u(x, t, ψ) is the unique solution of (8.41) with u(·, 0, ψ) = ψ.
Clearly, Q = T (ω) : Z+ → Z+ is the Poincaré map associated with the
periodic system (8.41). Then, by Proposition 3.2.1, Φ̃ : Δ × Z+ → Z+ is
an asymptotically periodic semiflow with limit ω-periodic semiflow T (t) :
Z+ → Z+, t ≥ 0, and hence Tn : Z+ → Z+, n ≥ 0, is an asymptotically
autonomous discrete process with limit Q : Z+ → Z+. Moreover, for any
ψ ∈ Z+, γ+(ψ) = {Tn(ψ) : n ≥ 0} is precompact in Z+. Let (Z,P ) be the

ordered Banach space with the positive cone P = Xβ
+ × (−Xβ

+), where Xβ
+

is the usual positive cone of Xβ , and denote its order by ≤P . It then follows
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that T (t) : Z+ → Z+, t ≥ 0, is monotone with respect to ≤P in the sense
that if φ, ψ ∈ Z+ with φ ≤P ψ, then T (t)φ ≤P T (t)ψ, ∀t ≥ 0.

Clearly, condition (2) implies μ(f1(W
∗(x, t)−u∗

2(x, t))) = μ(f1(S
∗
2 (x, t))) <

0 and μ(f2(W
∗(x, t) − u∗

1(x, t))) = μ(f2(S
∗
1 (x, t))) < 0. By Theorem 2.4.2,

as applied to the Poincaré map associated with (8.41), or an argument similar
to that in [152, Theorem 33.3], it then follows that (8.41) admits two positive
ω-periodic solutions (ū1∗(x, t), ū∗

2(x, t)) and (ū∗
1(x, t), ū2∗(x, t)) with

ūi∗(x, t) ≤ ū∗
i (x, t), ∀x ∈ [0, 1], t ≥ 0,

such that the compressive dynamics stated in Theorem 8.2.2 holds for (8.41)
on Z+. Let E∗

1 = (ū1∗(·, 0), ū∗
2(·, 0)) and E∗

2 = (ū∗
1(·, 0), ū2∗(·, 0)). Clearly,

Q(E∗
i ) = E∗

i , i = 1, 2. Let Z0 := {(φ1, φ2) ∈ Z+ : φi(·) �≡ 0, i = 1, 2} and
∂Z0 := Z+ \ Z0. Clearly, Q : Z0 → Z0, and Q : ∂Z0 → ∂Z0. It then follows
that Q : Z0 → Z0 admits a global attractor A0 ⊂ [E∗

1 , E
∗
2 ]P . Let M0 =

(0, 0), M1 = (u∗
1(·, 0), 0), and M2 = (0, u∗

2(·, 0)). It is easy to see that ∪2
i=0Mi

is an isolated and acyclic covering of ∪φ∈∂Z0
ω(φ) for Q : ∂Z0 → ∂Z0. By our

assumptions and Proposition 3.2.3, we have W̃ s(Mi) ∩ Z0 = ∅, ∀i = 0, 1, 2,
where W̃ s(Mi) is the stable set ofMi with respect to Tn : Z+ → Z+, n ≥ 0. By
Lemma 1.2.2, every ω-limit set ω(φ) of γ+(φ) = {Tn(φ) : n ≥ 0} is internally
chain transitive for Q : Z+ → Z+. By Theorem 1.2.1, it then follows that
ω(ψ) ⊂ A0, ∀ψ ∈ Z0. By Theorem 3.2.1, limt→∞ d(ũ(·, t, 0, ψ), T (t)A0) = 0.
Since E∗

1 ≤P A0 ≤P E∗
2 , by the monotonicity of T (t) : Z+ → Z+, t ≥ 0, we

have
T (t)E∗

1 ≤P T (t)A0 ≤P T (t)E∗
2 , ∀t ≥ 0. (8.42)

Note that

T (t)E∗
1 = (ū1∗(·, t), ū∗

2(·, t)), and T (t)E∗
2 = (ū∗

1(·, t), ū2∗(·, t)), ∀t ≥ 0.

For any φ = (S0(·), u01(·), u02(·)) ∈ X+ with u0i(·) �≡ 0, ∀i = 1, 2, since
(U1(·, 0), U2(·, 0)) ∈ Z0, we have

lim
t→∞ d(ui(x, t), [ūi∗(x, t), ū∗

i (x, t)])

= lim
t→∞ d(Ui(x, t− ω), [ūi∗(x, t− ω), ū∗

i (x, t− ω)]) = 0, ∀i = 1, 2,

uniformly for x ∈ [0, 1].
Let S̄∗

1 (x, t) = W ∗(x, t) − ū1∗(x, t) − ū∗
2(x, t) and S̄∗

2 (x, t) =
W ∗(x, t)− ū∗

1(x, t)− ū2∗(x, t). We need to confirm that

(S̄∗
1 (x, t), ū1∗(x, t), ū∗

2(x, t)) and (S̄∗
2 (x, t), ū

∗
1(x, t), ū2∗(x, t))

are two positive ω-periodic solutions of (8.7)–(8.8). It suffices to prove that

W ∗(x, t) > ū∗
1(x, t) + ū2∗(x, t), W ∗(x, t) > ū1∗(x, t) + ū∗

2(x, t),

for all x ∈ [0, 1] and t ≥ 0. Since u∗
1(·, 0) �P W ∗(·, 0), we can choose ψ0

= (ψ0
1 , ψ

0
2) ∈ Z0 such that
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E∗
2 ≤P ψ0 �P M1 = (u∗

1(·, 0), 0) andψ0
1(x) + ψ0

2(x) ≤ W ∗(x, 0), ∀x ∈ [0, 1].

Let (u0
1(x, t), u

0
2(x, t)) be the unique solution of (8.41) with (u0

1(·, 0), u0
2(·, 0))

= ψ0, and let f̄(s) = max{f̂1(s), f̂2(s)}, ∀s ∈ R. Then

V (x, t) = u0
1(x, t) + u0

2(x, t), x ∈ [0, 1], t ≥ 0,

satisfies V (x, 0) ≤ W ∗(x, 0), ∀x ∈ [0, 1], and

∂V

∂t
≤ d0

∂2V

∂x2
− v

∂V

∂x
+ V f̄(W ∗(x, t)− V ), 0 < x < 1, t > 0,

BV = 0, t > 0.

(8.43)

Note that W ∗(x, t) satisfies

∂W ∗

∂t
= d0

∂2W ∗

∂x2
− v

∂W ∗

∂x
+W ∗f̄(W ∗(x, t)−W ∗(x, t)),

BW ∗ ≥ 0

(8.44)

for 0 < x < 1 and t > 0. By the standard comparison theorem, it follows that

u0
1(x, t) + u0

2(x, t) = V (x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. (8.45)

By Theorem 2.4.2, Qn(ψ0) = (u0
1(·, nω), u0

2(·, nω)) → E∗
2 as n → ∞, and

hence

lim
t→∞(u0

1(x, t)− ū∗
1(x, t)) = 0 and lim

t→∞(u0
2(x, t)− ū2∗(x, t)) = 0

uniformly for x ∈ [0, 1]. By (8.45), we have

u0
1(x, t+ nω) + u0

2(x, t+ nω) ≤ W ∗(x, t+ nω) = W ∗(x, t) (8.46)

for all x ∈ [0, 1] and t ≥ 0. Letting n → ∞ in (8.46), we get

ū∗
1(x, t) + ū2∗(x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. (8.47)

Since V ∗ = ū∗
1(x, t) + ū2∗(x, t) satisfies (8.43) and W ∗(x, t) satisfies (8.11), as

argued in the proof that W ∗(x, t) > u∗(x, t) in Subsection 8.2.2, we further
have ū∗

1(x, t)+ ū2∗(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. Similarly, we can prove
that ū1∗(x, t) + ū∗

2(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0.

8.3 Perturbed Model

In order to apply abstract perturbation-type results to periodic systems with
parameters, we first consider the weak repellers uniform in parameters and
the continuity of solutions on parameters uniformly for initial values.
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8.3.1 Periodic Systems with Parameters

Let Λ be a subset of R
l. We consider the periodic-parabolic system with

parameter (Eλ):

∂ui

∂t
= Ai(λ)ui + Fi(x, t, u, λ) in Ω × (0,∞), 1 ≤ i ≤ m,

Biui = 0 on ∂Ω × (0,∞), 1 ≤ i ≤ m,
(8.48)

where u = (u1, . . . , um) ∈ R
m, λ ∈ Λ, Biui = ∂ui

∂n + αiui, αi ≥ 0, Ai(λ)
are uniform elliptic operators with coefficients continuous in (x, λ), Fi are
smooth functions, and for some real number ω > 0, Fi(x, t + ω, u, λ) =
Fi(x, t, u, λ), ∀1 ≤ i ≤ m. We assume that for any φ = (φ1, . . . , φm) ∈
C+ = C(Ω,Rm

+ ), the unique (mild) solution u(x, t, φ, λ) of (Eλ) with

u(·, 0, φ, λ) = φ exists globally on [0,∞) and ui(x, t, φ, λ) ≥ 0, ∀x ∈ Ω, t ≥
0, 1 ≤ i ≤ m.

For each 1 ≤ i ≤ m and any m ∈ C1([0, 1] × R,R) with m(x, t + ω) =
m(x, t), ∀x ∈ [0, 1], t ∈ R, let μ(Ai(λ),m(·, ·)) be the unique principal eigen-
value of the periodic–parabolic eigenvalue problem (see [152, Chapter II])

∂ϕ

∂t
= Ai(λ)ϕ+m(x, t)ϕ+ μϕ, x ∈ Ω, t ∈ R,

Biϕ = 0, x ∈ ∂Ω, t ∈ R,

ϕ ω-periodic in t.

Then we have the following result on the uniform weak repeller .

Proposition 8.3.1. Let λ0 ∈ Λ be fixed. Assume that there exists some 1 ≤
i ≤ m such that Fi(x, t, u, λ) = uiGi(x, t, u, λ), and (Eλ) admits a nonnegative
periodic solution

u∗
0(x, t) = (u∗

01(x, t), . . . , u
∗
0i−1(x, t), 0, u

∗
0i+1(x, t), . . . , u

∗
0n(x, t))

with μ(Ai(λ0), Gi(x, t, u
∗
0(x, t), λ0)) < 0. Then there exist η > 0 and δ > 0

such that for any |λ− λ0| < δ and any φ ∈ C+ with φi(·) �≡ 0, we have

lim sup
n→∞

‖(u(·, nω, φ, λ)− u∗
0(·, 0)‖ ≥ η.

Proof. Let M = u∗
0(·, 0) and let B(M, r) denote the open ball in C =

C(Ω,Rm) centered at the point M and with radius r. By the definition of
the principal eigenvalue in [152, Proposition 14.4] and the continuous depen-
dence of evolution operators on parameters (see, e.g., [13] and [89, Section
III.11]), we have

lim
λ→λ0

μ(Ai(λ), Gi(x, t, u
∗
0(x, t), λ0)) = μ(Ai(λ0), Gi(x, t, u

∗
0(x, t), λ0)) < 0.

Then there exists δ0 > 0 such that for any |λ− λ0| < δ0,
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μ(Ai(λ), Gi(x, t, u
∗
0(x, t), λ0)) <

1

2
μ(Ai(λ0), Gi(x, t, u

∗
0(x, t), λ0)).

Let ε0 = − 1
2μ (Ai(λ0), Gi(x, t, u

∗
0(x, t), λ0)). Then for any |λ− λ0| < δ0,

−μ(Ai(λ), Gi(x, t, u
∗
0(x, t), λ0)) > ε0 > 0.

Let r = maxx∈Ω, t∈[0,ω] |u∗
0(x, t)| + 1. Therefore, the uniform continuity of

Gi(x, t, u, λ) on the compact set Ω × [0, ω]× B(0, r)× B(λ0, δ0) implies that
there exist δ1 ∈ (0, δ0) and η1 ∈ (0, 1) such that for any u, v ∈ B(0, r) with
|u− v| < η1 and |λ− λ0| < δ1,

|Gi(x, t, u, λ)−Gi(x, t, v, λ0)| < ε0, ∀x ∈ Ω, t ∈ [0, ω]. (8.49)

Since lim(φ,λ)→(M,λ0) u(·, t, φ, λ) = u(·, t,M, λ0) = u∗
0(·, t) in C uniformly for

t ∈ [0, ω], there exist δ2 ∈ (0, δ1) and η2 > 0 such that for any φ ∈ B(M,η2) ⊂
C, |λ− λ0| < δ2,

|u(x, t, φ, λ)− u∗
0(x, t)| < η1, ∀x ∈ Ω, t ∈ [0, ω].

We claim that for any |λ − λ0| < δ2 and φ ∈ B(M,η2) ∩ C+ with φi(·) �≡ 0,
there exists n0 = n0(λ, φ) ≥ 1 such that

u(·, n0ω, φ, λ) /∈ B(M,η2). (8.50)

Assume, by contradiction, that there exist φ0 ∈ B(M,η2)∩C+ with φ0i(·) �≡ 0
and |λ1 − λ0| < δ2 such that for all n ≥ 1,

u(·, nω, φ0, λ1) ∈ B(M,η2). (8.51)

For any t ≥ 0, let t = nω + t′, where t′ ∈ [0, ω) and n = [t/ω] is the greatest
integer less than or equal to t/ω. Then we have

|u(x, t, φ0, λ1)−u∗
0(x, t)| = |u(x, t′, u(·, nω, φ0, λ1), λ1)−u∗

0(x, t
′)| < η1 (8.52)

for all x ∈ Ω, and hence

|u(x, t, φ0, λ1)| < |u∗(x, t)|+ η1 ≤ max
x∈Ω,t∈[0,ω]

|u∗
0(x, t)|+ 1 = r

for all t ≥ 0 and x ∈ Ω. Therefore, by (8.49) and the ω-periodicity of
Gi(x, t, u, λ1) with respect to t,

Gi(x, t, u(x, t, φ0, λ1), λ1) > Gi(x, t, u
∗
0(x, t), λ0)− ε0, ∀x ∈ Ω, t ≥ 0. (8.53)

Let ψi(x, t) be a positive eigenfunction corresponding to the principal eigen-
value μ = μ(Ai(λ1), Gi(x, t, u

∗
0(x, t), λ0)); that is, ψi(x, t) satisfies

∂ψi

∂t
= Ai(λ1)ψi +Gi(x, t, u

∗
0(x, t), λ0)ψi + μψi in Ω × R,

Biψi = 0 on ∂Ω × R,

ψi ω-periodic in t.

(8.54)
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Then ψ(·, 0) � 0 in C(Ω,R). Let

u(x, t, φ0, λ1) = (u1(x, t, φ0, λ1), . . . , um(x, t, φ0, λ1)).

Since φ0i(·) > 0 in C(Ω,R), by applying the parabolic maximum principle
to the ith component of (Eλ1

), we have ui(·, t, φ0, λ1) � 0 in C(Ω,R) for all
t > 0. Let ui(x, t) = ui(x, t+ ω, φ0, λ1). Then ui(·, 0) = ui(·, ω, φ0, λ1) � 0 in
C(Ω,R), and hence there exists k > 0 such that ui(·, 0) ≥ kψi(·, 0). Therefore,
by (8.53), ui(x, t) satisfies

∂ui

∂t
≥ Ai(λ1)ui + ui (Gi(x, t, u

∗
0(x, t), λ0)− ε0) in Ω × (0,∞),

Biui = 0 on ∂Ω × (0,∞),

ui(x, 0) ≥ kψi(x, 0) on Ω.

(8.55)

By (8.54), it easily follows that v(x, t) = ke(−μ−ε0)tψi(x, t) satisfies

∂v

∂t
= Ai(λ1)v + v (Gi(x, t, u

∗
0(x, t), λ0)− ε0) in Ω × (0,∞),

Biv = 0 on ∂Ω × (0,∞),

v(x, 0) = kψi(x, 0) on Ω.

(8.56)

By (8.55), (8.56), and the standard comparison theorem, we get

ui(x, t) ≥ ke(−μ−ε0)tψi(x, t), ∀t ≥ 0, x ∈ Ω.

Then limt→∞ ui(x, t) = ∞ for any x ∈ Ω, which contradicts (8.51). It fol-
lows that for any |λ − λ0| < δ2 and any φ ∈ C+ with φi(·) �≡ 0,
lim supn→∞ d(u(·, nω, φ, λ),M) ≥ η2.

By the continuous dependence of the evolution operator on parameters
(see, e.g., [13] and [89, Section III.11]), the variation of constants formula,
and a generalized Gronwall’s inequality argument (see, e.g., [152, Lemma 19.4]
and the proof of Proposition 3.2.1), we can prove the following result on the
continuity of solutions on parameters uniformly for initial values.

Proposition 8.3.2. Assume that solutions of (Eλ) are uniformly bounded
uniformly for λ ∈ Λ; that is, for any r > 0, there exists B = B(r) > 0
such that for any φ ∈ C+ with ‖φ‖ ≤ r, ‖u(·, t, φ, λ)‖ ≤ B(r), ∀t ≥ 0, λ ∈ Λ.
Then for any λ0 ∈ Λ and any integer k > 0,

lim
λ→λ0

‖u(·, t, φ, λ)− u(·, t, φ, λ0)‖ = 0

uniformly for t ∈ [ω, kω] and φ in any bounded subset of C+.
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8.3.2 Single Species Growth

Consider the single species growth model with not necessarily identical diffu-
sivities and nonvanishing cell death rate

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− uf(S), 0 < x < 1, t > 0,

∂u

∂t
= d

∂2u

∂x2
− v

∂u

∂x
+ u(f(S)− k), 0 < x < 1, t > 0,

(8.57)

with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

d
∂u(0, t)

∂x
− vu(0, t) = 0, t > 0,

∂S(1, t)

∂x
=

∂u(1, t)

∂x
= 0, t > 0,

(8.58)

where d0 > 0, d > 0, v > 0, and k ≥ 0, and S0(·) and f(·) are as in (8.20)–
(8.21). Let Y + = C([0, 1],R2

+). Let d0 > 0 and v > 0 be fixed and let λ =
(d, k), d > 0, k ≥ 0. As argued in Section 8.1, [243, Theorem 1 and Remark
1.1] imply that for any φ = (S0(·), u0(·)) ∈ Y +, (8.57)–(8.58) has a unique
solution (S(x, t, φ, λ), u(x, t, φ, λ)), defined on its maximal interval of existence
[0, σφ), satisfying (S(·, 0, φ, λ), u(·, 0, φ, λ)) = φ. Moreover,

S(x, t, φ, λ) ≥ 0, u(x, t, φ, λ) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ).

We further have the following result.

Lemma 8.3.1. Let Λ = {(d, k) : d0

2 ≤ d ≤ 2d0, k ≥ 0}. Then for each λ ∈
Λ, φ ∈ Y +, (S(x, t, φ, λ), u(x, t, φ, λ)) exists globally on [0,∞), and solutions
of (8.57)–(8.58) are uniformly bounded and ultimately bounded uniformly for
λ ∈ Λ.

Proof. Given φ = (S0(·), u0(·)) ∈ Y +, for convenience, let

(S(x, t), u(x, t)) = (S(x, t, φ, λ), u(x, t, φ, λ)), ∀x ∈ [0, 1], t ∈ [0, σφ).

Then S(x, t) satisfies

∂S

∂t
≤ d0

∂2S

∂x2
− v

∂S

∂x
, 0 < x < 1, t > 0,

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

∂S(1, t)

∂x
= 0, t > 0.

(8.59)

By the parabolic comparison theorem, we have
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S(x, t) ≤ S̄(x, t), ∀x ∈ [0, 1], t ∈ [0, σφ), (8.60)

where S̄(x, t) is the unique solution of (8.11) with S̄(x, 0) = S(x, 0). By Propo-
sition 8.2.1, S̄(x, t) exists globally on [0,∞) and limt→∞(S̄(x, t)−W ∗(x, t)) =
0 uniformly for x ∈ [0, 1].

Let μ be the unique positive solution to equation tanμ = v
2μd0

on the

interval [0, π
2 ). Clearly, sin(μx) ≥ 0, cos(μx) > 0, x ∈ [0, 1]. Then for any

λ ∈ Λ, by using (8.57) and (8.58) and integration by parts, we have

d

dt

∫ 1

0

S(x, t) cos(μx)dx =

∫ 1

0

∂S

∂t
cos(μx)dx

= vS0(t)− S(1, t)(v cosμ− μd0 sinμ)− μv

∫ 1

0

S(x, t) sin(μx)dx

− d0μ
2

∫ 1

0

S(x, t) cos(μx)dx−
∫ 1

0

u(x, t)f(S(x, t)) cos(μx)dx

≤ vS0(t)− d0μ
2

∫ 1

0

S(x, t) cos(μx)dx

−
∫ 1

0

u(x, t)f(S(x, t)) cos(μx)dx

(8.61)

and

d

dt

∫ 1

0

u(x, t) cos(μx)dx =

∫ 1

0

∂u

∂t
cos(μx)dx

= −u(x, t)[v cosμ− μd sinμ]− v

∫ 1

0

u(x, t) sin(μx)dx

− dμ2

∫ 1

0

u(x, t) cos(μx)dx+

∫ 1

0

u(x, t)(f(S(x, t)− k) cos(μx)dx

≤ −dμ2

∫ 1

0

u(x, t) cos(μx)dx+

∫ 1

0

u(x, t)f(S(x, t)) cos(μx)dx.

(8.62)

Let y(t) =
∫ 1

0
(S(x, t) + u(x, t)) cos(μx)dx, ∀t ∈ [0, σφ). Then we get

dy(t)

dt
≤ vS0(t)− d0μ

2

2
y(t), t ∈ [0, σφ).

By the standard comparison theorem for ordinary differential equations, it
then follows that for all t ∈ [0, σφ),

y(t) ≤ y∗(t)− exp

(
−d0μ

2t

2

)
y∗(0) + exp

(
−d0μ

2t

2

)
y(0), (8.63)

where y∗(t) is the unique positive ω-periodic solution of linear ordinary dif-
ferential equations
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dy

dt
= vS0(t)− d0μ

2

2
y(t).

Since S(x, t) ≥ 0, u(x, t) ≥ 0, and cos(μx) ≥ minx∈[0,1] cos(μx) = m > 0, ∀x ∈
[0, 1], (8.63) implies that for all t ∈ [0, σφ),∫ 1

0

u(x, t)dx ≤ 1

m

[
y∗(t)− exp

(
−d0μ

2t

2

)
y∗(0)

+ exp

(
−d0μ

2t

2

)∫ 1

0

(S0(x) + u0(x)) cos(μx)dx

]
.

(8.64)
Then u(·, t) is L1-bounded on [0, σφ). By (8.60), (8.64), and an argument sim-
ilar to that in [6, Theorem 3.1], [186, Lemma 3.13], and [215, Proposition 2.4
and Theorem 2.5], it follows that for each φ ∈ Y +, (S(x, t, φ, λ), u(x, t, φ, λ)) is
L∞-bounded, and hence σφ = ∞, and solutions of (8.57)–(8.58) are uniformly
L∞-bounded and ultimately L∞-bounded uniformly for λ ∈ Λ.

Now we show that the hypothesis of Theorem 8.2.1(b) for the unperturbed
system implies the existence of a globally attracting single-population periodic
solution for the perturbed system at least when the perturbation is small.

Theorem 8.3.1. Let λ = (d, k), λ0 = (d0, 0), and W ∗(x, t) and μ(m(·, ·)) be
as in Section 8.2. Assume that μ(f(W ∗(x, t))) < 0 and let (S∗(x, t), u∗(x, t))
be as in Theorem 8.2.1. Then there exists δ0 > 0 such that for any |λ− λ0| <
δ0, (8.57)–(8.58) admits a unique positive ω-periodic solution
(S∗(x, t, λ), u∗(x, t, λ)) with

(S∗(x, t, λ0), u
∗(x, t, λ0)) = (S∗(x, t), u∗(x, t)), ∀x ∈ [0, 1], t ≥ 0,

and such that the map λ → (S∗(·, ·, λ), u∗(·, ·, λ)) is continuous. Moreover,
for any (S0(·), u0(·)) ∈ Y + with u0(·) �≡ 0,

lim
t→∞(S(x, t, φ, λ)− S∗(x, t, λ)) = 0 and lim

t→∞(u(x, t, φ, λ)− u∗(x, t, λ)) = 0,

uniformly for x ∈ [0, 1].

Proof. Let k0 > 0 be given and let Λ0 = {(d, k) : d0

2 ≤ d ≤ 2d0, 0 ≤ k ≤ k0}.
For any λ ∈ Λ0, let Sλ = S(λ, ·) : Y + → Y + be the Poincaré map associated
with (8.57)–(8.58); that is, S(λ, φ) = (S(·, ω, φ, λ), u(·, ω, φ, λ)), φ ∈ Y +. Then
S(·, ·) : Λ0×Y + → Y + is continuous. By Lemma 8.3.1, it follows that for each
λ ∈ Λ0, Sλ : Y + → Y + is compact and point dissipative uniformly for λ ∈ Λ0;
that is, there exists a bounded and closed subset B0 of Y +, independent of
λ ∈ Λ0, such that for any φ ∈ Y +, λ ∈ Λ0, there exists N = N(φ, λ) such
that Sn

λ (φ) ∈ B0 for all n ≥ N . Then, by Theorem 1.1.3, for each λ ∈ Λ0,
there exists a global attractor Aλ for Sλ : Y + → Y +. Clearly, Aλ ⊂ B0. By a
change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ū(x, t) = exp

(
v(x− 1)2

2d

)
u(x, t),
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the boundary conditions (8.58) then become the homogeneous ones

d0
∂S̄(0, t)

∂x
− vS̄(0, t) =

∂S̄(1, t)

∂x
= 0, t > 0,

∂ū(0, t)

∂x
=

∂ū(1, t)

∂x
= 0, t > 0,

which is independent of parameter λ. By Lemma 8.3.1 and Proposition 8.3.2,
when applied to the resulting system with parameter λ under the above change
of variables and the above boundary conditions, it then follows that S(·, φ) :
Λ0 → Y + is continuous uniformly for φ in any bounded subset of Y +. We
further have the following claim:

Claim. For any bounded subset B ⊂ Y +, ∪λ∈Λ0
Sλ(B) is compact in Y +.

Indeed, for any sequence {ψn} in ∪λ∈Λ0
Sλ(B), we have ψn = Sλn

(φn), λn ∈
Λ0, φn ∈ B,n ≥ 0. By the compactness of Λ0, without loss of generality
we can assume that for some λ1 ∈ Λ0, λn → λ1 as n → ∞. Since Sλ1

(B)
is precompact, there exist ψ0 ∈ Y + and a subsequence nk → ∞ such that
Sλ1

(φnk
) → ψ0 as k → ∞. Combining the continuity of S(·, φ) : Λ0 → Y +

uniformly for φ ∈ B and the inequality

‖ψnk
− ψ0‖ =

∥∥∥Sλnk
(φnk

)− ψ0

∥∥∥
≤

∥∥∥Sλnk
(φnk

)− Sλ1
(φnk

)
∥∥∥+ ‖Sλ1

(φnk
)− ψ0‖ ,

we get ψnk
→ ψ0, k → ∞. Therefore, ∪λ∈Λ0

Sλ(B) is precompact.
Let

Y0 :=
{
(S(·), u(·)) ∈ Y + : u(·) �≡ 0

}
and ∂Y0 := Y + \ Y0.

Then Sλ : Y0 → Y0 and Sλ : ∂Y0 → ∂Y0. Let φ0 = (S∗(·, 0), u∗(·, 0)). Then
Sλ0

(φ0) = φ0. By Theorem 8.2.1, r(DφS(λ0, φ0)) < 1, and limn→∞ Sn
λ0
φ = φ0

for every φ ∈ Y0. For each λ ∈ Λ0, by Proposition 8.2.1,

lim
n→∞Sn

λ (φ) = (W ∗(·, 0), 0), ∀φ ∈ ∂Y0.

Clearly, M = (W ∗(·, 0), 0) is a global attractor for Sλ : ∂Y0 → ∂Y0. Note
that (W ∗(x, t), 0) is a nonnegative ω-periodic solution of (8.57)–(8.58) and
μ(f(W ∗(x, t))) < 0. By a change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ū(x, t) = exp

(
v(x− 1)2

2d

)
u(x, t),

and Proposition 8.3.1, as applied to the resulting system, it then follows that
there exist δ1 > 0 and η1 > 0 such that for any |λ− λ0| < δ1 and any φ ∈ Y0,
we have



236 8 A Periodically Pulsed Bioreactor Model

lim sup
n→∞

d (Sn
λ (φ),M) = lim sup

n→∞
d ((S(·, nω, φ, λ), u(·, nω, φ, λ)),M) ≥ η1,

which implies that M is isolated for Sλ : Y + → Y +, and W s
λ(M) ∩ Y0 = ∅,

|λ − λ0| < δ1, where W s
λ(M) is the stable set of M with respect to Sλ. By

Theorem 1.3.1, Sλ is uniformly persistent with respect to (Y0, ∂Y0) for each
|λ−λ0| < δ1. Therefore, there exists a global attractor A0

λ ⊂ Y0 for Sλ : Y0 →
Y0 (see, e.g., Theorem 1.3.6). Clearly, A0

λ ⊂ B0, and ∪λ∈Λ0,φ∈Y +ωλ(φ) ⊂
∪λ∈Λ0

Sλ(B0). Then by the previous claim, ∪λ∈Λ0,φ∈Y +ωλ(φ) is compact. By
Theorem 1.4.2, it follows that there exist δ2 > 0 and η2 > 0 such that
for any |λ − λ0| ≤ δ2, φ ∈ Y0, lim infn→∞ d(Sn

λφ, ∂Y0) ≥ η2. Then there
exists a bounded and closed subset B∗

0 of Y0 such that A0
λ ⊂ B∗

0 for all

|λ− λ0| ≤ δ2. Let Λ1 = Λ0 ∩B(λ0, δ2), where B(λ0, δ2) = {λ : |λ− λ0| < δ2}.
Since ∪λ∈Λ1

Sλ(A0
λ) ⊂ ∪λ∈Λ1

Sλ(B∗
0), by the previous claim ∪λ∈Λ1

Sλ(A0
λ) is

compact. Moreover, ∪λ∈Λ1
Sλ(A0

λ) = ∪λ∈Λ1
A0

λ ⊂ B∗
0 = B∗

0 ⊂ Y0. By ap-
plying Theorem 1.4.1 on the perturbation of a globally stable fixed point
to Sλ(·) : Y + → Y + with U = Y0 and Bλ = A0

λ, λ ∈ Λ1, we complete the
proof.

8.3.3 Two-Species Competition

Consider two-species competition with unequal diffusivities and nonvanishing
cell death rates

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S), 0 < x < 1, t > 0,

∂ui

∂t
= di

∂2ui

∂x2
− v

∂ui

∂x
+ ui(fi(S)− ki), i = 1, 2, 0 < x < 1, t > 0,

(8.65)

with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

di
∂ui(0, t)

∂x
− vui(0, t) = 0, i = 1, 2, t > 0,

∂S(1, t)

∂x
=

∂ui(1, t)

∂x
= 0, i = 1, 2, t > 0,

(8.66)

where d0 > 0, v > 0, di > 0, and ki ≥ 0, and S0(·) and fi(·), i = 1, 2, are
as in (8.7)–(8.8). Let X+ = C([0, 1],R3

+). Let d0 > 0 and v > 0 be fixed
and let λ = (d1, d2, k1, k2), di > 0, ki ≥ 0, i = 1, 2. As mentioned in Sec-
tion 8.1, for any φ = (S0(·), u01(·), u02(·)) ∈ X+, (8.65)–(8.66) has a unique
solution (S(x, t, φ, λ), u1(x, t, φ, λ), u2(x, t, φ, λ)), defined on its maximal in-
terval of existence [0, σφ), satisfying (S(·, 0, φ, λ), u1(·, 0, φ, λ), u2(·, 0, φ, λ))
= φ. Moreover,

S(x, t, φ, λ) ≥ 0, ui(x, t, φ, λ) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ), i = 1, 2.
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By a similar argument as in Lemma 8.3.1, we have the following result on the
boundedness of solutions uniformly for λ.

Lemma 8.3.2. Let Λ = {(d1, d2, k1, k2) : d0

2 ≤ di ≤ 2d0, ki ≥ 0, i = 1, 2}.
Then for each λ ∈ Λ, φ ∈ X+, (S(x, t, φ, λ), u1(x, t, φ, λ), u2(x, t, φ, λ)) exists
globally on [0,∞), and solutions of (8.65)–(8.66) are uniformly bounded and
ultimately bounded uniformly for λ ∈ Λ.

Now we can state one of the main results of this chapter. It says that
both species persist for the perturbed system and there exists a positive peri-
odic solution when the hypotheses of Theorem 8.2.2 hold for the unperturbed
system and the perturbation is sufficiently small.

Theorem 8.3.2. Let λ = (d1, d2, k1, k2) and λ0 = (d0, d0, 0, 0). Assume that
all conditions in Theorem 8.2.2 hold. Then there exist δ > 0 and β > 0 such
that for any |λ−λ0| < δ, (8.65)–(8.66) admits at least one positive ω-periodic
solution, and for any φ = (S0(·), u01(·), u02(·)) ∈ X+ with u0i(·) �≡ 0, ∀i =
1, 2, there exists t0 = t0(φ, λ) such that

ui(x, t, φ, λ) ≥ β, ∀x ∈ [0, 1], t ≥ t0, i = 1, 2.

Proof. Let k0 > 0 be given and let

Λ0 = {(d1, d2, k1, k2) : d0
2

≤ di ≤ 2d0, 0 ≤ ki ≤ k0, i = 1, 2}.

For each λ ∈ Λ0, let Sλ(·) = S(λ, ·) : X+ → X+ be the Poincaré map
associated with (8.65)–(8.66); that is,

S(λ, φ) = (S(·, ω, φ, λ), u1(·, ω, φ, λ), u2(·, ω, φ, λ)), ∀φ ∈ X+.

Then S(·, ·) : Λ0×X+ → X+ is continuous. By Lemma 8.3.2, for each λ ∈ Λ0,
Sλ : X+ → X+ is compact and point dissipative uniformly for λ ∈ Λ0, and
hence, by Theorem 1.1.3, there exists a global attractor Aλ for Sλ : X+ → X+.
Let

X0 :=
{
(S(·), u01(·), u02(·)) ∈ X+ : u0i(·) �≡ 0, ∀i = 1, 2

}
and ∂X0 := X+ \ X0. Then Sλ : X0 → X0 and Sλ : ∂X0 → ∂X0.
By Theorem 8.2.1, (S∗

i (x, t), u
∗
i (x, t)) is the unique positive ω-periodic so-

lution of (8.20)–(8.21) with f(·) = fi(·), i = 1, 2, respectively. Clearly,
(W ∗(x, t), 0, 0), (S∗

1 (x, t), u
∗
1(x, t), 0) and (S∗

2 (x, t), 0, u
∗
2(x, t)) are nonnegative

periodic solutions of (8.65)–(8.66) with λ = λ0. Let

M0 = (W ∗(·, 0), 0, 0), M0
1 = (S∗

1 (·, 0), u∗
1(·, 0), 0), M0

2 = (S∗
2 (·, 0), 0, u∗

2(·, 0)).
Then Sλ0

(M0) = M0, Sλ0
(M0

i ) = M0
i , ∀i = 1, 2. By a change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ūi(x, t) = exp

(
v(x− 1)2

2di

)
ui(x, t), i = 1, 2,
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and Proposition 8.3.1, as applied to the resulting system, it follows that there
exist δ0 > 0 and η0 > 0 such that for any λ ∈ Λ0 with |λ− λ0| < δ0, and for
any φ ∈ X0,

lim sup
n→∞

d(Sn
λ (φ),M0) ≥ η0, lim sup

n→∞
d(Sn

λ (φ),M
0
i ) ≥ η0, i = 1, 2. (8.67)

By Proposition 8.2.1 and Theorem 8.2.1, it follows that M0,M
0
1 , and M0

2 are
acyclic for Sλ0

in ∂X0, and ∪φ∈∂X0
ωλ0

(φ) = M0∪M0
1∪M0

2 , where ωλ0
(φ) is the

omega limit set of φ for Sλ0
. Moreover, (8.67) implies that M0∪M0

1 ∪M0
2 is an

isolated covering of ∪φ∈∂X0
ωλ0

(φ) for Sλ0
in ∂X0 and that W s

λ0
(M0)∩X0 = ∅

and W s
λ0
(M0

i ) ∩ X0 = ∅, ∀i = 1, 2, where W s
λ0
(M) denotes the stable set

of M with respect to Sλ0
. By Theorem 1.3.1 and Remark 1.3.1, it follows

that Sλ0
: X+ → X+ is uniformly persistent with respect to (X0, ∂X0), and

hence there exists a global attractor A0
λ0

⊂ X0 for Sλ0
: X0 → X0 (see, e.g.,

Theorem 1.3.6).
Let Λ1 = Λ0 ∩B(λ0, δ0). Again by a change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ūi(x, t) = exp

(
v(x− 1)2

2di

)
ui(x, t), i = 1, 2,

Lemma 8.3.2, and Proposition 8.3.2, as applied to the resulting system, it
follows that Sλ : X+ → X+ is point dissipative uniformly for λ ∈ Λ1 and
S(·, φ) : Λ1 → X+ is continuous uniformly for φ in any bounded subset of X+.
Therefore, by the same argument as in the claim in the proof of Theorem 8.3.1,
for any bounded subset B of X+, ∪λ∈Λ1

Sλ(B) is compact. It then follows
that, as argued in Theorem 8.3.1, ∪λ∈Λ1,φ∈X+ωλ(φ) is compact. Therefore,
by (8.67) and Theorem 1.4.2, there exist δ1 ∈ (0, δ0) and η > 0 such that for
any λ ∈ Λ0 with |λ−λ0| ≤ δ1, and any φ ∈ X0, lim infn→∞ d(Sn

λφ, ∂X0) ≥ η.
Moreover, by Theorem 1.3.10, Sλ admits a fixed point Sλ(φλ) = φλ ∈ X0,
and hence (8.65)–(8.66) with |λ − λ0| ≤ δ1 admits a nonnegative ω-periodic
solution (S(x, t, φλ, λ), u1(x, t, φλ, λ), u2(x, t, φλ, λ)) with ui(·, t, φλ, λ) � 0 in
C([0, 1],R), ∀t ≥ 0, i = 1, 2. By parabolic maximum principle and the fact
that S0(·) ≥ 0 with S0(·) �≡ 0, it then easily follows that S(·, t, φλ, λ) � 0
in C([0, 1],R), ∀t ≥ 0. Thus, (S(x, t, φλ, λ), u1(x, t, φλ, λ), u2(x, t, φλ, λ)) is a
positive ω-periodic solution of (8.65)–(8.66).

It remains to prove the practical persistence claimed in the theorem. Let
Λ2 = Λ0 ∩ B(λ0, δ1). By both the point dissipativity and the uniform persis-
tence of Sλ with respect to (X0, ∂X0) uniformly for λ ∈ Λ2, it follows that
there exists a closed and bounded set B0 ⊂ X0, independent of λ, such that
d(B0, ∂X0) = infφ∈B0

d(φ, ∂X0) > 0 and B0 attracts points in X0. As argued
in Theorem 8.3.1, for each λ ∈ Λ2, Sλ : X0 → X0 admits a global attractor
A0

λ ⊂ X0, and hence A0
λ attracts any compact subset of X0. Clearly, for each

λ ∈ Λ2, A
0
λ ⊂ B0, and hence B0 attracts compact subsets of X0 under Sλ.

Since for each λ ∈ Λ2, Sλ : X+ → X+ is compact, and for any bounded subset
B of X+, as claimed in the previous paragraph, ∪λ∈Λ2

Sλ(B) is precompact,
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it follows that {Sλ : λ ∈ Λ2} is collectively compact. By Theorem 1.1.5, it
then follows that A0

λ is upper semicontinuous in λ ∈ Λ2. In particular,

lim
λ→λ0

sup
φ∈A0

λ

d(φ,A0
λ0
) = 0. (8.68)

Let Φλ(t, ·) : X+ → X+ be defined by

Φλ(t, φ) = (S(·, t, φ, λ), u1(·, t, φ, λ), u2(·, t, φ, λ)) , φ ∈ X+.

Clearly, Sλ = Φλ(ω, ·) and Sn
λ = Φλ(nω, ·). It then follows that Φλ :

R+ × X+ → X+ is a periodic semiflow. Moreover, by Theorem 3.1.1,
limt→∞ d(Φλ(t, φ), Ã

0
λ) = 0, ∀φ ∈ X0, where Ã0

λ = ∪t∈[0,ω]Φλ(t, A
0
λ) ⊂ X0.

Since A0
λ = Sλ(A

0
λ), Ã

0
λ = ∪t∈(0,ω]Φλ(t, A

0
λ). By the compactness of Ã0

λ0
and

the parabolic maximum principle, it then follows that there exists β0 > 0 such
that for any φ = (φ0, φ1, φ2) ∈ Ã0

λ0
, φi(x) ≥ β0, ∀x ∈ [0, 1], i = 1, 2. By (8.68),

we have limλ→λ0
supφ∈Ã0

λ
d(φ, Ã0

λ0
) = 0. Consequently, there exist δ2 ∈ (0, δ1)

and β1 > 0 such that for any |λ−λ0| < δ2, and any φ = (φ0, φ1, φ2) ∈ Ã0
λ, we

have φi(x) ≥ β1, ∀x ∈ [0, 1], i = 1, 2. Now the global attractivity of Ã0
λ in X0

for Φλ completes the proof.

Remark 8.3.1. In the case where the velocity of the flow of medium in the
bioreactor varies periodically as well, that is, v = v(t) = v(t+ω), a change of
variables

S̄(x, t) = exp

(
v(t)(x− 1)2

2d0

)
(S(x, t)−W ∗(x, t)) ,

ūi(x, t) = exp

(
v(t)(x− 1)2

2di

)
ui(x, t), i = 1, 2,

results in the boundary conditions becoming homogeneous Neumann bound-
ary conditions, and using similar ideas as in Sections 8.2 and 8.3, we can also
discuss the global dynamics of the modified model systems.

Remark 8.3.2. In the case of constant nutrient input, that is, S0(·) ≡ S0, it
follows that the ω-periodic solutions in Sections 8.2 and 8.3 reduce to steady
states of the corresponding autonomous reaction–diffusion systems, and hence
we have the analogous results of Theorems 8.2.1, 8.2.2, 8.3.1, and 8.3.2.

8.4 Notes

This chapter is adapted from Smith and Zhao [336]. The model with con-
stant nutrient input was formulated by Kung and Baltzis [207], and was stud-
ied in Ballyk, Le, Jones and Smith [27]. Smith and Zhao [341] established
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the existence of traveling waves for this model in the case of single species
growth. The transformations in Section 8.3 converting Robin-type boundary
conditions to Neumann boundary conditions were motivated by Pilyugin and
Waltman [278]. Similar perturbation ideas as in Section 8.3 were used for two-
species periodic competitive parabolic systems under perturbations in Zhao
[437].

Hsu, Wang and Zhao [175] studied a periodically pulsed bioreactor model
in a flowing water habitat with a hydraulic storage zone in which no flow
occurs, and obtained sufficient conditions in terms of principal eigenvalues
for the persistence of single population and the coexistence of two competing
populations. Yu and Zhao [422] investigated the spatial dynamics of a periodic
reaction–advection–diffusion model for a stream population, and established
a threshold-type result on the global stability of either zero or the positive
periodic solution in the case of a bounded domain.
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