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A Population Model with Periodic Delay

The rhythm of life on earth, occurring on daily or annual scales, is driven by
seasonal changes in the environment [348] which regulate various physiological
and behavioral processes, as well as the population dynamics of species. Many
plant and animal species have demonstrated seasonal population dynamics in
response to seasonal environmental changes, in particular, the weather con-
ditions. Mosquito species Culex pipiens and Culex restuans, main vectors of
West Nile virus transmission, are very sensitive to long-term variations in cli-
mate and short-term variations in weather [397], in particular, temperature
condition affects the rates of immature mosquito development and activity of
adults, and precipitation determines the amount and quality of larval habi-
tats. Temperature also affects the host-seeking activity of ticks and their rates
from one life stage to the next one, as a result, it is proposed as a statistically
significant determinant and possible driver of emergence of the tick in Canada
[262]. Seasonal forcing in host and parasite biology also determines the risk of
infectious diseases through the following aspects [10]: (a) host social behavior
and aggregation; (b) vector population and activity; (c) parasite stages in the
environment; (d) timing of reproduction and pulses of susceptible hosts; and
(e) host susceptibility and immune defences.

Given the significant roles that seasonal environment factors play in popu-
lation growth, disease transmission, and other life systems, theoretical models
have been formulated to incorporate the seasonality of parameters in phe-
nomenological ways such as those reported in [10]. Many model parameters in
ecosystems are influenced by the environmental conditions in a nonlinear way
[250], and in previous models, it is well accepted to assume the parameters
subject to seasonal factors change periodically. A growing body of literature
reported that the developmental duration can be driven by seasonal forcing,
and thus be periodic. For example, the developmental duration of mosquito
species Culex pipiens and Culex restuans is affected by temperature conditions.
In the transmission cycle of malaria, the extrinsic incubation period (EIP) of
the parasite within the mosquito is one of the most critical parameters to
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318 12 A Population Model with Periodic Delay

evaluate the disease risk. During EIP, malaria parasites go through various
developmental stages and distinct replication cycles before migrating to the
salivary glands where they can be transmitted to humans. The speed of this
development depends on host, parasite, and environmental factors with es-
timate order of 10–14 days in areas of high malaria transmission. However,
90% of the female mosquitoes die within 12 days and are therefore unlikely to
contribute to malaria transmission. On the other side, the extrinsic incuba-
tion period is extremely temperature sensitive [267], and hence, it is pivotal
to incorporate this seasonally forced incubation period in the description of
malaria transmission. For these two aforementioned scenarios, the develop-
mental durations for immature mosquitoes and incubation period for para-
sites are periodic functions of time, which brings new challenges into model
formulation where careful mathematical derivation and biological justification
are needed. The purpose of this chapter is to propose a synthesized mathe-
matical approach to the study of biological systems with seasonal forcing, in
particular, with seasonal variations on developmental duration.

In Section 12.1, we use the host-macroparasite interaction as a motivating
example to present our approach. The host-parasite interaction has attracted
great attention since the pioneering work of Anderson and May [15], with
most models aiming to figure out the basic reproduction number R0 of par-
asite (measuring “the expected lifetime reproductive output of a new born
larva” for macroparasite [250]). Here we develop a theoretical framework to
investigate the population dynamics with time-dependent developmental du-
ration for the parasitic nematodes with a direct life cycle and endotherm hosts
[250]. This framework can be extended to the population growth, pathogen
transmission, and in-host viral dynamics. In Section 12.2, we introduce the
basic reproduction ratio R0 for the model system and establish a threshold-
type result on its global dynamics in terms of R0. In Section 12.3, we show
how to write the next generation operator into the integral form in Posny and
Wang [282] so that their numerical method remains applicable to the compu-
tation of R0 for our model system. For reader’s convenience, we also include
the algorithm of [282] at the end of this section.

12.1 Model Formulation

Before introducing the whole model system for host-parasite interaction, we
investigate a two-stage single population growth scenario as a toy example, in
the hope of presenting the modelling idea through a simpler case.

We start with a two-stage model, with population containing first stage
I(t) and second stage M(t) defined, respectively, as those of age less than,
and greater than, some threshold age τ(t) (the maturation time for the cohort
that matures at time t), which is assumed to be seasonal due to the seasonal
variations of weather conditions. That is, at time t, the individuals with age
greater (less) than τ(t) are in the second stage (remaining in the first stage).
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Within each age group, all individuals have the same age-independent birth
and death rates. Let ρ(t, a) be the population density of age a at time t,
then the numbers I(t) and M(t) of individuals in the first and second stages,
respectively, are given by

I(t) =

∫ τ(t)

0

ρ(t, a) da and M(t) =

∫ ∞

τ(t)

ρ(t, a) da.

The age density ρ(t, a) satisfies the following McKendrick von-Foerster type
equation [77, 400]

∂ρ(t, a)

∂t
+

∂ρ(t, a)

∂a
= −μ(a, t)ρ(t, a), (12.1)

with the age-dependent death rates

μ(a, t) = μ1(t) if a ≤ τ(t) and μ(a, t) = μ2(t) if a > τ(t).

Taking the derivatives of I(t) and M(t), and using (12.1), we obtain

dI(t)
dt = ρ(t, 0)− (1− τ ′(t))ρ(t, τ(t))− μ1(t)I(t),

dM(t)
dt = (1− τ ′(t))ρ(t, τ(t))− μ2(t)M(t)− ρ(t,∞).

Since no individual can live forever, ρ(t,∞) is taken as zero. The term ρ(t, 0)
represents the flow in rate to the first stage at time t, supposed to be ρ(t, 0) =
b(t) = B(t,M(t)), a function of time t and population density M(t). Mathe-
matically, we also assume the delay τ(t) involved is continuously differentiable
in [0,∞) and bounded away from zero and infinity. To close the system, we cal-
culate ρ(t, τ(t)) in terms of ρ(t−τ(t), 0) = b(t−τ(t)) = B(t−τ(t),M(t−τ(t))),
which is achieved by the technique of integration along characteristics with
the aid of the variable V s(t) = ρ(t, t− s). By direct calculations, we arrive at

d

dt
V s(t) = −μ1(t)V

s(t)

for t− s ≤ τ(t), with V s(s) = ρ(s, 0) = b(s). It follows that

V s(t) = V s(s)e−
∫ t
s
μ1(ξ) dξ = B(s,M(s))e−

∫ t
s
μ1(ξ) dξ.

Setting s = t− τ(t), we have, for t ≥ τ̂ with τ̂ = max{τ(t)},

ρ(t, τ(t)) = V t−τ(t)(t) = B(t− τ(t),M(t− τ(t)))e−
∫ t
t−τ(t)

μ1(ξ) dξ.

Hence, we obtain a closed system to describe two age groups subject to sea-
sonal effects for t ≥ τ̂ :

dI(t)
dt = B(t,M(t))− (1− τ ′(t))B(t− τ(t),M(t− τ(t)))e−

∫ t
t−τ(t)

μ1(ξ) dξ

−μ1(t)I(t),
dM(t)

dt = (1− τ ′(t))B(t− τ(t),M(t− τ(t)))e−
∫ t
t−τ(t)

μ1(ξ) dξ − μ2(t)M(t).

(12.2)
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This model turns out to be a differential system with periodic time delay,
which is different from the traditional delay differential models without sea-
sonal effects in the sense that the term 1−τ ′(t) is included in the development
rate from the first stage to the next one:

(1− τ ′(t))B(t− τ(t),M(t− τ(t)))e−
∫ t
t−τ(t)

μ1(ξ) dξ. (12.3)

An alternative approach, more biologically oriented, to describe the pop-
ulation growth of two stages (especially the maturation term (12.3)) is also
feasible. The first stage population size I(t) at time t counts all accumula-
tion of individuals born at moment ξ with rate b(ξ) between t− τ(t) to t but

remain alive with the survival probability e−
∫ t
ξ
μ1(s) ds. Intuitively, the size

I(t) depends on the duration of τ(t) for individuals staying in the first stage.
Motivated by these biological inductions, we can represent I(t) by an integral
form

I(t) =

∫ t

t−τ(t)

b(ξ)e−
∫ t
ξ
μ1(s) dsdξ.

Taking the derivative of I(t), we get the differential equation version of this
variable in the first equation of (12.2). The maturation rate should be the
birth rate at time t− τ(t), b(t− τ(t)), multiplied with survival probability to

time t, e−
∫ t
t−τ(t)

μ1(s) ds, and corrected with the rate of change for t− τ(t).
In parameterizing the delay τ(t), the developmental proportion r(ξ) at

time ξ is taken into consideration such that the accumulative proportion from
t− τ(t) to t reaches unity when the individual moves to the next stage. The-
oretically, we use the following relation to determine τ(t)

1 =

∫ t

t−τ(t)

r(ξ)dξ, (12.4)

where r(ξ) is the time-periodic development proportion at moment ξ. The
periodicity of r(ξ) in ξ implies the periodicity of the delay τ(t) in time variable
t. Taking the derivative with respect to t, we have

0 = r(t)− (1− τ ′(t))r(t− τ(t))

from which we obtain

1− τ ′(t) =
r(t)

r(t− τ(t))
,

and hence, the conversion rate in (12.3) can be expressed as

r(t)

r(t− τ(t))
b(t− τ(t))e−

∫ t
t−τ(t)

μ1(ξ) dξ.

Thanks to this relation, we can always assume that 1 − τ ′(t) > 0 for any
biologically reasonable developmental delay.
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Next, we extend the two-stage model (12.2) to describe host-parasite in-
teraction, where the parasite developmental duration is dependent on time.
Motivated by the fundamental modelling frameworks in Anderson and May
[15] and Dobson and Hudson [100], we consider four stages: Free living lar-
vae not infective X(t), free living larvae infective L(t), arrested larvae in the
host Y (t), and adult parasites P (t). We are concerned with two delays in the
parasite life cycle, one in the free-living stage and the other within the host
population: (i) the developmental delay τL(t) between the moment when newly
shed parasites enter the environment and the moment they reach the infective
larval stage and (ii) the time period τP (t) needed for the arrested larvae infect-
ing the host to develop to pathogenic adults [100]. Since the development time
to the infectivity stage depends on metabolic rate and hence the temperature
condition, we assume the developmental duration is a time-periodic parameter
with the period being one year (365 days) as temperature changes seasonally
[250]. Much attention should be paid to estimate these time-dependent de-
lays. Other life cycle components may also be temperature-dependent, and
therefore, be periodic in time t.

Host population dynamics may be regulated by parasites, which is a crucial
assumption for some host-parasite models [291]. However, here we are more
concerned with the reproduction ratio analysis, and therefore, we ignore the
host survival or fecundity affected by the arrested parasites since the metabolic
activity in arrested larvae is very low [100]. This assumption becomes much
more reasonable for farmed animal hosts, whose density is largely controlled
by the farm owner [291]. Therefore, the host population H(t) is considered
to be seasonal, analogous to those constant host population assumptions in
[292, 293, 346].

Based on the conversion rate with periodic delays (12.3), we can write the
model system as follows:

dX(t)

dt
= λP (t)− μX(t)X(t)

−λ(1− τ ′
L(t))P (t− τL(t))e

− ∫ t
t−τL(t) μX (ξ) dξ

, (12.5a)

dL(t)

dt
= λ(1− τ ′

L(t))P (t− τL(t))e
− ∫ t

t−τL(t) μX (ξ) dξ − μL(t)L(t)

−β(t)H(t)L(t), (12.5b)

dY (t)

dt
= β(t)H(t)L(t)− (μY (t) + μH(t))Y (t)

−(1− τ ′
P (t))β(t− τP (t))H(t− τP (t))×

e
− ∫ t

t−τP (t)(μY (ξ)+μH (ξ)) dξ
L(t− τP (t)), (12.5c)

dP (t)

dt
= (1− τ ′

P (t))β(t− τP (t))H(t− τP (t))×

e
− ∫ t

t−τP (t)(μY (ξ)+μH (ξ)) dξ
L(t− τP (t))

−(μP (t) + μH(t))P (t)− αH

(
1 +

P (t)

H(t)

k + 1

k

)
P (t). (12.5d)
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System (12.5) describes the change of densities for the four compartments: (1)
The free living larvae X(t) are regained through the birth of adult parasite at
rate λ, lost by either mortality (at rate μX(t)) or development to free living
infected larvae (the last term of equation (12.5a)); (2) The density of free living
infected larvae L(t) increases from the development of uninfected larvae (the
first term of equation (12.5b)) and decreases with the death rate μL(t) and
host uptake at rate β(t)H(t), which is dependent on the host population H(t);
(3) Ingested larvae Y (t) enter the host population with rate β(t)H(t). They
stay in the host for τP (t) unit time, which is the developmental duration from
infective larvae to adult parasite. The development rate to adult parasite is
described by the last term of equation (12.5c). Their density decreases due
to the natural death rate μY (t) and host death rate μH(t) as the larvae will
also die when hosts die; (4) The density of adult parasites P (t) increases
with the development from larvae (first term of (12.5d)), decreases with the
mortality, both the natural death at rate μP (t) and host death at rate μH(t).
The burden of adult parasite also decreases due to the aggregated distribution
of parasites in the host population, by assuming the distribution of parasites
within the host population to be negative binomial with exponent k (also
known as aggregation parameter) [15]. As argued previously, we can replace
(1− τ ′L(t)) and (1− τ ′P (t)), respectively, with the developmental proportions

1− τ ′L(t) =
rL(t)

rL(t− τL(t))
and 1− τ ′P (t) =

rP (t)

rP (t− τP (t))
,

where rL(t) and rP (t) are the corresponding developmental proportions.

12.2 Threshold Dynamics

In this section, we first introduce the basic reproduction ratio R0 for model
(12.5), and then establish a threshold-type result on its global dynamics.

In system (12.5), the equations (12.5a) and (12.5c) can be decoupled since
variables X and Y do not appear in the other two equations. Therefore, we
start with the decoupled system:

dL

dt
= λ(1− τ ′

L(t))e
− ∫ t

t−τL(t) μX (ξ) dξ
P (t− τL(t))− μL(t)L(t)− β(t)H(t)L(t),

dP

dt
= (1− τ ′

P (t))β(t− τP (t))H(t− τP (t))e
− ∫ t

t−τP (t)(μY (ξ)+μH(ξ)) dξ
L(t− τP (t))

−(μP (t) + μH(t))P (t)− αH

(
1 +

P (t)

H(t)

k + 1

k

)
P (t). (12.6)

Further, we can rewrite the other two variables into integral forms:

X(t) =

∫ t

t−τL(t)

λP (ξ)e−
∫ t
ξ
μX(s) dsdξ,

Y (t) =

∫ t

t−τP (t)

β(ξ)H(ξ)L(ξ)e−
∫ t
ξ
(μY (s)+μH(s)) dsdξ.

(12.7)
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Once the dynamics of two variables L(t) and P (t) are obtained, that of X(t)
and Y (t) can be deduced naturally.

To address the well-posedness of system (12.6), we introduce some nota-
tions. Let τ̂ = max{maxt∈[0,ω] τL(t),maxt∈[0,ω] τP (t)} and X := C([−τ̂ , 0],R2)

equipped with the maximum norm. For a function x(·) ∈ C([−τ̂ ,∞),R2), we
can define xt ∈ X as xt(θ) = x(t+ θ), ∀θ ∈ [−τ̂ , 0]. For any φ ∈ X , we define
f(t, φ) = (f1(t, φ), f2(t, φ)) with

f1(t, φ) = λ(1− τ ′
L(t))e

− ∫ t
t−τL(t) μX (ξ) dξ

φ2(−τL(t))− μL(t)φ1(0)− β(t)H(t)φ1(0),

f2(t, φ) = (1− τ ′
P (t))β(t− τP (t))H(t− τP (t))e

− ∫ t
t−τP (t)(μY (ξ)+μH (ξ)) dξ

φ1(−τP (t))
−(μP (t)+μH(t)+αH)φ2(0)− k+1

k
αH
H(t)

φ2
2(0).

Due to the ω-periodicity of τL(t), μL(t), β(t), H(t), τP (t), μP (t), and μH(t),
it is easy to see that f(t + ω, φ) = f(t, φ). Thus, (12.6) is an ω-periodic
functional differential system. For notational simplicity, we rewrite system
(12.6) into

dL

dt
= bL(t)P (t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)L(t− τP (t))− dP (t)P (t)− α(t)P 2(t),

(12.8)

where

bL(t) = λ(1− τ ′L(t))e
− ∫ t

t−τL(t)
μX(ξ) dξ

, dL(t) = μL(t) + β(t)H(t),

bP (t) = (1− τ ′P (t))β(t− τP (t))H(t− τP (t))e
− ∫ t

t−τP (t)
(μY (ξ)+μH(ξ)) dξ

,

dP (t) = μP (t) + μH(t) + αH , and α(t) =
αH(k + 1)

kH(t)
.

Clearly, all these coefficients are positive ω-periodic functions.
For a given continuous ω-periodic function g(t), let

ĝ = max
t∈[0,ω]

g(t), g = min
t∈[0,ω]

g(t).

The following result shows that system (12.6) is well-posed on

X+ := C([−τ̂ , 0],R2
+),

and hence, the derived model system is also biologically reasonable.

Lemma 12.2.1. For any φ = (φ1, φ2) ∈ X+, system (12.6) has a unique
nonnegative and bounded solution v(t, φ) with v0 = φ on [0,∞).

Proof. Note that f(t, φ) is continuous and Lipschitzian in φ in each compact
subset of X+. It follows that for any φ ∈ X+, system (12.6) admits a unique
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solution u(t, φ) with u0 = φ on its maximal interval of existence. Let x∗ =

(x∗
1, x

∗
2) :=

(
b̂L
d̄L

b̂pb̂L
αdL

,
b̂pb̂L
αdL

)
. For any given ρ ≥ 1, let [0, ρx∗]X be the order

interval in X , that is,

[0, ρx∗]X := {φ ∈ X : 0 ≤ φ(θ) ≤ ρx∗, ∀θ ∈ [−τ̂ , 0]}.
It is easy to verify that whenever ψ ∈ [0, ρx∗]X , t ∈ R, and ψi(0) = 0 (ψi(0) =
ρx∗

i ) for some i, then fi(t, ψ) ≥ 0 (fi(t, ψ) ≤ 0). By [326, Theorem 5.2.1
and Remark 5.2.1], it follows that [0, ρx∗]X is positively invariant for system
(12.6). Since ρ can be chosen as large as we wish, this proves the positivity
and boundedness of solutions in X+.

Next we use the theory in Section 11.1 to introduce the basic reproduction
ratio for our model system with periodic time delays. Linearizing system (12.8)
at its parasite-free steady state (0, 0), we obtain the following linear periodic
system:

dL

dt
= bL(t)P (t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)L(t− τP (t))− dP (t)P (t).

(12.9)

Let

F (t)

(
φ1

φ2

)
=

(
bL(t)φ2(−τL(t))
bP (t)φ1(−τP (t))

)
and V (t) =

(
dL(t) 0
0 dP (t)

)
.

Then the linear system (12.9) can be written as

du(t)

dt
= F (t)ut − V (t)u(t), ∀t ≥ 0.

Note that F (t) and V (t) are ω-periodic in t and the newly “birth” parasites is
described by F (t) while the growth of the parasites except birth is described
by the following evolution system

du(t)

dt
= −V (t)u(t).

Let Z(t, s), t ≥ s, be the evolution matrix of the above linear system. That
is, for each s ∈ R, the 2× 2 matrix Z(t, s) satisfies

d

dt
Z(t, s) = −V (t)Z(t, s), ∀t ≥ s, Z(s, s) = I,

where I is the 2× 2 identity matrix. Clearly, we have

Z(t, s) =

(
e−

∫ t
s
dL(ξ)dξ 0

0 e−
∫ t
s
dP (ξ)dξ

)
.

Recall that the exponential growth bound of Z(t, s) is defined as
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ω̂(Z) := inf
{
ω̃ : ∃M ≥ 1 such that ‖Z(t+ s, s)‖ ≤ Meω̃t, ∀s ∈ R, t ≥ 0

}
.

It is easy to see that ω̂(Z) ≤ −min{dL, dP }. Therefore, F (t) and V (t) satisfy
the following assumptions:

(A1) F (t) : X → R
2 is positive in the sense that F (t)X+ ⊆ R

2
+;

(A2) The periodic matrix −V (t) is cooperative, and ω̂(Z) < 0.

Let Cω be the Banach space of all ω-periodic functions from R to R2, equipped
with the maximum norm and the positive cone C+

ω := {u ∈ Cω : u(t) ≥
0, ∀t ∈ R}. Suppose v ∈ Cω is the initial distribution of larval and adult
parasites in this periodic environment, then F (t−s)vt−s is the distribution of
newly born parasites at time t− s with t ≥ s ≥ 0, and Z(t, t− s)F (t− s)vt−s

represents the distribution of those parasites who were newly reproduced at
time t− s and still survive in the environment at time t for t ≥ s. Hence,

∫ ∞

0

Z(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Z(t, t− s)F (t− s)v(t− s+ ·)ds

gives the distribution of accumulative parasite burden at time t produced by
those parasites introduced at all previous time.

We define the next generation operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Z(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.

According to Section 11.1, the basic reproduction ratio is R0 := r(L), the
spectral radius of L.

For any given t ≥ 0, let W (t) be the time-t map of the linear periodic
system (12.9) on X , that is, W (t)φ = wt(φ), where w(t, φ) is the unique
solution of (12.9) with w0 = φ ∈ X . By Theorem 11.1.1, we have the following
result, which indicates that R0 − 1 is a threshold value for the stability of the
zero solution of system (12.9).

Lemma 12.2.2. R0 − 1 has the same sign as r(W (ω))− 1.

To study the global dynamics of the model system in terms of R0, our
strategy is to use the theory of monotone and subhomogeneous semiflows in
Section 2.3. We start with a new phase space on which system (12.6) generates
an eventually strongly monotone periodic semiflow.

Let
Y := C([−τP (0), 0],R)× C([−τL(0), 0],R),

and
Y+ := C([−τP (0), 0],R+)× C([−τL(0), 0],R+).

Then (Y,Y+) is an ordered Banach space. For a continuous function u :
[−τP (0),+∞)× [−τL(0),+∞) → R

2 and t ≥ 0, we define ut ∈ Y by

(ut)1(θ) = u1(t+θ), ∀θ ∈ [−τP (0), 0], (ut)2(η) = u2(t+η), ∀η ∈ [−τL(0), 0].
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Lemma 12.2.3. For any φ ∈ Y+, system (12.8) admits a unique nonnegative
solution u(t, φ) on [0,∞) with u0 = φ.

Proof. Let τ̄ = min{τL, τP }. For any t ∈ [0, τ̄ ], since t − τL(t) is strictly
increasing, we have

−τL(0) = 0− τL(0) ≤ t− τL(t) ≤ τ̄ − τL(τ̄) ≤ τ̄ − τ̄ = 0,

and hence
P (t− τL(t)) = φ2(t− τL(t)).

Similarly,
L(t− τP (t)) = φ1(t− τP (t)).

Therefore, we have the following equations for t ∈ [0, τ̄ ]:

dL

dt
= bL(t)φ2(t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)φ1(t− τP (t))− dP (t)P (t)− α(t)P 2(t).

Given φ ∈ Y+, the solution (L(t), P (t)) of the above system exists for t ∈ [0, τ̄ ].
In other words, we obtain the values of u1(θ) = L(θ) for θ ∈ [−τP (0), τ̄ ] and
u2(η) = P (η) for η ∈ [−τL(0), τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τL(0) = 0− τL(0) ≤ τ̄ − τL(τ̄) ≤ t− τL(t) ≤ 2τ̄ − τL(2τ̄) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence, P (t−τL(t)) = u2(t−τL(t)) is known. Similarly, L(t−τP (t))=u1(t−
τP (t)) is also given from the previous step. Solving the following ordinary
differential system for t ∈ [τ̄ , 2τ̄ ] with L(τ̄) = u1(τ̄) and P (τ̄) = u2(τ̄):

dL

dt
= bL(t)u2(t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)u1(t− τP (t))− dP (t)P (t)− α(t)P 2(t),

we then get the solution (L(t), P (t)) on the interval [τ̄ , 2τ̄ ].
We can extend this procedure to [nτ̄ , (n+1)τ̄ ] for all n ∈ N. It then follows

that for any initial data φ ∈ Y+, the solution (L(t), P (t)) exists uniquely for
all t ≥ 0.

Remark 12.2.1. By the uniqueness of solutions in Lemmas 12.2.1 and 12.2.3,
it follows that for any ψ ∈ X+ and φ ∈ Y+ with ψ1(θ) = φ1(θ), ∀θ ∈
[−τP (0), 0] and ψ2(η) = φ2(η), ∀η ∈ [−τL(0), 0], then u(t, φ) = v(t, ψ), ∀t ≥
0, where u(t, φ) and v(t, ψ) are solutions of system (12.8) satisfying u0 = φ
and v0 = ψ, respectively.
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Lemma 12.2.4. Let Qt(φ) = ut(φ), t ≥ 0. Then Qt is an ω-periodic semiflow
on Y+ in the sense that (i) Q0 = I; (ii) Qt+ω = Qt ◦ Qω, ∀t ≥ 0; and (iii)
Qt(φ) is continuous in (t, φ) ∈ [0,∞)× Y+.

Proof. Clearly, property (i) holds true, and property (iii) follows from a stan-
dard argument. It suffices to prove (ii). Denote v(t) = u(t+ ω, φ), we need to
show that v(t) = u(t, uω(φ)), ∀t ≥ 0. To do this, we first check

dv1(t)

dt
=

du1(t+ ω, φ)

dt
= bL(t+ ω)u2(t+ ω − τL(t+ ω), φ)− dL(t+ ω)u1(t+ ω, φ)

= bL(t)u2(t+ ω − τL(t+ ω), φ)− dL(t)u1(t+ ω, φ)

= bL(t)v2(t− τL(t))− dL(t)v1(t).

Similarly, we have

dv2(t)

dt
=bP (t)v1(t− τP (t))− dP (t)v2(t)− α(t)(v2(t))

2.

This shows that v(t) is also a solution of system (12.8). Moreover, we have
v1(θ) = u1(θ + ω, φ) for θ ∈ [−τP (0), 0] and v2(η) = u2(η + ω, φ) for η ∈
[−τL(0), 0]. On the other side, let w(t) = u(t, uω(φ)), then w(t) is also a
solution of system (12.8), and w1(θ) = u1(θ, uω(φ)) = uω(φ)1(θ)=u1(θ+ω, φ)
for θ ∈ [−τP (0), 0] and w2(η) = u2(η, uω(φ)) = uω(φ)2(η)=u2(η+ω, φ) for η ∈
[−τL(0), 0]. Thus, v(t) and w(t) are solutions of system (12.8) with the same
initial data. By the uniqueness of solutions, we see that v(t) = w(t), ∀t ≥ 0,
that is,

u(t+ ω, φ) = u(t, uω(φ)), ∀t ≥ 0.

For any t ≥ 0 and θ ∈ [−τP (0), 0], if t + θ ≥ 0, we have u1(t + θ + ω, φ) =
u1(t+θ, uω(φ)), that is, ut+ω(φ)1(θ) = ut ◦uω(φ)1(θ); if t+θ < 0, then u1(t+
θ, uω(φ)) = uω(φ)1(t+θ) = u1(t+θ+ω, φ), which also implies ut◦uω(φ)1(θ) =
ut+ω(φ)1(θ). Similarly, we can show that ut ◦ uω(φ)2(η) = ut+ω(φ)2(η) for all
η ∈ [−τL(0), 0] and t ≥ 0. It then follows that ut ◦ uω(φ) = ut+ω(φ), and
hence, Qt+ω(φ) = Qt ◦Qω(φ) for all φ ∈ Y+ and t ≥ 0.

The following two lemmas indicate that the periodic semiflow Qt is even-
tually strongly monotone and strictly subhomogeneous.

Lemma 12.2.5. For any φ and ψ in Y+ with φ > ψ (that is, φ ≥ ψ but
φ �= ψ), the solutions u(t) and v(t) of system (12.8) with u0 = φ and v0 = ψ,
respectively, satisfy ui(t) > vi(t) for all t > 2τ̂ , i = 1, 2, and hence, Qt(φ) 
Qt(ψ) in Y for all t > 3τ̂ .

Proof. As in the proof of Lemma 12.2.3, a simple comparison argument on
each interval [nτ̄ , (n+ 1)τ̄ ], n ∈ N, implies that ui(t) ≥ vi(t) for all t ≥ 0. By
Lemma 12.2.1 and Remark 12.2.1, both u(t) and v(t) are bounded on [0,∞),
and hence, there exists a real number b > 0 such that ut and vt are in the
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order interval [(0, 0), (b, b)]Y for all t ≥ 0. Thus, we can choose a large number
M > 0 such that for each t ∈ R, g1(t, L) := −dL(t)L + ML is increasing in
L ∈ [0, b] and g2(t, P ) := −dP (t)P − α(t)P 2 +MP is increasing in P ∈ [0, b].
It then follows that both u(t) and v(t) satisfy the following system of integral
equations:

L(t) = e−MtL(0) +

∫ t

0

e−M(t−s)g1(s, L(s))ds+

∫ t

0

e−M(t−s)bL(s)P (s− τL(s))ds,

P (t) = e−MtP (0) +

∫ t

0

e−M(t−s)g2(s, P (s))ds+

∫ t

0

e−M(t−s)bP (s)L(s− τP (s))ds,

(12.10)

for all t ≥ 0. Since bothmL(t) := t−τL(t) andmP (t) := t−τP (t) are increasing
in t ∈ R, it easily follows that [−τL(0), 0] ⊆ mL([0, τ̂ ]) and [−τP (0), 0] ⊆
mP ([0, τ̂ ]). Without loss of generality, we assume that φ2 > ψ2. Then there
exists an η ∈ [−τL(0), 0] such that u2(η) > v2(η). In view of the first equation
of (12.10), we have u1(t) > v1(t) for all t > τ̂ . Note that if s > 2τ̂ , then
s − τP (s) > 2τ̂ − τ̂ = τ̂ . By the second equation of (12.10), it follows that
u2(t) > v2(t) for all t > 2τ̂ . This shows that ui(t) > vi(t) for all t > 2τ̂ , i =
1, 2, and hence, the solution map Qt is strongly monotone whenever t > 3τ̂ .

Lemma 12.2.6. For any φ  0 in Y and any γ ∈ (0, 1), we have ui(t, γφ) >
γui(t, φ) for all t > τ̂ , i = 1, 2, and hence, Qn

ω(γφ)  γQn
ω(φ) in Y for all

integers n with nω > 2τ̂ .

Proof. Let w(t) = u(t, γφ) and v(t) = γu(t, φ), where u(t, φ) is the unique so-
lution of system (12.8) with u0 = φ  0 in Y. As in the proof of Lemma 12.2.3,
we see that w(t) > 0 and v(t) > 0 for all t ≥ 0. Moreover, for all θ ∈ [−τP (0), 0]
and η ∈ [−τL(0), 0], we have

w1(θ) = γφ1(θ) = v1(θ) and w2(η) = γφ2(η) = v2(η).

It is easy to see that v(t) satisfies the following system:

dv1(t)

dt
= bL(t)v2(t− τL(t))− dL(t)v1(t),

dv2(t)

dt
= bP (t)v1(t− τP (t))− dP (t)v2(t)− α(t)

γ
v22(t),

and hence,

v1(t) =

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

for all t ≥ 0. For any 0 ≤ t ≤ τ̄ , we have

−τL(0) ≤ t− τL(t) ≤ τ̄ − τL(τ̄) ≤ 0
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and

w1(t) =

[
w1(0) +

∫ t

0

bL(ξ)w2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

=

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

= v1(t).

On the other side, the derivative of v2(t) at t = 0:

dv2(t)

dt

∣∣∣∣
t=0

= bP (0)v1(0− τP (0))− dP (0)v2(0)− α(0)

γ
v22(0)

< bP (0)v1(0− τP (0))− dP (0)v2(0)− α(0)v22(0)

= bP (0)w1(−τP (0))− dP (0)w2(0)− α(0)w2
2(0)

=
dw2(t)

dt

∣∣∣∣
t=0

.

Since v2(0) = w2(0) > 0, it follows that there exists an ε ∈ (0, τ̄) such that
0 < v2(t) < w2(t) for all 0 < t < ε. We claim that v2(t) < w2(t) for all
0 < t ≤ τ̄ . Assume not, then there exists t0 ∈ (0, τ̄ ] such that v2(t) < w2(t)
for all 0 < t < t0 while v2(t0) = w2(t0), which implies v′2(t0) ≥ w′

2(t0).
However, we have

dv2(t)

dt

∣∣∣∣
t=t0

= bP (t0)v1(t0 − τP (t0))− dP (t0)v2(t0)− α(t0)

γ
v22(t0)

< bP (t0)v1(t0 − τP (t0))− dP (t0)v2(t0)− α(t0)v
2
2(t0)

= bP (t0)w1(t0 − τP (t0))− dP (t0)w2(t0)− α(t0)w
2
2(t0)

=
dw2(t)

dt

∣∣∣∣
t=t0

,

a contradiction. This shows that v2(t) < w2(t) for all 0 < t ≤ τ̄ .
Similar arguments for any interval (nτ̄ , (n+ 1)τ̄ ] imply that v1(t) ≤ w1(t)

and v2(t) < w2(t) for all t ∈ (nτ̄ , (n+1)τ̄ ] with n ∈ N. In particular, ξ−τL(ξ) >
τ̂ − τ̂ = 0 and w2(ξ − τL(ξ)) > v2(ξ − τL(ξ)) for all ξ > τ̂ . Therefore, for any
t > τ̂ , we have

w1(t) =

[
w1(0) +

∫ t

0

bL(ξ)w2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

>

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

= v1(t).

It follows that v1(t) < w1(t) and v2(t) < w2(t) for all t > τ̂ , that is, ui(t, γφ) >
γui(t, φ) for all t > τ̂ , i = 1, 2. Thus, Qn

ω(γφ) = Qnω(γφ)  γQnω(φ) =
γQn

ω(φ) for all integer n with nω > 2τ̂ .
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For any given t ≥ 0, let G(t) be the time-t map of the linear periodic
system (12.9) on Y, that is, G(t)φ = zt(φ), where z(t, φ) is the unique solution
of (12.9) with z0 = φ ∈ Y. The subsequent result shows that the stability of
the zero solution for system (12.9) on X is equivalent to that on Y.

Lemma 12.2.7. Two Poincaré maps W (ω) : X → X and G(ω) : Y → Y
have the same spectral radius, that is, r(W (ω)) = r(G(ω)).

Proof. We fix an integer n0 such that n0ω > 3τ̂ . By the proof of Lemma 12.2.5,
we see that G(ω)n0 = G(n0ω) is strongly positive on Y. Further, [145, Theo-
rem 3.6.1] implies that G(ω)n0 is compact. Then r(G(ω)) > 0 according to the
Krein-Rutmann theorem, as applied to the linear operator (G(ω))n0 , together
with the fact that r(G(ω)n0) = (r(G(ω)))n0 . For any given φ = (φ1, φ2) ∈ Y,
we define φ̃ = (φ̃1, φ̃2) ∈ X by

φ̃1(θ) =

{
φ1(−τP (0)) if θ ∈ [−τ̂ ,−τP (0)],

φ1(θ) if θ ∈ [−τP (0), 0];

and

φ̃2(θ) =

{
φ2(−τL(0)) if θ ∈ [−τ̂ ,−τL(0)],

φ2(θ) if θ ∈ [−τL(0), 0].

Clearly, ‖φ‖Y = ‖φ̃‖X . By Remark 12.2.1, it follows that for all integer n with
nω > τ̂ ,

‖G(nω)φ‖Y ≤ ‖W (nω)φ̃‖X ≤ ‖W (nω)‖X ·‖φ̃‖X = ‖W (nω)‖X ·‖φ‖Y , ∀φ ∈ Y,

and hence, ‖G(nω)‖Y ≤ ‖W (nω)‖X . Since

r(G(ω)) = lim
n→∞ ‖G(ω)n‖ 1

n

Y = lim
n→∞ ‖G(nω)‖ 1

n

Y

and
r(W (ω)) = lim

n→∞ ‖W (ω)n‖ 1
n

X = lim
n→∞ ‖W (nω)‖ 1

n

X ,

we then have r(W (ω)) ≥ r(G(ω)) > 0.
It remains to prove that r(W (ω)) ≤ r(G(ω)). In view of [326, Theorem

5.1.1] and [145, Theorem 3.6.1], we see that the linear operator W (ω)n0 =
W (n0ω) is positive and compact on X . By the Krein-Rutmann theorem (see,
e.g., [152, Theorem 7.1]), r(W (ω)n0) is an eigenvalue ofW (ω)n0 with an eigen-
vector φ∗ > 0 in X . For any φ ∈ X , we define φ ∈ Y as

φ
1
(θ) = φ1(θ), ∀θ ∈ [−τP (0), 0], and φ

2
(η) = φ2(η), ∀η ∈ [−τL(0), 0].

By Remark 12.2.1, we have u(t, φ) = v(t, φ), ∀t ≥ 0, where u(t, φ) and v(t, φ)
are the unique solutions of system (12.9) with u0 = φ ∈ X and v0 = φ ∈ Y,
respectively. We further claim that φ∗ > 0 in Y. Otherwise, φ∗ = 0, and
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hence, u(t, φ∗) = v(t, φ∗) = 0, ∀t ≥ 0. This implies that

(r(W (ω)))n0φ∗ = r(W (ω)n0)φ∗ = W (ω)n0φ∗ = W (n0ω)φ
∗ = 0,

and hence, φ∗ = 0 in X , which is a contradiction. Since

G(ω)n0φ∗ = W (ω)n0φ∗ = r(W (ω))n0)φ∗ = (r(W (ω)))n0φ∗,

(r(W (ω)))n0 is a positive eigenvalue of G(ω)n0 with φ∗ being a positive eigen-
vector in Y. It then follows that (r(W (ω)))n0 ≤ r(G(ω)n0) = (r(G(ω)))n0 ,
and hence r(W (ω)) ≤ r(G(ω)). Consequently, we have r(W (ω)) = r(G(ω)).

Now we are in a position to prove the main result of this section.

Theorem 12.2.1. The following statements are valid:

(1) If R0 ≤ 1, then (0, 0) is globally asymptotically stable for system (12.8) in
Y+.

(2) If R0 > 1, then system (12.8) admits a unique positive ω-periodic solution
(L∗(t), P ∗(t)), and it is globally asymptotically stable for system (12.8) in
Y+ \ {(0, 0)}.

Proof. We fix an integer n0 such that n0ω > 3τ̂ . In view of Lemma 12.2.4,
Qt can be regarded as an n0ω-periodic semiflow on Y+. By Lemmas 12.2.5
and 12.2.6, Qn0ω is a strongly monotone and strictly subhomogeneous map
on Y+. Applying Theorem 2.3.4 and Lemma 2.2.1 to the map Qn0ω, we have
the following threshold-type result:

(a) If r(DQn0ω(0)) ≤ 1, then (0, 0) is globally asymptotically stable for system
(12.8) in Y+.

(b) If r(DQn0ω(0)) > 1, then system (12.8) admits a unique positive n0ω-
periodic solution (L∗(t), P ∗(t)), and it is globally asymptotically stable
for system (12.8) in Y+ \ {(0, 0)}.

Note that r(DQn0ω(0)) = r(G(n0ω)) = (r(G(ω)))n0 . By Lemmas 12.2.2
and 12.2.7, we then see that

sign(R0 − 1) = sign(r(DQn0ω(0))− 1).

Thus, it suffices to show that in case (b), (L∗(t), P ∗(t)) is also ω-periodic. Let
ψ∗ = v∗0 ∈ Y with v∗(t) = (L∗(t), P ∗(t)). Then Qn0ωψ

∗ = ψ∗. Note that

Qn0
ω (Qωψ

∗) = Qω(Q
n0
ω ψ∗) = Qω(Qn0ωψ

∗) = Qω(ψ
∗).

By the uniqueness of the positive fixed point of Qn0
ω = Qn0ω, it follows that

Qωψ
∗ = ψ∗, which implies that (L∗(t), P ∗(t)) = u(t, ψ∗) is an ω-periodic

solution of system (12.8).
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In the rest of this section, we deduce the dynamics for the other two
variables X(t) and Y (t) in system (12.5), which do not appear in system
(12.6). In the case where R0 > 1, we have

lim
t→∞[(L(t), P (t))− (L∗(t), P ∗(t))] = 0

for any solution of system (12.6) through nonzero initial data. By using the
integral form for the free living uninfected larvae X(t) and arrested larvae
Y (t) in (12.7), we obtain

lim
t→∞

[
X(t)−

∫ t

t−τL(t)

λP ∗(ξ)e−
∫ t
ξ
μX(s) dsdξ

]
= 0, and

lim
t→∞

[
Y (t)−

∫ t

t−τP (t)

β(ξ)H(ξ)L∗(ξ)e−
∫ t
ξ
(μY (s)+μH(s)) dsdξ

]
= 0.

Moreover, it is easy to verify that both

X∗(t) :=
∫ t

t−τL(t)

λP ∗(ξ)e−
∫ t
ξ
μX(s) dsdξ

and

Y ∗(t) :=
∫ t

t−τP (t)

β(ξ)H(ξ)L∗(ξ)e−
∫ t
ξ
(μY (s)+μH(s)) dsdξ

are positive ω-periodic functions. In the case where R0 ≤ 1, we have

lim
t→∞(L(t), P (t)) = (0, 0).

By using the integral form in (12.7) again, we obtain

lim
t→∞(X(t), Y (t)) = (0, 0).

In summary, we have the following result on the global dynamics of the full
model system.

Theorem 12.2.2. The following statements hold for system (12.5):

(1) If R0 ≤ 1, then (0, 0, 0, 0) is globally attractive.
(2) If R0 > 1, then there exists a positive ω-periodic solution

(X∗(t), L∗(t), Y ∗(t), P ∗(t)),

and it is globally attractive for all nontrivial solutions.
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12.3 Numerical Computation of R0

To numerically compute the basic reproduction ratio, we are going to rewrite
the linear operator L into the form of equation (3) in [282], where an algorithm
is proposed for the R0 computation of periodic ordinary differential systems.

Note that

F (t− s)

(
φ1

φ2

)
=

(
bL(t− s)φ2(−τL(t− s))
bP (t− s)φ1(−τP (t− s))

)
.

It then follows that

[Lv](t) =
∫∞
0

Z(t, t− s)F (t− s)v(t− s+ ·)ds
=

∫∞
0

(
e−

∫ t
t−s dL(ξ)dξ 0

0 e−
∫ t
t−s dP (ξ)dξ

)(
bL(t− s)v2(t− s− τL(t− s))
bP (t− s)v1(t− s− τP (t− s))

)
ds

=

( ∫∞
0

e−
∫ t
t−s dL(ξ)dξbL(t− s)v2(t− s− τL(t− s))ds∫∞

0
e−

∫ t
t−s dP (ξ)dξbP (t− s)v1(t− s− τP (t− s))ds

)
.

Let t− s− τL(t− s) = t− s1. Since the function y = x− τL(x) is strictly
increasing, the inverse function exists and we can solve x = hL(y). Hence, we
obtain t− s = hL(t− s1), that is,

s = t− hL(t− s1), ds1 = d(s+ τL(t− s)) = (1− τ ′L(t− s))ds,

and ds = 1
1−τ ′

L(hL(t−s1))
ds1. Therefore,

∫∞
0

e−
∫ t
t−s

dL(ξ)dξbL(t− s)v2(t− s− τL(t− s))ds

=
∫∞
τL(t)

e
− ∫ t

hL(t−s1)
dL(ξ)dξ

bL(hL(t−s1))
1−τ ′

L(hL(t−s1))
v2(t− s1)ds1

=
∫∞
τL(t)

e
− ∫ t

hL(t−s)
dL(ξ)dξ

bL(hL(t−s))
1−τ ′

L(hL(t−s)) v2(t− s)ds.

Similarly, let t − s − τP (t − s) = t − s2. Assume that the inverse function of
y = x− τP (x) is y = hP (x). Solving t− s = hP (t− s2), we get

s = t− hP (t− s2), ds2 = (1− τ ′P (t− s))ds, and ds =
1

1− τ ′P (hP (t− s2))
ds2.

Therefore,

∫∞
0

e−
∫ t
t−s

dP (ξ)dξbP (t− s)v1(t− s− τP (t− s))ds

=
∫∞
τP (t)

e
− ∫ t

hP (t−s2)
dP (ξ)dξ

bP (hP (t−s2))
1−τ ′

P (hP (t−s2))
v1(t− s2)ds2

=
∫∞
τP (t)

e
− ∫ t

hP (t−s)
dP (ξ)dξ

bP (hP (t−s))
1−τ ′

P (hP (t−s)) v1(t− s)ds.
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Define

K12(t, s) =

{
0, s < τL(t)

e
− ∫ t

hL(t−s)
dL(ξ)dξ

bL(hL(t−s))
1−τ ′

L(hL(t−s)) , s ≥ τL(t)

and

K21(t, s) =

{
0, s < τP (t)

e
− ∫ t

hP (t−s)
dP (ξ)dξ

bP (hP (t−s))
1−τ ′

P (hP (t−s)) , s ≥ τP (t)

while K11(t, s) = K22(t, s) = 0. Then we have

[Lv](t) =
∫∞
0

K(t, s)v(t− s)ds

=
∞∑
j=0

∫ (j+1)ω

jω
K(t, s)v(t− s)ds

=
∞∑
j=0

∫ ω

0
K(t, jω + s)v(t− s− jω)ds

=
∫ ω

0
G(t, s)v(t− s)ds

with

G(t, s) =

∞∑
j=0

K(t, jω + s),

which is of the integral form

[Lφ](t) =

∫ ω

0

G(t, s)φ(t− s)ds. (12.11)

Below we present a numerical algorithm, which is due to Posny and Wang
[282], for the computation of the spectral radius of the integral operator given
by (12.11).

Let us partition the interval [0, ω] uniformly into n nodes labeled as ti =
i · ω

n for i = 0, . . . , n− 1. Using the trapezoidal rule, one of the most common
numerical integration techniques, we can approximate the integral in (12.11)
with second-order accuracy:

[Lφ](t) ≈ ω

n

(
n−1∑
i=1

G(t, ti)φ(t− ti) +
1

2
G(t, t0)φ(t− t0) +

1

2
G(t, tn)φ(t− tn)

)
.

Since φ(t) is ω-periodic, it is clear that φ(t− t0) = φ(t− tn). For convenience,
we let

G̃(t, t0) =
1

2
[G(t, t0) +G(t, tn)].

Then

[Lφ](t) ≈ ω

n

[
G̃(t, t0)φ(t− t0) +

n−1∑
i=1

G(t, ti)φ(t− ti)

]
.

Now [Lφ](t) = λφ(t) can be written as a matrix equation:
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ω

n
[G̃(t, t0) G(t, t1) G(t, t2) · · · G(t, tn−1)]

⎡
⎢⎢⎢⎢⎢⎣

φ(t− t0)
φ(t− t1)
φ(t− t2)

...
φ(t− tn−1)

⎤
⎥⎥⎥⎥⎥⎦
= λφ(t).

Setting t = tj(0 ≤ j ≤ n− 1) in the above equation yields

ω

n
[G̃(tj , t0) G(tj , t1) G(tj , t2) · · · G(tj , tn−1)]

⎡
⎢⎢⎢⎢⎢⎣

φ(tj − t0)
φ(tj − t1)
φ(tj − t2)

...
φ(tj − tn−1)

⎤
⎥⎥⎥⎥⎥⎦
= λφ(tj). (12.12)

Again, by the periodicity of φ(t), it follows that

φ(tj − t0) = φ(tj), φ(tj − t1) = φ(tj−1), . . . ,

φ(tj − tj−1) = φ(t1), φ(tj − tj) = φ(t0), φ(tj − tj+1) = φ(tn−1),

. . . , φ(tj − tn−2) = φ(tj+2), φ(tj − tn−1) = φ(tj+1),

and we can rearrange the terms in (12.12) to obtain

ω

n

[
G(tj , tj) . . . G̃(tj , t0) G(tj , tn−1) . . . G(tj , tj+1)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(t0)
φ(t1)
...

φ(tj)
...

φ(tn−2)
φ(tn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λφ(tj).

(12.13)

Note that this equation holds for all j = 0, . . . , n−1, and hence, it generates
a matrix system. The coefficient matrix, denoted by A, is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G̃(t0, t0) G(t0, tn−1) · · · · · · · · · G(t0, t2) G(t0, t1)

G(t1, t1) G̃(t1, t0) · · · · · · · · · G(t1, t3) G(t1, t2)
...

...
. . .

. . .
. . .

...
...

G(tj , tj) G(tj , tj−1) · G̃(tj , t0) · G(tj , tj+2) G(tj , tj+1)
...

...
. . .

. . .
. . .

...
...

G(tn−2, tn−2) G(tn−2, tn−3) . . . · · · · · · G̃(tn−2, t0) G(tn−2, tn−1)

G(tn−1, tn−1) G(tn−1, tn−2) · · · · · · · · · G(tn−1, t1) G̃(tn−1, t0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12.14)

It then follows that (12.13) can be put into a compact form:

ω

n
Aφ̃ = λφ̃, (12.15)
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where A, defined in (12.14), is a matrix of dimension (nm)× (nm), and φ̃ =
[φ(t0), φ(t1), . . . , φ(tn−1)]

T is a vector of dimension (nm)× 1.
Consequently, to compute the basic reproduction ratio R0 := ρ(L), it

suffices to find the maximum λ such that (12.15) is valid, that is, R0 ≈ ω
nρ(A).

12.4 Notes

Sections 12.1, 12.2, and 12.3 are taken from Lou and Zhao [234] with the
exception that the numerical algorithm in Section 12.3 comes from Posny and
Wang [282].

The introduction of the term 1− τ ′(t) is due to the incorporation of state-
dependent delay in Barbarossa, Hadeler and Kuttler [26] and Kloosterman,
Campbell and Poulin [202]. A similar term was formulated in models proposed
by Wu et al. [414] and some others, see, e.g., McCauley et al. [246] and the
references therein, to describe the population growth with threshold age τ
depending on time t.

Model (12.6) was proposed earlier by Molnár et al. [250], where L in equa-
tions (8b) and (1b) should be L(t− τP ). There are also some other algorithms
to compute R0 for periodic population models with constant time delay, see,
e.g., Bacaër [21].
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