
123

Leszek A. Maciaszek
Joaquim Filipe (Eds.)

11th International Conference, ENASE 2016
Rome, Italy, April 27–28, 2016
Revised Selected Papers

Evaluation of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 703

Communications
in Computer and Information Science 703

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Leszek A. Maciaszek • Joaquim Filipe (Eds.)

Evaluation of Novel Approaches
to Software Engineering
11th International Conference, ENASE 2016
Rome, Italy, April 27–28, 2016
Revised Selected Papers

123

Editors
Leszek A. Maciaszek
Wrocław University of Economics
Wrocław
Poland

Joaquim Filipe
INSTICC and Instituto Politécnico
de Setúbal

Setúbal
Portugal

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-56389-3 ISBN 978-3-319-56390-9 (eBook)
DOI 10.1007/978-3-319-56390-9

Library of Congress Control Number: 2017937151

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 11th International Conference on Evaluation of Novel Software Approaches
to Software Engineering (ENASE 2016), held in Rome, Italy, during 27–28 April.

ENASE 2016 received 79 paper submissions from 28 countries, of which 14% are
included in this book. The papers were selected by the event chairs and their selection
was based on a number of criteria that include the classifications and comments pro-
vided by the Program Committee members, the session chairs’ assessment, and also the
program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers having at least 30% innovative material.

The mission of ENASE is to be a prime international forum for discussing and pub-
lishing research findings and IT industry experiences with relation to the evaluation of
novel approaches to software engineering. The conference acknowledges necessary
changes in systems and software thinking due to contemporary shifts of computing
paradigm to e-services, cloud computing, mobile connectivity, business processes, and
societal participation. By comparing novel approaches with established traditional prac-
tices and by evaluating them against systems and software quality criteria, ENASE
conferences advance knowledge and research in software engineering, including and
emphasizing service-oriented, business-process driven, and ubiquitous mobile computing.
ENASE aims at identifying the most hopeful trends and proposing new directions for
consideration by researchers and practitioners involved in large-scale systems and soft-
ware development, integration, deployment, delivery, maintenance, and evolution.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on novel approaches to software engineering. In
particular, the contributions in this book address, inter alia, such fundamental topics as
software quality management, model-driven engineering, user-centered engineering,
formal methods, software process improvement, and software development and
integration.

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

April 2016 Leszek Maciaszek
Joaquim Filipe

Organization

Conference Chair

Joaquim Filipe Polytechnic Institute of Setúbal/INSTICC, Portugal

Program Chair

Leszek Maciaszek Wrocław University of Economics, Poland and
Macquarie University, Sydney, Australia

Program Committee

Marco Aiello University of Groningen, The Netherlands
Frederic Andres Research Organization of Information and Systems,

Japan
Guglielmo De Angelis CNR–IASI, Italy
Oscar Avila Universidad de los Andes, Colombia
Paul Bailes The University of Queensland, Australia
Maria Bielikova Slovak University of Technology in Bratislava, Slovak

Republic
Jan Olaf Blech RMIT University, Australia
Ivo Blohm University of St. Gallen, Switzerland
Rem Collier University College Dublin, Ireland
Rebeca Cortazar University of Deusto, Spain
Massimo Cossentino National Research Council, Italy
Bernard Coulette Université Toulouse Jean Jaurès, France
Patrick Cousot New York University, USA
Mariangiola Dezani Università di Torino, Italy
Tadashi Dohi Hiroshima University, Japan
Schahram Dustdar Vienna University of Technology, Austria
Angelina Espinoza Universidad Autónoma Metropolitana, Iztapalapa

(UAM-I), Spain
Vladimir Estivill-Castro Griffith University, Australia
Anna Rita Fasolino Università degli Studi di Napoli Federico II, Italy
Maria João Ferreira Universidade Portucalense, Portugal
Martin Gaedke Chemnitz University of Technology, Germany
Stéphane Galland Université de Technologie de Belfort Montbéliard,

France
Frédéric Gervais Université Paris-Est, LACL, France
Paolo Giorgini University of Trento, Italy
Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish

National Research Council (CSIC), Spain

Jose María Gutierrez Universidad de Alcalá, Spain
Mahmoud EL Hamlaoui University of Mohammed V Rabat/University

of Toulouse Jean Jaurès, France
Brian Henderson-Sellers University of Technology, Sydney, Australia
Rene Hexel Griffith University, Australia
Benjamin Hirsch EBTIC/Khalifa University, UAE
Robert Hirschfeld Hasso-Plattner-Institut, Germany
Zbigniew Huzar Wrocław University of Technology, Poland
Fuyuki Ishikawa National Institute of Informatics, Japan
Mirjana Ivanovic University of Novi Sad, Serbia
Stefan Jablonski University of Bayreuth, Germany
Slinger Jansen Utrecht University, The Netherlands
Monika Kaczmarek University of Duisburg-Essen, Germany
Georgia Kapitsaki University of Cyprus, Cyprus
Siau-cheng Khoo National University of Singapore, Singapore
Diana Kirk Consultant, New Zealand
Paul Klint Centrum Wiskunde & Informatica, The Netherlands
Piotr Kosiuczenko WAT, Poland
Nectarios Koziris National Technical University of Athens, Greece
Rosa Lanzilotti University of Bari, Italy
Robert S. Laramee Swansea University, UK
Bixin Li Southeast University, China
Huai Liu RMIT University, Australia
André Ludwig University of Leipzig, Germany
Ivan Lukovic University of Novi Sad, Serbia
Leszek Maciaszek Wrocław University of Economics, Poland

and Macquarie University, Sydney, Australia
Lech Madeyski Wrocław University of Science and Technology,

Poland
Nazim H. Madhavji University of Western Ontario, Canada
Michele Marchesi University of Cagliari, Italy
Michael Mrissa University of Lyon, France
Malcolm Munro Durham University, UK
Peter Axel Nielsen Aalborg University, Denmark
Andrzej Niesler Wrocław University of Economics, Poland
Andreas Oberweis Karlsruhe Institute of Technology (KIT), Germany
Janis Osis Riga Technical University, Latvia
Mourad Oussalah University of Nantes, France
Joey Paquet Concordia University, Canada
Justyna Petke University College London, UK
Naveen Prakash IGDTUW, India
Adam Przybylek Gdansk University of Technology, Poland
Elke Pulvermueller University of Osnabrück, Germany
Lukasz Radlinski West Pomeranian University of Technology, Poland
Camille Salinesi University of Paris 1 - Pantheon Sorbonne, France
Walt Scacchi University of California Irvine, USA

VIII Organization

Markus Schatten University of Zagreb, Croatia
Josep Silva Universitat Politècnica de València, Spain
Michal Smialek Warsaw University of Technology, Poland
Ioana Sora Politehnica University of Timisoara, Romania
Andreas Speck Christian Albrechts University Kiel, Germany
Maria Spichkova RMIT University, Australia
Witold Staniszkis Rodan Development, Poland
Miroslaw Staron University of Gothenburg, Sweden
Armando Stellato University of Rome Tor Vergata, Italy
Gunnar Stevens University of Applied Science Bonn-Rhein-Sieg,

Germany
Chang-ai Sun University of Science and Technology Beijing, China
Jakub Swacha University of Szczecin, Poland
Rainer Unland University of Duisburg-Essen, Germany
Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania
Stefan Wagner Universität Stuttgart, Germany
Krzysztof Wecel Poznan University of Economics, Poland
Bernhard Westfechtel University of Bayreuth, Germany
Jack C. Wileden University of Massachusetts, USA
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
Igor Wojnicki AGH University of Science and Technology, Poland
Michalis Xenos Hellenic Open University, Greece
Kang Zhang The University of Texas at Dallas, USA
Alfred Zimmermann Reutlingen University, Germany

Additional Reviewers

Lorenzo Bettini Università di Firenze, Italy
Thomas Buchmann University of Bayreuth, Germany
Mario Coppo Università di Torino, Italy
Mohamad Gharib University of Trento, Italy
Claudia Di Napoli C.N.R., Italy
Jan-Peter Ostberg Universität Stuttgart, Germany
Laure Petrucci Université Paris 13, France
Elvinia Riccobene University of Milan, Italy
Luca Sabatucci National Research Council, Italy
Sven Verdoolaege Polly Labs, Belgium
Fabian Wiedemann Technische Universität Chemnitz, Germany

Invited Speakers

Sergio Gusmeroli Engineering Ingegneria Informatica SPA, Italy
Wil Van Der Aalst Technische Universiteit Eindhoven, The Netherlands
Ernesto Damiani EBTIC-KUSTAR, UAE

Organization IX

Contents

Advancing Negative Variability in Model-Driven Software Product
Line Engineering. 1

Thomas Buchmann and Felix Schwägerl

A New MARTE Extension to Address Adaptation Mechanisms
in Scheduling View. 27

Mohamed Naija and Samir Ben Ahmed

Model-Based Engineering and Spatiotemporal Analysis
of Transport Systems . 44

Simon Hordvik, Kristoffer Øseth, Henrik Heggelund Svendsen,
Jan Olaf Blech, and Peter Herrmann

Quantitative and Qualitative Empirical Analysis of Three Feature
Modeling Tools . 66

Juliana Alves Pereira, Kattiana Constantino, Eduardo Figueiredo,
and Gunter Saake

Towards a Secure RA2DL Based Approach . 89
Farid Adaili, Olfa Mosbahi, Mohamed Khalgui, and Samia Bouzefrane

AHR: Human-Centred Aspects of Test Design . 111
Maria Spichkova and Anna Zamansky

Software Engineering Foundations of Zoetic Data and Totally
Functional Programming . 129

Paul Bailes and Colin Kemp

Towards Modelling and Implementation of Reliability and Usability
Features for Research-Oriented Cloud Computing Platforms 158

Maria Spichkova, Heinz W. Schmidt, Iman I. Yusuf, Ian E. Thomas,
Steve Androulakis, and Grischa R. Meyer

An Improved Method Level Bug Localization Approach
Using Minimized Code Space. 179

Shanto Rahman, Md. Mostafijur Rahman, and Kazi Sakib

How Interesting Are Suggestions of Coupled File Changes
for Software Developers? . 201

Jasmin Ramadani and Stefan Wagner

http://dx.doi.org/10.1007/978-3-319-56390-9_1
http://dx.doi.org/10.1007/978-3-319-56390-9_1
http://dx.doi.org/10.1007/978-3-319-56390-9_2
http://dx.doi.org/10.1007/978-3-319-56390-9_2
http://dx.doi.org/10.1007/978-3-319-56390-9_3
http://dx.doi.org/10.1007/978-3-319-56390-9_3
http://dx.doi.org/10.1007/978-3-319-56390-9_4
http://dx.doi.org/10.1007/978-3-319-56390-9_4
http://dx.doi.org/10.1007/978-3-319-56390-9_5
http://dx.doi.org/10.1007/978-3-319-56390-9_6
http://dx.doi.org/10.1007/978-3-319-56390-9_7
http://dx.doi.org/10.1007/978-3-319-56390-9_7
http://dx.doi.org/10.1007/978-3-319-56390-9_8
http://dx.doi.org/10.1007/978-3-319-56390-9_8
http://dx.doi.org/10.1007/978-3-319-56390-9_9
http://dx.doi.org/10.1007/978-3-319-56390-9_9
http://dx.doi.org/10.1007/978-3-319-56390-9_10
http://dx.doi.org/10.1007/978-3-319-56390-9_10

A Systematic Literature Review on Cloud Computing Adoption
and Migration. 222

Antonio Carlos Marcelino de Paula
and Glauco de Figueiredo de Carneiro

Author Index . 245

XII Contents

http://dx.doi.org/10.1007/978-3-319-56390-9_11
http://dx.doi.org/10.1007/978-3-319-56390-9_11

Advancing Negative Variability in Model-Driven
Software Product Line Engineering

Thomas Buchmann(B) and Felix Schwägerl(B)

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{thomas.buchmann,felix.schwaegerl}@uni-bayreuth.de

Abstract. Model-driven software product line engineering aims at
increasing the productivity of development of variational software. The
principle of negative variability is realized by a multi-variant domain
model, from which elements not needed for specific product variants are
removed. The application of negative variability is impeded by two fac-
tors: First, metamodel restrictions lead to limited expressiveness of the
multi-variant domain model. Second, unintended information loss may
occur during product derivation. In this paper, we present two concep-
tual extensions to model-driven product line engineering based on neg-
ative variability, being alternative mappings and surrogates. Alternative
mappings virtually extend the multi-variant domain model. Surrogates
repair unintended information loss by context-sensitive analyses. Both
extensions have been implemented in FAMILE, a model-driven product
line tool that is based on EMF. Alternative mappings are defined in a
dedicated mapping model. Surrogate rules may be defined in a declara-
tive domain-specific language and are taken into account during product
derivation. The added value of alternative mappings and surrogates is
demonstrated by a running example, a UML-based graph library.

1 Introduction

1.1 Background

Software engineering aims at increasing the productivity of computer program-
ming by providing powerful methods and tools for software development. Among
others, model-driven software engineering and software product line engineering
have emerged as complementary disciplines contributing to the achievement of
this goal.

Model-Driven Software Engineering (MDSE) [13,29] puts strong emphasis
on the development of high-level models rather than on the source code. Models
are not considered as documentation or as informal guidelines how to program
the actual system; in contrast, they have well-defined syntax and semantics.
Moreover, model-driven software engineering aims at the development of exe-
cutable models. Ideally, software engineers operate only on the level of models
such that there is no need to inspect or edit the actual source code (if any). The
Eclipse Modeling Framework (EMF) [27] has been established as an extensible

c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 1–26, 2016.
DOI: 10.1007/978-3-319-56390-9 1

2 T. Buchmann and F. Schwägerl

platform for the development of MDSE applications. It is based on the Ecore
metamodel which is compatible with the OMG Meta Object Facility (MOF)
specification [22].

Software Product Line Engineering (SPLE) [11,25,30] deals with the sys-
tematic development of products belonging to a common system family. Rather
than developing each instance of a product line from scratch, reusable software
artifacts are created such that each product may be composed from a library
of components. Basically, two different approaches exist to realize variability in
SPLE: (1) In approaches based upon positive variability, product-specific arti-
facts are built around a common core. Composition techniques are used to derive
the final products. (2) In approaches based on negative variability, a superim-
position of all variants is created in the form of a multi-variant domain model.
The derivation of products is achieved by removing all fragments of artifacts
implementing features not being contained in the specific feature configuration
for the desired product. In the remainder of this paper, we assume negative vari-
ability, without intending to discuss the advantages and drawbacks of these two
coexisting approaches.

1.2 Model-Driven Software Product Line Engineering Process

In the past, several approaches have been taken in combining both techniques to
get the best out of both worlds, resulting in the integrating discipline Model-Dri-
ven Product Line Engineering (MDPLE). Both software engineering techniques
consider models as primary artifacts: Feature models [17] are used in product
line engineering to capture the commonalities and differences of a product line,
whereas Unified Modeling Language (UML) [24] or domain-specific models are
used in model-driven software engineering to describe the software system at a
higher level of abstraction.

As shown in Fig. 1, product line engineering consists of domain and appli-
cation engineering [11,25]. Domain engineering is dedicated to analyzing the
domain and capturing the results in a model which describes commonalities and
differences thereof. Furthermore, an implementation – the so called platform –
is provided at the end of domain engineering. The platform is then used during
application engineering to derive specific product variants, i.e., instances of the
product line.

Domain and application engineering differ from each other also with respect
to required processes: Domain engineering requires a full-fledged development
process, while application engineering is ideally reduced to a simple configuration
process executed in a preferably automated way. The activities belonging to the
entire engineering process are described below:

1. Analyze Domain. A feature model describing mandatory, optional and
alternative features within the product line captures the result of the domain
analysis. Typically, Feature-Oriented Domain Analysis (FODA) [17] or one
of its descendants – like FORM [18] – is used to analyze the domain.

Advancing Negative Variability 3

Fig. 1. Model-driven product line engineering process as supported with FAMILE
(reproduced from [9]).

2. Develop Multi-variant Domain Model . Afterwards, a multi-variant do-
main model is developed, which realizes all features determined in the previ-
ous step. A connection (mapping model) between the feature model and the
domain model is established, e.g., by annotating model elements with presence
conditions.

3. Configure Features. In order to build a specific system with the reusable
assets provided by the product line, features of the feature model have to be
selected. The selected features constitute a feature configuration, describing
the characteristics of the product variant to be derived.

4. Configure Domain Model . According to the selection of features made
in the previous step, the domain model is configured automatically. This
is done by selecting all domain model elements which are not excluded by
feature expressions evaluating to false. The outcome is an application-specific
configured domain model.

1.3 Contributions

In this paper, which is a revised and extended version of [9], we address two
issues which have been neglected so far in research on MDPLE using negative
variability: limitations in variability and unintended information loss. We have
identified these problems (among others) in a large case study [4] which had been
performed using our old tool chain for model-driven product line engineering
[10]. To overcome the identified issues, we provide the conceptual contributions
alternative mappings and surrogates, which have been implemented as extensions
to the MDPLE tool FAMILE [5–7].

The paper is structured as follows: In Sect. 2, we motivate our contributions
by introducing a running example. Section 3 explains the conceptual foundations

4 T. Buchmann and F. Schwägerl

of alternative mappings and surrogates. Section 4 refers to the implementation
of these concepts in our MDPLE toolchain FAMILE. The example is revisited
in Sect. 5 to illustrate the practical impact of our solution. Section 6 discusses
related work, before the paper is concluded.

2 Motivating Example

To illustrate both the problems addressed in this paper and the corresponding
conceptual and technical solution, we introduce a model-driven adaptation of
an example commonly used in the SPLE literature—a product line for a graph
library [20]. The results of domain analysis are captured in a feature model (see
Sect. 2.1). Next, Sect. 2.2 presents the provisional multi-variant domain model. In
Sects. 2.3 and 2.4, we initially attempt to provide a mapping between domain and
feature model, and to derive one example product configuration, respectively.
During these attempts, we encounter the conceptual obstacles addressed in this
paper, limitations in variability and unintended information loss; the example
is revisited in Sect. 5, which explains how these obstacles can be removed.

2.1 Feature Model

The outcome of domain analysis is shown in Fig. 2 using the concrete syntax
proposed in [17]. A graph consists of Vertices and Edges (mandatory features).
Edges may optionally be labeled, weighted, and/or directed. Furthermore, search
algorithms may be provided: depth-first (DFS) and breadth-first (BFS) search.
Last, additional algorithms may be applied to graphs. In case the feature Algo-
rithm is selected, at least one of Transitive Closure and Transpose must be
selected. A cross-tree dependency, which is not shown in the diagram, ensures
that a transpose is applicable for directed graphs only.

Fig. 2. Feature model for the graph product line.

Advancing Negative Variability 5

2.2 Multi-variant Domain Model

The platform of the product line is modeled using a UML class diagram, which
is refined with the help of eight UML activity diagrams. The diagrams have
been created using the UML modeling tool Valkyrie [3], which is based on the
Eclipse UML2 metamodel. Assuming negative variability, the diagrams serve as
multi-variant domain models. The class diagram shown in Fig. 3 provides the
structural view on the platform. The optional features labeled, weighted, and
directed have been realized using the attributes label, weight, and two associations
starts at and ends at, respectively.

Fig. 3. Class diagram forming the core of the multi-variant domain model.

For the behavioral part of the platform, eight operations have been declared.
Four of them (bfs, dfs, closure, and transpose) realize the corresponding features
arranged below Search and Algorithm in the feature model. Operation closure uses
the auxiliary operations connects and connectsTrans. Due to space restrictions, we
consider only two of the operations, namely addEdge, which is refined in the activ-
ity diagram shown in Fig. 4, and bfs (see Fig. 5). The statements contained in the
activities are written in the Action Language for Foundational UML (ALF) [23].

In the operation addEdge, the values defined by the parameters from and to are
assigned to the properties source and target of a new instance of the class Edge.
Then, the edge is added to the graph (by instantiating the association has edges)
and returned.

The breadth-first search in bfs has been implemented using sequential first-in-
first out auxiliary data structures. The sequence of vertices to visit is initialized

6 T. Buchmann and F. Schwägerl

by the vertex start specified as parameter. Then, in a loop, all successors of the
current vertex that have not yet been visited are added to the result list, until
no more vertex remains. The set of vertices to be added in each iteration is
calculated by the complex expression prev.outgoing.target → difference(res).

2.3 Mapping

In approaches based on negative variability, the connection between the multi-
variant platform and the feature model is provided as a so called mapping. We
may view the mapping tool-independently as a table, where the left column
references an element from the multi-variant domain model, and the right column
contains a condition for its inclusion in a specific product, represented as a
propositional logical expression.

Fig. 4. Activity diagram for the auxiliary operation addEdge.

Table 1 shows the mapping for the three diagrams presented. So far, the
activity diagram from Fig. 5 does not contain any variability.

In contrast to the other optional features, the realization of directed is much
more difficult. Following our domain analysis, in case directed is deselected in a
given variant, we want to combine the associations starts at and ends at to one single
association connects, having multiplicity [2..2] at the Vertex end. Furthermore, the
operation addEdge must be adjusted to carry only a single parameter. This must
also be considered in the activity diagram for addEdge: Parameters from and to are
supposed to be combined into a single multi-valued parameter, which is added
to the adjacents of the newly created edge. Table 2 summarizes all changes to the
multi-variant domain model intended to be connected with a deselection of the
feature directed.

Advancing Negative Variability 7

Fig. 5. Activity diagram for the operation bfs (breadth-first search).

Table 1. Initial mapping for the running example referring to elements of the presented
class and activity diagrams. For simplicity, mappings for mandatory features have been
omitted.

Diagram MVDM Element Condition

Figure 3 Operation bfs BFS

Operation dfs DFS

Operations closure, connectsTrans Transitive Closure

Operation transpose Transpose

Attribute weight weighted

Attribute label labeled

Association ends at directed

Figure 4 parameter to directed

Activity e.target ← to directed

Figure 5

While most of the state-of-the art MDPLE tools support the basic map-
ping shown in Table 1, the contents of Table 2 are impossible to express without
destroying the syntactical and semantical correctness of the model (in particular,
it is forbidden to connect an activity by several incoming and/or outgoing edges).
Yet, it is required that the multi-variant domain model must be a valid instance
of its respective metamodel. Although this has several desirable practical

8 T. Buchmann and F. Schwägerl

Table 2. Suggested extensions to the mapping. The equivalent division (Figs. 3, 4
and 5) applies.

MVDM Detail Changed Value Condition

Name of association starts at connects ¬ directed

Name of association end source adjacents ¬ directed

Multiplicity of association end source [2..2] ¬ directed

Name of association end outgoing edges ¬ directed

Parameters of operation addEdge vertices : Vertex [2..2] ¬ directed

Name of parameter from adjacents ¬ directed

Statement e.source ← from connects::createLink(e, vertices) ¬ directed

Expression prev.outgoing.target prev.edges.adjacents ¬ directed

consequences – e.g., it permits to use arbitrary modeling tools for the creation of
the MVDM – it also limits variability to a serious extent. For instance, we cannot
model the mutually exclusive names connects and starts at; the UML metamodel
requires that an association must have exactly one name. As a consequence, in
many places in the platform, we cannot specify realization details of both vari-
ants, directed and ¬directed, in the superimposition. The problem of limitations
in variability will be formalized in Sect. 3.

2.4 Product Derivation

For the remainder of this section, let us assume that an adequate solution has
been found to overcome limitations in variability, and we are able to adequately
express the multi-variant domain model from which specific product variants
may be derived.

Nevertheless, unexpected behavior may occur during product derivation. As
negative variability is implemented by removing parts of the MVDM not needed
in a specific product, there exists a risk of losing more information than intended.
An example is provided in Fig. 6, which shows the activity diagram of addEdge for
a variant which does not include feature directed. After filtering out the activity
e.target ← to, its incoming and outgoing control flows remain dangling.

In this example, the information loss can be repaired adequately by remov-
ing both dangling edges and by connecting the adjacent activities. This repair
strategy, however, takes into consideration knowledge about the semantics of the
model and cannot be applied generically. In Sect. 3, we will detail this problem
and propose a conceptual solution to automatically derive semantically mean-
ingful repair actions.

3 Conceptual Extensions to Negative Variability

Before detailing the contributed solutions alternative mappings and surrogates,
let us briefly reproduce the problems identified in Sect. 2 in a more general form.

Advancing Negative Variability 9

Fig. 6. Configured activity diagram for addEdge affected by information loss.

Problem: Limitations in Variability . As approaches relying on negative
variability use a multi-variant domain model, the respective meta model is a
limiting factor for variability. In particular, single-valued structural features
can hold only one value, e.g., a UML association may have only one name.
Furthermore, each model element must have exactly one container (except
for the root, which has none).

Solution: Alternative Mappings. The concept of alternative mappings
allows for variability in values of single-valued features of domain model ele-
ments (e.g., UML association names). Technically, this has been realized by
virtual extensions to the multi-variant domain model, physically located in a
dedicated mapping model.

Problem: Unintended Information Loss. When products are derived from
the multi-variant domain model, context-sensitive information stored within
cross-references, e.g., a transitive control flow, may get lost; state-of-the-art
tools only take context-free information into account when deriving products.

Solution: Surrogates. Unintended information loss is addressed by means of
surrogate rules. During product derivation, these rules are interpreted such
that the product variant is repaired; to prevent information loss, reference tar-
gets are replaced by appropriate substitutes. Our technical solution provides
SDIRL, a declarative OCL-based language where domain-specific surrogate
rules may be defined.

3.1 Preliminaries

Both conceptual solutions are tool-independent and do not require a specific
technological platform. Nevertheless, our contributions explicitly address model-
driven projects; therefore, we make some minimal assumptions with respect to
the underlying modeling paradigm:

– The multi-variant domain model is defined on the basis of a fixed metamodel;
therefore, each object occurring in the MDVM is instance of a unique class.

10 T. Buchmann and F. Schwägerl

– References must accord to the typing and multiplicity rules defined in the
metamodel. Two kinds of references are assumed: containment and non-
containment references. Containment references are acyclic and existentially
dependent. Furthermore, each object except for the root object of a model
must have exactly one container.

– Object may also carry single-valued or multi-valued attributes, whose types
and multiplicities must be defined in the metamodel unambiguously.

Implementing a subset of the Meta Object Facility (MOF) [22] standard, the
Eclipse Modeling Framework [27] matches these assumptions. Likewise, our own
technical solution has been implemented as extensions to the EMF-based tool
FAMILE (cf. Sect. 4).

3.2 Alternative Mappings

When applying the principle of negative variability, a multi-variant domain
model constitutes the superimposition of all products. Nevertheless, it is an
ordinary model instance which must satisfy the structural constraints imposed
by its metamodel. Following the assumptions made above, there are at least two
structural constraints that impede the use of an ordinary model instance as the
multi-variant domain model without being affected by the issue of limitations in
variability :

Value Variability . The underlying metamodel defines a multiplicity, consist-
ing of an upper and lower bound, for each structural feature (i.e., attribute or
reference). The multi-variant domain model cannot intrinsically represent a
number of alternative feature values applicable for different product variants
that is greater than the upper bound defined in the metamodel.

Container Variability. According to our assumptions, an object must either
be the root of a resource, or be contained by exactly one container object.
Thus, the location of an object in the containment tree must be fixed in the
multi-variant domain model. This restriction prevents different products from
containing a specific object at different locations.

Alternative mappings mitigate these restrictions. They are supplementary
domain model elements defined externally (e.g., FAMILE defines them in a ded-
icated mapping model) and inserted into the configured domain model during
product derivation. Conceptually, three different kinds of alternative mappings
are distinguished.

Alternative Object Mappings are virtual objects belonging to a given class
of the domain metamodel. They are virtually assigned to a container object
using a suitable containment reference defined in the metamodel. Multiplicity
rules need not hold.

Alternative Cross-reference Mappings allow for the virtual creation of
links, i.e., of applied occurrences of existing objects in configured domain mod-
els. They are assigned to a source object using a suitable non-containment

Advancing Negative Variability 11

Fig. 7. Abstract example for the application of different types of alternative mappings.
(Color figure online)

reference defined in the metamodel. Typing rules must hold for the target
object, but multiplicity rules are ignored.

Alternative Attribute Mappings allow for the virtual insertion of atomic
data values into existing attributes defined in the metamodel. The attribute
type must conform to the metamodel, but multiplicity rules are ignored.

An example for the internal usage of alternative mappings is provided in
Fig. 7. The blue elements of the figure represent a cut-out of the multi-variant
domain model as object diagram being instance of a simple bubbles-and-arcs
metamodel. The green part contains alternative mappings (dashed border) in
addition to core mappings (mappings that refer to “real” MVDM elements).
Both core and alternative mappings may carry feature expressions, which imple-
ment the mapping sketched, e.g., in Table 1. In case feature f1 is selected, the
name of b1 is changed to b2, and the arc a12 is re-targeted to a new element b3.

3.3 Mutex Conflicts and Selection Strategies

The introduction of alternative mappings leads to unconstrained variability : For
single-valued features, several values may be defined. As soon as a configured
domain model is derived, however, the result is not guaranteed to fulfill the mul-
tiplicity constraints defined in the metamodel. In particular, the upper bound
may be exceeded, which primarily impedes the derivation of a syntactically cor-
rect product.

A mutex conflict occurs between a set of domain model elements {e1, . . . , en}
whenever the following conditions hold:

– All elements {e1, . . . , en} are values of the same structural feature (attribute,
non-containment, or containment reference) of the same object.

– The number of selected elements s, i.e., the subset of E carrying presence
conditions that evaluate to true, exceeds the upper bound u of the structural
feature.

12 T. Buchmann and F. Schwägerl

As a technique to automatically resolve mutex conflicts, we propose selection
strategies, which are applied according to the following priority rules:

1. Since the multi-variant domain model conforms to the domain metamodel,
the number of structural features defined by core (i.e., non-alternative) val-
ues must never exceed the upper bound u. Thus, core values are generally
preferred over alternative values. The number of selected core values is here
defined as sc.

2. If the number of selected alternative values sa exceeds the number of available
slots for values in the final product u−sc, the conflict is resolved by the order
in which the alternative mappings have been inserted, such that only the
earliest u − sc elements are considered. All remaining alternative values are
artificially excluded from the product. The number of excluded values is here
defined as e.

Altogether, selection strategies ensure that the effective number of values for
the structural feature will not exceed the upper bound defined in the metamodel:

sc + sa − e ≤ u (1)

3.4 Surrogate Rules

The derivation of configured domain models in approaches based on negative
variability consists in filtering of elements being mapped to a feature expression
that evaluates to false. Filtering non-containment links, however, can result in
unintended information loss, especially concerning context-sensitive information
that is encoded transitively by a sequence of links. An example has been provided
in Sect. 2.4: Control flows in activity diagrams have transitive semantics; a path
from a given source to a target activity may be destroyed by removing an activity
in between, resulting in two dangling flows.

Each link part of the multi-variant domain model may be expressed as a
triple l = (r, s, t), where r denotes the reference defined in the metamodel from
which the link is instantiated, s corresponds to the source object from which the
link emerges, and t denotes the target object.

Surrogate rules are a conceptual extension to negative variability that allow
to repair context-sensitive information lost during product derivation. Formally,
we can define a surrogate rule as a tuple (r, f(t)), where r denotes a reference
defined in the metamodel, and f(t) denotes a replacement function that takes
as input the filtered reference target, and returns a set of surrogate candidates
that may replace t in order to prevent information loss in the respective context.

Surrogate rules are interpreted dynamically during product derivation as
follows for each link contained in the multi-variant domain model (including
alternative mappings):

– If the source object s is selected (i.e., its presence condition evaluates to true
after applying the selected feature configuration), and t is deselected, continue
with the next step. Otherwise, cancel. (Nothing can or needs to be repaired.)

Advancing Negative Variability 13

– For each surrogate rule w = (r, f(t)) applicable to r, apply its replacement
function f(t) to the link target t. Collect all resulting surrogate candidates in
a set C.

– Remove from C all candidate objects whose presence condition evaluates to
false after applying the selected feature configuration.

– If C is empty, there is no viable way to repair the information loss. Thus,
cancel.

– If C contains exactly one element c, replace the original link target t with c
in the final product.

– If C contains multiple elements c1, . . . , cn, choose one of these elements non-
deterministically (e.g., by user interaction) to replace t.

To illustrate the definition and application of surrogate rules, let us consider
another bubbles-and-arcs model instance. The metamodel defines a reference
type arc connecting a source and a target bubble. Furthermore, the following
surrogate rule is defined:

w1 = (arc, f(b) = targets of b) (2)

w1 applies to all references of type arc; the replacement function is defined as
the set of successors of the original target t. This way, transitive information,
lost by filtering a bubble from a path of bubbles and arcs, may be restored. An
application of this rule is illustrated in Fig. 8: surrogate rule w1 is applicable to
arc a12. When applying f(b) to the arc’s target b2, the candidate set is calculated
as C = {b3}. Therefore, b3 replaces b2 as reference target of a12 in the configured
product. w1 is not applicable to a23 because b2 is deselected and b3 is selected;
this arc is omitted from the product.

4 Implementation

4.1 FAMILE

Before we give detailed information about the implementation of alternative
mappings and surrogates, let us briefly provide a short description of our tool
FAMILE. More comprehensive tool descriptions can be found in [5–7].

Fig. 8. Abstract example for the application of a surrogate rule.

14 T. Buchmann and F. Schwägerl

FAMILE (Features and Models in Lucid Evolution) is an EMF-based
MDPLE tool that offers capabilities to capture commonalities and variabili-
ties of a software family using feature models and to map features to elements
of arbitrary EMF-based domain models, which contain the realization of those
features. FAMILE has been developed itself in a model-driven way, being based
on several metamodels. The feature metamodel describes the structure of fea-
ture model and feature configurations, respectively, and F2DMM (Feature to
Domain Mapping Model) is the metamodel for mappings between features and
realization artifacts (elements of the multi-variant domain model). For the edit-
ing of instances of feature models, mapping models, and feature configurations,
corresponding editors are provided. For editing the multi-variant domain model,
existing editors may be reused (Fig. 9).

Technically, feature models and feature configurations share the same meta-
model. Using the feature model editor, mandatory and optional features may be
defined in a tree hierarchy. Furthermore, cardinality-based feature modeling [12],
a generalization of or and alternative groups, is supported. The feature configu-
ration editor allows to assign selection states to features and ensures the validity
of the configuration with respect to the constraints defined in the feature model.
Figure 10 shows screenshots of both editors.

Fig. 9. Architectural overview of FAMILE (reproduced from [9]).

FAMILE’s core component is an editor for mapping models (F2DMM), which
interconnect the feature model and the Ecore-based domain model(s). To this
end, a mapping model consists of a tree of three different kinds of mappings,
which are created by the tool transparently to reflect the tree structure of the
mapped domain model:

Object mappings refer to an existing EObject from the multi-variant domain
model and reflect its tree structure using the Composite design pattern [14].

Attribute mappings refer to the string representation of a concrete value of
an attribute of a mapped object.

Cross-reference mappings represent the applied occurrence of an object that
is already mapped by an object mapping.

Advancing Negative Variability 15

Fig. 10. Screenshots of the example feature model (cf. Fig. 2) and two example feature
configurations (cf. Sect. 5) opened in their respective editors provided by FAMILE.

The connection between domain and feature model is realized by feature
expressions specified with Feature Expression Language (FEL), which imple-
ments propositional logical expressions on the variables of the feature model.
Each element (object, attribute value or reference) may carry a feature expres-
sion. Once a feature configuration has been provided, FAMILE may derive the
configured domain model by filtering domain model elements decorated with
feature expressions evaluating to false.

More precisely, the evaluation of a feature expression with respect to a given
feature configuration yields one of eight possible selection states (cf. Fig. 11).
Four selection states immediately result from evaluating a mapping’s assigned
feature expression: active and inactive denote that it evaluates to a positive
or negative value, corrupted means that there are syntax errors in the expres-
sion. The state incomplete arises in case a mapping has no feature expression
assigned or as long as no feature configuration has been loaded. The four remain-
ing selection states indicate that automatic repair actions have been applied to
ensure well-formedness (cf. Sect. 4.2), that a mutex conflict has been resolved (see
Sects. 3.2 and 4.3), or that a surrogate rule has been applied to prevent infor-
mation loss (Sects. 3.4 and 4.4). Once a feature configuration has been loaded,
selection states are displayed to the user as overlays of the mapped domain model
elements (cf. Figs. 12 and 13).

4.2 Basic Consistency Control Mechanisms

Another feature of FAMILE is built-in consistency checking: Before product
derivation, product consistency constraints are applied to ensure well-formedness
[5]. To this end, context-free consistency constraints are automatically derived
from the used domain metamodel: each object depends on its container, if any.
Furthermore, the SPL engineer may specify context-sensitive constraints using
the declarative, OCL-based [21] SDIRL (Structural Dependency Identification
and Repair Language) [5].

16 T. Buchmann and F. Schwägerl

Fig. 11. Possible selection states for F2DMM mappings and their graphical represen-
tation (reproduced from [9]).

Listing 1.1. SDIRL dependency rule for the source of a control flow in activity dia-
grams.

import”http ://www. e c l i p s e . org /uml2 /3 . 0 . 0 /UML”
dependency FlowSource {

element f low : uml . Act iv ityEdge
requires ac t i on : uml . ActivityNode {

f l ow . source
} }

An example of a SDIRL dependency rule is provided in Listing 1.1. The
import directive establishes a reference to the metamodel, in our case the Eclipse
UML2 metamodel. The subsequent dependency rule, FlowSource, states that each
flow in a UML activity diagram (represented by class ActivityEdge) has a context-
sensitive dependency on its source activity. Within the body of the requires block,
arbitrary OCL expressions are permitted. In this way, dependency rules provide
a generalized form of links of the form l = (r, s, t) defined in Sect. 3.4.

When applying a feature configuration to the mapping model and calculat-
ing the respective selection states, violations of context-free or context-sensitive
dependencies may arise. A dependency conflict is present whenever a mapped
element is active while a required element, e.g., its container, is inactive.

Propagation strategies [5] have been introduced as an automatic consistency
repair mechanism to resolve dependency conflicts. The SPL engineer may choose
globally (for each product line) among two pre-defined strategies, being forward
(exclude the element bound in the variable element) and reverse (include the
required element) propagation. The application of propagation strategies may lead
to two new selection states: Either, an inactive mapping can be artificially made
positive, i.e. enforced, or an active mapping can be artificially made negative,
i.e. suppressed.

Advancing Negative Variability 17

4.3 Alternative Mappings

FAMILE implements alternative mappings as described in Sect. 3.2. Physically,
these supplementary domain model elements are located in the mapping model,
such that the multi-variant domain model remains unmodified; during product
derivation, they are materialized and integrated into the corresponding product
variants.

In FAMILE, the distinction between alternative object mappings, cross-
reference mappings, and attribute mappings introduced in Sect. 3.2 applies. For
alternative object mappings, two different technical solutions are supported: On
the one hand, they may be defined in-place in the mapping model; the user has
to specify a class to be instantiated at the selected location. On the other hand, a
model fragment with a dedicated root object may be referenced. This fragment
is located in a separate EMF resource and may be referenced multiple times,
such that container variability is achieved.

The implementation of the detection and resolution of mutex conflicts slightly
differs from the conceptual description provided in Sect. 3.3. EMF does not
directly enforce cardinality constraints, but merely distinguishes between single-
valued (upper bound of 1) and multi-valued (upper bound greater than 1) struc-
tural features. Accordingly, the problem of limitations in variability only affects
single-valued features.

Mutex conflicts are detected automatically as soon as a feature configuration
has been loaded into the F2DMM editor. For their resolution, the first alternative
with a positive selection state is preferred. This is signaled to the user by the
selection state overruled being assigned to mappings for all artificially excluded
elements which had a positive selection state previously (cf. Fig. 11). In case the
user demands for a different conflict resolution, he/she may either change the
order of alternative mappings or modify the feature expression(s) assigned to
the respective elements.

4.4 Surrogate Rules

Surrogate rules (cf. Sect. 3.4) have been incorporated into FAMILE as an exten-
sion to the language SDIRL. A dependency rule may include an arbitrary number
of surrogate statements, where OCL expressions that must conform to the type
of the requires variable can be phrased. The expression may refer to the objects
bound to the element and requires variables. Objects that result from evaluating
any of the attached surrogate expressions are recorded as surrogate candidates
for the given cross-reference. Surrogate candidates may replace the element(s)
bound to the requires variable as cross-reference target(s). This way, surrogate
statements implement replacement functions f(t) declared in Sect. 3.4.

An example of a dependency rule containing a surrogate statement is pro-
vided in Listing 1.2. Dependencies of control flows to their target activities are
defined in analogy to Listing 1.1. The surrogate block states that successors of
filtered activities may replace the target activity in order to prevent information
loss. In this way, the context-sensitive correctness, i.e., the transitive semantics
of control flows, is maintained.

18 T. Buchmann and F. Schwägerl

Listing 1.2. SDIRL dependency rule for outgoing control flows, containing a surrogate
rule.

dependency FlowTarget {
element f low : uml . Act iv ityEdge
requires ac t i on : uml . ActivityNode {

f low . t a r g e t
}
surrogate {

f low . t a r g e t . outgoing . t a r g e t
} }

Both dependency and surrogate rules are pre-calculated during domain engi-
neering and interpreted later on during application engineering after a feature
configuration has been loaded. In Fig. 11, the selection state surrogated has been
introduced for cross-reference mappings being basically inactive or suppressed,
but for which at least one surrogate candidate having a positive selection state
exists. Therefore, surrogate rules are applied after propagation strategies.

During product derivation, one of the determined surrogate candidates must
be chosen by the user to replace the applied occurrence of the mapped object
(cf. non-determinism in the description in Sect. 3.4). FAMILE supports three
different methods, one of which must be chosen by the user: In a fully automatic
mode, the first surrogate candidate is selected. In an interactive mode the user
can select among the set of all candidates. Furthermore, one can choose not to
use surrogates at all. In this case, the information loss is intentionally ignored.

5 Example Revisited

To demonstrate the added value of our conceptual and technical contributions
of alternative mappings and surrogates, we refer back to the example introduced
in Sect. 2.

5.1 Defining Alternative Mappings

The suggested extensions to the mapping sketched in Table 2 can be realized
using different types of alternative mappings representing the changed values
listed in the table. The corresponding conditions are realized by feature expres-
sions assigned to alternative mappings. The default resolution strategy for mutex
conflicts appears to be counter-intuitive in this example; all changed values are
ignored as the respective non-alternative values have a higher priority assigned.
Therefore, all original values for which an alternative value is defined must be
annotated with the negation of the condition for the alternative; in our example,
this corresponds to the feature expression directed.

Figure 12 shows the definition of an alternative value that corresponds to
the first line of Table 2: the overall goal is to combine the associations starts at

and ends at into one association, connects, in case feature directed is deselected.

Advancing Negative Variability 19

Fig. 12. Definition of an alternative value for an association name using F2DMM.

This is realized in three steps: First, the association ends at is annotated with the
feature expression directed, making it disappear for undirected graphs. Second,
the original name of the association, starts at, is annotated with directed, too.
Third, an alternative (represented in italics) attribute value connects is introduced
for the structural feature name, and annotated with not directed. Since the feature
configuration UndirectedWeighted (cf. Fig. 10) is currently active, the original name
is virtually replaced by the alternative name.

5.2 Repairing Information Loss with Surrogates

In Sect. 2.4, the problem of unintended information loss was exemplified by a
path of subsequent activities being destroyed by filtering an activity lying in
between. The problem sketched in Fig. 6 is addressed by the surrogate rule Flow-

Target provided in Listing 1.2 (the internal mechanisms roughly correspond to
the abstract example of Fig. 8).

Surrogates come into play as soon as elements with a negative selection state
are cross-referenced by another, positively annotated, element. Such a situation
is present in the activity diagram for addEdge after loading the feature config-
uration UndirectedWeighted (cf. Fig. 13): The activity e.target ← to is filtered out,
but referenced by the control flow selected in the editor. For this control flow, a
surrogate candidate has been pre-calculated by evaluating the surrogate statement
within the SDIRL rule: the activity hasEdges::createLink(self, e). As a consequence,
the selection state of the reference becomes surrogated. Please note that no sur-
rogate rule has been defined for source activities in Listing 1.1; therefore, the
control flow originally targeting activity hasEdges::createLink(self, e) is going to be
omitted from the current product.

20 T. Buchmann and F. Schwägerl

Fig. 13. Inspection of an application of the surrogate rule FlowTarget.

5.3 Deriving Product Variants

The results of deriving the product based on the currently loaded feature con-
figuration, UndirectedWeighted, is shown below. Figure 14 shows that some trivial
filter steps have been applied: operation transpose and attribute label have been
removed since their corresponding feature is deselected. Furthermore, the asso-
ciations starts at and ends at have been combined as requested.

Since a single change has been applied, the configured activity diagram for
operation bfs is omitted; in contrast to Fig. 5, expression prev.outgoing.target has
been replaced by prev.edges.adjacents, as requested by Table 2.

The result of the application of the surrogate rule is depicted in Fig. 15.
The activity e.target ← to has been excluded from the product. The dangling
flow has been re-targeted to hasEdges::createLink(self, e). This way, transitive control
flow information is maintained. Furthermore, some elements have been renamed
according to the alternative attribute values defined.

The product derived for configuration WeightedLabeled (cf. Fig. 10) is not
shown; there is only a slight deviation from the multi-variant domain model
shown in Fig. 3: attribute weighted is missing. No further differences exist since
all features except for Weight are active, and alternative values are not enabled
as directed is selected.

6 Related Work

6.1 General Comparison

MDPLE approaches based on positive variability require the use of special devel-
opment tools in order to specify implementation fragments and to compose the
variable parts with the common core [2]. The language VML* [33] supports both

Advancing Negative Variability 21

Fig. 14. Class diagram derived for product variant UndirectedWeighted.

positive and negative variability, since every feature is realized by a sequence of
small transformations on the core model. MATA [31] allows to develop model-
driven product lines based on UML. It relies on positive variability, which means
that around a common core specified in UML, variant models described in the
MATA language are composed to a product specific UML model. Graph trans-
formations based on AGG [28] which are used to compose the common core with
the single MATA specifications.

An essential requirement in tools based on negative variability is the mapping
between features and their corresponding implementation fragments. On the one
hand, the mapping information may be either stored within the implementa-
tion, e.g. by using preprocessor directives in source code based approaches [19],
or annotations in model-based approaches [15,32]. The tool fmp2rsm1 combines
FeaturePlugin [1] with IBM’s Rational Software Modeler, a UML-based modeling
tool using specific UML stereotypes for features. MODPL [10] also uses stereo-
types to annotate Fujaba2 models. On the other hand, the mapping information
can be made explicit by using a distinct mapping model. Like FAMILE, Fea-
tureMapper [16] virtually adds variability information to arbitrary Ecore-based
domain models.

1 http://gsd.uwaterloo.ca/fmp2rsm.
2 http://www.fujaba.de/.

http://gsd.uwaterloo.ca/fmp2rsm
http://www.fujaba.de/

22 T. Buchmann and F. Schwägerl

Fig. 15. Activity diagram for addEdge derived for product variant UndirectedWeighted.

6.2 Approaches Allowing for Unconstrained Variability

In this paper, we have presented alternative mappings as a technique to over-
come metamodel restrictions in multi-variant models, e.g., the representation of
multiple alternative values for single-valued structural features. To the best of
our knowledge, when considering negative variability, there exists no approach
in the literature that corresponds to alternative mappings described here, which
explicitly stores alternative model elements in separate resources in order to
virtually extend multi-variant domain models.

In approaches based on positive variability [2,31,33], alternative values may
be dynamically added to the platform using separate transformation specifica-
tions. However, during the product derivation process, the order in which the
single model transformations are carried out is crucial, since “the last update
wins”. Thus, a conflict detection and resolution mechanisms corresponding to
mutex constraints and selection strategies presented here cannot be realized upon
positive variability.

SuperMod [26] applies a filtered editing approach to MDPLE, realizing the
update/modify/commit workflow known from version control systems. The SPL
engineer operates in a single-version view of the model, which is persisted in a
multi-variant repository, allowing for unconstrained variability behind the cur-
tains. However, in the local workspace, developers are intentionally restricted to
single-version editing.

6.3 Approaches to Preventing Information Loss

Surrogate rules, as discussed in this paper, prevent the loss of context-sensitive
information stored in, e.g., a sequence of cross references. The concept of sur-
rogate rules, which are used to calculate target candidates beforehand, one of
which is chosen as replacement reference target during product derivation, is
unique in the field of MDPLE. As a replacement, we outline one representative
belonging to approaches performing context-sensitive analyses before product
derivation.

Advancing Negative Variability 23

The source-code based tool CIDE [19] provides the SPL engineer with a
product specific view on the source code, where all source code fragments not
part of the chosen configuration are omitted in the source code editor. As opposed
to #ifdef-preprocessors, CIDE abstracts from plain text files and works on the
abstract syntax tree of the target language instead. The tool is based on a
product line aware type system which helps to detect typing errors resulting
from applying negative variability to the multi-variant model. Since a general
type system for arbitrary languages is still subject to research, a general solution
is missing. Thus, for each language, a new grammar and a new product-line
aware type system must be supplied by the SPL engineer, whereas in FAMILE,
corresponding SDIRL rules must be added. Furthermore, detected errors are not
repaired automatically, but product derivation is disabled as long as context-
sensitive analysis reports errors.

7 Conclusion

In this paper, we have addressed two issues in MDPLE based on negative vari-
ability that had been considered as major drawbacks when compared to positive
variability, namely limitations in variability and unintended information loss. To
address these issues, the following conceptual contributions have been presented
in this paper which have been implemented as extensions to the MDPLE tool
FAMILE, without destroying the main advantage of negative variability, namely
the usage of arbitrary modeling tools.

Alternative Mappings. Since the multi-variant domain model has to be a
valid instance of the domain metamodel, several constraints must hold. In
particular, single-valued structural features may contain at most one value.
Thus, it is not possible to express variability for those features directly. This
restriction is mitigated by our concept of alternative mappings. These in turn
may cause several values competing for a single-valued feature. To resolve this,
we have realized the detection of mutex conflicts as well as their resolution
by means of selection strategies.

Surrogates. In case an element is filtered, it cannot occur as the target of
another cross-reference. This way, context-sensitive information may get lost.
Using the mechanism of surrogates, it is possible to replace filtered reference
targets by non-filtered elements of the same type. Corresponding replacement
rules may be specified declaratively in the OCL-based language SDIRL.

Using a case study, a model-driven product line for a graph library, we have
shown both the motivation for as well as the application of our contributions;
the final results match the expectations provided at the beginning of this paper.
In a literature review, we have shown that alternative mappings and surrogates
advance the state of the art in MDPLE based on negative variability.

Future research addresses evolution of software product line artifacts, round-
trip between domain and application engineering, and improved support for
maintaining the consistency between model and generated source code [8] in
both domain and application engineering.

24 T. Buchmann and F. Schwägerl

Resources

The tool FAMILE, including the extensions presented in this paper, may be
obtained by using the Eclipse update site provided at:3

We recommend a clean Eclipse Modeling installation. The package also con-
tains the example presented in this paper. For a deeper insight, you may import
the plug-in project de.ubt.ai1.famile.example.graph2 into your Eclipse workspace.

Screencasts demonstrating the usage of the tool can be found here:4

Acknowledgments. The authors want to thank Bernhard Westfechtel for his valu-
able and much appreciated comments on the draft of this paper. Furthermore, we
give thanks to the anonymous reviewers and all attendees of ENASE 2016, who gave
important feedback that was carefully considered during the revision of this paper.

References

1. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: feature modeling plug-in for eclipse.
In: Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology eXchange
(eclipse 2004), New York, pp. 67–72 (2004)

2. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: language-independent, auto-
mated software composition. In: Proceedings of the ACM/IEEE International Con-
ference on Software Engineering (ICSE), pp. 221–231. IEEE, May 2009

3. Buchmann, T.: Valkyrie: a UML-based model-driven environment for model-driven
software engineering. In: Proceedings of the 7th International Conference on Soft-
ware Paradigm Trends (ICSOFT 2012), Rome, Italy, pp. 147–157 (2012)

4. Buchmann, T., Dotor, A., Westfechtel, B.: Mod2-scm: a model-driven product
line for software configuration management systems. Information and Software
Technology (2012). http://dx.doi.org/10.1016/j.infsof.2012.07.010

5. Buchmann, T., Schwägerl, F.: Ensuring well-formedness of configured domain mod-
els in model-driven product lines based on negative variability. In: Proceedings of
the 4th International Workshop on Feature-Oriented Software Development, FOSD
2012, pp. 37–44. ACM, New York (2012)

6. Buchmann, T., Schwägerl, F.: FAMILE: tool support for evolving model-driven
product lines. In: Störrle, H., Botterweck, G., Bourdells, M., Kolovos, D., Paige,
R., Roubtsova, E., Rubin, J., Tolvanen, J.P. (eds.) Joint Proceedings of co-located
Events at the 8th European Conference on Modelling Foundations and Applica-
tions, pp. 59–62. CEUR WS, Technical University of Denmark (DTU), Building
321, DK-2800 Kongens Lyngby, July 2012

7. Buchmann, T., Schwägerl, F.: Developing heterogeneous software product lines
with famile – a model-driven approach. Int. J. Adv. Softw. 8(1 & 2), 232–246
(2015)

8. Buchmann, T., Schwägerl, F.: On A-posteriori integration of Ecore Models and
Hand-written Java Code. In: Pascal Lorenz, M.V.S., Cardoso, J. (eds.) Proceedings
of the 10th International Conference on Software Paradigm Trends, pp. 95–102.
SCITEPRESS, July 2015

3 http://btn1x4.inf.uni-bayreuth.de/famile/update/.
4 http://btn1x4.inf.uni-bayreuth.de/famile/screencasts/.

http://dx.doi.org/10.1016/j.infsof.2012.07.010
http://btn1x4.inf.uni-bayreuth.de/famile/update/
http://btn1x4.inf.uni-bayreuth.de/famile/screencasts/

Advancing Negative Variability 25

9. Buchmann, T., Schwägerl, F.: Breaking the boundaries of meta models and pre-
venting information loss in model-driven software product lines. In: Maciaszek,
L., Filipe, J. (eds.) Proceedings of the 11th International Conference on the Eval-
uation of Novel Approaches to Software Engineering (ENASE 2016), pp. 73–83.
SCITEPRESS, Rome, Italy, April 2016

10. Buchmann, T., Westfechtel, B.: Mapping feature models onto domain models:
ensuring consistency of configured domain models. Softw. Syst. Model. 13(4),
1495–1527 (2014). http://dx.doi.org/10.1007/s10270-012-0305-5

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns,
Boston, MA (2001)

12. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Softw. Process Improv. Pract. 10(1), 7–29 (2005)

13. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. Wiley Publishing, Indianapolis (2003)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software (1994)

15. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Boston (2004)

16. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to mod-
els. In: Companion Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, pp. 943–944, May 2008

17. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute, November 1990

18. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: Form: a feature-
oriented reuse method with domain-specific reference architectures. Ann. Softw.
Eng. 5, 143–168 (1998)

19. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D.: Guaranteeing syn-
tactic correctness for all product line variants: a language-independent approach.
In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP, vol. 33, pp. 175–
194. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02571-6 11

20. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-
line methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.
Springer, Heidelberg (2001). doi:10.1007/3-540-44800-4 2

21. OMG: Object Constraint Language, Version 2.2. OMG, Needham, MA,
formal/2010-02-02 edn., February 2010

22. OMG: Meta Object Facility (MOF) Core. Object Management Group, Needham,
MA, formal/2011-08-07 edn., August 2011

23. OMG: Concrete Syntax For A UML Action Language: Action Language For Foun-
dational UML (ALF). Object Management Group, Needham, MA, formal/2013-
09-01 edn., October 2013

24. OMG: Unified Modeling Language (UML). Object Management Group, Needham,
MA, formal/15-03-01 edn., March 2015

25. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Heidelberg (2005)

26. Schwägerl, F., Buchmann, T., Westfechtel, B.: SuperMod - a model-driven tool
that combines version control and software product line engineering. In: ICSOFT-
PT 2015 - Proceedings of the 10th International Conference on Software Paradigm
Trends, pp. 5–18. SCITEPRESS, Colmar (2015)

27. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Boston (2009)

http://dx.doi.org/10.1007/s10270-012-0305-5
http://dx.doi.org/10.1007/978-3-642-02571-6_11
http://dx.doi.org/10.1007/3-540-44800-4_2

26 T. Buchmann and F. Schwägerl

28. Taentzer, G.: AGG: a graph transformation environment for modeling and val-
idation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE
2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25959-6 35

29. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Chichester (2006)

30. Weiss, D.M., Lai, C.T.R.: Software Product Line Engineering: A Family-Based
Software Development Process, Boston, MA (1999)

31. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: a uni-
fied approach for composing UML aspect models based on graph transformation.
In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on Aspect-
Oriented Software Development VI. LNCS, vol. 5560, pp. 191–237. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03764-1 6

32. Ziadi, T., Jézéquel, J.M.: Software product line engineering with the UML: deriving
products. In: Käköla, T., Duenas, J.C. (eds.) Software Product Lines, pp. 557–588.
Springer, Heidelberg (2006)

33. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L.,
Moreira, A., Araújo, J., Kulesza, U.: VML* – a family of languages for variability
management in software product lines. In: Brand, M., Gašević, D., Gray, J. (eds.)
SLE 2009. LNCS, vol. 5969, pp. 82–102. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12107-4 7

http://dx.doi.org/10.1007/978-3-540-25959-6_35
http://dx.doi.org/10.1007/978-3-540-25959-6_35
http://dx.doi.org/10.1007/978-3-642-03764-1_6
http://dx.doi.org/10.1007/978-3-642-12107-4_7
http://dx.doi.org/10.1007/978-3-642-12107-4_7

A New MARTE Extension to Address Adaptation
Mechanisms in Scheduling View

Mohamed Naija(✉) and Samir Ben Ahmed(✉)

Laboratory of Computer for Industrial Systems, INSAT, Tunis, Tunisia
naija.mohamed@gmail.com, samir.benahmed@fst.rnu.tn

Abstract. The modeling of Real-Time Embedded Systems (RTES) is one of the
biggest challenges facing designers of such systems. These systems are consid‐
ered high-assurance since errors during execution could result in injury, loss of
life, environmental impact, and financial loss. The addition of adaptability to
RTES further hardens and delays their modeling and validating especially with
the current lack of design models and tools for adaptive RTES. The profile for
Modeling and Analysis of Real-Time and Embedded systems (MARTE) defines
a framework for annotating non-functional properties of embedded systems. In
particular, the SAM (Schedulability Analysis Model) sub-profile offers stereo‐
types for annotating UML models with the needed information which will be
extracted to fulfil a scheduling phase. However, SAM does not allow designers
to specify data to be used in the context of adaptive systems development. It is in
this context that we propose an extension for the MARTE profile, and especially
the sub-profile Schedulability Analysis Modeling, to include adaptation mecha‐
nisms in scheduling view.

Keywords: Adaptability · Real-Time & Embedded Systems · MDE · MARTE ·
Scheduling analysis

1 Introduction

The modeling of Real-time & Embedded Systems (RTES) may be stated as a crucial
problem in the software engineering domain. RTES are subject to a multitude of
constraints (e.g., battery, temperature …) and real-time requirements. Thus, designers
are encountering the challenge of resource limitations, time, highly variable environ‐
ment, etc. The addition of adaptivity to such systems further hardens and delays their
modelling and scheduling analysis especially with the current lack of design models and
tools for adaptive RTES. Lightening the task of adaptive systems designers and reducing
the development cost and time to market represent a major challenge in the field [1],
which requires the use of high-level approaches such as MDE and MARTE [2].

MDE is a way to beat the growing complexity of real time systems and verifying
their correctness. In particular, Unified Modeling Language (UML) profiles promote an
adequate solution to support the whole lifecycle co-design of complex systems. In RTES
domain, its adoption is seen promising for several purposes: requirements specification,
behavioral and architectural modeling with their real time constraints and performance

© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 27–43, 2016.
DOI: 10.1007/978-3-319-56390-9_2

issues. In this context, the profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) fosters the building of models that support the specifi‐
cation of scheduling analysis problem. This profile has the capacity to model tasks,
dependencies between them and events under shape a Workload Behavior of system.
Subsequently, it promotes the validation of the system temporal accuracy. Unfortu‐
nately, MARTE does not define a clear semantics for modeling and analysis of the
adaptation in RTES.

Thus, we propose in this paper the main changes to be made on MARTE profile for
supporting adaptation mechanisms. These amendments affect mainly the stereotypes of
MARTE/SAM (Scheduling Analysis Modeling) since it is the sub-profile intended to
model the schedulability analysis.

Our contribution is to improve the meta-models of the existing annotations. We try
to modify in the structure of existing annotations, by referring to their cardinality and
by adding a new concept. This work is the result of previous investigations and published
work. Starting from [3] a MARTE-based approach was proposed to concurrency model
construction at early design stages. Moreover, we identify using Petri Nets formalism a
new threading strategy in complex RTES. Particularly, we identified that operation
(saStep) can be mapped in multiple Schedulable Resources. In [4], we have presented
three technical reconfigurations of RTES to meet performance constraints. These soft‐
ware and hardware solutions are able to reduce the utilization factor of the processor by
changing periods and deadlines of tasks, adjustment the frequency of the processors and
software/hardware migration tasks. Notably, we perceive a MARTE semantics limita‐
tion in modeling level. Accordingly, we have identified the needed of the new version
of the MARTE profile supporting adaptation mechanisms. In [1], we have proposed a
new extension of MARTE to address adaptation in the scheduling view.

This work is to be integrated in a model-based approach to guide RTES designers
for building and analysing adaptive RTES models. It facilitates complex systems
modeling, reduces the development time and cost and improves software process
quality. The above benefits have been illustrated through the application of our exten‐
sions to different examples of adaptive RTES [1].

The present paper is organized as follows. Section 2, introduces the concept of the
adaptation. Section 3 surveys relevant related works in the adaptive RTES field. While
a brief definition of the MDE paradigm, its MARTE profile and the SAM sub-profile is
described in Sects. 4 and 5 present our research scope. Section 6 specifies our proposal.
To better explain our contribution which is highlighted in Sect. 7, we rely on a case
study. Finally, Sect. 8 concludes the paper and sketches some future work.

2 The Adaptability Concept

2.1 Definition

There are several definitions of adaptation in the literature. In [5], a software adaptation
is defined as any software modification that changes the reliability or timeliness of the
software without affecting other aspects of its functionality. Software adaptation encom‐
passes many common software-tuning techniques. These include:

28 M. Naija and S.B. Ahmed

• resource reallocation, such as moving a software component from one processor to
another,

• adjustments to processor schedules,
• modification of replication factors for N-modular-redundant software components,
• modification of retry limits or time-out periods for delivery of a service by a software

component.

In [6, 7] adaptation means change in the system to accommodate change in its envi‐
ronment. More specifically, the adaptation of a software system (S) is caused by a change
(Che) from an old environment (E) to a new environment

(
E′
)
, and results in a new

system (S′) that ideally meets the needs of its new environment
(
E′
)
. Formally, adaptation

can be viewed as a function:
Adaptation: E × E′

× S → S′, where meet (S′, need (E′)).
In [8] adaptive system is defined as a system that is able to change its structure or

behavior at run-time in response to the execution context variations and according to
adaptation engine decisions.

In our previous work [9], we define adaptation as any modification in the structure,
behavior or architecture of the system to accommodate external or internal change of
their operating environment or context and according to predefined adaptation plan and
rules.

2.2 Axes of Adaptation

Several adaptation techniques are defined to manage reconfiguration in the software
development lifecycle. In model-based approaches for RTES, these adaptation techni‐
ques can affect [9]: (i) the functional model in the case of a change in the behavior of
the system, (ii) the platform model if there is an adjustment in performance of material
resources or unavailability of a resource for a certain period at run-time, and (iii) the
implementation model when a task migration between resources is required.

Possible changes in the system can be caused by external variation, such as change
in the operational environment (e.g., airplane mode in smart phone) or internal variation
(e.g., new requirement) [9]. The adaptation can be either static or dynamic. Since static
adaptation requires stopping the system and restarting it with a new configuration. The
dynamic adaptation is based on a set of predefined adaptation behavior, statically
designed and verified at design time. At runtime, the system can select an alternative
from the available ones in accordance with adaptation rules and context. The change
undergone by the system can be qualified as partial or full adaptation. Full adaptation
completely changes the initial configuration of the system, while partial adaptation
concerns only one level of the system configuration while the remaining portions
continue their normal execution.

Thus any software system could be reconfigurable in one or more axes of adapta‐
tion [9].

A New MARTE Extension to Address Adaptation Mechanisms 29

3 Related Work

The design of adaptive RTES presents many challenges due to the complexity of the
problem it handles [10]. In the present paper, we limit our study to research works
particularly tackling adaptive RTES using the MARTE profile.

Many researchers have benefited from the MARTE profile for the design and veri‐
fication of adaptive RTES from high-level models. In [11] authors have benefited from
MARTE to model reconfigurable architectures such as FPGAs based Systems-on-Chip
(SOC). They extended the MARTE profile with some semantics and Xilinx specific
concepts, which limits their applicability for diverse systems, to support Dynamic and
Partial Reconfiguration (DPR) of FPGA. Unlike this contribution, we aim to propose a
new extension to support adaptation which is independent from any specific platform.

In [12] the authors give a classification of 13 publications that have dealt with the
subject of adaptation in the design approach. Following this classification, the authors
illustrate using an avionic example the need for the validation of adaptation rules at
design-time according to the real-time features of the system. In this context of verifi‐
cation approaches, they have proposed in [13] an MDE approach for modeling and
offline validation of application timing constraints. In fact, this article uses state machine
to represent the application configurations and transitions between them to represent
adaptation rules. This work is based on the generation of all possible configurations of
a system before running, in order to validate timing constraints. The number of config‐
urations varies from one system to another and it can be very large, this combinatorial
explosion makes the timing analysis inapplicable. Furthermore the proposed approach
considers only periodic tasks and cannot be applicable to aperiodic and sporadic tasks.

Two major scheduling approaches are available in the literature: the partitioned and
the global approaches. Originally, MARTE supports only the modeling of the systems
to be scheduled according to the partitioned approach. In [14] the authors have proposed
various updates for MARTE meta-models of specialization and generalization stereo‐
type in order to support global scheduling approaches, allowing task migrations. Those
changes allow a schedulable resource to be executed on different computing resources
in the same period [15]. Unfortunately, extensions proposed in MARTE profile do not
allow assessing the gain in time of an adaptation operation (task migration in this case).

In [10], five patterns have been proposed to model and evaluate adaptation. These
design patterns are presented in a static form through class diagrams and stereotyped
MARTE profile. In this work, adaptation is considered as a dynamic and partial change
of the operating mode, without taking into account the platform adaptation which is
essential in the verification of time constraints.

All the previously mentioned works are beneficial since they facilitate the design of
adaptive real-time systems. However, they present some weaknesses. These research
studies [10] are not sufficiently generic since they tackle a specific adaptation problem,
which consequently compromises their reusability as well as their ability to adapt to new
system requirements and constraints. Additionally, most of them only focus on the soft‐
ware side adaptation while ignoring the hardware and implementation adaptation which
are essential in the design and analysis of complex systems.

30 M. Naija and S.B. Ahmed

Table 1 presents a classification of works around modeling and verification of adap‐
tive real-time systems according to the level of adaptability considered and timing
verification supported. As we can see in this classification, to the best of our knowledge,
there is no work that deals with all axes of adaptability.

Table 1. State of the art classification.

Criteria Related Work
[10] [12] [14] [9]

MDE
approach

+ + + +

Modeling
software
adaptability

− + − +

Modeling
hardware
adaptability

+ − − −

Modeling
implementation
adaptability

− − + −

Scheduling
Analysis
supported

− + − −

Adaptation Type Internal Internal Internal External
Dynamic Static Static Dynamic
Partial Partial Full Full

4 MDE and RTES Development

The Model Driven Engineering (MDE) is a software development methodology aiming
to increase the level of development and overcome the growing complexity challenge.
It covers the entire systems lifecycle, simplifies the design process by using the concept
of models and offers independency between different steps of development flow.

In the context of the schedulability analysis, MDE is mainly used in the modeling
step and the transformation of scheduling analysis models to the models of the chosen
scheduling analysis tool [15]. MDE uses the UML profile and especially MARTE.

4.1 MARTE Capabilities for RTES Modeling

MARTE is an extension of UML profile providing support for specification, modeling and
verification step of real time and embedded systems. MARTE supports the modeling of
software and hardware features at a high-level of abstraction. In addition, it offers a rich set
of annotations for modeling schedulability analysis. This profile encompasses a lot of sub-
profiles such as: SRM (Software Resource Modeling), HRM (Hardware Re-source
Modeling), GQAM (Generic Quantitative Analysis Modeling), SAM (Schedulability

A New MARTE Extension to Address Adaptation Mechanisms 31

Analysis Modeling), PAM (Performance analysis Modeling), etc. In this paper, we will
focus especially on the SAM sub-profile since it is the package affected by our proposal.

4.2 SAM

In order to establish an early validation of the system’s temporal behavior a well-formed
analyzable model, called SAM, is defined. It offers a variety of annotations related to
temporal features. Thus this profile has the capacity to model tasks, dependencies
between them and events. It has the capacity to predict if all tasks meet their time
constraints by defining the workload behavior. This is a chain of operation activations
representing executions scenarios for the application.

5 Scope of the Work in Relation to MARTE

Our research scope concerns mainly the usability of the UML/MARTE profile for
modeling adaptive systems. In this section, we will discuss the need of a new version
of MARTE on the three levels of modeling identified in Sect. 2.2: functional model,
platform model and implementation model.

5.1 Adaptability in the Functional Model

To model the functional model of static systems, we use MARTE/SAM (Schedulability
Analysis Model) capabilities which offer a variety of stereotypes for annotating models
with real-time features. This profile has the capacity to model tasks, dependencies
between them and events under shape a Workload Behavior of system. Subsequently,
it promotes the validation of the system temporal accuracy by the construction of the
end-to-end computation. The end-to-end computation represents the processing load of
the system. It represents the different steps executed in the system and triggered by one
or more external stimulus. «saStep» is a stereotype annotating an action/operation. A
set of steps specify the so-called Schedulable Resources. This concurrency model is
independent from any particular Real-Time Operating System (RTOS) in order to fulfill
the MDA principals.

In adaptive system, additional information has to be modelled such as adaptation
rules, transitional modes and conditions. Thus, we need to model all alternatives and
possible variations of the system elements in order to validate the non-functional prop‐
erties. Unfortunately, the designer is not able to specify all these properties with the
actual version of MARTE.

5.2 Adaptability in the Platform Model

SAM platform is a package providing sufficient concepts to model a general platform,
at a high-level of abstraction, for executing the functional model. It is a specialization
of the sub-profile Generic Resource Modeling (GRM), which provides mechanisms to
manage access to different execution resource. Originally it does not support modeling

32 M. Naija and S.B. Ahmed

of unavailability of resource for a certain period at run-time. This uncertainty is a main
factor that can influence the effectiveness of the configuration and affecting its perform‐
ance considerably [9].

Moreover in literature a popular alternative to static power management in RTES is
to allow the speed factor to adjust dynamically to the number of requests in the system.
Using the MARTE/SAM, the designer is able to specify these properties. But, for each
adjustment, he must repeat the modeling of the same resource to specify the new features
this is due to the multiplicity of the concerned attributes [9].

5.3 Adaptability in the Implementation Model

To this end, at this level, functional model (event, end-to-end flow, shared resources)
and platform model (execution resources) are specified. To be executed, a software
resource must obviously be allocated on processors or busses. This allocation model,
called implementation model, is needed to have an estimation of execution time for
tasks. Consequently, a schedulability analysis test can be carried out on this model. The
task migration is considered as an adaptive technique that allows improving application
performance and achieves optimality. Currently, MARTE do not support this dynamic
allocation technique. Thus, task that can be across multiple processors for different
periods of time is not permitted in MARTE.

5.4 Example

In this section we illustrate the kind of problem we want to solve. The following Fig. 1
shows a description of a basic execution scenario. This is an example of adaptation
mechanism that cannot be modeled using the actual version of the MARTE profile.

Fig. 1. Example of adaptation scenario.

The Workload Behavior of the system is activated by the both external events e1 and
e2, initially. The event e1 (e.g., timers, internal event and external occurrences) triggers

A New MARTE Extension to Address Adaptation Mechanisms 33

the first behavior scenario of a system and precedes all the operations (Op1, Op2 and
Op3). The event e2 triggers the second behavior scenario of the system composed of the
related operations (Op4, Op5 and Op6). Afterwards, the adaptive event e3 (e.g., new
requirement) triggers the both execution scenarios of the system, which is impossible
to modeled with MARTE. Additional, the operation Op7 appears in response to the need
of an adaptation. When occurs, Op7 affects the both execution scenarios, this is also not
possible to do with originally version of MARTE.

6 Our Proposal: Sam Extension

The scheduling analysis modeling is performed through the MARTE/SAM profile.
The idea of performing scheduling analysis based on MARTE models assumes that

all the information that is needed for the analysis is already part of the MARTE model
[3]. In fact, SAM meta-model supports the modeling of different systems as it models
all the temporal features needed in the scheduling step except those used to model adap‐
tation constraints. Consequently, we seek to improve SAM meta-model in order to
support modeling and early analysis of adaptation process. The amendments to be done
on the SAM sub-profile affects also the GQAM sub-profile since some classes of the
sub-profile SAM inherit from GQAM sub-profile.

6.1 Amendments in the Functional Model

In this level, we propose to modify in the classes Event, Step and EndToEndFlow.

Changes to be Done for the Workload Event. The workload behavior of the system
[2] is characterized by their workload events and behavior scenarios. Workload events
annotating UML AcceptEventActions introduce the semantic of event sequence arrivals
for the execution of each callBehaviorAction. Originally event triggers only one
behavior scenario. When adaptation is required, an event triggers all the behavior
scenarios of the system workload. For example, let us imagine that for an adaptive event
that denoted a low level of battery, this can affect more than one behavior scenario. Thus,
the designer is not able to specify this property. Hence, we propose to modify in the
association linking the two classes WorkloadEvent and BehaviorScenario of the package
GQAM Resources (Figs. 2 and 3, reproduced from [1]). The multiplicity [1..*] denotes
that an event can affect one or more behaviour scenarios.

34 M. Naija and S.B. Ahmed

Fig. 2. The old meta-model of the GQAM package [1].

Fig. 3. The new meta-model of the GQAM package [1].

At run time, multiple events can occur simultaneously and must to be managed.
Consequently, we propose to add the attribute ≪priority≫, which indicates the priority
of the event. This additional real-time features, allows concurrency management.
Indeed, GQAM is a generalization of the package SAM. So, this change will be inherited
by SAM.

Changes to be Done for the Step. The class Step may represent a small segment of
code execution [2]. It contains a lot of attributes specifying the temporal features of
software resources. In UML MARTE model step can be part of only one behavior.
Otherwise, in the case of adaptation process a new Step can appear in multiple behavior
scenarios to manage adaptation. Thus, MARTE/SAM doesn’t allow this specification.
Thereby, we propose to change in the association linking the two classes BehaviorSce‐
nario and Step (Fig. 5).

A New MARTE Extension to Address Adaptation Mechanisms 35

Fig. 5. The new meta-model of the SAM package [1].

Once the workload behavior is performed, it is necessary to identify the so-called
schedulable resources (called tasks in scheduling literature). Schedulable resources are
defined by mapping the execution of the end-to-end computations to them, in order to
generate the task model. Different types of mapping exist in the literature [3, 16, 17].
As explained previously, a software resource can be mapped into more than one thread.
Accordingly, the cardinality of the association between Step and SchedulableResource
must be [0..*] (Fig. 4 reproduced from [1]).

Changes to be Done for the End-To-EndFlow. In adaptive systems, we model all
alternatives and possible variations of the system elements. Moreover, the modeling step
is based on the concept of mode (end-to-end Flow) which is a subset of system features:
when the system is in a given mode, it provides this subset of features. We need to build
a model for the source mode and a model for the target mode. The source and target
models should not include information about each other, or about the adaptation. In
addition, event signals are used between models of source and target to define transi‐
tional modes (Fig. 6).

Fig. 4. The old meta-model of the SAM package [1].

36 M. Naija and S.B. Ahmed

Fig. 6. The old meta-model of the GQAM package.

After identifying modes, it is necessary to specify adaptation rules. These are condi‐
tions that should be respected during and after adaptation step. In this context, we
propose to extend the meta-model of SAM by the class Rules. This extension allows the
modeling of the conditions that trigger modes and limit changes (Fig. 6).

Fig. 7. The new meta-model of the GQAM package.

6.2 Amendments in the Platform Model

To this end an abstracted view of the execution platform resources is assumed to have
execution time estimation for steps. Thus, the processor resources are represented as
components with the «ExecutionHost» stereotype. To be executed, a software resource
must obviously be mapped on processors or busses. Involved shared resources should
also be described.

A New MARTE Extension to Address Adaptation Mechanisms 37

At run time, an execution resource can be unavailability for a certain period. This
uncertainty is a main factor that can influence the effectiveness of the configuration and
affecting its performance considerably. Originally this constraint is not support in
MARTE. So, we propose to modify in the «ExecutionHost» stereotype by adding the
attribute unavailability. This allows specifying the duration of resource unavailability
(Fig. 8).

Fig. 8. Amendments in the meta-model of the GQAM package.

6.3 Amendments in the Implementation Model

In literature, three scheduling approaches are presented: the partitioned, the semi-parti‐
tioned and the global approaches [18]. Regarding the partitioned approach, it affects
each task to be executed on one processor. Accordingly, tasks are not allowed to migrate
between processors [14]. CPU utilization is therefore not optimal. As for the global
approach and semi-partitioned, they enable a tasks migration such that schedulable
resource may be allocated, not simultaneously, on different computing resources.

The task migration is considered as an adaptive technique that allows improving
application performance and achieves optimality. Currently, MARTE/SAM supports
only the partitioned approach. Thus, task that can be across multiple processors for
different periods of time is not permitted in SAM. Subsequently, the multiplicity of the
attribute corresponding to the execution resource (ExecutionHost) on which a task
(schedulableResource) is allocated must be [0..*] instead of [0..1] (Figs. 9 and 10). This
extension is adopted from the research work [19].

38 M. Naija and S.B. Ahmed

Fig. 9. Meta-model of the GQAM package [1].

Fig. 10. Meta-model of the GQAM package with amendments [1].

While migrating from one processor to another, the execution time of a task is not
the same, then the attribute «deadline» of the stereotype SaStep should have a multi‐
plicity of [0..*]. In the same vein, a task can be interrupted several times during one
period. Consequently the attribute «preemptT», which refers to the length of time that
the step is preempted, must have a multiplicity [0..*] instead of [0..1]. Similarly for the
attribute «readyT» which indicate length of time since the beginning of a period. Hence,
this attribute must have a multiplicity of [0..*]. The set of values for the attributes
«deadline», «preemptT» and «readyT» must be ordered (Fig. 11). This extension is
adopted from the research work [15].

A New MARTE Extension to Address Adaptation Mechanisms 39

Fig. 11. Amendments in the meta-model of the GQAM package [1].

7 Case Study

To better explain our proposal, we use a FESTO [20] production system as an intact
running application in this paper. It is a well-documented laboratory system used by
many universities for research and education purposes.

The working process of FESTO is composed of three units: the distribution unit, the
test unit, and the processing unit. The distribution unit consists of two steps: a pneumatic
feeder and a converter. It forwards cylindrical workpieces from a stack to the testing
unit. The test unit consists of three steps: the detector, the tester, and the evacuator. It
performs the checking of workpieces for their height, material type, and color. Work‐
pieces that pass the test unit successfully are forwarded to the rotating disk of the
processing unit, where the drilling of workpieces is done. The result of the drilling
operation is next checked by a checker and finally the finished product is removed from
the system by an evacuator.

Note that in this work two drilling machines Drill1 and Drill2 are used to drill work‐
pieces. Drill1 is used in case of medium production. When high production is required,
Drill2 is recommended. According to user requirements, the system FESTO is able to
reconfigure automatically at run-time in response to any changed working environment
caused by errors or new requirements to improve system performance without a halt.
The workload behavior in Fig. 9, reproduced from [1], represents the processing load
of the system, founded on our proposal.

After identifying the behavior model of the system, it is necessary to specify the so-
called schedulable Resources. For sake of simplicity, we use in this paper the scenario-
based mapping [16] which is also one of the most used. The idea is to regroup all the
operations executed at the same rate and belonging to the same linear end-to-end
computation to the same task. In our FESTO system, we obtain three different threads
namely task1 (pieceEjection, Convert, Test and Evacuate), task2 (pieceEjection,

40 M. Naija and S.B. Ahmed

Convert, Test, Elevate, Rotate, Drill1, Checker and Evacuate) and task3 (pieceEjection,
Convert, Test, Elevate, Rotate, Drill2, Checker and Evacuate) (Fig. 12).

Fig. 12. The workload behavior of FESTO system.

Following this case study, founded on our proposal. We illustrate that an event (e.g.,
epieceEjection) triggers all tasks. The steps Convert and Test are part of three tasks.
Similar for steps Elevate, Rotate, Checker and Evacuate, those participate for the execu‐
tion of both schedulable resources Task2 and Task3. Compared to original version of
MARTE, specifying these properties is not permitted. Note that, tasks can have dynamic
properties (readyT, preemptT and deadlines) due to the concept of task migration, but
we use the same corresponding values to facilitate our example. Anyway, we can add
the different values and they will be ordered to perform scheduling analysis. After

A New MARTE Extension to Address Adaptation Mechanisms 41

scheduling all tasks, we can specify in our SAM view the used allocations through the
attributes Host: GaExecHost and the corresponding attribute ExecT: NFP_Duration.

8 Conclusion

This paper focused on the modeling of adaptability requirements of RTES, which is
judged a hard engineering task, using high-level approaches. In the same context,
MARTE facilitates the modeling of RTES thanks to the set of stereotypes that it offers.
This profile does not allow modeling and analysis of adaptive systems. To solve this
issue, we proposed an extension for MARTE profile and especially for SAM sub-profile
to makes MARTE able to stand adaptability. The benefit of our approach is the ability
to model adaptive properties which will be extracted, to serve during the scheduling
step. Our proposal has already been performed on the papyrus tool, which is an editor
of MARTE-based modeling, and validated through a case study.

As future work, we will investigate in exploiting these extensions in a new design
pattern providing support for modeling adaptive RTES.

References

1. Naija, M., Ahmed, B.S.: Extending UML/MARTE-SAM for integrating adaptation
mechanisms in scheduling view. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2016, pp. 84–90 (2016)

2. OMG Object Management Group: A UML Profile for MARTE: Modeling and Anal sis of
Real-Time Embedded systems, Beta2, Object Management Group (2008)

3. Naija, M., Ahmed, B.S., Bruel, J.-M.: New schedulability analysis for real-time systems based
on MDE and petri nets model at early design stages. In: 10th International Conference on
Software Engineering and Applications, ICSOFT 2015, pp. 330–338 (2015)

4. Naija, M., Ahmed, B.S.: Aid to design and reconfiguration of the MPSOC architectures. In:
IEEE Computer Society 45th International Conference on Computers & Industrial
Engineering, CIE 2015 (2015)

5. Bihari, T.-E., Schwan, K.: Dynamic adaptation of real-time software. ACM Trans. Comput.
Syst. 9, 143–174 (1991)

6. Lehman, M., Ramil, J.: Towards a theory of software evolution – and its practical impact
(working paper). In: Invited Talk, Proceedings International Symposium on Principles of
Software Evolution, pp. 2–11 (2000)

7. Subramanian, N., Chung, L.: Architecture – driven embedded systems adaptation for
supporting vocabulary evolution. In: Proceedings of International Symposium Principles of
Software Evolution International (2000)

8. Oreizy, P., Gorlick, M.M., Taylor, R.N., et al.: An architecture based approach to self-adaptive
software. IEEE Intell. Syst. Appl. 14(3), 54–62 (1999)

9. Naija, M., Bruel, J.-M., Ahmed, B.S.: Towards a MARTE extension to address adaptation
mechanisms. In: 17th IEEE International Symposium on High Assurance Systems
Engineering, HASE 2016, pp. 240–243 (2016)

10. Said, M., Kacem, Y.M., Kerboeuf, M., Amor, N.B., Abid, M.: Design patterns for self-
adaptive RTE systems specification. Int. J. Reconfigurable Comput. 8 (2014)

42 M. Naija and S.B. Ahmed

11. Cherif, S., Quadri, I.R., Meftali, S., Dekeyser, J.-L.: Modeling reconfigurable Sytems-on-
Chips with UML MARTE profile: an exploratory analysis. In: Proceedings of the 13th
Euromicro Conference on Digital System Design, pp. 706–713 (2010)

12. Boukhanoufa, M.-L., Radermacher, A., Terrier, F.: Towards a model-driven engineering
approach for developing adaptive real-time embedded systems. In: New Technologies of
Distributed Systems, pp. 261–266 (2010)

13. Boukhanoufa, M.-L., Radermacher, A., Terrier, F.: Offline validation of real-time application
constraints considering adaptation rules. In: International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 974–980 (2011)

14. Magdich, A., Kacem, Y.H., Kerboeuf, M.: A UML/MARTE-based design pattern for semi-
partitioned scheduling analysis. In: International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, pp. 300–305 (2014)

15. Magdich, A., Kacem, Y.H., Mahfoudhi, A., Abid, M.: A MARTE extension for global
scheduling analysis of multiprocessor systems. In: International Symposium on Software
Reliability Engineering, pp. 371–379 (2012)

16. Masse, J., Kim, S., Hong, S.: Tool set implementation for scenario-based multithreading of
UML-RT models and experimental validation. In: Proceedings of the 9th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2003. IEEE Computer
Society (2003)

17. Mraidha, C., Tucci-Piergiovanni, S., Gerard, S.: Optimum: a marte-based methodology for
schedulability analysis at early design stages. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–8
(2011)

18. Muhammad, K.B., Cécile, B., Michel, A.: Two level hierarchical scheduling algorithm for
real-time multiprocessor systems. J. Softw. 6(11), 2308–2320 (2011)

19. Magdich, A., Kacem, Y.H., Mahfoudhi, A.: Extending UML/MARTE-GRM for integrating
tasks migrations in class diagrams. In: International Conference on Software Engineering
Research, Management and Applications, pp. 73–84 (2013)

20. Khalgui, M., Hanisch, H.M.: Automatic NCES-based specification and SESA-based
verification of feasible control components in benchmark production systems. Int. J. Model.
Ident. Control 12(3), 223–243 (2011)

A New MARTE Extension to Address Adaptation Mechanisms 43

Model-Based Engineering and Spatiotemporal
Analysis of Transport Systems

Simon Hordvik1, Kristoffer Øseth1, Henrik Heggelund Svendsen1,
Jan Olaf Blech2, and Peter Herrmann1(B)

1 NTNU, Trondheim, Norway
simon.hordvik@gmail.com, kristoffer.oseth@gmail.com, hsvendsen@gmail.com,

herrmann@item.ntnu.no
2 RMIT University, Melbourne, Australia

janolaf.blech@rmit.edu.au

Abstract. To guarantee that modern transport systems carry their pas-
sengers in a safe and reliable way, their control software has to fulfill
extreme safety and robustness demands. To achieve that, we propose
the model-based engineering of the controllers using the tool-set Reac-
tive Blocks. This leads to models in a precise formal semantics that can
be formally analyzed. Thus, we can verify that a transport system pre-
vents collisions and fulfills other spatiotemporal properties. In particular,
we combine test runs of already existing devices to find out their physi-
cal constraints with the analysis of simulation runs using the verification
tool BeSpaceD. So, we can discover potential safety hazards already dur-
ing the development of the control software. A centerpiece of our work is
a methodology for the engineering and safety analysis of transportation
systems. We elaborate its practical usability by means of two control
systems for a demonstrator based on Lego Mindstorms. This paper is an
extension of [20].

Keywords: Software engineering · Spatial modeling · Cyber-physical
systems

1 Introduction

In the development of control software for transport and other cyber-physical
systems, safety is a major challenge to achieve [25]. Particularly, one has to
analyze the software for compliance with spatiotemporal properties like guaran-
teeing a sufficient safety distance between devices at all times. This is mostly
achieved by intensive and costly testing of the software for functional and quality
of service attributes. To ease the analysis effort, we supplement traditional test-
based development by applying a model-based software engineering technique.
Its formal semantics facilitates the use of automatic model-checking and provers
that can detect flaws in the control software. Since we perform the checks on
the models and not on the later code, these flaws, which might be sources for

c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 44–65, 2016.
DOI: 10.1007/978-3-319-56390-9 3

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 45

violations of spatiotemporal properties, are discovered early making the overall
development process more cost effective than plain system testing.

As a model-driven development tool, we chose Reactive Blocks [24]. It pro-
vides the ability to reuse and share building blocks. Further, Reactive Blocks
enables us to simulate data and control flows, to model check the building
blocks for functional correctness, and to create executable code automatically.
Moreover, we use BeSpaceD [4], which enables the verification of spatiotemporal
properties in safety-critical systems. It has been deployed in several applications
implemented with Reactive Blocks and simulated in the Java software environ-
ment, e.g., [14,17].

A contribution of this paper is a methodology that defines the various engi-
neering and analysis steps of the control software development process. It allows
us to combine the analysis of kinematic behavior and other data obtained by
gauging existing devices with the simulation and formal verification of the con-
trol software in order to guarantee that a device fulfills certain spatiotemporal
properties. An example for measured data is the worst-case braking distance of
a train that is observed by testing an actual unit. It is directly considered in a
BeSpaced verification proving that the control software causes the train to brake
sufficiently early such that collisions with other trains are prevented.

We apply the methodology by developing two different versions of the con-
trol software for a demonstrator which is built with Lego Mindstorms together
with additional sensors and servers. Lego Mindstorms offers the necessary hard-
ware components needed to build a physical autonomous rail-based system. It
is an affordable way to create demonstrators such as robots, that can be used in
hobby settings as well as research. Event-driven software can be run on the Lego
Mindstorms components enabling the control entities to execute actions based
on input received from the different types of sensors. In the original paper [20],
we described an architecture in which the main control functionality is provided
by fixed controllers each controlling a subset of the overall track layout (see
also [19]). In this extension, we added a second architecture in which the func-
tionality is autonomously handled by the controllers of the trains (see also [34]).
Both solutions were developed following our methodology.

Reactive Blocks and BeSpaceD are introduced in Sect. 2 followed by the pre-
sentation of the methodology in Sect. 3. In Sect. 4, the two architectures for the
demonstrator are discussed while Sect. 5 describes the development of the two
control softwares based on the methodology. Section 6 refers to experience with
the approach and in Sect. 7 we present related work. In Sect. 8, we conclude and
name some ideas for future work.

2 Reactive Blocks and BeSpaceD

The model-driven engineering technique Reactive Blocks is a tool-set for the
development of reactive software systems [24]. A system model consists of
an arbitrary number of building blocks, i.e., models of subsystems or sub-
functionalities, that are composed with each other. A major advantage of this

46 S. Hordvik et al.

modeling method is its reuse potential since a building block can comprise sub-
functionality that is useful in many different applications. The building block is
specified once, stored in a tool library, and, when needed, moved into a system
model by simple drag and drop. The behavior of a building block is modeled
by UML activities that may contain UML call behavior actions representing its
inner building blocks. These inner blocks are also specified by UML activities
such that the approach scales. The interface of a building block is specified by an
External State Machine (ESM) that describes the abbreviated interface behavior
of the block [21]. To make analysis of functional correctness by model checking
possible, the activities and ESMs are supplemented with formal semantics [22].
Moreover, Reactive Blocks enables the automatic transformation of system mod-
els into well-performing Java code [23]. Some tool extensions allow us to analyze
models also for safety [32] and probabilistic real-time [13,15] properties.

BeSpaceD is a constraint solving and non-classical model checking frame-
work [3,4]. It emphasizes particularly on dealing with models of cyber-physical
systems that usually comprise a large amount of time and space-based aspects.
BeSpaceD provides a modeling language and a library to reason on models, using
techniques such as state-space exploration, abstraction and reduction. It enables
the creation of verification goals for SAT and SMT solvers and provides connec-
tions to these tools. Thus, these solvers can be used based on much more concrete
models than their traditional inputs. On the other hand, BeSpaceD models are
more abstract than typical use-case specific (meta-)models that are applied in
case specific tools. From an expressiveness point of view, SAT and SMT offer
the specification elements of propositional logic (+ Presburger arithmetic [31]).
Semantically, using BeSpaceD the notions of time and space are added. Other
semantic carrying elements are available: They are treated as predicate parame-
ters and have to be resolved in programs building on the BeSpaceD frameworks
or queries to BeSpaceD.

BeSpaceD is written in Scala and compatible with Eclipse/Java. The mod-
eling language is based on abstract datatypes and integrates with the Scala
language. It is possible to write one’s own programs that construct BeSpaceD
models and to write code using BeSpaceD functionality for checking it. In fact,
as shown in [13,17], an extension of Reactive Blocks is able to transfer its models
to BeSpaceD models such that they can be directly analyzed for spatiotemporal
properties.

3 Methodology

The creation of control software for transport systems requires knowledge about
central kinematic properties like braking distances or maximum accelerations.
Since the systems and their environments are often too complex to gain such
data exclusively by simulation, it has to be gathered by testing and observing
prototypes. This feature is considered by our methodology (see Fig. 1). It consists
of five major steps:

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 47

1. In parallel to the development of the physical device, an initial version of the
control software is engineered with Reactive Blocks. This first model already
contains several functions that will also be used later in the final version,
e.g., the access to sensors and actuators. The functions guaranteeing safety,
however, are either not implemented or based on initial data concluded from
simulations resp. experience with previous versions.

2. Code is generated from the initial Reactive Blocks model and used in the
prototypes which are tested in order to find out relevant kinematic properties.

3. When all relevant properties are observed, the control software is extended.
For that, we amend the original Reactive Blocks model by adding building
blocks and flows. In this way, existing sub-functionality will be preserved
making the development process cheaper.

4. The extended Reactive Blocks model is analyzed by BeSpaceD for compliance
with relevant spatiotemporal properties. Depending on the complexity of the
verification runs, we may carry out the proofs in two different ways:
(a) One extracts a descriptive formula of relevant system functionality from

the Reactive Blocks model and transforms it into a format readable by
BeSpaceD. Afterwards, BeSpaceD verifies that this specification keeps
certain spatiotemporal properties. As shown in [17], the extraction of
the descriptive formulas can be carried out automatically if the Reactive
Blocks model was developed based on a certain course of action and
a set of dedicated building blocks. Due to its completeness, this kind
of analysis is preferred but according to the complexity of the problem
might exceed the capabilities of the solvers used by BeSpaceD.

(b) One composes the control software model with a simulator that is also
created in Reactive Blocks [13]. Thus, several simulation runs can be
performed and their logs are translated into input for BeSpaceD that
analyzes the data for compliance with the spatiotemporal properties.
The log data can be proved very efficiently (e.g., 10,000’s of different
spatiotemporal coordinates within a split second). But in contrast to the
other solution, this one is not exhaustive such that it can only guarantee
the preservation of the properties for the simulated cases.

5. When the developed control software fulfills all desired properties, the Reac-
tive Blocks model is transformed into code that is installed in the transport
devices and used for further certification steps.

Depending on the kind of system, these steps can also be iterated such that
the control software is developed and analyzed in several cycles. Thanks to the
fully automatic nature of the code generation in Reactive Blocks, the results of
the engineering cycles can be easily transformed into executable code.

Due to the importance of system safety for life and limb of the later pas-
sengers, we do not see our methodology as a replacement for traditional certifi-
cation but as a supplement. Yet, we expect that the model-based development
and spatiotemporal analysis leads to a better quality of the produced software.
In consequence, the certification process will have to deal with fewer software
errors and therefore is getting smoother.

48 S. Hordvik et al.

Fig. 1. Methodology overview (reproduced from [20]).

Fig. 2. Track with control zones. (Color figure online)

4 Demonstrator

As mentioned in the introduction, we use the Lego Mindstorms train-set to
exemplify and evaluate our methodology. In the following, we will show two
stages of expansion for the overall architecture of the system. The track layout is
sketched in Fig. 2. It consists of five different stations that are connected by up to
four trains. A train set comprises a motor, wheels and a train body (see Fig. 3).
Further, we provide each train with a color sensor facing towards the tracks
(in Fig. 3 on the right side of the train). It enables the train to count sleepers
and to detect special sleepers that are furnished with colored Lego bricks. The
coordination of the motor and the color sensor as well as the connection with a
wireless communication device is provided by an EV3 controller, the standard

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 49

Fig. 3. Example Lego train.

control unit of Lego Mindstorms. This unit is transported in one of the cars. In
the following, we will discuss both stages in greater detail.

4.1 Applying Zone Controllers

This system architecture was developed within a master’s thesis [19]. It restricts
the trains to purely counterclockwise operation albeit with possibly different
speeds such that a train might catch up with another one. As shown by the
colored backgrounds of Fig. 2, the tracks are partitioned into four zones. An
EV3 unit, called zone controller, coordinates all trains in a particular zone in
order to prevent collisions. This resembles the procedure used in the European
Rail Traffic Management System (ERTMS), a novel train control system to be
used in all European railway networks [10,37]. Moreover, the zone controller
drives the switch points in its zone. The beginning of the zones are marked by
colored sleepers such that the color sensors of a train can detect when a new
zone is entered.

The train controllers are connected with the zone controllers by means of the
Message Queuing Telemetry Transport Protocol (MQTT) [27]. This is a popular
machine-to-machine connectivity protocol often used in the “Internet of Things”
domain. Usually, both the routing of connections and the brokerage of users are
done by a number of standard MQTT servers. Since tests, however, showed that
the use of these servers lead to an unacceptably high transmission delay, we
created our own MQTT server that is realized on a Raspberry Pi [38]. Figure 4
sketches the communication architecture used. A detailed technical evaluation
of the demonstrator can be found in [19].

50 S. Hordvik et al.

Fig. 4. Communication architecture (reproduced from [20]).

Figure 2 highlights that a station consists of two tracks. A stopping track is
linked to a platform that allows passengers to enter and leave trains. A second
track makes it possible that a train not stopping may pass the station while
another one waits in it. Further, at some points we have alternate routes, e.g.,
for trains going from the station in the red zone to the one in the yellow one.
Thus, the trains have to be routed which is done by the zone controllers. For
that, the demonstrator is split into 23 different tracks that are each bordered
by two switch points. The beginning of each track is marked by an unambigu-
ously colored sleeper such that a train can always follow up on which track it
is currently located. As shown in the message-sequence-chart in Fig. 5, a train
provides the responsible zone controller with its destination. Based on that, the
zone controller selects the tracks, the train has to pass in its zone, and sets the
switch points accordingly. The routing algorithm is based on work described
in [28].

The switching of zones by a train is realized by a sequence of colored sleepers
as depicted in Fig. 6. First, the train passes a green sleeper indicating that a zone
shift is coming up. Since a zone shift affords the time-consuming establishment
of a new connection between the train and zone controller, we use overlapping
segments in which the train is controlled by both involved zone controllers. The
beginning of the overlapped segment is marked by a sleeper in the color of the
new zone. When passing it, the train controller starts building up a MQTT
connection with the new zone controller. The end of the overlapping segment is
identified by a colored sleeper that signals the beginning of a new track in the
newly entered zone. It may only be passed if the connection with the controller
of the new zone is established and thereafter, the link with the controller of the
old zone is released.

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 51

As mentioned above, the zone controllers are responsible for preventing colli-
sions of trains in their zone. For that, they permanently need information about
the exact positions and speeds of the trains. Since color sensors are the only
sensing equipment used in our demonstrator and Lego trains have the nice fea-
ture that sleepers are always in the same distance from each other irrespectively
of the track shape, we use the sleepers as means to define exact train positions.
In particular, each train controller maintains a so-called sleeper counter that
totals how many regular, i.e., non-colored, sleepers of the track on which it cur-
rently moves, it already passed. Further, by using time-stamps and knowing the
distance between the sleepers, a train calculates its current speed. Whenever a
regular sleeper is passed, the train sends the value of its sleeper counter and
speed value to the responsible zone controller (resp. zone controllers if the train
is on an overlapping track), see Fig. 5.

Fig. 5. Two trains interacting with a zone controller (reproduced from [20]).

52 S. Hordvik et al.

From these data and its knowledge about the current track of the train,
the zone controller establishes which sleeper the train just entered. It sets this
sleeper and, with help of the information about the train’s length, all other
sleepers that are covered by the train into state occupied. Due to its knowledge
about the system layout, the zone controller may also consider the sleepers of
the previous track if the train just passes a track border. In addition, the sleepers
vacated by the train since the last notification was received, are set to free.

The zone controller checks if the train is on a collision course with another
one. Based on the current speed and position of the train, it calculates the dis-
tance needed for the train to come to a complete stop. This distance is converted
into the number n of sleepers that are passed before the train stands after cutting
power. Moreover, taking the communication delay between the zone and train
controllers into consideration, we add a safety buffer b of sleepers1 to n. If at least
one of the n+ b buffers ahead of the train is occupied, the zone controller sends
immediately a stop message to the train that initiates an emergency stop. Of
course, this holds also for sleepers in the subsequent track when the train reaches
the end of the previous one. If all the next n + b buffers are not occupied, an
all-clear signal is sent, and the train may continue with its current speed. Since
the zone controller may have been broken, the train it also stopped when no
signal at all arrives within a certain period of time.

Fig. 6. Sleepers indicating zone switches (reproduced from [20]). (Color figure online)

The logic also includes the option of using an extra buffer such that the zone
controller will check the state of sleepers that are even further in front of the
train. Are any of these sleepers occupied, the controller commands the train to
1 It is important to note that, the bigger the safety buffer b is, the more states of

sleepers need to be checked, which means more processing time and again a bigger
latency with regards to when the train receives a response. By testing the braking
distances of the trains with various safety buffer values, we found out that b = 10
gives the best results.

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 53

slow down, instead of coming to a complete stop. If the blocking train in front
continues to stand still, the emergency break is initiated a little closer to it due
to the reduced speed, which leads to a smoother operation.

4.2 Autonomous Train Control

The second stage of extension was developed within a project thesis [34]. It
comprises some significant changes to the system. Most prominently, the over-
all architecture was modified. While in the first stage, the main computational
intelligence, in particular the routing and collision detection, was in the zone
controllers, we moved them into the train controllers making the trains to
truly autonomous units. In consequence, the zone controllers are now simple
switch point controllers that just switch the points based on external commands
received.

Fig. 7. The layout tool Bluebrick.

A second change is that the trains may now move in both directions. Further,
we decided to make the adaptation to layout changes more flexible than in the
first stage where the layout information was hardcoded. For that, we use the
freely available Lego planning tool Bluebrick [26] (see Fig. 7) to model the track
layout. Bluebrick allows us to draft a graphical model of a layout that is saved
in form of an XML file from which the track structure can be automatically
extracted and stored in the train controllers. To figure out the routing of a train,
we realize a variant of Dijkstra’s Shortest Path Algorithm [9]. For simplicity, a

54 S. Hordvik et al.

route to be performed is always chosen based on the shortest physical length but
does not take possible waiting times at side tracks into account.

Allowing to operate trains in both directions affords to take measures in order
to avoid front crashes. For that, we use distributed interlocking, a technique based
on Gray’s Two Phase Commit Protocol [12]. This protocol was originally devel-
oped to ensure that distributed transactions are carried out consistently. It uses
an coordinator that first sends the relevant commands of a transaction to other
stations involved. Thereafter, it triggers the Two Phase Commit Protocol that
consists of a voting phase followed by a completion phase. In the voting phase,
the coordinator queries from all other stations the confirmation that they are
able to complete the transaction on their sites. After receiving positive confirma-
tions from each station, the coordinator proceeds into the completion phase and
sends a commit message to the other stations that thereupon make the trans-
action permanent. If at least one station answers with a negative confirmation,
however, the coordinator sends an abort message leading all other stations to
discard the transaction. Thus, as long as there are no data or station losses in
the completion phase, all transactions are handled consistently.

As depicted in Fig. 8, the distributed interlocking algorithm is based on the
Two Phase Commit Protocol. If a train wants to leave a station, it needs to lock
the sub-route towards the next station on its path. For that, it checks whether
the sub-route is already locked by another train. If that is not the case, the train
starts to reserve the lock by asking the other trains in the layout using a Request-
Lock message. Each other train may only confirm this request by answering with
an AllowLock if it is neither on the sub-route nor has itself a request for locking
it pending. Otherwise, it replies with a DenyLock message. Following the Two
Phase Commit Protocol, the requesting train sends a PerformLock message if
all replies were positive. Then it owns the lock and may enter the sub-route.
If at least one other train denied the lock, the request is discarded by sending
AbortLock messages and the train has to wait until getting the lock later. After
leaving a sub-route, the train notifies the others about the release of the lock
such that another train may acquire it. In principle, one can relax this algorithm
by allowing more than one train to be on a sub-route as long as they run in
the same direction and use the collision avoidance of the first stage to separate
them. We omitted that since, due to the tight time restrictions of project theses,
this modification would have been too complex.

The train controllers have to communicate with each other in order to
exchange the distributed interlocking messages. They also need to call the switch
point controllers to achieve the desired switch point settings. Further, we com-
bined this project with another one making the remote monitoring of the system
over large distances possible [18]. For that, relevant data like the position, length
and speed of a train have to be send to a remote server. Due to decision within
the scope of the other project, in this state the Advanced Message Queuing Pro-
tocol (AMQP) [1] is used. It allows the subscription of topics relevant for a party
such that an AMQP Broker may forward received messages to all stations that
subscribed them. Thus, it was possible to develop the architecture shown in Fig. 9

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 55

Fig. 8. Collision avoidance by distributed interlocking.

such that the train controllers, switch point controllers, and external servers are
unburdened from receiving messages not relevant for them. For instance, a train
controller can subscribe to the other ones in order to receive the messages of

56 S. Hordvik et al.

Fig. 9. The communication architecture used in the second stage.

the distributed interlocking but refrain from receiving position reports of other
trains that are intended for the external servers.

5 Engineering the Controllers of the Demonstrator

The development of the control software for the two stages of expansion of our
demonstrator followed the methodology presented in Sect. 3.

5.1 Zone Controller-Centric Model

The creation of an initial software version profited strongly from work by [28]
who developed building blocks that facilitated the handling of the access to the
EV3 train and zone controllers from the Reactive Blocks model. These blocks
could be simply combined to achieve a first user-managed control system.

In the second step of our methodology, we could use the initial control soft-
ware to find out the relevant kinematic properties of the trains. In particular,
we analyzed the stopping distances for five of the seven speed levels2 offered for
Lego Mindstorms trains. Figure 10 depicts that, as expected, the braking dis-
tances are parabolic albeit with a relatively small gradient. Using these results
and the fact that two sleepers are in a distance of 32.5 mm, we could determine
the numbers n of sleepers to be considered for each speed level in the collision
avoidance scheme discussed in Sect. 4.1.

Moreover, in this phase we examined the color sensors more closely to get
good readings. With respect to using the sensors for speed calculation, we
checked three alternatives, i.e., computing the speed after passing 16.25 mm,
32.5 mm resp. 65 mm. The tests revealed that the longest distance which corre-
sponds to computing the speed only after every second sleeper, rendered by far
2 The track layout contains many turns such that the two highest speed levels would

often lead to derailments. Therefore, we did not consider them further.

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 57

Fig. 10. Breaking distance for different speed levels (reproduced from [20]).
(Color figure online)

the best measurements. Further, we detected quality issues for sensing different
colors. We found out that we get better results if the color sensor is in a distance
of 12 mm above the track than the 6 mm tried by [28]. We also discovered that the
likelihood to detect the correct color is significantly improved when the thread
handling color changes pauses between two checks for exactly 14 ms. When it
runs without pausing, often white color is falsely read. In addition, we found
out that, in general, blue and green render better results than red and yellow.
We took these experiments into consideration when deciding which colors to be
used at which points in the layout.

After getting sufficient knowledge about the kinematic behavior of the
demonstrator as well as the correct treatment of the color sensors, we continued
with the third step of the methodology, i.e., the creation of the final control logic
using Reactive Blocks. As an example, Fig. 11 depicts the UML activity of the
building block TrainLogic specifying the control logic of the train controllers. It
contains four inner building blocks. Block Robust MQTT was taken from a Reac-
tive Blocks library. It specifies the logic to handle connections with the MQTT
server. Building block ControlSensorLogic models the access to the color sensor
and the interpretation of the metered colors as described in Sect. 4. Block Motor
is based on work in [28] and specifies the control of the train engine. Finally,
building block Communication defines the cooperation with the responsible zone
controller(s) via MQTT.

The semantics of UML activities resemble Petri Nets such that we can inter-
pret a control or data flow as tokens running via the edges to the various vertices

58 S. Hordvik et al.

of the activity. The block TrainLogic is started by a flow through the incoming
parameter node3 init that is forked into three flows. One flow leaving the fork
leads to the operation initMQTTParam that is a carrier of a Java method creat-
ing an object of type Parameters. This object carries the data needed to start an
MQTT connection. It is forwarded towards pin init of block Robust MQTT. The
other two flows leaving the fork initiate the blocks Communication and Motor.
The block ControlSensorLogic does not need to be initialized. It gets active when
the motor starts operating.

Fig. 11. Building block for the train control logic (reproduced from [20]).

The other flows of the activity are only sketched. There are several flows
from ControlSensorLogic to Communication modeling the notification of the
zone controller about the various findings of the color sensor. The control of the
train speed by the zone controller is specified as a flow from pin setMotorAngle of
building block Communication that defines the desired speed level as an integer
value. This flow is forwarded to pin rotateValue of block Motor after which the
engine speed is adjusted. Two flows from Motor to ControlSensorLogic realize
that the color sensor is only operative if the motor turns. Finally, the activity
contains three event receptions used to control the train directly from the central
console. They can be used to set destinations for the train, to manage the motor
directly from the console, and to terminate the train controller. In the latter
case, an event of type STOPANDTERMINATE leads to block Motor in order
to stop the train and to switch off the color sensor before the building block
TrainLogic is terminated by a flow through parameter node terminate.
3 The term parameter node refers to pins at the edge of a UML activity.

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 59

The model checker and animator of Reactive Blocks [24] proved helpful to
check our controller models for functional correctness. The built-in model checker
verified general functional properties, e.g., that all flows in a block are consis-
tent to the interface descriptions of both, the ESM of this block and those of
the inner blocks. The animation feature which allows to highlight flows of a
block that can be executed in a certain state, was used to analyze our models
for problem-specific properties. For instance, by inspecting all states of building
block TrainLogic (see Fig. 11) we found out that a train controller does only
unsubscribe the MQTT connection with a zone controller if it currently is con-
nected with two of them. Thus, except for the system start, a train controller is
always connected with at least one zone controller as long as no MQTT connec-
tion breaks.

Fig. 12. Train data in BeSpaceD (reproduced from [20]).

In the forth step of the methodology, the completed system was analyzed with
BeSpaceD for the presence of spatiotemporal properties. As stated above, the
development of the Reactive Blocks model is in parts based on work from [28]
which did not use the special building blocks needed to enable an automatic
extraction of the control logic as described in step 4a of the methodology. There-
fore, we decided to use alternative 4b instead, i.e., we applied BeSpaceD to check
logs of runs observed by executing the control software. Since Lego trains are
usually not damaged by crashes, we could not only get runs from pure simulation
but also from running the real trains on the tracks. In Sect. 4.1, we explained
that sleepers form the basis for describing the locations of trains as well as break-
ing distances. Therefore, it seemed natural to use them also in the BeSpaceD
proofs. The simulation resp. operation of the train and zone controllers lead to
formulas as sketched in Fig. 12. A formula comprises a long list of conjunctions

60 S. Hordvik et al.

marked by a BIGAND statement. Each conjuncted element features an IMPLIES
statement describing that a time point implies that a train occupies a certain
number of sleepers on the track.

We used BeSpaceD to check runs of various scenarios mostly to guarantee
freedom of collisions. Here, the solvers were used to verify that no sleeper was
occupied by more than one train4 at any time. But we could also validate that the
results observed in step 2 of the methodology are consistent with the observed
runs. For instance, the higher complexity of the final control software did not
impact the braking distances compared with the observed ones (see Fig. 10).
The BeSpaceD proofs did not reveal any performance problems. The longest run
comprised 1973 time points that correspond to more than 32 min of operation
and afforded the check of 10,000’s of sleepers. They were checked within 0.3 s
each on a standard 2.8 GHz Intel Core i5 running MacOS.

After finishing the BeSpaceD test, we completed the engineering process with
the fifth step of the methodology. Here, we automatically generated Java code
from the Reactive Blocks models that was exported to the EV3 controllers as
executable .jar files. This procedure could be performed for all controllers of our
system within a few minutes.

5.2 Train Controller-Centric Model

Since we did not change the physical layout of the trains and only amended the
track layout slightly, we could directly take over the results from the first two
methodology steps carried out for the first stage. That holds particularly for the
best handling of the color sensors and the determination of the braking distances
as discussed in Sect. 5.1.

Due to the major architectural changes, i.e., the transfer of the routing and
collision prevention from the zone controllers to the train controllers, the inte-
gration of Bluebrick, the use of the Shortest Path and distributed interlocking
algorithms as well as the replacement of MQTT with AMQP, we had to develop
a new model for the control software in the third step of the methodology. We
could rely on the original building blocks for the access of the train motors resp.
sensors and the control of the switch points but had to create novel ones for the
various concepts mentioned above. As described in [34], altogether 12 building
blocks were created for the train controller software and additionally four for the
switch point controller. Moreover, a building block was integrated into the train
software in order to handle the external monitoring of the trains (see [18]).

The amendment of the architecture and, in particular, the change of the
collision prevention handling demands for a full replication of the BeSpaceD
analysis in the forth step of the methodology. Mainly due to the strict time
restrictions mentioned above, however, we decided to refrain from that in this
stage. Another reason was that the distributed interlocking algorithm is a quite

4 The inaccuracy of using sleepers for measurement was compensated by overapproxi-
mating the length of the trains, i.e., we declared a crash even when only one sleeper
lay between those occupied by two trains.

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 61

conservative collision prevention technique precluding approximations of trains
from the outset. Thus, the expected performance impact should be even less than
the one experience for the first stage. Nevertheless, as soon as the distributed
interlocking is combined with the approach mechanisms of the first stage such
that several trains may be in the same sub-route as long as they operate in
the same direction (see Sect. 4.2), there will be significant spatiotemporal issues.
Thus, we plan to make leeway on the spatiotemporal analysis for this extension.

The fifth step of the methodology is identical with the first stage of expansion.
We automatically generated the Java code for both, the train and switch point
controllers as executable .jar files that can be directly executed in the various
EV3 controllers.

6 Experience from Building the Demonstrator

Together with general library blocks like timers or buffers and, in particular,
the blocks to handle MQTT [27], around 55% of the zone controller-centric
model had not to be created from scratch but could be reused. For the train
controller-centric model, this number is with 52% nearly identical. Albeit we have
used Reactive Blocks to build transport system controllers only for a relatively
short time, these numbers are not too far from the reuse rate of 70% that is
usually achieved when creating models in already well-supported application
domains [21].

We were also pleased that the input formulas for BeSpaceD could be easily
generated and proved within very short time frames. We learned, however, that
the necessity to use certain blocks in order to create descriptive formulas of the
control software as used in alternative 4a of the methodology, might lead to
practical problems. The engineer likes to be as free as possible when creating
or selecting models in order to be able to address particular design problems
flexibly. Thus, the rigid structure of the blocks needed to facilitate the creation
of the BeSpaceD formulas [17] may be seen as cumbersome. We need to spend
more work in solving this conflict between easy development and analysis.

Building control software in two different stages of expansion poses the ques-
tion to which degree the iteration of the methodology steps alleviates the efforts
in the second project. As discussed in Sect. 5.2, we did not need to repeat the
first two steps of the methodology, i.e., the development of the initial control
software and the prototype testing, which saved us a significant amount of time.
Engineering the control software in the third step was less relaxed than originally
expected which, however, results from the fact that the various changes afforded
a complete new Reactive Blocks model. At least, the building blocks accessing
the motors and sensors of the trains as well as the switch points could be reused.
That was helpful since, according to our experience, the access functionality for
external devices is often the most complicated part to develop (see [16]). For a
more evolutionary development, we yet expect a much higher degree of reuse.
Experience to compare the forth step of the methodology, i.e., the BeSpaceD-
based analysis, will be investigated in the future.

62 S. Hordvik et al.

7 Related Work

In the past, verification and analysis tools have been typically studied with
respect to the underlying verification and analysis techniques rather than empha-
sizing the domain. PHAVer [11] is a tool that allows the analysis of spatial prop-
erties in hybrid-systems. Another application of formal verification techniques to
train systems is described in [30]. Here, deduction-based verification techniques
from the KeYmaera system [29] are applied. An application of the SPIN model
checker for the verification of control software aspects of a railway system is
described in [7]. A variety of other generic tools, recent work and approaches,
e.g., [5,8,36] for model checking spatial properties of cyber physical systems
exist. The combination of Reactive Blocks with BeSpaceD has been studied,
e.g., in [14,17]. Here, the emphasize is on robots and either measured or simu-
lated spatiotemporal values. Unlike in this paper, the combination of simulation
and measured values was not considered.

The European Rail Traffic Management System (ERTMS) is a major indus-
trial project undertaken by the Association of the European Rail Industry mem-
bers. Its main focus is on creating a seamless integrated railway system in Europe
to increase European railways competitiveness, capacity, reliability rates and
safety [10,37]. A relevant focus is the automatic train protection system named
European Train Control System (ETCS), and the Global System for Mobile
Communications – Railway (GSM-R). GSM-R is based on the GSM standard
and provides voice and data communication between the track controllers and
the train. It uses frequencies specifically reserved for railroad applications. A vari-
ety of other large scale European funded projects exists in the domain of safety-
critical cyber-physical system. For example, the ARTEMIS Chess [6] project
includes a focus on the rail domain. Among other results, it produced a model-
ing language.

The first stage of our work uses a similar lego infrastructure as [28] where new
means for public transport have been studied based on Lego Mindstorms and
Reactive Blocks. In contrast to Overskeid’s work, however, ours is more centered
on software quality, in particular, with respect to making systems safe. For that,
the separation of the control functionality between train and zone software is
performed in a novel way that disburdens the performance of the EV3 controllers
better when a larger number of trains has to be coordinated. Further, the use
of BeSpaceD enables us to verify relevant spatiotemporal properties formally.
Finally, following the methodology presented in Sect. 3 facilitates carrying out a
well-regulated software engineering process.

8 Conclusion

Above, we presented our approach to create control software for transport sys-
tems using the model-based engineering technique Reactive Blocks. The intro-
duced methodology enables us to check safety properties on measured and sim-
ulated data collected from a transport system. We exemplified the use of the

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 63

methodology and its evaluation by showing two realizations for our demonstra-
tor that is based on Lego Mindstorms.

Currently, we continue our work by using the introduced methodology for
other projects. In one, we have replaced the EV3 controller in a train by a Rasp-
berry Pi [38] (see [35]). This allows us to use also other sensors like magnetome-
ters, accelerometers, proximity sensors and readers for RFID chips positioned
in the layout. The combination of these sensors will make more precise posi-
tion and speed readings of the trains possible. In another approach, we use the
methodology to create control software for transport robots that are each con-
trolled by a Raspberry Pi. Besides preventing collisions, the robots collaborate in
order to, e.g., transport certain pieces together without letting them fall down.
Moreover, we cooperate with Statens Vegvesen, the Norwegian Public Roads
Administration, and Jernbaneverket, the Norwegian Government’s Agency for
Railway Services, in order to find out in which respect our approach can be used
for the development and licensing process of real transport systems.

Another interesting application domain for our approach is industrial
automation [2,16]. We provide the BeSpaceD-based safety analysis as a cloud
based service and work also on using analysis results to provide adequate views
to operators and other stakeholders. As a first use-case, we realized the remote
monitoring of the Lego Mindstorms demonstrator that is located in Trondheim,
Norway, from the monitoring platform VxLab in Melbourne, Australia [18,33].

References

1. AMQP.org: Advanced message queuing protocol (AMQP) (2016). www.amqp.org/.
Accessed 01 Feb 2016

2. Blech, J.O., Peake, I., Schmidt, H., Kande, M., Ramaswamy, S., Sudarsan, S.D.,
Narayanan, V.: Collaborative engineering through integration of architectural,
social and spatial models. In: Proceedings of Emerging Technologies and Factory
Automation (ETFA). IEEE Computer (2014)

3. Blech, J.O., Schmidt, H.: Towards modeling and checking the spatial and interac-
tion behavior of widely distributed systems. In: Improving Systems and Software
Engineering Conference (2013)

4. Blech, J.O., Schmidt, H.: BeSpaceD: towards a tool framework and methodology
for the specification and verification of spatial behavior of distributed software
component systems. Technical report. arXiv:1404.3537 (2014)

5. Caires, L., Vieira, H.T.: SLMC: a tool for model checking concurrent systems
against dynamical spatial logic specifications. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 485–491. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 35

6. CHESS-Consortium: Chess modeling language and editor v1. 0.2 (2010)
7. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso,

P.: Model checking safety critical software with SPIN: an application to a railway
interlocking system. In: Ehrenberger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516,
pp. 284–293. Springer, Heidelberg (1998). doi:10.1007/3-540-49646-7 22

8. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 4

www.amqp.org/
http://arxiv.org/abs/1404.3537
http://dx.doi.org/10.1007/978-3-642-28756-5_35
http://dx.doi.org/10.1007/978-3-642-28756-5_35
http://dx.doi.org/10.1007/3-540-49646-7_22
http://dx.doi.org/10.1007/978-3-662-46681-0_4

64 S. Hordvik et al.

9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

10. ERTMS Project: ERTMS in brief. http://www.ertms.net/?page id=40. Accessed
14 Aug 2015

11. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31954-2 17

12. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). doi:10.1007/3-540-08755-9 9

13. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Towards verifying safety prop-
erties of real-time probability systems. In: 11th International Workshop on For-
mal Engineering approaches to Software Components and Architectures (FESCA).
EPTCS (2014)

14. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Model-based engineering and
analysis of space-aware systems communicating via IEEE 802.11. In: 39th Annual
International Computers, Software & Applications Conference (COMPSAC), pp.
638–646. IEEE Computer (2015)

15. Han, F., Herrmann, P., Le, H.: Modeling and verifying real-time properties of
reactive systems. In: 18th International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 14–23. IEEE Computer (2013)

16. Herrmann, P., Blech, J.O.: Formal model-based development in industrial automa-
tion with reactive blocks. In: 3rd Workshop on Human-Oriented Formal Methods
(2016, to appear)

17. Herrmann, P., Blech, J.O., Han, F., Schmidt, H.: A model-based tool chain to
verify spatial behavior of cyber-physical systems. Int. J. Web Serv. Res. (IJWSR)
13(1), 40–52 (2016)

18. Herrmann, P., Svae, A., Svendsen, H.H., Blech, J.O.: Collaborative model-based
development of a remote train monitoring system. In: Proceedings of Evaluation
of Novel Approaches to Software Engineering, COLAFORM Track (2016)

19. Hordvik, S.E., Øseth, K.: Control software for an autonomous cyber-physical train
system. Master’s thesis, Norwegian University of Science and Technology (NTNU)
(2015)

20. Hordvik, S., Øseth, K., Blech, J.O., Herrmann, P.: A methodology for model-
based development and safety analysis of transport systems. In: 11th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE)
(2016)

21. Kraemer, F.A., Herrmann, P.: Automated encapsulation of UML activities for
incremental development and verification. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 571–585. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04425-0 44

22. Kraemer, F.A., Herrmann, P.: Reactive semantics for distributed UML activities.
In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp.
17–31. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13464-7 3

23. Kraemer, F.A., Herrmann, P., Bræk, R.: Aligning UML 2.0 state machines and
temporal logic for the efficient execution of services. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4276, pp. 1613–1632. Springer, Heidelberg (2006).
doi:10.1007/11914952 41

24. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool support for the rapid composition,
analysis and implementation of reactive services. J. Syst. Softw. 82(12), 2068–2080
(2009)

http://www.ertms.net/?page_id=40
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1007/3-540-08755-9_9
http://dx.doi.org/10.1007/978-3-642-04425-0_44
http://dx.doi.org/10.1007/978-3-642-04425-0_44
http://dx.doi.org/10.1007/978-3-642-13464-7_3
http://dx.doi.org/10.1007/11914952_41

Model-Based Engineering and Spatiotemporal Analysis of Transport Systems 65

25. Lee, E.: Cyber physical systems: design challenges. In: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp.
363–369. IEEE Computer (2008)

26. McKenna, A., Nanty, A.: BlueBrick – Version 1.8.0. (2015). www.bluebrick.
lswproject.com/help en.html. Accessed 02 Feb 2016

27. MQTT.org: Message queuing telemetry transport (MQTT). www.mqtt.org/.
Accessed 14 Aug 2015

28. Overskeid, K.M.: Personal rapid transit (PRT) system using lego mindstorms.
Master’s thesis, Norwegian University of Science and Technology (NTNU) (2015)

29. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 15

30. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal
verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 246–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10373-5 13

31. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes rendues du ler Congres des Math. des Pays Slaves, Warsaw, pp. 192–
201 (1929). 395

32. Sl̊atten, V., Kraemer, F., Herrmann, P.: Towards automatic generation of formal
specifications to validate and verify reliable distributed system: a method exem-
plified by an industrial case study. In: 10th International Conference on Genera-
tive Programming and Component Engineering (GPCE 2011), pp. 147–156. ACM
(2011)

33. Svae, A.: Remote monitoring of lego-mindstorm trains. Project thesis, Norwegian
University of Science and Technology, Trondheim (2016)

34. Svendsen, H.H.: Model-based engineering of a distributed, autonomous control
system for interacting trains, deployed on a lego mindstorms platform. Project
thesis, Norwegian University of Science and Technology, Trondheim (2016)

35. Svendsen, H.H.: Self-localization of lego trains in a modular framework. Master’s
thesis, Norwegian University of Science and Technology, Trondheim (2016)

36. Tiwari, A.: Time-aware abstractions in HybridSal. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 504–510. Springer, Cham (2015).
doi:10.1007/978-3-319-21690-4 34

37. UNIFE Project: UNIFE. http://www.unife.org/. Accessed 14 Aug 2015
38. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, Hoboken (2014)

www.bluebrick.lswproject.com/help_en.html
www.bluebrick.lswproject.com/help_en.html
www.mqtt.org/
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-642-10373-5_13
http://dx.doi.org/10.1007/978-3-319-21690-4_34
http://www.unife.org/

Quantitative and Qualitative Empirical Analysis
of Three Feature Modeling Tools

Juliana Alves Pereira1(✉), Kattiana Constantino2, Eduardo Figueiredo2,
and Gunter Saake1

1 Otto-von-Guericke-University Magdeburg (OvGU), Magdeburg, Germany
{juliana.alves-pereira,gunter.saake}@ovgu.de

2 Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
{kattiana,figueiredo}@dcc.ufmg.br

Abstract. During the last couple of decades, feature modeling tools have played
a significant role in the improvement of software productivity and quality by
assisting tasks in software product line (SPL). SPL decomposes a large-scale
software system in terms of their functionalities. The goal of the decomposition
is to create well-structured individual software systems that can meet different
users’ requirements. Thus, feature modeling tools provides means to manage the
inter-dependencies among reusable common and variable functionalities, called
features. There are several tools to support variability management by modeling
features in SPL. The variety of tools in the current literature makes it difficult to
understand what kinds of tasks are supported and how much effort can be reduced
by using these tools. In this paper, we present the results of an empirical study
aiming to support SPL engineers choosing the feature modeling tool that best fits
their needs. This empirical study compares and analyzes three tools, namely
SPLOT, FeatureIDE, and pure::variants. These tools are analyzed
based on data from 119 participants. Each participant used one tool for typical
feature modeling tasks, such as create a model, update a model, automated anal‐
ysis of the model, and product configuration. Finally, analysis concerning the
perceived ease of use, usefulness, effectiveness, and efficiency are presented.

Keywords: Software product lines · Variability management · Feature models ·
SPLOT · Featureide · Pure::variants

1 Introduction

The growing need for variability management in larger and complex software applica‐
tions demands better support in benefiting from reusable software artifacts. Software
Product Line (SPL) has proven to be an efficient software development practice by
exploiting large-scale reuse and dealing with many challenges of today’s software
development, such as variability [26]. Experience already shows that SPL can allow
companies to realize order-of-magnitude improvements in time to market, cost, produc‐
tivity, quality, and flexibility [9]. Large industries, such as Hewlett-Packard, Nokia,

© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 66–88, 2016.
DOI: 10.1007/978-3-319-56390-9_4

Motorola, and Dell have been investing significant effort incorporating software varia‐
bility into their product line approaches [8, 28].

Variability is one of the key concepts in SPL. It allows the development of similar
applications from a shared and interdependent set of software functionalities, called
features [2]. Feature modeling is a way for representing variability in SPL [20]. A feature
model provides a formal notation to represent and manage the interdependencies among
reusable common and variable features. Interdependencies are employed to delimit the
variability’s space and to define the incompatibilities of infeasible combinations of
features. The term feature model was proposed by Kang et al. [19] in 1990 as a part of
the Feature-Oriented Domain Analysis (FODA) method. Since then, features models
have been applied in a number of domains, including mobile phones [14, 16], telecom
systems [17, 22], automotive industry [5, 13], template libraries [11], network protocols
[3], and others.

Due the complex interdependencies among features, the adoption of SPL practices
by industry depends on adequate tooling support. However, in the current literature there
are several available tools to support variability management by modeling features in
SPL [25]. The variety of tools makes it difficult to choose one that best meets the SPL
development goals. Hence, most software development teams adopt new tools without
establishing a formal evaluation. Thus, in order to contribute with relevant information
to support software development teams choosing a feature modeling tool that best fits
their needs, this paper presents a detailed empirical analysis of three tools, namely
SPLOT [23], FeatureIDE [29], and pure::variants [7]. We choose to focus our
analysis on these tools because they provide the key functionality of typical feature
modeling tools, such as to edit (create and update) a feature model, to automatically
analyze the feature model, and to configure a product from a model.

The empirical study presented in this paper involves 119 participants enrolled in
Software Engineering courses. Each participant used only one tool: SPLOT, Featur-
eIDE, or pure::variants. We relied on a background questionnaire and a 1.5-hour
training session to balance knowledge of the participants. The experimental tasks exer‐
cise different aspects of feature modeling. All participants answered a questionnaire
about the functionalities they used in each tool. We focus on quantitative and qualitative
analyses of four typical functionalities of feature modeling tools: Feature Model
Edition, Automated Feature Model Analysis, Product Configuration, and Feature Model
Import & Export. Based on this analysis, we uncover several interesting findings of the
analyzed tools. For instance, we observed that SPLOT presented the best results for
Automated Feature Model Analysis with twenty-five different operation of analysis
mechanisms. The Feature Model Editor of FeatureIDE was considered the easiest
and most intuitive one with many mechanisms available. Moreover, FeatureIDE also
achieved the best results for the Feature Model Import & Export functionalities with a
total of eight different possible either import or export formats. In general, the main
issues we observed in the three analyzed tools are the lack of adequate mechanisms for
managing the variability, such as visualization mechanisms to support the Product
Configuration functionality.

The remainder of this paper is organized as follows. Section 2 describes the empirical
study settings. Section 3 reports and analyzes the results. Section 4 points out the main

Quantitative and Qualitative Empirical Analysis 67

issues to be addressed in the future. Section 5 discusses some threats to the study validity.
In Sect. 6, some related works are discussed. Finally, Sect. 7 concludes this paper by
summarizing its main contributions and directions for future work.

2 Study Settings

In this section, we present the study configuration aiming to evaluate and compare three
alternative feature modeling tools, namely SPLOT, FeatureIDE, and
pure::variants. Section 2.1 defines the study research questions. Section 2.2
introduces the three analyzed tools and explains the reasons for selecting them.
Section 2.3 summarizes the background information of participants that took part in this
study. Finally, Sect. 2.4 explains the training session, describes the target feature model
used in the experiment, and the tasks assigned to each participant.

2.1 Research Questions

The goal of this study is to investigate how feature modeling tools are supporting vari‐
ability management in SPL. We formulate three Research Questions (RQ) focusing on
specific aspects of the evaluation. The answer to these questions may support researchers
and practitioners, for instance, in selecting or developing new feature modeling tools.
The research questions investigated in this study are as follows.

RQ1. What functionalities of feature modeling tools are hard and easy to use?
RQ2. Does the developer background impact on the use of feature modeling tools?
RQ3. What are the strengths and weaknesses of these feature modeling tools?

To address RQ1, we list a four-level ranking in relation to the degree of difficulty
for each of the analyzed functionalities (see Sect. 3.1). With respect to RQ2, we are
willing to investigate whether the developers background can impact on the results of
this study (see Sect. 3.2). Finally, with respect to RQ3, we aim at highlighting the
strengths of the analyzed tools and identifying weaknesses and missing mechanisms to
be addressed by researchers and practitioners in the future (see Sect. 3.3).

2.2 Feature Modeling Tools

A previous systematic literature review [25] identified 41 tools for SPL development
and feature modeling. Based on this review, we used the following three Exclusion
Criteria (EC) in order to filter tools to be analyzed in this study.

EC1. (Functionalities) We excluded all tools that do not include the main functional‐
ities required for variability management in SPL [12].

EC2. (Prototype tools) We excluded all prototype tools from our study because they
are not applicable to industry, as they do not cover all relevant functionalities that
we aim to evaluate, hindering some sorts of analysis.

68 J.A. Pereira et al.

EC3. (Material available) We excluded all tools without enough examples available,
tutorials, or user guides. This criterion was required in order to prepare the exper‐
imental material and training session.

EC4. (Unavailable tools) We excluded all tools unavailable for download and the
commercial tool without an evaluation version.

After applying the exclusion criteria (EC1–EC3), we filter six feature modeling tools
that might be used in our empirical study: SPLOT, FeatureIDE,
pure::variants, FAMA, VariAmos, and Odyssey. From the six candidate tools,
we used the following Inclusion Criteria (IC) in order to choose a set of three tools and
make possible to conduct a deeper study.

IC1. (Mature tools) We include the three most mature tools, as the maturity has a great
effect on software quality and productivity (e.g., less errors are likely to be intro‐
duced during the development and consequently less effort is required to correct
errors). However, in order to verify how mature a feature modeling tool is for
variability management, we analyze the most cited tools in the SPL literature. For
that, we identify primary studies from three scientific database libraries, namely
ACM Digital Library1, IEEE Xplore2, and ScienceDirect3. IC1 relies on the
following search string: (“splot” OR “featureide” OR “pure:variants” OR
“fama” OR “variamos” OR “odyssey”). The search was performed using the
specific syntax of each specific database and considering only the title, abstract,
and keywords. The search strings and results of each scientific database engine
are provided in the Web supplementary material [1].

We found 256 primary studies for Pure::Variants, 251 for SPLOT, 96 for
FeatureIDE, 74 for Odissey, 35 for VariAmos, and 3 for FAMA. Thus, we choose
pure::variants4, SPLOT5, and FeatureIDE6 as representative tools. These tools
are actively used (by industry or academic researchers), and accessible tools in order to
evaluate the state-of-the-art of feature modeling tools. Next, we present a brief overview
of the selected tools.

SPLOT.SPLOT (Software Product Lines Online Tools) is an open source Web-
based tool. It does not provide means for code generation or integration [23]. However,
at the tool website, we can find a repository with more than four hundred feature models
created by tool users for over 5 years. You can download the tool’s code and also a Java
library (SPLAR) created by the authors to perform the analysis of feature models. It also
provides a standalone tool version that can be installed on a private machine. We used
the online version of SPLOT for this empirical study.

1 http://dl.acm.org/.
2 http://ieeexplore.ieee.org/.
3 http://link.springer.com/.
4 http://www.pure-systems.com/pure_variants.49.0.html.
5 http://www.splot-research.org.
6 http://featureide.cs.ovgu.de.

Quantitative and Qualitative Empirical Analysis 69

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://springerlink.bibliotecabuap.elogim.com/
http://www.pure-systems.com/pure_variants.49.0.html
http://www.splot-research.org
http://featureide.cs.ovgu.de

FeatureIDE. FeatureIDE is an open-source Eclipse-based tool which widely
covers the SPL development process [29]. Besides having feature model editor and
product configurator, it is integrated with several programming and composition
languages with a focus on development for reuse [4, 21]. FeatureIDE can be down‐
loaded separately or in a package with all dependencies needed for implementation.

pure::variants. pure::variants is a commercial Eclipse-based tool
developed by the Pure-Systems GmbH to support the development and deployment of
SPL [7]. It supports all phases of SPL development from requirements specification to
test cases and maintenance. Although it is a commercial tool, there is an evaluation
version available in its web site (http://www.pure-systems.com/pure_variants.
49.0.html). We used the evaluation version of pure::variants in this study.

2.3 Background of the Participants

Participants involved in this study are 119 young developers taking a Software Engi‐
neering course. They were organized as follows: 41 participants worked with SPLOT,
42 participants worked with FeatureIDE, and 36 participants worked with
pure::variants. All participants are graduated or close to graduate since they are
mostly post-graduated MSc and Ph.D students from four different Brazilian universities:
UFLA7, UFMG8, UFJF9, and PUC-Rio10. To avoid biasing the study results, each
participant only took part in one study semester and only used one tool, either Featur-
eIDE or SPLOT or pure::variants. The participants were nicknamed as follows:
(i) F1 to F42 worked with FeatureIDE, (ii) S1 to S41 worked with SPLOT and (iii)
P1 to P36 worked with pure::variants. Our goal is to use these nicknames while
keeping the anonymity of the participants separating them by the tool since we did not
repeat participants in the experiments. Further details about the distribution of partici‐
pants are available at the project website [1].

Before starting the experiment, we used a background questionnaire to acquire
previous knowledge of each participant. Figure 1 summarizes knowledge that partici‐
pants claimed to have in the background questionnaire with respect to Object-Oriented
Programming (OOP), Unified Modeling Language (UML), and Work Experience (WE).
The bars show the percentage of participants who claimed to have knowledge high,
medium, low, or none in OOP and UML. For WE, the options were: more than 3 years,
1 to 3 years, up to 1 year, and never worked in software development industry.
Answering the questionnaire is not compulsory, but only 2 participants did not answer
the questionnaire about UML knowledge and 3 participants did not answer about WE.
In summary, we observe that about 75% of participants have medium to high knowledge
in OOP and 48% have medium to high knowledge in UML. In addition, about 52% have

7 Federal University of Lavras.
8 Federal University of Minas Gerais.
9 Federal University of Juíz de Fora.

10 Pontifical Catholic University of Rio de Janeiro.

70 J.A. Pereira et al.

http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html

more than 1 year of work experience in software development. Therefore, despite heter‐
ogeneous backgrounds, we can conclude that all participants have at least the basic
knowledge in the technologies required to perform the experimental tasks.

Fig. 1. Background of participants with respect to object-oriented programming (OOP), unified
modeling Language (UML), and work experience (WE). Reproduced from [10].

2.4 Training Session and Tasks

In order to balance knowledge of participants, we conducted a 1.5-hour training session
where we introduced participants to the basic concepts of SPL and the analyzed tools.
The same training session by the same researcher to all participants was performed in
all four institutions (Sect. 2.3). All material about the course was available for all partic‐
ipants. In addition, we have not restricted participants of accessing (e.g., via Web
browsers) other information about the tools, such as tutorials and user guides.

After the training session, we asked the participants to perform some tasks using
either FeatureIDE or SPLOT or pure::variants. These tasks were based on the
target feature model of Mobile Media [16]. Mobile Media is an SPL for applications
with about 3 KLOC that manipulate photo, music, and video on mobile devices, such
as mobile phones [16]. Second Eduardo et al. [16], Mobile Media was developed for a
family of 4 brands of devices, namely Nokia, Motorola, Siemens, and RIM. As an
example, consider the simplified view of the Mobile Media feature model presented in
Fig. 2. The features are represented by boxes, and the interdependencies between the
features are represented by edges [11]. In feature models, there are common features
found in all products of the product line, known as mandatory features, such as Media
Management, and variable features that allow the distinction among products in the
product line, referred to as optional and alternative features, such as Copy Media and
the group Screen Size, respectively. The optional and alternative features are configu‐
rable on selected devices depending on the provided API support. Notice that a child
feature can only appear in a product configuration if its parent feature does. Thus, each
of the primitive features (i.e., atomic features) is a decision option related to the given
parent feature, resulting in eleven decision options.

Quantitative and Qualitative Empirical Analysis 71

Fig. 2. A feature model for mobile media (adapted from Figueiredo et al. [16]).

In addition to features and their relationships, feature models often contain additional
composition rules [11]. Composition rules refer to additional cross-tree constraints to
restrict feature combinations that cannot be expressed by the feature tree. Cross-tree
constraints are responsible for validating a combination of not directly connected
features (i.e., they add new relations to the feature model not described in the feature
tree). As an example, the cross-tree constraint “SMS Transfer → Copy Media” ensures
that all product configurations containing the feature SMS Transfer must contain the
feature Copy Media.

All tasks were based on the Mobile Media feature model to provide the same level
of difficulty among the participants. We performed a four-dimension task analysis with
respect to common functionalities provided by feature modeling tools as follows:
Feature Model Edition, Automated Feature Model Analysis, Product Configuration, and
Feature Model Import & Export. Feature Model Edition includes representing varia‐
bility, such as creating, updating, and adding features and interdependencies in the
feature model. Product’ requirements are the main entry in this step. Automated Feature
Model Analysis refers to extract information from the feature model. Based on Benavides
et al. [6], we consider the following Operations of Analysis (OA):

OA1. (Void Feature Model) A feature model is void if it represents no products.
OA2. (Valid Configuration) A valid product configuration must not violate the feature

model constraints (i.e., all features interdependencies must be considered).
OA3. (Valid Partial Configuration) A partial configuration requires additional

features to be a complete configuration. A complete configuration has a defined
selection state for each feature from the feature model.

OA4. (Number of Configurations) This operation returns the number of valid config‐
urations represented by the feature model. As an example, the number of product
configurations from the feature model presented in Fig. 2 is 252.

OA5. (Dead Features Detection) A feature is dead if it cannot appear in any of the
products of the SPL. In addition, a feature is conditionally dead if it becomes
dead under certain circumstances, e.g. when selecting another feature(s).

72 J.A. Pereira et al.

OA6. (False Optional Features) A feature is false optional if it is included in all the
products of the product line despite not being modeled as mandatory.

OA7. (Redundancies) A feature model contains redundancies when the interdepend-
dencies among features are modeled in multiple ways.

OA8. (Core Features) This operation returns the set of features that are part of all the
product configurations in the product line.

OA9. (Variant Features) Variant features are those that do not appear in all the prod‐
ucts of the product line.

OA10. (Dependency Analysis) This operation returns all the feature dependencies from
a defined partial configuration as a result of the propagation of constraints in
the feature model.

In the Product Configuration task, a mobile phone should be configured by
(de)selecting a set of features from the product line that forms a valid and concrete
resultant configuration. A concrete configuration defines a set of (de)selected features
from a feature model that covers as much as possible the product’ requirements. Finally,
the feature model should be exported and imported (e.g., using the formats XML and
CSV) to a new project.

We ran seven rounds of this experiment, three of them for SPLOT, two for Featur-
eIDE and two for pure::variants. Each round of the experiment was performed
in a computer laboratory with configured machines satisfying the minimum configura‐
tion required for each tool. While performing the tasks, all participants answered a
questionnaire with open and closed questions. All answers are available in the project
website [1].

3 Results and Discussion

This section reports and discusses data of this empirical study. Section 3.1 reports the
degree of difficulty encountered by participants when performing the requested tasks.
Section 3.2 focuses the discussion on whether the background of participants can impact
on the use of each tool. Finally, Sect. 3.3 discusses the strengths and weaknesses of the
analyzed tools.

3.1 Problems Faced by Developers

This section analyzes the level of problems that developers may have to carry out tasks
in each analyzed tool. In other words, we aim to answer the following research question.

RQ1: What functionalities of feature modeling tools are hard and easy to use?

For this evaluation, we have identified interesting results extracted from the analysis
of quantitative and qualitative data from the questionnaires answered by the participants
after performing each task (see Sect. 2.4). The questionnaires are composed with open
and closed questions. For closed questions, participants had the following options to
answer (i) I was unable to perform the task, (ii) I performed the task with a major

Quantitative and Qualitative Empirical Analysis 73

problem, (iii) I performed the task with a minor problem, and (iv) I had no problem
performing the task. Note, in order to validate the closed questions, we look up for the
opened questions to know whether the participants finished the task properly (i.e., for
options (ii), (iii), or (iv)).

3.1.1 Hard and Easy Functionalities
In order to answer the research question RQ1, we first rely on data presented in Fig. 3.
This figure summarizes the results grouped by functionality and tool. We defined a Y-
axis to quantify the cumulated results, where the negative values mean hard to use and
positive values mean easy to use the respective functionality.

SPLOT

FeatureIDE

pure::variants

Fig. 3. Problems reported by participants to complete their tasks (reproduced from [10]).

We first investigated the SPLOT tool. On the one hand, Product Configuration seems
the most challenge functionality to use by the SPLOT participants. About 12% of them
were unable, and 24% had major problems to perform the Product Configuration task.
On the other hand, 24% participants of SPLOT had minor problems and 76% performed
without problems the Automated Feature Model Analysis task. These results endorse
one major goal of this tool, which is to support developers with automatic operations of
analysis [23], such as depth of the feature tree and number of possible configurations.
Moreover, SPLOT also focuses on critical debugging tasks, such as checking the consis‐
tency of feature models, and detecting the presence of dead and common features.

Unlike SPLOT, about 57% of the participants using FeatureIDE indicated that
they failed and had major problems to perform the Automated Feature Model Analysis
task. That is, 52% of participants had major problems and 5% were unable to perform
this task. Thus, this functionality was considered the hardest one to be used by partici‐
pants using FeatureIDE (see Fig. 3). The most of the participants concerned about
the limited support to guide them into the functionality. Regarding Feature Model
Edition, about 28% had minor problems and 70% had no problem to perform this task.

74 J.A. Pereira et al.

This seems a positive result for FeatureIDE because only 2% (1 participant of 42)
reported a major problem to edit a feature model.

Finally, we investigated the pure::variants tool. On the one hand, the Product
Configuration functionality presented the worst result for this tool with a total of 61%
of participants unable and with major problems to perform this task. On the other hand,
the tool succeeds for the Feature Model Edition functionality where 80% of the partic‐
ipants had minor or no problems performing the task. As both pure::variants and
FeatureIDE are Eclipse plug-in, this fact could be the reason why participants had
minor or no problems with this task.

The general observation is that participants had more difficulties to perform the
Product Configuration task in pure::variants. We believe that this task was a
challenge in pure::variants because the tool still lacks powerful-enough solutions
for managing the variability, such as the resolution of valid feature models applying
decision propagation mechanisms dynamically. Next, we have identified the ranking of
negative and positive functionalities for each tool.

3.1.2 Ranking of Negative Functionalities
Table 1 summarizes the rank of the three analyzed tools with respect to two negative
answers “I was unable to perform the task” and “I performed the task with major
problem” given by all participants. The first column relates to the feature modeling tools
and the other columns relate to the functionalities analyzed. The first (1st) in Table 1
means that the respective tool presented more negative answers compared to the other
tools. For instance, pure::variants can be considered the worst tool with respect
to Feature Model Edition and Product Configuration.

Table 1. The rank of the three tools by functionalities from problems faced by developers.

Tools Functionalities
Feature model
edition

Automated feature
model analysis

Product
configuration

Feature model
import & export

SPLOT 2nd 3rd 2nd 1st

FeatureIDE 3rd 1st 3rd 3rd

pure::variants 1st 2nd 1st 2nd

According to the SPLOT users, the main issues in this tool are related to its interface.
For instance, participants reported they had trouble in the task of renaming features in
the model. They also complained about the lack of examples. Other problems mentioned
freely by its participants were that the tool does not work in some browsers. Furthermore,
they mentioned that some terms such as “CTRC” and “CTC” were confused and, so,
they did not understand the terms used by this tool when they were trying to configure
a product.

For FeatureIDE participants, although they manage to edit the feature model, the
tool interface still was the target of complaints. Besides, the participants also claimed
concerns about the confusing terms used by the tool, such as “primitive features”,
“compound feature”, “abstract features”, and “feature hidden”. Another complaint was

Quantitative and Qualitative Empirical Analysis 75

regarding the navigation to find the related menu for the Automatic Feature Model
Analysis and Product Configuration. Thus, they consider that the tool is not intuitive.

With respect to pure::variants, the main issues pointed out by participants
were difficult to add cross-tree constraints in the feature model and many problems to
perform the tasks about Product Configuration. Moreover, some participants also had
trouble with the Automatic Feature Model Analysis, such as finding the activity menu
for this task and the dead features. Furthermore, like in FeatureIDE, they claimed
about terms used. Lastly, they also had interpreting problems in the results analyzed.

As a general observation, we encourage researchers and developers of feature
modeling tools to unify vocabulary or notation in order to work in better way. In our
study, we are convinced that the current examples available, technical report, tutorial,
and users’ guide are not clear enough to help the software developers using the tools
and, consequently, adopting SPL. In addition, our results indicate that the developers of
SPL tools need to focus more on usability and in human-computer interaction to provide
the better user experience for their users.

3.1.3 Ranking of Positive Functionalities
Tables 2 and 3 summarize the ranking of the three analyzed tools considering the answers
“I performed with minor problem” and “I had no problem performing the task”, given
by participants with strong and weak backgrounds, respectively. The first column in
these tables is the feature modeling tools and the second column relates the functional‐
ities analyzed. The first (1st) means that the respective tool presented more positive
answers compared to the other tools. For instance, SPLOT was considered the best tool
with respect to the Automated Feature Model Analysis functionality by participants with
strong and weak backgrounds.

Table 2. The rank of the three tools by functionalities from strong background participants.

Tools Functionalities
Feature model edition Automated feature

model analysis
Product configuration Feature model import

& export
SPLOT 3rd 1st 2nd 3rd

FeatureIDE 1st 3rd 1st 1st

pure::variants 2nd 2nd 3rd 2nd

Table 3. The rank of the three tools by functionalities from weak background participants.

Tools Functionalities
Feature model edition Automated feature

model analysis
Product configuration Feature model import

& export
SPLOT 2nd 1st 2nd 3rd

FeatureIDE 1st 2nd 1st 1st

pure::variants 3rd 3rd 3rd 2nd

It is interesting to note that developers with weak and strong backgrounds have
different viewpoints about the analyzed tools. For instance, on the one hand,

76 J.A. Pereira et al.

pure::variants can be considered the worst tool for developers with weak back-
ground regards to three functionalities (i.e., Feature Model Edition, Automated Anal‐
ysis, and Product Configuration). On the other hand, this tool is only considered the
worst option by highly skilled participants for Product Configuration. Therefore, this
result suggests that pure::variants is more suitable for experienced developers
than for novice ones.

3.2 Background Influence

This section analyzes whether the background of developers can impact on the use of
the analyzed tools. In other words, we aim to answer the following research question.

RQ2. Does developer background impact on the use of the feature modeling tools?

In order to answer RQ2, we first classified the participants by their level of knowledge
and work experience into two groups. Group 1 (Strong Experience) includes participants
that claimed to have high and medium knowledge in OOP, UML, and more than 1 year
of work experience. Group 2 (Weak Experience) includes participants that answered
few and no knowledge in OOP, UML, and less than 1 year of work experience. In this
analysis, we excluded participants that did not answer the experience questionnaire and
participants with mixed experiences. For instance, a participant with good knowledge
in OPP, but less than one year of work experience.

3.2.1 Data Summary
Figure 4 shows pie charts summarizing the results. Similarly to Fig. 3, this figure depicts
the percentage of participants who (i) were unable to perform the task, (ii) performed
the task with major problem, (iii) performed the task with minor problem, and (iv) had
no problem to perform the tasks. Charts on top indicate results for participants in the
highly skilled group and charts on the bottom indicate participants with weak back‐
ground. Besides, each pie chart summarizes the result of one task in one specific tool.
The legend in the center of each pie is to identify the matching tool. That is, S means
SPLOT, F means FeatureIDE and P means pure::variants. Each set of three
pie charts relates to one of the four functionalities analyzed in this empirical study.

Based on the results of Fig. 4, we compared these two groups for each dimension.
For Feature Model Edition, for instance, we realized that SPLOT (S) and
pure::variants (P) showed some differences between these two groups. In the
case of SPLOT, about 10% of participants with the weak background (Group 2) reported
they were unable to conclude their task, while 99% of the participants with the highly
skilled background (Group 1) completed their tasks. In addition, the total percentage of
participants who had minor problems and had no problem did not change from Group
1 to Group 2. The reason for this result may be due to the Web interface of SPLOT and
participants seem familiar with it. For pure::variants, the difference between
Group 1 and Group 2 was even clearer. Approximately 92% of participants in Group 1
performed the Feature Model Edition task with minor or no problem. In Group 2, this
percentage decreased to 60%. Therefore, we noticed the percentage of success is related

Quantitative and Qualitative Empirical Analysis 77

to the skill level of participants in these cases. Good knowledge in OOP and UML may
have contributed positively to the success of participants in this task because the task of
editing a feature model involves creating an abstract representation and relationships,
similarly to UML software modeling.

HIGHLY SKILLED (GROUP 1)

FEATURE MODEL
EDITION

AUTOMATED FEATURE
MODEL ANALYSIS

PRODUCT
CONFIGURATION

FEATURE MODEL
IMPORT& EXPORT

WEAK BACKGROUND (GROUP 2)

FEATURE MODEL
EDITION

AUTOMATED FEATURE
MODEL ANALYSIS

PRODUCT
CONFIGURATION

FEATURE MODEL
IMPORT& EXPORT

Fig. 4. Comparative results of participants with high skilled and with weak background.

For the Automated Feature Model Analysis functionality, the main difference
between the groups occurred using the FeatureIDE and pure::variants tools.
While 14% and 56% of the FeatureIDE and pure::variants participants in
Group 1 had no problem performing the tasks, all participants in Group 2 failed or had
some problem performing the tasks.

With respect to Product Configuration, while in SPLOT the Group 2 had 33% failures
and the Group 1 only 13%, in FeatureIDE the Group 2 had no failures and the Group
1 had 13% failures. It shows that for FeatureIDE participants, the background did
not influence the task performance. For pure::variants tool, both groups had a
high percentage of failures. Although this seems a simple task, through (de)selecting
features based on product requirements, pure::variants does not support the
dynamic resolution of valid configurations. Thus, further knowledge about the feature
model is also important, such as comprehension of the notations, and the relationships
between features and constraints. Therefore, we realized that in this tool, this task is not
trivial for either beginners or experienced SPL developers.

For the Feature Model Import & Export functionality, participants who used SPLOT
presented a big difference in the results when comparing both groups, while for the other
tools both groups had similar performance. For SPLOT, the percentage of failures
increased from 17% in Group 1 to 33% in Group 2. Although the repository of the model
is an interesting functionality of this tool, the participants of this study seem not familiar
with it. Thus, it was difficult for participants with the weak background to perform this
task in SPLOT. However, this task is easier for experienced software developers in
Group 1.

Finally, based on the discussions described earlier, our analysis suggests that, in
general, participants who have knowledge in OOP, UML, and high work experience

78 J.A. Pereira et al.

have less trouble using the tools analyzed in this study. Therefore, as expected, the
background of the participants has an impact on the use of the analyzed tools.

3.2.2 Statistical Analysis
To prove statistically the preliminary analysis, we apply a 2k full factorial design [18].
For this experiment, we have considered two factors (k = 2), namely the participants
experience and the tool used. To quantify the relative impact of each factor on the
participant effectiveness, we compute the percentage of variation in the measured effec‐
tiveness to each factor in isolation, as well as to the interaction of both factors. The
higher the percentage of variation explained by a factor, the more important it is to the
response variable [18].

In general, results show that the type of tool tends to have a higher influence on the
effectiveness. Figure 5 outlines that for three out of the four functionalities (i.e., Feature
Model Edition, Product Configuration, and Feature Model Import & Export), the type
of tool used by the participants has the highest influence on the effectiveness. For the
Feature Model Edition task, 96% of the total variation can be attributed to the type of
used tool, whereas only 5% is due to participants’ experience and 2% can be attributed
to the interaction of these two factors. For Product Configuration, 57% is attributed to
the type of tool, and 43% is due to participants’ experience. Finally, for Feature Model
Import & Export, 95% is attributed to the type of tool, whereas only 1% is due to partic‐
ipants’ experience and 4% is attributed to the interaction of these two factors.

Fig. 5. Background Influence reported by factorial design test (reproduced from [10]).

Therefore, for the Feature Model Edition and Feature Model Import & Export tasks,
both the participants experience factor and the interaction seem of little importance to
the results. Indeed, the results clearly show that the participants who used the SPLOT
and FeatureIDE tools achieved the better results for these tasks. One possible explan‐
ation is the complexity of pure::variants. Additionally, even participants who
have no experience tend to obtain a higher effectiveness when they use SPLOT and
FeatureIDE in these two tasks.

For Automated Feature Model Analysis, the participants experience factor was more
significant. 58% of the total variation is attributed to the participants’ experience factor,
and whereas only 21% is due to the type of tool used and to the interaction of these two

Quantitative and Qualitative Empirical Analysis 79

factors. Therefore, the results for this task clearly show that the participants with strong
experience achieved the better results. One possible explanation is the complexity of the
terms used during the analysis task, which requires more knowledge from participants.

3.3 Strengths and Weaknesses in Feature Modeling Tools

This section investigates some of the strengths and weaknesses of SPLOT, Featur-
eIDE, and pure::variants tools. We aim to answer the following research ques‐
tion.

RQ3. What are the strengths and weaknesses of the feature modeling tools?

Figures 6, 7, and 8 show diverging stacked bar chart of the strengths and weaknesses
of SPLOT, FeatureIDE and pure::variants, respectively. In particular, we ask
the participants about the following terms (i) tool interface, (ii) feature model editor,
(iii) cross-tree constraints, (iv) automatic analysis, (v) product configuration, (vi) inte‐
gration with code, (vii) hotkey mechanisms, (viii) online tool, (ix) feature model repo‐
sitory, (x) eclipse plug-in, and (xi) examples and user guides. The percentages of partic‐
ipants who considered the items as strengths are shown to the right of the zero line. The
percentages who considered the items as weaknesses are shown to the left of the zero
line. These items are sorted in alphabetical order in all figures. Participants could also
freely express about other strengths or weaknesses they encountered during the tasks.

For SPLOT participants (see Fig. 6), the three most voted strengths were: the auto‐
matic analysis of the models (76%), the fact being an online tool (63%), and the feature
model editor (41%). We believe that the automatic analysis of SPLOT was pointed out
as the biggest strengths, because it presents the most basic required operations while
compared with other tools. However, although 41% of participants have considered the
editor as a strength of this tool, 44% of them pointed the editor as a weakness. The
participants claimed mainly about the shape size. Second the participants, each feature

Fig. 6. Strengths and weaknesses reported by participants using SPLOT.

80 J.A. Pereira et al.

should be presented with sufficient size to be readable. Moreover, 68% of them pointed
out the lack of examples available as a problem to understand the tool, and 76% indicated
integration with source code as a missing mechanism. Lastly, the product configuration
was one of the main concerns with 61% of votes. The participants claimed mainly regards
the missing functionalities, such as to set multiple configurations and to save them.
SPLOT does not allow users to create multiple configurations and keep the specified
ones. In this tool, only the feature model can be exported or (and) kept in the repository.

Analyzing the FeatureIDE tool (see Fig. 7), the three most voted strengths were:
the fact being an Eclipse plug-in (64%), and the feature model (62%) and cross-tree
constraints (57%) editors. Although, the feature model editor is similar mechanisms in
all tools, FeatureIDE editor presents many additional functionalities when compared
with the other tools (e.g., zoom, filter, hotkey, and layout organization mechanisms).
Moreover, when creating cross-tree constraints, it is possible to have immediate feed‐
back regards dead features, redundant constraints, and false-optional features. As a main
weakness, 64% of FeatureIDE users voted in the interface. In accordance with the
qualitative data, the main problem is regards to the navigation to find the related menu
for automatic analysis of the model and product configuration. Moreover, as in
SPLOT, the product configuration for large feature models is challenging. For both tools,
when the automatic validation is applied the immediate changes in the visual represen‐
tation generate unnecessary surprises and confusion to the users. In this context, inter‐
active mechanisms (e.g., animations, color hue, and highlighting) can be used to support
users navigate in the tree, (de)select the features, and understand the interdependencies
among them.

Fig. 7. Strengths and weaknesses reported by participants using FeatureIDE.

Finally, the pure::variants tool was analyzed (see Fig. 8). the three most voted
strengths were: the fact being an Eclipse plug-in (78%), automatic analysis of the models
(58%) and the feature model editor (56%). As weakness, 67% of its users voted in the
product configuration functionality. The pure::variants tool configurator does not
support the automatic validation of cross-tree constraints. Moreover, as in the other tools,

Quantitative and Qualitative Empirical Analysis 81

it represents them only textually in the feature model editor screen. Thus, no cross-tree
constraints visualizations are provided to the users in the configurator screen.

Fig. 8. Strengths and weaknesses reported by participants using pure::variants.

As in pure::variants, when considering all participants and tools, the most
voted weaknesses were the tool interface (64%) and the product configuration mecha‐
nism (61%). The main drawback pointed out by participants is regards the information
visualization when configuring a product. The product configuration layout in those tools
results in a lot of unused screen space. Thus, the main challenge is to improve its layout
taking into account a large amount of data and making use of the whole screen space
while still providing a sufficient degree of usability (e.g., using multi-product lines
representation). Furthermore, 50% indicated the lack of examples available and user
guide. Note that, the interface and the lack of guidance may impact on negative results
of relatively simple tasks, such as Product Configuration. That is why about 46% of
participants failed to perform this task. As a result, it is recommended that SPL devel‐
opers take into consideration the aspects related to user experience in order to improve
the feature modeling tools.

4 Variability Management Main Issues

When analyzing the qualitative and quantitative data from the participants, the main
issues we observed in the three analyzed tools are the lack adequate mechanisms for
managing the variability, such as visualization mechanisms to support the product
configuration task. Based on the expert knowledge from authors of this paper, we extract
three main issues to be addressed in the future.

Issue 1: Current tools offer limited support for advanced visualization mechanisms (i.e.,
fish-eye views, filters, zooming, focus and context, cross-tree constraints, and others)
making variability harder to manage.

82 J.A. Pereira et al.

Issue 2: When the products to be configured are highly customized, the users are usually
unable to find satisfactory configurations. This happen because the amount and
complexity of options presented by the configurator lead users to get lost with so much
information and make poor decisions due complex and hard to reasoning dependencies.
Moreover, the feature model may present many subjective features that cannot be
matched with the product’ requirements. In this context, none of the analyzed tools
present additional information about features and variability to guide users in an easier
configuration process.

Issue 3: Cross-tree constraints often create a nightmare for users because they crosscut
feature models, and the resolution of valid product configuration becomes computa‐
tionally complex. In SPLOT and FeatureIDE, the cross-tree constraints used to
delimit the scope of allowed products are managed by SAT solvers that can automati‐
cally resolve the variability model’s consistency and validity during the product config‐
uration. Each time the user (de)selects a particular feature decision propagation strat‐
egies are applied to automatically validate feature models, which result in a non-
conflicting configuration. However, such views add confusion to the users. Thus, they
need additional visualization mechanisms to show which feature implied in a (de)selec‐
tion of other feature(s). Moreover, the decision propagation mechanisms by themselves
are not enough to support users getting a valid configuration (i.e., decision propagation
can only benefit to configure partial configurations). In this case, when the user has
selected all features of their choice, their configuration might still be invalid due to
unsatisfied feature dependencies. Consequently, it may be very difficult to the users
specifying a valid configuration since features of no interest to them also need to be
(de)selected in order to fulfill the feature model's interdependencies. In this context, the
analyzed tools lack appropriated mechanisms to show the users which features should
be (de)selected to guide them into a valid final configuration.

In summary, the product configuration process can be challenging, as users regularly
do not know every feature and their interdependencies, particularly for large product
lines. Thus, in order to ease the configuration process, we believe that a successful
product configuration functionality would need to be able to present the following char‐
acteristics:

• Guide the users over each step of the product configuration process through a
restricted and detailed view of the configuration space and features.

• Guide the product configuration process by delivering capabilities to effectively
communicate with the users and understand their needs and preferences.

5 Threats to Validity

A key issue when performing this kind of experiment is the validity of the results. The
results should be valid for the population of which the set of participants were involved.
It is also interesting to generalize the results to a broader population. The results have
adequate validity if they are valid for the population, which they intend to be generalized.
In this section, threats to the validity are analyzed. We discuss the study validity with

Quantitative and Qualitative Empirical Analysis 83

respect to the four categories of validity threats [31]: constructs validity, internal
validity, external validity, and conclusion validity.

Construct validity reflects what extent the operational measures that are studied
really represent, what the researcher has in mind, and what is investigated according to
the research questions [31]. The most common threats to this type of validity are related
to experiment design: in general, poor definition of the theoretical basis or the definition
of the testing process. For example, participants can base their behavior on the research
hypotheses or they may be involved in other experiments. This type of threat can occur
in formulating the questionnaire in our experiment, although we have discussed several
times the experiment design. To minimize social threats, we performed the experiment
in four different institutions.

Internal validity of the experiment concerns the question whether the effect is caused
by the independent variables (e.g. course period and level of knowledge) or by other
factors [31]. In this sense, a limitation of this study concerns the absence of balancing
the participants in groups according to their knowledge. It can be argued that the level
of knowledge of some participants may not reflect the state of practice (e.g., most of the
participants have only minor knowledge of SPL). To minimize this threat, we provide
a 1.5-hour training session to introduce participants to the basic required knowledge and
a questionnaire for help the better characterize the sample as a whole. However, 1.5-
hour training session may not have been enough for the participants with the weak
background.

External validity concerns the ability to generalize the results to other environments,
such as to industry practices [31]. A major external validity can be the selected tools
and participants. We choose three tools, among many available ones, and we cannot
guarantee that our observations can be generalized to other tools. Moreover, in Brazil
there are not many SPL developers, then this group may not reflect the state of the
practice. We tried to minimize this threat by working with both new and experienced
developers. These participants are graduated or close to graduate since the course targets
post-graduated MSc and Ph.D. students.

Conclusion validity concerns the relation between the treatments and the outcome
of the experiment [31]. This involves the correct analysis of the results of the experiment,
and the measurement reliability of the implementation of the treatments. Then, the
conclusion of the analyzed made by us could be another if it were done by other
researchers. To minimize this threat, we discuss the results data with experienced
researchers to make a more reliable conclusion.

6 Related Work

This section presents some previous studies about tools for feature modeling and vari‐
ability management in SPL. Djebbi et al. [15] perform an evaluate study of three SPL
management tools (i.e., XFeature, pure::variants, and RequiLine) in collab‐
oration with a group of industries. The purpose of this study was to understand the salient
characteristics of SPL management tools and to evaluate the ability of those tools to

84 J.A. Pereira et al.

satisfy industrial needs. In this evaluation, pure::variants and RequiLine were
the tools that best satisfied the defined criteria.

Simmonds et al. [27] also investigated several tools (i.e., Clafer, EPF
Composer, FaMa-OVM, fmp, Hydra, SPLOT, VEdit, and XFeature). The authors
conduct an analysis based on the expressiveness of each notation for dealing with the
required variability, as well as the understandability of the specification, adherence to
standard formats, and the availability of tool support. Specifically, the tools were eval‐
uated based on supported formats, underlying formalism, supported analyses, interface,
availability, and usability. As in our study, the purpose of this study is to facilitate tool
selection in the context of SPL.

In another study [30], ten variability modeling tools were compared (i.e., AHEAD,
FAMA, Feature Modeling Plug-in, Gears, Kumbang Tools, MetaEdit
+, Product Modeler, Pure::Variants, RequiLine, and XFeature). The
authors categorize the comparisons into general information, technical infrastructure,
operating systems support, rendering of modeling, format of input/output models
support, modeling and configuration functionalities, and development functionalities.
However, their results focus more on the implemented mechanisms than on the tool
support, while our empirical study is based on experimental data.

In a previous preliminary work [24], we performed a preliminary and exploratory
study that compares and analyzes two feature modeling tools, namely FeatureIDE
and SPLOT, based on data from 56 participants that used these two tools. This empirical
study involved other 84 new participants (i.e., none of the participant of this current
empirical study was the same of the previous one). Therefore, this current study
expanded and deepened the previous one in several ways. For instance, in addition to
expanding the data set of participants, it includes one more tool, pure::variants,
in the set of analyzed feature modeling tools. Moreover, the 84 new participants
performed different tasks to exercise other aspects of SPL development. As a similarity,
both studies aim to compare feature modeling tools and to support engineers in the hard
task of choosing the tool that best fits their needs.

First, we extend the previous short paper with the empirical analysis of one more
state-of-the-art SPL tool SPLOT. Second, we have significantly expanded the discussion
of our results by analyzing the three state-of-the-art SPL tools and by presenting addi‐
tional content, figures, and tables. Third, we extend our results pointing out a list of
variability management issues faced by those tools to be addressed in future research.
Finally, this empirical study presents a substantial extension of our preliminary short
paper [10].

7 Conclusion and Future Work

SPL focuses on systematic reuse based on the composition of features and domain
modeling. SPLOT, FeatureIDE, and pure::variants are tools used to support
feature modeling in SPL. In this paper, these tools were quantitatively and qualitatively
empirical analyzed and some interesting results were presented and discussed. The
results reported in this paper aim to support software engineers to choose one of these

Quantitative and Qualitative Empirical Analysis 85

tools for variability management. Additionally, this study can also be used by developers
and maintainers of SPLOT, FeatureIDE, pure::variants - and other feature
modeling tools - to improve them based on the issues reported. Besides, when choosing
one of the tools, the needed and purpose of use is one of the main factors to be taken
into consideration.

Our conclusions indicate that the main issues observed in the three feature modeling
tools are related to the Product Configuration functionality. Our study does not aim to
reveal “the best tool” in all functionality. On the contrary, the three analyzed tools have
strength and weakness. For instance:

• SPLOT has as main strengths its Automated Feature Model Analysis functionality
and the fact to be an online tool and as drawbacks, the interface and hotkeys.

• The main strength of FeatureIDE is the Feature Model Editor functionality. Its
drawbacks include a limited user guide and no intuitive interface (e.g., no guide to
support users finding the Product Configuration and Automated Feature Model
Analysis functionalities).

• The main strengths of pure::variants are the Feature Model Editor and the
Automated Feature Model Analysis functionalities. Its main drawbacks include the
lack of examples and the Product Configuration functionality.

Today research on variability tools in academia and industry is attempting to solve
the variability management problem. However, when hundreds of variants must be
captured, visualized, and modified, the variability management still becomes chal‐
lenging for companies. As future work, developers can provide a more adequate and
advanced support in this context. Moreover, this study can be extended in further
experiment replications. For instance, other tools can be analyzed and compared using
similar experiment design in order to contribute to improving the body of knowledge
about feature modeling tools. We hope that with the ongoing studies, as the one provided
in this paper, feature modeling tools will become more mature and established, such that
there will be more use of such tools in real practical scenarios.

Acknowledgements. This work was partially supported by CNPq (grant 202368/2014-9). We
are grateful to the reviewers who contributed significantly to the improvement of the paper.

References

1. Data of the Experiment: http://homepages.dcc.ufmg.br/~kattiana/visplatform
2. Bachmann, F., Clements, P.C.: Variability in software product lines. Software Engineering

Institute, CMU/SEI Report Number: CMU/SEI-2005-TR-012 (2005)
3. Barbeau, M., Bordeleau, F.: A protocol stack development tool using generative

programming. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp.
93–109. Springer, Heidelberg (2002). doi:10.1007/3-540-45821-2_6

4. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans. Softw.
Eng. 30(6), 355–371 (2004)

5. Benavides, D., Ruiz–Cortés, A., Trinidad, P., Segura, S.: A survey on the automated analyses
of feature models. In: JISBD, Barcelona (2006)

86 J.A. Pereira et al.

http://homepages.dcc.ufmg.br/%7ekattiana/visplatform
http://dx.doi.org/10.1007/3-540-45821-2_6

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Beuche, D.: Modeling and building software product lines with pure::variants. In:
International Software Product Line Conference (SPLC), p. 255 (2012)

8. Bosch, J., Capilla, R., Hilliard, R.: Trends in systems and software variability. IEEE Softw.
32(3), 44–51 (2015)

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Reading (2001)

10. Constantino, K., Pereira, J.A., Padilha, J., Vasconcelos, P., Figueiredo, E.: An empirical study
of two software product line tools. In: International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pp. 164–171 (2016)

11. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Principles, Techniques and
Tools. Addison-Wesley, Reading (2000)

12. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and
their specialization. In: Software Process: Improvement and Practice, pp. 7–29 (2005)

13. Czarnecki, K., Wasowski, A.: Feature models and logics: there and back again. In:
International Software Product Line Conference (SPLC), pp. 23–34 (2007)

14. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A.: Cool features and
tough decisions: a comparison of variability modeling approaches. In: Workshop on
Variability Modeling of Software-intensive System (VaMoS), pp. 173–182 (2012)

15. Djebbi, O., Salinesi, C., Fanmuy, G.: Industry survey of product lines management tools:
requirements, qualities and open issues. In: IEEE International Requirements Engineering
Conference (RE), pp. 301–306 (2007)

16. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,
Ferrari, F., Khan, S., Filho, F.C., Dantas, F.: Evolving software product lines with aspects: an
empirical study. In: International Conference on Software Engineering (ICSE), pp. 261–270
(2008)

17. Griss, M., Favaroand, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB. In:
International Conference on Software Reuse (ICSR), pp. 76–85 (1998)

18. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley, New York (1990)

19. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature oriented domain
analysis (FODA) feasibility study. Software Engineering Institute, CMU/SEI Report Number:
CMU/SEI-90-TR-021 (1990)

20. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse method
with domain-specific reference architectures. Softw. Eng. 5(1), 143–168 (1999)

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.:
Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol.
1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.1007/BFb0053381

22. Lee, K., Kang, Kyo C., Lee, J.: Concepts and guidelines of feature modeling for product line
software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. Springer,
Heidelberg (2002). doi:10.1007/3-540-46020-9_5

23. Mendonça, M., Branco, M., Cowan, D.: SPLOT - software product lines online tools. In:
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pp. 761–762 (2009)

24. Pereira, J.A., Souza, C., Figueiredo, E., Abilio, R., Vale, G., Costa, H.A.: Software variability
management: an exploratory study with two feature modeling tools. In: Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS), pp. 20–29 (2013)

Quantitative and Qualitative Empirical Analysis 87

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/3-540-46020-9_5

25. Pereira, J.A., Constantino, K., Figueiredo, E.: A systematic literature review of software
product line management tools. In: Schaefer, I., Stamelos, I. (eds.) ICSR 2015. LNCS, vol.
8919, pp. 73–89. Springer, Cham (2014). doi:10.1007/978-3-319-14130-5_6

26. Pohl, K., Metzger, A.: Variability management in software product line engineering. In
International Conference on Software Engineering (ICSE), pp. 1049–1050 (2006)

27. Simmons, J., Bastarrica, M.C., Silvestre, L., Quispe, A.: Analyzing methodologies and tools
for specifying variability in software processes. Computer Science Department, Universidad
de Chile, Santiago. http://swp.dcc.uchile.cl/TR/2011/TR_DCC-20111104-012.pdf

28. Software product line hall of fame. http://www.splc.net/fame.html. Accessed 14 May 2015
29. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: an

extensible framework for feature-oriented software development. Sci. Comput. Program. 79,
70–85 (2014)

30. Uphon, H.: A comparison of variability modeling and configuration tools for product line
architecture. IT University of Copenhagen (2008)

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012)

88 J.A. Pereira et al.

http://dx.doi.org/10.1007/978-3-319-14130-5_6
http://swp.dcc.uchile.cl/TR/2011/TR_DCC-20111104-012.pdf
http://www.splc.net/fame.html

Towards a Secure RA2DL Based Approach

Farid Adaili1,2,3(B), Olfa Mosbahi1, Mohamed Khalgui1,4,
and Samia Bouzefrane3

1 LISI Laboratory, INSAT Institute, University of Carthage, Tunis, Tunisia
olfamosbahi@gmail.com, khalgui.mohamed@gmail.com

2 Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia
3 CEDRIC Laboratory, National Conservatory of Arts and Crafts, Paris, France

{farid.adaili,samia.bouzefrane}@cnam.fr
4 Systems Control Laboratory, Xidian University, Xian, China

Abstract. This chapter deals with secured reconfigurable AADL based-
control component of embedded system (to be named by RA2DL) that
should be adapted their behaviours to environment execution accord-
ing to user requirements. For various reasons, we propose a new method
denoted by RA2DL − Pool for guarantee and control the security of
RA2DL component. RA2DL − Pool is a container of sets of RA2DL
components characterized by similar properties. Also, it holds well-
defined methods for grouping RA2DL components together. To consoli-
date RA2DL−Pool technology, we will put a set of security-mechanisms
divided into two families: (i) Authentication Mechanism where all users
must authenticate to access to the reserved services of RA2DL−Pool or
RA2DL components and (ii) Access Control Mechanism to control the
access to the RA2DL components. We model and verify this solution and
develop a tool for its simulation by taking a real-case study dealing with
the Body-Monitoring System (BMS) as a running example.

Keywords: Pooling · Component-based approach · Dynamic recon-
figuration · Security · Authentication · Access control · RA2DL ·
Implementation · Modelling · Evaluation

1 Introduction

Nowadays in the academy and manufacturing industry, many research works
have been made to deal with real-time reconfiguration of embedded control sys-
tems. The new generation of these systems are addressing today a new crite-
ria such as flexibility and agility. To reduce their cost, these systems have to
be changed and adapted to their environment without any disturbance. We are
interested in this chapter in the reconfigurable AADL technology. AADL compo-
nent is a software unit to be encoded with a set of algorithms that implement its
control functions. Each algorithm is activated by corresponding external event-
data inputs, and generally produces the results of its execution on corresponding
data-event outputs.
c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 89–110, 2016.
DOI: 10.1007/978-3-319-56390-9 5

90 F. Adaili et al.

The usability of the embedded and reconfiguration technologies in the infor-
mation systems is not only a concern of major corporations and governments
but also an interest of individual users. Due to this wide use, many of these
systems manage and store information that is considered sensitive, such as per-
sonal or business data. The need to have secured components for each system
that contains such information becomes a necessity rather than an option [16].
The embedded components [17] are getting increasingly connected and are more
and more involved in networked communications. The users of these components
are now able to execute almost all the network/internet applications. These com-
ponents are also increasingly involved in the transfer of secured data through
public networks that need protection from unauthorized access. Thus the secu-
rity requirements in embedded systems have become critical.

Traditional security research has been focusing on how to provide assurance
on confidentiality, integrity, and availability [8]. However, with the exception
of mobile code protection mechanisms, the focus of past research is not how to
develop secured software that is made of components from different sources. Pre-
vious research provides necessary infrastructures, but a higher level perspective
on how to use them to describe and enforce security, especially for component-
based systems, has not received sufficient attention from research communities
so far.

We define in a previous paper [10] a new concept of components named
RA2DL as a solution for reconfigurable AADL components composed of con-
troller and controlled modules. The first one is a set of reconfiguration functions
applied in RA2DL to adapt its execution to any evolution in the environment,
described by three reconfiguration forms:

(i) Form 1: Architectural level: modifies the component architecture when
particular conditions are met. This is made by adding new algorithms, events and
data or removing existing operations in the internal behaviors of the component.

(ii) Form 2: Compositional level: modifies the composition of the internal
components (algorithms) for a given architecture.

(iii) Form 3: Data level: changes the values of variables without changing
the component algorithms, and the second one is a set of input/output events,
algorithms, and data as represented by reconfiguration modules.

However, securing an RA2DL component is not an easy task. With rapidly
advancing hardware/software technologies and ubiquitous use of computerized
applications [19], modern software is facing challenges that it has not seen before.
More and more software is built from existing components which come from
different sources. This complicates analysis and composition, even if a domi-
nant decomposition mechanism is available. Additionally more and more soft-
ware/hardware components are running in a networked environment. These net-
work connections open possibilities for malicious attacks that were not possible
in the past. These situations raise new challenges on how to handle security so
that to design a component-based architecture that is more resistant to attacks
and less vulnerable.

Towards a Secure RA2DL Based Approach 91

Facing the new challenges for security of reconfigurable RA2DL-based sys-
tems, we propose new solutions allowing the required authentification for the
access control to components under a set of constraints such as the limitation in
memory. These solutions are supported by a new concept called pool which is a
container that gathers networked RA2DL under security constraints. The con-
tainer allows the control of any operation allowing the reconfiguration of RA2DL
components as well as the access to local algorithms and data.

The chapter’s contribution is applied to a case study of an Body-Monitoring
System (BMS) that will be followed as a running example. A tool is developed
in a collaboration between LISI Lab at University of Carthage in Tunisia and
CEDRIC Lab at CNAM in France to implement and simulate the security in
the case study.

The current chapter is organized as follows: We discuss in Sect. 2 the orig-
inality of the chapter by studying the state of the art. Section 3 describes the
background of RA2DL. Section 4 defines the new extension for secured RA2DL
components. We expose in Sect. 5 the case study: Body-Monitoring System
(BMS) and how the implementation is performed to secure RA2DL. Section 6
concludes the chapter and gives some perspectives as a future work.

2 State of the Art of Secured Component-Based Design
Approaches

In this section, we present a state of the art of secured component-based design
approaches. In [6], the authors present a classification of component-based sys-
tems by describing software components as independent units that interact to
form a functional system. A component does not need/have to be compiled before
it is used. Each component offers services to the rest of the system and adopts
a provided interface that specifies the services that other components can use.

The authors in [19] present a treatment of an important security aspect,
access control, at the architecture level and modeling of security subject,
resource, privilege, safeguard, and policy of architectural constituents. The mod-
eling language, Secure xADL, is based on the existing modular and extensible
architecture description language.

In [7], the authors propose a QA (Quality Assurance) model for component-
based software which covers component requirement analysis, component
development, component certification, component customization, and system
architecture design, integration, testing and maintenance. An extension of the
Component Object Model (COM), Distributed COM (DCOM), is a protocol
that enables software components to communicate directly over a network in a
reliable, secure, and efficient manner. DCOM is designed for use across multiple
network transports, including internet protocols such as HTTP. When a client
and its component reside on different machines, DCOM simply replaces the local
interprocess communication with a network protocol. Neither the client nor the
component is aware of the changes of the physical connections.

92 F. Adaili et al.

In [9], Rugina et al. present an iterative dependency-driven approach for
dependability modeling using AADL. This approach is a part of a complete
framework that allows the generation of dependability analysis and evaluation
models from AADL models to support the analysis of software and system archi-
tectures in critical application domains.

AADL and OSATE tools can be used to validate the security of systems
designed using MILS4 architecture [11]. The work in [13] uses two mechanisms
to modularize or divide and conquer in secure systems: partitions, and separation
into layers. The MILS architecture isolates processes in partitions that define a
collection of data objects, code, and system resources and can be evaluated
separately. Each partition is divided into the following three layers: Separation
Kernel Layer, Middleware Service Layer and Application Layer each of which is
responsible for its own security domain and nothing else.

In [14], the author presents the extension UMLsec of UML that allows to
express security relevant information within the diagrams in a system specifica-
tion. UMLsec is defined as an UML profile using the standard UML extension
mechanisms. In particular, the associated constraints give criteria to evaluate
the security aspects of a system design by referring to a formal semantic of a
simplified fragment of UML.

In [4], Bernstein define a Docker (www.docker.com) is an open source project
providing a systematic way to automate the faster deployment of Linux applica-
tions inside portable containers. Basically, Docker extends LXC with a kernel-
and application-level API that together run processes in isolation: CPU, memory,
I/O, network, and so on. Docker also uses namespaces to completely isolate an
applications view of the underlying operating environment, including process
trees, network, user IDs, and file systems.

Docker containers are created using base images. A Docker image can include
just the OS fundamentals, or it can consist of a sophisticated prebuilt application
stack ready for launch. When building images with Docker, each action taken
(that is, command executed, such as apt-get install) forms a new layer on top of
the previous one. Commands can be executed manually or automatically using
Dockerfiles.

Note that, no one in all related works deals with secured reconfigurable com-
ponents. We propose in this chapter a new concept of security of RA2DL compo-
nents to be named RA2DL − Pool that allows: (i) Grouping of RA2DL compo-
nents that have the same similar properties. (ii) Associating to each RA2DLPool
a security mechanism like authentication and access control mechanisms.

3 RA2DL Background

We defined in a previous paper [10] the concept of RA2DL components as an
extension of reconfigurable AADL [21] (Architecture Analysis and Design Lan-
guage). RA2DL as depicted in Fig. 1 is composed of controller and controlled
modules where the first one is a set of reconfiguration functions applied in AADL,
and the second one is a set of input/output events, algorithms, and data. The
controlled module is described by the following four modules:

www.docker.com

Towards a Secure RA2DL Based Approach 93

IEM (Input Events Module): This module processes the reconfiguration of input
events (IE) stored in the IEDB database of input events. It defines and
activates at a particular time a subset of events to execute the corresponding
algorithms in RA2DL.

OEM (Output Events Module): This module processes the reconfiguration of
output events (OE) stored in the OEDB database of output events. It defines
and activates at a particular time a subset of events to be sent once the cor-
responding algorithms finish their execution in RA2DL.

ALM (Algorithms Module): This module processes the reconfiguration of the
active algorithms (addition or removal) at a particular time in order to be
coherent with active input and output events of IEM and OEM . These
algorithms are stored in the ALDB database of algorithms.

DM (Data Module): This module processes the reconfigurations of data in
RA2DL in coherence with the rest of modules. It is stored in the DDB data-
base of data values.

We focus on three hierarchical reconfiguration levels in RA2DL:

(i) Form 1: Architectural level: Deals with the changes of the architecture of
the RA2DL component when particular conditions are satisfied. In this case, it
is possible to add, remove or also change the internal behavior of the component
in IEM,OEM,ALM and DM . We denote by ΨCmp the big set in ALDB of
all the possible algorithms involved in the different implementations of the com-
ponent Cmp, which is implemented at any particular time t by a subset ξCmp

that represents the set of algorithms involved in a particular implementation
ξCmp ⊆ ΨCmp. We model the architectural level AL by a finite state machine
SAL such that each state of SAL corresponds to a particular implementation of
IEM,OEM,ALM and DM .

SAL= (ΨCmp, O, δ), where:

O is a set of n states in SAL(O= {Si
AL | i ∈ 1..n}),

δ is a state-transition function ΨCmp x O → ΨCmp xO.

(ii) Form 2: Compositional level: This level keeps the same architecture
in Cmp but just changes the composition of algorithms, input-output events in
order to adapt the component to its environment. It is formalized by different
Composition State Machines CSM , such that each one CSM corresponds to
a particular state in the Architecture Level SAL. For each state S i

AL in SAL,
we define in the second hierarchical level (Composition Level CL) a particular
state machine to be denoted by Si

CL. Each state in Si,j
CL in Si

CL defines a par-
ticular composition of the subset of algorithms and input-output events. This
composition affects a priority to each algorithm in order to get a deterministic
execution model of the AADL component Cmp. We denote by Γ (δCmp) the set
of all possible execution models of algorithms of δCmp at the composition Level.

94 F. Adaili et al.

SCL= (Γ (δCmp), P, γ), where:

P is a set of m composition states in SCL(P= { Si
CL | i ∈ 1..m}),

γ is a state-transition function Γ (δCmp) x P→ Γ (δCmp) xP.

(iii) Form 3: Data level: A reconfiguration scenario Ri,j
CL at Composition

Level CL, is a transition from a state Si
CL to another state Si

CL of SCL. The
reconfiguration of the AADL component Cmp at the third hierarchical level DL
corresponds to the update of data. We define for each state Si

AL of SAL and for
each state Sj

CL of SCL a new state machine SDL where each state corresponds
to new values to be affected to data belonging to μCmp under the composition
Si
CL. Let Γ (μCmp) be the set of all possible values of data under the composition

Sj
CL.

This level deals with the light reconfiguration of data of the RA2DL com-
ponent. It is formalized by a set of Data State Machines where each state of
them corresponds to particular values of data. We define for each state Si

AL of
SAL and for each state Si,j

CL of Si
CL a new state machine Si,j,k

DL where each state
corresponds to new values of data.

SDL= (Γ (μCmp), Q, ϑ), where:

Q is a set of k composition states in SDL(Q= { Si
DL | i ∈ 1..k}),

ϑ is a state-transition function Γ (μCmp) x Q → Γ (μCmp) xQ.

Fig. 1. Architecture of an RA2DL component.

Towards a Secure RA2DL Based Approach 95

In another extension in [1] for enhancing the execution of RA2DL compo-
nents, a new execution model is proposed which is composed of three layers: (i)
Middleware Reconfiguration level that handles the input reconfiguration
flows, (ii) Execution Controller level to control the execution and reconfigu-
ration of RA2DL and (iii) Middleware Synchronization level that controls
and manages the synchronization of the reconfiguration. Additionally, we pro-
posed a new approach to coordinate several RA2DL components in a distributed
architecture based on a coordination matrix.

Because of the resource limitations in adaptive systems, satisfying a non-
functional requirement such as security requires careful balance and trade-off
with other properties and requirements of the system such as performance, mem-
ory usage and access rights of the RA2DL. This further emphasizes the fact that
security cannot be considered as a feature that is added later to the design of an
RA2DL component. It needs to be considered from early stages of development
and along with other requirements. In fact, the security by design approach as
defined by Ray and Cleaveland [18] in software engineering ensures that secu-
rity is addressed at the point of conception to avoid the security vulnerabilities.
Considering the characteristics of RA2DL components, major impacts of security
features in these systems are based on performance, power consumption, flexibil-
ity, maintainability and cost [15]. Therefore in the design of RA2DL components,
implications of introducing security decisions should be taken into account and
analyzed. Several related works do not provide solutions to develop security of
RA2DL components of adaptive embedded systems. The current chapter pro-
poses new extended solutions to secure an RA2DL component. However, in this
work we want to extend this study by considering a new architecture of secured
RA2DL-based pools.

4 New Extension for Secured RA2DL

In this section, we enrich RA2DL by security mechanisms that undergo such a
failure to enhance their execution and simulation.

4.1 Motivation: RA2DL-Pool

Security is an aspect that is often neglected in the design of adaptive sys-
tems. However, the use of these systems for critical applications such as con-
trolling power plants, vehicular systems control, and medical devices [20] makes
security considerations even more important. Also because of the operational
environment of adaptive systems and the reconfiguration actions applied by an
RA2DL component. To allow the required security, we introduce the concept of
RA2DL−Pool as a container which is an abstract class that offers different ser-
vices dealing with security, where each RA2DL − Pool has a level of sensitivity
of the information of its RA2DL components. RA2DL − Pool container serves

96 F. Adaili et al.

as a general purpose holder of other components. It holds well-defined methods
for grouping RA2DL components together. RA2DL−Pool is represented by the
following elements:

– Controller: it is the crucial part of the pool that contains methods and
represents firstly the interface between the user and the pool, and secondly
between the pool and the RA2DL components,

– Tables: there are three kinds of tables: use table (UT), reconfiguration table
(RT) and security table (ST),

– Database: is the database containing the sets of RA2DL components,
– Reconfiguration Scenarios: define the set of reconfiguration scenarios real-

ized in pool or in its RA2DL components. Each scenario will be applied in
relation with the three tables (UT, RT and ST),

– RA2DL: it is the RA2DL component with its algorithms and input/output
ports.

Figure 2 reproduced from [2] presents the class diagram of RA2DL − Pool.
An RA2DL − Pool container holds a set of RA2DL components with a set of
methods. This set of components has a set of methods that describe how to
examine and add or delete components to the RA2DL − Pool. It contains the
following methods described in Table 1 presented in [2].

Fig. 2. Class diagram of RA2DL-Pool.

Towards a Secure RA2DL Based Approach 97

Table 1. RA2DL-pool methods.

Method Description

getRA2DL () Number of components within the RA2DL − Pool

Component-getRA2DL(int
position)

Component at the specific position

Component�� getRA2DL () Array of all the RA2DL components held within the

container

RA2DL-add (Component

RA2DL, int position)

Adds RA2DL component to RA2DL − Pool at position

add (Component RA2DL,
RA2DL constraints)

Layouts that require additional information

public void remove (int index) Deletes the RA2DL at position index from the
RA2DL − Pool

remove (RA2DL component) Deletes the RA2DL from the RA2DL − Pool

removeAll () Removes all RA2DL from the RA2DL − Pool

boolean isAncestorOf (RA2DL) Checks if the RA2DL is a parent of container

addContainerListener (pool) Registers listener as a controller of RA2DL-Pool

removeContainerListener (pool) Removes listener as an interested listener of RA2DL-Pool

processEvent (RA2DLEvent e) Receives RA2DL events with RA2DL − Pool as its target

addNotify () Creates the peer of all the components within it

removeNotify () Destroys the peer of RA2DL contained within it

Insetsgetinsets() Gets the containers current insets

list() Useful method to find out what is inside a container

4.2 Security Mechanisms for RA2DL

To consolidate the RA2DL − Pool technology, we will put a set of security-
mechanisms divided into two families are described in Fig. 3 reproduced from [2]:

Authentication Mechanism. This is a critical mechanism where all users
must authenticate to access to the reserved services of RA2DL−Pool or RA2DL
components. This mechanism is always in relation with the user table (UT),
where the columns u are the identifiers of users (id user) and lines s represent
the services (services user). To implement the authentication mechanism, we
use RADIUS (Remote Authentication Dial-In User Service) is a client/server
protocol that runs in the application layer developed by Livingston Enterprise
[22], which is a networking protocol that provides centralized Authentication,
Authorization, and Accounting (AAA) management for users who connect and
use a network service. The principle of the authentication of an RA2DL with
RADIUS is as follows:

98 F. Adaili et al.

Fig. 3. Secured RA2DL method.

1. the Controller executes a connection request. UT table recovers the identifi-
cation information,

2. the Controller transmits this information to the target service in RA2DL,
3. the target component receives the connection request from the Controller,

controls and returns the configuration information required for the user to
provide or deny access,

4. Controller refers to the user an error message if it fails an authentication.

Access Control Mechanism. This mechanism comes just after authentication
to control the access to the RA2DL components. Two tables are used in this case:
security and reconfiguration tables. The first one is the security table ST which
contains in lines (p) all the user privileges (privilege user) and in columns (u)
the (id user). The second one is the reconfiguration table (RT) that contains in
lines (r) reconfigurations identifiers (id reconf) and in columns (c) the identifiers
of RA2DL components (id RA2DL).

This mechanism may be represented by a triplet (S,C,Msc) where S denotes
the service, C denotes the RA2DL component (or RA2DL-pool) and Msc that
maps each pair (C and S) to a set of access rights.

The matrix shown in Fig. 4 shows that the right of access r is associated with
the service (Subject) Sj and Cj RA2DL component.

Figure 5 presents the sequencing of the interaction between the RA2DL com-
ponents and the RA2DL-Pool. The main goal is to show this interaction and
how to apply authentication and access control mechanisms.

Figure 6 highlights the activity of these two mechanisms and tests in order
to achieve a secure RA2DL component.

Towards a Secure RA2DL Based Approach 99

Fig. 4. Access control matrix.

Fig. 5. Sequence diagram.

100 F. Adaili et al.

Fig. 6. Activity diagram.

4.3 Architecture of Secured RA2DL-Based Pools

We present in Fig. 7 the class diagram of the secured RA2DL-based pool.
This diagram represents the architecture of RA2DL-based pools with the static
aspect of the relation between the RA2DL components and the pool. It does
not provide any information about its behavior. The architecture of secured
RA2DL-based pools is composed of the following distinct classes: (i) RA2DL:
The main class of the architecture, the component concerned by the security
concept, (ii) RA2DL − Pool: It is the container of RA2DL components, (iii)
Security: Is an association between RA2DL and RA2DL-Pool which represents
the security-mechanisms, (iv) RA2DL − Soft: It is the software component of
RA2DL, (v) RA2DL − Hard: It is the hardware component of RA2DL, (vi)
Algorithm: Is a set of methods to be executed by each RA2DL component,
(vii)Reconfiguration: Represents all of the reconfiguration scenarios to execute
with RA2DL, (viii) Architecture: Describes the reconfiguration scenarios that
touch on the RA2DL architecture, (ix) Structure: Describes the reconfigura-
tion scenarios that touch on the RA2DL composition or structure, (x) Data:
Describes the reconfiguration scenarios that touch on the RA2DL data, (xi)
EventPort: Port for input/output event of RA2DL, (xii) DataPort: Port for
input/output data of RA2DL.

4.4 Modelling and Verification

We propose in this section the modelling and verification of the new architecture
of secured RA2DL-based pools by using UPPAAL [3]. Firstly, we model the pool
with its security aspect. Secondly we check a set of properties to ensure the
security of the pool.

Towards a Secure RA2DL Based Approach 101

Fig. 7. Architecture of a secured RA2DL-based pool.

Modelling of Secured RA2DL-Based Pool. We propose in Fig. 8 Finite
State Machine-based models of RA2DL-based Pool in order to show the interac-
tion between the various states and to verify also some properties defined in user
requirements. We present in the following a description of all the states and tran-
sitions characterizing this model. RA2DL-Pool is assumed to be a set of timed
automaton, that run in parallel and communicate thanks to global variables.

Fig. 8. Modelling of secured RA2DL-Based pools.

102 F. Adaili et al.

The states of this model are described as follows: start to start the querying
or the connection of RA2DL − pool. Controller represents the first contact with
the pool, in this state the checking of id user is important after verification of the
password user in the table UT . If the authentication is accepted and the pass-
word is checked, it can go to the state Reconfiguration which represents all the
reconfiguration scenarios. After the verification of the following parameters: (i)
id sr for the IDs of scenarios, privilege user for the privilege of the user in the
table ST and (iii) id reconf for the IDs of the reconfiguration in the table RT . If
all of the IDs are accepted, then the user may apply the reconfiguration in the tar-
get RA2DL component after checking the id RA2DL. A database is associated
to this level to facilitate the reconfiguration of the RA2DL components.

Verification of Secured RA2DL-Based Pool. We propose in this section
to check the relevance of the our solution and the contribution the following
properties in order to verify the security of the RA2DL components.

– Property 1: (Controller[].check id user)AND (UT[].check passeword user):
for each connection with the pool, we should check the user authentification
by using the UT table,

– Property 2: (Reconfiguration[].check id sr) AND (RT[].check id reconf):
before the execution of any reconfiguration scenario, it is important to check
if it is registered in the reconfiguration table (RT),

– Property 3: (Reconfiguration[].Reconfigure! ⇒ RA2DL[].check id RA2DL)
AND (ST[].check privilege user): this property concerns the verification of
the access control mechanism,

– Property 4: RA2DL[].save ⇒ Database[].check id db: each RA2DL com-
ponent should be imperatively saved in a Database to facilitate the use of
RA2DL components and to minimize the execution time,

– Property 5: (Controller[] AND Reconfiguration[] AND RA2DL[] AND Data-
base[] AND ST[] AND RT[] AND UT[]) not deadlock: the system is deadlock-
free.

The verification of these properties is summarized in Table 2 already shown
in [2].

We show the validation of the all properties of our RA2DL component in
Fig. 9.

5 Case Study and Implementation

We use as a running example in the current chapter the body-monitoring system
(BMS) to evaluate the chapter’s contribution.

Towards a Secure RA2DL Based Approach 103

Table 2. Verification results.

Property Result Calculation time (sec) Consumed memory (Mo)

Property 1 True 10.52 5.72

Property 2 True 9.12 4.82

Property 3 True 5.32 3.20

Property 4 True 13.25 6.56

Property 5 True 8.23 4.37

Fig. 9. Validation properties.

5.1 Case Study: Body-Monitoring System (BMS)

During the last few years there has been a significant increase in the num-
ber and variety of wearable health monitoring devices ranging from simple
pulse monitors, activity monitors, and portable Holter monitors, to sophisti-
cated and expensive implantable sensors. The Body-Monitoring System (BMS)
[12] is designed as a mobile device that is able to collect measured data and to
act according to instructions set by a supervisor. The system consists of a body-
monitoring network. In order to recognise the monitored person’s state, the mon-
itor unit connects to various body sensors and i/o devices by using either wired or
wireless communication technologies. Data from all sensors are collected, stored
and analysed at real-time and, according to the analysis, actions may then be
performed. A computer is used as an interface to the body-monitoring network,
and developed software allow a supervisor to configure the monitor unit for the
monitored person, to connect sensors and i/o devices, define and upload instruc-
tions for monitoring and download collected data describe in Fig. 10 reproduced
from [2].

The monitor unit software consists of a communication module (responsible
for connecting and controlling sensors, and for gathering and pre-processing
measured data), a storage module (for storage of collected data), and a policy
interpretation module responsible of controlling the behaviour of the monitor
unit according to instructions defined by a supervisor.

Two types of drivers are introduced. The role of a communication driver is
to hide the way in which data is transmitted. There is one driver for every type
of communication interface, e.g. a Bluetooth driver or an IEEE 802.11b driver.
The communication driver does not care about the data itself; this is the role
of device drivers. Each type of sensor has its own device driver. When a device

104 F. Adaili et al.

Fig. 10. Overview of the Body Monitoring System [5].

driver receives a message from one of its sensors it decodes the message and
informs the policy engine about the state of the sensor. To send/receive a message
to/from a sensor, the device driver uses the corresponding communication driver.

To secure this system, we must take into account these steps: (i) make the
grouping of RA2DL components according to similar characteristics in RA2DL-
Pool. (ii) assign for each RA2DL-pool a security level (depending on the degree
of importance of the RA2DL components that they contain). (iii) allocate for
each RA2DL-pool a security mechanism.

Running Example: We group the RA2DL components of BMS system in five
RA2DL-Pools as shown in Fig. 11. (i) RA2DL-Pool 1: includes the following
RA2DL components: RA2DL-G for the Glucose detection, RA2DL-C for the
chloride detection and RA2DL-W for the water detection. (ii) RA2DL-Pool 2:
includes the following RA2DL components: RA2DL-L for the lactate detection
and RA2DL-PH for the PH detection. (iii) RA2DL-Pool 3: includes the follow-
ing RA2DL components: RA2DL-DM for the Diabetes mellitus detection and the
RA2DL-BP for the Blood pressure. (iv) RA2DL-Pool 4: contains the display
device which is the component RA2DL-Mobil. (v) RA2DL-Pool 5: contains the
RA2DL-Soft for the transmission of data with a protocol until RA2DL-Mobil.

5.2 Implementation

We present in this section the tool of the BMS system that we developed in
LISI Laboratory at INSAT Institute of University of Carthage in Tunisia and
CEDRIC Laboratory at National Conservatory of Arts and Crafts of Paris in
France. Figure 12 reproduced from [10] shows the tool offers the possibility to
create all reconfiguration scenarios of the RA2DL component (addition, removal
and update of algorithms, events and data) when any problem occurs.

Towards a Secure RA2DL Based Approach 105

Fig. 11. Object diagram of BMS.

Fig. 12. Interface for reconfiguration architecture of RA2DL.

We assume five pools with their parameters such as the number of RA2DL
components in pool, Worst Case Execution Time (WCET), the authentication
and the access control mechanisms (Fig. 13).

106 F. Adaili et al.

Fig. 13. RA2DL-Pools of BMS system.

Fig. 14. Test of authentification mechanism.

Figure 14 reproduced from [2] shows the connectivity test of the different
pools according to the authentication mechanisms and also to check the config-
uration between the various RA2DL components in each pool.

Running Example: The application of our approach to the BMS case study
is illustrated in Table 3 reproduced from [2], where we give a security level (S.L)

Towards a Secure RA2DL Based Approach 107

Fig. 15. Result of evaluation.

Table 3. Running example.

Security level Authentication mechanism Access control mechanism Security

Pool 1 1 No Yes Yes

Pool 2 2 Yes No Yes

Pool 3 6 Yes Yes Yes

Pool 4 5 Yes Yes Yes

Pool 5 5 Yes Yes Yes

for the five pools depending on the sensitivity of the comprising components. In
the BMS system, the RA2DL-pool 3 is the most secured and RA2DL-pool 1 is
the less secured one. Both security mechanisms are applied to the five pools.

5.3 Evaluation

This section is devoted mainly to test our approach and evaluate the execution
time. Ten assessments are applied to the two mechanisms that are focused on two
stolen: RA2DL without pool and RA2DL with pool of the BMS system. We show
in Fig. 15 reproduced from [2] the results of the evaluation. We are interested in
response time gains for secured and not secured RA2DL components.

The proposed approach has the following advantages:

(a) Functionality: RA2DL component in RA2DL−Pool are at a functional
level much more adaptable and extendable than traditional RA2DL components.

(b) Reusability: A reusability is an important characteristic of a high-
quality RA2DL component. Programmers should design and implement RA2DL
components in such a way that many different programs can reuse them.

108 F. Adaili et al.

Table 4. Comparison between Pool and Docker.

Pool Docker

Main goal Secure RA2DL Component Secure portable applications

Continent RA2DL component Applications

System RA2DL-Based system OS

Relationship between them Yes No

Security mechanism Yes No

(c) Maintainability: In BMS system a piece of functionality ideally is
implemented just once. It is self-evident that this results in easier maintenance
of system, which leads to lower cost, and a longer life.

We shows in Table 4 a comparative study between our approach Pool con-
tainers and Docker containers.

The RA2DL-Pool is a solution to secure in run-time each RA2DL component-
based systems. By this solution the RA2DL component has become dynamic
and secured. None of the existing works has treated the security of the RA2DL
components as our method did.

6 Conclusion

Our work consisted, through this chapter, in proposing a novel approach for a
required security in adaptive RA2DL control component based systems, to model
and verify security control systems sharing adaptive resources. Whence, we chose
to enhance RA2DL component to support security check. We proposed, then, a
new and original solution to securing RA2DL component. Firstly, we define a
new grouping methodology entitled RA2DL-Pool which has its own methods for
the grouping of RA2DL components according to their similarities and security
techniques. Secondly, we propose two crucial mechanisms to control the security
in RA2DL-Pool: Authentication and access control mechanism. The relevance
of our solution was proved thanks to model-checking using UPPAAL tool. This
approach is original since RA2DL-Pool is a new formalism dedicated to secure
RA2DL based control component.

The next step is to apply this contribution on Body-Monitoring system
(BMS) by the grouping of these RA2DL components in RA2DL-Pool, we assign
for each Pool a sensitivity level of these components. We plan in the future works
to study the flexibility of RA2DL component in the network that links different
devices of RA2DL-based systems. This work will be extended for different real-
time aspects of RA2DL or in the run-time tests of components once deployed
on the target devices.

Towards a Secure RA2DL Based Approach 109

References

1. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: New solutions for useful
execution models of communicating adaptive RA2DL. In: Fujita, H., Guizzi, G.
(eds.) SoMeT 2015. CCIS, vol. 532, pp. 87–101. Springer, Cham (2015). doi:10.
1007/978-3-319-22689-7 7

2. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl-pool: new useful solu-
tion to handle security of reconfigurable embedded systems. In: Proceedings of
the 11th International Conference on Evaluation of Novel Software Approaches to
Software Engineering (ENASE), pp. 102–111, Rome, Italy (2016)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). doi:10.1007/BFb0020949

4. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

5. Bieliková, M.: A body-monitoring system with EEG and EOG sensors. J. ERCIM
News 49, 50–52 (2002)

6. Brereton, P., Budgen, D.: Component-based systems: a classification of issues.
Computer 33(11), 54–62 (2000)

7. Xia Cai, M.R., Lyu, Wong, K.-F., Ko, R.: Component-based software engineering:
technologies, development frameworks, and quality assurance schemes. In: Sev-
enth Asia-Pacific Software Engineering Conference (APSEC 2000), Proceedings,
pp. 372–379 (2000)

8. Clements, P.C.: A survey of architecture description languages. In: Proceedings
of the 8th International Workshop on Software Specification and Design (IWSSD
1996), p. 16, Washington, DC, USA. IEEE Computer Society (1996)

9. Rugina, A.E., Kanoun, K., Kaâniche, M.: An architecture-based dependability
modeling framework using AADL. In: 10th IASTED International Conference on
Software Engineering and Applications (SEA 2006) (2006)

10. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl: new flexible solution
for adaptive AADL-based control components. In: Proceedings of the 5th Inter-
national Conference on Pervasive and Embedded Computing and Communication
Systems, pp. 247–258 (2015)

11. Hansson, J., Feiler, P.H., Morley, J.: Building secure systems using model-based
engineering and architectural models. CrossTalk J. Defense Softw. Eng. 21(9), 12
(2008)

12. Husemann, D., Steinbugler, R., Striemer, B.: Body monitoring using local area
wireless interfaces. US Patent Ap. 10/406,865, 7 October 2004

13. Oman, P., Alves-Foss, J., Harrison, W.S., Taylor, C.: The MILS architecture for
high assurance embedded systems. Int. J. Embedded Syst. 2, 239–247 (2006)

14. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). doi:10.1007/3-540-45800-X 32

15. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension
in embedded system design. In: Proceedings of the 41st Annual Design Automa-
tion Conference (DAC 2004), New York, NY, USA, pp. 753–760. ACM (2004).
Moderator-Ravi, Srivaths

http://dx.doi.org/10.1007/978-3-319-22689-7_7
http://dx.doi.org/10.1007/978-3-319-22689-7_7
http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1007/3-540-45800-X_32

110 F. Adaili et al.

16. Mouratidis, H., Kolp, M., Faulkner, S., Giorgini, P.: A secure architectural descrip-
tion language for agent systems. In: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
New York, NY, USA, pp. 578–585. ACM (2005)

17. Anoop, M.S.: Security needs in embedded systems. Cryptology ePrint Archive,
Report 2008/198 (2008). http://eprint.iacr.org/

18. Ray, A., Cleaveland, R.: A software architectural approach to security by design.
In: 30th Annual International Computer Software and Applications Conference
(COMPSAC 2006), Chicago, Illinois, USA, 17–21 September, vol. 2, pp. 83–86
(2006)

19. Ren, J., Taylor, R.: A secure software architecture description language. In: Work-
shop on Software Security Assurance Tools, Techniques, and Metrics, pp. 82–89
(2005)

20. Salem, M.O., Ben Mosbahi, O., Khalgui, M., Frey, G.: ZiZo: modeling, simula-
tion and verification of reconfigurable real-time control tasks sharing adaptive
resources - application to the medical project bros. In: Proceedings of the Interna-
tional Conference on Health Informatics, pp. 20–31 (2015)

21. Vergnaud, T., Pautet, L., Kordon, F.: Using the AADL to describe distributed
applications from middleware to software components. In: Vardanega, T., Wellings,
A. (eds.) Ada-Europe 2005. LNCS, vol. 3555, pp. 67–78. Springer, Heidelberg
(2005). doi:10.1007/11499909 6

22. Yoon, E.-J., Lee, W.-S., Yoo, K.-Y.: Secure PAP-based RADIUS protocol in wire-
less networks. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. CCIS, vol.
2, pp. 689–694. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74282-1 77

http://eprint.iacr.org/
http://dx.doi.org/10.1007/11499909_6
http://dx.doi.org/10.1007/978-3-540-74282-1_77

AHR: Human-Centred Aspects of Test Design

Maria Spichkova1(B) and Anna Zamansky2

1 School of Science (Computer Science and IT), RMIT University,
414-418 Swanston Street, Melbourne 3001, Australia

maria.spichkova@rmit.edu.au
2 Information Systems Department, University of Haifa,

Carmel Mountain, 31905 Haifa, Israel
annazam@is.haifa.ac.il

Abstract. To apply model-based testing successfully and effectively, a complete,
coherent and easy-to-read model of a system has to be constructed. If the model
is incomplete, inconsistent or inaccurate due to human error, the corresponding
test development becomes useless or even dangerous: the developers might rely
on the test results that do not correctly reflect the actual system-under-test. In this
chapter we discuss human-centred aspects of model-based test design, focusing
on combinatorial testing. These aspects are implemented within a formal frame-
work for combinatorial test design. The framework is called AHR by its core
features: Agile, Human-centred and Refinement-oriented. The goal of the frame-
work is to provide a human-centered iterative, refinement-based construction of
system models and the corresponding test plans, as well as to supports reuse and
refinement of the developed test plans at different levels of abstraction.

Keywords: Testing · Usability · Combinatorial test design · Visualisation ·
Formal methods

1 Introduction

The advantage of model-based testing (MBT) is that the testers can concentrate on sys-
tem model and constraints instead of the manual specification of individual tests, cf.
[3,7]. MBT heavily relies on models of a system and its environment to derive test
cases for the system [30]. Thus, if the model is incomplete, inconsistent or inaccurate
due to human error, the corresponding test development becomes useless or even dan-
gerous: the developers might rely on the test results that do not correctly reflect the
actual system-under-test.

A model is an abstraction of the system, where the goal of abstraction is to focus the
core aspects of the system required for analysis at the corresponding development stage,
while hiding the complexity of a system and its environment. Often it is not enough to
have a single level of abstraction, i.e., several refinement steps may be required, each
time using a more detailed representation of the system, cf. also [19]. Development
methodologies for complex systems therefore often integrate different abstraction lev-
els of the system representation. For each level the following crucial questions have to

c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 111–128, 2016.
DOI: 10.1007/978-3-319-56390-9 6

112 M. Spichkova and A. Zamansky

be answered: (1) Do we require the whole representation of a system to analyse its core
properties? (2) What test cases are required on this particular level of abstraction? (3)
How do we represent the system at this level to increase the readability and understand-
ability of the model, as well as to increase the testability of the system?

In most cases, at different stages of the development cycle the developers have to
design, analyse, implement and test different behaviour aspects of the system. This leads
to the need for handling multiple abstraction levels and a systematic way of bridging
between them. However, to provide an adequate model with an sufficient abstraction
remains a strictly human activity, which heavily relies on the human factor. Construction
of complex models at several levels of abstraction heavily relies on the knowledge of
humans working in the role of software and system engineers (performing modelling
and testing tasks). This task is highly complex and error-prone, as all as has a creative
nature. Thus, there is a pressing need for human-centred MBT approaches, allowing not
only a (semi-)automatic support but also increasing readability and understandability of
the models and tests (i.e., covering the cognitive aspects of modelling and testing).

Contributions: The aim of our work is to lay the foundations for a human-centric sup-
port for the tester in model construction and test design in MBT settings. To this end we
further extend and refine AHR, a formal framework which we proposed in [24–27]. The
name AHR is derived from the core features of our framework: Agile, Human-centred,
and Refinement-oriented. The goal of the framework is to provide a human-centered
iterative, refinement-based construction of system models and the corresponding test
plans, as well as to support reuse and refinement of the developed test plans at different
levels of abstraction by semi-automatic analysis of the model and the test plans. The
framework

– allows for reusing test plans developed for an abstract level at more concrete levels;
– supports providing queries and alerts whenever the specified test plan is incomplete
or invalid;

– supports analysis of constructed models.

The presented in this chapter approach extends our work introduces at the 11th Inter-
national Conference on Evaluation of Novel Software Approaches to Software Engi-
neering [24], and is also based on our recent on MBT [25] visual logical languages
for system modelling in combinatorial test design [27]. In this chapter we focus on the
aspect of refinement in the AHR framework and demonstrate its usefulness in the con-
text of combinatorial test design. In the same context we further extend the framework
with new features, namely visualisation of spatial parameters and traceability support.

Outline: The rest of the chapter is organised as follows. Section 2 introduces general
ideas of a special kind of MBT, Combinatorial Test Design (CTD), as well as presents
the corresponding formal background. Section 3 provides the formal definitions that
build the core of AHR to support CTD within multiple abstraction levels. In Sect. 4 we
discuss possible applications the AHR framework, including traceability support, and
provide examples of use cases. Section 5 introduces the core AHR features for analysis
and visualisation of spatial system properties. In Sect. 6 we discuss the related work and
the corresponding motivation for the AHR development. In Section 7 we summarise the
chapter and propose some directions for future research.

AHR: Human-Centred Aspects of Test Design 113

2 Combinatorial Test Design: Formal Background

Combinatorial Test Design (CTD, also called Combinatorial Interaction Testing) is an
effective MBT approach that can be applied for testing of complex software systems, cf.
also [32]. CTD focuses on testing the system-under-test (SUT) having a covering array
test suite, which should cover all the combinations of the required parameter values.
As highlighted by Nie and Leung [12], one of the core advantage of CTD is that this
testing approach can detect failures triggered by the interactions among parameters in
system-under-test.

As this approach is model-based, we can test only the system behaviour that is
encoded in the model, and the system model has to be complete, coherent, easy-to-
read and easy-to-understand for a human tester. The core artefacts in CTD to model the
system behaviour are

– a finite set of parametersA = {A1, . . . ,An},
– their respective valuesV = {V(A1), . . . ,V(An)},
– and restrictions on the value combinations (system constraints).

In what follows we use the notion of interactions between the different values of the
parameters and the notion of test coverage. We also assume that all the system parame-
ters are mutually independent, i.e., none of the parameter values is determined by the
value(s) of any of other parameters.

Definition 1. An interaction for a set of system parametersA is an element of the form
I ⊆ ⋃n

1V(Ai), where at most one value of each parameterAi may appear.

Definition 2. A test (or scenario) is an interaction of size n, where n is the number of
system parameters.

Definition 3. A set of tests (scenarios) T covers a set of interactions C (denoted by
T�C) if for every c ∈ C there is some t ∈ T , such that c ⊆ t.

Definition 4. A combinatorial model E of a system with the corresponding set of para-
metersA is a set of tests (scenarios), which defines all tests overA that are executable
in the system.

Definition 5. A test plan is a triple Plan = (E,C,T), where E is a combinatorial model,
C is a set of interactions called coverage requirements, T is a set tests, and the relation
T�C holds.

The main challenge of CTD is to optimise the number of test cases, while ensuring
the coverage of given conditions. One of the most standard coverage requirements is
pairwise testing [12], where every (executable) pair of possible values of system para-
meters is considered. Experimental work shows that using tests sets with exhaustive
covering of a small number of parameters (such as pairwise testing) can typically detect
more than 50–75% of the bugs in a program, cf. [10,28]. This testing approach can be
applied at different phases and scopes of testing, including end-to-end and system-level
testing and feature-, service- and application program interface-level testing.

114 M. Spichkova and A. Zamansky

In the above terms, a pairwise test plan can be specified as any pair of the form

Plan = (E,Cpair(E),T)

where Cpair is the set of all interactions of size 2 which can be extended to scenarios
from E.

Example 1. For a running example scenario, let us consider a cyber-physical system
with two robots R1 and R2 that are interacting with each other to carry an object O
together. At some level of abstraction (let us call it Level1), a robot can be modelled by
two parameters,GM and P, representing the mode of its grippers as well as the position
of the robot within the safe-work cage. The object is then modelled only by its position
P0. Thus, the system of two robots would have five parameters:

A = {GM1,GM2, P0, P1, P2}

The system parameters GM1 and GM2 specify the gripper modes (which can be either
closed to hold an object or open) of robots R1 and R2 respectively. Let us consider that
at this level of abstraction the gripper have only two modes:

V(GM1) = V(GM2) = {open, closed}

P0, P1 and P2 represent the positions of the object and the robots. We assume at this
level of abstraction that they can be only in four possible positions:

V(P0) = V(P1) = V(P2) = {pos1, pos2, pos3, pos4}

where the position values have the following ordering pos1 < pos2 < pos3 < pos4
(one-dimensional space is assumed on this level of abstraction), and

pos2 = pos1 + 1
pos3 = pos2 + 1 = pos1 + 2
pos4 = pos3 + 1 = pos2 + 2 = pos1 + 3

In what follows let us assume pairwise coverage requirements. We now specify a meta-
operationCarry(A, B,O) to model the scenario when the robots A and B carry an object
O together, where A, B ∈ {R1,R2} and A � B. The meta-operation Carry(A, B,O) can
only be performed when the following constraints are satisfied:

– Constraint 1: The object is located exactly between the robots (i.e., the object is
located between the robots, and there is no empty position between the object and
any of the robots),

– Constraint 2: The grippers of both robots are closed.

Note that to specify the Constraint 1 precisely, it would be not enough to have a restric-
tion PA < P0 < PB, as it does not exclude the situation where the object is located
between the robots, but there is no empty position between the object and one of the
robots, e.g., PA = pos1, P0 = pos2, and PB = pos4. Figure 1 presents four examples of

AHR: Human-Centred Aspects of Test Design 115

R1 O R2

R1 O R2

R1 R2 O

R1 O R2

 pos1 pos2 pos3 pos4

 pos1 pos2 pos3 pos4 pos1 pos2 pos3 pos4

 pos1 pos2 pos3 pos4

(a) Constraint 1 is satisfied (b) Constraint 1 is violated

Fig. 1. Level1: Four examples of locations of the robots in the safe-work cage.

location of the robots in the safe-work cage: two location w ith Constraint 1 satisfied,
and two location with Constraint 1 violated.

Thus, the operation Carry(R1,O,R2) can be captured on Level1 in the following
constraint model M1

Carry(R1,O,R2)
:

P0 = P1 + 1 ∧ P2 = P0 + 1 ∧ GM1 = closed ∧ GM2 = closed (1)

where the operation Carry(R2,O,R1) can be captured on Level1 in the constraint model
M1

Carry(R2,O,R1)
:

P0 = P2 + 1 ∧ P1 = P0 + 1 ∧ GM1 = closed ∧ GM2 = closed (2)

Without any constraints, we would require 256 tests to cover all possible combinations
of the parameter values (2 × 2 × 4 × 4 × 4), but considering the full coverage of both
M1

Carry(R1,O,R2)
and M1

Carry(R2,O,R1)
, we require two tests only, cf. Table 1:

– test1 and test12 cover Carry(R1,O,R2), and
– test3 and test4 cover M1

Carry(R2,O,R1)

At the next level of abstraction, Level2, we might refine both the set of parameters
A and their corresponding values V to obtain a more realistic model of the system.
In the next section, we introduce the notion of parameter and value refinements, which
provides an explicit specification of the relations between abstraction levels to allow
traceability of the model modification and the corresponding test sets.

Table 1. Test set providing full coverage for both Carry(R1,O,R2) and M1
Carry(R2 ,O,R1)

on Level1.

testID P1 P0 P2 GM1 GM2

test1 pos1 pos2 pos3 closed closed

test2 pos2 pos3 pos4 closed closed

test3 pos3 pos2 pos1 closed closed

test4 pos4 pos3 pos1 closed closed

116 M. Spichkova and A. Zamansky

3 Refinement-Based Development Within AHR Framework

One of the key features of AHR framework is the idea of refinement: a more concrete
model can be substituted for an abstract one as long as its behaviour is consistent with
that defined in the abstract model. In what follows we refine and extend the formal
definitions provided in [24] for the notion of refinement.

Definition 6. Let us consider two sets of system parameters A = {A1, . . . ,An} and
B = {B1, . . . ,Bk}, with k ≥ n. We define a parameter refinement fromA to B

A� B

as a function R that maps each parameterAi to a set of parameters from B, so that for
two distinct parameters Ai and A j, 1 ≤ i, j ≤ n, i � j, the sets R(Ai) and R(A j) are
disjoint.

Definition 7. For a parameter refinement R : A� B, a value refinement

VR : V(A)�V(B)

maps each value v ∈ V(Ai) to the corresponding set of valuesVR(v), where

VR(v) ⊆
⋃

B∈R(Ai)

V(B)

such that if B j ∈ R(Ai), then for every v ∈ V(Ai),V(B j) ∩VR(v) � ∅.

The above definitions do not exclude the case where both R and VR are singleton
functions, i.e. functions that convert each element a to a singleton {a}. For this reason
we have to introduce the notion of concretisation.

Definition 8. If there exist parameter refinement R and value refinement VR from a
set of system parameters A to a set of system parameters B (where at least one of the
functions R andVR is not a singleton function), we say that B is a concretisation (strict
refinement) ofA with respect to R andV. We denote this byA� B.

Example 2. Let us continue with the running example of two interacting robots. At
Level1, we had the set of system parameters ALevel1 = {GM1,GM2, P0, P1, P2}. At
Level2, we refine the V(GM1) and V(GM2) to have an additional the gripper mode
mid, representing an intermediate position between open and closed (i.e., the position
when the grippers are opening or closing, but not yet completely open or closed). We
do not need to change the parameters GM1 and GM2, but we have to extend the sets
V(GM1) andV(GM2).

We also refine the abstract positions to their two-dimensional coordinates: for i ∈
{0, 1, 2}, Pi is refined to the tuple of two new parameters Xi and Yi, and the elements of
V(Pi) are mapped to the tuples of the corresponding coordinates. Thus, at Level2 we
have

ALevel2 = {X0,Y0, X1,Y1, X2,Y2,GM1,GM2}
V(X0) = V(X1) = V(X2) = {x1, x2, x3, x4}
V(Y0) = V(Y1) = V(Y2) = {y1, y2, y3, y4}
V(GM1) = V(GM2) = {open, closed,mid}

AHR: Human-Centred Aspects of Test Design 117

To represent the concretisation from Level1 to Level2, we specify the following
relations (cf. also Figs. 2 and 3):

(1) For j ∈ {1, 2}, the parameter refinement GMLevel1
j � GMLevel2

j is a singleton func-
tion. The corresponding value refinements are

VR(open) = {open}
VR(closed) = {closed}

where mid ∈ V(GMLevel2
i) does not have any corresponding element on Level1.

(2) For i ∈ {0, 1, 2}, the parameter refinement Pi� (Xi,Yi) maps an abstract position to
a tuple of two-dimensional coordinates, where the corresponding value refinements
are

VR(posk) = {(xk, y1), (xk, y2), (xk, y3), (xk, y4)}
for any k ∈ {1, 2, 3, 4}.

Without any constraints on Level2, we would require 16384 tests to cover all possible
combinations of the parameter values (2 × 2 × 4 × 4 × 4 × 4 × 4 × 4).

If we assume that the robots cannot be located diagonally to carry the object (i.e.,
the robots as well as the object should have either the same values of x-coordinates
or the same values of y-coordinates, cf. Fig. 4), the operation Carry(R1,O,R2) can be
captured on Level2 in the following constraint model M2

Carry(R1,O,R2)
:

(X0 = X1 + 1 ∧ X2 = X0 + 1 ∧ Y0 = Y1 = Y2 ∨
X0 = X1 = X2 ∧ Y0 = Y1 + 1 ∧ Y2 = Y0 + 1)
∧ GM1 = closed ∧ GM2 = closed

(3)

Fig. 2. Parameter refinement R for the concretisation from Level1 to Level2.

118 M. Spichkova and A. Zamansky

Fig. 3. Value refinement VR for the concretisation from Level1 to Level2, i ∈ {0, 1, 2} and j ∈
{1, 2}.

Definition 9. A model refinement MR is a mapping from the elements (conjuncts) of
the constraint model Mi specified on the abstraction level i over the set of parameters
A to the constraint model Mi+1, specified on the next abstraction level over the set of
parameters B, whereA� B.

Definition 10. A Test refinement TR is a mapping from the set of tests overA to the set
of tests over B, whereA� B and
R : A� B is a parameter refinement with the corresponding value refinement VR :
V(A)�V(B).

The above provides a theoretical basis for tester support: given a systemmodel based
a set of parameters A, the user can specify explicit parameter and value refinements,
which in its turn induces a system model for B and the refinement relations between
sets of tests on different abstract levels. This will be demonstrated in the next section.

4 Human-Centred Test Development

4.1 Use Case Support

Revisiting Example 1, suppose that the modeller already has constructed a model at
Level1, using the parameters from our running example on the Carry meta-operation
and providing the constraint model

GM1 = closed ∧ GM2 = closed (4)

AHR: Human-Centred Aspects of Test Design 119

R1 O R2

R1

O

R2

R1 O R2

R1

O

R2

 x1 x2 x3 x4 x1 x2 x3 x4

y1

y2

y3

y4

 y1

y2

y3

y4

 y1

y2

y3

y4

 y1

y2

y3

y4

(a) Constraint 1 is satisfied (b) Constraint 1 is violated

Fig. 4. Level2: Four examples of locations of the robots in the safe-work cage.

where the information on the position is erroneously omitted, because of a human error
on the modelling level. If we generate tests automatically, we obtain 64 tests to cover
the model (4 × 4 × 4, i.e., 4 possible positions of each robot as well as 4 possible
positions of the object).

Let us consider that the tester decided to limit the generated test set for the operation
Carry(R1,O,R2) to have one test only, e.g.,

{P1 : pos1, P2 : pos3, P0 : pos2,GM1 : closed,GM2 : closed}.

The proposed AHR framework would analyse these tests to come up with the corre-
sponding logical constraint:

GM1 = closed ∧ GM2 = closed ∧
P1 = pos1 ∧ P2 = pos3 ∧ P0 = pos2

(5)

The AHR framework checks whether the pairwise coverage is achieved by the above
two tests, and provides the corresponding alert to the tester along with the following
messages:

1. The provided and the generated constraint models are semantically
unequal.

2. The generated constraint is a stronger than the provided one.
3. Please check the informal specification of the operation constraints, and

either refine the provided constraint or select additional tests.

120 M. Spichkova and A. Zamansky

This alert would help the tester to identify missing parts of the model. Let us con-
sider that the tester then decides to changes the constraint model to (1) and select an
additional test

{P1 : pos2, P2 : pos4, P0 : pos3,GM1 : closed,GM2 : closed}.

The AHR framework would analyse the extended set of selected tests, and come up
with the new logical constraint:

GM1 = closed ∧ GM2 = closed ∧
((P1 = pos1 ∧ P2 = pos3 ∧ P0 = pos2) ∨
(P1 = pos2 ∧ P2 = pos4 ∧ P0 = pos3))

(6)

which is semantically equal to (1). In this case, AHR would provide to the tester with
the following messages:

1. The provided and the generated constraint models are semantically equal.
2. The selected tests fully cover the model.

4.2 Refinement Support

Next, assume that the system model is refined as presented in Example 2. Based on
the specification of the system parameters concretisation, the framework provides the
following suggestion for the refinement of the constraint model MCarry(R1,O,R2):

X0 = X1 + 1 ∧ X2 = X0 + 1 ∧ Y0 = Y1 + 1 ∧ Y2 = Y0 + 1 ∧
GM1 = closed ∧ GM2 = closed

(7)

To increase the readability and the traceability of the refinement steps, we the suggestion
is provided in two forms: as the constructed constraint model (7) and as a mapping from
the models on the previous and the current abstraction levels, cf. Table 2.

Table 2.Model refinement for Carry(R1,O,R2).

Level1 Level2

P0 = P1 + 1 ∧ P2 = P0 + 1 X0 = X1 + 1 ∧ X2 = X0 + 1 ∧ Y0 = Y1 + 1 ∧ Y2 = Y0 + 1

GM1 = closed GM1 = closed

GM2 = closed GM2 = closed

Depending on the semantics we give to the spatial constrains in our model, we accept
this suggestion or adapt it. If we assume that the robots can carry an object only while
having the same x-coordinates or the same y-coordinates (i.e., the robots cannot be

AHR: Human-Centred Aspects of Test Design 121

Table 3. Corrected model refinement for Carry(R1,O,R2).

Level1 Level2

P0 = P1 + 1 ∧ P2 = P0 + 1 X0 = X1+1∧X2 = X0+1∧Y0 = Y1 = Y2 ∨
X0 = X1 = X2 ∧ Y0 = Y1 + 1 ∧ Y2 = Y0 + 1

GM1 = closed GM1 = closed

GM2 = closed GM2 = closed

located diagonally to carry the object, cf. Fig. 4) the constraint model has to be specified
on Level2 as presented by (8) and Table 3.

(X0 = X1 + 1 ∧ X2 = X0 + 1 ∧ Y0 = Y1 = Y2 ∨
X0 = X1 = X2 ∧ Y0 = Y1 + 1 ∧ Y2 = Y0 + 1) ∧
GM1 = closed ∧ GM2 = open

(8)

For the corrected model (8), AHR generates 16 tests to achieve the coverage (cf. also
Table 4), and suggest the following mapping between sets of tests based on the value
refinement:

testLevel11 � {testLevel21 , testLevel22 , testLevel23 , testLevel24 }

testLevel12 � {testLevel25 , testLevel26 , testLevel27 , testLevel28 }

Please note, that according to the provided value refinement, the following tests are not
refinements of the tests specified on the previous level: testLevel29 , . . . , testLevel216 .

To increase readability of the test table, we might follow the ideas presented in [6,9].
One of the possible optimisations would be merge of the cells with the same parameter
value over the number of tests, cf. Table 5.

4.3 Traceability Support

Traceability not only between the modification in the system parameters but also
between constraint models and between test plans, helps to correct possible mistakes
more efficiently, as well as provides additional support if the system model is modi-
fied. For example, if at some stage a new constraint is identified that the meta-operation
Carry(R1,O,R2) is not possible when one of the robots is in the position pos1, the
required changes in the models and the corresponding test plans for all concretisations
of the model can be easily identified. Moreover, the AHR framework also allows analy-
sis of several branches of the refinement.

5 Visualisation of Spatial Parameters

In cases when system behaviour is based on spatio-temporal properties of the system,
it would be very helpful to provide a visualisation of the spatial aspects of the test sets.
This would

– increase readability and understandability of the test sets,

122 M. Spichkova and A. Zamansky

Table 4. Test set providing coverage for Carry(R1,O,R2) on Level2 under the constraint (7).

testID X0 Y0 X1 Y1 X2 X2 GM1 GM2

test1 x2 y1 x1 y1 x3 y1 closed closed

test2 x2 y2 x1 y2 x3 y2 closed closed

test3 x2 y3 x1 y3 x3 y3 closed closed

test4 x2 y4 x1 y4 x3 y4 closed closed

test5 x3 y1 x2 y1 x4 y1 closed closed

test6 x3 y2 x2 y2 x4 y2 closed closed

test7 x3 y3 x2 y3 x4 y3 closed closed

test8 x3 y4 x2 y4 x4 y4 closed closed

test9 x1 y2 x1 y1 x1 y3 closed closed

test10 x2 y2 x2 y1 x2 y3 closed closed

test11 x3 y2 x3 y1 x3 y3 closed closed

test12 x4 y2 x4 y1 x4 y3 closed closed

test13 x1 y3 x1 y2 x1 y4 closed closed

test14 x2 y3 x2 y2 x2 y4 closed closed

test15 x3 y4 x3 y2 x3 y4 closed closed

test16 x4 y5 x4 y2 x4 y4 closed closed

– provide a basis for the application of the AHR framework within teaching of basic
testing principles, as the cognitive load would be reduced through visualisation of the
learning tasks [13].

In AHR framework we propose to have an option to separate spatial parameters from
other kind of parameters (presented in tabular form) and represent them visually. If the
non-spatial parameters have the same values for all tests (like in our example) or for a
number of tests, then the table will be optimised correspondingly.

Thus, for our running example, both tests testLevel11 and testLevel12 for the meta-
operation Carry(R1,O,R2) on Level1 (where one-dimensional space is assumed), can
be visually represented as proposed on Fig. 5.

The sixteen tests from Table 4, whereCarry(R1,O,R2) is analysed on Level2 having
two-dimensional space, can be visually presented as proposed on Figs. 6 and 7.

6 Related Work

As pointed out by Pretschner in [14], MBT makes sense only if the model is more
abstract than the system under test. This implies that only behaviour encoded in the
model can be tested, and that different levels of abstraction must be bridged. Modelling
in MBT remains a strictly human activity, and the successful employment of MBT tech-
niques heavily relies on the human factor. As highlighted by Grieskamp in [7], one of
the barriers for the adoption of MBT in industry the steep learning curve for modelling

AHR: Human-Centred Aspects of Test Design 123

Table 5. Optimised representation of Table 4.

notations. Another barrier is the lack of state-of-the-art authoring environments, which
can provide a (semi-)automatic tool support for the human tester and help minimise the
number of human errors as well as their impact.

There are many approaches on model-based testing, e.g., [3,7]. Utting et al. pre-
sented a taxonomy of MBT approaches in [30]. There are also many approaches on
CTD, cf. [4,5,11,17,32]. However, most of them focus on the question how to gener-
ate test cases from a model in the most efficient way also achieving full coverage of
the required system properties by the generated test cases. In our approach, we com-
bine the ideas of CTD with the idea of a step-wise refinement of the system trough the
development process, also following agile modelling practices and guidelines [8,29].

Testing methodologies for complex systems often integrate different abstraction lev-
els of the system representation [2,18]. Thus, abstraction plays a key role in the process
of system modelling. An important domain in which modelling with different levels of
abstraction is particularly beneficiary is cyber-physical systems (CPSs). Several works
proposed to use a platform-independent architectural design in the early stages of sys-
tem development, while pushing hardware- and software-dependent design as late as
possible [1,15,20]. In our previous work [23], we suggested to use three main meta-
levels of abstraction for the CPS development: abstract, virtual, and cyber-physical.
The AHR framework can be applied at any of these meta-levels.

124 M. Spichkova and A. Zamansky

Fig. 5. Visual representation of spatial parameters for the tests on Level1.

Segall and Tzoref-Brill presented in [16] a tool for supporting interactive refinement
of combinatorial test plans. This tool is meant for manual modifications of existing test
plans, is align with the idea of Human-Centred Agile Test Design [26,31] where it
is explicitly acknowledged that the tester’s activity is not error-proof. This tool be a
good support for the tester, but it does not cover the following point that we consider
as crucial for development of complex systems: refinement-based development, where
the tester is working at multiple abstraction levels. We aim to cover this point in the
proposed AHR framework: If we trace the refinement relations not only between the
properties but also between test plans, this might also help to correct possible mistakes
more efficiently, as well as provide additional support if the system model is modified.

7 Summary

This chapter presents our ongoing work on human-centred test design, focusing on com-
binatorial testing and analysis of spatio-temporal properties of the systems. We propose
a formal framework AHR that is Agile, Human-centred and Refinement-oriented. AHR
could be applied both for industrial testing of systems-under-development and for teach-
ing of basic concepts of software and system testing, as its visualisation features would
significantly reduce the cognitive load while allaying the test sets.

The proposed AHR framework

– allows us to reuse test plans developed for an abstract level at more concrete levels;
– has human-centric interface providing queries and alerts whenever the specified test
plan is incomplete or invalid;

– involves analysis of the testing constraints within combinatorial testing;
– provides optimised representation of test tables to increase the readability of test
suites;

– provides visualisation of spatial parameter values.

In AHR, we integrate the ideas of refinement-based development and the agile combi-
natorial test design. The aim of this work is to increase the readability and understand-
ability of system models as well as the corresponding test sets, to conform with the
ideas of human-oriented software development, cf. [21,22].

AHR: Human-Centred Aspects of Test Design 125

Fig. 6. Visual representation of spatial parameters for the tests on Level2, test1, . . . , test8.

Our most immediate research directions is an implementation and evaluation of a
tool prototype for the proposed AHR framework. Another direction is a deeper analysis
of the visualisation techniques for the spatial as well as non-spatial parameter values,
as well as further optimisation strategies for the test sets representation.

126 M. Spichkova and A. Zamansky

Fig. 7. Visual representation of spatial parameters for the tests on Level2, test9, . . . , test16.

References

1. Blech, J.O., Spichkova, M., Peake, I., Schmidt, H.: Cyber-virtual systems: simulation, vali-
dation & visualization. In: Proceedings of the 9th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE 2014) (2014)

AHR: Human-Centred Aspects of Test Design 127

2. Broy, M.: Service-oriented systems engineering: specification and design of services and lay-
ered architectures. In: Broy, M., Grünbauer, J., Harel, D., Hoare, T. (eds.) Engineering The-
ories of Software Intensive Systems. The JANUS Approach, vol. 195, pp. 47–81. Springer,
Dordrecht (2005)

3. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J., Lott, C.M., Patton, G.C., Horowitz, B.M.:
Model-based testing in practice. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 285–294. ACM (1999)

4. Farchi, E., Segall, I., Tzoref-Brill, R.: Using projections to debug large combinatorial mod-
els. In: Proceedings of the International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 311–320. IEEE (2013)

5. Farchi, E., Segall, I., Tzoref-Brill, R., Zlotnick, A.: Combinatorial testing with order require-
ments. In: Proceedings of the International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 118–127. IEEE (2014)

6. Feng, X., Parnas, D.L., Tse, T., O’Callaghan, T.: A comparison of tabular expression-based
testing strategies. IEEE Trans. Softw. Eng. 37(5), 616–634 (2011)

7. Grieskamp,W.: Multi-paradigmatic model-based testing. In: Havelund, K., Núñez, M., Roşu,
G., Wolff, B. (eds.) Formal Approaches to Software Testing and Runtime Verification. LNCS,
vol. 4262, pp. 1–19. Springer, Heidelberg (2006). doi:10.1007/11940197 1

8. Hellmann, T.D., Sharma, A., Ferreira, J., Maurer, F.: Agile testing: past, present, and future-
charting a systematic map of testing in agile software development. In: Proceedings of the
Agile Conference (AGILE), pp. 55–63. IEEE (2012)

9. Jin, Y., Parnas, D.L.: Defining the meaning of tabular mathematical expressions. Sci. Com-
put. Program. 75(11), 980–1000 (2010)

10. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implications for
software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

11. Kuhn, R., Kacker, R., Lei, Y., Hunter, J.: Combinatorial software testing. IEEE Comput.
42(8), 94–96 (2011)

12. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11:1–11:29 (2011)

13. Pane, J., Myers, B.: Usability issues in the design of novice programming systems. School
of Computer Science Technical report CMU-CS-96-132 (1996)

14. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A.
(eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg (2005). doi:10.1007/
11526841 37

15. Sapienza, G., Crnkovic, I., Seceleanu, T.: Towards a methodology for hardware and software
design separation in embedded systems. In: Proceedings of the ICSEA, pp. 557–562. IARIA
(2012)

16. Segall, I., Tzoref-Brill, R.: Interactive refinement of combinatorial test plans. In: Proceedings
of the 34th International Conference on Software Engineering, pp. 1371–1374. IEEE Press
(2012)

17. Segall, I., Tzoref-Brill, R., Zlotnick, A.: Common patterns in combinatorial models. In: Pro-
ceedings of the International Conference on Software Testing, Verification and Validation
(ICST), pp. 624–629. IEEE (2012)

18. Spichkova, M.: Refinement-based verification of interactive real-time systems. Electron.
Notes Theor. Comput. Sci. 214, 131–157 (2008)

19. Spichkova, M.: Architecture: Requirements + Decomposition + Refinement.
Softwaretechnik-Trends 31, 4 (2011)

20. Spichkova, M., Campetelli, A.: Towards system development methodologies: from software
to cyber-physical domain. In: Proceedings of the International Workshop on Formal Tech-
niques for Safety-Critical Systems (2012)

http://dx.doi.org/10.1007/11940197_1
http://dx.doi.org/10.1007/11526841_37
http://dx.doi.org/10.1007/11526841_37

128 M. Spichkova and A. Zamansky

21. Spichkova, M., Zhu, X., Mou, D.: Do we really need to write documentation for a system?
In: Proceedings of the International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2013) (2013)

22. Spichkova, M.: Design of formal languages and interfaces: formal does not mean unreadable.
In: Emerging Research and Trends in Interactivity and the Human-Computer Interface. IGI
Global (2013)

23. Spichkova, M., Liu, H., Schmidt, H.: Towards quality-oriented architecture: integration in a
global context. In: Proceedings of the European Conference on Software Architecture Work-
shops, p. 64. ACM (2015)

24. Spichkova, M., Zamansky, A.: A human-centred framework for combinatorial test design.
In: Proceedings of the 11th International Conference on Evaluation of Novel Software
Approaches to Software Engineering, pp. 228–233 (2016)

25. Spichkova, M., Zamansky, A.: A human-centred framework for supporting model-based test-
ing. In: CAiSE 2016, pp. 105–112. CEUR (2016). http://researchbank.rmit.edu.au/view/rmit:
38416, http://ceur-ws.org/Vol-1612/

26. Spichkova, M., Zamansky, A., Farchi, E.: Towards a human-centred approach in modelling
and testing of cyber-physical systems. In: Proceedings of the International Workshop on
Automated Testing for Cyber-Physical Systems in the Cloud (2015)

27. Spichkova, M., Zamansky, A., Farchi, E.: A visual logical language for system modelling in
combinatorial test design. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) CAiSE 2016. LNBIP,
vol. 249, pp. 116–121. Springer, Cham (2016). doi:10.1007/978-3-319-39564-7 12

28. Tai, K.C., Lei, Y.: A test generation strategy for pairwise testing. IEEE Trans. Softw. Eng.
28(1), 109–111 (2002)

29. Talby, D., Keren, A., Hazzan, O., Dubinsky, Y.: Agile software testing in a large-scale project.
IEEE Softw. 23(4), 30–37 (2006)

30. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.
Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

31. Zamansky, A., Farchi, E.: Helping the tester get it right: towards supporting agile combina-
torial test design. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol.
9509, pp. 35–42. Springer, Heidelberg (2015). doi:10.1007/978-3-662-49224-6 4

32. Zhang, J., Zhang, Z., Ma, F.: Introduction to combinatorial testing. In: Zhang, J., Zhang,
Z., Ma, F. (eds.) Automatic Generation of Combinatorial Test Data, pp. 1–16. Springer,
Heidelberg (2014)

http://researchbank.rmit.edu.au/view/rmit:38416
http://researchbank.rmit.edu.au/view/rmit:38416
http://ceur-ws.org/Vol-1612/
http://dx.doi.org/10.1007/978-3-319-39564-7_12
http://dx.doi.org/10.1007/978-3-662-49224-6_4

Software Engineering Foundations of Zoetic
Data and Totally Functional Programming

Paul Bailes(&) and Colin Kemp

School of ITEE, The University of Queensland, St Lucia, QLD 4072, Australia
{paul,ck}@itee.uq.edu.au

Abstract. Traditional higher-order functional programming is validated by
how its logical conclusion in the shape of a “Totally Functional” style is con-
sistent with and indeed determined by some fundamental principles of Software
Engineering. The key to Totally Functional Programming is the notion of
“zoetic” representations of data which embody the behaviours that we
hypothesise to underlie all conventional symbolic datatypes. These representa-
tions minimise the interpretation of symbolic data at each use, and thus embody
the principle of reuse. Further, we develop a scheme for formal synthesis of
generator functions for zoetic data which entirely avoid the need for a separate
interpretation stage. This avoidance allows us to achieve a clear separation of
concerns between the creation of zoetic data objects on the one hand and their
use in various applications on the other. Zoetic data are thus validated as the key
enablers of the fulfilment of functional programming in its “Totally Functional”
manifestation, firmly grounded in the language design consequences of software
engineering principles.

Keywords: Catamorphism � Church numeral � Foldr � Functional
Programming � Fusion theorem � Haskell

1 Introduction

The general purpose of this paper is to demonstrate how a new “Totally Functional”
approach to programming derives from the now-well-established tradition of
higher-order Functional Programming (FP) through the conscious application of soft-
ware engineering principles. As a result, not only are the innovations of our Totally
Functional Programming (TFP) lent a degree of legitimacy, but also is the legitimacy of
traditional FP reinforced by this demonstration of its support for these principles of
software engineering.

The multi-faceted advantages of FP have long been well-documented [1]. However,
amid the benefits of such as lazy evaluation and referential transparency, the essential
defining aspect of programmer-definable higher-order functions, seems strangely to
have been under-appreciated. In particular, classic expositions of FP [2, 3] typically
relegate functional (“Church”) representations of data as mere curiosities.

Our specific purpose here is therefore to demonstrate the viability of these func-
tional (or zoetic: “pertaining to life; living; vital” [4]) representations as comprehensive
substitutes for conventional symbolic data, motivated by and compatible with key

© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 129–157, 2016.
DOI: 10.1007/978-3-319-56390-9_7

principles of software engineering [5]. The focus of the demonstration is on how zoetic
data can be manipulated, and specifically created, (or “generated”) independently of
their symbolic counterparts, and thus form the basis of our Totally Functional Pro-
gramming style where symbolic data can be superseded by these zoetic representations.

In this paper overall we: provide a basic justification of zoetic data in terms of
general software engineering principles; indicate how widespread and practical zoetic
data actually are; provide the conceptual and semantic bases for the synthesis of
generators for a wide class of zoetic data; expose techniques for the formal synthesis of
zoetic data and their generators, and demonstrate the applicability of these techniques
for a range of examples; indicate how zoetic data provide a conceptual gateway into a
comprehensive alternate view of programming based on total rather than partial
recursion; and re-emphasise the significance of this approach through its compatibility
with mainstream software engineering.

2 Applicable Principles of Software Engineering

Software engineering involves a wide range of tools, techniques and processes aimed at
delivering software products with efficiency and effectiveness comparable to that of
products of traditional engineering domains. As such, many issues germane to software
engineering are not directly concerned with software, and indeed some of the
knowledge discovered for software engineering has found applicability in systems
engineering more generally [6]. For our purposes however, the relevant
software-specific aspects of software engineering are:

• reuse;
• separation of concerns;
• formal methods

relevant elaborations of each of which follow below. There are of course more, but our
contention is that a software technology that addresses these at least represents a
serious engagement with software engineering. They will be applied as needed at the
relevant points of our elaboration of zoetic data.

2.1 Reuse

Software or code reuse involves the minimisation of programming effort (and thus
exposure to error) by adopting or adapting existing code for a new purpose. If the
adoption/adaption is to minimise error, it should be managed through abstraction tech-
niques supported concretely in source code rather than cut-and-paste editing.
Object-orientation [7] and lambda-abstraction [8] as manifested by functions/
procedures/subroutines are key concrete abstraction mechanisms promoting reuse.

130 P. Bailes and C. Kemp

2.2 Separation of Concerns

It’s useful when writing or reading any kind of document to have as few issues in mind
as possible. One means is to employ powerful abstractions capable of unifying a
multiplicity of concerns. If however the abstraction mechanisms at hand are inadequate
for the unification of diverse concerns, then different concerns should be dealt with
separately [9]. In the programming/software engineering context, this could mean
specifying procedures to perform single application functions rather than a multiplicity
of same. A variant of this basic theme is however the classical epistemological dis-
tinction between “what” versus “how”, or in software terms between specification
versus implementation. A range of techniques are available to software engineers to
establish and maintain the manifestations of this distinction, including those pertaining
to reuse above but also such as modularity [10] and aspect-oriented programming [11].

2.3 Formal Methods

Software is an inherently logical phenomenon, the behaviour of which can be described
and analysed mathematically [12]. In particular, the correspondence between required
behaviour and a putative implementation of same can just be not just proven, but an
implementation corresponding to a specification can be synthesised by formal logical
means. It’s acknowledged that the harnessing of mathematical techniques to large-scale
software remains a work in progress, but at scales where the mathematics is in place, it
should be used rather than ad hoc methods to synthesise or verify source code.

3 Zoetic Data Examples

We begin by showing how zoetic data play important roles in functional programming,
not just theoretically but practically also, using a range of examples of natural numbers,
set data structures, and context-free grammars. The key idea in each case is that the
zoetic counterpart to a conventional symbolic datatype embodies an essential charac-
teristic behaviour.

3.1 Zoetic Naturals

Perhaps the best-known zoetic datatype in programming is the “Church numeral” [8]
representation of natural numbers, whereby a natural N is represented by a counterpart
function (say Ñ) such that Ñ f x = fN x. That is, the characteristic behaviour Ñ of a
natural number N is N-fold function composition. For example, the zoetic version of
(symbolic) natural number 3 would be rendered, in Haskell [13] concrete syntax as the
function:

or equivalently

Software Engineering Foundations of Zoetic Data and TFP 131

In particular, definitions for some basic zoetic naturals would be

This behaviour is directly applicable as N-fold iteration. For example, assuming a
successor function succ (more on which below), addition of say N1 to N2 can be
implemented by

3.2 Zoetic Sets

Perhaps the best generally-known zoetic datatype is the representation of sets by (or
equivalently, characterising their essential behaviour in terms of) their characteristic
predicates. For example, the essence of the definition of the set of even numbers as
follows:

x j x modulo 2 ¼ 0f g

is the predicate, or Boolean-valued function (in Haskell syntax)

Membership of such a zoetic set is tested by direct function application, e.g. (where
‘!’ denotes evaluation/reduction):

Usefully, as we shall see, the characteristic predicate is the partial application of the
set membership operation to the set, as exposed by the tautology

S ¼ fx j x 2 Sg ¼ fx j ð2 SÞ xg

Note the adoption of Haskell operator sectioning, where “(2 S)” denotes the partial
application of 2 to S, forming the characteristic predicate of S which is then applied to
putative element x.

3.3 Zoetic Grammars

The zoetic approach to context-free grammars [14] that is implicitly adopted by
combinator parsing [15] is that the relevant characteristic behaviour of the grammar is
the parser for the language defined by the grammar. Accordingly, the zoetic-compatible
renditions of the context-free combinations of concatenation and alternation are
(higher-order) functions that apply not to grammars but to parsers, and yielding not a
grammar but a parser.

132 P. Bailes and C. Kemp

In its essential form, a combinator parser for a grammar G is a nondeterministic
recogniser that when applied to an input string S yields the list of suffix strings that
result after occurrences of sentences of G have been found as prefixes in S:

An empty list of result strings signifies failure to parse [16].
For example, assuming definitions of context-free parsing combinators “conc” and

“alt” and token recogniser “tok” (see further below for these), the trivial “expression
grammar”

Exp ! Exp þTrm j Trm

Trm ! x j y

can be defined in Haskell source code as

We then parse according it by direct functional application, e.g.

Each of these yields respective results

That is, parsing with exp respectively signifies

1. of “x + y”: gives two results, one where the entirety of “x + y” is recognized with
no residue, the other where only “x” is recognized leaving residue “+y”

2. of “qwe”: is unrecognized
3. of “x”: is uniquely and fully recognized.

4 Characteristic Methods as Basis of Zoetic Data

The key to a systematic approach to generation of zoetic data is the recognition that
they embody a uniform interpretation of an underlying symbolic datatype. We use the
term “characteristic method” for this interpretation, by extension from the characteristic
predicate behaviour ascribed to zoetic sets. The relative advantages of zoetic data based
on characteristic method interpretations of symbolic data are exposed by example in the
context of natural numbers as follows.

In this exposition, it will be seen how the principles of reuse and of separation of
concerns drive the key creativity and design decisions regarding our treatment of zoetic
data.

Software Engineering Foundations of Zoetic Data and TFP 133

4.1 Pervasive Interpretation Contravenes Reuse

The need to adopt a uniform interpretation of symbolic data is demonstrated, albeit in
microcosm, by the following definitions of arithmetic operations on natural numbers,
which expose how thoroughly programming is pervaded by the need to interpret
symbolic data, and how potentially harmful are the effects:

The drawbacks inherent in these deceptively-simple definitions are profound, as
follows.

• Apart from the suggestive naming of the type (Nat) and of its two constructors
(Succ and Zero), there is nothing in the definition of the type that compels treatment
of members of the type as numbers of any kind, never mind natural numbers
specifically.

• Granted there is an obvious isomorphism between the members of Nat and the
abstract entities that behave like natural numbers, but that isomorphism needs to be
implemented by each usage of Nat. This implementation takes the form of an
implicit interpreter that converts symbols into actions (in this case, iterative
applications of other functions).

• Defining functions through interpretation of symbols using general recursion adds
the burden of proving totality i.e. termination.

• Most significantly from a software engineering point of view, this implementation
of the isomorphism from the symbols of Nat to the iterative behaviour of natural
numbers, far from being reused, needs to be repeated at each usage: typical of
failure to observe the reuse principle, inconsistent repeated usage will lead to
inconsistent (erroneous) behaviour.

4.2 Explicit Interpretations Admit Reuse

The situation may be clarified somewhat by the introduction of an explicit common
interpreter for the semantics (i.e. functional behaviour) of natural numbers N as N-fold
iterators:

In the light of this, our arithmetic operation definitions can be re-expressed with
explicit reuse of the “iter” interpreter:

134 P. Bailes and C. Kemp

The introduction of “iter” thus allows for the clarification of what interpretation is
being given to the type Nat (here as iteration), and when that interpretation is being
applied usefully and meaningfully.

4.3 Separation of Concerns via Zoetic Data

Despite this clarification however, the revised interpretive arithmetic definitions are still
deficient in terms of inconvenience, fragility and potential inconsistency:

• inconvenience, in that the interpreter needs to be applied explicitly;
• fragility, in that the wrong interpreter could conceivably be applied;
• potential inconsistency, in that multiple interpreters with inconsistent behaviours

could be defined and applied (e.g. one might assume naturals start at 0, while
another might assume they start at 1, as was once a common convention).

All the above criticisms can be summarised as a failure to observe the key software
design principle of separation of concerns [9]. In this case the separation is between
application logic on the one hand and what we might call infrastructure logic on the
other. In the above examples, the definitions (add, mul, exp) combine both the logic of
the respective applications (addition, multiplication, exponentiation) with the logic of
the semantics of natural numbers (iteration). Making the semantic interpreter (“iter”)
explicit and hiding the infrastructure logic therein ameliorates the situation somewhat
but fails to consummate the separation as per the points listed above.

In order fully to achieve separation of concerns between applications and infras-
tructure, our solution is to require that all members of a datatype are inherently
interpreted by the type’s characteristic method. That is, zoetic data are in a sense
self-interpreting, and the coding of the required behaviours is built into the generators
from which zoetic data are themselves created. Specifically, we:

1. assume that for each (symbolic) datatype there is indeed a characteristic behaviour
(such as iteration for Nat as above);

2. treat the partial application of the characteristic interpreter (for the characteristic
behaviour) to the symbolic data as a conceptual zoetic unit;

3. reorganise programs around these zoetic data.

In the case of our running example of definitions of basic arithmetic operations, we
replace naturals (a, b, etc.) by zoetic naturals (say za, zb, etc.) where the respective
identities hold:

et cetera. Accordingly, we rewrite arithmetic definitions on za, zb etc.:

Software Engineering Foundations of Zoetic Data and TFP 135

It is at once evident that the required separation of concerns has been achieved: the
only information added by these definitions is with regard to how the zoetic naturals za,
zb variously combine to implement the respective arithmetic operations. In particular,
the iterative behaviour of za, zb is assumed to have been provided at their creation.

The remainder of this paper this focusses upon how such inherent behaviours are
necessarily inbuilt when creating zoetic data, and thus achieving the further required
properties of robustness (no chance of applying the wrong characteristic method) and
consistency (that there indeed exists a unique characteristic method).

5 Generating Zoetic Data

To reiterate, generators embody the required behaviours of zoetic data and this effect
the separation of defining and activating these behaviours from their use in
applications.

The approach we shall follow is simply-stated: instead of creating zoetic data from
partial applications of characteristic interpreters to symbolic data, generate the zoetic
data directly with zoetic analogues of the symbolic constructors. When programming,
calls to symbolic constructors are replaced by calls to the zoetic generators. In other
words, we effect an isomorphism between the symbolic and zoetic type. As zoetic
generators produce a member of the zoetic type, no final application of the interpreter
(iter etc.) is required.

In this section, we preview the definitions of some interesting generators of zoetic
data, which we later show how to derive by calculation from their specifications.

5.1 Zoetic Natural Generators

For example, the zoetic versions of natural numbers would be specified in terms of
partial application of the above iterative interpreter “iter” to their usual symbolic
renditions as follows:

Accordingly, we instead require systematic generation of zoetic naturals such as
the above by application of zoetic counterparts of the symbolic constructors Zero and
Succ, i.e.

or equivalently

and thus

136 P. Bailes and C. Kemp

In particular, it is straightforward to show (by simple term rewriting from the def-
initions of zzero and succz) that these correctly yield the expected Church numerals, e.g.

5.2 Zoetic Set Generators

For zoetic sets it’s possible to intuit generators that apply to appropriate elements or
(sub-)sets yielding characteristic predicates that test the membership or otherwise of a
putative element x:

5.3 Zoetic Grammar Generators

Following our example above, combinator parsers are generated, as are context-free
grammars, from alternation of grammars/parsers, or concatenation of grammars/parsers,
or tokens. Alternation accordingly builds a combinator parser from two components
p1 and p2, by appending the results of parsing s with each of p1 and p2:

Concatenation accordingly builds a combinator parser from two components p1
and p2, by parsing s with p1 and then parsing each of the results with p2:

A token t parses string s by removing prefix t from s:

where

• “prefix t s” tests if string t is a prefix of s;
• “chop t s” removes prefix t from s.

Software Engineering Foundations of Zoetic Data and TFP 137

6 Generator Synthesis for Primary Zoetic Types

In the context of the above, our (related) problem is:

• to discover the zoetic generators that correspond to symbolic constructors in a
systematic way, as opposed to the mere intuitions that have led to the examples
above;

• which then enables us to replace the partial applications to symbolic data of
characteristic methods/interpreters with direct applications of these generators to
zoetic data.

In the solution of this problem, we rely upon formal methods to derive generator
implementations from their specifications.

In this section, we deal with the simplest kind of zoetic datatype - the Primary
Zoetic Type (1ZT) - which correspond to regular algebraic types [17].

6.1 Catamorphic Expressibility of 1ZTs

We recognise the generic catamorphic pattern [18] on the regular algebraic type (more
widely-known as the foldr operation in the list context, and represented by iter above
for naturals) as the characteristic behaviour of its zoetic counterparts.

This choice is made on the basis of:

• category-theoretic justifications of catamorphisms as capturing the essence
(categorically-speaking, “initiality”) of a regular algebraic type;

• the practical capability of catamorphic patterns to express a wide range of subre-
cursive operations [19];

• the above capability including the ability to express other more
apparently-sophisticated recursion patterns [20].

6.2 Specification of Generators for 1ZTs

Just as with Naturals above, zoetic versions of these types in general are specified by
the partial application of the relevant catamorphism pattern for that type to the symbolic
data.

For example, for the types of lists and rose trees:

we have:

138 P. Bailes and C. Kemp

1. Catamorphism patterns:

where that the usual order of operands (e.g. to “foldr”) is changed (consistently with
“iter” above) to facilitate partial application of the catamorphic pattern to symbolic
data, in particular

Note also how in the case of rose trees, where the recursion is not a simple poly-
nomial, that some additional complexity is entailed in that the structure of the n-ary
recursion has to be processed by the relevant map function (in this case over Lists).
The resulting list is processed by some combining function b which could well be a
(List) catamorphism also. For these 1ZTs, synthesis of the generators proceeds by
straightforward equational reasoning, as exemplified by the following.
And we correspondingly have

2. Specifications of zoetic counterparts zL, zR of respective symbolic lists L and rose
trees R:

Generally:

• the specification of a zoetic counterpart Z of a symbolic datum D of type T will be

• the specification of generators Gi for the zoetic counterpart of symbolic type T with
constructors Ci will follow case analysis of the foregoing, of the schematic form

where argsD are the symbolic operands to Ci from which datum D is constructed,
and argsZ are the zoetic operands to Gi from which the zoetic counterpart Z to D is
generated.

6.3 Synthesis of Generators for Zoetic Naturals

For example, for zoetic Naturals as defined above, from the specifications of the
isomorphism between Nat and our zoetic Naturals, we specify the generators as fol-
lows, i.e. as partial applications of the interpreter for the required characteristic
behaviour - the relevant catamorphism pattern “iter”. Observe how the zoetic operand
to generator succz is consistently specified as the partial application of “iter” to the
corresponding symbolic natural:

Software Engineering Foundations of Zoetic Data and TFP 139

To calculate their implementations, we proceed respectively, in each case adding
sufficient relevant parameters to the specifications in order to allow the expansion of the
application of iter and then simplification according to the definition of iter in the
course of which the interpreter (iter) is eliminated, i.e.:

Thus, recognizing the partial application “iter n” as the zoetic natural zn, we have
the Haskell function declarations for the zoetic natural generators:

6.4 Synthesis of Generators for Zoetic Lists

Lists are treated similarly, from the specification of generators in terms of partial
application of the characteristic symbolic interpreter - in this case the catamorphism
pattern for lists “catL”:

We proceed respectively by adding parameters and simplifying according to the
defining equations of catL:

Thus, recognizing the partial application “catL xs” as the zoetic list zxs, we have
the Haskell function declarations to implement the zoetic list generators:

140 P. Bailes and C. Kemp

6.5 Synthesis of Generators for Zoetic Rose Trees

Again, we follow the principle that the specification of generators is in terms of partial
application of the characteristic symbolic interpreter - in this case the catamorphism
pattern for rose trees “catR”. Note especially in this case how the zoetic operand to
zbranch is specified as the list of the partial applications of “catR” to each of the
symbolic rose trees in the branch, as effected by “mapL”.

Thus, recognizing the list of partial applications “mapL catR rs” as the list of zoetic
rose trees zrs, we have the Haskell function declarations for the zoetic rose tree
generators:

Software Engineering Foundations of Zoetic Data and TFP 141

If the n-ary recursive structure of rose trees is represented not by a symbolic list zrs
but rather is zoetic, then the effect of mapL on zrs is simply achieved by its direct
application as a list catamorphism:

7 Secondary Zoetic Types

The above systemic approach to 1ZT generator synthesis is however only part of the
story. A wider class of zoetic types than 1ZTs is formed by the partial application of
specific characteristic methods rather than the generic catamorphic patterns on the
relevant symbolic algebraic types. In other words, while catamorphic patterns represent
the most general behaviours, specialisations may be required in specific circumstances.
Examples of these as seen so far in this presentation are combinator parsers and
characteristic predicates.

Regarding the latter, consider for example the following type of trees with a
mixture of binary and unary subtrees:

This algebraic type has a default interpretation in terms of its catamorphic pattern:

Generators for the consequent 1ZT, derived using the above methods are:

A different interpretation however of these trees as sets is given by the characteristic
method “member”:

142 P. Bailes and C. Kemp

Obviously, zoetic sets that behave as characteristic predicates are given by partial
applications

The challenge now facing us, in order to widen the practical range of zoetic data
beyond pure catamorphic behaviours, is synthesis of the generators for such secondary
zoetic types (2ZTs). With respect to the above example, this means empty, singleton,
union, complement as further above corresponding respectively to Bt constructors Nul,
Lf, Brn and One. This is more complex than that of generic catamorphism-based 1ZTs,
and hence first requires the conceptual infrastructure of the following section.

8 Principles of Generator Derivation for 2ZTs

Derivation of generators for 2ZTs depends upon some further properties common to
zoetic data and catamorphisms. Again, formal methods are the basis of derivation of
implementations from specifications.

8.1 Schematic Catamorphism

Demonstration of key properties common to catamorphisms is facilitated by a scheme
of catamorphisms captured in Haskell source code by definitions as follows [21].

First, identify some general algebraic abstractions:

The key to a generic definition of the catamorphic pattern is the pattern functor that
defines the shape of the data for a (recursive) type. In order to isolate the
(non-recursive) pattern functor, direct recursion in type definitions is not appropriate.
Recursive types are instead the explicit fixed-point of their pattern functor, thus we
need a fixpoint operator for data types:

(The respective constructor and extractor functions for Mu - Inf and outF - are
artefacts of the Haskell type system.)

For example, the pattern functor type of the polymorphic list type (with elements of
type ‘a’) is:

Thus, the actual recursive polymorphic List type is the least fixed point of “Lf a”:

Software Engineering Foundations of Zoetic Data and TFP 143

The catamorphic recursion pattern for any type is the most general homomorphism
from the algebra given by the pattern functor of the type to any other result algebra (i.e.
the polymorphic target type of the recursion pattern). A generic rendition in Haskell is

where ‘f’ embodies the embedded operation that characterises the catamorphism in
terms of the pattern algebra of the type. Observe how the recursive application of “cata f”
by fmap ensures the desired recursive operation of the catamorphism.

So in order to define specific catamorphic operations, all that is required is to define
the embedded operation (the ‘f’ parameter of cata). For example:

• the catamorphic definition of the length of a list is now

• the list catamorphism pattern (catL) as above can be written simply by passing its
parameters to the catamorphism’s characteristic operation:

8.2 Fusion Theorem

Just as catamorphisms exemplify how the programming of recursion can be packaged
and simplified, so fusion [19] is an example of how reasoning about recursive programs
can be packaged and simplified.

In terms of the schematic catamorphism above, fusion is the implication:

h phi xð Þ ¼ chi fmap h xð Þ ! h cata phi xð Þ ¼ cata chi x

where phi and chi are the embedded operations of type-compatible catamorphisms
Fusion for individual types can be derived from the above schema, typically with

the antecedent of the implication as: the conjunction of the instantiation of the schema
with the particulars of each of the constructors for the relevant pattern functor.

For example, for list catamorphisms the two characteristic operations are typified
by

Thus for some base values Bi and binary operations Oi, we instantiate the fusion
theorem for lists as follows.

144 P. Bailes and C. Kemp

• The antecedent condition, case Nl, is:

• The antecedent condition, case Cns x xs, is

• There is a single consequent:

Thus, conjunction of the consequents gives the single implication:

8.3 Identity Property and Constructor Replacement

The Identity property for Catamorphisms [17] (IC) is crucial in our development. Its
simplest typical form is:

where the Ci are the (symbolic) constructors for (symbolic type) T and (of course)
D :: T. That is, applying a catamorphism to a structure with the structure’s own
constructors yields the same structure.

IC follows from how a catamorphism can be thought of as implementing con-
structor replacement with the catamorphism operands. In terms of the schematic
catamorphism, observe how the embedded operation ‘f’ is applied by cata recursively
to and across each level of substructure. At each level the embedded operation is
applied to an instance of the pattern algebra where the constructors are replaced
according to the programming of the embedded operation.

In the case of 1ZTs with generators Gi, a corollary of IC is

Software Engineering Foundations of Zoetic Data and TFP 145

8.4 Catamorphic Expressibility of 2ZTs

The continuing central role played by catamorphisms in zoetic data is reflected in the
critical assumption that the characteristic functions of specific zoetic data are all
expressible as catamorphisms, i.e. as the generic catamorphic patterns themselves (for
1ZTs) or, as well shall see, specialisations by applying these patterns to appropriate
operands to the generic catamorphic patterns on the underlying types (for 2ZTs).

The basis for this assumption relates to one of the basic premises for zoetic data, i.e.
the liberation of programming from the burden of interpretation. Thus, if interpreters
don’t need to be written, then programming languages don’t need to be so complex as
to express interpreters. Rather, the expressiveness of catamorphisms a.k.a. “fold” [19]
seems to provide a sufficient basis for all practically-imaginable applications (i.e. other
than a Universal Turing Machine or equivalent programming language interpreter).
Formally-speaking, the iterative aspect of any function provably terminating in
second-order arithmetic [22] is expressible as a catamorphism.

Accordingly, our derivations of 2ZT generators are limited to those for which holds
what we call the “Catamorphic-Expressible property” (CE) - that the characteristic
behaviour B on some symbolic data D of type T can be expressed as a catamorphism:

where

• cataT is the catamorphism on type T
• Ai are the arguments/operands to cataT that implement B (which as we see below,

are actually the zoetic generators we seek).

Note that CE for 2ZTs is a generalization of the specification of 1ZTs as follows:

• recall the behaviour of a 1ZT is the catamorphism on the type

• but applying IC to the above yields

for 1ZT generators Gi

In other words, the only difference between 1ZTs and 2ZTs is that for the former
the zoetic behaviour is constrained to be actual catamorphism on the type, whereas for
the latter the zoetic behaviour is any operation provided that it can be expressed in
terms of that catamorphism.

8.5 Identifying and Deriving 2ZT Generators

The values Ai used in CE above, as operands to the relevant catamorphic pattern catT to
express 2ZT behaviours B, can be demonstrated to have the critical role, of 2ZT gen-
erators as follows. For each distinct case of CE, typically (note renaming of Ai as Gi)

we first use IC to expand the LHS systematically, in what we identify as a
Derivative of Catamorphic-Expressibility (DCE):

146 P. Bailes and C. Kemp

or, in terms of the schematic catamorphism

B cata phi Dð Þ ¼ cata chi D

where embedded phi and chi as usual replace constructors Ci, in this case for phi by
themselves and for chi by the Gi.

At this point, fusion is applicable, i.e. to establish the above identity, we need
schematically

chi fmap B xð Þ ¼ B phi xð Þ

or typically

where “args …” are the operands to which Ci applies to produce some D :: T, and
“args’…” are the args … but with Ci uniformly replaced throughout by Gi.

Thus, the operands Gi (that are used to express the behaviours of 2ZTs) are not only
calculable by fusion, but they are also the zoetic generators (as with 1ZTs corre-
sponding to the symbolic constructors). From this point equational reasoning yields
implementations of Gi just as for 1ZTs as above. Illustrative examples now follow.

9 Generator Derivations for Exemplar 2ZTs

Examples of the formal derivations of 2ZT generators from specifications, following
the above pattern, now follow.

9.1 Derivation of Zoetic Set Generators

Recall the type of trees with a mixture of binary and unary subtrees:

for which the relevant catamorphic pattern is catBt (as defined above).
The relevant fusion law (derivable from the earlier fusion schema) is

Software Engineering Foundations of Zoetic Data and TFP 147

Now, if these trees are to be interpreted as zoetic sets by the characteristic method
“member” above, the relevant expression of DCE in this case is:

Application of fusion gives:

From this point, equational reasoning respectively proceeds in each case:

Thus, recognising in particular the partial applications “member ti” as zoetic sets
zsi, we have derived implementations for zoetic generators of empty, singleton, union
and complement of sets respectively m, s, u and c:

which are identical (modulo names) to the intuitive definitions offered originally far
above.

9.2 Derivation of Zoetic Grammar Generators

Based on an interpretation of two-flavoured Rose trees (where the different “flavours”
are distinguished by respective constructors B1 and B2), we can specify and derive
implementations for n-ary versions of the parsing combinators conc and alt from far
above. The basic infrastructure is as follows. (For simplicity of presentation, native
Haskell lists are used to implement the n-ary subtree structure.)

148 P. Bailes and C. Kemp

The relevant fusion law (again derivable from the earlier fusion schema) is

Then the following interpretation (by “parse”) ascribes behaviours

• to Tip: the behaviour of a token
• to B1: the behaviour of n-ary alternation
• to B2: the behaviour of n-ary concatenation:

The required n-ary generators tok, nalt and nconc are specified by the relevant
expression of DCE:

From the above, fusion yields:

Equational reasoning respectively proceeds

Software Engineering Foundations of Zoetic Data and TFP 149

Finally, recognising “parse (Tip ts)” as “tok ts” and “map parse r2 s” as the list of
zoetic grammars gs, and p(arser) as zoetic g(rammar) yields implementations as fol-
lows. The implementation of tok repeats the intuitive definition above:

The respective implementations of nalt and ncat are evident generalisations of the
intuitive definitions of binary alt and conc of traditional combinator parsers above:

10 Related Work

Earlier versions of the formal derivation of zoetic types are available [23, 24].
A complementary view of the significance to Software Engineering of catamorphic
patterns is also available [25].

We have already emphasised how zoetic data, while not recognised or identified
distinctively as such, are not uncommon to functional programming in general (e.g.
characteristic predicates, combinator parsers). Some other connections (different and/or
more specific) are as follows.

150 P. Bailes and C. Kemp

10.1 Zoetic Data Reflected in Mainstream Programming Languages
and Software Engineering

It’s interesting to note that the earliest high-level programming language control
construct (the DO-loop of FORTRAN) is precisely the catamorphism on natural
numbers.

Backus’ later language design (FP [26]) extended the fixed set of control constructs
to include catamorphisms on lists and other list operations expressible as
catamorphisms.

The “structured programming” [27] school does not limit itself to catamorphisms,
but nonetheless echoes our approach in advocating a fixed set of program composition
or “control” constructs.

10.2 Subrecursive Programming - Turner’s TFP

Our grounding of zoetic data in catamorphic recursion patterns establishes a further
link, to Turner’s “Total Functional Programming” [28] which emphasises the use of
subrecursive program structuring mechanisms to ensure that its programs avoid
unproductive non-termination (i.e., are total functions). The basis for the link is that our
grounding of zoetic data in catamorphic recursion patterns also ensures functional
totality.

Thus, our “Totally Functional” programming develops Turner’s, as follows.

1. For every datatype there is posited a characteristic method, so that symbolic data are
completely (“totally”) replaced by functional representations.

2. However, these characteristic methods are all ultimately definable totally as cata-
morphisms: in the case of 1ZTs, directly in terms of the catamorphic pattern that can
be thought of as characterising the type; in the case of 2ZTs, by application of an
underlying catamorphic pattern to operands (that turn out to be the generators for
the 2ZT).

Note that not every function of interest to us is expressible as a (single) catamorphism.
For example the catamorphic pattern catR for Rose trees requires mapL on the list of
subtrees, itself definable in terms of the list catamorphism pattern catL. Also, other
operations (as basic as inserting an element into a sorted list) may involve non-iterative
post-processing of the results of catamorphisms - see Bailes and Brough [20] for a
summary. However, the essential iterative behaviour of non-trivial zoetic data seems to
remain amenable to our methods as above.

10.3 Constructive Type Theory

We acknowledge that programming based on the catamorphisms implicit in regular
recursive type definitions is not original e.g. Coq [29]; however we take the further step
of attempting to treat all data as behaviour, i.e. “totally functional”.

Software Engineering Foundations of Zoetic Data and TFP 151

11 Future Directions

A range of obstacles and or opportunities remain to be exploited before our TFP is a
practical alternative for conventional symbolic-data-based interpretive programming.

11.1 Revisit 2ZT Derivation

Our scheme for deriving 2ZT generators is based on symbolic data. A re-presentation
based purely on 1ZTs would better demonstrate the self-consistency of the zoetic
universe.

11.2 Anamorphic Duals to Zoetic Data

In view of the evident usefulness of the categorical dual of list catamorphisms (for lists
the “unfold” [30], or “anamorphisms” more generally), zoetic versions of these as
embraced by Turner in his Total Functional Programming (above), need exploration.
We anticipate that for every 1ZT there would be a dual, i.e. primary zoetic co-datatype,
and that from these specific zoetic co-datatypes would be derivable.

11.3 Connection with Object-Oriented Programming

It’s apparent that zoetic types possess by definition only a single method i.e. their
characteristic behaviours. There exist however discernible hierarchies of related
behaviours (some kind of “super” and “sub” types) together with the means to program
connections. This is that application of a 1ZT zoetic datum to the generators of a 2ZT
(derived from that 1ZT) yields the corresponding value of the 2ZT. Consider for
example binary trees “BT a” above. Thus, for the 1ZT values “nl”, “lf X”, “brn T1 T2”
and “one T” (for some Bts T, T1, T2), applying each to the
set-as-characteristic-predicate 2ZT generators m, s, u, c evaluates to the corresponding
2ZT values:

Further recognizing that “Ti m s u c” is in turn a zoetic set Si gives

where Si is the 2ZT counterpart of the 1ZT Ti. That is, a 2ZT value can be obtained
by applying a 1ZT value to the 2ZT generators.

It remains to be exposed how multi-level hierarchies of such super- and sub-types
can be developed.

152 P. Bailes and C. Kemp

11.4 Type-Checking

Automatic type inference is not available for zoetic data, because they require func-
tional types that transcend the expectations, implicit in Milner [31] and its derivatives
such as the Haskell type regime, of automatic type inference rather than providing
explicit type signatures for function declarations.

For example, the simple application

fails (spectacularly) to type-check, with 28 lines of error message from WinGHCi
[32]. A cleverer definition of expz solves the problem in this case:

However, replacement of straightforward definitions by such subtleties does not
seem to be the basis of a sustainable solution. Higher type systems [33] offer apparent
remedies, but the cost of the loss of the convenience of inference remains to be
understood.

11.5 “Zoe” Language Design and Implementation

Work has begun on the design and agile implementation in parallel of the Zoe pro-
gramming language [34] that embodies our Totally Functional Programming approach.
Zoe superficially resembles a subset of Haskell, with the key distinction that instances
of regular types are zoetic i.e. behave catamorphically. For example, the declaration

defines a type of binary tree “bintree” with ternary generator “branch” and nullary
generator “nil’. The type is recursive on the first and third operands of “branch”, the
second operand being a member of the builtin “INT” type.

Continuing this example, we can construct a “bintree” in the obvious way, e.g.

Operations on b are by direct application with the required catamorphic behaviour,
e.g. to sum the elements of the tree it suffices to apply

In anticipation of the dominant role of catamorphism application in Zoe pro-
gramming, special syntax is supplied for catamorphism application, e.g. the above can
also be rendered as

The potential merits of this notation (not without at least some degree of precedent
[35]) are:

• highlighting of the catamporphism application by keyword and block structure;

Software Engineering Foundations of Zoetic Data and TFP 153

• signification of catamorphism operands by name of the corresponding generator
rather than position.

Other interesting features of Zoe include:

• predefined list and natural number types with the obvious catamorphic behaviours;
• overloading of the zoetic behaviour of natural numbers with arithmetic operators;
• a simple pattern-matching behaviour for character strings that foreshadows their use

in lexical analysis in the Zoe self-implementation.

The prototype implementations of Zoe to date have all involved straightforward
preprocessing into Haskell. The eventual self-implementation will as ever provide a
useful validation of Zoe’s pragmatics.

11.6 Program Synthesis and Analog Computation

The whole point of zoetic data is that programs are built around the behaviours of their
components and not about their representations, thus finessing the linguistic schism
between “program” and “data”. But construction of programs based on the behaviours
(not representations) of components is in effect analog computation. Even though
classical analog computation [36] involves the behaviours of electronic components,
whereas our TFP involves the behaviours of functions, there may well be useful par-
allels so that the long-dormant field of analog computing might be able to offer insights
to support a comprehensive discipline of program synthesis of zoetic-data-based totally
Functional Programming.

11.7 Zoetic Data as Refactoring Targets

Further to the above, if zoetic-data-based totally Functional Programming were to
emerge as a viable alternative to conventional symbolic-data-based programming, then
reverse engineering of conventional programs into TFP would be a desirable step in the
evolution of existing applications. See [37] for some initial ideas about how to exploit
zoetic data as targets for source code refactoring in this way.

12 Conclusions

Zoetic data exploit the key characteristic of functional languages - support for
higher-order functions - to embody functional representations that embody the char-
acteristic behaviours inherent to each datatype. The reusability implicit in this repre-
sentation allows us to avoid repeated interpretation of otherwise symbolic data at each
use in source code. Our “Totally Functional” approach to programming further sepa-
rates the decoupling of the definition of datatypes from their various applications by
replacing constructors of symbolic data with data generators that produce these zoetic
representations. Two kinds of zoetic data/functional behaviours are recognized: pri-
marily the catamorphism on the underlying regular types; and secondarily the

154 P. Bailes and C. Kemp

behaviours that can be expressed in terms of these catamorphisms. In each of these
cases the zoetic generators are derived formally by program transformation of their
specifications.

The significance of our work is two-fold. Firstly, we have demonstrated a fulfilment
of functional programming in a “zoetic” treatment of data that is faithful to the original
vision of Church as foreshadowed by “Church numerals” in his lambda-calculus.
Secondly and moreover, we have thus demonstrated the foundation in Software
Engineering principles of this fulfilment of functional programming through these
zoetic data, as follows:

• the idea of zoetic data arises from applying the reuse principle to the problem of
multiple occurrences of interpreters of intended behaviours from symbolic data;

• zoetic data per se arise from separating the concerns, on the one hand of ascribing
particular behaviours when generating zoetic data, from the other of using those
behaviours in various applications;

• the implementations of zoetic data generators are calculated from their specifica-
tions using formal methods of mathematical program transformation.

Acknowledgements. We gratefully acknowledge our various colleagues’ contributions over
the years to our ongoing work reflected here, especially those of Leighton Brough. Also,
Tim Westcott, William Woodward and Khoa Tran made useful contributions to the implemen-
tation of the Zoe language prototypes.

References

1. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)
2. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice-Hall International,

Upper Saddle River (1988)
3. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer

Programs, 2nd edn. MIT Press, Cambridge (1996)
4. Collins English Dictionary. http://www.collinsdictionary.com. Accessed 4 July 2014
5. Sommerville, I.: Software Engineering, 8th edn. Addison Wesley, Boston (2007)
6. Sommerville, I.: Software Engineering, 10th edn. Pearson, Essex (2015)
7. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs (1997)
8. Barendregt, H.: The Lambda Calculus - Its Syntax and Semantics, 2nd edn. North-Holland,

Amsterdam (1984)
9. Dijkstra, E.: On the role of scientific thought. In: Dijkstra, E.W. (ed.) Selected writings on

Computing: A Personal Perspective. Texts and Monographs in Computer Science, pp. 60–
66. Springer-Verlag, New York (1982)

10. Scott, M.: Programming Language Pragmatics, 3rd edn. Morgan Kaufmann, San Francisco
(2009)

11. Kiczales, G., Lamping., J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. M., Irwin, J.:
Aspect-oriented programming. In: Proceedings of the 11th European Conference on
Object-Oriented Programming ECOOP’97. LNCS 1241, pp. 220–242 (1997)

12. Hinchey, M., Bowen, J., Vassev, E.: Formal Methods. In: Laplante, P.A. (ed.) Encyclopedia
of Software Engineering, pp. 308–320. Taylor & Francis, New York (2010)

Software Engineering Foundations of Zoetic Data and TFP 155

http://www.collinsdictionary.com

13. Haskell Programming Language. http://www.haskell.org. Accessed 4 July 2014
14. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Boston (1979)
15. Hutton, G.: Higher-order functions for parsing. J. Funct. Program. 2, 323–343 (1992)
16. Wadler, P.: How to replace failure by a list of successes a method for exception handling,

backtracking, and pattern matching in lazy functional languages. In: Jouannaud, J.-P. (ed.)
FPCA 1985. LNCS, vol. 201, pp. 113–128. Springer, Heidelberg (1985). doi:10.1007/3-540-
15975-4_33

17. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming - an
introduction. In: Swierstra, S., Henriques, P., Oliveira, J. (eds.) Advanced Functional
Programming. LNCS, vol. 1608, pp. 28–115 (1999)

18. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas, lenses,
envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 124–144.
Springer, Heidelberg (1991). doi:10.1007/3540543961_7

19. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct. Program. 9,
355–372 (1999)

20. Bailes, P., Brough, L.: Making sense of recursion patterns. In: Proceedings of 1st
FormSERA: Rigorous and Agile Approaches, pp. 16–22. IEEE (2012)

21. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic J. Comput. 8
(3), 366–390 (2001)

22. Reynolds, J.C.: Three approaches to type structure. In: Ehrig, H., Floyd, C., Nivat, M.,
Thatcher, J. (eds.) CAAP 1985. LNCS, vol. 185, pp. 97–138. Springer, Heidelberg (1985).
doi:10.1007/3-540-15198-2_7

23. Bailes, P., Kemp, C.: Fusing folds and data structures into zoetic data. In: Proceedings of
23rd IASTED International Multi-Conference on Applied Informatics (AI 2005), pp. 299–
306 (2005)

24. Bailes, P., Kemp, C.: Zoetic data and their generators. In: Proceedings of 11th International
Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE
2016), pp. 260–271 (2016)

25. Bailes, P., Brough, L., Kemp, C.: From computer science to software engineering – a
programming-level perspective. In: Fujita, H., et al. (eds.) New Trends in Software
Methodologies. Tools and Techniques. IOS Press, Amsterdam (2014)

26. Backus, J.: Can programming be liberated from the von Neumann style?: A functional style
and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)

27. Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic Press,
Cambridge (1972)

28. Turner, D.A.: Total functional programming. J. Univers. Comput. Sci. 10(7), 751–768
(2004)

29. Coq proof assistant. https://coq.inria.fr/. Accessed 22 Feb 2016
30. Gibbons, J., Hutton, G., Altenkirch, T.: When is a function a fold or an unfold? Electron.

Notes Theor. Comput. Sci. 44(1), 2001 (2001)
31. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 348–

375 (1977)
32. Haskell platform. http://www.haskell.org/platform/. Accessed 4 July 2014
33. Vytiniotis, D., Weirich, S., Jones, S.L.P.: Boxy types: inference for higher-rank types and

impredicativity. In: Proceedings of ICFP, pp. 251–262 (2006)
34. Bailes, P.: Recursion patterns and their impact on programming language design. In:

Proceedings of IASTED International Conference Advances in Computer Science (ACS
2013), pp. 450–459 (2013)

156 P. Bailes and C. Kemp

http://www.haskell.org
http://dx.doi.org/10.1007/3-540-15975-4_33
http://dx.doi.org/10.1007/3-540-15975-4_33
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1007/3-540-15198-2_7
https://coq.inria.fr/
http://www.haskell.org/platform/

35. Swierstra, S.D., Azero Alcocer, P.R., Saraiva, J.: Designing and implementing combinator
languages. In: Swierstra, S.D., Oliveira, J.N., Henriques, P.R. (eds.) AFP 1998. LNCS,
vol. 1608, pp. 150–206. Springer, Heidelberg (1999). doi:10.1007/10704973_4

36. Jackson, A.: Analog Computation. McGraw-Hill, New York (1960)
37. Bailes, P., Brough, L., Kemp, C.: Higher-order catamorphisms as bases for program

structuring and design recovery. In: Proceedings of IASTED International Conference
Software Engineering (SE 2013), pp. 775–782 (2013)

Software Engineering Foundations of Zoetic Data and TFP 157

http://dx.doi.org/10.1007/10704973_4

Towards Modelling and Implementation
of Reliability and Usability Features

for Research-Oriented Cloud
Computing Platforms

Maria Spichkova1(B), Heinz W. Schmidt1,2, Iman I. Yusuf2,
Ian E. Thomas2, Steve Androulakis3, and Grischa R. Meyer3

1 School of Science, RMIT University, 414-418 Swanston Street,
Melbourne 3001, Australia

{maria.spichkova,heinz.schmidt}@rmit.edu.au
2 eResearch, RMIT University, 17-23 Lygon Street, Carlton 3053, Australia

{iman.yusuf,ian.edward.thomas}@rmit.edu.au
3 eResearch, Monash University, Wellington Road, Clayton 3800, Australia

{steve.androulakis,grischa.meyer}@monash.edu

Abstract. Usability and readability features are crucial on all phases
of software development process as well as while applying the developed
software. A hard-to-read and hard-to-understand model of a complicated
system might provide more confusion that clarification and development
support. A hard-to-use technology or system might lead to its misuse or
even to hazardous accidents. In this chapter, we present an approach on
modelling and implementation of research-oriented cloud computing plat-
forms, focusing on the reliability and usability features. The proposed
formal framework provides an easy-to-read templates for modelling of
core platform components. The proposed cloud computing platform allows
researchers to conduct experiments requiring complex computations over
big data. The core feature of the platform is that the users do not require
to a deep technical understanding of cloud computing, HPC, fault toler-
ance, or data management in order to leverage all the benefits of cloud
computing.

Keywords: Usability · Reliability · Modelling · Cloud computing ·
Visualisation

1 Introduction

Formal models allow comprehensive analysis of system properties in the early
phases of software and system development, to identify possible faults as well
as discrepancies between requirements and the system-under-development as
early as possible to decrease the production costs. The lack of understandability
and readability features might be an obstacle for adoption of formal models in
industrial development process [44], as these features are crucial on all phases
c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 158–178, 2016.
DOI: 10.1007/978-3-319-56390-9 8

Towards Modelling and Implementation of Reliability and Usability Features 159

of software development as well as while applying the developed software. If the
model of a complicated system is not easy-to-read and easy-to-understand, it
might provide even more confusion about system properties instead of providing
their clarification and the corresponding development support.

For these reasons, we developed a formal framework and the correspond-
ing model of a cloud-based platform, focusing on the usability and readability
features as they are defined in [32,36]. The framework allows (1) formal analy-
sis of properties of composed processes within a cloud-based platform, and (2)
estimation of the worst case execution time of these processes.

Cloud computing provides a great opportunity for scientists, as it enables
large-scale experiments that are too complicated to run them on local desktop
machines. Conduction experiments on big data and applying complex computa-
tional methods demands using cluster or cloud computing [4,10]. Cloud-based
computations can be highly parallel, long running and data-intensive, which is
desirable for many kinds of scientific experiments.

However, to unlock this power, we need a user-friendly interface and an
easy-to-use methodology for conducting these experiments. For most users, both
present new technologies, either computationally and in data management, and
both require learning non-standard data management, programming languages
and libraries. In the case of cloud computing, the users have to learn how to
work within a cloud-based environment, e.g., how to create and set up virtual
machines (VMs), how to collect the results of their experiments, and finally
destroy the VMs, etc. Thus, the users have to obtain a new set of skills (e.g.,
knowledge of fault tolerance), which might distract from focusing on the domain
specific problems of the experiment, where scientific experiments can be very
challenging from a domain point of view, even in the case the computation can
be done on a local desktop machine. Failure while setting up a cloud-based exe-
cution environment or during the execution itself may be an obstacle for an
inexperienced user, if the cloud-based platform does not provide corresponding
user-support and is not user-friendly enough.

Contributions: We propose a user-friendly open-source platform supported by
the corresponding formal model. The proposed platform hides the above prob-
lems from the user by incapsulating them in the platform’s functionality. On
this stage, we focus on scientific computations, i.e., we assume that the users
of the platform would be researchers working in the fields of physics, chemistry,
biology, etc. Our solution enables researchers to focus on domain-specific prob-
lems, and to delegate to the tool to deal with the detail that comes with accessing
high-performance and cloud computing infrastructure, and the data management
challenges it poses. Moreover, the platform implements various fault tolerance
strategies to prevent the failed execution from causing a system-wide failure, as
well as to recover a failed execution.

In the current version of the platform, we have focused on biophysics and struc-
tural chemistry experiments, based on the analysis of big data from synchrotrons
and atomic force microscopy. We conducted a number of case studies across Theo-
retical Chemical and Quantum Physics group at the RMIT university. The domain

160 M. Spichkova et al.

experts noted the time savings for computing and data management, as well as
user-friendly interface.

The presented in this chapter approach extends our work introduced at the
11th International Conference on Evaluation of Novel Software Approaches to
Software Engineering [39], and is also based on our recent work on scalability
and fault-tolerance of Cloud computations [35,43].

Outline: The rest of the paper is structured as follows. Section 2 presents the
formal background for our framework. Section 3 introduces the proposed for-
mal model of a cloud-based platform. Section 4 presents implementation of the
proposed model as an open-source Chiminey platform, focusing on the relia-
bility aspects. In Sect. 5, we discuss the usability and visualisation features of
Chiminey and how they are reflected in the conducted case studies. Section 6
overviews the related work. Section 7 concludes the paper by highlighting the
main contributions, and introduces the future work directions.

2 Background

In this approach, we follow the ideas on reconciling component and process
views [31,38], where any process P its entry and exit points by Entry(P) and
Exit(P) respectively, and represent a process P (elementary or composed) by
the corresponding component specification PComp, thus, [P] = PComp. For
any process P with syntactic interface (IP �OP), where IP and OP are sets of
input and output data streams respectively, we can specify

I[P] = {Entry(P)} ∪ IP

and
O[P] = {Exit(P)} ∪ OP .

A process can be defined as an elementary or a composed one, where the compo-
sition of any two processes P1 and P2 can be sequential P1; P2, alternate P1⊕P2

or parallel P1||P2, and for any process P we can define repetitively composed
process P �lpspec, where lpspec denotes a loop specifier. In this paper we use the
following operators to present examples of process/component specifications:

〈〉 an empty stream
〈x〉 one element stream consisting of the element x
ft.l the first element of an untimed stream l
si the ith time interval of the stream s

msgn(s) s can have at most n messages at each time interval
#l number of elements in an untimed stream l

We treat a process as a special kind of a component that has additionally two
extra channels (one input and one output channel) which are used only to acti-
vate the process and to indicate its termination, i.e., to represents the entry
and exit points of the process. All the control channels (representing entry and

Towards Modelling and Implementation of Reliability and Usability Features 161

exit points of a process) are drawn as orange dashed lines, the corresponding
auxiliary components over these channels are also drawn in orange.

An elementary process corresponds to an elementary specification that has
m + n special channels, where m ≥ 1 and n ≥ 1 (i.e., if m > 1, the process has
more than one entry point, and if n > 1, it has more than one exit point):

– input channels start1, . . . , startm of type Event consisting of one element ∗;
these are entry points of the process that corresponds to an activation signal
process is started ;

– output channels stop1, . . . , stopn of the same type; these are exit points of the
process that corresponds to the signals process is finished with the result i,
where 1 ≤ i ≤ n.

The framework allows us

– to analyse properties of composed processes by applying a well-developed
theories of composition [7,34], and

– to estimate the worst case execution time (WCET) of the composed processes
on the base of following rules:

wcet(P ; Q) = wcet(P) + wcet(Q)
wcet(P �lpspec) = wcet(P)
wcet(P ||Q) = max{wcet(P),wcet(Q)} + wcet(&)
wcet(P ⊕ Q) = max{wcet(P),wcet(Q)} + wcet(@) + wcet(+)

where wcet(A) denotes the WCET of the process A.

To avoid the omission of assumptions about the environment of the system, we
specify every component in terms of an assumption and a guarantee: whenever
input from the environment behaves in accordance with the assumption, the
specified component is required to fulfil the guarantee.

3 Formal Model of a Cloud-Based Platform

The proposed Chiminey platform provides access to a distributed computing
infrastructure. On the logical level it is modelled as a dynamically built set of
Smart Connectors (SCs), which handle the provision of cloud-based infrastruc-
ture. SCs vary from each other by the type of computation to be supported
and/or the specific computing infrastructure to be provisioned. An SC interacts
with a cloud service (Infrastructure-as-a-Service) on behalf of the user. Figure 1
presents the corresponding workflow.

With respect to the execution environment, the only information that is
expected from the user is to specify the number of computing resources she
wishes to use, credentials to access those resources, and the location for trans-
ferring the output of the computation. Thus, the user does not need to know
about how the execution environment is set up (i.e., how VMs are created and
configured for the upcoming simulation), how a simulation is executed, how the

162 M. Spichkova et al.

Fig. 1. Cloud service: Workflow.

final output is transferred and how the environment is cleaned up after the
computation completion (i.e., how the VMs are destroyed).

Figure 2 shows the logical architecture of an SC. Each SC consist of five
logical components, which can also be seen as processes within the framework
workflow, presented on Fig. 1.

An execution of an SC is called a job. An SC executes a user requested
process cP, which consists of tasks Task1, . . . , TaskNT , which could be executed
in iterative manner. In the simplest case, cP consists of a single task that should
be executed once only.
A concrete SC is build from a general template by configuration its parameters:

– DataConstraints specifies constraints on the user provided input dataInput ;
– ExecParamVM specifies parameters of the job, e.g., which compilers should

be installed on the generated VMs;
– ExecParamT is a list of the task execution parameters ExecParamT1, . . . ,

ExecParamTNT . These parameters specify for each task which data are
required for its execution, what is a convergence criterion and whether there
is any for that task, which scheduling constrains are required, etc.;

– TCode presents an actual executable code for the corresponding tasks, in
general case it consists of NT elements.

– Sweep is a list of values to sweep over: With respect to configuring and exe-
cuting the simulation, the user may set the value and/or ranges of domain
specific parameters, and subsequently automatically creating and executing
multiple instances of the given SC to sweep across ranges of values.

The first three parameters can be partially derived from TCode on the develop-
ment stage for a concrete SC.

In the rest of this section we will discuss the core subprocesses (subcompo-
nents) of an SC presented on Fig. 1. We also provide formal specifications of
two subprocesses, DataAnalysis and EnvSetUpVM, to illustrate how the formal
framework can be used.

Towards Modelling and Implementation of Reliability and Usability Features 163

Fig. 2. Logical architecture of a Smart Connector, reproduced from [39].

3.1 Data Analysis

The DataAnalysis process (component) is responsible for the preliminary check
whether the user dataInput satisfies the corresponding DataConstraints, both
on syntactical and on semantical level. The DataAnalysis process is started by
receiving an scStart signal from the user. If the data check was successful, the
VMEnv component is activated by signal dataCheckOk and the data are for-
warded to the SCExecution component, otherwise the process is stopped and
the user receives an error message dataCheckFail.

Below we provide a formal specification of the process DataAnalysis on a
high level of abstraction. This process has one entry and two exit points.

3.2 Environment SetUp and CleanUp

The EnvSetUpVM process (component) is responsible for the communication
with the cloud to obtain a number of VMs that is enough for the task according to
the user requests userReqVM. The user request userReqVM is a pair of numbers
(iN,mN), where iN is an ideal and mN is a minimal (from the user’s point of
view) number of VMs required for the experiment. The EnvSetUpVM component
requests from the cloud iN VMs.

Below we provide a formal specification of the EnvSetUpVM process on a
high level of abstraction. This process has one entry and two exit points.

164 M. Spichkova et al.

process DataAnalysis [scStart ; dataCheckOk, dataCheckFail] (DataConstraints) timed
in dataInput : DataInputType

out data : dataType

asm true

gar

1 DataCheckSucessful(DataConstraints, dataInputt) →
dataCheckOkt = 〈∗〉 ∧ dataCheckFailt = 〈〉 ∧ datat + 1 = dataInputt

2 ¬DataCheckSucessful(DataConstraints, dataInputt) →
dataCheckOkt = 〈〉 ∧ dataCheckFailt = 〈∗〉 ∧ datat + 1 = 〈〉

Fault-Tolerance Properties of EnvSetUpVM

If some of the requested VMs are not created/instantiated successfully (i.e. only
j VMs are successfully created, where 0 ≤ j < mN . The SC will employ various
strategies to create the remaining VMs: it will retry to make either a block
request to create mN − j VMs at once or a single request at a time. For these
purposes, one of the parameters within ExecParamVM have to be RetryLimit,
which limits the number of retries.

The number of VMs generated by cloud (the list generatedVM represents the
list of the corresponding identifiers, e.g., IP addresses) has to fulfil the following
property

mN ≤ length(generatedVM) ≤ iN (1)

If Eq. 1 is not fulfilled (more precisely, if length(generatedVM) < mN , because
the cloud never provides a number of VMs larger than requested), the process is
stopped and the user receives an error message vmFail. The message vmFailed
is also activates the EnvCleanUp component, which is responsible for final clean
up of the system and the destruction of corresponding VMs. When the clean up
is completed, the EnvCleanUp component generated the message scCompleted,
which also indicates that the whole process chain is completed.

If Eq. 1 is fulfilled, our platform preforms bootstrapping of generated VMs,
and the required compilers are installed according to ExecParamVM. If the boot-
strapping was successful, the SCExecution component is activated by the signal
execStart.

EnvSetUpVM and EnvCleanUp can also be logically composed into a meta-
component VMEnv, which is responsible for any communication with the cloud
and the corresponding environment manipulations.

The EnvCleanUp process has three entry and a single exit points: this process
can be initiated in three cases:

– failure of the VMs set up process, indicated by vmFailed,
– failure of the SC execution, indicated by execFailed,
– successful completion of the output transfer (i.e., successful completion of the

whole process chain), indicated by transferCompleted.

Towards Modelling and Implementation of Reliability and Usability Features 165

3.3 Execution of a Smart Connector

The SCExecution component (cf. Fig. 3) is the main part of a smart connector.
It is responsible for the actual execution of the task and provides a number
of the task execution options, defined by parameters ExecParamT. The corre-
sponding process has one entry point execStart and two exit points, execFailed
and execCompleted.

Fig. 3. SCExecution subcomponent of Smart Connector, reproduced from [39].

When the SCExecution component is activated, we could have two cases:

(1) The smart connector execution was successful. Then, the SCExecution
component
• forwards the results of the computations dataOutput to theOutputTransfer

component;
• generates the signal execCompleted that indicates that the SCExecution

process is completed, and activates OutputTransfer.
The OutputTransfer component is responsible for the transfer of the output
data to the corresponding server and to a data management system. When
the data transfer is completed, the message transferCompleted is generated
to activate the EnvCleanUp component.

(2) The smart connector execution failed on the stage of scheduling or during
execution of a task. Then, the SCExecution component generates the signal
execFailed, to activate EnvCleanUp for the final clean up of the system and
the destruction of corresponding VMs.

Fault-Tolerance Properties of SCExecution

The computation might fail due to network or VM failure, i.e., the VM that
hosts some of the processes cannot be reached. To avoid an endless waiting on
the output from the processes on the unreachable VM, the smart connector will
identify the processes that are hosted there, and then execute the appropriate
fault tolerance strategy, e.g.,

166 M. Spichkova et al.

(i) marking the processes that are hosted on the unreachable VM as failed
beyond recovery and then collecting the output of processes from the other
VMs, or

(ii) re-running the failed processes on a different VM until maximum re-run
limit is reached.

However, we do not implement any strategies to recover a failed process if the
failure was due to an internal bug within the task code. In this case, a smart
connector will notify the user about the detected failure, as this provides an
opportunity to correct the bug.

SCExecution has the following subcomponents (subprocesses):

– TaskIterarion is responsible for execution of task iterations according to the
corresponding task code. In general case we have NT tasks, where NT ≥ 1.
Thus, a connector has NT processes (components) TaskIterarion, one for each
task, where each of these processes has one entry and two exit points. Thus,
each task should have at least one iteration of its execution.

– TaskScheduler is responsible for scheduling of the tasks and their execution
in the right order. The corresponding process has NT + 1 entry and NT + 2
exit points;

– CheckConv is an optional component, to check whether convergence criterion
of a multi-iterational execution is met.

3.4 Advantages of the Model

Our model allows us not only to have a precise and concise specification of the
cloud-based platform on a logical level but also provides a basis for a formal
analysis of its properties, including security properties, as well as of the core
computation properties. For the formal analysis we suggest to use an interac-
tive semi-automatic theorem prover Isabelle/HOL [6,26] and the correspond-
ing methodologies [33,34,37], as the provided specification is compatible to
these methodologies. Moreover, the purposed representation gives a basis for the
resource management and performance prediction, cf. [5], as it allows a straight-
forward analysis of the worst case execution time (WCET) of the composed
processes.

4 Implementation

The Chiminey platform is implemented using a number of Docker containers [23].
Docker is a linux containerisation technology that creates lightweight virtual
machines that share access to the underlying host operating system. We chose
to use this approach due its benefits in deployment, flexibility, reproducibility
and maintainability for our platform. The resulting composition of components
can be deployed on hosts ranging from laptops through to large clusters of cloud
nodes, the later destination being ideal for our focus of cloud infrastructure.

Towards Modelling and Implementation of Reliability and Usability Features 167

Web Portal

Message
Queue

WorkerWorkerWorker

Public
Cloud

Disk

Remote
Storage

Resources

Job Submission, management
 and monitoring

Manipulation of
remote resources

Deployment of Execution tasks

Fig. 4. Architecture of the Chiminey platform.

Figure 4 shows the simplified architecture of Chiminey. The main components
of interest are:

Portal: This component provides the user interface as described in Sect. 5.
Is is implemented within a container running a Django/Python application.
Python was chosen as the development language due to its rapid prototyping
features, integration with our data curation system, and due to its increasing
uptake by researchers as a scientific software development language.

Message Queue: This component provides the store of messages created by
the portal to query and manage jobs. It is implemented within a Redis
container [12].

Workers: Each worker listens on the message queue for instructions to process
and hence advance the execution of jobs that have been scheduled from the
portal. The workers coordinate access to external resources such as cloud
nodes, HPC nodes, etc., as described by the specific smart connector. Each

168 M. Spichkova et al.

worker is implemented within a container running a Python application using
Celery tasks [13].

The current version of the Chiminey platform provides a set of APIs to create
new and customise existing SCs. We do not restrict our system to be build
using a single programming language. The domain-specific calculations could be
written in any language. The choice of the language depends on the domain and
the concrete research task which should be solved.

For the case studies conducted in collaboration with Theoretical Chemical
and Quantum Physics group at the RMIT university, the following two types of
Smart Connectors are specified and implemented: cloud-based iterative MapRe-
duce connector (MRSC) and PBS-based connector.

MRSC was developed for MapReduce style of computation. This connector
executes the same computation multiple times, each time with different input
data. MRSC is suitable for long-running data-parallel programs like Monte Carlo
simulations. In our case study, the Monte Carlo based simulations were applied
for modelling of a material’s porosity and the size distribution of its pores (indus-
trial applications of these research are in diverse areas such as filtration and
gas adsorption). One such modelling methodology is the Hybrid Reverse Monte
Carlo (HRMC), cf. [28]. HRMC characterises a material’s microstructure by
producing models consistent with experimental diffraction data, while at the
same time ensuring accurate local bonding environments via energy minimisa-
tion using an accurate empirical interatomic potential.

The PBS-based connector provisions high-performance computing (HPC)
resources that are managed by Portable Batch System (PBS), cf. [2]. This con-
nector is used to execute vasp [16] calculations on the Australia’s National Com-
puting Infrastructure [24]. The vasp code contains many options that may be
turned on or altered, depending on the physics the researcher is going to explore.
Thus, it involves setting up input files describing the desired structure and set-
ting various model parameters or options within the calculation, before running
the software on an appropriately sized computation platform, and analysing the
resulting output.

An alternative class of connectors that was investigated, acts as a mediator
for an existing remote computation resource. Such connectors copy initial inputs
to existing resources, perform calculations, and collate resources, but do not
manage provision of the possibly shared resource.

We have implemented a number of these connectors that have this architec-
ture: connecting to head node of a HPC cluster to submit and monitor PBS
jobs, execute multiple parameterised models from a PRISM model checking
server [18], and managing execution of big data jobs on a Hadoop cluster. Such
connectors automate the process of execution parameterisation, execution mon-
itoring, and curation of output data; tasks that can be error prone if performed
manually.

Towards Modelling and Implementation of Reliability and Usability Features 169

5 Usability Aspects

The proposed open-source platform has been applied across two research disci-
plines, physics (material characterisation) and structural biology (understanding
materials at the atomic scale), to assess its usability and practicality. The domain
experts noted the following advantages of the Chiminey platform:

– time savings for computing and data management,
– user-friendly interface for the computation set up,
– visualisation of the calculation results as 2D or 3D graphs.

In the rest of this section we will discuss in more details how the above mentioned
features are implemented within the platform.

5.1 Chiminey: Overview

The menu has the following sections: Logout, Create Job, Jobs, Admin, Settings.
After logging in, the users are in the Jobs section, where they can see the status
of current and previous jobs (executions of SCs), when they were created and

Fig. 5. Jobs section of the platform, reproduced from [39].

170 M. Spichkova et al.

under what directive. Some of the jobs may be processing (i.e., have the status
Running), have been completed or had errors, cf. Fig. 5. When we click the
Info-button, a more detailed information on the particular job is provided.

5.2 Chiminey: Settings

In the Settings section, cf. Fig. 6, we can

– set up general account properties,
– change settings of computation platforms as well as add new computation

platforms,
– change settings of storage platforms as well as add new storage platforms.

5.3 Chiminey: Creating New Jobs

When we select Create Job in the menu, we will see the job submission page,
which has a set of available SCs currently registered. The user has to complete
the following simple seven steps:

1. Define a name of the SC,
2. Select the computational platform from a given list,
3. Specify required cloud resources (desired and minimal number of required

VMs),

Fig. 6. Settings section of the platform, reproduced from [39].

Towards Modelling and Implementation of Reliability and Usability Features 171

Fig. 7. Create Job section of the platform, reproduced from [39].

172 M. Spichkova et al.

4. Specify reliability requirements (max. number of retries of a failed computa-
tion and whether a failed computation should be rescheduled),

5. Select input/output locations, and
6. Specify domain specific characteristics,
7. Select whether the execution output should be curated and where.

The execution of the smart connector can be configured. To achieve this the
following steps are required: (1) set domain specific parameters and the corre-
sponding values, and (2) automatically create and execute multiple instances of
the given smart connector to sweep across the specified ranges of values.

Figure 7 shows how to create a job on example of execution of Monte Carlo
simulations, which was a part of one of our case studies, cf. Sect. 4. We extended
the print screens with the comments to show the match of these parameters to
the model from Sect. 3.

The process for such an example within the platform is to provision new
virtual machines from a cloud tenancy, transfer and install required software
and input for the simulation, and then execute programs, collate results, and
finally decommission the virtual machines.

5.4 Chiminey: Visualisation

The user interface, combined with the MyTardis [3] data curation module,
allows for flexible handling of data according to its completion and significance.

Fig. 8. Visualisation of calculation results, reproduced from [39].

Towards Modelling and Implementation of Reliability and Usability Features 173

Fig. 9. Visualisation of calculation results as 2D graphs, reproduced from [39].

The results of the calculation can be visualised as 2D or 3D graphs using a
plug-in developed to provide better readability of the obtained data.

Figure 8 shows the result of an execution of one complete Hybrid Reverse
Monte Carlo (HRMC) run. On the right side you can see the datasets generated
during that execution and on the left side graphs generated automatically from
inspection of key features of from those datasets. The main utility of these graphs
is that they regenerated from each new dataset as it arrives. For a long running
calculation, a researcher can observe the trend of these interim results graphically
to see whether key criterion are being achieved (for this example, convergence of
results). If the criterion is being invalidated (in this case divergence of results),
then the user can immediately decide whether to abandon this long running
task.

Figure 9 shows the contents of one of these datasets. Here we see on the right
the individual files that made up this specific execution and on the left domain
specific graphs generated from these data files. The curated experiments and
datasets are fully accessible and shareable online and the generated graphs can
easily be used for presentations or in written documents.

6 Related Work

While developing the model, we focused on its understandability and readabil-
ity aspects. There are several approaches on model readability, e.g., [22,40,46].
We aimed to incorporate their core principles within our formal framework.

174 M. Spichkova et al.

The development of formal models and architectures for system involved in cloud
computing, is a more recent area of system engineering, cf. [8,11,19,29,41,45].
Several approaches have proposed the data stream processing systems for clouds,
e.g., Martinaitis et al. [21] introduce an approach towards component-based
stream processing in clouds, Kuntschke, and Kemper [17] present a work on
data stream sharing. Yusuf and Schmidt have shown that the fault-tolerance
is best achieved by reflecting the computational flow in such complex scientific
system architectures, cf. [42].

There are different types of scientific workflow systems such as Kepler [20],
Taverna [27] and Galaxy [1], which are designed to allow researchers to build their
own workflows. The contribution of the work presented in this paper is that our
platform provides drop-in components, Smart Connectors, for existing workflow
engines: (i) researchers can utilise and adapt existing Smart Connectors; (ii) new
types of Smart Connectors would be developed within the framework if necessary.
From our best knowledge, there is no other framework having this advantage.
SCs are geared toward providing power and flexibility over simplicity.

Nimrod [9] is a set of software infrastructure for executing large and complex
computational, contains a simple language for describing sweeps over parameter
space and the input and output of data for processing. Nimrod is compatible
with the Kepler system [20], such that users can set up complex computational
workflows and have them executed without having to interface directly with a
high-performance computing system.

There are a number of applications which aims are similar to Chiminey ’s
aims. However, we believe that Chiminey is more user-friendly and provides
more features crucial to increase efficiency of scientific experiments. In contrast
to VIVO, a semantic web application for the discovery of research outputs within
an institution [15], the data management component of Chiminey focuses on
curating data from instruments, visualising and publishing these data, and mak-
ing the research data itself accessible. In contrast to Chorus, a web application
for managing spectrometry files [14], Chiminey is not restricted to managing a
specific type of files. Chiminey not only manages any type of files but also allows
the addition of filters to the files for automatic generation of domain-specific
metadata. Furthermore, Chiminey provisions a reliable computing capability for
data processing. Unlike ReDBox, a software platform for curating and publish-
ing experimental results [30], Chiminey curates and publishes metadata and data
collected from instruments. Furthermore, Chiminey provides a reliable comput-
ing and data visualisation capability.

7 Conclusions and Future Work

In this chapter, we present an approach on modelling and implementation of
research-oriented cloud computing platforms. Our approach focuses on the reli-
ability and usability features, both of the model and its implementation.

Cloud computing provides a great opportunity for scientists, as it enables
large-scale experiments that cannot are too long to run on local desktop

Towards Modelling and Implementation of Reliability and Usability Features 175

machines. To unlock all the benefits of cloud computing, we require a platform
with a user-friendly interface and an easy-to-use methodology for developing new
processes/components and conducting the experiments. Usability and reliability
features are crucial for such systems. This paper presents (1) a formal framework
that we used to develop a model of a cloud-based platform, (2) the developed
formal model, and (3) the latest version of its open-source implementation as
the Chiminey platform. The proposed Chiminey platform allows to conduct the
experiments without having a deep technical understanding of cloud-computing,
fault tolerance, or data management in order to leverage the benefits of cloud
computing.

To assess its usability and practicality of the platform, we conducted a num-
ber of case studies within two research disciplines, physics (material character-
isation) and structural biology (understanding materials at the atomic scale).
The domain experts noted the following advantages of the Chiminey : (1) time
savings for computing and data management, (2) user-friendly interface, and (3)
visualisation of the calculation results as 2D or 3D graphs. We believe that the
proposed platform will have a strong positive impact on the research community,
because it give an opportunity to focus on the main research problems and takes
upon itself solving of the major part of the infrastructure problems.

Future Work. One of the directions of our future work is incorporation
Nimrod [9] into our open-source platform for the execution of its Smart Connec-
tors. A further direction of our future work is application of the platform for an
efficient testing based on analysis of system architecture.

Acknowledgements. The Bioscience Data Platform project acknowledges funding
from the NeCTAR project No. 2179 [25]. We also would like to thank our colleagues
Dr Daniel W. Drumm (School of Applied Sciences, RMIT University), Prof Salvy P.
Russo (School of Science, RMIT University), Dr George Opletal (School of Science,
RMIT University), and Prof Ashley M. Buckle (School of Biomedical Sciences, Monash
University) for the fruitful collaboration within the Bioscience Data Platform project.

References

1. Afgan, E., Baker, D., Coraor, N., et al.: Harnessing cloud computing with Galaxy
Cloud. Nat. Biotechnol. 29(11), 972–974 (2011)

2. Altair, P.W.: http://www.pbsworks.com/
3. Androulakis, S., Schmidberger, J., Bate, M.A., et al.: Federated repositories of

X-ray diffraction images. Acta Crystallogr. Sect. D 64(7), 810–814 (2008)
4. Armbrust, M., Fox, A., Griffith, R., et al.: A view of cloud computing. Commun.

ACM 53(4), 50–58 (2010)
5. Aversa, R., Di Martino, B., Rak, M., Venticinque, S., Villano, U.: Performance

Prediction for HPC on Clouds, pp. 437–456. John Wiley & Sons, Inc. (2011)
6. Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with

isabelle – Superposition with hard sorts and configurable simplification. In:
Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 345–360. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32347-8 24

http://www.pbsworks.com/
http://dx.doi.org/10.1007/978-3-642-32347-8_24

176 M. Spichkova et al.

7. Broy, M.: Time, abstraction, causality and modularity in interactive systems:
extended abstract. Electr. Notes Theor. Comput. Sci. 108, 3–9 (2004)

8. Buyya, R., Sulistio, A.: Service and utility oriented distributed computing sys-
tems: challenges and opportunities for modeling and simulation communities. In:
Proceedings of the 41st Annual Simulation Symposium, ANSS-41 2008, pp. 68–81.
IEEE (2008)

9. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid (2000)

10. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

11. Cafaro, M., Aloisio, G.: Grids, clouds, and virtualization. In: Cafaro, M., Aloisio, G.
(eds.) Grids, Clouds and Virtualization. Computer Communications and Networks,
pp. 1–21. Springer, London (2011)

12. Carlson, J.L.: Redis in Action. Manning Publications Co., Greenwich (2013)
13. Celery Project: The Celery Distributed Task Queue. http://www.celeryproject.

org/
14. Chorus. https://chorusproject.org/pages/index.html
15. Krafft, D., Cappadona, N., Caruso, B., Corson-Rikert, J., Devare, M., Lowe, B.:

VIVO: enabling national networking of scientists. In: WebSci10: Extending the
Frontiers of Society On-Line (2010)

16. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

17. Kuntschke, R., Kemper, A.: Data stream sharing. In: Grust, T., Höpfner, H., Illar-
ramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U.,
Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 769–788.
Springer, Heidelberg (2006). doi:10.1007/11896548 58

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

19. Leavitt, N.: Is cloud computing really ready for prime time? Computer 42(1),
15–20 (2009)

20. Ludscher, B., Altintas, I., Berkley, C., et al.: Scientific workflow management and
the Kepler system. Concurrency Comput. Pract. Experience 18(10), 1039–1065
(2006)

21. Martinaitis, P.N., Patten, C.J., Wendelborn, A.L.: Component-based stream
processing in the cloud. In: Proceedings of the 2009 Workshop on Component-
Based High Performance Computing, CBHPC 2009, pp. 16:1–16:12. ACM (2009)

22. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75183-0 4

23. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux J. 2014(239), Article No. 2, March 2014. Belltown Media, Hous-
ton. http://dl.acm.org/citation.cfm?id=2600241

24. National Computational Infrastructure. http://nci.org.au/
25. NeCTAR: the National eResearch Collaboration Tools and Resources (2015).

http://www.nectar.org.au/
26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

http://www.celeryproject.org/
http://www.celeryproject.org/
https://chorusproject.org/pages/index.html
http://dx.doi.org/10.1007/11896548_58
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-540-75183-0_4
http://dl.acm.org/citation.cfm?id=2600241
http://nci.org.au/
http://www.nectar.org.au/

Towards Modelling and Implementation of Reliability and Usability Features 177

27. Oinn, T., Greenwood, M., Addis, M., et al.: Taverna: lessons in creating a workflow
environment for the life sciences. Concurr. Comput. Pract. Exper. 18, 1067–1100
(2006)

28. Opletal, G., et al.: Hrmc: Hybrid reverse monte carlo method with silicon and
carbon potentials. Comput. Phys. Commun. 178, 777–787 (2008)

29. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.:
A performance analysis of EC2 cloud computing services for scientific computing.
In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) CloudComp
2009. LNICST, vol. 34, pp. 115–131. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12636-9 9

30. ReDBox-Mint. http://www.redboxresearchdata.com.au/
31. Spichkova, M.: Focus on processes. Technical report TUM-I1115, TU München

(2011)
32. Spichkova, M.: Design of formal languages and interfaces: “formal” does not mean

“unreadable”. In: Blashki, K., Isaias, P. (eds.) Emerging Research and Trends in
Interactivity and the Human-Computer Interface. IGI Global (2013)

33. Spichkova, M.: Stream Processing Components: Isabelle/HOL Formalisation and
Case Studies. Archive of Formal Proofs (2013)

34. Spichkova, M.: Compositional properties of crypto-based components. Archive of
Formal Proofs (2014)

35. Spichkova, M., Thomas, I., Schmidt, H., Yusuf, I., Drumm, D., Androulakis, S.,
Opletal, G., Russo, S.: Scalable and fault-tolerant cloud computations: modelling
and implementation. In: Proceedings of the 21st IEEE International Conference
on Parallel and Distributed Systems (2015)

36. Spichkova, M., Zhu, X., Mou, D.: Do we really need to write documentation for a
system? In: International Conference on Model-Driven Engineering and Software
Development (2013)

37. Spichkova, M.: Formalisation and analysis of component dependencies. Archive of
Formal Proofs (2014)

38. Spichkova, M., Schmidt, H.: Reconciling a component and process view. In: 7th
International Workshop on Modeling in Software Engineering (MiSE) at ICSE 2015
(2015)

39. Spichkova, M., Schmidt, H.W., Thomas, I.E., Yusuf, I.I., Androulakis, S., Meyer,
G.R.: Managing usability and reliability aspects in cloud computing. In: Pro-
ceedings of the 11th International Conference on Evaluation of Novel Software
Approaches to Software Engineering, pp. 288–295 (2016)

40. Spichkova, M., Zamansky, A., Farchi, E.: Towards a human-centred approach in
modelling and testing of cyber-physical systems. In: 21st International Conference
on Parallel and Distributed Systems. IEEE (2015)

41. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2008)

42. Yusuf, I., Schmidt, H.: Parameterised architectural patterns for providing cloud
service fault tolerance with accurate costings. In: Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-Based Software Engineering, pp.
121–130 (2013)

43. Yusuf, I., Thomas, I., Spichkova, M., Androulakis, S., Meyer, G., Drumm, D.,
Opletal, G., Russo, S., Buckle, A., Schmidt, H.: Chiminey: reliable computing
and data management platform in the cloud. In: Proceedings of the International
Conference on Software Engineering (ICSE 2015), pp. 677–680 (2015)

http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://www.redboxresearchdata.com.au/

178 M. Spichkova et al.

44. Zamansky, A., Rodriguez-Navas, G., Adams, M., Spichkova, M.: Formal methods
in collaborative projects. In: 11th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE). IEEE (2016)

45. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

46. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the impact
of hierarchy on model understandability – a cognitive perspective. In: Kienzle, J.
(ed.) MODELS 2011. LNCS, vol. 7167, pp. 123–133. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29645-1 14

http://dx.doi.org/10.1007/978-3-642-29645-1_14

An Improved Method Level Bug Localization
Approach Using Minimized Code Space

Shanto Rahman(B), Md. Mostafijur Rahman, and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh
{bit0321,bit0312,sakib}@iit.du.ac.bd

Abstract. In automatic software bug localization, source code classes
and methods are commonly used as the unit of suggestions. However,
existing techniques consider whole source code to find the buggy loca-
tions, which degrades the accuracy of bug localization. In this paper,
a Method level Bug localization using Minimized code space (MBuM)
has been proposed which improves the accuracy by only considering bug
specific source code. Later, this source code is used for identifying the
similarity to the bug report. These similarity scores are measured using a
modified Vector Space Model (mVSM), and based on that scores MBuM
ranks a list of source code methods. The validity of MBuM has been
checked by providing theoretical proof using formal methods. Case stud-
ies have been performed on two large scale open source projects namely
Eclipse and Mozilla, and the results show that MBuM outperforms exist-
ing bug localization techniques.

Keywords: Method level bug localization · Search space minimization ·
Retrieval and ranking

1 Introduction

In general, bug fixing is initiated when the Quality Assurance (QA) team or user
reports against a faulty scenario. Developer receive the reports and try to find
the buggy locations into the source code. Generally developers use their experi-
ences on the source code, or debug the code using the debugger of an Integrated
Development Environment (IDE). A source code project often contains millions
of lines (e.g., Eclipse version 3.0.2 contains 1,86,772 nonempty lines) from which
identifying the actual buggy location is always challenging. In case of automatic
software bug localization, developers usually provide the bug reports and cor-
responding buggy project to an automated tool, which provides a ranked list
of buggy locations. Developer traverse the list from the beginning until they
find the actual one. Hence, the accurate ranking of buggy locations is needed to
reduce the searching time.

Automatic software bug localization is commonly performed using static,
dynamic or both analysis of the source code by which failure locations of a
software can be identified [1–3]. Most of the bug localization techniques follow
c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 179–200, 2016.
DOI: 10.1007/978-3-319-56390-9 9

180 S. Rahman et al.

static analysis where Information Retrieval (IR) techniques are used [4,5]. Static
analysis uses probabilistic approach, so the more the unnecessary information is
considered, the more the biasness will be introduced, and the biasness lead to
inaccuracies. Dynamic analysis based techniques analyze the execution trace of
the source code with suitable test suites to identify the executed methods for a
bug. As dynamic analysis only provides method call sequences except method
contents, the solution search space has become very small. And using this small
search space, it is hard to find the buggy locations.

In recent years, several researches on bug localization have been conducted
using static analysis where buggy locations are identified using bug reports and
source code [6,7]. In static analysis, authors create two lists of corpora from
the source code and bug report. Then corpora are processed so that proper
similarities between source code and bug report can be measured. Finally, IR
based techniques are applied for ranking probable buggy files [4,5]. Zhou et al.
[5] propose such a technique named as BugLocator where Vector Space Model
(VSM) is modified by proposing tf-idf formulation. As BugLocator only uses
static information of the whole source code, this considers irrelevant information
for a bug. An extended version of BugLocator is proposed by assigning special
weights on structural information (e.g., class names, method names, variable
names and comments) of the source code which also ranks classes as buggy
[4]. Similar to BugLocator, this technique also considers the whole source code,
as a consequence biasness may be raised. Several dynamic analysis based bug
localization techniques have already been proposed [8,9]. Wilde et al. introduce
a technique where source code execution traces are considered using passing and
failing test cases [8]. However, due to considering passing test cases, irrelevant
features may be included in the domain of search space which may hamper
the accuracy of bug localization. Poshyvanyk et al. propose PROMISER which
suggests methods as buggy by combining both static and dynamic analysis of
the source code [9]. Unfortunately, this technique considers whole source code in
static analysis which may produce biasness on the ranking.

This paper proposes an a automatic software bug localization technique,
namely Method level Bug localization using Minimized code space (MBuM) where
buggy locations of the source code are identified by eliminating irrelevant source
code (Code space and search space basically represent the same thing. That is
why, in this article, code space and search space are used interchangeably; a pre-
liminary version of this work can be found in [10]). At first, MBuM identifies a
relevant search space by tracing the execution of the source code for a bug. As
dynamic analysis provides a list of executed methods without method contents,
static analysis is performed to extract those. Several pre-processing techniques
are applied on these relevant source code along with the bug report, which pro-
duce code and bug corpora. During the creation of bug corpora, pre-processing
techniques such as stop words removal, multiwords splitting, semantic meaning
extraction and stemming are applied on the bug report. In addition, program-
ming language specific keywords removal is applied for generating scenario specific
code corpora. Finally, to rank the buggy methods, similarity scores are measured

An Improved Method Level Bug Localization Approach 181

between the code corpora of the methods and bug corpora of the bug report by
applying mVSM. It modifies existing VSM by providing more priority to be buggy
to the larger sized methods than the small sized methods [5].

The effects of search space on ranking is formulated as a proposition, which
has been proved using formal methods. To evaluate the results of the proposed
solution, the experiments (i.e., Sect. 5) contain three case studies where Eclipse
and Mozilla are used as the subject. Results are compared with four existing
bug localization techniques namely PROMISER [9], BugLocator [5], LDA [11]
and LSI [12]. In Eclipse, MBuM ranks the actual buggy method at the first posi-
tion in three (60%) among five bugs, while other techniques rank no more than
one (20%) bug at the top. Similarly in case of Mozilla, LDA, LSI and BugLo-
cator rank none of the bugs at the top whereas MBuM ranks three (60%) and
PROMISER ranks two (40%) bugs at the first position. Above results show that,
MBuM outperforms other existing state-of-the-art bug localization techniques.

Rest of the paper is structured as follows. In Sect. 2, existing literature on
bug localization are given. Section 3 presents the model of the proposed tech-
nique, and the implementation of that model is described in Sect. 4. The result
is analyzed in Sect. 5, and later several kinds of threats are discussed in Sect. 6.
Finally, Sect. 7 concludes the contribution with future remarks.

2 Related Work

This section focuses on the researches which are conducted to increase the accu-
racy of bug localization. Following discussion first holds some of the static analy-
sis based bug localization techniques. Later, dynamic analysis based techniques
are depicted.

2.1 Source Code Static Analysis Based Techniques

Brent D. Nichols proposes a method level bug localization technique [6] using
source code static analysis. At first, the semantic meanings of each method has
been extracted by applying several text processing techniques such as stop words
removal, separation of identifiers and stemming. In the second phase, authors add
extra information from the previous bug history to the methods. When a new bug
is arrived, Latent Semantic Indexing (LSI) is applied on the method documents
to identify the relationships between the terms of the bug report and the concepts
of the method documents. Based on that relationships, a list of buggy methods
has been suggested. Due to depending on the predefined dictionary keywords and
inadequate previous bug reports, this greedy approach may fail. Furthermore,
the accuracy of this technique may not be satisfactory enough due to considering
the whole source code information rather than the bug specific information.

Zhou et al. propose BugLocator where buggy locations are identified at the
class level using static analysis of the source code [5]. At first authors process
bug report and source code separately, resulting two sets of corpora, one for bug
report and another for source code. These corpora are processed using several

182 S. Rahman et al.

text processing techniques such as stop words removal, programming language
specific keywords removal, multi-words identification and stemming. Later, these
two sets of corpora are compared using a revised Vector Space Model (rVSM).
For a specific bug, BugLocator suggests a list of classes as buggy where develop-
ers need to manually investigate the source code for finding more granular buggy
locations (e.g., buggy methods of the source code). As this technique considers
whole source code during static analysis, accuracy may be hampered because
large unnecessary information creates more biasness in the ranking.

An improved version of BugLocator [5] is addressed (titled as BLUiR) by
Ripon et al. where structural information including class names, method names,
variable names and comments of the source code get more priority than oth-
ers [4]. All identifiers and comments are tokenized using above mentioned text
processing approaches except the removal of programming language specific key-
words. However, most of the cases the consideration of programming language
specific keywords may introduce irrelevant information. Along with this, BLUiR
may increase unnecessary information by considering whole source code. And
these large irrelevant information for a bug may increase false positive rate in
the ranking of buggy locations.

Alhindawi et al. [13] introduce another method level feature location based
technique by enhancing source code with stereotypes. Stereotypes represent the
details of each word which is commonly used in programming. For example,
the stereotype named as ‘get’ means that a method returns a value. Similarly,
the stereotype ‘set’ represents that the value of a data member has been set.
In this approach, the corpus of the source code is enriched with the combina-
tion of stereotypes which describes the abstract role of the source code method.
These stereotype information are derived automatically from the source code
via program analysis. After adding stereotype information with the source code
methods, Information Retrieval (IR) based technique is used to run queries for
feature location. The basic assumption is that adding stereotype information to
the source code corpus will improve the results of bug localization.

Wang et al. introduce another bug localization technique, where similar bug
reports, version history and structure of the source code are amalgamated [7].
This technique also suggests file level buggy locations and so developers have to
spend lots of searching time to identify more granular level (i.e., methods of the
source code). Here, the accuracy may be deteriorated significantly because of the
consideration of large and irrelevant source code for a bug. Recently, Rahman
et al. consider version histories and structural information of the source code
to identify buggy files [14]. Here, the scores of rVSM [5] are combined with the
frequently changed files information. Later, the source code files whose structural
information (such as class names, method names) are available in the bug report
get more priority. Based on the above assigned scores, a list of buggy files are
ranked. Unfortunately, due to using whole source code in static analysis, the
accuracy of this technique may also be biased.

An Improved Method Level Bug Localization Approach 183

2.2 Source Code Dynamic Analysis Based Techniques

In dynamic analysis based techniques, the run time behavior of the source code
is obtained using proper test suits. Using source code dynamic analysis, data
flow of the execution are recorded and irrelevant source code are discarded.

The first dynamic analysis based bug localization technique is proposed by
Wilde et al. where source code execution traces are analyzed using multiple test
cases [8]. Authors consider two types of test cases such as passing and failing
test cases. Using the passing test cases, desired features are extracted. Similarly,
failing test case provides the features which are not desirable. To identify the
buggy locations, these two types of test cases are considered which provide a
large volume of features. However, due to using passing test cases, irrelevant
features may be included in the domain of search space.

Eisenbarth et al. propose an improved version of [8] where both dynamic
and static analysis of the source code are combined [15]. Here, static analysis
identifies the dependencies among the data to locate the features in a program
while dynamic analysis collects the source code execution traces for a set of
scenarios. These traces are analyzed with a view to categorizing the subroutines
based on the degree of a feature. However, here during static analysis whole
source code is used which degrades the accuracy of the technique.

PROMESIR is another source code dynamic analysis based technique,
addressed by Poshyvanyk et al. [9]. Through dynamic analysis, executed buggy
methods are extracted for a bug. Meanwhile, static analysis is also applied here
which collects the whole source code. Initially, these two analysis techniques
produce bug similarity scores differently without interacting with one another.
Finally, these two scores are combined and obtained a weighted ranking score
for each source code method. Although this technique uses dynamic information
of the source code, it fails to discard the irrelevant source code for a bug. Rather
the whole source code is considered during static analysis which may increase
the biasness. As a consequence, the accuracy of bug localization is declined.

From the above discussions, it is clear that the existing bug localization
techniques commonly follow static, dynamic or combination of both analysis
of the source code and all of the existing techniques consider whole source code
rather than discarding irrelevant source code for a bug. As a result, the accuracies
of the existing bug localization techniques hamper significantly.

3 Does Minimized Code Space Can Improve
the Accuracy of Bug Localization Techniques?

To answer this question, a model named as Method level Bug localization using
Minimized code space (MBuM) has been developed. At first, the elements of
the model are defined. Source code and bug report act as the input, while a
ranked list of buggy methods is the system output. The input are processed
using a bug localizer, and the buggy methods are ranked. During the processing
of input, it is assumed that a bug report and source code share some common

184 S. Rahman et al.

information. Since the size of a software project is too large (with respect to the
total statements of the source code), it is quite difficult to find the actual buggy
locations. The details of the model is described below using Z notations [16].

MBuM
D : Dictionary
M : List of methods
B : Bug report
S : whole source code
bi : terms of the bug report
m : accurate set of buggy methods
si : terms of the source code

B ← bi | bi ∈ D
S ← si | si ∈ D
m ← find accurate relation between bi

∧
si

Here, D represents the set of Dictionary words of bug report and source code.
bi and si are the number of the terms of bug report and source code respectively.
As the main objective is to increase the suggestion of accurate numbers of buggy
methods (m), an accurate relationship should be established between the bug
report and source code terms. However, it is difficult to find exact buggy locations
from the whole source code, and so removal of irrelevant source code is desired.
Moreover, to find the list of buggy methods, a good source code terms and bug
report processing technique is needed.

Now, a new proposition is developed by which valid search space can be
extracted. The proof of the proposed proposition is described in the followings
using Z notations [16].

A small and relevant search space can increase the accuracy of bug localiza-
tion because localization follows a probabilistic way and accuracy depends on the
volume of search space. The relevant search space may be obtained by executing
the source code for a specific bug. Since only the bug specific source code is
considered, it ensures that the actual buggy methods must reside within the rel-
evant extracted domain. After discarding the irrelevant source code, more accu-
rate bug localization techniques can be obtained. This hypothesis is described in
Lemmas 1 and 2.

Lemma 1: In bug localization, the selection of relevant domain can
produce more accurate ranking than considering the whole-domain.

For developing a software, a large number of source code files or classes are
created. The number of selected source code class can significantly affect the
ranking score of bug localization. In case of accurate bug localization, to show
the number of classes’ effects, a representative ranking model namely Vector

An Improved Method Level Bug Localization Approach 185

Space Model (VSM) can be used [17]. VSM depends on the inverse document
frequency (idf), and idf also depends on the number of documents or source
code files which is used to increase the weights of rare terms as Eq. 1.

idf = log(
�docs
nt

) (1)

Here, �docs and nt are the total number of documents and the number of doc-
uments containing the term t respectively. Equation 1 shows that idf increases
with the increment of �docs. The VSM depends on the idf and the final score of
VSM is calculated using Eq. 2.

VSM (q , d) = cos(q , d) = (
∑

t∈q∩d

(log ftq + 1) × (log ftd + 1) × idf 2)

× 1
√∑

t∈q((log ftq + 1) × idf)2
× 1

√∑
t∈d((log ftd + 1) × idf)2

(2)

In Eq. 2, t , q and d represent the term, query and document respectively. ftq
and ftd are the term frequencies within the query and documents respectively. In
this study, inverse method frequency (imf) has been used instead of idf to give
more priority to rare terms in methods. So, the consideration of large number of
irrelevant methods can deteriorate the ranking scores significantly. The effect of
imf is illustrated by the following mathematical model when whole source code
is considered for finding buggy locations.

RareTermPriority
weight(x) : x gets weight
r? : Rare Term
b? : Bug Report
t? : Term
υ : Buggy Methods
ψ : Non Buggy Methods

∃ t? ∈ b? : (t? ∈ r?) ∧ (t? ∈ υ) ∧ (t? �∈ ψ)
•weight(υ) ⇒ rankhigh(υ) (a)
∃ t? ∈ b? : (t? ∈ r?) ∧ (t? �∈ υ) ∧ (t? ∈ ψ)
•weight(ψ) ⇒ rankhigh(ψ) (b)

The above model shows the impact of rare terms in bug localization.
Here, two scenarios may be occurred such as RareTermPriority(a) and
RareTermPriority(b) which represent the weight of buggy and non-buggy meth-
ods respectively. The detail is described below.

1. The methods which hold rare terms and related to a bug, get more priority
to be buggy which is desired (shown in RareTermPriority(a)).

186 S. Rahman et al.

2. Similarly, rare terms exist in methods which have no relation with the occur-
rence of reported bugs, get more imf weights which is repulsive (shown in
RareTermPriority(b)). When the solution search space is large, the situa-
tion of RareTermPriority(b) may be occurred which deteriorates the ranking
accuracy significantly. So, if the total number of methods can be restricted by
only considering valid and relevant methods, imf cannot create large negative
impacts on the ranking.

Another problem may be occurred due to considering large solution search
space and that is the actual buggy location may be suggested in the Tth position
in the worst case where the total number of available methods are T . It is
noteworthy that an automated bug localization technique provides a list of buggy
locations according to the descending order of ranking scores, where developers
traverse from the beginning of the suggested list one by one. If the actual buggy
location is suggested in Tth position, the developers need to inspect T number
of suggestions to find the actual one. On the other hand, if it can be ensured
that the bug is obtained in the targeted domain (e.g., T − ψ), developers have
to inspect only (T − ψ) buggy locations in the worst case.

SearchSpaceMinimization
b? : Bug Report
mt? : Total methods in source code
md? : Methods relevant to bug
mu? : Methods irrelevant to bug
ϑ : seq bugs
κ! : Minimized search space

md? ∈ Pmt?
md? ⊆ mt?
md? = mt? \ mu?
mt? = md? ∪ mu?
∀ b? ∈ ϑ • (b? ∈ md?) ∧ (b? �∈ mu?) ⇒ κ! = md? (c)

In the above SearchSpaceMinimization model, b is a bug report. mt , md and
mu represent total, relevant and irrelevant methods of source code for a bug
respectively. This model states that the relevant methods can be obtained by
discarding the irrelevant methods from the source code. From this model, it is
clear that the bug must reside into the dynamically traced methods md according
to SearchSpaceMinimization(c).

Lemma 2: Large information domain can increase False Positive Rate
of bug localization

In case of software bug localization, False Positive Rate (FPR) means that
the identification of non-buggy methods as buggy which misguides developers to
identify buggy methods. The large unnecessary information can produce large
FPR. The situation of the increment of FPR with respect to the unnecessary
information is illustrated using the following mathematical model.

An Improved Method Level Bug Localization Approach 187

In this model, m is a module which is common within p1, p2 and p3 packages
of a project whose basic functionalities are same but implementations are dif-
ferent. b is a bug associated to m, which is actually related to package p1. Due
to obtaining the same feature in three different packages, it may happen that p2
and p3 get more ranking scores than p1. This situation could be raised when the
whole source codes have been considered to locate a single bug because the size
(that is, terms) of p2 and p3 may be larger than p1. And according to VSM, the
small but relevant document will get more priority than others which leads to
the following theorem.

FPR
Package : {p1, p2, p3,, pn}
p? : Package
m? : Module
b? : Bug report
Buggy(x) : x is buggy
prrank (x) : Ranking score of x
f (p?) : Feature of p?
Imp(p?) : Implementation of p?
β! = Buggy package

m? ∈ f (p1) ∩ f (p2) ∩ f (p3)
b? ∈ m? ∧ b? ∈ p1
(f (p1(m?)) = f (p2(m?)) = f (p3(m?))) ∧
(Imp(p1)! = Imp(p2)! = Imp(p3)) ⇒
(prrank (p2) ≥ prrank (p1)) ∨ (prrank (p3) ≥ prrank (p1))
β! = p2 ∨ p3

Theorem 1: A small but relevant search space can increase the accu-
racy of bug localization.

Lemma 1 illustrates that VSM may incur negative impacts in case of large
solution search space and Lemma 2 shows the effects of using whole source code
in case of FPR. From Lemmas 1 and 2, it can be derived that a small number
of relevant search space can increase the accuracy of bug localization.

4 Method Level Bug Localization Using Minimized
Code Space

In this section, a model described in Sect. 3 has been implemented by devising a
methodology which increases the ranking accuracy because of considering only
relevant search space from the source code for a bug. The methodology of the
proposed bug localization technique is described in the following subsections.

The overall process of improving the bug localization accuracy is briefly dis-
cussed as follows. From Sect. 3, it is observed that if relevant information domain

188 S. Rahman et al.

Fig. 1. Functional block diagram of MBuM (N.B. reproduced from [10]).

can be extracted by ignoring irrelevant methods from the large solution space,
the accuracy of bug localization can be increased dramatically. At the begin-
ning of bug localization, source code dynamic analysis is performed to minimize
the solution search space which extracts only the related methods for generat-
ing a specific bug. Static analysis is done with a view to getting the contents of
extracted methods. After applying dynamic and static source code analysis, valid
and relevant information can be obtained. The contents of extracted methods
are processed to create code corpora using static analysis. Since bug report only
contains textual information related to a specific buggy scenario, again static
analysis is performed to process the bug report. Finally, generated corpora from
the bug report and source code are matched with each other to rank the source
code methods. The whole process for localizing bugs can be divided into four
steps and those are Code corpora creation, Indexing, Bug corpora creation and
Retrieval and ranking. Each of the steps follow series of tasks as shown in Fig. 1.

4.1 Code Corpora Creation

Code corpora are the collection of source code words which are used to check
the similarity with bug report corpora [4–7]. So, the more accurate the code
corpora generation is, the more accurate matching can be obtained which may
increase the accuracy of bug localization. For generating valid code corpora,
two approaches are conducted and those are dynamic and static analysis [18].
Dynamic analysis produces relevant search space by considering source code

An Improved Method Level Bug Localization Approach 189

execution trace (e.g., source code methods) for a specific bug by despising the
codes which are not responsible for generating the bug. Although dynamic analy-
sis provides relationships between methods or classes, it cannot provide method
or class contents. On the other hand, static analysis is related to the code analysis
which considers whole source code information and extracts method contents. So,
to get the method contents for only relevant methods, the output from dynamic
and static analysis are combined and the common methods of those analysis
are considered. The code corpora creation can be divided into multiple granular
levels which are described below.

For the purpose of dynamic analysis, initially developers need to reproduce
the bug after getting the information from the bug report’s title, summary and
description. Here, execution traces are recorded and analyzed to extract exe-
cuted methods. From these traces, method call graphs are generated and parsed
to obtain the structure of the executed source code. It is noteworthy that the
method call graph does not contain the method contents rather it stores the
sequentially executed method names. Hence using static analysis, source code
is parsed by maintaining the code structures. This is done by traversing the
Abstract Syntax Tree (AST)1 to extract different program structures such as
package, class, method and variable names.

Contents of the above minimized search space are processed to get the rele-
vant code corpora as shown in Fig. 1. This is needed because buggy locations are
identified by measuring similarity between the contents of bug report and mini-
mized search space. So, trade-off is needed between bug report and source code
contents such as the format of all words should be the same (e.g., base form).
Minimized source code are pre-processed because source code may contain lots
of unnecessary keywords such as programming language specific keywords (e.g.,
public, static, void, int, string, etc.), stop words (e.g., has, is, a, the, etc.) which
do not provide any bug specific information rather may create impacts on rank-
ing and thus stop words are discarded.

Within source code, one word may consist of multiple terms such as
‘beginHeader ’ consists of ‘begin’ and ‘Header’ terms. Therefore, multiword iden-
tifiers are also used for creating singular value decomposition. Porter Stemming
[19] is applied to get the original form of the word so that ‘searching’, ‘searched’
and ‘search’ are identified as the same word. Moreover, statements are splitted
based on some syntax specific separators such as ‘.’, ‘=’, ‘(’, ‘)’, ‘{’, ‘}’, ‘;’, ‘/’,
etc. After completing all the aforementioned pre-processing, source code corpora
are produced.

The last step for generating code corpora is semantic meaning extraction as
shown in Fig. 1. During this step, semantic information of each word is extracted
because one word may have multiple synonyms. For example, to describe a single
case, developers and QA teams often use different words. Although the semantic
meanings of developers and QA described scenarios are the same, the only dif-
ference is in their vocabulary choice. Bug localization usually follows IR based

1 Abstract Syntax Tree, for details - https://eclipse.org/jdt/core/r2.0/dom%20ast/
ast.html.

https://eclipse.org/jdt/core/r2.0/dom%20ast/ast.html
https://eclipse.org/jdt/core/r2.0/dom%20ast/ast.html

190 S. Rahman et al.

techniques by performing word matching. So, the accuracy depends on the
matching of the words. For improving the accuracy, semantic word matching is
done. For example, ‘close’ word has many synonyms such as ‘terminate’, ‘stop’,
etc. To describe a scenario if a developer uses ‘close’ and QA uses ‘terminate’,
the system cannot identify the similar words without using semantic meanings
of those words. Thus semantic meaning extraction plays vital role in accurate
ranking of buggy methods.

4.2 Indexing

In this paper, indexing has been performed according to Fig. 2 where within each
package, multiple classes are available with different id, and within each class
several methods are stayed with unique id. Each method contains multiple words
and each word within a method is stored sequentially. Here, the synonymous
words of each word are also stored. Later, each method code corpora and bug
corpora is compared by searching only the indices.

Figure 2 is an example of a source code index (taken from, Eclipse
project). To better understand about the indexing only one package (that is,
org .eclipse.swt .graphics) contents are expanded. At first, that package is defined
and later the class name, method name of the source code are accumulated in
Fig. 2. Here, two classes such as Rectangle and Point are available in package
org .eclipse.swt .graphics. Among these classes, two methods are stored. As this
technique provides a method level ranking, the contents of each method is stored
within the method.

Fig. 2. Example of source code indexing.

An Improved Method Level Bug Localization Approach 191

4.3 Bug Report Corpora Creation

Software bug report contains the details of a programs’ error. The bug report
is usually prepared by Quality Assurance (QA) team or users. A software bug
report contains bug title, summary and description which provide important
information about a bug.

In bug report, the information may contain some common and irrelevant
words such as stop words which do not provide any bug specific information
rather create biasness for localizing the bugs. Moreover, words of bug report
may be in present, past or future tenses. Bug report needs to be processed to
remove these noisy information. At the beginning, stop words (e.g., am, is, are,
etc.) are removed from the bug report. Then multiword splitting (if needed) and
porter stemming [19] are applied (as used for code corpora generation) to get the
base form of the words. After completing these pre-processing, valid bug corpora
are generated which provide only the relevant words.

4.4 Retrieval and Ranking of Buggy Methods

In this step, each bug corpus is searched in the minimized solution space. For
ranking the source code methods, the proposed technique applies modified Vector
Space Model (mVSM) [5]. mVSM calculates the similarity between each query
(bug corpora) and methods as the cosine similarity with their corresponding
vector representations according to Eq. 3.

Similarity(q ,m) = cos(q ,m) =
−→
Vq × −→

Vm

| −→
Vq | × | −→

Vm |
(3)

Here,
−→
Vq and

−→
Vm are the vectors of terms for the query (q) and method (m)

respectively. | −→
Vq | × | −→

Vm | is the inner product of two vectors. Term weight
is calculated by multiplying tf (term frequency) and imf (inverse method fre-
quency). mVSM uses the logarithm of term frequency of a method. The imf
ensures that rare or unique terms in the methods are given more importance. tf
and imf are calculated using Eqs. 4 and 5 respectively.

tf (t ,m) = log ftm + 1 (4)

imf = log(
�methods

nt
) (5)

ftm is the number of occurrences of a term (t) in a method (m), �methods refers
to the total number of methods in the minimized search space, and nt refers
to the total number of methods containing the term t . MBuM also considers
method length because previous studies showed that larger files are more likely
to contain bugs due to carrying many features of a software [5]. The function
used to model the method length is provided in Eq. 6.

g(terms) =
1

1 + e−Norm(�terms) (6)

192 S. Rahman et al.

�terms is the number of terms in a method and Norm(�terms) is the normalized
value of �terms. The normalized value of a is calculated using Eq. 7.

Norm(a) =
a − amin

amax − amin
(7)

where, amax and amin are the maximum and minimum value of a. Now this
normalized value is multiplied with the cosine similarity score to calculate final
mVSM score which is calculated by Eq. 8.

mVSM (q ,m) = g(terms) × cos(q ,m) (8)

After measuring mVSM score of each method, a list of buggy methods has been
ranked according to the descending order of scores. The method with maximum
score is suggested at the top of the ranking.

5 Case Study

The effectiveness of MBuM has been evaluated by conducting several research
questions followed by multiple case studies. The case studies are similar to the
existing bug localization techniques such as PROMISER [9], LSI [12] and LDA
[11]. For this purpose, Top N Rank, Mean Reciprocal Rank (MRR) and Mean
Average Precision (MAP) are used as the measurement metrics.

5.1 Elements of the Case Studies

Here, two well-known open-source projects named as Eclipse and Mozilla are
considered as the subject of case study. Eclipse is a widely used open source
Integrated Development Environment (IDE) which is used for developing Java
applications. Meanwhile, Mozilla is a web browser which is used in most of the
hardware and software platforms [9]. Different versions of Eclipse (e.g., version
2.1.0, 3.0.1, 3.0.2 and 3.1.0) and Mozilla (e.g., version 1.5.1, 1.6 and 1.6 (a)) are
chosen which contain large volume of source code. As an example, 12,863 classes
and 95,341 methods are available in Eclipse 3.0.2, while Mozilla 1.5.1 contains
4,853 classes and 53,617 methods [9].

5.2 Objectives of the Case Studies

Since MBuM performs method level bug localization, methods are chosen as
the level of granularity in all the case studies. The actual buggy classes and
methods corresponding to the bugs are identified from the published patches.
Theses are used to evaluate the bug localization techniques where each patch
specifies which methods were actually changed to fix a specific bug. In case
of a bug, more than one published patches, the union of the most recent and
earlier patches are considered. A brief overview of bug title, description and the
generated queries for Eclipse and Mozilla are provided in [20]. The considered
bugs are well-acquainted and reproducible which meet the following criteria.

An Improved Method Level Bug Localization Approach 193

(i) Bugs are often categorized as resolved or verified or fixed. So, only the valid
bugs that have been fixed are considered.

(ii) The bugs having large similarity with multiple scenarios are chosen. For
example, a similar feature is implemented in multiple packages where
the implementations are different in every packages. Here, a bug may be
occurred in one package. This criterion supports Lemma 2 (Sect. 3).

5.3 Evaluation Metrics

To measure the performance of MBuM, Top N Rank, MRR (Mean Reciprocal
Rank) and MAP (Mean Average Precision) are used as metrics. These are widely-
used for measuring the effectiveness of a retrieval and ranking system [17,21]. For
all of these, the higher the value, the better the performance is. These metrics
are briefly described as follows.

(i) Top N Rank: This is the number of bugs that are localized in the top N
ranks (N = 1, 5, 10, ... for this system). For an example, N = 5 means that
the buggy statements ranked within top 5 suggestions. If one of the fixed
files of a bug is in the result set, it is marked as localized [14].

(ii) MRR: A reciprocal rank is the multiplicative inverse of the first correct
results’ rank of a query [14]. For example, if a bug is localized in rank
position 4, the reciprocal rank is 1

4 . So, the range of MRR will be 0 ≤
MRR ≤ 1. MRR is the average of all the reciprocal ranks of a set of queries.
MRR is calculated using Eq. 9. Here, n and ri are the number of queries
and rank of a query i , respectively.

MRR =
1
n

n∑

i=1

1
ri

(9)

(iii) MAP: MAP indicates how successfully the system is able to locate all the
buggy locations unlike MRR [14]. MAP is the mean of the average precision
values of a set of query [5].

5.4 Research Questions

In MBuM, probable buggy methods are ranked by conducting static analysis
followed by dynamic analysis of the source code. Hence, few research questions
have been emerged such as RQ1 and RQ2. RQ1 is introduced to validate that,
the minimization of search space can improve the localizing accuracy. It is also
needed to prove that the actual buggy methods get large similarity scores for a
bug. To validate this, RQ2 is introduced.

RQ1: Does the minimization of search space can improve the accuracy of bug
localization?

To answer this question, bug report �741492 has been introduced which
searches from ‘Help’ in Eclipse titled as “the search words after ‘”’ will be
2 https://bugs.eclipse.org/bugs/show bug.cgi?id=74149.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149

194 S. Rahman et al.

ignored”. For this case, the following scenario is executed to retrieve the rel-
evant methods.

(i) Expand the ‘Help’ menu from Eclipse and click on the search option.
(ii) Enter a search query within the search field.
(iii) Finally, click on ‘Go’ button or press enter.

In this case, MBuM finds only 20 classes and 100 methods as relevant to
this bug, shown in Fig. 3. Here, two source code packages namely org .eclipse.
help.internal .search and org .eclipse.help.internal .base are executed. Within the
first package, 14 classes are available and only 6 relevant classes are extracted from
org .eclipse.help.internal . base package. Each extracted class also contains one or
more methods. After despising the large irrelevant search space, static analysis
is applied only on the relevant information. If a query contains lots of ambigu-
ous keywords (e.g., very few bug related information), MBuM may suggest the
actual buggy method at most 100th position while all other existing bug local-
ization techniques will suggest buggy method in 53, 617th position in the worst
case. This is because by discarding irrelevant source code methods, MBuM only
uses these 100 methods for finding buggy methods while other techniques consider
total (i.e., 53, 617) methods of Eclipse.

Fig. 3. Extracted methods for Eclipse Bug Id-74149.

A query is formulated using the bug description which contained ‘search
query quote token’. The actual buggy method is manually retrieved from the
published patch which is ‘org.eclipse.help.internal.search.QueryBuilder.tokenize
UserQuery’. MBuM suggests ‘tokenizeUserQuery’ method at the 1st position of
its ranking (shown in Table 1). Same query is applied on PROMISER, LSI and
BugLocator to find the buggy location. PROMISER and LSI rank the actual
buggy method at the 5th and 8th position respectively (shown in Table 1). So,

An Improved Method Level Bug Localization Approach 195

Table 1. The suggestion of buggy methods using different bug localization techniques
in Eclipse (reproduced from [10]).

�Bug BugLocator PROMISER LSI LDA Proposed MBuM

5138 7 2 7 2 1

31779 4 1 2 2 1

74149 12 5 8 1 1

83307 6 5 13 7 2

91047 4 6 9 5 3

comparing with PROMISER and LSI, the effectiveness of MBuM is 5 and 8
times better respectively. On the other hand, BugLocator suggests buggy class
at 12th position which shows that MBuM performs m times faster where m
represents total number of methods in the suggested 12 buggy classes because
BugLocator suggests buggy classes. LDA is not implemented because same bug
reports are also used in LDA and that is why the results are taken from that
paper [11]. In this case, LDA creates a different query as ‘query quote token’
which discards the ‘search’ term from the query due to obtaining ‘search’ query
in multiple scenarios. That is the reason for suggesting the buggy method at the
1st position. Hence, it can be concluded that static analysis followed by dynamic
execution trace of the source code reduces the search space which improves the
ranking accuracy of bug localization technique.

RQ2: How much effectively MBuM can suggest buggy methods?
The effectiveness of MBuM can be measured by considering the ranking of

buggy methods. If the buggy method is ranked at the 1st position, the effective-
ness is 100%. To answer RQ2, two case studies are conducted on Eclipse and
Mozilla where the ranking of buggy methods provided by MBuM are compared
with BugLocator, PROMISER, LSI and LDA. These case studies consider five
different bugs which were also studied in PROMISER [9] and LDA [11].

Case Study 1: Bug Localization in Eclipse. In this case study, five different
bugs in Eclipse are considered for making a comparison with state-of-the-art bug
localization techniques named as BugLocator, LDA, PROMISER and LSI. The
chosen bugs are described as follows.

– Bug �741493, titled as “The search words after ‘” ’ will be ignored”, exists in
the versions 3.0.0, 3.0.1, 3.0.2, and fixed in the version 3.1.1.

– Bug �51384, titled as “Double-click-drag to select multiple words doesn‘t
work”, exists in version 2.1.3 and fixed in the version 3.3.

– Bug �317795, titled as “UnifiedTree should ensure file/ folder exists”, presents
in version 2.0.0 and fixed in the version 2.1.0.

3 https://bugs.eclipse.org/bugs/show bug.cgi?id=74149.
4 https://bugs.eclipse.org/bugs/show bug.cgi?id=5138.
5 https://bugs.eclipse.org/bugs/show bug.cgi?id=31779.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=74149
https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138
https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779

196 S. Rahman et al.

– Bug �833076, titled as “Unable to restore working set item”, presents in version
3.1.0 and fixed in the version 3.4.

– Bug �910477, titled as “About dialog buttons seemingly not responsive”, exists
in version 3.1.0 and fixed in the version 3.4.

Table 1 presents the ranking of the aforementioned bug localization tech-
niques. It is noteworthy that, BugLocator did not suggest methods rather suggest
files or classes. Figure 4 represents the ranking provided by different techniques
for five different considered bugs in Eclipse.

Fig. 4. Ranking provided by different bug localization techniques in Eclipse (repro-
duced from [10]).

These results show that MBuM ranks the actual buggy methods at the 1st

position for three (60%) of the five bugs. Table 1 and Fig. 4 present that for bugs
�5138, �83307 and �91047, MBuM performs better than four other techniques.
For bug �31779, PROMISER only provides equal result as MBuM. In case of
bug �74149, although LDA ranks equal as MBuM, the term ‘search’ is omitted
from the query which helps for providing better ranking because ‘search’ is a
common term in Eclipse and might create biasness. However, it is not desired
because ‘search’ may be a good candidate for finding buggy locations. From this
case study, it can be concluded that the proposed bug localization technique
performs better results than others.

Case Study 2: Bug Localization in Mozilla. Similar to the previous case
study, here also five mostly used bugs are taken from Mozilla bug repository
and the selected bugs are described in [20] and only the title of these bugs are
presented in the followings.

6 https://bugs.eclipse.org/bugs/show bug.cgi?id=83307.
7 https://bugs.eclipse.org/bugs/show bug.cgi?id=91047.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=83307
https://bugs.eclipse.org/bugs/show_bug.cgi?id=91047

An Improved Method Level Bug Localization Approach 197

– Bug �1821928, titled as “quotes (‘) are not removed from collected e-mail
addresses”, presents in Mozilla version 1.6 and fixed in the version 1.7.

– Bug �2161549, titled as “Anchors in e-mails are broken - clicking anchor
doesn’t go to target in an email”, exists in version 1.5.1 and patched in the
version 1.6.

– Bug �22524310, titled as “Page appears reversed (mirrored) when printed”,
exists in the version 1.6 (a) and fixed in the version 1.7. This bug does not
exist in version the 1.6 rather actually presents in the version 1.6(a) [11].

– Bug �20943011, titled as “Ctrl+Delete and Ctrl+BackSpace delete words in
the wrong direction”, located in version 1.5.1 and fixed in the version 1.6.

– Bug �23147412, titled as “Attachments mix contents”, presents in the version
1.5.1 and fixed in the version 1.6.

The results demonstrate that MBuM provides better ranking accuracy over
BugLocator, LDA, PROMISER and LSI techniques (shown in Table 2). These
results show that three (60%) out of five bugs are located at the 1st position
and another two are ranked at the 2nd position by MBuM. On the other hand,
among the other four techniques only PROMISER suggests two (40%) of five
bugs at the 1st position and other three techniques’ results are far away from
the 1st position (according to Table 2).

Table 2. The suggestion of buggy methods using different bug localization techniques
in Mozilla (N.B. reproduced from [10]).

�Bug BugLocator [5] PROMISER [9] LSI [12] LDA [11] Proposed MBuM

182192 4 2 37 3 1

216154 7 6 56 4 2

225243 5 6 24 9 2

209430 6 1 49 9 1

231474 3 1 18 4 1

Figure 5 presents the ranking provided by different techniques for five dif-
ferent bugs in Mozilla. Although for bugs �209430 and �231474, PROMISER
provides the same ranking as MBuM, it produces noticeably poor ranking in
other three bugs as shown in Table 2 and Fig. 5. In case of �182192, �216154 and
�225243, MBuM ranks the actual buggy methods more accurately than other
four techniques. This comparative analysis of results also shows the significant
improvement of ranking by MBuM.

8 https://bugzilla.mozilla.org/long list.cgi?buglist=182192.
9 https://bugzilla.mozilla.org/show bug.cgi?id=216154.

10 https://bugzilla.mozilla.org/show bug.cgi?id=225243.
11 https://bugzilla.mozilla.org/show bug.cgi?id=209430.
12 https://bugzilla.mozilla.org/show bug.cgi?id=231474.

https://bugzilla.mozilla.org/long_list.cgi?buglist=182192
https://bugzilla.mozilla.org/show_bug.cgi?id=216154
https://bugzilla.mozilla.org/show_bug.cgi?id=225243
https://bugzilla.mozilla.org/show_bug.cgi?id=209430
https://bugzilla.mozilla.org/show_bug.cgi?id=231474

198 S. Rahman et al.

Fig. 5. Ranking provided by different bug localization techniques in Mozilla (repro-
duced from [10]).

6 Threats to Validity

This section discusses the threats which can affect the validity of the proposed
technique. The threats are identified from three perspectives - internal threats,
external threats and construct threats.

Internal Threats: The internal threats refer threats that affect the validity of
the results which depend on the implementation of the technique and the envi-
ronmental set up of the experimental procedure. The proposed technique as well
as the experimental projects are implemented in Java programming language.
Therefore, the result gained through analyzing the experimental projects may
differ when experimented in platforms other than java.

External Threats: MBuM requires proper quality of the bug reports. As bug
report is one of the important means from which the buggy locations can be
identified, the quality of the bug report should contain the bug related informa-
tion. For example, if a buggy scenario is related to the ‘file import’ module and
the bug report holds another bug modules’ information, the quality of the bug
report will be significantly deteriorated. In practice, non-informative bug report
can also delay to fix a bug. Similarly, if a bug report does not provide enough
information, or provides misleading information, the performance of MBuM may
be adversely affected. The slight modification is handled by the proposed tech-
nique using the semantic meaning extraction from WordNet. However, if the
source code is not similar to the bug report, the localization may fail, though it
is a common problem in all bug localization schemes.

Finally, if the bug report does not contain proper reproducible approach, it
may be hard for developers to find the accurate source code dynamic tracing.

Another factor is the quality of source code, and the accuracy of bug local-
ization depends on the good programming practices in naming variables, meth-
ods and classes. If a developer uses meaningless names, the performance of the

An Improved Method Level Bug Localization Approach 199

proposed technique may be affected. However, in most of the well-managed
projects, developers follow good naming conventions and programming prac-
tices.

Construct Threats: Construct threats are related to the metrics which are
used to analyze the effectiveness of the proposed technique. The results are
analyzed based on Top N Rank, MRR and MAP. Therefore, analyzing the results
with other metrics can affect the generalization of the results.

7 Conclusion

This paper presents an approach to rank Method level Bug localization using
Minimized search space (MBuM). For ranking buggy methods, it discards
irrelevant search space by taking the execution trace considering method call
sequences of the source code. To retrieve the content of the methods static
analysis has been performed. Finally, similarity is measured between the method
contents of the source code and bug report which provides a rank list of the
methods.

MBuM has been evaluated both theoretically and experimentally. Theoretical
evaluation is done using formal methods, and for the purpose of experiments
case studies are conducted using two large scale open-source projects named as
Eclipse and Mozilla. The case studies show that MBuM ranks buggy methods
at the 1st position in most of the cases.

In this research, although fine grained suggestions such as method level
bug localization has been conducted, statement level bug localization can be
addressed in near future. In addition, since MBuM outperforms other existing
techniques for open source projects, it will be applied in industrial projects to
assess its effectiveness in practice.

Acknowledgment. This research is supported by the fellowship from ICT Divi-
sion, Ministry of Posts, Telecommunications and Information Technology, Bangladesh.
No - 56.00.0000.028.33.028.15-214 Date 24-06-2015.

References

1. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. J. Softw. Evol. Process 25(1), 53–95 (2013)

2. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM Sigplan Not. 39(12), 92–106
(2004)

3. Saha, R.K., Lawall, J., Khurshid, S., Perry, D.E.: On the effectiveness of infor-
mation retrieval based bug localization for c programs. In: IEEE International
Conference on Software Maintenance and Evolution (ICSME 2014), pp. 161–170.
IEEE (2014)

4. Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. In: Proceedings of the 28th International Confer-
ence on Automated Software Engineering (ASE 2013) IEEE/ACM, pp. 345–355.
IEEE (2013)

200 S. Rahman et al.

5. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate infor-
mation retrieval-based bug localization based on bug reports. In: Proceedings of
the 34th International Conference on Software Engineering (ICSE 2012), pp. 14–24.
IEEE (2012)

6. Nichols, B.D.: Augmented bug localization using past bug information. In: Pro-
ceedings of the 48th Annual Southeast Regional Conference, p. 61. ACM (2010)

7. Wang, S., Lo, D.: Version history, similar report, and structure: putting them
together for improved bug localization. In: Proceedings of the 22nd International
Conference on Program Comprehension, pp. 53–63. ACM (2014)

8. Wilde, N., Gomez, J.A., Gust, T., Strasburg, D.: Locating user functionality in old
code. In: Proceerdings of the Conference on Software Maintenance, pp. 200–205.
IEEE (1992)

9. Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., Rajlich, V.C.: Fea-
ture location using probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Trans. Softw. Eng. 33(6), 420–432 (2007)

10. Rahman, S., Sakib, K.: An appropriate method ranking approach for localizing
bugs using minimized search space. In: Proceedings of the 11th International Con-
ference on Evaluation of Novel Software Approaches to Software Engineering, pp.
303–309 (2016)

11. Lukins, S.K., Kraft, N., Etzkorn, L.H., et al.: Source code retrieval for bug local-
ization using latent dirichlet allocation. In: Proceedings of the 15th Working Con-
ference on Reverse Engineering (WCRE 2008), pp. 155–164. IEEE (2008)

12. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. JAsIs 41(6), 391–407 (1990)

13. Alhindawi, N., Dragan, N., Collard, M.L., Maletic, J.I.: Improving feature location
by enhancing source code with stereotypes. In: 2013 IEEE International Conference
on Software Maintenance, pp. 300–309. IEEE (2013)

14. Rahman, S., Ganguly, K., Kazi, S.: An improved bug localization using structured
information retrieval and version history. In: Proceedings of the 18th International
Conference on Computer and Information Technology (ICCIT) (2015) (accepted)

15. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Trans. Softw. Eng. 29(3), 210–224 (2003)

16. Woodcock, J., Davies, J.: Using z. specification, refinement, and proof (1996)
17. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to information

retrieval, vol. 1. Cambridge University Press, Cambridge (2008)
18. Kim, D., Tao, Y., Kim, S., Zeller, A.: Where should we fix this bug? a two-phase

recommendation model. IEEE Trans. Softw. Eng. 39(11), 1597–1610 (2013)
19. Frakes, W.B.: Stemming algorithms, pp. 131–160 (1992)
20. Rahman, S.: shanto-rahman/mbum: (2016). https://github.com/shanto-Rahman/

MBuM. 4/1/2016
21. Pareek, H.H., Ravikumar, P.K.: A representation theory for ranking functions. In:

Advances in Neural Information Processing Systems, pp. 361–369 (2014)

https://github.com/shanto-Rahman/MBuM
https://github.com/shanto-Rahman/MBuM

How Interesting Are Suggestions of Coupled File
Changes for Software Developers?

Jasmin Ramadani(B) and Stefan Wagner

Institute of Software Technology, University of Stuttgart,
Universitätstraße 38, Stuttgart, Germany

{jasmin.ramadani,stefan.wagner}@informatik.uni-stuttgart.de
http://www.iste.uni-stuttgart.de/en/se.html

Abstract. Software repositories represent a data source from which we
can extract interesting information to be presented to the developers
working on their maintenance tasks. Various studies use the software
repositories to extract sets of files that changed frequently in the past.
However, they do not consider feedback from developers on whether they
would like to use this kind of information. The aim of our research is to
support developers in maintenance tasks using suggestions which other
files they should also change. We investigate three software repositories
to find coupled file changes to support the software developers. We also
propose a set of attributes from the versioning system, the issue tracking
system and the project documentation. We contrast our findings with
the feedback gathered using survey and interviews with the developers.
According to our results, small repositories make an insightful analy-
sis difficult. Both from experienced and inexperienced developers, the
feedback was mostly neutral. Most of the attributes we proposed were
accepted as interesting by the developers. Furthermore, developers also
suggested other additional issues to be relevant, e.g. the context of the
coupled changes. Generally, developers did not reject the coupled file
changes suggestions. However, the presentation form of coupled changes
and context information need to be taken into account.

Keywords: Data mining · Coupled file changes · Usefulnesses

1 Introduction

Software product development produces large amounts of data which is stored
in software repositories. They contain the artifacts developed during software
evolution. These repositories include different data sources like version control
systems, issue tracking systems and project documentation archives. After some
time, this data becomes a valuable information source for bug fixing or main-
tenance tasks. To learn from it, we need a technique to extract relevant details
from the source code history and search for valuable information. One of the
most used techniques is data mining which has become popular for analyzing

c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 201–221, 2016.
DOI: 10.1007/978-3-319-56390-9 10

202 J. Ramadani and S. Wagner

software repositories. The term mining software repositories (MSR) describes
investigations of software repositories using data mining [19].

To help the developers to identify the files to be changed during maintenance
tasks, a mining software repositories approach has been proposed [33]. These
files can be used to recommend coupled file changes. Couplings are defined as
“the measure of the strength of association established by a connection from one
module to another” [29]. Change couplings are described as files having the same
commit time, author and modification description [12]. Frequently changed files
can support developers in dealing with the large amount of information about
the software product, especially if the developer is new on the project, the project
started a long time ago or if the developer does not have much experience in
software development.

1.1 Problem Statement

Several researchers have proposed approaches to identify coupled files to give
recommendations to developers during a change [20,33,35]. Existing studies,
however, focus on the presentation of the mining results and ignore the feedback
of developers on the findings.

1.2 Research Objectives

The overall aim of our research is to support the developers in common mainte-
nance tasks. In this paper, we concentrate on applying MSR to provide sugges-
tions for likely changes so that we can investigate how interesting the suggestions
are for the developers and what further information besides version histories
might increase the interestingness.

We define interestingness as the subjective measure of the developers’ opinion
on how useful findings (here: coupled change suggestions) are for maintenance
tasks.

1.3 Contribution

We present an industrial case study on the interestingness of coupled change
suggestions. We identify frequent couplings between file changes based on the
information gathered from three software project repositories. The version con-
trol system, the issue tracking system and the project documentation archives are
used as data sources for additional repository attributes we join to the coupled
changes we discover. In particular, we investigate the feedback of the developers
about the interestingness of our findings by conducting a survey. We evaluate
the answers by performing additional interviews and analyze them using the
Grounded Theory method.

This paper is an extended version of our case study on interestingness of cou-
pled file changes [23]. This extended version adds an additional research question
investigating the influence of the involvement of the developers in the project
on the interestingness of coupled change suggestions. We have also extended the
discussion about the research questions and the related conclusions.

How Interesting Are Suggestions of Coupled File Changes? 203

2 Interestingness

Coupled changes suggestions can be provided to the developers with an intention
to help them by providing suggestions about other changes. There is no guarantee
that they would like to use this kind of help.

Our approach is based on determining the interestingness of these coupled
changes. We consider interestingness as a subjective measure which is derived
from the user’s beliefs or expectations [22]. Information is defined to be inter-
esting if it is novel, useful and nontrivial to compute. Here, useful means that
it can help to achieve a goal of the system or the user [11]. The interestingness
of coupled changes is represented by the possibility that they will use it during
their maintenance tasks. To determine the level of interestingness of the coupled
changes and the repository attributes we conclude questionnaire and interviews
to measure the feedback from the developers included in our case study.

We measure the interestingness using three levels: interesting, neutral and
not interesting. Two categories of interestingness has been identified. The first
category is the interestingness of coupled file changes. The second category is the
interestingness of the repository attributes we extract from the version control
system, the issue tracking system and the project documentation. We join this
repository attributes to the coupled file changes.

3 Data Mining Background

To be able to extract coupled file changes by using data mining, we introduce
the data technique that we employ in our study. One of the most popular data
mining techniques is the discovery of frequent itemsets. To identify sets of items
which occur together frequently in a given database is one of the most basic
tasks in data mining [15]. Coupled changes describe a situation where someone
changes a particular file and also changes another file afterwards.

Let us say that the developer changes file f1 and then also frequently changes
file f3. By investigating the transactions of changed files in the version control
system commits we identify a set of files that changed together. Let us have the
following three transactions: T1 = {f1, f2, f3, f7}, T2 = {f1, f3, f5, f6}, T3 =
{f1, f2, f3, f8}. From these three transactions, we isolate the rule that files f1
and f3 are found together: f1 and f3 are coupled. This means that when the
developers changed file f1, they also changed file f3. If these files are found
together frequently, it can help other persons by suggesting that if they change
f1, they should also change f3. Let F = {f1, f2, ..., fd} be the set of all items
(files) f in a transaction and T = {t1, t2, ..., tn} be the set of all transactions t . As
transactions, we define the commits consisting of different files. Each transaction
contains a subset of chosen items from F called itemset.

An important property of an itemset is the support count δ which is the
number of transactions containing an item. We call the itemsets frequent if they
have a support threshold minsup greater than a minimum specified by the user
with

0 ≤ minsup ≤ |F | (1)

204 J. Ramadani and S. Wagner

4 Related Work

Many studies investigated software repositories to find logically coupled changes,
e.g. [3,9,12]. We identify two granularity levels, the first one [20,33] investigates
the couplings based on the file level, the second [9,19,34,35] identifies coplings
between parts of files like classes, methods or modules.

Most of the studies dealing with identifying coupled changes use some kind of
data mining for this purpose [13,18,20,27,31,33,35]. Especially the association
rules technique is often used to identify frequent changes [20,33,35]. This data
mining technique uses various algorithms to determine the frequency of these
changes. Most of them employ the Apriori algorithm [20,35], however other
algorithms like the FP-Tree algorithm are also in use [33].

Most of the studies use a single data source where a kind of version control
system is investigated, typically CVS or Subversion. To our knowledge there
are few studies which investigate a Git version control system [4,6,17]. Other
studies combine more than one data source to be investigated, like a version
control system and an issue tracking system [5,7,8,32] where the data extracted
from these two sources is analyzed and the link between the changed files and
issues is determined.

To the best of our knowledge, there are only three studies investigating how
couplings align with developers’ opinions or feedbacks. Coupling metrics on the
structural and the semantic level are investigated in [24]. The developers are
asked if they find these metrics to be useful. They show that feature couplings
on a higher level of abstraction than classes are useful. Here, the developers’ per-
ceptions of software couplings are investigated in [2]. Here the authors examine
how class couplings captured by different coupling measures like semantic, logi-
cal and others align with the developers perception of couplings. The semantic
couplings have received the best rating of all types of couplings. The interesting-
ness of coupled changes is also studied in [33]. This study defines categorization
of coupled changes interestingness according to the source code changes.

We focus on the interestingness of coupled file changes and attributes involv-
ing the developers’ feedback on our findings using the following data sources:
Two of the projects use Git1 and the third one uses Mercurial.2 The first indus-
trial project uses JIRA as issue tracking system,3 the open source project and
the second industrial project use Redmine.4 We use the available product doc-
umentation of the projects as additional source of information.

5 Case Study Design

The structure of our case study is based on existing guidelines [25].

1 http://git-scm.com/.
2 http://mercurial.selenic.com/.
3 https://www.atlassian.com/software/jira.
4 http://www.redmine.org/.

http://git-scm.com/
http://mercurial.selenic.com/
https://www.atlassian.com/software/jira
http://www.redmine.org/

How Interesting Are Suggestions of Coupled File Changes? 205

5.1 Research Questions

RQ1: How many coupled changes can we extract from software repos-
itories? This research question provides the basis for our research. It is relevant
to investigate for the reason that the number of coupled changes affects the
outcome of the repository data analysis.
RQ2: How interesting are coupled change suggestions for developers?
This is the central question of this study which decides if developers would like
to use the suggested couplings.
RQ3: Does the experience of developers influences the interestingness
of coupled changes? We expect that inexperienced developers would be more
interested in coupled file suggestions considering their possible problems under-
standing the system [26]. Therefore, we investigate the developer’s programming
and project experience.
RQ4: Does the involvement in the project of developers influences the
interestingness of coupled changes? We include both developers who were
involved and those not involved in the development of the software products used
in the case study. Although our goal is to support inexperienced or developers
not involved in the projects, we expand the investigation on developers which
were included in the software products, we want to get their feedback on the
coupled changes.
RQ5: How interesting is additional information from other related
project artifacts? After we determine the interestingness of the couplings, we
will investigate if adding additional data sources influences the interestingness.
First, we examine the version control system that is related to the changes, e.g.
commit ids where the couplings were found, commit messages, commit dates
and authors of the commits. Second, the information stored in the issue track-
ing system is investigated, attributes like issue description, issue date and issue
status. Third, we look into the project documentation archive for information
about the project structure and naming conventions.
RQ6: Does the experience of developers influences the interestingness
of additional information from other related project artifacts? We inves-
tigate if the choice of the attributes from the version control system and the issue
tracking system depends on the developer’s programming experience.

5.2 Case Selection

The case selection is based on their availability and the suitability for our
research. We select cases from industry as a part of our cooperation with our
industrial partners as well as from the available open source projects developed
at the University of Stuttgart. Hence, our subjects will be practitioners as well
as students.

5.3 Data Collection Procedure

The case study uses two main data sources to investigate the coupled file changes.
As first data source, we use the artifacts from the software product development

206 J. Ramadani and S. Wagner

archived in software repositories. We did not have any direct contact with the
development process of the product. Instead, we examine the repositories of
the software product being developed or maintained. The second data source
consists of surveys and interviews with the project stakeholders providing direct
information. We divide the data collection procedure into five parts.

Version Control System. The first unit of data we use is the log data from the
version control system. Two software projects used Git, while the third project
uses Mercurial as a control management tool. Both are distributed version con-
trol systems allowing the developers to maintain their local versions of source
code.

The data collection from the version control system consists of four steps
which lead to the extraction of the information we need.

– Log Extraction: We extract the information from the log file containing the
committed file changes and the commit attributes. The log data is exported
as text file.

– Data Preprocessing: After the text files with the log data have been gen-
erated, we continue with the preparation of the data for data mining. Various
data mining frameworks use their own format, so the input for the data mining
algorithm and framework needs to be adjusted.

– Identifying Atomic Change Sets: We divide the data into a collection of
atomic change sets. Version control systems deal with this issue differently. In
our case, the version control systems preserve the possibility to group changes
into a single change set or a so-called atomic commit. It represents an atomic
changeset regardless of the number of files changed. A commit snapshot repre-
sents the total set of modified files and directories [21]. We organize the data
in a transaction form where every transaction represents a set of files which
changed together in a single commit.

– Data Filtering: We filter the file names and the following commit attributes:
commit id, commit message, commit date and commit author. We deal with
empty entries and outliers and we prepare the log entries for data mining.

– Change Grouping Heuristic: There are different heuristics proposed for
grouping file changes [20]. We use a heuristic considering the file changes
done by a single committer as related. We group the transactions of files
committed only by a particular author. We do not relate the changes done by
other committers.

Issue Tracking System. Issue tracking systems store important information
about the software changes or problems. In our case, the companies chose to use
JIRA and Redmine as issue tracking systems. The students also track their issues
using Redmine. We investigate the following issue attributes: issue titles, issue
descriptions and issue messages. The issue tracking systems support spreadsheet
export containing the considered issue attributes.

How Interesting Are Suggestions of Coupled File Changes? 207

Project Documentation. The software documentation gathered during the
development process represents a rich source of data. The documentation consists
of file naming conventions, directory paths and the package structure description.
From these documents, we discover the project structure.

For example in the last project, the subproject containing the files described
by the path astpa/controlstructure/figure/ contains the Java classes
responsible for the control diagram figures of this software.

Joining Collected Data. After the mining process is finished and we have
identified the coupled changes, we join them with the attributes from the version
control system, the issue tracker and the project documentation. In [8], the
authors create a release history database where they import the data from the
version control systems and the issue tracking systems. Similarly, we create a
database containing all file changes and the corresponding attributes from the
repositories.

Every commit has it own hash value which represents the commit id. It is
a unique value which identifies all the commits in the database. The issues are
identified by their keys. We use the issue keys to follow down the commit where
the change took place using the merge points of issues with the commit messages.
We use the path information of the changed files to enlist the sub-projects. As
a result we have a list of the most frequently changed files accompanied by
the information about the commit attributes, issue attributes and the project
structure.

Survey and Interviews. We investigate the developers’ feedback on the inter-
estingness of coupled changes and the additional attributes by conducting a
survey and performing interviews5 with the developers.

Survey: The developers answer a list of multiple-choice questions on-line. We
investigate the background of the developers by asking their programming and
project experience. The developers give us feedback on the concept of coupled
changes, not on particular couplings. We choose this setup as a first means to get
as many opinions as possible. Only few developers were available for in-depth
interviews on specific findings. The developer can choose between: interesting,
neutral and not interesting to evaluate the interestingness of coupled changes
and repository attributes.

Interviews: We perform semi-structured interviews to get more in-depth feedback
from the developers. This way, we ensure that the developers did not answer the
surveys by randomly choosing the options. We ask the available developers who
worked on the projects and other uninvolved developers about the interestingness
of the file changes and the attributes. We present them actual coupled file changes
extracted from the repositories.

5 All questions are available on http://dx.doi.org/10.5281/zenodo.15065.

http://dx.doi.org/10.5281/zenodo.15065

208 J. Ramadani and S. Wagner

5.4 Ethical Considerations

The data delivered by the companies is confidential. Therefore, we preserve
the anonymity of the stakeholders and the companies during this study. The
confidentiality and the publication is regulated by a non-disclosure agreement
between the researchers and the companies. All personal information extracted
from the repositories, the survey and the interviews is anonymized and is not
presented in the study.

5.5 Analysis Procedure

The data analysis is a combination of quantitative and qualitative methods.
We use quantitative methods to find the number of couplings. We augment
the results with a qualitative and quantitative analysis of the survey and the
interviews with the developers.

Analysis of Repository Data. We analyze the repository data to answer
RQ1. We run the mining algorithm to discover frequently coupled file changes.
We investigate the additional attributes we gather from the commit logs, the
issue tracking export and the project documentation.

Data Mining Algorithm: Various algorithms for mining frequent itemsets and
association rules have been proposed in literature [1,14,16]. We use the FP-
Tree-Growth algorithm to find the frequent change patterns. As opposed to
the Apriori algorithm [1] which uses a bottom up generation of frequent item-
set combinations, the FP-Tree algorithm uses partition and divide-and-conquer
methods [14]. This algorithm is faster and more memory efficient than the Apri-
ori algorithm used in other studies and allows frequent itemset discovery without
candidate itemset generation.

Support Level: We analyze the coupled changes by defining the threshold value
of the support for the frequent itemset algorithm. We use the thresholds that
give us a frequent yet still manageable number of couplings. This threshold is
normally defined by the user. We use the technique proposed by Fournier-Viger
presented in [10] to identify the support level. These values vary from developer
to developer, so we test the highest possible value that delivers frequent itemsets.

If for a particular developer, the support value does not bring any useful
results, we continue dropping the value of the threshold. We did not consider
itemsets with a support below 0.2 for the first two projects and 0.1 for the
third project. There is a variety of commercial and open-source products offering
data mining techniques and algorithms. For the analysis, we use an open-source
framework specialized on mining frequent itemsets and association rules called
the SPMF-Framework.6 It consists of a large collection of algorithms supported
by appropriate documentation.

6 http://www.philippe-fournier-viger.com/spmf.

http://www.philippe-fournier-viger.com/spmf

How Interesting Are Suggestions of Coupled File Changes? 209

Analysis of Questionnaires and Interviews. To answer RQ2–RQ6, we ana-
lyze the questionnaires and the outcomes of the interviews.

Survey Analysis: We start by investigating the background of the developers
by checking their answers about their programming and project experience. We
analyze the answers from the questionnaire by calculating the distribution of
the frequency of their answers. We put the main focus on the answers of the
participants about the interestingness of coupled changes and the answers about
the additional attributes.

Interview Analysis: We examine the interviews with the developers to vali-
date the outcomes of the questionnaires and to understand the context of their
answers. We analyze the interviews by using Grounded Theory [30]. The goal is
to generate a theory that emerges from the data being comparatively analyzed.

To analyze the data and build the theory, we use the following types of coding
activities in sequence: open, axial and selective coding [30]. After these codings,
we perform the theoretical coding and create the conceptual model. We use the
analysis software Atlas.ti7 to link the codes and create a network diagram.

– Open coding: In the open coding we have a line-by-line examination of the
interview transcripts to identify the main concepts and categories together
with their dimensions and properties. We code the data from interview answers
with a set of open codes derived from our research questions. Before we con-
tinue, we write a memo consisting of the hypotheses and ideas noted during
the analysis.

– Axial coding: After the open coding is performed, we continue with the
axial coding where we relate the categories, concepts and codes by identifying
the relations among them. This is done using the paradigm model [30] and
considering the relationships between contexts, interactions, conditions and
consequences.

– Selective coding: The selective coding formulates a core category to which
all other categories and codes can be related and includes all of the data.

– Theoretical coding: After finishing the open and axial coding, this cod-
ing involves the relationships between categories and subcategories and gives
meaning to the theory.

– Conceptual mapping and model: We express the concepts of our theory
and present their relations. We draw a category map which emerges from the
analysis.

5.6 Validity Procedure

Internal Validity: We use widely known techniques and algorithms for repository
mining. We extract data from a repository systems used among a high number of
companies. We analyze the data from the software repository, perform a survey
among the developers and we validate the answers given in the questionnaires by
7 http://www.atlasti.com/index.html.

http://www.atlasti.com/index.html

210 J. Ramadani and S. Wagner

interviewing developers. We collect the answers and compare the results related
to the research questions to identify if these reflect the investigated informa-
tion [25]. This way we avoid to rely on a possible lack of precision in the answers
on the questionnaires by the developers concerning the interestingness.

External Validity: We choose representative cases with high standards consider-
ing software development and standardized development techniques. We use an
independent party to record the memos for the interviews and code the infor-
mation to increase the objectivity of the analysis results.

6 Results and Discussion

We report the results of the analysis of the software repository data, the ques-
tionnaires and the interviews in relation to the interestingness of coupled changes
and attributes.8 We discuss the analysis outcomes and evaluate the validity of
our results by taking into account the feedback from the developers.

6.1 Case Description

The cases in this study are three software projects. The first two projects were
provided by IT companies from the area of Stuttgart, Germany. The third one
is an open-source project developed at the University of Stuttgart.

The first project is a web-based software written in Java and supplied by
an industrial partner. The repository of this project contains 1,610 commits
performed by 26 developers during 2 years of development. The software changes
are stored in Git and the issues are tracked using JIRA.

The second project is a C# software supplied by another partner from the
IT industry. The repository contains 159 commits performed by 5 developers
during 1 year of development. The project used Mercurial as version control tool
and Redmine for issues management.

The third project is a Java open source software which was developed at
the University of Stuttgart by student developers. The repository contains 752
commits, committed by 9 developers during 1 year. It uses Git for versioning
and Redmine as issue tracking system. Certain project documentation archives
of the projects were available from where we extract the information about the
software structure and the naming conventions.

6.2 Number of Couplings (RQ 1)

In Table 1, we summarize the analyzed information from the repositories. Refer-
ring to the first project, the data from 22 out of 26 developers was relevant for
the study. For the second project, the data from 4 out of 5 developers was taken
into account. For the third project, the data committed by all 9 developers was

8 The analysis results are available at http://dx.doi.org/10.5281/zenodo.15065.

http://dx.doi.org/10.5281/zenodo.15065

How Interesting Are Suggestions of Coupled File Changes? 211

Table 1. Results based on repository analysis, table reproduced from [23].

Project1 Project2 Project3

No. of relev. dev 22 4 9

No. of commits 1610 138 752

No. of couplings 205 13 200

Freq. itemset supp 0.2 0.2 0.1

Table 2. Interestingness of coupled changes, table reproduced from [23].

Involved Not involved All

Interesting 2 2 4

Neutral 9 10 19

Not interesting 0 0 0

Sum 11 12 23

suitable for analysis. The rest of the developers reported a low number of com-
mits so we did not consider their change commits. We excluded their commits
as unsuitable for the reason that they did not reach the minimum support for
the frequency of the changes we defined previously.

The number of commits represents the size of the projects followed by the
number of change couplings we have extracted. The number of coupled changes
represents the basis of our analysis. We were able to extract 205 couplings from
the first repository. From the second, a smaller repository, we report only 13 cou-
pled changes. The third repository delivered 200 coupled changes. These results
show that we need larger project repositories containing high number of commits
to be able to deliver a high number of couplings.

6.3 Interestingness of Coupled Changes (RQ 2)

The participants were asked to give their feedback on how interesting coupled
changes for maintenance tasks are. Most of the developers (19 of 23) reported a
neutral opinion for the concept of coupled changes. A small group of four par-
ticipants noted coupled changes as interesting. None of the developers rejected
the idea as not interesting (Table 2).

The fact that the developers did not reject coupled changes allows us to
continue our analysis. These results allow us to continue investigating the next
research questions. We proceed our analysis and investigate how coupled changes
is influenced by the developers’ programming and project experience. Taking into
account our small sample size, we refrain from formal hypotheses testing.

212 J. Ramadani and S. Wagner

6.4 Influence of Developer Experience on Interestingness (RQ 3)

Both experienced and inexperienced developers were similarly interested in cou-
pled changes which is in contrast to our expectations. In Table 3 we present the
distribution of the interestingness of coupled changes in relation to the program-
ming experience of the developers. What we can see is that regardless of their
expertise level, none of the developers rejected the coupled changes. Very few
developers have accepted the coupled changes as interesting, yet most of the
developers took a neutral position toward the coupled change suggestions.

6.5 Influence of Developer Involvement in the Project on
Interestingness (RQ 4)

The results in Table 2 show that there is no difference based on the involvement of
the developers in the projects. Both involved and uninvolved developers did not
reject coupled changes. Continuing with the developers involved in the project
development, we group their answers based on their project experience. Table 4
shows the distribution of the developers by their programming experience. Again
in all three groups from beginners to developers knowing the system, most of
them have answered neutrally, not rejecting the coupled change suggestions.

6.6 Interestingness of Additional Information (RQ 5)

After the investigation of the coupled changes, we continued examining the inter-
estingness of the repository attributes we have joined to the coupled files pre-
sented in Table 5. To support the coupled changes, we reported a set of common
meta-data attributes [28] which allow us to find more information about the com-
mits, the issues and the product itself. The repositories offer various attributes
related to the committed changes, the issues found and the project structure.

Table 3. Couplings and developer’s experience, table adapted from [23].

Programming experience Freq Freq. [%] Interesting Neutral Not interesting

<1 year 2 9 0 2 0

1–3 years 4 17 2 2 0

3–5 years 9 39 1 8 0

>5 years 8 35 1 7 0

Table 4. Couplings and developer’s project involvement.

Project involvement Freq Freq. [%] Interesting Neutral Not interesting

<6 months–1 year 3 27 0 3 0

1–2 years 3 27 1 2 0

>2 years 5 46 1 4 0

How Interesting Are Suggestions of Coupled File Changes? 213

Table 5. Interesting attributes, table reproduced from [23].

Attribute Frequency Frequency [%]

Commit message 22 95

File name 18 78

File type 9 39

Commit time 8 34

Commiter 6 26

Commit id 2 9

Issue title 21 91

Issue status 15 65

Issue type 14 60

Issue time 6 26

Project structure 20 86

Naming conv 15 65

We asked the participants about their feedback on the interestingness of each
of the provided repository attributes. The results show that most of the offered
attributes were rated by the developers as interesting.

Considering the commit related attributes, most of the developers found the
commit message to be the most interesting attribute followed by the file name.
The developers did not show much interest for the commit time, the committer
and the file type. The commit id as attribute did not attract the developers’
interest.

Regarding the issue related attributes, most of the developers were interested
in the issue description. Some of the developers also found the issue status and
type to be interesting. The issue time was not interesting for the developers.

From the documentation related attributes, the developers reported that
both naming convention and the project structure information are interesting.

6.7 Influence of Developer Experience on Interestingness of
Additional Information (RQ 6)

We examined the distribution of interestingness of the repository attributes
according to developers’ experience level. Based on this distribution we created
two general groups of developers in this context: the first group called expe-
rienced, includes the developers having more than 5 years experience and the
second group called inexperienced, includes developers having less than 5 years
of experience. The results show that the experienced developers have a more
clear picture of the set of interesting repository attributes. They have chosen a
lower number of attributes compared to the inexperienced developers. The inex-
perienced developers have marked various commit and issue attributes being
interesting for them. The more experienced developers’ choice is more narrow

214 J. Ramadani and S. Wagner

Fig. 1. Commit attributes and experience, figure reproduced from [23].

Fig. 2. Issue attributes and experience, figure reproduced from [23].

than the one for the inexperienced ones. The distribution of commit attributes
is shown in Fig. 1. The distribution of issue attributes is presented in Fig. 2.

6.8 Validation and Theory

After the data mining analysis, we performed the interviews with developers who
were active on the projects. For the first project, we managed to enlist 2 of the
developers for interviewing. For the second project, we interviewed 2 developers
and from the third project, we interviewed 4 out of 9 developers. They had
been involved in the project from the beginning and have the most knowledge
about the software. We also interviewed 4 developers not involved in any of the
projects.

How Interesting Are Suggestions of Coupled File Changes? 215

Fig. 3. Theoretical Framework, figure reproduced from [23].

Using Grounded Theory analysis on the interview transcripts, we derived
a corresponding theory. We created the codes using an open coding procedure
of the memos we created. They represent the answers of our participants to
interview questions. We extracted the codes by identifying common issues in
their answers.

We continued with the axial coding where we identified several categories
as presented in Fig. 3. The core category we identified after the selective coding
is Interestingness of couplings and software repository information. The results
from the theoretical code show the core category, the subcategories and the
relationships presented as a diagram in Fig. 3. We have categories covering the
attributes we found to be interesting: version control attributes, issue attributes
and project documentation. They are respectively divided in these subcategories:
commit message, file names, issue titles, issue types, project structure and nam-
ing conventions. They represent the most interesting attributes which affect the
interestingness of coupled changes.

The next categories are the visualization of coupled changes, consisting of the
sub-category organized view, and the category context of coupled changes. The
last two categories represent an additional feedback given by the interviewed
developers where they would like to see an organized representation of changed
files with a possibility to filter the information about them. They would also
like to have information about the context of the changes. We present the key
concepts of the theory together with their relations in Fig. 4. We see that the
interestingness of the coupled changes also depends on the chosen repository
attributes. Furthermore, it is also important to develop an organized presentation
of coupled changes to the developers and to describe the context of these changes.

216 J. Ramadani and S. Wagner

Fig. 4. Conceptual Model from grounded theory, figure reproduced from [23].

6.9 Discussion

The results related to RQ1 show that large repositories deliver more couplings
compared to the smaller or younger repositories. Projects with a low number
of commits do not provide enough data for a broader analysis. The number of
commits and their size limit the output of our analysis. Our results lead to the
conclusion that we need a relatively high number of couplings to be able to
present a more exhaustive support for the developers in their tasks. Still, the
setup of our analysis identifies a number of strongly coupled changes which limits
the possibility they have happened by chance. We could reduce the support level
of the data mining algorithm to provide a higher number of coupled changes,
however, this could produce a threat for their accuracy.

The results for RQ2 report that the developers weakly support that coupled
changes are interesting. The general concept of coupled changes was received
mostly as neutral. The developers did not judged the coupled change suggestions
very positive for the reason that they were not solving real maintenance tasks. We
beleive that working with coupled change suggestions related to real maintenance
tasks would increase the acceptance of coupled file changes.

The fact that none of the developers rejected the coupled changes, gave us
an impulse to investigate other attributes related to the coupled changes. We
proceeded with the analysis of the interestingness based on the developers’ expe-
rience. During the interviews, actual examples of coupled changes were presented
to the developers which increased their acceptance.

Considering RQ3, we expected that the coupled changes would be interesting
for developers having a lack of programming experience. Our results at contrary
show that also the experienced developers are similarly interested in coupled
changes. The developers higher experience does not eliminate the possibility
that the coupled suggestions could be helpful when working on an unknown
source code, software structure or on an older project. The fact they did not
reject the coupled changes reports that the benefit from them is not limited
on novice developers which makes the coupled changes attractive for a broader
audience.

How Interesting Are Suggestions of Coupled File Changes? 217

About the results related to RQ4, both uninvolved developers in the project
development of the investigated software products and those who worked on the
projects provided a neutral feedback. They fact that they did not reject the
coupled changes increases the target group for our coupled changes suggestions.
These unexpected results show that also the developers working on a particular
part of the source code could use some help when working on other parts of the
system. These findings encourages us to include the coupled changes as a part
of an integrated tool support for developers.

Answering RQ5, our results show that most of the attributes from the pro-
vided set were interesting for the developers. These results were also validated
by the interviews. Using the commits, the questionnaire and the interviews, we
reported that the commit message and the file names are the most interesting
attributes. This shows that the developers found the information about the files
being changed and the description of these changes to be interesting.

For the issue attributes, the developers reported that the issue description
and the issue type are interesting, meaning that they were looking for the infor-
mation which describes the problem to be solved and the importance of the
issue.

For the documentation attributes, the project structure and the naming con-
vention were both interesting for the developers. This shows that they were
looking for the information that could help them to find the location in the
system to begin with their source code changes.

We reported a set of repository attributes used by well known versioning
and issue tracking systems involved in the projects. The attributes we defined
are known and common in software development. During the analysis of the
interviews, however, we found that the developers want a clear graphical rep-
resentation of the coupled changes. They also reported that they would like to
see the context of the coupled changes. This brings additional aspects to be
considered in further research about coupled changes.

The results for RQ6 show that experienced developers know well what kind
of repository attributes they want to see. Their choice is more precise compared
to the inexperienced developers. The inexperienced developers did not have a
clear picture which attributes to choose from the provided set. The fact that
developers with different programming experience considered various attributes
to be interesting brings us to the conclusion that we should not make a fixed
choice of attributes for all developers. We can offer a flexible way for the devel-
opers to choose the attributes individually. This way, we support the developers
which are not experienced and would like to have an overview of the provided set
of repository attributes. On the other side we would like to offer the experienced
developers to hide the unnecessary information including the not interesting
attributes during maintenance tasks.

The results of the grounded theory show that the interestingness of coupled
file changes is influenced by their presentation form and the related information
such as the description of the change context. Providing a good visual concept
is inevitable for a successful visual representation. Also the repository attributes

218 J. Ramadani and S. Wagner

influence their interestingness. Choosing wrong or not useful attributes can drop
the acceptance of coupled change suggestions.

6.10 Evaluation of Validity

We validated the results of our study by checking all the steps in the procedure of
gathering and transforming the data from the repository, the analysis methods
and the results. In our study, we used a single data mining technique for the
reason that the frequent itemsets technique is most appropriate for investigating
frequent couplings. We investigated products built with common technologies
and the repositories are maintained by well known and commonly used products.

We tested different threshold values for the support and the confidence of the
algorithm to produce a sufficient number of frequent itemsets. The relatively low
support threshold signalizes that there is not much space for a greater reduc-
tion of the value. However, it also reports a relatively low number of frequent
couplings which reduces the possibility that these couplings happened by chance.

We validated the outcomes of the questionnaire answers by asking the devel-
opers again in the interviews about the interestingness of the couplings and
attributes. The interview transcript was coded by two persons after we com-
pared the notes. This way we checked whether we understood the developer’s
answers correctly. We interviewed both involved and not involved developers on
the projects. We also performed double checks of the coding and the outcomes
of the Grounded Theory analysis.

7 Conclusion and Future Work

7.1 Summary of Conclusions

The study results show that smaller software repositories do not provide a mean-
ingful number of coupled file changes.

The feedback of developers on the interestingness of coupled changes is mostly
neutral. Our results lead to the conclusion that the couplings were weakly
accepted by developers having various programming experience and level of
involvement in the project. Working on real maintenance tasks would increase
the acceptance of coupled change suggestions.

The developers accepted most of the proposed software repository attributes
joined to the couplings as interesting. Experienced developers report a narrower
choice of attributes as opposed to the inexperienced developers.

The Grounded Theory shows that the our set of repository attributes influ-
ence the interestingness of coupled changes. Although we provided a number
of repository attributes, the developers suggested additional aspects concerning
the coupled change suggestions and the repository attributes. They would like
to see more information about the change context and the visual presentation
of the coupled changes. We conclude that the we have to develop a visualization
concept for the coupled change suggestions and provide the possibility that the
developers can individually adjust their choice of repository attributes.

How Interesting Are Suggestions of Coupled File Changes? 219

7.2 Relation to Existing Evidence

Revelle et al. [24] investigated source code features coupling using structured
and textual features. Here the developers are surveyed to determine if the met-
rics align with the developers’ opinion. Their results show that the developers
support the proposed coupling metrics. Our results show that the developers
weakly accept the concept of coupled changes and the corresponding attributes
from the repository.

Ying et al. [33] investigated the interestingness of coupled changes, whereby
the authors used open-source projects and categorized the interestingness of
couplings according to their criteria. We studied the coupled file changes in
relatively small projects: two industrial projects and one open source project
which reduces the number of couplings found. We used the developer’s feedback
to determine the interestingness of coupled changes instead of statically defining
the interestingness of couplings.

7.3 Impact/Implications

This case study gives evidence that the coupled file changes are interesting to
the developers during maintenance tasks. Yet, the interest is rather weak over-
all. Therefore, other contextual information should be investigated in future
research to increase the interestingness. Using proper visualization, coupled file
suggestions could be incorporated in a tool to support the developers during
maintenance tasks.

7.4 Limitations

As it is case study research, we cannot guarantee the generalizability of the study.
The data comes from two commercial and one open-source project. However, the
procedure should be similar for other projects for the reason that we use well
defined data mining techniques and commonly used repositories as data sources.

The number of coupled changes we found is limited by the support value of
the frequent itemsets algorithm. Our results preserve relative small number of
the most frequent and most valid couplings. The size of our sample limits the
possibility for a deeper statistical analysis. Yet, our findings constitute a first
insight into developers’ opinions on coupled file changes.

7.5 Future Work

The next step is to perform an experiment to investigate coupled changes by
directly observing their use for a real maintenance tasks. This could be visualized
in a tool to present this changes to the developers. Furthermore, based on our
findings, we believe more research should look into complementing the reporting
of coupled changes with using additional context description.

Acknowledgment. The authors would like to thank Asim Abdulkhaleq for his help
in the interview transcripts and coding for the Grounded Theory analysis.

220 J. Ramadani and S. Wagner

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB 1994, pp. 487–499 (1994)

2. Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: An
empirical study on the developers perception of software coupling. In: Proceedings
of the 2013 International Conference on Software Engineering, ICSE 2013, pp.
692–701 (2013)

3. Bieman, J., Andrews, A., Yang, H.: Understanding change-proneness in OO soft-
ware through visualization. In: 11th IEEE International Workshop on Program
Comprehension, pp. 44–53, May 2003

4. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., Devanbu, P.T.:
The promises and perils of mining git. In: MSR, pp. 1–10 (2009)

5. Canfora, G., Cerulo, L.: Impact analysis by mining software and change request
repositories. In: 11th IEEE International Symposium on Software Metrics, p. 29,
September 2005

6. Carlsson, E.: Mining git repositories: an introduction to repository mining (2013)
7. D’Ambros, M., Lanza, M., Robbes, R.: On the relationship between change cou-

pling and software defects. In: WCRE, pp. 135–144 (2009)
8. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from

version control and bug tracking systems. In: Proceedings of the International
Conference on Software Maintenance, ICSM 2003, p. 23 (2003)

9. Fluri, B., Gall, H., Pinzger, M.: Fine-grained analysis of change couplings. In:
Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
pp. 66–74, September 2005

10. Fournier-Viger, P.: How to auto-adjust the minimum support threshold according
to the data size (2013). http://data-mining.philippe-fournier-viger.com/

11. Frawley, W.J., Piatetsky-shapiro, G., Matheus, C.J.: Knowledge discovery in data-
bases: an overview (1992)

12. Gall, H., Jazayeri, M., Krajewski, J.: CVS release history data for detecting log-
ical couplings. In: Proceedings of Sixth International Workshop on Principles of
Software Evolution, pp. 13–23, September 2003

13. German, D.M.: Mining CVS repositories, the softchange experience. In: 1st Inter-
national Workshop on Mining Software Repositories, pp. 17–21 (2004)

14. Győrödi, C., Győrödi, R.: A comparative study of association rules mining algo-
rithms (2004)

15. Han, J., Mining, D.: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco (2005)

16. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1),
53–87 (2004)

17. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In:
Proceedings of the 20th IEEE International Conference on Software Maintenance,
ICSM 2004, pp. 284–293 (2004)

18. Hattori, L., dos Santos Jr., G., Cardoso, F., Sampaio, M.: Mining software repos-
itories for software change impact analysis: a case study. In: Proceedings of the
23rd Brazilian Symposium on Databases, SBBD 2008, pp. 210–223 (2008)

19. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint.
Evol. 19(2), 77–131 (2007)

http://data-mining.philippe-fournier-viger.com/

How Interesting Are Suggestions of Coupled File Changes? 221

20. Kagdi, H., Yusuf, S., Maletic, J.I.: Mining sequences of changed-files from version
histories. In: Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR 2006, pp. 47–53 (2006)

21. Loeliger, J.: Version Control with Git - Powerful Techniques for Centralized and
Distributed Project Management. O’Reilly, New York (2009)

22. McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowl.
Eng. Rev. 20(1), 39–61 (2005)

23. Ramadani, J., Wagner, S.: Are suggestions of coupled file changes interesting? In:
Proceedings of the 11th International Conference on Evaluation of Novel Software
Approaches to Software Engineering, pp. 15–26 (2016)

24. Revelle, M., Gethers, M., Poshyvanyk, D.: Using structural and textual information
to capture feature coupling in object-oriented software. Empirical Softw. Engg.
16(6), 773–811 (2011)

25. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg. 14(2), 131–164 (2009)

26. Sayles, J., et al.: z/OS Traditional Application Maintenance and Support. IBM
Redbooks (2011)

27. Shirabad, J., Lethbridge, T., Matwin, S.: Mining the maintenance history of a
legacy software system. In: Proceedings of International Conference on Software
Maintenance, ICSM 2003, pp. 95–104, September 2003

28. Steven, J., Zach, W.: Bad commit smells (2013). http://pages.cs.wisc.edu/∼sjj/
docs/commits.pdf

29. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J.
13(2), 115–139 (1974)

30. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. SAGE Publications, USA (1998)

31. van Rysselberghe, F., Demeyer, S.: Mining version control systems for FACs (fre-
quently applied changes). In: the International Workshop on Mining Repositories,
Edinburgh, Scotland, UK (2004)

32. Wu, R., Zhang, H., Kim, S., Cheung, S.-C.: Relink: recovering links between bugs
and changes. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 15–25 (2011)

33. Ying, A.T.T., Murphy, G.C., Ng, R.T., Chu-Carroll, M.: Predicting source code
changes by mining change history. IEEE Trans. Softw. Eng. 30(9), 574–586 (2004)

34. Zimmermann, T., Kim, S., Zeller, A., Whitehead, Jr., E.J.: Mining version archives
for co-changed lines. In: Proceedings of the 2006 International Workshop on Mining
Software Repositories, MSR 2006, pp. 72–75 (2006)

35. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. In: Proceedings of the 26th International Conference on
Software Engineering, ICSE 2004, pp. 563–572 (2004)

http://pages.cs.wisc.edu/~sjj/docs/commits.pdf
http://pages.cs.wisc.edu/~sjj/docs/commits.pdf

A Systematic Literature Review on Cloud
Computing Adoption and Migration

Antonio Carlos Marcelino de Paula and Glauco de Figueiredo de Carneiro(B)

Salvador University, Salvador, Bahia, Brazil
{antonio.paula,glauco.carneiro}@unifacs.br

Abstract. Context : The appealing features of Cloud computing has
attracted the attention of the research and the industry due to the pos-
sibility of providing a customizable and resourceful platform to deploy
software. There is a myriad of competing providers and available services
that can provide organizations the access to computing services without
owning the corresponding infrastructure. Goal : Identify the opportuni-
ties to migrate to the cloud, the challenges, difficulties and factors that
affect the cost-benefit relationship of such adoption. Method : In our pre-
vious work, we performed a systematic review to identify the approaches
adopted by organizations to migrate to cloud computing and their per-
ception of the cost-benefit of this migration. In this paper, we extended
our previous work through a new search in the selected repositories to
identify studies published from June 2015 to June 2016. Results: We con-
cluded from the collected data that a significant part of the companies
perceived inclination towards the innovative adoption process influenced
by technological, organizational and environmental contexts. Conclusion:
The results in this systematic literature review can help the development
of guidelines to support newcomers companies to adopt and migrate to
the cloud, how the cost-benefit relationship can be evaluated as well as
the selection of providers.

Keywords: Cloud computing · Cloud migration · Provider selection ·
Cost-benefit relationship · Systematic literature review

1 Introduction

Cloud Computing (CC) is a paradigm shift in computing that has changed the
way users deal and perceive computing [26]. This scenario has created oppor-
tunities for enterprises that have manifested perceived inclination toward cloud
computing and the benefits reaped by them [4]. However, the identification of
opportunities for migration, the reasoning of an attractive cost-benefit relation-
ship and the selection of service providers that best fit their needs are not trivial
tasks [16,17]. The selection of commercial cloud providers is a challenging task
and depends on several variables and indicators. Among other reasons, cloud
providers may continually upgrade their hardware and software infrastructures,
and new commercial Cloud services, technologies and strategies may gradually
c© Springer International Publishing AG 2016
L.A. Maciaszek and J. Filipe (Eds.): ENASE 2016, CCIS 703, pp. 222–243, 2016.
DOI: 10.1007/978-3-319-56390-9 11

A Systematic Literature Review on Cloud Computing 223

enter the market [18]. Studies have shown that successful migration to the cloud
are usually driven by a set of criteria to select providers that best fit their needs
[7,14,17].

The reason for a Systematic Literature Review (SLR) is the necessity to iden-
tify, classify, and compare existing evidence on the strategies used by companies
to identify scenarios of migration opportunities to the CC. To justify the adop-
tion, a set of factors should be considered for the assessment of the cost-benefit
relationship. Moreover, companies should be able to select a provider according
to their needs and profile. The evidences collected and discussed in this SLR
is intended to gain and share insight from the literature so that companies can
decide towards cloud computing. This paper has three major contributions: (i)
the identification of strategies and issues that companies have considered to
migrate to the cloud; (ii) factors that should be considered in the cost-benefits
relationship while adopting and migrating to the cloud; (iii) and finally aspects
related to the selection of cloud computing service providers.

The rest of this paper is organized as follows: Sect. 2 provides background
related to the research area and emphasizes the differences between this ver-
sion of the systematic review and previous systematic reviews in the domain.
Moreover, we also highlight the differences from the first version of this work
published at [22]. In Sect. 3, we outline the research methodology; and in Sect. 4,
we present and discuss the results of the SLR and its corresponding analysis.
The concluding remarks directions for future research are discussed in Sect. 5.

2 Problem Statement and Scope

In this section, we present the concepts related to CC, the focus of this SLR.
Based on a systematic search, we also link to existing secondary studies that
discuss aspects related to the migration to the cloud and correlated factors.

Many enterprises have adopted the paradigm of CC where producers and
consumers (of information) are not necessarily collocated [9,15,19]. Studies have
reported that CC adoption by enterprises is primarily based on their percep-
tions about cost reduction, ease of use and convenience, reliability, sharing and
collaboration and lastly but not the least, security and privacy [9].

Cloud computing comprises basically three services. Probably the most pop-
ular is the Software-as-a-Service (SaaS). It relies on the principle that instead of
installing software on the client’s machine and updating it with regular patches,
the applications are available (hosted) over the web for the consumption of the
end-user. This scenario enables the achievement of economy of scale [9]. The com-
panies that provide SaaS most of the time hire the Platform-as-a-Service (PaaS).
The main idea of PaaS is that instead of buying the software licenses for plat-
forms like operating systems, databases and middleware, these platforms along
with software development kits (SDKs) and the programming languages (such as
Java, .NET) are made available over the web [9]. The last is the Infrastructure-as-
a-Service (IaaS). It refers to the tangible physical devices (raw computing) like
virtual computers, servers, storage devices, network transfer, which are physi-
cally located in one central place (data center) but they can be accessed remotely

224 A.C.M. de Paula and G.d.F. de Carneiro

and used over the web using the login authentication systems and respective
passwords [9].

These three services described above are deployed following four different
models: (i) Public cloud is available from a third party service provider via web
and is a very cost effective option to deploy IT solutions [20]; (ii) Private cloud is
managed within an organization and is suitable for large enterprises (managed
within the walls of the enterprises). Private clouds provide the advantages of
public clouds, but still incur capital expenditures [20]; (iii) Community cloud is
used and controlled by a group of enterprises, which have shared interests [20];
(iv) Hybrid cloud is a combination of public and private cloud [20]. This paper
focuses on public cloud providers and the three types of CC services: SaaS, PaaS
and IaaS.

This study has the goal to shed lights on the practices involved in the adop-
tion of CC. The results of this study are expected to help different types of
companies to decide for this adoption and how they can plan it. For this end,
the study present different approaches, techniques and tools to overcome diffi-
culties and challenges in the context of CC. The scope of this review is specific
to identify strategies that can help organizations to migrate and adopt CC,
their perception of the cost-benefit relationship of this adoption and how com-
panies can select service providers that best fit their needs and profile. The scope
and coverage of this systematic review differ significantly from previous reviews.
During the conduction of this study, we found four systematic literature reviews
(SLRs) focusing on the following themes: migration to the CC [10], service com-
position [11], service evaluation [18] and challenges and concerns when building
cloud-based architectures [1]. Despite being relevant source of information for
companies that plan to adopt the CC paradigm, none of these previous SLRs
focused specifically on the relationship among the issues target in this paper.
This relationship is indeed relevant for both the adoption and migration to the
cloud. This is an extended version of a previous SLR conducted by the authors
and published at [22]. We extended the search for primary studies published until
July 2016, whereas the previous version of this SLR considered papers published
until June 2015.

3 Research Methodology

In contrast to a non-structured review process, a Systematic Literature Review
(SLR) [2,12] reduces bias and follows a precise and rigorous sequence of method-
ological steps to research literature. SLR rely on well-defined and evaluated
review protocols to extract, analyze, and document results as the stages con-
veyed in Fig. 1. This section describes the methodology applied for the phases
of planning, conducting and reporting the review.

3.1 Planning the Review

Identify the Needs for a Systematic Review. Search for evidences
in the literature regarding how companies decide towards CC in terms of

A Systematic Literature Review on Cloud Computing 225

(i) strategies to identify migration opportunities to the cloud, (ii) relevant fac-
tors for the assessment of the cost-benefit of this adoption of cloud and finally
(iii) the selection of providers according to their needs and profile.

Specifying the Research Questions. We aim to answers the following ques-
tions by conducting a methodological review of existing research:

RQ1. Which strategies are used by companies to adopt and migrate to the
cloud computing? Identifying goals, proposals and motivations for the adop-
tion of CC, help organizations to better characterize their needs and therefore
provide conditions to a successful migration.
RQ2. Which factors companies consider to assess the cost-benefit relationship
of adoption and migration to the cloud computing? The knowledge of the costs
and benefits of migration to the CC can be used as a support for its planning
and reference for other companies.
RQ3. How companies select cloud computing service providers according to
their needs and profile? The knowledge of successful strategies and problems
raised by inappropriate selection of CC providers allow organizations to be
more confident to identify providers that best fit their needs.

These three research questions are somehow related to each other. How-
ever, studies could have discussed them separately. Regarding the cost-benefit
relationship addressed by RQ2, it is possible that this relationship could be
analyzed considering a specific provider. Moreover, there is the possibility of
studies addressing this scenario comparing various providers with their respec-
tive characteristics analyzing to which extent they fit a company profile. This
fact establish a close relationship between RQ2 and RQ3.

Publications Time Frame. We conducted a SLR in journals and conferences
papers from January 2005 to June 2016. In a first version of this study, we
performed the search from January 2005 to June 2015 and in this new version
we extended it to June 2016 [22].

3.2 Conducting the Review

This phase is responsible for executing the review protocol.

Identification of Research. Based on the research questions, keywords were
extracted and used to search the primary study sources in both versions of this
study (with papers identified until June 2015 and until June 2016). The search
string is presented as follows and used the same strategy cited in [3]:

((“Cloud Migration” OR “legacy-to-cloud migration” OR “Cloud adop-
tion”) OR (“Cost” OR “Return of investments” OR “ROI” OR “Cost-
benefit”)) OR ((“Cloud Service” OR “Cloud Provider”) AND (“Evalua-
tion” OR “Selection”)) AND (“Cloud Computing” OR “Cloud Services”
OR “Cloud Interoperability”).

226 A.C.M. de Paula and G.d.F. de Carneiro

Table 1. Inclusion criteria [22].

Criterion Description

IC1 The papers proposed OR discussed OR evaluated strategies OR
methods OR techniques OR models OR tools OR frameworks applied
by companies to adopt and migrate to the cloud computing OR to
assess the cost-benefit relationship of such adoption OR to select cloud
computing service providers according to their needs and profile

IC2 The publications should be journal or conference and written in
English

IC3 Works involving an empirical study or have “lessons learned”
(experience report)

IC4 If several journal articles reporting the same study the latest article
will be included

IC5 The articles that address at least one of the research questions

Table 2. Exclusion criteria [22].

Criterion Description

EC1 Studies not focused on cloud computing

EC2 Studies merely based on expert opinion without locating a specific
experience, as well as editorials, prefaces, summaries of articles,
interviews, news, analysis/reviews, readers letters, summaries of
tutorials, workshops, panels, and poster sessions

EC3 Publications that are earlier versions of last published work

EC4 Publications that were published out of the period January 1st,
2005 to June 2016

Selection of Primary Studies. The following steps guided the selection of
primary studies (Tables 1 and 2).

Stage 1 - Search string results automatically obtained from the engines - Sub-
mission of the search string to the following repositories: Digital Library ACM,
IEEE Xplore, Science Direct and Google Scholar. The justification for the selec-
tion of these libraries is their relevance as sources in software engineering [27].
The search was performed using the specific syntax of each database, consider-
ing only the title, keywords, and abstract. The search was configured in each
repository to select only papers carried out within the prescribed period. The
automatic search was complemented by a manual search to obtain a list of studies
from journals and conferences. The duplicates were discarded.

Stage 2 - Read titles & abstracts to identify potentially relevant studies -
Identification of potentially relevant studies, based on the analysis of title and
abstract, discarding studies that are clearly irrelevant to the search. If there was
any doubt about whether a study should be included or not, it was included for
consideration at a later stage.

A Systematic Literature Review on Cloud Computing 227

Table 3. Quality criteria [6,22].

Criterion Description

QC1 Is the paper based on research (or is it merely a “lessons learned”
report based on expert opinion)?

QC2 Is there a clear statement of the aims of the research?

QC3 Is there an adequate description of the context in which the research
was carried out?

QC4 Was the research design appropriate to address the aims of the
research?

QC5 Was the recruitment strategy appropriate to the aims of the research?

QC6 Was there a control group with which to compare treatments?

QC7 Was the data collected in a way that addressed the research issue?

QC8 Was the data analysis sufficiently rigorous?

QC9 Is there a clear statement of findings?

Stage 3 - Apply inclusion and exclusion criteria on reading the introduction,
methods and conclusion - Selected studies in previous stages were reviewed,
by reading the introduction, methodology section and conclusion. Afterwards,
inclusion and exclusion criteria were applied. At this stage, in case of doubt
preventing a conclusion, the study was read in its entirely.

Stage 4 - Obtain primary studies and make a critical assessment of them - A
list of primary studies was obtained and later subjected to critical examination
using the 11 quality criteria [6] set out in Table 3. We performed these four stages
in the two versions of this study.

Data Extraction. All relevant information on each study was recorded on a
spreadsheet. This information was helpful to summarize the data and map them
with its source. The following data were extracted from the studies: (i) name
and authors; (ii) type of article (journal, conference, workshop); (iii) aim of the
study; (iv) research question; (v) scenario(s); (vi) results and conclusions; (vii)
benefits; (viii) limitations and challenges.

Data Synthesis. This synthesis aimed at grouping findings from the studies in
order to: identify the main concepts (organized in spreadsheet form), conduct a
comparative analysis on the characteristics of the study, type of service adopted,
cloud deployment model, and issues regarding three research questions (RQ1,
RQ2 and RQ3) from each study. Other information was synthesized when nec-
essary. We used the meta-ethnography method [21] as a reference for the process
of data synthesis.

Conducting the Review. We started the review with an automatic search fol-
lowed by a manual search to identify potentially relevant studies and afterwards
apply the inclusion/exclusion criteria. The first tests using automatic search
began in March 2015. We had to adapt the the search string in some engines

228 A.C.M. de Paula and G.d.F. de Carneiro

Fig. 1. Stages of the study selection process containing the Studies included in the
extended Version of this SLR. Adapted from [22].

without losing its primary meaning and scope. The manual search consisted
in studies published in conference proceedings and journals that were included
by the authors while searching the theme in different repositories. These studies
were equally analyzed regarding their titles and abstracts. Figure 1 conveys them
as 28 studies. We tabulated everything on a spreadsheet so as to facilitate the
subsequent phase of identifying potentially relevant studies. Figure 1 presents
the results obtained from each electronic database used in the search, which
resulted in 1003 articles considering all databases.

Potentially Relevant Studies. The results obtained from both the automatic
and manual search were included on a single spreadsheet. Papers with identical
title, author(s), year and abstract were discarded as redundant. At this stage, we
registered an overall of 1031 articles, namely 1003 from the automated search
plus 28 from the separate manual search (Stage 1). We then read titles and
abstracts to identify relevant studies resulting in 106 papers (Stage 2). In Stage
3, we applied the quality criteria in each study and then we read introduction,
methodology and conclusion to decide to consider 70 studies for the next stage.
After applying the quality criteria, remained 66 articles to answer the three
research questions - RQ1, RQ2 and RQ3 (Stage 4). In the extended version of
this SLR, we ended up with 73 studies as a result of the inclusion of 7 papers
related to RQ1, RQ2 and RQ3. These papers followed the same four stages
presented in Fig. 1, but their inclusion were represented only in Stage 4 in the
same figure.

A Systematic Literature Review on Cloud Computing 229

4 Results and Analysis

This section presents the results of this SLR to answer the research questions
RQ1, RQ2 and RQ3 based on the 73 papers selected at Stage 4. Figure 2 conveys
the selected studies and the respective research questions they focus on. As can
be seen in the same Figure, 47 studies addressed issues related to RQ1, while
25 studies discussed RQ2 issues and, finally, 12 papers addressed RQ3 issues.
All selected studies are listed in Appendix and referenced as “S” followed by the
number of the paper. The papers included in the second version of this SLR are
marked as ‘**’ after their respective identification numbers.

Fig. 2. Selected studies per research question (RQ) [22].

Table 4 presents the top ten papers included in the review according to Google
Scholar citations. These papers are evidences of the relevance of the issues dis-
cussed in this SLR and the influence these papers exert on the literature as can
be confirmed by their respective citation numbers. Table 4 shows an overview of
the distribution of the most relevant papers according to the addressed research
questions. In the following paragraphs we briefly describe these papers.

The paper [S41] that addresses RQ1 has the highest number of citations
(594), according to data obtained in July 13rd, 2016. It is related to RQ1 and
RQ2 and analyzes the use of CC in manufacturing business companies. It has
been extensively used as a successful case of CC adoption having as a reference
parameters of a cost-benefit relationship to guide such adoption. The paper
[S55] has 571 citations according to Google Scholar and discusses issues related
to RQ3. It describes the use of a tool called CloudCmp to perform benchmark
suite for cloud platforms. This tool has been recognized as an important reference
for benchmarking. To this end, it identifies a common set of services offered
by cloud providers, including elastic computing, persistent storage, and intra-
cloud and wide-area networking. The authors argue that CloudCmp enables
predicting application performance without having to first port the application

230 A.C.M. de Paula and G.d.F. de Carneiro

onto every cloud provider. The paper [S57] with 279 citations according to Google
Scholar, proposes a framework and a mechanism to measure the quality and
prioritize Cloud services providers. According to the authors, given the diversity
of Cloud service offerings, an important challenge for customers is to find out
appropriate Cloud providers that can satisfy their requirements (RQ3). This
makes it difficult to evaluate service levels of different Cloud providers, justifying
the use of a Analytical Hierarchical Process (AHP) based ranking mechanism
to provide a quantitative basis for the ranking of Cloud services where the final
ranking is based on the cost (RQ2) and quality [7]. The paper [S3] has 245
citations according to Google Scholar. The authors discuss how a proposed model
can support companies to analyze several characteristics of their own business
as well as pre-existing IT resources to identify their favorability in the migration
to the Cloud Architecture (RQ1). A general Return on Investment model has
also been developed here taking into consideration various intangible impacts of
CC, apart from the cost (RQ2).

Table 4. Top ten cited papers according to google scholar [22].

Studies Cited by Research question

S41 594 RQ1

S55 571 RQ3

S57 279 RQ3

S3 245 RQ1 and RQ2

S65 226 RQ1

S4 208 RQ2

S2 182 RQ1 and RQ2

S54 145 RQ3

S59 136 RQ2

We have identified that eight (S38, S42, S51, S58, S60, S61, s63, S64) of the
73 selected studies reference the Technological Organizational Environmental
(TOE) framework [24,25]. It is an organization-level theory aimed at supporting
organizations in the adoption and implementation of innovations. Based on this
framework, the innovation adoption process is influenced by three aspects of the
enterprise [S64]: (i) technological context, which represents the internal and exter-
nal technologies related to the organization; both technologies that are already
in use at the firm, as well as those that are available in the marketplace but not
currently in use; (ii) organizational context is related to the resources and the
characteristics of the firm, e.g. size and managerial structure; (iii) environmental
context, which refers to the arena in which a firm conducts its business; it can be
related to surrounding elements such as industry, competitors and the presence
of technology service providers. These papers are evidences that this framework
is useful to guide organizations toward the adoption of CC.

A Systematic Literature Review on Cloud Computing 231

Fig. 3. Studies per year.

As can be seen in Fig. 3, the number of papers focused on the theme increased
until 2014. No papers were found in this SLR before 2009. This is an evidence
of the interest on migration and services provided by the cloud. We found 68
papers (93,15% of the total) between 2011 and 2015. The reason to have only 1
papers selected in 2016 is that in this year we considered only papers published
until June.

4.1 Strategies for the Adoption and Migration to the Cloud (RQ1)

This subsection has the goal to discuss how selected papers addressed RQ1:
Which strategies are used by companies to identify scenarios of migration oppor-
tunities to the cloud computing? RQ1 Analysis. We identified 25 papers that
proposed and/or discussed processes, strategies and frameworks to support com-
panies deciding for the adoption and migration to the cloud. We contextualize
their contribution to RQ1 in the following sentences. The papers that present
experience and case reports related to RQ1 are S11, S18, S24, S25, S30, S31, S41,
S44, S45, S66, S71, and S73. The papers that present processes, strategies and
frameworks related to the CC adoption and migration are S1, S3, S8, S9, S10,
S14, S15, S16, S19, S20, S21, S23, S27, S28, S29, S50, S61, S62, S63, S64, S65,
S68, S69, S70, and S72. Finally, four studies proposed the use of tools to support
companies to identify and evaluate scenarios of migration opportunities to the
cloud. The studies and the respective tools are listed as follows: [S2] describes
a cloud Adoption Toolkit that uses Cost Modeling techniques to examine cost
of deploying IT system to the cloud. [S5] describes an evaluation of the tools
(CPTS, CSA STAR, C.A.RE and CloudTrust) to compare them. [S6] discusses
the use of CloudMIG to support the migration of legacy software systems to
the cloud. CloudMIG was also referenced in the following papers: S17, S1, S40,
S62, S31. The Desktop-to-Cloud-Migration (D2CM) tool that supports trans-
formation and migration of virtual machine images, deployment description and

232 A.C.M. de Paula and G.d.F. de Carneiro

life-cycle management for applications to the cloud was described in [S13]. The
Cloud Adoption Cloud Adoption Toolkit was referenced in papers S2, S69 and
S26, whereas CDOsim was referenced in S7, S68 and S40.

A list of 25 of the selected studies proposed approaches to guide the migra-
tion to the cloud as described in the following setences. In [S1], the authors
investigated the existing literature to classify the migration into five strategies
as presented as follows: (i) migrate to IaaS, (ii) migrate to PaaS, (iii) replace by
SaaS, (iv) revise based on SaaS, and (v) re-engineering to SaaS. They reviewed
and compared the related researches on every migration strategy. In addition,
related development tools were surveyed. The authors of [S3] performed an in-
depth analysis of the financial perspective of CC. They discussed a model for
both an objective as well as a subjective decision making tool to find the suit-
ability of a company for adopting CC. In [S8] the authors conducted a synthesis
study, for the choice of optimal Cloud structures, based on type of organizations.
They focused on the main benefits, as well as on the various issues related to
Cloud use. They performed a case study to demonstrate the migrating feasi-
bility from a classic web service solution to the Cloud. [S9] proposed an initial
conceptual approach of a cloud modernization assessment framework with the
objective of measuring the impact of a potential migration to Cloud. The purpose
was to advise software companies on the decision of what is more convenient, to
migrate or to start from scratch, providing data about the required effort and
cost as well as providing information about the organizational processes that
will change as a consequence of the migration. This approach was comprised of
3 main steps: (1) the characterization of the legacy application from two points
of view: technical and business, (2) a technical feasibility analysis and (3), an
economic feasibility analysis. The authors of [S10] analyzed the different aspects
of Cloud Services Brokerages (CSBs) and categorized them based on the data
available on their websites. The authors enumerated a list of utilities a CSB
should provide, which enlisted all the benefits of opting for a CSB, for both the
consumer and the provider. The categories were used as an input to a four stage
technique that shall help compare CSBs on preference and usability parameters.
[S14] presented a step-by-step process to support cloud adoption and migration
decisions in the enterprise. The authors demonstrated the use of cloudstep to
support in the decision of business applications migration into the public cloud
providers.

In [S15], the authors explained the multi-dimensional decision-making
process carried out to migrate applications to cloud environments and how to
formalise its effects in the cloud migration criteria. With the aim of helping
organisations cope with these effects, the authors developed the InCLOUDer
cloud migration decision support system which builds on top of the Analytic
Hierarchy Process. In [S16], the authors discussed steps that need to be checked
to determine the possibility as well as feasibility of application migration to the
cloud. This was performed with a proposed compatibility checklist that is used
to estimate the cost of application migration to PaaS. The authors also dis-
cussed general solutions to solve incompatibility issues of database migration.

A Systematic Literature Review on Cloud Computing 233

The authors of [S19] proposed an approach to reverse engineer legacy software
into models from which cloud-based software can be generated. [S20] proposed
a migration process framework outlining major steps and their concerns. The
authors identified through expert interviews the immaturity in terms of estab-
lished procedures and availability of tools to support the architecture migration
process. The study [S21] presented a generic framework to support the migra-
tion of live media streaming to a cloud platform, fundamental understandings
on the practical feasibility and theoretical constraints in the migration are also
discussed. According to the authors, extensive simulations driven by traces from
both cloud service providers (Amazon EC2 and SpotCloud) as well as a live
media streaming service provider (PPTV) to demonstrate the cost-effectiveness
and superior streaming quality of CALMS, even with highly dynamic and global-
ized demands. [S23] proposed a set of migration patterns which span the contin-
uum from legacy IT environment to the cloud is included as a common framework
for aligning the various migration approaches developed. [S27] proposed three
paradigms to support the migration to the cloud. The process paradigm refers to
the jobs to be accomplished during cloud migration in terms of the examination
of current processes, the development of new processes under cloud context, and
the determination of the KPIs and KEIs for new processes. The system paradigm
focuses on the review and migration of the infrastructure, platforms, databases
and applications of an organization. And finally, the organizational paradigm
that describes the strategies and concerns of the whole transformation of an
organization to cloud environment. [S28] proposed a framework to support the
migration of legacy systems to the cloud based on security and trust concerns.

In [S61], the authors proposed a research model to integrate the diffusion of
innovation (DOI) theory and the technology-organization-environment (TOE)
framework. It was used to compare the adoption of CC in two distinct sec-
tors, namely manufacturing and services. The [S62] study presented an extensi-
ble architecture for detecting software system’s violations against limited access
to the underlying file system or enforced restrictions regarding provided stan-
dard APIs. The authors presented results concerning a quantitative evaluation
regarding the detected constraint violations of five open-source systems. The
applications were validated against the modeled PaaS cloud environment Google
App Engine for Java. [S63] combined the theoretical approach from scientifically
recognized literature with a practical evaluation of influences on the diffusion
and acceptance of CC among SMEs. [S64] discussed the main factors that were
identified as playing a significant role in SME adoption of cloud services: rela-
tive advantage, uncertainty, geo-restriction, compatibility, size, top management
support, prior experience, innovativeness, industry, market scope, supplier efforts
and external computing support. [S65] empirically examined main drivers and
inhibiting factors of SaaS-adoption for different application types. The analysis
showed that social influence, the pre-existing attitude toward SaaS-adoption,
adoption uncertainty, and strategic value are the most consistent drivers. [S68]
discussed the challenges found during the migration of an existing system to
a cloud solution and based on a set of quality requirements that includes the

234 A.C.M. de Paula and G.d.F. de Carneiro

vendor Lock-in factor and also present a set of assessment activities and guide-
lines to support migration to the Cloud by adopting SOA and Cloud modeling
standards and tools. [S69] proposed a framework called CloudGenius to auto-
mate the decision-making process based on a model and factors specifically for
Web server migration to the Cloud. The CloudGenius framework defines a Cloud
migration process that offers a model and methods to determine the best com-
bined choice of a Cloud VM image and a Cloud infrastructure service. [S70]
Analyzes and identifies relevant technical, economical, and organizational fac-
tors. This is performed as exploratory research consisting of performing (a) a
literature review and (b) multiple case-studies with 17 organizations, who have
adopted or plan to adopt cloud-based services. Also, as these factors are not
mutually exclusive, this paper discusses interrelations of these factors and its
complexity. [S72] presented ToscaMart, a method to support developers to spec-
ify individual components in their application topologies, and illustrates how to
match, adapt, and reuse existing fragments of applications to implement these
components while fulfilling all their compliance requirements.

Finally, 12 studies discussed case studies to illustrate the migration process.
The [S11] summarized potential benefits and risks to migrate traditional appli-
cations to the cloud using CloudFTP on Windows Azure along with the
auto-scaling feature. [S18] discussed the motivation, requirements, feasibility of
migrating CiteSeerX digital library to provide an IaaS model in a private cloud.
In [S24] the authors combine legacy system migration solutions and virtualiza-
tion technology with the application of cloudstack to build an enterprise private
cloud platform. [S25] presents an overview of major requirements that must be
considered when migrating e-health systems to the cloud. Study [S30] discusses
some of the characteristics to consider when migrating testing to the cloud from
the application point of view. The paper [S31] explores early implementations of
cloud enterprise systems and compares them to the academic literature. In [S41]
two types of CC adoptions were suggested, manufacturing with direct adoption
of CC technologies and cloud manufacturing. [S44] used small case study to
show that application performance doesn’t deteriorate when migrating applica-
tions to the cloud. [S45] abstracts from current market prices and investigates
the interaction of cloud provider and clients from an analytical perspective. A
general understanding of how providers and clients potentially benefit finan-
cially from Infrastructure-as-a-Service (IaaS) can help clients to appraise price
uncertainty in strategic resource planning decisions. [S66] examine CC adoption
preparation and reasons for non adoption among Small and Medium Enterprises
(SMEs) in Ireland. [S71] proposed a design of a private IaaS Cloud adopted for
a university IT infrastructure. The authors proposed two solutions to improve
its security; especially the isolation of data in the IaaS Cloud, and the isolation
of networks within the university by adopting the Tree-Rule Firewall approach.
[S73] reported a study focusing on relevant issues enterprises are confronted with
when making CC adoption decisions. The findings indicated that security, strat-
egy and legal/ethical issues were the most relevant from the perspective of the
companies.

A Systematic Literature Review on Cloud Computing 235

4.2 The Cost-Benefits Relationship in the Adoption
and Migration (RQ2)

This subsection discusses how selected papers addressed RQ2: Which factors
are considered by companies to assess the cost-benefit relationship of adoption
and migration to the cloud computing?

During the analysis of RQ2, we identified a myriad of factors related to the
cost-benefit relationship of cloud computing adoption. Based on the evidences
collected from the papers, there is no consensus on a minimum set of factors
that should be used for this end. In [S3], the authors argue that CC has been
viewed mainly from the cost perspective. The paper proposed a model that helps
not just identify the suitability of a company for the cloud by clearly spelling
out all the factors that need to be considered for the same, but also gives a
certain profitability valuation of the benefits associated with CC. An approach to
detect performance anti-patterns before migrating to CC based on static analysis
was presented in [S12]. In [S4], the architectural features of CC are explored
and classified according to the requirements of end-users, enterprises, and cloud
providers themselves to support the cloud adoption. The [S2] study described the
Cloud Adoption Toolkit that provides a framework and a cost modelling tool to
support decision makers. In [S16], the authors presented a compatibility checklist
that is used to estimate the cost of application migration to PaaS. The migration
of legacy applications to CC was discussed in [S17], whose focus was on the
application performance analysis and providers characteristics. The authors of
[S22] discussed the migration of agile projects to the cloud in terms of cost, time
and quality. [S23] discussed potential issues and challenges that organizations
may face while considering to migrate workloads to the cloud: efficiency, agility,
quality, security, governance and standardization in the delivery, consumption
and operation of IT services, all at reduced capital and operational expense. In
[S32], an analysis of the difficulties of company’s traditional accounting system
was investigated. The factors affecting migration and adoption were studied
and models for the cloud deployment and service complying with the company
requirements were proposed. The paper [S33] investigated the migration costs
of several deployment options using benchmarks and concluded that application
characteristics such as workload intensity, growth rate, storage capacity, and
S/W licensing costs produce complex combined effects on overall costs. In [S34],
a critical review and impact of vendor lock-in for enterprise adoption from a
technical, business and legal viewpoint was presented. The study [S35] evaluated
the decision to migrate to cloud storage against the alternative to buy the storage
devices and facilities under a probabilistic model for the evolution of storage
characteristics, disk failures, and prices.

[S36] proposed the use of a real option model to help companies think and
decide when to switch to cloud based on the expected benefits, uncertainties
and the value a company puts on money. [S37] investigated different approaches
to reduce both cost and task completion time of computations using Amazon
EC2’s spot instances for resource provisioning. In the case of [S38], the authors
focused on the following factors: availability, portability, integration, migration

236 A.C.M. de Paula and G.d.F. de Carneiro

complexity, data privacy and security. Hypotheses regarding the relevance of
each barrier/difficulty, the adoption decision and a hypothesis at the integrated
level, were evaluated. The study [S39] identified and investigated cognitive fac-
tors that contribute to shaping user perceptions of and attitude toward mobile
CC services by integrating these factors with the technology acceptance model.
A framework based on the structural equation modeling analysis was employed
and results revealed that user acceptance of mobile cloud services was largely
affected by perceived mobility, connectedness, security, quality of service and
system, and satisfaction. A literature review on technological innovation char-
acteristics was conducted by the authors to identify potential gaps in ongoing
research. The review also provided an overview of relevant empirical studies
on CC that were based on the Diffusion of Innovation (DoI) theory [23] and
the Technology Acceptance Model (TAM) [5]. As a result, the focus was set
on the examination of the following factors: compatibility, relative advantage,
complexity, image and security & trust [S42]. The authors of [S43] listed best
practices for efficiently managing the resources required for the mobile cloud
model, namely energy, bandwidth and cloud computing resources. The best prac-
tice approaches for implementations were applied to existing works in the area,
along with the Context Aware Mobile Cloud Services (CAMCS) cloud middle-
ware and the Cloud Personal Assistant (CPA), the representative of the user
within the middleware. In [S44], the authors discussed the cloud model in five
perspectives: on-demand self-service, broad network access, resource pooling,
rapid elasticity, and measured service. A case study was used to demonstrate
that application performance does not deteriorate when migrating applications
to the cloud. [S51] proposed a tripod model of SaaS readiness that suggests that
for organizational users to adopt SaaS, they need to get ready from technolog-
ical, organizational and environmental aspects. [S52] presented a taxonomy to
help profile and standardize the details of performance evaluation of commercial
Cloud services. In [S53], the authors proposed a set of de facto metrics adopted in
the existing Cloud services evaluation work to collect and arrange different Cloud
service features to be evaluated. They ended up with an evaluation metrics cat-
alogue. In [S58], the TOE (Technology-Organization-Environment) framework
and HOT-fit (Human-Organization-Technology fit) model were used to investi-
gate the critical factors affecting hospitals? decisions regarding the adoption of
CC technology. Data was collected through a questionnaire research designed to
hospital CIOs in Taiwan. In the study [S59], the authors investigated a set of
five factors (ease of use, convenience, security, privacy and cost reduction) that
influence cloud usage by business community, whose needs and business require-
ments are very different from large enterprises. The study [S60] discussed how
cloud adoption intention, pricing and deployment options are derived from the
TOE framework.

Regarding RQ2, the paper S44 presented an experience report. The following
list of papers were identified as discussing processes, strategies and frameworks:
S2, S3, S4, S12, S14, S16, S17, S22, S23, S32, S33, S34, S35, S36, S37, S38, S39,
S43. The Cost Modeling tool (Cloud Adoption Toolkit) was also classified in the
RQ2 scope.

A Systematic Literature Review on Cloud Computing 237

4.3 Selecting Cloud Computing Service Providers (RQ3)

This subsection discusses how selected papers addressed RQ3: How companies
select cloud computing service providers according to their needs and profile?
According to Fig. 2, twelve papers discuss issues related to RQ3. In the following
paragraphs we contextualize how each of these papers contributes to RQ3.

Regarding RQ3, the paper S56 presented an experience report when fol-
lowed the Cloud Evaluation Experiment Methodology (CEEM) to benchmark
GCE and also compare it with Amazon EC2. The following list of papers were
identified as discussing processes, strategies and frameworks: S40, S46, S47, S48,
S49, S54, S57, S67. In the case of the paper S26, it proposes a migration decision
support system that incorporates both offering matching and cost calculation,
combining features from various approaches. The tools related to RQ3 were
referenced in S7 (CDOSim) and S55 (CloudCmp).

According to [8], IT-related success is described through three categories of
derived benefits: strategic, economic and technological. Strategic refers to an
organization’s renewed focus on its core business activities that can accompany
a move to cloud computing when its IT functions, whole or in part, are hosted
and/or managed by a cloud vendor. Economic refers to an organization’s ability
to tap the cloud vendor’s expertise and technological resources to reduce in-
house IT expenses. Technological refers to an organization’s access to state-
of-the-art technology and skilled personnel, eliminating the risk and cost of in-
house technological obsolescence. Deployment is defined in terms of the strategic,
economic, and technological benefits realized through cloud computing, which
can set the organization apart from its competitors.

[S56] followed the Cloud Evaluation Experiment Methodology (CEEM) to
benchmark Google Compute Engine (GCE) and Amazon EC2. The goal was
to help understanding the elementary capability of GCE to deal with scientific
problems. [S26] proposed a migration decision support system (MDSS) to select
providers. In addition, it also provided a matching and migration cost calcula-
tion. [S40] proposed an approach to support customer decision making for select-
ing the most suitable cloud configuration-in terms of infrastructural requirements
and cost. [S46] proposed a framework to incorporate a modelling language and
also provided a structured process to support elicitation of security and privacy
requirements. The goal was to select a cloud provider based on the suitabil-
ity of the service provider to the relevant security and privacy requirements.
The authors of paper [S47] performed a survey to obtain Cloud service selec-
tion approaches from companies considering five perspectives: decision-making
techniques; data representation models; parameters and characteristics of Cloud
services; contexts, purposes. [S48] highlighted the importance of an informed
choice of a Cloud Service Provider (CSP) in minimising one’s exposure to the
insecurity of a cloud context and proposed a well-defined approach, known as the
Complete-Auditable-Reportable (C.A.RE) to this end. Paper [S49] presented the
FAGI model, whose goal was to identify the security controls needed by an orga-
nization and guided the organization in the selection of a trusted service provider.
The [S54] study proposed a taxonomy that identified and classified eight

238 A.C.M. de Paula and G.d.F. de Carneiro

important elements that characterise Cloud computing infrastructures: service
type, resource deployment, hardware, runtime tuning, security, business model,
middleware, and performance [S57] proposed a framework and a mechanism
called SMICloud to measure specific quality attributes and prioritize Cloud ser-
vices. The goal was to compares different CSPs and measure QoS attributes
defined by Cloud Service Measurement Index Consortium (CSMIC). In [S67], the
authors identified five main performance criteria considered relevant to measure
QoS for cloud users: Availability, Reliability, Performance, Cost and Security.
Under each main criteria, subcritera, which are directly measurable from cloud
provider premises, were defined.

In the following, we presented studies that also presented tools. [S7] presented
a simulation tool called CDOSim whose goal is to simulate cost and performance
attributes in CDOs. The tool is build upon and significantly extends the cloud
simulator CloudSim and integrates into the cloud migration framework Cloud-
MIG. [S55] the tool CloudCmp to systematically compare the performance and
cost of cloud providers along dimensions that matter to customers. This sys-
tematic review provided evidences of strategies used by companies to identify
opportunities to migrate and adopt cloud computing, how they assess the cost-
benefit relationship and strategies behind the rationale to select providers. A
spectrum of techniques and approaches has been identified that cope with vari-
ous concerns, i.e., security and trustworthiness, elasticity, portability and inter-
operability, and cloud resilience. In addition, many studies look into reference
architectures and cloud-based architecture design methods as well.

4.4 Implications for Research and Practice

From Fig. 4, it is possible to conclude about the importance of the process to
select the strategy to be adopted by a company (RQ1), the cost-benefit relation-
ship (RQ2) and in the selection of providers (RQ3). In this case, they confirm
the relevance of process in the support of cloud computing adoption [13].

Fig. 4. Types of support for the adoption of cloud computing.

The following validity issues were considered in the analysis of the data from
this SLR. The first is related to bias in the extraction of data. We addressed this
issue through the definition of a data extraction criteria to guarantee consistent

A Systematic Literature Review on Cloud Computing 239

extraction of data to related to the research questions. The findings and impli-
cations are based on the extracted data. Another possible threat is the way data
was selected, that may have caused another bias. We addressed this threat dur-
ing the selection step of the review, i.e. the studies included in this review were
identified through a thorough selection process which was comprised of multi-
ple stages. The papers selected in this systematic review were collected from
different literature repositories covering relevant journals and proceedings. One
possible threat is bias in the selection of publications. This is addressed through
the specification of a research protocol that defines the research questions and
objectives of the study, inclusion and exclusion criteria, search strings, as well
as the search strategy and the strategy for data extraction.

5 Conclusions

In this Systematic Literature Review (SLR), we selected evidences from the
literature to describe, characterize and highlight differences and commonali-
ties among strategies adopted by companies to decide for the migration to the
cloud. In this scenario, we also focused in the identification of evidences related
to the cost-benefit relationship of this migration and selection of cloud service
providers. Our goal was to systematically analyze data from the selected papers
to draw a clear picture from what has been registered in the literature regarding
how companies decide towards cloud computing. One of the main contribution
of this paper was also the discussion of a list of approaches published in the lit-
erature that deal with the cost-benefit relationship and the rationale behind the
selection of providers and their respective services. We are already investigating
how providers have perceived the clients adoption and migration to the cloud
computing paradigm and how they tailor their strategies to meet the needs of
customers. We have already performed the snowballing technique considering
the selected papers of this SLR to increase the list of papers that discuss the
aforementioned research questions.

240 A.C.M. de Paula and G.d.F. de Carneiro

Appendix

See Table 5.

Table 5. Studies included in the review.

A Systematic Literature Review on Cloud Computing 241

Table 5. (Continued)

242 A.C.M. de Paula and G.d.F. de Carneiro

References

1. Breivold, H.P., Crnkovic, I., Radosevic, I., Balatinac, I.: Architecting for the cloud:
a systematic review. In: 2014 IEEE 17th International Conference on Computa-
tional Science and Engineering (CSE), pp. 312–318. IEEE (2014)

2. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from
applying the systematic literature review process within the software engineering
domain. J. Syst. Softw. 80(4), 571–583 (2007)

3. Chen, L., Babar, M.A.: A systematic review of evaluation of variability manage-
ment approaches in software product lines. Inf. Softw. Technol. 53(4), 344–362
(2011)

4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: vision, hype, and reality for delivering computing as
the 5th utility. Fut. Gener. Comput. Syst. 25(6), 599–616 (2009)

5. Davis, F.D.: User acceptance of information systems: the technology acceptance
model (TAM) (1987)

6. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50(9–10), 833–859 (2008)

7. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing
services. Fut. Gener. Comput. Syst. 29(4), 1012–1023 (2013)

8. Garrison, G., Kim, S., Wakefield, R.L.: Success factors for deploying cloud com-
puting. Commun. ACM 55(9), 62–68 (2012)

9. Gupta, P., Seetharaman, A., Raj, J.R.: The usage, adoption of cloud computing
by small, medium businesses. Int. J. Inf. Manag. 33(5), 861–874 (2013)

10. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

11. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a
systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2014)

12. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. In: Technical report, Version. 2.3 EBSE Technical
Report. EBSE (2007)

13. KPMG: The cloud takes shape. Global cloud survey: the implementation challenge
(2013)

14. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 1–14. ACM (2010)

15. Li, Q., Wang, C., Wu, J., Li, J., Wang, Z.-Y.: Towards the businessinformation
technology alignment in cloud computing environment: an approach based on col-
laboration points and agents. Int. J. Comput. Integr. Manuf. 24(11), 1038–1057
(2011)

16. Li, Z., O’Brien, L., Cai, R., Zhang, H.: Towards a taxonomy of performance eval-
uation of commercial cloud services. In: 2012 IEEE 5th International Conference
on Cloud Computing (CLOUD), pp. 344–351. IEEE (2012)

17. Li, Z., O’Brien, L., Zhang, H., Cai, R.: On a catalogue of metrics for evaluating
commercial cloud services. In: Proceedings of the 2012 ACM/IEEE 13th Inter-
national Conference on Grid Computing, pp. 164–173. IEEE Computer Society
(2012)

18. Li, Z., Zhang, H., O’Brien, L., Cai, R., Flint, S.: On evaluating commercial cloud
services: a systematic review. J. Syst. Softw. 86(9), 2371–2393 (2013)

A Systematic Literature Review on Cloud Computing 243

19. Mahesh, S., Landry, B.J., Sridhar, T., Walsh, K.R.: A decision table for the cloud
computing decision in small business. In: Managing Information Resources and
Technology: Emerging Applications and Theories, p. 159 (2013)

20. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
21. Noblit, G.W., Hare, R.D.: Meta-ethnography: Synthesizing Qualitative Studies,

vol. 11. Sage, USA (1988)
22. Paula, A., Carneiro, G.: Cloud computing adoption, cost-benefit relationship and

strategies for selecting providers: a systematic review. In: Proceedings of the 11th
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing (ENASE 2016), pp. 12–23. SCITEPRESS (2016)

23. Rogers, E.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)
24. Tornatzky, L., Fleischer, M.: The Process of Technology Innovation. Lexington

Books, Lexington (1990)
25. Trott, P.: The role of market research in the development of discontinuous new

products. Eur. J. Innov. Manag. 4, 117–125 (2001)
26. Weiss, A.: Computing in the clouds. netWorker 11(4), 16–25 (2007)
27. Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in software engineer-

ing. Inf. Softw. Technol. 53(6), 625–637 (2011)

Author Index

Adaili, Farid 89
Ahmed, Samir Ben 27
Androulakis, Steve 158

Bailes, Paul 129
Blech, Jan Olaf 44
Bouzefrane, Samia 89
Buchmann, Thomas 1

Constantino, Kattiana 66

de Carneiro, Glauco de Figueiredo 222
de Paula, Antonio Carlos Marcelino 222

Figueiredo, Eduardo 66

Herrmann, Peter 44
Hordvik, Simon 44

Kemp, Colin 129
Khalgui, Mohamed 89

Meyer, Grischa R. 158
Mosbahi, Olfa 89

Naija, Mohamed 27

Øseth, Kristoffer 44

Pereira, Juliana Alves 66

Rahman, Md. Mostafijur 179
Rahman, Shanto 179
Ramadani, Jasmin 201

Saake, Gunter 66
Sakib, Kazi 179
Schmidt, Heinz W. 158
Schwägerl, Felix 1
Spichkova, Maria 111, 158
Svendsen, Henrik Heggelund 44

Thomas, Ian E. 158

Wagner, Stefan 201

Yusuf, Iman I. 158

Zamansky, Anna 111

	Preface
	Organization
	Contents
	Advancing Negative Variability in Model-Driven Software Product Line Engineering
	1 Introduction
	1.1 Background
	1.2 Model-Driven Software Product Line Engineering Process
	1.3 Contributions

	2 Motivating Example
	2.1 Feature Model
	2.2 Multi-variant Domain Model
	2.3 Mapping
	2.4 Product Derivation

	3 Conceptual Extensions to Negative Variability
	3.1 Preliminaries
	3.2 Alternative Mappings
	3.3 Mutex Conflicts and Selection Strategies
	3.4 Surrogate Rules

	4 Implementation
	4.1 FAMILE
	4.2 Basic Consistency Control Mechanisms
	4.3 Alternative Mappings
	4.4 Surrogate Rules

	5 Example Revisited
	5.1 Defining Alternative Mappings
	5.2 Repairing Information Loss with Surrogates
	5.3 Deriving Product Variants

	6 Related Work
	6.1 General Comparison
	6.2 Approaches Allowing for Unconstrained Variability
	6.3 Approaches to Preventing Information Loss

	7 Conclusion
	References

	A New MARTE Extension to Address Adaptation Mechanisms in Scheduling View
	Abstract
	1 Introduction
	2 The Adaptability Concept
	2.1 Definition
	2.2 Axes of Adaptation

	3 Related Work
	4 MDE and RTES Development
	4.1 MARTE Capabilities for RTES Modeling
	4.2 SAM

	5 Scope of the Work in Relation to MARTE
	5.1 Adaptability in the Functional Model
	5.2 Adaptability in the Platform Model
	5.3 Adaptability in the Implementation Model
	5.4 Example

	6 Our Proposal: Sam Extension
	6.1 Amendments in the Functional Model
	6.2 Amendments in the Platform Model
	6.3 Amendments in the Implementation Model

	7 Case Study
	8 Conclusion
	References

	Model-Based Engineering and Spatiotemporal Analysis of Transport Systems
	1 Introduction
	2 Reactive Blocks and BeSpaceD
	3 Methodology
	4 Demonstrator
	4.1 Applying Zone Controllers
	4.2 Autonomous Train Control

	5 Engineering the Controllers of the Demonstrator
	5.1 Zone Controller-Centric Model
	5.2 Train Controller-Centric Model

	6 Experience from Building the Demonstrator
	7 Related Work
	8 Conclusion
	References

	Quantitative and Qualitative Empirical Analysis of Three Feature Modeling Tools
	Abstract
	1 Introduction
	2 Study Settings
	2.1 Research Questions
	2.2 Feature Modeling Tools
	2.3 Background of the Participants
	2.4 Training Session and Tasks

	3 Results and Discussion
	3.1 Problems Faced by Developers
	3.1.1 Hard and Easy Functionalities
	3.1.2 Ranking of Negative Functionalities
	3.1.3 Ranking of Positive Functionalities

	3.2 Background Influence
	3.2.1 Data Summary
	3.2.2 Statistical Analysis

	3.3 Strengths and Weaknesses in Feature Modeling Tools

	4 Variability Management Main Issues
	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

	Towards a Secure RA2DL Based Approach
	1 Introduction
	2 State of the Art of Secured Component-Based Design Approaches
	3 RA2DL Background
	4 New Extension for Secured RA2DL
	4.1 Motivation: RA2DL-Pool
	4.2 Security Mechanisms for RA2DL
	4.3 Architecture of Secured RA2DL-Based Pools
	4.4 Modelling and Verification

	5 Case Study and Implementation
	5.1 Case Study: Body-Monitoring System (BMS)
	5.2 Implementation
	5.3 Evaluation

	6 Conclusion
	References

	AHR: Human-Centred Aspects of Test Design
	1 Introduction
	2 Combinatorial Test Design: Formal Background
	3 Refinement-Based Development Within AHR Framework
	4 Human-Centred Test Development
	4.1 Use Case Support
	4.2 Refinement Support
	4.3 Traceability Support

	5 Visualisation of Spatial Parameters
	6 Related Work
	7 Summary
	References

	Software Engineering Foundations of Zoetic Data and Totally Functional Programming
	Abstract
	1 Introduction
	2 Applicable Principles of Software Engineering
	2.1 Reuse
	2.2 Separation of Concerns
	2.3 Formal Methods

	3 Zoetic Data Examples
	3.1 Zoetic Naturals
	3.2 Zoetic Sets
	3.3 Zoetic Grammars

	4 Characteristic Methods as Basis of Zoetic Data
	4.1 Pervasive Interpretation Contravenes Reuse
	4.2 Explicit Interpretations Admit Reuse
	4.3 Separation of Concerns via Zoetic Data

	5 Generating Zoetic Data
	5.1 Zoetic Natural Generators
	5.2 Zoetic Set Generators
	5.3 Zoetic Grammar Generators

	6 Generator Synthesis for Primary Zoetic Types
	6.1 Catamorphic Expressibility of 1ZTs
	6.2 Specification of Generators for 1ZTs
	6.3 Synthesis of Generators for Zoetic Naturals
	6.4 Synthesis of Generators for Zoetic Lists
	6.5 Synthesis of Generators for Zoetic Rose Trees

	7 Secondary Zoetic Types
	8 Principles of Generator Derivation for 2ZTs
	8.1 Schematic Catamorphism
	8.2 Fusion Theorem
	8.3 Identity Property and Constructor Replacement
	8.4 Catamorphic Expressibility of 2ZTs
	8.5 Identifying and Deriving 2ZT Generators

	9 Generator Derivations for Exemplar 2ZTs
	9.1 Derivation of Zoetic Set Generators
	9.2 Derivation of Zoetic Grammar Generators

	10 Related Work
	10.1 Zoetic Data Reflected in Mainstream Programming Languages and Software Engineering
	10.2 Subrecursive Programming - Turner’s TFP
	10.3 Constructive Type Theory

	11 Future Directions
	11.1 Revisit 2ZT Derivation
	11.2 Anamorphic Duals to Zoetic Data
	11.3 Connection with Object-Oriented Programming
	11.4 Type-Checking
	11.5 “Zoe” Language Design and Implementation
	11.6 Program Synthesis and Analog Computation
	11.7 Zoetic Data as Refactoring Targets

	12 Conclusions
	Acknowledgements
	References

	Towards Modelling and Implementation of Reliability and Usability Features for Research-Oriented Cloud Computing Platforms
	1 Introduction
	2 Background
	3 Formal Model of a Cloud-Based Platform
	3.1 Data Analysis
	3.2 Environment SetUp and CleanUp
	3.3 Execution of a Smart Connector
	3.4 Advantages of the Model

	4 Implementation
	5 Usability Aspects
	5.1 Chiminey: Overview
	5.2 Chiminey: Settings
	5.3 Chiminey: Creating New Jobs
	5.4 Chiminey: Visualisation

	6 Related Work
	7 Conclusions and Future Work
	References

	An Improved Method Level Bug Localization Approach Using Minimized Code Space
	1 Introduction
	2 Related Work
	2.1 Source Code Static Analysis Based Techniques
	2.2 Source Code Dynamic Analysis Based Techniques

	3 Does Minimized Code Space Can Improve the Accuracy of Bug Localization Techniques?
	4 Method Level Bug Localization Using Minimized Code Space
	4.1 Code Corpora Creation
	4.2 Indexing
	4.3 Bug Report Corpora Creation
	4.4 Retrieval and Ranking of Buggy Methods

	5 Case Study
	5.1 Elements of the Case Studies
	5.2 Objectives of the Case Studies
	5.3 Evaluation Metrics
	5.4 Research Questions

	6 Threats to Validity
	7 Conclusion
	References

	How Interesting Are Suggestions of Coupled File Changes for Software Developers?
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Contribution

	2 Interestingness
	3 Data Mining Background
	4 Related Work
	5 Case Study Design
	5.1 Research Questions
	5.2 Case Selection
	5.3 Data Collection Procedure
	5.4 Ethical Considerations
	5.5 Analysis Procedure
	5.6 Validity Procedure

	6 Results and Discussion
	6.1 Case Description
	6.2 Number of Couplings (RQ 1)
	6.3 Interestingness of Coupled Changes (RQ 2)
	6.4 Influence of Developer Experience on Interestingness (RQ 3)
	6.5 Influence of Developer Involvement in the Project on Interestingness (RQ 4)
	6.6 Interestingness of Additional Information (RQ 5)
	6.7 Influence of Developer Experience on Interestingness of Additional Information (RQ 6)
	6.8 Validation and Theory
	6.9 Discussion
	6.10 Evaluation of Validity

	7 Conclusion and Future Work
	7.1 Summary of Conclusions
	7.2 Relation to Existing Evidence
	7.3 Impact/Implications
	7.4 Limitations
	7.5 Future Work

	References

	A Systematic Literature Review on Cloud Computing Adoption and Migration
	1 Introduction
	2 Problem Statement and Scope
	3 Research Methodology
	3.1 Planning the Review
	3.2 Conducting the Review

	4 Results and Analysis
	4.1 Strategies for the Adoption and Migration to the Cloud (RQ1)
	4.2 The Cost-Benefits Relationship in the Adoption and Migration (RQ2)
	4.3 Selecting Cloud Computing Service Providers (RQ3)
	4.4 Implications for Research and Practice

	5 Conclusions
	References

	Author Index

