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Abstract A model of geological folding comprising a thin elastic beam supported

by a nonlinear viscoelastic (Kelvin-Voigt) material is subjected to a slow rate of

applied end-shortening. The description reduces to the nonlinear Swift-Hohenberg

partial differential equation (PDE), supplemented by a constraint condition. A mod-

ified one degree-of-freedom Galerkin description is introduced, built by adopting

the evolving modeshapes of the corresponding statical equilibria at the same state

of compression. An evolutionary energy landscape is described, formed by plotting

total potential energy against the single degree of freedom and the end-shortening.

Comparisons of the reduced system with numerical solutions of the full PDE are

found to be in good qualitative agreement for slow rates of applied end-shortening.

1 Introduction

Following the pioneering work of Biot [1], folded buckle patterns in structural geol-

ogy have traditionally been assumed to be periodic. A beam in viscous medium,

for example, would be expected to display the dominant wavelength, suggested by

linear analysis as that growing most rapidly over time. In contrast, some elastic buck-

ling problems display spatially localised solutions, driven by material and geometric

nonlinearities [2–4]. In this, much progress has developed around stability of a com-

pressed beam supported by a nonlinear elastic foundation, with carefully selected
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properties to mimic either softening and/or stiffening characteristics in the support-

ing medium. Synergy between these two separate developments then naturally led

to study of viscoelastic systems with the same nonlinearities [5].

Here, a beam supported by a nonlinear viscoelastic (Kelvin-Voigt) material under

slow end-compression is described by the nonlinear Swift-Hohenberg PDE, together

with a constraint condition. The foundation has an elastic part that first softens and

then re-stiffens. This reflects many purely elastic formulations [6–9], where the equi-

librium states are known to comprise two alternative forms of localised snaking path,

one spatially symmetric and the other anti-symmetric, that emerge from the flat state

at a critical bifurcation point. These paths are generally disconnected, but are linked

by ladders of non-symmetric equilibria, bringing with them regions of bi-stability.

For the dynamical PDE, interest then naturally falls on the transitions between these

two attractors as the system evolves.

To explore the qualitative aspects further, a modified one degree-of-freedom

Galerkin description is introduced, built on the evolving modeshapes of the statical

equilibrium states. Total potential energy is then plotted against the single degree of

freedom and the end-shortening to provide an evolutionary energy landscape. Move-

ment on the surface, governed by a viscous gradient-flow process in one dimension

and a constant flow rate in the other, describes the dynamics. Changing patterns of

minima and maxima in the (constrained) energy then bring about possibilities for

dynamical bifurcation and related reversals in the direction of flow.

2 The Model

We consider the model for dynamic localized folding seen in Fig. 1, comprising an

infinitely long inextensible elastic beam, supported by a nonlinear viscoelastic foun-

dation and subjected to end-shortening at a constant rate R. Deformation is charac-

terised by vertical displacement of the centreline u(x, t), where x is arc-length mea-

sured along the beam, and t > 0 is time. The shortening at time t is given by

x P
P

u

Fig. 1 Strut supported by nonlinear springs and linear dashpots in parallel. Axial load P would

normally be accompanied by bending moments and shear forces at points of application (not shown)
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𝛥 = 1
2 ∫

∞

−∞
u′ 2 dx = Rt, (1)

to first order, where primes denote differentiation with respect to x. For moderately-

large deflections the bending energy is
1
2
B ∫ u′′2 dx, where B is the beam bending

stiffness. The Winkler foundation, comprising a nonlinear spring and linear dashpot

in parallel, provides a strictly local and vertical total resistive force,

f (u) = fe(u) + fv(u) = k1u − k2u3 + k3u5 + 𝜂u̇, (2)

where ̇( ) denotes differentiation with respect to time t. The negative cubic and pos-

itive quintic coefficients mean that, as displacements into the foundation grow, the

resisting stiffness initially drops and then increases [7].

We introduce the Lagrangian

L (x, t, u) = 1
2
Bu′′2 + 1

2
k1u2 −

1
4
k2u4 +

1
6
k3u6 +

1
2
𝜂u̇u − 1

2
Pu′2. (3)

Elastic strain energy at time t is given by the functional

E(t, u) = ∫
∞

−∞

1
2
Bu′′2 + 1

2
k1u2 −

1
4
k2u4 +

1
6
k3u6 dx, (4)

whereas

D(t, u) = 1
2
𝜂 ∫

t

0 ∫
∞

−∞
u̇u dx ds, and W(t, u) = 1

2 ∫
t

0 ∫
∞

−∞
P(s)u′2 dx ds, (5)

are the energy dissipated in the dashpot and the work done by the load up to time t,
respectively. Evolution of the system is described by the Euler-Lagrange equation,

𝜕L
𝜕u

− 𝜕

𝜕t

(
𝜕L
𝜕u̇

)
+ 𝜕

2

𝜕x2

(
𝜕L
𝜕u′′

)
− 𝜕

𝜕x

(
𝜕L
𝜕u′

)
= 0, (6)

subject to appropriate initial, essential and natural boundary conditions. This can

be physically interpreted as a vertical force balance on dx, at time t. Appropriate

differentiation of (3) yields the constrained nonlinear fourth-order PDE,

Bu′′′′ + Pu′′ + k1u − k2u3 + k3u5 + 𝜂u̇ = 0, subject to
1
2 ∫

∞

−∞
u′2 dx = Rt. (7)

We can reduce this to the non-dimensional form,

u̇ = −
(
u′′′′ + pu′′ + u − u3 + 𝛼u5

)
and

1
2 ∫

∞

−∞
u′ 2 dx = 𝜌t, (8)
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by the following transformation: x ↦
(
B∕k1

)1∕4 x; t ↦ (𝜂∕k1) t; u ↦
√
k1∕k2u:

where p(t) = P(t)∕
√
Bk1; 𝛼 = k1k3∕k22; and 𝜌 = R𝜂k2∕k21

√
B∕k1. We note that the

final system is in fact a two parametric group in (𝛼, 𝜌), as the load p(t) is a free vari-

able directly imposed by the shortening constraint.

3 Static Equilibrium—Snakes and Ladders

Before seeking solutions to PDE (8), it is useful to review the associated stationary

states, using the fourth-order reversible ordinary differential equation (ODE) in x:

u′′′′ + pu′′ + u − u3 + 𝛼u5 = 0. (9)

with the same ‘cubic-quintic’ foundation force characteristic: fe(u) = u − u3 + 𝛼u5.

This is known to exhibit a Hamiltonian-Hopf bifurcation from the unbuckled state

into a periodic buckling mode at p = 2 [3, 4]. We compute such solutions in AUTO

[10] over x ∈ [−L,L], starting arc-length continuation close to the bifurcation point

and seeding it with the eigenmode in two configurations, one symmetric about x = 0
(cosine) and the other anti-symmetric (sine). For convenience, pinned (u = u′′ = 0)

rather than homoclinic [11] boundary conditions are chosen, the difference being

numerically inconsequential for a long beam [12]. End-shortening 𝛥 is chosen as the

continuation parameter, with the load p in Eq. (9) being regarded as free.

Figure 2 shows a typical load–end-shortening bifurcation diagram and corre-

sponding solution shapes. This shows the classic snakes-and-ladders scenario of

a pair of snaking equilibrium solutions, one symmetric in x about its mid-point and

the other anti-symmetric, each fluctuating in load as 𝛥 increases. The equilibrium

shapes themselves are all homoclinic, with a central region that grows with 𝛥; these

are the initial stages of a heteroclinic connection to a periodic state at the Maxwell

load [7]. Along the snakes the folded profiles are each a function of both x and 𝛥,

so they change shape but also grow in amplitude as 𝛥 increases. The snaking paths

are connected at bifurcation points by ladders [8, 9], comprising states of transition

0 1 2 3 4 5 6 7 8

1.2

1.4

1.6

1.8

2

p

Δ

Fig. 2 Snakes and ladders equilibrium paths for 𝛼 = 0.3. Stable and unstable states are shown as

black and grey respectively
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between symmetry and anti-symmetry; for a recent account of such behaviour see

[13]. Unlike the response under controlled load where limit points have a part to play,

stability here is only lost or gained at the bifurcation points.

4 Evolution of Transient Folding Patterns

4.1 Finite Element (FE) Procedure for Constrained
Gradient Flow

Equation (8) can be solved as a constrained gradient flow problem over a large-but-

finite domain X ∶= [−L,L], discretized into N nodes xi = ih − L where h = 2L∕N
and i = 0, 1,… ,N. The weak form is found by multiplying by a suitable test function

v, integrated over the domain X and then by parts, to give

∫X
u̇v dx = −∫X

u′′v′′ dx + p∫X
u′v′ dx − ∫X

fe(u)v dx such that
1
2 ∫X

u′2 dx = 𝜌t. (10)

By approximating u and v as piecewise cubic functions spanned by the cubic FE

shape functions 𝜙i(x), this constrained time-dependent variational equation converts

to a system of differential algebraic equations (DAEs) of index-1 given by

[
UTC 0
A 0

] [
̇U
ṗ

]
=
[

R
−(B − pC)U − D

]
. (11)

Here the matrices are defined as follows

Aij = ∫X
𝜙i𝜙j dx, Bij = ∫X

𝜙

′′
i 𝜙

′′
j dx, Cij = ∫X

𝜙

′
i𝜙

′
j dx, and Di = ∫X

fe(U)𝜙i dx.
(12)

where the nonlinear functional defined byDi is computed using a high order Gaussian

quadrature rule. To produce an index 1 DAE, we differentiate the constraint equation

in time and impose the constraint as ∫X u′u′T dx = 𝜌. Full details of the FE procedure

can be found for a similar problem in [14, Sect. 6.1].

Up to now the formulation is general, without consideration of boundary condi-

tions. We impose homoclinic boundary conditions at each end of the finite domain

by setting end nodal values (u1, u′1, uN , u
′
N), such that the linearisation of (6) i.e.

u(x) = A1e𝜉1x + A2e−𝜉1x + A3e𝜉2x + A4e−𝜉2x (13)

is satisfied in the homoclinic tails [11]. Here 𝜉1 and 𝜉2 are the characteristics of the

linear equation 𝜉

4 + p𝜉2 + 1 = 0. As x → −∞, solutions must remain bounded and

therefore A2 = A4 = 0. This leads to the outset condition,
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u1 = A1e−𝜉1L + A3e−𝜉2L and u′1 = A1𝜉1e−𝜉1L + A3𝜉2e−𝜉2L. (14)

Solving for A1 and A3 enables solutions for u1 and u′1 to be computed. The process

is repeated at x = xN = L, where the inset condition (A1 = A3 = 0) is imposed.

4.2 Numerical Experiments

The dynamic behaviour of (11) under different rates of applied end-shortening 𝜌

is next investigated. An error convergence study indicates that a uniform FE mesh

with N = 70 over length L = 30 is suitably accurate and efficient. The quintic coeffi-

cient of (8) was taken as 𝛼 = 0.3, allowing comparisons with the stationary solutions

of Fig. 2 as computed in Sect. 3. Figure 3 shows a series of numerical solutions for

increasing rates of loading from top to bottom: 𝜌 = 10−4, 10−3 and 10−2 respec-

tively. To avoid the system becoming locked in the trivial equilibrium state, all runs

are seeded by an incremental displacement into a symmetric localised shape.

First we make some general observations:

∙ For rates of end-shortening 𝜌 < 10−4 say, the system is quasi-static. Jumps between

near-equilibrium states occur immediately or soon after stability is lost.

∙ Increasing 𝜌 mean that solutions tend to drift from the static state, and can also

delay the unstable jumps so they occur with increasing as well as decreasing load.

∙ Behaviour at high rates is dominated by the dynamics. Significantly, a high rate

can lead to a jump being by-passed, so the system can remain in a symmetric or

anti-symmetric state even when its stationary counterpart has become unstable.

Figure 3 suggests a change in rate causes a dynamical jump to drift, but it is also

possible for it to change suddenly at a dynamical bifurcation. Figure 4 shows solu-

tion paths for two rates, 10−7 apart, found via a root searching algorithm, bounding

the critical rate 𝜌

∗ ≃ 1.6135 × 10−4. This is explored phenomenologically later in

Fig. 6.

5 Evolutionary Galerkin Procedure and Energy Landscape

To help interpret the dynamics it is useful to model the system with just a single

degree of freedom. We thus decompose the description into linear combinations of

the symmetric and anti-symmetric stationary modes at the given 𝛥 = 𝜌t, as follows,

ũ(x, t) = qs(t)𝜓s(x, t) + qa(t)𝜓a(x, t). (15)
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Fig. 3 Load p against end-shortening 𝛥 at rates 𝜌 = 10−4 (top), 10−3 (middle), 10−2 (bottom), com-

pared against stationary solutions of Fig. 2. Inset plots show solutions profiles at positions indicated

where 𝜓i are the mode shapes of Fig. 2, with amplitudes qi. End-shortening is now,

𝛥 = 𝜌t = 1
2 ∫X

ũ′2 dx = 1
2
q2s ∫X

𝜓

′2
s dx + 1

2
q2a ∫X

𝜓

′2
a dx (16)

at time t, where X is the (long) domain over which the modeshapes are computed.

Since
1
2
∫ 𝜓

′2
s dx and

1
2
∫ 𝜓

′2
a dx compute to the same value independently, qs and
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Fig. 4 Numerical evidence of a dynamical bifurcation at a critical rate 𝜌

∗ ≃ 1.6135 × 10−4, at

which solution branching occurs at 𝛥
∗ ≃ 2.274. Plots shows 𝛥 against p of the dynamic paths blue

(solid) and the primary stationary states (thin-dashed) for 𝜌 = 1.613 × 10−4 (left); 𝜌 = 1.614 ×
10−4 (right)

qa lie on the unit circle. Thus qa =
√

1 − q2s and the system has a single degree of

freedom. Energy levels can then be computed directly from (4).

Substituting (15) into (8) gives

q̇s𝜓s + qs�̇�s + q̇a𝜓a + qa�̇�a = −
(
qs𝜓 ′′′′

s + qa𝜓 ′′′′
a + p(qs𝜓 ′′

s + qa𝜓 ′′
a ) + fe(qa𝜓a + qs𝜓s)

)
.

(17)

Evolution equations for the qi are found by multiplying by the corresponding 𝜓i and

integrating over the domain X. These, along with the constraint equation, lead to the

following governing equations, written in matrix form,

[
A 0

2tQT 0

] [
̇Q
ṗ

]
= −

[
(B − pC)Q + D + 1

2
̇AQ

QTQ − 1

]
(18)

where Q = [qs; qa]. A, B, C and D are defined by (12) but with the 𝜙i replaced

by 𝜓i. Load p is fixed by the constraint condition (16) which, after differentiating

with respect to time yields the bottom row in (18). We note, in contrast to the FE

formulation, the appearance of momentum-like terms due to variations of the shape

functions with time.

The constrained gradient flow equation (8) is thus reduced to three DAEs of index-

1, which again can be solved using MATLAB’s inbuilt function ode23s. To avoid

the system sitting unrealistically on an energy maximum, zero values of qs or qa
are replaced by the small non-zero quantity +10−12, the positive sign ensuring that

solutions are all found in the first quadrant of the unit circle. Typical dynamical

outcomes are seen in Fig. 6 later.

Figure 5 shows contours of the change in energy from the symmetric state, as

computed from (4), at different but constant values of 𝛥. This is plotted against the

polar angle 𝜃 on the unit circle (qs = cos 𝜃, qa = sin 𝜃), with the darker regions rep-

resenting higher energies. Sections at constant 𝛥 are shown on the right. For small

𝛥, as seen in the bottom and middle slices, the symmetric form is preferred while

the anti-symmetric form changes from a global maximum to a local minimum. As 𝛥

is increased, the symmetric form first relinquishes its status as the global minimum
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Fig. 5 Left energy landscape. Right three sections at different 𝛥 values, that embrace a region of

bistability and illustrate transfer of stability from symmetry to anti-symmetry
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Fig. 6 Dynamical paths from a start close to the symmetric shape at different rates. The ridge line

of equilibria associated with the second ladder of Fig. 2 is shown in black

(somewhere around 𝛥 = 2.18), and then evolves into a local maximum as seen at

the top. When symmetric and anti-symmetric minima coexist the system is bistable,

and we note the appearance then of a third equilibrium state in the form of a local

maximum; this reflects the first ladder of Fig. 2.
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As seen in Figs. 3 and 4, typical dynamical responses of the PDE can be subject to

dynamical bifurcations. The reduced view of Fig. 5 is useful in describing how this

comes about. Figure 6 shows a set of runs at differing rates on the landscape of Fig. 5,

all starting from the same position close to the symmetric state. After venturing into

the mixed region the runs either return to the symmetric state, or veer off to the anti-

symmetric one. The critical rate 𝜌

∗ ≃ 8.2077455491 × 10−4 defines the transition,

and the difference between the two closest diverging paths is 𝛥𝜌 = 10−15. Separa-

tion occurs close to, but not coincident with, the ridge line, the difference being due

to the (small) velocity component provided by the rate 𝜌. Starts from closer to the

symmetric state bifurcate at a lower critical rate and closer to the ridge line.

6 Concluding Remarks

We have presented two models for the nonlinear visco-elastic system of Fig. 1, a

multi degree-of-freedom FE formulation, and a single degree-of-freedom evolu-

tionary Galerkin procedure based on static modal shapes obtained from the path-

following routine AUTO [10]. According to the associated dynamical responses,

the two models show good qualitative agreement at low rates of end-shortening.

The pure symmetric and anti-symmetric snaking equilibrium paths and associated

modeshapes are the same, but the ladder equilibrium states of Fig. 2, being based

on these pure forms, fail to match precisely. The first ladder extends over the range

2.157 < 𝛥 < 2.198 for the FE model, for example, whereas for the Galerkin it cov-

ers 1.90 < 𝛥 < 2.35. Better accuracy could be obtained with the addition of further

shapes derived from the ladders, but this would be at the expense of simplicity.

The single degree-of-freedom Galerkin model is shown to be a useful phenom-

enological tool. The reduction allows the dynamics to be seen as movement on a 2D

surface, with velocity governed by a constant rate of end-shortening on one dimen-

sion and visco-elastic flow in the other. The benefit is neatly demonstrated by Fig. 6,

which shows visually how a dynamical bifurcation associated with the energy max-

ima of the ladder equilibrium states comes about, and thus provides the key ingre-

dient for many chaotic situations. It is interesting to see that in this instance there

is an intimate link to the spatial chaos of the snakes-and-ladders scenario. We are

of course aware that the solution of a nonlinear PDE is not exactly expressible as a

linear combination of two stationary states, but the numerical evidence suggests that

the stationary states are such strong attractors (in terms of the energy surface) that

the process does offer a fair and highly illustrative new interpretation.



Interplay Between Symmetry and Anti-symmetry . . . 527

References

1. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)

2. Potier-Ferry, M.: Amplitude modulation, phase modulation and localization of buckling pat-

terns. In: Thompson, J.M.T., Hunt, G.W. (eds.) Collapse: The Buckling of Structures in Theory

and Practice, pp. 149–159. Cambridge University Press, Cambridge (1983)

3. Hunt, G.W., Bolt, H.M., Thompson, J.M.T.: Structural localization phenomena and the dynam-

ical phase-space analogy. Proc. R. Soc. Lond. A 425, 245–267 (1989)

4. Champneys, A.R., Toland, J.F.: Bifurcation of a plethora of multi-modal homoclinic orbits fo

autonomous Hamiltonian systems. Nonlinearity 6, 665–772 (1993)

5. Hunt, G.W., Mühlhaus, H.-B., Whiting, A.I.M.: Evolution of localized folding for a thin elastic

layer in a softening visco-elastic medium. Pure Appl. Geophys. 146(2), 229–252 (1996)

6. Woods, P.D., Champneys, A.R.: Heteroclinic tangles in the unfolding of a degenerate Hamil-

tonian Hopf bifurcation. Phys. D 129(3–4), 147–170 (1999)

7. Hunt, G.W., Peletier, M.A., Champneys, A.R., Woods, P.D., Ahmer Wadee, M., Budd, C.J.,

Lord, G.J.: Cellular buckling in long structures. Nonlinear Dyn. 21(1), 3–29 (2000)

8. Burke, J., Knobloch, E.: On snakes and ladders: localized states in the Swift-Hohenberg equa-

tion. Phys. Lett. A 360(6), 681–688 (2007)

9. Dawes, J.H.P.: The emergence of a coherent structure for coherent structures: localized states

in nonlinear systems. Philos. Trans. R. Soc. Lond. A 368, 3551–3565 (2010)

10. Doedel, E.J., Champney, A.R., Fairgrieve, T.E., Kuznetsov, Yu.K., Sanstede, B., Wang, X.:

Auto07: continuation and bifurcation software for ordinary differential equations (with hom-

cont). Tecnical Report, Concordia University (2007)

11. Hunt, G.W., Dodwell, T.J., Hammond, J.: On the nucleation and growth of kink and shear

bands. Philos. Trans. R. Soc. Lond. A 371, 20120431 (2013)

12. Hunt, G.W., Wadee, M.K.: Comparative Lagrangian formulations for localized buckling. Proc.

R. Soc. Lond. A 434, 485–502 (1991)

13. Kao, Hsien-Ching, Beaume, Cédric, Knobloch, Edgar: Spatial localization in heterogeneous

systems. Phys. Rev. E 89, 012903 (2014). Jan

14. Budd, C.J., Chakhchoukh, A.N., Dodwell, T.J., Kuske, R.: Chevron folding patterns and hete-

roclinic orbits. Phys. D 330, 32–46 (2016)


	Interplay Between Symmetry  and Anti-symmetry in the Evolution  of Localized Buckle Patterns
	1 Introduction
	2 The Model
	3 Static Equilibrium---Snakes and Ladders
	4 Evolution of Transient Folding Patterns
	4.1 Finite Element (FE) Procedure for Constrained  Gradient Flow
	4.2 Numerical Experiments

	5 Evolutionary Galerkin Procedure and Energy Landscape
	6 Concluding Remarks
	References


