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A Discrete-Time Chemostat Model

The chemostat is an important laboratory apparatus used for the continuous
culture of microorganisms. In ecology it is often viewed as a model of a simple
lake system, of the wastewater treatment process, or of biological waste de-
composition. Mathematical models of microbial growth and competition for
a limiting substrate in a chemostat have played a central role in population
biology. See [334] for a treatment of chemostat models. However, the classical
model ignores the size structure of the population and the observation that
many microbes roughly double in size before dividing. Size-structured chemo-
stat models formulated by Metz and Diekmann [248] and by Cushing [76]
lead to hyperbolic partial differential equations with nonlocal boundary con-
ditions. A conceptually simpler approach to modeling size structure was taken
by Gage, Williams and Horton [127], who formulated what is now referred to
as a nonlinear matrix model for the evolution, in discrete-time steps, of a fi-
nite set of biomass classes. Smith [327] modified this model and showed that
competitive exclusion holds for two competing microbial populations. The
purpose of the present chapter is to give a thorough mathematical analysis of
this model of any number of competing populations.

In Section 4.1 we introduce the model under some appropriate assump-
tions, and derive a conservation principle for the total nutrient. In Section 4.2
we show that the model leads to a lower-dimensional system of difference
equations for the total biomass of each population and that conservation of
total nutrient allows a further reduction to a limiting system where the nu-
trient is effectively eliminated. The global dynamics and chain transitive sets
of the resulting limiting system are analyzed. In Section 4.3 we prove that
competitive exclusion holds for the full size-structured system. The winner is
the population able to grow at the lowest nutrient concentration.

© Springer International Publishing AG 2017
X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books
in Mathematics, DOI 10.1007/978-3-319-56433-3 4

119



120 4 A Discrete-Time Chemostat Model

4.1 The Model

In order to formulate a discrete, size-structured model of m-species competi-
tion for a limiting nutrient in a chemostat, a simple open system with a con-
stant input of fresh nutrient at concentration S0 ∈ (0,∞) at rate E ∈ (0, 1)
and a constant removal of nutrient and organisms at rate E, we make the
following biological assumptions (see Gage et al. [127]):

(1) An organism approximately doubles in size as it moves from its smallest
to its largest size class;

(2) Cells divide into two daughter cells of approximately equal size;
(3) Cell growth is exponential if the concentration of the limiting nutrient

remains constant;
(4) The average nutrient uptake rate per unit biomass is constant across all

size classes;
(5) Respiration and mortality are negligible;
(6) Washout is constant across all size classes per unit biomass;
(7) The only organism-to-organism interaction is mediated through the nu-

trient concentration.

For the ith species we choose ri size classes such that the average biomass
in class j, 1 ≤ j ≤ ri, is M j−1

i bi, where Mi = 21/ri and bi is the average

biomass of a newly divided cell. Let xi = (y1i , y
2
i , . . . , y

ri
i ) ∈ R

ri , where yji
denotes the biomass in size class j, 1 ≤ j ≤ ri. Then the number of cells in
size class j is ni(j) = yji /(M

j−1
i bi). Let S be the nutrient concentration, and

fi(S) the nutrient uptake rate computed per unit biomass per iteration period.
It is assumed that population biomass is measured in nutrient-equivalent units
so that fi(S) is also the rate of increase in biomass per iteration period per
unit biomass. Thus yji fi(S)/(M

j
i bi −M j−1

i bi) = ni(j)fi(S)(Mi − 1)−1 is the
number of individuals in size class j that can gain enough biomass during an
iteration period to move up to size class j+1, and hence Pi = fi(S)(Mi−1)−1

is the proportion of individuals that would move from size class j to size class
j +1 per iteration period in the absence of washout. Accounting for the ratio
Mi of cell size in class j+1 to cell size in class j and the washout rate E, the
proportion of biomass in class j projected into class j + 1 over an iteration
period is (1−E)MiPi. The proportion (1−E)(1−Pi) of individuals remains
in class j.

The discrete-time, size-structured model of m-species competition in the
chemostat is then given by

xi
n+1 =Ai(Sn)x

i
n, 1 ≤ i ≤ m,

Sn+1 =(1− E)

⎛
⎝Sn −

m∑
j=1

fj(Sn)U
j
n

⎞
⎠+ ES0,

(4.1)

where the vector xi
n ∈ R

ri
+ , ri > 0, gives the distribution of biomass (in

nutrient-equivalent units) of the ith microbial population among ri size classes
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at the nth time step, and Sn is the nutrient concentration at the nth time
step. The total biomass of the ith population at the nth time step is given by
U i
n = xi

n · 1, the scalar product of xi
n and 1 = (1, . . . , 1) ∈ R

ri . The nutrient
uptake rate for the ith population is fi(S), and the ri × ri projection matrix
for that population is given by

Ai(S) = (1 − E)

⎡
⎢⎢⎢⎢⎢⎣

1− Pi 0 · · · MiPi

MiPi 1− Pi 0 · · · 0
0 MiPi 1− Pi 0 · · · 0

. . .

0 · · · 0 MiPi 1− Pi

⎤
⎥⎥⎥⎥⎥⎦
, (4.2)

where
Mi = 21/ri , Pi = fi(S)(Mi − 1)−1, 1 ≤ i ≤ m.

Throughout this chapter, we assume that

(H1) For each 1 ≤ i ≤ m, fi ∈ C1(R+,R), fi(0) = 0, f ′
i(S) > 0, f ′

i(S) ≤
f ′
i(0), S ∈ R+;

(H2) fi(+∞)(Mi − 1)−1 < 1, 1 ≤ i ≤ m, and there exist W > S0 and
η ∈ (0, 1) such that W

∑m
i=1 f

′
i(0) < η.

Clearly, (H1) and the mean value theorem imply that fi(S) ≤ f ′
i(0)S, for

S ≥ 0. The prototypical nutrient uptake rate, which satisfies (H1), is the
Michaelis–Menten function

f(S) =
mS

a+ S
, S ∈ R+,

where m is the maximum uptake rate and a > 0 is the Michaelis-Menten (or
half saturation) constant. In (H2), W is an appropriate upper bound on the
total biomass of all species and the nutrient, and η an acceptable tolerance.
We refer to [327] for a discussion of subtle issues involving the time step and
growth rates in order that the model make biological sense.

Using the fact that 1 = (1, . . . , 1) ∈ R
ri is the Perron–Frobenius (princi-

pal) eigenvector of the nonnegative, irreducible, and primitive matrix Ai(S)
associated with its Perron–Frobenius (principal) eigenvalue (1−E)(1+fi(S))
(see, e.g., [77, Theorem 1.1.1]), it follows that the total biomass U i

n = xi
n · 1

satisfies the difference equations

U i
n+1 = (1− E)(1 + fi(Sn))U

i
n, 1 ≤ i ≤ m. (4.3)

Let Σn = Sn +
∑m

i=1 U
i
n, n ≥ 0. Equation (4.3) and the second equation of

(4.1) imply that the evolution of Σn can be decoupled from the rest of the
system

Σn+1 = (1 − E)Σn + ES0, n ≥ 0, (4.4)

resulting in
Σn = S0 − (1− E)n(S0 −Σ0), n ≥ 0. (4.5)

Clearly, (4.5) implies limn→∞ Σn = S0, which is a conservation principle for
the total nutrient.
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4.2 The Limiting System

For the dynamics of system (4.1), we may consider its population level dy-
namics, which is described by equation (4.3) and the second equation in (4.1).
In view of Sn = Σn − ∑m

i=1 U
i
n and limn→∞ Σn = S0, we may pass to the

limiting system

U i
n+1 = (1− E)

⎛
⎝1 + fi(S

0 −
m∑
j=1

U j
n)

⎞
⎠U i

n, 1 ≤ i ≤ m, (4.6)

with the initial value (U1
0 , . . . , U

m
0 ) in the domain

D :=

{
(U1, . . . , Um) ∈ R

m
+ :

m∑
i=1

U i ≤ S0

}
.

Denote by F the mapping determined by the right side of (4.6), so we have

(U1
n+1, . . . , U

m
n+1) = F (U1

n, . . . , U
m
n ).

Then the following result implies that D is positively invariant for system
(4.6), and hence (4.6) defines a discrete dynamical system on D.

Lemma 4.2.1. F (D) ⊂ {
(U1, . . . , Um) ∈ R

m
+ :

∑m
i=1 U

i ≤ (1 − E)S0
}

⊂ D.

Proof. For any (U1, . . . , Um) ∈ D, let (V 1, . . . , Vm) = F (U1, . . . , Um) and
t =

∑m
i=1 U

i. Then V i ≥ 0, 1 ≤ i ≤ m, and t ∈ [0, S0]. If t > 0, then

m∑
i=1

V i = (1− E)t

(
1 +

m∑
i=1

fi(S
0 − t)

U i

t

)

≤ (1− E)t

(
1 + max

1≤i≤m
{fi(S0 − t)}

)

≤ (1− E) max
1≤i≤m

{(1 + fi(S
0 − t))t}. (4.7)

By (H1) and (H2), we have

d

dt

(
(1 + fi(S

0 − t))t
)
= 1 + fi(S

0 − t)− f ′
i(S

0 − t)t

≥ 1− f ′
i(0)W + fi(S

0 − t) > 1− η > 0. (4.8)

Consequently, the function (1+ fi(S
0 − t))t is strictly increasing with respect

to t ∈ [0, S0], attaining its maximum value S0 at t = S0. Thus (4.7) yields∑m
i=1 V

i ≤ (1− E)S0.
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We define the break-even nutrient concentration for ith population as the
solution λi of

(1− E)(1 + fi(S)) = 1,

where λi = +∞ if no such solution exists. If the supplied nutrient does not
exceed the nutrient requirements of a population, then it is eliminated.

Lemma 4.2.2. If λi ≥ S0, then limn→∞ U i
n = 0 for every solution

(U1
n, . . . , U

m
n ) of (4.6).

Proof. U i
n+1 ≤ (1−E)(1 + fi(S

0 −U i
n))U

i
n ≡ g(U i

n), so, since g is increasing
by (4.8), U i

n ≤ V i
n, where V i

n+1 = g(V i
n) and V i

0 = U i
0. We show that V i

n → 0.
Our hypothesis ensures that (1 − E)(1 + fi(S

0 − U)) < 1 if U ∈ (0, S0], so
g(U) < U for U ∈ (0, S0]. Consequently, V i

n+1 < V i
n if V i

0 > 0, so V i
n converges

to the only fixed point of g, namely, zero.

In view of (4.3), the biomass of a population can grow at a lower nutrient
concentration than the biomass of the other populations, and consequently,
we expect that the population with the lowest nutrient concentration is the
superior competitor. The following result on the global dynamics of system
(4.6) is, therefore, plausible.

Theorem 4.2.1. Assume that λ1 < S0, and λ1 < λi for all i ≥ 2. Then for
any (U1

0 , . . . , U
m
0 ) ∈ D with U1

0 > 0, the solution of (4.6) satisfies

lim
n→∞(U1

n, U
2
n, . . . , U

m
n ) = (S0 − λ1, 0, . . . , 0).

Proof. For any (U1, . . . , Um) ∈ D, let (V 1, . . . , V m) = F (U1, . . . , Um).
Define

D1 :=

{
(U1, . . . , Um) ∈ D :

m∑
i=1

U i ≥ S0 − λ1

}

and W1(U
1, . . . , Um) =

∑m
i=1 U

i. If (U1, . . . , Um) ∈ D1, then for system (4.6),

Ẇ1(U
1, . . . , Um) := W1(F (U1, . . . , Um))−W1(U

1, . . . , Um)

=

m∑
i=1

V i −
m∑
i=1

U i

=

m∑
i=1

⎡
⎣(1− E)

⎛
⎝1 + fi(S

0 −
m∑
j=1

U j)

⎞
⎠− 1

⎤
⎦U i

≤
m∑
i=1

[(1 − E)(1 + fi(λ1))− 1]U i

=
m∑
i=2

[(1 − E)(1 + fi(λ1))− 1]U i ≤ 0. (4.9)
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Thus W1 is a Liapunov function of (4.6) on D1 (see Definition 1.1.1). By the
fact that each term in large brackets in the third line of (4.9) is nonpositive
in D1, it follows that

E1 := {(U1, . . . , Um) ∈ D1 : Ẇ1(U
1, . . . , Um) = 0}

= {(S0 − λ1, 0, . . . , 0)}. (4.10)

Let un = (U1
n, . . . , U

m
n ) be the solution of (4.6) with u0 ∈ D, and let ω(u0)

be the omega limit of the positive orbit γ+(u0) := {un;n ≥ 0}. If γ+(u0) ⊂
D1, then the LaSalle invariance principle (see Theorem 1.1.1) implies that
ω(u0) = (S0 − λ1, 0, . . . , 0).

Define

D2 :=

{
(U1, . . . , Um) ∈ R

m
+ :

m∑
i=1

U i ≤ S0 − λ1

}
.

Clearly, D2 ⊂ D. By (4.8), when t = S0 − λ1 the strictly increasing function
(1+fi(S

0−t))t on [0, S0−λ1] attains its maximum value (1+fi(λ1))(S
0−λ1).

Note that (1 + fi(λ1)) ≤ (1 + fi(λi)) = 1/(1 − E), 1 ≤ i ≤ m. Then (4.7)
implies that

∑m
i=1 V

i ≤ S0 − λ1. Thus (V 1, . . . , Vm) ∈ D2, and hence D2

is positively invariant for system (4.6). Define W2(U
1, . . . , Um) = −U1. If

(U1, . . . , Um) ∈ D2, then for system (4.6),

Ẇ2(U
1, . . . , Um) := W2(F (U1, . . . , Um))−W2(U

1, . . . , Um)

= −V 1 − (−U1) = U1 − V 1

= U1 − (1− E)

⎛
⎝1 + f1

⎛
⎝S0 −

m∑
j=1

U j

⎞
⎠
⎞
⎠U1

≤ U1 [1− (1− E)(1 + f1(λ1)] = 0. (4.11)

Thus W2 is a Liapunov function of (4.6) on D2. Let

L :=

{
(U1, . . . , Um) ∈ R

m
+ : U1 = 0,

m∑
i=1

U i < S0 − λ1

}
,

and

Δ :=

{
(U1, . . . , Um) ∈ R

m
+ :

m∑
i=1

U i = S0 − λ1

}
.

By (4.11), we then have

E2 := {(U1, . . . , Um) ∈ D2 : Ẇ2(U
1, . . . , Um) = 0} = L ∪Δ. (4.12)

If u0 = (U1
0 , . . . , U

m
0 ) ∈ D2 with U1

0 > 0, then γ+(u0) ⊂ D2. By the LaSalle
invariance principle (see Theorem 1.1.1), ω(u0) ⊂ L ∪ Δ. Note that 0 ≥
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Ẇ2(un) = W2(un+1) − W2(un) = U1
n − U1

n+1, ∀n ≥ 0. Then we get U1
n+1 ≥

U1
n, ∀n ≥ 0, and hence U1

n ≥ U1
0 > 0, ∀n ≥ 0. Thus ω(u0) ⊂ Δ. Clearly, (4.10)

implies that for any u ∈ Δ \ {(S0 − λ1, 0, . . . , 0)}, we have Ẇ1(u) < 0, and
hence

F (u) ⊂
{
(U1, . . . , Um) ∈ D :

m∑
i=1

U i < S0 − λ1

}
.

So (S0 − λ1, 0, . . . , 0) is the only invariant set in Δ. Thus ω(u0) = (S0 −
λ1, 0, . . . , 0).

For any u0 = (U1
0 , . . . , U

m
0 ) ∈ D with U1

0 > 0, let un = (U1
n, . . . , U

1
n), n ≥

0, be the solution of (4.6). Clearly, U1
n > 0, ∀n ≥ 0, and either γ+(u0) ⊂ D1,

or there is an n0 ≥ 0 such that un0 ∈ D2. Note that ω(u0) = ω(un0). Then in
either case, by what we have proved above, ω(u0) = (S0 − λ1, 0, . . . , 0), and
hence limn→∞ un = (S0 − λ1, 0, . . . , 0). This completes the proof.

Theorem 4.2.2. Assume that λ1 < λ2 < . . . < λm. Then every compact
internally chain transitive set for F is a fixed point of F itself.

Proof. Let e0 = 0 ∈ R
m, and in the case that λi < S0, let ei = (0, . . . , 0, S0−

λi, 0, . . . , 0) ∈ R
m with its ith component being (S0−λi) and the others being

0. Clearly, all these ei are fixed points of F : D → D. For any v0 ∈ D with v0 �=
e0, there exists 1 ≤ k ≤ m such that v0 = (0, . . . , 0, V k

0 , . . . , V
m
0 ) with V k

0 > 0.
Let vn = (V 1

n , . . . , V
m
n ) be the solution of (4.6). Clearly, V i

n = 0, ∀n ≥ 0, 1 ≤
i < k. If λk < S0, then Theorem 4.2.1 implies that limn→∞ vn = ek. If λk ≥
S0, then λi ≥ S0, ∀i ≥ k, and hence Lemma 4.2.2 implies that limn→∞ vn =
e0. This convergence result also implies that each ei is an isolated invariant
set in D ⊂ R

m for F , and that no subset of ei’s forms a cyclic chain in D.
By a convergence theorem (see Theorem 1.2.2), any compact internally chain
transitive set for F is a fixed point of F .

4.3 Global Dynamics

In this section we first lift the result for the limiting system (4.6) to the reduced
system at the total population level (see (4.13) below), and then consider the
global dynamics of the full size-structured system (4.1).

The population level dynamics are described by

U i
n+1 =(1 − E) (1 + fi(Sn))U

i
n, 1 ≤ i ≤ m,

Sn+1 =(1 − E)

⎛
⎝Sn −

m∑
j=1

fj(Sn)U
j
n

⎞
⎠+ ES0,

(4.13)

with the initial value (U1
0 , . . . , U

m
0 , S0) in the domain

Ω :=

{
(U1, . . . , Um, S) ∈ R

m+1
+ :

m∑
i=1

U i + S ≤ W

}
.
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Denote by G the mapping determined by the right side of (4.13), so we have

(U1
n+1, . . . , U

m
n+1, Sn+1) = G(U1

n, . . . , U
m
n , Sn).

If (U1, . . . , Um, S) ∈ Ω, then

S −
m∑
i=1

fi(S)U
i ≥ S

(
1−

m∑
i=1

Wf ′
i(0)

)
> (1− η)S ≥ 0.

By the conservation principle (4.4) and the fact that S0 < W , it then fol-
lows that G(U1, . . . , Um, S) ∈ Ω, and hence G(Ω) ⊂ Ω. Thus system (4.13)
defines a discrete dynamical system on Ω. The following result describes the
competitive exclusion dynamics of (4.13).

Theorem 4.3.1. Assume that λ1 < S0 and λ1 < λ2 < . . . < λm. Then for
any (U1

0 , . . . , U
m
0 , S0) ∈ Ω with U1

0 > 0, the solution of (4.13) satisfies

lim
n→∞(U1

n, U
2
n, . . . , U

m
n , Sn) = (S0 − λ1, 0, . . . , 0, λ1).

Proof. Fix (U1
0 , . . . , U

m
0 , S0) ∈ Ω with U1

0 > 0, and let (U1
n, . . . , U

m
n , Sn)

be the solution of system (4.13). Clearly, U1
n > 0, ∀n ≥ 0. Let Σn =

Sn +
∑m

i=1 U
i
n, n ≥ 0. By (4.4), un = (U1

n, . . . , U
m
n , Σn) satisfies the following

system

U i
n+1 =(1− E)

⎛
⎝1 + fi(Σn −

m∑
j=1

U j
n)

⎞
⎠U i

n, 1 ≤ i ≤ m,

Σn+1 =(1− E)Σn + ES0.

(4.14)

Let ω = ω(u0) be the omega limit set of the positive orbit γ+(u0) of (4.14).
Then

ω ⊂ {
(U1, . . . , Um, Σ) ∈ R

m+1
+ : Σ ≤ W

}
.

Note that Σn − ∑m
i=1 U

i
n = Sn ≥ 0, n ≥ 0, and limn→∞ Σn = S0. It then

follows that for any (U1, . . . , Um, Σ) ∈ ω, we have
∑m

i=1 U
i ≤ Σ and Σ = S0.

Thus, there exists a set ω̃ ⊂ D such that ω = ω̃ × {S0}. Denote by H the
mapping determined by the right side of (4.14), so (U1

n+1, . . . , U
m
n+1, Σn+1) =

H(U1
n, . . . , U

m
n , Σn). By Lemma 1.2.1, ω is a compact, invariant, and internally

chain transitive set for H . Moreover,

H |ω(U1, . . . , Um, S0) =
(
F (U1, . . . , Um), S0

)
.

It then follows that ω̃ is a compact, invariant, and internally chain transitive
set for F : D → D. By Theorem 4.2.2, we get ω̃ = el for some 0 ≤ l ≤ p, where
p is the maximal index such that λp < S0, and hence, ω = ω̃×{S0} = (el, S

0).
Thus

lim
n→∞ un = lim

n→∞(U1
n, . . . , U

m
n , Σn) = (el, S

0). (4.15)
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It remains to prove that l = 1. Suppose, by contradiction, that l �= 1.
Define

δl =

{
1
2

(
1 + (1− E)(1 + f1(S

0))
)

if l = 0,
1
2 (1 + (1− E)(1 + f1(λl))) if l ≥ 2.

Since λ1 < S0 and λl > λ1 if l ≥ 2, we have

1 < δ0 < (1− E)(1 + f1(S
0)), and 1 < δl < (1− E)(1 + f1(λl)) if l ≥ 2.

By (4.15), it follows that

lim
n→∞(1− E)

⎛
⎝1 + f1

⎛
⎝Σn −

m∑
j=1

U j
n

⎞
⎠
⎞
⎠ = (1− E)(1 + f1(λl)) if l ≥ 2,

and

lim
n→∞(1− E)

⎛
⎝1 + f1

⎛
⎝Σn −

m∑
j=1

U j
n

⎞
⎠
⎞
⎠ = (1− E)(1 + f1(S

0)) if l = 0.

Then there is an n0 > 0 such that

(1− E)

⎛
⎝1 + f1

⎛
⎝Σn −

m∑
j=1

U j
n

⎞
⎠
⎞
⎠ > δl, ∀n ≥ n0,

and hence U1
n+1 ≥ δlU

1
n, ∀n ≥ n0. In view of the fact that δl > 1 and

U1
n > 0, ∀n ≥ 0, we get limn→∞ U1

n = +∞, which contradicts the boundedness
of {U1

n : n ≥ 0}. By (4.15), it then follows that limn→∞(U1
n, . . . , U

m
n , Σn) =

(e1, S
0), and hence

lim
n→∞(U1

n, . . . , U
n, Sn) = (e1, λ1) = (S0 − λ1, 0, . . . , 0, λ1).

This completes the proof.

To get the global dynamics of the full system (4.1), we need the following
weak ergodic theorem of Golubitsky, Keeler and Rothschild (see [132, Corol-
lary 3.2]).

Weak Ergodic Theorem Suppose that Tk is a sequence of nonnegative, ir-
reducible, and primitive m ×m matrices and that Tk → T as k → ∞, where
T is also irreducible and primitive. If e is the Perron–Frobenius eigenvector
of T satisfying e · 1 = 1, and xk+1 = Tkxk is a sequence starting with x0 ≥ 0
and x0 �= 0, then xk

xk·1 → e as k → ∞.
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Let r =
∑m

i=1 ri and set Γ :=

{
(x1, . . . , xm, S) ∈ R

r+1
+ : xi ∈ R

ri , 1 ≤ i ≤ m, and
m∑
i=1

xi · 1+ S ≤ W

}
.

Clearly, the positive invariance of Ω for (4.13) implies that of Γ for (4.1).
So (4.1) defines a discrete dynamical system on Γ . The next result shows
that the surviving population asymptotically approaches a stable, uniform
size distribution.

Theorem 4.3.2. Assume that λ1 < S0 and λ1 < λ2 < . . . < λm. Then for
any (x1

0, . . . , x
m
0 , S0) ∈ Γ with x1

0 �= 0, the solution of (4.1) satisfies

lim
n→∞(x1

n, x
2
n, . . . , x

m
n , Sn) =

(
S0 − λ1

r1
1,0, . . . ,0, λ1

)
.

Proof. Given (x1
0, . . . , x

m
0 , S0) ∈ Γ with x1

0 �= 0, let U i
n = xi

n · 1, ∀ 1 ≤
i ≤ m, n ≥ 0. Then (U1

0 , . . . , U
m
0 , S0) ∈ Ω with U1

0 > 0. By Theorem 4.3.1,
limn→∞(U1

n, U
2
n, . . . , U

m
n , Sn) = (S0−λ1, 0, . . . , 0, λ1). Then limn→∞ Ai(Sn) =

Ai(λ1), 1 ≤ i ≤ m. As mentioned in Section 4.1, Ai(Sn) and Ai(λ1) are non-
negative, irreducible, and primitive, and they have e = 1

ri
1 as their Perron–

Frobenius eigenvectors with e · 1 = 1. By the aforementioned weak ergodic
theorem, we then have

lim
n→∞

xi
n

xi
n · 1 = lim

n→∞
xi
n

U i
n

= e =
1

ri
1, ∀1 ≤ i ≤ m.

Since limn→∞ U1
n = S0 − λ1 and limn→∞ U i

n = 0, ∀ 2 ≤ i ≤ m, we conclude
that

lim
n→∞(x1

n, x
2
n, . . . , x

m
n , Sn) =

(
S0 − λ1

r1
1,0, . . . ,0, λ1

)
.

This completes the proof.

4.4 Notes

The model (4.1) was formulated by Gage, Williams and Horton [127] and was
further developed by Smith [327]. This chapter is adapted from Smith and
Zhao [339]. The proof of Theorem 4.2.1 was motivated by a similar LaSalle
invariance principle argument in Armstrong and McGehee [18] for the classi-
cal chemostat system of ordinary differential equations. Theorems 4.2.1, 4.3.1,
and 4.3.2 were proved for the case of two-species competition in [327], where
monotonicity and Butler–McGehee lemma arguments were applied. Recently,
Arino, Gouzé and Sciandra [17] extended the model (4.1) with m = 1 to the
case where cell division (and consequently, cell birth) can happen for cells
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in several biomass classes, the effective size at division being distributed fol-
lowing some probability density, and showed that the model system admits
one nonzero globally stable equilibrium. There have been extensive investiga-
tions on both discrete and continuous structured population models; see, e.g.,
Cushing [77] and the references therein.
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