
Quantitative and Qualitative Empirical Analysis
of Three Feature Modeling Tools

Juliana Alves Pereira1(✉), Kattiana Constantino2, Eduardo Figueiredo2,
and Gunter Saake1

1 Otto-von-Guericke-University Magdeburg (OvGU), Magdeburg, Germany
{juliana.alves-pereira,gunter.saake}@ovgu.de

2 Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
{kattiana,figueiredo}@dcc.ufmg.br

Abstract. During the last couple of decades, feature modeling tools have played
a significant role in the improvement of software productivity and quality by
assisting tasks in software product line (SPL). SPL decomposes a large-scale
software system in terms of their functionalities. The goal of the decomposition
is to create well-structured individual software systems that can meet different
users’ requirements. Thus, feature modeling tools provides means to manage the
inter-dependencies among reusable common and variable functionalities, called
features. There are several tools to support variability management by modeling
features in SPL. The variety of tools in the current literature makes it difficult to
understand what kinds of tasks are supported and how much effort can be reduced
by using these tools. In this paper, we present the results of an empirical study
aiming to support SPL engineers choosing the feature modeling tool that best fits
their needs. This empirical study compares and analyzes three tools, namely
SPLOT, FeatureIDE, and pure::variants. These tools are analyzed
based on data from 119 participants. Each participant used one tool for typical
feature modeling tasks, such as create a model, update a model, automated anal‐
ysis of the model, and product configuration. Finally, analysis concerning the
perceived ease of use, usefulness, effectiveness, and efficiency are presented.

Keywords: Software product lines · Variability management · Feature models ·
SPLOT · Featureide · Pure::variants

1 Introduction

The growing need for variability management in larger and complex software applica‐
tions demands better support in benefiting from reusable software artifacts. Software
Product Line (SPL) has proven to be an efficient software development practice by
exploiting large-scale reuse and dealing with many challenges of today’s software
development, such as variability [26]. Experience already shows that SPL can allow
companies to realize order-of-magnitude improvements in time to market, cost, produc‐
tivity, quality, and flexibility [9]. Large industries, such as Hewlett-Packard, Nokia,

© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 66–88, 2016.
DOI: 10.1007/978-3-319-56390-9_4

Motorola, and Dell have been investing significant effort incorporating software varia‐
bility into their product line approaches [8, 28].

Variability is one of the key concepts in SPL. It allows the development of similar
applications from a shared and interdependent set of software functionalities, called
features [2]. Feature modeling is a way for representing variability in SPL [20]. A feature
model provides a formal notation to represent and manage the interdependencies among
reusable common and variable features. Interdependencies are employed to delimit the
variability’s space and to define the incompatibilities of infeasible combinations of
features. The term feature model was proposed by Kang et al. [19] in 1990 as a part of
the Feature-Oriented Domain Analysis (FODA) method. Since then, features models
have been applied in a number of domains, including mobile phones [14, 16], telecom
systems [17, 22], automotive industry [5, 13], template libraries [11], network protocols
[3], and others.

Due the complex interdependencies among features, the adoption of SPL practices
by industry depends on adequate tooling support. However, in the current literature there
are several available tools to support variability management by modeling features in
SPL [25]. The variety of tools makes it difficult to choose one that best meets the SPL
development goals. Hence, most software development teams adopt new tools without
establishing a formal evaluation. Thus, in order to contribute with relevant information
to support software development teams choosing a feature modeling tool that best fits
their needs, this paper presents a detailed empirical analysis of three tools, namely
SPLOT [23], FeatureIDE [29], and pure::variants [7]. We choose to focus our
analysis on these tools because they provide the key functionality of typical feature
modeling tools, such as to edit (create and update) a feature model, to automatically
analyze the feature model, and to configure a product from a model.

The empirical study presented in this paper involves 119 participants enrolled in
Software Engineering courses. Each participant used only one tool: SPLOT, Featur-
eIDE, or pure::variants. We relied on a background questionnaire and a 1.5-hour
training session to balance knowledge of the participants. The experimental tasks exer‐
cise different aspects of feature modeling. All participants answered a questionnaire
about the functionalities they used in each tool. We focus on quantitative and qualitative
analyses of four typical functionalities of feature modeling tools: Feature Model
Edition, Automated Feature Model Analysis, Product Configuration, and Feature Model
Import & Export. Based on this analysis, we uncover several interesting findings of the
analyzed tools. For instance, we observed that SPLOT presented the best results for
Automated Feature Model Analysis with twenty-five different operation of analysis
mechanisms. The Feature Model Editor of FeatureIDE was considered the easiest
and most intuitive one with many mechanisms available. Moreover, FeatureIDE also
achieved the best results for the Feature Model Import & Export functionalities with a
total of eight different possible either import or export formats. In general, the main
issues we observed in the three analyzed tools are the lack of adequate mechanisms for
managing the variability, such as visualization mechanisms to support the Product
Configuration functionality.

The remainder of this paper is organized as follows. Section 2 describes the empirical
study settings. Section 3 reports and analyzes the results. Section 4 points out the main

Quantitative and Qualitative Empirical Analysis 67

issues to be addressed in the future. Section 5 discusses some threats to the study validity.
In Sect. 6, some related works are discussed. Finally, Sect. 7 concludes this paper by
summarizing its main contributions and directions for future work.

2 Study Settings

In this section, we present the study configuration aiming to evaluate and compare three
alternative feature modeling tools, namely SPLOT, FeatureIDE, and
pure::variants. Section 2.1 defines the study research questions. Section 2.2
introduces the three analyzed tools and explains the reasons for selecting them.
Section 2.3 summarizes the background information of participants that took part in this
study. Finally, Sect. 2.4 explains the training session, describes the target feature model
used in the experiment, and the tasks assigned to each participant.

2.1 Research Questions

The goal of this study is to investigate how feature modeling tools are supporting vari‐
ability management in SPL. We formulate three Research Questions (RQ) focusing on
specific aspects of the evaluation. The answer to these questions may support researchers
and practitioners, for instance, in selecting or developing new feature modeling tools.
The research questions investigated in this study are as follows.

RQ1. What functionalities of feature modeling tools are hard and easy to use?
RQ2. Does the developer background impact on the use of feature modeling tools?
RQ3. What are the strengths and weaknesses of these feature modeling tools?

To address RQ1, we list a four-level ranking in relation to the degree of difficulty
for each of the analyzed functionalities (see Sect. 3.1). With respect to RQ2, we are
willing to investigate whether the developers background can impact on the results of
this study (see Sect. 3.2). Finally, with respect to RQ3, we aim at highlighting the
strengths of the analyzed tools and identifying weaknesses and missing mechanisms to
be addressed by researchers and practitioners in the future (see Sect. 3.3).

2.2 Feature Modeling Tools

A previous systematic literature review [25] identified 41 tools for SPL development
and feature modeling. Based on this review, we used the following three Exclusion
Criteria (EC) in order to filter tools to be analyzed in this study.

EC1. (Functionalities) We excluded all tools that do not include the main functional‐
ities required for variability management in SPL [12].

EC2. (Prototype tools) We excluded all prototype tools from our study because they
are not applicable to industry, as they do not cover all relevant functionalities that
we aim to evaluate, hindering some sorts of analysis.

68 J.A. Pereira et al.

EC3. (Material available) We excluded all tools without enough examples available,
tutorials, or user guides. This criterion was required in order to prepare the exper‐
imental material and training session.

EC4. (Unavailable tools) We excluded all tools unavailable for download and the
commercial tool without an evaluation version.

After applying the exclusion criteria (EC1–EC3), we filter six feature modeling tools
that might be used in our empirical study: SPLOT, FeatureIDE,
pure::variants, FAMA, VariAmos, and Odyssey. From the six candidate tools,
we used the following Inclusion Criteria (IC) in order to choose a set of three tools and
make possible to conduct a deeper study.

IC1. (Mature tools) We include the three most mature tools, as the maturity has a great
effect on software quality and productivity (e.g., less errors are likely to be intro‐
duced during the development and consequently less effort is required to correct
errors). However, in order to verify how mature a feature modeling tool is for
variability management, we analyze the most cited tools in the SPL literature. For
that, we identify primary studies from three scientific database libraries, namely
ACM Digital Library1, IEEE Xplore2, and ScienceDirect3. IC1 relies on the
following search string: (“splot” OR “featureide” OR “pure:variants” OR
“fama” OR “variamos” OR “odyssey”). The search was performed using the
specific syntax of each specific database and considering only the title, abstract,
and keywords. The search strings and results of each scientific database engine
are provided in the Web supplementary material [1].

We found 256 primary studies for Pure::Variants, 251 for SPLOT, 96 for
FeatureIDE, 74 for Odissey, 35 for VariAmos, and 3 for FAMA. Thus, we choose
pure::variants4, SPLOT5, and FeatureIDE6 as representative tools. These tools
are actively used (by industry or academic researchers), and accessible tools in order to
evaluate the state-of-the-art of feature modeling tools. Next, we present a brief overview
of the selected tools.

SPLOT.SPLOT (Software Product Lines Online Tools) is an open source Web-
based tool. It does not provide means for code generation or integration [23]. However,
at the tool website, we can find a repository with more than four hundred feature models
created by tool users for over 5 years. You can download the tool’s code and also a Java
library (SPLAR) created by the authors to perform the analysis of feature models. It also
provides a standalone tool version that can be installed on a private machine. We used
the online version of SPLOT for this empirical study.

1 http://dl.acm.org/.
2 http://ieeexplore.ieee.org/.
3 http://link.springer.com/.
4 http://www.pure-systems.com/pure_variants.49.0.html.
5 http://www.splot-research.org.
6 http://featureide.cs.ovgu.de.

Quantitative and Qualitative Empirical Analysis 69

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://springerlink.bibliotecabuap.elogim.com/
http://www.pure-systems.com/pure_variants.49.0.html
http://www.splot-research.org
http://featureide.cs.ovgu.de

FeatureIDE. FeatureIDE is an open-source Eclipse-based tool which widely
covers the SPL development process [29]. Besides having feature model editor and
product configurator, it is integrated with several programming and composition
languages with a focus on development for reuse [4, 21]. FeatureIDE can be down‐
loaded separately or in a package with all dependencies needed for implementation.

pure::variants. pure::variants is a commercial Eclipse-based tool
developed by the Pure-Systems GmbH to support the development and deployment of
SPL [7]. It supports all phases of SPL development from requirements specification to
test cases and maintenance. Although it is a commercial tool, there is an evaluation
version available in its web site (http://www.pure-systems.com/pure_variants.
49.0.html). We used the evaluation version of pure::variants in this study.

2.3 Background of the Participants

Participants involved in this study are 119 young developers taking a Software Engi‐
neering course. They were organized as follows: 41 participants worked with SPLOT,
42 participants worked with FeatureIDE, and 36 participants worked with
pure::variants. All participants are graduated or close to graduate since they are
mostly post-graduated MSc and Ph.D students from four different Brazilian universities:
UFLA7, UFMG8, UFJF9, and PUC-Rio10. To avoid biasing the study results, each
participant only took part in one study semester and only used one tool, either Featur-
eIDE or SPLOT or pure::variants. The participants were nicknamed as follows:
(i) F1 to F42 worked with FeatureIDE, (ii) S1 to S41 worked with SPLOT and (iii)
P1 to P36 worked with pure::variants. Our goal is to use these nicknames while
keeping the anonymity of the participants separating them by the tool since we did not
repeat participants in the experiments. Further details about the distribution of partici‐
pants are available at the project website [1].

Before starting the experiment, we used a background questionnaire to acquire
previous knowledge of each participant. Figure 1 summarizes knowledge that partici‐
pants claimed to have in the background questionnaire with respect to Object-Oriented
Programming (OOP), Unified Modeling Language (UML), and Work Experience (WE).
The bars show the percentage of participants who claimed to have knowledge high,
medium, low, or none in OOP and UML. For WE, the options were: more than 3 years,
1 to 3 years, up to 1 year, and never worked in software development industry.
Answering the questionnaire is not compulsory, but only 2 participants did not answer
the questionnaire about UML knowledge and 3 participants did not answer about WE.
In summary, we observe that about 75% of participants have medium to high knowledge
in OOP and 48% have medium to high knowledge in UML. In addition, about 52% have

7 Federal University of Lavras.
8 Federal University of Minas Gerais.
9 Federal University of Juíz de Fora.

10 Pontifical Catholic University of Rio de Janeiro.

70 J.A. Pereira et al.

http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html

more than 1 year of work experience in software development. Therefore, despite heter‐
ogeneous backgrounds, we can conclude that all participants have at least the basic
knowledge in the technologies required to perform the experimental tasks.

Fig. 1. Background of participants with respect to object-oriented programming (OOP), unified
modeling Language (UML), and work experience (WE). Reproduced from [10].

2.4 Training Session and Tasks

In order to balance knowledge of participants, we conducted a 1.5-hour training session
where we introduced participants to the basic concepts of SPL and the analyzed tools.
The same training session by the same researcher to all participants was performed in
all four institutions (Sect. 2.3). All material about the course was available for all partic‐
ipants. In addition, we have not restricted participants of accessing (e.g., via Web
browsers) other information about the tools, such as tutorials and user guides.

After the training session, we asked the participants to perform some tasks using
either FeatureIDE or SPLOT or pure::variants. These tasks were based on the
target feature model of Mobile Media [16]. Mobile Media is an SPL for applications
with about 3 KLOC that manipulate photo, music, and video on mobile devices, such
as mobile phones [16]. Second Eduardo et al. [16], Mobile Media was developed for a
family of 4 brands of devices, namely Nokia, Motorola, Siemens, and RIM. As an
example, consider the simplified view of the Mobile Media feature model presented in
Fig. 2. The features are represented by boxes, and the interdependencies between the
features are represented by edges [11]. In feature models, there are common features
found in all products of the product line, known as mandatory features, such as Media
Management, and variable features that allow the distinction among products in the
product line, referred to as optional and alternative features, such as Copy Media and
the group Screen Size, respectively. The optional and alternative features are configu‐
rable on selected devices depending on the provided API support. Notice that a child
feature can only appear in a product configuration if its parent feature does. Thus, each
of the primitive features (i.e., atomic features) is a decision option related to the given
parent feature, resulting in eleven decision options.

Quantitative and Qualitative Empirical Analysis 71

Fig. 2. A feature model for mobile media (adapted from Figueiredo et al. [16]).

In addition to features and their relationships, feature models often contain additional
composition rules [11]. Composition rules refer to additional cross-tree constraints to
restrict feature combinations that cannot be expressed by the feature tree. Cross-tree
constraints are responsible for validating a combination of not directly connected
features (i.e., they add new relations to the feature model not described in the feature
tree). As an example, the cross-tree constraint “SMS Transfer → Copy Media” ensures
that all product configurations containing the feature SMS Transfer must contain the
feature Copy Media.

All tasks were based on the Mobile Media feature model to provide the same level
of difficulty among the participants. We performed a four-dimension task analysis with
respect to common functionalities provided by feature modeling tools as follows:
Feature Model Edition, Automated Feature Model Analysis, Product Configuration, and
Feature Model Import & Export. Feature Model Edition includes representing varia‐
bility, such as creating, updating, and adding features and interdependencies in the
feature model. Product’ requirements are the main entry in this step. Automated Feature
Model Analysis refers to extract information from the feature model. Based on Benavides
et al. [6], we consider the following Operations of Analysis (OA):

OA1. (Void Feature Model) A feature model is void if it represents no products.
OA2. (Valid Configuration) A valid product configuration must not violate the feature

model constraints (i.e., all features interdependencies must be considered).
OA3. (Valid Partial Configuration) A partial configuration requires additional

features to be a complete configuration. A complete configuration has a defined
selection state for each feature from the feature model.

OA4. (Number of Configurations) This operation returns the number of valid config‐
urations represented by the feature model. As an example, the number of product
configurations from the feature model presented in Fig. 2 is 252.

OA5. (Dead Features Detection) A feature is dead if it cannot appear in any of the
products of the SPL. In addition, a feature is conditionally dead if it becomes
dead under certain circumstances, e.g. when selecting another feature(s).

72 J.A. Pereira et al.

OA6. (False Optional Features) A feature is false optional if it is included in all the
products of the product line despite not being modeled as mandatory.

OA7. (Redundancies) A feature model contains redundancies when the interdepend-
dencies among features are modeled in multiple ways.

OA8. (Core Features) This operation returns the set of features that are part of all the
product configurations in the product line.

OA9. (Variant Features) Variant features are those that do not appear in all the prod‐
ucts of the product line.

OA10. (Dependency Analysis) This operation returns all the feature dependencies from
a defined partial configuration as a result of the propagation of constraints in
the feature model.

In the Product Configuration task, a mobile phone should be configured by
(de)selecting a set of features from the product line that forms a valid and concrete
resultant configuration. A concrete configuration defines a set of (de)selected features
from a feature model that covers as much as possible the product’ requirements. Finally,
the feature model should be exported and imported (e.g., using the formats XML and
CSV) to a new project.

We ran seven rounds of this experiment, three of them for SPLOT, two for Featur-
eIDE and two for pure::variants. Each round of the experiment was performed
in a computer laboratory with configured machines satisfying the minimum configura‐
tion required for each tool. While performing the tasks, all participants answered a
questionnaire with open and closed questions. All answers are available in the project
website [1].

3 Results and Discussion

This section reports and discusses data of this empirical study. Section 3.1 reports the
degree of difficulty encountered by participants when performing the requested tasks.
Section 3.2 focuses the discussion on whether the background of participants can impact
on the use of each tool. Finally, Sect. 3.3 discusses the strengths and weaknesses of the
analyzed tools.

3.1 Problems Faced by Developers

This section analyzes the level of problems that developers may have to carry out tasks
in each analyzed tool. In other words, we aim to answer the following research question.

RQ1: What functionalities of feature modeling tools are hard and easy to use?

For this evaluation, we have identified interesting results extracted from the analysis
of quantitative and qualitative data from the questionnaires answered by the participants
after performing each task (see Sect. 2.4). The questionnaires are composed with open
and closed questions. For closed questions, participants had the following options to
answer (i) I was unable to perform the task, (ii) I performed the task with a major

Quantitative and Qualitative Empirical Analysis 73

problem, (iii) I performed the task with a minor problem, and (iv) I had no problem
performing the task. Note, in order to validate the closed questions, we look up for the
opened questions to know whether the participants finished the task properly (i.e., for
options (ii), (iii), or (iv)).

3.1.1 Hard and Easy Functionalities
In order to answer the research question RQ1, we first rely on data presented in Fig. 3.
This figure summarizes the results grouped by functionality and tool. We defined a Y-
axis to quantify the cumulated results, where the negative values mean hard to use and
positive values mean easy to use the respective functionality.

SPLOT

FeatureIDE

pure::variants

Fig. 3. Problems reported by participants to complete their tasks (reproduced from [10]).

We first investigated the SPLOT tool. On the one hand, Product Configuration seems
the most challenge functionality to use by the SPLOT participants. About 12% of them
were unable, and 24% had major problems to perform the Product Configuration task.
On the other hand, 24% participants of SPLOT had minor problems and 76% performed
without problems the Automated Feature Model Analysis task. These results endorse
one major goal of this tool, which is to support developers with automatic operations of
analysis [23], such as depth of the feature tree and number of possible configurations.
Moreover, SPLOT also focuses on critical debugging tasks, such as checking the consis‐
tency of feature models, and detecting the presence of dead and common features.

Unlike SPLOT, about 57% of the participants using FeatureIDE indicated that
they failed and had major problems to perform the Automated Feature Model Analysis
task. That is, 52% of participants had major problems and 5% were unable to perform
this task. Thus, this functionality was considered the hardest one to be used by partici‐
pants using FeatureIDE (see Fig. 3). The most of the participants concerned about
the limited support to guide them into the functionality. Regarding Feature Model
Edition, about 28% had minor problems and 70% had no problem to perform this task.

74 J.A. Pereira et al.

This seems a positive result for FeatureIDE because only 2% (1 participant of 42)
reported a major problem to edit a feature model.

Finally, we investigated the pure::variants tool. On the one hand, the Product
Configuration functionality presented the worst result for this tool with a total of 61%
of participants unable and with major problems to perform this task. On the other hand,
the tool succeeds for the Feature Model Edition functionality where 80% of the partic‐
ipants had minor or no problems performing the task. As both pure::variants and
FeatureIDE are Eclipse plug-in, this fact could be the reason why participants had
minor or no problems with this task.

The general observation is that participants had more difficulties to perform the
Product Configuration task in pure::variants. We believe that this task was a
challenge in pure::variants because the tool still lacks powerful-enough solutions
for managing the variability, such as the resolution of valid feature models applying
decision propagation mechanisms dynamically. Next, we have identified the ranking of
negative and positive functionalities for each tool.

3.1.2 Ranking of Negative Functionalities
Table 1 summarizes the rank of the three analyzed tools with respect to two negative
answers “I was unable to perform the task” and “I performed the task with major
problem” given by all participants. The first column relates to the feature modeling tools
and the other columns relate to the functionalities analyzed. The first (1st) in Table 1
means that the respective tool presented more negative answers compared to the other
tools. For instance, pure::variants can be considered the worst tool with respect
to Feature Model Edition and Product Configuration.

Table 1. The rank of the three tools by functionalities from problems faced by developers.

Tools Functionalities
Feature model
edition

Automated feature
model analysis

Product
configuration

Feature model
import & export

SPLOT 2nd 3rd 2nd 1st

FeatureIDE 3rd 1st 3rd 3rd

pure::variants 1st 2nd 1st 2nd

According to the SPLOT users, the main issues in this tool are related to its interface.
For instance, participants reported they had trouble in the task of renaming features in
the model. They also complained about the lack of examples. Other problems mentioned
freely by its participants were that the tool does not work in some browsers. Furthermore,
they mentioned that some terms such as “CTRC” and “CTC” were confused and, so,
they did not understand the terms used by this tool when they were trying to configure
a product.

For FeatureIDE participants, although they manage to edit the feature model, the
tool interface still was the target of complaints. Besides, the participants also claimed
concerns about the confusing terms used by the tool, such as “primitive features”,
“compound feature”, “abstract features”, and “feature hidden”. Another complaint was

Quantitative and Qualitative Empirical Analysis 75

regarding the navigation to find the related menu for the Automatic Feature Model
Analysis and Product Configuration. Thus, they consider that the tool is not intuitive.

With respect to pure::variants, the main issues pointed out by participants
were difficult to add cross-tree constraints in the feature model and many problems to
perform the tasks about Product Configuration. Moreover, some participants also had
trouble with the Automatic Feature Model Analysis, such as finding the activity menu
for this task and the dead features. Furthermore, like in FeatureIDE, they claimed
about terms used. Lastly, they also had interpreting problems in the results analyzed.

As a general observation, we encourage researchers and developers of feature
modeling tools to unify vocabulary or notation in order to work in better way. In our
study, we are convinced that the current examples available, technical report, tutorial,
and users’ guide are not clear enough to help the software developers using the tools
and, consequently, adopting SPL. In addition, our results indicate that the developers of
SPL tools need to focus more on usability and in human-computer interaction to provide
the better user experience for their users.

3.1.3 Ranking of Positive Functionalities
Tables 2 and 3 summarize the ranking of the three analyzed tools considering the answers
“I performed with minor problem” and “I had no problem performing the task”, given
by participants with strong and weak backgrounds, respectively. The first column in
these tables is the feature modeling tools and the second column relates the functional‐
ities analyzed. The first (1st) means that the respective tool presented more positive
answers compared to the other tools. For instance, SPLOT was considered the best tool
with respect to the Automated Feature Model Analysis functionality by participants with
strong and weak backgrounds.

Table 2. The rank of the three tools by functionalities from strong background participants.

Tools Functionalities
Feature model edition Automated feature

model analysis
Product configuration Feature model import

& export
SPLOT 3rd 1st 2nd 3rd

FeatureIDE 1st 3rd 1st 1st

pure::variants 2nd 2nd 3rd 2nd

Table 3. The rank of the three tools by functionalities from weak background participants.

Tools Functionalities
Feature model edition Automated feature

model analysis
Product configuration Feature model import

& export
SPLOT 2nd 1st 2nd 3rd

FeatureIDE 1st 2nd 1st 1st

pure::variants 3rd 3rd 3rd 2nd

It is interesting to note that developers with weak and strong backgrounds have
different viewpoints about the analyzed tools. For instance, on the one hand,

76 J.A. Pereira et al.

pure::variants can be considered the worst tool for developers with weak back-
ground regards to three functionalities (i.e., Feature Model Edition, Automated Anal‐
ysis, and Product Configuration). On the other hand, this tool is only considered the
worst option by highly skilled participants for Product Configuration. Therefore, this
result suggests that pure::variants is more suitable for experienced developers
than for novice ones.

3.2 Background Influence

This section analyzes whether the background of developers can impact on the use of
the analyzed tools. In other words, we aim to answer the following research question.

RQ2. Does developer background impact on the use of the feature modeling tools?

In order to answer RQ2, we first classified the participants by their level of knowledge
and work experience into two groups. Group 1 (Strong Experience) includes participants
that claimed to have high and medium knowledge in OOP, UML, and more than 1 year
of work experience. Group 2 (Weak Experience) includes participants that answered
few and no knowledge in OOP, UML, and less than 1 year of work experience. In this
analysis, we excluded participants that did not answer the experience questionnaire and
participants with mixed experiences. For instance, a participant with good knowledge
in OPP, but less than one year of work experience.

3.2.1 Data Summary
Figure 4 shows pie charts summarizing the results. Similarly to Fig. 3, this figure depicts
the percentage of participants who (i) were unable to perform the task, (ii) performed
the task with major problem, (iii) performed the task with minor problem, and (iv) had
no problem to perform the tasks. Charts on top indicate results for participants in the
highly skilled group and charts on the bottom indicate participants with weak back‐
ground. Besides, each pie chart summarizes the result of one task in one specific tool.
The legend in the center of each pie is to identify the matching tool. That is, S means
SPLOT, F means FeatureIDE and P means pure::variants. Each set of three
pie charts relates to one of the four functionalities analyzed in this empirical study.

Based on the results of Fig. 4, we compared these two groups for each dimension.
For Feature Model Edition, for instance, we realized that SPLOT (S) and
pure::variants (P) showed some differences between these two groups. In the
case of SPLOT, about 10% of participants with the weak background (Group 2) reported
they were unable to conclude their task, while 99% of the participants with the highly
skilled background (Group 1) completed their tasks. In addition, the total percentage of
participants who had minor problems and had no problem did not change from Group
1 to Group 2. The reason for this result may be due to the Web interface of SPLOT and
participants seem familiar with it. For pure::variants, the difference between
Group 1 and Group 2 was even clearer. Approximately 92% of participants in Group 1
performed the Feature Model Edition task with minor or no problem. In Group 2, this
percentage decreased to 60%. Therefore, we noticed the percentage of success is related

Quantitative and Qualitative Empirical Analysis 77

to the skill level of participants in these cases. Good knowledge in OOP and UML may
have contributed positively to the success of participants in this task because the task of
editing a feature model involves creating an abstract representation and relationships,
similarly to UML software modeling.

HIGHLY SKILLED (GROUP 1)

FEATURE MODEL
EDITION

AUTOMATED FEATURE
MODEL ANALYSIS

PRODUCT
CONFIGURATION

FEATURE MODEL
IMPORT& EXPORT

WEAK BACKGROUND (GROUP 2)

FEATURE MODEL
EDITION

AUTOMATED FEATURE
MODEL ANALYSIS

PRODUCT
CONFIGURATION

FEATURE MODEL
IMPORT& EXPORT

Fig. 4. Comparative results of participants with high skilled and with weak background.

For the Automated Feature Model Analysis functionality, the main difference
between the groups occurred using the FeatureIDE and pure::variants tools.
While 14% and 56% of the FeatureIDE and pure::variants participants in
Group 1 had no problem performing the tasks, all participants in Group 2 failed or had
some problem performing the tasks.

With respect to Product Configuration, while in SPLOT the Group 2 had 33% failures
and the Group 1 only 13%, in FeatureIDE the Group 2 had no failures and the Group
1 had 13% failures. It shows that for FeatureIDE participants, the background did
not influence the task performance. For pure::variants tool, both groups had a
high percentage of failures. Although this seems a simple task, through (de)selecting
features based on product requirements, pure::variants does not support the
dynamic resolution of valid configurations. Thus, further knowledge about the feature
model is also important, such as comprehension of the notations, and the relationships
between features and constraints. Therefore, we realized that in this tool, this task is not
trivial for either beginners or experienced SPL developers.

For the Feature Model Import & Export functionality, participants who used SPLOT
presented a big difference in the results when comparing both groups, while for the other
tools both groups had similar performance. For SPLOT, the percentage of failures
increased from 17% in Group 1 to 33% in Group 2. Although the repository of the model
is an interesting functionality of this tool, the participants of this study seem not familiar
with it. Thus, it was difficult for participants with the weak background to perform this
task in SPLOT. However, this task is easier for experienced software developers in
Group 1.

Finally, based on the discussions described earlier, our analysis suggests that, in
general, participants who have knowledge in OOP, UML, and high work experience

78 J.A. Pereira et al.

have less trouble using the tools analyzed in this study. Therefore, as expected, the
background of the participants has an impact on the use of the analyzed tools.

3.2.2 Statistical Analysis
To prove statistically the preliminary analysis, we apply a 2k full factorial design [18].
For this experiment, we have considered two factors (k = 2), namely the participants
experience and the tool used. To quantify the relative impact of each factor on the
participant effectiveness, we compute the percentage of variation in the measured effec‐
tiveness to each factor in isolation, as well as to the interaction of both factors. The
higher the percentage of variation explained by a factor, the more important it is to the
response variable [18].

In general, results show that the type of tool tends to have a higher influence on the
effectiveness. Figure 5 outlines that for three out of the four functionalities (i.e., Feature
Model Edition, Product Configuration, and Feature Model Import & Export), the type
of tool used by the participants has the highest influence on the effectiveness. For the
Feature Model Edition task, 96% of the total variation can be attributed to the type of
used tool, whereas only 5% is due to participants’ experience and 2% can be attributed
to the interaction of these two factors. For Product Configuration, 57% is attributed to
the type of tool, and 43% is due to participants’ experience. Finally, for Feature Model
Import & Export, 95% is attributed to the type of tool, whereas only 1% is due to partic‐
ipants’ experience and 4% is attributed to the interaction of these two factors.

Fig. 5. Background Influence reported by factorial design test (reproduced from [10]).

Therefore, for the Feature Model Edition and Feature Model Import & Export tasks,
both the participants experience factor and the interaction seem of little importance to
the results. Indeed, the results clearly show that the participants who used the SPLOT
and FeatureIDE tools achieved the better results for these tasks. One possible explan‐
ation is the complexity of pure::variants. Additionally, even participants who
have no experience tend to obtain a higher effectiveness when they use SPLOT and
FeatureIDE in these two tasks.

For Automated Feature Model Analysis, the participants experience factor was more
significant. 58% of the total variation is attributed to the participants’ experience factor,
and whereas only 21% is due to the type of tool used and to the interaction of these two

Quantitative and Qualitative Empirical Analysis 79

factors. Therefore, the results for this task clearly show that the participants with strong
experience achieved the better results. One possible explanation is the complexity of the
terms used during the analysis task, which requires more knowledge from participants.

3.3 Strengths and Weaknesses in Feature Modeling Tools

This section investigates some of the strengths and weaknesses of SPLOT, Featur-
eIDE, and pure::variants tools. We aim to answer the following research ques‐
tion.

RQ3. What are the strengths and weaknesses of the feature modeling tools?

Figures 6, 7, and 8 show diverging stacked bar chart of the strengths and weaknesses
of SPLOT, FeatureIDE and pure::variants, respectively. In particular, we ask
the participants about the following terms (i) tool interface, (ii) feature model editor,
(iii) cross-tree constraints, (iv) automatic analysis, (v) product configuration, (vi) inte‐
gration with code, (vii) hotkey mechanisms, (viii) online tool, (ix) feature model repo‐
sitory, (x) eclipse plug-in, and (xi) examples and user guides. The percentages of partic‐
ipants who considered the items as strengths are shown to the right of the zero line. The
percentages who considered the items as weaknesses are shown to the left of the zero
line. These items are sorted in alphabetical order in all figures. Participants could also
freely express about other strengths or weaknesses they encountered during the tasks.

For SPLOT participants (see Fig. 6), the three most voted strengths were: the auto‐
matic analysis of the models (76%), the fact being an online tool (63%), and the feature
model editor (41%). We believe that the automatic analysis of SPLOT was pointed out
as the biggest strengths, because it presents the most basic required operations while
compared with other tools. However, although 41% of participants have considered the
editor as a strength of this tool, 44% of them pointed the editor as a weakness. The
participants claimed mainly about the shape size. Second the participants, each feature

Fig. 6. Strengths and weaknesses reported by participants using SPLOT.

80 J.A. Pereira et al.

should be presented with sufficient size to be readable. Moreover, 68% of them pointed
out the lack of examples available as a problem to understand the tool, and 76% indicated
integration with source code as a missing mechanism. Lastly, the product configuration
was one of the main concerns with 61% of votes. The participants claimed mainly regards
the missing functionalities, such as to set multiple configurations and to save them.
SPLOT does not allow users to create multiple configurations and keep the specified
ones. In this tool, only the feature model can be exported or (and) kept in the repository.

Analyzing the FeatureIDE tool (see Fig. 7), the three most voted strengths were:
the fact being an Eclipse plug-in (64%), and the feature model (62%) and cross-tree
constraints (57%) editors. Although, the feature model editor is similar mechanisms in
all tools, FeatureIDE editor presents many additional functionalities when compared
with the other tools (e.g., zoom, filter, hotkey, and layout organization mechanisms).
Moreover, when creating cross-tree constraints, it is possible to have immediate feed‐
back regards dead features, redundant constraints, and false-optional features. As a main
weakness, 64% of FeatureIDE users voted in the interface. In accordance with the
qualitative data, the main problem is regards to the navigation to find the related menu
for automatic analysis of the model and product configuration. Moreover, as in
SPLOT, the product configuration for large feature models is challenging. For both tools,
when the automatic validation is applied the immediate changes in the visual represen‐
tation generate unnecessary surprises and confusion to the users. In this context, inter‐
active mechanisms (e.g., animations, color hue, and highlighting) can be used to support
users navigate in the tree, (de)select the features, and understand the interdependencies
among them.

Fig. 7. Strengths and weaknesses reported by participants using FeatureIDE.

Finally, the pure::variants tool was analyzed (see Fig. 8). the three most voted
strengths were: the fact being an Eclipse plug-in (78%), automatic analysis of the models
(58%) and the feature model editor (56%). As weakness, 67% of its users voted in the
product configuration functionality. The pure::variants tool configurator does not
support the automatic validation of cross-tree constraints. Moreover, as in the other tools,

Quantitative and Qualitative Empirical Analysis 81

it represents them only textually in the feature model editor screen. Thus, no cross-tree
constraints visualizations are provided to the users in the configurator screen.

Fig. 8. Strengths and weaknesses reported by participants using pure::variants.

As in pure::variants, when considering all participants and tools, the most
voted weaknesses were the tool interface (64%) and the product configuration mecha‐
nism (61%). The main drawback pointed out by participants is regards the information
visualization when configuring a product. The product configuration layout in those tools
results in a lot of unused screen space. Thus, the main challenge is to improve its layout
taking into account a large amount of data and making use of the whole screen space
while still providing a sufficient degree of usability (e.g., using multi-product lines
representation). Furthermore, 50% indicated the lack of examples available and user
guide. Note that, the interface and the lack of guidance may impact on negative results
of relatively simple tasks, such as Product Configuration. That is why about 46% of
participants failed to perform this task. As a result, it is recommended that SPL devel‐
opers take into consideration the aspects related to user experience in order to improve
the feature modeling tools.

4 Variability Management Main Issues

When analyzing the qualitative and quantitative data from the participants, the main
issues we observed in the three analyzed tools are the lack adequate mechanisms for
managing the variability, such as visualization mechanisms to support the product
configuration task. Based on the expert knowledge from authors of this paper, we extract
three main issues to be addressed in the future.

Issue 1: Current tools offer limited support for advanced visualization mechanisms (i.e.,
fish-eye views, filters, zooming, focus and context, cross-tree constraints, and others)
making variability harder to manage.

82 J.A. Pereira et al.

Issue 2: When the products to be configured are highly customized, the users are usually
unable to find satisfactory configurations. This happen because the amount and
complexity of options presented by the configurator lead users to get lost with so much
information and make poor decisions due complex and hard to reasoning dependencies.
Moreover, the feature model may present many subjective features that cannot be
matched with the product’ requirements. In this context, none of the analyzed tools
present additional information about features and variability to guide users in an easier
configuration process.

Issue 3: Cross-tree constraints often create a nightmare for users because they crosscut
feature models, and the resolution of valid product configuration becomes computa‐
tionally complex. In SPLOT and FeatureIDE, the cross-tree constraints used to
delimit the scope of allowed products are managed by SAT solvers that can automati‐
cally resolve the variability model’s consistency and validity during the product config‐
uration. Each time the user (de)selects a particular feature decision propagation strat‐
egies are applied to automatically validate feature models, which result in a non-
conflicting configuration. However, such views add confusion to the users. Thus, they
need additional visualization mechanisms to show which feature implied in a (de)selec‐
tion of other feature(s). Moreover, the decision propagation mechanisms by themselves
are not enough to support users getting a valid configuration (i.e., decision propagation
can only benefit to configure partial configurations). In this case, when the user has
selected all features of their choice, their configuration might still be invalid due to
unsatisfied feature dependencies. Consequently, it may be very difficult to the users
specifying a valid configuration since features of no interest to them also need to be
(de)selected in order to fulfill the feature model's interdependencies. In this context, the
analyzed tools lack appropriated mechanisms to show the users which features should
be (de)selected to guide them into a valid final configuration.

In summary, the product configuration process can be challenging, as users regularly
do not know every feature and their interdependencies, particularly for large product
lines. Thus, in order to ease the configuration process, we believe that a successful
product configuration functionality would need to be able to present the following char‐
acteristics:

• Guide the users over each step of the product configuration process through a
restricted and detailed view of the configuration space and features.

• Guide the product configuration process by delivering capabilities to effectively
communicate with the users and understand their needs and preferences.

5 Threats to Validity

A key issue when performing this kind of experiment is the validity of the results. The
results should be valid for the population of which the set of participants were involved.
It is also interesting to generalize the results to a broader population. The results have
adequate validity if they are valid for the population, which they intend to be generalized.
In this section, threats to the validity are analyzed. We discuss the study validity with

Quantitative and Qualitative Empirical Analysis 83

respect to the four categories of validity threats [31]: constructs validity, internal
validity, external validity, and conclusion validity.

Construct validity reflects what extent the operational measures that are studied
really represent, what the researcher has in mind, and what is investigated according to
the research questions [31]. The most common threats to this type of validity are related
to experiment design: in general, poor definition of the theoretical basis or the definition
of the testing process. For example, participants can base their behavior on the research
hypotheses or they may be involved in other experiments. This type of threat can occur
in formulating the questionnaire in our experiment, although we have discussed several
times the experiment design. To minimize social threats, we performed the experiment
in four different institutions.

Internal validity of the experiment concerns the question whether the effect is caused
by the independent variables (e.g. course period and level of knowledge) or by other
factors [31]. In this sense, a limitation of this study concerns the absence of balancing
the participants in groups according to their knowledge. It can be argued that the level
of knowledge of some participants may not reflect the state of practice (e.g., most of the
participants have only minor knowledge of SPL). To minimize this threat, we provide
a 1.5-hour training session to introduce participants to the basic required knowledge and
a questionnaire for help the better characterize the sample as a whole. However, 1.5-
hour training session may not have been enough for the participants with the weak
background.

External validity concerns the ability to generalize the results to other environments,
such as to industry practices [31]. A major external validity can be the selected tools
and participants. We choose three tools, among many available ones, and we cannot
guarantee that our observations can be generalized to other tools. Moreover, in Brazil
there are not many SPL developers, then this group may not reflect the state of the
practice. We tried to minimize this threat by working with both new and experienced
developers. These participants are graduated or close to graduate since the course targets
post-graduated MSc and Ph.D. students.

Conclusion validity concerns the relation between the treatments and the outcome
of the experiment [31]. This involves the correct analysis of the results of the experiment,
and the measurement reliability of the implementation of the treatments. Then, the
conclusion of the analyzed made by us could be another if it were done by other
researchers. To minimize this threat, we discuss the results data with experienced
researchers to make a more reliable conclusion.

6 Related Work

This section presents some previous studies about tools for feature modeling and vari‐
ability management in SPL. Djebbi et al. [15] perform an evaluate study of three SPL
management tools (i.e., XFeature, pure::variants, and RequiLine) in collab‐
oration with a group of industries. The purpose of this study was to understand the salient
characteristics of SPL management tools and to evaluate the ability of those tools to

84 J.A. Pereira et al.

satisfy industrial needs. In this evaluation, pure::variants and RequiLine were
the tools that best satisfied the defined criteria.

Simmonds et al. [27] also investigated several tools (i.e., Clafer, EPF
Composer, FaMa-OVM, fmp, Hydra, SPLOT, VEdit, and XFeature). The authors
conduct an analysis based on the expressiveness of each notation for dealing with the
required variability, as well as the understandability of the specification, adherence to
standard formats, and the availability of tool support. Specifically, the tools were eval‐
uated based on supported formats, underlying formalism, supported analyses, interface,
availability, and usability. As in our study, the purpose of this study is to facilitate tool
selection in the context of SPL.

In another study [30], ten variability modeling tools were compared (i.e., AHEAD,
FAMA, Feature Modeling Plug-in, Gears, Kumbang Tools, MetaEdit
+, Product Modeler, Pure::Variants, RequiLine, and XFeature). The
authors categorize the comparisons into general information, technical infrastructure,
operating systems support, rendering of modeling, format of input/output models
support, modeling and configuration functionalities, and development functionalities.
However, their results focus more on the implemented mechanisms than on the tool
support, while our empirical study is based on experimental data.

In a previous preliminary work [24], we performed a preliminary and exploratory
study that compares and analyzes two feature modeling tools, namely FeatureIDE
and SPLOT, based on data from 56 participants that used these two tools. This empirical
study involved other 84 new participants (i.e., none of the participant of this current
empirical study was the same of the previous one). Therefore, this current study
expanded and deepened the previous one in several ways. For instance, in addition to
expanding the data set of participants, it includes one more tool, pure::variants,
in the set of analyzed feature modeling tools. Moreover, the 84 new participants
performed different tasks to exercise other aspects of SPL development. As a similarity,
both studies aim to compare feature modeling tools and to support engineers in the hard
task of choosing the tool that best fits their needs.

First, we extend the previous short paper with the empirical analysis of one more
state-of-the-art SPL tool SPLOT. Second, we have significantly expanded the discussion
of our results by analyzing the three state-of-the-art SPL tools and by presenting addi‐
tional content, figures, and tables. Third, we extend our results pointing out a list of
variability management issues faced by those tools to be addressed in future research.
Finally, this empirical study presents a substantial extension of our preliminary short
paper [10].

7 Conclusion and Future Work

SPL focuses on systematic reuse based on the composition of features and domain
modeling. SPLOT, FeatureIDE, and pure::variants are tools used to support
feature modeling in SPL. In this paper, these tools were quantitatively and qualitatively
empirical analyzed and some interesting results were presented and discussed. The
results reported in this paper aim to support software engineers to choose one of these

Quantitative and Qualitative Empirical Analysis 85

tools for variability management. Additionally, this study can also be used by developers
and maintainers of SPLOT, FeatureIDE, pure::variants - and other feature
modeling tools - to improve them based on the issues reported. Besides, when choosing
one of the tools, the needed and purpose of use is one of the main factors to be taken
into consideration.

Our conclusions indicate that the main issues observed in the three feature modeling
tools are related to the Product Configuration functionality. Our study does not aim to
reveal “the best tool” in all functionality. On the contrary, the three analyzed tools have
strength and weakness. For instance:

• SPLOT has as main strengths its Automated Feature Model Analysis functionality
and the fact to be an online tool and as drawbacks, the interface and hotkeys.

• The main strength of FeatureIDE is the Feature Model Editor functionality. Its
drawbacks include a limited user guide and no intuitive interface (e.g., no guide to
support users finding the Product Configuration and Automated Feature Model
Analysis functionalities).

• The main strengths of pure::variants are the Feature Model Editor and the
Automated Feature Model Analysis functionalities. Its main drawbacks include the
lack of examples and the Product Configuration functionality.

Today research on variability tools in academia and industry is attempting to solve
the variability management problem. However, when hundreds of variants must be
captured, visualized, and modified, the variability management still becomes chal‐
lenging for companies. As future work, developers can provide a more adequate and
advanced support in this context. Moreover, this study can be extended in further
experiment replications. For instance, other tools can be analyzed and compared using
similar experiment design in order to contribute to improving the body of knowledge
about feature modeling tools. We hope that with the ongoing studies, as the one provided
in this paper, feature modeling tools will become more mature and established, such that
there will be more use of such tools in real practical scenarios.

Acknowledgements. This work was partially supported by CNPq (grant 202368/2014-9). We
are grateful to the reviewers who contributed significantly to the improvement of the paper.

References

1. Data of the Experiment: http://homepages.dcc.ufmg.br/~kattiana/visplatform
2. Bachmann, F., Clements, P.C.: Variability in software product lines. Software Engineering

Institute, CMU/SEI Report Number: CMU/SEI-2005-TR-012 (2005)
3. Barbeau, M., Bordeleau, F.: A protocol stack development tool using generative

programming. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp.
93–109. Springer, Heidelberg (2002). doi:10.1007/3-540-45821-2_6

4. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans. Softw.
Eng. 30(6), 355–371 (2004)

5. Benavides, D., Ruiz–Cortés, A., Trinidad, P., Segura, S.: A survey on the automated analyses
of feature models. In: JISBD, Barcelona (2006)

86 J.A. Pereira et al.

http://homepages.dcc.ufmg.br/%7ekattiana/visplatform
http://dx.doi.org/10.1007/3-540-45821-2_6

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Beuche, D.: Modeling and building software product lines with pure::variants. In:
International Software Product Line Conference (SPLC), p. 255 (2012)

8. Bosch, J., Capilla, R., Hilliard, R.: Trends in systems and software variability. IEEE Softw.
32(3), 44–51 (2015)

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Reading (2001)

10. Constantino, K., Pereira, J.A., Padilha, J., Vasconcelos, P., Figueiredo, E.: An empirical study
of two software product line tools. In: International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pp. 164–171 (2016)

11. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Principles, Techniques and
Tools. Addison-Wesley, Reading (2000)

12. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and
their specialization. In: Software Process: Improvement and Practice, pp. 7–29 (2005)

13. Czarnecki, K., Wasowski, A.: Feature models and logics: there and back again. In:
International Software Product Line Conference (SPLC), pp. 23–34 (2007)

14. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A.: Cool features and
tough decisions: a comparison of variability modeling approaches. In: Workshop on
Variability Modeling of Software-intensive System (VaMoS), pp. 173–182 (2012)

15. Djebbi, O., Salinesi, C., Fanmuy, G.: Industry survey of product lines management tools:
requirements, qualities and open issues. In: IEEE International Requirements Engineering
Conference (RE), pp. 301–306 (2007)

16. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,
Ferrari, F., Khan, S., Filho, F.C., Dantas, F.: Evolving software product lines with aspects: an
empirical study. In: International Conference on Software Engineering (ICSE), pp. 261–270
(2008)

17. Griss, M., Favaroand, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB. In:
International Conference on Software Reuse (ICSR), pp. 76–85 (1998)

18. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley, New York (1990)

19. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature oriented domain
analysis (FODA) feasibility study. Software Engineering Institute, CMU/SEI Report Number:
CMU/SEI-90-TR-021 (1990)

20. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse method
with domain-specific reference architectures. Softw. Eng. 5(1), 143–168 (1999)

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.:
Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol.
1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.1007/BFb0053381

22. Lee, K., Kang, Kyo C., Lee, J.: Concepts and guidelines of feature modeling for product line
software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. Springer,
Heidelberg (2002). doi:10.1007/3-540-46020-9_5

23. Mendonça, M., Branco, M., Cowan, D.: SPLOT - software product lines online tools. In:
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pp. 761–762 (2009)

24. Pereira, J.A., Souza, C., Figueiredo, E., Abilio, R., Vale, G., Costa, H.A.: Software variability
management: an exploratory study with two feature modeling tools. In: Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS), pp. 20–29 (2013)

Quantitative and Qualitative Empirical Analysis 87

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/3-540-46020-9_5

25. Pereira, J.A., Constantino, K., Figueiredo, E.: A systematic literature review of software
product line management tools. In: Schaefer, I., Stamelos, I. (eds.) ICSR 2015. LNCS, vol.
8919, pp. 73–89. Springer, Cham (2014). doi:10.1007/978-3-319-14130-5_6

26. Pohl, K., Metzger, A.: Variability management in software product line engineering. In
International Conference on Software Engineering (ICSE), pp. 1049–1050 (2006)

27. Simmons, J., Bastarrica, M.C., Silvestre, L., Quispe, A.: Analyzing methodologies and tools
for specifying variability in software processes. Computer Science Department, Universidad
de Chile, Santiago. http://swp.dcc.uchile.cl/TR/2011/TR_DCC-20111104-012.pdf

28. Software product line hall of fame. http://www.splc.net/fame.html. Accessed 14 May 2015
29. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: an

extensible framework for feature-oriented software development. Sci. Comput. Program. 79,
70–85 (2014)

30. Uphon, H.: A comparison of variability modeling and configuration tools for product line
architecture. IT University of Copenhagen (2008)

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012)

88 J.A. Pereira et al.

http://dx.doi.org/10.1007/978-3-319-14130-5_6
http://swp.dcc.uchile.cl/TR/2011/TR_DCC-20111104-012.pdf
http://www.splc.net/fame.html

	Quantitative and Qualitative Empirical Analysis of Three Feature Modeling Tools
	Abstract
	1 Introduction
	2 Study Settings
	2.1 Research Questions
	2.2 Feature Modeling Tools
	2.3 Background of the Participants
	2.4 Training Session and Tasks

	3 Results and Discussion
	3.1 Problems Faced by Developers
	3.1.1 Hard and Easy Functionalities
	3.1.2 Ranking of Negative Functionalities
	3.1.3 Ranking of Positive Functionalities

	3.2 Background Influence
	3.2.1 Data Summary
	3.2.2 Statistical Analysis

	3.3 Strengths and Weaknesses in Feature Modeling Tools

	4 Variability Management Main Issues
	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

