
13

A Periodic Reaction–Diffusion SIS Model

It has been commonly accepted that spatial diffusion and environmental het-
erogeneity are important factors that should be considered in the spread of
infectious diseases. In order to understand the impact of spatial heterogene-
ity of the environment and movement of individuals on the persistence and
extinction of a disease, Allen et al. [9] proposed a frequency-dependent SIS
(susceptible-infected-susceptible) reaction–diffusion model for a population in
a continuous spatial habitat. They assumed that both rates of the transmis-
sion and recovery of the disease depend on spatial variables. Another feature
of this SIS model is that the total population number is constant. The habitat
is characterized as low-risk (or high-risk) if the spatial average of the trans-
mission rate of the disease is less than (or greater than) the spatial average
of its recovery rate. The individual site is also characterized as low-risk (or
high-risk) if the local transmission rate of the disease is less than (or greater
than) its local recovery rate, which corresponds to the case where the local
reproduction number is less than (or greater than) one.

Assume that the habitat Ω ⊂ R
m (m ≥ 1) is a bounded domain with

smooth boundary ∂Ω (when m > 1), and ν is the outward unit normal vector
on ∂Ω and ∂

∂ν means the normal derivative along ν on ∂Ω. The global stability
of the unique disease-free equilibrium and asymptotic profiles of the unique
endemic equilibrium were established in [9] for the following SIS reaction-
diffusion system:

∂S
∂t − dSΔS = −β(x)S I

S+I
+ γ(x)I, x ∈ Ω, t > 0,

∂I
∂t − dIΔI = β(x)S I

S+I
− γ(x)I, x ∈ Ω, t > 0,

∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,

(13.1)

where S(x, t) and I(x, t), respectively, represent the density of susceptible and
infected individuals at location x and time t; the positive constants dS and dI
denote the diffusion rates of susceptible and infected populations; and β(x)

© Springer International Publishing AG 2017
X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books
in Mathematics, DOI 10.1007/978-3-319-56433-3 13

337
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and γ(x) are positive Hölder continuous functions on Ω which account for
the rates of disease transmission and disease recovery at x, respectively. The
homogeneous Neumann boundary conditions mean that there is no population
flux across the boundary ∂Ω and both the susceptible and infected individuals
live in a self-contained environment.

In model (13.1), it was assumed that the rates of disease transmission and
recovery depend only on the spatial variable. However, the rates of disease
transmission and disease recovery may be spatially and temporally heteroge-
neous. Typically, they vary periodically in time, for instance, due to the sea-
sonal fluctuation and periodic availability of vaccination strategies. A natural
consideration of a spatially heterogeneous and temporally periodic environ-
ment leads us to the study of the following system:

∂S
∂t − dSΔS = −β(x,t)S I

S+I
+ γ(x, t)I, x ∈ Ω, t > 0,

∂I
∂t − dIΔI = β(x,t)S I

S+I
− γ(x, t)I, x ∈ Ω, t > 0,

∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,
S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(13.2)

In the current situation, the functions β(x, t) and γ(x, t) represent the rates
of disease transmission and recovery at location x and time t, respectively.

It is easy to see that the function S I/(S + I) is a Lipschitz continuous
function of S and I in the first open quadrant. Thus, we can extend its defi-
nition to the entire first quadrant by defining it to be zero when either S = 0
or I = 0. Throughout this chapter, we make the following assumption:

(A) The functions β(x, t) and γ(x, t) are Hölder continuous and nonnegative
but not zero identically on Ω ×R, and ω-periodic in t for some number
ω > 0.

From the classical theory for parabolic equations (see, e.g., [228]), we know
that for any (S0, I0) ∈ C(Ω,R2

+), system (13.2) has a unique classical solution

(S, I) ∈ C2,1(Ω × (0,∞)). By the strong maximum principle and the Hopf
boundary lemma for parabolic equations (see, e.g., [283]), it follows that if
I0(x) �≡ 0, then both S(x, t) and I(x, t) are positive for x ∈ Ω and t ∈ (0,∞).
Following [9], we define

N :=

∫
Ω

[S0(x) + I0(x)] dx > 0 (13.3)

to be the total number of individuals in Ω at t = 0. We add two equations in
(13.2) and then integrate over Ω by parts to obtain

∂

∂t

∫
Ω

(S + I) dx =

∫
Ω

Δ(dSS + dII) dx = 0, ∀t > 0.

This implies that the total population size is a constant, i.e.,∫
Ω

[S(x, t) + I(x, t)] dx = N, ∀t ≥ 0, (13.4)
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which also shows that both ‖S(·, t)‖L1(Ω) and ‖I(·, t)‖L1(Ω) are bounded on
[0,∞). From now on, we let N be a given positive constant.

A nonnegative ω-periodic solution (S̃, Ĩ) of system (13.2)–(13.3) is said to
be disease-free if Ĩ ≡ 0 on Ω×R; and endemic if Ĩ ≥ 0, �≡ 0 on Ω×R. It is easy
to observe from (13.2)–(13.3) that the unique disease-free ω-periodic solution
is (S̃, 0) = (N/|Ω|, 0) (see [9, Lemma 2.1]), and henceforth we call this solution
the disease-free constant solution. Hereafter, |Ω| always represents the volume
of the domain Ω. Moreover, the maximum principle and the Hopf boundary
lemma for parabolic equations imply that an endemic ω-periodic solution
(S̃, Ĩ) is positive on Ω × [0,∞), that is, S̃(x, t) > 0, Ĩ(x, t) > 0, ∀(x, t) ∈
Ω × [0,∞).

The purpose of this chapter is to investigate the effect of spatial and tem-
poral heterogeneities on the extinction and persistence of the infectious disease
for system (13.2)–(13.3). In Section 13.1, we first introduce the basic reproduc-
tion ratio R0 and then provide its analytical characterizations. In particular,
we obtain the asymptotic behavior of R0 as dI tends to zero or infinity. It
turns out that when β and γ depend only on the temporal variable (namely,
β(x, t) = β(t) and γ(x, t) = γ(t)), R0 is a constant independent of dI , and
when β and γ depend on the spatial variable alone (namely, β(x, t) = β(x)
and γ(x, t) = γ(x)), R0 is a nonincreasing function of dI . In sharp contrast,
our result shows that in general, R0 is not a monotone function of dI . In
the case where β(x, t) is a constant, we also address an optimization problem
concerning R0 when the average of the function γ(x, t) is given.

In Section 13.2, we derive a threshold-type dynamics for system (13.2)–
(13.3) in terms of R0. More specifically, we prove that the disease-free constant
solution is globally stable if R0 < 1; while if R0 > 1, system (13.2)–(13.3)
admits at least one endemic ω-periodic solution and the disease is uniformly
persistent. In order to establish a uniform upper bound for positive solutions
to system (13.2)–(13.3), we re-formulate the general theory developed in [214]
in such a way that it applies to system (13.2)–(13.3) (see Lemma 13.2.1).

In Section 13.3, we establish the global attractivity of the positive ω-
periodic solution (and hence its uniqueness) of system (13.2)–(13.3) for some
special cases. However, it remains a challenging problem to study the unique-
ness of the endemic ω-periodic solution for the general case. The biological
interpretations of our analytical results are presented in Section 13.4.

13.1 Basic Reproduction Ratio

In this section, we introduce the basic reproduction ratio for the periodic
reaction–diffusion system (13.2), and analyze its properties. As a first step,
we need to define the next infection operator for system (13.2), which is a
combination of the idea in [388] for periodic ordinary differential models with
that in [389] for autonomous reaction–diffusion systems.
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Let Cω be the ordered Banach space consisting of all ω-periodic and con-
tinuous functions from R to C(Ω,R), which is equipped with the maximum
norm ‖·‖ and the positive cone C+

ω := {φ ∈ Cω : φ(t)(x) ≥ 0, ∀t ∈ R, x ∈ Ω}.
For any given φ ∈ Cω, we also use the notation φ(x, t) := φ(t)(x). Let V (t, s)
be the evolution operator of the reaction-diffusion equation

It − dIΔI = −γ(x, t)I, x ∈ Ω, t > 0,
∂I

∂ν
= 0, x ∈ ∂Ω, t > 0.

(13.5)

By the standard theory of evolution operators, it follows that there exist
positive constants K and c0 such that

‖V (t, s)‖ ≤ Ke−c0(t−s), ∀t ≥ s, t, s ∈ R. (13.6)

Suppose that φ ∈ Cω is the density distribution of initial infectious individ-
uals at the spatial location x ∈ Ω and the time s. Then the term β(x, s)φ(x, s)
means the density distribution of the new infections produced by the in-
fected individuals who were introduced at time s. Thus, for given t ≥ s,
V (t, s)β(x, s)φ(x, s) is the density distribution at location x of those infected
individuals who were newly infected at time s and remains infected at time t.
Therefore, the integral∫ t

−∞
V (t, s)β(·, s)φ(·, s)ds =

∫ ∞

0

V (t, t− a)β(·, t− a)φ(·, t− a)da

represents the density distribution of the accumulative new infections at loca-
tion x and time t produced by all those infected individuals φ(x, s) introduced
at all the previous time to t.

As in [388], we introduce the linear operator L : Cω �−→ Cω:

L(φ)(t) :=

∫ ∞

0

V (t, t− a)β(·, t− a)φ(·, t− a)da, (13.7)

which we may call as the next generation operator. Under our assumption on
β and γ, it is easy to see that L is continuous, compact on Cω and positive (i.e.,
L(C+

ω ) ⊂ C+
ω ). We define the spectral radius of L as the basic reproduction

ratio

R0 = ρ(L) (13.8)

for system (13.2).
In what follows, we first obtain a characterization of the basic reproduction

ratio R0. This leads us to consider the following linear periodic-parabolic
eigenvalue problem

ψt − dIΔψ = −γ(x, t)ψ +
β(x, t)

μ
ψ, x ∈ Ω, t > 0,

∂ψ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ(x, 0) = ψ(x, ω), x ∈ Ω.

(13.9)
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By [152, Theorem 16.3], problem (13.9) has a unique principal eigenvalue μ0,
which is positive and corresponds to an eigenvector ψ0 ∈ Cω and ψ0 > 0 on R.

Lemma 13.1.1. R0 = μ0 > 0.

Proof. Since (μ0, ψ0) satisfies (13.9), it follows from the constant-variation
formula that

ψ0(x, t) = V (t, τ)ψ0(x, τ) +

∫ t

τ

V (t, s)
β(x, s)

μ0
ψ0(x, s)ds. (13.10)

Using (13.6) and the boundedness of ψ0 on R, by letting τ → −∞, we obtain

ψ0(x, t) =

∫ t

−∞
V (t, s)

β(x, s)

μ0
ψ0(x, s)ds, ∀t ∈ R,

which implies Lψ0 = μ0ψ0 due to (13.7).
Note that under our assumption (A), the operator L may not be strongly

positive. To show R0 = μ0, we use a perturbation argument. For any given
ε > 0, we define

Lε(φ)(t) :=

∫ ∞

0

V (t, t− a)(β(·, t− a) + ε)φ(·, t− a)da, (13.11)

and its spectral radius Rε,0 = ρ(Lε). As β(x, t)+ ε > 0 on Ω×R, Lε : Cω �−→
Cω is continuous, compact, and strongly positive. By the upper semicontinuity
of the spectrum ([198, Sect. IV.3.1]) and the continuity of a finite system of
eigenvalues ([198, Sect. IV.3.5]), we then derive

Rε,0 → R0 as ε → 0. (13.12)

On the other hand, we denote by με,0 the unique positive principal eigenvalue
of (13.9) with β(x, t) replaced by β(x, t) + ε, which corresponds to a positive
eigenvector ψε,0 ∈ Cω. Arguing as above, we see that Lεψε,0 = με,0ψε,0. By
virtue of the strong positivity of Lε and the Krein-Rutman theorem (see, e.g.,
[152, Theorem 7.2]), we have Rε,0 = με,0. Furthermore, from the continuity of
the principal eigenvalue on the weight function ([152]), it follows that Rε,0 =
με,0 → μ0 as ε → 0. This fact, together with (13.12), implies R0 = μ0.

For our later purpose, we consider the periodic-parabolic eigenvalue prob-
lem

ϕt − dIΔϕ = β(x, t)ϕ− γ(x, t)ϕ+ λϕ, x ∈ Ω, t > 0,
∂ϕ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ϕ(x, 0) = ϕ(x, ω), x ∈ Ω.

(13.13)

Let λ0 be the unique principal eigenvalue of (13.13) (see, e.g., [152]). Then
we have the following observation.
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Lemma 13.1.2. 1−R0 has the same sign as λ0.

Proof. This lemma is a straightforward consequence of [370, Theorem 5.7].
Here we provide an elementary proof. In view of Lemma 13.1.1, it suffices to
prove that 1 − μ0 has the same sign as λ0. Due to [152, Theorem 7.2], we
can assert that λ0 is also the principal eigenvalue of the adjoint problem of
(13.13):

−ϕ∗
t − dIΔϕ∗ = β(x, t)ϕ∗ − γ(x, t)ϕ∗ + λϕ∗, x ∈ Ω, t > 0,

∂ϕ∗

∂ν
= 0, x ∈ ∂Ω, t > 0,

ϕ∗(x, 0) = ϕ∗(x, ω), x ∈ Ω,

(13.14)

where ϕ∗ ∈ Cω and ϕ∗ > 0 on R. We multiply the equation (13.9) that
(μ0, ψ0) satisfies by ϕ∗ and then integrate over Ω × (0, ω) by parts to obtain

(
1− 1

μ0

)∫ ω

0

∫
Ω

βψ0ϕ
∗dxdt+ λ0

∫ ω

0

∫
Ω

ψ0ϕ
∗dxdt = 0.

Since
∫ ω

0

∫
Ω
βψ0ϕ

∗dxdt and
∫ ω

0

∫
Ω
ψ0ϕ

∗dxdt are both positive, it follows that

1− 1
μ0

and λ0 have the opposite signs, which thereby deduces our result.

From now on, we present some quantitative properties for the basic repro-
duction ratio R0. First of all, when β(x, t)− γ(x, t) or both β(x, t) and γ(x, t)
are spatially homogeneous, we have the following result.

Lemma 13.1.3. The following statements hold true:

(a) If β(x, t) ≡ β(t) and γ(x, t) ≡ γ(t), then R0 =
∫ ω

0
β(t)dt/

∫ ω

0
γ(t)dt.

(b) If β(x, t)− γ(x, t) ≡ h(t), then R0 − 1 has the same sign as
∫ ω

0
h(t)dt.

Proof. We first prove (a). For simplicity, let

μ∗ =

∫ ω

0
β(t)dt∫ ω

0
γ(t)dt

.

Consider the ordinary differential equation:

ut =
(
− γ(t) +

1

μ∗ β(t)
)
u, u(0) = 1. (13.15)

It is easy to see that (13.15) admits a unique positive solution

u(t) = e
∫ t
0
(−γ(s)+ 1

μ∗ β(s))ds,

which also satisfies u(ω) = u(0) = 1. So u(t) is a positive ω-periodic solution
to (13.15). Thanks to the uniqueness of the principal eigenvalue of (13.9), we
have μ0 = μ∗, and hence (a) holds since R0 = μ0.
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We then verify (b). In this case, we consider the following ordinary differ-
ential problem:

ut − h(t)u = λu, u(0) = u(ω) = 1. (13.16)

Clearly, (13.16) has a unique positive solution if and only if

λ = − 1

ω

∫ ω

0

h(t)dt.

Furthermore, such a unique positive ω-periodic solution can be expressed as
u(t) = e

∫ t
0
(h(s)+λ)ds. Observe that

λ = − 1

ω

∫ ω

0

h(t)dt and ψ(t) = e
∫ t
0
(h(s)+λ)ds

satisfy (13.13). By the uniqueness of the principal eigenvalue, we immediately
have

λ0 = − 1

ω

∫ ω

0

h(t)dt.

Therefore, applying Lemma 13.1.2, we see that (b) holds true.

Secondly, if β(x, t)−γ(x, t) or both β(x, t) and γ(x, t) depend on the spatial
factor alone, we have the following result.

Lemma 13.1.4. Assume that β(x, t) − γ(x, t) ≡ h(x). Then the following
assertions hold true:

(a) If
∫
Ω
h(x)dx ≥ 0 and h �≡ 0 in Ω, then R0 > 1 for all dI ;

(b) If
∫
Ω
h(x)dx < 0 and h(x) ≤ 0 on Ω, then R0 < 1 for all dI ;

(c) If
∫
Ω
h(x)dx < 0 and maxΩ h(x) > 0, then there exists a threshold value

d∗I ∈ (0,∞) such that R0 > 1 for dI < d∗I , R0 = 1 for dI = d∗I , and R0 < 1
for dI > d∗I .

In particular, if β(x, t) ≡ β(x) and γ(x, t) ≡ γ(x), we have

R0 = sup
ϕ∈H1(Ω), ϕ �=0

{ ∫
Ω
βϕ2dx∫

Ω
(dI |∇ϕ|2 + γϕ2) dx

}
(13.17)

and R0 is a nonincreasing function of dI with R0 → maxΩ{β(x)
γ(x)} as dI → 0,

and R0 → ∫
Ω
β(x)dx/

∫
Ω
γ(x)dx as dI → ∞. Here and in what follows, when

maxΩ{β(x)
γ(x)} = ∞, we understand R0 → ∞ as dI → 0.

Proof. To prove our assertions, we resort to problem (13.13). First, when
β(x, t)− γ(x, t) ≡ h(x), we consider the elliptic eigenvalue problem

− dIΔu− h(x)u = λu, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω. (13.18)
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It is well known that (13.18) possesses a unique principal eigenvalue, denoted
by λ∗. From the uniqueness of the principal eigenvalue for (13.13) and (13.18),
it is necessary that λ0 = λ∗ in the present situation. By [9, Lemma 2.2] and
its proof, we further see that λ0 is nondecreasing with respect to dI > 0, and
if additionally h(x) is not a constant in Ω, then λ0 is strictly increasing in
dI > 0. Moreover, λ0 → −maxΩ h(x) as dI → 0 and λ0 → − 1

|Ω|
∫
Ω
h(x)dx

as dI → ∞. Hence, the assertions (a)–(c) follow from these properties and
Lemma 13.1.2.

In the case of β(x, t) ≡ β(x) and γ(x, t) ≡ γ(x), we recall that R0 = μ0.
As above, it is easy to see from (13.9) that R0 is the principal eigenvalue of
the elliptic problem:

− dIΔψ = −γ(x)ψ +
β(x)

μ
ψ, x ∈ Ω;

∂ψ

∂ν
= 0, x ∈ ∂Ω. (13.19)

Then the formula (13.17) follows from the well-known variational character-
ization of the principal eigenvalue for problem (13.19) (see, e.g., [108, Sect.
II. 6.5]). Thus, the properties of R0 are straightforward consequences of [9,
Lemma 2.3].

Remark 13.1.1. In [9, Lemma 2.3], the right-hand side expression of (13.17) is
directly defined as the basic reproduction number for the autonomous system
(13.1). Lemma 13.1.4 above shows that this definition is indeed meaningful
biologically. Moreover, if β(x) �≡ γ(x) on Ω × [0, ω], according to the proof of
[9, Lemma 2.3], R0 is a strictly decreasing function of dI .

The subsequent result presents some analytical properties of R0 for the
general case of β and γ.

Theorem 13.1.1. The following statements are valid:

(a) R0 ≥
∫ ω
0

∫
Ω

β(x,t)dxdt∫ ω
0

∫
Ω

γ(x,t)dxdt
for all dI , and the equality holds if and only if the

function β(x,t)∫ ω
0

∫
Ω

β(x,t)dxdt
− γ(x,t)∫ ω

0

∫
Ω

γ(x,t)dxdt
is spatially homogeneous (that is,

x-independent);
(b) R0 < 1 for all dI > 0 if

∫ ω

0
maxx∈Ω(β(x, t)− γ(x, t))dt ≤ 0 and β(x, t)−

γ(x, t) nontrivially depends on x;

(c) R0 →
∫ ω
0

∫
Ω

β(x,t)dxdt∫ ω
0

∫
Ω

γ(x,t)dxdt
as dI → ∞;

(d) R0 → maxx∈Ω

{ ∫ ω
0

β(x,t)dt∫ ω
0

γ(x,t)dt

}
as dI → 0;

(e) In general, R0(dI) := R0 is not a nonincreasing function of dI ; partic-
ularly, if β(x, t) = p(x)q1(t) and γ(x, t) = p(x)q2(t) with p > 0 on Ω,
p �≡ constant, q1, q2 ∈ Cω, q1, q2 > 0 on [0, ω] and q1 − q2 �≡ constant,
then there exist 0 < d1I < d2I such that R0(d

1
I) = R0(d

2
I).

Proof. To obtain our assertions, we use similar arguments to those in [187,
Lemma 2.4]. Since some necessary modifications are required, here we provide
a detailed proof.
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We first prove (a). Let ψ0 be defined as before. Since ψ0 > 0 on Ω×R, we
divide the equation (13.9) that ψ0 satisfies by ψ0 and integrate the resulting
equation over Ω × (0, ω) by parts to get

− dI

∫ ω

0

∫
Ω

|∇ψ0|2
ψ2
0

dxdt = −
∫ ω

0

∫
Ω

γdxdt+
1

R0

∫ ω

0

∫
Ω

βdxdt.

This implies R0 ≥ ∫ ω

0

∫
Ω
β(x, t)dxdt/

∫ ω

0

∫
Ω
γ(x, t)dxdt, ∀dI > 0. Moreover,

the equality holds if and only if

∫ ω

0

∫
Ω

|∇ψ0|2
ψ2
0

dxdt = 0,

which is equivalent to the condition that the function β(x,t)∫ ω
0

∫
Ω

β(x,t)dxdt
−

γ(x,t)∫ ω
0

∫
Ω

γ(x,t)dxdt
is spatially homogeneous.

The assertion (b) follows from [152, Lemma 15.6]. Indeed, by taking
m(x, t) = β(x, t)− γ(x, t) and λ = 1 in [152, Lemma 15.6], we have μ(0) = 0
and

μ(1) > − 1

ω

∫ ω

0

max
x∈Ω

(β(x, t)− γ(x, t))dt ≥ 0

under our hypothesis. Using the notation here, we obtain λ0 = μ(1), and
hence, Lemma 13.1.2 deduces (b).

To verify (c), we first assume that γ > 0 on Ω×R. In this case, by directly
integrating the equation (13.9) that ψ0 satisfies over Ω× (0, ω), we easily find

R0 =

∫ ω

0

∫
Ω
βψ0dxdt∫ ω

0

∫
Ω
γψ0dxdt

≤
maxΩ×[0,ω] β

minΩ×[0,ω] γ
. (13.20)

Hence, this and the assertion (a) show that R0 has boundedness independent
of dI > 0.

By normalizing ψ0, we may further assume that
∫ ω

0

∫
Ω

ψ2
0dxdt = 1. (13.21)

We now multiply (13.9) with ψ = ψ0 by ψ0 and integrate to yield

dI

∫ ω

0

∫
Ω

|∇ψ0|2dxdt = −
∫ ω

0

∫
Ω

γψ2
0dxdt+

1

R0

∫ ω

0

∫
Ω

βψ2
0dxdt,

and so we can find a positive constant c such that
∫ ω

0

∫
Ω

|∇ψ0|2dxdt ≤ c

dI
. (13.22)

Here and in the sequel, the constant c does not depend on dI > 0 and may
vary from place to place.
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On the other hand, we set

ψ0(t) =
1

|Ω|
∫
Ω

ψ0(x, t)dx and Ψ(x, t) = ψ0(x, t)− ψ0(t).

Note that
∫
Ω
Ψdx = 0 for all t ∈ R. Then, from the well-known Poincaré

inequality it follows that
∫
Ω

Ψ2dx ≤ c

∫
Ω

|∇Ψ |2dx, for all t.

Therefore, as ∇Ψ = ∇ψ0, making use of (13.22), we have

∫ ω

0

∫
Ω

Ψ2dxdt ≤ c

dI
, and hence,

∫ ω

0

∫
Ω

|Ψ |dxdt ≤ c√
dI

. (13.23)

Furthermore, by integrating (13.9) with ψ = ψ0 over Ω, it is easy to see that

d

dt

(
ψ0

)
=

∫
Ω

[
− γ +

1

R0
β
]
dx · ψ0 +

∫
Ω

(
− γ +

1

R0
β
)
Ψdx. (13.24)

Using (a), (13.20), and (13.23), one has

∫ ω

0

∣∣∣
∫
Ω

(
− γ +

1

R0
β
)
Ψdx

∣∣∣dt = O(
1√
dI

).

Henceforth, solving the ordinary equation (13.24), we obtain

ψ0(t) = e
∫ t
0

∫
Ω
(−γ+ 1

R0
β)dxds · ψ0(0) +O

(
1√
dI

)
. (13.25)

Because of ψ0(ω) = ψ0(0), as dI → ∞, it is clear that either ψ0(0) → 0, or

∫ ω

0

∫
Ω

(
− γ +

1

R0
β
)
dxdt → 0.

The latter will lead to our assertion (c). So it suffices to exclude the possibility
of ψ0(0) → 0 as dI → ∞. Supposing ψ0(0) → 0 as dI → ∞, by (13.25) we
would have ψ0(t) → 0 uniformly on [0, ω], which, together with (13.23), implies
that

∫ ω

0

∫
Ω
ψ2
0dxdt → 0, contradicting (13.21).

In the general case of γ ≥, �≡ 0 on Ω×R, we proceed as above except that
γ is replaced by γ + ε for any given ε > 0 to get

R0 →
∫ ω

0

∫
Ω
β(x, t)dxdt∫ ω

0

∫
Ω
[γ(x, t) + ε]dxdt

, as dI → ∞,

and we then obtain the desired result by letting ε → 0.
We are in a position to prove (d). Without loss of generality, we can assume

that β, γ > 0 on Ω ×R. For the general case, as above, we can replace β and
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γ with β + ε and γ + ε, respectively, and then get the result by letting ε → 0.
For sake of simplicity, we denote

δ =

∫ ω

0
β(x0, t)dt∫ ω

0
γ(x0, t)dt

= max
Ω

{∫ ω

0
β(x, t)dt∫ ω

0
γ(x, t)dt

}
for some x0 ∈ Ω.

For a positive constant μ to be determined later, we rewrite the equation that
(μ0, ψ0) satisfies as

(ψ0)t − dIΔψ0 −
( 1
μ
β − γ

)
ψ0 =

( 1

μ0
− 1

μ

)
βψ0. (13.26)

Before going further, we need some preliminaries on the following eigen-
value problem with the positive weight function β(x, t):

ψt − dIΔψ −m(x, t)ψ = λβ(x, t)ψ, x ∈ Ω, t > 0,
∂ψ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ(x, 0) = ψ(x, ω), x ∈ Ω,

(13.27)

where m(x, t) ∈ Cω. Arguing as in [152], problem (13.27) admits the princi-
pal eigenvalue λ∗ with a positive eigenvector ψ∗ ∈ Cω. Moreover, the same
analysis as in the proof of [152, Propositions 17.1 and 17.3] implies that the
following statements hold:

(i) If there exists x∗ ∈ Ω such that
∫ ω

0
m(x∗, t)dt > 0, then λ∗ < 0 for all

small dI .
(ii) If

∫ ω

0
m(x, t)dt < 0 for all x ∈ Ω, then λ∗ > 0 for all small dI .

Here we should point out that
∫ ω

0
maxΩ m(x, t)dt > 0 does not imply∫ ω

0
m(x∗, t)dt > 0 for some x∗ ∈ Ω, and it is even possible that

∫ ω

0
m(x, t)dt <

0 for all x ∈ Ω.
Now we choose μ such that 0 < μ < δ. For any such μ, by the definition

of δ, it follows that

∫ ω

0

( 1
μ
β(x0, t)− γ(x0, t)

)
dt > 0.

Applying the above claim (i) to problem (13.26) with m(x, t) = 1
μβ − γ, we

have
1

R0
− 1

μ
=

1

μ0
− 1

μ
< 0 for all small dI ,

that is, R0 > μ. Thanks to the arbitrariness of μ, we obtain

lim inf
dI→0

R0 ≥ δ = max
Ω

{∫ ω

0
β(x, t)dt∫ ω

0
γ(x, t)dt

}
. (13.28)
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On the other hand, by taking μ > δ and noticing

∫ ω

0

( 1
μ
β(x, t)− γ(x, t)

)
dt < 0 for all x ∈ Ω,

we see from the previous claim (ii) that

1

R0
− 1

μ
=

1

μ0
− 1

μ
> 0 for all small dI ,

which implies

lim sup
dI→0

R0 ≤ δ = max
Ω

{∫ ω

0
β(x, t)dt∫ ω

0
γ(x, t)dt

}
. (13.29)

Combining (13.28) and (13.29), we derive the assertion (d).
Finally, we verify (e). By the choice of β and γ, we easily see from (a), (c),

and (d) that

R0(dI) >

∫ ω

0

∫
Ω
β(x, t)dxdt∫ ω

0

∫
Ω
γ(x, t)dxdt

for all dI ,

and

lim
dI→0

R0(dI) = lim
dI→∞

R0(dI) =

∫ ω

0

∫
Ω
β(x, t)dxdt∫ ω

0

∫
Ω
γ(x, t)dxdt

.

As a consequence, one can find 0 < d1I < d2I such that R0(d
1
I) = R0(d

2
I).

In the rest of this section, we present a bang-bang type configuration
optimization result for the basic reproduction ratio R0 in the case where the
maximum, the minimum, and the average of the function γ(x, t) are fixed
while β(x, t) ≡ β is a fixed positive constant.

Theorem 13.1.2. Assume that β(x, t) ≡ β is a fixed positive constant. Let

Υ =
{
γ ∈ L∞(Ω × (0, ω)) : γ∗ ≤ γ(x, t) ≤ γ∗ a.e. x, t,

γ(x, t) is ω-periodic in t,
1

ω|Ω|
∫ ω

0

∫
Ω

γ(x, t)dxdt = N
}
,

where γ∗ ≥ 0, γ∗ > 0 and N > 0 are given constants such that the set Υ is
nonempty. Then the following statements are valid:

(a) The function R0 = R0(γ) reaches its maximum over Υ when γ is of the
form γ(x, t) = γ∗χA+γ∗χ((Ω×(0,ω))\A), where A is a measurable subset of
Ω × (0, ω) such that γ∗|A| + γ∗|(Ω × (0, ω))\A| = ω|Ω|N , and χA is the
characteristic function over A.

(b) The function R0 = R0(γ) reaches its minimum β
N over Υ only when γ ∈ Υ

is an x-independent function.
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Proof. By the standard compactness analysis and the eigenvalue theory, it is
easily seen that R0 = R0(γ) is a continuous function of γ in the sense that if
γn is a bounded sequence in L∞(Ω × (0, ω)), then there exists a subsequence
γn′ of γn such that R0(γn′) → R0(γ) for some γ ∈ L∞(Ω × (0, ω)). It is also
well known that β

R0(γ)
is concave with respect to γ. Thus, the arguments in

the proof of [254, Lemma 7.2 and Theorem 3.11], as applied to (13.9) with
μ = R0, imply that assertion (a) holds.

We now verify (b). By virtue of (13.9) and Lemma 13.1.1, it follows that
if γ(x, t) ≡ N ∈ Υ , then R0(γ) =

β
N and 1 is an associated positive eigenfunc-

tion. For any given γ ∈ Υ , let ψ0 be the positive eigenfunction associated with
R0(γ). Since ψ0 > 0 on Ω × [0, ω], we may assume that ψ0 > 1 on Ω × [0, ω].
Thus, (R0(γ), ψ0) satisfies (13.9) with μ = R0(γ).

Let γ0 = γ − N and ψ0 = ψ0 − 1. Clearly, ψ0 > 0 on Ω × [0, ω], and
(γ0, ψ0) satisfies

(ψ0)t − dIΔψ0 + γ0(x, t)ψ0 =
( β

R0(γ)
−N

)
ψ0, x ∈ Ω, t > 0,

∂ψ0

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ0(x, 0) = ψ0(x, ω), x ∈ Ω.

(13.30)

Dividing (13.30) by ψ0 and integrating the resulting equation over Ω× (0, ω),
we obtain

− dI

∫ ω

0

∫
Ω

|∇ψ0|2
(ψ0)2

dxdt+

∫ ω

0

∫
Ω

γ0dxdt =
β

R0(γ)
−N .

Since
∫ ω

0

∫
Ω
γ0dxdt = 0, it easily follows from the above identity that R0(γ) ≥

β
N , and R0(γ) =

β
N if and only if γ(x, t) ≡ γ(t).

13.2 Threshold Dynamics

In this section, we establish the threshold dynamical behavior of system
(13.2)–(13.3) in terms of R0. We start with the uniform bound of its non-
negative solutions.

Under the condition (13.3) (and so (13.4) holds), we can easily apply [150,
Exercise 4 of Section 3.5] (or [6, Theorem 3.1]) to the second equation in (13.2)
to derive the uniform bound of ‖I(·, t)‖L∞(Ω) for all t ≥ 0. In order to obtain

a similar estimate for ‖S(·, t)‖L∞(Ω), we appeal to the theory developed in
[214], which is a generalization of [6, Theorem 3.1]. The following result is a
straightforward consequence of [214, Theorem 1 and Corollary 1].



350 13 A Periodic Reaction–Diffusion SIS Model

Lemma 13.2.1. Consider the parabolic system

∂ui

∂t
− diΔui = fi(x, t, u), x ∈ Ω, t > 0, i = 1, · · · , �

∂ui

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω,

where u = (u1, · · · , u�), u
0
i ∈ C(Ω,R), di is a positive constant, i = 1, · · · , �,

and assume that, for each k = 1, · · · , �, the functions fk satisfy the polynomial
growth condition:

|fk(x, t, u)| ≤ c1

�∑
i=1

|ui|σ + c2

for some nonnegative constants c1 and c2, and positive constant σ. Let p0 be a
positive constant such that p0 > m

2 max{0, (σ− 1)} and τ(u0) be the maximal
time of existence of the solution u corresponding to the initial data u0. Suppose
that there exists a positive number C1 = C1(u

0) such that ‖u(·, t)‖Lp0 (Ω) ≤ C1,
∀t ∈ [0, τ(u0)). Then the solution u exists for all time and there is a positive
number C2 = C2(u

0) such that ‖u(·, t)‖L∞(Ω) ≤ C2, ∀t ∈ [0,∞). Moreover, if
there exist two nonnegative numbers � and K1 = K1(�), independent of initial
data, such that ‖u(·, t)‖Lp0 (Ω) ≤ K1, ∀t ∈ [�,∞), then there is a positive
number K2 = K2(�), independent of initial data, such that ‖u(·, t)‖L∞(Ω) ≤
K2, ∀t ∈ [�,∞).

By applying Lemma 13.2.1 with σ = p0 = 1 and � = 0 to system (13.2),
we obtain the following result.

Lemma 13.2.2. There exists a positive constant B, independent of the ini-
tial data (S0, I0) ∈ C(Ω,R2

+) satisfying condition (13.3), such that for the

corresponding unique solution (S, I) of system (13.2), we have

‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤ B, ∀t ∈ [0,∞).

Let

Y :=

{
(u, v) ∈ C(Ω,R2

+) :

∫
Ω

(u(x) + v(x))dx = N

}

and Y0 = {(u, v) ∈ Y : v(x) �≡ 0}. We equip Y with the metric induced by
the maximum norm. Then Y is a complete metric space and Y0 is open in Y .
Now we are ready to present the main result of this section, which gives the
threshold dynamics of system (13.2)–(13.3).

Theorem 13.2.1. The following statements are valid:

(i) If R0 < 1, then for any (S0, I0) ∈ Y , the solution (S, I) of system (13.2)–
(13.3) satisfies limt→∞(S(x, t), I(x, t)) = (N/|Ω|, 0) uniformly for x ∈ Ω.
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(ii) If R0 > 1, then system (13.2)–(13.3) has at least one endemic ω-periodic
solution, and there exists a constant η > 0 such that for any (S0, I0) ∈ Y0,
the solution (S, I) of system (13.2)–(13.3) satisfies

lim inf
t→∞ S(x, t) ≥ η and lim inf

t→∞ I(x, t) ≥ η

uniformly for x ∈ Ω.

Proof. We define an ω-periodic semiflow Φ(t) : Y → Y by

Φ(t)((S0, I0)) = (S(·, t, , (S0, I0)), I(·, t, (S0, I0)), ∀(S0, I0) ∈ Y, t ≥ 0,

where (S(x, t, (S0, I0)), I(x, t, (S0, I0)) is the unique solution of system (13.2).
Let P := Φ(ω) be the Poincaré map associated with system (13.2) on Y .
Note that Φ(t) : Y → Y is compact for each t > 0. It then follows from
Lemma 13.2.2 and Theorem 1.1.3 that P : Y → Y has a strong global attrac-
tor.

Given (S0, I0) ∈ Y , let ω(S0, I0) be the omega limit set of the forward

orbit through (S0, I0) for P : Y → Y . Since S
S+I

≤ 1, I(x, t) satisfies

∂I

∂t
− dIΔI ≤ (β(x, t)− γ(x, t))I, x ∈ Ω, t > 0.

In the case where R0 < 1, we see from Lemma 13.1.2 that λ0 > 0. This,
together with the comparison principle, implies that I(x, t) → 0 uniformly on
Ω as t → ∞. It then easily follows that ω(S0, I0) = ω̃ × {0}, where ω̃ is a
compact and internally chain transitive set for the Poincaré map P1 associated
with the following ω-periodic system

S̃t − dSΔS̃ = 0, x ∈ Ω, t > 0,

∂S̃

∂ν
= 0, x ∈ ∂Ω, t > 0,

(13.31)

on the space Y1 :=
{
u ∈ C(Ω,R+) :

∫
Ω
u(x)dx = N

}
equipped with the uni-

form convergence topology. By a well-known result on the heat equation in a
bounded domain (see, e.g., [255, Section 1.1.2]), we conclude that the constant
N
|Ω| is a globally asymptotically stable steady state for system (13.31) on Y1. In

view of Theorem 1.2.1, we obtain ω̃ = { N
|Ω|}, and hence ω(S0, I0) = {( N

|Ω| , 0)}.
This implies that assertion (i) holds true.

To prove assertion (ii), we use similar arguments to those in the proof of
[430, Theorem 3.1] on a periodic predator–prey reaction–diffusion system. Let
∂Y0 := Y \ Y0 = {(S0, I0) ∈ Y : I0 ≡ 0}. Clearly, Y0 is convex, Φ(t)Y0 ⊂ Y0,
and Φ(t)∂Y0 ⊂ ∂Y0 for all t ≥ 0. For any (S0, I0) ∈ ∂Y0, I(x, t) ≡ 0, and
hence S(x, t) is a solution of system (13.31). It then follows that S(x, t) → N

|Ω|
uniformly on Ω as t → ∞. This implies that ∪(S0,I0)∈∂Y0

ω(S0, I0) = {( N
|Ω| , 0)},
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where ω(S0, I0) is the omega limit set of the forward orbit through (S0, I0)
for P : Y → Y . For simplicity, we denote M = ( N

|Ω| , 0). Then {M} is a

compact and isolated invariant set for P : ∂Y0 → ∂Y0. Let X := C(Ω,R)
and X+ := C(Ω,R+). Then (X,X+) is an ordered Banach space with the
maximum norm ‖ · ‖X . We further have the following claim.

Claim. There exists a real number δ > 0 such that lim supn→∞ ‖Pn(S0, I0)−
M‖X×X ≥ δ for all (S0, I0) ∈ Y0.

Indeed, let λ0 be defined as in the preceding section. Under the assumption
R0 > 1, Lemma 13.1.2 implies that λ0 < 0. It then follows that we can choose
a small positive number ε0 such that λ0(ε0) < 0, where λ0(ε0) is the unique
principal eigenvalue of the periodic-parabolic problem

ϕt − dIΔϕ =
β(x, t)(N/|Ω| − ε0)

N/|Ω|+ 2ε0
ϕ− γ(x, t)ϕ+ λϕ, x ∈ Ω, t > 0,

∂ϕ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ϕ(x, 0) = ϕ(x, ω), x ∈ Ω.

(13.32)

According to the continuous dependence of solutions on the initial data, we
observe that

lim
(S0,I0)→M

Φ(t)(S0, I0) = lim
(S0,I0)→M

(S(·, t), I(·, t)) = M

in X × X uniformly for t ∈ [0, ω]. Thus, there exists a real number δ0 =
δ0(ε0) > 0 such that for any (S0, I0) ∈ B(M, δ0), an open ball in X × X
centered at M and with the radius δ0, we have

‖S(·, t)−N/|Ω|‖X + ‖I(·, t)‖X < ε0, ∀t ∈ [0, ω].

Assume, for the sake of contradiction, that the claim above does not hold for
δ = δ0. Since PnY0 ⊂ Y0, ∀n ≥ 0, it then follows that there exists (S∗

0 , I
∗
0 ) ∈

B(M, δ0)∩Y0 such that Pn(S∗
0 , I

∗
0 ) = Φ(nω)(S∗

0 , I
∗
0 )) ∈ B(M, δ0), ∀n ≥ 1. For

any t ≥ 0, let t = nω+ t′ with t′ ∈ [0, ω) and n = [t/ω] being the integer part

of t/ω. Note that (S
∗
(·, t), I∗(·, t)) := Φ(t)((S∗

0 , I
∗
0 )) = Φ(t′)(Φ(nω)(S∗

0 , I
∗
0 )).

Thus, we have

‖S∗
(·, t)−N/|Ω|‖X + ‖I∗(·, t)‖X < ε0, ∀t ∈ [0,∞). (13.33)

Let ϕ0 be a positive eigenvector corresponding to λ0(ε0) in (13.32). Clearly,
ϕ0 > 0 on Ω × R. In particular, ϕ0(·, 0) ∈ int(X+). On the other hand, as
(S∗

0 , I
∗
0 ) ∈ Y0, the strong maximum principle for parabolic equations shows

that S
∗
(·, t), I∗(·, t) ∈ int(X+) × int(X+) for any t > 0. Therefore, without

loss of generality, we may assume that (S∗
0 , I

∗
0 ) ∈ int(X+) × int(X+). So one

can find a small positive number c∗ such that I∗0 ≥ c∗ϕ0(·, 0) in X. By means

of (13.33) and the choice of δ0, it follows that I
∗
(x, t) is a super-solution to

the problem
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wt − dIΔw =
β(x, t)(N/|Ω| − ε0)

N/|Ω|+ 2ε0
w − γ(x, t)w, x ∈ Ω, t > 0,

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) = c∗ϕ0(x, 0), x ∈ Ω.

(13.34)

Furthermore, it is easy to see that c∗e−λ0(ε0)tϕ0(x, t) is the unique solution to
problem (13.34). By the parabolic comparison principle, we deduce

I
∗
(x, t) ≥ c∗e−λ0(ε0)tϕ0(x, t) → ∞ uniformly for x ∈ Ω, as t → ∞,

which contradicts (13.33). Thus, the claim holds true for δ = δ0.
The above claim implies that M is an isolated invariant set for P : Y → Y ,

and W s(M)∩Y0 = ∅, where W s(M) is the stable set of M for P : Y → Y . As
a result, Theorem 1.3.1 and Remark 1.3.1 assert that P is uniformly persistent
with respect to (Y, ∂Y0). Further, Theorem 1.3.10 implies that P has a fixed
point φ∗ in Y0, and hence, system (13.2) has an ω-periodic solution Φ(t)φ∗ in
Y0. In view of Theorem 1.3.10, we further see that P : Y0 → Y0 has a global
attractor A0. Clearly, φ

∗ ∈ A0. Let B0:=
⋃

t∈[0,ω] Φ(t)A0. Then B0 ⊂ Y0, and

Theorem 3.1.1 implies that lim
t→∞ d(Φ(t)φ,B0) = 0 for all φ ∈ Y0, where d

is the norm-induced distance in X × X. Since A0 ⊂ Y0 and A0 = S(A0) =
Φ(ω)A0, we have A0 ⊂ int(X+)×int(X+), and hence B0 ⊂ int(X+)×int(X+).
Obviously, Φ(t)φ∗ ∈ B0, and so Φ(t)φ∗ is a positive ω-periodic solution of
system (13.2). By virtue of the compactness and global attractiveness of B0 for
Φ(t) in Y0, we conclude that there exists η > 0 such that lim inf

t→∞ Φ(t)φ ≥ (η, η)

for all φ ∈ Y0, which implies the desired uniform persistence.

As a consequence of Lemmas 13.1.3 and 13.1.4, and Theorems 13.1.1
and 13.2.1, we have the following result.

Theorem 13.2.2. The following statements are valid:

(i) The disease-free constant solution (N/|Ω|, 0) is globally attractive for sys-
tem (13.2)–(13.3) if one of the following conditions holds:
(i-a) β(x, t)− γ(x, t) = h(t) and

∫ ω

0
h(t)dt < 0;

(i-b) β(x, t)−γ(x, t) = h(x) and either h ≤ 0, �≡ 0 on Ω or maxΩ h(x) > 0
and

∫
Ω
h(x)dx < 0 but dI > d∗I , where d∗I is given in Lemma 13.1.4;

(i-c)
∫ ω

0

∫
Ω
(β(x, t)− γ(x, t))dxdt < 0 and dI is sufficiently large;

(i-d)
∫ ω

0
maxx∈Ω(β(x, t)− γ(x, t))dt ≤ 0 and β(x, t)− γ(x, t) nontrivially

depends on the spatial variable.
(ii) The uniform persistence holds for system (13.2)–(13.3) if one of the fol-

lowing conditions holds:
(ii-a) β(x, t)− γ(x, t) = h(t) and

∫ ω

0
h(t)dt > 0;

(ii-b) β(x, t) − γ(x, t) = h(x), either h �≡ 0 and
∫
Ω
h(x)dx ≥ 0 or

maxΩ h(x) > 0 and
∫
Ω
h(x)dx < 0 but 0 < dI < d∗I ;

(ii-c)
∫ ω

0

∫
Ω
(β(x, t)− γ(x, t))dxdt > 0;

(ii-d) maxx∈Ω

{ ∫ ω
0

β(x,t)dt∫ ω
0

γ(x,t)dt

}
> 1 and dI is sufficiently small.
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13.3 Global Attractivity

The uniqueness and global attractivity of the endemic ω-periodic solution
to reaction-diffusion system (13.2) is a challenging problem. In [9], it was
conjectured that the unique endemic equilibrium of the autonomous system
(13.1) is globally stable. A partial answer to this problem was given in [275],
but it remains unsolved in the general case. In this section, we address this
issue for periodic system (13.2) in two special cases.

When no diffusion is taken into account, by assuming the total popula-
tion number is unchanged and β(x, t) ≡ β(t), γ(x, t) ≡ γ(t) are ω-periodic
continuous functions, we obtain the following ordinary differential system:

St = −β(t)S I

S + I
+ γ(t)I, t > 0,

It =
β(t)S I

S + I
− γ(t)I, t > 0,

S + I = N, t ≥ 0,
S(0) = S0 ≥ 0, I(0) = I0 > 0.

(13.35)

An analysis as in Section 13.2 shows that the basic reproduction ratio is

R0 =

∫ ω

0
β(t)dt∫ ω

0
γ(t)dt

.

For system (13.35), we have a threshold-type result on its global dynamics.
Indeed, it is easy to see that I(t) satisfies the scalar ordinary differential
equation:

dI

dt
=

(
β(t)(N − I)

N
− γ(t)

)
I, t ≥ 0; I(0) = I0 ∈ [0, N ]. (13.36)

By Theorem 3.1.2, it follows that the zero solution is globally asymptotically
stable for system (13.36) in [0, N ] in the case where R0 ≤ 1; and system
(13.36) has a globally asymptotically stable positive ω-periodic solution I∗(t)
in (0, N ] in the case where R0 > 1. Biologically, this implies that the infectious
disease dies out if R0 ≤ 1 and it persists if R0 > 1.

Returning to the reaction–diffusion system (13.2)–(13.3), we are able to
obtain the global attractivity of the endemic ω-periodic solution in two special
cases. The first one we shall cope with is that the diffusion rate of the suscep-
tible individuals is equal to that of the infected individuals (i.e., dS = dI). In
this situation, we can give a complete description of the global attractivity of
the disease-free constant solution and the endemic ω-periodic solution.

Theorem 13.3.1. Assume that dS = dI . If R0 ≤ 1, then (N/|Ω|, 0) is glob-
ally attractive for system (13.2)–(13.3); If R0 > 1, then system (13.2)–(13.3)
admits a globally attractive endemic ω-periodic solution.
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Proof. In the case where dS = dI , N(x, t) := S(x, t) + I(x, t) is a solution of
system (13.31) on Y1, and hence limt→∞ N(x, t) = N

|Ω| uniformly for x ∈ Ω.

It follows that I(x, t) satisfies the following nonautonomous equation

∂I

∂t
− dIΔI =

[
β(x, t)

(
1− I

N(x, t)

)
− γ(x, t)

]
I, x ∈ Ω, t > 0, (13.37)

which is asymptotic to a periodic equation

∂I

∂t
− dIΔI =

[
β(x, t)

(
1− |Ω|

N
I

)
− γ(x, t)

]
I, x ∈ Ω, t > 0. (13.38)

By Lemma 13.1.2 and Theorem 3.2.2, as applied to the asymptotically periodic
system (13.37), it follows that the desired threshold dynamics holds for system
(13.2)–(13.3) in terms of R0.

Next, we consider the case where β(x, t) = rγ(x, t) for some real number
r ∈ (0,∞). It is easy to see that when r > 1,

(S̃, Ĩ) =
(1
r

N

|Ω| ,
r − 1

r

N

|Ω|
)

is an endemic ω-periodic solution of system (13.2)–(13.3). Since system (13.2)
is periodic, we may not be able to use the LaSalle invariance principle type
argument to prove the global attractivity of (S̃, Ĩ). Instead, we will employ
the following result, which comes from [268, Lemma 1].

Lemma 13.3.1. Let a and b be positive constants. Assume that φ, ψ ∈
C1([a,∞)), ψ ≥ 0, and φ is bounded from below on [a,∞). If φ′(t) ≤ −bψ(t)
and ψ′(t) ≤ K on [a,∞) for some positive constant K, then limt→∞ ψ(t) = 0.

We are now in a position to prove the following threshold-type result on
the global dynamics of system (13.2)–(13.3).

Theorem 13.3.2. Assume that β(x, t) = rγ(x, t) on Ω×R for some constant
r ∈ (0,∞). If r < 1, then (N/|Ω|, 0) is globally attractive for system (13.2)–
(13.3); If r > 1, then (S̃, Ĩ) is globally attractive for system (13.2)–(13.3).

Proof. From (13.9) and Lemma 13.1.1, it is easy to see that R0 = r. In
the case where r < 1, Theorem 13.2.1 (i) implies that (N/|Ω|, 0) is globally
attractive. It remains to handle the case where r > 1. For any given positive
solution (S(x, t), I(x, t)) of (13.2)–(13.3), we follow [275] to define the function

H(t) :=

∫
Ω

(
S(x, t) +

S̃2

S(x, t)
+ I(x, t) +

Ĩ2

I(x, t)

)
dx. (13.39)
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It then follows that

dH(t)

dt
=

∫
Ω

(
St + It

)
dx−

∫
Ω

(
S̃2 · St

S
2 +

Ĩ2 · It
I
2

)
dx

=−
∫
Ω

S̃2

S
2

(
dS�S − βS · I

S + I
+ γI

)
dx−

∫
Ω

Ĩ2

I
2

(
dI�I +

βS · I
S + I

− γI

)
dx

=H1(t) +H2(t),

where

H1(t) =−
∫
Ω

(
dS

S̃2

S
2 · �S + dI

Ĩ2

I
2 · �I

)
dx

=−
∫
Ω

(
2dSS̃

2

S
3 · |∇S|2 + 2dI Ĩ

2

I
3 · |∇I|2

)
dx

and

H2(t) =−
∫
Ω

{(
Ĩ2

I
2 − S̃2

S
2

)
·
(
βS · I
S + I

− γI

)}
dx

=−
∫
Ω

{
βI ·

(
Ĩ2

I
2 − S̃2

S
2

)
·
(

S

S + I
− 1

r

)}
dx

=−
∫
Ω

{
βI ·

(
Ĩ2

I
2 − S̃2

S
2

)
·
(

S

S + I
− S̃

S̃ + Ĩ

)}
dx

=−
∫
Ω

⎧⎨
⎩βS · I2 ·

(
Ĩ2

I
2 − S̃2

S
2

)
·
⎛
⎝ Ĩ

I
− S̃

S

(S + I) · (S̃ + Ĩ)

⎞
⎠
⎫⎬
⎭ dx

=−
∫
Ω

⎧⎨
⎩

βS · I2

(S + I) · (S̃ + Ĩ)
·
(
Ĩ

I
+

S̃

S

)
·
(
Ĩ

I
− S̃

S

)2
⎫⎬
⎭ dx.

Thus, we obtain

dH(t)

dt
= −

∫
Ω

{
dS

2S̃2

S
3 |∇S|2 + dI

2Ĩ2

I
3 |∇I|2

+
β(x, t)S I

2

(S̃ + Ĩ)(S + I)

( S̃
S

+
Ĩ

I

)( S̃
S

− Ĩ

I

)2}
dx.

In view of Lemma 13.2.2 and Theorem 13.2.1 (ii), there exist positive constants
C0 and T0 such that

dH(t)

dt
≤ −C0

∫
Ω

{
|∇S|2 + |∇I|2}+

( S̃
S

− Ĩ

I

)2}
dx =: −ψ(t), ∀t ≥ T0.
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By the standard Hölder regularity theory for parabolic equations (see, e.g.,
[126, Theorem 9]) and the embedding theorems (see, e.g., [209, Lemma II.
3.3]) (see also the proof of Theorems A1 and A2 of [39]), together with
Lemma 13.2.2 and Theorem 13.2.1 (ii), it is easy to see that ψ′(t) is bounded
on [T0,∞). Thus, Lemma 13.3.1 implies that ψ(t) → 0 as t → ∞, and hence
we have

lim
t→∞

∫
Ω

(
|∇S|2 + |∇I|2

)
dx = 0 (13.40)

and

lim
t→∞

∫
Ω

∣∣(r − 1)S(x, t)− I(x, t)
∣∣ dx = 0. (13.41)

From (13.41) and (13.4), it follows that

lim
t→∞

1

|Ω|
∫
Ω

S(x, t)dx = S̃, lim
t→∞

1

|Ω|
∫
Ω

I(x, t)dx = Ĩ . (13.42)

Let us recall the well-known Poincaré inequality:

μ1

∫
Ω

(g − ĝ)2 dx ≤
∫
Ω

|∇g|2 dx, ∀g ∈ H1(Ω),

where ĝ = 1
|Ω|
∫
Ω
g(x)dx and μ1 is the first positive eigenvalue of the Lapla-

cian operator −Δ with zero Neumann boundary condition on ∂Ω. As a con-
sequence, by Hölder inequality, there holds

∫
Ω

|g − ĝ| dx ≤
( |Ω|
μ1

)1/2(∫
Ω

|∇g|2 dx
)1/2

, ∀g ∈ H1(Ω).

This, in conjunction with (13.40) and (13.42), gives rise to

lim
t→∞

∫
Ω

(|S(x, t)− S̃|+ |I(x, t)− Ĩ|)dx = 0. (13.43)

Let X, Φ(t), P and Y0 be defined as in the proof of Theorem 13.2.1. For
any given φ ∈ Y0, let ω(φ) be the omega-limit set of the forward orbit through
φ for the discrete-time semiflow {Pn}n≥0. It then follows that for any ψ =
(ψ1, ψ2) ∈ ω(φ), there exists a sequence nk → ∞ such that limk→∞ Pnk(φ) =
limk→∞ Φ(nkω)φ = ψ in X × X. Letting (S(x, t), I(x, t)) = [Φ(t)φ](x) and
t = nkω in (13.43), we obtain

∫
Ω

(|ψ1(x)− S̃|+ |ψ2(x)− Ĩ|)dx = 0,

and so ψ(x) ≡ (S̃, Ĩ). Thus, we have ω(φ) = {(S̃, Ĩ)}. This implies that
limt→∞ Φ(t)φ = (S̃, Ĩ) in X ×X, yielding the global attractivity of (S̃, Ĩ).
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13.4 Discussion

In this section, we give some biological interpretations of the analytical results
obtained for model (13.2)–(13.3).

Following the terminology in [9], we say that x is a low-risk site if the local
disease transmission rate

∫ ω

0
β(x, t)dt is lower than the local disease recovery

rate
∫ ω

0
γ(x, t)dt. A high-risk site is defined in a reversed manner. We also

say that Ω is a low-risk habitat if
∫ ω

0

∫
Ω
β(x, t)dxdt <

∫ ω

0

∫
Ω
γ(x, t)dxdt and

a high-risk habitat if
∫ ω

0

∫
Ω
β(x, t)dxdt >

∫ ω

0

∫
Ω
γ(x, t)dxdt. We may call the

habitat a moderate-risk one if
∫ ω

0

∫
Ω
β(x, t)dxdt =

∫ ω

0

∫
Ω
γ(x, t)dxdt.

Firstly, in the ideal case where the rates of disease transmission and recov-
ery depend on the temporal factor alone, Theorem 13.2.2 (i-a) and (ii-a) show
that a low-risk habitat always leads to the extinction of the disease while a
high-risk habitat leads to the persistence. In the ideal case where the rates
of disease transmission and recovery depend solely on the spatial factor, it
follows from Theorem 13.2.2 (ii-b) that the disease will be persistent once a
high-risk habitat exists. In such a situation, however, a low-risk habitat does
not always contribute to the disease eradication. Actually, this is true only
when each location of the domain is low-risk. Once the habitat contains at
least one high-risk site, according to Theorem 13.2.2 (i-b) and (ii-b), there
exists a threshold value d∗I ∈ (0,∞) such that the disease extinction happens
only if the movement rate dI of the infected population is greater than d∗I ;
otherwise, if dI < d∗I , the disease will persist.

In the general situation where the rates of disease transmission and re-
covery depend on the spatial and temporal variables, our results assert that
if either the habitat is a high-risk type or there exists at least one high-risk
site and the movement of the infected population is extremely slow, then the
disease will persist; see Theorem 13.2.2 (ii-c) and (ii-d). On the contrary, if
the habitat is a low-risk one and the movement of the infected population is
sufficiently quick, the disease will die out; see Theorem 13.2.2 (i-c).

We next discuss how the heterogeneous and time-periodic environment
affects the extinction and persistence of the disease. We assume that

β(x, t) = p(x)q1(t) and γ(x, t) = p(x)q2(t),

where p is a positive Hölder continuous function on Ω and q1, q2 are ω-periodic
positive Hölder continuous functions on R. If q1 ≡ q2, we get a moderate-risk
habitat and Theorem 13.3.2 tells us that the disease will eventually die out
regardless of the movement rates. We now assume that p is not a constant,
q1 �≡ q2, and

∫ ω

0
q1(t)dt =

∫ ω

0
q2(t)dt so that the habitat is still a moderate-risk

one. By Theorem 13.1.1, we see that the basic reproduction ratio R0(dI) =
R0 > 1 for any dI > 0 and R0(dI) → 1 as either dI → 0 or dI → ∞. Therefore,
Theorem 13.2.1 implies that for this moderate-risk habitat, the disease will
persist.

As a consequence, our results suggest that the combination of spatial het-
erogeneity and temporal periodicity tends to enhance the persistence of the
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infectious disease for the SIS model (13.2)–(13.3). In other words, the infec-
tion risk of the model (13.2)–(13.3) would be underestimated if only temporal
periodicity or spatial heterogeneity is taken into account.

Furthermore, the above discussion also shows that in the case where
p is not a constant, q1 �≡ q2, and

∫ ω

0
q1(t)dt =

∫ ω

0
q2(t)dt, when the in-

fected population migrates at the speed dI = d̂I , where d̂I > 0 satisfies
R0(d̂I) = maxdI∈(0,∞) R0(dI) > 1, the persistence property of the disease will
be maximized; on the other hand, the small or large migration rate of the
infected population will reduce the value of the basic reproduction ratio close
to unity so that the persistence of the disease will be weakened.

Finally, we try to give a biological interpretation of Theorem 13.1.2. As-
sume that the disease has the same transmission rate at any location in the
entire habitat and at any time (namely, β is a positive constant), and that
the available treatment for the disease is fixed which hence indicates that∫ ω

0

∫
Ω
γ(x, t)dxdt is a positive constant. If the treatment is made mainly in a

specific part of the habitat, Theorem 13.1.2 shows that R0 can reach its max-
imum. Thus, such an allocation of the treatment results in the largest risk
for the control of the disease. On the other hand, R0 will attain its minimum
if the treatment is equally distributed over the entire habitat at any time.
Therefore, Theorem 13.1.2 suggests that the latter treatment strategy would
be more effective for the eradication of the disease.

13.5 Notes

Sections 13.1–13.4 are adapted from Peng and Zhao [277]. Here we give a new
proof for Theorem 13.2.1 (i) and Theorem 13.3.1, respectively. The asymp-
totic profiles of steady states and global dynamics for autonomous reaction–
diffusion SIS epidemic models were investigated by Allen, Bolker, Lou and
Nevai [9], Peng [273], Peng and Liu [275], Huang, Han and Liu [178], Peng
and Yi [276], Cui and Lou [69], Wu and Zou [413], Li, Peng and Wang [221].
Recently, Wang, Zhang and Zhao [399] also studied time-periodic traveling
waves for a periodic reaction–diffusion SIR model.
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