
Towards a Secure RA2DL Based Approach

Farid Adaili1,2,3(B), Olfa Mosbahi1, Mohamed Khalgui1,4,
and Samia Bouzefrane3

1 LISI Laboratory, INSAT Institute, University of Carthage, Tunis, Tunisia
olfamosbahi@gmail.com, khalgui.mohamed@gmail.com

2 Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia
3 CEDRIC Laboratory, National Conservatory of Arts and Crafts, Paris, France

{farid.adaili,samia.bouzefrane}@cnam.fr
4 Systems Control Laboratory, Xidian University, Xian, China

Abstract. This chapter deals with secured reconfigurable AADL based-
control component of embedded system (to be named by RA2DL) that
should be adapted their behaviours to environment execution accord-
ing to user requirements. For various reasons, we propose a new method
denoted by RA2DL − Pool for guarantee and control the security of
RA2DL component. RA2DL − Pool is a container of sets of RA2DL
components characterized by similar properties. Also, it holds well-
defined methods for grouping RA2DL components together. To consoli-
date RA2DL−Pool technology, we will put a set of security-mechanisms
divided into two families: (i) Authentication Mechanism where all users
must authenticate to access to the reserved services of RA2DL−Pool or
RA2DL components and (ii) Access Control Mechanism to control the
access to the RA2DL components. We model and verify this solution and
develop a tool for its simulation by taking a real-case study dealing with
the Body-Monitoring System (BMS) as a running example.

Keywords: Pooling · Component-based approach · Dynamic recon-
figuration · Security · Authentication · Access control · RA2DL ·
Implementation · Modelling · Evaluation

1 Introduction

Nowadays in the academy and manufacturing industry, many research works
have been made to deal with real-time reconfiguration of embedded control sys-
tems. The new generation of these systems are addressing today a new crite-
ria such as flexibility and agility. To reduce their cost, these systems have to
be changed and adapted to their environment without any disturbance. We are
interested in this chapter in the reconfigurable AADL technology. AADL compo-
nent is a software unit to be encoded with a set of algorithms that implement its
control functions. Each algorithm is activated by corresponding external event-
data inputs, and generally produces the results of its execution on corresponding
data-event outputs.
c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 89–110, 2016.
DOI: 10.1007/978-3-319-56390-9 5



90 F. Adaili et al.

The usability of the embedded and reconfiguration technologies in the infor-
mation systems is not only a concern of major corporations and governments
but also an interest of individual users. Due to this wide use, many of these
systems manage and store information that is considered sensitive, such as per-
sonal or business data. The need to have secured components for each system
that contains such information becomes a necessity rather than an option [16].
The embedded components [17] are getting increasingly connected and are more
and more involved in networked communications. The users of these components
are now able to execute almost all the network/internet applications. These com-
ponents are also increasingly involved in the transfer of secured data through
public networks that need protection from unauthorized access. Thus the secu-
rity requirements in embedded systems have become critical.

Traditional security research has been focusing on how to provide assurance
on confidentiality, integrity, and availability [8]. However, with the exception
of mobile code protection mechanisms, the focus of past research is not how to
develop secured software that is made of components from different sources. Pre-
vious research provides necessary infrastructures, but a higher level perspective
on how to use them to describe and enforce security, especially for component-
based systems, has not received sufficient attention from research communities
so far.

We define in a previous paper [10] a new concept of components named
RA2DL as a solution for reconfigurable AADL components composed of con-
troller and controlled modules. The first one is a set of reconfiguration functions
applied in RA2DL to adapt its execution to any evolution in the environment,
described by three reconfiguration forms:

(i) Form 1: Architectural level: modifies the component architecture when
particular conditions are met. This is made by adding new algorithms, events and
data or removing existing operations in the internal behaviors of the component.

(ii) Form 2: Compositional level: modifies the composition of the internal
components (algorithms) for a given architecture.

(iii) Form 3: Data level: changes the values of variables without changing
the component algorithms, and the second one is a set of input/output events,
algorithms, and data as represented by reconfiguration modules.

However, securing an RA2DL component is not an easy task. With rapidly
advancing hardware/software technologies and ubiquitous use of computerized
applications [19], modern software is facing challenges that it has not seen before.
More and more software is built from existing components which come from
different sources. This complicates analysis and composition, even if a domi-
nant decomposition mechanism is available. Additionally more and more soft-
ware/hardware components are running in a networked environment. These net-
work connections open possibilities for malicious attacks that were not possible
in the past. These situations raise new challenges on how to handle security so
that to design a component-based architecture that is more resistant to attacks
and less vulnerable.



Towards a Secure RA2DL Based Approach 91

Facing the new challenges for security of reconfigurable RA2DL-based sys-
tems, we propose new solutions allowing the required authentification for the
access control to components under a set of constraints such as the limitation in
memory. These solutions are supported by a new concept called pool which is a
container that gathers networked RA2DL under security constraints. The con-
tainer allows the control of any operation allowing the reconfiguration of RA2DL
components as well as the access to local algorithms and data.

The chapter’s contribution is applied to a case study of an Body-Monitoring
System (BMS) that will be followed as a running example. A tool is developed
in a collaboration between LISI Lab at University of Carthage in Tunisia and
CEDRIC Lab at CNAM in France to implement and simulate the security in
the case study.

The current chapter is organized as follows: We discuss in Sect. 2 the orig-
inality of the chapter by studying the state of the art. Section 3 describes the
background of RA2DL. Section 4 defines the new extension for secured RA2DL
components. We expose in Sect. 5 the case study: Body-Monitoring System
(BMS) and how the implementation is performed to secure RA2DL. Section 6
concludes the chapter and gives some perspectives as a future work.

2 State of the Art of Secured Component-Based Design
Approaches

In this section, we present a state of the art of secured component-based design
approaches. In [6], the authors present a classification of component-based sys-
tems by describing software components as independent units that interact to
form a functional system. A component does not need/have to be compiled before
it is used. Each component offers services to the rest of the system and adopts
a provided interface that specifies the services that other components can use.

The authors in [19] present a treatment of an important security aspect,
access control, at the architecture level and modeling of security subject,
resource, privilege, safeguard, and policy of architectural constituents. The mod-
eling language, Secure xADL, is based on the existing modular and extensible
architecture description language.

In [7], the authors propose a QA (Quality Assurance) model for component-
based software which covers component requirement analysis, component
development, component certification, component customization, and system
architecture design, integration, testing and maintenance. An extension of the
Component Object Model (COM), Distributed COM (DCOM), is a protocol
that enables software components to communicate directly over a network in a
reliable, secure, and efficient manner. DCOM is designed for use across multiple
network transports, including internet protocols such as HTTP. When a client
and its component reside on different machines, DCOM simply replaces the local
interprocess communication with a network protocol. Neither the client nor the
component is aware of the changes of the physical connections.



92 F. Adaili et al.

In [9], Rugina et al. present an iterative dependency-driven approach for
dependability modeling using AADL. This approach is a part of a complete
framework that allows the generation of dependability analysis and evaluation
models from AADL models to support the analysis of software and system archi-
tectures in critical application domains.

AADL and OSATE tools can be used to validate the security of systems
designed using MILS4 architecture [11]. The work in [13] uses two mechanisms
to modularize or divide and conquer in secure systems: partitions, and separation
into layers. The MILS architecture isolates processes in partitions that define a
collection of data objects, code, and system resources and can be evaluated
separately. Each partition is divided into the following three layers: Separation
Kernel Layer, Middleware Service Layer and Application Layer each of which is
responsible for its own security domain and nothing else.

In [14], the author presents the extension UMLsec of UML that allows to
express security relevant information within the diagrams in a system specifica-
tion. UMLsec is defined as an UML profile using the standard UML extension
mechanisms. In particular, the associated constraints give criteria to evaluate
the security aspects of a system design by referring to a formal semantic of a
simplified fragment of UML.

In [4], Bernstein define a Docker (www.docker.com) is an open source project
providing a systematic way to automate the faster deployment of Linux applica-
tions inside portable containers. Basically, Docker extends LXC with a kernel-
and application-level API that together run processes in isolation: CPU, memory,
I/O, network, and so on. Docker also uses namespaces to completely isolate an
applications view of the underlying operating environment, including process
trees, network, user IDs, and file systems.

Docker containers are created using base images. A Docker image can include
just the OS fundamentals, or it can consist of a sophisticated prebuilt application
stack ready for launch. When building images with Docker, each action taken
(that is, command executed, such as apt-get install) forms a new layer on top of
the previous one. Commands can be executed manually or automatically using
Dockerfiles.

Note that, no one in all related works deals with secured reconfigurable com-
ponents. We propose in this chapter a new concept of security of RA2DL compo-
nents to be named RA2DL − Pool that allows: (i) Grouping of RA2DL compo-
nents that have the same similar properties. (ii) Associating to each RA2DLPool
a security mechanism like authentication and access control mechanisms.

3 RA2DL Background

We defined in a previous paper [10] the concept of RA2DL components as an
extension of reconfigurable AADL [21] (Architecture Analysis and Design Lan-
guage). RA2DL as depicted in Fig. 1 is composed of controller and controlled
modules where the first one is a set of reconfiguration functions applied in AADL,
and the second one is a set of input/output events, algorithms, and data. The
controlled module is described by the following four modules:

www.docker.com


Towards a Secure RA2DL Based Approach 93

IEM (Input Events Module): This module processes the reconfiguration of input
events (IE) stored in the IEDB database of input events. It defines and
activates at a particular time a subset of events to execute the corresponding
algorithms in RA2DL.

OEM (Output Events Module): This module processes the reconfiguration of
output events (OE) stored in the OEDB database of output events. It defines
and activates at a particular time a subset of events to be sent once the cor-
responding algorithms finish their execution in RA2DL.

ALM (Algorithms Module): This module processes the reconfiguration of the
active algorithms (addition or removal) at a particular time in order to be
coherent with active input and output events of IEM and OEM . These
algorithms are stored in the ALDB database of algorithms.

DM (Data Module): This module processes the reconfigurations of data in
RA2DL in coherence with the rest of modules. It is stored in the DDB data-
base of data values.

We focus on three hierarchical reconfiguration levels in RA2DL:

(i) Form 1: Architectural level: Deals with the changes of the architecture of
the RA2DL component when particular conditions are satisfied. In this case, it
is possible to add, remove or also change the internal behavior of the component
in IEM,OEM,ALM and DM . We denote by ΨCmp the big set in ALDB of
all the possible algorithms involved in the different implementations of the com-
ponent Cmp, which is implemented at any particular time t by a subset ξCmp

that represents the set of algorithms involved in a particular implementation
ξCmp ⊆ ΨCmp. We model the architectural level AL by a finite state machine
SAL such that each state of SAL corresponds to a particular implementation of
IEM,OEM,ALM and DM .

SAL= (ΨCmp, O, δ), where:

O is a set of n states in SAL(O= {Si
AL | i ∈ 1..n}),

δ is a state-transition function ΨCmp x O → ΨCmp xO.

(ii) Form 2: Compositional level: This level keeps the same architecture
in Cmp but just changes the composition of algorithms, input-output events in
order to adapt the component to its environment. It is formalized by different
Composition State Machines CSM , such that each one CSM corresponds to
a particular state in the Architecture Level SAL. For each state S i

AL in SAL,
we define in the second hierarchical level (Composition Level CL) a particular
state machine to be denoted by Si

CL. Each state in Si,j
CL in Si

CL defines a par-
ticular composition of the subset of algorithms and input-output events. This
composition affects a priority to each algorithm in order to get a deterministic
execution model of the AADL component Cmp. We denote by Γ (δCmp) the set
of all possible execution models of algorithms of δCmp at the composition Level.



94 F. Adaili et al.

SCL= (Γ (δCmp), P, γ), where:

P is a set of m composition states in SCL(P= { Si
CL | i ∈ 1..m}),

γ is a state-transition function Γ (δCmp) x P→ Γ (δCmp) xP.

(iii) Form 3: Data level: A reconfiguration scenario Ri,j
CL at Composition

Level CL, is a transition from a state Si
CL to another state Si

CL of SCL. The
reconfiguration of the AADL component Cmp at the third hierarchical level DL
corresponds to the update of data. We define for each state Si

AL of SAL and for
each state Sj

CL of SCL a new state machine SDL where each state corresponds
to new values to be affected to data belonging to μCmp under the composition
Si
CL. Let Γ (μCmp) be the set of all possible values of data under the composition

Sj
CL.

This level deals with the light reconfiguration of data of the RA2DL com-
ponent. It is formalized by a set of Data State Machines where each state of
them corresponds to particular values of data. We define for each state Si

AL of
SAL and for each state Si,j

CL of Si
CL a new state machine Si,j,k

DL where each state
corresponds to new values of data.

SDL= (Γ (μCmp), Q, ϑ), where:

Q is a set of k composition states in SDL(Q= { Si
DL | i ∈ 1..k}),

ϑ is a state-transition function Γ (μCmp) x Q → Γ (μCmp) xQ.

Fig. 1. Architecture of an RA2DL component.



Towards a Secure RA2DL Based Approach 95

In another extension in [1] for enhancing the execution of RA2DL compo-
nents, a new execution model is proposed which is composed of three layers: (i)
Middleware Reconfiguration level that handles the input reconfiguration
flows, (ii) Execution Controller level to control the execution and reconfigu-
ration of RA2DL and (iii) Middleware Synchronization level that controls
and manages the synchronization of the reconfiguration. Additionally, we pro-
posed a new approach to coordinate several RA2DL components in a distributed
architecture based on a coordination matrix.

Because of the resource limitations in adaptive systems, satisfying a non-
functional requirement such as security requires careful balance and trade-off
with other properties and requirements of the system such as performance, mem-
ory usage and access rights of the RA2DL. This further emphasizes the fact that
security cannot be considered as a feature that is added later to the design of an
RA2DL component. It needs to be considered from early stages of development
and along with other requirements. In fact, the security by design approach as
defined by Ray and Cleaveland [18] in software engineering ensures that secu-
rity is addressed at the point of conception to avoid the security vulnerabilities.
Considering the characteristics of RA2DL components, major impacts of security
features in these systems are based on performance, power consumption, flexibil-
ity, maintainability and cost [15]. Therefore in the design of RA2DL components,
implications of introducing security decisions should be taken into account and
analyzed. Several related works do not provide solutions to develop security of
RA2DL components of adaptive embedded systems. The current chapter pro-
poses new extended solutions to secure an RA2DL component. However, in this
work we want to extend this study by considering a new architecture of secured
RA2DL-based pools.

4 New Extension for Secured RA2DL

In this section, we enrich RA2DL by security mechanisms that undergo such a
failure to enhance their execution and simulation.

4.1 Motivation: RA2DL-Pool

Security is an aspect that is often neglected in the design of adaptive sys-
tems. However, the use of these systems for critical applications such as con-
trolling power plants, vehicular systems control, and medical devices [20] makes
security considerations even more important. Also because of the operational
environment of adaptive systems and the reconfiguration actions applied by an
RA2DL component. To allow the required security, we introduce the concept of
RA2DL−Pool as a container which is an abstract class that offers different ser-
vices dealing with security, where each RA2DL − Pool has a level of sensitivity
of the information of its RA2DL components. RA2DL − Pool container serves



96 F. Adaili et al.

as a general purpose holder of other components. It holds well-defined methods
for grouping RA2DL components together. RA2DL−Pool is represented by the
following elements:

– Controller: it is the crucial part of the pool that contains methods and
represents firstly the interface between the user and the pool, and secondly
between the pool and the RA2DL components,

– Tables: there are three kinds of tables: use table (UT), reconfiguration table
(RT) and security table (ST),

– Database: is the database containing the sets of RA2DL components,
– Reconfiguration Scenarios: define the set of reconfiguration scenarios real-

ized in pool or in its RA2DL components. Each scenario will be applied in
relation with the three tables (UT, RT and ST),

– RA2DL: it is the RA2DL component with its algorithms and input/output
ports.

Figure 2 reproduced from [2] presents the class diagram of RA2DL − Pool.
An RA2DL − Pool container holds a set of RA2DL components with a set of
methods. This set of components has a set of methods that describe how to
examine and add or delete components to the RA2DL − Pool. It contains the
following methods described in Table 1 presented in [2].

Fig. 2. Class diagram of RA2DL-Pool.



Towards a Secure RA2DL Based Approach 97

Table 1. RA2DL-pool methods.

Method Description

getRA2DL () Number of components within the RA2DL − Pool

Component-getRA2DL(int
position)

Component at the specific position

Component�� getRA2DL () Array of all the RA2DL components held within the

container

RA2DL-add (Component

RA2DL, int position)

Adds RA2DL component to RA2DL − Pool at position

add (Component RA2DL,
RA2DL constraints)

Layouts that require additional information

public void remove (int index) Deletes the RA2DL at position index from the
RA2DL − Pool

remove (RA2DL component) Deletes the RA2DL from the RA2DL − Pool

removeAll () Removes all RA2DL from the RA2DL − Pool

boolean isAncestorOf (RA2DL) Checks if the RA2DL is a parent of container

addContainerListener (pool) Registers listener as a controller of RA2DL-Pool

removeContainerListener (pool) Removes listener as an interested listener of RA2DL-Pool

processEvent (RA2DLEvent e) Receives RA2DL events with RA2DL − Pool as its target

addNotify () Creates the peer of all the components within it

removeNotify () Destroys the peer of RA2DL contained within it

Insetsgetinsets() Gets the containers current insets

list() Useful method to find out what is inside a container

4.2 Security Mechanisms for RA2DL

To consolidate the RA2DL − Pool technology, we will put a set of security-
mechanisms divided into two families are described in Fig. 3 reproduced from [2]:

Authentication Mechanism. This is a critical mechanism where all users
must authenticate to access to the reserved services of RA2DL−Pool or RA2DL
components. This mechanism is always in relation with the user table (UT),
where the columns u are the identifiers of users (id user) and lines s represent
the services (services user). To implement the authentication mechanism, we
use RADIUS (Remote Authentication Dial-In User Service) is a client/server
protocol that runs in the application layer developed by Livingston Enterprise
[22], which is a networking protocol that provides centralized Authentication,
Authorization, and Accounting (AAA) management for users who connect and
use a network service. The principle of the authentication of an RA2DL with
RADIUS is as follows:



98 F. Adaili et al.

Fig. 3. Secured RA2DL method.

1. the Controller executes a connection request. UT table recovers the identifi-
cation information,

2. the Controller transmits this information to the target service in RA2DL,
3. the target component receives the connection request from the Controller,

controls and returns the configuration information required for the user to
provide or deny access,

4. Controller refers to the user an error message if it fails an authentication.

Access Control Mechanism. This mechanism comes just after authentication
to control the access to the RA2DL components. Two tables are used in this case:
security and reconfiguration tables. The first one is the security table ST which
contains in lines (p) all the user privileges (privilege user) and in columns (u)
the (id user). The second one is the reconfiguration table (RT ) that contains in
lines (r) reconfigurations identifiers (id reconf) and in columns (c) the identifiers
of RA2DL components (id RA2DL).

This mechanism may be represented by a triplet (S,C,Msc) where S denotes
the service, C denotes the RA2DL component (or RA2DL-pool) and Msc that
maps each pair (C and S) to a set of access rights.

The matrix shown in Fig. 4 shows that the right of access r is associated with
the service (Subject) Sj and Cj RA2DL component.

Figure 5 presents the sequencing of the interaction between the RA2DL com-
ponents and the RA2DL-Pool. The main goal is to show this interaction and
how to apply authentication and access control mechanisms.

Figure 6 highlights the activity of these two mechanisms and tests in order
to achieve a secure RA2DL component.



Towards a Secure RA2DL Based Approach 99

Fig. 4. Access control matrix.

Fig. 5. Sequence diagram.



100 F. Adaili et al.

Fig. 6. Activity diagram.

4.3 Architecture of Secured RA2DL-Based Pools

We present in Fig. 7 the class diagram of the secured RA2DL-based pool.
This diagram represents the architecture of RA2DL-based pools with the static
aspect of the relation between the RA2DL components and the pool. It does
not provide any information about its behavior. The architecture of secured
RA2DL-based pools is composed of the following distinct classes: (i) RA2DL:
The main class of the architecture, the component concerned by the security
concept, (ii) RA2DL − Pool: It is the container of RA2DL components, (iii)
Security: Is an association between RA2DL and RA2DL-Pool which represents
the security-mechanisms, (iv) RA2DL − Soft: It is the software component of
RA2DL, (v) RA2DL − Hard: It is the hardware component of RA2DL, (vi)
Algorithm: Is a set of methods to be executed by each RA2DL component,
(vii)Reconfiguration: Represents all of the reconfiguration scenarios to execute
with RA2DL, (viii) Architecture: Describes the reconfiguration scenarios that
touch on the RA2DL architecture, (ix) Structure: Describes the reconfigura-
tion scenarios that touch on the RA2DL composition or structure, (x) Data:
Describes the reconfiguration scenarios that touch on the RA2DL data, (xi)
EventPort: Port for input/output event of RA2DL, (xii) DataPort: Port for
input/output data of RA2DL.

4.4 Modelling and Verification

We propose in this section the modelling and verification of the new architecture
of secured RA2DL-based pools by using UPPAAL [3]. Firstly, we model the pool
with its security aspect. Secondly we check a set of properties to ensure the
security of the pool.



Towards a Secure RA2DL Based Approach 101

Fig. 7. Architecture of a secured RA2DL-based pool.

Modelling of Secured RA2DL-Based Pool. We propose in Fig. 8 Finite
State Machine-based models of RA2DL-based Pool in order to show the interac-
tion between the various states and to verify also some properties defined in user
requirements. We present in the following a description of all the states and tran-
sitions characterizing this model. RA2DL-Pool is assumed to be a set of timed
automaton, that run in parallel and communicate thanks to global variables.

Fig. 8. Modelling of secured RA2DL-Based pools.



102 F. Adaili et al.

The states of this model are described as follows: start to start the querying
or the connection of RA2DL − pool. Controller represents the first contact with
the pool, in this state the checking of id user is important after verification of the
password user in the table UT . If the authentication is accepted and the pass-
word is checked, it can go to the state Reconfiguration which represents all the
reconfiguration scenarios. After the verification of the following parameters: (i)
id sr for the IDs of scenarios, privilege user for the privilege of the user in the
table ST and (iii) id reconf for the IDs of the reconfiguration in the table RT . If
all of the IDs are accepted, then the user may apply the reconfiguration in the tar-
get RA2DL component after checking the id RA2DL. A database is associated
to this level to facilitate the reconfiguration of the RA2DL components.

Verification of Secured RA2DL-Based Pool. We propose in this section
to check the relevance of the our solution and the contribution the following
properties in order to verify the security of the RA2DL components.

– Property 1: (Controller[].check id user)AND (UT[].check passeword user):
for each connection with the pool, we should check the user authentification
by using the UT table,

– Property 2: (Reconfiguration[].check id sr) AND (RT[].check id reconf):
before the execution of any reconfiguration scenario, it is important to check
if it is registered in the reconfiguration table (RT),

– Property 3: (Reconfiguration[].Reconfigure! ⇒ RA2DL[].check id RA2DL)
AND (ST[].check privilege user): this property concerns the verification of
the access control mechanism,

– Property 4: RA2DL[].save ⇒ Database[].check id db: each RA2DL com-
ponent should be imperatively saved in a Database to facilitate the use of
RA2DL components and to minimize the execution time,

– Property 5: (Controller[] AND Reconfiguration[] AND RA2DL[] AND Data-
base[] AND ST[] AND RT[] AND UT[]) not deadlock: the system is deadlock-
free.

The verification of these properties is summarized in Table 2 already shown
in [2].

We show the validation of the all properties of our RA2DL component in
Fig. 9.

5 Case Study and Implementation

We use as a running example in the current chapter the body-monitoring system
(BMS) to evaluate the chapter’s contribution.



Towards a Secure RA2DL Based Approach 103

Table 2. Verification results.

Property Result Calculation time (sec) Consumed memory (Mo)

Property 1 True 10.52 5.72

Property 2 True 9.12 4.82

Property 3 True 5.32 3.20

Property 4 True 13.25 6.56

Property 5 True 8.23 4.37

Fig. 9. Validation properties.

5.1 Case Study: Body-Monitoring System (BMS)

During the last few years there has been a significant increase in the num-
ber and variety of wearable health monitoring devices ranging from simple
pulse monitors, activity monitors, and portable Holter monitors, to sophisti-
cated and expensive implantable sensors. The Body-Monitoring System (BMS)
[12] is designed as a mobile device that is able to collect measured data and to
act according to instructions set by a supervisor. The system consists of a body-
monitoring network. In order to recognise the monitored person’s state, the mon-
itor unit connects to various body sensors and i/o devices by using either wired or
wireless communication technologies. Data from all sensors are collected, stored
and analysed at real-time and, according to the analysis, actions may then be
performed. A computer is used as an interface to the body-monitoring network,
and developed software allow a supervisor to configure the monitor unit for the
monitored person, to connect sensors and i/o devices, define and upload instruc-
tions for monitoring and download collected data describe in Fig. 10 reproduced
from [2].

The monitor unit software consists of a communication module (responsible
for connecting and controlling sensors, and for gathering and pre-processing
measured data), a storage module (for storage of collected data), and a policy
interpretation module responsible of controlling the behaviour of the monitor
unit according to instructions defined by a supervisor.

Two types of drivers are introduced. The role of a communication driver is
to hide the way in which data is transmitted. There is one driver for every type
of communication interface, e.g. a Bluetooth driver or an IEEE 802.11b driver.
The communication driver does not care about the data itself; this is the role
of device drivers. Each type of sensor has its own device driver. When a device



104 F. Adaili et al.

Fig. 10. Overview of the Body Monitoring System [5].

driver receives a message from one of its sensors it decodes the message and
informs the policy engine about the state of the sensor. To send/receive a message
to/from a sensor, the device driver uses the corresponding communication driver.

To secure this system, we must take into account these steps: (i) make the
grouping of RA2DL components according to similar characteristics in RA2DL-
Pool. (ii) assign for each RA2DL-pool a security level (depending on the degree
of importance of the RA2DL components that they contain). (iii) allocate for
each RA2DL-pool a security mechanism.

Running Example: We group the RA2DL components of BMS system in five
RA2DL-Pools as shown in Fig. 11. (i) RA2DL-Pool 1: includes the following
RA2DL components: RA2DL-G for the Glucose detection, RA2DL-C for the
chloride detection and RA2DL-W for the water detection. (ii) RA2DL-Pool 2:
includes the following RA2DL components: RA2DL-L for the lactate detection
and RA2DL-PH for the PH detection. (iii) RA2DL-Pool 3: includes the follow-
ing RA2DL components: RA2DL-DM for the Diabetes mellitus detection and the
RA2DL-BP for the Blood pressure. (iv) RA2DL-Pool 4: contains the display
device which is the component RA2DL-Mobil. (v) RA2DL-Pool 5: contains the
RA2DL-Soft for the transmission of data with a protocol until RA2DL-Mobil.

5.2 Implementation

We present in this section the tool of the BMS system that we developed in
LISI Laboratory at INSAT Institute of University of Carthage in Tunisia and
CEDRIC Laboratory at National Conservatory of Arts and Crafts of Paris in
France. Figure 12 reproduced from [10] shows the tool offers the possibility to
create all reconfiguration scenarios of the RA2DL component (addition, removal
and update of algorithms, events and data) when any problem occurs.



Towards a Secure RA2DL Based Approach 105

Fig. 11. Object diagram of BMS.

Fig. 12. Interface for reconfiguration architecture of RA2DL.

We assume five pools with their parameters such as the number of RA2DL
components in pool, Worst Case Execution Time (WCET), the authentication
and the access control mechanisms (Fig. 13).



106 F. Adaili et al.

Fig. 13. RA2DL-Pools of BMS system.

Fig. 14. Test of authentification mechanism.

Figure 14 reproduced from [2] shows the connectivity test of the different
pools according to the authentication mechanisms and also to check the config-
uration between the various RA2DL components in each pool.

Running Example: The application of our approach to the BMS case study
is illustrated in Table 3 reproduced from [2], where we give a security level (S.L)



Towards a Secure RA2DL Based Approach 107

Fig. 15. Result of evaluation.

Table 3. Running example.

Security level Authentication mechanism Access control mechanism Security

Pool 1 1 No Yes Yes

Pool 2 2 Yes No Yes

Pool 3 6 Yes Yes Yes

Pool 4 5 Yes Yes Yes

Pool 5 5 Yes Yes Yes

for the five pools depending on the sensitivity of the comprising components. In
the BMS system, the RA2DL-pool 3 is the most secured and RA2DL-pool 1 is
the less secured one. Both security mechanisms are applied to the five pools.

5.3 Evaluation

This section is devoted mainly to test our approach and evaluate the execution
time. Ten assessments are applied to the two mechanisms that are focused on two
stolen: RA2DL without pool and RA2DL with pool of the BMS system. We show
in Fig. 15 reproduced from [2] the results of the evaluation. We are interested in
response time gains for secured and not secured RA2DL components.

The proposed approach has the following advantages:

(a) Functionality: RA2DL component in RA2DL−Pool are at a functional
level much more adaptable and extendable than traditional RA2DL components.

(b) Reusability: A reusability is an important characteristic of a high-
quality RA2DL component. Programmers should design and implement RA2DL
components in such a way that many different programs can reuse them.



108 F. Adaili et al.

Table 4. Comparison between Pool and Docker.

Pool Docker

Main goal Secure RA2DL Component Secure portable applications

Continent RA2DL component Applications

System RA2DL-Based system OS

Relationship between them Yes No

Security mechanism Yes No

(c) Maintainability: In BMS system a piece of functionality ideally is
implemented just once. It is self-evident that this results in easier maintenance
of system, which leads to lower cost, and a longer life.

We shows in Table 4 a comparative study between our approach Pool con-
tainers and Docker containers.

The RA2DL-Pool is a solution to secure in run-time each RA2DL component-
based systems. By this solution the RA2DL component has become dynamic
and secured. None of the existing works has treated the security of the RA2DL
components as our method did.

6 Conclusion

Our work consisted, through this chapter, in proposing a novel approach for a
required security in adaptive RA2DL control component based systems, to model
and verify security control systems sharing adaptive resources. Whence, we chose
to enhance RA2DL component to support security check. We proposed, then, a
new and original solution to securing RA2DL component. Firstly, we define a
new grouping methodology entitled RA2DL-Pool which has its own methods for
the grouping of RA2DL components according to their similarities and security
techniques. Secondly, we propose two crucial mechanisms to control the security
in RA2DL-Pool: Authentication and access control mechanism. The relevance
of our solution was proved thanks to model-checking using UPPAAL tool. This
approach is original since RA2DL-Pool is a new formalism dedicated to secure
RA2DL based control component.

The next step is to apply this contribution on Body-Monitoring system
(BMS) by the grouping of these RA2DL components in RA2DL-Pool, we assign
for each Pool a sensitivity level of these components. We plan in the future works
to study the flexibility of RA2DL component in the network that links different
devices of RA2DL-based systems. This work will be extended for different real-
time aspects of RA2DL or in the run-time tests of components once deployed
on the target devices.



Towards a Secure RA2DL Based Approach 109

References

1. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: New solutions for useful
execution models of communicating adaptive RA2DL. In: Fujita, H., Guizzi, G.
(eds.) SoMeT 2015. CCIS, vol. 532, pp. 87–101. Springer, Cham (2015). doi:10.
1007/978-3-319-22689-7 7

2. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl-pool: new useful solu-
tion to handle security of reconfigurable embedded systems. In: Proceedings of
the 11th International Conference on Evaluation of Novel Software Approaches to
Software Engineering (ENASE), pp. 102–111, Rome, Italy (2016)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). doi:10.1007/BFb0020949

4. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

5. Bieliková, M.: A body-monitoring system with EEG and EOG sensors. J. ERCIM
News 49, 50–52 (2002)

6. Brereton, P., Budgen, D.: Component-based systems: a classification of issues.
Computer 33(11), 54–62 (2000)

7. Xia Cai, M.R., Lyu, Wong, K.-F., Ko, R.: Component-based software engineering:
technologies, development frameworks, and quality assurance schemes. In: Sev-
enth Asia-Pacific Software Engineering Conference (APSEC 2000), Proceedings,
pp. 372–379 (2000)

8. Clements, P.C.: A survey of architecture description languages. In: Proceedings
of the 8th International Workshop on Software Specification and Design (IWSSD
1996), p. 16, Washington, DC, USA. IEEE Computer Society (1996)

9. Rugina, A.E., Kanoun, K., Kaâniche, M.: An architecture-based dependability
modeling framework using AADL. In: 10th IASTED International Conference on
Software Engineering and Applications (SEA 2006) (2006)

10. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl: new flexible solution
for adaptive AADL-based control components. In: Proceedings of the 5th Inter-
national Conference on Pervasive and Embedded Computing and Communication
Systems, pp. 247–258 (2015)

11. Hansson, J., Feiler, P.H., Morley, J.: Building secure systems using model-based
engineering and architectural models. CrossTalk J. Defense Softw. Eng. 21(9), 12
(2008)

12. Husemann, D., Steinbugler, R., Striemer, B.: Body monitoring using local area
wireless interfaces. US Patent Ap. 10/406,865, 7 October 2004

13. Oman, P., Alves-Foss, J., Harrison, W.S., Taylor, C.: The MILS architecture for
high assurance embedded systems. Int. J. Embedded Syst. 2, 239–247 (2006)

14. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). doi:10.1007/3-540-45800-X 32

15. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension
in embedded system design. In: Proceedings of the 41st Annual Design Automa-
tion Conference (DAC 2004), New York, NY, USA, pp. 753–760. ACM (2004).
Moderator-Ravi, Srivaths

http://dx.doi.org/10.1007/978-3-319-22689-7_7
http://dx.doi.org/10.1007/978-3-319-22689-7_7
http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1007/3-540-45800-X_32


110 F. Adaili et al.

16. Mouratidis, H., Kolp, M., Faulkner, S., Giorgini, P.: A secure architectural descrip-
tion language for agent systems. In: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
New York, NY, USA, pp. 578–585. ACM (2005)

17. Anoop, M.S.: Security needs in embedded systems. Cryptology ePrint Archive,
Report 2008/198 (2008). http://eprint.iacr.org/

18. Ray, A., Cleaveland, R.: A software architectural approach to security by design.
In: 30th Annual International Computer Software and Applications Conference
(COMPSAC 2006), Chicago, Illinois, USA, 17–21 September, vol. 2, pp. 83–86
(2006)

19. Ren, J., Taylor, R.: A secure software architecture description language. In: Work-
shop on Software Security Assurance Tools, Techniques, and Metrics, pp. 82–89
(2005)

20. Salem, M.O., Ben Mosbahi, O., Khalgui, M., Frey, G.: ZiZo: modeling, simula-
tion and verification of reconfigurable real-time control tasks sharing adaptive
resources - application to the medical project bros. In: Proceedings of the Interna-
tional Conference on Health Informatics, pp. 20–31 (2015)

21. Vergnaud, T., Pautet, L., Kordon, F.: Using the AADL to describe distributed
applications from middleware to software components. In: Vardanega, T., Wellings,
A. (eds.) Ada-Europe 2005. LNCS, vol. 3555, pp. 67–78. Springer, Heidelberg
(2005). doi:10.1007/11499909 6

22. Yoon, E.-J., Lee, W.-S., Yoo, K.-Y.: Secure PAP-based RADIUS protocol in wire-
less networks. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. CCIS, vol.
2, pp. 689–694. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74282-1 77

http://eprint.iacr.org/
http://dx.doi.org/10.1007/11499909_6
http://dx.doi.org/10.1007/978-3-540-74282-1_77

	Towards a Secure RA2DL Based Approach
	1 Introduction
	2 State of the Art of Secured Component-Based Design Approaches
	3 RA2DL Background
	4 New Extension for Secured RA2DL
	4.1 Motivation: RA2DL-Pool
	4.2 Security Mechanisms for RA2DL
	4.3 Architecture of Secured RA2DL-Based Pools
	4.4 Modelling and Verification

	5 Case Study and Implementation
	5.1 Case Study: Body-Monitoring System (BMS)
	5.2 Implementation
	5.3 Evaluation

	6 Conclusion
	References


