
Chapter 4
Lyapunov Stability Theory

Abstract Stability of nonlinear systems are discussed in this chapter. Lyapunov
stability, asymptotic stability, and exponential stability of an equilibrium point of a
nonlinear systemare defined. TheLyapunov’s directmethod is introduced as an indis-
pensable tool for analyzing stability of nonlinear systems. TheBarbashin–Krasovskii
theorem provides a method for global stability analysis. The LaSalle’s invariant set
theorem provides a method for analyzing autonomous systems with invariant sets.
Stability of non-autonomous systems involves the concepts of uniform stability, uni-
form boundedness, and uniform ultimate boundedness. The Barbalat’s lemma is an
important mathematical tool for analyzing asymptotic stability of adaptive control
systems in connection with the concept of uniform continuity of a real-valued func-
tion.

Stability is an important consideration of any dynamical systems with feedback con-
trol. Stability for LTI systems can be analyzed by many well-established methods
such as eigenvalue analysis, root locus, phase and gain margins, etc. For nonlinear
systems, Lyapunov stability theory provides a powerful technique for stability analy-
sis of such systems. The Lyapunov stability theory is central to the study of nonlinear
adaptive control [1–4]. In this chapter, the learning objectives are to develop a basic
understanding of:
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• Various stability concepts for autonomous and non-autonomous systems, such as
local stability, asymptotic stability, exponential stability, uniform stability, and
uniform boundedness;

• Lyapunov’s direct method and LaSalle’s invariant set theorem for analyzing sta-
bility of nonlinear systems; and

• Uniform continuity concept and Barbalat’s lemma for analyzing stability of non-
autonomous systems.

4.1 Stability Concepts

Consider an autonomous system
ẋ = f (x) (4.1)

with an initial condition x (t0) = x0, where f (x) is locally Lipschitz in some
subset D of R

n and the solution x
(
t; t0,x0

)
exists and is unique in a region

BR = {x (t) ∈ R
n : ‖x‖ < R} ⊂ D of an equilibrium point x∗. The region BR

can be thought of as a hypersphere in R
n with the origin at x = x∗. Colloquially, it

is often referred to in the literature as a ball BR . Since x∗ is a constant vector, for
convenience, the autonomous system can be transformed by shifting the equilibrium
point to the origin at x = 0. Let y (t) = x (t) − x∗, then

ẏ = f
(
y + x∗) � g (y) (4.2)

whose equilibrium is the origin y∗ = 0.
Thus, for convenience, the equilibrium point for autonomous systems described

by Eq. (4.1) is understood to be x∗ = 0.
Example 4.1 The system [

ẋ1
ẋ2

]
=

[−x1 + x1x2
x2 − x1x2

]

has an equilibrium at x∗
1 = 1 and x∗

2 = 1.
The system can be transformed by letting y1 (t) = x1 (t)−1 and y2 (t) = x2 (t)−1

which yields

[
ẏ1
ẏ2

]
=

[− (y1 + 1) + (y1 + 1) (y2 + 1)
(y2 + 1) − (y1 + 1) (y2 + 1)

]
=

[
y1y2 + y2

−y1y2 − y1

]
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4.1.1 Stability Definition

Definition 4.1 The equilibrium point x∗ = 0 of a system starting at an initial con-
dition x (t0) = x0 is said to be stable (in the sense of Lyapunov) if, for any R > 0,
there exists some r (R) > 0 such that

‖x0‖ < r ⇒ ‖x‖ < R, ∀t ≥ t0 (4.3)

Otherwise, the equilibrium point is unstable.

�

Stability concept essentially implies that, given a system with an initial condition
close to the origin, the trajectory of the system can be kept arbitrarily close to it.
Figure4.1 illustrates the stability concept.

Fig. 4.1 Stability concept

Note that instability for linear systemsmeans that the solution grows exponentially
as t → ∞ due to unstable poles in the right half plane, resulting in unbounded
signals. For nonlinear systems, instability of an equilibrium does not always lead to
unbounded signals. For example, the Van der Pol oscillator in Example 2.6 has a
stable limit cycle that encloses an unstable equilibrium point at the origin. So, the
equilibrium point in theory is unstable and the system cannot stay arbitrarily close to
it. If we choose any arbitrary circle BR to be completely inside the limit cycle, then
no matter how close the initial condition is to the origin, the trajectory of the system
will eventually escape the circle BR as illustrated in Fig. 4.2. However, the trajectory
tends to the limit cycle and remains there as t → ∞.
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Fig. 4.2 Unstable origin of Van der Pol Oscillator

4.1.2 Asymptotic Stability

The stability concept in the Lyapunov sense does not explicitly imply that the tra-
jectory of a nonlinear system will eventually converge to the origin. For example, an
ideal spring-mass system without friction will display a sinusoidal motion forever if
it is subject to a disturbance. So, the system is stable in the Lyapunov sense but does
not converge to the origin. Asymptotic stability is a stronger stability concept than
the Lyapunov stability concept and is defined as follows:

Definition 4.2 The equilibrium point x∗ = 0 is said to be asymptotically stable if
there exists some r > 0 such that

‖x0‖ < r ⇒ lim
t→∞ ‖x‖ = 0 (4.4)

�

All trajectories starting within BR will eventually converge to the origin. The
origin is then said to be attractive. For a second-order system, both stable focus and
stable node are attractive. The largest such region is called a region of attraction,
defined as

RA =
{
x (t) ∈ D : lim

t→∞ x (t) = 0
}

(4.5)

It is noted that the asymptotic stability concept in the definition above is a local
concept for any initial condition that lies within the ball BR . If an equilibrium point
of a system is asymptotically stable for all initial conditions x0 ∈ R

n , then the
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equilibrium point is said to be asymptotically stable in the large. This notion is
equivalent to global asymptotic stability.
Example 4.2 The equilibrium point of the system

ẋ = −x2

with x (0) = x0 > 0 is asymptotically stable since the solution

x (t) = x0
x0t + 1

tends to zero as t → ∞. The region of attraction is

RA =
{
x (t) ∈ R

+ : x (t) = x0
x0t + 1

, x0 > 0

}

Note that the equilibrium point is unstable if x0 < 0 and has a finite escape time
at t = −1/x0. So, the equilibrium is asymptotically stable for all x (t) ∈ R

+ but not
asymptotically stable in the large.

4.1.3 Exponential Stability

The rate of convergence of a solution of a nonlinear differential equation can be
estimated by comparing its solution to an exponential decay function [2, 4]. This
gives rise to a notion of exponential stability which is defined as follows:

Definition 4.3 The equilibrium point x∗ = 0 is said to be exponentially stable if
there exist two strictly positive constants α and β such that

‖x‖ ≤ α ‖x0‖ e−β(t−t0), ∀x ∈ BR, t ≥ t0 (4.6)

�

This definition gives a local version of the exponential stability concept for some
initial condition x0 close to the origin. If the origin is exponentially stable for all
initial conditions x0 ∈ R

n , then the equilibrium point is said to be exponentially
stable in the large. The constant β is called the rate of convergence.

It is noted that exponential stability implies asymptotic stability, but the converse
is not true.
Example 4.3 The differential equation

ẋ = −x
(
1 + sin2 x

)

subject to x (0) = 1 is bounded from below and above by
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−2 |x | ≤ |ẋ | ≤ − |x |

if x (t) > 0.
The solution is bounded from below and above as shown in Fig. 4.3 by

e−2t ≤ |x (t)| ≤ e−t

Therefore, the equilibrium is exponentially stable and the rate of convergence
is 1.
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Fig. 4.3 Exponential stability

4.2 Lyapunov’s Direct Method

4.2.1 Motivation

Consider a spring-mass-damper system with friction as shown in Fig. 4.4.
The equation of motion without external forces is described by

mẍ + cẋ + kx = 0 (4.7)

where m is the mass, c > 0 is the viscous friction coefficient, and k is the spring
constant.
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Fig. 4.4 Spring-mass system

The system in the state-space form is expressed as

[
ẋ1
ẋ2

]
=

[
x2

− c
m x2 − k

m x1

]
(4.8)

where x1 (t) = x (t) and x2 (t) = ẋ (t). The system has an equilibrium point at
(0, 0), that is, it is at rest with zero displacement and velocity

The spring-mass-damper system possesses two types of energy: (1) kinetic energy
and (2) potential energy. The kinetic energy of any moving point mass is given by

T = 1

2
mv2 = 1

2
mẋ2 = 1

2
mx22 (4.9)

The potential energy for a spring is given by

U = 1

2
kx2 = 1

2
kx21 (4.10)

The energy of the spring-mass-damper system is the sum of the kinetic energy
and potential energy. Thus, the energy function of the system is defined as

E = T +U = 1

2
mx22 + 1

2
kx21 (4.11)

Note that the energy function is a quadratic positive-definite function.
The friction force also does work on the mass. This type of work is called a

non-conservative work which is usually due to a dissipative force, as opposed to
a conservative work of which potential energy is one form. The work function is
defined in general as

W =
∮

F.dx (4.12)

where F is a force acting on a mass that displaces it by an infinitesimal distance dx ,
and the integral is evaluated over a path that the mass traverses.
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For a viscous friction force, the work done is evaluated as

W =
∫

cẋdx =
∫

cẋ2dt =
∫

cx22dt (4.13)

The total energy of the system is the sum of the energy and the work done. Thus,

E + W = 1

2
mx22 + 1

2
kx21 +

∫
cx22dt (4.14)

According to the first law of thermodynamics, the total energy of a closed system
is neither created or destroyed. In other words, the total energy is conserved and is
equal to a constant. Thus,

E + W = const (4.15)

or equivalently
Ė + Ẇ = 0 (4.16)

This energy conservation law can be easily verified for the spring-mass-damper
system as

Ė+Ẇ = mx2 ẋ2+kx1 ẋ1+ d

dt

∫
cx22dt = mx2

(
− c

m
x2 − k

m
x1

)
+kx1x2+cx22 = 0

(4.17)
The time derivative of the energy function is evaluated as

Ė = mx2 ẋ2 + kx1 ẋ1 = mx2

(
− c

m
x2 − k

m
x1

)
+ kx1x2 = −cx22 ≤ 0 (4.18)

for c > 0.
The reason Ė is only negative semi-definite is because Ė can be zero for any

x1 �= 0.
Thus, for a dissipative system, the time derivative of the positive definite energy

function is a negative semi-definite function. That is,

Ė ≤ 0 (4.19)

The equilibrium point is then stable. Thus, stability of a dynamical system can
be studied by examining the time derivative of the energy function. The Lyapunov
stability theory is motivated by the concept of energy. In fact, the energy function
is a Lyapunov function. Whereas the energy function is unique for a given physical
system, a Lyapunov function can be any positive-definite function that satisfies the
negative (semi-)definiteness of its time derivative.

Lyapunov’s direct method is a powerful tool for assessing stability of an equilib-
rium of a nonlinear system directly without solving the system’s dynamical equation.
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Themotivation of the method is based on the energy concept of a mechanical system.
From the spring-mass-damper example, the following observations are made:

• The energy function is positive definite.
• The time rate of the energy function is negative semi-definite in which case the
equilibrium is stable.

AleksandrMikhailovich Lyapunov (1857–1918) recognized that stability of a system
can be proven without developing a true knowledge of the system energy using a
class of positive-definite functions, known as Lyapunov functions, provided they can
be found.

Definition 4.4 A function V (x) is said to be a Lyapunov function if it satisfies the
following conditions:

• V (x) is positive definite; i.e.,
V (x) > 0 (4.20)

and has a continuous first partial derivative.
• V̇ (x) is at least negative semi-definite; i.e.,

V̇ (x) = ∂V

∂x
ẋ = ∂V

∂x
f (x) ≤ 0 (4.21)

or
V̇ (x) < 0 (4.22)

�

Geometrically, a Lyapunov function may be illustrated by a bowl-shaped surface
as shown in Fig. 4.5. The Lyapunov function is a level curve on the bowl starting

Fig. 4.5 Illustration of Lyapunov function
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at the top and progressing downward toward the bottom of the bowl. The value of
the Lyapunov function thus decreases toward zero at the bottom of the bowl which
represents a stable equilibrium.
Example 4.4 For the spring-mass-damper system, the energy function is clearly a
Lyapunov function. Suppose one chooses another Lyapunov candidate function

V (x) = x21 + x22 > 0

Then,

V̇ (x) = 2x1 ẋ1+2x2 ẋ2 = 2x1x2+2x2

(
− c

m
x2 − k

m
x1

)
= 2x1x2

(
1 − k

m

)
−2

c

m
x22

Note that V̇ (x) is not negative (semi-)definite because of the termwith the product
x1x2. So, this candidate function is not a Lyapunov function.

In many systems, finding a Lyapunov function is not trivial. Unfortunately, there
is no straightforward way to obtain a Lyapunov function. Perhaps, the most obvious
Lyapunov function for any system is the energy function, but it is not always easy to
identify such a function for a nonlinear system unless one knows the physics of the
system.

Example 4.5 Consider a pendulumwith viscous friction whose motion is described
by

ml2θ̈ + cθ̇ + mgl sin θ = 0

which is expressed in a state-space form as

[
ẋ1
ẋ2

]
=

[
x2

− c
ml2 x2 − g

l sin x1

]

with x1 (t) = θ (t) and x2 (t) = θ̇ (t).

It is not obvious what a Lyapunov candidate function would look like for this
system. One can try

V (x) = x21 + x22

but that would not yield V̇ (x) ≤ 0 since

V̇ (x) = 2x1 ẋ1 + 2x2 ẋ2 = 2x1x2 + 2x2
(
− c

ml2
x2 − g

l
sin x1

)
� 0

The kinetic energy and potential energy for the pendulum are known to be

T = 1

2
ml2x22
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U = mgl (1 − cos x1)

So, the energy function is

E = T +U = 1

2
ml2x22 + mgl (1 − cos x1) > 0

Using this as a Lyapunov function, then evaluating V̇ (x) gives

V̇ (x) = ml2x2 ẋ2 + mgl sin x1 ẋ1 = ml2x2
(
− c

ml2
x2 − g

l
sin x1

)
+ mgl sin x1x2 = −cx22 ≤ 0

Thus, it is not surprising that the energy function can always be used for a
Lyapunov function, provided such a function can be found.

�

In summary, it can be seen that the Lyapunov’s direct method is a powerful tech-
nique for studying stability of an equilibrium point of a nonlinear system.

4.2.2 Lyapunov Theorem for Local Stability

Theorem 4.1 Let x∗ = 0 be an equilibrium point and if there exists a Lyapunov
function V (x) > 0 for all x (t) ∈ BR such that V̇ (x) ≤ 0 for all x (t) ∈ BR , then
the equilibrium is locally stable in a Lyapunov sense. Moreover, if V̇ (x) < 0 for all
x (t) ∈ BR , then the equilibrium is locally asymptotically stable.

�

It is important to note that the Lyapunov’s direct method only gives a sufficient
condition for stability. Failure of aLyapunov candidate function to satisfy the stability
condition does not imply that the equilibrium is unstable. It simply means that a good
Lyapunov candidate function may not have been identified. An exception to this rule
is the energy function which provides both the necessary and sufficient conditions
for stability.
Example 4.6 For the pendulum in Example 4.5, V̇ (x) is negative semi-definite, so
the equilibrium is locally stable.
Example 4.7 Consider the system

[
ẋ1
ẋ2

]
=

[
x31 + x1x22 − x1
x32 + x21 x2 − x2

]

Choose a Lyapunov candidate function

V (x) = x21 + x22
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Then, V̇ (x) is evaluated as

V̇ (x) = 2x1 ẋ1 + 2x2 ẋ2 = 2x1
(
x31 + x1x

2
2 − x1

) + 2x2
(
x32 + x21 x2 − x2

)

= 2
(
x21 + x22

) (
x21 + x22 − 1

)

Observing V̇ (x), one can conclude that V̇ (x) < 0 for all x ∈ BR where

BR = {
x (t) ∈ D ⊂ R

2 : x21 + x22 < 1
}

The equilibrium is asymptotically stable. The region of attraction is BR within
which all the trajectories converge to the equilibrium.
Example 4.8 For the spring-mass-damper system, consider a Lyapunov candidate
function

V (x) = xPx > 0

where x (t) = [
x1 (t) x2 (t)

]
and P = P > 0 to be determined such that V̇ (x) <

0 for asymptotic stability.
Expressing V (x) as

V (x) = [
x1 x2

] [
p11 p12
p12 p22

] [
x1
x2

]
= p11x

2
1 + 2p12x1x2 + p22x

2
2

where pi j are elements of P , then evaluating V̇ (x) yields

V̇ (x) = 2p11x1 ẋ1 + 2p12 (x1 ẋ2 + ẋ1x2) + 2p22x2 ẋ2

= 2p11x1x2 + 2p12x1

(
− c

m
x2 − k

m
x1

)
+ 2p12x

2
2 + 2p22x2

(
− c

m
x2 − k

m
x1

)

= −2p12
k

m
x21 + 2

(
p11 − p12

c

m
− p22

k

m

)
x1x2 + 2

(
p12 − p22

c

m

)
x22

Since V̇ (x) < 0, one can choose

V̇ (x) = −2x21 − 2x22

Equating terms then yields

p12
k

m
= 1 ⇒ p12 = m

k

p12 − p22
c

m
= −1 ⇒ p22 = m

c
(p12 + 1) = m

c

(m
k

+ 1
)

p11 − p12
c

m
− p22

k

m
= 0 ⇒ p11 = p12

c

m
+ p22

k

m
= c

k
+ m

c
+ k

c
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The matrix

P =
[

c
k + m

c + k
c

m
k

m
k

m
c

(
m
k + 1

)
]

can be verified to be positive definite for m > 0, c > 0, and k > 0.
The system is then asymptotically stable. It is noted that since the system is linear,

stability is always referred to in a global context.
Another approach to be considered is as follows:
The system can be expressed as

ẋ = Ax

where

A =
[

0 1
− k

m − c
m

]

is a Hurwitz matrix with negative real part eigenvalues.
Proceeding to evaluate V̇ (x) yields

V̇ (x) = ẋPx + xPẋ

which upon substitution yields

V̇ (x) = xAPx + xPAx = x (
AP + PA

)
x < 0

This inequality is satisfied if and only if

AP + PA < 0

which is called a linear matrix inequality (LMI) that can be solved for P .
Alternatively, one can write the LMI as a linear matrix equation

AP + PA = −Q

where Q = Q > 0 is a positive-definite matrix. This equation is known as the
algebraic Lyapunov equation.

Thus, setting Q = 2I , where I is an identity matrix, which in this case is a 2-by-2
matrix, then yields

V̇ (x) = −2xx = −2x21 − 2x22

The matrix P is then solved from

AP + PA = −2I
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There are numerical methods that can be used to solve the Lyapunov equation.
For a low matrix dimension less than 4, the equation can be solved analytically. For
this example, one can set up

[
0 − k

m
1 − c

m

] [
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

] [
0 1

− k
m − c

m

]
=

[−2 0
0 −2

]

then expand

[ −2p12 k
m p11 − p12

c
m − p22

k
m

p11 − p12
c
m − p22

k
m 2

(
p12 − p22

c
m

)
]

=
[−2 0

0 −2

]

and equate terms to solve for pi j .

4.2.3 Lyapunov Theorem for Exponential Stability

Theorem 4.2 Let x∗ = 0 be an equilibrium point and if there exists a Lyapunov
function V (x) > 0 for all x (t) ∈ BR such that V̇ (x) < 0 for all x (t) ∈ BR and
there also exist two positive constants η and β such that

V (x) ≤ η ‖x‖2 (4.23)

and
V̇ (x) ≤ −βV (x) (4.24)

then the equilibrium is locally exponentially stable.

Example 4.9 Consider

ẋ = −x
(
1 + sin2 x

)

subject to x (0) = 1.
Choose a Lyapunov candidate function

V (x) = x2 = ‖x‖2

So,
V (0) = x20 = 1

V̇ (x) is computed as

V̇ (x) = 2x ẋ = −2x2
(
1 + sin2 x

) ≤ −2 ‖x‖2 = −2V (x) < 0
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Integrating V̇ (x) yields
V (t) ≤ V (0) e−2t

or
x2 ≤ e−2t

which is equivalent to
|x | ≤ e−t

4.2.4 Radially Unbounded Functions

Definition 4.5 A continuous, positive-valued function ϕ (x) ∈ R
+ is said to belong

to classK ; i.e., ϕ (x) ∈ K , if

• ϕ (0) = 0
• ϕ (x) is strictly increasing for all x (t) ≤ R or x (t) < ∞
Definition 4.6 A continuous, positive-valued function ϕ (x) ∈ R

+ is said to belong
to classK R; i.e., ϕ (x) ∈ K R, if

• ϕ (0) = 0
• ϕ (x) is strictly increasing for all x (t) < ∞
• limx→∞ ϕ (x) = ∞
Definition 4.7 A continuous, positive-valued function V (x) ∈ R

+ with V (0) = 0
is said to be a radially unbounded function if there exists a function ϕ (‖x‖) ∈ K R
such that V (x) ≥ ϕ (‖x‖) for all x (t) ∈ R

n . Thus, V (x) must be infinitely large
when ‖x‖ tends to infinity. That is,

V (x) → ∞ as ‖x‖ → ∞ (4.25)

4.2.5 Barbashin–Krasovskii Theorem for Global Asymptotic
Stability

The asymptotic stability concept in the Lyapunov sense of an equilibrium point is a
local concept such that there exists V (x) > 0 for all x ∈ BR , where BR is a finite
region in D ⊂ R

n for which the function f (x) is locally Lipschitz, then V̇ (x) < 0.
There exists a region of attraction RA ⊂ D ⊂ R

n in which all trajectories will
converge to the origin. On the other hand, asymptotic stability in the large is a global
concept that requires the region of attraction to extend to the entire Euclidean space
R

n . As a result, V (x) > 0 must be defined for all x ∈ R
n .

There is an additional requirement imposed on V (x) for stability in the large. That
is, V (x) is required to be a radially unbounded function. The condition of the radial
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unboundedness of V (x) ensures that all trajectories in the large when ‖x‖ → ∞
will be attracted to the origin. The global stability Lyapunov condition can be stated
by the following Barbashin–Krasovskii theorem [2, 4]:

Theorem 4.3 The equilibrium point x∗ = 0 is asymptotically stable in the large if
there exists a radially unbounded Lyapunov function V (x) > 0 for all x (t) ∈ R

n

such that V̇ (x) < 0 for all x (t) ∈ R
n .

Example 4.10 Consider a scalar linear system

ẋ = −ax

where a > 0, whose equilibrium point at the origin is asymptotically stable in the
large. Suppose a Lyapunov candidate function is chosen as

V1 (x) = x2

1 + x2
> 0

V1 (x) ∈ K but V1 (x) /∈ K R since V1 (0) = 0 and V1 (x) is strictly increasing
for all x (t) < ∞, but limx→∞ V1 (x) = 1. This means that one cannot analyze
global asymptotic stability of the origin of this system using this Lyapunov candidate
function since

V̇1 (x) = 2x ẋ

1 + x2
− 2x3 ẋ

(
1 + x2

)2 = −2ax2
(
1 + x2

)2 → 0

as ‖x‖ → ∞, which implies that the origin is not asymptotically stable as ‖x‖ → ∞.
Therefore, the origin is stable but not asymptotically stable in the large, which is a
contradiction.

Now, suppose another Lyapunov candidate function is chosen as

V2 (x) = x2 > 0

V2 (x) is a radially unbounded function since there exists a function ϕ (‖x‖) =
αx2 ∈ K R, where α < 1, such that V2 (x) ≥ ϕ (‖x‖) for all x (t) < ∞. Global
asymptotic stability of the origin can be analyzed using this radially unbounded
Lyapunov candidate function. Evaluating V̇2 (x) yields

V̇2 (x) = 2x ẋ = −2ax2 < 0

which implies that the origin is indeed asymptotically stable in the large.
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4.2.6 LaSalle’s Invariant Set Theorem

Asymptotic stability requires that V̇ (x) < 0. Yet, for the spring-mass-damper sys-
tem, if the energy function is chosen as a Lyapunov function, then V̇ (x) ≤ 0, even
though the solution of the system is clearly asymptotic in the presence of a dissipa-
tive force due to the viscous friction. The LaSalle’s invariant set theorem can resolve
this apparent contradiction when an asymptotically stable equilibrium point of an
autonomous system only satisfies the Lyapunov condition V̇ (x) ≤ 0.

Definition 4.8 For an autonomous system, a set M is said to be invariant if every
trajectory that starts from a point in M will remain in M for all future time [2, 4].
That is,

x (0) ∈ M ⇒ x (t) ∈ M , ∀t ≥ t0 (4.26)

Example 4.11

• An equilibrium point is an invariant set because by definition x (t) = x∗ is a
constant solution of an autonomous system so that

x (t) = x (t0) = x∗ ∈ M , ∀t ≥ t0

• A region of attractionRA is an invariant set since all trajectories inRA will remain
inRA for all future time and converge to the origin as t → ∞

RA =
{
x (t) ∈ M : lim

t→∞ x (t) = 0
}

• The limit cycle of the Van der Pol oscillator is an invariant set since any point on
the limit cycle will remain on it for all future time.

• The entire Euclidean space R
n is a trivial invariant set since all trajectories must

be in some subspace that belongs in R
n .

�
The LaSalle’s invariant set theorem is stated as follows:

Theorem 4.4 Given an autonomous system, let V (x) > 0 be a positive-definite
function with a continuous first partial derivative such that V̇ (x) ≤ 0 in some finite
region BR ⊂ D . LetR be a set of all points where V̇ (x) = 0. LetM be the largest
invariant set inR. Then, every solution x (t) starting in BR approachesM as t → ∞.

Example 4.12 Consider

[
ẋ1
ẋ2

]
=

[−x31 − x1x22 + x1
−x32 − x21 x2 + x2

]

Choose a Lyapunov candidate function
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V (x) = x21 + x22

Then, V̇ (x) is evaluated as

V̇ (x) = 2x1
(−x31 − x1x

2
2 + x1

) + 2x2
(−x32 − x21 x2 + x2

)

= −2x21
(
x21 + x22 − 1

) − 2x22
(
x21 + x22 − 1

)

= −2
(
x21 + x22

) (
x21 + x22 − 1

)

V̇ (x) < 0 in a set S where

S = {
x (t) ∈ BR : x21 + x22 − 1 > 0

}

but V̇ (x) ≥ 0 in the complementary set

S c = {
x (t) ∈ BR : x21 + x22 − 1 ≤ 0

}

which represents a circular region that includes the origin. Therefore, the origin is
unstable.

Let R be a set of all points where V̇ (x) = 0. Then,

R = {
x (t) ∈ BR : g (x) = x21 + x22 − 1 = V (x) − 1 = 0

}

in fact represents a bounded solution x (t) since all trajectories either inside or outside
ofS c will move towardR and remain inR as illustrated in Fig. 4.6. Thus,R is an
invariant set. One can also verify this by taking the time derivative of the function
g (x) that represents the trajectories in the setR

Fig. 4.6 Bounded solution set
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ġ (x) = d

dt
(V − 1) = V̇ (x) = 0, ∀x (t) ∈ R

The Lyapunov function can be solved analytically by noting that

V̇ = −2V (V − 1)

which leads to
dV

V (V − 1)
= −2dt

Using the partial fraction, this can be expressed as

(
1

V − 1
− 1

V

)
dV = −2dt

which yields the following general solution:

V (t) = V0

V0 − (V0 − 1) e−2t

As t → ∞, V (t) tends to a constant solution as shown in Fig. 4.7 with

lim
t→∞ V (t) = 1
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Fig. 4.7 Trajectories of Lyapunov function tending to an invariant set
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which is in fact the set R. Therefore, the set R is a bounding set of all possible
solutions x (t). Thus, x (t) ∈ L∞; i.e., x (t) is bounded.

Example 4.13Consider the spring-mass-damper system.Choose theLyapunov func-
tion to be the energy function

V (x) = 1

2
mx22 + 1

2
kx21

Then,
V̇ (x) = mx2 ẋ2 + kx1 ẋ1 = −cx22 ≤ 0

Since V̇ (x) is negative semi-definite, then the origin is only stable in theLyapunov
sense, but not asymptotically stable as one would expect for a spring-mass-damper
system with friction. Let R be a set of all points where V̇ (x) = 0. Then,

R = {
x (t) ∈ R

2 : V̇ (x) = 0 ⇒ x2 = 0
}

is a collection of all points that lie on the x1-axis. It follows that any point on this
axis must satisfy

mẋ2 + kx1 = 0

or

ẋ2 = ẍ1 = − k

m
x1

If x1 (t) �= 0, then ẍ1 (t) �= 0 with sgn (ẍ1) = −sgn (x1) inR, where sgn () is the
sign function which returns 1 if the argument is positive, 0 if the argument is zero,
or -1 if the argument is negative. This means that a point on this axis cannot remain
in R because the acceleration ẍ1 causes the point to move toward the origin, unless
it is already at the origin.

Another way to find an invariant set is to evaluate the derivative of the function
that describes R and set it equal to zero. Hence,

ẋ2 = 0

which is satisfied if and only if x1 (t) = 0.
Thus, the invariant set M ⊂ R is a set that contains only the origin. Then,

according to the LaSalle’s invariant set theorem, all trajectories will converge to the
origin as t → ∞. The origin then is asymptotically stable.

�
This example brings up an interesting observation that can be stated in the

following corollary of the LaSalle’s invariant set theorem:

Corollary 4.1 Let V (x) > 0 be a positive definite function with a continuous
first partial derivative such that V̇ (x) ≤ 0 in some finite region BR ⊂ D . Let R ={
x (t) ∈ BR : V̇ (x) = 0

}
and suppose that no solution can stay inR except the trivial
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solution x = 0. Then, the origin is asymptotically stable. Moreover, if V (x) > 0 is
a positive definite radially unbounded function and R = {

x (t) ∈ R
n : V̇ (x) = 0

}
,

then the origin is asymptotically stable in the large.

4.2.7 Differential Lyapunov Equation

The Lyapunov equation has a connection to the optimal control theory. In particular,
the Lyapunov equation can be viewed as a special case of the Riccati equation for a
Linear Quadratic Regulator (LQR) optimal control problem. Consider the following
LTI system:

ẋ = Ax (4.27)

subject to x (t0) = x0, where x (t) ∈ R
n and A ∈ R

n × R
n .

It is of interest to find a condition that minimizes the following quadratic cost
function:

min J =
∫ t f

t0

xQxdt (4.28)

where Q > 0 ∈ R
n × R

n is a positive definite matrix.
The solution can be established by the Pontryagin’s maximum principle in the

optimal control theory [5, 6]. The Hamiltonian function of this system is defined as

H = xQx + λ (Ax + Bu) (4.29)

where λ (t) ∈ R
n is called an adjoint or co-state vector.

The adjoint equation is given by

λ̇ = −∂H

∂x
= −Qx − Aλ (4.30)

subject to the transversality (terminal time) condition

λ
(
t f

) = 0 (4.31)

Choose a solution of λ (t) in the form of

λ (t) = P (t) x (4.32)

where P (t) ∈ R
n × R

n is a time-varying matrix.
Then, the adjoint equation is evaluated with the system dynamics as

Ṗx + PAx = −Qx − APx (4.33)
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By factoring out x (t), the differential Lyapunov equation is obtained as

Ṗ + PA + AP + Q = 0 (4.34)

subject to P
(
t f

) = 0.
Contrasting this with the differential Riccati equation

Ṗ + PA + AP − PBR−1BP + Q = 0 (4.35)

the differential Lyapunov equation is a special case of the differential Riccati equation
for R → ∞.

Note that the differential Lyapunov equation is defined backward in time with the
transversality condition given at the final time. By transforming into a time-to-go
variable, τ = t f − t , then

dP

dτ
= PA + AP + Q (4.36)

subject to P (0) = 0 in the time-to-go coordinate.
If A is Hurwitz and let t f → ∞ which corresponds to an infinite time horizon

solution, then the time-varying solution of the differential Lyapunov equation tends
to a constant solution of the algebraic Lyapunov equation

PA + AP + Q = 0 (4.37)

The constant solution of P is given by

P = lim
τ→∞

∫ τ

0
eA

τ QeAτdτ (4.38)

which is positive definite for Q > 0 and requires that A be Hurwitz since the solution
must be a stable solution such that

lim
τ→∞ eAτ = 0 (4.39)

Example 4.14 Numerically compute P , given

A =
[

0 1
−4 −4

]
, Q =

[
1 0
0 1

]

The differential Lyapunov equation in time-to-go can be solved using any numer-
ical technique for solving differential equations such as the Euler or Runge–Kutta
method. For example, the Euler method for solving the Lyapunov equation is as
follows:

Pi+1 = Pi + 
τ
(
Pi A + APi + Q

)
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Fig. 4.8 Numerical solution of Lyapunov equation

where i denotes the value of P (τ ) at a time τi = i
τ .
The equation can be integrated until the solution converges to within a specified

error. Figure4.8 illustrates the solution convergence of the differential Lyapunov
equation. The result is obtained as

P =
[
1.125 0.125
0.125 0.15625

]

4.3 Stability of Non-Autonomous Systems

Most of the concepts for Lyapunov stability for autonomous systems can be applied
to non-autonomous systems with some additional considerations [2, 4].

Consider a non-autonomous system

ẋ = f (x, t) (4.40)

subject to x (t0) = x0, where f (x, t) is locally Lipschitz inD×[0,∞) andD ⊂ R
n .

The notion of the origin as an equilibrium point now takes on a different meaning
in that the equilibrium point x∗ must be time-invariant for all t ≥ t0 and satisfies

f
(
x∗, t

) = 0 (4.41)
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Otherwise, the system does not have a “true” equilibrium point in the Lyapunov
sense.
Example 4.15

• The system
ẋ = g (t) h (x)

has an equilibrium point x∗ where

h
(
x∗) = 0

• The system
ẋ = g (t) h (x) + d (t)

does not have a true equilibrium point since h (x) would have been a function of
t to satisfy ẋ (t) = 0, which is a contradiction unless g (t) = αd (t) for some
constant α.

4.3.1 Uniform Stability

The Lyapunov stability definition for a non-autonomous system is defined as follows:

Definition 4.9 The equilibrium point x∗ = 0 is said to be stable (in the sense of
Lyapunov) if, for any R > 0, there exists some r (R, t0) > 0 such that

‖x0‖ < r ⇒ ‖x‖ < R, ∀t ≥ t0 (4.42)

�

Note that the difference in this definition as compared to that for an autonomous
system is the ball of radius r that encloses x0 now may depend on the initial time t0.
Thus, the stability of the origin may also be dependent on the initial time.

The concept of uniformstability is an additional consideration for non-autonomous
systems. Uniform stability implies that the radius r = r (R) is not dependent on
the initial time, and so are the stability properties of the equilibrium point. For
autonomous systems, stability is independent of the initial time. This property is
highly desirable since it eliminates the need for examining the effect of the initial
time on the stability of a non-autonomous system.

Definition 4.10 Given a Lyapunov function V (x, t) for a non-autonomous system
that satisfies the following conditions:

V (0, t) = 0 (4.43)
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and
0 < V (x, t) ≤ W (x) (4.44)

where W (x) > 0 is a positive-definite function, then V (x, t) is said to be a positive
definite, decrescent function.

Example 4.16 The Lyapunov candidate function

V (x, t) = (
1 + sin2 t

) (
x21 + x22

)

is bounded from above by

0 < V (x, t) ≤ 2
(
x21 + x22

) = W (x)

Since W (x) > 0, then V (x, t) is a positive definite, decrescent function.
�

The Lyapunov’s direct method for a non-autonomous system is stated in the
following theorem:

Theorem 4.5 If there exists a positive definite, decrescent Lyapunov function
V (x, t) for all x (t) ∈ BR and t ≥ 0 such that

V̇ (x, t) = ∂V

∂x
f (x, t) + ∂V

∂t
≤ 0 (4.45)

then the origin is said to be uniformly stable in the Lyapunov sense. Moreover,
if V̇ (x, t) < 0, then the origin is said to be uniformly asymptotically stable, and
additionally, if the region BR is extended to the entire Euclidean space R

n , then the
origin is said to be uniformly asymptotically stable in the large.

4.3.2 Uniform Boundedness

When a non-autonomous system does not have an equilibrium point, stability of such
a system is defined by the notion of boundedness [2, 4].

Definition 4.11 The solution of a non-autonomous system is said to be uniformly
bounded if, for any R > 0, there exists some r (R) > 0 independent of the initial
time t0 such that

‖x0‖ < r ⇒ ‖x‖ ≤ R, ∀t ≥ t0 (4.46)

Moreover, the solution is said to be uniformly ultimately bounded if, for any
R > 0, there exists some r > 0 independent of R and the initial time t0 such that

‖x0‖ < r ⇒ ‖x‖ ≤ R, ∀t ≥ t0 + T (4.47)



72 4 Lyapunov Stability Theory

where T = T (r) is some time interval after the initial time t0.
�

The uniform ultimate boundedness concept simply means that the solution may
not be uniformly bounded initially according to Definition 4.11 but eventually
becomes uniformly ultimately bounded after some time has passed. The constant
R is called a bound if the solution is uniformly bounded or an ultimate bound if the
solution is uniformly ultimately bounded.

The Lyapunov’s direct method can be applied to a non-autonomous system
according to the following theorem:

Theorem 4.6 Given a Lyapunov function V (x, t) for all ‖x‖ ≥ R and t ∈ [0,∞),
then the solution of the non-autonomous system (4.40) is said to be uniformly
bounded if there exist functions ϕ1 (‖x‖) ∈ K R and ϕ2 (‖x‖) ∈ K R such that [2]

• ϕ1 (‖x‖) ≤ V (x, t) ≤ ϕ2 (‖x‖)
• V̇ (x, t) ≤ 0

for all‖x‖ ≥ R and t ∈ [0,∞). In addition, if there exists a functionϕ3 (‖x‖) ∈ K R
such that

• V̇ (x, t) ≤ −ϕ3 (‖x‖)
for all ‖x‖ ≥ R and t ∈ [0,∞), then the solution is said to be uniformly ultimately
bounded.

Example 4.17 Consider
ẋ = −x + 2 sin t

subject to x (0) = x0.
The system does not have an equilibrium. The solution is

x = (x0 + 1) e−t + sin t − cos t

If ‖x0‖ < r and recognizing that e−t ≤ 1 and |sin t − cos t | ≤ √
2, then

‖x‖ ≤ ‖x0 + 1‖ + √
2 < r + 1 + √

2 = R

Thus, one can choose r (R) = R − 1 − √
2 according to Definition 4.11. So, the

solution is uniformly bounded. Suppose x0 = 1, then the bound is R = 2 + √
2.

Moreover, as t → ∞, then the solution tends to

x → sin t − cos t

so that
‖x‖ ≤ √

2 = R

independent of r . The solution then is also uniformly ultimately bounded with an
ultimate bound of

√
2 as shown in Fig. 4.9.
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The Lyapunov’s direct method is now applied to determine the uniform bound-
edness of a solution. Consider a Lyapunov candidate function for this system

V (x) = x2 > 0

Note that one can always find ϕ1 (‖x‖) ∈ K R and ϕ2 (‖x‖) ∈ K R for this
Lyapunov candidate function such that ϕ1 (‖x‖) ≤ V (x) ≤ ϕ2 (‖x‖), for example,
ϕ1 (‖x‖) = ax2 with a < 1 and ϕ2 (‖x‖) = bx2 with b > 1.

Then,
V̇ (x) = 2x ẋ = 2x (−x + 2 sin t) ≤ −2x2 + 4 ‖x‖

We see that
V̇ (x) ≤ −2V (x) + 4

√
V (x)

Let W (t) = √
V (t) = ‖x‖. Then,

Ẇ = V̇

2
√
V

= −√
V + 2 ≤ −W + 2

The solution of W (t) is

W ≤ (‖x0‖ − 2) e−t + 2

Thus,
lim
t→∞ ‖x‖ = lim

t→∞ W ≤ 2 = R



74 4 Lyapunov Stability Theory

Choose
ϕ3 (‖x‖) = 2 ‖x‖2 − 4 ‖x‖

Note that ϕ3 (‖x‖) ∈ K R (verify!). Then, it follows that

V̇ (x) ≤ −ϕ3 (‖x‖)

Then, V̇ (x) ≤ 0 if −2x2 + 4 ‖x‖ ≤ 0 or ‖x‖ ≥ 2. Therefore, according to
Theorem 4.6, the solution x (t) is uniformly ultimately bounded with a Lyapunov
ultimate bound of 2. It is noted that the Lyapunov ultimate bound is always more
conservative or greater than or equal to the ultimate bound derived from the actual
solution as illustrated in Fig. 4.9.

There is another way of showing that x (t) is uniformly ultimately bounded. By
completing the square, V̇ (x) can also be expressed as

V̇ (x) ≤ −2 (‖x‖ − 1)2 + 2

Then, V̇ (x) ≤ 0 if −2 (‖x‖ − 1)2 + 2 ≤ 0 or ‖x‖ ≥ 2. Since V̇ (x) ≤ 0 outside
the compact set ‖x‖ ≤ 2, but V̇ (x) > 0 inside it, therefore the solution x (t) is
uniformly ultimately bounded. Any trajectory that starts outside the compact set will
reach the ultimate bound ‖x‖ = 2 because V̇ (x) ≤ 0 outside the compact set. Any
trajectory that starts inside the compact set will move away from the origin because
V̇ (x) > 0 inside the compact set, but will eventually be attracted to the ultimate
bound ‖x‖ = 2.

4.3.3 Barbalat’s Lemma

The LaSalle’s invariant set theorem can be used to show asymptotic stability of
an equilibrium point for an autonomous system when V̇ (x) is only negative semi-
definite. This theorem cannot be used for non-autonomous systems. Therefore, it can
be much more difficult to show asymptotic stability for a non-autonomous system
than for an autonomous system. Barbalat’s lemma is a mathematical tool that can be
used to address this situation to some extent [4].

Firstly, the concept of uniform continuity needs to be introduced. A mathematical
formal definition of uniform continuity of a function is given as follows:

Definition 4.12 The function f (t) ∈ R is uniformly continuous on a set D if, for
any ε > 0, there exists some δ (ε) > 0 such that

|t2 − t1| < δ ⇒ | f (t2) − f (t1)| < ε, ∀t1, t2 (4.48)

�
The following statements are equivalent to the definition of uniform continuity:
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• Suppose a function f (t) is continuous on a closed finite interval t ∈ [t1, t2]. Then,
f (t) is uniformly continuous on t ∈ [t1, t2].

• Suppose a function f (t) is differentiable on a set D , and there exists a constant
M > 0 such that

∣∣ ḟ (t)
∣∣ < M for all t . Then, f (t) is uniformly continuous onD .

In the simplest term, uniform continuity of a differentiable function f (t) requires
its derivative ḟ (t) to exist and be bounded.
Example 4.18

• The function f (t) = t2 for all t ∈ [0,∞) is continuous but is not uniformly
continuous since ḟ (t) is not bounded for all t ∈ [0,∞).

• The function f (t) = t2 for t ∈ [0, 1] is uniformly continuous since f (t) is
continuous for t ∈ [0, 1].

• The function f (t) = √
t for all t ∈ [0,∞) does not have a bounded derivative

ḟ (t) = 1
2
√
t
for all t ∈ [0,∞), and since the interval is semi-open and infinite,

one cannot readily conclude that f (t) is not uniformly continuous on t ∈ [0,∞).
However, this function is actually uniformly continuous on t ∈ [0,∞). To see
this, we note that the interval can be divided into two subintervals t ∈ [0, a] and
t ∈ [a,∞) where a > 0. Then, f (t) is uniformly continuous on t ∈ [0, a]
since f (t) is continuous on t ∈ [0, a], and furthermore f (t) is also uniformly
continuous on t ∈ [a,∞) since ḟ (t) = 1

2
√
t
is bounded on t ∈ [a,∞). Therefore,

in totality, f (t) is uniformly continuous on t ∈ [0,∞).
• Consider a stable LTI system

ẋ = Ax + Bu

with x(t0) = x0 and a continuous bounded input u (t). The system is exponentially
stable with the solution

x = e−A(t−t0)x0 +
∫ t

t0

eA(t−τ)Bu (τ ) dτ

Thus, x (t) is a continuous bounded signal with a bounded derivative ẋ (t) for all
t ∈ [0,∞). Therefore, x (t) is uniformly continuous. Any output signal

y = Cx + Bu

is also uniformly continuous if u (t) has a bounded derivative. The system is then
said to be bounded-input-bounded-output (BIBO) stable.

�
The Barbalat’s lemma is now stated as follows:

Lemma 4.1 If the limit of a differentiable function f (t) as t → ∞ exists and is
finite, and if ḟ (t) is uniformly continuous, then limt→∞ ḟ (t) = 0.
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Example 4.19

• The function f (t) = e−t2 has a finite limit as t → ∞. To determine the uniform
continuity of the first derivative ḟ (t) = −2te−t2 , we need to determine whether or
not the second derivative f̈ (t) is bounded for all t ∈ [0,∞). The second derivative
f̈ (t) = −2e−t2 + 4t2e−t2 , in fact, is bounded because the exponential term e−t2

decreases at a much faster rate than the power term t2. Therefore, limt→∞ ḟ (t) =
0. In fact, one can verify limt→∞ −2te−t2 = 0 using the L’Hospital rule.

• The function f (t) = 1
t sin

(
t2

)
which tends to zero as t → ∞ butwhose derivative

ḟ (t) = − 1
t2 sin

(
t2

) + 2 cos
(
t2

)
does not have a limit as t → ∞. Thus, it can be

seen that even if the limit of a differentiable function f (t) exists and is finite as
t → ∞, it does not necessarily imply that limt→∞ ḟ (t) = 0 since ḟ (t) may not
be uniformly continuous, that is, ḟ (t) has a bounded derivative or equivalently
f̈ (t) is bounded. Therefore, the function f (t) = 1

t sin
(
t2

)
does not satisfy the

Barbalat’s lemma.
• The function f (t) = sin (ln t) whose derivative ḟ (t) = 1

t cos (ln t) tends to zero
but f (t) does not have a finite limit as t → ∞. Thus, limt→∞ ḟ (t) = 0 does
not necessarily imply that the limit of a differentiable function f (t) exists and is
finite. Therefore, the converse of the Barbalat’s lemma is not true.

�
TheBarbalat’s lemma is nowextended to theLyapunov’s directmethod to examine

the asymptotic stability of a non-autonomous system by the following Lyapunov-like
lemma [4]:

Lemma 4.2 If a positive-definite function V (x, t) has a finite limit as t → ∞, and
if V̇ (x, t) is negative semi-definite and uniformly continuous for all t ∈ [0,∞), then
V̇ (x, t) → 0 as t → ∞.

Example 4.20 Consider a simple adaptive control system

ẋ = −ax + b
[
u + θ∗w (t)

]

where a > 0, w (t) ∈ L∞ is a bounded time-varying disturbance, and θ∗ is an
unknown constant parameter.

To cancel out the effect of the time-varying disturbance, an adaptive controller is
designed as

u = −θ (t) w (t)

where θ (t) is an adaptive parameter that estimates θ∗.
If θ (t) → θ∗ as t → ∞, then the adaptive controller perfectly cancels out the

disturbance and the closed-loop system tends to an ideal reference model

ẋm = −axm

where xm (t) is the desired response of x (t).
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The adaptive parameter is computed as

θ̇ = −bew (t)

where e (t) = xm (t)− x (t) is called a tracking error, described by the tracking error
equation

ė = ẋm − ẋ = −ae + bθ̃w (t)

where θ̃ (t) = θ (t) − θ∗ is the parameter estimation error.
The combined system is non-autonomous due to w (t). Both the variables e (t)

and θ (t) are influenced by the tracking error equation ė (t) and the adaptive law
θ̇ (t). To show that the system is stable, choose the following Lyapunov candidate
function that includes both the variables e (t) and θ̃ (t):

V (e, θ) = e2 + θ̃2

Then,

V̇
(
e, θ̃

)
= 2e

[
−ae + bθ̃w (t)

]
+ 2θ̃ [−bew (t)] = −2ae2 ≤ 0

Since V̇ (e, θ) is negative semi-definite, e (t) ∈ L∞ and θ (t) ∈ L∞, i.e., they
are bounded, but the LaSalle’s invariant set theorem cannot be used to show that
the tracking error e (t) converges to zero. This is where the Barbalat’s lemma comes

in handy. Firstly, V
(
e, θ̃

)
must be shown to have a finite limit as t → ∞. Since

V̇
(
e, θ̃

)
≤ 0, then

V
(
e (t → ∞) , θ̃ (t → ∞)

)
− V

(
e (t0) , θ̃ (t0)

)
=

∫ ∞

t0

V̇
(
e, θ̃

)
dt

= −2a
∫ ∞

t0

e2 (t) dt = −2a ‖e‖22

V
(
e (t → ∞) , θ̃ (t → ∞)

)
= V

(
e (t0) , θ̃ (t0)

)
− 2a ‖e‖22

= e2 (t0) + θ̃2 (t0) − 2 ‖e‖22 < ∞

So, V
(
e, θ̃

)
has a finite limit as t → ∞. Since ‖e‖2 exists, therefore e (t) ∈

L2 ∩ L∞.

Next, V̇
(
e, θ̃

)
must be shown to be uniformly continuous. This can be done by

examining the derivative of V̇
(
e, θ̃

)
to see if it is bounded. V̈

(
e, θ̃

)
is computed as
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V̈
(
e, θ̃

)
= −4ae

[
−ae + bθ̃w (t)

]

Since e (t) ∈ L2 ∩ L∞ and θ̃ (t) ∈ L∞ by the virtue of V̇
(
e, θ̃

)
≤ 0, and

w (t) ∈ L∞ by assumption, then V̈
(
e, θ̃

)
∈ L∞. Therefore, V̇

(
e, θ̃

)
is uniformly

continuous. It follows from the Barbalat’s lemma that V̇
(
e, θ̃

)
→ 0 and hence

e (t) → 0 as t → ∞. Note that one cannot conclude that the system is asymptotically
stable since only e (t) → 0 as t → ∞, but θ̃ (t) is only bounded.

4.4 Summary

The Lyapunov stability theory is the foundation of nonlinear systems and adap-
tive control theory. Various stability concepts for autonomous and non-autonomous
systems are introduced. The Lyapunov’s direct method is an indispensable tool
for analyzing stability of nonlinear systems. Barbashin–Krasovskii theorem pro-
vides a method for global stability analysis. LaSalle’s invariant set theorem provides
another complementary tool for analyzing systems with invariant sets. Stability of
non-autonomous systems involves the concepts of uniform stability, uniform bound-
edness, and uniform ultimate boundedness. Barbalat’s lemma is an important math-
ematical tool for analyzing stability of adaptive control systems in connection with
the concept of uniform continuity of a real-valued function.

4.5 Exercises

1. Given [
ẋ1
ẋ2

]
=

[
x1

(
x21 + x22 − 1

) − x2
x1 + x2

(
x21 + x22 − 1

)
]

a. Determine all the equilibrium points of the system and linearize the system
about the equilibrium points to classify the types of equilibrium points.

b. Use the Lyapunov candidate function

V (x) = x21 + x22

to determine the types of Lyapunov stability of the equilibrium points and
their corresponding regions of attraction, if any.

2. Given

ẋ = x

(
−1 + 1

2
sin x

)
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subject to x (0) = 1.

a. Determine the upper and lower bound solutions.
b. Use the Lyapunov candidate function

V (x) = x2

to determine the type of Lyapunov stability and the upper bound of V (x)
as an explicit function of time.

3. Use the Lyapunov candidate function

V (x) = x21 + x22

to study stability of the origin of the system

[
ẋ1
ẋ2

]
=

[
(x2 − x1)

(
x21 + x22

)

(x1 + x2)
(
x21 + x22

)
]

4. Given
ẋ = Ax

a. Calculate analytically P that solves

AP + PA = −2I

where

A =
[

0 1
−4 4

]

and verify the result using the MATLAB function “lyap.”
b. Determine if P is positive or negative (semi-)definite. What can be said

about stability of the origin of this system.

5. Given [
ẋ1
ẋ2

]
=

[
x1

(
1 − x21 − x22

) + x2
−x1 + x2

(
1 − x21 − x22

)
]

a. Use the Lyapunov candidate function

V (x) = x21 + x22

to determine the type of Lyapunov stability of the origin.
b. Find an invariant set.
c. Solve for V (t) as an explicit function of time and plot the trajectories of

V (t) for V (0) = 0.01, 0.5, 1, 1.5, 2.



80 4 Lyapunov Stability Theory

6. Given

A =
⎡

⎣
0 1 0

−1 −1 −2
1 0 −1

⎤

⎦

Determine whether or not A is Hurwitz. If so, compute P using the Euler method
to integrate the differential Lyapunov equation

dP

dτ
= PA + AP + I

subject to P (0) = 0, where τ is time-to-go. Plot all six elements of P on the
same plot and verify the result at the final time-to-go with theMATLAB function
“lyap.”

7. Use the Lyapunov’s direct method to determine an ultimate bound of the solution
x (t) for the following equation:

ẋ = −x + cos t sin t

subject to x (0) = 1. Plot the solution x (t) for 0 ≤ t ≤ 20.
8. Given a non-autonomous system

ẋ = (−2 + sin t) x − cos t

a. Show that the system is uniformly ultimately bounded by the Lyapunov
theorem for non-autonomous systems. Also determine the ultimate bound
of ‖x‖.

b. Plot the solution by numerically integrating the differential equation and
show that it satisfies the ultimate bound.

9. Given
ẋ = − (

1 + sin2 t
)
x + cos t

a. Use the Lyapunov candidate function

V (x) = x2

to determine the upper bound of V̇ (x) as a function of V (x).
b. Let W = √

V . Solve for the inequality W (t) as an explicit function of time
and determine the ultimate bound of the system.

c. Show that the system is uniformly ultimately bounded.

10. For the following functions:

a. f (t) = sin
(
e−t2

)

b. f (t) = e− sin2 t
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Plot f (t) for t ∈ [0, 5]. Determine whether or not the limit of f (t) exists as
t → ∞ and ḟ (t) is uniformly continuous. If so, use the Barbalat’s lemma to
show that ḟ (t) → 0 as t → ∞ and verify by taking the limit of ḟ (t) as t → ∞.

11. Consider the following adaptive control system:

ė = −e + θx

θ̇ = −xe

where e (t) = xm (t) − x (t) is defined as the tracking error between a given
explicit reference time signal xm (t) which is assumed to be bounded, i.e.,
xm (t) ∈ L∞, and the state variable x (t). Show that the adaptive system is
stable and that e (t) → 0 as t → ∞.
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