
An Improved Method Level Bug Localization
Approach Using Minimized Code Space

Shanto Rahman(B), Md. Mostafijur Rahman, and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh
{bit0321,bit0312,sakib}@iit.du.ac.bd

Abstract. In automatic software bug localization, source code classes
and methods are commonly used as the unit of suggestions. However,
existing techniques consider whole source code to find the buggy loca-
tions, which degrades the accuracy of bug localization. In this paper,
a Method level Bug localization using Minimized code space (MBuM)
has been proposed which improves the accuracy by only considering bug
specific source code. Later, this source code is used for identifying the
similarity to the bug report. These similarity scores are measured using a
modified Vector Space Model (mVSM), and based on that scores MBuM
ranks a list of source code methods. The validity of MBuM has been
checked by providing theoretical proof using formal methods. Case stud-
ies have been performed on two large scale open source projects namely
Eclipse and Mozilla, and the results show that MBuM outperforms exist-
ing bug localization techniques.

Keywords: Method level bug localization · Search space minimization ·
Retrieval and ranking

1 Introduction

In general, bug fixing is initiated when the Quality Assurance (QA) team or user
reports against a faulty scenario. Developer receive the reports and try to find
the buggy locations into the source code. Generally developers use their experi-
ences on the source code, or debug the code using the debugger of an Integrated
Development Environment (IDE). A source code project often contains millions
of lines (e.g., Eclipse version 3.0.2 contains 1,86,772 nonempty lines) from which
identifying the actual buggy location is always challenging. In case of automatic
software bug localization, developers usually provide the bug reports and cor-
responding buggy project to an automated tool, which provides a ranked list
of buggy locations. Developer traverse the list from the beginning until they
find the actual one. Hence, the accurate ranking of buggy locations is needed to
reduce the searching time.

Automatic software bug localization is commonly performed using static,
dynamic or both analysis of the source code by which failure locations of a
software can be identified [1–3]. Most of the bug localization techniques follow
c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 179–200, 2016.
DOI: 10.1007/978-3-319-56390-9 9

180 S. Rahman et al.

static analysis where Information Retrieval (IR) techniques are used [4,5]. Static
analysis uses probabilistic approach, so the more the unnecessary information is
considered, the more the biasness will be introduced, and the biasness lead to
inaccuracies. Dynamic analysis based techniques analyze the execution trace of
the source code with suitable test suites to identify the executed methods for a
bug. As dynamic analysis only provides method call sequences except method
contents, the solution search space has become very small. And using this small
search space, it is hard to find the buggy locations.

In recent years, several researches on bug localization have been conducted
using static analysis where buggy locations are identified using bug reports and
source code [6,7]. In static analysis, authors create two lists of corpora from
the source code and bug report. Then corpora are processed so that proper
similarities between source code and bug report can be measured. Finally, IR
based techniques are applied for ranking probable buggy files [4,5]. Zhou et al.
[5] propose such a technique named as BugLocator where Vector Space Model
(VSM) is modified by proposing tf-idf formulation. As BugLocator only uses
static information of the whole source code, this considers irrelevant information
for a bug. An extended version of BugLocator is proposed by assigning special
weights on structural information (e.g., class names, method names, variable
names and comments) of the source code which also ranks classes as buggy
[4]. Similar to BugLocator, this technique also considers the whole source code,
as a consequence biasness may be raised. Several dynamic analysis based bug
localization techniques have already been proposed [8,9]. Wilde et al. introduce
a technique where source code execution traces are considered using passing and
failing test cases [8]. However, due to considering passing test cases, irrelevant
features may be included in the domain of search space which may hamper
the accuracy of bug localization. Poshyvanyk et al. propose PROMISER which
suggests methods as buggy by combining both static and dynamic analysis of
the source code [9]. Unfortunately, this technique considers whole source code in
static analysis which may produce biasness on the ranking.

This paper proposes an a automatic software bug localization technique,
namely Method level Bug localization using Minimized code space (MBuM) where
buggy locations of the source code are identified by eliminating irrelevant source
code (Code space and search space basically represent the same thing. That is
why, in this article, code space and search space are used interchangeably; a pre-
liminary version of this work can be found in [10]). At first, MBuM identifies a
relevant search space by tracing the execution of the source code for a bug. As
dynamic analysis provides a list of executed methods without method contents,
static analysis is performed to extract those. Several pre-processing techniques
are applied on these relevant source code along with the bug report, which pro-
duce code and bug corpora. During the creation of bug corpora, pre-processing
techniques such as stop words removal, multiwords splitting, semantic meaning
extraction and stemming are applied on the bug report. In addition, program-
ming language specific keywords removal is applied for generating scenario specific
code corpora. Finally, to rank the buggy methods, similarity scores are measured

An Improved Method Level Bug Localization Approach 181

between the code corpora of the methods and bug corpora of the bug report by
applying mVSM. It modifies existing VSM by providing more priority to be buggy
to the larger sized methods than the small sized methods [5].

The effects of search space on ranking is formulated as a proposition, which
has been proved using formal methods. To evaluate the results of the proposed
solution, the experiments (i.e., Sect. 5) contain three case studies where Eclipse
and Mozilla are used as the subject. Results are compared with four existing
bug localization techniques namely PROMISER [9], BugLocator [5], LDA [11]
and LSI [12]. In Eclipse, MBuM ranks the actual buggy method at the first posi-
tion in three (60%) among five bugs, while other techniques rank no more than
one (20%) bug at the top. Similarly in case of Mozilla, LDA, LSI and BugLo-
cator rank none of the bugs at the top whereas MBuM ranks three (60%) and
PROMISER ranks two (40%) bugs at the first position. Above results show that,
MBuM outperforms other existing state-of-the-art bug localization techniques.

Rest of the paper is structured as follows. In Sect. 2, existing literature on
bug localization are given. Section 3 presents the model of the proposed tech-
nique, and the implementation of that model is described in Sect. 4. The result
is analyzed in Sect. 5, and later several kinds of threats are discussed in Sect. 6.
Finally, Sect. 7 concludes the contribution with future remarks.

2 Related Work

This section focuses on the researches which are conducted to increase the accu-
racy of bug localization. Following discussion first holds some of the static analy-
sis based bug localization techniques. Later, dynamic analysis based techniques
are depicted.

2.1 Source Code Static Analysis Based Techniques

Brent D. Nichols proposes a method level bug localization technique [6] using
source code static analysis. At first, the semantic meanings of each method has
been extracted by applying several text processing techniques such as stop words
removal, separation of identifiers and stemming. In the second phase, authors add
extra information from the previous bug history to the methods. When a new bug
is arrived, Latent Semantic Indexing (LSI) is applied on the method documents
to identify the relationships between the terms of the bug report and the concepts
of the method documents. Based on that relationships, a list of buggy methods
has been suggested. Due to depending on the predefined dictionary keywords and
inadequate previous bug reports, this greedy approach may fail. Furthermore,
the accuracy of this technique may not be satisfactory enough due to considering
the whole source code information rather than the bug specific information.

Zhou et al. propose BugLocator where buggy locations are identified at the
class level using static analysis of the source code [5]. At first authors process
bug report and source code separately, resulting two sets of corpora, one for bug
report and another for source code. These corpora are processed using several

182 S. Rahman et al.

text processing techniques such as stop words removal, programming language
specific keywords removal, multi-words identification and stemming. Later, these
two sets of corpora are compared using a revised Vector Space Model (rVSM).
For a specific bug, BugLocator suggests a list of classes as buggy where develop-
ers need to manually investigate the source code for finding more granular buggy
locations (e.g., buggy methods of the source code). As this technique considers
whole source code during static analysis, accuracy may be hampered because
large unnecessary information creates more biasness in the ranking.

An improved version of BugLocator [5] is addressed (titled as BLUiR) by
Ripon et al. where structural information including class names, method names,
variable names and comments of the source code get more priority than oth-
ers [4]. All identifiers and comments are tokenized using above mentioned text
processing approaches except the removal of programming language specific key-
words. However, most of the cases the consideration of programming language
specific keywords may introduce irrelevant information. Along with this, BLUiR
may increase unnecessary information by considering whole source code. And
these large irrelevant information for a bug may increase false positive rate in
the ranking of buggy locations.

Alhindawi et al. [13] introduce another method level feature location based
technique by enhancing source code with stereotypes. Stereotypes represent the
details of each word which is commonly used in programming. For example,
the stereotype named as ‘get’ means that a method returns a value. Similarly,
the stereotype ‘set’ represents that the value of a data member has been set.
In this approach, the corpus of the source code is enriched with the combina-
tion of stereotypes which describes the abstract role of the source code method.
These stereotype information are derived automatically from the source code
via program analysis. After adding stereotype information with the source code
methods, Information Retrieval (IR) based technique is used to run queries for
feature location. The basic assumption is that adding stereotype information to
the source code corpus will improve the results of bug localization.

Wang et al. introduce another bug localization technique, where similar bug
reports, version history and structure of the source code are amalgamated [7].
This technique also suggests file level buggy locations and so developers have to
spend lots of searching time to identify more granular level (i.e., methods of the
source code). Here, the accuracy may be deteriorated significantly because of the
consideration of large and irrelevant source code for a bug. Recently, Rahman
et al. consider version histories and structural information of the source code
to identify buggy files [14]. Here, the scores of rVSM [5] are combined with the
frequently changed files information. Later, the source code files whose structural
information (such as class names, method names) are available in the bug report
get more priority. Based on the above assigned scores, a list of buggy files are
ranked. Unfortunately, due to using whole source code in static analysis, the
accuracy of this technique may also be biased.

An Improved Method Level Bug Localization Approach 183

2.2 Source Code Dynamic Analysis Based Techniques

In dynamic analysis based techniques, the run time behavior of the source code
is obtained using proper test suits. Using source code dynamic analysis, data
flow of the execution are recorded and irrelevant source code are discarded.

The first dynamic analysis based bug localization technique is proposed by
Wilde et al. where source code execution traces are analyzed using multiple test
cases [8]. Authors consider two types of test cases such as passing and failing
test cases. Using the passing test cases, desired features are extracted. Similarly,
failing test case provides the features which are not desirable. To identify the
buggy locations, these two types of test cases are considered which provide a
large volume of features. However, due to using passing test cases, irrelevant
features may be included in the domain of search space.

Eisenbarth et al. propose an improved version of [8] where both dynamic
and static analysis of the source code are combined [15]. Here, static analysis
identifies the dependencies among the data to locate the features in a program
while dynamic analysis collects the source code execution traces for a set of
scenarios. These traces are analyzed with a view to categorizing the subroutines
based on the degree of a feature. However, here during static analysis whole
source code is used which degrades the accuracy of the technique.

PROMESIR is another source code dynamic analysis based technique,
addressed by Poshyvanyk et al. [9]. Through dynamic analysis, executed buggy
methods are extracted for a bug. Meanwhile, static analysis is also applied here
which collects the whole source code. Initially, these two analysis techniques
produce bug similarity scores differently without interacting with one another.
Finally, these two scores are combined and obtained a weighted ranking score
for each source code method. Although this technique uses dynamic information
of the source code, it fails to discard the irrelevant source code for a bug. Rather
the whole source code is considered during static analysis which may increase
the biasness. As a consequence, the accuracy of bug localization is declined.

From the above discussions, it is clear that the existing bug localization
techniques commonly follow static, dynamic or combination of both analysis
of the source code and all of the existing techniques consider whole source code
rather than discarding irrelevant source code for a bug. As a result, the accuracies
of the existing bug localization techniques hamper significantly.

3 Does Minimized Code Space Can Improve
the Accuracy of Bug Localization Techniques?

To answer this question, a model named as Method level Bug localization using
Minimized code space (MBuM) has been developed. At first, the elements of
the model are defined. Source code and bug report act as the input, while a
ranked list of buggy methods is the system output. The input are processed
using a bug localizer, and the buggy methods are ranked. During the processing
of input, it is assumed that a bug report and source code share some common

184 S. Rahman et al.

information. Since the size of a software project is too large (with respect to the
total statements of the source code), it is quite difficult to find the actual buggy
locations. The details of the model is described below using Z notations [16].

MBuM
D : Dictionary
M : List of methods
B : Bug report
S : whole source code
bi : terms of the bug report
m : accurate set of buggy methods
si : terms of the source code

B ← bi | bi ∈ D
S ← si | si ∈ D
m ← find accurate relation between bi

∧
si

Here, D represents the set of Dictionary words of bug report and source code.
bi and si are the number of the terms of bug report and source code respectively.
As the main objective is to increase the suggestion of accurate numbers of buggy
methods (m), an accurate relationship should be established between the bug
report and source code terms. However, it is difficult to find exact buggy locations
from the whole source code, and so removal of irrelevant source code is desired.
Moreover, to find the list of buggy methods, a good source code terms and bug
report processing technique is needed.

Now, a new proposition is developed by which valid search space can be
extracted. The proof of the proposed proposition is described in the followings
using Z notations [16].

A small and relevant search space can increase the accuracy of bug localiza-
tion because localization follows a probabilistic way and accuracy depends on the
volume of search space. The relevant search space may be obtained by executing
the source code for a specific bug. Since only the bug specific source code is
considered, it ensures that the actual buggy methods must reside within the rel-
evant extracted domain. After discarding the irrelevant source code, more accu-
rate bug localization techniques can be obtained. This hypothesis is described in
Lemmas 1 and 2.

Lemma 1: In bug localization, the selection of relevant domain can
produce more accurate ranking than considering the whole-domain.

For developing a software, a large number of source code files or classes are
created. The number of selected source code class can significantly affect the
ranking score of bug localization. In case of accurate bug localization, to show
the number of classes’ effects, a representative ranking model namely Vector

An Improved Method Level Bug Localization Approach 185

Space Model (VSM) can be used [17]. VSM depends on the inverse document
frequency (idf), and idf also depends on the number of documents or source
code files which is used to increase the weights of rare terms as Eq. 1.

idf = log(
�docs
nt

) (1)

Here, �docs and nt are the total number of documents and the number of doc-
uments containing the term t respectively. Equation 1 shows that idf increases
with the increment of �docs. The VSM depends on the idf and the final score of
VSM is calculated using Eq. 2.

VSM (q , d) = cos(q , d) = (
∑

t∈q∩d

(log ftq + 1) × (log ftd + 1) × idf 2)

× 1
√∑

t∈q((log ftq + 1) × idf)2
× 1

√∑
t∈d((log ftd + 1) × idf)2

(2)

In Eq. 2, t , q and d represent the term, query and document respectively. ftq
and ftd are the term frequencies within the query and documents respectively. In
this study, inverse method frequency (imf) has been used instead of idf to give
more priority to rare terms in methods. So, the consideration of large number of
irrelevant methods can deteriorate the ranking scores significantly. The effect of
imf is illustrated by the following mathematical model when whole source code
is considered for finding buggy locations.

RareTermPriority
weight(x) : x gets weight
r? : Rare Term
b? : Bug Report
t? : Term
υ : Buggy Methods
ψ : Non Buggy Methods

∃ t? ∈ b? : (t? ∈ r?) ∧ (t? ∈ υ) ∧ (t? �∈ ψ)
•weight(υ) ⇒ rankhigh(υ) (a)
∃ t? ∈ b? : (t? ∈ r?) ∧ (t? �∈ υ) ∧ (t? ∈ ψ)
•weight(ψ) ⇒ rankhigh(ψ) (b)

The above model shows the impact of rare terms in bug localization.
Here, two scenarios may be occurred such as RareTermPriority(a) and
RareTermPriority(b) which represent the weight of buggy and non-buggy meth-
ods respectively. The detail is described below.

1. The methods which hold rare terms and related to a bug, get more priority
to be buggy which is desired (shown in RareTermPriority(a)).

186 S. Rahman et al.

2. Similarly, rare terms exist in methods which have no relation with the occur-
rence of reported bugs, get more imf weights which is repulsive (shown in
RareTermPriority(b)). When the solution search space is large, the situa-
tion of RareTermPriority(b) may be occurred which deteriorates the ranking
accuracy significantly. So, if the total number of methods can be restricted by
only considering valid and relevant methods, imf cannot create large negative
impacts on the ranking.

Another problem may be occurred due to considering large solution search
space and that is the actual buggy location may be suggested in the Tth position
in the worst case where the total number of available methods are T . It is
noteworthy that an automated bug localization technique provides a list of buggy
locations according to the descending order of ranking scores, where developers
traverse from the beginning of the suggested list one by one. If the actual buggy
location is suggested in Tth position, the developers need to inspect T number
of suggestions to find the actual one. On the other hand, if it can be ensured
that the bug is obtained in the targeted domain (e.g., T − ψ), developers have
to inspect only (T − ψ) buggy locations in the worst case.

SearchSpaceMinimization
b? : Bug Report
mt? : Total methods in source code
md? : Methods relevant to bug
mu? : Methods irrelevant to bug
ϑ : seq bugs
κ! : Minimized search space

md? ∈ Pmt?
md? ⊆ mt?
md? = mt? \ mu?
mt? = md? ∪ mu?
∀ b? ∈ ϑ • (b? ∈ md?) ∧ (b? �∈ mu?) ⇒ κ! = md? (c)

In the above SearchSpaceMinimization model, b is a bug report. mt , md and
mu represent total, relevant and irrelevant methods of source code for a bug
respectively. This model states that the relevant methods can be obtained by
discarding the irrelevant methods from the source code. From this model, it is
clear that the bug must reside into the dynamically traced methods md according
to SearchSpaceMinimization(c).

Lemma 2: Large information domain can increase False Positive Rate
of bug localization

In case of software bug localization, False Positive Rate (FPR) means that
the identification of non-buggy methods as buggy which misguides developers to
identify buggy methods. The large unnecessary information can produce large
FPR. The situation of the increment of FPR with respect to the unnecessary
information is illustrated using the following mathematical model.

An Improved Method Level Bug Localization Approach 187

In this model, m is a module which is common within p1, p2 and p3 packages
of a project whose basic functionalities are same but implementations are dif-
ferent. b is a bug associated to m, which is actually related to package p1. Due
to obtaining the same feature in three different packages, it may happen that p2
and p3 get more ranking scores than p1. This situation could be raised when the
whole source codes have been considered to locate a single bug because the size
(that is, terms) of p2 and p3 may be larger than p1. And according to VSM, the
small but relevant document will get more priority than others which leads to
the following theorem.

FPR
Package : {p1, p2, p3,, pn}
p? : Package
m? : Module
b? : Bug report
Buggy(x) : x is buggy
prrank (x) : Ranking score of x
f (p?) : Feature of p?
Imp(p?) : Implementation of p?
β! = Buggy package

m? ∈ f (p1) ∩ f (p2) ∩ f (p3)
b? ∈ m? ∧ b? ∈ p1
(f (p1(m?)) = f (p2(m?)) = f (p3(m?))) ∧
(Imp(p1)! = Imp(p2)! = Imp(p3)) ⇒
(prrank (p2) ≥ prrank (p1)) ∨ (prrank (p3) ≥ prrank (p1))
β! = p2 ∨ p3

Theorem 1: A small but relevant search space can increase the accu-
racy of bug localization.

Lemma 1 illustrates that VSM may incur negative impacts in case of large
solution search space and Lemma 2 shows the effects of using whole source code
in case of FPR. From Lemmas 1 and 2, it can be derived that a small number
of relevant search space can increase the accuracy of bug localization.

4 Method Level Bug Localization Using Minimized
Code Space

In this section, a model described in Sect. 3 has been implemented by devising a
methodology which increases the ranking accuracy because of considering only
relevant search space from the source code for a bug. The methodology of the
proposed bug localization technique is described in the following subsections.

The overall process of improving the bug localization accuracy is briefly dis-
cussed as follows. From Sect. 3, it is observed that if relevant information domain

188 S. Rahman et al.

Fig. 1. Functional block diagram of MBuM (N.B. reproduced from [10]).

can be extracted by ignoring irrelevant methods from the large solution space,
the accuracy of bug localization can be increased dramatically. At the begin-
ning of bug localization, source code dynamic analysis is performed to minimize
the solution search space which extracts only the related methods for generat-
ing a specific bug. Static analysis is done with a view to getting the contents of
extracted methods. After applying dynamic and static source code analysis, valid
and relevant information can be obtained. The contents of extracted methods
are processed to create code corpora using static analysis. Since bug report only
contains textual information related to a specific buggy scenario, again static
analysis is performed to process the bug report. Finally, generated corpora from
the bug report and source code are matched with each other to rank the source
code methods. The whole process for localizing bugs can be divided into four
steps and those are Code corpora creation, Indexing, Bug corpora creation and
Retrieval and ranking. Each of the steps follow series of tasks as shown in Fig. 1.

4.1 Code Corpora Creation

Code corpora are the collection of source code words which are used to check
the similarity with bug report corpora [4–7]. So, the more accurate the code
corpora generation is, the more accurate matching can be obtained which may
increase the accuracy of bug localization. For generating valid code corpora,
two approaches are conducted and those are dynamic and static analysis [18].
Dynamic analysis produces relevant search space by considering source code

An Improved Method Level Bug Localization Approach 189

execution trace (e.g., source code methods) for a specific bug by despising the
codes which are not responsible for generating the bug. Although dynamic analy-
sis provides relationships between methods or classes, it cannot provide method
or class contents. On the other hand, static analysis is related to the code analysis
which considers whole source code information and extracts method contents. So,
to get the method contents for only relevant methods, the output from dynamic
and static analysis are combined and the common methods of those analysis
are considered. The code corpora creation can be divided into multiple granular
levels which are described below.

For the purpose of dynamic analysis, initially developers need to reproduce
the bug after getting the information from the bug report’s title, summary and
description. Here, execution traces are recorded and analyzed to extract exe-
cuted methods. From these traces, method call graphs are generated and parsed
to obtain the structure of the executed source code. It is noteworthy that the
method call graph does not contain the method contents rather it stores the
sequentially executed method names. Hence using static analysis, source code
is parsed by maintaining the code structures. This is done by traversing the
Abstract Syntax Tree (AST)1 to extract different program structures such as
package, class, method and variable names.

Contents of the above minimized search space are processed to get the rele-
vant code corpora as shown in Fig. 1. This is needed because buggy locations are
identified by measuring similarity between the contents of bug report and mini-
mized search space. So, trade-off is needed between bug report and source code
contents such as the format of all words should be the same (e.g., base form).
Minimized source code are pre-processed because source code may contain lots
of unnecessary keywords such as programming language specific keywords (e.g.,
public, static, void, int, string, etc.), stop words (e.g., has, is, a, the, etc.) which
do not provide any bug specific information rather may create impacts on rank-
ing and thus stop words are discarded.

Within source code, one word may consist of multiple terms such as
‘beginHeader ’ consists of ‘begin’ and ‘Header’ terms. Therefore, multiword iden-
tifiers are also used for creating singular value decomposition. Porter Stemming
[19] is applied to get the original form of the word so that ‘searching’, ‘searched’
and ‘search’ are identified as the same word. Moreover, statements are splitted
based on some syntax specific separators such as ‘.’, ‘=’, ‘(’, ‘)’, ‘{’, ‘}’, ‘;’, ‘/’,
etc. After completing all the aforementioned pre-processing, source code corpora
are produced.

The last step for generating code corpora is semantic meaning extraction as
shown in Fig. 1. During this step, semantic information of each word is extracted
because one word may have multiple synonyms. For example, to describe a single
case, developers and QA teams often use different words. Although the semantic
meanings of developers and QA described scenarios are the same, the only dif-
ference is in their vocabulary choice. Bug localization usually follows IR based

1 Abstract Syntax Tree, for details - https://eclipse.org/jdt/core/r2.0/dom%20ast/
ast.html.

https://eclipse.org/jdt/core/r2.0/dom%20ast/ast.html
https://eclipse.org/jdt/core/r2.0/dom%20ast/ast.html

190 S. Rahman et al.

techniques by performing word matching. So, the accuracy depends on the
matching of the words. For improving the accuracy, semantic word matching is
done. For example, ‘close’ word has many synonyms such as ‘terminate’, ‘stop’,
etc. To describe a scenario if a developer uses ‘close’ and QA uses ‘terminate’,
the system cannot identify the similar words without using semantic meanings
of those words. Thus semantic meaning extraction plays vital role in accurate
ranking of buggy methods.

4.2 Indexing

In this paper, indexing has been performed according to Fig. 2 where within each
package, multiple classes are available with different id, and within each class
several methods are stayed with unique id. Each method contains multiple words
and each word within a method is stored sequentially. Here, the synonymous
words of each word are also stored. Later, each method code corpora and bug
corpora is compared by searching only the indices.

Figure 2 is an example of a source code index (taken from, Eclipse
project). To better understand about the indexing only one package (that is,
org .eclipse.swt .graphics) contents are expanded. At first, that package is defined
and later the class name, method name of the source code are accumulated in
Fig. 2. Here, two classes such as Rectangle and Point are available in package
org .eclipse.swt .graphics. Among these classes, two methods are stored. As this
technique provides a method level ranking, the contents of each method is stored
within the method.

Fig. 2. Example of source code indexing.

An Improved Method Level Bug Localization Approach 191

4.3 Bug Report Corpora Creation

Software bug report contains the details of a programs’ error. The bug report
is usually prepared by Quality Assurance (QA) team or users. A software bug
report contains bug title, summary and description which provide important
information about a bug.

In bug report, the information may contain some common and irrelevant
words such as stop words which do not provide any bug specific information
rather create biasness for localizing the bugs. Moreover, words of bug report
may be in present, past or future tenses. Bug report needs to be processed to
remove these noisy information. At the beginning, stop words (e.g., am, is, are,
etc.) are removed from the bug report. Then multiword splitting (if needed) and
porter stemming [19] are applied (as used for code corpora generation) to get the
base form of the words. After completing these pre-processing, valid bug corpora
are generated which provide only the relevant words.

4.4 Retrieval and Ranking of Buggy Methods

In this step, each bug corpus is searched in the minimized solution space. For
ranking the source code methods, the proposed technique applies modified Vector
Space Model (mVSM) [5]. mVSM calculates the similarity between each query
(bug corpora) and methods as the cosine similarity with their corresponding
vector representations according to Eq. 3.

Similarity(q ,m) = cos(q ,m) =
−→
Vq × −→

Vm

| −→
Vq | × | −→

Vm |
(3)

Here,
−→
Vq and

−→
Vm are the vectors of terms for the query (q) and method (m)

respectively. | −→
Vq | × | −→

Vm | is the inner product of two vectors. Term weight
is calculated by multiplying tf (term frequency) and imf (inverse method fre-
quency). mVSM uses the logarithm of term frequency of a method. The imf
ensures that rare or unique terms in the methods are given more importance. tf
and imf are calculated using Eqs. 4 and 5 respectively.

tf (t ,m) = log ftm + 1 (4)

imf = log(
�methods

nt
) (5)

ftm is the number of occurrences of a term (t) in a method (m), �methods refers
to the total number of methods in the minimized search space, and nt refers
to the total number of methods containing the term t . MBuM also considers
method length because previous studies showed that larger files are more likely
to contain bugs due to carrying many features of a software [5]. The function
used to model the method length is provided in Eq. 6.

g(terms) =
1

1 + e−Norm(�terms)
(6)

192 S. Rahman et al.

�terms is the number of terms in a method and Norm(�terms) is the normalized
value of �terms. The normalized value of a is calculated using Eq. 7.

Norm(a) =
a − amin

amax − amin
(7)

where, amax and amin are the maximum and minimum value of a. Now this
normalized value is multiplied with the cosine similarity score to calculate final
mVSM score which is calculated by Eq. 8.

mVSM (q ,m) = g(terms) × cos(q ,m) (8)

After measuring mVSM score of each method, a list of buggy methods has been
ranked according to the descending order of scores. The method with maximum
score is suggested at the top of the ranking.

5 Case Study

The effectiveness of MBuM has been evaluated by conducting several research
questions followed by multiple case studies. The case studies are similar to the
existing bug localization techniques such as PROMISER [9], LSI [12] and LDA
[11]. For this purpose, Top N Rank, Mean Reciprocal Rank (MRR) and Mean
Average Precision (MAP) are used as the measurement metrics.

5.1 Elements of the Case Studies

Here, two well-known open-source projects named as Eclipse and Mozilla are
considered as the subject of case study. Eclipse is a widely used open source
Integrated Development Environment (IDE) which is used for developing Java
applications. Meanwhile, Mozilla is a web browser which is used in most of the
hardware and software platforms [9]. Different versions of Eclipse (e.g., version
2.1.0, 3.0.1, 3.0.2 and 3.1.0) and Mozilla (e.g., version 1.5.1, 1.6 and 1.6 (a)) are
chosen which contain large volume of source code. As an example, 12,863 classes
and 95,341 methods are available in Eclipse 3.0.2, while Mozilla 1.5.1 contains
4,853 classes and 53,617 methods [9].

5.2 Objectives of the Case Studies

Since MBuM performs method level bug localization, methods are chosen as
the level of granularity in all the case studies. The actual buggy classes and
methods corresponding to the bugs are identified from the published patches.
Theses are used to evaluate the bug localization techniques where each patch
specifies which methods were actually changed to fix a specific bug. In case
of a bug, more than one published patches, the union of the most recent and
earlier patches are considered. A brief overview of bug title, description and the
generated queries for Eclipse and Mozilla are provided in [20]. The considered
bugs are well-acquainted and reproducible which meet the following criteria.

An Improved Method Level Bug Localization Approach 193

(i) Bugs are often categorized as resolved or verified or fixed. So, only the valid
bugs that have been fixed are considered.

(ii) The bugs having large similarity with multiple scenarios are chosen. For
example, a similar feature is implemented in multiple packages where
the implementations are different in every packages. Here, a bug may be
occurred in one package. This criterion supports Lemma 2 (Sect. 3).

5.3 Evaluation Metrics

To measure the performance of MBuM, Top N Rank, MRR (Mean Reciprocal
Rank) and MAP (Mean Average Precision) are used as metrics. These are widely-
used for measuring the effectiveness of a retrieval and ranking system [17,21]. For
all of these, the higher the value, the better the performance is. These metrics
are briefly described as follows.

(i) Top N Rank: This is the number of bugs that are localized in the top N
ranks (N = 1, 5, 10, ... for this system). For an example, N = 5 means that
the buggy statements ranked within top 5 suggestions. If one of the fixed
files of a bug is in the result set, it is marked as localized [14].

(ii) MRR: A reciprocal rank is the multiplicative inverse of the first correct
results’ rank of a query [14]. For example, if a bug is localized in rank
position 4, the reciprocal rank is 1

4 . So, the range of MRR will be 0 ≤
MRR ≤ 1. MRR is the average of all the reciprocal ranks of a set of queries.
MRR is calculated using Eq. 9. Here, n and ri are the number of queries
and rank of a query i , respectively.

MRR =
1
n

n∑

i=1

1
ri

(9)

(iii) MAP: MAP indicates how successfully the system is able to locate all the
buggy locations unlike MRR [14]. MAP is the mean of the average precision
values of a set of query [5].

5.4 Research Questions

In MBuM, probable buggy methods are ranked by conducting static analysis
followed by dynamic analysis of the source code. Hence, few research questions
have been emerged such as RQ1 and RQ2. RQ1 is introduced to validate that,
the minimization of search space can improve the localizing accuracy. It is also
needed to prove that the actual buggy methods get large similarity scores for a
bug. To validate this, RQ2 is introduced.

RQ1: Does the minimization of search space can improve the accuracy of bug
localization?

To answer this question, bug report �741492 has been introduced which
searches from ‘Help’ in Eclipse titled as “the search words after ‘”’ will be
2 https://bugs.eclipse.org/bugs/show bug.cgi?id=74149.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149

194 S. Rahman et al.

ignored”. For this case, the following scenario is executed to retrieve the rel-
evant methods.

(i) Expand the ‘Help’ menu from Eclipse and click on the search option.
(ii) Enter a search query within the search field.
(iii) Finally, click on ‘Go’ button or press enter.

In this case, MBuM finds only 20 classes and 100 methods as relevant to
this bug, shown in Fig. 3. Here, two source code packages namely org .eclipse.
help.internal .search and org .eclipse.help.internal .base are executed. Within the
first package, 14 classes are available and only 6 relevant classes are extracted from
org .eclipse.help.internal . base package. Each extracted class also contains one or
more methods. After despising the large irrelevant search space, static analysis
is applied only on the relevant information. If a query contains lots of ambigu-
ous keywords (e.g., very few bug related information), MBuM may suggest the
actual buggy method at most 100th position while all other existing bug local-
ization techniques will suggest buggy method in 53, 617th position in the worst
case. This is because by discarding irrelevant source code methods, MBuM only
uses these 100 methods for finding buggy methods while other techniques consider
total (i.e., 53, 617) methods of Eclipse.

Fig. 3. Extracted methods for Eclipse Bug Id-74149.

A query is formulated using the bug description which contained ‘search
query quote token’. The actual buggy method is manually retrieved from the
published patch which is ‘org.eclipse.help.internal.search.QueryBuilder.tokenize
UserQuery’. MBuM suggests ‘tokenizeUserQuery’ method at the 1st position of
its ranking (shown in Table 1). Same query is applied on PROMISER, LSI and
BugLocator to find the buggy location. PROMISER and LSI rank the actual
buggy method at the 5th and 8th position respectively (shown in Table 1). So,

An Improved Method Level Bug Localization Approach 195

Table 1. The suggestion of buggy methods using different bug localization techniques
in Eclipse (reproduced from [10]).

�Bug BugLocator PROMISER LSI LDA Proposed MBuM

5138 7 2 7 2 1

31779 4 1 2 2 1

74149 12 5 8 1 1

83307 6 5 13 7 2

91047 4 6 9 5 3

comparing with PROMISER and LSI, the effectiveness of MBuM is 5 and 8
times better respectively. On the other hand, BugLocator suggests buggy class
at 12th position which shows that MBuM performs m times faster where m
represents total number of methods in the suggested 12 buggy classes because
BugLocator suggests buggy classes. LDA is not implemented because same bug
reports are also used in LDA and that is why the results are taken from that
paper [11]. In this case, LDA creates a different query as ‘query quote token’
which discards the ‘search’ term from the query due to obtaining ‘search’ query
in multiple scenarios. That is the reason for suggesting the buggy method at the
1st position. Hence, it can be concluded that static analysis followed by dynamic
execution trace of the source code reduces the search space which improves the
ranking accuracy of bug localization technique.

RQ2: How much effectively MBuM can suggest buggy methods?
The effectiveness of MBuM can be measured by considering the ranking of

buggy methods. If the buggy method is ranked at the 1st position, the effective-
ness is 100%. To answer RQ2, two case studies are conducted on Eclipse and
Mozilla where the ranking of buggy methods provided by MBuM are compared
with BugLocator, PROMISER, LSI and LDA. These case studies consider five
different bugs which were also studied in PROMISER [9] and LDA [11].

Case Study 1: Bug Localization in Eclipse. In this case study, five different
bugs in Eclipse are considered for making a comparison with state-of-the-art bug
localization techniques named as BugLocator, LDA, PROMISER and LSI. The
chosen bugs are described as follows.

– Bug �741493, titled as “The search words after ‘” ’ will be ignored”, exists in
the versions 3.0.0, 3.0.1, 3.0.2, and fixed in the version 3.1.1.

– Bug �51384, titled as “Double-click-drag to select multiple words doesn‘t
work”, exists in version 2.1.3 and fixed in the version 3.3.

– Bug �317795, titled as “UnifiedTree should ensure file/ folder exists”, presents
in version 2.0.0 and fixed in the version 2.1.0.

3 https://bugs.eclipse.org/bugs/show bug.cgi?id=74149.
4 https://bugs.eclipse.org/bugs/show bug.cgi?id=5138.
5 https://bugs.eclipse.org/bugs/show bug.cgi?id=31779.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149
https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138
https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779

196 S. Rahman et al.

– Bug �833076, titled as “Unable to restore working set item”, presents in version
3.1.0 and fixed in the version 3.4.

– Bug �910477, titled as “About dialog buttons seemingly not responsive”, exists
in version 3.1.0 and fixed in the version 3.4.

Table 1 presents the ranking of the aforementioned bug localization tech-
niques. It is noteworthy that, BugLocator did not suggest methods rather suggest
files or classes. Figure 4 represents the ranking provided by different techniques
for five different considered bugs in Eclipse.

Fig. 4. Ranking provided by different bug localization techniques in Eclipse (repro-
duced from [10]).

These results show that MBuM ranks the actual buggy methods at the 1st

position for three (60%) of the five bugs. Table 1 and Fig. 4 present that for bugs
�5138, �83307 and �91047, MBuM performs better than four other techniques.
For bug �31779, PROMISER only provides equal result as MBuM. In case of
bug �74149, although LDA ranks equal as MBuM, the term ‘search’ is omitted
from the query which helps for providing better ranking because ‘search’ is a
common term in Eclipse and might create biasness. However, it is not desired
because ‘search’ may be a good candidate for finding buggy locations. From this
case study, it can be concluded that the proposed bug localization technique
performs better results than others.

Case Study 2: Bug Localization in Mozilla. Similar to the previous case
study, here also five mostly used bugs are taken from Mozilla bug repository
and the selected bugs are described in [20] and only the title of these bugs are
presented in the followings.

6 https://bugs.eclipse.org/bugs/show bug.cgi?id=83307.
7 https://bugs.eclipse.org/bugs/show bug.cgi?id=91047.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=83307
https://bugs.eclipse.org/bugs/show_bug.cgi?id=91047

An Improved Method Level Bug Localization Approach 197

– Bug �1821928, titled as “quotes (‘) are not removed from collected e-mail
addresses”, presents in Mozilla version 1.6 and fixed in the version 1.7.

– Bug �2161549, titled as “Anchors in e-mails are broken - clicking anchor
doesn’t go to target in an email”, exists in version 1.5.1 and patched in the
version 1.6.

– Bug �22524310, titled as “Page appears reversed (mirrored) when printed”,
exists in the version 1.6 (a) and fixed in the version 1.7. This bug does not
exist in version the 1.6 rather actually presents in the version 1.6(a) [11].

– Bug �20943011, titled as “Ctrl+Delete and Ctrl+BackSpace delete words in
the wrong direction”, located in version 1.5.1 and fixed in the version 1.6.

– Bug �23147412, titled as “Attachments mix contents”, presents in the version
1.5.1 and fixed in the version 1.6.

The results demonstrate that MBuM provides better ranking accuracy over
BugLocator, LDA, PROMISER and LSI techniques (shown in Table 2). These
results show that three (60%) out of five bugs are located at the 1st position
and another two are ranked at the 2nd position by MBuM. On the other hand,
among the other four techniques only PROMISER suggests two (40%) of five
bugs at the 1st position and other three techniques’ results are far away from
the 1st position (according to Table 2).

Table 2. The suggestion of buggy methods using different bug localization techniques
in Mozilla (N.B. reproduced from [10]).

�Bug BugLocator [5] PROMISER [9] LSI [12] LDA [11] Proposed MBuM

182192 4 2 37 3 1

216154 7 6 56 4 2

225243 5 6 24 9 2

209430 6 1 49 9 1

231474 3 1 18 4 1

Figure 5 presents the ranking provided by different techniques for five dif-
ferent bugs in Mozilla. Although for bugs �209430 and �231474, PROMISER
provides the same ranking as MBuM, it produces noticeably poor ranking in
other three bugs as shown in Table 2 and Fig. 5. In case of �182192, �216154 and
�225243, MBuM ranks the actual buggy methods more accurately than other
four techniques. This comparative analysis of results also shows the significant
improvement of ranking by MBuM.

8 https://bugzilla.mozilla.org/long list.cgi?buglist=182192.
9 https://bugzilla.mozilla.org/show bug.cgi?id=216154.

10 https://bugzilla.mozilla.org/show bug.cgi?id=225243.
11 https://bugzilla.mozilla.org/show bug.cgi?id=209430.
12 https://bugzilla.mozilla.org/show bug.cgi?id=231474.

https://bugzilla.mozilla.org/long_list.cgi?buglist=182192
https://bugzilla.mozilla.org/show_bug.cgi?id=216154
https://bugzilla.mozilla.org/show_bug.cgi?id=225243
https://bugzilla.mozilla.org/show_bug.cgi?id=209430
https://bugzilla.mozilla.org/show_bug.cgi?id=231474

198 S. Rahman et al.

Fig. 5. Ranking provided by different bug localization techniques in Mozilla (repro-
duced from [10]).

6 Threats to Validity

This section discusses the threats which can affect the validity of the proposed
technique. The threats are identified from three perspectives - internal threats,
external threats and construct threats.

Internal Threats: The internal threats refer threats that affect the validity of
the results which depend on the implementation of the technique and the envi-
ronmental set up of the experimental procedure. The proposed technique as well
as the experimental projects are implemented in Java programming language.
Therefore, the result gained through analyzing the experimental projects may
differ when experimented in platforms other than java.

External Threats: MBuM requires proper quality of the bug reports. As bug
report is one of the important means from which the buggy locations can be
identified, the quality of the bug report should contain the bug related informa-
tion. For example, if a buggy scenario is related to the ‘file import’ module and
the bug report holds another bug modules’ information, the quality of the bug
report will be significantly deteriorated. In practice, non-informative bug report
can also delay to fix a bug. Similarly, if a bug report does not provide enough
information, or provides misleading information, the performance of MBuM may
be adversely affected. The slight modification is handled by the proposed tech-
nique using the semantic meaning extraction from WordNet. However, if the
source code is not similar to the bug report, the localization may fail, though it
is a common problem in all bug localization schemes.

Finally, if the bug report does not contain proper reproducible approach, it
may be hard for developers to find the accurate source code dynamic tracing.

Another factor is the quality of source code, and the accuracy of bug local-
ization depends on the good programming practices in naming variables, meth-
ods and classes. If a developer uses meaningless names, the performance of the

An Improved Method Level Bug Localization Approach 199

proposed technique may be affected. However, in most of the well-managed
projects, developers follow good naming conventions and programming prac-
tices.

Construct Threats: Construct threats are related to the metrics which are
used to analyze the effectiveness of the proposed technique. The results are
analyzed based on Top N Rank, MRR and MAP. Therefore, analyzing the results
with other metrics can affect the generalization of the results.

7 Conclusion

This paper presents an approach to rank Method level Bug localization using
Minimized search space (MBuM). For ranking buggy methods, it discards
irrelevant search space by taking the execution trace considering method call
sequences of the source code. To retrieve the content of the methods static
analysis has been performed. Finally, similarity is measured between the method
contents of the source code and bug report which provides a rank list of the
methods.

MBuM has been evaluated both theoretically and experimentally. Theoretical
evaluation is done using formal methods, and for the purpose of experiments
case studies are conducted using two large scale open-source projects named as
Eclipse and Mozilla. The case studies show that MBuM ranks buggy methods
at the 1st position in most of the cases.

In this research, although fine grained suggestions such as method level
bug localization has been conducted, statement level bug localization can be
addressed in near future. In addition, since MBuM outperforms other existing
techniques for open source projects, it will be applied in industrial projects to
assess its effectiveness in practice.

Acknowledgment. This research is supported by the fellowship from ICT Divi-
sion, Ministry of Posts, Telecommunications and Information Technology, Bangladesh.
No - 56.00.0000.028.33.028.15-214 Date 24-06-2015.

References

1. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw. Evol. Process 25(1), 53–95 (2013)

2. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM Sigplan Not. 39(12), 92–106
(2004)

3. Saha, R.K., Lawall, J., Khurshid, S., Perry, D.E.: On the effectiveness of infor-
mation retrieval based bug localization for c programs. In: IEEE International
Conference on Software Maintenance and Evolution (ICSME 2014), pp. 161–170.
IEEE (2014)

4. Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. In: Proceedings of the 28th International Confer-
ence on Automated Software Engineering (ASE 2013) IEEE/ACM, pp. 345–355.
IEEE (2013)

200 S. Rahman et al.

5. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate infor-
mation retrieval-based bug localization based on bug reports. In: Proceedings of
the 34th International Conference on Software Engineering (ICSE 2012), pp. 14–24.
IEEE (2012)

6. Nichols, B.D.: Augmented bug localization using past bug information. In: Pro-
ceedings of the 48th Annual Southeast Regional Conference, p. 61. ACM (2010)

7. Wang, S., Lo, D.: Version history, similar report, and structure: putting them
together for improved bug localization. In: Proceedings of the 22nd International
Conference on Program Comprehension, pp. 53–63. ACM (2014)

8. Wilde, N., Gomez, J.A., Gust, T., Strasburg, D.: Locating user functionality in old
code. In: Proceerdings of the Conference on Software Maintenance, pp. 200–205.
IEEE (1992)

9. Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., Rajlich, V.C.: Fea-
ture location using probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Trans. Softw. Eng. 33(6), 420–432 (2007)

10. Rahman, S., Sakib, K.: An appropriate method ranking approach for localizing
bugs using minimized search space. In: Proceedings of the 11th International Con-
ference on Evaluation of Novel Software Approaches to Software Engineering, pp.
303–309 (2016)

11. Lukins, S.K., Kraft, N., Etzkorn, L.H., et al.: Source code retrieval for bug local-
ization using latent dirichlet allocation. In: Proceedings of the 15th Working Con-
ference on Reverse Engineering (WCRE 2008), pp. 155–164. IEEE (2008)

12. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. JAsIs 41(6), 391–407 (1990)

13. Alhindawi, N., Dragan, N., Collard, M.L., Maletic, J.I.: Improving feature location
by enhancing source code with stereotypes. In: 2013 IEEE International Conference
on Software Maintenance, pp. 300–309. IEEE (2013)

14. Rahman, S., Ganguly, K., Kazi, S.: An improved bug localization using structured
information retrieval and version history. In: Proceedings of the 18th International
Conference on Computer and Information Technology (ICCIT) (2015) (accepted)

15. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Trans. Softw. Eng. 29(3), 210–224 (2003)

16. Woodcock, J., Davies, J.: Using z. specification, refinement, and proof (1996)
17. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to information

retrieval, vol. 1. Cambridge University Press, Cambridge (2008)
18. Kim, D., Tao, Y., Kim, S., Zeller, A.: Where should we fix this bug? a two-phase

recommendation model. IEEE Trans. Softw. Eng. 39(11), 1597–1610 (2013)
19. Frakes, W.B.: Stemming algorithms, pp. 131–160 (1992)
20. Rahman, S.: shanto-rahman/mbum: (2016). https://github.com/shanto-Rahman/

MBuM. 4/1/2016
21. Pareek, H.H., Ravikumar, P.K.: A representation theory for ranking functions. In:

Advances in Neural Information Processing Systems, pp. 361–369 (2014)

https://github.com/shanto-Rahman/MBuM
https://github.com/shanto-Rahman/MBuM

	An Improved Method Level Bug Localization Approach Using Minimized Code Space
	1 Introduction
	2 Related Work
	2.1 Source Code Static Analysis Based Techniques
	2.2 Source Code Dynamic Analysis Based Techniques

	3 Does Minimized Code Space Can Improve the Accuracy of Bug Localization Techniques?
	4 Method Level Bug Localization Using Minimized Code Space
	4.1 Code Corpora Creation
	4.2 Indexing
	4.3 Bug Report Corpora Creation
	4.4 Retrieval and Ranking of Buggy Methods

	5 Case Study
	5.1 Elements of the Case Studies
	5.2 Objectives of the Case Studies
	5.3 Evaluation Metrics
	5.4 Research Questions

	6 Threats to Validity
	7 Conclusion
	References

