
Chapter 9
A Self-assembled Quantum Dot as Single
Photon Source and Spin Qubit: Charge Noise
and Spin Noise

Richard J. Warburton

Abstract Aself-assembled quantumdot confines both electrons and holes to a nano-
sized region inside a semiconductor. An exciton in a single self-assembled quantum
dot is a potentially excellent source of single photons. A quantum dot also acts as
a host for a spin qubit with the advantage that the spin can be initialized, manipu-
lated and read-out with optical techniques. However, the exciton and spins couple
strongly not just to an external optical probe but also to internal excitations of the
host semiconductor: the semiconductor is a source of noise resulting in exciton and
spin dephasing. The noise can be suppressed in some cases, circumvented in oth-
ers, leading to an improvement in quantum dot performance. In particular, resonant
excitation at low temperature using high quality material results in a small level of
charge noise. A heavy hole spin in an in-plane magnetic field is decoupled from
the spin noise arising from fluctuations in the nuclear spin bath. Presented here is a
series of experiments which probe the noise in advanced quantum dot devices: single
quantum dot resonance fluorescence as a sensor of both charge noise and spin noise;
nuclear magnetic resonance on the quantum dot nuclear spins to probe the electron
spin hyperfine interaction; and coherent population trapping to probe the hole spin
hyperfine interaction.

9.1 A Self-assembled Quantum Dot for Quantum
Technology

Aself-assembled quantumdot inGaAs has a nano-size, typically 20nm in base diam-
eter, 5nm in height, resulting in discrete, atom-like quantum states. This small size,
a size which is difficult to access with top-down nano-fabrication, confers an imme-
diate advantage: both the confinement energies and on-site Coulomb interactions
are large, tens of meV. The net result is that Coulomb blockade is well established:
ultra-low temperatures are not required. Also, the self-assembly process along with
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the direct gap of the host semiconductor results in a strong optical transition across
the fundamental gap of the semiconductor: the optical dipole moment is large. This,
together with the large number of photon modes in a bulk structure, leads to short
radiative lifetimes, ∼0.8ns.

A self-assembled quantum dot is potentially useful in quantum technology, as a
single photon source and as a spin qubit. On the one hand, self-assembled quantum
dots can be embedded in semiconductor heterostructures, and devices can be made
from the wafer material by semiconductor nano-fabrication for which a large and
established tool-box is available. On the other hand, electrons and holes in the quan-
tum dot are not just strongly coupled to external probes such as the light field: they
are also strongly coupled to excitations in the host semiconductor. This means that
dephasing, the interaction of quantum dot-based quantum states with the semicon-
ductor environment, is strong and it is challenging to design structures where the
dephasing is kept to a manageable level. In fact much of the interesting physics lies
in the dephasing which can be complex [1].

This chapter describes a series of experiments on single self-assembled quan-
tum dots. The aim of these experiments is to investigate the noise which limits the
performance of the quantum dot as a single photon emitter and as a spin qubit. An
underlying feature is the use of high qualitymaterial at low temperature, and resonant
optical excitation with resonance fluorescence detection.

9.2 Photonics of a Self-assembled Quantum Dot

9.2.1 The Optical Transition

An InGaAs/GaAs quantum dot, Fig. 9.1a, has a strong optical transition between the
highest valence state and the lowest conduction state [2]. In semiconductor language,
optical excitation creates an exciton, an electron-hole pair. For as-grown InAs/GaAs
quantum dots, the optical transition lies at an inconvenient wavelength, ∼1,200nm
at low temperature, but can be shifted to the more convenient ∼950nm either during
growth [3] or via post-growth annealing [4]. The radiative lifetime is short, typically
∼0.8ns [5], corresponding to a dipole moment of 0.6e nm·C [6]. The level structure
is explained in Fig. 9.1b–d.Note that the two bright excitonswith spin±1 are coupled
by the so-called fine structure: this lifts the degeneracy of the two exciton states even
at zero magnetic field.

Themain optical transition forms the basis of a quantum dot single photon source.
The problem of extracting the photons out of the high-index host material – GaAs has
a refractive index of 3.5 – can be solved by engineering also the photonic states. For
instance, by embedding the quantum dots in a GaAs waveguide, and using a taper
as an out-coupler, high fidelity single photon emission with a quantum efficiency as
high as ∼70% has been achieved [7].
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Fig. 9.1 Photonics of a single self-assembled quantum dot at zero magnetic field. a Transmis-
sion electron microscopy image of a sample grown by molecular-beam-epitaxy showing an InAs
quantum dot with its associated wetting layer, embedded in GaAs and capped with an AlAs/GaAs
superlattice. Image provided courtesy of Jean-Michel Chauveau, Arne Ludwig, Dirk Reuter and
Andreas Wieck. b Schematic energy level structure of a self-assembled quantum dot. On account
of quantization, there are discrete, atom-like conduction and valence levels with wave functions
localized in the quantum dot. At higher energies, there are the conduction and valence energy bands
associated with the two-dimensional wetting layer (and bulk GaAs at higher energy still). At low
temperature and in the absence of doping, the valence levels are occupied and the conduction levels
are unoccupied. A strong optical dipole transition connects the highest energy valence level with
the lowest energy conduction level, the transition taking place across the fundamental gap of the
semiconductor. c The vacuum state |0 〉 and the optically excited state |X0〉 are represented as the
ground and excited states of a 2-level atom (red arrow represents the optical coupling, blue arrow
spontaneous emission). In |X0〉, a valence electron has been promoted to a conduction level creating
a so-called exciton, an electron-hole pair. d A quantum dot can be loaded with a single excess
electron (see Fig. 9.2). In this case, the ground state is |e 〉 and the optically excited state |X1−〉
consisting of two electrons (in a singlet) and a hole. e Laser spectroscopy on a single quantum dot
at a wavelength close to 950nm at temperature 4.2 K. The resonance fluorescence is plotted as
a function of laser detuning. The linewidth is 1.6µeV (400 MHz). The signal corresponds to the
count rate on a silicon avalanche photodiode. The transform-limited linewidth is Γ0 = 0.8 µeV,
equivalently 200 MHz (radiative lifetime 0.8 ns). f The intensity correlation coefficient g(2) of the
resonance fluorescence measured with a Hanbury Brown-Twiss interferometer (black line). The dip
at zero delay shows clear photon antibunching. The signal at zero delay is dominated by the jitter of
the detector (0.5 ns); the slight overshoot at delay ∼1ns is the first hint of a Rabi oscillation which
becomes marked at higher laser power. The blue line is a convolution of the two-level atom g(2)

with the response of the detectors; the red line is the two-level atom g(2) alone. e, f data courtesy
of Andreas Kuhlmann, Julien Houel and Arne Ludwig
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9.2.2 Vertical Tunneling Structures

Implementing the concept of an electron spin qubit [8]with a self-assembled quantum
dot involves trapping a single electron. This can be achieved by including a δ-doped
layer close to the quantum dot layer in the growth such that some of the quantum dots
are permanently occupied with an excess electron [9] or hole [10] at low temperature.
A more flexible technique allowing for considerable in situ tuning is to embed the
quantum dot layer in a vertical tunnelling device [2, 11, 12], Fig. 9.2a. The device
operates in the Coulomb blockade regime which at 4K is highly pronounced based
on the huge on-site Coulomb energy to thermal energy ratio (∼25meV : 0.4meV).
The quantum dots are in tunnel contact with a Fermi sea; the quantum dot potential
with respect to the Fermi energy is controlled by applying a gate voltage to the
top contact. The top contact is often a Schottky gate on the sample surface, an
n-i-Schottky structure with the quantum dots in the intrinsic “i” region. Alternatively,
the Schottky contact can be replaced with a p-type layer, an n-i-p structure where the
p-type layer acts as an “epitaxial gate” [13].

Structures for trapping a single hole swap n-doping for p-doping, i.e. p-i-Schottky
and p-i-n. However, quantum dots grown after the p-type layer have relatively poor
optical properties [13, 15]. The solution is the n-i-p structure with the quantum dots
in tunnel contact with the p-layer as in this case the p-type layer is grown last, Fig. 9.3.

In these structures, the Coulomb blockade is revealedmost immediately in the sin-
gle quantum dot photoluminescence by clear steps in the photoluminescence energy
[12], Fig. 9.2b. A single electron is trapped in the quantum dot over the Coulomb
blockade plateau, Fig. 9.2b: a voltage chosen within this region allows access to sin-
gle spin physics [16]. In the Coulomb blockade regime, tunnelling is suppressed to
first order but the second order process, co-tunnelling, survives [17]. Co-tunnelling
represents a spin relaxation mechanism: the quantum dot electron spin is swapped by
a two-electron process with the spin of an electron close to the Fermi energy in the
Fermi sea of the n+ layer. A convenient property of the vertical tunnelling structure
is that the co-tunnelling rate is large at the edge of the plateau but is suppressed by
several orders of magnitude in the plateau centre, providing useful in situ control
[17–21].

The tunnel barrier thickness is important. For very small values, the quantum states
hybridize strongly with the states at the Fermi energy in the back contact [22]; at very
large values, the tunneling time becomes much longer than the recombination time.
An important point of detail in these structures concerns the thickness of the capping
layer, the i-GaAs grown between the quantum dot layer and the blocking barrier (an
AlAs/GaAs superlattice). At intermediate thicknesses, fluctuating minority carriers
at the GaAs/blocking barrier interface result in unwanted charge noise [23]. This
noise can be suppressed with a thin ∼10nm capping layer pushing the minority
charge states well above the quantum dot levels such that the states are unlikely to be
occupied at low temperature. A thin capping layer also prevents the optically-excited
minority carrier (the hole in the case of an electron spin device; the electron in the
case of a hole spin device) from tunneling out of the quantum dot.



9 A Self-assembled Quantum Dot … 291
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Fig. 9.2 Coulombblockade of a single quantumdot. aLayer structure of a typical heterostructure
for experiments controlling the charge state of a quantum dot. A layer of self-assembled quantum
dots is embedded in a vertical tunnelling structure. The quantum dots are in tunnel contact with
the Fermi sea in the n+ layer; the blocking barrier prevents current flow to the surface; a Schottky
gate on the surface allows control of the vertical electric field. Typically, the tunnel barrier (gallium
arsenide, GaAs) is 12–40nm thick, the capping layer 10–150nm, blocking barrier > 100 nm, and
the Schottky gate is a semi-transparent metal layer, e.g. 5–10nm Ti/Au. A voltage applied to the
gate, Vg, tunes the energy of the first confined electron level relative to the Fermi energy as shown
schematically in the band diagram. At low temperature and large electric field, the quantum dot
conduction level lies above the Fermi energy and is therefore unoccupied; when the conduction level
lies below the Fermi energy but close to it (the case shown), the conduction level is singly occupied
(the case shown); at more positive Vg it is doubly occupied. b The photoluminescence (PL) from a
single quantum dot in a vertical tunnelling structure is shown as a function of Vg at a temperature
of 4.2 K. The steps in the photoluminescence energy correspond to charging events. X0 refers to
the neutral exciton (an electron-hole pair); X1− to the negatively charged trion (a two electron-one
hole complex); X2− the doubly charged exciton (a three electron-one hole complex). Note that
the charging event without a hole, |0 〉 → |e 〉, takes place at slightly more positive Vg than the
charging event with a hole, |X0 〉 → |X1−〉, on account of the Coulomb energies: the electron-hole
on-site Coulomb energy is larger than the electron-electron on-site Coulomb energy. Conversely,
the |e 〉 → |2e 〉 charging event takes place at more negative Vg than the |X1−〉 → |X2−〉 charging
event as the |X2−〉 state has a total of three electrons, the “third” forced to occupy the first excited
conduction level by the Pauli principle. The main features in the PL characterization correspond to
charging events in the initial state, the exciton state (white dashed lines). However, charging events
in the final state are revealed by hybridization effects in the X1− plateau (red dashed lines) [14].
Probing a single spin with resonant laser excitation involves working in the Vg window defined by
the two dashed red lines. Experimental data provided courtesy of Paul Dalgarno

9.2.3 Resonance Fluorescence Detection

Many optical experiments in this field rely on non-resonant excitation in which a
high-energy continuum is occupied with electron-hole pairs. The exciton level in the
quantum dot is populated by typically fast relaxation, and the spontaneous emission
on exciton decay (the photoluminescence) can be detected. An example is shown
in Fig. 9.2b. This is a relatively simple experiment but lacks the power of true laser
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Fig. 9.3 Devices for loading a quantum dot with a single hole. a n-i-p device; b p-i-Schottky
device: heterostructure design and schematic band diagram. c Resonance fluorescence spectrum at
4.2K on an empty quantum dot in the p-i-n device. The two lines (split by the exciton fine structure)
have a linewidth of 1.5 µeV, equal to the linewidth in the very best n-type devices, demonstrating
the extremely low level of charge noise. d Resonance fluorescence spectrum at 4.2K on an empty
quantum dot in the p-i-Schottky device. The larger linewidths of 3.6 µeV and also the smaller
signals signify problems related to the p-doping: increased charge noise and non-radiative decay

spectroscopy methods which involve driving the optical resonance with a coherent
laser. The interaction of a single self-assembled quantum dot with a coherent laser
tuned to the optical resonance was initially detected via a change in the transmission
coefficient, a “ΔT -experiment” [24]. Meanwhile, the resonance fluorescence can
also be detected (see also Chap.3), discriminating resonance fluorescence from scat-
tered/reflected laser light with a dark field technique based either on the propagation
direction [25] or on the polarization [26–29], Fig. 9.1e. Remarkably, all the features
of a driven two-level system known from atomic physics have been observed on a
single quantum dot. These include a Lorentzian absorption lineshape [24], Fig. 9.1e;
power broadening and power-induced transparency [30]; the ac Stark effect [31];
Rabi oscillations [25], the Mollow triplet, and antibunching of resonance fluores-
cence [25], Fig. 9.1f. Routinely, close-to-transform limited optical transitions are
observed in laser spectroscopy experiments on single InGaAs/GaAs quantum dots
[23]. Phonon-induced exciton decoherence is significant either at low temperature
with large Rabi couplings [32, 33], or at elevated temperatures [30, 34–36].

The capability to detect resonance fluorescence has given the field a significant
boost: the resonance fluorescence itself represents single photon output; in spec-
troscopy terms it is a low noise, low background technique.

http://dx.doi.org/10.1007/978-3-319-56378-7_3
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9.3 Exciton Dephasing

A key goal in quantum communication is to create highly indistinguishable photons
which are separated in space by more than 100Km for device-independent quantum
key distribution and for a quantum repeater [37]. This is potentially possible using
a semiconductor quantum dot: single photons are generated either by spontaneous
emission from the upper level [38–40], Fig. 9.1, or by coherent scattering of a resonant
laser [41–43]. Optimizing performance demands an understanding of noise and a
strategy to circumvent its deleterious effects [1]. There are two main sources of
noise in a semiconductor. Charge noise arises from occupation fluctuations of the
available states and leads to fluctuations in the local electric field. This results in
shifts in the optical transition energy of a quantum dot via the dc Stark effect and
is one mechanism by which the optical linewidth of a self-assembled quantum dot
can be significantly increased above the transform limit [18, 23, 24]. Charge noise
can also result in spin dephasing via the spin-orbit interaction, and, in particular for
hole spins, via the electric field dependence of the g-factor [44, 45]. The second
source of noise, spin noise, arises typically from fluctuations in the nuclear spins of
the host material and, on account of the hyperfine interaction, results in a fluctuating
magnetic field (the Overhauser field) experienced by an electron spin [46, 47]. Spin
noise from noisy nuclei results in rapid spin dephasing in an InGaAs quantum dot
[9, 48, 49].

Strategies for reducing noise involve working with ultra-clean materials to mini-
mize charge noise and the use of dynamic decoupling, schemes which employ com-
plex echo-like sequences to “protect” the qubit from environmental fluctuations [50–
52]. In this case, it is absolutely crucial that the noise power decreases with increasing
frequency.

For quantum dot-based single photon sources, the linewidths are in the best case
(high quality material with resonant excitation) typically about a factor of two larger
than the transform limit in which the linewidth is determined only by the radiative
decay time [18, 23, 24], Fig. 9.1. This is a poor state of affairs for applications
which rely on photon indistinguishability, the resource underpinning a quantum
repeater for instance. On the positive side, there is evidence that with low power,
resonant excitation, there is no significant upper level dephasing apart from radiative
recombination [41, 42] such that over short timescales indistinguishable photons are
emitted [39]. It has been surmised that the increase in linewidth above the ideal limit
arises from a spectral wandering [23, 24].

The particular challenge posed by charge noise in self-assembled quantum dot
devices is illustrated in Fig. 9.4. In this experiment, resonant laser spectroscopy on
single quantum dots was carried out as a function of the power of an additional
non-resonant laser [23]. The non-resonant laser is weak such that the induced pho-
toluminescence is negligible but it introduces a small number of holes in the device.
A steady state population of holes builds up at the capping layer/blocking barrier
interface, in this case 35nm above the quantum dot layer. The quantum dot transition
frequency increases step-wise, Fig. 9.4. The interpretation is that there are localiza-
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Fig. 9.4 Resonant laser spectroscopy on single quantumdotswith close-by charge localization
centres. Colour-scale plot (linear scale, blue: 0.061%; red: 0.61%) of differential reflectivity versus
non-resonant laser power on two different quantum dots. The non-resonant laser power controls
the steady state occupation of defects, hole localization centres located 30nm above the quantum
dot at the capping layer/blocking barrier interface. The charge is labelled in each case. At large
non-resonant laser power, a two-dimensional hole gas forms (2DHG)

tion centres for the holes directly above the quantum dot. Occupation of one of these
localization centres by a single hole shifts the quantum dot frequency by several
linewidths, suppressing the resonance scattering. On the one hand, the sensitivity of
the quantum dot to the small levels of charge noise reflects the potential of quantum
dots as ultra-sensitive electrometers [23, 53, 54]. On the other hand, the same sen-
sitivity makes the generation of transform-limited single photons challenging. The
mechanism is the dc Stark effect [55].

9.3.1 The Charged Exciton

The resonance fluorescence signal itself can be used to investigate the noise [28,
56]. The linewidth determines the spectral purity of the single photons. Measured
on second time-scales, the single quantum dot linewidths are 1.6 µeV in Fig. 9.5
for both neutral and charged excitons, X0 and X1−, respectively. The linewidth can
be recorded on smaller time-scales: Fig. 9.5 shows the linewidths versus scanning
frequency. The linewidths are constant up to about 1 kHz and then decrease, reaching
constant values above about 50 kHz. Remarkably, the constant values at the highest
frequencies correspond closely to the transform limit. (The difference in X0 and X1−
transform-limited linewidths reflects the slightly different radiative decay times [5].)
The implication is two-fold. First, any pure exciton dephasing mechanisms must be
muchweaker than radiative recombination in this experiment. Secondly, the quantum
dot produces a stream of identical photons over time-scales of about 1–10 µs: over
this time the noise is “frozen”. At longer times, there are fluctuations in the quantum
dot’s optical frequency, a spectral wandering.
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Fig. 9.5 Linewidth versus scanning frequency. a, b X0, X1− resonance fluorescence versus
detuning δ at 4.2 K, B = 0.0 mT with 100 ms integration time per point. The solid lines are
Lorentzianfits to the data. The linewidths areΓ X0 = 1.29µeV,Γ X1− = 1.49µeV; theRabi energies
Ω/Γ0 = 0.5 (X0), 0.4 (X1−); and transform-limits Γ X0

0 = 0.92 ± 0.10 µeV, Γ X1−
0 = 0.75 ± 0.10

µeV. c RF linewidth against scanning frequency dδ/dt/Γ0. Γ approaches Γ0 for scanning frequen-
cies above 50 kHz. For each scanning frequency, the error bar represents the standard deviation of
several hundred linewidth scans. Solid lines represent a Lorentzian fit of the data with linewidth
30 ± 3 kHz

An immediate question concerns the origin of the noise which leads to the spectral
wanderings in the quantum dot’s optical frequency. Insight comes from a noise spec-
trum of the resonance fluorescence: a time-trace is recorded at a particular detuning,
δ = 0 or δ = Γ/2, Fig. 9.6a; a Fourier transform yields a noise spectrum [28, 56].
A typical time trace of the RF is shown in Fig. 9.6b with binning time 10 ms. The
main contribution to the noise comes from shot noise. However, the level of extrinsic
noise is highly reproducible: its spectrum, NEXP( f ), is recorded carefully and then
subtracted from the total noise to determine the intrinsic noise, the noise power of
the normalized RF signal, NQD( f ), Fig. 9.7a. Specifically, the fast Fourier transform
(FFT) of the normalized RF signal S(t)/〈S(t)〉 provides a noise spectrum:

NRF( f ) = |FFT[S(t)/〈S(t)〉]|2(tbin)2/T, (9.1)

where tbin is the binning time and T the total integration time. NQD( f ) is deter-
mined by

NQD( f ) = NRF( f ) − NEXP( f ). (9.2)
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(a) (b)

Fig. 9.6 Resonance fluorescence (RF) on a single quantum dot. a RF recorded on a single
InGaAs quantum dot at wavelength 950.61nm at a power corresponding to a Rabi energy of
0.55 µeV at a temperature of 4.2K without external magnetic field. The RF was detected with
a silicon avalanche photodiode operating in single photon mode; the detuning was achieved by
sweeping the gate voltage with respect to the laser using the dc Stark effect. In this case, the inte-
gration time per point was 100ms. The solid line is a Lorentzian fit to the data with linewidth
Γ = 1.6µeV (390MHz). bA time-trace of the RF recorded with detuning set to half the linewidth,
〈δ〉 = Γ/2. The arrival time of each detected photon is stored allowing a time trace to be constructed
post-experiment with an arbitrary binning time. An example is shown using a binning time of
10 ms

(a) (b)

Fig. 9.7 Resonance fluorescence noise. a RF noise spectra recorded on a quantum dot occupied
with a single electron, the trion X1−, for average detuning equal to zero, 〈δ〉 = 0 (blue), and for
〈δ〉 = Γ/2 (red) at 4.2K and B = 0.0 mT. Following the scheme in Fig. 9.8, the noise at low
frequencies is shown to originate from charge noise, that at high frequencies from spin noise.
Plotted is the noise power spectrum of the normalized RF, S(t)/〈S(t)〉, where S(t) is the RF signal,
〈S(t)〉 the average RF signal, corrected for external sources of noise. b RF noise spectra recorded
on X1− with 〈δ〉 = 0 under identical experimental conditions (4.2 K, B = 0.0 mT) in the course of
the experiment. The charge noise at low frequency depends on the sample history; the spin noise at
high frequency does not (color figure online)

Figure9.7a shows noise spectra over six decades of resolution in the noise power
over six decades of frequency, from 0.1Hz to 100 kHz, Fig. 9.7a, b. The noise falls
very rapidly above 10 kHz: this is consistent with the observation of transform-
limited linewidths in the spectroscopic measurement on exactly the same quantum
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(a) (b)

Fig. 9.8 Distinguishing between charge noise and spin noise. Schematic showing the effect of
charge noise and spin noise on the charged, X1−, exciton (applied magnetic field zero). a Charge
noise (noise in the local electric field) results in a “rigid” shift of the optical resonance leading
to a small change in resonance fluorescence (RF) for zero detuning δ = 0 and a large change in
RF at δ = Γ/2. b Without an external magnetic field, spin noise induces a Zeeman splitting in the
resonance resulting in a large change in RF at δ = 0 and a small change in RF at δ = Γ/2 (zero for
δ = Γ/2

√
3), opposite to charge noise. This difference, a “rigid” shift of the X1− resonance from

charge noise, a “breathing motion” in the X1− resonance from spin noise, allows charge noise and
spin noise to be identified

dot, Fig. 9.8c, d. The entire noise spectrum can be described by two Lorentzian
features along with a 1/ f -like component. Significantly, there is a spectroscopic
technique to assign these noise sources to charge noise or spin noise, Fig. 9.8, based
on the different response of X1− to charge noise and spin noise.

As the local electric field F fluctuates, the detuning δ of the quantum dot optical
resonance with respect to the constant laser frequency fluctuates on account of the dc
Stark effect. For small electric field fluctuations, the Stark shift is linear: the optical
resonance shifts rigidly backwards and forwards on the detuning axis, as shown
in Fig. 9.8a. The response in the RF to charge noise has a first order component in
electric field for δ = Γ/2 giving rise to large changes in the RF. Conversely, for δ = 0
the first order component vanishes. Sensitivity to charge noise in the RF is therefore
weak for 〈δ〉 = 0 yet strong for 〈δ〉 = Γ/2. Spin noise results in a complementary
behaviour in the absence of an external magnetic field, B = 0. Fluctuations in the
local magnetic field BN arising from spin noise do not shift the X1− resonance
backwards and forwards. Instead, a typical BN fluctuation induces a sub-linewidth
Zeeman splitting of the X1− resonance, as shown in Fig. 9.8b. Sensitivity to spin
noise in the RF is therefore strong for 〈δ〉 = 0, weak for 〈δ〉 = Γ/2. The crucial
point is that, for X1− at B = 0, the dependence of the RF noise on 〈δ〉 is opposite for
charge noise and spin noise.

The detuning dependence, Fig. 9.7a, therefore identifies the main noise at low
frequencies (Lorentzian spectrum and 1/ f -like component) as charge noise, the
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main noise at high frequencies spin noise. The charge noise gives large noise powers
but only at low frequencies. The spin noise gives much weaker noise powers but over
a much larger bandwidth. It is striking that the resonance fluorescence reveals the
full spectrum of the fluctuating nuclear spin ensemble.

The simple rules connecting RF intensity with the local electric field F (charge
noise) and with the local magnetic field BN (spin noise) allow quantitative statements
on the noise to be made. The charge noise has root-mean-square (rms) electric field
noise Frms = 0.46 Vcm−1 (bandwidth starting at 0.1Hz). It is striking that, first, the
charge noise is very small: the rms noise in the local potential is just 1.2µV; the charge
noise contribution to the low-scanning-frequency X1− linewidths are <0.05µeV.
The low charge noise is a consequence of both the ultra-pure material and also the
carefully controlled experimental conditions. Secondly, it is striking that the charge
noise is concentrated at such low frequencies. The rms noise in the Overhauser field
measured on X1− amounts to BN,rms = 9 mT with correlation time 100 µs. It is this
noise which makes the dominant contribution to the X1− linewidth at low scanning
frequency. The randomfluctuations of N nuclear spins lead to a BN,rms which scales as
1/

√
N [46, 47]; applied to an InGaAs quantum dot with N ∼ 105, the expectation is

BN,rms ∼ 20mT [57, 58], reasonably close to the valuemeasured here. The timescale
is characteristic of the nuclear spin dipole-dipole interaction [46].

Figure9.8b shows NQD( f ) curves measured on the same quantum dot over the
course of the experiment (several months) under nominally identical conditions.
There are changes in the low frequency noise power (up to a factor of 10) but the
high frequency noise remains exactly the same. The charge noise therefore depends
on the sample’s history. Conversely, the spin noise arises from the host nuclear spins
of the quantum dot which remain the same and retain their properties: this results in
the unchanging spin noise at high frequency.

A Lorentzian noise spectrum is characteristic of a two-level fluctuator [59]. The
associated on-off behaviour, equivalently telegraph noise, is however not observed
here. Instead, the Lorentzian noise arises from fluctuations in an ensemble of two-
level fluctuators, each with approximately the same transition rates, 0 → 1, 1 → 0.
For the charge noise, the fluctuators are hole localization centres at an interface
150nm above the quantum dot. Electrostatic noise arises via fluctuations in the exact
configuration of occupied (state 0) and unoccupied (state 1) localization sites in the
ensemble. For the spin noise, each nuclear spin acts as a fictitious two-level fluctuator.
A Monte Carlo simulation enables both sources of noise to be treated on an equal
footing [28]. The 1/ f -like noise varies from quantum dot to quantum dot and its
exact origin is an open question.

9.3.2 The Neutral Exciton

There is evidence that at low temperature, there is negligible pure upper level decoher-
ence of the neutral exciton [35, 41–43]. Photons emitted subsequently are close to
indistinguishable [39, 60]. The experiments described above add weight to these
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(a) (b) (d)

(c)

Fig. 9.9 X0 spin noise within the Coulomb blockade plateau. a X0 optical linewidth measured
at Rabi energyΩ/Γ0 = 0.50 for different gate voltages by sweeping the laser frequency through the
resonance and integrating 100ms per point.Γ decreases from 1.66 to 1.19µeVwith decreasing gate
voltage. b X0 spectrum with Γ = 1.15 µeV at Vg = −1.54 V. c X0 noise spectra recorded at Rabi
energies Ω/Γ0 = 0.65 for different voltages, indicated in a by solid lines. Maximum/minimum
spin noise (black/blue) is correlated with the largest/smallest Γ . d NQD( f ) on X0 recorded with
two lasers of frequencies f1 and f2 and a frequency splitting f1 − f2 equal to the fine structure
splitting for 〈δ〉 = 0 (blue) and 〈δ〉 = Γ/2 (red). Inset shows the laser frequency detuning relative
to the optical resonance

assertions: transform-limited linewidths are observed on fast scanning [28, 56].
Charge noise leads to an inhomogeneous broadening of the X0 as for the X1−,
Fig. 9.5. The X0 is also sensitive to spin noise, i.e. fluctuations in the Overhauser
field, but with reduced sensitivity with respect to X1−. For X0, the sensitivity is sec-
ond order as the hole “shields” the electron from the spin noise (a consequence of
the fine structure); for X1− the sensitivity is first order on account of the unpaired
electron in the X1− ground state. Despite the different sensitivity to spin noise the
X0 and X1− linewidths are very similar [23, 24, 28].

A typical X0 resonance fluorescence spectrum is shown in the ideal case (high
quality material at low temperature, resonant excitation on a quantum dot in the
Coulomb blockade regime) in Fig. 9.5 with Ω/Γ0 = 0.5 where Ω is the Rabi cou-
pling. The linewidth is a factor of 1.4 larger than the transform-limit (for this
particular quantum dot, Γ X0

0 = 0.92 ± 0.10 µeV). Figure9.9a shows Γ versus Vg

on X0, measured below but close to saturation, Ω/Γ0 = 0.5. At the edges of
the Coulomb blockade plateau, Γ rises rapidly on account of fast electron spin
dephasing via co-tunneling with the Fermi sea [17]. This process slows down as
Vg moves away from the plateau edges. The prominent feature is that a “sweet-
spot” exists close to the negative Vg-end of the plateau with minimum linewidth
1.19 ± 0.13 µeV, Fig. 9.9a, b. Accounting for the small power broadening, the ideal
limit is Γ (Ω) = Γ0[1 + 2(Ω/Γ0)

2] 1
2 = 1.10 ± 0.10 µeV. Within the measurement

uncertainties of 10%, the transform-limit is therefore achieved. As Vg is raised to the
positive side of the “sweet-spot”, Γ increases beyond the ideal limit, Fig. 9.9a.
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As for the X1−, a diagnostic of the X0 linewidth is a noise spectrum NQD( f ), a
Fourier transformof theRF time-trace. The increase in linewidth above the transform-
limit represents a sum over all noise sources from the scanning frequency, about 1Hz,
to Γ0/�, about 1 GHz. The noise spectra at the low-bias end (the “sweet-spot”), the
centre of the plateau and the positive-bias end are shown in Fig. 9.9c. There is a
Lorentzian feature with linewidth 30Hz (noise correlation time 30 ms) and a second
Lorentzian feature at higher frequencies with linewidth 200 kHz (correlation time
5µs). The second feature disappears at the “sweet-spot”.

A spectroscopic diagnostic for charge versus spin noise can be established, as
for the X1−. Now however two lasers are required: one laser drives one of the X0

transitions, the other laser drives the other X0 transition. The scheme exploits the
different X0 response to charge noise and spin noise: charge noise moves both X0

peaks rigidly together along the detuning axis; spin noise moves them apart or closer
together, a “breathing” motion. Specifically, X0 noise spectra are recorded with two
lasers whose frequencies are separated by the fine structure. On detuning both lasers
from δ = 0 to δ = Γ/2, the sensitivity to charge noise increases (changing from
second order to first order) yet the sensitivity to spin noise decreases (remaining
second order but with a reduced pre-factor). In the experiment, switching from
〈δ〉 = 0 to 〈δ〉 = Γ/2 causes the noise power of the low frequency component to
increase markedly, Fig. 9.9d, identifying it as charge noise. However, as for X1−,
the frequency-sum over the charge noise gives a contribution to Γ of <0.05µeV, a
negligible value. (Note that both the dc Stark coefficient and Γ vary from quantum
dot to quantum dot yet there is no correlation between the two, pointing also to the
unimportance of charge noise in the optical linewidth.) Conversely, the noise power
of the high frequency component decreases on detuning both lasers from δ = 0 to
δ = Γ/2, identifying it as spin noise, Fig. 9.9d. Furthermore, noise spectra measured
at 〈δ〉 = 0 but with a single laser tuned to one of the X0 transitions show that the low
frequency noise, the charge noise, is similar for all three biases yet the high frequency
noise, the spin noise, increases with increasing bias, Fig. 9.9c. This confirms that the
high frequency noise, the spin noise, is responsible for the inhomogeneous linewidth:
the integrated spin noise is vanishingly small at the “sweet-spot”, increasing at the
centre of the plateau, and increasing further at the positive bias edge.

The “spin noise” of the X0 is not understood microscopically. If the noise is
assigned entirely to anOverhauser field, BN, very large values are required to account
for the experimental results, hundreds ofmT,with values increasingwith optical Rabi
coupling: optical driving apparently agitates the nuclei. Also, the correlation time of
the noise is just 5 µs (independent of optical Rabi coupling), considerably smaller
than the timescale typical of the nuclear spin-nuclear spin dipole-dipole interaction.
An alternative is to parameterize the X0 spin noise as a BN-induced fluctuation of the
fine structure splitting. This however remains conjecture. The experiment demon-
strates only that there is noise in the frequency separation of the two X0 transitions.
This speculation notwithstanding, the “spin noise” disappears at the “sweet spot”
and this is a robust phenomenon occurring on all the quantum dots investigated in
this sample [56].
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9.3.3 Locking the Quantum Dot Optical Resonance
to a Frequency Standard

Unlike a real atom, the exact transition wavelength of a quantum dot is not locked to
any particular wavelength and varies considerably from quantum dot to quantum dot.
However, the host semiconductor can be designed so that considerable possibilities
for tuning the emission wavelength exist. Electric field tuning [61, 62] and strain
tuning [63, 64] allow the emissionwavelength to be tuned over several nanometres. A
major problem remains. As shown above, the emission wavelength is not constant: it
varies randomly over time, even in very controlled environments at low temperature.
As shown in the noise analysis, the culprit at low frequency is electrical noise in
the semiconductor which shifts the emission wavelength via the Stark effect [28].
This noise has a 1/ f -like power spectrum resulting in, first, large and uncontrolled
drifts at low frequencies and second, an undefined mean value. This noise, while
poorly understood, is ubiquitous in semiconductors and makes it very difficult to
couple an individual quantum dot to another quantum system, another quantum dot
for instance, or an ensemble of cold atoms. Described here is a scheme to lock the
quantum dot emission frequency to a frequency standard [65].

The output of the device is a stream of single photons generated by resonance
fluorescence (RF) from a single quantum dot. A sketch of the experimental concept
is shown in Fig. 9.10a. A linearly-polarized resonant laser is focused onto the sample
surface and drives the optical transition. The resonance fluorescence of the quantum
dot is collected with the polarization-based dark field technique [23, 27–29, 42],
Fig. 9.10b. Simultaneously, the optical resonance is detected in transmission [24] by
superimposing a sub-linewidth modulation to the gate, Fig. 9.10c. The transmission
signal arises from an interference of quantum dot scattering with the driving laser [6].
The incoherent part, i.e. the spontaneous emission, averages to zero in transmission;
what is detected instead is the coherent scattering, i.e. the Rayleigh scattering. In this
way, the experiment utilizes both incoherent and coherent parts of the scattered light,
for the single photon output and control, respectively. With a small modulation, the
transmission signal has a large slope with zero crossing at zero detuning, Fig. 9.10c,
and is therefore ideal for the generation of an error signal. ΔT/T , the error signal,
is recorded with a lock-in amplifier to reject noise and the lock-in output is fed into
a classical feedback scheme. The feedback output is, like the modulation, applied to
the gate electrode of the device. The set-point of the control loop is the zero crossing.

The long-termperformance of the frequency locking schemewas tested by record-
ing the RF over several hours, Fig. 9.11, without (blue) and with (red) the stabilizing
loop. Without feedback, the RF exhibits fluctuations up to a factor of 2 (blue curve).
The origin are slow electrical fluctuations in the sample which cause the transition to
drift out of resonance with the laser. With feedback, these fluctuations disappear and
the RF remains at a constant level (red curve) with noise determined almost entirely
from shot noise in the detector, Fig. 9.11b. The average RF signal is a little smaller
with feedback because the applied modulation broadens slightly the resonance.



302 R.J. Warburton

(a) (b)

(c)

Fig. 9.10 Locking the optical frequency of a single quantum dot to a reference laser: scheme.
a Schematic view of the experiment. The narrowband laser is stabilized to a fixed frequency by
a wavemeter which in turn is stabilized to a HeNe laser. Laser light is guided through optical
fibres (yellow) and microscope optics before it is focused onto the sample, driving the X0 transition
resonantly (BS = beam-splitter, PBS = polarizing BS, Pol. = linear polarizer). Two simultane-
ous measurements of X0 scattering are performed: resonance fluorescence (RF), detected with an
avalanche photodiode (APD), and absorption with a photodiode (PD) underneath the sample. The
dynamic stabilization is realized with an active PID feedback loop which corrects for fluctuations in
the transition energy using the gate voltage Vg and the square wave modulation of a function gener-
ator (FG). b RF signal of the fine structure split X0 emission of a single quantum dot at wavelength
936.5nm, a power corresponding to a Rabi energy Ω of 0.74 µeV and a temperature of 4.2 K. A
detuning is achieved by sweeping the gate voltage. The solid red line is a Lorentzian fit to the data
with linewidth Γ = 1.28 µeV (309 MHz) and Γ = 1.45µeV (350 MHz) and with a fine structure
splitting Δ = 11.8µeV. The linewidths are close to the transform limit of Γ0 = �/τr = 0.93 µeV
(220 MHz) where τr is the radiative lifetime of the exciton transition (τr = 0.71 ± 0.01 ns here). c
The differential transmission (ΔT/T ) signal on the same quantum dot with integration time 100 ms
per point using an in situ photodiode. A sub-linewidth square-wave modulation at 527Hz is applied
to the Schottky gate. This broadens both X0 transitions slightly, here the lower frequency transition
from Γ = 1.45 to Γ = 2.58 µeV. The red curve is a fit to the derivative of the two Lorentzians.
The signal around the zero crossing point (ΔT/T = 0) is used to generate an error signal for the
feedback scheme. For the PID loop, the proportional factor P = 0.1 is chosen with respect to the
slope of the error signal, while the integral I = 0.06 and the derivative constant D = 6 × 10−5

were obtained by tuning methods (color figure online)

The bandwidth of the feedback can be determined from the RF noise spectrum.
NQD( f ) corresponding to the time traces of Fig. 9.11a are shown in Fig. 9.11b. With-
out feedback, NQD( f ) has a 1/ f -like dependence on f as a consequence of charge
noise in the device, as shown in Fig. 9.7. With feedback, NQD( f ) is reduced by up to
a factor of 20 at the lowest frequencies, and is constant: the 1/ f -like noise is elimi-
nated. The two curves meet at f � 130 Hz once the bandwidth of the PID circuit has
been exceeded. At higher frequency the noise spectrum is dominated by spin noise
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Fig. 9.11 Locking the
optical frequency of a
single quantum dot to a
reference laser:
performance. a Time trace
of the resonance fluorescence
(RF) of a single quantum dot
(the one from Fig. 9.10) with
δ = 0 µeV recorded over
several hours. The binning
time was tbin = 100 ms. The
time trace is plotted with
(red) and without (blue) the
dynamic stabilization
scheme. b Noise spectra of
the normalized RF signal,
S(t)/〈S(t)〉, corresponding
to the time traces of a after
correction for external noise
sources (color figure online)

(a)

(b)

[28] and the PID bandwidth is presently too slow to deal with it. This is however
conceivable once the extraction efficiency is much improved.

9.4 Electron Spin Dephasing via the Hyperfine Interaction

Akey issue for electron spin dephasing of a spin qubit in GaAs is that an electron spin
couples to the nuclear spins in the host material via the contact hyperfine interaction
[66], Fig. 9.12. The electron states in a self-assembled quantum dot are constructed
from atomic s orbitals, Fig. 9.12b. The large amplitude of the s orbital at the location
of each nucleus i results in a Fermi contact hyperfine interaction for an electron spin
S with N nuclear spins Ii

He
hf = Ω

N∑

j=1

A j
e |Ψe(R j )|2(I j

z Sz + I j
x Sx + I j

y Sy). (9.3)

A j
e is the coupling coefficient, Ψe the electron envelope function and Ω the unit cell

volume. The nuclei create an effectivemagnetic field, theOverhauser field BN , which
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Fig. 9.12 Hyperfine interaction of an electron spin and a hole spin to the nuclear spins in
the host material. a The electron or hole spin has a wave function extending over a few nm in
all three directions such that it overlaps with about N ∼ 105 atoms in the host material, each atom
containing a nucleus with non-zero spin in the case of InGaAs. The nuclear spins are given for the
main isotopes. b The conduction state is constructed largely from atomic s orbitals, each localized
to a unit cell (shown schematically with the black linewith the black circles representing the nuclei),
modulated by the envelope function which extends over the quantum dot (shown schematically with
the blue dashed line). The contact part of the hyperfine interaction dominates. Ai is the coupling
coefficient with nuclear spin i , Ii the nuclear spin, and ψi the electron wave function at the location
of nuclear spin i . The contact term resembles the interaction of the electron spin S in a fictitious
magnetic field, BN . The dipole-dipole hyperfine interaction is zero for a pure s orbital, and close
to zero in practice. c The hole state is constructed largely from atomic p orbitals, each localized
to a unit cell, such that the wave function amplitude is small at the location of each nucleus. This
suppresses the contact part of the hyperfine interaction. The dipole-dipole part is non-zero however.
A heavy hole spin has Jz = ± 3

2 , corresponding, in a semi-classical interpretation, to a circulating
microscopic current clockwise with spin up, or counter-clockwise with spin down. The magnetic
dipole moment points therefore either along +z or −z such that the dipole-dipole Hamiltonian has
an Ising form, ∝ Iz Jz . Equivalently, the fictitious magnetic field describing the nuclear spins lies
solely along the z-direction (color figure online)

fluctuates in time resulting in spin dephasing [46, 47]. For self-assembled quantum
dots, N ∼ 105, BN ∼ 20mT resulting in an energy fluctuation in the electronZeeman
energy of δEz � 0.6 µeV and T ∗

2 ∼ 1 ns.
The first order electron spin-nuclear spin flip-flop processes can be suppressed

simply by applying a magnetic field, exploiting the mismatch in electron and nuclear
gyromagnetic ratios. The interaction along the magnetic field direction remains and
leads to the small electron spin T ∗

2 times [67]. One mitigating strategy is to prepare
the nuclear spins carefully [68–70]. Another is to exploit the low frequency of the
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nuclear spin dynamics with dynamic decoupling or real-timeHamiltonian estimation
methods [52, 70–72], techniques yet to be implemented on self-assembled quantum
dots. Optimistically, these first order hyperfine effects can be dealt with. However,
the second order processes remain and it has been proposed that they determine the
ultimate limit on electron spin coherence [47, 73, 74]. This point is difficult to prove
experimentally – many factors (phonons, co-tunneling, charge noise [75]) influence
the electron spin decoherence – and the theory is complex [76, 77].

One way to probe the hyperfine interaction between an electron spin and the
nuclear spins is to probe the interaction from the point of view of the nuclear spins.
In the absence of an electron, the nuclear spins are largely isolated, interacting with
each other only by the weak dipole-dipole interaction, leading to long coherence
times (milli-second regime) [78, 79]. This is an ideal starting point: the nuclear
spin coherence is a sensitive probe of any interaction turned on by the presence
of a single electron. Specifically, the second order flip-flop process should lead to
a measurable effect on the nuclear spin coherence. The particular process is a spin
flip-flop between two nuclear spins. The two nuclear spins are far apart such that they
are not coupled by the dipole-dipole interaction. Instead, the coupling is mediated
by a common coupling to the delocalized electron. This mechanism couples all
nuclear spins together which can conserve energy on undergoing a flip-flop, “shells”
of nuclear spins along a contour of constant electron density. In a quantum dot, this
electron-mediated nuclear spin-nuclear spin flip-flop couples many nuclear spins
together, and the problem has a complex, mesoscopic character.

This approach, addressing the hyperfine-decoherence of the electron spin via the
nuclear spin decoherence, hinges on the ability to perform nuclear magnetic reso-
nance (NMR) on the nuclear spins. Self-assembled quantum dots have advantages
here. First, the pronounced Coulomb blockade allows the nuclear spin coherence to
be measured both with and without an electron. Secondly, the nuclear spins can be
both polarized (“dynamic nuclear polarization”, DNP) and read-out optically [80].
DNP represents a laser-cooling of the nuclear spins down to mK temperatures [81]
creating large population differences amongst the nuclear spin levels, boosting the
otherwise very weak NMR signal. A nuclear polarization results in subtle shifts to
the optical resonance frequency which can bemeasured very precisely. Nuclear mag-
netic resonance sensitive to just∼1,000 nuclear spins has been achieved [79, 81, 82].
Finally, the nuclei in InGaAs quantum dots have large quadrupole shifts [81–83] and,
arguably, this represents a simplification: in an NMR experiment on nuclear spins
with I > 1

2 , a narrowband NMR drive selects only one transition and the nuclei can
be treated as a collection of spin- 12 spins, an ideal test-bed for theory.

The experiment measures the coherence of the nuclear spins associated with an
InGaAs quantum dot for different charge states, empty (0), singly-occupied (1e) and
doubly-occupied (2e). A static magnetic field is applied along the growth direction,
z; an oscillating magnetic field is applied in-plane, in the x-direction, by sending
a current through an on-chip micro-wire, Fig. 9.13d, e. Specifically, the coherence
associated with the “central” transition (nuclear spin Iz = − 1

2 ↔ Iz = + 1
2 ) of the

75As and 115In isotopes is measured. On account of the in-built strain, each nucleus
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(a) (b)

(c) (d) (e)

Fig. 9.13 Concepts of the quantum dot NMR experiment. a Energy levels for a spin I = 3
2

in the laboratory frame. The static field Bz causes the spin states to split into the Zeeman ladder
with spacing Larmor frequency νZ . Quadrupole effects result in alterations to the level spacing;
the central transition frequency is only shifted by second order terms. bMeasurement cycle: Read-
out/initialization involves detecting resonance fluorescence from the empty quantum dot (neutral
exciton) excited with a narrow-band laser: this both reads the previous nuclear spin polarization
and sets a new state. In the Preparation part, two chirped pulses are applied, A and B, which swap
the populations + 3

2 ↔ + 1
2 , − 3

2 ↔ − 1
2 in order to maximize the population difference between

the + 1
2 and − 1

2 states. In the Coherent manipulation part, a particular bias (which controls the
quantum dot charge) is applied to the gate of the device, and then a pulse of ac current is applied
to the microwire at the radio frequency of the central transition. Finally, the bias is re-set to the
starting value. c Energy levels for a 3

2 spin in the rotating frame versus radio frequency detuning
in the limit of νQ � νRF where νRF is the Rabi coupling. The preparation pulses are indicated by
red arrows. d Top view of sample showing back contact, top gate, SiO2 spacer layer, microwire and
markers for positioning the solid immersion lens (SIL). e Zoom-in of the microwire. A hole in the
wire enables optical access to the quantum dot; the triangular markers facilitate positioning of the
sample in the microscope

experiences an electric field gradient which leads to quadrupole shifts of the bare
levels [81–83], as shown in Fig. 9.13a, the eigenenergies in the laboratory frame.
The in-built strain is site-dependent resulting in a spread of electric field gradients
across the quantum dot, in particular across the electron wave function. For 75As with
I = 3

2 , the first-order quadrupole effect shifts the Iz = − 3
2 ↔ Iz = − 1

2 transition to
lower frequencies, the Iz = + 1

2 ↔ Iz = + 3
2 transition to higher frequencies, yet

the frequency of the central transition is shifted only in second-order. The NMR
spectrum consists of a central peak at νz , inhomogeneously broadened by the second
order quadrupole effects, and well-separated sidebands at νz ± ν

(1)
Q where νz is the

Zeeman frequency and ν
(1)
Q the first-order quadrupole shift [82]. For 115Inwith I = 9

2 ,
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there are 9 NMR transitions but, as for 75As, the central transition is unaffected by the
quadrupole interaction to first order. Hence, in the limit ν(1)

Q � νRF, for each nuclear
spin, the Iz = − 1

2 ↔ Iz = + 1
2 NMR transition can be thought of as a quasi two-level

system: on driving at frequency νz , population is largely confined to the Iz = ± 1
2

sub-space. The eigenenergies in the rotating frame are shown in Fig. 9.13b for a
realistic quadrupole frequency ν

(1)
Q (2 MHz) and Rabi coupling νRF (100 kHz). The

strongest avoided-crossings occur when the bare states have a difference in angular
momentum of one quantum unit [81].

(a)

(b)

Fig. 9.14 Rabi oscillations of the nuclear spin ensemble. Following nuclear state preparation,
the quantum dot is charged (0, 1e or 2e states) and a radio-frequency pulse resonant with the nuclear
central transition is applied. The bias is set to the centre of the charging plateau in the case of an
occupancy of one electron. Plotted is the NMR signal (the optical shift) versus pulse duration for a
arsenic, b indium, in each case for occupancy zero, one electron and two electrons. The solid-lines
represent the calculated response of an inhomogeneous distribution (FWHM of central frequency
δν

(2)
Q ) of two-level emitters with Gaussian distribution of resonance frequency. For 75As, the Rabi

coupling is fitted to νeff = 64 kHz, δν
(2)
Q = 71.7 kHz, radio frequency magnetic field BRF = 4.4

mT from the data at occupancy zero (where T2 is large, 5 ms). In the 1e state, the fit is excellent with
the same νeff and δν

(2)
Q but with T2 = 108 µs. For In, for occupancy zero, the fit yields νeff = 241

kHz, δν(2)
Q = 146 kHz and BRF = 5.2 mT. For occupancy of one electron, the fit is excellent with

the same νeff and δν
(2)
Q but with T2 = 25 µs. For both 75As and 115In, the fit for occupancy two

electrons is excellent with the same parameters as for occupancy zero. The static magnetic field is
Bz = 6.6 T, temperature 4.2 K
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The measurement protocol is shown in Fig. 9.13b. The nuclear spins are polarized
and read-out optically (charge state 0); during the NMR protocol the laser is turned
off. Figure9.14 shows the results of a Rabi oscillation experiment. A pulse at the 75As
central transition frequency is applied to themicrowire. Figure9.14a shows the NMR
signal as a function of pulse duration. A clear oscillation is observed, a Rabi oscil-
lation, as the population is driven coherently between the Iz = − 1

2 and + 1
2 states.

The period corresponds closely to the expected result, twice the 75As gyromagnetic
ratio (the factor of two is the effective coupling and arises on folding the system to
an effective spin- 12 system [84]). When the quantum dot is empty, the Rabi oscilla-
tions decay with a time constant of 50 µs. Given that the coherence time associated
with this transition is in the ms regime [79], this decay corresponds not to a loss of
coherence but to an inhomogeneous broadening, the second-order quadrupole shift
to the central transition ν

(2)
Q . To determine the inhomogeneous broadening δν

(2)
Q , the

response of an ensemble of coherent two-level systems with a Gaussian distribution
in centre frequencies is calculated. Figure9.14a shows an excellent fit to the data
with δν

(2)
Q = 71.7 kHz. When the quantum dot is occupied with a single electron,

the Rabi oscillations retain the same frequency but they decay sooner (decay time
constant 30 µs). When the quantum dot is occupied with two electrons, the Rabi
oscillations behave exactly as for an empty quantum dot. Figure9.14b shows also
a Rabi experiment performed at the 115In central transition. The period of the Rabi
oscillations, noticeably smaller than that of 75As, reflects both the different gyromag-
netic ratio and the increase in the effective coupling (factor 5 for the spin- 92

115In).
The decay of the Rabi oscillations follows the same pattern as for the isotope 75As:

Fig. 9.15 Hahn echo T2
measurement. NMR signal
following a Hahn echo
sequence for a arsenic, b
indium, in each case for the
three charge states, 0, 1e, 2e.
The Hahn echo consists of
the standard
π/2 − τ − π − τ − π/2
sequence. The echo
amplitude is plotted against
the total delay 2τ . Single
exponential fits
(exp(−2τ/T2)) determine
the coherence times. T2 for
the singly charged dot is
more than a factor 100 lower
than for the empty or doubly
charged QD

(a)

(b)
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the decay is the same for the empty and doubly-charged states, more pronounced for
the single-charged state.

The Rabi oscillations provide the first indication that the nuclear spin dynamics
depend on the quantum dot charge. In fact, they reveal a dependence on electron
spin: there is a lone spin in the 1e state but the two electrons in the 2e state form
a spin singlet. However, the faster decay of the Rabi oscillations in the presence of
a single electron could signify a decreased nuclear spin coherence or an increased
ensemble broadening (for instance through the Knight field). To distinguish between
these two cases, it is necessary to measure the coherence associated with the nuclear
central transition. The Hahn echo is perfect for this as it removes the dependence
on the inhomogeneity in the quadrupole shift. Figure9.15 presents the Hahn echo
amplitude as a function of echo delay for both 75As and 115In, in each case for three
charge states. The Hahn echo for the 1e state was recorded at the centre of the single-
electron charging plateau. For both 75As and 115In, a very pronounced dependence on
spin is revealed: the Hahn echo decay time (T2) decreases by more than two orders
of magnitude in the presence of a lone electron spin.

For an empty quantum dot, T2 is a few ms for both 75As and 115In, agreeing
with previous experiments [79]. The general timescale points to decoherence via a
dipole-dipole interaction. For a singly-occupied quantum dot however the T2 times
fall to just ∼20µs, a timescale far too short for a dipole-dipole interaction, and an
additional decoherence mechanism is clearly turned on. Figure9.16 shows T2 versus
bias, marking the extents of the 1e charging plateau. Far from the charging bias, T2
is independent of bias for the 0 state, falling monotonically as the charging plateau is
crossed. T2 reaches a minimum at the centre of the 1e plateau. In fact T2 is symmetric
about the centre of the 1e charging plateau, recovering completely in the 2e plateau.
This is a striking result: the nuclear spins are least coherent in the 1e plateau centre
when the electronic degrees of freedom (charge, electron spin, exciton) are most
coherent.

In the 1e plateau, the electron spin relaxation time T e
1 and the nuclear spin relax-

ation time T1 follow exactly the opposite dependence on bias as compared to the
nuclear spin T2. T e

1 is very small close to the edges of the 1e plateau edge on account
of co-tunneling (the quantum dot electron spin relaxes rapidly by swapping its spin
with an electron in the Fermi sea) [17, 19, 85]. In the 1e plateau centre, co-tunneling
is suppressed at low temperature by the gap between the quantum dot ground state
and the Fermi energy of the Fermi sea such that T e

1 increases (by about 4 orders
of magnitude with respect to the plateau edge [17]). The electron T1 process deter-
mines the nuclear spin T1 process: nuclear spin leaks into the Fermi sea [86]. This
anti-correlation between electron spin relaxation and the nuclear spin coherence is
particularly pronounced at the plateau edge itself. Here electron spins relax extremely
rapidly (revealed also in an increase in the optical resonance fluorescence linewidth),
and the nuclear spin polarization decays relatively quickly. Nevertheless, this rapid
electron relaxation has a relatively benign effect on the nuclear spin decoherence.
The recovery of the nuclear spin T2 in the 2e state is also completely consistent with
this link of nuclear spin coherence to electron spin: in the 2e state, the two electrons
form a singlet with zero total spin.
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(a)

(b)

Fig. 9.16 Nuclear spin coherence time as a function of gate voltage. a Peak resonance fluo-
rescence intensity for both neutral (X0) and charged (X1−) excitons versus bias, Vg, for constant
laser intensity. Dashed lines correspond to an X1− emission intensity drop of 50% and indicate the
boundaries of the charging plateau. At the boundary on the “left”, the 0 and e states are degenerate
and are thus occupied 50:50; equivalently, at the boundary on the “right”, the e and 2e states are
degenerate. b Nuclear spin coherence time, T2, versus bias, Vg

The experiments demonstrate that slow electron spin relaxation promotes nuclear
spin decoherence. This points to a nuclear spin-nuclear spin interaction facilitated by
a common interaction with an electron spin. Qualitatively, this interaction accounts
for the experimental results. First, although this electron-mediated nuclear spin-
nuclear spin interaction arises only in second order, it provides a means for many
nuclei of a particular isotope in the quantum dot to couple together such that it has
significant consequences. Secondly, the interaction is turnedoff in the 2e ground state,
a singlet, accounting for the recovery of the nuclear spin coherence in this regime.
Thirdly, electron spin relaxation via co-tunneling is fast relative to the nuclear spin
dynamics away from the plateau centre such that the nuclear spin ensemble interacts
with a time-averaged electron spin 〈Sz〉. At the edges of the 1e plateau, 〈Sz〉 is
small, suppressing the electron-mediated nuclear spin-nuclear spin interaction: this
accounts for the anti-correlation between nuclear spin T2 and electron spin T e

1 .
A quantitative account of the nuclear spin T2 in the 1e plateau centre has been

developed [87]. At the plateau centre, the central transitions of a particular isotope
represent a closed system, i.e. coupled quasi-spin- 12 spins, as the average quadrupole
splittings (∼2MHz [81]) are larger than the co-tunneling rate (∼0.1MHz). Pro-
vided the electron Zeeman energy is larger than the averaged hyperfine coupling, the
electron-mediated nuclear spin-nuclear spin interaction results in aHamiltonian [74],



9 A Self-assembled Quantum Dot … 311

V = 1
8Ze

∑
j �=l A j Al

[(
1
2 + Sz

)
(I−

j I
+
l + I−

l I+
j )

− (
1
2 − Sz

)
(I+

j I
−
l + I+

l I−
j )

]
. (9.4)

where Ze is the electronZeeman energy (in the totalmagnetic field, externalmagnetic
field plus Overhauser field), A j is the hyperfine coupling constant of the j th nuclear
spin, Sz is the z-component of the electron spin operator, and I j is the nuclear
spin operator of the j th nuclear spin. The terms I−

j I
+
l + I−

l I+
j and I+

j I
−
l + I+

l I−
j

represent nuclear spin-nuclear spin flip-flop processes and these terms lead to nuclear
spin decoherence. The dynamics of the transverse components of a single nuclear
spin are described in the presence of a coupling to all the others using a master
equation to second order in V followed by a calculation of the ensemble decoherence
rate. Despite the complexity of the problem, an analytical result for the ensemble
decoherence rate Γ̂ for 75As was derived,

Γ̂As = 2
√
2A3

As

9�ω2N
, (9.5)

where AAs is the hyperfine constant of 75As in GaAs. The total number of nuclear
spins in the quantumdot N is known fromother experiments [58], N = (8.5 ± 0.9) ×
104. The hyperfine coupling, AAs = 86 ± 10µeV, is the standard literature value [57,
88]. The Zeeman energy under these conditions, Ze = 246 ± 30 µeV, is measured
in situ; note that the condition A < Ze is met in the experiment. The final theoretical
result is that 1/Γ̂As = 17 ± 5µs. The error specified represents a randomerror arising
from the uncertainties in the input parameters. The experimental result for 75As in
the plateau centre is T2 = 20 ± 4 µs, Fig. 9.16: the experimental and theoretical
results agree well. Away from the plateau centre, the co-tunneling rate increases

above ν
(1)
Q eventually becoming larger than the total spread in νz (50MHz in this

experiment) such that all transitions of all nuclei can in principle be coupled together
via the common interaction with the electron; in practice, the co-tunneling rapidly
reduces 〈Sz〉, shutting off the interaction. A complete theory in the co-tunneling
regime is formidably complex. This comment notwithstanding, the agreement with
the theoretical result at the plateau centre adds considerable weight to the assertion
that an electron-mediated interaction is responsible for the decoherence of the nuclear
spins in the presence of a single electron.

The overriding point is that probing the nuclear spins in the quantum dot turns
out to be a sensitive probe of the interactions turned on by the presence of a single
electron. Here, the loss of nuclear spin coherence can be attributed unambiguously
to an electron-mediated nuclear spin-nuclear spin coupling. In turn, the prediction is
that this interaction limits the electron spin coherence, to time-scales of tens ofmicro-
seconds in these quantum dots at these magnetic fields. This mechanism determines
a hard limit on the electron spin coherence time. The decoherence time can only be
increased by increasing the Zeeman splitting (by applying larger magnetic fields or
by engineering the electron g-factor) or by increasing the quantum dot size, both
hard to achieve in practice.
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9.5 Hole Spin Dephasing

The nuclear spins in GaAs lead to a rapid loss of electron spin coherence (both T2
and T ∗

2 processes) [2, 46, 47]. Clearly, an approach which retains the GaAs system
while suppressing the interaction of the spin qubit to the nuclear spins is attractive.
A hole spin offers an alternative platform.

A hole is the absence of an electron in an otherwise occupied valence level. A
hole spin has a fundamentally different hyperfine interaction to the electron spin. The
valence states are constructed from atomic p orbitals with zero wavefunction ampli-
tude at the location of the nuclei, Fig. 9.12c. The Fermi contact hyperfine interaction
is therefore suppressed [2, 89, 90]. The dipole-dipole part of the hyperfine interac-
tion remains [89–92]. For a pure heavy hole (HH) state the hyperfine interaction has
an Ising form,

HHH
hf = Ω

N∑

j=1

A j
h,z|Ψh(R j )|2 I j

z Sz . (9.6)

A j
h,z is the coupling coefficient, Ψh the hole envelope function, and Sz = ± 1

2 rep-
resents Jz = ± 3

2 . The absence of transverse terms means that the heavy hole spin
experiences just the z-component of the noisy Overhauser field, Fig. 9.12c. Further-
more, the heavy hole coupling coefficients are reduced with respect to the electron
coupling coefficients: A j

h,z/A
j
e � −10% [90, 92]. The most important consequence

of the Ising form is that application of a transversemagnetic field suppresses hole spin
dephasing by the nuclear spins [90]. This is so effective that the hyperfine interaction
is to all intents and purposes switched off for a pure heavy hole spin [93].

A close-to-ideal heavy hole state exists in unstrained, highly confined GaAs quan-
tumwells [94, 95]. Quantum dots however havemixed states. Even for an ideal quan-
tum dot shape, symmetry does not prevent heavy hole-light hole coupling [96, 97],
and heavy hole-light hole coupling is an experimental fact [19, 98–100], revealed
by deviations in the optical selection rules from the heavy hole limit. For strained
InGaAs quantum dots, the light hole accounts for 5–10% of the hole state [19, 98,
100].

The light hole component in the quantum dot hole state has important con-
sequences for the hole spin hyperfine coupling [92, 93, 101, 102]. Additionally,
admixture of the conduction s orbitals should be taken into account [93, 101]: while
s admixture is small on account of the fundamental energy gap of the semiconduc-
tor, it turns on the large Fermi contact part of the Hamiltonian. In a k.p-description,
the band admixtures are described by an 8 × 8 Hamiltonian (conduction, heavy hole,
light hole and spin-orbit split-off states); the hyperfine interaction consists of a Fermi
contact term and dipole-dipole-like interactions [90, 92]. For the hole states, provided
the admixtures of light hole and conduction states are small, the hyperfine interac-
tion can be folded down to an effective 2 × 2 Hamiltonian which operates on the
mixed hole states. The two mixed hole states are described as a spin- 12 pseudospin,
S: Sz = + 1

2 ≡ |⇑ 〉 represents one of the mixed states, Sz = − 1
2 ≡ |⇓ 〉 represents
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the other. The final result is that the hole hyperfine interaction is no longer purely
Ising-like:

Hh
hf = Ω

N∑

j=1

|Ψh(R j )|2(A j
h,z I

j
z Sz + A j

h,x I
j
x Sx + A j

h,y I
j
y Sy). (9.7)

A j
h,x and A j

h,y are the transverse coupling coefficients and arise from the admixture
of both conduction [93, 101] and light hole states [92, 93, 101, 102], both couplings
giving terms with the same functional form. In each case, A j

h,x and A j
h,y depend

on A j
h,z multiplied by an admixture coefficient. The heavy hole-light hole coupling

also introduces non-colinear terms [102]. The transverse coupling makes the hole
spin vulnerable to spin dephasing via the in-plane components of the nuclear spins,
an interaction which cannot be suppressed in an in-plane magnetic field. In fact
the anisotropy (rather than the magnitude of A j

h,z) represents a crucial issue in the
development of a hole spin qubit.

Experiments have established long hole spin relaxation times [20, 103–105],
coherence times T2 in the µs range [106, 107], fast spin rotations [107–109] (see
Chap.10) and control of two tunnel-coupled hole spin qubits [108]. The hole spin T2
falls rapidly above 10 K, a consequence of a spin-orbit mediated phonon interaction
[110]. Conveniently, 4 K is cold enough to achieve a highly coherent hole spin. The
existence of the longitudinal hole hyperfine interaction has been established [91].
Experimentally, A j

h,z averaged over the quantum dot, 〈Ah,z〉, has been measured to
be −10% of the average value of Ae

i , 〈Ae
i 〉, on self-assembled quantum dots by

dynamically polarizing the nuclear spins along the z-direction and measuring the
changes to the electron and hole Zeeman energies [111–113], confirming theoretical
expectations [90, 92] albeit with some discussion on the sign [66, 114].

Two difficulties are encountered in probing the hole spin hyperfine interaction
optically. First, optical excitation of a hole spin populates an exciton state consisting
of two holes in a singlet state but an unpaired electron spin. In this situation it is not
trivial to assign any nuclear spin effects unambiguously to the hole spin given the
strong hyperfine interaction of the electron spin. Secondly, p-type devices tend to be
considerably noisier than n-type devices yet the hole g-factor is very sensitive to an
electric field [115–117] such that charge noise results in spin dephasing [107, 116,
117]: in noisy devices this effect completely obscures the hyperfine couplings.

It is important to reduce radically the charge noise in p-type devices. This has
been achieved not only by working with ultra-clean material but also by inverting the
standard design, switching from the standard p-i-Schottky structure to an n-i-p device.
It is also important to carry out an experiment which is sensitive to the transverse
terms in the hole hyperfine interaction. This was achieved by polarizing the nuclear
spins along a transverse direction, monitoring the polarization via the lone electron
spin in the exciton, and measuring the hole Zeeman splitting Zh ultra-precisely by
means of dark state spectroscopy, i.e. coherent population trapping (CPT) [48, 106,
116, 118, 119]. The combination of a coherent hole spin, resonance fluorescence

http://dx.doi.org/10.1007/978-3-319-56378-7_10
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detection (RF) [120] and low-noise samples resulted in a spectral resolution in Zh

of just 10 neV (2.4 MHz).

9.5.1 Coherence Population Trapping on a Single Hole Spin
in a Quantum Dot

CPT is a useful spectroscopic tool to measure the hole Zeeman energy with high
resolution. CPT is a quantum interference in a Λ-system where two ground states
are coupled individually by “pump” and “probe” optical fields to a common upper
level, Fig. 9.17. Here, the two ground states correspond to the Zeeman-split hole spin
states, described as |⇑ 〉x and |⇓ 〉x , and the upper level to an exciton, |⇑⇓,↓ 〉x
or |⇑⇓,↑ 〉x , where |⇑ 〉x and |⇓ 〉x are the eigenstates of the hole pseudospin
in the x-basis and |↑ 〉x , |↓ 〉x refer to the electron spin states, also in the x-basis,
Fig. 9.17. A transversemagnetic field (in the x-direction) establishes the quantization
axis and the Λ-system, Fig. 9.17. This applies to a hole spin provided the in-plane
g-factor is non-zero: the interference occurs when the frequency difference of the
lasers matches the hole Zeeman splitting, the two-photon resonance. A dark state
results, revealed by a dip in the probe spectrum. The spectral position of the dip
measures Zh . Specifically, when �Ω1 � �Ω2 � �Γr (�Ω1, �Ω2 are the probe and
pump couplings, Γr the spontaneous emission rate) the CPT dip has width �Ω2

2/Γr .
The depth of the dip is sensitive to the hole spin coherence: only for 1/T2 � Ω2

2/Γr

does the emission in the dip go to zero. Hence, provided the hole spin coherence is
high enough, the width of the CPT dip can be much less than the optical linewidth,
enabling a highly accurate measurement of Zh . Furthermore, the location of the
CPT dip is determined only by the two-photon resonance. CPT is therefore an ideal
technique to extract Zh . Fluctuations in exciton energy (via charge noise and the
Overhauser field acting on the electron spin) modify the emission envelope [106,
118] but not the location of the CPT dip.

CPT on a single quantum dot containing a single hole is shown in Fig. 9.17.
The new p-type devices are very important: they remove the charge-noise-induced
fluctuations of the CPT dip position which plagued earlier experiments [116]. The
occupation of the upper level is monitored with high signal:noise by detecting the
resonance fluorescence [28, 120], Fig. 9.17b, c. The resonance fluorescence exhibits
a Lorentzian envelope with full-width-at-half-maximum (FWHM) 2.5 µeV and a
pronounced dip with FWHM 80 neV (19.3 MHz). A zoom-in of the CPT dip is
shown in Fig. 9.17c along with CPT from a quantum dot in sample B with CPT
dip width 33 neV (8.0 MHz). These spectra enable the determination of Zh with a
resolution of ∼10neV. The hole g-factor (in-plane magnetic field) is gh,x = 0.063
for quantum dot A, gh,x = 0.035 for quantum dot B. Averaged over many quan-
tum dots in these samples, 〈gh,x 〉 = 0.12 ± 0.10; in the vertical direction, the hole
g-factor ismuch larger, 〈gh,z〉 = 1.22 ± 0.03. This is reminiscent of the close-to-ideal
heavy hole state in an unstrained quantum well for which gh,x � gh,z . However, the
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(a) (b)

(c) (d)

Fig. 9.17 Coherent population trapping on a single hole spin in a quantum dot. a The quantum
states. Two optical Λ-systems (blue and red lines) are established in a magnetic field along the
x-direction: |⇑ 〉x and |⇓ 〉x are the hole pseudospin eigenstates in the x-basis, split by the Zeemann
energy Zh ; the upper levels are the X1+ excitons consisting of two holes in a singlet state and an
unpaired electron with spin ± 1

2 , again in the x-basis. The optical transitions are linearly polarized,
eitherπx orπy , with equal optical dipoles, at wavelengths close to 950nm.bRF spectrumon a single
quantum dot QDA containing a single hole in sample A using the “blue”Λ-system (pump on higher
energy “vertical” transition). The pronounced dip signifies CPT. The solid line shows the result of a
3-level density matrix model (probe coupling �Ω1 = 0.06 µeV, pump coupling �Ω2 = 0.40 µeV,
spontaneous emission rate Γr = 0.68µeV, T2 > 1µs, T1 � T2) convoluted with a Lorentzian with
FWHM Γ = 2.5 µeV to describe slow exciton dephasing, and then with a Lorentzian with FWHM
8.3 neV (2.0 MHz) to account for the mutual coherence of the lasers. The data were recorded with
0.1 s integration time per point at a magnetic field Bx = 3.00 T and temperature T = 4.2 K. c, d
Two exemplary CPT dips of QDA and QDB, respectively. The dip from QDA has a FWHM of 80
neV (19.3 MHz) and is modelled with the parameters of (b). The limited mutual coherence of the
lasers is the main reason that the signal in the dip centre does not go down completely to zero. The
dip from QDB has a FWHM of 33 neV (8.0 MHz), 5 s integration per point. The CPT simulation
uses �Ω1 = 0.1 µeV, �Ω2 = 0.49 µeV, and, as in b, Γr = 0.68 µeV, T2 > 1 µs, T1 � T2. In this
case, the remaining signal in the dip centre is likely to be a consequence of the small value of Zh :
the dark state can be destroyed by the weak coupling of the pump to the probe transition (color
figure online)

magnitude of gh,x is an unreliable measure of the heavy hole-light hole admixture as
gh,x is very sensitive to the indium concentration via the strong dependence of the
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band structure parameters on indiumconcentration [117].A small gh,x is encouraging
but in itself does not represent a suppressed hole spin hyperfine interaction.

The transverse hole hyperfine interaction is measured by combining CPT and
DNP. At zero magnetic field, the resonance fluorescence spectra have a straightfor-
ward Lorentzian lineshape, Fig. 9.1. This can change in an applied magnetic field
where the resonance has a “top-hat” shape extending over tens of µeV and a strong
hysteresis on reversing the scan direction [111, 121, 122]. The interpretation is that
as the laser is tuned, the nuclei polarize in such a way that resonance with the laser
is maintained. This effect, referred to as “dragging”, occurs also here and is used
as a tool to create a large DNP. Dragging arises through the hyperfine interaction
of the lone electron spin in the exciton. Furthermore, the exact change in electron
Zeeman energy under DNP can be probed spectroscopically by measuring a change
in transition energy of one of the exciton transitions.

In the experiment, the DNP is controlled via the detuning δ2 of the pump laser
with respect to the bare transition frequency. A strong constant frequency pump laser
defines the nuclear spin state and a weak probe laser (Ω1 � Ω2) measures both Zh

and the electron Zeeman splitting Ze. The probe laser is scanned across the vertical
and diagonal transitions, Fig. 9.18. A pronounced dip in the spectrum indicates CPT
and measures Zh with ultra-high resolution. For zero pump detuning (zero DNP),
the probe response at much lower frequencies determines Ze: an increase in RF is
observedwhen the probe comes into resonance with the lower energy “vertical” exci-
ton transition, |⇑ 〉x → |⇑⇓,↑ 〉x , Fig. 9.18a, b. As the pump is detuned, dragging
causes Ze to change and the change ΔZe can be simply monitored via a shift in the
exciton transition, Fig. 9.18a, b. Importantly, the probe coupling is lowered in these
experiments until the probe itself is too weak to induce DNP, i.e. the frequency of the
low energy resonance does not depend on Ω1. At each pump detuning, equivalently
at each value of ΔZe, the hole Zeeman energy Zh is determined with ultra-high
resolution by measuring the exact spectral location of the CPT dip, Fig. 9.18a, b.
Figure9.18c, d plots Zh versus ΔZe. Although Ze changes by almost 20 µeV, Zh

remains constant to within 20 neV for both quantum dots. This is the main result of
this experiment: large values of 〈Ix 〉 do not result in a measurable change in Zh even
when Zh is measured with high resolution.

Quantitatively, this experiment shows that |ΔZh/ΔZe| < 0.1% in the presence of
a transverse DNP. This result can be interpreted in terms of averaged hyperfine cou-
plings,ΔZh/ΔZe � 〈Ah,x 〉/〈Ae〉. Hence, |〈Ah,x 〉/〈Ae〉| < 0.1%. Furthermore, with
|〈Ah,z〉/〈Ae〉| = 10% [111–113], the anisotropy of the hole spin hyperfine interaction
can be quantified, |〈Ah,x 〉/〈Ah,z〉| < 1%. This is consistent with generic theoretical
estimates [93, 102]; a full calculation specific to an InGaAs quantum dot including
all admixtures is presently lacking. In terms of energies, |〈Ah,x 〉| < 0.1 µeV. This
implies a very small energy broadening δZh in the presence of un-polarized but noisy
nuclei (δZe = 600 neV): δZ spin

h < 0.6 neV. The energy broadening arising from the
longitudinal coupling, i.e. from 〈Ah,z〉, is sub-neV for all transverse fields above
about 500 mT.
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(a) (b)

(c) (d)

Fig. 9.18 The transverse hyperfine coupling of a single hole spin. a, Measured probe RF spec-
trum on QDB in the presence of a much stronger, constant frequency pump laser, red: δ2 = 0; blue:
δ2 = 3.4 µeV. The frequency of the probe laser is scanned across the “vertical” and “diagonal”
transitions and is plotted with respect to the pump frequency in both cases. The pronounced dip
signifies CPT and occurs when δ1 = Zh . The peak at large and negative δ1 arises when the probe
is in resonance with the lower energy “vertical” transition. At δ2 = 0 the separation between this
resonance and the CPT dip determines Ze, the Zeeman energy of the exciton (determined by the
lone electron spin). The shift in this resonance signifies a DNP: Ze changes in response to the
change in pump detuning. The measured Rabi energies are �Ω1 = 0.049 µeV and �Ω2 = 0.49
µeV; magnetic field 3.00 T; integration time per point 5 s; temperature 4.2 K. b The quantum
states of the system: the red arrows indicate the optical transitions addressed by scanning the probe
laser for δ2 = 0, blue for δ2 > 0. c, d Zh versus the change of the electron Zeeman energy ΔZe
for samples A (g-factor 0.063) and B (g-factor 0.035), respectively. The solid line represents the
average value, the dashed lines represent ±σ where σ is the standard deviation. At the one-σ level,
dZh/dΔZe = 0.1% (color figure online)

9.5.2 Hole Spin Dephasing

The CPT experiments can be used to estimate T ∗
2 . In a CPT experiment, ensemble

broadening (described with a T ∗
2 time, T ∗

2 = �/δZh) reveals itself by a lifting of the
signal in the dip away from zero and an increase in the dip width. An analysis of
the CPT spectra of Fig. 9.17, taking into account the mutual coherence of the lasers,
results in an energy broadening δZh = 3.3 ± 2.2 neV. T ∗

2 is so large that it is very
challenging to measure it with small error. To reduce the error, the CPT result can
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be complemented with all the other spectroscopic results. First, the contribution to
δZh from charge noise is estimated from the noise analysis. Charge noise is particu-
larly small on sample A contributing 0.10 ± 0.05 µeV to the optical linewidth [56]
and results in a Zh fluctuation of δZ charge

h = 0.3 neV at Bx = 3.00 T. Secondly, the
contribution to δZh from spin noise can be determined in situ. The X1+ linewidth
measures the rms fluctuations in electron Zeeman energy, δZe = 1.43 ± 0.07 µeV
at Bx = 3.00 T. This noise arises from a fluctuation in the nuclear spin polarization
projected along x , the magnetic field direction, and it corresponds to an Overhauser
field of ∼40mT. (Incidentally, this value demonstrates that the nuclear spin distri-
bution is not narrowed in this experiment.) From the upper limit on the coupling
coefficient, the corresponding fluctuations in Zh amount to<1.43± 0.25neV. These
results from the linewidths are completely consistent with the CPT result. The final
result is that T ∗

2 > (460 ± 80) ns.
The long value of hole spin T ∗

2 arises from the application of an in-plane mag-
netic field to suppress the longitudinal hyperfine interaction; a very small transverse
hyperfine interaction; and low levels of charge noise to reduce charge-noise-induced-
dephasing. This T ∗

2 value is considerably larger than others reported in other exper-
iments [107–109]: it is likely that this is entirely related to the different levels of
charge noise in the various experiments. T ∗

2 is limited by charge and spin noise.
In both cases, most of the noise lies at frequencies below 100 kHz [28] such that
dynamical decoupling schemes are likely to be highly effective at prolonging the
usable coherence beyond T ∗

2 . Additionally, the nuclear spin coupling can be reduced
even further by fabricating flatter quantum dots with circular cross-section to reduce
the heavy hole-light hole admixture. A realistic prospect is to push T ∗

2 into the µs
regime. As for a quantum dot electron spin [123], a quantum dot hole spin can be
rotated in ∼10ps [107–109]. This combination makes the hole spin in an InGaAs
quantum dot an attractive platform. As described in Chap. 12, hole spin-hole spin
entanglement has been achieved.

9.6 Conclusions

A self-assembled quantum dot is, under the right conditions (high quality material
at low temperature, resonant excitation on a quantum dot in the Coulomb blockade
regime), a close-to-ideal emitter of single photons. The noise experiments show that
a quantum dot can emit a train of micro-second duration containing photons whose
indistinguishability is very high. The train can be prolonged under certain conditions.
An electron spin trapped in a self-assembled quantum dot is dephased by the nuclear
spins leading to short T ∗

2 times and T2 times in the tens of micro-second regime.
This interaction can however be very effectively suppressed by applying an in-plane
magnetic field to a hole spin. In the presence of noisy nuclear spins, a hole spin is a
superior spin qubit using a self-assembled quantum dot as host provided the charge
noise is low.

http://dx.doi.org/10.1007/978-3-319-56378-7_12
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