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Preface

Population dynamics is an important subject in mathematical biology.
A central problem is to study the long-term behavior of modeling systems.
Most of these systems are governed by various evolutionary equations such
as difference, ordinary, functional, and partial differential equations (see, e.g.,
[253, 206, 334, 167, 77]). As we know, interactive populations often live in a
fluctuating environment. For example, physical environmental conditions such
as temperature and humidity and the availability of food, water, and other
resources usually vary in time with seasonal or daily variations. Therefore,
more realistic models should be nonautonomous systems. In particular, if the
data in a model are periodic functions of time with commensurate period,
a periodic system arises; if these periodic functions have different (minimal)
periods, we get an almost periodic system. The existing reference books, from
the dynamical systems point of view, mainly focus on autonomous biological
systems. The book of Hess [152] is an excellent reference for periodic parabolic
boundary value problems with applications to population dynamics. Since the
publication of this book, there have been extensive investigations on periodic,
asymptotically periodic, almost periodic, and even general nonautonomous
biological systems, which in turn have motivated further development of the
theory of dynamical systems.

In order to explain the dynamical systems approach to periodic population
problems, let us consider, as an illustration, two species periodic competitive
systems

du1
dt

= f1(t, u1, u2),

du2
dt

= f2(t, u1, u2),

(0.1)

where f1 and f2 are continuously differentiable and ω-periodic in t, and
∂fi/∂uj ≤ 0, i �= j. We assume that, for each v ∈ R

2, the unique solution
u(t, v) of system (0.1) satisfying u(0) = v exists globally on [0,∞).

vii



viii Preface

Let X = R
2, and define a family of mappings T (t) : X → X, t ≥ 0, by

T (t)x = u(t, x), ∀x ∈ X . It is easy to see that T (t) satisfies the following
properties:

(1) T (0) = I, where I is the identity map on X .
(2) T (t+ ω) = T (t) ◦ T (ω), ∀t ≥ 0.
(3) T (t)x is continuous in (t, x) ∈ [0,∞)×X .

T (t) is called the periodic semiflow generated by periodic system (0.1), and
P := T (ω) is called its associated Poincaré map (or period map). Clearly,
Pnv = u(nω, v), ∀n ≥ 1, v ∈ R

2. It then follows that the study of the dy-
namics of (0.1) reduces to that of the discrete dynamical system {Pn} on
R

2.
If u = (u1, u2), v = (v1, v2) ∈ R

2, then we write u ≤ v whenever ui ≤ vi
holds for i = 1, 2. We write u ≤K v whenever u1 ≤ v1 and u2 ≥ v2. By
the well-known Kamke comparison theorem, it follows that the following key
properties hold for competitive system (0.1) (see, e.g., [334, Lemma 7.4.1]):

(P1) If u ≤K v, then Pu ≤K Pv.
(P2) If Pu ≤ Pv, then u ≤ v.

Then the Poincaré map P , and hence the discrete dynamical system {Pn},
is monotone with respect to the order ≤K on R

2. Consequently, system (0.1)
admits convergent dynamics (see [334, Theorem 7.4.2]).

Theorem Every bounded solution of a competitive planar periodic system
asymptotically approaches a periodic solution.

We use the proof provided in [334, Theorem 7.4.2]. Indeed, it suffices to prove
that every bounded orbit of {Pn} converges to a fixed point of P . Given two
points u, v ∈ R

2, one or more of the four relations u ≤ v, v ≤ u, u ≤K v,
v ≤K u must hold. Now, if Pn0u0 ≤K Pn0+1u0 (or the reverse inequality)
holds for some n0 ≥ 0, then (P1) implies that Pnu0 ≤K Pn+1u0 (or the
reverse inequality) holds for all n ≥ n0. Therefore, {Pnu0} converges to some
fixed point ū, since the sequence is bounded and eventually monotone. The
proof is complete in this case, so we assume that there does not exist such an
n0 as just described. In particular, it follows that u0 is not a fixed point of
P . Then it follows that for each n we must have either Pn+1u0 ≤ Pnu0 or
the reverse inequality. Suppose for definiteness that u0 ≤ Pu0, the other case
being similar. We claim that Pnu0 ≤ Pn+1u0 for all n. If not, there exists n0

such that
u0 ≤ Pu0 ≤ P 2u0 ≤ · · · ≤ Pn0−1u0 ≤ Pn0u0

but Pn0u0 ≥ Pn0+1u0. Clearly, n0 ≥ 1 since u0 ≤ Pu0. Applying (P2) to the
displayed inequality yields Pn0−1u0 ≥ Pn0u0 and therefore Pn0−1u0 = Pn0u0.
Since P is one to one, u0 must be a fixed point, in contradiction to our
assumption. This proves the claim and implies that the sequence {Pnu0}
converges to some fixed point ū.
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It is hoped that the reader will appreciate the elegance and simplicity of
the arguments supporting the above theorem, which are motivated by a now
classical paper of deMottoni and Schiaffino [92] for the special case of periodic
Lotka–Volterra systems. This example also illustrates the roles that Poincaré
maps and monotone discrete dynamical systems may play in the study of pe-
riodic systems. For certain nonautonomous perturbations of a periodic system
(e.g., an asymptotically periodic system), one may expect that the Poincaré
map associated with the unperturbed periodic system (e.g., the limiting pe-
riodic system) should be very helpful in understanding the dynamics of the
original system. For a nonperiodic nonautonomous system (e.g., almost peri-
odic system), we are not able to define a continuous or discrete-time dynamical
system on its state space. The skew-product semiflow approach has proved to
be very powerful in obtaining dynamics for certain types of nonautonomous
systems (see, e.g., [303, 300, 311]).

The main purpose of this book is to provide an introduction to the the-
ory of periodic semiflows on metric spaces and its applications to population
dynamics. Naturally, the selection of the material is highly subjective and
largely influenced by my personal interests. In fact, the contents of this book
are predominantly from my own and my collaborators’ recent works. Also, the
list of references is by no means exhaustive, and I apologize for the exclusion
of many other related works.

Chapter 1 is devoted to abstract discrete dynamical systems on metric
spaces. We study global attractors, chain transitivity, strong repellers, and
perturbations. In particular, we will show that a dissipative, uniformly persis-
tent, and asymptotically compact system must admit a coexistence state. This
result is very useful in proving the existence of (all or partial componentwise)
positive periodic solutions of periodic evolutionary systems.

The focus of Chapter 2 is on global dynamics in certain types of monotone
discrete dynamical systems on ordered Banach spaces. Here we are interested
in the abstract results on attracting order intervals, global attractivity, and
global convergence, which may be easily applied to various population models.

In Chapter 3, we introduce the concept of periodic semiflows and prove
a theorem on the reduction of uniform persistence to that of the associated
Poincaré map. The asymptotically periodic semiflows, nonautonomous semi-
flows, skew-product semiflows, and continuous processes are also discussed.

In Chapter 4, as a first application of the previous abstract results, we
analyze in detail a discrete-time, size-structured chemostat model that is de-
scribed by a system of difference equations, although in this book our main
concern is with global dynamics in periodic and almost periodic systems. The
reason for this choice is that we want to show how the theory of discrete dy-
namical systems can be applied to discrete-time models governed by difference
equations (or maps).

In the rest of the book, we apply the results in Chapters 1–3 to continuous-
time periodic population models: in Chapter 5 to the N -species competition
in a periodic chemostat, in Chapter 6 to almost periodic competitive systems,
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in Chapter 7 to competitor–competitor–mutualist parabolic systems, and in
Chapter 8 to a periodically pulsed bioreactor model. Of course, for each chap-
ter, we need to use different qualitative methods and even to develop certain
ad hoc techniques.

Chapter 9 is devoted to the global dynamics in an autonomous, nonlocal,
and delayed predator–prey model. Clearly, the continuous-time analogues of
the results in Chapters 1 and 2 can find applications in autonomous models.
Note that an autonomous semiflow can be viewed as a periodic one with the
period being any fixed positive real number, and hence it is possible to get
some global results by using the theory of periodic semiflows. However, we
should point out that there do exist some special theory and methods that
are applicable only to autonomous systems. The fluctuation method in this
chapter provides such an example.

The existence, attractivity, uniqueness, and exponential stability of pe-
riodic traveling waves in periodic reaction–diffusion equations with bistable
nonlinearities are discussed in Chapter 10, which is essentially independent of
the previous chapters. We appeal only to a convergence theorem from Chap-
ter 2 to prove the attractivity and uniqueness of periodic waves. Here the
Poincaré-type map associated with the system plays an important role once
again.

Over the years, I have benefited greatly from the communications, dis-
cussions, and collaborations with many colleagues and friends in the fields of
differential equations, dynamical systems, and mathematical biology, and I
would like to take this opportunity to express my gratitude to all of them. I
am particularly indebted to Herb Freedman, Morris Hirsch, Hal Smith, Horst
Thieme, Gail Wolkowicz, and Jianhong Wu, with whom I wrote research ar-
ticles that are incorporated in the present book.

Finally, I gratefully appreciate, financial support for my research from the
National Science Foundation of China, the Royal Society of London, and the
Natural Sciences and Engineering Research Council of Canada.



Preface to the Second Edition

For this edition, I have corrected some typos, revised Sections 1.1 and 1.3.4 by
using the concepts of global attractors and strong global attractors, deleted
the original subsection on order persistence from Section 1.3, and added three
new sections about persistence and attractors (Section 1.3.3), saddle point
behavior for monotone semiflows (Section 2.5), and solution maps of abstract
nonautonomous functional differential equations (Section 3.5), respectively. I
have also mentioned more related references in the notes sections of Chap-
ters 1–10.

In addition, I have added four new chapters. Chapter 11 is devoted to the
general theory of basic reproduction ratios R0 for compartmental models of
periodic functional differential equations and autonomous reaction–diffusion
systems. Chapter 12 deals with the threshold dynamics in terms of R0 for a
new class of population models with time periodic delays. In Chapter 13, we
study a periodic reaction–diffusion SIS system and investigate the effect of
spatial and temporal heterogeneities on the extinction and persistence of the
infectious disease. The final chapter, Chapter 14, provides a complete analysis
of the disease-free dynamics and global dynamics for a nonlocal spatial model
of Lyme disease. It is expected that Chapters 12–14 may serve as templates for
future investigations on other population models with spatial and temporal
heterogeneities.

My sincere thanks goes to Jifa Jiang, Xing Liang, Yijun Lou, Pierre Magal,
Rui Peng, Wendi Wang, and Xiao Yu, whose joint research articles with me
have been incorporated in the second edition. I am also very grateful to all
collaborators and friends for their encouragements, suggestions, and assistance
with this revision.

St. John’s, NL, Canada Xiao-Qiang Zhao
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1

Dissipative Dynamical Systems

There are many discrete-time population models governed by difference equa-
tions (or maps), and as we mentioned in the Preface, the dynamics of a peri-
odic differential system can be investigated via its associated Poincaré map.
The aim of this chapter is to introduce basic definitions and develop main
tools in the theory of discrete dynamical systems. In Section 1.1 we present
concepts of limit sets and attractors and some fundamental theorems such as
the LaSalle invariance principle, the asymptotic fixed point theorem, and the
global attractor theorems.

Chain transitivity has remarkable connections to the structure of attrac-
tors. In Section 1.2 we first give typical examples and characteristics of chain
transitive sets. Then we show that the Butler–McGehee properties of omega
limit sets are shared by chain transitive sets for a dynamical system, which
enable us to obtain further important properties of chain transitive sets such
as strong attractivity and convergence, and to prove the equivalence between
acyclic coverings and Morse decompositions.

Uniform persistence is an important concept in population dynamics, since
it characterizes the long-term survival of some or all interacting species in an
ecosystem. Looked at abstractly, it is the notion that a closed subset of the
state space is repelling for the dynamics on the complementary set, and then
it gives a uniform estimate for omega limit sets, which sometimes is essen-
tial to obtain a more detailed global dynamics. In Section 1.3 we prove a
strong repeller theorem in terms of chain transitive sets, which unifies earlier
results on uniform persistence, and implies robustness of uniform persistence.
Then we show that a dissipative, uniformly persistent, and asymptotically
compact system must have at least one coexistence steady state, which pro-
vides a dynamic approach to some static problems (e.g., existence of positive
steady states and periodic solutions). We also introduce the concept of gener-
alized distance functions in abstract persistence theory so that the practical
persistence can be easily obtained for certain infinite-dimensional biological
systems.

© Springer International Publishing AG 2017
X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books
in Mathematics, DOI 10.1007/978-3-319-56433-3 1

1



2 1 Dissipative Dynamical Systems

In Section 1.4 we discuss persistence under perturbations. We prove a gen-
eral result on the perturbation of a globally stable steady state. Then we prove
uniform persistence uniform in parameters, which is very useful in establish-
ing the robustness of global asymptotic stability of an equilibrium solution. A
dissipative and uniformly persistent system is often said to be permanent. For
a class of autonomous Kolmogorov systems of ordinary differential equations
we also obtain a robust permanence theorem.

1.1 Limit Sets and Global Attractors

Let N be the set of integers and N+ the set of nonnegative integers. Let X be
a complete metric space with metric d and f : X → X a continuous map. For
a nonempty invariant set M (i.e., f(M) = M), the set W s(M) := {x ∈ X :
limn→∞ d(fn(x),M) = 0} is called the stable set ofM . The omega limit set of
x is defined in the usual way as ω(x) = {y ∈ X : fnk(x) → y, for somenk →
∞}. A negative orbit through x = x0 is a sequence γ−(x) = {xk}0k=−∞ such
that f(xk−1) = xk for integers k ≤ 0. There may be no negative orbit through
x, and even if there is one, it may not be unique. Of course, a point of an
invariant set always has at least one negative orbit contained in the invariant
set. For a given negative orbit γ−(x) we define its alpha limit set as α(γ−) =
{y ∈ X : xnk

→ y for somenk → −∞}. If γ+(x) = {fn(x) : n ≥ 0} (γ−(x))
is precompact (i.e., it is contained in a compact set), then ω(x) (α(γ−)) is
nonempty, compact, and invariant(see, e.g., [141, Lemma 2.1.2]).

Let e ∈ X be a fixed point of f (i.e., f(e) = e). Recall that e is said to be
stable for f : X → X if for each ε > 0 there exists δ > 0 such that for any
x ∈ X with d(x, e) < δ, we have d(fn(x), e) < ε, ∀n ≥ 0. The following simple
observation is useful in proving the convergence of a precompact positive orbit
to a fixed point.

Lemma 1.1.1. (Convergence) Let e be a stable fixed point and γ+(x) a
precompact positive orbit for f : X → X. If e ∈ ω(x), then ω(x) = {e}.

Proof. Let ε > 0 be given. By stability of e for f : X → X , there exists δ > 0
such that for any y ∈ X with d(y, e) < δ, we have d(fm(y), e) < ε, ∀m ≥ 0.
Since e ∈ ω(x), there is a subsequence nk → ∞ with fnk(x) → e, and hence
an index k0 such that d(fnk0 (x), e) < δ. Thus d(fnk0

+m(x), e) < ε, ∀m ≥ 0,
which implies that ω(x) ⊂ {z ∈ X : d(z, e) ≤ ε}, ∀ε > 0. Letting ε → 0, we
get ω(x) = {e}.

Definition 1.1.1. Let G be a closed subset of X. A continuous function V :
G → R is said to be a Liapunov function on G of the map f : G → G
(or the discrete system xn+1 = f(xn), n ≥ 0) if V̇ (x) := V (f(x))−V (x) ≤ 0
for all x ∈ G.

Theorem 1.1.1. (LaSalle invariance principle) Assume that V is a Li-
apunov function on G of f , and that γ+(x) is a precompact orbit of f and
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γ+(x) ⊂ G. Then ω(x) ⊂ M ∩ V −1(c) for some c = c(x), where M is the
largest invariant set in E := {x ∈ G : V̇ (x) = 0}, and V −1(c) := {x ∈ G :
V (x) = c}.

Proof. Clearly, the continuous function V is bounded on the compact set
γ+(x) ⊂ G. Let xn = fn(x), n ≥ 0. Then

V (xn+1)− V (xn) = V (f(xn))− V (xn) = V̇ (xn) ≤ 0,

and hence V (xn) is nonincreasing with respect to n and is bounded from
below. Therefore, there is a real number c = c(x) such that limn→∞ V (xn) = c.
For any y ∈ ω(x) ⊂ G, there is a sequence nk → ∞ such that limk→∞ xnk

= y.
Since V is continuous, limk→∞ V (xnk

) = V (y) = c, and ω(x) ⊂ V −1(c). Since
ω(x) is invariant, V (f(y)) = c and V̇ (y) = 0. Therefore, ω(x) ⊂ E, and hence
ω(x) ⊂ M .

Recall that a set U in X is said to be a neighborhood of another set V
provided that V is contained in the interior int(U) of U . For any subsets
A, B ⊂ X and any ε > 0, we define

d(x,A) := inf
y∈A

d(x, y), δ(B,A) := sup
x∈B

d(x,A),

N(A, ε) := {x ∈ X : d(x,A) < ε} and N(A, ε) := {x ∈ X : d(x,A) ≤ ε} .
The Kuratowski measure of noncompactness, α, is defined by

α(B) = inf{r : B has a finite open cover of diameter ≤ r},

for any bounded set B of X . We set α(B) = +∞, whenever B is unbounded.
For various properties of Kuratowski’s measure of noncompactness, we

refer to [242, 91] and [304, Lemma 22.2]. The proof of the following lemma is
straightforward.

Lemma 1.1.2. The following statements are valid:

(a) Let I ⊂ [0,+∞) be unbounded, and {At}t∈I be a nonincreasing family
of nonempty closed subsets (i.e., t ≤ s implies As ⊂ At). Assume that
α(At) → 0, as t → +∞. Then A∞ =

⋂

t≥0

At is nonempty and compact,

and δ(At, A∞) → 0, as t → +∞.
(b) For each A ⊂ X and B ⊂ X, we have α(B) ≤ α(A) + δ(B,A).

For a subset B ⊂ X , let γ+ (B) :=
⋃

m≥0

fm(B) be the positive orbit of B

for f , and

ω(B) :=
⋂

n≥0

⋃

m≥n

fm(B)

the omega limit set of B. A subset A ⊂ X is positively invariant for f if
f(A) ⊂ A. We say that a subset A ⊂ X attracts a subset B ⊂ X for f if
limn→∞ δ(fn(B), A) = 0.
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It is easy to see that B is precompact (i.e., B is compact) if and only if
α(B) = 0. A continuous mapping f : X → X is said to be compact (com-
pletely continuous) if f maps any bounded set to a precompact set in X .

The theory of attractors is based on the following fundamental result,
which is related to [141, Lemmas 2.1.1 and 2.1.2].

Lemma 1.1.3. Let B be a subset of X and assume that there exists a compact
subset C of X which attracts B for f . Then ω(B) is nonempty, compact,
invariant for f and attracts B.

Proof. Let I = N+, the set of all nonnegative integers, and

An =
⋃

m≥n

fm(B), ∀n ≥ 0.

Since C attracts B, from Lemma 1.1.2 (b) we deduce that

α(An) ≤ α(C) + δ(An, C) = δ(An, C) → 0, as n → +∞.

So the family {An}n≥0 satisfies the conditions of assertion (a) in Lemma 1.1.2,
and we deduce that ω(B) is nonempty, compact, and δ(An, ω(B)) → 0, as
n → +∞. So ω(B) attracts B for f . Moreover, we have

f

⎛

⎝
⋃

m≥n

fm(B)

⎞

⎠ =
⋃

m≥n+1

fm(B), ∀n ≥ 0,

and since f is continuous, we obtain

f(An) ⊂ An+1, and An+1 ⊂ f(An), ∀n ≥ 0.

Finally, since δ(An, ω(B)) → 0, as n→ +∞, we have f (ω(B)) = ω(B).

Definition 1.1.2. A continuous mapping f : X → X is said to be point
(compact, bounded) dissipative if there is a bounded set B0 in X such that
B0 attracts each point (compact set, bounded set) in X; α-condensing (α-
contraction of order k, 0 ≤ k < 1) if f takes bounded sets to bounded sets
and α(f(B)) < α(B) (α(f(B)) ≤ kα(B)) for any nonempty closed bounded
set B ⊂ X with α(B) > 0; α-contracting if limn→∞α (fn(B)) = 0 for any
bounded subset B ⊂ X; asymptotically smooth if for any nonempty closed
bounded set B ⊂ X for which f(B) ⊂ B, there is a compact set J ⊂ B such
that J attracts B.

Clearly, a compact map is an α-contraction of order 0, and an α-contraction
of order k is α-condensing. It is well known that α-condensing maps are asymp-
totically smooth (see, e.g., [141, Lemma 2.3.5]). By Lemma 1.1.2, it follows
that f : X → X is asymptotically smooth if and only if limn→∞ α (fn(B)) = 0
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for any nonempty closed bounded subset B ⊂ X for which f(B) ⊂ B. This
implies that any α-contracting map is asymptotically smooth.

A positively invariant subset B ⊂ X for f is said to be stable if for any
neighborhood V of B, there exists a neighborhood U ⊂ V of B such that
fn (U) ⊂ V, ∀n ≥ 0. We say that A is globally asymptotically stable for f if,
in addition, A attracts points of X for f .

By the proof that (i) implies (ii) in [141, Theorem 2.2.5], we have the
following result.

Lemma 1.1.4. Let B ⊂ X be compact, and positively invariant for f . If B
attracts compact subsets of some neighborhood of itself, then B is stable.

Definition 1.1.3. A nonempty, compact, and invariant set A ⊂ X is said to
be an attractor for f if A attracts some open neighborhood of itself; a global
attractor for f if A is an attractor that attracts every point in X; and a strong
global attractor for f if A attracts every bounded subset of X.

Remark 1.1.1. The notion of attractor and global attractor was used in
[164, 304]. The strong global attractor was defined as global attractor in
[141, 358, 286]. In the case where the dimension of X is finite, it is easy to see
that both global attractor and strong global attractor are equivalent. In the
infinite-dimensional case of X , however, there exist discrete- and continuous-
time dynamical systems that admit global attractors, but no strong global
attractors, see Example 1.3.3 and [241, Sections 5.1–5.3].

The following result is essentially the same as [142, Theorem 3.2]. Note
that the proof of this result was not provided in [142]. For completeness, we
state it in terms of global attractors and give an elementary proof below.

Theorem 1.1.2. (Global Attractors) Let f : X → X be a continuous
map. Assume that

(a) f is point dissipative and asymptotically smooth;
(b) Positive orbits of compact subsets of X for f are bounded.

Then f has a global attractor A ⊂ X. Moreover, if a subset B of X admits
the property that γ+(fk(B)) is bounded for some k ≥ 0, then A attracts B
for f .

Proof. Assume that (a) is satisfied. Since f is point dissipative, we can find
a closed and bounded subset B0 in X such that for each x ∈ X, there exists
k = k(x) ≥ 0, fn (x) ∈ B0, ∀n ≥ k. Define

J(B0) := {y ∈ B0 : fn(y) ∈ B0, ∀n ≥ 0} .

Thus, f(J(B0)) ⊂ J(B0), and for every x ∈ X , there exists k = k(x) ≥ 0 such
that fk (x) ∈ J(B0). Since J(B0) is closed and bounded, and f is asymptot-
ically smooth, Lemma 1.1.3 implies that ω(J(B0)) is compact invariant, and
attracts points of X .
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Assume, in addition, that (b) is satisfied. We claim that there exists an ε >
0 such that γ+(N (ω(J(B0)), ε)) is bounded. Assume, by contradiction, that

γ+
(
N

(
ω(J(B0)),

1
n+1

))
is unbounded for each n > 0. Let z ∈ X be fixed.

Then we can find a sequence xn ∈ N
(
ω(J(B0)),

1
n+1

)
, and a sequence of

integers mn ≥ 0 such that d(z, fmn (xn)) ≥ n. Since ω(J(B0)) is compact,
we can always assume that xn → x ∈ ω(J(B)), as n → +∞. Since H :=
{xn : n ≥ 0}∪{x} is compact, assumption (b) implies that γ+ (H) is bounded,
a contradiction. Let D = γ+(N (ω(J(B0)), ε)). Then D is closed, bounded,
and positively invariant for f . Since ω(J(B0)) attracts points of X for f , and
ω(J(B0)) ⊂ N (ω(J(B0)), ε) ⊂ int(D), we deduce that for each x ∈ X, there
exists k = k(x) ≥ 0 such that fk(x) ∈ int(D). It then follows that for each
compact subset C of X , there exists an integer k ≥ 0 such that fk (C) ⊂ D.
Thus, the set A := ω(D) attracts every compact subset of X . Fix a bounded
neighborhood V of A. By Lemma 1.1.4, it follows that A is stable, and hence,
there is a neighborhood W of A such that fn(W ) ⊂ V, ∀n ≥ 0. Clearly, the
set U := ∪n≥0f

n(W ) is a bounded neighborhood of A, and f(U) ⊂ U . Since
f is asymptotically smooth, there is a compact set J ⊂ U such that J attracts
U . By Lemma 1.1.3, ω(U) is nonempty, compact, invariant for f , and attracts
U . Since A attracts ω(U), we have ω(U) ⊂ A. Thus, A is a global attractor
for f .

To prove the last part of the theorem, without loss of generality we assume
that B is a bounded subset of X and γ+(B) is bounded. We set K = γ+(B).
Then f(K) ⊂ K. Since K is bounded and f is asymptotically smooth, there
exists a compact C which attracts K for f . Note that fk (B) ⊂ fk (γ+(B)) ⊂
fk (K) , ∀k ≥ 0. Thus, C attracts B for f . By Lemma 1.1.3, we deduce that
ω(B) is nonempty, compact, invariant for f and attracts B. Since A is a
global attractor for f , it follows that A attracts compact subsets of X . By the
invariance of ω(B) for f , we deduce that ω(B) ⊂ A, and hence, A attracts B
for f .

Remark 1.1.2. From the first part of the proof of Theorem 1.1.2, it is easy to
see that if f is point dissipative and asymptotically smooth, then there exists
a nonempty, compact, and invariant subset C of X for f such that C attracts
every point in X for f .

The following lemma provides sufficient conditions for the positive orbit
of a compact set to be bounded.

Lemma 1.1.5. Assume that f is point dissipative. If C is a compact subset
of X with the property that for every bounded sequence {xn}n≥0 in γ+(C),

{xn}n≥0 or {f (xn)}n≥0 has a convergent subsequence, then γ+(C) is bounded
in X.

Proof. Since f is point dissipative, we can choose a bounded and open subset
V of X such that for each x ∈ X there exists n0 = n0(x) ≥ 0 such that
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fn(x) ∈ V, ∀n ≥ n0. By the continuity of f and the compactness of C, it
follows that there exists a positive integer r = r(C) such that for any x ∈ C,
there exists an integer k = k(x) ≤ r such that fk(x) ∈ V . Let z ∈ X be
fixed. Assume, by contradiction, that γ+(C) is unbounded. Then there exists
a sequence {xp} in γ+(C) such that

xp = fmp(zp), zp ∈ C, and lim
p→∞ d(z, xp) = ∞.

Since f is continuous and C is compact, without loss of generality we can
assume that

lim
p→∞mp = ∞, and mp > r, xp /∈ V, ∀p ≥ 1.

For each zp ∈ C, there exists an integer kp ≤ r such that fkp(zp) ∈ V . Since
xp = fmp(zp) /∈ V , there exists an integer np ∈ [kp,mp) such that

yp = fnp(zp) ∈ V, and f l(yp) /∈ V, ∀1 ≤ l ≤ lp = mp − np.

Clearly, xp = f lp(yp), ∀p ≥ 1, and {yp} is a bounded sequence in γ+(C).
We only consider the case where {yp} has a convergent subsequence since

the proof for the case where {f (yp)} has a convergent subsequence is similar.
Thus, without loss of generality we can assume that limp→∞ yp = y ∈ V .

In the case where the sequence {lp} is bounded, there exist an integer l̂ and

sequence pk → ∞ such that lpk
= l̂, ∀k ≥ 1, and hence,

d(z, f l̂(y)) = lim
k→∞

d(z, f l̂(ypk
)) = lim

k→∞
d(z, xpk

) = ∞,

which is impossible. In the case where the sequence {lp} is unbounded, there
exists a subsequence lpk

→ ∞ as k → ∞. Then for each fixed m ≥ 1, there
exists an integer km such that m ≤ lpk

, ∀k ≥ km, and hence,

fm(ypk
) ∈ X \ V, ∀k ≥ km.

Letting k → ∞, we obtain

fm (y) ∈ X \ V, ∀m ≥ 1,

which contradicts the definition of V .

The following result on the existence of strong global attractors is implied
by [142, Theorems 3.1 and 3.4]. Since the proof of this result was not provided
in [142], we include a simple proof of it.

Theorem 1.1.3. (Strong Global Attractors) Let f : X → X be a
continuous map. Assume that f is point dissipative on X, and one of the
following conditions holds:
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(a) fn0 is compact for some integer n0 ≥ 1, or
(b) f is asymptotically smooth, and for each bounded set B ⊂ X, there exists

k = k(B) ≥ 0 such that γ+(fk(B)) is bounded.

Then there is a strong global attractor A for f .

Proof. The conclusion in case (b) is an immediate consequence of Theo-
rem 1.1.2. In the case of (a), since fn0 is compact for some integer n0 ≥ 1, it
suffices to show that for each compact subset C ⊂ X ,

⋃

n≥0

fn (C) is bounded.

By applying Lemma 1.1.5 to f̃ = fn0 , we deduce that for each compact subset
C ⊂ X,

⋃

n≥0

f̃n (C) is bounded. So Theorem 1.1.2 implies that f̃ has a global

attractor Ã ⊂ X . We set B̃ =
⋃

0≤k≤n0−1

fk
(
Ã
)
. By the continuity of f , it

then follows that B̃ is compact and attracts every compact subset of X for f ,
and hence, the result follows from Theorem 1.1.2.

Remark 1.1.3. It is easy to see that a metric space (X, d) is complete if and
only if for any subset B of X , α(B) = 0 implies that B is compact. How-
ever, we can prove that Lemmas 1.1.3 and 1.1.4 also hold for non-complete
metric spaces by employing the equivalence between the compactness and the
sequential compactness for metric spaces. It then follows that Theorems 1.1.2
and 1.1.3 are still valid for any metric space. We refer to [64, 286] for the
existence of strong global attractors of continuous-time semiflows on a metric
space.

Clearly, if the global attractor is a singleton {e}, then e is a globally
attractive fixed point. Let A be the global attractor claimed in Theorem 1.1.2
with X being a Banach space and with “asymptotically smooth” replaced by
“α-condensing.” The following asymptotic fixed point theorem implies that
there is at least one fixed point in A. For a proof of it, we refer to [257, 143]
or [141, Section 2.6].

Theorem 1.1.4. (Asymptotic fixed point theorem) Suppose E is a Ba-
nach space. If f : E → E is α-condensing and compact dissipative, then f has
a fixed point.

Let Λ be a metric space. The family of continuous mappings fλ : X → X,λ ∈
Λ, is said to be collectively asymptotically smooth if for any nonempty closed
bounded set B ⊂ X for which fλ(B) ⊂ B, λ ∈ Λ, there is a compact set
Jλ = J(λ,B) ⊂ B such that Jλ attractsB under fλ and ∪λ∈ΛJλ is precompact
in X . We then have the following result on the upper semicontinuity of global
attractors. For a proof, we refer to [141, Theorem 2.5.3].

Theorem 1.1.5. Let f : Λ×X → X be continuous, fλ =: f(λ, ·), and suppose
there is a bounded set B that attracts points of X under fλ for each λ ∈ Λ, and
for any bounded set U , the set V = ∪λ∈Λ∪n≥0 f

n
λ (U) is bounded. If the family
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{fλ : λ ∈ Λ} is collectively asymptotically smooth, then the global attractor Aλ

of fλ is upper semicontinuous in the sense that limλ→λ0 supx∈Aλ
d(x,Aλ0 ) = 0

for each λ0 ∈ Λ.

1.2 Chain Transitivity and Attractivity

In this section we continue to assume that X is a metric space with metric d,
and that f : X → X is a continuous map.

1.2.1 Chain Transitive Sets

Definition 1.2.1. A point x ∈ X is said to be chain recurrent if for any
ε > 0, there is a finite sequence of points x1, . . . , xm in X (m > 1) with
x1 = x = xm such that d(f(xi), xi+1) < ε for all 1 ≤ i ≤ m− 1. The set of all
chain recurrent points for f : X → X is denoted by R(X, f). Let A ⊂ X be a
nonempty invariant set. We call A internally chain recurrent if R(A, f) = A,
and internally chain transitive if the following stronger condition holds: For
any a, b ∈ A and any ε > 0, there is a finite sequence x1, . . . , xm in A with
x1 = a, xm = b such that d(f(xi), xi+1) < ε, 1 ≤ i ≤ m − 1. The sequence
{x1, . . . , xm} is called an ε-chain in A connecting a and b.

Following LaSalle [212], we call a compact invariant set A invariantly con-
nected if it cannot be decomposed into two disjoint closed nonempty invariant
sets. An internally chain recurrent set need not have this property, e.g., a pair
of fixed points. However, it is easy to see that every internally chain transitive
set is invariantly connected.

We give some examples of internally chain transitive sets.

Lemma 1.2.1. Let f : X → X be a continuous map. Then the omega (al-
pha) limit set of any precompact positive (negative) orbit is internally chain
transitive.

Proof. Let x ∈ X and set xn = fn(x). Assume that x has a precompact
orbit γ = {xn}, and denote its omega limit set by ω. Then ω is nonempty,
compact, and invariant, and limn→∞ d(xn, ω) = 0. Let ε > 0 be given. By
the continuity of f and compactness of ω, there exists δ ∈ (0, ε

3 ) with the
following property: If u, v are points in the open δ-neighborhood U of ω with
d(u, v) < δ, then d(f(u), f(v)) < ε

3 . Since xn approaches ω as n → ∞, there
exists N > 0 such that xn ∈ U for all n ≥ N .

Let a, b ∈ ω be arbitrary. There exist k > m ≥ N such that d(xm, f(a)) <
ε
3 and d(xk, b) <

ε
3 . The sequence

{y0 = a, y1 = xm, . . . , yk−m = xk−1, yk−m+1 = b}
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is an ε
3 -chain in X connecting a and b. Since for each yi ∈ U , 1 ≤ i ≤ k −m,

we can choose zi ∈ ω such that d(zi, yi) < δ. Let z0 = a and zk−m+1 = b.
Then for i = 0, 1, . . . , k −m we have

d(f(zi), zi+1) ≤ d(f(zi), f(yi)) + d(f(yi), yi+1) + d(yi+1, zi+1)
< ε/3 + ε/3 + ε/3.

Thus the sequence z0, z1, . . . , zk−m, zk−m+1 is an ε-chain in ω connecting a
and b. Therefore, ω is internally chain transitive. By a similar argument, we
can prove the internal chain transitivity of alpha limit sets of precompact
negative orbits.

Let {Sn : X → X}n≥0 be a sequence of continuous maps. The discrete
dynamical process (or process for short) generated by {Sn} is the sequence
{Tn : X → X}n≥0 defined by T0 = I = the identity map of X and

Tn = Sn−1 ◦ Sn−2 ◦ · · · ◦ S1 ◦ S0, n ≥ 1.

The orbit of x ∈ X under this process is the set γ+(x) = {Tn(x) : n ≥ 0},
and its omega limit set is

ω(x) =

{

y ∈ X : ∃nk → ∞ such that lim
k→∞

Tnk
(x) = y

}

.

If there is a continuous map S on X such that Sn = S, ∀n ≥ 0, so that Tn

is the nth iterate Sn, then {Tn} is a special kind of process called the discrete
semiflow generated by S. By an abuse of language we may refer to the map
S as a discrete semiflow.

Definition 1.2.2. The process {Tn : X → X} is asymptotically autonomous
if there exists a continuous map S : X → X such that

nj → ∞, xj → x ⇒ lim
j→∞

Snj (xj) = S(x).

We also say that {Tn} is asymptotic to S.

It is easy to see from the triangle inequality that if limn→∞ Sn = S uni-
formly on compact sets, then the process generated by {Sn} is asymptotic
to S.

Lemma 1.2.2. Let Tn : X → X, n ≥ 0, be an asymptotically autonomous
discrete process with limit S : X → X. Then the omega limit set of any
precompact orbit of {Tn} is internally chain transitive for S.

Proof. Let N+ = N+ ∪ {∞}. For any given strictly increasing continuous
function φ : [0,∞) → [0, 1) with φ(0) = 0 and φ(∞) = 1 (e.g., φ(s) = s

1+s ),

we can define a metric ρ on N+ as ρ(m1,m2) = |φ(m1) − φ(m2)|, for any

m1,m2 ∈ N+, and then N+ is compactified. Let X̃ := N+ × X . Define a

mapping S̃ : X̃ → X̃ by
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S̃(m,x) = (1 +m,Sm(x)), S̃(∞, x) = (∞, S(x)), ∀m ∈ N+, x ∈ X.

By Definition 1.2.2, S̃ : X̃ → X̃ is continuous. Let γ+(x) be a precompact
orbit of Tn. Since

S̃n((0, x)) = (n, Sn−1 ◦ Sn−2 ◦ · · · ◦ S1 ◦ S0(x)) = (n, Tn(x)), ∀n ≥ 0,

and N+ is compact, it follows that the orbit γ+((0, x)) of S̃n is precompact
and {∞} × ω(x) = ω(0, x), where ω(0, x) is the omega limit set of (0, x) for

S̃n. By Lemma 1.2.1, ω(0, x) is invariant and internally chain transitive for

S̃, which, together with the definition of S̃, implies that ω(x) is invariant and
internally chain transitive for S.

Definition 1.2.3. Let S : X → X be a continuous map. A sequence {xn} in
X is an asymptotic pseudo-orbit of S if

lim
n→∞ d(S(xn), xn+1) = 0.

The omega limit set of {xn} is the set of limits of subsequences.

Let {Tn} be a discrete process in X generated by a sequence of continuous
maps Sn that converges to a continuous map S : X → X uniformly on
compact subsets of X . It is easy to see that every precompact orbit of Tn :
X → X , n ≥ 0, is an asymptotic pseudo-orbit of S.

Example 1.2.1. Consider the nonautonomous difference equation

xn+1 = f(n, xn), n ≥ 0,

on the metric space X . If we define Sn = f(n, ·) : X → X, n ≥ 0, and let

T0 = I, Tn = Sn−1 ◦ · · · ◦ S1 ◦ S0 : X → X, n ≥ 1,

then xn = Tn(x0), and {xn : n ≥ 0} is an orbit of the discrete process
Tn. If f(n, ·) → f̄ : X → X uniformly on compact subsets of X , then Tn

is asymptotically autonomous with limit f̄ . Furthermore, in this case any
precompact orbit of the difference equation is an asymptotic pseudo-orbit of
f̄ , since d(f̄(xn), xn+1) = d(f̄(xn), f(n, xn)) → 0.

Lemma 1.2.3. The omega limit set of any precompact asymptotic pseudo-
orbit of a continuous map S : X → X is nonempty, compact, invariant, and
internally chain transitive.

Proof. Let (N+, ρ) be the compact metric space defined in the proof of
Lemma 1.2.2. Let {xn : n ≥ 0} be a precompact asymptotic pseudo-orbit
of S : X → X , and denote its compact omega limit set by ω. Define a metric
space

Y = ({∞} ×X) ∪ {(n, xn) : n ≥ 0}
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and

g : Y → Y, g(n, xn) = (n+ 1, xn+1), g(∞, x) = (∞, S(x)).

By Definition 1.2.3 and the fact that d(xn+1, S(x)) ≤ d(xn+1, S(xn)) +
d(S(xn), S(x)) for x ∈ X,n ≥ 0, it easily follows that g : Y → Y is con-
tinuous. Let γ+(0, x0) = {(n, xn) : n ≥ 0} be the positive orbit of (0, x0) for
the discrete semiflow gn : Y → Y, n ≥ 0. Then γ+(0, x0) is precompact in Y ,
and its omega limit ω(0, x0) is {∞} × ω, which by Lemma 1.2.1 is invariant
and internally chain transitive for g. Applying the definition of g, we see that
ω is invariant and internally chain transitive for S.

Let A and B be two nonempty compact subsets of X . Recall that the
Hausdorff distance between A and B is defined by

dH(A,B) := max (sup{d(x,B) : x ∈ A}, sup{d(x,A) : x ∈ B}) .

We then have the following result.

Lemma 1.2.4. Let S, Sn : X → X, ∀n ≥ 1, be continuous. Let {Dn} be a
sequence of nonempty compact subsets of X with limn→∞ dH(Dn, D) = 0 for
some compact subset D of X. Assume that for each n ≥ 1, Dn is invariant
and internally chain transitive for Sn. If Sn → S uniformly on D∪(∪n≥1Dn),
then D is invariant and internally chain transitive for S.

Proof. Observe that the set K = D
⋃
(∪n≥1Dn) is compact. Indeed, since

an open cover of K also covers D, a finite subcover provides a neighborhood
of D that must also contain Dn for all large n. If x ∈ D, then there exist
xn ∈ Dn such that xn → x. Since Sn(xn) ∈ Dn and Sn(xn) → S(x), we see
that S(x) ∈ D. Thus S(D) ⊂ D. On the other hand, there exist yn ∈ Dn such
that Sn(yn) = xn. Since dH(Dni , D) → 0, we can assume that yni → y ∈ D
for some subsequence yni . Then xni = Sni(yni) → S(y) = x, showing that
S(D) = D.

By uniform continuity and uniform convergence, for any ε > 0 there exist
δ ∈ (0, ε/3) and a natural number N such that for n ≥ N and u, v ∈ K with
d(u, v) < δ, we have

d(Sn(u), S(v)) ≤ d(Sn(u), S(u)) + d(S(u), S(v)) < ε/3.

Fix n > N such that dH(Dn, D) < δ. For any a, b ∈ D, there are points
x, y ∈ Dn such that d(x, a) < δ and d(y, b) < δ. Since Dn is internally chain
transitive for Sn, there is a δ-chain {z1 = x, z2, . . . , zm+1 = y} in Dn for Sn

connecting x to y. For each i = 2, . . . ,m we can find wi ∈ D with d(wi, zi) < δ,
since Dn is contained in the δ-neighborhood of D. Let w1 = a, wm+1 = b. We
then have

d(S(wi), wi+1) ≤ d(S(wi), Sn(zi)) + d(Sn(zi), zi+1) + d(zi+1, wi+1)

< ε/3 + δ + δ < ε
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for i = 1, . . . ,m. Thus {w1 = a, w2, . . . , wm+1 = b} is an ε-chain for S in D
connecting a to b.

Let Φ(t) : X → X , t ≥ 0, be a continuous-time semiflow. That is, (x, t) →
Φ(t)x is continuous, Φ(0) = I and Φ(t) ◦ Φ(s) = Φ(t + s) for t, s ≥ 0. A
nonempty invariant set A ⊂ X for Φ(t) (i.e., Φ(t)A = A, ∀t ≥ 0) is said to be
internally chain transitive if for any a, b ∈ A and any ε > 0, t0 > 0, there is a
finite sequence {x1 = a, x2, . . . , xm−1, xm = b; t1, . . . , tm−1} with xi ∈ A and
ti ≥ t0, 1 ≤ i ≤ m−1, such that d(Φ(ti, xi), xi+1) < ε for all 1 ≤ i ≤ m−1. The
sequence {x1, . . . , xm; t1, . . . , tm−1} is called an (ε, t0)-chain in A connecting
a and b. We then have the following result.

Lemma 1.2.1′ Let Φ(t) : X → X, t ≥ 0, be a continuous-time semiflow.
Then the omega (alpha) limit set of any precompact positive (negative) orbit
is internally chain transitive.

Proof. Let ω = ω(x) be the omega limit set of a precompact orbit γ(x) =
{Φ(t)x : t ≥ 0} in X . Then ω is nonempty, compact, invariant and
limt→∞ d(Φ(t)x, ω) = 0. Let ε > 0 and t0 > 0 be given. By the uniform
continuity of Φ(t)x for (t, x) in the compact set [t0, 2t0] × ω, there is a
δ = δ(ε, t0) ∈ (0, ε

3 ) such that for any t ∈ [t0, 2t0] and u and v in the open
δ-neighborhood U of ω with d(u, v) < δ, we have d(Φ(t)u, Φ(t)v) < ε

3 . It
then follows that there exists a sufficiently large T0 = T0(δ) > 0 such that
Φ(t)x ∈ U , for all t ≥ T0. For any a, b ∈ ω, there exist T1 > T0 and T2 > T0

with T2 > T1 + t0 such that d(Φ(T1)x, Φ(t0)a) <
ε
3 and d(Φ(T2)x, b) <

ε
3 . Let

m be the greatest integer that is not greater than T2−T1

t0
. Then m ≥ 1. Set

y1 = a, yi = Φ(T1 + (i− 2)t0)x, i = 2, . . . ,m+ 1, ym+2 = b,

and
ti = t0 for i = 1, . . . ,m; tm+1 = T2 − T1 − (m− 1)t0.

Then tm+1 ∈ [t0, 2t0). It follows that d(Φ(ti)yi, yi+1) <
ε
3 for all i = 1, . . . ,m+

1. Thus the sequence

{y1 = a, y2, . . . , ym+1, ym+2 = b; t1, t2, . . . , tm+1}

is an ( ε3 , t0)-chain in X connecting a and b. Since yi ∈ U for i = 2, . . . ,m+1,
we can choose zi ∈ ω such that d(zi, yi) < δ. Let z1 = a and zm+2 = b. It
then follows that

d(Φ(ti)zi, zi+1) ≤ d(Φ(ti)zi, Φ(ti)yi) + d(Φ(ti)yi, yi+1) + d(yi+1, zi+1)
< ε/3 + ε/3 + ε/3, i = 1, . . . ,m+ 1.

This proves that the sequence {z1 = a, z2, . . . , zm+1, zm+2 = b; t1, t2, . . . , tm+1}
is an (ε, t0)-chain in ω connecting a and b. Therefore, ω is internally chain tran-
sitive. By a similar argument we can prove the internal chain transitivity of
alpha limit sets of precompact negative orbits.
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With Lemma 1.2.1′ it is easy to see that there are analogues of Lem-
mas 1.2.2 and 1.2.3 for continuous-time semiflows. The following result is an
analogue of Lemma 1.2.4 for continuous-time semiflows.

Lemma 1.2.4′ Let Φ and Φn be continuous-time semiflows on X for n ≥ 1.
Let {Dn} be a sequence of nonempty compact subsets of X with
limn→∞ dH(Dn, D) = 0 for some compact subset D of X. Assume that for
each n ≥ 1, Dn is invariant and internally chain transitive for Φn. If for each
T > 0, Φn → Φ uniformly for (x, t) ∈ (D ∪ (∪n≥1Dn)) × [0, T ], then D is
invariant and internally chain transitive for Φ.

Proof. It is easy to see thatK = D
⋃
(∪n≥1Dn) is compact andD is invariant

for Φ. By uniform continuity and uniform convergence, for any ε > 0 and
t0 > 0 there exists δ ∈ (0, ε/3) and a natural number N such that for n ≥
N , t ∈ [0, 2t0], and u, v ∈ K with d(u, v) < δ, we have d(Φn

t (u), Φt(v)) ≤
d(Φn

t (u), Φt(u))+ d(Φt(u), Φt(v)) < ε/3. Fix n > N such that dH(Dn, D) < δ.
For any a, b ∈ D, there are points x, y ∈ Dn such that d(x, a) < δ and
d(y, b) < δ. Since Dn is chain transitive for Φn, there is a (δ, t0)-chain {z1 =
x, z2, . . . , zm+1 = y; t1, . . . , tm} in Dn for Φn, with t0 ≤ ti < 2t0 connecting x
to y. For each i = 2, . . . ,m we can find wi ∈ D with d(wi, zi) < δ, since Dn is
contained in the δ-neighborhood of D. Let w1 = a, wm+1 = b. We then have

d(Φti(wi), wi+1) ≤ d(Φti(wi), Φ
n
ti(zi)) + d(Φn

ti(zi), zi+1) + d(zi+1, wi+1)

< ε/3 + δ + δ < ε

for i = 1, . . . ,m. Thus {w1 = a, w2, . . . , wm+1 = b; t1, . . . , tm} is an (ε, t0)-
chain for Φ in D connecting a to b.

Example 1.2.2. Note that if in Lemma 1.2.4′ Dn is an omega limit set for
Φn (and therefore internally chain transitive by Lemma 1.2.1′), the set D
need not be an omega limit set for the limit semiflow Φ, although it must be
chain transitive. Easy examples are constructed with Φn = Φ, ∀n ≥ 1. For
example, consider the flow generated by the planar vector field given in polar
coordinates by

r′ = 0, θ′ = 1− r.

The unit circle D = {r = 1}, consisting of equilibria, is chain transitive but is
not an omega limit set of any point, yet D is the Hausdorff limit of the omega
limit sets Dn = {r = 1 + 1

n}.

Lemma 1.2.5. A nonempty compact invariant set M is internally chain tran-
sitive if and only if M is the omega limit set of some asymptotic pseudo-orbit
of f in M .

Proof. The sufficiency follows from Lemma 1.2.3. To prove the necessity,
we can choose a point x ∈ M since M is nonempty. For any ε > 0,
the compactness of M implies that there is a finite sequence of points
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{x1 = x, x2, . . . , xm, xm+1 = x} in M such that its ε-net in X covers M ;
i.e., M ⊂ ∪m

i=1B(xi, ε), where B(xi, ε) := {y ∈ X : d(y, xi) < ε}. For each
1 ≤ i ≤ m, since M is internally chain transitive, there is a finite ε-chain
{yi1 = xi, y

i
2, . . . , y

i
ni
, yini+1 = xi+1} in M connecting xi and xi+1. Then the

sequence {y11, . . . , y1n1
, y21 , . . . , y

2
n2
, . . . , ym1 , . . . , y

m
nm

, ymnm+1} is a finite ε-chain
in M connecting x and x, and its ε-net in X covers M .

For each integer k, letting ε = 1
k in the above claim, we have a finite 1

k -
chain {zk1 = x, zk2 , . . . , z

k
lk
, zklk+1 = x} in M whose 1

k -net in X covers M . It
then easily follows that the infinite sequence of points

{z11 , . . . , z1l1 , z
2
1 , . . . , z

2
l2 , . . . , z

k
1 , . . . , z

k
lk , . . . }

is an asymptotic pseudo-orbit of f in M and its omega limit set is M .

Block–Franke Lemma ([33], Theorem A) Let K be a compact metric
space and f : K → K a continuous map. Then x �∈ R(K, f) if and only
if there exists an attractor A ⊂ K such that x ∈ W s(A) \A.

Lemma 1.2.6. A nonempty compact invariant set M is internally chain tran-
sitive if and only if f |M : M → M has no proper attractor.

Proof. Necessity. Assume that there is a proper attractor A for f |M : M →
M . Then A �= ∅ andM \A �= ∅. Since A is an attractor, there is an ε0 > 0 such
that A attracts the open ε0-neighborhood U of A in M . Choose a ∈ M \ A
and b ∈ A and let {x1 = a, x2, . . . , xm = b} be an ε0-chain in M connecting
a and b. Let k = min{i : 1 ≤ i ≤ m, xi ∈ A}. Since b ∈ A and a �∈ A, we
have 2 ≤ k ≤ m. Since d(f(xk−1), xk) < ε0, we have f(xk−1) ∈ U and hence
xk−1 ∈ W s(A) \ A. By the Block–Franke lemma, xk−1 �∈ R(M, f), which
proves that M is not internally chain recurrent, and a fortiori not internally
chain transitive.

Sufficiency. For any subset B ⊂ X we define ω(B) to be the set of limits
of sequences of the form {fnk(xk)}, where nk → ∞ and xk ∈ B. Since f |M :
M → M has no proper attractor, the Block–Franke lemma implies that M is
internally chain recurrent. Given a, b ∈ M and ε > 0, let V be the set of all
points x in M for which there is an ε-chain in M connecting a to x; this set
contains a. For any z ∈ V , let {z1 = a, z2, . . . , zm−1, zm = z} be an ε-chain in
M connecting a to z. Since

lim
x→z

d(f(zm−1), x) = d(f(zm−1), z) < ε,

there is an open neighborhood U of z in M such that for any x ∈ U ,
d(f(zm−1), x) < ε. Then {z1 = a, z2, . . . , zm−1, x} is an ε-chain in M con-
necting a and x, and hence U ⊂ V . Thus V is an open set in M . We
further claim that f(V ) ⊂ V . Indeed, for any z ∈ V , by the continu-
ity of f at z, we can choose y ∈ V such that d(f(y), f(z)) < ε. Let
{y1 = a, y2, . . . , ym−1, ym = y} be an ε-chain in M connecting a and y. It
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then follows that {y1 = a, y2, . . . , ym−1, ym = y, ym+1 = f(z)} is an ε-chain
in M connecting a and f(z), and hence f(z) ∈ V . By the compactness of M
and [141, Lemma 2.1.2] applied to f : M → M , it then follows that ω(V )
is nonempty, compact, invariant, and ω(V ) attracts V . Since f(V ) ⊂ V , we
have ω(V ) ⊂ V and hence ω(V ) = f(ω(V )) ⊂ V . Then ω(V ) is an attractor
in M . Now the nonexistence of a proper attractor for f : M → M implies
that ω(V ) = M and hence V = M . Clearly, b ∈ M = V , and hence, by the
definition of V , there is an ε-chain in M connecting a and b. Therefore, M is
internally chain transitive.

1.2.2 Attractivity and Morse Decompositions

Recall that a nonempty invariant subset M of X is said to be isolated for
f : X → X if it is the maximal invariant set in some neighborhood of itself.

Lemma 1.2.7. (Butler–McGehee-type lemma) Let M be an isolated in-
variant set and L a compact internally chain transitive set for f : X → X.
Assume that L ∩M �= ∅ and L �⊂ M . Then

(a) there exists u ∈ L \M such that ω(u) ⊂ M ;
(b) there exist w ∈ L\M and a negative orbit γ−(w) ⊂ L such that its α-limit

set satisfies α(w) ⊂ M .

Proof. Since M is an isolated invariant set, there exists an ε > 0 such that
M is the maximal invariant set in the closed ε-neighborhood of M . By the
assumption, we can choose a ∈ L ∩ M and b ∈ L with d(b,M) > ε. For
any integer k ≥ 1, by the internal chain transitivity of L, there exists a
1
k -chain {yk1 = a, . . . , yklk+1 = b} in L connecting a and b, and a 1

k -chain

{zk1 = b, . . . , zkmk+1 = a} in L connecting b and a. Define a sequence of points
by

{xn : n ≥ 0} := {y11, . . . , y1l1 , z
1
1 , . . . , z

1
m1
, . . . , yk1 , . . . , y

k
lk , z

k
1 , . . . , z

k
mk

, . . . }.

Then for any k > 0 and for all n ≥ N(k) :=
∑k

j=1(lj + mj), we have

d(f(xn), xn+1) <
1

k+1 , and hence limn→∞ d(f(xn), xn+1) = 0. Thus {xn}n≥0

⊂ L is a precompact asymptotic pseudo-orbit of f : X → X . Then there are
two subsequences xmj and xrj such that xmj = a and xrj = b for all j ≥ 1.
Note that d(xsj+1, f(x)) ≤ d(xsj+1, f(xsj ))+d(f(xsj ), f(x)). By induction, it
then follows that for any convergent subsequence xsj → x ∈ X, j → ∞,
we have limj→∞ xsj+n = fn(x) for any integer n ≥ 0. We can further
choose two sequences lj and nj with lj < mj < nj and limj→∞ lj = ∞
such that d(xlj ,M) > ε, d(xnj ,M) > ε, and d(xk,M) ≤ ε for any integer
k ∈ (lj , nj), j ≥ 1. Since {xn : n ≥ 0} is a subset of the compact set L, we can
assume that upon taking a convergent subsequence, xlj → u ∈ L as j → ∞.
Clearly, d(u,M) ≥ ε and hence u ∈ L\M . Since u ∈ L and L is a compact in-
variant set, we have ω(u) ⊂ L. We further claim that ω(u) ⊂ M , which proves
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(a). Indeed, if the sequence nj−lj is bounded, thenmj−lj is also bounded, and
hence we can assume that, after choosing a subsequence, mj − lj = m, where
m is an integer. Thus we have a = limj→∞ xmj = limj→∞ xlj+m = fm(u),
and hence ω(u) = ω(a) ⊂ M . If the sequence nj − lj is unbounded, we can
assume that, by taking a subsequence, nj − lj → ∞ as j → ∞. Then for any
integer n ≥ 1, there is an integer J = J(n) ≥ 1 such that nj − lj > n for all
j ≥ J . Then we have lj < lj + n < nj and hence d(xlj+n,M) ≤ ε, ∀j ≥ J(n).
Thus fn(u) = limj→∞ xlj+n satisfies d(fn(u),M) ≤ ε, ∀n ≥ 1, and hence the
choice of ε implies that ω(u) ⊂ M . In a similar way we can also prove (b).

Theorem 1.2.1. (Strong attractivity) Let A be an attractor and C a
compact internally chain transitive set for f : X → X. If C ∩ W s(A) �= ∅,
then C ⊂ A.

Proof. Clearly, A is isolated for f : X → X . Let x ∈ C ∩ W s(A). By the
compactness and invariance of C, ω(x) ⊂ C and hence ω(x) ⊂ C ∩ A. Then
C ∩ A �= ∅. Assume, by contradiction, that C �⊂ A. Then by Lemma 1.2.7,
there exists w ∈ C \ A with a full orbit γ(w) = {wn : n ∈ Z} ⊆ C and
α(w) ⊂ A. Since w /∈ A, there exists an open neighborhood V of A such
that w /∈ V . Then, by the attractivity of A, there exist an open neighborhood
U of A and an integer n0 > 0 such that Sn(U) ⊂ V for all n ≥ n0. Since
α(w) ⊂ A, there exists an integer n1 > n0 such that w−n1 ∈ U , and hence
w = w0 = Sn1(w−n1) ∈ V , which contradicts w /∈ V .

Let A and B be two isolated invariant sets . The set A is said to be chained
to B, written A → B, if there exists a full orbit through some x �∈ A∪B such
that ω(x) ⊂ B and α(x) ⊂ A. A finite sequence {M1, . . . ,Mk} of invariant
sets is called a chain if M1 → M2 → · · · → Mk. The chain is called a cycle if
Mk = M1.

Theorem 1.2.2. (Convergence) Assume that each fixed point of f is an
isolated invariant set, that there is no cyclic chain of fixed points, and that
every precompact orbit converges to some fixed point of f . Then any compact
internally chain transitive set is a fixed point of f .

Proof. Let C be a compact internally chain transitive set for f : X → X .
Then for any x ∈ C, we have γ+(x) ⊂ C and ω(x) ⊂ C. Thus the convergence
of γ+(x) implies that C contains some fixed point of f . Let E = {e ∈ C :
f(e) = e}. Then E �= ∅, and by the compactness of C and the isolatedness of
each fixed point of f , E = {e1, e2, . . . , em} for some integer m > 0. Assume by
way of contradiction that C is not a singleton. Since E �= ∅, there exists some
i1 (1 ≤ i1 ≤ m) such that ei1 ∈ C; i.e., C ∩ {ei1} �= ∅. Since C �⊂ {ei1}, by
Lemma 1.2.7 there exist w1 ∈ C \ {ei1} and a full orbit γ(w1) ⊂ C such that
α(w1) = ei1 . Since γ

+(w1) ⊂ C, there exists some i2 (1 ≤ i2 ≤ m) such that
ω(w1) = ei2 . Therefore, ei1 is chained to ei2 ; i.e., ei1 → ee2 . Since C∩{ei2} �= ∅
and C �⊂ {ei2}, again by Lemma 1.2.7 there exist w2 ∈ C \ {ei2} and a full
orbit γ(w2) ⊂ C such that α(w2) = ei2 . We can repeat the above argument to
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get an i3 (1 ≤ i3 ≤ m) such that ei2 → ei3 . Since there is only a finite number
of ei’s, we will eventually arrive at a cyclic chain of some fixed points of f ,
which contradicts our assumption.

Definition 1.2.4. Let S be a compact metric space and f : S → S a con-
tinuous map with f(S) = S. An ordered collection {M1, . . . ,Mk} of disjoint,
compact, and invariant subsets of S is called a Morse decomposition of S if for
each x ∈ S \ ∪k

i=1Mi there is an i with ω(x) ⊂ Mi and for any negative orbit
γ− through x there is a j > i with α(γ−) ⊂ Mj; A collection {M1, . . . ,Mk}
of disjoint, compact, and invariant subsets of S is called an acyclic covering
of Ω(S) := ∪x∈Sω(x) if each Mi is isolated in S, Ω(S) ⊂ ∪k

i=1Mi, and no
subset of Mi’s forms a cycle in S.

By replacing each ej in the proof of Theorem 1.2.2 with Mj , we can easily
get the following result.

Lemma 1.2.8. Let {M1, . . . ,Mk} be an acyclic covering of Ω(S). Then any
compact internally chain transitive set of f : S → S is contained in some Mi.

By [299, Theorems 3.1.7 and 3.1.8] and their discrete-time versions, the
current definition for Morse decomposition is equivalent to that in terms of
Conley’s repeller–attractor pairs (see, e.g., [299, Definition 3.1.5] for semiflows
and [336, Definition 4.2] for maps). The concept of acyclic coverings is very
important in persistence theory (see, e.g., [45, 146]). The equivalence between
acyclic coverings and Morse decompositions was first observed by Garay for
(two-sided) continuous flow on the boundary (see [128, Lemma]). In the fol-
lowing lemma, we formulate it in a general setting and give a complete proof,
which also provides an algorithm on how to reorder an acyclic covering into
an ordered Morse decomposition.

Lemma 1.2.9. A finite sequence {M1, . . . ,Mk} of disjoint, compact, and in-
variant sets of f in S is an acyclic covering of Ω(S) if and only if (after
reordering) it is a Morse decomposition of S.

Proof. Necessity. We first claim that for any subcollection M of Mi’s, there
exists an element D ∈ M such that D cannot be chained to any element
in M. Indeed, by contradiction, the nonexistence of such D would imply
that some subset of Mi’s from this finite collection M forms a cycle, which
contradicts the acyclic condition. By this claim, we can reorder the total
collection M0 := {M1, . . . ,Mk} by induction. First we choose an element,
denoted by D1, from the collection M0 such that D1 cannot be chained to any
element in M0. Suppose that we have chosen D1, . . . , Dm. We further choose
an element, denoted by Dm+1, from the collection Mm := M0\{D1, . . . , Dm}
such that Dm+1 cannot be chained to any element in Mm. After k steps,
we then get a reordered collection D := {D1, . . . , Dk}. Moreover, for any
1 ≤ i < j ≤ k, clearly we have Di, Dj ∈ Mi−1. Therefore, by the choice of
Di, Di cannot be chained to any element in Mi−1, and hence Di cannot be
chained to Dj .
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For any x ∈ S \ ∪k
i=1Di, by the assumption, we have ω(x) ⊂ ∪k

i=1Di, and
hence the invariant connectedness of ω(x) implies that ω(x) ⊂ Di for some
i. Let γ− be any given negative orbit of f through x and let α = α(γ−).
By Lemma 1.2.1, α is internally chain transitive for f . We further claim that
α ⊂ Dj for some j. Indeed, assume, by contradiction, that α �⊂ Dm for
all 1 ≤ m ≤ k. Since α ⊂ S is compact and invariant, α ∩ (∪k

i=1Di) �= ∅,
and hence there exists some Di1 (1 ≤ i1 ≤ k) such that α ∩ Di1 �= ∅. By
Lemma 1.2.7, there exist w1 ∈ α \Di1 and a full orbit γ(w1) ⊂ α such that
α(w1) ⊂ Di1 . Since w1 ∈ α ⊂ S, we have ω(w1) ⊂ ∪k

i=1Di, and hence by
the invariant connectedness of ω(w1), there exists some Di2 (1 ≤ i2 ≤ k) such
that ω(w1) ⊂ Di2 . Therefore, Di1 is chained to Di2 ; i.e., Di1 → Di2 . Clearly,
ω(w1) ⊂ α. Then α∩Di2 �= ∅. Again by Lemma 1.2.7, there exist w2 ∈ α\Di2

and a full orbit γ(w2) ⊂ α such that α(w2) ⊂ Di2 . We can repeat the above
argument to get an i3 (1 ≤ i3 ≤ k) such that Di2 → Di3 . Since there is
only a finite number of Dm’s, we will eventually arrive at a cyclic chain of
some Dm for f in S, which contradicts the no-cycle condition. It then follows
that Dj → Di, and hence by the property of {D1, . . . , Dk}, we have j > i.
Therefore, {D1, . . . , Dk} is a Morse decomposition of S.

Sufficiency. Since the Mi, 1 ≤ i ≤ k, are pairwise disjoint and compact,
there exist k pairwise disjoint and closed subsets Ni of S such that Mi is
contained in the interior of Ni, 1 ≤ i ≤ k. In order to see that Mm is isolated
in S, suppose that there exists an invariant set M ⊂ IntNm but M �⊂ Mm.
It follows that there is an x ∈ M ∩ (S \ ∪k

i=1Mi). Let γ ⊂ M be a full
orbit through x. Clearly, ω(x) ⊂ M and α(x) ⊂ M . Since {M1, . . . ,Mk} is
a Morse decomposition of S, there exists j > i such that ω(x) ⊂ Mi and
α(x) ⊂ Mj. Then Mi ∩ Nm �= ∅ and Mj ∩ Nm �= ∅, and hence i = m = j,
which contradicts j > i. Thus each Mi is isolated in S. Clearly, the definition
of Morse decompositions implies that Ω(S) ⊂ ∪k

i=1Mi. We further claim that
if Mi1 → Mi2 , then i1 > i2. Indeed, let γ(x) be a full orbit through some
x �∈ Mi1 ∪Mi2 such that ω(x) ⊂ Mi2 and α(x) ⊂ Mi1 . If x ∈ Ml for some
l, we have ω(x) ⊂ Ml ∩ Mi2 and α(x) ⊂ Ml ∩ Mi1 , and hence i1 = l = i2,
contradicting that x /∈ Mi1 ∪ Mi2 . It follows that x ∈ S \ ∪k

i=1Mi. Since
{M1, . . . ,Mk} is a Morse decomposition of S, there exists j > i such that
ω(x) ∈ Mi and α(x) ∈ Mj . Then we have i1 = j > i = i2. By this claim, it is
easy to see that no subset ofMi’s forms a cycle in S. Therefore, {M1, . . . ,Mk}
is an acyclic covering of Ω(S).

1.3 Strong Repellers and Uniform Persistence

Let f : X → X be a continuous map and X0 ⊂ X an open set. Define
∂X0 := X \ X0, and M∂ := {x ∈ ∂X0 : fn(x) ∈ ∂X0, n ≥ 0}, which may
be empty. Note that ∂X0 need not be the boundary of X0 as the notation
suggests. This peculiar notation has become standard in persistence theory
(see, e.g., [365]). We assume that every positive orbit of f is precompact.
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1.3.1 Strong Repellers

There are two traditional approaches in persistence theory, one using Morse
decompositions and the other using acyclic coverings. The next lemma, to-
gether with Lemma 1.2.9, shows that the two approaches are equivalent.

Lemma 1.3.1. Suppose that there exists a maximal compact invariant set A∂

of f in ∂X0; that is, A∂ is compact, invariant, possibly empty, and contains
every compact invariant subset of ∂X0. Then a finite sequence {M1, . . . ,Mk}
of disjoint, compact, and invariant subsets of ∂X0, each of which is isolated in
∂X0, is an acyclic covering of Ω(M∂) in ∂X0 if and only if (after reordering)
it is a Morse decomposition of A∂.

Proof. Let S = A∂ . Then we have S ⊂ M∂ and hence Ω(S) ⊂ Ω(M∂). It
follows that {M1, . . . ,Mk} is also an acyclic covering of Ω(S). So the necessity
follows from Lemma 1.2.9. To prove the sufficiency, assume that {M1, . . . ,Mk}
is a Morse decomposition of S. By Lemma 1.2.9, {M1, . . . ,Mk} is an acyclic
covering of Ω(S) in S. Since S is the maximal compact invariant set in ∂X0,
any compact invariant set in ∂X0 is a subset of S. Consequently, no subset of
Mi’s forms a cycle in ∂X0 because such a cycle is compact and invariant so nec-
essarily belongs to S, violating that {M1, . . . ,Mk} is a Morse decomposition
of S. We further claim that Ω(M∂) ⊂ ∪k

i=1Mi. Indeed, for any x ∈ M∂ , ω(x) is
a compact, invariant, internally chain transitive set in ∂X0 (by Lemma 1.2.1).
Then ω(x) ⊂ S, and hence Lemma 1.2.8 implies that ω(x) ⊂ Mi for some
1 ≤ i ≤ k. Therefore, {M1, . . . ,Mk} is an acyclic covering of Ω(M∂) in ∂X0.

Theorem 1.3.1. (Strong repellers) Assume that

(C1) f(X0) ⊂ X0 and f has a global attractor A;
(C2) The maximal compact invariant set A∂ = A∩M∂ of f in ∂X0, possibly

empty, admits a Morse decomposition {M1, . . . ,Mk} with the following
properties:
(a) Mi is isolated in X;
(b) W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive
set L with L �⊂ Mi for all 1 ≤ i ≤ k, we have infx∈L d(x, ∂X0) > δ.

Proof. We first prove the following weaker conclusion:

Claim. There is an ε > 0 such that if L is a compact internally chain transitive
set not contained in any Mi, then supx∈L d(x, ∂X0) > ε.

Indeed, assume that, by contradiction, there exists a sequence of compact
internally chain transitive sets {Dn : n ≥ 1} with Dn �⊂ Mi, 1 ≤ i ≤ k, such
that

lim
n→∞ sup

x∈Dn

d(x, ∂X0) = 0.
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Since W s(A) = X , by Theorem 1.2.1 we have Dn ⊂ A for all n ≥ 1. In
the compact metric space of compact nonempty subsets of A with Haus-
dorff distance dH , the sequence {Dn : n ≥ 1} has a convergent subsequence.
Without loss of generality, we assume that for some nonempty compact set
D ⊂ A, limn→∞ dH(Dn, D) = 0. Then for any x ∈ D, there exists xn ∈ Dn

such that limn→∞ xn = x. Clearly, limn→∞ d(xn, ∂X0) = 0, and hence
there exists yn ∈ ∂X0 such that limn→∞ d(xn, yn) = 0. It then follows that
limn→∞ yn = x, and hence x ∈ ∂X0 = ∂X0. Thus D ⊂ ∂X0. By Lemma 1.2.4
with Sn = f , D is internally chain transitive for f . It then follows that
D ⊂ A∂ , and Lemmas 1.2.8 and 1.2.9 imply that D ⊂ Mi for some i. Since
Dn → Mi as n → ∞, the isolatedness of Mi in X implies that Dn ⊂ Mi for
all large n, contradicting our assumption. This proves the claim.

We now prove the theorem by contradiction. Assume that there exists
a sequence of compact internally chain transitive sets {Ln : n ≥ 1} with
Ln �⊂ Mi, 1 ≤ i ≤ k, n ≥ 1, such that limn→∞ infx∈Ln d(x, ∂X0) = 0. As
in the proof of the above claim, we can assume that limn→∞ dH(Ln, L) = 0,
where L is a compact internally chain transitive set for f : X → X and
L �⊂ Mi for each 1 ≤ i ≤ k. Clearly, there exist xn ∈ Ln, n ≥ 1, such that
limn→∞ d(xn, ∂X0) = 0, and hence L ∩ ∂X0 �= ∅. By the above claim, we
can choose a ∈ L ∩ ∂X0 and b ∈ L with d(b, ∂X0) > ε. As in the proof of
Lemma 1.2.7, let {xn : n ≥ 0} be the asymptotic pseudo-orbit determined
by a and b in L. Then there are two subsequences xmj and xrj such that
xmj = a and xrj = b for all j ≥ 1, and for any convergent subsequence
xsj → x ∈ X , j → ∞, we have limj→∞ xsj+n = fn(x), ∀n ≥ 0. We can
further choose two sequences lj and nj with lj < mj < nj and limj→∞ lj = ∞
such that d(xlj , ∂X0) > ε, d(xnj , ∂X0) > ε, and d(xk, ∂X0) ≤ ε for any integer
k ∈ (lj , nj), j ≥ 1. Since {xn : n ≥ 0} is a subset of the compact set L, we can
assume, after taking a convergent subsequence, that xlj → x ∈ L as j → ∞.
Clearly, d(x, ∂X0) ≥ ε and hence x ∈ X0. We further claim that the sequence
nj − lj is unbounded. Assume that, by contradiction, nj − lj is bounded.
Then mj − lj is also bounded, and hence we can assume, after choosing a
subsequence, that mj − lj = m, where m is an integer. Since f(X0) ⊂ X0,
we have a = limj→∞ xmj = limj→∞ xlj+m = fm(x) ∈ X0, which contradicts
a ∈ ∂X0. Thus we can assume, by taking a subsequence, that nj − lj → ∞
as j → ∞. Then for any integer n ≥ 1, there is an integer J = J(n) ≥ 1
such that nj − lj > n for all j ≥ J . Then we have lj < lj + n < nj and
hence d(xlj+n, ∂X0) ≤ ε, ∀j ≥ J(n). Thus fn(x) = limj→∞ xlj+n satisfies
d(fn(x), ∂X0) ≤ ε, ∀n ≥ 1. Since x ∈ L, we have fn(x) ∈ L, n ≥ 0. Thus, by
Lemma 1.2.1, ω(x) is a compact internally chain transitive set for f : X → X .
Moreover, supy∈ω(x) d(y, ∂X0) ≤ ε. Appealing again to the claim, we conclude
that ω(x) ⊂ Mi for some 1 ≤ i ≤ k, and hence x ∈ W s(Mi) ∩ X0. But this
contradicts assumption (C2).

Remark 1.3.1. It easily follows from Lemma 1.3.1 that the conclusion of The-
orem 1.3.1 is still valid if condition (C2) is replaced by the following one:
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(C2′) There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact,
and isolated invariant sets in ∂X0 such that
(a) Ω(M∂) := ∪x∈M∂

ω(x) ⊂ ∪k
i=1Mi;

(b) no subset of M forms a cycle in ∂X0;
(c) Mi is isolated in X ;
(d) W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

We observe that Theorem 1.3.1 requires that the open set X0 be positively
invariant for f , which may limit its applications. Moreover, in the infinite-
dimensional case of X(e.g., space of continuous functions on a compact set),
the distance function d(x, ∂X0) only gives rise to an abstract repelling prop-
erty of ∂X0 (e.g., the maximum norm induced distance). In the rest of this
subsection we extend strong repellers to a more general case.

Definition 1.3.1. A lower semicontinuous function p : X → R+ is called a
generalized distance function for f : X → X if for every x ∈ (X0 ∩ p−1(0)) ∪
p−1(0,∞), we have p(fn(x)) > 0, ∀n ≥ 1.

Theorem 1.3.2. Let p be a generalized distance function for continuous map
f : X → X. Assume that

(P1) f has a global attractor A;
(P2) There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact,

and isolated invariant sets in ∂X0 with the following properties:
(a) ∪x∈M∂

ω(x) ⊂ ∪k
i=1Mi;

(b) no subset of M forms a cycle in ∂X0;
(c) Mi is isolated in X;
(d) W s(Mi) ∩ p−1(0,∞) = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact chain transitive set L with
L �⊂ Mi for all 1 ≤ i ≤ k, we have minx∈L p(x) > δ.

Proof. Since the proof is similar to that of Theorem 1.3.1, we only sketch
modifications. The first claim is that there exists ε > 0 such that sup{p(x) :
x ∈ L} > ε holds for all chain transitive sets L not contained in any Mi.
Arguing by contradiction as in the original proof we arrive at a chain transitive
set D (limit of sets Dn) satisfying p(x) = 0, ∀x ∈ D. If x ∈ D ∩ X0, then
p(f(x)) > 0, a contradiction to f(x) ∈ D, so we conclude that D ⊂ ∂X0. The
remainder of the proof of the claim is unchanged.

The second part of the proof begins by contradicting the conclusion of
the result, obtaining a chain transitive set L, with L not contained in any
Mi, as a limit of chain transitive sets Ln, each not contained in any Mi, and
with limn→∞ inf{p(x) : x ∈ Ln} = 0. So we find xn ∈ Ln with p(xn) → 0.
Without loss of generality, we assume xn → a ∈ L as n → ∞. By the lower
semicontinuity of p at a and the fact that p(a) ≥ 0, it easily follows that
p(a) = 0. By the claim, we can find point b ∈ L such that p(b) > ε. At this
point the proof continues as in Theorem 1.3.1 with the construction of an
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asymptotic pseudo-orbit, except that d(y, ∂X0) is replaced in each occurrence
by p(y). We conclude that the subsequential limit x ∈ L of the pseudo-orbit
satisfies p(x) ≥ ε, but this doesn’t imply x ∈ X0. Furthermore, since we do not
assume thatX0 is positively invariant, the argument thatmj−lj is unbounded
can be modified as follows: a = fm(x) contradicts that p(a) = 0 = p(fm(x)),
p(x) ≥ ε, and Definition 1.3.1, which requires p(fm(x)) > 0. Continuing as
in the original argument, we arrive at p(fn(x)) ≤ ε, ∀n ≥ 1. Thus, the lower
semicontinuity of p implies that p(y) ≤ ε on the chain transitive set ω(x) ⊂ L.
But this contradicts (P2) as in the original proof.

1.3.2 Uniform Persistence

In this subsection we discuss uniform persistence and its robustness in terms
of sequences of discrete semiflows.

Definition 1.3.2. A function f : X → X is said to be uniformly persistent
with respect to (X0, ∂X0) if there exists η > 0 such that
lim infn→∞ d(fn(x), ∂X0) ≥ η for all x ∈ X0. If “inf” in this inequality is
replaced with “sup”, then f is said to be weakly uniformly persistent with
respect to (X0, ∂X0).

Clearly, W s(Mi) ∩ X0 = ∅ implies that ω(x) �⊂ Mi, ∀x ∈ X0. By
Lemma 1.2.1 and Theorem 1.3.1, it then follows that f : X → X is uni-
formly persistent under assumptions (C1) and (C2). In particular, we have
the following interesting result.

Theorem 1.3.3. Let f : X → X be a continuous map with f(X0) ⊂ X0.
Assume that f has a global attractor A. Then weak uniform persistence implies
uniform persistence.

Proof. Let A∂ be the maximal compact invariant set of f in ∂X0. Clearly, A∂

is a Morse decomposition of f : A∂ → A∂ . It is easy to see that weak uniform
persistence of f implies that W s(A∂)∩X0 = ∅ and that A∂ is isolated in X0,
and hence isolated in X . By Theorem 1.3.1 with L = ω(x), ∀x ∈ X0, f is
uniformly persistent with respect to (X0, ∂X0).

Definition 1.3.3. Let p be a generalized distance function for a continuous
map f : X → X. Then f is said to be uniformly persistent with respect to
(X0, ∂X0, p) if there exists η > 0 such that lim infn→∞ p(fn(x)) ≥ η for all
x ∈ X0.

By Definition 1.3.1, it is easy to see that for every x ∈ X0, either p(x) > 0
or p(f(x)) > 0. Note that ω(x) = ω(f(x)). Thus,W s(Mi)∩p−1(0,∞) = ∅ im-
plies ω(x) �⊂ Mi, ∀x ∈ X0. By Lemma 1.2.1 and Theorem 1.3.2, it then follows
that f is uniformly persistent with respect to (X0, ∂X0, p) under assumptions
(P1) and (P2).
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Let Sm : X → X, m ≥ 0, be a sequence of continuous maps such that every
positive orbit for Sm has compact closure. Let ωm(x) denote the omega limit of
x for discrete semiflow Sm, and set W = ∪m≥0,x∈Xωm(x). The following two
results show that uniform persistence is robust under appropriate conditions.

Theorem 1.3.4. (Robustness of uniform persistence) Assume that
Sm(X0) ⊂ X0, ∀m ≥ 0, W is compact, and Sm → S0 uniformly on W .
In addition, suppose that

(A1) S0 satisfies (C1) and either of (C2) and (C2′);
(A2) There exist η0 > 0 and a positive integer N0 such that for m ≥ N0 and

x ∈ X0, lim supn→∞ d(Sn
m(x),Mi) ≥ η0, 1 ≤ i ≤ k.

Then there exist η > 0 and a positive integer N such that
lim infn→∞ d(S n

m(x), ∂X0) ≥ η for m ≥ N and x ∈ X0.

Proof. Assume, by contradiction, that there exists a sequence {xk} in X0

and positive integers mk → ∞ satisfying lim infn→∞ d(S n
mk

(xk), ∂X0) → 0 as
k → ∞. By Lemma 1.2.1, ωmk

(xk) is a compact internally chain transitive
set for Smk

. In the compact metric space of all compact subsets of W with
Hausdorff distance dH , the sequence {ωmk

(xk)} has a convergent subsequence.
Without loss of generality, we assume that for some nonempty compact L ⊂
W , limk→∞ dH(ωmk

(xk), L) = 0. Clearly, there exist yk ∈ ωmk
(xk) such that

limk→∞ d(yk, ∂X0) = 0, and hence L ∩ ∂X0 �= ∅. By Lemma 1.2.4, L is
internally chain transitive for S0. Since L ∩ ∂X0 �= ∅, Theorem 1.3.1, applied
to S0, implies that L ⊂ Mi for some i. Therefore, limk→∞ sup{d(x,Mi) :
x ∈ ωmk

(xk)} = 0, and hence there exists a k0 > 0 such that mk0 > N0

and ωmk0
(xk0 ) ⊂ {x : d(x,Mi) < η0

2 }. Since Sn
mk0

(xk0) → ωmk0
(xk0) as

n → ∞, we have lim supn→∞ d(Sn
mk0

(xk0 ),Mi) ≤ η0

2 , which is a contradiction

to assumption (A2).

Theorem 1.3.5. (Robustness of uniform persistence) Assume that W
is compact and Sm → S0 uniformly on W . In addition, suppose that

(1) S0 satisfies (P1) and (P2) of Theorem 1.3.2 with a generalized distance
function p for S0;

(2) There exist η0 > 0 and a positive integer N0 such that for m ≥ N0 and
x ∈ X0, lim supn→∞ d(Sn

m(x),Mi) ≥ η0, 1 ≤ i ≤ k.

Then there exist η > 0 and a positive integer N such that
lim infn→∞ p(Sn

m(x)) ≥ η for m ≥ N and x ∈ X0.

Proof. Assume, by contradiction, that there exists a sequence {xk} inX0 and
positive integers mk → ∞ satisfying lim infn→∞ p(S n

mk
(xk)) → 0 as k → ∞.

As in the proof of Theorem 1.3.4, we can assume that for some nonempty
compact L ⊂ W , limk→∞ dH(ωmk

(xk), L) = 0. Then there exist yk ∈ ωmk
(xk)

such that limk→∞ p(yk) = 0. Let y ∈ L be the limit of some convergent
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subsequence of {yk}. Since p is lower semicontinuous at y and p(y) ≥ 0, it
follows that p(y) = 0. By Lemma 1.2.4, L is internally chain transitive for S0.
Since L ∩ p−1(0) �= ∅, Theorem 1.3.2, as applied to S0, implies L ⊂ Mi for
some i. But ωmk

(xk) → L gives a contradiction to assumption (2).

In the applications of results in Subsections 1.3.1 and 1.3.2 to infinite-
dimensional discrete- and continuous-time semiflows associated with evolu-
tionary equations, we may get practical persistence by choosing suitable gen-
eralized distance functions instead of the distance function d(x, ∂X0). Below
we give two examples for delay differential equations and reaction–diffusion
systems, respectively.

Example 1.3.1. Let r ≥ 0 and C := C([−r, 0],Rm). For a continuous map
u : [−r, σ) → R

m with σ > 0, and each t ∈ [0, σ), we define ut ∈ C by ut(s) =
u(t + s), ∀s ∈ [−r, 0]. Consider evolutionary systems of delayed differential
equations

du(t)

dt
= f(ut), t ≥ 0,

u0 = φ ∈ C.
(1.1)

Under appropriate assumptions on f : C → R
m, system (1.1) has a unique

solution u(t, φ) on [0,∞) for each φ ∈ X := C([−r, 0],Rm
+ ), and defines a

continuous-time semiflow Φ(t) on X by Φ(t)φ = ut(φ). Define

p(φ) := min
1≤i≤m

{φi(0)}, ∀φ = (φ1, . . . , φm) ∈ X.

Thus, p : X → R+ is continuous, and we may obtain the practical persistence
by appealing to Theorem 1.3.2.

Example 1.3.2. Consider reaction–diffusion systems

∂ui
∂t

= diΔui + fi(x, u1, . . . , um) in Ω × (0,∞),

Bui = 0 on ∂Ω × (0,∞),
(1.2)

where di > 0, Δ is the Laplacian operator, Ω is a bounded domain in R
n

with smooth boundary, and Bu = 0 denotes either Robin type (case (R))
or Dirichlet boundary condition (case (D)). Let X = C(Ω,Rm

+ ) in case (R),

and X = C0(Ω,R
m
+ ) in case (D). Under appropriate assumptions on f =

(f1, . . . , fm), system (1.2) has a unique solution u(t, x, φ) on [0,∞) satisfying
u(0, ·, φ) = φ for each φ ∈ X , and defines a continuous-time semiflow Φ(t) on
X by Φ(t)φ = u(t, ·, φ). Let Z := C1

0 (Ω,R
m), Z+ := C1

0 (Ω,R
m
+ ), and fix an

e ∈ int(Z+). Define

p(φ) := min
1≤i≤m

{

min
x∈Ω

φi(x)

}

, ∀φ = (φ1, . . . , φm) ∈ X

in case (R), and
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p(φ) := sup{β ∈ R+ : φi(x) ≥ βei(x), ∀x ∈ Ω, 1 ≤ i ≤ m},
∀φ = (φ1, . . . , φm) ∈ X

in case (D), respectively. It is easy to see that the first p-function is continuous,
and the second one is lower semicontinuous. Therefore, Theorem 1.3.2 may
be used to obtain the practical persistence.

Remark 1.3.2. By using similar arguments, we can prove analogues of Theo-
rems 1.2.1, 1.2.2, and 1.3.1–1.3.5 for continuous-time semiflows.

1.3.3 Persistence and Attractors

Let X0 and ∂X0 be given as in the beginning of Section 1.3. We assume
that f : X → X is a continuous map with f(X0) ⊂ X0. The purpose of
this subsection is to establish appropriate conditions under which a uniformly
persistent system admits a global attractor in X0.

A subset B ⊂ X0 is said to be strongly bounded if B is bounded in (X, d)
and infx∈B d (x, ∂X0) > 0. For convenience, we set ρ(x) := d (x, ∂X0) , ∀x ∈
X . In order to make X0 become a complete metric space, we define a new
metric function d0 on X0 by

d0(x, y) =

∣
∣
∣
∣

1

ρ (x)
− 1

ρ (y)

∣
∣
∣
∣+ d(x, y), ∀x, y ∈ X0. (1.3)

Lemma 1.3.2. (X0, d0) is a complete metric space.

Proof. It is easy to see that d0 is a metric function. Let {xn}n≥0 be a Cauchy
sequence in (X0, d0). Since d(x, y) ≤ d0(x, y), ∀x, y ∈ X0, we deduce that
{xn}n≥0 is a Cauchy sequence in (X, d), and there exists x ∈ M, such that
d(xn, x) → 0 as n → +∞. To prove that d0(xn, x) → 0 as n → +∞, it
is sufficient to show that x ∈ X0. Given ε > 0, since {xn}n≥0 is a Cauchy
sequence in (X0, d0), there exists n0 ≥ 0 such that d0(xn, xp) ≤ ε, ∀n, p ≥ n0.
In particular, we have d0(xn, xn0) ≤ ε, ∀n ≥ n0. Then

∣
∣
∣
∣

1

ρ (xn)
− 1

ρ (xn0)

∣
∣
∣
∣ ≤ ε, ∀n ≥ n0,

So there exists r > 0 such that infn≥0 ρ (xn) ≥ r. Since ρ is continuous and
d(xn, x) → 0 as n → +∞, we deduce that ρ (x) ≥ r, and hence x ∈ X0. Thus,
(X0, d0) is complete.

We denote for each couple of subsets A,B ⊂ X,

δ (B,A) = sup
x∈B

inf
y∈A

d(x, y),

and if A,B ⊂ X0, we denote

δ0 (B,A) = sup
x∈B

inf
y∈A

d0(x, y).
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Lemma 1.3.3. The following two statements are valid:

(1) Let {Bt}t∈I be a family of subsets of X0, where I is a unbounded subset of
[0,+∞). If A ⊂ X0 is compact in (X, d) and limt→∞ δ (Bt, A) = 0, then
limt→∞ δ0 (Bt, A) = 0.

(2) If f is asymptotically smooth, then f is asymptotically smooth in (X0, d0).

Proof. (1) We denote k := 1
2 infx∈A ρ(x) > 0. Assume, by contradiction, that

limt→+∞ sup δ0 (Bt, A) > ε > 0. Then we can find a sequence {tp}p≥0 ⊂ I

such that tp → +∞, p → +∞, and a sequence
{
xtp

}
p≥0

⊂ X0 such that

xtp ∈ Btp , d0
(
xtp , A

)
≥ ε, ∀p ≥ 0. Since d

(
xtp , A

)
→ 0, as p → +∞, without

loss of generality we can assume that there exists x ∈ A such that d(xtp , x) →
0, as p → +∞. Since ρ is continuous and ρ(x) > k, there exists p0 ≥ 0 such
that ρ(xtp) ≥ k, ∀p ≥ p0. Thus, we have

0 < ε ≤ d0
(
xtp , x

)
≤ k−2

∣
∣ρ(xtp)− ρ(x)

∣
∣+ d(xtp , x) → 0 as p→ +∞,

a contradiction.

(2) It is easy to see that f : (X0, d0) → (X0, d0) is continuous. Let B be
a bounded subset in (X0, d0) such that f (B) ⊂ B. Since f is asymptotically
smooth, there exists a compact subset C ⊂ X which attracts B for f. So
C0 = C ∩B ⊂ X0 is compact and attracts B for f . It easily follows that C0 is
also compact in (X0, d0). Since C0 attracts B for f , the statement (1) implies
that C0 attracts B for f : (X0, d0) → (X0, d0).

Theorem 1.3.6. Assume that f is asymptotically smooth and uniformly per-
sistent with respect to (X0, ∂X0), and that f has a global attractor A. Then
f : (X0, d) → (X0, d) has a global attractor A0. Moreover, if a subset B of X0

has the property that γ+
(
fk (B)

)
is strongly bounded for some k ≥ 0, then

A0 attracts B for f .

Proof. We consider the continuous map f : (X0, d0) → (X0, d0). Since f is
point dissipative and uniformly persistent, f is point dissipative in (X0, d0).
Moreover, Lemma 1.3.3 implies that f is asymptotically smooth in (X0, d0).
Let C be a compact subset in (X0, d0), and {xp} a bounded sequence in
γ+(C) in (X0, d0). Then xp = Tmp(zp), zp ∈ C, ∀p ≥ 1, and the sequence
{xp} is strongly bounded in (X, d). Since C is also compact in (X, d), we have
limm→∞ δ(fm(C), A) = 0. Thus, {xp} has a convergent subsequence xpk

→ x
in (X, d) as k → ∞. By the continuity of ρ and the strong boundedness of {xp},
it follows that ρ(x) > 0, i.e., x ∈ X0, and hence, xpk

→ x in (X0, d0) as k → ∞.
Thus, Lemma 1.1.5 implies that positive orbits of compact sets are bounded
for f : (X0, d0) → (X0, d0). Then the conclusion for f : (X0, d) → (X0, d)
follows from Theorem 1.1.2, as applied to f : (X0, d0) → (X0, d0).

Theorem 1.3.7. Assume that f is point dissipative on X and uniformly per-
sistent with respect to (X0, ∂X0), and that one of the following conditions
holds:
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(a) There exists some integer n0 ≥ 1 such that fn0 is compact on X, and fn0

maps strongly bounded subset of X0 onto strongly bounded sets in X0, or
(b) f is asymptotically smooth on X, and for every strongly bounded subset

B ⊂ X0, there exists k = k (B) ≥ 0 such that γ+
(
fk(B)

)
is strongly

bounded in X0.

Then f : (X0, d) → (X0, d) has a global attractor A0, and A0 attracts every
strongly bounded subset in X0 for f .

Proof. Clearly, f : (X0, d0) → (X0, d0) is point dissipative. It is easy to see
that condition (a) implies that fn0 : (X0, d0) → (X0, d0) is compact, and
that condition (b) implies that the condition (b) of Theorem 1.1.3 holds for
f : (X0, d0) → (X0, d0). By Theorem 1.1.3, there is a strong global attractor
A0 for f : (X0, d0) → (X0, d0). Consequently, A0 is a global attractor for
f : (X0, d) → (X0, d), and A0 attracts every strongly bounded subset in X0

for f .

Remark 1.3.3. A result similar to Theorem 1.3.7 was already presented for
discrete- and continuous-time dynamical systems in [430] and [146], respec-
tively. The only difference, compared with the earlier results, is that we add
a strong boundedness assumption for case (a). In general, this assumption is
necessary for the existence of a strong global attractor in X0 for f , which can
be seen from the counter example below.

Example 1.3.3. Let C([0, 1],R) be the Banach space with the norm ‖φ‖ =
supa∈[0,1] |φ(a)|, and X := C([0, 1],R+) be endowed with the metric d(φ, ψ) =
‖φ− ψ‖. Consider the map f : X → X defined by

f(φ) = δ
Fβ(φ)

1 + Fβ(φ)
1[0,1], ∀φ ∈ X,

where 1[0,1](a) = 1, ∀a ∈ [0, 1], and Fβ(φ) =
∫ 1

0 β(a)φ(a)da, ∀φ ∈ X . We
assume that

δ > 1, β ∈ C ([0, 1] ,R) ,

∫ 1

0

β(a)da = 1, β(a) > 0, ∀a ∈ [0, 1) , and β(1) = 0.

It is easy to see that the map f is continuous, and maps bounded sets into com-
pact sets ofX . Note that f(X) ⊂ [0, δ] 1[0,1] =

{
α1[0,1] : α ∈ [0, δ]

}
is bounded.

Thus, f is compact and point dissipative, and has a strong global attractor
in X . Set ∂X0 = {0} and X0 = X \ {0}. Clearly, ρ(φ) = ‖φ‖, f (X0) ⊂ X0,
f(∂X0) ⊂ ∂X0, and the fixed points of f are 0 and u = (δ − 1) 1[0,1]. It
then easily follows that for each φ ∈ X0, f

m (φ) → u, as m → +∞. So
f is uniformly persistent with respect to (X0, ∂X0). Let α = (δ − 1) and
B := {φ ∈ X : ‖φ‖ = α}. Since β(1) = 0, we have Fβ(B) = (0, α]. Moreover,
f(B) =

{
α1[0,1] : α ∈ (0, α]

}
, and fn(B) = f(B), ∀n ≥ 1. Thus, there exists

no compact subset in X0 that attracts B for f . In particular, there is no strong
global attractor for f : (X0, d0) → (X0, d0), where d0 is defined as in (1.3).
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Remark 1.3.4. By similar arguments we can prove the analogs of Theorems
1.3.6 and 1.3.7 for a continuous-time semiflow Φ(t) on X with Φ(t)(X0) ⊂ X0

for all t ≥ 0.

1.3.4 Coexistence States

In this subsection we always assume that X is a closed subset of a Banach
space E, and that X0 is a convex and relatively open subset of X . Then
∂X0 := X \X0 is relatively closed in X . Let d be the distance induced by the
norm ‖ · ‖ in E, and set d(A,B) := infx∈A d(x,B) for A,B ⊂ E. Recall that
a subset B of X0 is said to be strongly bounded in X0 if B is bounded and
d(B, ∂X0) > 0.

Given a set A ⊂ E, let co(A) be the convex hull of A and co(A) the closed
convex hull of A, respectively. To prove the existence of coexistence states for
uniformly persistent maps, we need the following two lemmas.

Lemma 1.3.4. If A is a compact subset of X0, then co(A) ⊂ X0 and
d(co(A), ∂X0) > 0.

Proof. Since A ⊂ X0 is compact and ∂X0 is closed, we have d(A, ∂X0) > 0.
For any x ∈ X and δ > 0, set B(x, δ) = {y ∈ X : ‖y − x‖ < δ} and
B(x, δ) = {y ∈ X : ‖y − x‖ ≤ δ}. Let δ0 = 1

2d(A, ∂X0) > 0. Then for every

x ∈ A, B(x, δ0) ⊂ X0 and A ⊂ ∪x∈AB(x, δ0). Again by the compactness of A,
there exist finitely many x1, x2, . . . , xk ∈ A such that A ⊂ ∪k

i=1B(xi, δ0). Let
Ai = A∩B(xi, δ0), (i = 1, 2, . . . , k). Then A = ∪k

i=1Ai. Clearly, Ai is compact
and Ai ⊂ B(xi, δ0) ⊂ X0, and hence co(Ai) ⊂ B(xi, δ0) ⊂ X0 (i = 1, 2, . . . , k).
Therefore, sinceX0 is convex, co(∪k

i=1co(Ai)) ⊂ X0. By [199, Theorem 2.1 (v)]
and finite induction, it follows that for any finitely many nonempty subsets
Ci of Banach space E, 1 ≤ i ≤ n,

co(∪n
i=1Ci) =

{
n∑

i=1

αixi : αi ≥ 0,

n∑

i=1

αi = 1, xi ∈ co(Ci), ∀1 ≤ i ≤ n

}

.

Since co(co(Ai)) = co(Ai), 1 ≤ i ≤ k, we get

co(∪k
i=1co(Ai)) =

{
k∑

i=1

αixi : αi ≥ 0,

k∑

i=1

αi = 1, xi ∈ co(Ai), ∀1 ≤ i ≤ k

}

= F (Λn × co(A1)× · · · × co(Ak)),

where

F (α, x) =

k∑

i=1

αixi, ∀α = (α1, . . . , αk) ∈ R
k, x = (x1, . . . , xk) ∈ Ek,

and
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Λk =

{

(α1, . . . , αk) ∈ R
k : αi ≥ 0, 1 ≤ i ≤ k and

k∑

i=1

αi = 1

}

.

Since the closed hull of any precompact subset of given Banach space is com-
pact (see, e.g., [425, Proposition 11.3 (10)]), co(A) and co(Ai), 1 ≤ i ≤ k,
are all compact. By the continuity of F : Rk × Ek → E and the compactness
of Λk × co(A1) × · · · × co(Ak) in Rk × Ek, it follows that co(∪k

i=1co(Ai)) is
compact and hence closed. Consequently, we have

co(A) = co(∪k
i=1Ai) ⊂ co(∪k

i=1co(Ai)) = co(∪k
i=1co(Ai)) ⊂ X0.

By the compactness of co(A) and closedness of ∂X0, it then follows that
d(co(A), ∂X0) > 0.

Lemma 1.3.5. If A is a convex and compact subset of X0, then for any ε > 0,
there exists an open and convex set Nε ⊂ X0 such that A ⊂ Nε ⊂ N(A, ε),
where N(A, ε) = {x ∈ E : d(x,A) < ε} is the ε-neighborhood of A.

Proof. Since A ⊂ X0 is compact, d(A, ∂X0) > 0. For any ε > 0, let δ =
min

(
ε, 12d(A, ∂X0)

)
. As in the proof of Lemma 1.3.4, there exist x1, x2, . . . , xk ∈

A such that A ⊂ ∪k
i=1B(xi, δ) ⊂ X0. Therefore, since X0 is convex, A ⊂

co(∪k
i=1B(xi, δ)) ⊂ X0. Since the convex hull of any open subset of given lin-

ear topological space is open, Nε = co(∪k
i=1B(xi, δ)) is open in X . Since each

B(xi, δ) is convex, as in the proof of Lemma 1.3.4,

Nε =

{
k∑

i=1

αiyi : αi ≥ 0,

k∑

i=1

αi = 1 and yi ∈ B(xi, δ), 1 ≤ i ≤ k

}

.

Thus, for any x ∈ Nε, we have x =
∑k

i=1 αiyi for some yi ∈ B(xi, δ) and

αi ≥ 0 (i = 1, 2, . . . , k)with
∑k

i=1 αi = 1. Then

∥
∥
∥
∥
∥
x−

k∑

i=1

αixi

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

k∑

i=1

αi(yi − xi)

∥
∥
∥
∥
∥
≤

k∑

i=1

αi ‖yi − xi‖ <
k∑

i=1

αiδ = δ ≤ ε.

Since A is convex, we have
∑k

i=1 αixi ∈ A, and hence d(x,A) < ε. Thus,
Nε ⊂ N(A, ε).

We also need the following Hale and Lopes fixed point theorem in a Ba-
nach space, which is a consequence of [141, Lemmas 2.6.5 and 2.6.6] or [143,
Theorems 5 and 6].

Lemma 1.3.6. (Hale–Lopes fixed point theorem) Suppose K ⊂ B ⊂ S
are convex subsets of a Banach space E with K compact, S closed and bounded,
and B open in S. If f : S → E is α-condensing, γ+(B) ⊂ S, and K attracts
compact sets of B, then f has a fixed point in B.
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Now we turn to the discrete semidynamical system {fn}∞n=1 defined by a
continuous map f : X → X with f(X0) ⊂ X0. A point x0 ∈ X is called a
coexistence state of {fn}∞n=1 if x0 is a fixed point of f in X0, i.e., x0 ∈ X0

and f(x0) = x0. We have the following result on the existence of coexistence
states.

Theorem 1.3.8. Assume that f is α-condensing. If f : X0 → X0 has a global
attractor A0, then f has a fixed point x0 ∈ A0.

Proof. Let K = co(A0). Since A0 ⊂ X0 is compact, K is compact. By
Lemma 1.3.4, K ⊂ X0 and d(K, ∂X0) > 0. Since f : X0 → X0 has a global
attractor A0, there exists an ε0 > 0 such that N(K, ε0) ⊂ X0 is attracted by
A0. By Lemma 1.3.5, there is an open and convex neighborhood B of K such
that B ⊂ N(K, ε0). ThenK attracts B and γ+(B) is bounded in X0. Since X0

is convex and X is closed in the Banach space E, S = co(γ+(B)) ⊂ X0 ⊂ X ,
and S is bounded in X . Therefore, K ⊂ B ⊂ S satisfy all conditions of
Lemma 1.3.6. It then follows that f has a fixed point x0 in B ⊂ X0, and
clearly, x0 ∈ A0.

Remark 1.3.5. In the case that f : X → X is compact, there is an alternative
proof for the existence of the coexistence state. Indeed, by Lemma 1.3.4, there
is an open and convex neighborhood U of K such that U ⊂ N(K, ε0/2) ∩
X0. Then U ⊂ N(K, ε0) ∩ X ⊂ X0. Since A0 attracts N(K, ε0), there is an
n0 = n0(U) > 0 such that for any n ≥ n0, f

n(U) ⊂ U . By an asymptotic
generalized Schauder fixed point theorem ([425, Theorem 17.B.]), f has a fixed
point x0 in U .

To generalize Theorem 1.3.8 to another class of maps, we need the following
fixed point theorem, which is a combination of Theorems 3 and 5 in [143] (see
also [141, Lemma 2.6.5]).

Lemma 1.3.7. Assume that K ⊂ B ⊂ S are convex subsets of a Banach
space E with K compact, S closed and bounded, and B open in S. If f :
S → E is continuous, fn(B) ⊂ S, ∀n ≥ 0, and K attracts compact subsets
of B, then there exists a closed bounded and convex subset C ⊂ S such that
C = co

(
∪j≥1f

j (B ∩ C)
)
. Moreover, if C is compact, then f has a fixed point

in B.

We should point out that in the above fixed point theorem the claim that
f has a fixed point in B follows from the proof of [141, Lemma 2.6.5], where
the Horn’s fixed point theorem [169] was used.

Definition 1.3.4. Let X be a closed and convex subset of a Banach space E,
and f : X → X a continuous map. Define f̂(B) = co (f(B)) for each B ⊂ X.

f is said to be convex α-contracting if limn→∞ α(f̂n(B)) = 0 for any bounded
subset B ⊂ X.

Theorem 1.3.9. Assume that f is convex α-contracting. If f : X0 → X0

has a global attractor A0, then f has a fixed point x0 ∈ A0.
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Proof. Since A0 is a global attractor for f : X0 → X0, the proof of Theo-
rem 1.3.8 implies that there are three convex subsets, K ⊂ B ⊂ S ⊂ X , such
that K ⊂ X0, B ⊂ X0, and the assumptions of Lemma 1.3.7 hold for f . Let
C be defined in Lemma 1.3.7. Define Ĉ := ∪j≥1f

j (B ∩ C). Then we have

Ĉ = f (B ∩ C) ∪ f
(
Ĉ
)

and C = co
(
Ĉ
)
,

and hence, Ĉ ⊂ f (C). Thus, we further obtain

C ⊂ f̂(C) ⊂ f̂2(C) ⊂ . . . ⊂ f̂n(C), ∀n ≥ 0.

Since f is convex α-contracting, it follows that α(C) ≤ α(f̂n(C)) → 0, as
n → ∞. Then α(C) = 0, and hence, C is compact. Now Lemma 1.3.7 implies
the existence of a fixed point of f in A0.

Combining Theorems 1.1.2, 1.1.3, 1.3.6, 1.3.8, and 1.3.9 together, we have
the following result on the existence of coexistence steady states for uniformly
persistent systems, which is a generalization of [430, Theorem 2.3].

Theorem 1.3.10. Assume that

(1) f is point dissipative and uniformly persistent with respect to (X0, ∂X0);
(2) One of the following two conditions holds:

(2a) fn0 is compact for some integer n0 ≥ 1, or
(2b) Positive orbits of compact subsets of X are bounded.

(3) Either f is α-condensing or f is convex α-contracting.

Then f : X0 → X0 admits a global attractor A0, and f has a fixed point in
A0.

For an autonomous semiflow Φ(t) : X → X, t ≥ 0, we have the following
result.

Theorem 1.3.11. Let Φ(t) be a continuous-time semiflow on X with Φ(t)(X0)
⊂ X0 for all t ≥ 0. Assume that either Φ(t) is α-condensing for each t > 0,
or Φ(t) is convex α-contracting for each t > 0, and that Φ(t) : X0 → X0

has a global attractor A0. Then Φ(t) has an equilibrium x0 ∈ A0, i.e.,
Φ(t)x0 = x0, ∀t ≥ 0.

Proof. Let {ωm}∞m=1 be any given sequence with ωm > 0 and limm→∞ ωm =
0. By Theorems 1.3.8 and 1.3.9, Φ(ωm) has a fixed point xm ∈ X0, ∀m ≥ 1. By
the global attractivity of A0 in X0, for each fixed xm, limt→∞ d(Φ(t)xm, A0) =
0, and hence, 0 = limn→∞ d(Φ(nωm)xm, A0) = d(xm, A0). Then the compact-
ness of A0 implies that xm ∈ A0, ∀m ≥ 1. Again by the compactness of
A0, {xm}∞m=1 has a convergent subsequence to x0 ∈ A0. We further show
that x0 is an equilibrium point of Φ(t). Changing the notation if necessary,
we may assume that limm→∞ xm = x0. Let km(t) be the integer defined by
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km(t)ωm ≤ t < (km(t) + 1)ωm. Clearly, limm→∞ km(t)ωm = t, ∀t ≥ 0, and
Φ(km(t)ωm)xm = xm, ∀m ≥ 1. Letting m → ∞ in the inequality

|Φ(t)x0 − x0| ≤|Φ(t)x0 − Φ(km(t)ωm)x0|+
|Φ(km(t)ωm)x0 − Φ(km(t)ωm)xm|+ |xm − x0|,

we then get Φ(t)x0 = x0, ∀t ≥ 0.

1.4 Persistence Under Perturbations

Given a uniformly persistent biological system, naturally one may ask whether
its nearby systems are also uniformly persistent. In this section we will dis-
cuss this problem, from the perturbation point of view, for three special cases:
discrete-time semiflows with a globally stable steady state, discrete-time semi-
flows with parameters, and Kolmogorov-type ordinary differential systems.

1.4.1 Perturbation of a Globally Stable Steady State

Let f : U ×Λ → U be continuous, where U ⊂ X , X is a Banach space, and Λ
is a metric space with metric ρ. We sometimes write fλ = f(·, λ) and use the
notation BX(x, s) (BΛ(λ, s)) for the open ball of radius s about the point
x ∈ X (λ ∈ Λ). For a linear operator A on X , we write r(A) for its spectral
radius.

Theorem 1.4.1. Let (x0, λ0) ∈ U × Λ, BX(x0, δ) ⊂ U for some δ > 0 and
assume that Dxf(x, λ) exists and is continuous in BX(x0, δ) × Λ. Suppose
that f(x0, λ0) = x0, r(Dxf(x0, λ0)) < 1, and fn

λ0
(x) → x0 for every x ∈ U .

In addition, suppose that

(1) For each λ ∈ Λ, there is a set Bλ ⊂ U such that for each x ∈ U , there
exists an integer N = N(x, λ) such that fN

λ (x) ∈ Bλ;

(2) C := ∪λ∈Λfλ(Bλ) is compact in U .

Then there exist ε0 > 0 and a continuous map x̂ : BΛ(λ0, ε0) → U such that
x̂(λ0) = x0, f(x̂(λ), λ) = x̂(λ), and fn

λ x → x̂(λ), ∀x ∈ U, λ ∈ BΛ(λ0, ε0).

Proof. We may suppose that the norm on X is such that ‖Dxf(x0, λ0)‖ <
ρ < 1 (see [425, page 795]). Since Dxf(x, λ) is continuous, there exist ε1, η > 0
such that ‖Dxf(x, λ)‖ < ρ for x ∈ BX(x0, η) and λ ∈ BΛ(λ0, ε1). Choose
ε0 < ε1 such that ‖f(x0, λ0)− f(x0, λ)‖ < (1 − ρ)η for λ ∈ BΛ(λ0, ε0). Then,
for x, x′ ∈ BX(x0, η) and λ ∈ BΛ(λ0, ε0), we have

‖f(x, λ)− f(x′, λ)‖ ≤
∫ 1

0

‖Dxf(sx+ (1− s)x′, λ)‖ds · ‖x− x′‖ ≤ ρ‖x− x′‖

and
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‖f(x, λ)− x0‖ ≤ ‖f(x, λ)− f(x0, λ)‖+ ‖f(x0, λ)− f(x0, λ0)‖
< ρ‖x− x0‖+ (1 − ρ)η ≤ η.

Thus, fλ is a uniform contraction self-mapping ofBX(x0, η) for λ ∈ BΛ(λ0, ε0).
Then the uniform contraction mapping theorem implies the existence of the
continuous map x̂ : BΛ(λ0, ε0) → BX(x0, η) such that x̂(λ0) = x0 and
f(x̂(λ), λ) = x̂(λ). Furthermore, fm

λ x → x̂(λ) for every x ∈ BX(x0, η) and
λ ∈ BΛ(λ0, ε0).

By choosing ε0 smaller, if necessary, we claim that for λ ∈ BΛ(λ0, ε0) and
x ∈ C, fm

λ x ∈ B(x0, η) for some m. If not, there exist λn ∈ Λ, λn → λ0, and
xn ∈ C such that ‖fm

λn
xn − x0‖ ≥ η for all m ≥ 0, n ≥ 1. Since C is compact,

we may assume that xn → x ∈ C. But x0 is globally attracting for fλ0 , so
there is a p such that ‖fp

λ0
x − x0‖ < η

2 . Hence, by continuity of the function
F (x, λ) := fp

λx, F (xn, λn) → F (x, λ0) = fp
λ0
x, and therefore ‖fp

λn
xn−x0‖ < η

for all large n, a contradiction. The claim is established.
Now, given x ∈ U and λ ∈ BΛ(λ0, ε0), there exists N such that fN

λ x ∈ Bλ,
so fN+1

λ x ∈ C. By the previous paragraph, fm
λ x ∈ BX(x0, η) for some, and

hence all large, m. Obviously, fm
λ x → x̂(λ).

Remark 1.4.1. The assumption that x0 is an interior point of U is unneces-
sarily restrictive. An examination of the proof indicates that it is sufficient to
assume that f can be extended to BX(x0, δ) × Λ for some δ > 0 and has a
continuous derivative in that set and BX(x0, δ) ∩ U is convex. Alternatively,
one-sided derivatives with respect to some cone or wedge in X may also be
used (see, e.g., [12]).

1.4.2 Persistence Uniform in Parameters

Let Λ be a metric space with metric ρ. For each λ ∈ Λ, let Sλ : X → X
be a continuous map such that Sλ(x) is continuous in (λ, x). Assume that
every positive orbit for Sλ has compact closure in X , and that the set⋃

λ∈Λ,x∈X ωλ(x) has compact closure, where ωλ(x) denotes the omega limit
of x for discrete semiflow {Sn

λ}.

Theorem 1.4.2. (Uniform persistence uniform in parameters) As-
sume that Sλ(X0) ⊂ X0, ∀λ ∈ Λ. Let λ0 ∈ Λ be fixed, and assume further
that

(B1) Sλ0 : X → X has a global attractor, and either the maximal com-
pact invariant set A∂ of f in ∂X0 admits a Morse decomposition
{M1, . . . ,Mk}, or there exists an acyclic covering {M1, . . . ,Mk} of
Ω(M∂) for f in ∂X0;

(B2) There exists δ0 > 0 such that for any λ ∈ Λ with ρ(λ, λ0) < δ0 and any
x ∈ X0, lim supn→∞ d(Sn

λ (x),Mi) ≥ δ0, 1 ≤ i ≤ k.

Then there exists δ > 0 such that lim infn→∞ d(Sn
λx, ∂X0) ≥ δ for any λ ∈ Λ

with ρ(λ, λ0) < δ and any x ∈ X0.
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Proof. Clearly, (B1) and (B2) imply that (A1) holds for S0 := Sλ0 : X → X .
If the conclusion were false, we could find sequences xk ∈ X0 and λk with
λk → λ0 such that lim infn→∞ d(Sn

k (xk), ∂X0) → 0 as k → ∞, where Sk :=
Sλk

→ S0 uniformly on W . But this contradicts Theorem 1.3.4.

Theorem 1.4.3. (Uniform persistence uniform in parameters) Let
λ0 ∈ Λ be fixed, and assume that

(1) Sλ0 satisfies (P1) and (P2) of Theorem 1.3.2 with generalized distance
function p for Sλ0 ;

(2) There exists δ0 > 0 such that for any λ ∈ Λ with ρ(λ, λ0) < δ0 and any
x ∈ X0, lim supn→∞ d(Sn

λ (x),Mi) ≥ δ0, 1 ≤ i ≤ k.

Then there exists δ > 0 such that lim infn→∞ p(Sn
λ (x)) ≥ δ for any λ ∈ Λ

with ρ(λ, λ0) < δ and any x ∈ X0.

Proof. Clearly, assumption (1) of Theorem 1.3.5 holds for S0 := Sλ0 . If the
conclusion were false, we could find sequences xk ∈ X0 and λk with λk → λ0
such that lim infn→∞ p(Sn

k (xk)) → 0 as k → ∞, where Sk := Sλk
→ S0

uniformly on W . But this contradicts Theorem 1.3.5.

Remark 1.4.2. By similar arguments, the analogues of Theorems 1.4.2 and
1.4.3 hold for continuous-time semiflows.

1.4.3 Robust Permanence

As an application of Theorem 1.4.2, consider the Kolmogorov-type ordinary
differential equation

x′i = xifi(x) ≡ Fi(x) (1.4)

on P ≡ R
n
+ where f is a C1 vector field on P . For M > 0 let PM = {x ∈

P : xi ≤ M, 1 ≤ i ≤ n} and P 0
M = {x ∈ PM : xi > 0, 1 ≤ i ≤ n}. Denote

by φf
t the semiflow generated by (1.4). Let CL = CLip(PM ,Rn) be the space

of Lipschitz vector fields on PM . Below, ‖x‖ denotes a norm of the vector
x ∈ R

n.
A compact invariant K of φf

t is said to be unsaturated if

min
μ∈M(f,K)

max
1≤i≤n

∫

fi dμ > 0,

where M(f,K) is the set of φf
t -invariant Borel probability measures with

support contained in K. It is known that an equilibrium e of φf
t is unsaturated

if and only if fi(e) > 0 for some 1 ≤ i ≤ n, and a periodic orbit γ = {u(t) :
t ∈ [0, T ]} of φf

t , with minimal period T > 0, is unsaturated if and only if
∫ T

0
fi(u(s))ds > 0 for some 1 ≤ i ≤ n (see [302]).
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Theorem 1.4.4. (Robust permanence) Assume that

(D1) There exists M > 0 such that x ∈ PM and xi = M implies fi(x) ≤ 0;

(D2) The maximal compact invariant set of φf
t on PM \ P 0

M admits a Morse

decomposition {M1, . . . ,Mk} such that each Mi is unsaturated for φf
t .

Then there exist ε, η > 0 such that for g ∈ CL satisfying (D1) and

sup
x∈PM

‖f(x)− g(x)‖ < ε (1.5)

and for x ∈ P 0
M , it follows that

η ≤ yi ≤ M, 1 ≤ i ≤ n, ∀y ∈ ωg(x). (1.6)

Here ωg(x) denotes the omega limit set of x for the system x′i = xigi(x).

Proof. Let Λ = {g ∈ CL : (D1) holds for g} (endowed with the uniform met-
ric), and consider the family of semiflows φg

t on X = PM with X0 = P 0
M . Here

φg
t denotes the semiflow generated by x′i = xigi(x) ≡ Gi(x). The continuity

of the map (g, x, t) → φg
t (x) is well known. The closure of

⋃
g∈Λ,x∈PM

ωg(x)

is compact in PM . Clearly, φf
t : X → X has a global attractor. By (the

continuous-time version of) Theorem 1.4.2, it suffices to prove that condition
(B2) holds, which is implied by the following lemma.

Lemma 1.4.1. Let λ0 = f ∈ Λ. If K ⊂ PM is an unsaturated compact
invariant set for φf

t , then condition (B2) holds for K.

Proof. Assume, by contradiction, that (B2) is not true for K. We will use a

similar idea as in [302] to construct a φf
t -invariant Borel measure μ ∈ M(f,K)

such that μ is saturated for φf
t . It then follows that there exist two sequences

gm ∈ Λ and ym ∈ X0 such that ρ(gm, f) := supx∈PM
‖gm(x) − f(x)‖ < 1

m
and

lim sup
t→∞

d(φgm

t (ym),K) <
1

m
, ∀m ≥ 1, (1.7)

and hence there is a sequence of sm such that

d(φgm

t (ym),K) <
1

m
, ∀t ≥ sm,m ≥ 1.

Let xm = φgm

(sm, y
m). Then xm ∈ X0, and the flow property of φgm

t implies
that

d(φgm

t (xm),K) <
1

m
, ∀t ≥ 0, m ≥ 1. (1.8)

Let f = (f1, . . . , fn). Note that

ln

(
[φgm

t (xm)]i
xmi

)

=

∫ t

0

gmi (φgm

s (xm))ds, ∀t ∈ R, 1 ≤ i ≤ n, m ≥ 1. (1.9)
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By inequality (1.8), it then easily follows that

lim sup
t→∞

1

t

∫ t

0

gmi (φgm

s (xm))ds ≤ 0, 1 ≤ i ≤ n, m ≥ 1. (1.10)

Then we can choose a sequence tm such that tm ≥ m and

1

tm

∫ tm

0

gmi (φgm

s (xm))ds <
1

m
, 1 ≤ i ≤ n, m ≥ 1. (1.11)

Define a sequence of Borel probability measures μm on R
n
+ by

∫

h dμm =
1

tm

∫ tm

0

h(φgm

s (xm))ds, m ≥ 1, (1.12)

for any continuous function h ∈ C(Rn
+,R). By inequality (1.8), it then follows

that μm lies in the space M(V ) of Borel probability measures with support
in the compact set V = {x ∈ R

n
+ : d(x,K) ≤ 1}. By the weak* compactness

of M(V ), we can assume that μm converges in the weak* topology to some

μ ∈ M(V ) asm → ∞. We claim that μ is invariant under φf
t ; i.e., μ(φ

f
t (B)) =

μ(B) for any t ∈ R and any Borel set B ⊆ R
n
+. It suffices to verify that

∫
h ◦ φf

t dμ =
∫
h dμ for any h ∈ C(Rn

+,R) and t ∈ R. For any fixed t > 0,
since

∫
tm
0

(
h ◦ φgm

t (φgm

s (xm))− h(φgm

s (xm))
)
ds

=

∫ tm

0

h ◦ φgm

t+s(x
m)ds−

∫ tm

0

h(φgm

s (xm))ds

=

(∫ tm−t

0

h ◦ φgm

t+s(x
m)ds+

∫ tm

tm−t

h ◦ φgm

t+s(x
m)ds

)

−
(∫ t

0

h(φgm

s (xm))ds+

∫ tm

t

h(φgm

s (xm))ds

)

=

(∫ tm−t

0

h ◦ φgm

t+s(x
m)ds+

∫ t

0

h ◦ φgm

tm+u(x
m)du

)

−
(∫ t

0

h(φgm

s (xm))ds+

∫ tm−t

0

h(φgm

t+v(x
m))dv

)

=

∫ t

0

(
h
(
φgm

tm+s(x
m)

)
− h(φgm

s (xm))
)
ds,
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we obtain
∣
∣
∣
∣

∫

(h ◦ φf
t − h)dμ

∣
∣
∣
∣ = lim

m→∞

∣
∣
∣
∣

∫

(h ◦ φf
t − h)dμm

∣
∣
∣
∣

= lim
m→∞

∣
∣
∣
∣
1

tm

∫ tm

0

(
h ◦ φf

t (φ
gm

s (xm))− h(φgm

s (xm))
)
ds

∣
∣
∣
∣

≤ lim sup
m→∞

1

tm

(∣
∣
∣
∣

∫ tm

0

(
h ◦ φgm

t (φgm

s (xm))− h(φgm

s (xm))
)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ tm

0

(
h ◦ φf

t (φ
gm

s (xm))− h ◦ φgm

t (φgm

s (xm))
)
ds

∣
∣
∣
∣

)

= lim sup
m→∞

1

tm

(∣
∣
∣
∣

∫ t

0

(
h(φgm

tm+s(x
m))− h(φgm

s (xm))
)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ tm

0

(
h ◦ φf

t (φ
gm

s (xm))− h ◦ φgm

t (φgm

s (xm))
)
ds

∣
∣
∣
∣

)

.

Therefore, using inequality (1.8), the boundedness of h(·) on V , and uniform

convergence of gm → f (and hence of φgm

t → φf
t ) on PM , we have

∫
(h ◦ φf

t −
h)dμ = 0 for any h ∈ C(Rn

+,R) and t > 0. For any t > 0 and p ∈ C(Rn
+,R),

letting h = p◦φf
−t, we then get

∫
(p−p◦φf

−t)dμ =
∫
(p◦φf

−t◦φ
f
t −p◦φ

f
−t)dμ = 0.

Then μ is invariant for φf
s , s ∈ R. By inequality (1.8) and weak* convergence,

it follows that μ ∈ M(f,K). For any 1 ≤ i ≤ n, using the uniform convergence
of gm to f on V and inequality (1.11), we further have

∫

fidu = lim
m→∞

∫

fidμm

≤ lim
m→∞

1

tm

∫ tm

0

(fi − gmi )(φgm

s (xm))ds

+ lim sup
m→∞

1

tm

∫ tm

0

gmi (φgm

s (xm))ds ≤ 0.

But this contradicts the unsaturatedness of K for φf
t .

For many practical biological systems one can verify that every bounded
orbit on the boundary converges to an equilibrium or a nontrivial peri-
odic orbit. By a critical element of (1.4) we mean an equilibrium point
or a nontrivial periodic orbit. Our usual notation for a critical element is
γ = {u(t) : 0 ≤ t ≤ T }, where u(t) is a T -periodic solution of (1.4) and T is
the minimal period, which may be zero for an equilibrium.

Theorem 1.4.5. (Robust permanence) Let (D1) hold, and assume that

(D3) There exist hyperbolic critical elements γi ∈ ∂P ∩ PM ′ for some
M ′ < M , 1 ≤ i ≤ m, satisfying
(a) ∂P ⊂ ∪m

i=1W
s(γi);



1.4 Persistence Under Perturbations 39

(b) for each γi, there exists k such that xk = 0 on γi and
∫ Ti

0 fk(u
i(s))ds > 0;

(c) no subset of {γ1, γ2, . . . , γm} forms a cycle in ∂P .

Then the conclusion of Theorem 1.4.4 holds.

Proof. By assumptions (D1) and (D3) and Lemma 1.3.1, {γ1, γ2, . . . , γm} is a
Morse decomposition of the maximal compact invariant set for φf

t on PM \P 0
M .

Since (D3)(b) implies that each γi is unsaturated for φf
t (see [302, Section 3]),

the conclusion follows from Theorem 1.4.4. Here we give an alternative and
more elementary proof without using the concept of invariant measures. As
in the proof of Theorem 1.4.4, clearly (B1) holds, and then it suffices to prove
that condition (B2) holds, which is implied by the following claim:

Claim. For each γi, there is ε > 0 such that for g ∈ CL satisfying (1.5) and
x ∈ P 0

M with d(x, γi) < ε there exists t > 0 such that d(φg
t (x), γ

i) ≥ ε.

Indeed, without loss of generality suppose that

u(t) = u(t+ T ) = ui(t) = (0, . . . , 0, ul(t), . . . , un(t))

with uj(t) > 0 for all t. We will argue the case where γ is a nontrivial
periodic orbit (T > 0), since the case for an equilibrium is simpler. Set

λ = T−1
∫ T

0
fk(u(s))ds > 0, where k < l is an index as in (D3)(b) above.

Let K be a common Lipschitz constant for f and F on PM . Choose ε > 0
such that

ε[1 +K(1 +MT ) exp(KT )] < λ/2.

A standard Gronwall argument shows that if d(x, γ) < ε, so ‖x − u(s)‖ < ε
for some s ∈ [0, T ), and (1.5) holds, then

‖x(t)− u(t+ s)‖ ≤ ε(1 +MT ) exp(KT ), 0 ≤ t ≤ T.

Here we have simplified notation by setting x(t) = φg
t (x), and we use that

supx∈PM
‖F (x) − G(x)‖ < εM . Now suppose by way of contradiction that

d(x(t), γ) < ε for all t ≥ 0. The inequality

gk(x(t)) ≥ fk(u(s+ t))− |gk(x(t)) − fk(x(t))| − |fk(x(t)) − fk(u(t+ s))|
≥ fk(u(t+ s))− ε− εK(1 +MT ) exp(KT )

≥ fk(u(t+ s))− λ/2,

which holds for 0 ≤ t ≤ T , implies that xk(t) satisfies

x′k(t) ≥ xk(t)[fk(u(t+ s))− λ/2].

Integrating, we have
xk(T ) ≥ xk(0) exp(λT/2).
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By assumption, d(x(T ), γ) < ε, so we may apply the previous argument again
to get xk(2T ) ≥ xk(0) exp(2λT/2), and by induction, we have that xk(nT ) ≥
xk(0) exp(nλT/2). Since the right-hand side increases without bound as n
increases, we contradict that d(x(t), γ) < ε for t ≥ 0. This proves the claim.
Because (B2) holds, our result follows from (the continuous-time version of)
Theorem 1.4.2.

1.5 Notes

Theorem 1.1.1 is due to LaSalle [212]. Theorem 1.1.3 (a) with n0 = 1 is due
to Billotti and LaSalle [36]. Theorem 1.1.4 is due to Nussbaum [257] and Hale
and Lopes [143]. Theorems 1.1.2 and 1.1.3, Lemma 1.1.5, and their proofs are
adapted from Magal and Zhao [241].

Section 1.2 is adapted from Hirsch, Smith and Zhao [164]. Lemma 1.2.4′

and Example 1.2.2 are taken from Smith and Zhao [340]. The notion of chain
recurrence was introduced by Conley [65]. Bowen [37] proved that omega limit
sets of precompact orbits of continuous invertible maps are internally chain
transitive. Robinson [294] proved that omega limit sets of precompact orbits of
continuous maps are internally chain recurrent. Thieme [364, 366, 367] stud-
ied the long-term behavior in asymptotically autonomous differential equa-
tions, and Mischaikow, Smith, and Thieme [249] discussed chain recurrence
and Liapunov functions in asymptotically autonomous semiflows. Asymptotic
pseudo-orbits were introduced by Benäım and Hirsch [35] for continuous-time
semiflows. The embedding approach in the proof of Lemma 1.2.2 was used
earlier by Zhao [433, 435] to prove that the omega limit set of a precompact
orbit of an asymptotically autonomous process is nonempty, compact, invari-
ant, and internally chain recurrent for the limiting map (see [433, Theorem 2.1]
and [435, Theorem 1.2]). Freedman and So ([122, Theorem 3.1]) proved the
Butler–McGehee lemma of limit sets for continuous maps. By an embedding
approach and [122, Theorem 3.1], Hirsch, Smith and Zhao ([164, Lemma 3.3])
proved Lemma 1.2.7. Theorem 1.2.1 was proved earlier by Smith and Zhao
([336, Lemma 4.1]).

Uniform persistence (permanence) has received extensive investigation for
both continuous- and discrete-time dynamical systems. We refer to Waltman
[381], Hutson and Schmitt [186], and Hofbauer and Sigmund [167] for surveys
and reviews, and to Thieme [369], Zhao [436], Smith and Thieme [333], and
references therein for further developments.

Subsections 1.3.1 and 1.3.2 are adapted from Hirsch, Smith and Zhao [164]
and Smith and Zhao [340]. Theorem 1.3.3 was generalized to nonautonomous
semiflows by Thieme [368, 369]. The concept of a generalized distance func-
tion was motivated by ideas in Thieme [369], where uniform ρ-persistence was
developed for nonautonomous semiflows. General theorems on uniform per-
sistence were established earlier by Hale and Waltman [146], Thieme [365] for
autonomous semiflows, and Freedman and So [122], Hofbauer and So [168] for
continuous maps.
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Various concepts of practical persistence were utilized by Hutson and
Schmitt [186], Cantrell, Cosner and Hutson [54], Hutson and Zhao [443],
Cosner [67], Cantrell and Cosner [52], Hutson and Mischaikow [184], Smith
and Zhao [336, 337], and Ruan and Zhao [298]. The p-function in Exam-
ple 1.3.1 was employed by Thieme [369] for a scalar functional differential
equation. Two p-functions in Example 1.3.2 were used by Smith and Zhao
[340] and Zhao [439], respectively, for an autonomous microbial population
growth model and almost periodic predator–prey reaction–diffusion systems.

Subsection 1.3.3 is taken from Magal and Zhao [241], and Subsection 1.3.4
is adapted from Zhao [430] and Magal and Zhao [241]. For a class of con-
tinuous Kolmogorov-type maps on R

m
+ , Hutson and Moran [185] proved that

the existence of a compact attracting set in int(Rm
+ ) implies that of a (com-

ponentwise) positive fixed point. By applying Theorem 1.3.8 to the Poincaré
map associated with a periodic semiflow, one can obtain the existence of a
periodic orbit in X0, and hence that of periodic coexistence solutions for peri-
odic systems of differential equations. Freedman and Yang [419, Theorem 4.11]
proved the existence of interior periodic solutions for periodic, dissipative, and
uniformly persistent systems of ODEs. For periodic and uniformly persistent
Kolmogorov systems of ODEs, Zanolin [424, Lemma 1] also proved the exis-
tence of positive periodic solutions. For autonomous Kolmogorov systems of
ODEs and a class of autonomous differential equations with finite delay, Hut-
son [183] proved the existence of positive equilibria. Hofbauer [166] generalized
an index theorem for dissipative ordinary differential systems, which implies
the existence of a positive equilibrium (see also [167]). For autonomous 2-
species Kolmogorov reaction–diffusion systems, Cantrell, Cosner and Hutson
[54, Theorem 6.2] also proved a result on the existence of stationary coexis-
tence states under appropriate assumptions.

Subsection 1.4.1 is taken from Smith and Waltman [335]. Subsection 1.4.2
is adapted from Hirsch, Smith and Zhao [164] and Smith and Zhao [340].
Subsection 1.4.3 is taken from Hirsch, Smith and Zhao [164]. Smith and Zhao
[336, Theorem 4.3] proved a similar result on uniform persistence uniform
in parameter. Earlier, Hutson [182] discussed robustness of permanence for
autonomous ordinary differential systems defined on R

n
+ by using Liapunov

function techniques. Schreiber [302] established criteria for Cr–robust perma-
nence, r ≥ 1, of autonomous Kolmogorov ordinary differential systems.
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Monotone Dynamics

As we illustrated in the Preface, some population models can generate
continuous- or discrete-time dynamical systems with monotonicity: Ordered
initial states lead to ordered subsequent states. This chapter is aimed at mono-
tone dynamics. We are primarily interested in some global results that may
be effectively applied to both discrete-time and periodic biological systems. In
Section 2.1 we prove the existence and global attractivity of an order interval
defined by two fixed points, and a theorem on fixed points and connecting
orbits for continuous and monotone maps on an ordered Banach space E.

In Section 2.2 we first prove global attractivity of a unique fixed point and
zero fixed point for monotone maps. Then we establish a global convergence
theorem for strongly monotone maps under the assumption that E does not
contain three ordered fixed points. A convergence result is also obtained for
monotone maps on a closed and order convex subset of E in the case that
there is a totally ordered and closed arc of stable fixed points. For the latter
use, at the end of this section we state three general results on convergence
and attractivity in monotone autonomous semiflows.

In Section 2.3 we develop the theory of subhomogeneous (or sublinear)
dynamical systems. We show existence and global attractivity of a strongly
positive fixed point, and establish threshold dynamics for two classes of maps:
either monotone and strongly subhomogeneous, or strongly monotone and
strictly subhomogeneous. A convergence result is proved for subhomogeneous
and strongly monotone maps. In order to get global dynamics in monotone and
subhomogeneous almost periodic systems, we also prove a global attractivity
theorem for a class of skew-product semiflows.

Section 2.4 is devoted to discussing competitive systems on ordered Ba-
nach spaces. We establish a limit set trichotomy and a compression theorem
by appealing to a generalized Dancer–Hess connecting orbit theorem and a
convergence theorem for chain transitive sets in the previous chapter.
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In Section 2.5 we establish generalized saddle point behavior for monotone
semiflows with two ordered and locally stable equilibria. This result is also
extended to the case where there are more than two totally ordered and locally
stable equilibria. Then we obtain the analogs of these results for two-species
competitive systems on ordered Banach spaces.

In Section 2.6 we introduce an exponential ordering for a Banach space of
continuous functions, give an analytic characterization of such an ordering for
points in the phase space with sufficient regularity, and establish monotonicity
and a strong order-preserving property for mild solutions of general abstract
functional differential equations with a quasi-monotone nonlinearity.

2.1 Attracting Order Intervals and Connecting Orbits

Let E be an ordered Banach space with positive cone P such that int(P ) �= ∅.
For x, y ∈ E we write x ≥ y if x− y ∈ P , x > y if x− y ∈ P \ {0}, and x � y
if x − y ∈ int(P ). If a < b, we define [a, b] := {x ∈ E : a ≤ x ≤ b}. If a � b,
then [[a, b]] := {x ∈ E : a � x � b}. Since P is a closed subset of E, it is easy
to see that the topology and ordering on E are compatible in the sense that
if un ≥ vn, un → u, vn → v, then u ≥ v.

Definition 2.1.1. Let U be a subset of E, and f : U → U a continuous map.
The map f is said to be monotone if x ≥ y implies that f(x) ≥ f(y); strictly
monotone if x > y implies that f(x) > f(y); strongly monotone if x > y
implies that f(x) � f(y).

Theorem 2.1.1. (Attracting order interval) Let f : E → E be com-
pletely continuous and monotone. Assume that f maps order intervals to pre-
compact sets, that the set of fixed points of f in E is bounded, and that each
positive orbit of f is bounded. Then there exist maximal and minimal fixed
points xM and xm in E such that for each x ∈ E, ω(x) ⊂ [xm, xM ]. More-
over, limn→∞ fn(x) = xm for each x ≤ xm, and limn→∞ fn(x) = xM for
each x ≥ xM .

Proof. For any x ∈ E, γ+(x) is precompact by our assumption, and hence its
omega limit set ω(x) is nonempty, compact, and invariant for f . Thus ω(x) is
contained in some order interval since int(P ) �= ∅. We first prove the following
claim.

Claim. For each x ∈ E, there exist two fixed points w1 and w1 of f such that
ω(z) ⊂ [w1, w2].

Indeed, since ω(z) is order bounded, there exists u ∈ E such that ω(z) ≤ u.
Then the invariance of ω(z) implies that ω(z) ≤ fnu for all n ≥ 0, and hence
ω(z) ≤ ω(u), since P is closed. Now ω(u) is order bounded, and hence there
exists s ∈ E such that ω(u) ≤ s. As before, it follows that ω(u) ≤ ω(s).
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Let S := {x ∈ E : ω(z) ≤ x ≤ ω(s)}. Then S is the interaction of closed order
intervals, and hence it is closed and convex. Since ω(z) ≤ ω(u) ≤ ω(s), S
is nonempty. By our assumption, f(S) is precompact. Since f(ω(z)) = ω(z),
f(ω(s)) = ω(s), and f is monotone, we have f(S) ⊂ S. Thus, by the Schauder
fixed point theorem, there exists a fixed point w2 of f in S, and hence ω(z) ≤
w2. The existence of the required w1 can be obtained in a similar way.

Let F be the set of fixed points of f in E. Since F is bounded, the com-
pactness of f ensures that F is compact. By a simple Zorn’s lemma argument,
there exists xM ∈ F weakly maximal, that is, u > xM implies u �∈ F . We
deduce that xM is maximal in the stronger sense that u ≤ xM if u ∈ F .
Suppose by way of contradiction that v is another fixed point of f such that
v �∈ (−∞, xM ]. Note that a cone K with nonempty interior is reproducing
in the sense that E = K − K. Then there exists u ∈ E such that u ≥ xM
and u ≥ v. By the monotonicity of f , we get fn(u) ≥ fn(xM ) = xM for all
n ≥ 0, and hence ω(u) ≥ xM . Similarly, ω(u) ≥ v. However, by the claim
above, there exists a fixed point w such that ω(u) ≤ w. Hence w ≥ xM and
w ≥ v. This is impossible, since xM is weakly maximal and v �∈ (−∞, xM ].
Thus xM is maximal in the strong sense. Similarly, we can prove the existence
of a minimal fixed point xm.

Now suppose x ∈ E. By the claim above and the maximality of xM ,
ω(x) ≤ xM . Similarly, ω(x) ≥ xm. Hence ω(x) ⊂ [xm, xM ]. If x ≤ xm,
then fnx ≤ fnxm = xm for all n ≥ 0 by the monotonicity of f , and hence
ω(x) ≤ xm. Thus, by the first part of the statement, ω(x) = {xm}. The other
part is proved similarly.

Remark 2.1.1. If we assume that f : E → E is α-condensing, compact dis-
sipative, and monotone, then the conclusion of Theorem 2.1.1 is also valid.
Indeed, by the proof of Theorem 2.1.1, it is necessary to prove only that the
map f has a fixed point in S and the set F is compact. Since S is a closed and
convex subset of E, one can apply Theorem 1.1.4 to the map f : S → S in-
stead of the Schauder fixed point theorem. It is easy to see that F is bounded
and closed, and f(F ) = F . Since f is α-condensing, we get α(F ) = 0, which
implies that F = F is compact in E.

Remark 2.1.2. The conclusion in Theorem 2.1.1 and Remark 2.1.1 also holds
when f is restricted to a closed and convex subset K of E with f(K) ⊂ K.
In applications one may choose a positively invariant order interval (including
the positive cone P ) in E as K.

Let f : U ⊂ E → U be continuous. A sequence {zn}∞n=−∞ in U with
zn+1 = f(zn), ∀n ∈ N, is called an entire orbit of f . The following connecting
orbit theorem is very important in monotone dynamics. For a proof of it, we
refer to [86, Proposition 1] or [152, Proposition 2.1].

Dancer–Hess Lemma (Connecting orbit) Let u1 < u2 be fixed points of
the strictly monotone continuous mapping f : U → U , let I := [u1, u2] ⊂ U ,
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and assume that f(I) is precompact and f has no fixed point distinct from u1
and u2 in I. Then either

(a) there exists an entire orbit {xn}∞n=−∞ of f in I such that xn+1 > xn, ∀n ∈
N, and limn→−∞ xn = u1 and limn→∞ xn = u2, or

(b) there exists an entire orbit {yn}∞n=−∞ of f in I such that yn+1 < yn, ∀n ∈
N, and limn→−∞ yn = u2 and limn→∞ xn = u1.

Let C be a convex subset of X and e ∈ C. Then e is said to be an extreme
point of C if there do not exist points x, y ∈ C \ {e} such that e = 1

2 (x + y).
A fixed point u of f : U → U is said to be an ejective fixed point if there is
an open subset V of U containing u such that for every x ∈ V \ {u} there is
an integer m such that fm(x) �∈ V .

Remark 2.1.3. If f has an ejective fixed point e ∈ I \ {u1, u2} that is an
extreme point of I, and f has no fixed point distinct from u1, u2, e in I, then
the conclusion of the Dancer–Hess lemma is still valid. Indeed, the fixed point
index of an ejective fixed point that is an extreme point of I vanishes, and
therefore the fixed point arguments in [86] can be adapted to this case (see
[174, Proposition 2.1]).

Remark 2.1.4. By [88, Section 5], the conclusion of the Dancer–Hess lemma
also holds if we replace the condition that f(I) be precompact in I with the
following weaker one:

(A) f : I → I is α-condensing and f(I) is bounded in E.

Recall that a linear operator L on E is said to be positive if L(P ) ⊂ P ,
strongly positive if L(P \ {0}) ⊂ int(P ). The cone P is said to be normal if
there exists a constant M such that 0 ≤ x ≤ y implies that ‖x‖ ≤ M‖y‖.
In what follows, by Df(a) we denote the Fréchet derivative of f at u = a
if it exists, and let r(Df(a)) be the spectral radius of the linear operator
Df(a) : E → E. The following result is helpful in proving uniform persistence
and existence of a connecting orbit for monotone systems when we know the
existence of only a single unstable steady state.

Theorem 2.1.2. Let the positive cone P be normal. Assume that

(1) S : V = a+ P → V is asymptotically smooth and monotone;
(2) S(a) = a, DS(a) is compact and strongly positive, and r(DS(a)) > 1.

Then either

(a) for any u > a, limn→∞ ‖Sn(u)‖ = +∞, or
(b) there exists u∗ = S(u∗) � a such that for any a < u ≤ u∗, limn→∞ Sn(u)

= u∗, and there exists a monotone entire orbit connecting a and u∗.
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Proof. By the Krein–Rutman theorem (see, e.g., [152, Section I.7]), r =
r(DS(a)) is the principal eigenvalue of DS(a). Let e � 0 be the principal
eigenvector of DS(a) with ‖e‖E = 1; i.e., DS(a)e = re. For ε > 0, we then
have

S(a+ εe) = S(a) +DS(a)(εe) + o(ε) = a+ ε

[

re +
o(ε)

ε

]

.

Since r > 1 and (r − 1)e ∈ int(P ), there exists ε0 > 0 such that for any

ε ∈ (0, ε0], (r − 1)e+ o(ε)
ε ∈ int(P ), and hence

S(a+ εe)− (a+ εe) = ε

[

(r − 1)e+
o(ε)

ε

]

� 0.

Thus for any ε ∈ (0, ε0], S(a + εe) � a + εe. We further have the following
two claims.

Claim 1. For any u > a, S(u) � a.

Indeed, for any given u > a, let u = a+ v. Then v > 0. For t > 0, we have

S(a+ tv) = S(a) +DS(a)(tv) + o(t) = a+ t

(

DS(a)v +
o(t)

t

)

.

Since v > 0 and DS(a) is strongly positive, DS(a)v ∈ int(P ), and hence there

exists t0 ∈ (0, 1] such that for any t ∈ (0, t0], DS(a)v +
o(t)

t
∈ int(P ). Then

for any t ∈ (0, t0], S(a+ tv) � a. Therefore, by the monotonicity of S, we get
S(u) = S(a+ v) ≥ S(a+ tv) � a, ∀t ∈ (0, t0].

Claim 2. For any u > a with S(u) = u, u � a+ ε0e.

In fact, let ε1 = sup{ε ≥ 0 : u ≥ a + εe}. By Claim 1, u � a, and hence
ε1 > 0. Assume, by contradiction, that ε1 ≤ ε0. Since u ≥ a + ε1e, u =
S(u) ≥ S(a + ε1e) � a + ε1e. It follows that there exists ε2 > ε1 such that
u � a + ε2e, which contradicts the definition of ε1. Therefore, ε1 > ε0, and
hence u ≥ a+ ε1e � a+ ε0e.

As shown above, for any ε ∈ (0, ε0], S(a + εe) � a + εe, and then the
monotonicity of S implies that

a+ εe� S(a+ εe) ≤ S2(a+ εe) ≤ · · · ≤ Sn(a+ εe) ≤ Sn+1(a+ εe) ≤ · · · .

By the normality of P , we may assume that ‖·‖E is nondecreasing, and hence,
‖Sn(a+ εe)‖ ≤ ‖Sn+1(a+ εe)‖, ∀n ≥ 1. We distinguish two cases:

(a) for any ε ∈ (0, ε0], {Sn(a+ εe)}∞n=1 is unbounded. Then limn→∞ ‖Sn(a+
εe)‖ = +∞. For any u > a, by Claim 1, S(u) � a. Then there ex-
ists ε ∈ (0, ε0] such that S(u) ≥ a + εe, and hence Sn+1(u) ≥ Sn(a +
εe), ‖Sn+1(u)‖ ≥ ‖Sn(a + εe)‖, ∀n ≥ 1. Therefore, limn→∞ ‖Sn(u)‖ =
+∞.
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(b) there exists ε1 ∈ (0, ε0] such that {Sn(a+ε1e)}∞n=1 is bounded. Then there
exists a sufficiently large ε∗ > 0 such that Sn(a+ε1e) ∈ [a, a+ε∗e], ∀n ≥ 1.
Therefore, by the monotonicity of S, for any ε ∈ (0, ε1] and all n ≥ 1,
a + εe � S(a + εe) ≤ Sn(a + εe) ≤ Sn(a + ε1e) ≤ a + ε∗e, and hence
‖Sn(a + εe)‖ ≤ ‖a + ε∗e‖. Since S : V → V is asymptotically smooth,
every bounded positive orbit is precompact (see [141, Corollary 2.2.4]). By
the precompactness of γ+(a + εe) and monotonicity of {Sn(a + εe)}∞n=1,
we then have

lim
n→∞Sn(a+ εe) = u(ε), S(u(ε)) = u(ε) � a, ∀ε ∈ (0, ε1].

Clearly, u(ε) ≤ u(ε1). For any ε ∈ (0, ε1], by Claim 2, u(ε) � a+ε0e ≥ a+ε1e,
and hence u(ε) ≥ Sn(a + ε1e), ∀n ≥ 1. Therefore, u(ε1) = limn→∞ Sn(a +
ε1e) ≤ u(ε). Then for any ε ∈ (0, ε1], u(ε) = u(ε1). Let u

∗ = u(ε1), then u
∗ � a

and limn→∞ Sn(a+εe) = u∗. For any a < u ≤ u∗, by Claim 1, a � S(u) ≤ u∗,
and hence there exists ε ∈ (0, ε1] such that a+εe ≤ S(u) ≤ u∗ and Sn(a+εe) ≤
Sn+1(u) ≤ u∗, ∀n ≥ 1. Then, by the normality of P , limn→∞ Sn(u) = u∗.
Note that there exists a strict subequilibrium a+ εe, ∀ε ∈ (0, ε0], as close to a
as we wish. By the asymptotic smoothness of S, it easily follows that for any
vk ∈ B = [a, u∗], k ≥ 1, and nk → ∞, {Snk(vk)}∞k=1 is precompact. Therefore,
a careful diagonalization argument given in the Dancer–Hess connecting orbit
theorem (see [86, Proposition 1] or [152, Proposition 2.1]) proves the existence
of the monotone entire orbit connecting a and u∗.

Remark 2.1.5. If we replace the normality of P with the boundedness of pos-
itive orbits of S in V , then the alternative (b) in Theorem 2.1.2 holds.

Remark 2.1.6. In the case where V = a−P , it is easy to see that there exists
ε0 > 0 such that for any ε ∈ (0, ε0], S(a− εe) � a− εe, and hence a− εe is a
strict superequilibrium. Then an analogous conclusion holds.

2.2 Global Attractivity and Convergence

Throughout this and the next section we assume that (E,P ) is an ordered
Banach space with int(P ) �= ∅.
Theorem 2.2.1. (Global attractivity) Assume that

(1) f : E → E is α-condensing and point dissipative, and orbits of compact
sets are bounded;

(2) f : E → E is monotone;
(3) f has exactly one fixed point e in E.

Then e is globally attractive for f in E.

Proof. By Theorem 1.1.2, f : E → E admits a global attractor A in E,
and hence f : E → E is compact dissipative. Thus Theorem 2.1.1 and Re-
mark 2.1.1 imply that ω(x) = e for all x ∈ E.
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It is natural to expect that the unique fixed point in Theorem 2.2.1 is
globally asymptotically stable. The following result shows that this is true
under some additional assumptions.

Lemma 2.2.1. Let P be normal, and S : E → E a continuous and monotone
map. Assume that S has a fixed point x∗ ∈ E such that

(1) S(x) � x∗ � S(y) whenever x � x∗ � y;
(2) x∗ attracts every point in some open neighborhood W of x∗.

Then x∗ is Liapunov stable for S.

Proof. Since P is normal, without loss of generality, we can assume that the
norm ‖ · ‖ is monotone on P . Fix an e ∈ int(P ). Let ε > 0 be given such that
B(x∗, ε) := {x ∈ E : ‖x− x∗‖ < ε} ⊂ W . Set

λ =
ε

6‖e‖ , u = x∗ − λe, v = x∗ + λe.

Clearly, u � v. We claim that [u, v] ⊂ B(x∗, ε). Indeed, for every x ∈ [u, v],
since

0 ≤ x∗ + λe− x ≤ x∗ + λe − (x∗ − λe) = 2λe,

we have ‖x∗ + λe − x‖ ≤ 2λ‖e‖, and hence

‖x− x∗‖ ≤ ‖x∗ + λe − x‖+ ‖ − λe‖ ≤ 3λ‖e‖ =
ε

2
.

Since u � x∗ � v and limn→∞ Sn(u) = x∗ = limn→∞ Sn(v), there exists a
positive integer n0 such that

u � Sn(u) � x∗ � Sn(v) � v, ∀n ≥ n0.

Let V := [[Sn0(u), Sn0(v)]]. It then follows that

u � Sn+n0(u) ≤ Sn(x) ≤ Sn+n0(v) � v, ∀n ≥ 0, x ∈ V.

Thus, Sn(V ) ⊂ [u, v] ⊂ B(x∗, ε), ∀n ≥ 0. Since V is an open subset of E and
x∗ ∈ V , there exists δ = δ(ε) > 0 such that B(x∗, δ) ⊂ V , and hence

Sn(B(x∗, δ)) ⊂ Sn(V ) ⊂ B(x∗, ε), ∀n ≥ 0.

This proves the Liapunov stability of x∗ for S.

Theorem 2.2.2. (Global attractivity) Let either V = [0, b]E with b � 0
or V = P , and assume that

(1) f : V → V is monotone and every positive orbit of f in V is precompact;
(2) f(0) = 0, Df(0) is compact and strongly positive, and r(Df(0)) ≤ 1;
(3) f(u) < Df(0)u for any u ∈ V with u � 0.

Then u = 0 is globally attractive for f in V .
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Proof. By Claim 1 in the proof of Theorem 2.1.2, for any u > 0, f(u) � 0.
We first show that there exists no positive fixed point of f in V . Assume, by
contradiction, that there exists u ∈ V, u > 0 such that u = f(u). Then u � 0,
and hence by assumption (3),

(−u)−Df(0)(−u) = Df(0)u− f(u) > 0.

By the Krein–Rutman theorem (see, e.g., [152, Theorem 7.3]), r(Df(0)) > 1,
which contradicts our assumption r(Df(0)) ≤ 1.

Now we let V = P . For V = [0, b]E , the proof is much easier. Let e � 0
be the principal eigenvector of Df(0). Then Df(0)e = r(Df(0))e, and hence
for any t > 0, by assumptions (2) and (3),

f(te) < Df(0)(te) = t · r(Df(0))e ≤ te.

That is, te is a strict superequilibrium of f . For any u ∈ P , there exists t > 0
such that u ∈ [0, te]E . Thus, by assumption (1), γ+(te) is precompact. By
a standard monotone iteration scheme (see, e.g., [152, Lemma 1.1]) and the
nonexistence of a positive fixed point of f , we get 0 ≤ fn(u) ≤ fn(te) → 0,
as n → ∞. Thus limn→∞ fn(u) = 0.

Theorem 2.2.3. (Global convergence) Assume that

(1) f : E → E is α-condensing and point dissipative, and orbits of bounded
sets are bounded;

(2) f : E → E is strongly monotone;
(3) E does not contain fixed points u, v, w such that u < v < w.

Then there are at most two fixed points of f in E, and every positive orbit of
f converges to one of them.

Proof. By Theorem 2.1.1, there exist maximal and minimal fixed points xM
and xm in E such that for each x ∈ E, ω(x) ⊂ [xm, xM ]. If xm = xM , we are
done. So we assume that xm < xM . By assumption (3) and the Dancer–Hess
connecting orbit lemma, without loss of generality we assume that there exists
an entire orbit {xn}∞n=−∞ of f in [xm, xM ] such that xn+1 > xn, ∀n ∈ N, and
limn→−∞ xn = xm and limn→∞ xn = xM . For any y ∈ [xm, xM ] \ {xm, xM},
we have xm < y < xM , and hence assumption (2) implies that xm � f(y) �
xM . Thus we can choose a sufficiently large integer n0 such that x−n0 � f(y).
Thus fn(x−n0) = fn−n0(x0) = xn−n0 ≤ fn+1(y) ≤ xM , ∀n ≥ 0. Letting
n → ∞, we get ω(y) = xM . Clearly, xm and xM are isolated invariant sets of
f : [xm, xM ] → [xm, xM ], and there is no cyclic chain of these two fixed points.
By Theorem 1.2.2, every internally chain transitive set of f in [xm, xM ] is a
fixed point, which implies that ω(x) is a fixed point for any x ∈ E, since ω(x)
is internally chain transitive for f : E → E and ω(x) ⊂ [xm, xM ].

Remark 2.2.1. By the proof above, it is easy to see that Theorem 2.2.3 holds
if condition (2) is replaced by the assumption that f : E → E is strictly
monotone, and for any fixed point e of f in E, and x, y ∈ E with x > e and
y < e, we have f(x) � e and f(y) � e.
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For two subsets A and B of E, we write A ≥ B if x− y ∈ P for any x ∈ A
and y ∈ B; A > B if x− y ∈ P \ {0} for any x ∈ A and y ∈ B; and A � B
if x− y ∈ int(P ) for any x ∈ A and y ∈ B.

Theorem 2.2.4. (Convergence) Let U be a closed and order convex subset
of E, and f : U → U continuous and monotone. Assume that there exists a
monotone homeomorphism h from [0, 1] onto a subset of U such that

(1) For each s ∈ [0, 1], h(s) is a stable fixed point for f : U → U ;
(2) Each orbit of f in [h(0), h(1)]E is precompact;
(3) One of the following two properties holds:

(3a) If ω(x) > h(s0) for some s0 ∈ [0, 1) and x ∈ [h(0), h(1)]E, then there
exists s1 ∈ (s0, 1) such that ω(x) ≥ h(s1);

(3b) If ω(x) < h(r1) for some r1 ∈ (0, 1] and x ∈ [h(0), h(1)]E, then there
exists r0 ∈ (0, r1) such that ω(x) ≤ h(r0).

Then for any precompact orbit γ+(y) of f in U with ω(y)∩ [h(0), h(1)]E �= ∅,
there exists s∗ ∈ [0, 1] such that ω(y) = h(s∗).

Proof. We consider only the case where (3a) holds, since a similar argument
applies to the case where (3b) holds. Let ei = h(i), i = 0, 1, and I := [e0, e1]E .
Clearly, I ⊂ U , and f(I) ⊂ I by the monotonicity of f . We first show that for
each x ∈ I, ω(x) = h(s∗) for some s∗ ∈ [0, 1]. Clearly, ω(x) ⊂ I. Define σ =
sup{s ∈ [0, 1] : h(s) ≤ ω(x)}. Thus σ ∈ [0, 1] and h(σ) ≤ ω(x) ≤ e1. Assume,
by contradiction, that h(σ) �∈ ω(x). Then σ ∈ [0, 1) and h(σ) < ω(x). By
assumption (3a) and the monotonicity of h, it follows that there is σ1 ∈ (σ, 1)
such that h(s) ≤ ω(x), ∀s ∈ [σ, σ1], which contradicts the maximality of σ.
Thus h(σ) ∈ ω(x). By assumption (1), h(σ) is stable for f : I → I, and
hence by Lemma 1.1.1 we get ω(x) = h(σ). Let z ∈ ω(y) ∩ I �= ∅. Then the
invariance of ω(y) (i.e., f(ω(y)) = ω(y)) implies that ω(z) ⊂ ω(y). By what
we have proved, ω(z) = h(s∗) for some s∗ ∈ [0, 1], and hence h(s∗) ∈ ω(y).
Thus assumption (1) and Lemma 1.1.1 imply that ω(y) = h(s∗).

Recall that f : U → U is said to be strongly order-preserving if for any
x, y ∈ U with x < y, f(Vx) ≤ f(Vy) for some open neighborhoods Vx and Vy
of x and y, respectively. Clearly, strongly monotone maps are strongly order-
preserving. By the compactness and invariance of omega limit sets, it is easy
to see that both (3a) and (3b) hold in the case where f : U → U is strongly
monotone.

A continuous semiflow Φ(t) on E is said to be monotone if for each t ≥ 0,
Φ(t) : E → E is a monotone map. In the rest of this section we state three
general results on convergence and attractivity in monotone semiflows, which
will be used in Chapters 7 and 9.

Theorem 2.2.5. (Hirsch convergence criterion) ([160, Theorem 6.4])
Assume that the monotone semiflow Φ(t) on E admits a precompact positive
orbit γ+(x) such that Φ(t0)x � x or Φ(t0)x � x for some t0 ∈ (0,∞). Then
Φ(t)x converges as t → ∞ to an equilibrium.
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Theorem 2.2.6. (Hirsch attractivity theorem) ([157, Theorem 3.3])
Assume that the monotone semiflow Φ(t) on E admits an attractor K such
that K contains only one equilibrium p. Then every trajectory attracted to K
converges to p.

Let X be an ordered metric space with metric d and partial order relation
≤. We say that a point x ∈ X can be approximated from below (above) in X if
there exists a sequence {xn} in X satisfying xn < xn+1 < x (x < xn+1 < xn)
for n ≥ 1 and xn → x as n → ∞. The following generic convergence theorem
is a special case of [330, Theorem 2.4] (see also [326, Theorem 2.4.7 and
Remark 2.4.1]).

Theorem 2.2.7. (Generic convergence theorem) Let X be an ordered
metric space with metric d and partial order relation ≤ such that each point
of X can be approximated either from above or from below in X, and let
Φ(t) be a monotone semiflow on X. Assume that every positive orbit in X is
precompact and that if {xn}n≥1 approximates x0 from below or from above,
then ∪n≥0ω(xn) has compact closure contained in X. Suppose that there exists
an ordered Banach space (Y, Y+) with int(Y+) �= ∅ such that

(1) Z := X ∩ Y is a nonempty order convex subset of Y , Φ(t)Z ⊂ Z, ∀t ≥
0, the restriction of the order relation ≤Y on Y to Z agrees with the
restriction of the order relation ≤ on X to Z, and the identity map from
(Z, d) to (Z, dY ) is continuous, where dY is the metric induced by the
norm on Y ;

(2) There exists t0 > 0 such that Φ(t0)X ⊂ Z, Φ(t0) : X → Z is continuous,
and Φ(t0)x2 − Φ(t0)x1 ∈ int(Y+) whenever x1, x2 ∈ X and x1 < x2;

(3) For each equilibrium e, Φt0 := Φ(t0) is continuously differentiable on a
neighborhood of e in Z, the Fréchet derivative Φ′

t0(e) is compact, and
Φ′
t0(e)(Y+ \ {0}) ⊂ int(Y+).

Then there is an open and dense subset W of X such that for every x ∈ W ,
Φ(t)x converges as t → ∞ to an equilibrium.

2.3 Subhomogeneous Maps and Skew-Product Semiflows

Recall that a subset K of E is said to be order convex if [u, v]E ⊂ K whenever
u, v ∈ E satisfy u < v. In this section we assume that U ⊂ P is a nonempty,
closed, and order convex set.

Definition 2.3.1. A continuous map f : U → U is said to be subhomoge-
neous if f(λx) ≥ λf(x) for any x ∈ U and λ ∈ [0, 1]; strictly subhomogeneous
if f(λx) > λf(x) for any x ∈ U with x � 0 and λ ∈ (0, 1); strongly subhomo-
geneous if f(λx) � λf(x) for any x ∈ U with x � 0 and λ ∈ (0, 1).
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Lemma 2.3.1. Assume that one of the following two condition holds:

(C1) f : U → U is monotone and strongly subhomogeneous;
(C2) f : U → U is strongly monotone and subhomogeneous.

Then for any two fixed points u, v ∈ U ∩ int(P ), there is σ > 0 such that
v = σu.

Proof. By assumption, u � 0 and v � 0. Without loss of generality we may
assume that u �= v and u �∈ [0, v]. Set σ0 := sup{σ ≥ 0 : σu ≤ v}. Clearly,
σ0u ≤ v and σ0 ∈ (0, 1). We claim that σ0u = v. Assume, by contradiction,
that σ0u < v. Then

σ0u = σ0f(u) � f(σ0u) ≤ f(v) = v if (C1) holds,

and
σ0u = σ0f(u) ≤ f(σ0u) � f(v) = v if (C2) holds.

Thus in either case we get v − σ0u � 0, which contradicts the maximality of
σ0.

Theorem 2.3.1. Assume that either (C1) or (C2) holds. If K ⊂ U ∩ int(P )
is a nonempty compact invariant of f , then there are fixed points p, q ∈ K
such that p ≤ K ≤ q.

Proof. For each x ∈ K, define β(x) := sup{σ ≥ 0 : σx ≤ K}. Since K ⊂
int(P ) and β(x)x ≤ K, we get 0 < β(x) ≤ 1, ∀x ∈ K. It also easily follows
that β : K → R is continuous. Let μ be the maximal value of β on K. Then
μ ∈ (0, 1]. Fix a ∈ K with β(a) = μ. Then μa ≤ K. We further claim that
μa ∈ K. Assume, by contradiction, that μa �∈ K. Then μ ∈ (0, 1) and μa < K.
Since K is invariant, we get f(a) ∈ K, and hence β(f(a)) ≤ μ. It then follows
that

β(f(a))f(a) ≤ μf(a) � f(μa) ≤ K if (C1) holds,

and
β(f(a))f(a) ≤ μf(a) ≤ f(μa) � K if (C2) holds.

Thus in either case we get β(f(a))f(a) � K, which contradicts the maximal-
ity of β(f(a)). Let p = μa. Then p ∈ K and p ≤ K. By the invariance of K
and the monotonicity of f , we get f(p) ∈ K and f(p) ≤ f(K) = K. Thus
p ≤ f(p) and f(p) ≤ p, which implies that p is a fixed point of f . Similarly,
we can prove the existence of the required fixed point q.

Theorem 2.3.2. Assume that either (C1) or the following (C3) holds:

(C3) f : U → U is strongly monotone and strictly subhomogeneous.

If f : U → U admits a nonempty compact invariant set K ⊂ int(P ), then f
has a fixed point e � 0 such that every nonempty compact invariant set of f
in int(P ) consists of e.
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Proof. By Lemma 2.3.1, it is easy to see that f admits at most one fixed
point in int(P ) in either case of (C1) and (C3). Then Theorem 2.3.1 implies
that there is a fixed point e � 0 such that K = {e}. Thus Theorem 2.3.1,
together with the uniqueness of the fixed point of f in int(P ), completes the
proof.

Theorem 2.3.3. Assume that (C2) holds. If x has a compact orbit closure in
int(P ), then fn(x) converges to a fixed point.

Proof. By Theorem 2.3.1 and Lemma 2.3.1, ω(x) contains fixed points e and
ρe for some ρ ≥ 1 and e ≤ ω(x) ≤ ρe. Then it suffices to prove ρ = 1. Assume,
by contradiction, that ρ > 1. We first claim that for any t ∈ [1, ρ], te is a fixed
point of f . Indeed, by the subhomogeneity of f , we have f(te) ≤ tf(e) = te,
and f(te) = f((t/ρ)ρe) ≥ (t/ρ)f(ρe) = (t/ρ)(ρe) = te. So f(te) = te. Since
e, ρe ∈ ω(x) and e � ρe, there exists an integer n0 such that fn0(x) � e. Let
y = fn0(x). Then ω(y) = ω(x) and fn(y) ≥ e, ∀n ≥ 0. It follows that for any
t ∈ (1, ρ], since e ∈ ω(y), there exists an integer n1 such that e ≤ fn1(y) ≤ te.
Thus e = fn(e) ≤ fn1+n(y) ≤ fn(te) = te, ∀n ≥ 0, and hence e ≤ ω(y) ≤ te.
Letting t → 1, we get ω(y) = e, contradicting ρe ∈ ω(y).

Lemma 2.3.2. Let either V = [0, b] with b � 0 or V = P . Assume that
S : V → V is continuous, S(0) = 0, and DS(0) exists. If S is subhomogeneous,
then S(u) ≤ DS(0)u, ∀u ∈ V ; If S is strictly subhomogeneous, then S(u) <
DS(0)u, ∀u ∈ V ∩ int(P ).

Proof. For any u ∈ V with u > 0, we have ‖u‖ > 0. In the case where S is
subhomogeneous, since S(0) = 0 and for any 0 < α < 1,

S(u) ≤ S(αu)

α
=

S(0) +DS(0)(αu) + o(‖αu‖)
α

= DS(0)u+
o(‖αu‖)
‖αu‖ · ‖u‖ ,

letting α → 0, we get S(u) ≤ DS(0)u. If S is strictly subhomogeneous, we
further show that S(u) < DS(0)u for all u ∈ V with u � 0. Indeed, assume
that there exists u0 ∈ V with u0 � 0 such that S(u0) = DS(0)(u0). Then for
any 0 < α < 1, we have αu0 � 0 and

αS(u0) < S(αu0) ≤ DS(0)(αu0) = αDS(0)(u0) = αS(u0),

which is a contradiction.

Theorem 2.3.4. (Threshold dynamics) Let either V = [0, b]E with b � 0
or V = P . Assume that

(1) f : V → V satisfies either (C1) or (C3);
(2) f : V → V is asymptotically smooth, and every positive orbit of f in V is

bounded;
(3) f(0) = 0, and Df(0) is compact and strongly positive.
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Then there exist threshold dynamics:

(a) If r(Df(0)) ≤ 1, then every positive orbit in V converges to 0;
(b) If r(Df(0)) > 1, then there exists a unique fixed point u∗ � 0 in V such

that every positive orbit in V \ {0} converges to u∗.

Proof. Note that the assumption (2) implies that every positive orbit of f
in V is precompact, and hence its omega limit set is nonempty, compact, and
invariant for f . Then Lemma 2.3.2 and Theorem 2.2.2 prove the conclusion
(a). In the case that r(Df(0)) > 1, Theorem 2.1.2 and Remark 2.1.5 with
a = 0 imply that there exists u∗ = f(u∗) � 0 such that for any 0 < u ≤
u∗, limn→∞ fn(u) = u∗. For each v ∈ V \ {0}, by Claim 1 in the proof
of Theorem 2.1.2, we have f(v) � 0. Then there exists a sufficiently small
number ε ∈ (0, 1] such that εu∗ ≤ f(v), and hence the monotonicity of f
implies that fn(εu∗) ≤ fn+1(v), ∀n ≥ 0. Since limn→∞ fn(εu∗) = u∗, we
get 0 � u∗ ≤ ω(v). Thus ω(v) ⊂ int(P ). Then Theorem 2.3.2 implies that
ω(v) = u∗.

Remark 2.3.1. The conclusion (a) also holds in the case where V = P ,
(C2) holds, and r(Df(0)) < 1. Indeed, for each u ∈ P , by Lemma 2.3.2,
f(u) ≤ Df(0)u, and hence the monotonicity of f implies that 0 ≤ fn(u) ≤
(Df(0))nu, ∀n ≥ 0. Since r(Df(0)) < 1, we get (Df(0))nu → 0, and hence
fn(u) → 0 as n → ∞.

Recall that f : P → P is said to be strongly concave if for every u � 0
and α ∈ (0, 1), there exists η = η(u, α) > 0 such that f(αu) ≥ (1 + η)αf(u)
(see [204]). Clearly, strong concavity implies strict subhomogeneity. In [317],
f : P → P is said to be concave if f is (Fréchet) differentiable on P and
Df(v) − Df(u) > 0 for all u � v � 0. It is easy to see that concavity also
implies strict subhomogeneity. Indeed, for any 0 < α < 1, u � 0,

f(αu) = f(0) + α

∫ 1

0

Df(sα · u)u · ds

> f(0) + α

∫ 1

0

Df(su)u · ds

= (1 − α)f(0) + αf(u) ≥ αf(u).

Let R+ = [0,∞), and let Y be a compact metric space with metric d.
Recall that a flow σ : Y × R → Y is said to be minimal if Y contains no
nonempty, proper, closed invariant subset; distal if for any two distinct points
y1 and y2 in Y , inft∈R d(σ(y1, t), σ(y2, t)) > 0. Clearly, a flow σ : Y × R → Y
is minimal if and only if every full orbit is dense in Y .

In the rest of this section we assume that σ : Y ×R → Y is a minimal and
distal flow, and consider a continuous semiflow Π : P × Y × R

+ → P × Y of
the form

Π(x, y, t) = (u(x, y, t), σ(y, t)), ∀(x, y, t) ∈ P × Y × R
+;
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that is, Π is a skew-product semiflow on P × Y . We set p : X × Y → Y
as the natural projection, and also use the notation σ(t)(y) = σ(y, t) and
Πt(x, y) = Π(x, y, t). It is well known that for any precompact forward orbit
γ+(x, y) := {Πt(x, y) : t ≥ 0} in P , its omega limit set ω(x, y) is a compact
and (positively) invariant set for Π . Then we have the following result.

Theorem 2.3.5. (Global attractivity) Let Πt be a skew-product semi-
flow on P × Y . Assume that

(A1) For any λ ∈ (0, 1), x1, x2 ∈ int(P ), λx1 ≤ x2 ≤ λ−1x1 implies that
λu(x1, y, t) ≤ u(x2, y, t) ≤ λ−1u(x1, y, t), ∀(y, t) ∈ Y × R

+;
(A2) There exist y0 ∈ Y and t0 > 0 such that for any λ ∈ (0, 1), x1, x2 ∈

int(P ), λx1 ≤ x2 ≤ λ−1x1 implies that λu(x1, y0, t0) � u(x2, y0, t0) �
λ−1u(x1, y0, t0).

If Πt has a precompact forward orbit with its omega limit set K0 ⊂ int(P ) ×
Y , then the semiflow Πt : K0 → K0 admits a flow extension such that p :
(Π,K0) → (σ, Y ) is a flow isomorphism, and for every compact omega limit
set ω(x, y) ⊂ int(P ) × Y , we have ω(x, y) = K0 and limt→∞ ‖u(x, y, t) −
u(x∗, y, t)‖ = 0, where (x∗, y) = K0 ∩ p−1(y). Moreover, the map h : Y → P ,
defined by h(y) = x∗, ∀y ∈ Y , is continuous.

Proof. We define the part metric ρ on int(P ) by

ρ(x1, x2) := inf{lnα : α ≥ 1 andα−1x1 ≤ x2 ≤ αx1}, ∀x1, x2 ∈ int(P ).

Then (int(P ), ρ) is a metric space (see, e.g., [373, 259]). By the triangle in-
equality for metric functions, it is easy to see that ρ(·, ·) : int(P )× int(P ) → R

is continuous with respect to the product topology induced by the metric ρ.
Given x0 ∈ int(P ), we can choose a real number r > 0 such that the closed
norm ball B(x0, 2r) := {x ∈ X : ‖x− x0‖ ≤ 2r} is contained in int(P ). Then
for any x ∈ B(x0, r), B(x, r) ⊂ int(P ). By [205, Lemma 2.3 (i)], we have

ρ(x, x0) ≤ ln

(

1 +
‖x− x0‖

r

)

, ∀x ∈ B(x0, r).

Thus limn→∞ ‖xn − x0‖ implies limn→∞ ρ(xn, x0) = 0 for any sequence {xn}
and point x0 in int(P ). It then follows that ρ(·, ·) : int(P )× int(P ) → R is also
continuous with respect to the product topology induced by the norm ‖ · ‖.
With (A1) and (A2), we further have the following two claims, respectively.

Claim 1. ρ(u(x1, y, t), u(x2, y, t)) ≤ ρ(x1, x2), ∀x1, x2 ∈ int(P ) and (y, t) ∈
Y × R

+ with u(xi, y, t) ∈ int(P ), i = 1, 2.

Indeed, let ρ(x1, x2) = lnα0 > 0. Then α0 > 1, and hence 0 < α−1
0 < 1. Since

α−1
0 x1 ≤ x2 ≤ α0x1, by assumption (A1),

α−1
0 u(x1, y, t) ≤ u(x2, y, t) ≤ α0u(x1, y, t), ∀(y, t) ∈ Y × R

+.

It then follows that ρ(u(x1, y, t), u(x2, y, t)) ≤ lnα0 = ρ(x1, x2), ∀(y, t) ∈ Y ×
R

+.
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Claim 2. ρ(u(x1, y0, t0), u(x2, y0, t0)) < ρ(x1, x2), ∀x1, x2 ∈ int(P ) with x1 �=
x2 and u(xi, y0, t0) ∈ int(P ), i = 1, 2.

In fact, let α0 be as in the proof of Claim 1. By assumption (A2), we get

α−1
0 u(x1, y0, t0) � u(x2, y0, t0) � α0u(x1, y0, t0).

Since int(P ) is an open subset of X , we can choose an α1 ∈ (1, α0) sufficiently
close to α0 such that

α−1
1 u(x1, y0, t0) � u(x2, y0, t0) � α1u(x1, y0, t0).

It then follows that ρ(u(x1, y0, t0), u(x2, y0, t0)) ≤ lnα1 < lnα0 = ρ(x1, x2).
Let Z := {((x1, y), (x2, y)) : x1, x2 ∈ int(P ), y ∈ Y }, and define a contin-

uous function ρ̃ : Z → R
+ by ρ̃((x1, y), (x2, y)) = ρ(x1, x2), ∀(x1, y), (x2, y) ∈

Z. Since K0 ⊂ int(P ) × Y , Claim 1 implies that the skew-product semiflow
Πt : K0 → K0 is contracting with respect to ρ̃ in the sense that

ρ̃(Π(x1, y, t), Π(x2, y, t)) ≤ ρ̃((x1, y), (x2, y)), ∀(x1, y), (x1, y) ∈ K0, t ≥ 0.

Clearly, ρ̃((x1, y), (x2, y)) = 0 if and only if (x1, y) = (x2, y). Since K0 is the
omega limit set of a precompact forward orbit, every point in K0 admits a
backward orbit in K0. By [311, Lemma II.2.10 1) and 2)], it then follows that
Πt : K0 → K0 admits a flow extension (i.e., every point in K0 has a unique
backward orbit), and this flow is distal. We further claim that card(K0 ∩
p−1(y0)) = 1. Suppose for contradiction that there are two distinct points
(x1, y0) and (x2, y0) in K0 ∩ p−1(y0). Then (x1, y0) and (x2, y0) are distal
for the flow Πt : K0 → K0. By an Ellis semigroup argument (see, e.g., the
proof of [311, Lemma II.2.10 3)]), there exists a sequence tn → ∞ such that
limn→∞Πtn(xi, y0) = (xi, y0), and hence limn→∞ u(xi, y0, tn) = xi, i = 1, 2.
Let (x̄i, ȳ) = Πt0(xi, y0) ∈ K0 ⊂ int(P ) × Y, i = 1, 2. Then Πtn(xi, y0) =
Πtn−t0(x̄i, ȳ), ∀n ≥ 1. By Claims 1 and 2, we get

ρ(x1, x2) = lim
n→∞ ρ(u(x1, y0, tn), u(x2, y0, tn))

= lim
n→∞ ρ(u(x̄1, ȳ, tn − t0), u(x̄2, ȳ, tn − t0))

≤ ρ(x̄1, x̄2) = ρ(u(x1, y0, t0), u(x2, y0, t0))

< ρ(x1, x2),

a contradiction. By the structure theorem of skew-product flows ([300, The-
orem 1]), as applied to the flow Πt : K0 → K0, it then follows that card
(K0 ∩ p−1(z)) = 1, ∀z ∈ Y , and hence p : (Π,K0) → (σ, Y ) is a flow isomor-
phism. In particular, Πt : K0 → K0 is minimal.
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Let K = ω(x, y) ⊂ int(P )×Y . By what we have proved, the flow extension
of the semiflow Πt : K → K is distal and minimal, and card (K ∩ p−1(z)) =
1, ∀z ∈ Y . In order to proveK = K0, by the minimality of bothΠt : K0 → K0

and Πt : K → K, it suffices to prove that K0 ∩K �= ∅. Assume for contra-
diction that K0 ∩ K = ∅, then d(K0,K) > 0, where d is the metric on the
product space X×Y . Let (x1, y0) = K0∩p−1(y0) and (x2, y0) = K ∩p−1(y0).
Then (x1, y0) and (x2, y0) are distal for the flow Πt : K0 ∪ K → K0 ∪ K.
Using the same arguments as in the last paragraph, we get a contradic-
tion. Therefore, K = K0. To prove limt→∞ ‖u(x, y, t) − u(x∗, y, t)‖ = 0,
suppose, by contradiction, that there exist an ε0 > 0 and a sequence
tn → ∞ such that ‖u(x, y, tn) − u(x∗, y, tn)‖ ≥ ε0, ∀n ≥ 1. Since γ+(x, y)
and γ+(x∗, y) are precompact, without loss of generality we assume that
limn→∞Π(x, y, tn) = (x∗1, y

∗) ∈ K and limn→∞Π(x∗, y, tn) = (x∗2, y
∗) ∈ K.

Since K = K0 and card(K0 ∩ p−1(y∗)) = 1, we get x∗1 = x∗2. Thus
0 = ‖x∗1 − x∗2‖ = limn→∞ ‖u(x, y, tn) − u(x∗, y, tn)‖ ≥ ε0, a contradiction.
It then follows that limt→∞ ‖u(x, y, t)− u(x∗, y, t)‖ = 0. Since σ : Y ×R → Y
is a minimal and distal flow and p : (Π,K0) → (σ, Y ) is a flow isomor-
phism, [311, Theorem I.2.6] implies that p : K0 → Y is an open map. Thus,
p−1 : Y → K0 is continuous. In view of p−1(y) = (h(y), y), ∀y ∈ Y , we then
get the continuity of h on Y .

Remark 2.3.2. It is easy to see that the following two conditions are sufficient
for (A1) and (A2):

(A1)′ For each (y, t) ∈ Y × R
+, u(·, y, t) is monotone and subhomogeneous

on P ;
(A2)′ There exist y0 ∈ Y and t0 > 0 such that u(·, y0, t0) is strongly subho-

mogeneous on P .

Remark 2.3.3. If we assume that (A1)′ holds, then the following condition
implies (H2)′:

(A2)′′ There exist y0 ∈ Y , t1 > 0, and t2 > 0 such that u(·, y0, t1) is strictly
subhomogeneous on P and u(·, σ(t1)y0, t2) is strongly monotone on
P .

Indeed, given λ ∈ (0, 1) and x ∈ int(P ), the strict subhomogeneity of
u(·, y0, t1) implies that u(λx, y0, t1) > λu(x, y0, t1). By the strong monotonic-
ity of u(·, σ(t1)y0, t2) and assumption (A1)′, it follows that

u(u(λx, y0, t1), σ(t1)y0, t2) �u(λu(x, y0, t1), σ(t1)y0, t2)

≥λu(u(x, y0, t1), σ(t1)y0, t2).
Since Πt2 ◦Πt1 = Πt1+t2 , we get u(λx, y0, t1 + t2) � λu(x, y0, t1 + t2). Thus
(A2)′ holds with t0 = t1 + t2 > 0.



2.4 Competitive Systems on Ordered Banach Spaces 59

2.4 Competitive Systems on Ordered Banach Spaces

For i = 1, 2, let Xi be ordered Banach spaces with positive cones X+
i such

that int(X+
i ) �= ∅. Let X = X1 × X2, X

+ = X+
1 × X+

2 , and K = X+
1 ×

(−X+
2 ). Then int(X+) = int(X+

1 ) × int(X+
2 ) �= ∅ and int(K) = int(X+

1 ) ×
(−int(X+

2 )) �= ∅. We will make the following hypotheses, which capture the
essence of competition between two adequate competitors:

(D1) f : X+ → X+ is order compact and strictly monotone with respect to
<K ;

(D2) 0 is a repelling fixed point of f in the sense that there exists a neigh-
borhood U0 of 0 in X+ such that for each x ∈ U0 with x �= 0, there is
an integer n = n(x) such that fn(x) �∈ U0;

(D3) f(X+
1 × {0}) ⊂ X+

1 × {0}, and there exists x̂1 ∈ int(X+
1 ) such that

f((x̂1, 0)) = (x̂1, 0) and ω((x1, 0)) = (x̂1, 0) for every x1 ∈ X+
1 \ {0}.

The symmetric conditions hold for f on {0} ×X2, and the fixed point
is denoted by (0, x̃2);

(D4) If x, y ∈ X+ satisfy x <K y and either x or y belongs to int(X+),
then f(x) �K f(y). If x = (x1, x2) ∈ X+ with xi �= 0, i = 1, 2, then
f(x) � 0.

Let E0 = (0, 0), E1 = (x̂1, 0), E2 = (0, x̃2). We say that a fixed point E∗
of f is positive if E∗ ∈ int(X+). Let I = [E2, E1]K . It is easy to see that
I = [0, x̂1] × [0, x̃2]. The following result says that for a competitive system,
either there is a positive fixed point of f , representing coexistence of the two
populations, or one population drives the other to extinction.

Theorem 2.4.1. (Trichotomy) Let (D1)–(D4) hold. Then the omega limit
set of every orbit in X+ is contained in I, and exactly one of the following
holds:

(a) There exists a positive fixed point E∗ of f in I;
(b) ω(x) = E1 for every x = (x1, x2) ∈ I with xi �= 0, i = 1, 2;
(c) ω(x) = E2 for every x = (x1, x2) ∈ I with xi �= 0, i = 1, 2.

Finally, if (b) or (c) holds and x = (x1, x2) ∈ X+ \ I with xi �= 0, i = 1, 2,
then either ω(x) = E1 or ω(x) = E2.

Proof. We begin by showing that I attracts all orbits. By (D3)–(D4), we may
assume that fn(x) � 0, ∀n ≥ 0. If x = (x1, x2), let u = (x1, 0) and v = (0, x2)
and observe that v <K x <K u. Consequently,

fn(v) <K fn(x) <K fn(u), ∀n ≥ 1.

(D2) implies that fn(v) → E2 and fn(u) → E1. In particular, if s > 1, then
fn(x) ∈ [0, sx̂1]× [0, sx̃2] for all large n. Since f is order compact, we conclude
that γ+(x) is precompact in X , and hence ω(x) exists and is compact and
invariant for f . Thus the inequality above implies that ω(x) ⊂ I.
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We then consider f : I := [E2, E1]K → I. Clearly, E0 is an extreme point
of I, and by (D2), it is an ejective fixed point of f . By the Dancer–Hess
connecting orbit lemma and Remark 2.1.3, at least one of the following holds:

(a) f has a fixed point distinct from E0, E1, E2 in I;
(b) there exists an entire orbit {xn}∞n=−∞ of f in I such that xn+1 >K

xn, ∀n ∈ N, and limn→−∞ xn = E2 and limn→∞ xn = E1;
(c) there exists an entire orbit {yn}∞n=−∞ of f in I such that yn+1 <K yn, ∀n ∈

N, and limn→−∞ yn = E1 and limn→∞ yn = E2.

Clearly, E2 �K E1. We claim that (b) and (c) cannot both hold. For in that
case, since limn→−∞ yn = E1 �K E2 = limn→−∞ xn, there exist m0, n0 ∈ N

such that xm0 �K yn0 . By the strict monotonicity of f with respect to <K ,
we then get xm0+l = f l(xm0) <K f l(yn0) = yn0+l, ∀l ≥ 0. Letting l → ∞
leads to the contradiction E1 ≤K E2. If E∗ = (x1, x2) is a fixed point of f
distinct from E0, E1, E2 in I, then xi �= 0 for i = 1, 2 by (D3). By (D4),
E∗ = f(E∗) � 0. Again by (D4), we get E2 �K E∗ �K E1. We further show
that (a) and (b) and (a) and (c) are incompatible. Suppose (a) and (b) hold for
f and let {xn}n∈N be the entire orbit described in (b). Then f has a fixed point
u ∈ [[E2, E1]]K , and xn0 � u for some n0 ∈ N. Then the strict monotonicity of
f implies that xn0+l <K u, ∀l ≥ 0. Letting l → ∞ leads to the contradiction
E1 ≤ u. A similar contradiction follows in case (a) and (c) hold. It then
follows that precisely one of the alternatives (a), (b), (c) above holds. In the
case where (b) holds, for any x = (x1, x2) ∈ I with xi �= 0, i = 1, 2, by (D4),
f(x) � 0. Since E2 <K f(x) <K E1, (D4) implies that E2 �K f2(x) �K E1.
Thus we can choose n ∈ N such that xn �K f2(x). By monotonicity, it follows
that xn+l �K f l+2(x) �K E1, ∀l ≥ 0. Letting l → ∞ and noting that γ+(x)
is precompact, we get ω(x) = E1. Similarly, we can prove the convergence in
the case where (c) holds.

In the case where either (b) or (c) holds, every orbit in I converges to one
of three fixed points E0, E1, E2. Clearly, each Ei is an isolated invariant set
for f : I → I, and there is no cyclic chain among the Ei’s. By Theorem 1.2.2,
every internally chain transitive set for f : I → I is a fixed point. For any
x ∈ X+, we have shown that ω(x) ⊂ I, and hence ω(x) is internally chain
transitive for f : I → I. Thus, ω(x) consists of one of E0, E1, E2. If x �= 0,
(D2) implies that either ω(x) = E1 or ω(x) = E2.

Remark 2.4.1. By Theorem 2.4.1, it is easy to see that if E1 and E2 are si-
multaneously either stable or unstable for f : I → I; or if there exists a point
x ∈ X+ such that ω(x) ∩ int(X+) �= ∅, then there is a positive fixed point
of f .

Proposition 2.4.1. Let (D1)–(D4) hold and assume that f has a positive
fixed point. If E1 is an isolated fixed point of f , then there exists a positive
fixed point E∗ in I such that exactly one of the following holds:

(i) ω(x) = E∗ for every x = (x1, x2) satisfying E∗ ≤K x <K E1 and x2 �= 0;
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(ii) ω(x) = E1 for every x = (x1, x2) satisfying E∗ <K x ≤K E1.

A symmetric conclusion holds if E2 is an isolated fixed point of f .

Proof. Let x∗ denote a positive fixed point of f , which by (D4) must satisfy
E2 �K x∗ �K E1. The set W := {x̄ : f(x̄) = x̄, x∗ ≤K x̄ �K E1} is
partially ordered by ≤K . Using the compactness of the set of fixed points, the
fact that E1 is an isolated fixed point, and a simple Zorn’s lemma argument,
one can show that W contains a weakly maximal element E∗ in the sense
that u ∈ W and u ≥K E∗ implies that u = E∗. Obviously, the order interval
[E∗, E1]K contains no fixed points of f other than E∗ and E1. By the Dancer–
Hess connecting orbit lemma, there exists a monotone entire orbit {xn} that
either connects E∗ to E1 or connects E1 to E∗. Suppose the former holds.
Then, arguing as in the proof of Theorem 2.4.1(b), we have ω(x) = E1 for
any x = (x1, x2) satisfying E∗ <K x ≤K E1 and x2 �= 0. The same conclusion
holds if x2 = 0 by (D3). A similar argument shows that (i) holds if {xn}
connects E1 to E∗.

Theorem 2.4.2. (Compression) Let (D1)–(D4) hold and assume that E1

and E2 are isolated fixed points of f . Let W s(Ei) be the stable set of Ei for
f : X+ → X+. If W s(Ei) ∩ int(X+) = ∅, i = 1, 2, then there exist positive
fixed points E∗∗ ≤K E∗ of f such that ω(x) = E∗ for every x = (x1, x2)
satisfying E∗ ≤K x <K E1 and x2 �= 0, ω(x) = E∗∗ for every x = (x1, x2)
satisfying E2 <K x ≤K E∗∗ and x1 �= 0, and the order interval [E∗∗, E∗]K
attracts any point in (X+

1 \ {0})× (X+
2 \ {0}).

Proof. Since W s(Ei) ∩ int(X+) = ∅, i = 1, 2, either (b) or (c) in Theo-
rem 2.4.1 does not hold. By Theorem 2.4.1, there exists a positive fixed point
of f in I. Thus, by Proposition 2.4.1, there exist positive fixed points E∗∗
and E∗ of f in I such that ω(x) = E∗ for every x = (x1, x2) satisfying
E∗ ≤K x <K E1 and x2 �= 0, and ω(x) = E∗∗ for every x = (x1, x2) satisfying
E2 <K x ≤K E∗∗ and x1 �= 0. By (D4), we have E2 �K E∗∗, E∗ �K E1.
Let x ∈ (X+

1 \ {0}) × (X+
2 \ {0}) be given. Then f(x) ∈ int(X+) by (D4).

By Theorem 2.4.1, ω(x) ⊂ I. We further claim that ω(x) ∩ int(X+) �= ∅. In-
deed, suppose that ω(x)∩ int(X+) = ∅. Then (D4) and the invariance of ω(x)
imply that ω(x) ⊂ Y := {(x1, x2) ∈ X+ : x1 = 0 orx2 = 0}. Thus, ω(x) is
an internally chain transitive set for f : Y → Y . By applying Theorem 1.2.2
to f : Y → Y , we get ω(x) = Ei, and hence f(x) ∈ W s(Ei) ∩ int(X+) for
some 0 ≤ i ≤ 2, which contradicts our assumption. Let y ∈ ω(x) ∩ int(X+).
Then E2 <K y <K E1, and E2 �K f(y) �K E1 by (D4). Since f(y) ∈ ω(x)
and [[E2, E1]] is an open set, there is a positive integer m such that E2 �K

fm(x) �K E1. Thus we can further choose two points u and v such that
E2 �K u �K E∗∗, E∗ �K v �K E1 and u �K fm(x) �K v. By the
monotonicity of f , fn(u) ≤K fm+n(x) ≤K fn(v), ∀n ≥ 0. Letting n → ∞,
we then get E∗∗ = limn→∞ fn(u) ≤K ω(x) ≤K limn→∞ fn(v) = E∗.
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2.5 Saddle Point Behavior

Let (X,X+) be an ordered Banach space with positive cone X+ having
nonempty interior int(X+). A subsetM of X+ is said to be unordered if there
are no two points x, y ∈ M with x < y. We write [a,∞]] = {x ∈ X+ : x ≥ a},
and similarly for [[−∞, b]. A subset Y of X is said to be lower closed if
[[−∞, b] ⊂ Y whenever b ∈ Y , and upper closed if [a,∞]] ⊂ Y whenever
a ∈ Y .

Let Φ := {Φt}t≥0 be a continuous semiflow on X+. For any x ∈ X+, we
use ω(x) to denote the omega limit set of the positive orbit γ+(x) := {Φt(x) :
t ≥ 0}. An equilibrium e is a point for which Φt(e) = e, ∀t ≥ 0. An equilibrium
e is said to be locally stable if for any neighborhood U of e, there is another
neighborhood V of e such that Φt(V ) ⊂ U, ∀t ≥ 0; asymptotically stable if it
is stable and there is a neighborhood U of e such that ω(y) = {e}, ∀y ∈ U .
We say that x is convergent if ω(x) is a singleton, and quasiconvergent if ω(x)
consists of equilibria. Recall that Φ is monotone if Φt(x) ≤ Φt(y) whenever
x, y ∈ X+ with x ≤ y and t > 0; strongly order-preserving, SOP for short,
provided Φ is monotone and for any x < y, there are some t0 > 0 and open
subsets U, V of X+ with x ∈ U, y ∈ V such that Φt0(U) < Φt0(V ); strongly
monotone if Φt(x) � Φt(y) whenever x, y ∈ X+ with x < y and t > 0.

For a fixed v ∈ int(X+), the order norm is defined by

|x|v = inf{λ ∈ R
+ : −λv ≤ x ≤ λv},

which induces the order topology in X . If the cone is normal, then the order
norm is equivalent to the original one. Throughout this section, we use α(B)
to denote the Kuratowski measure of noncompactness for a bounded set B.

Let M ⊂ X+ be a subset. A point z is in the lower boundary of M , ∂−M ,
provided there is a sequence {si} in M converging to z with si � z, but no
sequence {xi} in M converging to z with xi � z. The upper boundary, ∂+M ,
is defined analogously.

Definition 2.5.1. A pair (A,B) is called an order decomposition of X+ if it
has the following three properties:

(1) A and B are nonempty and closed subsets of X+;
(2) A is lower closed and B is upper closed;
(3) A ∪B = X+ and int(A ∩B) = ∅.

An order decomposition (A,B) of X+ is called invariant if A and B are
positively invariant, that is, Φt(A) ⊂ A and Φt(B) ⊂ B, ∀t ≥ 0. The set
H = A ∩B is called the boundary of the order decomposition (A,B) of X+.
A d-hypersurface is any subset H of X+ such that H = A∩B for some order
decomposition (A,B) of X+.

Note that the boundaryH of an order decomposition (A,B) ofX+ satisfies

H = ∂A = ∂B,
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where ∂ is the boundary symbol in X+, and H is unordered and positively
invariant whenever (A,B) is invariant.

Lemma 2.5.1. (Takác̆ [351, Proposition 1.3]) Let Φ be a SOP semiflow with
all positive orbits being precompact, and Φτ be strongly monotone for some
positive number τ . Then the boundary of every order decomposition is an
unordered and positively invariant one-codimensional Lipschitz manifold in
the ordered norm | · |v.

Lemma 2.5.2. (Generalized Krein-Rutman theorem, Nussbaum [258])
Let L : X → X be a strongly positive and bounded linear operator. Assume
that the essential spectral radius re(L) of L is less than the spectral radius r(L)
of L. Then r(L) is an algebraically simple eigenvalue of L with an eigenvector
v ∈ int(K), and all other eigenvalues of L have their absolute values less than
r(L).

Lemma 2.5.3. (Smith and Thieme [332, Proof of Theorem 3.4]) Let U be an
open subset of X and S : U → X be a continuous and monotone map. Assume
that S has a fixed point x∗ ∈ U such that

(a) The Frechét derivative DS(x∗) : X → X exists, DS(x∗) is strongly posi-
tive and bounded, and r(DS(x∗)) = 1;

(b) x∗ does not attract any point x ∈ U with either x > x∗ or x < x∗.

Then there is a δ > 0 such that the set W s
δ := {x ∈ U : ‖x − x∗‖ <

δ, lim
n→∞Sn(x) = x∗} is a local strongly stable manifold of S at x∗.

We will impose the following assumptions on Φ:

(H1) There is a positive number τ such that the mapping Φτ is a strict
α-contraction, that is, there is a positive number k < 1 such that
α(Φτ (B)) ≤ kα(B) for any bounded subset B ⊂ X+;

(H2) The semiflow Φ is uniformly bounded in the sense that γ+(B) :=⋃

t≥0

Φt(B) is bounded whenever B is a bounded subset of X+.

Theorem 2.5.1. Suppose that the SOP semiflow Φ satisfies (H1)–(H2), that
Φ has exactly three equilibria a, c, b such that a � c � b, and a, b are locally
stable in X+, and that the mapping Φτ is continuously differentiable in a
neighborhood of c and DxΦτ (c) is strongly positive. Then M = X+\{Ba∪Bb}
is an unordered and positively invariant set, where Ba, Bb are the basins of
attraction of a, b, respectively.

Proof. First, we prove that every positive orbit has compact closure and
ω(B) := ∩s>0Φs(γ+(B)) is compact for any bounded subset B ⊂ X+. It is
easy to see that the orbit arc on [0, τ ] is compact, where τ is given in the
assumption (H1). By assumption (H2), it follows that

α(γ+(x)) = α(γ+(Φτ (x))) = α(Φτ (γ
+(x))) ≤ kα(γ+(x)).
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Since 0 < k < 1, we have α(γ+(x)) = 0. Thus, γ+(x) is precompact, that is,
γ+(x) has compact closure for every x ∈ X+. By induction, it is not difficult
to show that α(Φnτ (B)) ≤ knα(B), ∀n ≥ 1. By the definition of ω(B), it
follows that

α(ω(B)) ≤ α(Φnτ (γ+(B))) = α(Φnτ (γ
+(B))) ≤ knα(B), ∀n ≥ 1.

Letting n → ∞, we obtain that α(ω(B)) = 0, and hence, ω(B) is com-
pact. Consequently, for any fixed x ∈ X+ and any sequence {xn} satisfying
xn < xn+1 < x(x < xn+1 < xn), ∀n ≥ 1, and xn → x as n → ∞,

⋃
n≥0 ω(xn)

has compact closure in X+, that is, the condition (C) in [326, Chapter 1] is
satisfied. Applying [326, Theorem 1.4.3], we conclude that the quasiconver-
gence is generic. Since Φ possesses exactly three equilibria, we have generic
convergence for Φ in X+, that is, X+ contains an open and dense subset such
that any orbit from this subset converges to one of the equilibria a, c, b. Fur-
thermore, utilizing Dancer–Hess Lemma of connecting orbits and the mono-
tonicity for Φ, we get that [a, c]\{c} ⊂ Ba and [c, b]\{c} ⊂ Bb, where Ba, Bb

are the basins of attraction of a, b, respectively.
Suppose, by contradiction, that the theorem does not hold. Then there

are two points x, y ∈ M with x < y. Since M is positively invariant and Φ
is SOP, there is a neighborhood U ′ of x such that Φt0(U

′) < Φt0(y), where
t0 is given in the definition of SOP. On the other hand, we can find an open
subset U ′′ of U ′ such that x < U ′′ since X+ has a nonempty interior. Since
U ′′ is generically convergent, c attracts an open subset U of U ′′. We claim
that we can choose U as close to c as we wish. In fact, we can find two points
z, z′ ∈ U with z < z′ and then Φt(z) < Φt(z

′), ∀t > 0. For sufficiently large
t, Φt(z), Φt(z

′) are close to c enough. Using Φt(z), Φt(z
′) to replace x, y and

repeating above step, we prove our claim.
Now we consider the mapping Φτ . As aforementioned, [a, c]\{c} ⊂ Ba

and [c, b]\{c} ⊂ Bb. This means that r = r(DxΦτ (c)) ≥ 1. By [91, Proposi-
tion 2.9.1(b)], it follows that DxΦτ (c) is a strict α-contraction with the same
k as in (H1), and hence, re(DxΦτ (c)) ≤ k < 1 (see [91, Theorem 2.9.9]).

In the case where r > 1, there exists a local center-stable manifold,W cs(c),
of c which is a graph of a Lipschitz function over the center-stable subspace
of DxΦτ (c)(see [313, Theorem III.8 and Exercise III.2]). Thus, choosing U
sufficiently close to c, we then get U ⊂ W cs(c), which is a contradiction
since any graph cannot contain an open set. In the case where r = 1, by
Lemma 2.5.3, the domain of attraction of c is locally contained in the local
strongly stable manifold, W ss(c), of the map Φτ at c. But this is impossible
since W ss(c) is a Lipschitz graph(see [313, Theorem III.8 and Exercise III.2])
and hence it cannot contain an open set.

Theorem 2.5.1 shows that the dynamics for Φ behaves like a saddle together
with other two stable equilibria, which often appears in ordinary differential
systems. In what follows, we introduce this concept in an abstract way.
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A dynamical system is said to admit a saddle point behavior if it possesses
three equilibria a, b, and c such that a and b are stable attractors, and the
state space is divided into three disjoint and invariant parts: the basin of
attraction B1 of a, the basin of attraction B2 of b, and one-codimensional (at
least Lipschtiz) manifold M containing c. Such an M is usually called the
separatrix of the domains of attraction B1 and B2. If the equilibrium c is
replaced by a set of some equilibria and the same statements as above hold,
then such a system is said to admit a generalized saddle point behavior. In
this case, we still call M a separatrix.

The following theorem is about generalized saddle point behavior for
monotone semiflows.

Theorem 2.5.2. Let the SOP semiflow Φ be C1 on X+ and satisfy (H1)–(H2)
with Φτ being strongly monotone. Suppose that Φ has exactly two locally stable
equilibria a < b, and for any other possible equilibrium c, DxΦτ (c) is strongly
positive and r(DxΦτ (c)) > 1. Then M = X+\{Ba ∪Bb} is an unordered and
positively invariant Lipschiz submanifold with codimension one in the order
norm | · |v. Furthermore, such an M is a C1-submanifold if Φτ is compact.

Proof. We first prove that b + X+ cannot contain any other equilibrium
except b. Otherwise, there is an equilibrium c in (b+X+)\{b}. SinceDxΦτ (c) is
strongly positive and r(DxΦτ (c)) > 1, there is an orbit originating from c and
tangent to the principal eigenvector at c such that it monotone increasingly
tends to another equilibrium d > c. Therefore, d is lower stable, contradicting
to the assumption that r(DxΦτ (d)) > 1. Similarly, [0, a] cannot contain any
other equilibrium except a. Since the mapping Φτ is a strict α-contraction, we
can define the index for fixed points. Applying Cac and Gatica’s fixed point
theorem [49], we obtain that there is at least one equilibrium between a and
b but distinct from a, b.

We further claim that all equilibria in [a, b] except a, b are unordered.
Suppose not, then there is a pair of equilibria c, d in [a, b] with c, d /∈ {a, b}
and c < d. As argued in the previous paragraph, there exists a lower stable
equilibrium e ∈ [c, d], which contradicts the assumption that r(DxΦτ (e)) > 1
since a < e < b. Thus, the claim follows.

Next we show that the semiflow Φ is generically convergent. Given an
equilibrium e �= a, b, we then have ρ(e) := r(DxΦτ (e)) > 1. By [91, Proposi-
tion 2.9.1 (b)],DxΦτ (e) is a strict α-contraction with the same k as in (H1) and
hence, re(DxΦτ (e)) ≤ k < 1 (see [91, Theorem 2.9.9]). By Lemma 2.5.2, it then
follows that ρ(e) is a simple eigenvalue of DxΦτ (e) and N(ρ(e)I −DxΦτ (e))
is a one-dimensional space spanned by the principal eigenvector v � 0 associ-
ated with ρ(e). Thus, the generic convergence follows from the general result
established in [330].

Now we conclude that M = X+\{Ba ∪ Bb} is unordered. Suppose not,
then there are two points x, y ∈ M with x < y. Since Φ is SOP, we can choose
two neighborhoods U and V of x and y, respectively, such that Φt0(U) <
Φt0(V ). Thus, the generic convergence implies that there are two points u ∈ U
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and v ∈V with x < u and v < y such that Φt(u) and Φt(v) converge to
two equilibria e and d, respectively. Obviously, ω(x) ≤ e ≤ d ≤ ω(y). Since
ω(x), ω(y) ⊂ M and M is invariant, we have e, d ∈ M , and hence, {e, d} ∩
{a, b} = ∅. By the nonordering property of those equilibria distinct from a, b,
we further get e = d. It then follows that the equilibrium e = d attracts an
open subset. By using the assumption ρ(e) > 1 and the theory of center-stable
manifolds, we can get a contradiction as in the proof of Theorem 2.5.1.

In the case where the mapping Φτ is strongly monotone, (M ∪Ba,M ∪Bb)
is an order decomposition with the boundary M(see Definition 2.5.1). By
Lemma 2.5.1, it follows that M is a Lipschiz submanifold in the order norm
| · |v with codimension one. Moreover, M is a C1-submanifold if the mapping
Φτ is compact (see Teres̆c̆ák [360]).

In order to generalize Theorem 2.5.2 to the case where the number of
stable equilibria is greater than two, we need the following result.

Proposition 2.5.1. Let Φ be a SOP semiflow satisfying (H1) and (H2) with
Φτ being strongly monotone. If a is a stable attractor and its basin of attraction
Ba �= X+, then ∂−Ba and ∂+Ba are positively invariant and unordered one-
codimensional Lipschitz manifolds in the order norm | · |v.

Proof. We only consider the upper boundary, the lower boundary being sim-
ilar. Define

A0 :=
⋃

x∈Ba

[[−∞, x], A := A0, and B := X+ \A0.

Since Ba is open, it is easy to see A0 is open, and hence, A is closed and lower
closed. Since Ba �= X+, A0, and hence A is not the whole state space X+.
Thus, B is a nonempty closed subset of X+. By [351, Lemma 1.4], B is also
upper closed. Obviously, A ∪B = X+ and A ∩ B = ∂+Ba. By Lemma 2.5.1,
∂+Ba is an unordered and positively invariant one-codimensional Lipschitz
manifold in the order norm | · |v.

Theorem 2.5.3. Let the SOP semiflow Φ be C1 on X+ and satisfy (H1)–
(H2) with Φτ being strongly monotone. Suppose that Φ has exactly m locally
stable equilibria a1 � a2 � · · · � am, and for any other possible equilibrium
c, DxΦτ (c) is strongly positive and r(DxΦτ (c)) > 1. Let Bi be the basin of
attraction of ai. Then the following statements are valid:

(i) For each 1 ≤ i ≤ m − 1, ∂+Bi = ∂−Bi+1 is an unordered and positively
invariant one-codimensional Lipschitz manifold in the order norm | · |v,
and furthermore, C1-manifold if Φτ is compact;

(ii) X+ = ∪m
i=1Bi

⋃
∪m−1
i=1 ∂+Bi.
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Proof. Suppose, by contradiction, that ∂+Bi �= ∂−Bi+1 for some 1 ≤ i ≤
m− 1. Since ai < ai+1, ∂−Bi+1 is above ∂+Bi in the sense that if there is a
point x ∈ ∂+Bi but x /∈ ∂−Bi+1, then there exists a point y ∈ ∂−Bi+1 with
y > x. By the strong monotonicity of Φ and the positive invariance of ∂+Bi

and ∂−Bi+1, it follows that for any τ > 0, Φτ (x) � Φτ (y), Φτ (x) ∈ ∂+Bi and
Φτ (y) ∈ ∂−Bi+1. Without loss of generality, we may assume that x ∈ ∂+Bi

and y ∈ ∂−Bi+1 with x � y. Note that the generic convergence theorem
[330] still holds under our assumptions on Φ. By the definition of upper and
lower boundary points, it is easy to see that ai � ω(x), ω(y) � ai+1. By
generic convergence, we choose w � x and z � y with w and z sufficiently
close to x and y, respectively, so that ω(w) = {a} and ω(z) = {b} with
a ≤ b. Clearly, ai � a ≤ b � ai+1. We claim that a must be equal to b.
Otherwise, since ρ(a) := r(DxΦτ (a)) > 1, there is an orbit originating from
a such that it strictly increasingly converges to another equilibrium e ≤ b.
Then ρ(e) := r(DxΦτ (e)) ≤ 1. But ai � a � e ≤ b� ai+1, contradicting the
assumption that ρ(e) > 1. Thus, a = b attracts the open order interval [[w, z]],
which is impossible by the theory of center-stable manifolds(see the proof of
Theorem 2.5.1). Consequently, we have ∂+Bi = ∂−Bi+1, ∀1 ≤ i ≤ m− 1. By
Proposition 2.5.1, each ∂+Bi is a one-dimensional Lipschitz manifold in the
order norm | · |v. If Φτ is compact, the C1-smoothness of ∂+Bi follows from
Teres̆c̆ák [360]. This proves statement (i). Since ∂+Bi = ∂−Bi+1 separates the
adjacent basins of attraction Bi and Bi+1, it is easy to see that statement (ii)
holds.

In the rest of this section, we consider the generalized saddle point behavior
for two-species competitive systems on ordered Banach spaces.

Let X1 and X2 be ordered Banach spaces with positive cones X+
1 and X+

2

having nonempty interiors. Let the order in both spaces be denoted by “≤”.
Let X+ := X+

1 × X+
2 . Clearly, int(X+) = int(X+

1 ) × int(X+
2 ). Define K :=

X+
1 × (−X+

2 ). Then X = X1 ×X2 is an ordered Banach space with positive
cone K. We use ≤K (<K ,�K) to denote the (strict, strong) order induced
by K. Let u �K 0 be fixed. Set C0 = X+

1 \{0} × X+
2 \{0}, C1 = {(x1, 0) :

x1 ∈ X+
1 }, and C2 = {(0, x2) : x2 ∈ X+

2 }. Suppose that Φ := {Φt}t≥0 is
a continuously differentiable semiflow on X+ satisfying (H1)–(H2) and the
following additional assumptions:

(H3) Φt(Ci) ⊂ Ci, ∀t ≥ 0, 0 ≤ i ≤ 2; Φ is strictly K-monotone on X+,
strongly K-order-preserving on C0, and SOP on Ci with respect to the
order induced by X+

i , ∀i = 1, 2;
(H4) The set E of all equilibria of Φ in X+ is the union of E0 = (0, 0),

E1 = (x̄1, 0) with x̄1 ∈ int(X1), E2 = (0, x̄2) with x̄2 ∈ int(X2), and a
nonempty set E0 of coexistence equilibria in int(X+); E0 does not at-
tract any point inX+\{E0}, and Ei is locally stable inX

+, ∀i = 1, 2; For
each e ∈ E0, DxΦτ (e) is strongly K-positive, and ρ(e) := r(DxΦτ (e)) >
1 if E0 is not a singleton.
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By an argument similar to that of Theorem 2.5.2, we have the following
result.

Theorem 2.5.4. Assume that the C1-semiflow Φ satisfies (H1)–(H4), and Φτ

is strongly K-monotone in int(X+). Then M = X+\(B1 ∪ B2) ⊂ C0 ∪ {E0}
is an unordered with respect to type-K order and positively invariant Lipschiz
manifold with codimension one in the type-K order norm | · |u. Furthermore,
M is C1 if Φτ is compact.

In order to generalize Theorem 2.5.3 to abstract competitive systems, we
need to replace (H4) with the following assumption:

(H4)′ E = {E0, E1, E2} ∪ Es ∪ Eu, where E0, E1, and E2 are the same as in
(H4), Eu is the set of all strongly K-positive equilibria e with DxΦτ (e)
being strongly K-positive and r(DxΦτ (e)) > 1, and Es = {c1 �K

c2 �K · · · �K cm} consists ofm locally stable equilibria with E1 �K

ci �K E2, ∀1 ≤ i ≤ m.

Set c0 = E1 and cm+1 = E2. Then we have

c0 �K c1 �K c2 �K · · · �K cm �K cm+1.

For each 0 ≤ i ≤ m + 1, let Bi be the basin of attraction of ci, and let
∂+Bi and ∂−Bi be the upper and lower boundaries of Bi in type-K order,
respectively. By an argument similar to that of Theorem 2.5.3, we have the
following result.

Theorem 2.5.5. Assume that the semiflow Φ on X+ satisfies (H1)–(H3) and
(H4)′, and Φ is strongly K-monotone on C0. Then the following statements
hold true:

(i) For each 1 ≤ i ≤ m − 1, ∂+Bi = ∂−Bi+1 is an unordered with respect to
type-K order and positively invariant one-codimensional Lipschitz mani-
fold in the order norm |.|u, and furthermore, C1-manifold if Φτ is compact;

(ii) X+ = ∪m+1
i=0 Bi

⋃
∪m
i=0∂+Bi.

Remark 2.5.1. Smith [319, page 870] conjectured that the set of steady states
in [a1, am] or [c0, cm+1]K is composed of a lattice of alternating bands each
of which consists of unordered steady states of the same stability type. He
also proved that this conjecture is true for some two-dimensional cooperative
and competitive systems (see [321, Theorem 4.8] and [320, Theorem 4.7]).
Theorems 2.5.3 and 2.5.5 above give an affirmative answer to this conjecture
under the condition that all stable steady states are totally ordered. In general,
this additional condition is necessary for Smith’s conjecture to be valid, see
[195, Example 2.1].
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2.6 Exponential Ordering Induced Monotonicity

Reaction–diffusion equations with delayed reaction terms and, more generally,
abstract functional differential equations have been widely used to model the
evolution of a physical system distributed over a spatial domain [408]. In the
celebrated work of Martin and Smith [243, 244], the monotonicity of the semi-
flow generated by an abstract functional differential equation was established,
and the powerful theory of monotone dynamical systems was applied to obtain
some detailed descriptions of the generic dynamics of the semiflow. In order
for the semiflow to be order-preserving with respect to the pointwise ordering
of the phase space, the aforementioned work requires that the nonlinear reac-
tion term satisfy a certain quasi-monotonicity condition, which, in the special
case of a reaction–diffusion equation with delay, requires that the reaction
term be monotone and thus limits the applications in some cases. It is there-
fore natural to ask whether the quasi-monotonicity condition in the work of
Martin and Smith can be relaxed. This question was addressed in Smith and
Thieme [329, 331] for the case of ordinary functional differential equations
(that is, the spatial diffusion is absent), where they established the mono-
tonicity of the semiflow in a restricted but sufficiently large subspace with
a nonstandard exponential ordering. In this section we extend the exponen-
tial ordering and its induced monotonicity to abstract functional differential
equations and delayed reaction–diffusion equations. These results will be used
to obtain threshold dynamics for a nonlocal and delayed reaction–diffusion
population model in Chapter 9.

Let A : Dom(A) → X be the infinitesimal generator of an analytic semi-
group T (t) satisfying T (t)P ⊂ P, ∀t ≥ 0. For convenience, we denote T (t) by
eAt. Let r ≥ 0 be fixed and let C := C([−r, 0], X). For μ ≥ 0, we define

Kμ = {φ ∈ C : φ(s) ≥X 0, ∀s ∈ [−r, 0], and φ(t) ≥X e(A−μI)(t−s)φ(s),

∀0 ≥ t ≥ s ≥ −r}.

Then Kμ is a closed cone in C. Let ≥μ be the partial ordering on C induced
by Kμ. The meaning of ≤μ and ≤X should be clear.

Lemma 2.6.1. Assume that φ ∈ C is differentiable on (−r, 0) and φ(t) ∈
Dom(A), ∀t ∈ (−r, 0). Then φ ≥μ 0 if and only if

φ(−r) ≥X 0, and
dφ(t)

dt
− (A− μI)φ(t) ≥X 0, ∀t ∈ (−r, 0).

Proof. Assume that φ ≥μ 0; that is, φ ∈ Kμ. It then follows that φ(−r) ≥X 0,
and for any t ∈ (−r, 0) and h > 0 with t+ h ∈ [−r, 0],

φ(t+ h)− φ(t)

h
≥X

e(A−μI)hφ(t) − φ(t)

h
.

Since φ is differentiable at t and φ(t) ∈ Dom(A), letting h → 0+ and using
the definition of infinitesimal generators (see, e.g., [272]), we get
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dφ(t)

dt
= lim

h→0+

φ(t+ h)− φ(t)

h
≥X (A− μI)φ(t), ∀t ∈ (−r, 0).

Conversely, assume that φ(−r) ≥X 0 and dφ(t)
dt −(A−μI)φ(t) ≥X 0, ∀t ∈

(−r, 0). Let t ∈ (−r, 0] be fixed. Clearly, the function u(s) := e(A−μI)(t−s)φ(s)
is differentiable for s ∈ (−r, t). By the property of analytic semigroups (see,
e.g., [150, 272]) and the positivity of e(A−μI)(t−s) = e−μ(t−s)eA(t−s), we have

du(s)

ds
= −(A− μI)e(A−μI)(t−s)φ(s) + e(A−μI)(t−s) dφ(s)

ds

= −e(A−μI)(t−s)(A− μI)φ(s) + e(A−μI)(t−s) dφ(s)

ds

= e(A−μI)(t−s)

(
dφ(s)

ds
− (A− μI)φ(s)

)

≥X 0.

Thus we get φ(t) − e(A−μI)(t−s)φ(s) = u(t) − u(s) =
∫ t

s
du(τ)
dτ dτ ≥X 0, ∀s ∈

[−r, t]. This, together with φ(−r) ≥X 0, implies φ ∈ Kμ.

Let σ > 0 and let u : [−r, σ) → X be a continuous map. For each t ∈ [0, σ),
we define ut ∈ C by ut(s) = u(t+ s), ∀s ∈ [−r, 0]. Let D be an open subset of
C. Assume that F : D → X is continuous and satisfies a Lipschitz condition
on each compact subset of D. We consider the abstract functional differential
equation

du(t)

dt
=Au(t) + F (ut), t > 0,

u0 =φ ∈ D.
(2.1)

By the standard theory (see, e.g., [243, 408]), for each φ ∈ D, equation (2.1)
admits a unique mild solution u(t, φ) on its maximal interval [0, σφ). Moreover,
if σφ > r, then u(t, φ) is a classical solution to (2.1) for t ∈ (r, σφ). In order to
get a monotone solution semiflow of (2.1) with respect to ≥μ, we will impose
the following monotonicity condition on F :

(Mμ) μ(ψ(0)− φ(0)) + F (ψ)− F (φ) ≥X 0 for φ, ψ ∈ D with φ ≤μ ψ.

Theorem 2.6.1. Let (Mμ) hold. If φ ≤μ ψ, then ut(φ) ≤μ ut(ψ) for all t ≥ 0
such that both solutions are defined.

Proof. Let v∗ ∈ int(P ) be fixed. For any ε > 0, define Fε(φ) := F (φ)+εv∗ for
φ ∈ D, and let uε(t, ψ) be the unique mild solution of the following equation

du(t)

dt
=Au(t) + Fε(ut), t > 0,

u0 =ψ ∈ D.

(2.2)

Without loss of generality, we assume that u(t, φ) and uε(t, ψ) are both de-
fined on [0,∞) (if not, we replace [0,∞) by the intersection of their maximal
intervals of existence). Let yε(t) := uε(t, ψ)− u(t, φ) and define
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P = {t ∈ [0,∞) : yεt ≥μ 0}.

Clearly, P is closed and 0 ∈ P . We claim that if t0 ∈ P , then there exists
δ0 > 0 such that [t0, t0 + δ0] ⊂ P . Indeed, by the abstract integral forms of
equations (2.1) and (2.2), we have

yε(t) = e(A−μI)(t−s)yε(s) +

∫ t

s

e(A−μI)(t−τ) (2.3)

(F (uετ (ψ)) − F (uτ (φ)) + μ (uε(τ, ψ)− u(τ, φ)) + εv∗) dτ

for all t ≥ s ≥ 0. By the condition uεt0(ψ) ≥μ ut0(φ) and assumption (Mμ), it
then follows that

(F (uεt(ψ))− F (ut(φ)) + μ (uε(t, ψ)− u(t, φ)) + εv∗)|t=t0
≥X εv∗ �X 0.

Thus there exists δ0 > 0 such that

F (uεt(ψ))− F (ut(φ)) + μ (uε(t, ψ)− u(t, φ)) + εv∗ ≥X 0, ∀t ∈ [t0, t0 + δ0].

By the integral equation (2.3) and the positivity of the semigroup e(A−μI)t,
we then get

yε(t) ≥X e(A−μI)(t−s)yε(s), ∀t0 ≤ s ≤ t ≤ t0 + δ0,

which, together with the definition of (Kμ), implies that uεt(ψ) ≥μ ut(φ), ∀t ∈
[t0, t0 + δ0].

Let P1 := {t : [0, t] ⊂ P}. We claim that supP1 = ∞. Assume, by way of
contradiction, that t∗ = supP1 < ∞. Then there is a sequence {tn} ⊂ P1 ⊂ P
such that tn → t∗. Thus the closedness of P implies that t∗ ∈ P . By the
claim in the previous paragraph, [t∗, t∗ + δ∗] ⊂ P for some δ∗ > 0, and
hence t∗ + δ∗ ∈ P1, which contradicts the definition of t∗. It then follows that
[0,∞) ⊂ P , and hence P = [0,∞).

By a standard argument, we have limε→0+ u
ε
t(ψ) = ut(ψ), ∀t ≥ 0. Letting

ε → 0+ in yεt = uεt(ψ) − ut(φ) ≥μ 0, we get ut(ψ) − ut(φ) ≥μ 0, and hence
ut(ψ) ≥μ ut(φ), ∀t ≥ 0.

For simplicity, in the rest of this section we assume that for each φ ∈ C,
equation (2.1) admits a unique mild solution u(t, φ) defined on [0,∞). Then
(2.1) generates a semiflow on C by Φ(t)(φ) = ut(φ), φ ∈ C. Clearly, condition
(Mμ) is sufficient for Φ(t) : C → C to be monotone with respect to ≤μ

in the sense that Φ(t)(φ) ≤μ Φ(t)(ψ) whenever φ ≤μ ψ and t ≥ 0. In some
applications of monotone dynamical systems, however, we need a strong order-
preserving property (see, e.g., [326]). The semiflow Φ(t) : C → C is said
to be strongly order-preserving with respect to ≤μ if it is monotone and if
whenever φ <μ ψ, there exist open subsets U, V of C with φ ∈ U and ψ ∈ V
and t0 > 0 such that Φ(t0)(U) ≤μ Φ(t0)(V ). Next we show that the following
slightly stronger condition than (Mμ) is sufficient for Φ(t) to be strongly order-
preserving:
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(SMμ) μ(ψ(0)− φ(0)) + F (ψ)− F (φ) �X 0 for φ, ψ ∈ C with φ ≤μ ψ and
φ(s) �X ψ(s), ∀s ∈ [−r, 0].

Theorem 2.6.2. Assume that T (t)(P \ {0}) ⊂ int(P ), ∀t > 0, and (SMμ)
holds. Then the solution semiflow Φ(t) is strongly order-preserving on C with
respect to ≤μ.

Proof. Let v∗ ∈ int(P ) be fixed, and define φ∗ ∈ C by

φ∗(t) = e(A−μI)(t+r)v∗, ∀t ∈ [−r, 0].

Then φ∗(s) �X 0, ∀s ∈ [−r, 0], and Lemma 2.6.1 implies that φ∗ ≥μ 0.
For any ψ ∈ C, the sequence of points ψn = ψ + 1

nφ
∗ in C satisfies ψ <μ

ψn+1 <μ ψn, ∀n ≥ 1, and ψn → ψ as n → ∞. By this property and the
continuity of F , it is easy to see that (SMμ) implies (Mμ). Then we conclude
from Theorem 2.6.1 that Φ(t) is monotone on C. Moreover, for each φ ∈ C,
u(t, φ) ∈ Dom(A), ∀t > r. For every φ <μ ψ, the strong positivity of T (t) =
eAt implies that φ(0) <X ψ(0), and hence, in view of ut(φ) ≤μ ut(φ), ∀t ≥ 0,
we have u(t, φ) �X u(t, ψ) for all t > 0. Fix a real number t0 > 2r and
let φ0 <μ ψ0 be given. By condition (SMμ), the continuity of F , and the
compactness of [t0 − r, t0], it then follows that there is a sufficiently small
ε0 > 0 such that

F (ut(ψ
0))− F (ut(φ

0)) + μ
(
u(t, ψ0)− u(t, φ0)

)
≥X ε0v

∗, ∀t ∈ [t0 − r, t0].

Since

lim
(φ,ψ)→(φ0,ψ0)

(u(t0 − r, ψ)− u(t0 − r, φ)) = u(t0 − r, ψ0)− u(t0 − r, φ0) �X 0

and

lim
(φ,ψ)→(φ0,ψ0)

F (ut(ψ)) − F (ut(φ)) + μ (u(t, ψ)− u(t, φ))

= F (ut(ψ
0))− F (ut(φ

0) + μ
(
u(t, ψ0)− u(t, φ0)

)

uniformly for t ∈ [t0 − r, t0], there exist open subsets U, V of C with φ0 ∈ U
and ψ0 ∈ V such that for every φ ∈ U and ψ ∈ V , we have u(t0 − r, ψ) −
u(t0 − r, φ) �X 0 and

d(u(t, ψ)− u(t, φ))

dt
− (A− μI)(u(t, ψ)− u(t, φ))

= F (ut(ψ))− F (ut(φ)) + μ (u(t, ψ)− u(t, φ)) �X 0, ∀t ∈ [t0 − r, t0].

Note that u(t, φ) and u(t, ψ) are both classical solutions for t > r. By
Lemma 2.6.1, we then get ut0(ψ) − ut0(φ) ≥μ 0, ∀ψ ∈ V, φ ∈ U , and hence
ut0(U) ≤μ ut0(V ).
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Note that in the case where X = R and A is the zero operator, ≤μ reduces
to the exponential ordering introduced by Smith and Thieme [329] for scalar
non-quasi-monotone ordinary delay differential equations.

Let (Xi, Pi), 1 ≤ i ≤ n, be ordered Banach spaces with int(Pi) �= ∅,
and let Ai : Dom(Ai) → Xi be the infinitesimal generator of an analytic
semigroup Ti(t) satisfying Ti(t)Pi ⊂ Pi, ∀t ≥ 0. Let X =

∏n
i=1Xi, P =∏n

i=1 Pi, T (t) =
∏n

i=1 Ti(t), A =
∏n

i=1Ai, Dom(A) =
∏n

i=1 Dom(Ai). Then
A : Dom(A) → X is the infinitesimal generator of the analytic semigroup T (t)
defined on the ordered Banach space (X,P ). Let B = (bij) be an n×n matrix
with bij ≥ 0, ∀1 ≤ i �= j ≤ n. Define

KB = {φ ∈ C : φ(s) ≥X 0, ∀s ∈ [−r, 0], and φ(t) ≥X eA(t−s)eB(t−s)φ(s),

∀ 0 ≥ t ≥ s ≥ −r}.

Then KB is a closed cone in C and induces a partial order ≥B on C.

Remark 2.6.1. By an argument similar to that in Theorem 2.6.1, we can prove
that the solution semiflow of (2.1) is monotone with respect to ≤B under the
following monotonicity condition:

(MB) F (ψ)− F (φ) ≥X B(ψ(0)− φ(0)) for φ, ψ ∈ D with φ ≤B ψ.

Clearly, in the case where n = 1 and B = −μ, ≥B reduces to ≥μ. Replac-
ing −μ with B in (SMμ), we get a stronger condition (SMB). By a similar
argument as in Theorem 2.6.2, we should be able to prove that the solution
semiflow of (2.1) is strongly order-preserving with respect to ≤B under (SMB)
and an additional irreducibility assumption. For the details in the special case
where X = R

n and A = 0, we refer to [331].

2.7 Notes

There have been extensive investigations on monotone dynamical systems
(see, e.g., Hess [152], Smith [326] and the references therein). For strongly
monotone continuous-time dynamical systems one has generic convergence:
There is an open and dense subset of the phase space such that any orbit
emanating from it converges to an equilibrium (see Hirsch [160], Polác̆ik [279]
and Smith and Thieme [330]). However, for strongly monotone discrete-time
dynamical systems there is no generic convergence to fixed points; see, e.g.,
Takác̆ [353] and Dancer and Hess [87] for counterexamples in periodic differen-
tial equations, the Poincaré (period) maps of which define strongly monotone
discrete-time dynamical systems. It is well known that for smooth strongly
monotone discrete-time dynamical systems one has generic convergence to
cycles (see Polác̆ik and Teres̆c̆ák [280, 281]).

Theorem 2.1.1 is due to Dancer [84]. Remark 2.1.1 seems to be new. Re-
mark 2.1.3 is due to Hsu, Smith and Waltman [174]. Theorem 2.1.2 is due to
Zhao and Jing [444], which is a generalization of Smith [318, Theorem 2.1].
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Theorem 2.2.1 extends Smith [326, Theorem 2.3.1] on strongly order-
preserving continuous-time semiflows to monotone semiflows. A related result
is Jiang and Yu [193, Theorem 3] on global asymptotic order stability for
monotone maps on a strongly ordered space X with the property that every
nonempty and compact subset has both a greatest lower bound and a least
upper bound in X . Theorem 2.2.2 is due to Zhao [432]. Theorem 2.2.3 seems
to be new and is a variant of Smith [326, Theorem 2.3.2]. In the proof of Theo-
rem 2.2.3, we have used Theorem 1.2.2 for global convergence. Theorem 2.2.4
seems to be new and extends Ogiwara and Matano [265, Theorem 2.4] on
local convergence to global convergence. Takác̆ [355] also investigated conver-
gence to a fixed point for a class of strongly monotone discrete-time dynamical
systems in a strongly ordered Banach space.

Theorems 2.3.1, 2.3.2, and 2.3.3 are due to Hirsch [162]. Condition (C3)
was introduced by Zhao [432, Lemma 1] for uniqueness of positive fixed points.
Lemma 2.3.2 is due to Zhao [432], and Theorem 2.3.4 is a generalization of
[432, Theorem 2.3]. Takác̆ [349] established global convergence for subhomoge-
neous (sublinear) and strongly monotone maps, which is an extension of a re-
sult in Smith [317] concerning monotone and concave maps. Jiang [191] proved
convergence for finite-dimensional monotone and subhomogeneous (sublinear)
discrete-time dynamical systems. This result was generalized by Wang [383]
to the Poincaré maps associated with periodic subhomogeneous and quasi-
monotone reaction–diffusion systems subject to Neumann boundary condi-
tions, and by Wang and Zhao [387] to monotone and subhomogeneous dis-
crete dynamical systems on product Banach spaces. Monotone and strictly
subhomogeneous (sublinear) semiflows generated by cooperative systems of
functional differential equations and quasi-monotone reaction–diffusion sys-
tems with delays were studied by Zhao and Jing [444] and Freedman and
Zhao [124], respectively. Theorems 2.2.2 and 2.3.2 were applied to a nonlocal
reaction–diffusion model by Freedman and Zhao [125]. The part metric was
introduced by Thompson [373]. Krause and Nussbaum [205] proved a limit
set trichotomy for part metric contractive maps on solid and normal cones
in Banach spaces, and made a very interesting observation that a monotone
map with strong subhomogeneity is contractive for the part metric on the
interior of the cone. Takác̆ [354] also utilized the concept of part metric for
convergence in discrete dynamical systems. Theorem 2.3.5 and Remarks 2.3.2
and 2.3.3 are due to Zhao [438]. For global convergence in monotone and
uniformly stable skew-product semiflows, we refer to Jiang and Zhao [194].

Theorem 2.4.1 and Proposition 2.4.1 are due to Hsu, Smith and Waltman
[174]. In the proof of Theorem 2.4.1, we have used Theorem 1.2.2 for global
convergence. The notion of compression was introduced by Hess and Lazer
[154]. Theorem 2.4.2 is a generalization of a result in [154]. In the proof of The-
orem 2.4.2, again we have used Theorem 1.2.2. Smith and Thieme [332] studied
stable coexistence and bistability for competitive continuous-time semiflows
on ordered Banach spaces, and showed that a “thin” separatrix separates the
basins of attraction of the two locally stable single-population steady states
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under the assumption that the coexistence steady state is unique. Wang and
Jiang [384, 385] also obtained some general properties for strongly competi-
tive discrete-time dynamical systems on strongly ordered topological vector
spaces.

Section 2.5 is adapted from Jiang, Liang and Zhao [195], where these
results were also applied to three reaction–diffusion systems modelling man-
environment-man epidemics, single-loop positive feedback, and two-species
competition, respectively. The concepts of upper and lower boundaries, order
decomposition, and d-hypersurface were introduced by Hirsch [159] and well
developed by Takác̆ [350, 351], Wang and Jiang [385], and Liang and Jiang
[224]. Takác̆ [355] also employed the d-hypersurface to study the convergence
for monotone discrete-time dynamical systems and two-species periodic com-
petitive reaction–diffusion systems.

Section 2.6 is taken from Wu and Zhao [411] and was motivated by Smith
and Thieme [329, 331], where a nonstandard positive cone was introduced and
applied to non-quasi-monotone ordinary differential equations and systems
with delays. The exponential ordering was also used earlier by Hadeler and
Tomiuk [140] to show the existence of nontrivial periodic solutions of a class
of scalar difference–differential equations.

The theory of abstract competitive systems has found nontrivial applica-
tions to two-species Lotka–Volterra competition reaction–diffusion systems,
see, e.g., He and Ni [147], Lou, Xiao and Zhou [235], Zhao and Zhou [447]
and the references therein. Hsu and Zhao [172] also gave a complete classi-
fication for the global dynamics of a two-species Lotka–Volterra competition
model with seasonal succession. For abstract competitive systems, Lam and
Munther [210] obtained two sufficient conditions that guarantee, in the ab-
sence of coexistence steady states, the global asymptotic stability of one of
two semitrivial steady states.

The monotone dynamical systems approach to traveling waves and spread-
ing speeds has been well developed for discrete- and continuous-time evolu-
tion systems admitting the comparison principle, we refer to Weinberger [401],
Lui [239], Weinberger [402], Li, Weinberger and Lewis [220], Liang and Zhao
[225, 226], Liang, Yi and Zhao [227], Fang and Zhao [110], Ding and Liang
[97] for the theory of monostable waves and spreading speeds; Fang and Zhao
[111] for the general theory of bistable waves.
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Nonautonomous Semiflows

There are many nonautonomous models that describe the population dynam-
ics in a fluctuating environment. Solutions of these systems can generate
nonautonomous semiflows on phase spaces. The purpose of this chapter is
to develop the theory of nonautonomous semiflows. It is well known that the
existence and stability of periodic solutions of a periodic differential system
are equivalent to those of fixed points of its associated Poincaré map (see,
e.g., [152]). In Section 3.1 we introduce the concept of periodic semiflows and
prove that uniform persistence of a periodic semiflow also reduces to that of
its associated Poincaré map under a general abstract setting. To illustrate the
applications of the theory of monotone discrete dynamical systems to periodic
problems, we then discuss periodic cooperative ordinary differential systems
and scalar parabolic equations. In particular, we establish threshold dynam-
ics in terms of principal multipliers and eigenvalues, and show how to obtain
corresponding results for autonomous cases of these systems. Two practical
examples are also provided.

In Section 3.2 we introduce the concept of asymptotically periodic semi-
flows, and show that the long-time behavior of an asymptotically periodic
semiflow reduces to that of a nonautonomous discrete process that is asymp-
totic to the autonomous semiflow defined by the Poincaré map of the limiting
periodic semiflow. Then we prove that an asymptotically periodic differential
system can give rise to an asymptotically periodic semiflow under appropri-
ate conditions, and discuss global dynamics in asymptotically periodic Kol-
mogorov parabolic equations and a periodic mutualism parabolic system as
an illustrative example.

In Section 3.3 we apply the global attractivity theorem for monotone and
subhomogeneous skew-product semiflows in the previous chapter to almost pe-
riodic cooperative ordinary differential systems, scalar delay differential equa-
tions, and reaction–diffusion equations. The existence and global attractivity
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of positive almost periodic solutions are proved. A threshold dynamics result
is also established in terms of principal spectrum points for almost periodic
parabolic problems.

Section 3.4 is devoted to a discussion of continuous processes on a metric
space. We introduce some basic concepts such as limits sets and chain transi-
tive quasi-invariant sets. Then we generalize the no-cycle theorem on uniform
persistence for autonomous semiflows to processes by a skew-product semiflow
approach. We also prove an equivalence theorem on two types of skew-product
semiflows, which enables one to work directly on a concrete nonautonomous
system rather than its generated continuous process in practice.

In Section 3.5 we study solution maps of a large class of abstract func-
tional differential equations (FDEs). Under appropriate assumptions, we show
that the solution maps of such an equation are α-contractions in the phase
space equipped with an equivalent norm. This result can be applied to the
Poincaré maps of periodic evolution systems with time delay, e.g., time-
delayed reaction–diffusion equations, to obtain the existence of periodic so-
lutions without assuming that the time period is greater than or equals the
time delay.

3.1 Periodic Semiflows

Let X be a complete metric space with metric d, and let ω > 0. A family of
mappings T (t) : X → X, t ≥ 0, is called an ω-periodic semiflow on X if it
satisfies the following properties:

(1) T (0) = I, where I is the identity map on X ;
(2) T (t+ ω) = T (t) ◦ T (ω), ∀t ≥ 0;
(3) T (t)x is continuous in (t, x) ∈ [0,∞)×X .

A point x0 corresponds to an ω-periodic orbit if T (t+ω)x0 = T (t)x0, ∀t ≥
0. For an ω-periodic semiflow, these x0 coincide with the fixed points of its
associated Poincaré map T (ω). The notion of periodic semiflows was moti-
vated by the investigation of periodic problems, since solutions u(t, x) of an ω-
periodic differential system on a suitable phase space X satisfying u(0, x) = x
define an ω-periodic semiflow under appropriate assumptions on existence and
uniqueness of solutions.

3.1.1 Reduction to Poincaré Maps

Let X0 and ∂X0 be open and closed subsets of X , respectively, such that
X0 ∩ ∂X0 = ∅ and X = X0 ∪ ∂X0, and let T (t) : X → X , t ≥ 0, be an ω-
periodic semiflow with T (t)X0 ⊂ X0, ∀t ≥ 0; that is, X0 is positively invariant
for T (t). Note that we do not require ∂X0 to be positively invariant for T (t).
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Definition 3.1.1. A periodic semiflow T (t) is said to be uniformly persistent
with respect to (X0, ∂X0) if there exists η > 0 such that for any x ∈ X0,
lim inft→∞ d(T (t)x, ∂X0) ≥ η.

The following result shows that uniform persistence of a periodic semiflow
T (t) is equivalent to that of its associated discrete semidynamical system {Sn}
defined by S = T (ω).

Theorem 3.1.1. Let T (t) be an ω-periodic semiflow on X with T (t)X0 ⊂
X0, ∀t ≥ 0, and S = T (ω). Assume that S : X → X is asymptotically smooth
and has a global attractor. Then uniform persistence of S with respect to
(X0, ∂X0) implies that of T (t) : X → X. More precisely, S : X0 → X0 admits
a global attractor A0 ⊂ X0, and the compact set A∗

0 = ∪0≤t≤ωT (t)A0 ⊂ X0

attracts every point in X0 for T (t) in the sense that limt→∞ d(T (t)x,A∗
0) = 0

for any x ∈ X0.

Proof. Assume that S : X → X is uniformly persistent with respect to
(X0, ∂X0). Then Theorem 1.3.6 implies that S : X0 → X0 admits a global
attractor A0 ⊂ X0. By the compactness of A0 and the continuity of T (t)x for
x ∈ X uniformly on the compact set [0, ω], it easily follows that for any ε > 0,
there is δ > 0 such that for any x ∈ N(A0, δ), the δ-neighborhood of A0, and
any t ∈ [0, ω], T (t)x ∈ N(T (t)A0, ε), and hence

lim
x→A0

d(T (t)x, T (t)A0) = 0 uniformly for t ∈ [0, ω]. (3.1)

Since A0 is invariant for S (i.e., S(A0) = A0) and T (t) is an ω-periodic
semiflow, A0 = Sn(A0) = T (nω)A0 for all n ≥ 1.

Let x0 ∈ X0 be given. By the global attractivity of A0 in X0, it follows
that

lim
n→∞ d(T (nω)x0, A0) = lim

n→∞ d(Snx0, A0) = 0. (3.2)

For any t ≥ 0, let t = nω+ t′, where n = [t/ω] is the greatest integer less than
or equal to t/ω and t′ ∈ [0, ω). Then

d (T (t)x0, T (t)A0) = d (T (t′)T (nω)x0, T (t′)T (nω)A0)

= d (T (t′)T (nω)x0, T (t′)A0) ,

and hence (3.1) and (3.2) imply that

lim
t→∞ d (T (t)x0, T (t)A0) = 0. (3.3)

By the continuity of T (t)x for (t, x) ∈ [0,∞) × X and the compactness of
[0, ω] × A0, it follows that A∗

0 = ∪0≤t≤ωT (t)A0 is compact. Since T (t)X0 ⊂
X0, ∀t ≥ 0, we have A∗

0 ⊂ X0. In view of the invariance of A0 for S = T (ω),
we further obtain ∪t≥0T (t)A0 = ∪0≤t≤ωT (t)A0 = A∗

0. Consequently, (3.3)
implies limt→∞ d(T (t)x0, A

∗
0) = 0.

By Theorem 3.1.1 above, we can reduce uniform persistence of a given
periodic (autonomous) system of differential equations to that of its associated
Poincaré map (the time ω-map for any fixed ω > 0).
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3.1.2 Monotone Periodic Systems

Let ω > 0 be fixed. We first consider periodic systems of ordinary differential
equations

dx

dt
=F (t, x),

x(0) = x0 ∈ R
n
+,

(3.4)

where x = (x1, . . . , xn) ∈ R
n and R

n
+ = {x ∈ R

n : xi ≥ 0, 1 ≤ i ≤ n}.
We assume that F : R1

+ × R
n
+ → R

n is continuous and ω-periodic in t, and
that all partial derivatives ∂Fi/∂xj, 1 ≤ i, j ≤ n, exist and are continuous on
R

1
+ × R

n
+.

In what follows, we take R
n as an ordered Banach space with its natural

cone Rn
+ and denote the interior of Rn

+ by int(Rn
+). An n×n matrix A is said

to be quasi-positive if its off-diagonal entries are nonnegative. It is irreducible
if viewed as a linear mapping from R

n to R
n, it does not leave invariant any

proper linear subspace spanned by a subset of the standard basis vectors of
R

n. For other equivalent definitions of irreducibility, we refer to [19, 158].
Assume that

(A1) Fi(t, x) ≥ 0 for every x ≥ 0 with xi = 0, t ∈ R
1
+, 1 ≤ i ≤ n;

(A2) ∂Fi

∂xj
≥ 0, i �= j, ∀(t, x) ∈ R

1
+ × R

n
+, and DxF (t, x) = (∂Fi/∂xj)1≤i,j≤n

is irreducible for each t ∈ R
1
+, x ∈ R

n
+.

Then for every x ∈ R
n
+, there exists a unique solution ϕ(t, x) of (3.4) with the

maximal interval of existence I+(x) ⊂ [0,+∞) and ϕ(t, x) ≥ 0, ∀t ∈ I+(x). If
there exists a relatively open and convex subset U of Rn

+ such that for every
x ∈ U, ϕ(t, x) is bounded on I+(x), then I+(x) = +∞. We can define the
Poincaré map S : U → R

n
+ by

S(u) = ϕ(ω, u), ∀u ∈ U.

By a Kamke’s theorem argument, it follows that S : U → R
n
+ is strongly mono-

tone (e.g., see [158, Theorem 1.5]). Now let x(t) be a nonnegative ω-periodic
solution of (3.4) and consider the corresponding linear periodic systems

dz

dt
= DxF (t, x(t))z. (3.5)

By (A2), A(t) := DxF (t, x(t)) is a continuous, ω-periodic, quasi-positive, and
irreducible matrix function. Let I be the n×n identity matrix and let φ(t) be
the fundamental matrix solution of (3.5) with φ(0) = I. By [19, Lemma 2] or
[158, Theorem 1.1], for each t > 0, φ(t) is a matrix with all entries positive, and
hence for each t > 0, φ(t) : Rn → R

n is a compact and strongly positive linear
operator. By the continuity and differentiability of solutions for initial values,
it easily follows that the Poincaré map S associated with (3.4) is defined in a
neighborhood of x0 = x(0) and differentiable at x0, with DS(x0) = φ(ω). The
eigenvalues of φ(ω) are often called the Floquet multipliers of (3.5). Based
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on the Krein–Rutman theorem (or on the Perron-Frobenius theorem in our
present finite-dimensional case), we call ρ = r(φ(ω)) the principal Floquet
multiplier of (3.5).

In what follows, we further impose the following conditions on F :

(A3) For each t ≥ 0, F (t, ·) is strictly subhomogeneous on R
n
+ in the sense

that F (t, αx) > αF (t, x), ∀x � 0, α ∈ (0, 1);
(A4) F (t, 0) ≡ 0, and F (t, x) < DxF (t, 0)x, ∀t ≥ 0, x � 0.

Let A(t), t ≥ 0, be a continuous, quasi-positive, and irreducible matrix
function, and let φ(t, τ), t ≥ τ ≥ 0, be the fundamental matrix solution of
dx/dt = A(t)x with φ(τ, τ) = I. By the proof of [19, Lemma 2] or [158, Theo-
rem 1.1], it follows that for each t > τ, φ(t, τ) : Rn → R

n is a strongly positive
linear operator. By using the variation of constants formula for inhomogeneous
linear ordinary differential equations, one can easily prove that (A3) implies
the strict subhomogeneity of the Poincaré map on R

n
+, and that (A4) implies

S(x) < DS(0)x, ∀x � 0. Thus, we can apply the theory of monotone and
subhomogeneous systems in Chapter 2 to the Poincaré map associated with
(3.4). As an illustration of Theorem 2.3.4, we have the following result.

Theorem 3.1.2. Let (A1),(A2), and (A3) hold. Assume that F (t, 0) ≡ 0 and
that there exists a bounded subset B of Rn

+ such that every solution x(t) of
(3.4) ultimately lies in B. Let ρ be the principal Floquet multiplier of (3.5)
with x(t) ≡ 0.

(a) If ρ ≤ 1, then x(t) ≡ 0 is a globally asymptotically stable periodic solution
of (3.4) with respect to the initial values in R

n
+;

(b) If ρ > 1, then (3.4) has a unique positive ω-periodic solution x(t), and x(t)
is globally asymptotically stable with respect to initial values in R

n
+ \ {0}.

Example 3.1.1. Consider single-loop positive feedback systems in R
n
+ (see [317,

349]):
dx1
dt

= f(xn, t)− α1(t)x1,

dxi
dt

=xi−1 − αi(t)xi, 2 ≤ i ≤ n.

(3.6)

Assume that αi(·) and f(xn, ·) are continuous and ω-periodic in t ∈ [0,∞),
that f(0, t) ≡ 0, f(u, t) ≥ 0, ∂f

∂u (u, t) > 0 is continuous in R
2
+, and that

for each t ≥ 0, f(·, t) is strictly subhomogeneous on R
1
+; that is, for any

t ≥ 0, u > 0, and 0 < α < 1, f(αu, t) > αf(u, t). It is easy to verify that (A1),
(A2), and (A3) are satisfied for (3.6). Set αi := min0≤t≤ω αi(t), ∀1 ≤ i ≤ n.
If we further assume that there exist two positive numbers a and b such that

f(u, t) ≤ au+ b, ∀(u, t) ∈ R
2
+, αi > 0, ∀1 ≤ i ≤ n, and a <

n∏

i=1

αi,
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then the ultimate boundedness of (3.6) follows from that of a nonhomoge-
neous linear system that majorizes (3.6) (for some details, see [317]). Thus,
Theorem 3.1.2 applies to (3.6). A similar result was proved in [317] under the
assumption that f(·, t) is strongly concave.

Let Ω ⊂ R
N (N ≥ 1) be a bounded domain with boundary ∂Ω of class

C2+θ (0 < θ ≤ 1). We then consider periodic scalar parabolic equations

∂u

∂t
+A(t)u = f(x, t, u) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞),

u(·, 0) = u0 in Ω,

(3.7)

where

A(t) = −
N∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

N∑

i=1

ai(x, t)
∂

∂xi
+ a0(x, t)

is uniformly elliptic for each t ∈ [0, ω]; aij(x, t), ai(x, t), 1 ≤ i, j ≤ N , and
f(x, t, u) are ω-periodic in t; Bu = u or Bu = ∂u

∂v + b0(x)u, where
∂
∂v denotes

the differentiation in the direction of the outward normal; and b0(x) ≥ 0. Let
Qω = Ω × [0, ω]. We suppose that

(B1) ajk = akj and ai ∈ Cθ,θ/2(Qω), ∀1 ≤ j, k ≤ N, 0 ≤ i ≤ N , and b0 ∈
C1+θ(∂Ω,R);

(B2) f ∈ C(Qω ×R,R), ∂f
∂u exists, and ∂f

∂u ∈ C(Qω ×R,R) with f(·, ·, u) and
∂f
∂u (·, ·, u) ∈ Cθ,θ/2(Qω,R) uniformly for u in bounded subsets of R.

Let X = Lp(Ω), N < p < ∞, and for β ∈ (1/2+N/(2p), 1], let Xβ be the
fractional power space of X with respect to (A(0), B) (see [150]). Then Xβ is
an ordered Banach space with the order cone X+

β consisting of nonnegative
functions. Moreover,

X1 = W 2,p
B (Ω) :=

{
u ∈ W 2,p(Ω); Bu = 0

}
, Xβ ⊂ C1+λ(Ω),

with continuous inclusion for λ ∈ [0, 2β − 1 − N/p), and X+
β has nonempty

interior. By [152, Section III.20], it follows that for every u0 ∈ Xβ , there
exists a unique regular solution ϕ(t, u0) of (3.7) with the maximal interval
of existence I+(u0) ⊂ [0,∞), and ϕ(t, u0) is globally defined, provided that
there is an L∞-bound on ϕ(t, u0).

Let E = Xβ with β ∈ (1/2 + N/(2p), 1] and assume that there exists
an open subset U of E such that for every u ∈ U, ϕ(t, u) is L∞-bounded
on I+(u). Then I+(u) = +∞. We define the Poincaré map S : U → E by
S(u) = ϕ(ω, u). By an argument similar to that of [152, Proposition 21.2], it
follows that S : U → E is continuous and strongly monotone. Moreover, S
maps any order interval in U to a precompact set in E. Clearly, a fixed point
u0 of S corresponds to an ω-periodic solution ϕ(t, u0) of (3.7).
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Let u(t, x) be an ω-periodic solution of (3.7). Consider the corresponding
linear periodic parabolic equation

∂v

∂t
+A(t)v =

∂f

∂u
(x, t, u(t, x))v,

Bv = 0;

that is,
∂v

∂t
+ A(t)v = 0,

Bv = 0,
(3.8)

where A(x, t)v = A(x, t)v − ∂f
∂u (x, t, u(t, x))v. According to [152, Chapter II],

(3.8) admits an evolution operator U(t, τ), 0 ≤ τ ≤ t ≤ ω, and for any
0 ≤ τ < t ≤ ω, U(t, τ) is a compact and strongly positive operator on E =
Xβ. By [152, Proposition 23.1], the Poincaré map S associated with (3.7) is
defined in a neighborhood of u0 = u(0, ·) and Fréchet differentiable at u0,
with DS(u0) = U(ω, 0). Let r = r(DS(u0)). Then by [152, Proposition 14.4],
μ = − 1

T log(r) is the unique principal eigenvalue of the periodic–parabolic
eigenvalue problem

∂v

∂t
+A(t)v = μv,

Bv = 0,

v ω-periodic.

(3.9)

For various properties and estimates of principal eigenvalues of linear periodic–
parabolic problems, we refer to [152, Sections II.15 and 17] and [188, 187].

In what follows, we further assume that

(B3) f(x, t, 0) ≥ 0, and for every (x, t) ∈ Ω ×R, f(x, t, ·) is subhomogeneous
on I ⊂ [0,∞); that is, f(x, t, αu) ≥ αf(x, t, u) for every α ∈ (0, 1) and
u ∈ I with u > 0; and for at least one (x0, t0) ∈ Ω × R, f(x0, t0, ·) is
strictly subhomogeneous; that is, f(x0, t0, αu) > αf(x0, t0, u) for every
α ∈ (0, 1) and u ∈ I with u > 0.

(B4) f(·, ·, 0) ≡ 0, f(x, t, u) ≤ ∂f(x,t,0)
∂u · u, ∀(x, t) ∈ Ω × R, u > 0, and there

exists (x0, t0) ∈ Ω × R such that f(x0, t0, u) <
∂f(x0,t0,0)

∂u · u, ∀u > 0.

Let V =
{
u ∈ U : u(x) ≥ 0 and u(x) ∈ I, ∀x ∈ Ω

}
. By the strong positiv-

ity of the evolution operator U(t, τ) on E for 0 ≤ τ < t ≤ ω and the variation
of constants formula for inhomogeneous linear evolution equations, it easily
follows that (B3) implies the strict subhomogeneity of the Poincaré map S on
V , and (B4) implies S(u) < DS(0)u, ∀u ∈ V with u � 0. In the case where
f(x, t, 0) ≡ 0, we have DS(0)u = ϕ0(ω, u), ∀u ∈ E, where ϕ0(t, u) = U(t, 0)u
is the regular solution of (3.8) with u(t, x) ≡ 0.

In the case where f(x, t, u) = uF (x, t, u), let μ = μ(A(t), F (x, t, 0)) be the
principal eigenvalue of the periodic parabolic problem
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∂v

∂t
+A(t)v = F (x, t, 0)v + μv,

Bv = 0,

v ω-periodic,

(3.10)

and let v∗(x, t) be a principal (positive) eigenfunction associated with
μ(A(t), F (x, t, 0)). Then we have the following results.

Theorem 3.1.3. Let f(x, t, u) = uF (x, t, u) and let (B1) and (B2) hold.
Assume that

(1) There exists K0 > 0 such that F (x, t, u) < 0, ∀(x, t) ∈ Ω× [0, ω], u ≥ K0;
(2) μ(A(t), F (x, t, 0)) < 0.

Then there exist two positive ω-periodic solutions u1(t) ≤ u2(t) of (3.7) such
that for any solution u(t) of (3.7) with u(0) ∈ X+

β \ {0},

lim
t→∞ distXβ

(u(t), [u1(t), u2(t)]) = 0.

Proof. By assumption (1), every constant K ≥ K0 is a supersolution of
(3.7), and hence for every u0 ∈ X+

β \ {0}, the solution ϕ(t, u0) of (3.7) exists

globally on I+(u0) = [0,∞). Let S : u0 → ϕ(ω, u0) be the associated Poincaré
map. It is easy to see that every possible nonnegative ω-periodic solution
u(t, x) satisfies 0 ≤ u(t, x) < K0. By a standard iteration argument for S,
it follows that for every u0 ∈ E with u0 ≥ 0, there exists N = N(u0) > 0
such that 0 ≤ Sn(u0)(x) ≤ K0, ∀x ∈ Ω, n ≥ N . According to [85, Section 2]
or [152, Section III.21], we may assume, without loss of generality, K0 ∈
E. Consequently, the conclusion of the theorem follows from Theorem 2.1.1
with Remark 2.1.2, and Theorem 2.1.2 with Remark 2.1.5, as applied to S :
[0,K0]E → [0,K0]E .

Theorem 3.1.4. Let f(x, t, u) = uF (x, t, u) and let (B1) and (B2) hold. As-
sume that

(1) For any (x, t) ∈ Ω × [0, ω] and any u > 0, F (x, t, u) ≤ F (x, t, 0), and for
at least one (x0, t0) ∈ Ω× [0, ω] and any u > 0, F (x0, t0, u) < F (x0, t0, 0);

(2) μ(A(t), F (x, t, 0)) ≥ 0.

Then u = 0 is globally asymptotically stable with respect to initial values in
X+

β .

Proof. For each u0 ∈ X+
β , there is positive number k such that u0 ≤ kv∗(·, 0).

By assumption (1) and the comparison theorem of scalar parabolic equations,
it follows that the solution ϕ(t, u0) of (3.7) exists on [0,+∞), and

ϕ(t, u0)(x) ≤ ke−μtv∗(x, t) ≤ kv∗(x, t), ∀t ≥ 0, x ∈ Ω.

In particular, Sn(u0) = ϕ(nω, u0) ⊂ [0, kv∗(·, 0)]E , ∀n ≥ 0. Thus, the pre-
compactness of S([0, kv∗(·, 0)]E) implies that the positive orbit γ+(u0) :=
{Sn(u0) : n ≥ 0} is also precompact in E. Clearly, assumption (1) implies
(B4). Now the conclusion follows from Theorem 2.2.2 with V = X+

β .
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Theorem 3.1.5. Let f(x, t, u) = uF (x, t, u) and let (B1) and (B2) hold. As-
sume that

(1) For each (x, t) ∈ Ω × [0, ω], F (x, t, ·) is decreasing on [0,∞), and for at
least one (x0, t0) ∈ Ω × [0, ω], F (x0, t0, ·) is strictly decreasing on (0,∞);

(2) There exists a positive supersolution V for the periodic boundary value
problem (3.7).

Then the following threshold dynamics hold:

(a) If μ(A(t), F (x, t, 0) ≥ 0, then u = 0 is globally asymptotically stable with
respect to initial values in X+

β ;
(b) If μ(A(t), F (x, t, 0) < 0, then there exists a positive ω-periodic solution

u0(t) of (3.7), and u0(t) is globally asymptotically stable with respect to
initial values in X+

β \ {0}.

Proof. For any ρ ≥ 1, assumption (2) implies that ρV is also a superso-
lution of (3.7). Thus, every solution of (3.7) with nonnegative initial val-
ues exists globally on [0,∞). Obviously, assumption (1) implies (B3) with
I = [0,∞) and hence the strict subhomogeneity of the associated Poincaré
map S : X+

β → X+
β . Without loss of generality, we may assume that

V (0) ∈ E = Xβ (see [85, Section 2] or [152, Chapter III.21]). Then Theo-
rem 2.3.4 with V = [0, ρV (0)]E , ∀ρ ≥ 1, completes the proof.

Now we discuss the case that (3.7) is autonomous, that is, A(x, t) = A(x)
and F (x, t, u) = F (x, u). We distinguish two cases:

(I) a0(x) ≥ 0, with a0(x) �≡ 0 if b0(x) ≡ 0;
(N) a0(x) ≡ 0, b0(x) ≡ 0.

In case (I), we assume m ∈ Cθ(Ω) and m(x) > 0 at some x ∈ Ω. By
[152, Theorem 16.1 and Remark 16.5], it follows that the elliptic eigenvalue
problem

A(x)u = λm(x)u in Ω,

Bu = 0 on ∂Ω,
(3.11)

has a unique positive principal eigenvalue λ1(m). For any ω > 0, let
μ(A,m(x), ω) be the principal eigenvalue of periodic parabolic problem (3.10)
with F (x, t, 0) replaced by m(x). By [152, Section II.15 and Remark 16.5], it
follows that if λ1(m) < 1, then μ(A,m(x), ω) < 0, and if λ1(m) ≥ 1, then
μ(A,m(x), ω) ≥ 0. As a corollary of Theorem 3.1.5, we have the following
result.

Theorem 3.1.6. Let A(x, t) = A(x), f(x, t, u) = uF (x, u) and let (B1), (B2),
and (I) hold. Assume that

(1) F (x, 0) > 0 for some x ∈ Ω;
(2) For any x ∈ Ω, F (x, ·) is decreasing on [0,∞), and for at least one x0 ∈ Ω,

F (x0, ·) is strictly decreasing on (0,∞);
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(3) There exists a positive supersolution V for the corresponding steady state
problem

A(x)u = uF (x, u) in Ω,

Bu = 0 on ∂Ω.
(3.12)

Then the following threshold dynamics hold:

(a) If λ1(F (x, 0)) ≥ 1, then (3.12) has no positive solution in Xβ, and u = 0
is a globally asymptotically stable solution of (3.7) with respect to initial
values in X+

β ;
(b) If λ1(F (x, 0)) < 1, then (3.12) has a unique positive solution u0 in Xβ,

and u = u0 is a globally asymptotically stable solution of (3.7) with respect
to initial values in Xβ \ {0}.

Proof. Let ω > 0 be fixed, and we view autonomous parabolic equation (3.7)
as an ω-periodic one. Then the conclusion (a) follows from Theorem 3.1.5(a).
In the second case, by Theorem 3.1.5(b), (3.7) has a unique positive ω-periodic
solution u0(t, x), and u0(t, x) is globally asymptotically stable in Xβ \ {0}.
For any s > 0, since (3.7) is autonomous, u0(t + s, x) is also an ω-periodic
solution of (3.7). By the uniqueness of the positive ω-periodic solution, we
then get u0(t+s, x) = u0(t, x), ∀t ∈ [0, ω], x ∈ Ω. This implies that u0(t, x) =
u0(0, x), ∀t ∈ [0, ω], x ∈ Ω, and hence u0 is a steady-state-solution of (3.7).

For the case (N), according to [152, Theorem 16.3 and Remark 16.5], we
can also discuss the global asymptotic stability of steady-state-solutions of
the corresponding autonomous equation (3.7) in a similar way.

Example 3.1.2. We consider a reaction–diffusion equation of single population
growth, which is deduced from a competition model in an unstirred chemostat
(see [344, 171]):

∂u

∂t
= d

∂2u

∂x2
+ F (φ(x) − u)u, t > 0, 0 < x < 1,

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, 1) + γu(t, 1) = 0,

u(0, x) = u0(x) with 0 ≤ u0(x) ≤ φ(x), ∀x ∈ (0, 1),

(3.13)

where d > 0, φ(x) = S(0)
(

1+γ
γ − x

)
, 0 < x < 1, S(0) > 0, γ > 0, and F is

the typical Michaelis–Menten–Monod response function

F (s) =
ms

a+ s
, ∀s ≥ 0, with m > 0, a > 0.

In what follows, we consider a more general function F (s) satisfying

F (0) = 0 and F ′(s) > 0, ∀s ≥ 0. (3.14)

Let λ0 = λ0(F (φ(x))) > 0 be the first eigenvalue of
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d
d2v

dx2
+ λF (φ(x))v = 0,

v′(0) = 0, v′(1) + γv(1) = 0.

(3.15)

Then we have the following result.

Proposition 3.1.1. Assume that (3.14) holds. Then we have the following
threshold dynamics:

(a) If λ0(F (φ(x))) ≥ 1, then u = 0 is a globally asymptotically stable steady-
state-solution of (3.13) with respect to nonnegative initial values.

(b) If λ0(F (φ(x))) < 1, then (3.13) has a globally asymptotically stable pos-
itive steady-state-solution u0(x) with u0(x) < φ(x), ∀x ∈ (0, 1), with re-
spect to positive initial values.

Proof. For the use of Theorem 3.1.6, let F̂ (s), s ∈ R, be a continuously
differentiable extension of F (s) on [0,∞) to R satisfying F̂ ′(s) > 0, ∀s ∈ R.
Consider the autonomous parabolic equation

∂u

∂t
= d

∂2u

∂x2
+ F̂ (φ(x) − u)u, t > 0, 0 < x < 1,

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, 1) + γu(t, 1) = 0,

u(0, x) = u0(x) ≥ 0.

(3.16)

LetK0 = S(0)· 1+γ
γ . Then φ(x) ≤ K0, ∀x ∈ (0, 1), and hence F̂ (φ(x)−K0) ≤ 0.

Then Theorem 3.1.6 implies the corresponding conclusion for (3.16). By a
comparison argument, it easily follows that for any 0 ≤ u0(x) ≤ φ(x), the
solution u(t, x) of (3.16) satisfies 0 ≤ u(t, x) ≤ φ(x), ∀t ≥ 0, x ∈ Ω, and hence
the conclusion for (3.13) follows.

3.2 Asymptotically Periodic Semiflows

Let (X, d) be a metric space. A continuous mapping Φ : Δ0 ×X → X, Δ0 =
{(t, s) : 0 ≤ s ≤ t < ∞}, is called a nonautonomous semiflow if Φ satisfies the
following properties:

(i) Φ(s, s, x) = x, ∀s ≥ 0, x ∈ X ;
(ii) Φ(t, s, Φ(s, r, x)) = Φ(t, r, x), ∀t ≥ s ≥ r ≥ 0.

Definition 3.2.1. A nonautonomous semiflow Φ : Δ0 × X → X is called
asymptotically periodic with limit ω-periodic semiflow T (t) : X → X, t ≥ 0, if

Φ(tj + njω, njω, xj) → T (t)x, as j → ∞,

for any three sequences tj → t, nj → ∞, xj → x, with x, xj ∈ X.
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3.2.1 Reduction to Asymptotically Autonomous Processes

Let Φ : Δ0 × X → X be an asymptotically periodic semiflow with limit
ω-periodic semiflow T (t) : X → X , t ≥ 0. Define

S(x) = T (ω)(x), ∀x ∈ X ; Tn(x) = Φ(nω, 0, x), ∀n ∈ N, x ∈ X ;

and
Sn(x) = Φ((n + 1)ω, nω, x), ∀n ∈ N, x ∈ X.

By the properties of nonautonomous semiflows, it then follows that

Tn(x) = Sn−1 ◦ Sn−2 ◦ · · · ◦ S1 ◦ S0(x), ∀n ≥ 1, x ∈ X.

By Definition 3.2.1, it is easy to see that lim(n,x)→(∞,x0) Sn(x) = S(x0). Con-
sequently, Tn : X → X, n ≥ 0, is an asymptotically autonomous discrete
process with limit autonomous discrete semiflow Sn : X → X , n ≥ 0, in the
sense of Definition 1.2.2.

We are now in a position to prove the main result of this subsection.

Theorem 3.2.1. Let Φ : Δ0 × X → X be an asymptotically periodic semi-
flow with limit ω-periodic semiflow T (t) : X → X, t ≥ 0, and Tn(x) =
Φ(nω, 0, x), n ≥ 0, x ∈ X, and S(x) = T (ω)x, x ∈ X. Assume that A0 is a
compact S-invariant subset of X. If for some y ∈ X, limn→∞ d(Tn(y), A0) =
0, then limt→∞ d(Φ(t, 0, y), T (t)A0) = 0.

Proof. We first prove the following claim.

Claim. lim(n,x)→(∞,A0) d(Φ(t+nω, nω, x), T (t)A0) = 0 uniformly for t ∈ [0, ω].
More precisely, for any ε > 0, there exist δ = δ(ε) > 0 and N = N(ε) > 0 such
that for any x ∈ B(A0, δ), n ≥ N , and t ∈ [0, ω], we have Φ(t + nω, nω, x) ∈
B(T (t)A0, ε), where B(A0, δ) = {x : d(x,A0) < δ} is the δ-neighborhood of
A0.

Indeed, let x0 ∈ X be given. For any ε > 0, since T (t)x0 is uniformly contin-
uous for t in the compact set [0, ω], there exists δ0 = δ0(ε) > 0 such that for
any t1, t2 ∈ [0, ω] with |t1 − t2| < δ0,

‖T (t1)x0 − T (t2)x0‖ < ε/2.

For any t0 ∈ [0, ω], by Definition 3.2.1, lim(t,n,x)→(t0,∞,x0) Φ(t + nω, nω, x) =
T (t0)x0, and hence there exist δ = δ(t0, ε) ≤ δ0 and N = N(t0, ε) > 0 such
that for any |t− t0| < δ, n ≥ N , and x ∈ B(x0, δ), we have

‖Φ(t+ nω, nω, x)− T (t0)x0‖ < ε/2.

Let I(t0, δ) = (t0 − δ, t0 + δ). Since ∪t0∈[0,ω]I(t0, δ) ⊇ [0, ω], the compactness
of [0, ω] implies that there exist t1, t2, . . . , tm ∈ [0, ω] such that ∪m

i=1I(xi, δi) ⊇
[0, ω]. Let N∗ = max1≤i≤m{N(ti, ε)}, δ∗ = min1≤i≤m{δi = δ(ti, ε)}. Then for
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any x ∈ B(x0, δ
∗), n ≥ N∗, and t ∈ [0, ω], there exists some 1 ≤ i ≤ m such

that t ∈ I(ti, δi). Since n ≥ N∗ ≥ Ni, ‖x−x0‖ < δ∗ ≤ δi, and |t−ti| < δi ≤ δ0,
we get

‖Φ(t+ nω, nω, x)− T (t)x0‖ ≤ ‖Φ(t+ nω, nω, x)− T (ti)x0‖
+ ‖T (ti)x0 − T (t)x0‖

< ε/2 + ε/2 = ε.

Then

lim
(n,x)→(∞,x0)

(Φ(t + nω, nω, x)− T (t)x0) = 0, uniformly for t ∈ [0, ω].

For any ε > 0 and x0 ∈ A0, there exist δ = δ(ε, x0) > 0 and N = N(ε, x0) > 0
such that for any x ∈ N(x0, δ), n ≥ N , and t ∈ [0, ω],

Φ(t+ nω, nω, x) ∈ B(T (t)x0, ε).

Since A0 ⊆ ∪x0∈A0B(x0, δ/2), by the compactness of A0,there exist
x1, x2, . . . , xk ∈ A0 such that A0 ⊆ ∪k

i=1B(xi, δi/2). Let δ
∗ = min1≤i≤k{δi/2}.

For any z ∈ B(A0, δ
∗), there exists x ∈ A0 such that d(x, z) < δ∗. Then there

exists xi, 1 ≤ i ≤ k, such that x ∈ B(xi, δi/2). Thus

d(z, xi) ≤ d(x, z) + d(x, xi) < δ∗ + δi/2 ≤ δi/2 + δi/2 = δi;

that is, z ∈ N(xi, δi). Then N(A0, δ
∗) ⊆ ∪k

i=1B(xi, δi). Therefore, for any
x ∈ B(A0, δ

∗), n ≥ N∗ = max1≤i≤k{N(ε, xi)}, and t ∈ [0, ω], there exists
some xi, 1 ≤ i ≤ k, such that x ∈ B(xi, δi), and hence n ≥ N∗ ≥ Ni(ε, xi).
Then we have

Φ(t+ nω, nω, x) ∈ B(T (t)xi, ε),

which implies d(Φ(t + nω, nω, x), T (t)A0) < ε, and hence

lim
(n,x)→(∞,A0)

d(Φ(t+ nω, nω, x), T (t)A0) = 0, uniformly for t ∈ [0, ω].

For any t ≥ 0, let t = nω + t′, where n = [t/ω] is the greatest integer less
than or equal to t/ω and t′ ∈ [0, ω). Then Φ(t, 0, y) = Φ(t, nω, Φ(nω, 0, y)),
and by the S-invariance of A0, T (t)A0 = T (t′)T (nω)A0 = T (t′)A0. Since
limn→∞ d(Φ(nω, 0, y), A0) = limn→∞ d(Tn(y), A0) = 0, the claim above im-
plies that

lim
t→∞ d(Φ(t, 0, y), T (t)A0) = lim

t→∞ d(Φ(t′ + nω, nω, Φ(nω, 0, y)), T (t′)A0) = 0.

This completes the proof.

By Theorem 3.2.1, we can reduce the study of asymptotic behavior of an
asymptotically periodic semiflow Φ : Δ0 × X → X with limit ω-periodic
semiflow T (t) : X → X , t ≥ 0, to that of its associated asymptotically
autonomous discrete process Tn : X → X,n ≥ 0, with limit autonomous
discrete semiflow Sn : X → X,n ≥ 0, where S = T (ω) : X → X is the usual
Poincaré map associated with the ω-periodic semiflow T (t) : X → X, t ≥ 0.
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3.2.2 Asymptotically Periodic Systems

In this subsection we show that an asymptotically periodic differential sys-
tem can give rise to an asymptotically periodic semiflow under appropriate
conditions, and give some illustrative examples.

Consider the nonautonomous parabolic systems

∂ui
∂t

+Ai(t)ui = fi(x, t, u1, . . . , um) in Ω × (0,∞),

Biui = 0 on ∂Ω × (0,∞),
(3.17)

where 1 ≤ i ≤ m, Ω ⊂ R
N (N ≥ 1) is a bounded domain with boundary ∂Ω

of class C2+θ (0 < θ ≤ 1),

Ai(t)v = −
N∑

j,k=1

a
(i)
jk (x, t)

∂2v

∂xj∂xk
+

N∑

j=1

a
(i)
j (x, t)

∂v

∂xj
+ a

(i)
0 (x, t)v, 1 ≤ i ≤ m,

are linear uniformly elliptic differential expressions of second order for each t ∈
[0, ω], ω > 0, and Ai(t) are ω-periodic in t, and Biv = v or Biv = ∂v

∂n+b
(i)
0 (x)v,

where ∂
∂n denotes differentiation in the direction of the outward normal n to

∂Ω. We assume that a
(i)
jk = a

(i)
kj , a

(i)
j and a

(i)
0 ∈ Cθ,θ/2(Qω), a

(i)
0 ≥ 0, 1 ≤

j, k ≤ N, 1 ≤ i ≤ m, Qω = Ω × [0, ω], and b
(i)
0 ∈ C1+θ(∂Ω,R), b

(i)
0 ≥ 0, 1 ≤

i ≤ m.
We further impose the following smoothness condition on f = (f1, . . . , fm):

(H) fi ∈ C(Ω×R+×R
m,R), ∂fi

∂uj
exists and ∂fi

∂uj
∈ C(Ω×R+×R

m,R), and for

each T > 0, we have fi(·, ·, u) and ∂fi
∂uj

(·, ·, u) ∈ Cθ,θ/2(QT ,R) uniformly

for u = (u1, . . . , um) in bounded subsets of Rm, 1 ≤ i, j ≤ m.

Let X = Lp(Ω), N < p < ∞, and for β ∈ (1/2 + N/(2p), 1), let Ei =

X
(i)
β , 1 ≤ i ≤ m, be the fractional power space of X with respect to (Ai(0), Bi)

(e.g., see Henry [150]). Then Ei is an ordered Banach space with the order
cone Pi consisting of all nonnegative functions in Ei, and Pi has nonempty
interior int(Pi). Let P =

∏m
i=1 Pi and E =

∏m
i=1Ei. Then (E,P ) is an order

Banach space. By an easy extension of some results in [152, Section III.20] to
systems, it follows that for every u = (u1, . . . , um) ∈ E and every s ≥ 0, there
exists a unique regular solution φ(t, s, u) of (3.17) satisfying φ(s, s, u) = u with
its maximal interval of existence I+(s, u) ⊂ [s,∞), and φ(t, s, u) is globally
defined, provided that there is an L∞-bound on φ(t, s, u).

We assume that each f0
i is ω-periodic in t and satisfies (H). For any u ∈ E,

let φ0(t, s, u) be the unique solution of the following ω-periodic system of
parabolic equations:

∂ui
∂t

+Ai(t)ui = f0
i (x, t, u1, . . . , um) in Ω × (0,∞),

Biui = 0 on ∂Ω × (0,∞),
(3.18)
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with φ0(s, s, u) = u, and let T (t)u = φ0(t, 0, u). Then we have the following
result.

Proposition 3.2.1. Let f = (f1, . . . , fm), f0 = (f0
1 , . . . , f

0
m), ‖u‖E =∑m

i=1 ‖ui‖Ei
, ∀u ∈ E, and |u| =

∑m
i=1 |ui|, ∀u ∈ R

m. Assume that

(1) limt→∞ |f(x, t, u) − f0(x, t, u)| = 0 uniformly for x ∈ Ω and u in any
bounded set of Rm;

(2) Solutions of (3.17) and (3.18) are uniformly bounded in E; that is, for any
r > 0, there exists B = B(r) > 0 such that for any u ∈ E with ‖u‖ ≤ r,
we have ‖φ(t, s, u)‖ ≤ B(r) and ‖φ0(t, s, u)‖ ≤ B(r), ∀t ≥ s ≥ 0.

Then for any given positive integer k and real number r > 0, we have

lim
n→∞ ‖φ(t+ nω, nω, u)− T (t, u)‖E = 0

uniformly for t ∈ [0, kω] and ‖u‖ ≤ r. In particular, for any u ∈ E,
γ+(u) = {φ(nω, 0, u);n ≥ 0} is precompact in E, and φ : Δ0 × E → E is an
asymptotically periodic semiflow with limit periodic semiflow T (t) : E → E,
t ≥ 0.

Proof. For any u ∈ E, the uniform boundedness implies that for any s ≥
0, φ(t, s, u) and φ0(t, s, u) exist globally on [s,∞). Given r > 0, let B =
B(r) be as in assumption (2). Then there exists B1 = B1(B) > 0 such that
‖φ((t, s, u)‖C(Ω) ≤ B1 and ‖φ0((t, s, u)‖C(Ω) ≤ B1 for all t ≥ s ≥ 0 and u ∈ E

with ‖u‖ ≤ r. Let

φ(t, nω, u) = ũ(t) = (ũ1(t), . . . , ũm(t)), ∀t ≥ nω, n ≥ 0,

and
φ0(t, nω, u) = u(t) = (u1(t), . . . , um(t)), ∀t ≥ nω, n ≥ 0.

Let Ui(t, τ) be the evolution operator generated by Ai(t), 1 ≤ i ≤ n (see [152,
II.11]). Then, by the variation of constants formula (see, e.g., [152, III.19]),
we get

ũi(t) = Ui(t, nω)ui +

∫ t

nω

Ui(t, s)fi(·, s, ũ(s))ds

and

ui(t) = Ui(t, nω)ui +

∫ t

nω

Ui(t, s)f
0
i (·, s, u(s))ds, ∀t ∈ [nω, (n+ k)ω].

Let Dm = Ω × [nω, (n+ k)ω]× [0, B1]
m ⊂ R

N × R+ × R
m. Then
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‖ũi(t)− ui(t)‖β ≤
∫ t

nω

‖Ui(t, s)‖0,β ·
∥
∥f0

i (·, s, ũ(s))− f0
i (·, s, u(s))

∥
∥
0
ds

+

∫ t

nω

‖Ui(t, s)‖0,β ·
∥
∥fi(·, s, ũ(s))− f0

i (·, s, ũ(s))
∥
∥
0
ds

≤ c0

∫ t

nω

‖Ui(t, s)‖0,β · ‖ũ(s))− u(s))‖β ds

+

∫ t

nω

‖Ui(t, s)‖0,β ·
∥
∥fi − f0

i

∥
∥
C(Dm,R)

ds.

For a fixed α ∈ (β, 1), using the estimates (see [152, II.11])

‖Ui(t, s)‖0,β ≤ ci(t− s)−α, ∀t > s,

and ∫ t

nω

(t− s)−αds ≤ (kω)1−α

1− α
, ∀nω ≤ s < t ≤ (n+ k)ω,

we have

‖ũ(t)− u(t)‖E =

m∑

i=1

‖ũi(t)− ui(t)‖β

≤ c

∫ t

nω

(t− s)−α ‖ũ(s)− u(s)‖β ds

+ c

∫ t

nω

(t− s)−α ‖f − f0‖C(Dm,Rm) ds,

where c = c(k, r) > 0, and hence, by a version of Gronwall’s inequality (see,
e.g., [152, Lemma 19.4]), we get

‖φ(t, nω, u)− φ0(t, nω, u)‖E = ‖ũ(t)− u(t)‖E ≤ c̄ ‖f − f0‖C(Dm,Rm)

for all t ∈ [nω, (n+ k)ω] and ‖u‖E ≤ r. Since (3.18) is an ω-periodic system,
we have φ0(nω + t, nω, u) = φ0(t, 0, u) = T (t)u. Thus, for any t ∈ [0, kω] and
‖u‖ ≤ r,

‖φ(nω + t, nω, u)− T (t)u‖β = ‖φ(nω + t, nω, u)− φ0(nω + t, nω, u)‖β
≤ c̄ ‖f − f0‖C(Dm,Rm) .

It then follows that

lim
n→∞(φ(nω + t, nω, u)− T (t)u) = 0 (3.19)

uniformly for t ∈ [0, kω] and ‖u‖ ≤ r. For any u ∈ E, let Tn(u) =
φ(nω, 0, u), Sn(u) = φ((n + 1)ω, nω, u), and S(u) = T (ω, u). Then (3.19)
implies that
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lim
n→∞ ‖Sn(u)− S(u)‖E = 0, uniformly for ‖u‖ ≤ r.

For any u ∈ E, by the uniform boundedness of solutions of (3.17), there
exists r > 0 such that ‖φ(t, s, u)‖E ≤ r, ∀t ≥ s ≥ 0. Then ‖Tn(u)‖E =
‖φ(nω, 0, u)‖ ≤ r, n ≥ 0, and hence

lim
n→∞ ‖Tn+1(u)− S(Tn(u))‖E = lim

n→∞ ‖Sn(Tn(u))− S(Tn(u))‖E = 0. (3.20)

Since S is the Poincaré map of the periodic parabolic system (3.18), S :
E → E is continuous and compact (see, e.g., [152, III.21]). Then S(γ+(u)) is
precompact in E, and hence (3.20) implies that γ+(u) = {Tn(u) : n ≥ 0} is
precompact in E.

For any (t0, u0) ∈ R+ × E, let k ∈ N, k > 0, and r > 0 be such that
t0 ∈ [0, kω] and ‖u0‖ < r. For any t ∈ [0, kω] and ‖u‖ ≤ r,

‖φ(t+ nω, nω, u)− T (t0)u0‖E
≤ ‖φ(t+ nω, nω, u)− T (t)u‖E + ‖T (t)u− T (t0)u0)‖E .

By (3.19) and the continuity of T (t)u for (t, u) ∈ R+×E, it then follows that

lim
(t,u,n)→(t0,u0,∞)

‖φ(t+ nω, nω, u)− T (t0)u0‖E = 0.

Thus, φ(t, s, u) : Δ0 ×E → E is asymptotic to the ω-periodic semiflow T (t) :
E → E.

We then consider systems of ordinary differential equations

du

dt
= f(u, t), u ∈ R

m (3.21)

and
du

dt
= f0(u, t), u ∈ R

m. (3.22)

Assume that f(u, t) : Rm × R+ → R
m is continuous and locally Lipschitz

in u, and that f0(u, t) : R
m × R+ → R

m is continuous, ω-periodic in t, and
locally Lipschitz in u uniformly for t ∈ [0, ω]. Let φ(t, s, u) and φ0(t, s, u) be
the unique solutions of (3.21) and (3.22) with φ(s, s, u) = u and φ0(s, s, u) =
u (s ≥ 0), respectively, and let T (t)u = φ0(t, 0, u), t ≥ 0.

By a similar Gronwall’s inequality argument as in Proposition 3.2.1, we
can prove the following result.

Proposition 3.2.2. Assume that

(1) limt→∞ |f(u, t) − f0(u, t)| = 0 uniformly for u in any bounded subset of
R

m;
(2) Solutions of (3.21) and (3.22) are uniformly bounded in R

m.
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Then for any k ∈ N, k > 0, and r > 0,

lim
n→∞ |φ(t + nω, nω, u)− T (t)u| = 0

uniformly for t ∈ [0, kω] and |u| ≤ r, and in particular, φ : Δ0 ×R
m → R

m is
asymptotic to the ω-periodic semiflow T (t) : Rm → R

m, t ≥ 0.

For any m ∈ Cθ, θ2 (Qω), let μ(Ai(t),m(x, t)) be the principal eigenvalue of
the periodic parabolic eigenvalue problem (see [152])

∂v

∂t
+Ai(t)v = m(x, t)v + μv in Ω × R,

Biv = 0 on ∂Ω × R,

v ω-periodic in t.

(3.23)

The following result is useful in the applications of the theory of asymptotically
periodic semiflows to asymptotically periodic parabolic systems.

Proposition 3.2.3. Assume that conditions (1) and (2) of Proposition 3.2.1
with fi = uiGi(x, t, u) and f0

i = uiG
0
i (x, t, u), ∀1 ≤ i ≤ m, hold. Let u∗(t) =

(u∗1(t), . . . , u
∗
m(t)) be a nonnegative ω-periodic solution of (3.17) with u∗k(t) ≡

0 for some 1 ≤ k ≤ m. If μ(Ak(t), G
0
k(x, t, u

∗(t)) < 0, then

W̃ s(u∗(0)) ∩X0 = ∅,

where X0 = {u ∈ P : ui(·) �≡ 0, ∀1 ≤ i ≤ m}, and W̃ s(u∗(0)) is the stable set
of u∗(0) with respect to Tn = φ(nω, 0, ·) : P → P, n ≥ 0.

Proof. Assume, by contradiction, that there exists a u0 ∈ X0 ∩ W̃ s(u∗(0)),
i.e., u0 ∈ X0, and Tn(u0) → u∗(0) as n → ∞. Then u(t) := φ(t, 0, u0) satisfies
u(t) � 0 for all t > 0, and by Theorem 3.2.1, limt→∞ ‖u(t)− u∗(t)‖E = 0.
Thus, limt→∞ ‖u(t)− u∗(t)‖C(Ω) = 0. Then there exists M > 0 such that

‖u(t)‖C(Ω) ≤ M and ‖u∗(t)‖C(Ω) ≤ M , ∀t ≥ 0. Since for all x ∈ Ω and t ≥ 0,

|Gk(x, t, u(t))−G0
k(x, t, u

∗(t))| ≤ |Gk(x, t, u(t)) −G0
k(x, t, u(t))|

+ |G0
k(x, t, u(t))−G0

k(x, t, u
∗(t))|,

it follows that limt→∞ |Gk(x, t, u(t))−G0
k(x, t, u

∗(t))|C(Ω) =0. By [152, Lemma

15.7], we can choose a sufficiently small positive number ε such that μ
(k)
ε =

μ(Ak(t), G
0
k(x, t, u

∗(t)) − ε) < 0. Then there exists N = N(ε) > 0 such
that Gk(x, t, u(t)) ≥ G0

k(x, t, u
∗(t)) − ε, ∀x ∈ Ω, t ≥ Nω. Therefore, uk(t, x)

satisfies

∂uk
∂t

+Ak(t)uk ≥ uk
(
G0

k(x, t, u
∗(t))− ε

)
> uk

(
G0

k(x, t, u
∗(t)) − ε

)
+ μ(k)

ε uk,

for all x ∈ Ω and t ≥ Nω. Let ϕk � 0 be the principal eigenfunction corre-

sponding to μ
(k)
ε ; that is, ϕk satisfies
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∂ϕk

∂t
+Ak(t)ϕk = ϕk(G

0
k(x, t, u

∗(t))− ε) + μ(k)
ε ϕk in Ω × (0,∞),

Bkϕk = 0 on ∂Ω × (0,∞),

ϕk ω-periodic in t.

Since uk(Nω) � 0 in Ek, there exists δ = δ(ε, u0) > 0 such that uk(Nω) ≥
δϕk(Nω, ·) = δϕ(0, ·). By the standard comparison theorem, we then get

uk(t) ≥ δϕk(t, ·), ∀t ≥ Nω.

In particular, uk(nω) ≥ δϕ(0, ·), ∀n ≥ N , which contradicts the assumption
that limn→∞ uk(nω) = 0 in Ek.

As an illustration we discuss the global dynamics of a scalar nonau-
tonomous parabolic Kolmogorov equation

∂u

∂t
+A(t)u = uF (x, t, u) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞),
(3.24)

which is asymptotic to the periodic parabolic equation

∂u

∂t
+A(t)u = uF0(x, t, u) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞),
(3.25)

where A(t), B andΩ satisfy the same conditions as Ai, Bi, andΩ in (3.17); F0

is ω-periodic for some ω > 0; and F and F0 satisfy the smoothness condition
(H). We assume that

(H1) limt→∞ |F (x, t, u) − F0(x, t, u)| = 0 uniformly for x ∈ Ω and u in any
bounded subset of R+, and there exists K > 0 such that F (x, t, u) ≤ 0
for all (x, t) ∈ Ω × R+ and u ≥ K;

(H2) For each (x, t) ∈ Qω , F0(x, t, u) is nonincreasing for u, and for at least
one (x0, t0) ∈ Qω, F0(x0, t0, u) is strictly nonincreasing for u, and there
exists K0 > 0 such that F0(x, t,K0) ≤ 0 for all (x, t) ∈ Qω.

Let (Xβ, ‖·‖β) be the Banach space defined in Section 3.1. For any u ∈ X+
β

and s ≥ 0, let φ(t, s, u) and φ0(t, s, u) be the unique solutions of (3.24) and
(3.25) with φ(s, s, u) = u and φ0(s, s, u) = u, respectively. Then we have the
following threshold-type result.

Theorem 3.2.2. Assume that (H1) and (H2) hold. Then the following state-
ments are valid:

(a) If μ(A(t), F0(x, t, 0)) ≥ 0, then limt→∞ ‖φ(t, 0, u0)‖β = 0, ∀u0 ∈ X+
β ;

(b) If μ(A(t), F0(x, t, 0)) < 0, then limt→∞ ‖φ(t, 0, u0)− u∗(t)‖β = 0, ∀u0 ∈
X+

β \ {0}, where u∗(t) is the unique positive ω-periodic solution of (3.25).
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Proof. By conditions (H1) and (H2), it is easy to see that for any s ≥ 0,
φ(t, s, u) and φ0(t, s, u) exist globally on [s,∞) and are uniformly bounded
in X+

β . Let Tn(u) := φ(nω, 0, u), ∀u ∈ X+
β , n ≥ 0. By Proposition 3.2.1,

it follows that φ(t, s, u) is asymptotic to an ω-periodic semiflow T (t)u =
φ0(t, 0, u), t ≥ 0, in X+

β , and for any u ∈ X+
β , γ+(u) = {Tn(u) : n ≥ 0}

is precompact in X+
β , and hence its omega limit set ω(u) exists. By Theo-

rem 3.2.1, it suffices to prove that limn→∞ Tn(u) = 0 for any u ∈ X+
β in case

(a), and limn→∞ Tn(u) = u∗(0) for any u ∈ X+
β \ {0} in case (b), respectively.

Note that Tn : X+
β → X+

β , n ≥ 0, is an asymptotically autonomous discrete

process with limit discrete semiflow Sn : X+
β → X+

β , n ≥ 0, where S = T (ω)
is the Poincaré map associated with the periodic equation (3.25).

In the case where μ(A(t), F0(x, t, 0)) ≥ 0, Theorem 3.1.5 implies that u = 0
is a globally asymptotically stable fixed point of S, and then W s(0) = X+

β ,

whereW s(0) is the stable set of 0 for S in X+
β . For any u ∈ X+

β , ω(u) is a chain

transitive set for S : X+
β → X+

β (see Lemma 1.2.2). Clearly, ω(u) ∩X+
β �= ∅.

Then Theorem 1.2.1 implies that ω(u) = 0, and hence limn→∞ Tn(u) = 0.
In the case where μ(A(t), F0(x, t, 0)) < 0, Theorem 3.1.5 implies that u =

u∗(0) is a globally asymptotically stable fixed point of S in X+
β \ {0}, and

hence W s(u∗(0)) = X+
β \ {0}, where W s(u∗(0)) is the stable set of u∗(0)

for S. By Proposition 3.2.3, we get W̃ s(0) ∩ (X+
β \ {0}) = ∅. Thus, for any

u ∈ X+
β \ {0}, we have ω(u) ∩ (X+

β \ {0}) �= ∅; that is, ω(u)∩W s(u∗(0)) �= ∅.
By Theorem 1.2.1, it follows that for any u ∈ X+

β \ {0}, ω(u) = u∗(0), and
hence limn→∞ ‖Tn(u)− u∗(0)‖β = 0.

Finally, we apply Theorem 3.2.2 to a periodic mutualism parabolic system.

Example 3.2.1. Consider 2-species periodic mutualism parabolic systems

∂u1
∂t

+A1(t)u1 = u1G1(x, t, u1) in Ω × (0,+∞),

∂u2
∂t

+A2(t)u2 = u2G2(x, t, u1, u2) in Ω × (0,+∞),

B1u1 = B2u2 = 0 on ∂Ω × (0,+∞),

(3.26)

where Ai(t), Bi, and Ω are as in (3.17), and G = (G1, G2) is ω-periodic in t
and satisfies (H) with m = 2 and the following conditions:

(H3) ∂G1

∂u1
< 0, ∀(x, t, u1) ∈ Qω × R+, and there exists K1 > 0 such that

G1(x, t,K1) ≤ 0, ∀(x, t) ∈ Qω;
(H4) ∂G2

∂u1
≥ 0 and ∂G2

∂u2
< 0, ∀(x, t, u1, u2) ∈ Qω × R

2
+, and for each

u1 > 0, there exists K2 = K2(u1) > 0 such that G2(x, t, u1,K2) ≤ 0,
∀(x, t)∈Qω.

Let Ei = X
(i)
β , Ṗi = Pi \ {0}, 1 ≤ i ≤ 2, and let ϕ(t, u) be the unique solution

of (3.26) satisfying ϕ(0, u) = u ∈ P1 × P2. Then we have the following result.
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Proposition 3.2.4. Let (H3) and (H4) hold. Assume that

(H5) μ(A1(t), G1(x, t, 0, 0)) < 0 and μ(A2(t), G2(x, t, u
∗
1(x, t), 0)) < 0, where

u∗1(x, t) is the unique positive ω-periodic solution of the scalar periodic
equation ∂u1

∂t +A1(t)u1 = u1G1(x, t, u1) with B1u1 = 0.

Then for any u ∈ Ṗ1 × Ṗ2, limt→∞ ||ϕ(t, u) − (u∗1(t), u2(t))||E = 0, where
u∗1(t)(x) = u∗1(x, t) and u2(t)(x) = u2(x, t) is the unique positive ω-periodic
solution of the scalar periodic equation ∂u2

∂t +A2(t)u2 = u2G2(x, t, u
∗
1(x, t), u2)

with B2u2 = 0.

Proof. Clearly, the existence and uniqueness of u∗1(t) and u2(t) are guaran-
teed by Theorem 3.1.5. Let X = P1 × P2, X0 = {u = (u1, u2) ∈ X : ui(·) �≡
0, ∀1 ≤ i ≤ 2}, and ∂X0 = X \ X0. By assumptions (H3) and (H4) and
a standard comparison argument, it easily follows that for any u ∈ X , the
unique solution ϕ(t, u) of (3.26) exists globally on [0,+∞).

By the continuous dependence of μ(A(t),m(x, t)) on m(x, t) ([152, Lemma
15.7]), we can choose a sufficiently small ε0 > 0 such that

μ(A2(t), G2(x, t, u
∗
1(x, t) + ε0, 0) < 0.

For any u ∈ X , let ϕ(t, u)(x) = (u1(x, t), u2(x, t)). By Theorem 3.1.5, together
with E1 ↪→ C(Ω), it follows that there exists T1 > 0 such that u1(x, t) ≤
u∗1(x, t) + ε0 for t ≥ T1. Then u2(x, t) satisfies

∂u2
∂t

+A2(t)u2 ≤ u2G2(x, t, u
∗
1(x, t) + ε0, u2), ∀t ≥ T1.

Let U2(t) be the solution of

∂U2

∂t
+A2(t)U2 = U2G2(x, t, u

∗
1(x, t) + ε0, U2) in Ω × (T1,+∞),

B2U2 = 0 on ∂Ω × (T1,+∞),
(3.27)

with U2(T1) = u2(T1). By the comparison theorem, we get

u2(t) ≤ U2(t), ∀t ≥ T1.

By Theorem 3.1.5, U2(t) converges to the unique positive ω-periodic solution
U∗
2 (t) of (3.27). Then there exists M > 0 such that for any u ∈ X , there is

t0 = t0(u) > 0 such that ϕ(t, u)(x) = (u1(x, t), u2(x, t)) satisfies

0 ≤ ui(x, t) ≤ M, ∀t ≥ t0, x ∈ Ω, 1 ≤ i ≤ 2.

By a standard argument, it follows that there exists B > 0 such that for any
u ∈ X , there is t0 = t0(u) > 0 such that

||ϕ(t, u)||E = ||u1(t)||E1 + ||u2(t)||E2 ≤ B, ∀t ≥ t0.

Consequently, ϕ(t, ·) : X → X is point dissipative.
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For any given u ∈ Ṗ1×Ṗ2, let (u1(x, t), u2(x, t)) = ϕ(t, u)(x). Then u2(x, t)
satisfies the nonautonomous parabolic equation

∂u2
∂t

+A2(t)u2 = u2G2(x, t, u1(x, t), u2) in Ω × (0,+∞),

B2u2 = 0 on ∂Ω × (0,+∞).
(3.28)

Since limt→∞ ‖u1(·, t) − u∗1(·, t)‖E1 = 0, equation (3.28) is asymptotic to the
following periodic equation:

∂u2
∂t

+A2(t)u2 = u2G2(x, t, u
∗
1(x, t), u2) in Ω × (0,+∞),

B2u2 = 0 on ∂Ω × (0,+∞).
(3.29)

Thus, Theorem 3.2.2 (b) implies that limt→∞ ‖u2(·, t)− ū∗2(t)‖E2 = 0.

3.3 Monotone and Subhomogeneous Almost Periodic
Systems

In this section we discuss global dynamics in monotone and subhomogeneous
almost periodic ordinary differential systems, delay differential equations, and
reaction–diffusion equations. We start with some basic definitions.

Let (X, d) be a metric space. A function f ∈ C(R, X) is said to be almost
periodic if for any ε > 0, there exists l = l(ε) > 0 such that every interval
of R of length l contains at least one point of the set T (ε) := {τ ∈ R :
d(f(t + τ), f(t)) < ε, ∀t ∈ R}. Let D ⊂ R

m. A function f ∈ C(R ×D,X) is
said to be uniformly almost periodic in t if f(·, x) is almost periodic for each
x ∈ D, and for any compact set E ⊂ D, f is uniformly continuous on R×E.

A point x ∈ X is said to be an almost periodic point of an autonomous
flow Φ : X × R → X if Φ(x, ·) : R → X is almost periodic. In this case, the
full orbit γ(x) := {Φ(x, t) : t ∈ R} is called an almost periodic orbit of Φ. A
compact minimal flow σ : Y ×R → Y is said to be almost periodic if it admits
an almost periodic orbit that is dense in Y . Note that if σ : Y × R → Y is
a compact, almost periodic minimal flow, then every point in Y is an almost
periodic point of σ (see [303, Lemma VI.9]).

First we consider almost periodic ordinary differential systems

du

dt
= f(t, u), t > 0,

u(0) = v ∈ R
n
+,

(3.30)

where u = (u1, . . . , un) ∈ R
n. We assume that

(C1) f(t, u) ∈ C1(R × R
n
+,R

n) is uniformly almost periodic in t, and

∂fi/∂uj ≥ 0, ∀(t, u) ∈ R
n+1
+ , i �= j;
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(C2) f(·, 0) ≡ 0, and for each 1 ≤ i ≤ n, fi(t, u) ≥ 0, ∀(t, u) ∈ R
n+1
+ with

ui = 0;
(C3) The Jacobian matrix Duf(t, u) is irreducible, ∀(t, u) ∈ R

n+1
+ , and f(t, ·)

is strictly subhomogeneous on R
n
+, ∀t ∈ R+.

A simple example for such f(t, u) with n = 2 is the function

(f1(t, u1, u2), f2(t, u1, u2)) :=

(

−a11(t)u1 + a12(t)u2,
m(t)u1

a21(t) + u1
− a22u2

)

,

where aij(t), 1 ≤ i, j ≤ 2, and m(t) are positive almost periodic functions.
The resulting system is a special case of the almost periodic version of an
epidemic model with positive feedback in [55].

Theorem 3.3.1. (Global attractor) Let (C1), (C2), and (C3) hold.
Then each solution u(t, v) of (3.30) exists globally on [0,∞). If (3.30) admits a
bounded solution u(t, v0) = (u1(t, v

0), . . . , un(t, v
0)) such that

lim inft→∞ ui(t, v
0) > 0, ∀1 ≤ i ≤ n, then there exists a unique positive

almost periodic solution u∗(t) of (3.30), and limt→∞ |u(t, v)−u∗(t)| = 0, ∀v ∈
R

n
+ \ {0}.

Proof. Let H(f) be the closure of all time translates of f under the compact
open topology on C(R × R+,R). Define σ(t)g = gt, g ∈ H(f), t ∈ R. Then
σ(t) : H(f) → H(f) is a compact, almost periodic minimal and distal flow
(see [303, Section VI.C]). For each (v, g) ∈ R

n
+ × H(f), let u(t, v, g) be the

unique solution of (3.30) with f replaced by g. Let A(t) = Duf(t, 0). Thus
assumption (C3) implies that f(t, u) ≤ A(t)u, ∀(t, u) ∈ R

n+1
+ . By (C1), (C2),

and the comparison theorem for cooperative systems (see, e.g., [326, Propo-
sition 3.1.1 and Remark 3.1.2]), each u(t, v, g) exists globally on [0,∞) and
u(t, v, g) ≥ 0, ∀t ≥ 0. We define the skew-product semiflow Πt : R

n
+×H(f) →

R
n
+ ×H(f) by Πt(v, g) = (u(t, v, g), gt). By the comparison theorem for irre-

ducible cooperative systems (see, e.g., [326, Theorem 4.1.1]) and the variation
of constants formula for inhomogeneous linear systems, it then follows that
u(t, ·, g) is monotone and subhomogeneous on R

n
+, ∀(t, g) ∈ R+ ×H(f), and

u(t, ·, fs) is strongly monotone and strictly subhomogeneous on R
n
+, ∀t > 0 and

s ≥ 0 (see, e.g., [432, 444]). Thus (A1)′ and (A2)′′ in Remarks 2.3.2 and 2.3.3
hold for the skew-product semiflow Πt on R

n
+×H(f). By our assumption, the

omega limit set ω(v0, f) is compact and ω(v0, f) ⊂ int(Rn
+)×H(f). By The-

orem 2.3.5, Πt : ω(v0, f) → ω(v0, f) extends to a compact, almost periodic
minimal and distal flow, and hence u(t, v∗, f) is almost periodic in t (see [303,
Lemma VI.9]), where (v∗, f) ∈ ω(v0, f). Clearly, u(t, v∗, f) � 0, ∀t ∈ R. By
assumption (C3), it is easy to verify that for each ε ∈ (0, 1), εu(t, v∗, f) and
ε−1u(t, v∗, f) are sub- and super-solutions of (3.30), respectively. Fix t0 > 0.
For any v ∈ R

n
+ \ {0}, since u(t0, v, f) � 0, we can choose a sufficiently

small ε0 ∈ (0, 1) such that ε0u(t0, v
∗, f) ≤ u(t0, v, f) ≤ ε−1

0 u(t0, v
∗, f). By the

comparison theorem, it then follows that
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ε0u(t, v
∗, f) ≤ u(t, v, f) ≤ ε−1

0 u(t, v∗, f), ∀t ≥ t0.

Thus, u(t, v, f) is bounded and ω(v, f) ⊂ int(Rn
+) × H(f). Again by Theo-

rem 2.3.5, we then get limt→∞ |u(t, v, f)− u(t, v∗, f))| = 0.

Remark 3.3.1. The conclusion of Theorem 3.3.1 is valid for all v ∈ int(Rn
+) if

we replace assumption (C3) by the following one:

(C3)′ f(t, ·) is strongly subhomogeneous on R
n
+, ∀t ∈ R+.

Indeed, for any v � 0, [326, Proposition 3.1.1 and Remark 3.1.2] imply that
u(t, v, f) � 0, ∀t ≥ 0. By the variation of constants formula and the fact that

f(t, λu(t, v, f))− λf(t, u(t, v, f)) � 0, ∀t ≥ 0, λ ∈ (0, 1),

it follows that u(t, ·, f) is strongly subhomogeneous on R
n
+ for each t > 0.

Thus, (A1)′ and (A2)′ in Remark 2.3.2 hold for the skew-product semiflow
Πt. Letting t0 = 0 in the proof of Theorem 3.3.1, we then get the same
conclusion for all v ∈ int(Rn

+).

One can easily apply Theorem 3.3.1 and Remark 3.3.1 to the almost peri-
odic versions of general epidemic models with positive feedback in [55], single
species discrete diffusion systems in [237], and periodic single species models
of dispersal in a patchy environment in [119] to get some reasonable conditions
for the existence and global attractivity of positive almost periodic solutions.

Next we consider the almost periodic delay differential equations

du(t)

dt
= f(t, u(t), u(t− τ)), t > 0,

u(s) =φ(s), ∀s ∈ [−τ, 0],
(3.31)

where τ > 0, u ∈ R, and φ ∈ C+ := C([−τ, 0],R+). We assume that

(D1) f(t, u, v) ∈ C1(R × R
2
+,R) is uniformly almost periodic in t, and

f ′
v(t, u, v) ≥ 0, ∀(t, u, v) ∈ R

3
+;

(D2) f(·, 0, 0) ≡ 0, and f(t, 0, v) ≥ 0, ∀(t, v) ∈ R
2
+;

(D3) For each t ∈ R+, f(t, ·) : R2
+ → R is strictly subhomogeneous.

A simple example for such f(t, u, v) is the function α(t)v−β(t)u2, where α(t)
and β(t) are two positive almost periodic functions. The resulting equation
is an almost periodic version of the autonomous equation for a single species
at the mature stage in a time-delay model of single species growth with stage
structure introduced by Aiello and Freedman [4].

Theorem 3.3.2. (Global attractor) Let (D1), (D2), and (D3) hold.
Then each solution u(t, φ) of (3.31) exists globally on [0,∞). If (3.31) ad-
mits a bounded solution u(t, φ0) such that lim inft→∞ u(t, φ0) > 0, then
there exists a unique positive almost periodic solution u∗(t) of (3.31), and
limt→∞ |u(t, φ)− u∗(t)| = 0, ∀φ ∈ C+ with φ(0) > 0.
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Proof. Let H(f) be the closure of all time translates of f under the compact
open topology on C(R × R

2
+,R). Define σ(t)g = gt, g ∈ H(f), t ∈ R. Then

σ(t) : H(f) → H(f) is a compact, almost periodic minimal and distal flow
(see [303, Section VI.C]). For each (φ, g) ∈ C+ × H(f), let u(t, φ, g) be the
unique solution of (3.31) with f replaced by g. Let a(t) = f ′

u(t, 0, 0) and
b(t) = f ′

v(t, 0, 0). Thus assumption (D3) implies that f(t, u, v) ≤ a(t)u+b(t)v,
∀(t, u, v) ∈ R

3
+. By (D1), (D2), the comparison theorem for cooperative delay

differential equations ([326, Theorem 5.1.1]), and the positivity theorem ([326,
Theorem 5.2.1]), each u(t, φ, g) exists globally on [0,∞), and u(t, φ, g) ≥ 0,
∀t ≥ 0. We define the skew-product semiflowΠt : C

+×H(f) → C+×H(f) by
Πt(φ, g) = (ut(φ, g), gt), where ut(φ, g)(s) = u(t+s, φ, g), ∀s ∈ [−τ, 0]. By the
comparison theorem and the variation of constants formula for inhomogeneous
linear systems, it then follows that ut(·, g) is monotone and subhomogeneous
on C+, ∀(t, g) ∈ R+ ×H(f) (see, e.g., [444]). For each φ ∈ C+ with φ(0) > 0,
u(t, φ, f) satisfies the following differential inequality:

du(t)

dt
= f(t, u(t), u(t− τ)) ≥ f(t, u(t), 0), t > 0,

u(0) =φ(0) > 0.

Then the standard comparison theorem implies that u(t, φ, f) > 0, ∀t ≥ 0,
and hence ut(φ, f) � 0, ∀t ≥ τ . We further claim that ut(·, f) is strongly
subhomogeneous on C+, ∀t > τ . Indeed, let φ � 0 and λ ∈ (0, 1) be fixed,
and let w(t) = u(t, λφ, f) − λu(t, φ, f). Then u(t, φ, f) > 0, u(t, λφ, f) > 0,
and w(t) ≥ 0, ∀t ≥ −τ . Let

c(t, s) = su(t, λφ, f) + (1− s)λu(t, φ, f),

ã(t) =

∫ 1

0

f ′
u(t, c(t, s), c(t− τ, s))ds,

b̃(t) =

∫ 1

0

f ′
v(t, c(t, s), c(t− τ, s))ds,

and

h(t) = f(t, λu(t, φ, f), λu(t− τ, φ, f))− λf(t, u(t, φ, f), u(t− τ, φ, f)).

Then b̃(t) ≥ 0 and h(t) > 0, ∀t ≥ 0. It easily follows that w(t) satisfies the
following differential inequality:

dw(t)

dt
= ã(t)w(t) + b̃(t)w(t − τ) + h(t) ≥ ã(t)w(t) + h(t), t > 0,

w(0) =0.

Thus w(t) ≥
∫ t

0
e
∫

t
s
ã(θ)dθh(s)ds > 0, ∀t > 0, and hence

wt = ut(λφ, f) − λut(φ, f) � 0, ∀t > τ.
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Therefore, (A1)′ and (A2)′ in Remark 2.3.2 hold for the skew-product semiflow
Πt on C

+×H(f). By our assumption, the omega limit set ω(φ0, f) is compact
and ω(φ0, f) ⊂ int(C+)×H(f). By Theorem 2.3.5, Πt : ω(φ

0, f) → ω(φ0, f)
extends to a compact, almost periodic minimal and distal flow, and hence
ut(φ

∗, f) is almost periodic in t (see [303, Lemma VI.9]), where (φ∗, f) ∈
ω(φ0, f). Clearly, u(t, φ∗, f) > 0, ∀t ∈ R. By assumption (D3), it is easy to
verify that for each ε ∈ (0, 1), εu(t, φ∗, f) and ε−1u(t, φ∗, f) are sub- and
super-solutions of (3.31), respectively. Fix a t0 ≥ τ . For any φ ∈ C+ with
φ(0) > 0, since ut0(φ, f) � 0, we can choose a sufficiently small ε0 ∈ (0, 1)
such that

ε0u(s, φ
∗, f) ≤ u(s, φ, f) ≤ ε−1

0 u(s, φ∗, f), ∀s ∈ [t0 − τ, t0].

By the comparison theorem ([326, Theorem 5.1.1]), it then follows that

ε0u(t, φ
∗, f) ≤ u(t, φ, f) ≤ ε−1

0 u(t, φ∗, f), ∀t ≥ t0.

Thus u(t, φ, f) is bounded, and ω(φ, f) ⊂ int(C+) × H(f). Again by Theo-
rem 2.3.5, we then get limt→∞ ‖ut(φ, f)− ut(φ

∗, f))‖ = 0.

Let the integer N > 0 and the real number θ > 0 be fixed. Let Ω be
a bounded and open subset of RN with ∂Ω ∈ C2+θ. We use ∂

∂n to denote
differentiation in the direction of the outward normal n to ∂Ω, andΔ to denote
the Laplacian operator on R

N . Let d(·) ∈ C(R,R) be an almost periodic
function bounded below by a positive real number, letm(·) ∈ Cθ,θ/2(Ω×R,R)
be such that m(x, t) is uniformly almost periodic in t, and let H(d,m) be
the closure of {(ds,ms) : s ∈ R} under the compact open topology, where
(ds,ms) ∈ C(R,R)× C(Ω × R,R) is defined by

ds(t) = d(s+ t), ms(x, t) = m(x, t+ s), ∀x ∈ Ω, t ∈ R.

According to [188], there exists a unique principal spectrum point λ(d(·),m(·))
associated with the linear almost periodic parabolic problem

∂v

∂t
= d(t)Δv +m(x, t)v, x ∈ Ω, t ∈ R,

Bv = 0, x ∈ ∂Ω, t ∈ R,
(3.32)

where either Bv = v or Bv = ∂v
∂n + αv for some nonnegative function α ∈

C1+θ(∂Ω,R). Moreover, for each (μ, k) ∈ H(d,m), there exists an almost
periodic function a(t;μ, k) such that

λ(d,m) = lim
t→∞

1

t

∫ t

0

a(s;μ, k)ds

and the linear almost periodic parabolic problem
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∂ϕ

∂t
= μ(t)Δϕ+ k(x, t)ϕ − a(t;μ, k)ϕ, x ∈ Ω, t ∈ R,

Bϕ = 0, x ∈ ∂Ω, t ∈ R,
(3.33)

admits a positive solution ϕ(x, t;μ, k) that is uniformly almost periodic in t.

It is easy to verify that v = e
∫ t
0
a(s;μ,k)dsϕ(x, t;μ, k) is a solution of (3.32) with

d(t) and m(x, t) replaced by μ(t) and k(x, t), respectively.

Finally, we consider the scalar almost periodic Kolmogorov-type parabolic
equations

∂u

∂t
= d(t)Δu + uf(x, t, u) in Ω × (0,∞)

Bu = 0 on ∂Ω × (0,∞).
(3.34)

We assume that

(E1) d(·) ∈ C(R,R) is almost periodic, and for some d0 > 0, d(t) ≥ d0, ∀t ∈
R;

(E2) f(x, t, u) ∈ C2(Ω × R × R+,R) is uniformly almost periodic in t, and
f ′
u(x, t, u) < 0, ∀(x, t, u) ∈ Ω × R× R+;

(E3) There exists M0 > 0 such that f(x, t,M0) < 0, ∀(x, t) ∈ Ω × R.

A simple example for such f(x, t, u) is the function b(x, t) − a(x, t)u, where
a(x, t) and b(x, t) are uniformly almost periodic in t, and a(x, t) > 0. Then
the resulting equation is the almost periodic logistic reaction–diffusion model.

Let p ∈ (N,∞) be fixed. For each β ∈ (1/2 + N/(2p), 1), let Xβ be the
fractional power space of X = Lp(Ω) with respect to (−Δ,B) (see, e.g.,
[150]). Then Xβ is an ordered Banach space with the cone X+

β consisting

of all nonnegative functions in Xβ , and X+
β has nonempty interior int(X+

β ).

Moreover, Xβ ⊂ C1+ν(Ω) with continuous inclusion for ν ∈ [0, 2β− 1−N/p).
We denote the norm in Xβ by ‖ · ‖β.

Let H(d, f) be the closure of {(ds, fs) : s ∈ R} under the compact open
topology, where (ds, fs) ∈ C(R,R)× C(Ω × R× R+,R) is defined by

ds(t) = d(s+ t), fs(x, t, u) = f(x, t+ s, u), ∀(x, t, u) ∈ Ω × R× R+.

Define σ(t)(μ, g) = (μt, gt), (μ, g) ∈ H(d, f), t ∈ R. Then σ(t) : H(d, f) →
H(d, f) is a compact, almost periodic minimal and distal flow (see [303, Sec-
tion VI.C]).

By the theory of semilinear parabolic differential equations (see, e.g., [152,
Section III.20]), it follows that for every φ ∈ X+

β and (μ, g) ∈ H(d, f), the
parabolic problem

∂u

∂t
= μ(t)Δu+ ug(x, t, u) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞),

u(·, 0) = φ,

(3.35)
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has a unique regular solution u(x, t, φ, μ, g) with the maximal interval of exis-
tence I(φ, μ, g) ⊂ [0,∞), and I(φ, μ, g) = [0,∞), provided that u(·, t, φ, μ, g)
has an L∞-bound on I(φ, μ, g).

We are now in a position to prove the following result on the global dy-
namics of (3.34).

Theorem 3.3.3. (Threshold dynamics) Let (E1), (E2), and (E3) hold.
Then the following statements are valid:

(1) If λ(d(·), f(·, ·, 0)) < 0, then limt→∞ ‖u(·, t, φ, d, f)‖β = 0 for every φ ∈
X+

β ;
(2) If λ(d(·), f(·, ·, 0)) > 0, then (3.34) admits a unique positive almost peri-

odic solution u∗(x, t), and limt→∞ ‖u(·, t, φ, d, f)−u∗(·, t)‖β = 0 for every
φ ∈ X+

β \ {0}.

Proof. For any (μ, g) ∈ H(d, f), both (E2) and (E3) imply that u =
M, M ≥ M0, is an upper solution of (3.35), and hence by the compari-
son theorem and a priori estimates of parabolic equations (see, e.g., [152]),
each solution u(x, t, φ, μ, g) exists globally on [0,∞), and for any t0 > 0,
the set {u(·, t, φ, μ, g) : t ≥ t0} is precompact in X+

β . We define the skew-

product semiflow Πt : X+
β × H(d, f) → X+

β × H(d, f) by Πt(φ, μ, g) =

(u(·, t, φ, μ, g), μt, gt). Then for each (φ, μ, g) ∈ X+
β ×H(d, f), the omega limit

set ω(φ, μ, g) of the forward orbit γ+(φ, μ, g) := {Πt(φ, μ, g) : t ≥ 0} is well
defined, compact, and invariant under Πt, t ≥ 0. Moreover, the maximum
principle for parabolic equations implies that

Πt((X
+
β \ {0})×H(d, f)) ⊂ int(X+

β )×H(d, f), ∀t > 0.

In the case that λ(d(·), f(·, ·, 0)) < 0, let ϕ(x, t) and a(t) be the functions
associated with λ(d(·), f(·, ·, 0)) as in (3.33) with μ(·) = d(·) and k = f(·, ·, 0).
Then ϕ(·, t) � 0 in Xβ, ∀t ∈ R, and

lim
t→∞

1

t

∫ t

0

a(s)ds = λ(d(·), f(·, ·, 0)) < 0.

Clearly, u(x, t, φ, d, f) satisfies the following differential inequality:

∂u

∂t
≤ d(t)Δu+ uf(x, t, 0) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞).
(3.36)

For any φ(·) ∈ X+
β , there exists a sufficiently large η > 0 such that φ ≤

ηϕ(·, 0). By the comparison theorem, it then follows that

0 ≤ u(x, t, φ, d, f) ≤ ηe
∫ t
0
a(s)dsϕ(x, t), ∀x ∈ Ω, t ≥ 0.

Since ϕ(x, t) is uniformly almost periodic in t and



3.3 Monotone and Subhomogeneous Almost Periodic Systems 105

lim
t→∞ e

∫
t
0
a(s)ds = lim

t→∞

(
e

1
t

∫
t
0
a(s)ds

)t

= 0,

we get limt→∞ u(x, t, φ, d, f) = 0 uniformly for x ∈ Ω. For any (ψ, μ, g) ∈
ω(φ, d, f), there exists a sequence tn → ∞ such that limn→∞Πtn(φ, d, f) =
(ψ, μ, g). Thus limn→∞ ‖u(·, tn, φ, d, f) − ψ‖β = 0. Since Xβ ⊂ C1(Ω) with
continuous inclusion, we have limn→∞ u(x, tn, φ, d, f) = ψ(x) uniformly for
x ∈ Ω. Then ψ(·) ≡ 0, and hence ω(φ, d, f) = {0} × H(d, f), which implies
that limt→∞ ‖u(·, t, φ, d, f)‖β = 0.

In the case that λ(d(·), f(·, ·, 0)) > 0, we first prove the following two
claims.

Claim 1. There exists a δ > 0 such that lim supt→∞ ‖u(·, t, φ, μ, g)‖β ≥
δ, ∀(φ, μ, g) ∈ (X+

β \ {0})×H(d, f).

Indeed, we can choose a sufficiently small ε0 > 0 such that λ(d(·), f(·, ·, 0) −
ε0) > 0. Since f is uniformly almost periodic in t and H(f) is compact, there
exists a δ0 > 0 such that

|g(x, t, u)− g(x, t, 0)| < ε0, ∀x ∈ Ω, t ∈ R, u ∈ [0, δ0], g ∈ H(f).

Since Xβ ⊂ C1(Ω) with continuous inclusion, there is a δ > 0 such that for
any φ ∈ Xβ , ‖φ‖β ≤ δ implies that ‖φ‖∞ ≤ δ0. Suppose for contradiction that
for some (φ, μ, g) ∈ (X+

β \ {0}) × H(d, f), lim supt→∞ ‖u(·, t, φ, μ, g)‖β < δ.
Then there is a t0 > 0 such that ‖u(·, t, φ, μ, g)‖β < δ, ∀t ≥ t0, and hence
‖u(·, t, ψ, γ, h)‖β < δ, ∀t ≥ 0, where (ψ, γ, h) = (u(·, t0, φ, μ, g), μt0 , gt0) ∈
int(X+

β )×H(d, f). By the choice of δ0 and δ, it then follows that u(·, t, ψ, γ, h)
satisfies the following differential inequality:

∂u

∂t
≥ γ(t)Δu+ u (h(x, t, 0)− ε0) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞).
(3.37)

Clearly, (γ, h(·, ·, 0) − ε0) ∈ H(d, f(·, ·, 0) − ε0). Let ϕ̃(x, t) and ã(t) be the
functions associated with λ(d(·), f(·, ·, 0) − ε0) as in (3.33) with μ(·) = γ(·)
and k = h(·, ·, 0)− ε0. Then ϕ̃(·, t) � 0 in Xβ, ∀t ∈ R, and

lim
t→∞

1

t

∫ t

0

ã(s)ds = λ(d(·), f(·, ·, 0) − ε0) > 0.

Choose a sufficiently small ε > 0 such that ψ ≥ εϕ̃(·, 0). By the standard
comparison theorem, we then get

u(x, t, ψ, γ, h) ≥ εe
∫

t
0
ã(s)dsϕ̃(x, t), ∀x ∈ Ω, t ≥ 0.

Since ϕ̃(x, t) is uniformly almost periodic in t, and

lim
t→∞ e

∫ t
0
ã(s)ds = lim

t→∞

(
e

1
t

∫ t
0
ã(s)ds

)t

= ∞,

we get limt→∞ u(x, t, ψ, γ, h) = ∞, ∀x ∈ Ω, a contradiction.
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Claim 2. ω(φ, μ, g) ⊂ int(X+
β )×H(d, f), ∀(φ, μ, g) ∈ (X+

β \ {0})×H(d, f).

In fact, let A = {0} × H(d, f). It is easy to see that Claim 1 above implies
that A is an isolated invariant set of Πt and ω(φ, μ, g) �⊂ A, and hence the
Butler–McGehee lemma (see, e.g., [45, 105] or Lemma 1.2.7) implies that

ω(φ, μ, g) ∩A = ∅, ∀(φ, μ, g) ∈ (X+
β \ {0})×H(d, f).

Then Claim 2 follows from the invariance of ω(φ, μ, g) and the fact that
Πt((X

+
β \ {0})×H(d, f)) ⊂ int(X+

β )×H(d, f), ∀t > 0.

Let u(φ, μ, g, t) := u(·, t, φ, μ, g), t ≥ 0. By the standard comparison theorem,
it then follows that u(·, μ, g, t) is strongly monotone on X+

β for each (μ, g, t) ∈
H(d, f)×(0,∞). It is easy to see that (E2) implies that the function uf(x, t, u)
is strictly subhomogeneous in u, and hence each function ug(x, t, u), g ∈ H(f),
is subhomogeneous in u for any fixed (x, t) ∈ Ω×R+. By the integral version
of parabolic equation (3.35) (see, e.g., [152, 162, 432]), it then follows that
u(·, μ, g, t) is subhomogeneous on X+

β for each (μ, g, t) ∈ H(d, f) × R+, and

u(·, d, f, t) is strictly subhomogeneous on X+
β for each t > 0. Thus (A1)′

and (A2)′′ in Remarks 2.3.2 and 2.3.3 hold for the skew-product semiflow
Πt on X+

β × H(d, f). Let φ0 ∈ X+
β \ {0} be fixed and let K0 = ω(φ0, d, f).

By Theorem 2.3.5 and Remarks 2.3.2–2.3.3, together with Claim 2 above, it
follows that for every φ ∈ X+

β \{0}, limt→∞ ‖u(·, t, φ, d, f)−u(·, t, φ∗, d, f)‖β =
0, where (φ∗, d, f) ∈ K0. Since Πt : K0 → K0 is an almost periodic minimal
flow,Πt(φ

∗, d, f) = (u(·, t, φ∗, f), dt, ft) is an almost periodic motion (see [303,
Lemma VI.9]). Therefore, u(·, t, φ∗, d, f) is a unique positive almost periodic
solution of (3.34).

The global attractivity of a unique positive almost periodic solution of
(3.34) with d(t) ≡ 1 and Bu = ∂u

∂n is proved in [312, Theorem 4.1] under
the assumption that there is a positive solution u0(x, t) of (3.34) such that
inft∈R+ ‖u0(·, t)‖β > 0. In this case, εu0(x, t) is a subsolution of (3.34) for each
ε ∈ (0, 1). By the standard parabolic comparison theorem and the invariance
of omega limit sets, it then easily follows that ω(φ, d, f) ⊂ int(X+

β )×H(d, f)

for each φ ∈ X+
β \ {0}, and hence the global attractivity of a unique positive

almost periodic solution of (3.34) follows from Theorem 2.3.5.

In the case that f(x, t, u) ≡ f(t, u) and Bu = ∂u
∂n , it is easy to see that

λ(d(·), f(·, 0)) = limt→∞ 1
t

∫ t

0
f(s, 0)ds. Clearly, each solution of du

dt = uf(t, u)
is also a solution of (3.34). By the global attractivity of u∗(x, t), it follows
that u∗(x, t) is independent of the spatial variable x ∈ Ω. Then Theorem 3.3.3
implies a threshold result for the almost periodic ordinary differential equation
du
dt = uf(t, u).

In the case that d(t) and f(x, t, u) are ω-periodic in t, the conclusion in
Theorem 3.3.3(2) implies that the periodic system (3.34) is uniformly persis-
tent. By Theorem 1.3.8, as applied to the Poincaré map associated with the
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ω-periodic system (3.34), it then follows that there exists a positive ω-periodic
solution of (3.34), and hence by the uniqueness of positive almost periodic so-
lutions, u∗(x, t) is ω-periodic in t. Therefore, Theorem 3.3.3 is a generalization
of Theorem 3.1.5 (see also [432, Theorems 3.2 and 3.3]).

3.4 Continuous Processes

Let X be a metric space with metric d. A process on X is a continuous map
u : R+ × R×X → X such that

u(0, s, x) = x, u(t, r+ s, u(r, s, x)) = u(t+ r, s, x), ∀t ≥ 0, r ≥ 0, s ∈ R, x ∈ X.

A process u is said to be autonomous if u(t, s, x) is independent of s; that is,
u(t, 0, x) = u(t, s, x), ∀t ≥ 0, s ∈ R, x ∈ X . Then u(t, 0, ·) is an autonomous
semiflow on X .

Let Δ := {(t, s) ∈ R
2 : −∞ < s ≤ t < ∞}. A nonautonomous semiflow is

a continuous map Φ : Δ×X → X such that

Φ(s, s, x) = x, Φ(t, r, Φ(r, s, x)) = Φ(t, s, x), ∀t ≥ r ≥ s, s ∈ R, x ∈ X.

For a nonautonomous semiflow Φ on X , define φ by

φ(t, s, x) = Φ(t+ s, s, x), ∀t ≥ 0, s ∈ R, x ∈ X.

It is easy to verify that φ is a process on X . We call it the process associated
with the nonautonomous semiflow Φ.

Let W be the set of all processes on X . For u ∈ W , define the translation
σ(τ), τ ∈ R, of the process as

(σ(τ)u)(t, s, x) = u(t, τ + s, x).

Throughout this section we let φ be a given process on X and assume that

(A) There is a subset V of W and a metric ρ on V such that the set γ+σ (φ) :=
{σ(t)φ : t ≥ 0} ⊂ V has compact closure H(φ) ⊂ V , and the map
π : R+ ×X ×H(φ) → X ×H(φ), defined by

π(t, x, u) = (u(t, 0, x), σ(t)u),

is continuous.

Clearly, the continuity of π implies that if un → u in H(φ) as n → ∞, then
un(t, 0, x) → u(t, 0, x) in X for any (t, x) ∈ R

+×X . Under assumption (A), it
is also easy to verify that π(t) : X×H(φ) → X×H(φ) and σ(t) : H(φ) → H(φ)
are C0-semiflows (see, e.g., [141, Section 3.7]). The semiflow π(t) is called the
skew-product semiflow of the process φ, and H(φ) is called the hull of φ. Let
ωσ(φ) be the omega limit set of φ for the autonomous semiflow σ(t) : H(φ) →
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H(φ). Clearly, ωσ(φ) is a nonempty, compact, and invariant set for σ(t). If
ωσ(φ) = {u} for some autonomous process u, we call φ an asymptotically
autonomous process. In what follows we will use PX to denote the projection
map of X ×H(φ) onto X , defined by PX(x, u) = x, ∀(x, u) ∈ X ×H(φ).

For any x ∈ X , the positive orbit γ+u (x) for a process u is defined as
γ+u (x) := {u(t, 0, x) : t ≥ 0}. The omega limit set of x is defined in the usual
way as ωu(x) := {y ∈ X : u(tn, 0, x) → y for some tn → ∞}. A negative
orbit through x for u is a function g : R− → X such that g(0) = x and for
any s ≤ 0, u(t, s, g(s)) = g(t + s) for t ∈ [0,−s]. For a given negative orbit
γ−u (x) := {g(t) : t ≤ 0} we define its alpha limit set as αu(x) := {y ∈ X :
g(tn) → y for some tn → −∞}. We further define u(t, 0, x) := g(t), ∀t ≤ 0,
and call the set {u(t, 0, x) : t ∈ R} a full orbit through x.

Definition 3.4.1. A subset M ⊂ X is said to be quasi-invariant for φ if for
every x ∈ M there exist u ∈ ωσ(φ) and a full orbit through x for u such
that u(t, 0, x) ∈ M for all t ∈ R. A nonempty quasi-invariant set A ⊂ X
for φ is said to be internally chain transitive if for every a, b ∈ A and ev-
ery ε > 0, t0 > 0, there is a finite sequence {x1 = a, x2, . . . , xm−1, xm =
b;u1, . . . , um; t1, . . . , tm−1} with xi ∈ A, ui ∈ ωσ(φ), and ti ≥ t0 such
that ui(t, 0, xi) ∈ A, ∀t ∈ R, 1 ≤ i ≤ m, d(ui(ti, 0, xi), xi+1) < ε, and
d(σ(ti)ui, ui+1) < ε, ∀1 ≤ i ≤ m− 1.

Lemma 3.4.1. The omega (alpha) limit set of any precompact positive (neg-
ative) orbit of a process φ on X is nonempty, compact, quasi-invariant, and
internally chain transitive for φ.

Proof. Let γ+(x) := {φ(t, 0, x) : t ∈ R
+} be a precompact positive orbit

through x ∈ X , and let ωφ(x) be its omega limit for φ. Clearly, γ+(x, φ) :=
{(φ(t, 0, x), σ(t)φ) : t ∈ R

+} is a precompact positive orbit of the autonomous
semiflow π(t) : X×H(φ) → X×H(φ). Then, by Lemma 1.2.1′, its omega limit
set ωπ(x, φ) is nonempty, compact, invariant, and internally chain transitive
for π. It is easy to verify that ωπ(x, φ) ⊂ ωφ(x) × ωσ(φ) and PX(ωπ(x, φ)) =
ωφ(x). It then follows that ωφ(x) is nonempty, compact, and quasi-invariant
for φ. For any two points a, b ∈ ωφ(x), there exist v, w ∈ ωσ(φ) such that
(a, v), (b, w) ∈ ωπ(x, φ). Thus the internal chain transitivity of ωπ(x, φ) for
π implies that ωφ(x) is internally chain transitive for φ. A similar argument
applies to alpha limit sets.

A nonempty quasi-invariant set M for φ is said to be isolated if it is the
maximal invariant set in some neighborhood of itself. For a quasi-invariant
set M of φ, we define

M̃ := {(x, u) : x ∈ M,u ∈ ωσ(φ), u(t, 0, x) ∈ M, ∀t ∈ R}.

Clearly, PX(M̃) = M .

Lemma 3.4.2. If M is a quasi-invariant (and isolated) set in X for φ, then
M̃ is an invariant (and isolated) set in X ×H(φ) for π(t).
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Proof. For any (x, u) ∈ M̃ , the invariance of ωσ(φ) for σ(t) implies that there
is a full orbit σ(t)u, t ∈ R, in ωσ(φ). Then π(t)(x, u) = (u(t, 0, x), σ(t)u),
t ∈ R, is a full orbit of π(t). We further claim that this full orbit is con-
tained in M̃ . For any τ ∈ R, u(τ, 0, x) ∈ M , and (σ(τ)u)(t, 0, u(τ, 0, x)) =
u(t, τ, u(τ, 0, x)) = u(t + τ, 0, x) ∈ M, ∀t ∈ R, and hence, π(τ)(x, u) =
(u(τ, 0, x), σ(τ)u) ∈ M̃, ∀τ ∈ R. Then M̃ is invariant for π. If M is iso-
lated, then there is an open neighborhood U of M such that if there are
x ∈ U and u ∈ σω(φ) such that u admits a full orbit through x in U , then
this full orbit is contained in M . Clearly, U × H(φ) is an open neighbor-
hood of M̃ . Assume that there is (y, v) ∈ U × H(φ) such that a full or-
bit π(t)(y, v) = (v(t, 0, y), σ(t)v) ∈ U × H(φ), ∀t ∈ R. Since ωσ(φ) is the
maximal invariant set for the autonomous semiflow σ(t) in H(φ), we have
σ(t)v ∈ ωσ(φ), ∀t ∈ R. Thus the choice of U implies that v(t, 0, y) ∈ M, ∀t ∈ R.
Then for any given τ ∈ R, we have v(τ, 0, y) ∈ M,σ(τ)v ∈ ωσ(φ), and
(σ(τ)v)(t, 0, v(τ, 0, y)) = v(t, τ, v(τ, 0, y) = v(t + τ, 0, y) ∈ M, ∀t ∈ R. Thus
π(τ)(y, v) ∈ M̃, ∀τ ∈ R; that is, the full orbit π(t)(y, v), t ∈ R, is contained in
M̃ . It follows that M̃ is isolated.

Let A and B be two quasi-invariant sets for φ. The set A is said to be
chained to B, written A → B, if there exist u ∈ ωσ(φ) and a full orbit
γu(x) for u with γu(x) �⊂ A ∪ B such that ωu(x) ⊂ B and αu(x) ⊂ A.
A finite sequence {M1, . . . ,Mk} of quasi-invariant sets is called a chain if
M1 → M2 → . . . → Mk. The chain is called a cycle if Mk = M1.

Definition 3.4.2. Let X0 be an open subset of X and define ∂X0 := X \X0.
A process φ on X, with φ(t, 0, X0) ⊂ X0, ∀t ≥ 0, is said to be uni-
formly persistent with respect to (X0, ∂X0) if there exists η > 0 such that
lim inft→∞ d(φ(t, 0, x), ∂X0) ≥ η for all x ∈ X0. If “inf” in this inequality is
replaced with “sup”, φ is said to be weakly uniformly persistent with respect
to (X0, ∂X0).

Theorem 3.4.1. (Uniform persistence) Let φ be a process on X such that
(A) holds and u(t, 0, X0) ⊂ X0, ∀u ∈ H(φ), t ≥ 0. Assume that

(1) There is a compact set A ⊂ X such that limt→∞ d(u(t, 0, x), A) = 0, ∀x ∈
X, u ∈ ωσ(φ);

(2) There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact,
and quasi-invariant sets for φ in ∂X0 such that each M̃i is isolated in
X × ωσ(φ) for π(t), that no subset of M forms a cycle in ∂X0, and that
for any x ∈ ∂X0 and u ∈ ωσ(φ) with u(t, 0, x) ∈ ∂X0, ∀t ≥ 0, we have
ωu(x) ⊂ Mi for some 1 ≤ i ≤ k;

(3) Every positive orbit for φ is precompact in X, and ωπ(x, φ) �⊂ M̃i, ∀x ∈
X0, 1 ≤ i ≤ k.

Then φ is uniformly persistent with respect to (X0, ∂X0).

Proof. Let Y = X×ωσ(φ), Y0 = X0×ωσ(φ), and ∂Y0 = Y \Y0 = ∂X0×ωσ(φ).
Clearly, π(t)Y ⊂ Y, π(t)Y0 ⊂ Y0, t ≥ 0, the compact set A × ωσ(φ) attracts
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every orbit of π(t) on Y , and M̃i ⊂ Mi × ωσ(φ). It is easy to verify that each
M̃i is a compact subset of Y . By condition (2), each M̃i is an isolated invariant
set of π(t) in ∂Y0, and M̃i is also isolated in Y . We claim that M̃i → M̃j for
π(t) implies Mi → Mj for φ. Indeed, let π(t)(x, u), t ∈ R, be a full orbit of π

through some (x, u) �∈ M̃i ∪ M̃j such that ωπ(x, u) ⊂ M̃j and απ(x, u) ⊂ M̃i.
Since π(t)(x, u) = (u(t, 0, x), σ(t)u) ∈ Y, ∀t ∈ R, we have ωu(x) ⊂ Mj and
αu(x) ⊂ Mi. In particular, u = σ(0)u ∈ ωσ(φ). Thus γu(x) �⊂ Mi ∪ Mj,
and hence Mi → Mj for φ. By condition (2), it then follows that no subset

of M̃i’s forms a cycle for π in ∂Y0. Let M∂ := {(x, u) ∈ ∂Y0 : π(t)(x, u) ∈
∂Y0, ∀t ≥ 0}. We then claim that ∪(x,u)∈M∂

ωπ(x, u) ⊂ ∪k
i=1M̃i. Indeed, for any

(x, u) ∈ M∂, condition (2) implies that ωπ(x, u) ⊂ ωu(x)×ωσ(φ) ⊂ Mi×ωσ(φ)
for some 1 ≤ i ≤ k. For any (y, v) ∈ ωπ(x, u), the invariance of omega limit
sets for the autonomous semiflow π(t) implies that ωπ(x, u) contains a full
orbit π(t)(y, v), t ∈ R. Then v(t, 0, y) ∈ Mi, ∀t ∈ R, and hence (y, v) ∈ M̃i.
Thus ωπ(x, u) ⊂ M̃i. By the continuous-time versions of Theorem 1.3.1 and
Remark 1.3.1, it then follows that there exists η > 0 such that for any compact
internally chain transitive set L for π(t) : Y → Y with L �⊂ M̃i, ∀1 ≤ i ≤
k, we have inf(x,u)∈L d̃((x, u), ∂Y0) > η, where d̃ is the metric on X × V

defined by d̃((y, v), (z, w)) := d(y, z) + ρ(v, w). For every x ∈ X0, the positive
orbit γπ(x, φ) for the autonomous semiflow π(t) : X ×H(φ) → X ×H(φ) is
precompact, and hence its omega limit set ωπ(x, φ) is compact and internally
chain transitive for π(t). Since ωπ(x, φ) ⊂ ωφ(x)× ωσ(φ), we have ωπ(x, φ) ⊂
Y . By condition (3), ωπ(x, φ) �⊂ M̃i for every 1 ≤ i ≤ k. Letting L = ωπ(x, φ),
we get inf(y,u)∈ωπ(x,φ) d̃((y, u), ∂Y0) > η. Then the uniform persistence of φ
follows from the fact that PX(ωπ(x, φ)) = ωφ(x).

In the case that φ is an autonomous process on X , letting V = {φ}, we
then have H(φ) = ωσ(φ) = {φ}. Thus Theorem 3.4.1 is just a restatement of
a well-known no-cycle theorem on uniform persistence for the autonomous
semiflow φ(t, 0, ·)(see [45, 146, 365]). In the case that φ is asymptotic to
an autonomous process u, we have ωσ(φ) = {u}. Then M̃i = Mi × {u}
and π(t) : X × {u} → X × {u} is equivalent to the autonomous semiflow
u(t, 0, ·) : X → X . Thus Theorem 3.4.1 gives a no-cycle theorem on uniform
persistence for asymptotically autonomous processes (and then for asymptot-
ically autonomous semiflows), which is an analogue of [433, Theorem 2.5] on
asymptotically autonomous discrete processes. For related materials, we refer
to [249, 364].

Remark 3.4.1. By the proof of Theorem 3.4.1, the positive number η in the
uniform persistence depends only on the autonomous semiflow π(t) : X ×
ωσ(φ) → X × ωσ(φ). Consequently, η is also uniform for all processes in V
that satisfy the conditions of Theorem 3.4.1 and have the same omega limit
for σ(t).

Remark 3.4.2. Note that if ωπ(x, φ) ⊂ M̃i, then π(t)(x, φ) = (φ(t, 0, x), σ(t)φ)
→ M̃i as t → ∞, and hence φ(t, 0, x) → PX(M̃i) = Mi as t → ∞.
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In particular, let M be the compact and maximal quasi-invariant set for
φ in ∂X0. By Lemma 3.4.2 and Theorem 3.4.1, it then follows that weak
uniform persistence implies uniform persistence for processes (and then for
nonautonomous semiflows).

In the application of Theorem 3.4.1 to a concrete nonautonomous evolu-
tionary system, it is often more convenient to work directly on the system
itself rather than the continuous process associated with the nonautonomous
semiflow generated by the system. The subsequent theorem shows that this
can be done by choosing an equivalent skew-product semiflow associated with
a given nonautonomous system.

Let Z1 and Z2 be two metric spaces and let F be the set of some maps from
R×Z1 to Z2 with the property that g ∈ F implies that σ̃(t)g := g(t+ ·, ·) ∈ F
for any t ∈ R. Let f ∈ F be given, and assume that

(B) There is a metric m on F such that the set {σ̃(t)f : t ≥ 0} has a compact
closureH(f) ⊂ F , and there is a one-to-one map h : H(f) → W such that
σ(t) ◦ h = h ◦ σ̃(t), ∀t ≥ 0, and such that the map π̃ : R+ ×X ×H(f) →
X ×H(f), defined by

π̃(t, x, g) = (h(g)(t, 0, x), σ̃(t)g),

is continuous.

By assumption (B) and the property of processes h(g), g ∈ H(f), it is easy
to verify that π̃(t) : X ×H(f) → X ×H(f) is an autonomous semiflow. Let
IX be the identity map on X . Let V0 = h(H(f)), and for any u, v ∈ V0 define
ρ0(u, v) := m(h−1(u), h−1(v)). Then V0 ⊂ W , (V0, ρ0) is a metric space, and
h : (H(f),m) → (V0, ρ0) is a homeomorphism. We further have the following
result.

Theorem 3.4.2. (Equivalence) Let (B) hold and let φ = h(f). Then
assumption (A) holds for (V0, ρ0), and the skew-product semiflow π(t) on
H(φ) is equivalent to the skew-product semiflow π̃(t) on H(f). More pre-
cisely, the map IX × h : X × H(f) → X × H(φ) is a homeomorphism and
π(t) ◦ (IX × h) = (IX × h) ◦ π̃(t) on X ×H(f) for all t ≥ 0.

Proof. By assumption (B), we have σ(t)φ = σ(t)(h(f)) = h(σ̃(t)f), ∀t ≥ 0.
Then H(φ) exists and is a compact subset of V0. We further claim that V0 :=
h(H(f)) = H(φ). Indeed, for any g ∈ H(f), there is a sequence tn → ∞
such that σ̃(tn)f → g as n → ∞. Since h : H(f) → V0 is continuous, we
have σ(tn)φ = h(σ̃(tn)f) → h(g) as n → ∞, and hence h(g) ∈ H(φ). Thus
h(H(f)) ⊂ H(φ). For any u ∈ H(φ), there is a sequence tn → ∞ such that
σ(tn)φ = h(σ̃(tn)f) → u as n → ∞. By the compactness of H(f), we can
assume that there exists g ∈ H(f) such that σ̃(tn)f → g as n → ∞. Then
h(σ̃(tn)f) → h(g) as n → ∞, and hence u = h(g) ∈ h(H(f)). Thus H(φ) ⊂
h(H(f). By assumption (B), we have σ(t) = h◦σ̃(t)◦h−1 : H(φ) → H(φ), ∀t ≥
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0. It then follows that π(t)(t, x, u) = (u(t, 0, x), σ(t)u) = (h(h−1u)(t, 0, x), h ◦
σ̃(t)(h−1(u))) is continuous in (t, x, u). Thus assumption (A) holds. Clearly,
the map IX × h : X × H(f) → X × H(φ) is a homeomorphism. For any
(x, g) ∈ X ×H(f) and t ≥ 0, we have

π(t) ◦ (IX × h)(x, g) = π(t)(x, h(g))

= (h(g)(t, 0, x), σ(t)(h(g)))

= (h(g)(t, 0, x), h(σ̃(t)g))

= (IX × h)(h(g)(t, 0, x), σ̃(t)g)

= (IX × h) ◦ π̃(t)(x, g).

Then π(t) ◦ (IX × h) = (IX × h) ◦ π̃(t) for all t ≥ 0.

3.5 Abstract Nonautonomous FDEs

In this section, we study the weak compactness of solution maps associ-
ated with a class of abstract nonautonomous functional differential equations
(FDEs). We start with a generalized Arzela–Ascoli theorem.

Generalized Arzela–Ascoli Theorem Let a < b be two real numbers and
X be a complete metric space. Assume that a sequence of functions {fn} in
C([a, b],X ) satisfies the following conditions:

(1) The family {fn(s)}n≥1 is uniformly bounded on [a, b];
(2) For each s ∈ [a, b], the set {fn(s) : n ≥ 1} is precompact in X ;
(3) The family {fn(s)}n≥1 is equi-continuous on [a, b].

Then {fn} has a convergent subsequence in C([a, b],X ), that is, there exists
a subsequence of functions {fnk

(s)} which converges in X uniformly for s ∈
[a, b].

Let τ be a positive real number, X be a Banach space, and C :=
C([−τ, 0], X). For any φ ∈ C, define ‖φ‖ = sup

−τ≤θ≤0
‖φ(θ)‖X . Then (C, ‖ · ‖)

is a Banach space. Let A be the infinitesimal generator of a C0-semigroup
{T (t)}t≥0 on X . Assume that T (t) is compact for each t > 0, and there exists
M > 0 such that ‖T (t)‖ ≤ M for all t ≥ 0.

We consider the abstract nonautonomous functional differential equation

du(t)

dt
= Au(t) + F (t, ut), t > 0,

u0 = φ ∈ C.
(3.38)

Here F : [0,∞)×C → X is continuous and maps bounded sets into bounded
sets, and ut ∈ C is defined by ut(θ) = u(t+ θ), ∀θ ∈ [−τ, 0].
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Theorem 3.5.1. Assume that for each φ ∈ C, equation (3.38) has a unique
solution u(t, φ) on [0,∞), and solutions of (3.38) are uniformly bounded in
the sense that for any bounded subset B0 of C, there exists a bounded subset
B1 = B1(B0) of C such that ut(φ) ∈ B1 for all φ ∈ B0 and t ≥ 0. Then for
any given r > 0, there exists an equivalent norm ‖ · ‖∗r on C such that the
solution maps Q(t) := ut of equation (3.38) satisfy α(Q(t)B) ≤ e−rtα(B) for
any bounded subset B of C and t ≥ 0, where α is the Kuratowski measure of
noncompactness in (C, ‖ · ‖∗r).

Proof. Define ‖x‖∗ = supt≥0 ‖T (t)x‖, ∀x ∈ X . Then ‖x‖ ≤ ‖x‖∗ ≤ M‖x‖,
and hence, ‖x‖∗ is an equivalent norm on X . It is easy to see that

‖T (t)x‖∗ = sup
s≥0

‖T (s)T (t)x‖ = sup
s≥0

‖T (s+ t)x‖ ≤ ‖x‖∗, ∀x ∈ X, t ≥ 0,

which implies that ‖T (t)‖∗ ≤ 1 for all t ≥ 0. Thus, without loss of generality,
we assume that M = 1.

Let r > 0 be given. Note that for each φ ∈ C, the solution u(t, φ) of (3.38)
satisfies the following integral equation

u(t) = T̂ (t)φ(0) +

∫ t

0

T̂ (t− s)F̂ (s, us)ds, t ≥ 0,

u0 = φ ∈ C,

(3.39)

where T̂ (t) = e−rtT (t) and F̂ (t, ϕ) = rϕ(0) + F (t, ϕ), ∀t ≥ 0, ϕ ∈ C. Then
T̂ (t) is also a C0-semigroup on X and ‖T̂ (t)‖ ≤ e−rt, ∀t ≥ 0. Let h(θ) =
e−rθ, ∀ θ ∈ [−τ, 0], and define

‖φ‖∗r = sup
−τ≤θ≤0

‖φ(θ)‖X
h(θ)

, ∀ φ ∈ C.

Then 1
h(−τ)‖φ‖C ≤ ‖φ‖∗r ≤ ‖φ‖C , and hence ‖ · ‖∗r is equivalent to ‖ · ‖C .

Clearly, ‖φ(0)‖X ≤ ‖φ‖∗r , ∀φ ∈ C. Define

(L(t)φ)(θ) =

{
T̂ (t+ θ)φ(0), t+ θ > 0,
φ(t+ θ), t+ θ ≤ 0,

and

(Q̄(t)φ)(θ) =

{∫ t+θ

0
T̂ (t+ θ − s)F̂ (s, us(φ))ds, t+ θ > 0,

0, t+ θ ≤ 0.

Thus, Q(t)φ = L(t)φ + Q̄(t)φ, ∀ t ≥ 0, φ ∈ C, that is, Q(t) = L(t) + Q̄(t),
∀ t ≥ 0.

We first show that L(t) is an α-contraction on (C, ‖ · ‖∗r) for each t > 0. It
is easy to see that L(t) is compact for each t > τ . Without loss of generality,
we may assume that t ∈ (0, τ ] is fixed. For any φ ∈ C, we have
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‖L(t)φ‖∗r = sup
−τ≤θ≤0

‖(L(t)φ)‖X
h(θ)

≤ max

{

sup
−τ≤θ≤−t

‖φ(t+ θ)‖X
h(t+ θ)

h(t+ θ)

h(θ)
, sup

−t≤θ≤0

‖T̂ (t+ θ)φ(0)‖X
h(θ)

}

≤ max

{

e−rt‖φ‖∗r , sup
−t≤θ≤0

e−r(t+θ)‖φ(0)‖X
h(θ)

}

= max
{
e−rt‖φ‖∗r , e−rt‖φ(0)‖X

}
≤ e−rt‖φ‖∗r ,

which implies that α(L(t)B) ≤ e−rtα(B) for any bounded subset B of C.
Thus, this contraction property holds true for all t > 0.

Next we prove that Q̄(t) : C → C is compact for each t > 0. Let t > 0
and the bounded subset B of C be given. By the uniform boundedness of
solutions, there exists a real number K > 0 such that ‖F̂ (s, us(φ))‖X ≤
K, ∀s ∈ [0, t], φ ∈ B. It then follows that Q̄(t)B is bounded in C. We only
need to show that Q̄(t)B is precompact in C. In view of the generalized
Arzela–Ascoli theorem for the space C := C([−τ, 0], X), it suffices to prove
that (i) for each θ ∈ [−τ, 0], the set {(Q̄(t)φ)(θ) : φ ∈ B} is precompact in X ;
and (ii) the set Q̄(t)B is equi-continuous in θ ∈ [−τ, 0]. Clearly, statement (i)
holds true if t+ θ ≤ 0. In the case where t+ θ > 0, for any given ε ∈ (0, t+ θ),
we have

(Q̄(t)φ)(θ) =

∫ t+θ−ε

0

T̂ (t+ θ − s)F̂ (s, us(φ))ds

+

∫ t+θ

t+θ−ε

T̂ (t+ θ − s)F̂ (s, us(φ))ds

= T̂ (ε)

∫ t+θ−ε

0

T̂ (t+ θ − ε− s)F̂ (s, us(φ))ds

+

∫ t+θ

t+θ−ε

T̂ (t+ θ − s)F̂ (s, us(φ))ds.

Define

S1 :=

{

T̂ (ε)

∫ t+θ−ε

0

T̂ (t+ θ − ε− s)F̂ (s, us(φ))ds : φ ∈ B

}

and

S2 :=

{∫ t+θ

t+θ−ε

T̂ (t+ θ − s)F̂ (s, us(φ))ds : φ ∈ B

}

.

Let α̂ be the Kuratowski measure of noncompactness in X . Since T̂ (ε) is
compact, it follows that

α̂
(
{(Q̄(t)φ)(θ) : φ ∈ B}

)
≤ α̂(S1) + α̂(S2) ≤ 0 + 2Kε = 2Kε.
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Letting ε → 0+, we obtain α̂
(
{(Q̄(t)φ)(θ) : φ ∈ B}

)
= 0, which implies that

the set {(Q̄(t)φ)(θ) : φ ∈ B} is precompact in X . It remains to verify state-
ment (ii). Since T̂ (s) is compact for each s > 0, T̂ (s) is continuous in the
uniform operator topology for s > 0 (see [272, Theorem 2.3.2]). It then fol-
lows that for any ε ∈ (0, t), there exists a δ = δ(ε) < ε such that

‖T̂ (s1)− T̂ (s2)‖ < ε, ∀s1, s2 ∈ [ε, t] with |s1 − s2| < δ. (3.40)

We first consider the case where t ∈ (0, τ ]. It is easy to see that

‖(Q̄(t)φ)(θ)‖X ≤ K(t+ θ) ≤ Kε, ∀θ ∈ [−t,−t+ ε], φ ∈ B. (3.41)

For any φ ∈ B and θ1, θ2 ∈ [−t + ε, 0] with 0 < θ2 − θ1 < δ, it follows from
(3.40) that

∥
∥(Q̄(t)φ)(θ2)− (Q̄(t)φ)(θ1)

∥
∥
X

=

∥
∥
∥
∥
∥

∫ t−ε+θ1

0

(T̂ (t+ θ2 − s)− T̂ (t+ θ1 − s))F̂ (s, us(φ))ds

∥
∥
∥
∥
∥
X

+

∥
∥
∥
∥
∥

∫ t+θ2

t−ε+θ1

T̂ (t+ θ2 − s)F̂ (s, us(φ))ds

∥
∥
∥
∥
∥
X

+

∥
∥
∥
∥
∥
−
∫ t+θ1

t−ε+θ1

T̂ (t+ θ1 − s)F̂ (s, us(φ))ds

∥
∥
∥
∥
∥
X

≤ εKt+K(θ2 − θ1 + ε) +Kε

< (t+ 3)Kε. (3.42)

Combining (3.41) and (3.42), we then obtain

‖(Q̄(t)φ)(θ2)− (Q̄(t)φ)(θ1)‖X < 2Kε+ (t+ 3)Kε = (t+ 5)Kε,

for all θ1, θ2 ∈ [−t, 0] with 0 ≤ θ2−θ1 < δ. Since (Q̄(t)φ)(θ) = 0, ∀θ ∈ [−τ,−t],
it follows that Q̄(t)B is equi-continuous in θ ∈ [−τ, 0]. In the case where t > τ ,
for any ε ∈ (0, t− τ), the estimate in (3.42) implies that

‖(Q̄(t)φ)(θ2)− (Q̄(t)φ)(θ1)‖X < (t+ 3)Kε,

for all θ1, θ2 ∈ [−τ, 0] with 0 ≤ θ2 − θ1 < δ, and φ ∈ B. Thus, Q̄(t)B is
equi-continuous in θ ∈ [−τ, 0]. It then follows that Q̄(t) : C → C is compact
for each t > 0.

Consequently, for any t > 0 and any bounded subset B of C, we have

α(Q(t)B) ≤ α(L(t)B) + α(Q̄(t)B) ≤ e−rtα(B).

This completes the proof.
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As an application example, we consider the following ω-periodic reaction–
diffusion system with time delay

{
∂u
∂t = D�u+ f(t, ut), x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

(3.43)

where D = diag (d1, . . . , dm) with each di > 0, Ω ⊂ R
n is a bounded domain

with the smooth boundary ∂Ω, and f(t, φ) is ω-periodic in t ∈ [0,∞) for some
ω > 0. Let Y := C(Ω̄,Rm) and assume that f is continuous and maps bounded
subsets of [0,∞) × C([−τ, 0], Y ) into bounded subsets of Y . Let T (t) be the

semigroup on Y generated by ∂u(t,x)
∂t = D�u(t, x) subject to the boundary

condition ∂u
∂ν = 0. It is easy to see that ‖T (t)‖ ≤ 1, ∀t ≥ 0. By Theorem 3.5.1,

we then have the following result.

Theorem 3.5.2. Assume that solutions of system (3.43) exist uniquely on
[0,∞) for any initial data in C := C([−τ, 0], Y ) and are uniformly bounded.
Then for each r > 0, there exists an equivalent norm ‖ · ‖∗r on C such that for
each t > 0, the solution map Q(t) = ut of system (3.43) is an α-contraction
on (C, ‖ · ‖∗r) with the contraction constant being e−rt.

Remark 3.5.1. By using the theory of evolution operators (see, e.g., [152, Sec-
tion II.11] and [272, Section 5.6]), we may extend Theorem 3.5.1 to the

abstract functional differential equation du(t)
dt = A(t)u(t) + F (t, ut) with

u0 = φ ∈ C under appropriate assumptions.

3.6 Notes

Theorem 3.1.1 is due to Zhao [430]. Subsection 3.1.2 is taken from Zhao [432].
The notion of periodic semiflows was introduced by Hale and Lopes [143]. Hess
[152, Theorem 28.1] established threshold dynamics for a periodic parabolic
logistic equation, that is, equation (3.7) with f(x, t, u) = u[m(x, t)− b(x, t)u].
Results similar to the second conclusion of Theorem 3.1.6 were proved by
Cantrell and Cosner [50, Theorems 2.1 and 2.3] and [51, Theorem 2.4 with
Corollary 3.3] for a diffusive logistic equation subject to the Dirichlet boundary
condition under the assumption that there existsK0 > 0 such that F (x,K0) ≤
0, ∀x ∈ Ω. In the noncritical case (i.e., λ0(F (φ(x))) �= 1), Hsu and Waltman
[171, Theorems 3.1 and 3.2] obtained Proposition 3.1.1 for system (3.13) with
F being Michaelis–Menten–Monod response functions.

Section 3.2 is adapted from Zhao [433], except that Proposition 3.2.4 is
modified from Zhao [434, Section 2]. Asymptotically autonomous semiflows
were studied extensively by Thieme [364, 366, 367], Mischaikow, Smith and
Thieme [249], Benäım and Hirsch [35]. The global dynamics in asymptotically
periodic parabolic Fisher equations was established by Hess [153]. A set of suf-
ficient conditions for uniform persistence in asymptotically periodic parabolic
predator–prey systems was obtained by Zhao [433].
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Sections 3.3 and 3.4 are taken from Zhao [438] and [436], respectively.
Under appropriate assumptions, Shen and Yi [312, Theorem 4.1] obtained
global attractivity of a unique positive almost periodic solution for equa-
tion (3.34) subject to the Neumann boundary condition. Thieme [368, 369]
proved that weak uniform persistence implies uniform persistence for nonau-
tonomous semiflows. The skew-product semiflow approach to nonautonomous
evolutionary systems has become standard; see, e.g., Sell [303], Dafermos [79],
LaSalle [212], Hale [141], Shen and Yi [311], and the references therein. Nuss-
baum [260] and Thieme [363] studied weak ergodicity and asymptotic propor-
tionality in monotone and sublinear nonautonomous semiflows.

Hale [141, Theorem 4.1.1] first proved that the solution maps of FDEs
on R

n are α-contractions in an equivalent norm on C([−τ, 0],Rn). However,
the decomposition technique for solution maps in [141, Theorem 4.1.1] can-
not be used to prove the α-contraction property for the solution maps of
FDEs on an infinite-dimensional Banach space X . This is because bounded
sets in such X are not precompact in general. Liang and Zhao [226, pages
879–880] employed this decomposition to show that the solution maps of time-
delayed reaction–diffusion systems are conditional α-contractions (see (A3)′

in [226, Remark 4.1]). Theorem 3.5.1 is a nontrivial generalization of [141,
Theorem 4.1.1] to abstract FDEs since a quite different decomposition for
solution maps was utilized in our proof.
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A Discrete-Time Chemostat Model

The chemostat is an important laboratory apparatus used for the continuous
culture of microorganisms. In ecology it is often viewed as a model of a simple
lake system, of the wastewater treatment process, or of biological waste de-
composition. Mathematical models of microbial growth and competition for
a limiting substrate in a chemostat have played a central role in population
biology. See [334] for a treatment of chemostat models. However, the classical
model ignores the size structure of the population and the observation that
many microbes roughly double in size before dividing. Size-structured chemo-
stat models formulated by Metz and Diekmann [248] and by Cushing [76]
lead to hyperbolic partial differential equations with nonlocal boundary con-
ditions. A conceptually simpler approach to modeling size structure was taken
by Gage, Williams and Horton [127], who formulated what is now referred to
as a nonlinear matrix model for the evolution, in discrete-time steps, of a fi-
nite set of biomass classes. Smith [327] modified this model and showed that
competitive exclusion holds for two competing microbial populations. The
purpose of the present chapter is to give a thorough mathematical analysis of
this model of any number of competing populations.

In Section 4.1 we introduce the model under some appropriate assump-
tions, and derive a conservation principle for the total nutrient. In Section 4.2
we show that the model leads to a lower-dimensional system of difference
equations for the total biomass of each population and that conservation of
total nutrient allows a further reduction to a limiting system where the nu-
trient is effectively eliminated. The global dynamics and chain transitive sets
of the resulting limiting system are analyzed. In Section 4.3 we prove that
competitive exclusion holds for the full size-structured system. The winner is
the population able to grow at the lowest nutrient concentration.

© Springer International Publishing AG 2017
X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books
in Mathematics, DOI 10.1007/978-3-319-56433-3 4
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4.1 The Model

In order to formulate a discrete, size-structured model of m-species competi-
tion for a limiting nutrient in a chemostat, a simple open system with a con-
stant input of fresh nutrient at concentration S0 ∈ (0,∞) at rate E ∈ (0, 1)
and a constant removal of nutrient and organisms at rate E, we make the
following biological assumptions (see Gage et al. [127]):

(1) An organism approximately doubles in size as it moves from its smallest
to its largest size class;

(2) Cells divide into two daughter cells of approximately equal size;
(3) Cell growth is exponential if the concentration of the limiting nutrient

remains constant;
(4) The average nutrient uptake rate per unit biomass is constant across all

size classes;
(5) Respiration and mortality are negligible;
(6) Washout is constant across all size classes per unit biomass;
(7) The only organism-to-organism interaction is mediated through the nu-

trient concentration.

For the ith species we choose ri size classes such that the average biomass
in class j, 1 ≤ j ≤ ri, is M

j−1
i bi, where Mi = 21/ri and bi is the average

biomass of a newly divided cell. Let xi = (y1i , y
2
i , . . . , y

ri
i ) ∈ R

ri , where yji
denotes the biomass in size class j, 1 ≤ j ≤ ri. Then the number of cells in
size class j is ni(j) = yji /(M

j−1
i bi). Let S be the nutrient concentration, and

fi(S) the nutrient uptake rate computed per unit biomass per iteration period.
It is assumed that population biomass is measured in nutrient-equivalent units
so that fi(S) is also the rate of increase in biomass per iteration period per
unit biomass. Thus yji fi(S)/(M

j
i bi −M j−1

i bi) = ni(j)fi(S)(Mi − 1)−1 is the
number of individuals in size class j that can gain enough biomass during an
iteration period to move up to size class j+1, and hence Pi = fi(S)(Mi−1)−1

is the proportion of individuals that would move from size class j to size class
j +1 per iteration period in the absence of washout. Accounting for the ratio
Mi of cell size in class j+1 to cell size in class j and the washout rate E, the
proportion of biomass in class j projected into class j + 1 over an iteration
period is (1−E)MiPi. The proportion (1−E)(1−Pi) of individuals remains
in class j.

The discrete-time, size-structured model of m-species competition in the
chemostat is then given by

xin+1 =Ai(Sn)x
i
n, 1 ≤ i ≤ m,

Sn+1 =(1− E)

⎛

⎝Sn −
m∑

j=1

fj(Sn)U
j
n

⎞

⎠+ ES0,
(4.1)

where the vector xin ∈ R
ri
+ , ri > 0, gives the distribution of biomass (in

nutrient-equivalent units) of the ith microbial population among ri size classes
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at the nth time step, and Sn is the nutrient concentration at the nth time
step. The total biomass of the ith population at the nth time step is given by
U i
n = xin · 1, the scalar product of xin and 1 = (1, . . . , 1) ∈ R

ri . The nutrient
uptake rate for the ith population is fi(S), and the ri × ri projection matrix
for that population is given by

Ai(S) = (1 − E)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1− Pi 0 · · · MiPi

MiPi 1− Pi 0 · · · 0
0 MiPi 1− Pi 0 · · · 0

. . .

0 · · · 0 MiPi 1− Pi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (4.2)

where
Mi = 21/ri , Pi = fi(S)(Mi − 1)−1, 1 ≤ i ≤ m.

Throughout this chapter, we assume that

(H1) For each 1 ≤ i ≤ m, fi ∈ C1(R+,R), fi(0) = 0, f ′
i(S) > 0, f ′

i(S) ≤
f ′
i(0), S ∈ R+;

(H2) fi(+∞)(Mi − 1)−1 < 1, 1 ≤ i ≤ m, and there exist W > S0 and
η ∈ (0, 1) such that W

∑m
i=1 f

′
i(0) < η.

Clearly, (H1) and the mean value theorem imply that fi(S) ≤ f ′
i(0)S, for

S ≥ 0. The prototypical nutrient uptake rate, which satisfies (H1), is the
Michaelis–Menten function

f(S) =
mS

a+ S
, S ∈ R+,

where m is the maximum uptake rate and a > 0 is the Michaelis-Menten (or
half saturation) constant. In (H2), W is an appropriate upper bound on the
total biomass of all species and the nutrient, and η an acceptable tolerance.
We refer to [327] for a discussion of subtle issues involving the time step and
growth rates in order that the model make biological sense.

Using the fact that 1 = (1, . . . , 1) ∈ R
ri is the Perron–Frobenius (princi-

pal) eigenvector of the nonnegative, irreducible, and primitive matrix Ai(S)
associated with its Perron–Frobenius (principal) eigenvalue (1−E)(1+fi(S))
(see, e.g., [77, Theorem 1.1.1]), it follows that the total biomass U i

n = xin · 1
satisfies the difference equations

U i
n+1 = (1− E)(1 + fi(Sn))U

i
n, 1 ≤ i ≤ m. (4.3)

Let Σn = Sn +
∑m

i=1 U
i
n, n ≥ 0. Equation (4.3) and the second equation of

(4.1) imply that the evolution of Σn can be decoupled from the rest of the
system

Σn+1 = (1 − E)Σn + ES0, n ≥ 0, (4.4)

resulting in
Σn = S0 − (1− E)n(S0 −Σ0), n ≥ 0. (4.5)

Clearly, (4.5) implies limn→∞Σn = S0, which is a conservation principle for
the total nutrient.
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4.2 The Limiting System

For the dynamics of system (4.1), we may consider its population level dy-
namics, which is described by equation (4.3) and the second equation in (4.1).
In view of Sn = Σn −

∑m
i=1 U

i
n and limn→∞Σn = S0, we may pass to the

limiting system

U i
n+1 = (1− E)

⎛

⎝1 + fi(S
0 −

m∑

j=1

U j
n)

⎞

⎠U i
n, 1 ≤ i ≤ m, (4.6)

with the initial value (U1
0 , . . . , U

m
0 ) in the domain

D :=

{

(U1, . . . , Um) ∈ R
m
+ :

m∑

i=1

U i ≤ S0

}

.

Denote by F the mapping determined by the right side of (4.6), so we have

(U1
n+1, . . . , U

m
n+1) = F (U1

n, . . . , U
m
n ).

Then the following result implies that D is positively invariant for system
(4.6), and hence (4.6) defines a discrete dynamical system on D.

Lemma 4.2.1. F (D) ⊂
{
(U1, . . . , Um) ∈ R

m
+ :

∑m
i=1 U

i ≤ (1 − E)S0
}

⊂ D.

Proof. For any (U1, . . . , Um) ∈ D, let (V 1, . . . , Vm) = F (U1, . . . , Um) and
t =

∑m
i=1 U

i. Then V i ≥ 0, 1 ≤ i ≤ m, and t ∈ [0, S0]. If t > 0, then

m∑

i=1

V i = (1− E)t

(

1 +

m∑

i=1

fi(S
0 − t)

U i

t

)

≤ (1− E)t

(

1 + max
1≤i≤m

{fi(S0 − t)}
)

≤ (1− E) max
1≤i≤m

{(1 + fi(S
0 − t))t}. (4.7)

By (H1) and (H2), we have

d

dt

(
(1 + fi(S

0 − t))t
)
= 1 + fi(S

0 − t)− f ′
i(S

0 − t)t

≥ 1− f ′
i(0)W + fi(S

0 − t) > 1− η > 0. (4.8)

Consequently, the function (1+ fi(S
0 − t))t is strictly increasing with respect

to t ∈ [0, S0], attaining its maximum value S0 at t = S0. Thus (4.7) yields∑m
i=1 V

i ≤ (1− E)S0.
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We define the break-even nutrient concentration for ith population as the
solution λi of

(1− E)(1 + fi(S)) = 1,

where λi = +∞ if no such solution exists. If the supplied nutrient does not
exceed the nutrient requirements of a population, then it is eliminated.

Lemma 4.2.2. If λi ≥ S0, then limn→∞ U i
n = 0 for every solution

(U1
n, . . . , U

m
n ) of (4.6).

Proof. U i
n+1 ≤ (1−E)(1 + fi(S

0 −U i
n))U

i
n ≡ g(U i

n), so, since g is increasing
by (4.8), U i

n ≤ V i
n, where V

i
n+1 = g(V i

n) and V i
0 = U i

0. We show that V i
n → 0.

Our hypothesis ensures that (1 − E)(1 + fi(S
0 − U)) < 1 if U ∈ (0, S0], so

g(U) < U for U ∈ (0, S0]. Consequently, V i
n+1 < V i

n if V i
0 > 0, so V i

n converges
to the only fixed point of g, namely, zero.

In view of (4.3), the biomass of a population can grow at a lower nutrient
concentration than the biomass of the other populations, and consequently,
we expect that the population with the lowest nutrient concentration is the
superior competitor. The following result on the global dynamics of system
(4.6) is, therefore, plausible.

Theorem 4.2.1. Assume that λ1 < S0, and λ1 < λi for all i ≥ 2. Then for
any (U1

0 , . . . , U
m
0 ) ∈ D with U1

0 > 0, the solution of (4.6) satisfies

lim
n→∞(U1

n, U
2
n, . . . , U

m
n ) = (S0 − λ1, 0, . . . , 0).

Proof. For any (U1, . . . , Um) ∈ D, let (V 1, . . . , V m) = F (U1, . . . , Um).
Define

D1 :=

{

(U1, . . . , Um) ∈ D :
m∑

i=1

U i ≥ S0 − λ1

}

andW1(U
1, . . . , Um) =

∑m
i=1 U

i. If (U1, . . . , Um) ∈ D1, then for system (4.6),

Ẇ1(U
1, . . . , Um) := W1(F (U1, . . . , Um))−W1(U

1, . . . , Um)

=

m∑

i=1

V i −
m∑

i=1

U i

=

m∑

i=1

⎡

⎣(1− E)

⎛

⎝1 + fi(S
0 −

m∑

j=1

U j)

⎞

⎠− 1

⎤

⎦U i

≤
m∑

i=1

[(1 − E)(1 + fi(λ1))− 1]U i

=
m∑

i=2

[(1 − E)(1 + fi(λ1))− 1]U i ≤ 0. (4.9)
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Thus W1 is a Liapunov function of (4.6) on D1 (see Definition 1.1.1). By the
fact that each term in large brackets in the third line of (4.9) is nonpositive
in D1, it follows that

E1 := {(U1, . . . , Um) ∈ D1 : Ẇ1(U
1, . . . , Um) = 0}

= {(S0 − λ1, 0, . . . , 0)}. (4.10)

Let un = (U1
n, . . . , U

m
n ) be the solution of (4.6) with u0 ∈ D, and let ω(u0)

be the omega limit of the positive orbit γ+(u0) := {un;n ≥ 0}. If γ+(u0) ⊂
D1, then the LaSalle invariance principle (see Theorem 1.1.1) implies that
ω(u0) = (S0 − λ1, 0, . . . , 0).

Define

D2 :=

{

(U1, . . . , Um) ∈ R
m
+ :

m∑

i=1

U i ≤ S0 − λ1

}

.

Clearly, D2 ⊂ D. By (4.8), when t = S0 − λ1 the strictly increasing function
(1+fi(S

0−t))t on [0, S0−λ1] attains its maximum value (1+fi(λ1))(S
0−λ1).

Note that (1 + fi(λ1)) ≤ (1 + fi(λi)) = 1/(1 − E), 1 ≤ i ≤ m. Then (4.7)
implies that

∑m
i=1 V

i ≤ S0 − λ1. Thus (V 1, . . . , Vm) ∈ D2, and hence D2

is positively invariant for system (4.6). Define W2(U
1, . . . , Um) = −U1. If

(U1, . . . , Um) ∈ D2, then for system (4.6),

Ẇ2(U
1, . . . , Um) := W2(F (U1, . . . , Um))−W2(U

1, . . . , Um)

= −V 1 − (−U1) = U1 − V 1

= U1 − (1− E)

⎛

⎝1 + f1

⎛

⎝S0 −
m∑

j=1

U j

⎞

⎠

⎞

⎠U1

≤ U1 [1− (1− E)(1 + f1(λ1)] = 0. (4.11)

Thus W2 is a Liapunov function of (4.6) on D2. Let

L :=

{

(U1, . . . , Um) ∈ R
m
+ : U1 = 0,

m∑

i=1

U i < S0 − λ1

}

,

and

Δ :=

{

(U1, . . . , Um) ∈ R
m
+ :

m∑

i=1

U i = S0 − λ1

}

.

By (4.11), we then have

E2 := {(U1, . . . , Um) ∈ D2 : Ẇ2(U
1, . . . , Um) = 0} = L ∪Δ. (4.12)

If u0 = (U1
0 , . . . , U

m
0 ) ∈ D2 with U1

0 > 0, then γ+(u0) ⊂ D2. By the LaSalle
invariance principle (see Theorem 1.1.1), ω(u0) ⊂ L ∪ Δ. Note that 0 ≥
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Ẇ2(un) = W2(un+1) −W2(un) = U1
n − U1

n+1, ∀n ≥ 0. Then we get U1
n+1 ≥

U1
n, ∀n ≥ 0, and hence U1

n ≥ U1
0 > 0, ∀n ≥ 0. Thus ω(u0) ⊂ Δ. Clearly, (4.10)

implies that for any u ∈ Δ \ {(S0 − λ1, 0, . . . , 0)}, we have Ẇ1(u) < 0, and
hence

F (u) ⊂
{

(U1, . . . , Um) ∈ D :
m∑

i=1

U i < S0 − λ1

}

.

So (S0 − λ1, 0, . . . , 0) is the only invariant set in Δ. Thus ω(u0) = (S0 −
λ1, 0, . . . , 0).

For any u0 = (U1
0 , . . . , U

m
0 ) ∈ D with U1

0 > 0, let un = (U1
n, . . . , U

1
n), n ≥

0, be the solution of (4.6). Clearly, U1
n > 0, ∀n ≥ 0, and either γ+(u0) ⊂ D1,

or there is an n0 ≥ 0 such that un0 ∈ D2. Note that ω(u0) = ω(un0). Then in
either case, by what we have proved above, ω(u0) = (S0 − λ1, 0, . . . , 0), and
hence limn→∞ un = (S0 − λ1, 0, . . . , 0). This completes the proof.

Theorem 4.2.2. Assume that λ1 < λ2 < . . . < λm. Then every compact
internally chain transitive set for F is a fixed point of F itself.

Proof. Let e0 = 0 ∈ R
m, and in the case that λi < S0, let ei = (0, . . . , 0, S0−

λi, 0, . . . , 0) ∈ R
m with its ith component being (S0−λi) and the others being

0. Clearly, all these ei are fixed points of F : D → D. For any v0 ∈ D with v0 �=
e0, there exists 1 ≤ k ≤ m such that v0 = (0, . . . , 0, V k

0 , . . . , V
m
0 ) with V k

0 > 0.
Let vn = (V 1

n , . . . , V
m
n ) be the solution of (4.6). Clearly, V i

n = 0, ∀n ≥ 0, 1 ≤
i < k. If λk < S0, then Theorem 4.2.1 implies that limn→∞ vn = ek. If λk ≥
S0, then λi ≥ S0, ∀i ≥ k, and hence Lemma 4.2.2 implies that limn→∞ vn =
e0. This convergence result also implies that each ei is an isolated invariant
set in D ⊂ R

m for F , and that no subset of ei’s forms a cyclic chain in D.
By a convergence theorem (see Theorem 1.2.2), any compact internally chain
transitive set for F is a fixed point of F .

4.3 Global Dynamics

In this section we first lift the result for the limiting system (4.6) to the reduced
system at the total population level (see (4.13) below), and then consider the
global dynamics of the full size-structured system (4.1).

The population level dynamics are described by

U i
n+1 =(1 − E) (1 + fi(Sn))U

i
n, 1 ≤ i ≤ m,

Sn+1 =(1 − E)

⎛

⎝Sn −
m∑

j=1

fj(Sn)U
j
n

⎞

⎠+ ES0,
(4.13)

with the initial value (U1
0 , . . . , U

m
0 , S0) in the domain

Ω :=

{

(U1, . . . , Um, S) ∈ R
m+1
+ :

m∑

i=1

U i + S ≤ W

}

.
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Denote by G the mapping determined by the right side of (4.13), so we have

(U1
n+1, . . . , U

m
n+1, Sn+1) = G(U1

n, . . . , U
m
n , Sn).

If (U1, . . . , Um, S) ∈ Ω, then

S −
m∑

i=1

fi(S)U
i ≥ S

(

1−
m∑

i=1

Wf ′
i(0)

)

> (1− η)S ≥ 0.

By the conservation principle (4.4) and the fact that S0 < W , it then fol-
lows that G(U1, . . . , Um, S) ∈ Ω, and hence G(Ω) ⊂ Ω. Thus system (4.13)
defines a discrete dynamical system on Ω. The following result describes the
competitive exclusion dynamics of (4.13).

Theorem 4.3.1. Assume that λ1 < S0 and λ1 < λ2 < . . . < λm. Then for
any (U1

0 , . . . , U
m
0 , S0) ∈ Ω with U1

0 > 0, the solution of (4.13) satisfies

lim
n→∞(U1

n, U
2
n, . . . , U

m
n , Sn) = (S0 − λ1, 0, . . . , 0, λ1).

Proof. Fix (U1
0 , . . . , U

m
0 , S0) ∈ Ω with U1

0 > 0, and let (U1
n, . . . , U

m
n , Sn)

be the solution of system (4.13). Clearly, U1
n > 0, ∀n ≥ 0. Let Σn =

Sn +
∑m

i=1 U
i
n, n ≥ 0. By (4.4), un = (U1

n, . . . , U
m
n , Σn) satisfies the following

system

U i
n+1 =(1− E)

⎛

⎝1 + fi(Σn −
m∑

j=1

U j
n)

⎞

⎠U i
n, 1 ≤ i ≤ m,

Σn+1 =(1− E)Σn + ES0.

(4.14)

Let ω = ω(u0) be the omega limit set of the positive orbit γ+(u0) of (4.14).
Then

ω ⊂
{
(U1, . . . , Um, Σ) ∈ R

m+1
+ : Σ ≤ W

}
.

Note that Σn −
∑m

i=1 U
i
n = Sn ≥ 0, n ≥ 0, and limn→∞Σn = S0. It then

follows that for any (U1, . . . , Um, Σ) ∈ ω, we have
∑m

i=1 U
i ≤ Σ and Σ = S0.

Thus, there exists a set ω̃ ⊂ D such that ω = ω̃ × {S0}. Denote by H the
mapping determined by the right side of (4.14), so (U1

n+1, . . . , U
m
n+1, Σn+1) =

H(U1
n, . . . , U

m
n , Σn). By Lemma 1.2.1, ω is a compact, invariant, and internally

chain transitive set for H . Moreover,

H |ω(U1, . . . , Um, S0) =
(
F (U1, . . . , Um), S0

)
.

It then follows that ω̃ is a compact, invariant, and internally chain transitive
set for F : D → D. By Theorem 4.2.2, we get ω̃ = el for some 0 ≤ l ≤ p, where
p is the maximal index such that λp < S0, and hence, ω = ω̃×{S0} = (el, S

0).
Thus

lim
n→∞ un = lim

n→∞(U1
n, . . . , U

m
n , Σn) = (el, S

0). (4.15)
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It remains to prove that l = 1. Suppose, by contradiction, that l �= 1.
Define

δl =

{
1
2

(
1 + (1− E)(1 + f1(S

0))
)

if l = 0,
1
2 (1 + (1− E)(1 + f1(λl))) if l ≥ 2.

Since λ1 < S0 and λl > λ1 if l ≥ 2, we have

1 < δ0 < (1− E)(1 + f1(S
0)), and 1 < δl < (1− E)(1 + f1(λl)) if l ≥ 2.

By (4.15), it follows that

lim
n→∞(1− E)

⎛

⎝1 + f1

⎛

⎝Σn −
m∑

j=1

U j
n

⎞

⎠

⎞

⎠ = (1− E)(1 + f1(λl)) if l ≥ 2,

and

lim
n→∞(1− E)

⎛

⎝1 + f1

⎛

⎝Σn −
m∑

j=1

U j
n

⎞

⎠

⎞

⎠ = (1− E)(1 + f1(S
0)) if l = 0.

Then there is an n0 > 0 such that

(1− E)

⎛

⎝1 + f1

⎛

⎝Σn −
m∑

j=1

U j
n

⎞

⎠

⎞

⎠ > δl, ∀n ≥ n0,

and hence U1
n+1 ≥ δlU

1
n, ∀n ≥ n0. In view of the fact that δl > 1 and

U1
n > 0, ∀n ≥ 0, we get limn→∞ U1

n = +∞, which contradicts the boundedness
of {U1

n : n ≥ 0}. By (4.15), it then follows that limn→∞(U1
n, . . . , U

m
n , Σn) =

(e1, S
0), and hence

lim
n→∞(U1

n, . . . , U
n, Sn) = (e1, λ1) = (S0 − λ1, 0, . . . , 0, λ1).

This completes the proof.

To get the global dynamics of the full system (4.1), we need the following
weak ergodic theorem of Golubitsky, Keeler and Rothschild (see [132, Corol-
lary 3.2]).

Weak Ergodic Theorem Suppose that Tk is a sequence of nonnegative, ir-
reducible, and primitive m ×m matrices and that Tk → T as k → ∞, where
T is also irreducible and primitive. If e is the Perron–Frobenius eigenvector
of T satisfying e · 1 = 1, and xk+1 = Tkxk is a sequence starting with x0 ≥ 0
and x0 �= 0, then xk

xk·1 → e as k → ∞.
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Let r =
∑m

i=1 ri and set Γ :=

{

(x1, . . . , xm, S) ∈ R
r+1
+ : xi ∈ R

ri , 1 ≤ i ≤ m, and
m∑

i=1

xi · 1+ S ≤ W

}

.

Clearly, the positive invariance of Ω for (4.13) implies that of Γ for (4.1).
So (4.1) defines a discrete dynamical system on Γ . The next result shows
that the surviving population asymptotically approaches a stable, uniform
size distribution.

Theorem 4.3.2. Assume that λ1 < S0 and λ1 < λ2 < . . . < λm. Then for
any (x10, . . . , x

m
0 , S0) ∈ Γ with x10 �= 0, the solution of (4.1) satisfies

lim
n→∞(x1n, x

2
n, . . . , x

m
n , Sn) =

(
S0 − λ1

r1
1,0, . . . ,0, λ1

)

.

Proof. Given (x10, . . . , x
m
0 , S0) ∈ Γ with x10 �= 0, let U i

n = xin · 1, ∀ 1 ≤
i ≤ m, n ≥ 0. Then (U1

0 , . . . , U
m
0 , S0) ∈ Ω with U1

0 > 0. By Theorem 4.3.1,
limn→∞(U1

n, U
2
n, . . . , U

m
n , Sn) = (S0−λ1, 0, . . . , 0, λ1). Then limn→∞Ai(Sn) =

Ai(λ1), 1 ≤ i ≤ m. As mentioned in Section 4.1, Ai(Sn) and Ai(λ1) are non-
negative, irreducible, and primitive, and they have e = 1

ri
1 as their Perron–

Frobenius eigenvectors with e · 1 = 1. By the aforementioned weak ergodic
theorem, we then have

lim
n→∞

xin
xin · 1 = lim

n→∞
xin
U i
n

= e =
1

ri
1, ∀1 ≤ i ≤ m.

Since limn→∞ U1
n = S0 − λ1 and limn→∞ U i

n = 0, ∀ 2 ≤ i ≤ m, we conclude
that

lim
n→∞(x1n, x

2
n, . . . , x

m
n , Sn) =

(
S0 − λ1

r1
1,0, . . . ,0, λ1

)

.

This completes the proof.

4.4 Notes

The model (4.1) was formulated by Gage, Williams and Horton [127] and was
further developed by Smith [327]. This chapter is adapted from Smith and
Zhao [339]. The proof of Theorem 4.2.1 was motivated by a similar LaSalle
invariance principle argument in Armstrong and McGehee [18] for the classi-
cal chemostat system of ordinary differential equations. Theorems 4.2.1, 4.3.1,
and 4.3.2 were proved for the case of two-species competition in [327], where
monotonicity and Butler–McGehee lemma arguments were applied. Recently,
Arino, Gouzé and Sciandra [17] extended the model (4.1) with m = 1 to the
case where cell division (and consequently, cell birth) can happen for cells
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in several biomass classes, the effective size at division being distributed fol-
lowing some probability density, and showed that the model system admits
one nonzero globally stable equilibrium. There have been extensive investiga-
tions on both discrete and continuous structured population models; see, e.g.,
Cushing [77] and the references therein.



5

N -Species Competition in a Periodic
Chemostat

As we see from the previous chapter, the models of exploitative competition
in a well-stirred chemostat operated under constant input and dilution, with
competition for a nonreproducing substrate, predict that at most one com-
petitor population avoids extinction. However, the coexistence of competing
populations is obvious in nature, and so in order to explain this, it seems
necessary to relax at least one of the assumptions in these models. One nat-
ural approach is to introduce periodic coefficients to represent, for example,
daily or seasonal variations in the environment. The aim of this chapter is
to present a general framework to study models of n-species competition in a
periodically operated chemostat. Nutrient input, dilution, and species-specific
removal rates are all permitted to be periodic (but of commensurate period).
Furthermore, each species-specific nutrient uptake function is assumed to be
a monotone increasing function of the substrate concentration, but can be pe-
riodic as a function of time (but again of commensurate period). Differential
species-specific removal rates are also permitted.

In Section 5.1 we discuss periodic weak repellers in periodic and asymp-
totically periodic Kolmogorov systems of ordinary differential equations. In
Section 5.2 a threshold-type result on the global dynamics of scalar asymp-
totically periodic Kolmogorov equations is first proved, and then single species
growth in the periodically operated chemostat is considered. In the case that
the species-specific removal rate is permitted to be different from the dilu-
tion rate, we obtain sufficient conditions that guarantee the existence of at
least one positive periodic solution and ensure that the species is uniformly
persistent. On the other hand, when the species-specific removal rate is as-
sumed to be equal to the dilution rate, a threshold-type result for uniform
persistence versus global extinction of the species is obtained. In Section 5.3
the n-species competition model in a general periodic chemostat is studied.
Sufficient conditions are obtained that guarantee the uniform persistence of
all n-species and the existence of at least one positive periodic solution of

© Springer International Publishing AG 2017
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in Mathematics, DOI 10.1007/978-3-319-56433-3 5
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the full system. The special case where the species-specific removal rates of
all of the species equal the nutrient dilution rate is also discussed, and an
improved result is given when there are only two competing species. Finally,
in Section 5.4 the 3-species competition model is studied under the additional
assumptions that the species-specific removal rates of all of the species equal
the nutrient dilution rate and that the positive periodic solutions to each of
the three 2-species subsystems of the limiting 3-species competition system
is unique. We determine sufficient conditions, which are more easily satisfied
than those given in Section 5.3, that guarantee the uniform persistence of the
three interacting species and prove existence of at least one positive periodic
solution for the full model system.

5.1 Weak Periodic Repellers

In the applications of the theory of discrete-time semidynamical systems to n-
dimensional Kolmogorov periodic and asymptotically periodic biological sys-
tems, the dynamics on the boundary prove to be very useful. In this section
we discuss a weakly repelling property of semitrivial periodic solutions for
these systems.

Consider first n-dimensional Kolmogorov periodic systems

dui
dt

= uiF0i(t, u), 1 ≤ i ≤ n, (5.1)

where u = (u1, . . . , un) ∈ R
n
+. We assume that F0 = (F01, . . . , F0n) : R

n+1
+ →

R
n
+ is continuous and ω-periodic with respect to t (ω > 0), and that the

solution φ0(t, u) of (5.1) with φ0(0, u) = u exists uniquely on [0,∞). Let
S = φ0(ω, ·) : Rn

+ → R
n
+. Then Sn(u) = φ0(nω, u), ∀u ∈ R

n
+.

Lemma 5.1.1. If for some 1 ≤ i ≤ n,

u∗(t) = (u∗1(t), . . . , u
∗
i−1(t), 0, u

∗
i+1(t), . . . , u

∗
n(t))

is an ω-periodic solution of (5.1) with u∗j (0) ≥ 0, ∀1 ≤ j ≤ n, j �= i, and u∗(t)
satisfies

∫ ω

0
F0i(t, u

∗(t))dt > 0, then there exists δ > 0 such that

lim sup
n→∞

d(Sn(u), u∗(0)) ≥ δ, ∀u ∈ int(Rn
+).

Proof. It suffices to prove that there exists δ > 0 such that for any
u ∈ B(u∗(0), δ) ∩ int(Rn

+), where B(u∗(0), δ) = {u ∈ R
n : |u − u∗(0)| < δ},

there exists N = N(u) ≥ 1 such that SN(u) /∈ B(u∗(0), δ). Let ε be a
fixed real number such that 0 < ε < 1

ω

∫ ω

0
F0i(t, u

∗(t))dt. By the uniform
continuity of F0i(t, u) on the compact subset [0, ω] × [0, b]n ⊂ R

n+1, where
b = max0≤t≤ω |u∗(t)| + 1, there exists δ0 ∈ (0, 1) such that for any u and
v ∈ [0, b]n with |u− v| < δ0, and all t ∈ [0, ω],
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|F0i(t, u)− F0i(t, v)| < ε.

By the continuous dependence of solutions on initial values, it then follows
that there exists δ > 0 such that for any u ∈ B(u∗(0), δ) ∩ R

n
+,

|φ0(t, u)− u∗(t)| = |φ0(t, u)− φ0(t, u
∗(0))| < δ0, ∀t ∈ [0, ω].

Proceeding by contradiction, assume that there exists u0 ∈ B(u∗(0), δ) ∩
int(Rn

+) such that Sn(u0) = φ0(nω, u0) ∈ B(u∗(0), δ), ∀n ≥ 1. For any t ≥ 0,
let t = nω+ t′, where t′ ∈ [0, ω) and n = [t/ω] is the greatest integer less than
or equal to t/ω. Then we get

|φ0(t, u0)− u∗(t)| = |φ0(t
′, φ0(nω, u0))− u∗(t′)| < δ0.

Therefore,
|F0i(t, φ0(t, u0))− F0i(t, u

∗(t))| < ε, ∀t ≥ 0.

Let φ0(t, u0) = (φ1(t, u0), . . . , φn(t, u0)). Then φ0(t, u0) ∈ int(Rn
+), ∀t ≥ 0,

and hence φi(t, u0) satisfies

dφi

dt
= φiF0i(t, φ0(t)) ≥ φi(F0i(t, u

∗(t)) − ε), ∀t ≥ 0.

Thus, by the standard comparison theorem, we have

φi(t, u0) ≥ φi(0, u0) · e
∫ t
0
(F0i(t,u

∗(t))−ε)ds, ∀t ≥ 0.

In particular,

φi(nω, u0) ≥ φi(0, u0) · en
∫

ω
0
(F0i(t,u

∗(t))−ε)ds, ∀n ≥ 0.

By the choice of ε, limn→∞ φi(nω, u0) = +∞, which contradicts our as-
sumption that Sn(u0) = φ0(nω, u0) ∈ B(u∗(0), δ), ∀n ≥ 1. Consequently,
lim supn→∞ d(Sn(u), u∗(0)) ≥ δ, ∀u ∈ int(Rn

+).

Remark 5.1.1. It is easy to see that Lemma 5.1.1 also holds true for ω-periodic
system du

dt = fi(t, u), 1 ≤ i ≤ n, if we assume that Rn
+ is positively invariant

for solution maps of it and fi(t, u) ≥ uiF0i(t, u) on R
n+1
+ for some 1 ≤ i ≤ n.

We then consider n-dimensional nonautonomous Kolmogorov systems

dui
dt

= uiFi(t, u), 1 ≤ i ≤ n, (5.2)

where u = (u1, . . . , un) ∈ R
n
+. We assume that F = (F1, . . . , Fn) : R

n+1
+ → R

n
+

is continuous and locally Lipschitz in u. For each s ≥ 0, let φ0(t, s, u) and
φ(t, s, u) be the unique solutions of (5.1) and (5.2) with φ0(s, s, u) = u and
φ(s, s, u) = u, respectively. Define Tn(u) := φ(nω, 0, u), T (t)u := φ0(t, 0, u)
and S(u) := T (ω)u, ∀n ≥ 0, t ≥ 0, u ∈ R

n
+.
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Lemma 5.1.2. Assume that limt→∞ |F (u, t)−F0(t, u)| = 0 uniformly for u in
any bounded subset of Rn

+, and that solutions of (5.1) and (5.2) are uniformly
bounded in R

n
+. If for some 1 ≤ i ≤ n,

u∗(t) = (u∗1(t), . . . , u
∗
i−1(t), 0, u

∗
i+1(t), . . . , u

∗
n(t))

is an ω-periodic solution of (5.1) with u∗j (0) ≥ 0, ∀1 ≤ j ≤ n, j �= i, and u∗(t)
satisfies

∫ ω

0 F0i(t, u
∗(t))dt > 0, then

W̃ s(u∗(0)) ∩ int(Rn
+) = ∅,

where W̃ s(u∗(0)) =
{
u ∈ R

n
+ : limn→∞ Tn(u) = u∗(0)

}
.

Proof. By Proposition 3.2.2, φ(t, s, u), t ≥ s ≥ 0, u ∈ R
n
+, is asymptotic to

the ω-periodic semiflow T (t) : Rn → R
n, and hence, Tn(u) : R

n
+ → R

n
+, n ≥ 0,

is an asymptotically autonomous discrete dynamical process with the limiting
autonomous discrete semiflow Sn : Rn

+ → R
n
+, n ≥ 0. Assume, by contradic-

tion, that there exists u0 ∈ W̃ s(u∗(0)) ∩ int(Rn
+). Then, limn→∞ Tn(u0) =

u∗(0), and hence Theorem 3.2.1 implies that

lim
t→∞(φ(t, 0, u0)− u∗(t)) = lim

t→∞(φ(t, 0, u0)− T (t)u∗(0)) = 0.

Since limt→∞ |F (t, u) − F0(t, u)| = 0 uniformly for u in any bounded subset
of Rn

+, it easily follows that

lim
t→∞(F (t, φ(t, 0, u0))− F0(t, u

∗(t))) = 0.

In particular,
lim
t→∞(Fi(t, φ(t, 0, u0))− F0i(t, u

∗(t))) = 0.

Let ε be a fixed positive number such that 0 < ε < 1
ω

∫ ω

0 F0i(t, u
∗(t))dt. Then

there exists N = N(ε) > 0 such that

Fi(t, φ(t, 0, u0)) ≥ F0i(t, u
∗(t))− ε, ∀t ≥ Nω.

Let φ(t, 0, u0) = (φ1(t), . . . , φn(t)) = φ(t). Then φ(t) ∈ int(Rn
+), ∀t ≥ 0.

Therefore, φi(t) satisfies

dφi(t)

dt
= φi(t)Fi(t, φ(t)) ≥ φi(t)(F0i(t, u

∗(t))− ε), ∀t ≥ Nω.

By the comparison theorem, it follows that

φi(t) ≥ φi(Nω)e
∫

t
Nω

(F0i(s,u
∗(s))−ε)ds, ∀t ≥ Nω.

In particular, we get

φi(nω) ≥ φi(Nω)e(n−N)
∫

ω
0
(F0i(s,u

∗(s))−ε)ds, ∀n ≥ N.

Then the choice of ε implies that limn→∞ φi(nω) = +∞, which contradicts
limt→∞(φ(t, 0, u0)− u∗(t)) = 0.
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5.2 Single Population Growth

We first consider the nonautonomous Kolmogorov equation on single species
population growth

du

dt
= uF (t, u), u ∈ R+ = [0,∞), (5.3)

where F (t, u) : R2
+ → R is continuous and locally Lipschitz in u. Let F0(t, u) :

R
2
+ → R be continuous, ω-periodic in t (ω > 0), and locally Lipschitz in u

uniformly for t ∈ [0, ω]. Let φ(t, s, u), t ≥ s ≥ 0, be the unique solution of
(5.3) with φ(s, s, u) = u. Assume that

(A1) limt→∞ |F (t, u) − F0(t, u)| = 0 uniformly for u in any bounded subset
of R+, and there exists K > 0 such that F (t, u) ≤ 0, ∀t ≥ 0, u ≥ K;

(A2) For any t ≥ 0, F0(t, u) is strictly decreasing for u, and there exists
K0 > 0 such that F0(t,K0) ≤ 0, ∀t ≥ 0.

We then have the following threshold dynamics for the asymptotically periodic
equation (5.3).

Theorem 5.2.1. Assume that (A1) and (A2) hold.

(a) If
∫ ω

0
F0(t, 0)dt ≤ 0, then limt→∞ φ(t, 0, u) = 0, ∀u ∈ R+;

(b) If
∫ ω

0
F0(t, 0)dt > 0, then limt→∞(φ(t, 0, u) − u∗(t)) = 0, ∀u ∈ R+ \ {0},

where u∗(t) is the unique positive ω-periodic solution of the periodic Kol-
mogorov equation du

dt = uF0(t, u).

Proof. Let φ0(t, s, u), t ≥ s ≥ 0, be the unique solution of the ω-periodic
Kolmogorov equation

du

dt
= uF0(t, u), u ∈ R+, (5.4)

with φ0(s, s, u) = u ∈ R+. We first claim that the following threshold result
on the global asymptotics of (5.4) holds:

(i) If
∫ ω

0
F0(t, 0)dt ≤ 0, then limt→∞ φ0(t, 0, u) = 0, ∀u ∈ R+;

(ii) If
∫ ω

0 F0(t, 0)dt > 0, then (5.4) admits a unique positive periodic solution
u∗(t), and limt→∞(φ0(t, 0, u)− u∗(t)) = 0, ∀u ∈ R+ \ {0}.

Note that if F0(t, u) is continuously differentiable with respect to u, the above
claim is a simple corollary of Theorem 3.1.2 with n = 1. But we need to prove
it under the assumption that F0(t, u) is continuous and locally Lipschitz in u
uniformly for t ∈ [0, ω]. Let Q : R+ → R+ be the Poincaré map associated
with the periodic system (5.4). For any u > 0, we have u(t) := φ0(t, 0, u) >
0, ∀t > 0, and hence the strict monotonicity of F0(t, u) for u > 0 implies that

du

dt
= u(t)F0(t, u(t)) < u(t)F0(t, 0), ∀t > 0.
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By the comparison theorem, it then follows that

u(t) < u(0)e
∫ t
0
F0(s,0)ds, ∀t > 0.

In the case where
∫ ω

0 F0(t, 0)dt ≤ 0, the Poincaré map Q : R+ → R+ satisfies

Q(u) = u(ω) < u(0)e
∫

ω
0

F (s,0)ds ≤ u(0) = u, ∀u > 0,

which implies that Q : R+ → R+ admits no positive fixed point, and that for
any u > 0,

0 < Qn+1(u) < Qn(u), ∀n ≥ 0.

Thus, there exists ū ≥ 0 such that limn→∞Qn(u) = ū. Since ū = Q(ū), the
nonexistence of positive fixed points ofQ implies ū = 0. Then limn→∞Qn(u) =
0, ∀u > 0, and hence limt→∞ u(t) = 0. In the case where

∫ ω

0 F0(t, 0)dt > 0,
Lemma 5.1.1 with n = 1 implies that {0} is an isolated invariant set for Q,
and W s(0)∩ int(R+) = ∅. By Theorem 1.3.1 and Remark 1.3.1, as applied to
Q : X := R+ → X with X0 = int(R+) and ∂X0 = {0}, {0} is a strong repeller
in the sense that there exists δ > 0 such that ω(u) ≥ δ, ∀u > 0. It is easy to
see that Q : R+ → R+ is strongly monotone and strictly subhomogeneous.
By Theorem 2.3.2, it then follows that Q admits a unique positive fixed point
u∗, and limn→∞Qn(u) = u∗, ∀u > 0. Thus, the conclusion in (ii) holds with
u∗(t) = φ0(t, 0, u

∗).
By conditions (A1) and (A2), it easily follows that for any u ∈ R+ and

s ≥ 0, φ(t, s, u) and φ0(t, s, u) exist globally on [s,∞), and solutions of (5.3)
and (5.4) are uniformly bounded. By Proposition 3.2.2, φ(t, s, u) is asymptotic
to the ω-periodic semiflow T (t) := φ0(t, 0, ·) : R+ → R+, and hence Tn(u) :=
φ(nω, 0, u), n ≥ 0, is an asymptotically autonomous discrete process with
limit discrete semiflow Qn : R+ → R+, n ≥ 0. By Theorem 3.2.1, it suffices
to prove in case (a) that limn→∞ Tn(u) = 0, ∀u ∈ R+, and in case (b) that
limn→∞ Tn(u) = u∗(0), ∀u ∈ R+ \ {0}.

In case (a), by conclusion (i) above, u = 0 is a global attractor for Q :
R+ → R+. Thus, Theorem 1.2.1 implies that for any u ∈ R+, ω(u) = 0, and
hence limn→∞ Tn(u) = 0.

In case (b), by conclusion (ii) above, u = u∗(0) is a globally attractive
fixed point of Q in R+ \ {0}. Thus, the only fixed points of Q in R+ are 0 and
u∗(0); both are isolated invariant sets, and there is no Q-cyclic chain among
them. Then Theorem 1.2.2 implies that for any u ∈ R+, either ω(u) = 0 or

ω(u) = u∗(0). By Lemma 5.1.2 with n = 1, we have W̃ s(0) ∩ (R+ \ {0}) = ∅;
that is, ω(u) �= 0, ∀u > 0. Consequently, for any u > 0, ω(u) = u∗(0), and
hence limn→∞ Tn(u) = u∗(0).

Now we consider a single population growth model in a periodic chemostat

dS(t)

dt
= (S0(t)− S(t))D0(t)− x(t)P (t, S(t)),

dx(t)

dt
= x(t)(P (t, S(t)) −D1(t)).

(5.5)
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Here S(t) denotes the concentration of the nutrient, x(t) denotes the biomass
of the species at time t, P (t, s) represents the specific per capita nutrient
uptake function, S0(t) and D0(t) are the input nutrient concentration and
the dilution rate, respectively, and D1(t) represents the specific removal rate
of the species. We assume that S0(t), D0(t), and D1(t) are all continuous,
ω-periodic, positive functions, and that P (t, s) : R

2
+ → R+ is continuous,

ω-periodic in t, and satisfies

(B1) P (t, s) is locally Lipschitz in s;
(B2) P (t, 0) = 0, ∀t ≥ 0, and for each t ≥ 0, P (t, s) is strictly increasing for

s ∈ R+.

Let D(t) : R+ → R+ be a continuous, ω-periodic, and positive function.
For the linear periodic equation

dV (t)

dt
= S0(t)D0(t)−D(t)V (t), (5.6)

it easily follows that (5.6) admits a unique positive ω-periodic solution V ∗(t)
such that every solution V (t) of (5.6) with V (0) ≥ 0 satisfies limt→∞(V (t)−
V ∗(t)) = 0. Moreover, V ∗(t) can be expressed explicitly as

V ∗(t) = e−
∫

t
0
D(s)ds

[∫ ω

0 e
∫ s
0
D(u)duS0(s)D0(s)ds

e
∫

ω
0

D(s)ds − 1

+

∫ t

0

e
∫ s
0
D(u)duS0(s)D0(s)ds

]

.

Let D(t) = max(D0(t), D1(t)) and D(t) = min(D0(t), D1(t)). Then, D(t)
and D(t) : R+ → R+ are continuous, ω-periodic, and positive functions. Let
V ∗
1 (t) and V

∗
2 (t) be the unique positive ω-periodic solutions of (5.6) with D(t)

replaced by D(t) and D(t), respectively. By the comparison theorem and the
global attractivity of each V ∗

i (t), it easily follows that V ∗
2 (t) ≤ V ∗

1 (t), ∀t ≥ 0.

Theorem 5.2.2. Let (B1) and (B2) hold. Then the following threshold dy-
namics hold:

(a) If
∫ ω

0 (P (t, V ∗
2 (t)) − D1(t))dt > 0, then system (5.5) admits a positive

(componentwise) ω-periodic solution, and there exist α > 0 and β > 0
such that every solution (S(t), x(t)) of (5.5) with S(0) ≥ 0 and x(0) > 0
satisfies

α ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ β.

(b) If
∫ ω

0 (P (t, V ∗
1 (t))−D1(t))dt ≤ 0, then every solution (S(t), x(t)) of (5.5)

with S(0) ≥ 0 and x(0) ≥ 0 satisfies limt→∞ x(t) = 0.

Interpreting the predictions of the model biologically, Theorem 5.2.2 im-
plies that in case (a) the model system admits a periodic coexistence state
and the species is uniformly persistent, but in case (b) the species ultimately
goes to extinction.
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Proof. Let P̂ (t, s) : R+ × R → R be a continuous extension of P (t, s) on
R+ × R+ to R+ × R such that P̂ (t, s) is ω-periodic in t and locally Lipschitz
in s, and for any t ≥ 0, P̂ (t, s) is strictly increasing for s ∈ R.

In case (a), since V ∗
1 (t) ≥ V ∗

2 (t), ∀t ∈ [0, ω], and P̂ (t, V ∗
i (t)) = P (t, V ∗

i (t)),
∀t ∈ [0, ω], 1 ≤ i ≤ 2, Theorem 5.2.1 (in the periodic case) implies that the
periodic equation

dx(t)

dt
= x(t)(P̂ (t, V ∗

i (t)− x(t)) −D1(t))

admits a unique positive ω-periodic solution x∗i (t), and x∗i (t) is globally at-
tractive in R+ \ {0}, 1 ≤ i ≤ 2. By the comparison theorem, it easily follows
that x∗1(t) ≥ x∗2(t), ∀t ∈ [0, ω]. We further claim that V ∗

1 (t) > x∗1(t), ∀t ∈ [0, ω].

Indeed, let x∗1(t1) = max0≤t≤ω x
∗
1(t), t1 ∈ [0, ω]. Then

dx∗
1(t1)
dt = 0, and hence

P̂ (t1, V
∗
1 (t1)− x∗1(t1)) = D1(t1) > 0.

Since P̂ (t1, s) is strictly increasing for s ∈ R, V ∗
1 (t1) > x∗1(t1). Let

y(t) = V ∗
1 (t)− x∗1(t). Then y(t) satisfies the periodic differential equation

dy

dt
= S0(t)D0(t)−D(t)V ∗

1 (t)− (V ∗
1 (t)− y)(P̂ (t, y)−D1(t)). (5.7)

Since y(t1) > 0 and

dy

dt

∣
∣
∣
∣
y=0

= S0(t)D0(t) + (D1(t)−D(t))V ∗
1 (t) ≥ S0(t)D0(t) > 0,

it follows that y(t) > 0, ∀t ≥ t1. Thus, the ω-periodicity of y(t) implies that
y(t) > 0, ∀t ≥ 0, that is, V ∗

1 (t) > x∗1(t), ∀t ≥ 0.
For any (S0, x0) ∈ R

2
+ with S0 ≥ 0 and x0 > 0, let (S(t), x(t)) be the

unique solution of (5.5) satisfying S(0) = S0 and x(0) = x0 with [0, β) as its
maximal existence interval. It then easily follows that S(t) > 0 and x(t) >
0, ∀t ∈ (0, β). Let V (t) = S(t) + x(t). Then

S0(t)D0(t)−D(t)V (t) ≤ dV (t)

dt
≤ S0(t)D0(t)−D(t)V (t), ∀t ∈ [0, β).

Let V (t) be the unique solution of the linear ω-periodic equation

dV

dt
= S0(t)D0(t)−D(t)V

satisfying V (0) = V (0), and let V (t) be the unique solution of the linear
ω-periodic equation

dV

dt
= S0(t)D0(t)−D(t)V
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satisfying V (0) = V (0). Then the standard comparison theorem implies that

V (t) ≤ V (t) ≤ V (t), ∀t ∈ [0, β). (5.8)

Since V (t) and V (t) exist globally on [0,∞), β = ∞. Therefore, x(t) satisfies

x(t)
(
P̂ (t, V (t)− x(t)) −D1(t)

)
≤ dx(t)

dt
≤ x(t)

(
P̂ (t, V (t)− x(t)) −D1(t)

)

for all t ≥ 0. Then, by the comparison theorem,

x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0, (5.9)

where x̄(t) is the unique solution of the nonautonomous equation

dx(t)

dt
= x(t)

(
P̂ (t, V (t)− x(t)) −D1(t)

)
, (5.10)

with x̄(0) = x0, and x(t) is the unique solution of the nonautonomous equation

dx(t)

dt
= x(t)

(
P̂ (t, V (t)− x(t)) −D1(t)

)
, (5.11)

with x(0) = x0. Since limt→∞(V (t) − V ∗
1 (t)) = 0 and limt→∞(V (t) − V ∗

2 (t))
= 0, we have

lim
t→∞(P̂ (t, V (t)− x)− P̂ (t, V ∗

1 (t)− x)) = 0

and
lim
t→∞(P̂ (t, V (t)− x)− P̂ (t, V ∗

2 (t)− x)) = 0

uniformly for x in any bounded subset of R+. In case (a), since

∫ ω

0

(P̂ (t, V ∗
1 (t))−D1(t))dt ≥

∫ ω

0

(P̂ (t, V ∗
2 (t))−D1(t))dt,

=

∫ ω

0

(P (t, V ∗
2 (t))−D1(t))dt > 0,

Theorem 5.2.1(b) implies that

lim
t→∞(x̄(t)− x∗1(t)) = 0 and lim

t→∞(x(t)− x∗2(t)) = 0.

By (5.9), it then follows that

lim inf
t→∞ (x(t) − x∗2(t)) ≥ lim

t→∞(x(t)− x∗2(t)) = 0 (5.12)

and
lim sup
t→∞

(x(t)− x∗1(t)) ≤ lim
t→∞(x(t)− x∗1(t)) = 0, (5.13)
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and hence there exist α > 0 and β > 0 such that x(t) satisfies

α ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ β.

In case (b), since

∫ ω

0

(P̂ (t, V ∗
2 (t))−D1(t))dt ≤

∫ ω

0

(P̂ (t, V ∗
1 (t)) −D1(t))dt,

=

∫ ω

0

P (t, V ∗
1 (t))−D1(t))dt ≤ 0,

Theorem 5.2.1(a) implies that limt→∞ x̄(t) = 0 and limt→∞ x(t) = 0. By (5.9),
we get limt→∞ x(t) = 0.

In case (a), it remains to prove the existence of a positive periodic solution
of (5.5). Under the abstract setting of periodic semiflows, this can be done
by using Theorem 1.3.8 as in the latter part of the proof of Theorem 5.3.1.
Instead, we give an alternative, more elementary proof. Let V = S + x. Then
the system (5.5) is transformed into the following ω-periodic system

dV

dt
=S0(t)D0(t)−D0(t)(V − x) −D1(t)x,

dx

dt
= x

(
P̂ (t, V − x)−D1(t)

)
.

(5.14)

Then the positive invariance of R
2
+ with respect to (5.5) implies that the

closed and convex set W := {(V, x) : V ≥ x ≥ 0} ⊂ R
2
+ is positively invariant

with respect to (5.14). Moreover, for any S0 ≥ 0 and x0 > 0, since the first
equation of (5.5) implies that S′(t)|S=0 = S0(t)D0(t) > 0, the unique solution
(S(t), x(t)) of (5.5) with S(0) = S0 and x(0) = x0 satisfies S(t) > 0 and
x(t) > 0, ∀t > 0. That is, for any V0 ≥ x0 > 0, the unique solution (V (t), x(t))
of (5.14) with V (0) = V0 and x(0) = x0 satisfies V (t) > x(t) > 0, ∀t > 0. Let
G : W → W be the Poincaré map associated with (5.14); that is, for every
(V0, x0) ∈ W,G(V0, x0) = (V (ω), x(ω)). Clearly, the continuous dependence
of solutions on initial data implies that G : W → W is continuous. Let

W0 := {(V, x) ∈ W : V ∗
2 (0) ≤ V ≤ V ∗

1 (0), x
∗
2(0) ≤ x ≤ x∗1(0)} .

Since 0 < x∗1(t) < V ∗
1 (t), ∀t ∈ [0, ω], (V ∗

1 (0), x
∗
1(0)) is in the interior of W ,

and hence W0 is a nonempty, closed, bounded, and convex subset of R
2
+.

For each (V0, x0) ∈ W0, the corresponding solution (V (t), x(t)) of (5.14) with
V (0) = V0 and x(0) = x0 satisfies

(V (t), x(t)) ∈ W, ∀t ≥ 0; (5.15)

that is, V (t) ≥ x(t) ≥ 0, ∀t ≥ 0. Then V (t) satisfies

S0(t)D0(t)−D(t)V (t) ≤ dV (t)

dt
≤ S0(t)D0(t)−D(t)V (t), ∀t ≥ 0.
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Since V ∗
2 (0) ≤ V0 ≤ V ∗

1 (0), the comparison theorem implies that

V ∗
2 (t) ≤ V (t) ≤ V ∗

1 (t), ∀t ≥ 0. (5.16)

Therefore, x(t) satisfies

x(t)
(
P̂ (t, V ∗

2 (t)− x(t)) −D1(t)
)
≤ dx(t)

dt
, ∀t ≥ 0,

and
dx(t)

dt
≤ x(t)

(
P̂ (t, V ∗

1 (t)− x(t))−D1(t)
)
, ∀t ≥ 0.

Since x∗2(0) ≤ x0 ≤ x∗1(0), again by the comparison theorem we get

x∗2(t) ≤ x(t) ≤ x∗1(t), ∀t ≥ 0. (5.17)

Then (5.16) and (5.17) imply that

V ∗
2 (0) =V ∗

2 (ω) ≤ V (ω) ≤ V ∗
1 (ω) = V ∗

1 (0),

x∗2(0) =x∗2(ω) ≤ x(ω) ≤ x∗1(ω) = x∗1(0).
(5.18)

By (5.15) and (5.18), it follows that G(V0, x0) = (V (ω), x(ω)) ∈ W0, and hence
G(W0) ⊂ W0. By the Brouwer fixed point theorem, there exists (V ∗, x∗) ∈ W0

such that G(V ∗, x∗) = (V ∗, x∗). Clearly, the unique solution (V ∗(t), x∗(t)) of
(5.14) with (V ∗(0), x∗(0)) = (V ∗, x∗) is an ω-periodic solution of (5.14). Since
V ∗ ≥ x∗ > 0, by the previous claim, we have V ∗(t) > x∗(t) > 0, ∀t > 0.
By the ω-periodicity of V ∗(t) and x∗(t), it then follows that V ∗(t) > x∗(t) >
0, ∀t ≥ 0. Consequently, (S∗(t), x∗(t)) = (V ∗(t) − x∗(t), x∗(t)) is a positive
(componentwise) ω-periodic solution of system (5.5).

In the case that D0(t) = D1(t), ∀t ∈ [0, ω], it is easy to see that V ∗
1 (t) =

V ∗
2 (t), x

∗
1(t) = x∗2(t), ∀t ∈ [0, ω]. Thus, (5.12) and (5.13) imply the following

threshold dynamics for the model system.

Corollary 5.2.1. Let (B1) and (B2) hold and assume that D0(t) = D1(t),
∀t ∈ [0, ω]. Then the following statements are valid:

(a) If
∫ ω

0 (P (t, V ∗
1 (t))−D1(t)) > 0, then system (5.5) admits a unique pos-

itive, periodic solution (S∗(t), x∗1(t)) = (V ∗
1 (t) − x∗1(t), x

∗
1(t)), and ev-

ery solution (S(t), x(t)) of (5.5) with S(0) ≥ 0 and x(0) > 0 satisfies
limt→∞(S(t)− S∗(t)) = 0 and limt→∞(x(t)− x∗(t)) = 0.

(b) If
∫ ω

0
(P (t, V ∗

1 (t))−D1(t)) ≤ 0, then every solution (S(t), x(t)) of (5.5)
with S(0) ≥ 0 and x(0) ≥ 0 satisfies limt→∞(S(t) − V ∗

1 (t)) = 0 and
limt→∞ x(t) = 0.
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5.3 N -Species Competition

In this section we consider the n-species competition model in the periodic
chemostat

dS(t)

dt
=(S0(t)− S(t))D0(t)−

n∑

i=1

Pi(t, S(t))xi(t),

dxi(t)

dt
=xi(t)(Pi(t, S(t))−Di(t)), 1 ≤ i ≤ n.

(5.19)

Here S(t) denotes the concentration of the nutrient, xi(t) denotes the biomass
of the ith species at time t, Pi(t, s) represents the specific per capita nutrient
uptake function of the ith species, S0(t) and D0(t) are the input nutrient
concentration and the dilution rate, respectively, and Di(t) represents the
specific removal rate, or washout rate, of species xi. We assume that S0(t)
and Di(t), 1 ≤ i ≤ n, are all continuous, ω-periodic, and positive functions,
and that each Pi(t, s) satisfies conditions (B1) and (B2).

Let

P i(t, s) =

{
Pi(t, s) if t ≥ 0, s ≥ 0,

0 if t ≥ 0, s ≤ 0.

Then each P i : R+ ×R → R is a continuous extension of Pi(t, s) on R+ ×R+

to R+ × R. Let
D(t) = max(D0(t), D1(t), . . . , Dn(t))

and
D(t) = min(D0(t), D1(t), . . . , Dn(t)).

Then D(t) and D(t) : R+ → R+ are continuous, ω-periodic, and positive
functions. Let V ∗

1 (t) and V ∗
2 (t) be the unique positive ω-periodic solutions

of (5.6) with D(t) replaced by D(t) and D(t), respectively. As shown in the
previous section, V ∗

2 (t) ≤ V ∗
1 (t), ∀t ≥ 0.

We are now in a position to prove the main result of this section.

Theorem 5.3.1. Assume that

(1)
∫ ω

0
(Pi(t, V

∗
1 (t))−Di(t)) dt > 0, ∀1 ≤ i ≤ n;

(2)
∫ ω

0

(
P i(t, V

∗
2 (t)−

∑n
j=1,j 	=i x

∗
j (t))−Di(t)

)
dt > 0, ∀1 ≤ i ≤ n, where

each x∗j (t) is the unique positive ω-periodic solution of the scalar periodic

equation
dxj

dt = xj(Pj(t, V
∗
1 (t)− xj)−Dj(t)).

Then system (5.19) admits a positive ω-periodic solution, and there exist α >
0 and β > 0 such that any solution (S(t), x1(t), . . . , xn(t)) of (5.19) with
S(0) ≥ 0 and xi(0) > 0, ∀1 ≤ i ≤ n, satisfies

0 < α ≤ lim inf
t→∞ xi(t) ≤ lim sup

t→∞
xi(t) ≤ β, ∀1 ≤ i ≤ n.
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Proof. Let P̂i(t, s) : R+ × R → R be any continuous extension of Pi(t, s) on
R+ ×R+ to R+ ×R such that P̂i(t, s) is ω-periodic in t and locally Lipschitz
in s, and for each t ≥ 0, P̂i(t, s) is strictly increasing with respect to s ∈
R, ∀1 ≤ i ≤ n. By Theorem 5.2.1 (in the periodic case), condition (1)
implies that for each 1 ≤ i ≤ n, the periodic equation

dxi
dt

= xi(P̂i(t, V
∗
1 (t)− xi)−Di(t))

admits a unique ω-periodic solution x∗i (t), and x∗i (t) is globally attractive in
R+ \ {0}. As in the proof of Theorem 5.2.2, V ∗

1 (t) > x∗i (t), ∀t ∈ [0, ω]. Then
x∗i (t) is a unique positive ω-periodic solution of the periodic equation

dxi
dt

= xi(Pi(t, V
∗
1 (t)− xi)−Di(t));

that is, x∗i (t) is independent of the choice of the extension P̂i(t, s) of Pi(t, s).
Let

P̂iε(t, s) =

{
Pi(t, s) if t ≥ 0, s ≥ 0,

εs if t ≥ 0, s ≤ 0.

By the boundedness of V ∗
2 (t)−

∑n
j=1,j 	=i x

∗
j (t) on [0,∞), it easily follows that

for each 1 ≤ i ≤ n,

lim
ε→0+

∫ ω

0

P̂iε

⎛

⎝t, V ∗
2 (t)−

n∑

j=1,j 	=i

x∗j (t)

⎞

⎠ dt

=

∫ ω

0

⎛

⎝P i(t, V
∗
2 (t)−

n∑

j=1,j 	=i

x∗j (t))

⎞

⎠ dt.

Then condition (2) implies that there exists ε > 0 such that

∫ ω

0

⎛

⎝P̂iε(t, V
∗
2 (t)−

n∑

j=1,j 	=i

x∗j (t))−Di(t)

⎞

⎠ dt > 0, ∀1 ≤ i ≤ n. (5.20)

In what follows, for simplicity, we denote P̂iε(t, s) by P̂i(t, s), ∀1 ≤ i ≤ n.
For any (S0, x0) = (S0, x

0
1, . . . , x

0
n) ∈ R

n+1
+ with x0i > 0, ∀1 ≤ i ≤ n, let

(S(t), x(t)) = (S(t), x1(t), . . . , xn(t)) be the unique solution of (5.19) satisfy-
ing S(0) = S0, x(0) = x0 on the maximal interval of existence [0, β). Since
S′(t)|S=0 = S0(t)D0(t) > 0, it follows that S(t) > 0, and x(t) > 0, ∀t ∈ [0, β).
Let V (t) := S(t) +

∑n
i=1 xi(t). Then

S0(t)D0(t)−D(t)V (t) ≤ dV (t)

dt
≤ S0(t)D0(t)−D(t)V (t).

Therefore, by the comparison theorem, we get
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V (t) ≤ V (t) ≤ V (t), ∀t ∈ [0, β), (5.21)

where V (t) is the unique solution of the linear ω-periodic equation

dV

dt
= S0(t)D0(t)−D(t)V (t)

with V (0) = V (0), and V (t) is the unique solution of linear ω-periodic equa-
tion

dV

dt
= S0(t)D0(t)−D(t)V (t)

with V (0) = V (0). The global existence of V (t) on [0,∞) implies that
β = ∞. Since limt→∞(V (t) − V ∗

1 (t)) = 0, V (t) and hence S(t) and x(t) =
(x1(t), . . . , xn(t)) are ultimately bounded. That is, system (5.19) is point dis-
sipative on R

n+1
+ . Therefore, for all t ≥ 0, 1 ≤ i ≤ n,

xi(t)

dt
=xi(t)

⎛

⎝P̂i

⎛

⎝t, V (t)−
n∑

j=1

xj(t)

⎞

⎠−Di(t)

⎞

⎠

≤xi(t)(P̂i(t, V (t)− xi(t))−Di(t)).

By the comparison theorem, it then follows that

xi(t) ≤ x̄i(t), ∀t ≥ 0, 1 ≤ i ≤ n, (5.22)

where x̄i(t) is the unique solution of the nonautonomous equation

dxi(t)

dt
= xi(t)(P̂i(t, V (t)− xi)−Di(t)), (5.23)

with x̄i(0) = xi(0) > 0, ∀1 ≤ i ≤ n. Since limt→∞(V (t)− V ∗
1 (t)) = 0, we get

lim
t→∞(P̂i(t, V (t)− xi)− P̂ (t, V ∗

1 (t)− xi) = 0

uniformly for xi in any bounded subset of R+. Since
∫ ω

0

(P̂i(t, V
∗
1 (t))−Di(t))dt =

∫ ω

0

(Pi(t, V
∗
1 (t))−Di(t))dt > 0,

Theorem 5.2.1(b) implies that

lim
t→∞(x̄i(t)− x∗i (t)) = 0, ∀1 ≤ i ≤ n. (5.24)

By (5.21) and (5.22), it then follows that for any 1 ≤ i ≤ n and t ≥ 0,

dxi(t)

dt
=xi(t)

⎛

⎝P̂i

⎛

⎝t, V (t)−
n∑

j=1

xj(t)

⎞

⎠−Di(t)

⎞

⎠

≥xi(t)

⎛

⎝P̂i

⎛

⎝t, V (t)−
n∑

j=1,j 	=i

x̄j(t)− xi(t)

⎞

⎠−Di(t)

⎞

⎠

(5.25)
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and hence by the comparison theorem,

xi(t) ≥ xi(t), ∀t ≥ 0, 1 ≤ i ≤ n, (5.26)

where xi(t) is the unique solution of the nonautonomous equation

dxi
dt

= xi(t)

⎛

⎝P̂i

⎛

⎝t, V (t)−
n∑

j=1,j 	=i

x̄j(t)− xi

⎞

⎠−Di(t)

⎞

⎠ (5.27)

with xi(0) = xi(0), ∀1 ≤ i ≤ n. Since limt→∞(V (t)− V ∗
2 (t)) = 0, we have

lim
t→∞

⎛

⎝P̂i

⎛

⎝t, V (t)−
n∑

j=1,j 	=i

x∗j (t)− xi

⎞

⎠

−P̂i

⎛

⎝t, V ∗
2 (t)−

n∑

j=1,j 	=i

x∗j (t)− xi

⎞

⎠

⎞

⎠ = 0

uniformly for xi in any bounded subset of R+, ∀1 ≤ i ≤ n. Then (5.20) and
Theorem 5.2.1(b) imply that

lim
t→∞(xi(t)− x∗i (t)) = 0, (5.28)

where x∗i (t), ∀1 ≤ i ≤ n, is the unique positive ω-periodic solution of the
periodic equation

dxi
dt

= xi(t)

⎛

⎝P̂i

⎛

⎝t, V ∗
2 (t)−

n∑

j=1,j 	=i

x∗j (t)− xi

⎞

⎠−Di(t)

⎞

⎠ . (5.29)

By (5.22), (5.24), (5.26), and (5.28), it then follows that

lim inf
t→∞ (xi(t)− x∗i (t) ≥ 0 ≥ lim sup

t→∞
(xi(t)− x∗i (t)), ∀1 ≤ i ≤ n. (5.30)

Clearly, (5.30) implies that there exist α > 0 and β > 0 such that any solution
(S(t), x1(t), . . . , xn(t)) of (5.19) with S(0) ≥ 0 and xi(0) > 0, ∀1 ≤ i ≤ n,
satisfies

0 < α ≤ lim inf
t→∞ xi(t) ≤ lim sup

t→∞
xi(t) ≤ β, ∀1 ≤ i ≤ n.

To prove the existence of a positive ω-periodic solution of (5.19), let X :=
R

n+1
+ ,

X0 := {(S, x1, . . . , xn) ∈ R
n+1
+ : xi > 0, ∀1 ≤ i ≤ n}, and ∂X0 := X \X0.
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For any y = (S, x1, . . . , xn) ∈ X , let φ(t, y) be the unique solution of (5.19)
with φ(0, y) = y. Clearly, T (t) = φ(t, ·) : X → X is a periodic semiflow,
and T (t)X0 ⊂ X0, ∀t ≥ 0. As we have shown, T (t) is point dissipative (i.e.,
ultimately bounded) in X and uniformly persistent with respect to (X0, ∂X0)
in the sense that there exists η > 0 such that lim inft→∞ d(T (t)y, ∂X0) ≥
η, ∀y ∈ X0. Let Q = T (ω) : X → X be the Poincaré map associated with
(5.19). Note that the ultimate boundedness implies the uniform boundedness
of solutions for periodic systems of ordinary differential equations (see, e.g.,
[421, Theorem 8.5]). Thus, Q : X → X is compact. By Theorem 1.3.8, it
follows that Q admits a fixed point y0 ∈ X0, and hence, φ(t, y0) is a periodic
solution of (5.19). Let y0 = (S0, x

0
1, . . . , x

0
n) ∈ X0. Then S0 ≥ 0, x0i > 0, ∀1 ≤

i ≤ n. It then follows that φ(t, y0) = (S(t), x1(t), . . . , xn(t)) satisfies S(t) > 0
and xi(t) > 0, ∀t > 0, 1 ≤ i ≤ n. Clearly, the ω-periodicity of φ(t, y0) implies
that S(t) > 0 and xi(t) > 0, ∀t ≥ 0, 1 ≤ i ≤ n. Consequently, φ(t, y0) is a
positive ω-periodic solution of (5.19).

In the case where Di(t) = D0(t), ∀t ∈ [0, ω], 1 ≤ i ≤ n, it is easy to see
that D(t) = D(t) = D0(t), V

∗
1 (t) = V ∗

2 (t), ∀t ∈ [0, ω]. Then we have the
following corollary of Theorem 5.3.1.

Corollary 5.3.1. Let Di(t) = D0(t), ∀t ∈ [0, ω], 1 ≤ i ≤ n. Assume that

(1)
∫ ω

0 (Pi(t, V
∗
1 (t))−D0(t)) dt > 0, ∀1 ≤ i ≤ n;

(2)
∫ ω

0

(
P i(t, V

∗
1 (t)−

∑n
j=1,j 	=i x

∗
j (t))−D0(t)

)
dt > 0, ∀1 ≤ i ≤ n, where

each x∗j (t) is the unique positive ω-periodic solution of the scalar periodic
equation dxj/dt = xj(Pj(t, V

∗
1 (t)− xj)−D0(t)).

Then system (5.19) admits a positive ω-periodic solution, and all n-species
are uniformly persistent.

As shown in the proof of Theorem 5.2.2, in the case where Di(t) =
D0(t), ∀t ∈ [0, ω], 1 ≤ i ≤ n, it easily follows that V ∗

1 (t) > x∗i (t), ∀t ∈
[0, ω], 1 ≤ i ≤ n. Thus, we have the following result for 2-species compe-
tition.

Corollary 5.3.2. Let Di(t) = D0(t), ∀t ∈ [0, ω], 1 ≤ i ≤ 2. Assume that

(1)
∫ ω

0
(Pi(t, V

∗
1 (t))−D0(t)) dt > 0, 1 ≤ i ≤ 2;

(2)
∫ ω

0

(
Pi(t, V

∗
1 (t)− x∗j (t))−D0(t)

)
dt > 0, 1 ≤ i, j ≤ 2, i �= j, where each

x∗j (t) is the unique positive ω-periodic solution of the scalar periodic equa-
tion dxj/dt = xj(Pj(t, V

∗
1 (t)− xj)−D0(t)).

Then system (5.19) admits a positive, ω-periodic solution, and both species
are uniformly persistent.
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5.4 3-Species Competition

For 2-species competition in a periodic chemostat with D1(t) = D2(t) =
D0(t), ∀t ∈ [0, ω], it follows easily that (x∗1(t), 0) and (0, x∗2(t)) are the
semitrivial periodic solutions of the limiting 2-species competition system.
Then, condition (2) in Corollary 5.3.2 is a natural invasibility condition. How-
ever, for n-species competition in the periodic chemostat, even with Dj(·) =
D0(·), ∀1 ≤ j ≤ n, we see that each (x∗1(t), . . . , x

∗
i−1(t), 0, x

∗
i+1(t), . . . , x

∗
n(t))

is not the solution of the limiting n-species competition system determined
using the conservation principle, and hence, due to our overestimation of the
effect of competition, condition (2) in Corollary 5.3.1 is a stronger invasi-
bility condition than necessary. In this section we show that whenever the
positive, periodic solutions to each of the three, 2-species subsystems of the
limiting 3-species competition system are unique, the expected natural inva-
sibility conditions are sufficient to guarantee the uniform persistence of the
three interacting species and enough to ensure the existence of at least one
positive periodic solution for the full model system. We also give conditions
for competition-mediated coexistence. Here, in at least one of the two species
subsystems, one of the species is driven to extinction, regardless of the initial
conditions. However, when the third species is introduced all three species
coexist, again independent of the initial conditions, provided that they are all
positive.

Consider the 3-species competition model in the periodic chemostat

dS(t)

dt
=(S0(t)− S(t))D0(t)−

3∑

i=1

Pi(t, S(t))xi(t),

dxi(t)

dt
=xi(t)(Pi(t, S(t))−D0(t)), 1 ≤ i ≤ 3.

(5.31)

Here S0(t), D0(t), and each Pi(t, s), 1 ≤ i ≤ 3, satisfy the same conditions as
in (5.19), with Di(t) = D0(t), ∀t ∈ [0, ω], 1 ≤ i ≤ 3. Let V ∗

0 (t) be the unique
globally attractive positive ω-periodic solution of

dV

dt
= (S0(t)− V (t))D0(t).

For each 1 ≤ i ≤ 3, let (Ei) be the 2-species periodic competition system

dxj
dt

= xj

⎛

⎝Pj

⎛

⎝t, V ∗
0 −

3∑

k=1,k 	=i

xk

⎞

⎠−D0(t)

⎞

⎠ , 1 ≤ j ≤ 3, j �= i. (5.32)

We will distinguish three cases:

(C1) Each (Ei), 1 ≤ i ≤ 3, admits at most one positive ω-periodic solution;
(C2) Each (Ei), 2 ≤ i ≤ 3, admits at most one positive ω-periodic solution,

and (E1) admits no positive ω-periodic solution;



148 5 N-Species Competition in a Periodic Chemostat

(C3) (E2) admits at most one positive ω-periodic solution, and each (Ei),
i = 1, 3, admits no positive ω-periodic solution.

Theorem 5.4.1. Let (C1) hold. Assume that

(1) μi :=
∫ ω

0 (Pi(t, V
∗
0 (t)) −D0(t))dt > 0, ∀1 ≤ i ≤ 3;

(2) μji :=
∫ ω

0 (Pi(t, V
∗
0 (t)− x∗j (t))−D0(t))dt > 0, ∀1 ≤ i, j ≤ 3, i �= j;

(3) μ̄i :=
∫ ω

0
(Pi(t, V

∗
0 (t)−

∑3
j=1,j 	=i x̄

i
j(t))−D0(t))dt > 0, ∀1 ≤ i ≤ 3;

where each x∗i (t) is the unique positive ω-periodic solution of the scalar periodic
equation

dxi
dt

= xi(Pi(t, V
∗
0 (t)− xi)−D0(t)),

and (x̄12(t), x̄
1
3(t)), (x̄

2
1(t), x̄

2
3(t)) and (x̄31(t), x̄

3
2(t)) are the unique positive ω-

periodic solutions of (E1), (E2), and (E3), respectively. Then system (5.31)
admits a positive ω-periodic solution, and there exist α > 0 and β > 0 such
that any solution (S(t), x1(t), x2(t), x3(t)) of (5.31) with S(0) ≥ 0 and xi(0) >
0, ∀1 ≤ i ≤ 3, satisfies

0 < α ≤ lim inf
t→∞ xi(t) ≤ lim sup

t→∞
xi(t) ≤ β, ∀1 ≤ i ≤ 3.

Proof. Let P̂i(t, s) : R+ × R → R be any continuous extension of Pi(t, s) on
R+×R+ to R+×R such that P̂i(t, s) is ω-periodic in t and locally Lipschitz in
s, and for any t ≥ 0, P̂i(t, s) is strictly increasing with respect to s ∈ R, 1 ≤
i ≤ 3. As in the proof of Theorem 5.3.1, condition (1) implies that for each
1 ≤ i ≤ 3, the periodic equation

dxi
dt

= xi(Pi(t, V
∗
0 (t)− xi)−Di(t)) (5.33)

admits a unique positive ω-periodic solution x∗i (t) with V ∗
0 (t) > x∗i (t), ∀t ∈

[0, ω], and x∗i (t) is globally attractive for the periodic equation

dxi
dt

= xi(P̂i(t, V
∗
0 (t)− xi)−Di(t)) (5.34)

in R+ \{0}. For each 1 ≤ i ≤ 3, let (Êi) be the system (5.32) with Pj replaced

by P̂j , j �= i. For the 2-species periodic competition system (Ê3)

dx1
dt

=x1(P̂1(t, V
∗
0 (t)− x1 − x2)−D0(t)),

dx2
dt

=x2(P̂2(t, V
∗
0 (t)− x1 − x2)−D0(t)),

(5.35)

we claim that if (x̃1(t), x̃2(t)) is a positive ω-periodic solution to (Ê3), then
(x̃1(t), x̃2(t)) satisfies V ∗

0 (t) > x̃1(t) + x̃2(t), ∀t ∈ [0, ω]. Indeed, let x̃1(t1) =

max0≤t≤ω x̃1(t), t1 ∈ [0, ω]. Then dx̃1(t1)
dt = 0, and hence
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P̂1(t1, V
∗
0 (t1)− x̃1(t1)− x̃2(t1)) = D0(t1) > 0.

Thus, since P̂1(t1, s) is strictly increasing for s ∈ R, we have V ∗
0 (t1) > x̃1(t1)+

x̃2(t1). Let y(t) = V ∗
0 (t)− x̃1(t)− x̃2(t). It then easily follows that y(t) satisfies

the following periodic differential equation

dy

dt
= S0(t)D0(t)−D0(t)y − x̃1(t)P̂1(t, y)− x̃2(t)P̂2(t, y).

Since y(t1) > 0 and
dy

dt

∣
∣
∣
∣
y=0

= S0(t)D0(t) > 0,

we have y(t) > 0, ∀t ≥ t1. Then the ω-periodicity of y(t) implies that y(t) >
0, ∀t ≥ 0; that is, V ∗

0 (t) > x̃1(t) + x̃2(t), ∀t ≥ 0. By conditions (1) and (2)
with 1 ≤ i, j ≤ 2, i �= j, and Theorem 2.4.2, as applied to the Poincaré map
associated with (Ê3), or an argument similar to that in [152, IV.33], [325,
Chapter 7], and [334], it easily follows that there are two positive ω-periodic
solutions (x1(t), x2(t)) and (x1(t), x2(t)) to (Ê3) with 0 < x1(t) ≤ x1(t) and
0 < x2(t) ≤ x2(t), ∀t ∈ [0, ω], such that each solution (x1(t), x2(t)) of (Ê3)
with x1(0) > 0 and x2(t) > 0 satisfies

lim
t→∞ d (x1(t), [x1(t), x1(t)]) = 0

and
lim
t→∞ d (x2(t), [x2(t), x2(t)]) = 0.

By the previous claim, we get V ∗
0 (t) > x1(t)+x2(t) and V

∗
0 (t) > x1(t)+x2(t),

and hence both (x1(t), x2(t)) and (x1(t), x2(t)) are also positive periodic solu-
tions of (E3). Therefore, by the uniqueness assumption (C1), (x1(t), x2(t)) =
(x1(t), x2(t)), ∀t ∈ [0, ω], and hence (E3) admits a unique positive ω-periodic
solution (x̄31(t), x̄

3
2(t)) with V ∗

0 (t) > x̄31(t) + x̄32(t), ∀t ∈ [0, ω]. Furthermore,
(x̄31(t), x̄

3
2(t)) is globally attractive for (Ê3) in int(R2

+). By a similar ar-
gument, it follows that (E1) and (E2) admit unique positive, ω-periodic
solutions (x̄12(t), x̄

1
3(t)) and (x̄21(t), x̄

2
3(t)) with V ∗

0 (t) > x̄12(t) + x̄13(t) and
V ∗
0 (t) > x̄21(t) + x̄23(t), ∀t ∈ [0, ω], respectively.
For the 3-species periodic competition system

dxi
dt

= xi

⎛

⎝P̂i

⎛

⎝t, V ∗
0 (t)−

3∑

j=1

xj

⎞

⎠−D0(t)

⎞

⎠ , 1 ≤ i ≤ 3, (5.36)

let φ0(t, x) be the unique solution of (5.36) with φ0(0, x) = x ∈ R
3
+. By a

standard comparison theorem argument, it then easily follows that φ0(t, x)
exists globally on [0,∞), and solutions of (5.36) are uniformly and ultimately
bounded. Let X = R

3
+, and let Q = φ0(ω, ·) be the Poincaré map associated

with (5.36). Then, Q : X → X is compact and point dissipative. Let
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X0 := {(x1, x2, x3) ∈ R
3
+ : xi > 0, ∀1 ≤ i ≤ 3}, and ∂X0 = X \X0.

Let M1 = (0, 0, 0), M2 = (x∗1(0), 0, 0), M3 = (0, x∗2(0), 0), M4 = (0, 0, x∗3(0)),
M5 = (0, x̄12(0), x̄

1
3(0)), M6 = (x̄21(0), 0, x̄

2
3), and M7 = (x̄31(0), x̄

3
2, 0). Then

each Mi is a fixed point of Q. For each x ∈ X , let ω(x) be the ω-limit set of x
with respect to the discrete semiflow {Qn}∞n=0. Then, by our previous analysis,
∪x∈∂X0ω(x) = {M1,M2, . . . ,M7}, and no subset of the Mi’s forms a cycle for
Q|∂X0

: ∂X0 → ∂X0. By conditions (1), (2), and (3) and Lemma 5.1.1, it
follows that eachMi is an isolated invariant set for Q inX0, and hence isolated
in X , since Mi is isolated for Q|∂X0

in ∂X0, and Q : X0 → X0. Therefore,

∪7
i=1Mi is an isolated and acyclic covering of ∪x∈∂X0ω(x) in ∂X0. Again by

Lemma 5.1.1, we have W s(Mi) ∩ X0 = ∅, ∀1 ≤ i ≤ 7. By Theorem 1.3.1
and Remark 1.3.1, it follows that Q : X → X is uniformly persistent with
respect to (X0, ∂X0). Therefore, Theorem 1.3.6 implies that Q : X0 → X0

has a global attractor A0, and hence A0 is globally asymptotically stable for
Q in X0.

Let (S(t), x(t)) = (S(t), x1(t), x2(t), x3(t)) be a given solution of (5.31)
with S(0) ≥ 0 and xi(0) > 0, ∀1 ≤ i ≤ 3, and let V (t) := S(t) +
∑3

i=1 xi(t), ∀t ≥ 0. Then S(t) > 0, xi(t) > 0, ∀t > 0, 1 ≤ i ≤ 3, and V (t)
satisfies

dV (t)

dt
= (S0(t)− V (t))D0(t). (5.37)

Thus, (S(t), x(t)) exists globally on [0,∞). It follows that limt→∞ |V (t) −
V ∗
0 (t)| = 0, and x(t) satisfies the 3-dimensional nonautonomous system

dxi
dt

= xi

⎛

⎝P̂i

⎛

⎝t, V (t)−
3∑

j=1

xj

⎞

⎠−D0(t)

⎞

⎠ , 1 ≤ i ≤ 3, (5.38)

with

lim
t→∞

(

P̂i

(

t, V (t)−
3∑

i=1

xj

)

− P̂

(

t, V ∗
0 (t)−

3∑

i=1

xj

))

= 0 (5.39)

uniformly for x = (x1, x2, x3) in any bounded subset of R
3
+, 1 ≤ i ≤ 3.

By the boundedness of V (t), it is easy to see that solutions of (5.38) are
uniformly bounded in R

3
+. Let φ(t, s, x), t ≥ s, be the unique solution of (5.38)

with φ(s, s, x) = x ∈ X := R
3
+. By Proposition 3.2.2, φ(t, s, x) is asymptotic

to the ω-periodic semiflow T (t) = φ0(t, ·) : X → X , and hence Tn(x) =
φ(nω, 0, x) : X → X, n ≥ 0, is an asymptotically autonomous discrete process
with limiting autonomous discrete semiflow Qn : X → X,n ≥ 0, where Q =
T (ω) is the Poincaré map associated with (5.36). By conditions (1), (2), and

(3) and Lemma 5.1.2, it follows that W̃ s(Mi) ∩ X0 = ∅, ∀1 ≤ i ≤ 7. By
Lemma 1.2.2, every ω-limit set ω(x) of γ+(x) = {Tn(x) : n ≥ 0} is internally
chain transitive for Q : X → X . By Theorem 1.2.1, we get ω(x) ⊂ A0. Then
Theorem 3.2.1 implies that
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lim
t→∞ d(φ(t, 0, x), T (t)A0) = 0, ∀x ∈ X0.

Since T (ω)A0 = A0 and T (t) is an ω-periodic semiflow, it follows that

lim
t→∞ d(φ(t, 0, x), A∗

0) = 0,

where A∗
0 = ∪t∈[0,ω]T (t)A0 is a compact subset of X0. In particular, since

x(0) ∈ X0, we have

lim
t→∞ d(x(t), A∗

0) = lim
t→∞ d(φ(t, 0, x(0)), A∗

0) = 0.

Therefore, there exist α > 0 and β > 0, which depend only on A∗
0, such that

the solution (S(t), x(t)) of (5.31) with S(0) ≥ 0 and xi(0) > 0, ∀1 ≤ i ≤ 3,
satisfies

0 < α ≤ lim inf
t→∞ xi(t) ≤ lim sup

t→∞
xi(t) ≤ β, ∀1 ≤ i ≤ 3.

By the last part of the proof of Theorem 5.3.1, it follows that system (5.31)
admits a positive periodic solution.

Theorem 5.4.2. Let (C2) hold. Assume that

(1) μi :=
∫ ω

0
(Pi(t, V

∗
0 (t)) −D0(t))dt > 0, ∀1 ≤ i ≤ 3;

(2) μji :=
∫ ω

0 (Pi(t, V
∗
0 (t)−x∗j (t))−D0(t))dt > 0, ∀1 ≤ i, j ≤ 3, i �= j, j �= 2,

and μ21 :=
∫ ω

0
(P1(t, V

∗
0 (t)− x∗2(t)) −D0(t))dt > 0;

(3) μ̄i :=
∫ ω

0
(Pi(t, V

∗
0 (t)−

∑3
j=1,j 	=i x̄

i
j(t))−D0(t))dt > 0, ∀2 ≤ i ≤ 3;

where x∗i (t), (x̄21(t), x̄
2
3(t)) and (x̄31(t), x̄

3
2(t)) are as in Theorem 5.4.1. Then

the conclusion of Theorem 5.4.1 holds.

Proof. We use the same notation as in the proof of Theorem 5.4.1. By the a
priori estimate on the positive periodic solution of (Ê1) claimed in the proof
of Theorem 5.4.1, (C2) implies that (Ê1) admits no positive periodic solution.
Since

∫ ω

0 (P2(t, V
∗
0 (t)− x∗3(t))−D0(t))dt > 0, by Theorem 2.4.1, as applied to

the Poincaré map associated with (Ê1), or an argument similar to that in the
proof of [152, Theorem 34.1], it easily follows that (u∗2(t), 0) is globally attrac-
tive for (Ê1) in int(R2

+). Clearly, ∪x∈∂X0ω(x) = {M1,M2,M3,M4,M6,M7}.
Then, as in the proof of Theorem 5.4.1, ∪7

i=1,i	=5Mi is an isolated and acyclic
covering of ∪x∈∂X0ω(x) in ∂X0. Now an argument similar to that given in
Theorem 5.4.1 completes the proof.

It is worth pointing out that Theorem 5.4.2 shows competition-mediated
coexistence in the following sense. If species one is absent, and species two and
three compete, then species two drives species three to extinction. However,
this extinction of species three is avoided simply by introducing competitor
one. Once competitor one is introduced, all three species persist in sustained
oscillation.
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Theorem 5.4.3. Let (C3) hold. Assume that

(1) μi :=
∫ ω

0
(Pi(t, V

∗
0 (t)) −D0(t))dt > 0, ∀1 ≤ i ≤ 3;

(2) μ3i :=
∫ ω

0
(Pi(t, V

∗
0 (t) − x∗3(t)) − D0(t))dt > 0, ∀1 ≤ i ≤ 2, μ21 :=

∫ ω

0 (P1(t, V
∗
0 (t)−x∗2(t))−D0(t))dt > 0, and μ13 :=

∫ ω

0 (P3(t, V
∗
0 (t)−x∗1(t))−

D0(t))dt > 0;

(3) μ̄2 :=
∫ ω

0 (P2(t, V
∗
0 (t)−

∑3
j=1,j 	=2 x̄

2
j(t)) −D0(t))dt > 0;

where x∗i (t) and (x̄21(t), x̄
2
3(t)) are as in Theorem 5.4.1. Then the conclusion

of Theorem 5.4.1 holds.

Proof. Again we use the same notation as in the proof of Theorem 5.4.1.
As in the proof of Theorem 5.4.2, (C3) implies that (u∗2(t), 0) and (u∗1(t), 0)
are globally attractive for (Ê1) and (Ê3) in int(R2

+), respectively. Clearly,
∪x∈∂X0ω(x) = {M1,M2,M3,M4,M6}. Then, as in the proof of Theorem 5.4.1,
∪6
i=1,i	=5Mi is an isolated and acyclic covering of ∪x∈∂X0ω(x) in ∂X0. Now

again, an argument similar to that given in Theorem 5.4.1 completes the
proof.

Remark 5.4.1. If instead of assumption (C1), we let M5,M6, and M7, in the
proof of Theorem 5.4.1, be three positive global attractors of the Poincaré
maps associated with the three 2-dimensional competition systems (Ê1), (Ê2),
and (Ê3), respectively, then by a similar argument, the conclusion of Theo-
rem 5.4.1 holds with condition (3) replaced by a revised invasibility condition.
For example, let (x1(t), x2(t)) and (x1(t), x2(t)) be as in the proof of Theo-
rem 5.4.1. Then, under condition (3) with i = 3 and (x̄31(t), x̄

3
2(t)) replaced

by (x1(t), x2(t)), one can prove that M7 is an isolated invariant set of Q in

X and W̃ s(M7) ∩X0 = ∅, by using the compressivity of (Ê3) and arguments
similar to those given in Lemmas 5.1.1 and 5.1.2.

5.5 Notes

This chapter is adapted from Wolkowicz and Zhao [407]. Smith and Waltman
[334, Chapter 7] discussed in detail 2-species competition in the chemostat
with periodic dilution rate by appealing to the theory of monotone dynamical
systems. There are some other researches on models of the chemostat involving
either periodic nutrient input or periodic dilution rates (see, e.g., [347, 170,
316, 92, 144, 47, 419, 217, 218, 274]). A model of two species competition in the
unstirred chemostat with periodic input and washout was studied by Pilyugin
and Waltman [278]. Furthermore, the periodic gradostat was considered by
Smith [322, 325]. The elementary comparison and fixed point arguments for
the existence of positive periodic solutions in Theorem 5.2.2 were motivated
by ideas in Zhao [429].
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Smith [328] studied a periodically forced Droop model for phytoplank-
ton growth in a chemostat, and White and Zhao [404] considered a periodic
Droop model for two species competition in a chemostat. Recently, Hsu, Wang
and Zhao [177] investigated the global dynamics of a variable-yield model of
two species competing for two essential nutrients with nutrient concentration
inflow varying periodically in time.



6

Almost Periodic Competitive Systems

In the periodic chemostat model discussed in the previous chapter, we assumed
that the nutrient input, dilution, and species-specific removal rates were all
periodic with commensurate period. It is possible for these parameters to have
different periods. Ecologically, a population may be of some inherent periodic
variation that may be different from the seasonal variation. This way we natu-
rally obtain special almost periodic systems. Moreover, the almost periodicity
can also be viewed as a deterministic version of a random variation in the en-
vironment. This chapter is devoted to the study of the long-term behavior of
solutions and almost periodic coexistence states in almost periodic Kolmogrov
competitive systems of ordinary differential equations and an almost periodic
chemostat. We also discuss competitive coexistence in nonautonomous two-
species competitive Lotka–Volterra systems.

In Section 6.1 we establish a threshold-type result for scalar asymptoti-
cally almost periodic Kolmogrov equations: Either the trivial solution or the
unique positive almost periodic solution of the limiting almost periodic equa-
tion attracts all positive solutions, depending on the linear stability of the
trivial solution. In Section 6.2, by the threshold-type result and the compari-
son technique, we obtain a set of sufficient conditions for n competing species
to be uniformly persistent. Under further conditions of main diagonally domi-
nant nature, we prove the existence and global attractivity of a unique positive
periodic solution by constructing a Liapunov function. Section 6.3 is devoted
to the study of a single population growth model in an almost periodic chemo-
stat. In the case where the nutrient input and washout rate and the specific
removal rate of the species are identical, we prove that the convergence of the
species to zero (extinction) or to a positive almost periodic function (survival)
is completely characterized by the mean value of the uptake function along
a certain almost periodic function. The permanence and extinction are also
considered when the nutrient input and washout rate is different from the
specific removal rate of the species. In Section 6.4, as an application of the
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no-cycle theorem on uniform persistence in processes (nonautonomous semi-
flows), we obtain a natural invasion condition for the competitive coexistence
in nonautonomous two-species competitive Lotka–Volterra systems.

6.1 Almost Periodic Attractors in Scalar Equations

In this section we first establish threshold dynamics for scalar almost periodic
Kolmogrov equations, and then extend them to the asymptotically almost
periodic case.

Let g : R → R be a continuous almost periodic function. Then the mean

value m(g) := limT→+∞ 1
T

∫ T

0 g(t)dt exists and limv→∞ 1
v

∫ t

t−v g(s)ds = m(g)
uniformly for t ∈ R (see [117, Theorem 3.1 and Corollary 3.2]). Moreover, we
have the following result.

Lemma 6.1.1. Let p(·) be a continuous almost periodic function on R with
m(p) < 0, and let q : R+ → R be a continuous function. If q(·) is bounded,
then solutions of the linear nonautonomous equation

dx

dt
= p(t)x + q(t), t ≥ 0, (6.1)

are ultimately bounded; If limt→∞ q(t) = 0, then every solution x(t) of (6.1)
satisfies limt→∞ x(t) = 0.

Proof. For x0 ∈ R, let x(t) be the unique solution of (6.1) with x(0) = x0.
Then

x(t) = x0e
∫

t
0
p(s)ds +

∫ t

0

e
∫

t
u
p(s)dsq(u)du, ∀t ≥ 0,

and hence

|x(t)| ≤ |x0|e
∫ t
0
p(s)ds + sup

t∈R+

{|q(t)|}
∫ t

0

e
∫ t
u
p(s)dsdu, ∀t ≥ 0.

Let p0 := m(p) < 0. Then there exists t0 > 0 such that

1

t

∫ t

0

p(s)ds <
p0
2
, ∀t ≥ t0,

and hence limt→∞ e
∫

t
0
p(s)ds = 0. Since p(t) is almost periodic,

lim
v→∞

1

v

∫ t

t−v

p(s)ds = p0 < 0, uniformly for t ∈ R.

Then there exists T0 > 0 such that for all v ≥ T0,

1

v

∫ t

t−v

p(s)ds <
p0
2
< 0, ∀t ∈ R.
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Let p̄ := supt∈R+
{|p(t)|}. Then for t ≥ T0,

∫ t

0

e
∫

t
u
p(s)dsdu =

∫ T0

0

e
∫ t
t−v

p(s)dsdv +

∫ t

T0

e
∫ t
t−v

p(s)dsdv

≤
∫ T0

0

ep̄vdv +

∫ t

T0

e
p0
2 vdv

=
1

p̄

(
ep̄T0 − 1

)
+

2

p0

(
e

p0
2 t − e

p0
2 T0

)
.

Clearly, limt→+∞ e
p0
2 t = 0. It then follows that for sufficiently large t, |x(t)|

is bounded by

B = sup
t∈R+

{|q(t)|}
[
1

p̄

(
ep̄T0 − 1

)
− 2

p0
e

p0
2 T0

]

+ 1 > 0.

Note that B is independent of the choice of x0 ∈ R. So solutions of (6.1) are
ultimately bounded for B.

In the case where limt→∞ q(t) = 0, letM = supt∈R+
{|q(t)|} ≥ 0. For ε > 0,

since limt→∞ e
p0
2 t = 0, there exists T1 = T1(ε) ≥ T0 such that 4M

|p0|e
p0
2 T1 < ε

2 .

Since limt→∞ q(t) = 0, there exists T2 = T2(ε) ≥ T1 such that

∫ T1(ε)

0

ep̄v|q(t− v)|dv < ε

2
, ∀t ≥ T2.

It follows that for all t ≥ T2,
∣
∣
∣
∣

∫ t

0

e
∫ t
u
p(s)dsq(u)du

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t

0

e
∫

t
t−v

p(s)dsq(t− v)dv

∣
∣
∣
∣

≤
∫ T1

0

e
∫ t
t−v

p(s)ds|q(t− v)|dv +
∫ t

T1

e
p0
2 v|q(t− v)|dv

≤
∫ T1

0

ep̄v|q(t− v)|dv + 4M

|p0|
e

p0
2 T1

<
ε

2
+
ε

2
= ε.

Then limt→∞
∫ t

0 e
∫

t
u
p(s)dsq(u)du = 0, and hence limt→∞ x(t) = 0.

Consider first a scalar almost periodic Kolmogorov equation

du

dt
= uf(t, u) (6.2)

where f : R × R+ → R is continuous and almost periodic with respect to t
uniformly for u in any bounded subset of R+. Moreover, we assume that f(t, u)

is continuously differentiable with respect to u ∈ R+ and fu(t, u) :=
∂f(t,u)

∂u
is bounded for all t ∈ R and for all u in any bounded subset of R+. We will
impose the following conditions on (6.2):
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(C1) Solutions of equation (6.2) in R+ are ultimately bounded for a bound
K > 0; that is, for any u0 ∈ R+, there exists T = T (u0) > 0 such
that the unique solution u(t) of (6.2) with u(0) = u0 satisfies |u(t)| ≤
K, ∀t ≥ T ;

(C2) f(t, u) ≤ f(t, 0), ∀u ≥ 0, and there exist a continuously differentiable
β : (0,∞) → (0,∞), an almost periodic function b : R → R with

m(b) < 0, and a real number K1 > K such that ∂(f(t,u)β(u))
∂u ≤ 0, ∀t ∈

R+, u ∈ (0,K1]; and ∂(f(t,u)β(u))
∂u ≤ b(t), ∀t ∈ R, u ∈ (0,K].

Then we have the following threshold-type result on the global dynamics of
(6.2).

Theorem 6.1.1. Let (C1) and (C2) hold.

(a) If m(f(·, 0)) < 0, then u = 0 is a globally asymptotically stable solution of
(6.2) in R+;

(b) If m(f(·, 0)) > 0, then (6.2) admits a unique positive almost periodic
solution, which is globally asymptotically stable in R+ \ {0}.

Proof. For u0 ∈ R+, let φ(t, u0) be the unique solution of (6.2) with
φ(0, u0) = u0. Then condition (C1) implies that φ(t, u0) exists globally on
[0,∞). Clearly, for any u0 ∈ R+, φ(t, u0) ≥ 0, ∀t ≥ 0.

In the case where m(f(·, 0)) < 0, by condition (C2), for any u0 ∈ R+,
u(t) := φ(t, u0) satisfies

du

dt
= uf(t, u) ≤ uf(t, 0), ∀t ≥ 0.

By the comparison theorem, it follows that

φ(t, u0) ≤ u0e
∫

t
0
f(s,0)ds, ∀t ≥ 0, u ∈ R+.

Since m(f(·, 0)) < 0, limt→∞ e
∫

t
0
f(s,0)ds = 0. This implies that u = 0 is

globally asymptotically stable with respect to nonnegative initial values.
In the case where m(f(·, 0)) > 0, let h(t) = min0≤u≤K fu(t, u), ∀t ∈ R.

Then h : R → R is a bounded and continuous function. For any u0 > 0, by the
ultimate boundedness of φ(t, u0), there exists t0 = t0(u0) > 0 such that u(t) =
φ(t, u0) ∈ (0,K], ∀t ≥ t0. Let u1(t) = u(t+ t0). Then u1(t) ∈ (0,K], ∀t ≥ 0,
and u1(t) satisfies

du1(t)

dt
= u1(t)f(t+ t0, u1(t))

= u1(t)

[

f(t+ t0, 0) +

∫ 1

0

d

ds
f(t+ t0, su1(t))ds

]

= u1(t)

[

f(t+ t0, 0) +

(∫ 1

0

fu(t+ t0, su1(t))ds

)

u1(t)

]

≥ u1(t) [f(t+ t0, 0) + h(t+ t0)u1(t)] , ∀t ≥ 0.
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By the comparison theorem, it follows that

u1(t) ≥ φ0(t, u0), ∀t ≥ 0,

where φ0(t, u0) is the unique solution of the nonautonomous equation

du

dt
= u [f(t+ t0, 0) + h(t+ t0)u] (6.3)

with φ0(0, u0) = u0 > 0. Clearly, φ0(t, u0) > 0, ∀t ≥ 0. Let v = 1
u , u > 0.

Then (6.3) is transformed into the following linear equation

dv

dt
= −f(t+ t0, 0)v − h(t+ t0). (6.4)

Since m(−f(·+ t0, 0)) = −m(f(·, 0)) < 0, by the almost periodicity of f(·, 0),
the boundedness of m(·), the choice of T0, and the explicit expression of the
bound B in Lemma 6.1.1, it follows that there exists B0 > 0, independent
of t0 > 0, such that solutions of (6.4) are ultimately bounded by B0. Then
u1(t), and hence u(t), is ultimately bounded below by α = 1/B0. Therefore,
equation (6.2) is permanent in R+; that is, for any u0 > 0, there exists T =
T (u0) > 0 such that 0 < α ≤ φ(t, u0) ≤ K, ∀t ≥ T .

Let u(t) be the solution of (6.2) with u(0) > 0. Then there exists T0 > 0
such that 0 < α ≤ u(t) ≤ K, ∀t ≥ T0. We further claim that u(t), t ≥ 0,
has the property that for any sequence {t′k} with t′k > 0 and t′k → ∞ as
k → ∞, there exists a subsequence {tm} of {t′k} such that u(t+ tm) converges
uniformly on R+. Indeed, since {u(t′k)}∞k=1 is bounded and f(t, u) is almost
periodic in t uniformly for u in any bounded subset of R+, we can choose a
subsequence {tm} of {t′k} with tm ≥ T0, m ≥ 1, such that u(tm) converges
and f(t + tm, u) converges uniformly on R × [0,K] as m → ∞ (see [421,
Theorem 2.2]). Let um(t) = u(t+ tm), ∀t ≥ 0,m ≥ 1. Then

α ≤ um(t) ≤ K, ∀t ≥ 0,m ≥ 1. (6.5)

Define

γ(s) := β(s)/s, ∀s > 0, and V (u, v) :=

(∫ v

u

γ(s)ds

)2

, ∀u, v > 0.

Since γ(s) > 0, ∀s ∈ [α,K], there exist D1 and D2 ∈ (0,∞) such that

D2
1(u − v)2 ≤ V (u, v) ≤ D2

2(u− v)2, ∀u, v ∈ [α,K]. (6.6)

Let V ′(t) = d
dtV (um(t), un(t)) and

g(t, tm, tn) = 2

∫ um(t)

un(t)

γ(s)ds · β(un(t)) [f(t+ tm, un(t)) − f(t+ tn, un(t))] .

Then by the mean value theorem and condition (C2), we have
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V ′(t) = 2

∫ um

un

γ(s)ds [β(um)f(t+ tm, um)− β(un)f(t+ tn, un)]

= 2

∫ um

un

γ(s)ds [β(um)f(t+ tm, um)− β(un)f(t+ tm, un)]

+ g(t, tm, tn)

= 2(um − un)

∫ um

un

γ(s)ds
∂(β(u)f(t+ tm, u))

∂u

∣
∣
∣
∣
u=ξ

+ g(t, tm, tn)

≤ 2

D2
V (un(t), um(t))b(t+ tm) + g(t, tm, tn),

where ξ = ξ(t) is between um(t) and un(t). By the comparison theorem, we
get

V (un(t), um(t)) ≤V (un(0), um(0))e
∫

t
0

2
D2

b(s+tm)ds

+

∫ t

0

e
∫ t
u

2
D2

b(s+tm)ds
g(u, tm, tn)du.

(6.7)

Using the almost periodicity of b(·) on R, as in the proof of Lemma 6.1.1, we
can obtain B1 > 0 and B2 > 0, which are independent of tm, m ≥ 1, such
that

e
∫

t
0

2
D2

b(s+tm)ds ≤ B1 and

∫ t

0

e
∫

t
u

2
D2

b(s+tm)dsdu ≤ B2, ∀t ≥ 0.

By (6.5) and the choice of {tm}∞m=1, we have limm,n→∞(u(tn) − u(tm)) = 0,
and hence

lim
m,n→∞V (un(0), um(0)) = lim

m,n→∞V (u(tn), u(tm)) = 0

and
lim

m,n→∞ g(t, tm, tn) = 0, uniformly for t ∈ R+.

By (6.7), it follows that

lim
m,n→∞V (un(t), um(t)) = 0, uniformly for t ∈ R+.

Then (6.6) implies that

lim
m,n→∞(u(t+ tm)− u(t+ tn)) = 0, uniformly for t ∈ R+.

That is, {u(t+ tm)} converges uniformly on R+. By [421, Theorems 3.10 and
3.9], it then follows that u(t) is asymptotic to an almost periodic function
p(t); that is, limt→∞(u(t) − p(t)) = 0. By [421, Theorem 16.1], p(t) is an
almost periodic solution of (6.2). Since p(t) is almost periodic, there exists a
sequence τk → ∞ such that p(t+τk) → p(t) uniformly for t ∈ R as k → ∞. Let
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q(t) = u(t)−p(t). Then limt→∞ q(t) = 0. For any t ∈ R, when k is sufficiently
large, t+ τk ≥ T0, and hence α ≤ u(t+ τk) = p(t+ τk)+ q(t+ τk) ≤ K. Taking
k → ∞, we get α ≤ p(t) ≤ K, ∀t ∈ R. Let p1(t) and p2(t) be two almost
periodic solutions of (6.2) with pi(t) ∈ [α,K], ∀t ∈ R, i = 1, 2. Then, as in the
previous argument, we have

d

dt
V (p1(t), p2(t)) ≤

2

D2
b(t)V (p1(t), p2(t)), ∀t ∈ R.

Hence, by the comparison theorem, we get

V (p1(t), p2(t)) ≤ V (p1(0), p2(0))e
∫

t
0

2
D2

b(s)ds, ∀t ≥ 0.

Since p1(t) − p2(t) are almost periodic, there exists a sequence tk → ∞ such
that

lim
k→∞

[p1(t+ tk)− p2(t+ tk)] = p1(t)− p2(t), uniformly for t ∈ R.

For any t ∈ R, when k is sufficiently large, t+ tk ≥ 0, and hence

D2
1 [p1(t+ tk)− p2(t+ tk]

2 ≤V (p1(t+ tk), p2(t+ tk))

≤V (p1(0), p2(0))e
2

D2

∫ t+tk
0 b(s)ds.

Taking k → ∞ and using the fact limt→∞ e
2

D2

∫
t
0
b(s)ds

= 0, we haveD2
1[p1(t)−

p2(t)]
2 = 0. Then p1(t) = p2(t), ∀t ∈ R. Therefore, there exists a unique

almost periodic solution p(t) with p(t) ∈ [α,K], ∀t ∈ R, such that every
solution u(t) of (6.2) with u(0) > 0 satisfies limt→∞(u(t)− p(t)) = 0.

It remains to prove the stability of p(t) with respect to (6.2). Let α1 ∈ (0, α)
be fixed. Since p(t) ∈ [α,K], ∀t ∈ R, there exists δ > 0 such that

α1 < p(t) + y < K1, ∀t ∈ R, y ∈ (−δ, δ).

Let W (t, y) = V (y + p(t), p(t)), ∀t ≥ 0, |y| < δ. Then for some D̄1 and D̄2 ∈
(0,∞), dependent on α1 and K1, we have

D̄2
1y

2 ≤ W (t, y) ≤ D̄2
2y

2, ∀t ≥ 0, |y| < δ.

By condition (C2), it follows, under the transformation y = x− p(t), that the
derivative function of W (t, y) for the resulting equation satisfies

dW

dt
(t, y) = 2

∫ y+p(t)

p(t)

γ(s)ds [β(y + p(t))f(t, y + p(t))− β(p(t))f(t, p(t))] ≤ 0

for all t ≥ 0, |y| < δ. Thus, by the standard Liapunov stability theorem, y = 0
is a stable solution of the resulting equation, and hence p(t) is a stable solution
of (6.2).
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Remark 6.1.1. By the proof of Theorem 6.1.1, if we assume, instead of (C2),

that ∂(f(t,u)β(u))
∂u ≤ 0, ∀t ∈ R, u ∈ (0,K], and that there exists an almost pe-

riodic function b : R → R such that m(b(·)) < 0 and ∂(f(t,u)β(u))
∂u ≤ b(t), ∀t ∈

R, u ∈ (0,K], then we have the global attractivity of a unique positive almost
periodic solution of (6.2) in case (b).

We now extend the above result to an asymptotically almost periodic
Kolmogorov equation

du

dt
= uf(t, u) (6.8)

where f : R×R+ → R is continuous and locally Lipschitz for u ∈ R, and there
exists a continuous function f0 : R×R+ → R, continuously differentiable with
respect to u ∈ R+ and almost periodic with respect to t uniformly for u in
any bounded subset of R+, such that

(B1) limt→+∞ |f(t, u)−f0(t, u)| = 0 uniformly for u in any bounded subset
of R+.

We further assume that

(B2) Solutions of the equation du
dt = uf0(t, u) in R+ are ultimately bounded;

(B3) f0(t, u) ≤ f0(t, 0), ∀t ≥ 0, u ≥ 0; and there is a continuously differen-
tiable β : (0,∞) → (0,∞) such that

(i) ∂(f0(t,u)β(u))
∂u ≤ 0, ∀t ≥ 0, u ≥ 0;

(ii) for any given a > 0, there exists an almost periodic function b :

R → R with m(b) < 0 such that ∂(f0(t,u)β(u))
∂u ≤ b(t), ∀t ∈ R, u ∈

(0, a].

Then we have the following result.

Theorem 6.1.2. Let (B1)–(B3) hold.

(1) If m(f0(·, 0)) < 0, then for any bounded solution u(t) of (6.8) with u(0) ≥
0, limt→+∞ u(t) = 0;

(2) If m(f0(·, 0)) > 0, then there exists a unique positive almost periodic so-
lution u∗(t) of du

dt = uf0(t, u) such that for any bounded solution u(t)
of (6.8) with u(0) > 0, limt→+∞(u(t)− u∗(t)) = 0.

Proof. Let u(t) be a given bounded solution of (6.8) with u(0) > 0. Clearly,
u(t) > 0, ∀t ≥ 0.

In the case where m(f0(·, 0)) < 0, since u(t) satisfies

du

dt
= uf(t, u) = uf0(t, u) + u[f(t, u)− f0(t, u)], ∀t ≥ 0, (6.9)

we have
du

dt
≤ f0(t, 0)u+ g1(t), ∀t ≥ 0,
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where g1(t) := u(t) [f(t, u(t))− f0(t, u(t))]. Then the boundedness of u(t) and
assumption (B1) imply that limt→+∞ g1(t) = 0. By the comparison theorem,
it follows that

0 ≤ u(t) ≤ ū(t), ∀t ≥ 0, (6.10)

where ū(t) is the unique solution of the linear nonautonomous equation

du

dt
= f0(t, 0)u+ g1(t) (6.11)

with ū(0) = u(0) > 0. Since m(f0(·, 0)) < 0, by Lemma 6.1.1 we have
limt→∞ ū(t) = 0. Therefore, (6.10) implies limt→∞ u(t) = 0.

In the case where m(f0(·, 0)) > 0, let u∗(t) be the unique positive almost
periodic solution of the almost periodic equation du

dt = uf0(t, u) claimed in
Theorem 6.1.1 with β ≡ 1. As in case (b) of the proof of Theorem 6.1.1, we
have

u(t) ≥ u0(t), ∀t ≥ 0,

where u0(t) is the unique solution with u0(0) = u(0) > 0 of the nonau-
tonomous equation

du

dt
= u [f0(t, 0) + h(t)u + g2(t)] , (6.12)

where h(t) := min0≤u≤H
∂f0(t,u)

∂u , ∀t ∈ R, H := supt∈R+
|u(t)| ≥ 0, and

g2(t) := f(t, u(t)) − f0(t, u(t)). Note that h : R → R is a bounded contin-
uous function, limt→+∞ g2(t) = 0, and u0(t) > 0, ∀t ≥ 0. Let v = 1/u, u > 0.
Then (6.12) can be transformed into the linear nonautonomous equation

dv

dt
= −f0(t, 0)v − g2(t)v − h(t). (6.13)

Let 0 < ε0 < m(f0(·, 0)) be fixed. Since limt→∞ g2(t) = 0, there exists t0 > 0
such that g2(t) + ε0 > 0, ∀t ≥ t0. For solution v(t) of (6.13), let

w(t) = v(t+ t0)e
∫

t
0
[g2(s+t0)+ε0]ds, ∀t ≥ 0.

Then w(t) satisfies the following linear equation

dw

dt
= [−f0(t+ t0, 0) + ε0]w − h(t+ t0)e

∫
t
0
[g2(s+t0)+ε0]ds. (6.14)

Let h̄(t) = −h(t + t0), p(t) = −f0(t + t0, 0) + ε0, M = limt∈R |h(t)| and
g(t) = g2(t+ t0)+ ε0. Then, by the choice of ε0, m(p) = ε0−m(f0(·+ t0, 0)) =
ε0 − m(f0(·, 0)) < 0, and g(t) > 0, ∀t ≥ 0. Therefore, the solution w(t) of
(6.14) with w(0) = w0 satisfies

w(t) = w0e
∫ t
0
p(s)ds +

∫ t

0

e
∫ t
u
p(s)dsh̄(u)e

∫ u
0

g(s)dsdu, ∀t ≥ 0.



164 6 Almost Periodic Competitive Systems

It then follows that

|w(t)| ≤ |w0|e
∫

t
0
p(s)ds +Me

∫
t
0
g(s)ds ·

∫ t

0

e
∫

t
u
p(s)dsdu.

As in the proof of Lemma 6.1.1, there exist B1 > 0 and T1 > 0 such that

∫ t

0

e
∫

t
u
p(s)dsdu < B1, ∀t ≥ T1,

and hence

|w(t| ≤ |w0|e
∫

t
0
p(s)ds +MB1e

∫
t
0
g(s)ds, ∀t ≥ T1.

This, together with the fact that g(t) > 0 for t ≥ 0, implies that the solution
v(t) of (6.13) satisfies

|v(t+ t0)| ≤ |v(t0)|e
∫ t
0
p(s)dse−

∫ t
0
g(s)ds +MB1

≤ |v(t0)|e
∫ t
0
p(s)ds +MB1, ∀t ≥ T1.

Since limt→∞ e
∫ t
0
p(s)ds = 0, the solutions of (6.13) are ultimately bounded for

the bound B2 = MB1 + 1 > 0. In particular, there exists T0 = T0(u(0)) > 0
such that for all t ≥ T0, 0 < 1

u0(t)
≤ B2; that is, u0(t) ≥ 1/B2 > 0, ∀t ≥

T0. Therefore, there exist δ > 0 and H > 0 such that δ ≤ u(t), u∗(t) ≤
H, ∀t ≥ 0.

Let V (t) :=
(∫ u(t)

u∗(t)
β(s)
s ds

)2

, ∀t ≥ 0. Then we have

dV (t)

dt
=2

∫ u(t)

u∗(t)

β(s)

s
ds [f(t, u)β(u)− f0(t, u

∗)β(u∗)]

= 2

∫ u(t)

u∗(t)

β(s)

s
ds [f0(t, u)β(u)− f0(t, u

∗)β(u∗)]

+ 2

∫ u(t)

u∗(t)

β(s)

s
ds [f(t, u)− f0(t, u)]β(u)

≤ γb(t)V (t) + g3(t),

where γ = γ(δ,H) > 0, b(t) is defined as in the assumption (B3) with a = H,
and

g3(t) = 2

∫ u(t)

u∗(t)

β(s)

s
ds[f(t, u(t))− f0(t, u(t)))β(u(t)].

Since δ ≤ u(t), u∗(t) ≤ H, ∀t ≥ 0, the assumption (B1) implies that
limt→+∞ g3(t) = 0. Since m(γb(·)) = γm(b) < 0, by the comparison theo-
rem and Lemma 6.1.1 it follows that limt→+∞ V (t) = 0, which implies that
limt→+∞(u(t)− u∗(t)) = 0.
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6.2 Competitive Coexistence

In this section we derive conditions for permanence and existence of positive
almost periodic solutions in multi-species competitive systems.

Consider almost periodic n-species competitive Kolmogorov systems

dui
dt

= uiFi(t, u1, . . . , un), 1 ≤ i ≤ n, (6.15)

where Fi : R × R
n
+ → R is continuous and almost periodic with respect to t

uniformly for u in any bounded subset of Rn
+, and is continuously differentiable

with respect to u ∈ R
n
+, 1 ≤ i ≤ n. We further assume that

(A1) For each 1 ≤ i ≤ n, Fi(t, u) is decreasing with respect to uj when all
other arguments are fixed, ∀1 ≤ j ≤ n, j �= i;

(A2) For each 1 ≤ i ≤ n, there exist ai > 0 and Ki > 0 such that
Fi(t, 0, . . . , 0,Ki, 0, . . . , 0) ≤ −ai, ∀t ≥ 0;

(A3) For each 1 ≤ i ≤ n, there exist Ki > Ki and a nonpositive almost

periodic function bi : R → R with m(bi) < 0 such that ∂(βi(ui)Fi(t,u))
∂ui

≤
bi(t), ∀t ∈ R, u ∈

∏n
i=1[0,Ki].

For u0 ∈ R
n
+, let φ(t, u0) = (φ1(t, u0), . . . , φn(t, u0)) be the unique solution

of (6.15) with φ(0, u0) = u0. Then we have the following result.

Theorem 6.2.1. Let (A1), (A2), and (A3) hold. Assume that

(A4) For each 1 ≤ i ≤ n, m(Fi(·, 0, . . . , 0)) > 0 and

m(Fi(·, u∗1(·), . . . , u∗i−1(·), 0, u∗i+1(·), . . . , u∗n(·))) > 0,

where u∗i (t) is the unique positive almost periodic solution of the almost
periodic scalar Kolmogorov equation dui

dt = uiFi(t, 0, . . . , 0, ui, 0, . . . , 0).

Then system (6.15) is permanent; that is, there exist M > η > 0 such that
for any u0 ∈ int(Rn

+), there is T = T (u0) > 0 such that φ(t, u0) satisfies

η ≤ φi(t, u0) ≤ M, ∀t ≥ T, 1 ≤ i ≤ n.

Proof. For u0 = (u01, . . . , u0n) ∈ R
n
+, let I

+(u0) = [0, β(u0)) be the maximal
interval of existence of φ(t, u0). Then φi(t, u0) ≥ 0, ∀t ∈ I+(u0), 1 ≤ i ≤ n.
By assumption (A1), ui(t) = φi(t, u0) satisfies

dui
dt

≤ uiFi(t, 0, . . . , 0, ui, 0, . . . , 0).

By the comparison theorem, it follows that

0 ≤ ui(t) ≤ ūi(t), ∀t ∈ I(u0), (6.16)

where ūi(t) is the unique solution of the scalar almost periodic equation
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dui
dt

= uiFi(t, 0, . . . , 0, ui, 0, . . . , 0) (6.17)

with ūi(0) = ui(0). Since ūi(t) exists globally on [0,∞), we get I+(u0) =
[0,∞). Therefore, for any given u0 ∈ int(Rn

+), we get

0 < ui(t) = φi(t, u0) ≤ ūi(t), ∀t ≥ 0.

For each 1 ≤ i ≤ n and ε ∈ R+, define

F̄i(t, ε) = Fi(t, u
∗
1(t) + ε, . . . , u∗i−1(t) + ε, 0, u∗i+1(t) + ε, . . . , u∗n(t) + ε), t ∈ R.

Then F̄i(t, ε) is almost periodic in t uniformly for ε in any bounded subset of
R+. Hence, by [117, Theorem 3.1], we have

lim
ε→0

m(F̄i(·, ε)) = m(F̄i(·, 0)) = m(Fi(·, u∗1(·), . . . , u∗i−1(·), 0, u∗i+1(·), . . . , u∗n(·)).

Applying Theorem 6.1.1 with β ≡ 1, we conclude that limt→∞(ūi(t)−u∗i (t)) =
0 and 0 < u∗i (t) ≤ Ki, ∀t ∈ R, 1 ≤ i ≤ n. Therefore, by (A4), we can choose
ε0 > 0 such that

u∗i (t) + ε0 ≤ Ki, ∀t ∈ R, and m(F̄i(·, ε0)) > 0, ∀1 ≤ i ≤ n. (6.18)

Then there exists t0 = t0(u, ε0) > 0 such that

0 < ui(t) ≤ ūi(t) ≤ u∗i (t) + ε0, ∀t ≥ t0, 1 ≤ i ≤ n. (6.19)

Let vi(t) = ui(t + t0), 1 ≤ i ≤ n. Then each vi(t) satisfies the following
differential inequality

dvi
dt

≥ viFi

(
t+ t0, u

∗
1(t+ t0) + ε0, . . . , u

∗
i−1(t+ t0) + ε0, vi,

u∗i+1(t+ t0) + ε0, . . . , u
∗
n(t+ t0) + ε0

)
. (6.20)

By the comparison theorem, it follows that

vi(t) ≥ vi(t), ∀t ≥ 0, 1 ≤ i ≤ n,

where vi(t) is the unique solution of the scalar almost periodic equation

dvi
dt

= viFi (t+ t0, u
∗
1(t+ t0) + ε0, . . . ,

u∗i−1(t+ t0) + ε0, vi, u
∗
i+1(t+ t0) + ε0, . . . , u

∗
n(t+ t0) + ε0

)
(6.21)

with vi(0) = vi(0) = ui(t0). Since m(F̄i(· + t0, ε0)) = m(F̄i(·, ε0)) > 0, ∀1 ≤
i ≤ n, applying (A2), (A3) and Theorem 6.1.1 with β ≡ 1, we get

lim
t→∞(vi(t)− vi∗(t)) = 0, (6.22)
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where vi∗(t) is the unique positive almost periodic solution of (6.21). By (6.18)
and Theorem 6.1.1 with β ≡ 1, it follows that for each 1 ≤ i ≤ n, the scalar
almost periodic equation

dui
dt

= uiFi(t, u
∗
1(t)+ε0, . . . , u

∗
i−1(t)+ε0, ui, u

∗
i+1(t)+ε0, . . . , u

∗
n(t)+ε0) (6.23)

admits a unique almost periodic solution ui∗(t), which is globally asymptot-
ically stable for (6.23) in R+ \ {0}. Clearly, ui∗(t + t0) is an almost periodic
solution of (6.21). Hence, by the uniqueness, vi∗(t) = ui∗(t + t0)∀ t ∈ R. Let
0 < ε1 < inft∈R+ ui∗(t), 1 ≤ i ≤ n. Then (6.22) implies that there exists
T = T (u1(t0), . . . , un(t0)) = T (u) > 0 such that

ui(t+t0) = vi(t) ≥ vi(t) ≥ vi∗(t)−ε1 = ui∗(t+t0)−ε1, ∀t ≥ T, 1 ≤ i ≤ n.

Thus, we have

ui(t) ≥ ui∗(t)− ε1, ∀t ≥ T + t0 > 0, 1 ≤ i ≤ n. (6.24)

By (6.19) and (6.24), it follows that for each 1 ≤ i ≤ n,

0 < inf
t∈R+

ui∗(t)− ε1 ≤ ui(t) ≤ sup
t∈R+

u∗i (t) + ε0, ∀t ≥ T + t0.

This completes the proof.

Suppose we strengthen condition (A3) into the following one:

(A5) There exist continuously differentiable functions βi : (0,∞) → (0,∞),
1 ≤ i ≤ n, and a nonpositive almost periodic function b : R → R with
m(b) < 0 such that

∂(βi(ui)Fi(t, u))

∂ui
+

n∑

j=1,j 	=i

βj(uj)

∣
∣
∣
∣
∂Fj(t, u)

∂uj

∣
∣
∣
∣ < b(t)

for all t ∈ R, u ∈
∏n

i=1[0,Ki], 1 ≤ i ≤ n.

Then we have the following result on the existence and global attractivity of
a unique almost periodic solution of (6.15).

Theorem 6.2.2. Let (A1), (A2), (A4), and (A5) hold. Then (6.15) admits
a globally attractive positive almost periodic solution u∗(t) in int(Rn

+); that
is, for any u0 ∈ int(Rn

+), the solution u(t) of (6.15) with u(0) = u0 satisfies
limt→∞(u(t)− u∗(t)) = 0.

Proof. Clearly, condition (A5) implies (A3). Then, by Theorem 6.2.1, system
(6.15) is permanent, and hence there exists α > 0 such that any solution u(t)
of (6.15) with u(0) ∈ int(Rn

+) ultimately lies in
∏n

i=1[α,Ki]. Define
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V (u, v) :=

n∑

i=1

∣
∣
∣
∣

∫ vi

ui

βi(s)

s
ds

∣
∣
∣
∣ , ∀u = (u1, . . . , un), v = (v1, . . . , vn) ∈ int(Rn

+).

Since βi(s)/s > 0, ∀s ∈ [α, K̄i], there exist D1 andD2 ∈ (0,∞) such that

D1

n∑

i=1

|ui − vi| ≤ V (u, v) ≤ D2

n∑

i=1

|ui − vi|, ∀u, v ∈
n∏

i=1

[α,Ki]. (6.25)

For t1, t2 ∈ [0,∞), let u(t) = (u1(t), . . . , un(t)) and v(t) = (v1(t), . . . , vn(t))
be the solutions of two systems dui/dt = uiFi(t+ t1, u) and dvi/dt = viFi(t+
t2, v), respectively, such that u(t), v(t) ∈

∏n
i=1[α,Ki], ∀t ≥ 0. Then we get

d

dt

∫ vi(t)

ui(t)

βi(s)

s
ds = βi(vi(t))Fi(t+ t2, v(t)) − βi(ui(t))Fi(t+ t1, u(t))

=

∫ 1

0

d

ds
(βi(svi + (1− s)ui)Fi(t+ t2, sv + (1 − s)u)ds

+ βi(ui(t)) [Fi(t+ t2, u(t))− Fi(t+ t1, u(t))]

=

∫ 1

0

[
∂(βi(pi)Fi(t+ t2, p))

∂pi

∣
∣
∣
∣
p=sv+(1−s)u

· (vi − ui)

+ βi(svi + (1− s)ui)·
n∑

j=1,j 	=i

∂Fi(t+ t2, p)

∂pj

∣
∣
∣
∣
p=sv+(1−s)u

(vj − uj)

⎤

⎦ ds

+ βi(ui(t)) [Fi(t+ t2, u(t))− Fi(t+ t1, u(t))] .

Let D+V (u(t), v(t)) be the upper right derivative of V (u(t), v(t)) with respect
to t. By condition (A5) and (6.25), it follows that for all t ≥ 0,

D+V (u(t), v(t))

≤
n∑

i=1

∫ 1

0

[
∂(βi(pi)Fi(t+ t2, p))

∂pi

∣
∣
∣
∣
p=sv+(1−s)u

· |vi − ui|

+ βi(svi + (1− s)ui) ·
n∑

j=1,j 	=i

∣
∣
∣
∣
∂Fi(t+ t2, sv + (1− s)u)

∂pj

∣
∣
∣
∣ · |vj − uj|

⎤

⎦ ds

+
n∑

i=1

βi(ui(t)) [Fi(t+ t2, u(t))− Fi(t+ t1, u(t))]
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=

∫ 1

0

[
n∑

i=1

(
∂(βi(pi)Fi(t+ t2, p))

∂pi

∣
∣
∣
∣
p=sv+(1−s)u

+
∑

j=1,j 	=i

βj(svj + (1 − s)uj)

∣
∣
∣
∣
∂Fj(t+ t2, sv + (1− s)u)

∂pi

∣
∣
∣
∣

⎞

⎠ |vi − ui|

⎤

⎦ ds

+

n∑

i=1

βi(ui(t)) [Fi(t+ t2, u(t))− Fi(t+ t1, u(t))]

≤ b(t+ t2)
n∑

i=1

|vi − ui|+
n∑

i=1

βi(ui(t)) [Fi(t+ t2, u(t))− Fi(t+ t1, u(t))]

≤ b(t+ t2)

D2
V (u(t), v(t)) +

n∑

i=1

βi(ui(t)) [Fi(t+ t2, u(t))− Fi(t+ t1, u(t))] .

(6.26)
Consequently, the existence, uniqueness, and global attractivity of a positive
almost periodic solution of (6.15) follow from the permanence of (6.15), esti-
mate (6.26), and an argument similar to the proof of Theorem 6.1.1.

Consider almost periodic n-species competitive Lotka–Volterra systems

dui
dt

= ui

⎛

⎝ai(t)−
n∑

j=1

bij(t)uj

⎞

⎠ , 1 ≤ i ≤ n, (6.27)

where ai and bij are continuous almost periodic functions. If there exists a con-
stant b0 > 0 such that bij(t) ≥ 0, ∀i �= j, and bii(t) ≥ b0, ∀t ∈ R, 1 ≤ i, j ≤ n,
then conditions (A1), (A2), and (A3) are satisfied, and hence Theorems 6.2.1
and 6.2.2 enable us to obtain sufficient conditions for system (6.27) to be per-
manent and to admit a globally attractive positive almost periodic solution.

6.3 An Almost Periodic Chemostat Model

Consider a single population growth model in an almost periodic chemostat

dS(t)

dt
=(S0(t)− S(t))D0(t)− x(t)P (t, S(t)),

dx(t)

dt
=x(t)(P (t, S(t)) −D1(t)),

(6.28)

where S(t) denotes the concentration of the nutrient, x(t) denotes the biomass
of the species at time t, P (t, S) represents the specific per capita nutrient
uptake function, S0(t) and D0(t) are the input nutrient concentration and
washout rate, respectively, andD1(t) represents the specific removal rate of the
species. Here we assume that S0(t), D0(t), and D1(t) are continuous, positive,
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and almost periodic functions withm(S0(·)D0(·)) > 0 andm(D) > 0, D(t) :=
min{D0(t), D1(t)}, and that P (t, S) : R × R+ → R+ is continuous, almost
periodic in t uniformly for S in any bounded subset of R+, and continuously
differentiable with respect to S ∈ R+. We further suppose that

(H)P (t, 0) = 0, ∀t ≥ 0; and for any a > 0 there exists b = b(a) > 0 such that
∂P (t,S)

∂S ≥ b, ∀t ∈ R, S ∈ [0, a].

In the case where D1(·) ≡ D0(·), we have the following threshold result on
the global dynamics of (6.28).

Theorem 6.3.1. Let (H) hold and D1(t) ≡ D0(t), ∀t ∈ R, and let V ∗(t) be
the unique positive almost periodic solution of dV

dt = S0(t)D0(t)−D0(t)V .

(a) If m(P (·, V ∗(·)) − D0(·)) < 0, then every solution (S(t), x(t)) of (6.28)
with S(0) ≥ 0 and x(0) ≥ 0 satisfies limt→∞(S(t) − V ∗(t)) = 0 and
limt→∞ x(t) = 0;

(b) If m(P (·, V ∗(·)) − D0(·)) > 0, then system (6.28) admits a positive al-
most periodic solution (S∗(t), x∗(t)) = (V ∗(t) − x∗(t), x∗(t)) such that
every solution (S(t), x(t)) of (6.28) with S(0) ≥ 0 and x(0) > 0 satisfies
limt→∞(S(t)− S∗(t)) = 0 and limt→∞(x(t)− x∗(t)) = 0.

Proof. Let P̂ : R × R → R be a continuous extension of P from R × R+ to
R × R such that P̂ is almost periodic in t uniformly for S in any bounded
subset of R, and satisfies (H) for t ∈ R and S ∈ [−a, a].

For (S0, x0) ∈ R
2
+ with x0 > 0, let (S(t), x(t)) be the unique solution

of (6.28) satisfying S(0) = S0 and x(0) = x0, and let [0, β) be its maximal
interval of existence. Since dS

dt

∣
∣
S=0

= S0(t)D0(t) > 0, we have S(t) > 0 and
x(t) > 0, ∀t ∈ (0, β). Let V (t) = S(t) + x(t). Then (V (t), x(t)) satisfies the
following equation

dV (t)

dt
= S0(t)D0(t)−D0(t)V (t),

dx(t)

dt
= x(t)(P (t, V (t)− x(t)) −D0(t)).

(6.29)

Let u = 1/V, V > 0. Then the scalar almost periodic linear equation

dV (t)

dt
= S0(t)D0(t)−D0(t)V (t) (6.30)

can be transformed into the almost periodic logistic equation du/dt =
u[D0(t) − S0(t)D0(t)u]. Hence, applying Theorem 6.1.1 with β ≡ 1, we
conclude that equation (6.30) admits a unique positive almost periodic so-
lution V ∗(t), and every solution V (t) of (6.30) with V (0) > 0 satisfies
limt→∞(V (t) − V ∗(t)) = 0. Consequently, (S(t), x(t)) exists globally on
[0,+∞).
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Let V (t) be the unique solution of (6.30) with V (0) = S0 + x0 > 0. Thus,
limt→∞(V (t) − V ∗(t)) = 0, and x(t) satisfies the following nonautonomous
equation

dx

dt
= x

[
P̂ (t, V (t)− x)−D0(t)

]
. (6.31)

Note that for any compact subset K of R, P̂ (t, s) is continuous in s ∈ K
uniformly for t ∈ R (see, e.g., [117, Theorem 2.10]). It then follows that

lim
t→∞

[
P̂ (t, V (t)− x)− P̂ (t, V ∗(t)− x)

]
= 0

uniformly for x in any bounded subset of R+. This shows that (6.31) is asymp-
totic to the almost periodic equation

dx

dt
= x

[
P̂ (t, V ∗(t)− x)−D0(t)

]
. (6.32)

Since x(t) is a bounded solution of (6.31) with x(0) = x0 > 0, by Theo-
rem 6.1.2 with β ≡ 1, we have two cases:

(a) Ifm(P̂ (·, V ∗(·))−D0(·)) = m(P (·, V ∗(·))−D0(·)) < 0, then limt→∞ x(t) =
0;

(b) Ifm(P̂ (·, V ∗(·))−D0(·)) = m(P (·, V ∗(·))−D0(·)) > 0, then limt→∞(x(t)−
x∗(t)) = 0, where x∗(t) is the unique positive almost periodic solution of
(6.32).

Let x(t) be a given solution of (6.32) with 0 < x(0) < V ∗(0). Note that V ∗(t)
satisfies

dV ∗(t)
dt

= S0(t)D0(t)−D0(t)V
∗(t) > V ∗(t)[P̂ (t, V ∗(t)−V ∗(t))−D0(t)], ∀t ≥ 0,

that is, V ∗(t) is a supersolution of (6.32). By the comparison theorem, we
then have

0 < x(t) < V ∗(t), ∀t ≥ 0.

Let q(t) = x(t)−x∗(t). Thus, Theorem 6.1.1 with β ≡ 1 implies limt→∞ q(t) =
0. Let p(t) = V ∗(t) − x∗(t), t ∈ R. Then p(t) > q(t), ∀t ≥ 0. Since p(t) is
an almost periodic function, there exists a sequence τk → +∞ such that
p(t + τk) → p(t) uniformly for t ∈ R as k → ∞. For t ∈ R, when k is
sufficiently large, we have t + τk ≥ 0 and hence p(t + τk) > q(t + τk). Then,
letting k → ∞, we get p(t) ≥ 0, ∀t ∈ R; that is, V ∗(t) ≥ x∗(t), ∀t ∈ R. By
(6.30) and (6.32), it follows that (V ∗(t), x∗(t)) is a solution to system (6.29).
Let S∗(t) = V ∗(t) − x∗(t). Then (S∗(t), x∗(t)) is an almost periodic solution
of (6.28) with S∗(t) ≥ 0 andx∗(t) > 0, ∀t ∈ R. We further claim that S∗(t) >
0, ∀t ∈ R. Indeed, for τ ∈ R, let S̄(t) = S∗(t+τ), and x̄(t) = x∗(t+τ), ∀t ∈ R.
Then (S̄(t), x̄(t)) satisfies the almost periodic equations
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dS̄

dt
=(S0(t+ τ) − S̄)D0(t+ τ) − x̄P (t+ τ, S̄),

dx̄

dt
= x̄(P (t+ τ, S̄)−D0(t+ τ)),

(6.33)

with S̄(0) = S∗(τ) ≥ 0 and x̄(0) = x∗(τ) > 0. Since

S̄′(t)
∣
∣
S̄=0

= S0(t+ τ)D0(t+ τ) > 0, ∀t ≥ 0,

we get S̄(t) > 0, ∀t > 0. In particular, S∗(τ +1) = S̄(1) > 0. By the arbitrary
choice of τ ∈ R, it follows that S∗(t) > 0, ∀t ∈ R. Consequently, (S∗(t), x∗(t))
is a positive almost periodic solution of (6.28).

In the case where D1(·) �≡ D0(·), let

D(t) := max{D0(t), D1(t)}, and D(t) := min{D0(t), D1(t)}.

Then, by our previous assumptions, D and D : R → R are continuous and
positive almost periodic functions with m(D) ≥ m(D) > 0. By the argument
for (6.30) in the proof of Theorem 6.3.1, it is easy to see that the scalar almost
periodic linear equations

dV (t)

dt
= S0(t)D0(t)−D(t)V (t) (6.34)

and
dV (t)

dt
= S0(t)D0(t)−D(t)V (t) (6.35)

admit globally attractive positive almost periodic solutions V ∗
1 (t) and V ∗

2 (t),
respectively. By the comparison theorem and almost periodicity and global
attractivity of V ∗

i (t), 1 ≤ i ≤ 2, it easily follows that V ∗
1 (t) ≥ V ∗

2 (t), ∀t ∈ R.
We then have the following result on the permanence and extinction of the
species growing in the chemostat.

Theorem 6.3.2. Let (H) hold.

(a) If m(P (·, V ∗
2 (·))−D1(·)) > 0, then there exist α > 0 and β > 0 such that

every solution (S(t), x(t)) of (6.28) with S(0) ≥ 0 and x(0) > 0 satisfies

α ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ β;

(b) If m(P (·, V ∗
1 (·)) − D1(·)) < 0, then every solution (S(t), x(t)) of (6.28)

with S(0) ≥ 0 and x(0) ≥ 0 satisfies limt→∞ x(t) = 0.

Proof. Let P̂ : R×R → R be as in the proof of Theorem 6.3.1. For (S0, x0) ∈
R

2
+ with S0 ≥ 0 and x0 > 0, let (S(t), x(t)) be the unique solution of (6.28)

satisfying S(0) = S0 and x(0) = x0 with [0, β) as its maximal interval of
existence. Then it easily follows that S(t) > 0 and x(t) > 0, ∀t ∈ (0, β). Let
V (t) = S(t) + x(t). Then
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S0(t)D0(t)−D(t)V (t) ≤ dV (t)

dt
≤ S0(t)D0(t)−D(t)V (t), ∀t ∈ [0, β).

Let V (t) be the unique solution of (6.34) with V (0) = V (0), and let V (t) be
the unique solution of (6.35) with V (0) = V (0). Then the comparison theorem
implies that

V (t) ≤ V (t) ≤ V (t), ∀t ∈ [0, β). (6.36)

Since V (t) and V (t) exist globally on [0,∞), we get β = ∞. Therefore, x(t)
satisfies

x(t)
(
P̂ (t, V (t)− x(t)) −D1(t)

)
≤ dx(t)

dt
≤ x(t)

(
P̂ (t, V (t)− x(t)) −D1(t)

)

for all t ≥ 0. Then by the comparison theorem,

x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0, (6.37)

where x̄(t) is the unique solution of the nonautonomous equation

dx(t)

dt
= x(t)

(
P̂ (t, V (t)− x(t))−D1(t)

)
(6.38)

with x̄(0) = x0, and x(t) is the unique solution of the nonautonomous equation

dx(t)

dt
= x(t)

(
P̂ (t, V (t)− x(t))−D1(t)

)
(6.39)

with x(0) = x0. Since limt→∞(V (t)−V ∗
1 (t)) = 0 and limt→∞(V (t)−V ∗

2 (t)) =
0, it follows that

lim
t→∞(P̂ (t, V (t)− x)− P̂ (t, V ∗

1 (t)− x)) = 0

and
lim
t→∞(P̂ (t, V (t)− x)− P̂ (t, V ∗

2 (t)− x)) = 0

uniformly for x in any bounded subset of R+.
In the case where m(P (·, V ∗

2 (·))−D1(·)) > 0, since V ∗
1 (t) ≥ V ∗

2 (t), ∀t ∈ R,
and P̂ (t, V ∗

i (t)) = P (t, V ∗
i (t)), ∀t ∈ R, 1 ≤ i ≤ 2, Theorem 6.1.1 with β ≡ 1

implies that the almost periodic equation

dx(t)

dt
= x(t)(P̂ (t, V ∗

i (t)− x(t)) −D1(t)) (6.40)

admits a unique positive almost periodic solution x∗i (t), and x∗i (t) is globally
attractive in R+ \{0}. By the comparison theorem and the almost periodicity
of x∗i (t), it easily follows that x∗1(t) ≥ x∗2(t), ∀t ∈ R. Since

m(P̂ (·, V ∗
1 (·))−D1(·)) ≥ m(P̂ (·, V ∗

2 (·))−D1(·)) = m(P (·, V ∗
2 (·))−D1(·)) > 0,
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Theorem 6.1.2(b) with β ≡ 1 implies that

lim
t→∞(x̄(t)− x∗1(t)) = 0 and lim

t→∞(x(t)− x∗2(t)) = 0.

By (6.37), it then follows that

lim inf
t→∞ (x(t) − x∗2(t)) ≥ lim

t→∞(x(t)− x∗2(t)) = 0 (6.41)

and
lim sup
t→∞

(x(t)− x∗1(t)) ≤ lim
t→∞(x(t)− x∗1(t)) = 0. (6.42)

Thus, there exist α > 0 and β > 0 such that x(t) satisfies

α ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ β.

In the case where m(P (·, V ∗
2 (·)) −D1(·)) < 0, we have

m(P̂ (·, V ∗
2 (·))−D1(·)) ≤ m(P̂ (·, V ∗

1 (·))−D1(·)) = m(P (·, V ∗
1 (·))−D1(·)) < 0.

By Theorem 6.1.2(a) with β ≡ 1, it follows that limt→∞ x̄(t) = 0 and
limt→∞ x(t) = 0, and hence (6.37) implies that limt→∞ x(t) = 0.

6.4 Nonautonomous 2-Species Competitive Systems

Consider the nonautonomous two-species competitive Lotka–Volterra model

dxi(t)

dt
= xi(t)

⎛

⎝bi(t)−
2∑

j=1

aij(t)xj(t)

⎞

⎠ , i = 1, 2, (6.43)

where bi(t) and aij(t) are uniformly continuous on R and are bounded above
and below by positive reals. To get the global dynamics of system (6.43)
on the boundary, we need the following result on the scalar nonautonomous
Kolmogorov equations.

Lemma 6.4.1. Let a, b, and K be three positive constants, and let
δ : (0,∞) → (0,∞) be a given function. Assume that

(H1) g ∈ C(R × R+,R) and g(t, x) is locally Lipschitz in x uniformly for
t ∈ R;

(H2) g(t, x) ≥ a, ∀t ∈ R, x ∈ [0, b], and g(t,K) ≤ 0, ∀t ∈ R;

(H3) For each t ∈ R, we have g(t, ·) ∈ C1((0,∞),R); and ∂g(t,x)
∂x ≤

−δ(k), ∀k ∈ (0,∞), t ∈ R, x ∈ (0, k].
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Then the equation dx(t)
dt = x(t)g(t, x) admits a unique global solution x∗(t, g)

on R that is bounded above and below by positive real numbers, and every
solution x(t, g) with x(0, g) > 0 satisfies limt→∞(x(t, g)−x∗(t, g)) = 0. More-
over, for any sequence of functions {gk : k ≥ 1} such that each gk satisfies
conditions (H1)–(H3) and limk→∞ gk(t, x) = g(t, x) uniformly for (t, x) in
every compact subset of R× R+, we have limk→∞ x∗(0, gk) = x∗(0, g).

Proof. The existence, uniqueness, and global attractivity of x∗(t, g) follows
from [41, Lemma 2.2] with β(x) = 1/x, x > 0. Let

G := {g ∈ C(R× R+,R) : g satisfies (H1)− (H3)}.

By the proof of [41, Lemma 2.2], there exist two positive real numbers c =
c(a, b, δ(·)) and d = d(a, b, δ(·)) such that c < x∗(t, g) < d, ∀t ∈ R, g ∈ G. By
conditions (H2) and (H3), we can further choose c and d such that for any

g ∈ G, s ∈ R, y ∈ (c, d), the unique solution x(t, s, y, g) of the equation dx(t)
dt =

x(t)g(t, x) with x(s) = y exists globally on [s,∞), and c ≤ x(t, s, y, g) ≤
d, ∀t ∈ [s,∞). Let

un(t, g) = x

(

t,−n, 1
2
(c+ d), g

)

, t ≥ −n, n ≥ 1,

and define
V (x, y) := (ln y − lnx)2, x, y ∈ [c, d].

Then there exist two positive numbers m1 = m1(c, d) and m2 = m2(c, d) such
that

m1(x− y)2 ≤ V (x, y) ≤ m2(x − y)2, ∀x, y ∈ [c, d].

By the mean value theorem and condition (H3), it then easily follows that
there exists m = m(c, d, δ(d)) > 0 such that

d

dt
V (un(t, g), x

∗(t, g)) ≤ −mV (un(t, g), x
∗(t, g)), ∀t ≥ −n,

and hence we have

V (un(t, g), x
∗(t, g)) ≤V

(
1

2
(c+ d), x∗(−n, g)

)

e−m(t+n)

≤Le−m(t+n), ∀t ≥ −n,

where L = L(c, d) > 0. In particular, we get

V (un(0, g), x
∗(0, g)) ≤ Le−mn, ∀n ≥ 1.

It then follows that limn→∞ un(0, g) = x∗(0, g) uniformly for g ∈ G. Clearly,
for fixed n ≥ 1, we have limk→∞ un(0, gk) = un(0, g). Now the inequality

|x∗(0, gk)− x∗(0, g)| ≤ |x∗(0, gk)− un(0, gk)|+ |un(0, gk)− un(0, g)|
+ |un(0, g)− x∗(0, g)|

completes the proof.
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It is easy to verify that the scalar logistic equation

dxi(t)

dt
= xi(t) (bi(t)− aii(t)xi(t)) (6.44)

satisfies conditions (H1)–(H3). Let x∗i (t) be the unique global solution on R

of equation (6.44) that is bounded above and below by positive reals. Clearly,
each x∗i (t) is uniformly continuous on R. For the two-species competitive sys-
tem (6.43), we have the following result.

Theorem 6.4.1. Assume that

(D1) There exist μ1 > 0, s1 > 0, and a sequence σk → ∞ such that
1
σk

∫ σk

0 (b1(r + s)− a12(r + s)x∗2(r + s))dr > μ1, ∀k ≥ 1, s ≥ s1;

(D2) There exist μ2 > 0, s2 > 0, and a sequence τk → ∞ such that
1
τk

∫ τk
0 (b2(r + s)− a21(r + s)x∗1(r + s))dr > μ2, ∀k ≥ 1, s ≥ s2.

Then there is an η > 0 such that for any solution x(t) = (x1(t), x2(t)) of
equation (6.43) with xi(0) > 0, ∀i = 1, 2, lim inft→∞ xi(t) ≥ η, ∀i = 1, 2.

Proof. Let Z1 = R
2
+ and Z2 = R

2 and equip C(R×Z1, Z2) with the compact
open topology, which is metrizable with metric m, say. Define

f(t, x) := (b1(t)− a11(t)x1 − a12x2, b2(t)− a21(t)x1 − a22(t)x2) ,

where x = (x1, x2) ∈ Z1 and t ∈ R. For t ∈ R, we define σ̃(t) : C(R ×
Z1, Z2) → C(R × Z1, Z2) by σ̃(t)g = g(t + ·, ·), ∀g ∈ C(R × Z1, Z2). By
[303, Theorem III.7], the set γ+σ̃ (f) := {σ̃(t)f : t ≥ 0} has compact closure
H(f) in C(R × Z1, Z2). Let F = H(f) and X = R

2
+. It then follows that for

any g = (g1, g2) ∈ H(f), s ∈ R, x ∈ X , the system of ordinary differential
equations

dxi(t)

dt
= xi(t)gi(t, x(t)), t ≥ s, i = 1, 2, (6.45)

has a unique global solution Φ(t, s, x, g) on [s,∞) satisfying Φ(s, s, x, g) =
x. Given g ∈ H(f), define h(g)(t, s, x) = Φ(t + s, s, x, g), t, s ∈ R, x ∈ X .
Then h(g) is a process on X . By the continuity of g, equation (6.45) and the
uniqueness of solution Φ(t, s, x, g), it easily follows that h : H(f) → W is
one-to-one, and σ(t) ◦ h = h ◦ σ̃(t) on H(f), ∀t ≥ 0. Clearly, we have

π̃(t, x, g) := (h(g)(t, 0, x), σ̃(t)g) = (Φ(t, 0, x, g), σ̃(t)g), ∀t ≥ 0, x ∈ X.

By [303, Theorem 4], π̃ : R+ ×X ×H(f) → X ×H(f) is continuous. Then
condition (B) in Section 3.4 holds for f .

Let φ = h(f), X0 = {(x1, x2) : x1 > 0, x2 > 0} and ∂X0 = X \ X0.
Then φ(t, 0, x) = Φ(t, 0, x, f), t ≥ 0, x ∈ X . To prove the theorem, it suffices
to prove that φ is uniformly persistent with respect to (X0, ∂X0). Clearly,
h(g)(t, 0, X0) = Φ(t, 0, , X0, g) ⊂ X0, ∀g ∈ H(f), t ≥ 0. In what follows,
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we verify conditions (1)–(3) in Theorem 3.4.1 for the skew-product semiflow
π̃(t). For any g = (g1, g2) ∈ ωσ̃(f), there is a sequence tn → ∞ such that
σ̃(tn)f → g, and hence, limn→∞ f(t+tn, x) = g(t, x) uniformly for (t, x) in any
compact subset of R×X . Let δ0 andK0 be the positive numbers such that δ0 ≤
bi(t), aij(t), x

∗
i (t) ≤ K0, ∀1 ≤ i, j ≤ 2. By the uniform continuity of bi(t), aij(t)

on R and the Arzela–Ascoli theorem, we can assume that limn→∞ bi(t+ tn) =
b̄i(t), limn→∞ aij(t+ tn) = āij(t) uniformly for t in any compact subset of R.
It then follows that

g(t, x) =
(
b̄1(t)− ā11(t)x1 − ā12(t)x2, b̄2(t)− ā21(t)x1 − ā22(t)x2

)

for all x = (x1, x2) ∈ R
2
+, t ∈ R, and

δ0 ≤ b̄i(t), āij(t) ≤ K0, ∀t ∈ R, 1 ≤ i, j ≤ 2.

Thus Φ(t, s, x, g) satisfies the nonautonomous Lotka–Volterra system

dxi(t)

dt
= xi(t)

⎛

⎝b̄i(t)−
2∑

j=1

āij(t)xi(t)

⎞

⎠ , t ≥ s, i = 1, 2. (6.46)

By a standard comparison argument, it follows that the condition (1) in The-
orem 3.4.1 holds for h(g)(t, 0, x) = Φ(t, 0, x, g), g ∈ ωσ̃(f).

For each g ∈ ωσ̃(f), by Lemma 6.4.1 the scalar logistic equation

dxi(t)

dt
= xi(t)

(
b̄i(t)− āii(t)xi(t)

)
(6.47)

admits a unique global solution x∗i (t, g) on R that is bounded above and below
by positive reals, and every solution xi(t) of equation (6.47) with xi(0) >
0 satisfies limt→∞(xi(t) − x∗i (t, g)) = 0. Clearly, each x∗i (t, g) is uniformly
continuous on R. By the integral form of equation (6.44), uniform continuity
of x∗i (t) on R, and the uniqueness of x∗i (t, g), after choosing a subsequence
of {tn : n ≥ 1}, we can further assume that limn→∞ x∗i (t + tn) = x∗i (t, g)
uniformly for t in any compact subset of R, i = 1, 2. Then δ0 ≤ x∗i (t, g) ≤
K0, ∀g ∈ ωσ̃(f), t ∈ R, i = 1, 2. By Lemma 6.4.1, it then follows that x∗i (0, ·) :
H(f) → R is a continuous map. Let M0 = {(0, 0)}, M1 = {(x∗1(0, g), 0) : g ∈
ωσ̃(f)}, and M2 = {(0, x∗2(0, g)) : g ∈ ωσ̃(f)}. Then each Mi is a compact and
quasi-invariant set for φ = h(f) in ∂X0. For each g ∈ ωσ̃(f), h(g)(t, 0, x) =
Φ(t, 0, x, g) has only three full orbits (0, 0), (x∗1(t, g), 0), and (0, x∗2(t, g)) on
∂X0, which are contained entirely in one of M0, M1, and M2. Thus no subset
of {M0,M1,M2} forms a cycle on ∂X0. Note that every positive solution of
equation (6.47) is asymptotic to x∗i (t, g). By the compactness of ωσ̃(φ) and the
continuity of x∗i (0, ·), it then follows that for any x ∈ ∂X0 and g ∈ ωσ̃(φ) with
h(g)(t, 0, x) = Φ(t, 0, x, g) ∈ ∂X0, ∀t ≥ 0, we have ωh(g)(x) ⊂ Mi for some

0 ≤ i ≤ 2. The following claim implies the isolatedness of M̃i in X × ωσ̃(f)
for π̃(t). Thus, condition (2) in Theorem 3.4.1 holds.
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Claim. For each i = 0, 1, 2, there exist a positive number ri and an open
neighborhood Ui of M̃i such that Ui contains no positive orbit of π̃(t) in
X0 × ({σ̃(τ)f : τ ≥ ri} ∪ ωσ̃(f)).

Indeed, we can choose a positive number ε such that ε < min{δ0, μ1

2 ,
μ2

2 }. It
then follows that there is positive number c = c(δ0,K0, ε) < 1 such that for
each 1 ≤ i ≤ 2,

|gi(t, x)− gi(t, y)| < ε, ∀x, y ∈ [0,K0 + 1]2 with ‖x− y‖ < c, g ∈ H(f), t ∈ R.

By the continuity of x∗1(0, ·) on the compact set H(f), there is a positive
number c1 = c1(c) <

c
2 such that |x∗1(0, g1) − x∗1(0, g2)| < c

2 for all g1, g2 ∈
H(f) with m(g1, g2) < c1. Let r1 = s2 and let U1 be the c1-neighborhood of
M̃1. Assume, by contradiction, that there is (x, g) ∈ X0 × ({σ̃(τ)f : τ ≥ r1}∪
ωσ̃(f)) such that d̃(π̃(t)(x, g), M̃1) = d̃((Φ(t, 0, x, g), σ̃(t)g), M̃1) < c1, ∀t ≥ 0.
Clearly, M̃1 = {((x∗1(0, g), 0), g) : g ∈ ωσ̃(f)}. Then for each t ≥ 0 there is
gt ∈ ωσ̃(f) such that ‖Φ(t, 0, x, g)− (x∗1(0, gt), 0)‖ < c1 and m(σ̃(t)g, gt) < c1.
Thus, we have

‖Φ(t, 0, x, g)− (x∗1(t, g), 0)‖ = ‖Φ(t, 0, x, g)− (x∗1(0, σ̃(t)g), 0)‖
≤ ‖Φ(t, 0, x, g)− (x∗1(0, g

t), 0)‖
+ ‖(x∗1(0, gt), 0)− (x∗1(0, σ̃(t)g), 0)‖

< c1 +
c

2
< c, ∀t ≥ 0.

By the choice of c, it follows that

g2(t, Φ(t, 0, x, g)) ≥ g2(t, x
∗
1(t, g), 0)− ε, ∀t ≥ 0.

Let (x1(t), x2(t)) = Φ(t, 0, x, g) and α(t) := g2(t, x
∗
1(t, g), 0) − ε, t ≥ 0. Then

x2(0) > 0, and x2(t) satisfies

dx2(t)

dt
≥ α(t)x2(t), t ≥ 0.

Then the comparison theorem implies that

x2(t) ≥ x2(0)e
∫ t
0
α(r)dr = x2(0)

(
e

1
t

∫ t
0
α(r)dr

)t

, ∀t > 0.

In the case that g = σ̃(τ)f for some τ ≥ r1, we have x∗1(t, g) = x∗1(τ + t), and
hence by condition (D2),

1

τk

∫ τk

0

α(r)dr =
1

τk

∫ τk

0

g2(r, x
∗
1(r, g), 0)dr − ε

=
1

τk

∫ τk

0

(b2(τ + r)− a21(τ + r)x∗1(τ + r)) dr − ε

> μ2 − ε > 0, ∀k ≥ 1.
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In the case that g ∈ ωσ̃(f), let tn → ∞ be chosen as before. Then

lim
n→∞ (b2(tn + r)− a21(tn + r)x∗1(tn + r)) = b̄2(r)− ā21(r)x

∗
1(r, g)

= g2(r, x
∗
1(r, g), 0)

uniformly for r in any compact subset of R. Thus, for any τk, we can choose
an integer N = N(τk, ε) such that tN ≥ s2 and

| (b2(tN + r) − a21(tN + r)x∗1(tN + r)) − g2(r, x
∗
1(r, g), 0)| < ε, ∀r ∈ [0, τk].

Again by condition (D2), we have

1

τk

∫ τk

0

α(r)dr =
1

τk

∫ τk

0

g2(r, x
∗
1(r, g), 0)dr − ε

≥ 1

τk

∫ τk

0

(b2(tN + r)− a21(tN + r)x∗1(tN + r)− ε) dr − ε

> μ2 − 2ε > 0, ∀k ≥ 1.

It then follows that limk→∞ x2(τk) = ∞, which contradicts the boundedness
of x2(t). A similar argument applies to M̃0 and M̃2.

By a standard comparison argument, it follows that every positive orbit
φ(t, 0, x) = Φ(t, 0, x, f), t ≥ 0, is precompact. Note that if ωπ̃(x, f) ⊂ M̃i

for some 0 ≤ i ≤ 2, then there is a t0 ≥ ri such that π̃(t + t0)(x, f) =
(Φ(t+t0, 0, x, f), σ̃(t+t0)f) ∈ Ui, ∀t ≥ 0. Let y = Φ(t0, 0, x, f) and g = σ̃(t0)f .
Thus π̃(t)(y, g) = (Φ(t, 0, y, g), σ̃(t)g) = (Φ(t+ t0, 0, x, f), σ̃(t+ t0)f), t ≥ 0, is
a positive orbit contained in Ui. Then the above claim implies that condition
(3) in Theorem 3.4.1 holds for π̃(t). Now Theorems 3.4.1 and 3.4.2 complete
the proof.

Remark 6.4.1. It is easy to see that sufficient conditions for (D1) and (D2),
respectively, are

(D1)′ lim inft,s→∞ 1
t

∫ t

0 (b1(r + s)− a12(r + s)x∗2(r + s))dr > 0;

(D2)′ lim inft,s→∞ 1
t

∫ t

0 (b2(r + s)− a21(r + s)x∗1(r + s))dr > 0.

Note that if β(·) : R → R is an almost periodic function, then its mean
value

M [β] = lim
t→∞

1

t

∫ t+s

s

β(r)dr = lim
t→∞

1

t

∫ t

0

β(s+ r)dr

exists and is independent of s, and the convergence is uniform in s ∈ R. It then
easily follows that limt,s→∞ 1

t

∫ t

0
β(s+r)dr = M [β]. If bi(t), aii(t), i = 1, 2, are

almost periodic, then each x∗i (t) is also almost periodic (see Theorem 6.1.1(b)
with β(·) ≡ 1). Thus, in the case that all coefficient functions in system (1.7)
are almost periodic, conditions (D1)′ and (D2)′ are equivalent to M [b1(·) −
a12(·)x∗2(·)] > 0 and M [b2(·)− a21(·)x∗1(·)] > 0, respectively.
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A similar approach and techniques as in the proof of Theorem 6.4.1 can
be used to study nonautonomous competitive Kolmogorov systems

dxi(t)

dt
= xi(t)fi(t, x1, x2), i = 1, 2, (6.48)

under some appropriate conditions on f = (f1, f2).

6.5 Notes

Sections 6.1–6.3 are taken from Wu, Zhao and He [410], and Section 6.4 is
taken from Zhao [436]. Gatica and So [130, Theorem 2.1] proved the exis-
tence and global stability of positive almost periodic solutions for the almost
periodic equation dx/dt = xg(x,K(t)). Burton and Hutson [41, Lemma 2.2]
established the existence and global stability of positive and bounded solutions
on R for scalar nonautonomous Kolmogorov equations. The comparison argu-
ment in Theorem 6.2.1 was used earlier by Zhao [429] for periodic n-species
competitive Lotka–Volterra systems.

Gopalsamy [134] and Ahmad [1] discussed the global asymptotic stability
in almost periodic Lotka–Volterra competitive systems of ODEs, and Gopal-
samy and He [135] considered oscillations and convergence in a delayed and
almost periodic 2-species Lotka–Volterra competitive system of ODEs.

Redheffer [289, 290] studied asymptotic behavior and coexistence states
in general nonautonomous multi-species Lotka–Volterra systems of ODEs.
Ellermeyer, Pilyugin and Redheffer [107] established persistence criteria for a
nonautonomous single-species chemostat model. Sufficient conditions for com-
petitive exclusion were obtained by Ahmad [2] and Montes de Oca and Zeeman
[251] for nonautonomous Lotka–Volterra competitive systems of ODEs.

Vuillermot [378, 379, 380] investigated almost periodic attractors for a class
of nonautonomous reaction–diffusion equations on R

n. Shen and Yi [312] stud-
ied convergence in almost periodic Fisher and Kolmogorov reaction–diffusion
equations, and Hetzer and Shen [156] also discussed convergence in almost
periodic two-species competitive reaction–diffusion systems.



7

Competitor–Competitor–Mutualist Systems

In order to model mutualism phenomena in population biology, Rai et al. [285]
proposed and analyzed a competitor–competitor–mutualist system of ordinary
differential equations. Zheng [449] then considered a competitor–competitor–
mutualist reaction–diffusion system of Lotka–Volterra type with constant co-
efficients, and Tineo [374] studied a similar model with spatial-varying and
time-periodic coefficients and subject to the zero Neumann boundary condi-
tion. In this chapter we consider a more general periodic parabolic competitor–
competitor–mutualist model with spatial heterogeneity and subject to a gen-
eral boundary condition. Let ω > 0 be fixed, and let Ω ⊂ R

N , N ≥ 1, be a
bounded domain with the boundary ∂Ω of class of C2+θ for some θ ∈ (0, 1].
Assume that u1 and u2 are the population densities of two competitors, and
u3 is the population density of the mutualist that decreases the effect of u2
on u1. Then the model takes the following form

∂u1
∂t

+A1(t)u1 = u1[g1(x, t, u1)− q1(x, t, u1, u2, u3)] in Ω × (0,+∞),

∂u2
∂t

+A2(t)u2 = u2[g2(x, t, u2)− q2(x, t, u1, u2)] in Ω × (0,+∞),

∂u3
∂t

+A3(t)u3 = u3h(x, t, u1, u3)] in Ω × (0,+∞),

B1u1 = B2u2 =B3u3 = 0 on ∂Ω × (0,+∞),

(7.1)

where

Ai(t)ui = −
∑

j,k=1

a
(i)
jk (x, t)

∂2ui
∂xj∂xk

+

N∑

j=1

a
(i)
j (x, t)

∂ui
∂xj

+a
(i)
0 (x, t)ui, 1 ≤ i ≤ n,

are linear uniformly elliptic differential expressions of second order for each
t ∈ [0, ω]; Ai(t), gi(x, t, ·), qi(x, t, ·), and h(x, t, ·) are ω-periodic in t; and
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Biui = ui or Biui =
∂ui

∂ν + b
(i)
0 (x)ui, where

∂
∂ν denotes differentiation in the

direction of the outward normal ν to ∂Ω. We assume that a
(i)
jk = a

(i)
kj , a

(i)
j and

a
(i)
0 ∈ Cθ,θ/2(Qω), a

(i)
0 ≥ 0, ∀1 ≤ j, k ≤ N, 1 ≤ i ≤ n, Qω = Ω × [0, ω], and

b
(i)
0 ∈ C1+θ(∂Ω,R), b

(i)
0 ≥ 0, ∀1 ≤ i ≤ n, and that the functions gi, qi, and h

and their first order partial derivatives with respect to each uj are continuous
and in the class of Cθ,θ/2(Qω,R) uniformly for u = (u1, u2, u3) in bounded
subsets of R3.

Taking into account biological implications of the model, we assume that

(H1) g1(x, t, 0) > 0 and ∂g1
∂u1

< 0, ∀(x, t) ∈ Qω , u1 ∈ R+, and there exists

K1 > 0 such that g1(x, t,K1) ≤ 0, ∀(x, t) ∈ Qω;
(H2) g2(x, t, 0) > 0 and ∂g2

∂u2
< 0, ∀(x, t) ∈ Qω , u2 ∈ R+, and there exists

K2 > 0 such that g2(x, t,K2) ≤ 0, ∀(x, t) ∈ Qω;
(H3) q1(x, t, u1, 0, u3) ≡ 0, ∂q1

∂u1
≥ 0, ∂q1

∂u2
> 0, ∀(x, t) ∈ Qω, (u1, u2, u3) ∈ R

3
+,

and ∂q1
∂u3

< 0, ∀(x, t) ∈ Qω, (u1, u2, u3) ∈ R
3
+ with u2 > 0;

(H4) q2(x, t, 0, u2) ≡ 0, ∂q2
∂u1

> 0, and ∂q2
∂u2

≥ 0, ∀(x, t) ∈ Qω, (u1, u2) ∈ R
2
+;

(H5) h(x, t, u1, 0) > 0, ∀(x, t) ∈ Qω, u1 ∈ R+,
∂h
∂u1

> 0, ∀(x, t) ∈ Qω,

(u1, u3) ∈ R
2
+ with u3 > 0, ∂h

∂u3
< 0, ∀(x, t, u1, u3) ∈ Qω × R

2
+, and for

any u1 > 0, there exists K3 = K3(u1) > 0 such that h(x, t, u1,K3) ≤
0, ∀(x, t) ∈ Qω.

We are interested in the case where each species stabilizes eventually at a
positive periodic equilibrium state in the absence of the other two-species. In
view of Theorem 3.1.5, we impose a set of analytical conditions on the model
system (7.1) accordingly:

(H6) μ(A1(t), g1(x, t, 0)) < 0, μ(A2(t), g2(x, t, 0)) < 0, and μ(A3(t), h(x, t,

0, 0)) < 0, where μ(Ai(t),m(x, t)), m ∈ Cθ, θ2 (Qω), denotes the unique
principal eigenvalue of the periodic–parabolic eigenvalue problem (see
[152])

∂v

∂t
+Ai(t)v = m(x, t)v + μv in Ω × R,

Biv = 0 on ∂Ω × R,

v ω-periodic in t.

(7.2)

The aim of this chapter is to study the global dynamics of system (7.1)
and bifurcations of periodic solutions. In Section 7.1 we prove a result on weak
periodic repellers for periodic parabolic systems in order to apply persistence
theory to the model system. In Sections 7.2 and 7.3 we establish the global
coexistence of all interacting species and the extinction of one of the competing
species, respectively. We also use a special case of (7.1) to illustrate the main
results. Section 7.4 is devoted to a discussion of the existence and multiplicity
of positive periodic solutions via bifurcation methods.
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7.1 Weak Periodic Repellers

In this section we prove the weakly repelling property of a semitrivial periodic
solution to a periodic parabolic system under appropriate conditions.

Consider the periodic parabolic system

∂ui
∂t

+Ai(t)ui = fi(x, t, u1, . . . , um) in Ω × (0,+∞),

Biui =0 on ∂Ω × (0,+∞),
(7.3)

where Ai(t), Bi, and Ω are as in (3.17), and f = (f1, . . . , fm) is ω-periodic in
t and satisfies the smoothness condition (H) in Section 3.2. Let (Ei, Pi), 1 ≤
i ≤ m, be the ordered Banach spaces defined in Section 3.2, and let ϕ(t, u)
be the unique solution of (7.3) satisfying ϕ(0, u) = u ∈ P :=

∏m
i=1 Pi. We

assume that for each u ∈ P , the solution ϕ(t, u) exists globally on [0,+∞)
and remains in P for all t ≥ 0. Then we have the following result.

Proposition 7.1.1. (Weak periodic repellers) Assume that there exist
some 1 ≤ k ≤ m and a smooth function Fk(x, t, u), ω-periodic in t, such that

(1) fk(x, t, u) ≥ ukFk(x, t, u), ∀(x, t, u) ∈ Ω × R
m+1;

(2) The system (7.3) admits a nonnegative ω-periodic solution

u∗(t) = (u∗1(t), . . . , u
∗
k−1(t), 0, u

∗
k+1(t), . . . , u

∗
m(t))

with μ(Ak(t), Fk(x, t, u
∗(t)(x))) < 0.

Then there exists δ > 0 such that lim supn→∞ ‖ϕ(nω, u)− u∗(0)‖ ≥ δ for all
u ∈ P with uk(·) �≡ 0.

Proof. Let M = u∗(0) and let S : P → P be defined by S(u) = ϕ(ω, u). It
then suffices to prove that there exists δ > 0 such that for any u ∈ N(M, δ)
with uk(·) �≡ 0, where N(M, δ) is the δ-neighborhood of M in P , there exists
n = n(u) ≥ 1 such that Sn(u) /∈ N(M, δ). Let μ = μ(Ak(t), F

0
k (x, t, u

∗(t)(x))),
and fix ε0 ∈ (0,−μ). By the uniform continuity of Fk(x, t, u) on the compact
set Qω×

∏m
i=1[0, bi], where bi = max(x,t)∈Qω

u∗i (t, x)+1, there exists δ0 ∈ (0, 1)

such that for any u and v ∈
∏m

i=1[0, bi] with |ui − vi| < δ0, ∀1 ≤ i ≤ m, and
all (x, t) ∈ Qω,

|Fk(x, t, u)− Fk(x, t, v)| < ε0.

Since limu→M ϕ(t, u) = ϕ(t,M) = u∗(t) in E :=
∏m

i=1 Ei uniformly for t ∈
[0, ω] and E ↪→

∏m
i=1 C(Ω), there exists δ > 0 such that for any u ∈ N(M,

δ) ∩ P ,

‖ϕi(t, u)− u∗i (t)‖C(Ω) < δ0, ∀i �= k, ‖ϕk(t, u)‖C(Ω) < δ0, ∀t ∈ [0, ω].

Assume, by contradiction, that there exists w ∈ N(M, δ) ∩ P with wk(·) �≡ 0
such that Sn(w) = ϕ(nω,w) ∈ N(M, δ), ∀n ≥ 1. For any t ≥ 0, let t = nω+t′,
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where t′ ∈ [0, ω) and n = [t/ω] is the greatest integer less than or equal to
t/ω. Then we have

‖ϕi(t, w)− u∗i (t)‖C(Ω) = ‖ϕi(t
′, ϕ(nω,w))− u∗i (t

′)‖C(Ω) < δ0, ∀i �= k,

and
‖ϕk(t, w)‖C(Ω) = ‖ϕk(t

′, ϕ(nω,w))‖C(Ω) < δ0.

Let u∗(t, x) = u∗(t)(x) and u(t, x) = ϕ(t, w)(x). By the ω-periodicity of
Fk(x, t, u) with respect to t, we then get

Fk(x, t, u(t, x)) > Fk(x, t, u
∗(t, x)) − ε0, ∀x ∈ Ω, t ≥ 0.

Let ϕk(t, x) be a positive eigenfunction corresponding to the principal eigen-
value μ. Then ϕk(t, x) satisfies

∂ϕk

∂t
+Ak(t)ϕk = Fk(x, t, u

∗(t, x))ϕk + μϕk in Ω × (0,∞),

Bkϕk = 0 on ∂Ω × (0,∞),

ϕk ω-periodic in t.

(7.4)

Then ϕk(0, ·) � 0 in Ek = X
(k)
β (i.e., ϕk(0, ·) ∈ int(Pk)). Since uk(0, ·) =

wk �≡ 0, the parabolic maximum principle, as applied to the uk equation
in system (7.3), implies that uk(t, ·) � 0 in Ek, ∀t > 0. Without loss of
generality, we can assume uk(0, ·) ∈ int(Pk). Then there exists η > 0 such
that uk(0, x) ≥ ηϕk(0, x), ∀x ∈ Ω. Consequently, uk(t, x) satisfies

∂uk
∂t

+Ak(t)uk ≥ uk (Fk(x, t, u
∗(t, x))− ε0) in Ω × (0,∞),

uk(0, x) ≥ ηϕk(0, x) on Ω.
(7.5)

By (7.4), it easily follows that v(t, x) = ηe(−μ−ε0)tϕk(t, x) satisfies

∂v

∂t
+Ak(t)v = v (Fk(x, t, u

∗(t, x)) − ε0) in Ω × (0,∞),

v(0, x) = ηϕk(0, x) on Ω.
(7.6)

By (7.5), (7.6), and the standard comparison principle, it follows that

uk(t, x) ≥ ηe(−μ−ε0)tϕk(t, x), ∀t ≥ 0, x ∈ Ω.

For each x ∈ Ω, since ϕk(t, x) is a positive ω-periodic function in t, we have

limt→∞ uk(t, x) = +∞. In view of the fact that Ek = X
(k)
β ↪→ C(Ω), we

then get limt→∞ ‖uk(t, ·)‖Ek
= +∞, which contradicts the assumption that

Sn(w) = u(nω, ·) ∈ N(M, δ), ∀n ≥ 1.
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7.2 Competitive Coexistence

In this section we establish a set of conditions for the existence of at least
one positive periodic solution and the competitive coexistence in the model
system (7.1).

Let N < p < +∞, and for β ∈ (1/2 + N/(2p), 1], let Ei = X
(i)
β be the

fractional power space of Lp(Ω) with respect to (Ai(0), Bi) (see, e.g., [150]).
Then each Ei is an ordered Banach space with the order cone Pi consisting
of all nonnegative functions in Ei, and Pi has nonempty interior int(Pi). Let
Ṗi = Pi\{0}, and let E = E1×E2×E3. By an easy extension of some results in
[152, Section III.20] to systems, it follows that for every u0 = (u01, u

0
2, u

0
3) ∈ E,

there exists a unique regular solution ϕ(t, u0) of (7.1) satisfying ϕ(0, u0) =
u0 with its maximal interval of existence I+(u0) ⊂ [0,+∞), and ϕ(t, u0) is
globally defined, provided that there is an L∞-bound on ϕ(t, u0). Moreover,
a standard invariant principle argument (see, e.g., [6, 343]) implies that any
solution ϕ(t, u0) of (7.1) with nonnegative initial values remains nonnegative.

According to Theorem 3.1.5, let u∗1(x, t), u
∗
2(x, t), u

∗
3(x, t) be the unique

positive ω-periodic solutions of scalar parabolic equations

∂u1
∂t

+A1(t)u1 = u1g1(x, t, u1) in Ω × (0,+∞),

B1u1 = 0 on ∂Ω × (0,+∞);
(7.7)

∂u2
∂t

+A2(t)u2 = u2g2(x, t, u2) in Ω × (0,+∞),

B2u2 = 0 on ∂Ω × (0,+∞);
(7.8)

∂u3
∂t

+A3(t)u3 = u3h(x, t, 0, u3) in Ω × (0,+∞),

B3u3 = 0 on ∂Ω × (0,+∞);
(7.9)

respectively. Since h(x, t, u∗1(x, t), 0) > h(x, t, 0, 0), ∀(x, t) ∈ Qω, by [152,
Lemma 15.5] we have

μ(A3(t), h(x, t, u
∗
1(x, t), 0) < μ(A3(t), h(x, t, 0, 0)) < 0,

and hence Theorem 3.1.5 implies that there is a unique positive ω-periodic
solution u3(x, t) to the scalar equation

∂u3
∂t

+A3(t)u3 = u3h(x, t, u
∗
1(x, t), u3) in Ω × (0,+∞),

B3u3 = 0 on ∂Ω × (0,+∞).
(7.10)

We claim that u∗3(t) � u3(t) in E3, ∀t ≥ 0. Indeed, (H5) implies that u3(t)
satisfies

∂u3
∂t

+A3(t)u3 − u3h(x, t, 0, u3) >
∂u3
∂t

+A3(t)u3 − u3h(x, t, u
∗
1(x, t), u3) = 0,
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and hence u3(x, t) is a strict supersolution of (7.9). Then it easily follows that
u∗3(0) < u3(0) in E3, and hence the comparison theorem of scalar parabolic
equations implies that u∗3(t) � u3(t) in E3, ∀t > 0. By the ω-periodicity of
u∗3(t) and u3(t), we get u∗3(t) � u3(t) in E3, ∀t ≥ 0.

Let X = P1 × P2 × P3, X0 = {(u1, u2, u3) ∈ X : ui(·) �≡ 0, ∀1 ≤ i ≤ n}
and ∂X0 = X \X0. Clearly, X0 and ∂X0 are relatively open and closed in X ,
respectively, and X0 is convex. By assumptions (H1)–(H5) and a comparison
argument, it follows that for any u ∈ X , the unique solution ϕ(t, u) of (7.1)
exists globally on [0,+∞). It is easy to see that system (7.1) is majorized by
the following system

∂u1
∂t

+A1(t)u1 = u1g1(x, t, u1) in Ω × (0,+∞),

∂u2
∂t

+A2(t)u2 = u2g2(x, t, u2) in Ω × (0,+∞),

∂u3
∂t

+A3(t)u3 = u3h(x, t, u1, u3) in Ω × (0,+∞),

B1u1 = B2u2 = B3u3 = 0 on ∂Ω × (0,+∞).

(7.11)

Then Theorem 3.1.5 and Proposition 3.2.4 imply that system (7.11), and
hence (7.1), is point dissipative.

Let S : X → X be the Poincaré map associated with (7.1); that is,
S(u) = ϕ(ω, u), ∀u ∈ X . It then follows that S : X → X is a continuous,
point dissipative, and compact map with S(X0) ⊂ X0 and S(∂X0) ⊂ ∂X0.
Moreover, by Theorem 1.1.3, S : X → X admits a strong global attractor
A ⊂ X .

Proposition 7.2.1. Let (H1)–(H6) hold. Assume that

(C1) μ1 := μ(A1(t), g1(x, t, 0)− q1(x, t, 0, u
∗
2(x, t), u

∗
3(x, t))) < 0;

(C2) μ2 := μ(A2(t), g2(x, t, 0)− q2(x, t, u
∗
1(x, t), 0)) < 0.

Then S : X → X is uniformly persistent with respect to (X0, ∂X0).

Proof. Let A∂ be the maximal compact invariant set of S in ∂X0, and let
M1 be the global attractor of S : P1 × P2 × {0} → P1 × P2 × {0}, M2 =
(0, u∗2(0), u∗3(0)), M3 = (0, 0, u∗3(0)), and M4 = (u∗1(0), 0, u3(0)). For u ∈ X =
P1 × P2 × P3, let ω(u) be the omega limit set of u for S : X → X and let
ϕ(t, u) = (u1(t), u2(t), u3(t)). By Theorem 3.1.5, it follows that

u1(t) ≡ 0, lim
t→∞ ‖ui(t)− u∗i (t)‖Ei = 0, ∀u ∈ {0} × Ṗ2 × Ṗ3, i = 2, 3,

and

u1(t) = u2(t) ≡ 0, lim
t→∞ ‖u3(t)− u∗3(t)‖E3 = 0, ∀u ∈ {0} × {0} × Ṗ3.



7.2 Competitive Coexistence 187

By Proposition 3.2.4, we have

u2(t) ≡ 0, lim
t→∞ ‖u1(t)− u∗1(t)‖E1 = 0, lim

t→∞ ‖u3(t)− u3(t)‖E3 = 0,

for all u ∈ Ṗ1 × {0} × Ṗ3. Thus, Ã∂ = ∪u∈A∂
ω(u) ⊂ ∪4

i=1Mi, and M1, M2,
M3, and M4 are disjoint, compact, and isolated invariant sets of S∂ = S|A∂

in A∂ . Clearly, Proposition 7.1.1 implies that M2, M3, and M4 are isolated in
X0 and hence isolated in X , and W s(Mi) ∩X0 = ∅, ∀2 ≤ i ≤ 4. For u ∈ X0,
since ϕ(t, u) = (u1(t), u2(t), u3(t)) satisfies ui(t) � 0 in Ei, ∀t > 0, 1 ≤ i ≤ 3,
we have

∂u3
∂t

+A3(t)u3 = u3h(x, t, u1, u3) ≥ u3h(x, t, 0, u3), ∀t ≥ 0.

Let v3(t) be the solution of (7.9) with v3(0) = u3(0) > 0. Then the comparison
theorem implies that u3(t) ≥ v3(t), ∀t ≥ 0. By Theorem 3.1.5, limt→∞ ‖v3(t)−
u∗3(t)‖E3 = 0. Then Sn(u) = (u1(nω), u2(nω), u3(nω)) satisfies u3(nω) ≥
v3(nω), ∀n ≥ 0, and limn→∞ v3(nω) = u∗3(0) � 0 in E3. It follows that
M1 is isolated in X0 and hence in X , and W s(M1) ∩ X0 = ∅. It is easy to
see that ∪4

i=1Mi is acyclic for S∂ in A∂ . Consequently, Theorem 1.3.1 and
Remark 1.3.1 imply that S : X → X is uniformly persistent with respect to
(X0, ∂X0).

Note that if S : X → X is uniformly persistent, then Theorem 1.3.10
implies that S : X0 → X0 admits a global attractor A0, and S has a fixed
point x0 ∈ A0 ⊂ X0. Thus, system (7.1) admits a positive ω-periodic solution.
Moreover, Theorem 3.1.1 implies that ϕ(t, ·) : X → X , t ≥ 0, is uniformly
persistent with respect to (X0, ∂X0). Since A0 = S(A0) ⊂ int(P1 × P2 × P3),
we have A∗

0 := ∪0≤t≤ωϕ(t, A0) ⊂ int(P1 × P2 × P3). By the compactness
and global attractivity of A∗

0 (see Theorem 3.1.1), it then follows that there
exists a β > 0 such that for any u = (u1, u2, u3) ∈ Ṗ1 × Ṗ2 × Ṗ3, there exists
t0 = t0(u) > 0 such that ϕ(t, u) = (u1(t), u2(t), u3(t)) satisfies

ui(t)(x) ≥ βei(x), ∀t ≥ t0, x ∈ Ω, 1 ≤ i ≤ 3,

where

ei(x) =

{
e(x) if Biv = v,

1 if Biv = ∂v
∂ν + b

(i)
0 v,

and e ∈ C2(Ω) is given such that e(x) > 0, ∀x ∈ Ω; and e(x) = 0 and
∂e
∂ν < −γ < 0, ∀x ∈ ∂Ω.

For a � b in Ei, let [[a, b]] := {u : a � u � b inEi}. Then we have the
following result.

Proposition 7.2.2. Let (H1)–(H6) and (C1)–(C2) hold. Then ω(u) ⊂
[[0, u∗1(0)]]× [[0, u∗1(0)]]× [[u∗3(0), u3(0)]], ∀u = (u1, u2, u3) ∈ Ṗ1 × Ṗ2 × Ṗ3.
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Proof. Given u = (u1, u2, u3) ∈ X0 = Ṗ1× Ṗ2× Ṗ3, let ϕ(t, u) = (u1(t), u2(t),
u3(t)). Then ui(t) � 0 in Ei, ∀t > 0, 1 ≤ i ≤ 3. By Proposition 7.2.1, S : X →
X is uniformly persistent, and hence ω(u) ⊂ X0. For v = (v1, v2, v3) ∈ ω(u),
the invariance of ω(u) for S (i.e., ω(u) = S(ω(u))) implies that there exists
w = (w1, w2, w3) ∈ ω(u) such that (v1, v2, v3) = S((w1, w2, w3)) with wi > 0
in Ei, ∀1 ≤ i ≤ 3. By the parabolic maximum principle, it follows that vi � 0
in Ei, ∀1 ≤ i ≤ 3.

Let u1(t) and u2(t) be the solutions of (7.7) and (7.8) with u1(0) =
u1(0) and u2(0) = u2(0), respectively. Then the comparison theorem of
scalar parabolic equations implies that ui(t) ≤ ui(t), ∀t ≥ 0, 1 ≤ i ≤ 2.
Since limt→∞ ‖ui(t) − u∗i (t)‖Ei = 0, it easily follows that for any v =
(v1, v2, v3) ∈ ω(u), we have 0 � vi ≤ u∗i (0), ∀1 ≤ i ≤ 2, and hence
ϕ(t, v) = (v1(t), v2(t), v3(t)) satisfies

0 � vi(t) ≤ u∗i (t) in Ei, ∀t ≥ 0, 1 ≤ i ≤ 2.

Therefore, v3(t) satisfies

v3h(x, t, 0, v3) ≤
∂v3
∂t

+A3(t)v3 ≤ v3h(x, t, u
∗
1(t), v3).

Let v3(t) and v3(t) be the solutions of (7.9) and (7.10) with v3(0) = v3(0) = v3,
respectively. By the comparison theorem, we get

v3(t) ≤ v3(t) ≤ v3(t), ∀t ≥ 0.

Let S̄ : P3 → P3 and S : P3 → P3 be the Poincaré maps associated with (7.9)
and (7.10), respectively. It then follows that for all n ≥ 1,

Pn(v) = (v1(nω), v2(nω), v3(nω)) ⊂ [0, u∗1(0)]× [0, u∗2(0)]×
[
S
n
(v3), S

n
(v3)

]
.

Since ω(u) is compact and ω(u) ⊂ int(P1) × int(P2) × int(P3), there exist
w3 � 0, w3 � 0 in E3 such that w3 ≤ v3 ≤ w3, ∀(v1, v2, v3) ∈ ω(u). Thus,

Pn(v) ⊂ [0, u∗1(0)]× [0, u∗2(0)]×
[
S
n
(w3), S

n
(w3)

]
, ∀v ∈ ω(u), n ≥ 1,

which implies that

ω(u) = Pn(ω(u)) ⊂ [0, u∗1(0)]× [0, u∗2(0)]×
[
S
n
(w3), S

n
(w3)

]
, ∀n ≥ 1.

Letting n→ ∞, we then have ω(u) ⊂ [0, u∗1(0)]× [0, u∗2(0)]× [u∗3(0), u3(0)].
For v = (v1, v2, v3) ∈ ω(u), let ϕ(t, v) = (v1(t), v2(t), v3(t)). Then the

comparison theorem of scalar equations implies that

0 � vi(t) ≤ u∗i (t) andu
∗
3(t) ≤ v3(t) ≤ u3(t), ∀t ≥ 0, 1 ≤ i ≤ 2.

By our assumptions, we then get
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q1(x, t, v1(t)(x), v2(t)(x), v3(t)(x)) �≡ 0, q2(x, t, v1(t)(x), v2(t)(x)) �≡ 0,

and h(x, t, v1(t)(x), v3(t)(x)) �≡ h(x, t, 0, v3(t)(x)), ∀(x, t) ∈ Qω, and hence
there exist t1, t2, and t3 ∈ [0, ω] such that v1(t1) < u∗1(t1) in E1, v2(t2) <
u∗2(t2) in E2 and v3(t3) > u∗3(t3) in E3, respectively. By the parabolic max-
imum principle, it follows that vi(t) � u∗i (t) in Ei, ∀t > ti, 1 ≤ i ≤ 2, and
v3(t) � u∗3(t) in E3, ∀t > t3. In particular, vi(2ω) � u∗i (0), ∀1 ≤ i ≤ 2,
and v3(2ω) � u∗3(0). It then follows that for any w = (w1, w2, w3) ∈ ω(u) =
S2(ω(u)), there exists v = (v1, v2, v3) ∈ ω(u) such that w = (w1, w2, w3) =
P 2(v) = (v1(2ω), v2(2ω), v3(2ω)), and hence, wi � u∗i (0), ∀1 ≤ i ≤ 2, and
w3 � u∗3(0). Thus, we have ω(u) ⊂ [[0, u∗1(0)]]× [[0, u∗2(0)]]× [[u∗3(0), u3(0)].

It remains to prove that w3 � u3(0) in E3, ∀w = (w1, w2, w3) ∈ ω(u). For
v = (v1, v2, v3) ∈ ω(u), let ϕ(t, v) = (v1(t), v2(t), v3(t)). Then the comparison
theorem implies that 0 � vi(t) � u∗i (t) in Ei, and u∗3(t) � v3(t) ≤ u3(t) in
E3, ∀t ≥ 0, 1 ≤ i ≤ 2, and hence, v3(t) satisfies

∂v3
∂t

+A3(t)v3 < v3h(x, t, u
∗
1(t)(x), v3), ∀(x, t) ∈ Ω × (0,∞),

which implies that there exists t4 ∈ [0, ω] such that v3(t4) �≡ u3(t4), and
hence, v3(t4) < u3(t4). Therefore, by the parabolic maximum principle, we
get v3(t) � u3(t), ∀t > t4, and in particular, v3(2ω) � u3(2ω) = u3(0).
It then follows that for any w = (w1, w2, w3) ∈ ω(u) = S2(ω(u)), there
exists v = (v1, v2, v3) ∈ ω(u) such that w = (w1, w2, w3) = S2(v) =
(v1(2ω), v2(2ω), v3(2ω)), and hence w3 � u3(0).

Let P = P1×(−P2)×P3. Then (E,P ) is an ordered Banach space with the
cone P having the nonempty interior int(P ) = int(P1)× (−int(P2))× int(P3).
Let S : X → X be the Poincaré map associated with (7.1). Then U∗

1 =
(0, u∗2(0), u

∗
3(0)) and U∗

2 = (u∗1(0), 0, u3(0)) are two fixed points of S with
U∗
1 � U∗

2 in E (i.e., U∗
2 − U∗

1 ∈ int(P )). To prove our main result in this
section, we also need two lemmas.

Lemma 7.2.1. Let (H1)–(H6) hold and assume that

μ1 := μ(A1(t), g1(x, t, 0)− q1(x, t, 0, u
∗
2(x, t), u

∗
3(x, t)) < 0.

Then DS(U∗
1 ) exists and r2 = e−μ1ω is an eigenvalue of DS(U∗

1 ) with an
eigenvector e1 � 0 in E.

Proof. We consider the linearized periodic parabolic system of (7.1) at its
ω-periodic solution (0, u∗2(x, t), u∗3(x, t)),

∂w

∂t
+A(t)w = H(x, t)w inΩ × (0,∞),

Bw = 0 on∂Ω × (0,∞),
(7.12)

where w = (w1, w2, w3)
T , A(t) = diag(A1(t), A2(t), A3(t)), B =

diag(B1, B2, B3), and
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H(x, t) =

⎡

⎢
⎣

H11(x, t) 0 0

−u∗2
∂q2(x,t,0,u

∗
2)

∂u1
H22(x, t) 0

u∗3
∂h(x,t,0,u∗

3)
∂u1

0 H33(x, t)

⎤

⎥
⎦

with
H11(x, t) := g1(x, t, 0)− q1(x, t, 0, u

∗
2, u

∗
3),

H22(x, t) :=
∂

∂u2
(u2g2(x, t, u2))|u2=u∗

2
,

H33(x, t) :=
∂

∂u3
(u3h(x, t, 0, u3))|u3=u∗

3
.

Let U1(t, s), 0 ≤ s ≤ t ≤ ω, be the evolution operator of the equation

∂w1

∂t
+A1(t)w1 = (g1(x, t, 0)− q1(x, t, 0, u

∗
2(x, t), u

∗
3(x, t)))w1,

B1w1 = 0,
(7.13)

and let U2(t, s) and U3(t, s), 0 ≤ s ≤ t ≤ ω, be the evolution operators of
the linearized equations of (7.8) at u∗2(x, t) and (7.9) at u∗3(x, t), respectively.
By the variation of constants formula for scalar parabolic equations (see, e.g.,
[152]), it then easily follows that U(t, s) : E → E, 0 ≤ s ≤ t ≤ ω, defined by

U(t, s)

⎛

⎝
φ1

φ2

φ3

⎞

⎠ =

⎛

⎝
U1(t, s)φ1

U2(t, s)φ2 +
∫ t

s
U2(t, τ)h21(τ)U1(τ, s)φ1dτ

U3(t, s)φ3 +
∫ t

s
U3(t, τ)h31(τ)U1(τ, s)φ1dτ

⎞

⎠

for φ = (φ1, φ2, φ3)
T ∈ E, where

h21(t) = −u∗2(t)
∂q2(·, t, 0, u∗2(t))

∂u1
, h31(t) = u∗3(t)

∂h(·, t, 0, u∗3(t))
∂u1

, ∀t ≥ 0,

is the evolution operator of (7.12). It is easy to prove that DS(U∗
1 ) exists and

DS(U∗
1 ) = U(ω, 0) (see, e.g., the proof of [152, Proposition 23.1]). Let r1, r2,

and r3 be spectral radii (and hence principal eigenvalues) of the compact and
strongly positive linear operators U1(ω, 0), U2(ω, 0), and U3(ω, 0), respectively.
By the definition of periodic principal eigenvalue ([152]) and Theorem 3.1.5,
we have r1 = e−μ1T > 1, and ri ≤ 1, ∀2 ≤ i ≤ 3. Let h1 ∈ int(P1) be
a principal eigenvector of U1(ω, 0) (i.e., U1(ω, 0)h1 = r1h1). By the Krein–
Rutman theorem (see, e.g., [152, Theorem 7.3]), it follows that

(r1 − U2(ω, 0))h2 = −
∫ ω

0

U2(ω, τ)h21(τ)U1(ω, 0)h1dτ � 0

and

(r1 − U3(ω, 0))h3 =

∫ ω

0

U3(ω, τ)h31(τ)U1(ω, 0)h1dτ � 0

have unique positive solutions h2 and h3 with hi � 0 in Ei, ∀2 ≤ i ≤ 3,
respectively. Thus, e1 = (h1,−h2, h3)T � 0 in E, and U(ω, 0)e1 = r1e1. Then
r1 is an eigenvalue of DS(U∗

1 ) with an eigenvector e1 � 0 in E.
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For U∗
2 = (u∗1(0), 0, u3(0)), we consider the linearized periodic system of

(7.1) at its ω-periodic solution (u∗1(t), 0, u3(t)):

∂w

∂t
+A(t)w = G(x, t)w inΩ × (0,∞),

Bw = 0 on ∂Ω × (0,∞),
(7.14)

where w = (w1, w2, w3)
T , A(t) and B are as in (7.12), and

G(x, t) =

⎡

⎢
⎣

G11(x, t) −u∗1
∂q1(x,t,u

∗
1,0,u3)

∂u2
0

0 G22(x, t) 0

u3
∂h(x,t,u∗

1,u3)
∂u1

0 G33(x, t)

⎤

⎥
⎦

with

G11(x, t) :=
∂

∂u1
(u1g1(x, t, u1))|u1=u∗

1
,

G22(x, t) := g2(x, t, 0)− q2(x, t, u
∗
1, 0),

G33(x, t) :=
∂

∂u3
(u3h(x, t, u

∗
1, u3)|u3=u3 .

By an argument similar to that in Lemma 7.2.1, we have the following result.

Lemma 7.2.2. Let (H1)–(H6) hold and assume that

μ2 := μ(A2(t), g2(x, t, 0)− q2(x, t, u
∗
1(x, t), 0)) < 0.

Then DS(U∗
2 ) exists and r2 = e−μ2ω is an eigenvalue of DS(U∗

2 ) with an
eigenvector e2 � 0 in E.

Now we are in a position to prove our main result of this section.

Theorem 7.2.1. Assume that (H1)–(H6) and (C1)–(C2) hold. Then (7.1)
admits two positive ω-periodic solutions U∗(t) = (w1∗(t), w∗

2(t), w3∗(t)) and
U∗(t) = (w∗

1(t), w2∗(t), w∗
3(t)) with 0 � wi∗(t) ≤ w∗

i (t), ∀t ≥ 0, 1 ≤ i ≤ 3,
such that for any u ∈ Ṗ1 × Ṗ2 × Ṗ3, ϕ(t, u) = (u1(t), u2(t), u3(t)) satisfies
limt→∞ d(ui(t), [wi∗(t), w∗

i (t)]) = 0, ∀1 ≤ i ≤ 3.

Proof. It suffices to prove that the Poincaré map S : X → X admits two
positive fixed points U∗ and U∗ in int(P1)× int(P2) × int(P3) with U∗ ≤ U∗

in (E,P ) such that ω(u) ⊂ [U∗, U∗]E , ∀u ∈ Ṗ1 × Ṗ2 × Ṗ3.
Let v1 = u1, v2 = −u2, v3 = u3. Then (7.1) is transformed into the system

∂vi
∂t

+Ai(t)vi = Fi(x, t, v) in Ω × (0,∞), 1 ≤ i ≤ 3,

Bivi = 0 on ∂Ω × (0,∞), 1 ≤ i ≤ 3,
(7.15)

where v = (v1, v2, v3) ∈ Σ := R+ × (−R+)× R+, and
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F1(x, t, v) = v1[g1(x, t, v1)− q1(x, t, v1,−v2, v3)],
F2(x, t, v) = v2[g2(x, t,−v2)− q2(x, t, v1,−v2)],
F3(x, t, v) = v3h(x, t, v1, v3).

It is easy to see that ∂Fi

∂vj
≥ 0, i �= j, ∀(x, t) ∈ Qω, v ∈ Σ. By the parabolic

maximum principle of weakly coupled parabolic systems (see, e.g., [283, Theo-
rem 13 of Section 3.8]) and hence the corresponding comparison theorem (see,
e.g., [236, Theorem 4.1]), it then follows that ϕ(t, ·) : X = P1 × P2 × P3 → X
is order-preserving in the sense that for any u,w ∈ X with u ≤ w in (E,P ),
we have ϕ(t, u) ≤ ϕ(t, w) in (E,P ), ∀t ≥ 0, where ϕ(t, u) is the unique so-
lution of (7.1) with ϕ(0, u) = u ∈ X . Therefore, S : X → X , defined by
S(u) = ϕ(T, u), u ∈ X , is a monotone (nondecreasing) map.

Let F = {u ∈ Ṗ1 × Ṗ2 × Ṗ3 : S(u) = u}. By Proposition 7.2.1, it follows
that there exists δ > 0 such that ‖ui‖Ei ≥ δ, ∀u = (u1, u2, u3) ∈ F, 1 ≤ i ≤ 3,
and hence F is closed in E. Let A be the global attractor of S : X → X .
Clearly, F ⊂ A. Thus, the compactness of A implies that F is compact in E.
For any u ∈ F , by Proposition 7.2.2, we have u = ω(u) ∈ [[U∗

1 , U
∗
2 ]]E , and

hence F ⊂ [[U∗
1 , U

∗
2 ]]E . Let ei � 0 be given as in Lemmas 7.2.1 and 7.2.2,

respectively. Then the compactness of F implies that there exists β0 > 0 such
that

F ⊂ [[U∗
1 + β0e1, U

∗
2 − β0e2]]E .

By Lemmas 7.2.1 and 7.2.2, DS(U∗
i )ei = riei with ri > 1, 1 ≤ i ≤ 2. Then

there exists 0 < ε0 ≤ β0 such that for any ε ∈ (0, ε0], U
∗
1 + εe1 � U∗

2 − εe2 and

S(U∗
1 + εe1) � U∗

1 + εe1, S(U
∗
2 − εe2) � U∗

2 − εe2.

By the compactness and monotonicity of S : X → X , it follows that
Sn(U∗

1 + εe1) converges increasingly to the minimal fixed point U1(ε) of S and
Sn(U∗

2 − εe2) converges decreasingly to the maximal fixed point U2(ε) of S in
the interval [U∗

1 + εe1, U
∗
2 − εe2]E . Clearly, U

∗
1 � U∗

1 + εe1 � U1(ε) ≤ U2(ε) �
U∗
2 − εe2 � U∗

2 . We further claim that U1(ε) and U2(ε) are independent of
ε ∈ (0, ε0]. Indeed, for any ε1, ε2 ∈ (0, ε0], since Ui(εj) ∈ F, ∀1 ≤ i, j ≤ 2, and
ε0 ≤ β0, we have

U∗
1 + εje1 ≤ U∗

1 + β0e1 � U1(εi) ≤ U2(εi) � U∗
2 − β0e2 ≤ U∗

2 − εje2

for all 1 ≤ i, j ≤ 2. It then follows that

U1(εj) ≤ U1(εi) ≤ U2(εi) ≤ U2(εj), ∀1 ≤ i, j ≤ 2,

which implies that

U1(ε1) = U1(ε2), U2(ε1) = U2(ε2).

Let U1(ε) = U∗, U2(ε) = U∗. Thus, U∗
1 � U∗ ≤ U∗ � U∗

2 , and for any
ε ∈ (0, ε0],
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lim
n→∞Sn(U∗

1 + εe1) = U∗ ≤ U∗ = lim
n→∞Sn(U∗

2 − εe2).

For u ∈ Ṗ1 × Ṗ2 × Ṗ3, by Proposition 7.2.2, ω(u) ⊂ [[U∗
1 , U

∗
2 ]]E . Then

the compactness of ω(u) implies that there exists ε = ε(u) ∈ (0, ε0] such that
ω(u) ⊂ [[U∗

1 + εe1, U
∗
2 − εe2]]E , and hence

Sn(U∗
1 + εe1) ≤ Sn(ω(u)) = ω(u) ≤ Sn(U∗

2 − εe2), ∀n ≥ 1.

Letting n→ ∞, we get ω(u) ⊂ [U∗, U∗]E .

In the case that (7.1) is autonomous, that is, Ai(x, t) = Ai(x), ∀1 ≤ i ≤ 3,
gi(x, t, ·) = gi(x, ·), qi(x, t, ·) = qi(x, ·), ∀1 ≤ i ≤ 2, and h(x, t, ·) = h(x, ·),
there is an analogous result of Theorem 7.2.1. As an illustration, let Ai and

Bi be such that a
(i)
0 ≥ 0, with a

(i)
0 (x) �≡ 0 if b

(i)
0 ≡ 0, ∀1 ≤ i ≤ 3. For any m ∈

Cθ(Ω) with m(x) > 0 for some x ∈ Ω, according to [152, Theorem 16.1 and
Remark 16.5], let λ1(Ai(·),m(·)) be the unique positive principal eigenvalue
of the elliptic eigenvalue problem

Ai(x)u = λm(x)u in Ω,

Biu = 0 on ∂Ω.
(7.16)

We then have the following result.

Theorem 7.2.2. Let (H1)–(H5) hold for the autonomous case of (7.1).
Assume that

(1) λ1(Ai(x), gi(x, 0)) < 1, ∀i = 1, 2, and λ1(A3(x), h(x, 0, 0)) < 1;
(2) λ1(A1(x), g1(x, 0)− q1(x, 0, u

∗
2(x), u

∗
3(x))) < 1;

(3) λ1(A2(x), g2(x, 0)− q2(x, u
∗
1(x), 0) < 1;

where u∗1(x), u
∗
2(x), and u

∗
3(x) are the unique positive steady-state-solutions of

autonomous equations (7.7), (7.8), and (7.9), respectively. Then autonomous
system (7.1) admits two positive steady-state-solutions U∗ = (w1∗, w∗

2 , w3∗)
and U∗ = (w∗

1 , w2∗, w∗
3) with 0 � wi∗ ≤ w∗

i , ∀1 ≤ i ≤ 3, such that for any u ∈
Ṗ1×Ṗ2×Ṗ3, ϕ(t, u) = (u1(t), u2(t), u3(t)) satisfies limt→∞ d(ui(t), [wi∗, w∗

i ]) =
0, ∀1 ≤ i ≤ 3.

Proof. As shown in Theorem 7.2.1, now ϕ(t, ·) : X = P1 ×P2×P3 → X, t ≥
0, is a monotone semiflow. For ω > 0, we view the autonomous parabolic
system (7.1) as an ω-periodic one. Let μ(A,m(·), ω) be the principal eigenvalue
of ω-periodic parabolic problem (7.2). By [152, Chapter II.15 and Remark
16.5], it follows that conditions (1), (2), and (3) imply (H6), (C1), and (C2),
respectively. As in the proof of Theorem 7.2.1, for any ε ∈ (0, ε0], we have
limn→∞ Sn(U∗

1 + εe1) = U∗ � U∗
1 + εe1. Then there exists N > 0 such

that ϕ(nω,U∗
1 + εe1) = Sn(U∗

1 + εe1) � U∗
1 + εe1, ∀n ≥ N . By the Hirsch

convergence criterion for monotone semiflows (see Theorem 2.2.5), ϕ(t, U∗
1 +

εe1) converges to an equilibrium as t → ∞, which implies that U∗ is an
equilibrium; that is, ϕ(t, U∗) = U∗(t) = U∗, ∀t ≥ 0. Similarly, we can prove
U∗(t) = U∗, ∀t ≥ 0. Now Theorem 7.2.1 completes the proof.
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7.3 Competitive Exclusion

In this section we establish conditions under which at least one species goes
to extinction via the Poincaré map S : X → X associated with (7.1).

Proposition 7.3.1. Let (H1)–(H6) and (C2) hold. Then for every u ∈ Ṗ1 ×
Ṗ2× Ṗ3, we have ω(u) ⊂ [U∗

1 , U
∗
2 ]]E; that is, 0 ≤ v1 � u∗1(0), 0 � v2 ≤ u∗2(0),

and u∗3(0) ≤ v3 � u3(0), ∀v = (v1, v2, v3) ∈ ω(u).

Proof. Let Y0 := {(u1, u2, u3) ∈ X : u2(·) �≡ 0 andu3(·) �≡ 0} = P1 × Ṗ2 × Ṗ3

and ∂Y0 := X \ X0. Then Y0 and ∂Y0 are relatively open and closed in X ,
respectively. Clearly, S(Y0) ⊂ Y0 and S(∂Y0) ⊂ ∂Y0. Let A∂ be the maximal
compact invariant set of S in ∂Y0, and let M1 be the global attractor of S :
P1×P2×{0} → P1×P2×{0},M2 = (0, 0, u∗3(0)), and M3 = (u∗1(0), 0, u3(0)).
By an argument similar to that in Proposition 7.2.1, it easily follows that
∪3
i=1M3 is an isolated and acyclic covering of ∪u∈A∂

ω(u) and W s(Mi)∩Y0 =
∅. Then Theorem 1.3.1 and Remark 1.3.1 imply that S : X → X is uniformly
persistent with respect to (Y0, ∂Y0).

As in the proof of Proposition 7.2.2, for u ∈ Ṗ1 × Ṗ2 × Ṗ3, we have
ω(u) ⊂ [0, u∗1(0)]× [0, u∗2(0)]× [u∗3(0), u3(0)]. It remains to prove that for any
v = (v1, v2, v3) ∈ ω(u), v1 � u∗1(0), v2 � 0, and v3 � u3(0). By the uniform
persistence of S with respect to (Y0, ∂Y0) and the invariance of ω(u) (see the
proof of Proposition 7.2.2), it follows that for any v = (v1, v2, v3) ∈ ω(u),
we have v2 � 0, v3 � 0. Then ϕ(t, v) = (v1(t), v2(t), v3(t)) satisfies
v1(t) ≥ 0, v2(t) � 0, and v3(t) � 0, ∀t ≥ 0. If v1 = 0, then v1(t) = 0, ∀t ≥ 0,
and hence v1(2ω) � u∗1(0) in E1. If v1 > 0, then v1(t) � 0, ∀t > 0. Since
q1(x, t, v1(t), v2(t), v3(t)) �≡ 0 for (x, t) ∈ Qω, by a maximum principle argu-
ment (see the proof of Proposition 7.2.2), we get v1(2ω) � u∗1(0). It then
follows that for any v = (v1, v2, v3) ∈ ω(u) = S2(ω(u)), we have v1 � u∗1(0).
Consequently, v1(t) � u∗1(t) and v3(t) � 0, ∀t ≥ 0, and hence v3(t) satisfies

∂v3
∂t

+A3(t)v3 < v3h(x, t, u
∗
1(t), v3), ∀(x, t) ∈ Ω × (0,∞).

As in the proof of Proposition 7.2.2, it follows that v3(2ω) � u3(0). Thus, for
any v = (v1, v2, v3) ∈ ω(u) = S2(ω(u)), we have v3 � u3(0).

By a similar argument, we can prove the following result.

Proposition 7.3.2. Let (H1)–(H6) and (C1) hold. Then for every u ∈ Ṗ1 ×
Ṗ2 × Ṗ3, we have ω(u) ∈ [[U∗

1 , U
∗
2 ]E; that is, 0 � v1 ≤ u∗1(0), 0 ≤ v2 � u∗2(0),

and u∗3(0) � v3 ≤ u3(0), ∀v = (v1, v2, v3) ∈ ω(u).

Now we are in a position to prove the main result of this section.

Theorem 7.3.1. Let (H1)–(H6) and (C2) hold. Assume that (7.1) admits no
positive ω-periodic solution (in int(P1)×int(P2)×int(P3)). Then for every u ∈
Ṗ1× Ṗ2× Ṗ3, the solution ϕ(t, u) of (7.1) satisfies limt→∞(ϕ(t, u)−U∗

1 (t)) = 0
in E, where U∗

1 (t) = (0, u∗2(t), u
∗
3(t)).
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Proof. It suffices to prove that for every u ∈ Ṗ1 × Ṗ2 × Ṗ3, we have ω(u) =
U∗
1 = U∗

1 (0). For u ∈ Ṗ1 × Ṗ2 × Ṗ3, by Proposition 7.3.1, we have ω(u) ⊂
[U∗

1 , U
∗
2 ]]. Then the compactness of ω(u) and Lemma 7.2.2 imply that there

exists an ε > 0 such that ω(u) ⊂ [U∗
1 , U

∗
2 − εe2]] and S(U∗

2 − εe2) � U∗
2 − εe2,

where e2 � 0 in (E,P ) is as given in Lemma 7.2.2. Thus,

U∗
1 ≤ Sn(ω(u)) = ω(u) ≤ Sn(U∗

2 − εe2), ∀n ≥ 1.

By the monotonicity and compactness of S, it follows that Sn(U∗
2 − εe2)

converges decreasingly to a fixed point U∗ with U∗
1 ≤ U∗ � U∗

2 in E. Let U∗ =
(U1, U2, U3). Then 0 ≤ U1 � u∗1(0), 0 � U2 ≤ u∗2(0), and 0 � u∗3(0) ≤ U3 �
u3(0). By the nonexistence of a positive ω-periodic solution of (7.1) and hence
that of the positive fixed point of S in int(P1) × int(P2) × int(P3), it follows
that U1 = 0. Let ϕ(t, U) = (U1(t), U2(t), U3(t)). Then U1(t) ≡ 0, and hence
in view of U2 � 0 and U3 � 0, we get U2(t) ≡ U∗

2 (t), U3(t) ≡ U∗
3 (t), ∀t ≥ 0.

Consequently, limn→∞ Sn(U∗
2 − εe2) = U∗ = (U1(0), U2(0), U3(0)) = U∗

1 , and
hence ω(u) = U∗

1 .

By a similar argument, together with Proposition 7.3.2, we can prove the
following result on the global extinction of u2.

Theorem 7.3.2. Let (H1)–(H6) and (C1) hold. Assume that (7.1) admits no
positive ω-periodic solution (in int(P1)×int(P2)×int(P3)). Then for every u ∈
Ṗ1× Ṗ2× Ṗ3, the solution ϕ(t, u) of (7.1) satisfies limt→∞(ϕ(t, u)−U∗

2 (t)) = 0
in E, where U∗

2 (t) = (u∗1(t), 0, u3(t)).

Remark 7.3.1. As illustrated in previous section (see, e.g., the proof of The-
orem 7.2.2), for the autonomous case of (7.1), there are also analogous re-
sults of Theorems 7.3.1 and 7.3.2. In particular, we need to assume that
the autonomous system (7.1) admits no positive stead state solution in
int(P1)× int(P2)× int(P3).

As an example, we consider a special case of system (7.1) (see [285] for
ordinary differential systems and [374] for reaction–diffusion systems)

∂u1
∂t

+A1(t)u1 = β1(x, t)u1

[

1− u1
a1(x, t)

− a2(x, t)u2
1 + a3(x, t)u3

]

inΩ × (0,∞),

∂u2
∂t

+A2(t)u2 = β2(x, t)u2

[

1− b1(x, t)u1 −
u2

b2(x, t)

]

inΩ × (0,∞),

∂u3
∂t

+A3(t)u3 = β3(x, t)u3

[

1− u3
c0(x, t) + c1(x, t)u1

]

inΩ × (0,∞),

B1u1 = B2u2 = B3u3 = 0 on ∂Ω × (0,∞),
(7.17)

where Ω,Ai(t), Bi(t), 1 ≤ i ≤ 3, are as in system (7.1), and βi, ai, bi, ci :
Ω × R+ → R are positive continuous functions and ω-periodic in t. Assume
that
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(A1) μ(Ai(t), βi(x, t)) < 0, ∀1 ≤ i ≤ 3.

According to Theorem 3.1.5, let u∗1, u
∗
2, u

∗
3, and u3 be the unique positive

ω-periodic solutions of the scalar parabolic equation

∂u

∂t
+A(t)u = uF (x, t, u) in Ω × (0,∞),

Bu = 0 on ∂Ω × (0,∞),
(7.18)

with (A,B, F ) = (A1, B1, β1(1− u1

a1
)), (A2, B2, β2(1− u2

b2
), (A3, B3, β3(1− u3

c0
)),

and (A3, B3, β3(1 − u3

c0+c1u∗
1
)), respectively. In the case where Ai = −ki(t)Δ

and Biu = ∂u
∂ν , ∀1 ≤ i ≤ 3, it is easy to see that a1L ≤ u∗1(x, t) ≤ a1M ,

b2L ≤ u∗2(x, t) ≤ b2M , and c0L ≤ u3(x, t) ≤ c0M , ∀(x, t) ∈ Qω, where fM and
fL denote the supremum and infimum of a bounded function f , respectively.

By Theorems 7.2.1, 7.3.1, and 7.3.2, we then have the following three
results on the global asymptotic behavior of (7.17).

Proposition 7.3.3. Let (A1) hold. Assume that

(A2) μ(A1(t), β1(1− a2u
∗
2

1+a3u∗
3
)) < 0;

(A3) μ(A2(t), β2(1− b1u
∗
1)) < 0.

Then the conclusion of Theorem 7.2.1 holds for (7.17).

Proposition 7.3.4. Let (A1) and (A3) hold. Assume that (7.17) admits no
positive ω-periodic solution. Then the conclusion of Theorem 7.3.1 holds for
(7.17).

Proposition 7.3.5. Let (A1) and (A2) hold. Assume that (7.17) admits no
positive ω-periodic solution. Then the conclusion of Theorem 7.3.2 holds for
(7.17).

For various estimates of principal eigenvalues of periodic–parabolic eigen-
value problems, we refer to [152, Lemma 15.6 and Section II.17], [188], and
[187]. In particular, let Bu = ∂u

∂ν , and A = −k(t)Δ, where k ∈ Cθ/2(R,R) is
ω-periodic and positive. Then [152, Example 17.2] implies that for any given
m ∈ Cθ,θ/2(Qω), we have

(I) μ(A(t),m(x, t)) < 0 if either
∫ ∫

Qω
m(x, t)dx dt > 0 or

∫ ∫
Qω

m(x, t)dx dt ≥ 0 with m(x, t) depending nontrivially on x;

(II) μ(m(x, t)) > 0 if
∫ ∫

Qω
m(x, t)dx dt < 0 and

∫ ω

0 maxx∈Ω m(x, t)dt ≤ 0.

By an approach similar to that in Sections 7.2 and 7.3, we can discuss the
global asymptotic behavior in a more general periodic competitor–competitor–
mutualist model
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∂u1
∂t

+A1(t)u1 = u1G1(x, t, u1, u2, u3) in Ω × (0,∞),

∂u2
∂t

+A2(t)u2 = u2G2(x, t, u1, u2) in Ω × (0,∞),

∂u3
∂t

+A3(t)u3 = u3G3(x, t, u1, u3) in Ω × (0,∞),

B1u1 = B2u2 = B3u3 = 0 on ∂Ω × (0,∞),

where the continuously differentiable functions Gi are such that for all ui ≥
0, 1 ≤ i ≤ 3,

∂G1

∂u2
≤ 0,

∂G1

∂u3
≥ 0,

∂G2

∂u1
≤ 0, and

∂G3

∂u1
≥ 0.

7.4 Bifurcations of Periodic Solutions: A Case Study

In this section we use bifurcation methods to study the existence and multi-
plicity of positive ω-periodic solutions of a special case of (7.1). We first state
two general bifurcation theorems in Banach spaces.

Simple Eigenvalues Theorem ([68, Theorem 1.7]) Let X,Y be Banach
spaces, V a neighborhood of 0 in X, and F : (−1, 1) × V → Y a continuous
function. Assume that

(a) F (λ, 0) = 0, ∀λ ∈ (−1, 1);
(b) The partial derivatives Fλ, Fx, and Fλx exist and are continuous;
(c) N(Fx(0, 0)) and Y \ R(Fx(0, 0)) are one-dimensional, where N(Fx(0, 0))

and R(Fx(0, 0)) denote the null space and range of the linear operator
Fx(0, 0), respectively;

(d) Fλx(0, 0)x0 �∈ R(Fx(0, 0)), where N(Fx(0, 0)) = span{x0}.
If Z is a complement of N(Fx(0, 0)) in X, then there are a neighborhood U
of (0, 0) in R×X, an interval (−δ, δ), and continuous functions φ : (−δ, δ) →
R, ψ : (−δ, δ) → Z such that φ(0) = 0, ψ(0) = 0, and

F−1(0) ∩ U = {(φ(s), sx0 + sψ(s)) : s ∈ (−δ, δ)} ∪ {(λ, 0) : (λ, 0) ∈ U}.

If Fxx is also continuous, the functions φ and ψ are once continuously differ-
entiable.

Let L be a linear and compact operator on a Banach space E, and let σ(L)
be its spectrum set. For μ ∈ {μ ∈ R : μ−1 ∈ σ(L)}, the multiplicity of μ is
defined to be the dimension of ∪i≥0N((I − μL)i).

Global Bifurcation Theorem ([284, Theorem 1.3]) Suppose G(λ, u) =
λLu + H(λ, u), where L is linear and compact, H is compact, and o(‖u‖)
as u → 0 on bounded λ intervals. Let S be the closure of the set {(λ, u) :
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u = G(λ, u), u �= 0} in R × E. If μ ∈ {μ ∈ R : μ−1 ∈ σ(L)} is of
odd multiplicity, then S has a maximal closed and connected subset C that
contains (μ, 0) and is either unbounded in R × E or contains (μ̂, 0), where
μ �= μ̂ ∈ {μ ∈ R : μ−1 ∈ σ(L)}.

We then consider a periodic competitor–competitor–mutualist model with
parameter λ ∈ R:

∂u1
∂t

= α1Δu1 + u1(λβ1 − a1u1 − a2u2/(1 + a3u3)) inΩ × (0,∞),

∂u2
∂t

= α2Δu2 + u2(β2 − b1u1 − b2u2) inΩ × (0,∞),

∂u3
∂t

= α3Δu3 + u3(β3 − c3u3/(1 + c1u1)) inΩ × (0,∞),

Bu1 = Bu2 = Bu3 = 0 on ∂Ω × (0,∞),

(7.19)

where Ω and B are as in system (7.1), and αi, βi, ai, bi, and ci are all positive
functions of (x, t) ∈ Ω × R+ and are ω-periodic in t for some ω > 0.

We are to find the ranges of λ for which system (7.19) has positive periodic
solutions. Let θ ∈ (0, 1) be fixed, and define

X = {w ∈ Cθ,θ/2(Ω × R) : w is ω-periodic in t}

and

Y = {w ∈ C2+θ,1+θ/2(Ω × R) : w isω-periodic in t andBw = 0 on∂Ω × R}.

For d, q ∈ X , let λ1(d, q) := μ(−dΔ,−q). Throughout this section we assume
that αi, βi, ai, bi, ci ∈ X , λ1(α2,−β2) < 0, and λ1(α3,−β3) < 0.

For a fixed u ∈ X , consider the scalar periodic equation

vt − α2Δv = (β2 − b1u)v − b2v
2, v ∈ Y. (7.20)

By Theorem 3.1.5, (7.20) has a unique positive solution vu if and only if
λ1(α2,−β2 + b1u) < 0. Let

v(u) =

{
0 ifλ1(α2,−β2 + b1u) ≥ 0,

vu ifλ1(α2,−β2 + b1u) < 0.

Then the following lemma follows from a simple variant of [38, Lemma 4.2].

Lemma 7.4.1. The function v : X → X has the following properties:

(i) u → v(u) is continuous from X to X;
(ii) If u1 ≤ u2, then v(u1) ≥ v(u2);
(iii) v(u) ≤ v(0) =: U2 for any u ≥ 0.
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For a fixed u ∈ X , we consider the equation

wt − α3Δw = β3w − c3
1 + c1 max{u, 0}w

2, w ∈ Y. (7.21)

Again by Theorem 3.1.5, (7.21) has a unique positive solution w(u). As in
[38], we can easily prove the following result.

Lemma 7.4.2. The function w : X → X has the following properties:

(i) u → w(u) is continuous from X to X;
(ii) If u1 ≤ u2, then w(u1) ≤ w(u2);
(iii) w(u) ≥ w(0) =: U3 for any u ≥ 0.

Let

n(u) =
a2v(u)

1 + a3w(u)
,

and consider now the problem

ut − α1Δu = λβ1u− n(u)u− a1u
2, u ∈ Y. (7.22)

Clearly, if u is a positive solution of (7.22), then (u1, u2, u3) = (u, v(u), w(u))
is a nonnegative solution of (7.19), and it is a positive solution of (7.19) if
v(u) > 0. Conversely, if (u1, u2, u3) is any positive solution of (7.19), then
u2 = v(u1), u3 = w(u1) and u1 is a positive solution of (7.22). Therefore,
finding positive solutions of (7.19) is equivalent to finding positive solutions
of (7.22) for which v(u) > 0.

By Lemmas 7.4.1 and 7.4.2, it follows that

(N1) u → n(u) is continuous from X to X ;
(N2) u1 ≤ u2 implies that n(u1) ≥ n(u2);
(N3) 0 ≤ n(u) ≤ a2U2

1+a3U3
for any u ≥ 0.

These three facts guarantee that the upper and lower solution method can be
used to solve (7.22).

Lemma 7.4.3. Suppose that v ∈ Y is a lower solution of (7.22) and V ∈ Y
is an upper solution of (7.22) and that 0 ≤ v ≤ V . Then (7.22) has a minimal
solution u∗ and a maximal solution u∗ in the order interval [v, V ] in Y .

Proof. Choose a constant k > 0 so large that

k + λβ1 −
a2U2

1 + a3U3
− 2a1V > 0, ∀(x, t) ∈ Ω × [0, ω].

Then it is easy to see that for u ∈ [v, V ],

u → F (u) ≡ λβ1u− n(u)u− a1u
2 + ku

is an increasing mapping from [v, V ] ⊂ Y to X . Define Lu = ut −α1Δu+ ku.
Then u ∈ [v, V ] solves (7.22) if and only if u = L−1F (u) =: Su.
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Now we have v ≤ Sv, SV ≤ V , and that u → Su is an increasing map-
ping. By regularity results in [152], the L∞ boundedness of [v, V ] implies
that S2([v, V ]) is compact in Y . It then follows by a compactness argument
that the monotone increasing sequence {Snv} and the monotone decreasing
sequence {SnV } are both convergent in Y . Let Snv → u∗ and SnV → u∗.
Then it follows from a standard argument that u∗ and u∗ are the minimal
and maximal fixed points of S in [v, V ].

Since

0 ≤ n(u) ≤ a2U2

1 + a3U3
, ∀u ≥ 0,

any positive solution u0 of (7.22) satisfies

(u0)t − α1Δu0 ≥
(

λβ1 −
a2U2

1 + a3U3

)

u0 − a1u
2
0

and
(u0)t − α1Δu0 ≤ λβ1u0 − a1u

2
0.

Hence u0 is an upper solution of the problem

ut − α1Δu =

(

λβ1 −
a2U2

1 + a3U3

)

u− a1u
2, u ∈ Y, (7.23)

and is a lower solution of the problem

ut − α1Δu = λβ1u− a1u
2, u ∈ Y. (7.24)

By Theorem 3.1.5, it follows that (7.23) has a unique positive solution if and
only if λ1(α1,−λβ1+ a2U2

1+a3U3
) < 0, or equivalently, if and only if λ > λ0, where

λ = λ0 is the unique solution of λ1(α1,−λβ1 + a2U2

1+a3U3
) = 0. We denote this

unique positive solution by θλ. Again by Theorem 3.1.5, (7.24) has a positive
solution if and only if λ1(α1,−λβ1) < 0, or equivalently, if and only if λ > Λ0,
where λ = Λ0 is the unique solution of λ1(α1,−λβ1) = 0. We use θλ to denote
this solution. It follows easily that

θλ ≤ u0 ≤ θλ (7.25)

whenever θλ and θλ are defined and u0 is a positive solution of (7.22).
Next we derive some estimates on θλ. Choose a constant M > 0 so large

that β1 − a1M < 0. Then one easily sees that λM is an upper solution of
(7.23). If λ1(α1,−λβ1 + a2U2

1+a3U3
) < 0, then one can always construct a lower

solution of (7.23) by using the corresponding principal eigenfunction. Hence,
we always have θλ < λM . Now suppose that θλ is defined. Then for v = λθλ,
we have
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vt − α1Δv = λβ1v −
a2U2

1 + a3U3
v − a1v

2/λ

≤ λβ1v + a1v
2 − a2U2

1 + a3U3
v − a1v

2

≤ (λβ1 + a1λ
2M)v − a2U2

1 + a3U3
v − a1v

2

≤ λ(1 + σλ)β1v −
a2U2

1 + a3U3
v − a1v

2,

where σ = max a1

min β1
M. Thus, v is a lower solution of (7.23) with λ replaced by

λ(1 + σλ). This implies that

θλ(1+σλ) ≥ v = λθλ.

If we define μ(λ) = (
√
1 + 4σλ− 1)/(2σ), we can express the above inequality

by
θλ ≥ μ(λ)θμ(λ).

By an upper and lower solution argument, it is easy to show that θλ1 < θλ2

if λ1 < λ2. Thus if we fix a λ0 such that θμ(λ0) is defined, then for λ ≥ λ0,

θλ ≥ μ(λ)θμ(λ0). (7.26)

We show now that

λ1(α2,−β2 + b1θλ) → ∞ as λ → ∞. (7.27)

We suppose first that Bu = 0 is not of Dirichlet type. Then min(θλ) > 0.
Therefore, (7.26) implies that for λ ≥ λ0,

λ1(α2,−β2 + b1θλ) ≥ λ1(α2,−max(β2) + min(b1)μ(λ)min(θμ(λ0)))

= −max(β2) + min(b1)μ(λ)min(θμ(λ0)),

and hence λ1(α2,−β2 + b1θλ) → ∞ asλ → ∞. Since the principal eigenvalue
under Dirichlet boundary conditions is greater than that under Neumann
boundary conditions (see [152]), the above argument shows that (7.27) is true
in the case of general boundary condition Bu = 0.

Since θλ > θλ, we obtain from (7.27) that

λ1(α2,−β2 + b1θ
λ) → ∞ asλ → ∞.

A simple upper and lower solution argument shows that λ → θλ is strictly
increasing. Now consider the continuous function λ → h(λ) := λ1(α2,−β2 +
b1θ

λ). It satisfies h(Λ0) = λ1(α1,−β2) < 0, h(λ) → ∞ as λ → ∞, and it is
strictly increasing. Therefore, there exists a unique λ0 > Λ0 such that h(λ0) =
0. Similarly, there is a unique Λ0 > λ0 such that λ(α2,−β2 + b1θΛ0) = 0.

Now let us go back to equation (7.22). We use a bifurcation argument
as in the proof of [38, Lemma 3.4]. Since λ0 is a simple eigenvalue of the
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linearization of (7.22) at u = 0, a local bifurcation result shows that there is a
positive solution branch Γ = {(λ, u)} of (7.22) bifurcating from (λ0, 0). Then
global bifurcation theorem and the strong maximum principle can be used to
show that this branch is contained in a connected component Σ that joins
(λ0, 0) to ∞ in R× Y and u > 0, ∀(λ, u) ∈ Σ \ {(λ0, 0)}.

Suppose that (λ, u) ∈ Σ \ {(λ0, 0)}. In view of

ut − α1Δu− [λβ1 − n(u)− a1u]u = 0, u > 0,

we obtain that

0 = λ1(α1,−λβ1 + n(u) + a1u) > λ1(α1,−λβ1).

This implies that λ > 0. Note that (7.25) implies L∞ boundedness of u. By
standard regularity results, we can prove as in [38] that for (λ, u) ∈ Σ, ‖u‖Y is
bounded in any bounded range of λ. Thus, the only way that Σ can approach
∞ is as λ → ∞.

By (7.25) and the definition of v(u), it follows that if (λ, u) ∈ Σ and
λ ≥ Λ0, then v(u) ≡ 0. Then (7.22) reduces to (7.24), and u ≡ θλ. This
implies that

Σ ∩ ([Λ0,∞)× Y ) = {(λ, θλ) : λ ≥ Λ0},

and hence
U := {(λ, θλ) : λ > λ0} ⊂ Σ.

We are now in a position to prove the main result of this section.

Theorem 7.4.1. There exist λ∗ and λ∗ with λ∗ ≤ min{λ0, λ0}, λ∗ ≥
max{λ0, λ0} such that (7.19) has no positive solution for λ �∈ [λ∗, λ∗], and
has at least one positive solution for λ ∈ (λ∗, λ∗). Moreover,

(i) If λ∗ < min{λ0, λ0}, then (7.19) has at least two positive solutions for
λ∗ < λ < min{λ0, λ0}, and at least one positive solution for λ = λ∗;

(ii) If λ∗ > max{λ0, λ0}, then for max{λ0, λ0} < λ < λ∗, (7.19) has at
least two positive solutions, and for λ = λ∗, there is at least one positive
solution;

(iii) If λ∗ = λ∗, then (7.19) has a continuum of positive solutions for λ = λ∗.

Proof. Our arguments are essentially the same as in [104]. Here we give only
a sketch of the proof. Define

Λ = {λ : (7.19) has a positive solution for λ}.

Let λ∗ = inf Λ and λ∗ = supΛ. By the discussions before Theorem 7.4.1, we
then have λ∗ ≥ 0 and λ∗ ≤ Λ0.

Step 1. Σ0 := Σ \ U is a connected set that joins (λ0, 0) to
(
λ0, θλ

0
)
.

Moreover, if (λ, u) ∈ Σ0 is different from these two points, then u > 0, v(u) >
0, and hence such a (λ, u) corresponds to a positive solution of (3.1). Note
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that v(θλ
0

) = 0. Hence u = θλ
0

corresponds to a semitrivial solution of (7.19).

Let U1 := θλ
0

. Then Σ0 corresponds to a positive solution branch of (7.19)
that joins the semitrivial solutions (λ0, 0, U2, U3) and (λ0, U1, 0,W3). We refer
to the proof of [104, Theorem 3.1] for a detailed proof of these facts.

This proves that (7.19) has a positive solution for λ between λ0 and λ0.
This also proves statement (iii) in Theorem 7.4.1.

Step 2. If λ∗ < min{λ0, λ0}, then (7.22) has a positive solution u∗ satisfying
v(u∗) > 0 for λ = λ∗. For any λ ∈ (λ∗, λ0), u∗ is a lower solution of (7.22) and
θλ is an upper solution of (7.22). By (7.25), we have u∗ ≤ θλ∗ < θλ. This gives,
by Lemma 7.4.3, a maximal solution uλ of (7.22). Moreover, u∗ < uλ < θλ

and v(uλ) > 0, because

λ1(α2,−β2 + b1u
λ) < λ1(α2,−β2 + b1θ

λ0

) = 0.

We refer to the proof of [104, Lemmas 2.5 and 2.6] for a detailed proof of these
facts.

This step shows that (7.22) has a positive solution for λ ∈ [λ∗, λ0).
Step 3. If λ∗ < λ < min{λ0, λ0}, then (7.22) has a positive solution u �=

uλ with v(u) > 0. One essential fact in the proof of this statement is that
{(λ, uλ) : λ∗ < λ < λ0} ⊂ Σ0. We refer to the proof of [104, Theorems 3.2
and 3.3] for more details.

This step and Step 2 prove statement (i) in Theorem 7.4.1.
Step 4. If λ∗ > max{λ0, λ0}, then (7.22) has a positive solution u∗ satis-

fying v(u∗) > 0 for λ = λ∗. For λ ∈ (λ0, λ
∗), θλ < u∗ is a pair of lower and

upper solutions of (7.22). Therefore, there is a minimal solution uλ of (7.22)
satisfying θλ < uλ < u∗. We have v(uλ) > 0 because

λ1(α2,−β2 + b1uλ) < λ1(α2,−β2 + b1u
∗) < 0.

Details of the proof of these facts can be found in the proofs of [104, Lemmas
2.5 and 2.6].

This step proves that (7.22) has a positive solution for λ ∈ (λ0, λ
∗].

Step 5. If λ∗ > λ > max{λ0, λ0}, then (7.22) has a positive solution u �= uλ
with v(u) > 0. A key fact in proving this is that {(λ, uλ) : λ0 < λ < λ∗} ⊂ Σ0.
See the proofs of [104, Theorems 3.2 and 3.3] for more details.

This and Step 4 prove (ii) in Theorem 7.4.1.
Step 6. If λ∗ < λ0 < λ∗, then (7.22) has at least one positive solution u

with v(u) > 0 for λ = λ0. If λ∗ < λ0 < λ∗, then for λ = λ0, (7.22) has at
least one positive solution u satisfying v(u) > 0. We refer to the proof of [104,
Theorem 3.4] for a proof of this fact.

This last step together with Steps 1, 2, and 4 shows that there is always a
positive solution of (7.22) for λ ∈ (λ∗, λ∗). Now every case has been covered,
and the proof of Theorem 7.4.1 is complete.

Remark 7.4.1. It is easy to check that when the condition
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(D1) λ1

(

α1,−β1 +
a2U2

1 + a3U3

)

> 0, λ1(α2,−β2 + b1U1) > 0,

holds, then λ0 > 1 > λ0. Therefore, by Theorem 7.4.1, (7.19) has a positive
solution for λ = 1. Similarly, when the condition

(D2) λ1

(

α1,−β1 +
a2U2

1 + a3U3

)

< 0, λ1(α2,−β2 + b1U1) < 0,

holds, then λ0 < 1 < λ0, and again it follows from Theorem 7.4.1 that (7.19)
has a positive solution for λ = 1.

Remark 7.4.2. In general, it is difficult to find good estimates for λ∗ and λ∗.
Clearly, any such estimates give sufficient conditions for existence and nonex-
istence of positive solutions of (7.19). For example, the estimate

0 < λ∗ ≤ min{λ0, λ0}, max{λ0, λ0} ≤ λ∗ ≤ Λ0,

implies that (7.19) has at least one positive solution if min{λ0, λ0} < λ
< max{λ0, λ0}, and that (7.19) has no positive solution if λ > Λ0.

It can be easily checked that if (a) λ∗ < min{λ0, λ0} and λ ∈
(λ∗,min{λ0, λ0}), or (b) max{λ0, λ0} < λ∗ and λ ∈ (max{λ0, λ0}, λ∗), then
neither of conditions (D1) and (D2) in Remark 7.4.1 is satisfied. But Theo-
rem 7.4.1 implies that if (a) or (b) occurs, then (7.19) has at least two positive
solutions. In the rest of this section we will show that both cases (a) and (b)
can occur.

This is done by using techniques of bifurcation from simple eigenvalues.
An essential step is to decide the direction of the bifurcation branch of positive
solutions of (7.19) from (λ0, 0, U2, U3).

Define F : R× Y 3 → X3 by

F (λ, u1, u2, u3) :=

⎛

⎝
(u1)t − α1Δu1 − u1(λβ1 − a1u1 − a2u2

1+a3u3
)

(u2)t − α2Δu2 − u2(β2 − b1u1 − b2u2)
(u3)t − α3Δu3 − u3(β3 − c3u3

1+c1u1
)

⎞

⎠

T

.

By a simple calculation, it follows that for every h = (h1, h2, h3) ∈ Y 3,

Fu(λ0, 0, U2, U3)h =

⎛

⎝
(h1)t − α1Δh1 − λ0β1h1 +

a2U2

1+a3U3
h1

(h2)t − α2Δh2 − β2h2 + 2b2U2h2 + b1U2h1
(h3)t − α3Δh3 − β3h3 + 2c3U3h3 − c3U

2
3 c1h1

⎞

⎠

T

.

It is easy to check that

N(Fu(λ0, 0, U2, U3)) = span{(φ1, φ2, φ3)},

where φ1 > 0 satisfies
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(φ1)t − α1Δφ1 =

(

λ0β1 −
a2U2

1 + a3U3

)

φ1, φ1 ∈ Y,

φ2 is the unique solution of

K2φ := φt − α2Δφ− β2φ+ 2b2U2φ = −b1U2φ1, φ ∈ Y,

and φ3 is the unique solution of

K3φ := φt − α3Δφ − β3φ+ 2c3U3φ = c3U
2
3 c1φ1, φ ∈ Y.

Here the fact that K2 and K3 are invertible comes from

λ1(α2,−β2 + 2b2U2) > λ1(α2,−β2 + b2U2) = 0,

λ1(α3,−β3 + 2c3U3) > λ1(α3,−β3 + c3U3) = 0.

These also imply that K−1
2 and K−1

3 are strongly positive operators from X
to Y . Thus, φ2 < 0 and φ3 > 0.

It is easy to see that

Fλu(λ0, 0, U2, U3)(h1, h2, h3) = (β1h1, 0, 0).

Now we prove a technical result.

Lemma 7.4.4. Suppose that φ1, φ2, and φ3 are defined as above. Then

Fλu(λ0, 0, U2, U3)(φ1, φ2, φ3) �∈ R(Fu(λ0, 0, U2, U3)).

Proof. Suppose for contradiction that

Fλu(λ0, 0, U2, U3)(φ1, φ2, φ3) ∈ R(Fu(λ0, 0, U2, U3)).

Then there exists (h1, h2, h3) ∈ Y 3 such that

Fλu(λ0, 0, U2, U3)(φ1, φ2, φ3) = Fu(λ0, 0, U2, U3)(h1, h2, h3).

This gives in particular that

(h1)t − α1Δh1 − λ0β1h1 +
a2U2

1 + a3U3
h1 = β1φ1. (7.28)

Let Lu := ut −α1Δu+
a2U2

1+a3U3
u. Then L−1 : Y → Y is compact and strongly

positive. Define Ku := L−1(β1u). Then K : Y → Y is compact and strongly
positive. It follows from (7.28) that

K(φ1 + λ0h1) = h1. (7.29)

By the definition of φ1, we have Kφ1 = λ−1
0 φ1. This implies that r(K) = λ−1

0 .
By the Krain-Rutman theorem, there exists l1 ∈ Y ∗ such that l1(x) > 0 for
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x ∈ PY \ {0}, where PY is the natural positive cone of Y , and such that
K∗l1 = λ−1

0 l1. Therefore, (7.29) implies that

l1[K(φ1 + λ0h1)] = l1(h1),

and hence

l1(h1) = (K∗l1)(φ1 + λ0h1) = λ−1
0 l1(φ1 + λ0h1) = λ−1

0 l1(φ1) + l1(h1).

This gives λ−1
0 l1(φ1) = 0, which contradicts the fact that φ1 > 0.

It is easy to see that the use of the theory of bifurcation from simple eigen-
values is justified. We obtain that for any complement Z of span{(φ1, φ2, φ3)}
in Y 3, there exist δ > 0 and continuously differentiable functions τ : (−δ, δ) →
R, ψ = (ψ1, ψ2, ψ3) : (−δ, δ) → Z such that τ(0) = 0, (ψ1(0), ψ2(0), ψ3(0)) = 0
and such that the solutions of (7.19) near (λ0, 0, U2, U3) and different from
the trivial branch (λ, 0, U2, U3) form a curve:

(λ(s), u1(s), u2(s), u3(s))

= (λ0 + τ(s), sφ1 + sψ1(s), U2 + sφ2 + sψ2(s), U3 + sφ3 + sψ3(s)),
(7.30)

for s ∈ (−δ, δ). Clearly, the sign of λ′(0) determines the direction of the
positive solution branch

{(λ(s), u1(s), u2(s), u3(s)) : 0 < s < δ}.

It follows that that if λ′(0) > 0, then λ∗ > λ0; if λ
′(0) < 0, then λ∗ < λ0.

Next we are to find some expressions of λ′(0). We start from the identity

(u1(s))t = α1Δu1(s) + u1(s)

(

λ(s)β1 − a1u1(s)−
a2u2(s)

1 + a3u3(s)

)

.

Dividing this identity by s, using (7.30) we obtain

(φ1 + ψ1(s))t =α1Δ(φ1 + ψ1(s))

+ (φ1 + ψ1(s))

(

λ(s)β1 − a1u1(s)−
a2u2(s)

1 + a3u3(s)

)

.
(7.31)

Differentiating (7.31) with respect to s at s = 0, we obtain

(ψ′
1(0))t =α1Δ(ψ′

1(0)) + ψ′
1(0)(λ0β1 −

a2U2

1 + a3U3
)

+ φ1

(

λ′(0)β1 − a1φ1 −
a2φ2

1 + a3U3
+

a2U2

(1 + a3U3)2
a3φ3

)

.

(7.32)

Define

Φ := φ1

(

−a1φ1 −
a2φ2

1 + a3U3
+

a2U2

(1 + a3U3)2
a3φ3

)

.
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By the definition of K, we can rewrite (7.32) as

ψ′
1(0) = λ0K(ψ′

1(0)) + λ′(0)K(φ1) +K(Φ/β1).

Applying l1 to this identity, together with K∗(l1) = λ−1
0 l1, we get

l1(ψ
′
1(0)) = l1(ψ

′
1(0)) + λ′(0)λ−1

0 l1(φ1) + λ−1
0 l1(Φ/β1),

which implies that

λ′(0) = − l1(Φ/β1)

l1(φ1)
. (7.33)

Recall that λ′(0) > 0 implies λ∗ > λ0 and that λ′(0) < 0 implies λ∗ < λ0.
To determine whether we have λ∗ < min{λ0, λ0} or λ∗ > max{λ0, λ0}, we
need to estimate λ0. For this purpose, we vary a1 and b1. Suppose from now
on that

a1 = ξa01, b1 = ηb01,

where a01 > 0 and b01 > 0 are fixed and ξ, η are considered parameters.
One easily sees that U2 and U3 are independent of (ξ, η). Therefore, λ0

and φ1 are independent of (ξ, η). By the definitions of φ2 and φ3, it follows
that φ3 is independent of (ξ, η) but φ2 depends linearly on η:

φ2 = φ2(η) = ηφ2(1).

It is also easy to see that the dependence of θλ on ξ is given by

θλ(ξ) = θλ(1)/ξ.

Suppose that σ = σ0 is the unique solution of

λ1(α2,−β2 + σb01θ
λ0

(1)) = 0.

Thus, for η = σ0ξ, we have

λ1(α2,−β2 + ηb01θ
λ0

(ξ)) = λ1(α2,−β2 + σ0b
0
1θ

λ0

(1)) = 0,

which implies that λ0 = λ0.
Define

Δ(σ) :=
l1

β1 l1(φ1)

(

a01φ
2
1 + σ

a2φ2(1)

1 + a3U3
φ1

)

and

Δ0 :=
l1

β1 l1(φ1)

(
a2U2

(1 + a3U3)2
a3φ3φ1

)

.

Clearly, Δ0 > 0. By (7.33) and the definition of Φ, it follows that

λ′(0) = −ξΔ(η/ξ) +Δ0.
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Choose σ ≥ σ0 and let η = σξ. Thus, for a1 = ξa01, b1 = ηb01 = σξb01, we have

λ1(α2,−β2 + b1θ
λ0) = λ1(α2,−β2 + σb01θ

λ0(1)) ≥ 0.

Then λ0 ≤ λ0, ∀ξ > 0. But

λ′(0) = −ξΔ(σ) +Δ0 > 0

at least for all small positive ξ. Then λ0 ≤ λ0 < λ∗ in this case. This gives
cases where (7.19) has more than one positive solutions.

Now suppose that Δ(σ0) > 0 (we will show a little later that this case
does occur if we choose the parameters properly). Then we can arrange the
parameters so that λ∗ < λ0 ≤ λ0. In fact, if we choose σ ≤ σ0 but still keep
Δ(σ) > 0, then for a1 = ξa01, b1 = σξb01, we have λ0 ≤ λ0 and

λ′(0) = −ξΔ(σ) +Δ0 < 0

for all large positive ξ. Therefore, λ∗ < λ0 ≤ λ0 in this case.
It remains to show that Δ(σ0) > 0 is possible. Suppose that αi, i = 1, 2, 3,

and βi, ai, ci, i = 1, 3, are all fixed, and that α1 = α2. Since we do not use the
variables ξ and η, we assume ξ = 1 and η = 1 in the following discussions.
Hence a1 = a01, b1 = b01. We will vary b1, b2, β2, and a2.

Let b2 = ζb02, a2 =
√
ζa02, with b02, a

0
2 fixed and ζ being a parameter. We

will define β2 and b1 also as functions of ζ. First, let β2 = sβ1+ ε0U3, where s
is a parameter and ε0 > 0 small is to be specified later. Then U2 = U2(s, ζ) =
U2(s, 1)/ζ and s → U2(s, 1) is increasing. Since

0 = λ1

(

α1,−λ0β1 +
a2U2

1 + a3U3

)

= λ1

(

α1,−λ0β1 +
a02U2(s, 1)/

√
ζ

1 + a3U3

)

,

λ0 = λ0(s, ζ) is a continuous function of s and ζ. Moreover, s → λ0(s, ζ) is
increasing, and ζ → λ0(s, ζ) is decreasing. Furthermore, λ0(s, ζ) → λ0(s,∞)
exists as ζ → ∞, and

λ1(α1,−λ0(s,∞)β1) = 0.

Thus, λ0(s,∞) = λ0(∞) is independent of s, and 0 ≤ λ0(∞) < 1.
Let s1 = λ0(∞), s2 = λ0(∞) + 1. Then λ0(s1, ζ) > s1 for all ζ, and

λ0(s2, ζ) < s2 for all large ζ. This implies that for all large ζ, we can find
some s = s(ζ) ∈ (λ0(∞), λ0(∞) + 1) such that

λ0(s(ζ), ζ) = s(ζ).

We first define
β2 = β2(ζ) := s(ζ)β1 + ε0U3.

It follows that

λ1(α2,−β2) < λ1(α1,−s(ζ)β1) < λ1(α1,−λ0(∞)β1) = 0.
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Since
λ0(∞)β1 + ε0U3 ≤ β2(ζ) ≤ (λ0(∞) + 1)β1 + ε0U3

for all large ζ, it is easy to see that there is some M0 > 0 such that
U3/U2(s(ζ), 1) < M0 for all large ζ and all ε0 < 1. Here we need to use
the strong maximum principle when the Dirichlet boundary condition is used.
Thus, we can choose ε0 > 0 small enough such that for all large ζ,

2b02 −
ε0U3

U2(s(ζ), 1)
≥ 2δ0 > 0

for some fixed constant δ0.
Next we choose b1. We suppose from now on that ζ is sufficiently large

and that a2, b2, β2 are functions of ζ as defined above. Define

b1 = b01 = 2b2 −
a2

1 + a3U3
+
λ0β1 − β2

U2
.

It easily follows that

b1 = b1(ζ) = ζ

[

2b02 −
a02/

√
ζ

1 + a3U3
− ε0U3

U2(s(ζ), 1)

]

≥ ζδ0 > 0.

Using the choice of b1 and α1 = α2, one can verify that φ2 = −φ1.
It is easy to see that θλ is independent of ζ. Since

0 = λ1

(
α2,−β2 + σ0b

0
1θ

λ0

(1)
)
= λ1

(
α2,−β2(ζ) + σ0b1(ζ)θ

λ0

(1)
)
,

β2(ζ) is L
∞ bounded, and b1(ζ) ≥ ζδ0, we necessarily have

σ0 = σ0(ζ) ≤ M/ζ

for some constant M > 0 independent of ζ. Thus, for large ζ,

a01 − σ0(ζ)
a2

1 + a3U3
≥ a01 −

M√
ζ

a02
1 + a3U3

> 0.

Using φ2 = −φ1, we then get

Δ(σ0) = Δ(σ0(ζ)) =
l1

β1 l1(φ1(ζ))

(

a01 − σ0(ζ)
a2

1 + a3U3

)

φ2
1(ζ) > 0.

Finally, we find explicit expressions for λ′(0) in the following cases of α1:

(a) α1(x, t) ≡ α1(t); that is, α1 is independent of x;
(b) α1(x, t) ≡ α1(x); that is, α1 is independent of t;
(c)

∫ ω

0

∫
Ω φ1φ̃1(α

−1
1 )tdx dt �= 0, where φ̃1(t, x) = φ1(−t, x).
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In case (a), multiplying (7.32) by φ̃1 and integrating over Ω × [0, ω], we
obtain
∫ ω

0

∫

Ω

φ̃1(λ
′(0)β1φ1 + Φ)dx dt

=

∫ ω

0

∫

Ω

φ̃1

[

(ψ′
1(0))t − α1Δ(ψ′

1(0))− ψ′
1(0)

(

λ0β1 −
a2U2

1 + a3U3

)]

dx dt

=

∫ ω

0

∫

Ω

ψ′
1(0)

[

−(φ̃1)t − α1Δφ̃1 − φ̃1

(

λ0β1 −
a2U2

1 + a3U3

)]

dx dt = 0,

which implies that

λ′(0) = −
∫ ω

0

∫
Ω
Φφ̃1dx dt

∫ ω

0

∫
Ω
φ1φ̃1β1dx dt

. (7.34)

In case (b), multiplying (7.32) by φ̃1/α1 and integrating over Ω × [0, ω],
we then get ∫ ω

0

∫

Ω

(φ̃1/α1)(λ
′(0)β1φ1 + Φ)dx dt = 0,

which implies that

λ′(0) = −
∫ ω

0

∫
Ω
(Φφ̃1/α1)dx dt

∫ ω

0

∫
Ω(β1φ1φ̃1/α1)dx dt

. (7.35)

In case (c), it follows that

Z :=

{

(u1, u2, u3) ∈ Y 3 :

∫ ω

0

∫

Ω

φ̃1u1(α
−1
1 )t dx dt = 0

}

is a complement of span{(φ1, φ2, φ3)} in Y 3. Using this Z in (7.30), we have

∫ ω

0

∫

Ω

ψ′
1(0)φ̃1(α

−1
1 )t dx dt = 0.

As in case (b), it then follows that λ′(0) satisfies (7.35).

7.5 Notes

Proposition 7.1.1 is modified from a claim in the proof of [430, Theorem 3.1].
Sections 7.2 and 7.3 are adapted from Zhao [434], and Section 7.4 is taken
from Du [102]. The existence of positive periodic solutions of an ω-periodic
system similar to (7.17) was also discussed in Du [102] via a degree argument.
The decoupling technique and bifurcation argument in Section 7.4 goes back
to Blat and Brown [32]. The competitor–competitor–mutualist model is due to
Rai, Freedman and Addicott [285]. A special autonomous reaction–diffusion
version of it was studied in Zheng [449]. A similar model with spatial-varying
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and time-periodic coefficients and subject to the zero Neumann boundary con-
dition was investigated in Tineo [374]. The existence of positive periodic solu-
tions of a periodic competitor–competitor–mutualist reaction–diffusion model
of Lotka–Volterra type with nonlinear boundary conditions was discussed by
Pao [269]. The periodic competitor–competitor–mutualist parabolic system
with discrete delays was analyzed by Zhou and Fu [450] and Pao [270] via
the method of upper and lower solutions. Liang and Jiang [223] investigated
uniform persistence, global asymptotic stability, and convergence everywhere
in infinite-dimensional type-K monotone discrete-time dynamical systems and
time-periodic reaction–diffusion systems.



8

A Periodically Pulsed Bioreactor Model

In recent work of Ballyk et al. [27], it is argued that the plug-flow reactor, aside
from its importance in chemical and bioengineering, is a good candidate as a
surrogate model of the mammalian large intestine. In that work, a model of
competition between different strains of microorganisms for a scarce nutrient
in a plug-flow reactor, formulated by Kung and Baltzis [207], was studied with
special attention given to the effects of random motility of the organisms on
their ability to persist in the reactor and be good competitors in a mixed
culture. The growth-limiting nutrient is assumed to enter the reactor tube
at constant concentration at the upstream end of the reactor, so that the
model equations take the form of a time-independent system of reaction–
advection–diffusion equations. However, if the plug-flow reactor is to stand as
a surrogate model of the intestine, then it is much more realistic to consider
input nutrient concentration as being time-dependent. In the present chapter
we consider this competition model with periodically varying input nutrient
concentration, including pulsed input where the concentration may fall to zero
over part of the cycle.

In Section 8.1 we briefly introduce the model and then discuss the well-
posedness of the initial–boundary value problem and the positivity of its so-
lutions. Section 8.2 is devoted to the special case of the model system with
identical diffusivities and vanishing cell death rates. After consideration of
the washout solution, we establish a conservation principle. We then consider
single-population growth in the reactor, showing that when the washout solu-
tion is linearly stable, then it is globally stable, and when it is unstable, there
is a unique, single-population periodic solution that attracts all solutions with
nonzero initial data and is asymptotically stable in the linear approximation.
Finally, we show that for two competing populations, where each single pop-
ulation periodic solution is unstable to invasion by the other population, we
have persistence of both populations and the existence of a positive periodic
solution representing coexistence. Section 8.3 is devoted to the perturbed sys-
tem with different diffusivities and inclusion of cell death rates. We carry over
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the bulk of the results of Section 8.2 to the case where the random motility
coefficients do not differ much from the diffusion constant of the nutrient and
the cell death rates are small.

8.1 The Model

The plug-flow reactor may be thought of as a tube, of length L, through which
a liquid medium flows with constant (small) velocity v. At the upstream end
of the tube, x = 0, the nutrient concentration in the medium is maintained at
the periodically varying concentration S0(t) = S0(t + ω). Downstream, bac-
teria consume nutrient, grow, divide, and die or leave the reactor at x = L.
Bacteria are assumed to be motile, but their motility is random in the sense
that it is modeled by an effective diffusion coefficient and is independent of nu-
trient concentration (chemotaxis is not considered here). The concentrations
of nutrient S and microbial strains ui, i = 1, 2, are governed by the equations
(we have scaled variables so that L = 1)

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S),

∂ui
∂t

= di
∂2ui
∂x2

− v
∂ui
∂x

+ ui(fi(S)− ki), i = 1, 2,

(8.1)

where the di are the random motility coefficients of strain ui, ki is its death
rate, and fi(S) is its uptake and growth rate. The quantity d0 is the diffusion
constant for nutrient S. Since the rate of change of the total nutrient con-
centration equals the difference between the inflow and outflow rates of the
nutrient minus the consumption of the nutrient, we have

d

dt

∫ 1

0

S(x, t)dx = v
(
S0(t)− S(1, t)

)
−

2∑

i=1

∫ 1

0

ui(x, t)fi(S(x, t))dx.

On the other hand,

d

dt

∫ 1

0

S(x, t)dx =

∫ 1

0

∂S(x, t)

∂t
dx

=

∫ 1

0

(

d0
∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S)

)

dx

=

(

d0
∂S(1, t)

∂x
− vS(1, t)

)

−
(

d0
∂S(0, t)

∂x
− vS(0, t)

)

−
2∑

i=1

∫ 1

0

ui(x, t)fi(S(x, t))dx.



8.1 The Model 215

It then follows that

d0
∂S

∂x
(0, t)− vS(0, t) = −vS0(t) and

∂S

∂x
(1, t) = 0.

Since the rate of change of the total concentration of species ui is the difference
between the natural growth and death rates of the species minus the washout
rate of the species, we have

d

dt

∫ 1

0

ui(x, t)dx =

∫ 1

0

ui(x, t)(fi(S(x, t)) − ki)dx− vui(1, t).

On the other hand,

d

dt

∫ 1

0

ui(x, t)dx =

∫ 1

0

∂ui(x, t)

∂t
dx

=

∫ 1

0

(

di
∂2ui
∂x2

− v
∂ui
∂x

+ ui(fi(S)− ki)

)

dx

=

(

di
∂ui(1, t)

∂x
− vui(1, t)

)

−
(

di
∂ui(0, t)

∂x
− vui(0, t)

)

+

∫ 1

0

ui(x, t)(fi(S(x, t))− ki)dx.

Thus we get

di
∂ui
∂x

(0, t)− vui(0, t) = 0 and
∂ui
∂x

(1, t) = 0.

Consequently, we impose on the model system the boundary conditions

d0
∂S

∂x
(0, t)− vS(0, t) = −vS0(t),

di
∂ui
∂x

(0, t)− vui(0, t) = 0, i = 1, 2,

∂S

∂x
(1, t) =

∂ui
∂x

(1, t) = 0, i = 1, 2,

(8.2)

and nonnegative initial conditions

S(x, 0) = S0(x), ui(x, 0) = u0i(x), 0 ≤ x ≤ 1. (8.3)

Next we discuss the well-posedness of the initial–boundary value problem
(8.1)–(8.3) and the positivity of its solutions. Assume that the initial data
in (8.3) satisfy (S0, u01, u02) ∈ X+ = C([0, 1],R3

+), the positive cone in the
Banach space X = C([0, 1],R3) with uniform norm. For local existence and
positivity of solutions in the space X+, we follow [243], where existence and
uniqueness and positivity are treated simultaneously, ignoring issues related
to time delays treated there. The idea is to consider mild solutions of the
system of abstract integral equations (we set u0 = S and u00 = S0 to simplify
notation)
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u0(t) = V (t, 0)u00 +

∫ t

0

T0(t− r)B0(u(r))dr,

ui(t) = Ti(t)u0i +

∫ t

0

Ti(t− r)Bi(u(r))dr, i = 1, 2,

(8.4)

where u(t) = (u0(t), u1(t), u2(t)) ≡ (S(·, t), u1(·, t), u2(·, t)) ∈ X+. Ti(t) is the
positive, nonexpansive, analytic semigroup on C([0, 1],R) (see [326, Chapter
8]) such that u = Ti(t)u0i satisfies the linear initial value problem

∂u

∂t
= di

∂2u

∂x2
− v

∂u

∂x
,

− di
∂u

∂x
(0, t) + vu(0, t) = 0 =

∂u

∂x
(1, t),

u(x, 0) = u0i(x),

(8.5)

V (t, s), t > s, is the family of affine operators on C([0, 1],R) such that u =
V (t, s)u00 satisfies the linear system with inhomogeneous, periodic boundary
conditions, with start time s, given by

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
, t > s,

− d0
∂u

∂x
(0, t) + vu(0, t) = vS0(t), t > s,

∂u

∂x
(1, t) = 0, t > s,

u(x, s) = u00(x).

(8.6)

Due to the periodicity of the inhomogeneity in the boundary conditions, S0(t+
ω) = S0(t), we have that V (t, s) = V (t + ω, s + ω) for t > s. The nonlinear
operator Bi : C([0, 1],R+) → C([0, 1],R) is defined by

B0(u) = −u1f1(u0)− f2(u0)u2,

Bi(u) = [fi(u0)− ki]ui, i = 1, 2.

The result [243, Theorem 1] can be used to give local existence and positivity of
noncontinuable solutions of (8.1)–(8.3), although the elliptic operator in that
setting is slightly different. The reason is that the semigroups Ti and evolution
operator V defined above have the same properties as those in [243] (so [243,
Corollary 4] may be applied). Indeed, V (t, s) satisfies V (t, s)C([0, 1],R+) ⊂
C([0, 1],R+) for t > s, by standard maximum principle arguments, and sim-
ilarly (see [326, Chapter 8]), Ti(t)C([0, 1],R+) ⊂ C([0, 1],R+) for t > 0. The
operator V and semigroup T0 are related as below (1.9) in [243] on setting
γ(x, t) = S0(t). Since we assume that fi(0) = 0, it follows that Bi(u)(x) = 0
whenever ui(x) = 0 for some x; hence, B = (B0, B1, B2) is quasi-positive.
Thus, [243, Theorem 1 and Remark 1.1] imply that (8.1)–(8.3) has a unique
nonnegative noncontinuable solution that satisfies (8.1)–(8.2) in the classical
sense for t > 0.
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8.2 Unperturbed Model

Consider the system of equations with identical diffusivities and vanishing cell
death rates

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S), 0 < x < 1, t > 0,

∂ui
∂t

= d0
∂2ui
∂x2

− v
∂ui
∂x

+ uifi(S), i = 1, 2, 0 < x < 1, t > 0,

(8.7)

with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

d0
∂ui(0, t)

∂x
− vui(0, t) = 0, i = 1, 2, t > 0,

∂S(1, t)

∂x
=

∂ui(1, t)

∂x
= 0, i = 1, 2, t > 0,

(8.8)

and initial value conditions

S(x, 0) = S0(x) ≥ 0, ui(x, 0) = u0i(x) ≥ 0, i = 1, 2, 0 ≤ x ≤ 1, (8.9)

where d0 > 0, v > 0, and S0(·) ∈ C2(R+,R), with S0(t) ≥ 0, S0(·) �≡ 0,
S0(t + ω) = S0(t) for some real number ω > 0, and fi(·) ∈ C2(R+,R+)
satisfies

(H) fi(0) = 0, f ′
i(S) > 0, ∀S ∈ R+, i = 1, 2.

Let n be the outward normal to the boundary of (0, 1). Clearly, for any
φ(·) ∈ C1([0, 1],R),

∂φ(0)

∂n
= −∂φ(0)

∂x
and

∂φ(1)

∂n
=

∂φ(1)

∂x
.

Therefore, the boundary condition (8.8) is equivalent to the following one:

d0
∂S(0, t)

∂n
+ vS(0, t) = vS0(t), t > 0,

d0
∂ui(0, t)

∂n
+ vui(0, t) = 0, i = 1, 2, t > 0,

∂S(1, t)

∂n
=

∂ui(1, t)

∂n
= 0, i = 1, 2, t > 0.

(8.10)

Let X+ = C([0, 1],R3
+). As mentioned in Section 8.1, [243, Theorem 1 and

Remark 1.1] imply that for any φ = (S0(·), u01(·), u02(·)) ∈ X+, there exists a
unique (mild) solution (S(x, t, φ), u1(x, t, φ), u2(x, t, φ)) of (8.7)-(8.8), defined
on its maximal interval of existence [0, σφ), satisfying

S(x, t, φ) ≥ 0, ui(x, t, φ) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ), i = 1, 2.

Moreover, (S(x, t, φ), u1(x, t, φ), u2(x, t, φ)) is a classical solution of (8.7)–
(8.8) for t ∈ (0, σφ).
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8.2.1 Conservation Principle

Since we have scaled the ui in nutrient-equivalent units, the total nutrient
W (x, t) = S(x, t)+u1(x, t)+u2(x, t) should eventually come into balance with
the input S0(t). Then W (x, t) satisfies the following scalar linear equation

∂W

∂t
= d0

∂2W

∂x2
− v

∂W

∂x
, 0 < x < 1, t > 0,

d0
∂W (0, t)

∂n
+ vW (0, t) = vS0(t), t > 0,

∂W (1, t)

∂n
= 0, t > 0.

(8.11)

Note that equations (8.7)–(8.8) reduce to (8.11) for W = S when ui =
0, i = 1, 2. In what follows, we use Bφ = 0 to denote the homogeneous

boundary conditions d0
∂φ(0)
∂n + vφ(0) = 0 and ∂φ(1)

∂n = 0.

Proposition 8.2.1. System (8.11) admits a unique positive ω-periodic solu-
tion W ∗(x, t) > 0, and for any W0(·) ∈ C([0, 1],R), the unique (mild) solution
W (x, t) of (8.11) with W (·, 0) = W0(·) satisfies limt→∞(W (x, t)−W ∗(x, t)) =
0 uniformly for x ∈ [0, 1].

Proof. Let u(x, t) = W (x, t)−S0(t) and S1(t) = − dS0(t)
dt , t ≥ 0. Then u(x, t)

satisfies
∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ S1(t), 0 < x < 1, t > 0,

d0
∂u(0, t)

∂n
+ vu(0, t) = 0, t > 0,

∂u(1, t)

∂n
= 0, t > 0.

(8.12)

Since the boundary conditions in (8.12) are homogeneous, (8.12) can then be
written as an abstract ordinary differential equation in C([0, 1],R) given by

du

dt
= Au(t) + S1(t), t > 0,

u(0) = φ ∈ C([0, 1]),R),
(8.13)

where A is the closure in C([0, 1],R) of A0 = d0∂/∂x
2 − v∂/∂x with

D(A0) =
{
φ ∈ C2((0, 1)) ∩C1([0, 1]) : A0φ ∈ C([0, 1]), Bφ = 0

}
.

For any φ ∈ C([0, 1],R), the mild solution of (8.12) can be expressed as

u(t) = T (t)φ+

∫ t

0

T (t− s)S1(s)ds, (8.14)

where T (t) is the analytic semigroup generated by A in C([0, 1],R) (see, e.g.,
[272] and [326, Chapter 7.1]). It easily follows that u(t) is an ω-periodic solu-
tion of (8.13) if and only if u0 = u(0) satisfies



8.2 Unperturbed Model 219

(I − T (ω))u0 =

∫ ω

0

T (t− s)S1(s)ds. (8.15)

By an argument similar to that in [326, Section 8.1], it follows that σ =
sup{Reλ : λ ∈ σ(A)} < 0. Then the radius of the spectrum of the compact
operator T (ω) satisfies r(T (ω)) < 1, and hence (8.13) admits a unique ω-
periodic solution u∗(t). Let v(t) = u(t)− u∗(t). Then v(t) satisfies

dv(t)

dt
= Av(t), t > 0. (8.16)

By [272, Theorem 4.4.3], there exist M > 0 and μ > 0 such that ‖T (t)‖ ≤
Me−μt, t ≥ 0, and hence limt→∞ v(t) = 0 in C([0, 1],R). Then limt→∞(u(x, t)−
u∗(x, t)) = 0 uniformly for x ∈ [0, 1].

Let W ∗(x, t) = u∗(x, t) + S0(t), x ∈ [0, 1], t ≥ 0. It then follows that
W ∗(x, t) is an ω-periodic solution of (8.11), and for any W0(·) ∈ C([0, 1],R),
the unique (mild) solution W (x, t) of (8.11) with W (·, 0) = W0(·) satisfies

lim
t→∞(W (x, t)−W ∗(x, t)) = 0, uniformly forx ∈ [0, 1]. (8.17)

For anyW0(·) ∈ C([0, 1],R+), by [243, Theorem 1 and Remark 1.1], the unique
solution W (x, t) of (8.11) with W (·, 0) = W0(·) satisfies

W (x, t) ≥ 0, ∀x ∈ [0, 1], t ≥ 0. (8.18)

It remains to prove that W ∗(x, t) > 0, for all x ∈ [0, 1] and t ≥ 0. For
any t ≥ 0, by (8.17) we have limn→∞(W (x, t + nω) − W ∗(x, t + nω)) =
limn→∞(W (x, t + nω) − W ∗(x, t)) = 0, uniformly for x ∈ [0, 1]. Then
W ∗(x, t) = limn→∞W (x, t + nω) ≥ 0, ∀x ∈ [0, 1], t ≥ 0. Since S0(t) ≥
0, S0(·) �≡ 0, there exists t0 > 0 such that S0(t0) > 0. It is easy to see

that d0
∂u∗(0,t0)

∂n + vu∗(0, t0) = 0 implies u∗(·, t0) �≡ −S0(t0). Then W ∗(·, t0) =
u∗(·, t0)+S0(t0) �≡ 0. By the standard parabolic maximum principle, it follows
that

W ∗(x, t) > 0, ∀x ∈ [0, 1], t > t0. (8.19)

Then, by the ω-periodicity of W ∗(x, ·), we have W ∗(x, t) > 0, ∀x ∈ [0, 1],
t ≥ 0.

8.2.2 Single Species Growth

If only one microbial species is present in the reactor, we have the single
species model

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− uf(S), 0 < x < 1, t > 0,

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf(S), 0 < x < 1, t > 0,

(8.20)
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with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) = 0, t > 0,

∂S(1, t)

∂x
=

∂u(1, t)

∂x
= 0, t > 0,

(8.21)

and initial conditions

S(x, 0) = S0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0, ∀x ∈ [0, 1], (8.22)

where d0 > 0, v > 0, f(·) ∈ C2(R+,R+) satisfies (H) and S0(·) is as in (8.8).
Let Y + = C([0, 1],R2

+). It then follows that for any φ = (S0(·), u0(·)) ∈ Y +,
(8.20)–(8.22) admits a unique (mild) solution (S(x, t, φ), u(x, t, φ)), defined on
its maximal interval of existence [0, σφ), satisfying S(x, t, φ) ≥ 0, u(x, t, φ) ≥
0, ∀x ∈ [0, 1], t ∈ [0, σφ). By the conservation principle in Subsection 8.2.1, for
each φ ∈ Y +, σφ = ∞.

We determine stability of periodic solutions in the following way. For any
m ∈ C1([0, 1] × R,R) with m(x, t + ω) = m(x, t), ∀x ∈ [0, 1], t ∈ R, let
μ(m(·, ·)) be the unique principal eigenvalue of the periodic–parabolic eigen-
value problem (see [152, Section II.14])

∂ϕ

∂t
= d0

∂ϕ

∂x2
− v

∂ϕ

∂x
+m(x, t)ϕ+ μϕ, x ∈ (0, 1), t ∈ R,

d0
∂ϕ(0, t)

∂x
− vϕ(0, t) =

∂ϕ(1, t)

∂x
= 0, t ∈ R,

ϕ ω-periodic in t.

(8.23)

The main result of this subsection says that if the washout periodic solution
(S, u) = (W ∗, 0) is stable or neutrally stable in the linear approximation then
it is globally stable, while if it is unstable then there exists a unique positive
periodic solution representing survival of the population to which all other
solutions with u0 �= 0 approach asymptotically.

Theorem 8.2.1. Let W ∗(x, t) be as in Proposition 8.2.1.

(a) If μ(f(W ∗(x, t))) ≥ 0, then for any φ = (S0(·), u0(·)) ∈ Y +,
limt→∞(S(x, t, φ) − W ∗(x, t)) = 0 and limt→∞ u(x, t, φ) = 0
uniformly for x ∈ [0, 1];

(b) If μ(f(W ∗(x, t))) < 0, then (8.20)–(8.21) admits a unique positive ω-
periodic solution (S∗(x, t), u∗(x, t)) and for any φ = (S0(·), u0(·)) ∈ Y +

with u0(·) �≡ 0, limt→∞(S(x, t, φ) − S∗(x, t)) = 0 and limt→∞(u(x, t, φ) −
u∗(x, t)) = 0 uniformly for x ∈ [0, 1]. Moreover, (S∗(x, t), u∗(x, t)) is lin-
early asymptotically stable for (8.20)–(8.21).
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Proof. Let f̂(·) : R → R be a smooth extension of f(·) : R+ → R+ such that

f̂(0) = 0, f̂ ′(s) > 0, ∀s ∈ R, and f̂(s) = f(s), ∀s ∈ R+. Let W = S + u.
Then system (8.20) with (8.21) is equivalent to the system

∂W

∂t
= d0

∂2W

∂x2
− v

∂W

∂x
, 0 < x < 1, t > 0,

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf(W − u), 0 < x < 1, t > 0,

(8.24)

with boundary conditions

d0
∂W (0, t)

∂x
− vW (0, t) = −vS0(t), t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) = 0, t > 0,

∂W (1, t)

∂x
=

∂u(1, t)

∂x
= 0, t > 0.

(8.25)

Given φ = (S0(·), u0(·)) ∈ Y +, let (W (x, t), u(x, t)) be the unique solution of
(8.24)–(8.25) satisfying (W (x, 0), u(x, 0)) = (S0(x) + u0(x), u0(x)), x ∈ [0, 1].
Then U(x, t) = u(x, t + ω), x ∈ [0, 1], t ≥ 0, satisfies the nonautonomous
scalar parabolic equation

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf̂(W (x, t + ω)− u), 0 < x < 1, t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) =

∂u(1, t)

∂x
= 0, t > 0.

(8.26)

By the conservation principle, limt→∞(W (x, t)−W ∗(x, t)) = 0 uniformly for
x ∈ [0, 1], and hence (8.26) is asymptotic to the following periodic scalar
parabolic equation

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ uf̂(W ∗(x, t)− u), 0 < x < 1, t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) =

∂u(1, t)

∂x
= 0, t > 0.

(8.27)

Let 1 < p < ∞, and let X0 = Lp(0, 1) and X1 = W 2
p,B(0, 1). For β ∈

(1/2 + 1/(2p), 1), let Xβ be the fractional power space of X0 with respect to
(A0, B) (see, e.g., [150]). Then X1 ⊂ Xβ ⊂ X0 and Xβ ↪→ C1+λ[0, 1] for some
λ > 0. Clearly, U(·, 0) = u(·, ω) ∈ X1 ⊂ Xβ. By Theorem 3.2.2, it follows
that

(a) If μ(f(W ∗(x, t))) ≥ 0, limt→∞ U(x, t) = 0, and hence limt→∞ u(x, t) = 0,
uniformly for x ∈ [0, 1];

(b) If μ(f(W ∗(x, t))) < 0, (8.27) admits a unique positive ω-periodic solution
u∗(x, t) and limt→∞(U(x, t) − u∗(x, t)) = 0, and hence limt→∞(u(x, t) −
u∗(x, t)) = limt→∞(U(x, t−ω)−u∗(x, t−ω)) = 0, uniformly for x ∈ [0, 1].
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In case (a), limt→∞(S(x, t) − W ∗(x, t)) = limt→∞[(W (x, t) − W ∗(x, t)) − u
(x, t)] = 0 uniformly for x ∈ [0, 1]; In case (b), let S∗(x, t) = W ∗(x, t) − u∗

(x, t). Then limt→∞(S(x, t) − S∗(x, t)) = limt→∞[(W (x, t) − W ∗(x, t)) −
(u(x, t) − u∗(x, t))] = 0 uniformly for x ∈ [0, 1]. We further claim that
(S∗(x, t), u∗(x, t)) is a positive ω-periodic solution of (8.20)–(8.21). It then

suffices to prove that W ∗(x, t) > u∗(x, t), ∀x ∈ [0, 1], t ≥ 0. Since d0
∂W∗(0,t)

∂n +

vW ∗(x, t) = vS0(t) ≥ 0 and ∂W∗(1,t)
∂n = 0, t > 0, W ∗(x, t) is an upper solution

of (8.27). Let u0(x, t) be the unique solution of (8.27) with u0(·, 0) = W ∗(·, 0).
Then u0(x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. It then follows that

u0(x, t+ nω) ≤ W ∗(x, t+ nω) = W ∗(x, t), ∀t ≥ 0, n ≥ 0. (8.28)

Since limt→∞(u0(x, t) − u∗(x, t)) = 0 uniformly for x ∈ [0, 1], letting n → ∞
in (8.28), we have

u∗(x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0.

Let t0 > 0 be such that S0(t0) > 0. Clearly, the boundary conditions for
W ∗(x, t) and u∗(x, t) in (8.11) and (8.27) imply that u∗(·, t0) �≡ W ∗(·, t0).
Then, by the parabolic maximum principle, we get

u∗(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t > t0,

and hence by the ω-periodicity of u∗(x, t) and W ∗(x, t),

u∗(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0.

Let P : Y + → Y + be the Poincaré map associated with (8.20)–(8.21);
that is, P (φ) = (S(·, ω, φ), u(·, ω, φ)), ∀φ = (S0(·), u0(·)) ∈ Y +. Let φ0 =
(S∗(·, 0), u∗(·, 0)). Clearly, P (φ0) = φ0. It remains to prove the linear asymp-
totic stability of the positive periodic solution (S∗(x, t), u∗(x, t)) in the sense
that r(DφP (φ0)) < 1. Let S̄ = S−S∗, ū = u−u∗. We then get the linearization
of (8.20)–(8.21) at (S∗(x, t), u∗(x, t)) given by

∂S̄

∂t
= d0

∂2S̄

∂x2
− v

∂S̄

∂x
− u∗(x, t)f ′(S∗(x, t))S̄ − f(S∗(x, t))ū,

∂ū

∂t
= d0

∂2ū

∂x2
− v

∂ū

∂x
+ u∗(x, t)f ′(S∗(x, t))S̄ + f(S∗(x, t))ū,

(8.29)

with homogeneous boundary conditions

d0
∂S̄(0, t)

∂x
− vS̄(0, t) = 0, t > 0,

d0
∂ū(0, t)

∂x
− vū(0, t) = 0, t > 0,

∂S̄(1, t)

∂x
=

∂ū(1, t)

∂x
= 0, t > 0.

(8.30)
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Let U(t, s), t ≥ s ≥ 0, be the evolution operator of linear system (8.29)–
(8.30). It easily follows thatDφP (φ0) = U(ω, 0). Under the change of variables
w = S̄ + ū, z = ū, that is,

(
w
z

)

=

(
1 1
0 1

)(
S̄
ū

)

,

(8.29)–(8.30) is then transformed into the system

∂w

∂t
= d0

∂2w

∂x2
− v

∂w

∂x
, 0 < x < 1, t > 0,

∂z

∂t
= d0

∂2z

∂x2
− v

∂z

∂x
+ u∗(x, t)f ′(S∗(x, t))w

+ (f(S∗(x, t)) − u∗(x, t)f ′(S∗(x, t))) z, 0 < x < 1, t > 0,

(8.31)

with boundary conditions

d0
∂w(0, t)

∂x
− vw(0, t) = 0, t > 0,

d0
∂z(0, t)

∂x
− vz(0, t) = 0, t > 0,

∂w(1, t)

∂x
=

∂z(1, t)

∂x
= 0, t > 0.

(8.32)

Let U1(t, s), t ≥ s ≥ 0, be the evolution operator of the linear equation

∂w

∂t
= d0

∂2w

∂x2
− v

∂w

∂x
, 0 < x < 1, t > 0,

d0
∂w(0, t)

∂x
− vw(0, t) =

∂w(1, t)

∂x
= 0, t > 0,

(8.33)

and let U2(t, s), t ≥ s ≥ 0, be the evolution operator of the periodic linear
equation

∂z

∂t
= d0

∂2z

∂x2
− v

∂z

∂x
+ (f(S∗(x, t))− u∗(x, t)f ′(S∗(x, t))) z,

d0
∂z(0, t)

∂x
− vz(0, t) =

∂z(1, t)

∂x
= 0.

(8.34)

Then

U(t, s) =

(
U1(t, s) 0

∫ t

s U2(t, τ)u
∗(·, τ)f ′(S∗(·, τ))U1(τ, s)dτ U2(t, s)

)

(8.35)

is the evolution operator of periodic linear system (8.31)–(8.32). In particular,

U(ω, 0) =

(
U1(ω, 0) 0∫ ω

0 U2(ω, τ)u
∗(·, τ)f ′(S∗(·, τ))U1(τ, 0)dτ U2(ω, 0)

)

. (8.36)
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As claimed in Subsection 8.2.1, r(U1(ω, 0)) < 1. By the definition of principal
eigenvalue (see [152, Proposition 14.4]), we have

μ(f(S∗(x, t)− u∗(x, t)f ′(S∗(x, t))) = − 1

ω
ln(r(U2(ω, 0))).

Since (S∗(x, t), u∗(x, t)) is an ω-periodic solution of (8.20)–(8.21), u∗(x, t) sat-
isfies the periodic linear equation

∂u

∂t
= d0

∂2u

∂x2
− v

∂u

∂x
+ f(S∗(x, t))u, 0 < x < 1, t > 0,

d0
∂u(0, t)

∂x
− vu(0, t) =

∂u(1, t)

∂x
= 0, t > 0.

(8.37)

Then, by the uniqueness of the principal eigenvalue, we have μ(f(S∗(x, t))) =
0. Since f(S∗(x, t)) − u∗(x, t)f ′(S∗(x, t)) < f(S∗(x, t)), by the monotonicity
of the principal eigenvalue ([152, Lemma 15.5]),

μ (f∗(S∗(x, t) − u∗(x, t)f ′(S∗(x, t))) > μ (f(S∗(x, t))) = 0.

Therefore, r(U2(ω, 0)) < 1. Clearly, U(ω, 0) : Y = C([0, 1], R)×C([0, 1],R2) →
Y is a compact and positive operator. We further claim that r(U(ω, 0)) < 1.
Indeed, let α = r(U(ω, 0)). If α = 0, obviously we have r(U(ω, 0)) < 1.
In the case where α > 0, by the Krein–Rutman theorem (see, e.g., [152,

Theorem 7.1]), there exists φ =

(
φ1

φ2

)

> 0 in Y such that

U(ω, 0)

(
φ1

φ2

)

= α

(
φ1

φ2

)

.

Then U1(ω, 0)φ1 = αφ1. If φ1 > 0, then α = r(U1(ω, 0)) < 1. If φ1 = 0, then
φ2 > 0 and U2(ω, 0)φ2 = αφ2, and hence, α = r(U2(ω, 0)) < 1. Clearly,

U(ω, 0) =

(
1 −1
0 1

)

U(ω, 0)

(
1 −1
0 1

)−1

.

It then follows that r(DφP (φ0)) = r(U (ω, 0)) = r(U(ω, 0)) < 1.

8.2.3 Two-Species Competition

For any φ = (S0(·), u01(·), u02(·)) ∈ X+, let

Φ(x, t, φ) = (S(x, t), u1(x, t), u2(x, t))

be the unique (mild) solution of (8.7)–(8.8) with Φ(·, 0, φ) = φ. Then S(x, t) ≥
0, ui(x, t) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ), i = 1, 2. By the conservation principle,
for each φ ∈ Y +, σφ = ∞.
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In the case where μ(fi(W
∗(x, t))) < 0, i = 1, 2, according to Theo-

rem 8.2.1, let (S∗
i (x, t), u

∗
i (x, t)) be the unique positive ω-periodic solution

of (8.20)–(8.21) with f(·) = fi(·), i = 1, 2, respectively. As shown in the proof
of Theorem 8.2.1, for each 1 ≤ i ≤ 2,

W ∗(x, t) > u∗i (x, t), S∗
i (x, t) = W ∗(x, t) − u∗i (x, t), ∀x ∈ [0, 1], t ≥ 0,

and u∗i (x, t) is the unique positive ω-periodic solution of the periodic-parabolic
equation

∂ui
∂t

= d0
∂2ui
∂x2

− v
∂ui
∂x

+ uifi(W
∗(x, t)− ui), 0 < x < 1, t > 0,

d0
∂ui(0, t)

∂x
− vui(0, t) =

∂ui(1, t)

∂x
= 0, t ≥ 0.

We now show that if each population can survive in the bioreactor in the
absence of competition and if each population can invade the other’s single-
population periodic solution, then there exist two, not necessarily distinct,
positive periodic solutions, each representing coexistence of the two popula-
tions, and system (8.7)–(8.8) is uniformly persistent.

Theorem 8.2.2. Assume that

(1) μ(fi(W
∗(x, t))) < 0, ∀i = 1, 2;

(2) μ(f1(S
∗
2 (x, t))) < 0 and μ(f2(S

∗
1 (x, t))) < 0.

Then system (8.7)–(8.8) admits two positive ω-periodic solutions
(S̄∗

1 (x, t), ū1∗(x, t), ū∗2(x, t)) and (S̄∗
2 (x, t), ū

∗
1(x, t), ū2∗(x, t)) with

ū∗i (x, t) ≥ ūi∗(x, t), ∀x ∈ [0, 1], t ∈ R+, i = 1, 2,

and for any φ = (S0(·), u01(·), u02(·)) ∈ X+ with u0i(·) �≡ 0, ∀i = 1, 2,
Φ(x, t, φ) = (S(x, t), u1(x, t), u2(x, t)) satisfies

lim
t→∞ d(ui(x, t), [ūi∗(x, t), ū∗i (x, t)]) = 0, i = 1, 2, uniformly for x ∈ [0, 1].

Proof. For each 1 ≤ i ≤ 2, let f̂i(·) : R → R be a smooth extension of fi(·) :
R+ → R such that f̂i(0) = 0, f̂ ′

i(s) > 0, ∀s ∈ R, and f̂i(s) = fi(s), ∀s ∈ R+.
Let W = S+u1+u2. Then system (8.7) with (8.8) is equivalent to the system

∂W

∂t
= d0

∂2W

∂x2
− v

∂W

∂x
, 0 < x < 1, t > 0,

∂ui
∂t

= d0
∂2ui
∂x2

− v
∂ui
∂x

+ uifi(W − u1 − u2), i = 1, 2, 0 < x < 1, t > 0,

(8.38)

with boundary conditions
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d0
∂W (0, t)

∂x
− vW (0, t) = −vS0(t), t > 0,

d0
∂ui(0, t)

∂x
− vui(0, t) = 0, i = 1, 2, t > 0,

∂W (1, t)

∂x
=

∂ui(1, t)

∂x
= 0, i = 1, 2, t > 0.

(8.39)

Given φ = (S0(·), u01(·), u02(·)) ∈ X+, let

Φ(x, t, φ) = (S(x, t), u1(x, t), u2(x, t)), ∀x ∈ [0, 1], t ≥ 0,

and let

(U1(x, t), U2(x, t)) = (u1(x, t+ ω), u2(x, t+ ω)), ∀x ∈ [0, 1], t ≥ 0.

Then (U1(x, t), U2(x, t)) satisfies the following nonautonomous parabolic sys-
tem

∂ui
∂t

= d0
∂2ui
∂x2

− v
∂ui
∂x

+ uif̂i(W (x, t+ ω)− u1 − u2), i = 1, 2,

Bui = 0, i = 1, 2.

(8.40)

By the conservation principle, limt→∞(W (x, t)−W ∗(x, t)) = 0 uniformly for
x ∈ [0, 1], and hence (8.40) is asymptotic to the following periodic-parabolic
system

∂ui
∂t

= d0
∂2ui
∂x2

− v
∂ui
∂x

+ uif̂i(W
∗(x, t) − u1 − u2), i = 1, 2,

Bui = 0, i = 1, 2.

(8.41)

LetXβ be as in the proof of Theorem 8.2.1, let Z = Xβ×Xβ, and let Z+ be
the usual positive cone of Z. Since (U1(·, 0), U2(·, 0)) = (u1(·, ω), u2(·, ω)) ∈ Z,
we consider systems (8.40) and (8.41) with initial values in Z+. Let Δ =
{(t, s) : 0 ≤ s ≤ t < ∞}. Define Φ̃ : Δ × Z+ → Z+ by Φ̃(t, s, ψ) =
ũ(·, t, s, ψ), t ≥ s ≥ 0, ψ ∈ Z+, where ũ(x, t, s, ψ) = (ũ1(x, t, s, ψ), ũ2(x, t, s, ψ))
is the unique solution of (8.40) with ũ(·, s, s, ψ) = ψ. Define Tn : Z+ →
Z+, n ≥ 0, by Tn(ψ) = Φ̃(nω, 0, ψ), ψ ∈ Z+. Let T (t) : Z+ → Z+, t ≥ 0,
be the periodic semiflow generated by periodic system (8.41), i.e., T (t)ψ =
u(·, t, ψ), where u(x, t, ψ) is the unique solution of (8.41) with u(·, 0, ψ) = ψ.
Clearly, Q = T (ω) : Z+ → Z+ is the Poincaré map associated with the
periodic system (8.41). Then, by Proposition 3.2.1, Φ̃ : Δ × Z+ → Z+ is
an asymptotically periodic semiflow with limit ω-periodic semiflow T (t) :
Z+ → Z+, t ≥ 0, and hence Tn : Z+ → Z+, n ≥ 0, is an asymptotically
autonomous discrete process with limit Q : Z+ → Z+. Moreover, for any
ψ ∈ Z+, γ+(ψ) = {Tn(ψ) : n ≥ 0} is precompact in Z+. Let (Z, P ) be the

ordered Banach space with the positive cone P = Xβ
+ × (−Xβ

+), where X
β
+

is the usual positive cone of Xβ, and denote its order by ≤P . It then follows
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that T (t) : Z+ → Z+, t ≥ 0, is monotone with respect to ≤P in the sense
that if φ, ψ ∈ Z+ with φ ≤P ψ, then T (t)φ ≤P T (t)ψ, ∀t ≥ 0.

Clearly, condition (2) implies μ(f1(W
∗(x, t)−u∗2(x, t))) = μ(f1(S

∗
2 (x, t))) <

0 and μ(f2(W
∗(x, t) − u∗1(x, t))) = μ(f2(S

∗
1 (x, t))) < 0. By Theorem 2.4.2,

as applied to the Poincaré map associated with (8.41), or an argument similar
to that in [152, Theorem 33.3], it then follows that (8.41) admits two positive
ω-periodic solutions (ū1∗(x, t), ū∗2(x, t)) and (ū∗1(x, t), ū2∗(x, t)) with

ūi∗(x, t) ≤ ū∗i (x, t), ∀x ∈ [0, 1], t ≥ 0,

such that the compressive dynamics stated in Theorem 8.2.2 holds for (8.41)
on Z+. Let E∗

1 = (ū1∗(·, 0), ū∗2(·, 0)) and E∗
2 = (ū∗1(·, 0), ū2∗(·, 0)). Clearly,

Q(E∗
i ) = E∗

i , i = 1, 2. Let Z0 := {(φ1, φ2) ∈ Z+ : φi(·) �≡ 0, i = 1, 2} and
∂Z0 := Z+ \ Z0. Clearly, Q : Z0 → Z0, and Q : ∂Z0 → ∂Z0. It then follows
that Q : Z0 → Z0 admits a global attractor A0 ⊂ [E∗

1 , E
∗
2 ]P . Let M0 =

(0, 0), M1 = (u∗1(·, 0), 0), and M2 = (0, u∗2(·, 0)). It is easy to see that ∪2
i=0Mi

is an isolated and acyclic covering of ∪φ∈∂Z0ω(φ) for Q : ∂Z0 → ∂Z0. By our

assumptions and Proposition 3.2.3, we have W̃ s(Mi) ∩ Z0 = ∅, ∀i = 0, 1, 2,
where W̃ s(Mi) is the stable set ofMi with respect to Tn : Z+ → Z+, n ≥ 0. By
Lemma 1.2.2, every ω-limit set ω(φ) of γ+(φ) = {Tn(φ) : n ≥ 0} is internally
chain transitive for Q : Z+ → Z+. By Theorem 1.2.1, it then follows that
ω(ψ) ⊂ A0, ∀ψ ∈ Z0. By Theorem 3.2.1, limt→∞ d(ũ(·, t, 0, ψ), T (t)A0) = 0.
Since E∗

1 ≤P A0 ≤P E∗
2 , by the monotonicity of T (t) : Z+ → Z+, t ≥ 0, we

have
T (t)E∗

1 ≤P T (t)A0 ≤P T (t)E∗
2 , ∀t ≥ 0. (8.42)

Note that

T (t)E∗
1 = (ū1∗(·, t), ū∗2(·, t)), and T (t)E∗

2 = (ū∗1(·, t), ū2∗(·, t)), ∀t ≥ 0.

For any φ = (S0(·), u01(·), u02(·)) ∈ X+ with u0i(·) �≡ 0, ∀i = 1, 2, since
(U1(·, 0), U2(·, 0)) ∈ Z0, we have

lim
t→∞ d(ui(x, t), [ūi∗(x, t), ū∗i (x, t)])

= lim
t→∞ d(Ui(x, t− ω), [ūi∗(x, t− ω), ū∗i (x, t− ω)]) = 0, ∀i = 1, 2,

uniformly for x ∈ [0, 1].
Let S̄∗

1(x, t) = W ∗(x, t) − ū1∗(x, t) − ū∗2(x, t) and S̄∗
2 (x, t) =

W ∗(x, t)− ū∗1(x, t)− ū2∗(x, t). We need to confirm that

(S̄∗
1 (x, t), ū1∗(x, t), ū

∗
2(x, t)) and (S̄∗

2 (x, t), ū
∗
1(x, t), ū2∗(x, t))

are two positive ω-periodic solutions of (8.7)–(8.8). It suffices to prove that

W ∗(x, t) > ū∗1(x, t) + ū2∗(x, t), W ∗(x, t) > ū1∗(x, t) + ū∗2(x, t),

for all x ∈ [0, 1] and t ≥ 0. Since u∗1(·, 0) �P W ∗(·, 0), we can choose ψ0

= (ψ0
1 , ψ

0
2) ∈ Z0 such that
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E∗
2 ≤P ψ0 �P M1 = (u∗1(·, 0), 0) andψ0

1(x) + ψ0
2(x) ≤ W ∗(x, 0), ∀x ∈ [0, 1].

Let (u01(x, t), u
0
2(x, t)) be the unique solution of (8.41) with (u01(·, 0), u02(·, 0))

= ψ0, and let f̄(s) = max{f̂1(s), f̂2(s)}, ∀s ∈ R. Then

V (x, t) = u01(x, t) + u02(x, t), x ∈ [0, 1], t ≥ 0,

satisfies V (x, 0) ≤ W ∗(x, 0), ∀x ∈ [0, 1], and

∂V

∂t
≤ d0

∂2V

∂x2
− v

∂V

∂x
+ V f̄(W ∗(x, t) − V ), 0 < x < 1, t > 0,

BV = 0, t > 0.

(8.43)

Note that W ∗(x, t) satisfies

∂W ∗

∂t
= d0

∂2W ∗

∂x2
− v

∂W ∗

∂x
+W ∗f̄(W ∗(x, t) −W ∗(x, t)),

BW ∗ ≥ 0

(8.44)

for 0 < x < 1 and t > 0. By the standard comparison theorem, it follows that

u01(x, t) + u02(x, t) = V (x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. (8.45)

By Theorem 2.4.2, Qn(ψ0) = (u01(·, nω), u02(·, nω)) → E∗
2 as n → ∞, and

hence

lim
t→∞(u01(x, t) − ū∗1(x, t)) = 0 and lim

t→∞(u02(x, t)− ū2∗(x, t)) = 0

uniformly for x ∈ [0, 1]. By (8.45), we have

u01(x, t+ nω) + u02(x, t+ nω) ≤ W ∗(x, t+ nω) = W ∗(x, t) (8.46)

for all x ∈ [0, 1] and t ≥ 0. Letting n → ∞ in (8.46), we get

ū∗1(x, t) + ū2∗(x, t) ≤ W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. (8.47)

Since V ∗ = ū∗1(x, t) + ū2∗(x, t) satisfies (8.43) and W ∗(x, t) satisfies (8.11), as
argued in the proof that W ∗(x, t) > u∗(x, t) in Subsection 8.2.2, we further
have ū∗1(x, t) + ū2∗(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0. Similarly, we can prove
that ū1∗(x, t) + ū∗2(x, t) < W ∗(x, t), ∀x ∈ [0, 1], t ≥ 0.

8.3 Perturbed Model

In order to apply abstract perturbation-type results to periodic systems with
parameters, we first consider the weak repellers uniform in parameters and
the continuity of solutions on parameters uniformly for initial values.



8.3 Perturbed Model 229

8.3.1 Periodic Systems with Parameters

Let Λ be a subset of R
l. We consider the periodic-parabolic system with

parameter (Eλ):

∂ui
∂t

= Ai(λ)ui + Fi(x, t, u, λ) in Ω × (0,∞), 1 ≤ i ≤ m,

Biui = 0 on ∂Ω × (0,∞), 1 ≤ i ≤ m,
(8.48)

where u = (u1, . . . , um) ∈ R
m, λ ∈ Λ, Biui = ∂ui

∂n + αiui, αi ≥ 0, Ai(λ)
are uniform elliptic operators with coefficients continuous in (x, λ), Fi are
smooth functions, and for some real number ω > 0, Fi(x, t + ω, u, λ) =
Fi(x, t, u, λ), ∀1 ≤ i ≤ m. We assume that for any φ = (φ1, . . . , φm) ∈
C+ = C(Ω,Rm

+ ), the unique (mild) solution u(x, t, φ, λ) of (Eλ) with

u(·, 0, φ, λ) = φ exists globally on [0,∞) and ui(x, t, φ, λ) ≥ 0, ∀x ∈ Ω, t ≥
0, 1 ≤ i ≤ m.

For each 1 ≤ i ≤ m and any m ∈ C1([0, 1] × R,R) with m(x, t + ω) =
m(x, t), ∀x ∈ [0, 1], t ∈ R, let μ(Ai(λ),m(·, ·)) be the unique principal eigen-
value of the periodic–parabolic eigenvalue problem (see [152, Chapter II])

∂ϕ

∂t
= Ai(λ)ϕ +m(x, t)ϕ+ μϕ, x ∈ Ω, t ∈ R,

Biϕ = 0, x ∈ ∂Ω, t ∈ R,

ϕ ω-periodic in t.

Then we have the following result on the uniform weak repeller .

Proposition 8.3.1. Let λ0 ∈ Λ be fixed. Assume that there exists some 1 ≤
i ≤ m such that Fi(x, t, u, λ) = uiGi(x, t, u, λ), and (Eλ) admits a nonnegative
periodic solution

u∗0(x, t) = (u∗01(x, t), . . . , u
∗
0i−1(x, t), 0, u

∗
0i+1(x, t), . . . , u

∗
0n(x, t))

with μ(Ai(λ0), Gi(x, t, u
∗
0(x, t), λ0)) < 0. Then there exist η > 0 and δ > 0

such that for any |λ− λ0| < δ and any φ ∈ C+ with φi(·) �≡ 0, we have

lim sup
n→∞

‖(u(·, nω, φ, λ)− u∗0(·, 0)‖ ≥ η.

Proof. Let M = u∗0(·, 0) and let B(M, r) denote the open ball in C =
C(Ω,Rm) centered at the point M and with radius r. By the definition of
the principal eigenvalue in [152, Proposition 14.4] and the continuous depen-
dence of evolution operators on parameters (see, e.g., [13] and [89, Section
III.11]), we have

lim
λ→λ0

μ(Ai(λ), Gi(x, t, u
∗
0(x, t), λ0)) = μ(Ai(λ0), Gi(x, t, u

∗
0(x, t), λ0)) < 0.

Then there exists δ0 > 0 such that for any |λ− λ0| < δ0,
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μ(Ai(λ), Gi(x, t, u
∗
0(x, t), λ0)) <

1

2
μ(Ai(λ0), Gi(x, t, u

∗
0(x, t), λ0)).

Let ε0 = − 1
2μ (Ai(λ0), Gi(x, t, u

∗
0(x, t), λ0)). Then for any |λ− λ0| < δ0,

−μ(Ai(λ), Gi(x, t, u
∗
0(x, t), λ0)) > ε0 > 0.

Let r = maxx∈Ω, t∈[0,ω] |u∗0(x, t)| + 1. Therefore, the uniform continuity of

Gi(x, t, u, λ) on the compact set Ω × [0, ω]×B(0, r) × B(λ0, δ0) implies that
there exist δ1 ∈ (0, δ0) and η1 ∈ (0, 1) such that for any u, v ∈ B(0, r) with
|u− v| < η1 and |λ− λ0| < δ1,

|Gi(x, t, u, λ)−Gi(x, t, v, λ0)| < ε0, ∀x ∈ Ω, t ∈ [0, ω]. (8.49)

Since lim(φ,λ)→(M,λ0) u(·, t, φ, λ) = u(·, t,M, λ0) = u∗0(·, t) in C uniformly for
t ∈ [0, ω], there exist δ2 ∈ (0, δ1) and η2 > 0 such that for any φ ∈ B(M, η2) ⊂
C, |λ− λ0| < δ2,

|u(x, t, φ, λ)− u∗0(x, t)| < η1, ∀x ∈ Ω, t ∈ [0, ω].

We claim that for any |λ − λ0| < δ2 and φ ∈ B(M, η2) ∩ C+ with φi(·) �≡ 0,
there exists n0 = n0(λ, φ) ≥ 1 such that

u(·, n0ω, φ, λ) /∈ B(M, η2). (8.50)

Assume, by contradiction, that there exist φ0 ∈ B(M, η2)∩C+ with φ0i(·) �≡ 0
and |λ1 − λ0| < δ2 such that for all n ≥ 1,

u(·, nω, φ0, λ1) ∈ B(M, η2). (8.51)

For any t ≥ 0, let t = nω + t′, where t′ ∈ [0, ω) and n = [t/ω] is the greatest
integer less than or equal to t/ω. Then we have

|u(x, t, φ0, λ1)−u∗0(x, t)| = |u(x, t′, u(·, nω, φ0, λ1), λ1)−u∗0(x, t′)| < η1 (8.52)

for all x ∈ Ω, and hence

|u(x, t, φ0, λ1)| < |u∗(x, t)| + η1 ≤ max
x∈Ω,t∈[0,ω]

|u∗0(x, t)|+ 1 = r

for all t ≥ 0 and x ∈ Ω. Therefore, by (8.49) and the ω-periodicity of
Gi(x, t, u, λ1) with respect to t,

Gi(x, t, u(x, t, φ0, λ1), λ1) > Gi(x, t, u
∗
0(x, t), λ0)− ε0, ∀x ∈ Ω, t ≥ 0. (8.53)

Let ψi(x, t) be a positive eigenfunction corresponding to the principal eigen-
value μ = μ(Ai(λ1), Gi(x, t, u

∗
0(x, t), λ0)); that is, ψi(x, t) satisfies

∂ψi

∂t
= Ai(λ1)ψi +Gi(x, t, u

∗
0(x, t), λ0)ψi + μψi in Ω × R,

Biψi = 0 on ∂Ω × R,

ψi ω-periodic in t.

(8.54)
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Then ψ(·, 0) � 0 in C(Ω,R). Let

u(x, t, φ0, λ1) = (u1(x, t, φ0, λ1), . . . , um(x, t, φ0, λ1)).

Since φ0i(·) > 0 in C(Ω,R), by applying the parabolic maximum principle
to the ith component of (Eλ1 ), we have ui(·, t, φ0, λ1) � 0 in C(Ω,R) for all
t > 0. Let ui(x, t) = ui(x, t+ ω, φ0, λ1). Then ui(·, 0) = ui(·, ω, φ0, λ1) � 0 in
C(Ω,R), and hence there exists k > 0 such that ui(·, 0) ≥ kψi(·, 0). Therefore,
by (8.53), ui(x, t) satisfies

∂ui
∂t

≥ Ai(λ1)ui + ui (Gi(x, t, u
∗
0(x, t), λ0)− ε0) in Ω × (0,∞),

Biui = 0 on ∂Ω × (0,∞),

ui(x, 0) ≥ kψi(x, 0) on Ω.

(8.55)

By (8.54), it easily follows that v(x, t) = ke(−μ−ε0)tψi(x, t) satisfies

∂v

∂t
= Ai(λ1)v + v (Gi(x, t, u

∗
0(x, t), λ0)− ε0) in Ω × (0,∞),

Biv = 0 on ∂Ω × (0,∞),

v(x, 0) = kψi(x, 0) on Ω.

(8.56)

By (8.55), (8.56), and the standard comparison theorem, we get

ui(x, t) ≥ ke(−μ−ε0)tψi(x, t), ∀t ≥ 0, x ∈ Ω.

Then limt→∞ ui(x, t) = ∞ for any x ∈ Ω, which contradicts (8.51). It fol-
lows that for any |λ − λ0| < δ2 and any φ ∈ C+ with φi(·) �≡ 0,
lim supn→∞ d(u(·, nω, φ, λ),M) ≥ η2.

By the continuous dependence of the evolution operator on parameters
(see, e.g., [13] and [89, Section III.11]), the variation of constants formula,
and a generalized Gronwall’s inequality argument (see, e.g., [152, Lemma 19.4]
and the proof of Proposition 3.2.1), we can prove the following result on the
continuity of solutions on parameters uniformly for initial values.

Proposition 8.3.2. Assume that solutions of (Eλ) are uniformly bounded
uniformly for λ ∈ Λ; that is, for any r > 0, there exists B = B(r) > 0
such that for any φ ∈ C+ with ‖φ‖ ≤ r, ‖u(·, t, φ, λ)‖ ≤ B(r), ∀t ≥ 0, λ ∈ Λ.
Then for any λ0 ∈ Λ and any integer k > 0,

lim
λ→λ0

‖u(·, t, φ, λ)− u(·, t, φ, λ0)‖ = 0

uniformly for t ∈ [ω, kω] and φ in any bounded subset of C+.
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8.3.2 Single Species Growth

Consider the single species growth model with not necessarily identical diffu-
sivities and nonvanishing cell death rate

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− uf(S), 0 < x < 1, t > 0,

∂u

∂t
= d

∂2u

∂x2
− v

∂u

∂x
+ u(f(S)− k), 0 < x < 1, t > 0,

(8.57)

with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

d
∂u(0, t)

∂x
− vu(0, t) = 0, t > 0,

∂S(1, t)

∂x
=

∂u(1, t)

∂x
= 0, t > 0,

(8.58)

where d0 > 0, d > 0, v > 0, and k ≥ 0, and S0(·) and f(·) are as in (8.20)–
(8.21). Let Y + = C([0, 1],R2

+). Let d0 > 0 and v > 0 be fixed and let λ =
(d, k), d > 0, k ≥ 0. As argued in Section 8.1, [243, Theorem 1 and Remark
1.1] imply that for any φ = (S0(·), u0(·)) ∈ Y +, (8.57)–(8.58) has a unique
solution (S(x, t, φ, λ), u(x, t, φ, λ)), defined on its maximal interval of existence
[0, σφ), satisfying (S(·, 0, φ, λ), u(·, 0, φ, λ)) = φ. Moreover,

S(x, t, φ, λ) ≥ 0, u(x, t, φ, λ) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ).

We further have the following result.

Lemma 8.3.1. Let Λ = {(d, k) : d0

2 ≤ d ≤ 2d0, k ≥ 0}. Then for each λ ∈
Λ, φ ∈ Y +, (S(x, t, φ, λ), u(x, t, φ, λ)) exists globally on [0,∞), and solutions
of (8.57)–(8.58) are uniformly bounded and ultimately bounded uniformly for
λ ∈ Λ.

Proof. Given φ = (S0(·), u0(·)) ∈ Y +, for convenience, let

(S(x, t), u(x, t)) = (S(x, t, φ, λ), u(x, t, φ, λ)), ∀x ∈ [0, 1], t ∈ [0, σφ).

Then S(x, t) satisfies

∂S

∂t
≤ d0

∂2S

∂x2
− v

∂S

∂x
, 0 < x < 1, t > 0,

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

∂S(1, t)

∂x
= 0, t > 0.

(8.59)

By the parabolic comparison theorem, we have
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S(x, t) ≤ S̄(x, t), ∀x ∈ [0, 1], t ∈ [0, σφ), (8.60)

where S̄(x, t) is the unique solution of (8.11) with S̄(x, 0) = S(x, 0). By Propo-
sition 8.2.1, S̄(x, t) exists globally on [0,∞) and limt→∞(S̄(x, t)−W ∗(x, t)) =
0 uniformly for x ∈ [0, 1].

Let μ be the unique positive solution to equation tanμ = v
2μd0

on the

interval [0, π2 ). Clearly, sin(μx) ≥ 0, cos(μx) > 0, x ∈ [0, 1]. Then for any
λ ∈ Λ, by using (8.57) and (8.58) and integration by parts, we have

d

dt

∫ 1

0

S(x, t) cos(μx)dx =

∫ 1

0

∂S

∂t
cos(μx)dx

= vS0(t)− S(1, t)(v cosμ− μd0 sinμ)− μv

∫ 1

0

S(x, t) sin(μx)dx

− d0μ
2

∫ 1

0

S(x, t) cos(μx)dx −
∫ 1

0

u(x, t)f(S(x, t)) cos(μx)dx

≤ vS0(t)− d0μ
2

∫ 1

0

S(x, t) cos(μx)dx

−
∫ 1

0

u(x, t)f(S(x, t)) cos(μx)dx

(8.61)

and

d

dt

∫ 1

0

u(x, t) cos(μx)dx =

∫ 1

0

∂u

∂t
cos(μx)dx

= −u(x, t)[v cosμ− μd sinμ]− v

∫ 1

0

u(x, t) sin(μx)dx

− dμ2

∫ 1

0

u(x, t) cos(μx)dx +

∫ 1

0

u(x, t)(f(S(x, t) − k) cos(μx)dx

≤ −dμ2

∫ 1

0

u(x, t) cos(μx)dx +

∫ 1

0

u(x, t)f(S(x, t)) cos(μx)dx.

(8.62)

Let y(t) =
∫ 1

0
(S(x, t) + u(x, t)) cos(μx)dx, ∀t ∈ [0, σφ). Then we get

dy(t)

dt
≤ vS0(t)− d0μ

2

2
y(t), t ∈ [0, σφ).

By the standard comparison theorem for ordinary differential equations, it
then follows that for all t ∈ [0, σφ),

y(t) ≤ y∗(t)− exp

(

−d0μ
2t

2

)

y∗(0) + exp

(

−d0μ
2t

2

)

y(0), (8.63)

where y∗(t) is the unique positive ω-periodic solution of linear ordinary dif-
ferential equations
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dy

dt
= vS0(t)− d0μ

2

2
y(t).

Since S(x, t) ≥ 0, u(x, t) ≥ 0, and cos(μx) ≥ minx∈[0,1] cos(μx) = m > 0, ∀x ∈
[0, 1], (8.63) implies that for all t ∈ [0, σφ),

∫ 1

0

u(x, t)dx ≤ 1

m

[

y∗(t)− exp

(

−d0μ
2t

2

)

y∗(0)

+ exp

(

−d0μ
2t

2

)∫ 1

0

(S0(x) + u0(x)) cos(μx)dx

]

.

(8.64)
Then u(·, t) is L1-bounded on [0, σφ). By (8.60), (8.64), and an argument sim-
ilar to that in [6, Theorem 3.1], [186, Lemma 3.13], and [215, Proposition 2.4
and Theorem 2.5], it follows that for each φ ∈ Y +, (S(x, t, φ, λ), u(x, t, φ, λ)) is
L∞-bounded, and hence σφ = ∞, and solutions of (8.57)–(8.58) are uniformly
L∞-bounded and ultimately L∞-bounded uniformly for λ ∈ Λ.

Now we show that the hypothesis of Theorem 8.2.1(b) for the unperturbed
system implies the existence of a globally attracting single-population periodic
solution for the perturbed system at least when the perturbation is small.

Theorem 8.3.1. Let λ = (d, k), λ0 = (d0, 0), and W ∗(x, t) and μ(m(·, ·)) be
as in Section 8.2. Assume that μ(f(W ∗(x, t))) < 0 and let (S∗(x, t), u∗(x, t))
be as in Theorem 8.2.1. Then there exists δ0 > 0 such that for any |λ− λ0| <
δ0, (8.57)–(8.58) admits a unique positive ω-periodic solution
(S∗(x, t, λ), u∗(x, t, λ)) with

(S∗(x, t, λ0), u∗(x, t, λ0)) = (S∗(x, t), u∗(x, t)), ∀x ∈ [0, 1], t ≥ 0,

and such that the map λ → (S∗(·, ·, λ), u∗(·, ·, λ)) is continuous. Moreover,
for any (S0(·), u0(·)) ∈ Y + with u0(·) �≡ 0,

lim
t→∞(S(x, t, φ, λ) − S∗(x, t, λ)) = 0 and lim

t→∞(u(x, t, φ, λ) − u∗(x, t, λ)) = 0,

uniformly for x ∈ [0, 1].

Proof. Let k0 > 0 be given and let Λ0 = {(d, k) : d0

2 ≤ d ≤ 2d0, 0 ≤ k ≤ k0}.
For any λ ∈ Λ0, let Sλ = S(λ, ·) : Y + → Y + be the Poincaré map associated
with (8.57)–(8.58); that is, S(λ, φ) = (S(·, ω, φ, λ), u(·, ω, φ, λ)), φ ∈ Y +. Then
S(·, ·) : Λ0×Y + → Y + is continuous. By Lemma 8.3.1, it follows that for each
λ ∈ Λ0, Sλ : Y + → Y + is compact and point dissipative uniformly for λ ∈ Λ0;
that is, there exists a bounded and closed subset B0 of Y +, independent of
λ ∈ Λ0, such that for any φ ∈ Y +, λ ∈ Λ0, there exists N = N(φ, λ) such
that Sn

λ (φ) ∈ B0 for all n ≥ N . Then, by Theorem 1.1.3, for each λ ∈ Λ0,
there exists a global attractor Aλ for Sλ : Y + → Y +. Clearly, Aλ ⊂ B0. By a
change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ū(x, t) = exp

(
v(x − 1)2

2d

)

u(x, t),
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the boundary conditions (8.58) then become the homogeneous ones

d0
∂S̄(0, t)

∂x
− vS̄(0, t) =

∂S̄(1, t)

∂x
= 0, t > 0,

∂ū(0, t)

∂x
=

∂ū(1, t)

∂x
= 0, t > 0,

which is independent of parameter λ. By Lemma 8.3.1 and Proposition 8.3.2,
when applied to the resulting system with parameter λ under the above change
of variables and the above boundary conditions, it then follows that S(·, φ) :
Λ0 → Y + is continuous uniformly for φ in any bounded subset of Y +. We
further have the following claim:

Claim. For any bounded subset B ⊂ Y +, ∪λ∈Λ0Sλ(B) is compact in Y +.

Indeed, for any sequence {ψn} in ∪λ∈Λ0Sλ(B), we have ψn = Sλn(φn), λn ∈
Λ0, φn ∈ B, n ≥ 0. By the compactness of Λ0, without loss of generality
we can assume that for some λ1 ∈ Λ0, λn → λ1 as n → ∞. Since Sλ1(B)
is precompact, there exist ψ0 ∈ Y + and a subsequence nk → ∞ such that
Sλ1(φnk

) → ψ0 as k → ∞. Combining the continuity of S(·, φ) : Λ0 → Y +

uniformly for φ ∈ B and the inequality

‖ψnk
− ψ0‖ =

∥
∥
∥Sλnk

(φnk
)− ψ0

∥
∥
∥

≤
∥
∥
∥Sλnk

(φnk
)− Sλ1(φnk

)
∥
∥
∥+ ‖Sλ1(φnk

)− ψ0‖ ,

we get ψnk
→ ψ0, k → ∞. Therefore, ∪λ∈Λ0Sλ(B) is precompact.

Let

Y0 :=
{
(S(·), u(·)) ∈ Y + : u(·) �≡ 0

}
and ∂Y0 := Y + \ Y0.

Then Sλ : Y0 → Y0 and Sλ : ∂Y0 → ∂Y0. Let φ0 = (S∗(·, 0), u∗(·, 0)). Then
Sλ0(φ0) = φ0. By Theorem 8.2.1, r(DφS(λ0, φ0)) < 1, and limn→∞ Sn

λ0
φ = φ0

for every φ ∈ Y0. For each λ ∈ Λ0, by Proposition 8.2.1,

lim
n→∞Sn

λ (φ) = (W ∗(·, 0), 0), ∀φ ∈ ∂Y0.

Clearly, M = (W ∗(·, 0), 0) is a global attractor for Sλ : ∂Y0 → ∂Y0. Note
that (W ∗(x, t), 0) is a nonnegative ω-periodic solution of (8.57)–(8.58) and
μ(f(W ∗(x, t))) < 0. By a change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ū(x, t) = exp

(
v(x − 1)2

2d

)

u(x, t),

and Proposition 8.3.1, as applied to the resulting system, it then follows that
there exist δ1 > 0 and η1 > 0 such that for any |λ− λ0| < δ1 and any φ ∈ Y0,
we have
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lim sup
n→∞

d (Sn
λ (φ),M) = lim sup

n→∞
d ((S(·, nω, φ, λ), u(·, nω, φ, λ)),M) ≥ η1,

which implies that M is isolated for Sλ : Y + → Y +, and W s
λ(M) ∩ Y0 = ∅,

|λ − λ0| < δ1, where W
s
λ(M) is the stable set of M with respect to Sλ. By

Theorem 1.3.1, Sλ is uniformly persistent with respect to (Y0, ∂Y0) for each
|λ−λ0| < δ1. Therefore, there exists a global attractor A0

λ ⊂ Y0 for Sλ : Y0 →
Y0 (see, e.g., Theorem 1.3.6). Clearly, A0

λ ⊂ B0, and ∪λ∈Λ0,φ∈Y +ωλ(φ) ⊂
∪λ∈Λ0Sλ(B0). Then by the previous claim, ∪λ∈Λ0,φ∈Y +ωλ(φ) is compact. By
Theorem 1.4.2, it follows that there exist δ2 > 0 and η2 > 0 such that
for any |λ − λ0| ≤ δ2, φ ∈ Y0, lim infn→∞ d(Sn

λφ, ∂Y0) ≥ η2. Then there
exists a bounded and closed subset B∗

0 of Y0 such that A0
λ ⊂ B∗

0 for all

|λ−λ0| ≤ δ2. Let Λ1 = Λ0 ∩B(λ0, δ2), where B(λ0, δ2) = {λ : |λ−λ0| < δ2}.
Since ∪λ∈Λ1Sλ(A0

λ) ⊂ ∪λ∈Λ1Sλ(B∗
0 ), by the previous claim ∪λ∈Λ1Sλ(A0

λ) is

compact. Moreover, ∪λ∈Λ1Sλ(A0
λ) = ∪λ∈Λ1A

0
λ ⊂ B∗

0 = B∗
0 ⊂ Y0. By ap-

plying Theorem 1.4.1 on the perturbation of a globally stable fixed point
to Sλ(·) : Y + → Y + with U = Y0 and Bλ = A0

λ, λ ∈ Λ1, we complete the
proof.

8.3.3 Two-Species Competition

Consider two-species competition with unequal diffusivities and nonvanishing
cell death rates

∂S

∂t
= d0

∂2S

∂x2
− v

∂S

∂x
− u1f1(S)− u2f2(S), 0 < x < 1, t > 0,

∂ui
∂t

= di
∂2ui
∂x2

− v
∂ui
∂x

+ ui(fi(S)− ki), i = 1, 2, 0 < x < 1, t > 0,

(8.65)

with boundary conditions

d0
∂S(0, t)

∂x
− vS(0, t) = −vS0(t), t > 0,

di
∂ui(0, t)

∂x
− vui(0, t) = 0, i = 1, 2, t > 0,

∂S(1, t)

∂x
=

∂ui(1, t)

∂x
= 0, i = 1, 2, t > 0,

(8.66)

where d0 > 0, v > 0, di > 0, and ki ≥ 0, and S0(·) and fi(·), i = 1, 2, are
as in (8.7)–(8.8). Let X+ = C([0, 1],R3

+). Let d0 > 0 and v > 0 be fixed
and let λ = (d1, d2, k1, k2), di > 0, ki ≥ 0, i = 1, 2. As mentioned in Sec-
tion 8.1, for any φ = (S0(·), u01(·), u02(·)) ∈ X+, (8.65)–(8.66) has a unique
solution (S(x, t, φ, λ), u1(x, t, φ, λ), u2(x, t, φ, λ)), defined on its maximal in-
terval of existence [0, σφ), satisfying (S(·, 0, φ, λ), u1(·, 0, φ, λ), u2(·, 0, φ, λ))
= φ. Moreover,

S(x, t, φ, λ) ≥ 0, ui(x, t, φ, λ) ≥ 0, ∀x ∈ [0, 1], t ∈ [0, σφ), i = 1, 2.
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By a similar argument as in Lemma 8.3.1, we have the following result on the
boundedness of solutions uniformly for λ.

Lemma 8.3.2. Let Λ = {(d1, d2, k1, k2) : d0

2 ≤ di ≤ 2d0, ki ≥ 0, i = 1, 2}.
Then for each λ ∈ Λ, φ ∈ X+, (S(x, t, φ, λ), u1(x, t, φ, λ), u2(x, t, φ, λ)) exists
globally on [0,∞), and solutions of (8.65)–(8.66) are uniformly bounded and
ultimately bounded uniformly for λ ∈ Λ.

Now we can state one of the main results of this chapter. It says that
both species persist for the perturbed system and there exists a positive peri-
odic solution when the hypotheses of Theorem 8.2.2 hold for the unperturbed
system and the perturbation is sufficiently small.

Theorem 8.3.2. Let λ = (d1, d2, k1, k2) and λ0 = (d0, d0, 0, 0). Assume that
all conditions in Theorem 8.2.2 hold. Then there exist δ > 0 and β > 0 such
that for any |λ−λ0| < δ, (8.65)–(8.66) admits at least one positive ω-periodic
solution, and for any φ = (S0(·), u01(·), u02(·)) ∈ X+ with u0i(·) �≡ 0, ∀i =
1, 2, there exists t0 = t0(φ, λ) such that

ui(x, t, φ, λ) ≥ β, ∀x ∈ [0, 1], t ≥ t0, i = 1, 2.

Proof. Let k0 > 0 be given and let

Λ0 = {(d1, d2, k1, k2) :
d0
2

≤ di ≤ 2d0, 0 ≤ ki ≤ k0, i = 1, 2}.

For each λ ∈ Λ0, let Sλ(·) = S(λ, ·) : X+ → X+ be the Poincaré map
associated with (8.65)–(8.66); that is,

S(λ, φ) = (S(·, ω, φ, λ), u1(·, ω, φ, λ), u2(·, ω, φ, λ)), ∀φ ∈ X+.

Then S(·, ·) : Λ0×X+ → X+ is continuous. By Lemma 8.3.2, for each λ ∈ Λ0,
Sλ : X+ → X+ is compact and point dissipative uniformly for λ ∈ Λ0, and
hence, by Theorem 1.1.3, there exists a global attractorAλ for Sλ : X+ → X+.
Let

X0 :=
{
(S(·), u01(·), u02(·)) ∈ X+ : u0i(·) �≡ 0, ∀i = 1, 2

}

and ∂X0 := X+ \ X0. Then Sλ : X0 → X0 and Sλ : ∂X0 → ∂X0.
By Theorem 8.2.1, (S∗

i (x, t), u
∗
i (x, t)) is the unique positive ω-periodic so-

lution of (8.20)–(8.21) with f(·) = fi(·), i = 1, 2, respectively. Clearly,
(W ∗(x, t), 0, 0), (S∗

1 (x, t), u
∗
1(x, t), 0) and (S∗

2 (x, t), 0, u
∗
2(x, t)) are nonnegative

periodic solutions of (8.65)–(8.66) with λ = λ0. Let

M0 = (W ∗(·, 0), 0, 0), M0
1 = (S∗

1 (·, 0), u∗1(·, 0), 0), M0
2 = (S∗

2 (·, 0), 0, u∗2(·, 0)).

Then Sλ0(M0) = M0, Sλ0(M
0
i ) = M0

i , ∀i = 1, 2. By a change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ūi(x, t) = exp

(
v(x− 1)2

2di

)

ui(x, t), i = 1, 2,
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and Proposition 8.3.1, as applied to the resulting system, it follows that there
exist δ0 > 0 and η0 > 0 such that for any λ ∈ Λ0 with |λ − λ0| < δ0, and for
any φ ∈ X0,

lim sup
n→∞

d(Sn
λ (φ),M0) ≥ η0, lim sup

n→∞
d(Sn

λ (φ),M
0
i ) ≥ η0, i = 1, 2. (8.67)

By Proposition 8.2.1 and Theorem 8.2.1, it follows that M0,M
0
1 , and M0

2 are
acyclic for Sλ0 in ∂X0, and ∪φ∈∂X0ωλ0(φ) = M0∪M0

1∪M0
2 , where ωλ0(φ) is the

omega limit set of φ for Sλ0 . Moreover, (8.67) implies thatM0∪M0
1 ∪M0

2 is an
isolated covering of ∪φ∈∂X0ωλ0(φ) for Sλ0 in ∂X0 and that W s

λ0
(M0)∩X0 = ∅

and W s
λ0
(M0

i ) ∩ X0 = ∅, ∀i = 1, 2, where W s
λ0
(M) denotes the stable set

of M with respect to Sλ0 . By Theorem 1.3.1 and Remark 1.3.1, it follows
that Sλ0 : X+ → X+ is uniformly persistent with respect to (X0, ∂X0), and
hence there exists a global attractor A0

λ0
⊂ X0 for Sλ0 : X0 → X0 (see, e.g.,

Theorem 1.3.6).
Let Λ1 = Λ0 ∩B(λ0, δ0). Again by a change of variables

S̄(x, t) = S(x, t)−W ∗(x, t), ūi(x, t) = exp

(
v(x− 1)2

2di

)

ui(x, t), i = 1, 2,

Lemma 8.3.2, and Proposition 8.3.2, as applied to the resulting system, it
follows that Sλ : X+ → X+ is point dissipative uniformly for λ ∈ Λ1 and
S(·, φ) : Λ1 → X+ is continuous uniformly for φ in any bounded subset ofX+.
Therefore, by the same argument as in the claim in the proof of Theorem 8.3.1,
for any bounded subset B of X+, ∪λ∈Λ1Sλ(B) is compact. It then follows
that, as argued in Theorem 8.3.1, ∪λ∈Λ1,φ∈X+ωλ(φ) is compact. Therefore,
by (8.67) and Theorem 1.4.2, there exist δ1 ∈ (0, δ0) and η > 0 such that for
any λ ∈ Λ0 with |λ−λ0| ≤ δ1, and any φ ∈ X0, lim infn→∞ d(Sn

λφ, ∂X0) ≥ η.
Moreover, by Theorem 1.3.10, Sλ admits a fixed point Sλ(φλ) = φλ ∈ X0,
and hence (8.65)–(8.66) with |λ − λ0| ≤ δ1 admits a nonnegative ω-periodic
solution (S(x, t, φλ, λ), u1(x, t, φλ, λ), u2(x, t, φλ, λ)) with ui(·, t, φλ, λ) � 0 in
C([0, 1],R), ∀t ≥ 0, i = 1, 2. By parabolic maximum principle and the fact
that S0(·) ≥ 0 with S0(·) �≡ 0, it then easily follows that S(·, t, φλ, λ) � 0
in C([0, 1],R), ∀t ≥ 0. Thus, (S(x, t, φλ, λ), u1(x, t, φλ, λ), u2(x, t, φλ, λ)) is a
positive ω-periodic solution of (8.65)–(8.66).

It remains to prove the practical persistence claimed in the theorem. Let
Λ2 = Λ0 ∩ B(λ0, δ1). By both the point dissipativity and the uniform persis-
tence of Sλ with respect to (X0, ∂X0) uniformly for λ ∈ Λ2, it follows that
there exists a closed and bounded set B0 ⊂ X0, independent of λ, such that
d(B0, ∂X0) = infφ∈B0 d(φ, ∂X0) > 0 and B0 attracts points in X0. As argued
in Theorem 8.3.1, for each λ ∈ Λ2, Sλ : X0 → X0 admits a global attractor
A0

λ ⊂ X0, and hence A0
λ attracts any compact subset of X0. Clearly, for each

λ ∈ Λ2, A
0
λ ⊂ B0, and hence B0 attracts compact subsets of X0 under Sλ.

Since for each λ ∈ Λ2, Sλ : X+ → X+ is compact, and for any bounded subset
B of X+, as claimed in the previous paragraph, ∪λ∈Λ2Sλ(B) is precompact,
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it follows that {Sλ : λ ∈ Λ2} is collectively compact. By Theorem 1.1.5, it
then follows that A0

λ is upper semicontinuous in λ ∈ Λ2. In particular,

lim
λ→λ0

sup
φ∈A0

λ

d(φ,A0
λ0
) = 0. (8.68)

Let Φλ(t, ·) : X+ → X+ be defined by

Φλ(t, φ) = (S(·, t, φ, λ), u1(·, t, φ, λ), u2(·, t, φ, λ)) , φ ∈ X+.

Clearly, Sλ = Φλ(ω, ·) and Sn
λ = Φλ(nω, ·). It then follows that Φλ :

R+ × X+ → X+ is a periodic semiflow. Moreover, by Theorem 3.1.1,
limt→∞ d(Φλ(t, φ), Ã

0
λ) = 0, ∀φ ∈ X0, where Ã

0
λ = ∪t∈[0,ω]Φλ(t, A

0
λ) ⊂ X0.

Since A0
λ = Sλ(A

0
λ), Ã

0
λ = ∪t∈(0,ω]Φλ(t, A

0
λ). By the compactness of Ã0

λ0
and

the parabolic maximum principle, it then follows that there exists β0 > 0 such
that for any φ = (φ0, φ1, φ2) ∈ Ã0

λ0
, φi(x) ≥ β0, ∀x ∈ [0, 1], i = 1, 2. By (8.68),

we have limλ→λ0 supφ∈Ã0
λ
d(φ, Ã0

λ0
) = 0. Consequently, there exist δ2 ∈ (0, δ1)

and β1 > 0 such that for any |λ−λ0| < δ2, and any φ = (φ0, φ1, φ2) ∈ Ã0
λ, we

have φi(x) ≥ β1, ∀x ∈ [0, 1], i = 1, 2. Now the global attractivity of Ã0
λ in X0

for Φλ completes the proof.

Remark 8.3.1. In the case where the velocity of the flow of medium in the
bioreactor varies periodically as well, that is, v = v(t) = v(t+ω), a change of
variables

S̄(x, t) = exp

(
v(t)(x − 1)2

2d0

)

(S(x, t)−W ∗(x, t)) ,

ūi(x, t) = exp

(
v(t)(x − 1)2

2di

)

ui(x, t), i = 1, 2,

results in the boundary conditions becoming homogeneous Neumann bound-
ary conditions, and using similar ideas as in Sections 8.2 and 8.3, we can also
discuss the global dynamics of the modified model systems.

Remark 8.3.2. In the case of constant nutrient input, that is, S0(·) ≡ S0, it
follows that the ω-periodic solutions in Sections 8.2 and 8.3 reduce to steady
states of the corresponding autonomous reaction–diffusion systems, and hence
we have the analogous results of Theorems 8.2.1, 8.2.2, 8.3.1, and 8.3.2.

8.4 Notes

This chapter is adapted from Smith and Zhao [336]. The model with con-
stant nutrient input was formulated by Kung and Baltzis [207], and was stud-
ied in Ballyk, Le, Jones and Smith [27]. Smith and Zhao [341] established
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the existence of traveling waves for this model in the case of single species
growth. The transformations in Section 8.3 converting Robin-type boundary
conditions to Neumann boundary conditions were motivated by Pilyugin and
Waltman [278]. Similar perturbation ideas as in Section 8.3 were used for two-
species periodic competitive parabolic systems under perturbations in Zhao
[437].

Hsu, Wang and Zhao [175] studied a periodically pulsed bioreactor model
in a flowing water habitat with a hydraulic storage zone in which no flow
occurs, and obtained sufficient conditions in terms of principal eigenvalues
for the persistence of single population and the coexistence of two competing
populations. Yu and Zhao [422] investigated the spatial dynamics of a periodic
reaction–advection–diffusion model for a stream population, and established
a threshold-type result on the global stability of either zero or the positive
periodic solution in the case of a bounded domain.



9

A Nonlocal and Delayed Predator–Prey Model

The celebrated Lotka–Volterra model proposed by Lotka [230] in the context of
chemical reactions and by Volterra [377] for prey–predator dynamics has been
generalized in several directions: to include many species with complicated
interactions, to include spatial effects in either a discrete way or a continuous
way, and to include delays or internal population structure. Sometimes these
generalizations combine diffusion and delays (see, e.g., [408]). While most of
the delayed diffusion equations in the literature are local, nonlocal effects very
naturally appear in diffusive prey–predator models with delays if one carefully
models the delay as condensation of the underlying retarding process and
takes into account that individuals move during this process (see [136]). In
the predator equation, the delay is often caused by the conversion of consumed
prey biomass into predator biomass, whether in the form of body size growth
or of reproduction.

The purpose of this chapter is to present a nonlocal and delayed predator–
prey model and analyze its global dynamics. In Section 9.1 we derive a non-
local and delayed predator equation and supplement it by a standard prey
equation with diffusion and without delays to get the model. We then show
that under appropriate conditions solutions exist and are unique and bounded
for all forward times, and that the associated solution semiflow has a compact
global attractor. In Section 9.2, given persistence of the prey, we derive con-
ditions for uniform persistence of the predator and existence of a steady state
in which both prey and predator coexist. These conditions are sharp, for we
show in Section 9.3 that the predator becomes extinct if they are violated. In
this case the prey converges to a unique positive steady state. We also present
conditions for both predator and prey to become extinct. In Section 9.4 we
discuss the global attractivity of steady states for a special model system. In
particular, we demonstrate how to use a fluctuation method to prove the global
attractivity of a positive constant steady state. In Section 9.5 we consider a
nonlocal and delayed single species model, which is derived by replacing the
biomass gain rate function f(x, u, v) in the predator equation of the model

© Springer International Publishing AG 2017
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in Mathematics, DOI 10.1007/978-3-319-56433-3 9
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system with the birth rate function g(x, v) of the matured population, and
establish threshold dynamics (extinction or persistence/convergence to posi-
tive equilibria) by using the exponential ordering and the theory of monotone
dynamical systems.

9.1 The Model

Let v(t, x) denote the predator biomass density, u(t, x) the prey biomass den-
sity. Often, an equation of the form

∂v(t, x)

∂t
= dΔxv(t, x) − μ(x)v(t, x) + f

(
x, u(t− τ, x), v(t− τ, x)

)
(9.1)

is considered for the predator biomass density, where μ(x) is the per capita
predator mortality rate at point x and f

(
x, u(t−τ, x), v(t−τ, x)

)
is the biomass

gain rate of the predator at point x and at time t.
If τ is interpreted as the average time it takes to convert prey biomass into

predator biomass, the problem arises that the diffusing predator that is at x
at time t was, with probability one, not at x at time t− τ .

In order to incorporate the movements of a predator during the assimila-
tion process, let us consider an age-structured model and let w(t, a, x) denote
the generalized predator biomass (predator biomass plus prey biomass in-
gested by the predator that has not yet been assimilated) of class age a, with
a being the time since ingestion. If P (a) denotes the probability that general-
ized biomass of age a has been assimilated into predator biomass, the predator
biomass at location x and at time t is given by

v(t, x) =

∫ ∞

0

w(t, a, x)P (a)da.

If conversion occurs after a fixed delay τ , then P takes the form of a step
function, P = 0 on [0, τ) and P = 1 on (τ,∞). The generalized biomass
density w satisfies the following partial differential equation with nonlocal
boundary condition

∂w(t, a, x)

∂t
+
∂w(t, a, x)

∂a
= dΔxw(t, a, x) − μ(x)w(t, a, x),

w(t, 0, x) = f(x, u(t, x), v(t, x)).
(9.2)

The parameters in this system have the same meaning as in equation (9.1):
μ(x) is the per capita mortality rate of the predator, and f(x, u, v) is the rate
at which the predators ingest prey biomass at point x, if the prey biomass
at x is u and the predator biomass is v, times a factor that anticipates the
conversion of prey into predator biomass. We integrate the equation along
characteristics setting φ(r, a, x) = w(a + r, a, x). For simplicity we do not
consider an initial value problem, but assume that from some moment on, the
whole past is given. Then
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∂φ(r, a, x)

∂a
= dΔxφ(r, a, x) − μ(x)φ(r, a, x),

φ(r, 0, x) = f(x, u(r, x), v(r, x)).

Integrating this equation, we get

φ(r, a, x) =

∫

Ω

Γ (x, y, a)f(y, u(r, y), v(r, y))dy,

where Γ is the appropriate Green’s function or fundamental solution associ-
ated with dΔx − μ(x) and possibly boundary conditions. Returning to w,

w(t, a, x) =

∫

Ω

Γ (x, y, a)f
(
y, u(t− a, y), v(t− a, y)

)
dy.

This yields the following integral equation for the predator biomass v:

v(t, x) =

∫ ∞

0

(∫

Ω

Γ (x, y, a)f
(
y, u(t− a, y), v(t− a, y)

)
dy

)

P (a)da.

With a fixed delay τ one obtains

v(t, x) =

∫ ∞

τ

∫

Ω

Γ (x, y, a)f(y, u(t− a, y), v(t− a, y))dy da.

In semigroup language, with v(t) = v(t, ·), u(t) = u(t, ·), and T the operator
semigroup generated by dΔx − μ(x),

v(t) =

∫ ∞

τ

T (a)f(·, u(t− a), v(t− a))da. (9.3)

In order to compare the derived equation with (9.1), let us rewrite v as

v(t, x) =

∫ t−τ

−∞

(∫

Ω

Γ (x, y, t− s)f(y, u(s, y), v(s, y))dy

)

ds.

Differentiating this equation, we have

∂v(t, x)

∂t
= (dΔx − μ(x)) v(t, x)

+

∫

Ω

Γ (x, y, τ)f(y, u(t− τ, y), v(t− τ, y))dy,
(9.4)

or, as an abstract Cauchy problem,

v′(t) = Av(t) + T (τ)f(·, u(t− τ), v(t − τ)),

where A = dΔx − μ(·)I is the infinitesimal generator of T .
Comparison of (9.1) with (9.4) shows the nonlocal effect that is caused by

predators moving during biomass assimilation.
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In contrast to Gourley and Britton [136], we incorporate nonlocal terms
in the predator rather than in the prey equation, because we believe the case
to be stronger there. If the prey is herbivorous, delayed logistic terms due to
deleted plant resources may actually be local, because while the prey moves,
the plants do not. In any case, some modeling of the nature of the retardation
seems appropriate in order to determine whether or not it leads to nonlocal
effects.

Let Ω be a bounded domain in R
n and let X = C(Ω,R2) be the Banach

space of continuous functions with values in the real plane with the norm
‖u‖X being the supremum norm. Let τ ≥ 0 and Cτ = C([−τ, 0], X). For any
φ ∈ Cτ , define ‖φ‖ = maxθ∈[−τ,0] ‖φ(θ)‖X . Then Cτ is a Banach space. Let
ˆ denote the inclusion X → Cτ by u → û, û(θ) = u, θ ∈ [−τ, 0]. Given a
function u(t) : [−τ, σ) → X (σ > 0), define ut ∈ Cτ by ut(θ) = u(t + θ),
θ ∈ [−τ, 0].

Assume that Ω has a smooth boundary ∂Ω and let Y = C(Ω,R) and let
Δ be the Laplace operator in R

n. For each 1 ≤ i ≤ 2, let di > 0, Biw =
∂w
∂ν + αi(x)w, where αi ∈ C(Ω,R+) is Hölder continuous and ∂

∂ν denotes the
derivative along the outward normal direction ν to ∂Ω.

By adding to (9.4) a standard prey equation with diffusion and without
delays, we then get a nonlocal and delayed predator–prey reaction–diffusion
system

∂u1(t, x)

∂t
= d1Δu1(t, x) + u1(t, x)g(x, u1(t, x))

− f1(x, u1(t, x), u2(t, x)), x ∈ Ω, t > 0,

∂u2(t, x)

∂t
= d2Δu2(t, x)− μ(x)u2(t, x)

+

∫

Ω

Γ2(x, y, τ)f2(y, u1(t− τ, y), u2(t− τ, y))dy,

x ∈ Ω, t > 0,

Biui =0, x ∈ ∂Ω, t > 0, i = 1, 2,

ui(t, x) =φi(t, x), x ∈ Ω,−τ ≤ t ≤ 0.

(9.5)

Here μ(x) is a positive Hölder continuous function on Ω, Γ2(x, y, t) is the
Green’s function associated with d2Δ− μ(·)I and B2u2 = 0 [129, VIII, The-
orem 2.1], fi ∈ C1(Ω × R

+ × R
+,R+), ∀i = 1, 2, g ∈ C1(Ω × R

+,R), and
φ = (φ1, φ2) ∈ Cτ are the initial data of problem (9.5). We will assume that

(H1) f1(·, 0, ·) ≡ 0 and f1(·, ·, 0) ≡ 0;

(H2) ∂1f2(x, u1, u2) := ∂f2(x,u1,u2)
∂u1

> 0, ∀x ∈ Ω, u1 ≥ 0, u2 > 0, and

∂2f2(x, u1, u2) :=
∂f2(x,u1,u2)

∂u2
> 0, ∀x ∈ Ω, u1 > 0, u2 ≥ 0;

(H3) f2(x, u1, u2) ≤ ∂2f2(x, u1, 0)u2, and there exists a k > 0 such that
f2(x, u1, u2) ≤ kf1(x, u1, u2), ∀x ∈ Ω, u1 ≥ 0, u2 ≥ 0;

(H4) For each x ∈ Ω, g(x, ·) is decreasing on R
+, and for some x0 ∈ Ω,

g(x0, ·) is strictly decreasing on R
+;
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(H5) There exists a K0 > 0 such that g(x,K0) ≤ 0, ∀x ∈ Ω.

It is easy to see that assumption (H3) implies that (H1) also holds for
f2. Let T1(t) and T2(t) : Y → Y, t ≥ 0, be the semigroups associated with
d1Δ and B1u1 = 0, and d2Δ − μ(·)I and B2u2 = 0, respectively, and let
Ai : D(Ai) → Y be the generator of Ti(t), i = 1, 2. Clearly,

T2(t)φ =

∫

Ω

Γ2(·, y, t)φ(y)dy, ∀φ ∈ Y, t ≥ 0.

Moreover, T (t) = (T1(t), T2(t)) : X → X, t ≥ 0, is a semigroup generated by
the operator A = (A1, A2) defined on D(A) = D(A1)×D(A2). Then for each
t > 0, T (t) : X → X is compact and positive (see, e.g., [326, Section 7.1 and
Corollary 7.2.3]).

Define F = (F1, F2) : C
+
τ → C+

τ by

F1(φ1, φ2)(x) = φ1(0, x)g(x, φ1(0, x))− f1(x, φ1(0, x), φ2(0, x)),

F2(φ1, φ2)(x) =

∫

Ω

Γ2(x, y, τ)f2(y, φ1(−τ, y), φ2(−τ, y))dy,
(9.6)

for all φ = (φ1, φ2) ∈ C+
τ , x ∈ Ω. Then equation (9.5) can be written as an

abstract functional differential equation

du

dt
= Au+ F (ut), t > 0,

u0 = φ ∈ C+
τ .

(9.7)

Since T2(t) : Y → Y is positive, it is easy to verify that

lim
h→0+

1

h
dist(φ(0) + hF (φ), X+) = 0, ∀φ ∈ C+

τ .

By [243, Proposition 3 and Remark 2.4], it then follows that for every φ ∈ C+
τ ,

(9.5) admits a unique noncontinuable mild solution u(t, φ) satisfying u0 = φ
and u(t, φ) ∈ X+ for any t in its maximal interval of existence [0, σφ). We
further have the following result.

Theorem 9.1.1. Let (H1)–(H5) hold. Then for each φ ∈ C+
τ , a unique so-

lution u(t, φ) of (9.5) globally exists on [0,∞), and the solution semiflow
Φ(t) = ut(·) : C+

τ → C+
τ , t ≥ 0, has a strong global attractor.

Proof. For the scalar parabolic equation

∂u1(t, x)

∂t
= d1Δu1(t, x) + u1(x, t)g(x, u1(x, t)), x ∈ Ω, t > 0,

B1u1 = 0, x ∈ ∂Ω, t > 0,

(9.8)

by conditions (H4) and (H5) and Theorem 3.1.5 (see also [124, Corollary 2.2]),
either the trivial solution or the unique positive steady state in Y + is a global
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attractor for solutions that are not identically zero. The prey equation in (9.5)
is dominated by equation (9.8), and so the standard parabolic comparison
theorem implies that u1(t, φ) is bounded on [0, σφ). Thus (H2) and (H3) imply
that the predator equation is dominated by a scalar linear reaction–diffusion
equation with delay. By the global existence of solutions of this linear equation
(see, e.g., [408, Theorem 2.1.1]), it follows that σφ = ∞ for each φ ∈ C+

τ . Then
there is a B1 > 0 such that for any φ ∈ C+

τ , there exists a t1(φ) > 0 with
u1(t, φ)(x) ≤ B1, ∀x ∈ Ω, t ≥ t1. Given φ ∈ C+

τ , let

(u1(t, x), u2(t, x)) = (u1(t, φ)(x), u2(t, φ)(x)), ūi(t) =

∫

Ω

ui(t, x)dx, ∀i = 1, 2.

Note that μ0 := minx∈Ω μ(x) > 0. By (9.5) and Green’s formula, it then
follows that

dū1(t)

dt
≤

∫

Ω

u1(t, x)g(x, u1(t, x))dx −
∫

Ω

f1(x, u1(t, x), u2(t, x))dx, ∀t > 0;

that is,
∫

Ω

f1(x, u1(t, x), u2(t, x))dx ≤ −dū1(t)

dt
+

∫

Ω

u1(t, x)g(x, u1(t, x))dx, ∀t > 0.

By (9.5) and (H3), there exist two positive numbers k1 and k2, both indepen-
dent of φ, such that

dū2(t)

dt
≤ −μ0ū2(t)− k1

dū1(t− τ)

dt
+ k2, ∀t ≥ t1 + τ ;

that is,

d (eμ0tū2(t))

dt
≤ −k1

dū1(t− τ)

dt
eμ0t + k2e

μ0t, ∀t ≥ t1 + τ.

Integrating by parts the above inequality over [t1+τ, t], we can find a positive
number k3, independent of φ, and a positive number k4 = k4(φ), dependent
on φ, such that

ū2(t) ≤ k4(φ)e
−μ0t + k3, ∀t ≥ t1 + τ.

Since Γ2(·, τ) and u1 are bounded, the predator equation in (9.5) and the
second part of the hypothesis (H3) provide the inequality

∂u2(t, x)

∂t
≤ d2Δu2(t, x) − μ(x)u2(t, x) + cū2(t),

with some constant c > 0. By a standard parabolic comparison theorem, there
exist a positive number B2, independent of φ, and t2 = t2(φ) > t1(φ) + τ
such that u2(t, φ)(x) ≤ B2, ∀x ∈ Ω, t ≥ t2. Therefore, the solution semiflow
Φ(t) = ut(·) : C+

τ → C+
τ is point dissipative. By [408, Theorem 2.2.6], Φ(t) :

C+
τ → C+

τ is compact for each t > τ . Thus, the continuous-time version of
Theorem 1.1.3 (see [141, Theorem 3.4.8]) implies that Φ(t) has a strong global
attractor on C+

τ .
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9.2 Global Coexistence

In this section we establish the uniform persistence of both predator and prey
and the existence of a positive steady state in terms of principal eigenvalues.

For m(·) ∈ Y with m(x) > 0, x ∈ Ω, we let λ0(d1,m) denote the principal
eigenvalue of the elliptic eigenvalue problem (see, e.g., [326, Theorem 7.6.1])

λw = d1Δw +m(x)w, x ∈ Ω,

B1w = 0, x ∈ ∂Ω,
(9.9)

and by a similar argument as in [326, Theorem 7.6.1], it follows that the
nonlocal elliptic eigenvalue problem

λw(x) = d2Δw − μ(x)w(x) +

∫

Ω

Γ2(x, y, τ)m(y)w(y)dy, x ∈ Ω,

B2w = 0, x ∈ ∂Ω,

(9.10)

also has a principal eigenvalue, which is denoted by λ0(d2, τ,m). Moreover,
for the nonlocal eigenvalue problem

λw(x) = d2Δw − μ(x)w(x) +

∫

Ω

Γ2(x, y, τ)m(y)w(y)dy · e−λτ , x ∈ Ω,

B2w = 0, x ∈ ∂Ω, (9.11)

we have the following result.

Theorem 9.2.1. There exists a principal eigenvalue λ̄0(d2, τ,m) of (9.11)
associated with a strictly positive eigenvector, and for any τ ≥ 0, λ̄0(d2, τ,m)
has the same sign as λ0(d2, τ,m).

Proof. Let E = C([−τ, 0], Y ) and let B = A2. Define L : E → Y by

Lφ(x) =

∫

Ω

Γ2(x, y, τ)m(y)φ(−τ, y)dy, x ∈ Ω, φ ∈ E.

Clearly, Y is a Banach lattice and L is positive; i.e., L(E+) ⊂ Y +. For each
λ ∈ R, we define Lλ : Y → Y by

Lλ(ϕ) = L(eλ·ϕ), ϕ ∈ Y,

where eλ·ϕ ∈ E is defined by

(eλ·ϕ)(θ, x) = eλθϕ(x), θ ∈ [−τ, 0], x ∈ Ω.

Let U(t) : E → E, t ≥ 0, be the solution semiflow associated with the abstract
delay equation

dv(t)

dt
= Bv(t) + Lvt, t ≥ 0,

v0 = φ ∈ E,

(9.12)
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and let AU : D(AU ) → E be its generator (see, e.g., [408]). Then U(t) : E → E
is positive (see, e.g., [200, Section 4]). Let

s(AU ) := sup{Re(λ) : λ ∈ σ(AU )}

be the spectral bound of AU . Then s(AU ) is a spectral value of AU and
has the same sign as the spectral bound s(B + L0) (see [200, Section 4]).
By the definition of L0, it follows that s(B + L0) = λ0(d2, τ,m). It suffices
to prove that s(AU ) is a point spectral value of AU and that s(AU ) has a
strongly positive eigenvector ψ ∈ int(E+). To this end, we will show that the
operators U(t) are eventually strongly positive, and then apply the Krein–
Rutman theorem.

For any φ ∈ E+\{0̂}, let v(t, x) = v(t, φ)(x), x ∈ Ω, t ≥ 0, be the solution
of (9.12); i.e., vt(φ) = U(t)φ. We claim that v(t, x) > 0 for all x ∈ Ω and t > τ .
Indeed, if φ(0, ·) �≡ 0, the positivity of L and the parabolic maximum principle
imply that v(t, x) > 0 for all x ∈ Ω and t > 0. So we can assume that τ > 0
and that there is a θ0 ∈ (0, τ) such that φ(−θ0, ·) �≡ 0. We first show that
v(τ − θ0, ·) �≡ 0, by contradiction. Let us assume that v(τ − θ0, ·) ≡ 0. Then
(9.12) with t = τ − θ0 > 0 implies that

∂v(τ − θ0, x)

∂t
= T2(τ)(m(·)φ(−θ0 , ·))(x) > 0, x ∈ Ω.

Here we have used the strong positivity of T2(t) for t > 0 (i.e., the parabolic
maximum principle). On the other hand, since v(t, x) ≥ 0, t ≥ 0, x ∈ Ω, and

v(τ−θ0, x) = 0, x ∈ Ω, we have ∂v(τ−θ0,x)
∂t ≤ 0, which is a contradiction. Once

we know that v(τ − θ0) �≡ 0, again by the positivity of L and the parabolic
maximum principle, we have v(t, x) > 0 for all x ∈ Ω and t > τ − θ0.

Therefore, U(t) : E → E is strongly positive for each t > 2τ . Moreover,
as in the nonlinear case, U(t) : E → E is compact for each t > τ . Now fix
some t > 2τ . By the Krein–Rutman theorem (see, e.g., [326, Theorem 2.4.1]),
the spectral radius r = r(U(t)) is a positive eigenvalue of U(t), and hence by
the point spectral mapping theorem ([272, Theorem 2.2.4]) there is a point
spectral value λ̄ of AU such that r = etλ̄. Clearly, λ̄ ∈ R and λ̄ ≤ s(AU ).
Moreover, by the fact that s(AU ) ∈ σ(AU ) and the spectral mapping theorem
([272, Theorem 2.2.3]), ets(AU ) ∈ σ(U(t)). Then ets(AU ) ≤ r = etλ̄, and hence
s(AU ) ≤ λ̄. Thus, s(AU ) = λ̄ is a point spectral value of AU . Let ψ ∈ E \
{0̂} be an eigenvector associated with s(AU ). Then U(t)ψ = ets(AU )ψ = rψ,
and hence again by the Krein–Rutman theorem, ψ ∈ int(E+). Consequently,
s(AU ) is the principal eigenvalue of AU .

Now we are in a position to prove the main result of this section.

Theorem 9.2.2. Let (H1)–(H5) hold. Assume that

(A1) λ0(d1, g(·, 0)) > 0 and λ0
(
d2, τ, ∂2f2

(
·, u∗1(·), 0

))
> 0, where u∗1(·) is the

unique positive steady state of the scalar equation ∂u1

∂t = d1Δu1 +
u1g(x, u1) with B1u1 = 0.
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Then system (9.5) admits at least one positive steady state and is uniformly
persistent. More precisely, there exists β0 > 0 such that for any φ = (φ1, φ2) ∈
C+

τ with φ1(0, ·) �≡ 0 and φ2(0, ·) �≡ 0, there exists t0 = t0(φ) > 0 such that
the solution u(t, φ)(x) = (u1(t, x), u2(t, x)) of (9.5) satisfies

ui(t, x) ≥ β0, ∀t ≥ t0, x ∈ Ω, i = 1, 2.

Proof. Note that the existence and uniqueness of u∗1(·) follow from Theo-
rem 3.1.5 (see also [124, Corollary 2.2]) and the first part of assumption (A1).
Let

Z0 := {(φ1, φ2) ∈ C+
τ : φi(0, ·) �≡ 0, ∀i = 1, 2}, ∂Z0 := C+

τ \ Z0.

By the standard comparison theorem, as applied to two scalar equations in
(9.5), it suffices to prove that the uniform persistence holds for any φ ∈ Z0.
Clearly, Φ(t)Z0 ⊂ Z0, ∀t ≥ 0. Let Z1 := {φ ∈ ∂Z0 : Φ(t)φ ∈ ∂Z0, t ≥ 0}.
Let M1 = (0̂, 0̂) and M2 = (û∗1, 0̂). It then easily follows that ∪φ∈Z1ω(φ) =
{M1,M2}. Moreover, for any φ ∈ Z0, Φ(t)φ ∈ int(C+

τ ), ∀t > 2τ (see, e.g., the
proof of Theorem 9.2.1). By Theorem 9.2.1 and the second part of assump-
tion (A1), λ̄0(d2, τ, ∂2f2(·, u∗1(·), 0)) > 0. By the existence of strongly positive
eigenvectors associated with the principal eigenvalues λ0(d1, g(·, 0)) > 0 and
λ̄0(d2, τ, ∂2f2(·, u∗1(·), 0)) > 0, and a similar argument by contradiction as in
the proof of [298, Lemma 3.1] (see also Proposition 7.1.1), we can further
prove that there exists δ > 0 such that

lim sup
t→∞

‖Φ(t)φ−Mi‖ ≥ δ, ∀φ ∈ Z0, i = 1, 2.

Thus, M1 ∪M2 is an acyclic isolated covering of ∪φ∈Z1ω(φ), and each Mi is a
weak repeller for Z0. By Theorem 9.1.1 and Theorem 1.3.1 with Remarks 1.3.1
and 1.3.2 (see also [365, Theorem 4.6]), Φ(t) is uniformly persistent with re-
spect to (Z0, ∂Z0) in the sense that there exists η > 0 such that

lim inf
t→∞ dist (Φ(t)φ, ∂Z0) ≥ η, ∀φ ∈ Z0.

As mentioned above, Φ(t) : C+
τ → C+

τ is compact for t > τ . By the continuous-
time version of Theorem 1.3.6, Φ(t) : Z0 → Z0 has a global attractor A0. Then
A0 = Φ(t)A0 ⊂ int(C+

τ ), ∀t > 2τ . In view of the compactness of A0, there
exists β0 > 0 such that A0 � β0e with e = 1̂ ∈ int(C+

τ ). Thus, the global
attractivity of A0 in Z0 implies the desired order persistence. To prove the
existence of a positive steady state of (9.5), we let Φ0(t) : C+(Ω,R2) →
C+(Ω,R2), t ≥ 0, be the solution semiflow of the nonlocal reaction–diffusion
system
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∂u1(t, x)

∂t
= d1Δu1(t, x) + u1(t, x)g(x, u1(t, x))

− f1(x, u1(t, x), u2(t, x)), x ∈ Ω, t > 0,

∂u2(t, x)

∂t
= d2Δu2(t, x)− μ(x)u2(t, x)

+

∫

Ω

Γ2(x, y, τ)f2(y, u1(t, y), u2(t, y))dy, x ∈ Ω, t > 0,

Biui = 0, x ∈ ∂Ω, t > 0, i = 1, 2.

(9.13)

As proven for Φ(t) : C+
τ → C+

τ , it follows that Φ0(t) : C+(Ω,R2) →
C+(Ω,R2) is point dissipative, compact for each t > 0, and uniformly persis-
tent with respect to (W0, ∂W0), where W0 := {(φ1, φ2) ∈ C+(Ω,R2) : φi(·) �≡
0, ∀i = 1, 2} and ∂W0 := C+(Ω,R2) \ W0. Then, by Theorem 1.3.11, Φ0(t)
has an equilibrium φ∗ ∈ W0; i.e., Φ0(t)φ

∗ = φ∗, ∀t ≥ 0. Clearly, φ∗(x) is a
positive steady state of system (9.5).

9.3 Global Extinction

In this section we discuss the global extinction of the predator species and the
global extinction of both prey and predator species.

Theorem 9.3.1. Let (H1)–(H5) hold. Assume that the principal eigenvalues
of (9.9) and (9.10) satisfy

(A2) λ0(d1, g(·, 0)) > 0 and λ0(d2, τ, ∂2f2(·, u∗1(·), 0)) < 0, where u∗1(·) is
the unique positive steady state of the scalar equation ∂u1

∂t = d1Δu1 +
u1g(x, u1) with B1u1 = 0.

Then for any φ = (φ1, φ2) ∈ C+
τ with φ1(0, ·) �≡ 0, the solution u(t, φ) of

system (9.5) satisfies

lim
t→∞u(t, φ)(x) = (u∗1(x), 0)

uniformly for x ∈ Ω.

Proof. For any φ ∈ C+
τ , u(t, φ)(x) = (u1(t, x), u2(t, x)) satisfies ui(x, t) ≥

0, ∀t ≥ 0, x ∈ Ω, i = 1, 2. Since

lim
ε→0

λ0(d2, τ, ∂2f2(·, u∗1(·) + ε), 0)) = λ0(d2, τ, ∂2f2(·, u∗1(·), 0)) < 0,

we can choose some ε0 > 0 such that λ0(d2, τ, ∂2f2(·, u∗1(·) + ε, 0)) < 0. More-
over, u1(x, t) satisfies

∂u1
∂t

≤ d1Δu1 + u1g(x, u), ∀x ∈ Ω, t > 0.
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The assumption λ0(d1, g(·, 0)) > 0 and Theorem 3.1.5 (see also [124, Corol-
lary 2.2]) guarantee the existence of a unique positive steady state u∗1(·) of the
prey equation without predators, which attracts all solutions that are not iden-
tically equal to zero. A standard comparison theorem provides t0 = t0(φ) > 0
such that

u1(x, t) ≤ u∗1(x) + ε0, ∀x ∈ Ω and t ≥ t0.

By (H2) and (H3), it follows that v(x, t) = u2(x, t+ t0 + τ), t ≥ 0, satisfies

∂v(t, x)

∂t
≤ d2Δv(t, x) − μ(x)v(t, x)

+

∫

Ω

Γ2(x, y, τ)∂2f2(y, u
∗
1(y) + ε0, 0)v(t− τ, y)dy, x ∈ Ω, t > 0,

B2v = 0, x ∈ ∂Ω, t > 0. (9.14)

By the second part of assumption (A2) and by Theorem 9.2.1,

λ̄0(d2, τ, ∂2f2(·, u∗1(·) + ε0, 0)) < 0.

The standard comparison theorem and [408, Theorem 3.1.7] imply that
limt→∞ v(t, ·) = 0, and hence limt→∞ u2(x, t) = 0 uniformly for x ∈ Ω.

For any φ0 = (φ0
1, φ

0
2) ∈ C+

τ with φ0
1(0, ·) �≡ 0, let

u(t, φ0)(x) = (u1(t, x), u2(t, x)), ∀x ∈ Ω, t ≥ 0.

Then we can regard u2(t, x) as a fixed function on R
+×Ω. Therefore, u1(x, t)

satisfies the nonautonomous reaction–diffusion equation

∂u1
∂t

= d1Δu1 + u1g(x, u1)

− f1(x, u1(t, s), u2(t, x)), x ∈ Ω, t > 0,

B1u1 =0, x ∈ ∂Ω, t > 0.

(9.15)

Since limt→∞ u2(x, t) = 0 uniformly for x ∈ Ω, it follows that (9.15) is asymp-
totic to an autonomous reaction–diffusion equation

∂u1
∂t

= d1Δu1 + u1g(x, u1), x ∈ Ω, t > 0,

B1u1 = 0, x ∈ ∂Ω, t > 0.
(9.16)

Since λ0(d1, g(·, 0)) > 0, Theorem 3.1.5 (see also [124, Corollary 2.2]) implies
that u1 = u∗1(·) is globally asymptotically stable in C+(Ω,R) \ {0}. More-
over, Proposition 3.2.3 (see also [298, Lemma 3.1] with m = 1) implies that
u1(t, ·) cannot converge to 0 as t → ∞. By Theorem 1.2.1 with Remark 1.3.2
(see also [364, Theorem 4.1]), we have limt→∞ u1(t, ·) = u∗1(·), and hence
limt→∞ u1(t, x) = u∗1(x) uniformly for x ∈ Ω.
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Theorem 9.3.2. Let (H1)–(H5) hold. Assume that λ0(d1, g(·, 0)) ≤ 0. Then
for any φ = (φ1, φ2) ∈ C+

τ , the solution u(t, φ) of system (9.5) satisfies
limt→∞ u(t, φ)(x) = (0, 0) uniformly for x ∈ Ω.

Proof. For any φ ∈ C+
τ , let u(t, φ)(x) = (u1(x, t), u2(x, t)), ∀x ∈ Ω, t ≥ 0.

Then u1(x, t) satisfies

∂u1
∂t

≤ d1Δu1 + u1g(x, u1), x ∈ Ω, t > 0.

Since λ0(d1, g(·, 0)) ≤ 0, by the standard comparison theorem and Theo-
rem 3.1.5 (see also [124, Corollary 2.2]), we have lim

t→∞ u1(x, t) = 0 uniformly

for x ∈ Ω. We regard u2(x, t) as a solution of the nonautonomous reaction–
diffusion equation

∂u2
∂t

= d2Δu2 − μ(x)u2+
∫

Ω

Γ2(x, y, τ)f2(y, u1(t− τ, y), u2(t− τ, y))dy, x ∈ Ω, t > 0,

B2u2 =0, x ∈ ∂Ω, t > 0.

(9.17)

Since u2(t, x) is bounded and lim
t→∞ u1(x, t) = 0 uniformly for x ∈ Ω, it follows

that (9.17) is asymptotic to a linear autonomous reaction–diffusion equation

∂u2
∂t

= d2Δu2 − μ(x)u2, x ∈ Ω, t > 0,

Biui = 0, x ∈ ∂Ω, t > 0.
(9.18)

Clearly, u∗2 = 0 is globally asymptotically stable for (9.18) in C+(Ω,R). By
Theorem 1.2.1 with Remark 1.3.2 (see also [364, Theorem 4.1]), we have
lim
t→∞u2(x, t) = 0 uniformly for x ∈ Ω.

9.4 Global Attractivity: A Fluctuation Method

In this section, as illustrations of the results in Sections 9.2 and 9.3 and a
fluctuation method, we discuss the global attractivity of steady states for
spatially homogeneous delayed predator–prey reaction–diffusion systems.

Consider the predator–prey reaction–diffusion system with delay

∂u1(t, x)

∂t
= d1Δu1(t, x) + u1(t, x)(c0 − c1u1(t, x))

− a0u1(t, x)u2(t, x), x ∈ Ω, t > 0,

∂u2(t, x)

∂t
= d2Δu2(t, x)− μu2(t, x)+

∫

Ω

Γ2(x, y, τ)
u1(t− τ, y)u2(t− τ, y)

b0 + b2u2(t− τ, y)
dy, x ∈ Ω, t > 0,

∂ui
∂ν

= 0, x ∈ ∂Ω, t > 0, i = 1, 2,

(9.19)
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where a0, μ, b0, b2, and c1 are positive numbers, c0 ∈ R, Γ2(x, y, t) is the
Green’s function associated with d2Δ − μI and ∂u2

∂ν = 0. The prey grows
logistically in absence of the predator, and the encounters between prey and
predators obey the law of mass action, while the term b2u(t − τ, y) reflects
competition of predators for eating the prey once it has been killed.

Theorem 9.4.1. For any φ = (φ1, φ2) ∈ C+
τ , let u(t, φ) = (u1(t, φ), u2(t, φ))

be the unique solution of system (9.19) with u0 = φ.

(i) If c0 > 0 and c0
c1b0

> μeμτ > a0

c1b2
, then system (9.19) has a unique pos-

itive constant steady state (ū1, ū2), and for any φ = (φ1, φ2) ∈ C+
τ with

φ1(0, ·) �≡ 0 and φ2(0, ·) �≡ 0, limt→∞ u(t, φ)(x) = (ū1, ū2) uniformly for
x ∈ Ω.

(ii) If c0 > 0 and c0
c1b0

< μeμτ , then for any φ = (φ1, φ2) ∈ C+
τ with

φ1(0, ·) �≡ 0, limt→∞ u(t, φ)(x) = ( c0c1 , 0) uniformly for x ∈ Ω.

(iii) If c0 ≤ 0, then for any φ = (φ1, φ2) ∈ C+
τ , limt→∞ u(t, φ)(x) = (0, 0)

uniformly for x ∈ Ω.

Proof. Let f1(u1, u2) := a0u1u2, f2(u1, u2) := u1u2

b0+b2u2
, and g := c0 − c1u.

Clearly, (H1)–(H5) are satisfied, and if c0 > 0, then u∗1(·) ≡ c0
c1
. Note that

∫
Ω
Γ2(s, x, y)dy = e−μs, ∀s > 0, x ∈ Ω. By choosing the eigenvector as 1, we

have that λ0(d1, g(0)) = c0 and λ0(d2, τ, ∂2f2(u
∗
1, 0)) = −μ + e−μτ c0

b0c1
in the

case where c0 > 0. Thus, conclusions (ii) and (iii) follow from Theorems 9.3.1
and 9.3.2, respectively. In the case where c0 > 0 and c0

c1b0
> μeμτ , Theo-

rem 9.2.2 implies that system (9.19) is uniformly persistent. We further claim
that system (9.19) admits at most one positive constant steady state. Indeed,
assume that (u1, u2) with ui > 0, i = 1, 2, is a constant solution of (9.19). It
then easily follows that (u1, u2) satisfies the algebraic equations

a0u2 = g(u1),

u1 = eμτμ(b0 + b2g(u1)/a0).
(9.20)

Clearly, the monotonicity of g(·) implies that the second equation of (9.20) has
at most one positive solution for u1, and hence (9.20) has at most one positive
solution for (u1, u2). In order to prove (i), it then suffices to prove that for every
φ = (φ1, φ2) ∈ C+

τ with φ1(0, ·) �≡ 0 and φ2(0, ·) �≡ 0, u(t, φ)(x) converges to a
positive constant steady state in C(Ω,R2) as t → ∞. Since (u1(t, ·), u2(t, ·)) :=
u(t, φ), t ≥ 0, is bounded (see Theorem 9.1.1), we can choose a constant c > 0
such that the function cu1+u1g(u1)− f1(u1, u2) is monotone increasing in u1
for all values taken by the solution. Using the Green’s function Γ1 associated
with d1Δ and the Neumann boundary condition, we have

u1(t, x) = e−ct

∫

Ω

Γ1(t, x, y)u1(0, y)dy+

∫ t

0

e−cs

∫

Ω

Γ1(s, x, y)
[
cu1(t− s, y) + u1(t− s, y)g(u1(t− s, y))

− f1(u1(t− s, y), u2(t− s, y))
]
dy ds.
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Let

u∞i (x) := lim sup
t→∞

ui(t, x), ui∞(x) := lim inf
t→∞ ui(t, x), ∀i = 1, 2.

By the uniform persistence of (9.19), there exists δ > 0 such that

u∞i (x) ≥ ui∞(x) ≥ δ, ∀x ∈ Ω, i = 1, 2.

By Fatou’s lemma, we then get

u∞1 (x) ≤
∫ ∞

0

e−cs

∫

Ω

Γ1(s, x, y)
[
cu∞1 (y) + u∞1 (y)g(u∞1 (y))

− f1(u
∞
1 (y), u2∞(y))

]
dy ds.

Let
α∞
i := sup

x∈Ω

u∞i (x), αi∞ := inf
x∈Ω

ui∞(x), ∀i = 1, 2.

Clearly, α∞
i ≥ αi∞ ≥ δ, ∀i = 1, 2. Since

∫

Ω

Γ1(s, x, y)dy = 1, ∀s > 0, x ∈ Ω,

we have

α∞
1 ≤ 1

c
[cα∞

1 + α∞
1 g(α∞

1 )− f1(α
∞
1 , α2∞)] .

Simplifying this inequality, we obtain

0 ≤ g(α∞
1 )− a0α2∞. (9.21)

Similarly, we can get
0 ≥ g(α1∞)− a0α

∞
2 . (9.22)

Using the Green’s function Γ2 associated with d2Δ− μ, we have

u2(t, x) =

∫

Ω

Γ2(t, x, y)u2(0, y)dy+

∫ t

0

∫

Ω

Γ2(s+ τ, x, y)f2(u1(t− s− τ, y), u2(t− s− τ, y))dy ds.

Arguing as before and using that

∫

Ω

Γ2(s, x, y)dy = e−μs, ∀s > 0, x ∈ Ω,

we have

1 ≤ e−μτ

μ

α∞
1

b0 + b2α∞
2

.
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After reorganization of the terms, we have

b2α
∞
2 ≤ e−μτ

μ
α∞
1 − b0. (9.23)

Similarly, we can obtain

b2α2∞ ≥ e−μτ

μ
α1∞ − b0. (9.24)

Combining (9.21)–(9.24), we get

0 ≤ g(α∞
1 )− a0

b2

(
e−μτ

μ
α1∞ − b0

)

,

0 ≥ g(α1∞)− a0
b2

(
e−μτ

μ
α∞
1 − b0

)

.

(9.25)

Subtracting the first inequality from the second yields

g(α1∞)− g(α∞
1 ) ≤ a0

b2

e−μτ

μ
(α∞

1 − α1∞).

Since g(u) = c0 − c1u and c1 >
a0

b2
e−μτ

μ , we have α∞
1 = α1∞ and, by (9.23)–

(9.24), also α∞
2 = α2∞. It follows that

lim
t→∞u(t, φ)(x) = (α∞

1 , α∞
2 ), ∀x ∈ Ω. (9.26)

Let ω(φ) be the omega limit set of φ for the solution semiflow Φ(t) associated
with (9.19). For every ψ ∈ ω(φ), there exists a sequence tn → ∞ such that
Φ(tn)φ → ψ in Cτ as n→ ∞. Then

lim
n→∞u(tn, φ)(x) = ψ(x)

uniformly for x ∈ Ω, and by (9.26), ψ(·) = (α∞
1 , α∞

2 ). Then ω(φ) =
{(α∞

1 , α∞
2 )}, which implies that u(t, φ)(x) converges to (α∞

1 , α∞
2 ) in C(Ω,R2)

as t → ∞. Since Φ(t)(ω(φ)) = ω(φ), ∀t ≥ 0, (α∞
1 , α∞

2 ) is a positive constant
steady state of (9.19).

9.5 Threshold Dynamics: A Single Species Model

In this section we illustrate how the exponential ordering and the theory of
monotone dynamical systems can be applied to nonlocal and delayed reaction–
diffusion models in population dynamics.

Consider the growth of a single species with immature and mature stage
structure. For simplicity, we assume that r ≥ 0 is the average maturation time
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for the species, and that both mature and immature populations have the same
random diffusive rate d > 0 and the per capita mortality rate k(x) > 0 at lo-
cation x. By replacing the biomass gain rate function f(x, u, v) in the predator
equation (9.4) with the birth rate function g(x, v) of the mature population,
we then get a nonlocal and diffusive model of the mature population growth
in a habitat Ω:

∂v(t, x)

∂t
= dΔv(t, x) − k(x)v(t, x)+

∫

Ω

Γ (x, y, r)g(y, v(t− r, y))dy, x ∈ Ω, t > 0,

Bv(t, x) = 0, x ∈ ∂Ω, t > 0,

v(t, x) =φ(t, x) ≥ 0, x ∈ Ω, t ∈ [−r, 0],

(9.27)

where Ω is a bounded and open subset of RN with ∂Ω ∈ C2+θ for a real
number θ > 0, Δ denotes the Laplacian operator on R

N , either Bv = v or
Bv = ∂v

∂n + αv for some nonnegative function α ∈ C1+θ(∂Ω,R), ∂
∂n denotes

the differentiation in the direction of the outward normal n to ∂Ω, Γ is the
Green’s function associated with A := dΔ − k(·)I and boundary condition
Bv = 0, and φ is a given function to be specified later.

Let p ∈ (N,∞) be fixed. For each β ∈ (1/2 +N/(2p), 1), let Xβ be the
fractional power space of Lp(Ω) with respect to (−A,B) (see, e.g., [150]).
Then Xβ is an ordered Banach space with the cone X+

β consisting of all non-

negative functions in Xβ, and X+
β has nonempty interior int(X+

β ). Moreover,

Xβ ⊂ C1+ν(Ω) with continuous inclusion for ν ∈ [0, 2β − 1 − N/p). We
denote the norm in Xβ by ‖ · ‖β . It is well known that A generates an ana-
lytic semigroup T (t) on Lp(Ω). Moreover, the standard parabolic maximum
principle implies that the semigroup T (t) : Xβ → Xβ is strongly positive;
that is, T (t)(X+

β ) \ {0}) ⊂ int(X+
β ), ∀t > 0. Let C := C([−r, 0], Xβ) and

C+ := C([−r, 0], X+
β ). Then model (9.27) can be written as the following

abstract functional differential equation

dv(t)

dt
= Av(t) + T (r)g(·, v(t− r)), t > 0,

v0 = φ ∈ C+.
(9.28)

We further assume that k(·) is a positive Hölder continuous function on Ω
and g ∈ C1(Ω × R

+,R+) satisfies the following condition:

(G) g(·, 0) ≡ 0, ∂vg(x, 0) > 0, ∀x ∈ Ω, g is bounded on Ω×R
+, and for each

x ∈ Ω, g(x, ·) : R+ → R
+ is strictly subhomogeneous in the sense that

g(x, αv) > αg(x, v), ∀α ∈ (0, 1), v > 0.

Using a similar argument as in [326, Theorem 7.6.1], we can show that the
nonlocal elliptic eigenvalue problem
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λw(x) = dΔw − k(x)w(x) +

∫

Ω

Γ (x, y, r)∂vg(y, 0)w(y)dy, x ∈ Ω,

Bw = 0, x ∈ ∂Ω,

(9.29)

has a principal eigenvalue, which is denoted by λ0(d, r, ∂vg(·, 0)).
For φ ∈ C+, let v(t, φ) denote the solution of (9.27). Define

k0 := min{k(x) : x ∈ Ω},

b(r) := sup

{∫

Ω

Γ (x, y, r)g(y, ϕ(y))dy : x ∈ Ω, ϕ ∈ X+
β

}

,

M(r) :=
b(r)

k0
,

L(r) := min{∂vg(x, v) : x ∈ Ω, v ∈ [0,M(r)]}.

Then we have the following threshold dynamics for model system (9.27): If the
zero solution of (9.27) is linearly stable, then the species goes to extinction; if
it is linearly unstable, then the species is uniformly persistent.

Theorem 9.5.1. Let v∗ ∈ int(Xβ) be fixed and let (G) hold.

(1) If λ0(d, r, ∂vg(·, 0)) < 0, then limt→∞ ‖v(t, φ)‖β = 0 for every φ ∈ C+;
(2) If λ0(d, r, ∂vg(·, 0)) > 0, then (9.27) admits at least one steady-state so-

lution ϕ∗ with ϕ∗(x) > 0, ∀x ∈ Ω, and there exists δ > 0 such that
for every φ ∈ C+ with φ(0, ·) �≡ 0, there is t0 = t0(φ) > 0 such that
v(t, φ) ≥ δv∗(x), ∀x ∈ Ω, t ≥ t0.

Proof. Define F : C+ → Xβ by F (φ) = T (r)g(·, φ(−r)), ∀φ ∈ C+. Then
equation (9.27) can be written as the following abstract functional differential
equation

dv(t)

dt
= Av(t) + F (vt), t > 0,

v0 = φ ∈ C+.

(9.30)

Since T (t) : Xβ → Xβ is strongly positive, we have

lim
h→0+

1

h
dist(φ(0) + hF (φ), X+

β ) = 0, ∀φ ∈ C+.

By [243, Proposition 3 and Remark 2.4] and using a similar argument in
the case of a Dirichlet boundary condition (see also [243, Remark 1.10]), we
conclude that for every φ ∈ C+, (9.27) admits a unique noncontinuable mild
solution v(t, φ) satisfying v0 = φ and v(t, φ) ∈ X+

β for any t in its maximal
interval of existence [0, σφ). Thus v(t, φ)(x) satisfies the following parabolic
inequality

∂v(t, x)

∂t
≤ dΔv(t, x) − k0v(t, x) + b(r), x ∈ Ω, t ∈ (0, σφ),

Bv(t, x) = 0, x ∈ ∂Ω, t ∈ (0, σφ).

(9.31)
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Let u(t) be the unique solution of the ordinary differential equation

du(t)

dt
= −k0u(t) + b(r)

satisfying u(0) = maxx∈Ω φ(0)(x). Using the standard parabolic comparison
theorem, we then get

v(t, φ)(x) ≤ u(t) =

(

max
x∈Ω

φ(0)(x) −M(r)

)

e−k0t +M(r) (9.32)

for all x ∈ Ω and t ∈ (0, σφ). Thus σφ = ∞, ∀φ ∈ C+, and (9.27) defines
a semiflow Φ(t) : C+ → C+ by Φ(t)φ = vt(φ). By inequality (9.32) and the
properties of the fractional power space Xβ , it follows that Φ(t) : C

+ → C+

is point dissipative. Moreover, Φ(t) : C+ → C+ is compact for each t > r (see
[408, Theorem 2.2.6]). By the continuous-time version of Theorem 1.1.3 (see
[141, Theorem 3.4.8]), Φ(t) admits a strong global attractor on C+.

It is easy to see that g(x, v) ≤ ∂vg(x, 0)v, ∀x ∈ Ω, v ≥ 0. Then the com-
parison theorem for quasi-monotone abstract functional differential equations
(see [243, 244]) implies that

v(t, φ)(x) ≤ u(t, φ)(x), ∀x ∈ Ω, t ≥ 0,

where u(t, φ) is the unique solution of the following linear, nonlocal, and de-
layed parabolic equation

∂v(t, x)

∂t
= dΔv(t, x) − k(x)v(t, x) +

∫

Ω

Γ (x, y, r)∂vg(y, 0)v(t− r, y)dy,

Bv(t, x) = 0, x ∈ ∂Ω, t > 0,

v(t, x) = φ(t, x), x ∈ Ω, t ∈ [−r, 0].

(9.33)

By Theorem 9.2.1 and a similar argument in the case of a Dirichlet boundary
condition, it follows that the nonlocal elliptic eigenvalue problem

λw(x) = dΔw − k(x)w(x) + e−λr

∫

Ω

Γ (x, y, r)∂vg(y, 0)w(y)dy,

Bw = 0, x ∈ ∂Ω,

(9.34)

has a principal eigenvalue λ̄0(d, r, ∂vg(·, 0)), and λ̄0(d, r, ∂vg(·, 0)) has the
same sign as λ0(d, r, ∂vg(·, 0)). Then in the case where λ0(d, r, ∂vg(·, 0)) < 0,
the properties of principal eigenvalues and linear semigroups imply that
limt→∞ ‖u(t, φ)‖β = 0, ∀φ ∈ C, and hence limt→∞ ‖v(t, φ)‖β = 0, ∀φ ∈ C+.

In the case where λ0(d, r, ∂vg(·, 0)) > 0, let

Z0 = {φ ∈ C+ : φ(0, ·) �≡ 0}, ∂Z0 := C+ \ Z0.

Since g(x, v) ≥ 0, equation (9.27) implies that
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∂v(t, x)

∂t
≥ dΔv(t, x) − k(x)v(t, x), ∀x ∈ Ω, t > 0.

By the standard parabolic maximum principle, it then follows that Φ(t)Z0 ⊂
int(C+), ∀t > 0. Let

Z1 = {φ ∈ ∂Z0 : Φ(t)φ ∈ ∂Z0, ∀t ≥ 0}.

Then ∪φ∈Z1ω(φ) = {0}, where ω(φ) denotes the omega limit set of the orbit
γ+(φ) := {Φ(t)φ : ∀t ≥ 0}. Clearly, g(x, v) can be written as g(x, v) =
vh(x, v) with h(x, 0) = ∂vg(x, 0). By the condition λ̄0(d, r, ∂vg(·, 0)) > 0 and
an argument of contradiction similar to that in the proof of [298, Lemma
3.1] (see also Proposition 7.1.1), we can prove that {0} is a uniform weak
repeller for Z0; that is, there exists δ0 > 0 such that lim supt→∞ ‖Φ(t)φ‖β ≥
δ0, ∀φ ∈ Z0. By Theorem 1.3.1 with Remarks 1.3.1 and 1.3.2 (see also [365,
Theorem 4.6]), Φ(t) is uniformly persistent with respect to Z0 in the sense that
there exists an η > 0 such that lim inft→∞ dist(Φ(t)φ, ∂Z0) ≥ η, ∀φ ∈ Z0. As
Φ(t) : C+ → C+ is compact for t > r, it follows from the continuous-time
version of Theorem 1.3.6 that Φ(t) : Z0 → Z0 has a global attractor A0. Then
A0 = Φ(t)A0 ⊂ int(C+), ∀t > 0. By the compactness of A0, there exists δ > 0
such that A0 � δe with e = v∗ ∈ int(C+). Thus, the global attractivity of A0

in Z0 implies the desired order persistence. It remains to prove the existence
of a positive steady state of (9.27). Let Φ0(t) : X+

β → X+
β , t ≥ 0, be the

solution semiflow of the following nonlocal reaction–diffusion equation

∂u(t, x)

∂t
= dΔu(t, x) − k(x)u(t, x)+

∫

Ω

Γ (x, y, r)g(y, u(t, y))dy, x ∈ Ω, t > 0,

Bu(t, x) = 0, x ∈ ∂Ω, t > 0,

u(0, x) =ϕ(x), x ∈ Ω.

(9.35)

Since ∂u(t,x)
∂t ≥ dΔu(t, x) − k(x)u(t, x), the standard parabolic maximum

principle implies that Φ0(t)(X
+
β \ {0}) ⊂ int(X+

β ), ∀t > 0. As proven for

Φ(t) : C+ → C+, it follows that Φ0(t) is point dissipative on X
+
β , compact for

each t > 0, and uniformly persistent with respect to X+
β \ {0}. Then, by The-

orem 1.3.11, Φ0(t) has an equilibrium ϕ∗ ∈ X+
β \ {0}; that is, Φ0(t)ϕ

∗ = ϕ∗

for all t ≥ 0. Fix t > 0. We then get ϕ∗ = Φ0(t)ϕ
∗ ∈ int(X+

β ).

As an application of the theory of monotone dynamical systems, we are
able to obtain sufficient conditions under which the species stabilizes eventu-
ally at positive steady states in the case (2) of Theorem 9.5.1.

Theorem 9.5.2. Assume that (G) holds and λ0(d, r, ∂vg(·, 0)) > 0.

(1) If L(r) ≥ 0, then (9.27) admits a unique positive steady state ϕ∗, and
limt→∞ ‖v(t, φ)− ϕ∗‖β = 0 for every φ ∈ C+ with φ(0, ·) �≡ 0.
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(2) If L(r) < 0 and r|L(r)| < 1/e, then there exists an open and dense subset
S of C+ with the property that for every φ ∈ S with φ(0, ·) �≡ 0, there is a
positive steady state ϕ of (9.27) such that limt→∞ ‖v(t, φ)− ϕ‖β = 0.

Proof. Let Φ(t) : C+ → C+ be the solution semiflow of (9.27) and let Φ0(t) :
X+

β → X+
β be the solution semiflow of (9.35). Define

Y := {φ ∈ C+ : φ(s, x) ≤ M(r), ∀s ∈ [−r, 0], x ∈ Ω}

and
Y0 := {φ ∈ X+

β : φ(x) ≤ M(r), ∀x ∈ Ω}.

Then inequality (9.32) implies that every omega limit set ω(φ) of Φ(t) is
contained in Y , and Y is positively invariant for Φ(t). In particular, every
nonnegative steady state ϕ of (9.27) is contained in Y0.

In the case where L(r) ≥ 0, [243, Corollary 5] implies that Φ(t) : Y → Y is
a monotone semiflow with respect to the pointwise ordering of C induced by
C+. We further claim that (9.27) admits at most one positive steady state.
Indeed, it suffices to prove that the semiflow Φ0(t) has at most one positive
equilibrium in Y0. By [243, Corollary 5] with τ = 0, it then follows that
Φ0(t) : Y0 → Y0 is a monotone semiflow with respect to the pointwise ordering
of Xβ induced by X+

β . Moreover, for any ϕ1, ϕ2 ∈ Y0 with ϕ1−ϕ2 ∈ X+
β \{0},

w(t) := Φ0(t)ϕ1 − Φ0(t)ϕ2 satisfies

∂w(t, x)

∂t
≥ dΔw(t, x) − k(x)w(t, x), ∀x ∈ Ω, t > 0.

Then the standard parabolic maximum principle implies that w(t) ∈ int(X+
β )

∀t > 0; that is, Φ0(t) : Y0 → Y0 is strongly monotone. By the strict subhomo-
geneity of g, it easily follows that for each t > 0, Φ0(t) : Y0 → Y0 is strictly
subhomogeneous. Now fix a real number t0 > 0. Then Lemma 2.3.1 (see also
[432, Lemma 1]) implies that the map Φ0(t0) has at most one positive fixed
point in Y0, and hence the semiflow Φ0(t) has at most one positive equilib-
rium in Y0. As shown in Theorem 9.5.1, Φ(t) : C+ → C+ is compact for
each t > r, admits a global compact attractor in C+, and is uniformly per-
sistent with respect to Z0. By the continuous-time version of Theorem 1.3.6,
Φ(t) : Y ∩Z0 → Y ∩ Z0 has a global attractor A0. Clearly, Theorem 9.5.1(2),
together with the uniqueness of the positive steady state, implies that A0

contains only one equilibrium ϕ∗. By the Hirsch attractivity theorem (see
Theorem 2.2.6), it then follows that ϕ∗ attracts every point in Y ∩ Z0. Con-
sequently, every orbit in Y converges to either the trivial equilibrium or the
positive equilibrium ϕ∗, and hence together with Theorem 9.5.1(2), equilibria
0 and ϕ∗ are also two isolated invariant sets in Y , and there is no cyclic chain
of equilibria. By Theorem 1.2.2 and Remark 1.3.2, every compact internally
chain transitive set of Φ(t) : Y → Y is an equilibrium. Let φ ∈ C+ be given.
As mentioned above, ω(φ) ⊂ Y . Since every compact omega limit set is an



9.5 Threshold Dynamics: A Single Species Model 261

internally chain transitive set (see Lemma 1.2.1′), ω(φ) is an equilibrium. If
φ ∈ C+ with φ(0, ·) �≡ 0, we then get ω(φ) = ϕ∗ in view of Theorem 9.5.1 (2).

In the case where L(r) < 0 and r|L(r)| < 1/e, we define f(α) := α +
L(r)eαr, ∀α ∈ [0,∞). It then follows that f(0) < 0 and f ′′(α) ≤ 0, ∀α ∈
[0,∞). If r = 0, then f(α) > 0 for all α > |L(0)|. If 0 < r|L(r)| < 1

e , then
f(α) reaches its maximum value at α0 = − 1

r ln(r|L(r)|) > 0 and f(α0) > 0.
Consequently, we can fix a real number μ > 0 such that f(μ) = μ+L(r)eμr >
0. Let F : C+ → Xβ be defined as in the proof of Theorem 9.5.1, and let Kμ

be defined as in Section 2.6 with X = Xβ, P = X+
β , and A = dΔ− k(·)I. By

the definition of L(r), we have

g(x, v2)− g(x, v1) ≥ L(r)(v2 − v1), ∀x ∈ Ω, 0 ≤ v1 ≤ v2 ≤ M(r).

Assume that φ, ψ ∈ Y satisfy

φ ≤μ ψ and φ(s) �Xβ
ψ(s), ∀s ∈ [−r, 0].

Clearly, ψ − φ ∈ Kμ implies that

ψ(0)− φ(0) ≥Xβ
e(A−μI)r(ψ(−r) − φ(−r))

= T (r)e−μr(ψ(−r) − φ(−r)).
(9.36)

It then follows that

μ(ψ(0) − φ(0)) + F (ψ)− F (φ)

≥Xβ
μ(ψ(0)− φ(0)) + L(r)T (r)(ψ(−r) − φ(−r))

≥Xβ
(μ+ L(r)eμr) e−μrT (r)(ψ(−r) − φ(−r))

�Xβ
0. (9.37)

Thus condition (SMμ) holds for F : Y → Xβ, and hence by Theorem 2.6.2,
Φ(t) : Y → Y is strongly order-preserving with respect to ≤μ. Let φ

∗ ≥μ 0
be defined as in the proof of Theorem 2.6.2. Recall that φ∗(s) �Xβ

0, ∀s ∈
[−r, 0]. Then for every ψ ∈ Y , either the sequence of points ψ + 1

nφ
∗ or the

sequence of points ψ− 1
nφ

∗ is eventually contained in Y and approaches ψ as
n → ∞, and hence each point of Y can be approximated either from above
or from below in Y . Clearly, Φ(t) : Y → Y has a global compact attractor in
Y . Note that the cone Kμ has empty interior in C. Fix a ψ(·) ∈ int(X+

β ) such
that dΔψ − k(x)ψ ≤ 0, ∀x ∈ Ω, and Bψ = 0, ∀x ∈ ∂Ω (e.g., taking ψ(x) as
a positive steady state of (9.27)). Then Lemma 2.6.1 implies that ψ ∈ Kμ.
Define

Cψ = {φ ∈ C : there existsβ ≥ 0 such that − βψ ≤μ φ ≤μ βψ}

and
‖φ‖ψ = inf{β ≥ 0 : −βψ ≤μ φ ≤μ βψ}, ∀φ ∈ Cψ.
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Then (Cψ , ‖ · ‖ψ) is a Banach space and C+
ψ := Cψ ∩ Kμ is a closed cone

in Cψ with nonempty interior (see [12]). Using the smoothing property of
the semiflow Φ(t) on C+ and the fundamental theory of abstract functional
differential equations, we can show that for each t > r, Φ(t)Y ⊂ Y ∩ Cψ,
Φ(t) : Y → Y ∩Cψ is continuous, Φ(t)φ2−Φ(t)φ1 ∈ int(C+

ψ ) for any φ1, φ2 ∈ Y
with φ2 >μ φ1, and for each nonnegative equilibrium ϕ of Φ(t), the Fréchet
derivative at ϕ of Φ(t) : Y ∩Cψ → Y ∩Cψ exists and is compact and strongly
positive on C+

ψ (see, e.g., [331]). By the generic convergence theorem (see
Theorem 2.2.7), it then follows that there is an open and dense subset U of
Y such that every orbit of Φ(t) starting from U converges to an equilibrium
in Y . Clearly, the condition that L(r) < 0 and r|L(r)| < 1/e still holds under
small perturbations of b(r). It then follows that there is a small ε > 0 such
that the generic convergence also holds in

Yε := {φ ∈ C+ : φ(s, x) ≤ Mε(r), ∀s ∈ [−r, 0], x ∈ Ω},

where Mε(r) := bε(r)/k0 = M(r) + ε/k0 and bε(r) := b(r) + ε. By inequality
(9.32), every orbit of Φ(t) in C+ eventually enters into Yε. Now the conclusion
(2) follows from the generic convergence in Yε and Theorem 9.5.1(2).

Example 9.5.1. Consider the model (9.27) with k(x) = k, g(x, v) = g(v) :=
pve−qv, where k, p, and q are all positive constants. Let T0(t) be the analytic
semigroup generated by dΔ with boundary condition Bv = 0. Clearly, T (t) =
e−ktT0(t), and condition (G) is satisfied. A direct computation shows that
g′(v) = pe−qv(1−qv), g′′(v) = −pqe−qv(2−qv), and g(v) reaches its maximum
value g(1/q) = p

q e
−1.

In the case of the Neumann boundary condition Bv = ∂v
∂n = 0, it easily

follows that

λ0(d, r, g
′(0)) = pe−kr − k, b(r) =

p

q
e−(1+kr), M(r) =

p

kq
e−(1+kr),

and

L(r) =

{
g′(M(r)) = p

(
1− p

k
e−(1+kr)

)
exp

(
−p

k
e−(1+kr)

)
ifM(r) ≤ 2/q,

g′(2/q) = −pe−2 ifM(r) > 2/q.

Clearly, if λ0(d, r, g
′(0)) > 0, then the model has a positive constant steady

state 1
q ln

(
p

kekr

)
.

In the case of Dirichlet boundary condition Bv = v = 0, λ0(d, r, g
′(0)),

b(r), and L(r) depend nontrivially on the diffusion rate d and the domain
Ω, and any positive steady state is spatially inhomogeneous. It is possible to
get the explicit expressions or estimates for these quantities in some special
cases of the dimensions and shapes of Ω. For example, let Ω =

∏N
i=1(0, π),

and define w0(x) :=
∏N

i=1 sinxi, ∀x = (x1, . . . , xN ) ∈ Ω. It is easy to verify
that T0(t)w0 = e−Ndtw0, ∀t ≥ 0, and that w0(x) is a positive solution of
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the nonlocal elliptic eigenvalue problem (9.29) with k(x) = k, g(x, v) = g(v),
and λ = g′(0)e−(Nd+k)r − (Nd + k). It then follows that λ0(d, r, g

′(0)) =
g′(0)e−(Nd+k)r − (Nd+ k).

9.6 Notes

Sections 9.1–9.4 are taken from Thieme and Zhao [371], and Section 9.5 is
taken from Wu and Zhao [411]. The function g(v) in Example 9.5.1 was intro-
duced by Gurney, Blythe and Nisbet [139] in a delayed ordinary differential
model of an adult fly population. A predator–prey reaction–diffusion system
with nonlocal effects was introduced by Gourley and Britton [136]. Freedman
and Zhao [125] investigated a nonlocal reaction–diffusion system modeling
the dispersal of a population among islands. So, Wu and Zou [345] derived
a nonlocal and delayed reaction–diffusion model for a single species with age
structure, and proved the existence of monotone traveling waves in the case
of Gurney, Blythe, and Nisbet’s birth rate function. Gourley and Kuang [137]
studied traveling waves and global stability in another nonlocal and time-
delayed population model with stage structure. For a large class of nonlo-
cal and time-delayed reaction–diffusion models including those in [345, 137],
Thieme and Zhao [372] established the existence of minimal wave speeds for
monotone traveling waves and showed that they coincide with the asymptotic
speeds of spread for solutions with initial functions having compact support.
Fang and Zhao [109] further developed the theory in [372] to nonmonotone in-
tegral equations including some nonlocal reaction–diffusion models with time
delays.

Jin and Zhao [197] investigated the spatial dynamics of a nonlocal periodic
reaction–diffusion population model with stage structure. In the case of a
bounded domain, they obtained a threshold result on the global attractivity
of either zero or a positive periodic solution. In the case of an unbounded
domain, they established the existence of spreading spread and its coincidence
with the minimal wave speed for monotone periodic traveling waves.

The method of fluctuations developed in [371] was further used in Zhao
[440] for the global attractivity in a class of nonmonotone reaction–diffusion
equations with time delay; in Lou, Xu and Zhao [233, 418] for the global
dynamics of reaction–diffusion malaria models with incubation period in the
vector population; and in Wang and Zhao [392] for the disease-free dynamics
of a spatial model for Lyme disease.
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Traveling Waves in Bistable Nonlinearities

We consider the asymptotic behavior, as t → ∞, of the solutions of the
problem

ut − uzz − f(u, t) = 0, z ∈ R, t > 0,

u(z, 0) = g(z), z ∈ R,
(10.1)

where f(u, ·) is ω-periodic for some ω > 0, i.e., f(u, ω+ t) = f(u, t), ∀(u, t) ∈
R

2, and g is an arbitrary bounded function having certain asymptotic behavior
as z → ±∞. A typical example of f is the cubic potential

f = (1 − u2)(2u − γ(t)),

where γ(·) ∈ C(R, (−2, 2)) is ω-periodic. Throughout this chapter we assume
that f satisfies the following structure hypothesis:

(H) f(·, ·) ∈ C2,1(R × R,R), the Poincaré (period) map P (α) := w(α, ω),
where w(α, t) is the solution to

wt = f(w, t), ∀t ∈ R, w(α, 0) = α ∈ R, (10.2)

has exactly three fixed points α−, α0, α+ satisfying α− < α0 < α+, and
they are nondegenerate and α± are stable; i.e.,

d

dα
P (α±) < 1 <

d

dα
P (α0). (10.3)

Clearly, P : [α−, α+] → [α−, α+] is strongly monotone. By the Dancer–
Hess connecting orbit lemma, it is easy to see that limt→∞(w(α, t)
−w(α−, t)) = 0 for each α ∈ [α−, α0), and limt→∞(w(α, t)−w(α+, t)) = 0 for
each α ∈ (α0, α+].

A periodic traveling wave solution of (10.1a) connecting two stable periodic
solutions of (10.2) is the solution that has the form

© Springer International Publishing AG 2017
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u(z, t) = U(z − ct, t), U(·, t+ ω) = U(·, t),

with
U(±∞, t) := lim

ξ→±∞
U(ξ, t) = w(α±, t), ∀t ∈ R,

where c is some real number, in other words, a wave with speed c, which,
when viewed from the standpoint of the moving coordinate frame (i.e., in
ξ := z−ct), has a profile that oscillates periodically in time. If U(z−ct, t) is a
periodic traveling wave solution of (10.1a) connecting w(α−, t) and w(α+, t),
so is its translation u(z + s, t) = U(z − ct+ s, t) for each s ∈ R. By a change
of variable ξ = z − ct, it follows that U(ξ, t) is an ω-periodic solution of the
following periodic-parabolic equation

Ut − cUξ − Uξξ − f(U, t) = 0, ∀(ξ, t) ∈ R
2,

U(±∞, t) = w(α±, t), ∀t ∈ R.
(10.4)

If, in addition, U(ξ, t) is bounded on R × [0, ω], by the local regularity and
a priori estimates for parabolic equations, Uξ and Uξξ are also bounded on
R × [0, ω]. It then follows that U(±∞, t) = w(α±, t) and Uξ(±∞, t) = 0
uniformly for t ∈ [0, ω].

In this chapter we will study the existence, global attractivity, stability
with phase shift, and uniqueness up to translation of periodic traveling waves
of (10.1a) connecting w(α−, t) and w(α+, t). As an application of these results,
a spruce budworm population model in a temporally homogeneous environ-
ment will be also discussed.

10.1 Existence of Periodic Traveling Waves

LetM ≥ 1 be any fixed constant. Set ΩM = (−M,M) and QM = ΩM×(0, ω].
For every constant c ∈ R, consider the initial–boundary value problem

Lc(V ) := Vt − cVξ − Vξξ − f(V, t) = 0, (ξ, t) ∈ QM ,

V (±M, t) = W±(t), t ∈ [0, ω],

V (ξ, 0) = g(ξ), ξ ∈ ΩM ,

(10.5)

where W±(t) := w(α±, t), and g is any element in the function class XM

defined by

XM := {g ∈ C0([−M,M ]) : g(±M) = α±, g(0) = α0, gξ(·) ≥ 0 in ΩM}.

Lemma 10.1.1. Let M ≥ 1 be any fixed constant. The following hold:

(1) For every c ∈ R and g ∈ XM , problem (10.5) admits a unique solution
V = V (g, c; ξ, t), and the solution satisfies

W−(t) < V (g, c; ξ, t) < W+(t), Vξ(g, c; ξ, t) > 0, Vc(g, c; ξ, t) > 0

for all (ξ, t) ∈ QM .
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(2) There exist constants C+(M) and C−(M) such that C−(M) < C+(M)
and

inf
g∈XM

V (g, C+(M); 0, ω) ≥ α0, sup
g∈XM

V (g, C−(M); 0, ω) ≤ α0.

Consequently, for every g ∈ XM , there exists a unique c = C(M, g) ∈ R

such that V (g, c; · , ω) ∈ XM .
(3) There exists gM ∈ XM such that V (gM , C(M, gM ); · , ω) = gM ; namely,

there exists a solution (CM , VM ) to the following problem:

LCM

(VM ) := VM
t − VM

ξξ − CMVM
ξ − f(VM , t) = 0 in QM ,

VM (±M, t) = W±(t) in [0, ω],

VM (·, 0) = VM (·, ω).
(10.6)

Proof. (1) Though f is nonlinear so that the solution of (10.5) may blow up,
the property of g in XM and a comparison principle yield the a priori estimate
W−(t) < V (ξ, t) < W+(t) for any (ξ, t) ∈ QM . Hence, (10.5) admits a unique
solution V = V (g, c; ξ, t). Since the a priori estimate implies that Vξ ≥ 0 at
ξ = ±M , the assumption gξ ≥ 0 and the maximum principle for the equation
satisfied by Vξ then immediately yield Vξ > 0 in QM . Notice that Vc :=

∂
∂cV

satisfies

(Vc)t − (Vc)ξξ − c(Vc)ξ − fu(V, t)Vc = Vξ > 0 in QM

and Vc = 0 on the parabolic boundary of QM ; it then follows that Vc > 0 in
QM . This establishes the first assertion.

(2) Let W (ξ, t) (depending on M) be any fixed function having the follow-
ing properties:

W (0, T ) = α0, W (ξ, 0) < α−, ∀ξ ∈ [−M,M ],

W (±M, t) ≤ W±(t), ∀t ∈ [0, ω],

Wξ(ξ, t) > 0, ∀(ξ, t) ∈ [−M,M ]× [0, ω].

Since α− < α0 < α+, such a function can be easily constructed. For example,
pick any monotonic function ζ(ξ) satisfying ζξ > 0 in [−M,M ], ζ(±M) = α±,
ζ(0) = α0. Then the function W (ξ, t) := ζ(ξ)−K(ω−t) with sufficiently large
K will satisfy all the properties needed. Define

C+(M) := sup
(ξ,t)∈[−M,M ]×[0,ω]

Wt −Wξξ − f(W, t)

Wξ
.

Then one can verify that when c = C+(M), W is a subsolution of (10.5a),
(10.5b), and W (·, 0) < g for any g ∈ XM . Hence, by comparison, W (ξ, t) ≤
V (g, C+(M); ξ, t) in QM for any g ∈ XM . Consequently, α0 = W (0, ω) ≤
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V (g, C+(M); 0, ω). This proves the existence of C+(M). The existence of
C−(M) can be proved by a similar construction.

Recall that for any fixed g ∈ XM , V (g, c; 0, ω) is strictly monotonic in
c ∈ R. By the properties of C±(M), there exists a unique C = C(M, g) such
that V (g, C; 0, ω) = α0. Moreover, recalling that Vξ(g, c; ·, ω) > 0 in ΩM and
V (g, c;±M,ω) = W±(ω) = α±, we have that V (g, C(M, g); ·, ω) ∈ XM . The
second assertion of the lemma thus follows.

(3) For every g ∈ XM define a mapping T : XM → XM by

T (g) = V (g, C(M, g); ·, ω).

Then we know the following: (a) XM is a closed convex subset ofC0([−M,M ])
and T maps XM into itself; (b) Since Vc > 0 and the solution V (·, c; ξ, t)
depends on g continuously, C(M, g) is continuous in g, and consequently, T
is continuous from XM to XM ; (c) By a parabolic estimate, T (XM ) is a
bounded set in C2([−M,M ]), so that T is compact. Therefore, by Schauder
fixed point theorem, there exists g ∈ XM such that T (g) = g.

We will find estimates for the solution to (10.6) that are independent of
M , so that we can take the limit as M → ∞ to obtain an ω-periodic solution
of (10.4). The basic idea is to use the following comparison principle.

Lemma 10.1.2. Let M ≥ 1 be any fixed constant and (CM , VM ) be any
solution to (10.6).

(1) If (c̄, V̄ ) satisfies

V̄t − V̄ξξ − c̄V̄ξ − f(V̄ , t) ≤ 0, (ξ, t) ∈ QM ,

V̄ (±M, t) ≤ W±(t), ∀t ∈ [0, ω], V̄ (0, 0) ≥ α0,

V̄ (ξ, 0) ≤ V̄ (ξ, ω), ξ ∈ [−M,M ],

(10.7)

then CM ≤ c̄.
(2) If V̂ satisfies

V̂t − V̂ξξ − CM V̄ξ − f(V̂ , t) ≤ 0, (ξ, t) ∈ [0,M ]× [0, ω],

V̂ (M, t) ≤ W+(t), V̂ (0, t) ≤ VM (0, t), ∀t ∈ [0, ω],

V̂ (ξ, 0) ≤ max{α0, V̂ (ξ, ω)}, ξ ∈ [0,M ],

(10.8)

then V̂ ≤ VM in [0,M ]× [0, ω].

Proof. (1) Assume for contradiction that CM > c̄. Then, since VM
ξ > 0 in

QM ,

Lc̄(VM ) := (VM )t − VM
ξξ − c̄VM

ξ − f(VM , t) = (CM − c̄)VM
ξ > 0 in QM .

Define
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m0 = inf
{
m ∈ (−2M, 2M) : VM (ξ, 0) > V̄ (ξ −m, 0), ∀ξ ∈ Im

}
,

where Im := (−M,M)∩ (m−M,m+M). Since VM (M, 0) = α+ > V̄ (−M, 0)
and VM (0, 0) = α0 ≤ V̄ (0, 0), we have m0 ∈ [0, 2M). In addition, there exists
ξ0 ∈ ΩM

m0
:= (m0 −M,M) such that VM (ξ0, 0) = V̄ (ξ0 −m0, 0). Notice that

the boundary conditions of VM and V̄ imply that on the parabolic boundary
ofΩM

m0
×(0, ω], VM (ξ, t) ≥ V̄ (ξ−m0, t). Thus, applying a comparison principle

to the functions VM (ξ, t) and V̄ (ξ − m0, t) in the domain ΩM
m0

× [0, ω], we
have that VM (ξ, ω) > V̄ (ξ −m0, ω) for all ξ ∈ ΩM

m0
. But this is impossible,

since VM (ξ0, ω) = VM (ξ0, 0) = V̄ (ξ0 − m0, 0) ≤ V̄ (ξ0 − m0, ω). Hence we
must have CM ≤ c̄.

(2) Define m0 = inf
{
m ≥ 0 : VM (ξ, 0) ≥ V̂ (ξ −m, 0) in [m,M ]

}
. Using

a comparison principle in (m0,M) × (0, ω], one can follow the idea in (1) to
deduce that m0 = 0.

Now we apply the first comparison principle in Lemma 10.1.2 to estimate
CM .

Lemma 10.1.3. There exists M0 > 1 such that for each M ≥ M0, any solu-
tion (VM , CM ) of (10.6) satisfies the estimate

|CM | ≤ 1 + 1
2 sup

{
(W+(t)−W−(t) + 2)|fuu(u, t)| : u ∈ It, t ∈ [0, ω]

}
,

where It := [W−(t)− 1,W+(t) + 1].

Proof. Let ζ(s) = 1
2 [1 + tanh( s2 )], so that ζ′ = ζ(1− ζ) and ζ′′ = ζ′(1− 2ζ).

Set w1(t) = W+(t) and w2(t) = w(α− − ε0, t), where ε0 is a small constant
such that w2(t) ≥ W−(t)− 1 in [0, ω]. Consider the function

V̄ (ξ, t) = w1(t)ζ(ξ + ξ0) + w2(t)[1− ζ(ξ + ξ0)],

where ξ0 is a constant such that ζ(ξ0) =
α0−α−+ε0
α+−α−+ε0

. Since w1(ω) = w1(0) and

w2(ω) > w2(0), V̄ (·, ω) > V̄ (·, 0). Also, V̄ (0, 0) = α0, V̄ξ > 0, V̄ (∞, 0) = α+,
and V̄ (−∞, 0) = α− − ε0.

Observe, by Taylor’s expansion, that

ζf(w1, t)+(1−ζ)f(w2, t)−f(ζw1+(1−ζ)w2, t) =
1

2
ζ(1−ζ)(w1−w2)

2fuu(θ, t)

for some θ ∈ (w2, w1). Taking

c̄ = 1 + 1
2 sup

{
(W+(t)−W−(t) + 2)|fuu(u, t)| : u ∈ It, t ∈ [0, ω]

}
,

we have that for all (ξ, t) ∈ R× [0, ω],

Lc̄(V̄ ) = [−c̄ζ′ − ζ′′](w1 − w2)

+ [ζf(w1, t) + (1− ζ)f(w2, t)− f(ζw1 + (1− ζ)w2, t)]

= −ζ(1− ζ)(w1 − w2)[c̄+ 1− 2ζ − 1
2 (w1 − w2)fuu(θ, t)] < 0.
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Thus, by Lemma 10.1.2 (1), for all M satisfying ζ(−M) ≤ ε0
α+−α−−ε0

(so that

V̄ (−M, 0) ≤ α−), we have CM ≤ c̄. Similarly, one can establish the lower
bound of CM , thereby completing the proof of the lemma.

The following result says that equation (10.1a) has a monotone periodic
traveling wave solution connecting two stable periodic solutions of (10.2).

Theorem 10.1.1. There exists a solution (c, U) to the problem

Ut − cUξ − Uξξ − f(U, t) = 0, ∀(ξ, t) ∈ R
2,

U(±∞, t) = w(α±, t), ∀t ∈ R,

U(·, ω) = U(·, 0), U(0, 0) = α0,

(10.9)

with Uξ(·, ·) > 0 in R
2.

Proof. For each integer M ≥ 1, by Lemma 10.1.1, problem (10.6) admits a
solution (CM , VM ). From Lemma 10.1.3, we know that {CM}M≥M0 is uni-
formly bounded. Hence, by parabolic estimates [209], supM≥M0

‖VM‖C2,1(QM )

is uniformly bounded also. Therefore, we can select a subsequence {Mj}∞j=1

such that as j → ∞, Mj → ∞, CMj → c∗, and VMj → U∗ (uniformly in any
compact subset of R× [0, ω]), where (c∗, U∗) satisfies the following equations

U∗
t − U∗

ξξ − c∗U∗
ξ − f(U∗, t) = 0 in R× [0, ω],

U∗(0, 0) = α0, U∗(·, 0) = U∗(·, ω) in R,

U∗
ξ ≥ 0 in R× [0, ω].

Thus, to show that (c∗, U∗) solves (10.9), we need only show that U∗(±∞, t) =
W±(t).

Assume for the moment that U∗ is nontrivial; i.e., U∗(·, t) �≡ w(α0, t).
Then U∗

ξ �≡ 0, so that by the condition U∗
ξ ≥ 0 in R × [0, ω] and the strong

maximum principle, we have U∗
ξ > 0 in R×[0, ω]. Consequently, U∗(±∞, t) :=

limξ→±∞ U∗(ξ, t) exist and U∗(−∞, 0) < α0 < U∗(∞, 0). Since U∗(·, t) is
monotonic, U∗

ξ and U∗
ξξ approach zero weakly as |ξ| → ∞. It then follows that

U∗(∞, t) and U∗(−∞, t) are periodic solutions of wt = f(w, t). Hence, by the
assumption on f , we must have U∗(±∞, t) = W±(t).

Thus, to finish the proof, we need only show that U∗ is nontrivial. Without
loss of generality, we assume that c∗ ≥ 0. Also, we can assume that U∗(0, t) ≥
w(α0, t), ∀t ∈ [0, ω], since otherwise, U∗(·, t) �≡ w(α0, t), so that U∗ is not
trivial. Under these assumptions, we have that

lim
j→∞

CMj ≥ 0, lim
j→∞

min
t∈[0,ω]

{VMj (0, t)− w(α0, t)} ≥ 0.

We shall use Lemma 10.1.2(2) to show that U∗ is nontrivial.

Since wα = exp
(∫ t

0
fu(w(α, s), s)ds

)
> 0, it follows that
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K = max

{
|wαα(α, t)|
wα(α, t)

+ 1 : α ∈ [α−, α+], t ∈ [0, ω]

}

is finite. Take δ = min
{

1
16K , α

+−α0

8

}
. Let ζ(·) ∈ C∞([0,∞),R) be a function

such that

ζ(s) = α0 + (s+
√
δ)2 − 2δ if s ∈ [0,

√
δ],

0 ≤ ζ′(s) < 5
√
δ, α0 + 2δ ≤ ζ(s) < α0 + 7δ, |ζ′′(s)| ≤ 2 if s ∈ [

√
δ,∞).

For any δ1 > 0, let ŵ(α, t) be the solution to

ŵt = f(ŵ, t)− δ1

(
max{0, ŵ − w(α0 + δ, t)}

)3

, ŵ(α, 0) = α.

Clearly, ŵ(α, t) = w(α, t), ∀α ≤ α0 + δ. Since P (α) > α, ∀α ∈ (α0, α+),
for every positive δ1 sufficiently small, ŵ(α, T ) > α, ∀α ∈ (α0, α0 + 7δ]. In
addition, by taking smaller δ1 if necessary, we have that

max
α∈[α0−δ,α0+7δ],t∈[0,ω]

|ŵαα(α, t)|
ŵα(α, t)

≤ K.

We henceforth fix such δ1 > 0. Also, we set

δ2 := min
t∈[0,ω]

{ŵ(α0 + 2δ, t)− ŵ(α0 + δ, t)}.

Let ε be a small positive constant to be determined. Consider the function
V̂ (ξ, t) = ŵ(ζ(εξ), t). One can calculate

LCMj
(V̂ ) = −δ1

(
max{0, ŵ(ζ, t)− ŵ(α0 + δ, t)}

)3

− ŵα

(
ε2ζ′′ + εCMjζ′ + ε2

ŵαα

ŵα
(ζ′)2

)
,

where ŵ is evaluated at (ζ(εξ), t). We want to show that LCMj
(V̂ ) < 0 in

[0,∞)× [0, ω] by considering two cases: (i) ζ ≥ α0 + 2δ; (ii) ζ < α0 + 2δ.
In the first case,

LCMj
(V̂ ) ≤ −δ1δ32 + εŵα

(
2ε− 5

√
δmin{CMj , 0}+ 25εKδ

)

≤ −δ1δ32 − Cε < 0

if we take ε small enough.
In the second case, with ε fixed as above, let s := εξ ∈ [0,

√
δ), so that

ζ′′ = 2 and ζ′ = 2(s+
√
δ) < 4

√
δ. It then follows that

LCMj
(V̂ ) ≤ −ŵαε

(
2ε+ 4min{CMj , 0}

√
δ − 16εKδ

)
< 0
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if we take j large enough such that CMj ≥ − ε
8
√
δ
.

In summary, there exist ε > 0 and J > 0 such that LCMj
(V̂ ) < 0 in

[0,∞)× [0, ω] for all j ≥ J .
Finally, observe that for all t ∈ [0, ω],

V̂ (0, t) = ŵ(ζ(0), t) = ŵ(α0 − δ, t) = w(α0 − δ, t) < VMj (0, t)

if we take j large enough. Also, for any M ∈ [1,∞),

V̂ (M, t) ≤ ŵ(α0 + 7δ, t) < w(α0 + 7δ, t) < W+(t).

Furthermore, if V̂ (ξ, 0) > α0, then ζ = ζ(εξ) > α0, so that

V̂ (ξ, 0) = ŵ(ζ(εξ), 0) = ζ(εξ) < ŵ(ζ(εξ), ω) = V̂ (ξ, ω).

Thus, by Lemma 10.1.2 (2), for all j large enough, VMj ≥ V̂ in [0,Mj]× [0, ω].

Consequently, U∗ ≥ V̂ in [0,∞) × [0, ω], and therefore U∗ cannot be trivial.
This completes the proof of Theorem 10.1.1.

10.2 Attractivity and Uniqueness of Traveling Waves

In this section we study the asymptotic behavior, as t → ∞, for the initial
value problem (10.1) for a large class of initial conditions g. The analysis can
be naturally divided into two parts. In the first part one shows that a solution
develops, after some time, a wave-like profile. In the second part, one shows
that the solution converges to a translate of the monotone traveling wave
solution claimed in Theorem 10.1.1.

Let X := BUC(R,R) be the Banach space of all bounded and uniformly
continuous functions from R to R with L∞-norm, and let X+ := {g ∈ X :
g(z) ≥ 0, z ∈ R} be its positive cone. In the sequel we shall denote by Ug(ξ, t)
the solution of

Lc(Ug) := Ug
t − cUg

ξ − Ug
ξξ − f(Ug, t) = 0 in R× (0,∞),

Ug(·, 0) = g(·) on R,
(10.10)

where c is the speed of the traveling wave solution of (10.9). Clearly, the
solution u in (10.1) is given by u(z, t) = Ug(z− ct, t). We set ‖ ·‖ = ‖ ·‖L∞(R).

Lemma 10.2.1. Let (c, U) be a solution of (10.9) and let Ug(ξ, t) be the so-
lution of (10.10) for g ∈ X .

(1) If there exist constants α1 ∈ (α+,∞) and α2 ∈ (α−, α0) such that

g(ξ) ≤ α1 in R, g(ξ) ≤ α2 in (−∞, 0), (10.11)

then for any ε > 0, there exist a positive number ẑ and a positive integer
k̂ such that

Ug(ξ, k̂ω) ≤ U(ξ + ẑ, 0) + ε, ∀ ξ ∈ R.
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(2) If g ∈ X satisfies

lim sup
z→−∞

g(z) < α0, lim inf
z→∞ g(z) > α0, (10.12)

then for every ε > 0, there exist a positive number ẑ = ẑ(ε, g) and a

positive integer k̂ = k̂(ε, g) such that

U(ξ − ẑ, 0)− ε ≤ Ug(ξ, k̂ω) ≤ U(ξ + ẑ, 0) + ε, ∀ ξ ∈ R. (10.13)

Proof. (1) Set ζ(s) = 1
2 [1 + tanh s

2 ], w1(t) = w(2α1 − α2, t), and w2(t) =
w(α2, t), where w(α, t) is the solution of (10.2). Define

ĉ = c+ 1 + 1
2 sup{(w1(t)− w2(t))|fuu(θ, t)| : θ ∈ [w2(t), w1(t)], t ∈ [0,∞)}

and
V (ξ, t) = w1(t)ζ(ξ + ĉt) + w2(t)[1− ζ(ξ + ĉt)].

Then, by (10.11), V (·, 0) ≥ g(·). The same computation as in the proof of
Lemma 10.1.3 shows that Lc(V ) > 0 in R×[0,∞). A comparison principle then
yields Ug(ξ, t) ≤ V (ξ, t) in R × [0,∞). The first assertion of the lemma thus
follows from the fact that limk→∞ w2(kω+ t) = W−(t), limk→∞ w1(kω+ t) =
W+(t).

(2) The second assertion follows from (1) and a similar estimate on the
lower bound of the solution.

Lemma 10.2.2. Let (c, U) be a solution of (10.9) and g ∈ X .

(1) There exist positive constants ε0,K0, ρ0 such that if for some ε ∈ (0, ε0]
and ẑ ∈ R,

g(·) ≤ U(·+ ẑ, 0) + ε
(
or g(·) ≥ U(· − ẑ, 0)− ε

)
,

then for all t ≥ 0,

Ug(·, t) ≤ U(·+ ẑ +K0ε, t) +K0εe
−ρ0t

(
or Ug(·, t) ≥ U(· − ẑ −K0ε, t)−K0εe

−ρ0t
)
.

(2) There exists a positive constant K1 such that if ‖g(·) − U(·, 0)‖ ≤ ε for
some ε ∈ (0, ε0], then

‖Ug(·, t)− U(·, t)‖ ≤ K1ε, ∀ t ≥ 0.

Proof. We need only prove (1), since (2) is a direct consequence of (1). With-
out loss of generality, we assume that ẑ = 0.

Let W±(t) := w(α±, t) and define
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ν± = − 1

ω

∫ ω

0

fu(W
±(t), t) dt,

a±(t) = exp

(
ν±t
2

+

∫ t

0

fu(W
±(τ), τ) dτ

)

.

(10.14)

Since P ′(α±) = exp
(∫ ω

0 fu(W
±(t), t) dt

)
< 1, we have ν± > 0 and a±(ω) =

exp
(
− ν±ω

2

)
< 1. Let I±t,η := [W±(t)− η,W±(t) + η] and define

δ0 :=
sup

{
η > 0 : |fu(u, t)− fu(W

±(t), t)| ≤ ν±/2, ∀t ∈ [0, ω], u ∈ I±t,η
}

2‖a+(·)‖C0([0,ω]) + 2‖a−(·)‖C0([0,ω])
,

ξ0 = inf

{

ξ̂ ≥ 1 : |U(±ξ, t)−W±(t)| ≤ δ0
2
, ∀ ξ ∈ [ξ̂,∞), t ∈ [0, ω]

}

.

(10.15)
Since U(±∞, t) = W±(t) uniformly for t ∈ [0, ω], both δ0 and ξ0 are well
defined.

Let ζ(·) ∈ C2(R,R) be a function satisfying

ζ(s) = 1 in [3,∞), ζ(s) = 0 in (−∞, 0],

0 ≤ ζ′(s) ≤ 1 and |ζ′′(s)| ≤ 1 in R.

Define

A(ξ, t) = ζ(ξ)a+(t) + (1− ζ(ξ))a−(t), (10.16)

B(t) =
∫ t

0 max{a+(τ), a−(τ)} dτ, (10.17)

K =
(
ν+ + ν− + 1 + |c|+ 2‖fu‖

)/(
min

t∈[0,ω],ξ∈[−ξ0,ξ0]
Uξ(ξ, t)

)
, (10.18)

V (ξ, t) = U(ξ +KεB(t), t) + εA(ξ, t),

where ‖fu‖ = max{|fu(u, t)| : t ∈ [0, ω], u ∈ [W−(t) − 1,W+(t) + 1]}. Note
that

a±(t) ≤ C exp

(

−ν±t
2

)

, ∀t ∈ [0,∞),

where C = supt∈[0,ω] exp(ν
±t +

∫ t

0
fu(W

±, τ) dτ). It follows that as t → ∞,

a±(t) and ‖A(·, t)‖C0(R) approach zero exponentially fast, and B(t) is uni-
formly bounded. We take ε0 = δ0/(2KB(∞)). We want to show that
Ug(·, ·) ≤ V (·, ·) in R× [0,∞).

When t = 0, V (·, 0) = U(·, 0) + ε ≥ g(·) = Ug(·, 0). Also, we can calculate

Lc(V ) = KεBtUξ + ε[At − cAξ −Aξξ − Afu(U + εθA, t)]

for some θ(ξ, t) ∈ (0, 1).
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Now we claim that LcV ≥ 0, ∀ε ∈ (0, ε0]. We consider three cases: (i)
ξ ∈ [ξ0,∞), (ii) ξ ∈ (−∞,−ξ0], and (iii) ξ ∈ [−ξ0, ξ0].

In the first case, ζ = 1, Aξ = Aξξ = 0, BtUξ > 0, |fu(U + εθA, t) −
fu(W

+(t), t)| ≤ ν+

2 , and At = A[ ν
+

2 + fu(W
+(t), t)]. It then follows that

LcV ≥ 0 in [ξ0,∞)× [0,∞). Similarly, LcV ≥ 0 in the second case.
In the third case, i.e., ξ ∈ [−ξ0, ξ0], we have that

|At − cAξ −Aξξ −Afu(U + εθA, t)| ≤ ā(t)(ν+ + ν− + 2‖fu‖+ |c|+ 1),

where ā(t) := max{a+(t), a−(t)}. On the other hand, we have that

BtUξ ≥ max{a+(t), a−(t)}min{Uξ : t ∈ [0, ω], ξ ∈ [−ξ0, ξ0]}.

Hence, by the definition of K, LcV ≥ 0 in [−ξ0, ξ0]× [0,∞).
In conclusion, LcV ≥ 0 in R× [0,∞). Therefore, by the comparison prin-

ciple, Ug ≤ V in R× [0,∞). The assertion of the lemma thus follows.

Theorem 10.2.1. Let (c, U) be a solution of (10.9) and let u(z, t, g) denote
the solution of (10.1). Then for any g ∈ X satisfying (10.12), there exists
sg ∈ R such that limt→∞ |u(z, t, g) − U(z − ct + sg, t)| = 0 uniformly for
z ∈ R. Moreover, any periodic traveling wave solution of (10.1a) connecting
w(α±, t) is a translation of U .

Proof. Let V = [α−, α+]X , and define Φt(g) := Ug(·, t), g ∈ V, t ≥ 0. Then
Φt(·) is the periodic semiflow generated by periodic equation (10.10). Let S :
V → V be the Poincaré map associated with Φt(·); that is, S(g) := Φω(g) =
Ug(·, ω), g ∈ V . Clearly, Sn(g) = Ug(·, nω), ∀n ≥ 0. Then S : V → V is

monotone. By Lemmas 10.2.1 and 10.2.2(1), there exist a positive integer k̂

and a large number ẑ such that for all (ξ, t) ∈ R× [k̂ω,∞),

U(ξ − ẑ −K0ε0, t)−K0ε0e
−ρ0t ≤ Φt(g)(ξ) ≤ U(ξ + ẑ +K0ε0, t) +K0ε0e

−ρ0t.
(10.19)

Notice that {Sn(g)}∞n=1 is a bounded sequence in C1(R,R), and that U(ξ, t)
approaches W±(t) as ξ → ±∞, uniformly in t ∈ [0, ω]. Consequently, the
positive orbit γ+(g) := {Sn(g) : n ≥ 0} is precompact in X , and hence its
omega limit set ω(g) is nonempty, compact, and invariant (i.e., S(ω(g)) =
ω(g)). Letting a = ẑ + K0ε0 and t = nω → ∞ in (10.19), we then get
ω(g) ⊂ I := [U(· − a, 0), U(·+ a, 0)]X . Define h(s) = U(·+ s, 0), ∀s ∈ [−a, a].
Then h is a monotone homeomorphism from [−a, a] onto a subset of I. By
Lemma 10.2.2(2), each h(s) is a stable fixed point for S : V → V . Clearly, each
φ ∈ I satisfies (10.12), and hence Lemmas 10.2.1 and 10.2.2(1), as applied
to φ, imply that γ+(φ) is precompact. To get the convergence of γ+(g), it
then suffices to verify condition (3a) in Theorem 2.2.4. Assume that U(· +
s0, 0) < ω(φ0) for some s0 ∈ [−a, a) and φ0 ∈ I. Then for each φ ∈ ω(φ0),
U(·+ s0, 0) ≤ φ(·) and U(·+ s0, 0) �≡ φ(·). By the strong maximum principle,
U(ξ + s0, t) < Φt(φ)(ξ), ∀ξ ∈ R, t > 0, and hence, letting t = ω, we get
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U(ξ + s0, 0) < S(φ)(ξ), ∀ξ ∈ R. By the invariance of ω(φ0) for S, it then
follows that

U(ξ + s0, 0) < φ(ξ), ∀ξ ∈ R, ∀φ ∈ ω(φ0).

Since limξ→±∞ Uξ(ξ, 0) = 0, we can choose a large positive constant b ∈ (a,∞)

such that δ̂ := sup|ξ|≥b−a Uξ(ξ, 0) ≤ 1
4K0

. By the compactness of ω(φ0), there
exists a number σ0 ∈ (s0, a) such that

U(ξ + σ0, 0) < φ(ξ), ∀ξ ∈ [−b, b], ∀φ ∈ ω(φ0).

For each φ ∈ ω(φ0), there is a sequence nj → ∞ such that Snj(φ0) → φ, as

j → ∞. Fix an integer nk such that ‖Snk(φ0)− φ‖ < δ̂(σ0 − s0). Since

φ(ξ) − U(ξ + σ0, 0) > 0, ∀ξ ∈ [−b, b],

and
φ(ξ)− U(ξ + σ0, 0) ≥ U(ξ + s0, 0)− U(ξ + σ0, 0), ∀ξ ∈ R,

we have

Snk(φ0)(ξ) − U(ξ + σ0, 0) ≥ −‖Snk(φ0)− φ‖ + φ(ξ)− U(ξ + σ0, 0)

≥ −δ̂(σ0 − s0)− sup
|z|≥b

|U(z + s0, 0)− U(z + σ0, 0)|

≥ −2δ̂(σ0 − s0), ∀ξ ∈ R.

Thus, by Lemma 10.2.2 (1),

Φt(S
nk(φ0)) ≥ U(·+ σ0 − 2K0δ̂(σ0 − s0), t)− 2K0δ̂(σ0 − s0)e

−ρ0t, ∀t > 0.

Letting t = (nj − nk)ω and j → ∞, we then get

φ(·) ≥ U(·+ σ0 − 2K0δ̂(σ0 − s0), 0) ≥ U(·+ (σ0 + s0)/2, 0).

Let s1 = 1
2 (σ0 + s0) ∈ (s0, σ0). Thus ω(φ0) ≥ U(·+ s1, 0). By Theorem 2.2.4,

there exists sg ∈ (−a, a) such that ω(g) = h(sg) = U(· + sg, 0). Then
limn→∞ Sn(g) = U(· + sg, 0), and hence limt→∞ ‖Φt(g) − U(· + sg, t)‖ = 0.
Since u(z, t, g) = Φt(g)(z − ct), we have

lim
t→∞(u(z, t, g)− U(z − ct+ sg, t)) = 0

uniformly for z ∈ R.
Let Ũ(z − c̃t, t) be a periodic traveling wave solution of (10.1a) with

Ũ(±∞, t) = w(α±, t). Clearly, Ũ(·, 0) satisfies (10.12). By what we have
proved above, there exists s̃ ∈ R such that

lim
t→∞ ‖Ũ(· − c̃t, t)− U(· − ct+ s̃, t)‖ = 0.

By a change of variable ξ = z − ct, it then follows that
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lim
t→∞ ‖Ũ(·+ (c− c̃)t, t)− U(·+ s̃, t)‖ = 0,

and hence, letting t = nω, we get

lim
n→∞ Ũ(·+ (c− c̃)nω, 0) = U(·+ s̃, 0).

Since Ũ(±∞, 0) = α± and U(·, 0) is strictly increasing on R, we deduce that
c = c̃, and hence Ũ(·, 0) = U(·+ s̃, 0). Thus, Ũ(·, t) = Φt(Ũ(·, 0)) = Φt(U(· +
s̃, 0)) = U(·+ s̃, t), ∀t ≥ 0.

10.3 Exponential Stability of Traveling Waves

In Section 10.1 we established the existence of a traveling wave solution
(c, U(ξ, t)) for (10.1a). Since (10.1a) is translation invariant in z, this trav-
eling wave solution provides a one-dimensional manifold of special solutions
to (10.1a):

M̃ = {u(z, t) = U(z − ct− z0, t) : z0 ∈ R}.

By Theorem 10.2.1, M̃ attracts a large class of solutions of (10.1). In this
section we will show that the convergence is also uniformly exponential with
respect to this class of solutions via spectral analysis.

As in the proof of Theorem 10.2.1, we use the traveling coordinates (ξ, t),
where ξ = z − ct, and consider the resulting periodic-parabolic equation:

vt − cvξ − vξξ − f(v, t) = 0, ξ ∈ R, t > 0. (10.20)

Thus, the original problem now can be recast as the stability of the manifold
of stationary states:

M := {v(ξ, t) = U(ξ + s, 0) : s ∈ R}

in the class of solutions of (10.20). Notice that any element in M is a fixed
point of the Poincaré map S : V = [α−, α+]X → V associated with (10.20).
Hence M is an invariant manifold of S. We are interested in the linearization
of S about points in M. Without loss of generality, we need only consider the
point U0 = U(·, 0). One can easily show that the derivative S′(U0) is given by
S′(U0)v = H(·, ω), where H(ξ, t) is the solution to

Ht − cHξ −Hξξ − fu(U0(ξ, t), t)H = 0, ξ ∈ R, t > 0,

H(·, 0) = v(·).
(10.21)

Lemma 10.3.1. Let

ν± = − 1

ω

∫ ω

0

fu(W
±(t), t)dt, ν0 = min{ν+, ν−}.
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Then the essential spectrum of S′(U0) is contained in the disk {λ ∈ C : |λ| ≤
e−ν0ω}. Thus, if λ is in the spectrum of S′(U0) and |λ| > e−ν0ω, then λ
is an eigenvalue, and for any r > e−ν0ω, there are only a finite number of
eigenvalues of S′(U0) in {λ ∈ C : |λ| ≥ r}.

Proof. Let ζ(·) ∈ C∞(R,R) be a function satisfying ζ(ξ) = 0 for ξ ≤ −1,
ζ(ξ) = 1 for ξ ≥ 1, and ζ′ ≥ 0 in R. Consider an operator K defined, for every
bounded v, by Kv = Ĥ(·, ω), where Ĥ(ξ, t) is the solution to

Ĥt − cĤξ − Ĥξξ + [ν+ζ + ν−(1 − ζ)]Ĥ = 0, ξ ∈ R, t > 0,

Ĥ(·, 0) = v(·).

Since ν+ζ + (1− ζ)ν− ≥ ν0, the maximum principle shows that

‖Ĥ(·, t)‖L∞(R) ≤ e−ν0t‖v‖L∞(R), ∀t > 0.

In particular, ‖Kv‖L∞(R) ≤ e−ν0ω‖v‖L∞(R). Therefore, the spectral radius of
K is at most e−ν0ω.

To connect the essential spectrum of S′(U0) with that of K, we make the
following transformation for the solution of (10.21):

H(ξ, t) = H̄(ξ, t)P (ξ, t),

where
P (ξ, t) = p+(t)ζ(ξ) + p−(t)(1 − ζ(ξ)),

p±(t) = exp
( ∫ t

0

fu(W
±(τ), τ)dτ + ν±t

)
.

Note that p+(t), p−(t), P (·, t) are positive and periodic in t, and p±(ω) =
1, P (·, ω) ≡ 1. It then follows that S′(U0)v = H(·, ω) = H̄(·, ω). Direct
calculation shows that H̄ satisfies

H̄t − c̄(ξ, t)H̄ξ − H̄ξξ − q̄H̄ = 0,

where

c̄(ξ, t) = c+ c̃(ξ, t), c̃(ξ, t) = 2(p+ − p−)ζ′/P,

q̄ = fu(U0, t) + [c(p+ − p−)ζ′ + (p+ − p−)ζ′′ − p+t ζ − p−t (1− ζ)]/P

= −ν+ζ − ν−(1− ζ) + q̃(ξ, t),

q̃(ξ, t) = (q̃1(ξ, t) + q̃2(ξ, t) + q̃3(ξ, t)) /P,

q̃1(ξ, t) = [fu(U0, t)− fu(W
+(t), t)]p+ζ,

q̃2(ξ, t) = [fu(U0, t)− fu(W
−(t), t)]p−(1− ζ),

q̃3(ξ, t) = ζ(1 − ζ)(ν+ − ν−)(p− − p+) + (p+ − p−)(cζ′ + ζ′′).

Notice that c̃ ≡ 0 if |ξ| ≥ 1 and q̃ approaches zero exponentially fast as
|ξ| → ∞. One can show that K − S′(U0) is compact from X into X by using
the fact that parabolic equations are smoothing.
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Now by Weyl’s well-known result, the essential spectrum of S′(U0) is the
same as that of K. Hence, ρ̃(S′(U0)), the radius of the essential spectrum of
S′(U0), is not bigger than e−ν0ω.

Lemma 10.3.2. Assume that λ is an eigenvalue of S′(U0) with eigenfunc-
tion v. If v �∈ span{Uξ(·, 0)}, then |λ| < 1.

Proof. Assume that λ is an eigenvalue with eigenfunction v ∈ X and v �∈
span{Uξ(·, 0)}. Denote by H(ξ, t) the solution of (10.21) with initial value v.
Let

h(ξ, t) = eμtH(ξ, t), where μ = − 1

ω
Logλ.

Then an easy calculation shows that (μ, h) satisfies

ht − chξ − hξξ − fu(U0(ξ, t), t)h = μh, ξ ∈ R, t > 0,

h(·, 0) = h(·, ω).
(10.22)

Hence (10.22) can be viewed as the spectral problem associated with the
operator

L := ∂t − c∂ξ − ∂ξξ − fu (U0(ξ, t), t) (10.23)

in an appropriate space of periodic functions.
The eigenvalue λ of the linearized period map S′(U0) is called a charac-

teristic multiplier, while the associated μ is called a characteristic exponent.
Since Log is multi-valued, it is easy to see that if (μ, h) is a characteristic

exponent/eigenfunction pair, so is (μ+ 2πin
ω , he

2πint
ω ), where i =

√
−1. Notice

that all these exponents produce the same multiplier.
Clearly, to show that |λ| < 1, we need only show that Re(μ), the real part

of μ, is positive. Our proof is by contradiction. Assume that μ1 := Re(μ) ≤ 0.
Consider the polar representation of h: h = reiθ, where both r and θ are real
and r ≥ 0. In the set where r does not vanish, θ is well defined and is smooth.
Substituting this polar representation into (10.22) and taking the real part,
we obtain

Lr = (μ1 − θ2ξ )r ≤ 0

on the set where r > 0.
We first claim that r ≤ MUξ for some M large enough. For this purpose,

consider the periodic functions

Q±(ξ, t) := eγ
±ξ exp

(∫ t

0

fu(W
±(τ), τ)dτ + ν±t

)

,

where γ± = (−c±
√
c2 + 2ν±)/2. An easy calculation shows that for some ξ0

large enough,

LQ± = Q±[fu(W±(t), t)− fu(U0, t) + ν± − cγ± − (γ±)2]

= Q±[fu(W±(t), t)− fu(U0, t) + ν±/2] > 0
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for all |ξ| ≥ ξ0 and t ∈ R. Now let M1 be a large constant such that
M1Uξ(±ξ0, t) > r(±ξ0, t), ∀t ∈ [0, ω]. We claim that r < M1Uξ in [ξ0,∞) ×
[0, ω]. In fact, if this is not true, then since ν+ > 0, we have Q+ → ∞ as
ξ → ∞, and so there exists δ ≥ 0 and (ξ1, t1) ∈ (ξ0,∞) × [0, ω) such that
r ≤ M1Uξ + δQ+ in [ξ0,∞) × [0, ω] and the equal sign holds at (ξ1, t1). Set
w = M1Uξ + δQ+− r. Then Lw > 0 in [ξ0,∞)× [0, 2ω]∩{r �= 0}. In addition,
w ≥ 0 in [ξ0,∞) × [0, 2ω] and w > 0 on {r = 0}. Hence, applying locally the
Harnack inequality to each of the components where r does not vanish, we
have that w > 0 in [ξ0,∞)× (t1, t1 + ω]. This contradicts, by the periodicity
of w, the assumption that 0 = w(ξ1, t1) = w(ξ1, t1 + ω). Hence, r < M1Uξ

in [ξ0,∞)× [0, ω]. Similarly, this inequality holds also on (−∞,−ξ0]× [0, ω].
Thus, there exists a positive M such that r ≤ MUξ in R× [0, ω].

Now let M0 be the minimum real number such that r ≤ M0Uξ in R ×
[0, ω]. Consider the case that r �≡ M0Uξ. Then, applying locally Harnack’s
inequality in the set where r does not vanish, we obtain r < M0Uξ in R ×
[0, ω]. Consequently, there exists ε ∈ (0,M0) such that r < (M0 − ε)Uξ in
[−ξ0, ξ0] × [0, ω]. Then as before, utilizing the function Q±, we can conclude
that r < (M0 − ε)Uξ in R × [0, ω], which contradicts the definition of M0.
Hence r ≡ M0Uξ > 0 in R× [0, ω]. Consequently, (μ1−θ2ξ)r ≡ 0. Thus, μ1 = 0
and θξ ≡ 0. Using the θ equation, we then conclude that θt ≡ 0, and hence θ
is a constant function. That is, h = reiθ is a multiple of Uξ, which contradicts
the assumption that h �∈ span{Uξ}. This contradiction shows that Re(μ) > 0,
i.e., |λ| < 1.

Theorem 10.3.1. There exists a positive constant μ > 0 such that for every
g ∈ X satisfying (10.12), the solution u(z, t, g) of (10.1) satisfies

|u(z, t, g)− U(z − ct+ sg, t)| ≤ Cge
−μt, ∀ z ∈ R, t ≥ 0,

for some constants sg ∈ R and Cg > 0.

Proof. Notice that v = Uξ(·, 0) is an eigenfunction of S′(U0) with eigenvalue
1. This is a simple geometric fact, since Uξ(·, 0) is the tangent to the one-
dimensional invariant manifold M at U(·, 0). By Lemmas 10.3.1 and 10.3.2,
it follows that 1 is a simple eigenvalue of S′(U0), and the rest of the spectrum
of S′(U0) is contained in a disk of radius ρ̃(S′(U0)) strictly less than 1. Thus,
by a well-known result (see [150, Section 9.2]), the manifold M is locally
exponentially stable with asymptotic phase for S : V → V . By the fact that
Φt(·) : V → V is an ω-periodic semiflow, together with Theorem 10.2.1, it
then follows that there exists a positive constant μ > 0 such that for every
g ∈ X satisfying (10.12), Φt(g) satisfies

‖Φt(g)− U(·+ sg, t)‖ ≤ Cge
−μt, ∀ t ≥ 0,

for some constants sg and Cg. In addition, the exponent μ can be taken
arbitrarily close to − ln(ρ̃(S′(U0))).
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10.4 Autonomous Case: A Spruce Budworm Model

In this section we consider the autonomous case of problem (10.1), i.e.,
f(u, t) = f(u), ∀(u, t) ∈ R

2. Biologically, this models a temporally homo-
geneous environment. Then we have the following problem:

ut − uzz − f(u) = 0, z ∈ R, t > 0,

u(z, 0) = g(z), z ∈ R,
(10.24)

and the structure hypothesis on f reduces to

(H′) f(·, ·) ∈ C2,1(R × R,R), and f admits three zeros α− < α0 < α+

such that α0 is the unique zero of f in (α−, α+) and f ′(α±) < 0 and
f ′(α0) > 0.

Let u(t, u0) be the solution to the scalar autonomous equation

du

dt
= f(u), t > 0,

u(0) = u0 ∈ R.
(10.25)

Then (10.25) generates a strongly monotone autonomous semiflow

Φ0
t (·) := u(t, ·) : [α−, α+] → [α−, α+].

Clearly, α± are two linearly stable equilibria of Φ0
t (·), and α0 is a linearly

unstable equilibrium of Φ0
t (·). By the continuous-time version of the Dancer–

Hess connecting orbit lemma, it easily follows that limt→∞ u(t, u0) = α− for
each u0 ∈ [α−, α0), and limt→∞ u(t, u0) = α+ for each u0 ∈ (α0, α+].

Theorem 10.4.1. Let (H′) hold. Then (10.24a) admits a monotone traveling
wave solution U(z − ct) connecting α− and α+ such that any traveling wave
solution of (10.24a) connecting α− and α+ is a translation of U . Moreover,

the sign of the wave speed c is opposite to that of
∫ α+

α− f(u)du, and there exists
a positive constant μ > 0 such that for every g ∈ X satisfying (10.12), the
solution u(z, t, g) of (10.24) satisfies

|u(z, t, g)− U(z − ct+ sg)| ≤ Cge
−μt, ∀z ∈ R, t ≥ 0,

for some constants sg ∈ R and Cg > 0.

Proof. Let f(u, t) := f(u), ∀(u, t) ∈ R
2. Clearly, f(u, ·) is ω-periodic for any

ω > 0. By Theorem 10.1.1, (10.24) has a monotone 1-periodic traveling wave
solution U(z − ct, t) connecting α− and α+, and for any integers m,n > 0,
(10.24) also has a monotone n

m -periodic traveling wave solution Ū(z − c̄t, t)
connecting α− and α+. Since both U(z − ct, t) and Ū(z − c̄t, t) are monotone
n-periodic traveling wave solutions, Theorem 10.2.1 with ω = n implies that
c = c̄ and for some s ∈ R, U(ξ, t) = Ū(ξ + s, t), ∀ξ ∈ R, t ∈ R. Thus, for each
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ξ ∈ R, U(ξ, ·) is also n
m -periodic, which implies U(ξ, t) = U(ξ), ∀ξ ∈ R, t ∈ R.

The exponential stability with phase shift then follows from Theorem 10.3.1.
Note that U(ξ) satisfies

cUξ + Uξξ + f(U(ξ)) = 0, ∀ξ ∈ R. (10.26)

Multiplying equation (10.26) by Uξ > 0 and integrating from−∞ to∞, we get

∫ ∞

−∞
[U ′U ′′ + c(U ′)2 + f(U)U ′]dξ = 0.

Since U ′(±∞) = 0, U(±∞) = α±, this can be integrated to give

c

∫ ∞

−∞
(U ′)2dξ = −

∫ ∞

−∞
f(U)U ′dξ = −

∫ α+

α−
f(U)dU,

and hence the sign of c is opposite to that of
∫ α+

α− f(u)du.

A practical model that exhibits two positive linearly stable steady state
populations is that for the spruce budworm, which can, with ferocious ef-
ficiency, defoliate the balsam fir. Ludwig et al. [238] presented a budworm
population model

dN

dt
= rBN

(

1− N

KB

)

− BN2

A2 +N2
. (10.27)

Here rB is the linear birth rate of the budworm, and KB is the carrying
capacity, which is related to the density of foliage available on the trees. The

term BN2

A2+N2 with A,B > 0 represents predation, generally by birds. If we
introduce nondimensional quantities by

u =
N

A
, r =

ArB
B

, q =
KB

A
, τ =

Bt

A
, (10.28)

then equation (10.27) becomes

du

dτ
= f(u; r, q) := ru

(

1− u

q

)

− u2

1 + u2
. (10.29)

Clearly, the positive steady states are solutions of

r

(

1− u

q

)

=
u

1 + u2
.

That is, the positive equilibria are given by the intersections on the (u, v)-
plane of the straight line v = r(1 − u/q) and v = u

1+u2 . It easily follows that
there is a domain in the r, q parameter space where there are exactly three
positive equilibria α− < α0 < α+ and f ′(α±) < 0 and f ′(α0) > 0.



10.5 Notes 283

Field observation shows that there are three possible positive steady states
for the population. The smallest steady state α− is the refuge equilibrium,
while α+ is the outbreak equilibrium. From a pest control point of view, we
should try to keep the population at a refuge state rather than allow it to reach
an outbreak situation. In order to take into account the spatial dispersal of
the budworm, we consider the reaction–diffusion model

ut − uzz − f(u; r, q) = 0, z ∈ R, t > 0. (10.30)

By Theorem 10.4.1, (10.30) has a monotone traveling wave U(z − ct) con-
necting α− and α+, and it is globally asymptotically stable with phase shift.
If c < 0, then u → α+ as t → ∞, and hence the outbreak spreads into the
refuge area. On the other hand, if c > 0, then u → α− as t → ∞, and hence
the outbreak is eliminated. Now there is a practical question:

If a budworm outbreak occurs and is spreading, how can we alter the lo-
cal conditions so that the infestation or outbreak wave is either contained or
reversed?

From the above, we must thus locally change the budworm growth dynam-
ics so that the wave speed c becomes positive. By Theorem 10.4.1, we need
to require

∫ α+

α−
f(u)du =

∫ α0

α−
f(u)du+

∫ α+

α0

f(u)du < 0.

Clearly,
∫ α0

α− f(u)du < 0 and
∫ α+

α0 f(u)du > 0. Thus c > 0 if α0 and α+ are
very close together. Note that the curve v = u

1+u2 is fixed on the (u, v)-plane,

but we can change the straight line v = r(1−u/q). Thus we can make α0 and
α+ closer by reducing the dimensionless parameter q. Recall that q = KB

A .
So a practical reduction in q could be made by, for example, spraying a strip
to reduce the carrying capacity of the tree foliage. In this way an infestation
“break” would be created, and hence the wave speed c in the above analysis
is no longer negative. A more practical question, of course, is how wide such
a “break” must be to stop the outbreak getting through, which needs careful
modeling consideration.

10.5 Notes

All results in Sections 10.1–10.3 are due to Alikakos, Bates and Chen [8], and
the proofs of them are modified from [8]. In the proof of Theorem 10.1.1, we
did not use the uniqueness of solutions to equation (10.6). In the proof of
Theorem 10.2.1, we first applied Theorem 2.2.4 to prove the global attrac-
tivity with phase shift of the given monotone periodic traveling wave, and
then obtain easily the uniqueness of periodic traveling waves. The biological
interpretations for traveling waves in a spruce budworm model in Section 10.4
is adapted from Murray [253, Section 11.5].
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There are many investigations on traveling waves in bistable nonlineari-
ties. The global exponential stability in Theorem 10.4.1 is due to Fife and
McLeod [116]. Theorem 10.4.1 is a special case of Chen [59] concerning the
existence, uniqueness, and asymptotic stability of traveling waves in nonlocal
evolution equations. The results on periodic traveling waves in [8] were also
extended to a more general periodic nonlocal integro–differential model by
Bates and Chen [30]. Schaaf [301] studied the existence of traveling waves
in delayed reaction–diffusion equations, and the global exponential stability
and uniqueness were proved by Smith and Zhao [338]. Shen [306, 307] inves-
tigated these problems for almost periodic traveling wave solutions. Ogiwara
and Matano [265] discussed the monotonicity and stability with phase shift of
pseudo-traveling waves for certain class of quasilinear diffusion equations and
systems in the setting of order-preserving dynamical systems under a group
action.

A general theory of bistable waves for monotone semiflows was developed
by Fang and Zhao [111], where the existence of bistable waves was also ob-
tained for time-periodic and cooperative reaction–diffusion systems. This the-
ory and Theorem 2.2.4 were used to study the existence and global stability of
bistable waves in Zhang and Zhao [426] for a reaction–diffusion competition
model with seasonal succession and in Bao andWang [28] for a periodic Lotka–
Volterra competition system. The dynamical systems approach via Theo-
rem 2.2.4 to the global stability of traveling waves was employed in Xu and
Zhao [416] for a reaction–diffusion system modeling man–environment–man
epidemics; in Jin and Zhao [196] for a class of degenerate reaction–diffusion
systems; and in Ding, Hamel and Zhao [99] for scalar reaction–diffusion equa-
tions in a periodic habitat. Recently, the existence and qualitative properties
of transition fronts were also investigated in Ding, Hamel and Zhao [98] for
spatially periodic reaction–diffusion equations with bistable nonlinearities.
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The Theory of Basic Reproduction Ratios

The basic reproduction number (ratio) R0 is one of the most important con-
cepts in population biology, see, e.g., [16, 94, 148, 149, 78] and the references
therein. In epidemiology, R0 is the expected number of secondary cases pro-
duced, in a completely susceptible population, by a typical infective individual
during the infectious period, and R0 is also a commonly used measure of the ef-
fort needed to control an infectious disease. Diekmann, Heesterbeek and Metz
[95] introduced the next generation matrices (NGM) approach to R0 for mod-
els of infectious diseases in heterogeneous populations; van den Driessche and
Watmough [376] developed the theory of R0 for autonomous ordinary differen-
tial equations (ODE) models with compartmental structure; and Diekmann,
Heesterbeek and Roberts [96] provided a recipe for the construction of the
NGM for compartmental epidemic models. These works have found numerous
applications in the study of various models of infectious diseases. For popula-
tion models in a periodic environment, Bacaër and Guernaoui [24] proposed
a general definition of R0, that is, R0 is the spectral radius of an integral
operator on the space of continuous periodic functions. Wang and Zhao [388]
characterized R0 for periodic compartmental ODE models and proved that
it is a threshold parameter for the local stability of the disease-free periodic
solution. Further, Thieme [370] presented the theory of spectral bound and
reproduction number for infinite-dimensional population structure and time
heterogeneity. Bacaër and Ait Dads [22, 23] also found a more biological in-
terpretation of R0 for periodic models and showed that it is the asymptotic
ratio of total infections in two successive generations of the infection tree. Re-
cently, Inaba [189] introduced the concept of a generation evolution operator
to give a new definition of R0 for structured populations in heterogeneous en-
vironments, which unifies two definitions in [95, 24] and has intuitively clear
biological meaning.

The purpose of this chapter is to present the theory of basic reproduction
ratios R0 for two important classes of population models with compartmental
structure. In Section 11.1, we first introduce R0 for periodic and time-delayed
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models, then prove the stability equivalence theorem and give a characteriza-
tion of R0. We also obtain an explicit formula for R0 in the autonomous case.
In Section 11.2, we apply the developed theory of R0, together with the per-
sistence theory for periodic semiflows, to a periodic SEIR model of a disease
transmission, and establish a threshold-type result on its global dynamics in
terms of R0.

In Section 11.3, we develop the theory of R0 for reaction–diffusion epi-
demic models. We formulate R0 as the spectral radius of the next generation
operator induced by a new infection rate matrix and an evolution operator of
an infective distribution, and characterize R0 in terms of the principal eigen-
value of an elliptic eigenvalue problem. In Section 11.4, we apply the obtained
results to a spatial model of rabies, and show that the disease-free steady state
is asymptotically stable if R0 < 1, and unstable if R0 > 1. At the end of this
section, we also provide a numerical scheme to compute R0.

11.1 Periodic Systems with Time Delay

Let τ ≥ 0 be a given number, C = C([−τ, 0],Rm), and C+ = C([−τ, 0],Rm
+ ).

Then (C,C+) is an ordered Banach space equipped with the maximum norm
and the positive cone C+. Let F : R → L(C,Rm) be a map and V (t) be
a continuous m × m matrix function on R. Assume that F (t) and V (t) are
ω-periodic in t for some real number ω > 0. For a continuous function u :
[−τ, σ) → R

m with σ > 0, define ut ∈ C by

ut(θ) = u(t+ θ), ∀θ ∈ [−τ, 0]

for any t ∈ [0, σ).
We consider a linear and periodic functional differential system:

du(t)

dt
= F (t)ut − V (t)u(t), t ≥ 0. (11.1)

System (11.1) may come from the equations of infectious variables in the lin-
earization of a given ω-periodic and time-delayed compartmental epidemic
model at a disease-free ω-periodic solution. As such, m is the total number
of the infectious compartments, and the newly infected individuals at time t
depend linearly on the infectious individuals over the time interval [t − τ, t],
which is described by F (t)ut. Further, the internal evolution of individuals
in the infectious compartments (e.g., natural and disease-induced deaths, and
movements among compartments) is governed by the linear ordinary differ-
ential system:

du(t)

dt
= −V (t)u(t). (11.2)

Of course, we may also obtain system (11.1) by linearizing a population growth
model with m patches (or types) at its zero solution, where the word “birth”
should be used to replace “infection.”
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Throughout this section, we assume that F (t) : C → R
m is given by

F (t)φ =

∫ 0

−τ

d[η(t, θ)]φ(θ), ∀t ∈ R, φ ∈ C,

where η(t, θ) is an m×mmatrix function which is measurable in (t, θ) ∈ R×R

and normalized so that η(t, θ) = 0 for all θ ≥ 0 and η(t, θ) = η(t,−τ) for all
θ ≤ −τ . Further, η(t, θ) is continuous from the left in θ on (−τ, 0) for each t,
and the variation of η(t, ·) on [−τ, 0] satisfies V ar[−τ,0]η(t, ·) ≤ g(t) for some

g ∈ Lloc
1 ((−∞,∞),R), the space of functions from (−∞,∞) into R that are

Lebesgue integrable on each compact set of (−∞,∞). Since F (t) is ω-periodic
in t, we have

sup
t∈R

‖F (t)‖ = sup
0≤t≤ω

‖F (t)‖ ≤ sup
0≤t≤ω

g(t).

By the general theory of linear functional differential equations in [145, section
6.1], it follows that for any s ∈ R and φ ∈ C, system (11.1) has a unique
solution u(t, s, φ) on [s,∞) with us = φ. We define the evolution operators
U(t, s) on C associated with (11.1) as

U(t, s)φ = ut(s, φ), ∀φ ∈ C, t ≥ s, s ∈ R,

where ut(s, φ)(θ) = u(t + θ, s, φ), ∀θ ∈ [−τ, 0]. Then each operator U(t, s) is
continuous and

U(s, s) = I, U(t, s)U(s, r) = U(t, r), U(t+ ω, s+ ω) = U(t, s), ∀t ≥ s ≥ r.
(11.3)

Let Φ(t, s), t ≥ s, be the evolution matrices associated with system (11.2),
that is, Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R,

and ω̂(Φ) be the exponential growth bound of Φ(t, s), that is,

ω̂(Φ) = inf{ω̃ : ∃M ≥ 1 such that ‖Φ(t+ s, s)‖ ≤ Meω̃t, ∀s ∈ R, t ≥ 0}.

In order to introduce the basic reproduction ratio for system (11.1),
throughout this section we always assume that

(A1) Each operator F (t) : C → R
m is positive in the sense that F (t)C+ ⊆

R
m
+ ;

(A2) Each matrix −V (t) is cooperative, and ω̂(Φ) < 0.

In view of the periodic environment, we suppose that v(t), ω-periodic in t,
is the distribution of the initial infectious individuals among compartments at
time t. For any given s ≥ 0, F (t− s)vt−s is the distribution of newly infected
individuals at time t− s, which is produced by the infectious individuals who
were introduced over the time interval [t−s−τ, t−s]. Then Φ(t, t−s)F (t−s)
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vt−s is the distribution of those infected individuals who were newly infected
at time t − s and remain in the infected compartments at time t. It follows
that

∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all
those infectious individuals introduced at all previous times to t.

Note that for any given s ≥ 0, Φ(t, t− s)v(t − s) gives the distribution of
those infectious individuals who were introduced at time t− s and remain in
the infected compartments at time t, and hence, w(t) :=

∫∞
0

Φ(t, t−s)v(t−s)ds
is the distribution of accumulative infectious individuals who were introduced
at all previous times to t and remain in the infected compartments at time t.
Thus, the distribution of newly infected individuals at time t is

F (t)wt = F (t)

(∫ ∞

0

Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds
)

.

Let Cω be the ordered Banach space of all continuous and ω-periodic
functions from R to R

m, which is equipped with the maximum norm and the
positive cone C+

ω := {v ∈ Cω : v(t) ≥ 0, ∀t ∈ R}. Then we can define two
linear operators on Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω ,

and

[L̂v](t) = F (t)

(∫ ∞

0

Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds
)

, ∀t ∈ R, v ∈ Cω .

Let A and B be two bounded linear operators on Cω defined by

[Av](t) =

∫ ∞

0

Φ(t, t− s)v(t− s)ds, [Bv](t) = F (t)vt, ∀t ∈ R, v ∈ Cω.

It then follows that L = A ◦ B and L̂ = B ◦ A, and hence, L and L̂ have the
same spectral radius.

Motivated by the concept of next generation operators in [95, 376, 24, 388,
370], we define the spectral radius of L and L̂ as the basic reproduction ratio

R0 := r(L) = r(L̂).

for periodic system (11.1).
For any given λ ∈ R, let Eλ be a linear operator on C defined by

[Eλφ](θ) = eλθφ(θ), ∀θ ∈ [−τ, 0], φ ∈ C.
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It then easily follows that ‖Eλ‖ ≤ max{1, e−λτ}, ∀λ ∈ R. Now we introduce
a family of linear operators Lλ on Cω:

[Lλv](t) =

∫ ∞

0

e−λsΦ(t, t−s)F (t−s)Eλv(t−s+·)ds, ∀t ∈ R, v ∈ Cω . (11.4)

Clearly, L0 = L, and Lλ is well defined for all λ > ω̂(Φ). Further, we have the
following observation.

Lemma 11.1.1. For each λ > ω̂(Φ), the operator Lλ is positive, continuous,
and compact on Cω.

Proof. Let λ > ω̂(Φ) be given. Clearly, Eλ is a positive linear operator on
C. By virtue of (A1) and (A2), F (t) and Φ(t, s) (t ≥ s) are positive linear
operators. This implies that Lλ is positive on Cω . Since ω̂(Φ) < 0 and

‖Φ(t, t− s)F (t− s)Eλ‖ ≤ M0e
ω̂(Φ)s · sup

0≤r≤ω
g(r) · ‖Eλ‖, ∀t ∈ R, s ∈ [0,∞),

for some M0 > 0, we see that Lλ is bounded, and hence, continuous on Cω.
In view of

[Lλv](t) =

∫ t

−∞
e−λ(t−s)Φ(t, s)F (s)Eλvsds, ∀t ∈ R, v ∈ Cω,

we easily obtain

d

dt
[Lλv](t) = F (t)Eλvt − (V (t) + λI)[Lλv](t), ∀t ∈ R, v ∈ Cω. (11.5)

It then follows that for any a > 0, there exists K = K(a) > 0 such that
| ddt [Lλv](t)| ≤ K for all t ∈ [0, ω] and v ∈ Cω with ‖v‖ ≤ a. Thus, the
Ascoli-Arzela theorem implies that Lλ is compact on Cω .

Let M0 > 0 be fixed such that ‖Φ(t, s)‖ ≤ M0e
ω̂(Φ)(t−s), ∀t ≥ s. For any

given ε > 0, we set Vε(t) = V (t) − εE, where E is the m × m matrix with
each element being 1. Let Φε(t, s) be the evolution operators associated with

the linear periodic system du(t)
dt = −Vε(t)u(t). Then we have the following

estimate.

Lemma 11.1.2. Let c = εM0‖E‖. Then for any ε > 0, there holds

‖Φε(t, t− s)− Φ(t, t− s)‖ ≤ cM0se
(ω̂(Φ)+c)s, ∀t ∈ R, s ≥ 0.

Proof. By the constant-variation formula, we obtain

Φε(t, s)x = Φ(t, s)x +

∫ t

s

Φ(t, r)εEΦε(r, s)xdr, ∀t ≥ s, s ∈ R, x ∈ R
m.

This implies that Φε(t, s) satisfies the abstract Volterra integral equation:
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Φε(t, s) = Φ(t, s) +

∫ t

s

Φ(t, r)εEΦε(r, s)dr, ∀t ≥ s, s ∈ R. (11.6)

Let h1(t, s) := Φ(t, s)εE, and define

hn(t, s) =

∫ t

s

h1(t, r)hn−1(r, s)dr, ∀n ≥ 2.

Since ‖h1(t, s)‖ ≤ ceω̂(Φ)(t−s), ∀t ≥ s, s ∈ R, it follows from an induction
argument that

‖hn(t, s)‖ ≤ cn

(n− 1)!
eω̂(Φ)(t−s)(t− s)n−1, ∀n ≥ 1, t ≥ s, s ∈ R,

and hence,
∑∞

n=1 ‖hn(t, s)‖ ≤ ce(ω̂(Φ)+c)(t−s). Thus, the linear operator
h(t, s) :=

∑∞
n=1 hn(t, s) is well defined for any t ≥ s, s ∈ R, and ‖h(t, s)‖ ≤

ce(ω̂(Φ)+c)(t−s). By the proof of [89, Theorem 9.1], Φε(t, s) can be represented
as

Φε(t, s) = Φ(t, s) +

∫ t

s

h(t, r)Φ(r, s)dr, ∀t ≥ s, s ∈ R. (11.7)

It then follows that

‖Φε(t, t− s)− Φ(t, t− s)‖ ≤
∫ t

t−s

‖h(t, r)‖ · ‖Φ(r, t− s)‖dr

≤
∫ t

t−s

ce(ω̂(Φ)+c)(t−r)M0e
ω̂(Φ)(r−(t−s))dr

= M0e
ω̂(Φ)s(ecs − 1)

≤ cM0se
(ω̂(Φ)+c)s, ∀t ∈ R, s ≥ 0.

Here we have used the inequality that ecs − 1 ≤ csecs, ∀s ≥ 0.

For any λ > ω̂(Φ), let μ(λ) be the spectral radius of Lλ, that is, μ(λ) :=
r(Lλ). Then we have the following two results on properties of the function
μ(λ).

Proposition 11.1.1. The following statements are valid:

(i) μ(λ) is continuous and nonincreasing on (ω̂(Φ),∞), and μ(∞) = 0.
(ii) μ(λ) = 1 has at most one solution in (ω̂(Φ),∞).

Proof. (i) Let λ0 ∈ (ω̂(Φ),∞) be given and choose a small number δ > 0
such that [λ0 − δ, λ0 + δ] ⊂ (ω̂(Φ),∞). It is easy to see that

‖Eλ − Eλ0‖ ≤ τ max{1, e−(λ0−δ)τ}|λ− λ0|, ∀λ ∈ [λ0 − δ, λ0 + δ].

As a result, there exist two positive numbers K1 and K2 such that for any
λ ∈ [λ0 − δ, λ0 + δ], we have
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‖Lλ − Lλ0‖ ≤ K1

∫ ∞

0

∣
∣e−λs − e−λ0s

∣
∣ eω̂(Φ)sds+

K2|λ− λ0|
∫ ∞

0

e−λ0seω̂(Φ)sds

≤ K1|λ− λ0|
∫ ∞

0

se−(λ0−δ)seω̂(Φ)sds+

K2|λ− λ0|
∫ ∞

0

e−λ0seω̂(Φ)sds

=
K1|λ− λ0|

(λ0 − δ − ω̂(Φ))2
+
K2|λ− λ0|
λ0 − ω̂(Φ)

.

This implies that limλ→λ0 ‖Lλ−Lλ0‖ = 0. By the continuity of spectral radius
for compact linear operators (see, e.g., [90, Theorem 2.1 (a)]), we then obtain
that limλ→λ0 μ(λ) = μ(λ0). Thus, μ(λ) is continuous on (ω̂(Φ),∞). It is easy
to verify that

[Lλ1v](t) ≥ [Lλ2v](t), ∀ω̂(Φ) < λ1 ≤ λ2, t ∈ R, v ∈ C+
ω .

Since each Lλ is a positive and bounded linear operator on Cω, [40, Theorem
1.1] implies that μ(λ) = r(Lλ) is a nonincreasing function of λ on (ω̂(Φ),∞).
Note that ‖Φ(t, s)‖ ≤ M0e

ω̂(Φ)(t−s), ∀t ≥ s, and ‖Eλ‖ ≤ 1, ∀λ ≥ 0. It then
follows that

‖Lλ‖ ≤ M0 sup
0≤t≤ω

‖F (t)‖
∫ ∞

0

e−λseω̂(Φ)sds =
M0 sup0≤t≤ω ‖F (t)‖

λ− ω̂(Φ)
, ∀λ ≥ 0.

In view of 0 ≤ μ(λ) = r(Lλ) ≤ ‖Lλ‖, we obtain μ(∞) = limλ→∞ μ(λ) = 0.
(ii) Assume, by contradiction, that μ(λ) = 1 has two solutions λ1 < λ2 in

(ω̂(Φ),∞). Since μ(λ) is nonincreasing on (ω̂(Φ),∞), we must have μ(λ) =
1, ∀λ ∈ [λ1, λ2]. Let λ ∈ [λ1, λ2] be given. Since Lλ is a positive and compact
linear operator on Cω and r(Lλ) = μ(λ) = 1 > 0, the Krein-Rutman theorem
implies that Lλv = v for some v ∈ C+

ω \ {0}. By virtue of (11.5), we obtain

d

dt
v(t) = F (t)Eλvt − (V (t) + λI)v(t), ∀t ∈ R.

Let u(t) := eλtv(t). Since ut = eλtEλvt, ∀t ∈ R, it follows from a straightfor-
ward computation that

d

dt
u(t) = F (t)ut − V (t)u(t), ∀t ∈ R.

Set φ := u0 = Eλv0. Then U(t, 0)φ = ut, ∀t ≥ 0, which implies that φ ∈
C+ \ {0} since u(·) �≡ 0 on [0,∞). Clearly, the ω-periodicity of v(t) yields
vt+ω = vt, ∀t ∈ R. In particular, we have

U(ω, 0)φ = uω = eλωEλvω = eλωEλv0 = eλωφ.
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It follows that eλω is an eigenvalue of U(ω, 0), and hence eλnω is an eigenvalue
of U(nω, 0) = (U(ω, 0))n for any integer n ≥ 1. Now we fix an integer n0 > 0
such that n0ω ≥ τ . By [145, Theorem 3.6.1], the operator U(n0ω, 0) is compact
on C. Thus, eλn0ω is an eigenvalue of U(n0ω, 0) for all λ ∈ [λ1, λ2]. But this
is impossible since the compact linear operator U(n0ω, 0) has only countably
many eigenvalues.

Proposition 11.1.2. If r(U(ω, 0)) > r(Φ(ω, 0)), then λ∗ := ln r(U(ω,0))
ω satis-

fies μ(λ∗) = 1.

Proof. For any given ε > 0, let Vε(t) and Φε(t, s) be defined as in Lemma
11.1.2, and define Fε(t)φ = F (t)φ + εφ(−τ), ∀φ ∈ C. We consider small per-
turbations of system (11.1):

du(t)

dt
= Fε(t)ut − Vε(t)u(t), t ≥ 0. (11.8)

Let Uε(t, s) be the evolution operators associated with the linear functional
differential system (11.8). By [370, Proposition A.2], it follows that ω̂(Φε) =
ln r(Φε(ω,0))

ω . Since ω̂(Φ) < 0, we have ω̂(Φε) < 0 for sufficiently small ε > 0. Let
Lε
λ be defined as in (11.4) with F (t) and Φ(t, s) replaced by Fε(t) and Φε(t, s),

respectively. By [326, Lemma 5.3.2], Uε(t, 0) is strongly positive on C for any
t ≥ (m + 1)τ . Choose an integer n0 > 0 such that n0ω ≥ (m + 1)τ . Since
(Uε(ω, 0))

n0 = Uε(n0ω, 0) is compact and strongly positive, [225, Lemma 3.1]
implies that r(Uε(ω, 0)) is a simple eigenvalue of Uε(ω, 0) having a strongly
positive eigenvector, and the modulus of any other eigenvalue is less than

r(Uε(ω, 0)). Let λ∗ε := ln r(Uε(ω,0))
ω . By the proof of [417, Proposition 2.1],

it then follows that there is a positive ω-periodic function vε(t) such that
uε(t) = eλ

∗
ε tvε(t) is a positive solution of (11.8) for all t ∈ R. Thus, the

constant-variation formula yields

uε(t) = Φε(t, r)u
ε(r) +

∫ t

r

Φε(t, s)Fε(s)u
ε
sds, ∀t ≥ r, r ∈ R. (11.9)

On substituting uε(t) = eλ
∗
ε tvε(t) into (11.9), we obtain

vε(t) = e−λ∗
ε (t−r)Φε(t, r)v

ε(r) +

∫ t

r

e−λ∗
ε (t−s)Φε(t, s)Fε(s)Eλ∗

ε
vεsds (11.10)

for all t ≥ r, r ∈ R. Since limε→0+(r(Uε(ω, 0)) − r(Φε(ω, 0)) = r(U(ω, 0)) −
r(Φ(ω, 0)) > 0, it follows that r(Uε(ω, 0))− r(Φε(ω, 0)) > 0, and hence, λ∗ε >
ω̂(Φε), for sufficiently small ε > 0. Note that the positive ω-periodic function
vε(t) is bounded on R, and

‖e−λ∗
ε (t−r)Φε(t, r)‖ ≤ Mεe

(ω̂(Φε)−λ∗
ε )(t−r), ∀t ≥ r, r ∈ R,

for some number Mε > 0. Letting r → −∞ in (11.10), we then have
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vε(t) =

∫ t

−∞
e−λ∗

ε (t−s)Φε(t, s)Fε(s)Eλ∗
ε
vεsds = [Lε

λ∗
ε
vε](t), ∀t ∈ R,

that is, Lε
λ∗
ε
vε = vε. Since Lε

λ∗
ε
is compact and strongly positive, the Krein-

Rutman theorem implies that r(Lε
λ∗
ε
) = 1 for sufficiently small ε > 0.

In view of λ∗ > ω̂(Φ), we can fix a small number δ > 0 such that λ∗ − δ >
ω̂(Φ). Since limε→0+ λ

∗
ε = λ∗ and limε→0+ ω̂(Φε) = ω̂(Φ), there is a small

number ε0 > 0 such that ω̂(Φ)− λ∗ + δ + ε0M0‖E‖ < 0 and

λ∗ε ∈ [λ∗ − δ, λ∗ + δ], λ∗ − δ > ω̂(Φε), ∀ε ∈ [0, ε0].

Recall that c = εM0‖E‖. Let

Aε := sup
0≤t≤ω

‖Fε(t)‖, Bε := sup
0≤t≤ω

‖Fε(t)− F (t)‖.

By virtue of Lemma 11.1.2 and the fact that ‖Φ(t, t−s)‖ ≤ M0e
ω̂(Φ)s, it easily

follows that for all ε ∈ [0, ε0] and λ ∈ [λ∗ − δ, λ∗ + δ], there holds

‖Lε
λ − Lλ‖ ≤

∫ ∞

0

e−λs
(
cM0se

(ω̂(Φ)+c)sAε +M0e
ω̂(Φ)sBε

)
‖Eλ‖ds

= ‖Eλ‖
∫ ∞

0

(
cM0se

(ω̂(Φ)−λ+c)sAε +BεM0e
(ω̂(Φ)−λ)s

)
ds

=
cM0‖Eλ‖Aε

(ω̂(Φ) − λ+ c)2
+
M0‖Eλ‖Bε

ω̂(Φ) − λ

≤
εM2

0 ‖E‖ · ‖Eλ‖(sup0≤t≤ω ‖F (t)‖+ ε)

(ω̂(Φ)− λ+ εM0‖E‖)2 +
εM0‖Eλ‖
ω̂(Φ) − λ

.

This implies that limε→0+ ‖Lε
λ − Lλ‖ = 0 for each λ ∈ [λ∗ − δ, λ∗ + δ], and

hence,
lim

ε→0+
r(Lε

λ) = r(Lλ) = μ(λ), ∀λ ∈ [λ∗ − δ, λ∗ + δ].

Let εn = 1
n and μn(λ) = r(Lεn

λ ). By Proposition 11.1.1, μ(λ) and μn(λ) are
continuous on [λ∗ − δ, λ∗ + δ]. Since L

εn+1

λ v ≤ Lεn
λ v for all v ∈ C+

ω , it follows
that μn(λ) is a nonincreasing sequence of functions. Thus, Dini’s theorem
implies that limn→∞ μn(λ) = μ(λ) uniformly for λ ∈ [λ∗ − δ, λ∗ + δ]. Since

|μn(λ
∗
εn)− μ(λ∗)| ≤ |μn(λ

∗
εn)− μ(λ∗εn)|+ |μ(λ∗εn)− μ(λ∗)|,

we obtain limn→∞ μn(λ
∗
εn) = μ(λ∗). On the other hand, the conclusion in the

last paragraph implies that μn(λ
∗
εn) = r(Lεn

λ∗
εn
) = 1 for sufficiently large n.

Letting n→ ∞ in this equality, we then have μ(λ∗) = 1.

Now we are ready to prove that R0 is a threshold value for the stability of
the zero solution of periodic system (11.1). Recall that U(ω, 0) is the Poincaré
(period) map of system (11.1) on C.
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Theorem 11.1.1. The following statements are valid:

(i) R0 = 1 if and only if r(U(ω, 0)) = 1.
(ii) R0 > 1 if and only if r(U(ω, 0)) > 1.
(iii) R0 < 1 if and only if r(U(ω, 0)) < 1.

Thus, R0 − 1 has the same sign as r(U(ω, 0))− 1.

Proof. In view of ω̂(Φ) = ln r(Φ(ω,0))
ω < 0, we have r(Φ(ω, 0)) < 1.

(i) (a) If R0 = 1, then μ(0) = 1. By the proof of Proposition 11.1.1 (ii),
it follows that e0ω = 1 is an eigenvalue of U(ω, 0), and hence, r(U(ω, 0)) ≥
1 > r(Φ(ω, 0)). Thus, Proposition 11.1.2 implies that μ(λ∗) = 1. By Propo-
sition 11.1.1 (ii), we further obtain λ∗ = 0, that is, r(U(ω, 0)) = 1. (b) If
r(U(ω, 0)) = 1, then λ∗ = 0. Since r(Φ(ω, 0)) < 1, Proposition 11.1.2 implies
that μ(0) = 1, that is, R0 = 1.

(ii) (a) If R0 > 1, then μ(0) > 1. Since μ(λ) is continuous on (ω̂(Φ),∞) and
μ(∞) = 0 (see Proposition 11.1.1 (i)), there exists λ0 > 0 such that μ(λ0) = 1.
By the proof of Proposition 11.1.1 (ii), we see that eλ0ω is an eigenvalue of
U(ω, 0), and hence, r(U(ω, 0)) ≥ eλ0ω > 1. (b) If r(U(ω, 0)) > 1, then λ∗ > 0.
Since r(Φ(ω, 0)) < 1, it follows from Proposition 11.1.2 that μ(λ∗) = 1, and
hence, R0 = μ(0) ≥ μ(λ∗) = 1. But Proposition 11.1.1 (ii) implies that
R0 = μ(0) �= 1. Thus, we must have R0 > 1.

Clearly, statement (iii) is a straightforward consequence of the conclusions
(i) and (ii) above.

For any given λ ∈ (0,∞), we consider the following linear and periodic
system:

du(t)

dt
=

1

λ
F (t)ut − V (t)u(t), t ≥ 0. (11.11)

Let U(t, s, λ) (t ≥ s) be the evolution operators on C associated with system
(11.11). Then we have the following result.

Theorem 11.1.2. If R0 > 0, then λ = R0 is the unique solution of the
equation r(U(ω, 0, λ)) = 1.

Proof. By replacing F (t) with 1
λF (t), we can define the basic reproduction

ratio, R(λ), for system (11.11). It then follows that R(λ) = r
(
1
λL

)
= 1

λR0.
By Theorem 11.1.1, we have

sign(R(λ)− 1) = sign(r(U(ω, 0, λ)− 1), ∀λ ∈ (0,∞).

Letting λ = R0 > 0 in the above equation, we then obtain r(U(ω, 0, R0)) = 1.
It remains to prove that r(U(ω, 0, λ)) = 1 has at most one positive so-

lution for λ. Since F (t) is a positive operator and −V (t) is cooperative, the
comparison theorem (see [326, Theorem 5.1.1]) implies that

U(ω, 0, λ1)φ ≥ U(ω, 0, λ2)φ, ∀0 < λ1 ≤ λ2, φ ∈ C+.
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Note that each U(ω, 0, λ) is a positive and bounded linear operator on C.
It then follows from [40, Theorem 1.1] that r(U(ω, 0, λ)) is a nonincreasing
function of λ on (0,∞). Assume, by contradiction, that r(U(ω, 0, λ) = 1 has
two positive solutions λ1 < λ2. Then r(U(ω, 0, λ)) = 1, ∀λ ∈ [λ1, λ2]. We
choose an integer n0 > 0 such that n0ω ≥ τ . In view of [145, Theorem 3.6.1],
each operator U(n0ω, 0, λ) is compact on C. Let λ ∈ [λ1, λ2] be given. Since

r(U(n0ω, 0, λ)) = r((U(ω, 0, λ))n0 ) = (r(U(ω, 0, λ))n0 = 1 > 0,

the Krein-Rutman theorem implies that 1 is an eigenvalue of U(n0ω, 0, λ)
with an eigenvector φ∗ ∈ C+ \ {0}. Since U(n0ω, 0, λ)φ

∗ = φ∗, it follows that
u(t) := [U(t, 0, λ)φ∗](0) is an n0ω-periodic solution of system (11.11). By the
constant-variation formula, we have

u(t) = Φ(t, r)u(r) +

∫ t

r

Φ(t, s)
1

λ
F (s)usds, ∀t ≥ r, r ∈ R. (11.12)

Note that ‖Φ(t, s)‖ ≤ M0e
ω̂(Φ)(t−s), ∀t ≥ s, s ∈ R, for some M0 > 0. Since

ω̂(Φ) < 0 and u(t) is bounded on R, letting r → −∞ in (11.12), we further
obtain

u(t) =

∫ t

−∞
Φ(t, s)

1

λ
F (s)usds, ∀t ∈ R,

and hence, Lu = λu. Since L also defines a compact linear operator on Cn0ω

(see Lemma 11.1.1), it follows that λ is an eigenvalue of L on Cn0ω. Thus,
any λ ∈ [λ1, λ2] is an eigenvalue of L on Cn0ω , which is impossible since the
compact linear operator L on Cn0ω has only countably many eigenvalues.

For any given F ∈ L(C,Rm), we define F̂ ∈ L(Rm,Rm) by

F̂ u = F (û), ∀u ∈ R
m,

where û(θ) = u, ∀θ ∈ [−τ, 0]. Clearly, F̂ can be regarded as an m×m matrix.
Then we have the following result.

Corollary 11.1.1. Let F (t) ≡ F ∈ L(C,Rm) and V (t) ≡ V . Then R0 =
r(V −1F̂ ) = r(F̂ V −1).

Proof. Clearly, r(V −1F̂ ) = r(F̂ V −1). Without loss of generality, we may
assume that r(V −1F̂ ) > 0 and for all λ > 0, U(t, 0, λ) is eventually strongly
positive on C (see [326, Section 5.3]). Otherwise, we can choose appropriate
small perturbations Fε and Vε instead of F and V , respectively, and then use
a limiting argument as ε → 0. In view of V −1 =

∫∞
0

e−V sds and Φ(t, s) =

e−V (t−s), it easily follows that

Lv = V −1F̂ v, ∀v ∈ R
m.

Note that r(V −1F̂ ) is an eigenvalue of V −1F̂ with an eigenvector v∗ ∈ R
m
+ \

{0}. Then r0 := r(V −1F̂ ) is also an eigenvalue of L, and hence, R0 > 0. Since
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V −1F̂ v∗ = r0v
∗, we have 1

r0
F̂ v∗ − V v∗ = 0, which implies that u(t) = v∗ is a

constant solution to
du(t)

dt
=

1

r0
Fut − V u(t).

Thus, U(t, 0, r0)v
∗ = v∗, ∀t ≥ 0. We fix a large integer n0 > 0 such that

U(n0ω, 0, r0) is compact and strongly positive. By the Krein-Rutman theorem,
we then obtain r(U(n0ω, 0, r0)) = 1. Since

r(U(n0ω, 0, r0)) = r((U(ω, 0, r0))
n0) = (r(U(ω, 0, r0)))

n0 ,

it follows that r(U(ω, 0, r0)) = 1. Now Theorem 11.1.2 implies that R0 = r0.

In the case where τ = 0, Theorems 11.1.1 and 11.1.2 reduce to Theorems
2.2 and (2.1)(ii) of [388], respectively, and Corollary 11.1.1 is consistent with
the formula of R0 given in [376]. More recently, the basic reproduction number
was addressed in [415] for linear autonomous systems with discrete delays:

dI(t)

dt
= F1I(t− τ1) + F2I(t− τ2)− V I(t),

where F1 and F2 are nonnegative matrices and −V is a cooperative matrix.
Taking F (φ) = F1φ(−τ1) + F2φ(−τ2) and τ = max{τ1, τ2}, we have F̂ =
F1 + F2. Thus, Corollary 11.1.1 implies that R0 = r((F1 + F2)V

−1), which
is the same as the formula obtained in [415]. Clearly, Corollary 11.1.1 also
applies to more general linear autonomous systems with distributed delays.

Remark 11.1.1. Theorem 11.1.2 can be used to compute R0 numerically. In-
deed, it is easy to verify that r(U(ω, 0, λ)) = limn→∞ ‖U(nω, 0, λ)e‖ 1

n for any
given e ∈ int

(
C([−τ, 0],Rm

+ )
)
. Combining this observation with the bisection

method, one can find a numerical solution to r(U(ω, 0, λ)) = 1, which is an
approximation of R0.

Remark 11.1.2. The theory of basic reproduction ratio in this section can be
extended to abstract periodic linear systems with time delay if we replace
R

m with an ordered Banach space E and assume that each −V (t) is a linear
operator such that the linear equation du

dt = −V (t)u generates a positive
evolution operator Φ(t, s) on E. Thus, one can apply the generalized theory to
periodic and time-delayed reaction-diffusion population models. For example,
letting Ω be a bounded domain with smooth boundary, E = C(Ω̄,Rm) and
−V (t)u = D(t)Δu − W (t)u, we can consider the following periodic linear
system:

∂u

∂t
= D(t)Δu+ F (t)ut −W (t)u,

subject to the Neumann boundary condition. Here Δu = (Δu1, . . . , Δum)T ,
[D(t)](x) = diag(d1(t, x), . . . , dm(t, x)) with di(t, x) > 0, 1 ≤ i ≤ m, and for
each t ∈ R, F (t) ∈ L(C([−τ, 0], E), E) and−[W (t)](x) is anm×m cooperative
matrix function of x ∈ Ω̄.
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11.2 A Periodic SEIR Model

We consider a continuous-time SEIR model of a disease transmission. Let S(t),
E(t), I(t), and R(t) be the total numbers at time t of the susceptible, exposed,
infective, and recovered (or removed) populations, respectively. For simplicity,
we assume that the latent period of the disease is τ , and the incidence rate
function f(t, S, I) depends on time t and variables S and I. Let μ(t) be the
natural death rate of the population. It then follows that the rate of entry
into the infective class from the exposed one at time t is

e−
∫ t
t−τ

μ(r)drf(t− τ, S(t− τ), I(t − τ)).

As discussed in [361], E(t) can be represented as

E(t) =

∫ t

t−τ

e−
∫

t
s
μ(r)drf(s, S(s), I(s))ds.

Thus, we obtain the following nonautonomous SEIR model:

dS(t)

dt
= Λ(t)− f(t, S(t), I(t))− μ(t)S(t) + α(t)R(t),

E(t) =

∫ t

t−τ

e−
∫ t
s
μ(r)drf(s, S(s), I(s))ds,

dI(t)

dt
= e−

∫ t
t−τ

μ(r)drf(t− τ, S(t− τ), I(t − τ)) − (μ(t) + d(t) + γ(t))I(t),

dR(t)

dt
= γ(t)I(t)− μ(t)R(t)− α(t)R(t). (11.13)

Here Λ(t) is the recruitment rate, d(t) is the disease-induced death rate, γ(t)
is the recovery rate, and α(t) is the loss of immunity rate.

According to [42], we need to impose the following compatibility condition:

E(0) =

∫ 0

−τ

e−
∫

0
s
μ(r)drf(s, S(s), I(s))ds. (11.14)

It is easy to verify that

dE(t)

dt
= f(t, S(t), I(t)) − e−

∫
t
t−τ

μ(r)drf(t− τ, S(t− τ), I(t− τ)) − μ(t)E(t).

Thus, model (11.13) reduces to the following nonautonomous functional dif-
ferential system:

dS(t)

dt
= Λ(t)− f(t, S(t), I(t))− μ(t)S(t) + α(t)R(t),

dE(t)

dt
= f(t, S(t), I(t))− e−

∫ t
t−τ μ(r)drf(t− τ, S(t− τ ), I(t− τ ))− μ(t)E(t),

dI(t)

dt
= e−

∫ t
t−τ μ(r)drf(t− τ, S(t− τ ), I(t− τ ))− (μ(t) + d(t) + γ(t))I(t),

dR(t)

dt
= γ(t)I(t)− μ(t)R(t)− α(t)R(t), (11.15)

subject to condition (11.14).
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We assume that f(t, S, I) and all these time-dependent coefficients are ω-
periodic in t for some real number ω > 0. It is then easy to see that the
function

p(t) := e−
∫

t
t−τ

μ(r)dr

is also ω-periodic, and hence, model (11.15) is an ω-periodic and time-delayed
system. To study the evolution dynamics of system (11.15), we make the
following assumptions:

(B1) Λ(t), μ(t), α(t), d(t), and γ(t) are all nonnegative and continuous func-
tions with Λ(t) > 0,

∫ ω

0
μ(t)dt > 0, and

∫ ω

0
γ(t)dt > 0;

(B2) f(t, S, I) is a C1-function with the following properties:

(i)f(t, S, 0) ≡ 0, f(t, 0, I) ≡ 0, and ∂f(t,S,0)
∂I are positive and nonde-

creasing for all S > 0.

(ii) ∂f(t,S,I)∂S ≥ 0 and f(t, S, I) ≤ ∂f(t,S,0)
∂I I for all (t, S, I) ∈ R× R

2
+.

A prototypical example for incidence function is f(t, S, I) = β(t)SI
1+c(t)I with

c(t) ≥ 0. For more general time-independent incidence functions, we refer to
[203] and references therein.

By virtue of (B1), we see that the scalar linear periodic equation

dS(t)

dt
= Λ(t)− μ(t)S(t) (11.16)

has a unique positive ω-periodic solution S∗(t), which is globally stable in R.
Linearizing system (11.15) at its disease-free periodic solution (S∗(t), 0, 0, 0),
we then obtain the following periodic linear equation for the infective vari-
able I:

dI(t)

dt
= a(t)I(t− τ)− b(t)I(t), (11.17)

where

a(t) = p(t)
∂f(t− τ, S∗(t− τ), 0)

∂I
, b(t) = μ(t) + d(t) + γ(t).

Following the procedure in Section 11.1, we take m = 1, F (t)φ =
a(t)φ(−τ), and V (t) = b(t). It then easily follows that

Φ(t, s) = e−
∫ t
s
b(r)dr, ∀t ≥ s, s ∈ R,

and

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

=

∫ ∞

0

Φ(t, t− s)a(t− s)v(t− s− τ)ds

=

∫ ∞

τ

Φ(t, t− s+ τ)a(t− s+ τ)v(t − s)ds

=

∫ ∞

0

K(t, s)v(t− s)ds, ∀t ∈ R, v ∈ Cω ,
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where

K(t, s) =

{
Φ(t, t− s+ τ)a(t− s+ τ), if s ≥ τ

0, if s < τ.

According to the definition in Section 11.1, we have R0 = r(L).
Since the S, I, and R equations in model (11.15) do not depend on variable

E, it suffices to study the following ω-periodic system with time delay:

dS(t)

dt
= Λ(t)− f(t, S(t), I(t))− μ(t)S(t) + α(t)R(t),

dI(t)

dt
= p(t)f(t− τ, S(t− τ), I(t− τ)) − (μ(t) + d(t) + γ(t))I(t),

dR(t)

dt
= γ(t)I(t) − μ(t)R(t)− α(t)R(t). (11.18)

Let X = C([−τ, 0],R3
+). By the standard theory of functional differential

equations (see, e.g., [145]), system (11.18) admits a unique nonnegative solu-
tion v(t, φ) = (S(t), I(t), R(t)) satisfying v0(φ) = φ ∈ X . Define

D :=

{

ψ ∈ C([−τ, 0],R4
+) : ψ2(0) =

∫ 0

−τ

e−
∫ 0
s
μ(r)drf(s, ψ1(s), ψ3(s))ds

}

.

It then easily follows that for any ψ ∈ D, system (11.15) has a unique non-
negative solution u(t, ψ) = (S(t), E(t), I(t), R(t)) satisfying u0(ψ) = ψ. Let
N(t) = S(t) + E(t) + I(t) +R(t). Then we have

dN(t)

dt
= Λ(t)− μ(t)N(t)− d(t)I(t) ≤ Λ(t)− μ(t)N(t), t ≥ 0. (11.19)

Thus, the global stability of S∗(t) for (11.16), together with the comparison
argument, implies that solutions of system (11.15) with initial data in D, and
hence (11.18) in X , exist globally on [0,∞) and are ultimately bounded.

Let X0 = {φ = (φ1, φ2, φ3) ∈ X : φ2(0) > 0}. The subsequent result
shows that R0 serves as a threshold value for the global extinction and uniform
persistence of the disease.

Theorem 11.2.1. Let (B1) and (B2) hold. Then the following statements are
valid:

(i) If R0 < 1, then the disease-free periodic solution (S∗(t), 0, 0) is globally
attractive for system (11.18) in X.

(ii) If R0 > 1, then system (11.18) admits a positive ω-periodic solution
(S̄(t), Ī(t), R̄(t)), and there exists a real number η > 0 such that the
solution v(t, φ) = (S(t), I(t), R(t)) satisfies lim inft→∞ I(t) ≥ η for any
φ ∈ X0.
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Proof. Let P (t) be the solution maps of the scalar linear equation (11.17) on
Y := C([−τ, 0],R), that is, P (t)ψ = wt(ψ), t ≥ 0, where w(t, ψ) is the unique
solution of (11.17) satisfying w0 = ψ ∈ Y . Then P := P (ω) is the Poincaré
(period) map associated with system (11.17). In view of Theorem 11.1.1, we

have sign(R0− 1) = sign(r(P )− 1). Since p(t)∂f(t−τ,S∗(t−τ),0)
∂I > 0, it follows

from [145, Theorem 3.6.1] and [326, Lemma 5.3.2] that for each t ≥ 2τ , the
linear operator P (t) is compact and strongly positive on Y . Choose an integer
n0 > 0 such that n0ω ≥ 2τ . Since Pn0 = P (n0ω), [225, Lemma 3.1] implies
that r(P ) is a simple eigenvalue of P having a strongly positive eigenvector,

and the modulus of any other eigenvalue is less than r(P ). Let μ = ln r(P )
ω .

By the proof of [417, Proposition 2.1], it then follows that there is a positive
ω-periodic function v(t) such that u(t) = eμtv(t) is a positive solution of
(11.17).

In the case where R0 < 1, we have r(P ) < 1. Let Pε be the Poincaré map
of the following perturbed linear periodic equation

dI(t)

dt
= p(t)

∂f(t− τ, S∗(t− τ) + ε, 0)

∂I
I(t− τ) − (μ(t) + d(t) + γ(t))I(t).

(11.20)
Since limε→0 r(Pε) = r(P ) < 1, we can fix a sufficiently small number ε > 0
such that r(Pε) < 1. As discussed in the last paragraph, there is a positive
ω-periodic function vε(t) such that uε(t) = eμεtvε(t) is a positive solution

of (11.20), where με = ln r(Pε)
ω < 0. For any given φ ∈ X , let v(t, φ) =

(S(t), I(t), R(t)). In view of (11.19) and the global stability of S∗(t) for (11.16),
it follows that there exists a sufficiently large integer n1 > 0 such that n1ω ≥ τ
and S(t) ≤ S∗(t) + ε, ∀t ≥ n1ω − τ . By assumption (A2), we then have

dI(t)

dt
≤ p(t)

∂f(t− τ, S∗(t− τ) + ε, 0)

∂I
I(t− τ)− (μ(t) + d(t) + γ(t))I(t)

for all t ≥ n1ω. Choose a sufficiently large number K > 0 such that
I(t) ≤ Kuε(t), ∀t ∈ [n1ω − τ, n1ω]. Thus, the comparison theorem for de-
lay differential equations ([326, Theorem 5.1.1]) implies that

I(t) ≤ Kuε(t) = Keμεtvε(t), ∀t ≥ n1ω,

and hence, limt→∞ I(t) = 0. By using the chain transitive sets arguments
(see, e.g., [232, Theorem 4.1 (a)]), it easily follows that limt→∞R(t) = 0 and
limt→∞(S(t)− S∗(t)) = 0.

In the case where R0 > 1, we have r(P ) > 1. Let Q(t)φ = vt(φ), ∀φ ∈ X ,
and Q = Q(ω). Note that for each t ≥ τ , Q(t) is compact (see [145, Theorem
3.6.1]). It then follows from Theorem 1.1.3 that Q : X → X has a strong
global attractor A. Clearly, {Q(t)}t≥0 is an ω-periodic semiflow on X , and
Qn = Q(nω), ∀n ≥ 0. Let Mδ be the Poincaré map of the following perturbed
linear periodic equation
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dI(t)

dt
= p(t)

(
∂f(t− τ, S∗(t− τ), 0)

∂I
− δ

)

I(t− τ)− (μ(t) + d(t) + γ(t))I(t).

(11.21)
Since limδ→0 r(Mδ) = r(P ) > 1, we can fix a small number δ > 0 such that
r(Mδ) > 1. It then follows that there is a small number η0 > 0 such that

f(t− τ, S∗(t− τ)− η0, I) ≥
(
∂f(t− τ, S∗(t− τ), 0)

∂I
− δ

)

I, ∀I ∈ [0, η0].

Let M1 = (S∗
0 , 0, 0). Then Q(t)M1 = (S∗

t , 0, 0), ∀t ≥ 0, and Q(M1) = M1.
Since limφ→M1 Q(t)φ = Q(t)M1 uniformly for t ∈ [0, ω], there exists η1 =
η1(η0) > 0 such that

‖Q(t)φ−Q(t)M1‖ < η0, ∀t ∈ [0, ω], ‖φ−M1‖ < η1.

We further prove the following claim.

Claim. lim supn→∞ ‖Qn(φ) −M1‖ ≥ η1, ∀φ ∈ X0.

Assume, by contradiction, that the claim is not true. Since Q(t)(X0) ⊂
X0, ∀t ≥ 0, it follows that there exists ψ = (ψ1, ψ2, ψ3) ∈ X0 with
ψ2(θ) > 0, ∀θ ∈ [−τ, 0], such that ‖Qn(ψ) − M1‖ < η1, ∀n ≥ 0. For any
t ≥ 0, letting t = nω + t′ with t′ ∈ [0, ω) and n = [t/ω], we have

‖Q(t)ψ −Q(t)M1‖ = ‖Q(t′)(Qn(ψ))−Q(t′)M1‖ < η0.

In view of (B2), we see that f(t, S, I) is nondecreasing in S. Thus, v(t, ψ) =
(S(t), T (t), R(t)) satisfies

dI(t)

dt
≥ p(t)

(
∂f(t− τ, S∗(t− τ), 0)

∂I
− δ

)

I(t− τ) − (μ(t) + d(t) + γ(t))I(t)

for all t ≥ 0. Note that ψ2 � 0 in C([−τ, 0],R) and r(Mδ) > 1. By the
comparison argument similar to that in case (i), we then obtain limt→∞ I(t) =
∞, a contradiction.

The above claim implies that M1 is an isolated invariant set for Q in X
and W s(M1) ∩ X0 = ∅, where W s(M1) is the stable set of M1 for Q. Set
∂X0 = X \X0 and

M∂ = {φ ∈ ∂X0 : Qn(φ) ∈ ∂X0, ∀n ≥ 0}.

Since
dI(t)

dt
≥ −(μ(t) + d(t) + γ(t))I(t), ∀t ≥ 0,

it is easy to see that if I(t0) > 0 for some t0 ≥ 0, then I(t) > 0 for all t ≥ t0.
This property implies that I(t) = 0, ∀t ≥ 0, whenever φ ∈ M∂. It then follows
that ω(φ) = M1 for any φ ∈ M∂ , andM1 cannot form a cycle for Q in ∂X0. By
the acyclicity theorem on uniform persistence for maps (see Theorem 1.3.1 and



302 11 The Theory of Basic Reproduction Ratios

Remark 1.3.1), Q : X → X is uniformly persistent with respect to (X0, ∂X0).
Note that for any integer n with nω ≥ τ , Qn = Q(nω) : X → X is compact.
Further, in view of Theorem 3.5.1 (see also [141, Theorem 4.1.1] and [226,
pages 879–880]), Q(t) is an α-contraction with respect to an equivalent norm
in C([−τ, 0],R3) for any t > 0. It then follows from Theorem 1.3.10 that there
exists a global attractor A0 for Q: X0 → X0 and Q has a fixed point φ∗ ∈ A0.
Clearly, v(t, φ∗) = (S̄(t), Ī(t), R̄(t)) is an ω-periodic solution of system (11.18)
with Ī(t) > 0, ∀t ≥ 0. Since γ(t) �≡ 0 and f(t, 0, I) ≡ 0, it is easy to see that
S̄(t) > 0 and R̄(t) > 0 for all t ≥ 0. Since A0 = Q(A0) = Q(ω)A0, we have
φ2(0) > 0, ∀φ ∈ A0. Let B0:=

⋃
t∈[0,ω]Q(t)A0. Then B0 ⊂ X0, and Theo-

rem 3.1.1 implies that lim
t→∞ d(Q(t)φ,B0) = 0, ∀φ ∈ X0. Define a continuous

function p : X → R+ by p(φ) = φ2(0), ∀φ = (φ1, φ2, φ3) ∈ X . Since B0 is a
compact subset of X0, it follows that infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0. Con-
sequently, there exists η > 0 such that lim inf

t→∞ I(t, φ) = lim inf
t→∞ p(Q(t)φ) ≥ η

for any φ ∈ X0.

11.3 Reaction–Diffusion Systems

In this section, we develop the theory of basic reproduction ratios for com-
partmental epidemic models of parabolic type. We start with the presentation
of two results on the principal eigenvalue for the associated elliptic eigenvalue
problem.

Let (E,E+) be an ordered Banach space, and A be a closed linear operator
on E. We use σ(A) to denote the spectrum of A, and define the spectral bound
of A as

s(A) = sup{Reλ : λ ∈ σ(A)}.
A is said to be resolvent-positive if the resolvent set of A, ρ(A), contains a
ray (α,∞), and (λI −A)−1 is a positive operator for all real number λ > α.

Let Ω be a domain in R
l with the smooth boundary ∂Ω, and ν be the

unit normal vector on ∂Ω. For a given integer k > 0, let X = C(Ω,Rk) and

X+ = C(Ω,Rk
+). Set uK = (u1, . . . , uk)

T and

∇ · (dK(x)∇uK) = diag (∇ · (d1(x)∇u1), . . . ,∇ · (dk(x)∇uk)) .

Let M(x) be a continuous k×k matrix-valued function of x ∈ Ω. We consider
the following elliptic eigenvalue problem

∇ · (dK(x)∇uK) +M(x)uK = λuK , x ∈ Ω,

∂ui
∂ν

= 0, ∀ 1 ≤ i ≤ k with di > 0, x ∈ ∂Ω.
(11.22)

For convenience, we set L(φ)(x) = ∇ · (dK(x)∇φ(x)), and let M denote the
multiplication operator defined byM(φ)(x) = M(x)φ(x). Recall that a square
matrix is said to be cooperative if its off-diagonal elements are nonnegative.
Assume that
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(D1) There exists a d0 > 0 such that di(x) ≥ d0, ∀x ∈ Ω, 1 ≤ i ≤ k.

Theorem 11.3.1. ([390, Theorem 2.2]) Let (D1) hold. If M(x) is cooperative
for all x ∈ Ω and there is an x0 ∈ Ω such that M(x0) is irreducible, then
λ∗ := s(L+M) is an algebraically simple eigenvalue of (11.22) with a strongly
positive eigenvector, and Re(λ) < λ∗ for all λ ∈ σ(L +M) \ {λ∗}.

To consider the case where some diffusion coefficients in (11.22) are zero,
without loss of generality, we assume that

(D2) There exist a number d0 > 0 and an integer 1 ≤ i1 < k such that
di(x) ≥ d0, ∀x ∈ Ω, 1 ≤ i ≤ i1, and di1+i(x) = 0, ∀x ∈ Ω, 1 ≤ i ≤
i2 := k − i1.

Let Y1 = C(Ω,Ri1) and Y2 = C(Ω,Ri2). We split the cooperative matrix
M(x) into

M(x) =

(
M11(x) M12(x)
M21(x) M22(x)

)

,

where M11 is an i1 × i1 matrix and M22 is an i2 × i2 matrix. Let

L1(ui1) = ∇ · (di1 (x)∇ui1 ) := diag (∇ · (d1(x)∇u1), . . . ,∇ · (di1 (x)∇ui1 )) ,

and define T2(t)φ2(x) = eM22(x)tφ2(x). Then T2(t) is a positive C0-semigroup
on Y2 with its generator M22 being resolvent-positive. It follows from [370,
Theorem 3.12] that

(λI −M22)
−1φ2 =

∫ ∞

0

e−λtT2(t)φ2dt, ∀λ > s(M22), φ2 ∈ Y2. (11.23)

Thus, we can define a one-parameter family of linear operators:

Lλ = L1 +M11 +M12(λI −M22)
−1M21, ∀λ > s(M22).

Theorem 11.3.2. ([390, Theorem 2.3]) Let (D2) hold, and assume that M(x)
is cooperative for all x ∈ Ω and for any λ > s(M22), there exists some xλ ∈ Ω
such that M11(xλ) + M12(λI − M22)

−1M21(xλ) is irreducible. If there exist
λ0 > s(M22) and φ0 > 0 in Y1 such that Lλ0φ0 ≥ λ0φ0, then the following
statements are valid:

(1) s(B) is a geometrically simple eigenvalue of (11.22) with a positive eigen-
vector;

(2) s(B) is the unique λ ∈ (s(M22) ,∞) with s(Lλ) = λ;

(3) s(B) has the same sign as s(L0) provided that s(M22) < 0.

Remark 11.3.1. Theorem 11.3.2 is still valid if the condition Lλ0φ0 ≥ λ0φ0 is
replaced with a weaker assumption that u(t, x) := eλ0tφ0(x) is a subsolution
of the integral form of the linear system ut = Lλ0u.
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Remark 11.3.2. If we replace −L or −L1 with uniformly x-dependent elliptic
operators and use Dirichlet or Robin-type boundary conditions in (11.22),
then Theorems 11.3.1 and 11.3.2 and Remark 11.3.1 are still valid.

Now we consider the following linear reaction–diffusion system

∂u

∂t
= ∇ · (d(x)∇u) + F (x)u − V (x)u, t > 0, x ∈ Ω,

∂ui
∂ν

= 0, ∀ 1 ≤ i ≤ m with di > 0, t > 0, x ∈ ∂Ω.

(11.24)

System (11.24) may come from the equations of infectious variables in the
linearization of a given reaction-diffusion epidemic model at a disease-free
steady state. As such, m is the total number of the infectious compartments,
and F (x) is the infection rate matrix at location x. Moreover, the internal evo-
lution of individuals in the infectious compartments (e.g., random diffusion,
natural and disease-induced deaths, and movements among compartments) is
governed by the linear reaction–diffusion system:

∂u

∂t
= ∇ · (d(x)∇u) − V (x)u, t > 0, x ∈ Ω,

∂ui
∂ν

= 0, ∀ 1 ≤ i ≤ m with di > 0, t > 0, x ∈ ∂Ω.

(11.25)

For a reaction–diffusion model of population growth with m patches (or
types), we may also obtain system (11.24) by linearizing it at the zero solution,
where the word “birth” should be used to replace “infection.” Throughout this
section, we assume that

(H1) F (x) is a continuous and nonnegative m×m matrix function on Ω;
(H2) −V (x) is a continuous and cooperative m ×m matrix function on Ω,

and s(∇ · (d(x)∇) − V ) < 0.

Note that (H2) reflects the observation that the internal evolution of in-
dividuals in the infectious compartments due to random diffusion, deaths,
and movements among the compartments is dissipative, and exponentially
decays in many cases because of the loss of infective members from natural
and disease-induced mortalities.

Set X1 := C(Ω,Rm) and X+
1 := C(Ω,Rm

+ ). Let T (t) be the solution
semigroup on X1 associated with the linear system (11.25). In order to define
the basic reproduction ratio, we let φ(x) be the density distribution of initial
infectious individuals among compartments. Under the synthetical influences
of mobility, mortality, and transfer of individuals in infected compartments,
the distribution of those infective members becomes [T (t)φ](x) as time evolves.
Thus, the distribution of new infective members at time t is F (x)[T (t)φ](x).
Consequently, the distribution of total new infective members is

∫ ∞

0

F (x)[T (t)φ](x)dt. (11.26)
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Define

L(φ)(x) :=

∫ ∞

0

F (x)[T (t)φ](x)dt = F (x)

∫ ∞

0

[T (t)φ](x)dt. (11.27)

Then L is a continuous and positive operator which maps the initial infection
distribution φ to the distribution of the total infective members produced
during the infection period. Following the idea of next generation operators
(see, e.g., [95, 376, 389]), we define the spectral radius of L as the basic
reproduction ratio

R0 := r(L) (11.28)

for model (11.24).
Let B be a resolvent-positive operator with s(B) < 0, F be a bounded

and positive operator, and T (t) be the positive semigroup generated by
A := B + F . It was shown in [370, Theorem 3.5] that s(A) has the same
sign as r(−FB−1) − 1. If s(A) < 0, then limt→∞ T (t)φ = 0 for all φ ∈ D(A)
(see, e.g., [370, Theorem 3.13]). For nonlinear PDE models, however, the spec-
tral bound of the variational operator may not decide about the local stability
of the disease-free steady state. For this purpose, we need to use the exponen-
tial growth bound of the semigroup generated by this variational operator.
Once the equality of these two bounds is known, the aforementioned result
implies that R0 is a threshold value for the local stability of the disease-free
equilibrium (see [370, Section 3.3]).

For convenience, let B := ∇ · (d(x)∇) − V . Then we have the following
result.

Theorem 11.3.3. Let (H1) and (H2) hold. Then R0 − 1 has the same sign
as λ∗ := s(B + F ).

Proof. Clearly, B is the generator of the semigroup T (t) on X1. Note that
T (t) is a positive semigroup in the sense that T (t)X+

1 ⊆ X+
1 for all t ≥ 0. It

then follows from [370, Theorem 3.12] that B is resolvent-positive, and

(λI −B)−1φ =

∫ ∞

0

e−λtT (t)φdt, ∀λ > s(B), φ ∈ X1. (11.29)

From assumption (H2), we have s(B) < 0. Letting λ = 0 in (11.29), we obtain

−B−1φ =

∫ ∞

0

T (t)φdt, ∀φ ∈ X1.

It follows that L = −FB−1. Define the linear operator A := B + F . In
view of (11.24), the operator A generates a positive C0-semigroup. Then [370,
Theorem 3.12] implies that A is resolvent-positive. Thus, it follows from [370,
Theorem 3.5] that s(A) has the same sign as r(−FB−1)− 1 = R0 − 1.

Next we characterize the basic reproduction ratio in terms of the principal
eigenvalue of an elliptic eigenvalue problem.
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Theorem 11.3.4. Let (H1) and (H2) hold, and assume that there exists d0 >
0 such that di(x) ≥ d0 for all 1 ≤ i ≤ m. If the elliptic eigenvalue problem

−∇ · (d(x)∇φ) + V (x)φ = μF (x)φ, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω.

(11.30)

admits a unique positive eigenvalue μ0 with a positive eigenfunction, then
R0 = r(−FB−1) = r(−B−1F ) = 1/μ0.

Proof. Set
Fε(x) = F (x) + εE, Vε(x) = V (x)− εE

where ε > 0 is a constant and E is an m×m matrix whose elements are all 1.
Consider

∂u

∂t
= ∇ · (d(x)∇u) − Vε(x)u, x ∈ Ω,

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω.

(11.31)

Let Tε(t) be the solution semigroup on X1 associated with linear system
(11.31). Then we define

Lε(φ)(x) := Fε(x)

∫ ∞

0

[Tε(t)φ](x)dt. (11.32)

Clearly, Lε is a strongly positive and compact operator. Thus, its spectral
radius denoted by R0(ε) is positive and is an eigenvalue with algebraic multi-
plicity one and a positive eigenvector φε. Then we have

Fε

∫ ∞

0

Tε(t)φεdt = R0(ε)φε. (11.33)

Let Bε be the generator of the continuous semigroup Tε(t). Then

Bεφ = ∇ · [d(x)∇(φ)] − Vε(x)φ. (11.34)

Since Tε(t) is a positive semigroup, [370, Theorem 3.12] implies that Bε is
resolvent-positive, and

(λI −Bε)
−1φ =

∫ ∞

0

e−λtTε(t)φdt, ∀λ > s(Bε), φ ∈ X1. (11.35)

By assumption (H2), it follows from the continuity of the spectral bound on
parameters that one can restrict ε small enough such that s(Bε) < 0.

Letting λ = 0 in (11.35), we obtain −B−1
ε φ =

∫∞
0

Tε(t)φdt, ∀φ ∈ X1.
Thus, we have

− FεB
−1
ε φε = R0(ε)φε. (11.36)
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Set
ψε := −B−1

ε φε.

It is easy to see that ψε is positive and (11.36) implies

Fεψε = −R0(ε)Bεψε. (11.37)

Therefore, we have

−∇ · (d(x)∇ψε(x)) + Vε(x)ψε(x) =
1

R0(ε)
Fε(x)ψε(x), x ∈ Ω,

∂ψε

∂ν
= 0, x ∈ ∂Ω.

(11.38)

By similar arguments to those in [151], it follows that the following eigenvalue
problem

−∇ · (d(x)φ) + Vε(x)φ = μFε(x)φ, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω

(11.39)

has a unique positive eigenvalue με with a positive eigenfunction. Since ψε

is positive, it follows that με = 1/R0(ε), and hence, R0(ε) = 1/με. Letting
ε → 0 and using the perturbation theory of linear operators (see [198]), we
then obtain R0 = 1/μ0.

In the case where some di(x) are identically zero, we can reduce the compu-
tation of R0 to that of the principal eigenvalue of a lower-dimensional elliptic
eigenvalue problem under additional conditions. Without loss of generality,
we assume that d(x) = (d1(x), . . . , dm(x)) satisfies (D2) with k = m. For
convenience, let ui1 = (u1, . . . , ui1)

T , ui2 = (ui1+1, . . . , um)T , and

∇ · (di1(x)∇ui1 ) = diag (∇ · (d1(x)∇u1), . . . ,∇ · (di1(x)∇ui1 )) .

We split two m×m matrices F (x) and V (x) into

F (x) =

(
F11(x) F12(x)
F21(x) F22(x)

)

, V (x) =

(
V11(x) V12(x)
V21(x) V22(x)

)

,

where F11 and V11 are i1 × i1 matrices, F22 and V22 are i2 × i2 matrices, and
i1 + i2 = m. Then we have the following results.

Theorem 11.3.5. Let (H1) and (H2) hold and assume that s(−V22) < 0. Let
B1 := ∇ · (di1∇) − V1, where V1 := V11 − V12V

−1
22 V21. Then the following

statements are valid:

(i) If F12 = 0 and F22 = 0, then R0 = r(−B−1F ) = r(−B−1
1 F1), where

F1 = F11 − V12V
−1
22 F21.

(ii) If F21 = 0 and F22 = 0, then R0 = r(−B−1F ) = r(−B−1
1 F2), where

F2 := F11 − F12V
−1
22 V21.
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Proof. Since −V22 is cooperative and s(−V22) < 0, it follows that V −1
22 exists

and V −1
22 (x) =

∫∞
0

e−V22(x)tdt is a nonnegative matrix for any x ∈ Ω. Let

L̂ := −B−1F . Clearly, we have R0 = r(L̂). For any given φ ∈ X1, let ψ = L̂φ.
Since −Bψ = Fφ, we have

−∇ · (di1∇ψ1) + V11ψ1 + V12ψ2 = F11φ1 + F12φ2,

V21ψ1 + V22ψ2 = F21φ1 + F22φ2.

A straightforward computation shows that

−B1ψ1 = (F11 − V12V
−1
22 F21)φ1 + (F12 − V12V

−1
22 F22)φ2,

ψ2 = V −1
22 (F21φ1 + F22φ2)− V −1

22 V21ψ1.
(11.40)

In the case where F12 = 0 and F22 = 0, it follows from (11.40) that

ψ1 = −B−1
1 F1φ1 := Aφ1, ψ2 =

(
V −1
22 F21 + V −1

22 V21B
−1
1 F1

)
φ1 := Bφ1.

Thus, L̂φ = (Aφ1, Bφ1) , ∀φ = (φ1, φ2) ∈ X1. By induction, we further have

L̂n(φ1, φ2) =
(
Anφ1, BA

n−1φ1

)
, ∀n ≥ 2, φ = (φ1, φ2) ∈ X1.

Note that both A : Y1 → Y1 and B : Y1 → Y2 are linear operators. It then
easily follows that

‖An‖ ≤ ‖L̂n‖ ≤
(
‖An‖2 + ‖B‖2 · ‖An−1‖2

) 1
2 , ∀n ≥ 2.

By the formula of spectral radius, we then obtain r(L̂) = r(A) = r(−B−1
1 F1).

In the case where F21 = 0 and F22 = 0, we have ψ2 = −V −1
22 V21ψ1. Set

Z := {φ = (φ1, φ2) ∈ X1 : φ2 = −V −1
22 V21φ1}.

Thus, Z is a subspace of the Banach space X1 and L̂(X1) ⊂ Z. Let L̂Z be the
restriction of L̂ to Z. Then L̂Z is a linear operator on Z. In view of (11.40),
it follows that

L̂Z(φ) =
(
−B−1

1 F2φ1,−V −1
22 V21(−B−1

1 F2φ1)
)
, ∀φ = (φ1, φ2) ∈ Z.

By the same argument as in the proof of r(L̂) = r(A) in the last paragraph,
we then have r(L̂Z) = r(−B−1

1 F2). Further, it is easy to verify that

‖L̂n
Z‖ ≤ ‖L̂n‖ ≤ ‖L̂n−1

Z ‖ · ‖L̂‖, ∀n ≥ 2.

This, together with the formula of spectral radius, implies that r(L̂) =
r(L̂Z) = r(−B−1

1 F2).

Remark 11.3.3. If we replace the nonzero diffusion terms −∇ · (di(x)∇) in
system (11.24) with uniformly x-dependent elliptic operators and use Dirichlet
or Robin-type boundary conditions in (11.24), then Theorems 11.3.3, 11.3.4,
and 11.3.5 are still valid.
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The following result shows that the reaction–diffusion epidemic model in a
spatially homogenous habitat with the Neumann boundary condition admits
the same basic reproduction ratio as that of its ordinary differential equations
counterpart (see [376]).

Theorem 11.3.6. If each di is a positive constant for 1 ≤ i ≤ m, and F (x) =
F and V (x) = V are independent of x ∈ Ω, then R0 = r(FV −1).

Proof. Let Fε = F + εE, Vε = V − εE, where ε > 0. As shown in the proof
of Theorem 11.3.4, R0(ε) is the principal eigenvalue of Lε with a positive
eigenfunction. On the other hand, the Perron-Frobenius theorem implies that
r(FεV

−1
ε ) is an eigenvalue of FεV

−1
ε with a positive eigenvector w∗. It then

follows that

Lεw
∗ = Fε

∫ ∞

0

Tε(t)w
∗dt = Fε

∫ ∞

0

e−Vεtw∗dt = FεV
−1
ε w∗ = r(FεV

−1
ε )w∗.

By the uniqueness of the principal eigenvalue, it follows that R0(ε) =
r(FεV

−1
ε ). Letting ε → 0, we then obtain R0 = r(FV −1).

11.4 A Spatial Model of Rabies

In this section, we apply the theory developed in Section 11.3 to a reaction-
diffusion model of rabies, and show that R0 is a spatial invasion threshold of
the disease.

Consider the spatial model of rabies (see [252]):

∂E

∂t
= βIS − σE −

[

b+ (a− b)
N

K

]

E,

∂I

∂t
=

∂

∂x

(

D
∂I

∂x

)

+ σE − αI −
[

b+ (a− b)
N

K

]

I,

∂S

∂t
= (a− b)S

(

1− N

K

)

− βIS,

(11.41)

where S is the density of susceptible foxes, E is the density of infected but
non-infectious foxes, I is the density of rabid foxes, N = S + E + I is the
total fox population, D is the diffusion coefficient, a is the birth rate, b is
the intrinsic death rate, and K is the environmental carrying capacity, β is
the disease transmission coefficient, σ is the per capita rate of infected foxes
becoming infectious, α is the disease-induced death rate of rabid fox, and x
is the one-dimensional space variable. The term (a − b)N/K represents the
death rate due to depletion of the food supply by all foxes. Moreover, a > b
is assumed to ensure sustainable population size.
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For simplicity, we confine ourselves to one-dimensional habitat Ω = (0, 1)
and impose the Neumann boundary conditions for model (11.41):

∂I

∂x

∣
∣
∣
x=0

=
∂I

∂x

∣
∣
∣
x=1

= 0. (11.42)

We assume that a, b, σ, andK are positive constants. Rabies, as a zoonotic dis-
ease, is crucially influenced by landscape heterogeneity and spatial distribution
of reservoirs [287, 342], which could result in spatially dependent transmission
coefficient, disease-free steady state and diffusion coefficient. Furthermore, the
spatial control of rabies such as culling and vaccinations [296, 314] induces
spatially dependent death rates of populations and disease-free steady state.
Hence, we allow the diffusion coefficientD, the disease transmission coefficient
β and the death rate α of infected foxes to be spatially dependent. We further
assume that D(x) ≥ D0, ∀x ∈ [0, 1], for some constant D0 > 0, β(x) and α(x)
are nonnegative continuous functions on [0, 1] with β(x) �≡ 0.

Under the above assumptions, system (11.41) admits a disease-free steady
sate (0, 0,K). From the first two equations of the linearized system at (0, 0,K),
it then follows that

F (x) =

(
0 β(x)K
0 0

)

, V (x) =

(
σ + a 0
−σ α(x) + a

)

.

We first consider the elliptic eigenvalue problem associated with linear
parabolic system (11.24):

− (σ + a)E + β(x)KI = λE, x ∈ (0, 1),

d

dx

(

D(x)
dI

dx

)

+ σE − (α(x) + a)I = λI, x ∈ (0, 1),

dI

dx

∣
∣
∣
x=0

=
dI

dx

∣
∣
∣
x=1

= 0.

(11.43)

Lemma 11.4.1. Problem (11.43) has a principal eigenvalue λ∗ with a positive
eigenfunction.

Proof. In order to use Theorem 11.3.2, we write the eigenvalue problem into
the following equivalent one:

d

dx

(

D(x)
dφ1

dx

)

− (α(x) + a)φ1 + σφ2 = λφ1, x ∈ (0, 1),

β(x)Kφ1 − (σ + a)φ2 = λφ2, x ∈ (0, 1),

dφ1

dx

∣
∣
∣
x=0

=
dφ1

dx

∣
∣
∣
x=1

= 0.

(11.44)

Thus, the linear operators Lλ defined in Section 11.3 become

Lλφ =
d

dx

(

D(x)
dφ

dx

)

− (α(x) + a)φ+
σβ(x)K

λ+ (σ + a)
φ, ∀λ > −(σ + a).
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Since β(x) ≥ 0 and β(x) �≡ 0, there exists an interval [c, d] ⊂ (0, 1) such
that β(x) > 0, ∀x ∈ [c, d]. Let A := σ ·minx∈[c,d] β(x) ·K, and let λ1 be the
principal eigenvalue of the following elliptic eigenvalue problem

d

dx

(

D(x)
dφ

dx

)

− (α(x) + a)φ = λφ, x ∈ (c, d),

φ(c) = φ(d) = 0,

with a positive eigenfunction φ∗(x). Set

λ0 :=
λ1 − (σ + a) +

√
(λ1 + σ + a)2 + 4A

2
.

Since A > 0, we have λ0 > −(σ + a). It then follows that

Lλ0φ
∗(x) ≥ d

dx

(

D(x)
dφ∗(x)
dx

)

− (α(x) + a)φ∗(x) +
A

λ0 + (σ + a)
φ∗(x)

=

(

λ1 +
A

λ0 + (σ + a)

)

φ∗(x)

= λ0φ
∗(x), ∀x ∈ (c, d).

Now we define a continuous function φ0(x) on [0, 1] by

φ0(x) =

{
φ∗(x), if x ∈ [c, d],

0, if x ∈ [0, 1] \ [c, d].

Then we have Lλ0φ0(x) ≥ λ0φ0(x), ∀x ∈ (0, 1) \ {c, d}. Consequently,
eλ0tφ0(x) is a subsolution of the integral form of the linear system ut = Lλ0u.
By Theorem 11.3.2 and Remark 11.3.1, problem (11.44) has an eigenvalue with
geometric multiplicity one and a nonnegative eigenfunction. Using (11.44) and
its associated parabolic system, we see that this eigenfunction is positive.

Let R0 be the basic reproduction ratio of system (11.41), as defined in
Section 11.3. Then we have the following observation.

Lemma 11.4.2. Let μ1 be the unique positive eigenvalue of the following
eigenvalue problem:

− d

dx

(
D(x)

dφ

dx

)
+ (α(x) + a)φ = μ

σKβ(x)

σ + a
φ, x ∈ (0, 1),

dφ

dx

∣
∣
∣
x=0

=
dφ

dx

∣
∣
∣
x=1

= 0,

(11.45)

with a positive eigenfunction. Then R0 = 1/μ1.
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Proof. In order to use Theorem 11.3.5, we define

F̂ (x) :=

(
0 0

β(x)K 0

)

, V̂ (x) :=

(
α(x) + a −σ

0 σ + a

)

,

and B̂ := diag
(

d
dx

(
D(x) d

dx

)
, 0
)
− V̂ . It then follows that R0 = r(−B−1F ) =

r(−B̂−1F̂ ). Since F̂12 = 0 and F̂22 = 0, Theorem 11.3.5 (i) implies that

R0 = r(−B̂−1F̂ ) = r(−B̂−1
1 F̂1),

where B̂1φ1 := d
dx

(
D(x)dφ1

dx

)
− V̂1φ1, V̂1φ1 = (α(x) + a)φ1, and F̂1φ1 =

σKβ(x)
σ+a φ1. By Theorem 11.3.4, as applied to the triple (B̂1, F̂1, V̂1), it fol-

lows that r(−B̂−1
1 F̂1) = 1/μ1, where μ1 is the unique positive eigenvalue of

−B̂1φ1 = μF̂1φ1 with a positive eigenfunction. Thus, we have R0 = 1/μ1.

The subsequent result implies that R0 is a threshold value for the local
stability of the disease-free equilibrium (0, 0,K) of the model system (11.41).

Theorem 11.4.1. The following statements are valid:

(i) If R0 < 1, then the disease-free steady state (0, 0,K) is asymptotically
stable for system (11.41).

(ii) If R0 > 1, then there exists ε0 > 0 such that any positive solution of system
(11.41) satisfies lim supt→∞ ‖(E(t, ·), I(t, ·), S(t, ·)) − (0, 0,K)‖ ≥ ε0.

Proof. By linearizing system (11.41) at (0, 0,K), we obtain

∂u

∂t
= ∇ · (d(x)∇u) + (F (x)− V (x)) u, t > 0, x ∈ Ω,

∂u3
∂t

= −(a− b)u1 − (a− b+ β(x)K)u2 − (a− b)u3, t > 0, x ∈ Ω,

∂u2
∂ν

= 0, t > 0, x ∈ ∂Ω,

(11.46)

where u = (u1, u2)
T , d(x) = (0, D(x))T . Let Bu = ∇ · (d(x)∇u) − V (x)u,

Q(t) be the solution semigroup of the u equation of (11.46) subject to the
boundary condition ∂u2

∂ν = 0, and ω̂(Q) be the exponential growth bound
of Q(t). Then B + F is the generator of Q(t). In the case where R0 < 1,
Theorem 11.3.3 implies that s(B+F ) < 0. By [370, Theorem 3.14], we obtain
ω̂(Q) = s(B + F ) < 0. Let Φ(t) be the solution semigroup of system (11.46),
and ω̂(Φ) be its exponential growth bound. Since the first equation of system
(11.46) is decoupled from the second one, we easily see that ω̂(Φ) < 0. Thus,
the local asymptotic stability of (0, 0,K) for the nonlinear system (11.41)
follows from [93, Theorem 2.1].

In the case where R0 > 1, Theorem 11.3.3 implies that λ∗ > 0, where
λ∗ is the principal eigenvalue of (11.43) with a positive eigenfunction due to
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Lemma 11.4.1. For any given ε ∈ (0,K), we consider the following eigenvalue
problem:

β(x)I(K − ε)− σE −
[

b+ (a− b)
K + 3ε

K

]

E = λE, x ∈ (0, 1),

d

dx

(

D(x)
dI

dx

)

+ σE − α(x)I −
[

b + (a− b)
K + 3ε

K

]

I = λI, x ∈ (0, 1),

d

dx

∣
∣
∣
x=0

=
dI

dx

∣
∣
∣
x=1

= 0.

(11.47)
By the same argument as in Lemma 11.4.1, problem (11.47) has a principal
eigenvalue λ∗ε with a positive eigenfunction φ∗

ε (x). Since limε→0 λ
∗
ε = λ∗ > 0,

we can fix a small ε0 ∈ (0,K) such that λ∗ε0 > 0. Assume, for the sake of
contradiction, that there exists a positive solution (E(t, x), I(t, x), S(t, x)) of
(11.41) such that

lim sup
t→∞

‖(E(t, ·), I(t, ·), S(t, ·))− (0, 0,K)‖ < ε0. (11.48)

Then there exists a large t0 > 0 such that

∂E

∂t
≥ β(x)I(K − ε0)− σE −

[

b+ (a− b)
K + 3ε0

K

]

E,

∂I

∂t
≥ ∂

∂x

(

D(x)
∂I

∂x

)

+ σE − α(x)I −
[

b+ (a− b)
K + 3ε0

K

]

I,

(11.49)

for all t ≥ t0. Since (E(t0, ·), I(t0, ·)) � 0 in C([0, 1],R2), we can choose a
sufficiently small number η > 0 such that (E(t0, ·), I(t0, ·)) ≥ ηφ∗

ε0(·). Note
that ηeλ

∗
ε0

(t−t0)φ∗
ε0(x) is a solution of the following linear system:

∂E

∂t
= β(x)I(K − ε0)− σE −

[

b+ (a− b)
K + 3ε0

K

]

E,

∂I

∂t
=

∂

∂x

(

D(x)
∂I

∂x

)

+ σE − α(x)I −
[

b+ (a− b)
K + 3ε0

K

]

I,

∂I

∂x

∣
∣
∣
x=0

=
∂I

∂x

∣
∣
∣
x=1

= 0,

(11.50)

for all t ≥ t0. It then follows from (11.49) and the comparison principle that

(E(t, x), I(t, x)) ≥ ηeλ
∗
ε0

(t−t0)φ∗
ε0(x), ∀x ∈ [0, 1], t ≥ t0,

and hence, E(t, x) and I(t, x) approach ∞ as t → ∞, which contradicts
(11.48). This proves statement (ii).

At the end of this section, we present our numerical scheme on the com-
putation of R0 for model (11.41) via the principal eigenvalue of the eigenvalue
problem (11.45).
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Let h = 1/(n + 1) and xi = ih for 1 ≤ i ≤ n with x0 = 0 and xn+1 = 1.
Then we approximate the derivative by

d

dx

(
D(x)

dφ

dx

)∣∣
xi

≈ 1

h2
[D(xi+1)φ(xi+1)− (D(xi+1) +D(xi))φ(xi) +D(xi)φ(xi−1)]

for all 1 ≤ i ≤ n. Under the Neumann boundary condition, (11.45) can be
approximated by

Au +Qu = μFu, (11.51)

where u = (u1, u2, . . . , un)
T ,

A =
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D(x2) −D(x2) 0 · · · 0
−D(x2) D(x2) +D(x3) −D(x3) · · · 0

...
...

...
...

...
0 0 · · · D(xn−1) +D(xn) −D(xn)
0 0 · · · −D(xn) D(xn)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Kσβ(x1)
α(x1)+a 0 0 · · · 0

0 Kσβ(x2)
α(x2)+a 0 · · · 0

...
...

...
...

...

0 0 · · · Kσβ(xn−1)
α(xn−1)+a 0

0 0 · · · 0 Kσβ(xn)
α(xn)+a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and Q = diag (α(x1) + a, . . . , α(xn) + a). If C = A+Q, then (11.51) becomes

Cu = μFu. (11.52)

Let u0 = (1, 1, . . . , 1)T and define an iteration sequence

vk = C−1Fuk−1, k ≥ 1,

uk =
vk

‖vk‖∞
, k ≥ 1,

where vk is obtained by solving the linear system

Cvk = Fuk−1.

If the eigenvalues of C−1F are given by

μ1 > |μ2| ≥ |μ3| ≥ · · · ≥ |μn|

and w1 is an eigenvector corresponding to μ1, then the classical method in
numerical analysis indicates

lim ‖vk‖∞ = μ1,

limuk =
w1

‖w1‖∞
,

which gives the approximations of μ1 and its eigenfunction, respectively. By
Lemma 11.4.2, we then have R0 = μ1.
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11.5 Notes

Sections 11.1 and 11.2 are taken from Zhao [442]. It seems difficult to directly
use the general theory developed in Thieme [370] to prove that R0 is a thresh-
old value for the linear stability associated with periodic and time-delayed
population models with or without spatial diffusion. For some specific peri-
odic models, one may derive linear periodic Volterra integral equations for
infectious variables and then utilize the renewal theory (see, e.g., [362, 22]
and the references therein) after a careful verification of certain technical
conditions (see, e.g., [288] and the references therein). Our introduction of a
one-parameter family of positive linear operators on the space of continuous
periodic functions was motivated by an eigenvalue problem associated with
the renewal theory.

Recently, there have been a few applications of the theory and methods de-
veloped in [442], see, e.g., Bai [25] for a time-delayed SEIRS model with pulse
vaccination; Zhang, Wang and Zhao [428] for a periodic reaction–diffusion epi-
demic model with latent period; Wang and Zhao [393] for a periodic vector-
bias malaria model with incubation period; Lou and Zhao [234] for a popula-
tion model with time-periodic delay; Wang and Zhao [394] for a time-delayed
Lyme disease model with seasonality. For the theory of basic reproduction
ratios in almost periodic compartmental ODE models, we refer to Wang and
Zhao [391].

Sections 11.3 and 11.4 are adapted from Wang and Zhao [390]. Earlier,
Wang and Zhao [389] introduced a next generation operator to define the
basic reproduction ratio R0 for a nonlocal and time-delayed reaction–diffusion
model of dengue fever, and proved that R0 is a threshold value for the local
extinction and uniform persistence of the disease by appealing to the abstract
results in Thieme [370] and persistence theory. Other studies in this vein are
given in Lou and Zhao [233] for a nonlocal reaction–diffusion malaria model;
in Guo, Wang and Zou [138] for an infective disease model with a fixed latent
period and nonlocal infections; in Mckenzie, Jin, Jacobsen and Lewis [247] for
an advection–diffusion–reaction population model; and in Peng and Zhao [277]
for a periodic reaction–diffusion SIS epidemic model. Recently, the theory and
methods developed in [390] have been applied to two advection-dispersion-
reaction models of harmful algae and zooplankton in Hsu, Wang and Zhao
[176], a reaction-diffusion-advection model of harmful algae growth with toxin
degradation in Wang, Hsu and Zhao [398], and a benthic-drift model for a
stream population in Huang, Jin and Lewis [179].

It is worthy to point out that Allen, Bolker, Lou and Nevai [9] used a
variational expression to define R0 for a reaction-diffusion model with one
infectious compartment. The biological meaning of such R0 can be easily
confirmed via Theorem 11.3.4 combined with the variational characterization
of the principal eigenvalue, see, e.g., [277, Lemmas 2.1 and 2.4].
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A Population Model with Periodic Delay

The rhythm of life on earth, occurring on daily or annual scales, is driven by
seasonal changes in the environment [348] which regulate various physiological
and behavioral processes, as well as the population dynamics of species. Many
plant and animal species have demonstrated seasonal population dynamics in
response to seasonal environmental changes, in particular, the weather con-
ditions. Mosquito species Culex pipiens and Culex restuans, main vectors of
West Nile virus transmission, are very sensitive to long-term variations in cli-
mate and short-term variations in weather [397], in particular, temperature
condition affects the rates of immature mosquito development and activity of
adults, and precipitation determines the amount and quality of larval habi-
tats. Temperature also affects the host-seeking activity of ticks and their rates
from one life stage to the next one, as a result, it is proposed as a statistically
significant determinant and possible driver of emergence of the tick in Canada
[262]. Seasonal forcing in host and parasite biology also determines the risk of
infectious diseases through the following aspects [10]: (a) host social behavior
and aggregation; (b) vector population and activity; (c) parasite stages in the
environment; (d) timing of reproduction and pulses of susceptible hosts; and
(e) host susceptibility and immune defences.

Given the significant roles that seasonal environment factors play in popu-
lation growth, disease transmission, and other life systems, theoretical models
have been formulated to incorporate the seasonality of parameters in phe-
nomenological ways such as those reported in [10]. Many model parameters in
ecosystems are influenced by the environmental conditions in a nonlinear way
[250], and in previous models, it is well accepted to assume the parameters
subject to seasonal factors change periodically. A growing body of literature
reported that the developmental duration can be driven by seasonal forcing,
and thus be periodic. For example, the developmental duration of mosquito
species Culex pipiens and Culex restuans is affected by temperature conditions.
In the transmission cycle of malaria, the extrinsic incubation period (EIP) of
the parasite within the mosquito is one of the most critical parameters to
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evaluate the disease risk. During EIP, malaria parasites go through various
developmental stages and distinct replication cycles before migrating to the
salivary glands where they can be transmitted to humans. The speed of this
development depends on host, parasite, and environmental factors with es-
timate order of 10–14 days in areas of high malaria transmission. However,
90% of the female mosquitoes die within 12 days and are therefore unlikely to
contribute to malaria transmission. On the other side, the extrinsic incuba-
tion period is extremely temperature sensitive [267], and hence, it is pivotal
to incorporate this seasonally forced incubation period in the description of
malaria transmission. For these two aforementioned scenarios, the develop-
mental durations for immature mosquitoes and incubation period for para-
sites are periodic functions of time, which brings new challenges into model
formulation where careful mathematical derivation and biological justification
are needed. The purpose of this chapter is to propose a synthesized mathe-
matical approach to the study of biological systems with seasonal forcing, in
particular, with seasonal variations on developmental duration.

In Section 12.1, we use the host-macroparasite interaction as a motivating
example to present our approach. The host-parasite interaction has attracted
great attention since the pioneering work of Anderson and May [15], with
most models aiming to figure out the basic reproduction number R0 of par-
asite (measuring “the expected lifetime reproductive output of a new born
larva” for macroparasite [250]). Here we develop a theoretical framework to
investigate the population dynamics with time-dependent developmental du-
ration for the parasitic nematodes with a direct life cycle and endotherm hosts
[250]. This framework can be extended to the population growth, pathogen
transmission, and in-host viral dynamics. In Section 12.2, we introduce the
basic reproduction ratio R0 for the model system and establish a threshold-
type result on its global dynamics in terms of R0. In Section 12.3, we show
how to write the next generation operator into the integral form in Posny and
Wang [282] so that their numerical method remains applicable to the compu-
tation of R0 for our model system. For reader’s convenience, we also include
the algorithm of [282] at the end of this section.

12.1 Model Formulation

Before introducing the whole model system for host-parasite interaction, we
investigate a two-stage single population growth scenario as a toy example, in
the hope of presenting the modelling idea through a simpler case.

We start with a two-stage model, with population containing first stage
I(t) and second stage M(t) defined, respectively, as those of age less than,
and greater than, some threshold age τ(t) (the maturation time for the cohort
that matures at time t), which is assumed to be seasonal due to the seasonal
variations of weather conditions. That is, at time t, the individuals with age
greater (less) than τ(t) are in the second stage (remaining in the first stage).
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Within each age group, all individuals have the same age-independent birth
and death rates. Let ρ(t, a) be the population density of age a at time t,
then the numbers I(t) and M(t) of individuals in the first and second stages,
respectively, are given by

I(t) =

∫ τ(t)

0

ρ(t, a) da and M(t) =

∫ ∞

τ(t)

ρ(t, a) da.

The age density ρ(t, a) satisfies the following McKendrick von-Foerster type
equation [77, 400]

∂ρ(t, a)

∂t
+
∂ρ(t, a)

∂a
= −μ(a, t)ρ(t, a), (12.1)

with the age-dependent death rates

μ(a, t) = μ1(t) if a ≤ τ(t) and μ(a, t) = μ2(t) if a > τ(t).

Taking the derivatives of I(t) and M(t), and using (12.1), we obtain

dI(t)
dt = ρ(t, 0)− (1− τ ′(t))ρ(t, τ(t)) − μ1(t)I(t),

dM(t)
dt = (1− τ ′(t))ρ(t, τ(t)) − μ2(t)M(t)− ρ(t,∞).

Since no individual can live forever, ρ(t,∞) is taken as zero. The term ρ(t, 0)
represents the flow in rate to the first stage at time t, supposed to be ρ(t, 0) =
b(t) = B(t,M(t)), a function of time t and population density M(t). Mathe-
matically, we also assume the delay τ(t) involved is continuously differentiable
in [0,∞) and bounded away from zero and infinity. To close the system, we cal-
culate ρ(t, τ(t)) in terms of ρ(t−τ(t), 0) = b(t−τ(t)) = B(t−τ(t),M(t−τ(t))),
which is achieved by the technique of integration along characteristics with
the aid of the variable V s(t) = ρ(t, t− s). By direct calculations, we arrive at

d

dt
V s(t) = −μ1(t)V

s(t)

for t− s ≤ τ(t), with V s(s) = ρ(s, 0) = b(s). It follows that

V s(t) = V s(s)e−
∫ t
s
μ1(ξ) dξ = B(s,M(s))e−

∫ t
s
μ1(ξ) dξ.

Setting s = t− τ(t), we have, for t ≥ τ̂ with τ̂ = max{τ(t)},

ρ(t, τ(t)) = V t−τ(t)(t) = B(t− τ(t),M(t− τ(t)))e−
∫ t
t−τ(t)

μ1(ξ) dξ.

Hence, we obtain a closed system to describe two age groups subject to sea-
sonal effects for t ≥ τ̂ :

dI(t)
dt = B(t,M(t))− (1 − τ ′(t))B(t− τ(t),M(t − τ(t)))e−

∫ t
t−τ(t)

μ1(ξ) dξ

−μ1(t)I(t),
dM(t)

dt = (1− τ ′(t))B(t − τ(t),M(t − τ(t)))e−
∫

t
t−τ(t)

μ1(ξ) dξ − μ2(t)M(t).

(12.2)
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This model turns out to be a differential system with periodic time delay,
which is different from the traditional delay differential models without sea-
sonal effects in the sense that the term 1−τ ′(t) is included in the development
rate from the first stage to the next one:

(1− τ ′(t))B(t − τ(t),M(t − τ(t)))e−
∫

t
t−τ(t)

μ1(ξ) dξ. (12.3)

An alternative approach, more biologically oriented, to describe the pop-
ulation growth of two stages (especially the maturation term (12.3)) is also
feasible. The first stage population size I(t) at time t counts all accumula-
tion of individuals born at moment ξ with rate b(ξ) between t− τ(t) to t but

remain alive with the survival probability e−
∫ t
ξ
μ1(s) ds. Intuitively, the size

I(t) depends on the duration of τ(t) for individuals staying in the first stage.
Motivated by these biological inductions, we can represent I(t) by an integral
form

I(t) =

∫ t

t−τ(t)

b(ξ)e−
∫ t
ξ
μ1(s) dsdξ.

Taking the derivative of I(t), we get the differential equation version of this
variable in the first equation of (12.2). The maturation rate should be the
birth rate at time t− τ(t), b(t− τ(t)), multiplied with survival probability to

time t, e−
∫

t
t−τ(t)

μ1(s) ds, and corrected with the rate of change for t− τ(t).
In parameterizing the delay τ(t), the developmental proportion r(ξ) at

time ξ is taken into consideration such that the accumulative proportion from
t− τ(t) to t reaches unity when the individual moves to the next stage. The-
oretically, we use the following relation to determine τ(t)

1 =

∫ t

t−τ(t)

r(ξ)dξ, (12.4)

where r(ξ) is the time-periodic development proportion at moment ξ. The
periodicity of r(ξ) in ξ implies the periodicity of the delay τ(t) in time variable
t. Taking the derivative with respect to t, we have

0 = r(t) − (1− τ ′(t))r(t − τ(t))

from which we obtain

1− τ ′(t) =
r(t)

r(t− τ(t))
,

and hence, the conversion rate in (12.3) can be expressed as

r(t)

r(t− τ(t))
b(t− τ(t))e−

∫
t
t−τ(t)

μ1(ξ) dξ.

Thanks to this relation, we can always assume that 1 − τ ′(t) > 0 for any
biologically reasonable developmental delay.
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Next, we extend the two-stage model (12.2) to describe host-parasite in-
teraction, where the parasite developmental duration is dependent on time.
Motivated by the fundamental modelling frameworks in Anderson and May
[15] and Dobson and Hudson [100], we consider four stages: Free living lar-
vae not infective X(t), free living larvae infective L(t), arrested larvae in the
host Y (t), and adult parasites P (t). We are concerned with two delays in the
parasite life cycle, one in the free-living stage and the other within the host
population: (i) the developmental delay τL(t) between the moment when newly
shed parasites enter the environment and the moment they reach the infective
larval stage and (ii) the time period τP (t) needed for the arrested larvae infect-
ing the host to develop to pathogenic adults [100]. Since the development time
to the infectivity stage depends on metabolic rate and hence the temperature
condition, we assume the developmental duration is a time-periodic parameter
with the period being one year (365 days) as temperature changes seasonally
[250]. Much attention should be paid to estimate these time-dependent de-
lays. Other life cycle components may also be temperature-dependent, and
therefore, be periodic in time t.

Host population dynamics may be regulated by parasites, which is a crucial
assumption for some host-parasite models [291]. However, here we are more
concerned with the reproduction ratio analysis, and therefore, we ignore the
host survival or fecundity affected by the arrested parasites since the metabolic
activity in arrested larvae is very low [100]. This assumption becomes much
more reasonable for farmed animal hosts, whose density is largely controlled
by the farm owner [291]. Therefore, the host population H(t) is considered
to be seasonal, analogous to those constant host population assumptions in
[292, 293, 346].

Based on the conversion rate with periodic delays (12.3), we can write the
model system as follows:

dX(t)

dt
= λP (t)− μX(t)X(t)

−λ(1− τ ′
L(t))P (t− τL(t))e

− ∫ t
t−τL(t) μX (ξ) dξ

, (12.5a)

dL(t)

dt
= λ(1− τ ′

L(t))P (t− τL(t))e
− ∫ t

t−τL(t) μX (ξ) dξ − μL(t)L(t)

−β(t)H(t)L(t), (12.5b)

dY (t)

dt
= β(t)H(t)L(t)− (μY (t) + μH(t))Y (t)

−(1− τ ′
P (t))β(t− τP (t))H(t− τP (t))×

e
− ∫ t

t−τP (t)(μY (ξ)+μH (ξ)) dξ
L(t− τP (t)), (12.5c)

dP (t)

dt
= (1− τ ′

P (t))β(t− τP (t))H(t− τP (t))×

e
− ∫ t

t−τP (t)(μY (ξ)+μH (ξ)) dξ
L(t− τP (t))

−(μP (t) + μH(t))P (t)− αH

(
1 +

P (t)

H(t)

k + 1

k

)
P (t). (12.5d)
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System (12.5) describes the change of densities for the four compartments: (1)
The free living larvae X(t) are regained through the birth of adult parasite at
rate λ, lost by either mortality (at rate μX(t)) or development to free living
infected larvae (the last term of equation (12.5a)); (2) The density of free living
infected larvae L(t) increases from the development of uninfected larvae (the
first term of equation (12.5b)) and decreases with the death rate μL(t) and
host uptake at rate β(t)H(t), which is dependent on the host population H(t);
(3) Ingested larvae Y (t) enter the host population with rate β(t)H(t). They
stay in the host for τP (t) unit time, which is the developmental duration from
infective larvae to adult parasite. The development rate to adult parasite is
described by the last term of equation (12.5c). Their density decreases due
to the natural death rate μY (t) and host death rate μH(t) as the larvae will
also die when hosts die; (4) The density of adult parasites P (t) increases
with the development from larvae (first term of (12.5d)), decreases with the
mortality, both the natural death at rate μP (t) and host death at rate μH(t).
The burden of adult parasite also decreases due to the aggregated distribution
of parasites in the host population, by assuming the distribution of parasites
within the host population to be negative binomial with exponent k (also
known as aggregation parameter) [15]. As argued previously, we can replace
(1− τ ′L(t)) and (1− τ ′P (t)), respectively, with the developmental proportions

1− τ ′L(t) =
rL(t)

rL(t− τL(t))
and 1− τ ′P (t) =

rP (t)

rP (t− τP (t))
,

where rL(t) and rP (t) are the corresponding developmental proportions.

12.2 Threshold Dynamics

In this section, we first introduce the basic reproduction ratio R0 for model
(12.5), and then establish a threshold-type result on its global dynamics.

In system (12.5), the equations (12.5a) and (12.5c) can be decoupled since
variables X and Y do not appear in the other two equations. Therefore, we
start with the decoupled system:

dL

dt
= λ(1− τ ′

L(t))e
− ∫ t

t−τL(t) μX (ξ) dξ
P (t− τL(t))− μL(t)L(t)− β(t)H(t)L(t),

dP

dt
= (1− τ ′

P (t))β(t− τP (t))H(t− τP (t))e
− ∫ t

t−τP (t)(μY (ξ)+μH (ξ)) dξ
L(t− τP (t))

−(μP (t) + μH(t))P (t)− αH

(
1 +

P (t)

H(t)

k + 1

k

)
P (t). (12.6)

Further, we can rewrite the other two variables into integral forms:

X(t) =

∫ t

t−τL(t)

λP (ξ)e−
∫

t
ξ
μX (s) dsdξ,

Y (t) =

∫ t

t−τP (t)

β(ξ)H(ξ)L(ξ)e−
∫ t
ξ
(μY (s)+μH (s)) dsdξ.

(12.7)
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Once the dynamics of two variables L(t) and P (t) are obtained, that of X(t)
and Y (t) can be deduced naturally.

To address the well-posedness of system (12.6), we introduce some nota-
tions. Let τ̂ = max{maxt∈[0,ω] τL(t),maxt∈[0,ω] τP (t)} and X := C([−τ̂ , 0],R2)

equipped with the maximum norm. For a function x(·) ∈ C([−τ̂ ,∞),R2), we
can define xt ∈ X as xt(θ) = x(t + θ), ∀θ ∈ [−τ̂ , 0]. For any φ ∈ X , we define
f(t, φ) = (f1(t, φ), f2(t, φ)) with

f1(t, φ) = λ(1− τ ′
L(t))e

− ∫ t
t−τL(t) μX (ξ) dξ

φ2(−τL(t))− μL(t)φ1(0)− β(t)H(t)φ1(0),

f2(t, φ) = (1− τ ′
P (t))β(t− τP (t))H(t− τP (t))e

− ∫ t
t−τP (t)(μY (ξ)+μH (ξ)) dξ

φ1(−τP (t))
−(μP (t)+μH(t)+αH)φ2(0)− k+1

k
αH
H(t)

φ2
2(0).

Due to the ω-periodicity of τL(t), μL(t), β(t), H(t), τP (t), μP (t), and μH(t),
it is easy to see that f(t + ω, φ) = f(t, φ). Thus, (12.6) is an ω-periodic
functional differential system. For notational simplicity, we rewrite system
(12.6) into

dL

dt
= bL(t)P (t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)L(t− τP (t)) − dP (t)P (t) − α(t)P 2(t),

(12.8)

where

bL(t) = λ(1− τ ′L(t))e
− ∫ t

t−τL(t)
μX(ξ) dξ

, dL(t) = μL(t) + β(t)H(t),

bP (t) = (1− τ ′P (t))β(t − τP (t))H(t− τP (t))e
− ∫ t

t−τP (t)
(μY (ξ)+μH (ξ)) dξ

,

dP (t) = μP (t) + μH(t) + αH , and α(t) =
αH(k + 1)

kH(t)
.

Clearly, all these coefficients are positive ω-periodic functions.
For a given continuous ω-periodic function g(t), let

ĝ = max
t∈[0,ω]

g(t), g = min
t∈[0,ω]

g(t).

The following result shows that system (12.6) is well-posed on

X+ := C([−τ̂ , 0],R2
+),

and hence, the derived model system is also biologically reasonable.

Lemma 12.2.1. For any φ = (φ1, φ2) ∈ X+, system (12.6) has a unique
nonnegative and bounded solution v(t, φ) with v0 = φ on [0,∞).

Proof. Note that f(t, φ) is continuous and Lipschitzian in φ in each compact
subset of X+. It follows that for any φ ∈ X+, system (12.6) admits a unique
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solution u(t, φ) with u0 = φ on its maximal interval of existence. Let x∗ =

(x∗1, x∗2) :=
(

b̂L
d̄L

b̂pb̂L
αdL

,
b̂pb̂L
αdL

)
. For any given ρ ≥ 1, let [0, ρx∗]X be the order

interval in X , that is,

[0, ρx∗]X := {φ ∈ X : 0 ≤ φ(θ) ≤ ρx∗, ∀θ ∈ [−τ̂ , 0]}.

It is easy to verify that whenever ψ ∈ [0, ρx∗]X , t ∈ R, and ψi(0) = 0 (ψi(0) =
ρx∗i ) for some i, then fi(t, ψ) ≥ 0 (fi(t, ψ) ≤ 0). By [326, Theorem 5.2.1
and Remark 5.2.1], it follows that [0, ρx∗]X is positively invariant for system
(12.6). Since ρ can be chosen as large as we wish, this proves the positivity
and boundedness of solutions in X+.

Next we use the theory in Section 11.1 to introduce the basic reproduction
ratio for our model system with periodic time delays. Linearizing system (12.8)
at its parasite-free steady state (0, 0), we obtain the following linear periodic
system:

dL

dt
= bL(t)P (t− τL(t)) − dL(t)L(t),

dP

dt
= bP (t)L(t− τP (t))− dP (t)P (t).

(12.9)

Let

F (t)

(
φ1

φ2

)

=

(
bL(t)φ2(−τL(t))
bP (t)φ1(−τP (t))

)

and V (t) =

(
dL(t) 0
0 dP (t)

)

.

Then the linear system (12.9) can be written as

du(t)

dt
= F (t)ut − V (t)u(t), ∀t ≥ 0.

Note that F (t) and V (t) are ω-periodic in t and the newly “birth” parasites is
described by F (t) while the growth of the parasites except birth is described
by the following evolution system

du(t)

dt
= −V (t)u(t).

Let Z(t, s), t ≥ s, be the evolution matrix of the above linear system. That
is, for each s ∈ R, the 2× 2 matrix Z(t, s) satisfies

d

dt
Z(t, s) = −V (t)Z(t, s), ∀t ≥ s, Z(s, s) = I,

where I is the 2× 2 identity matrix. Clearly, we have

Z(t, s) =

(
e−

∫
t
s
dL(ξ)dξ 0

0 e−
∫ t
s
dP (ξ)dξ

)

.

Recall that the exponential growth bound of Z(t, s) is defined as
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ω̂(Z) := inf
{
ω̃ : ∃M ≥ 1 such that ‖Z(t+ s, s)‖ ≤ Meω̃t, ∀s ∈ R, t ≥ 0

}
.

It is easy to see that ω̂(Z) ≤ −min{dL, dP }. Therefore, F (t) and V (t) satisfy
the following assumptions:

(A1) F (t) : X → R
2 is positive in the sense that F (t)X+ ⊆ R

2
+;

(A2) The periodic matrix −V (t) is cooperative, and ω̂(Z) < 0.

Let Cω be the Banach space of all ω-periodic functions from R to R
2, equipped

with the maximum norm and the positive cone C+
ω := {u ∈ Cω : u(t) ≥

0, ∀t ∈ R}. Suppose v ∈ Cω is the initial distribution of larval and adult
parasites in this periodic environment, then F (t−s)vt−s is the distribution of
newly born parasites at time t− s with t ≥ s ≥ 0, and Z(t, t− s)F (t− s)vt−s

represents the distribution of those parasites who were newly reproduced at
time t− s and still survive in the environment at time t for t ≥ s. Hence,

∫ ∞

0

Z(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Z(t, t− s)F (t− s)v(t− s+ ·)ds

gives the distribution of accumulative parasite burden at time t produced by
those parasites introduced at all previous time.

We define the next generation operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Z(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.

According to Section 11.1, the basic reproduction ratio is R0 := r(L), the
spectral radius of L.

For any given t ≥ 0, let W (t) be the time-t map of the linear periodic
system (12.9) on X , that is, W (t)φ = wt(φ), where w(t, φ) is the unique
solution of (12.9) with w0 = φ ∈ X . By Theorem 11.1.1, we have the following
result, which indicates that R0 − 1 is a threshold value for the stability of the
zero solution of system (12.9).

Lemma 12.2.2. R0 − 1 has the same sign as r(W (ω)) − 1.

To study the global dynamics of the model system in terms of R0, our
strategy is to use the theory of monotone and subhomogeneous semiflows in
Section 2.3. We start with a new phase space on which system (12.6) generates
an eventually strongly monotone periodic semiflow.

Let
Y := C([−τP (0), 0],R)× C([−τL(0), 0],R),

and
Y+ := C([−τP (0), 0],R+)× C([−τL(0), 0],R+).

Then (Y,Y+) is an ordered Banach space. For a continuous function u :
[−τP (0),+∞)× [−τL(0),+∞) → R

2 and t ≥ 0, we define ut ∈ Y by

(ut)1(θ) = u1(t+θ), ∀θ ∈ [−τP (0), 0], (ut)2(η) = u2(t+η), ∀η ∈ [−τL(0), 0].
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Lemma 12.2.3. For any φ ∈ Y+, system (12.8) admits a unique nonnegative
solution u(t, φ) on [0,∞) with u0 = φ.

Proof. Let τ̄ = min{τL, τP }. For any t ∈ [0, τ̄ ], since t − τL(t) is strictly
increasing, we have

−τL(0) = 0− τL(0) ≤ t− τL(t) ≤ τ̄ − τL(τ̄) ≤ τ̄ − τ̄ = 0,

and hence
P (t− τL(t)) = φ2(t− τL(t)).

Similarly,
L(t− τP (t)) = φ1(t− τP (t)).

Therefore, we have the following equations for t ∈ [0, τ̄ ]:

dL

dt
= bL(t)φ2(t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)φ1(t− τP (t))− dP (t)P (t) − α(t)P 2(t).

Given φ ∈ Y+, the solution (L(t), P (t)) of the above system exists for t ∈ [0, τ̄ ].
In other words, we obtain the values of u1(θ) = L(θ) for θ ∈ [−τP (0), τ̄ ] and
u2(η) = P (η) for η ∈ [−τL(0), τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τL(0) = 0− τL(0) ≤ τ̄ − τL(τ̄ ) ≤ t− τL(t) ≤ 2τ̄ − τL(2τ̄) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence, P (t−τL(t)) = u2(t−τL(t)) is known. Similarly, L(t−τP (t))=u1(t−
τP (t)) is also given from the previous step. Solving the following ordinary
differential system for t ∈ [τ̄ , 2τ̄ ] with L(τ̄) = u1(τ̄ ) and P (τ̄ ) = u2(τ̄ ):

dL

dt
= bL(t)u2(t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)u1(t− τP (t))− dP (t)P (t)− α(t)P 2(t),

we then get the solution (L(t), P (t)) on the interval [τ̄ , 2τ̄ ].
We can extend this procedure to [nτ̄ , (n+1)τ̄ ] for all n ∈ N. It then follows

that for any initial data φ ∈ Y+, the solution (L(t), P (t)) exists uniquely for
all t ≥ 0.

Remark 12.2.1. By the uniqueness of solutions in Lemmas 12.2.1 and 12.2.3,
it follows that for any ψ ∈ X+ and φ ∈ Y+ with ψ1(θ) = φ1(θ), ∀θ ∈
[−τP (0), 0] and ψ2(η) = φ2(η), ∀η ∈ [−τL(0), 0], then u(t, φ) = v(t, ψ), ∀t ≥
0, where u(t, φ) and v(t, ψ) are solutions of system (12.8) satisfying u0 = φ
and v0 = ψ, respectively.
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Lemma 12.2.4. Let Qt(φ) = ut(φ), t ≥ 0. Then Qt is an ω-periodic semiflow
on Y+ in the sense that (i) Q0 = I; (ii) Qt+ω = Qt ◦ Qω, ∀t ≥ 0; and (iii)
Qt(φ) is continuous in (t, φ) ∈ [0,∞)× Y+.

Proof. Clearly, property (i) holds true, and property (iii) follows from a stan-
dard argument. It suffices to prove (ii). Denote v(t) = u(t+ ω, φ), we need to
show that v(t) = u(t, uω(φ)), ∀t ≥ 0. To do this, we first check

dv1(t)

dt
=

du1(t+ ω, φ)

dt
= bL(t+ ω)u2(t+ ω − τL(t+ ω), φ)− dL(t+ ω)u1(t+ ω, φ)

= bL(t)u2(t+ ω − τL(t+ ω), φ)− dL(t)u1(t+ ω, φ)

= bL(t)v2(t− τL(t))− dL(t)v1(t).

Similarly, we have

dv2(t)

dt
=bP (t)v1(t− τP (t))− dP (t)v2(t)− α(t)(v2(t))

2.

This shows that v(t) is also a solution of system (12.8). Moreover, we have
v1(θ) = u1(θ + ω, φ) for θ ∈ [−τP (0), 0] and v2(η) = u2(η + ω, φ) for η ∈
[−τL(0), 0]. On the other side, let w(t) = u(t, uω(φ)), then w(t) is also a
solution of system (12.8), and w1(θ) = u1(θ, uω(φ)) = uω(φ)1(θ)=u1(θ+ω, φ)
for θ ∈ [−τP (0), 0] and w2(η) = u2(η, uω(φ)) = uω(φ)2(η)=u2(η+ω, φ) for η ∈
[−τL(0), 0]. Thus, v(t) and w(t) are solutions of system (12.8) with the same
initial data. By the uniqueness of solutions, we see that v(t) = w(t), ∀t ≥ 0,
that is,

u(t+ ω, φ) = u(t, uω(φ)), ∀t ≥ 0.

For any t ≥ 0 and θ ∈ [−τP (0), 0], if t + θ ≥ 0, we have u1(t + θ + ω, φ) =
u1(t+θ, uω(φ)), that is, ut+ω(φ)1(θ) = ut ◦uω(φ)1(θ); if t+θ < 0, then u1(t+
θ, uω(φ)) = uω(φ)1(t+θ) = u1(t+θ+ω, φ), which also implies ut◦uω(φ)1(θ) =
ut+ω(φ)1(θ). Similarly, we can show that ut ◦ uω(φ)2(η) = ut+ω(φ)2(η) for all
η ∈ [−τL(0), 0] and t ≥ 0. It then follows that ut ◦ uω(φ) = ut+ω(φ), and
hence, Qt+ω(φ) = Qt ◦Qω(φ) for all φ ∈ Y+ and t ≥ 0.

The following two lemmas indicate that the periodic semiflow Qt is even-
tually strongly monotone and strictly subhomogeneous.

Lemma 12.2.5. For any φ and ψ in Y+ with φ > ψ (that is, φ ≥ ψ but
φ �= ψ), the solutions u(t) and v(t) of system (12.8) with u0 = φ and v0 = ψ,
respectively, satisfy ui(t) > vi(t) for all t > 2τ̂ , i = 1, 2, and hence, Qt(φ) �
Qt(ψ) in Y for all t > 3τ̂ .

Proof. As in the proof of Lemma 12.2.3, a simple comparison argument on
each interval [nτ̄ , (n+ 1)τ̄ ], n ∈ N, implies that ui(t) ≥ vi(t) for all t ≥ 0. By
Lemma 12.2.1 and Remark 12.2.1, both u(t) and v(t) are bounded on [0,∞),
and hence, there exists a real number b > 0 such that ut and vt are in the
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order interval [(0, 0), (b, b)]Y for all t ≥ 0. Thus, we can choose a large number
M > 0 such that for each t ∈ R, g1(t, L) := −dL(t)L +ML is increasing in
L ∈ [0, b] and g2(t, P ) := −dP (t)P − α(t)P 2 +MP is increasing in P ∈ [0, b].
It then follows that both u(t) and v(t) satisfy the following system of integral
equations:

L(t) = e−MtL(0) +

∫ t

0

e−M(t−s)g1(s, L(s))ds+

∫ t

0

e−M(t−s)bL(s)P (s− τL(s))ds,

P (t) = e−MtP (0) +

∫ t

0

e−M(t−s)g2(s, P (s))ds+

∫ t

0

e−M(t−s)bP (s)L(s− τP (s))ds,

(12.10)

for all t ≥ 0. Since bothmL(t) := t−τL(t) andmP (t) := t−τP (t) are increasing
in t ∈ R, it easily follows that [−τL(0), 0] ⊆ mL([0, τ̂ ]) and [−τP (0), 0] ⊆
mP ([0, τ̂ ]). Without loss of generality, we assume that φ2 > ψ2. Then there
exists an η ∈ [−τL(0), 0] such that u2(η) > v2(η). In view of the first equation
of (12.10), we have u1(t) > v1(t) for all t > τ̂ . Note that if s > 2τ̂ , then
s − τP (s) > 2τ̂ − τ̂ = τ̂ . By the second equation of (12.10), it follows that
u2(t) > v2(t) for all t > 2τ̂ . This shows that ui(t) > vi(t) for all t > 2τ̂ , i =
1, 2, and hence, the solution map Qt is strongly monotone whenever t > 3τ̂ .

Lemma 12.2.6. For any φ � 0 in Y and any γ ∈ (0, 1), we have ui(t, γφ) >
γui(t, φ) for all t > τ̂ , i = 1, 2, and hence, Qn

ω(γφ) � γQn
ω(φ) in Y for all

integers n with nω > 2τ̂ .

Proof. Let w(t) = u(t, γφ) and v(t) = γu(t, φ), where u(t, φ) is the unique so-
lution of system (12.8) with u0 = φ � 0 in Y. As in the proof of Lemma 12.2.3,
we see that w(t) > 0 and v(t) > 0 for all t ≥ 0. Moreover, for all θ ∈ [−τP (0), 0]
and η ∈ [−τL(0), 0], we have

w1(θ) = γφ1(θ) = v1(θ) and w2(η) = γφ2(η) = v2(η).

It is easy to see that v(t) satisfies the following system:

dv1(t)

dt
= bL(t)v2(t− τL(t))− dL(t)v1(t),

dv2(t)

dt
= bP (t)v1(t− τP (t))− dP (t)v2(t)−

α(t)

γ
v22(t),

and hence,

v1(t) =

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

for all t ≥ 0. For any 0 ≤ t ≤ τ̄ , we have

−τL(0) ≤ t− τL(t) ≤ τ̄ − τL(τ̄ ) ≤ 0
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and

w1(t) =

[
w1(0) +

∫ t

0

bL(ξ)w2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

=

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

= v1(t).

On the other side, the derivative of v2(t) at t = 0:

dv2(t)

dt

∣
∣
∣
∣
t=0

= bP (0)v1(0− τP (0))− dP (0)v2(0)−
α(0)

γ
v22(0)

< bP (0)v1(0− τP (0))− dP (0)v2(0)− α(0)v22(0)

= bP (0)w1(−τP (0))− dP (0)w2(0)− α(0)w2
2(0)

=
dw2(t)

dt

∣
∣
∣
∣
t=0

.

Since v2(0) = w2(0) > 0, it follows that there exists an ε ∈ (0, τ̄) such that
0 < v2(t) < w2(t) for all 0 < t < ε. We claim that v2(t) < w2(t) for all
0 < t ≤ τ̄ . Assume not, then there exists t0 ∈ (0, τ̄ ] such that v2(t) < w2(t)
for all 0 < t < t0 while v2(t0) = w2(t0), which implies v′2(t0) ≥ w′

2(t0).
However, we have

dv2(t)

dt

∣
∣
∣
∣
t=t0

= bP (t0)v1(t0 − τP (t0)) − dP (t0)v2(t0)−
α(t0)

γ
v22(t0)

< bP (t0)v1(t0 − τP (t0)) − dP (t0)v2(t0)− α(t0)v
2
2(t0)

= bP (t0)w1(t0 − τP (t0))− dP (t0)w2(t0)− α(t0)w
2
2(t0)

=
dw2(t)

dt

∣
∣
∣
∣
t=t0

,

a contradiction. This shows that v2(t) < w2(t) for all 0 < t ≤ τ̄ .
Similar arguments for any interval (nτ̄ , (n+ 1)τ̄ ] imply that v1(t) ≤ w1(t)

and v2(t) < w2(t) for all t ∈ (nτ̄ , (n+1)τ̄ ] with n ∈ N. In particular, ξ−τL(ξ) >
τ̂ − τ̂ = 0 and w2(ξ − τL(ξ)) > v2(ξ − τL(ξ)) for all ξ > τ̂ . Therefore, for any
t > τ̂ , we have

w1(t) =

[
w1(0) +

∫ t

0

bL(ξ)w2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

>

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp

(
−
∫ t

0

dL(η)dη

)

= v1(t).

It follows that v1(t) < w1(t) and v2(t) < w2(t) for all t > τ̂ , that is, ui(t, γφ) >
γui(t, φ) for all t > τ̂ , i = 1, 2. Thus, Qn

ω(γφ) = Qnω(γφ) � γQnω(φ) =
γQn

ω(φ) for all integer n with nω > 2τ̂ .
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For any given t ≥ 0, let G(t) be the time-t map of the linear periodic
system (12.9) on Y, that is, G(t)φ = zt(φ), where z(t, φ) is the unique solution
of (12.9) with z0 = φ ∈ Y. The subsequent result shows that the stability of
the zero solution for system (12.9) on X is equivalent to that on Y.

Lemma 12.2.7. Two Poincaré maps W (ω) : X → X and G(ω) : Y → Y
have the same spectral radius, that is, r(W (ω)) = r(G(ω)).

Proof. We fix an integer n0 such that n0ω > 3τ̂ . By the proof of Lemma 12.2.5,
we see that G(ω)n0 = G(n0ω) is strongly positive on Y. Further, [145, Theo-
rem 3.6.1] implies that G(ω)n0 is compact. Then r(G(ω)) > 0 according to the
Krein-Rutmann theorem, as applied to the linear operator (G(ω))n0 , together
with the fact that r(G(ω)n0 ) = (r(G(ω)))n0 . For any given φ = (φ1, φ2) ∈ Y,
we define φ̃ = (φ̃1, φ̃2) ∈ X by

φ̃1(θ) =

{
φ1(−τP (0)) if θ ∈ [−τ̂ ,−τP (0)],
φ1(θ) if θ ∈ [−τP (0), 0];

and

φ̃2(θ) =

{
φ2(−τL(0)) if θ ∈ [−τ̂ ,−τL(0)],
φ2(θ) if θ ∈ [−τL(0), 0].

Clearly, ‖φ‖Y = ‖φ̃‖X . By Remark 12.2.1, it follows that for all integer n with
nω > τ̂ ,

‖G(nω)φ‖Y ≤ ‖W (nω)φ̃‖X ≤ ‖W (nω)‖X ·‖φ̃‖X = ‖W (nω)‖X ·‖φ‖Y , ∀φ ∈ Y,

and hence, ‖G(nω)‖Y ≤ ‖W (nω)‖X . Since

r(G(ω)) = lim
n→∞ ‖G(ω)n‖

1
n

Y = lim
n→∞ ‖G(nω)‖

1
n

Y

and
r(W (ω)) = lim

n→∞ ‖W (ω)n‖
1
n

X = lim
n→∞ ‖W (nω)‖

1
n

X ,

we then have r(W (ω)) ≥ r(G(ω)) > 0.
It remains to prove that r(W (ω)) ≤ r(G(ω)). In view of [326, Theorem

5.1.1] and [145, Theorem 3.6.1], we see that the linear operator W (ω)n0 =
W (n0ω) is positive and compact on X . By the Krein-Rutmann theorem (see,
e.g., [152, Theorem 7.1]), r(W (ω)n0 ) is an eigenvalue ofW (ω)n0 with an eigen-
vector φ∗ > 0 in X . For any φ ∈ X , we define φ ∈ Y as

φ
1
(θ) = φ1(θ), ∀θ ∈ [−τP (0), 0], and φ

2
(η) = φ2(η), ∀η ∈ [−τL(0), 0].

By Remark 12.2.1, we have u(t, φ) = v(t, φ), ∀t ≥ 0, where u(t, φ) and v(t, φ)
are the unique solutions of system (12.9) with u0 = φ ∈ X and v0 = φ ∈ Y,
respectively. We further claim that φ∗ > 0 in Y. Otherwise, φ∗ = 0, and
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hence, u(t, φ∗) = v(t, φ∗) = 0, ∀t ≥ 0. This implies that

(r(W (ω)))n0φ∗ = r(W (ω)n0 )φ∗ = W (ω)n0φ∗ = W (n0ω)φ
∗ = 0,

and hence, φ∗ = 0 in X , which is a contradiction. Since

G(ω)n0φ∗ = W (ω)n0φ∗ = r(W (ω))n0 )φ∗ = (r(W (ω)))n0φ∗,

(r(W (ω)))n0 is a positive eigenvalue of G(ω)n0 with φ∗ being a positive eigen-
vector in Y. It then follows that (r(W (ω)))n0 ≤ r(G(ω)n0 ) = (r(G(ω)))n0 ,
and hence r(W (ω)) ≤ r(G(ω)). Consequently, we have r(W (ω)) = r(G(ω)).

Now we are in a position to prove the main result of this section.

Theorem 12.2.1. The following statements are valid:

(1) If R0 ≤ 1, then (0, 0) is globally asymptotically stable for system (12.8) in
Y+.

(2) If R0 > 1, then system (12.8) admits a unique positive ω-periodic solution
(L∗(t), P ∗(t)), and it is globally asymptotically stable for system (12.8) in
Y+ \ {(0, 0)}.

Proof. We fix an integer n0 such that n0ω > 3τ̂ . In view of Lemma 12.2.4,
Qt can be regarded as an n0ω-periodic semiflow on Y+. By Lemmas 12.2.5
and 12.2.6, Qn0ω is a strongly monotone and strictly subhomogeneous map
on Y+. Applying Theorem 2.3.4 and Lemma 2.2.1 to the map Qn0ω, we have
the following threshold-type result:

(a) If r(DQn0ω(0)) ≤ 1, then (0, 0) is globally asymptotically stable for system
(12.8) in Y+.

(b) If r(DQn0ω(0)) > 1, then system (12.8) admits a unique positive n0ω-
periodic solution (L∗(t), P ∗(t)), and it is globally asymptotically stable
for system (12.8) in Y+ \ {(0, 0)}.

Note that r(DQn0ω(0)) = r(G(n0ω)) = (r(G(ω)))n0 . By Lemmas 12.2.2
and 12.2.7, we then see that

sign(R0 − 1) = sign(r(DQn0ω(0))− 1).

Thus, it suffices to show that in case (b), (L∗(t), P ∗(t)) is also ω-periodic. Let
ψ∗ = v∗0 ∈ Y with v∗(t) = (L∗(t), P ∗(t)). Then Qn0ωψ

∗ = ψ∗. Note that

Qn0
ω (Qωψ

∗) = Qω(Q
n0
ω ψ∗) = Qω(Qn0ωψ

∗) = Qω(ψ
∗).

By the uniqueness of the positive fixed point of Qn0
ω = Qn0ω, it follows that

Qωψ
∗ = ψ∗, which implies that (L∗(t), P ∗(t)) = u(t, ψ∗) is an ω-periodic

solution of system (12.8).
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In the rest of this section, we deduce the dynamics for the other two
variables X(t) and Y (t) in system (12.5), which do not appear in system
(12.6). In the case where R0 > 1, we have

lim
t→∞[(L(t), P (t)) − (L∗(t), P ∗(t))] = 0

for any solution of system (12.6) through nonzero initial data. By using the
integral form for the free living uninfected larvae X(t) and arrested larvae
Y (t) in (12.7), we obtain

lim
t→∞

[

X(t)−
∫ t

t−τL(t)

λP ∗(ξ)e−
∫

t
ξ
μX (s) dsdξ

]

= 0, and

lim
t→∞

[

Y (t)−
∫ t

t−τP (t)

β(ξ)H(ξ)L∗(ξ)e−
∫ t
ξ
(μY (s)+μH (s)) dsdξ

]

= 0.

Moreover, it is easy to verify that both

X∗(t) :=
∫ t

t−τL(t)

λP ∗(ξ)e−
∫

t
ξ
μX (s) dsdξ

and

Y ∗(t) :=
∫ t

t−τP (t)

β(ξ)H(ξ)L∗(ξ)e−
∫ t
ξ
(μY (s)+μH(s)) dsdξ

are positive ω-periodic functions. In the case where R0 ≤ 1, we have

lim
t→∞(L(t), P (t)) = (0, 0).

By using the integral form in (12.7) again, we obtain

lim
t→∞(X(t), Y (t)) = (0, 0).

In summary, we have the following result on the global dynamics of the full
model system.

Theorem 12.2.2. The following statements hold for system (12.5):

(1) If R0 ≤ 1, then (0, 0, 0, 0) is globally attractive.
(2) If R0 > 1, then there exists a positive ω-periodic solution

(X∗(t), L∗(t), Y ∗(t), P ∗(t)),

and it is globally attractive for all nontrivial solutions.
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12.3 Numerical Computation of R0

To numerically compute the basic reproduction ratio, we are going to rewrite
the linear operator L into the form of equation (3) in [282], where an algorithm
is proposed for the R0 computation of periodic ordinary differential systems.

Note that

F (t− s)

(
φ1

φ2

)

=

(
bL(t− s)φ2(−τL(t− s))
bP (t− s)φ1(−τP (t− s))

)

.

It then follows that

[Lv](t) =
∫∞
0

Z(t, t− s)F (t− s)v(t− s+ ·)ds
=

∫∞
0

(
e−

∫ t
t−s dL(ξ)dξ 0

0 e−
∫ t
t−s dP (ξ)dξ

)(
bL(t− s)v2(t− s− τL(t− s))
bP (t− s)v1(t− s− τP (t− s))

)
ds

=

( ∫∞
0

e−
∫ t
t−s dL(ξ)dξbL(t− s)v2(t− s− τL(t− s))ds∫ ∞

0
e−

∫ t
t−s dP (ξ)dξbP (t− s)v1(t− s− τP (t− s))ds

)
.

Let t− s− τL(t− s) = t− s1. Since the function y = x− τL(x) is strictly
increasing, the inverse function exists and we can solve x = hL(y). Hence, we
obtain t− s = hL(t− s1), that is,

s = t− hL(t− s1), ds1 = d(s+ τL(t− s)) = (1− τ ′L(t− s))ds,

and ds = 1
1−τ ′

L(hL(t−s1))
ds1. Therefore,

∫∞
0

e−
∫ t
t−s

dL(ξ)dξbL(t− s)v2(t− s− τL(t− s))ds

=
∫∞
τL(t)

e
− ∫ t

hL(t−s1)
dL(ξ)dξ

bL(hL(t−s1))
1−τ ′

L(hL(t−s1))
v2(t− s1)ds1

=
∫∞
τL(t)

e
− ∫ t

hL(t−s)
dL(ξ)dξ

bL(hL(t−s))
1−τ ′

L(hL(t−s)) v2(t− s)ds.

Similarly, let t − s − τP (t − s) = t − s2. Assume that the inverse function of
y = x− τP (x) is y = hP (x). Solving t− s = hP (t− s2), we get

s = t− hP (t− s2), ds2 = (1− τ ′P (t− s))ds, and ds =
1

1− τ ′P (hP (t− s2))
ds2.

Therefore,

∫∞
0 e−

∫
t
t−s

dP (ξ)dξbP (t− s)v1(t− s− τP (t− s))ds

=
∫∞
τP (t)

e
− ∫ t

hP (t−s2)
dP (ξ)dξ

bP (hP (t−s2))
1−τ ′

P (hP (t−s2))
v1(t− s2)ds2

=
∫∞
τP (t)

e
− ∫ t

hP (t−s)
dP (ξ)dξ

bP (hP (t−s))
1−τ ′

P (hP (t−s)) v1(t− s)ds.
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Define

K12(t, s) =

{
0, s < τL(t)

e
− ∫ t

hL(t−s)
dL(ξ)dξ

bL(hL(t−s))
1−τ ′

L(hL(t−s)) , s ≥ τL(t)

and

K21(t, s) =

{
0, s < τP (t)

e
− ∫ t

hP (t−s)
dP (ξ)dξ

bP (hP (t−s))
1−τ ′

P (hP (t−s)) , s ≥ τP (t)

while K11(t, s) = K22(t, s) = 0. Then we have

[Lv](t) =
∫∞
0 K(t, s)v(t− s)ds

=
∞∑

j=0

∫ (j+1)ω

jω
K(t, s)v(t− s)ds

=
∞∑

j=0

∫ ω

0 K(t, jω + s)v(t− s− jω)ds

=
∫ ω

0 G(t, s)v(t− s)ds

with

G(t, s) =

∞∑

j=0

K(t, jω + s),

which is of the integral form

[Lφ](t) =

∫ ω

0

G(t, s)φ(t − s)ds. (12.11)

Below we present a numerical algorithm, which is due to Posny and Wang
[282], for the computation of the spectral radius of the integral operator given
by (12.11).

Let us partition the interval [0, ω] uniformly into n nodes labeled as ti =
i · ω

n for i = 0, . . . , n− 1. Using the trapezoidal rule, one of the most common
numerical integration techniques, we can approximate the integral in (12.11)
with second-order accuracy:

[Lφ](t) ≈ ω

n

(
n−1∑

i=1

G(t, ti)φ(t − ti) +
1

2
G(t, t0)φ(t − t0) +

1

2
G(t, tn)φ(t− tn)

)

.

Since φ(t) is ω-periodic, it is clear that φ(t− t0) = φ(t− tn). For convenience,
we let

G̃(t, t0) =
1

2
[G(t, t0) +G(t, tn)].

Then

[Lφ](t) ≈ ω

n

[

G̃(t, t0)φ(t− t0) +

n−1∑

i=1

G(t, ti)φ(t − ti)

]

.

Now [Lφ](t) = λφ(t) can be written as a matrix equation:
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ω

n
[G̃(t, t0) G(t, t1) G(t, t2) · · · G(t, tn−1)]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

φ(t− t0)
φ(t− t1)
φ(t− t2)

...
φ(t− tn−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= λφ(t).

Setting t = tj(0 ≤ j ≤ n− 1) in the above equation yields

ω

n
[G̃(tj , t0) G(tj , t1) G(tj , t2) · · · G(tj , tn−1)]

⎡
⎢⎢⎢⎢⎢⎣

φ(tj − t0)
φ(tj − t1)
φ(tj − t2)

...
φ(tj − tn−1)

⎤
⎥⎥⎥⎥⎥⎦
= λφ(tj). (12.12)

Again, by the periodicity of φ(t), it follows that

φ(tj − t0) = φ(tj), φ(tj − t1) = φ(tj−1), . . . ,

φ(tj − tj−1) = φ(t1), φ(tj − tj) = φ(t0), φ(tj − tj+1) = φ(tn−1),

. . . , φ(tj − tn−2) = φ(tj+2), φ(tj − tn−1) = φ(tj+1),

and we can rearrange the terms in (12.12) to obtain

ω

n

[
G(tj , tj) . . . G̃(tj , t0) G(tj , tn−1) . . . G(tj , tj+1)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(t0)
φ(t1)
...

φ(tj)
...

φ(tn−2)
φ(tn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λφ(tj).

(12.13)

Note that this equation holds for all j = 0, . . . , n−1, and hence, it generates
a matrix system. The coefficient matrix, denoted by A, is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G̃(t0, t0) G(t0, tn−1) · · · · · · · · · G(t0, t2) G(t0, t1)

G(t1, t1) G̃(t1, t0) · · · · · · · · · G(t1, t3) G(t1, t2)
...

...
. . .

. . .
. . .

...
...

G(tj , tj) G(tj , tj−1) · G̃(tj , t0) · G(tj , tj+2) G(tj , tj+1)
...

...
. . .

. . .
. . .

...
...

G(tn−2, tn−2) G(tn−2, tn−3) . . . · · · · · · G̃(tn−2, t0) G(tn−2, tn−1)

G(tn−1, tn−1) G(tn−1, tn−2) · · · · · · · · · G(tn−1, t1) G̃(tn−1, t0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12.14)

It then follows that (12.13) can be put into a compact form:

ω

n
Aφ̃ = λφ̃, (12.15)
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where A, defined in (12.14), is a matrix of dimension (nm) × (nm), and φ̃ =
[φ(t0), φ(t1), . . . , φ(tn−1)]

T is a vector of dimension (nm)× 1.
Consequently, to compute the basic reproduction ratio R0 := ρ(L), it

suffices to find the maximum λ such that (12.15) is valid, that is, R0 ≈ ω
nρ(A).

12.4 Notes

Sections 12.1, 12.2, and 12.3 are taken from Lou and Zhao [234] with the
exception that the numerical algorithm in Section 12.3 comes from Posny and
Wang [282].

The introduction of the term 1− τ ′(t) is due to the incorporation of state-
dependent delay in Barbarossa, Hadeler and Kuttler [26] and Kloosterman,
Campbell and Poulin [202]. A similar term was formulated in models proposed
by Wu et al. [414] and some others, see, e.g., McCauley et al. [246] and the
references therein, to describe the population growth with threshold age τ
depending on time t.

Model (12.6) was proposed earlier by Molnár et al. [250], where L in equa-
tions (8b) and (1b) should be L(t− τP ). There are also some other algorithms
to compute R0 for periodic population models with constant time delay, see,
e.g., Bacaër [21].
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A Periodic Reaction–Diffusion SIS Model

It has been commonly accepted that spatial diffusion and environmental het-
erogeneity are important factors that should be considered in the spread of
infectious diseases. In order to understand the impact of spatial heterogene-
ity of the environment and movement of individuals on the persistence and
extinction of a disease, Allen et al. [9] proposed a frequency-dependent SIS
(susceptible-infected-susceptible) reaction–diffusion model for a population in
a continuous spatial habitat. They assumed that both rates of the transmis-
sion and recovery of the disease depend on spatial variables. Another feature
of this SIS model is that the total population number is constant. The habitat
is characterized as low-risk (or high-risk) if the spatial average of the trans-
mission rate of the disease is less than (or greater than) the spatial average
of its recovery rate. The individual site is also characterized as low-risk (or
high-risk) if the local transmission rate of the disease is less than (or greater
than) its local recovery rate, which corresponds to the case where the local
reproduction number is less than (or greater than) one.

Assume that the habitat Ω ⊂ R
m (m ≥ 1) is a bounded domain with

smooth boundary ∂Ω (when m > 1), and ν is the outward unit normal vector
on ∂Ω and ∂

∂ν means the normal derivative along ν on ∂Ω. The global stability
of the unique disease-free equilibrium and asymptotic profiles of the unique
endemic equilibrium were established in [9] for the following SIS reaction-
diffusion system:

∂S
∂t − dSΔS = −β(x)S I

S+I
+ γ(x)I, x ∈ Ω, t > 0,

∂I
∂t − dIΔI = β(x)S I

S+I
− γ(x)I, x ∈ Ω, t > 0,

∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,

(13.1)

where S(x, t) and I(x, t), respectively, represent the density of susceptible and
infected individuals at location x and time t; the positive constants dS and dI
denote the diffusion rates of susceptible and infected populations; and β(x)
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and γ(x) are positive Hölder continuous functions on Ω which account for
the rates of disease transmission and disease recovery at x, respectively. The
homogeneous Neumann boundary conditions mean that there is no population
flux across the boundary ∂Ω and both the susceptible and infected individuals
live in a self-contained environment.

In model (13.1), it was assumed that the rates of disease transmission and
recovery depend only on the spatial variable. However, the rates of disease
transmission and disease recovery may be spatially and temporally heteroge-
neous. Typically, they vary periodically in time, for instance, due to the sea-
sonal fluctuation and periodic availability of vaccination strategies. A natural
consideration of a spatially heterogeneous and temporally periodic environ-
ment leads us to the study of the following system:

∂S
∂t − dSΔS = −β(x,t)S I

S+I
+ γ(x, t)I, x ∈ Ω, t > 0,

∂I
∂t − dIΔI = β(x,t)S I

S+I
− γ(x, t)I, x ∈ Ω, t > 0,

∂S
∂ν = ∂I

∂ν = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(13.2)

In the current situation, the functions β(x, t) and γ(x, t) represent the rates
of disease transmission and recovery at location x and time t, respectively.

It is easy to see that the function S I/(S + I) is a Lipschitz continuous
function of S and I in the first open quadrant. Thus, we can extend its defi-
nition to the entire first quadrant by defining it to be zero when either S = 0
or I = 0. Throughout this chapter, we make the following assumption:

(A) The functions β(x, t) and γ(x, t) are Hölder continuous and nonnegative
but not zero identically on Ω ×R, and ω-periodic in t for some number
ω > 0.

From the classical theory for parabolic equations (see, e.g., [228]), we know
that for any (S0, I0) ∈ C(Ω,R2

+), system (13.2) has a unique classical solution

(S, I) ∈ C2,1(Ω × (0,∞)). By the strong maximum principle and the Hopf
boundary lemma for parabolic equations (see, e.g., [283]), it follows that if
I0(x) �≡ 0, then both S(x, t) and I(x, t) are positive for x ∈ Ω and t ∈ (0,∞).
Following [9], we define

N :=

∫

Ω

[S0(x) + I0(x)] dx > 0 (13.3)

to be the total number of individuals in Ω at t = 0. We add two equations in
(13.2) and then integrate over Ω by parts to obtain

∂

∂t

∫

Ω

(S + I) dx =

∫

Ω

Δ(dSS + dII) dx = 0, ∀t > 0.

This implies that the total population size is a constant, i.e.,
∫

Ω

[S(x, t) + I(x, t)] dx = N, ∀t ≥ 0, (13.4)
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which also shows that both ‖S(·, t)‖L1(Ω) and ‖I(·, t)‖L1(Ω) are bounded on
[0,∞). From now on, we let N be a given positive constant.

A nonnegative ω-periodic solution (S̃, Ĩ) of system (13.2)–(13.3) is said to
be disease-free if Ĩ ≡ 0 on Ω×R; and endemic if Ĩ ≥ 0, �≡ 0 on Ω×R. It is easy
to observe from (13.2)–(13.3) that the unique disease-free ω-periodic solution
is (S̃, 0) = (N/|Ω|, 0) (see [9, Lemma 2.1]), and henceforth we call this solution
the disease-free constant solution. Hereafter, |Ω| always represents the volume
of the domain Ω. Moreover, the maximum principle and the Hopf boundary
lemma for parabolic equations imply that an endemic ω-periodic solution
(S̃, Ĩ) is positive on Ω × [0,∞), that is, S̃(x, t) > 0, Ĩ(x, t) > 0, ∀(x, t) ∈
Ω × [0,∞).

The purpose of this chapter is to investigate the effect of spatial and tem-
poral heterogeneities on the extinction and persistence of the infectious disease
for system (13.2)–(13.3). In Section 13.1, we first introduce the basic reproduc-
tion ratio R0 and then provide its analytical characterizations. In particular,
we obtain the asymptotic behavior of R0 as dI tends to zero or infinity. It
turns out that when β and γ depend only on the temporal variable (namely,
β(x, t) = β(t) and γ(x, t) = γ(t)), R0 is a constant independent of dI , and
when β and γ depend on the spatial variable alone (namely, β(x, t) = β(x)
and γ(x, t) = γ(x)), R0 is a nonincreasing function of dI . In sharp contrast,
our result shows that in general, R0 is not a monotone function of dI . In
the case where β(x, t) is a constant, we also address an optimization problem
concerning R0 when the average of the function γ(x, t) is given.

In Section 13.2, we derive a threshold-type dynamics for system (13.2)–
(13.3) in terms of R0. More specifically, we prove that the disease-free constant
solution is globally stable if R0 < 1; while if R0 > 1, system (13.2)–(13.3)
admits at least one endemic ω-periodic solution and the disease is uniformly
persistent. In order to establish a uniform upper bound for positive solutions
to system (13.2)–(13.3), we re-formulate the general theory developed in [214]
in such a way that it applies to system (13.2)–(13.3) (see Lemma 13.2.1).

In Section 13.3, we establish the global attractivity of the positive ω-
periodic solution (and hence its uniqueness) of system (13.2)–(13.3) for some
special cases. However, it remains a challenging problem to study the unique-
ness of the endemic ω-periodic solution for the general case. The biological
interpretations of our analytical results are presented in Section 13.4.

13.1 Basic Reproduction Ratio

In this section, we introduce the basic reproduction ratio for the periodic
reaction–diffusion system (13.2), and analyze its properties. As a first step,
we need to define the next infection operator for system (13.2), which is a
combination of the idea in [388] for periodic ordinary differential models with
that in [389] for autonomous reaction–diffusion systems.
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Let Cω be the ordered Banach space consisting of all ω-periodic and con-
tinuous functions from R to C(Ω,R), which is equipped with the maximum
norm ‖·‖ and the positive cone C+

ω := {φ ∈ Cω : φ(t)(x) ≥ 0, ∀t ∈ R, x ∈ Ω}.
For any given φ ∈ Cω , we also use the notation φ(x, t) := φ(t)(x). Let V (t, s)
be the evolution operator of the reaction-diffusion equation

It − dIΔI = −γ(x, t)I, x ∈ Ω, t > 0,
∂I

∂ν
= 0, x ∈ ∂Ω, t > 0.

(13.5)

By the standard theory of evolution operators, it follows that there exist
positive constants K and c0 such that

‖V (t, s)‖ ≤ Ke−c0(t−s), ∀t ≥ s, t, s ∈ R. (13.6)

Suppose that φ ∈ Cω is the density distribution of initial infectious individ-
uals at the spatial location x ∈ Ω and the time s. Then the term β(x, s)φ(x, s)
means the density distribution of the new infections produced by the in-
fected individuals who were introduced at time s. Thus, for given t ≥ s,
V (t, s)β(x, s)φ(x, s) is the density distribution at location x of those infected
individuals who were newly infected at time s and remains infected at time t.
Therefore, the integral

∫ t

−∞
V (t, s)β(·, s)φ(·, s)ds =

∫ ∞

0

V (t, t− a)β(·, t− a)φ(·, t − a)da

represents the density distribution of the accumulative new infections at loca-
tion x and time t produced by all those infected individuals φ(x, s) introduced
at all the previous time to t.

As in [388], we introduce the linear operator L : Cω �−→ Cω:

L(φ)(t) :=

∫ ∞

0

V (t, t− a)β(·, t− a)φ(·, t − a)da, (13.7)

which we may call as the next generation operator. Under our assumption on
β and γ, it is easy to see that L is continuous, compact on Cω and positive (i.e.,
L(C+

ω ) ⊂ C+
ω ). We define the spectral radius of L as the basic reproduction

ratio

R0 = ρ(L) (13.8)

for system (13.2).
In what follows, we first obtain a characterization of the basic reproduction

ratio R0. This leads us to consider the following linear periodic-parabolic
eigenvalue problem

ψt − dIΔψ = −γ(x, t)ψ +
β(x, t)

μ
ψ, x ∈ Ω, t > 0,

∂ψ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ(x, 0) = ψ(x, ω), x ∈ Ω.

(13.9)
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By [152, Theorem 16.3], problem (13.9) has a unique principal eigenvalue μ0,
which is positive and corresponds to an eigenvector ψ0 ∈ Cω and ψ0 > 0 on R.

Lemma 13.1.1. R0 = μ0 > 0.

Proof. Since (μ0, ψ0) satisfies (13.9), it follows from the constant-variation
formula that

ψ0(x, t) = V (t, τ)ψ0(x, τ) +

∫ t

τ

V (t, s)
β(x, s)

μ0
ψ0(x, s)ds. (13.10)

Using (13.6) and the boundedness of ψ0 on R, by letting τ → −∞, we obtain

ψ0(x, t) =

∫ t

−∞
V (t, s)

β(x, s)

μ0
ψ0(x, s)ds, ∀t ∈ R,

which implies Lψ0 = μ0ψ0 due to (13.7).
Note that under our assumption (A), the operator L may not be strongly

positive. To show R0 = μ0, we use a perturbation argument. For any given
ε > 0, we define

Lε(φ)(t) :=

∫ ∞

0

V (t, t− a)(β(·, t − a) + ε)φ(·, t− a)da, (13.11)

and its spectral radius Rε,0 = ρ(Lε). As β(x, t)+ ε > 0 on Ω×R, Lε : Cω �−→
Cω is continuous, compact, and strongly positive. By the upper semicontinuity
of the spectrum ([198, Sect. IV.3.1]) and the continuity of a finite system of
eigenvalues ([198, Sect. IV.3.5]), we then derive

Rε,0 → R0 as ε → 0. (13.12)

On the other hand, we denote by με,0 the unique positive principal eigenvalue
of (13.9) with β(x, t) replaced by β(x, t) + ε, which corresponds to a positive
eigenvector ψε,0 ∈ Cω. Arguing as above, we see that Lεψε,0 = με,0ψε,0. By
virtue of the strong positivity of Lε and the Krein-Rutman theorem (see, e.g.,
[152, Theorem 7.2]), we have Rε,0 = με,0. Furthermore, from the continuity of
the principal eigenvalue on the weight function ([152]), it follows that Rε,0 =
με,0 → μ0 as ε → 0. This fact, together with (13.12), implies R0 = μ0.

For our later purpose, we consider the periodic-parabolic eigenvalue prob-
lem

ϕt − dIΔϕ = β(x, t)ϕ − γ(x, t)ϕ+ λϕ, x ∈ Ω, t > 0,
∂ϕ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ϕ(x, 0) = ϕ(x, ω), x ∈ Ω.

(13.13)

Let λ0 be the unique principal eigenvalue of (13.13) (see, e.g., [152]). Then
we have the following observation.
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Lemma 13.1.2. 1−R0 has the same sign as λ0.

Proof. This lemma is a straightforward consequence of [370, Theorem 5.7].
Here we provide an elementary proof. In view of Lemma 13.1.1, it suffices to
prove that 1 − μ0 has the same sign as λ0. Due to [152, Theorem 7.2], we
can assert that λ0 is also the principal eigenvalue of the adjoint problem of
(13.13):

−ϕ∗
t − dIΔϕ

∗ = β(x, t)ϕ∗ − γ(x, t)ϕ∗ + λϕ∗, x ∈ Ω, t > 0,
∂ϕ∗

∂ν
= 0, x ∈ ∂Ω, t > 0,

ϕ∗(x, 0) = ϕ∗(x, ω), x ∈ Ω,

(13.14)

where ϕ∗ ∈ Cω and ϕ∗ > 0 on R. We multiply the equation (13.9) that
(μ0, ψ0) satisfies by ϕ∗ and then integrate over Ω × (0, ω) by parts to obtain

(
1− 1

μ0

) ∫ ω

0

∫

Ω

βψ0ϕ
∗dxdt+ λ0

∫ ω

0

∫

Ω

ψ0ϕ
∗dxdt = 0.

Since
∫ ω

0

∫
Ω
βψ0ϕ

∗dxdt and
∫ ω

0

∫
Ω
ψ0ϕ

∗dxdt are both positive, it follows that

1− 1
μ0

and λ0 have the opposite signs, which thereby deduces our result.

From now on, we present some quantitative properties for the basic repro-
duction ratio R0. First of all, when β(x, t)− γ(x, t) or both β(x, t) and γ(x, t)
are spatially homogeneous, we have the following result.

Lemma 13.1.3. The following statements hold true:

(a) If β(x, t) ≡ β(t) and γ(x, t) ≡ γ(t), then R0 =
∫ ω

0
β(t)dt/

∫ ω

0
γ(t)dt.

(b) If β(x, t) − γ(x, t) ≡ h(t), then R0 − 1 has the same sign as
∫ ω

0
h(t)dt.

Proof. We first prove (a). For simplicity, let

μ∗ =

∫ ω

0
β(t)dt

∫ ω

0
γ(t)dt

.

Consider the ordinary differential equation:

ut =
(
− γ(t) +

1

μ∗β(t)
)
u, u(0) = 1. (13.15)

It is easy to see that (13.15) admits a unique positive solution

u(t) = e
∫

t
0
(−γ(s)+ 1

μ∗ β(s))ds,

which also satisfies u(ω) = u(0) = 1. So u(t) is a positive ω-periodic solution
to (13.15). Thanks to the uniqueness of the principal eigenvalue of (13.9), we
have μ0 = μ∗, and hence (a) holds since R0 = μ0.
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We then verify (b). In this case, we consider the following ordinary differ-
ential problem:

ut − h(t)u = λu, u(0) = u(ω) = 1. (13.16)

Clearly, (13.16) has a unique positive solution if and only if

λ = − 1

ω

∫ ω

0

h(t)dt.

Furthermore, such a unique positive ω-periodic solution can be expressed as
u(t) = e

∫ t
0
(h(s)+λ)ds. Observe that

λ = − 1

ω

∫ ω

0

h(t)dt and ψ(t) = e
∫ t
0
(h(s)+λ)ds

satisfy (13.13). By the uniqueness of the principal eigenvalue, we immediately
have

λ0 = − 1

ω

∫ ω

0

h(t)dt.

Therefore, applying Lemma 13.1.2, we see that (b) holds true.

Secondly, if β(x, t)−γ(x, t) or both β(x, t) and γ(x, t) depend on the spatial
factor alone, we have the following result.

Lemma 13.1.4. Assume that β(x, t) − γ(x, t) ≡ h(x). Then the following
assertions hold true:

(a) If
∫
Ω
h(x)dx ≥ 0 and h �≡ 0 in Ω, then R0 > 1 for all dI ;

(b) If
∫
Ω
h(x)dx < 0 and h(x) ≤ 0 on Ω, then R0 < 1 for all dI ;

(c) If
∫
Ω h(x)dx < 0 and maxΩ h(x) > 0, then there exists a threshold value

d∗I ∈ (0,∞) such that R0 > 1 for dI < d∗I , R0 = 1 for dI = d∗I , and R0 < 1
for dI > d∗I .

In particular, if β(x, t) ≡ β(x) and γ(x, t) ≡ γ(x), we have

R0 = sup
ϕ∈H1(Ω), ϕ 	=0

{ ∫
Ω βϕ2dx

∫
Ω (dI |∇ϕ|2 + γϕ2) dx

}

(13.17)

and R0 is a nonincreasing function of dI with R0 → maxΩ{
β(x)
γ(x)} as dI → 0,

and R0 →
∫
Ω β(x)dx/

∫
Ω γ(x)dx as dI → ∞. Here and in what follows, when

maxΩ{
β(x)
γ(x)} = ∞, we understand R0 → ∞ as dI → 0.

Proof. To prove our assertions, we resort to problem (13.13). First, when
β(x, t) − γ(x, t) ≡ h(x), we consider the elliptic eigenvalue problem

− dIΔu − h(x)u = λu, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω. (13.18)
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It is well known that (13.18) possesses a unique principal eigenvalue, denoted
by λ∗. From the uniqueness of the principal eigenvalue for (13.13) and (13.18),
it is necessary that λ0 = λ∗ in the present situation. By [9, Lemma 2.2] and
its proof, we further see that λ0 is nondecreasing with respect to dI > 0, and
if additionally h(x) is not a constant in Ω, then λ0 is strictly increasing in
dI > 0. Moreover, λ0 → −maxΩ h(x) as dI → 0 and λ0 → − 1

|Ω|
∫
Ω
h(x)dx

as dI → ∞. Hence, the assertions (a)–(c) follow from these properties and
Lemma 13.1.2.

In the case of β(x, t) ≡ β(x) and γ(x, t) ≡ γ(x), we recall that R0 = μ0.
As above, it is easy to see from (13.9) that R0 is the principal eigenvalue of
the elliptic problem:

− dIΔψ = −γ(x)ψ +
β(x)

μ
ψ, x ∈ Ω;

∂ψ

∂ν
= 0, x ∈ ∂Ω. (13.19)

Then the formula (13.17) follows from the well-known variational character-
ization of the principal eigenvalue for problem (13.19) (see, e.g., [108, Sect.
II. 6.5]). Thus, the properties of R0 are straightforward consequences of [9,
Lemma 2.3].

Remark 13.1.1. In [9, Lemma 2.3], the right-hand side expression of (13.17) is
directly defined as the basic reproduction number for the autonomous system
(13.1). Lemma 13.1.4 above shows that this definition is indeed meaningful
biologically. Moreover, if β(x) �≡ γ(x) on Ω × [0, ω], according to the proof of
[9, Lemma 2.3], R0 is a strictly decreasing function of dI .

The subsequent result presents some analytical properties of R0 for the
general case of β and γ.

Theorem 13.1.1. The following statements are valid:

(a) R0 ≥
∫ ω
0

∫
Ω

β(x,t)dxdt∫
ω
0

∫
Ω

γ(x,t)dxdt
for all dI , and the equality holds if and only if the

function β(x,t)∫ ω
0

∫
Ω

β(x,t)dxdt
− γ(x,t)∫ ω

0

∫
Ω

γ(x,t)dxdt
is spatially homogeneous (that is,

x-independent);
(b) R0 < 1 for all dI > 0 if

∫ ω

0
maxx∈Ω(β(x, t) − γ(x, t))dt ≤ 0 and β(x, t) −

γ(x, t) nontrivially depends on x;

(c) R0 →
∫

ω
0

∫
Ω

β(x,t)dxdt∫ ω
0

∫
Ω

γ(x,t)dxdt
as dI → ∞;

(d) R0 → maxx∈Ω

{ ∫ ω
0

β(x,t)dt∫ ω
0

γ(x,t)dt

}
as dI → 0;

(e) In general, R0(dI) := R0 is not a nonincreasing function of dI ; partic-
ularly, if β(x, t) = p(x)q1(t) and γ(x, t) = p(x)q2(t) with p > 0 on Ω,
p �≡ constant, q1, q2 ∈ Cω, q1, q2 > 0 on [0, ω] and q1 − q2 �≡ constant,
then there exist 0 < d1I < d2I such that R0(d

1
I) = R0(d

2
I).

Proof. To obtain our assertions, we use similar arguments to those in [187,
Lemma 2.4]. Since some necessary modifications are required, here we provide
a detailed proof.
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We first prove (a). Let ψ0 be defined as before. Since ψ0 > 0 on Ω×R, we
divide the equation (13.9) that ψ0 satisfies by ψ0 and integrate the resulting
equation over Ω × (0, ω) by parts to get

− dI

∫ ω

0

∫

Ω

|∇ψ0|2
ψ2
0

dxdt = −
∫ ω

0

∫

Ω

γdxdt+
1

R0

∫ ω

0

∫

Ω

βdxdt.

This implies R0 ≥
∫ ω

0

∫
Ω β(x, t)dxdt/

∫ ω

0

∫
Ω γ(x, t)dxdt, ∀dI > 0. Moreover,

the equality holds if and only if

∫ ω

0

∫

Ω

|∇ψ0|2
ψ2
0

dxdt = 0,

which is equivalent to the condition that the function β(x,t)∫ ω
0

∫
Ω

β(x,t)dxdt
−

γ(x,t)∫
ω
0

∫
Ω

γ(x,t)dxdt
is spatially homogeneous.

The assertion (b) follows from [152, Lemma 15.6]. Indeed, by taking
m(x, t) = β(x, t) − γ(x, t) and λ = 1 in [152, Lemma 15.6], we have μ(0) = 0
and

μ(1) > − 1

ω

∫ ω

0

max
x∈Ω

(β(x, t) − γ(x, t))dt ≥ 0

under our hypothesis. Using the notation here, we obtain λ0 = μ(1), and
hence, Lemma 13.1.2 deduces (b).

To verify (c), we first assume that γ > 0 on Ω×R. In this case, by directly
integrating the equation (13.9) that ψ0 satisfies over Ω× (0, ω), we easily find

R0 =

∫ ω

0

∫
Ω βψ0dxdt

∫ ω

0

∫
Ω γψ0dxdt

≤
maxΩ×[0,ω] β

minΩ×[0,ω] γ
. (13.20)

Hence, this and the assertion (a) show that R0 has boundedness independent
of dI > 0.

By normalizing ψ0, we may further assume that
∫ ω

0

∫

Ω

ψ2
0dxdt = 1. (13.21)

We now multiply (13.9) with ψ = ψ0 by ψ0 and integrate to yield

dI

∫ ω

0

∫

Ω

|∇ψ0|2dxdt = −
∫ ω

0

∫

Ω

γψ2
0dxdt+

1

R0

∫ ω

0

∫

Ω

βψ2
0dxdt,

and so we can find a positive constant c such that
∫ ω

0

∫

Ω

|∇ψ0|2dxdt ≤
c

dI
. (13.22)

Here and in the sequel, the constant c does not depend on dI > 0 and may
vary from place to place.
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On the other hand, we set

ψ0(t) =
1

|Ω|

∫

Ω

ψ0(x, t)dx and Ψ(x, t) = ψ0(x, t) − ψ0(t).

Note that
∫
Ω Ψdx = 0 for all t ∈ R. Then, from the well-known Poincaré

inequality it follows that
∫

Ω

Ψ2dx ≤ c

∫

Ω

|∇Ψ |2dx, for all t.

Therefore, as ∇Ψ = ∇ψ0, making use of (13.22), we have

∫ ω

0

∫

Ω

Ψ2dxdt ≤ c

dI
, and hence,

∫ ω

0

∫

Ω

|Ψ |dxdt ≤ c√
dI
. (13.23)

Furthermore, by integrating (13.9) with ψ = ψ0 over Ω, it is easy to see that

d

dt

(
ψ0

)
=

∫

Ω

[
− γ +

1

R0
β
]
dx · ψ0 +

∫

Ω

(
− γ +

1

R0
β
)
Ψdx. (13.24)

Using (a), (13.20), and (13.23), one has

∫ ω

0

∣
∣
∣

∫

Ω

(
− γ +

1

R0
β
)
Ψdx

∣
∣
∣dt = O(

1√
dI

).

Henceforth, solving the ordinary equation (13.24), we obtain

ψ0(t) = e
∫ t
0

∫
Ω
(−γ+ 1

R0
β)dxds · ψ0(0) +O

(
1√
dI

)

. (13.25)

Because of ψ0(ω) = ψ0(0), as dI → ∞, it is clear that either ψ0(0) → 0, or

∫ ω

0

∫

Ω

(
− γ +

1

R0
β
)
dxdt → 0.

The latter will lead to our assertion (c). So it suffices to exclude the possibility
of ψ0(0) → 0 as dI → ∞. Supposing ψ0(0) → 0 as dI → ∞, by (13.25) we
would have ψ0(t) → 0 uniformly on [0, ω], which, together with (13.23), implies
that

∫ ω

0

∫
Ω ψ2

0dxdt → 0, contradicting (13.21).

In the general case of γ ≥, �≡ 0 on Ω×R, we proceed as above except that
γ is replaced by γ + ε for any given ε > 0 to get

R0 →
∫ ω

0

∫
Ω β(x, t)dxdt

∫ ω

0

∫
Ω
[γ(x, t) + ε]dxdt

, as dI → ∞,

and we then obtain the desired result by letting ε → 0.
We are in a position to prove (d). Without loss of generality, we can assume

that β, γ > 0 on Ω ×R. For the general case, as above, we can replace β and
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γ with β + ε and γ + ε, respectively, and then get the result by letting ε → 0.
For sake of simplicity, we denote

δ =

∫ ω

0
β(x0, t)dt

∫ ω

0
γ(x0, t)dt

= max
Ω

{∫ ω

0
β(x, t)dt

∫ ω

0
γ(x, t)dt

}

for some x0 ∈ Ω.

For a positive constant μ to be determined later, we rewrite the equation that
(μ0, ψ0) satisfies as

(ψ0)t − dIΔψ0 −
( 1

μ
β − γ

)
ψ0 =

( 1

μ0
− 1

μ

)
βψ0. (13.26)

Before going further, we need some preliminaries on the following eigen-
value problem with the positive weight function β(x, t):

ψt − dIΔψ −m(x, t)ψ = λβ(x, t)ψ, x ∈ Ω, t > 0,
∂ψ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ(x, 0) = ψ(x, ω), x ∈ Ω,

(13.27)

where m(x, t) ∈ Cω. Arguing as in [152], problem (13.27) admits the princi-
pal eigenvalue λ∗ with a positive eigenvector ψ∗ ∈ Cω. Moreover, the same
analysis as in the proof of [152, Propositions 17.1 and 17.3] implies that the
following statements hold:

(i) If there exists x∗ ∈ Ω such that
∫ ω

0 m(x∗, t)dt > 0, then λ∗ < 0 for all
small dI .

(ii) If
∫ ω

0
m(x, t)dt < 0 for all x ∈ Ω, then λ∗ > 0 for all small dI .

Here we should point out that
∫ ω

0
maxΩ m(x, t)dt > 0 does not imply

∫ ω

0
m(x∗, t)dt > 0 for some x∗ ∈ Ω, and it is even possible that

∫ ω

0
m(x, t)dt <

0 for all x ∈ Ω.
Now we choose μ such that 0 < μ < δ. For any such μ, by the definition

of δ, it follows that

∫ ω

0

( 1

μ
β(x0, t)− γ(x0, t)

)
dt > 0.

Applying the above claim (i) to problem (13.26) with m(x, t) = 1
μβ − γ, we

have
1

R0
− 1

μ
=

1

μ0
− 1

μ
< 0 for all small dI ,

that is, R0 > μ. Thanks to the arbitrariness of μ, we obtain

lim inf
dI→0

R0 ≥ δ = max
Ω

{∫ ω

0
β(x, t)dt

∫ ω

0
γ(x, t)dt

}

. (13.28)
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On the other hand, by taking μ > δ and noticing

∫ ω

0

( 1

μ
β(x, t) − γ(x, t)

)
dt < 0 for all x ∈ Ω,

we see from the previous claim (ii) that

1

R0
− 1

μ
=

1

μ0
− 1

μ
> 0 for all small dI ,

which implies

lim sup
dI→0

R0 ≤ δ = max
Ω

{∫ ω

0 β(x, t)dt
∫ ω

0 γ(x, t)dt

}

. (13.29)

Combining (13.28) and (13.29), we derive the assertion (d).
Finally, we verify (e). By the choice of β and γ, we easily see from (a), (c),

and (d) that

R0(dI) >

∫ ω

0

∫
Ω β(x, t)dxdt

∫ ω

0

∫
Ω γ(x, t)dxdt

for all dI ,

and

lim
dI→0

R0(dI) = lim
dI→∞

R0(dI) =

∫ ω

0

∫
Ω β(x, t)dxdt

∫ ω

0

∫
Ω γ(x, t)dxdt

.

As a consequence, one can find 0 < d1I < d2I such that R0(d
1
I) = R0(d

2
I).

In the rest of this section, we present a bang-bang type configuration
optimization result for the basic reproduction ratio R0 in the case where the
maximum, the minimum, and the average of the function γ(x, t) are fixed
while β(x, t) ≡ β is a fixed positive constant.

Theorem 13.1.2. Assume that β(x, t) ≡ β is a fixed positive constant. Let

Υ =
{
γ ∈ L∞(Ω × (0, ω)) : γ∗ ≤ γ(x, t) ≤ γ∗ a.e. x, t,

γ(x, t) is ω-periodic in t,
1

ω|Ω|

∫ ω

0

∫

Ω

γ(x, t)dxdt = N
}
,

where γ∗ ≥ 0, γ∗ > 0 and N > 0 are given constants such that the set Υ is
nonempty. Then the following statements are valid:

(a) The function R0 = R0(γ) reaches its maximum over Υ when γ is of the
form γ(x, t) = γ∗χA+γ∗χ((Ω×(0,ω))\A), where A is a measurable subset of
Ω × (0, ω) such that γ∗|A| + γ∗|(Ω × (0, ω))\A| = ω|Ω|N , and χA is the
characteristic function over A.

(b) The function R0 = R0(γ) reaches its minimum β
N over Υ only when γ ∈ Υ

is an x-independent function.
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Proof. By the standard compactness analysis and the eigenvalue theory, it is
easily seen that R0 = R0(γ) is a continuous function of γ in the sense that if
γn is a bounded sequence in L∞(Ω × (0, ω)), then there exists a subsequence
γn′ of γn such that R0(γn′) → R0(γ) for some γ ∈ L∞(Ω × (0, ω)). It is also
well known that β

R0(γ)
is concave with respect to γ. Thus, the arguments in

the proof of [254, Lemma 7.2 and Theorem 3.11], as applied to (13.9) with
μ = R0, imply that assertion (a) holds.

We now verify (b). By virtue of (13.9) and Lemma 13.1.1, it follows that
if γ(x, t) ≡ N ∈ Υ , then R0(γ) =

β
N and 1 is an associated positive eigenfunc-

tion. For any given γ ∈ Υ , let ψ0 be the positive eigenfunction associated with
R0(γ). Since ψ0 > 0 on Ω × [0, ω], we may assume that ψ0 > 1 on Ω × [0, ω].
Thus, (R0(γ), ψ0) satisfies (13.9) with μ = R0(γ).

Let γ0 = γ − N and ψ0 = ψ0 − 1. Clearly, ψ0 > 0 on Ω × [0, ω], and
(γ0, ψ0) satisfies

(ψ0)t − dIΔψ
0 + γ0(x, t)ψ0 =

( β

R0(γ)
−N

)
ψ0, x ∈ Ω, t > 0,

∂ψ0

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ0(x, 0) = ψ0(x, ω), x ∈ Ω.

(13.30)

Dividing (13.30) by ψ0 and integrating the resulting equation over Ω× (0, ω),
we obtain

− dI

∫ ω

0

∫

Ω

|∇ψ0|2
(ψ0)2

dxdt +

∫ ω

0

∫

Ω

γ0dxdt =
β

R0(γ)
−N .

Since
∫ ω

0

∫
Ω γ0dxdt = 0, it easily follows from the above identity that R0(γ) ≥

β
N , and R0(γ) =

β
N if and only if γ(x, t) ≡ γ(t).

13.2 Threshold Dynamics

In this section, we establish the threshold dynamical behavior of system
(13.2)–(13.3) in terms of R0. We start with the uniform bound of its non-
negative solutions.

Under the condition (13.3) (and so (13.4) holds), we can easily apply [150,
Exercise 4 of Section 3.5] (or [6, Theorem 3.1]) to the second equation in (13.2)
to derive the uniform bound of ‖I(·, t)‖L∞(Ω) for all t ≥ 0. In order to obtain

a similar estimate for ‖S(·, t)‖L∞(Ω), we appeal to the theory developed in
[214], which is a generalization of [6, Theorem 3.1]. The following result is a
straightforward consequence of [214, Theorem 1 and Corollary 1].
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Lemma 13.2.1. Consider the parabolic system

∂ui
∂t

− diΔui = fi(x, t, u), x ∈ Ω, t > 0, i = 1, · · · , "
∂ui
∂ν

= 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = u0i (x), x ∈ Ω,

where u = (u1, · · · , u�), u0i ∈ C(Ω,R), di is a positive constant, i = 1, · · · , ",
and assume that, for each k = 1, · · · , ", the functions fk satisfy the polynomial
growth condition:

|fk(x, t, u)| ≤ c1

�∑

i=1

|ui|σ + c2

for some nonnegative constants c1 and c2, and positive constant σ. Let p0 be a
positive constant such that p0 >

m
2 max{0, (σ− 1)} and τ(u0) be the maximal

time of existence of the solution u corresponding to the initial data u0. Suppose
that there exists a positive number C1 = C1(u

0) such that ‖u(·, t)‖Lp0(Ω) ≤ C1,
∀t ∈ [0, τ(u0)). Then the solution u exists for all time and there is a positive
number C2 = C2(u

0) such that ‖u(·, t)‖L∞(Ω) ≤ C2, ∀t ∈ [0,∞). Moreover, if
there exist two nonnegative numbers # and K1 = K1(#), independent of initial
data, such that ‖u(·, t)‖Lp0(Ω) ≤ K1, ∀t ∈ [#,∞), then there is a positive
number K2 = K2(#), independent of initial data, such that ‖u(·, t)‖L∞(Ω) ≤
K2, ∀t ∈ [#,∞).

By applying Lemma 13.2.1 with σ = p0 = 1 and # = 0 to system (13.2),
we obtain the following result.

Lemma 13.2.2. There exists a positive constant B, independent of the ini-
tial data (S0, I0) ∈ C(Ω,R2

+) satisfying condition (13.3), such that for the

corresponding unique solution (S, I) of system (13.2), we have

‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) ≤ B, ∀t ∈ [0,∞).

Let

Y :=

{

(u, v) ∈ C(Ω,R2
+) :

∫

Ω

(u(x) + v(x))dx = N

}

and Y0 = {(u, v) ∈ Y : v(x) �≡ 0}. We equip Y with the metric induced by
the maximum norm. Then Y is a complete metric space and Y0 is open in Y .
Now we are ready to present the main result of this section, which gives the
threshold dynamics of system (13.2)–(13.3).

Theorem 13.2.1. The following statements are valid:

(i) If R0 < 1, then for any (S0, I0) ∈ Y , the solution (S, I) of system (13.2)–
(13.3) satisfies limt→∞(S(x, t), I(x, t)) = (N/|Ω|, 0) uniformly for x ∈ Ω.



13.2 Threshold Dynamics 351

(ii) If R0 > 1, then system (13.2)–(13.3) has at least one endemic ω-periodic
solution, and there exists a constant η > 0 such that for any (S0, I0) ∈ Y0,
the solution (S, I) of system (13.2)–(13.3) satisfies

lim inf
t→∞ S(x, t) ≥ η and lim inf

t→∞ I(x, t) ≥ η

uniformly for x ∈ Ω.

Proof. We define an ω-periodic semiflow Φ(t) : Y → Y by

Φ(t)((S0, I0)) = (S(·, t, , (S0, I0)), I(·, t, (S0, I0)), ∀(S0, I0) ∈ Y, t ≥ 0,

where (S(x, t, (S0, I0)), I(x, t, (S0, I0)) is the unique solution of system (13.2).
Let P := Φ(ω) be the Poincaré map associated with system (13.2) on Y .
Note that Φ(t) : Y → Y is compact for each t > 0. It then follows from
Lemma 13.2.2 and Theorem 1.1.3 that P : Y → Y has a strong global attrac-
tor.

Given (S0, I0) ∈ Y , let ω(S0, I0) be the omega limit set of the forward

orbit through (S0, I0) for P : Y → Y . Since S
S+I

≤ 1, I(x, t) satisfies

∂I

∂t
− dIΔI ≤ (β(x, t) − γ(x, t))I, x ∈ Ω, t > 0.

In the case where R0 < 1, we see from Lemma 13.1.2 that λ0 > 0. This,
together with the comparison principle, implies that I(x, t) → 0 uniformly on
Ω as t → ∞. It then easily follows that ω(S0, I0) = ω̃ × {0}, where ω̃ is a
compact and internally chain transitive set for the Poincaré map P1 associated
with the following ω-periodic system

S̃t − dSΔS̃ = 0, x ∈ Ω, t > 0,

∂S̃

∂ν
= 0, x ∈ ∂Ω, t > 0,

(13.31)

on the space Y1 :=
{
u ∈ C(Ω,R+) :

∫
Ω u(x)dx = N

}
equipped with the uni-

form convergence topology. By a well-known result on the heat equation in a
bounded domain (see, e.g., [255, Section 1.1.2]), we conclude that the constant
N
|Ω| is a globally asymptotically stable steady state for system (13.31) on Y1. In

view of Theorem 1.2.1, we obtain ω̃ = { N
|Ω|}, and hence ω(S0, I0) = {( N

|Ω| , 0)}.
This implies that assertion (i) holds true.

To prove assertion (ii), we use similar arguments to those in the proof of
[430, Theorem 3.1] on a periodic predator–prey reaction–diffusion system. Let
∂Y0 := Y \ Y0 = {(S0, I0) ∈ Y : I0 ≡ 0}. Clearly, Y0 is convex, Φ(t)Y0 ⊂ Y0,
and Φ(t)∂Y0 ⊂ ∂Y0 for all t ≥ 0. For any (S0, I0) ∈ ∂Y0, I(x, t) ≡ 0, and
hence S(x, t) is a solution of system (13.31). It then follows that S(x, t) → N

|Ω|
uniformly on Ω as t → ∞. This implies that ∪(S0,I0)∈∂Y0

ω(S0, I0) = {( N
|Ω| , 0)},
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where ω(S0, I0) is the omega limit set of the forward orbit through (S0, I0)
for P : Y → Y . For simplicity, we denote M = ( N

|Ω| , 0). Then {M} is a

compact and isolated invariant set for P : ∂Y0 → ∂Y0. Let X := C(Ω,R)
and X+ := C(Ω,R+). Then (X,X+) is an ordered Banach space with the
maximum norm ‖ · ‖X . We further have the following claim.

Claim. There exists a real number δ > 0 such that lim supn→∞ ‖Pn(S0, I0)−
M‖X×X ≥ δ for all (S0, I0) ∈ Y0.

Indeed, let λ0 be defined as in the preceding section. Under the assumption
R0 > 1, Lemma 13.1.2 implies that λ0 < 0. It then follows that we can choose
a small positive number ε0 such that λ0(ε0) < 0, where λ0(ε0) is the unique
principal eigenvalue of the periodic-parabolic problem

ϕt − dIΔϕ =
β(x, t)(N/|Ω| − ε0)

N/|Ω|+ 2ε0
ϕ− γ(x, t)ϕ+ λϕ, x ∈ Ω, t > 0,

∂ϕ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ϕ(x, 0) = ϕ(x, ω), x ∈ Ω.

(13.32)

According to the continuous dependence of solutions on the initial data, we
observe that

lim
(S0,I0)→M

Φ(t)(S0, I0) = lim
(S0,I0)→M

(S(·, t), I(·, t)) = M

in X × X uniformly for t ∈ [0, ω]. Thus, there exists a real number δ0 =
δ0(ε0) > 0 such that for any (S0, I0) ∈ B(M, δ0), an open ball in X × X
centered at M and with the radius δ0, we have

‖S(·, t)−N/|Ω|‖X + ‖I(·, t)‖X < ε0, ∀t ∈ [0, ω].

Assume, for the sake of contradiction, that the claim above does not hold for
δ = δ0. Since P

nY0 ⊂ Y0, ∀n ≥ 0, it then follows that there exists (S∗
0 , I

∗
0 ) ∈

B(M, δ0)∩Y0 such that Pn(S∗
0 , I

∗
0 ) = Φ(nω)(S∗

0 , I
∗
0 )) ∈ B(M, δ0), ∀n ≥ 1. For

any t ≥ 0, let t = nω+ t′ with t′ ∈ [0, ω) and n = [t/ω] being the integer part

of t/ω. Note that (S
∗
(·, t), I∗(·, t)) := Φ(t)((S∗

0 , I
∗
0 )) = Φ(t′)(Φ(nω)(S∗

0 , I
∗
0 )).

Thus, we have

‖S∗
(·, t)−N/|Ω|‖X + ‖I∗(·, t)‖X < ε0, ∀t ∈ [0,∞). (13.33)

Let ϕ0 be a positive eigenvector corresponding to λ0(ε0) in (13.32). Clearly,
ϕ0 > 0 on Ω × R. In particular, ϕ0(·, 0) ∈ int(X+). On the other hand, as
(S∗

0 , I
∗
0 ) ∈ Y0, the strong maximum principle for parabolic equations shows

that S
∗
(·, t), I∗(·, t) ∈ int(X+) × int(X+) for any t > 0. Therefore, without

loss of generality, we may assume that (S∗
0 , I

∗
0 ) ∈ int(X+)× int(X+). So one

can find a small positive number c∗ such that I∗0 ≥ c∗ϕ0(·, 0) in X . By means

of (13.33) and the choice of δ0, it follows that I
∗
(x, t) is a super-solution to

the problem
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wt − dIΔw =
β(x, t)(N/|Ω| − ε0)

N/|Ω|+ 2ε0
w − γ(x, t)w, x ∈ Ω, t > 0,

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) = c∗ϕ0(x, 0), x ∈ Ω.

(13.34)

Furthermore, it is easy to see that c∗e−λ0(ε0)tϕ0(x, t) is the unique solution to
problem (13.34). By the parabolic comparison principle, we deduce

I
∗
(x, t) ≥ c∗e−λ0(ε0)tϕ0(x, t) → ∞ uniformly for x ∈ Ω, as t → ∞,

which contradicts (13.33). Thus, the claim holds true for δ = δ0.
The above claim implies thatM is an isolated invariant set for P : Y → Y ,

and W s(M)∩Y0 = ∅, where W s(M) is the stable set of M for P : Y → Y . As
a result, Theorem 1.3.1 and Remark 1.3.1 assert that P is uniformly persistent
with respect to (Y, ∂Y0). Further, Theorem 1.3.10 implies that P has a fixed
point φ∗ in Y0, and hence, system (13.2) has an ω-periodic solution Φ(t)φ∗ in
Y0. In view of Theorem 1.3.10, we further see that P : Y0 → Y0 has a global
attractor A0. Clearly, φ

∗ ∈ A0. Let B0:=
⋃

t∈[0,ω] Φ(t)A0. Then B0 ⊂ Y0, and

Theorem 3.1.1 implies that lim
t→∞ d(Φ(t)φ,B0) = 0 for all φ ∈ Y0, where d

is the norm-induced distance in X × X . Since A0 ⊂ Y0 and A0 = S(A0) =
Φ(ω)A0, we have A0 ⊂ int(X+)×int(X+), and hence B0 ⊂ int(X+)×int(X+).
Obviously, Φ(t)φ∗ ∈ B0, and so Φ(t)φ∗ is a positive ω-periodic solution of
system (13.2). By virtue of the compactness and global attractiveness of B0 for
Φ(t) in Y0, we conclude that there exists η > 0 such that lim inf

t→∞ Φ(t)φ ≥ (η, η)

for all φ ∈ Y0, which implies the desired uniform persistence.

As a consequence of Lemmas 13.1.3 and 13.1.4, and Theorems 13.1.1
and 13.2.1, we have the following result.

Theorem 13.2.2. The following statements are valid:

(i) The disease-free constant solution (N/|Ω|, 0) is globally attractive for sys-
tem (13.2)–(13.3) if one of the following conditions holds:
(i-a) β(x, t)− γ(x, t) = h(t) and

∫ ω

0 h(t)dt < 0;

(i-b) β(x, t)−γ(x, t) = h(x) and either h ≤ 0, �≡ 0 on Ω or maxΩ h(x) > 0
and

∫
Ω
h(x)dx < 0 but dI > d∗I , where d

∗
I is given in Lemma 13.1.4;

(i-c)
∫ ω

0

∫
Ω(β(x, t) − γ(x, t))dxdt < 0 and dI is sufficiently large;

(i-d)
∫ ω

0 maxx∈Ω(β(x, t)− γ(x, t))dt ≤ 0 and β(x, t)− γ(x, t) nontrivially
depends on the spatial variable.

(ii) The uniform persistence holds for system (13.2)–(13.3) if one of the fol-
lowing conditions holds:
(ii-a) β(x, t)− γ(x, t) = h(t) and

∫ ω

0
h(t)dt > 0;

(ii-b) β(x, t) − γ(x, t) = h(x), either h �≡ 0 and
∫
Ω h(x)dx ≥ 0 or

maxΩ h(x) > 0 and
∫
Ω h(x)dx < 0 but 0 < dI < d∗I ;

(ii-c)
∫ ω

0

∫
Ω(β(x, t) − γ(x, t))dxdt > 0;

(ii-d) maxx∈Ω

{ ∫ ω
0

β(x,t)dt∫
ω
0

γ(x,t)dt

}
> 1 and dI is sufficiently small.
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13.3 Global Attractivity

The uniqueness and global attractivity of the endemic ω-periodic solution
to reaction-diffusion system (13.2) is a challenging problem. In [9], it was
conjectured that the unique endemic equilibrium of the autonomous system
(13.1) is globally stable. A partial answer to this problem was given in [275],
but it remains unsolved in the general case. In this section, we address this
issue for periodic system (13.2) in two special cases.

When no diffusion is taken into account, by assuming the total popula-
tion number is unchanged and β(x, t) ≡ β(t), γ(x, t) ≡ γ(t) are ω-periodic
continuous functions, we obtain the following ordinary differential system:

St = −β(t)S I

S + I
+ γ(t)I, t > 0,

I t =
β(t)S I

S + I
− γ(t)I, t > 0,

S + I = N, t ≥ 0,

S(0) = S0 ≥ 0, I(0) = I0 > 0.

(13.35)

An analysis as in Section 13.2 shows that the basic reproduction ratio is

R0 =

∫ ω

0
β(t)dt

∫ ω

0
γ(t)dt

.

For system (13.35), we have a threshold-type result on its global dynamics.
Indeed, it is easy to see that I(t) satisfies the scalar ordinary differential
equation:

dI

dt
=

(
β(t)(N − I)

N
− γ(t)

)

I, t ≥ 0; I(0) = I0 ∈ [0, N ]. (13.36)

By Theorem 3.1.2, it follows that the zero solution is globally asymptotically
stable for system (13.36) in [0, N ] in the case where R0 ≤ 1; and system
(13.36) has a globally asymptotically stable positive ω-periodic solution I∗(t)
in (0, N ] in the case where R0 > 1. Biologically, this implies that the infectious
disease dies out if R0 ≤ 1 and it persists if R0 > 1.

Returning to the reaction–diffusion system (13.2)–(13.3), we are able to
obtain the global attractivity of the endemic ω-periodic solution in two special
cases. The first one we shall cope with is that the diffusion rate of the suscep-
tible individuals is equal to that of the infected individuals (i.e., dS = dI). In
this situation, we can give a complete description of the global attractivity of
the disease-free constant solution and the endemic ω-periodic solution.

Theorem 13.3.1. Assume that dS = dI . If R0 ≤ 1, then (N/|Ω|, 0) is glob-
ally attractive for system (13.2)–(13.3); If R0 > 1, then system (13.2)–(13.3)
admits a globally attractive endemic ω-periodic solution.
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Proof. In the case where dS = dI , N(x, t) := S(x, t) + I(x, t) is a solution of
system (13.31) on Y1, and hence limt→∞N(x, t) = N

|Ω| uniformly for x ∈ Ω.

It follows that I(x, t) satisfies the following nonautonomous equation

∂I

∂t
− dIΔI =

[

β(x, t)

(

1− I

N(x, t)

)

− γ(x, t)

]

I, x ∈ Ω, t > 0, (13.37)

which is asymptotic to a periodic equation

∂I

∂t
− dIΔI =

[

β(x, t)

(

1− |Ω|
N

I

)

− γ(x, t)

]

I, x ∈ Ω, t > 0. (13.38)

By Lemma 13.1.2 and Theorem 3.2.2, as applied to the asymptotically periodic
system (13.37), it follows that the desired threshold dynamics holds for system
(13.2)–(13.3) in terms of R0.

Next, we consider the case where β(x, t) = rγ(x, t) for some real number
r ∈ (0,∞). It is easy to see that when r > 1,

(S̃, Ĩ) =
(1

r

N

|Ω| ,
r − 1

r

N

|Ω|

)

is an endemic ω-periodic solution of system (13.2)–(13.3). Since system (13.2)
is periodic, we may not be able to use the LaSalle invariance principle type
argument to prove the global attractivity of (S̃, Ĩ). Instead, we will employ
the following result, which comes from [268, Lemma 1].

Lemma 13.3.1. Let a and b be positive constants. Assume that φ, ψ ∈
C1([a,∞)), ψ ≥ 0, and φ is bounded from below on [a,∞). If φ′(t) ≤ −bψ(t)
and ψ′(t) ≤ K on [a,∞) for some positive constant K, then limt→∞ ψ(t) = 0.

We are now in a position to prove the following threshold-type result on
the global dynamics of system (13.2)–(13.3).

Theorem 13.3.2. Assume that β(x, t) = rγ(x, t) on Ω×R for some constant
r ∈ (0,∞). If r < 1, then (N/|Ω|, 0) is globally attractive for system (13.2)–
(13.3); If r > 1, then (S̃, Ĩ) is globally attractive for system (13.2)–(13.3).

Proof. From (13.9) and Lemma 13.1.1, it is easy to see that R0 = r. In
the case where r < 1, Theorem 13.2.1 (i) implies that (N/|Ω|, 0) is globally
attractive. It remains to handle the case where r > 1. For any given positive
solution (S(x, t), I(x, t)) of (13.2)–(13.3), we follow [275] to define the function

H(t) :=

∫

Ω

(

S(x, t) +
S̃2

S(x, t)
+ I(x, t) +

Ĩ2

I(x, t)

)

dx. (13.39)
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It then follows that

dH(t)

dt
=

∫

Ω

(
St + It

)
dx−

∫

Ω

(
S̃2 · St

S
2

+
Ĩ2 · It
I
2

)
dx

=−
∫

Ω

S̃2

S
2

(
dS�S − βS · I

S + I
+ γI

)
dx−

∫

Ω

Ĩ2

I
2

(
dI�I +

βS · I
S + I

− γI

)
dx

=H1(t) +H2(t),

where

H1(t) =−
∫

Ω

(

dS
S̃2

S
2 · �S + dI

Ĩ2

I
2 · �I

)

dx

=−
∫

Ω

(
2dSS̃

2

S
3 · |∇S|2 + 2dI Ĩ

2

I
3 · |∇I|2

)

dx

and

H2(t) =−
∫

Ω

{(
Ĩ2

I
2 − S̃2

S
2

)

·
(
βS · I
S + I

− γI

)}

dx

=−
∫

Ω

{

βI ·
(
Ĩ2

I
2 − S̃2

S
2

)

·
(

S

S + I
− 1

r

)}

dx

=−
∫

Ω

{

βI ·
(
Ĩ2

I
2 − S̃2

S
2

)

·
(

S

S + I
− S̃

S̃ + Ĩ

)}

dx

=−
∫

Ω

⎧
⎨

⎩
βS · I2 ·

(
Ĩ2

I
2 − S̃2

S
2

)

·

⎛

⎝
Ĩ
I
− S̃

S

(S + I) · (S̃ + Ĩ)

⎞

⎠

⎫
⎬

⎭
dx

=−
∫

Ω

⎧
⎨

⎩

βS · I2

(S + I) · (S̃ + Ĩ)
·
(
Ĩ

I
+
S̃

S

)

·
(
Ĩ

I
− S̃

S

)2
⎫
⎬

⎭
dx.

Thus, we obtain

dH(t)

dt
= −

∫

Ω

{
dS

2S̃2

S
3 |∇S|2 + dI

2Ĩ2

I
3 |∇I |2

+
β(x, t)S I

2

(S̃ + Ĩ)(S + I)

( S̃

S
+
Ĩ

I

)( S̃

S
− Ĩ

I

)2}
dx.

In view of Lemma 13.2.2 and Theorem 13.2.1 (ii), there exist positive constants
C0 and T0 such that

dH(t)

dt
≤ −C0

∫

Ω

{
|∇S|2 + |∇I |2}+

( S̃

S
− Ĩ

I

)2}
dx =: −ψ(t), ∀t ≥ T0.
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By the standard Hölder regularity theory for parabolic equations (see, e.g.,
[126, Theorem 9]) and the embedding theorems (see, e.g., [209, Lemma II.
3.3]) (see also the proof of Theorems A1 and A2 of [39]), together with
Lemma 13.2.2 and Theorem 13.2.1 (ii), it is easy to see that ψ′(t) is bounded
on [T0,∞). Thus, Lemma 13.3.1 implies that ψ(t) → 0 as t → ∞, and hence
we have

lim
t→∞

∫

Ω

(
|∇S|2 + |∇I|2

)
dx = 0 (13.40)

and

lim
t→∞

∫

Ω

∣
∣(r − 1)S(x, t)− I(x, t)

∣
∣ dx = 0. (13.41)

From (13.41) and (13.4), it follows that

lim
t→∞

1

|Ω|

∫

Ω

S(x, t)dx = S̃, lim
t→∞

1

|Ω|

∫

Ω

I(x, t)dx = Ĩ . (13.42)

Let us recall the well-known Poincaré inequality:

μ1

∫

Ω

(g − ĝ)2 dx ≤
∫

Ω

|∇g|2 dx, ∀g ∈ H1(Ω),

where ĝ = 1
|Ω|

∫
Ω
g(x)dx and μ1 is the first positive eigenvalue of the Lapla-

cian operator −Δ with zero Neumann boundary condition on ∂Ω. As a con-
sequence, by Hölder inequality, there holds

∫

Ω

|g − ĝ| dx ≤
( |Ω|
μ1

)1/2( ∫

Ω

|∇g|2 dx
)1/2

, ∀g ∈ H1(Ω).

This, in conjunction with (13.40) and (13.42), gives rise to

lim
t→∞

∫

Ω

(|S(x, t)− S̃|+ |I(x, t)− Ĩ|)dx = 0. (13.43)

Let X , Φ(t), P and Y0 be defined as in the proof of Theorem 13.2.1. For
any given φ ∈ Y0, let ω(φ) be the omega-limit set of the forward orbit through
φ for the discrete-time semiflow {Pn}n≥0. It then follows that for any ψ =
(ψ1, ψ2) ∈ ω(φ), there exists a sequence nk → ∞ such that limk→∞ Pnk(φ) =
limk→∞ Φ(nkω)φ = ψ in X × X . Letting (S(x, t), I(x, t)) = [Φ(t)φ](x) and
t = nkω in (13.43), we obtain

∫

Ω

(|ψ1(x) − S̃|+ |ψ2(x) − Ĩ|)dx = 0,

and so ψ(x) ≡ (S̃, Ĩ). Thus, we have ω(φ) = {(S̃, Ĩ)}. This implies that
limt→∞ Φ(t)φ = (S̃, Ĩ) in X ×X , yielding the global attractivity of (S̃, Ĩ).
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13.4 Discussion

In this section, we give some biological interpretations of the analytical results
obtained for model (13.2)–(13.3).

Following the terminology in [9], we say that x is a low-risk site if the local
disease transmission rate

∫ ω

0 β(x, t)dt is lower than the local disease recovery

rate
∫ ω

0
γ(x, t)dt. A high-risk site is defined in a reversed manner. We also

say that Ω is a low-risk habitat if
∫ ω

0

∫
Ω
β(x, t)dxdt <

∫ ω

0

∫
Ω
γ(x, t)dxdt and

a high-risk habitat if
∫ ω

0

∫
Ω
β(x, t)dxdt >

∫ ω

0

∫
Ω
γ(x, t)dxdt. We may call the

habitat a moderate-risk one if
∫ ω

0

∫
Ω β(x, t)dxdt =

∫ ω

0

∫
Ω γ(x, t)dxdt.

Firstly, in the ideal case where the rates of disease transmission and recov-
ery depend on the temporal factor alone, Theorem 13.2.2 (i-a) and (ii-a) show
that a low-risk habitat always leads to the extinction of the disease while a
high-risk habitat leads to the persistence. In the ideal case where the rates
of disease transmission and recovery depend solely on the spatial factor, it
follows from Theorem 13.2.2 (ii-b) that the disease will be persistent once a
high-risk habitat exists. In such a situation, however, a low-risk habitat does
not always contribute to the disease eradication. Actually, this is true only
when each location of the domain is low-risk. Once the habitat contains at
least one high-risk site, according to Theorem 13.2.2 (i-b) and (ii-b), there
exists a threshold value d∗I ∈ (0,∞) such that the disease extinction happens
only if the movement rate dI of the infected population is greater than d∗I ;
otherwise, if dI < d∗I , the disease will persist.

In the general situation where the rates of disease transmission and re-
covery depend on the spatial and temporal variables, our results assert that
if either the habitat is a high-risk type or there exists at least one high-risk
site and the movement of the infected population is extremely slow, then the
disease will persist; see Theorem 13.2.2 (ii-c) and (ii-d). On the contrary, if
the habitat is a low-risk one and the movement of the infected population is
sufficiently quick, the disease will die out; see Theorem 13.2.2 (i-c).

We next discuss how the heterogeneous and time-periodic environment
affects the extinction and persistence of the disease. We assume that

β(x, t) = p(x)q1(t) and γ(x, t) = p(x)q2(t),

where p is a positive Hölder continuous function on Ω and q1, q2 are ω-periodic
positive Hölder continuous functions on R. If q1 ≡ q2, we get a moderate-risk
habitat and Theorem 13.3.2 tells us that the disease will eventually die out
regardless of the movement rates. We now assume that p is not a constant,
q1 �≡ q2, and

∫ ω

0
q1(t)dt =

∫ ω

0
q2(t)dt so that the habitat is still a moderate-risk

one. By Theorem 13.1.1, we see that the basic reproduction ratio R0(dI) =
R0 > 1 for any dI > 0 and R0(dI) → 1 as either dI → 0 or dI → ∞. Therefore,
Theorem 13.2.1 implies that for this moderate-risk habitat, the disease will
persist.

As a consequence, our results suggest that the combination of spatial het-
erogeneity and temporal periodicity tends to enhance the persistence of the
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infectious disease for the SIS model (13.2)–(13.3). In other words, the infec-
tion risk of the model (13.2)–(13.3) would be underestimated if only temporal
periodicity or spatial heterogeneity is taken into account.

Furthermore, the above discussion also shows that in the case where
p is not a constant, q1 �≡ q2, and

∫ ω

0
q1(t)dt =

∫ ω

0
q2(t)dt, when the in-

fected population migrates at the speed dI = d̂I , where d̂I > 0 satisfies
R0(d̂I) = maxdI∈(0,∞)R0(dI) > 1, the persistence property of the disease will
be maximized; on the other hand, the small or large migration rate of the
infected population will reduce the value of the basic reproduction ratio close
to unity so that the persistence of the disease will be weakened.

Finally, we try to give a biological interpretation of Theorem 13.1.2. As-
sume that the disease has the same transmission rate at any location in the
entire habitat and at any time (namely, β is a positive constant), and that
the available treatment for the disease is fixed which hence indicates that∫ ω

0

∫
Ω
γ(x, t)dxdt is a positive constant. If the treatment is made mainly in a

specific part of the habitat, Theorem 13.1.2 shows that R0 can reach its max-
imum. Thus, such an allocation of the treatment results in the largest risk
for the control of the disease. On the other hand, R0 will attain its minimum
if the treatment is equally distributed over the entire habitat at any time.
Therefore, Theorem 13.1.2 suggests that the latter treatment strategy would
be more effective for the eradication of the disease.

13.5 Notes

Sections 13.1–13.4 are adapted from Peng and Zhao [277]. Here we give a new
proof for Theorem 13.2.1 (i) and Theorem 13.3.1, respectively. The asymp-
totic profiles of steady states and global dynamics for autonomous reaction–
diffusion SIS epidemic models were investigated by Allen, Bolker, Lou and
Nevai [9], Peng [273], Peng and Liu [275], Huang, Han and Liu [178], Peng
and Yi [276], Cui and Lou [69], Wu and Zou [413], Li, Peng and Wang [221].
Recently, Wang, Zhang and Zhao [399] also studied time-periodic traveling
waves for a periodic reaction–diffusion SIR model.
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A Nonlocal Spatial Model for Lyme Disease

Lyme disease is a worldwide vector-borne infection caused by the spirochete
bacterium Borrelia burgdorferi, whose primary vector in North America is
the black-legged tick (also known as Ixodes scapularis). The black-legged tick
normally has a two-year life cycle including three feeding stages: larva, nymph,
and adult. In those stages, ticks could acquire blood meals from a variety of
hosts like rodents and mammals. In particular, Larvae and nymphs mainly
feed on white-footed mouse Peromyscus leucopus, and adult ticks obtain blood
meals almost exclusively from the white-tailed deer Odocoileus virginianus
[56]. Since nymphs are too tiny (less than 2mm) to detect, humans may carry
Lyme disease through the bites of infectious nymphs. For more biological
discussions about the infection of Lyme disease, we refer to [29, 261, 240, 208,
382, 201] and the references therein.

To understand the invasion of Lyme disease, many mathematical modeling
efforts are made through investigating the tick and host populations dynam-
ics [180, 256, 131, 295, 231]. More specifically, Caraco et al. [57] proposed
a reaction–diffusion model to study the effects of the tick’s stage structure
on the spatial expansion of Lyme disease in the northeast United States.
The global dynamics and the spreading speed were obtained in Zhao [441]
for the spatial model of [57]. To take the climate changes into account, Og-
den et al. [263, 262] presented simulation models, Wu et al. [414] established
a temperature-driven map of the basic reproduction number of Lyme dis-
ease in Canada, and Zhang and Zhao [427] modified the model in [57] to a
reaction–diffusion system with seasonality and studied its global dynamics and
propagation phenomena. Note that the spatially homogeneous environment is
basically assumed in these works, but the spatial heterogeneity is also vital.
Geographic variations of food resources and climates could limit the activity
and the population size of ticks and hosts. Biological studies [43, 211] show
that spatial patterns of the disease is highly linked to the spatial configura-
tions coupled with dispersal by vertebrates like mice. Furthermore, there are
few mathematical models incorporating the spatial variation to estimate the

© Springer International Publishing AG 2017
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Lyme disease risk. The patch models were presented in [43, 165] to consider
the tick population dynamics with the dispersal of ticks on vertebrate hosts
among multiple habitats, or between woodland and pasture, both of which
are based on the assumption that the interactions are homogeneous in ev-
ery habitat. To formulate a continuous-time model of Lyme disease including
spatially dependent parameters, Wang and Zhao [392] adapted the model of
Carco et.al. [57] in the following aspects:

(a) allow a spatially dependent carrying capacity of hosts (mice), spatial-
dependent diffusion rates of hosts and disease transmission coefficients;

(b) consider the influence of deers on disease transmissions;
(c) replace the random mobility of ticks in [57] with nonlocal terms to reveal

the spatial movements of larvae, nymphs, and adult ticks determined by
their hosts (mice or deers).

The purpose of this chapter is to modify the nonlocal spatial model in
[392] by incorporating the self-regulation mechanism for the tick population,
as discussed in [56], and to establish the global dynamics of the model system
in terms of the basic reproduction ratio. In Section 14.1, we present the spa-
tial model of Lyme disease and give biological interpretations of the related
parameters.

In Section 14.2, we study the global dynamics of the disease-free system.
We first show that the forward orbits of an associated limiting system are
asymptotically compact, and the linearized system at its zero solution admits
a geometrically simple eigenvalue with a positive eigenfunction. Then we use
the comparison arguments and the theory of monotone and subhomogeneous
system to obtain a threshold-type result on the disease-free dynamics.

In Section 14.3, we investigate the global dynamics of the full model sys-
tem. We first introduce a next generation operator F̂ and define its spectral
radius as the basic reproduction ratioR0. Then we give a computation formula
of R0 in terms of the principal eigenvalue of a nonlocal eigenvalue problem.
Finally, we prove that R0 serves as a threshold value for the global attractivity
of the disease-free or endemic steady state by appealing to the theory of chain
transitive sets.

14.1 The Model

We consider the Lyme disease transmission in a bounded habitat Ω ⊂ R
2 with

a smooth boundary ∂Ω. Let Γ (t, x, y,D) be the Green function associated
with the linear parabolic equation:

∂u

∂t
= ∇ · (D(x)∇u), t > 0, x ∈ Ω,

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω,
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Table 14.1. Biological interpretations of parameters

rM Maximal individual birth rate of mice.
r Individual birth rate of ticks.
rh Birth rate of deers.
μM Mortality rate per mouse.
μL Mortality rate per tick larva.
μN Mortality rate per tick nymph.
μA Mortality rate per adult tick.
μh Mortality rate per deer.
α Attack rate, juvenile ticks on mice.
γ Attack rate, tick nymphs on humans.
ξ Coefficient of an adult tick to attach to deers.
δA Self-regulation coefficient for adult ticks.
τl Feeding duration of tick larvae on mice.
τn Feeding duration of tick nymphs on mice.
τa Feeding duration of adult ticks on deers.
DM (x) Diffusion coefficient for mice at location x.
DH(x) Diffusion coefficient for deers at location x.
KM (x) Carrying capacity for mice at location x.
β(x) Susceptibility to infection in mice at location x.
βT (x) Susceptibility to infection in ticks at location x.

where ν is the outward normal vector to ∂Ω. It then follows that if a dif-
fusive species has spatial density ϕ(x) at time s, then the integral

∫
Ω Γ (t −

s, x, y,D)ϕ(y)dy gives the spatial density at time t ≥ s due to the diffusion.
Let M(t, x) and m(t, x) be the densities of susceptible and pathogen-

infected mice, L(t, x) be the density of questing larvae, N(t, x) and n(t, x)
be the densities of susceptible and infectious questing nymphs, A(t, x) and
a(t, x) be the densities of uninfected and pathogen-infected adult ticks, and
H(t, x) be the density of deers, at time t and location x. The parameters are
shown as in Table 14.1.

In view of the attaching rates of larvae to mice and the disease transmission
mechanisms in the model of [57], it follows that the drop-off rate of susceptible
larvae from a mouse is

Nb = Pl

∫

Ω

Γ (τl, x, y,DM )[M(t− τl, y)+(1−βT (y))m(t− τl, y)]L(t− τl, y)dy,

where Pl = αe−(μL+μM )τl . The drop-off rates of infected larvae, susceptible
nymphs and infected nymphs from mice can be described in a similar way.
Moreover, the density of egg-laying adult ticks, that is, the drop-off rate of
adult ticks from deers after blood meals is given by

Tb = ξe−(μA+μh)τa

∫

Ω

Γ (τa, x, y,DH)(A(t− τa, y)+a(t− τa, y))H(t− τa, y)dy.

The per capita birth rate B(x, u) of mice is taken in [392] as the negative
exponential function:
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B(x, u) = rM exp

(

− u

KM(x)

)

,

where KM (x) is a continuous and positive function on Ω. Unlike the model
in [392], we use the linear birth rate rTb for the tick population. Assume
that the self-regulation process for adult ticks is mainly due to some density-
dependent death terms and intra-competition. Then terms δA(A + a)A and
δA(A+a)a represent the self-regulation for uninfected and infected adult ticks,
respectively. Let Pn = αe−(μL+μM )τn . Accordingly, the earlier model in [392]
can be modified as

∂M

∂t
= ∇ · (DM (x)∇M) + (M +m)B(x,M +m)− μMM − αβ(x)Mn,

∂m

∂t
= ∇ · (DM (x)∇m) + αβ(x)Mn− μMm,

∂L

∂t
= rTb − μLL− αL(M +m),

∂N

∂t
= Nb − [γ + α(M +m) + μN ]N,

∂n

∂t
= nb − [γ + α(M +m) + μN ]n, (14.1)

∂A

∂t
= Ab − (μA + ξH)A− δA(A+ a)A,

∂a

∂t
= ab − (μA + ξH)a− δA(A+ a)a,

∂H

∂t
= ∇ · (DH(x)∇H) + rh − μhH,

where three terms

nb = Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)m(t− τl, y)L(t− τl, y)dy,

Ab = Pn

∫

Ω

Γ (τn, x, y,DM )[M(t− τn, y) + (1− βT (y))m(t− τn, y)]N(t− τn, y)dy,

ab = Pn

∫

Ω

Γ (τn, x, y,DM )[(M(t− τn, y) +m(t− τn, y))n(t− τn, y)

+ βT (y)m(t− τn, y)N(t− τn, y)]dy

describe the drop-off rates of infected larvae, susceptible and infected nymphs
from mice, respectively.

We suppose that all constant parameters in (14.1) are positive, DM (x),
DH(x) are positive and continuously differentiable on Ω, and β(x) is a con-
tinuous function on Ω with 0 ≤ β(x) ≤ 1 but β(x) �≡ 0, so is βT (x). Further,
we impose the Neumann boundary condition for M , m and H :

∂M

∂ν
=

∂m

∂ν
=

∂H

∂ν
= 0, ∀t > 0, x ∈ ∂Ω.
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14.2 Disease-Free Dynamics

In this section, we study the disease-free steady state and its global attrac-
tivity. Note that in the absence of infection of Lyme disease, system (14.1)
reduces to

∂M

∂t
= ∇ · (DM (x)∇M) +MB(x,M) − μMM,

∂L

∂t
= Pa

∫

Ω

Γ (τa, x, y,DH)A(t− τa, y)H(t− τa, y)dy − (μL + αM)L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M(t− τl, y)L(t− τl, y)dy − (γ + αM + μN )N, (14.2)

∂A

∂t
= Pn

∫

Ω

Γ (τn, x, y,DM )M(t− τn, y)N(t− τn, y)dy − (μA + ξH)A− δAA
2,

∂H

∂t
= ∇ · (DH(x)∇H) + rh − μhH,

where Pa = rξe−(μA+μh)τa , andM and H are subject to the Neumann bound-
ary condition:

∂M

∂ν
=

∂H

∂ν
= 0, ∀t > 0, x ∈ ∂Ω.

It is easy to see that

∂H

∂t
= ∇ · (DH(x)∇H) + rh − μhH, t > 0, x ∈ Ω,

∂H

∂ν
= 0, ∀t > 0, x ∈ ∂Ω

has a positive steady state H∗ = rh
μh

, which is globally asymptotically stable

in C(Ω,R+). Moreover, we assume that

(H1) rM > μM .

By a standard convergence result on the logistic type reaction-diffusion equa-
tions (see, e.g., Theorems 2.3.4 and 3.1.6), it then follows that the following
reaction-diffusion system

∂M

∂t
= ∇ · (DM (x)∇M) +MB(x,M)− μMM, t > 0, x ∈ Ω,

∂M

∂ν
= 0, ∀t > 0, x ∈ ∂Ω

admits a globally asymptotically positive steady stateM∗(x) in C(Ω,R+)\{0}.
Thus, we first study the global dynamics of the following limiting system:

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t− τa, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t− τl, y)dy − [γ + αM∗(x) + μN ]N, (14.3)

∂A

∂t
= Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t− τn, y)dy − (μA + ξH∗)A− δAA
2.
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Let τ0 = max{τa, τl, τn} and

X = C(Ω,R3), X+ = C(Ω,R3
+), Y = C([−τ0, 0], X), Y+ = C([−τ0, 0], X+).

Then (X,X+) and (Y, Y+) are ordered Banach spaces. As usual, we identify an
element ϕ ∈ Y with a function from [−τ0, 0]×R into R

3 defined by ϕ(θ, x) =
ϕ(θ)(x). For any function u ∈ C([−τ0, a), X) with some a > 0 and any t ∈
[0, a), we define ut ∈ Y by ut(θ) = u(t+ θ), ∀θ ∈ [−τ0, 0].

Define linear semigroups Ti(t), 1 ≤ i ≤ 3, on C(Ω,R) by

T1(t)φ1=e−[μL+αM∗(x)]tφ1, T2(t)φ2=e−[γ+αM∗(x)+μN ]tφ2,

and
T3(t)φ3=e−(μA+ξH∗)tφ3,

respectively. Let A0
i be the generator of Ti(t). Then T (t) = (T1(t), T2(t), T3(t)) :

X → X is a semigroup generated by the operator A0 = (A0
1, A

0
2, A

0
3). Define

F = (F1, F2, F3) : Y → X by

F1(φ)(x) = PaH
∗
∫

Ω

Γ (τa, x, y,DH)φ3(−τa, y)dy,

F2(φ)(x) = Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)φ1(−τl, y)dy,

F3(φ)(x) = Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)φ2(−τn, y)dy − δAφ
2
3(0, x),

for x ∈ Ω and φ = (φ1, φ2, φ3)
T ∈ Y . Then system (14.3) can be written as

the following abstract functional differential equation:

du

dt
= A0u+ F (ut), t > 0,

u0 = φ ∈ Y+. (14.4)

From the expression of F , we see that F (φ) is locally Lipschitz continuous on
Y+, and F (φ) is quasi-monotone on Y+ in the sense that whenever φ ≤ ψ and
φi(0) = ψi(0) for some i ∈ {1, 2, 3}, then Fi(φ) ≤ Fi(ψ).

In view of [243, Corollary 5], it follows that for any φ ∈ Y+, system (14.4)
admits a unique nonnegative continuous solution

u(t, x, φ) = (L(t, x, φ), N(t, x, φ), A(t, x, φ))

on [0, tφ) with u(θ, x, φ) = φ(θ, x) for all (θ, x) ∈ [−τ0, 0] × Ω and ut ∈ Y+
for t ≥ 0, and the comparison principle holds for upper and lower solutions
of system (14.4). Note that there exists a positive vector ζ = (ζ1, ζ2, ζ3) ∈ R

3

such that

PaH
∗ζ3 − μLζ1 = 0, PlM

∗
maxζ1 − (γ + μN )ζ2 = 0, PnM

∗
maxζ2 − δAζ

2
3 ≤ 0,
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where M∗
max = maxΩ M∗(x). Then it is easy to see that for any k ≥ 1, kζ

is an upper solution of system (14.4). This implies that tφ = ∞ and solu-
tions of system (14.4) are uniformly bounded. Next, we prove the asymptotic
compactness of forward orbits for the solution semiflow of system (14.3).

Lemma 14.2.1. For any φ ∈ Y+, the forward orbit γ+(φ) := {ut(φ) : t ≥ 0}
for system (14.3) is asymptotically compact in the sense that for any sequence
tn → ∞, there exists a subsequence tnk

→ ∞ such that utnk
(φ) converges in

Y as k → ∞.

Proof. In view of the boundedness of solutions and the generalized Arzela–
Ascoli theorem in Section 3.5, it is suffices to prove that the solution u(t, x, φ)
is asymptotically compact in the sense that for any sequence tn → ∞, there
exists a subsequence tnk

→ ∞ such that u(tnk
, ·, φ) converges in X as k → ∞.

Our arguments are motivated by [175, Lemma 4.1]. Note that for any given
φ = (φ1, φ2, φ3) ∈ Y+, there exists η > 0 such that

|L(t, x, φ)| ≤ η, |N(t, x, φ)| ≤ η, |A(t, x, φ)| ≤ η, ∀t ≥ 0, x ∈ Ω.

In view of the Arezla-Ascoli theorem, it suffices to prove that {u(tn, x, φ)}n≥1

is equicontinuous in x ∈ Ω for all n ≥ 1. We first show that {A(tn, x, φ)}n≥1

is equicontinuous in x ∈ Ω for all n ≥ 1. By the uniform boundedness of
N(t, x, φ), it is easy to see that

f(x, t) := Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t− τn, y, φ)dy

is uniformly continuous in x ∈ Ω uniformly for t ≥ 0, that is, ∀ε > 0, there
exists δ > 0 such that

|f(x1, t)− f(x2, t)| < ε2, ∀t ≥ 0, x1, x2 ∈ Ω,

provided that |x1 − x2| < δ. As in the proof of [175, Lemma 4.1], we define
vn(t, x) = A(t + tn, x, φ), ∀t ≥ −tn, x ∈ Ω. Set r := μA + ξH∗ > 0. It is easy
to see that

∂

∂t
[vn(t, x1)− vn(t, x2)]

2

= 2(vn(t, x1)− vn(t, x2))[f(x1, t+ tn)− f(x2, t+ tn)

−r(vn(t, x1)− vn(t, x2))− δA(v
2
n(t, x1)− v2n(t, x2))]

≤ 4η|f(x1, t+ tn)− f(x2, t+ tn)| − 2r(vn(t, x1)− vn(t, x2))
2

≤ 4ηε2 − 2r(vn(t, x1)− vn(t, x2))
2

for all t ≥ −tn, |x1−x2| < δ, x1, x2 ∈ Ω. By the variation of constants formula
and the comparison argument, we have

|vn(t, x1)− vn(t, x2)|2 ≤ e−2r(t−s)|vn(s, x1)− vn(s, x2)|2 + 4ηε2
∫ t

s

e−2r(t−θ)dθ,
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for all t ≥ s ≥ −tn. Letting t = 0 and s = −tn in the above inequality, we
further obtain

|vn(0, x1)− vn(0, x2)|2 ≤ e−2rtn |vn(−tn, x1)− vn(−tn, x2)|2 + 2ηε2

r
,

that is,

|A(tn, x1, φ)−A(tn, x2, φ)|2 ≤ |φ3(0, x1)− φ3(0, x2)|2 +
2ηε2

r
,

for all n ≥ 1, |x1 − x2| < δ, x1, x2 ∈ Ω. Since φ3(0, x) is uniformly continuous
for x ∈ Ω, there exists δ1 > 0 such that |φ3(0, x1)− φ3(0, x2))| < ε whenever
|x1−x2| < δ1. Thus, for any |x1−x2| < δ0 := min{δ1, δ}, x1, x2 ∈ Ω, we have

|A(tn, x1, φ)−A(tn, x2, φ)|2 ≤ ε2 +
2ηε2

r
≤ (1 +

2η

r
)ε2.

Similarly, we can verify that {L(tn, x, φ)}n≥1 and {N(tn, x, φ)}n≥1 are also
equicontinuous in x ∈ Ω for all n ≥ 1.

Linearizing (14.3) at its zero solution, we obtain

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t− τa, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t− τl, y)dy − [γ + αM∗(x) + μN ]N, (14.5)

∂A

∂t
= Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t− τn, y)dy − (μA + ξH∗)A.

Define an operator A = (A1, A2, A3) on X by

A1(φ) = PaH
∗
∫

Ω

Γ (τa, x, y,DH)φ3(y)dy − [μL + αM∗(x)]φ1,

A2(φ) = Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)φ1(y)dy − [γ + αM∗(x) + μN ]φ2, (14.6)

A3(φ) = Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)φ2(y)dy − (μA + ξH∗)φ3.

Clearly, A is a closed and resolvent-positive operator (see, e.g., [370, Theorem
3.12]). Let s(Ã) be the spectral bound of an operator Ã, that is, s(Ã) =
sup{Reλ : λ ∈ σ(Ã)}, where σ(Ã) is the spectral set of Ã, and N (λI− Ã) and
R(λI − Ã) be the null space and range space of λI − Ã, respectively, where I
is the identity operator. Then we have the following observation.

Lemma 14.2.2. Assume that (H1) holds. Then s(A) is a geometrically simple
eigenvalue of A with a positive eigenfunction.

Proof. Let M∗
m = min

x∈Ω
M∗(x) and

c0 := min{μL + αM∗
m, γ + αM∗

m + μN , μA + ξH∗}.
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For any φ = (φ1, φ2, φ3) ∈ N (λI −A), we have

λφ1 = PaH
∗
∫

Ω

Γ (τa, x, y,DH)φ3(y)dy − (μL + αM∗(x))φ1,

λφ2 = Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)φ1(y)dy − (γ + αM∗(x) + μN )φ2, (14.7)

λφ3 = Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)φ2(y)dy − (μA + ξH∗)φ3.

For λ > −c0, we obtain from the first and second equations of (14.7) that

φ1(x) =
PaH

∗

λ+ μL + αM∗(x)

∫

Ω

Γ (τa, x, y,DH)φ3(y)dy,

φ2(x) =
Pl

λ+ γ + αM∗(x) + μN

∫

Ω

Γ (τl, x, y,DM )M∗(y)φ1(y)dy. (14.8)

It then follows that

φ2(x) =

∫

Ω

Γ (τl, x, y,DM )
M∗(y)

λ+ μL + αM∗(y)

∫

Ω

Γ (τa, y, s,DH)φ3(s)dsdy

· PaPlH
∗

λ+ γ + αM∗(x) + μN
:= F (λ, φ3)(x) (14.9)

Substituting this into the third equation of (14.7), we obtain

Lλ(φ3) := Pn

∫

Ω

Γ (τn, ·, y,DM )M∗(y)F (λ,φ3)(y)dy − (μA + ξH∗)φ3 = λφ3.

(14.10)
Let

G(λ) := (λ+γ+αM∗
m+μN )(λ+μA+ξH∗)(λ+ μL + αM∗

m)− PaPnPlH
∗M∗2

m .

Since G(−c0) = −PaPnPlH
∗M∗2

m < 0, G(+∞) = +∞, and G(λ) is strictly
increasing on [−c0,+∞), it follows that there exists a unique λ0 ∈ (−c0,∞)
such that G(λ0) = 0. Note that for any x ∈ Ω,

M∗(x)
λ0 + μL + αM∗(x)

≥ M∗
m

λ0 + μL + αM∗
m

,

and
M∗(x)

λ0 + γ + αM∗(x) + μN
≥ M∗

m

λ0 + γ + αM∗
m + μN

.

Thus, if we choose φ3 ≡ 1, then we have

Lλ0(φ3) ≥
PaPnPlH

∗M∗2
m

(λ0 + γ + αM∗
m + μN )(λ0 + μL + αM∗

m)
− (μA + ξH∗) = λ0φ3.

Since Lλ admits a principle eigenvalue μ(λ), by the essentially same argu-
ments as in [390, Theorem 2.3], it follows that s(A) is a geometrically simple
eigenvalue with a positive eigenfunction.
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Now we are in position to prove a threshold-type result on the global
dynamics of system (14.2) in terms of s(A).

Theorem 14.2.1. Let (H1) hold. Then the following statements are valid:

(i) If s(A) < 0, then (M∗(x), 0, 0, 0, H∗) is globally attractive for positive
solutions of system (14.2).

(ii) If s(A) > 0, then system (14.2) admits a unique positive steady state E0 :=
(M∗(x), L∗(x), N∗(x), A∗(x), H∗), and E0 is globally attractive for posi-
tive solutions of system (14.2).

Proof. Note that M∗(x) and H∗ are globally attractive for positive solutions
of the first equation and the last equation of system (14.2), respectively. By
the theory of asymptotically autonomous semiflows (see, e.g., [364]), it suffices
to prove the threshold-type result on the global dynamics of system (14.3).
To do so, we first consider the following nonlocal evolution system without
time delay:

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t, y)dy − [γ + αM∗(x) + μN ]N, (14.11)

∂A

∂t
= Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t, y)dy − (μA + ξH∗)A− δAA
2.

It then easily follows that for each t > 0, the time-t map of (14.11) is strongly
monotone and strictly subhomogeneous on X+. Since the linearized system of
(14.11) at (0, 0, 0) is

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t, y)dy − [γ + αM∗(x) + μN ]N, (14.12)

∂A

∂t
= Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t, y)dy − (μA + ξH∗)A,

we see that A is the generator of the solution semigroup of (14.12). By
Lemma 14.2.2, there exists a positive function φ∗ such that Aφ∗ = s(A)φ∗,
that is,

s(A)φ∗
1 = PaH

∗
∫

Ω

Γ (τa, x, y,DH)φ∗
3(y)dy − (μL + αM∗(x))φ∗

1 ,

s(A)φ∗
2 = Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)φ∗
1(y)dy − (γ + αM∗(x) + μN )φ∗

2,

s(A)φ∗
3 = Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)φ∗
2(y)dy − (μA + ξH∗)φ∗

3.
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We first consider the case where s(A) < 0. For any given ϕ ∈ Y , we can
choose a sufficiently large number K > 0 such that −Kφ∗(x) ≤ ϕ(θ, x) ≤
Kφ∗(x), ∀(θ, x) ∈ [−τ0, 0]× Ω. Let v(t, x, ϕ) be the unique solution of linear
system (14.5) with time delay. By the comparison principle, we obtain

−Kv(t, x, φ∗) ≤ v(t, x, ϕ) ≤ Kv(t, x, φ∗), ∀t ≥ 0, x ∈ Ω. (14.13)

Let v+(t, x) := φ∗(x), ∀t ∈ [−τ0,∞), x ∈ Ω. It is easy to see that v+(t, x) is
an upper solution of system (14.5) on [0,∞). Then the comparison principle
implies that

0 ≤ v(t, x, φ∗) ≤ v+(t, x) = φ∗(x), ∀t ≥ −τ0, x ∈ Ω. (14.14)

Let vt be the solution semiflow of system (14.5) on Y , that is, vt(ϕ)(θ) =
v(t + θ, ·, ϕ), ∀t ≥ 0, θ ∈ [−τ0, 0]. In view of (14.14) and the comparison
principle again, we obtain that

vt+s(φ
∗) = vs(vt(φ

∗)) ≤ vs(φ
∗) ≤ φ∗, ∀t, s ≥ 0.

This implies vt(φ
∗) is nonincreasing in t ∈ [0,∞), and hence v(t, x, φ∗) con-

verges, as t → ∞, pointwise to some function e(x) for x ∈ Ω. Further, it
follows from similar arguments to those in Lemma 14.2.1 that the bounded
forward orbit γ+(φ∗) = {vt(φ∗) : t ≥ 0} is asymptotically compact in Y , and
hence, its omega limit set ω(φ∗) is nonempty, compact, and invariant for the
solution semiflow vt on Y . Thus, ω(φ∗)={e} with e(x) being a nonnegative
steady state of system (14.5). In view of (14.5) and (14.12), we know that e(x)
is also a steady state of system (14.12). Since s(A) < 0 and for any M ∈ R,
Mes(A)tφ∗(x) is a solution of the linear system (14.12), it follows from the
comparison arguments that every solution of (14.12) converges to zero, which
implies that e(x) ≡ 0 and lim

t→∞ vt(φ
∗) = 0. With (14.13), we conclude that

lim
t→∞ vt(ϕ) = 0. Moreover, it is easy to see that every nonnegative solution of

system (14.3) satisfies

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t − τa, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t− τl, y)dy − [γ + αM∗(x) + μN ]N,

∂A

∂t
≤ Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t− τn, y)dy − (μA + ξH∗)A, (14.15)

that is, every nonnegative solution of system (14.3) is a lower solution of
system (14.5). Thus, the comparison principle proves statement (i).

Next we consider the case where s(A) > 0. Note that the solution
semiflow of system (14.3) is monotone and subhomogeneous. We first show
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that that system (14.11) admits a globally attractive steady state (L∗(x),
N∗(x), A∗(x)). For small ε > 0, we consider the following linear system with-
out time delay:

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t, y)dy − [γ + αM∗(x) + μN ]N, (14.16)

∂A

∂t
= Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t, y)dy − (μA + ξH∗ + εδA)A.

Let Aε be the generator of the solution semigroup of (14.16). By virtue of
Lemma 14.2.2, we obtain that s(Aε) is also a geometrically simple eigenvalue
with a positive eigenfunction φε. Note that when ε > 0 is small enough, the
spectral bound depends continuously on ε. It then follows that there exists a
sufficiently small ε0 > 0 such that s(Aε0) > 0. Let û(t, ·, φ) be the solution of
system (14.11) with initial data φ. We further prove the following two claims.

Claim 1. lim supt→∞ ‖û(t, ·, φ)‖ ≥ ε0, ∀φ ∈ X+\{0}.

For the sake of contradiction, we assume that lim supt→∞ ‖û(t, ·, φ)‖ < ε0 for
some φ0 ∈ X+\{0}. Then there exists t0 > 0 such that û(t, ·, φ0) < ε0 :=
(ε0, ε0, ε0), ∀t ≥ t0. It follows that for all t ≥ t0, û(t, ·, φ0) satisfies

∂L

∂t
= PaH

∗
∫

Ω

Γ (τa, x, y,DH)A(t, y)dy − [μL + αM∗(x)]L,

∂N

∂t
= Pl

∫

Ω

Γ (τl, x, y,DM )M∗(y)L(t, y)dy − [γ + αM∗(x) + μN ]N, (14.17)

∂A

∂t
≥ Pn

∫

Ω

Γ (τn, x, y,DM )M∗(y)N(t, y)dy − (μA + ξH∗ + ε0δA)A.

Since û(t0, ·, φ0) � 0, we can choose a small real number ρ > 0 such that
û(t0, x, φ0) ≥ ρes(Aε0 )t0φε0(x), ∀x ∈ Ω. Note that ρes(Aε0 )tφε0(x) is the solu-
tion of linear system (14.16) with ε = ε0 and s(Aε0) > 0. It follows from (14.17)
and the comparison principle that û(t, x, φ0) ≥ ρes(Aε0 )tφε0(x), ∀t ≥ t0,
x ∈ Ω. Letting t → ∞, we see that û(t, x, φ0) is unbounded, a contradic-
tion to the boundedness of û(t, x, φ0).

Claim 2. Let ω(φ) be the omega limit set of the forward orbit γ+(φ) :=
{û(t, ·, φ) : t ≥ 0}. Then ω(φ) ⊂ int(X+), ∀φ ∈ X+\{0}.

By adapting the proof in Lemma 14.2.1, we see that γ+(φ) is asymptoti-
cally compact, and hence, ω(φ) is nonempty, compact, and invariant. Let
φ ∈ X+\{0} be given and Q(t)φ := û(t, ·, φ). It then follows from Claim 1 that
set A := {0} is an isolated invariant set for the semiflow Q(t) and ω(φ) �⊆ A.
Thus, the generalized Butler-McGehee lemma (see Lemma 1.2.7) implies that
ω(φ)∩A = ∅, and hence, ω(φ) ⊂ X+\{0}. By the strong monotonicity of Q(t)
and the invariant of ω(φ) for Q(t), it follows that ω(φ) ⊂ int(X+).
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Let t1 > 0 be fixed. Then Q(t1) is strongly monotone and strictly sub-
homogeneous on X+\{0}. Note that ω(φ) is also a compact and invariant
set for Qt1 . It then follows from Claim 2 and Theorem 2.3.2 with K = ω(φ)
that Qt1 has a unique fixed point ue = (L∗(·), N∗(·), A∗(·)) � 0 such that
ω(φ) = {ue}, ∀φ ∈ X+\{0}. Since Q(t)ω(φ) = ω(φ) for all t ≥ 0, we see
that ue is a positive steady state of system (14.11). This shows that system
(14.11) admits a unique positive steady state (L∗(x), N∗(x), A∗(x)), which is
globally attractive in X+\{0}. Clearly, ϕ∗(x) = (L∗(x), N∗(x), A∗(x)) is also
the unique positive steady state of system (14.3). Let Φ(t) be the solution
semiflow of system (14.3) on Y+ := C([−τ0, 0], X+). For any given componen-
twise positive initial function ϕ, there exist two real numbers s ∈ (0, 1) and
ρ > 1 such that

sϕ∗(x) ≤ ϕ(θ, x) ≤ ρϕ∗(x), ∀θ ∈ [−τl, 0], x ∈ Ω.

By the comparison principle, we then have

sϕ∗ = sΦ(t)ϕ∗ ≤ Φ(t)(sϕ∗) ≤ Φ(t)ϕ ≤ Φ(t)(ρϕ∗) ≤ ρΦ(t)ϕ∗ = ρϕ∗ (14.18)

for all t ≥ 0. Thus, Φ(t)(sϕ∗) is nondecreasing in t ≥ 0 and Φ(t)(ρϕ∗) is
nonincreasing in t ≥ 0. Note that the forward orbits γ+(sϕ∗) and γ+(ρϕ∗)
for Φ(t) are asymptotically compact (see Lemma 14.2.1). It then follows from
the uniqueness of the positive steady state that

lim
t→∞Φ(t)(sϕ∗) = ϕ∗ = lim

t→∞Φ(t)(ρϕ∗).

By virtue of (14.18), we obtain limt→∞ Φ(t)ϕ = ϕ∗. This shows that statement
(ii) holds true.

14.3 Global Dynamics

In this section, we introduce the basic reproduction ratio for model (14.1) and
study the global dynamics of Lyme disease invasion. Throughout this section,
we assume that (H1) holds and s(A) > 0, where A is defined as in (14.6).

By Theorem 14.2.1, it follows that system (14.2) admits a globally at-
tractive positive steady state (M∗(x), L∗(x), N∗(x), A∗(x), H∗), and hence,
system (14.1) has a unique disease-free steady state

E1 = (M∗(x), 0, L∗(x), N∗(x), 0, A∗(x), 0, H∗).

Linearizing (14.1) at E1 and then considering only the equations of infective
compartments, we get

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)M∗(x)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)m(t− τl, y)dy − [γ + αM∗(x) + μN ]n,

∂a

∂t
=Pn

∫

Ω

Γ (τn, x, y,DM )K∗
a(t− τn, y)dy − [μA + ξH∗ + δAA

∗(x)]a, (14.19)
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where m is subject to the Neumann boundary condition and

K∗
a(t− τn, y) = M∗(y)n(t− τn, y) + βT (y)N

∗(y)m(t− τn, y).

Note that the third equation of system (14.19) is decoupled from the
first two equations. Thus, we can simply use the first two equations to de-
fine the basic reproduction ratio for model (14.1). Let X̃ = C(Ω,R2) and
X̃+ = C(Ω,R2

+). We assume that the state variables are near the disease-free
steady state E1. Then we introduce infected individuals with the density dis-
tribution φ = (φ1, φ2) ∈ X̃+ into the population at t = 0. As time evolves, the
density distribution of the infective individuals m and n under the synthetical
influences of mortality, mobility and transfer of individuals among the infected
compartments is described by

∂m

∂t
=∇ · (DM (x)∇m) − μMm,

∂n

∂t
=− [γ + αM∗(x) + μN ]n,

where m satisfies the Neumann boundary condition. Let (m(t, φ), n(t, φ)) de-
note the density distribution of the infective individuals at time t > 0. Then
we have

m(t, φ)(x) = e−μM t

∫

Ω

Γ (t, x, y,DM )φ1(y)dy,

n(t, φ)(x) = e−(γ+αM∗(x)+μN )tφ2(x).

It follows that the distribution of new infections of mice produced by the
infective agents at time t is

F1(t, φ)(x) = αβ(x)M∗(x)n(t, φ)(x),

and the distribution of new infections of nymphs produced by the infective
agents at time t is

F2(t, φ)(x) =

{
0, if t ∈ (0, τl),

Pl

∫
Ω
Γ (τl, x, y,DM )βT (y)L

∗(y)m(t− τl, φ)(y)dy, if t ≥ τl.

Consequently, the distribution of total new infections of mice is

∫ ∞

0

F1(t, φ)dt := F̂1(φ),

and the distribution of total new infections of nymphs is
∫ ∞

0

F2(t, φ)dt = Pl

∫ ∞

0

∫

Ω

Γ (τl, ·, y,DM )βT (y)L
∗(y)m(t, φ)(y)dydt := F̂2(φ).

(14.20)
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Clearly, F̂ = (F̂1, F̂2) is a continuous and positive operator, which maps the
initial infection distribution φ to the distribution of the total infective mem-
bers produced during the infection period. Following the idea of next gener-
ation operators (see, e.g., [95, 389, 392]), we define R0 := r(F̂ ), the spectral
radius of F̂ , for model (14.1). Direct calculations lead to

F̂1(φ)(x) =
αβ(x)M∗(x)

γ + αM∗(x) + μN
φ2(x).

Define the operator B1 by

B1(φ1) = ∇ · (DM (x)∇φ1)− μMφ1

By [370, Theorem 3.12], we have

∫ ∞

0

m(t, φ)dt =

∫ ∞

0

m(t, φ1)dt = −B−1
1 φ1.

It then follows from (14.20) that

F̂2(φ)(x) = −Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)[B−1

1 φ1](y)dy.

To show that R0 is a threshold value for the disease invasion, we first
suppress time delays in (14.19) and then consider the following subsystem
without time delay:

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)M∗(x)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)m(t, y)dy − [γ + αM∗(x) + μN ]n,

(14.21)
where m is subject to the Neumann boundary condition. For φ = (φ1, φ2) ∈
X̃+, we define two operators C = (C1, C2) by

C1(φ)(x) = αβ(x)M∗(x)φ2(x),

C2(φ)(x) = Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)φ1(y)dy,

and B = (B1, B2) by

B1(φ)(x) = ∇ · (DM (x)∇φ1)− μMφ1(x),

B2(φ)(x) = −[γ + αM∗(x) + μN ]φ2(x),

and set A = C+B. It is easy to see that the spectral bound s(B) is negative.
Our next goal is to show that R0 − 1 has the same sign as s(A), and s(A)

is the principal eigenvalue of A. To do so, we need the following assumption:
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(H2) There exists some x0 ∈ Ω such that β(x0) and βT (x0) are positive.

Biologically, this means that there exists some small region where infec-
tious nymphs can infect mice and pathogen-infected mice can also infect ticks
in return.

Lemma 14.3.1. Let (H1) and (H2) hold. Then R0 − 1 has the same sign as
the spectral bound s(A) of A, and s(A) is a geometrically simple eigenvalue
of A with a positive eigenfunction.

Proof. By [370, Theorem 3.5], we see that s(A) has the same sign as
r(−CB−1) − 1. It suffices to show that R0 = r(−CB−1). Letting T (t) be
the solution semigroup generated by B, we then have

(λ− B)−1φ =

∫ ∞

0

e−λtT (t)φdt, λ > s(B), φ ∈ X̃.

Since s(B) < 0, it follows that

−B−1φ =

∫ ∞

0

T (t)φdt, ∀φ ∈ X̃. (14.22)

As a consequence, we have

−B−1
2 φ =

1

γ + αM∗(x) + μN
φ2.

Now, by direct calculations, we obtain

C1(−B−1φ) = αβ(x)M∗(x)(−B−1
2 φ) = F̂1(φ),

C2(−B−1φ) = Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)[−B−1

1 φ1](y)dy = F̂2(φ).

This implies that −CB−1 = F̂ , and hence r(−CB−1) = r(F̂ ) = R0.
To verify s(A) is an eigenvalue, letting φ = (φ1, φ2) ∈ N (λI −A), we have

∇ · (DM (x)∇φ1) + αβ(x)M∗(x)φ2 − μMφ1 = λφ1,

Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)φ1(y)dy − [γ + αM∗(x) + μN ]φ2 = λφ2.

(14.23)
For λ > −(γ+αM∗

m+μN ) with M∗
m = min

x∈Ω
M∗(x), we obtain from the second

equation of (14.23) that

φ2(x) =
Pl

λ+ γ + αM∗(x) + μN

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)φ1(y)dy := ζ(λ, φ1)(x).

Substituting it into the first equation of (14.23), we get

Lλ(φ1)(x) := ∇ · (DM (x)∇φ1) + αβ(x)M∗(x)ζ(λ, φ1)(x)− μMφ1(x) = λφ1(x).
(14.24)
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It easily follows from (H2) that there exists an open neighborhood U ⊂ Ω
such that β(x) > 0, βT (x) > 0, ∀x ∈ U ⊂ Ω. Let λ1 be the principal eigenvalue
of the elliptic eigenvalue problem

∇ · (DM (x)∇φ) − μMφ = λφ, x ∈ U,

φ = 0, x ∈ ∂U,

with the positive eigenfunction φ∗(x). Now define a continuous function φ0 as
follows:

φ0(x) =

{
φ∗(x) if x ∈ U

0 if x ∈ Ω \ U.
Since βT (x)L

∗(x)φ0(x) ≥ 0(�≡ 0), ∀x ∈ Ω, the standard maximum principle
implies that

∫
Ω Γ (τl, x, y,DM )βT (y)L

∗(y)φ0(y)dy > 0, ∀x ∈ Ω. Set

A = min
x∈Ω

Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)φ0(y)dy, β = min

x∈U
β(x), φ∗

max = max
x∈U

φ∗(x),

and

λ0 =
λ1 − (γ + αM∗

m + μN ) +
√
(λ1 + γ + αM∗

m + μN )2 + 4
αβM∗

mA

φ∗
max

2

>
λ1 − (γ + αM∗

m + μN ) + |λ1 + γ + αM∗
m + μN |

2
= max{λ1,−(γ + αM∗

m + μN )}.

Clearly, Lλ0(φ
0)(x) ≥ λ0φ

0(x), ∀x ∈ Ω \U . Moreover, for any x ∈ U , we have

Lλ0(φ
0)(x) = ∇ · (DM (x)∇φ0) + αβ(x)M∗(x)ζ(λ, φ0)(x) − μMφ0(x)

≥ λ1φ
∗(x) +

αβM∗
mA

λ0 + γ + αM∗
m + μN

= λ1φ
∗(x) + φ∗

max(λ0 − λ1)

≥ λ1φ
∗(x) + φ∗(x)(λ0 − λ1)

= λ0φ
∗(x) = λ0φ

0(x).

Thus, eλ0tφ0(x) is a subsolution of the integral form of the linear system
vt = Lλ0u. By the arguments similar to those in [390, Theorem 2.3 and
Remark 2.1], we conclude that s(A) is a geometrically simple eigenvalue with
a positive eigenfunction.

Remark 14.3.1. Let λΩ1 be the principal eigenvalue of the elliptic eigenvalue
problem

∇ · (DM (x)∇φ1)− μMφ1(x) = λφ1(x), x ∈ Ω

subject to the Neumann boundary condition, and φ∗
1(x) be the associated pos-

itive eigenfunction. Instead of (H2), we assume that λΩ1 > −(γ+αM∗
m+μN).

It then follows that LλΩ
1
(φ∗

1)(x) ≥ λΩ1 φ
∗
1(x), and hence, s(A) is a geometrically

simple eigenvalue with a positive eigenfunction (see also [390, Corollary 2.4]).
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Next we characterize the basic reproduction ratio in terms of the principal
eigenvalue of the following eigenvalue problem

−∇ · (DM (x)∇ϕ(x)) + μMϕ(x) = μg(ϕ)(x), x ∈ Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω,

(14.25)

where

g(ϕ)(x) :=
Plαβ(x)M

∗(x)
γ + αM∗(x) + μN

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)ϕ(y)dy.

Theorem 14.3.1. Let (H1) and (H2) hold. If the eigenvalue problem (14.25)
admits a unique positive eigenvalue μ with a positive eigenfunction, then R0 =
1/

√
μ.

Proof. Let ϕ(x) be a positive eigenfunction associated with the positive
eigenvalue μ of problem (14.25). Define

φ1 = −B1ϕ, φ2 =
√
μPl

∫

Ω

Γ (τl, ·, y,DM )βT (y)L
∗(y)ϕ(y)dy.

Clearly, ϕ = −B−1
1 φ1, and φ1 �≡ 0. In view of (14.25), we have 1

μφ1 =

g(−B−1
1 φ1). It then easily follows that

αβ(x)M∗(x)
γ + αM∗(x) + μN

φ2 =
1
√
μ
φ1,

− Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)[B−1

1 φ1](y)dy =
1
√
μ
φ2,

(14.26)

that is, F̂ (φ1, φ2) =
1√
μ (φ1, φ2). This implies that 1√

μ is an eigenvalue of F̂ ,

and hence R0 = r(F̂ ) ≥ 1√
μ > 0.

For any given λ ∈ (0,∞), we define

Aλ :=
1

λ
C +B and R(λ) := r

(

−(
1

λ
C)B−1

)

.

By the proof of Lemma 14.3.1, it follows that

R(λ) =
1

λ
R0, sign(R(λ)− 1) = sign (s(Aλ)) , (14.27)

and s(Aλ) is a geometrically simple eigenvalue of Aλ with a (componentwise)
positive eigenfunction φλ. Letting λ = R0 > 0 in (14.27), we obtain s(AR0) =
0, and hence ψ := φR0 = (ψ1, ψ2) satisfies AR0ψ = 1

R0
Cψ + Bψ = 0. It then

follows that
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Plαβ(x)M
∗(x)

R2
0(γ + αM∗(x) + μN )

∫

Ω

Γ (τl, x, y,DM )βT (y)L
∗(y)ψ1(y)dy = [−B1ψ1](x),

(14.28)

and hence,

−∇ · (DM (x)∇ψ1(x)) + μMψ1(x) =
1

R2
0

g(ψ1)(x), x ∈ Ω,

∂ψ1

∂ν
= 0, x ∈ ∂Ω.

(14.29)

Since μ is the unique eigenvalue of problem (14.25) with a positive eigenfunc-
tion, it follows from (14.29) that μ = 1

R2
0
, and hence R0 = 1/

√
μ.

In order to show that the sign of R0 − 1 determines the global dynamics
of system (14.1), we let M = M +m, N = N + n, A = A + a. Then system
(14.1) is equivalent to the following system:

∂M
∂t

=∇ · (DM (x)∇M) +MB(x,M)− μMM,

∂L

∂t
=Pa

∫

Ω

Γ (τa, x, y,DH)A(t− τa, y)H(t− τa, y)dy − (μL + αM)L,

∂N
∂t

=Pl

∫

Ω

Γ (τl, x, y,DM )M(t− τl, y)L(t− τl, y)dy − (γ + αM+ μN )N ,

∂A
∂t

=Pn

∫

Ω

Γ (τn, x, y,DM )M(t− τl, y)N (t− τl, y)dy − (μA + ξH)A− δAA2,

∂H

∂t
=∇ · (DH(x)∇H) + rh − μhH,

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)(M−m)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)m(t− τl, y)L(t− τl, y)dy − (γ + αM+ μN )n,

∂a

∂t
=Pn

∫

Ω

Γ (τn, x, y,DM )Ka(t− τn, y)dy − (μA + ξH)a− δAAa,

(14.30)

where M, H , and m are subject to the Neumann boundary condition, and

Ka(t, y) = M(t, y)n(t, y) + βT (y)m(t, y)(N (t, y) − n(t, y)).

By virtue of Theorem 14.2.1, (M∗(x), L∗(x), N∗(x), A∗(x), H∗) is a globally
attractive steady state of system (14.2), which is exactly the same as the first
five equations of system (14.30). By similar discussions to those in the last
section, we may confine ourselves into

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)(M∗(x)−m)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)m(t− τl, y)L
∗(y)dy − [γ + αM∗(x) + μN ]n,

∂a

∂t
=Pn

∫

Ω

Γ (τn, x, y,DM )K∗
a(t− τn, y)dy − (μA + ξH∗ + δAA

∗(x))a,

(14.31)
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where m is subject to the Neumann boundary condition, and

K∗
a(t, y) = M∗(y)n(t, y) + βT (y)m(t, y)(N∗(y)− n(t, y)).

Since the first two equations in (14.31) do not depend on the variable a, we
first consider the following subsystem:

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)(M∗(x)−m)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)m(t− τl, y)L
∗(y)dy − [γ + αM∗(x) + μN ]n.

(14.32)
Let CM∗ = {ϕ ∈ C(Ω,R+) : ϕ(x) ≤ M∗(x), ∀x ∈ Ω}, and

X := C([−τl, 0],CM∗)× C(Ω,R+).

Note that

∇ · (DM (x)∇M∗)− μMM∗(x) = −rMM∗(x) exp
(

−M∗(x)
KM (x)

)

≤ 0.

By [243, Corollary 4], it then follows that for any φ ∈ X , system (14.32)
admits a unique mild solution v̂(t, ·, φ) = (v̂1(t, ·, φ), v̂2(t, ·, φ)) on [0,∞) with
v̂1(θ, ·, φ) = φ1(θ), v̂2(0, ·, φ) = φ2, ∀θ ∈ [−τl, 0], and (v̂1t(φ), v̂2(t, ·, φ)) ∈ X
for all t ≥ 0. Note that system (14.32) is eventually strongly monotone and
strictly subhomogeneous on X . It is also easy to see that there exists a real
number B0 > 0 such that (M∗(x), B) is an upper solution of system (14.32)
for any constant B ≥ B0. By Lemma 14.3.1 and similar arguments to those
for system (14.3) in Theorem 14.2.1, with ρϕ∗ replaced by (M∗(x), B), we
have the following result for system (14.32).

Lemma 14.3.2. Assume that (H1) and (H2) hold and s(A) > 0. Then the
following statements are valid:

(i) If R0 < 1, then (0, 0) is globally attractive for system (14.32) in X .
(ii) If R0 > 1, then system (14.32) admits a positive steady state (m̄(x), n̄(x))

which is globally attractive in X\{0}.
Now we are ready to prove the main result of this section on the global

dynamics of system (14.1) on W := C([−τ0, 0], C(Ω,R8
+)).

Theorem 14.3.2. Assume that (H1) and (H2) hold and s(A) > 0. Then the
following statements are valid:

(i) If R0 < 1, then every positive solution U(t, x) of system (14.1) satisfies
limt→∞U(t, x) = (M∗(x), 0, L∗(x), N∗(x), 0, A∗(x), 0, H∗) uniformly for
x ∈ Ω.

(ii) If R0 > 1, then system (14.1) admits a positive steady state U∗(x) =
(M∗(x)− m̄(x), m̄(x), L∗(x), N∗(x)− n̄(x), n̄(x), A∗(x)− ā(x), ā(x), H∗),
and every positive solution U(t, x) satisfies limt→∞U(t, x) = U∗(x) uni-
formly for x ∈ Ω.
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Proof. Let

E :=
{
(φ1, . . . , φ7) ∈ C([−τ0, 0], C(Ω,R7

+)) : φ1(θ) ≥ φ6(θ), ∀θ ∈ [−τ0, 0]
}
.

Since the first seven equations in (14.30) do not depend on variable a, it
follows that for each φ ∈ E, this subsystem admits a unique mild solution
w(t, x, φ) satisfying w(θ, x, φ) = φ(θ, x) for all (θ, x) ∈ [−τ0, 0]× Ω. For each
t ≥ 0, define

[Ψ(t)φ](θ) = w(t+ θ, ·, φ), ∀θ ∈ [−τ0, 0], φ ∈ E.

Then Ψ(t) is an autonomous semiflow on E. Let

w(t, x, φ) = (M(t, x), L(t, x),N (t, x),A(t, x), H(t, x),m(t, x), n(t, x))

be a given positive solution. In view of Theorem 14.2.1, we have

lim
t→∞

(M(t, x), L(t, x),N (t, x),A(t, x),H(t, x)) = (M∗(x), L∗(x),N∗(x), A∗(x),H∗)

uniformly for x ∈ Ω. By the generalized Arzela–Ascoli theorem and similar
arguments to those in [175, Lemma 5.2]), it follows that the forward orbit
γ+(φ) := {Ψ(t)φ : t ≥ 0} is asymptotically compact in E. Thus, its omega
limit set ω(φ) is a compact, invariant, and internally chain transitive set for
the semiflow Ψ(t) (see Lemma 1.2.1′). It easily follows that

ω(φ) = {(M∗(·), L∗(·), N∗(·), A∗(·), H∗)} × ω̃,

where ω̃ is a subset of S := C([−τ0, 0],CM∗ × C(Ω,R+)). Further, ω̃ is a
compact, invariant, and internally chain transitive set for the solution semiflow
generated by system (14.32) on S. In the case where R0 < 1, Lemma 14.3.2,
Theorem 1.2.1, and Remark 1.3.2 imply that ω̃ = (0, 0), and hence, ω(φ) =
(M∗(·), L∗(·), N∗(·), A∗(·), H∗, 0, 0).

In the case where R0 > 1, it follows from Lemma 14.3.2 and Theo-
rem 1.2.2 and Remark 1.3.2 that either ω̃ = (0, 0) or ω̃ = (m̄(·), n̄(·)),
and hence, either ω(φ) = (M∗(·), L∗(·), N∗(·), A∗(·), H∗, 0, 0) or ω(φ) =
(M∗(·), L∗(·), N∗(·), A∗(·), H∗, m̄(·), n̄(·)).

For small ε > 0, we consider the following linear system without time
delay:

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)(M∗(x)− 2ε)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)(L
∗(y)− ε)m(t, y)dy − [γ + α(M∗(x) + ε) + μN ]n.

(14.33)

Let Aε denote the generator of the solution semigroup of (14.33). By repeating
the arguments of Lemma 14.3.1, we see that s(Aε) is a geometrically simple
eigenvalue Aε with a positive eigenfunction. Since the spectral bound depends
continuously on ε, we can fix an ε0 > 0 small enough so that s(Aε0) > 0. Let
φε0 be a positive eigenfunction φε0 associated with s(Aε0).
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Suppose, by contradiction, that ω(φ) = (M∗(·), L∗(·), N∗(·), A∗(·),
H∗, 0, 0), then lim

t→∞(m(t, x), n(t, x)) = (0, 0) uniformly for x ∈ Ω̄. Without loss

of generality, we can assume that for the above fixed ε0, |(m(t, x), n(t, x))| < ε0
and

|(M(t, x), L(t, x),N (t, x),A(t, x),H(t, x))− (M∗(x), L∗(x), N∗(x), A∗(x),H∗)| < ε0

for all t ≥ 0 and x ∈ Ω̄. Hence, for any t ≥ 0, we have

∂m

∂t
≥∇ · (DM (x)∇m) + αβ(x)(M∗(x)− 2ε0)n− μMm,

∂n

∂t
≥Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)(L
∗(y)− ε0)m(t− τl, y)dy

− [γ + α(M∗(x) + ε0) + μN ]n.

(14.34)

Consider the linear time-delayed evolution system:

∂m

∂t
=∇ · (DM (x)∇m) + αβ(x)(M∗(x)− 2ε0)n− μMm,

∂n

∂t
=Pl

∫

Ω

Γ (τl, x, y,DM )βT (y)(L
∗(y)− ε0)m(t− τl, y)dy

− [γ + αM∗ + ε0α+ μN ]n.

(14.35)

For any ϕ ∈ C([−τ0, 0], C(Ω,R2)), let ŵ(t, x, ϕ) be the unique mild solution of
system (14.35) on [0,∞) with ŵ(θ, x, ϕ) = φ(θ, x) for all (θ, x) ∈ [−τ0, 0]×Ω.
Let

v−(t, x) := φε0(x), ∀t ∈ [−τ0,∞), x ∈ Ω.

Since s(Aε0) > 0, it is easy to see that v−(t, x) is a lower solution of system
(14.35) on [0,∞). Then the comparison principle implies that

0 ≤ φε0(x) = v−(t, x) ≤ ŵ(t, x, φε0), ∀t ≥ −τ0, x ∈ Ω. (14.36)

Let ŵt be the solution semiflow associated with system (14.35). It then follows
from (14.36) that φε0 ≤ ŵt(φε0), ∀t ≥ 0. By the comparison principle again,
we obtain

ŵs(φε0) ≤ ŵs(ŵt(φε0)) = ŵt+s(φε0), ∀t, s ≥ 0.

This implies that ŵt(φε0) is nondecreasing in t ∈ [0,∞). We further claim that
the solution ŵ(t, x, φε0 ) is unbounded. Otherwise, the forward orbit γ+(φε0)
for the semiflow ŵt is asymptotically compact. It then follows that its omega
limit set ω(φε0) = e∗, where e∗(x) is a positive equilibrium of system (14.35).
Clearly, e∗(x) is also a positive equilibrium of linear system (14.33) with ε = ε0.
On the other hand, since s(Aε0) > 0 and es(Aε0 )tφε0(x) is a solution of the
linear system (14.33) with ε = ε0, it follows from the comparison arguments
that every positive solution of system (14.33) with ε = ε0 is unbounded, and
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hence, system (14.33) with ε = ε0 admits no positive equilibrium. This con-
tradiction shows that the solution ŵ(t, x, φε0) is unbounded. Now we choose
a sufficiently small number δ > 0 such that

(m(θ, x), n(θ, x)) ≥ δφε0(x), ∀θ ∈ [−τ0, 0]×Ω.

In view of (14.34) and the comparison principle, we then have

(m(t, x), n(t, x)) ≥ δŵ(t, x, φε0 ), ∀t ≥ 0, x ∈ Ω.

This implies that (m(t, x), n(t, x)) is unbounded, which contradicts the uni-
form convergence of (m(t, x), n(t, x)) to (0, 0) on Ω̄, as t → ∞. Thus,
ω(φ) = (M∗, L∗, N∗, A∗, H∗, m̄(·), n̄(·)).

By the theory of asymptotically autonomous semiflows (see [364]), as ap-
plied to the last equation in (14.30), it easily follows that that limt→∞ a(t, ·) =
0 in the case where R0 < 1, and limt→∞ a(t, ·) = ā(·) in the case where R0 > 1.

It remains to prove the positivity of the steady state of model (14.1) in
the case where R0 > 1. It suffices to prove that M(x) := M∗(x) − m̄(x) >
0, ∀x ∈ Ω. Clearly, we have M∗(x) ≥ m̄(x), ∀x ∈ Ω. In view of the integral
form of the following equation

∂M

∂t
= ∇ · (DM (x)∇M) +M∗B(x,M∗)− (μM + αβ(x)n̄(x))M, x ∈ Ω, t > 0,

∂M

∂ν
= 0, x ∈ ∂Ω, t > 0,

we have

M(x) = e−(μM+αβ(x)n̄(x))t

∫

Ω

Γ (t, x, y,DM )M(y)dy+

∫ t

0

e−(μM+αβ(x)n(x))(t−s)

∫

Ω

Γ (t− s, x, y,DM )M∗(y)B(y,M∗(y))dyds,

for all t ≥ 0. By the standard maximum principle (see, e.g., [326, Theorem
7.2.2 and Corollary 7.2.3]), it easily follows that M(x) > 0, ∀x ∈ Ω. Thus, a
straightforward computation shows that

N∗(x)− n̄(x) =
Pl

∫
Ω
Γ (τl, x, y,DM )K̃N(y)dy

γ + αM∗(x) + μN
, x ∈ Ω

A∗(x) − ā(x) =
Pn

∫
Ω Γ (τn, x, y,DM )K̃A(y)dy

μA + ξH∗ + δAA∗(x)
, x ∈ Ω

with

K̃N(y) = [M∗(y)− βT (y)m̄(y)]L∗(y),
K̃A(y) = [M∗(y)− βT (y)m̄(y)](N∗(y)− n̄(y)).

Since 0 ≤ βT (y) ≤ 1, it follows that K̃N(y) > 0, ∀y ∈ Ω, and hence, N∗(x) −
n̄(x) > 0, and K̃A(x) > 0, ∀x ∈ Ω. Thus, we obtain A∗(x) − ā(x) > 0 for all
x ∈ Ω.
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Remark 14.3.2. The results in Sections 14.2 and 14.3 are still valid if we take
a general per capita birth rate function B(x, u) satisfying the following con-
ditions:

(D1) B(x, u) ≥ 0(�≡ 0), ∀(x, u) ∈ Ω × [0,+∞).
(D2) B(x, u) is continuous on Ω × [0,+∞) and strictly decreasing in u ∈

[0,∞), and B(x, u0) ≤ 0 on Ω for some u0 > 0.
(D3) There exists M > 0 such that 1

|Ω|
∫
Ω
B(x, 0)dx > μM > B(x, u) for all

u > M and x ∈ Ω.

It is easy to see that the birth rate function B(x, u) = rM exp
(
− u

KM(x)

)

satisfies (D1)–(D3). Another prototypical birth rate function (see, e.g., [57,
389]) is

B(x, u) =

⎧
⎨

⎩

rM

(

1− u

kM (x)

)

, 0 ≤ u ≤ KM (x), x ∈ Ω,

0, u > KM (x), x ∈ Ω.

14.4 Notes

This chapter is modified from Yu and Zhao [423], where the spreading speed
and traveling waves were also studied for the limiting system (14.32) in an
unbounded habitat. The nonlocal terms in system (14.1) were first introduced
by Wang and Zhao [392] for another spatial model of Lyme disease. The com-
parison arguments via linear systems without time delay in the proof of The-
orem 14.2.1 were developed in [392, Proposition 3.7], and the lifting method
using the theory of chain transitive sets in the proof of Theorem 14.3.2 was il-
lustrated in [392, Theorem 3.8]. Here we give a new proof for Theorem 14.3.1,
which is different from that of [392, Corollary 3.2].

The numerical results in [423] show that the spatial averaged system would
underestimate the disease risk, that both self-regulation mechanism of ticks
and random movements of mice would alleviate the infection, but random
movements of deers would take no evident effect, and that the carrying ca-
pacity of mice with strong spatial heterogeneity would increase the infection
risk. Moreover, the intensive self-regulation of ticks would force the disease
to spread more slowly and even to go extinct, and cooling down the random
movements of mice could deteriorate the infection locally, but this might slow
down the invasion of the disease in a large area.
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Poincaré inequality, 357
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