Chapter 8
Current Spin-Orbit-Induced Microwave
Magnetic Dynamics in Layered Nanostructures

A. M. Korostil and M. M. Krupa

8.1 Introduction

There is much current interest in dynamical processes in magnetically ordered
systems both from scientific and technological viewpoints. The special interest
is related to the problem of the intercoupling between a spin-polarized electron
current and the magnetic dynamics in multilayer magnetic nanostructures that can
be exhibited in such phenomena, as magnetic switching and a sustained precession
of magnetic order vectors.

The interrelation between the spin-polarized current and magnetic order vectors
in magnetic multilayer nanostructures [1-3], permitting their mutual control [4],
constitutes the basis of the operation of novel nano-devices [5], some of them with
properties of a magnetic random-access memory (MRAM) [6], magnetic logic,
and coherent microwave radiation sources that present considerable fundamental
and application interest [7, 8]. The operation of these devices can be based on
both the spin-polarized current-induced and the current spin-orbit-induced magnetic
dynamics including magnetic switching and precession [9-11]. Such phenomena
have real potential for application in systems of high-speed magnetic processing
information and high-frequency fine-tuned GHz and THz electromagnetic radiation.

The intercoupling between a spin current and magnetic state in magnetic
nanostructures constitutes the basis of the current-induced manipulation by mag-
netic dynamics and vice versa, i.e., the magnetic state-induced manipulation by
the spin current [12—15]. The spin current can be converted from an incoming
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charge current under internal effective magnetic fields of interactions of a different
origin (including s-d exchange and spin-orbit interactions) with corresponding
features of the action of a spin torque on the magnetic states and their dynamics.
Inducing magnetic dynamics such as the spin torque can cause switching and
precession of the magnetic order vectors (including ferro- and antiferromagnetic
orders) in magnetic nanolayers with ferromagnetic (FM) and antiferromagnetic
(AF) interactions. The frequency of the magnetic dynamics is determined by the
magnitude of magnetic exchange interaction, which is the largest for antiferromag-
netic materials. The prospect of obtaining the technological magnetic nanostructures
with low-threshold incoming currents, low power consumption, and controlled high-
frequency operation is related to utilization of the spin-orbit effects of the spin
polarization and magnetic nanostructures with AF exchange interactions.

Generally, the spin-orbit interaction includes the bulk spin Hall effect (SHE)
[12, 13] of the transverse (relatively to an incoming current) deflection of electrons
with opposite spins in opposite sides and the inverse spin Hall effect (ISHE) of
conversion of a charge current into the transverse spin current. In two-dimensional
structures (instance, interfaces), the spin-orbit interaction can be manifested via
the Rashba spin-orbit effect [14, 15] of the spin splitting of an electron disperse
along an electron wave vector. The impact of the spin current on the magnetic states
realizes via the spin torque 7' [16—18] consisting of so-called field-like and dumping-
like parts T} and T, respectively, which are related to the effects of magnetic
order switching and precession dumping or antidumping. The field-like torque T
originates predominantly by the spin-orbit coupling at the interface in combination
with the perturbation of the electron distribution function. The torque T originates
predominantly by the perturbation of electronic states by the applied electric field.

The current spin-orbit-controlled microwave magnetic dynamics is realized
for nanostructures composed of a heavy metal nanolayer (for instance, Pt, Ta)
possessing the strong enough spin-orbit interaction and the adjacent active magnetic
nanolayer with a strong exchange interaction attaining maximum values of the order
of tens THz in the AF cases. For multisublattice magnetic structures (for instance,
for AF), a general magnetic dynamics is a combined effect of dynamics of each of
the magnetic sublattices coupled by the strong exchange interaction.

The interconnection between the incoming charge current and magnetic dynam-
ics occurs in the mentioned case via the spin current and the spin transfer effect
for each sublattice. In such magnetic systems, the simultaneous action of SHE and
the inverse SHE (of the transverse to spin current charge current) results in the
feedback between the incoming charge current and the magnetic dynamics. This
provides sustained steady-state spin torque magnetic oscillations, convertible via a
magnetoresistance effect into an AC voltage and the current-driven high-frequency
radiation.

The paper is organized as follows. In Sect. 8.2, features of the scattering of spin
currents at the interfaces are studied in multilayer magnetic nanostructures with
heavy metal sublayers. Section 8.3 is devoted to the dynamic feedback between
a magnetization and controlling incoming charge current in ferromagnetic-layered
nanostructures with heavy metal sublayers. The strong spin-orbit interaction, SHE,
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and ISHE can provide the robustness of the magnetization precession converting via
magnetoresistance effects into microwave radiation. In Sect. 8.4, features of spin
pumping and spin transfer torques as two reciprocal phenomena are considered in
AF-based nanostructures. Section 8.5 is devoted to the dynamic feedback between
the controlling charge current and the magnetic dynamics in AF-layered magnetic
nanostructures with heavy metal sublayers. In Sect. 8.6, spin Hall magnetoresistance
effect (SME) of the impact of the magnetization dynamics on the resistance
of the incoming charge current is considered in the bilayer AF nanostructures
with insulating AF layers and adjusted heavy metal sublayers as the result of
simultaneous action of SHE and ISHE.

8.2 Spin and Charge Currents in Magnetic Nanostructures
with Normal Heavy Metal Sublayers

Features of the electron transport in the mentioned magnetic nanostructures are
related to the spin-dependent scattering on interfaces. The electron scattering on
the normal metal (NM)/magnetic metal (M) interface represents the special interest
for magnetic heterostructures with the strong spin-orbital interaction and SHE. In
the ferromagnetic case, by scattering theory [19], the spin current jgNlF ) through an
NIF interface (on the N side, flowing into F) can be expressed in terms of the F

magnetization M and the (vector) spin accumulation gy in N:

1
Jov m) = (jp —jy) m-= (Gm x (m X poy) + Gi(mx py) 3.1

where m = M/\M\, e = — el is the electron charge, and

, G
Jr) = XD Ve — prer) £ (m - gy — sr)] (8.2)
e

is the flow of electrons with spin-up and spin-down along m driven by the difference

between effective charge chemical potentials in N and F (uqy — o) and the

difference between spin accumulations at both sides of the interface (m - v — sr).
The spin-dependent conductance at the interface

2
Grpy =Go Y. [5,,,,, — ] (8.3)

where Gy = €?/# is the conductance quantum, related to the spin-dependent reflec-
tion coefficient r,%“ corresponding to the electron transition between quantum
states n and m in with spin projections 1 and |, respectively, in N. Conductance
G, and G; in (8.1) are determined as real and imaginary parts of the spin-mixing

conductance
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Gy =Go ) [8wn— (71) (r,fm)*] (8.4)

i.e., G =Re(Im)Gy, is related to spin-flip electron scattering at the interface.

Due to (8.1), the longitudinal (with respect to the magnetization in F) component
of the spin current (j4 —j,)m can flow in a metallic F. At the same time, its
transverse components are absorbed at the interface on the atomic length scale and
act as a torque on the magnetization. The corresponding spin transfer torque (STT)
at the interface is described by the expression

#i .
Torr = 3-m (m =20 (8.5)

Specially, large STT is realized in the current-in-plane (CIP) configuration with
the spin current generated by the SHE [20-22] in the N layer and converted to a
magnetization torque by the exchange interaction at the interface. This contributes
a so-called “damping-like” torque proportional to G, with symmetry identical to
the exchange-mediated term. On the other hand, the Rashba spin-orbit effect at the
interface may generate a spin accumulation that acts on the magnetization exerting
a “field-like” torque corresponding to G;.

8.3 Robustness of Ferromagnetic Dynamics

In ferromagnetic/normal metal heterostructures, the spin pumping and the spin
transfer torque are two reciprocal processes that occur concomitantly. Their inter-
play introduces a dynamic feedback effect interconnecting energy dissipation
channels of both magnetization and current. The solution of the spin diffusion
process in the presence of the SHE in the NM shows that the dynamic feedback
gives rise to a nonlinear magnetic damping that is crucial to sustain uniform steady-
state oscillations of a spin Hall oscillator [23-25].

In ferromagnetic (FM)/normal metal (NM) heterostructures, nonlocal effects
arise because conduction electrons and magnetization reside in different materials
and couple only at the interface. In this regime, spin pumping plays the role of spin
electromotive force, which refers to the generation of spin current from a precession
FM into the NM [25]. The pumped spin current is accompanied by a backflow of
spin current [24, 25], which reacts on the FM through the spin transfer torque (STT).
The combined effect of spin pumping and backflow-induced STT renormalizes the
spin-mixing conductance at the interface [17, 23]. However, in the presence of the
SHE, spin pumping and spin backflow are also connected by the combined effect of
the SHE and its inverse process ISHE, which forms a feedback loop as illustrated in
Fig. 8.1.

This additional feedback mechanism, proportional to the SH angle squared, 62,
is essential to the electron transport in FM/NM heterostructures. Consequently, this
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Fig. 8.1 A FM/NMS bilayer,
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feedback effect is important to the magnetization dynamics. In a reciprocal sense,
if we apply an AC current density to the NM, the SHE will drive the magnetization
precession via the STT, which in turn can pump spin current back into the NM and
renormalize the resistivity by means of the ISHE.

The feedback effect qualitatively modifies the dynamical behavior of an FM/NM
heterostructure. The feedback manifests as a novel nonlinear damping effect in
the magnetization dynamics. It enables uniform auto-oscillations of a spin Hall
oscillator and prevents magnetic switching. The feedback effect gives rise to a spin
Hall magnetoimpedance in the electron transport, which reduces to the observed
SMR in the DC limit.

Consider a FM/NM bilayer structure represented in Fig. 8.1 with the layer
thicknesses are dy; and dy, respectively. The coordinate system is chosen such that
the magnetization direction at rest is along x, and the interface normal is along z. It is
assumed that the FM is insulating (e.g., YIG), but the essential physics remains valid
for a conducting FM since the feedback process takes place only on the NM side. In
terms of the electrochemical potential (/2 and the vector of spin accumulation g in
the NM, the charge and spin current densities J; and J(Sij), respectively, are described

by the expression J,L((;)) = —Z(diptog) £ 0&ix0ja0 i (0)) with the transport direction

i, the spin polarization direction j, the conductivity o, and the electron charge e. In
a given device geometry, only the spin current flowing along z-direction is relevant,
and so u = u(z, ). Correspondingly, the spin (charge) current density reduces to a
vector J ). The electron and spin dynamics in the NM are described by equations

o P 1
P _plt 8.6
ot 02 Ty (8.6)

9
Jo=—2 Vo + 6z x & 8.7)
2e 0z
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d
Jo= 2| 02x Vi, (8.8)
2e | 0z

where D is the diffusion constant and 7 is the spin-flip relaxation time.

To solve the spin accumulation g, we assume that the charge current density J. is
fixed by external circuit and is uniform in space. Besides that, we have two boundary
conditions Jy(dy) = 0 and

G, )
Jo = ~ [m x (m x py) + fim x m] (8.9)

where u,o = p(0) and G, is the real part of the areal density of the spin-mixing
conductance and the imaginary part is the real part of the areal density of the spin-
mixing conductance (the imaginary part G; is neglected since G, > G;). In the right-
hand side of (8.9), the first term is the STT and the second term is the spin pumping.
They are two fundamental ingredients bridging the electron (spin) transport in the
NM with the magnetization dynamics of the FM. Due to the conservation of spin
angular momentum, the spin current density Jyo is absorbed by the FM, which is
reflected by the Landau-Lifshitz-Gilbert (LLG) equation

dm dm Ay ex
— =yHy xm+ agm X — +

e g 8.10
dr dr 2eMdeJ 0 (8.10)

M is the saturation magnetization, o is the Gilbert damping constant, and Hz is
the effective magnetic field.

For typical FMs, the magnetization dynamics is much slower than the spin
relaxation rate in the NM so that wry < 1. In this limit, the spin accumulation
JL(z, 1) adapts to the instantaneous magnetization orientation and is kept quasi-
equilibrium. As a result, the spin dynamics described by (8.6) reduces to a stationary
spin diffusion process at any specified time. Retaining to second order in 6?2 in (8.6)
gives

IL(Z) = % {QJAI(Z)Z XJc - A2(Z) [JSO + 931 X (z XJsO)]} (811)

where A = /Dty is the spin diffusion length, A;(z) =sinhA(z)/ coshA(0), and
A(z) = cosh B(z)/ sinh B(0) with A(z) = (2z —dy)/2A and B(z) = (z —dy)/A. Here,
the ¢ variable in p(z) is suppressed since its time dependence simply originates
from J. and Jy. The dynamic feedback mechanisms are realized via an effective
magnetization dynamics and an effective electron magneto-transport which are
described by the system (8.6, 8.7, 8.8, 8.9, 8.10, and 8.11) after elimination electron
degrees of freedom (J, and Jy) and the time derivative of the magnetization,
respectively.

The DC charge current (J.) applied to normal metal nanolayer (Fig. 8.1), due
to the SHE, induces the total spin current density Jy flowing across the interface.
The feedback effect is expressed in the intercoupling between the spin current
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density Jyo and the magnetization m(¢) without any electron degree of freedom, by
which the LLG (8.10) will no longer involve any electron degrees of freedom. The
combination of (8.9) and (8.11) results in two convoluted relations of Jy, and g,
from which the solution for Jy, as a function of J., m(¢) and its time derivative can
be obtained. Substituting this solution into (8.10) yields the effective magnetization
dynamics

d di
7’1; = yH ;X m + wgn X [(z xjc)xm]+(a0+asp)mx7n; (8.12)

where j. is the unite vector of J. and

hy AG, tanh Lzl_IX

ws = 64, )
eMdy o 4 2AG, coth 5¢

(8.13)

is the strength of the STT (driven by J.) scaled in the frequency dimension. The two
damping coefficients are described by the expression

(x@f;e)omhzy .

i) = (8.14)
ro) 22 Mdy (0 + 2AG,B)'?

where B =coth(dy/A). Here, oy, describes the conventional enhanced damping
from spin pumping with the spin backflow effects taken into account [25]; it is
independent of the SHE. By contrast, the ap, term reflects the dynamic feedback
realized by virtue of the combined effect of the SHE and its inverse process as
schematically shown in Fig. 8.1. By virtue of (8.10), this damping term is nonlinear
in my — the component of M transverse to the effective field H,y — whereas the
Gilbert damping term is linear inm .

The feedback-induced nonlinear damping effect can be explained in the fol-
lowing way. If the magnetization precession is getting larger, it will trigger a
chain reaction: first, the pumped spin current Js increases, and then the spin
diffusion becomes stronger (i.e., |0 | gets larger). This will necessarily lead to
a larger Vi in the NM according to (8). Finally, the change of the emf will
feed back into J according to (8.9), preventing its further increase. Therefore, the
growing magnetization precession is inhibited. The entire process realizes a negative
feedback.

8.4 Spin Currents in Antiferromagnetic Nanostructures

The spin pumping and spin transfer torque in antiferromagnetic (AF)-based nanos-
tructures represent the combined effect of their action in each of magnetic sublat-
tices coupled by a strong AF exchange interaction. Magnetization dynamics of these
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coupled sublattices leads to an AF order (I) dynamics manifesting as precession and
switching. Similarly to the magnetization in the ferromagnetic case, the AF order
precession generates the spin pumping current, which via the ISHE in adjacent
nonmagnetic nanolayers can convert into the transverse charge current. Thereby,
in AF nanostructures the influence of the AF dynamics on the charge current occurs
in AF nanostructures [26]. The inverse impact of the charge current on the AF
precession is realized via the SHE effect of the conversion of the charge current
into the transverse spin current, which owing to the exchange interaction exerts the
spin transfer torque on the AF order precession.

Characteristic features of the AF dynamics and its interconnection with the spin
currents in the form of the precession-induced spin pumping and spin transfer torque
are manifested in the AF two-sublattice model with an easy axis directed along
the axis z and magnetization unit vectors m; and m,. These vectors are driven by
the exchange interaction, the anisotropy, and a magnetic field in the z direction. In
units of frequency, they are represented by wg, w4, and wy = y Hyp, respectively. The
equations of motion in a free precession approximation are

m; = m; X [wgmy- (0p + wp) 7], 8.15)

m; = my X [wpm;- (wWg — wy) 7],
where the effective field causing the magnetization precession in a magnetic
sublattice contains the contribution from the exchange interaction with an adja-
cent magnetic sublattice. In linear response, when m) = £z-mj«), | expiot at
im | < 1, the resonance frequencies are then

W=yt wg =wyEt os (s +2wg) (8.16)

where the two corresponding eigenmodes are characterized by different chiralities.
In the left-handed (right-handed) mode, both m; and m, undergo a circular
clockwise (counterclockwise) precession with m phase difference. In the absence
of magnetic field, viz., oy = 0, the two modes are degenerate.

Since without the AF interaction spin current pumped from each of two magnetic
sublattices is proportional to m () X d,1m)(2), the total pumped spin current is roughly
proportional to Ix d,, where = (m; —m;)/2 denotes the staggered field. The
different cone angles 0 and 6, of m; and m,, respectively, result in an induced small
magnetization m = (m; + m,)/2. These cone angles obey the relation 6,/6, =1,

where 1 & (1 + ,/wA/a)E)z.

The spin currents in AF nanostructure determined by mixed scattering channels
associated with different sublattices on a N|AF interface. Typical AF materials are
insulators, and incident electrons from the normal metal cannot penetrate far. Only a
single atomic layer of AF directly connected to N suffices to describe the dominant
contribution to interface scattering. Therefore, the essential physics is captured by
modeling the N|AF interface as being semi-infinite in the transport direction and
infinite in the transverse direction.
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Features of kinetics of the polarized electrons in the considered AF nanostruc-
tures are described by their scattering matrix (S) near interfaces. In the nearest-
neighbor tight-binding model on a cubic lattice, this matrix in a linear in the small
magnetization approximation is described by the general expression

S=S0+Swl’10'()+AS[T3(1'0)+To(m'U)] (8.17)

where T 3 are pseudospin Pauli matrices for sublattice degree of freedom, o are
the vector of spin Pauli matrices, and 7y and o are identity matrices. The last two
terms of (8.17) with a common coefficient AS are spin dependent and represent
umklapp and normal scatterings, respectively. Pumping currents are related to the
coefficients in (8.17) through the spin-mixing conductance G4 = G, + iG;, where

G; = (e’A/hin?) // dkydk; (8;,|AS|> + 8;; Im [S§AS]) . j = (r.i).

where A is the interface cross section and k, and k; are the transverse momenta.

Although the AF resonance frequency reaches the THz region (1 ~ 10 meV),
the motion of the staggered field remains adiabatic. The spin eigenstates and the
scattering matrix (8.17) adiabatically adapt to the instantaneous configuration of
AFs. Regarding the staggered field I and the magnetization m as two independent
adiabatic parameters [24, 27, 28], the pumped spin current I; with the scattering
matrix can be obtained in the form

IS=%[G,<lxi+mxm)—G,m] (8.18)

This expression arises from a coherent sum of two independent spin pumping
contributions by m; and m,. Due to the mixing of scattering channels from different
magnetic sublattices, the spin-mixing conductance G, and G; are different from
those of F. Moreover, AF dynamics is much faster than F that corresponds to a
stronger spin pumping.

By taking a time average of (8.18) over one period of oscillation, only the first
two terms survive and contribute to the DC component of spin current Ifc. Despite
that im| < |l |, the contribution of m x d,m to If” can be comparable to that of I x d,l.
This is because Ifc is proportional to the precession cone angle #” and the cone
angle associated with the staggered field is much smaller than the one associated
with the magnetization, 6, =~ 0 but 8,, ~ /2.

From the sublattice degree of freedom involved in the AF dynamics, it follows a
staggered spin pumping. A staggered spin current represents the imbalance between
the spin current carried by the two sublattices. It has three components I (i = 1,
2, 3) associated with three pseudo-spin Pauli matrices, from which after the time
average only the component
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19 = éG, (lxm+mxi) —Gil (8.19)
survives. Elastic scattering in the normal metal will destroy any staggered spin
accumulation, which decays on the time scale of 7/t. Therefore, the staggered spin
current is defined within a distance of the mean free path away from the interface.
The reciprocal effect of spin pumping is STT, which describes the back action
that a spin current exerts on the AF. In linear response, an AF is driven by two
thermodynamic forces f; = — 6 F/§l and f,, = — 6 F/ém (energy dimension), where

# wo , wj 2
F = E/dv |:¥m + . Xi:(a,»l) -wopH -m (8.20)

is the free energy. Here wy = w4 + 2wg and w; are the homogeneous and inhomo-
geneous exchange frequencies, respectively. Enforced by m -1 =0 and (I)*> ~ 1, the
symmetry allowed dynamics described by the system [25, 26]

#l = (a®/v) £, x1 (8.21a)

hm = (a®/v)f; x L+ f,, xm (8.21b)

where v is the system volume. Inserting them into (8.18) gives the response of the
spin current to f,, and f;. Invoking the Onsager reciprocity relation, we derive the
response of I and m to a given spin voltage V; in the normal metal, which are
identified as two STT terms T; and T,,. To linear order in m

T)= -2 [GIx (mxV)—GIxV],
. (8.22)
T, = _Z_;)Grn X (m X Vv) s

that treats STTs on the two sublattices as completely independent.

In solving the AF dynamics, it is instructive to eliminate magnetization and
derive a closed equation of motion in terms of I alone [27-30]. In the linear
approximation in Vy, m, and 9,1, the effective dynamics is described by the equation

wod*G,

Ix (i + awol + a),%lL> - IxIxV, (8.23)
where « is the Gilbert damping constant and I are perpendicular components of /
with respect to the easy axis. Since the STT only acts on the interface for a thin AF
film, a possible nonuniform motion of [ is disregarded.

At small enough Vi collinear with the easy axis, the solution for a spectrum
of (8.23) characterizes by a negative imaginary part of the frequency w so that
any perturbed motion will decay exponentially in time and the system is stable.
However, a sufficiently large V flips the sign of Im[w], which makes the system
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unstable and marks the onset of uniform AF excitation. The condition Im[w] =0
determines the threshold spin voltage V" = = (ev a ;) / (a’G,), where +(-)
corresponds to the excitation of the right-handed (left-handed) mode.

8.5 Dynamic Feedback in Antiferromagnetic/Spin Hall
Structures

In the framework the current-induced dynamics of insulating antiferromagnets in
a spin Hall geometry and sufficiently large in-plane currents perpendicular to the
Néel AF order can trigger spontaneous oscillations at frequencies between the
acoustic and the optical eigenmodes [17, 23, 26]. The direction of the driving current
determines the chirality of the excitation. When the current exceeds a threshold, the
combined effect of current-induced torques and spin pumping introduces a dynamic
feedback that sustains steady-state oscillations with amplitudes controllable via
the applied current. This permits to obtain the SH nano-oscillator with operating
frequencies in THz range.

When an applied STT compensates the magnetic damping, the magnetization
becomes unstable: it either switches to another direction or evolves into a steady-
state oscillation. While the former improves writing operations in magnetic memory
devices, the latter enables sustainable AC signal generation from DC inputs, giving
rise to spin torque oscillators (STOs) [31, 32]. In ferromagnets, currents or magnetic
fields can tune the STO output frequency from the MHz to the GHz regime.

STOs can potentially be operated at much higher THz frequencies when anti-
ferromagnets (AFs) replace ferromagnets. It is possibly owing to the THz range
of the eigenfrequencies of typical AFs and possibility of spontaneous excitations
of an AF by anti-damping STTs. While most AFs are insulators where STTs
cannot be operated by passing through a current, the SHE can produce STTs even
when electrons do not flow through the magnet [31]. Therefore, integrating STOs
with the SHE paves the way toward low-dissipation spin Hall nano-oscillators
(SHNOs) [6].

However, to realize AF-based SHNOs, current-induced excitations should not
grow indefinitely, but instead should evolve into steady-state oscillations and
generate a substantial AC output. Although an AF under the action of an anti-
damping STT does not suffer magnetic switching, its Néel AF vector experi-
ences either no dynamics or a right-angle precession around the direction of
the spin accumulation [18]. Since the oscillation amplitude is not continuously
tunable via the applied current, the device does not meet the requirements of an
SHNO.

Steady-state oscillations are realizable in ferromagnetic STOs for the following
reasons. In a spin valve device, the angle dependence of the Gilbert damping and that
of the anti-damping STT differs. As a result, when the driving current is above the
threshold, there exists a unique angle where the two competing effects compensate.
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Fig. 8.2 An insulating
AF/HM heterostructure. The
applied DC current density J,

Pli' -

drives the AF via the SHE.
The dynamics of the AF / / @ -
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pumps spin current back into
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HMdN L

Then, a steady-state oscillation is stabilized at that angle. However, this features no
longer active where the SHE creates the anti-damping STT. Therefore, one needs to
introduce alternative mechanisms to prevent a spontaneous excitation from growing
into magnetic switching.

Solution of the mentioned problem is based on the use of a feedback mechanism
[17] that is realizable in an AF/heavy metal heterostructure. The feedback effect
originates from the combined effect of the SHE and its reverse process that connects
the spin pumping with the spin backflow [33, 34], which is independent of the
dipolar interaction. The threshold of spontaneous excitations is determined via
solving the AF order dynamics in the linear response regime. The correlation
between the threshold and a current density is related to the SHE in the heavy
metal. The feedback is indispensable to sustain uniform auto-oscillation properties
of magnetic dynamics of the AF in device geometry in Fig. 8.2 and can be described
in the framework of two-sublattice crystal structure with the magnetizations vectors
m; and m,.

The magnetic dynamics is characterized by the AF vector I = (m;—m,)/2 and
the small magnetization m = (m;+m,)/2 and angular frequencies @ , @), and wg
corresponding to the hard axis, easy plane anisotropy, and the Heisenberg exchange
interaction, respectively. In the macrospin description, the free energy is

F=—fol £ ‘”? ((r,»l)2 + (rim)z) (8.24)

=12

where w3 =wp+ w1, w2 = wg + w1y, and ri2) =x(z), which defines thermo-
dynamic forces, #ify,;) = — 0F/dl(m). The coupled equations of motion are

izfz-(m,l)—i—a(mxi—l—lxm)—i—Tl (8.25)

mzfl-(m,l)+oc(mxm+lxi)+Tm (8.26)
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where f12) = (FuyX-fim %), (here the sign “x” denotes the vector multiplication),
« is the Gilbert damping constant, and the STTs given (see [13, 21]) by

T,=Ix(w;xl)+mx(w; xm), 8.27)
T =1x(wsxm)+mx (w; x1). '

Here the STT strength is determined via the vector of spin accumulation ;.

The vector decomposition I =x + 1 exp iwt in (8.26) results in the eigenfrequency

expression
1/2
W+ = iwgo + |:a)§a)’ + wgy/o] — 4a)3] (8.28)

where o' =w | + 2w, —a?, + (—) denotes the optical (acoustic) mode. As wy

increase, the real parts Re[w+] and Re[w_] approach each other until they become

degenerate at w; = w1 /2. The imaginary parts Im[w+] and Im[w_] remain degen-

erate and unaffected for wy,<w /2. When wy>w /2, Im[w4+] (Im[w-_]) reduces

(grows) rapidly, indicating that the damping is diminished (enhanced) by the STT.
At the threshold [18],

2
o™ = \/% +a? (20 + wL) wg (8.29)

Im[w 4] vanishes, which marks the onset of spontaneous excitation of the optical
mode and the breakdown of the linear response approximation. The uniaxial
symmetry enforces that Im[w_ ] also vanishes for the threshold so that the auto-
oscillation can be triggered by a reversed current as well.

In the absence of the hard axis anisotropy, the threshold (8.29) is linear in «, so
the anti-damping effect occurs when the STT is turned on. However, in the general
case where w >0, the anti-damping effect appears only when w;>w /2. Vectors
m; and m, always exhibit opposite chiralities, i.e., they rotate counterclockwise
(clockwise). However, at the degenerate point w; = w | /2, the chirality of m(m;) in
the optical (acoustic) mode reverses. At w;>w | /2, both m; and m;, hence the Néel
vector I, all acquire the same chirality. At the threshold w!”, the excited optical mode
is right handed. If w; changes sign, the optical mode is still excited, but its chirality
becomes left handed. These suggest that the direction of the current determines the
chirality of the excitation.

In the considered two-layered nanostructure, insulating AF/heavy normal metal
(HM) with strong spin-orbit coupling (Fig. 8.2), a current density J. is applied along
the direction perpendicularly to the AF vector I. The SHE in the HM generates anti-
damping STTs to drive the AF vector dynamics, which in turn pumps spin current
back into the HM. The pumped spin current converts into a charge voltage due to the
inverse SHE. The spin diffusion equation in the presence of the SHE under boundary
conditions involving both spin pumping and STT results in the expression
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d
1o (i + 226G, con %)

¢ 20,03 1eG, tanh % (8-30)
describing the dependence of the a critical current density on the threshold STT
(8.29), the spin Hall angle 6, and the areal density of transverse mixing conductance
G'. From (8.30) it is follows that the critical current density J” can be lowered by
reducing (increasing) the thickness of the AF dy, (HM dy).

The sustained steady-state oscillation of the AF vector in the mentioned nanos-
tructure can be realized via the dynamic feedback effect. The pumped spin current
from a precessing AF vector into the HM experiences a backflow [33, 34]. In
HMs, however, the spin pumping and the spin backflow are also connected via the
combined effect of the SHE and its inverse process, which feeds the Néel vector
dynamics back into itself. In ferromagnets, such a feedback mechanism manifests
as a nonlinear damping effect in the magnetization dynamics. Similar feedback-
induced damping effect can occur for AFs. In this case, the pumped spin current
into the HM converts into an electric field E due to ISHE. According to Ohm’s law,

Jo=0E—0;(0/2e)2x 0,1 (8.31)

where p is the spin accumulation in the HM. At the fixed current density J. through
external circuits, a change of the electric field E necessarily leads to a change of
the spin accumulation. Subsequently, the change of u, diffuses and generates an
additional spin current, which will finally deliver the influence of spin pumping
back into the AF vector through STTs. Closing such a feedback loop results in a
feedback torque that should be added to (8.27) as

Tis = an [151 xI—1(zx 1)] (8.32)

where the feedback coefficient is

02  2h-e*G?coth &

du  (ho + 21e2G, coth 4¥)

(8.33)

anp =

While the feedback effect seems to be a higher-order effect as ayy, is proportional
to 93, it can be significantly enhanced by searching for materials with large 8. The
feedback-induced nonlinear damping is a critical ingredient because it dramatically
modifies the dynamical behavior of an SHNO using AF.

A salient feature of the considered stable oscillation phase is that the applied
DC current density J. controls the output power and that the output power is
substantial that is indispensable for an SHNO. In the stable oscillation phase, the
actual frequency output lies between the acoustic and the optical modes. The AC
voltage output is determined by ISHE and the spin pumping. For a fixed J. the total
electric field E = J /o + AE includes a time-varying part
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6/i  AeG,tanh & -
el (lxl)xz

AE =
dn ho —2)e2G, coth dTN

(8.34)

A time average of (8.34) results in the effective value of the components E, and

E, which are appreciably large in the stable oscillation phase.

8.6 Spin Hall Magnetoresistance in Magnetic Nanostructures

Interconnection between the magnetic dynamics in magnetic layers and the charge
current in the adjacent nonmagnetic heavy metal (HM) nanolayers with the strong
spin-orbit interaction can exhibit via the so-called spin Hall magnetoresistance
effect (SME) [35, 36] of the magnetic-induced change of the charge current. The
impact of the magnetic dynamics on the charge current in nonmagnetic layers is
related to a nonequilibrium proximity effect caused by the simultaneous action of
the SHE and ISHE [37, 38]. The impact of the magnetization on the charge current
occurs via the magnetic-induced variation of the nonequilibrium spin diffusion in
the normal metal layers at the interface, converting by the ISHE into the charge
current. Herewith, the spin diffusion occurs from the dynamic state of the spin
accumulation caused by the interface reflection of the SHE-induced spin current.
The spin diffusion current is in direct dependence on the exchange interaction
between the magnetization and the spin current nearby the interface.

Especially clearly, SME is exhibited in the case of insulating magnetic (IM)
nanolayer (specifically, yttrium iron garnet (YIG)) adjusting to the HM nanolayer
(specifically, Pt) possessing the strong enough spin-orbit interaction. When a charge
current J is sent through a Pt nanolayer, a transverse spin current J; is generated by
the SHE following J. oo x J;, where o is the polarization direction of the spin
current. Part of this spin current is directed toward the interface as is shown in
Fig. 8.3.

At the interface, the electrons in the Pt will interact with the localized moments
in the YIG. Depending on the magnetization (M) direction of the YIG, electron
spins will be absorbed (M L o) or reflected (Mii5). By changing the direction of the
magnetization of the YIG, the polarization direction of the reflected spins and thus
the direction of the additional created charge current can be controlled. A charge
current with a component in the direction perpendicular to J, can also be created,
which generates a transverse voltage.

In a diffusion approximation for both magnetic and HM nanolayers, the spin and
charge currents are expressed in terms of gradients of charge and spin accumulations
(or spin-dependent electrochemical potentials and densities). The charge current
density is the expectation value of the current operator j = e(nv + vn)/2, where e
is the electron charge, n is the electron density, and v is the velocity operator. For a
normal metal with constant density ny and rift velocity vy, jov = enyvy. The spin
current in the nonrelativistic limit is the second-order tensor
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Fig. 8.3 Schematic of the passage of spin and charge currents at the SME in a YIG/Pt nanostruc-
ture. (a) When the magnetization M YIG is perpendicular to the spin polarization o of the spin
accumulation created in the Pt by the SHE, the spin accumulation will be absorbed (J,ps) by the
localized moments in the YIG. (b) For M parallel to o, the spin accumulation cannot be absorbed,
which results in a reflected spin current back into the Pt, where an additional charge current J,.q
will be created by the ISHE

e

Arid . . .. . \T
J sN 2 (J ®o+o ®J) = (Jsx?sz’Jsz) (835)

where o is the vector of Pauli spin matrices, ® denotes the tensor product, and
<.-- > denotes an expectation value. The row vectors j;; = en(vo; 4+ o,v)/2 are the
spin current densities polarized in the i-direction. In metallic ferromagnets with
homogenous texture, the average spin current is projected along the unit vector of
the magnetization direction m, so the charge current and spin current tensor have
the form
Jer = e (”TF”TF + ”lwvw) ,

PN (8.36)
Jsr=Jsp @m = (i¢F'j¢F) Q@ m,

where j.r is the spin current density direction vector.

In the diffusion approach and the two-channel model, currents close to the
interface of the heterostructure are determined via gradients of the spin-dependent
chemical potentials pcr, jor = — (0crle)Vucr, where ¢=(1,]) represents the
spin direction along of the magnetization and o is the spin-dependent con-
ductivity. The charge current j.r =jyp-+j r and the spin current jo =jrp|r
are expressed via charge and spin chemical potentials pi.r = (uqr + @y r)/2 and
sk = (4r — )2, respectively. These currents are described by the general
expression [37]

o 1 1
Ji= —71: I:Si,cF (V,U«cF + EPVMsF) + 8isr (PVMcF + EVMsF)i| , i = (cF,sF)
(8.37)
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where P=(04r—0r)/(04r+0r). The abovementioned potentials are deter-
mined by the diffusion equations

sk

Vi = =5 V7 (Her + Phsr/2) = 0 (8.38)
F

—1/2
where the spin-flip diffusion length Ay = (Aﬁ. + /\II%) is expressed in terms

of the spin diffusion lengths A.r = /D rty cr for each spin (to s is the spin-
dependent spin-flip time). The spin-dependent charge diffusion constant Do =
T Fvg 7/ 3 depends on the spin-dependent relaxation time 7.r and Fermi velocity
vc. Solutions of (8.38), corresponding to boundary conditions at interface, due to
(8.37) determine the charge and spin currents.

In normal metals, the induced spin accumulations are represented by the
(position-dependent) vector gy = (U, sy )" — peyl, components of which
together with the charge chemical potential obey the diffusion equation system

Mesi

2 —
\% Msi = Fs

Viey =0 (8.39)
Without the SHE, charge and spin currents are expressed by the system

. OcN . Osi

Jov === Vien Ji = —""Viksi (8.40)

The spin polarization in the case of the NM layers has arbitrary direction in
contrast to the case of the magnetic layers.

In the considered case of the bilayer nanostructure HM/FI (FI denotes insulating
magnetic) represented in Fig. 8.4, the charge current flow in the metal parallel to the
applied electric field E and the SHE generate a spin accumulation. The generalized
Ohm’s law in this can be represented by the system [19]

Fig. 8.4 The N|FI bilayer
structure with the charge flow
along an electric field E
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lo} 1
Jsi = ?N (st,- X Ve +5me,-) (8.41)

. 0 0
v = 7N (v,w +5S Zx,- x V,Lm) (8.42)

where oy = (Ux, sy is)T — eyl is the spin accumulation, i.e., the spin-
dependent chemical potential relative to the charge chemical potential .y = e,
o is the electric conductivity, and “x” denotes the vector product operating on the
gradients of the spin-dependent chemical potentials. The SHE is governed by the
first term in (8.41) that generates the spin currents parallel to the applied electric
field E = E.x (Fig. 8.4). The ISHE is governed by the second term in (8.42) that
connects the gradients of the spin accumulations to the charge current density.

According to (8.41) and (8.42), the spin current in N consists of conventional
diffusion and spin Hall drift contributions. The spin current density flowing in the
z-direction is described by the expression

. ON .
Jo ==V — iy (8.43)

2e

where j55 = Os0yE, is the bare spin Hall current, i.e., the spin current generated
directly by the SHE. Due to the boundary conditions, j,,(z) is continuous at the
interfaces (z=dy,0). The spin current density at a vacuum interface (z=dy)
vanishes, while at the magnetic interface (z=0), it is governed by the spin
accumulation and spin-mixing conductance according to (8.1), j,(0) = —j,NP.
With these boundary conditions, solution of (8.39) for the spin accumulation is
described by the expression

() sinhA(z) 2 coshB(z)

10 = SinhA(0) ~  sinhB(0)

[m x (m x y)Re + (m x y)Im] ¢ (Gy,)
(8.44)
where A(z) and B(z) were defined in (8.11), ¢(z) = z(ox + 2Azcoth B(2dy)~!, and

w1 is the spin accumulation at the interface in the absence of spin transfer. By virtue
of (8.44), the spin current in N is described by the expression

jfgf’) =y (810 = D-2:() R (Gry) (8.45)
s0
where
Az) = coshA@) () = 2) tanh A(0) sinh B(z)

coshA(0)” 7 sinh B(0)
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R denotes the expression emphasized by squared brackets in (8.44). The spin
current at the interface N|F vanishes when the magnetization is along y. The spin
current at the interface and the torque on the magnetization are activated, while
the spin accumulation is dissipated by rotation of the magnetization from y to x.
The x-components of both spin accumulation and spin current vanish when the
magnetization is along x and y and are largest at (x +y)/2.

The ISHE drives a change current in the x - y plane by the diffusion spin current
component flowing along y-direction. The total longitudinal (along x) and transverse
(along y) charge currents [37]

Jx@) 62 (A )+ (1 —m?) A>(2) Reg (Gyy)] (8.46)
O'NEX
.jCy(Z) _ 92[\ (1 2

= 05A; (1 —mj) [memy Re —m_ Im] ¢ (Gyy) (8.47)
UNEx Y

describe the magnetization dependence of the charge current.

Averaging (8.46) and (8.47) over the thickness z results in the corresponding
electrical resistances, which in the first-order approximation in 67 are described by
the expressions

62, tanh A(0) (1 A(1- m§) tanh A (0)
Px = p— —

A0) Re ¢ (G4 ¢)) (8.48)

_ 62Atanh’A(0)

Py = A00) (m,cmy Re —m, Im) 0 (GN) (8.49)

Here, when the N layer thickness increases relatively to the spin-flip diffusion
length (A/dy — 0), A(0) — 0 and SME vanishes. Its magnitude is proportional to the
second power of the spin Hall angle and is related to the spin-mixing conductance
at the interface.
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