
How Interesting Are Suggestions of Coupled File
Changes for Software Developers?

Jasmin Ramadani(B) and Stefan Wagner

Institute of Software Technology, University of Stuttgart,
Universitätstraße 38, Stuttgart, Germany

{jasmin.ramadani,stefan.wagner}@informatik.uni-stuttgart.de
http://www.iste.uni-stuttgart.de/en/se.html

Abstract. Software repositories represent a data source from which we
can extract interesting information to be presented to the developers
working on their maintenance tasks. Various studies use the software
repositories to extract sets of files that changed frequently in the past.
However, they do not consider feedback from developers on whether they
would like to use this kind of information. The aim of our research is to
support developers in maintenance tasks using suggestions which other
files they should also change. We investigate three software repositories
to find coupled file changes to support the software developers. We also
propose a set of attributes from the versioning system, the issue tracking
system and the project documentation. We contrast our findings with
the feedback gathered using survey and interviews with the developers.
According to our results, small repositories make an insightful analy-
sis difficult. Both from experienced and inexperienced developers, the
feedback was mostly neutral. Most of the attributes we proposed were
accepted as interesting by the developers. Furthermore, developers also
suggested other additional issues to be relevant, e.g. the context of the
coupled changes. Generally, developers did not reject the coupled file
changes suggestions. However, the presentation form of coupled changes
and context information need to be taken into account.

Keywords: Data mining · Coupled file changes · Usefulnesses

1 Introduction

Software product development produces large amounts of data which is stored
in software repositories. They contain the artifacts developed during software
evolution. These repositories include different data sources like version control
systems, issue tracking systems and project documentation archives. After some
time, this data becomes a valuable information source for bug fixing or main-
tenance tasks. To learn from it, we need a technique to extract relevant details
from the source code history and search for valuable information. One of the
most used techniques is data mining which has become popular for analyzing

c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 201–221, 2016.
DOI: 10.1007/978-3-319-56390-9 10

202 J. Ramadani and S. Wagner

software repositories. The term mining software repositories (MSR) describes
investigations of software repositories using data mining [19].

To help the developers to identify the files to be changed during maintenance
tasks, a mining software repositories approach has been proposed [33]. These
files can be used to recommend coupled file changes. Couplings are defined as
“the measure of the strength of association established by a connection from one
module to another” [29]. Change couplings are described as files having the same
commit time, author and modification description [12]. Frequently changed files
can support developers in dealing with the large amount of information about
the software product, especially if the developer is new on the project, the project
started a long time ago or if the developer does not have much experience in
software development.

1.1 Problem Statement

Several researchers have proposed approaches to identify coupled files to give
recommendations to developers during a change [20,33,35]. Existing studies,
however, focus on the presentation of the mining results and ignore the feedback
of developers on the findings.

1.2 Research Objectives

The overall aim of our research is to support the developers in common mainte-
nance tasks. In this paper, we concentrate on applying MSR to provide sugges-
tions for likely changes so that we can investigate how interesting the suggestions
are for the developers and what further information besides version histories
might increase the interestingness.

We define interestingness as the subjective measure of the developers’ opinion
on how useful findings (here: coupled change suggestions) are for maintenance
tasks.

1.3 Contribution

We present an industrial case study on the interestingness of coupled change
suggestions. We identify frequent couplings between file changes based on the
information gathered from three software project repositories. The version con-
trol system, the issue tracking system and the project documentation archives are
used as data sources for additional repository attributes we join to the coupled
changes we discover. In particular, we investigate the feedback of the developers
about the interestingness of our findings by conducting a survey. We evaluate
the answers by performing additional interviews and analyze them using the
Grounded Theory method.

This paper is an extended version of our case study on interestingness of cou-
pled file changes [23]. This extended version adds an additional research question
investigating the influence of the involvement of the developers in the project
on the interestingness of coupled change suggestions. We have also extended the
discussion about the research questions and the related conclusions.

How Interesting Are Suggestions of Coupled File Changes? 203

2 Interestingness

Coupled changes suggestions can be provided to the developers with an intention
to help them by providing suggestions about other changes. There is no guarantee
that they would like to use this kind of help.

Our approach is based on determining the interestingness of these coupled
changes. We consider interestingness as a subjective measure which is derived
from the user’s beliefs or expectations [22]. Information is defined to be inter-
esting if it is novel, useful and nontrivial to compute. Here, useful means that
it can help to achieve a goal of the system or the user [11]. The interestingness
of coupled changes is represented by the possibility that they will use it during
their maintenance tasks. To determine the level of interestingness of the coupled
changes and the repository attributes we conclude questionnaire and interviews
to measure the feedback from the developers included in our case study.

We measure the interestingness using three levels: interesting, neutral and
not interesting. Two categories of interestingness has been identified. The first
category is the interestingness of coupled file changes. The second category is the
interestingness of the repository attributes we extract from the version control
system, the issue tracking system and the project documentation. We join this
repository attributes to the coupled file changes.

3 Data Mining Background

To be able to extract coupled file changes by using data mining, we introduce
the data technique that we employ in our study. One of the most popular data
mining techniques is the discovery of frequent itemsets. To identify sets of items
which occur together frequently in a given database is one of the most basic
tasks in data mining [15]. Coupled changes describe a situation where someone
changes a particular file and also changes another file afterwards.

Let us say that the developer changes file f1 and then also frequently changes
file f3. By investigating the transactions of changed files in the version control
system commits we identify a set of files that changed together. Let us have the
following three transactions: T1 = {f1, f2, f3, f7}, T2 = {f1, f3, f5, f6}, T3 =
{f1, f2, f3, f8}. From these three transactions, we isolate the rule that files f1
and f3 are found together: f1 and f3 are coupled. This means that when the
developers changed file f1, they also changed file f3. If these files are found
together frequently, it can help other persons by suggesting that if they change
f1, they should also change f3. Let F = {f1, f2, ..., fd} be the set of all items
(files) f in a transaction and T = {t1, t2, ..., tn} be the set of all transactions t . As
transactions, we define the commits consisting of different files. Each transaction
contains a subset of chosen items from F called itemset.

An important property of an itemset is the support count δ which is the
number of transactions containing an item. We call the itemsets frequent if they
have a support threshold minsup greater than a minimum specified by the user
with

0 ≤ minsup ≤ |F | (1)

204 J. Ramadani and S. Wagner

4 Related Work

Many studies investigated software repositories to find logically coupled changes,
e.g. [3,9,12]. We identify two granularity levels, the first one [20,33] investigates
the couplings based on the file level, the second [9,19,34,35] identifies coplings
between parts of files like classes, methods or modules.

Most of the studies dealing with identifying coupled changes use some kind of
data mining for this purpose [13,18,20,27,31,33,35]. Especially the association
rules technique is often used to identify frequent changes [20,33,35]. This data
mining technique uses various algorithms to determine the frequency of these
changes. Most of them employ the Apriori algorithm [20,35], however other
algorithms like the FP-Tree algorithm are also in use [33].

Most of the studies use a single data source where a kind of version control
system is investigated, typically CVS or Subversion. To our knowledge there
are few studies which investigate a Git version control system [4,6,17]. Other
studies combine more than one data source to be investigated, like a version
control system and an issue tracking system [5,7,8,32] where the data extracted
from these two sources is analyzed and the link between the changed files and
issues is determined.

To the best of our knowledge, there are only three studies investigating how
couplings align with developers’ opinions or feedbacks. Coupling metrics on the
structural and the semantic level are investigated in [24]. The developers are
asked if they find these metrics to be useful. They show that feature couplings
on a higher level of abstraction than classes are useful. Here, the developers’ per-
ceptions of software couplings are investigated in [2]. Here the authors examine
how class couplings captured by different coupling measures like semantic, logi-
cal and others align with the developers perception of couplings. The semantic
couplings have received the best rating of all types of couplings. The interesting-
ness of coupled changes is also studied in [33]. This study defines categorization
of coupled changes interestingness according to the source code changes.

We focus on the interestingness of coupled file changes and attributes involv-
ing the developers’ feedback on our findings using the following data sources:
Two of the projects use Git1 and the third one uses Mercurial.2 The first indus-
trial project uses JIRA as issue tracking system,3 the open source project and
the second industrial project use Redmine.4 We use the available product doc-
umentation of the projects as additional source of information.

5 Case Study Design

The structure of our case study is based on existing guidelines [25].

1 http://git-scm.com/.
2 http://mercurial.selenic.com/.
3 https://www.atlassian.com/software/jira.
4 http://www.redmine.org/.

http://git-scm.com/
http://mercurial.selenic.com/
https://www.atlassian.com/software/jira
http://www.redmine.org/

How Interesting Are Suggestions of Coupled File Changes? 205

5.1 Research Questions

RQ1: How many coupled changes can we extract from software repos-
itories? This research question provides the basis for our research. It is relevant
to investigate for the reason that the number of coupled changes affects the
outcome of the repository data analysis.
RQ2: How interesting are coupled change suggestions for developers?
This is the central question of this study which decides if developers would like
to use the suggested couplings.
RQ3: Does the experience of developers influences the interestingness
of coupled changes? We expect that inexperienced developers would be more
interested in coupled file suggestions considering their possible problems under-
standing the system [26]. Therefore, we investigate the developer’s programming
and project experience.
RQ4: Does the involvement in the project of developers influences the
interestingness of coupled changes? We include both developers who were
involved and those not involved in the development of the software products used
in the case study. Although our goal is to support inexperienced or developers
not involved in the projects, we expand the investigation on developers which
were included in the software products, we want to get their feedback on the
coupled changes.
RQ5: How interesting is additional information from other related
project artifacts? After we determine the interestingness of the couplings, we
will investigate if adding additional data sources influences the interestingness.
First, we examine the version control system that is related to the changes, e.g.
commit ids where the couplings were found, commit messages, commit dates
and authors of the commits. Second, the information stored in the issue track-
ing system is investigated, attributes like issue description, issue date and issue
status. Third, we look into the project documentation archive for information
about the project structure and naming conventions.
RQ6: Does the experience of developers influences the interestingness
of additional information from other related project artifacts? We inves-
tigate if the choice of the attributes from the version control system and the issue
tracking system depends on the developer’s programming experience.

5.2 Case Selection

The case selection is based on their availability and the suitability for our
research. We select cases from industry as a part of our cooperation with our
industrial partners as well as from the available open source projects developed
at the University of Stuttgart. Hence, our subjects will be practitioners as well
as students.

5.3 Data Collection Procedure

The case study uses two main data sources to investigate the coupled file changes.
As first data source, we use the artifacts from the software product development

206 J. Ramadani and S. Wagner

archived in software repositories. We did not have any direct contact with the
development process of the product. Instead, we examine the repositories of
the software product being developed or maintained. The second data source
consists of surveys and interviews with the project stakeholders providing direct
information. We divide the data collection procedure into five parts.

Version Control System. The first unit of data we use is the log data from the
version control system. Two software projects used Git, while the third project
uses Mercurial as a control management tool. Both are distributed version con-
trol systems allowing the developers to maintain their local versions of source
code.

The data collection from the version control system consists of four steps
which lead to the extraction of the information we need.

– Log Extraction: We extract the information from the log file containing the
committed file changes and the commit attributes. The log data is exported
as text file.

– Data Preprocessing: After the text files with the log data have been gen-
erated, we continue with the preparation of the data for data mining. Various
data mining frameworks use their own format, so the input for the data mining
algorithm and framework needs to be adjusted.

– Identifying Atomic Change Sets: We divide the data into a collection of
atomic change sets. Version control systems deal with this issue differently. In
our case, the version control systems preserve the possibility to group changes
into a single change set or a so-called atomic commit. It represents an atomic
changeset regardless of the number of files changed. A commit snapshot repre-
sents the total set of modified files and directories [21]. We organize the data
in a transaction form where every transaction represents a set of files which
changed together in a single commit.

– Data Filtering: We filter the file names and the following commit attributes:
commit id, commit message, commit date and commit author. We deal with
empty entries and outliers and we prepare the log entries for data mining.

– Change Grouping Heuristic: There are different heuristics proposed for
grouping file changes [20]. We use a heuristic considering the file changes
done by a single committer as related. We group the transactions of files
committed only by a particular author. We do not relate the changes done by
other committers.

Issue Tracking System. Issue tracking systems store important information
about the software changes or problems. In our case, the companies chose to use
JIRA and Redmine as issue tracking systems. The students also track their issues
using Redmine. We investigate the following issue attributes: issue titles, issue
descriptions and issue messages. The issue tracking systems support spreadsheet
export containing the considered issue attributes.

How Interesting Are Suggestions of Coupled File Changes? 207

Project Documentation. The software documentation gathered during the
development process represents a rich source of data. The documentation consists
of file naming conventions, directory paths and the package structure description.
From these documents, we discover the project structure.

For example in the last project, the subproject containing the files described
by the path astpa/controlstructure/figure/ contains the Java classes
responsible for the control diagram figures of this software.

Joining Collected Data. After the mining process is finished and we have
identified the coupled changes, we join them with the attributes from the version
control system, the issue tracker and the project documentation. In [8], the
authors create a release history database where they import the data from the
version control systems and the issue tracking systems. Similarly, we create a
database containing all file changes and the corresponding attributes from the
repositories.

Every commit has it own hash value which represents the commit id. It is
a unique value which identifies all the commits in the database. The issues are
identified by their keys. We use the issue keys to follow down the commit where
the change took place using the merge points of issues with the commit messages.
We use the path information of the changed files to enlist the sub-projects. As
a result we have a list of the most frequently changed files accompanied by
the information about the commit attributes, issue attributes and the project
structure.

Survey and Interviews. We investigate the developers’ feedback on the inter-
estingness of coupled changes and the additional attributes by conducting a
survey and performing interviews5 with the developers.

Survey: The developers answer a list of multiple-choice questions on-line. We
investigate the background of the developers by asking their programming and
project experience. The developers give us feedback on the concept of coupled
changes, not on particular couplings. We choose this setup as a first means to get
as many opinions as possible. Only few developers were available for in-depth
interviews on specific findings. The developer can choose between: interesting,
neutral and not interesting to evaluate the interestingness of coupled changes
and repository attributes.

Interviews: We perform semi-structured interviews to get more in-depth feedback
from the developers. This way, we ensure that the developers did not answer the
surveys by randomly choosing the options. We ask the available developers who
worked on the projects and other uninvolved developers about the interestingness
of the file changes and the attributes. We present them actual coupled file changes
extracted from the repositories.

5 All questions are available on http://dx.doi.org/10.5281/zenodo.15065.

http://dx.doi.org/10.5281/zenodo.15065

208 J. Ramadani and S. Wagner

5.4 Ethical Considerations

The data delivered by the companies is confidential. Therefore, we preserve
the anonymity of the stakeholders and the companies during this study. The
confidentiality and the publication is regulated by a non-disclosure agreement
between the researchers and the companies. All personal information extracted
from the repositories, the survey and the interviews is anonymized and is not
presented in the study.

5.5 Analysis Procedure

The data analysis is a combination of quantitative and qualitative methods.
We use quantitative methods to find the number of couplings. We augment
the results with a qualitative and quantitative analysis of the survey and the
interviews with the developers.

Analysis of Repository Data. We analyze the repository data to answer
RQ1. We run the mining algorithm to discover frequently coupled file changes.
We investigate the additional attributes we gather from the commit logs, the
issue tracking export and the project documentation.

Data Mining Algorithm: Various algorithms for mining frequent itemsets and
association rules have been proposed in literature [1,14,16]. We use the FP-
Tree-Growth algorithm to find the frequent change patterns. As opposed to
the Apriori algorithm [1] which uses a bottom up generation of frequent item-
set combinations, the FP-Tree algorithm uses partition and divide-and-conquer
methods [14]. This algorithm is faster and more memory efficient than the Apri-
ori algorithm used in other studies and allows frequent itemset discovery without
candidate itemset generation.

Support Level: We analyze the coupled changes by defining the threshold value
of the support for the frequent itemset algorithm. We use the thresholds that
give us a frequent yet still manageable number of couplings. This threshold is
normally defined by the user. We use the technique proposed by Fournier-Viger
presented in [10] to identify the support level. These values vary from developer
to developer, so we test the highest possible value that delivers frequent itemsets.

If for a particular developer, the support value does not bring any useful
results, we continue dropping the value of the threshold. We did not consider
itemsets with a support below 0.2 for the first two projects and 0.1 for the
third project. There is a variety of commercial and open-source products offering
data mining techniques and algorithms. For the analysis, we use an open-source
framework specialized on mining frequent itemsets and association rules called
the SPMF-Framework.6 It consists of a large collection of algorithms supported
by appropriate documentation.

6 http://www.philippe-fournier-viger.com/spmf.

http://www.philippe-fournier-viger.com/spmf

How Interesting Are Suggestions of Coupled File Changes? 209

Analysis of Questionnaires and Interviews. To answer RQ2–RQ6, we ana-
lyze the questionnaires and the outcomes of the interviews.

Survey Analysis: We start by investigating the background of the developers
by checking their answers about their programming and project experience. We
analyze the answers from the questionnaire by calculating the distribution of
the frequency of their answers. We put the main focus on the answers of the
participants about the interestingness of coupled changes and the answers about
the additional attributes.

Interview Analysis: We examine the interviews with the developers to vali-
date the outcomes of the questionnaires and to understand the context of their
answers. We analyze the interviews by using Grounded Theory [30]. The goal is
to generate a theory that emerges from the data being comparatively analyzed.

To analyze the data and build the theory, we use the following types of coding
activities in sequence: open, axial and selective coding [30]. After these codings,
we perform the theoretical coding and create the conceptual model. We use the
analysis software Atlas.ti7 to link the codes and create a network diagram.

– Open coding: In the open coding we have a line-by-line examination of the
interview transcripts to identify the main concepts and categories together
with their dimensions and properties. We code the data from interview answers
with a set of open codes derived from our research questions. Before we con-
tinue, we write a memo consisting of the hypotheses and ideas noted during
the analysis.

– Axial coding: After the open coding is performed, we continue with the
axial coding where we relate the categories, concepts and codes by identifying
the relations among them. This is done using the paradigm model [30] and
considering the relationships between contexts, interactions, conditions and
consequences.

– Selective coding: The selective coding formulates a core category to which
all other categories and codes can be related and includes all of the data.

– Theoretical coding: After finishing the open and axial coding, this cod-
ing involves the relationships between categories and subcategories and gives
meaning to the theory.

– Conceptual mapping and model: We express the concepts of our theory
and present their relations. We draw a category map which emerges from the
analysis.

5.6 Validity Procedure

Internal Validity: We use widely known techniques and algorithms for repository
mining. We extract data from a repository systems used among a high number of
companies. We analyze the data from the software repository, perform a survey
among the developers and we validate the answers given in the questionnaires by
7 http://www.atlasti.com/index.html.

http://www.atlasti.com/index.html

210 J. Ramadani and S. Wagner

interviewing developers. We collect the answers and compare the results related
to the research questions to identify if these reflect the investigated informa-
tion [25]. This way we avoid to rely on a possible lack of precision in the answers
on the questionnaires by the developers concerning the interestingness.

External Validity: We choose representative cases with high standards consider-
ing software development and standardized development techniques. We use an
independent party to record the memos for the interviews and code the infor-
mation to increase the objectivity of the analysis results.

6 Results and Discussion

We report the results of the analysis of the software repository data, the ques-
tionnaires and the interviews in relation to the interestingness of coupled changes
and attributes.8 We discuss the analysis outcomes and evaluate the validity of
our results by taking into account the feedback from the developers.

6.1 Case Description

The cases in this study are three software projects. The first two projects were
provided by IT companies from the area of Stuttgart, Germany. The third one
is an open-source project developed at the University of Stuttgart.

The first project is a web-based software written in Java and supplied by
an industrial partner. The repository of this project contains 1,610 commits
performed by 26 developers during 2 years of development. The software changes
are stored in Git and the issues are tracked using JIRA.

The second project is a C# software supplied by another partner from the
IT industry. The repository contains 159 commits performed by 5 developers
during 1 year of development. The project used Mercurial as version control tool
and Redmine for issues management.

The third project is a Java open source software which was developed at
the University of Stuttgart by student developers. The repository contains 752
commits, committed by 9 developers during 1 year. It uses Git for versioning
and Redmine as issue tracking system. Certain project documentation archives
of the projects were available from where we extract the information about the
software structure and the naming conventions.

6.2 Number of Couplings (RQ 1)

In Table 1, we summarize the analyzed information from the repositories. Refer-
ring to the first project, the data from 22 out of 26 developers was relevant for
the study. For the second project, the data from 4 out of 5 developers was taken
into account. For the third project, the data committed by all 9 developers was

8 The analysis results are available at http://dx.doi.org/10.5281/zenodo.15065.

http://dx.doi.org/10.5281/zenodo.15065

How Interesting Are Suggestions of Coupled File Changes? 211

Table 1. Results based on repository analysis, table reproduced from [23].

Project1 Project2 Project3

No. of relev. dev 22 4 9

No. of commits 1610 138 752

No. of couplings 205 13 200

Freq. itemset supp 0.2 0.2 0.1

Table 2. Interestingness of coupled changes, table reproduced from [23].

Involved Not involved All

Interesting 2 2 4

Neutral 9 10 19

Not interesting 0 0 0

Sum 11 12 23

suitable for analysis. The rest of the developers reported a low number of com-
mits so we did not consider their change commits. We excluded their commits
as unsuitable for the reason that they did not reach the minimum support for
the frequency of the changes we defined previously.

The number of commits represents the size of the projects followed by the
number of change couplings we have extracted. The number of coupled changes
represents the basis of our analysis. We were able to extract 205 couplings from
the first repository. From the second, a smaller repository, we report only 13 cou-
pled changes. The third repository delivered 200 coupled changes. These results
show that we need larger project repositories containing high number of commits
to be able to deliver a high number of couplings.

6.3 Interestingness of Coupled Changes (RQ 2)

The participants were asked to give their feedback on how interesting coupled
changes for maintenance tasks are. Most of the developers (19 of 23) reported a
neutral opinion for the concept of coupled changes. A small group of four par-
ticipants noted coupled changes as interesting. None of the developers rejected
the idea as not interesting (Table 2).

The fact that the developers did not reject coupled changes allows us to
continue our analysis. These results allow us to continue investigating the next
research questions. We proceed our analysis and investigate how coupled changes
is influenced by the developers’ programming and project experience. Taking into
account our small sample size, we refrain from formal hypotheses testing.

212 J. Ramadani and S. Wagner

6.4 Influence of Developer Experience on Interestingness (RQ 3)

Both experienced and inexperienced developers were similarly interested in cou-
pled changes which is in contrast to our expectations. In Table 3 we present the
distribution of the interestingness of coupled changes in relation to the program-
ming experience of the developers. What we can see is that regardless of their
expertise level, none of the developers rejected the coupled changes. Very few
developers have accepted the coupled changes as interesting, yet most of the
developers took a neutral position toward the coupled change suggestions.

6.5 Influence of Developer Involvement in the Project on
Interestingness (RQ 4)

The results in Table 2 show that there is no difference based on the involvement of
the developers in the projects. Both involved and uninvolved developers did not
reject coupled changes. Continuing with the developers involved in the project
development, we group their answers based on their project experience. Table 4
shows the distribution of the developers by their programming experience. Again
in all three groups from beginners to developers knowing the system, most of
them have answered neutrally, not rejecting the coupled change suggestions.

6.6 Interestingness of Additional Information (RQ 5)

After the investigation of the coupled changes, we continued examining the inter-
estingness of the repository attributes we have joined to the coupled files pre-
sented in Table 5. To support the coupled changes, we reported a set of common
meta-data attributes [28] which allow us to find more information about the com-
mits, the issues and the product itself. The repositories offer various attributes
related to the committed changes, the issues found and the project structure.

Table 3. Couplings and developer’s experience, table adapted from [23].

Programming experience Freq Freq. [%] Interesting Neutral Not interesting

<1 year 2 9 0 2 0

1–3 years 4 17 2 2 0

3–5 years 9 39 1 8 0

>5 years 8 35 1 7 0

Table 4. Couplings and developer’s project involvement.

Project involvement Freq Freq. [%] Interesting Neutral Not interesting

<6 months–1 year 3 27 0 3 0

1–2 years 3 27 1 2 0

>2 years 5 46 1 4 0

How Interesting Are Suggestions of Coupled File Changes? 213

Table 5. Interesting attributes, table reproduced from [23].

Attribute Frequency Frequency [%]

Commit message 22 95

File name 18 78

File type 9 39

Commit time 8 34

Commiter 6 26

Commit id 2 9

Issue title 21 91

Issue status 15 65

Issue type 14 60

Issue time 6 26

Project structure 20 86

Naming conv 15 65

We asked the participants about their feedback on the interestingness of each
of the provided repository attributes. The results show that most of the offered
attributes were rated by the developers as interesting.

Considering the commit related attributes, most of the developers found the
commit message to be the most interesting attribute followed by the file name.
The developers did not show much interest for the commit time, the committer
and the file type. The commit id as attribute did not attract the developers’
interest.

Regarding the issue related attributes, most of the developers were interested
in the issue description. Some of the developers also found the issue status and
type to be interesting. The issue time was not interesting for the developers.

From the documentation related attributes, the developers reported that
both naming convention and the project structure information are interesting.

6.7 Influence of Developer Experience on Interestingness of
Additional Information (RQ 6)

We examined the distribution of interestingness of the repository attributes
according to developers’ experience level. Based on this distribution we created
two general groups of developers in this context: the first group called expe-
rienced, includes the developers having more than 5 years experience and the
second group called inexperienced, includes developers having less than 5 years
of experience. The results show that the experienced developers have a more
clear picture of the set of interesting repository attributes. They have chosen a
lower number of attributes compared to the inexperienced developers. The inex-
perienced developers have marked various commit and issue attributes being
interesting for them. The more experienced developers’ choice is more narrow

214 J. Ramadani and S. Wagner

Fig. 1. Commit attributes and experience, figure reproduced from [23].

Fig. 2. Issue attributes and experience, figure reproduced from [23].

than the one for the inexperienced ones. The distribution of commit attributes
is shown in Fig. 1. The distribution of issue attributes is presented in Fig. 2.

6.8 Validation and Theory

After the data mining analysis, we performed the interviews with developers who
were active on the projects. For the first project, we managed to enlist 2 of the
developers for interviewing. For the second project, we interviewed 2 developers
and from the third project, we interviewed 4 out of 9 developers. They had
been involved in the project from the beginning and have the most knowledge
about the software. We also interviewed 4 developers not involved in any of the
projects.

How Interesting Are Suggestions of Coupled File Changes? 215

Fig. 3. Theoretical Framework, figure reproduced from [23].

Using Grounded Theory analysis on the interview transcripts, we derived
a corresponding theory. We created the codes using an open coding procedure
of the memos we created. They represent the answers of our participants to
interview questions. We extracted the codes by identifying common issues in
their answers.

We continued with the axial coding where we identified several categories
as presented in Fig. 3. The core category we identified after the selective coding
is Interestingness of couplings and software repository information. The results
from the theoretical code show the core category, the subcategories and the
relationships presented as a diagram in Fig. 3. We have categories covering the
attributes we found to be interesting: version control attributes, issue attributes
and project documentation. They are respectively divided in these subcategories:
commit message, file names, issue titles, issue types, project structure and nam-
ing conventions. They represent the most interesting attributes which affect the
interestingness of coupled changes.

The next categories are the visualization of coupled changes, consisting of the
sub-category organized view, and the category context of coupled changes. The
last two categories represent an additional feedback given by the interviewed
developers where they would like to see an organized representation of changed
files with a possibility to filter the information about them. They would also
like to have information about the context of the changes. We present the key
concepts of the theory together with their relations in Fig. 4. We see that the
interestingness of the coupled changes also depends on the chosen repository
attributes. Furthermore, it is also important to develop an organized presentation
of coupled changes to the developers and to describe the context of these changes.

216 J. Ramadani and S. Wagner

Fig. 4. Conceptual Model from grounded theory, figure reproduced from [23].

6.9 Discussion

The results related to RQ1 show that large repositories deliver more couplings
compared to the smaller or younger repositories. Projects with a low number
of commits do not provide enough data for a broader analysis. The number of
commits and their size limit the output of our analysis. Our results lead to the
conclusion that we need a relatively high number of couplings to be able to
present a more exhaustive support for the developers in their tasks. Still, the
setup of our analysis identifies a number of strongly coupled changes which limits
the possibility they have happened by chance. We could reduce the support level
of the data mining algorithm to provide a higher number of coupled changes,
however, this could produce a threat for their accuracy.

The results for RQ2 report that the developers weakly support that coupled
changes are interesting. The general concept of coupled changes was received
mostly as neutral. The developers did not judged the coupled change suggestions
very positive for the reason that they were not solving real maintenance tasks. We
beleive that working with coupled change suggestions related to real maintenance
tasks would increase the acceptance of coupled file changes.

The fact that none of the developers rejected the coupled changes, gave us
an impulse to investigate other attributes related to the coupled changes. We
proceeded with the analysis of the interestingness based on the developers’ expe-
rience. During the interviews, actual examples of coupled changes were presented
to the developers which increased their acceptance.

Considering RQ3, we expected that the coupled changes would be interesting
for developers having a lack of programming experience. Our results at contrary
show that also the experienced developers are similarly interested in coupled
changes. The developers higher experience does not eliminate the possibility
that the coupled suggestions could be helpful when working on an unknown
source code, software structure or on an older project. The fact they did not
reject the coupled changes reports that the benefit from them is not limited
on novice developers which makes the coupled changes attractive for a broader
audience.

How Interesting Are Suggestions of Coupled File Changes? 217

About the results related to RQ4, both uninvolved developers in the project
development of the investigated software products and those who worked on the
projects provided a neutral feedback. They fact that they did not reject the
coupled changes increases the target group for our coupled changes suggestions.
These unexpected results show that also the developers working on a particular
part of the source code could use some help when working on other parts of the
system. These findings encourages us to include the coupled changes as a part
of an integrated tool support for developers.

Answering RQ5, our results show that most of the attributes from the pro-
vided set were interesting for the developers. These results were also validated
by the interviews. Using the commits, the questionnaire and the interviews, we
reported that the commit message and the file names are the most interesting
attributes. This shows that the developers found the information about the files
being changed and the description of these changes to be interesting.

For the issue attributes, the developers reported that the issue description
and the issue type are interesting, meaning that they were looking for the infor-
mation which describes the problem to be solved and the importance of the
issue.

For the documentation attributes, the project structure and the naming con-
vention were both interesting for the developers. This shows that they were
looking for the information that could help them to find the location in the
system to begin with their source code changes.

We reported a set of repository attributes used by well known versioning
and issue tracking systems involved in the projects. The attributes we defined
are known and common in software development. During the analysis of the
interviews, however, we found that the developers want a clear graphical rep-
resentation of the coupled changes. They also reported that they would like to
see the context of the coupled changes. This brings additional aspects to be
considered in further research about coupled changes.

The results for RQ6 show that experienced developers know well what kind
of repository attributes they want to see. Their choice is more precise compared
to the inexperienced developers. The inexperienced developers did not have a
clear picture which attributes to choose from the provided set. The fact that
developers with different programming experience considered various attributes
to be interesting brings us to the conclusion that we should not make a fixed
choice of attributes for all developers. We can offer a flexible way for the devel-
opers to choose the attributes individually. This way, we support the developers
which are not experienced and would like to have an overview of the provided set
of repository attributes. On the other side we would like to offer the experienced
developers to hide the unnecessary information including the not interesting
attributes during maintenance tasks.

The results of the grounded theory show that the interestingness of coupled
file changes is influenced by their presentation form and the related information
such as the description of the change context. Providing a good visual concept
is inevitable for a successful visual representation. Also the repository attributes

218 J. Ramadani and S. Wagner

influence their interestingness. Choosing wrong or not useful attributes can drop
the acceptance of coupled change suggestions.

6.10 Evaluation of Validity

We validated the results of our study by checking all the steps in the procedure of
gathering and transforming the data from the repository, the analysis methods
and the results. In our study, we used a single data mining technique for the
reason that the frequent itemsets technique is most appropriate for investigating
frequent couplings. We investigated products built with common technologies
and the repositories are maintained by well known and commonly used products.

We tested different threshold values for the support and the confidence of the
algorithm to produce a sufficient number of frequent itemsets. The relatively low
support threshold signalizes that there is not much space for a greater reduc-
tion of the value. However, it also reports a relatively low number of frequent
couplings which reduces the possibility that these couplings happened by chance.

We validated the outcomes of the questionnaire answers by asking the devel-
opers again in the interviews about the interestingness of the couplings and
attributes. The interview transcript was coded by two persons after we com-
pared the notes. This way we checked whether we understood the developer’s
answers correctly. We interviewed both involved and not involved developers on
the projects. We also performed double checks of the coding and the outcomes
of the Grounded Theory analysis.

7 Conclusion and Future Work

7.1 Summary of Conclusions

The study results show that smaller software repositories do not provide a mean-
ingful number of coupled file changes.

The feedback of developers on the interestingness of coupled changes is mostly
neutral. Our results lead to the conclusion that the couplings were weakly
accepted by developers having various programming experience and level of
involvement in the project. Working on real maintenance tasks would increase
the acceptance of coupled change suggestions.

The developers accepted most of the proposed software repository attributes
joined to the couplings as interesting. Experienced developers report a narrower
choice of attributes as opposed to the inexperienced developers.

The Grounded Theory shows that the our set of repository attributes influ-
ence the interestingness of coupled changes. Although we provided a number
of repository attributes, the developers suggested additional aspects concerning
the coupled change suggestions and the repository attributes. They would like
to see more information about the change context and the visual presentation
of the coupled changes. We conclude that the we have to develop a visualization
concept for the coupled change suggestions and provide the possibility that the
developers can individually adjust their choice of repository attributes.

How Interesting Are Suggestions of Coupled File Changes? 219

7.2 Relation to Existing Evidence

Revelle et al. [24] investigated source code features coupling using structured
and textual features. Here the developers are surveyed to determine if the met-
rics align with the developers’ opinion. Their results show that the developers
support the proposed coupling metrics. Our results show that the developers
weakly accept the concept of coupled changes and the corresponding attributes
from the repository.

Ying et al. [33] investigated the interestingness of coupled changes, whereby
the authors used open-source projects and categorized the interestingness of
couplings according to their criteria. We studied the coupled file changes in
relatively small projects: two industrial projects and one open source project
which reduces the number of couplings found. We used the developer’s feedback
to determine the interestingness of coupled changes instead of statically defining
the interestingness of couplings.

7.3 Impact/Implications

This case study gives evidence that the coupled file changes are interesting to
the developers during maintenance tasks. Yet, the interest is rather weak over-
all. Therefore, other contextual information should be investigated in future
research to increase the interestingness. Using proper visualization, coupled file
suggestions could be incorporated in a tool to support the developers during
maintenance tasks.

7.4 Limitations

As it is case study research, we cannot guarantee the generalizability of the study.
The data comes from two commercial and one open-source project. However, the
procedure should be similar for other projects for the reason that we use well
defined data mining techniques and commonly used repositories as data sources.

The number of coupled changes we found is limited by the support value of
the frequent itemsets algorithm. Our results preserve relative small number of
the most frequent and most valid couplings. The size of our sample limits the
possibility for a deeper statistical analysis. Yet, our findings constitute a first
insight into developers’ opinions on coupled file changes.

7.5 Future Work

The next step is to perform an experiment to investigate coupled changes by
directly observing their use for a real maintenance tasks. This could be visualized
in a tool to present this changes to the developers. Furthermore, based on our
findings, we believe more research should look into complementing the reporting
of coupled changes with using additional context description.

Acknowledgment. The authors would like to thank Asim Abdulkhaleq for his help
in the interview transcripts and coding for the Grounded Theory analysis.

220 J. Ramadani and S. Wagner

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB 1994, pp. 487–499 (1994)

2. Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: An
empirical study on the developers perception of software coupling. In: Proceedings
of the 2013 International Conference on Software Engineering, ICSE 2013, pp.
692–701 (2013)

3. Bieman, J., Andrews, A., Yang, H.: Understanding change-proneness in OO soft-
ware through visualization. In: 11th IEEE International Workshop on Program
Comprehension, pp. 44–53, May 2003

4. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., Devanbu, P.T.:
The promises and perils of mining git. In: MSR, pp. 1–10 (2009)

5. Canfora, G., Cerulo, L.: Impact analysis by mining software and change request
repositories. In: 11th IEEE International Symposium on Software Metrics, p. 29,
September 2005

6. Carlsson, E.: Mining git repositories: an introduction to repository mining (2013)
7. D’Ambros, M., Lanza, M., Robbes, R.: On the relationship between change cou-

pling and software defects. In: WCRE, pp. 135–144 (2009)
8. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from

version control and bug tracking systems. In: Proceedings of the International
Conference on Software Maintenance, ICSM 2003, p. 23 (2003)

9. Fluri, B., Gall, H., Pinzger, M.: Fine-grained analysis of change couplings. In:
Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
pp. 66–74, September 2005

10. Fournier-Viger, P.: How to auto-adjust the minimum support threshold according
to the data size (2013). http://data-mining.philippe-fournier-viger.com/

11. Frawley, W.J., Piatetsky-shapiro, G., Matheus, C.J.: Knowledge discovery in data-
bases: an overview (1992)

12. Gall, H., Jazayeri, M., Krajewski, J.: CVS release history data for detecting log-
ical couplings. In: Proceedings of Sixth International Workshop on Principles of
Software Evolution, pp. 13–23, September 2003

13. German, D.M.: Mining CVS repositories, the softchange experience. In: 1st Inter-
national Workshop on Mining Software Repositories, pp. 17–21 (2004)

14. Győrödi, C., Győrödi, R.: A comparative study of association rules mining algo-
rithms (2004)

15. Han, J., Mining, D.: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco (2005)

16. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1),
53–87 (2004)

17. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In:
Proceedings of the 20th IEEE International Conference on Software Maintenance,
ICSM 2004, pp. 284–293 (2004)

18. Hattori, L., dos Santos Jr., G., Cardoso, F., Sampaio, M.: Mining software repos-
itories for software change impact analysis: a case study. In: Proceedings of the
23rd Brazilian Symposium on Databases, SBBD 2008, pp. 210–223 (2008)

19. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint.
Evol. 19(2), 77–131 (2007)

http://data-mining.philippe-fournier-viger.com/

How Interesting Are Suggestions of Coupled File Changes? 221

20. Kagdi, H., Yusuf, S., Maletic, J.I.: Mining sequences of changed-files from version
histories. In: Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR 2006, pp. 47–53 (2006)

21. Loeliger, J.: Version Control with Git - Powerful Techniques for Centralized and
Distributed Project Management. O’Reilly, New York (2009)

22. McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowl.
Eng. Rev. 20(1), 39–61 (2005)

23. Ramadani, J., Wagner, S.: Are suggestions of coupled file changes interesting? In:
Proceedings of the 11th International Conference on Evaluation of Novel Software
Approaches to Software Engineering, pp. 15–26 (2016)

24. Revelle, M., Gethers, M., Poshyvanyk, D.: Using structural and textual information
to capture feature coupling in object-oriented software. Empirical Softw. Engg.
16(6), 773–811 (2011)

25. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg. 14(2), 131–164 (2009)

26. Sayles, J., et al.: z/OS Traditional Application Maintenance and Support. IBM
Redbooks (2011)

27. Shirabad, J., Lethbridge, T., Matwin, S.: Mining the maintenance history of a
legacy software system. In: Proceedings of International Conference on Software
Maintenance, ICSM 2003, pp. 95–104, September 2003

28. Steven, J., Zach, W.: Bad commit smells (2013). http://pages.cs.wisc.edu/∼sjj/
docs/commits.pdf

29. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J.
13(2), 115–139 (1974)

30. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. SAGE Publications, USA (1998)

31. van Rysselberghe, F., Demeyer, S.: Mining version control systems for FACs (fre-
quently applied changes). In: the International Workshop on Mining Repositories,
Edinburgh, Scotland, UK (2004)

32. Wu, R., Zhang, H., Kim, S., Cheung, S.-C.: Relink: recovering links between bugs
and changes. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 15–25 (2011)

33. Ying, A.T.T., Murphy, G.C., Ng, R.T., Chu-Carroll, M.: Predicting source code
changes by mining change history. IEEE Trans. Softw. Eng. 30(9), 574–586 (2004)

34. Zimmermann, T., Kim, S., Zeller, A., Whitehead, Jr., E.J.: Mining version archives
for co-changed lines. In: Proceedings of the 2006 International Workshop on Mining
Software Repositories, MSR 2006, pp. 72–75 (2006)

35. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. In: Proceedings of the 26th International Conference on
Software Engineering, ICSE 2004, pp. 563–572 (2004)

http://pages.cs.wisc.edu/~sjj/docs/commits.pdf
http://pages.cs.wisc.edu/~sjj/docs/commits.pdf

	How Interesting Are Suggestions of Coupled File Changes for Software Developers?
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Contribution

	2 Interestingness
	3 Data Mining Background
	4 Related Work
	5 Case Study Design
	5.1 Research Questions
	5.2 Case Selection
	5.3 Data Collection Procedure
	5.4 Ethical Considerations
	5.5 Analysis Procedure
	5.6 Validity Procedure

	6 Results and Discussion
	6.1 Case Description
	6.2 Number of Couplings (RQ 1)
	6.3 Interestingness of Coupled Changes (RQ 2)
	6.4 Influence of Developer Experience on Interestingness (RQ 3)
	6.5 Influence of Developer Involvement in the Project on Interestingness (RQ 4)
	6.6 Interestingness of Additional Information (RQ 5)
	6.7 Influence of Developer Experience on Interestingness of Additional Information (RQ 6)
	6.8 Validation and Theory
	6.9 Discussion
	6.10 Evaluation of Validity

	7 Conclusion and Future Work
	7.1 Summary of Conclusions
	7.2 Relation to Existing Evidence
	7.3 Impact/Implications
	7.4 Limitations
	7.5 Future Work

	References

