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Preface

Many people worldwide are fascinated from quantum information science and from
the prospects of novel quantum technologies, such as quantum computing, quantum
communication, quantum metrology, and quantum sensing. Semiconductor quan-
tum dots (QDs) have been identified as a promising hardware for implementing the
basic building blocks, e.g., stationary and flying qubits in the solid state. This is
because individual charge carriers in QDs can be generated, manipulated, and
coherently controlled and can be strongly decoupled from their environment, so that
processes destroying the coherence of the qubits can be largely suppressed.
Moreover, miniaturized and integrated solutions with existing semiconductor
technology are foreseeable.

Through a huge common effort during the last nearly two decades, the semi-
conductor quantum optics community has made important progress in spin manip-
ulation, the generation of indistinguishable single and entangled photon states,
controlling the light–matter interaction, and spin–photon entanglement. For example,
16 years after the first demonstration of a QD-based triggered single-photon source
near-optimal QD single-photon sources are nowadays available. They clearly out-
perform the up to now most used spontaneous parametric down-conversion sources
with respect to brightness for comparable photon indistinguishability. This break-
through was possible by the continuous and common research efforts of many
research groups. Important milestones are the development of optimized QDs and
microcavity structures, control of charge fluctuations, the introduction of a fully
deterministic fabrication processes, and truly resonant optical excitation techniques
of QDs.

Our book aims to provide an overview of recent exciting developments in the
field of semiconductor quantum optics with quantum dots. The topics addressed
include the theory of cavity QED and phonon-dressed light–matter interactions,
resonantly excited quantum dots for indistinguishable single-photon emission,
polarization, time-bin entangled photon generation, and superradiance. Spin prop-
erties with a special emphasis on noise properties, on ultrafast manipulation of
exciton spins, on nanophotonic spin–photon interface and spin–photon
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entanglement are also discussed. The last part is devoted to photonic integrated
circuits with quantum dots.

Finally, I would like to thank all my colleagues for writing the various chapters
and the very good cooperation in the course of outlining the book and editing their
chapters.

Stuttgart, Germany Peter Michler
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Chapter 1
Theory of Quantum Light Sources
and Cavity-QED Emitters Based
on Semiconductor Quantum Dots

Christopher Gies, Matthias Florian, Alexander Steinhoff
and Frank Jahnke

Abstract The first chapter presents from a theoretical perspective fundamentals and
advances made in the field of quantum light sources and cavity-QED devices that are
based on self-organized semiconductor quantum dots (QDs) as active material. We
summarize key physical properties of QDs as embedded solid-state emitters and how
to account for their semiconductor properties, such as carrier scattering, dephasing,
and non-resonant coupling in microscopic theories. In combination with a quantiza-
tion of the electromagnetic field, these models allow for a quantitative description
of device properties and non-classical effects that render few-emitter microcavity
systems so useful for applications in the quantum-information technologies.

1.1 Introduction

Research on quantum-optical light sources is to a large extent driven by applica-
tions in the so-called new quantum technologies [1], such as quantum computing,
sensing, metrology, and cryptography, that rely on the preparation, use, and con-
trol of quantum-mechanical properties of matter or light. Photons are the smallest
units of energy of the quantized electromagnetic field and play a central role, as
they can be manipulated individually. At the same time they propagate at the speed
of light, enabling the transfer of information over large distances (“flying qubits”).
While laser physics has largely advanced to an applied and technological stage,
applications that make use of the quantum-mechanical properties of photons are one
fundamental research topic of this decade. The development of new devices demands
bright, efficient, and integrable quantum light sources that easily couple into optical
fibres. Neutral atoms and ions in traps, solid-state emitters such as quantum dots
and defects, molecules, and even nanomechanical systems are being investigated for
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their potential, and interfacing these different approaches in terms of wavelength and
bandwidth into “hybrid systems” is a key challenge of current research.

In this chapter, we present from a theoretical perspective fundamentals and
advances made in the field of quantum light sources and cavity-QED devices that are
based on self-organized semiconductor quantumdots (QDs) as activematerial. Semi-
conductor QDs are often regarded as artificial atoms due to the three-dimensional
confinement potential leading to discrete electronic states. At a closer look, how-
ever, even QDs with only few confined electronic levels possess a large number of
multi-exciton configurations due to many possibilities to accommodate excited car-
riers in these states. The Coulomb interaction separates many of these configurations
energetically, thereby creating a large manifold of transition energies. This and the
coupling of the QDs to their environment via phonons and excited carriers outside
the QD result in two important phenomena, namely dephasing, and the possibility to
enable the emission from a QD into a cavity mode even if its ground state transition
is detuned by several meV. Both phenomena are an integral part of QD physics and
distinguish their behavior from that of atoms. For the quantum-optical applications
considered in this chapter that mostly rely on few or even a single emitter, they play
an important role. In Chap.2, nonresonant QD-cavity coupling is a central ingredient
of the theory on resonance fluorescence.

After giving a short overview of theoretical approaches to solid-state cavity-QED
and the characterization of light, this chapter contains four main topics. The wide
range of emission properties that can be realized from single or few QDs in micro-
cavities is discussed in Sect. 1.2. This includes cavity-QED lasing with few emit-
ters and lasing in the presence of strong coupling, single-photon emission from
few-QDs in a cavity, the direct generation of entangled photon pairs by cavity-
enhanced two-photon emission, and single-photon generation with long electrical
excitation pulses. In Sect. 1.3 we analyze in detail carrier scattering and dephasing
processes. Section1.4 addresses different physical mechanisms of non-resonant QD-
cavity coupling. In Sect. 1.5 the role of radiative inter-emitter coupling giving rise to
superradiance in QD nanolasers is discussed. It is complementary but related to the
single-photon superradiance of Sect. 5.3, and both effects can strongly enhance the
light-matter interaction in QD-based systems.

1.1.1 QDs Coupled to the Quantized Light Field

A central element of the theoretical description is the Jaynes–Cummings interaction
of the electronicQDexcitationswith the quantized electromagnetic field. In atom-like
systems, one typically considers a few-level model, where the electronic transitions
between two selected levels is resonantly coupled to the cavity field. In QDs, the light
field interacts with themulti-exciton states. These are formed from the discrete single
particle states (which are the result of the three-dimensional confinement potential)
and the many-body Coulomb configuration interaction.

http://dx.doi.org/10.1007/978-3-319-56378-7_2
http://dx.doi.org/10.1007/978-3-319-56378-7_5
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For a small number of discrete electronic transitions, which are coupled to the
Fock states of a single-mode cavity field, the Hilbert space of this system is small
enough that it is possible to describe the full quantum dynamics in terms of matrix
elements of the statistical operator ρ(t), which follows the von Neumann-Lindblad
equation,

∂

∂t
ρ = − i

�
[H, ρ] +

∑

X

LX (ρ) . (1.1)

In H enters the Jaynes–Cummings Hamiltonian,

HJC =
∑

i

gi
(
b†σ−

i + σ+
i b

)
, (1.2)

where b† and b are creation and annihilation operators for photons in the cavity
mode, σ±

i are raising and lowering operators for the electronic excitations, and gi is
the corresponding light-matter coupling strength.

When the QD is weakly excited, it is usually sufficient to consider only optical
transitions between the ground state and the energetically lowest exciton state, or the
biexciton to exciton to ground-state cascade. In this case, the QD-basis consists of
a small set of multi-exciton states, and in the Hamiltonian H = H0 + HJC , the free
part H0 contains the multi-exciton energies while in HJC the operators σ±

i describe
transitions between different multi-exciton configurations i . Such an approach has
been used, e.g., in [2–6].

At stronger pumping, several excited carriers can be present in the QD confine-
ment potential, and their Coulomb configuration interaction leads to a large number
of possible multi-exciton states. Furthermore, at higher excitation of the system,
typically additional excited carriers reside in the delocalized QD barrier states. This
environment leads to two important effects. The many-body Coulomb interaction
between the QD carriers and the excited charge carriers outside the QD results in
dephasing processes. Dephasing is also present due to the interaction of the QD car-
riers with phonons. Secondly, excited charge carriers outside the QD are responsible
for screening of the Coulomb interaction, thus changing the configuration interaction
of the QD carriers.

To describe such a situation, it is more suitable to use as basis states the many-
particle configurations formed from products (Slater determinants) of single-particle
states. Then the multi-exciton states follow from explicitly including the Coulomb
interaction HCoul in the Hamiltonian H = H0 + HCoul + HJC of (1.1). In this case,
σ±
i describe transitions between different product states. Screening of the Coulomb

interaction and the resulting dynamical changes of the multi-exciton configurations
can be treated via the time dependent solution of (1.1). When including the Hamil-
tonian for the fullQD-carrierCoulomb interaction, the Jaynes–Cummings interaction
among multi-exciton states is obtained. The corresponding approach has been used
in [7–9] and is the basis for various investigations discussed in this contribution.
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The last term in (1.1) describes dissipation due to the coupling of the system of
QD excitations and cavity photons to their environments. Here, X labels all possible
transitions taking place in the system assisted by such interaction processes. Losses of
cavity photons, in this chapter denoted by the rate κ , can be described via a coupling
of the cavity mode to a bath of external modes [10]. Similarly, the spontaneous
recombination of QD excitations into a quasi-continuum of lossy modes can be
considered [10]. More challenging is the inclusion of semiconductor models for QD-
carrier scattering and the resulting dephasing. How this can be realized and under
which assumptions the carrier-phonon interaction and the Coulomb interaction with
carriers in delocalized states can be cast into the form of Lindblad terms is the topic
of Sect. 1.3. Also, the non-resonant QD-cavity coupling via many-body interaction
can be described in this way, as discussed in Sect. 1.4.

1.1.2 Characterization of Light

In many experiments with semiconductor QDs in optical resonators it became cus-
tomary to characterize the cavity field in terms of correlation properties of photons.
Here one can distinguish between classical emission properties, like the intensity
〈n〉 (zero-order correlations) or coherence properties of the emission (first-order cor-
relations). True quantum properties can be revealed in the intensity-autocorrelation
function (second-order correlations) and in higher-order correlation functions [11].

The normalized first-order correlation function,

g(1) (t, τ ) =
〈
b†(t) b(t + τ)

〉
〈
b†(t) b(t)

〉 , (1.3)

describes field-amplitude correlations as measured with a Michelson interferometer.
In a stationary situation, when g(1) is independent of t , the coherence time of the
radiation is given by

τc =
∫ ∞

−∞
dτ

∣∣g(1)(τ )
∣∣2 (1.4)

and the emission spectrum follows from a Fourier transform of g(1)(τ ):

S (ω) = 1

2π

∫ ∞

−∞
dτ e−iωτ g(1)(τ ). (1.5)

Information on statistical properties of the radiation are contained in the second-
order, or intensity autocorrelation function,

g(2)(t, τ ) =
〈
b†(t) b†(t + τ) b(t + τ) b(t)

〉
〈
b†(t) b(t)

〉 〈
b†(t + τ) b(t + τ)

〉 . (1.6)
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In a stationary situation, g(2)(τ = 0) can be used to identify thermal radiation, for
which g(2)(0) = 2, indicating high likelihood of finding two photons at the same
time (photon bunching). This can be distinguished from coherent radiation obeying
Poisson statistics, where g(2)(0) = 1. This situation is realized in an ideal laser, where
the only noise arises from the randomness of spontaneous emission. For nonclassical
light the intensity correlation is g(2)(0) < 1 (photon antibunching).

If the system is driven by an excitation pulse, no stationary state exists, and the
correlation functions are explicitly t-dependent. It is straightforward to calculate
g(2)(t, τ = 0) e.g. by evaluating the expectation value from the time-dependent den-
sity operator, see Sect. 1.5. Delay-time τ dependent results can be obtained with
the help of the quantum regression theorem [12]. In a density-matrix approach, this
procedure is explained in detail in [13]. The spirit of the quantum-regression the-
orem can be transfered to hierarchies of equations that are obtained by cluster-, or
correlation-expansion methods [14–19] to obtain g(1)(t, τ ) [20, 21] and g(2)(t, τ )

[20]. The calculation of g(2)(τ ) under pulsed excitation conditions is more intricate
and requires averaging over a multitude of two-time calculations [22].

Finally,wepoint out the link between the second-order photon correlation function
and the photon-number probability distribution function (a.k.a. photon statistics) pn ,
which refers to the diagonal elements of the photon densitymatrix after the electronic
degrees of freedom have been traced out. For equal-time operators, (1.6) can be
rewritten as

g(2)(t, τ = 0) = 〈n2(t)〉 − 〈n(t)〉
〈n(t)〉2 , (1.7)

where 〈n(t)〉 = 〈b†(t)b(t)〉. As the photon operators act only on the photonic degrees
of freedom, in this representation it is straightforward to see that 〈n〉 and 〈n2〉 are the
first and second moments of the photon statistics, respectively. While a distribution
function can be accurately represented by all of its moments, the autocorrelation
function g(2)(t, τ = 0) therefore contains only partial information on the full photon
statistics. As such, an interpretation of g(2)(t, τ = 0) requires at least some intuition
about the underlying distribution function, otherwise results can be misleading. We
give an example in Sect. 1.2.1.

1.2 Emission of Single and Few-QD Microcavity Systems

The discrete level structure and tunability of the electronic properties of semicon-
ductor QDs can be exploited to design deterministic quantum-light sources. A single
QD driven with short optical excitation pulses produces antibunched single photons
on demand [23], the demonstration [24] of which has played a great part to promote
solid-state systems into the quantum-information research field. The fabrication of
nanostructures, where a single QD is embedded in a microresonator, offers par-
ticular advantages for applications both in quantum-information technologies and
lasers. The confinement of the light field can be used to enhance the emission from
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Table 1.1 Different operational regimes of single or few QDs in optical cavities and the quantities
used to characterize the quantum-optical properties of the emission. The last point in the list refers
to [27]

transitions between QD many-particle configurations, promising higher repetition
rates for single-photon sources and smaller losses for high-efficiency lasers. At the
same time, the cavity acts as a spectral filter and introduces the Jaynes–Cummings
nonlinearity, enabling the use of effects like the photon blockade [25, 26]. The sur-
prisingly diverse range of regimes in which QD-microcavity systems can operate
may be fascinating and confusing at the same time. Table1.1 is an attempt to provide
an overview.

1.2.1 Single Photons from a Single and Few QDs in a Cavity

Atypical single-photon source is realizedwithout a cavity, orwith aweakly-reflecting
mirror to enhance the emission directionality. More recent technological advances
have enabled the fabrication of microresonators that contain exactly one QD emitter
in the field maximum of a single mode [28], allowing to use the benefits of cavity-
QED effects for the design of single-photon sources [29–31].

The emission properties of a single QD in a cavity can vary from single-photon
emission to lasing [7, 8, 32, 33]: In the low-Q cavity regime antibunched emission
(g(2)(0) = 0) of the single QD dominates. On the other hand, high-Q cavities with
photon losses onps timescales enable the accumulation of photons such that the single
emitter can be driven close to or even into the regime of lasing, where coherent
emission results from a Poissonian cavity light field. In the left panel of Fig. 1.1
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Fig. 1.1 a Autocorrelation function g(2)(0) as a function of the photon output rate for N = 1, 2,
3 emitters. Each curve is obtained from a series of calculations where the cavity-Q is varied. From
left to right, κ = 10, 6.3, 4, 2.5, 1.6, 1, 0.63, 0.4, 0.25, 0.16, 0.1, 0.063, 0.04, 0.025, 0.016, 0.01/ps,
open circles indicate κ = 2.5/ps on each curve. High excitation is used to drive the system into
saturation. b Single-photon purity η versus g(2)(0). Starting from high η, the same values for κ are
used, open circles indicate κ = 0.63/ps on each curve

we classify these two regimes as a function of the maximally attainable emission
rate r = κ〈n〉. Using strong incoherent excitation, each symbol on the black curve
represents a single-QD-microcavity system with a unique cavity loss rate κ . To
the left side one approaches the limit of a free QD emitter (large κ). To the right
side, the cavity losses become smaller than the spontaneous emission rate, so that
photons accumulate in the cavity and lead to coherent emission with g(2)(0) = 1.
In between, there is a wide regime with cavity-enhanced single-photon emission,
where 0 < g(2)(0) < 0.5. In the solid-state community, this is a frequently used
criterion to identify the source of the emission to be a single emitter, since the
smallest possible g(2)(0) value from a two-emitter system is that of a two-photon
Fock state yielding 0.5.

How do additional emitters influence this result? Non-resonant coupling of spec-
trally detuned QD transitions to the cavity mode distinguishes solid-state emitters
from atoms (cf. Sect. 1.4). Most current realizations of SQD nanostructures are not
free of residual emitters [32, 33]. When comparing to experiments, background
effects from detuned emitters can play an important role and significantly modify
the properties of a true single-emitter system.While it may seem intuitively clear that
a single-photon source can only be realized using a single-emitter, this is not entirely
true if the cavity acts as a filter for the statistical properties of photons originating
from several emitters, or if these emitters are correlated in an entangled state. In the
left panel of Fig. 1.1 results are also shown for two and three emitters in the cavity.
Surprisingly, non-classical emission is also possible, even if perfect antibunching in
terms of g(2)(0) values being as close as possible to zero is compromised in compar-
ison to the single-emitter case. We take a closer look at the interpretation of these
results, first reminding ourselves that according to (1.7), g(2)(0) contains information
from the photon statistics in an averaged form via the first and second moments of
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the probability distribution function pn . The performance of a single-photon source
is more accurately characterized in terms of the rate r (how long on average must one
wait for an emission event) and the error η−1 to have an unusable packet with more
than one photon. This characterization can be realized if access to the full photon
statistics is available, such as from density-matrix calculations or photon-number
resolved measurements. We define the single-photon purity (inverse to the error) as

η = p1∑
i≥2 pi

(1.8)

that relates the probability of the emission of a single photon to that of the emission
of bundles of two or more photons [34, 35]. Single-photon purity is one of the criteria
listed in Chap.3 Sect. 2, to which we refer for further information on single-photon
sources. In the right panel of Fig. 1.1 we show the attainable η and the corresponding
g(2)(0) for the κ values used in the left panel. While the error can only be arbitrarily
minimized in the single-emitter system, high η can also be obtained with two and
three emitters in the cavity. Most interestingly, the autocorrelation function is unable
to capture this behavior, as for the same purity of single-photon emission, g(2)(0)
values can be very different. Moreover, the same high η may be achieved with
higher emission rates from two and three emitters [34]. The impact of additional
emitters in the cavity can apparently be less detrimental than one may expect from
g(2)(0) alone. In the future, it will be very interesting to further investigate emission
properties beyond the well-established autocorrelation measurements on the basis of
photon-number resolving detectors [36–40] or higher-order HBT setups [41].

1.2.2 Lasing in the Presence of Strong Coupling
in a Few-QD System

Theminiaturization limit of solid-state cavity-QED is given by a singleQDcoupled to
a single mode of a microcavity. In order to achieve sufficient photon production from
only a single emitter, the light-matter coupling must be as high as one can achieve by
using emitters with large dipole moments and by placing them in the field maximum
of the confinedmode.Coupling-strength values for currentmicropillar cavity systems
are close to 100µeV, which is sufficiently high to be in the strong coupling regime
even at increased excitation powers. While strong coupling is associated with weak
excitation and the appearance of the vacuum Rabi doublet in the emission spectrum,
lasing typically takes place in the weak coupling regime using strong excitation. It is
therefore an interesting thought that the lasing threshold is crossedwhile the transition
of a single QD is still in strong coupling with the mode. This was first discussed in
[42] for a photonic-crystal cavity containing only few QD emitters, although in the
past, neither was the influence of the background emitters quantified, nor the role
of excitation-induced dephasing, which is the main reason for the transition to weak
coupling at higher excitation, discussed.

http://dx.doi.org/10.1007/978-3-319-56378-7_2
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The criterion for strong coupling is commonly accepted as the existence of two
distinguishable peaks in the cavity emission spectrum, the so-called vacuum Rabi
doublet. In general, the spectrum can be written as the modulus square of the differ-
ence between two poles [43]

S(ω) ∼
∣∣∣∣

1

ω − ω1
− 1

ω − ω2

∣∣∣∣
2

. (1.9)

In the presence of dephasing, such as originating from cavity losses, spontaneous
emission, or carrier relaxation processes following excitation, it is known [44, 45]
that strong coupling persists as long as 4g > |Γ − κ|, where g is the light-matter
coupling strength, κ the cavity loss rate, and Γ gives the total exciton dephasing,
before the Rabi doublet merges into a single line marking the transition to weak
coupling [10]. Thiswell-known strong-coupling criterionmust be reviewed, however,
when excitation is strong enough that states with higher total excitation in the Jaynes–
Cummings ladder become populated, such as when approaching the laser threshold.

A nanolaser can be seen as a driven dissipative system that is defined by the usual
Jaynes–Cummings Hamiltonian and Lindblad contributions for pump, relaxation,
and losses. An analytic expression for the cavity emission spectrum can only be
obtained by limiting the Hilbert space to a low-excitation subspace. Using the two-
level formalism for simplicity, in [10] the three lowest states, namely the ground
state in the zero-photon block |g, 0〉 and the states with one excitation |e, 0〉 and |g, 1〉
(Fig. 1.2 depicts these states and their relation to the dressed-state Jaynes–Cummings
ladder), are used to derive the well-known expression for the cavity spectrum. While
this “three-state approximation” (3SA) sufficiently describes the strong-coupling
spectrum in theweak-excitation regime, higher states become realized under stronger
excitation as one begins to climb the Jaynes–Cummings ladder. In this case, we

Fig. 1.2 Illustration of the implications of the 3- and 4-state approximation (SA). In the 4SA, the
four lowest-energy states are explicitly considered including the state |e, 1〉 with a total excitation
number of Nex = 2. In a dressed-state picture, this allows to represent the lowest two rungs of the
Jaynes–Cummings ladder and, thereby, to obtain the vacuum-Rabi doublet that results from the
two possible transitions from the first rung to the ground state. The 3SA is limited to states with a
maximum Nex = 1. The Rabi-doublet is inaccurately described by the 3SA if the system pumped
towards the lasing threshold, as the first JC rung cannot be represented by the Nex = 1 states alone
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Fig. 1.3 Comparing different approximations to the cavity emission spectrum at low (a) and high
(b) excitation power. c Real part of the poles that determine the peak positions in the 3SA and 4SA.
Two separate values indicate the peak splitting of the strong regime

show that considering the next higher excited state |c, 1〉 with a total excitation of 2
extends the validity of the approximation into the transition regime to lasing. In this
“four-state approximation” (4SA) the cavity emission spectrum can be written as a
closed analytic expression of the form of (1.9), where the roots that determine the
position of the peaks are changed by additional terms [46]. In Fig. 1.3 both levels
of approximation are compared to the full numerical solution. While the additional
higher excited state in the 4SA has little impact in the low-excitation regime (a),
its absence can be noted at high excitation (b): The conventional 3SA textbook
expression incorrectly predicts Rabi splitting, whereas the result obtained in the
4SA closely resembles the numerical result, which reveals that the transition to
weak coupling has taken place. The remaining difference between the 4SA and
the exact solution can be attributed to contributions from yet higher excited states.
In systems that are driven with higher excitation-power densities, the 4SA-analytic
formula for the cavity emission spectrumprovides a new tool to evaluate experimental
measurements and to extract parameters, such as the light-matter coupling strength,
with greatly improved accuracy.

InFig. 1.3c the eigenvalues that determine the peak-positions in the emission spec-
trum are compared for 3SA and 4SA. One can infer that the transition to weak cou-
pling, indicated by the merging of the poles, takes places at much higher excitation-
induced dephasing (i.e. higher pumping) if the approximation is restricted to only the
three lowest states. This finding has severe implications for answering the question
if lasing and strong coupling can coexist.
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Fig. 1.4 Laser
characteristics obtained from
a numerical solution of a
density-matrix approach that
includes contributions from
background emitters. From
top to bottom, input-output
curve, coherence time and
second-order photon
correlation function are
shown, in their combination
providing evidence that the
system is a nanolaser that
crosses the transition to
lasing

As discussed in Sect. 1.1.2, the photon autocorrelation function g(2)(0) approach-
ing unity is indicative for lasing, and so is a linewidth narrowing that begins to take
place at the laser transition [47]. In Fig. 1.4 we show numerical results for both quan-
tities together with the input-output curve. The calculation takes into account a single
QD that is in strong coupling with the mode (see the inset) and several “background
emitters” which only come into resonance at higher excitation. The underlying pic-
ture is that their exciton transition is detuned from the cavity mode, but transitions
between higher multi-exciton states that become realized at stronger excitation are
resonant. Non-resonant coupling via multi-exciton states is explained in Sect. 1.4.2
of this chapter. From the top to the bottom panel, we see a kink in the input-output
curve that originates from background contributions (dotted curve) to the emission
of the single QD (dashed curve). A mean intracavity photon number of 1 is reached
at Pth = 0.02/ps. At this value, the coherence time shows a steep increase to mod-
erately low values reaching 40ps. The low coherence time reflects the significant
fraction of spontaneous emission also in the lasing regime due to the small overall
number of emitters. In contrast, in a many-emitter laser, spontaneous emission plays
practically no role above threshold, and the coherence time can be 1ns [21]. The
autocorrelation function exhibits antibunching (g(2)(0) < 1) of the strongly coupled
single emitter in the low excitation regime. Antibunching disappears with the onset of
contributions from the additional QDs, where spontaneous emission of their various
emission channels leads to a thermal component (g(2)(0) > 1). At high excitation,
coherent lasing with g(2)(0) = 1 is be reached.
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These results are representative for the behavior of a few-emitter QD-microcavity
system, which can operate in a variety of regimes depending on system parameters
and excitation strength thereby crossing between single-emitter behavior, LED emis-
sion, and lasing in different regimes of light-matter coupling. An understanding of
the intricate behavior requires to use a quantum-optical framework that takes into
account a variety of effects that are fundamentally relevant for solid-state emitters and
that are discussed in this chapter, such as non-resonant coupling, excitation-induced
dephasing, and multi-exciton transitions.

1.2.3 Cavity-Enhanced Emission of Entangled Photon Pairs

Pairs of entangled photons are essential to many building blocks for quantum tech-
nologies. This includes quantum repeater stations that are needed to extend quantum
communication networks beyond the limitations due to losses in optical fibres [48],
as well as quantum teleportation and key distribution via the E91 protocol [49].
Today’s applications mostly rely on parametric downconversion in non-linear crys-
tals to generate entangled photons. Semiconductor QDs possess particular properties
that make them promising candidates for integrated deterministic sources of entan-
gled photons. The following discussion refers to the energy scheme in the left panel
of Fig. 1.5. Prepared in the biexciton state, two decay channels are equally possible,
in which an electron-hole pair of either spin direction recombines and leaves behind
a remaining exciton with an electron and a hole of the opposite spin (XH or XV ),
emitting a photon that is either horizontally or vertically polarized. From there a
second recombination is possible, resulting in the emission of another photon of the
same polarization as the first one. If both intermediate exciton states are energetically
indistinguishable, the “which-way” information is not revealed, and the result is the
entangled photon state (|HH〉 + |VV〉)/2, where |12〉 denotes the two-particle state
of the two-photon system.

Fig. 1.5 a With energy displayed along the vertical direction, the so-called ‘diamond’ scheme of
the biexciton-to-ground-state cascade of a semiconductor QD is schematically depicted. The inter-
mediate excitonic states are energetically separated by the fine-structure (fss) splitting. b Emission
of an entangled photon pair by cavity-enhancement of a direct two-photon emission process
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Unfortunately, due to growth-related anisotropies, both excitons are not indis-
tinguishable, but energetically separated by the fine-structure splitting (fss). The
possibility to distinguish the two recombination channels by their spectral foot-
print provides the “which-way” information that compromises entanglement. Many
attempts have been undertaken to minimize the fss, e.g. by applying external electri-
cal fields or doping [50], and we refer the reader to Chap.7 for a detailed discussion.
We propose an elegant alternative approach that avoids the detrimental effect of the
fss altogether.

In [3] the direct two-photon emission process from the biexciton to the ground
state is employed, from which each photon carries half the energy of the biexciton.
As higher-order process that is of second order in the Hamiltonian, the two-photon
emission is as such highly unlikely and hardly relevant in previous discussions of
biexciton emission of entangled photon pairs. If, however, the emitter is embedded in
a cavity that is tuned exactly to the energy of the two-photon emission, the modified
photonic density of states enhances the two-photon emission and suppresses emission
through the cascade. This situation is depicted in the right panel of Fig. 1.5. Both
processes compete with each other, and it depends sensitively on the parameters, in
particular onwidth (Q-factor) and position of the cavitymode, whether entanglement
can be preserved in the presence of fss.

For sufficiently high (but also typical) cavity-Q factors of about 20,000, we could
demonstrate nearly complete independence of the degree of entanglement on the fss
as shown in the left panel of Fig. 1.6. In the right panel, it is shown that in case of
perfect resonance between cavity and two-photon emission process, the delay-time
resolved autocorrelation function g(2)(τ ) exhibits bunching at τ = 0, revealing that
both photons are indeed most likely emitted simultaneously. If the cavity is detuned
only slightly (0.25–0.5meV) from that resonance, the bunching peak moves away

Fig. 1.6 a The degree of polarization entanglement (C = 1 representing a maximally entangled
state) remains nearly constant as function of fine-structure splitting, if a Q = 21400 cavity mode
is tuned exactly to the two-photon resonance of the biexciton transition. b The fingerprint of the
two-photon emission is a bunching-peak in the two-photon correlation function at zero time delay,
whereas emission through the biexction-exciton-ground state cascade exhibits bunching at a delayed
time. In resonance (solid curve), two-photon emission is enhanced by the cavity and is the dominant
process. For slight detuning (0.25meV dashed, 0.5meV dotted curve), emission through the cascade
becomes increasingly more likely, indicated by the peak moving away from τ = 0
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from the origin τ = 0, indicating that the two photons are emitted successively and
the emission mechanism shifts from the direct higher-order process to the cascade.

An experimental verification of the feasibility of the proposed generation of a
quantum-mechanical entangled state is yet to be provided. Both the direct creation of
the biexciton state by a direct two-photon absorption process [51], and the possibility
of the discussed two-photon emission process (although in the absence of a cavity)
[52] have recently been demonstrated.

1.2.4 Single Photons from an Electrical Source with Long
Pulses

As a final example for the generation of non-classical light we consider a single
emitter without the influence of a cavity. In the experimental realization [53], a
bottom DBR-mirror is used merely to enhance directionality of the emission.

The repetition rate of an on-demand single-photon source is limited by the recom-
bination time of the emitter. When using short (picosecond) excitation pulses with
sufficient temporal separation, each pulse triggers a single-photon emission event.
The duration of the excitation pulse must remain shorter than the average recombi-
nation time in order to avoid re-excitation following the same trigger, which would
result in the emission of successive photons. While short excitation pulses are easily
realized in all-optical setups, electrical excitation by current injection is the device-
relevant method of excitation and one key advantage of solid-state emitters over
atomic systems. Picosecond-short excitation pulses are, however, more difficult to
realize with electric pulse generators. Addressing this problem, we have proposed an
excitation scheme that makes use of the multi-exciton landscape of QD excitations
to realize strongly antibunched single-photon emission that is quite independent of
the excitation-pulse duration [53].

Instead of usingweak excitation pulses, the pump pulses are chosen strong enough
to drive the system into saturation. Consequently, during the excitation the QD is
rapidly filled with carriers and the emission is dominated by the recombination of
higher multi-exciton configurations, which are spectrally detuned from the exciton-
to-ground-state transition. After the excitation pulse has ended, carriers recombine
until no carriers remain in the QD. The last decay in this cascade must result from
the neutral or charged exciton with only one remaining electron-hole pair at a unique
spectral position. It is the basic idea of the proposed scheme to trap the system in
higher multi-exciton configurations during the excitation and to use spectral filtering
to collect the single photon from the final exciton emission after the excitation pulse
has ended. The detuned emission during the excitation is not collected, and the
final exciton emission is independent of the duration of the excitation pulse. The
dynamical behavior of this interplay of different recombination channels is depicted
in Fig. 1.7 (theory in (a), experiment in (b)). As a central result, by using strong
excitation a high degree of antibunching with g(2) < 0.1 can be maintained quite
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Fig. 1.7 a Time-dependence of the exciton realization probability following pulsed excitation of
different excitation powers. The realization of the exciton configuration is suppressed with increas-
ing pulse area of the excitation, as higher multi-exciton configurations form instead. After the pulse
has ended, the exciton is realized and then decays on the typical nanosecond timescale. b Time-
resolved measurements of the exciton (X) and biexciton (XX) emission intensity. In agreement
with the microscopic model, during excitation exciton emission is suppressed and emission from
the biexciton dominates. After the excitation pulse, the exciton transient reflects the theoretically
predicted behavior. The duration of the excitation pulseΓ (t) is indicated by the shaded region. Note
the different scales (top: linear, bottom: logarithmic) when comparing the results. The left figure is
taken from [22], the right figure is adapted from [53]

Fig. 1.8 Antibunching
quantified in terms of g(2)(0)
as function of the width of
the electrical excitation pulse
(EPW)

independently of the excitation-pulse duration, as shown in Fig. 1.8. Experimentally,
this has been verified for nanosecond pulse durations exceeding the recombination
time by more than 500% in excellent agreement with the theoretical results obtained
from a solution of the von-Neumann equation [22].



18 C. Gies et al.

1.3 Carrier Scattering and Dephasing

In solid-state physics, we usually deal with systems exhibiting a continuous density
of states, where the full quantum dynamics of excited carriers is practically not
accessible and theories have tobe formulated in termsof averagedone- or two-particle
quantities. On the other hand, semiconductor quantum dots (QDs) are quasi-atomic
systems with a discrete spectrum of confined states, where the dynamics of the full
density operator can be calculated via a von Neumann equation, as discussed in the
introduction to this chapter. Unlike true atoms, QDs are not isolated but embedded
into a semiconductor crystal and have to be treated as open quantum systems in
interaction with their environment of lattice vibrations and charge carriers of the
barrier material as well as the photon modes of free space. The dissipative processes,
in particular carrier-carrier and carrier-phonon interaction, are typically described by
many-particle methods that can be formulated such that the coherent von Neumann
dynamics is supplemented by additional Lindblad terms, as we show below.

The density operatorρ(t) of theQDsystem is expressed in a basis ofmany-particle
states. This leads to a full description of the QD excitations, in which the Coulomb
interaction of QD carriers can be directly included. Asmentioned in the introduction,
there are basically two ways to construct the many-particle basis and formulate the
dynamics of the density operator. On the one hand, we can start from the single-
particle states that are provided by the QD confinement potential and build many-
particle configurations, or product states, by creating carriers in the single-particle
states in all possible combinations. A given configuration |{ni }〉 is then defined by
specifying which single-particle states are occupied (ni = 1) or empty (ni = 0). The
Coulomb configuration interaction can be included in the Hamiltonian of the von
Neumann equation, thereby considering the formation of multi-exciton states, which
are the fundamental QD excitations. Alternatively, we can take into account the
configuration interaction in advance and select an appropriate set of multi-exciton
states as a basis for the density operator, which is often done in quantum optics to
formulate compact models of QD emitters. In this section, we will follow the first
approach and stay with product states as the many-particle basis as discussed in [9].

The electronic many-particle basis can be augmented by photonic degrees of
freedom to capture the full quantum dynamics of QD emitters inside a cavity. In
this section, we focus on carrier scattering and dephasing by treating the electronic
part of the density operator ρel. We can describe the dynamics of ρel by the von
Neumann-Lindblad (vNL) equation [54–56]

∂

∂t
ρel = − i

�
[HS, ρel] +

∑

X

γX

2

[
2sXρels

†
X − s†XsXρel − ρels

†
XsX

]
. (1.10)

The commutator part represents the coherent time evolution of the density oper-
ator due to the system Hamiltonian HS , which consists of a “free” part with the
QD confinement energies and the Coulomb interaction between the QD carriers. It
defines the eigenenergies of the QD many-electron system and takes into account
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all Coulomb renormalization effects caused by the interaction of QD carriers among
each other. By accounting for the interaction between the QD system and its semi-
conductor environment, which is formally described by a number of reservoirs, the
so-called Lindblad terms are obtained. They introduce dissipation into the time evo-
lution, causing the QD to relax to a thermal equilibrium which is defined by the
properties of the environment. This also includes interaction-induced dephasing of
coherences that may be generated in the QD for example by light-matter interaction.
The summation in (1.10) runs over all possible transitions between the eigenstates
of the QD, the transitions being described by operators sX . It is essential that both
the interaction of QD carriers with phonons and with charge carriers of the barrier
material can be formulated as Lindblad terms, where the transition rates γX can be
calculated microscopically. But even if we choose phenomenological values of γX

that are e.g. based on experimental results instead of a microscopic calculation, the
structure of the vNL equation guarantees physically sensible results.

Due to their direct relevance for various QD applications, in the past two decades
carrier-scattering processes in QD systems have been studied intensively both in
experiment [57–63] and theory [64–74]. A microscopic description of carrier scat-
tering requires the inclusion of carrier correlations that can be treated on different
levels. For QD systems, due to the finite state space of the electronic excitations,
approximate treatments of carrier correlations have been questioned and the impor-
tance of a configuration picture has been pointed out. [16] Consequences for QD
laser threshold current densities, [75] or QD gain recovery dynamics [76] have been
demonstrated. Moreover, a carrier-capture model consisting of several capture con-
figurations in the QD has been used to explain signatures of a phonon bottleneck in
time-resolved differential transmissionmeasurements on InGaAs quantum dots [58].
In [77], the effect of full Coulomb configuration interaction on the carrier relaxation
in weakly confined QDs due to electron-acoustic phonon interaction has been dis-
cussed. The description in terms of a many-particle basis, which is naturally chosen
for quantum optical models of QD emitters, is complemented by the description of
carrier scattering on a single-particle level, which is often used throughout the lit-
erature. Again, it is questionable if a single-particle description of carrier scattering
may be used in QD systems with a small number of electronic states, as we illustrate
in the following.

When the vNL equation (1.10) is used, relaxation processes occur as transitions
between QD configurations, facilitating an exact treatment of the Pauli exclusion
principle between the QD carriers. In a single-particle description, for example in
terms of a Boltzmann equation, the central quantities are the occupation probabilities
fi of the single-particle states. These describe the population of a QD in the sense
of an ensemble average, which corresponds to each carrier reacting not to the actual
state of the collision partners in a scattering process, but to an independently averaged
“mean-field”distributionof carriers, seeFig. 1.9.Asdiscussed in [9], this corresponds
to a mean-field-like treatment of Pauli blocking, which can lead to inaccurate results
in the description of carrier relaxation: If the QD is prepared in a state where only one
efficient relaxation channel is available, only one Lindblad term is present in (1.10),
exhibiting a purely exponential time evolution with a constant rate due to the linear
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Fig. 1.9 Schematic of carrier relaxation in the conduction band of a QD ensemble. a In two out of
five identical QDs, the lower confined state is populated, corresponding to a probability of f = 0.4,
so that the relaxation of a second carrier from the upper confined state is blocked. At the same time,
in the remaining three dots the relaxation is possible. In the Boltzmann description of the ensemble
(b) the relaxation rate is weakened by a factor (1 − f ), which describes the average availability of
the final state, indicated by a single QD with a “ghost” carrier present in the lower state

character of the vNL equation. In contrast, the nonlinear Boltzmann equation yields a
power law behaviour, which is significantly slower than the exponential convergence
and which can not be assigned a constant rate. In the regime of high excitation, where
a large number of relaxation channels is available, carrier correlations are destroyed
on a short time scale and a mean-field description of scattering becomes feasible
again.

After these general considerations, we discuss the two relevant types of system-
reservoir coupling, namely carrier-carrier Coulomb scattering and carrier scattering
by phonons. First, the contact of theQD carriers with the carriers in delocalized states
leads to various Auger-like scattering processes. These are beyond the interaction
of QD carriers among each other, which is already taken care of in the system
Hamiltonian HS . Carriers are captured or ejected from the QD and they scatter
between localized states due to the Coulomb interaction with delocalized carriers;
the latter provide the necessary energy for the transition processes.Adetailed analysis
of these processes and the corresponding rates have been given in [9].

A second type of reservoir is provided by the phonons in the barrier material. In
polar semiconductors one of the strongest contribution to carrier scattering processes
is due toLOphonons, forwhichwe assume a dispersionless spectrumωq = ωLO . The
interaction betweenQD system and phonon reservoir is described by theHamiltonian

HSR =
∑

i, j,q

Mi, j
q a†i a j

(
Dq + D†

−q

)
, (1.11)

with the Fröhlich coupling matrix elements Mi, j
q [78]. In (1.11) two scenarios can

be distinguished. First, when both indices i, j refer to QD states, electronic tran-
sitions | j〉 → |i〉 inside the QD assisted by the emission or absorption of phonons
are described, leading to carrier relaxation in the QD. The second case involves a
QD and a delocalized state and corresponds to carrier capture from or reemission



1 Theory of Quantum Light Sources and Cavity-QED Emitters … 21

into the reservoir, again assisted by phonons. For the first case, treating all possible
transitions X between configurations, which include the movement of a carrier from
| j〉 to |i〉, one obtains in Born-Markov approximation the transition rate in the form

γX = 2π

�2

∑

q

|Mi, j
q |2

{
(1 + NLO) δ(ωX + ωLO) + NLO δ(ωX − ωLO)

}
. (1.12)

NLO is the phonon population at the lattice temperature. The first term corresponds
to processes involving phonon emission, the second involving phonon absorption.
In (1.12) one encounters a problem that is specific to the LO-phonon driven carrier
kinetics in discrete electronic systems. The strict energy conservation expressed by
the δ-functions is not generally met. In early theoretical considerations [79, 80],
this observation has lead to the prediction of a “phonon bottleneck”. However, only
in lowest-order perturbation theory (Fermi’s golden rule) does the scattering rate
vanish. Equation (1.12) corresponds to this level, which results from applying the
Born-Markov approximation. A better-suited non-perturbative description leads to
the polaron picture. The quasiparticle renormalization effects of the non-perturbative
treatment can be included in a generalized form of (1.12) via spectral functions
combining the configuration picture with the formalism of many-particle Green’s
functions, as described in detail in [56]. In contrast to the phonon bottleneck pre-
dicted from perturbation theory, non-vanishing scattering rates are obtained from
this approach. The Green’s function formalism allows for a self-consistent treatment
of carrier-carrier and carrier-phonon interaction, leading to a non-trivial co-action of
both mechanisms and modifying all transition rates entering the vNL equation.

In [56], we use the theory introduced above to analyze experimental results for
the carrier capture and relaxation dynamics in self-organized semiconductor QDs,
which are obtained by time-resolved differential transmission (TRDT) measure-
ments. Figure1.10 contains examples of TRDT traces for the ground-state transition
at different temperatures and fixed excitation power. From the TRDT signals, rise
times can be extracted that reflect the efficiency of carrier capture and relaxation
processes under different experimental conditions. The data can be understood from
simulations ofTRDTrise times under comparable conditions taking into account both
carrier-carrier and carrier-phonon interaction. The results are collected in Fig. 1.11.
In agreement with the experiment, we find a higher temperature sensitivity at lower
carrier densities, which points to a dominant role of the phonon scattering in this
regime. For low temperatures, the transition rate increases strongly with the carrier
density due to more efficient carrier-carrier scattering (Auger-like processes assisted
by delocalized carriers). The latter also causes larger broadening of the spectral
functions, which in turn accelerates carrier-phonon scattering as well. For elevated
temperatures, the density dependence is weak due to a dominating phonon contri-
bution. As shown in [56], renormalization effects are of critical importance for this
agreement, which can not be achieved by a perturbative treatment of system-reservoir
interaction.
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Fig. 1.10 Rise times
extracted from
monoexponential fits to
time-resolved differential
transmission (TRDT)
transients of the QD ground
state, obtained at various
excitation intensities for
temperatures T = 10, 80, and
180K. The inset shows DT
traces at an excitation density
of I0/3 with I0 = 40W/cm2

Fig. 1.11 Rise time of the
TRDT signal for the QD
ground state calculated as a
function of the wetting-layer
(WL) carrier density for
different temperatures. Both
carrier-carrier and
carrier-phonon interaction
are considered within a
non-perturbative theory
including joint quasiparticle
renormalizations in the
multi-exciton
configuration-picture
description

The many-particle interaction of the QD system with its environment induces not
only transitions between QD configurations, but also dephasing of coherences in
the QD that may be generated by resonant optical excitation. In the vNL equation
(1.10), this is reflected by a decay of transition amplitudes between many-particle
configurations.Aswidely discussed in the following chapters of this book, the amount
of dephasing is crucial for quantum optical and quantum information applications
of QD emitters, as it is directly connected to broadening of emission lines and to
the lifetime of coherences that are exploited for the generation of entanglement.
For example, dephasing affects the deterministic creation of photons by limiting
the fidelity of resonant excitation of single QD transitions which is discussed in
the chapters by Rengstl, Jetter and Michler and by Portalupi and Michler. This
problem also appears in the context of spin preparation by optical pulses, which is
the topic of the chapter by Sun and Waks. The limitation of indistinguishability of
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entangled photons due to dephasing is addressed in the chapters by Weihs, Huber
and Predojević and byHeindel, Rodt and Reitzensteinwhile Brash, Liu and Fox very
nicely express how strongly coherent control experiments in semiconductors rely
on a reduction of dephasing for example due to carrier-phonon and carrier-carrier
scattering.

In [5], the dephasing due to carrier-carrier and carrier-LO-phonon interaction in
semiconductor QDs has been quantified focussing on the regime of elevated exci-
tation density. Complementary to this is the low-density regime, where acoustic
phonons and especially at low temperature Coulomb-mediated out-scattering of
QD carriers lead to homogeneous broadening, see the contribution of P. Borri and
W. Langbein in [23]. The pure dephasing associated with acoustic phonons can be
comparable to scattering-induced dephasing when the carrier density is low. The
homogeneous exciton linewidth has been studied in great detail experimentally [61,
81, 82] and theoretically using the independent Boson model, where the electronic
system is described in a two-level approach [83–87]. Fewer experiments have inves-
tigated the dephasing of many-particle configurations [88–90].

1.4 Non-resonant QD-cavity Coupling

For weak excitation of self-assembled semiconductor QDs, the ground-state exciton
is dominating, while at elevated excitation levels a rich structure of closely lying
discrete optical transitions can be observed [63]. When QDs are placed in a high-Q
microcavity, the narrow-linewidth mode singles out particular transitions. In contrast
to atom-like isolated emitters, QDs exhibit an interesting peculiarity: Even for weak
excitation and QD emission lines significantly detuned from the cavity resonance,
photons can be emitted into the cavity mode. As a result of extensive experimental
and theoretical investigations, different mechanisms are discussed in the literature.
These involve phonon-assisted optical processes, non-resonant coupling mediated
by multi-exciton transitions, and Coulomb-assisted non-resonant coupling.

The effect is mostly discussed in the context of individual QDs coupled to optical
cavities. Beyond this, in cavity-QED lasers non-resonant QD-cavity coupling is also
expected to be responsible for a frequently observed background emission contri-
bution. In these cavity-QED lasers the number of resonant QD emitters is often too
small to reach stimulated emission, which is nonetheless observed in corresponding
experiments [8, 46, 91, 92].

1.4.1 Phonon-Assisted Non-resonant Coupling

The acoustic phonons have been connected [85, 86, 93] with a particular line shape
of the excitonic transition. The dominant contribution to the carrier-phonon coupling
is contained in the diagonal matrix elements with respect to the carrier-state index,
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which facilitates the application of the independent boson model [78]. The role
of LA-phonons in the off-resonant cavity feeding was demonstrated [94–101]. It
was shown [2, 102–104] that the appropriate frame work to describe the phonon-
assisted energy transfer between the exciton and the cavity is provided by the polaron
picture, in which the exciton generates an electric field to which the lattice ions react
by displacements of their oscillation centers. A polaron transform can be used to
connect the distorted lattice with the original one, and the QD-phonon interaction can
be formally eliminated from the Hamiltonian [78]. As a result the Jaynes–Cummings
Hamiltonian

H̃JC = g (b†X B† + b X† B) (1.13)

then includes phonon operators

B = exp

[
Mq

ωq
(D†

−q − Dq)

]
(1.14)

besides the usual carrier (X = a†i a j ) and photon ones. The relevant coupling con-
stant in the problem is the difference between those of the conduction and valance
band states,Mq = Mi,i

q − M j, j
q .With the phonons acting as a thermal bath, a system-

reservoir treatment leads to Lindblad termsLb†X andLbX† . In this case, the associ-
ated off-resonant cavity feeding rates as a function of detuning read

γb†X (Δ) = 2g2 〈B〉2 Re
∫ ∞

0
dt e−iΔt (eΦ(t) − 1) , (1.15)

with Φ(t) given by

Φ(t) =
∑

q

∣∣∣∣
Mq

ωq

∣∣∣∣
2 [

(Nq + 1)e−iωq t + Nqe
iωq t

]
. (1.16)

The rate of the reverse transition is related to the above one by the thermal factor
e−β Δ, as prescribed by the Kubo-Martin-Schwinger condition. When expanding the
Φ exponential in (1.15), all multi-phonon processes of emission and absorption that
generate a total energy of Δ can be seen to contribute. A more detailed discussion
of this polaron master equation approach is given in the chapter of Roy-Choudhury
and Hughes.

In Fig. 1.12 the phonon-assisted cavity-feeding rate is shown for typical InGaAs
QD parameters [4]. There is a pronounced asymmetry between positive and negative
detuning for low temperature. This is expected, since any thermal bath favors the
process which lowers the system energy, all the more so at low temperatures. For a
lattice temperature of 20K efficient cavity feeding is obtained only up to detunings
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Fig. 1.12 Effective cavity
feeding rates due to the
QD-phonon coupling as a
function of the detuning
from the cavity resonance.
Results are calculated from
(1.15) and shown for 10, 20,
77 and 300K

∼2meV between the transition and the mode. Nevertheless, we find that phonon-
assisted recombination of QD excitations within this detuning range can lead to an
emission enhancement in a cavity QED laser that can make the difference between
thermal or coherent emission [4].

Many quantum optical application require state preparation with high fidelity.
Phonon-assisted processes can be utilized to efficiently prepare e.g. the biexciton or
exciton state by tuning the optical excitation on the corresponding phonon-sidebands
as discussed in the chapters of Portalupi andMichler as well as Roy-Choudhury and
Hughes.

1.4.2 Non-resonant Coupling Mediated by Multi-exciton
Transitions

A quantification of cavity feeding effects is typically hindered in systems with many
emitters. Here, various emission channels of different emitters overlap, masking
individual emission properties. The few-emitter limit on the other hand offers the
unique possibility to study non-resonant mode coupling in a highly controllable envi-
ronment. Photonic crystal (PhC) [105] cavities in particular provide strong optical
confinement with high Q factor and small mode volume [106], making them suitable
to explore the miniaturization limit of lasing where the gain medium consists only
of a few solid-state quantum emitters within a single mode cavity [91, 107].

Figure1.13a shows the cavity-mode emission of a few (N ∼ 4) QDs located in
a PhC nanocavity. The QD ground-state exciton to cavity detuning is much larger
than 2meV. At first it may seem contradictory that lasing can be achieved in such a
system.However, the discreteQD lines inFig. 1.13a evolve into a broadband emission
at elevated excitation intensities (highlighted by the gray shaded region). This is due
to non-resonant coupling facilitated by a multitude of closely spaced excited multi-
exciton states, some of which are overlapping with the cavity mode. More precisely,
when a QD can accommodate many single-particle bound states, the number of



26 C. Gies et al.

Fig. 1.13 a Experimental results for the emission spectrum from the cavity and increasing cw
excitation power density. The spectra are plotted on a logarithmic scale with an offset to each other
for clarity. The cavity mode is labeled Ecav. The inset shows a linear spectrum of the system for
an excitation power density of PQD

sat . b Integrated intensity of the cavity mode (green) and the QD
(blue) as a function of excitation power density. Black solid lines represent power-law fits to the
emission data. The solid red line depicts the intensity of the cavity mode emission calculated from
theory. To connect the theoretical pump rate with the experimental power density, the red curve
has been shifted along the power axis to ensure that the calculated exciton saturation coincides
with PQD

sat . c Second oder correlation g
(2)(0) as function of the excitation power density. The colors

represent three different cavity mode energies. The solid green line has been obtained from the
microscopic model (color figure online)

carrier configurations becomes quite large, and their Coulomb interaction results in
many closely spaced multiexcitonic transitions. When a QD is excited with multiple
carriers, the subsequent relaxation dynamics of the carriers into a quasi-equilibrium
state usually involves transitions between multiple configurations, and due to the
Coulomb-configuration interaction, these configurations are associated with largely
varyingmulti-exciton energies, which are then passed through the relaxation process.
As soon as one of these configuration energies overlaps with the cavity mode, a
Purcell-enhanced photon emission [63, 108, 109] can take place at larger detunings
from the ground-state exciton. It is due to these transitions that lasing is possible
even if the discrete ground-state excitons of the four QDs visible in the lower spectra
in Fig. 1.13a are detuned from the mode by up to 17meV.

The input-output characteristics at the cavity energy shows a slight superlinear
increase for excitation-power densities and appears simultaneously with the satura-
tion of the QD ground-state exciton, when multi-exciton states become increasingly
populatedwith significant probability, see Fig. 1.13b. For all detunings between emit-
ter transitions and mode, a clear transition from the spontaneous-emission regime
with g(2)(0) > 1 to coherent lasing with g(2)(0) = 1 is observed with increasing
excitation-power density, see Fig. 1.13c. Thus, in this example, the absolute energies



1 Theory of Quantum Light Sources and Cavity-QED Emitters … 27

of QD-transitions and cavity mode are of limited importance for the operation of the
nanolaser.

To study the interplay of QD many-particle states and the resulting coupling
to the cavity mode, we have solved the von Neumann-Lindblad equation for the
system of four QDs and the quantized field of the cavity. Due to the large state
space, calculations can only be performed for a subset of the QD many-particle
configurations. When one of the excited configurations is in resonance with the
cavitymode, we obtain results for themean photon number similar to the experiment.
Moreover, it turns out that in order to simultaneously describe the experimental results
for intensity and g(2)(0), we need to assume that two of the excited configurations
are resonant with the cavity mode. When performing independent configuration-
interaction calculations for multi-exciton states, even for small QDs with a limited
number of single-particle states, we find a very large number of excitedmulti-exciton
states with largely varying configuration energies corresponding, e.g., to two or three
electron-hole pairs (3X and 2X). Hence we assume that from each of the transitions
within the manifold 3X∗ → 2X∗ and 2X∗ → 1X∗, one is resonant with the cavity
mode. Here X∗ represents an excited exciton state.

The theoretical results for the mean photon number and photon autocorrelation
function are added as solid lines in Fig. 1.13b, c. Interestingly, in the low-excitation
regime values up to g(2)(0) = 2.7 are observed. From the theoretical model, we can
attribute this enhanced probability of two- and multiple-photon emission events to
two effects: One is the presence of competing resonant emission channels for each
QD emitter, allowing for the simultaneous emission of photons into the mode. The
second results from strong radiative coupling between different emitters associated
with the effect of superradiance. This effect has been predicted in [110, 111] for QD
nanolasers under continuous-wave excitation, and experimental proof in a system
under pulsed excitation will be discussed in Sect. 1.5.

1.4.3 Coulomb-Assisted Non-resonant Coupling

In addition to the contributions from multi-exciton states, the role of the interaction
with the delocalized states was recognized [109] and Coulomb hybridization of QD
bound states with the delocalized states was demonstrated [112, 113]. In fact, carriers
in the delocalized states can act as a thermal bath, which is able to compensate for the
energy mismatch between a QD transition and the cavity resonance via Auger-like
processes. This is an alternativemechanism to the Coulomb configuration interaction
between carriers [109], as the Coulomb interaction involves other carriers outside of
the QD. Importantly, its effect in opening a kinetic channel is present even for QDs
hosting very few confined states, and holds even for a QD with single electron and
hole levels.

To describe thismechanism,we start from theHamiltonian containing the Jaynes–
Cummings (JC) part for the interaction of the QD exciton with photons of the
cavity mode as well as the Coulomb part for the interaction between QD and
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delocalized states. Two different techniques can be used to formally eliminate either
(i) the exciton-photon or (ii) the Coulomb interaction part from the Hamiltonian.
Specifically, in (i) the Schrieffer-Wolff transformation [78, 102] can be used that
amounts to a perturbative diagonalization of the JC interaction part. The delocalized
states remain unchanged, and theCoulomb interaction is felt by the photon subsystem
due to the dressing of the QD states with the JC interaction.

A second approach considers a different scenario, in which the carrier-bath inter-
action is partly diagonalized and was used in Sect. 1.4.1 for the treatment of the
phonon-assisted coupling. In [114] we extend the procedure to the case of the fermi-
onic bath of carriers in delocalized states. The model is not exactly soluble but can
be handled diagrammatically. The major difference to the first approach is that now
the bath adapts itself to the presence or absence of the exciton.

A qualitative discussion can already be obtained within the Schrieffer-Wolff
approach (SWA). Using this formalism, we obtain an effective JC interaction Hamil-
tonian

H ′
int,SWA = − g

Δ
W (b† X + b X†) (1.17)

that describes transitions between the QD exciton and the cavity photons, assisted by
theCoulomb interactionwith carriers in delocalized states.We consider the fermionic
reservoir as being stationary and in thermal equilibrium and obtain Lindblad terms,
Lb†X and Lb X† , with rates given by

γb†X = 2π
g2

Δ2

∑

λ,k,k′

∣∣W λ
k,k′

∣∣2 f λ
k (1 − f λ

k′) δ(Δ + ελ
k − ελ

k′) . (1.18)

Here, the occupancies f λ
k are Fermi functions describing the carrier population of

electrons and holes (λ = e, h) in the delocalized states. Similarly, γb X† follows by
changingΔ to−Δ. In Fig. 1.14we show results for theCoulomb-assisted feeding rate
as a function of detuning. With increasing density n of carriers in delocalized states
additional scattering channels can compensate for the energetic mismatchΔ between
exciton and cavity, which leads to an increasing feeding rate. For comparison, we
show the spontaneous emission rate caused by the JC coupling alone for typical
QD-cavity parameter. At low carrier density, Coulomb assisted cavity feeding is
negligible in comparison to the spontaneous emission rate, which is in agreement
with previous experiments performed under low excitation condition [94, 97], in
which only phonon signatures were found. However, for sufficiently high carrier
densities (n > 1010/cm2) Coulomb assisted processes prevail even at large detuning
and lead to a significant cavity feeding that is one order of magnitude stronger in
comparison to the JC coupling alone.

Finally, we find a significant reduction of the off-resonant cavity feeding, if the
wave functions for electrons and holes are similar (lines without dots). The reason is a
large degree of compensation between the electrostatic (Hartree) Coulomb integrals
contributing to (1.18). For identical electron and hole wave functions, the exciton
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Fig. 1.14 Cavity-feeding rate for a non-resonant QD coupled to the continuum of delocalized
states at a temperature of 77K obtained by using the SWA. We vary the carrier density in the
delocalized states n from 108–1012/cm2 and consider electron and hole envelopes that are equal
(lines without dots) or differ by a factor of two (lines with dots). In all calculations we use InGaAs
parameters [9] and assume flat lens-shaped QDs. For comparison the spontaneous emission rate is
shown (dotted line) for typical parameters (κ = 0.1/ps, Γ = 0.01/ps, P = 0.1/ps). Note that the
rates are normalized to the square of the light-matter coupling strength

is not only globally but also locally neutral and there is no electrostatic interaction
between the exciton and the carriers in the delocalized states. Classically, the system
and the bath become uncoupled, only the exchange interaction is left. This points
to an intrinsic difference between interband cavity assisted feeding and intraband
scattering processes: In the latter case, electrons and holes can scatter independently,
while in the former case the emission of a photon requires the presence of an exciton,
i.e., a fully correlated electron-hole pair. As a consequence, any formalism describing
the off-resonant cavity feeding, which relies on an interaction of Coulombian origin,
like Auger interaction between the QD and carriers in delocalized states, or Fröhlich
interaction of QD carriers with LO phonons, must obey a local neutrality condi-
tion: for locally neutral excitons and discarding the exchange terms the off-resonant
process should vanish exactly.

1.5 Superradiant Emitter Coupling of Quantum
Dots in Optical Resonators

In a conventional laser, the below-threshold spontaneous emission stems from inde-
pendent emitters while the above-threshold stimulated emission – within a classical
picture – results from a phase synchronization of the emitters with the radiation
field. In terms of a quantum mechanical picture, the de-excitation of the active mate-
rial, in semiconductors due to the recombination of electron-hole-pairs, is linked to
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photon generation in a way, that the expectation value 〈b†σ−
i 〉 has a finite value.

Here σ−
i = v†i ci represents a microscopic polarization due to the de-excitation of the

emitter i . v†i denotes a creation operator for a valence electron and ci an annihila-
tion operator for a conduction electron in the i-th QD. For independent emitters, the
total emission rate is simply the sum of contributions from independent emitters, and
quantum mechanical correlations are absent between the microscopic polarizations
of different emitters. This is the typical situation for the above-threshold emission
of conventional lasers. The phenomenon of radiative emitter coupling leads to the
existence of correlations of the form 〈σ+

j σ−
i 〉 between the polarizations of different

emitters i and j . The emitter i looses an excitation at the cost of adding an excitation
in emitter j without changing the photon number in the system. Such a correlation
can be driven by the exchange of a photon between the emitters. It leads to the
phenomenon of superradiance, for which the emission rate of the ensemble can be
enhanced or inhibited in comparison to independent emitters. For the latter effect,
the term “subradiant emission regime” is also used.

Since the prediction of superradiance by Dicke in 1954, the effect has been exten-
sively studied in a variety of systems [115, 116] including semiconductor QDs [117,
118]. In most cases the demonstration of superradiance relies on macroscopic emis-
sion properties, where the time-resolved intensity or emission linewidth changes in
comparison to individual emitters. Most prominent is the transition from the expo-
nential decay of independent emitters to a superradiant pulse for correlated emitters
[115], even though most experiments resort to decay-time changes as function of the
emitter number. The recent interest in superradiance of superconducting qubits [119],
trapped atoms [120], and semiconductor magneto-plasmas [121] was motivated by
the prospects to study directly the correlated state of the active material.

In this chapter, we demonstrate the influence of radiative emitter coupling, which
leads to electronic correlations among different emitters, on the emission properties
of QDs in optical resonators. We find a clear influence on the time-resolved emission
(the occurrence of a superradiant pulse) as well as on the emission intensity. Espe-
cially at low excitation, dipole anti-correlations between pairs of emitters lead to
“excitation trapping” in the so-called subradiant regime. As a consequence, we iden-
tify modified characteristic properties of nanolasers that exhibit radiative coupling
effects, such as a non-constant β factor that reduces strongly in the low-excitation
regime. Furthermore, electronic correlations have a direct influence on the statistical
properties of the emitted photons. The effect of super-bunching has been predicted
in [122, 123] and was recently demonstrated in direct comparison between theory
and experiment in [6, 124].

In this section we consider cavity-QED lasers that operate with self-organized
semiconductor QDs within a resonator acting as gain material. The QDs are excited
by optical pumping and for the subsequent emission, the time-resolved and time-
integrated intensity are analyzed. To characterize the statistical properties of the
emission, the second-order photon correlation function g(2)(τ = 0) is used (cf.
Sect. 1.1.2). For the latter, a comparison of different emission regimes is presented in
Fig. 1.15. In particular, a value of g(2) > 2 is indicative for radiative coupling (case
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Fig. 1.15 Illustration of emission regimes. a Spontaneous recombination from independent emit-
ters leads to thermal radiation. b Using three-dimensional photon confinement in a cavity-quantum
electrodynamics laser, spontaneous emission is directed into a single resonator mode. For indepen-
dent emitters, below threshold the photon emission is uncorrelated, producing thermal or close to
thermal light. c The exchange of photons introduces correlations between the electronic states of
different emitters. A relative phase information φ is spontaneously established, and the emission
from this entangled many-particle state leads to a superradiant pulse with giant photon bunching.
d Above threshold, stimulated emission dominates and leads to coherent radiation

c) between distant emitters [110, 122, 123]. In atomic systems, inhomogeneous
distributions of the emitter energies and light-matter couplings have a strong detri-
mental effect on the radiative emitter coupling. For self-organized semiconductor
QDs, the role of inhomogeneous broadening is substantially mitigated by the effect
of non-resonant QD-cavity coupling discussed in the previous paragraph. It involves
the ability to efficiently couple slightly detuned QDs to the cavity mode. Hence the
cavity serves a two-fold purpose. It provides a channel for efficient photon exchange
between emitters, which drives the inter-emitter correlations, and it enhances the
coupling of slightly off-resonant emitters.

For the theoretical description of such a system, two options are available. When
considering a small number of emitters, typically less than 10, a direct numerical
solution of the von Neumann-Lindblad equation can be used [4–6, 122, 123]. This
method has the advantage, that the full quantumdynamics of the coupled emitters and
cavity-field system can be described. As a result, the density matrix of this system is
available. It includes all existing quantum correlations and facilitates the calculation
of various correlation functions. The drawback is, that only a small number of emitters
can be included and each emitter is often only represented by a two-level system [122,
123, 125] or with few electronic configurations [4–6], since otherwise the Hilbert
space (and the resulting dimension of the density matrix) becomes too large for a
direct numerical solution. To describe larger systems, such as QD-ensemble lasers
consisting of hundreds of emitters, the equation-of-motion technique can be used. By
means of the cluster-expansion technique, a closed set of equations can be derived
to include quantum correlations up to a given order, see Sect. 1.1.1. In [110, 124],
a closed set of equations has been derived that contains inter-emitter correlations of
the type 〈σ+

j σ−
i 〉, and the resulting changes in the cavity photon number 〈b†b〉 and

in the second-order photon correlation function g(2)(τ = 0).
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Fig. 1.16 Time evolution of the intensity autocorrelation function g(2)(τ = 0, t) (top) and mean
photon number (bottom) after pulsed excitation of a nanolaser with various pump-pulse areas
P . Different curves correspond to below-threshold excitation (P = 0.05), the transition region
(P = 0.1 and 0.15), and above-threshold excitation (P = 0.3 and 0.45). In the left part, superradiant
coupling between different quantum dots is included, while in the right part it is omitted

Figures1.16 and 1.17 show results of such a theory for a QD nanolaser work-
ing with 200 QD emitters within an optical resonator (cavity photon decay rate
κ = 0.4ps−1, coupling rate between QDs and cavity mode g = 0.1ps−1, spontaneous
emission rate into other modes γnl = 0.005ps−1). In Fig. 1.16, the time evolution
of the mean photon number and second-order photon correlation function are com-
paredwith (left part) andwithout (right part) superradiant coupling. In the presence of
superradiant coupling, even for weak pump rates a short output pulse is obtained with
a temporal width of about 20ps, which is much shorter than the spontaneous lifetime
of individual emitters in the cavity (about 200ps). At the same time, g(2)(τ = 0, t)
is about 2 during the pulse maximum, indicating that the short pulse width is not
linked to stimulated emission. Values for g(2)(τ = 0, t) larger than 2 before and
in particular after the pulse maximum are signatures of radiative emitter coupling.
When omitting the radiative emitter coupling in the theory, g(2)(τ = 0, t) remains 2
for weak pumping and the time-resolved emission shows a much slower exponential
decay with the typical Purcell-enhanced lifetime of individual emitters (see also the
left panel in Fig. 1.17). For stronger pump pulses, the system is driven above the
laser threshold and a stimulated emission pulse can be identified with g(2)(τ = 0, t)
reaching a value of 1 during the pulse maximum. In this regime, the difference in the
theoretical results with and without radiative emitter coupling becomes small, which
indicates that stimulated emission dominates the photon generation and suppresses
the role of inter-emitter correlations.

For the pulsed optical excitation discussed in the above examples, the time-
integrated output intensity versus pump pulse area is shown in the right part of
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Fig. 1.17 Calculated time evolution of the cavity mean photon number after pulsed optical exci-
tation for weak pumping (left) and time integrated output intensity versus pump-pulse area (right).
Results including superradiant coupling of the emitters (solid lines) are compared to those for inde-
pendent emitters (dashed lines). As indicated in the right panel, a stronger spontaneous emission
rate into non-lasing modes γnl decreases the threshold modification due to superradiant coupling
but corroborates the robustness of the effect. The inset confirms the presence of the threshold kink
in the experiment despite a large β-factor as an indication of excitation trapping due to superradiant
emitter coupling

Fig. 1.17. When comparing results with (solid lines) and without (dashed lines)
superradiant coupling, a dramatic reduction of the output intensity for weak and
intermediate pump rates is evident. In this regime, photons emitted into the cavity
mode from theQDs are reabsorbed by other QDs in away that inter-QD polarizations
of the form 〈σ+

j σ−
i 〉 are driven. These inter-QD polarizations exist in addition to the

photon-assisted polarization 〈b†σ−
i 〉. The build-up of the former clearly reduces the

photon number in the cavity mode. On the other hand, above the laser threshold,
when stimulated emission is present, the role of radiative emitter coupling is small.
The combination of these two observations leads to a larger jump in the input-output
curve at the laser threshold [110, 124]. In the standard rate-equation laser theory, this
jump is solely determined by the β factor [126], which quantifies the fraction of the
total spontaneous emission that is directed into the laser mode. From a rate-equation
model it is found that β is solely determined by the relation of the rates associated
with emission into the laser mode γl and into non-lasingmodes or other loss channels
γnl, i.e.,β = γl/(γl + γnl) [127]. Correspondingly, for cavity-QED lasers theβ factor
is frequently estimated from the jump in the input-output curve. Our results demon-
strate that in the presence of radiative coupling this strongly underestimates the value
for β. Furthermore, without superradiant coupling a larger γnl leads to a larger kink
as the β factor increases. Our calculation including radiative coupling leads to a
smaller kink, as a larger γnl causes a reduction (damping) of inter-QD polarizations,
thereby reducing the associated excitation trapping (right panel of Fig. 1.17).
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Fig. 1.18 (Red curve) pump-rate dependentβ-factor obtained from the theoreticalmodel with para-
meters applicable to experimentally studied system. (Black curve) calculation suppressing radiative
coupling effects between emitters that are responsible for sub- and superradiant effects. Comparing
both curves reveals that radiative coupling effects lead to a strong inhibition of spontaneous emis-
sion at low excitation (subradiance) and a slight enhancement of spontaneous emission above the
laser threshold (superradiance)

This behavior actually raises the question whether a constant β factor is suited to
characterize QD nanolasers that, due to the strong mode confinement, are likely to
facilitate the formation of inter-emitter correlations by the light field. In the following,
we suggest the idea of introducing a pump-rate dependent factor β(P) that accounts
for a reduction of the spontaneous emission rate due to excitation trapping, as well as
for the interplay of different multi-exciton configurations and apply it to the few-QD
nanolaser system discussed in the context of Fig. 1.13.

We first discuss the result for the pump-rate dependent β(P) factor without the
effects of radiative coupling, shown by the black curve in Fig. 1.18. The asymptotic
values at low (β(P) > 90%) and high excitation (β(P) ≈ 50%) reflect the conven-
tional constant β factor associated with the multi-exciton transitions that dominate
at low and high excitation. In between, a transition is seen as the system switches
between multi-excitonic emission channels from different manifolds, cf. Sect. 1.4.2.
To provide insight into the role of the radiative coupling in our system, the red curve
shows the pump-rate dependent β(P) factor calculated including correlations due to
radiative coupling. In the low-excitation regime, where the super-thermal bunching
is observed in g(2)(0) (Fig. 1.13c), inter-emitter coupling leads to a strong inhibition
of the spontaneous emission rate resulting in β(P) = 50% instead of 90%. Thereby
β(P) reflects the photon-trapping effect discussed above.

In summary, radiative emitter coupling can influence classical emission properties
like the intensity and its temporal evolution, but also the statistical properties of the
light emission. The effects of inter-emitter coupling is most prominent in the sponta-
neous emission regime, but can also play a role in few-emitter lasers,where stimulated
emission is weak. Accounting for radiative coupling effects in cavity-QED lasers can
strongly modify the device characteristics and be of paramount importance for the
correct identification of system parameters, opening up new research directions in
cavity-QED nanolasers.
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1.6 Summary and Outlook

Advances in the quantum information technologies have created a demand for fast,
efficient, and integrable sources of non-classical light. Solid-state emitters are a
promising platform, and quantum-dot systems have reached a technological maturity
that permits a high level of control over their emission properties, beginning by
tailoring the emission wavelength via material and growth design, but also altering
spontaneous emission itself by using cavity-QEDeffects inmicrocavities. As a result,
nearly many imaginable states of the light field can be realized with single or few-QD
systems, from single-photon Fock-states to intense highly-bunched super-thermal
light.

Theoretical models play an important role in the design of new devices, the def-
inition of achievable specifications, and the exploration of new applications not yet
thought of. Unlike atomic systems, QDs are not isolated but are embedded semicon-
ductor systems. Theoretical modelling must combine quantum-optics with semicon-
ductor physics. This chapter has given an overview over the constituents of such a
theory and possible methods using examples from different applications.

The sophistication of technological possibilities will lead to even more advanced
realizations of solid-state cavity-QED systems in the future. New materials such
as two-dimensional semiconductors based on transition-metal dichalcogenides hold
great promise for exploring excitonic effects up to room temperature. Individual cav-
ities can already be combined to cavity arrays, so-called Jaynes–Cummings lattices,
in which many-body systems such as the Bose–Hubbard model become realized.
The potential of such systems for the quantum-information technologies is largely
unexplored.
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Chapter 2
Theory of Phonon Dressed Light-Matter
Interactions and Resonance Fluorescence
in Quantum Dot Cavity Systems

Kaushik Roy-Choudhury and Stephen Hughes

Abstract Electron-phonon coupling in semiconductor quantum dots plays a signif-
icant role in determining the optical properties of excited electron-hole pairs. This
chapter describes the theory of phonon modified light-matter interactions, with a
focus on the polaronmaster equation approach for open quantum systems. The theory
is applied to study various light-matter interaction regimes and emerging experiments
in the presence of electron–acoustic-phonon scattering, including phonon-modified
vacuum Rabi splitting, spontaneous emission, off-resonance cavity feeding, photo-
luminescence intensity, and field-driven Mollow triplets.

2.1 Introduction

Quantum dots (QDs) as “artificial atoms” are excellent candidates for solid-state
quantum bits and show promise for scalable quantum information processing at
optical frequencies [1, 2]. However, QD excitons are intrinsically coupled to the
underlying phonon “reservoir” [3], which can significantly reduce their coherence
time on short time scales and open up interaction processes that are unique to the
solid state system. In recent years, phonon dressing of semiconductor QD emission
has manifested itself in a number of interesting experimental observations, includ-
ing phonon-assisted inversion [4–10], damping and frequency shifting of driven
Rabi oscillations [11–13] and excitation induced dephasing of Mollow triplet side-
bands [14, 15], which distinguishes QDs from simple two-level atoms [16].

Over the past decade or so, various theories have been developed to incorpo-
rate electron-scattering processes in describing optically excited QDs [17, 18].
These include the independent Boson model (IBM) [3, 19, 20], cumulant expan-
sion [21], correlation expansion [11], perturbative master equations (MEs) [22],
polaron MEs [23–27], variational MEs [28] and path integral calculations [29]. In
optical cavity structures, one can also couple the photonic environment to the QD,
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exploiting such phenomena such as the Purcell effect [30], where the spontaneous
emission (SE) rate of QD excitons is increased through an increased local density
of photon states (LDOS), e.g., by coupling to a cavity mode [1, 31] or a slow-light
waveguide mode [32–37]. In photonic crystal (PC) structures, one can also sup-
press the SE by coupling embedded QDs to a reduced LDOS within the photonic
bandgap [38]; two example cavity structures or structured photonic reservoirs are
shown schematically in Fig. 2.1a, b. Collective phonon coupling also affects howQDs
couple to the photonic cavity structure, resulting in a complex interplay between the
phonon coupling and the photon reservoir coupling. For example, in high-Q cavity
structures, where Q is the quality factor, there are additional phonon-mediated scat-
tering effects that can occur, including phonon-dressed vacuum Rabi splitting [39,
40] (which causes an asymmetry and a reduction of the Rabi field), and phonon-
assisted cavity feeding [26, 40–46] (where a strong cavity mode appears even when
far detuned from the exciton), which are now routinely measured experimentally.

One of the most useful approaches for modelling light-matter interactions in
open quantum systems is through a quantum master equation (ME), where system-
reservoir coupling can be treated in a controlled way. Coupled with a polaron trans-
form (described below), where certain electron-phonon interactions are treated non-
perturbatively, this facilitates a powerful starting point for modelling QD exciton
processes in the presence of phonon and photon reservoir coupling. In this chapter
we discuss the background theory underlying the polaron ME approaches and we
apply the theory to several examples of phonon dressed light-matter interactions for
QD cavity systems. We focus mainly on the underlying optical physics, with a brief
connection to some applications which are presented in more detail in other chapters
of this book.

2.2 General Theory for a Single QD Exciton
with Exciton-Phonon and Exciton-Photon Interactions

2.2.1 Polaron Master Equation for a QD Exciton
in a General Photonic Reservoir

Let us first consider a single neutral QD exciton (strong confinement limit, sin-
gle electron-hole pair) that is modelled as a two-level system coupled to a photon
reservoir and a phonon reservoir described by quantum field operators f(r,ω, t) and
lowering operator bq , respectively (see Fig. 2.1c). Such a simple two-level approxi-
mation is valid for small epitaxial QDs (e.g., self-assembled InGaAs/GaAsQDs), in a
restricted frequency regime of interest. Although real QDs have many exciton levels
over a broad band of frequencies, the one exciton model has successfully explained
a number of experiments when probing single exciton dynamics, e.g., see [12, 16,
48–50]; in addition, one can extend such an approach to include other exciton lev-
els [51, 52]. For example, Hargart et al. [53] has recently employed the polaronic
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(a) (b)

(c)

Fig. 2.1 Schematic of two optical cavity systems containing a quantum dot and an example
energy level diagram used for some of the modelling. a, b Two selected QD-cavity schematics
showing a QD in a structured photonic reservoir, including a photonic microcavity (a) and a PC
waveguide (b). Although we show a semiconductor PC platform here, a wide variety of semicon-
ductor cavity systems can be used here including the micropillar cavities. c Example energy level
diagram for a single neutral QD exciton (electron-hole pair) interacting with a phonon bath and a
photon bath. The operator f†k (b†q ) creates a photon (phonon). Figure adapted from in [47]

approach to derive a ME for describing the biexciton-exciton cascade in a QD cou-
pled to a micropillar cavity, and used this model to successfully explain complex
double-field-dressing experiments [53].

In a frame rotating at the frequency of the QD resonance frequency (ωx ), the
coupled QD-phonon-photon system is described by the following Hamiltonian [47]:

H = �

∫
dr

∫ ∞

0
dω f†(r,ω, t)f(r,ω, t)

−
[
σ+eiωx t

∫ ∞

0
dω d · E+(rd ,ω, t) + H.c.

]

+
∑
q

�ωqb
†
qbq + σ+σ− ∑

q

�λq(b
†
q + bq), (2.1)

where the lowering operator σ− describes a transition between the QD states |e〉
and |g〉, separated in frequency by ωx , and the photon reservoir is described by
the field operators f(r,ω, t), which are continuous in frequency ω and satisfy
the Boson commutation rules. We have also applied a dipole and rotating wave
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approximation to describe coupling between the QD and the photon reservoir (sec-
ond term in (2.1)). In the absence of photon interactions we recover the IBM [20],
which models a reservoir of harmonic oscillator states coupled to a two-level
system (last two terms in (2.1)). We consider a QD of dipole moment d to be
located at some spatial position rd , and the exciton-phonon coupling strength λq

is assumed to be real [24]. The positive frequency component of the electric field
operator E+(rd ,ω, t) can be expressed in terms of the electric-field Green func-

tion G(r, r′;ω) as E+(r,ω, t) = i
∫
dr′G(r, r′;ω)

√
�

πε0
εI(r′,ω)f(r′,ω, t) [54]; in a

medium described by the dielectric constant ε(r,ω) = εR(r,ω) + iεI(r,ω),G(r, r′)
connects to the photon reservoir and is the solution to Maxwell equations at r to
a point dipole oscillating at r′ (without any QD coupling). It should be noted that
this expression for the electric field operator is quite general and fully satisfies the
Kramers–Krönig relations in a general photonic medium including plasmonic struc-
tures [55].

We nowpresent a derivation of the photon-reservoir polaronME [47], and perform
a polaron transform on the Hamiltonian in (2.1). This unitary transform includes
phonons to all orders and also puts theHamiltonian in an easier form to apply system-
reservoir theory and perturbation theory, with polaron-shifted interaction terms. We
are basically employing a convenient basis change using a unitary transform inwhich
the bath-modified exciton becomes the polaronic quasiparticle. In this way, we fully
recover the IBM without photon reservoir interactions and can include additional
processes that give rise to the zero phonon line (ZPL), e.g., caused by effects such
as spectral diffusion [56] and random charging effects [57] of the QD due to trapped
carriers and electron-hole pairs.

Formally, the polaron transformation is given by H ′ → eP He−P , where
P = σ+σ− ∑

q
λq

ωq
(b†q − bq) [23], which yields a polaron-transformed Hamiltonian,

H ′ = �

∫
dr

∫ ∞

0
dω f†(r,ω, t)f(r,ω, t) +

∑
q

�ωqb
†
qbq ,

−
[
B+σ+eiω

′
x t

∫ ∞

0
dω d · E+(rd ,ω, t) + H.c.

]
, (2.2)

where B± = exp[±∑
q

λq

ωq
(bq − b†q)] are the coherent phonon bath displacement

operators [23]. The polaron shift, ΔP = ∫ ∞
0 dω

Jpn(ω)

ω
, is caused by a bath-induced

frequency shift and below we will assume this factor is absorbed in the polaron-
shifted frequency of the QD, defined by ω′

x (= ωx − ΔP ). In the continuum limit,
the phonon coupling is determined by the phonon spectral function Jpn(ω) [58]. The
deformation potential coupling with longitudinal acoustic (LA) phonons plays the
strongest role QDs [11, 12, 14, 16, 19, 42] and coupling to longitudinal optical
(LO) phonons is ignored here [59, 60]. The resultant phonon sidebands span a fre-
quency range of ≈±5meV around the s-shell transition of interest (for example)
which is assumed smaller than the energetic separation between s-shell and p-shell
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transitions (≈25meV) [16]. We assume bulk phonon interactions, and the expres-
sion for phonon coupling λq for deformation potential coupling to LA phonons is

λq =
√

�ωq

2ρdc2s V
D
�
e
− ω2

4ω2b [61], where ρd is the material density, V is the material vol-
ume, cs is the sound velocity, D = Dval − Dcon is the difference in deformation
potential between the valence and conduction bands and ωb is the phonon cut-off
frequency determined by the confinement length of the electron. The sum over the
discrete phonon modes λq can be converted into an integral using the phonon den-
sity of states, D(ω) = V

(2π)3
4πω2

c3s
, which allows us to introduce the continuous phonon

spectral function, Jpn(ω) = αpω
3e

− ω2

2ω2b with the phonon couplingαp = D2

4π2�c5s ρd
[58].

For polaron cavity-QED and polaron reservoir ME approaches, we use the contin-
uum form of the phonon spectral function Jpn(ω) and with parameters for InAs QDs,
withαp/(2π)2 = 0.06 ps2 andωb = 1meV (unless stated otherwise), consistent with
experiments [16]. Generally, we have found that the precise value of these phonon
parameters will not change any of the qualitative findings below, and they can be
used for fitting experiments on a particular QD (as we also do below).

If a weak interaction between the QD and the photon reservoir is assumed, a ME
for the QD reduced density matrix ρ can be derived by retaining terms up to second
order in the polaron-shifted interaction Hamiltonian, H ′

I = −[B+σ+eiω′
x t

∫ ∞
0 dω d ·

E+(rd ,ω, t) + H.c.]. The time convolutionless [62]—or time-local—interaction
picture ME is then

∂ρ̃(t)

∂t
= − 1

�2

∫ t

0
dτTrRphTrRpn{[H̃ ′

I(t), [H̃ ′
I(t − τ ), ρ̃(t)ρR]]}, (2.3)

where the Hamiltonian terms H̃ ′
I(t) = exp[i H ′

Rt/�]H ′
I exp[−i H ′

Rt/�] and H ′
R =

�
∫
dr

∫ ∞
0 dω f†(r,ω, t)f(r,ω, t) + ∑

q �ωqb†qbq . The trace operators TrRph and
TrRpn denote a trace over the photon and phonon reservoirs, which are statisti-
cally independent with ρR = ρRphρRpn [63]. The trace over the photon reservoir [64,
65] assumes thermal equilibrium and use the relations, TrRph[f(r,ω), f†(r′,ω′)] =
[ñ(ω) + 1]δ(r − r′)δ(ω − ω′) and TrRph[f†(r,ω), f(r′,ω′)] = ñ(ω)δ(r − r′)δ(ω −
ω′) where ñ(ω) ≈ 0, which is valid for optical frequencies. For the problem of
phonon-modified spontaneous emission, the final form of the polaron reservoir ME
in the Schrödinger picture [47] and Markov limit (t → ∞ in the integral of (2.3)) is

dρ

dt
= γ̃

2
L(σ−) − iΔLamb[σ+σ−, ρ], (2.4)

where L(O) = 2OρO† − O†Oρ − ρO†O is the Lindblad operator [63], and the SE
rate (the tilde indicates that it has been modified by phonon coupling) of the QD into
the structured reservoir [47, 65] is derived to be
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γ̃ = 2
∫ ∞

0
Re[Cpn(τ )Jph(τ )]dτ , (2.5)

while the QD Lamb shift is ΔLamb = ∫ ∞
0 Im[Cpn(τ )Jph(τ )]dτ . Thus the resulting

SE rate and the Lamb shift display an interplay between photon and phonon bath
dynamics, where Jph(τ ) and Cpn(τ ) are the photon and the phonon bath correlation
functions, respectively. This means that phonon coupling influences the SE decay,
depending upon the dynamics of the photon and phonon reservoir functions.

The photon bath correlation function is defined as Jph(τ ) = ∫ ∞
0 dω

Jph(ω)ei(ω
′
x−ω)τ , where the photon reservoir spectral function is

Jph(ω) = d · Im[G(rd , rd;ω)] · d
π�ε0

, (2.6)

which is directly related to the photon Green function and projected LDOS. The
phonon correlation function is defined from

Cpn(τ ) = e[φ(τ )−φ(0)], (2.7)

where the IBM phase function is

φ(t) =
∫ ∞

0
dω

Jpn(ω)

ω2

[
coth

(
�ω

2kBT

)
cos(ωt) − i sin(ωt)

]
, (2.8)

which includes a sum over multiple phonon emission and absorption processes.
Note that the SE rate γ̃ in general includes contributions from photonic LDOS

values at frequencies different from the ZPL frequency of the QD (where ω = ω′
x ).

Such non-local frequency-coupling effects for the SE is caused by a breakdown of
Fermi’s golden rule (even for weakly coupled photonic systems), which depends
on the relative correlation times of both photon and phonon reservoirs [47]. Note
that (2.5) is broadly applicable irrespective of the specific structure of the photon
reservoir. However, this polaron reservoir ME approach is naturally restricted to
weak-to-intermediate coupling between the QD and the photon reservoir, and it
cannot treat effects such as the strong coupling regime (e.g., vacuum Rabi spitting).
To treat the strong coupling regime of quantum optics, e.g., for a high-Q cavity, one
can include a cavity photon operator at the level of a system operator which requires
a different (but similar) approach based on the polaron cavity-QEDME, that we will
also describe below.

2.2.2 Spectrum Definitions

The incoherent emission spectrum of a QD coupled to a structured photonic reservoir
at a point detector at position rD is given by [66]
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SG(rD,ω) = 〈(E+(rD,ω))† E+(rD,ω)〉, (2.9)

where E+(rD,ω) = ∫ ∞
0 dteiωtE+(rD, t) is the Laplace transform of the positive

frequency component of the electric field operator E(rD, t), defined as

E(rD, t) = E+(rD, t) + E−(rD, t) =
∫ ∞

0
dω′[E+(rD,ω′, t) + E−(rD,ω′, t)]

= i
∫ ∞

0
dω′

∫
dr′G(rD, r′;ω′)

√
�

πε0
εI (r′,ω′)f(r′,ω′, t) + H.c. (2.10)

In the frequency domain,

E+(rD,ω) = i
∫ ∞

0
dω′

∫
dr′G(rD, r′;ω′)

√
�

πε0
εI (r′,ω′)f(r′,ω′,ω). (2.11)

Starting from the original Hamiltonian H in (2.1), the electric field operator can
be expressed in terms of the QD polarization using Laplace transform techniques,
yielding [66]

E(rD,ω) = E0(rD,ω) + G(rD, rd;ω) · dσ−(ω)

ε0
, (2.12)

whereE0 denotes the free-field solution in the absence of aQD scatterer. Themedium
Green functionG(rD, rd;ω) includes all propagation effects [66], including radiative
losses due to structured reservoirs [47]. In the following treatment, we assume that
the Green function mainly accounts for radiative coupling to the structured photonic
reservoir. Any additional radiative losses is thus accounted for by the phenomeno-
logical Lindblad term γ0.

Assuming the initial vacuum state of the photonic reservoir, the incoherent spec-
trum from Green function theory can be derived using (2.9) and (2.12) so that,

S(rD,ω) =
∣∣∣∣G(rD, rd;ω) · d

ε0

∣∣∣∣
2

〈σ+(ω)σ−(ω)〉 = αprop(rD, rd;ω) S0(ω), (2.13)

where S0 = 〈σ+(ω)σ−(ω)〉 is the polarization spectrum and αprop =
1
ε0

|d · G(RD, rd;ω)|2 accounts for light propagation and filtering from the QD
(at rd ) to the detector (at rD). The polarization spectrum is obtained from a
first-order quantum correlation function for the QD operators,

S0(ω) = 〈σ+(ω)σ−(ω)〉 =
∫ ∞

0
dt1

∫ ∞

0
dt2 e

iω(t2−t1)〈σ+(t1)σ
−(t2)〉. (2.14)
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Using a rotating frame at the exciton frequency (ω′
x ), denoting τ = t2 − t1 and taking

the limit of t1 = t → ∞, we derive the steady-state polarization spectrum,

S0(ω) = lim
t→∞Re

[∫ ∞

0
dτ 〈σ+(t + τ )σ−(t)〉ei(ω′

x−ω)τ

]
, (2.15)

which can be calculated, in the usual way, using the ME and the quantum regression
theorem [63].

When calculating the spectrum using a polaronic approach, a transformation is
required to obtain S0 in the lab frame. For example, if σ−

P denotes the QD lower-
ing operator in the polaron frame, then a transformation of the correlation function
(〈σ+

P (t + τ )σ−
P (t)〉) from the polaron to the lab frame,

〈σ+
P (t + τ )σ−

P (t)〉 → 〈σ+(t + τ )B+(t + τ )B−(t)σ−(t)〉, (2.16)

which produces a phase relaxation term eφ(τ ) [58] that accounts for the phonon-
induced pure dephasing of theQD polarization. The overall decay is thus clearly non-
Markovian and this is a major advantage of the polaronic approaches, i.e., although
they use a Born–Markov approximation for the equations of motion, non-Markovian
coupling effects due to the phonon reservoir are captured through the polaron trans-
form (indeed, the approach fully includes the IBM solution), even though the equa-
tions of motion are time local. The final polarization spectrum calculated using the
polaron approach is then

S0(ω) = lim
t→∞Re[

∫ ∞

0
dτ 〈σ+

P (t + τ )σ−
P (t)〉eφ(τ )ei(ω

′
x−ω)τ ]. (2.17)

It is important to note that the main expression for the emission spectrum (2.13)
is exact and is only limited by the approximations made in calculating S0 from the
above theories. Thus no phenomenological input-output formalism is required as the
Green function is already a solution for the scattering problem and the propagation
of light in the medium is fully accounted for.

In the case of a high-Q resonator, the dynamics of the photon reservoir can be
described by a single mode (lowering) operator a in the system Hamiltonian H
(shown later). The damping of the cavity mode to the environment is then described
using the phenomenological decay κ (cavity decay rate). In this case, a calculation
of the reservoir/cavity emitted spectrum can be obtained using

SCMcav (ω) = F(rd, rD)
κ

π
lim
t→∞Re

[∫ ∞

0
dτ 〈a†(t + τ )a(t)〉ei(ω′

x−ω)τ

]
, (2.18)

where F(rd, rD) is a frequency-independent geometrical factor to account for the
propagation from the QD to the detector position. The superscript CM denotes a
"coupled mode" formalism which treats the QD and cavity as coupled modes
and the photonic reservoir in this case is assumed to be described a single
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cavity mode a. The resonance width of the cavity mode determines its damping
rate and any such reservoir effects arising due to finite cavity lifetime is incor-
porated using phenomenological decay terms κ for the cavity operator. Note that
〈a†(t + τ )a(t)〉 = 〈a†P(t + τ )aP(t)〉, so the IBM phase factor does not affect the
dynamics of the cavity-mode two time correlation function, which is valid for a
high-Q resonator. Naturally, this approach is restricted to cavities with a Lorentzian
lineshape, whereas the photonic reservoir theory above can include any arbitrar-
ily shaped LDOS (though is restricted to the weak coupling regime). Having two
different polaronic MEs allows to model various QD photonic systems.

2.3 Phonon-Modified Spontaneous Emission
and the Breakdown of Fermi’s Golden Rule

From the general expression for the SE rate (2.5), it is clear that a dynamical interplay
between the photon and phonon reservoir dynamics can affect the QD SE rate, since
this expression now includes contributions from the photonic LDOS at non-local
frequencies (i.e., ω �= ωx ). In the Markov limit, to obtain a long-time SE decay
rate (t → ∞), the spectral width of the phonon reservoir determines the frequency
bandwidth of the photon reservoir which contributes to the SE rate γ̃ (=γ̃(∞)),
resulting in a breakdown of Fermi’s golden rule for SE. The SE rate without phonon
interaction is given by γ(t) = 2

∫ t
0 Re[Jph(τ )]dτ , [65] and in the Markov limit, then

γ(t → ∞) ∝ LDOS(ωx ), which is the usual result for a two-level atom. The non-
local frequency contribution γ̃nl of the SE rate due to phonon coupling can be clarified
by rewriting (2.5) as follows:

γ̃ = 2
∫ t

0
Re[eφ(τ )−φ(0) Jph(τ )]dτ ,

= 2e−φ(0)
∫ t

0
Re[(eφ(τ ) − 1)Jph(τ ) + Jph(τ )]dτ ,

= γ̃nl + 〈B〉2γ, (2.19)

where 〈B〉2 = e−φ(0) and γ̃nl = 2〈B〉2 ∫ t
0 Re[C ′

pn(τ )Jph(τ )]dτ , where C ′
pn(τ ) =

(eφ(τ ) − 1). Hence in regions where the photonic LDOS is large (e.g., at the peak of a
Lorentzian cavity mode), the renormalized local frequency component 〈B〉2γ domi-
nates, and in regions where the photonic LDOS is small, γ̃nl leads to an enhancement
of the SE rate. The corresponding Lamb shifts, ΔLamb (see (2.5)) are found to be
negligible, and can be safely neglected [58].

To help explain the different between SEdecaywith andwithout phonon coupling,
we define the phonon-mediated SE enhancement factor:

χ = γ̃/γ, (2.20)
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so the phonon-modified Purcell factor is

PF = γ̃/γb, (2.21)

where γb = d2nbω3/(6π�ε0c3) is the SE rate of a QD in the background semicon-
ductor material with refractive index nb.

2.3.1 Lorentzian Cavity

Consider first the stereotypical example of a Lorentzian cavity, where an analytic
expression for the photon bath relaxation function can be obtained by Fourier trans-
forming the photon reservoir spectral function: Jph(ω) = g2 1

π

κ
2

(ω−ωc)2+( κ
2 )2

, where g

is the QD-cavity coupling rate, κ is the cavity decay rate and ωc is the cavity peak
frequency. The corresponding cavity relaxation function is a dampedoscillatory func-
tion. Figure2.2a, c plot the relaxation functions of the phonon and photon baths (for
ωx = ωc), respectively, and Fig. 2.2b, d show the corresponding reservoir spectral
functions. For the cavity parameters chosen, the photon damping time is similar to
the phonon reservoir time and SE rate is expected to have a strong non-local compo-
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Fig. 2.2 Example phonon and photon reservoir functions in time and frequency domains.
Real part of phonon bath relaxation function C ′

pn(t) (a) and phonon reservoir spectral function

C ′
pn(ω) (b) at T= 4 K (solid line) and 40 K (dashed line) for phonon coupling αp/(2π)2 = 0.06ps2

and phonon cutoff frequency, ωb = 1meV. Photon reservoir relaxation function Jph(t) (real part)
(c) and photon reservoir spectral function Jph(ω) (d) for a cavity with decay rate κ = 0.6meV and
ω0 = ωc in (d); this rate corresponds to Q ∼ 2300 at ωc/2π = 1440meV
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(a)

(b)

Fig. 2.3 Purcell factor (a) and SE enhancement factor χ (b) for a simple Lorentzian cavity.
The cavity decay rate is κ = 0.6meV and the QD-cavity coupling g = 0.08meV (weak coupling
regime). The solid dark and light lines show calculations with phonons at T = 4 and 40K, respec-
tively, and the dashed line in (a) is PF without phonon modification of the SE rate (γ). Inset of a
shows a schematic of a QD coupled to a single PC cavity. Figure adapted from [47]

nent γ̃nl. In the frequency domain [67], the spectral widths of the interacting phonon
(Fig. 2.2b) and photon reservoir (Fig. 2.2d) should be comparable to obtain a large
non-local SE rate γ̃nl. It is also clear from Fig. 2.2a, c, that when the relaxation time
τpn of the phonon reservoir is much larger compared to the photon reservoir lifetime
τph (i.e., an unstructured reservoir), phonons do not influence the SE rate [65]; and in
the opposite limit (τph � τpn), phonons simply renormalize the original SE rate by a
mean field value that depends on the temperature (〈B〉2γ) [68]. The renormalization
factor 〈B〉2 decreases with temperature, and for our parameters, 〈B〉 is equal to 0.91,
0.85 and 0.55 for T = 4, 10 and 40 K, respectively.

In Fig. 2.3, we plot the Purcell factor, PF, (a) and the phononmediated SE enhance-
ment factor χ = γ̃/γ (b) for the cavity considered in Fig. 2.2d. The dashed line in
Fig. 2.3a is the PF without phonons. These calculations assume excitation by a weak
resonant drive (ωL = ω′

x ) and show that the SE rate is reduced by phonons near the
LDOS peak and enhanced by phonons away from the LDOS peak, as mentioned in
the discussion following (2.19). These phonon-mediated effects also increase with
temperature as shown the calculations at T = 4 K (dark solid) and 40 K (light solid).
The slight asymmetry of the SEmodificationwith respect to the LDOSpeak is caused
due to unequal phonon emission and absorption at low temperatures [16, 47].
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(a)

(b)

Fig. 2.4 Purcell factor (a) and SE enhancement factor χ (b) for a coupled-cavity waveguide.
The solid lines show calculations with phonons at T= 40 K and the dashed line in (a) is PF without
phononmodification of SE rate (γ) andω0 is the waveguide band-center frequency. Inset of a shows
a schematic of QD coupled to a PC coupled cavity waveguide. Figure adapted from [47]

2.3.2 Slow-Light Coupled-Cavity Waveguide

We next consider a more complex photonic LDOS structure. In Fig. 2.4, we show
calculations of the PF (a) and SE enhancement χ (b) for a slow-light coupled
cavity waveguide [47], known as a CROW structure. The spectral bath function
for the coupled-cavity waveguide can be calculated using an analytic tight-binding

model [69, 70] and is given by, Jph(ω)= −d2ω
2�ε0n2bVeff

1
π
Im

[
1√

(ω−ω̃u)(ω−ω̃∗
l )

]
, where

ω̃u,l = ωu,l ± iκu,l[70] and ωu,l is the waveguide mode-edge frequencies (Fig. 2.4a)
and κu,l are effective damping rates; and Veff is the effective mode volume of a single
cavity of the coupled-cavitywaveguide. The parameters are taken from [71]. As in the
case of the single cavity mode, the phonon-modified PF near the waveguide mode-
edges is strongly dominated by the local component 〈B〉2γ (solid line, Fig. 2.4a) and
is reduced compared to the phonon unmodified PF (dashed line). However away
from the mode-edge and outside the waveguide bandwidth, phonons cause a strong
enhancement of the SE rate. In the case of the waveguide, the spectral width of the
photonic reservoir (∝ PF, Fig. 2.4a) is comparable to that of the phonon reservoir
(Fig. 2.2b) and presents a richer spectral structure compared to a simple cavity. The
SE enhancement is hence much stronger than the case of the cavity, increasing by
orders of magnitude in some frequency regimes. The SE rate is also enhanced inside
the waveguide band, but the enhancement factor is not as large as outside and this
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difference is caused by the asymmetric structure of the mode-edge LDOS compared
to a symmetric Lorentzian cavity [47]. These results demonstrate that phonon cou-
pling can have a significant influence on the SE rate and that phonon interactions
cause Fermi’s golden rule to breakdown in general.

2.4 Independent Boson Model Lineshape with a Broadened
Zero Phonon Line

It is instructive to connect the polaron ME model to the well known IBM model
for linear field excitation, since this is an exactly solvable model for the polarization
phase, where phonon effects are included to all orders. However, the model must
be complimented by processes to broaden the ZPL since the IBM phase factor does
not decay to zero in the long time limit. Nevertheless, the QD background radiative
decay, pure dephasing and incoherent pumping can easily included in the ME. For
example, to obtain the simple linear optical properties of the system, we consider
a QD that is weakly excited by an incoherent pump P [63, 72], which maps on to
a range of typical experiments that are performed to measure the emitted spectrum
for a QD photonic structure [73]. In a ME approach, the incoherent pumping term is
included as a Lindblad operator, P

2 L(σ+), where P is the pump rate; theME can also
include other Lindblad operators to account for additional incoherent processes such
as background spontaneous decay, γ0

2 L(σ−), and QD pure dephasing, γd
2 L(σ+σ−).

Neglecting coupling to a structured photonic reservoir and phonons, these incoherent
processes determine the lineshape of the QD emission spectrum, manifesting in a
simple Lorentzian broadening of the ZPL. The ME with incoherent pumping and

Fig. 2.5 Characteristic
IBM spectral lineshape
plus the zero phonon line.
Normalized QD emission
(polarization) spectrum
(thick orange solid) and
linear absorption spectrum
(thick black dashed) at T = 4
K for a single uncoupled
QD. The red dash-dotted line
denotes the polarization
spectrum SP0 in the polaron
frame. The ZPL parameters
are γ0 = 5 µeV and
γd = 5µeV (pure dephasing
rate). Figure from [74] (color
figure online)
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additional ZPL decay processes then becomes:

dρ

dt
= γ̃

2
L(σ−) − iΔLamb[σ+σ−, ρ] + γ0

2
L(σ−) + γd

2
L(σ+σ−) + P

2
L(σ+).

(2.22)

Numerically it is straightforward to solve the aboveME, andwe solve thisME (and
all the MEs below) using the Quantum Optics Toolbox [75] for Matlab, and in some
cases it is also possible to obtain analytical solutions. Using a weak incoherent pump
field, the resulting emission spectrum (thickorange solid line) is plotted inFig. 2.5 and
shows the appearance of the phonon sidebands arising due to the IBM phase function
φ. The clear asymmetry of the sidebands is due to the fact that phonon emission is
more probable than absorption at low temperatures, so the phonon emission is more
probable on the lower energy side of the ZPL. The Lorentzian ZPL (red dash-dotted
line in Fig. 2.5) corresponds to the polarization spectrum SP0 in the polaron frame.

Similar to Sect. 2.2.2, the QD susceptibility function [58] can be defined as

χ(ω) ∝ i lim
t→∞

∫ ∞

0
dτ 〈σ−

P (t + τ )σ+
P (t)〉eφ(τ )e−i(ω′

x−ω)τ , (2.23)

and the linear absorption spectrum (Im(χ)) is also plotted in Fig. 2.5 (thick black
dashed line). The linear absorption spectrum is simply a reflection of the emitted spec-
trum about the QD ZPL [76], where the phonon sidebands are now more enhanced
to the right, since phonon absorption is more probably on the higher energy side of
the ZPL. A photon at higher frequencies (ωL > ω′

x ), can excite the QD more easily
by phonon emission process at low temperature; since the reverse process (ωL < ω′

x )
requires phonon absorption,which is less probable at low temperatures, so absorption
(black dashed line) is stronger on the higher energy side of the ZPL.

2.5 Cavity-QED Polaron Master Equation: Vacuum Rabi
Splitting and Cavity-Assisted Feeding

In this section, we derive the time-local polaron cavity-QED ME for a QD coupled
to a high-Q cavity [58]. We first replace the photon reservoir term in the Hamiltonian
given by (2.1) with a single cavity mode, so that

H = �Δcxa
†a +

∑
q

�ωqb
†
qbq + g(σ+a + a†σ−)

+ (
∑
m

Ωma
†am + H.c.) + σ+σ− ∑

q

�λq(b
†
q + bq), (2.24)
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where Δcx = ωc − ωx is the cavity-QD detuning, g is the QD-cavity coupling for a
single cavitymode described by lowering operator a, andΩm represents the coupling
to the photon environment that causes decayof the cavitymode.The time-dependence
of a is kept implicit in (2.24). The QD-cavity coupling g can be expressed in terms

of the dipole moment d = dn̂where g = η(n, rd)
[

d2ωc
2�ε0εVeff

] 1
2
, where Veff is effective

mode volume of a dielectric cavity with dielectric constant ε, and η accounts for any
deviation from the field antinode position and misalignment in polarization coupling
(i.e., for optimal coupling it is simply 1). A dipole and a rotating wave approximation
is used in describing the QD-cavity interaction. As before, we perform a polaron
transform on H and now obtain [58]

H ′ = �Δcx ′a†a +
∑
q

�ωqb
†
qbq + g′(σ+a + a†σ−) + Xgζg + Xuζu, (2.25)

where g′ = 〈B〉g, Xg = g[σ+a + a†σ−], Xu = ig[σ+a − a†σ−], and the phonon
fluctuation operators are defined through ζg = 1

2 (B+ + B− − 2〈B〉) and ζu =
1
2i (B+ − B−) [58] where 〈B〉 = 〈B+〉 = 〈B−〉 = e−φ(0)/2. The polaron shift ΔP is
again absorbed into the QD frequency ω′

x and Δcx ′ = ωc − ω′
x . We can then derive a

time-local ME for the reduced density matrix ρ of the QD-cavity system; following
[58], we use a second-order Born approximation with the polaron transformed inter-
action H ′

I = Xgζg + Xuζu . The cavity-QED ME in the interaction picture, is again
derived from

∂ρ̃

∂t
= − 1

�2

∫ t

0
dt ′TrB{[H̃ ′

I (t), [H̃ ′
I (t

′), ρ̃(t)ρB]]}, (2.26)

where H̃ ′
I (t) = ei(H

′
S+H ′

B)t/�H ′
I e

−i(H ′
S+H ′

B)t/�, with H ′
S = �Δcx ′a†a + g′[σ+a +

a†σ−] and H ′
B = ∑

q �ωqb†qbq . Performing the trace and transforming back into
the Schrödinger picture, we obtain the time-local polaron cavity-QED ME [58],

dρ

dt
= 1

i�
[H ′

S, ρ] + γ0

2
L(σ−) + γd

2
L(σ+σ−) + P

2
L(σ+) + κ

2
L(a)

− 1

�2

∫ ∞

0
dτ

∑
m=g,u

(Gm(τ )[Xm, e−i H ′
Sτ/�Xme

iH ′
Sτ/�ρ(t)] + H.c.), (2.27)

where κ is the cavity decay rate (defined earlier), and Gg = 〈B〉2(cosh(φ(t)) − 1)
and Gu = 〈B〉2 sinh(φ(t)) are the polaron Green functions [58]; as before, we have
extended the upper limit of the integral in (2.26) to t → ∞ to obtain a Markov form
for the ME (though this is not a requirement; however, we have found that there is no
loss in accuracy in doing this). Note that additional incoherent processes are included
in theME using the respective Lindblad terms (see Sect. 2.4) andwe also now include
phenomenological damping of the cavity (through κ

2 L(a)). For the Born–Markov
approximation to be valid, in the polaron frame, the system dynamics should be
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much slower compared to the rate of relaxation of the phonon bath. Although the
bath relaxation time is only a few ps for typical QDs, this approximation may be
restrictive in certain regimes, e.g., when dealing with vacuum Rabi oscillations at
large g [74].

Before concluding this section it should be noted that (2.27) can be further sim-
plified to a simpler effective ME [58], if a weak excitation approximation (WEA)
is made (i.e., a single quantum excitation), which is exact for the linear spectrum;
however, one should note that (2.27) can easily include strong pump fields as well,
if modeling multi-photon effects [24]. Using a WEA, the polaron cavity-QED ME
now takes the more transparent analytical form,

dρ

dt
= 1

i�
[H eff

S , ρ] + Γ σ+a

2
L(σ+a) + Γ a†σ−

2
L(a†σ−) + κ

2
L(a)

+ γ0

2
L(σ−) + γd

2
L(σ+σ−) + P

2
L(σ+) + γcda

†σ−ρa†σ− + γ∗
cdσ

+aρσ+a

+{
M1[(a†σ− + σ+a), (2σ+σ−a†a + σ+σ− − a†a)ρ] + H.c.

}
+{

M2[(a†σ− − σ+a), (2σ+σ−a†a + σ+σ− − a†a)ρ] + H.c.
}
, (2.28)

where H eff
S = H ′

S + �Δa†σ−
σ+aa†σ− + �Δσ+aa†σ−σ+a. If we denote the QD-

cavity system Rabi frequency asΩ =
√

Δ2
cx ′ + 4g′2, then the phonon-mediated cav-

ity/exciton scattering rates are given, analytically, by

Γ a†σ−/σ+a = 2Re

[∫ ∞

0
dτ

2g′2

Ω2
(1 − cos(Ωτ ))(e−φ(τ ) − 1)

+(
2g′2

Ω2
(1 − cos(Ωτ )) + cos(Ωτ )) (eφ(τ ) − 1)

]

± 2g′2Im
[∫ ∞

0
dτ

Δcx ′

Ω
sin(Ωτ )(eφ(τ ) − 1)

]
, (2.29)

and similar expressions can be obtained for the phonon-mediated Lamb shifts, which
are given in [74]; we do not give these terms here as they turn out to be negligible.
We also have a cross-dephasing term [77]

γcd = 2g′2Re
[∫ ∞

0
dτ

(2g′2

Ω2

(
1 − cos(Ωτ )

)

+ cos(Ωτ )
)
(e−φ(τ ) − 1) + 2g′2

Ω2

(
1 − cos(Ωτ )

)
(eφ(τ ) − 1)

]

− 2ig′2Re
[∫ ∞

0
dτ

Δcx ′

Ω
sin(Ωτ )(e−φ(τ ) − 1)

]
, (2.30)

and the M terms are defined from
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M1 = −2g′2
∫ ∞

0
dτ

g′Δcx ′

Ω2

(
cos(Ωτ ) − 1

)
(cosh φ − 1), (2.31)

M2 = −2ig′2
∫ ∞

0
dτ

g′

Ω
sin(Ωτ ) sinh φ. (2.32)

More insight into the M1,2 scattering terms can be obtained by deriving the optical
Bloch equations for the system operators a and σ−, using the WEA. For example,

d〈a〉
dt

= −gcσ
− − i(Δcx ′ + Δσ+a)a − Γ eff

c

2
a,

d〈σ−〉
dt

= −gxa − iΔa†σ−
σ− − Γ eff

x

2
σ−, (2.33)

where Γ eff
c = κ + Γ σ+a and Γ eff

x = γ0 + γd + P + Γ a†σ−
are the effective dephas-

ing rates and gc = ig′ − M1 − M2 and gx = ig′ + M1 − M2 are the complex cou-
plings of the cavity and QD, respectively, in the presence of phonon coupling. Thus
the processes denoted by the scattering terms M1,2, result in a complex coupling
between the QD and cavity. At resonance (Δcx ′ = 0), since M1 = 0, the complex
QD-cavity coupling is given by gc/x = ig′ − M2.

Note that the aboveME has solved the incoherent scattering terms exactly (within
theWEA) and one could use such an approach, e.g., to investigate the strong coupling
regime as a function of temperature. The ensuing vacuum Rabi oscillations appear-
ing in the integrals ensure that the phonon bath is correctly coupled to the dressed
resonances of the system. In the weak coupling limit, specifically when Δcx ′ � g′,
the Rabi frequencyΩ → Δcx ′ , and the incoherent cavity and exciton scattering rates
are simply given by

Γ
a†σ−/σ+a
0 = 2g′2Re

[∫ ∞

0
dτe∓iΔcx ′ τ (eφ(τ ) − 1)

]
, (2.34)

and the corresponding phonon-induced Lamb shifts are given by Δ
a†σ−/σ+a
0 =

g′2Im[∫ ∞
0 dτe∓iΔcx ′ τ (eφ(τ ) − 1)]. These phonon-mediated scattering rates and Lamb

shifts are the same as those derived in earlier work [58] (see also [26]), where
an effective Lindblad form for the cavity-QED polaron ME was introduced.
This simple phonon-mediated scattering rates between the QD exciton and cavity
mode have already been widely adopted to connect to various experiments with
Q-cavity system, including a recent study of ultrafast polariton-phonon
dynamics [78].

A connection between the polaron reservoir ME approach (Sect. 2.2.1) and the
polaron cavity-QED theory can be made by expressing the SE rate (2.5) in terms of
these Lindblad decay rates [47],
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γ̃ = γ̃P = Γ a†σ−
0 + 2g′2

(
κ+Γ σ+a

0 −Γ a†σ−
0

2

)

Δ2
cx ′ +

(
κ+Γ σ+a

0 −Γ a†σ−
0

2

)2 , (2.35)

fix formatting which, however, is only valid when the spectral width of the cavity is
much smaller than the width of the phonon bath function (≈5meV). This condition is
satisfied by high Q cavities with κ ≤ 0.1 meV. Moreover, when κ � Γ σ+a

0 − Γ a†σ−
0 ,

then

γ̃P = Γ a†σ−
0 + 2g′2 (κ

2 )

Δ2
cx ′ + (κ

2 )
2
, (2.36)

which can be interpreted as a cavity-feeding term (studied in more detail below) plus
a phonon-modified (via g → g′) cavity-induced SE rate. Note this phonon-assisted
coupling will also reduce the QD-cavity coupling rate for increasing temperatures
(recall g′ = 〈B〉g). Since 〈B〉 reduces from a value of unity with increasing tempera-
ture, it is important to note that the g′ value that is assessed and used in experiments
is indeed temperature dependent. It is also worth noting that phonon-coupling effects
can even lead to stronger photon correlation effects, e.g., causing the WEA to break-
down at even lower field values [79].

2.5.1 Phonon Dressed Vacuum Rabi Splitting

Nowwe employ the above cavity-QEDpolaronME to study strong coupling between
a QD and a high-Q cavity, where the cavity is described by the cavity mode oper-
ator a. This is shown in Fig. 2.6 for a bath temperature of T = 4K. In the strong
coupling regime, the coherently coupled QD-cavity system undergoes vacuum Rabi
oscillations, when a single quanta of energy is coherently exchanged between the

Fig. 2.6 Example spectrum in the on-resonance strong coupling regime. Cavity emission spec-
tra at T = 4 K for a strongly coupled QD-cavity system at resonance (ω′

x = ωc). The magenta (thin
solid) and the orange (thick) line plots the coupled mode spectrum, SCMcav (2.18) calculated using
polaron cavity-QED ME approach, in the absence and presence of phonon coupling, respectively.
The main parameters used are g = 100µeV, κ = 65µeV, γ0 = 5µeV, and γd = 55µeV (color
figure online)
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QD and the cavity [1, 2]. For a simple two-level atom model, coupled to a symmet-
ric cavity without phonon effects, the emission spectrum shows the two hybridized
polariton states of equal intensity (magenta, thin solid) line, Fig. 2.6, separated in
frequency by twice the QD-cavity coupling constant g. Such a coherent transfer of
energy between light and matter is potentially important for building quantum light-
matter interfaces, which can be used for long distance quantum communication
with photons [2]. Phonon interactions however affects the coherence of the system.
In the presence of phonon coupling, the polaritons appear with different intensi-
ties and reduced vacuum Rabi-splitting (≈2〈B〉g, orange (thick solid) line, Fig. 2.6)
[39, 40]. The QD (ω′

x ) and cavity (ωc) are assumed to be at a detuning of 0 meV
(ZPL) and the frequency of the QD, ω′

x includes the polaron shift. The parameters
used for the simulations are close to typical experimental numbers, which show
vacuum Rabi splitting of 2g = 200 µeV [40] (2g′ = 183µeV) in Fig. 2.6. In gen-
eral, since the polaron cavity-QED ME approach is derived using a Born–Markov
approximation for the polaron-transformed interaction terms, it is valid as long as
the system dynamics (i.e., the vacuum Rabi period π/g ≈ 20 ps (Fig. 2.6)) is longer
than phonon relaxation time (≈3–5ps) (Fig. 2.5).

2.5.2 Off-Resonant Cavity Feeding

In this subsection we consider the case of phonon-mediated cavity “feeding” from
an off-resonant QD [41]. A simple schematic in Fig. 2.7, shows the simplest case of
cavity feeding by a QD through emission of a single phonon. Because of the off-
resonant condition (Δcx ′ > 1 meV), an approximation of weak-coupling between
the QD and cavity is not very restrictive. This allows us to use the polaron reservoir
ME theory (Sect. 2.2.1) or calculate the spectrum with the polaron cavity-QED ME
approach if the Q is sufficiently large. A comparison between these two approaches
and a correlation expansion approach is given in [74].

Using the polaron cavity-QEDME, we compute the cavity emission spectrum for
a range of different cavity detunings in Fig. 2.8, where normalized spectra (orange
solid line) are plotted for different detunings in the presence of phonon coupling. The

Fig. 2.7 Simple schematic
for the phonon-mediated
off-resonant feeding
process. The a cavity (at
resonance ωc) is excited by a
QD (ωx ) through emission of
phonons (ωq ), when here
ωx = ωc + ωq . Figure from
[74]
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Fig. 2.8 Off-resonance cavity feeding regime. Normalized linear emission spectra for a QD-
cavity system without phonons (black dashed) and with phonons (T = 4 K) (solid orange). The
QD-cavity detunings are 1, 2, 3, 4 meV and −1,−2,−3,−4meV (top to bottom) in left and right
panels, respectively. Individual spectra are normalized by peak ZPL intensity and data in bottom-left
panel is multiplied by 1.5 for better visibility. The main parameters are g = 100µeV, κ = 65µeV,
γ0 = 5µeV, γd = 55µeV. Figure adapted from [74] (color figure online)

QD-cavity coupling rate to cavity decay rate ratio is g/κ > 1, so it is appropriate
to treat the cavity mode as the level of a system operator. The dark dashed lines
represent the corresponding normalized spectra in the absence of phonon coupling,
and the individual spectra are normalized with respect to the peak ZPL intensity.
Left (right) panels plots spectra for positive (negative) QD-cavity detunings (Δx ′c).
Cavity feeding can be estimated from the ratio of peak heights as both Lorentzians
have comparable linewidths (Γx = 60µeV and κ = 65µeV) and it increases in the
presence of phonons. The feeding is asymmetric and stronger when the cavity mode
is to the right (higher spectral energy). At the low temperature considered (4K),
phonon emission is more probable than phonon absorption; thus if a cavity has lower
energy than an excited QD, the cavity can be excited more easily in a two-step
quantum process where a cavity photon is created along with a phonon emission.
When ωc > ω′

x , exciting the cavity will require phonon absorption which is less
feasible at low temperatures.

Theoretical attempts have been made to partly describe cavity feeding using a lin-
ear susceptibilitymodelwhere the IBM lineshape is added to theQDspectral function
and coupled to a Green function approach for the medium [43, 44]. However, it turns
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out that this model greatly underestimates the amount of feeding over large detunings
and can result in drastically different spectra [74]; basically the linear susceptibility
theory misses the two step quantum process which is correctly incorporated in the
SE rate (2.36) and through the Lindblad QD/cavity scattering rates Γ σ+a/a†σ−

. The
linear susceptibility technique is however successful in explaining the on-resonance
(Δcx ′ = 0) phonon-induced asymmetric vacuumRabi doublet [43]. This is because at
resonance, these two-step quantum feeding processes have negligible contributions
to the emission spectra [74].

2.6 Coherent Driving and Nonlinear Excitation

In this final section of our chapter, we describe how to include a coherent pump field
in the polaron ME theories, which can connect to a wide range of experimental con-
ditions with coherent driving fields. Consider the case of a general photon reservoir
with a coherent pump field exciting the QD [80], and working in a rotating frame at
the laser frequency, the Hamiltonian becomes

H = �

∫
dr

∫ ∞

0
dω f†(r,ω)f(r,ω) + �ΔxLσ

+σ− + �q�ωqb
†
qbq + ηx (σ

− + σ+)

− [σ+eiωL t
∫ ∞

0
dω d · E(rd ,ω) + H.c] + σ+σ−�q�λq(b

†
q + bq), (2.37)

where the QD with exciton frequency ωx is excited by a cw laser of amplitude ηx
(half of the Rabi frequency, ηx = Ωx

2 ) and central frequency ωL , andΔxL = ωx − ωL

is the QD-laser detuning. As before, the polaron transformed Hamiltonian H ′ can be
separated into system (H ′

S), reservoir (H
′
R) and interaction (H ′

I ) components,

H ′ = H ′
S + H ′

R + H ′
I ,

H ′
S = �Δx ′Lσ

+σ− + �〈B〉ηx [σ+ + σ−],
H ′

R = �

∫
dr

∫ ∞

0
dω f†(r,ω)f(r,ω) + �q�ωqb

†
qbq ,

H ′
I = −[B+σ+eiωL t

∫ ∞

0
dω d · E(rd ,ω) + H.c] + Xgζg + Xuζu, (2.38)

where terms Xg and Xu are defined as Xg = �ηx (σ
− + σ+) and Xu = i�ηx (σ

+ −
σ−), and ζg = 1

2 (B+ + B− − 2〈B〉) and ζu = 1
2i (B+ − B−) denote phonon induced

fluctuation operators [23]. Using exactly the same techniques as before, we derived
the polaron-transformed ME with coherent pumping,

dρ

dt
= 1

i�
[H ′

S, ρ] + Lph(ρ) + LD
pn(ρ) + γ0L(σ−) + γdL(σ+σ−), (2.39)
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where γ0 and γd ZPL terms have been added and Lph(ρ) is similar to before and
can be written in terms of a general SE rate than is influenced from phonons. The
additional (new) phonon term from the coherent drive is [81]

LD
pn(ρ) = Γ σ+

L[σ+] + Γ σ−
L[σ−] − Γ cd(σ+ρσ+ + H.c.)

− (Γu(σ
+σ−ρ(σ+ − σ−) + σ−ρ) + H.c.), (2.40)

where the relevant phonon-mediated scattering rates are given by the following ana-
lytical expressions,

Γ σ+/σ− = Ω2
R

2

∫ ∞

0

(
Re[(cosh (φ(τ )) − 1) f (τ )

+ sinh (φ(τ )) cos (ητ )] ∓ Im[(eφ(τ ) − 1)
ΔLx sin (ητ )

η
]
)
dτ ,

Γ cd = Ω2
R

2

∫ ∞

0
Re[sinh (φ(τ )) cos (ητ ) − (cosh (φ(τ )) − 1) f (τ )]dτ ,

Γu = i
Ω3

R

2η

∫ ∞

0
sinh (φ(τ )) sin (ητ )dτ , (2.41)

with f (τ ) = Δ2
Lx cos (ητ )+Ω2

R
η2 , η =

√
Ω2

R + Δ2
Lx , and ΩR = 2〈B〉ηx . The above rates

incorporate the spectral shape of the phonon bath by accounting for phonon damp-
ing during Rabi oscillations of the driven QD and are valid for weak and strong
drives [81]. If the drive field is not very strong (ηx � ωb), simpler expressions [58]
for the scattering terms Γ σ+/σ−

and Γ cd for use in an effective phonon ME are
recovered starting from (2.41), so that

LD
pn(ρ) = Γ σ−

L[σ−] + Γ σ+
L[σ+] − γcd(σ

+ρσ+ + σ−ρσ−), (2.42)

where [58]

Γ σ+/− = 2〈B〉2η2
xRe

[ ∫ ∞

0
dτe±i(ωL−ω′

x )τ (eφ(τ ) − 1)
]
, (2.43)

represents additional SE from the pump (Γ σ−
) and pump-induced incoherent exci-

tation (Γ σ+
), and the term

γcd = 2〈B〉2η2
xRe

[ ∫ ∞

0
dτ cos(Δx ′Lτ )(1 − e−φ(τ ))

]
, (2.44)

represents a cross-dephasing process (which is in the form of a squeezing operator)
that can influence the spectral lineshape of the QD.

Subsequently, we obtain a simple effective phonon ME,
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dρ

dt
= 1

i�
[H ′

S, ρ] + Γ σ−
L[σ−] + Γ σ+

L[σ+] − γcd(σ
+ρσ+ + σ−ρσ−)

+ γ̃L(σ−) + γdL(σ+σ−), (2.45)

where we only include one photon-reservoir SE term and focus more on the drive
dependent scattering terms with a coherent pump field.

2.6.1 Photoluminescence Lineshapes and Phonon-Mediated
Population Inversion

The photoluminescence intensity (PLI) of the continuous wave (cw) laser excited
QD is proportional to the population of the QD, nx = 〈σ+σ−〉. Using the ME (2.45),
an analytical expression of this quantity can be obtained from the optical Bloch
equations, given by [16]

nx = 〈σ+σ−〉 = 1

2

⎡
⎣1 + Γ σ+ − Γ σ− − γ̃

Γ σ+ + Γ σ− + γ̃ + 4〈B〉2η2
x (Γpol+γcd)

Γ 2
pol+Δ2

x ′L−γ2
cd

⎤
⎦ , (2.46)

where Γpol = 1
2 (Γ

σ+ + Γ σ− + γ̃ + γd). Using this expression, it is easy to show that
population inversions [4, 10] can be realized for sufficiently large drives, and this
has been shown for both cw [82] and pulsed QD systems [81] using the polaron
ME approaches. Experimentally, phonon-assisted QD inversion has recently been
reported by various groups [7–9] and successfully described using path integral tech-
niques [6, 7] and polaron ME techniques [81]. An advantage of the ME approach
is that is can easily compute emission spectra and quantum optical properties, e.g.,
to assess figures-of-merit for single photon sources [81, 83], where recent work
suggests that the phonon-assisted scheme is likely not as good as single photons cre-
ated through direct on-resonance Rabi oscillation [81, 84] (in part as the interaction
with the phonon bath is less pronounced at the lower pump values required with on
resonance excitation).

We will not explore the polaron ME calculations of population inversion in this
chapter (for details, see [81, 82]), but rather connect to the PLI lineshape that is pre-
dicted from the samemodel and showhow this relates to recent experiments.We show
two example PLI from Weiler et al., who studied self-assembled In(Ga,As)/GaAs
QDs grown by metal-organic vapor-phase epitaxy, embedded in a planar cavity (dis-
tributed Bragg reflectors (DBR) on the top and bottom). Figure2.9 shows example
PLI calculations and measurement for different temperatures. The depicted profiles
consists of two parts, including a sharp ZPL (Lorentzian profile) at the QD resonance
and a broader phonon-assisted excitation feature around the ZPL. In the latter case,
a distinct asymmetry for Δ > 0 is clearly visible, which is a direct signature of the
unequal probabilities for LAphonon absorption and emission at low temperatures. To
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Fig. 2.9 Theoretical and experimental PLI for a driven In QD in a planar cavity system. a,
b Intensity profiles: Integrated QD intensity derived from a frequency scan plotted as a function
of laser-QD detuning. The scans have been performed at two different temperatures. Experimental
data indicated by black circles and theory (red solid lines). The corresponding values used to fit
the data with our theory (with phonon-induced processes Γ σ+

and Γ σ−
: solid (red) line, with only

the process Γ σ−
: dashed (blue) line) are the cut-off frequency ωb = 0.6 meV, coupling parameter

αp/(2π)2 = 1.5 × 0.06 ps2, radiative decay rate γ̃ = 0.82 µeV (800 ps) and pure dephasing rate
γd = 0.6 µeV. The thermally-averaged bath displacement operator is calculated to be 〈Bs〉 = 0.91
for the conditions in (a) and 〈B〉 = 0.87 for (b). Inset PL spectrum with the characteristic RF
spectrum (Mollow triplet) in the frequency domain, revealing a Rabi energy (center to sideband) of
Ω = (16.7 ± 0.7) µeV. Figure adapted from Weiler et al. [16] (color figure online)

help identify this process further, we also plot the calculation when the Γ σ+
process

is turned off, which confirms that the laser-driven incoherent excitation process is
the dominant phonon scattering process in this experiment.

Figure2.10 illustrates the effect of phonon-assisted incoherent excitation on the
QD PLI of a QD, as a function of laser detuning. In each case, we recognize sub-
stantially more PLI when the laser is blue-detuned from the exciton line, which
allows phonon-assisted excitation of the exciton state. To gain more insight into
the effect of the phonon-induced incoherent coupling, we have systematically stud-
ied theoretically the effects of ωb, T , αp, ηx on the resulting intensity profiles in
Fig. 2.9a–d. An increase in the cut-off frequency ωb (i.e., a decrease in QD size)
leads to a blue shift of the phonon reservoir replica of the QD intensity profile. In
contrast, increasing temperature T , excitation intensity ηx or coupling factorαp over-
all increases the QD intensity for off-resonant excitation conditions. This can also
be seen in Fig. 2.9a, b, where increased temperature and excitation strength leads to
a higher emission efficiency in Fig. 2.9b as compared to Fig. 2.9a. For increasing
temperature, these features become more symmetric due to increasing phonon state
occupations. Parameters αp and ηx have similar effects on the shape of the intensity
profile but keep the asymmetry unchanged. Variation of γ̃, γd (not shown) mainly
affects the width of the ZPL and has almost negligible effect on the broader intensity
profile.
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Fig. 2.10 Example PLI lineshapes for a coherently driven QD. Theoretical study of the influ-
ence of the relevant parameters on the intensity profile of the QD emission. While keeping the
other parameters fixed (ωb = 0.5 meV, T = 6 K, γ = 0.8 µeV, γd = 0.8 µeV, ηx = 12 µeV), the
a phonon bath cut-off frequency ωb, b temperature T , c coupling factor αp, and d pump power
ηx = 2Ω have been systematically increased from bottom to top respectively. Inset Illustration of
the incoherent excitation process (red arrow), Γ σ+

scattering, mediated by the acoustic phonon
bath (green lines). Figure from Weiler et al. [16] (color figure online)

The above results are computed for a low Q cavity, and in the presence of a
structured reservoir one can obtain much richer PLI profiles, as shown in [45, 85].
The example of a high-Q cavity profiles (using the cavity-QED polaron ME with
multiple photon states) are shown in [86].

2.6.2 Phonon-Dressed Mollow Triplets

In this final subsection, we describe how to compute the well known Mollow triplet
for an excited QD system, which is a well known quantum optics effects that origi-
nates from the emission of a field-driven two level system, where three distinct spec-
tral lines result appear from photon decay between pairs of dressed states. Resonant
excitation of single QDs has recently gained significant interest in the semiconductor
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optics community [87–89], partly because coherent excitation is promising for the
generation of single photons with excellent coherence properties [83] and it is also
of fundamental interest in solid state quantum optics. Resonance fluorescence (RF)
emission below saturation of the quantum emitter has also revealed close-to-Fourier
limit single photons with record-high emission coherence and two-photon interfer-
ence visibility [90]. Recent experiments have even been able to beat the Fourier limit
for single-photon emission coherence in the Heitler regime, where the excitation
strengths are well below the saturation of the quantum emitter [91, 92]. Another
achievement with respect to RF is the demonstration of single- and cascaded photon
emission between the Mollow sidebands above saturation of the QD [93].

For simplicity, we will focus on a low Q cavity system, suitable for describ-
ing driven QDs in a planar cavity, and we will connect directly to the data of
Ulhaq et al. [77]. The experimental Mollow triplets in a high Q cavity have also
been studied experimentally (e.g., [14, 94]) and theoretically (e.g., [24, 41, 95]),
and many of the same scattering rates above can directly explain this data as well.
Since we are not using the full cavity-QED ME (with a coherent pump field), it is
possible to derive the Mollow triplet spectrum analytically, which is more useful for
fitting experimental data. Using the ME (2.45) and the property 〈Ȯ〉 = tr[ρ̇O] [63],
we obtain the following optical Bloch equations:

d〈σ−〉
dt

= − (γpol − iΔ)〈σ−〉 − γcd〈σ+〉 + i
ΩR

2
〈σz〉, (2.47a)

d〈σ+〉
dt

= − (γpol + iΔ)〈σ+〉 − γcd〈σ−〉 − i
ΩR

2
〈σz〉, (2.47b)

d〈σz〉
dt

= iΩR〈σ−〉 − iΩR〈σ+〉 − γpop〈σz〉 − γ′
pop , (2.47c)

where again γpol = 1
2 (Γ

σ+ + Γ σ− + γ̃ + γd), the population decay γpop = (Γ σ+ +
Γ σ− + γ̃), and we have also introduced γ′

pop = γpop − 2Γ σ+
. The laser-exciton

detuning Δ = ωL − ω′
x The phonon-modified Rabi frequency (ΩR) is defines after

(2.41).
The incoherent spectrum can be computed from a time integration of the appro-

priate two-time correlation function [63]:

S(r,ω) ≡ F(r)S(ω) ∝ limt→∞Re

{∫ ∞

0
dτ 〈δσ+(t)δσ−(t + τ )〉ei(ω−ωL)τ

}
,

(2.48)

where 〈δO〉 = 〈O〉 − O and F(r) is a geometrical factor. In the spectrumcalculation,
we use 〈δσ+(t)δσ−(t + τ )〉 rather than 〈σ+(t)σ−(t + τ )〉 to subtract off the coher-
ent contribution from the cw pump field (which simply yields a Dirac delta function
response at the laser frequency). Note also that we do not need to add in the phonon
correlation phase (e−iφ(τ )) when computing the two-time correlation function, as the
emitted spectrum is detected via a weakly-coupled planar cavity mode, in which
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case 〈δa†(t)δa(t + τ )〉∝〈δσ+(t)δσ−(t + τ )〉; so we are actually obtaining the cav-
ity emission which requires no change in the aforementioned correlation functions
when coming out of the polaron frame. We then define the steady-state expectation
values f (0) ≡ 〈δσ+δσ−〉ss, g(0) ≡ 〈δσ+δσ+〉ss, and h(0) ≡ 〈δσ+δσz〉ss, and keep
the explicit laser-exciton detuning dependence in the solution. Using the frequency
detuning δω = ω − ωL , we finally obtain the spectrum lineshape analytically,

S(ω) ≡
Re

{− f (0)D(ω) + ih(0)C(ω)D(ω) − [γcd + ΩRC(ω)] [g(0) + ih(0)C(ω)]

(D(ω) + i2Δ)D(ω) − [γcd + ΩRC(ω)]2

}
,

(2.49)

where C(ω) = ΩR
2(iδω−γpop)

and D(ω) = iδω − γpol − iΔ + Ω2
R

2(iδω−γpop)
.

The corresponding steady-state inversion and polarization components are calcu-
lated to be

〈σz〉ss = − γ′
pop

γpop + Ω2
R(γpol+γcd)

(γ2
pol+Δ2−γ2

cd)

, 〈σ−〉ss = iΩR
(
γpol + iΔ + γcd

)
2(γ2

pol + Δ2 − γ2
cd)

〈σz〉ss, (2.50)

from which we can obtain the following steady-state values for f, g, and h:

f (0) = 1

2

(
1 + 〈σz〉ss − 2〈σ+〉ss〈σ−〉ss

)
, (2.51a)

g(0) = −〈σ+〉2ss , (2.51b)

h(0) = −〈σ+〉ss(1 + 〈σz〉ss) . (2.51c)

These equations are used to obtain S(ω), which is an exact solution to the given
effective phonon ME. The full-width at half-maximum (FWHM) of spectral reso-
nances can be obtained from (2.49), though these are rather complicated to write
down analytically. However, one can simply fit the analytical spectrum to a sum of
Lorentzian line shapes and easily extract the broadening parameters. In the high-field
limit, the on-resonance (Δ = 0) FWHM values are γside ≈ 3

2 (γ0 + γph) + 1
2γd − γcd

and γcenter ≈ γ0 + γph + γd + γcd for the sideband and center resonances, respec-
tively; thus the cross dephasing term acts to squeeze the sidebands while broadening
the center line or vice versa.

From the analytical spectra above, we can investigate when theMollow sidebands
will become asymmetric and whether the detuning dependence will exhibit broad-
ening or narrowing of the sideband resonances. To make these regimes clearer, we
define the following ratio:

r = γpol + γcd

γpop
= 1

2

[
1 + γd + 2γcd

γ + γph

]
, (2.52)
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Fig. 2.11 Example the coherently driven QD Mollow triplets in the presence of electron-
phonon coupling and different laser detuning. a Analytically computed spectrum as a function
of detuning for three different values of r . The solid red curve shows the analytical solution (2.49)
and the blue dashed curve shows the three-Lorentzian fit. Positive and negative detunings |Δ|
reveal simply a mirror image of each other. The phonon parameters are given in [77] (and discussed
below) at a bath temperature of T = 6K, yielding γcd ≈ 0.6 µeV and γph ≈ 1.6 µeV for the
chosen Rabi field. Here we adjust γ and γd to maintain the same on-resonance FWHM value
of γside(Δ = 0) ≈ 3

2 (γ + γph) + 1
2γd − γcd = 5.6 µeV: for r = 0.7, 1.0, 1.81, we use γd(γ) as

0.4(2.4), 2.2(1.8), and 5.1(0.8) µeV, respectively. b Extracted FWHM of the lower (blue crosses)
and higher energy sideband (red inverted triangles) as a function of detuning Δ. One clearly sees
a trend of either increasing or decreasing sideband line width as a function of laser detuning,
depending on the value of r , where r ≈ 1 denotes the crossover. The center Mollow line exhibits
the opposite trend. Figure from Ulhaq et al. [77]
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Fig. 2.12 Experimental and theoretical QD driven Mollow triplets. Detuning-dependent Mol-
low triplets for a pump power of P = 500µeV, showing theoretical predictions versus experimental
results for a systemwith r = 2.01. aMollow triplet spectra for increasing negative detunings,Δ, the
spectra are plotted with respect to the energetic laser position set to zero. b FWHM of the blue and
red Mollow sideband reveal distinct sideband broadening with increasing laser-detuning. c Change
of the relative Mollow sideband area with Δ. The theory is seen to match the complex experimental
trends without changing any fitting parameters. Figure from Ulhaq et al. [77]

where γph = Γ σ+ + Γ σ−
. It is also worth noting that for off-resonant driving and

γd = 0, a completely symmetric Mollow triplet is expected only if all phonon terms
are neglected. Under systematic increase of the excitation-detuning Δ, sideband
spectral broadening or narrowing can be achieved depending upon the value of r . In
Fig. 2.11a, b we plot the Mollow triplet as a function of Δ, and extract the FWHM
of the sidebands for three values of r . As can be seen, r < 1 (for a sufficiently small
γd) leads to spectral sideband narrowing, whereas for r > 1 the effect of spectral
sideband broadening occurs. Interestingly, the reverse trend occurs for the center
resonance (not shown), namelywhen the sidebands broaden (narrows) then the center
line narrows (broadens); so depending on the r value, one can observe squeezing
or anti-squeezing of the spectral resonances with increasing Δ (in addition to the
squeezing that already occurs from a finite γcd). Similar results have been obtained
by McCutcheon and Nazir [65]. For these calculations, we use a cut-off frequency
and electron-phonon coupling strength, we useωb = 1meV andαp/(2π)2 = 0.15 ±
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0.01 ps2; the deformation potential constant here is somewhat higher compared to
the value used above, but these can vary for different QD samples, and we use this
value to fit the experiments below.

Finally, we show example spectra calculations and experiments for an excited
QD system, where the experiments were first shown in [77]. Figure2.12a shows
a direct comparison of the Mollow triplet spectra for increasing negative detuning
Δ < 0, from which the FWHM and relative intensities are extracted. The discrep-
ancy between the expected and measured central Mollow line intensity results from
contributions of scattered laser stray-light to the true QD emission that can not exper-
imentally be differentiated due to the equal emission frequency. For the detuning
Δ �= 0, the spectral resolution of the high-resolution spectroscopy is not sufficient
to distinguish between laser-excitation and QD Rayleigh line emission. The grey
shaded peaks in Fig. 2.12a (lower panel) belong to a higher order interference of the
Fabry-Pérot interferometer. The extracted FWHM values are depicted in Fig. 2.12b.
For the system under investigation, r is calculated to be around 2.01, and therefore
an increase in the sidebands’ width is expected according to the theoretical model.
Indeed, we observe a systematic increase with increasing negative detuning Δ < 0.
Moreover, we observe spectral narrowing (squeezing) of the center line thoughwe do
not attempt to fit this resonance as it has a large contribution from coherent scattering.
Additionally, the relative sideband areas Ared/blue in dependence on Δ are plotted in
Fig. 2.12c. As becomes already visible from the Mollow spectra, for positive detun-
ings the blue sideband gains intensity whereas the red sideband area decreases, and
vice versa. The crossing between relative intensities is expected to occur at Δ = 0.
Interestingly, we observe crossings at moderate negative laser-detuning values for
all different QDs under study. Note the high value of pure dephasing which causes
r > 1 in the sample is likely due to the fact that the samples were manufactured
using metal organic chemical vapor depositions, which are supposed to incorporate
more impurities compared to sample grown by molecular beam epitaxy. The higher
magnitude of pure dephasing results in broadening of Mollow sidebands.

2.7 Conclusions and Outlook

We have described a general quantum optics theory of phonon-dressed light matter
interactions in QD cavity systems with a focus on using a polaron master equa-
tions, which captures certain electron-phonon coupling effects nonperturbatively,
and presents a convenient starting point for deriving system-reservoir master equa-
tions where residual phonon-exciton-photon interaction terms (which are now much
smaller in the polaron frame) are included at the level of a 2nd-order Born–Markov
approximation. This powerful open-systems approach also allows one to identify
certain scattering rates analytically, such as phonon-mediated cavity feeding and
incoherent excitation, which can be used to connect to and explain a number of
emerging experiments in the field, and easily lends itself to connecting to a wide
range of experimental observables. The chapter has focused on a single exciton (or
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electron-holer pair) coupled to a reservoir of phonons and a photonic environment,
since such a regime already covers a wide range of recent QD-cavity experiments,
including regimes of phonon-dressed strong coupling, phonon-mediated cavity feed-
ing, and the breakdown of Fermi’s golden rule. However, the theory can also be
extended to account for more exciton levels. Indeed, with resonantly excited QDs, it
is possible to observe five spectral peaks resulting in a “Mollow quintuplet,” which
is caused by the simultaneous excitation of both x- and y- polarized excitons [51];
in addition, even more spectral peaks are possible in the driven biexciton-cascade
system [53], and both of these effects have been successfully explained using an
extended polaron master equation. In this chapter, we have also treated the excitation
laser as cw, though the theory can include optical pulses as well, which for exam-
ple has been used to describe the phonon-induced population inversion experiments
of Quilter et al. [7, 81]. For the Mollow triplet section, we have focused on low Q
cavities, but is it also possible tomodel highQ cavities [24] and even completely gen-
eral photonic bath functions such as those that represent slow-light photonic crystal
waveguides [80]. The general methodologies presented are thus widely applicable
to many QD cavity experiments. As more sophisticated experiments and fabricated
samples continue to be developed, one can expect to gain a deeper understanding
of the intrinsic electron-phonon and electron-photon interactions in these QD cavity
systems, which on the one hand leads to fascinating quantum optical physics in a
solid state platform, and on the other hand can help with the design of emerging QD
optical devices, such as coherently driven single and entangled photon pair sources.
In this regard, we anticipate a bright future for realizing all-integrated QD quantum
optical devices on a semiconductor chip.
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Vuc̆ković, Phys. Rev. Lett. 95, 013904 (2005)
39. F. Milde, A. Knorr, S. Hughes, Phys. Rev. B 78, 035330 (2008)
40. Y. Ota, S. Iwamoto, N. Kumagai, Y. Arakawa, (2009). arXiv:0908.0788
41. A. Majumdar, E.D. Kim, Y. Gong, M. Bajcsy, J. Vuc̆ković, Phys. Rev. B 84, 085309 (2011)
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Part II
Excitons and Single Photon Emission



Chapter 3
Resonantly Excited Quantum Dots: Superior
Non-classical Light Sources for Quantum
Information

Simone Luca Portalupi and Peter Michler

Abstract In this contribution, we briefly recall the fundamental optical and quantum
optical properties of single photons and photon pairs, like coherence, purity, indistin-
guishability and entanglement,which are necessary to understand their huge potential
for quantum information applications. We put special emphasis on resonant excita-
tion schemes of excitons and biexcitons in semiconductor quantum dots since these
provide photon wave packets with superior properties. This includes continuous-
wave and pulsed excitation, rapid adiabatic passage, spin-flip Raman transitions,
two-photon excitation and phonon-assisted excitationmethods for excitons and biex-
citons. We then review the recent progress on the generation of single and entangled
photon states under these different resonant excitation schemes and discuss the pro
and cons of the different methods.

3.1 Introduction

Since the first demonstration of single-photon emission for semiconductor quantum
dots (QDs) in 2000 [1] a steadily increasing number of research activities has been
initiated in the field of QD-based non-classical light generation. It is already fore-
seen that semiconductor quantum emitters will be key elements of modern optics
based quantum technologies. For example, light sources which are able to deliver
triggered single photons, entangled photon pairs or even photon cluster states are
building blocks for several applications e.g. in quantum cryptography, quantum com-
puting, quantum sensing and quantum metrology. Soon after the demonstration of
a few other milestone achievements like electrical triggering of single-photon emis-
sion [2] and the generation of entangled photon pairs [3–5] with QDs, it became
clear that most of the new quantum technologies require non-classical sources
with superior properties. This includes high single-photon emission probabilities
(brightness), low multi-photon probabilities (purity), identical photon wave packets
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(photon indistinguishability) i.e. ultimately Fourier transform-limited photons. For
example, it has been recently shown that linear optical quantum computing could
work with indistinguishable photons if the product of the detector efficiency and the
single-photon emission probability is larger than 2/3 [6]. A detailed comparison of
the source requirements for various applications can be found in [7].

The photon wave packet properties critically depend on the type of optical or elec-
trical excitation of the charge carriers inside the QD. One has to distinguish between
non-resonant and resonant excitation schemes. Early work in this research field has
exclusively focused on non-resonant pumping schemes, i.e. charge carriers have been
generated in the QD barriers, wetting layer or higher electronic shells (p-, d-shells)
of the QD due to the relative simplicity of this method. This excitation type leads to
the generation of additional charge carriers in the vicinity of the QD which act via
carrier-carrier scattering processes as sources of decoherence for the subsequently
emitted photons. Moreover, non-resonantly excited carriers have to relax to the low-
est electronic shell (s-shell) before they can recombine radiatively under emission
of the desired photon. This non-radiative relaxation process introduces some uncer-
tainty into the photon emission process which eventually introduces some time jitter
and limits the photon indistinguishability in a two-photon interference process.

However, it has been soon realized that truly resonant excitation techniqueswould
produce photon wave packets with superior properties, e.g. long coherence times and
high indistinguishabilities. Resonant excitation techniques allow the generation of
the electron-hole pairs, i.e. excitons (one bound electron-hole pair) and biexcitons
(two electron-hole pairs) directly in the s-shell of the QD, thereby mostly avoiding
the generation of unwanted extra charge carriers in the vicinity of the QD. As a
consequence, nearly ideal photons are emittedwhich are perfectly suited for quantum
information applications.

First efforts of resonant QD excitation were not successful due to large laser
background since the emitted desired photon and the excitation laser possess the same
wavelength. In 2007, Müller and co-workers [8] solved the problem by introducing a
newly developed side-excitation technique where the emitted photons are collected
in orthogonal geometry from top of the sample. A few years later, Vamivakas and
coworkers have shown that even top excitation and collection is possible by utilizing
a cross-polarized setting in a confocal microscope [9].

This chapter reviews the recent achievements of the resonantly excited QDs and
discusses the pros and cons of the different resonant excitation methods. Section3.2
gives a short introduction into important photon properties and the different resonant
excitation methods. Section3.3 reviews in details the various methods for the reso-
nant pumping of the exciton and biexciton. The last section reports phonon-assisted
approaches for the excitation of excitons and biexcitons.
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3.2 Fundamental Optical Properties of Photons:
Coherence, Purity, Indistinguishability
and Entanglement

In order to be useful for quantum information, computation or cryptography appli-
cations, the light emitted by the source must fulfill various specific requirements. To
clarify this statement, let us consider the sketch in Fig. 3.1.

The first row (a) depicts a stream of single, identical photons from an ideal light
source; in comparison, the other rows show what happen when one of the properties,
which make the source ideal, is lacking. In the case of an ideal source, the emission
efficiency is equal to 1. Thismeans that one excitation pulse will trigger the emission:
this property is often referred as brightness and in the ideal case it is equal to 100%.
An efficiency smaller than 1 will result in a photon stream with some “missing”
photons with respect to the ideal example as sketched in the row (b) of Fig. 3.1. It
becomes clear that a reduced brightnesswill affect the computational complexity. For
quantum cryptography applications, it is fundamental that the photon stream carrying
the information is composed by single photons in order to improve the security of
the network. This signifies that in the wave packet only one photon must be present.
This property is usually quantified via aHanbury-Brown andTwissmeasurement that
defines the values of the second-order correlation function: for a pure single-photon
source it gets g(2)(0) = 0 [10]. When the second-order correlation function differs

Fig. 3.1 a Ideal source: a stream of single, identical photons are generated per excitation laser
pulse. b Example of source with brightness smaller than 1. Only at some laser pulses correspond a
photon emission. c Case of non-zero single-photon purity. In some cases, two photons are present. d
Loss of photon coherence schematized as broken lines. e Non-ideal indistinguishability: the photon
wave packet changes due to phase variations or spectral wandering
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from zero (g(2)(0) > 0) more photons can be present in the time slot resulting in a
modified stream of photons as in row (c). Similarly to classical light, also for single
photons the coherence can be ascribed as a measurement of the phase stability of the
light. The photon linewidth can be written as:

γ = 1

T2
= 1

2T1
+ 1

T ∗
2

, (3.1)

where T1 indicates the transition radiative lifetime and T ∗
2 corresponds to the pure

dephasing time (i.e. a loss of coherence without recombination). The lifetime T1 and
the coherence time T2 characterize the photon wave packet. Since the electron-hole
pair is subject to interactionwith the surrounding, this may lead to a loss of coherence
during the radiative emission process. This case is depicted in row (d) where the
broken lines indicate a photon phase change. In the case that the environmental
fluctuations are faster than the radiative transition, the pure dephasing term T ∗

2 comes
into play. Only when decoherence mechanisms are absent (or anyhow negligible) the
(3.1) becomes:

T2
2T1

= 1. (3.2)

The aforementioned condition is usually referred as Fourier transform-limit. This
property is one fundamental requirement in order to have highly indistinguishable
photons. To perform low error quantum computation, the utilized photons need to be
identical, in other words have an indistinguishability V = 100%.When two photons
are indistinguishable, that means they are identical in terms of spectral bandwidth,
pulse width, polarization, carrier frequency, mode profile and they arrive at the same
time at the two input ports of a beamsplitter (BS). Quantum mechanics then predicts
that only the output configurations with the two photons leaving the BS at the same
side are possible. This photon coalescence arising from the two-photon interference
on a beamsplitter was first measured by Hong-Ou-Mandel [11] and constitutes the
basis for low error-rate quantum computation. It is then clear that in presence of pure
dephasing, the non-perfect Fourier transform wave packet will strongly affect the
indistinguishability. Together with that, environmental fluctuations that are slower
than the transition radiative lifetime will produce a variation of wavelength of the
emitted photons. This spectral wandering mechanism may also limit the measurable
indistinguishability, since the photons arriving on a BS can have different wave-
lengths and then being distinguishable. Pure dephasing and spectral wandering are
depicted in Fig. 3.1e as limiting factors of the photon indistinguishability. The Hong-
Ou-Mandel (HOM)effect is oftenmeasuredby feeding anunbalancedMach-Zehnder
interferometer with two timely separated photons that will then interfere on a beam-
splitter. The measured correlation times, recorded on two detectors placed at the
BS outputs, are then used to estimate the HOM visibility [10]. The large majority
of the experiments described in this chapter made use of this experimental config-
uration to determine the photon indistinguishability. It is important at this stage to
underline that spectral wandering (or spectral diffusion) can set strong limitation for
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Fig. 3.2 Different types of cavities or photonic structures. a Micropillar cavity. b Photonic
nanowire. c Photonic trumpet. d Microlens. e Bull’s eye cavity. f Photonic crystal waveguide.
The arrows indicate the main emission direction

two-photon interference in case the photons are coming from two different, separate
sources, since in this case, the environmental fluctuations are independent for the two
sources. Several techniques have been employed in order to stabilize the QD environ-
ment: from applying an electric field, to the use of two-color pumping scheme [12] or
by controlling the nuclear spins [13]. In a recent paper [14], theoretical limits of the
second-order correlation function g(2)(0) as well as the photon indistinguishability
have been discussed.

It is worth mentioning that the source brightness for semiconductor QDs is gener-
ally limited by the strong refractive index mismatch between the host material (∼3.4
forGaAs) and the air surrounding it: the light ismostly confined in the semiconductor
and only a brightness of few percent can be achieved. This value can anyway be easily
improved up to 10–20% by simply sandwiching the QD layer between two distrib-
uted Bragg reflectors (DBRs) to form a 1D photonic crystal cavity (generally called
planar cavity) [15]. This value can be further increased by use of photonic cavities
or engineered structures to enhance the light extraction. In Fig. 3.2 some examples
between the most developed geometries are shown. In Fig. 3.2a, e two cavities based
on photonic crystals are sketched, namely micropillars (a) and circular Bragg grat-
ings (e), sometimes referred to as bull’s eye cavity: these structures make use of
the photonic crystal bandgap together with total internal reflection (TIR) to strongly
confine the light in the cavity region. An engineering of the material surrounding
gives rise to photonic nanowires (b), trumpets (c) or lenses ((d), see Chap. 6) with
various geometries. In more detail, the brightness can be defined as the product

http://dx.doi.org/10.1007/978-3-319-56378-7_6
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Brightness = p × η, (3.3)

where p is state occupation factorwhile the photon extraction efficiency η is given by:

η = ηout × β = ηout × ΓM

ΓM + ΓRad
(3.4)

with ηout the out-coupling coefficient (photons through defined loss channels over
total photon emission) and β the spontaneous emission of the quantum emitter in the
optical mode under investigation (withΓm andΓRad the spontaneous emission rate in
the mode and in the radiation modes respectively) [16]. The probability p is in some
cases limited by the presence of charged exciton states (trions) or dot blinking. Some
techniques have been anyhow implemented to maximize p, like applying an electric
field or using combination of lasers with different wavelength [12, 17, 18]. From
(3.4) it can be seen that two strategies are possible to enhance the β factor: one is by
suppressing the spontaneous emission contribution to radiation modes, as employed
by photonic nanowires and photonic crystal waveguides. The other is by increasing
the spontaneous emission rate ΓM by means of cavity quantum electrodynamics
(CQED): in the weak coupling regime, the transition radiative lifetime can indeed be
shortened via the Purcell effect [10]. State-of-the-art values for different systems are
here reported: for micropillars (Fig. 3.2a) a brightness around 0.8 was reached [19,
20]. For nanowires (Fig. 3.2b) and photonic trumpets (Fig. 3.2b) values of around
0.72 [21] and 0.75 [22] were reported. For microlenses (Fig. 3.2d) an extraction
efficiency as high as 0.23 was measured [23], while for circular Bragg gratings a
collection efficiency of 0.48 was obtained (brightness was not included in the last
cited papers). Photonic crystal waveguides (Fig. 3.2f) achieved very high β factors
[24, 25], showing that photons were emitted into a specific mode up to β = 0.98
[26].

The last property summarized in here is the photon entanglement, theorized first
in 1935 [27]. Two particles are defined as entangled if their wave function cannot be
factorized in terms of product of the wave functions of the two individual particles.
This implies that one measurement on one particle determines the quantum state of
the second particle. Several properties are related to the degree of entanglement such
as the negativity [28], concurrence [29, 30], tangle [31] and fidelity. The latter, gives
a measurement on how the received signal compares with the emitted one, after
transmitting into a quantum channel [32]. In formulas it writes as F = 〈ψ|W |ψ〉
where ψ is a pure state and W is the density matrix that represents the pure state
emerging as mixed after transmission in the quantum channel. Despite the strong
progresses achieved in the last years [33–36], the properties of the emitted photons
are still limited by the mostly-used non-resonant pumping schemes: this motivates
the search for excitation schemes to improve the photon properties.
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3.3 Resonant QD Excitation Methods for Exciton
and Biexciton

3.3.1 Sources of Decoherence

From a spectroscopic point of view, in order to generate electrons and holes that
can be trapped into the quantum dot for successively recombine radiatively, several
excitation wavelengths can be used. The different pumping regimes can be under-
stood considering the band structure of a semiconductor quantum dot: as a matter of
example, we consider in the following In(Ga)As QDs grown in Stranski-Krastanov
mode [37]. The band structure will schematically look like as depicted in Fig. 3.3.
The small size of the QD and the lower band gap allow the formation of quantized
levels, here showing p- and s-shells only. In red it is displayed the host material,
i.e. the GaAs, while in blue the so-called wetting layer (WL): this comes from the
growth method and constitutes a very thin layer on which the QD is consecutively
formed. It has a band gap that differs from the GaAs as well as from the discrete
energy levels of the QD. The electron and holes that are created because of the
pumping can diffuse and get trapped into the QD, relaxing to the lowest energetic
state called s-shell. When confined into the QD, they will Coulomb interact and they
can form a new quasi-particle called exciton. The exciton can radiatively recombine
with a sub-nanosecond lifetime (i.e. the probability of the spontaneous emission).
It is important to mention that different states can be identified accordingly to the
particle spins. Describing the state in terms of angular momentum |J, Jz〉 results in

Fig. 3.3 Sketch of the band structure of a QD (i.e. In(Ga)As) hosted in GaAs. (Left) Non-resonant
excitation schemes are depicted, i.e. above band gap or wetting layer excitation. In the present case
the charges created can be trapped into the QD. (Right) Quasi-resonant and resonant excitation
scheme. The electron and hole pair that will form the exciton are created by resonantly address the
p- or s-shell respectively
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the following spin states for the electron and heavy holes which are typically the
energetically lowest levels in strained QDs:

|e,↑〉 =
∣
∣
∣
∣

1

2
,+1

2

〉

; |e,↓〉 =
∣
∣
∣
∣

1

2
,−1

2

〉

|h,⇑〉 =
∣
∣
∣
∣

3

2
,+3

2

〉

; |h,⇓〉 =
∣
∣
∣
∣

3

2
,−3

2

〉 (3.5)

In the total angular momentum basis, the exciton state can be then described as:

|e ↑, h ⇓〉 and |e ↓, h ⇑〉
|e ↑, h ⇑〉 and |e ↓, h ⇓〉 (3.6)

where only the states in the first row with total angular momentum of ±1 are cou-
pled to light, then referred as “bright excitons”. The other states, with total angular
momentum of ±2 are on the contrary named “dark” states (see Chap. 4). When two
electron-hole pairs are present into the QD in the lowest energetic state, a biexciton
is formed. It is interesting to notice that the total spin of this particle is zero. In
case of simultaneous presence of one exciton plus an additional charge, the so-called
trion is formed: it is named as negatively charged trion if the additional charge is
an electron or vice versa positively charged trion in presence of an excess hole. The
exchange interaction is responsible for the fine-structure splitting of theQD, observed
as a polarization splitting of the spin degenerate bright excitons. Such polarization
splitting is indeed not observed in presence of a trion, since the remaining particle
(having the two electrons or holes a local spin density of zero) cannot experience any
exchange interaction [38]. Due to selection rules, only recombination of particles
between the same shells are allowed (i.e. s → s or p → p). Several mechanisms,
dependent on the excitation energy, can be used in order to feed the QDwith charges.
If the charges are created into the GaAs layer (Fig. 3.3 (left)), they can relax into the
QD and the excess energy is exchanged with the solid state environment. Similarly, it
is also possible to directly address thewetting layer, resulting in a similar effect. These
non-resonant excitation schemes have the advantage to be easy to implement; from
the spectroscopic point of view, the laser is spectrally well separated from the emit-
ted photons, being then relatively easy to filter. The disadvantage of these pumping
schemes relates to the fact that the non-radiative recombination from excited states to
the s-shell introduces time jitter in the emission, one of the factor limiting the photon
indistinguishability. In addition to that, multi-exciton state formation also further
limits the coherence of the emitted photons [39]. In order to diminish the influence
of the environment, so decreasing the number of relaxations that the charges need to
reach the lowest energy level, resonant schemes can be used. An intermediate step
between non-resonant and resonant schemes is the so called p-shell pumping (or
quasi-resonant pumping). In this case, the laser is tuned in resonance with a higher
energy level of the QD and the charges have only one relaxation step for reach-
ing the s-shell (see Fig. 3.3 (right)). This method permits to improve the emitted

http://dx.doi.org/10.1007/978-3-319-56378-7_4
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Fig. 3.4 Schemes for
resonant X or XX excitation.
a Resonant exciton pumping
(in CW or at the π pulse). b
Phonon-mediated X
preparation. c Adiabatic
rapid passage scheme. d
Spin-flip Raman transition. e
Resonant two-photon
biexciton excitation. f
Phonon-assisted two-photon
XX excitation

photon coherence without renouncing to the excitation-emission spectral separation.
This method allowed reaching reasonably high photon coherence [19, 40] but it still
cannot compete with a purely resonant excitation scheme of the s-shell.

Pumping the QD resonantly, i.e. tuning the laser in resonance with the s-shell
of the dot, would then allow populating the quantum dot without interacting with
the host material: this would lead to a decrease of the detrimental effect of pump-
ing, while populating directly the two-level system with the pump laser. There are
several different methods to resonantly excite the QD s-shell that will be described
along this chapter and they are pictorially depicted in Fig. 3.4. The exciton level can
be populated by addressing the exciton-to-ground state transition resonantly with a
CW laser or a single laser pulse (Fig. 3.4a). The radiative recombination will result
in emission of one single photon with superior properties (Sects. 3.3.2 and 3.3.3).
Phonon-mediated processes are also permitted as schematized in Fig. 3.4b, where
one laser photon (blue detuned from the exciton transition) together with the emis-
sion of a phonon brings the system in the exciton state (see Sect. 3.4.1). Chirped
pulses constitute the basis for the adiabatic rapid passage scheme (Fig. 3.4c) further
described in Sect. 3.3.4. An alternative way to generate tunable single-photons is
based on spin-flip Raman transitions that will be described in Sect. 3.3.5 (Fig. 3.4d).
Due to optical selection rules, the biexciton transition cannot be directly resonantly
addressed but a two-photon process, via a virtual state, can allow the direct excitation
of the biexciton state, as detailed in Sect. 3.3.6. Similarly to one phonon-mediated
exciton population, also the XX can be populated using a two-photon process medi-
ated by phonon emission (Fig. 3.4f and Sect. 3.4.2).
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Fig. 3.5 a Emitted power versus the saturation parameter: total power as sum of the coherently
and incoherently scattered light is displayed. b Low power regime: the emitted photon linewidth
is mainly given by the laser linewidth. c Medium power regime: the emitted photon linewidth
is close to Fourier transform limit plus the coherently scattered part, sketched in gray. d Under
high pumping, the dressing of the states gives rise to the Mollow-triplet spectrum, where also the
coherently scattered components is shown in gray

As it will be explained in details in the next section, the resonant pumping under
CW excitation results in very different regimes according to the pump power. The
total emitted power PS can then be represented as sum of coherently and incoherently
scattered parts, as schematized in Fig. 3.5. In order to set the most general definition,
the scattering rate in Fig. 3.5a is defined as a function of the saturation parameter
S. This is given by the formula S = (Ω2/(γΓ ))/(1 + Δ2/γ2), where Ω is the Rabi
frequency, Δ the laser-to-QD detuning, γ = 1/T2 as in (3.1) and Γ the radiative
linewidth (i.e. Γ = 1/T1). In the case of low pumping power (i.e. for the case where
the saturation parameter S � 1), the emission linewidth displays a FWHMmostly set
by the excitation laser linewidth (see Fig. 3.5b). These emitted photons consequently
showed high coherence values. Fourier transform-limited photons can be obtained
while exciting at medium powers (S ∼ 1): the FWHM can reach values around
1/2T1. In Fig. 3.5c the coherently scattered light component is also shown in gray,
superimposed to the resonantly generated photons.At high pumping powers (S � 1),
the two-level system becomes “dressed” and the radiative recombination between
adjacent multiplets is responsible for the spectrum displayed in Fig. 3.5d. A detailed
explanation will be given in the following sections. Similarly, by using a resonant
pulsed laser excitation, Fourier transform-limited photons are also achievable. In the
case of pulsed operation, the coherent control of the two-level system reflects in the
observation of oscillations in the detected intensity: they are called Rabi oscillations
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Fig. 3.6 (Left) Emitted intensity behavior versus pulses pump power: Rabi oscillations are sketched
with particular attention for the π-pulse conditions. (Right) Spectral profile of an ideal Fourier
transform-limited photon at the π-pulse

Fig. 3.7 a Sketch of the side excitation pumping scheme: when using a planar microcavity, the 1D
photonic crystal helps in guiding the laser light. The emitted photons are then collected from the top.
b Same scheme as in a but implemented with a micropillar cavity type. c Collinear top excitation
based on cross-polarized detection. One polarizer is placed in the excitation arm (laser pulse shown
by black symbols) while a cross-polarized analyzer is used in the detection arm (RF photons plotted
in gray). The selected QD into solid GaAs matrix is symbolized by the black triangle in the gray
square

and, in the ideal case, represent the different population of the two-level system. In
particular, at the π-pulse, a full population inversion is achieved (Fig. 3.6), which is
the basis for the on-demand generation of single photons.

Despite the advantage of decreasing the pump-induced decoherence, the resonant
s-shell pumping carries an intrinsic experimental challenge, i.e. the discrimination
between the photon emitted from the QD (resonance fluorescence, RF) and the laser
photons which have the same wavelength. One effective scheme to perform that is
based on the geometrically orthogonal configuration of excitation and detection (see
Fig. 3.7a, b) and it has been first successfully utilized in [8]. It demonstrated to be
very effective for planar photonic crystals, where the two distributed Bragg reflectors
help in guiding the laser beam (see sketch in Fig. 3.7a). The same scheme can also be
implemented for micropillars (Fig. 3.7b) with the only limitation that the investigated
cavity needs to be accessible to side excitation (i.e. located near the sample edge). The
orthogonal orientation between excitation and collection “channels” strongly helps
in reducing the collected laser light, making the discrimination between RF photons
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Fig. 3.8 a Scheme of the side excitation pumping scheme. b Sketch of a collinear crossed-polarized
setup: excitation and detection linear polarizers are indeed placed respectively at 90◦. An elliptical
QD is also drawn, 45◦ oriented with respect to excitation and detection. c Pictorial example of the
XX , X (with non-zero FSS) and ground states: the pulse stands for indicating that for a correct
operation the laser must contemporary excite both exciton FSS components

and pump quite effective. An alternative pumping scheme that can be implemented
also for samples not accessible from the side, is the collinear top pumping, based
on cross-polarized detection. In this configuration, the discrimination between laser
photons and QD emission is made considering the different light polarization. It is
schematized in Fig. 3.7c. One polarizer is placed in the excitation arm and results in a
linearly polarized laser beam.Along the detection arm, a secondpolarizer (sometimes
referred as analyzer) is placed and oriented in cross-polarization with respect to the
first one. In this way, the laser light, that upon reflection on the sample mainly
maintains the original polarization, is fully suppressed by the analyzer (Fig. 3.7c).
For this type of experiments, a high polarization suppression needs to be achieved,
generally in the range of 105 or 106. A linearly polarized laser beam is sent through a
beamsplitter on the sample. Currently this method has been intensively used for QD
resonant pumping but it intrinsically limits the number of collected photons to 50%.
Despite the collinearmethod is very effective, as it will be explained in Sect. 3.3.3, the
side excitation shows a benefit for the overall source brightness, since no polarization
selection is theoretically required in the light collection. In both excitation schemes,
i.e. side or top pumping, it is necessary to consider the reciprocal orientation of theQD
and the incident laser field. In Fig. 3.8 the two different experimental configurations
are depicted. TheQD is considered as elliptical, in themost general case,meaning that
it can be considered as sumof two different dipoles (namedAandB in the figure). The
incoming laser can then excite one or the superposition of both dipoles accordingly to
its orientation. In the case of side pumping (Fig. 3.8a) the laser orientation must be in
the same plane of the QD in order to efficiently excite it and the dipole superposition
is set by the specific orientation of the dot with respect to the sample side. On the
contrary, in top excitation (Fig. 3.8b) the laser orientation with respect to the QD can
be adjusted, then releasing the limit set by the emitter orientation. When working
with a neutral exciton and in presence of a non-zero fine structure splitting (FSS), the
mutual orientation of the laser beam and the QD axes has to be taken into account.
Indeed, if the laser polarization is oriented along one specific QD axis, only one
dipole component will be excited and the QD will emit linearly polarized photons
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along the excited dipole direction. Being parallel to the excitation laser beam, the
QD photons will be fully suppressed by the analyzer. For this reason the laser beam
must excite both dipole moments, and also the laser pulse must be energetically in
resonance with both FSS components. As a consequence, a superposition state is
generated and light with timely alternating polarizations is emitted. The oscillation
period is determined by the FSS. (Fig. 3.8c). If using a charged exciton, less care is
required, but in all circumstances this excitation mechanism intrinsically limits the
source brightness to 50%, while the side excitation previously described does not
suffer from this limitation.

3.3.2 CW-pumping Methods: Low, Medium and High
Excitation Powers

The first section regarding the resonant pumping deals with continuous wave (CW)
resonant excitation. The low power regime (in CW pumping) has been used to gen-
erate ultra-coherent single photons [41]. When the condition given by the (3.2) is
fulfilled, the photon linewidth of the incoherent part will correspond to the lower limit
given by: 2�/T2 = �/T1. The resonant excitation signal is composed by two terms,
namely the resonant Rayleigh scattering (RRS) and the incoherent resonant photo-
luminescence (RPL). While exciting the QD with low pumping power, the emission
is mainly dominated by the coherent Rayleigh scattering. It is interesting to notice
that in this regime, while the linewidth is mainly given by the classical (Poissonian)
resonant laser light, the emission statistics result to be non-classical, with values of
the correlation function g(2)(0) ≈ 0. In [41] the authors used Fourier transform spec-
troscopy to demonstrate that the radiated electric field has the classical character of the
incident resonant laser beam. The three spectra in Fig. 3.9a–c were taken with three
different powers, respectively Ω2 = 155ns−2, Ω2 = 64.6ns−2 and Ω2 = 11.6ns−2

and allowed to distinguish between different regimes in which the coherent or inco-
herent laser scattering are dominating the overall emission spectrum. The inverse
Fourier transform of the theoretically estimated first-order coherence function (solid
curves in Fig. 3.9a–c) allowed a direct comparison of the resonant excitation signals
in the different regimes. Figure3.9d–f show that the coherent component increases
lowering the excitation power and its linewidth is well below the radiative limit
(displayed as the shaded region). The ratio between the two signals is given by:

IRRS
IRRS + IRPL

= T2
2T1

× 1

1 + Ω2T1T2
(3.7)

Based on this equation, when pure dephasing comes into play, the coherence time
becomes T2 < 2T1 meaning that the highest fraction of coherent resonant Rayleigh
scattering component is given by T2/2T1. In [41], considering that T2 = 1.3T1, the
ratio between RRS over the total emission could not exceed 65%. The interesting
aspect is that for an excitation power of Ω2 = 2ns−2 such a ratio was equal to 50%
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(a) (b) (c)

(d) (e) (f)

Fig. 3.9 a, b and c High resolution measurements made by Fourier transform spectroscopy of one
exciton line under resonant pumping (labeled as B in [41]) for decreasing powers (Ω2 = 155ns−2,
Ω2 = 64.6ns−2 and Ω2 = 11.6ns−2 respectively). The solid lines correspond to fit to the first
order correlation functions with T1 = 320ps, T2 = 410ps and the coherence time of the laser
TL = 10ns. The dashed lines mark the background levels. d, e and f Calculated resonant emission
spectra corresponding to a, b and c. These were extracted from the inverse Fourier transform of
the first-order correlation function. The dotted regions indicate the radiative limit (width = 2µeV)
[41]

and themeasured second-order correlation function resulted to be g(2)(0) = 0.3, only
limited by the setup time response. This proved that, evenbeing the resonantly emitted
photon linewidth entirely determined by the excitation laser, the light presented a
single-photon nature. This motivated the authors to refer to such single-photons
with a sub-radiative limit linewidth as “ultra-coherent”. Recent results demonstrated
that using micropillar cavities, it was possible to obtain ratios T2/2T1 ∼= 1.0 with a
fraction of RSS photons over total close to unity [42].

In this low excitation level regime, also referred as Heitler regime, the two
processes of photon absorption and emission become one coherent single event
[43]. This leads to another fundamental property of the coherently generated single-
photons: the mutual coherence between excitation laser and QD photons can exceed
timescales of 3 s. This allowed the use of engineered modulated laser beams to
produce single-photons with arbitrary synthesized waveforms, which displayed a
degree of indistinguishability around 100% [44]. Furthermore, these single photons
were generated taking advantage from the coherent nature of the elastically scattered
photons in the Heitler regime. The great advantage of this method relates on the pos-
sibility to manipulate the single-photon waveform at the generation process without
the loss of photons connected to the use of spectral filtering. In [44] an electro-
optic modulator (EOM) driven by a variable amplitude (200MHz) radio-frequency
source was used to encode the excitation laser field. Two examples are reported in
Fig. 3.10 with the corresponding laser spectrum in (a) and (c). The more complex
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(a) (b) (c)

(d) (e) (f)

Fig. 3.10 aExcitation laser intensity over time,modulated via an electro-opticmodulator (200MHz
sine wave driving). b High resolution spectrum (measured with a Fabry-Pérot cavity of 20MHz
resolution) of the modulated laser. c, d Data as in a and b but with different driving of the electro-
optic modulator. The waveform was designed in order to lead to the suppression of the spectral
component corresponding to the original carrier frequency. e, f QD emission spectra corresponding
to the synthesized waveforms shown in a and c. The shaded areas represent the transition linewidth
inside which the photons that are elastically scattered replicated the driving laser spectra [44]

encoding in Fig. 3.10c resulted in the suppression of the laser spectral component at
zero detuning (see Fig. 3.10d), i.e. at the carrier frequency. These two laser spectra
produced the emitted QD spectra in Fig. 3.10e, f: the distance and relative strength of
the spectral components were imposed by the encoded laser beam, being in addition
weighted by the QD transition linewidth (in [44] 650ps and depicted by the shaded
region in Fig. 3.10e, f). The presented technique allows to deterministically synthe-
size single-photons waveforms, taking advantage of the mutual coherence between
QD photons and laser beam: the single-photon nature of the emission is totally pre-
served and phase encoding is also possible, without any photon loss. In addition
to that the authors demonstrated that these single-photons can exhibit a degree of
indistinguishability close to 100% (a conservative value obtained performing only
the corrections arising from an imperfect polarization control gave a visibility equal
to VHOM = 0.96 ± 0.04).

Using optical heterodyning measurements the mutual coherence of the QD pho-
tons and the excitation laser was measured. This measurement technique is based
on the interference between the resonant fluorescence photons coming from the QD
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and a strong local oscillator originating from the excitation laser but shifted in fre-
quency: in the case of [44] the QD emitted at 315.315GHz (951nm) and the laser
was shifted by δν ≈ 210kHz. Using a fast Fourier transform algorithm the spectrum
analyzer could calculate the power spectrum. The measured linewidth and lineshape
directly reflected the phase stability, meaning the mutual coherence between the QD
photons and the excitation laser beam. The observed Gaussian profile had a FWHM
of 299 ± 9MHz, only limited by the system response resolution (200MHz). Despite
the setup resolution, the observed linewidth demonstrated that the emitted QD pho-
tons were phased-locked with the excitation laser beam, with mutual coherence to
be more that 3 s. It is worth noting that in the referenced paper, the photon emission
was not limited by spectral wandering, since a measured broadening of the linewidth
became noticeable only on a second timescale.

These results opened an interesting perspective in the field of quantum infor-
mation, since the emitted photons with arbitrary synthesized waveforms are ideally
suited for quantum interference applications. On the other hand, the price to pay
for this fundamentally indistinguishable and coherent single photons is the process
efficiency. A coherent fraction of around 0.9 in pulsed excitation is obtained proba-
bilistically generating photons with an efficiency around 5–10%. Accordingly to the
quantum information application intended to realize, one could privilege the use of
a deterministic excitation schemes as reported in next paragraphs.

In 2009, S. Ates and coauthors demonstrated the possibility to generate highly
indistinguishable single photons by resonantly pumping QDs into micropillars cavi-
ties [45], studying the transition of the photon properties while passing frommedium
to high pump power regimes. The fundamental condition achieved was the gener-
ation of photons that fulfill the Fourier transform-limit, written in (3.2). Since a
fundamental requirement for resonant QD spectroscopy is discerning between emit-
ted photons and laser, a side excitation scheme was utilized (see Fig. 3.7 and [45]).
The use of microcavities (micropillars in the described case) presents two main
advantages for the generation of highly indistinguishable photons. On one hand,
the modification of the density of states leads to an increased probability of light
emission into the cavity mode. On the other hand, funneling the QD emission into
the cavity mode, which can be optimized to be highly directional, further enhances
the light extraction. The lifetime reduction induced by the Purcell effect [46] is also
beneficial for the photon coherence: in presence of pure dephasing, one efficient way
to restore the Fourier transform-limit T2/2T1 = 1 from (3.1) is indeed to decrease
the radiative lifetime T1. In [45], the Purcell factor of the investigated pillar was
around 13 giving a lifetime reduction from 850 ± 10ps to 65 ± 10ps. The FWHM
of the fluorescence peak should depend on T1, T2 and the Rabi energy Ω via the
formula 2/T2

√

1 + T1T2Ω2 [8]. In the medium excitation regime, Ω2 � 1/(T1T2),
the FWHM tends to 2/T2. From the bottom trace of Fig. 3.11a the linewidthwasmea-
sured to be 1.15 ± 0.05µeV that resulted in a coherence time of T2 = 1150 ± 50ps.
Once more, this 7-fold reduction of the linewidth in comparison to p-shell excitation
(for a comparably low temperature of 10K) indicated a reduction of the dephas-
ing processes. Measuring the transition lifetime (T1 = 630 ± 20ps in the presently
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Fig. 3.11 aHigh resolution photoluminescence spectra fromaQDversus power of theCWresonant
pumping b Sketch of the evolution from bare states to “dressed” states; the three transitions forming
the Mollow triplet are also schematized. c Evolution of the Rabi splitting over the excitation power:
data were extracted from spectra in a [45]

discussed conditions) the ratio T2/2T1 was estimated to be 0.91 ± 0.05, showing a
value very close to the Fourier transform-limit for CW pumping. It is worth noting
that the measured value of T1 came from time resolved measurements under p-shell
excitation: this means that the real lifetime was supposed to be slightly shorter, since
the p-shell to s-shell relaxation may increase measured value (by around 10–50ps).
The measured indistinguishability gave values up to VHOM(0) = 0.90 ± 0.05: Such
high visibility value allowed to infer that the generated single photons were highly
(post-selectively) indistinguishable within their coherence time and that the wave
functions overlapped nearly perfectly. The presented work pioneered the generation
of highly indistinguishable photons using a QD-cavity system as it will be shown in
the next paragraph.

When addressing a two-level systemwith a strong resonant excitation, a two-level
picture is no longer valid and it has to be replaced by a dressed state approach [47].
Under this condition, the two-level system evolves into a quadruplet made of two
excited and two ground levels, as depicted in Fig. 3.11b. The two transitions from
the same level of different multiplets are spectrally degenerate at the laser frequency
ω0 = ωlaser and they are accompanied by two sidebands at the frequencies ω0 ± Ω ,
where Ω is the Raby frequency. The spectrally central feature, called Rayleigh line,
is formed by two components: the elastic (coherent) and the inelastic (incoherent)
part. Between these two components, the first should dominate at low power and its
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linewidth should match the excitation laser one. Going from the low power regime
to higher pumping, the typical sidebands of the Mollow triplet starts to appear (as
shown in Fig. 3.11a). The splitting between these spectral features is indeed pro-
portional to the square root of the excitation power (Ω ∝ √

Pexc, see Fig. 3.11c).
Increasing the power, the laser background contribution becomes more and more
influential, up to when it dominates the central Rayleigh peak. This behavior can be
understood considering the non-linear absorption of a resonantly-excited two-level
system: raising the power, while the QD emission reaches the saturation, the laser
contribution increases linearly.

As already brieflymentioned, a strong resonant excitation of theQD s-shell allows
entering in the so-called dressed state regime. In such regime, where the Rabi fre-
quency is larger than the natural linewidth of the exciton transition (Ω � Γrad), the

Fig. 3.12 aDressed states eigenenergies (solid lines) over laser-to-QDdetuning.Dashed lines stand
for the uncoupled QD plus laser eigenstates. b, c Photon emission sequence of the two sidebands for
the case of strong blue-detuned laser (Δ � 0) and strong red-detuned (Δ � 0) laser respectively.
(d) High resolution photoluminescence measurements showing the laser detuning dependence of
the resonance fluorescence spectra. e Spectral position deduced from d of the three Mollow triplet

components as a function of the laser detuning. Fits (v = Δ ±
√

Ω2
0 + Δ2 and v = Δ) are shown

with solid lines [48]
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two-level system description is no longer valid and a more complex dressed state
description has to be used. The previous discussion was limited to the case of a
laser on resonance with the two-level system while a complete description of the
dressed states includes the effects of a non-zero laser-to-QD detuning, indicated as
Δ. The single line spectrum under strong CW pumping is replaced by a complex
spectrum (the so-called Mollow triplet) formed by three distinct peaks: a central
line, called Rayleigh line R, and two symmetric side peaks referred as three photon
line (at higher energies with respect to R) and fluorescence line F (as low energy
component). These complex spectral features come from the spontaneous emission
descending the ladder of “dressed states” doublets: these doublets arise from the
coupling between the laser beam and the two-level system. The two rungs of the lad-
der are defined as |1〉 = c |g, N + 1〉 + s |e, N 〉 and |2〉 = c |g, N + 1〉 − s |e, N 〉,
with N the number of quanta and |g, N + 1〉, |e, N 〉 representing the eigenstates of
the uncoupled QD laser system. The separation of these components is set by the

generalized Rabi frequency Ω =
√

Ω2
0 + Δ2 where Ω0 is the bare Rabi frequency

and Δ the laser-QD detuning. The aforementioned amplitudes c and s of the dressed
eigenstates are defined as c = √

(Ω + Δ)/2Ω and s = √
(Ω − Δ)/2Ω . Looking

at the detuning dependence of the eigenenergies (Fig. 3.12a), it can be noticed that
for large detunings Δ � 0 the steady state solution of the dressed states shows that
the state |1〉 has a strong |g, N + 1〉 character, meaning that the system results to be
mainly prepared in the state |1〉 (as c2 � s2). Under this condition, the first emitted
photon will be T and the system will be, as a consequence, in the state |2〉 of the
lower successive manifold (Fig. 3.12b): the following emission can then be of a F
photon. This cascaded emission follows the described time-order and results in a
“T photon heralding the F transition”. A clear signature of this unique behavior was
observed firstly in [48] through photon-correlation experiments between the differ-
ent components of the Mollow triplet. A strong photon bunching was observed if
cross-correlating the emission from T and F lines, while photon antibunching was
recorded for the autocorrelation of the individual sidebands. The central Rayleigh
line, on the other hand, is composed by photons which are totally time-uncorrelated
and should follow a Poissonian distribution. Emitting a photon in the R line, i.e.
following the transition between the same states |1〉 or |2〉, does not modulate the
population, since the emitter remains in the same dressed state. One important fea-
ture of the Mollow triplet is shown in Fig. 3.12d where spectra for the same power
but at different laser-to-dot detunings are plotted: the central R line just follows the
laser spectral behavior and the sidebands F and T remain symmetric around it. The
measured linewidth of the Mollow side peaks Δν = 730 ± 20MHz, differed from
the Fourier-limited linewidth given by Δω/2π = (3/2T1)(1/2π) = 300MHz due to
power induced dephasing [49]. Using a Michelson interferometer and successively
a spectrometer, Ulhaq et al. enabled measurements with a high spectral purity of
the individual components of the Mollow triplet. An average photon count rate of
70,000 counts per second (cps) was obtained after the spectral filtering, meaning
that 5.9 × 106 photons were extracted from the first lens. The count rate obtained in
[48] could in principle be further improved with photonic structures or microcavities
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that will be touched upon in the following paragraphs. The autocorrelation of the
central Rayleigh peak showed a long-timescale bunching, while expecting a pure
Poissonian statistics, but this was explained as due to blinking: under pure resonant
excitation, the blinking of the excitonic competing states arise because of two differ-
ent spin configurations, namely the dark exciton, that is non-radiative. This blinking
behavior observed on several tens of nanoseconds was observed in all photon cor-
relation measurements and taken into account in [48]. A clear photon antibunching
was otherwise observed if autocorrelation of each Mollow sideband was measured.
The cascaded-photon emission was verified performing photon cross-correlations
between the two Mollow satellites, always using the T photon as “start” and the
F photon as “stop” triggers. Clear bunching was observed at zero time delays for
both positive and negative detunings Δ, superimposed to the previously mentioned
long-timescale blinking. Another remarkable feature of theMollow triplet sidebands
is their high indistinguishability as proven in [50].

3.3.3 Pulsed Resonant Pumping of the Exciton

Different physical regimes aswell as important fundamental proof-of-principles have
been investigated and achieved using continuous wave resonant excitation. On the
other hand, the use of pulsed resonant excitation would enable the generation of on-
demand single photons, in combination with the aforementioned advantages carried
out with a resonant pumping scheme.

It comes from the year 2013 the demonstration of pulsed resonant excitation used
to achieve deterministic generation of time-tagged single-photonswith a record indis-
tinguishability of 0.97 ± 0.02% [51]. Together with a higher brightness achievable
in comparison with CW pumping in the Heitler regime, the pulsed and triggered
operation is an essential requirement for future applications like quantum interfer-
ence between distant QDs and entanglement of independent and remote QD spins
[52, 53]. In the experiment of [51], the QDs were embedded into a planar microcav-
ity, in order to slightly improve the light extraction with respect to a single slab of
GaAs. In the cited work, the excitation and collection was performed with a confocal
geometry: the laser beam was sent perpendicularly to the planar cavity (i.e. along the
periodicity direction of the 1D photonic crystal) and the QD emission was collected
as well along the same axis.

The pioneering work of [51] carried out a very important information, that is the
capability to generate on-demand single photons with an extremely high degree of
indistinguishability by using resonantly-excited semiconductor QDs. On the other
hand, in order to reach such high photon “performances”, high epitaxy standards
were necessary. A way to push even further the QD emission properties, enhancing
the photon extraction, shortening the radiative lifetime and improving the photon
indistinguishability to≈100% is based on the use of photonic cavities. On one hand,
the light extraction is usually strongly limited by the high refractive index of the host
material and it needs to be enhanced. Tailoring the geometry of the environment, like
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using nanowires [21], demonstrated a very high extraction efficiency but a currently
limited indistinguishability probably due to a significant charge noise at the wire
surface. On the other hand, the use of micro- and nano- resonators allows for an
improved extraction efficiency togetherwith a shortening of the radiative lifetime and
a consequent improvement of the photon indistinguishability (see as a comparison
(3.1)). The shortening of the lifetime is due to the so called Purcell effect, happening
when the emitter-cavity system is working in the “weak coupling” regime. The
modification of the lifetime when the emitter is in resonance with the resonator is
given by the Purcell factor:

Fp = τof f

τon
− 1 (3.8)

where τof f and τon are the lifetime off and on resonance respectively (in some cases
Fp is defined only as ratio τof f /τon). The aforementioned factor is proportional to
Q/V , i.e. the ratio of the cavity quality factor and mode volume, meaning that
the cavity geometry must be chosen accordingly to the intended application (ranging
from planar 2D photonic crystals, to bull’s eye cavities andmicropillars). The Purcell
enhancement is maximum when the emitter is in spectral resonance with one of the
cavity modes, it is placed in the maximum of the corresponding electric field and the
dipole is aligned parallel to the E-field.

At the beginning of the year 2016, Ding and coauthors used QDs embedded in
micropillar cavities to deterministically generate single photons with an indistin-
guishability as high as 98.5% and with an extraction efficiency of 66% [54].

Later the same year, Somaschi and coauthors further improved the source per-
formances, with a more complex and optimized cavity design [55]. First of all, the
cavity was fabricated using the so-called “in-situ” lithography technique: it is based
on a low-temperature laser lithography, deterministically aligned on a single emitter.
The spatial matching is achieved by determining the emitter position with nanomet-
ric accuracy. The QD photoluminescence (PL) is simultaneously recorded, allowing
for the adjustment of the cavity design to spectrally match the emitter after the etch-
ing. Together with a high fabrication yield, i.e. a large number of working cavities
with a QD spectrally and spatially matched, the mentioned technique was used to
lithographically write an advanced pillar geometry: the pillar was connected with
four one-dimensional wires to the surrounding, allowing for the application of an
external electric field to the structure (Fig. 3.13a). The sample was doped during the
MBE growth in order to obtain an optimized p-i-n diode with a defined Fermi level
around the QD and minimizing the free carrier absorption in the mirrors. Thanks
to the lithographic technique, several working structures were produced around one
macroscopic metal contact (Fig. 3.13b). The spatial matching can be observed in
the PL map in Fig. 3.13c, where the strong emission from the Purcell enhanced dot
is coming from the central part of the structure. The diode structure embedding
the micropillar carried two advantages: on one hand, the QD emission could be
Stark-tuned in and out the cavity mode (Fig. 3.13d). On the other hand, it stabilized
the charge environment, leading to an indistinguishability of ≈100%. The average
quality factor of the utilized pillars was around 12000, leading to a Purcell fac-
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Fig. 3.13 a Sketch of the deterministic QD-cavity system realized with an electrically-controlled
connected micropillar. The n-contact was deposited on the back side of the sample chip. b Optical
microscope picture of the metal mesa forming the top p-contact. Up to 18 devices were connected
to it. cMicro-PL map of the working device showing the successful deterministic placement of the
QD in the middle of the connected pillar. d Emission intensity map versus the applied bias and the
photon energy: the X was Stark tuned into the cavity mode (CM, indicated with a dashed line) [55]

tor of Fp = 7.6. The conducted study reported on the sources characteristics under
quasi-resonant and purely resonant excitation, showing interesting properties in such
pumping scheme transition. Under p-shell excitation, the brightness was measured
to be equal to 0.65 ± 0.07, defined as the product βηout px , where β = Fp/(Fp + 1)
represents the fraction of light emitted in the mode, ηout = κtop/κ the outcoupling
efficiency (ratio between the photon escape rate from the top of the cavity over the
total one) and px the occupation factor of the dot state. The measured brightness was
consistent with px = 1, β = 0.88 and ηout = 0.70 (as was measured via reflectiv-
ity experiments). It is important to clarify that the presented values were found for
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Fig. 3.14 a Illustration of the cross-polarized, confocal, setup used for resonant fluorescence. The
temporally shaped laser pulses were sent from the top, focused on the micropillar by means of a
microscope objective. An effective polarization suppression was achieved by means of a half-wave
plate and a polarizing beam splitter. b Second-order correlation measurement showing a purity as
high as g(2)(0) = 0.0028 ± 0.0012 at 0.75Pπ . c, d Correlation histograms showing the interfer-
ence of two successively emitted photons with parallel and orthogonal polarization respectively. e
Second-order correlation function at different pumping powers (top). Indistinguishability VHOM
(middle) and source brightness (bottom) versus laser power. Error bars were deducted starting from
the assumption of a Poissonian statistics in the events that were detected [55]

an unpolarized single-photon source, while the polarized brightness is reduced by a
factor of 2 (as formany applications, polarized single photons are required). Themea-
suredHOMvisibility (photon delay= 3ns) reached VHOM = 0.78 ± 0.07, corrected
by the non-zero g(2)(0) = 0.024 ± 0.07 (without corrections VHOM = 0.74 ± 0.07).
Comparable results were also observed for other structures, indicating the reduced
noise from charge fluctuations for these electrically controlled pillars. The effect
of the pump-induced time jitter for these Purcell enhanced structures had an effect
on the maximum observable indistinguishability [56]. In the case of [55] the time
jitter limited the indistinguishability to around 70–80% for p-shell pumping, further
indicating that the charge noise was not the limiting factor for a unity indistin-
guishability. To prove this statement, measurements under pure resonant excitation
were conducted. In the present case, a neutral exciton with a FSS of 10–15µeV
was under investigation. The pillar ellipticity introduced a polarization splitting in
the cavity mode of around 90µeV. The linearly polarized laser was set in parallel
along one cavity axis (set as V), roughly 45◦ orientedwith respect to the QD axes (see
Fig. 3.14a). TheV polarized laser created then a superposition of both excitonic states
that evolved toward the orthogonal state, coupled with the H-polarized cavity mode.
The described evolution took place on a timescale that is inversely proportional to the
dot FSS. A confocal crossed-polarized microscope was used for these experiments,
so that the detection was along the H-polarization direction (extinction ratio 105). An
etalon with 15µeV bandwidth was used to further suppress the unwanted scattered
laser light. Together with a g(2) = 0.0028 ± 0.0012 (Fig. 3.14b) the measured HOM
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visibility reached VHOM = 0.9956 ± 0.0045 (M = 0.989 ± 0.004 without correc-
tions) revealing a nearly perfect two-photon interference (Fig. 3.14c). As a counter
check, for fully distinguishable photons the visibility dropped to VHOM = 0.057 ±
0.084 (Fig. 3.14d). In Fig. 3.14e the full dataset of second-order correlation, indis-
tinguishability and brightness are reported: the M values were never below 0.973
in the full power range. Independent reflectivity measurements (under CW exci-
tation) showed a radiatively limited exciton linewidth, further proving the charge
noise cancellation on a millisecond timescale. It is important to say that the used
etalon was not necessary to obtain high indistinguishability values, meaning that the
phonon-assisted emission was suppressed thanks to the Purcell acceleration of the
spontaneous emission of the zero-phonon line and the cavity filtering effect. Esti-
mating once more the polarized brightness, the authors found it to be 0.16 ± 0.02
at the π-pulse. For the device under study, the photon extraction βηout = 0.64. The
lower brightness for the resonant case was due to the cross-polarized detection: the
described polarization rotation was limited by the value of the exciton FSS and the
Purcell enhancement in the V mode. With the described FSS and Fp, the occupa-
tion factor of the H-emitting exciton was px = 0.23. The authors also suggested
that using a different excitation mechanisms, like the side excitation, the brightness
would increase up to 0.65 without affecting purity and indistinguishability.

Following the line of [55] the mentioned device is setting a new standard in the
non-classical light sources for quantum information. Making a comparison between
the existing devices resulted in the graph in Fig. 3.15, where only the results for

Fig. 3.15 The graph shows brightness and indistinguishability for different SPDC and QD single-
photon sources. Open symbols refer to state-of-the-art QD-based sources (ref. A indicates [20],
ref. B means [51] and ref. C indicates [23]). High quality heralded SPCD sources are represented
by gray stars while data from [55] are summarized by full symbols (labelled as QD). QD1, 2, 3,
4 refer to the four devices under study: QD1 and 2 in p-shell excitation while 3 and 4 in resonance
excitation
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which the g(2)(0) < 0.05 are shown (theM values are plotted without corrections for
non-ideal g(2)). Heralded spontaneous parametric down conversion sources (SPDC)
are up to now the most used sources in quantum information: despite the fact that the
brightness is limited by multiphoton generation, the near ideal indistinguishability
made them suitable for quantum information experiments. For the SPDC the bright-
ness is defined as the average photon number for every single spatial mode (making
the assumption that both collection and detection efficiencies are equal to one). This
comparison was motivated by the will of making a fair comparison between different
kind of sources, separately from the photon bandwidth as well as from the driving
repetition rate. It is also necessary to specify that the mentioned two-photon indistin-
guishability refers to photons coming from the same downconversion event, while
for photons coming from different independent heralding are limited to much lower
values of indistinguishability and brightness [57, 58]. It can be seen that the devices
shown in [55] are 20 times brighter than state-of-the-art SPDC, while having ulti-
mate values of g(2)(0) = 0.0028 ± 0.0012 and M = 0.9956 ± 0.0045. More details
on this comparison can be found in [55] and supplementary materials.

Another demonstration that theQD-based technology is currently ready to be used
on the “marketplace” of quantum information is that high extraction efficiency and
indistinguishability havebeendemonstrated independently byother groups.Unsleber
et al. proved that, by using a similar deterministic lithography as the previously
described to fabricate standard micropillars (i.e. without electrical control) [59]. The
extraction efficiency was as high as η = 74 ± 4% meaning an extraction efficiency
of linearly polarized photons of ηlin = 37 ± 2%, in good agreement with theoretical
simulations. With a Purcell factor of around 6, the measured raw HOM visibility was
as high as Vraw = 84 ± 3% that corrected with the actual g(2)(0) = 0.0092 ± 0.0004
and the setup imperfections yielded a value of Vcorr = 88 ± 3%. This value, obtained
for a pumping power equal to π/4-pulse, dropped to Vcorr = 73 ± 1% at the π-
pulse, probably due to power induced dephasing effects (i.e. coupling to longitudinal
acoustic phonons).

The final objective would be the generation of single photons that can perfectly
coalesce independently from the time separation. Spectral diffusion can indeed be
responsible for the degradation from near-unity to lower values on a long inter-
ference timescale. Once more, QD embedded in micropillar cavities can fulfill
this requirement, having demonstrated the possibility to generate long streams of
single photons with very high mutual indistinguishability [60]. Even if a non-
deterministic fabrication technique was utilized, pure and highly indistinguishable
single-photons were produced. Time-dependent HOM experiments were conducted,
showing that an indistinguishability of 95.9 ± 0.2%for 13ns time separationbetween
photons (Fig. 3.16a) only drops to 92.1 ± 0.5% for all delays between 2 and 14.7µs
(Fig. 3.16b). These measurements demonstrated that a stream of more than 1000
photons with very high mutual indistinguishability can be generated. In addition
to that, Fig. 3.16c shows that the time-dependent HOM revealed a slow dephasing
process happening on a time scale of around 0.7µs that is 4000 times longer than
the radiative lifetime of the emitted single photons. Photons emitted on time sep-
aration shorter than 0.7µs should than perceive the same electrical environment,
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(a)

(b)

(c)

Fig. 3.16 a,bCross (black) and parallel (red) input photons for theHOMexperiments. In a the time
separation was 13ns while in b it was increased to 14.7ns. The resonant excitation was performed
at the π-pulse in all cases. No background was subtracted and the integration time was around
5 min. c Photon indistinguishability extracted from measurements at various photon separation
time. The high count rate allowed to eliminate the shot noise, allowing a precise determination of
the error bars. The inset shows the same data in a log x-scale, also clearly reporting the number of
consecutively emitted photons [60]

while on a longer time separation the perceived electric field should be different due
to spectral diffusion. This time averaged wave packet was then determined by the
spectral wandering in comparison to the intrinsic linewidth. The observed plateau in
the indistinguishability was attributed to the nearly Fourier transform-limited emit-
ted photons: T2/2T1 = 0.91 ± 0.05. The authors also proved that, likewise for the
sample in use, the photon properties are strongly influenced by the pumping scheme:
while the g(2)(0) dropped from 0.007 ± 0.001 in s-shell pumping to 0.027 ± 0.002
in p-shell, the value of indistinguishability dramatically decreased to 0.21 ± 0.02.
Power induced dephasing as well as the time jitter induced by the p- to s-shell relax-
ation were attributed as factors limiting the photon coalescence. Under pure s-shell
excitation, Wang and coauthors also proved that an increase of temperature is also
detrimental for the two-photon interference, meaning that a device operating at the
lowest possible temperature is desirable for best performances.

3.3.4 Adiabatic Rapid Passage

An alternative way to generate deterministic and indistinguishable photons is using
the Adiabatic Rapid Passage (ARP) [61]. The main advantage relates on the robust-
ness of the generation, with respect to standard pulsed photon generation. In fact,
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Fig. 3.17 a Scheme of the experimental setup. The stretching of a 3ps transform-limited laser
pulse up to 30ps was made by two symmetrical gratings combined with a telescope. The initials
in the picture stand for polarizing beam splitter (PBS), half-wave plate (HWP) and quarter-wave
plate (QWP) b Schematic in the rotation frame of the eigenstates of the two-level system while
interacting with the chirped pulse. The coherent superposition of the atomic states |g〉 and |e〉
gives the dresses states |±〉. The scheme also shows that for a blue detuned laser, the dressed states
become |e〉 and |g〉 (while for a blue detuned the states become |g〉 and |e〉). Bymeans of a positively
chirped pulse, the QD evolves adiabatically to the excited passing along the |−〉 state. Conversely,
the evolution happens along the state |+〉 for a negatively chirped pulse (laser sweep from high to
low frequencies). This evolution rate is slower than the peak Rabi frequency (equal to 100GHz) in
the described experiment [62]

the use of a laser π-pulse is sensitive to the variation of the pulse area as well as the
dipolemoments of the emitter. In [62], the authors showhow to use frequency-chirped
pulses to implement this ARP method. A negatively charged QD X− embedded in
a planar cavity (with 5 top and 24 bottom DBR mirrors) was used and resonantly
excited with three different methods: transform-limit hyperbolic secant pulses of
3ps from a (mode-locked) Ti:sapphire laser, negatively chirped pulses with 30ps of
duration and positively chirped pulses with the same 30ps duration. The negatively
chirped pulseswere generatedwith a stretchermadewith two parallel-placed gratings
(1200 lines/mm) while the introduction of a telescope between the two symmetrical
gratings was used to generate positively chirped pulses. The excitation/collection
was performed with a confocal microscope in cross-polarization configuration (laser
extinction 106). A sketch of the setup is shown in Fig. 3.17a. The intensity behavior
as a function of the power displayed Rabi oscillations for transform-limited reso-
nant laser pulses. The maximum signal was found at the π-pulse, as expected, and
the observed damped oscillations were assumed to be related to excitation induced
dephasing (Fig. 3.18a). The same intensity in the emitted signal was also obtained
with chirped pulses, for a laser power equivalent to roughly 1.5π. However, nega-
tively chirped pulses displayed a signal decrease for increasing power (in agreement
with previous results and current simulations). This could be due to a relaxation from
the |+〉 to the |−〉 eigenstate (dressed states) assisted by the emission of an acoustic
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(a) (b)

(c)

Fig. 3.18 a Comparison of the count rate behavior versus pump power for the three considered
methods. b Temporal dependence of the resonant fluorescence counts under externally modulated
laser power (time trace in the inset) c Non-postselective two-photon interference. Two chirped
pulses with a pulse area of 1.6π were used to deterministically generate the photons. For the HOM
measurements, two positively chirped pulses, delayed by 4ns where used. Raw (corrected) visibility
of 0.979 (0.995) was found [62]

phonon (3.17b): this effect can break down the ARP, showing that negatively chirped
pulsed can be subject to a photon emission efficiency reduction induced byfluctuation
in the excitation laser power.Conversely, using positively chirped pulses, the intensity
remained constant increasing the laser power (see Fig. 3.18a): this can be explained
thinking that the relaxation from |−〉 to |+〉 associated with a phonon absorption is
less probable than phonon emission at low temperature. The improved stability with
respect to the laser power was also demonstrated with the deliberate introduction
of a pump power fluctuation, with a 50MHz triangle modulation. This modulation,
with 80% peak amplitude, was centered around the π-pulse for the transform-limited
pulses and at 1.9π-pulse for the positively chirped pulses (Fig. 3.18b). The recorded
time traces of the resonant fluorescence photons showed an intensity fluctuation of
15% for the transform-limited pulses while only 2.2%was recorded for the positively
chirpedARP.Themeasured resonant fluorescence photons generated viaARPorwith
transform-limited pulses displayed a similar linewidth and a multiphoton probability
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generation of g(2)(0) = 0.003 ± 0.002 (the authors used the ratio between the inten-
sity integrated in a 3.2ns time window around zero delay and the average counts of
the seven peaks besides). Interestingly, the recorded two-photon interference visi-
bility reached values as high as 0.979 ± 0.006 (raw) and 0.995 ± 0.007 (g(2)(0) and
setup imperfections corrected), calculated from the integrated counts in a 3.2ns time
window around the zero delay peak (ratio between parallel and crossed polarization).
This measurement is reported in Fig. 3.18c. Unfortunately, the brightness (intended
as photons collected at the first lens per excitation laser pulse) is not reported but the
authors wrote that the product of the overall collection efficiency and detection effi-
ciency gave 0.2%, far away for the needed 67% efficiency threshold for loss-tolerant
quantum computing. Therefore, they suggested the use of cavities to increase the
overall efficiency and underlined the importance of the described method for the
resonant pumping of the biexciton state (further described in Sect. 3.3.6).

3.3.5 Spin-Flip Raman Transition

Another method to generate tunable single-photons with high indistinguishability
relies on a driven single quantum dot spin. Fernandez et al. demonstrated the gener-
ation of tunable Raman photons using an optically driven Λ system, formed placing
a single electron-charged QD into a magnetic field (in Voigt geometry) [63]. One
of the advantages of such a method is related to the emitted photon linewidth that
for Raman photons can in principle be very narrow and limited only by the laser
linewidth and by the low-energy spin coherence (the interaction of the electron spin
with the nuclear spins is one example of decoherence mechanism). The presence of
the magnetic field lifts the degeneracy of the ground and excited trion states, and
for large enough Zeeman splitting each of the two excited states can form an inde-
pendent Λ system with the two ground states (see Fig. 3.19a). The Zeeman splitting
results to be geµB B for the ground state and ghµB B for the trion state, where ge and
gh are the electron and hole in-plane g factors. The polarization of each transition
is determined by the optical selection rules and helped the authors to discriminate
between the emitted photons and the pump laser (further suppressed with crossed
polarizers and with a scanning Fabry-Pérot interferometer). The recombination from
excited to ground state happens on a ns timescale and for the Voigt geometry takes
place with equal probability (differently from the Faraday configuration). Driving
the QD resonantly on one of the optical transitions turns in the spin pumping in the
other ground state: this prevents further photon emission and absorption. For this
reason, the spin state must be restored on a short time scale to allow efficient photon
generation. In case the sample is provided with a back contact (divided by a tunneling
barrier from the QD layer), operating the source at the edge of the voltage for which
the dot is singly charged results in spontaneous spin-flip. Otherwise, a second laser
can be used to optically pump back the electron spin. In the particular case for which
gh = −ge the two diagonal transitions are degenerate and the pump laser could act as
pump and repump simultaneously, so no spin restoration would be required. Under
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Fig. 3.19 a Diagram of the energy levels: the polarization of vertical and diagonal transitions is
set by optical selection rules. b Raman spectra for different laser detunings. c Raman photons’
second-order correlation: laser delay of δ = 1GHz. The solid black corresponds to theoretical fit,
convolved with the system response time (detector resolution around 400ps), while the solid gray
is the deconvolved curve. d Increasing decay time constant for increasing laser detuning with a
theoretical curve shown by solid curve [64]

the aforementioned configuration, Fernandez and coauthors showed that setting the
laser resonantly with one of the diagonal transitions gave rise to two distinct peaks
detuned from the laser frequency (photon emission from the two vertical transitions)
and that this resonantly scattered photons could be tuned varying the magnetic field
(see [63] for further experimental details). In addition to that, the authors demon-
strated that tuning the laser close to the (energetically higher) outer transition it is
possible to generate off-resonance Raman scattered photons. The achieved tuning
range was around 2.5GHz, with an additional variation of the emitted intensity as
well as photon linewidth.

It was also demonstrated that these optically tunable Raman photons can also
be highly indistinguishable [64]. With an experimental configuration similar to the
previously mentioned one, the authors demonstrated subnatural linewidth of the
emitted photons under CW operation and high indistinguishability with a near to
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zero multiphoton emission for pulsed excitation. In CW experiments, two lasers
where used: one red detuned by −δ from the | ↓〉 ↔ | ↓↑⇓〉 transition and the sec-
ond blue detuned by δ from the transition | ↑〉 ↔ | ↑↓⇑〉 (Fig. 3.19a). These lasers
were used for the optical pumping and repumping of the electron spin: the fast spin
restoration is indeed necessary for high repetition rate operation. It was demon-
strated that the emission from the diagonal transitions was tunable with the excita-

Fig. 3.20 aUnbalancedMach-Zehnder interferometer used for HOM experiments: the used delays
were 10ns for CW operation and 12.4ns for pulsed operation. b, c Two-photon interference mea-
surements in parallel and orthogonal polarization configuration respectively. d Sequence of laser
sequence for the pulse Raman photon generation. Electro-optics modulators were used to generate
the two 4ns and 105ps pulses from CW lasers. A filtered Ti:sapphire laser was used to generate
the 20ps spin-rotation laser pulse. The synchronization signal came from the Ti:sapphire laser. A
Raman fluorescence spectrum, for a magnetic field of 2.8 T is shown in the bottom-right panel of
d. e Two-photon interference from Raman-single photons (π-pulse excited): the dashed region is
the 2.2ns window used in the visibility estimation [64]
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tion laser detuning δ (Fig. 3.19b), giving a knob to control the Zeeman splitting (or
equivalently the hole g factor). After deconvolution, the experimental second-order
correlation was found to be g(2)(0) = 0.01 ± 0.02 (Fig. 3.19c). Complementary to
the spectral narrowing, the decay time constant was found to follow the expected
expression τ = (2 + Γ 2/Ω2 + 4δ2/Ω2)/Γ , with Γ the spontaneous emission rate
and Ω the Rabi frequency (Fig. 3.19d). These findings shown the possibility to
generate single Raman photons with tunable frequency, bandwidth and lifetime,
important properties for hybrid quantum networks. In addition to that, the HOM
interference for two off-resonant Raman photons was measured (setup sketched
in Fig. 3.20a). From the measurement of the coincidence probability for identical
(g(2)

|| (0) = 0.01 ± 0.02) and distinguishable (g(2)
⊥ (0) = 0.50 ± 0.02) photons the vis-

ibility (V (t) = 1 − g(2)
|| (t)/g(2)

⊥ (t)) was estimated to be at zero delay 0.98 ± 0.03
(Fig. 3.20b, c).

In pulsed operation, a different laser configuration was used (Fig. 3.20d). A laser
pulse of 4ns resonant with the diagonal transition | ↓〉 ↔ | ↑↓⇑〉 gave the optical
pumping to the spin state | ↑〉. The first laser pulse was followed by a 20ps laser pulse
(red detuned from the transition | ↓〉 ↔ | ↓↑⇓〉) to coherently rotate the electron spin
from | ↑〉 to | ↓〉: this two pulses sequencewas used for a deterministic spin recycling.
The resonant π-pulse (105ps) was used to bring the system from | ↓〉 to | ↓↑⇓〉, then
followed by the spontaneous emission in the two channels marked as 1 and 3 in
Fig. 3.20d. The overall source efficiency was estimated from the observed count rate
to be 1.2%,mainly limited by the actual photon extraction. Another limitation relates
to the not possible on-demand emission due to the simultaneous emission of two
spectrally distinct lines. The single-photon emission was demonstrated by a g(2)(0)
as low as 0.01 ± 0.01. To estimate the HOM visibility, the two-photon events in a
coincidence window of 2.2ns were analyzed, resulting in a visibility of 0.95 ± 0.03
(Fig. 3.20e). These highly indistinguishable and tunable photons were also used to
perform two-photon HOM with photons coming from remote and distinct sources.

3.3.6 Two-Photon Excitation of the Biexciton

So far, SPDC sources are currently widely used for entangled photon pair generation.
As for the case of indistinguishable photons, QDs represent a new powerful alterna-
tive for the deterministic (and not probabilistic as for SPDC) generation of entangled
photon pairs. For this purpose, the radiative cascade XX → X → O can be utilized
for the generation of polarization-entangled photons. Trapping two electron-hole
pairs in the QD leads to the formation of the XX (see Sect. 3.3) and after the radiative
recombination of one exciton, the system has one remaining exciton that can emit a
second photon then driving the system in the ground state. For the efficient generation
of polarization-entangled photons, the excitonFSSmust be energetically smaller than
the radiative linewidth: in this case, the two decay paths become indistinguishable,
resulting in a two-photon Bell state as |Ψ +〉 = 1/

√
2(|HXX 〉|HX 〉 + |VXX 〉|VX 〉). In
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order to make sure that only one entangled photon pair is emitted per excitation laser
pulse, the biexciton must be driven at saturation. Similarly to the excitonic case, the
use on non-resonant excitation methods limits the coherence and the indistinguisha-
bility of the emitted photons and, in addition, due to different charge configurations
the emission is not on-demand. For this reason, the entangled photon pair should be
emitted by resonantly pumping the XX state. On the other hand, the optical selection
rules prevent the possibility to directly excite the biexciton with one resonant pho-
ton. To overcome this issue, a two-photon excitation (TPE) scheme can be used [65],
which at the π-pulse can coherently lead to the biexciton deterministic preparation
with near unity fidelity. As schematized in Fig. 3.21 the virtual TPE state energeti-
cally lies between the exciton and biexciton emission lines and it is used to “reach”
the biexciton state with the use of two excitation photons. The main advantages rely
on one hand on the reduced decoherence: no phonon relaxation processes are needed
for the biexciton preparation and no charge carriers are created in the semiconductor,
then avoiding the carrier-carrier scattering processes. On the other hand, the laser
is spectrally well separated with respect to exciton and biexciton radiative emission
(see Fig. 3.21b, c), meaning that from an experimental point of view, a polarization
suppression scheme is not necessary for the laser suppression, but only a spectral
selection (using a spectrometer or narrow notch filters) is required. This excitation
scheme, successfully used for bulk crystals and single quantum dots, was adopted to
generate on-demand indistinguishable polarization-entangled photon pairs [66]. In
the cited case, the exciton (1.4212eV) and biexciton (1.4189eV) lines were sepa-
rated by 2.3meV (the biexciton binding energy). In Fig. 3.21b a trion line is observed
in the non-resonant spectrum but it disappears under TPE excitation (Fig. 3.21c). In
some cases, the excitation laser may need to be spectrally shaped in order to min-
imize the unwanted phonon-mediated pumping as well as the impact of scattered
laser light in the collected QD emission. In [66] a shaped laser (τpulse = 21.4ps,
FWHM = 95µeV) linearly polarized was used to address the virtual biexciton TPE
state. A footprint of the successful TPE pumping was given by the observed equal
emitted intensity from XX and X lines (Fig. 3.21c), since the XX is deterministi-
cally prepared after each pump laser pulse and the X population derives only from
the radiative cascade XX → X . Given that, as explained, there is no need of any
polarization suppression to filter the laser light, the authors successfully performed
polarization-dependent cross-correlation measurements on the photons coming from
the XX → X cascade. In addition to that, the purity of the emitted photonswas found
to be almost perfect with a recorded g(2)(0) < 0.004 for both X and XX transitions.
Signature of the coherent nature of the excitation process was found observing Rabi
oscillations in the emitted intensities over the laser power for both transitions. The
biexciton occupation probability was estimated to be εXX = 0.98 ± 0.07. A simi-
lar behavior was also observed for the X state (with εX = 0.86 ± 0.08), fed via the
XX → X cascade.

Quantum-state tomography measurements were performed (at the π-pulse) in
order to evaluate how the degree of entanglement of the emitted photon pair was
affected by this described QD coherent control method. A good approximation of
the fidelity of the Bell state was obtained by measuring the degrees of polarization
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Fig. 3.21 a Energy scheme: the shaped laser used for the excitation lies resonant with the TPE
virtual state. The two possible recombination path (through the two fine-structure split exciton
states) are displayed. The intermediate exciton states fixes the photon polarization. b Non-resonant
excitation (NRE) spectrum, evidencing the X , XX and T line (the last due to carrier capture
in the QD). c Shaped laser resonant with the TPE virtual state (in between X and XX ). The
trion disappeared and the X and XX intensities are now equal. The exciton population cannot be
transferred to a trion (by charge capture) before the radiative cascade is over: X and XX are then
emitted as a pair. The biexciton generation efficiency increases by a factor of 4 passing from NRE
to TPE [66]

correlation between exciton and biexciton in different bases: linear, diagonal and
circular.

While in linear and diagonal bases (Fig. 3.22a, b) a clear bunching was observed
for parallel polarization of the X and XX photons (and antibunching in the oppo-
site, orthogonal cases), in the circular basis (Fig. 3.22c) the behavior was opposite
(antibunching for parallel and bunching for orthogonal polarization): this is a clear
signature of the polarization entanglement. The polarization correlation contrast can
be defined as:

Cµ = g(2)
xx,x (0) − g(2)

xx,x̄ (0)

g(2)
xx,x (0) + g(2)

xx,x̄ (0)
(3.9)

with g(2)
xx,x (0) the second-order correlation function, at zero delay, between the first

and the second emitted photons in the selected polarization basis, while g(2)
xx,x̄ (0)

is the respective cross-polarized second-order correlation function. Extracting the
contrasts from the previously shown measurements, the authors found the fol-
lowing contrasts: Clinear = 0.87 ± 0.02, Cdiagonal = 0.67 ± 0.04 and Ccircular =
−0.69 ± 0.02. From these values, the fidelity was calculated as f = (1 + Clinear +
Cdiagonal − Ccircular )/4 = 0.81 ± 0.02. Performing the same tomography measure-
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Fig. 3.22 a Cross-correlation histograms for linear basis, b diagonal basis and c circular basis. It
is clear from the data that antibunching was observed for orthogonal polarizations in the basis a and
b, while bunching was found for parallel polarization. Opposite behavior was found for circular
basis. The crossed-polarization contrast was derived considering the relative areas at zero delay for
a, b and c histograms. A time-shift in the orthogonal polarization data was added for clarity. d, e
HOM interference for X and XX for two consecutive photons. Parallel polarization configuration
is shown in dark color, while in gray the orthogonal polarization is depicted: 0.71 ± 0.04 for d and
0.86 ± 0.03 was estimated (see text for further explanations) [66]

ments for above-bandgap excitation led to a fidelity of 0.72 ± 0.01: the improved
fidelity for the TPE scheme was attributed to the improved coherence time (T2)
that passed from 229ps (non-resonant) to 357ps (resonant) for the X photon and
from 114ps (non-resonant) to 192ps (resonant) for the XX photon. The non-perfect
fidelity under TPEpumpingwas attributed to eventual cross-dephasing events involv-
ing polarization dependent phonon interaction.

To measure the indistinguishability, a standard unbalanced Mach-Zehnder inter-
ferometer (MZI) was used, exciting the QD every 13ns with two π-pulses delayed
by 4ns. For every excitation cycle (i.e. two laser pulses), the QD emitted a pair
of photons. The X and XX photons were then spectrally separated, their polariza-
tion was projected in horizontal orientation and then used to feed the MZI (with an
unbalance of 4ns). If X photons were used, a raw visibility of 0.44 ± 0.03 was found
while for the XX photons a higher visibility was obtained (0.58 ± 0.01). Correcting
from experimental imperfections (i.e. detector dark counts, reduced mode overlap
on the beamsplitter and non-zero g(2)(0)) gave visibilities of 0.69 ± 0.04 for the X
and 0.84 ± 0.05 for the XX . These data were taken comparing the zero-delay peak
for indistinguishable (parallel polarization) or distinguishable (orthogonal polariza-
tion) photons but comparable results were obtained also checking the intensities of
the side peaks and their known peak area ratios (Fig. 3.22). The difference in the
observed visibilities, i.e. a lower indistinguishability for the X with respect to the
XX , was attributed to time jitter introduced in the exciton population by the biexci-
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ton lifetime. Once more, using a cavity to Purcell enhance the XX radiative decay,
i.e. shortening the lifetime, could improve the X indistinguishability by reducing the
XX lifetime-induced time jitter. Recent results showed that the use of the described
TPE method allowed for the generation of highly indistinguishable (0.93 ± 0.07)
and highly entangled (0.94 ± 0.01) single photons, showing once more the strength
of this pumping mechanism [67].

In [68] a “full-coherent control of the ground-biexciton qubit” was achieved using
a TPE scheme and the coherence time was indeed improved. Suchmechanismmakes
the source suitable for the generation of time-bin entanglement (see Chap. 8).

3.4 Phonon-Assisted Excitation Methods for Exciton
and Biexciton

In the following section, phonon-assisted processes will be described. Up to now,
phonons have been considered as “detrimental”: they are responsible of the inten-
sity damping of the Rabi oscillations and of the ARP signal; the phonon-assisted
emission, around the zero phonon line, limits the photon indistinguishability making
the emission spectrum not-perfectly Fourier transformed (reason why they are often
spectrally filtered out). Despite that, here we will show how to use phonon-mediated
processes in order to excite X and XX states.

3.4.1 Phonon-Assisted Exciton Excitation

In early 2015, it was demonstrated that by using a strong laser pulse tuned on
the phonon sideband (i.e. the spectral region where longitudinal-acoustic phonon-
assisted processes can take place) of a neutral exciton it is possible to invert the popu-
lation of the excitonic two-level system [69]. This population inversion was achieved
working in an incoherent regime with the dephasing time which was shorter than
the pulse duration. The mechanism behind this phonon-assisted population inversion
was triggered with a circularly polarized laser pulse, used to excite an InGaAs/GaAs
QD. The laser was positively detuned inside the phonon sideband which has, typ-
ically, a maximum at 1meV above the exciton zero phonon line. In the mentioned
experiment, the laser bandwidth (0.2meV) was much larger than the exciton FSS
(13µeV), meaning that the exciton spin dynamics were neglected. Also from a the-
oretical point of view, the QD could be treated as a two-level system, being the laser
far away from the biexciton transition. Applying a strong laser pulse on the QD, the
system is not any longer composed by the two bare states |0〉 and |X〉 (with relative
populations C0 and CX ) but by two dressed states (see Fig. 3.23a). In the rotating
frame, the system could be described by |0R〉, composed by the ground state and the
N excitation laser photons, and by |XR〉 which is made of the exciton state and the
laser field with N − 1 photons. The reported Hamiltonian had the form:

http://dx.doi.org/10.1007/978-3-319-56378-7_8
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(a) (b)

Fig. 3.23 a Sketch of the energy diagram for QD bare states in lab frame (i) and rotating frame
(ii). |0〉 (|0R〉) and |X〉 (|XR〉) refer to ground and exciton state in lab (rotating) frame. The exciton
transition energy is indicated as�ωX while the laser angular frequency ismarked asωL . The positive
detuning from the exciton transition is indicated as �Δ. Optically dressed states are indicated as |α〉
and |β〉 (iii). b Time evolution of the dressed QD states during the absorption of a laser pulse (8.5π
and �Δ = +1meV. The instantaneous population of the states is indicated by the gray scale [69]

HQD = −�Δ|XR〉〈XR| + �Ω(t)

2
|0R〉〈XR| + h.c. (3.10)

In the previous equation, the laser detuning with respect to the exciton is Δ = ωL −
ωX , while Ω(t) is the Rabi frequency which follows in time the envelope of the
laser pulse. The splitting of the two eigenstates |α〉 and |β〉 is given by the effective
Rabi energy �Λ(t) = �

√

Δ2 + Ω(t)2 and described by the admixing angle defined
as 2θ(t) = arctan(Ω(t)/Δ). The authors further defined the pulse area as Θ =
∫ +∞
−∞ Ω(t)dt . Being theQD into a solid statematrix, it interactswith the environment,
and through the deformation potential with the longitudinal acoustic (LA) phonons.
While the exciton-phonon interaction introduces pure dephasing of the excitonic
dipole (see reference 12 in [69]), when driving with a strong laser field, both dressed
states have an excitonic component. This would make possible a relaxation between
the states assisted by the emission of a phonon with energy �Δ (see Fig. 3.23a (iii)),
in case of positive detunings. This described process is responsible for the different
population inversion results that can be obtained using a positively or negatively
chirped ARP [62]. A scheme of the phonon-assisted population inversion, in the
rotating frame, is shown in Fig. 3.23b. For the case under investigation of a positively
detuned laser (Δ > 0), the initial state coincides with the dressed state |α〉: when
the laser is turned on, relaxation to the dressed state |β〉, which has a lower energy,
is activated. Looking at the same process in the lab frame, the absorption of a laser
photon brings a consequent formation of an exciton plus the emission of a phonon.
In [69] the authors used a path-integral method to model the experiment and the
gray scale in Fig. 3.23b shows the calculated evolution over time of the population
between the dressed states |α〉 and |β〉. The laser activated admixture of the states
drops with the decrease of the laser pulse intensity. In the case that the phonon
relaxation, integrated over time, is intense enough, population inversion can occur,
with the lower dressed state being populated. The advantage of the described method
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relies on the robustness against fluctuations of the pulse area or of the laser detuning.
The maximum value of inverted population that one can reach is limited by the
thermal occupation of the two states, given by CX − C0 = tanh(�Δ/2kBT ): in [69]
a maximum of 0.91 was estimated. Measurements for different pulse areas (not
shown) demonstrated that an exciton population of 0.67 ± 0.06 was achieved for the
maximally available experimental power.

3.4.2 Phonon-Assisted Biexciton Excitation

In a similar manner, also the biexciton state can be prepared using a phonon-assisted
two-photon excitation scheme. In [70], a controlled two-photon excitation scheme
was used for this purpose. A meticulous choice of the laser energy as well as of
the pulse duration can optimize the state preparation working at the point where the
relaxation processes due to the carrier-phonon coupling are at the maximum effi-
ciency. A standard Ti:sapphire laser was used to generate the pulses in combination
with a pulse shaper to control their temporal profile. Linearly polarized photons were
sent from the side of the sample with a crossed-polarization collection from the top
(see Fig. 3.7). Figure3.24a shows a PL spectrum for above GaAs bandgap excitation.
Using a resonant two-photon excitation scheme with a shaped laser beam (similar to
the one described in [66]) the PL spectrum changed as in Fig. 3.24b, where XX and
X appear with the same intensity. Power dependent measurements for two-photon
resonant pumping (at a laser pulse width of 13ps) led to the well-known Rabi oscil-
lations (Fig. 3.25a), where the solid lines came from a numerically exact real-time
path-integral simulation. From the measured data, the biexciton occupation factor
at the π-pulse was found to be CXX = 0.94 ± 0.01. The observed decrease of the
Rabi frequency with increasing pulse area is known to be due to the two-photon

(a) (b) (c)

Fig. 3.24 a, b and c Emission spectra of a single QD under different excitation schemes: non-
resonant (above GaAs band gap) pumping a, resonant two-photon pumping b and phonon-assisted
pumping (13ps pulses, 0.65meV positively detuned) c. The insets in b and c show the system
energy levels [70]
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(a) (b) (c)

Fig. 3.25 aBehavior as a function of the pump area (13ps pulses) of the biexciton occupation. Solid
lines come from path-integral calculations. Data for zero detuning (blue) and 0.08meV detuning
(red) are shown. bAdditional data for various detunings (see legend). cMaximal biexciton occupa-
tion obtained at different laser detunings. Experimental data (dots) are also supported by theoretical
calculations (solid lines), for the case without phonons (red) and with phonons (blue) [70]

excitation process, while the decrease in intensity was due to coupling with acoustic
phonons. It is worth noting that the mean oscillations above 0.5 were attributed to
a slight chirp in the laser pulse but accordingly to simulations this chirp had a very
small effect for off-resonant laser pulses. The spectrum for off-resonant pumping is
shown in Fig. 3.24c, for a laser detuning of Δ = 0.65meV (this quantity Δ is related
to the two-photon biexciton resonance). In such a configuration, i.e. a system formed
by few isolated and discrete energy levels excited with a detuned laser, it is com-
monly known that the Rabi oscillations decreased with increasing laser frequency.
This behavior was also confirmed and observed as shown in Fig. 3.25a, b where the
Rabi oscillations decrease up to a complete disappearance. The highest biexciton
population was found for values of detuning between 0.45 and 1.00meV reaching
up to CXX = 0.95 ± 0.02, value very close to the one measured at a resonant π-
pulse. The advantage relies on the large, flat plateau which shows the robustness
of the off-resonant phonon-mediated pumping with respect to power fluctuations.
On the other hand, for too large detunings, the efficiency of the process started to
degrade, leading to a decrease of the XX occupation. At this point it is also necessary
to underline that the phonon-induced relaxation is only possible in case of a dressed
two-level system and that such relaxation is responsible for the thermal occupation
of the dressed state. From the physical point of view, the phonon-assisted biexciton
excitation is equivalent to the excitonic case, while the representation is not as simple
as the one depicted for the X case. In the case of positive detunings, this reflects to
the population of the XX while for negative detunings the biexciton is no longer the
final state for the thermalization at low temperatures, since the energetic order of the
dressed states changes. Intuitively, the excess energy provided by the pump laser will
result in emission of a phonon (see sketch in Fig. 3.24c), while for negative detunings
the energy gap should be filled by absorption of a phonon that is less probable than
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phonon emission at low temperature. This explanation is reflected in the observa-
tion of Fig. 3.25c, where the XX occupation dropped for Δ < 0. The peak at zero
detuning was given by the direct, resonant, two-photon pumping, while the drop at
small positive detunings relates to the region in which the Rabi oscillations smear
out giving way to the off-resonant pumping behavior. The maximum in the biexciton
occupation is obtained when the most pronounced phonons are in resonance with
the relevant dressed-state transition. A further increase of the detuning only lead to
leaving this resonance condition, resulting in a less efficient biexciton population.
Measurements performed with different pulse duration demonstrated that the pulse
has to be long enough to allow the relaxation of the system in the energetically lowest
dressed state. A too short pulse does not allow such relaxation, resulting in a less
efficient XX preparation. Finally, the observed coherence time of photons gener-
ated with this phonon-assisted scheme was comparable with the coherence of the
resonantly generated photons: 277 ± 8ps and 271 ± 7ps respectively. Together with
the aforementioned advantage related to the robustness against power fluctuations,
another advantage of off-resonance, phonon-mediated pumping scheme is given by
a relatively easy possibility to filter out the pump laser, particularly important feature
for schemes based on two-photon emission.

3.5 Summary and Outlook

In the last decade, research and technological advances made semiconductor QDs
highly attractive as non-classical light sources for quantum information and com-
putation applications. The on-demand nature of the emission together with highly
pure single-photon emission fulfill the needs of quantum information protocols. In
addition to that, in this chapter we discussed the fundamental properties of QD-
based quantum light sources, while showing the latest achievements in terms of
photon indistinguishability, brightness and coherence. Different excitation methods
have been described giving as a take-home message that the resonant excitation,
either CW or pulsed, produces sensitive improvements in the source performances.
Depending on the experimental needs, i.e. generation of entangled photon pairs, long
coherence time, highly bright sources, one can choose the most appropriate pump-
ing scheme. A short summary of the state-of-the-art results discussed in this chapter
is reported in Table3.1. Currently, pulsed resonant excitation at the π-pulse is one
of the most used methods since it is relatively straightforward (except for the need
of high laser suppression) and allows for the generation of highly indistinguishable
and on-demand single photons. For the same reason, also the two-photon excitation
of the biexciton carries the same advantages together with an easier suppression
of the pump laser (being spectrally separated) and even if high indistinguishabil-
ity still needs to be achieved, this method is highly attractive for the generation of
polarization-entangled photons with superior properties.

The near-unity indistinguishability reached by several independent groups,
together with a source brightness one order of magnitude higher than previous state-
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of-the-art demonstrate the reachable quality of QD-based sources paving the way to
unprecedented achievable quantum computation schemes. A fundamental task for
the future will be to transfer the excellent properties of the InGaAs QDs, which have
been here summarized, to other QD materials emitting in the visible and telecom-
wavelength regime.

As a final remark, we have also reported about the effectiveness of QD-cavity
systems. It is worth noting that huge steps forward have been made in the fabrication
of such systems: at present, several different techniques showed their potentials in the
deterministic fabrication of single QDs coupled with cavities. Currently, high source
brightness has been reached under non-resonant pumping making use of photonic
cavities or structures to enhance light extraction. Under pure resonant pumping,
despite the highly attractive achieved results, there is still room for improving the
source brightness.

Several groups are nowadays focusing their efforts in realizing integrated photonic
circuits based on GaAs platform, so taking advantages from the superior QD prop-
erties (see Chap. 13). Following a similar argument as before, it is of great interest to
transfer such a technology to other wavelengths, in particular with the perspective of
utilizing other semiconductor platforms as the highly developed Si-based technology.
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Chapter 4
Coherent Control of Dark Excitons
in Semiconductor Quantum Dots

E.R. Schmidgall, I. Schwartz, D. Cogan, L. Gantz, Y. Don
and D. Gershoni

Abstract We review studies of the quantum dot confined dark exciton and demon-
strate its use as a matter qubit. The dark exciton is an optically forbidden semicon-
ductor electronic excitation, in which an electron-hole pair is generated with parallel
spin projections. This optcally inactive excitation lives orders of magnitude longer
than the corresponding optically active excitation, the bright exciton, in which the
pair has anti-parallel spins. We show that despite its optical inactivity, the dark exci-
ton can be deterministically generated in any desired coherent superposition of its
two eigenstates using a single picosecond optical pulse. We provide lower bounds
for the dark exciton life and coherence times and show that its coherent state can be
fully controlled using short optical pulses. We also study its behavior in an exter-
nally applied magnetic field and present a method for its optical depletion from the
quantum dot. Our results demonstrate that the dark exciton is an excellent matter
spin qubit.

4.1 Bright and Dark Excitons in Quantum Dots

In semiconductors, the absorption of a photon promotes an electron from the full
valence band to the empty conduction band. This fundamental excitation is partic-
ularly efficient because the valence band is formed from molecular p-like orbitals
while the conduction band is formed from s-like orbitals. The dipolemoment between
these orbitals strongly interacts with the electric field of the light. Consequently, this
photoexcitation does not alter the spin of the promoted electron. The excitation leaves
an excited electron in the conduction band and amissing electron in the valence band.
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When the missing electron is treated as a heavy hole with opposite quantum numbers
(positive rather than negative charge, spin up instead of spin down), this electron-
heavy hole combination can be treated as a two-body system. Absorption of a photon
thus results, in this picture, in the creation of an electron-heavy hole (e-h) pair with
antiparallel spins, or a bright exciton (BE).

Heavy holes are holes where their spin is aligned with the orbital molecular
momentum for a total angular momentum projection of ±3/2 on the quantum dot
(QD) growth axis. There are also light holes, where the hole spin is antiparallel
to the orbital momentum for a total angular momentum projection of ±1/2 on the
QD growth axis. In InAs/GaAs self-assembled QDs, the quantum size and lattice
mismatch strain result in a considerable energy difference between the heavy holes
and the light holes. Consequently, the lowest energy BE states are composed of an
electron-heavy hole pair, and this state has total integer spin projections of±1 on the
QD growth axis, reflecting the difference in orbital momentum between the ground
valence and excited conduction states. The spin of these BEs can be straightforwardly
coherently “written” [2], “read,” and manipulated [3, 4] using the polarization of
laser light, due to the fact that this orbital momentum is aligned with the electronic
spin (Chap.10). Thus, for example, optical recombination of an electron hole pair in
which the electron spin projection is +1/2 and that of the hole is −3/2 (↑⇓ BE with
total spin −1) results in emission of a left-hand circularly polarized (σ−) photon
along the symmetry axis of the QD, carrying the energy and orbital momentum
released by the pair recombination. Similarly, rectilinear horizontal (H ) and vertical
(V ) polarizations are linear combinations of σ+ and σ−, circular polarizations.

A dark exciton (DE) is an electronic excitation in which the heavy-hole spin is
parallel to that of the electron. Thus, in QDs, the DE has a total integer spin of 2
[5], with projections of ±2 on the QD growth axis. This reflects the difference in
both angular momentum and spin between the valence band and conduction band
electron states. These DEs are almost optically inactive since photons barely interact
with electronic spin. Thus the lifetime of the DE is orders of magnitude longer than
that of the BE [6, 7].

In the absence of any external magnetic field or exchange interaction, all spin con-
figurations are degenerate in energy. However, the exchange interaction between the
electron and hole removes the degeneracy between the four possible electron-hole
spin pairs [1, 8, 9]. For epitaxially grown semiconductor QDs on [001] oriented sub-
strates one generally assumes combined lattice and structural symmetry of C2v (i. e.,
symmetry under rotations of π radians around the structural symmetry axis [001],
and under two reflections about perpendicular planes which contain the symmetry
axis: the [110]–[001] and the [11̄0]–[001] planes [10–12]).

From general symmetry considerations, it can be shown that for C2v symmetri-
cal QDs the exchange interaction Hamiltonian written in the basis |+ 1〉 , |− 1〉 , |+
2〉 , |− 2〉 has the following form [10–12]:

http://dx.doi.org/10.1007/978-3-319-56378-7_10
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HC2v = 1

2

⎛
⎜⎜⎝

Δ0 Δ∗
1 0 0

Δ1 Δ0 0 0
0 0 −Δ0 Δ∗

2
0 0 Δ2 −Δ0

⎞
⎟⎟⎠ (4.1)

Here Δi , i = 0, 1, 2 are parameters that one either measures [5, 7, 8, 13, 14] or
calculates using simplified models [10, 12, 15, 16].

For these QDs, there is no mixing between the DE and BE eigenstates. The two
subspaces are energetically separated by Δ0 ∼ 300µeV [13].

Δ1,2 are in general complex numbers [10] and can be expressed as Δ1,2 =
δ1,2e2iθ1,2 , where δ1,2 are positive numbers. Thus the eigenvalues of the Hamiltonian
are expressed as

EBE± = 1
2 (Δ0 ± δ1) (4.2a)

EDE± = 1
2 (−Δ0 ± δ2) (4.2b)

and the eigenvectors as

vBE± = 1√
2

(
e−iθ1

±eiθ1

)
(4.3a)

vDE± = 1√
2

(
e−iθ2

±eiθ2

)
(4.3b)

The parameter δ1 ∼ 30µeV, which removes the degeneracy between the two BE
states, is closely related to the oscillator strength for optical transitions to these fun-
damental excitations [11, 16]. Thus, using these relations, one finds that the positive
(vBE+) and negative (vBE−) eigenstates of the BE have dipole matrix elements linearly
polarized along the (cos θ1,− sin θ1, 0) and (sin θ1, cos θ1, 0) directions respectively,
where θ1 is measured from the [100] crystallographic direction.

Atomistic calculations [17, 18] and accumulated experimental data [7, 19–21]
imply that most often the lowest (highest) energy BE emission spectral line is polar-
ized along the [11̄0] ([110]) direction, even for a circularly symmetric QD. If one
defines the lowest energy line polarization as horizontal polarization (i.e. symmetrical
superposition of right and left hand circular polarizations) this situation is described
by θ1 = 135◦.

The value of Δ2 is mostly determined by the short range e-h exchange interac-
tion [15] which has the symmetry of the unit cell. This implies that Δ2 must be a
real number [8], thus compelling θ2 to be either 0◦ or 90◦. Atomistic model simu-
lations [18, 22], as well as recent experimental data [7] indicate that θ2 = 90◦, and
that δ2 ∼ 1.5µeV, is rather small.

The excitonic energy fine structure, the BE and DE spin eigenstates, and the
optical transitions resulting from the C2v Hamiltonian are schematically depicted in
Fig. 4.1.
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Fig. 4.1 Spin states and fine
structure of a QD-confined
exciton, showing both BE
and DE eigenstates and
energy splittings. Optical
recombination is represented
by an arrow labeled with the
corresponding photon
polarization. Image from [1]

4.1.1 The Optical Activity and Oscillator Strength
of the Dark Exciton

From the dipole approximation, it follows that the DEs are completely dark. How-
ever, despite its name–even for C2v symmetric QDs–the DE is not completely dark.
Residual heavy-hole light-hole mixing gives one of the DE eigenstates a small
ẑ-polarized dipole moment, while the other one is totally dark [10, 15, 23]. Realistic
atomistic model calculations of InAs/GaAs self assembled QDs yield ẑ-polarized
optical activity of one DE eigenstate that is 3–6 orders of magnitude weaker than the
BE, and the optical activity of the second DE eigenstate is much weaker [17, 18, 24,
25]. This DE emission was experimentally observed in PL collected orthogonal to
the QD growth direction [25].

In reality, ideally symmetrized systems of macroscopic scale are extremely rare.
Recent theoretical studies of epitaxial growth of strained heterostructures [26] show
that indeed self-assembledQDs can actually grow highly asymmetrical, largely devi-
ating fromC2v symmetry. In an asymmetrical QD, the subspaces of the BEs and DEs
are no longer separated and their eigenstates are mixed [8].

We model the symmetry reduction by introducing a small angle ϕ by which the
symmetry axis of the QD is tilted relative to the [001] crystallographic direction.
As a result, the quantization axis of the QD potential is no longer aligned with the
underlying semiconductor lattice. If for simplicity, one also assumes that the electron
and heavy-hole envelopewavefunction symmetry axes are inclined by the same angle
ϕ relative to the [001] crystallographic direction, it follows that the Hamiltonian of a
C2v QDas expressed by (4.2) and (4.3) ismodified to the following reduced symmetry
(Cs) Hamiltonian:
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H′
Cs

= 1

2

⎛
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Δ0 + δ1 0 0 0
0 Δ0 − δ1 0 2δ1ϕ
0 0 −Δ0 + δ2 0
0 2δ1ϕ 0 −Δ0 − δ2

⎞
⎟⎟⎠ (4.4)

This Hamiltonian can be expressed in terms of the original basis |+ 1〉, |− 1〉, |+ 2〉,
|− 2〉:

HCs = 1

2

⎛
⎜⎜⎝

Δ0 δ1e−2iθ1 iδ1ϕe−i(θ1−θ2) −iδ1ϕe−i(θ1+θ2)

δ1e2iθ1 Δ0 −iδ1ϕei(θ1+θ2) iδ1ϕei(θ1−θ2)

−iδ1ϕei(θ1−θ2) iδ1ϕe−i(θ1+θ2) −Δ0 δ2e−2iθ2

iδ1ϕei(θ1+θ2) −iδ1ϕe−i(θ1−θ2) δ2e2iθ2 −Δ0

⎞
⎟⎟⎠ (4.5)

Noting that Δ0 
 δ1 
 δ2 and |ϕ| � 1, one can approximately express the
eigenenergies and eigenstates of the reduced symmetry Cs Hamiltonian in terms
of the eigenstates of the symmetric one ((4.2) and (4.3)):

E1 = +Δ0 + δ1

2
, v1 =

(
1, 0, 0, 0

)
(4.6a)

E2 = +Δ0 − δ1

2
+ (δ1ϕ)2

Δ0
, v2 = N

(
0, 1, 0,

δ1ϕ

Δ0

)
(4.6b)

E3 = −Δ0 + δ2

2
, v3 =

(
0, 0, 1, 0

)
(4.6c)

E4 = −Δ0 − δ2

2
− (δ1ϕ)2

Δ0
, v4 = N

(
0,−δ1ϕ

Δ0
, 0, 1

)
(4.6d)

where N = [1 + (δ1ϕ/Δ0)
2]−0.5 is a normalization factor.

The symmetry reduction therefore results in a small mixing between the BE and
DE states. For the lowest energy BE state and the lowest energy DE state, this mixing
is mainly constructive, while for the other pair it is destructive. This small mixing
hardly affects the BE state [27], but greatly enhances the optical activity of one of
the DE states such that it is linearly H polarized like the lowest BE state. A realistic
estimation of |ϕ| ∼ 0.2 yields a DE oscillator strength which is 2500 times smaller
than that of the BE, in quantitative agreement with recent experimental reports [7],
which we review below.

4.2 The Dark Exciton as a Spin Qubit

The fields of quantum information processing (QIP) and quantum communication
have generated substantial interest in the past several decades. This is because quan-
tum computers can potentially solve certain problems much faster than what is cur-
rently possible with classical computing, the best known examples being Shor’s
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quantum algorithm for factorizing large numbers [28] and Grover’s algorithm for
unstructured search [29].

In classical computing, information is stored as a binary bit, taking either of two
discrete values: 0 or 1. QIP relies on quantum bits, or “qubits” [30, 31], which are
simply quantum two-level systems. These qubits have the same two-level structure
as classical bits, but they differ from classical bits in two main ways. The first is
superposition. Qubits can be generated in a coherent superposition of the basis |0〉
and |1〉 logical states,

|ψ〉 = α|0〉 + β|1〉. (4.7)

The second is entanglement betweenmultiple qubits,where amulti-qubit state cannot
be written as a simple product of single qubit states (Chaps. 7, 8 and 12). It is these
two features, superposition and entanglement, that provide the parallelismunderlying
many quantum algorithms, which use qubits to perform calculations by applying a
series of gate operations and measuring the resulting qubit state [28–31].

A candidate qubit system needs to meet several criteria, summarized by David
DiVincenzo [31] as follows:

1. The qubit must be well-characterized and scalable.
2. Itmust be possible to initialize the qubit in a knownpure state (“coherentwriting”).
3. The qubitmust have a long coherence time, relative to the time required to perform

gate operations.
4. It must be possible to develop a universal system of quantum gates for the qubit.
5. It must be possible to measure a selected qubit (“reading”).

For applications in quantum communication, two more features are necessary [31]:

1. The ability to transfer a qubit from a stationary qubit (i.e. a matter qubit) to a
flying qubit (i.e. a polarized photon).

2. The ability to faithfully transmit the flying qubits to distributed locations.

There are several candidates for a physical implementation of a qubit, reviewed
by Ladd et al. in [32] for quantum computing applications and by Kimble in [33]
for quantum communications applications. The most promising candidates are ions
in electrical traps [34, 35], neutral atoms in optical lattices [36, 37], nuclear mag-
netic resonances of molecules in liquid solutions [38, 39], superconducting circuits
[40–42], nitrogen-vacancy centers in diamond [43, 44], and individual spins in both
gate-defined [45] and self-assembled QDs [46, 47]. Self-assembled semiconductor
QDs are considered one of the best candidates for interfacing matter qubits (such as
spins) with flying qubits (photons).

QD-confined carrier spins such as the electron [48–50], heavy hole [51–53], and
BE [2–4] have been considered as candidate qubits for QIP. For all of these carri-
ers, techniques for initialization of a spin state and its coherent control have been
demonstrated (Chaps. 9 and 10).

For the single charge (electronor heavyhole) spin qubits, initialization is byoptical
pumping, a process which requires a pulse of a few nsec duration. Additionally,

http://dx.doi.org/10.1007/978-3-319-56378-7_7
http://dx.doi.org/10.1007/978-3-319-56378-7_8
http://dx.doi.org/10.1007/978-3-319-56378-7_12
http://dx.doi.org/10.1007/978-3-319-56378-7_9
http://dx.doi.org/10.1007/978-3-319-56378-7_10
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complete coherent control of these spins requires a set of two sequential optical
pulses. The coherent evolution of the precessing spins between the pulses is an
essential part of the control scheme. This is due to the fact that both the single spin
and the trion, composed of the single carrier and an additional exciton, are composed
of two Kramers degenerate states. Each carrier spin couples to one of the trion states
through either aσ+ orσ− circularly polarized photon. The result is that optical control
via a laser pulse can be performed only in the circular polarization basis, and timed
precession is necessary to enable control about a second axis on the Bloch sphere.
Separating the Kramers degenerate spin states with a magnetic field is necessary
for this spin state precession, and thus these single carrier qubits require a magnetic
field. Complete control by a single ultrashort optical pulse is also impossible.

The BE, in contrast, has a whole integer total spin. Its initialization does not
require optical pumping and gating. It can be photogenerated and initialized in any
desired coherent superposition of its two eigenstates using a single short polarized
optical pulse [2]. In contrast to the single spins, it is optically coupled to vacuum and
biexcitonic levels with zero angular momentum, which have no degeneracy, forming
a Λ system [54] even in the absence of a magnetic field. In this Λ system, the
optical control can be in any arbitrary polarization, corresponding to rotation about
an arbitrary axis on the Bloch sphere. Thus, the BE spin state can be controlled with
a single optical pulse [4, 55]. The duration of the control operation is thus limited to
the duration of the laser pulse and is not related to the precession period of the qubit
two-level system.

BEs have other advantages over single half-integer carrier spins. One of these
advantages is that the BE is electrically neutral, making it less susceptible to deco-
herence due to electrostatic fluctuations in the vicinity [52, 56–59]. Additionally, the
BE is partially protected from decoherence due to nuclear magnetic field fluctuations
due to its zero field fine structure splitting and its heavy hole content [51–53, 59, 60].
However, the typically short BE radiative lifetimes (<1ns in the QD studied here)
limit the usefulness of BEs as qubits.

The DE has the same advantages as the BE in terms of its electric neutrality and
its protection from decoherence due to nuclear magnetic field fluctuations. However,
its optical activity is substantially weaker. We demonstrate here that, despite this
weakness, the DE meets several of the requirements to be a good qubit, including
the requirements for coherent writing, reading, and spin state control.

4.3 Experimental Techniques

4.3.1 Sample Structure

The samples used in this work were grown by molecular beam epitaxy on a (001)
orientedGaAs substrate. One layer of strain-induced InxGa1−xAsQDswas deposited
in the center of a one-wavelength microcavity formed by two unequal stacks of
alternating quarter-wavelength layers of AlAs and GaAs to form a distributed Bragg
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Fig. 4.2 The sample used in
this research. Image from
[61], reprinted with
permission

reflector (DBR) both above and below the microcavity. The height and composition
of the QDs were controlled by partially covering the InAs QDs with a 3nm layer
of GaAs and subsequent growth interruption [62]. To improve photon collection
efficiency, the microcavity was designed to have a cavity mode which matches the
QD emission due to ground-state e-h pair recombinations. During the growth of
the QD layer the sample was not rotated, resulting in a gradient in the density of the
formedQDs [62]. The estimatedQDdensity in the sample areas thatweremeasured is
108 cm−2; however the density of theQDs that emit in resonancewith themicrocavity
mode is more than two orders of magnitude lower [63]. Thus, single QDs separated
by a few tens of micrometers were easily located by scanning the sample surface
during micro-PL measurements. Strong antibunching in intensity autocorrelation
measurements was then used to verify that the isolated QDs are single ones and
that they form single photon sources (Chaps. 3 and 6). A schematic of the sample is
shown in Fig. 4.2.

4.3.2 Experimental System

Figure4.3 shows the low temperature polarization sensitive micro-PL (μ-PL) setup
used in these experiments. The sample is located in a cryostat at liquidHe temperature
(4K). The PL is collected by a ×60 microscope objective with a numerical aperture
of 0.85. This objective is also used to focus excitation lasers on the sample. Laser
excitation in this system can be either via synchronously-pumped, cavity-dumped
dye lasers with a repetition rate of up to 76MHz. The temporal width of the dye
laser pulses is ∼12ps, and their spectral width is ∼100µeV. The pulses from these
dye lasers can be temporally ordered by a series of translating retro-reflection (TRR)
stages, such that a timed sequence of several pulses of differing energies is possible.
Wavelength tunable cw lasers are also incorporated into the system, and these lasers
can be modulated by either an acousto-optic modulator (AOM) or an electro-optic
modulator (EOM) to produce longer (few nsec) windows of cw excitation.

http://dx.doi.org/10.1007/978-3-319-56378-7_3
http://dx.doi.org/10.1007/978-3-319-56378-7_6
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Fig. 4.3 The experimental setup used in this research. NPBS, non-polarizing beamsplitter; PBS,
polarizing beamsplitter; TRR, translating retro-reflector; M, mirror; DM, dichroic mirror; TCSPC,
time-correlated single-photon counter; MC, monochromator; OBJ, microscope objective; LCVR,
liquid crystal variable retarder; Dn, detector n; cw, continuous wave; FG, function generator. Image
from [61], reprinted with permission

There are two dedicated channels for laser excitation (green line in Fig. 4.3), where
a dichroic mirror prevents PL emission via these channels while allowing excitation
lasers to pass through to the sample. In each channel, complete polarization control
of the exciting laser is achieved by a pair of liquid crystal variable retarders (LCVRs)
[9].

There are two channels for PL emission, as shown in Fig. 4.3 by a magenta line.
Here, emitted PL is split into the two channels by a non-polarizing beamsplitter
(NPBS). Two pairs of LCVRs are used to analyze the polarization of the PL, rotating
the polarization of the emitted light to the axes of a polarizing beamsplitter, which is
used to split the PL signal into four detection channels. These channels correspond to
bottom/transmit, bottom/reflect, side/transmit, side/reflect in Fig. 4.3. In this manner,
two independent polarization projections and their complementary polarizations can
be analyzed by the four detection channels. The PL in each detection channel is sent to
either a 1 or 0.5mmonochromator and detected by a silicon avalanche photodetector
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(APD) or a charged coupled device (CCD) camera. The APDs were connected to a
time-correlated single photon counter (TCSPC), which could be synchronized to the
pulsed lasers. Thisway the arrival times of up to four photons of differing energies and
polarizations could be recorded relative to each other or to the laser pulse sequence
[64].

The overall spatial resolution of this experimental setup is ∼1µm, the overall
spectral resolution is about 10 µeV, and the overall temporal resolution due to the
timing jitter of the APDs and TCSPC is about 400ps.

4.3.3 Measurement Techniques

Various types of measurements are used to characterize the QD spin state.

Polarization-Sensitive Photoluminescence Spectroscopy

To perform polarization-sensitive PL spectroscopy, the QD is optically excited with
one or several lasers. The excitation gives rise to light emission from various long-
lived states that do not relax to lower energy states within their radiative lifetime.
The emission is analyzed using either the CCD camera (when several emission lines
are studied) or the APDs (when a specific emission line is studied). The PL signal
from the QD is then studied as a function of polarization for some combination of
the excitation lasers and/or collected PL. For the DE experiments, PL spectroscopy
was used to identify DE optical transitions and to measure their power dependence
(Sect. 4.5).

Photoluminescence Excitation Spectroscopy

Photoluminescence excitation (PLE) spectroscopy is used to identify higher-energy
states whose lifetime is shorter than the corresponding radiative recombination time.
In order to probe optical transitions to excited levels in the QD, the excitation energy
of a pulsed or cw laser is varied while emission at a certain recombination energy,
usually corresponding to a ground state emission line, is monitored. Enhancement
in the recorded signal with respect to the laser energy reveals the transition energies
of excited levels. These absorption resonances can be used to optically excite higher
energy levels, some of which relax quickly to the corresponding ground state. The
polarization of both excitation and emission reveal the selection rules of the optical
transition [1, 65]. Here, PLE measurements were used primarily to identify absorp-
tion resonances to the DE (Sect. 4.5) and for optical reset of the DE from the QD
(Sect. 4.8).

Time-Resolved Spectroscopy

In some experiments, the temporal evolution of the optically excited QD is inves-
tigated. This can be done in two ways. In the first case, the PL signal is measured
as a function of time relative to the laser pulse sequence, determined by the laser
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clock pulse, using the TCSPC. This technique was used in the optical reset experi-
ments (Sect. 4.8). In the second case, two or more laser pulses are used, and the time
between laser pulses is varied either by a translating retroreflection stage or by an
electronic delay component. The first resonant pulse initializes the QD state, and the
second pulse probes the QD state after a varying time delay. This technique was used
in the DE lifetime measurements (Sect. 4.5).

Polarization-Sensitive Intensity Correlation Measurements

Intensity correlation measurements are a common technique used to establish the
quantum nature of light emitted from single photon sources and to characterize
radiative cascades in QDs. In these cases,

g(2)
1,2(δt) = 〈I1(t)I2(t + δt)〉/(〈I1(t)〉〈I2(t)〉) (4.8)

is measured using a two-channel Hanbury Brown-Twiss (HBT) apparatus [66]
(Fig. 4.4). Here, Ii (t) is the intensity of light on the i th detector at time t , δt is
the time between the detection of a photon in detector 1 and detection of a photon in
detector 2, and 〈〉 means temporal averaging [67]. A radiative cascade [64, 67–69]
is characterized by an asymmetric correlation function, due to the temporal order
of the emitted photons. Following the detection of the first photon in a cascade, the
probability of detecting the second photon is higher than the steady state probability,
and bunching [g(2)

1,2(δt) > 1] is observed [64, 68–71]. Following the detection of the
second photon in a cascade, no detection of emission of the first photon is possi-
ble and antibunching [g1,2(δt) < 1] is observed. Antibunching also results from the
single-photon nature of the QD emission.

Fig. 4.4 A schematic of a
simplified HBT setup. The
measured times from the
timer are output to a
multichannel analyzer
(MCA). The histogram from
the MCA is proportional to
the second order intensity
correlation function g(2)(δt).
In the detailed experimental
setup in Fig. 4.3, there are 4
collection channels that can
be used for correlation
measurements up to g(4)(δt)
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4.4 Probing the Dark Exciton State

We introduce two primary techniques for probing the DE spin state. The results of
this section were published as [5, 7].

4.4.1 Optical Observations of the Dark Exciton

Non-resonant excitation of theQDat energies high above the bandgapphotogenerates
electron-hole pairs in the bulk semiconductor. The photogeneration rate corresponds
to the intensity of the exciting laser.Very small numbers of these carriers, uncorrelated
andwith randomized spin directions [5] arrive at theQDandpopulate its lower energy
levels. For high excitation intensities, four or more carriers can be present in the QD
within the radiative recombination time. Thus, the carrier accumulation in the QD
exceeds the DE radiative rate by a large margin. In contrast, Fig. 4.5 presents PL
measurements of the QD under very weak non-resonant cw excitation. Under these
conditions, the carrier accumulation rate is closer to the DE radiative rate, and the
probability of finding the QD occupied with a DE is very significant. In this case,
if the DE recombines radiatively, its PL emission intensity should be comparable to
that of the BE [7].

In Fig. 4.5, an emission line corresponding to optical recombination of the DE
(labeled X0

DE ) is clearly observed [7]. This spectral line is present 300µeV lower in
energy than the BE spectral lines. This energy difference from the BE corresponds
well with previous measurements of the DE-BE separation in a similar sample [13]
and in other samples [8, 72]. The line polarization of this emission line matches that
of the lowest energy component of the BE (H , along the major axis of the QD).
Only one linear polarized transition is observed, in contrast to the BE which has two
almost equally strong cross-linearly polarized emission lines.

Fig. 4.5 Direct PL emission from the DE. Polarization-sensitive, expanded scale PL spectrum of
the QD at low excitation intensity (10nW). At this excitation level, the DE spectral line is clearly
observed 300µeV below the BE lines. Unlike the BE line, which has two cross-linearly polarized
components, the DE has only one horizontal polarization. Image from [7]
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Fig. 4.6 Emission intensity from various exciton lines as a function of laser excitation power. Note
that the maximum emission of the DE (blue arrow) is three orders of magnitude weaker than that
of the BE (green arrow) and that the power at which the maximum occurs is also three orders
of magnitude weaker than that of the BE. These measurements demonstrate that the DE decays
radiatively with an oscillator strength that is three orders of magnitude weaker than that of the BE.
Image from [7] (color figure online)

Figure4.6 shows the measured emission intensities of the DE, BE, and singly
charged excitons as a function of the power of the off-resonant excitation [7]. The
DE emission saturates at a power 3 orders of magnitude lower than that at which
the BE and charged excitons saturate (marked by vertical arrows). The maximum
emission intensity of the DE line is also three orders of magnitude weaker (horizontal
arrows). This indicates that the DE lifetime is radiative, like that of the BE, and that it
is approximately three orders of magnitude longer than that of the BE. In Sect. 4.5.3,
the DE radiative lifetime will be directly measured.

Figures4.5 and 4.6 clearly show that the dipole moment of the DE is substantially
stronger than that predicted from heavy hole-light hole mixing alone, and that the
direction of polarization is in-plane as opposed to along the QD symmetry axis.

4.4.2 The Spin-Blockaded Biexciton

The | ± 3〉 state is a biexcitonic state where the two electrons are paired in a ground
state singlet, and the two holes are in the ground state and first excited energy state
in a parallel up (+3) or down (−3) spin triplet state. Optical recombination from this
state gives rise to the unpolarized XX0

T±3 emission line.
This optical recombination also populates the QD with a DE. The | + 3〉 (| − 3〉)

biexciton state emits a σ+ (σ−) polarized photon, resulting in an excited DE state.
In this state, the remaining electron and heavy hole have a spin up (down) parallel
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spin configuration, and the hole is in the first excited state. This hole is no longer
spin blockaded and it quickly (∼70ps) relaxes non-radiatively to the ground state.
This fast relaxation is spin preserving [7, 69]. Thus, detection of a σ+ (σ−) polarized
photon from the XX0

T±3 emission line heralds the creation of a spin up | + 2〉 (spin
down | − 2〉) DE in the QD. These are not eigenstates of the DE (Fig. 4.1). Rather,
these states are superpositions of the DE eigenstates |a〉 and |s〉, and therefore, the
DE spin will precess at a rate given by the energy difference between the eigenstates
divided by Planck’s constant.

Absorption resonances to the spin-blockaded triplet biexciton states from the
various excitonic states were previously identified [1]. One of these resonances is
an s-p absorption resonance to the XX0

T±3 biexciton from the DE states. Here, an
electron is added to the electronic ground state and a hole, whose spin is parallel
to the DE hole spin, is added to the first excited hole energy level (Fig. 4.10). Now
optical recombination of the ground state hole with the added electron is possible,
resulting in emission from the XX0

T±3 at a lower energy.
Figure4.7a shows the PL spectrum of a neutral QD under nonresonant cw exci-

tation. The ground state XX0
T±3 emission line is shown by a magenta arrow and the

Fig. 4.7 Resonant excitation of the XX0
T±3. a PL spectrum of a neutral QD under non-resonant

cw excitation, showing the ground state emission line (magenta arrow) and s-p emission line
(green arrow) corresponding to the absorption resonance used to excite the XX0

T±3. The relevant
electron hole pair is matched by an oval. Upwards (downwards) arrows on the energy axis indicate
wavelengths used for excitation (detection) in DE experiments. b PL spectrum from the same QD
under resonant excitation into the higher-energy optical transition of the XX0

T±3 emission line.
Image from [7] (color figure online)
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recombining electron-heavy hole pair is indicated with an oval. The s-p absorption
resonance is also shown, indicated by a green arrow, and the added electron-heavy
hole pair is likewise oval-matched. Figure4.7b shows the same QD under resonant
excitation into the higher-energy optical transition (green arrow in Fig. 4.7a). In this
case, the XX0

T±3 emission line dominates the spectrum.

4.4.3 Probing by Charge Tunneling

Some of the first attempts to optically access the DE relied on the addition of single
carriers to the DE state [5]. We will review these experiments here for completeness,
though these methods have since been superseded by techniques involving resonant
excitation of the spin-blockaded biexciton XX0

T 3, which will be discussed in the next
section.

After the DE is heralded by detection of polarized emission from the XX0
T±3,

its spin is read by the addition of charge into the QD (Fig. 4.8). While QD charging
can be induced externally [6, 48, 50, 51, 58], in this case the measurements were
performed using spontaneous charging due to optical deionization of impurities near
the QD [73].

When a charge carrier is added to the DE, the DE precession stops. Optical recom-
bination is thenpossible between an electron and addedhole (hole and added electron)
in the positively (negatively) charged exciton. The polarization of the emission from
this charged exciton state reveals the polarization of the unpaired single carrier and
hence of the DE spin projection at the time of charging [5], as shown in Fig. 4.8.

Fig. 4.8 Reading the DE spin state via emission from charged excitons. a Top (Bottom) Preparation
of the DE with a spin projection of | + 2〉 (| − 2〉) by detection of a σ+ (σ−) polarized photon from
the XX0

T+3 (XX0
T−3). b Fast decay of the hole to its ground state (non-radiative), and precession

of the DE spin state. c Detection of the DE spin state via charging with an electron. d Detection of
the DE spin state via charging with a hole. Note that the polarization selection rules are opposite
between c and d. Image from [5]
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Fig. 4.9 a
Polarization-sensitive
intensity correlation
measurements between
emission from the XX0

T±3
and X+1 emission lines.
Blue (red) dots represent
cross-circular (co-circular)
polarization, and the
incoherent background,
measured by correlation with
the X0 emission line, is
shown in black. b The
polarization degree of the
second photon (4.9). Image
from [5] (color figure online)

This can be demonstrated experimentally through intensity correlation measure-
ments between emission from the XX0

T±3 and the emission line corresponding to
optical recombination from the singly positively charged exciton, X+1 (Fig. 4.9).
The emission line for recombination from the negatively charged exciton can also
be used. The detected polarization of the XX0

T±3 emission heralds the DE spin state
and reveals the spin of the DE at the time of its generation. The polarization of the
X+1 emission reveals the DE spin at the moment a hole was added to the DE. The
measured correlation functions are shown in Fig. 4.9, for co- and cross-circular polar-
ization. For positive time differences, corresponding to detection of emission from
the biexciton before emission from the charged exciton, oscillations in the correla-
tion functions are clearly visible (Fig. 4.9a). These oscillations measure the coherent
precession of the DE spin as a function of time and provide the first optical measure-
ment of the DE spin projection. The period of the DE oscillation here is measured to
be ∼3ns, corresponding to an energy difference between the eigenstates of the DE
of ∼1.4µeV.

These initial measurements of the DE spin state depended on spontaneous charg-
ing of the QD under off-resonant cw illumination. However, this off-resonant cw
illumination also results in other processes in the QD, and spontaneous charging
limits the DE lifetime (if the charging rate is high) or the measurement statistics (if
the charging rate is low). Measurement by resonant absorption to | ± 3〉 mitigates
these obstacles.
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Fig. 4.10 Reading the DE
spin state via absorption to
the XX0

T±3. a The level
system and selection rules
for absorption and emission
for the XX0

T±3 states. τ
L
DE is

the Larmor precession time
of the DE. Grey arrows
represent non-radiative
processes. b Top (Bottom)
Probing the DE | + 2〉
(| − 2〉) spin state population
with resonant absorption to
the XX0

T+3 (XX0
T−3) state,

followed by subsequent
optical recombination of
ground state carriers. The
polarization of the emitted
photon matches the
polarization of the absorbed
photon (color figure online)

4.4.4 Probing by Resonant Absorption

In the previous section, the measurement efficiency and DE lifetime were limited
by the spontaneous charging rate in the QD. To enable more efficient measurement,
we developed a new technique which uses absorption to the XX0

T±3 state, and its
subsequent emission, to probe the DE spin state.

Since the two hole spins are parallel, the polarization selection rules for excitation
of and emission from the | ± 3〉 biexcitonic states are identical (Fig. 4.10a). Absorp-
tion of a σ+ (σ−) polarized photon transfers the | + 2〉 (| − 2〉) DE population to
the | + 3〉 (| − 3〉) biexciton. The identical emission polarization herald the DE spin
state. Thus, it is possible to probe the DE spin state using resonant excitation to the
XX0

T±3, and the emission from the XX0
T±3 in this case is directly proportional to the

DE spin state population.
When measuring the time-dependent PL signal in both the σ+ and σ− circular

polarizations, the data are often presented in terms of the degree of circular polar-
ization,

P(t) = Iσ+(t) − Iσ−(t)

Iσ+(t) + Iσ−(t)
(4.9)

where Iσ+ (Iσ−) is the σ+-polarized (σ−-polarized) PL intensity.
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The ground state electrons in the XX0
T±3 biexciton can recombine optically with

either the ground state or the excited state heavy hole, but the biexciton recombination
is ∼20 times more probable in the lower-energy optical transition due to the better
overlap of the ground-level wavefunctions (Fig. 4.7).

Reading the DE spin state via resonant absorption to the XX0
T±3 is advanta-

geous for several reasons. First, since it does not rely on slow spontaneous charging
processes, it increases the measurement efficiency of the DE spin state. Secondly, it
can be used with either cw or pulsed laser excitation to measure the DE spin state
either as a function of time or at specific times. Finally, the large difference in energy
between the absorption resonance and the PL emission (Fig. 4.7) means that filtering
the laser light from the PL emission is comparatively simple.

4.5 On-Demand Optical Writing of the Dark Exciton Spin
State

The previous section demonstrated how the spin of the DE can be measured using
optical techniques and provided a measurement of the coherence time of the DE
spin state. Here we demonstrate optical generation of the DE from an empty QD, a
direct measurement of the DE radiative lifetime, and ultrafast coherent “writing” of
the DE in any desired spin state through the use of excited DE states and polarized
picosecond laser pulses. The results in this section were published as [7, 74].

4.5.1 On-Demand Generation Using Resonant Excitation

To demonstrate deterministic generation of the DE, wemeasure the Rabi oscillations
of the two-level system formed by the empty QD and the DE |a〉 state. We consider
these oscillations on the Bloch sphere, where the ground state empty QD is at the
south pole and the excited state of QD-confined DE is at the north pole. The initial
position of the state vector points to the south pole, indicating an empty QD. For a
two-level system of given oscillator strength μ, the rotation angle of this state vector
on the Bloch sphere is proportional to the pulse area,

Θ = μ

�

∫
E(t)dt (4.10)

where E(t) is the instantaneous envelope of the electric field of the laser excitation,
and the integration is over the pulse duration [75]. The occupancy of the excited state
is a function of this pulse area given by

P = sin2(Θ/2) (4.11)
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Fig. 4.11 Deterministic optical generation of the DE. XX0
T±3 emission intensity is monitored as

a function of the average resonant excitation power into the DE absorption resonance (inset and
emission line in Fig. 4.5) with a pulse width of 60ns, in the presence of a cw probe laser tuned to
the DE-XX0

T±3 absorption resonance. The solid line represents a model fit of the Rabi oscillations.
Inset The XX0

T±3 biexciton emission intensity as a function of the energy of the H (V ) polarized
excitation into the DE optical transition is depicted by red (blue) dots. The energy used for resonant,
deterministic exciton of the DE is indicated by a blue arrow. Image from [7]

and thus for a pulse whose area corresponds to a rotation of Θ = π, the excited state
is populated with P = 1 [75]. Increasing the laser intensity increases the rotation
angle until Θ = 2π and the occupation probability of the excited state returns to
P = 0. Rabi oscillations are identified by an oscillatory dependence of the QD PL
emission [76, 77] or photocurrent [78], proportional to the square root of the excita-
tion laser power. Identification of a π pulse in the DE system thus corresponds to a
demonstration of deterministic optical DE generation.

We used a pump-probe experiment to demonstrate deterministic generation of the
DE. In the first experiment, shown in the inset to Fig. 4.11, one cw probe laser was
tuned to the DE-XX0

T±3 absorption resonance. The energy of a second pump laser
was scanned through the energy corresponding to the DE emission line observed in
Fig. 4.5. Two rectilinear polarizations of the pump laser were used. In the inset to
Fig. 4.11, the increase in biexciton emission indicates an increase in DE population
indicating optical generation of the DE. The energy and polarization of this direct DE
absorption resonance correspond exactly to the energy and polarization of the DE
emission observed in Fig. 4.5. The linewidth of the DE resonance (∼5µeV) reflects
the radiative width of the transition to the biexciton, broadened by spectral diffusion
caused by the presence of the two laser beams.

In the main panel of Fig. 4.11, the probe laser remains cw but the pump laser
is now pulsed using an AOM to generate long laser pulses of 60ns duration. The
pump laser is tuned to the optimal energy for DE generation, indicated by the blue
vertical arrow in the inset. The pump laser is H -polarized to match the observed
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DE absorption selection rules. The repetition rate of the pump pulse is 1MHz. Rabi
oscillations are clearly observed. The intensities corresponding to a π pulse and a 2π
pulse are indicated in the Figure with black arrows. The solid line indicates a model
fit of the Rabi oscillations.

A comparison between the intensity and temporal pulse width needed to obtain a
π pulse to the DE resonance (∼60ns and 1.9µW at 1MHz) with that needed for a π
pulse to the BE (∼10ps and ∼0.1µW at 76MHz) directly yields the ratio between
the oscillator strengths and radiative lifetimes of both excitons. In this way, we verify
that the DE oscillator strength is more than three orders of magnitude weaker than
that of the BE.1

4.5.2 Coherent On-Demand Generation Using
Quasiresonant Excitation

The optical generation method discussed in Sect. 4.5.1 only generates a DE in the
optically active |a〉 eigenstate, and requires a large laser pulse area. This large pulse
area is achieved by using a laser pulse of a few tens of nanoseconds in duration.
Consequently, this optical generation process is very slow. An additional drawback
of this method is that only one DE spin state can be directly generated, and any other
DE spin state would require at least one control pulse (Sect. 4.6). We demonstrate
here that, using excited DE states, it is possible to coherently write the DE in any
desired spin statewith high fidelity using a few-psec long pulse of a given polarization
[74]. This coherent writing method is similar to that previously demonstrated for the
BE [2].

First, we identified excited state absorption resonances for the DE using PLE sim-
ilar to that which was performed on the direct DE absorption resonance. Figure4.12
presents the polarization-sensitive PLE measurements. Figure4.12a, b presents the
PL spectrum of the QD under non-resonant 445nm excitation. In (b), weak non-
resonant excitation is used such that the DE emission line is visible. In (a), the
excitation intensity is stronger to enable observation of emission from the XX0

T±3
biexciton. Figure4.12c presents the PLE measurements for the DE (bottom, solid
lines) and BE (top, dashed lines).

In Fig. 4.12c, two absorption resonances to excited DE states are visible. The
absorption resonance at 15 meV is to the (1e1)±1/2(2h1)±3/2 DE state and the sec-
ond absorption resonance at 22 meV is to the (1e1)±1/2(3h1)±3/2 DE state. Both of
these transitions are a few hundered µeV below corresponding BE transitions [1]. In
contrast to the ground state DE absorption resonance, which is H -polarized, these
two excited state absorption resonances are unpolarized, indicating equal coupling
to H -polarized and V -polarized light [74]. We also observe that excitation of these

1The pulse area up to constant factors is given by
√

Pavgτ
f where Pavg is the average power as

measured on the power meter, f the repetition frequency, and τ the pulse width. Plugging in the
numbers above yields a pulse area ratio between the BE and the DE of about 2000.
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Fig. 4.12 PLE measurements of the DE and BE. a, b Polarization sensitive spectra of the QD.
The a biexciton and b exciton transitions were excited by 5µW and 10nW 445nm cw laser light,
respectively. Observed spectral lines are identified by their initial states. c Polarization-sensitive
PLE of the BE (top, dashed) and DE (bottom, solid). In a–c, blue (red) represents H (V ) polariza-
tion. dRabi oscillations of the X0

BE ground state absorption resonance (blue), the X0
DE excited state

absorption resonance (green upward arrow), measured by monitoring the XX0
T±3 emission (green

downward arrow), and the X0
BE excited state absorption resonance (upwards magenta arrow), mea-

sured by monitoring the X0
BE ground state emission (downwards magenta arrow). Points represent

the measured PL intensity and the dashed lines represent a model fit. Image from [74]

higher-energy DE absorption resonances does not lead to an increase in observed BE
emission. During the relaxation of the excited DE state to the DE ground state, spin
flip processes are negligible. This agrees well with previous theoretical [79, 80] and
experimental [1, 68, 81] studies. Consequently, during the relaxation of the excited
DE state to the ground state, the DE predominantly maintains its DE character.

Figure4.12d presents the PL emission intensity as a function of the square root of
the laser power for the absorption resonance to the excited state BE (magenta) and the
excited state DE (green) indicated by vertical arrows in Fig. 4.5c. The dashed lines
present a model fit to the experimental data. Rabi oscillations are clearly observed,
and intensities corresponding to π and 2π pulses are marked.
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The ratio between theoscillator strength of thefirst excitedBE, (1e1)±1/2(2h1)∓3/2,
resonance to that of the first excited DE, (1e1)±1/2(2h1)±3/2 is about 6. The ratio
between the oscillator strength of the ground BE state oscillator strength to that of
the first excited BE state is about 35 [1, 65]. Consequently, the oscillator strength of
the excited DE resonance is about 200 times weaker than that of the ground state BE
and about an order of magnitude stronger than that of the ground state DE.

The increase in the DE oscillator strength is attributed to increased DE-BEmixing
[18] at these elevated energies. That these DE absorption resonances are unpolarized
is attributed to the fact that the envelope wavefunction of a higher energy carrier is
less restricted to theQDvolume and consequently less impacted by anyQDdeviation
from symmetry [27]. The equal polarization distribution of the excited DE states can
be straightforwardly obtained from incorporating the DE-BE mixing from [18, 27]
to the many body model used in [1].

The increased oscillator strength of the higher-energy DE absorption resonances
is further coupled with a broadened absorption resonance compared to the ground
state DE absorption resonance. The lifetime of the ground state DE is very long,
so the ground state DE absorption resonance is energetically narrow. In contrast,
the excited heavy holes relax to their ground state within about 90ps. This shorter
lifetime broadens the corresponding absorption resonance (∼10µeV), improving
the overlap between the laser pulse (∼150µeV) and the absorption resonance.

Since the DE can be deterministically photogenerated via an excited DE absorp-
tion resonance that can be excited using both H and V polarizations, the DE can be
written in an arbitrary spin configuration corresponding to the laser polarization in a
manner similar to that used to write the BE ground state in [2]. This is demonstrated
experimentally using the pulse sequence presented in Fig. 4.13.

In the experiment illustrated in Fig. 4.13, the DE is deterministically generated in
a selected coherent spin state using a variably polarized 14ps pulse (measured by

Fig. 4.13 Coherent writing
of the DE spin state. a The
relevant energy levels, spin
wavefunctions, and optical
transitions involved in the
experiment. Grey arrows
represent non-radiative
processes. Other arrows are
color-matched to the
schematic description of the
pulse sequence in b. b
Schematic illustration of the
pulse sequence showing the
temporal sequence and
duration of the optical pulses
used in the experiment.
Image from [74]
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Fig. 4.14 Experimental
results indicating coherent
writing of the DE. The
degree of circular
polarization of the XX0

T±3 as
a function of time (horizontal
axis) and polarization
P(θ,φ) (vertical axis) for a
P(θ, 3π/2), b P(θ,π), and c
P(π/2,φ). d Degree of
circular polarization as a
function of time for the write
pulse polarizations
V = P(π, 0),
D = P(π/2,π/2) and
σ+ = P(π/2,π). The curve
colors match the dashed
lines in a–c. e The Poincaré
sphere for P(θ,φ), showing
the definition of θ and φ.
Image from [74]

autocorrelation) tuned to the absorption resonance to the (1e1)(2h1) DE absorption
resonance indicated by the green arrow in Fig. 4.12c. This excited DE then rapidly
relaxes to its ground state non-radiatively [7] by a spin-preserving [79, 81] phonon
emission, indicated by the grey curly arrow in Fig. 4.13a, which is faster than the
radiative recombination rate of the excited DE state. After relaxation to the ground
state, the coherent DE spin state evolves in time. This spin state is then probed via
a 10ns long cw probe laser pulse tuned to the DE-XX0

T±3 resonance. The temporal
dependence of the DE spin state is monitored by the circular polarization of the
XX0

T±3 emission (magenta) as a function of time since the control pulse. The DE
is optically depleted from the QD (Sect. 4.8), to enable experimental repetition rates
faster than the DE radiative recombination rate and to enhance the fidelity of the
“write” operation by ensuring an empty QD.

Figure4.14 presents the degree of circular polarization of the XX0
T±3 emission as

a function of time from the write pulse and of the write pulse polarization P(θ,φ),
where the angles θ and φ represent the coordinates of the polarization vector on the
Poincaré sphere, as shown in Fig. 4.14e. The range of polarizations of the write pulse
presented in Fig. 4.14 is (a) P(0 < θ < 2π, 3π/2), (b) P(0 < θ < 2π, 0), and (c)
P(π/2, 0 < φ < 2π). Changes in the polarization angle θ result in corresponding
changes in the polarization visibility of the PL. Changes in φ result in corresponding
changes in the phase of the PL. Figure4.14 thus demonstrates a one-to-one corre-
spondence between the write pulse polarization P(θ,φ) and the amplitude and phase
of the oscillations in the degree of circular polarization of the PL emission.

In Fig. 4.14d, the temporal dependence of the degree of circular polarization of
the XX0

T±3 emission is presented for selected write pulse polarizations, indicated by
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Fig. 4.15 Direct measurement of the DE lifetime. The lifetime is measured by a time-resolved
double resonant pump-probe experiment. The inset describes the experimental sequence of pulses,
where the DE is excited at time t = 0 (blue pulse) by a resonant π pulse. A π pulse to the DE-
XX0

T±3 absorption resonance probes the DE population at varying time delays from the generation
pulse. The dashed black line is a fitted exponential decay model with a characteristic lifetime of
τDE ≈ 1.1µs. Image from [7] (color figure online)

color-matched horizontal dashed lines in Fig. 4.14a–c. The maximal degree of polar-
ization observed in the measured data (∼0.65) is compatible with the finite temporal
resolution of the detectors (∼400ps) [5], indicating a fidelity of initialization for the
DE qubit of above 90%.

4.5.3 The Dark Exciton Lifetime

Now that the DE can be deterministically generated with a π pulse to one of the iden-
tified DE absorption resonances, it is possible to directly measure the DE lifetime.
Figure4.15 presents an experiment in which the DE is deterministically generated
by a resonant π pulse. A time-delayed probe pulse to the DE-XX0

T±3 absorption
resonance follows, and the time delay between the pump pulse and the probe pulse
is varied electronically. The experimental pulse sequence is shown as an inset in the
image. Since the intensity of the emitted light from the XX0

T±3 provides a measure-
ment of the DE population, an exponential fit to the PL intensity from the probe pulse
as a function of time provides a measurement of the DE lifetime. The dashed black
line is a fitted exponential decay model with a characteristic lifetime of 1.1 ± 0.1µs
[7]. The fact that the measured lifetime of the DE agrees with its oscillator strength
establishes that the DE decays radiatively from its single, H polarized emission line.
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4.5.4 The Dark Exciton Coherence Time

Using the XX0
T±3 biexciton, it is possible to measure the coherence time of the DE

[7]. The coherence time of a qubit is an important measure of how well the qubit is
decoupled from its environment. For potential applications in QIP, long coherence
times are essential.

As we have seen in Fig. 4.9, when the DE is in a coherent superposition of its
two eigenstates, |ψ〉 = α|a〉 + β|s〉, the phase between the two eigenstates varies
periodically with a period of ∼3ns [5, 7], corresponding to precession along the
equator of the DE qubit Bloch sphere. The qubit coherence time can be conceptually
defined as the characteristic decay time of this precession.

As shown in Fig. 4.10, absorption of a σ+ (σ−) photon, resulting in the XX0
T+3

(XX0
T−3) state, is directly proportional to the | + 2〉 (| − 2〉) DE spin state population.

Detection of emission from the XX0
T+3 (XX0

T−3) also heralds the creation of a | + 2〉
(| − 2〉) DE. Consequently, circular-polarization-sensitive intensity autocorrelation
measurements of the XX0

T±3 spectral line in the presence of a laser tuned to the
DE-biexciton absorption resonance provide a direct measurement of the temporal
evolution of the DE spin state. In this case, detection of a σ+ polarized “start”
photon heralds the creation of the | + 2〉 DE state. Detection of a second photon,
co-circularly polarized σ+ (cross-circularly polarized σ−) projects the DE onto the
| + 2〉 (| − 2〉) spin state at the time of photon absorption.

Figure4.16a presents intensity autocorrelationmeasurements of the XX0
T±3 emis-

sion line under resonant cw excitation of the DE-XX0
T±3 absorption resonance (the

probe laser). The degree of circular polarization is calculated from (4.9) (Fig. 4.16b).
The oscillations in the measured degree of circular polarization reveal the coherent

Fig. 4.16 Coherence time of the DE. (a) [(c)] Polarization-sensitive intensity autocorrelation mea-
surements of the XX0

T±3 emission line under resonant cw [pulsed] excitation. (b) [(d)] The degree
of circular polarization of the second detected photon as a function of its detection time. The decay
of the polarization oscillations is overlaid by an exponential decay curve (solid black line) with a
characteristic time of ∼25ns [100±20ns]. Image from [7]
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precession of the DE spin state. The characteristic decay time of the oscillations is
about 25ns under this cw excitation. This value is a lower bound on the actual DE
coherence time. Under cw probe excitation, there is a constant influx of photons
exciting the DE-XX0

T±3 absorption resonance, and recombination of an electron-
hole pair from this biexciton leaves a DE in the QD. The probability that the second
detected photon results from absorption of one and only one photon after generation
of the DE decreases quickly with time. For longer times, it is likely that the DE
was excited to the XX0

T±3 biexciton state multiple times, but that the spontaneous
biexciton recombination was not detected. Indeed, we have observed that the cw
polarization decay time depends strongly on the probe laser intensity.

To overcome the impact of the probe laser on the DE coherence time, the mea-
surement was repeated with a pulsed probe excitation, at a repetition rate of 76MHz.
Figure4.16c presents the intensity autocorrelation measurements under this probe
excitation. The measured degree of circular polarization of the second photon as a
function of the time difference is given in Fig. 4.16d. Since the DE period is about
3ns and the laser period is about 13ns, the periodicity of the measured polarization
is 3 × 13ns, or about every three laser pulses. This is exactly what is observed in
Fig. 4.16d. the maxima (minima) of the oscillations are represented with blue (red)
markers and occur every three pulses. The polarization degree decay is indicated by
a solid black line, and the characteristic time of this exponential decay is 100±20ns.
This measurement, therefore, sets a lower bound on the coherence time T ∗

2 of the DE.
The actual time is probably longer since, similarly to the case for the cw excitation,
the repeated pulsed excitation absorptionmeasurement also shortens the polarization
decay time.

4.6 Coherent Control of the Dark Exciton Spin State

In order to use the DE spin state as a qubit, it must be possible to perform operations
on the DE spin state, known as gate operations in the language of QIP. One of the
simplest gate operations to perform is a rotation of the spin state. In this section,
we experimentally demonstrate rotation of the DE spin state using a few-picosecond
laser pulse. These results were published as [7].

Rotation of the BE spin has already been demonstrated [3, 4, 55]. In [3], control of
theBEspin statewas achievedusing a circularly polarizedpulse detuned slightly from
a BE-biexciton absorption resonance. The particular biexciton resonance selected
was one where the biexciton electrons were in a T e

±1 state and the holes were in a T
h
∓3

state. This resulted in a Π system with the exciton [54]. In these types of systems,
rotation is possible only about one axis [54], essentially rotating the system from
eigenstate to superposition of eigenstates. In [3], the circularly polarized control
pulse changes the coefficient of one component of the BE wavefunction, affecting
the relative amplitude and phase of the eigenstates in the BE wavefunction. This
results in an effective rotation of the BE state from the equator of its Bloch sphere
towards one of the poles, where the angle is dependent on the detuning of the pulse.
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In [4], the two BE states were coupled to a common biexcitonic state. In this case,
aΛ system is formed [54], and control is possible about any axis on the Bloch sphere.
In this case, a polarized, 2π area control pulse rotates the BE spin projection about
the direction of polarization by an angle determined by the detuning of the control
pulse from resonance [4]. These measurements have been reproduced by a different
research group, using photocurrent measurements [55].

The DE forms a Π system with the XX0
T±3 biexciton, as shown in Fig. 4.10 [54].

Thus, control of the DE system is in some respects similar to that in [3]. There is
one axis of rotation on the Bloch sphere, and we demonstrate below rotation of the
DE from an eigenstate to a coherent superposition of eigenstates by a circularly
polarized pulse that couples to one component of the DE state wavefunction. How-
ever, due to the Π system’s absence of an arbitrary rotation axis [54], full coherent
control of the DE requires two control pulses with timed precession in between
[7]. This is similar to the case of separate carriers, the electron or the heavy hole
[52, 53, 58, 59]. In other respects, the control of the DE system is similar to [4]. The
pulse area used is 2π, and the detuning is used to control the angle of rotation about
the pulse polarization direction. This control is achieved with a ∼10ps laser pulse,
which is more than 5 orders of magnitude shorter than the measured DE lifetime and
at least 4 orders of magnitude shorter than the DE spin coherence time.

The experiment is presented schematically in Fig. 4.17. The experiment is shown
both via its effect on the DE spin state on the Bloch sphere (Fig. 4.17a) and schemat-
ically as a pulse sequence (Fig. 4.17b). The various pulses in the experimental
sequence are color-matched to the arrows on the Bloch sphere. The pump pulse
deterministically writes the DE in its lower-energy eigenstate, represented by the
north pole of the Bloch sphere in Fig. 4.17a. An eigenstate does not evolve in time,

Fig. 4.17 Schematic description of the DE control experiment. a The experiment on the Bloch
sphere. The pump π pulse deterministically generates the DE in the |a〉 eigenstate. The detuned,
circularly polarized control 2π pulse rotates the DE by an angle of π/2 about the polarization
direction (green arrow) and brings the DE to the equatorial plane of the Bloch sphere (dashed green
line). The DE spin then precesses as described by the magenta trajectory on the Bloch sphere. b
Schematic description of the pulse sequence used in this experiment. The colors of the pulses match
the arrows in a. The actual measured temporal sequence of pulses is shown below the schematic
description. Image from [7]
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and in the absence of a control pulse, the DE will remain in this eigenstate as it radia-
tively decays. A detuned 2π area optical pulse is used to transfer the DE population
through the XX0

T±3 resonance and back to the DE. The DE state acquires a relative
phase difference between the two eigenstates during this pulse, and the relative phase
difference is dependent on the detuning from resonance of this control pulse. On the
Bloch sphere, this phase accumulation is described as a rotation around the direction
of the pulse circular polarization [3, 4, 55]. No detuning results in a π rotation, while
negative (positive) detuning results in larger (smaller) rotation angles [4, 55, 82].

Figure4.17b shows the pulse sequence used in the experiment. After deterministic
generation of the DE using a 60ns H -polarized pulse (blue), a very short (∼10ps)
2π area σ+ control pulse (green), detuned from the XX0

T±3 resonance is used to
rotate the DE state around the right hand circular polarization direction on the Bloch
sphere (indicated by a green arrow). A 60ns right-hand circularly polarized cw probe
(magenta) is then used to re-excite the DE to the XX0

T±3 biexciton. This probe pulse
measures the time evolution of the DE spin state after the control pulse. The entire
sequence of pulses lasts ∼120ns and the repetition rate is 1MHz. In Fig. 4.17b, the
measured pulse sequence is also shown below the schematic depiction.

Figure4.18a presents the measured (points) degree of circular polarization as a
function of time after a σ+-polarized control pulse during the first 35ns of the probe
pulse for a detuning energy of Δ/σ ≈ 0.7. Here, σ = 100µeV is the full spectral
width of the control laser at half maximum. Δ is the detuning from resonance.
Oscillations in the degree of circular polarization are clearly visible, demonstrating
that the DE spin state has been rotated from an eigenstate to a coherent superposition
of eigenstates by the control pulse. The overlaid solid line presents a best-fit model
of an exponentially decaying sinusoidal function

f (t) = P0 sin(2πt/τ
L
DE ) exp[−t/TPD] (4.12)

where P0 is the initial polarization degree (∼0.35), τ L
DE is the Larmor precession

time of the DE (∼3ns), and TPD is a characteristic polarization decay time. This
polarization decay time is relatively short here (∼20ns), due to these conditions of
strong cw resonant excitation, similar to the artificial shortening of the polarization
decay time observed for cw excitation in Fig. 4.16.

The inset to Fig. 4.18 presents the actual values of the best-fitted P0 (normalized
to 1 at maximum) as a function of the detuning energy. The solid line presents the
theoretically expected dependence [82]

P0(Δ) = sin(π − 2 arctan[Δ/σ]). (4.13)

In these experiments, themaximal degree of initial polarization achieved is about 30%
for a detuning of Δ/σ ≈ 1.0. This maximal polarization is limited by two factors:
(1) The temporal resolution of the detectors, which limits |P0| < 0.6 [5], and (2) the
repetition rate at which the experiments are conducted. At a repetition rate of 1MHz,
the separation between experimental sequences is similar to the DE lifetime. Thus,
in ∼40% of the cases, a residual DE population is present in the QD and prevents
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Fig. 4.18 Experimental demonstration of DE spin control. (a) [(b)] The measured (points) degree
of circular polarization of the XX0

T±3 emission as a function of time after the application of a σ+-
polarized [H -polarized] control pulse (blue) [(green)], compared to that measured in the absence
of a control pulse (red). The solid line in a represents a fit using (4.12). Inset Points (line) show
the measured (model) dependence of the normalized oscillation amplitude on the detuning. Image
from [7]

absorption of the pump pulse. For this reason, an optical DE reset technique was
developed (Sect. 4.8), to enable experiments on the DE at rates substantially higher
than the DE radiative recombination rate.

Figure4.18b presents the measured degree of circular polarization at the same
detuning as in Fig. 4.18a for a linearly (H ) polarized control pulse (green). As
expected, no polarization oscillations are observed in this case, similar to the case
with no control pulse at all (red).

These measurements demonstrate a coherent rotation of the DE spin state with a
single picosecond pulse [7]. Consequently, it is possible to perform gate operations
on the DE spin state that are fast compared to the DE lifetime and spin coherence
time. Having demonstrated many aspects of the DE qubit, we now turn our attention
to a necessary feature for high repetition-rate DE experiments, the ability to optically
reset the DE from the QD.
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4.7 Controlling the Dark Exciton Eigenstates Using
an External Magnetic Field

At zero magnetic field, due to the short range e-h exchange interaction, the DE
eigenstates are the symmetric |S2〉 = [|+2〉 + |−2〉] /√2 and anti-symmetric |A2〉 =
[|+2〉 − |−2〉] /√2 coherent superposition of the spin up (|+2〉) and spin down
(|−2〉) states, where the anti-symmetric state is lower in energy [7]. These states
are schematically described in Fig. 4.19. Optical excitation of the DE generates the
spin blockaded biexciton XX0

T3
[68]. The lower and higher eigenstates of the XX0

T3

qubit are also the anti-symmetric |A3〉 = [|+3〉 − |−3〉] /√2 and symmetric |S3〉 =
[|+3〉 + |−3〉] /√2 coherent superpositions of the spin up (|+3〉) and spin down
(|−3〉).

Fig. 4.19 a Energy levels and spin wavefunctions of the DE and the XX0
T3

– biexciton as func-
tion of an externally applied magnetic field in Faraday configuration. The blue and purple solid
(dashed) lines represent the energies of the low and high energy eigenstates of the DE (biexciton)
respectively. Vertical arrows connecting the DE and biexciton eigenstates mark allowed polarized
optical transitions between the eigenstates at zero and high field. b Schematic representation of
the changes that the external field induces on the Bloch sphere of the DE qubit. Shown are three
cases: (i) zero field (ii) cross section of the sphere at arbitrary magnetic field, (iii) strong magnetic
field. The eigenstates |A2〉, |S2〉, at zero field and |±〉2 at finite field, and the angle θB are defined
in the text and in (4.15). The eigenstates are always at the poles of the sphere, north pole being
the lower energy one. The pink dot represents the |+2〉 state, heralded by detecting a σ+ polarized
biexciton photon. The blue circle represents the counter clockwise temporal evolution of the DE
state following its heralding. Image from [84] (color figure online)
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The DE and XX0
T3
form an optical Π -system with optical transitions between the

|+2〉 (|−2〉)DE state to and from the |+3〉 (|−3〉) biexciton state by right (left) handed
circularly polarized light. At zero magnetic field, the DE and XX0

T3
eigenstates are

therefore optically connected by linear cross-polarized optical transitions denoted as
horizontal (H) and vertical (V). The system is schematically described in Fig. 4.19a.

The time independent Hamiltonian of the DE and the XX0
T±3

in the presence of a
Faraday configuration magnetic field (field parallel to the optical axis) and expressed
in the basis {|+2〉 , |−2〉 , |+3〉 , |−3〉} is given by:

Ĥ = 1

2

⎛
⎜⎜⎝

−μB
(
ge − gh

)
B �ω2

�ω2 μB
(
ge − gh

)
B

2(Δ + μBg2h B) �ω3
�ω3 2(Δ − μBg2h B)

⎞
⎟⎟⎠ (4.14)

This Hamiltonian represents two decoupled Hamiltonians, one for the DE and one
for the XX0

T±3
, where μB = e�

/
2mec is the Bohr magnetron, B the magnitude of the

magnetic field (normal to the sample surface), ge and gh are the electron and hole
gyromagnetic ratios in the direction of themagnetic field, and g2h is the gyromagnetic
ratio of the two heavy holes in triplet configuration. The sign convention for the
gyromagnetic factors is such that positive factors mean that electron (heavy hole)
with spin parallel (antiparallel) to the magnetic field direction is lower in energy than
that with spin antiparallel (parallel) [8]. The triplet state gyromagnetic ratio is not
a simple sum of the gyromagnetic ratios of the individual holes [83]. The energy
difference between the DE and the XX0

T±3
is Δ, and �ω2 and �ω3 are the energy

differences between the DE and XX0
T±3

eigenstates, respectively. All energies are
defined at zero magnetic field. Figure4.19a schematically describes the DE energy
level structure, its magnetic field dependence, and the optical transitions between
their eigenstates.

The externally applied magnetic field modifies the eigenstates of both qubits: [8]

|+〉i = cos
(

π
4 + θiB

2

)
|+i〉 + sin

(
π
4 + θiB

2

)
|−i〉

|−〉i = cos
(

π
4 − θiB

2

)
|+i〉 − sin

(
π
4 − θiB

2

)
|−i〉 (4.15)

where β2 = μB (ge − gh) B and β3 = −μBg2h B are the magnetic energies. The
energy difference between the two eigenstates is given by their Zeeman splitting:

Δi (B) =
√

β2
i + (�ωi )2, and tan θiB =

(
βi

�ωi

)
.

Figure4.19b presents an intuitive geometrical interpretation for the angle θB and
the DE Bloch sphere. Since in the Faraday configuration the magnetic field direction
is aligned with the direction of the |+2〉 spin state, it follows that π/2 − θB is the
angle between theBloch sphere eigenstate axis and the direction of themagnetic field.
Thus, as the magnitude of the external field (B) increases θiB approaches π

/
2 and the

eigenstates gradually change their nature. Once the Zeeman energies significantly
exceed the exchange energies, the eigenstates become the |±2〉 and |±3〉 spin states
for the DE and the XX0

T±3
, respectively.
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Fig. 4.20 a Rectilinear polarization sensitive PL spectra of the QD at zero magnetic field. Solid
black (red) line represents horizontal - H (vertical - V) polarization. b The degree of rectilinear
(black) and circular (orange) polarizations as a function of the emitted photon energy. c Circular
polarization sensitive PL spectra at B = 0.2T. Red (black) line represents right-σ+ (left- σ−) hand
circular polarization. d The degree of rectilinear (black) and circular (orange) polarizations as a
function of the emitted photon energy at B = 0.2T. Note that the Zeeman splitting of the XX0

T3
line

is opposite in sign to that of the negative, neutral and positive excitons. Image from [84]

Figure4.20 shows polarization sensitive PL spectra of the single QD under
study. The PL was excited using 445nm non-resonant cw laser light. Figure4.20a
(c) presents the measured spectra in the two linear (circular) polarizations, in the
absence (presence of B = 0.2T) external magnetic field. Figure4.20b (d) presents
the obtained degrees of linear (circular) polarizations as a function of the emitted
photon energy in the absence (presence of B = 0.2T) external magnetic field. In
Fig. 4.20a the solid black (red) line represents horizontal - H (vertical - V) polar-
ization and in Fig. 4.20c black (red) line represents left- σ− (right-σ+) hand circular
polarization. Black (orange) lines in Fig. 4.20b, d represent the degree of linear (circu-
lar) polarization. The various exciton and biexciton lines are identified in Fig. 4.20a.

Even in the absence of a magnetic field, one can clearly observe in Fig. 4.20a,
b that the BE spectral line is split into two cross linearly polarized components.
This split, measured to be 27 ± 3µeV is common to self assembled QDs. It results
from the anisotropic e-h exchange interaction, mainly due to the QD deviation from
cylindrical symmetry [8, 15]. The DE degeneracy is also removed mainly due to the
short range e-h exchange interaction [8, 15]. However, since the splits ω2 and ω3 are
smaller than the radiative linewidth, the linearly polarized components of the XX0

T3
biexciton line cannot be spectrally resolved. Therefore, only one, unpolarized spectral
line is observed. An upper bound forω3 < 0.2ns−1 corresponding to split of less than
0.82µeV is deduced directly from the degree of circular polarization memory of the
XX0

T3
biexciton line at zero magnetic field [7]. At a sufficiently large magnetic field

the line splits into two components. The lower energy transition is σ+-circularly
polarized and the upper energy one is σ−-circularly polarized. At a magnitude of
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Table 4.1 Themeasured Zeeman splitting of various spectral lines. The DE splitting was measured
from a similar dot from the same sample

Line Zeeman splitting Measured at 0.2T in (µeV)

X0
√

(�ω0)2 + [μB (ge + gh) B]2 30 ± 3

X−/X+1 μB(ge + gh)B 13.6 ± 3

XX0
T3

−μB
(
g2h + ge − g∗

h

)
B 13.6 ± 3

X0
D μB(ge − gh)B 3.6 ± 1

0.2T, the splitting amounts to 13.6 ± 3µeV and it exceeds the measured linewidth
of 11.4 ± 3µeV in the absence of external field.

We note that the measured Zeeman splitting of the XX0
T±3

line is opposite in
sign to those of the X+1, the X−1, and the X0 excitonic lines. It follows from simple
considerations that the expectedZeeman splitting of the charged and neutral excitonic
spectral lines is proportional to the sum of the hole and electron g-factors (gh + ge).
Therefore the σ+ polarized part of these spectral lines is expected to be higher in
energy than the σ− polarized part. This is indeed what we experimentally observe.
Since the XX0

T±3
line splits in proportion to g2h + ge − g∗

h (where g∗
h is the g factor of

an excited hole), our experimental observations indicate that the sign of g2h − g∗
h is

negative, and its magnitude in this particular QD is larger than that of the electron g-
factor. These observations are in agreement with the energy level diagram of Figure.
1a. The dependences of the Zeeman splitting of the various spectral lines on the
g-factors are summarized in Table4.1.

Figure4.21 shows co-circular polarization sensitive intensity autocorrelationmea-
surements of the emission from the XX0

T±3
biexciton line under weak non-resonant

(Pb) and resonant (Pr ) excitation powers, for various externally applied magnetic

Fig. 4.21 Measured (symbols) and calculated (lines) circularly co-polarized intensity autocorre-
lation functions (g(2) (δt)) of the emission from the XX0

T3
under weak non-resonant and resonant

excitation condition for various externally applied magnetic fields in Faraday configuration. The
solid lines present best fitted calculations [84] convoluted with the temporal response of the detec-
tors. The curves are vertically shifted for clarity and the zero for each measurement is marked by a
color-matched horizontal line. Image from [84]
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fields. The observed reduction in the visibility of the oscillations as the magnetic
field increases is observed in both resonant and quasi-resonant excitations [84]. The
source of this reduction is explained in Fig. 4.19b as resulting from the field induced
changes in the DE qubit eigenstates. For example, at a field of B = 0.2T the DE split-
ting was calculated in Fig. 4.19 to be 4µeV, which is larger than the measured zero
magnetic field splitting of 1.7µeV. Hence, as expected, no oscillations are observed,
and the system can be described as two separated two-level systems.

Consequently, the strength of an applied external field can be used as a tuning
knob for varying the dark exciton eigenstates. More details on this experiment and
the theoretical model can be found in [84].

4.8 Optical Reset of the Dark Exciton

Demonstrating the coherent properties of the DE is difficult because of its long
radiative lifetime. Inmost of the previous demonstrations of deterministic DEwriting
and control, the experimental repetition rate had to be substantially slower than theDE
radiative recombination rate to ensure that the QD was empty prior to the beginning
of the experimental pulse sequence. These low repetition rates substantially increase
the time required to collect enough photon events or correlated photons to measure
the results of the DE writing and control experiments.

This long lifetime of the DE also impacts the efficiency of QDs as single photon
sources. When a QD is excited non-resonantly, the excitonic population generated
in the QD is a statistical mix of BEs and DEs. Therefore, sometimes the QD is
occupied with a long-lived DE. This prevents the QD from being a true on-demand
single photon emitter [70, 85, 86].

In this section, we present an optical method to deplete the long-lived DEs from
a QD [87]. We do this via optical pumping of the DE population to a BE population
using intermediate excited biexciton states. This technique both substantially reduces
the DE population and increases the triggered BE emission. The depletion pulse
empties the QD of DEs with near unit probability. This depletion technique was
published as [87].

Excited biexciton levels consist of two electron-heavy hole pairs, where at least
one of each charge carrier is in an excited energy level. These excited biexciton levels
were studied in several previous papers [1, 2, 16, 64, 68, 88]. Their spectra, the spin
wavefunctions of carriers in these levels, and their associated dynamics are fairly
well-understood. For depleting the DE from a QD, the nine states in which both
the electrons and the holes form spin-triplet configurations (T eT h) are particularly
relevant [1, 64, 68].

In general, the nine T eT h excited biexciton states are spin blockaded from relax-
ation to the ground electron singlet-hole singlet biexciton state (Se0S

h
0 ). However,

there are efficient spin flip and spin flip-flop processes that permit this relaxation
(Sect. 10.4) [69, 88, 89]. Here, due to the enhanced effect of the electron-hole
exchange interaction in the presence of a near resonant electron-longitudinal optic

http://dx.doi.org/10.1007/978-3-319-56378-7_10
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Fig. 4.22 A schematic description of the optical depletion process. Blue (red) color is used to
describe a ground (excited) state carrier. Downward (upward) arrows describe optical emission
(excitation). a The QD is populated with a DE following non-resonant excitation. Only one spin
projection is shown for clarity. b Optical excitation generates an excited biexciton state, which
relaxes nonradiatively with almost equal probabilities either to c its ground state XX0 or f to a spin-
blockaded biexciton XX0

T±3. In the first case, the biexciton results in a radiative cascade (c–d),
leaving the (e) QD empty. In the second case, f one photon is emitted and g after hole relaxation,
h a DE remains in the QD. The process then repeats from a for as long as there is a DE in the
QD. Black arrows represent non-radiative processes. Radiative recombination is indicated by oval-
matching the recombining electron-hole pair. The oval colors are matched to the colors indicating
the corresponding emission lines in Fig. 4.23. Image from [87], reprinted with permission (color
figure online)

(LO) phonon Fröhlich interaction, an electron or an electron and a hole flip their
spins [88, 89].

Figure4.22 schematically describes the process of optical depletion. Figure4.22a
shows a QD containing a single ground-state DE. In this case, the DE is generated
electrically or via non-resonant optical excitation, where electron-hole pairs with
high excess energy are generated in the vicinity of the QD. The carrier spins are
randomized during relaxation, yielding a stochastic excitonic population in the QD
that is composed on average of approximately 50%DEs and 50%BEs. In our experi-
ments, a weak cw laser pulse (445nm, few nsec duration) excites the QD, generating
a mixed excitonic population. The BE population recombines radiatively within 2–
3ns of the end of the non-resonant pulse, resulting in an empty QD. This occurs in
the approximately 50% of the cases corresponding to initial population with a BE.
In the remaining cases, the QD is populated with a DE for long after the end of the
non-resonant excitation pulse. To deplete the DE, an optical resonant excitation into
an excited biexcitonic level is used as described in Fig. 4.22b. These excited biex-
citon states then quickly relax non-radiatively to one of the lower energy levels of
the biexciton (Fig. 4.22c). As shown in Fig. 4.22 and experimentally demonstrated
in Fig. 4.23b, the relaxation is into the spin blockaded biexciton XX0

T±3 states in
roughly half the cases. Further relaxation here is prohibited by the spin-parallel con-
figuration of the heavy holes (T h

±3, Fig. 4.22f). After emission of another photon, a
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Fig. 4.23 PL and PLE spectra of the depletion resonance. a PL spectra showing H (blue) and
V (red) linearly polarized QD emission. Relevant emission lines are indicated above the spectral
line by the initial state of the optical transition. Arrow colors match the PLE spectra in b, which
were obtained while monitoring the emission from the indicated spectral line. b PLE spectra of the
indicated lines in a showing the T eT h biexciton resonances relevant for optical DE depletion. These
spectra were obtained using two cw lasers. Spectra indicated by solid (dashed) lines were obtained
with one laser tuned to a dark (bright) exciton resonance while the energy of the second laser was
scanned and the emission from the color matched PL line was monitored. c Schematic description
of the optical transitions observed in b. Optical transitions from the DE (BE) are indicated by solid
(dashed) arrows and the added carriers are indicated in the spin state diagram by an oval-matched
pair. The spin configuration of the state is provided on the left. Roman numerals match observed
resonances in b. Resonances labeled (ii) and (iii) can be used for the optical depletion process.
Image from [87], reprinted with permission (color figure online)

remaining DE is left in the QD. In the other cases, relaxation is to a ground biexciton
level. From here, the well-studied two-photon radiative cascade [90–92] from the
biexciton leaves the QD eventually empty of charge carriers. Because of the rela-
tively large branching ratio (approximately 0.5) between the two process, the DE
can be efficiently depleted from the QD. We estimate that, for a measured exciton
(biexciton) radiative lifetime of 470 (330)ps, the QD can be fully emptied using an
excitation pulse of several nsec duration.

Figure4.23 presents (a) the PL and (b) two-laser PLE spectra of the QD. In
Fig. 4.23a, relevant emission lines corresponding to optical recombination from the
X0, XX0, and XX0

T±3 are indicated by colored arrows. The energy is measured
from the BE spectral line at 1.283 eV. Optical transitions from the XX0 and m = 0
spin-blockaded biexciton XX0

T 0 result predominantly in BEs and lead to sequential
emission of a photon due to BE recombination. The presence of a DE in the QD is
heralded by the XX0

T±3 biexciton line. In the PLE data in Fig. 4.23b, the line color
corresponds to the arrow color above the monitored emission line.



4 Coherent Control of Dark Excitons in Semiconductor Quantum Dots 159

In the PLE measurements in Fig. 4.23b, one cw laser is used to excite the BE
(dashed lines) or DE (solid lines). The PL from the indicated emission line is moni-
toredwhile the energy of the second laser is varied. Four exciton-biexciton absorption
resonances are observed, and indicated by Roman numerals. Resonances indicated
(i) and (iv) initiate from the BE. Resonances indicated (ii) and (iii) initiate from the
DE. These optical transitions [1, 64] are schematically presented in Fig. 4.23c.

Figure4.23 clearly demonstrates that the resonances initiating from the BE (res-
onances labeled (i) and (iv)) contribute mainly to BE emission, but the resonances
initiating from the DE (resonances labeled (ii) and (iii)) contribute almost equally
to the XX0

T±3 emission and to the XX0 emission. From this we infer that in about
50% of these excitations, the DE population is transformed into a BE population and
depleted from the QD by subsequent optical recombination. For the optical depletion
experiments in the next section, we chose resonance (iii). We note that resonance (ii)
performs similarly.

To demonstrate optical depletion, a sequence of three laser pulses was used. This
pulse sequence is schematically illustrated above Fig. 4.24. The first pulsewas aweak
pulse of 445nm laser light, with a duration of 20ns. This pulse was generated using
an AOM on a cw diode laser. The purpose of this pulse is to generate a stochastic
population of BEs and DEs in the QD. A few nsec after the end of this pulse there
was a second pulse tuned to resonance (iii) of Fig. 4.23 and of 20ns duration. This
pulse was generated by an EOMon a wavelength-tunable Ti:sapphire laser. The third
and final pulse in the pulse sequence was a ∼10ps pulse from a dye laser. This pulse
could be tuned either to an X0 absorption resonance (to verify that the QD is empty)
or to the XX0

T±3 absorption resonance (to measure the DE population remaining in
the QD). This pulse occurred 5ns after the end of the depletion pulse, and its intensity
corresponded to a π-pulse for the relevant resonance.

Figure4.24a presents the PL intensity from the XX0
T±3 line as given by the color

bar, as a function of time (horizontal axis) and the power of the depleting pulse tuned
to the (iii) resonance of Fig. 4.23c (vertical axis). In this case, the probe pulse is
tuned to a XX0

T±3 absorption resonance. Figure4.24 clearly demonstrates that the
DE population in the QD decreases as the power of the depletion pulse increases.
Comparing the PL intensity during the probe pulse (solid blue line) in Fig. 4.24b,
where the depletion power was very weak, to that in Fig. 4.24c, where the power of
the depletion pulse is maximal, yields a quantitative measure of the efficiency of the
depleting pulse. Under these conditions, the depletion pulse reduces the integrated
XX0

T±3 PL emission intensity during the probe pulse to less than 5% of its value in
the absence of the depletion pulse. This suggests a corresponding reduction in the
DE population during the depletion pulse.

This verification of the depletion pulse efficiency is complimented by consider-
ing the BE PL emission (dashed green line in Figs. 4.24b, c) at low (b) and high
(c) depletion pulse powers. In these measurements, the probe pulse is tuned to a
BE absorption resonance [1]. The integrated BE emission during the probe pulse
increases by almost a factor of 2, indicating that the QD is approximately 50% occu-
pied by DEs in the absence of the depletion pulse and predominantly empty when
the depletion pulse is present. Under these conditions, we were able to get more than
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Fig. 4.24 a PL emission intensity from the XX0
T±3 spectral line (color bar) as a function of the

power of the depleting pulse to the (iii) resonance (vertical axis) and time (horizontal axis). The
temporal sequence of the non-resonant excitation pulse, depletion pulse, and probe pulse tuned to
the XX0

T±3 (X0) absorption resonance is shown above the Figure. (b) [(c)] The solid blue line
describes the XX0

T±3 PL emission intensity as a function of time at very low [maximal] depletion
pulse power. Close to 95% depletion is clearly observed at high power. The overlaid dashed green
line presents the intensity of the PL from the X0 spectral line while the psec probe pulse is tuned
to the BE resonance. The BE PL increases between (b) and (c) by nearly a factor of 2, yet another
indication of efficient depletion of the DE population from the QD. Image from [87], reprinted
with permission

8500 counts/s on the BE detector during the probe pulse. Taking into account the
repetition rate of our experiment (9.5MHz) and the overall light harvesting efficiency
of the experimental setup and sample (approximately 1/1000 [64]), this represents
a depletion probability of close to 95%. If the depletion pulse power is increased,
the pulse duration can be shortened. Similar depletion probabilities can be achieved
with pulses as short as 3ns.

This demonstration of all-optical depletion of the DE from a semiconductor QD
[87],which efficiently convertsDEs toBEs and then to an emptyQD, on ananosecond
timescale, is essential for using QDs as on-demand sources of single photons, as well
as for deterministic writing of the BE [2] and DE [7].

4.9 Outlook

We have discussed and presented here recent experiments demonstrating that the
confined dark exciton can be used as a viable matter qubit. Specifically, in the context
of the DiVincenzo criteria for a good physical qubit discussed in Sect. 4.2, we have
shown the following:
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1. The DE is a well-characterized qubit;
2. The DE can be initialized in a known pure state by a single, picosecond long,

polarized laser pulse;
3. The DE can be emptied from the QD (reset) by a nanosecond long optical pulse;
4. The DE has long lifetime (∼1µs) and coherence time (∼100ns) compared to the

time required to perform gate operations on it;
5. The DE state can be easily and efficiently measured optically;

In addition, we showed that the DE qubit’s eigenstates can be controlled by appli-
cation of an external magnetic field.

We have thus demonstrated that the semiconductor quantum dot confined dark
exciton fulfills most of the DiVincenzo criteria for a useful physical qubit. These
demonstrations and studies make the dark exciton an excellent candidate for future
quantum information processing technologies.

These attributes of the DE were recently used in a demonstration [61] of a pro-
posal [93] to generate a photonic cluster state via repeated excitation of a precessing
QD-confined spin. These highly-entangled cluster states are a resource for quantum
information processing, because quantumcomputations can be performed by sequen-
tial measurement of the qubits in the entangled state [94]. Repeated, timed excitation
of the DE spin qubit described in this Chapter results in an entanglement genera-
tion “machine” that is capable of deterministically generating a chain of photons
in a cluster state. Future efforts in this vein will involve both lengthening the chain
of entangled photons and using multiple DE qubits to generate higher-dimensional
cluster states via a similar process. The dark exciton is truly a qubit with a bright
future.
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Chapter 5
The Mesoscopic Nature of Quantum
Dots in Photon Emission

P. Tighineanu, A.S. Sørensen, S. Stobbe and P. Lodahl

Abstract Semiconductor quantum dots share many properties with atoms such as
discrete spectrum, which implies the ability to emit high purity single photons. How-
ever, they have unique features as well that are unknown to other emitters: they
embody tens of thousands of atoms attaining large mesoscopic sizes, and lack the
common atomic symmetries. Here we discuss two effects that are mediated by the
mesoscopic nature and render quantum dots fundamentally different than atoms. The
mesoscopic size and lack of parity symmetry causes the electric-dipole approxima-
tion to not be applicable to In(Ga)As quantum dots. As a consequence, the latter
do not fulfil the atomic selection rules and thus interact with the electric and mag-
netic components of light on the same electronic transition. The multi-atomic nature
also causes a collective mesoscopic effect in monolayer-fluctuation GaAs quantum
dots, namely single-photon superradiance, giving rise to a giant light-matter coupling
strength.

Semiconductor quantum dots (QDs) provide the essential link between light and
matter and can be integrated monolithically into photonic devices. These nanometer-
sized purposefully engineered impurities combine the atomic-like discrete spectra
and excellent single-photon purity with the large light-matter interaction strength
inherent to solid-state systems [1]. The ability to tailor the photonic environment
around QDs has resulted in tremendous progress in manipulating single QD excita-
tions. Strong coupling between a QD and a cavity [2–4] and near-unity coupling to
a photonic waveguide [5–10] are a few out of many exciting realizations [1].

The atomic-like properties of QDs are supplemented by a range of new effects
owing to their solid-state nature. For instance, vibrations of the underlying crystal lat-
tice, known as phonons, may decohere the light-matter interaction [11–13] or couple
non-resonant QD excitations to an optical cavity [14–18]. Similarly, the mesoscopic

P. Tighineanu (B) · A.S. Sørensen · S. Stobbe · P. Lodahl
The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17,
2100 Copenhagen, Denmark
e-mail: petrut@nbi.ku.dk

P. Lodahl
e-mail: lodahl@nbi.ku.dk

© Springer International Publishing AG 2017
P. Michler (ed.), Quantum Dots for Quantum Information Technologies,
Nano-Optics and Nanophotonics, DOI 10.1007/978-3-319-56378-7_5

165



166 P. Tighineanu et al.

ensemble of the nuclei composing the QD can be used to tailor the hyperfine inter-
action with the electron in spin-based quantum-information science [19]. Recently
it was found [20] that QDs may break the dipole approximation, which is often
assumed to be valid also in solid-state quantum optics. These realizations unveil the
complex nature of QDs, which embody tens to hundred thousand atoms attaining
“mesoscopic” sizes that interact relentlessly with the surrounding solid-state envi-
ronment. In this chapter we present a unified description of the mesoscopic nature of
QDs [20–23]. In particular, we discuss twomesoscopic effects that exist solely due to
the large physical size of QDs: the breakdown of the dipole theory of In(Ga)As QDs
and collective enhancement of light-matter interaction with monolayer-fluctuation
GaAs QDs.

The small size L of most quantum emitters compared to the wavelength of light
λ has ensured the success of the dipole theory, which states that emitters interact with
light as dimensionless entities (point dipoles). Since QDs attain mesoscopic sizes of
10–30nm [24], the dipole approximation does not necessarily hold because the figure
of merit 2πnL/λ0 ≈ 0.5 is not negligible. Here, typical values for the wavelength
in vacuum λ0 = 900 nm, refractive index n = 3.42 and L = 20nm have been used.
This figure of merit may be further enhanced in the vicinity of metal nanostructures,
where additional propagating modes (surface plasmons) beyond the light cone arise.
It has been observed that the spontaneous-emission dynamics from QDs placed near
a metal interface show pronounced deviations from the dipole theory [20]. A theory
of light-matter interaction beyond the dipole theory can explain these experimental
findings by introducing a single mesoscopic moment to be considered along with the
dipole moment in light-matter interactions [21]. Notably, this theory is more general
than previously developed models [25–32] because it considers the symmetry of the
full quantum-mechanicalwavefunction and not only the slowly varying envelope.We
show that the discrete atomistic symmetry explains themicroscopic origin of the large
mesoscopic moment observed experimentally. In particular, the developed theory
pinpoints that large structural inhomogeneities at the crystal-lattice level lead to a
violation of parity symmetry in In(Ga)AsQDs [22].Quantumdots therefore break the
atomic selection rules and probe electric and magnetic fields on the same electronic
transition [21]. Moreover, the mesoscopic size of QDs may ease the observation
of dipole-forbidden transitions in photonic nanostructures [33]. It has been shown
that, in the opposite limit of highest possible (spherical) symmetry present in, e.g.,
colloidal QDs, a shell theorem is valid, which states that the Purcell enhancement in
an arbitrary photonic environment is protected by symmetry and does not depend on
the QD size [32].

The second part of this chapter is devoted to presenting another mesoscopic prop-
erty of QDs, namely collective enhancement of light-matter interaction leading to
single-photon superradiance. Quantum dots benefit from their multi-body nature
with an enhanced coupling to light compared to atoms, which renders them promis-
ing candidates for improving the efficiency of single-photons sources, solar cells and
nano-lasers, to name a few important practical applications. Commonly employed
QDs have, however, an upper limit for the interaction strength with light, regardless
of their size and shape. It has therefore been a long-sought goal in quantum photonics



5 The Mesoscopic Nature of Quantum Dots in Photon Emission 167

to develop solid-state emitters beyond this upper limit [34–37]. We demonstrate that
the fundamental excitation of a monolayer-fluctuation QD [38] is analogous to the
phenomenon of single-photon superradiance defined by Dicke for a non-interacting
ensemble [39]. This effect leads to an enhanced coupling to light far beyond that of
conventional QDs, which may be of interest for fundamental science and technology
alike. In particular, such rapid radiative decays will likely exceed relevant dephasing
mechanisms resulting in highly coherent flying quantum bits. Furthermore, new and
so far largely unexplored solid-state quantum-electrodynamics regimes involving
energy non-conserving virtual processes, such as the ultra-strong coupling between
light and matter, may become within reach at optical frequencies [23].

5.1 Fundamentals of Light-Matter Interaction
with Quantum Dots

In this section we lay the fundamental as well as the experimentally relevant aspects
describing the interaction between QDs and light.

5.1.1 Effective-Mass Theory

The commonly employed bandstructuremethod for QDs is the effective-mass theory.
It assumes that the bands, which are exact solutions in the bulk semiconductor, are
weakly perturbed by the nanostructure. Formally, a quantized eigenstate within an
electronic band can be written as a product of a periodic Bloch function, u(r), which
captures the properties on the length scale of the crystal unit cell, and a slowly varying
envelope, ψ(r), that inherits the size and symmetry of the mesoscopic QD potential

� j (r) = ψ j (r)u j (r), (5.1)

where j = {e, hh, lh} labels either of the three relevant bands in zincblende semi-
conductors: electron, heavy hole, and light hole, respectively. It can be shown [40]
that ψ j is subject to a Schrödinger-type equation

E jψ j (r) = − �
2

2meff, j
�ψ j (r) + Vj (r)ψ j (r), (5.2)

where we assume that the effective mass is isotropic. The complicated unit-cell
potential is merged into the effectivemass,meff , a parameter that can be inferred from
experiments. The potential energy Vj (r) contains the smoothmesoscopic potential of
the QD as illustrated in Fig. 5.1. This particle-in-a-box problem can be solved either
analytically or numerically using the standard techniques of quantum mechanics.
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Fig. 5.1 Physical interpretation of the effective-mass approximation. The complicated crystal
potential (left) is merged into an effective-mass parameter (right)

The effective-mass theory describes the properties of QDs remarkably well,
since the first valence-band eigenstate is usually heavy-hole-like with a negligi-
ble light-hole component. This is related to the presence of compressive strain in
In(Ga)As/GaAs QDs, which alters the symmetry of the unit cells and splits the
degeneracy of the bands [41]. In strain-free QDs, the ground state is still mostly
heavy-hole like due to the small aspect ratio of QDs [24, 36, 42–44].

5.1.2 Excitons

Electrons and holes possess charge and half-integer spin and therefore interact. The
electron-hole bound state constitutes a fundamental quasi-particle, the exciton,which
governs the optical properties of QDs. Being a two-body system, the exciton wave-
function �X can be expanded in the single-particle electron and hole wavefunc-
tions [45]

�X(re, rh) =
∑

n,m

Cn,m�e
n(re)�

h
m(rh) = ue(re)uh(rh)ψX(re, rh), (5.3)

where �n corresponds to the n-th eigenstate of the QD and ψX(re, rh) is the slowly
varying envelope of the exciton subject to the two-body effective-mass Schrödinger
equation

(
p2e
2me

+ p2h
2mh

+ Ve(re) + Vh(rh) − e2

4πε0ε
∣∣re − rh

∣∣

)
ψX = EψX. (5.4)

Here, p is the momentum operator, εr is the dielectric constant and E the energy of
the exciton. In bulk, the electron and hole orbit each other within a distance known as
the exciton Bohr radius a0. Since the Coulomb energy EC scales inversely with the
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QD size, EC ∝ L−1, the Coulomb and exchange interactions in a QD are enhanced
compared to bulk. On the other hand, the quantum-confinement energy scales as
L−2. As a consequence, the exciton motion can be found in two regimes:

(i) The strong-confinement regime, in which L � a0 [46] and quantum confine-
ment dominates Coulomb confinement. The latter can be neglected and the electron
and hole therefore move independently as non-interacting particles ψX(re, rh) =
ψe(re)ψh(rh). Most of the studied semiconductor QDs in the literature are in the
strong-confinement regime. The dipole moment of an x-polarized exciton is

µ = e

m0
〈�h

∣∣ p̂x
∣∣�e〉ex � e

m0
pcv〈ψh

∣∣ψe〉ex , (5.5)

where ex is the Cartesian unit vector, pcv = V−1
UC

∫
UC d

3ru∗
x p̂xue is the interband

Bloch matrix element with VUC being the unit-cell volume. In the above equation we
have exploited the slow variation of the envelopes ψ over one unit cell. The dipole
moment of small QDs has therefore an upper limit of μmax = (e/m0)pcv .

(ii) The weak-confinement regime, in which L � a0 and the electron-hole motion
is correlated. Here, (5.4) has to be solved as a two-body problem. Achieving this
regime has been a long-sought goal in quantum photonics because such QDs exhibit
a giant dipole moment beyond μmax, cf. Sect. 5.3.

Excitonic effects have a prominent role in determining the QD energy structure.
Combining the electron contribution with a spin of ±1/2 with the heavy-hole pro-
jected angular momentum of ±3/2 yields four possible excitonic configurations:
two optically bright with jz = ±1 and two optically dark with jz = ±2. Bright exci-
tons are higher in energy than dark excitons by several hundred µeV [47]. The
splitting between the two bright states is of the order of tens of µeV [47] and is
mostly determined by the QD asymmetry [48]. The resulting dipole moments of
the bright excitons jz = ±1 are orthogonally polarized along the x = [1, 1, 0] and
y = [1,−1, 0] crystallographic directions.

5.1.3 Spontaneous Emission

The light-matter interaction strength governs the temporal dynamics of the exciton-
to-photon conversion. In the Wigner–Weisskopf approximation, the QD exciton
decays exponentially with the rate �rad determined by Fermi’s Golden Rule

�rad = 2π

�2

∑

f

∣∣〈 f ∣∣Ĥint

∣∣i〉∣∣2δ(ω − ωi f ), (5.6)

where Ĥint is the light-matter interaction Hamiltonian triggering a transition from
the initial

∣∣i〉 to the final
∣∣ f 〉 state. In this work we consider the minimal-coupling

interaction Hamiltonian [49] between an electron with charge e and mass m0,
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and the field described by the vector potential Â

Ĥint = − e

2m0

(
p̂ · Â + Â · p̂ − eÂ · Â

)
. (5.7)

Another commonly used Hamiltonian is the multipolar Hamiltonian, which is
expressed in terms of electric and magnetic fields. It can be shown [49] that the
two Hamiltonians give the same result for energy conserving processes such as
spontaneous emission [50].

The nonlinear term Â · Â can be neglected for the weak fields studied here. We
employ the generalized Coulomb gauge, ∇ · [ε(r)Â(r)] = 0, yielding

Ĥint � − e

m0
Â(r) · p̂, (5.8)

where the dielectric constant ε(r) is assumed to vary over length scales larger than
the QD size [51]. The vector potential can be written in terms of the normal field
modes [52]

Â(r) =
∑

l

√
�

2ε0ωl

[
âl f l(r) + â†l f

∗
l (r)
]
, (5.9)

where âl (â
†
l ) is the annihilation (creation) operator for the l mode. The QD is

approximated as a two-level system with the initial state
∣∣i〉 = ∣∣e〉 ⊗ ∣∣0〉 with the

exciton in the excited state
∣∣e〉 and the field in the ground state

∣∣0〉, and ∣∣ f 〉 =∣∣g〉 ⊗ ∣∣1 f 〉 the final state with one excitation in the field mode f and the emitter in
the ground state

∣∣g〉. Plugging this into (5.6) yields

�rad = πe2

ε0�m2
0

∑

l

1

ωl

∣∣〈g∣∣f ∗
l (r) · p̂∣∣e〉∣∣2δ(ω − ωl), (5.10)

which is the starting point for the research presented here. The expression is beyond
the dipole approximation because the variation of the field over the emitter is taken
into account.

5.1.4 The Dipole Approximation: Oscillator Strength
and Density of Optical States

The standard-textbook approach to evaluating (5.10) is to assume that the field does
not vary over the QD, f l(r) ≈ f l(r0), where r0 is the QD center. The resulting dipole
approximation is excellent for quantum emitters that are much smaller than the
wavelength of light. We thus obtain
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�rad = π
∣∣μ
∣∣2

ε0�
ep ·
[
∑

l

1

ωl
f ∗
l (r0)f l(r0)δ(ω − ωl)

]
· e∗

p, (5.11)

where ep is the unit vector pointing along the direction of the dipole moment. The
term in square brackets is proportional to the imaginary part of the Green tensor [25,
52]

ImG(r, r′) = πc20
2

∑

l

1

ωl
f ∗
l (r)f l(r

′)δ(ω − ωl), (5.12)

In the dipole approximation, the light-matter interaction strength is thus governed by
two quantities: the dipole moment µ, which is an intrinsic property of the emitter,
and the imaginary part of the Green tensor, which is a property of the electromagnetic
environment.

It is often useful to recast the emitter and field properties in terms of the oscillator
strength f and the projected local density of optical states (LDOS) ρ(r0,ω, ep).
The oscillator strength is a dimensionless quantity defined as the ratio between the
radiative rate of the QD in a homogeneous environment and the emission rate of a
classical harmonic oscillator, and is related to the dipole moment via

f = m0

e2�ω

∣∣μ
∣∣2. (5.13)

The oscillator strength of atoms is of the order of 1 and about 10 for QDs [53]
because QDs are larger and interact stronger with light. Conventional QDs are in the
strong-confinement regime with a maximum oscillator strength of

fmax = Eg

�ω
, (5.14)

where Eg is the Kane energy, an experimentally accessible quantity. This upper limit
for f can be understood from (5.5), where the overlap between the envelopes cannot
exceed unity. The LDOS is defined as the number of electromagnetic modes per unit
energy and volume that the emitter can decay into

ρ(r0,ω, ep) = 2ω

πc20
Im
[
ep · G(r0, r0) · e∗

p

]
. (5.15)

Modern fabrication techniques enable accurate tailoring of the LDOS surrounding
the QDs in, e.g., photonic-crystal cavities [54] and waveguides [10], micropillar
cavities [55], nanowires [7] and plasmonic nano-antennas [56].

In a homogeneous medium, the Green tensor can be evaluated analytically [52]
yielding

�hom
rad = μ0ωn

3π�c0

∣∣μ
∣∣2. (5.16)
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Fig. 5.2 Level scheme describing the population transfer of the exciton in a QD. The bright exciton∣∣b〉 can decay either radiatively (�rad) or nonradiatively (�nrad) and can interact with its the dark
exciton

∣∣d〉 via the spin-flip rate (�sf ). Figure reproduced from [42]

Finally we note that only the imaginary part of the Green tensor contributes to
the decay rate because energy dissipation is described by the part of the response
function,which isπ/2 out of phasewith the drivingfield, as is known for the harmonic
oscillator. The real part is proportional to a self-energy term, the Lamb shift, which
shifts the frequency of the QD exciton [57].

5.1.5 Decay Dynamics of Quantum Dots

The internal structure ofQDs ismore complicated than a two-level system: there are 4
excited states comprising 2 bright and 2 dark excitons, which are coupled by spin-flip
processes. Furthermore, the omnipresent nonradiative processes, such as defect traps
in the vicinity of the QD [58], provide alternative pathways for the recombination
of the exciton. The experimentally measured decay rates of QDs therefore depend
on radiative, nonradiative, and spin-flip processes. Analyzing the dynamics provides
important information about the optical quality ofQDs, namely the oscillator strength
and the quantum efficiency η. The latter quantifies the probability that theQD exciton
recombines radiatively

η = �hom
rad

�hom
rad + �nrad

, (5.17)

where �nrad is the nonradiative rate. In the following we present a method that can
unambiguously extract these quantities from measurements [23, 42, 53].

Spin-flip processes are inhibited in QDs because it is difficult to simultaneously
flip spin and fulfil energy conservation due to the discrete spectrum. The coupling
between bright-bright and dark-dark excitons can generally be neglected because
it is a second-order process. Only bright-dark excitons are coupled by �sf and the
level scheme is reduced to the one depicted in Fig. 5.2. Bright-dark and dark-bright
spin-flip rates are assumed to be the same because the thermal energy at 4−10K is
larger than the bright-dark energy splitting. Also, the nonradiative rates of bright and
dark excitons are the same due to their small energy splitting [59].
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The decay dynamics of the bright exciton is governed by the rate equations of the
coupled three-level system

[
ρ̇B

ρ̇D

]
=
[−�rad − �nrad − �sf �sf

�sf −�nrad − �sf

] [
ρB

ρD

]
, (5.18)

where ρ denotes the occupation probability. Under the realistic assumption that spin
flip-processes are much slower than the radiative rate, i.e., �sf � �rad, (5.18) yields
for the decay of the bright state

ρB(t) = ρB(0)e−(�rad+�nrad)t + �sf

�rad
ρD(0)e−(�nrad+�sf )t . (5.19)

The bright exciton exhibits a biexponential decaywith the fast rate�F = �rad + �nrad

and the slow rate �S = �nrad + �sf . Consequently, by fitting the measured decay
curveswith f (τ ) = AFe−�F τ + ASe−�Sτ + C , where τ is the time delaywith respect
to the start of the excitation pulse andC is the background level, which is determined
by the measured dark-count rate and after-pulsing probability of the detector, the
radiative and nonradiative rates can be unambiguously extracted via

�rad = �F − �S, (5.20)

�nrad = �S − AS

AF

ρB(0)

ρD(0)
(�F − �S) , (5.21)

�sf = AS

AF

ρB(0)

ρD(0)
(�F − �S) . (5.22)

For non-resonant excitation, QDs trap carriers with random spin, i.e.,

ρB(0)

ρD(0)
� 1. (5.23)

Notably, the radiative rate �rad does not coincide with the homogeneous-medium
quantity�hom

rad becauseQDsare often located close to dielectric-dielectric or dielectric-
air interfaces, which may modify the LDOS.

5.2 Light-Matter Interaction Beyond the Dipole
Approximation with In(Ga)As Quantum Dots

The experimental observation of the dipole-theory breakdown was presented in [20],
whereQDsplacednear ametal interfacewere probedby time-resolvedphotolumines-
cence measurements, cf. Fig. 5.3. In the experiment, the QD spontaneous-emission
rate was found to be inhibited relative to the dipole theory for the geometry in
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(a)

(b)

Fig. 5.3 Observation of deviations from the dipole theory for QDs near a metal interface [20]. The
decay rate of QDs close to a metal interface was measured for a direct and b inverted QDs relative
to the interface. The black dashed line denotes the dipole theory, the triangles the data points and
the colored solid lines the fit. Figure reproduced from [20]
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Fig. 5.4 Observation of deviations from the dipole theory for QDs near a dielectric interface.
a Measured decay rates versus distance z0 to the GaAs-air interface (data points) at an energy of
1.27eV.The dipole (multipolar) theory is indicated by the black dashed (blue solid) line. A refractive
index n = 3.5 of GaAs was used. b Extracted mesoscopic strength�/μ over the emission spectrum
of QDs (red squares) along with the prediction of the theoretical model (blue dashed line). Figure
reproduced from [22] (color figure online)

Fig. 5.3a. In contrast, the inverted structure in Fig. 5.3b showed an increase in the
rate; the two structures would exhibit the same rates, if the QDs were dipoles. The
observed difference is thus a direct demonstration of the breakdown of the dipole
theory. The effects beyond the dipole approximation were merged into a phenom-
enological QD parameter, the mesoscopic moment � = (e/m0)〈0

∣∣x p̂z
∣∣�X〉.

Deviations from the dipole theory have also been observed in the vicinity of an
air interface [22, 53, 58], cf. Fig. 5.4, at distances below ∼75nm, which can again
be explained by the mesoscopic moment �. The extracted mesoscopic strength �/μ
increases with emission energy and varies from 10 to 23nm over the inhomoge-
neously broadened emission spectrum, cf. Fig. 5.4b, and is successfully explained
by our microscopic QD theory, which is presented later. The emission rate at the
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air interface is enhanced while at the metal interface it is suppressed (for the direct
structure) due to the phase shift gained upon reflection in the latter case, which flips
the sign of the field gradient.

TheQDwavefunctions obtained from the effective-mass theory cannot explain the
large mesoscopic moment � observed experimentally. Sections5.2.1–5.2.3 present
such a theory that is applied to describe the spontaneous-emission process from
QDs in Sect. 5.2.5. It is shown that the inhomogeneous quantum-current distribution
makes QDs a probe of electric and magnetic fields.

5.2.1 Theory of Light-Matter Interaction Beyond
the Dipole Approximation

The starting point for the theory is to account for the variation of the electromagnetic
field over the size of the exciton wavefunction in (5.12). The decay rate of the emitter
becomes

�(ω) = 2μ0

�

∫ ∫
d3rd3r′Im

[
j(r) · G(r, r′) · j∗(r′)

]
. (5.24)

Here, we define the quantum-mechanical current density j(r) of the QD

j(r) = e

m0
p̂�X(r, r). (5.25)

Unlike the dipole theory, where the effect of the environment on the emitter can be
thought of as a self-interaction term at a single point r0, here the self interaction occurs
between all possible pairwise points (r, r′) within �X. We perform an expansion in
the fieldmodes, f l(r), because the integral formulation offers limited physical insight
and is often computationally infeasible.

The transition moment from the ground to the excited state is defined as

T0X = e

m0
〈0∣∣f ∗

l (r) · p̂∣∣�X〉. (5.26)

Expanding the normal mode f l around the QD center r0 yields

T0X = T (0)
0X + T (1)

0X + T (2)
0X + · · · (5.27)

The electric-dipole term neglects the variation of the field over the emitter

T (0)
0X = T (μ)

0X = f ∗
i (r0)〈0

∣∣μ̂i

∣∣�X〉 = f ∗
i (r0)μi , (5.28)

where μi = 〈0∣∣μ̂i

∣∣�X〉, μ̂i = (e/mo) p̂i is the electric-dipole operator, and implicit
summation over indices is used. The first-order contribution reads
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T (1)
0X = ∂ j f

∗
i (r0)� j i , (5.29)

where �i j = (e/m0)〈0
∣∣xi p̂ j

∣∣�X〉 is the first-order mesoscopic moment. T (1)
0X can

be written as a sum of the electric-quadrupole, T (Q)
0X , and magnetic-dipole, T (m)

0X ,
contributions

T (1)
0X = T (Q)

0X + T (m)
0X = 1

2
∂ j f

∗
i (r0)〈0

∣∣Q̂i j

∣∣�X〉 + [∇ × f ∗(r0)
] · 〈0∣∣m̂∣∣�X〉, (5.30)

where Q̂i j = (e/m0)
(
xi p̂ j + p̂i x j

)
is the electric-quadrupole andm = e/(2m0)r ×

p̂ the magnetic-dipole operator.
The second order correction to the transition moment is

T (2)
0X = ∂ j∂k f

∗
i (r0)�k ji , (5.31)

where �i jk = (e/2m0)〈0
∣∣xi x j p̂k

∣∣�X〉 is the second-order mesoscopic moment. T (2)
0X

can be rewritten in terms of electric-octupole, T (O)
0X , and magnetic-quadrupole, T (M)

0X ,
contributions

T (2)
0X = T (O)

0X + T (M)
0X = 1

6
∂2
jk f

∗
i (r0)〈0

∣∣Ôi jk

∣∣�X〉 + 1

2
∂ j
[∇ × f ∗(r0)

]
i 〈0
∣∣M̂i j

∣∣�X〉,
(5.32)

where Ôi jk = (e/m0)(xkx j p̂i + xk p̂ j xi + p̂k x j xi ) is the electric-octupole and M̂i j =
(e/3m0)

[
x j
(
r × p̂

)
i + (r × p̂

)
i x j
]
the magnetic-quadrupole operator.

All in all, the multipole expansion to second order results in five contributions

T0X = T (0)
0X + T (1)

0X + T (2)
0X = T (μ)

0X + T (Q)
0X + T (m)

0X + T (O)
0X + T (M)

0X + · · · , (5.33)

which are summarized in Table5.1 and sketched in Fig. 5.5. The zeroth order has
only electric-dipole contributions, while higher orders include terms of both electric
and magnetic nature.

The multipolar expansion depends on the choice of the expansion point r0 [60,
61], which leads to an r0-dependent decay rate.Wefind that by consistently collecting
the expansion orders in the decay rate rather than in the multipolar moments, the rate

Table 5.1 Overview of the different contributions to the multipole expansion of T0X up to second
order

Order Overall Electric Magnetic

0 T (0)
0X = μi f ∗

i T (μ)
0X = 〈μ̂i 〉 f ∗

i —

1 T (1)
0X = � j i∂ j f ∗

i T (Q)
0X = 1

2 〈Q̂i j 〉∂ j f ∗
i T (m)

0X = 〈m〉 · [∇ × f ∗]

2 T (2)
0X = �k ji∂ j∂k f ∗

i T (O)
0X = 1

6 〈Ôi jk〉∂ j∂k f ∗
i T (M)

0X = 1
2 〈M̂i j 〉∂ j

[∇ × f ∗]
i
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Fig. 5.5 Interpretation of the multipole expansion. The interaction between the current j(r) and
field E(r) is decomposed into a linear superposition of multipoles

Fig. 5.6 Physical interpretation of the spontaneous-emission rate decomposed into the constituent
multipoles. The nonlocal interaction between the points r and r′ within the current density of the
emitter is converted into an interaction between the different multipoles of the emitter

is remarkably robust against changes in r0. For a detailed derivation the reader is
referred to [50]. This aspect is of important for the justification of the multipolar
expansion.

We expand � up to the second order because the first-order term vanishes in
parity-symmetric environments

� ≈ �(0) + �(1) + �(2). (5.34)

The zeroth-order term stems from the dipole nature of the emitter (Fig. 5.6),

�(0) = π

ε0�

∑

l

1

ωl

∣∣T (0)
0X

∣∣2
l δ(ω − ωl)

1.12= 2μ0

�
Im
[
μiGi j (r0, r0)μ∗

j

]
.

(5.35)

The first-order contribution reads

�(1) = π

ε0�

∑

l

1

ωl
2ReT (1)

0X T (0),∗
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= 2μ0

�
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∗
j

]
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,

(5.36)
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and is proportional to the field gradient at the position of the emitter. �(1) can be
interpreted as an interference between the dipole and mesoscopic quantities. Impor-
tantly, �(1) = 0 if either the QD and or environment are parity symmetric [21]. The
dipole approximation is therefore protected by parity symmetry to first order.

The second-order contribution to the radiative rate is

�(2) = π

ε0�

∑

l

1

ωl

[
2ReT (2)

0X T (0),∗
0X + T (1)

0X T (1),∗
0X

]

l
δ(ω − ωl)

= 2μ0

�
Im
{[
2Re�lkiμ

∗
j∂k∂l + �ki�

∗
l j∂k∂

′
l

]
Gi j (r, r’)

∣∣
r=r’=r0

}
, (5.37)

and couples to the second-order derivative of the field. Here the first term stems from
the interference betweenµ and�, which share contributions with the same parity. In
contrast, the second term vanishes for parity-symmetric emitters on dipole-allowed
transitions because µ and � are orthogonal.

The first-order mesoscopic moment � contains 9 entries and the second-order
moment � 27 entries. However, many vanish for symmetry reasons, and only a few
capture the essential physics. Motivated by the shape of In(Ga)As QDs [24] we
assume the QDs to be lens shaped with in-plane cylindrical symmetry but with no
parity symmetry in the growth direction. Notably, this analysis is not bound to this
particular QD shape and is also valid for pyramidal or elliptical QDs. The exciton
state is in the strong-confinement regime [53] and, using the effective-mass theory,
the electron �e and hole �h wavefunctions are modeled as

�e(r) = ue(r)ψe(r),

�h(r) = uh(r)ψh(r),
(5.38)

where ue (uh) is the conduction- (valence-) band Bloch function, and ψ(r) is the
slowly varying envelope. For concreteness we consider the x-polarized exciton but
note that the properties of the y-polarized exciton are analogous.

In the following, we investigate the first-order mesoscopic moment

�ki = e

m0
〈0∣∣(xk − x0,k) p̂i

∣∣�X〉 = e

m0
〈uxψh

∣∣(xk − x0,k) p̂i
∣∣ueψe〉. (5.39)

The choice of x0 and y0 is provided naturally by the cylindrical symmetry of the
QD. We define z0 as the z-component of the exciton center-of-mass coordinate [50].
The valence-band Bloch function uh = ux inherits the odd symmetry (“−1”) of
the px orbital in the x-direction and even parity (“+1”) in y and z; ue inherits the
spherical symmetry of the s-orbital. The slowly varying envelopes ψ inherit the
symmetry of the QD, cf. Table5.2. Thus, only�xz and�zx contain non-zero entries.
�zx = (e/m0)〈ψh

∣∣z p̂x
∣∣ψe〉 can be neglected because it couples to the QD height,

which is much smaller than the in-plane size [24], yielding
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Table 5.2 Symmetries of the electron and hole wavefunctions for a lens-shaped QD. ‘1’ denotes
even parity, ‘−1’ odd parity and ‘0’ no parity

ux ψh �h ue ψe �e

x −1 1 −1 1 1 1

y 1 1 1 1 1 1

z 1 0 0 1 0 0

� �
⎡

⎣
0 0 �

0 0 0
0 0 0

⎤

⎦ , (5.40)

where � ≡ �xz . Large values of �/μ � 10−20nm were measured for In(Ga)As
QDs, cf. Fig. 5.4. With similar arguments it can be shown [50] that all the entries in
� have negligible contributions such that

� = 2μ0

�
Im

{
[
μ∗, �∗]

[
Gxx (r0, r0), ∂xGxz(r, r0)

∂′
xGzx (r0, r′), ∂x∂

′
xGzz(r, r′)

]∣∣∣∣
r=r′=r0

[
μ
�

]}
. (5.41)

In conclusion, QDs have an additional optical degree of freedom, the mesoscopic
moment�, which, combined with the dipole moment μ, describes light-matter inter-
action with QDs.

5.2.2 Microscopic Model for Mesoscopic Quantum Dots

The mesoscopic moment � has been used as a phenomenological quantity so far
with no clear relation to themicroscopic origin. The large� observed experimentally
cannot be reproduced by the effective-mass theory because the size of� is governed
by the gradient of theQDwavefunction,while, according to the effective-mass theory,
gradients can only originate from the envelope functions, and are negligibly small.
This can be shown by evaluating�with the rules employed for evaluatingμ, which is
to assume that ψ varies slowly over a unit cell so that μ = (e/m0)〈ψhux | p̂x |ueψe〉 ≈
(e/m0)pcv〈ψh |ψe〉, where pcv = V−1

UC

∫
UC d

3ru∗
x p̂xue is given by an integral over the

unit cell with VUC being the unit-cell volume. A similar calculation yields for �

� = e

m0

[〈ψh

∣∣x
∣∣ψe〉〈ux

∣∣ p̂z
∣∣ue〉UC + 〈ψh

∣∣ψe〉〈ux

∣∣x p̂z
∣∣ue〉UC

+ 〈ψh

∣∣x p̂z
∣∣ψe〉〈ux

∣∣ue〉UC + 〈ψh

∣∣ p̂z
∣∣ψe〉〈ux

∣∣x
∣∣ue〉UC

]
,

(5.42)

where 〈〉UC ≡ V−1
UC

∫
UC d

3r denotes integration over a unit cell. The first three con-
tributions vanish for symmetry reasons. The fourth contribution is vanishingly small
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(a) (b) (c)

Fig. 5.7 Microscopic model for QDs. a The atomic lattice inside the QD is assumed to change
periodicity at z = zT . b Sketch of the spatial dependence of u2x . c Illustration of the matrix elements
〈px 〉 ≡ 〈ux | p̂x |ue〉 and 〈pz〉 ≡ 〈ux | p̂z |ue〉 for the three colored unit cells in a. The symmetry of
the integrand is broken in the transition region around z = zT giving rise to mesoscopic effects.
Figure reproduced from [22]

and does not scale with the QD size: for Gaussian envelopes allowing for realistic
mutual displacements of 1–2nm between the electron and the hole in the growth
direction (note that the integral vanishes in the absence of such a displacement)
we estimate �/μ ∼ 10−4 nm. In the following we develop a generalization of the
effective-mass theory, and find that the mesoscopic moment originates from lattice
inhomogeneities at the crystal-lattice level.

Using bulk-material Bloch functions works excellently for quantum wells and
lattice-matched QDs, where the structures are strain free and structurally homoge-
neous. In(Ga)As QDs, on the other hand, are grown by strain relaxation, a violent
process that unavoidably leads to the generation of structural gradients. In particular,
large lattice-constant shifts are observed in the growth direction of QDs [24, 62].
Motivated by this we assume that the lattice periodicity changes at a certain posi-
tion z = zT along the QD height by an amount �al = 110 pm at a central value
al = 605 pm as measured in [62], see Fig. 5.7a. The Bloch functions change period-
icity as well, cf. Fig. 5.7b, and to describe this we expand them in a Fourier series
with a position-dependent lattice wavevector kl(z)

ux (r) =
∑

m

am(y, z) sin[mkl(z)x],

ue(r) =
∑

n

bn(y, z) cos[nkl(z)x].
(5.43)

This Ansatz ensures opposite parity of the conduction- and valence-band Bloch
functions along x . We assume the shape of the Bloch functions to be the same, and
only their periodicity to vary. This yields for the interband matrix element pcv =
〈ux

∣∣ p̂x
∣∣ue〉UC

pcv = i�

VUC

∑

n

∫

UC
d3ra∗

n(r)bn(r)nkl(z) sin
2[nkl(z)x]. (5.44)
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We now evaluate the mesoscopic moment by separating the slowly and rapidly
varying contributions

� = e

m0

N∑

q=1

ψ∗
g (Rq)Xqψe(Rq)

∫

UC
d3ru∗

x (r) p̂zue(r), (5.45)

where Rq denotes the position of the q-th unit cell and N is the number of unit
cells. In a homogeneous region of the QD (the blue unit cell in Fig. 5.7a) the unit-
cell integrand of (5.45) is odd in x- and z-directions, cf. Fig. 5.7c, which leads to a
vanishing integral. However, in the transition region around z = zT strong gradients
are present, which destroy the parity of the integrand (see the pink and green unit
cells in Fig. 5.7a, c) and generate a contribution to �. The z-polarized Bloch matrix
element 〈ux

∣∣ p̂z
∣∣ue〉 is evaluated as

〈ux

∣∣ p̂z
∣∣ue〉 � i�

∑

m,n

∫

UC
d3ra∗

m(r)bn(r)
∂kl(z)

∂z
sin[mkl(z)x]nx sin[nkl(z)x],

(5.46)

yielding

� =
N∑

q=1

ψ∗
h(Rq )Xqψe(Rq )

∑

m,n

∫

UC
d3ra∗

m(r)bn(r)
∂kl
∂z

sin[mkl x]n(x + Xq ) sin[nkl x].

We assume that ∂zkl is slowly varying over an unit cell and pull it in front of the
unit-cell integral. The term containing x vanishes because the integral is odd and we
are left with

�

μ
= 1

kl

〈ψh(r)
∣∣x2
[
∂zkl(z)

] ∣∣ψe(r)〉
〈ψh(r)

∣∣ψe(r)〉 . (5.47)

This expression shows that the mesoscopic strength scales quadratically with the in-
plane size of the QD,�/μ ∼ L2

r , because the term 〈ψg

∣∣x2
[
∂zkl(z)

] ∣∣ψe〉 contains the
variance of the exciton wavefunction in the x-direction. Moreover, it increases with
decreasing QD height, �/μ ∼ L−1

z , since in shallow QDs the relative importance of
the lattice-constant transition region is increased.

For in-plane rotationally symmetric Gaussian envelopes analytic expressions are
obtained [22]

�

μ
= −�al

al

√
1 + ξz

4π

σ2
r

σz
, (5.48)

where σz is the height (HWHM) of the electron envelope, σr the QD radius, �al/al
the relative lattice-constant shift and ξz ≈ 5 the ratio between the hole and electron
effective masses. The largest mesoscopic strengths are achieved in shallow and wide
(disk-shaped) QDs, cf. Fig. 5.8.
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Fig. 5.8 The mesoscopic
strength as a function of the
in-plane size of the QD for
three fixed QD heights.
Figure reproduced from [22]

5.2.3 The Quantum Current Density of Quantum Dots

To illustrate the physics responsible for the mesoscopic moment we now calculate
the quantum-mechanical current density resulting from the abovemodel. The current
density jQD(r) flowing through the QD is defined in (5.25) and leads to

jQD(r) = e

m0

[
�h(r) p̂x�e(r)ex + �h(r) p̂z�e(r)ez

]
. (5.49)

The current density jQD(r) = JQD(r)p(r) is modulated by the Bloch element p(r) =
ux (r) p̂xue(r). In the following we discuss the slowly varying component JQD(r),
which can be written as

JQD(r) = e

m0
ψh(r)ψe(r)

(
ex + x

1

kl

∂kl
∂z

ez

)
. (5.50)

We assume that most of the transition happens over two lattice constants as shown
in [24]. In QDs with a homogeneous crystal lattice ∂kl/∂z = 0 and thus � = 0, the
current density flows only along the direction of the dipole moment (see Fig. 5.9a).
The presence of lattice inhomogeneities changes the flow due to transverse gradients.
The current density flows along a curved path as illustrated in Fig. 5.9b–d. The wider
the QD is, the sharper the transverse oscillations of the current are, and the larger
�/μ is.

We now have the ingredients to provide an intuitive understanding of the exper-
imental data in Fig. 5.3. In the direct (inverted) structure, Fig. 5.3a (Fig. 5.3b), the
QD current and the plasmonic field flow along opposite (parallel) curvatures, which
leads to enhanced (suppressed) light-matter interaction.We exemplify this for a silver
nanowire with a radius of 20nm and refractive index nAg = 0.2 + 7i, see Fig. 5.10.
The coupling efficiency to plasmons, βpl, is defined as the coupling rate to plasmons
over the coupling rate to all excitations, which include photons, plasmons and ohmic
losses. The configuration in Fig. 5.10a exhibits a larger coupling to surface plasmons
relative to a dipole (from 75% to 90%), cf. Fig. 5.10c. In contrast, the interaction is
diminished if the QD orientation is flipped, cf. Fig. 5.10b, because the QD current
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(a) (b) (c)

(d)

Fig. 5.9 Spatial distribution of the current density JQD(r) in QDs. a Homogeneous crystal lattice
where the flow is uniform and points along the dipole moment. b Inhomogeneous lattice for a QD
radius of 5nm giving rise to a non-uniform flow along a curved path. The QD height is 2σz = 4nm.
c, d Same as b but for QD radii of 10 and 20nm, respectively. Both the length of the arrows and the
color scale indicate the magnitude of the flow and the direction of the arrows indicates the pointwise
direction of the flow. Figure reproduced from [22]

0 20

0
10
20

-20
x (nm)

0
10
20

(a)

β pl

z0

z0 (nm)
201000

0.2
0.4
0.6
0.8

1 (c)

0

1

(b)z 
(n

m
)

Fig. 5.10 QDs coupled to surface plasmons of a silver nanowire. a The field matches the curvature
of the QD current and the coupling efficiency to surface plasmons, βpl, is enhanced, red curve in c,
relative to a dipole, dashed curve in c. b If the QD orientation is flipped, the interaction is diminished
as shown in c by the blue line

and of the field oscillate in opposite directions. In other words, μ and � interfere
constructively in (a) and destructively in (b).

5.2.4 Lattice-Distortion Effects Beyond the Multipolar
Theory

Knowing the full current distribution according to the microscopic model allows to
calculate the decay rate without relying on the multipolar expansion. Inserting (5.50)
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into (5.24) leads to

� = 2μ0

∣∣pcv
∣∣2

�
Im
∫∫

d3rd3r′
[
Jx (r) Jz(r)

] [Gxx (r, r′) Gxz(r, r′)
Gzx (r, r′) Gzz(r, r′)

] [
J ∗
x (r′)
J ∗
z (r′)

]
,

(5.51)
where Jx (r) = (e/m0)ψh(r)ψe(r) and Jz(r) = xk−1

l (∂kl/∂z)Jx . The zeroth order
expansion of Gxx contains the electric-dipole contribution �(0). The other terms are
generated by the transverse oscillations of the current density and contain the first
�(1) and second�(2) order contributions. Equation (5.51) should be preferred over the
multipolar theory when the figure of merit k × �/μ > 1, i.e., when the multipolar
expansion diverges.

5.2.5 Quantum Dots as Probes for the Magnetic
Field of Light

Electric and magnetic fields play an equally important role in the formation of the
light field but interact fundamentally different withmatter. Themagnetic force acting
on a charged particle with velocity v is v/c times smaller than the electric force.
Magnetic light-matter interaction is therefore weak. Nevertheless, magnetic-dipole
transitions are well known in atomic physics and can be accessed with light despite
being weak [63–65], since they have different selection rules than electric-dipole
transitions because atoms have parity symmetry [26, 27, 66]. The lack of parity
symmetry implies that QDs may be exploited as a probe of electric and magnetic
fields on a single electronic transition. We exemplify this by considering again the
spontaneous emission of a QD in front of a metal interface [21]. The QD decays
into propagating photons with the rate �RAD, propagating surface plasmons (�PL),
or ohmic-lossy modes in the metal (�LS) [67]. �RAD is negligibly affected by the
mesoscopic moment since the radiative modes oscillate weakly, i.e., �RAD ≈ �

(0)
RAD.

In contrast, the plasmon field varies strongly in space and � plays a major role in
the excitation rate of plasmons. The coupling to ohmic losses [68, 69] is normally
negligible at distances larger than ∼20nm from the metal and are not discussed
further. The three light-matter interaction channels are

�(0) = 2μ0

�
μ2ImGxx (0, 0) = �RAD + �

(0)
PL ,

�(1) = 2μ0

�
2�μ ∂x ImGzx (r, 0)|r=0 ≈ �

(1)
PL ,

�(2) = 2μ0

�
�2 ∂x∂

′
x ImGzz(r, r′)

∣∣
r=r′=0 ≈ �

(2)
PL ,

(5.52)

where we assume the QD wavefunctions to be real. Each order has a clear physical
meaning as explained in Sect. 5.2.1 and can be visualized in Fig. 5.11.
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Fig. 5.11 Decay dynamics of QDs near a silver interface. All the rates are normalized to the decay
rate in homogeneous GaAs. a Decay rate for the direct (inverted) QD orientation marked by blue
(orange) lines. The black dashed line denotes the dipole theory. bDecomposition of the decay rates
according to the expansion order. The ohmic losses are indicated by the dotted black line. c The
ED-MD and ED-EQ Green tensor probed by mesoscopic QDs and normalized to ImGxx (0, 0) in
homogeneous GaAs. Figure reproduced from [21]

In the following we show that �(1) probes the magnetic field of light. The meso-
scopic moment � can be decomposed into multipolar contributions

�xz∂xel,z(0) = iωmybl,y(0) + Qxz
[
∂xel,z(0) + ∂zel,x (0)

]
, (5.53)

wheremy = �/2 is themagnetic dipole, Qxz = � the electric quadrupole of theQD,
and e and b are the electric- and magnetic-field modes, respectively. Consequently,
�(1) intertwines the electric dipole, magnetic dipole and electric quadrupole of the
QD. The multipolar contribution to �(1) is

�(1) = 2�

μ0

[
ωmyμReByx (r0, r0) + AQxzμImQxz(r0, r0)

]
, (5.54)

whereByx (r0, r0) = −iω−1
[
∂xGzx (r, r0) − ∂zGxx (r, r0)

]
r=r0

is themagneto-electric

Green tensor, and Qxz(r0, r0) = [∂xGzx (r, r0) + ∂zGxx (r, r0)
]
r=r0

the electric
dipole-quadrupole Green tensor. The probed fields are plotted in Fig. 5.11c for an
emitter close to a silver interface, where the two components of the Green tensor
vary over length scales of tens of nanometers, which is comparable to the QD size.

The mesoscopic moment can also be used to probe the parity symmetry of
nanophotonic environments [21]. If placed in an unknown nanophotonic structure,
the spontaneous-emission rate of the QD is generally given by �� ≈ �

(0)
� + �

(1)
� . By

flipping the QD orientation, the dipole contribution is unchanged but the first-order
term has opposite symmetry and changes sign, i.e., �� ≈ �

(0)
� + �

(1)
� = �

(0)
� − �

(1)
� .

As a consequence, both the projected Green tensor Im{Gxx (0, 0)} and the spatial
gradient ∂x Im{Gzx (0, 0)} can be extracted using (5.52).
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5.3 Single-Photon Superradiance from a
Monolayer-Fluctuation Quantum Dot

We address another mesoscopic property of QDs, the collective coupling to light
in terms of superradiance. We show that the fundamental optical excitation of a
weakly confining QD is a generalization of single-photon superradiance (SPS) [23].
The superradiant state is prepared deterministically with a laser pulse and reaches a
five-fold collective light-matter enhancement.

5.3.1 Extending the Concept of Superradiance from Atomic
Physics to Solid-State Emitters

In the following wemake a formal connection between the proposal of Dicke regard-
ing SPS in an ensemble of atoms [39] and collective light-matter enhancement in a
semiconductor QD. We show that the giant oscillator strength of QDs and SPS are
two equivalent phenomena.

If N emitters are placed closer than one wavelength apart, the emission dynamics
of a shared electronic excitation is strongly enhanced in the symmetric SPS state [39]

∣∣�s〉 = 1√
N

∑

j

∣∣g〉1
∣∣g〉2 . . .

∣∣e〉 j . . .
∣∣g〉N , (5.55)

where the j-th emitter is in the excited state
∣∣e〉 and all others in the ground state∣∣g〉. Remarkably, the state

∣∣�s〉 decays N times faster to the ground state than a
single emitter. This state describes a non-interacting ensemble, where the excitation
is bound to either of the emitters, cf. Fig. 5.12a. Harvesting such effects in prac-
tice is challenging due to the large size and harmonic spectrum of many ensembles,
which decreases the collective enhancement and prohibits deterministic preparation,
respectively. These limitations do not apply toQDs, which are small and anharmonic.
However, another challenge emerges: in a system of interacting particles the wave-
functions of the underlying atoms overlap leading to delocalized excitations. This
causes conventional QDs to be in the strong-confinement regime and thus to have
relatively small oscillator strengths of about 10, despite that they consist of tens of
thousands of atoms, cf. Fig. 5.12b.

The size of delocalized excitations is a fundamental property of semiconductors
and is given by the size of an exciton. Enhancement of light-matter interaction can
therefore be achieved only in QDs that confine excitons weakly [70], i.e., that are
larger than the exciton radius. We study single GaAs monolayer-fluctuations QDs as
sketched in Fig. 5.12c. Bound excitonic states are created by intentionally engineered
monolayer fluctuations in a quantum well [38]. Exciton enhancement is achieved
only in the plane, where the QDwavefunction is extended beyond the exciton radius.
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(a)

(b) (c)

(d)

Fig. 5.12 Superradiance with single QDs. a SPS is defined in an ensemble of non-interacting
emitters as a symmetric superposition of different excitations. b In small QDs, such as In(Ga)As
QDs, the electrons and holes are strongly confined and uncorrelated, which destroys collective
effects. c A QD defined by intentional monolayer fluctuations weakly confine electrons (e) and
holes (h), which are mutually bound by electrostatic attraction. d The excitonic enhancement of
light-matter interaction may be regarded as a generalization of SPS: the exciton is in a symmetric
superposition of excitations. Figure reproduced from [23]

We assume the QD wavefunctions to be separable into in-plane ψX and out-of-
plane φ components. Due to strong confinement in the z-direction, φ is separable as
φ(z) = φe(z)φh(z). We therefore obtain the exciton wavefunction in the effective-
mass approximation

�X(R, r, re, rh) = ψX(R, r)φh(zh)φe(ze)ux (rh)ue(re), (5.56)

where R = (mere + mhrh)/(me + mh) and r = re − rh are the center-of-mass and
relative in-plane excitonic coordinates. The superradiant enhancement is therefore
governed by the in-plane envelope ψX(R, r). We consider a symmetric parabolic
in-plane confining potential, in which case the excitonic envelope separates into
center-of-mass and relative dynamics ψX(R, r) = χCM(R)χr (r) with [25]

χCM(R) =
√
2

π

1

β
e−
∣∣R
∣∣2/β2

, (5.57)

χr (r) =
√
2

π

1

aQW
e−
∣∣r
∣∣/aQW , (5.58)

where aQW is the quantum-well exciton radius with aQW � a0/
√
2 ≈ 8nm, and β

is the in-plane radius of the exciton wavefunction. The center-of-mass motion can
be written as a convolution between a function ca(R) capturing the dynamics on
the (uncorrelated) scale aQW and a function cs(R) responsible for the superradiant
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enhancement

χCM(R) = ca(R) ∗ cs(R) ≈
∑

n

c(Rn)ca(R − Rn). (5.59)

Consequently, the slowly varying envelope reads

ψX(R, r) =
∑

n

c(Rn)φX(R − Rn, r), (5.60)

where n runs over the unit cells of the QD. The internal exciton dynamics is governed
byφX,which has a spatial extent of the order of theBohr radius (∼8nm) and is smaller
than theQD. The exciton in (5.60) is therefore in a spatial superposition of excitations
corresponding to different positions of φX as illustrated in Fig. 5.12d.

The following expression for the oscillator strength is obtained (compare with
(5.14))

f = Eg

�ω
χr (0)

∣∣〈0∣∣χCM(R)〉∣∣2∣∣〈ψh(z)
∣∣ψe(z)〉

∣∣2, (5.61)

where the first (second) inner product on the right-hand side of the equation denotes
a two-dimensional (one-dimensional) integration over R (z). We define the radius of
the QD L = √

2β and, with the help of (5.57) and (5.58), arrive at the superradiant
enhancement of the oscillator strength

S = f

fmax
=
(√

2L

aQW

)2 ∣∣〈ψh

∣∣ψe〉
∣∣2. (5.62)

We calculate
∣∣〈ψh

∣∣ψe〉
∣∣2 ≈ 0.96 and plot the resulting superradiant enhancement

in Fig. 5.13. It scales with the QD area and is a dramatic effect; for realistic QD
diameters of 35nm, the light-matter interaction strength exceeds the upper limit of
strongly confined excitons by an order of magnitude.

Fig. 5.13 Superradiant
enhancement of the
oscillator strength, S, for a
monolayer-fluctuation QD
relative to the
strong-confinement limit
fmax = 17.4. Figure
reproduced from [23]
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5.3.2 Deterministic Preparation and Impact of Nonradiative
Processes

In the experimental demonstration of SPS, the energy-level structure of the QDs is
first probedbyphotoluminescence-excitation spectroscopy as displayed inFig. 5.14a,
which shows a quasi-continuum band of QD states hybridized with quantum-well
resonances followed by the exciton manifold. We identify the 1s, 2s and 3s excitonic
states that are denoted according to the two-dimensional hydrogen atom. Note, the
recombination of excitons with different symmetry is forbidden. Key features of
the spectrum are summarized in Fig. 5.14b. The measurement was carried out using
continuous-wave excitation below the saturation power of the 1s exciton.

Deterministic preparation is achieved by exciting the 2s state with a laser pulse
having sufficient optical power to saturate the 1s transition. The preparation is deter-
ministic because the decay cascade from 2s to 1s is spin-conserving [71] and spin-
dark states are therefore not populated. However, the latter prohibits measurements
of the oscillator strength due to the single-exponential character of the exciton decay.
We therefore use another excitation scheme (the wavelength labeled “C” in Fig. 5.14)
to prepare bright and dark states with equal probability and extract the impact of non-
radiative processes using the biexponential model presented in Sect. 5.1.5.

Significantly below the exciton saturation, P ≈ 0.1Psat, only the exciton is pre-
pared, cf. Fig. 5.15a. At saturation, the biexciton line becomes discernible. Above
saturation, both the exciton and the biexciton lines are saturated and the spectrum
features spectrally continuous multibody emissions. The nature of the exciton and
biexciton lines is confirmed by power series measurements as shown in Fig. 5.15c.

(a) (b)

Fig. 5.14 Deterministic preparation of superradiant excitons. a Photoluminescence-excitation
spectrum obtained by integrating the emission of the 1s transition while scanning the excitation
wavelength. It features a quasi-continuum band of states followed by a sequence of QD states. b
Two excitation schemes are employed. Pumping in the quasi-continuum band at the wavelength
“C” results in preparation of carriers with random spin, which is important for extracting the
nonradiative processes. For 2s-excitation, the spin is preserved and the bright exciton is prepared
deterministically. Figure reproduced from [23]
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Fig. 5.15 Spectral measurements for “C”-excitation. a Measured spectrum at 10% of the exciton
saturation power Psat = 20 nW. Only the exciton is observed. b At saturation of the exciton, the
biexciton is visible as a small peak. c Significantly above the exciton saturation (7.5Psat), the
spectrum acquires further narrow peaks on top of a continuous background. d The exciton is
distinguished from biexcitons by their power-law dependence on excitation power P: the fits yield
P0.86 and P2.01 for the exciton and biexciton, respectively

The spectral broadening of the biexciton line is related to multibody effects between
the exciton and the free carriers populating the quantum well [35, 42].

The decay dynamics is recorded by sending the exciton line from Fig. 5.15a to an
avalanche photo-diode. The acquired data are fitted by the biexponentialmodel yield-
ing the fast rate �C

F = �C
rad + �nrad + �sf and the extracted parameters are outlined

in Fig. 5.16. We obtain a nonradiative rate �nrad = 0.19 ns−1, and a spin-flip rate
�sf = 0.31 ns−1, which are used to extract the oscillator strength in the following.

5.3.3 Demonstration of Single-Photon Superradiance

The experimental signature of SPS is spontaneous emission of single photons with a
radiative rate beyond the upper limit for uncorrelated excitons. The 1s bright state is
excited deterministically through the 2s shell and a clean emission spectrum below
and at saturation is found. The time-resolved measurement is performed at P =
0.1Psat to ensure that no multi-exciton states are prepared, and the decay is found
to be close to single exponential. The radiative rate of the exciton is �rad = �F −
�nrad − �sf = 8.4 ns−1, where �F is the fast rate extracted from Fig. 5.17a. The QDs
are positioned near an air interface [23] and we calculate an LDOS contribution of
0.95, which is normalized to the LDOS in homogeneous Al0.8Ga0.2As, resulting in
an oscillator strength of f = 72.7 ± 0.8. The latter is enhanced far beyond the upper
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Fig. 5.16 Time-resolved decay of the exciton (black dots) under “C”-excitation. The fine-structure
model yields an excellent biexponential fit (yellow line) with the extracted parameters indicated
accordingly.The instrument response of the detector is indicatedby thegreen line. Figure reproduced
from [23] (color figure online)

limit of f = 17.4 for an uncorrelated exciton, cf. Fig. 5.17a. This is a direct signature
of exciton superradiance.

To confirm the single-photon nature of the emission, wemeasure the second-order
correlation function g(2)(τ ) ∝ 〈â†(t)â†(t + τ )â(t + τ )â(t)〉 [72], which determines
the probability of detecting a photon at time t = τ given that a photon was detected
at t = 0. An ideal single-photon source exhibits g(2)(0) = 0 but any value below
0.5 is direct evidence of single photons. Figure5.17b shows the correlation function
obtained in an HBT experiment. The data are fitted by a sum of exponentially decay-
ing functions, and g(2)(0) is defined by the ratio between the energy contained in the
central peak around τ = 0 and in the adjacent peaks. We find a zero-time correlation
of g(2)(0) = 0.13, demonstrating the single-photon nature of the emitted light. In
conjunction with the measured enhanced oscillator strength for a spatially confined
exciton, this is the unequivocal demonstration of SPS in a QD.

Solid-state quantum light sources often suffer from blinking of the emission,
in which the QD randomly switches to a dark state and does not emit light [73].
This may happen, if a charge defect in the vicinity of the QD traps the electron or
hole composing the exciton, thereby preventing the radiative recombination. This
decreases the radiative efficiency of the single-photon source. Blinking normally
occurs within nanosecond-to-microsecond time scales with a corresponding bunch-
ing in the QD second-order correlation function g(2)(τ ) over such time scales. By
numerically integrating each peak in the HBT correlation data we obtain the long-
time-scale plot shown in Fig. 5.17c. No bunching effects are observed, which shows
that this single-photon source is free from blinking on a time scale of at least 10µs.
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(a) (b)

(c)

Fig. 5.17 Experimental demonstration of single-photon superradiance from aQD. a Time-resolved
decay (black points) of the 1s exciton obtained under 2s-resonant excitation. The fit to the theoretical
model is indicated by the yellow line. We take into account the impact of nonradiative processes
presented in the previous section and extract a radiative decay rate of 8.4 ns−1 (red line), which is
deeply in the superradiant regime (green area). bHBTmeasurement of the emitted photons showing
g(2)(0) = 0.13, which demonstrates the single-photon character of the emission. c Long-time-scale
HBT measurement where each coincidence peak has been numerically integrated. No blinking of
the emission is observed. Figure reproduced from [23]

We have measured the oscillator strength of 9 different QDs and found them all to
be superradiantwith an average oscillator strength of f = 76 ± 11 [23]. Remarkably,
an oscillator strength up to f = 96 ± 2 is observed corresponding to an intrinsic
radiative rate beyond 10GHz. Such a highly superradiant QD can deliver a radiative
flux of single photons equivalent to more than five conventional QDs.

While the microscopic structure of the out-of-plane wavefunction can be accu-
rately computed because the quantum-well thickness is known with monolayer pre-
cision, the in-plane geometry is generally unknown. The information is then inferred
from the superradiant enhancement S via (cf. Sect. 5.3.1)

L = aQW√
2

√
S∣∣〈φh

∣∣φe〉
∣∣ . (5.63)

From the measured value S � 4.3 an in-plane diameter 2L � 24nm is obtained. The
exciton wavefunction is spread over 90 thousand atoms in a collective superradiant
quantum state sharing a single excitation.

5.3.4 Impact of Thermal Effects on Single-Photon
Superradiance

The quantization energy�EQD scales inversely proportional to the QD size squared,
�EQD ∝ L−2, and, thus, decreases dramatically for large QDs. If �EQD is
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(a) (b)

Fig. 5.18 Decomposition of the in-plane exciton dynamics into a a center-of-mass and b a relative
motion. a The former describes the motion of the exciton center of mass in a two-dimensional
harmonic potential, cf. (5.64). b The electron-hole electrostatic attraction is captured by the relative
motion. Figure reproduced from [23]

comparable to the thermal energy, kBT , excited states of the excitonmanifold become
populated and the large 1s oscillator strength is redistributed thus decreasing light-
matter interaction. In the followingwe show that the temperature limits themaximum
oscillator strength that can be harvested. In particular, the temperature of the current
experiment of 7K leads to a maximum oscillator strength of ∼100.

Since the exciton dynamics can be decomposed into a center-of-mass (CM) and a
relative (r) motion, cf. (5.57) and (5.58), the ground state is denoted as

∣∣1s〉CM
∣∣1s〉r.

The relative motion is equivalent to the two-dimensional Hydrogen problem [29, 74]
and is governed by themutual electron-hole attraction, see Fig. 5.18. In this subspace,
the relevant energy difference �Er between the ground

∣∣1s〉r and first excited
∣∣2s〉r

states equals roughly twice the excitonicRydberg energy and amounts to about 8meV.
At cryogenic temperatures, thermal energies are much smaller (below 1meV) and
thermal population of the relative-motion subspace can be neglected.

The center-of-mass motion is described by a particle in a two-dimensional har-
monic potential VCM(R) = (1/2)M�2R2, cf. Fig. 5.18a, whereM is the excitonmass
and the spring constant� is related to the quantum-dot size L via [25]� = 4�/ML2.
The resulting energy eigenstates are given by [29]

Enl = (2n − ∣∣l∣∣− 1)��, (5.64)

where n = 1, 2, 3, . . . and l = 0,±1, . . . ,±(n − 1). The dipole selection rules dic-
tate that states with l = 0 are bright (superradiant) and all others are dark (sub-
radiant). For thermal energies kBT comparable to �ECM = ��, the excited states
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Fig. 5.19 The normalized
transition strength N versus
normalized thermal energy
kBT/�� for different
numbers of bound states N in
a monolayer-fluctuation QD.
Figure reproduced from [23]
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become populated and the relevant figure of merit for light-matter interaction is the
transition strength F(T ) = N (T ) × f , which is related to the oscillator strength via
a temperature-dependent factor N (T ). The latter describes the distribution of the
population within the center-of-mass subspace. For a single excited state,

∣∣e〉, N is
given by

N (T ) = 1 + fe
f B(T )

1 + B(T )
, (5.65)

where B(T ) = exp (−�ECM/kBT ) is the Boltzmann factor and fe is the oscillator
strength of the excited state. If

∣∣e〉 is dark and the temperature is high, the transition
strength is half of f (N = 1/2). We generalize (5.65) with the help of (5.64) for an
arbitrarily large subspace

N (T ) = radiative contributions

all contributions
=

∑N
n=1 B2(n−1)

∑N
n=1

∑n−1
l=−(n−1) B2(n−1)−

∣∣l
∣∣ , (5.66)

where N denotes the number of center-of-mass states. This expression can be eval-
uated analytically giving

N (T ) = coth

(
��

2kBT
N

)
tanh

(
��

2kBT

)
, (5.67)

and is plotted in Fig. 5.19. At small temperatures 4kBT � ��, excited states play a
negligible role and F = f . This is the regime in which the oscillator strength can be
reliably measured. We employ this criterion �� = 4kBT to estimate the maximum
oscillator strength f symth,max that can be resolved at a temperature T and obtain (we

consider the out-of-plane overlap
∣∣〈ψh

∣∣ψe〉
∣∣2 ≈ 1 for simplicity)

f symmax,th = 4�EP

Mωa20

1

kBT
, (5.68)
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Fig. 5.20 The transition
strength F versus QD radius
L at different temperatures.
For small QDs, F increases
quadratically with L due to
superradiance but saturates
at larger values due to
thermally activated excited
states. Figure reproduced
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which leads to an oscillator strength of 170 at 7K. We generalize this expression
for a more realistic asymmetric QD with an aspect ratio of 1:ξ with ξ ≥ 1 and
find that the maximum oscillator strength is decreased by ξ. We therefore conclude
that oscillator strengths larger than about 100 are unlikely to be resolved at the
experimental conditions of the present work. Remarkably, oscillator strengths of
1500 are predicted in monolayer-fluctuation QDs with a radius of about 60nm.
Temperatures below 0.8K would, however, be required to resolve this effect.

The oscillator strength scales with the QD area S ∝ L2 but the normalized tran-
sition strength N scales as L−2, cf. (5.67). Thermal effects therefore saturate the
transition strength F , which can be expressed using (5.62)

F = fmax

(√
2L

aQW

)2
tanh

(
2�

2

MkBT L2

)
, (5.69)

which is plotted in Fig. 5.20. The transition strength saturates at

lim
L→∞ F = 8�EP

Mωa20

1

kBT
, (5.70)

which is independent of L and, interestingly, happens to equal 2 f symmax,th. Note that for
very large L � 100nm, deviations from the electric-dipole approximation, which
are not accounted for in this study, further reduce the transition strength [25].

5.4 Conclusion and Outlook

In this chapter we discussed two mesoscopic properties of QDs: the breakdown of
the dipole theory and single-photon superradiance. Aside from the dipole moment,
In(Ga)As QDs have a large mesoscopic moment that contains magnetic-dipole and
electric-quadrupole contributions. The impact of the mesoscopic moment is espe-
cially pronounced in electromagnetic environments that are not parity symmetric.
The developed microscopic theory shows that the mesoscopic moment originates
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from distortions of the underlying crystal lattice. The resulting current density is
curved leading to interaction of both electric and magnetic character. This opens
the prospect for designing photonic nanostructures that match the shape of the QD
current and thus enhance light-matter interaction efficiency. The simultaneous elec-
tric and magnetic nature of the QD current may lead to the vision of designing
optical quantum metamaterials made from QDs for tailoring the interaction at the
single-electron and single-photon level.

Single-photon superradiance was observed in monolayer-fluctuation QDs by
recording the temporal decay dynamics in conjunction with second-order corre-
lation measurements and a theoretical model. This enhanced light-matter coupling
is known as the giant oscillator strength and was shown to be equivalent to super-
radiance. We argued that there is ample room for improving the oscillator strength
at lower temperatures with prospects for generating highly coherent photons by out-
speeding the noise sources, and for approaching the ultra-strong-coupling regime of
cavity quantum electrodynamics with optical photons.

Acknowledgements We gratefully acknowledge the financial support from the Danish Council
for Independent Research (natural sciences and technology and production sciences), the Euro-
pean Research Council (ERC consolidator grants “ALLQUANTUM” and “QIOS”), the Lundbeck
Foundation and the Carlsberg Foundation.

References

1. P. Lodahl, S. Mahmoodian, S. Stobbe, Rev. Mod. Phys. 87, 347 (2015)
2. J.P. Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D.

Kulakovskii, T.L. Reinecke, A. Forchel, Nature 432, 197 (2004)
3. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, J. Bloch, Phys. Rev. Lett.

95, 067401 (2005)
4. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A.
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Chapter 6
Single-Photon Sources Based
on Deterministic Quantum-Dot
Microlenses

T. Heindel, S. Rodt and S. Reitzenstein

Abstract This chapter addresses the design, fabrication and characterization of
deterministically fabricated single-photon sources basedonquantumdotmicrolenses.
The quantum devices are optimized for future applications in quantum commu-
nication systems which require high photon extraction efficiency, strong suppres-
sion of multi-photon emission and high indistinguishability of the emitted pho-
tons. Highest extraction efficiency is achieved by integrating single quantum dots
in the center of monolithic microlenses by means of in-situ electron-beam lithogra-
phy based on low-temperature cathodoluminescence spectroscopy. Quantum optical
studies of deterministic microlenses reveal pure single-photon emission associated
with g(2)(0) < 0.01 and an indistinguishability exceeding 90% under pulsed p-shell
excitation. Mechanisms limiting the indistinguishability are discussed in terms of
spectral diffusion at a nanosecond time-scale and phonon-induced dephasing. The
chapter closes with an outlook on electrically driven quantum dot microlenses, the
application of anti-reflection coatings and future perspectives.

6.1 Introduction

Light sources emitting single photons on demand are key building blocks for quan-
tum communication systems [1–3]. Here, the quantum states of single photons act
as information carriers and allow for an unconditionally secure transfer of data. The
information can be encoded for instance in the polarization of single quantas of light,
often referred to as flying qubits,while quantummechanical principles such as the no-
cloning theorem [4] or entanglement [5] ensure that possible eavesdropping attacks
can be detected [6]. In seminalwork, the so-calledBB84 [7] and theEkert91 [8] proto-
col heralded the era of quantum key distribution (QKD), by exploiting single photons
or entangled photon pairs to generate and distribute a secret key for data encryption
and decryption. Furthermore, long-distance optical quantum communication relies
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on entanglement distribution via Bell-state measurements, which requires photon
sources emitting indistinguishable photons at high flux [2, 9]. In combination, these
are stringent physical requirements for quantum light sources which are even com-
plemented by further practical needs such as compactness, robustness, electrical
operation and the possibility of direct fiber coupling.

Individual key features of quantum light sources can be addressed by a vari-
ety of approaches, including for instance atomic systems [10], non-linear crystals
generating entangled photon pairs via parametric down-conversion [11], or vacancy
centers in diamond [12, 13]. However, these approaches can hardly meet all require-
ments in a single implementation. Atomic systems for instance require rather bulky
experimental setups, while parametric down-conversion is a probabilistic (i.e. non-
deterministic) process. In contrast, semiconductor quantum dots (QDs) are highly
promissing candidates for the realization of practical on-demand quantum light
sources for quantum communication systems [14] and emerging applications such
as quantum enhanced sensing [15] or quantum enhanced imaging [16].

Semiconductor QDs realized epitaxially by the Stranski–Krastanov growth mode
are particularly appealing for the realization of quantum light sources. This is
explained by the discrete nature of their energy levels in combination with excel-
lent optical properties, e.g. in terms of very high quantum efficiency exceeding 90%
[17]. Their electronic structure enables high suppression of multi-photon emission
events, i.e. g(2)(0)-values well below 0.01 [18, 19], and allows for the generation of
polarization- [20] or time-bin- [21] entangled photon pairs via the biexciton (XX) -
exciton (X) radiative cascade [22] (see this chapter and Chap. 7).

In spite of the superb physical properties, practical issues up till now hindered
the application of QDs in commercial products - or at least in proof-of-principle
demonstrators. Firstly, total internal reflection limits the photon collection efficiency
ηext, which essentially describes the probability of collecting a photon emitted by
a QD in an external optical system, such as a lens or an optical fiber with a given
numerical aperture. Enhancing ηext from about 2% available in a simple planar struc-
ture [23, 24] to values approaching unity requires a precise tailoring of the pho-
tonic environment and the introduction of suitable mirror sections. Another issue
is related to the statistical character of self-assembled Stranski–Krastanov growth
which leads to random positions and random emission energies within the inho-
mogeneously broadened emission band of respective QDs. This randomness causes
significant problems regarding the realization of quantum light sources with well
defined properties and with high process yield and has triggered the development
of in-situ lithography approaches [25, 26] which allow for the integration of pre-
selected QDs into nanophotonic structures with high alignment accuracy and high
process yield. Furthermore, electrical pumping is desirable which requires complex
doping and contacting schemes [27–30]. Other important aspects are the posibility
of a direct fiber-coupling [31–37] of the source, but also a user-friendly operation in
general. This can be achieved by operating QD-based quantum light sources using
compact, plug-and-play cryocoolers [38, 39], which make bulky and expensive cool-
ing equipment (such as liquid Helium storage dewars) dispensable.

http://dx.doi.org/10.1007/978-3-319-56378-7_7
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In this chapter we present and discuss recent advancement in the design, fabrica-
tion and characterization of single-photon sources based on self-assembled InGaAs
QDs. This involves a brief overview of light-extraction strategies to maximize ηext
with a focus on broadband enhancement of emission using monolithically integrated
microlenses. The photon extraction efficiency of these nanophotonic structures is per-
formed numerically via solvingMaxwell’s equations by a finite-element method and
will be described in detail. In order to meet the stringent structural requirements and
to realize efficient QD-microlenses we introduce in-situ electron-beam lithography
based on low-temperature cathodoluminescence spectroscopy. This novel nanotech-
nology platform allows for a pre-selection of suitable QDs and their integration into
photonic nanostructures such as microlenses with about 30nm alignment accuracy.
The high optical quality of QD-microlenses fabricated using this in-situ lithography
technique is studied by high resolution optical and quantum optical spectroscopy
which demonstrates for instance the excellent suppression of multi-photon emission
events of this structures. Beyond that, we study the degree of indistinguishability
of emitted photons and limitations of this important parameter in terms of spectral
diffusion on the nanosecond timescale and temperature induced dephasing. We close
with an outlook on further optimization of QD-microlenses and future perspectives.

6.2 Light Extraction Strategies

With respect to applications of quantum light sources in quantum communication
systems it is crucial to maximize their photon extraction efficiency ηext. For a QD
embedded in GaAs bulk material this fraction amounts to less than 2% [23, 24],
due to total internal reflection of photons impinging at the semiconductor-vacuum
interface at angles larger than 17◦. However, the semiconductor hostmatrix, holds the
great advantage that light harvesting can be engineered to a large extend by tailoring
the photonic environment of the QDs. In this section, the most important strategies
for maximizing the photon extraction will be discussed in the context of efficient
quantum light sources.

The first report on a QD single-photon source emitting antibunched light was
published by Michler et al. [40] based on a microdisk cavity [41, 42]. This type of
cavity confines light localizedwithin a circular disk or toroid via so-calledwhispering
gallery modes. These modes are guided at the circumference of the structure via
total internal reflection and couple to the vacuum or air via evanescent fields and
light scattering due to finite surface roughness of the microdisk. Another type of
resonator, which is frequently used in light-matter coupling experiments, is based on
a photonic crystal membrane [43, 44]. Here, a modulation of the refractive index on
the scale of the wavelength of light, e.g. by etching a periodic grid of holes into a thin
air-suspended membrane, introduces a photonic bandgap at which a propagation of
light is forbidden. Leaving one or few holes of this photonic crystal unetched, results
in the formation of a low mode-volume microcavity capable of localizing light in
three dimensions. Both approaches, microdisks and photonic crystal cavities, rely
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Fig. 6.1 Illustration of three designs with different strategies for efficient light extraction. The
micropillar cavity (a), the photonic nanowire (b), and the microlens (c) (color figure online)

on total internal reflection in growth direction, which limits the extraction efficiency
normal to the sample surface. Still, recent experiments using photonic crystal cavities
demonstrated out-coupling efficiencies of 46% at 1.3µm [45] (see Chap.11).

For efficient coupling of photons into collection optics aligned normal to the
sample surface, mainly three different approaches have been established in recent
years (see Fig. 6.1): Cylindrical Fabry–Pérot micropillar cavities, photonic wires,
and microlenses. In the following sections, we briefly discuss the characteristics of
each approach and give an overview to the state-of-the-art.

6.2.1 Micropillar Cavities

Micropillar cavities are based on cylindrical Fabry–Pérot resonators and typically
consist of a λ-thick cavity sandwiched between a lower and an upper distributed
Bragg reflector (DBR) [46, 47]. This geometry allows for a three-dimensional con-
finement of light, firstly by reflection at theDBRs parallel to the growth direction, and
secondly, by mode-guiding via total internal reflection at the micropillar sidewalls
in lateral direction. At the same time, highly directional emission of light can be
achieved via the top facet of the upper DBR. Due to the low mode-volume and high
Q-factors achievable in micropillar resonators with embedded QDs, experiments in
the regime of strong light-matter interaction are possible and were first reported
in [48]. Operating in the weak coupling regime, a first proof of concept of effi-
cient single-photon extraction using such micropillar cavities was demonstrated in
2002 by Pelton et al. [49]. Additionally, utilizing p-i-n doped micropillar structures,
an electrical contacting scheme based on ring-shaped top-contacts was established
[30]. Nowadays, state-of-the-art micropillar devices enable the generation of close-
to-ideal single-photon states with high efficiency under optical [19] (see Chap.3)
as well as electrical [50, 51] pumping, and can be readily applied for free-space
quantum-key distribution experiments [52, 53]. A drawback of micropillar cavities
is the narrow-band enhancement of emission typical for microresonator-approaches.
Due to the strongly modulated optical density of states, experiments on spectrally
separatedQD states are laborious and require—if possible at all—complicated cavity
designs [54].

http://dx.doi.org/10.1007/978-3-319-56378-7_11
http://dx.doi.org/10.1007/978-3-319-56378-7_3
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6.2.2 Photonic Nanowires

Photonic wires are cylindrical or hexagonal wires of a few µm length and a width
on the order of the wavelength of light, which can be fabricated in top-down [55]
or bottom-up [56] approaches, the latter also in a deterministic manner [57]. This
structure allows to efficiently funnel the emission of an embedded quantum emitter
into a single spatial mode propagating along the wires axial direction. An efficient
coupling to collection optics is achieved by introducing a mirror-section below the
QD in combination with a well-defined tapered section in the upper part of the wire
[58], where the latter results in an adiabatic transition from a strongly confined single
mode in the near-field to a highly directional Gaussian beam in the far-field [34].
This approach features high photon extraction efficiencies in a broad spectral range
of several 10nm. Exploiting such nanowire designs, QD single-photon sources have
been realized with efficiencies of up to 72% [55] using optical pumping. Schemes
for electrical current injection have been proposed [59], but remain challenging due
to the small dimensions of the nanowire in lateral directions. Another issue is the
comparably large spectral linewidth observed for nanowire QD states, which results
from the proximity to the nanowire surface and respective charge fluctuations.

6.2.3 Microlenses

The microlens approach is conceptually different to the above discussed cavity- and
waveguide-based approaches. Similar to solid immersion lenses (SILs) [60], which
have been routinely applied in quantum optics experiments using QDs [61], nitro-
gen vacancy centers [62] and organic molecules [63], a curved surface is introduced
above a quantumemitter in order to increase the fraction of the emission that can leave
the semiconductor material. This geometrical effect is not limited to certain spatial
or spectral modes and hence allows for a broadband enhancement of the extraction
efficiency. While macroscopic SILs, typically made out of ZrO2 (n = 2.17), have a
finite refractive index mismatch to the semiconductor sample and need to be glued
to its surface (see Chap.12), microlenses directly integrated into the sample-material
itself benefit from further reduced losses. This issue has been previously addressed
by fabricating microlenses directly via optical lithography [64] or focused ion-beam
milling [65]. However, none of these technologies allowed for a deterministic inte-
gration of single quantum emitters.

The remainder of this chapter will introduce a technique which enables the inte-
gration of pre-selected QDswithinmonolithic microlenses. As will be demonstrated,
this approach is capable of combining high photon extraction efficiencies with high
spectral bandwidth, while a robust and flexible fabrication technique allows even for
electrical control of single emitter devices.

http://dx.doi.org/10.1007/978-3-319-56378-7_12
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6.3 Numerical Optimization of Photon Extraction
Efficiency of Quantum Dot Microlenses

For succeeding in the fabrication of nano- and micro-structured optical devices,
it is essential to use an optimized structural design. Otherwise, internal reflection,
interference, and absorption of light might spoil the functionality and efficiency.
Another important aspect concerns the collection optics. Usually a lens system or
an optical fiber is used to collect the emitted light. Each collection system has its
own angle of acceptance (expressed by the numerical aperture, NA) and the angle of
emission shouldmatch that NA as good as possible formaximumcoupling efficiency.

When the dimensions of the devices are of the same order of magnitude as the
wavelength of light, classical ray optics (geometrical optics) fails to give reliable
results. InsteadMaxwell’s equations have to be solved numerically in a rigorous way
by sophisticated methods. They have to include realistic material parameters, real
geometric properties (including imperfections), andmust lead to sufficient numerical
convergence.

A number of different simulation techniques have been developed that are well
applicable for nanophotonic device simulation [66]. They comprise finite-element
methods (FEM), finite-difference time-domain simulations (FDTD), wavelet meth-
ods, finite-integration technique (FIT), rigorously-coupled wave-analysis (RCWA),
and plane-wave expansion methods (PWE). In the following we will employ FEM
simulationswhich is a general numerical method for solving partial differential equa-
tions. Realistic and complex geometries can be exactly treated while the computation
times are relatively short. The algorithms are quite robust and convergence is well
manageable.

The following calculations are based on the FEM software package JCMsuite
from the company JCMwave GmbH and the Zuse Institute Berlin. Besides other
setups, time-harmonic resonance problems and scattering problems (by including,
e.g., a dipole emitter in the model structure) can be solved for arbitrary 2D and 3D
structures. The computations are based on higher-order vector elements, adaptive
unstructured grids, and on a rigorous treatment of transparent boundaries [67]. The
efficiency for specific setups can further be increased, e.g., by using a subtraction
approach for point sources [68], or by exploiting geometrical mirror-symmetries or
a cylindrical symmetry, if present.

Figure6.2 displays a typical 2D grid of meshes as generated by JCMsuite for
two steps of grid refinement. The finer the grid is, the more exact becomes the
numerical solution. However, a finer grid results in a calculation that consumes
more memory and cpu time. So there is always a compromise between exactness
and calculation expenses. To overcome this issue, advanced numeric tools apply
adaptivemesh refinementwhich allows for higher accuracy at onlymoderate increase
of calculation expenses [67]. As a further numerical parameter influencing numerical
accuracy as well as computational costs, the polynomial order p of the finite-element
ansatz functions can be defined. For this parameter also an adaptive setting can be
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Fig. 6.2 An exemplary FEM grid with increasing refinement from left to right (color figure online)

used, yielding various orders p on the different patches of the mesh (so-called hp-
FEM).

Now we start dealing with the simulations for microlenses above QDs as light
emitters. The idea is to find the optimal lens geometry for enhanced light out-coupling
into a given spatial angle to match the NA of the collection optics. The scattering-
problem solver is best suited to handle this numerical problem. The QD is described
by a point source with dipole-like emission of the respective wavelength. Here we
investigate the InAs/GaAs material system. Typically such QDs have emission in
the 900–1200nm spectral range. Our target wavelength is 930nm with respect to the
following quantum-optical experiments in Sect. 6.6. To overcome big losses due to
light that is emitted to the backside of the sample, a DBR is situated below the QD.
It consists of 23 pairs of Al0.9Ga0.1As and GaAs that provide a very high reflectivity
close to 100% at normal incidence. The respective model structure with the (mixed,
tetrahedral and prismatoidal) 3D FEM grid is depicted in Fig. 6.3a.

The output of the FEM simulation is the distribution of the electro-magnetic
field within the computational domain. Derived quantities like power fluxes, far-
field distributions, or the Purcell factor are computed from the electro-magnetic near
field in post-processes. A typical example is given in Fig. 6.3b. The dipole emitter
is located at the position of the red spot that indicates very high local field intensity
of the dipole source. Clearly one sees distinct interference fringes that result from
the interplay between reflection at the GaAs-air interface on top and at the DBR at
the bottom side. The QD is already located at an anti-node position of the electric
field which is mandatory for efficient emission into an optical mode of the lens-DBR
system.

With respect to applications like coupling to optical fibers or light collection via
lens systems it is very important to analyze the fraction of light that will be collected
by the respective optics with its givenNA in terms of the photon extraction efficiency.
This information is acquired by integrating the electro-magnetic-field distribution
like that in Fig. 6.3b within the corresponding spatial angle. The resulting photon
extraction efficiencies are plotted as a function of NA. Figure6.4 displays the ηext
for a number of lenses with varying base width above a DBR. The lenses have the
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Fig. 6.3 a Our model structure consisting of a lower DBR, the active region with the QD (hidden
inside the structure), and a hemispheric-section shaped microlens on top. Red layers correspond to
Al0.9Ga0.1As and yellow layers to GaAs. b Calculated near-field distribution for the hemispheric-
section shaped lens with a height of 400nm and a base width of 2.4µm. The semiconductor-air
interface is marked by the solid black line. Below the point source (bright red spot), distinct field
modulations due to the bottom DBR (starting at the dashed black line) are visible (the bottom DBR
is truncated for a better display format). From [69]

Fig. 6.4 Numerical results
for the photon extraction
efficiency ηext for a
hemispherical-section-
shaped lens and a
bottom-DBR as a function of
the NA of the
light-collection optics. The
different curves correspond
to different base widths of
the lenses with a common
height of 400nm. From [69]

shape of a hemispheric section and a height of 400nm. There is a strong impact of
the base width on ηext. For example, when the collection optics has a NA of 0.4 the
optimal base width is 2.4µm.
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Fig. 6.5 The impact of a
lateral displacement of the
lens with respect to the QD
position is evaluated
numerically. The calculations
were performed for the 2.4
µm microlens-DBR
structure that was discussed
before. The x-axis gives the
numerical aperture of the
external light-collection
optics. From [69]

The fabrication process of microlenses (see next section) identifies another impor-
tant geometrical parameter, namely a possible lateral displacement. If the QD is not
located in the center of the lens the interference pattern becomes asymmetric and ηext
might be affected. This is investigated in Fig. 6.5. A lateral displacement of 100nm
already leads to a drop in ηext of up to 5%whereas a displacement of 200nm results in
a drastical decrease of up to 15%. This clearly shows that a highly precise fabrication
process like a deterministic lithography approach is needed for such nanophotonic
structures.

In the previous sections we considered a DBR as back-reflecting mirror. Another
possibility would be the use of a gold reflector. Fabricating a lens structure with such
a mirror is more demanding as it requires a flip-chip process and well controlled
removal of the substrate by volume etching or etching of a sacrificial layer. On the
other hand, a gold mirror could be used as electrical contact for electrically driven
structures and/or as bonding agent to a piezoelectric actuator for strain and energy
tuning [70] (see Chap. 7).

Figure6.6 shows the comparison between aDBRand a goldmirror in combination
with a microlens. Up to a NA of 0.3 there is little difference in ηext. Above NA =
0.3 the gold mirror is calculated to be much more efficient. ηext goes up to 85% for a
NA of 1, which makes the gold mirror very promising for future lens structures. The
reason for this superior behavior is the dependence of the reflectivity of both mirrors
on the angle of incident light. The reflectivity of the DBR starts to drop drastically
when the angle is larger than 20◦. The gold mirror has almost angle-independent
reflectivity that gives rise to the very high ηext.

http://dx.doi.org/10.1007/978-3-319-56378-7_7
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Fig. 6.6 Two different mirror concepts are compared numerically: The first one comprises a DBR
as discussed before and the second one is based on a gold layer below the QD acting as mirror. In
both cases an optimized lens shapewith respect to the givenmirror is included in themodel structure.
Black Hemispheric-section lens (height= 400nm, base width= 2.0µm)with a gold mirror 150nm
below the QD. Red: Hemispheric-section lens (height= 400nm, base width= 2.4µm) with a DBR
65nm below the QD as described before. The x-axis gives the numerical aperture of the external
light-collection optics. The insets show the respective model structures (yellow = GaAs, red =
AlGaAs, blue = Au). From [69] (color figure online)

6.4 Deterministic Nanophotonic Device Technologies

Many optoelectronic single-QD applications require a QD with specific optoelec-
tronic properties, like precise emission energy and diminishing fine-structure split-
ting [22]. Such applications might be emitters of entangled photon-pairs for secure
quantum cryptography [52] and for quantum repeaters to enable long-distance data
transmission via entanglement swapping [2]. Naturally, self-organized semiconduc-
tor QDs differ in their optoelectronic properties due to statistical variations in size,
geometry, and material composition. This requires the pre-selection of a suitable QD
before integrating it into the nanophotonic device. Otherwise the yield of matching
devices will be very small or even zero. Deterministic device technologies, as dis-
cussed in the following, help to end up with high-performance quantum devices. The
key point is the pre-selection as mentioned before. The available techniques can be
divided into two groups, depending on the combination of pre-selection and actual
device processing. All referenced examples have in common, that the spatial preci-
sion for the overall process is better than 100nm. In the previous section we have
seen, that such a precision is indeed prerequisite for proper device efficiency. Most
techniques use two different setups to perform the two steps [71–74]. For example,
the optical pre-selection is done in a μPL-setup and the sample processing via optical
lithography (OL) or electron-beam lithography (EBL) is performed in a dedicated
lithography setup. The spatial correspondence between the two setups is realized via
marker structures on the sample surface that were fabricated beforehand. The second
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Fig. 6.7 a Schematics of an
in-situ lithography technique
that is based on two lasers
with different wavelength. b
The red laser is used to excite
the luminescence of the QDs
while it does not alter the
photo-resist. When a suitable
QD is found, the green laser
is turned on to expose the
resist locally. c The spectrum
shows the emission of a
selected QD. From [25]
(color figure online)

class of techniques will be called in-situ lithography techniques. They allow for pre-
selection and lithography in one and the same setup without transferring the sample
or heating it up (if the pre-selection was performed at cryogenic temperatures) [75].
A prominent example based on optical lithography is the work by Dousse et. al [25].
This technique is based on a μPL setup with a red and a green laser (Fig. 6.7). The
sample is already coated with a photo-sensitive resist when it is initially mounted in
the setup. Spectroscopy is done with the red laser that does not alter the resist. When
the position of a suitable QD is found, the green laser is turned on. It follows the same
optical path as for the red laser and exposes the resist at the given sample position.
In this way mesa structures can be fabricated in-situ with a high spatial accuracy.

Our approach utilizes a scanning-electron microscope (SEM) that was extended
with spectroscopic attachments and EBL capabilities. As the luminescence of the
sample is excited via the SEM’s electron beam, that spectroscopy technique is
called cathodoluminescence spectroscopy (CL) [76]. The overall process is dubbed
cathodoluminescence lithography (CLL) [26]. Our technique benefits from effec-
tively combining the advantages of high-resolution CL spectrocopy and of high-
resolution electron-beam lithography and will be discussed in detail in the next
section.

6.5 Fabrication of Deterministic Single Quantum Dot
Microlenses

The fabrication of microlenses (cf. Sect. 6.3) is much more demanding than the
processing of structures that require only the definition of the respective cross-section,
of e.g. pillar or mesa structures, as it involves a high-resolution 3D lithography



210 T. Heindel et al.

Fig. 6.8 Schematics of the
CLL setup. A standard SEM
is equipped with
luminescence-detection and
EBL features. The He-flow
cryostat allows for sample
temperatures between 4K
and room temperature (color
figure online)

process. 3D nano-lithography requires a lithography resist with a low contrast and a
high-resolution lithography technique with precise dose application. Here we benefit
from the EBL capabilities of our CLL setup and the properties of the EBL resist
PMMA (poly-methyl-methacrylate) [77, 78] as described in the following.

Figure6.8 displays a sketch of the CLL setup. A standard SEM system of type
JEOL JSM 840 is equipped with a He-flow cryostat, an elliptical mirror, a spec-
trometer, and a beam-blanking unit for EBL operation. The sample is mounted on
the cryostat’s cold finger and is excited via the SEM’s electron beam. The sample’s
luminescence is partly collected by the mirror and focused into the spectrometer that
is equipped with a liquid-nitrogen-cooled charge-coupled-device camera.

Before going into details about the CLL process some information on the used
resist have to be given. The EBL resist PMMA has the special property that it can
be used as positive- and negative-tone resist [77]. A positive-tone EBL resist gets
washed awayupondevelopment in all regions thatwere exposedwith an electron dose
larger than DC (clearing dose). A negative-tone EBL resist becomes insoluble for
doses larger than DO (onset dose). Figure6.9 illustrates both regimes by displaying a
contrast curve for PMMA. The remaining resist thickness after development is given
as a function of initially applied electron dose. If no dose is applied, the resist is
almost untouched by the developer agent. When the clearing dose DC is surpassed,
the resist is completely removed. This is the positive tone regime. By introducing
doses that are larger than DO we enter the negative-tone regime and the resist is
gradually becoming insoluble in the developer agent - a process which is dubbed
as inverting the resist. Crucial for 3D nano-lithography is the resist’s contrast in the
negative tone regime. Generally, the contrast is defined as C = − 1

log(DO/DF )
with

DF being the dose for which the resist is fully inverted. A smaller contrast means
a smaller slope in the regime of gradual inverting. It helps in the process of 3D
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Fig. 6.9 Height profile of 190nm PMMA after development as a function of applied electron dose.
Between 0 and 7mC·cm−2 we observe the characteristics of a positive tone resist. Then cross-
linking starts and the remaining height is directly related to the applied dose. DC : clearing dose,
DO : onset dose, DF : dose for which the resist if fully inverted

lithography as a targeted remaining resist thickness (= local 3D profile) has a larger
tolerance in the corresponding electron dose.

The QD samples are grown by metal-organic chemical vapor deposition
(MOCVD) on GaAs(001) substrates. A low-density layer of self-organized InGaAs
QDs is deposited above a distributed Bragg reflector (DBR) that consists of 23 alter-
natingλ/4-thick bi-layers of AlGaAs/GaAs. On top of theQDs, a 400nm thickGaAs
capping layer provides the material for the subsequent microlens fabrication.

The process flow of CLL is as follows (cf. Fig. 6.10a–d): First, the sample is
coated with PMMA and mounted onto the cryostat’s coldfinger. When the SEM’s
chamber vacuum is restored, the sample is cooled down to a temperature of 5K.
Next, the spatial and spectral luminescence properties for a chosen sample area are
collected. The electron beam scans the sample point-by-point on a regular grid and for
each scanning point a full spectrum is taken (Fig. 6.10a). Hereby each scanning point
consists of a dense set of sub-pixels to obtain a laterally homogeneous distribution
of the electron dose. The electron dose applied along this mapping lies within DC

and DO . Consequently, the resist in the mapped region is now soluble in a developer
agent. Within this luminescence map one or more suitable QDs are chosen and
the exact positions of the QDs are determined by a 2D Gaussian fit of the local
luminescence distribution. Now the lens patterns are written into the resist at the
positions of pre-selected QDs. To end up with a real 3D lens profile, the electron
beam is scanned in circular patterns beginning at the center of the desired lens
(Fig. 6.10b). The electron dose is determined by the local dwell time of the electron
beam. Hence, the dwell time (the dose) decreases from the center of the lens to its
outer region. The dwell times (doses) have to be precisely calculated to follow the
resist-height to dose relation in the negative-tone regime that was determined from
the contrast curve. When the CLL process is finished the sample is removed from
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Fig. 6.10 Schematics of the lens fabrication process: a The sample’s luminescence is mapped by
cathodoluminescence spectroscopy. Along this, the resist is exposed in its positive-tone regime and
becomes soluble upon development. b On top of suitable QDs, lens structures are written into the
resist by cross-linking the afore cracked resist chains by applying an additional electron dose. The
lens shape is defined by writing concentric circles into the resist and by carefully adjusting the
respective radial electron doses. c Singly exposed resist is removed by applying a resist developer
and the lens shape remains in the inverted regions. dUpon dry etching the lens profile is transferred
from the inverted resist into the semiconductor. A possible lower mirror is omitted for the sake of
clarity

Fig. 6.11 SEMmicrographs of fully processed microlenses. The left picture shows a hemispheric-
section-type lens and on the right hand side three Gaussian-shaped lenses are displayed

the CLL setup and transferred into a cleanroom. Here the resist is developed by a
standard developing agent, e.g., Methyl-isobutyl-ketone (MIBK) (Fig. 6.10c). For
transferring the 3D resist profile into the semiconductor a dry etching process is used
(Fig. 6.10d). Inductively-coupled-plasma reactive-ion-etching with a high vertical-
to-lateral anisotropy yields good results. The anisotropy is necessary to not have
lateral etching of the structures. This would spoil the envisaged lens structure.

Two examples of fully processed microlenses are shown in Fig. 6.11. The shape
was chosen to be hemispheric-section-like (a) or Gaussian-like (b). The accuracy
of the overall fabrication process was determined to be as good as 34nm [79]. This
includes the determination of the QD’s position and the subsequent lithography. So
it is very well suited for the precise and deterministic fabrication of nanophotonic
structures.
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6.6 Optical and Quantum Optical Properties
of Deterministic Quantum Dot Microlenses

In this section we present a comprehensive analysis of the optical properties of deter-
ministic QD microlenses fabricated via 3D in-situ electron-beam lithography (cf.
Sect. 6.5). Processed microlenses are studied via micro-photoluminescence (μPL)
spectroscopy with high spatial and spectral resolution. The sample is mounted to
the coldfinger of a liquid Helium-flow cryostat at cryogenic temperatures (4–40K)
and excited optically by a continuous wave (CW) diode-pumped solid-state laser
(660nm) or a mode-locked Ti:Sapphire laser operating in picosecond mode at a
repetition rate of 80MHz (wavelength range: 750–1050nm). Photoluminescence of
single QDs is collected using a 20× microscope objective (NA = 0.4). The col-
limated photoluminescence is focused onto the entrance slit of an optical-grating
monochromator with attached charge-coupled device camera enabling an overall
spectral resolution of 0.017nm (25µeV, 6GHz). Polarization optics (linear polar-
izer and λ/2-waveplate) in front of the monochromator enable polarization resolved
measurements. Attached to a second output of the monochromator, a fiber-coupled
Hanbury-Brown andTwiss (HBT) setup allows formeasurements of the second-order
photon auto-correlation g(2)

HBT(τ ). TheHBT is constituted of a 50:50multimode beam-
splitter and two single-photon counting modules (SPCMs) with a timing resolution
of 350ps in combination with time-correlated single-photon counting electronics.

6.6.1 High Device Yield and High Photon Extraction
Efficiency

One major advantage of a deterministic technology is the high yield of suitable
devices. Figure6.12a shows a SEM image of a representative write-field contain-
ing 12 microlenses with a diameter of about 1.5µm processed onto pre-selected
QDs, at which 11 microlenses reveal optical activity of single QDs after fabri-
cation. In fact, a statistical analysis of many write-fields reveals a yield larger
than 90% for microlenses containing a QD, which highlights the reliability of our
in-situ electron-beam lithography approach [26]. The corresponding chathodolu-
minescence spectra of each individual microlens, taken at a temperature of 10K,
are depicted in Fig. 6.12b. During lens-processing, QDs emitting at a wavelength
around 930nm have been chosen, which is reflected by the emission centered at
an energy of 1.335eV. Each spectrum shows various emission lines spread over a
spectral range of ≈10meV stemming from the radiative recombination of different
charge carrier configurations in a single, integrated QD. The highlighted spectrum
(blue line) originates from the microlens marked in Fig. 6.12a, which is chosen for
further analysis. Figure6.12c depicts a spectrum of this microlens under optical
above-band (λ = 660 nm) excitation. Bright and spectrally narrow emission of the
neutral exciton (X), biexciton (XX) and singly charged exciton (X− and X+) states



214 T. Heindel et al.

-61.32 1.33 1.34 1.35 0 6 -6 0 6 -6 0 6 -6 0 6
0

90

180

270

360

(a)

(b)

(c)

(d) (e) (f) (g)

Fig. 6.12 a Scanning-electron microscopy image of a write-field processed with 12 QD-
microlenses. b CL-spectra of the microlenses presented in panel (a). The spectrum associated
with the marked microlens in panel (a) is highlighted in blue. c Zoom-in of the PL spectrum of the
microlens highlighted in panel (a), showing different charge carrier configurations in the QD (view
main text for details). d–g Polarization dependent studies of the four excitonic states indicated in
panel (c). Evaluating the sinusoidal polarization dependence of X and XX reveals a fine-structure
splitting of 7.7µeV (color figure online)

are observed (see Chap.1). The assignment to specific charge carrier configurations
is thereby confirmed by polarization dependent measurements. The polarization-
resolved energetic positions of each excitonic state are shown in Fig. 6.12d–g, which
have been extracted by fitting Lorentzian profiles to the μPL spectra. This analysis
reveals a counter-phased behavior of the spectral positions of X and XX emission, as
expected for emission lines originating from exciton and biexciton of the same QD
[80, 81]. Averaging the extracted XX-X splittings for all polarization angles yields
a fine-structure splitting of the bright exciton state of (7.7 ± 0.1)µeV and a bind-
ing energy of the biexciton state of (1.266 ± 0.005)meV, both representing typical
values for this type of sample. Emission lines marked by X+ and X− are identified
as the corresponding charged states due to their relative spectral positions, resulting
from a smaller effective mass of electrons as compared to those of holes [82].

In order to quantify the photon extraction efficiency of deterministic microlenses,
pulsed excitation at a pulse-repetition rate of f = 80MHz is utilized. The QD was
excited at saturation of the X emission. The exciton emission collected via the micro-
scope objective is spectrally filtered by the monochromator and detected with a
fiber-coupled SPCM at the second exit of the monochromator. Under such condi-
tions a total countrate of ṅX = 120 kHz is detected by the SPCM. The corresponding
single-photon flux into the first lens of the setup can be deduced from a measurement

http://dx.doi.org/10.1007/978-3-319-56378-7_1
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of the setup’s transmission, using a tunable diode laser tuned to the wavelength of
the X emission line and focused onto a gold mirror inside the cryostat. The laser
is attenuated using neutral-density filters in front of the monochromator to achieve
count-rates at the SPCMs comparable to those observed for the QD emission. Taking
into account the laser power, the reflectance of the goldmirror, the transmission of the
cryostat window, the attenuation of the density filters, and the maximal count-rates
on the SPCMs we determined a setup efficiency of ηSetup = 0.8%. From the detected
count-rate ṅX, the setup efficiency ηSetup, and the laser repetition rate f , we are are
able to deduce a photon extraction efficiency of ηX = ṅX

ηSetup f
= (19 ± 2)% for the X

emission. The total photon extraction efficiency of this microlens is finally evaluated,
by taking into account the recombination channels of all excitonic states contributing
to the emission, which yields broadband enhancement with ηQD = (23 ± 3)%. This
value is in quantitative agreement with the simulations presented in Sect. 6.3, where
a point light source and an idealized 3D geometry have been assumed for numerical
modelling.

The demonstrated high yield of QD-microlenses containing single pre-selected
QDs in combination with the achieved enhanced photon extraction efficiency con-
stitutes an excellent basis for further investigations. In the following sections,
we address the quantum optical properties of photons emitted by determinis-
tic QD microlenses in terms of the single-photon purity as well as the photon-
indistinguishability.

6.6.2 Single-Photon Emission

A typicalmicro-photoluminescence (μPL) spectrumof a deterministicQDmicrolens
chosen for quantumoptics experiments is depicted in Fig. 6.13a. Under pulsed above-
bandgap excitation (dashed grey line) a diversity of emission lines stemming from
different excitonic states (charge carrier configurations) of the same QD is observed.
The charge-neutral exciton and biexciton states (X0 and XX0) as well as the singly
charged trion states (X+ and X−), already discussed in Sect. 6.6.1 (cf. Fig. 6.12), are
identified due to their polarization and power dependencies. At longer wavelength
the emission of biexcitonic spin-triplet states XXT is observed, whose origin was
confirmed via polarization-resolved photon cross-correlation measurements [83]. In
contrast to the spin-singlet configuration of the XX0-state, the XXT-state is consti-
tuted of one hole located in the p-shell and one hole in the s-shell of the QD. This
configuration allows for a parallel orientation of both hole-spins - a phenomenon
called spin-blockade, which is discussed in Chap.4. Further excitonic states visible
in the spectrum are most probably due to recombination of charged biexciton and
triexciton states [84]. Switching to quasi-resonant excitation into the QD’s p-shell at
a wavelength of 909nm (solid blue line), the emission is predominantly generated by
the X0 and XX0 states while only relatively dim emission remains from the charged
excitonic states. This is due to the fact that each laser photon absorbed by the QD’s

http://dx.doi.org/10.1007/978-3-319-56378-7_4
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Fig. 6.13 a μPL spectrum of a QD microlens under above-band (dashed grey line) and p-shell
(solid blue line) excitation. b Photon auto-correlation measurement on the neutral exciton state
(X0) from (a). c–e Excitation dependent auto-correlation histogramms for excitation powers P of
0.5×, 1.0× and 2.0× the saturation power Psat (color figure online)

p-shell generates one electron-hole pair with opposite spins. States which involve
parallel spin-configurations hence have negligible occupation, while charged exci-
tonic states require the capture of additional charge carriers from the surrounding
semiconductor material. To investigate the photon statistics, the emission of the X0-
state can be spectrally selected via themonochromator (cf. markers in Fig. 6.13a) and
coupled to the HBT setup. Figure6.13b shows the corresponding raw measurement
data of the second-order photon auto-correlation g(2)

HBT(τ ). Triggered single-photon
emission of the deterministic QD microlens is reflected in the almost absent coin-
cidences at zero time delay (τ = 0). At finite τ , coincidence maxima occur at a
periodicity corresponding to the pulse-repetition rate of 80MHz. To achieve highest
photon extraction efficiencies a quantum emitter has to be excited at (or close to) sat-
uration power Psat, e.g. the working point at which the pump rate of a given excitonic
state equals its inverse radiative lifetime. Hence, we investigated the influence of the
excitation power on the single-photon purity. Figure6.13 displays the corresponding
g(2)(τ ) histograms of the X0-state for excitation powers P of 0.5 × Psat, 1.0 × Psat
and 2.0 × Psat. We observe almost excitation-power-independent values of g(2)(0) ≤
0.01 for up to two times the saturation power. This unique feature of the deterministic
microlenses proves that our structures can act as bright quantum light sources with
close-to-ideal quantum properties - even at maximum photon flux.

While such excitation-power-independence of g(2)(0) has for instance also been
observed in photonic nanowires [55], we go a significant step further in the following
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section, by demonstrating that our structures not only show a close-to-ideal single-
photon emission but at the same time also a high degree of photon indistinguishability.
The latter is of crucial importance for advanced quantum communication concepts
such as the quantum repeater, which relies on entanglement distribution via Bell-state
measurements [85–87].

6.6.3 Generation of Indistinguishable Photons

Advanced quantum communication schemes, such as the quantum repeater, require
a high degree of photon indistinguishability to enable entanglement distribution via
Bell-state measurements. In an experiment, the photon-indistinguishability, e.g. the
mean spatial and spectral photon wave-packet overlap, can be measured by using a
Hong-Ou-Mandel (HOM) -type two-photon interference (TPI) setup [88] attached to
the second output port of the monochromator (cf. illustration in Fig. 6.14a) (see also
Chap.3). Here, single photons enter an asymmetric Mach-Zehnder interferometer.
Within the interferometer the photon stream is equally split into two paths, where one
is delayed by the inverse excitation repetition rate of the Ti:sapphire laser. Hence, two
consecutively emitted photons interfere at the second beam-splitter. Aλ/2-waveplate
allows for rotating the polarization of photons in one arm of the interferometer with
respect to the other arm in order to make the photons distinguishable on purpose for
reference measurements. In case of ideal indistinguishability, both photons coalesce
at the second beam-splitter in a two-photon Fock state |2〉. This so called HOM-
effect leads to a reduced number (ideally zero) of coincidences at zero time delay
(τ = 0) in the histogram g(2)

HOM(τ ) obtained from a coincidence measurement at the
two interferometer outputs. In the described experiments, we used a Mach-Zehnder
interferometermade out of polarizationmaintaining (PM) single-mode fibers, which,
in combination with a variable fiber delay, assures a high spatio-temporal overlapp
of two photons at the second beam-splitter.

To investigate the indistinguishability of photons emitted from deterministic
QD microlenses, excitation-power-dependent measurements of g(2)

HOM(τ ) were per-
formed on the X+ emission line of a QD under quasi-resonant excitation. The
resulting g(2)

HOM(τ ) histogram recorded at 50% of the saturation excitation power
(Psat = 30µW) is shown in Fig. 6.14b for co-polarized (red solid curve) and cross-
polarized (grey dashed line) measurement configuration. In case of co-polarized
photons quantum-mechanical TPI manifests in a strongly reduced number of coin-
cidences at τ = 0, if compared to the measurement in cross-polarized configuration.
To quantitatively extract the visibility of TPI, Lorentzian profiles are fitted to the
experimental data in co-polarized configuration and evaluated the relative peak areas
according to [89]:

V = ĀS/2 − A0

ĀS/2
= 1 − A0

ĀS/2
, (6.1)

http://dx.doi.org/10.1007/978-3-319-56378-7_3
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Fig. 6.14 a Schematic of a Hong-Ou-Mandel (HOM) -type two-photon interference (TPI) experi-
ment. b TPI histogram g

(2)
HOM(τ )measured with a HOM-type setup for co- (red solid line) and cross-

(grey dashed line) polarization of the interfering photons. The cross-polarized data were shifted by
+3 ns for clarity. b–d TPI histograms for co-polarized photons and increasing optical pump powers
P of 0.5 × Psat , 1.0 × Psat and 2.0 × Psat . e Visibility values plotted versus the excitation power
P . Shaded in orange is the range for which the emission is saturated (color figure online)

where A0 is the area of the peak at τ = 0 and ĀS corresponds to the mean value of
the side peaks with |τ | > 12.5 ns. A visibility of V12.5ns = (53 ± 8)% is extracted at
moderate excitation (P = 0.5 × Psat).

The values of g(2)
HOM(0) remain almost constant with increasing excitation power

even beyond saturation. A behavior which was already observed for the bare g(2)(0)
value (cf. Fig. 6.13). For a more precise analysis one takes into account the finite
probability of multi-photon emission events and the imperfections of the HOM
setup, R/T = 0.51/0.49 and (1 − ε) = 0.98, where R and T denotes the reflec-
tion and transmission coefficients of the fiber-based beam-splitter and (1 − ε) is
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Fig. 6.15 Experimental setup: Hong-Ou-Mandel-type two-photon interference experiments are
utilized to probe the indistinguishability of consecutively emitted photons with variable pulse-
separation δt (color figure online)

the maximal interference fringe contrast obtained for the balanced interferom-
eter, similar to [89]. A detailed analysis of the data is presented in Fig. 6.14e
and reveals the TPI visibility. Well above saturation a corrected (raw) value of
g(2)
HOM(0) = 0.271 ± 0.019 (0.373 ± 0.015) is extracted, revealing a corrected (raw)
TPI visibility of VHOM = (46 ± 4)% ((26 ± 3)%).

A possible explanation for the discrepancy to an ideal source of indistinguishable
photons with V = 1 is the presence of spectral diffusion on a timescale comparable
to the excitation pulse separation (12.5 ns) [89]. This might lead to a reduced spec-
tral overlap at the HOM beam-splitter, thus limiting the TPI visibility. To test this
interpretation, we conceived an experiment where the delay-time between excitation
pulses can be varied, as presented in the following section.

6.6.4 Time- and Temperature Dependent Hong-Ou-Mandel
Interferometry

In contrast to the single emitter character described on terms of g(2)
HBT(0), the photon-

indistinguishability is particular sensitive to dephasing processes. The dephasing
rate of a quantum emitter is described by its coherence time T2 and the radia-
tive lifetime T1 = Γ −1 via T−1

2 = (2T1)−1 + (T ∗
2 )−1 [90], where (T ∗

2 )−1 = Γ ′ + γ
describes pure dephasing due to spectral diffusion (Γ ′) and phonon coupling (γ). In
this section we gain experimental access to both types of pure dephasing indepen-
dently by means of time- and temperature dependent TPI experiments.

In order to access the timescale of spectral diffusion, the HOM-setup of Fig. 6.14a
can be modified by introducing a two-pulse sequence with variable pulse-separation
δt as depicted in Fig. 6.15.
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Fig. 6.16 Two-photon interference histograms measured for the X0-state (cf. Fig. 6.13a) using a
two-pulse excitation sequence with variable pulse-separation δt (T = 7K). Experimental data cor-
responding to co- (cross-) polarized measurement configuration are displayed by solid red (dashed
grey) curves.Upper panels show the expected coincidence pulse patterns (in case of distinguishable
photons) of a two-pulse sequence with a pulse separation δt repeating every 12.5 ns. The peak area
ratios are encoded in the the height of each bar (color figure online)

Here, the periodic excitation pulses of themode-lockedTi:Sapphire laser (80MHz
repetition rate) are converted to a sequence of double-pulses by utilizing a fiber-
based asymmetric Mach-Zehnder interferometer (not shown) in the excitation path.
By choosing different fiber-delays within one arm of the interferometer, the pulse-
separation δt can be varied from 2.0 to 12.5ns. This two-pulse sequence is then used
to excite the single-QD microlens. For the TPI experiment, a PM-fiber-based HOM
setup as introduced in Sect. 6.6.3 is attached to the output port of the spectrometer.
Within this HOM interferometer, the variable fiber delay has to be matched precisely
(3ps accuracy) to the respective pulse separation δt . This experimental configuration
enables us to probe in the following the mean photon wave-packet overlap, in terms
of the TPI visibility of two photons emitted by the QD, as a function of the time
elapsed between consecutive emission events.

Figure6.16 shows HOM-histograms obtained for the QD microlens presented in
Fig. 6.13a, where the pulse-separation δt was gradually reduced from 12.5 to 2.0ns.
The respective delay inside the HOM-interferometer was precisely matched for each
measurement to assure proper interference of consecutively emitted single photons.

At δt = 12.5 ns amoderate visibility ofV12.5ns = (53 ± 8)%is extracted, in agree-
ment with results from Fig. 6.14. For smaller δt complex coincidence-pulse-patterns
specific to each δt are observed, which arise from the superposition of five-peak clus-
ters repeating every 12.5ns according to the pulse separation of the exciting laser [91].
The five-peak cluster in turn arises from the possible pathway-combinations inside
the Mach-Zehnder interferometer taken by two photons separated by δt . Hence, the
peak area ratios can easily be deduced considering combinatorics, which enables us
to extract the TPI visibility quantitatively. The expected peak area ratios are illus-
trated in the upper panels of Fig. 6.16, where the peak area ratio is represented by
the respective bar height. Each cluster yields the peak area ratios 1:4:6:4:1, except
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Fig. 6.17 Two-photon interference visibilities of consecutively emitted single photons versus the
time δt elapsed between the emission processes. Experimental data for the X0- (left) and the
X+ (right)-state are quantitatively described by a theoretical model assuming a non-Markovian
noise correlation leading to spectral diffusion at a ns-timescale (see Eqn. 6.8). A characteristic
temperature-dependent correlation-time τc is observed (color figure online)

for the cluster centered at zero-delay (τ = 0). Here, the peak area ratio depends
on the photon-indistinguishability. In case of perfect indistinguishability, the coin-
cidences at τ = 0 vanish and the peak area ratios of the cluster become 1:2:0:2:1.
Photons which are distinguishable, e.g. due to their polarization, lead to an area
ratio of 1:2:2:2:1. In the following, the peak areas of the central clusters are labeled
A′

2:A
′
1:A0:A1:A2 and Ā = (A′

1 + A1)/2. The corresponding peak areas are extracted
from the measurement data by fitting Lorentzian peaks with the expected area ratios
to the coincidence histograms. In all fits, the width of the Lorentzian peaks has been
fixed to the value obtained from the fit to the data at δt = 12.5 ns. The TPI visibility
for δt = 2, 4 and 8ns is then given by

V = Ā − A0

Ā
= 1 − A0

Ā
. (6.2)

In case of δt = 4 and 8ns, peaks A1 and A′
1 are overlapping with the adjacent cluster.

Hence, the visibility is expressed by

V = 2 Ã/3 − A0

2 Ã/3
= 1 − A0

2 Ã/3
, (6.3)

with Ã being the mean value of A1 and A′
1 and their related overlapping peaks. In

case of δt = 4 ns, A1 and A′
1 overlap with the nearest neighbor cluster B2 and B′

2. For
δt = 8 ns, the overlapping peaks stem from C2 and C′

2 as seen in Fig. 6.16. To reduce
the statistical error of Ā and Ã, instead of taking only A1, A′

1 and their overlapping
peak areas into account, we finally averaged over the peak areas for all clusters at
τ �= 0, to infer a more precise normalization of the data.

Figure6.17 (left panel) summarizes the obtained raw TPI visibilities as a
function of the pulse-separation δt for the neutral exciton X0. At low δt a
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plateau-like behavior is observed, at which the visibility remains almost constant
with values of V2.0ns = (94 ± 6)% and V4.0ns = (88 ± 4)%. For pulse-separations
larger than 4ns, a distinct decrease in visibility is observed from V8.0ns = (74 ± 5)%
to V12.5ns = (53 ± 3)%.The significant decrease in TPI visibility at pulse-separations
larger than 8.0ns indicates the timescale of spectral diffusion. The time-dependent
analysis of Γ ′ has additionally been carried out for the charged exciton state X+
of the same QD at 10 and 30K (cf. Fig. 6.17, right panel). Again a characteristic
correlation time is observed, which decreases at higher temperature.

In order to gain deeper insight in the underlying dephasingmechanisms,the system
is modeled with a Hamiltonian, including the QD, the classical excitation field and
the quantized light field:

H/� = (ωe + F(t))σee
︸ ︷︷ ︸

Quantum Dot

+ Ω(t)
(

e−iωptσeg + e+iωptσge
)

︸ ︷︷ ︸

Excitation Field

+
∫ ∞

0
dω

(

ω c†ωcω + gω c†ωσge + g∗
ωσegcω

)

︸ ︷︷ ︸

Quantized Light Field

. (6.4)

The QD is approximated as a two-level system with the ground state |g〉 and excited
state |e〉 with respective lowering and raising operators defined by σi j := |i〉 〈 j |.
The transition energy between the excited and ground state is denoted by ωe, where
the ground state energy is set to zero. Dephasing is considered by employing the
workinghorse of the phenomenological dephasingdescription, by including a general
stochastic force F(t), which shifts the transition energy of the QD. This stochastic
force F(t)will include thedephasingdue to spectral diffusion andphonon interaction,
as detailed later on.

Given that the classical (pump) field excites theQD fast enough to preventmultiple
photon emission processes, the wave function after the two-pulse sequence can be
calculated via the Wigner–Weisskopf method:

|Ψ (t)〉 =
∫ t

0
dt1

∫ t

δt
dt2e

i(ωe+iΓ )(t1+t2)−iφδt (t2)−iφ0(t1) × E2(t2)E1(t1) |vac〉 . (6.5)

This wave function includes the two-photon wave packages En(tn) and the time-
integrated stochastic forces defined as φX

i (t) := ∫ t
i dt

′Xi (t ′), where i = 0 in case the
photon was emitted during the first sequence or i = δt for photon emission processes
due to the second pulse and X (t) denoting the noise. Given this wave function, the
observables of the experiment can be calculated.

Considering the interference at the beam-splitter by unitary transformations on
the incident electric fields coming from the long and short pathway, the electric fields
EA and EB at the detector A and B can be calculated. Further, by taking into account
the two-photon wave-function and the steady-state limit (t −→ ∞), the unnormal-

ized two-photon correlation G(2)(t, τ ) =
〈

E (−)
A (t)E (−)

B (t + τ )E (+)
B (t + τ )E (+)

A (t)
〉
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can be deduced (see [92], Supplemental Material for details). This correlation still
includes the noise φX

i and is thus very general in terms of dephasing processes,
which can be evaluated for Markovian- and non-Markovian noise correlations. In
the following we specify the noise correlations, which is needed to calculated the
visibility.

To evaluate the stochastic forces, one needs to average via a Gaussian random
number distribution 〈〈· · ·〉〉. Here, the 〈〈·〉〉 denotes statistical averaging in terms of
a Gaussian random variable, where all higher moments can be expressed by second-
order correlation [93]. To include dephasing, we employ the general stochastic force
F(t) = P(t) + D(t) with a phonon-induced dephasing (δ-correlated white noise)
P(t) and a spectral diffusion D(t) component (colored noise), both shifting the tran-
sition energy of the QD. Assuming that the two different noise contributions are
independent of each other, we can neglect correlations between D(t) and P(t) in the
cumulant expansion. Additionally, we restrict our investigation to the zero-phonon
line broadening mechanism [94]. A possible source for such a dephasing mechanism
is the quadratic interaction with longitudinal acoustical phonons, which gives rise
to a temperature-dependent broadening [95, 96]. Contributions from highly non-
Markovian phonon-sidebands are neglected, which also effect the indistinguishabil-
ity, e.g. in cQED setups [97, 98], and are typically described using the independent
Boson model [99] or Feynman path integrals [100]. Here, we employ the simplest
possible model for such a dephasing by assuming aMarkovian process δ−correlated
in time, i.e. as white noise [93, 101]:

〈〈

φP
t1 (t2)φ

P
t3 (t4)

〉〉 =γ (min[t2, t4] − max[t1, t3]) . (6.6)

The phonon-induced dephasing is highly temperature-dependent and limits the
absolute value of the indistinguishability, independent of the temporal distance of
the excitation pulses δt .

In contrast to the phonon-induced dephasing, the spectral diffusion reveals a strong
dependence on the pulse distance δt , as seen Fig. 6.17. We include this dependence
as a finite memory-effect with specific correlation time τc:

〈〈

φD
t1 (t2)φ

D
t3 (t4)

〉〉 = Γ ′
0 e

− (t1−t3)2

τ2c (min[t2, t4] − max[t1, t3]) , (6.7)

where Γ ′
0 describes the maximal amount of pure dephasing induced by spectral dif-

fusion. These kinds of noise correlations stem from a non-Markovian low-frequency
noise [102–104] and show plateau-like behavior for temporal pulse distances suffi-
ciently short in comparison to the memory depth (see Chap.9). Thus, if δt � τc, the
effect of spectral diffusion becomes negligible and phonon-induced dephasing limits
the absolute value of the visibility.

Using the above noise correlations, the time-integrated normalized two-photon
correlation ḡ(2) can be calculated, which now depends on the specific dephasing
parameters. The two-photon interference visibility V can then be expressed via V =
1 − ḡ(2). We are now able to explicitly formulate the dependence of the visibility on

http://dx.doi.org/10.1007/978-3-319-56378-7_9
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the pulse separation δt , the pure dephasing γ, and the diffusion constant Γ ′:

V (δt, τc, T ) = Γ

Γ ′
0(1 − e−(δt/τc)2) + γ(T ) + Γ

, (6.8)

where a balanced beam-splitter (T = R = 1/2) was assumed. Thus, for vanishing
phonon-induced dephasing and spectral diffusion, the visibility is 1, i.e. the photons
are only Fourier-transform-limited and coalesce at the beam-splitter into a perfect
coherent two-photon state. If the phonon-induced dephasing is stronger than other
dephasing and relaxation processes γ  Γ, Γ ′, the visibility becomes small, which
is typically seen in the high temperature limit. At low temperatures, the phonon-
induced dephasing is small and the spectral diffusion with a finite-memory depth
dictates the functional form of the visibility for different pulse distances.

Applying the model derived in Eqn. 6.8 to the experimental data of Fig. 6.17,
by fixing Γ (measured independently via time-resolved measurements) and assum-
ing γ7K,10K = 0 (cf. next paragraph), correlation times τc as listed in Table6.1 are
deduced. The timescale at which the noise is correlated appears to be close to
the fundamental period of the Ti:Sapphire laser for X0

7K and X+
10K, whereas an

increase in temperature to 30K shortens the correlation time of X+ drastically (cf.
Table6.1). Interestingly, the coherence times T∞

2 inferred from ourmodel in the limit
δt → ∞ (see Table6.1), significantly exceed the values of T2 = (291 ± 6) ps for
X0

7K and T2 = (167 ± 3) ps for X+
30K obtained via measurements using aMichelson-

interferometer. A physical origin of the plateau-like behavior of V (δt) and the asso-
ciated non-Markovian decoherence processes are random flips of bistable fluctuators
in the vicinity of the QD [103]. Possible candidates for such fluctuators in solid state
devices are charge traps or structural dynamic defects [102]. Further evidence for the
presence of charge fluctuations is given by the observation of trion states X+ and X−
under quasi resonant excitation of the QD (cf. Fig. 6.13). To reduce the associated
electric field noise, weak optical excitation above-bandgap [105] or a static electric
field via gates [106] can be applied (see Chap. 9).

To justify the assumption γ7K,10K = 0 and to investigate the influence of phonons
on the photon-indistinguishability in more detail, we performed complementary
temperature dependent TPI experiments. For this purpose, the emission of the
trion state X+ was selected under quasi-resonant excitation and coupled to the
HOM-interferometer. The pulse-separation was fixed at δt = 2.0 ns, while the

Table 6.1 Correlation times τc obtained by fitting (6.8) to the experimental data of Fig. 6.17, fixing
γ7K,10K = 0 and Γ . T∞

2 values have been calculated from the parameters Γ , Γ ′
0 and γ

Γ (GHz) Γ ′
0 (GHz) γ (GHz) τc (ns) T∞

2 (ps)

X0
7K 0.85 1.02 ± 0.06 0 12.0 ± 1.9 692

X+
10K 0.91 1.03 ± 0.04 0 15.3 ± 2.5 673

X+
30K 0.96 1.55 ± 0.78 0.29± 1.10

0.29 3.1 ± 1.9 431

http://dx.doi.org/10.1007/978-3-319-56378-7_9
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(a) (b)

(c)

Fig. 6.18 Impact of the temperature on the two-photon interference (TPI) visibiliy (δt = 2 ns). a
Experimentally obtained TPI visibilities for various temperatures. Qualitative agreement is achieved
using a theoretical model assuming dephasing proportional to the square of the phonon number (see
Eqn. 6.9) b and c TPI histograms for co-polarized configuration at 10 and 35K and corresponding
fits (red curve) (color figure online)

temperature T was varied. Figure6.18a depicts the obtained TPI visibilities extracted
from the experimental data for temperatures ranging from 10 to 40K. Exemplary TPI
histograms are displayed in Fig. 6.18b, c for 10 and 35K in co-polarizedmeasurement
configuration. A gradual increase in coincidences at τ = 0 is observed, indicating
a reduced photon-indistinguishability. At low temperature, close to ideal photon-
indistinguishability with V10K = (96 ± 4)% is observed. Increasing T results in a
distinct decrease of the TPI visibility. Finally, at a temperature of 40K, V approaches
zero within the standard error of our measurement. The observed temperature depen-
dence is further modeled theoretically (dashed red curve).

For this purposewe employed aMarkovian approximation for the phonon-induced
pure dephasing processes, where the dephasing is proportional to the square of the
phonon number [107]: γ(T ) = γ0 n̄(T ) [n̄(T ) + 1]. Here, we have averaged over
the frequency and approximated the expression via an effective phonon number
depending on the temperature via the Bose–Einstein distribution for the effective
phonon mode. We further employed the formula n̄(T ) = [

exp
[

α
T

] − 1
]−1

, to under-
line the experimentally observed behavior qualitatively. To fit the experimental data
in Fig. 6.18a, we adjust the parameters γ0 andα. For the sake of clarity, the remaining
dephasing contributions are normalized to one:

V (T ) = Γ

Γ ′
0(1 − exp[−(δt/τc)2]) + γ(T ) + Γ

≈ 1

1 + γ0 n̄(α, T ) [n̄(α, T ) + 1]
. (6.9)

According to this formula, the fit presented in Fig. 6.18a was performed with α =
�ω̄/kB = 44K and γ0 = 3.75. The model qualitatively describes the experimental
observation. This leads to the conclusion that the impact of γ in Eqn. 6.8 is indeed
almost negligible at low temperatures (T ≤ 10K), but has severe impact at elevated
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(a) (b)

Fig. 6.19 a Schematic of a deterministic QDmicrolens coated with a thin layer of Ta2O5 (n = 2.1)
acting as anti-reflection (AR) coating; b μPL spectra measured at saturation of X emission from
a QD microlens before and after coating with Ta2O5. Inset Scanning electron microscopy (SEM)
image of a hemisperic microlens coated with Ta2O5 (color figure online)

temperatures. For temperatures above 30K, also in- and out-scattering with wetting
layer carriers needs to be included, which explains the deviation between experiment
and theory in this temperature range.

6.7 Conclusions and Future Perspectives

The achievements presented in this chapter summarize the advent of a novel
and very promising deterministic technology platform based on three-dimensional
in-situ electron-beam lithography. We demonstrated the fabrication of monolithic
microlenses with pre-selected, integrated QDs. Such microlenses proofed their abil-
ity to generate single-photon states with high purity, high photon-indistinguishability
combined with an efficient broadband photon extraction. Importantly, these quantum
optical properties remain excellent even at highest photon flux, as uncorrelated back-
ground emitters are completely eliminated during lens etching. In particular, also the
photon-indistinguishability, which is highly sensitive to any additional dephasing,
showed no significant degradation even at pump powers beyond saturation. These
features make our technology approach highly interesting to future applications in
the field of optical quantum information technologies.

To further optimize the photon extraction efficiency of deterministic QD
microlenses, an anti-reflection (AR) coating can be applied to the microlens surface
(see Fig. 6.19a). Although themicrolens geometry proved to largely increase the pho-
ton extraction, a fraction of the emitted photons is still lost by partial back-reflection
due to the refractive indexmismatch at the semiconductor-vacuum interface. In order
to reduce the associated losses, a λ/4-layer of Ta2O5 was evaporated onto determin-
istic QD microlenses via electron beam sputtering. The material Ta2O5 fulfills the
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condition ncoating × d = λ/4 with d = 110 nm being the thickness of the coating
layer and ncoating = 2.1 its refractive index at λ = 930 nm, which is close to the opti-
mum optical impedance matching given by ncoating = (nvacuum × nGaAs)1/2 = 1.88
[108]. The impact of the AR-coating on the optical properties of QD-microlenses
has been investigated in [109] by performing a statistical spectroscopic analysis on
variousmicrolenses, eachwith a single pre-selectedQD.Microlenseswere examined
within a one-to-one comparison via μPL measurements at saturation pump power
of the exciton emission before and after applying the AR-coating. The effect on the
photon extraction efficiency can then be quantified by the ratio of the corresponding
emission intensity after and before deposition of the Ta2O5-layer, respectively. This
analysis revealed a mean value for the intensity ratio of 1.57 ± 0.71, in agreement
with the value of 1.8 expected from numerical simulations of coated microlenses.
This finding confirms, that the observed increase in detected μPL intensity of the
QD is due to an effective reduction of reflections by the AR-coating, which enhances
ηext. Figure6.19b exemplarily shows the emission spectrum of a single QDmicrolens
before and after evaporation of the AR-coating onto its surface. Taking a maximum
photon extraction efficiency of 29% as found for uncoated microlenses [110] as
reference and considering the intensity ratio mentioned above, a photon extraction
efficiency of up to 50% can be expected for AR-coated microlenses.

In light of future applications, electrically controlled devices are particular
desirable. For instance, combining the efficient broadband photon extraction of
microlenses with an electrical current injection in a QD light-emitting diode, holds
the great potential to realize ultra-bright, electrically driven sources of polarization
entangled photon pairs (see Chap.7). Up until now, efficient photon-pair extraction
and electrical current injection has not been realized in a single device approach
[54, 111]. Furthermore, applying a fixed voltage bias to an electrically gated QD
microlens, can stabilize the electric field noise in the vicinity of the QD, which could
potentially lead to further improved photon-indistinguishabilities [112] (seeChap.9).
To realize an electrically operable microlens device on a scalable technology plat-
form, a novel contacting scheme capable of electrically contacting a curved surface
has already been developed. Figure6.20a schematically illustrates the cross section
of our electrically contacted microlens device.

The sample is based on a p-i-n-doped GaAs structure. The QD layer is located in
the center of an intrinsic GaAs layer. Single QDs were integrated within microlenses
using 3D electron-beam lithography. After lens processing the microlenses are
partially planarized via hydrogen silsesquioxane (HSQ), while the sample surface
outside the write-field is passivated using a layer of silicon nitride (SiN). Afterwards,
a semitransparent metal contact (4nm Titan, 8nm Platinum) is evaporated onto the
sample. During this step, the free-standing p-doped upper part of each microlens
is electrically contacted and allows for efficient current injection. Finally, a 300nm
thick metal contact-pad (Ti/Pt/Au) is defined next to the write-field, which allows
for electrically addressing the microlenses via a prober needle or Au wire-bonds.
The micro-electroluminescence (µEL) spectrum of a readily processed microlens is
shown in Fig. 6.20b at an injection current of 200nA. Bright emission lines of a single
QD can be observed. A current-voltage characteristic of the corresponding device

http://dx.doi.org/10.1007/978-3-319-56378-7_7
http://dx.doi.org/10.1007/978-3-319-56378-7_9
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(a) (b)

Fig. 6.20 a Illustration of an QD-microlens light-emitting diode (QD-µLens LED). The p-i-n-
doped microlens is contacted via a planar semitransparent Ti/Pt layer deposited onto a planarization
layer of hydrogen silsesquioxane (HSQ). Inset Optical microscope image of a microlens LED
processed using 3D electron-beam lithography. bElectroluminescence spectrum of a QD-microlens
at an injection current of 200nA (T = 20K). Inset I–V characteristics of an microlens LED (color
figure online)

is depicted in the inset, and reveals the typical behavior of a diode structure. As a
first proof-of-principle application, we operated such QD-µLens LEDs in an electro-
optically gated mode, where the QD was simultaneously optically excited (using a
CW laser) and electrically gated. This enabled triggered single photon emission at a
modulation speed of up to 1GHz [113].

In the near future, the above presented microlens-LED technology can be com-
bined with deterministically fabricated QD microlenses. A step which will result
in a powerful and versatile technology platform for advanced quantum information
schemes such as the quantum repeater.
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21. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Nat. Commun.

5 (2014)
22. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84(11), 2513 (2000)
23. W. Barnes, G. Björk, J. Gérard, P. Jonsson, J. Wasey, P. Worthing, V. Zwiller, Eur. Phys. J. D

18(2), 197 (2002)
24. V. Zwiller, T. Aichele, O. Benson, New J. Phys. 6, 96 (2004)
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Chapter 7
Polarization Entangled Photons
from Semiconductor Quantum Dots

Fei Ding and Oliver G. Schmidt

Abstract Semiconductor quantum dots are among the most promising candidates
for the deterministic generation of polarization entangled photon pairs. In this chapter
we review the most recent progress on this topic. First, we recall the basic concepts
of polarization entangled photon qubits, the biexciton cascade process and exciton
fine structure splitting in single quantum dots. The experimental techniques for con-
trolling the fine structure splitting, which are critical for the generation of photon
pairs with a high fidelity to the symmetric Bell state, are briefly discussed. A main
focus is given to the recently developed anisotropic strain engineering technique,
which has been used to fabricate an entangled light-emitting-diode with high yield
and fast triggering speed, and an entangled photon source with wavelength tunabil-
ity. Experimental progress on improving the collection efficiency of the entangled
photon sources are also mentioned. We envision that, with the remarkable achieve-
ments in the field, the entanglement distribution, the hybrid interfacing with atoms,
the telecom band emissions, and the on-chip integration will be realized soon with
quantum dot based polarization entangled photon sources.

7.1 Introduction

The introduction of lichtquanten by Einstein, together with the heroic endeavours
of Bohr, Heisenberg, Schrödinger and many others, gave birth to quantum mechan-
ics in 1925 [1]. Though initially driven by curiosity, quantum mechanics has now
fuelled many revolutionary applications in our society. A particularly important one
is quantum information processing (QIP), which exploits the superposition states
(qubits) in quantum mechanics to store and manipulate information. Stemmed from
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the 1935 paper by Einstein, Podolsky and Rosen on the completeness of quantum
mechanics [2], flourished in the 1980s with the theoretical proposals on quan-
tum computation (Feynman [3] and Deutsch [4]) and on quantum cryptography
(Bennett and Brassard [5]), QIP has great potential for practical applications with
recent breakthroughs in physical concepts, material sciences, and in electrical and
photonic engineering techniques.

A number of important QIP protocols rely on the spooky behavior of quantum
entanglement between spatially separated qubits. Prominent examples are quantum
teleportation [5], quantum dense coding [6], quantum cryptography [7], cluster-
state quantum computing [8], and quantum sensing, metrology and imaging [9]. We
witnessed considerable theoretical and experimental progress in recent years, and
entangled qubits have been demonstrated with superconducting circuits [10], trapped
ions [11] and even macroscopic atomic ensemble [12] and diamonds [13]. Photon
qubits are also attractive, since they travel fastest in nature, interact weakly with the
environment and have long coherence times. InmanyQIP applications (e.g. quantum
key distribution [7] and nondestructive quantum CNOT gate [14]) entangled photon
pairs can be used as ideal flying qubits to distribute quantum information among
individual nodes/systems.

The generation of entangled photon pairs is a prime theme in quantum informa-
tion science, and several candidate systems can be employed for this purpose. The
aim of this chapter is to discuss the the generation of polarization entangled photon
pairs with self-assembled semiconductor quantum dots (QDs) [15]. Compared to
the most commonly used spontaneous parametric down conversion (SPDC) sources,
semiconductor QDs have a significant advantage of being able to emit entangled
photons with sub-Poissonian statistics, an important requirement for large scale QIP
applications. An excellent review on the QD growth was given by Rastelli, Kiravit-
taya and Schmidt in 2009, see [16]. The early researches on QD-based polarization
entangled photon sources have been reviewed by Shields, Stevenson and Young
in the same book [17], and since then much progress has been made by the com-
munity. Therefore we shall focus mainly on the most recent experimental results
in the past few years. Being compatible with mature semiconductor technologies,
QD-based entangled photon sources can be fabricated on chip [18] and triggered
optically [19–27] with high brightness (up to 0.12 pair per excitation pulse)[25] and
high indistinguishability (0.86 ± 0.03) [28]. Electrical triggering of QD entangled
photon sources [29, 30] with repetition rates of up to several hundreds MHz [30]
have also been demonstrated. Armed with these powerful techniques, semiconductor
QDs have the potential to fulfill the wish-list of a perfect entangled photon source
for many exciting QIP applications [31].

7.1.1 Photon Qubits

We begin by describing the basic concepts of single photon qubits. The term photon
was firstly introduced in 1926 [32] and it represents a single quantum of light. A
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Fig. 7.1 Poincaré (Bloch) sphere representations of a polarization qubit, b orbital angular momen-
tum qubit and c time-bin qubit

single photon can possess simultaneously many degrees of freedom, for example,
energy (frequency), polarization, spin and orbital angular momentum, and arrival
time. Therefore a coherent superposition of possible quantum states (qubit) can be
encoded by using different degree of freedom of a single photon. Figure7.1 shows
the Poincaré sphere representations of three most commonly studied qubit encoding
schemes.

Polarization Photon Qubits

Due to its wave-particle duality, a photon may be described as a travelling elec-
tromagnetic wave. The photon polarization describes the oscillation direction of the
electric field. Therefore, a superposition state (qubit) can be represented by the polar-
ization projection onto any orthonormal basis. For example, we denote the horizontal
and vertical polarization states as |H〉 and |V 〉, respectively. And then, a polarization
qubit in a pure state can be written as:

|ψ〉 = α|H〉 + β|V 〉, wi th|α|2 + |β|2 = 1 (7.1)

Measuring |ψ〉 in the {|H〉, |V 〉} basis yields polarizationHwith probability |α|2, and
polarization V with probability |β|2. We can also choose the orthogonal basis {|R〉,
|L〉} or {|D〉, |A〉}, where R, L, D, A denote the right-hand circular (|R〉 = (|H〉 −
i |V 〉)/√2), left-hand circular (|L〉 = (|H〉 + i |V 〉)/√2), diagonal (|D〉 = (|H〉 +
|V 〉)/√2), anti-diagonal (|A〉 = (|H〉 − |V 〉)/√2) polarization states, respectively.
Measuring the photon qubit in these bases yields different probabilities. Therefore,
more generally, we can express any polarization state as a point on a Poincaré sphere,
as shown in Fig. 7.1a. The two linear polarized states lie at the north and south poles,
and the two circularly polarized states lie on the equator. The states lie in between
them represent elliptical polarized states. Each pair of antipodal points correspond to
orthogonal states. The points on the Poincaré surface correspond to the pure states,
whereas the interior points correspond to the mixed states.

Orbital Angular Momentum Photon Qubits

The polarization encoding of photon qubits has been extensively studied in the past
decade, mostly due to the ease of manipulation and detection of the spin angu-
lar momentum (SAM) of light. However the Hilbert space associated with the
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SAM degree of freedom is restricted to two dimensions, which prevents the high-
dimensional encoding of quantum states. Besides SAM, orbital angular momentum
(OAM) degree of freedom of photons can be also used to encode quantum informa-
tion [33]. OAM encoding, due to its almost unlimited dimensions, can enhance both
the information carrying capacity and tolerance of noise in quantum communication
channel.

The OAM is associated with the spatial distribution of light. The phase front
of z-direction propagated light wave with well-defined OAM possess an azimuthal
dependence of eilφ, where l represents the integer number of azimuthal phase rota-
tions in one full cycle from 0 to 2π [33]:

ψ(r,φ, z) = ψ0(r, z)eilφ (7.2)

where ψ0 is the amplitude distribution, φ is the azimuthal angle. There are a number
of ways of generating OAM states with arbitrary l. It is worth mentioning that a con-
trolled quantum state transfer between polarization andOAMof a single photon have
been demonstrated, allowing the generation and manipulation of hyper-entangled
quantum states [34, 35]. An analogous Bloch sphere for OAM qubit is shown in
Fig. 7.1b, where the north and south poles represent the states |l〉 and | − l〉.
Time-Bin Photon Qubits

The polarization and OAM encoded photon qubits are susceptible to environmental
turbulence (for example, due to the birefringence effect in free space, fiber, and in
on-chip waveguides). Therefore the qubit encoding by using the single photon arrival
timewas proposed [36]. A detailed introduction to time-bit qubit and entangled time-
bin photon pairs has been given in the Chap.8 by G.Weihs et al., and here we include
only a brief discussion for completeness.

To generate a time-bin qubit, a single photon pulse is sent into a phase stabilized
(the variation in path length difference is much less than the wavelength of light) and
unbalanced Mach–Zehnder interferometer. The output of the interferometer consists
of two temporal modes, due to the different length of the two interferometer arms.
A single photon has a non-zero probability of taking either the short or the long
arm, then a time-bin qubit can be defined as a superposed state of these two temporal
modes. The quantum state in which a photon is in the first (second) temporal position
can be expressed as |1, 0〉 (|0, 1〉), see Fig. 7.1c for the Bloch sphere representation.

|ψ〉 = α|1, 0〉 + β|0, 1〉, wi th|α|2 + |β|2 = 1 (7.3)

While the time-bin encoding technique is very robust against environmental
induced decoherence, it does not allow easy single qubit unitary operations and inter-
action between the different qubits. Therefore, various schemes have been proposed
by converting a time-bin qubit to a polarization qubit for qubit operation purposes
and then converting it back for qubit transferring purposes.

Experimental QIP with photon qubits has progressed rapidly in the past years. So
far, most photonic QIP experiments (especially, those sophisticated ones) were per-

http://dx.doi.org/10.1007/978-3-319-56378-7_8
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formed with polarization qubits by using standard optical elements. In the following
sections we focus mainly on the two-qubit entanglement based on the polarization
degree of photons.

7.1.2 Entangled Photon Qubits

Schrödinger coined the term “entanglement” (in German, Verschränkung) in 1935.
[37] Einstein later famously derided entanglement as “spooky action at a distance”
(in German, spukhafte Fernwirkung). It refers to particles whose individual states
cannot be written without reference to the state of other particles. Mathematically
these states are said to be non-separable, andmeasurements of the state of one particle
will change the measurement outcome of all other particles. Consider two systems
A and B with respective Hilbert spaces HA and HB , and the combined state ρAB is
called separable (not entangled) iff it can be written as a convex combination of pure
product states:

ρAB =
∑

i

ωi |Ai 〉〈Ai | ⊗ |Bi 〉〈Bi | =
∑

i

ωiρ
i
A ⊗ ρi

B,
∑

i

ωi = 1 (7.4)

where ωi are positively valued probabilities, and |Ai 〉, |Bi 〉 are state vectors on the
Hilbert spaces HA and HB , respectively. Per this definition, a separable state can be
considered as a probability distribution over uncorrelated states.

But how do we define an entangled state? If ρAB is non-separable, then it is called
an entangled state. To decide the separability of ρAB , Peres–Horodecki criterion was
proposed [38, 39]. The partial transpose of ρAB with respect to the subsystem A is
written as:

ρTA
AB =

∑

i

ωi (|Ai 〉〈Ai |)T ⊗ |Bi 〉〈Bi | =
∑

i

ωi (ρ
i
A)T ⊗ ρi

B, (7.5)

where (ρA)T = (ρA)∗ are non-negative matrices with unit trace. The criterion states
that if ρAB is separable, ρTA

AB has non-negative eigenvalues. In other words, if ρTA
AB

has a negative eigenvalue, ρAB is said to be entangled. This is valid for 2 × 2 and
2 × 3 composite systems. As an example let us consider the two-photon state:

|φ+〉 = 1√
2
(|H H〉AB + |V V 〉AB) ∈ HA ⊗ HB (7.6)

where H, V denote the polarization. It can be shown that the density matrix:

ρ =

⎡

⎢⎢⎣

1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

⎤

⎥⎥⎦ , ρTA =

⎡

⎢⎢⎣

1
2 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 1

2

⎤

⎥⎥⎦ (7.7)



240 F. Ding and O.G. Schmidt

where the partial transpose ρTA gives a negative eigenvalue. Therefore |φ+〉 is said
to be an entangled two-photon state. While Peres–Horodecki criterion is a strong
measure for entanglement, Bell’s inequalities [40] and its generalization, Clauser–
Horne–Shimony–Holt (CHSH) inequalities [41]were the first quantitative criteria for
determining the separability of ρAB . And there are also several other good measures
of the degree of entanglement, such as concurrence, entropy of entanglement and
tangle. A detailed discussion is beyond the scope of this chapter, and the reader is
referred to the bibliography for more information.

Two independent photon qubits can be entangled in many degree of freedoms, for
example, in polarization [42], spin angular momentum [43], orbital angular momen-
tum [44] or in frequency [45] and photon arrival time (time bins) [36], as we briefly
discussed above. The phenomenon of hyperentanglement, which is the simultaneous
quantum entanglement in multiple and different degrees of freedom, is also being
studied extensively. In this chapter we restrict our discussion to the polarization
entangled photon pairs for the sake of simplicity. It is also worth mentioning that the
quantum non-locality holds for particles entangled not only in space but also in time,
as shown very recently by the polarization entanglement between two photons that
never coexisted in time [46, 47].

In fact the state in (7.6) is a maximally entangled state. The polarization state
measurement on system A in any basis will yield a completely random result of
either H or V (with equal probability of 1

2 ). But there is a perfect correlation between
the measurements on systems A and B. If we measure H in one system then we
will measure also H in the other system, and vice versa. There are four maximally
entangled Bell states:

|ψ+〉 = 1√
2
(|H V 〉AB + |V H〉AB) (7.8)

|ψ−〉 = 1√
2
(|H V 〉AB − |V H〉AB) (7.9)

|φ+〉 = 1√
2
(|H H〉AB + |V V 〉AB) (7.10)

|φ−〉 = 1√
2
(|H H〉AB − |V V 〉AB) (7.11)

7.2 Semiconductor Quantum Dots Based
Entangled Photon Sources

The first experiments to test Bell’s inequality were performed by using the radiative
cascade of single calcium atoms [48, 49]. The energy level scheme is shown in
Fig. 7.2a. The excited state (4p2 1S0) and the final state (4s2 1S0) both have total
angular momentum J = 0. The intermediate state (4p4s 1P1) is a triply degenerated
state with the orbital magnetic quantum numbers m = ±1, 0. The cascade process
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(a) (b) (c)

Fig. 7.2 Energy level scheme of a a single calcium atom, b an ideal semiconductor QD with zero
FSS and c with finite FSS

occurs as J = 0 → J = 1 → J = 0 and produces a pair of photons at 551.3nm and
422.7 nm, involving only the m = ±1 states. By performing polarization correlation
experiments, Aspect et al. proved that the generated photon pairs are in the one of
the maximally entangled Bell states [49]:

|φ+〉 = 1√
2
(|L551.3L422.7〉 + |R551.3R422.7〉) ≡ 1√

2
(|L L〉 + |R R〉), (7.12)

However, demonstrating scalable QIP applications with single atoms is seemingly
a technology challenge. In 1970 Burnham and Weinberg demonstrated photon pairs
emission based on the nonlinear effect of spontaneous parametric down conversion
(SPDC) [50], and then in 1988 Shih and Alley demonstrated that the photon pairs
generated from SPDC are entangled in their polarization states and are able to violate
Bell’s inequality [51], which opened the door for various polarization-entanglement
based QIP experiments. SPDC has served as the main workhorse for generating
polarization entangled photons in the past decade. However the generated photons
are characterized by Poissonian statistics, i.e. one usually does not know when an
entangled photon pair is emitted. This fundamentally limits their applications in
complex quantum protocols.

The intrinsic limitations of SPDC call for next generation entangled photon
sources. Single self-assembled QDs based on III-V semiconductor materials (e.g.
InAs QDs embedded in GaAs matrix, GaAs QDs embedded in AlxGa1−xAs matrix)
are often referred to as artificial atoms, due to the fact that they possess discrete
energy levels. They are among the leading candidates for the deterministic gener-
ation of single photons [52] and polarization entangled photons [15]. As proposed
by Benson et al. single QDs can generate polarization entangled photon pairs via its
biexciton (XX) cascade decay through the intermediate exciton states X. The biex-
citon state (with a total angular momentum J = 0) consists of two electrons (with
Sh,z = ± 1

2 ) and two holes (with Jh,z = ± 3
2 ) and can be written as: | ↑↓⇑⇓〉. The

exciton state, on the other hand, consists of one electron and one hole, and there are
four possible configurations characterized by their angular momentum projections
M = Se,z + Jh,z . The states with |M | = 2 are the so called dark excitons, and cannot
couple with the light field. The states with |M | = 1 are the bright excitons (with a
total angular momentum J = 1) and can be written as: | ↑⇓〉 or | ↓⇑〉. Similar to the
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cascaded emission from single calcium atoms, the emission from biexciton to the
ground state via the intermediate exciton states also produce polarization entangled
photon pairs (Fig. 7.2b):

|ψ+〉 = 1√
2
(|L X X RX 〉 + |RX X L X 〉) ≡ 1√

2
(|L R〉 + |RL〉), (7.13)

or, in the linear and diagonal basis:

≡ 1√
2
(|H H〉 + |V V 〉) ≡ 1√

2
(|DD〉 + |AA〉) (7.14)

7.2.1 Biexciton Cascade and Fine Structure Splitting

In real III-V semiconductor QDs, however, the anisotropy in strain, composition and
shape reduces the QD symmetry to C2v (e.g., in a pure lens shaped InAs/GaAs QD
with circular or elliptical base elongated along the [110] or [11̄0] directions [53]) or
the even lower C1 (in general alloyed InGaAs QDs) [54]. The anisotropy mixes the
circularly polarized bright exciton states |M | = 1, and the new states are:

1√
2
(| + 1〉 ± | − 1〉) ≡ 1√

2
(| ↑⇓〉 ± | ↓⇑〉) (7.15)

The photons emitted from the radiative recombination of these states are linearly
polarized along the in-plane anisotropy axes, and have different energies due to
exchange interaction [54]. The energetic splitting between these two states is called
fine structure splitting (FSS), see Fig. 7.2c. More details on the origin of FSS can be
found in the seminar work by Bayer et al. [54].

Although the classical polarization correlation still holds true for the linearly
polarized photon emitted from the cascaded process in Fig. 7.2c, the transformation
into entangled states in the diagonal and circular bases are not possible due to the
existence of FSS. The two-photon state is therefore given by [17, 55]:

|ψ〉 = 1√
2
(|H H〉 + eiτs/�|V V 〉) (7.16)

where τ is the radiative lifetime of the exciton and s is the FSS.
In time-integrated polarization correlation experiments, high fidelity to the maxi-

mally entangled Bell state |φ+〉 = 1√
2
(|HX X HX 〉 + |VX X VX 〉) can be observed only

with a vanishing FSS (typically, smaller than the radiative linewidth of �/τ , which
is about ∼ 1µeV in InGaAs/GaAs QDs). This was firstly demonstrated by the
Cambridge group [19] and the Technion group [20] in 2006. The former work used
in-plane magnetic fields to eliminate the FSS, while the latter used a narrow band-
pass filter to select photons with energy differences below �/τ . For related works
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before 2009, the readers may refer to the previous review by Shields, Stevenson
and Young [17]. In time-resolved experiments, Stevenson et al. demonstrated that a
time-dependent oscillation of the entangled states can be observed in a single QD
with finite FSS [55], and the technique was then used to reveal the time-evolving
Bell state in telecom QDs [56].

To obtain entangled photonswithout discardingmost of the photons, it is therefore
necessary to have near zero FSS. However, the probability of finding such QDs in
an as-grown sample is <10−2. This is a great challenge for fabricating a practical
entangled photon source based on single QDs. A good example is that, since the first
demonstration of a QD-based entangled light-emitting-diode (LED) in 2010 [29], no
second group was able to realize a similar device due to the very low probability of
finding QDs with zero FSS.

7.2.2 Manipulation of Fine Structure Splitting

In the past years we witnessed considerable progress in the field, and the elimi-
nation of FSS can be achieved by applying rapid thermal annealing [25, 57–60],
magnetic fields [19, 61], optical Stark effect [26],vertical [23, 62, 63] and lateral
electric fields [64, 65]. Here we review the recent works based on two new strategies
developed since 2009. The first is to use novel growth methods to obtain single QDs
with ultrahigh symmetry and therefore intrinsically small FSS. And the second is to
use anisotropic strain fields (and their combinations with other fields) to control the
FSS precisely in each single QDs [18, 27, 30, 66–68].

Vanishing FSS in Highly Symmetric QDs

The degeneracy of the bright excitonic states is lifted mainly by the anisotropic
in-plane electron-hole exchange interaction. Therefore it is intuitive to to recover
the symmetry in single QDs, in order to eliminate the FSS. Although various post-
growth tuning methods can be used for the tuning of FSS in each individual QDs,
it is desirable to develop novel growth methods to create ensembles of QDs with
sufficiently small FSS.

In 2009 there were two theoretical works suggesting that In(Ga)As/GaAs QDs
grown onGaAs(111) surfaces, instead of the conventionalGaAs(100) surfaces, could
have intrinsically small FSS and can be used as ideal sources for entangled pho-
tons [70, 71]. Themain idea of usingGaAs(111) surfaces is to avoid theC2v symmetry
of the atomic alignment on GaAs(100) surfaces. Both (111)A and (111)B surfaces of
GaAs have a higher C3v symmetry [72, 73] and there will be no preferential growth
axis for the QDs.

Unfortunately, it is known that the self-assembled QD growth via Stranski–
Krastanov method is prohibited on (111) surfaces. In recent years, several differ-
ent growth methods were developed to solve this problem. One solution is to grow
InGaAs/GaAs QDs in inverted tetrahedral recesses on GaAs(111)B surfaces [22, 74,
75] by using metalorganic vapour phase epitaxy machines, see Fig. 7.3a. The second
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Fig. 7.3 Highly symmetric semiconductor QDs grown on (111) surfaces. a Pyramidal
In0.25Ga0.75As1−δNδ QDs formed in the tetrahedral recesses on GaAs(111)B. The upper figures
shows the AFM image of a cleaved QD sample, and the lower figures shows a HRSEM image of the
sample after the substrate removal procedure. Figures adapted from the work by Juska et al. [22]. b
AFM linescan and image of a single GaAs QD grown by droplet epitaxy. Figures adapted from the
work by Kuroda et al. [24]. c A single QD-containing InP nanowire grown on InP (111)B substrate.
Figure adapted from the work by Versteegh et al. [69]

solution is to use droplet epitaxy technique with standard molecular beam epitaxy
machines. For example, in the work byKuroda et al. [24], a layer of Al0.3Ga0.7Aswas
deposited on the Ga-rich surface of a GaAs (111)A substrate to form Ga droplets.
Then As4 was then supplied to crystallize the droplets into GaAs QDs, see see
Fig. 7.3b. From the AFM linescan, it is shown that a single QD exhibits no lateral
elongation. With a similar technique InGaAs QDs were grown on (111)B GaAs
surfaces and a mean FSS of 5.6 ± 0.6µeV averaging over 22 quantum dots was
reported [76]. Also, telecomwavelengthQDswith vanishing FSSwere reported [77].
The third solution employs a chemical beam epitaxy machine to grow InP nanowires
containing single InAsP QDs on SiO2 patterned InP (111)B substrates, see Fig. 7.3c.
Polarization entangled photon emissions have been demonstrated with all three sys-
tems. In the work by Juska et al., up to 15% QDs show entangled photon emissions.
In the work by Kuroda et al., about 5% QDs show no detectable FSS and therefore
entangled photon emissions.

The situation on GaAs (100) surfaces is more difficult, due to the different
surface adatom mobilities along [110] and [11̄0] directions. Nevertheless, highly
symmetric, strain-free GaAs/AlGaAs QDs on GaAs (100) substrates have been suc-
cessfully demonstrated in a recent work [78] by infilling GaAs into AlGaAs droplet-
etched nanoholes [79, 80]. The samples were grown by molecular beam epitaxy,
see Fig. 7.4a. A thin AlxGa1−xAs layer was grown on the GaAs substrate, and Al
droplets were formed by depositing 0.5 monolayer (ML) excess Al at a growth rate
of 0.05ML/s. Low-density nanoholes were etched into the surface by dissoluting the
Al droplets. QDs were formed by diffusing 2 nm GaAs into the nanohole template
and by capping the filled holes with AlGaAs as top barrier [78]. Because of the weak
intermixing between GaAs and AlGaAs, the GaAs QDs assume the shape of the
predefined holes. Figure7.4b, c show the representative AFM image and linescans
of a single nanohole prior to GaAs infilling. The circular symmetry of these QDs
can be clearly identified. Micro-photoluminescence was then performed to inves-
tigate the FSS of neutral excitons. The linear polarization of the emitted light was
analyzed by a rotatable achromatic λ/2 retarder followed by a fixed polarizer in the
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(a)

(b) (c) (d)

Fig. 7.4 Highly symmetric semiconductorQDsgrownon (100) surfaces.aSchematic representaion
of the growth procedures. b Representative AFM image and c corresponding linescans along [110]
and [11̄0] crystal directions of a single nanohole prior to GaAs infilling. dNeutral exciton emission
of a single QD as a function of polarization detection angles. FSS is obtained from the amplitude
of a sine fit. b–d are adapted from the work by Huo et al. [78]

optical path. The sample was aligned in such a way that the polarization angle of
0◦ corresponds to the [110] crystal direction within an error of about 5◦ [78]. The
FSS is then defined as the absolute value of the energy difference between the two
bright excitonic extremes, see Fig. 7.4d. A mean FSS of 3.9 ± 1.8µeV with random
polarization angles was revealed by measuring 20 QDs. Since the radiative recom-
bination lifetime of these QDs are around 0.2 ns, the low FSS is comparable to the
Fourier limited excitonic linewidths. Therefore, these QDs are promising candidates
for entangled photon sources. It is also worth mentioning that the Fourier limited
linewidth can be achieved in this type of QDs with both resonant and non-resonant
excitations [81], which may lead to the emissions of indistinguishable entangle pho-
ton pairs without the need of complex two photon pumping schemes [28]. With
further improvements in growth techniques, it might be possible to finally achieve
ensembles of high quality entangled photon emitters on single substrates.

Eliminating FSS with Giant Quantum Stark Effect

Before presenting the relative works on strain tuning of FSS, we first introduce
the work on tuning FSS with vertical electric fields. It is a good starting point for
understanding the effects of strain fields on FSS, since Gong et al. pointed out that
applying an electric field along the [001] direction has the same symmetry as applying
in-plane stress along the [110] and [11̄0] directions [82].

Bennett et al. designed a QD heterostructure (Fig. 7.5a) that allows very larger
electric fields to be applied before the tunneling of carriers out of QDs [62]. At
large FSS the two exciton eigenstates can be considered as radiating dipoles aligned
along the [110] and [11̄0] directions, and their energies follow the quantum confined
Stark shift E = E0 + pF + βF2, where p is the permanent dipole moment and β
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Fig. 7.5 a Device design for giant Stark shift of exciton emissions. b Photoluminescence versus
electric field for a single QD. c FSS (denoted as |s|) and polarization angle θ as a function of
the applied electric field for three QDs. The black lines indicate the ideal behaviors of a QD with
vanishing FSS during tuning. Figures adapted from the work by Bennett et al. [62]

the polarizability and F the applied field. Since the polarizability does not depend
on the in-plane anisotropy of the QD, it does not contribute to the relative change
of the two excitonic energies. Due to the different confinement potentials in the
two directions, the two excitonic eigenstates shift differently with applied electric
field and FSS is given by |s| ∝ (pH − pV )F [62, 67]. Therefore the FSS decreases
monotonically with applied vertical electric field before the two excitonic eigenstates
reach a hybridization.

At a certain field the FSS reaches a minimum value, which indicates an anti-
crossing in the energies of the two excitonic states, see Fig. 7.5c. The polarization
angle θ, which is defined as the angle between the orientation of the eigenstates
relative to the crystal axis [110], also rotates during the tuning of FSS. In Fig. 7.5c,
d it is interesting to see that, the QD exhibiting a sharper rotation of θ has a smaller
minimum FSS value at the anti-crossing point. With a simple model it was predicted
that the polarization angle θ of aQDwith vanishingminimumFSSat the anti-crossing
point will show an abrupt change of exactly 90◦ during the tuning.

7.2.2.1 Eliminating FSS with Anisotropic Strain Fields

The behaviors of anti-crossing in the exciton states and the rotation of polarization
angle were firstly predicted for QDs under uniaxial stresses [53, 82, 83]. In the
seminal work by Seidl et al. [66] a QD sample (4×3×0.5 mm3) was glued tightly
onto a piezoelectric lead zirconic titanate (PZT) ceramic stack, and the FSS showed
a monotonic change with increasing voltages on the PZT. However, the FSS was not
tuned to zero due to the limited tuning range of exciton energy (∼0.5 meV).
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Fig. 7.6 Experimental studies of the influence of anisotropic strain fields on the QD emissions.
a, b Polarization angle and FSS behavior of a GaAs/AlGaAs QD and c, d of an In GaAs/GaAs
QD. The polarization angle is defined as the angle of the higher energy components of the exciton
emission with respect to the x direction of the PMN-PT substrate. For both QDs the x direction
roughly corresponds to the [11̄0] direction of the QD nanomembrane. Figures adapted from the
work by Plumhof et al. [86]

In 2009 Zander et al. used the Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) piezoelec-
tric actuators to tune the emission energies of QDs embedded in microrings. In 2010
Ding et al. used PMN-PT to investigate the excitonic binding energies ofQDs embed-
ded in a thin nanomembrane (with a thickness of a few hundred nanometers) [84]. In
these two works the use of high performance PMN-PT together with the nanomem-
brane designs facilitated a much larger tuning range of exciton energies (∼10 meV),
leading to the observations of many strain-related physics in single QDs [85–87].
More details on the technique can be found in the review by Rastelli et al. [88].
However, due to the use of PMN-PT substrates providing biaxial strain fields, there
was no significant changes in the FSS.

Plumhof et al. developed a technique to apply anisotropic strain fields on the QD
nanomembranes [86]. The relation between the strain components is ε⊥ ≈ −0.7 ×
ε‖, where ε⊥ and ε‖ are the strain parallel to the pseudo-cubic cut directions (x and y)
of the PMN-PT. 150–200 nm thick QD-containing nanomembranes were created by
selective etching techniques and transferred onto the piezo, with their edges carefully
aligned along the x and y directions of the PMN-PT. Two different types of QDwere
studied in their work, GaAs/AlGaAs QDs and InGaAs/GaAs QDs, and the results
are shown in Fig. 7.6.Whenmoving from low to high emission energies, that is, from
tensile to compressive strain along x direction ([11̄0]), the FSS goes to a non-zero
minimum value before increasing again, accompanied by a gradual rotation in the
the polarization angle. These results are quite similar to the ones obtained by vertical
electric field tuning shown in Fig. 7.5.
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Fig. 7.7 Theoretical studies of the influence of anisotropic strain fields on the QD emissions.
a Polarization of the high energy excitonic component with respect to the x direction ([11̄0]) for
different values of α. The left inset shows the shape of the model GaAs/AlGaAs QD. The right inset
defines the angle of the QD elongation with respect to the [110] crystal direction. b Corresponding
values of the FSS. Figures adapted from the work by Plumhof et al. [86]

In order to gathermore insight on the strain induced anti-crossing of the bright neu-
tral exciton states, the excitonic FSS of a model GaAs/AlGaAsQDwas calculated by
combining the eight band k · p model and the configuration interaction method [86].
The results are shown in Fig. 7.7a, b for different anglesα between theQD elongation
axis and the [110] crystal direction. In the ideal situation of α = 0, the polarization
angle remains almost unchanged while the FSS shows a monotonic change (increase
or decrease) in a broad strain tuning range. At a certain strain field (0.086%), the FSS
reaches its minimum at below 0.4µeV and the polarization angle changes abruptly
by 90◦. When the QD elongation axis is not aligned along [110] (that is, α �= 0),
the minimum reachable FSS increases with increasing α and the polarization angle
changes smoothly. By inspecting the single-particle states it was found that small
stain fields produce relevant changes on the ground-state hole wave function, while
the effect on the electron wave function is much weaker. The enhanced mixing of
the heave hole band with the light hole band modifies the effective mass, causing
a pronounced anisotropy along the principal stress axes [110] and [11̄0]. The joint
influence of the structural anisotropy and the anisotropy of the effective mass leads to
the elongation of the wave functions along the [110] or [11̄0] directions, depending
on the sign of the applied strain. The smooth rotation of the hole wave function for
finite α accounts for the polarization rotation observed in Fig. 7.6.

Similar results can be obtained when the direction of the applied strain is changed
and theQDelongation axis is kept fixed at [110] direction. This indicates that it would
be even possible to reduce the FSS in every single QDs to a minimum value (below
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the lifetime limited linewidth of exciton) by carefully aligning the stress direction
to the QD principal axis. This “universal tuning” of FSS is very appealing for the
practical applications of QD based entangled photon sources. In practice, however,
controlling the stress directions locally for each singleQDs is very challenging. Trotta
et al. proposed a different and elegant approach to achieve the universal tuning of
FSS in InGaAs QDs without a structure symmetry. A dual-knob device was used
their works, where in-plane strain fields and vertical electric fields can be applied to
the QD nanomembrane simultaneously [68, 89]. The relevant theory was inspired
by the work of Gong et al. [82] and the main conclusion is that [68, 90]:

s = |(η + σ p + βF)2 + (κ + γ p)2| (7.17)

tan(θ±) = κ + γ p

η + σ p + βF ± s
(7.18)

where s is the FSS, p the anisotropic stress, F the electric field, η and κ account for
the QD structural asymmetry, σ and γ are related to the applied anisotropic stress,
and β is related to the vertical electric field. It is clear that s equals to zero when:

pcrit = −κ

γ
; Fcrit = σκ

γβ
− η

β
(7.19)

In the situation of only anisotropic stress field applied to theQDs, s = 0 → κ
η

= − 2γ
σ
.

Since η and κ are different for every QDs, this equation implies that s = 0 can be
always achieved if one has active control over the stress related parameters γ and
σ [90]. This corresponds to the ideal situation of α = 0 in Fig. 7.7. With the dual-
knob device, it is clear from (7.19) that the FSS of every single QDs can be erased
regardless of their structural symmetry. The tuning results are presented in Fig. 7.8.
Due to this unprecedented control on FSS, the violation of Bell’s inequality was
demonstrated without discarding any emitted photons from the QDs [27].

The discussions above prove that the strain field is a powerful tuning knob for
engineering the optical properties (including the FSS) of single QDs. It is also pos-
sible to combine the strain field with other tuning knobs, such as the electric field,
magnetic field or even another strain field [18, 91, 92]. A combination of electrical
injection of carriers into the QDs and local stress control of the FSS would allow
the fabrication of an all-electrically operated QD-based entangled LED for practical
applications. This goal has been demonstrated recently and will be discussed in the
following section.

7.2.3 Electrical Injection of the Sources

III-V semiconductor QDs possess an important advantage of being compatible with
mature semiconductor technology. For practical quantumapplications, electrical trig-
gering would allow the realization of compact and deterministic sources of entangled
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Fig. 7.8 a Behavior of the FSS as a function of the vertical electric field Fd . The different curves
correspond to different strain fields Fp . The solid lines are theoretical fits. b FSS as a function of
the exciton energy. Δmin indicates the minimum value of Δ (lower bound for the FSS versus Fd ).
cHistogram ofΔmax (the maximum value ofΔ) andΔmin for the different measured QDs. Figures
adapted from the work by Trotta et al. [68]

photons. In recent years the entangled photon pairs generation at room temperature
in an AlGaAs semiconductor waveguide has received considerable attention. The
source is based on SPDC with a counter-propagating phase-matching scheme [93].
Thanks to the direct bandgap of AlGaAs, an electrically injected AlGaAs waveguide
device was demonstrated in late 2013. However, due to the intrinsic nature of SPDC
process, the generated photons from these devices are characterized by Poissonian
statistics, that is, one usually does not know when an entangled photon pair is emit-
ted. This results in the generation of zero or even multiple entangled-photon pairs in
most excitation cycles and unavoidably limits the success of realizing deterministic
photonic quantum technologies.

Entangled light-emitting-diodes (LEDs) based on semiconductor QDs can poten-
tially address this task. It was firstly realized by the Cambridge group in 2010 [29],
see Fig. 7.9. The design of the device is based on a single layer of QDs embedded in
a doped planar microcavity. Carrier injection into the quantum dots was achieved by
biasing the diode beyond its turn-on voltage. To facilitate the emission of entangled
photons, a single QD with vanishing FSS was pre-selected for the experiment. Since
the two-photon wavefunction can be expressed as the superposition of co-linearly,
co-diagonally or cross-circularly polarized photon pairs (see (7.13) and (7.14)), the
polarization correlation experiment shown in Fig. 7.9c demonstrated clearly the emis-
sion of entangled photon pairs. The device has been used by the same group to
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Fig. 7.9 a Schematic of the active region of a QD based entangled LED. Polarization entangled
photon pairs are emitted from the biexciton cascade. b Electroluminescence from a single QD
under d.c. electrical injection, and the FSS of this pre-selected QD is 0.4 ± 0.1μeV . c Polarization
correlation experiment in the rectilinear, diagonal and circular bases with a time resolution of 0.2 ns.
The device was pulsed with an alternating current at a repetition rate of 80 MHz. Figures adapted
from the work by Salter et al. [29]

Fig. 7.10 a Sketch of the diode structure. Different from the previous works [84, 86, 89], the
PMN-PT top surface has (011) orientation, which imposes large anisotropic strain fields with well-
defined orientation onto the overlying ELED. b, c Representative variation of the FSS s and the
polarization direction θ of the high-energy component of the exciton as a function of Fp for five
QDs. The definition of θ is shown in the inset of c. Figures adapted from the work by Zhang
et al. [30]

demonstrate several important components in quantum communication, e.g. a quan-
tum relay over 1km [94] and quantum teleportation [95].

However, such devices rely on the pre-selected “hero” QDswith zero FSS, and the
extremely low yield (<10−2) limits the further studies on entangled LED based on
QDs. In-plane magnetic fields can be used to tune the FSS of single QDs embedded
in a LED structure, but it requires bulky setups. Tuning the FSS with vertical electric
fields, on the other hand, does not compatible with electric injections of carriers.
Therefore, piezoelectric induced strain fields hold strong promise to realize a high
yield entangled LED based on QDs.

A strain tunable entangled LED was introduced by Zhang et al. in 2015 [30]. The
device is schematically shown in Fig. 7.10a. Arrays of 440 nm n-i-pGaAs nanomem-



252 F. Ding and O.G. Schmidt

branes (each with a size of 120 × 160µm2) containing InGaAs QDs were integrated
onto a PMN-PT single crystal substrate. The details on the nanomembrane fabri-
cations can be found in the literatures [30, 88, 89]. The long edge of the GaAs
nanomembranes was processed along the [110] crystal directions of GaAs and care-
fully aligned along the [110] pseudo-cubic cut direction of the PMN-PT substrate,
see Fig. 7.10a.When the PMN-PT is poled along the z axis, in-plane strain fields with
normal components εxx along the x axis and εyy along the y axis with opposite sign
can be transferred to the nanomembrane. Accounting for its relevant piezoelectric
coefficients the in-plane anisotropy is estimated to be εxx ≈ −0.37εyy . Under this
condition the anisotropic strain fields are applied to the QDs with α = 0 as discussed
in Fig. 7.7a.

Electroluminescence from the QDs can be observed when the diode is biased
with a DC voltage (Vd ) of above −1.7 V. For the triggered generation of photons, an
ultrafast electrical pulse stream Vpp was superimposed onto a −1.6 V DC bias. The
strain provided by the PMN-PT crystal can be controlled by the electric field Fp,
see Fig. 7.10a. The FSS and polarization angle θ are shown as a function of Fp in
Fig. 7.10b, c. When Fp was varied from −6.7 to 28 kVcm−1, all studied QDs exhibit
the anti-crossing behavior as discussed above. In the meanwhile, the rotations of
θ was also observed. At the largest available tensile (compressive) strain, θ tends
to be aligned along the [11̄0] ([110]) direction. The minimum achievable FSS was,
however, different for each QDs. Gong et al. pointed out that the lower bound of
FSS under external stress can be predicted by the polarization angle θ0 and FSS s0 at
zero strain fields. The experiments showed excellent agreement with this theoretical
prediction. For QD D and E, their FSS can be reduced well below 1 μeV due to the
exact alignment between θ0 and the strain axis at zero strain fields, and an abrupt
change in θ can be also observed.

Statistical studies on 82 randomly selected QDs in the device showed that the
majority of QDs have their polarization angle θ0 aligned along the [11̄0] crystal
direction, see the supplementary materials in Zhang’s work [30]. With strain engi-
neering, as high as 33% QDs can be tuned to entangled photon emitters. Compared
to the only work on entangled LED with QDs [29], the yield is more than an order of
magnitude higher (a factor of 30). This probability is higher than what was reported
for highly symmetric pyramidal QDs [22] where, however, electrical injection has
not been realized yet.

The ability to tube the FSS allows the generation of entangled photon pairs
without the need of post-filtering. Figure7.11a shows the polarization resolved
polarization correlation between the XX and X photons. The FSS of the QD has
been tuned to 0.6 ± 0.2µeV. Strong polarization correlations were observed for the
co-polarized photons in {|H〉, |V 〉} and {|D〉, |A〉} bases, while strong polariza-
tion anti-correlation were observed for the co-polarized photons in {|R〉, |L〉} basis.
Two-photon density matrix was then reconstructed by performing 16 polarization
correlation measurements [96], see Fig. 7.11b, c. The fidelity f + to the maximally
entangled Bell State |φ+〉 = 1√

2
(|HX X HX 〉 + |VX X VX 〉) was 0.766 ± 0.051. With

ultrafast electric pulses, it is possible to achieve fast generate rate of the entan-
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Fig. 7.11 a Polarization correlation experiment on a QD in a strain tunable entangled LED. b Real
part and c imaginary part of the density matrix, which were reconstructured with 16 coincidence
counts integrated in a 1.8 ns temporal window centred at zero delay time. Figures adapted from
the work by Zhang et al. [30]

gled photon pairs, which is highly desirable for high data-rate quantum information
processing. An electrical excitation rate of up to 400MHz has been tested with the
strain tunable entangled LED. A small decrease in the entanglement fidelity was
observed, which was most likely due to the contributions of a small amount uncor-
related photon pairs generated during a time-dependent re-excitation process [30].

7.2.4 Scalability of the Sources

Many of the quantum information applications rely on indistinguishable sources of
polarization-entangled photons. The wavelength tunability has therefore become a
fundamental requirement for a number of envisioned applications, for example, nest-
ing different dots via the entanglement swapping [97] and interfacing dots with cav-
ities/atoms [98]. However, with single tuning knobs, the FSS can only be eliminated
under particular tuning parameters. Therefore, any attempt to manipulate the emis-
sion wavelength increases the FSS and spoils the entanglement. This fact undoubt-
edly restricts the entangled photon emissions at arbitrary wavelengths. The inability
to tune the emission wavelength without restoring the FSS, which is unfortunately
the common disadvantage associated with most of the FSS tuning technologies,
has become a major stumbling block to the QIP applications based on scalable QD
sources. Several recent works have solved this problem successfully by combining
two or three FSS tuning knobs.
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Fig. 7.12 a Photoluminescence as a function of electric field, F , without magnetic field. (Inset)
Schematic diagram of a device structure showing the simultaneous applications of the electric and
magnetic fields. b FSS as a function of electric field F , plotted at five different magnetic fields B.
Figures adapted from the work by Pooley et al. [99]

Combination of Electric and Magnetic Fields

A p-i-n diode, which allows the application of giant quantum confined Stark shifts
of exciton emissions, was used in the work by Pooley et al. [99]. A magnetic field
was applied simultaneously to the diode structure in Voigt geometry, see Fig. 7.12a.
As discussed in Fig. 7.5, the FSS can be minimized by the vertical electric field F
and the minimum FSS s0 can be achieved at a certain field F0. The studied QD has a
s0 of around 2.0 ± 0.2µeV. By changing the magnetic field B, the electric field F0

also changes, see Fig. 7.12b. This was the first experimental proof that wavelength-
tunable entangled photons may be generated by semiconductor QDs. However, the
QDs with sufficiently s0 must be pre-selected for this purpose.

Combination of Three Strain Fields

Tuning the FSS in single QDs with magnetic fields in Voigt geometry has been a
successful approach in the last years, but the bulky setup renders a practical imple-
mentation very inconvenient. Wang et al. suggested that the FSS can be eliminated in
wavelength-tunable InGaAs/GaAs QDs by using three combined strain fields [100].
However, the realization of the proposed 3D stressor is experimentally challenging.

Trotta et al. proposed a device to fully control the in-plane strain tensor by
applying three independent uniaxial stresses in the QD nanomembrane plane [101].
Figure7.13a shows the sketch of the device. It consists of a micromachined sin-
gle crystal PMN-PT substrate featuring six legs and capable of deforming in any
direction a nanomembrane containing QDs. Quasiuniaxial stresses, and therefore,
the deformation of nanomembrane along different directions, are achieved by apply-
ing three independent voltages (V1,2,3) on the legs. The same voltage is applied to
opposite legs to limit displacements of the central nanomembrane, see more details
in [101].

The device operation principle was theoretical investigated in [92, 101] and the
main results are shown in Fig. 7.13b, c. The polar plots show ΔE (the half of the
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Fig. 7.13 a Sketch of the proposed device. The top and bottom views are depicted on the left and
right panel, respectively. Three independent voltages (V1,2,3) applied across pairs of legs and the
top (grounded) contact allow the in-plane stress in the QD membrane to be controlled. Reference
[101] b, c Polar plots of ΔE under the situation of two and three legs, respectively. d FSS as a
function of the exciton energy Ex at different stress conditions. Figures adapted from the work by
Trotta et al. [92]

energy difference between the XX and X energies minus its minimum value, and
max(ΔE) equals to the FSS) as a function of the angle the linear polarization analyser
forms with the [110] crystal axis. Leg 1 is used to rotate the polarization direction
θ of the exciton until it aligns along the direction Leg 2, see Fig. 7.13b. Then it is
similar to the situation of α = 0 as discussed in Fig. 7.7, and the (quasi-)uniaxial
stress provided by Leg 2 will be able to eliminate the FSS (reduce ΔE to zero).
Note that, φ2 in Fig. 7.13 is the angle between the direction of Leg 2 and the [110]
crystal axis, which is 90◦ in this specific example. With a third uniaxial stress, the
strain condition is modified and the combination of the first two stresses to achieve
ΔE = 0will be different, see Fig. 7.13c.With this elegant design,wavelength tunable
entangled photon emissions from single QDs have been successfully demonstrated.

Combination of Two Strain Fields

Another approach to the generation of wavelength tunable entangled photons from
QDswas introduced by Chen et al. [18] and published back-to-back together with the
work from Trotta et al. [92]. The newly developed concept of hyperactive PMN-PT
MEMSon /Si [102]was successfully applied in the study of III-Vquantumphotonics.
Unlike the piezo substrate used in all previous works on strain tuning of QDs, a 15
µmPMN-PT thin-film bonded on a silicon substrate was employed to realize a novel
MEMS devices with sophisticated functionalities on chip, see Fig. 7.14. Arrays of
QD-containing GaAs nanomembranes, as described above, were then transferred
onto the PMN-PT MEMS with four actuation legs. Owing to the small footprint
and the compatibility with mature semiconductor technologies, large scale on-chip
integration is feasible. The crystal axes [11̄0] and [110] of the GaAs nanomembrane
were carefully aligned along the designed stress axes of the actuators, see Fig. 7.14c.
When applying negative (positive) voltages to the electric contacts, the PMN-PT legs
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Fig. 7.14 a MEMS device for anisotropic strain engineering of IIICV QD-based quantum light
sources. Focused ion beam (FIB) cut was used to define trenches on the PMN-PT thin film, and then
wet-chemical undercutwas used to form four suspended actuation legs. A thinGaAs nanomembrane
containing In(Ga)As QDs was transferred onto the suspended region between the four legs. b
Micrograph showing the zoom-in of a completed device. Electrical contacts aremade on the four legs
A-D. The centre region is a bonded QD-containing nanomembrane. c Definition of the polarization
angle theta is the same to that in Fig. 7.7. d Exciton wavelength is plotted as a function of VAC for
the two different VB D . The solid lines are linear fits. The arrows indicate exciton wavelengths at
which the FSS are erased. Figures adapted from the work by Chen et al. [18]

expand (contract) in-plane and therefore exert quasi-uniaxial compressive (tensile)
stresses to the QDs.

Specific QDs with initial polarization angle θ0 = 0 were chosen for the experi-
ments. According to the statistical studies performed by Zhang et al. [30], the prob-
ability of finding such QDs are rather high due to the elongation of QDs along [110]
during MBE growth. With negative (positive) voltages applied, the legs exert uni-
axial compressive (tensile) stresses to the QD which causes a blue (red) shift in
exciton emission. This is confirmed by sweeping voltage on the legs A&C VAC from
0 to 100V while keeping the voltage on the legs B&D VB D at 0 V. A red shift of
the emission was observed during the tuning, see Fig. 7.14d. The device performs
remarkablywell and therewas no hysteresis in thewavelength tuning, as indicated by
the linear fit. From the discussions in Figs. 7.7, 7.10 and 7.13, we know that the FSS
can be eliminated during this tuning. The arrows in Fig. 7.14d indicate the exciton
wavelengths at which the FSS reaches zero. The effect is similar when changing VB D

from 0 to −25 V. Therefore a high degree of control on the exciton wavelength and
the FSS can be achieved, for the QDs with θ0 = 0, by using two pairs of orthogonal
actuation legs.

Two dimensional scanning on the two pairs of legs by sweeping both VAC and VB D

was performed, see the three-dimensional plot in Fig. 7.15a. The astonishing result
is that, with this four-legged device providing orthogonal uniaxial stresses, multiple
zero FSS points with different exciton wavelength can be achieved. At different VB D ,
the electronic symmetry ofQDcanbe always recovered by sweepingVAC and theFSS
is erased. The dashed line on the bottom plane of the plot indicates the combinations
of (VAC and VB D) at which the FSS reaches its minimum. A linear relationship
was found for the ratio of voltage changes ΔVAC/ΔVB D . This result was confirmed
theoretically by an effective two-level model, see more details in [18]. Figure7.15b
shows the polarization correlation experiment when the FSS is tuned to near zero



7 Polarization Entangled Photons from Semiconductor … 257

(2
)

N
or

m
al

iz
ed

 g

0
1
2
3

-20 -10 0 10 20

1
2
3

1
2
3

DA
DD

HV
HH

RR
RL

+
Fi

de
lit

y, 
f

0.0

0.2

0.4

0.6

0.8

-20 -10 0 10 20
Delay time (ns)

0.733±0.075

(a) (b)

(c)

Fig. 7.15 a The changes in FSS when both VAC and VB D were scanned. The dashed line on the
bottom plane indicates a linear shift of the voltage combination (VAC and VB D) at which FSS
reaches the minimum values. b Polarization correlation spectroscopy was performed in different
bases, when the QD FSS is tuned to 0.21 ± 0.20μeV . The normalized coincident counts were
given in the plot. c The peak near the zero time delay yields a fidelity f + of 0.733 ± 0.075 without
any background subtraction. The two dashed lines indicate the threshold of 0.5 for the classically
correlated light, and the threshold of 0.25 for the uncorrelated light. Figures adapted from the work
by Chen et al. [18]

(0.21 ± 0.20µeV). The entanglement fidelity f + to the maximally entangled Bell
state can be determined from the measurements in Fig. 7.15b. The peak near the zero
time delay yields a fidelity f + of 0.733 ± 0.075without any background subtraction,
which exceeds the threshold of 0.5 for a classically correlated state by >3 s.d.

Combination of Electric and Strain Fields

Although wavelength tunable entangled photon emissions from QDs can be achieve
by applying two or three in-plane strain fields (as shown above), the active feed-back
stabilization of the strain control [88] has to be implemented for practical applica-
tions due to the unavoidable hysteresis and creep of the piezoelectric materials. Very
recently, Zhang et al. reported a device which combines the advantages of vertical
electric field (giant Stark shift, see Fig. 7.5) and in-plane uniaxial strain field tuning
knobs [103]. The device consists of a n-i-p diode nanomembrane integrated onto a
conventional PMN-PT substrate. Different from the strain tunable entangled LED
shown in Fig. 7.10, the QD nanomembrane contains a layer of QDs in the middle of
a 150 nm-thick intrinsic GaAs/AlGaAs quantum well. The quantum well was used
in [62] to enable a giant quantum confined Stark shift of QD emissions. Although
a similar device was used [68], extending the work to achieve wavelength tunable
entangled photons is not straightforward as the anisotropic biaxial strain field cannot
eliminate the FSS solely [103]. A PMN-PT substrate with pseudo-cubic direction
[110], [01̄1] and [011] providing quasi-uniaxial strain fields was used in Zhang’s
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Fig. 7.16 a Sketch of the device combining giant Stark shift and in-plane strain tuning. b FSS as a
function of exciton energy Ex (tuned by strain fields), for five different values of Fd applied to the
diode. Figures adapted from the work by Zhang et al. [103]

work. By choosing the QDs with initial polarizations aligned along [11̄0] (or [110]),
the FSS tuning effect of combined vertical electric field and in-plane uniaxial strain
field is similar to that of two orthogonal in-plane uniaxial strain fields. Therefore,
the independent control on the FSS and the exciton emission energy can be also
achieved, see Fig. 7.16b. More details on the theoretical simulations and on the trig-
gered generation of wavelength tunable entangled photons can be found in [103].

7.2.5 Photon Collection Efficiency

A major challenge in the practical applications of QD-based polarization entangled
photon sources is the photon extraction efficiency. In bulk GaAs only less than 2%
of the photon pairs can be collected and most of the light are confined in the high
refractive index material. In recent years there has been considerable progress in
improving the extraction efficiency of QD-based single photon sources. The most
common approach is to design an optical microcavity, where the QD emissions are
funnelled into a cavity mode. When the QD is both spatially and spectrally coupled
to a cavity mode, the emission rate Γcav is enhanced by the so called Purcell effect:

Γcav = 3Qλ3

4π2V
Γ f ree (7.20)

where Γ f ree is the QD emission rate in free space, Q the quality factor, V the mode
volume, λ the wavelength on resonance. Γcav/Γ f ree is the Purcell factor Fp, and
the fraction Fp/(Fp + 1) of the total QD emission can be funnelled into the cavity
mode. The spectral matching of QD emission and cavity mode can be achieved by
tunings with temperature, electric, magnetic fields and the strain fields discussed
above. The spatial matching of the QD position and the field maximum of cavity can
be achieved by careful positioning of QDs before the cavity fabrication [104, 105],
or by the newly developed in situ lithography techniques [106, 107]. From (7.20) it
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Fig. 7.17 Principle of entangled photon extraction using a photonic molecule. a Two identical
pillar microcavities with diameter D are coupled. A single QD is inserted in one of the pillars. b
Emission intensity as a function of energy and temperature. c Left number of X and XX collected
photons for each excitation pulse as a function of the excitation power. Right collected entangled
photon pair rate (MHz) as a function of the excitation power. Figures adapted from the work by
Dousse et al. [25]

is clear that a high Fp requires a high Q. Since Q = λ/Δλ, it is only possible to use
a low Q cavity to enhance both X and XX photons due their large energy difference.

Dousse et al., however, proposed an interesting design based on high Q cavities
to realize an ultrabright entangled photon source. A single QD is deterministically
coupled to a photonic molecule, see Fig. 7.17a. To obtain two cavity resonances for
both XX and X photons, the QD is inserted in a micropillar cavity coupled to a
second identical but empty micropillar. By choosing pillar diameter and distance,
it is possible to independently tune the energies of the photonic molecule modes
and the energy differences between them to match both X and XX energies [25].
By temperature tuning, the X emission is resonant to mode 3 and the XX emission
is resonant to mode 2 at 5K, see Fig. 7.17b. The Purcell effect leads to a strong
increase in the QD emissions and reduces the radiative lifetime to 200–300ps for
each line, corresponding to a expected Fp = 3 − 5. To generate entangled photon
emissions, single QDs with FSS of 1–3µeV were chosen after the thermal annealing
of the sample. Figure7.17c presents the rate of collected entangled photon pairs for
an excitation rate of 82MHz and a rate of photon pairs collected in the first lens of
about 10MHz was achieved [25].

Versteegh et al. demonstrated a bright entangled photon source from a position
controlled nanowire QD [69]. A single nanowire with an embedded QD is shown
in Fig. 7.3c, and it has the key features of vanishing FSS (due to the growth on
(111) substrate) and bright emissions (due to the tapered waveguide geometry). An
extraction efficiency of 18 ± 3% was achieved. But the two-photon state emitted
by the QD is modified by the birefringence effect during propagation along the
nanowire, therefore certain polarization compensations must be implemented for the
source. A similar work was reported by Huber et al. by using very similar nanowire
QD samples [108]. This tapered nanowire design is in principle compatible with the
III-V QDs grown by MBE, and a strain tunable nanowire antenna with embedded
InAs/GaAs QDs has been demonstrated by Kremer et al. [109].
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7.3 Outlook

SPDC based single and entangled photon sources have been serving as the main
workhorse for optical QIP experiments in the last years. Do we really need a QD
based entangled photon source, if we have the easily operated SPDC sources in hand?
The answer to this question, in our opinion, depends highly on the targeted applica-
tions. For example the applicability of many photon-based QIP schemes is limited
due to the stochastic character of the photon sources. Therefore, a worldwide effort
has focused on overcoming the limitation of probabilistic emission by generating
two-photon entangled states “on demand” [110]. Although heralded generation of
polarization entangled photons has been realized with SPDC sources, the experi-
mental implementation requires complex setups and the performance of the sources
still need to be improved. A source with deterministic and sub-Poissonian emissions
is therefore very attractive. Here we outline several possible applications, where the
QD-based entangled photon sources could play an important role.

7.3.1 Entanglement Distribution

Building a quantum network is among themost exciting applications of QIP. An ideal
quantum network could, in principle, take the advantages of both stationary qubits
and flying qubits. Information can be stored and processed with stationary qubits in
each individually addressable node, and the faithful transfer of information can be
done via flying qubits between distant nodes. Spins are natural two-level systems
which fulfil the quantum superposition principle, and they are ideal candidates for
stationary qubits. Photons travel fastest in nature and have long coherence times,
thus they are considered as ideal flying qubits to carry quantum information over
long distances and to nest separated quantum nodes.

Semiconductor QDs are among the most promising candidates for both tasks.
Entangling the stationary (spin) and flying (photon) qubits in QDs has been demon-
strated by several groups internationally [111–114]. To distribute the entanglement
in a quantum network, a proven technique is to use the so called entanglement swap-
ping [97, 115, 116]. In Fig. 7.18a, the FSS of two spatially separated QDs are tuned
to zero and therefore polarization entangled photon pairs 1 and 2, 3 and 4 are emitted
from the two QDs. A Bell state measurement on photons 2 and 3, if they are indis-
tinguishable, heralds the entanglement of photons 1 and 4 despite the fact that they
never interacted and may be far away from each other. With the recently developed
wavelength tunable entangled photon sources [18, 92, 99, 103], it is even possible to
perform “event-ready” entanglement swapping [115] with QDs. Figure7.18b shows
one of our recent results, where the energy (wavelength) coincidence of two QDs
emitting entangled photons has been achieved. However the brightness and the pho-
ton indistinguishability of the studied source need to be improved for a successful
entanglement swapping experiment.
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(a) (b)

Fig. 7.18 a Principle of entanglement swapping with the polarization entangled photons from two
semiconductor QDs. b Normalized photoluminescence spectrum showing the exciton (1, 3) and
biexciton (2, 4) emissions from from two spatially separated QDs with FSS of zero. The charged
excitonic line are omitted for simplicity. The energy (wavelength) coincidence of photons 2 and 3
has been achieved

7.3.2 Hybrid Interfacing with Atoms

Entanglement swapping and quantum memory are two most critical elements in
building a quantum repeater. Onemay use atomic systems (either atomic ensemble or
single atoms) to store quantum information carried by photons [117, 118]. The hybrid
interfacing between entangled photons and quantummemories have applications not
only in long-distance quantum communication, but they also provide a route to a
more efficient multiphoton entanglement or linear-optics quantum computing, see
more details in the review by Pan et al. [1]. A deterministic entangled photon source
(e.g. single QDs) will be quite useful in this scheme, as it will enable an efficient
synchronization of multiple nodes in a network.

The coupling between semiconductorQDs and atomic systemswas firstly realized
byAkopian et al. in 2011 [98]. The single photon emissions fromGaAs/AlGaAsQDs
were tuned into resonance with the 87Rb D2 transitions at 780nm and then stored
in the slow-light medium for 15 times of the single photon temporal width. With
different choices of semiconductor materials, single QDs can emit single photons
in a broad wavelength range, from the ultraviolet-visible region to the near-infrared
region. Together with the wavelength fine tunings provided by external perturba-
tions (e.g., magnetic, electric and strain fields), the hybrid interfacing has been real-
ized, for example, with QD-Rubidium atoms (780 nm) [81, 98], QD-Cesium atoms
(895 nm) [92, 119], QD-Yb+ ion (935 nm) [120], QD-Nd3+:YVO4 crystals (880
nm) [121]. Thanks to the tunability as discussed in Sect. 7.2.4, the hybrid interfac-
ing between the QD based entangled photon sources and the atomic systems can be
also achieved now [92], which may lead to the implementations of a high efficiency
solid-state quantum repeater, see detailed discussions in [121–123].
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7.3.3 Telecom Band Sources

For long distance quantum communication, there is strong motivation to develop
entangled photon sources emitting at telecomwavelengths. To datemost experiments
have been performed with SPDC sources. Until now the studies on the telecom QD
based entangled photon sources (e.g. at O band:1260–1360 nm and C band:1530–
1565 nm) are rather primitive. This is mainly due to the difficulty to grow high
quality telecom QDs with vanishing FSS. The first attempt was made by Ward et al.
in 2014 [56], where, however, the entangled emissions was observed only in a short
time window. The QD used in their work has a large FSS of ∼6µeV, therefore, a
phase difference of eiτs/� is developed between the two-photon states (see (7.16)).
This fact leads to a time-evolving Bell state and a fidelity of>0.5 in∼5 ns (7 periods
of evolution of the exciton state). In an effort to reduce the FSS in telecom QDs, Liu
et al. reported the growth of highly symmetric InAs/InAlAs QDs on C3v symmetric
InP(111)A substrates [77]. The distribution of the FSS (from 3 to 70 µeV) was con-
siderably smaller than those reported in previous works on telecom QDs. The FSS
tuning techniques discussed in Sect. 7.2.2 can be in principle applied to the telecom
QDs. To explore the possibility of on-demand generation of indistinguishable pho-
tons, the resonant pumping technique has been also tested with telecom QDs [124].
A hybrid source was recently reported, where the single photons from QDs emitting
at 775nm were converted by SPDC process into single pairs of entangled photons
at 1.55 µm [125]. With further improvements on the photon qualities (coherence
and brightness), this hybrid source could be an interesting alternative to the telecom
QD based sources. It is also worth mentioning that, the interfacing between polar-
ization entangled photons and quantum memories is also feasible at the telecom
wavelengths [126].

7.3.4 On-Chip Integration

Quantum information processing with on-chip integrated architectures has received
considerable attention due to the improved performance, miniaturization and sca-
bility of the devices. Integrated circuits for the generation and manipulation of
superconducting qubits can be fabricated with hundreds to thousands of elements
on a chip [129]. In terms of QIP with photonic qubits, Harris et al. demonstrated
that the generation of time-correlated photon pairs with non-linear processes can
be combined with the spectral filtering on a single silicon chip. Together with the
on-chip detection techniques [130], these results open an exciting possibility for
large-scale QIP with photonic qubits [131]. There has been also significant progress
in the development of on-chip integrated platforms with semiconductor QDs, and a
detailed review is given in the Chap.13 by Rengstl et al. Here we mention several
most recent examples. Reithmaier et al. demonstrated a device which combines the
on-chip generation, routing and detection of QD resonance fluorescence all on the

http://dx.doi.org/10.1007/978-3-319-56378-7_13
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Fig. 7.19 aSEMimageof a four port directional coupler. The input ports for theQDandaweak laser
are indicated. The quantum interference occurs at the central 2 × 2 beamsplitter and are detected by
the two output ports. b Photoluminescence map of the tested device with an overlaid device contour.
The emission of a single QD was used as an internal source illuminating the device. a and b are
adapted from the work by Prtljaga et al. [127]. c Individually addressable and strain tunable QD
sources on a PMN-PT/Si substrate. The false color coded areas are the gold contacts (yellow) and
the QD nanomembranes (cran), respectively. Adapted from the work by Zhang et al. [128] (color
figure online)

same chip [132]. Prtljaga et al. [127] realized the on-chip two photon interference
of single photons from a QD and an external laser, see Fig. 7.19a, b. However, the
on-chip quantum interference of multiple QDs, which may find interesting appli-
cations in Boson sampling and several other QIP experiments, is very challenging,
due to the difficulty to fine tune the QD emissions on chip. By using the in-plane
anisotropic strain engineering technique, it would be possible to fabricate arrays of
scalable single and entangled photon sources on chip. Figure7.19c shows the SEM
image of our recently fabricated device, where four individually addressable and
strain tunable QD sources are integrated on a same chip [128]. The fabricate process
is similar to that described in Sect. 7.2.4.

7.4 Conclusion

As said in the 2009 review by Shields, Stevenson and Young: “Semiconductor quan-
tum dots are perhaps the world’s youngest proven technology for entangled light
generation. Since their first successful operation in 2006, there has been continuous
improvements to the quality of the entangled light generation, and to the understand-
ing of the fundamental concepts that both enable and degrade entanglement.” [17].
Another 7 years has passed since that review, and the quest for a “perfect” entan-
gled photon sources still continues. Polarization entangled photon pairs can be now
triggered optically from QDs with much higher brightness and indistinguishability.
Electrically triggered sources can be fabricated with high yield and operated at high
repetition rates. The stumbling block of non-zero FSS, which has plagued the gener-
ation of entangled photon sources for years, has been also removed with the recent
progress. However, the indistinguishability and brightness of the sources need to be
further improved, before they can surpass their SPDC counterparts. Very recently
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the excellent work by Somaschi and Senellart et al. showed that the performance
of QD based single photon sources is on par with that of the state-of-the-art SPDC
sources [133]. We believe that, with the continuous efforts of the community, the
“Eureka!” moment for QD based entangled photon sources will also come very
soon.
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Chapter 8
Time-Bin Entanglement from Quantum Dots

Gregor Weihs, Tobias Huber and Ana Predojević

Abstract Thedesire to have a source of single entangledphotonpairs canbe satisfied
using single quantum dots as emitters. However, we are not bound to pursue only
polarization entanglement, but can also exploit other degrees of freedom. In this
chapter we focus on the time degree of freedom, to achieve so-called time-bin entan-
glement. This requires that we prepare the quantum dot coherently into the biexciton
state and also build special interferometers for analysis. Finally this technique can be
extended to achieve time-bin and polarization hyper-entanglement from a suitable
quantum dot.

8.1 Introduction

While the realization of a large, universal quantum computer appears to be some
time away, small-scale and special purpose quantum computing devices have been
realized or are under construction. Quantum cryptographic protocols, in particular
quantum key distribution (QKD), which lets us distribute a secure cryptographic key
between two parties, are already commercial to some degree. Yet the distance over
which the key exchange can be realized is limited to a few hundred kilometers of
optical fiber, due to the inevitable exponentially growing losses and the noise floor
or background level of any realistic detector. The practical limits are even shorter
because for long distances the key rates will be extremely low.
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While for QKD one may resort to classical, trusted repeaters, thus sacrificing the
absolute physical security of the key exchange, for connecting quantum informa-
tion processing devices we will have to implement so-called quantum repeaters [1].
Quantum repeaters break a long distance connection into smaller links over which
entanglement is established. Via Bell-state measurements (BSM) at the intermediate
nodes the entanglement over the smaller links is then converted into entanglement
between the endpoints. What sounds simple in this very abstract description is much
more difficult in practice, because we must not assume perfect quantum channels
even for the smaller links. While protocols [1] have been devised to cope with the
errors, the resulting overhead in resources appears to be forbidding. Only if we start
with a high degree of entanglement in the small links will it be feasible to establish
the end-to-end quantum channel.

The most frequently used source of entanglement is the spontaneous parametric
down-conversion (SPDC) source [2, 3], which produces pairs of entangled photons
through a nonlinear optical effect from a pump laser. Unfortunately, SPDC does not
create a single entangled pair at a time, but is rather probabilistic, so that a (very)
small fraction of the pump laser’s photons are converted resulting in a randomnumber
of pairs per output pulse or time window. This limits their applicability in quantum
repeaters, because there is a fundamental trade-off between a high pair emission rate
and the error rate that is caused by multi-pair emissions. This error rate dramatically
reduces the achievable distance in a multi-link repeater scenario, even at a two-pair
emission probability of only 1% [4].

This is the ultimate reason why quantum communication will eventually need
sources of single entangled photon pairs. For now these are limited to single quantum
emitters with cascaded optical transitions. Atoms can serve as entangled photon pair
sources [5–7], but they require complex atomic beam or trap setups and their overall
emission rate is limited. To our knowledge no entangled photon pairs have been
produced from single molecules or color centers in solids, which otherwise seem to
work well as single photon sources. This leaves semiconductor quantum dots as the
only viable solid-state single quantum emitter of entangled photon pairs.

Proposed initially in [8] the biexciton-exciton cascade may emit polarization
entangled photon pairs, if the two spin configurations of the intermediate exciton
state are degenerate and thus no which-path information is available. The status of
polarization entanglement from quantum dots is discussed in detail in Chap. 7. In
this chapter we would like to point out that once we have an emitter of photon pairs,
there may be other degrees of freedom available to us for realizing photon entangle-
ment. Further we will discuss our and others’ results on time-bin entanglement from
quantum dots with an outlook on improvements and the possibility of generating
hyperentanglement of photons in two degrees of freedom.

The chapter will start by discussing the degrees of freedom of a photon and their
measurement, followed by a more detailed discussion of the related phenomena of
energy-time and time-bin entanglement. We will show that a coherent excitation
mechanism is required for obtaining time-bin entanglement from a quantum dot and
will discuss the optimal conditions. Finally we will present the results on time-bin
entanglement and an outlook.

http://dx.doi.org/10.1007/978-3-319-56378-7_7
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8.2 Photon Degrees of Freedom

Without resorting to a particular interpretation we may define a photon to be an
elementary excitation of a quantized mode of the electromagnetic radiation field. A
mode is a solution to the wave equation under particular boundary conditions and
in particular we can always resort to monochromatic solutions so that the modes
are harmonic solutions with a particular frequency ω and the spatial part is the cor-
responding solution of the Helmholtz equation. In a box-like quantization volume
with fixed or periodic boundary conditions these will be plane waves. From these
plane, monochromatic waves we may build other monochromatic modes by unitary
transformations. In experiments these unitary transformations between different sets
of modes or wavevectors are effected by beam-splitters or other, similar couplers.We
may further resort to non-monochromatic or spatio-temporal modes, like wavepack-
ets, which obviously will not necessarily be orthogonal, but in most practical cases
may be constructed close to orthogonal [9].

Aplanewave is characterized by awavevectorkwithmagnitude k = ωn(ω)/c and
a polarization unit vector e, which is orthogonal to k. Because there are always two
orthogonally polarized modes for any k, a photon may have any state of polarization
that can be described as a superposition of the two, i.e. any state on the Poincaré
sphere.

A single photon with a given frequency and wavevector is thus a perfect two-state
system, or qubit, with degenerate energy levels. The polarization of a photon can
be manipulated easily using retarders (wave-plates) and measured using polarizers,
which effectively project any incoming polarization to the one transmitted. Polarizing
beam-splitters (PBS), also called two-channel polarizers, are devices that couple
polarization and spatial mode (wavevector) by transmitting light that is polarized
parallel to the planeof incidence (p) and reflecting light that is polarizedperpendicular
to the same (s).

In contrast to the polarization, which is discrete, the continuous degrees of free-
dom frequency andwavevector allow storingmore information in one photon [10]. In
most practical cases wewill strive to define a discrete but not necessarily binary set of
modes for transmitting andmanipulating photonic quantum information, because the
analysis in the presence of noise anddistortion through a channelwill becomedifficult
for continuous encoding. Several schemes have been put forward and demonstrated
for wavevector-spatial coding: the dual-rail qubit [11] and its multi-rail extension,
transverse paraxial mode coding, in particular orbital angular momentum (OAM)
[12] and similar rotationally invariant coding [13]. In the frequency/energy-time
dimension time-bin [14] and multi-time-bin coding have been used as well as gen-
eralized temporal mode [15, 16] and frequency mode coding [17]. A more thorough
discussion of photonic quantum information encoding is given in Chap.7.

Some of these encodings promise good stability of the quantum state under prop-
agation either in free space or in optical waveguides. On the other hand their manip-
ulation and analysis (decoding) present more difficulties than in the simple case of
polarization. In all cases one has to deal with some kind of interferometer. As an

http://dx.doi.org/10.1007/978-3-319-56378-7_7
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example, for OAM decoding only recently efficient methods were found [18]. In
practice one will thus choose an encoding that is robust for the chosen channel.
There seems to be some general agreement that the most robust encoding for long-
distance transmission of quantum information in optical fibers is time-bin encoding
or some variant of it, e.g. differential phase shift keying (DPSK).

8.3 Time-Bin Encoding and Entanglement

In classical communication a large variety of modulation schemes is known, both
in incoherent and coherent communication, analog and digital. For photons, any
classical scheme can be used or adapted in principle. The only thing that changes
are the fundamental noise limits given by the uncertainty principle for amplitude and
phase.

In this sense time-energy wavefunctions and time-bin qubits are particular quan-
tumvariants of classical phase-shift-keying (PSK), even though in the quantum realm
we rarely use continuous-wave carriers. A time-bin qubit is defined via two usually
pulse-like quasi-orthogonal temporal wavepackets as shown in Fig. 8.1. A general
pure state is thus |ψ〉 = α |E〉 + β |L〉. The superposition bases |E〉 ± |L〉 are some-
times called energy bases, even though this terminology is only accurate if we are
talking about energy (frequency) eigenstates, i.e. plane waves, which are comple-
mentary to a time basis with temporal δ-distributed wavefunctions. The particular
wavepacket shape will either be determined by the generating optical (laser) pulse
or the decay properties of the generating quantum emitter.

Before discussing advantages and disadvantages of the time-bin encoding we
would like to look at the historical perspective. Temporal superpositions of photons
were first proposed by Franson in [19] in the context of entanglement and Bell’s
inequalities. To our knowledge, his original proposal of using cascaded transitions in
atoms was never realized to generate energy-time entangled photon pairs or demon-
strate a violation of Bell’s inequality. Most experiments [20–22] used SPDC as the
photon pair source in which the coherence of the pump laser provides the coherent
superposition of the early and late times. The requirement for using discrete time

time

space

(E)arly(L)ate

Fig. 8.1 Time bins are quasi-orthogonal wavepacket envelopes, which form the two quantum states
of a photonic qubit when occupied by a single photon. In this picture we imagine the wavepackets
propagating to the right in real space. The photon can then be in either the early (E) or late (L) state
or any superposition thereof
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bins through pulsed pumping of the SPDC instead of the continuous variant derived
from the desire to use the so-encoded qubits in protocols that require interferometric
Bell-state analysis on photons from different sources such as quantum teleportation
[23] and entanglement swapping [24].

For long distance quantum communication through optical fibers time-bin encod-
ing has a decisive advantage. The relative phase between two pulses that are only a
few nanoseconds apart in time is only altered by changes in the environment that are
faster than their temporal separation, i.e. in the GHz range. This kind of encoding can
also be seen as a temporally multiplexed version of the dual-rail qubit (see Fig. 8.2).
Nevertheless, chromatic dispersion can play a role both through the induced pulse
spreading and inside the imbalanced interferometers that are required for time-bin
analysis.

In order to measure a time-bin qubit in a superposition basis we have to delay the
early time bin and interfere it with the late one. For this purposewe use an imbalanced
Mach-Zehnder or Michelson interferometer (see Fig. 8.2). Obviously this analysis
is lossy, because only 50% of the photons will experience the correct delay. Half of
the early time bin will not be delayed and half of the late time bin will be delayed
even further. This results in a temporal pulse pattern as shown in Fig. 8.3. If the beam
splitters are symmetric, then only bases on the equator of the Bloch sphere (with E
and L at the poles) can be analyzed. For φ = 0 the interferometer outputs correspond

Fig. 8.2 Top the first beamsplitter creates a superposition of a photon being either in the upper
mode (rail) or the lower one. The second one analyzes the superposition depending on the phase
difference accrued between the two paths along their entire length, or in other words, it converts
the superposition back to the photon going to either of its outputs. Bottom additional mirrors (not
shown) and beamsplittersmultiplex the uppermode onto the lower onewith some delay. The second
imbalanced interferometer undoes the delay for measurement. This works only probabilistically,
with 50% efficiency in each interferometer, i.e. 25% overall for analysis in superposition bases.
Better performance could be achieved by using a switch
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EL
i−e E + L

ie E + LBS

BS φ

φ

φ

Fig. 8.3 Time-bin analysis occurs through imbalanced interferometers built from two beamsplitters
(BS) and mirrors (not shown). The output probability of a photon is distributed into three pulses,
where the middle ones are the two complementary superpositions. However, only half of the total
probability (photons) will be in the middle pulses. Depending on the phase of the initial state and the
interferometer phase φ this probability will be distributed between the two interferometer outputs.
The phase shift allows us to analyze with regard to a particular basis, i.e. X , Y or any other equal-
amplitude superposition of the E and L states. The first and third pulse contain the other half of the
early and late pulses, i.e. when detected, they give projections to the E/L (Z ) basis

to the qubit states ±X , for φ = i to ±Y . More general, universal time-bin analyzers
require beamsplitters with adjustable splitting ratios [25] to allow arbitrary amplitude
superpositions.

The ultimate time-bin analyzer (and encoder) uses a switch (switchable mirror)
instead of the first beamsplitter. The switch would have to route the early time bin
along the long arm and the late time bin along the short arm. The splitting ratio of
the second beamsplitter then defines the amplitude ratio of the superposition states
that are to be analyzed.

While time-bin encoding is very stable under propagation through optical com-
munication channels, the stability of an imbalanced interferometer may be a concern.
They have been realized in free-space and fiber versions and in both cases one needs
to add a phase stabilization laser and ensure the best possible mechanical and thermal
stability. Because of the large imbalance the stabilization laser not only needs to have
a long enough coherence length but is also required to be locked in its absolute wave-
length, which is almost always chosen different from the wavelength of the single
photons to avoid stray laser light reaching the sensitive single photon detectors.

So far the discussion concerned a single time-bin qubit. Things get somewhatmore
complicated for twoqubits,whichmaybe entangled or not. The situation is visualized
in Fig. 8.4, where a source emits pairs of time-bin encoded photons. Both photons
are analyzed in identical interferometers and detectors, whose detection times are
recorded as t1 and t2. A simple start-stop measurement between the two sides is not
sufficient, as it would lump the superposition basis events in with other simultaneous
detection events. Instead one needs to either record (time-tag) the arriving photons
in absolute time or at least determine the time difference to a synchronization signal
from the source on each side.

A perfect source of time-bin entanglement would produce the maximally entan-
gled state

|�〉 (φl) = 1√
2

(|E1E2〉 + eiφl |L1L2〉
)
, (8.1)



8 Time-Bin Entanglement from Quantum Dots 273

Time-bin 
pair source

Time-
tagging

t1
t2

Detector 1

Detector 2

ϕ2

ϕ1

Fig. 8.4 Analyzing time-bin encoded photon pairs requires time-bin analyzers with phase settings
φ1 and φ2 to set the basis on both sides and time-correlated detection. The amount of imbalance
is kept at the minimum allowed by the time resolution of the detectors or the minimum possible
wavepacket duration for the source

where the phase φl is internal to the source. It may originate, for example, from the
superposition of pump pulses in SPDC. By setting φl = 0,π one thus obtains the
�+,− Bell states, respectively. TheBell states are defined and discussed in Sect. 7.1.2.
For the �+ state the coincidence count rate for the two middle pulses in a pairing of
two equivalent outputs of the analyzers will then vary as 1

16 (1 + cos(φ1 + φ2)), i.e.
a coincidence probability of 1/8 for φ1 + φ2 = 0. The same is true for the second
equivalent pairing and both are complementary to the coincidence count rates for the
inequivalent output pairings. Therefore, in total only for one quarter of all emitted
pairs both photons are detected in the superposition basis, for another quarter both
photons are detected in the time-bin basis and for the remaining half, one photon
each is detected in the superposition and time-bin basis, respectively.

8.4 Time-Bin Entanglement from Single Quantum Emitters

In the original proposal by Franson [19] a long-lived upper level in an atom provided
the required coherence between the early and late cascade emission of a photon pair.
In SPDC the coherence of an earlier or later produced photon pair is provided by the
coherence time of the pump laser, whose phase will be the sum phase of the paired
photons. This can either happenwith a continuous-wave laser for Franson-type entan-
glement or with a coherent superposition of an early and late pump pulse for time-bin
entanglement. The laser pulses can be produced by an imbalanced interferometer or
directly from a mode-locked laser.

For most quantum dots we do not know of really long-lived levels that decay
in a cascade, so time-bin entanglement appears to be the only option, which also
happens to be more relevant for quantum communication purposes. To achieve time-
bin entanglement from a quantum dot the phase difference between the two pump
laser pulses has to be carried over to the phase difference between the emitted photon
pairs, and thus also intermediately to the phase difference between the two possible

http://dx.doi.org/10.1007/978-3-319-56378-7_7
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Fig. 8.5 Bringing the quantum dot to a metastable level before exciting it to the biexciton state
ensures that it will not be excited a second time by the second excitation pulse. This prevents the
emission of two pairs, which constitutes an error

excitations of the upper level thatwill decay in a two-photon cascade. Itwas originally
proposed [26] that the quantum dot be brought to a metastable state and then further
excited to the topmost level of the cascade, the biexciton level as shown in Fig. 8.5.
Dark excitons were proposed in the same reference as potential metastable states
and are discussed in Chap. 4. Because of the difficulty of exciting quantum dots into
dark exciton states a simpler version is to go directly from the ground state to the
biexciton, with the drawback of a possible second excitation by the late pump pulse.
Yet, such an experiment can prove the general possibility of time-bin entanglement.

In either case it is good to keep in mind that in order for the two possible emission
cascades to be indistinguishable it is necessary that no trace be left in the pump
field or the environment of the quantum dot. This however, does not mean that
the biexciton level has to have a coherence time that is long enough to span the
gap between the two excitation pulses, but only that its dephasing is considerably
shorter than the emitted wavepacket. The fact that the cascade itself is not always the
same, i.e. that the exciton state has a finite lifetime, does not degrade the achievable
time-bin entanglement. As in SPDC the phase difference between the exciton and
biexciton photon is irrelevant for the entanglement, which depends only on the sum
phase. However, as discussed in [26] the uncertainty stemming from the exciton
lifetime does lead to an entanglement between the biexciton and exciton photons of
a pair. Because this would limit their usefulness for multi-photon protocols such as
quantum repeaters, the authors of [26] proposed to employ microcavities to modify
the lifetimes such that this unwanted entanglement would be eliminated.

8.5 Two-Photon Coherent Excitation of a Quantum Dot

The central goal of photon pair generation from quantum dot systems is to get exactly
one photon at the biexciton and one photon at the exciton frequency that are produced
within a short time interval andwith awell defined sumphase. This is possible and the
exciton and biexciton transition frequencies are well separated due to the existence
of the biexciton binding energy. Nonetheless, to accomplish the generation process

http://dx.doi.org/10.1007/978-3-319-56378-7_4
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coherently, the quantum dot needs to be excited resonantly. A thorough review of
the various optical excitation and control methods is given in Chap.3.

This task is, despite the favorable energetic structure, not trivial to achieve in
epitaxial semiconductor quantum dots. The first, and most important reason is the
excess scattered laser light that can easily be much stronger than the single photon
signal emitted by the quantum dot. Therefore, the traditional way to excite quantum
dots is above-band excitation. Here, one uses a laser with an energy higher than
any transition in the quantum dot. This laser creates a multitude of carriers in the
vicinity of the quantum dot that can be probabilistically trapped in the quantum dot
potential. While it is possible to achieve very high single photon count rates with
this method, the probabilistic nature of this process reduces the suitability of such
a source for quantum information protocols. Another negative feature of the above-
band excitation is related to how exactly the quantum dot levels are populated.
Namely, biexciton excitations will only be created once the exciton level has been
filled and therefore a high rate of biexciton photons requires a very large number of
carriers in the quantum dot vicinity. This, however, is very unfavorable because it
promotes dephasing of the quantum dot levels due to the electric field fluctuations
and causes poor photon statistics properties due to processes like carrier re-capture.

A way to overcome these issues is to exploit the biexciton binding energy, which
sets the emission lines of exciton and biexciton photons far apart. When in such a
system the excitation laser light is tuned to an energy in between these two ener-
gies it produces a resonant two-photon coupling between the ground and biexci-
ton states as shown in Fig. 8.6. The two-photon approach to excite quantum dots
was initially shown in [27] on II–VI quantum dots, but it is quite a bit more diffi-
cult to apply it to III–V quantum dots. II–VI quantum dots typically have a much
larger biexciton binding energy (the difference between the exciton and the biex-
citon line wavelengths can be more than 10nm), but exhibit otherwise unfavorable
optical properties; II–VI quantum dots emit photons in the blue and green spec-
tral range that are, due to losses in the optical fibers, not very suitable for quan-
tum communication. The values for the energy difference between biexciton and
exciton lines in III–V quantum dots are in the range of 1–2nm. Therefore, these
systems demand a more thoughtful approach to reduce the laser scattering. Ear-
lier work on III–V quantum dots [28] showed the signatures of resonant excitation,
like Rabi oscillations, but only in photo-current measurements and not in the opti-
cal signal. The first optical measurements under two-photon resonant excitation on
III–V quantum dots were shown in [29]. It turns out that this type of excitation also
enables and improves several other emission properties compared to the traditional
above-band excitation [30, 31] but does not completely remove the blinking due to
the random occurrence of charged quantum dot states. This blinking behavior can
be improved to some degree by photo-neutralization [32].

The coherence of the excitation process enables coherent manipulation of the
phase of the ground-biexciton state superposition, which is crucial for obtaining
time-bin entanglement as pointed out in the previous section. The traditional way to
characterize the coherence between energy levels is to perform aRamsey interference
measurement in which the investigated system is excited using a sequence of two

http://dx.doi.org/10.1007/978-3-319-56378-7_3
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Fig. 8.6 The quantum dot energy scheme on the left shows the exciton fine structure splitting as the
energy difference between two exciton levels |xH〉 and |xV〉. In the process of two-photon resonant
excitation a pulsed laser (shownas arrowspointingupwards)with half the energy of the biexiton state
|b〉 coherently couples the ground (|g〉) and biexciton states through a virtual level (dashed line). The
biexciton recombination takes place through the intermediate exciton states (|xH〉 or |xV〉) emitting
biexciton (XXH,V) and exciton (XH,V) photons, respectively. On the right the measured biexciton
emission probability, Pb, and exciton emission probability, Px , as functions of the laser pulse area
are compared to a simulation (solid line) that includes linearly intensity-dependent dephasing. The
experimental error bars are smaller than the symbols

consecutive π/2 pulses, Fig. 8.7a. The first of these pulses brings the quantum dot
into a superposition of the ground and biexciton states. Upon this pulse, the system is
allowed to evolve freely for a time defined by the variable delay between the pulses,
Fig. 8.7. During the free evolution the excitation pseudo-spin precesses along the
equator of the Bloch sphere. The second pulse will map the population either back
to the ground state or flip it further to the biexciton state, depending on the evolution
of the pseudo-spin and the relative phase between the two pulses. A very thorough
review of the coherent manipulation of excitons and spins in quantum dot systems
is given in [33].

When such an experiment is performed in two-photon excitation it results in
Ramsey interference fringes in both the exciton and the biexciton emission [27]. It
is important to note here that in the case of the biexciton emission these fringes are a
direct result of the laser driving the transition. The interference observed in the exciton
channel closely follows the behavior of the biexciton but comes as a consequence of
the cascade decayof the system.TheRamsey interferencemeasurement characterizes
the coherence of the ground-biexciton state superposition and by varying the delay
between the two Ramsey pulses one canmeasure the coherence decay of this pseudo-
spin. An example of the decay of the Ramsey interference fringe visibility is shown
in Fig. 8.7c.

Decoherence caused by low frequency noise can be eliminated by applying a
refocusing pulse. Such a measurement is commonly called spin echo (also Hahn
echo) and requires a sequence of three consecutive pulses of different intensities
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Fig. 8.7 a Pulse sequence consisting of twoπ/2 pulses appliedwith variable delay. bThe spin-echo
pulse sequence. c The Ramsey interference visibility decay experiment as monitored by the emitted
biexciton photons is shown in gray. The data shown in green are from a spin-echo measurement
performed on the same emitter

(π/2,π,π/2) as illustrated in Fig.8.7b. Due to their lifetime quantum dots are
usually excited using laser pulses that are not longer than a few picoseconds. There-
fore the simplest way to obtain the sequence of Ramsey pulses is by feeding pulsed
laser light into a variable-lengthMichelson interferometer. Concerning the spin echo
measurements, it is quite straightforward to implement such a measurement in sys-
tems that have long lifetimes and coherence times. For example, for a trapped ions
system where the coherence times are of the order of a millisecond one can use
light derived from a continuous-wave laser and create the pulse sequence using an
acousto-optical modulator. Driving the ground-biexciton state superposition of a
quantum dot, however, requires pulse durations of a few picoseconds. In [29] it was
shown that the echo sequence with such pulses can be constructed by using aMichel-
son interferometer in double-pass configuration. Such an implementation is capable
of delivering the three consecutive pulses necessary for the spin-echo sequence with
the middle pulse being a result of the interference between the light passing once
through the interferometer with the light passing twice. Figure8.7c shows two sets
of data, one taken in a Ramsey and the other in a spin-echo interference experiment.

The creation of time-bin entanglement requires a phase stable generation of sub-
sequent photon pairs, which can be hampered by the phase uncertainty in the biex-
citon generation. To predominantly generate single pairs of photons through the
biexciton decay, one needs to avoid populating the single exciton state as well as
the re-excitation of the biexciton state after a decay within the same laser pulse.
This creates conflicting requirements for the excitation pulse length. Namely, short
pulses suppress dephasing and decay within the pulse duration, but have large band-
width and high peak intensity, which increases the off-resonant generation of single
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Fig. 8.8 Simulated emission
probability for the biexciton,
Pb for constant dephasing as
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excitons andpower inducedphase shifts. Longer pulsesmake the systemmore vulner-
able to background dephasing, decay during the pulse and thus multiple excitations.

Nevertheless, one can find an optimized operation regime for the parameters
of the system under consideration. The interaction of the quantum dot with the
semiconductor environment does not seem to influence this optimization. In [31]
we showed that one can choose an excitation pulse length that favors the creation
of biexcitons while suppressing the creation of unpaired excitons. This dependence
is illustrated in Fig. 8.8 showing the results of a theoretical simulation conducted in
[31].

This result has an important consequence. It indicates an existence of a tradeoff
between the excitation-pulse length and the biexciton binding energy. In particular it
favors the use of quantumdotswith large biexciton binding energy that in return allow
using short excitation pulses. In addition, such excitation pulses reduce the excitation
jitter and are therefore more favorable for quantum information applications.

8.6 Time-Bin Entangled Photon Pairs from a Quantum Dot

Written in terms of the biexciton (XX) and exciton (X) photon modes, the state given
in (8.1) reads

|�〉 = 1√
2

(|EXXEX〉 + eiφl |LXXLX〉) , (8.2)

where E(L) denotes the early (late) time bin, XX (X) the biexciton (exciton) recom-
bination photon and φl is the phase between the two pump pulses. In the previous
section, we explained how the quantum dot can be excited resonantly. The phaseφl in
(8.2) is the reason why a resonant pumping scheme is necessary. If the pump process
is not phase preserving, like above-band excitation, φl will not be the phase between
the two pump pulses but some random phase in each emission event, resulting in an
overall mixed state. The coherent excitation of the biexciton directly from the ground
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state, enables the possibility to transfer the phase from the laser onto the quantum
dot system thereby creating an output of the desired form given in (8.2).

While still superior to SPDC sources, which emit thermal pair distributions, one
drawback of the presented scheme is the rare but inherent creation of four-photon
events, evenwith a perfect quantumdotwith zeromulti-photon emission. This comes
from the fact that the entanglement generation depends on a probabilistic generation
of one photon cascade either in the E or in the L time bin. A photon cascade in
both of the time bins is a four-photon event, outside the single-pair Hilbert space,
and therefore the excitation probability has to be kept at a reasonably low level. The
same problem occurs with time-bin entangled photon pairs from SPDC. Contrary
to the case of SPDC, two solutions to this problem are known. As discussed above,
the first one was proposed by Simon and Poizat [26], which is using a metastable
state as the initial state. Thereby, a deterministic creation of the time-bin entangled
state is possible, without the loss of other degrees of freedom. This idea has not yet
been demonstrated experimentally. The second one, whichwas already demonstrated
experimentally, is to create the entanglement in a different degree of freedom, e.g.
polarization, and convert this entanglement to time bin [34]. This however requires
the availability of suitable quantum dots with zero fine-structure splitting, which
may have other disadvantages. The conversion requires that either fast polarization
switches are used or an extra 75% combined loss for the pairs is accepted. A further
drawback of this solution is that the simultaneous creation of entanglement in the
polarization and time-bin degrees of freedom, so called hyper-entanglement is not
possible.

Let us come back to the analysis of the time-bin entanglement, which was already
discussed in Sect. 8.3. As shown in Fig. 8.4, the middle pulses coming out of each
analyzing interferometer yield the superposition bases measurements that are impor-
tant to demonstrate entanglement. As the phases φ1 and φ2 are varied, entanglement
manifests itself in a variation of the rate of coincidence counts between pairings
of two output pulses, one of each interferometer. For a maximally entangled state
like (8.1) the individual, single count rate would remain constant, independent of
the phases, because either photon is individually in a mixed state of the early and
late time bins. In coincidence, however, the time bins are interfering, because it is
not possible, not even in principle, to tell in which time bin the photon cascade was
created and which paths the photons took in the analyzing interferometers. For an
imperfect state the coincidence rate will oscillate with an interference visibility that
depends on the indistinguishability of the early and late cascades.

In our experimental realization a pulsed laser (80MHz repetition rate, 12ps pulse
duration) coherently drove the ground-biexciton transition with a probability of 6%.
To create the two pump pulses, we sent the laser light through an imbalancedMichel-
son interferometer with a fixed length difference of 1m. This interferometer plus the
resonantly pumped quantum dot is the time-bin pair source in Fig. 8.4. After fre-
quency and polarization selection of the XX and X photon, the photons were sent
through additional beam paths inside the same physical interferometer (see Fig. 8.9).
This ensured the same path length difference for all the three interferometers. Fur-
thermore, any global phase drift would affect all three interferometers equally, thus
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Fig. 8.9 Three different paths in one physical realization of one interferometer were used as the
pump interferometer and the three analyzing interferometers

Fig. 8.10 Real and imaginary part of a reconstructed density matrix. This matrix was measured
with a 12ps excitation pulse and 6% excitation probability. |EE〉 - |LL〉 denote the measurement
basis states

no stabilization is required. If onewants to use the time-bin entangled photons for any
real-world quantum protocol, this interferometer has to be unfolded and stabilized.

For the analysis of the created time-bin entangled state, we used the method of
tomographic reconstruction, which needs measurements in a variety of bases, i.e.
phase settings. Details on the reconstruction can be found in [35]. The resulting two-
photon density matrix ρ can be seen in Fig. 8.10. In general it will not be a pure state,
but exhibit some degree of mixedness. The diagonal of the matrix from |EE〉〈EE| to
|LL〉〈LL| represents classical correlations in theE/L basis. The off-diagonal elements
are also called the coherences of the state and quantify the entanglement present in
the output.

If a source is reasonably close to the desired ideal state it makes sense to quantify
the overlap with that state, the so-called fidelity as an elementary measure of the
achieved quality. The fidelity F of an arbitrary mixed state ρ with a pure target state
|ψ〉 is defined asF = 〈ψ| ρ |ψ〉. For the density matrix shown in Fig. 8.10 the fidelity
towards the state

∣∣�−〉
(see (7.11)) is F = 0.88(3).

http://dx.doi.org/10.1007/978-3-319-56378-7_7


8 Time-Bin Entanglement from Quantum Dots 281

Unfortunately, the quantum dot community has long been using the fidelity as a
substitute for a proper entanglement measure. This is not a good practice and it is
better to calculate the concurrence, which is defined as

C(ρ) = max(0,λ1 − λ2 − λ3 − λ4), (8.3)

where λ1, ...,λ4 are the eigenvalues, in decreasing order, of the matrix

R = (
√

ρ ρ̃
√

ρ)1/2, (8.4)

where ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). σy is the Pauli matrix

(
0 −i
i 0

)
for a spin flip and

ρ∗ is the complex conjugate of ρ. The concurrence is C = 0 if no entanglement is
present and C = 1 for a maximally entangled state. For the density matrix given in
Fig. 8.10 the concurrence is 0.78(6).

These values comparewellwith earlier achievements in polarization entanglement
from quantum dots and allow, at least in principle, a violation of Bell’s inequality.
For practical applications we would still like to see some improvements. Looking
at the density matrix (Fig. 8.10) we can identify some shortcomings. First, there is a
small imbalance between |EE〉 and |LL〉, which is either due to a slightly different
pump pulse energy or different transmissivity of the long and short analyzing inter-
ferometer arms. Second, we notice that the magnitude of the coherences is smaller
than that of the diagonal elements. This is a result of several effects that limit the
indistinguishability of the early and late cascade, including dephasing during the
excitation process and during the lifetime of the biexciton state. The former effects
were discussed in detail in Sect. 8.5. The dephasing during the lifetime of the biexci-
ton is most likely due to the phonon environment remaining at temperatures around
5K and also due to the fast components (comparable to the biexciton lifetime) of
spectral diffusion, which in turn is usually attributed to the fluctuations in the charge
environment around the quantum dot. The impact of both these detrimental effects
could be reduced most by a lifetime reductions, e.g. using a microcavity and its Pur-
cell effect, but so far no results on resonant two-photon excitation of quantum dots
in microcavities have been reported.

8.7 Outlook

The level of time-bin entanglement that has been achieved with quantum dots to date
is quite remarkable. Direct single-pair emission, however has not yet been achieved.
At this point one needs to work at rather low excitation probabilities and the quantum
dot structures that have been used exhibit rather low outcoupling and collection
efficiencies. This results in an overall low pair count rate even though the rate of
actual excitation events is in the MHz range. This also means that it is difficult to
optimize all the relevant parameters for a given quantum dot. For this reason one
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should apply the same technique to new structures that promise much higher count
rates such as nanowire quantum dots [36] or quantum dot microlenses [37]. The
two-photon resonant excitation of these structures may be more difficult, but should
be achievable with stronger spectral filtering of the luminescence. Having higher pair
count rates will allow investigating the conditions that are required for even better
time-bin entanglement. To reduce any unwanted entanglement within a time bin,
it would be interesting to also try this out with micropillar microcavities [38]. The
cavity would be tuned to resonance with the biexciton transition so that the biexciton
lifetime is shortened by the Purcell effect as proposed in [26]. At the same time the
increased collection efficiency might make this the perfect time-bin entanglement
source.

For creating single time-bin entangled pairs it will be most interesting to investi-
gate the dark exciton preparation (seeChap.4 and [39]) and how to coherently transfer
from the dark exciton to the biexciton. Single entangled pairs enable quantum com-
munication protocols with much higher efficiency than entangled pairs from SPDC.
Another idea that could readily be demonstrated is the creation of hyperentanglement
in the polarization and time-bin degrees of freedom, i.e. a state of the form

|ψ〉 = (|HH〉 + |VV〉) ⊗ (|EE〉 + |LL〉). (8.5)

This is useful for certain linear optical quantum information protocols. For example,
it is possible to exploit the extra entangled degree of freedom to perform perfect
Bell-state analysis, the central process of quantum teleportation and entanglement
swapping. Another direction lies in the observation that time-bin encoding and entan-
glement is not limited to two-dimensional (qubit) configurations. In other systems
high-dimensional time encoding has been investigated [40] but not yet for any single
quantum emitter. Finally, if we consider multi-photon entanglement through multi-
level cascades in quantum dots or quantum dot molecules, time-bin entanglement
may be the only possible way to establish multipartite entangled states such as the
GHZ or W states directly from the source.

In summary, the temporal degree of freedom of the photon can be a valuable
resource, which has not yet been sufficiently explored for single quantum emitters.
It is versatile, because it can apply to any cascaded transition without any particular
requirements on energy or spin structure. It does, however require the possibility of
coherent control of the topmost energy level of the cascade. In our opinion this is
something that ties in with other developments in single emitters, where all prop-
erties of single photon sources improve when dedicated coherent interactions are
used rather than the primitive above-band pumping. Admittedly, the coherent control
increases the complexity of the optical setup, but barring any massive breakthroughs
there seems no other way to go.

http://dx.doi.org/10.1007/978-3-319-56378-7_4
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35. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Nat. Commun. 5,
4251 (2014). doi:10.1038/ncomms5251
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Chapter 9
A Self-assembled Quantum Dot as Single
Photon Source and Spin Qubit: Charge Noise
and Spin Noise

Richard J. Warburton

Abstract Aself-assembled quantumdot confines both electrons and holes to a nano-
sized region inside a semiconductor. An exciton in a single self-assembled quantum
dot is a potentially excellent source of single photons. A quantum dot also acts as
a host for a spin qubit with the advantage that the spin can be initialized, manipu-
lated and read-out with optical techniques. However, the exciton and spins couple
strongly not just to an external optical probe but also to internal excitations of the
host semiconductor: the semiconductor is a source of noise resulting in exciton and
spin dephasing. The noise can be suppressed in some cases, circumvented in oth-
ers, leading to an improvement in quantum dot performance. In particular, resonant
excitation at low temperature using high quality material results in a small level of
charge noise. A heavy hole spin in an in-plane magnetic field is decoupled from
the spin noise arising from fluctuations in the nuclear spin bath. Presented here is a
series of experiments which probe the noise in advanced quantum dot devices: single
quantum dot resonance fluorescence as a sensor of both charge noise and spin noise;
nuclear magnetic resonance on the quantum dot nuclear spins to probe the electron
spin hyperfine interaction; and coherent population trapping to probe the hole spin
hyperfine interaction.

9.1 A Self-assembled Quantum Dot for Quantum
Technology

Aself-assembled quantumdot inGaAs has a nano-size, typically 20nm in base diam-
eter, 5nm in height, resulting in discrete, atom-like quantum states. This small size,
a size which is difficult to access with top-down nano-fabrication, confers an imme-
diate advantage: both the confinement energies and on-site Coulomb interactions
are large, tens of meV. The net result is that Coulomb blockade is well established:
ultra-low temperatures are not required. Also, the self-assembly process along with
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the direct gap of the host semiconductor results in a strong optical transition across
the fundamental gap of the semiconductor: the optical dipole moment is large. This,
together with the large number of photon modes in a bulk structure, leads to short
radiative lifetimes, ∼0.8ns.

A self-assembled quantum dot is potentially useful in quantum technology, as a
single photon source and as a spin qubit. On the one hand, self-assembled quantum
dots can be embedded in semiconductor heterostructures, and devices can be made
from the wafer material by semiconductor nano-fabrication for which a large and
established tool-box is available. On the other hand, electrons and holes in the quan-
tum dot are not just strongly coupled to external probes such as the light field: they
are also strongly coupled to excitations in the host semiconductor. This means that
dephasing, the interaction of quantum dot-based quantum states with the semicon-
ductor environment, is strong and it is challenging to design structures where the
dephasing is kept to a manageable level. In fact much of the interesting physics lies
in the dephasing which can be complex [1].

This chapter describes a series of experiments on single self-assembled quan-
tum dots. The aim of these experiments is to investigate the noise which limits the
performance of the quantum dot as a single photon emitter and as a spin qubit. An
underlying feature is the use of high qualitymaterial at low temperature, and resonant
optical excitation with resonance fluorescence detection.

9.2 Photonics of a Self-assembled Quantum Dot

9.2.1 The Optical Transition

An InGaAs/GaAs quantum dot, Fig. 9.1a, has a strong optical transition between the
highest valence state and the lowest conduction state [2]. In semiconductor language,
optical excitation creates an exciton, an electron-hole pair. For as-grown InAs/GaAs
quantum dots, the optical transition lies at an inconvenient wavelength, ∼1,200nm
at low temperature, but can be shifted to the more convenient ∼950nm either during
growth [3] or via post-growth annealing [4]. The radiative lifetime is short, typically
∼0.8ns [5], corresponding to a dipole moment of 0.6e nm·C [6]. The level structure
is explained in Fig. 9.1b–d.Note that the two bright excitonswith spin±1 are coupled
by the so-called fine structure: this lifts the degeneracy of the two exciton states even
at zero magnetic field.

Themain optical transition forms the basis of a quantum dot single photon source.
The problem of extracting the photons out of the high-index host material – GaAs has
a refractive index of 3.5 – can be solved by engineering also the photonic states. For
instance, by embedding the quantum dots in a GaAs waveguide, and using a taper
as an out-coupler, high fidelity single photon emission with a quantum efficiency as
high as ∼70% has been achieved [7].
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(a)

(b)

(e)

(c) (d)

(f)

Fig. 9.1 Photonics of a single self-assembled quantum dot at zero magnetic field. a Transmis-
sion electron microscopy image of a sample grown by molecular-beam-epitaxy showing an InAs
quantum dot with its associated wetting layer, embedded in GaAs and capped with an AlAs/GaAs
superlattice. Image provided courtesy of Jean-Michel Chauveau, Arne Ludwig, Dirk Reuter and
Andreas Wieck. b Schematic energy level structure of a self-assembled quantum dot. On account
of quantization, there are discrete, atom-like conduction and valence levels with wave functions
localized in the quantum dot. At higher energies, there are the conduction and valence energy bands
associated with the two-dimensional wetting layer (and bulk GaAs at higher energy still). At low
temperature and in the absence of doping, the valence levels are occupied and the conduction levels
are unoccupied. A strong optical dipole transition connects the highest energy valence level with
the lowest energy conduction level, the transition taking place across the fundamental gap of the
semiconductor. c The vacuum state |0 〉 and the optically excited state |X0〉 are represented as the
ground and excited states of a 2-level atom (red arrow represents the optical coupling, blue arrow
spontaneous emission). In |X0〉, a valence electron has been promoted to a conduction level creating
a so-called exciton, an electron-hole pair. d A quantum dot can be loaded with a single excess
electron (see Fig. 9.2). In this case, the ground state is |e 〉 and the optically excited state |X1−〉
consisting of two electrons (in a singlet) and a hole. e Laser spectroscopy on a single quantum dot
at a wavelength close to 950nm at temperature 4.2 K. The resonance fluorescence is plotted as
a function of laser detuning. The linewidth is 1.6µeV (400 MHz). The signal corresponds to the
count rate on a silicon avalanche photodiode. The transform-limited linewidth is Γ0 = 0.8 µeV,
equivalently 200 MHz (radiative lifetime 0.8 ns). f The intensity correlation coefficient g(2) of the
resonance fluorescence measured with a Hanbury Brown-Twiss interferometer (black line). The dip
at zero delay shows clear photon antibunching. The signal at zero delay is dominated by the jitter of
the detector (0.5 ns); the slight overshoot at delay ∼1ns is the first hint of a Rabi oscillation which
becomes marked at higher laser power. The blue line is a convolution of the two-level atom g(2)

with the response of the detectors; the red line is the two-level atom g(2) alone. e, f data courtesy
of Andreas Kuhlmann, Julien Houel and Arne Ludwig
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9.2.2 Vertical Tunneling Structures

Implementing the concept of an electron spin qubit [8]with a self-assembled quantum
dot involves trapping a single electron. This can be achieved by including a δ-doped
layer close to the quantum dot layer in the growth such that some of the quantum dots
are permanently occupied with an excess electron [9] or hole [10] at low temperature.
A more flexible technique allowing for considerable in situ tuning is to embed the
quantum dot layer in a vertical tunnelling device [2, 11, 12], Fig. 9.2a. The device
operates in the Coulomb blockade regime which at 4K is highly pronounced based
on the huge on-site Coulomb energy to thermal energy ratio (∼25meV : 0.4meV).
The quantum dots are in tunnel contact with a Fermi sea; the quantum dot potential
with respect to the Fermi energy is controlled by applying a gate voltage to the
top contact. The top contact is often a Schottky gate on the sample surface, an
n-i-Schottky structure with the quantum dots in the intrinsic “i” region. Alternatively,
the Schottky contact can be replaced with a p-type layer, an n-i-p structure where the
p-type layer acts as an “epitaxial gate” [13].

Structures for trapping a single hole swap n-doping for p-doping, i.e. p-i-Schottky
and p-i-n. However, quantum dots grown after the p-type layer have relatively poor
optical properties [13, 15]. The solution is the n-i-p structure with the quantum dots
in tunnel contact with the p-layer as in this case the p-type layer is grown last, Fig. 9.3.

In these structures, the Coulomb blockade is revealedmost immediately in the sin-
gle quantum dot photoluminescence by clear steps in the photoluminescence energy
[12], Fig. 9.2b. A single electron is trapped in the quantum dot over the Coulomb
blockade plateau, Fig. 9.2b: a voltage chosen within this region allows access to sin-
gle spin physics [16]. In the Coulomb blockade regime, tunnelling is suppressed to
first order but the second order process, co-tunnelling, survives [17]. Co-tunnelling
represents a spin relaxation mechanism: the quantum dot electron spin is swapped by
a two-electron process with the spin of an electron close to the Fermi energy in the
Fermi sea of the n+ layer. A convenient property of the vertical tunnelling structure
is that the co-tunnelling rate is large at the edge of the plateau but is suppressed by
several orders of magnitude in the plateau centre, providing useful in situ control
[17–21].

The tunnel barrier thickness is important. For very small values, the quantum states
hybridize strongly with the states at the Fermi energy in the back contact [22]; at very
large values, the tunneling time becomes much longer than the recombination time.
An important point of detail in these structures concerns the thickness of the capping
layer, the i-GaAs grown between the quantum dot layer and the blocking barrier (an
AlAs/GaAs superlattice). At intermediate thicknesses, fluctuating minority carriers
at the GaAs/blocking barrier interface result in unwanted charge noise [23]. This
noise can be suppressed with a thin ∼10nm capping layer pushing the minority
charge states well above the quantum dot levels such that the states are unlikely to be
occupied at low temperature. A thin capping layer also prevents the optically-excited
minority carrier (the hole in the case of an electron spin device; the electron in the
case of a hole spin device) from tunneling out of the quantum dot.
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(a) (b)

Fig. 9.2 Coulombblockade of a single quantumdot. aLayer structure of a typical heterostructure
for experiments controlling the charge state of a quantum dot. A layer of self-assembled quantum
dots is embedded in a vertical tunnelling structure. The quantum dots are in tunnel contact with
the Fermi sea in the n+ layer; the blocking barrier prevents current flow to the surface; a Schottky
gate on the surface allows control of the vertical electric field. Typically, the tunnel barrier (gallium
arsenide, GaAs) is 12–40nm thick, the capping layer 10–150nm, blocking barrier > 100 nm, and
the Schottky gate is a semi-transparent metal layer, e.g. 5–10nm Ti/Au. A voltage applied to the
gate, Vg, tunes the energy of the first confined electron level relative to the Fermi energy as shown
schematically in the band diagram. At low temperature and large electric field, the quantum dot
conduction level lies above the Fermi energy and is therefore unoccupied; when the conduction level
lies below the Fermi energy but close to it (the case shown), the conduction level is singly occupied
(the case shown); at more positive Vg it is doubly occupied. b The photoluminescence (PL) from a
single quantum dot in a vertical tunnelling structure is shown as a function of Vg at a temperature
of 4.2 K. The steps in the photoluminescence energy correspond to charging events. X0 refers to
the neutral exciton (an electron-hole pair); X1− to the negatively charged trion (a two electron-one
hole complex); X2− the doubly charged exciton (a three electron-one hole complex). Note that
the charging event without a hole, |0 〉 → |e 〉, takes place at slightly more positive Vg than the
charging event with a hole, |X0 〉 → |X1−〉, on account of the Coulomb energies: the electron-hole
on-site Coulomb energy is larger than the electron-electron on-site Coulomb energy. Conversely,
the |e 〉 → |2e 〉 charging event takes place at more negative Vg than the |X1−〉 → |X2−〉 charging
event as the |X2−〉 state has a total of three electrons, the “third” forced to occupy the first excited
conduction level by the Pauli principle. The main features in the PL characterization correspond to
charging events in the initial state, the exciton state (white dashed lines). However, charging events
in the final state are revealed by hybridization effects in the X1− plateau (red dashed lines) [14].
Probing a single spin with resonant laser excitation involves working in the Vg window defined by
the two dashed red lines. Experimental data provided courtesy of Paul Dalgarno

9.2.3 Resonance Fluorescence Detection

Many optical experiments in this field rely on non-resonant excitation in which a
high-energy continuum is occupied with electron-hole pairs. The exciton level in the
quantum dot is populated by typically fast relaxation, and the spontaneous emission
on exciton decay (the photoluminescence) can be detected. An example is shown
in Fig. 9.2b. This is a relatively simple experiment but lacks the power of true laser
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(a)

(b)

(c) (d)

Fig. 9.3 Devices for loading a quantum dot with a single hole. a n-i-p device; b p-i-Schottky
device: heterostructure design and schematic band diagram. c Resonance fluorescence spectrum at
4.2K on an empty quantum dot in the p-i-n device. The two lines (split by the exciton fine structure)
have a linewidth of 1.5 µeV, equal to the linewidth in the very best n-type devices, demonstrating
the extremely low level of charge noise. d Resonance fluorescence spectrum at 4.2K on an empty
quantum dot in the p-i-Schottky device. The larger linewidths of 3.6 µeV and also the smaller
signals signify problems related to the p-doping: increased charge noise and non-radiative decay

spectroscopy methods which involve driving the optical resonance with a coherent
laser. The interaction of a single self-assembled quantum dot with a coherent laser
tuned to the optical resonance was initially detected via a change in the transmission
coefficient, a “ΔT -experiment” [24]. Meanwhile, the resonance fluorescence can
also be detected (see also Chap.3), discriminating resonance fluorescence from scat-
tered/reflected laser light with a dark field technique based either on the propagation
direction [25] or on the polarization [26–29], Fig. 9.1e. Remarkably, all the features
of a driven two-level system known from atomic physics have been observed on a
single quantum dot. These include a Lorentzian absorption lineshape [24], Fig. 9.1e;
power broadening and power-induced transparency [30]; the ac Stark effect [31];
Rabi oscillations [25], the Mollow triplet, and antibunching of resonance fluores-
cence [25], Fig. 9.1f. Routinely, close-to-transform limited optical transitions are
observed in laser spectroscopy experiments on single InGaAs/GaAs quantum dots
[23]. Phonon-induced exciton decoherence is significant either at low temperature
with large Rabi couplings [32, 33], or at elevated temperatures [30, 34–36].

The capability to detect resonance fluorescence has given the field a significant
boost: the resonance fluorescence itself represents single photon output; in spec-
troscopy terms it is a low noise, low background technique.

http://dx.doi.org/10.1007/978-3-319-56378-7_3
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9.3 Exciton Dephasing

A key goal in quantum communication is to create highly indistinguishable photons
which are separated in space by more than 100Km for device-independent quantum
key distribution and for a quantum repeater [37]. This is potentially possible using
a semiconductor quantum dot: single photons are generated either by spontaneous
emission from the upper level [38–40], Fig. 9.1, or by coherent scattering of a resonant
laser [41–43]. Optimizing performance demands an understanding of noise and a
strategy to circumvent its deleterious effects [1]. There are two main sources of
noise in a semiconductor. Charge noise arises from occupation fluctuations of the
available states and leads to fluctuations in the local electric field. This results in
shifts in the optical transition energy of a quantum dot via the dc Stark effect and
is one mechanism by which the optical linewidth of a self-assembled quantum dot
can be significantly increased above the transform limit [18, 23, 24]. Charge noise
can also result in spin dephasing via the spin-orbit interaction, and, in particular for
hole spins, via the electric field dependence of the g-factor [44, 45]. The second
source of noise, spin noise, arises typically from fluctuations in the nuclear spins of
the host material and, on account of the hyperfine interaction, results in a fluctuating
magnetic field (the Overhauser field) experienced by an electron spin [46, 47]. Spin
noise from noisy nuclei results in rapid spin dephasing in an InGaAs quantum dot
[9, 48, 49].

Strategies for reducing noise involve working with ultra-clean materials to mini-
mize charge noise and the use of dynamic decoupling, schemes which employ com-
plex echo-like sequences to “protect” the qubit from environmental fluctuations [50–
52]. In this case, it is absolutely crucial that the noise power decreases with increasing
frequency.

For quantum dot-based single photon sources, the linewidths are in the best case
(high quality material with resonant excitation) typically about a factor of two larger
than the transform limit in which the linewidth is determined only by the radiative
decay time [18, 23, 24], Fig. 9.1. This is a poor state of affairs for applications
which rely on photon indistinguishability, the resource underpinning a quantum
repeater for instance. On the positive side, there is evidence that with low power,
resonant excitation, there is no significant upper level dephasing apart from radiative
recombination [41, 42] such that over short timescales indistinguishable photons are
emitted [39]. It has been surmised that the increase in linewidth above the ideal limit
arises from a spectral wandering [23, 24].

The particular challenge posed by charge noise in self-assembled quantum dot
devices is illustrated in Fig. 9.4. In this experiment, resonant laser spectroscopy on
single quantum dots was carried out as a function of the power of an additional
non-resonant laser [23]. The non-resonant laser is weak such that the induced pho-
toluminescence is negligible but it introduces a small number of holes in the device.
A steady state population of holes builds up at the capping layer/blocking barrier
interface, in this case 35nm above the quantum dot layer. The quantum dot transition
frequency increases step-wise, Fig. 9.4. The interpretation is that there are localiza-
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Fig. 9.4 Resonant laser spectroscopy on single quantumdotswith close-by charge localization
centres. Colour-scale plot (linear scale, blue: 0.061%; red: 0.61%) of differential reflectivity versus
non-resonant laser power on two different quantum dots. The non-resonant laser power controls
the steady state occupation of defects, hole localization centres located 30nm above the quantum
dot at the capping layer/blocking barrier interface. The charge is labelled in each case. At large
non-resonant laser power, a two-dimensional hole gas forms (2DHG)

tion centres for the holes directly above the quantum dot. Occupation of one of these
localization centres by a single hole shifts the quantum dot frequency by several
linewidths, suppressing the resonance scattering. On the one hand, the sensitivity of
the quantum dot to the small levels of charge noise reflects the potential of quantum
dots as ultra-sensitive electrometers [23, 53, 54]. On the other hand, the same sen-
sitivity makes the generation of transform-limited single photons challenging. The
mechanism is the dc Stark effect [55].

9.3.1 The Charged Exciton

The resonance fluorescence signal itself can be used to investigate the noise [28,
56]. The linewidth determines the spectral purity of the single photons. Measured
on second time-scales, the single quantum dot linewidths are 1.6 µeV in Fig. 9.5
for both neutral and charged excitons, X0 and X1−, respectively. The linewidth can
be recorded on smaller time-scales: Fig. 9.5 shows the linewidths versus scanning
frequency. The linewidths are constant up to about 1 kHz and then decrease, reaching
constant values above about 50 kHz. Remarkably, the constant values at the highest
frequencies correspond closely to the transform limit. (The difference in X0 and X1−
transform-limited linewidths reflects the slightly different radiative decay times [5].)
The implication is two-fold. First, any pure exciton dephasing mechanisms must be
muchweaker than radiative recombination in this experiment. Secondly, the quantum
dot produces a stream of identical photons over time-scales of about 1–10 µs: over
this time the noise is “frozen”. At longer times, there are fluctuations in the quantum
dot’s optical frequency, a spectral wandering.
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Fig. 9.5 Linewidth versus scanning frequency. a, b X0, X1− resonance fluorescence versus
detuning δ at 4.2 K, B = 0.0 mT with 100 ms integration time per point. The solid lines are
Lorentzianfits to the data. The linewidths areΓ X0 = 1.29µeV,Γ X1− = 1.49µeV; theRabi energies
Ω/Γ0 = 0.5 (X0), 0.4 (X1−); and transform-limits Γ X0

0 = 0.92 ± 0.10 µeV, Γ X1−
0 = 0.75 ± 0.10

µeV. c RF linewidth against scanning frequency dδ/dt/Γ0. Γ approaches Γ0 for scanning frequen-
cies above 50 kHz. For each scanning frequency, the error bar represents the standard deviation of
several hundred linewidth scans. Solid lines represent a Lorentzian fit of the data with linewidth
30 ± 3 kHz

An immediate question concerns the origin of the noise which leads to the spectral
wanderings in the quantum dot’s optical frequency. Insight comes from a noise spec-
trum of the resonance fluorescence: a time-trace is recorded at a particular detuning,
δ = 0 or δ = Γ/2, Fig. 9.6a; a Fourier transform yields a noise spectrum [28, 56].
A typical time trace of the RF is shown in Fig. 9.6b with binning time 10 ms. The
main contribution to the noise comes from shot noise. However, the level of extrinsic
noise is highly reproducible: its spectrum, NEXP( f ), is recorded carefully and then
subtracted from the total noise to determine the intrinsic noise, the noise power of
the normalized RF signal, NQD( f ), Fig. 9.7a. Specifically, the fast Fourier transform
(FFT) of the normalized RF signal S(t)/〈S(t)〉 provides a noise spectrum:

NRF( f ) = |FFT[S(t)/〈S(t)〉]|2(tbin)2/T, (9.1)

where tbin is the binning time and T the total integration time. NQD( f ) is deter-
mined by

NQD( f ) = NRF( f ) − NEXP( f ). (9.2)
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(a) (b)

Fig. 9.6 Resonance fluorescence (RF) on a single quantum dot. a RF recorded on a single
InGaAs quantum dot at wavelength 950.61nm at a power corresponding to a Rabi energy of
0.55 µeV at a temperature of 4.2K without external magnetic field. The RF was detected with
a silicon avalanche photodiode operating in single photon mode; the detuning was achieved by
sweeping the gate voltage with respect to the laser using the dc Stark effect. In this case, the inte-
gration time per point was 100ms. The solid line is a Lorentzian fit to the data with linewidth
Γ = 1.6µeV (390MHz). bA time-trace of the RF recorded with detuning set to half the linewidth,
〈δ〉 = Γ/2. The arrival time of each detected photon is stored allowing a time trace to be constructed
post-experiment with an arbitrary binning time. An example is shown using a binning time of
10 ms

(a) (b)

Fig. 9.7 Resonance fluorescence noise. a RF noise spectra recorded on a quantum dot occupied
with a single electron, the trion X1−, for average detuning equal to zero, 〈δ〉 = 0 (blue), and for
〈δ〉 = Γ/2 (red) at 4.2K and B = 0.0 mT. Following the scheme in Fig. 9.8, the noise at low
frequencies is shown to originate from charge noise, that at high frequencies from spin noise.
Plotted is the noise power spectrum of the normalized RF, S(t)/〈S(t)〉, where S(t) is the RF signal,
〈S(t)〉 the average RF signal, corrected for external sources of noise. b RF noise spectra recorded
on X1− with 〈δ〉 = 0 under identical experimental conditions (4.2 K, B = 0.0 mT) in the course of
the experiment. The charge noise at low frequency depends on the sample history; the spin noise at
high frequency does not (color figure online)

Figure9.7a shows noise spectra over six decades of resolution in the noise power
over six decades of frequency, from 0.1Hz to 100 kHz, Fig. 9.7a, b. The noise falls
very rapidly above 10 kHz: this is consistent with the observation of transform-
limited linewidths in the spectroscopic measurement on exactly the same quantum
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(a) (b)

Fig. 9.8 Distinguishing between charge noise and spin noise. Schematic showing the effect of
charge noise and spin noise on the charged, X1−, exciton (applied magnetic field zero). a Charge
noise (noise in the local electric field) results in a “rigid” shift of the optical resonance leading
to a small change in resonance fluorescence (RF) for zero detuning δ = 0 and a large change in
RF at δ = Γ/2. b Without an external magnetic field, spin noise induces a Zeeman splitting in the
resonance resulting in a large change in RF at δ = 0 and a small change in RF at δ = Γ/2 (zero for
δ = Γ/2

√
3), opposite to charge noise. This difference, a “rigid” shift of the X1− resonance from

charge noise, a “breathing motion” in the X1− resonance from spin noise, allows charge noise and
spin noise to be identified

dot, Fig. 9.8c, d. The entire noise spectrum can be described by two Lorentzian
features along with a 1/ f -like component. Significantly, there is a spectroscopic
technique to assign these noise sources to charge noise or spin noise, Fig. 9.8, based
on the different response of X1− to charge noise and spin noise.

As the local electric field F fluctuates, the detuning δ of the quantum dot optical
resonance with respect to the constant laser frequency fluctuates on account of the dc
Stark effect. For small electric field fluctuations, the Stark shift is linear: the optical
resonance shifts rigidly backwards and forwards on the detuning axis, as shown
in Fig. 9.8a. The response in the RF to charge noise has a first order component in
electric field for δ = Γ/2 giving rise to large changes in the RF. Conversely, for δ = 0
the first order component vanishes. Sensitivity to charge noise in the RF is therefore
weak for 〈δ〉 = 0 yet strong for 〈δ〉 = Γ/2. Spin noise results in a complementary
behaviour in the absence of an external magnetic field, B = 0. Fluctuations in the
local magnetic field BN arising from spin noise do not shift the X1− resonance
backwards and forwards. Instead, a typical BN fluctuation induces a sub-linewidth
Zeeman splitting of the X1− resonance, as shown in Fig. 9.8b. Sensitivity to spin
noise in the RF is therefore strong for 〈δ〉 = 0, weak for 〈δ〉 = Γ/2. The crucial
point is that, for X1− at B = 0, the dependence of the RF noise on 〈δ〉 is opposite for
charge noise and spin noise.

The detuning dependence, Fig. 9.7a, therefore identifies the main noise at low
frequencies (Lorentzian spectrum and 1/ f -like component) as charge noise, the
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main noise at high frequencies spin noise. The charge noise gives large noise powers
but only at low frequencies. The spin noise gives much weaker noise powers but over
a much larger bandwidth. It is striking that the resonance fluorescence reveals the
full spectrum of the fluctuating nuclear spin ensemble.

The simple rules connecting RF intensity with the local electric field F (charge
noise) and with the local magnetic field BN (spin noise) allow quantitative statements
on the noise to be made. The charge noise has root-mean-square (rms) electric field
noise Frms = 0.46 Vcm−1 (bandwidth starting at 0.1Hz). It is striking that, first, the
charge noise is very small: the rms noise in the local potential is just 1.2µV; the charge
noise contribution to the low-scanning-frequency X1− linewidths are <0.05µeV.
The low charge noise is a consequence of both the ultra-pure material and also the
carefully controlled experimental conditions. Secondly, it is striking that the charge
noise is concentrated at such low frequencies. The rms noise in the Overhauser field
measured on X1− amounts to BN,rms = 9 mT with correlation time 100 µs. It is this
noise which makes the dominant contribution to the X1− linewidth at low scanning
frequency. The randomfluctuations of N nuclear spins lead to a BN,rms which scales as
1/

√
N [46, 47]; applied to an InGaAs quantum dot with N ∼ 105, the expectation is

BN,rms ∼ 20mT [57, 58], reasonably close to the valuemeasured here. The timescale
is characteristic of the nuclear spin dipole-dipole interaction [46].

Figure9.8b shows NQD( f ) curves measured on the same quantum dot over the
course of the experiment (several months) under nominally identical conditions.
There are changes in the low frequency noise power (up to a factor of 10) but the
high frequency noise remains exactly the same. The charge noise therefore depends
on the sample’s history. Conversely, the spin noise arises from the host nuclear spins
of the quantum dot which remain the same and retain their properties: this results in
the unchanging spin noise at high frequency.

A Lorentzian noise spectrum is characteristic of a two-level fluctuator [59]. The
associated on-off behaviour, equivalently telegraph noise, is however not observed
here. Instead, the Lorentzian noise arises from fluctuations in an ensemble of two-
level fluctuators, each with approximately the same transition rates, 0 → 1, 1 → 0.
For the charge noise, the fluctuators are hole localization centres at an interface
150nm above the quantum dot. Electrostatic noise arises via fluctuations in the exact
configuration of occupied (state 0) and unoccupied (state 1) localization sites in the
ensemble. For the spin noise, each nuclear spin acts as a fictitious two-level fluctuator.
A Monte Carlo simulation enables both sources of noise to be treated on an equal
footing [28]. The 1/ f -like noise varies from quantum dot to quantum dot and its
exact origin is an open question.

9.3.2 The Neutral Exciton

There is evidence that at low temperature, there is negligible pure upper level decoher-
ence of the neutral exciton [35, 41–43]. Photons emitted subsequently are close to
indistinguishable [39, 60]. The experiments described above add weight to these
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(a) (b) (d)

(c)

Fig. 9.9 X0 spin noise within the Coulomb blockade plateau. a X0 optical linewidth measured
at Rabi energyΩ/Γ0 = 0.50 for different gate voltages by sweeping the laser frequency through the
resonance and integrating 100ms per point.Γ decreases from 1.66 to 1.19µeVwith decreasing gate
voltage. b X0 spectrum with Γ = 1.15 µeV at Vg = −1.54 V. c X0 noise spectra recorded at Rabi
energies Ω/Γ0 = 0.65 for different voltages, indicated in a by solid lines. Maximum/minimum
spin noise (black/blue) is correlated with the largest/smallest Γ . d NQD( f ) on X0 recorded with
two lasers of frequencies f1 and f2 and a frequency splitting f1 − f2 equal to the fine structure
splitting for 〈δ〉 = 0 (blue) and 〈δ〉 = Γ/2 (red). Inset shows the laser frequency detuning relative
to the optical resonance

assertions: transform-limited linewidths are observed on fast scanning [28, 56].
Charge noise leads to an inhomogeneous broadening of the X0 as for the X1−,
Fig. 9.5. The X0 is also sensitive to spin noise, i.e. fluctuations in the Overhauser
field, but with reduced sensitivity with respect to X1−. For X0, the sensitivity is sec-
ond order as the hole “shields” the electron from the spin noise (a consequence of
the fine structure); for X1− the sensitivity is first order on account of the unpaired
electron in the X1− ground state. Despite the different sensitivity to spin noise the
X0 and X1− linewidths are very similar [23, 24, 28].

A typical X0 resonance fluorescence spectrum is shown in the ideal case (high
quality material at low temperature, resonant excitation on a quantum dot in the
Coulomb blockade regime) in Fig. 9.5 with Ω/Γ0 = 0.5 where Ω is the Rabi cou-
pling. The linewidth is a factor of 1.4 larger than the transform-limit (for this
particular quantum dot, Γ X0

0 = 0.92 ± 0.10 µeV). Figure9.9a shows Γ versus Vg

on X0, measured below but close to saturation, Ω/Γ0 = 0.5. At the edges of
the Coulomb blockade plateau, Γ rises rapidly on account of fast electron spin
dephasing via co-tunneling with the Fermi sea [17]. This process slows down as
Vg moves away from the plateau edges. The prominent feature is that a “sweet-
spot” exists close to the negative Vg-end of the plateau with minimum linewidth
1.19 ± 0.13 µeV, Fig. 9.9a, b. Accounting for the small power broadening, the ideal
limit is Γ (Ω) = Γ0[1 + 2(Ω/Γ0)

2] 1
2 = 1.10 ± 0.10 µeV. Within the measurement

uncertainties of 10%, the transform-limit is therefore achieved. As Vg is raised to the
positive side of the “sweet-spot”, Γ increases beyond the ideal limit, Fig. 9.9a.
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As for the X1−, a diagnostic of the X0 linewidth is a noise spectrum NQD( f ), a
Fourier transformof theRF time-trace. The increase in linewidth above the transform-
limit represents a sum over all noise sources from the scanning frequency, about 1Hz,
to Γ0/�, about 1 GHz. The noise spectra at the low-bias end (the “sweet-spot”), the
centre of the plateau and the positive-bias end are shown in Fig. 9.9c. There is a
Lorentzian feature with linewidth 30Hz (noise correlation time 30 ms) and a second
Lorentzian feature at higher frequencies with linewidth 200 kHz (correlation time
5µs). The second feature disappears at the “sweet-spot”.

A spectroscopic diagnostic for charge versus spin noise can be established, as
for the X1−. Now however two lasers are required: one laser drives one of the X0

transitions, the other laser drives the other X0 transition. The scheme exploits the
different X0 response to charge noise and spin noise: charge noise moves both X0

peaks rigidly together along the detuning axis; spin noise moves them apart or closer
together, a “breathing” motion. Specifically, X0 noise spectra are recorded with two
lasers whose frequencies are separated by the fine structure. On detuning both lasers
from δ = 0 to δ = Γ/2, the sensitivity to charge noise increases (changing from
second order to first order) yet the sensitivity to spin noise decreases (remaining
second order but with a reduced pre-factor). In the experiment, switching from
〈δ〉 = 0 to 〈δ〉 = Γ/2 causes the noise power of the low frequency component to
increase markedly, Fig. 9.9d, identifying it as charge noise. However, as for X1−,
the frequency-sum over the charge noise gives a contribution to Γ of <0.05µeV, a
negligible value. (Note that both the dc Stark coefficient and Γ vary from quantum
dot to quantum dot yet there is no correlation between the two, pointing also to the
unimportance of charge noise in the optical linewidth.) Conversely, the noise power
of the high frequency component decreases on detuning both lasers from δ = 0 to
δ = Γ/2, identifying it as spin noise, Fig. 9.9d. Furthermore, noise spectra measured
at 〈δ〉 = 0 but with a single laser tuned to one of the X0 transitions show that the low
frequency noise, the charge noise, is similar for all three biases yet the high frequency
noise, the spin noise, increases with increasing bias, Fig. 9.9c. This confirms that the
high frequency noise, the spin noise, is responsible for the inhomogeneous linewidth:
the integrated spin noise is vanishingly small at the “sweet-spot”, increasing at the
centre of the plateau, and increasing further at the positive bias edge.

The “spin noise” of the X0 is not understood microscopically. If the noise is
assigned entirely to anOverhauser field, BN, very large values are required to account
for the experimental results, hundreds ofmT,with values increasingwith optical Rabi
coupling: optical driving apparently agitates the nuclei. Also, the correlation time of
the noise is just 5 µs (independent of optical Rabi coupling), considerably smaller
than the timescale typical of the nuclear spin-nuclear spin dipole-dipole interaction.
An alternative is to parameterize the X0 spin noise as a BN-induced fluctuation of the
fine structure splitting. This however remains conjecture. The experiment demon-
strates only that there is noise in the frequency separation of the two X0 transitions.
This speculation notwithstanding, the “spin noise” disappears at the “sweet spot”
and this is a robust phenomenon occurring on all the quantum dots investigated in
this sample [56].
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9.3.3 Locking the Quantum Dot Optical Resonance
to a Frequency Standard

Unlike a real atom, the exact transition wavelength of a quantum dot is not locked to
any particular wavelength and varies considerably from quantum dot to quantum dot.
However, the host semiconductor can be designed so that considerable possibilities
for tuning the emission wavelength exist. Electric field tuning [61, 62] and strain
tuning [63, 64] allow the emissionwavelength to be tuned over several nanometres. A
major problem remains. As shown above, the emission wavelength is not constant: it
varies randomly over time, even in very controlled environments at low temperature.
As shown in the noise analysis, the culprit at low frequency is electrical noise in
the semiconductor which shifts the emission wavelength via the Stark effect [28].
This noise has a 1/ f -like power spectrum resulting in, first, large and uncontrolled
drifts at low frequencies and second, an undefined mean value. This noise, while
poorly understood, is ubiquitous in semiconductors and makes it very difficult to
couple an individual quantum dot to another quantum system, another quantum dot
for instance, or an ensemble of cold atoms. Described here is a scheme to lock the
quantum dot emission frequency to a frequency standard [65].

The output of the device is a stream of single photons generated by resonance
fluorescence (RF) from a single quantum dot. A sketch of the experimental concept
is shown in Fig. 9.10a. A linearly-polarized resonant laser is focused onto the sample
surface and drives the optical transition. The resonance fluorescence of the quantum
dot is collected with the polarization-based dark field technique [23, 27–29, 42],
Fig. 9.10b. Simultaneously, the optical resonance is detected in transmission [24] by
superimposing a sub-linewidth modulation to the gate, Fig. 9.10c. The transmission
signal arises from an interference of quantum dot scattering with the driving laser [6].
The incoherent part, i.e. the spontaneous emission, averages to zero in transmission;
what is detected instead is the coherent scattering, i.e. the Rayleigh scattering. In this
way, the experiment utilizes both incoherent and coherent parts of the scattered light,
for the single photon output and control, respectively. With a small modulation, the
transmission signal has a large slope with zero crossing at zero detuning, Fig. 9.10c,
and is therefore ideal for the generation of an error signal. ΔT/T , the error signal,
is recorded with a lock-in amplifier to reject noise and the lock-in output is fed into
a classical feedback scheme. The feedback output is, like the modulation, applied to
the gate electrode of the device. The set-point of the control loop is the zero crossing.

The long-termperformance of the frequency locking schemewas tested by record-
ing the RF over several hours, Fig. 9.11, without (blue) and with (red) the stabilizing
loop. Without feedback, the RF exhibits fluctuations up to a factor of 2 (blue curve).
The origin are slow electrical fluctuations in the sample which cause the transition to
drift out of resonance with the laser. With feedback, these fluctuations disappear and
the RF remains at a constant level (red curve) with noise determined almost entirely
from shot noise in the detector, Fig. 9.11b. The average RF signal is a little smaller
with feedback because the applied modulation broadens slightly the resonance.
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(a) (b)

(c)

Fig. 9.10 Locking the optical frequency of a single quantum dot to a reference laser: scheme.
a Schematic view of the experiment. The narrowband laser is stabilized to a fixed frequency by
a wavemeter which in turn is stabilized to a HeNe laser. Laser light is guided through optical
fibres (yellow) and microscope optics before it is focused onto the sample, driving the X0 transition
resonantly (BS = beam-splitter, PBS = polarizing BS, Pol. = linear polarizer). Two simultane-
ous measurements of X0 scattering are performed: resonance fluorescence (RF), detected with an
avalanche photodiode (APD), and absorption with a photodiode (PD) underneath the sample. The
dynamic stabilization is realized with an active PID feedback loop which corrects for fluctuations in
the transition energy using the gate voltage Vg and the square wave modulation of a function gener-
ator (FG). b RF signal of the fine structure split X0 emission of a single quantum dot at wavelength
936.5nm, a power corresponding to a Rabi energy Ω of 0.74 µeV and a temperature of 4.2 K. A
detuning is achieved by sweeping the gate voltage. The solid red line is a Lorentzian fit to the data
with linewidth Γ = 1.28 µeV (309 MHz) and Γ = 1.45µeV (350 MHz) and with a fine structure
splitting Δ = 11.8µeV. The linewidths are close to the transform limit of Γ0 = �/τr = 0.93 µeV
(220 MHz) where τr is the radiative lifetime of the exciton transition (τr = 0.71 ± 0.01 ns here). c
The differential transmission (ΔT/T ) signal on the same quantum dot with integration time 100 ms
per point using an in situ photodiode. A sub-linewidth square-wave modulation at 527Hz is applied
to the Schottky gate. This broadens both X0 transitions slightly, here the lower frequency transition
from Γ = 1.45 to Γ = 2.58 µeV. The red curve is a fit to the derivative of the two Lorentzians.
The signal around the zero crossing point (ΔT/T = 0) is used to generate an error signal for the
feedback scheme. For the PID loop, the proportional factor P = 0.1 is chosen with respect to the
slope of the error signal, while the integral I = 0.06 and the derivative constant D = 6 × 10−5

were obtained by tuning methods (color figure online)

The bandwidth of the feedback can be determined from the RF noise spectrum.
NQD( f ) corresponding to the time traces of Fig. 9.11a are shown in Fig. 9.11b. With-
out feedback, NQD( f ) has a 1/ f -like dependence on f as a consequence of charge
noise in the device, as shown in Fig. 9.7. With feedback, NQD( f ) is reduced by up to
a factor of 20 at the lowest frequencies, and is constant: the 1/ f -like noise is elimi-
nated. The two curves meet at f � 130 Hz once the bandwidth of the PID circuit has
been exceeded. At higher frequency the noise spectrum is dominated by spin noise
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Fig. 9.11 Locking the
optical frequency of a
single quantum dot to a
reference laser:
performance. a Time trace
of the resonance fluorescence
(RF) of a single quantum dot
(the one from Fig. 9.10) with
δ = 0 µeV recorded over
several hours. The binning
time was tbin = 100 ms. The
time trace is plotted with
(red) and without (blue) the
dynamic stabilization
scheme. b Noise spectra of
the normalized RF signal,
S(t)/〈S(t)〉, corresponding
to the time traces of a after
correction for external noise
sources (color figure online)

(a)

(b)

[28] and the PID bandwidth is presently too slow to deal with it. This is however
conceivable once the extraction efficiency is much improved.

9.4 Electron Spin Dephasing via the Hyperfine Interaction

Akey issue for electron spin dephasing of a spin qubit in GaAs is that an electron spin
couples to the nuclear spins in the host material via the contact hyperfine interaction
[66], Fig. 9.12. The electron states in a self-assembled quantum dot are constructed
from atomic s orbitals, Fig. 9.12b. The large amplitude of the s orbital at the location
of each nucleus i results in a Fermi contact hyperfine interaction for an electron spin
S with N nuclear spins Ii

He
hf = Ω

N∑

j=1

A j
e |Ψe(R j )|2(I j

z Sz + I j
x Sx + I j

y Sy). (9.3)

A j
e is the coupling coefficient, Ψe the electron envelope function and Ω the unit cell

volume. The nuclei create an effectivemagnetic field, theOverhauser field BN , which
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Fig. 9.12 Hyperfine interaction of an electron spin and a hole spin to the nuclear spins in
the host material. a The electron or hole spin has a wave function extending over a few nm in
all three directions such that it overlaps with about N ∼ 105 atoms in the host material, each atom
containing a nucleus with non-zero spin in the case of InGaAs. The nuclear spins are given for the
main isotopes. b The conduction state is constructed largely from atomic s orbitals, each localized
to a unit cell (shown schematically with the black linewith the black circles representing the nuclei),
modulated by the envelope function which extends over the quantum dot (shown schematically with
the blue dashed line). The contact part of the hyperfine interaction dominates. Ai is the coupling
coefficient with nuclear spin i , Ii the nuclear spin, and ψi the electron wave function at the location
of nuclear spin i . The contact term resembles the interaction of the electron spin S in a fictitious
magnetic field, BN . The dipole-dipole hyperfine interaction is zero for a pure s orbital, and close
to zero in practice. c The hole state is constructed largely from atomic p orbitals, each localized
to a unit cell, such that the wave function amplitude is small at the location of each nucleus. This
suppresses the contact part of the hyperfine interaction. The dipole-dipole part is non-zero however.
A heavy hole spin has Jz = ± 3

2 , corresponding, in a semi-classical interpretation, to a circulating
microscopic current clockwise with spin up, or counter-clockwise with spin down. The magnetic
dipole moment points therefore either along +z or −z such that the dipole-dipole Hamiltonian has
an Ising form, ∝ Iz Jz . Equivalently, the fictitious magnetic field describing the nuclear spins lies
solely along the z-direction (color figure online)

fluctuates in time resulting in spin dephasing [46, 47]. For self-assembled quantum
dots, N ∼ 105, BN ∼ 20mT resulting in an energy fluctuation in the electronZeeman
energy of δEz � 0.6 µeV and T ∗

2 ∼ 1 ns.
The first order electron spin-nuclear spin flip-flop processes can be suppressed

simply by applying a magnetic field, exploiting the mismatch in electron and nuclear
gyromagnetic ratios. The interaction along the magnetic field direction remains and
leads to the small electron spin T ∗

2 times [67]. One mitigating strategy is to prepare
the nuclear spins carefully [68–70]. Another is to exploit the low frequency of the
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nuclear spin dynamics with dynamic decoupling or real-timeHamiltonian estimation
methods [52, 70–72], techniques yet to be implemented on self-assembled quantum
dots. Optimistically, these first order hyperfine effects can be dealt with. However,
the second order processes remain and it has been proposed that they determine the
ultimate limit on electron spin coherence [47, 73, 74]. This point is difficult to prove
experimentally – many factors (phonons, co-tunneling, charge noise [75]) influence
the electron spin decoherence – and the theory is complex [76, 77].

One way to probe the hyperfine interaction between an electron spin and the
nuclear spins is to probe the interaction from the point of view of the nuclear spins.
In the absence of an electron, the nuclear spins are largely isolated, interacting with
each other only by the weak dipole-dipole interaction, leading to long coherence
times (milli-second regime) [78, 79]. This is an ideal starting point: the nuclear
spin coherence is a sensitive probe of any interaction turned on by the presence
of a single electron. Specifically, the second order flip-flop process should lead to
a measurable effect on the nuclear spin coherence. The particular process is a spin
flip-flop between two nuclear spins. The two nuclear spins are far apart such that they
are not coupled by the dipole-dipole interaction. Instead, the coupling is mediated
by a common coupling to the delocalized electron. This mechanism couples all
nuclear spins together which can conserve energy on undergoing a flip-flop, “shells”
of nuclear spins along a contour of constant electron density. In a quantum dot, this
electron-mediated nuclear spin-nuclear spin flip-flop couples many nuclear spins
together, and the problem has a complex, mesoscopic character.

This approach, addressing the hyperfine-decoherence of the electron spin via the
nuclear spin decoherence, hinges on the ability to perform nuclear magnetic reso-
nance (NMR) on the nuclear spins. Self-assembled quantum dots have advantages
here. First, the pronounced Coulomb blockade allows the nuclear spin coherence to
be measured both with and without an electron. Secondly, the nuclear spins can be
both polarized (“dynamic nuclear polarization”, DNP) and read-out optically [80].
DNP represents a laser-cooling of the nuclear spins down to mK temperatures [81]
creating large population differences amongst the nuclear spin levels, boosting the
otherwise very weak NMR signal. A nuclear polarization results in subtle shifts to
the optical resonance frequency which can bemeasured very precisely. Nuclear mag-
netic resonance sensitive to just∼1,000 nuclear spins has been achieved [79, 81, 82].
Finally, the nuclei in InGaAs quantum dots have large quadrupole shifts [81–83] and,
arguably, this represents a simplification: in an NMR experiment on nuclear spins
with I > 1

2 , a narrowband NMR drive selects only one transition and the nuclei can
be treated as a collection of spin- 12 spins, an ideal test-bed for theory.

The experiment measures the coherence of the nuclear spins associated with an
InGaAs quantum dot for different charge states, empty (0), singly-occupied (1e) and
doubly-occupied (2e). A static magnetic field is applied along the growth direction,
z; an oscillating magnetic field is applied in-plane, in the x-direction, by sending
a current through an on-chip micro-wire, Fig. 9.13d, e. Specifically, the coherence
associated with the “central” transition (nuclear spin Iz = − 1

2 ↔ Iz = + 1
2 ) of the

75As and 115In isotopes is measured. On account of the in-built strain, each nucleus
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(a) (b)

(c) (d) (e)

Fig. 9.13 Concepts of the quantum dot NMR experiment. a Energy levels for a spin I = 3
2

in the laboratory frame. The static field Bz causes the spin states to split into the Zeeman ladder
with spacing Larmor frequency νZ . Quadrupole effects result in alterations to the level spacing;
the central transition frequency is only shifted by second order terms. bMeasurement cycle: Read-
out/initialization involves detecting resonance fluorescence from the empty quantum dot (neutral
exciton) excited with a narrow-band laser: this both reads the previous nuclear spin polarization
and sets a new state. In the Preparation part, two chirped pulses are applied, A and B, which swap
the populations + 3

2 ↔ + 1
2 , − 3

2 ↔ − 1
2 in order to maximize the population difference between

the + 1
2 and − 1

2 states. In the Coherent manipulation part, a particular bias (which controls the
quantum dot charge) is applied to the gate of the device, and then a pulse of ac current is applied
to the microwire at the radio frequency of the central transition. Finally, the bias is re-set to the
starting value. c Energy levels for a 3

2 spin in the rotating frame versus radio frequency detuning
in the limit of νQ � νRF where νRF is the Rabi coupling. The preparation pulses are indicated by
red arrows. d Top view of sample showing back contact, top gate, SiO2 spacer layer, microwire and
markers for positioning the solid immersion lens (SIL). e Zoom-in of the microwire. A hole in the
wire enables optical access to the quantum dot; the triangular markers facilitate positioning of the
sample in the microscope

experiences an electric field gradient which leads to quadrupole shifts of the bare
levels [81–83], as shown in Fig. 9.13a, the eigenenergies in the laboratory frame.
The in-built strain is site-dependent resulting in a spread of electric field gradients
across the quantum dot, in particular across the electron wave function. For 75As with
I = 3

2 , the first-order quadrupole effect shifts the Iz = − 3
2 ↔ Iz = − 1

2 transition to
lower frequencies, the Iz = + 1

2 ↔ Iz = + 3
2 transition to higher frequencies, yet

the frequency of the central transition is shifted only in second-order. The NMR
spectrum consists of a central peak at νz , inhomogeneously broadened by the second
order quadrupole effects, and well-separated sidebands at νz ± ν

(1)
Q where νz is the

Zeeman frequency and ν
(1)
Q the first-order quadrupole shift [82]. For 115Inwith I = 9

2 ,
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there are 9 NMR transitions but, as for 75As, the central transition is unaffected by the
quadrupole interaction to first order. Hence, in the limit ν(1)

Q � νRF, for each nuclear
spin, the Iz = − 1

2 ↔ Iz = + 1
2 NMR transition can be thought of as a quasi two-level

system: on driving at frequency νz , population is largely confined to the Iz = ± 1
2

sub-space. The eigenenergies in the rotating frame are shown in Fig. 9.13b for a
realistic quadrupole frequency ν

(1)
Q (2 MHz) and Rabi coupling νRF (100 kHz). The

strongest avoided-crossings occur when the bare states have a difference in angular
momentum of one quantum unit [81].

(a)

(b)

Fig. 9.14 Rabi oscillations of the nuclear spin ensemble. Following nuclear state preparation,
the quantum dot is charged (0, 1e or 2e states) and a radio-frequency pulse resonant with the nuclear
central transition is applied. The bias is set to the centre of the charging plateau in the case of an
occupancy of one electron. Plotted is the NMR signal (the optical shift) versus pulse duration for a
arsenic, b indium, in each case for occupancy zero, one electron and two electrons. The solid-lines
represent the calculated response of an inhomogeneous distribution (FWHM of central frequency
δν

(2)
Q ) of two-level emitters with Gaussian distribution of resonance frequency. For 75As, the Rabi

coupling is fitted to νeff = 64 kHz, δν
(2)
Q = 71.7 kHz, radio frequency magnetic field BRF = 4.4

mT from the data at occupancy zero (where T2 is large, 5 ms). In the 1e state, the fit is excellent with
the same νeff and δν

(2)
Q but with T2 = 108 µs. For In, for occupancy zero, the fit yields νeff = 241

kHz, δν(2)
Q = 146 kHz and BRF = 5.2 mT. For occupancy of one electron, the fit is excellent with

the same νeff and δν
(2)
Q but with T2 = 25 µs. For both 75As and 115In, the fit for occupancy two

electrons is excellent with the same parameters as for occupancy zero. The static magnetic field is
Bz = 6.6 T, temperature 4.2 K
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The measurement protocol is shown in Fig. 9.13b. The nuclear spins are polarized
and read-out optically (charge state 0); during the NMR protocol the laser is turned
off. Figure9.14 shows the results of a Rabi oscillation experiment. A pulse at the 75As
central transition frequency is applied to themicrowire. Figure9.14a shows the NMR
signal as a function of pulse duration. A clear oscillation is observed, a Rabi oscil-
lation, as the population is driven coherently between the Iz = − 1

2 and + 1
2 states.

The period corresponds closely to the expected result, twice the 75As gyromagnetic
ratio (the factor of two is the effective coupling and arises on folding the system to
an effective spin- 12 system [84]). When the quantum dot is empty, the Rabi oscilla-
tions decay with a time constant of 50 µs. Given that the coherence time associated
with this transition is in the ms regime [79], this decay corresponds not to a loss of
coherence but to an inhomogeneous broadening, the second-order quadrupole shift
to the central transition ν

(2)
Q . To determine the inhomogeneous broadening δν

(2)
Q , the

response of an ensemble of coherent two-level systems with a Gaussian distribution
in centre frequencies is calculated. Figure9.14a shows an excellent fit to the data
with δν

(2)
Q = 71.7 kHz. When the quantum dot is occupied with a single electron,

the Rabi oscillations retain the same frequency but they decay sooner (decay time
constant 30 µs). When the quantum dot is occupied with two electrons, the Rabi
oscillations behave exactly as for an empty quantum dot. Figure9.14b shows also
a Rabi experiment performed at the 115In central transition. The period of the Rabi
oscillations, noticeably smaller than that of 75As, reflects both the different gyromag-
netic ratio and the increase in the effective coupling (factor 5 for the spin- 92

115In).
The decay of the Rabi oscillations follows the same pattern as for the isotope 75As:

Fig. 9.15 Hahn echo T2
measurement. NMR signal
following a Hahn echo
sequence for a arsenic, b
indium, in each case for the
three charge states, 0, 1e, 2e.
The Hahn echo consists of
the standard
π/2 − τ − π − τ − π/2
sequence. The echo
amplitude is plotted against
the total delay 2τ . Single
exponential fits
(exp(−2τ/T2)) determine
the coherence times. T2 for
the singly charged dot is
more than a factor 100 lower
than for the empty or doubly
charged QD

(a)

(b)
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the decay is the same for the empty and doubly-charged states, more pronounced for
the single-charged state.

The Rabi oscillations provide the first indication that the nuclear spin dynamics
depend on the quantum dot charge. In fact, they reveal a dependence on electron
spin: there is a lone spin in the 1e state but the two electrons in the 2e state form
a spin singlet. However, the faster decay of the Rabi oscillations in the presence of
a single electron could signify a decreased nuclear spin coherence or an increased
ensemble broadening (for instance through the Knight field). To distinguish between
these two cases, it is necessary to measure the coherence associated with the nuclear
central transition. The Hahn echo is perfect for this as it removes the dependence
on the inhomogeneity in the quadrupole shift. Figure9.15 presents the Hahn echo
amplitude as a function of echo delay for both 75As and 115In, in each case for three
charge states. The Hahn echo for the 1e state was recorded at the centre of the single-
electron charging plateau. For both 75As and 115In, a very pronounced dependence on
spin is revealed: the Hahn echo decay time (T2) decreases by more than two orders
of magnitude in the presence of a lone electron spin.

For an empty quantum dot, T2 is a few ms for both 75As and 115In, agreeing
with previous experiments [79]. The general timescale points to decoherence via a
dipole-dipole interaction. For a singly-occupied quantum dot however the T2 times
fall to just ∼20µs, a timescale far too short for a dipole-dipole interaction, and an
additional decoherence mechanism is clearly turned on. Figure9.16 shows T2 versus
bias, marking the extents of the 1e charging plateau. Far from the charging bias, T2
is independent of bias for the 0 state, falling monotonically as the charging plateau is
crossed. T2 reaches a minimum at the centre of the 1e plateau. In fact T2 is symmetric
about the centre of the 1e charging plateau, recovering completely in the 2e plateau.
This is a striking result: the nuclear spins are least coherent in the 1e plateau centre
when the electronic degrees of freedom (charge, electron spin, exciton) are most
coherent.

In the 1e plateau, the electron spin relaxation time T e
1 and the nuclear spin relax-

ation time T1 follow exactly the opposite dependence on bias as compared to the
nuclear spin T2. T e

1 is very small close to the edges of the 1e plateau edge on account
of co-tunneling (the quantum dot electron spin relaxes rapidly by swapping its spin
with an electron in the Fermi sea) [17, 19, 85]. In the 1e plateau centre, co-tunneling
is suppressed at low temperature by the gap between the quantum dot ground state
and the Fermi energy of the Fermi sea such that T e

1 increases (by about 4 orders
of magnitude with respect to the plateau edge [17]). The electron T1 process deter-
mines the nuclear spin T1 process: nuclear spin leaks into the Fermi sea [86]. This
anti-correlation between electron spin relaxation and the nuclear spin coherence is
particularly pronounced at the plateau edge itself. Here electron spins relax extremely
rapidly (revealed also in an increase in the optical resonance fluorescence linewidth),
and the nuclear spin polarization decays relatively quickly. Nevertheless, this rapid
electron relaxation has a relatively benign effect on the nuclear spin decoherence.
The recovery of the nuclear spin T2 in the 2e state is also completely consistent with
this link of nuclear spin coherence to electron spin: in the 2e state, the two electrons
form a singlet with zero total spin.
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(a)

(b)

Fig. 9.16 Nuclear spin coherence time as a function of gate voltage. a Peak resonance fluo-
rescence intensity for both neutral (X0) and charged (X1−) excitons versus bias, Vg, for constant
laser intensity. Dashed lines correspond to an X1− emission intensity drop of 50% and indicate the
boundaries of the charging plateau. At the boundary on the “left”, the 0 and e states are degenerate
and are thus occupied 50:50; equivalently, at the boundary on the “right”, the e and 2e states are
degenerate. b Nuclear spin coherence time, T2, versus bias, Vg

The experiments demonstrate that slow electron spin relaxation promotes nuclear
spin decoherence. This points to a nuclear spin-nuclear spin interaction facilitated by
a common interaction with an electron spin. Qualitatively, this interaction accounts
for the experimental results. First, although this electron-mediated nuclear spin-
nuclear spin interaction arises only in second order, it provides a means for many
nuclei of a particular isotope in the quantum dot to couple together such that it has
significant consequences. Secondly, the interaction is turnedoff in the 2e ground state,
a singlet, accounting for the recovery of the nuclear spin coherence in this regime.
Thirdly, electron spin relaxation via co-tunneling is fast relative to the nuclear spin
dynamics away from the plateau centre such that the nuclear spin ensemble interacts
with a time-averaged electron spin 〈Sz〉. At the edges of the 1e plateau, 〈Sz〉 is
small, suppressing the electron-mediated nuclear spin-nuclear spin interaction: this
accounts for the anti-correlation between nuclear spin T2 and electron spin T e

1 .
A quantitative account of the nuclear spin T2 in the 1e plateau centre has been

developed [87]. At the plateau centre, the central transitions of a particular isotope
represent a closed system, i.e. coupled quasi-spin- 12 spins, as the average quadrupole
splittings (∼2MHz [81]) are larger than the co-tunneling rate (∼0.1MHz). Pro-
vided the electron Zeeman energy is larger than the averaged hyperfine coupling, the
electron-mediated nuclear spin-nuclear spin interaction results in aHamiltonian [74],
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V = 1
8Ze

∑
j �=l A j Al

[(
1
2 + Sz

)
(I−

j I
+
l + I−

l I+
j )

− (
1
2 − Sz

)
(I+

j I
−
l + I+

l I−
j )

]
. (9.4)

where Ze is the electronZeeman energy (in the totalmagnetic field, externalmagnetic
field plus Overhauser field), A j is the hyperfine coupling constant of the j th nuclear
spin, Sz is the z-component of the electron spin operator, and I j is the nuclear
spin operator of the j th nuclear spin. The terms I−

j I
+
l + I−

l I+
j and I+

j I
−
l + I+

l I−
j

represent nuclear spin-nuclear spin flip-flop processes and these terms lead to nuclear
spin decoherence. The dynamics of the transverse components of a single nuclear
spin are described in the presence of a coupling to all the others using a master
equation to second order in V followed by a calculation of the ensemble decoherence
rate. Despite the complexity of the problem, an analytical result for the ensemble
decoherence rate Γ̂ for 75As was derived,

Γ̂As = 2
√
2A3

As

9�ω2N
, (9.5)

where AAs is the hyperfine constant of 75As in GaAs. The total number of nuclear
spins in the quantumdot N is known fromother experiments [58], N = (8.5 ± 0.9) ×
104. The hyperfine coupling, AAs = 86 ± 10µeV, is the standard literature value [57,
88]. The Zeeman energy under these conditions, Ze = 246 ± 30 µeV, is measured
in situ; note that the condition A < Ze is met in the experiment. The final theoretical
result is that 1/Γ̂As = 17 ± 5µs. The error specified represents a randomerror arising
from the uncertainties in the input parameters. The experimental result for 75As in
the plateau centre is T2 = 20 ± 4 µs, Fig. 9.16: the experimental and theoretical
results agree well. Away from the plateau centre, the co-tunneling rate increases

above ν
(1)
Q eventually becoming larger than the total spread in νz (50MHz in this

experiment) such that all transitions of all nuclei can in principle be coupled together
via the common interaction with the electron; in practice, the co-tunneling rapidly
reduces 〈Sz〉, shutting off the interaction. A complete theory in the co-tunneling
regime is formidably complex. This comment notwithstanding, the agreement with
the theoretical result at the plateau centre adds considerable weight to the assertion
that an electron-mediated interaction is responsible for the decoherence of the nuclear
spins in the presence of a single electron.

The overriding point is that probing the nuclear spins in the quantum dot turns
out to be a sensitive probe of the interactions turned on by the presence of a single
electron. Here, the loss of nuclear spin coherence can be attributed unambiguously
to an electron-mediated nuclear spin-nuclear spin coupling. In turn, the prediction is
that this interaction limits the electron spin coherence, to time-scales of tens ofmicro-
seconds in these quantum dots at these magnetic fields. This mechanism determines
a hard limit on the electron spin coherence time. The decoherence time can only be
increased by increasing the Zeeman splitting (by applying larger magnetic fields or
by engineering the electron g-factor) or by increasing the quantum dot size, both
hard to achieve in practice.
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9.5 Hole Spin Dephasing

The nuclear spins in GaAs lead to a rapid loss of electron spin coherence (both T2
and T ∗

2 processes) [2, 46, 47]. Clearly, an approach which retains the GaAs system
while suppressing the interaction of the spin qubit to the nuclear spins is attractive.
A hole spin offers an alternative platform.

A hole is the absence of an electron in an otherwise occupied valence level. A
hole spin has a fundamentally different hyperfine interaction to the electron spin. The
valence states are constructed from atomic p orbitals with zero wavefunction ampli-
tude at the location of the nuclei, Fig. 9.12c. The Fermi contact hyperfine interaction
is therefore suppressed [2, 89, 90]. The dipole-dipole part of the hyperfine interac-
tion remains [89–92]. For a pure heavy hole (HH) state the hyperfine interaction has
an Ising form,

HHH
hf = Ω

N∑

j=1

A j
h,z|Ψh(R j )|2 I j

z Sz . (9.6)

A j
h,z is the coupling coefficient, Ψh the hole envelope function, and Sz = ± 1

2 rep-
resents Jz = ± 3

2 . The absence of transverse terms means that the heavy hole spin
experiences just the z-component of the noisy Overhauser field, Fig. 9.12c. Further-
more, the heavy hole coupling coefficients are reduced with respect to the electron
coupling coefficients: A j

h,z/A
j
e � −10% [90, 92]. The most important consequence

of the Ising form is that application of a transversemagnetic field suppresses hole spin
dephasing by the nuclear spins [90]. This is so effective that the hyperfine interaction
is to all intents and purposes switched off for a pure heavy hole spin [93].

A close-to-ideal heavy hole state exists in unstrained, highly confined GaAs quan-
tumwells [94, 95]. Quantum dots however havemixed states. Even for an ideal quan-
tum dot shape, symmetry does not prevent heavy hole-light hole coupling [96, 97],
and heavy hole-light hole coupling is an experimental fact [19, 98–100], revealed
by deviations in the optical selection rules from the heavy hole limit. For strained
InGaAs quantum dots, the light hole accounts for 5–10% of the hole state [19, 98,
100].

The light hole component in the quantum dot hole state has important con-
sequences for the hole spin hyperfine coupling [92, 93, 101, 102]. Additionally,
admixture of the conduction s orbitals should be taken into account [93, 101]: while
s admixture is small on account of the fundamental energy gap of the semiconduc-
tor, it turns on the large Fermi contact part of the Hamiltonian. In a k.p-description,
the band admixtures are described by an 8 × 8 Hamiltonian (conduction, heavy hole,
light hole and spin-orbit split-off states); the hyperfine interaction consists of a Fermi
contact term and dipole-dipole-like interactions [90, 92]. For the hole states, provided
the admixtures of light hole and conduction states are small, the hyperfine interac-
tion can be folded down to an effective 2 × 2 Hamiltonian which operates on the
mixed hole states. The two mixed hole states are described as a spin- 12 pseudospin,
S: Sz = + 1

2 ≡ |⇑ 〉 represents one of the mixed states, Sz = − 1
2 ≡ |⇓ 〉 represents
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the other. The final result is that the hole hyperfine interaction is no longer purely
Ising-like:

Hh
hf = Ω

N∑

j=1

|Ψh(R j )|2(A j
h,z I

j
z Sz + A j

h,x I
j
x Sx + A j

h,y I
j
y Sy). (9.7)

A j
h,x and A j

h,y are the transverse coupling coefficients and arise from the admixture
of both conduction [93, 101] and light hole states [92, 93, 101, 102], both couplings
giving terms with the same functional form. In each case, A j

h,x and A j
h,y depend

on A j
h,z multiplied by an admixture coefficient. The heavy hole-light hole coupling

also introduces non-colinear terms [102]. The transverse coupling makes the hole
spin vulnerable to spin dephasing via the in-plane components of the nuclear spins,
an interaction which cannot be suppressed in an in-plane magnetic field. In fact
the anisotropy (rather than the magnitude of A j

h,z) represents a crucial issue in the
development of a hole spin qubit.

Experiments have established long hole spin relaxation times [20, 103–105],
coherence times T2 in the µs range [106, 107], fast spin rotations [107–109] (see
Chap.10) and control of two tunnel-coupled hole spin qubits [108]. The hole spin T2
falls rapidly above 10 K, a consequence of a spin-orbit mediated phonon interaction
[110]. Conveniently, 4 K is cold enough to achieve a highly coherent hole spin. The
existence of the longitudinal hole hyperfine interaction has been established [91].
Experimentally, A j

h,z averaged over the quantum dot, 〈Ah,z〉, has been measured to
be −10% of the average value of Ae

i , 〈Ae
i 〉, on self-assembled quantum dots by

dynamically polarizing the nuclear spins along the z-direction and measuring the
changes to the electron and hole Zeeman energies [111–113], confirming theoretical
expectations [90, 92] albeit with some discussion on the sign [66, 114].

Two difficulties are encountered in probing the hole spin hyperfine interaction
optically. First, optical excitation of a hole spin populates an exciton state consisting
of two holes in a singlet state but an unpaired electron spin. In this situation it is not
trivial to assign any nuclear spin effects unambiguously to the hole spin given the
strong hyperfine interaction of the electron spin. Secondly, p-type devices tend to be
considerably noisier than n-type devices yet the hole g-factor is very sensitive to an
electric field [115–117] such that charge noise results in spin dephasing [107, 116,
117]: in noisy devices this effect completely obscures the hyperfine couplings.

It is important to reduce radically the charge noise in p-type devices. This has
been achieved not only by working with ultra-clean material but also by inverting the
standard design, switching from the standard p-i-Schottky structure to an n-i-p device.
It is also important to carry out an experiment which is sensitive to the transverse
terms in the hole hyperfine interaction. This was achieved by polarizing the nuclear
spins along a transverse direction, monitoring the polarization via the lone electron
spin in the exciton, and measuring the hole Zeeman splitting Zh ultra-precisely by
means of dark state spectroscopy, i.e. coherent population trapping (CPT) [48, 106,
116, 118, 119]. The combination of a coherent hole spin, resonance fluorescence

http://dx.doi.org/10.1007/978-3-319-56378-7_10
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detection (RF) [120] and low-noise samples resulted in a spectral resolution in Zh

of just 10 neV (2.4 MHz).

9.5.1 Coherence Population Trapping on a Single Hole Spin
in a Quantum Dot

CPT is a useful spectroscopic tool to measure the hole Zeeman energy with high
resolution. CPT is a quantum interference in a Λ-system where two ground states
are coupled individually by “pump” and “probe” optical fields to a common upper
level, Fig. 9.17. Here, the two ground states correspond to the Zeeman-split hole spin
states, described as |⇑ 〉x and |⇓ 〉x , and the upper level to an exciton, |⇑⇓,↓ 〉x
or |⇑⇓,↑ 〉x , where |⇑ 〉x and |⇓ 〉x are the eigenstates of the hole pseudospin
in the x-basis and |↑ 〉x , |↓ 〉x refer to the electron spin states, also in the x-basis,
Fig. 9.17. A transversemagnetic field (in the x-direction) establishes the quantization
axis and the Λ-system, Fig. 9.17. This applies to a hole spin provided the in-plane
g-factor is non-zero: the interference occurs when the frequency difference of the
lasers matches the hole Zeeman splitting, the two-photon resonance. A dark state
results, revealed by a dip in the probe spectrum. The spectral position of the dip
measures Zh . Specifically, when �Ω1 � �Ω2 � �Γr (�Ω1, �Ω2 are the probe and
pump couplings, Γr the spontaneous emission rate) the CPT dip has width �Ω2

2/Γr .
The depth of the dip is sensitive to the hole spin coherence: only for 1/T2 � Ω2

2/Γr

does the emission in the dip go to zero. Hence, provided the hole spin coherence is
high enough, the width of the CPT dip can be much less than the optical linewidth,
enabling a highly accurate measurement of Zh . Furthermore, the location of the
CPT dip is determined only by the two-photon resonance. CPT is therefore an ideal
technique to extract Zh . Fluctuations in exciton energy (via charge noise and the
Overhauser field acting on the electron spin) modify the emission envelope [106,
118] but not the location of the CPT dip.

CPT on a single quantum dot containing a single hole is shown in Fig. 9.17.
The new p-type devices are very important: they remove the charge-noise-induced
fluctuations of the CPT dip position which plagued earlier experiments [116]. The
occupation of the upper level is monitored with high signal:noise by detecting the
resonance fluorescence [28, 120], Fig. 9.17b, c. The resonance fluorescence exhibits
a Lorentzian envelope with full-width-at-half-maximum (FWHM) 2.5 µeV and a
pronounced dip with FWHM 80 neV (19.3 MHz). A zoom-in of the CPT dip is
shown in Fig. 9.17c along with CPT from a quantum dot in sample B with CPT
dip width 33 neV (8.0 MHz). These spectra enable the determination of Zh with a
resolution of ∼10neV. The hole g-factor (in-plane magnetic field) is gh,x = 0.063
for quantum dot A, gh,x = 0.035 for quantum dot B. Averaged over many quan-
tum dots in these samples, 〈gh,x 〉 = 0.12 ± 0.10; in the vertical direction, the hole
g-factor ismuch larger, 〈gh,z〉 = 1.22 ± 0.03. This is reminiscent of the close-to-ideal
heavy hole state in an unstrained quantum well for which gh,x � gh,z . However, the
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(a) (b)

(c) (d)

Fig. 9.17 Coherent population trapping on a single hole spin in a quantum dot. a The quantum
states. Two optical Λ-systems (blue and red lines) are established in a magnetic field along the
x-direction: |⇑ 〉x and |⇓ 〉x are the hole pseudospin eigenstates in the x-basis, split by the Zeemann
energy Zh ; the upper levels are the X1+ excitons consisting of two holes in a singlet state and an
unpaired electron with spin ± 1

2 , again in the x-basis. The optical transitions are linearly polarized,
eitherπx orπy , with equal optical dipoles, at wavelengths close to 950nm.bRF spectrumon a single
quantum dot QDA containing a single hole in sample A using the “blue”Λ-system (pump on higher
energy “vertical” transition). The pronounced dip signifies CPT. The solid line shows the result of a
3-level density matrix model (probe coupling �Ω1 = 0.06 µeV, pump coupling �Ω2 = 0.40 µeV,
spontaneous emission rate Γr = 0.68µeV, T2 > 1µs, T1 � T2) convoluted with a Lorentzian with
FWHM Γ = 2.5 µeV to describe slow exciton dephasing, and then with a Lorentzian with FWHM
8.3 neV (2.0 MHz) to account for the mutual coherence of the lasers. The data were recorded with
0.1 s integration time per point at a magnetic field Bx = 3.00 T and temperature T = 4.2 K. c, d
Two exemplary CPT dips of QDA and QDB, respectively. The dip from QDA has a FWHM of 80
neV (19.3 MHz) and is modelled with the parameters of (b). The limited mutual coherence of the
lasers is the main reason that the signal in the dip centre does not go down completely to zero. The
dip from QDB has a FWHM of 33 neV (8.0 MHz), 5 s integration per point. The CPT simulation
uses �Ω1 = 0.1 µeV, �Ω2 = 0.49 µeV, and, as in b, Γr = 0.68 µeV, T2 > 1 µs, T1 � T2. In this
case, the remaining signal in the dip centre is likely to be a consequence of the small value of Zh :
the dark state can be destroyed by the weak coupling of the pump to the probe transition (color
figure online)

magnitude of gh,x is an unreliable measure of the heavy hole-light hole admixture as
gh,x is very sensitive to the indium concentration via the strong dependence of the
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band structure parameters on indiumconcentration [117].A small gh,x is encouraging
but in itself does not represent a suppressed hole spin hyperfine interaction.

The transverse hole hyperfine interaction is measured by combining CPT and
DNP. At zero magnetic field, the resonance fluorescence spectra have a straightfor-
ward Lorentzian lineshape, Fig. 9.1. This can change in an applied magnetic field
where the resonance has a “top-hat” shape extending over tens of µeV and a strong
hysteresis on reversing the scan direction [111, 121, 122]. The interpretation is that
as the laser is tuned, the nuclei polarize in such a way that resonance with the laser
is maintained. This effect, referred to as “dragging”, occurs also here and is used
as a tool to create a large DNP. Dragging arises through the hyperfine interaction
of the lone electron spin in the exciton. Furthermore, the exact change in electron
Zeeman energy under DNP can be probed spectroscopically by measuring a change
in transition energy of one of the exciton transitions.

In the experiment, the DNP is controlled via the detuning δ2 of the pump laser
with respect to the bare transition frequency. A strong constant frequency pump laser
defines the nuclear spin state and a weak probe laser (Ω1 � Ω2) measures both Zh

and the electron Zeeman splitting Ze. The probe laser is scanned across the vertical
and diagonal transitions, Fig. 9.18. A pronounced dip in the spectrum indicates CPT
and measures Zh with ultra-high resolution. For zero pump detuning (zero DNP),
the probe response at much lower frequencies determines Ze: an increase in RF is
observedwhen the probe comes into resonance with the lower energy “vertical” exci-
ton transition, |⇑ 〉x → |⇑⇓,↑ 〉x , Fig. 9.18a, b. As the pump is detuned, dragging
causes Ze to change and the change ΔZe can be simply monitored via a shift in the
exciton transition, Fig. 9.18a, b. Importantly, the probe coupling is lowered in these
experiments until the probe itself is too weak to induce DNP, i.e. the frequency of the
low energy resonance does not depend on Ω1. At each pump detuning, equivalently
at each value of ΔZe, the hole Zeeman energy Zh is determined with ultra-high
resolution by measuring the exact spectral location of the CPT dip, Fig. 9.18a, b.
Figure9.18c, d plots Zh versus ΔZe. Although Ze changes by almost 20 µeV, Zh

remains constant to within 20 neV for both quantum dots. This is the main result of
this experiment: large values of 〈Ix 〉 do not result in a measurable change in Zh even
when Zh is measured with high resolution.

Quantitatively, this experiment shows that |ΔZh/ΔZe| < 0.1% in the presence of
a transverse DNP. This result can be interpreted in terms of averaged hyperfine cou-
plings,ΔZh/ΔZe � 〈Ah,x 〉/〈Ae〉. Hence, |〈Ah,x 〉/〈Ae〉| < 0.1%. Furthermore, with
|〈Ah,z〉/〈Ae〉| = 10% [111–113], the anisotropy of the hole spin hyperfine interaction
can be quantified, |〈Ah,x 〉/〈Ah,z〉| < 1%. This is consistent with generic theoretical
estimates [93, 102]; a full calculation specific to an InGaAs quantum dot including
all admixtures is presently lacking. In terms of energies, |〈Ah,x 〉| < 0.1 µeV. This
implies a very small energy broadening δZh in the presence of un-polarized but noisy
nuclei (δZe = 600 neV): δZ spin

h < 0.6 neV. The energy broadening arising from the
longitudinal coupling, i.e. from 〈Ah,z〉, is sub-neV for all transverse fields above
about 500 mT.
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(a) (b)

(c) (d)

Fig. 9.18 The transverse hyperfine coupling of a single hole spin. a, Measured probe RF spec-
trum on QDB in the presence of a much stronger, constant frequency pump laser, red: δ2 = 0; blue:
δ2 = 3.4 µeV. The frequency of the probe laser is scanned across the “vertical” and “diagonal”
transitions and is plotted with respect to the pump frequency in both cases. The pronounced dip
signifies CPT and occurs when δ1 = Zh . The peak at large and negative δ1 arises when the probe
is in resonance with the lower energy “vertical” transition. At δ2 = 0 the separation between this
resonance and the CPT dip determines Ze, the Zeeman energy of the exciton (determined by the
lone electron spin). The shift in this resonance signifies a DNP: Ze changes in response to the
change in pump detuning. The measured Rabi energies are �Ω1 = 0.049 µeV and �Ω2 = 0.49
µeV; magnetic field 3.00 T; integration time per point 5 s; temperature 4.2 K. b The quantum
states of the system: the red arrows indicate the optical transitions addressed by scanning the probe
laser for δ2 = 0, blue for δ2 > 0. c, d Zh versus the change of the electron Zeeman energy ΔZe
for samples A (g-factor 0.063) and B (g-factor 0.035), respectively. The solid line represents the
average value, the dashed lines represent ±σ where σ is the standard deviation. At the one-σ level,
dZh/dΔZe = 0.1% (color figure online)

9.5.2 Hole Spin Dephasing

The CPT experiments can be used to estimate T ∗
2 . In a CPT experiment, ensemble

broadening (described with a T ∗
2 time, T ∗

2 = �/δZh) reveals itself by a lifting of the
signal in the dip away from zero and an increase in the dip width. An analysis of
the CPT spectra of Fig. 9.17, taking into account the mutual coherence of the lasers,
results in an energy broadening δZh = 3.3 ± 2.2 neV. T ∗

2 is so large that it is very
challenging to measure it with small error. To reduce the error, the CPT result can
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be complemented with all the other spectroscopic results. First, the contribution to
δZh from charge noise is estimated from the noise analysis. Charge noise is particu-
larly small on sample A contributing 0.10 ± 0.05 µeV to the optical linewidth [56]
and results in a Zh fluctuation of δZ charge

h = 0.3 neV at Bx = 3.00 T. Secondly, the
contribution to δZh from spin noise can be determined in situ. The X1+ linewidth
measures the rms fluctuations in electron Zeeman energy, δZe = 1.43 ± 0.07 µeV
at Bx = 3.00 T. This noise arises from a fluctuation in the nuclear spin polarization
projected along x , the magnetic field direction, and it corresponds to an Overhauser
field of ∼40mT. (Incidentally, this value demonstrates that the nuclear spin distri-
bution is not narrowed in this experiment.) From the upper limit on the coupling
coefficient, the corresponding fluctuations in Zh amount to<1.43± 0.25neV. These
results from the linewidths are completely consistent with the CPT result. The final
result is that T ∗

2 > (460 ± 80) ns.
The long value of hole spin T ∗

2 arises from the application of an in-plane mag-
netic field to suppress the longitudinal hyperfine interaction; a very small transverse
hyperfine interaction; and low levels of charge noise to reduce charge-noise-induced-
dephasing. This T ∗

2 value is considerably larger than others reported in other exper-
iments [107–109]: it is likely that this is entirely related to the different levels of
charge noise in the various experiments. T ∗

2 is limited by charge and spin noise.
In both cases, most of the noise lies at frequencies below 100 kHz [28] such that
dynamical decoupling schemes are likely to be highly effective at prolonging the
usable coherence beyond T ∗

2 . Additionally, the nuclear spin coupling can be reduced
even further by fabricating flatter quantum dots with circular cross-section to reduce
the heavy hole-light hole admixture. A realistic prospect is to push T ∗

2 into the µs
regime. As for a quantum dot electron spin [123], a quantum dot hole spin can be
rotated in ∼10ps [107–109]. This combination makes the hole spin in an InGaAs
quantum dot an attractive platform. As described in Chap. 12, hole spin-hole spin
entanglement has been achieved.

9.6 Conclusions

A self-assembled quantum dot is, under the right conditions (high quality material
at low temperature, resonant excitation on a quantum dot in the Coulomb blockade
regime), a close-to-ideal emitter of single photons. The noise experiments show that
a quantum dot can emit a train of micro-second duration containing photons whose
indistinguishability is very high. The train can be prolonged under certain conditions.
An electron spin trapped in a self-assembled quantum dot is dephased by the nuclear
spins leading to short T ∗

2 times and T2 times in the tens of micro-second regime.
This interaction can however be very effectively suppressed by applying an in-plane
magnetic field to a hole spin. In the presence of noisy nuclear spins, a hole spin is a
superior spin qubit using a self-assembled quantum dot as host provided the charge
noise is low.

http://dx.doi.org/10.1007/978-3-319-56378-7_12
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Chapter 10
Ultrafast Manipulation of Excitons
and Spins in Quantum Dots

Alistair J. Brash, Feng Liu and A. Mark Fox

Abstract This chapter reviews the coherent manipulation of excitons and spins in
self-assembled InGaAsquantumdots byultrafast laser pulses.Webeginwith a review
of the basic theory of coherent control of two-level systems, followed by a discussion
of the beneficial features of quantum dots. Experiments on ultrafast coherent control
of excitons in neutral dots and spins in charged dots are then presented, before
concluding with a comparison of the two different approaches in the context of
applications in quantum information processing.

10.1 Introduction

The coherent manipulation of quantum systems lies at the heart of most quantum
information processing (QIP) schemes. Many of the techniques for coherent control
were originally developed in the fields of nuclear magnetic resonance (NMR) and
atomic physics, and have only recently been applied to semiconductor systems. The
reason for this is the problem of decoherence: the coherence times of optical tran-
sitions in most semiconductors are extremely short, making the task of observing
coherent phenomena particularly challenging. It is in this context that quantum dots,
with their long dephasing times, come into their own. The subject of this chapter is
precisely on the coherent control experiments that are facilitated by the long coher-
ence times of quantum dots.

An appreciation of coherent control experiments first requires that the basic con-
cepts should be well understood. The chapter therefore starts in Sect. 10.2 with
a summary of the main concepts of two-level systems interacting with resonant
laser pulses. The second part of the chapter then focuses on the observation of
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coherent phenomena in quantumdots.After discussing the reasonswhyquantumdots
are good for coherent control experiments (Sect. 10.3), two different approaches are
considered, namely the control of excitons in neutral dots (Sect. 10.4), and of spins in
charged dots (Sect. 10.5). The chapter concludes by comparing the two approaches
and giving an outlook for further work.

10.2 Concepts of Coherent Control Experiments

This section gives a tutorial review of the coherent manipulation of two-level systems
by resonant laser pulses, starting from first principles. Readers who are familiar with
this text-book material may skip ahead to the specific sections on quantum dots,
beginning in Sect. 10.3.

10.2.1 The Two-Level Atom Approximation and the Bloch
Sphere

The starting point for understanding the coherent interaction between laser light and
quantum dots is the two-level atom approximation. A real atom has many quantised
energy levels, giving rise to a rich spectrum of optical transitions, and the two-level
approximation applies when the laser frequency is close to resonance with one of
them. As we shall see, the interaction depends very strongly on the detuningΔ of the
laser relative to the transition frequency, and becomes negligibly small when Δ is
much larger than the line width. We can then neglect the other transitions, and focus
exclusively on the one transition that is resonant with the laser.

In applying the two-level approximation to quantum dots, we make use of their
discrete energy level spectrum that follows from the three-dimensional confinement
of the electrons andholes. Theoptical transitions consist of sharp lines, corresponding
to neutral exciton, biexciton, charged exciton, etc. transitions. The laser can be tuned
close to resonance with one of these, while being many line widths away from the
others, justifying the use of the two-level approximation. The fact that the model
works well is a clear confirmation of the well-used description of quantum dots as
“solid-state atoms”.

An arbitrary superposition state of a two-level system has a wave function of the
form:

|ψ〉 = c1|1〉 + c2|2〉 , (10.1)

where c1 and c2 are the amplitude coefficients for the two states. The normalization
condition requires that:

|c1|2 + |c2|2 = 1 , (10.2)
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Fig. 10.1 a Spin 1/2 system in a magnetic field B interacting resonantly with microwaves. b Two-
level atom interacting resonantly with a laser. cBloch sphere for representing the state of a two-level
system. For historical reasons, we usually consider nuclear spin systems in a, in which case the
Zeeman splitting is equal to gIμNB, where gI is the gyromagnetic ratio and μN is the nuclear Bohr
magneton

which suggests that we can represent the state by a vector of unit length starting at
the origin. This geometric interpretation of coherent superposition states is called the
Bloch representation. The vector that describes the state is called the Bloch vector,
and the sphere it defines is the Bloch sphere.

The Bloch representation was originally developed by Felix Bloch in 1946 to
model NMR phenomena, and was adapted to two-level atoms by Feynman, Vernon,
and Hellwarth in 1957, where they showed that a two-level atom can be regarded
as a pseudo-spin 1/2 system [1]. The corresponding optical Bloch equations were
derived by Arecchi and Bonifacio in 1965 [2]. This analogy with a spin 1/2 particle
in a magnetic field is shown schematically in Fig. 10.1.

The direction of theBloch vector s can be specified either inCartesian co-ordinates
(x, y, z) or spherical polar co-ordinates (r, θ,ϕ). The requirement that the vector
has unit length implies that r2 = (x2 + y2 + z2) = 1, so that only two independent
variables are required to define an arbitrary state, for example the angles (θ,ϕ). This
allows us to make a unique mapping between the wave function amplitudes (c1, c2)
and the direction of the Bloch vector.

The connection between the Bloch sphere and a two-level system may be made
by defining the poles to correspond to the |1〉 and |2〉 states respectively, as shown
in Fig. 10.1c. The ground state at the south pole with |ψ〉 = |1〉 thus corresponds to
(0, 0,−1) in Cartesian co-ordinates or θ = π in polar co-ordinates. Similarly, the
pure excited state |2〉 corresponds to (0, 0, 1) or θ = 0. An arbitrary state is given in
Cartesian co-ordinates as:

x = 2Re〈c1c2〉 ,

y = 2 Im〈c1c2〉 , (10.3)

z = |c2|2 − |c1|2 ,
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where the notation 〈· · · 〉 indicates that we take the average of repeatedmeasurements
on identical systems. In polar co-ordinates this simplifies to:

c1 = sin(θ/2) ,

c2 = eiϕ cos(θ/2) . (10.4)

This one-to-one mapping allows us to visualize an arbitrary superposition state of
a two-level atom in a geometric way, which is very useful when considering the
resonant interaction with an intense optical field.

The coherence of a two-level system relies on having a definite phase relationship
between c1 and c2, leading to non-zero x and y components of the Bloch vector. By
contrast, in a completely incoherent system (i.e. a statistical mixture) we only know
the probability that the atom is in the upper or lower level, i.e. the z component of the
Bloch vector. The phase relationship between c1 and c2 is random, so that 〈c1c2〉 = 0,
and the x and y components are zero. Statistical mixtures thus correspond to points
inside the Bloch sphere with r < 1. The system is completely incoherent if both
the x and y components are zero, and partially coherent for non-zero x and y but
r < 1. In the equivalent language of the density matrix ρi j = 〈ci c∗

j 〉, the coherence
is determined by the off-diagonal elements ρ12 and ρ21, while statistical mixtures
only contain information about the diagonal elements ρ11 and ρ22. Note, however,
that there is no difference between superposition states and statistical mixtures for
the pure states |i〉 at the poles of the Bloch sphere with ci = 1.

10.2.2 Rabi Oscillations

The effect of a resonant laser on a two-level atom can understood by solving the
time-dependent Schrödinger equation:

ĤΨ = i�
∂Ψ

∂t
. (10.5)

We start by splitting theHamiltonian into a time-independent part Ĥ0 which describes
the atom in the dark, and a perturbation term V̂ (t) which accounts for the light-atom
interaction:

Ĥ = Ĥ0(r) + V̂ (t) . (10.6)

Since we are dealing with a two-level atom, there will be two solutions for the
unperturbed system:

Ĥ0Ψi = i�
∂Ψi

∂t
, (10.7)

with
Ψi (r, t) = ψi (r) exp(−iEi t/�) {i = 1, 2} , (10.8)
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and
Ĥ0(r)ψi (r) = Ei ψi (r) {i = 1, 2} . (10.9)

The general solution for a two-level atom is:

Ψ (r, t) = c1(t)ψ1(r)e−iE1t/� + c2(t)ψ2(r)e−iE2t/� . (10.10)

On substituting (10.10) into (10.5) with Ĥ given by (10.6), we obtain:

(Ĥ0 + V̂ )
(
c1ψ1e

−iE1t/� + c2ψ2e
−iE2t/�

)

= i�
(
(ċ1 − iE1c1/�)ψ1e

−iE1t/� + (ċ2 − iE2c2/�)ψ2e
−iE2t/�

)
. (10.11)

On using (10.9), and cancelling several terms, this becomes:

c1V̂ψ1e
−iE1t/� + c2V̂ψ2e

−iE2t/� = i�ċ1ψ1e
−iE1t/� + i�ċ2ψ2e

−iE2t/� . (10.12)

On multiplying by ψ∗
i , integrating over space, and making use of the orthonormality

of the eigenfunctions, we find that:

ċ1(t) = − i

�

(
c1(t)V11 + c2(t)V12e

−iω0t
)

,

ċ2(t) = − i

�

(
c1(t)V21e

iω0t + c2(t)V22
)

, (10.13)

where ω0 = (E2 − E1)/� is the transition frequency, and

Vi j (t) ≡ 〈i |V̂ (t)| j〉 =
∫

ψ∗
i V̂ (t)ψ j d

3r . (10.14)

To proceed further we must consider the explicit form of the perturbation V̂ . In
the semi-classical approach, the light-atom interaction is given by the energy shift
of the atomic dipole in the electric field of the light:

V̂ (t) = er · E(t) . (10.15)

We arbitrarily choose the x axis as the direction of the polarization so that we can
write E(t) = (E0, 0, 0) cosωt , where E0 is the amplitude of the light wave, and ω
is its angular frequency. The perturbation then simplifies to:

V̂ (t) = exE0 cosωt = exE0

2

(
eiωt + e−iωt

)
, (10.16)

and the perturbation matrix elements are given by:
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Vi j (t) = eE0

2

(
eiωt + e−iωt

) ∫
ψ∗
i xψ j d

3r . (10.17)

We now introduce the dipole matrix element μi j given by:

μi j = −e
∫

ψ∗
i xψ j d

3r ≡ −e〈i |x | j〉 . (10.18)

Since x is an odd parity operator and atomic states have well-defined parities, it
follows thatμ11 = μ22 = 0.Moreover,μi j represents ameasurable quantity andmust
therefore be real, implyingμ21 = μ12, becauseμ21 = μ∗

12.With these simplifications,
(10.13) reduces to:

ċ1(t) = i
E0μ12

2�

(
ei(ω−ω0)t + e−i(ω+ω0)t

)
c2(t) ,

ċ2(t) = i
E0μ12

2�

(
e−i(ω−ω0)t + ei(ω+ω0)t

)
c1(t) . (10.19)

We now introduce the Rabi frequency defined by:

ΩR = |μ12E0/�| . (10.20)

We then finally obtain:

ċ1(t) = i

2
ΩR

(
ei(ω−ω0)t + e−i(ω+ω0)t

)
c2(t) ,

ċ2(t) = i

2
ΩR

(
e−i(ω−ω0)t + ei(ω+ω0)t

)
c1(t) . (10.21)

These are the equations that must be solved to understand the behaviour of the
atom in the light field. The solutions in the weak-field limit (i.e. low light intensity)
correspond to the incoherent Einstein B coefficient analysis of transition rates. In
what follows, we focus instead on the strong-field limit.

The equations can be simplified by applying the rotating wave approximation in
which we move to a rotating frame at frequency ω0. The term at (ω + ω0) oscillates
very rapidly in this frame, while the one at (ω − ω0) is nearly stationary.We therefore
neglect the former and focus on the latter to obtain:

ċ1(t) = i

2
ΩRe

iΔt c2(t) ,

ċ2(t) = i

2
ΩRe

−iΔt c1(t) , (10.22)

where Δ = ω − ω0 is the detuning. For exact resonance with Δ = 0, we find
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Fig. 10.2 Rabi oscillations
for a two-level atom
interacting with a resonant
laser in the absence of
damping. The electron
oscillates back and forth
between the two levels at the
Rabi frequency, ΩR
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i
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c1 . (10.23)

We then obtain the equation of motion:

c̈1 +
(

ΩR

2

)2

c1 = 0 , (10.24)

which describes oscillatory motion at angular frequency ΩR/2. If the particle is in
the lower level at t = 0 so that c1(0) = 1 and c2(0) = 0, the solution is:

c1(t) = cos (ΩRt/2) ,

c2(t) = i sin (ΩRt/2) . (10.25)

The probabilities for finding the electron in the upper or lower levels are then:

|c1(t)|2 = cos2 (ΩRt/2) ,

|c2(t)|2 = sin2 (ΩRt/2) . (10.26)

The time dependence of these probabilities is shown in Fig. 10.2. At t = π/ΩR the
electron is in the upper level, whereas at t = 2π/ΩR it is back in the lower level.
The process then repeats itself with a period equal to 2π/ΩR. The electron thus
oscillates back and forth between the lower and upper levels at a frequency equal to
ΩR/2π. This oscillatory behaviour in response to the strong light field is called Rabi
oscillation or Rabi flopping. It has been observed in many systems, and, as we shall
see in Sect. 10.2.4, can be given a geometric interpretation in terms of rotations of
the Bloch vector. Observations of Rabi flopping in quantum dots will be discussed
in Sect. 10.4.2.

For the more general case where Δ �= 0, it can be shown that:

|c2(t)|2 = Ω2
R

Ω2
sin2 (Ωt/2) , (10.27)
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where Ω =
√

Δ2 + Ω2
R is the generalised Rabi frequency. This shows that the fre-

quency of the Rabi oscillations increases but their amplitude decreases as the light
is tuned away from resonance, which explains why we can neglect off-resonant
transitions.

The observation of Rabi flopping often requires powerful, pulsed lasers, so that
the electric field amplitude E0, and hence ΩR, varies with time. It is then useful to
define the pulse area Θ according to:

Θ =
∣∣
∣∣
μ12

�

∫ +∞

−∞
E0(t) dt

∣∣
∣∣ . (10.28)

This is a dimensionless parameter that serves the same purpose asΩRt in the analysis
above. A pulse with Θ = π is called a π-pulse, etc. An atom in the ground state with
c1 = 1 at t = 0will thus be promoted to the excited state by a π-pulse, but will end up
back in the ground state if it interacts with a 2π-pulse. Note, however, that additional
geometric phase shifts can be picked up by fermionic particles during Rabi rotations.
These are important in the spin control experiments described in Sect. 10.5.

10.2.3 Damping

We have assumed so far that the wave functions remain completely coherent while
being driven by the laser. In reality, collisions, or interactions with the environment,
randomize the phases, leading to a loss of coherence. The damping mechanisms
that cause decoherence are generally determined by two time constants, T1 and T2,
originally introduced in NMR theory.

The T1 time characterizes the spontaneous decay rate of the population from the
upper state, for example, by a radiative transition:

dN2

dt
= −N2

T1
, (10.29)

where N2 = |c2(t)|2N is the population of the upper level in an ensemble of
N identical systems. Solution of (10.29) gives exponential decay with N2(t) =
N2(0) exp(−t/T1), which shows that T1 is the lifetime of the upper level, and char-
acterises the decay of the z component of the Bloch vector, as shown in Fig. 10.3a.
Since radiative transitions occur spontaneously (i.e. at random times, triggered by
vacuumfluctuations), they destroy all phase information in the system. Non-radiative
process can also contribute to T1. An example of particular relevance to quantum dot
physics is the tunnelling of electrons and holes out of a dot in an electric field.

The T2 time gives the timescale over which coherence is maintained. It is related
to T1 through the following relationship:
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(a) (b)

Fig. 10.3 a Damping processes in the Bloch representation: T ∗
2 processes conserve z but T1

processes do not. b Damped Rabi oscillations for two values of the ratio of the damping rate γ
to the Rabi oscillation frequency ΩR. The dotted curve shows the oscillations when no damping is
present

1

T2
= 1

2T1
+ 1

T ∗
2

. (10.30)

The first term accounts for the loss of coherence due to population decay. The second
is the pure dephasing rate (T ∗

2 )−1. The T ∗
2 time quantifies pure dephasing processes

in which z is unchanged, for example: elastic scattering by phonons or by fluctuating
fields from impurities. This difference is illustrated in Fig. 10.3a. The T ∗

2 processes
cause a coherent state on the surface of the Bloch sphere to relax to a mixed state
on the z axis, and is therefore called transverse relaxation This contrasts with the
longitudinal T1 processes that causes changes in z as well as x and y.

The overall coherence time is given by T2. In a system with negligible pure
dephasing (i.e. T ∗

2 � T1), the coherence time is 2T1. This means that the ultimate
limit on T2 is set by the lifetime of the upper level. The factor of two between T2 and
T1 in this limit arises from the fact that coherence is sensitive to the wave function
amplitude (i.e. c2), whereas population depends on |c2|2. For a system with simple
exponential dynamics following (10.29), c2 decays at half the rate as the population:
|c2(t)| ∝ exp(−t/2T1).

The probability that a damped two-level system is in the upper level when driven
on resonance is given by [3]:

|c2(t)|2 = 1

2(1 + 2ξ2)

[
1 −

(
cosΩ ′t + 3ξ

(4 − ξ2)1/2
sinΩ ′t

)
exp

(
−3γt

2

)]
, (10.31)

where ξ = γ/ΩR and Ω ′ = ΩR

√
1 − ξ2/4. The parameter γ that enters here is the

damping rate 1/T2. It is easily verified that this formula reduces to the undamped
case given in (10.26) when γ = 0. The effect of damping on Rabi oscillations is
illustrated in Fig. 10.3b. The dotted line shows the undamped case with γ = 0 shown
previously in Fig. 10.2. The two other graphs demonstrate the effect of increasing
damping. With light damping (γ/ΩR = 0.1), the system performs a few damped
oscillations and then approaches the asymptotic limit with |c1|2 = |c2|2 = 1/2. This
asymptotic limit is exactly the behaviour predicted by the incoherent analysis based
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on the Einstein B coefficients, where the rates of stimulated emission and absorption
eventually equal out at high pumping rates, leading to identical upper and lower level
populations. With stronger damping (γ/ΩR = 1), no oscillations are observed, and
we recover the fully incoherent picture where |c2(∞)|2 is proportional to the laser
power, independent of time. This asymptotic limit is best seen by setting ξ � 1, in
which case the probability of occupation of the upper level at long times is equal to
ξ−2/4 = μ2

12E
2
0/4�

2γ2, i.e. proportional to the Einstein B coefficient via μ2
12 and the

laser power via E2
0 .

The conclusion of this analysis is that Rabi oscillations can only be observed in
highly coherent systems where the damping rate is significantly smaller than the
Rabi frequency. In atomic gases, the damping rate depends on the collision rate
and the radiative lifetime, which gives γ ∼ 107 − 109 s−1. In semiconductors the
dephasing times are often much shorter due to phonon scattering, scattering by free
charge carriers, or tunnelling. This makes the task of demonstrating Rabi oscillations
somewhat difficult, which explains why they are not routinely observed. The art of
coherent control experiments thus entails reducing the damping rate as much as
possible (e.g. by working with very pure samples at low temperatures) and using
lasers with pulses that are shorter than the coherence time.

10.2.4 Coherent Rotations on the Bloch Sphere

The previous sub-sections have established the basic principles for the main focus of
this chapter, namely the coherent manipulation of a two-level system by a resonant
laser pulse with duration shorter than T2. This process is best visualised by con-
sidering the Bloch vector s. If damping is negligible, the system remains coherent,
and the pulse only changes the direction of s without altering its length. This means
that the pulse acts as a rotation operator. We showed previously that a π-pulse can
convert a system in the ground state |1〉 to the excited state |2〉, and vice versa. This
corresponds to a change of the Bloch vector angle θ by π radians, and explains the
origin of the name ‘π-pulse’. In general, it can be shown that the rotation angle is
equal to the pulse area defined in (10.28). Hence a pulse of area Θ causes a rotation
of s by Θ radians.

In analysing coherent manipulations of Bloch vectors, we can usually assume that
the system is initially in the ground state. The azimuthal angle of the Bloch sphere
is then undefined, which means that the azimuthal angle of the rotation axis is also
undefined. It is therefore convenient to choose the x and y axis directions so that
the first pulse in a sequence produces a rotation about, say, the y axis, leaving the
Bloch vector in x–z plane at the end of the pulse. The axis about which subsequent
rotations take place is then determined by the phases of the pulses relative to the first
one. Combinations of pulses of the appropriate area and phase can then be used to
move the Bloch vector to any particular point on the Bloch sphere.

Figure10.4 illustrates how this works in Ramsey interference experiments. The
system is initially in the ground state as shown in Fig. 10.4a. A resonant π/2 pulse
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(a) (b)

(c) (d)

Fig. 10.4 Ramsey interference experiment illustrated on the Bloch sphere. a The system is initially
in the ground state. b A resonant pulse of area π/2 rotates the system to a point on the equator. c
A second resonant π/2 pulse with relative phase ΔΦ rotates the system to the north or south pole
respectively when ΔΦ = 2mπ or (2m + 1)π, m being an integer. d Same as c, but with dephasing
included

is incident and rotates the Bloch vector by 90◦ to a point on the equator, as shown in
Fig. 10.4b. The system is then interrogated with a second π/2 pulse with phase ΔΦ

relative to the first one. If the second pulse is in phase (ΔΦ = 2mπ, m = integer,
Fig. 10.4c, top half), the second 90◦ rotation takes place about the same axis as the
first, and the system ends up at the north pole. However, if the second pulse is out
of phase (ΔΦ = (2m + 1)π, Fig. 10.4c, bottom half), the rotation takes place about
an axis pointing in the opposite direction to the first, leaving the system at the south
pole. Figure10.4d illustrates the equivalent picture when dephasing is included. The
system ends up in a mixed state along the z axis, either in the upper or lower half of
the Bloch sphere, depending on the relative phase of the second pulse.

A final mention should be made of the case of off-resonant pulses. Equation
(10.27) implies that an off-resonant pulse with detuning Δ induces Rabi oscillations
at a slightly different frequency, and with reduced amplitude. This can be visualised
as rotations about an axis with polar angle α relative to the equatorial plane, where
tanα = Δ/ΩR [4]. As with resonant pulses, the azimuthal angle is determined by
the phase. This off-equatorial rotation for finiteΔ accounts for the reduced amplitude
of the Rabi flopping. Note that α = 0 for Δ = 0, and that α = π/2 for ΩR = 0.

10.3 Quantum Dots as Coherent Systems

In the sections that follow, coherent control experiments on quantum dots (QDs) will
be reviewed in detail. However, it is first useful to make some general remarks that
explain the interest in QDs for coherent state manipulation.



336 A.J. Brash et al.

Fig. 10.5 a Energy level spectrum of the exciton and biexciton in a neutral dot in the linearly-
polarized basis. The two eigenstates |Xx 〉 and |Xy〉 are split by the fine-structure splitting (FSS) (�δ).
b Circularly-polarized basis with excitation bandwidth >�δ. The FSS causes precession between
the two eigenstates, indicated by the green arrows. The exciton and biexciton energies are given
respectively by �ωX and �ΔXX . For clarity, the splittings are not to scale, as �δ  �ΔXX  �ωX .
c Emission spectrum of a typical dot. The neutral exciton and biexciton lines are identified. The
X+ line arise from a positively charged exciton. The inset gives a high resolution spectrum of the
X0 line of a similar dot, from which the FSS can be deduced. Data from E.A. Chekhovich and
M.N. Makhonin

The observation of intense, discrete lines in the emission spectra of individual
dots in 1994 [5] immediately pointed to the 3-D confinement of the electrons and
holes. A particularly striking feature was the sharpness of the lines: see, for example,
Fig. 10.5c. Since the width ΔE of spectral lines is determined by the dephasing
time of the emitters, a sharp line implies a long T2 time. At the time when single-
dot spectra were first observed, the state-of-the-art in semiconductor optics was set
by quantum-well samples in GaAs-related materials. The very best samples showed
ΔE ∼ 0.1meV,which implied T2 ∼ 10ps at best.While very impressive resultswere
demonstrated (see e.g. [6–8]), the short dephasing time made long-term applications
difficult. With InGaAs quantum dots, by contrast, it is relatively straight forward to
get ΔE ∼ 0.01meV, with the best samples showing ΔE ∼ 1µeV, limited only by
the∼1ns radiative lifetime [9]. From this we can deduce that, in the right conditions,
pure dephasing can effectively be eliminated, leading to ∼1ns coherence times.
Such long T2 times were indeed verified from four-wave mixing experiments on QD
ensembles in 2001 [10].

Another very striking feature of QDs is the absence of phonon side-bands. Most
localized emitters in solid-state hosts (e.g. NV centres in diamond, Ti3+ ions in
sapphire) are strongly coupled to phonons, giving rise to vibronic sidebands in their
emission and absorption spectra. In the case of NV centres, for example, the coupling
is so strong that only a fewpercent of the emissionoccurs in the zero-phonon line,with
most of the photons emitted from the sidebands [11]. The relatively weak intensity
of the zero-phonon line has serious consequences for practical applications in optical
QIP.
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The reason for the strong phonon sidebands in materials like diamond NV centres
and Ti:sapphire is that both the electronic and vibrational modes are localized on
length scales similar to the unit cell size. This means that the overlap between the
electronic wave functions and the phonon modes is large. By contrast, InGaAs quan-
tum dots (QDs) have envelope wave functions localized on much larger length scales
that are determined by the size of the dot, i.e. ∼10nm. This means that the coupling
to phonons is relatively weak, with the dominant interaction being to longitudinal-
acoustic (LA) phonons via deformational potential scattering. The weak vibronic
coupling gives rise to very strong emission in the zero-phonon line, with only ∼8%
in the sideband at cryogenic temperature [12, 13]. This makes InGaAsQDs excellent
single-photon sources [14]. It also gives a small phonon dephasing rate, and hence
explains the long T2 time discussed above.

It should be noted that the actual coherence timesmeasured inQDs are still shorter
than those obtained in atomic systems. This follows immediately from the short
(∼1ns) radiative lifetime of InGaAs QDs, compared to atomic transitions (e.g. 16ns
for sodiumD lines at∼589nm).However, this is not necessarily a drawback provided
we work in the regime where T2 is limited by the radiative lifetime. As discussed
in Sect. 10.2.3, the key parameter is the ratio of the Rabi frequency to the damping
rate. The Rabi frequency is determined by the dipole moment of the transition (see
(10.20)), which also determines the radiative lifetime. Hence a system with a large
dipole moment automatically has a short coherence time, but the ratio ΩR/γ is not
necessarily adversely affected. In fact, InGaAsQDs typically have dipolemoments of
∼30Debye (∼1 × 10−28 Cm) [15],which is at least an order ofmagnitude larger than
atoms. The larger dipole moment means that the light-matter coupling is stronger,
enabling efficient driving at relatively low powers. Overall, InGaAs QDs represent a
good compromise between strong light-matter coupling and freedom from dephasing
(at least compared to bulk and quantum well semiconductors.) These properties,
combined with their compatibility with advanced technological device processing,
makes QDs very attractive for QIP applications.

There are several different types of quantum dots, but this chapter focusses on the
self-assembled InGaAs QDs grown by epitaxial methods such as molecular beam
epitaxy (MBE) or metal-organic chemical vapour deposition (MOCVD). QDs can
also be formed during MBE growth of pure GaAs layers at interface islands due to
monolayer fluctuations [16]. In fact, the first coherent control experiment on single
III-V QDs was performed on these types of dots [17], and this was soon followed
by two other key ‘firsts’: Rabi flopping [18] and a two-qubit quantum gate [19].
However, the electrons and holes in these interface dots are only weakly confined,
making them very sensitive to temperature, and also to scattering form free carriers,
which can come from either impurities or optical excitation. This means that their
T2 times, although substantially better than bulk or quantum well semiconductors,
are shorter than those of InGaAs dots. There are also colloidal quantum dots, but
these are hard to incorporate into photonic devices. For these reasons, InGaAs dots
are best suited for most applications in QIP.

We should also clarify that everything considered in this section so far refers to
the excitons created when electron and hole pairs are excited in QDs by absorption
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of photons. These excitons have radiative lifetimes of ∼1ns, which sets a similar
upper limit on T2. At the same time, they interact very strongly with light, which
facilitates their coherentmanipulation (seeSect. 10.4 below).An alternative approach
involving the coherent control of spins in chargedQDswill be discussed in Sect. 10.5.
Charged dots contain electrons or holes before the laser is incident, and the goal is to
rotate the carrier spins with the laser. Since the resident carriers cannot recombine,
T2 is no longer limited by the radiative lifetime. On the other hand, light does not
interact directly with electron or hole spins, which makes the coherent manipulation
techniques more challenging. There are therefore advantages and disadvantages of
working with spins, as will be discussed in Sect. 10.5.

10.4 Coherent Control of Excitons

The relatively long coherence times of excitons in QDs facilitate their use in ultrafast
coherent control experiments. The DiVincenzo checklist for QIP requires that we
demonstrate complete control of single excitonic qubits, and establish at least one
excitonic two-qubit gate [20]. We therefore begin this section by considering the
coherent control of single excitons, which can be visualized as single qubit rotations,
and finishwith two-exciton systems.We focus exclusively on bright excitons, leaving
the discussion of dark excitons to Chap. 4.

In this chapter we restrict our discussion of QD coherence to the time domain.
There is an equivalent approach that investigates QD coherence in the frequency
domain through high-resolution spectroscopy. Examples include the observation of
the Mollow triplet [21], and the Autler–Townes doublet [22, 23]. Phenomena such
as these are discussed elsewhere in this book (see e.g. Chaps. 2 and 3).

10.4.1 Level Structure of Excitons in Neutral Quantum Dots

Before considering the principles of coherent control experiments on QDs, we must
first review the excitonic level structure of a typical dot. We assume here that the
dot is neutral: i.e. that it contains no free electrons or holes before the laser pulse
arrives. (Charged dots will be considered in Sect. 10.5.) Furthermore, we neglect the
light-hole (LH) bands, since they have significantly larger confinement energies than
heavy-hole (HH) bands.

Absorption of a photon creates an electron in the conduction band and a hole in
the valence band, which then bind together to form an exciton through their mutual
Coulomb attraction. The exciton state in a neutral dot containing one electron and
hole, both in their lowest confined energy states (i.e. the s-shell), is typically notated
as X0. Since heavy holes have mhh

z = ±3/2, the possible z-axis spin projections of
the exciton are given by:

http://dx.doi.org/10.1007/978-3-319-56378-7_4
http://dx.doi.org/10.1007/978-3-319-56378-7_2
http://dx.doi.org/10.1007/978-3-319-56378-7_3
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Sz = mhh
z + me

z = ±3

2
± 1

2
= −2, −1, 1, 2 . (10.32)

Absorption/emission of a single circularly-polarized photon may only impart a
change in angular momentum of±1. Hence Sz = ±1 “bright excitons” with circular
polarization |↑⇓〉 and |↓⇑〉 are optically allowed whilst Sz = ±2 “dark excitons”
are optically forbidden. Here, and throughout the whole of this chapter, the notation
|↑〉 and |⇑〉 refers to electron and heavy-hole spin states respectively.

An ideal QD exhibits radial symmetry in the growth (x–y) plane. However, the
self-assembly process typically leads to QDs with some degree of asymmetry. In this
case the two bright exciton states become coupled by the electron-hole exchange
interaction [24], causing a precession between the Sz = ±1 states with angular fre-
quency δ [25]. As a result, the eigenstates are linearly polarized and split by the
fine-structure splitting (FSS) �δ as shown in Fig. 10.5a, with:

|Xx 〉 = 1√
2

{|↓⇑〉 + |↑⇓〉}
∣
∣Xy

〉 = 1√
2

{|↓⇑〉 − |↑⇓〉} , (10.33)

where the axes x and y are defined by the asymmetry of the dot, often coinciding with
the [111] and [111] crystal axes. The magnitude of �δ varies significantly from dot to
dot, as it originates from the randomness of the self-assembly process [26]. Its value is
a very important parameter in the coherent control of excitons (see Sect. 10.4.3), and
also in the initialisation of spin states in charged dots (see Sect. 10.5.2). Moreover, its
minimisation is highly important for the generation of entangled photons [27, 28].
The control of the fine-structure splitting is therefore an important research field (see
Chap.7).

The s-shells of a QD can be occupied by two carriers with opposite spins. It is
therefore possible for both of the Sz = ±1 neutral excitons to exist simultaneously,
forming abiexciton (generally denoted as either XX or 2X ). TheCoulomb interaction
between the excitons results in a binding energy (EXX = �ΔXX ) that reduces the
biexciton energy to less than that of two excitons. The resulting energy level structure
is illustrated in Fig. 10.5. Figure10.5a shows the linearly polarised basis, where the
two X0 eigenstates defined in (10.33) are split by the FSS energy �δ. For circular
excitation (σ± = x̂ ± i ŷ) as shown in Fig. 10.5b, both X0 spin states are excited and
the energy splitting is zero. However, as the eigenstates of the system are linear, the
exciton spin precesses with a frequency δ.

Figure10.5c shows a typical emission spectrum of a single InGaAs quantum
dot at 4K. The neutral exciton and biexciton states are labelled. The energy shift
between the X0 and XX states is equal to 2.37meV, which equates with the biexci-
ton binding energy �ΔXX for this dot. The FSS of the X0 line is clearly shown in
the high-resolution spectrum for another dot in the inset. A value of �δ = 9.9µeV
is deduced, together with an exciton linewidth of 4.3µeV, corresponding to a coher-
ence time T2 ∼ 150ps. This linewidth is smaller than the resolution limit of most

http://dx.doi.org/10.1007/978-3-319-56378-7_7
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spectrometers, and its measurement usually requires the use of a scanning Fabry–
Perot interferometer. The lines do, of course, broaden with temperature, implying
a reduction in T2. For this reason, the best coherent control results are generally
obtained at 4K.

A third strong line labelled X+ is also clearly visible in Fig. 10.5c. This line is
due to a positively-charged exciton state and will be discussed in Sect. 10.5. Charged
excitons can be observed in “neutral” dots through the capture of free electrons or
holes from the wetting layer.

10.4.2 Rabi Flopping

The first observation of Rabi flopping for excitons in a single quantum dot was
obtained for GaAs interface dots in 2001 [18]. Similar observations were soon
obtained for single InGaAs/AlGaAs dots [29] and for ensembles of self-assembled
InGaAs/GaAs dots [30, 31]. In these experiments, the exciton population was mea-
sured as a function of increasing pulse area, as in Fig. 10.3b. The Rabi oscillations
were subsequently observed directly in the time domain by measuring the second-
order correlation of the photons emitted [32] or by performing pump-probe exper-
iments using two pulses [33]. Rabi flopping has also been observed for biexcitons
by tuning the laser to the two-photon resonance midway between the X0 and XX
transition frequencies [34].

In 2002, Zrenner et al. established the photocurrent technique that has been used
extensively for the experimental work reviewed in this chapter [35]. A schematic
of the method is given in Fig. 10.6a. The self-assembled InGaAs quantum dots are
embedded within a reverse-biassed Schottky diode, and are excited through a nano-
aperture within a metal shadow mask. With nano-apertures in the sub-µm range,
the number of dots interrogated by the laser is reduced to ∼10 for dot densities of
∼109 cm−2. The randomness of the self-assembly leads to fluctuations in the size
and shape, and hence confinement energies, so that individual QDs can be addressed
by tuning the laser. Coherent effects from single dots can then be observed when
excited resonantly by a laser pulse with duration shorter than the coherence time.

An attractive feature of the photocurrent technique is that the final state of the dot
can be deduced very easily from the photocurrent measured in the external circuit.
With negative bias applied to the diode, the dots experience a strong electric field,
and tunnel out towards the contacts, as shown schematically in Fig. 10.6a. A π-pulse
leaves the dot containing a single exciton, which then generates one electron in the
external circuit. For a laser repetition rate of f , the current is equal to f e, where e is
the electron charge. This gives a current of around 13pA for a typical laser repetition
rate of ∼80MHz, which is easily measurable with a precision pico-ammeter. The
actual current measured is typically lower than this, due to competition with radiative
recombination before tunnelling occurs.

Figure10.6b shows a typical Rabi oscillation measurement on a single self-
assembled InGaAs/GaAs quantum dot at 4K. Six oscillatory periods are clearly
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(a) (b)

Fig. 10.6 a Schematic of experiment to observe Rabi rotations in a quantum dot photodiode.
The laser pulse width must be shorter than the exciton coherence time. b Rabi rotation of the
neutral exciton transition of a single InAs/GaAs quantum dot at 4K. The photocurrent (final exciton
population) oscillates according to the pulse area Θ (which is proportional to the square root of the
applied laser power). The red line shows a damped sinusoidal fit to the data

visible, but with substantial damping as the pulse area Θ increases. This damping
is mainly caused by the way the measurements are made. In NMR experiments, the
pulse area defined in (10.28) is varied by changing the pulse duration while keeping
its amplitude constant. This is not practical for ultrafast laser experiments, since the
pulse length cannot be changed easily. Moreover, since the pulse length changes
the laser bandwidth, the excitation conditions are also changed by varying the pulse
width. For these reasons, the pulse area is varied by keeping the pulse duration con-
stant, and increasing its amplitude. This means that the laser driving power P is
varying as

√
P along the x axis in Fig. 10.6b, and the damping at high pulse areas is

related to this increase in the excitation intensity. The damping is therefore termed
Excitation Induced Dephasing (EID). It is important to point out that qubit control
experiments on QDs are typically carried out at pulse areas of ∼π (see Sect. 10.4.3),
where EID is small.

Ramsay et al. performed careful studies of the effect of temperature on Rabi
flopping, and demonstrated that EID arises from phonon interactions [36, 37]. The
dominant coupling is to longitudinal-acoustic (LA) phonons via deformation poten-
tial scattering, which is quantified by the function J (ω):

J (ω) = ω3

4π2ρ�v5
c

[
De e(

−ω2a2e /4v
2
c) − Dh e(

−ω2a2h/4v
2
c)

]2
. (10.34)

The parameters that enter here are the mass density ρ, the sound velocity vc, the
deformation potential constants for electrons and holes De/h, and the electron/hole
confinement lengths inside the dot, ae/h. The function J (ω) increases at first with
ω due to the ω3 factor from the LA-phonon density of states. It passes through a
peak, and then rolls off rapidly above the “cut-off frequency” due to the exponential
form-factors that characterize the physical size of the dot. For typical InGaAs dots,
values of ae = 4.5nm and ah = 1.8nm are obtained [38], and J (ω) peaks at about
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1–2meV. The significance is that the damping rate for Rabi rotations is governed by
J (ΩR), i.e. the electron-phonon coupling at the Rabi frequency. For the data shown
in Fig. 10.6b, the largest Rabi frequency is still smaller than the cut-off frequency,
and so the damping gets stronger at higher pulse areas. In principle, the damping rate
should weaken for very strong driving when ΩR exceeds the cut-off frequency [39].
This phenomenon is sometimes called phonon revival, but not yet been observed
experimentally.

10.4.3 Manipulation of Exciton States

The demonstration of Rabi flopping confirms the possibility of moving the exciton
state around the Bloch sphere in a coherent way. However, a single rotation does not
give access to all points on the Bloch sphere, as required for full single-qubit control:
two rotations are needed, about different axes. In this sub-section, we shall see how
this is done.

The simplest way to achieve full Bloch sphere control is to use two resonant pulses
with a well-defined phase difference. This works because the azimuthal angle for the
second pulse is determined by its phase relative to the first. A key demonstration of
this principle is the observation of Ramsey interference, as explained in Fig. 10.4.
Such Ramsey interference was first observed for InGaAs dots within a Schottky
photodiode by using two phase-locked excitation pulses of area π/2 [40, 41]. The
time between the pulses had to be less than the exciton coherence time, which was
determined by the loss of electrons out of the dot by electric-field-induced tunnelling.

While proving the principle, the Ramsey method suffers from the need to keep the
phases of the pulses locked together over long periods, which requires an actively-
stabilised interferometer. For this reason, simpler methods have been employed that
exploit the fine-structure splitting of the dot. As noted in Sect. 10.4.1, a typical neutral
InGaAs dot has two linearly polarized excitons split by the FSS �δ, as shown in
Fig. 10.5a. If the dot is excited with a σ+ ≡ x̂ + i ŷ pulse with bandwidth > δ at
time t = 0, both eigenstates are excited, and the wave function evolves as:

Ψ (t) = 1√
2

(|Xx 〉 + i|Xy〉eiδt
)

, (10.35)

where the phase factor accounts for the frequency difference between |Xx 〉 and
|Xy〉. This evolves to a linear state [(|Xx 〉 − |Xy〉)/

√
2] at t = π/2δ, through to an

opposite circular state [(|Xx 〉 − i|Xy〉)/
√
2] at t = π/δ, to an opposite linear state

[(|Xx 〉 + |Xy〉)/
√
2] at t = 3π/2δ, and finally back to the original circular state at

t = 2π/δ. On realizing that the polarization Poincaré sphere maps directly to the
exciton spin Bloch sphere, with the σ± and diagonal linear states at the four cardinal
points of the equator, it is apparent that the FSS causes a precession about the ẑ axis
at a rate δ. This can then be combined with a single x-axis rotation by a resonant
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Fig. 10.7 Fine-structure beats from a single InGaAs dot measured by the photocurrent (PC) tech-
nique. a Raw data for co- and cross-polarized probe pulses. b Difference of the two signals in a.
After [46], data from J.H. Quilter

optical pulse to reach arbitrary points on the exciton Bloch sphere [42]. A second
“control” pulse can also be added to achieve optical rotation of the exciton spin while
it is precessing [43–45].

The fine-structure beats were first observed for single GaAs interface QDs in
1998 [17], and then for an ensemble of InGaAs dots in 2004 [25]. Recent results
on fine-structure beating from a single InGaAs dot are shown in Fig. 10.7 [46].
The dot was in a Schottky diode as in Fig. 10.6a, and was excited with a resonant
σ+ pulse of area π at t = 0. The dot was then probed by a second π pulse with
either σ+ or σ− polarization at varying time delay. When the spin of the exciton
is co-polarized with the probe, the probe de-excites the exciton and reduces the
photocurrent (PC) signal. When the spin of the exciton is cross-polarized with the
probe, the probe does nothing. Hence the photocurrent signal oscillates at the same
rate as the spin precession, as clearly seen in Fig. 10.7a. Note that the signals for
opposite polarizations are in anti-phase. The difference between the co- and cross-
polarized signals, which is proportional to 〈Sz〉, is shown in Fig. 10.7b. At least four
oscillations can be observed, with the period of 145ps implying an FSS of 28µeV.
The damping of the oscillations is mainly caused by electron tunnelling out of the
dot within the photodiode.

The final state of the exciton qubit in the experiments described above is highly
sensitive to changes in the laser pulse area, which means that precise control on the
pulse intensity is required. Several authors have explored alternative methods that
are less sensitive to the exact pulse area. One such approach is to use adiabatic rapid
passage with chirped optical pulses [47, 48]. In these experiments, the frequency
of the laser is swept during the pulse, giving a time-varying detuning relative to the
transition frequency. In the right conditions, the final state of the dot is relatively
insensitive to the exact pulse area. Another method is to pump the dot within the
LA-phonon sideband [49]. Pumping via phonon-assisted transitions is, of course,
incoherent. However, if the pumping is hard enough, near perfect inversion of the
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dot is possible, producing a final state very close to the north pole of the Bloch
sphere, which is insensitive to phase variations. Such phonon-sideband pumping
was recently observed by three groups [38, 50, 51].

10.4.4 Two-Qubit Gates

The DiVincenzo check-list for QIP [20] requires at least one two-qubit gate in addi-
tion to the full control of single qubits. One way to achieve this is via coupling
between two excitons of opposite spins inside a single dot. As noted in the discus-
sion of Fig. 10.5, the biexciton state does not have twice the energy of the individual
excitons, which indicates coupling via the Coulomb interaction. This allows a two-
qubit conditional rotation gate (CROT) to be performed by using two laser pulses
tuned respectively to the exciton and biexciton transitions of the dot. The method
was initially demonstrated for a GaAs interface dot by Li et al. in 2003 [19]. Below,
we describe the equivalent experiment on a self-assembled InGaAs dot reported by
Boyle et al. in 2008 [52].

A simplified version of the levels used in the CROT gate is given in Fig. 10.8a.
The control qubit |q1〉 is the Sz = −1 exciton, while the target qubit |q2〉 corresponds
to Sz = +1. The combined state of the system |q1q2〉 is denoted by the number of
excitons (either 0 or 1) in the respective qubit states. The aim of the experiment is
to demonstrate a rotation of the target qubit conditional on the state of |q1〉: i.e. we
need to show that we rotate |q2〉 only when q1 = 1.

The state of the control qubit is determined by a π pulse with σ− polarization
tuned to the X0 transition. If this pulse is present, we have q1 = 1; if not, q1 = 0.
The conditional rotation of |q2〉 is performed by a σ+ pulse of variable area tuned

Fig. 10.8 CROT gate in an InGaAs dot using the exciton and biexciton transitions. a Level scheme
showing the transitions involved. b Experimental results. Note that the data were collected in the
linear polarization basis, where the conditional Rabi rotation is expected for co-polarized pulses,
rather than the cross-polarized configuration indicated in a. After [52]
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to the XX transition. The rotation can only occur if q1 = 1, since a pulse tuned to
the biexciton only drives the dot when an exciton of the opposite spin is already
present. If the dot is empty, no exciton can be created, as the laser has the wrong
frequency. The key result is to therefore to demonstrate Rabi rotation of the biexciton
conditional on the state of |q1〉.

The results of the experiment are presented in Fig. 10.8b. For technical reasons,
the experiment was performed in the linear polarization basis rather than the more
natural circular one. In this linear basis, we expect to excite the biexciton when the
CROT pulse is co-polarizedwith the control pulse, and not when it is cross-polarized.
This is exactly what is observed: the biexciton Rabi rotation is only observed when
the co-polarized control pulse has acted first on the dot. If the control pulse has
the wrong polarization, or is not present at all, the initial state of the dot is |01〉 or
|00〉 respectively, and no Rabi oscillation is observed. On the other hand, when the
control pulse has the right polarization, the initial state of the dot is |10〉. A CROT
pulse of area π then drives the system to the |11〉 state (i.e. the biexciton state),
while a 2π pulse leaves the system in the −|10〉 state, where the − sign originates
from the geometric phase of π that is accumulated on completing a 2π rotation of
the Bloch sphere. The data in Fig. 10.8b thus establishes the four outcomes of the
CROT truth table. The gate fidelity deduced from the data was 0.87 ± 0.04, which
was significantly higher than that obtained for interface dots in [19], mainly due to
the longer dephasing time of InGaAs dots.

A more scalable QIP architecture would require that the excitons should be local-
ized in separate dots. In the short term, however, the results in [19, 52] prove the
principle that QD excitons can be used to demonstrate two-qubit gates, laying the
foundations for further work.

10.5 Coherent Control of Spins

Single carriers (electrons or holes) confined within charged QDs may also be manip-
ulated by ultrafast laser pulses. A number of different approaches are used to obtain
charged dots. Typically, QDs embedded within diode structures are employed either
to ionize a photoexcited exciton [46, 53–55] or to deterministically charge the QDs
[56–61]. Alternatively, dopant layers may be added during sample growth; by tuning
the doping concentration, it is possible to produce a mean QD carrier occupation of
unity at equilibrium [62, 63]. Since resident carriers do not recombine, the T2 time
of their spins is no longer limited by the radiative lifetime. The coherence times can
therefore be much longer than for excitons, which motivates their use in coherent
control experiments.
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10.5.1 Energy Level Structure of Charged Dots

The ground state of a charged dot consists of a dot containing a single electron or hole
in their respective s-shells. Absorption of a photon adds an additional electron-hole
pair to the system, leading to the formation of a charged exciton called a trion. The
trion is split from the neutral exciton line by a binding energy typically ∼2meV
(see X+ peak in Fig. 10.5). A single electron leads to a negatively charged trion
(e.g.

∣∣X−〉 = |↑⇑↓〉) whilst a single hole leads to a positively charged trion (e.g.∣∣X+〉 = |⇑↑⇓〉). The trion transitions for opposite spins have orthogonal circular
polarizations, which can be exploited for spin-readout, as discussed in Sect. 10.5.5.

The application of a magnetic field (B) splits the electron and hole levels by the
Zeeman effect into their two m j states. The splitting is given by:

EZ = gμB B , (10.36)

where g is the Landé g-factor and μB is the Bohr magneton. The hole is regarded as
having a pseudo-spin of ±1/2, with the factor of three from the m j = ±3/2 states
included in its g-factor. The splitting of the ground and trion states of a positive
dot in a Faraday geometry field (i.e. B parallel to the growth (z) axis) is shown in
Fig. 10.9a. Note that the circular polarization selection rules decouple the states of
opposite spin.

A Voigt geometry field (i.e. B oriented within the sample x-y plane) can mix the
bright (Sz = ±1) and dark (Sz = ±2) exciton states.. The exciton eigenstates are no
longer well defined and it is simpler to consider single carrier states, as shown for
a positive dot in Fig. 10.9b. The hole and trion states are defined in terms of their
orientation with respect to the magnetic field and are split by the hole and electron
Zeeman energies respectively. The hole-trion transitions are linearly polarized, with a

Fig. 10.9 Energy level spectrum of a positively charged dot in a magnetic field, with the Zeeman
splittings exaggerated for clarity. a Faraday geometry with B directed along the growth (z) axis. b
Voigt geometry with B directed along the x-axis. x /x̄ and ⇓/⇑ represents opposite hole spin states
along the magnetic field. For negative dots, the charges and Zeeman splittings are reversed
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pair of cross-polarized diagonal transitions coupling the hole states to the orthogonal
trion state. The up and down hole spin states (

∣∣h⇑/⇓
〉
) are superpositions of x-axis

eigenstates, and spins initialised along z therefore precess about the in-plane field
at the Larmor frequency ωZ = EZ/�. This implements a coherent rotation about
the field axis on the Bloch sphere, and is widely used for coherent control of single
carrier spins (see Sects. 10.5.3 and 10.5.4).

10.5.2 Spin Initialization

The DiVincenzo checklist for QIP [20] includes the requirement to begin with a
well-defined qubit state. To achieve this, single carrier spins are generally initialised
to either up or down. A widely used method is optical pumping, in which one of the
trion transitions is continuously driven by a laser [59, 60]. Over time, the population
becomes shelved in the undriven state, as any population that relaxes into the driven
state is immediately re-pumped. These methods have reached fidelities as high as
99.8% inFaraday geometry [59],with∼µs initialization times that rely onweak spin-
flip processes in the trion state. Faster (ns) initialization times have been observed in
Voigt geometry on account of the allowed diagonal transitions (see Fig. 10.9b) to the
opposite spin state [60]. The fidelity, however, is slightly lower. Coherent population
trapping methods can also be employed [61, 64].

A fault-tolerant QIP implementation [65, 66] requires rapid initialization com-
pared to decoherence, and this prompts research into faster schemes such as exciton
ionization in a QD photodiode [53–55, 67]. In this method, an exciton with well
defined spin is prepared in a neutral dotwith circularly-polarised light. In reverse bias,
the electric field causes fast electron tunnelling, leaving a hole behind with its spin
determined by the polarization of the laser, as shown schematically in Fig. 10.10a.
(Electron initialization is also possible if suitable tunnel barriers are included to
reduce the electron tunnelling rate below that of the holes.) The strong circular
selection rules for the trion transitions (see right of Fig. 10.10a) underpin methods
to measure the fidelity of the initialisation mechanism. The dot is excited with a
circularly-polarized π pulse tuned to the neutral exciton and probed by a co- or
cross-polarized π pulse of variable frequency at a delay time longer than the electron
tunnelling time, as shown in Fig. 10.10b. The negative signal at zero detuning identi-
fies the X0 transition, since the second π pulse moves the system back to the ground
state, leading to a reduction in the photocurrent. The strongly polarization-sensitive
signal at the X+ line confirms the high fidelity of the ionization method.

Exciton ionization schemes can offer both picosecond initialization times and
on-demand operation. Unfortunately, the anisotropic exchange interaction [24, 68]
typically reduces fidelity by causing spin precession during the exciton lifetime
[54, 69, 70]: see Fig. 10.10a and discussion of Fig. 10.7. Speeding up the ionisation
process minimizes this effect [67, 71] but also significantly reduces the qubit lifetime
due to faster tunnelling rates. The best solution is to select or tune QDs such that
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Fig. 10.10 a Initialisation of a single hole spin by exciton ionization. On the left are the exciton
energy levels of a neutral dot in the circular basis as in Fig. 10.5. After electron tunnelling only a
single hole remains. The spin of the hole can be measured by exciting with circularly polarized light
to create a positively charged trion as illustrated on the right. b Two-color pump-probe photocurrent
spectra of QDs exhibiting negligible (2.01µeV) FSS. The probe is delayed by longer than the
electron tunnelling time. Black (red) line corresponds to a co- (cross-) polarized probe laser. The
figure is adapted from [46]

the exchange interaction becomes negligible [46, 72]. Figure10.10b illustrates that
a fidelity >99% can be obtained in this way for a dot with FSS close to zero. This
approach has allowed the demonstration of fast, high-fidelity initialisation with long
qubit lifetimes. Modulation of the sample electric field to suppress tunnelling after
initialisation [73] has the potential to lead to further increases in lifetime.

10.5.3 Coherent Control of Single Electron Spins

Coherent control of a single electron spin is based on the electron-trion system
discussed in Sect. 10.5.1. In Voigt geometry, the energy levels may be considered as
a pair of independentΛ systems incorporating the two electron spin states and one of
the trion states (see Fig. 10.11a). Under circular excitation, the probability amplitudes
from the two systems add. By using a large detuning, unwanted population in excited
states is minimised and the upper states may be adiabatically eliminated as shown
in Fig. 10.11b. Hence a single broadband circularly-polarised pulse will produce
coherent rotations via Stimulated Raman Adiabatic Passage (STIRAP). The rotation
angle is given by:

φz =
∫

λ−(t) dt , (10.37)

where λ−(t) is the eigenenergy of the dressed states given by:
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(a) (b)

(c)

Fig. 10.11 Optical spin rotation methods for electrons in Voigt geometry. The dot is excited with
circularly polarized laser pulses of energy �ω and bandwidth broader than the electron/hole Zeeman
energies Ee/h

Z . aEnergy levels of the electron-trion system in the z basis. Note that this contrastswith
Fig. 10.9b, whichwould correspond to the x basis. The system has four linearly-polarised transitions
with the diagonal transitions carrying a π/2 phase factor. b For large laser detuning Δ, the trion
levels may be adiabatically eliminated and the laser drives a stimulated Raman transition with Rabi
frequency Ωeff ≈ ΩHΩV

Δ
between the two spin states where ΩH/V are the Rabi frequencies of the

H/V transitions shown in a. Changing the laser power allows control of the Rabi rotation angle.
c For Δ = 0, a 2π laser pulse drives a spin state (selected by the choice of σ+/− polarisation) to
the trion state and back. The driven spin state acquires a “geometric phase” of π. Control of the
geometric phase is achieved by varying Δ

λ± = 1

2

√
Δ2 ± |ΩR|2 . (10.38)

The rotations are about the z axis on the Bloch sphere and may also be interpreted
in terms of the AC Stark effect [75]. Full spin control can be achieved by combining
with x axis rotations caused by Larmor precession about the B field (see Sect. 10.5.1)
[74] optical rotations of electron spins have also been demonstrated by using the
geometric phase approach (see Fig. 10.11c) [76, 77]. The principles of this method
will be explained in Sect. 10.5.4 below in the context of hole spin control.

A two-qubit spin register with similar possibilities to the biexciton approach dis-
cussed in Sect. 10.4.4 may be realized with a QDmolecule comprising two vertically
stacked QDs [78]. The interaction between the two QDs is facilitated by coherent
tunnelling and may be controlled by the applied electric field. Coherent control of an
electron spin weakly coupled to an L3 photonic crystal cavity has also been demon-
strated [79]. Using a scheme similar to that of [74], the spin rotation is performed
by pulses that are detuned from both the trion transitions and the cavity mode. The-
oretical work has proposed a more complex scheme whereby two transitions of the
electron-trion system are coupled to two non-degenerate cavity modes [80]. This
scheme has the potential both to increase initialisation fidelity and reduce the rota-
tion time. Other experiments on electron spin control in nanocavities are discussed
in Chap.11.

http://dx.doi.org/10.1007/978-3-319-56378-7_11
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10.5.4 Coherent Control of Single Hole Spins

Optical coherent control of a single hole spin may be achieved by similar methods
to those for electrons. Schemes using the AC Stark shift for z-axis rotation [81,
82] are the direct equivalent of those for electrons discussed in Sect. 10.5.3, with
x-axis rotations again implemented by Larmor precession. In addition, Greilich et
al. successfully demonstrated control of a two hole-spin state for two dots interacting
through tunnel coupling [81].

An alternative approach was employed by Godden et al. [83] in which a single
hole spin was initialised by the exciton ionization method discussed in Sect. 10.5.2,
and then z-axis rotationswere implemented via the geometric phase previously estab-
lished for electrons [76, 77]. Excitation by a laser pulsewith bandwidth larger than the
Zeeman splittings simplifies the hole-trion system to a pair of independent two-level
systems that may be selected by orthogonal circular polarisations (see Fig. 10.11c
for a schematic of the equivalent level scheme for electrons). A resonant σ+ pulse of
areaΘ then drives a Rabi rotation between the spin-down hole and the corresponding
trion state, so that an arbitrary initial hole state |Ψ 〉 = h⇑ |⇑〉 + h⇓ |⇓〉 evolves as
[84]:

|Ψ 〉 → |Ψ ′〉 = h⇑ |⇑〉 + h⇓
[
cos

(
Θ

2

)
|⇓〉 + i sin

(
Θ

2

)
|⇓⇑↓〉

]
. (10.39)

For Θ = 2π, we obtain |Ψ ′〉 = h⇑ |⇑〉 − h⇓ |⇓〉 when trion dephasing is negligible,
which is equivalent to a π rotation about z. Arbitrary rotation angles φz about ẑ are
implemented by detuning the laser [83, 84]:

Fig. 10.12 Coherent control of a single hole spin in a Voigt geometry field Bx . a Schematic of
the method. The hole spin is initialised to |⇑〉 by the exciton ionization method. Full Bloch sphere
control is achieved by combining z axis rotations induced by the geometric phase shift from a
detuned 2π pulse as in Fig. 10.11c, with x axis rotations by Larmor precession about the field. b
Experimental geometry. c Optical rotation angle φz versus laser detuning Δ. The red line is a fit
according to (10.40). The figure is adapted from [83]
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φz = 2 arctan(βz/Δ) , (10.40)

where βz is the pulse bandwidth and Δ the detuning from the hole-trion transition.
Figure10.12 shows a schematic of the method and experimental geometry, together
with a fit to the experimental results showing excellent agreement with (10.40).
Theoretical proposals indicate that rotations about an arbitrary axis are possible,
thereby eliminating the need for Larmor precession, and potentially reducing the
gate time [84].

10.5.5 Spin Readout

In the experiments described above, measurement of the spin is performed by aver-
aging overmany experimental cycles. For QIP it is desirable to perform “single-shot”
readout where the state of the qubit is determined faster than the back-action of the
measurement. In Faraday geometry, the trion transitions are spin-selective and have
a very weak coupling to the orthogonal spin state. Single-shot spin readout may
then be accomplished by driving one transition continuously and collecting the spin-
sensitive resonance fluorescence. This approach has been realised experimentally
with a fidelity of 82.3% for a measurement time of 800 ns [85].

A drawback to this approach is the Faraday geometry, as coherent spin control
requires Voigt geometry. A recent theoretical proposal envisions spin initialisation
andmanipulation inVoigt geometry, before applying a detuned laser toACStark-shift
the energy levels into a pseudo-Faraday configuration to perform single-shot readout
[86]. Significant potential exists to increase the readout performance by exploiting
photonic nanostructures to enhance both the collection efficiency and the emission
rate.

10.6 Dephasing: Comparison of Qubits

A critical parameter for any qubit is its coherence time, since this determines how
many gate operations can be performed. Table10.1 compares measurements of T1,
T ∗
2 and T2 for exciton and single carrier spin qubits. The basic concepts of these three

time constants were outlined in Sect. 10.2.3.
Single exciton qubits have been observed to have lifetime-limited coherence [87,

88], i.e. T2 = 2T1, where T1 is typically around 1 ns owing to radiative recombination
[88]. Single spins cannot undergo radiative recombination and therefore generally
have far longer T1 times. For InGaAs QDs, electron spin dephasing times (T ∗

2 ) of
the order of 1–2ns are typically measured [89–91] with values of around 10 ns
measured for holes [61, 81–83]. The primary source of electron spin dephasing is
postulated to be hyperfine interactions with the nuclear spins within the dot [9, 90].
The longer T ∗

2 time for holes is related to its∼10× smaller hyperfine constant due to
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Table 10.1 Table of dephasing timescales for different single qubit implementations in InGaAs
self-assembled QDs. The coherence of neutral excitons has been observed to be lifetime-limited
and thus the limit T2 = 2T1 is taken here. In the case of single electrons and holes, the T2 values
reported here are measured by spin echo methods to suppress pure dephasing (T ∗

2 )

Qubit T1 T ∗
2 T2 References

Neutral exciton ∼1 ns n/a ∼2 ns [10, 87, 88]

Electron spin ∼20ms ∼2 ns ∼2µs [53, 89–91]

Hole spin ∼270µs ∼10 ns 1.1µs [61, 81–83, 92]

the primarily p-type orbital structure [93]. The dominant source of hole dephasing
is instead attributed to charge noise [81, 82, 94], most probably originating from
charges trapped at the capping layer interface [95, 96]. Further discussion of the
exciton and spin dephasing mechanisms may be found in Chap.9.

The use of spin echo techniques [97] can suppress pure dephasing, allowing longer
coherence times (T2) to be measured. For both electrons [90, 91] and holes [82], this
has resulted in T2 times of the order ofµs. It is worth noting that these values are still
orders of magnitude below the lifetime (T1) limit. Recent studies [98] have shown
that strain in the sample wafer acts to reduce fluctuations of the nuclear spin bath,
potentially offering a route to increasing both T2 and T ∗

2 for electron spins. Mean-
while, improvements in sample quality should lead to reduced charge fluctuations
for hole spins (see Chap.9). In addition, a recent theoretical proposal envisions using
the AC Stark shift to oppose changes in the Zeeman energy, suppressing charge noise
dephasing for holes [99].

10.7 Outlook

The experiments described in Sects. 10.4 and 10.5 show that ultrafast coherent con-
trol techniques for single excitons and spins in QDs are now well established. The
primary need for future QIP applications is to increase the coherence time. Signifi-
cant progress has already been made here, with studies clarifying the origins of the
dephasing and proposing strategies to reduce it (see Sect. 10.6).

The development of quantum processors based on spin networks will require scal-
ing tomultiple qubits. The approaches based on biexcitons (Sect. 10.4.4) or vertically
stacked QDs do not scale easily beyond two qubits, and it is therefore necessary to
consider spins confined in separate QDs, as discussed in Chap. 12. Entanglement
has been observed between QD spins and emitted photons [100–102], illustrating
conversion between stationary and flying qubits. The complementary process of
transferring a quantum state from a photonic qubit to a QD spin qubit was also
demonstrated [103]. Combining these two concepts has recently led to the demon-
stration of entanglement between two hole spins separated by 5m [104], a critical
development for any spin-based QIP architecture.

http://dx.doi.org/10.1007/978-3-319-56378-7_9
http://dx.doi.org/10.1007/978-3-319-56378-7_9
http://dx.doi.org/10.1007/978-3-319-56378-7_12
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The methods described in this chapter are also applicable to other QIP applica-
tions. For example, current state-of-the-art single [105, 106] and entangled [107]
photon sources are driven by resonant π-pulses acting on the neutral exciton or biex-
citon. Moving beyond this simple case, coherent control of single spins has been
proposed as a means to generate more complex photonic states for QIP such as clus-
ter states [108], and these have recently been observed using dark excitons as the
qubits [109] (see Chap.4). Coherent control methods are also of significant inter-
est for controlling light-matter interactions in cavity-QD systems, as discussed in
Chap.11. Examples include polarization shifts of light that are conditional on the
state of a spin [110, 111] and controlling the coherent energy transfer between an
emitter and a cavity [112].
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Chapter 11
Interfacing Single Quantum Dot Spins with
Photons Using a Nanophotonic Cavity

Shuo Sun and Edo Waks

Abstract The spin of a single electron or hole trapped inside a quantum dot offers
a promising quantum memory. These qubits are embedded in a host semiconduc-
tor material that can be directly patterned to form compact integrated nanophotonic
devices. These devices efficiently interconnect single solid-state qubits with photons,
a crucial requirement for quantum networks, quantum repeaters, and photonic quan-
tum computation. This chapter reviews recent experimental progress towards achiev-
ing strong spin-photon interactions based on coupled quantum dot and nanophotonic
cavity system. Especially we introduce a recent work that reports a coherent spin-
photon quantum switch operating at the fundamental quantum limit, where a single
photon flips the orientation of a quantum dot spin and the spin flips the polarization of
the photon. These strong spin-photon interactions open up a promising direction for
solid-state implementations of high-speed quantum networks and on-chip quantum
photonic circuits using nanophotonic devices.

11.1 Introduction

Interactions between single spins and photons play a central role in the field of quan-
tum information processing. Spin is a pristine quantum memory while photons are
ideal carriers of quantum information. Efficient interfaces between these systems are
essential for development of future quantum networks [1, 2] and distributed quantum
computers [3]. They also enable critical functionalities such as entanglement distri-
bution [4, 5], non-destructive qubit measurements [6–8], and strong photon-photon
interactions for photonic quantum computation [9, 10].
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The spin of a singly charged quantum dot has attracted significant interests for
implementing a spin-photon interface. This trapped spin system provides a promis-
ing quantum memory with microsecond coherence time [11, 12] and picosecond
timescale single-qubit gates [12–17], enabling a large number of quantum opera-
tions prior to qubit decoherence. Furthermore, the spin ground states of the charged
quantum dot are optically coupled to excited trion states that exhibit nearly radia-
tively limited emission [18]. These properties have enabled post-selected spin-photon
entanglement [19–22], spin-photon teleportation [23], and spin-spin entanglement
[24], which are essential capabilities for quantum networks.

Quantum dots are also embedded in a high dielectric solid-state substrate that
can be directly patterned to form nanophotonic cavities that enhance light-matter
interactions [25–28]. These devices can be integrated on-a-chip to attain a compact
architecture for quantum circuits [29, 30]. Tremendous experimental progress has
beenmade in the last decade using a quantum dot strongly coupled to a nanophotonic
cavity, including cavity reflectivity control [31], ultrafast optical switch [32–34], sin-
gle photon level nonlinearities [35–37], non-classical light generation [38, 39], and
spin-exciton quantum logic operations [40]. The effort to integrate quantum dot spins
with cavities has also experienced rapid progress. Several works demonstrated deter-
ministic loading of a spin in a quantum dot coupled to a nanophotonic cavity [41–43],
and more recently coherent control of the loaded spin [44] and spin-dependent Kerr
rotation of photons [45, 46]. Very recently, a coherent quantum switch between a
quantum dot spin and a photon has also been demonstrated [47].

In this chapter, we review recent experimental progress towards achieving strong
spin-photon interactions based on coupled quantum dot and nanophotonic cavity
system. This chapter is organized as follows. Section11.2 provides a theoretical
background for interfacing single spins and photons based on a cavity quantum elec-
trodynamics (QED) system. Section11.3 reviews the experimental efforts to integrate
quantum dot spins with different nanophotonic cavities, including micropillar cav-
ities and photonic crystal cavities. In Sect. 11.4, we focus on a recent experimental
work that demonstrates a coherent spin-photon quantum switch, where through the
mediation of a strongly coupled photonic crystal cavity, a single photon flips the
orientation of a quantum dot spin and the spin flips the polarization of the photon.
Section11.5 concludes our discussion and provides outlook for future works.

11.2 Theoretical Background

In this section, we provide theoretical background on using a cavity QED system to
interconnect an optical active qubit with photons. We focus our analysis on a generic
system consisted of an optical active qubit coupled to an optical cavity, as shown in
Fig. 11.1a. We assume that the qubit system has a λ-type energy structure as shown
in Fig. 11.1b, with two ground states that form a stable spin qubit, denoted as |↑〉
and |↓〉, and one excited state |e〉 that gives rise to spin-dependent optical transitions
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Fig. 11.1 Theoretical model for a generic cavity QED system composed of an optical active qubit
coupled to an optical cavity. aA schematic cavity QED system. b Energy level structure of a generic
optical active qubit system

μ↑ and μ↓ respectively. The spin-dependent optical transitions provide a mechanism
to interconnect the spin qubit with photons. This energy structure exists in many
qubit systems that are optically addressable, such as cold atoms, trapped ions, color
centers, and charged quantum dots, and therefore represents a generic model.

In order to induce strong spin-photon interactions, we selectively couple the opti-
cal transition μ↑ to a cavity mode, while decouple the other transition μ↓ to the
cavity, either by a large detuning or by selection rules if transition μ↓ emits a photon
with a different polarization than the cavity mode. In this configuration the coupling
between the atom and the cavity depends on the spin state. The cavity thus exhibits
spin-dependent reflection or transmission coefficients, enabling control of a reflected
or transmitted photon by the spin qubit. In our model, we assume that the cavity field
only couples to its reflective mode without loss of generality. In this case the spin
only modulates the reflection coefficient of the cavity. Double-sided cavities would
work similarly with minor modifications.

11.2.1 Calculation of Spin-Dependent Cavity Reflection
Coefficients

We calculate the cavity reflection coefficients using cavity input-output formalism
[48]. We define â as the bosonic annihilation operator for the cavity field, and âin and
âout as the operators for the cavity coupled incidence and reflection modes. These
operators are related by the cavity input-output relation

âout = âin − √
κex â, (11.1)

where κex is the cavity energy decay rate to the reflection mode of the cavity.
In order to calculate the reflection coefficients, we need an expression for the

cavity field operator â. We assume that the incident photon is quasi-monochromatic
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with a frequency of ω. We express the Hamiltonian for the coupled atom and cavity
system in the rotating reference frame with respect to ω, given by

H = �(ωc − ω)â†â + �(ωx − ω)σ̂†
−σ̂− + ig�(âσ̂†

− − σ̂−), (11.2)

where σ̂− is the lowering operator for transition μ↑, ωc and ωx are the resonance
frequencies of the cavity mode and transition μ↑ respectively, and g is the coupling
strength between the cavity mode and transition μ↑. In the weak excitation limit, the
Heisenberg-Langevin equations are [49–51]

dâ
dt

= −[
i(ωc − ω) + κ

2

]
â − igσ̂− + √

κex âin (11.3)

dœ̂−
dt

= −[
i(ωx − ω) + γ

]
σ̂− − igâ, (11.4)

where κ is the total cavity energy delay rate given by κ = κex + κi , κi is the intrinsic
loss rate of the cavity due to material absorption and coupling to undesired leaky
modes, and γ is the dipole decay rate of for transition μ↑.

We calculate the cavity field operator by taking the steady solution of (11.3) and
(11.4). When the spin is in spin-down state, we have 〈σ̂−〉 = 0, therefore the steady
solution for â can be calculated from (11.3) and is given by

〈â〉 =
√

κex 〈âin〉
i(ωc − ω) + κ

2

. (11.5)

When the spin is in spin-up state, the expression for 〈â〉 is given by

〈â〉 =
√

κex
[
i(ωx − ω) + γ

]

[
i(ωc − ω) + κ

2

][
i(ωx − ω) + γ

] + g2
〈âin〉. (11.6)

We calculate the cavity reflection coefficients r↓ and r↑ for both the spin-down
and spin-up cases by combining (11.5) or (11.6) with (11.1). For the spin-down case,
we obtain 〈âout〉 = r↓〈âin〉, where r↓ is given by,

r↓ = 1 − ακ

i(ωc − ω) + κ
2

, (11.7)

where α is the interference contrast given by α = κex/κ. For the spin-up case, we
obtain 〈âout〉 = r↑〈âin〉, where r↑ is given by

r↑ = 1 − ακ
[
i(ωx − ω) + γ

]

[
i(ωc − ω) + κ

2

][
i(ωx − ω) + γ

] + g2
. (11.8)
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11.2.2 Resonance Case: A Spin-Photon Quantum Switch

We focus on the resonance condition where ω = ωc = ωx . In this case, the cavity
reflection coefficients simplify to

r↓ = 1 − 2α (11.9)

r↑ = 1 − 2α

1 + C
, (11.10)

where C is the cooperativity of the system given by C = 2g2/κγ.
When α > 0.5 and C > 2α − 1, r↑ and r↓ have opposite signs. Thus, the spin

state conditionally shifts the phase of a reflected photon by π, implementing a quan-
tum phase operation. An ideal phase switch would be attained in the limit of large
cooperativity (C � 1) and a perfect single-sided cavity (α = 1) where the reflection
coefficient becomes r↓ = −1 and r↑ = 1.

The quantum phase switch allows one qubit to conditionally switch the other qubit
between its two orthogonal eigenstates. We consider the case where the polarization
state of the photon encodes quantum information. We assume that the cavity mode
has awell defined polarization direction ŷ. Therefore only a y-polarized photon expe-
riences spin-dependent phase shift upon reflection, whereas an x-polarized incident
photon does not couple to the cavity and gets directly reflected without a phase shift.
If the cavity mode does not have a well-defined polarization (i.e. the cavity supports
polarization degenerate modes), we could use a simple polarization interferometry
setup as illustrated in Fig. 11.2 to implement the similar idea.

We express the state of a photon incident on the cavity in the basis states |x〉
and |y〉, which denote the polarization states oriented orthogonal and parallel to the
cavity mode respectively. For a right-circularly-polarized incident photon |x〉 + i |y〉,
the reflected state is given by |x〉 + ir↑(↓) |y〉 (before renormalization). In the limit of
large cooperativity and perfect single-sided cavity, the state of the reflected photon
remains right-circularly polarized if the atom is in the spin-up state, but becomes
left-circularly polarized for spin-down. Similarly, a single control photon can flip
the state of the spin. If the spin is prepared in the state |↑〉 + |↓〉, then after a

Fig. 11.2 Schematic
setup to implement a
spin-photon quantum switch
where the polarization states
of the photon encode
quantum information

Mirror

xx
y

( )r y 

PBS
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y-polarized photon reflects from the cavity the spin-state transforms to |↑〉 − |↓〉,
but an x-polarized photon does not flip the spin.

We note that when α > 0.5 but C < 2α − 1, r↑ and r↓ have the same sign. Thus
the quantum phase operation is not available for a resonant photon if the system
cooperativity is too low.

11.2.3 Detuned Case: Spin-Dependent Kerr Rotation

The general expression for r↓ and r↑ are given by (11.7) and (11.8) respectively.
We can rewrite r↓(↑) as r↓(↑) = |r↓(↑)|eiφ↓(↑) , where φ↓(↑) represents the phase of
the reflection coefficient r↓(↑). Since in general φ↓ �= φ↑, the spin can still apply
spin-dependent phase shift on the photon. The phase difference between the spin-up
and spin-down state φ is given by φ = φ↓ − φ↑, which is typically nonzero but not
necessarily π any more.

The nonzero value of φ can be utilized to realize spin-dependent Kerr rotation of a
photon, as demonstrated in [45, 46]. Assuming the polarization of the incident photon
is in the state |x〉 + i |y〉, the reflected state becomes |P↑(↓)〉 = |x〉 + i |r↑(↓)|eiφ↑(↓) |y〉
(before renormalization). Therefore, the polarizations of the reflected photon are
different for the spin-up and spin-down cases, as long as 〈P↑|P↓〉 �= 1, which is
equivalent to φ �= 0.

Similarly, a single detuned photon can also rotate the state of the spin. If the spin
is prepared in the state |↑〉 + |↓〉, then after a y-polarized photon reflects from the
cavity the spin-state transforms to |r↑| |↑〉 + |r↓|eiφ |↓〉 (after taking out an overall
phase factor). If |r↑| 	 |r↑|, this operation corresponds to the rotation of the spin
Bloch vector by an angle φ along the equator of the spin Bloch sphere.

For the detuned case, we do not require the cooperativity to be greater than
2α − 1 in order to induce spin-dependent phase shift. Indeed [45] demonstrated
spin-dependent Kerr rotation of a photon with a coopeartivity of C = 0.2. However,
there is still significant difference between the regimeC > 2α − 1 andC < 2α − 1.
Figure11.3 shows numerically calculated phase shift φ as a function of the detuning
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Fig. 11.3 Phase shift φ as a function of the detuning Δc and Δx . a C = 0.2. b C = 2
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Δc and Δx , where we define Δc = ω − ωc and Δx = ω − ωx . In both Fig. 11.3a, b,
we use the following parameters from a realistic quantum dot based cavity QED sys-
tem [47]:α = 0.8,κ/2π =36GHz, γ/2π =3GHz. Figure11.3a shows the casewhere
we set g/2π = 10.4GHz so that the cooperativity isC = 2 and satisfiesC > 2α − 1.
Figure11.3b shows the case where we set g/2π = 3.3GHz so that the cooperativity
is C = 0.2 and does not meet the condition C > 2α − 1. For the case of C = 2, we
are able to tune the phase shift φ to an arbitrary value between −π and π, by simply
controlling the detuning Δc and Δx . However, when the cooperativity is small, we
can only tune the phase shiftφ between−φmax andφmax , whereφmax < π is an upper
limit that is determined by the system cooperativity. As an example, in Fig. 11.3a we
have φmax = 0.1π.

11.3 Quantum Dot Spins in a Nanophotonic Cavity

Charged quantum dots exhibit spin-dependent optical transitions. As described in
Sect. 11.2, by selectively coupling the spin-dependent optical transitions of a charged
quantum dot to a cavity mode, one can induce strong interactions between the quan-
tum dot spin and a photon. In this section, we review the experimental efforts to inte-
grate quantum dot spins with different nanophotonic cavities, including micropillar
cavities and photonic crystal cavities.

11.3.1 Micropillar Cavities

Amicropillar cavity is formed by two Bragg reflectors, which are made of alternative
layers GaAs and AlAs. The diameter of the pillar is typically in the order of several
micron meters, which lead to a highly localized mode with mode volume in the order
of 10(λ/n)3. One can engineer the cavity transmittance and reflectance by designing
the number of layers for the top and bottom Bragg reflector. For example, a single
sided cavity can be created by introducing a highly reflective bottom mirror with
more layers and an outcoupling top mirror with less layers.

In 2009, Rakher et al. firstly reported integration of a charge tunable quantum
dot with a micropillar cavity [41]. The reported device achieves a cooperativity of
C = 2, which enables significant cavity reflectivity modulation when an extra charge
is loaded into the quantum dot. Spin-dependent coupling between a charged quantum
dot and a micropillar cavity is reported in [45, 46]. Both works utilized a device with
low cooperativity (C < 0.2), and observe spin-dependent Kerr rotation of a reflected
photon with a polarization rotation degree of ∼6◦.

Micropillar cavities enable efficient coupling between an incident field and the
cavity mode, because the cavity mode is well matched to a Gaussian mode in the
far field. Recent works have demonstrated an input coupling efficiency of exceeding
95% [52], which is a very promising property for achieving deterministic spin-photon
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interactions. However, coherent optical manipulation of the quantum dot spin in a
micropillar cavity is yet to be demonstrated.

11.3.2 Photonic Crystal Cavities

Photonic crystals are periodic nanostructures fabricated on a dielectric material,
which lead to periodic modulation of the refractive index in the length scale of
an optical wavelength. In a photonic crystal, the motion of a photon obeys optical
Bragg scattering, very similarly as the way an electron propagates in ionic lattices. In
addition, one can engineer photonic crystals to open a photonic band gap, analogous
to an electronic band gap in semiconductors, which prohibits the propagation of
photons for certain directions within some frequency range.

Defects in a photonic crystal can support highly localized cavity modes within the
photonic band gap, referred as photonic crystal cavities. These cavities support small
mode volume (in the order of (λ/n)3) and high quality factor, which enable strong
light-matter interactions with an embedded quantum emitter [25, 28]. In addition,
the properties of a photonic crystal cavity, such as the resonant frequency, mode
profile, and polarization can be easily controlled by tailoring the geometry of the
photonic crystals or the shape of the defect areas. Photonic crystal cavities can also
be easily integrated with other cavities or waveguides using the scalable photonic
crystal architecture [33, 53–56]. These assets make the photonic crystal cavity a very
attractive platform for realizing integrated photonics.

Several groups have reported deterministic charging of a quantum dot embedded
in a photonic crystal cavity [42, 43]. In 2013, Carter et al. firstly demonstrated
coherent control of a quantum dot spin embedded in a photonic crystal cavity [44].
This work operated far in the weak coupling regime where the quantum dot produced
a spin-dependent cavity reflectivity with contrast of less than 1%. In 2016, Sun et
al. firstly demonstrated strong coherent spin-photon interactions based on a strongly
coupled charged quantum dot and a photonic crystal cavity [47]. The device has a
cooperativity of C = 2, enabling a quantum switch between a quantum dot spin and
a photon. We will review this work in details in Sect. 11.4.

11.4 Experimental Demonstrations of a Spin-Photon
Quantum Switch

In this chapter, we discuss experimental demonstrations of a spin-photon quantum
switch using a strongly coupled charged quantum dot and a photonic crystal cavity.
We utilized a negatively charged quantum dot containing a single electron. In the
presence of a magnetic field applied in the Voigt geometry, the energy structure of the
quantum dot is shown in Fig. 11.4. The states of the dot include two ground states,
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Fig. 11.4 Energy level
structure of a charged
quantum dot with an external
magnetic field applied in the
Voigt configuration

V VH
σ1 σ3σ2 σ4

corresponding to the two electron spin orientations, and two excited trion states that
optically couple to the ground states via four optical transitions denoted as σ1 − σ4.
The energy level structure consists of two λ-systems and is slightly different from the
single λ-system described in Fig. 11.1b. However, we can still induce spin-dependent
cavity reflectivity by resonantly coupling only transition σ1 with the cavity mode,
and decoupling all other transitions from the cavity by a large magnetic field induced
detuning. Thus, the quantum dot resonantly couples to the cavity only when it is in
the spin-up state, inducing a spin-dependent reflection coefficient. As described in
Sect. 11.2.2, we are able to realize a quantum switch by utilizing the spin-dependent
reflection coefficients.

11.4.1 Device Characterization

To characterize the device, we mount the sample in a closed-cycle liquid-helium
cryostat and cool it down to 3.6K. The sample mount is placed inside the bore of
a superconducting magnet that can apply magnetic fields up to 9.2T. The sample is
oriented such that themagnetic field is in the in-plane direction (Voigt configuration),
and the cavity axis is approximately 45◦ with respect to the magnetic field. Sample
excitation and collection is performed with a confocal microscope using an objective
lens with numerical aperture of 0.68. The coupling efficiency for this configuration
is measured to be 1% by measuring the Stark shift of the quantum dot under cavity-
resonant excitation [57].

We identify a charged quantum dot coupled to the cavity from the photolumi-
nescence spectrum of the device under a magnetic field applied in the Voigt config-
uration. Figure11.5a shows the photoluminescence spectrum from the device used
in our measurements when excited using an 860nm continuous wave laser. At 0T,
the emission spectrum shows a bright peak due to the cavity (labeled as CM) and a
second peak due to the quantum dot (labeled as QD), which is red-detuned from the
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Fig. 11.5 Device characterization with photoluminescence. a Photoluminescence spectrum. The
blue lines show the spectra at various magnetic fields ranging from 0 to 5T. The red line shows the
spectrum at 6.6T, where transition σ1 is resonant with the cavity. b Cavity photoluminescence as a
function of the magnetic field

cavity resonance by 0.19nm (67GHz). As we increase the magnetic field, the quan-
tum dot splits into four peaks corresponding to the four optical transitions shown in
Fig. 11.4.

To demonstrate strong coupling between the quantum dot and the cavity, we
finely tune the magnetic field over the range of 4.5–8.5T and measure the cavity
photoluminescence. Figure11.5b shows the photoluminescence spectrum near the
cavity resonance as a function of magnetic field. In this range, transition σ1 tunes
over the cavity resonance and exhibits an anti-crossing, indicating that the system
operates in the strong coupling regime.

11.4.2 Spin-Dependent Cavity Reflectivity

To demonstrate that the spin can flip the state of the photon, we use the polarization
interferometry set-up shown in Fig. 11.6. We excite the cavity with right-circularly
polarized light, and measure the reflected signal along either the left-circularly or
right-circularly polarized component. Figure11.7 shows both the cross-polarized
(red diamonds) and co-polarized reflection spectrum (blue circles) when the quantum
dot is detuned from the cavity so that the two systems are decoupled. By fitting the
reflection spectrum to a Lorentzian lineshape (blue and red solid lines), we determine
the cavity energy decay rate to be κ/2π = (35.9 ± 0.7) GHz and the interference
contrast to be α/2π = 0.81 ± 0.01.

We next apply a magnetic field of 6.6T that tunes transition σ1 onto cavity res-
onance via a Zeeman shift. We excite the quantum dot with a narrowband tunable
laser to optically pump the spin state [58, 59]. We first tune the optical pumping
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Fig. 11.6 Measurement
setup. OL, objective lens;
QWP, quarter wave plate;
P, polarizer; BS, beam
splitter; M, mirror; SMF,
single mode fiber; CCD,
charged coupled device
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Fig. 11.7 Co-polarized
(blue circles) and
cross-polarized (red
diamonds) cavity reflection
spectrum with no magnetic
field. Blue and red solid lines
show the calculated spectrum
(color figure online)
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laser to transition σ4 to prepare the quantum dot in the spin-up state. The blue circles
in Fig. 11.8a show the cross-polarized reflection spectrum with the optical pump-
ing laser, which exhibits a vacuum Rabi splitting. When we turn off the pumping
laser, we observe a reduced contrast due to random spin fluctuations (red diamonds).
In contrast, when we optically pump transition σ2 to initialize the quantum dot to
the spin-down state, we observe a spectrum that closely resembles a bare cavity
(Fig. 11.8b). This spin-dependent reflection spectrum is one of the essential proper-
ties of the phase switch.
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Fig. 11.8 Spin-dependent cavity reflectivity. a Cavity reflection spectrum under a 6.6T magnetic
fieldwith (blue circles) andwithout (red diamonds) an optical pumping laser resonantwith transition
σ4. The blue solid line shows the calculated spectrum for the case where the optical pumping laser
is turned on. With the pumping laser, we observe a suppression of the cavity response at the σ1
resonance due to strong coupling. We also observe a Fano-resonant lineshape at 27GHz detuning,
corresponding to the coupling between transition σ2 and the cavity mode. b Cavity reflection
spectrum when the pump laser is resonant with transition σ2. The blue circles show the measured
spectrum, and the solid line shows calculated spectrum. The center wavelength is 927.48nm for all
panels (color figure online)

11.4.3 Coherent Control of Cavity Reflectivity

To demonstrate control of a reflected photon using a coherently prepared spin state,
we use all-optical coherent control to manipulate the spin. We fix the magnetic
field at 6.6T. A narrowband continuous-wave laser tuned to transition σ4 performs
spin initialization and circularly polarized picosecond optical pulses generate an
effective spin rotation [13, 14]. We perform spin rotations using 6 ps rotation pulses
with center frequencies detuned by 520GHz from the cavity resonance (equal to 15
cavity linewidth). To rotate the spin over the Bloch sphere, we utilize the Ramsey
interferometry setup illustrated in Fig. 11.9a, which generates a pair of rotation pulses
separated by a time delay τ . A third laser pulse probes the cavity reflectivity a time
Δt after the second rotation pulse. We attenuate this laser so that a single pulse
contains an average of 0.12 photons coupled to the cavity to ensure a low probability
of two-photon events. We set the power of the continuous-wave optical pumping
laser to 30nW. At this power we measure a spin initialization time of (1.27 ± 0.09)
ns, which is slow compared with τ and Δt , but fast compared with the repetition
time of the experiment (13ns).

Figure11.9b shows the reflected probe intensity as a function of rotation pulse
power P and delay τ , where we set Δt to 140ps. We observe Ramsey oscillations in
the reflected probe intensity as a function of both P and τ . Figure11.9c plots the emis-
sion intensity of the quantum dot at transition σ2 for the same measurement, which
provides a second readout of the spin state. We observe the same Ramsey oscillation
pattern in the quantum dot emission signal, confirming that the reflection modu-
lation shown in Fig. 11.9b is induced by coherent spin manipulation. Figure11.9d
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Fig. 11.9 Ramsey interference measurements. a Experimental setup for generating the Ramsey
pulse sequence. The delay time τ between the two rotation pulses is controlled by a movable retro-
reflector mounted on a computer-controlled translation stage. BS, beam splitter; R, retro-reflector.
b Reflected probe intensity as a function of rotation pulse power P and the delay time τ . c Intensity
of the quantum dot emission at σ2 transition frequency as a function of rotation pulse power P and
the delay time τ . dCalculated spin-down state population as a function of peak rotation pulse power
and the delay time τ . We express the rotation pulse as a classical time-varying Rabi frequency with
a Gaussian pulse shape and peak powerΩ2. eReflected probe intensity as a function of delay time τ

shows the numerically calculated value for the population of the spin-down state for
comparison, which exhibit good agreement with experiments.

In Fig. 11.9e we plot the reflected probe intensity over a larger time range of
1ns. We fix the power of each rotation pulse to 40µW, which corresponds to a
π/2-rotation. From the decay of the fringe visibility, we calculate a T �

2 time of
(0.94 ± 0.02) ns. This coherence time is limited by inhomogeneous broadening due
to a slowly fluctuating nuclear spin background [11], along with decoherence due
to continuous optical pumping during the rotation pulse sequence. We could reduce
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Fig. 11.10 Time-resolved cavity reflection spectrum. a and b, Reflected probe intensity as a func-
tion of probe detuning at the rotation condition indicated by point a and point b in Fig. 11.9b
respectively. Blue circles are Δt = 140ps; red diamonds are Δt = 13ns. Solid lines are the calcu-
lated spectra. The center wavelength is 927.48nm for both spectra (color figure online)

these effects by turning off the pump laser during the measurement process and using
a nuclear field locking [11] or spin echo technique [12], which has been shown to
improve the coherence to up to 2.6µs.

To characterize the fidelity of the spin state preparation, we tune the probe laser
across the cavity resonance while setting P and τ to the conditions indicated by
the circles in Fig. 11.9b. The resulting cavity spectra are plotted in Fig. 11.10. In
Fig. 11.10a the two pulses arrive in-phase with the Larmor precession of the spin, and
the quantum dot rotates to the spin-down state. The cavity spectrum (blue circles)
is thus similar to the bare cavity Lorentzian lineshape. Figure11.10b shows the
case where the two rotation pulses arrive out-of-phase and the quantum dot rotates
back to the spin-up state. The cavity (blue circles) now exhibits a strongly coupled
spectrum. We also plot the measured spectrum when Δt = 13ns (red diamonds) for
comparison. At this condition the spin is re-initialized to the spin-up state in both
cases.

11.4.4 Controlling a Spin with a Photon

The previous measurements demonstrate that the spin state of the quantum dot
induces a conditional phase shift on the photon. A quantum phase switch would
also exhibit the complementary effect, where reflection of a single photon rotates the
spin state. To demonstrate this phase shift, we use the experimental configuration
shown in Fig. 11.11a. We again perform a Ramsey interference measurement but we
inject a weak laser pulse that serves as the control field before the second rotation
pulse arrives. We generate the control pulse in the same way as the probe pulse in the
previous measurement, with pulse duration of 63ps. When a control photon couples
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Fig. 11.11 Photon-induced spin phase switch. a Pulse timing diagram showing the relative time
delays between the rotation pulses and the control field. b Occupation probability of the spin-down
state as a function of the delay time τ , in the absence of control pulse (black squares), conditioned on
detecting a reflected control photon polarized along the cavity axis (blue circles), and in the presence
of the control field but not conditioning on the detection of a control photon (red diamonds). The
control field is resonant with the σ1 quantum dot transition. c Same as b, except that the control
field is blue detuned from the σ1 quantum dot transition (color figure online)

to the cavity, it imposes a phase shift on the spin-down state, which shifts the phase
of the Ramsey fringes.

Weperform statistical spin readout bymonitoring the emission at theσ2 frequency.
The blue circles in Fig. 11.11b show the occupation probability of the spin-down state
conditioned on the detection of a control photon, as a function of delay between the
two rotation pulses. These data are obtained by performing a two photon correla-
tion measurement. The blue solid line is a numerical fit to a sinusoidal function. We
compare this curve to the occupation probability of the spin-down state when we
block the control field (black squares with black line as a numerical fit). The inter-
ference fringe conditioned on detecting a single control photon is shifted in phase by
(1.09 ± 0.09)π radians relative to the case where there is no control photon, demon-
strating that a single control photon applies a large phase shift to the spin.We attribute
the degraded visibility of the Ramsey fringe conditioned on a control photon to finite
cooperativity, intrinsic cavity losses and occasional two-photon incidence events.
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We can tune the phase shift imparted on the spin by a control photon by introduc-
ing a frequency detuning between the control field and transition σ1, which enables
us to apply arbitrary controlled phase shifts. Figure11.11c shows the same measure-
ment for a blue detuned control field. The conditioned data (blue circles) show a
(0.59 ± 0.05)π radian phase shift, which corresponds to a detuning of 7.3GHz. We
also plot the occupation probability of the spin-down state in the presence of the
control field but without conditioning on the detection of the control photon (red
diamonds in Fig. 11.11b, c). These curves are very similar to the case where the
control field is blocked, which indicates that the average number of control photons
per pulse coupled to the cavity is much smaller than one.

11.5 Discussions and Outlooks

In this chapter, we reviewed recent experimental progress on interfacing a single
quantum dot spin and a single photon using a nanophotonic cavity QED system.
Especially, we introduced an experiment that demonstrated a spin-photon quantum
phase switch, which achieves strong coherent interactions between a single quan-
tum dot spin and a photon. The strong light-matter coupling strength of quantum
dot based cavity QED devices enables a quantum switch operating at unprecedented
bandwidths,where the spin can switchphotonwavepackets as short as tens of picosec-
onds [47]. Perhaps the most intriguing aspect of the spin-photon quantum switch is
that it monolithically combines spins with strongly interacting nanophotonic struc-
tures on a single semiconductor chip, which may have many beneficial properties
for future integration and scalability.

The demonstrated spin-photon quantum switch could enable lots of applications in
quantum information processing. Recent theory works have showed the potential to
deterministically generate spin-photon entanglement based on a similar quantum dot
based cavity QED system [60], which is an important step towards solid-state imple-
mentations of quantum repeaters and quantum networks. The spin-photon quantum
interface might also enable single-shot optical readout of a quantum dot spin in
the Voigt configuration [61], an extremely challenging task for quantum dot based
quantum information processing. The ultimate direction for this research direction
is to construct integrated quantum photonic circuits and on-chip quantum processors
using nanophotonic platform with solid-state spins embedded.

Another important aspects of the future works is to improve the performance of
the cavity device. Cavity designs with smaller mode-volume could improve the sys-
tem cooperativity [62, 63], thus enable higher switching fidelity. Using delta-doping
layers [14] or active charge stabilization [44] could further improve the spin state
preparation fidelity. The spin-photon quantum switch results can also be directly
applied in waveguide integrated devices that are more conducive to on-chip inte-
gration and can exhibit similar strong light-matter interactions [54]. In such on-chip
implementations, waveguide losses create further challenges by degrading the cav-
ity quality factor, which would reduce the cooperativity. Waveguide-coupled devices
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would therefore require higher bare cavity quality factor to ensure that the light
remains on the chip. Past work has demonstrated a quality factor exceeding 50,000
using GaAs photonic crystal cavities operating at near-infrared wavelengths [64],
and quality factor exceeding 250,000 in cavities operating at a longer wavelength
[65], which could potentially enable both efficient on-chip coupling and high cooper-
ativity. Employing regulated quantum dot growth techniques [66, 67] in conjunction
with local frequency tuning [57] could further open up the possibility to integrate
multiple quantum dot spins on a single semiconductor chip.
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Chapter 12
Entanglement Generation Based on
Quantum Dot Spins

Aymeric Delteil, Wei-bo Gao, Zhe Sun and Ataç Imamoğlu

Abstract Quantum correlations between a confined spin and a propagating sin-
gle photon can be used to entangle distant spins. In this chapter, we review recent
progress in the field culminating in the demonstration of spin-photon entanglement,
teleportation of quantum information from a photonic qubit to a quantum dot spin
and heralded entanglement of distant hole spins. These results constitute important
milestones towards the realization of quantum repeaters and on-chip quantum net-
works.

12.1 Introduction

12.1.1 Motivation

Quantumnetworksmade of quantummemories interconnected by photons could find
applications in long-distance quantum communication based on quantum repeaters
as well as in distributed quantum computation [1–4]. Realization of such networks
requires a quantum interface between stationary (matter) qubits and flying (photonic)
qubits. Self-assembled quantum dots (QDs) feature unique properties that allow for
the realization of such an interface:

• they can be deterministically charged with a single electron or hole, the spin of
which constitutes a quantum memory of coherence time up to several microsec-
onds, limited by hyperfine interaction [5];
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• they exhibit optical transition to excited states (trions) with a short lifetime of
about 1ns. Strong spin-orbit interaction yields spin-dependent selection rules
[6, 7].

As a consequence, QDs allow for fast initialization [8], manipulation [9] and mea-
surement of the spins using laser excitation. In addition, single photon emission is
typically much faster than optical transitions in most other matter qubit systems.
Moreover, they benefit from the semiconductor technology which allows to design
integrated optical and electrical functionalities – for instance optical cavities for effi-
cient light extraction [10, 11], and diodes for electric field control [11, 12] – and
open prospects for on-chip integration [13].

In this chapter, we review recent experimental realization of elementary protocols
based on self-assembled QDs. We first present the recent demonstration of spin-
photon entanglement with QDs (Sect. 12.2), which constitutes the building block
for realizing quantum-dot-based quantum networks. We then discuss the indistin-
guishability of photonic qubits emitted by remote QDs, essential for interconnecting
distant nodes (Sect. 12.3). Based on these demonstrations, we review the experi-
mental realization of quantum teleportation from a photonic qubit to a QD spin
qubit (Sect. 12.4). We then focus on the recent demonstration of heralded entan-
glement generation. After having introduced the entanglement generation protocol
(Sect. 12.5), we expose a novel method to measure the spin coherence based on
interference of inelastic light scattering (Sect. 12.6), followed by the implementation
and characterisation of a single qubit phase gate, useful for entanglement verifica-
tion (Sect. 12.7). In the last part, we discuss the experimental verification of distant
entanglement between QD hole spins (Sect. 12.8).

12.1.2 Quantum Dot Structures

The experiments discussed in this chapter are based on InAs/GaAs self-assembled
QD samples grown by molecular beam epitaxy (MBE). A single QD layer is embed-
ded in a lossy cavity of Q ∼ 20, ensuring that a sizeable part of the emitted light will
escape the sample in a single free space mode that can be coupled to a fibre. A solid
immersion lens (SIL) increases further the collection efficiency, up to a total amount
of ∼10–20% depending on the particular structure design. A Schottky (Sects. 12.2–
12.4) or p-i-n (Sects. 12.5–12.8) diode structure allows to control the charge state of
the QD as well as fine tuning of the optical transition energy using quantum confined
Stark effect.
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12.2 Quantum Dot Spin-Photon Interface

12.2.1 Spin-Photon Entanglement Generation Scheme

All demonstrations of entanglement between aphotonic qubit and amatter qubit so far
are based on excitation to a state external to the qubit subspace, from which radiative
decay channels to the qubit states coexist with equal oscillator strength [14–16]
(lambda system). Other entanglement generation schemes are in principle possible,
for instance using giant Faraday rotation induced by a single spin in a cavity [17],
however their experimental realization still remains elusive.

In single QD systems, a lambda scheme is formed when applying in-plane mag-
netic field (Voigt geometry), leading to Zeeman splitting of the spin ground states, to
which any of the two trion excited states can decay at the same rate. The correspond-
ing energy diagram is shown in Fig. 12.1, as well as the allowed optical transitions
from one of the excited states (the red trion). All four transitions between the two
ground states and the two excited states have identical oscillator strengths and are
linearly polarized [18]. The ground states of the QD are identified by the orienta-
tion of the electron spin, with | ↑〉 and | ↓〉 respectively denoting spins parallel and
antiparallel to the magnetic field direction. Spontaneous emission of an horizontally
(H ) or vertically (V ) polarized photon at frequency ωr or, respectively, ωb from the
trion state |Tr 〉 at rate Γ/2 brings the QD back into the state | ↓〉 or, respectively,
| ↑〉.

The basic principle behind the deterministic generation of a spin-photon entangled
state is straightforward: following the excitation of the QD into one of the trion states
(here we consider excitation to the red trion), radiative recombination projects the
coupled QD/photonic mode system into the entangled state

|Ψ 〉 = 1√
2

(| ↓〉|ωr ; H〉 + i | ↑〉|ωb; V 〉) (12.1)

Fig. 12.1 Energy-level
diagram of a
single-electron-charged
InGaAs QD in Voigt
geometry. Spontaneous
emission following resonant
optical excitation of the trion
state, |Tr 〉, with Rabi
frequency Ωres , leads to the
generation of an entangled
spin-photon state
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written in the computational basis, where |ωr ; H〉 and |ωb; V 〉 denote propagating
single-photon-pulse state vectors with respective centre frequencies ωr and ωb and
respective polarizations H and V . The electronic Zeeman energy satisfies ωZ =
ωb − ωr .

As can be seen on (12.1), the spin is entangled with two photonic degrees of
freedom: polarization and centre frequency. In order to avoidwhich-path information
leakage, one of these two photonic degrees of freedom has to be erased to end with
a Bell state. Erasure of the centre frequency degree of freedom can be obtained by
either frequency down-conversion using short pulses [19] or by time filtering/post-
selection using a window shorter than the beatnote period [20]. One obtains a state
where the spin is entangled with the photon polarization. On the other hand, it is also
possible to erase the polarization information using a polarizer at 45◦, projecting the
photon state on |H + V 〉 or |H − V 〉. This last approach is well suited for fibre-
based applications, where the colour degree of freedom is robust to propagation
in fibres thanks to a small typical wavelength difference between the two photonic
components. In the following we will focus on the latter approach, developed in
[21], in which the verification of spin-photon entanglement relies on the possibility
to perform high-resolution time-resolved resonance fluorescence [22, 23].

In [21], the spin-photon entangled pair is generated from a single-electron-
charged, self-assembled InGaAsQD, with an external magnetic field of 0.7T applied
perpendicular to the growth direction.

12.2.2 Entanglement Verification

Verification of entanglement and estimation of the fidelity to a maximally entangled
state need not necessarily a full tomography of the generated state, although the latter
can participate to understand fidelity limitations [24]; non-classical correlations can
be evidenced by measuring conditional probabilities in two orthogonal bases [25].

In the case of spin-photon frequency entanglement, the two sets of correlations
to be measured are:

• (classical) correlations between the spin in the computational basis and the photon
colour

• (quantum) correlations between the spin in a superposition state (“rotated basis”)
and the photon in a superposition of the two frequencies.

In addition to resonant laser excitation of the trion states, the scheme uses
non-resonant, right-hand-circularly (σ+)-polarized, 4-ps-long mode-locked laser
pulses that are red-detuned from the trion transitions by ∼210GHz: these pulses
induce a coherent rotation of the electron spin [9], with minimal trion excitation
(see Sect. 10.5.3 for a detailed description of this coherent control). The set-up, that
integrates two-laser excitation together with time- and frequency-resolved resonance
fluorescence, is depicted in Fig. 12.2. Suppression of the σ+-polarized background
laser light is ensured by a polarizer that projects the polarization of the resonance

http://dx.doi.org/10.1007/978-3-319-56378-7_10
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Fig. 12.2 Schematic of the experimental set-up highlighting the important optical elements. BS,
beam splitter; CW, continuous wave; EOM, electro-optic modulator, FP, Fabry-Pérot filter; POL,
polarizer QWP, quarter-wave plate

fluorescence photons to σ−. As mentioned in Sect. 12.2.1, it also erases correlations
between the electron spin and the polarization of emitted photons; photonic states
in the output mode are then fully characterized by their centre frequency, and entan-
glement is then demonstrated between the electron spin orientation and the centre
frequency of the single-photon pulse.

The pulse sequence we used is depicted on Fig. 12.3a. It consists of:

• a 5-ns resonant laser pulse tuned to the | ↓〉 − |Tr 〉 transition, to prepare the QD
in state | ↑〉

• a 4-ps π-pulse that transfers the QD to the | ↓〉 state
• a 1.2-ns resonant laser pulse that generates the spin-photon entangled pair
• an additional 4-ps-long spin rotation pulse used to rotate the spin-measurement
basis.

The whole pulse sequence is repeated after 13ns, with the 5-ns resonant laser
implementing spin measurement for the preceding pulse sequence as well as ensur-
ing spin pumping/preparation in the | ↑〉 state for the subsequent cycle. Indeed the
detection of a photon at the avalanche photodiode (APD) during this pulse tells with
a high confidence level that the spin is in the state | ↓〉. Note that, as the average
number of photons emitted during this spin measurement/pumping time window is
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Fig. 12.3 a Pulse sequence used to measure the spin-photon correlations. b Time-dependent res-
onance fluorescence at |ωr 〉 (red) and |ωb〉 (blue), conditioned on detection of a photon during the
subsequent measurement/preparation pulse. The strong suppression of conditional photon detec-
tion events at |ωb〉 demonstrates the strong classical correlation between spin measurement yielding
| ↓〉 and a photon detection at |ωr 〉. c Same as in d but now with a π-pulse applied before the mea-
surement/preparation pulse, showing strong correlations between spin detection in | ↑〉 and photon
detection at |ωb〉.dTime-resolved coincidence events between the single-photondetection following
the entanglement pulse and the detection of a photon during the first measurement/preparation pulse
following a π/2-pulse (red squares). For comparison, an average of coincidence events between the
spin and photon detection events taking place in 25 different excitation/preparation cycles is also
shown (black squares). The red curve is a fit to the experimental data. e Same as in d but now with
a 3π/2-pulse



12 Entanglement Generation Based on Quantum Dot Spins 385

∼1 and our combined collection and detection efficiency is ∼0.1%, the absence of a
detection events brings no information, therefore it implies that we extract heralded
spin information [7].

Classical Correlations

Demonstration of spin-photon correlations in the computational basis requires the
measurement of classical correlation between the spin direction and the photon centre
frequency. This is achieved by carrying out a coincidence measurement between
resonance fluorescence photons at either |ωb〉 or |ωr 〉 generated immediately after
the entanglement pulse and those generated during the measurement/preparation
pulse. Conditional on the detection of the spin state | ↓〉, we find that the probability
of detecting a blue (ωb) photon at the SSPD is drastically suppressed compared with
the probability of detecting a red (ωr ) photon (Fig. 12.3b). With the additional 4-ps
π-pulse introduced at t = 3ns, it is possible to condition the single-photon colour
measurements on detection of the spin in | ↑〉. In this case, we find that the red-photon
detection events are strongly suppressed (Fig. 12.3c). From these measurements, we
determine the fidelity of the classical correlations to be F1 = 0.87 ± 0.09.

Quantum Correlations

To verify that the generated spin-photon state is entangled, correlations between
spin orientation and photon colour have to be measured in a rotated basis. This
verification makes use of the relative phase between the two components of the
entangled state in (12.1). After generation at time tg, the two components acquire
a time-dependent phase that stems from the different propagation phase factors of
the blue and red frequency components of the photonic mode. In our experiments,
we infer the generation time from the detection time, td , of the single photon at the
SSPD, through the relation tg = td − L/c, where L denotes the distance from the
QD to the detector and c is the speed of light. Hence, given a photon detection event
at td , we can a-posteriori write the time dependence of the spin-photon entangled
state of (12.1) as

|Ψ (t)〉 = 1√
2

(| ↓〉|ωr ; H〉e−iωZ (t−tg) + i | ↑〉|ωb; V 〉) (12.2)

The requisite spin measurement is implemented by rotating the QD electron spin
with either a π/2-pulse or a 3π/2-pulse at t = t1 = 1.7ns. A photon detection event
at the APD during the following measurement/preparation pulse then projects the
electron spin into (| ↑〉 − i | ↓〉) /

√
2 (π/2-pulse) or (| ↑〉 + i | ↓〉) /

√
2 (3π/2-pulse).

The photonic wavefunction consistent with the spinmeasurement after the π/2-pulse
can be written as (|ωr ; H〉e−iωZ (t−tg) − |ωb; V 〉) /

√
2 (12.3)

After passing through the polarizer, which fixes the polarization of the photon to be
(|H〉 − i |V ) /

√
2, this wavefunction is
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|Φ(t)〉 = 1√
2

(|ωr 〉e−iωZ (t−tg) − i |ωb〉
)

(12.4)

The resulting coincidence probability is P = (
1 + sin

(
ωZ

(
t1 − tg

)))
. As a con-

sequence of the time-dependent relative phase, two single-photon states generated
at different times, tag and tbg , such that ωZ

(
tag − tbg

) = π, allow us to infer the overlap
of the photonic state with two orthogonal states. Random photon detection times
together with the fact that the single-photon pulse width, τ , satisfies ωZτ > 1, effec-
tively implement projectivemeasurements into orthogonal states such as |ωr 〉 ± |ωb〉.
The single-photon pulses are measured by a fast superconducting single photon
detector (SSPD), which has a jitter of Δτ = 60 ps, short enough to resolve the time
dependence in (12.4).

Figure12.3b shows the coincidence between the single-photon detection events
induced by the entanglement pulse and the detection of a photon during the measure-
ment/preparation pulse, following a π/2-pulse: the oscillations with a period given
by 2π/ωZ = 238 ps in the conditioned single-photon detection events (Fig. 12.3d,
red squares) stem from the conditioned photonic wavefunction given in (12.4)
and constitute a remarkable manifestation of the quantum coherence of the entan-
gled spin-photon system. For comparison, we also show an average of coincidence
events between the spin and photon detection events taking place in different exci-
tation/preparation cycles (Fig. 12.3d, black squares), which do not show any oscilla-
tions. Figure12.3e shows the time-dependent coincidencemeasurements obtained by
applying a 3π/2-pulse before themeasurement/preparation pulse. Note that the oscil-
lations of visibility 47 ± 4% for spin detection along (| ↓〉 + i | ↑〉) /

√
2 are π out of

phase relative to those along (| ↓〉 − i | ↑〉) /
√
2. Using the data fromFig. 12.3d, e, we

determine the fidelity of the quantum correlations in this rotated basis to be the aver-
age of the two visibilities, yielding F2 = 0.46 ± 0.04. The overall measured entan-
glement fidelity is then F ≥ (F1 + F2) /2 = 0.67 ± 0.05, limited predominantly by
the finite jitter of the SSPD.

12.2.3 Coherence of the Entangled Pair and Spin-Photon
Entanglement with Spin-Echo Sequence

A major limitation in the demonstration of quantum correlations between the elec-
tron spin and the photon frequency stems from the relatively short ground-state spin
decoherence time, T ∗

2 , of the electron spin, originating from the slowly fluctuating
nuclear spin environment: owing to the hyperfine interaction between the electron
spin and QD nuclear spin ensemble, the electron spin is subject to an effective mag-
netic field determined by a combination of the fixed externally applied field and
the quasi-static random Overhauser field. For different repetitions of the experiment
the nuclear spins will be in different states, yielding a corresponding slowly fluc-
tuating Overhauser field and thereby decreasing of the timescale that electron spin
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coherence is observable. This timescale is commonly referred to as spin T ∗
2 dephasing

time.We refer the reader to Sect. 9.4 for an extensive description and characterisation
of nuclear-spin-induced electron spin dephasing.

The decay of the oscillations as a function of t1 − tg in conditioned single-photon
detection events (Fig. 12.3b, d) constitutes a measurement of the electron spin deco-
herence that was previously carried out using Ramsey interferometry [5]. By fitting
the decay of coincidence measurements in the time window [0ns, 1.64ns] we find
that T ∗

2 = 1.1 ± 0.2ns for the data in Fig. 12.3b and that T ∗
2 = 0.9 ± 0.2ns for the
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Fig. 12.4 a Laser pulse sequence used for the generation of spin-photon entangled state and mea-
surement of quantum correlations after a spin-echo sequence. b Spin-photon entanglement in the
rotated basis and the relevant energy-level diagram (right inset). The main figure shows the photon
detection events as a function of time, during and after the entanglement generation pulse, condi-
tioned upon a spin-echo-delayed spinmeasurement in the (| ↓〉 + | ↑〉) /

√
2 state. The entanglement

generation pulse is turned on at time t = 0 and is 1.2ns long. The oscillations atωb − ωr = 4.9GHz
are due to the beating between the two frequency components of the projected single-photon super-
position state. The vertical dashed line indicates the entangled spin-photon generation time for
which the spin-echo sequence exactly cancels the random phase accumulated due to hyperfine
interactions

http://dx.doi.org/10.1007/978-3-319-56378-7_9
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data in Fig. 12.3d, for this QD. The coherence time can be prolonged beyond T ∗
2

thanks to a spin-echo sequence, allowing to utilize the spin-photon entangled pair in
quantum communication protocols where the network nodes are separated bymacro-
scopic distances. This has been demonstrated in [26], where a spin-echo sequence is
applied to a singly charged QD as illustrated in Fig. 12.4a, together with the relevant
energy-level diagram and the allowed optical transitions under an external magnetic
field Bx = 0.7 T that is applied perpendicular to the growth direction (Fig. 12.4b,
inset). The QD is prepared in | ↓〉 state by applying a 10ns-long resonant laser pulse
tuned to the | ↑〉 − |Tb〉 transition. A subsequent 4 ps-long π-pulse (“rotation pulse”)
transfers the spin onto | ↑〉. An entangled spin-photon pair is then generated by reso-
nant excitation of the |Tb〉 with a 1.2ns resonant laser pulse (“entanglement pulse”).
The whole pulse sequence is repeated after 104.8ns, with the subsequent 10-ns long
resonant laser implementing spin measurement for the preceding pulse sequence,
as well as ensuring spin pumping/preparation in the | ↓〉 state for the next cycle.
For an echo time Techo = 13ns, a measurement of the spin-photon correlations in
a rotated basis is shown in Fig. 12.4b. Combined with measurements that project
the photon and the spin in different states (similarly to described in Sect. 12.2.2),
we can calculate the spin-photon entanglement fidelity to be F > 0.63 ± 0.02. This
bound is once again limited by the detection jitter (64 ps). If the detector jitter were
absent, we would obtain F > 0.71 ± 0.02 (F > 0.82 ± 0.02) as the lower bound for
entanglement fidelity with (without) spin-echo.

An alternative way to retain coherence of a spin-photon entangled pair during a
longer time is to use hole spins, which exhibit a similar energy level diagram but
have a T ∗

2 one to two orders of magnitude longer. This is the route taken by the
experiments described in Sects. 12.5–12.8.

Another QD based system that exhibits a lambda scheme which is in principle
well suited for generated spin-photon entanglement is a QD molecule in the doubly
charged regime, at the so-called sweet spot [27]. Although spin-photon entanglement
has not been demonstrated so far, the lambda system formed by the singlet and triplet
ground states optically coupled to a common trion state has been used to demonstrate
coherent population trapping, showing promising spin coherence of tens to hundreds
of nanoseconds.

12.3 Indistinguishability of Photonic Qubits Emitted
by Different Dots

The implementations of quantumcommunication protocols thatwewill be discussing
in the Sects. 12.4–12.8 rely on the indistinguishability of single photons emitted by
remote QDs. In this section we show how to generate photonic qubits (that are not
entangled with any external degree of freedom) and characterize the indistinguisha-
bility of such qubits emitted by two different QDs [26].
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12.3.1 Generation of Photonic Frequency Qubits

In a neutral self-assembled InGaAs QD, the elementary optical excitations from the
unique ground state |0〉 are the two fundamental exciton states |Xr 〉 and |Xb〉 that
are split in energy by the anisotropic electron-hole exchange interaction [28]. It is
therefore possible to generate a photonic qubit (see Sect. 7.1) by resonant pulsed
excitations of these excitonic transitions. The exciton state |Xr 〉 (|Xb〉) decays at a
rate Γ1 by spontaneous emission of a photon at frequency ωr (ωb) back into |0〉. A
laser pulse resonant with either of these two exciton states results in the generation
of single-colour single photon states denoted by |ωr 〉, |ωb〉. Alternatively, applying
a two-colour laser pulse that is simultaneously resonant with both |Xr 〉 and |Xb〉
results in the superposition state α|ωr 〉 + β|ωb〉 (left inset of Fig. 12.5).

A two-colour laser pulse that excites the QD in such a superposition of exciton
states can be obtained by tuning the frequency of a diode laser exactly in the middle
of the two neutral exciton transitions and sending the beam to an amplitude electro-
optic modulator (EOM) that generates pulses from the continuous-wave laser field.
A phase EOM is used to generate laser sidebands that are on resonance with the
exciton transitions, and enables us to resonantly drive |Xr 〉 and |Xb〉 simultaneously.
The amplitude of the modulation signal is set such that the central (carrier) peak at
the laser frequency is completely suppressed. In this way, most of the laser power
is carried by the frequencies ωr and ωb. Two orthogonal polarizers on the excitation
and collection paths of the QD, set at |H + V 〉 and |H − V 〉, respectively, are used
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Fig. 12.5 Time resolved resonance fluorescence counts for QD1 (green) and QD2 (black). A 0.8ns
two-colour laser pulse (dashed line) that is resonant with both excitonic transitions excites the QD
(left inset). Subsequent spontaneous emission generates a single photon in a superposition of ωr and
ωb. Thematched oscillations of the emission from the twoQDs atωb − ωr = 3.45GHz indicate that
the generated photonic qubit states are nearly identical. The right inset shows photon correlation
(g(2)) using the photons emitted after the excitation pulse is turned off, such that the likelihood of
two or more photon detection events is very small
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to suppress the laser background. Upon spontaneous emission at te, the generated
photon is in the state |ψp〉 = (

eiΔte/2eiφL |ωb〉 + e−iΔte/2e−iφL |ωr 〉
)
/
√
2, where Δ =

ωb − ωr and φL is the tunable relative phase imprinted by phase modulation.
The detection of the photonic frequency qubit can be implemented with a detec-

tor having time jitter smaller than 1/Δ. Upon absorption of a photon, the qubit is
projected onto the state |ψm〉 = (|ωb〉 + |ωr 〉) /

√
2; the probability that a photon is

registered is then |〈ψm |ψp〉|2 = (1 + cos(2φL + Δte)) /2. With φL and Δ fixed, the
counts show an oscillation as a function of the photon emission time te, which can be
deduced from the corresponding photon detection time td . The result is a temporal
beat signal stemming from an interference of the two partial waves of the frequency
qubit on the single-photon detector. The measurement of a photonic frequency qubit
is depicted in Fig. 12.5 for two QDs (QD1 and QD2): the beats of ωr and ωb demon-
strate that the single photon is in a coherent superposition of two frequencies. The
finite visibility of the interference of the two frequency components stems predom-
inantly from the jitter of the detector. The single photon character of the photonic
qubit is verified by the vanishing g(2) (see Sect. 1.2) as shown in the inset of Fig. 12.5.

12.3.2 Indistinguishability of the Photonic Qubits

While indistinguishability of consecutive photons emitted by a single QD has been
extensively investigated, reaching high values above 99% visibility [11, 29, 30],
what is of interest for the implementation of protocols interconnecting remote nodes
is the indistinguishability of photons emitted by different emitters, that are subject
to independent fluctuations and possibly slightly different characteristics (e.g. life-
time or centre frequency). In the following we present a characterization of the
indistinguishability of two photonic qubits emitted by two different QDs using
two-photon interference in a Hong-Ou-Mandel (HOM) set-up [31]. The photonic
frequency qubits are generated by two QDs (QD1 and QD2) placed in separate
cryostats. Obtaining pairs of QDs having identical emission wavelength is challeng-
ing since self-assembled QD wavelength distribution typically spreads over a few
tens of nanometers, which is about four orders of magnitude larger than the natural
linewidth. Although the quantum confined Stark effect allows to tune the resonance
to some extend (typically 10–30GHz) it is necessary to have at one’s disposal a large
number of dots in order to spectrally select a matching pair from photoluminescence
measurements. Once a pair of QDs with nearly identical PL emission wavelengths
is found, local gate voltages applied separately to the two QDs are used to fine tune
their transition frequencies into resonance. To ensure that both ωr and ωb of the two
QDs are identical, we additionally apply local magnetic fields.

Figure12.6 shows the time-resolved coincidences between the two output ports of
the HOM interferometer as a function of the time delay between the photon detection
times, when the two input photons have either identical of orthogonal polarizations.
Our measurements reveal that the visibility is V = (C⊥ − C//)/C⊥ = 80.2 ± 2.9%,
whenwe consider the photon emission after the laser pulse in the timewindow [0.8ns,

http://dx.doi.org/10.1007/978-3-319-56378-7_1
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Fig. 12.6 The photonics
qubits depicted in
Sect. 12.3.1 are incident on a
beam splitter. Coincidence
counts on the two arms of the
beam splitter are plotted as a
function of the delay
between the recorded photon
arrival times. T0 is the pulse
repetition time of 13.1ns
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2ns]. Here, C⊥ (C//) is the total counts in the central peak with orthogonal (parallel)
polarization for the input modes of the beam splitter. When the two input photons
are in different periods or if they have orthogonal polarizations, then two-photon
interference is absent: the observed beat signal in those cases originates exclusively
from single-photon interference. With a retro-reflecting prism in one of the arms of
the interferometer, we introduce a half-period time delay (t = π/Δ) for one of the
pulses, which also renders the two photonic qubits distinguishable (Fig. 12.6b). For
any given arrival time at the beam splitter, such a delay ensures that the relative phase
between the two frequency components of the two single photons differ by π. In this
case, the observed beat notes around the center period near zero delay time stem
from an interference between the two frequency qubits

(|ωb〉 + eiθ|ωr 〉
)
/
√
2 and(|ωb〉 − eiθ|ωr 〉

)
/
√
2. The suppression of the beat signal in different periods stems

from a superposition of two π-phase-shifted single-photon interference patterns.

12.4 Photon to Spin Teleportation

The generation of spin-photon entangled pairs (Sect. 12.2) together with the indistin-
guishability of single photons emitted by remote QDs (Sect. 12.3) opens the way to
experimental realization of long distance quantum communication protocols. Of par-
ticular interest is the teleportation from a propagating qubit to a stationary qubit [32,
33], that not only constitutes a versatile quantum-state-transfer method but can also
serve as a quantum computational primitive [34–36]. In this section we focus on the
recent demonstration of teleportation from a photonic frequency qubit to a QD spin
qubit [26].
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12.4.1 Set-Up and Protocol

In this experiment, the photonic frequency qubit to be teleported is brought into
one arm of a Hong-Ou-Mandel (HOM) interferometer, while the other arm is
fed with the photonic part of an entangled spin-photon pair of the form |Ψ 〉 =
(| ↓〉|ωb〉 − | ↑〉|ωr 〉) /

√
2, generated as described in Sect. 12.2. The state of the cou-

pled system consisting of two photons in modes A and B and the QD spin prior to
the beam splitter is

|Ψ 〉 = 1√
2

(α|ωb〉A + β|ωr 〉A) ⊗ (| ↓〉|ωr 〉B − | ↑〉|ωb〉B) (12.5)

Provided that the single-photon pulses have identical spatiotemporal profiles, a
coincidence detection at the output of the interferometer heralds successful telepor-
tation. Indeed if the photons in modes A and B are indistinguishable in every aspect
but their internal (frequency/colour) state, the only possibility for a simultaneous
coincidence detection at the output of the HOM interferometer is to have the input
two-photon state in |ϕS〉 = (|ωb〉A|ωr 〉B − |ωr 〉A|ωb〉B) /

√
2. Therefore, detection of

a coincidence projects the input photonic state (in modes A and B) to |ϕS〉.
As mentioned in Sect. 12.2, the entangled state is affected by decoherence of the

QD spin at a timescale T ∗
2 ∼ 1ns. To ensure that the electron spin coherence is intact

for a longer time period, we introduce an optical spin-echo sequence that removes
the effect of static, but random, Overhauser field, as described in Sect. 12.2.3. The
electron spin is still subject to decoherence but now at a timescale that is commonly
referred to as spin-echo coherence time T2, such that T2  T ∗

2 .
The photonic qubit that is coupled to the mode A is generated by the neutral QD3,

whose exciton transition energy is nearly identical to that of the QD2 trion. Local
electric and magnetic fields ensure that both ωr and ωb are identical for both dots. We
focus on photons emitted in a 800 ps long time interval, slightly longer than the 650 ps
QD lifetime, and observe coincidences at the outputs of theHOM interferometer. The
spin state corresponding to this measurement outcome is 〈ϕS|Ψ 〉 = α| ↑〉 + β| ↓〉,
as it can be verified from (12.5).

12.4.2 Classical Correlations

Experimental verification of teleportation is based on three-fold coincidence detec-
tion of photons at the two output modes of the HOM interferometer, together with
a photon detection during the spin-measurement/preparation pulse (Fig. 12.7a). The
spin population in the | ↑〉 state before the start of the spin-measurement pulse deter-
mines the probability that resonantly excited QD scatters one or more photons. After
a few optical cycles, the spin is pumped to the | ↓〉 state and the QD resonance
fluorescence ceases.
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In order to demonstrate classical correlations between the colour of the photon to
be teleported and the final spin state, we use an input photon that is prepared either in
|ωr 〉A or |ωb〉A and measure the spin state projected to either | ↑〉 or | ↓〉. For a mode
A photon in |ωr 〉A, a three-fold coincidence projects the photon inmode B onto |ωb〉B
and the spin onto | ↑〉. Figure12.7b shows that the same period (Period 0) three-fold
coincidences corresponding to a spin measurement in | ↑〉 are a factor ∼4 larger
than those corresponding to | ↓〉. By using an input photon in state |ωb〉A, the three-
fold coincidences in Period 0 show that detecting the spin in | ↓〉 is now ∼4 times
more likely than detecting it in | ↑〉 (Fig. 12.7c), in accordance with the predictions
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Fig. 12.7 Demonstration of quantum teleportation. a Experimental teleportation pulse sequence.
The pulses applied toQD2 for entanglement generation are the same as in Fig. 12.3with an additional
spin echo π pulse. In the spin measurement stage, different combinations of spin rotation pulses
are used. For QD3, 400ps excitation pulses are used for generating the input photonic qubit. For
teleportation, we use the coincidences at the two outputs of the HOM interferometer in a 800ps
long time-interval (labelled with the grey box). b, c Teleportation with input qubit |ωr 〉 (b) or |ωb〉
(c). The plots show three-fold coincidence counts between the two output arms of the beam splitter
and a photon detection during the following spin measurement pulse (Period = 0) or a later pulse
period (Period > 0). The green and yellow columns represent different spin measurement basis. An
enhanced probability for the spin state | ↑〉 (| ↓〉) as well as a decreased probability for | ↓〉 (| ↑〉)
is observed when the photonic qubit was initially prepared in |ωr 〉 (|ωb〉). d, e Same as b, c but with
different input qubit |ωr 〉 + |ωb〉 (d) or |ωr 〉 − |ωb〉 (e). A spin-echo π-pulse is applied to prolong
the spin coherence time
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of the teleportation protocol. From these measurements, we obtain the teleported
state fidelities 0.79 ± 0.1 (0.82 ± 0.09) for |ωr 〉A (|ωb〉A), where the fidelity for each
teleported state is calculated as the overlap of the ideal electron spin state after the
completion of the protocol with the corresponding experimental outcome for the spin
state.

The different period three-fold coincidences are obtained by correlating the coin-
cidence events for photons at the output of the HOM interferometer generated within
the same period, with a spin measurement in the subsequent period. The correspond-
ing coincidences also show a difference between the spin-up and spin-down popu-
lations, but this difference is due to a steady-state population difference between the
two spin states and is not affected by the photonic qubit state.

12.4.3 Quantum Correlations

Demonstration of quantum teleportation requires that coherences in the photonic
superposition state at the inputmode A are faithfully transferred onto the spin state. To
verify this,we prepare the single photon inmode A in either |ωr 〉A + |ωb〉A or |ωr 〉A −
|ωb〉A. As the propagation time of the photons onto the superconducting-single-
photon detector (SSPD) is about 11ns, we introduce a spin-echo pulse sequence to
ensure that the spin measurement is carried out only after the coincidence detection
at the output of the HOM interferometer. The three-fold coincidences now indicate
an enhanced probability for detection of the spin in state | ↑〉 + | ↓〉 for an input
photon in |ωr 〉A + |ωb〉A (Fig. 12.7d) and | ↑〉 − | ↓〉 for an input photon in |ωr 〉A −
|ωb〉A (Fig. 12.7e). From these measurements, we obtain the teleported state fidelities
0.76 ± 0.03 (0.75 ± 0.03) for |ωr 〉A + |ωb〉A (|ωr 〉A − |ωb〉A).

The measured teleported state fidelities are primarily limited by the small mis-
match between the temporal pulse shapes and the spatial overlap profiles of the two
interfering photons, as well as the finite spin-photon entanglement fidelity stemming
from hyperfine-interaction-mediated electron spin decoherence. Unlike measure-
ments of spin-photon entanglement fidelity (Sect. 12.2), the experimentally deter-
mined teleportation fidelity is independent of the detector jitter. Prolongation of the
spin-echo time beyond 25ns in our experiments is limited by the linearly coupled
Overhauser field components along the electron spin quantisation direction [37].
The relatively short timescales at which teleportation can be observed for QD2 lim-
its possible applications of teleportation where longer memory times are needed. We
note that at higher magnetic fields spin T2 coherence times exceeding 1μs have been
reported for single InAs QDs [5, 37].
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12.5 Distant Entanglement Generation Protocol

Generation of distant entanglement between two distant QD spins can be thought
of as a natural extension of the teleportation experiment, where the photonic qubit
is replaced by a photon that is entangled with another QD spin, thus realizing the
so-called Simon-Irvine protocol [38]. A two-fold coincidence detection at the out-
put of the HOM interferometer would herald successful generation of entanglement
between the two distant spins. Entanglement generation between two distant quan-
tum memories based on such scheme has been demonstrated in several physical
systems [39, 40].

The major obstacle to its realization as such with self-assembled QDs in Voigt
geometry is the lack of efficient spinmeasurement: to verify entanglement one would
need to measure both QD spins in addition to the two-fold coincidence heralding
entanglement, leading to four-fold coincidence whose rate with typical collection
efficiencies would be too low for a realistic implementation.

It is however possible to herald entanglement with a single detection event of
spin-flip Raman scattering, provided that it is impossible to determine the source of
the detected photon [41]. Such a scheme has been previously realized with trapped
ions [42] andmore recentlywithQDhole spins [43]. In the followingwewill focus on
the latter realization. Unlike the previously described experiments (Sects. 12.2–12.4),
heralded entanglement generation has been realized with hole spin qubits, that have
a longer T ∗

2 coherence time in comparison with the electron spin (see [44–47] and
Sect. 12.6). In the present case the holes are optically injected by resonant driving of
the neutral exciton followed by tunelling of the electron to the back contact, leaving
behind a single hole (see Sect. 10.5.2) as illustrated in Fig. 12.8, which depicts the
relevant energy-level diagram as well as the allowed optical transitions for single-
hole charged QDs in Voigt geometry. The initial states of the optical transitions in

Fig. 12.8 Energy level
diagram of a single QD.
Upon excitation of the
neutral exciton (|X0〉) state,
the electron can tunnel out,
leaving behind a single hole.
Application of a finite
magnetic field gives rise to
spin-dependent optical
selection rules with four
allowed transitions of
identical oscillator strength

http://dx.doi.org/10.1007/978-3-319-56378-7_10
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the single-hole charged regime are metastable states identified by the orientation of
the heavy-hole pseudo-spin, with | ⇑〉 (| ⇓〉) denoting +3/2 (−3/2) hole angular
momentum projection. Presence of Bx �= 0 yields a finite splitting of the pseudo-
spin states due to heavy-light hole mixing [28]. As in the previously described case
of a negatively charged QD, spontaneous emission of a V (H ) polarized photon at
frequency ωblue (ωdiag1) from the trion state |Tb〉 at rate Γ/2 brings the QD back into
the | ⇓〉 (| ⇑〉) state. Due to these selection rules, addressing any of the four allowed
transitions with a single laser will efficiently transfer the spin population into the
opposite ground state within ∼10ns.

Figure12.9 depicts the experimental set-up where two QDs separated by 5m are
resonantly driven by weak 3.2ns long pulses from a Ti:Sapphire laser, termed the
entanglement laser. Additional diode laser pulses ensure that each QD is optically
charged with a single excess heavy-hole and that the hole pseudo-spin is prepared
in the requisite state. Since the intensity of entanglement laser is chosen to be well
below saturation, the ensuing optical transitions lead to either V -polarized Rayleigh
scattering or H -polarized Raman scattering (see Sects. 3.2 and 3.4.3 for an extensive
description of light scattering in the low power regime).

The light propagation time from the first beam splitter (BS1) to both dots, as well
as from the dots to the second beam splitter (BS2) are rendered nearly identical,
such that the photons scattered by the two dots during a single entanglement laser
pulse reach the second beam splitter at the same time. When both QDs are initially
prepared in the | ⇓〉 state, simultaneous weak excitation of the blue transitions will
lead to either a Raman or Rayleigh scattering eventwith a probability ε2 � 1, leaving
the system in the state

|Ψ 〉12 = 1√
2
[| ⇓, 0〉 + εe−iθ1(| ⇑, 1d1,H 〉 + | ⇓, 1b,V 〉)]QD1

⊗[| ⇓, 0〉 + εe−iθ2(| ⇑, 1d1,H 〉 + | ⇓, 1b,V 〉)]QD2 (12.6)

where |1b,H 〉 refers to a single H -polarized photon with centre frequency ωblue and
|1d1,V 〉 refers to a single V -polarized photon with centre frequency ωdiag1. To ensure
that a click in one of the single-photon detectors stems from Raman scattering we
use polarizers, transmission gratings and Fabry-Pérot filters. In this case, detection
of a single (Raman) photon projects the composite system wave-function onto the
maximally entangled state

|Ψ 〉12 = 1√
2
[| ⇑,⇓〉 + e−iθ| ⇓,⇑〉] (12.7)

in the limit where two photon scattering probability ε4 is vanishingly small. Provided
that the Zeeman splitting in the two QDs are rendered identical, the relative phase
θ = θ2 − θ1 is time-independent and is primarily determined by the optical path
length difference between the two arms from BS1 to BS2 (Fig. 12.9).

The entanglement generation scheme we use relies crucially on the indistin-
guishability of the photons emitted by two remote QDs (QD1 and QD2) such that

http://dx.doi.org/10.1007/978-3-319-56378-7_3
http://dx.doi.org/10.1007/978-3-319-56378-7_3
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Entanglement and
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measurements (QD2)
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Fig. 12.9 Two bath cryostats separated by 5m host QD samples in Voigt geometry. The QDs can be
addressed by diode lasers (in black) for local state preparation and readout, and by aTi:Sapphire laser
(in blue) for entanglement generation and non-local measurement. EOM stands for electro-optic
modulator (color figure online)

“which-path” information is not available in the single-photon interferometer depicted
in Fig. 12.9. The indistinguishability of the Raman scattered photons is character-
ized by a Hong-Ou-Mandel experiment (see Sect. 12.3). The associated interference
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visibility deduced from thismeasurement is 91 ± 6%guaranteeing that no substantial
“which-path” information is conveyed by Raman photons.

For the protocol we implement, it is essential that the QD spins remain coherent
during the time it takes for the heralding process to be completed. In our scheme the
latter is determined predominantly by the 21.7ns propagation time from the QDs
to the single-photon detectors. In the next section, we show how Raman scattering
can be used to demonstrate that the hole pseudo-spin retains its coherence on this
timescale.

12.6 Interference of Raman Scattering for Hole
Coherence Measurement

12.6.1 Optically Injected Holes as Coherent Spin Qubits

The T ∗
2 coherence time of the electron spin in self-assembled QDs is short, typically

about 1ns. Such short value originates in hyperfine interaction with the fluctuating
bath of nuclear spins, as discussed in Sect. 12.2.3 and in Sect. 9.4. On the other hand,
the coherence time of the QD hole pseudo-spin in Voigt geometry has been found to
exceed this value by one to two orders of magnitude, thanks to the p-type Bloch part
of the hole wavefunction that leads to a vanishing Fermi contact term of the hyperfine
interaction. The coherence time is then limited by charge fluctuations, hence being
inversely proportional to the external magnetic field [48] and susceptible to vary from
sample to sample. We refer the reader to Sect. 9.5 for an extensive characterisation
of the hole dephasing mechanisms.

Ramsey interferometry with hole spins has been used by several groups to demon-
strate values of hole T ∗

2 between 2.3ns [45] and 20ns [46, 47]. Coherent population
trapping experiments have suggested even longer coherence times at low magnetic
field, up to a few hundreds of ns [44]. Ramsey interferometry performed on the sam-
ple used in [21, 26, 49] confirms such high values, indicating a coherence time of
∼250ns for the optically injected holes at B = 1 T as it can be seen on Fig. 12.10.

12.6.2 Measurement of Spin Coherence Time Using Raman
Scattering

Ramsey interferometry discussed in the previous subsection is the most usual tech-
nique to characterize the T ∗

2 coherence time of electrons and hole spins in QDs [45,
50]. It is however strongly affected by dynamical nuclear spin polarization effects [47,
51, 52] and requires strong detuned σ-polarized laser pulses to implement coherent
rotation of the spin to be measured. An alternative of Ramsey interferometry for
spin coherence measurement is single photon interference of spin-flip Raman scat-
tering [53].

http://dx.doi.org/10.1007/978-3-319-56378-7_9
http://dx.doi.org/10.1007/978-3-319-56378-7_9
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Fig. 12.10 Black dots
Ramsey interferometry
performed on holes spins,
revealing oscillations up to
∼400ns delay. Plain curves
sine fitting of the data
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This technique is based on the fact that first-order coherence (as defined in the
Sect. 1.2) of spin-flip Raman scattering (inelastic scattering resulting a change of
the spin state – see Sect. 3.4.3) is determined by the coherence properties of the
excitation laser field and the spin coherence [54, 55]. Therefore, measuring the
coherence time of Raman scattered photons upon excitation with a monochromatic
laser field is equivalent to a measurement of the spin dephasing time. It is essential
to carry out Raman coherence measurements at low excitation limit well below
the saturation intensity in order to ensure that spin dephasing induced by Rayleigh
scattering remains weak as compared to the inherent T ∗

2 time. Moreover, dynamical
nuclear spin polarization is strongly suppressed in this regime, allowing to observe
the expected Gaussian decay of the interference signal.

In [53], this technique is demonstrated with both an electron and a hole spin
and at different time delays covering the relevant timescales to observe the Gaussian
decay of the interference signal. If the decay to be observed is of order nanosecond or
lower, as it is the case for the electron spin, Raman scattering can be performed using
a single weak laser pulse (Fig. 12.11a). The loss of signal amplitude due to laser-
induced decay of the spin population can be compensated by properly attenuating
the transmission of the longer arm of the interferometer. The scattered photons are
sent into a stabilized Mach-Zehnder (MZ) interferometer where the visibility of
the interference fringes VRam(Δt) can be observed as a function of the time delay
Δt . Rayleigh scattering interference visibility VRay(Δt) is measured in the same
conditions as a reference. Their ratio R(Δt) = VRam(Δt)/VRay(Δt) – expressing
the reduction of visibility associated with the spin decoherence – exhibits a Gaussian
decay at a timescale that agrees very well with Ramsey interferometrymeasurements
of the same QD (Fig. 12.11b).

Measuring the hole coherence time cannot be done with a single laser pulse since
the signal would vanish before the spin has decohered due to spin pumping. In this
case, a sequence of two pulses separated by a time delay matching the optical path
length difference in the two arms of the interferometer is used (Fig. 12.11c,d), such
that spin pumping is interrupted between the two pulses, allowing to observe the
decay of hole spin coherence.

http://dx.doi.org/10.1007/978-3-319-56378-7_1
http://dx.doi.org/10.1007/978-3-319-56378-7_3
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(a) (c)

(b) (d)

Fig. 12.11 a Pulse sequence used for the first-order coherence measurement of an electron spin
and relevant transitions. Red square frame 10ns preparation pulse; Blue square frame 10ns excita-
tion pulse; Green dashed box 3ns post-selected time-window. The overall repetition rate is 52ns.
bElectron spin: Ratio between the visibility ofωblue photons andωdiag1 photons as a function of the
time delayΔt for the excitation laser power P = 0.1Psat . The solid curve is a Gaussian fitting of the
data. c Pulse sequence used for the first-order coherence measurement of a hole spin and relevant
transitions. Red square frame 10ns preparation pulse; blue square frames 3ns excitation pulses;
green dashed box 2.5ns post-selected time-window. d Hole spin: Ratio between the visibility of
ωblue photons and ωdiag1 photons as a function of the time delay Δt for the excitation laser power
P = 0.05Psat . The solid curve is a Gaussian fitting of the data

Themain conclusion of this study is that in the weak excitation regime, the ratio of
Raman and Rayleigh scattering interference visibilities – after a delay Δt – directly
gives the spin degree of coherence after this delay. As in the distant entanglement
generation experiment, the spin has to remain coherent during the time it takes for
the photon to travel from the QD to the detector (22ns in the present case), the
associated constraint on the dot pair is that both of them should display a value
of R(Δt = 22 ns) > 0.5, signifying that most of their coherence is preserved after
this propagation time. In [43], the dots used in the experiment verify R1 = 58.3 ±
3.2% and R2 = 53.8 ± 6.3% at the relevant electric and magnetic field settings,
which demonstrates that their coherence time is longer than what is needed for the
entanglement generation protocol to take place.
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12.7 Implementation and Characterisation of z-Rotation
(Phase) Gate

Determination of quantum correlations relies on the ability to control the relative
phase θ in the (12.7). The latter can be adjusted using aV -polarized off-resonant laser
field that induces different phases on the two spin states due to different magnitude
of the ac-Stark effect. In the experiment of [43], the phase shift is performed on QD1
by applying a laser that is red-detuned by ∼20GHz from the red and ∼50GHz from
the blue vertical transition (bottom right diagram of Fig. 12.2d). The difference in the
ac-Stark shift experienced by the two transitions allows the state | ⇓〉 to accumulate
a phase ϕ = Ω2τδ/4Δ(Δ + δ), relative to | ⇑〉. Here, Ω is the Rabi frequency
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Fig. 12.12 a Pulse sequence used to demonstrate pseudo-spin rotation about the z axis of the
Bloch sphere: we first apply a pulse of frequency ωred to spin pump into the | ⇓〉 state (pulse 1).
We then apply two successive weak pulses (2 and 4) at frequency ωblue. The time offset of the two
pulses approximately matches the path length difference of the MZ interferometer. An additional
detuned laser pulse of 4ns (pulse 3) is inserted between the two pulses at ωblue (2 and 4). Light
scattered during the pulse 2 and 4 interfere at the second beamsplitter. b Corresponding energy
diagrams. c black dots count rate of the output detector, as a function of the detuned laser power,
demonstrating control of the pseudo-spin phase. Red curve fit to the data. The error bars of the
visibilities correspond to one standard deviation (color figure online)
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of the laser, τ the pulse duration, Δ the detuning from the red transition and δ =
ωblue − ωred the energy difference between the two transitions.

In order to characterize the effect of spin-phase rotation, we performed interfer-
ometric measurements similar to those described Sect. 12.6, with the optical path-
length difference kept constant. A 4ns-long detuned laser pulse is applied in between
the two weak excitation pulses (Fig. 12.12a). By varying the laser power from 0 to
∼2μW, we change the relative phase of the two spin states and thus the relative
phase of the Raman scattering amplitude before and after the pulse that induces the
spin-state dependent ac-Stark shift. The oscillations in the count rate as a function of
the laser power (Fig. 12.12c, black dots) unequivocally demonstrate single pseudo-
spin rotation about the z axis of the Bloch sphere. The red curve in Fig. 12.12c is a
sinusoidal fit to the data, showing that no sizeable loss of visibility is observed for
spin rotation up to 4π.

This single qubit phase gate, together with previously demonstrated spin
x-rotation using picosecond pulses [9], provides a full control of the spin state over
the whole Bloch sphere in the rotating frame. Moreover the single-qubit-phase char-
acterization scheme provides a general way to measure phase modifications of a
single qubit.

12.8 Experimental Verification of Entanglement

Our entanglement verification scheme is based on the fact that only certain com-
ponents of the generated state density matrix enter into the estimation of the
state fidelity to a maximally entangled state |ψ+〉, defined as F = 〈ψ+|ρ|ψ+〉 =
1
2

(
ρ⇑⇓,⇓⇑ + ρ⇓⇑,⇑⇓ + ρ⇑⇓,⇑⇓+ρ⇓⇑,⇓⇑

)
. Thediagonal componentsρ⇑⇓,⇑⇓ + ρ⇓⇑,⇓⇑

are estimated by the measure of conditional probabilities of spin population in the
computational basis (classical correlations, Sect. 12.8.1) and the sum of the off-
diagonal elements ρ⇑⇓,⇓⇑ + ρ⇓⇑,⇑⇓ is measured using a novel scheme based on a
spin-phase dependent non-local measurement (quantum correlations, Sect. 12.8.2).

12.8.1 Classical Correlations

To demonstrate classical correlations between the distant spins, we carry out local
single-spin measurement in the computational basis, conditioned upon the detection
of a Raman photon during the entanglement pulse. Contrarily to the experiments
described in Sects. 12.2 and 12.4 where we address a fixed spin-to-trion transition
and the presence or absence of a π-pulse determines the spin state we measure, here
we take benefit from the fact that each spin state can be excited to a corresponding
trion state with the same oscillator strength and the same laser polarization but
using a different resonant laser wavelength. The detection of a photon during a
blue (red) laser pulse thus tells with a high confidence level that the state of the
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Fig. 12.13 a Pulse sequence used for the measurement of classical correlations between the distant
spins. After spin pumping into the | ⇓,⇓〉 state (pulse 1), a weak entanglement pulse (pulse 2) is
sent simultaneously to both quantum dots (QD1 and QD2). After 22ns, pulse 3 measures the spin-
state of QD1 and then pulse 4 measures the spin-state of QD2. The four measurement combinations
are alternated. b Red bars results of three-fold coincidences between a photon emitted during
the entanglement pulse and a photon in each of the two measurement pulses (orange shading in
Fig. 12.3a) obtained during a total measurement time span of 106.5h. The dashed bars represent
the ideal limit of vanishing even parity spin state detection. The error bars represent one standard
deviation deduced from poissonian statistics of the raw detection events. The measured fidelity is
Fz = 80.6 ± 6.6%. c Pulse sequence used to measure quantum correlations between the distant
spins. After spin pumping into the | ⇓,⇓〉 state, a weak entanglement pulse (pulse 2) is used to
drive both QDs. A detuned laser pulse (pulse 3) modifies the phase of the QD1 hole spin phase.
After 22ns, a non-local measurement pulse is applied to both QDs. The pulse sequence is repeated
for different values of the duration of the pulse 3 ranging from 0 to 7 × 0.82ns, corresponding to
a laser-induced QD1 spin phase rotation ranging from 0 to 3π. d Black dots two-fold coincidence
rate between a photon detected during the entanglement pulse and a second photon detected during
the measurement pulse (orange shading in Fig. 12.3c), normalized by the average detection rate
between photons emitted during different periods, as a function of the pulse-length of pulse 3. The
error bars represent one standard deviation deduced from poissonian statistics of the raw detection
events. The red curve is a sinusoidal fit to the data, yielding a visibility of V = 29.8 ± 2.6%. The
deduced overall fidelity is F = (Fz + V )/2 = 55.2 ± 3.5% (color figure online)

spin prior to the measurement pulse was | ⇓〉 (| ⇑〉). In order to measure the four
different spin combinations under the same experimental conditions, we alternate in
a single experiment four pulses sequences, each performing one of the four requisite
measurement combinations. The full pulse sequence is described in Fig. 12.13a: we
first prepare the state | ⇓,⇓〉 by spin pumping, then apply the weak entanglement
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laser pulse. The power used is ∼2% of the saturation power and the Raman photon
scattering probability is ε2 ∼ 7%. The detection of a Raman photon during this pulse
heralds successful entanglement generation. We then successively measure the state
of the two dots. Themeasurement pulses of the two dots are offset in time, allowing us
to extract which-path information. These two measurements are performed close to
saturation and the detection efficiencies are rendered similar. The duration of the full
sequence is 4 × 104ns. Figure12.13b shows the results of the 3-fold coincidences
detected during 106.5h of measurement. As expected, the odd parity events, where
the spins of the two dots are opposite, are much more likely than the even parity
events, where the two spins are found in the same state. The associated fidelity is
Fz = 80.6 ± 6.6%.

12.8.2 Quantum Correlations

To demonstrate quantum correlations between the two distant spins, we implement
a delayed two-photon interference experiment. The key element of this approach
for verifying quantum correlations is the possibility to rotate one of the spins
along the z-axis after heralded spin entanglement is generated. Application of a
detuned laser pulse on QD1, as described in Sect. 12.7, results in rotating the
phase of the entangled state by α(τ ) so that the the entangled state becomes
(| ⇑,⇓〉 + e−iθ−iα(τ )| ⇓,⇑〉)/√2. Subsequent application of a second weak (mea-
surement) pulse, that is identical in intensity and duration to the entanglement pulse,
on both QDs simultaneously leads to

|Ψ 〉12 = 1√
2
[| ⇑,⇓, 0〉 + εe−iθ2 | ⇑,⇑, 1d1,H 〉

+ e−iθ−iα(τ )(εe−iθ1 | ⇑,⇑, 1d1,H 〉 + | ⇓,⇑, 0〉)] (12.8)

= ε√
2
e−iθ2(1 + e−iα(τ ))| ⇑,⇑, 1d1,H 〉

+ 1√
2

(| ⇑,⇓, 0〉 + e−iθ−iα(τ )| ⇓,⇑, 0〉) . (12.9)

Therefore, conditioned on an initial Raman photon detection event that heralded spin-
spin entanglement, the detection of a second time-delayed Raman photon detection
probability scales as ε2|1 + e−iα(τ )|2. The expectation value of Raman photon detec-
tion can be shown to be

〈E (−)E (+)〉 ∝ 1 + 0.5〈σ1
z + σ2

z 〉 − 〈σ2
⇓⇑σ1

⇑⇓ + σ1
⇓⇑σ2

⇑⇓〉. (12.10)

The peak-to-peak contrast in 〈E (−)E (+)〉 obtained by varying α(τ ) therefore gives
us the magnitude of non-local quantum correlations between the two spins.
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To verify the presence of quantum correlations using such a delayed two-photon
interference experiment, we use the pulse sequence described in Fig. 12.13c. We
once again prepare the spins in the | ⇓,⇓〉 state by spin pumping and then apply
the weak entanglement generation pulse in the same way as for the classical cor-
relation measurement. The phase of the state is then modified by the detuned laser
pulse, whose duration is changed within the pulse sequence by alternating eight pat-
terns that differ only by the duration of this particular pulse. Eight evenly distributed
durations are chosen to cover more than one full revolution. Finally the measure-
ment pulse is simultaneously sent to both dots. The duration of the full sequence is
8 × 52ns. The two-fold coincidences measured for each value of the pulse length are
normalized by the uncorrelated coincidence rate obtained by measuring two photons
emitted in different periods. Figure12.13d presents data obtained during 180min of
measurement. The obtained ratio exhibits clear oscillations of visibility 29.6 ± 2.8%.

12.8.3 Discussion

Combining the results depicted in Fig. 12.13b, d, we deduce an overall fidelity of the
generated entangled state of F = 55.2 ± 3.5%. Although this number is relatively
modest compared to previous work based on other physical systems [39, 40, 42,
56, 57], it is predominantly limited by the T ∗

2 coherence time of the hole spins and
hence could be substantially increased by either a decrease in the magnetic field [48]
or introduction of dynamical decoupling [45]. The detection rate of single photons
emitted during the entanglement pulse is 2300 photons per second; the latter directly
yields the heralded entanglement generation rate. Such high value has been made
possible by the use of a high repetition rate (Γrep = 1.9 × 107 s−1) allowed by the
fast spin initialization (10ns) together with a relatively high collection efficiency of
∼20% to the objective leading to an overall collection efficiency of∼0.2%, and could
be further increased using cavity QED [10]. On the other hand, the lack of efficient
spin measurement leads to a low three-fold coincidence rate of∼2/h. The scheme we
presented in Sect. 12.8.2 allows verification of non-local quantum coherence using
two-fold coincidence, and therefore can be performed much faster than a full state
tomography.

12.9 Conclusion and Outlook

In this chapter we have reviewed recent demonstrations of elementary quantum-dot-
based quantum communication protocols, namely entanglement between a QD spin
and a propagating photon, teleportation from a propagating photon to a QD spin and
generation of heralded entanglement between distant QD hole spins.

When it comes to comparing these results with those previously obtained with
other physical systems, one can identify a major advantage of QD-based realizations
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which is the possibility to obtain much higher success rates. This comes as a result of
the advantages offered by semiconductor technological possibilities that allow easy
integration into semiconductor structures which in turn enables both electrical and
photonic control of the environment for optimized photon collection efficiency [11].
Moreover thanks to the short lifetime (< 1ns) of the excited states it is possible to
perform state initialization within 10ns and therefore operate at high repetition rates.

On the other hand, the main drawback in QD-based implementations of quantum
communication protocols such as those presented in this chapter is the fact that the
coherence time of QD spins is relatively short as compared to other commonly used
physical system, such as atoms or NV centres. The coherence times involved in the
presented experiments (both for electrons with echo and holes without echo) are of
order of a few tens of nanoseconds, and the best reported spin-echo T2 coherence
times are at most of order microsecond. This limits the use of QDs for quantum
communication or distributed quantum computation to about a kilometre, but should
however not be a limitation for on-chip applications.

Another major difficulty comes from the inefficient spin measurement for single
QDs in Voigt geometry. The use of singlet-triplet qubits in QDmolecules could allow
to circumvent this obstacle since it can not only prolong the coherence times [27]
but also simultaneously allow for single-shot readout [58].
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109, 107401 (2012)
28. M. Bayer et al., Phys. Rev. B 65, 195315 (2002)
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Chapter 13
Photonic Integrated Circuits
with Quantum Dots

Ulrich Rengstl, Michael Jetter and Peter Michler

Abstract The usage of linear optics for quantum computation is a fast evolving field
in the quantum optics community. This attention is mainly driven by the conceivable
integration of whole quantum processors on a single semiconductor chip, as it is
common for classical electrical computers. Although silicon is the most commonly
used platform for on-chip photonics due to its high degree of technical development,
the usage of III-V semiconductors is a promising candidate for fully integrated quan-
tum optical networks due to the straightforward implementation of semiconductor
quantum dots as on-demand single-photon sources. This chapter gives an overview
over the current advance on GaAs-based photonic circuits with integrated quantum
dots.Wewill focus on the basic design of integrated photonics and the realizations of
the on-chip equivalents of elementary building elements which are needed for quan-
tum computation. This includes the performance analysis of fabricated devices as
beam splitters and their compatibility with quantum dots as integrated single-photon
sources.

13.1 Introduction

The realization of quantum computational schemes is currently a topic under broad
interest. This interest is driven by the development of several algorithms which
allow the computation of specific problems with polynomial computational costs
on a quantum computer, which would lead to an exponential computational cost on
classical computers.

The potential of algorithms using quantum mechanical principals to outperform
classical algorithmswasfirst shownbyDavidDeutsch by solving the famous question
if a coin is fair or unfair [1]. A fair coin has a head on the one side and a number on
the other side whereas an unfair coin has heads or numbers on both sides. Classically
it is necessary to look on both sides to decide if the coin is fair or unfair. The Deutsch
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algorithm on the other hand prepares the input state in a superposition state to ‘look
on both sides simultaneously’ [2].

The two algorithms which are nowadays mainly mentioned when talking about
quantum algorithms in the public are Grover’s algorithm for the efficient search in
large unsorted databases [3, 4] and Shor’s algorithm for the prime factorization of
large integers [5]. Especially the future realization of Shor’s algorithm on quantum
computers may have a huge impact on the current data communication, as current
cryptography systems, like RSA, are based on the non-polynomial computing time
for the prime factorization. However, the realization of Shor’s algorithm will shift
the prime factorization to a problem with polynomial computing time, which may
render current cryptography systems useless. On the other hand, a fully functional
quantum computer will give researchers a new tool to perform quantum simulations
on a native system [6].

Two main steps to the realization of quantum computers are needed. First, the
implementation of single quantum bits, qubits, which cannot only represent the states
0 and 1 but also every superposition between these states.And secondly, the execution
of operations on single qubits and operations between multiple qubits via gates.
Current realization methods for qubits contain e.g. single atoms or superconducting
qubits. Another realization possibility was shown by Knill et al. in [7] by exploiting
linear optics. In their publication, they proposed the realization of qubits using path-
entangled or polarization-entangled photons and the implementation of gates via
beam splitters and phase shifters. One appealing facet of this scheme is the possibility
of the implementation of the necessary elements on single semiconductor chips,
opening a perspective of easy to handle end user applications like it is common for
classical computers.

In this contribution, we want to give an introduction into possible realizations of
basic elements for quantum computers based on photonic integrated circuits with
integrated quantum dots as single-photon sources on the basis of III-V semiconduc-
tors. Section13.2 gives a short overview about the principle of linear optics quantum
computation including basic one-qubit and two-qubit operations. In Sect. 13.3, dif-
ferent possible designs of chip-integrated waveguides are discussed as fundamental
basis for the design of integrated circuits. This forms the basis for the following
Sect. 13.4 about integrated circuits, which covers the state of the art results on inte-
grated beam splitters on GaAs with integrated semiconductor quantum dots. Finally,
Sect. 13.5 gives a perspective for a gate operating on multiple qubits from different
quantum dots as well as a perspective for universal quantum gates by extending the
view to current advances in the integrated silicon photonics community. The last part
of Sect. 13.5 takes a look on the advances towards the integration of the fourth part
of photonic integrated circuits, the detectors. Here, we focus on the implementation
of superconducting single-photon detectors onto GaAs waveguide structures, which
leads to the perspective of a fully integrated linear optics quantum circuit with source,
gate and detector on one single semiconductor chip.
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13.2 Quantum Computing

13.2.1 Universal Set of Gates

After the first proofs of the usefulness of quantum computing the development was
at first mainly theoretical and mathematical as the realization of a computer needs
the realization of a universal set of gates. So a universal set of adequate operations
had to be found first. In irreversible classical computation, one possible set is well
known to just be composed of the NAND gate, so the NAND gate itself is universal.

In 1995, skipping several development steps, it was shown that a universal quan-
tum gate can be built by a two-qubit gate of the form

A (φ,α, θ) =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 eiα cos θ −i ei(α−φ) sin θ
0 0 −i ei(α+φ) sin θ eiα cos θ

⎞
⎟⎟⎠ (13.1)

[8], operating on a two-qubit state, which can be represented by

⎛
⎜⎜⎝
c00
c01
c10
c11

⎞
⎟⎟⎠ = c00 |00〉 + c01 |01〉 + c10 |10〉 + c11 |11〉 . (13.2)

This rather complex operation can be further decomposed into several one-qubit
gates, which allow to reach any point in the Hilbert-space and one single two-bit gate.
The first concepts needed at least one single qubit operation with a phase shift of a
non-rational multiple of π [8–10]. Later it was shown, that a universal set of quantum
gates can also be obtained by two elementary single-qubit gates, the Hadamard gate
(H) and a phase shifter of π/4, the π/8-gate (T), and one elementary two-qubit gate,
the controlled-NOT gate (CNOT) [11].

H = 1√
2

(
1 1
1 −1

)
, T = ei

π
8 e−i π

8 σz =
(
1 0
0 ei

π
4

)
, CNOT =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

(13.3)

where σz is the third Pauli matrix. A single qubit can be represented by

(
c0
c1

)
= c0 |0〉 + c1 |1〉 . (13.4)
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While the phase gate T creates a phase shift between the two base states by
transforming c0 |0〉 + c1 |1〉 into c0 |0〉 + ei

π
4 c1 |1〉, the Hadamard gateH can be used

to convert a pure state into a mixed state:

H c0 |0〉 = c0√
2

(|0〉 + |1〉) , H c1 |1〉 = c1√
2

(|0〉 − |1〉) . (13.5)

The CNOT gate operates on two qubits, the control and the target qubit. It flips
the state of the target qubit if a control qubit is |1〉. So it is equivalent to writing the
XOR of the control and the target qubit into the target qubit while preserving the
state of the control qubit.

13.2.2 Linear Optics Quantum Computation

Knill et al. [7] where the first to show that the realization of quantum computing
using solely linear optical elements is possible. Therefore, their scheme of linear
optics quantum computation (LOQC) is often referred to as the Knill, Laflamme
and Milburn (KLM) scheme. It outlines an implementation possibility for quantum
computations using only beam splitters, phase shifters, sources of indistinguishable
single photons and single-photon detectors.

The basic concept of the KLM-scheme is to realize a qubit with a single photon
in two optical modes. This can be realized via polarization-entanglement, so the two
states |0〉 and |1〉 are encoded using horizontal |H〉 and vertical |V 〉 polarization, or
path-entanglement, where the states are spatial distinguishable. We will focus on the
second approach as we will use later separate waveguides for the |0〉 → |10〉 and
|1〉 → |01〉 states.

So the H, T and CNOT gates need to be implemented using optical elements.
The phase shift T is easily implemented using a variable (optical) path on one beam
path. For the realization of a Hadamard gate H the interaction between two modes
is necessary. This can be realized using a beam splitter. The transmission matrix
of a beam splitter cube, where only the reflection on one side obtains an additional
π-phase shift, can be written as

Bη =
( √

η
√
1 − η√

1 − η −√
η

)
, (13.6)

where η is the reflectivity of the beam splitter. By setting η = 0.5we describe a 50:50
beam splitter, and obtain the same transmission matrix as required for the Hadamard
gate.

The implementation of the CNOT with linear optics is more challenging as
it requires a two photon interaction. This has been proposed by using a non-
deterministicCNOT gate [7]. The functionality of this gate is based on theHong–Ou–
Mandel effect [13]. This effect is observed if two indistinguishable photons impinge
from different sides on a beam splitter.In contrast to two distinguishable photons,
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these indistinguishable photons form a Fock state of the form |11〉 = a†b† |00〉, with
the two creation operators a† and b†, representing the two photons, acting on the
vacuum state |00〉. If a 50:50 beam splitter (a Hadamard operation like in (13.3))
operates on this state, we obtain an entangled state.

Ha†b† |00〉 → 1

2

(
a†2 − b†2

) |00〉 = 1√
2

(|20〉 − |02〉) . (13.7)

This is a so-called 2002 state. The surprising result is the cancellation of the pos-
sibilities that one photon leaves at each output port of the beam splitter. Using this
effect a CNOT gate can be build up by using an array of optical beam splitters with
indistinguishable photons as input.

We focus here on the realization possibility shown in Fig. 13.1 [12]. The success
probability of this gate is 1/9 and the correct results have to be isolated using post-
selection. So it is not sufficient for scalable quantum computation, but it can be
upgraded to a heralded gate, where the success of its operation can be detected
by measuring ancilla photons, which is beyond the scope of this work [14]. The
transmission matrix of this structure can be obtained using the definition of beam
splitters in (13.6). The whole device can be divided into three layers (marked in
Fig. 13.1) with the transmission matrices:

ACNOT
1,3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1

1√
2

(
1 1
1 −1

)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, ACNOT
2 = 1√

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

( −1
√
2√

2 1

)

( −1
√
2√

2 1

)

(
1

√
2√

2 −1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(13.8)

Fig. 13.1 Implementation of a probabilisticCNOT gate based on linear optics as proposed in [12].
The reflectivities of the 5 beam splitters are given by η. The side which introduces a phase shift of
π upon reflection is dashed. c is the control qubit, t the target qubit and ν are ancilla modes. ACNOT

1
to ACNOT

3 mark the operations found in (13.8)
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The final transmission matrix can be obtained by composing these matrices:

CNOT = ACNOT
3 ACNOT

2 ACNOT
1 = 1√

3

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
√
2√

2 1
−1 1 1
1 1 1
1 1 −1

1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13.9)

with the input modes (νc, c0, c1, t0, t1, νt) composed of the control qubit c, the target
qubit t and the two ancilla modes νc and νt . It can be seen that there is more mode
intermixing present than allowed for a pure CNOT gate. This can be quantified by
calculating the response of this gate for the essential input modes

( νc, c0, c1, t0, t1, νt )

|00〉In = ( 0, 1, 0, 1, 0, 0 ) ,

|01〉In = ( 0, 1, 0, 0, 1, 0 ) ,

( νc, c0, c1, t0, t1, νt )

|10〉In = ( 0, 0, 1, 1, 0, 0 ) ,

|11〉In = ( 0, 0, 1, 0, 1, 0 ) ,

where the ancilla modes are always unoccupied.
With this method it can be verified that the CNOT gate performs the correct

operation if, and only if, there is a coincidence between the control and the target
qubit, meaning that no photon leaves the gate in an ancilla mode and both qubits
contain one photon each. This leads to the necessity of the mentioned post-selection
and therefore of a measurement of the output states. The operation of this gate can
be summarized by

|00〉In → 1
3 (|00〉Out + ...) , |10〉In → 1

3 (|11〉Out + ...) ,

|01〉In → 1
3 (|01〉Out + ...) , |11〉In → 1

3 (|10〉Out + ...) ,

where the undesired results ‘...’ are already filtered. These states ‘...’ contain all
results where the two output qubits do not contain exactly one photon each and
are therefore discarded during the post selection. The success probability of this
operation is therefore limited to 1/9 [12]. Despite this limitation and the missing
scalability this implementation and its on-chip analog have been established as a
test-bed for linear optical quantum computation [15–17].

13.3 Photonic Waveguides with Integrated
Quantum Emitters

The first implementation of a CNOT gate in the KLM scheme was done with bulk
optics using the scheme presented in Fig. 13.1 [16]. Also the heralded gatementioned
earlier was realized with bulk optics [18]. But to allow the scalability of the LOQC
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schemes the field has to move from space-filling optical setups over the integration
of the linear optical elements towards the full integration of all needed elements on
one single chip. The first step in this direction was achieved with silicon photonics
and off-chip single-photon sources and detectors [17, 19, 20]. A further step is the
additional implementation of single-photon sources into the LOQC-chip.

In this section we cover the basics for the on-chip generation and guiding of single
photons. Therefore, we will discuss the principles of waveguides and the integration
of QDs as promising candidates for on-demand single-photon sources.

13.3.1 Types of Photonic Waveguides

When changing from free-space optics to integrated photonics the most fundamental
change is the principle of light propagation. While in free-space applications the
signal is carried in collimated beams, the guiding on a chip is done by waveguides
(WGs). These guide the light by confining it to only a few allowed propagatingmodes
defined by a contrast in the refractive index. They typically consist of a core material
which is surrounded by a cladding material with lower refractive index, while the
highest index step, and therefore the highest mode confinement, would be achieved
by a vacuum cladding.

Figure13.2 gives an overview over some of the most common waveguide types.
Type (a) reassembles a typical optical fiber structure with a radial symmetric com-
position. The light propagates mainly in the waveguide core and is confined by the
cladding. This principle can be easily transferred to integrated waveguides using
lithographic methods. These involves typically the non-uniform structuring process
of the core material using a lithographically defined hard mask. This leads to a more
favorable rectangular profile of the waveguide as seen in Fig. 13.2b. The channel
waveguide in (b) consists, like the optical fiber (a), of a structured core material
with a surrounding cladding material. A special variation of this concept is the free-
standing waveguide, which uses vacuum as cladding material.

Another possibility to achieve a confinement is the usage of different cladding
materials on the top than on the bottom of the waveguide core (Fig. 13.2c). This
is especially interesting if the lower cladding material is an epitaxial grown layer,
which was deposited before the core material; while the upper cladding material is
vacuum as a result of the structuring process of the core material. These structures
are called ridge waveguides. If a slab of the core material is left behind on the whole
sample the structure is often referred as rib waveguide as depicted in Fig. 13.2d.

Figure13.2e shows a waveguide design which is called strip-loaded waveguide
and is used by some laser devices. Here the lateral confinement is entirely achieved by
the change in the effective refractive index introduced by the low refractive index slab
on top of a two-dimensional waveguide layer. Especially this concept demonstrates
the necessity to consider the evanescent field of the waveguide modes and their
interaction with the surrounding.



416 U. Rengstl et al.

(b) (c)

(d) (e)

(a)

Fig. 13.2 Variety of possible waveguide designs. The refractive index of the core (dark) is higher
than the one of the cladding (light). a A fiber and its on-chip equivalent: a channel waveguide (b).
cA ridgewaveguidewith different claddingmaterial on top (commonly vacuum) than on the bottom.
d A rib waveguide, like (c) but with an additional slab on the side. e A strip-loaded waveguide

A popular method to calculate the field profile of propagating modes inside
waveguide structures is the calculation of the eigenmodes of the specific waveguide
cross-section in the frequency-domain. This can be done by solving the eigenvalue
problem

∇ × ∇ × E = n2 (r) k2E , (13.10)

where E is the electric field, k = ω/c the wavenumber and n (r) the refractive index
profile of the waveguide [21].

Figure13.3 shows the mode profiles of the fundamental mode of the waveguides
depicted in Fig. 13.2. The modes were obtained by finding the fully-vectorial eigen-
modes of Maxwell’s equations in a plane-wave basis using the freely available
MIT Photonic-Bands (MPB) package [22]. This software package was used for all
frequency-domain simulations in this chapter. It is worth to note, that the modes in
an optical waveguide are never complete transverse electromagnetic (TEM) modes,
as the strong interaction of the field with the index step of the waveguide leads to a
coupling between all three field components. Nevertheless the modes with a major
electric component in the horizontal transverse or vertical transverse direction are
called TE or TM modes, respectively.

This non vanishing electric field component in propagation direction leads to the
remarkable property, that the guided modes exhibit a chirality. This can be exploited
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(a) (b) (c)

(d) (e)

Fig. 13.3 Mode profiles of the fundamental TE-modes inside the waveguide structures illustrated
in Fig. 13.2. Depicted is |E|2 in a linear scale. A reduction in the symmetry of the mode can be
observed by reducing the symmetry of the waveguide (a–c). Furthermore, the expansion of the
mode into the cladding layers is more pronounced the lower the effective refractive index of the
mode is (c–e). These profiles were calculated usingMPB and single TEmodeGaAs/Al0.42Ga0.58As
waveguides

to obtain a unidirectional emission of in-plane circular polarized emitters, dependent
on their lateral position inside the waveguide [23].

For the applicability in quantum information processes it is necessary to achieve
a single-mode operation of the waveguides, as the excitation of a undefined number
of modes would lead to undefined input states of the information processing circuits
and therefore to unpredictable results. This can be also understood as the fail of the
Hong–Ou–Mandel effect due to the propagation of the photons in distinguishable
modes. Therefore, the dimensions of the waveguides have to be chosen to allow
only the propagation of the fundamental mode. This is fulfilled if at a given photon
energy only the propagation constant kz of the fundamental mode exists in the light
cone between unbound light in the cladding material and unbound light in the core
material. In this case, all other modes reach propagation constants of the unbound
waves with kz,cut−off = ω/(ncladc), where nclad is the refractive index of the cladding
material. So thesesmodes are not guided in thewaveguide, so-called radiativemodes,
and the guiding is solely enabled by the fundamental mode. Figure13.4 shows the
typical band structure of a channel waveguide, where the region of pure single-mode
operation is marked. The usage of the scale invariant variables h/λ0 over kzh/2π
allows the instant dimensioning of the simulated waveguide type with the height h
for arbitrary operation wavelengths λ0.
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Fig. 13.4 Band structure of a channel waveguide consisting of GaAs in vacuum. The waveguide
width w is twice the waveguide height h. The region of single-mode TE operation, with a size of
0.085λ0 < h < 0.135λ0, is highlighted in light gray. The scale invariance of Maxwell’s equations
allows the representation of the band diagram in the scale invariant variables h/λ0 over kzh/2π.
As an example, the right axis shows additionally the band energy for a fixed waveguide height of
h = 125 nm

13.3.2 Integrated Single-Photon Sources

Keeping the goal of scalable single-chip quantum circuits with implemented sources
and detectors in mind, the coupling of on-chip quantum emitters to the propagating
modes of photonic waveguides is a major prerequisite of fully integrated waveguide
circuits. This is a major drawback of the traditional silicon platform, where the
direct implementation of on-demand single-photon sources is rare [24, 25] and their
implementation into waveguide circuits have not been shown up to now.

There are several attempts to overcome this issue, like the integration of probabilis-
tic sources using on-chip spontaneous four-wave-mixing. Here the χ3-nonlinearity of
silicon is used to transform a strong pump laser with frequency ν1 into two additional
frequencies with equal distance to the pump frequency ν3 = ν1 + δ and ν4 = ν1 − δ.
As the probability of this process scales with the interaction length and the power of
the incident beam, the pump power has to be chosen, that the probability to create
exactly one photon pair is maximal [26, 27]. By using two pump lasers with the fre-
quencies ν1 and ν2 it is even possible to create frequency-degenerated photon pairs
with frequency ν3 = (ν1 + ν2)/2, which can be used as indistinguishable photons
in LOQC. This is equivalent to the reverse of the above process. But still the main
drawback of this process is the probabilistic character of the photon creation, which
is incompatible with a triggered state preparation. An additional drawback are the
high laser powers inside the waveguides, which lead to the necessity of on-chip filters
to avoid a blinding of chip integrated detectors due to the laser light.

Another possibility to realize integrated single-photon sources for silicon pho-
tonics is the use of hybrid structures with photon emitters based on different optical
active material and a subsequent interface to the silicon platform [29, 30].
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Fig. 13.5 Scanning electron microscopy image of the cross-section of a single TE/TM-mode rib
waveguide composed of GaAs as core and AlGaAs as cladding layer. Monolithic integrated InGaAs
QDs serve as sources of single photons. Reprinted from [28] with the permission of AIP Publishing

The possibility on which we will have a closer look in this chapter is the usage of
an optical active semiconductor as material platform for the whole waveguide cir-
cuits. This allows the monolithic integration of semiconductor quantum dots (QDs)
as single-photon sources. As pointed out in Chap. 3 by Portalupi and Michler, QDs
exhibit excellent single-photon characteristics, especially when driven resonantly,
and are therefore promising candidates for the state preparation of quantum informa-
tion processes. Furthermore, they can be easily integrated into III-V semiconductors
like GaAs, by their direct deposition during the layer growth of the future WG. One
minor drawback of semiconductor QDs is the necessity for a cryogenic environment
(∼5K) to obtain a high purity single-photon emission. Figure13.5 shows the pro-
file of a GaAs/Al0.39Ga0.61As rib waveguide, where the integrated InGaAs QDs are
schematically delineated.

13.3.3 Coupling Between Quantum Dot Emission
and Waveguides

To achieve an efficient state preparation it is not only necessary to implement bright
sources with a triggered single-photon emission, but also a high coupling efficiency
of the emitted photons to the fundamental mode of the waveguides is required. There
are twomain characteristics which are relevant to describe the efficiency of the dipole
coupling. First the Purcell-factor

FP = Γtotal

Γbulk
, (13.11)

which describes the enhancement of the spontaneous emission rate Γtotal relative to
the emission rate of the same emitter inside a bulk material Γbulk. This enhancement
arises from an increase in the local density of states (LDOS) seen by the quantum
dot, due to the interaction with the environment leading to a faster decay channel.

http://dx.doi.org/10.1007/978-3-319-56378-7_3
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The second important factor is the β-factor, giving the fraction of photons Γbound

which are funneled into the guided modes

β = Γbound

Γtotal
. (13.12)

As the dipole moment of the heavy-hole exciton transition inside a QD lies
primarily perpendicular to its growth direction, it is sufficient for most approaches to
approximate a QD as a single in-plane point dipole coupling to the waveguide. The
theoretical study of this process can be done in a straight forward process by simulat-
ing the emission characteristics of a point source using finite-difference time-domain
(FDTD) simulations. FDTD simulations are based on the numerical integration of
Maxwell’s equations in the time domain. So the temporal evolution of the light field
can be directly observed and the transmitted power through the waveguide can be
measured directly by integrating over the Poynting vector over amonitor plane. Typi-
cally this is done with the Fourier transformed fields to allow the frequency resolved
analysis of the coupling efficiency. The FDTD-simulations shown in this chapter
were all performed using the freely available software package Meep [31].

As the waveguides of interest for quantum information processing have to be used
in single-mode operation, and therefore are typical designed to only support one or
twomodes (e.g. the fundamental TE and fundamental TM) for the specified operation
wavelength, it is also common to use frequency-domain simulations. This allows the
calculation of the coupling between a dipole and a considered mode, normalized to
the dipole radiation in bulk material [32]. As this result can be seen as a product
between the Purcell-factor and the β-factor of a specific mode, an additional FDTD
simulation can be performed to obtain the Purcell-factor to normalize the results of
the frequency-domain simulations. A way to directly obtain the true β-factor from
frequency-domain simulations is to calculate the coupling of the dipole to all modes.
Then the coupling to the guided modes contribute to Γbound, while the coupling to the
unguided modes Γunbound give rise to radiative losses. So the normalization via the
total coupling strength Γtotal = Γbound + Γunbound can be directly obtained. This has
been done for photonic crystal waveguides by calculating not only the Bloch-modes
but also the radiative Quasi-Bloch-modes using perfectly matched layers [33].

Figure13.6a visualizes the emission coupling of a single dipole oriented perpen-
dicular to a rib waveguide depending on its lateral position inside the waveguide.
Figure13.6b shows the measured flux through the waveguide depending on the dis-
tance to the source, obtained by aFDTDsimulation. The formation of a low-loss prop-
agating mode can be observed. However, as the refractive index between waveguide
core (GaAs, n = 3.52) and underlying cladding (Al0.42Ga0.56As, n = 3.24) is very
small,most of the emission is lost into the substrate. So the overall coupling efficiency
between dipole and waveguide is in the order of 8% to 9% per direction [28]. This
can be overcome by using free-standing waveguides where a high refractive index
contrast is realized into all directions, allowing for high coupling efficiencies of up to
∼48% per direction [34]. A further increase in the β-factor can be achieved by using
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(a) (b)

- 2µm 0µm 2µm 4µm

Fig. 13.6 Coupling efficiencies (β-factors) of a single dipole into the propagation modes of a
waveguide. a Dependency of the horizontal offset of the dipole from its center position. As the
overlap with the mode-field drops at the waveguide edges, the dipole coupling is maximal in the
center of the waveguide. The inset shows the used waveguide profile as obtained from Fig. 13.5.
b Coupling of a centered dipole to waveguide modes. The formation of a lossless guided mode
can be observed. The inset shows a vertical cross-section of the formed radiation coil. Most of the
emission is lost into the substrate. Both results were obtained using FDTD simulations

photonic crystal cavities and waveguides, where over 98% coupling efficiency has
been reported [35]. This photonic crystals can then be coupled to ridge or channel
waveguides for their usage as single-photon sources in photonic circuits [36, 37].

13.4 Photonic Waveguide Circuits

Integrated waveguide structures allow the realization of flying photonic qubits on
a chip. The next step would be the realization of an on-chip interaction with and
between these qubits. As we want to realize qubits by the path entanglement of
photons between two waveguides, the interaction with a single qubit can be achieved
by coupling the propagation modes of two waveguides.

A typical coupler configuration is the 3dB-coupler where one or two input chan-
nels are equally split to two output channels. Such couplers are very common in the
classical telecommunication industry were light signals need to be divided to multi-
ple receivers. A common realization of such couplers are directional couplers (DCs)
in which two waveguides are brought into close vicinity which allows the interaction
of the guided modes of both waveguides via their evanescent fields [17, 28, 34].
If only the propagation mode of one input arm (Port 1) of the coupler is excited
an oscillation of the light between both waveguide arms can be observed inside the
coupler (Fig. 13.7). This process can be thought of as two coupled harmonic oscil-
lators where the energy is periodically transferred between both oscillators. If both
waveguides are separated after the correct interaction length both output ports 3
and 4 will receive 50% of the incident power, forming a 3dB, or 50:50, coupler.
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Port 1

Port 2

Port 3

Port 4

Fig. 13.7 Principle of a directional coupler. Two waveguide arms are brought into close vicinity
which leads to a power exchange. The positive (negative) real value of the transverse electric field
is depicted in red (blue). The inset shows a magnification of the coupler region. The π/2 phase shift
of the transmitted power can be observed as described in (13.13). The coupler shown here is a 50:50
coupler with a length of 3L3dB

The transmission matrix of directional couplers varies slightly from those of beam
splitter cubes as discussed above. Directional couplers are fully symmetrical, there-
fore both reflected modes receive a phase shift of π/2. Neglecting a global phase
factor, the transmission matrix of a DC for a wave of the form exp {i (ωt − kzz)} can
be written as

ADC =
(

i
√

η
√
1 − η√

1 − η i
√

η

)
. (13.13)

A common way to dimension DCs uses again the single-mode characteristic of
the input waveguides. As long as both waveguides do not touch each other, the
composed coupler supports two supermodes: a symmetric and an asymmetric mode
which reassemble the guidedpart of the orthogonal basis of eigenmodes of the coupler
(Fig. 13.8a). The incoming light mode can now be easily expanded in these eigen-
modes, leading to 50% of the incident power in each coupler mode (Fig. 13.8b). As
these two supermodes have a different field profile and therefore feel a slightly dif-
ferent effective refractive index, their propagation constants kzsym and kzasym vary. This
leads to a beating between these twomodes and therefore an energy transfer between
both waveguide arms (Fig. 13.8c). When separating the two waveguides again, the
resulting field can be again expanded into the eigenmodes of both waveguides, giving
the splitting ratio. As the power is periodically transferred between both waveguide
arms, the splitting ratio can be expressed by the beating between the two super-
modes. Therefore the power which is coupled between both waveguides T can be
expressed as

T = sin2
(
L

2

(
kzsym − kzasym

))
, (13.14)
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Symmetric mode Asymmetric mode

+Port 1:
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Fig. 13.8 Simplified visualization of the supermode method for a directional coupler. a The DC
of two single-mode waveguides supports a symmetric and a asymmetric supermode, displayed by
the positive (negative) electric field in black (gray). b An incoming single-waveguide mode can be
expanded into these supermodes. c The lower propagation constant of the asymmetric mode (here:
kzasym = 0.75kzsym ) leads to a beating of the supermodes and therefore to a power exchange between
the waveguides. The depicted graphs show the field amplitude, squaring them leads to the expected
sin2-behavior of the transmitted/reflected power shown in (13.14)

where L is the interaction length inside the coupler. R = 1 − T would be the power
which is not coupled to the other waveguide. With this, we can define the necessary
interaction length for a 3dB splitter as

L3dB = π

2
(
kzsym − kzasym

) . (13.15)
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The propagation constants kzsym and kzasym can be obtained via frequency domain
simulations, analog to isolated WGs (Sect. 13.3.1).

These calculations neglect the coupling which takes already place while the
waveguides approach each other. Furthermore it should be noted, that this kind of
couplers are very prone to small changes in their design as a small variation in
the waveguide separation, size or coupler length directly affect the splitting ratio.
So the formula above is sufficient to obtain starting parameters for a planned coupler
design. To obtain exactly the desired splitting ratio, several optimization iterations
should be taken into account, or, as we will show later, the operation wavelength of
the emitter has to be fitted to the 50:50 operation region of the directional coupler.

13.4.1 Basic Performance Analysis

One possible basic test circuit for on-chip photonics with integrated single-photon
sources consists of a single beam splitter where both output arms are coupled to a
free-space detection setup, while at least one input arm exhibits embedded single-
photon sources. We will focus again on the usage of AlxGa1−xAs as main material
platform for the waveguide circuit and embedded InGaAs QDs as single-photon
emitters. The realization of such devices has been shown both with channel [34] and
rib waveguides [28, 38]. While the channel waveguides used in [34] rely on free-
standing structures which are typically produced by underetching the defined GaAs
waveguides using an AlGaAs sacrificial layer (see Fig. 13.9a), rib waveguides are

SEM angular view - not to scale

Arm 1 Arm 2

Output arms
50 μm separation

Excitation arm

15
0
μm

(b)(a)

Fig. 13.9 Scanning electron images of two possible waveguide designs with directional couplers
using III-V semiconductorswith integratedQDs. a Free-standingGaAswaveguides. The underlying
sacrificial layer was removed to create a membrane. The optical control is achieved via bulls-eye
couplers at the ends of the waveguides. Reprinted from [34] with the permission of AIP Publishing.
b GaAs rib waveguides on an AlGaAs cladding. The optical control of the output arms is obtained
by cleaving the chip perpendicular to the waveguides and collecting the transmitted light directly
from the output port of the cleaved edge. Reprinted from [28] with the permission of AIP Publishing
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directly defined on an AlGaAs cladding layer (see Fig. 13.5). This leads to a weaker
confinement and therefore a lower dipole coupling as mentioned before as well as
a need for larger structures (Fig. 13.9b). On the other hand, rib waveguides show an
excellent mechanical stability even on the cm scale [28, 38]. A possibility to combine
both advantages was presented in [39] where GaAs waveguides were placed on a
SiO2/Si3N4 substrate which leads to a high refractive index contrast while keeping
the mechanical stability of rib waveguides. All three implementations [28, 34, 39]
exhibit an epitaxial grown layer of self-assembled quantumdots throughout thewhole
waveguide structure enabling the creation of single photons at the desired position
by direct laser excitation from the top.

Propagation Losses

One main benchmark of optical waveguides are their propagation losses. Only the
warranty of low propagation losses enables the future scalability of photonic inte-
grated circuits to devices with multiple qubits and large logic structures. These can
bemeasured statistically bymoving the excitation spot over the waveguide and there-
fore exciting QDs at different positions inside the photonic circuit. Optical losses of
rib waveguides are shown in Fig. 13.10. The optical losses range from (1.20 ± 0.33)
to (2.61 ± 0.57) dB/mm, which is comparable with other measurements on similar
structures [40], but about one order of magnitude higher than comparable silicon
technology where propagation losses between 1 and 4 dB/cm are possible for single-
mode ridge type waveguides [41, 42].

It can be observed, that the bends seem to add no additional losses to the structure
as the losses stay the sameover thewhole structures. Thismaybe unexpected as bends

Fig. 13.10 Measured propagation losses of rib waveguide structures as shown in Fig. 13.9b.
The implemented structures (s-bends and u-bends) do not introduce observable additional losses.
Each dot represents a measurement of the integrated photoluminescence of a QD at a different
distance to the output port at the cleaved facet of the chip. The fluctuations originate from varying
QD brightnesses
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are normally supposed to introduce additional losses due to the mode deformation
in bend waveguide sections which lead to coupling losses between bend and straight
sections and therefore the loss of power into radiative modes. Additionally this mode
deformation leads to a stronger interaction between the photons and the waveguide
sidewalls inside the bend region which can result in scattering losses. However, as
the bending radii with∼20µm for the cosine bends and 25µm for the 180◦ bends are
very large, no effects on the propagation losses are notable. So the observed losses
and their variation are supposed to stem mainly from imperfections and roughnesses
on the waveguide sidewalls introduced during the fabrication process. For bends with
smaller curvature radius themode shift to the outer facet should be taken into account.
This can be done by shifting the bend regions relative to the straight ones, which
may be interesting for commercial applications where high integration densities are
favorable [43–46].

Splitting Ratio

For the realization of quantum photonic circuits the exact adjustment of the splitting
ratio of integrated beam splitters is essential to obtain predictable results with high
visibility. So it is important to check the splitting ratio of the fabricated beam splitter.
The splitting ratio of a directional coupler is not fixed for all guided wavelengths,
instead it depends on the propagation constants of the supermodes (13.14). Similar
to the propagation constants of the band structures of single waveguides like shown
in Fig. 13.4, these propagation constants kzsym and kzasym depend on the free space
wavevector k. Therefore, the splitting ratio is wavelength dependent.

Figure13.11 shows the splitting ratio of several QDs of the beam splitter used in
[28]. The wavelength dependency is clearly visible and needs to be considered for
the design of photonic integrated circuits. In this case, the circuit could be operated
around 877nm, so the emission lines of the excited QDs have to match this operation
wavelength.

Single-Mode Operation

As different guided modes experience different coupling strengths inside a direc-
tional coupler, it is also necessary to ensure that only one mode is excited to obtain
predictable results from a beam splitter. For pure single-mode waveguides this is
naturally given, but for rib waveguides like the one used in [28], which support both
the fundamental TE and the fundamental TM mode it is necessary to show that the
waveguides are only operated in the single-mode regime. This can be done by photo-
luminescence measurements analyzing the polarization of the light coupled from the
output ports to free-space. As mentioned above, the propagating modes in dielectric
waveguides are no pure TE or TM modes, therefore we expect no perfect degree
of polarization (DOP) of 100%. The far-field polarization of guided modes cou-
pled to free-space can be calculated using FDTD simulations and a near- to far-field
transformation as described in [47] for silicon on silica waveguides.

Figure13.12 shows the DOP for photons from a QD integrated into a rib
waveguides measured after the passing through a beam splitter [28]. The measured
value of 96% for a reflected photon is near the expected value of aboutDOP = 99.2%
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Fig. 13.11 Measured and simulated coupling ratio of the directional coupler depicted in Fig. 13.9b.
For the operation of large circuits this wavelength dependent splitting ratio has to be taken into
account. The simulated curve was obtained by calculating the supermodes of the fabricated coupler
yielding their propagation constants. An additional scaling factor 1.072 ± 0.003 of the coupling
constant is used to fit the simulation curve to the data. This accounts for the not perfectly known
coupler profile and numerical inaccuracies. The near unity scaling factor shows the high consistency
between simulation and measurements

(a) (c)

(b) (d)

Fig. 13.12 a+b Ensemble QD spectra of an excitation location in arm 2 behind the beam splitter
measured from both output arms 1 (a) and 2 (b) consecutively (see Fig. 13.9b). Except for the
variation in the splitting ratio, both spectra are similar. c+d The high degree of polarization of
the observed QD emission is a clear hint for single-mode operation. Reprinted from [28] with the
permission of AIP Publishing

for pure TE single-mode operation of a comparable Si waveguide [47] and is there-
fore a clear hint for the single-mode operation. This single-mode operation is not
surprising as the heavy-hole dipole moment of InGaAs QDs lies in the growth plane
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(horizontal), therefore the QD can only couple weakly to the TM-mode with its
main field component perpendicular to the growth plane. The slightly lower DOP
for a photon coupled to the other arm of the DC may be explained with spurious
TE-/TM-mode coupling inside the DC [28].

Single-Photon Operation

After the verification of the single-mode operation it is also necessary to ensure the
single-photon operation, as the beam splitter is supposed to work on single qubits and
thus with single photons in the LOQC scheme. Therefore, the emission of a single
QD behind a beam splitter is detected on both output arms simultaneously and the
number of coincidences between the two output ports is measured for varying delay
times. The obtained correlation function g(2)(τ ) gives a quantity of the antibunching
behavior of a single-photon source, where the possibility to detect two photons at
the same time vanishes in the ideal case, corresponding to g(2)(0) = 0. These mea-
surements have been done for both free-standing and rib beam splitters and show the
single-photonoperationswithg(2)(0) = 0.31 ± 0.03 [34] andg(2)(0) = 0.06 ± 0.14,
respectively [28].

Figure13.13 shows a typical g(2)(τ ) measurement for a rib waveguide beam
splitter. The used QD shown in Fig. 13.13 was excited quasi-resonantly so a nearly
background-free QD emission was obtained. The splitting ratio of the QD emission
was (48.7/51.3 ± 0.9)%, corresponding to its wavelength of 876.6nm. To obtain a
good signal-to-noise ratio, as necessary for correlation measurements, it is neces-
sary to filter out the background from the excitation laser. For the early usage of
photonic integrated circuits with off-chip detection, as presented here, this can be

(c)(a)

(b)

Fig. 13.13 a+b QD spectra of a quasi-resonantly excited single quantum dot in arm 2 behind
the beam splitter measured from both output arms 1 (a) and 2 (b) consecutively (see Fig. 13.9b).
A near background-free emission is observable. c Simultaneous measurement of this line from
both output ports allows a cross-correlation measurement of the two output arms, reassembling an
auto-correlation measurement of the QD with an on-chip beam splitter. Reprinted from [28] with
the permission of AIP Publishing
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done by sending each detected signal through a monochromator. Another method is
presented in the following section.

With the verification of the low-loss single-mode operation of free-standing and
rib waveguides, as well as the examination of the splitting ratio during single-photon
operation, the basic operability of the beam splitter is checked. This allows the
advancing tomore sophisticated devices andmethods as outlined in the next sections.

13.4.2 Excitation Methods

For quantum information processes one main goal is the deterministic creation of
the desired input state which makes it necessary to create single, background-free
photons; so only one single QD transition should be driven. A standard excitation
method for semiconductor QDs is the excitation above the band gap of the GaAs
barrier or via the wetting layer. This leads to an excitation of all QDs within the
excitation spot of typical around 2µm. Furthermore, the excitation laser also scatters
into guided modes of the waveguide. So a broad ensemble of lines can be observed
at the output port of the waveguides which makes spectral filtering of the signals
necessary. But for a scaling to multi-qubit devices with several detection channels,
it will be necessary to detect the light on-chip so the necessity for a spectral filtering
of the signal is undesired.

A way to overcome this limitation is the quasi-resonant or resonant excitation of
a single QD transition. During the quasi-resonant operation, the excitation laser is
tuned near the emission line of a QD. The QD is, for example, then excited into its
p-shell, while the emission takes place from the s-shell following a fast non-radiative
decay. The benefit is that only one single QD is excited and the filtering has to be
done only for the excitation laser. The next step is the tuning of the laser to resonant
excitation. This allows the generation of single photons with superior properties as
explained in Chap.3 by Portalupi andMichler. The disadvantage is the impossibility
to spectrally distinguish between laser light and quantum dot emission.

Furthermore, we want a deterministic creation of a single photon. This can be
achieved by using pulsed excitation instead of continuous-wave excitation. The prob-
ability that the QD is now excited during one pulse depends on the pulse energy of the
excitation laser. This leads to the observation of Rabi oscillations when varying the
excitation power [48, 49]. When adjusting the laser excitation power to the π-pulse,
where the state population is inverted – meaning in our case the certain creation of
one exciton – we achieve a deterministic creation of a single photon. In reality, the
excitation fidelity is of course limited due to dephasing processes, furthermore the
coupling probability between dipole and guided mode reduces the single-photon rate
(see Sect. 13.3.3) and laser stray light leads typically to high backgrounds levels.

While the coupling efficiency can be effected by the choice of different waveguide
structures or even by using waveguide coupled microresonators like photonic crystal
cavities [35–37], a promising way to reduce the laser stray light is the shaping of

http://dx.doi.org/10.1007/978-3-319-56378-7_3
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13.14 a–cTemporal and spectralwidth of three excitation laser shapeswith decreasing spectral
width. d–f This allows the spectral matching of the laser to the QD emission for resonant excitation
with enhanced signal-to-noise ratio. g–i Higher excitation efficiencies lead to the observation of
Rabi-oscillations for varying laser excitations. Data with (without) laser background correction is
plotted in squares (diamonds). The fitted curve in (i) corresponds to a high excitation fidelity of
(72.4 ± 3.3)%. Reprinted from [49] with the permission of OSA Publishing

the excitation laser [49]. This can be done by sending the excitation laser through
a monochromator with exchangeable grating. Due to the diffraction of the laser,
a spectral filtering can be applied by using a spatial filter, like the coupling to a
single-mode fiber. A spectrally shaped laser pulse can be seen in Fig. 13.14a–c for
different gratings. It can be also observed that, as the spectral filtering removes parts
of the pulses in the frequency domain, the temporal length of the pulses increase.
Figure13.14d–f demonstrate how the spectral width of the laser is shaped to nearly
match the emission line of theQD. These spectra where taken from an output arm of a
beam splitter. The higher overlap between laser and QD enhances the portion of laser
light, which can be effectively absorbed by the QD. Therefore, the laser power can
be reduced at smaller excitation linewidths. Figure13.14g–i show the observed QD
emission for varying excitation powers. The discussed Rabi-oscillations are clearly
visible, also the shift of the π-pulse excitation to lower laser powers. This leads
to a rise in the QD-signal to laser background ratio from 2.2 to 9.3, indicating the
possibility of laser background reduction by excitation laser shaping.
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13.5 Perspective of Fully Integrated Photonic
Quantum Logic

The previous section focused on the realization of basic circuits using networks of
photonic waveguides and the integration of single-photon sources. But there are still
two main elements missing: the integration of phase-shifters and detectors. These
will be covered in this section. Furthermore, a small overview on electric field tun-
ing of semiconductor QDs will be given as this is a promising possibility to tune
two different QDs to the same emission wavelength, as necessary for multi-qubit
applications.

13.5.1 Phase Shifters

To complete the set of quantum gates the implementation of phase shifters, operating
on single arms of the path-encoded qubits, is necessary. This allows the direct real-
ization of phase gates (13.3) with variable phase shifts and the upgrade of directional
couplers to Hadamard gates as shown below.

Another exciting possibility is the realization of programmable gate arrays which
allow the implementation of arbitrary single qubit operations by adjusting integrated
phase shifters. This is equivalent to the realization of arrays of arbitrary transforma-
tion in U(2), which can be expressed as

(
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)
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, (13.16)

with the variable reflectivity η and
√

η = sinω and adjustable input phases [50]. This
corresponds to a variable beam splitter cube followed by a phase shifter on one output
arm. As the absolute phase of the input state has no influence on the performance of
the transformation, one of the phase factors φ0, φ1 can be neglected and the relative
phase between both input ports can be adjusted using an additional phase shifter φ
in front of the variable beam splitter.

At a first glance, the beam splitter with variable reflectivity is not realizable using
on-chip directional couplers, where the reflectivity depends only on the coupling
strength and coupling length between the waveguide arms – both parameters which
are defined by the shape of theDC and the operatingwavelength. Indeed, it is possible
to realize integrated variable beam splitters using Mach–Zehnder interferometers
(MZIs) [50]. Here a phase shifter exp (iθ) on one arm between two 50:50 directional
couplers can be used to adjust a transmission matrix of the form
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By carefully adjusting the phase shifter to generate a phase shift of θ = 2 arcsin
(√

η
)

the transmission matrix converts into a variable beam splitter cube (13.6) with an
additional phase shift between reflection and transmission. By choosing a 50:50
splitting ratio, the MZI resembles a Hadamard gate.

Incorporating the MZI (13.17) into the universal quantum gate (13.16) yields a
device composed of two 50:50 beam splitters and three phase shifters with a trans-
mission matrix
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which allows to perform any qubit rotation. As the phase difference between the
output ports is insignificant for the operation of the gate, the third phase shifter
exp (iγ) can be omitted.

An integrated device composed of 15 such universal quantum gates has been
shown on a silica platform and therefore with external single-photon sources [15].
This allows to perform any U(6) operation by adjusting the phase shifters. This
includes, but is not limited to, a probabilistic CNOT gate (see (13.9)) operating with
two qubits and two ancilla modes.

The phase shifters in [15] have been realized using thermo-optic heaters. These
use the temperature dependency of the refractive index of silica to change locally
the propagation constant of the guided wave, and therefore change the relative phase
between the two arms inside or before the MZIs.

For the realization of phase shifters on GaAs we have to keep in mind that the
integrated QDs are operated at cryogenic temperatures and the wavelength and espe-
cially the half width of their emission depends on the temperature. Therefore the
introduction of heat into the waveguide structure is problematic. Fortunately, GaAs
is a non-centrosymmetric material with a non-zero linear electro-optic coefficient
r41 of around −1.6 × 10−12 m/V [51] which allows the usage of the Pockels effect
to adjust the refractive index by local electric fields. An advantage of this method is
the high modulation frequency of electric fields compared to thermo-optical phase
shifters, where the modulation frequency is limited by the maximum heat dissipa-
tion. Instead of electrical resistors which introduce locally heat into the sample, two
electrodes can be defined near a waveguide arm to introduce an electric field. Here, it
is convenient to use a doped substrate as one electrode and a lithographically defined
metal stripe as top electrode like schematically shown in Fig. 13.15.With this method
a GaAs based MZI with integrated phase shifters was shown using external sources
of single photons [52].
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V1 V2

Fig. 13.15 Principle of a universal gate in the U(2) realized with a Mach–Zehnder interferometer.
One phase shifter before and one phase shifter in between the directional couplers ensure a full
control of the gate operation. These phase shifters are realized via metal contacts for electro-optical
modulation of the refractive index

13.5.2 Electric Field Tuning

As we have seen before, it is possible to realize integrated quantum photonic circuits
on GaAs. We have also seen that the amount of stray light coupled into the photonic
circuits can be reduced drastically by using convenient excitation methods. But for
the implementation of more complex computational schemes we need more than one
single qubit and therefore several indistinguishable photons. On-chip multi-qubit
operations have been mainly done using off-chip sources of single photons as the
off-chip creation of indistinguishable single photons can be done by well-developed
processes like parametric down-conversion [15, 17].

To use instead QDs as scalable on-chip sources for multiple qubits, the emission
of remote QDs has to be matched in frequency to obtain indistinguishable photons.
This is difficult to achieve by the growth process of the QDs itself, as the QDs are
normally grown in a self-assembled method leading to a broad size- and therefore
wavelength-distribution.

A method to tune the QD emission after their growth is the usage of temperature,
strain or electric fields. This already allowed the observation of the interference
between photons from remote QDs in off-chip setups [53, 54]. As mentioned above,
an elevated temperature is undesired as it increases the emission linewidth. Strain
fields on the other hand are difficult to introduce locally [55, 56]. So the tuning with
electric fields is nowadays a common method [57]. The process requirements are
rather the same as for the creation of electro-optic phase shifters. The electric field
can be both applied in lateral or vertical direction [58–60].

Figure13.16 shows possible electrode configurations for electric field tuning in
waveguides. In Fig. 13.16a the electrodes can be deposited and lithographically struc-
tured nearby the waveguides to create a lateral electric field. A tuning range of about
0.2nm by applying fields with 13kV/cm was shown for CdSe/ZnSe QDs embedded
inmesa structures [61]. Similar results were achieved on planar sampleswith a tuning
of the excitonic line of InGaAs QDs by about 0.2nm with up to 10kV/cm [59].

However, the benefit of vertical electric fields is the possibility to epitaxial grow the
electrodes by using dopedmaterials (Fig. 13.16b). Such reverse biased pin-structures
allow high electric fields with low voltages due to the small distance between the
electrodes. The usage of such layer structures on planar samples allowed the creation
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Fig. 13.16 Two possible electrode (gray) configurations for electric field tuning of waveguide
embedded QDs. a Electrodes for lateral fields with two metal electrodes. b Electrodes for vertical
fields using a pin-structure

of indistinguishable photons from remote QDs [54]. Here the indistinguishably was
shown using an off-chip photonic circuits with fiber couplers. The tuning of QDs in
photonic integrated circuits may be the next step to allow two-photon interference
of the emission of QDs integrated in waveguide circuits.

Adrawbackof the structure presented inFig. 13.16b is the dopingof thewaveguide
structure. By doping the layers during the growth process thewaveguides of thewhole
photonic circuit will be doped, which leads to enhanced absorption losses. A way
to reduce these losses could be to reduce the overlap of the propagating mode with
doped structures, by moving them further away, or replacing the top electrode by a
metal electrode with sufficient distance to the waveguide. This will on the other hand
reduce the electric field seen by the QDs and therefore will require higher applied
voltages. So the perfect structure for electric field tuning is not found yet and it will
be interesting which structure will prevail.

13.5.3 Integrated Detectors

The last part for integrated quantum photonic circuits is the detection of the photons.
For a scalable device this should also be done on the chip itself. A very promising
technology for integrated single-photon detectors on integrated circuits, which we
want to have a short look at, are superconducting single-photon detectors (SSPDs)
[62]. The principle of an SSPD is briefly summarized in Fig. 13.17a–d. It is composed
of thin film superconducting nanowires which are biased close to the critical current,
where the superconductivity collapses (a). The absorption of an incident photon
heats the superconductor locally and creates a hot-spot where the superconductivity
collapses (b). So the bias current is redirected around this hot-spot and exceeds
the critical current density around the hot-spot (c). This leads to a collapse of the
superconductivity over a whole width of the nanowire and therefore results in a
resistance and a measurable voltage peak over the superconductor. The detector
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(b)
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Fig. 13.17 a–d Principle of an SSPD: a The superconducting film is biased close to its critical
current. b An absorbed photon generates heat and redirects the current flow. c The critical current
density is exceeded near the hot-spot leading to a measurable resistivity. d The SSPD resets itself
by heat dissipation. e Overlap of a propagating mode inside a waveguide with two superconducting
stripes on its top. This leads to a non-vanishing absorption possibility

resets itself automatically after a short delay time by dissipating the introduced heat
(d) [63, 64].

A typical superconducting material for these detectors is niobium nitride (NbN)
with critical temperatures on GaAs between 6 and 12K depending on the film thick-
ness and quality [65]. As thinner film have higher detection efficiencies because of
the higher possibility that a hot-spot creates a resistance barrier, it is necessary to
reach cryogenic temperatures to achieve the transition of the NbN films to the super-
conducting state. Also the efficiency and the dark count rates of finished structures
are directly improved with lower operation temperatures. As the QDs are also oper-
ated at cryogenic temperature, this is no drawback for SSPDs in quantum photonic
circuits with integrated InGaAs QDs.

A commonly used structure for SSPDs is a meander type arrangement of the
nanowires as seen in Fig. 13.18a. These structures are optimized for a high filling
factor and therefore high absorption efficiency for vertical incident photons. In con-
trast to this, the photons from a photonic integrated circuit will not impinge from
the top but are guided inside a waveguide. Here the absorption takes place by an
evanescent coupling of the guided photons to the NbN film as seen in Fig. 13.17e. So
the absorption probability is not proportional to any filling factor but to the overlap
betweenmode field and superconducting film and the length of the detector. TheNbN
film is therefore directly deposited onto the GaAs core of the waveguides. A possible
design of such a detector is depicted in Fig. 13.18b. The absorption efficiency of the
detector can be in principle >99% by just increasing the length of the detector.

The possibility to detect QDfluorescence from InGaAsQDs embedded into GaAs
waveguideswith integrated SSPDs has already been shown [40]. Figure13.19 depicts
the demonstrated combination of amultimodewaveguidewith ameander type SSPD.
A further improvement is the realization of photon number resolving SSPDs which
has also been demonstrated [66]. But there are still struggles with stray light, as
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1 μm 500 nm

(a) (b)

Fig. 13.18 Scanning electronmicroscopy images ofSSPDdesigns.Theniobiumnitride is displayed
in black. a Spiral design optimized for vertical incident light with maximized filling factor. b Dual
stripe design optimized for waveguide integration [68]

Fig. 13.19 Combination of
waveguide embedded QDs
with integrated SSPDs. The
InGaAs QDs are excited
from top while their
emission can be detected
off-chip using a confocal
photoluminescence
geometry and on-chip by the
evanescent coupling of the
guided mode to a meander
type NbN SSPD. Reprinted
by permission from
Macmillan Publishers Ltd:
Scientific Reports [40],
copyright 2013

the detector detects any photon impinging on it. To suppress the laser stray light an
absorbing backside coating of the substrate and the covering of the detectors has
been used [67]. Together with a shaped resonant excitation scheme as presented
in Sect. 13.4.2 this may lead to a sufficient laser suppression to allow the usage of
integrated SSPDs for future quantum photonic circuits.
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13.6 Summary

The integration of quantum photonic circuits on single semiconductor chips is cur-
rently a fast evolving field. Semiconductor QDs have proven to be suitable candi-
dates as single-photon emitters for such chips. Several components for the realiza-
tion of basic fully integrated quantum photonic circuits have been realized in the
past years. Nowadays InGaAs QDs integrated in waveguide structures with beam
splitters as photonic circuits are an established test bed for the development of more
advanced integrated circuits. Further steps will include the manipulation of the emis-
sion of the QDs and the state manipulation by tunable phase shifters as they could be
implemented by locally adjustable electric fields. This will open the door to multi-
photon interference and thereforemulti-qubit gateswith remoteQDsas single-photon
sources.

On the other end of the device a lot of work is done on implementing single-
photon detectors with high detection efficiencies and shielding them from stray light
leading to high background levels. But the current development is not only driven
by the technological development of new chips with more complex elements and the
merging of developed elements on one single chip, but also by the development of
new optical methods to help with the avoidance of stray light.

The future will show how all these and maybe more parts will be joined together
to create single chip quantum integrated photonic circuits and if their realization
with III-V semiconductors is able to prevail in the race for fully integrated quantum
information processors.
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G-factor, 313, 314
Generalized Rabi frequency, 95
Geometric phase, 345, 349, 350



Index 445

G-factor, 293, 311
Gold mirror, 207
Green function for electric field, 44

H
Hadamard gate, 411
Hamiltonian, 222
Heavy hole, 312, 314, 318
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Multi-exciton states, 4, 5, 16, 18, 25
Multi-pair emission, 279
Multi-phonon process, 24
Multipolar expansion, 176, 177, 183, 184

N
Nanolaser, 11, 27, 30, 32
Nanowires, 203
Negative-tone resist, 210
Neutral exciton, 291, 298, 306, 338
Noise, 287, 288, 290, 292–303, 305, 313,

314, 318
Noise correlations, 223
Non-Markovian process, 223
Non-resonant coupling, 9, 31
Non-resonant coupling, Coulomb-assisted,

27
Non-resonant coupling, mediated by multi-

exciton transitions, 25
Non-resonant coupling, phonon-assisted, 23
Nonradiative processes, 172, 173, 189, 190,

192
Nuclear magnetic resonance, 287, 305–308,

319
Nuclear spin, 287, 293, 298, 300, 303–313,

316, 318, 386
Numerical aperture, 205
Numerical methods, 204
Numerical optimization, 204
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O
On-chip integration, 255, 262
Open quantum systems, 18
Optical Bloch equations, 66
Optical confinement, 25
Optical properties, 213
Optical pumping, 347
Orbital angular momentum, 269
Oscillator strength, 171, 172, 186, 188–195
Overhauser field, 293, 298–300, 303, 312,

314, 318

P
Parity symmetry, 178, 184, 185
Pauli principle, 19, 291
Phase gate, 402, 411, 432
Phonon coupling, 219, 341
Phonon number, 225
Phonon sideband, 112, 336
Phonon spectral functions, 45
Phonon-assisted excitation, 343
Phonon-assisted two-photon excitation, 114
Phonon bottleneck, 21
Phonon-induced broadening, 69
Phonon-mediated population inversion, 63
Phonon-mediated processes, 112
Phonon-mediated scattering rates, 56, 62
Phonon-modified spontaneous emission, 49
Photocurrent detection technique, 340
Photoluminescence, 63, 130, 132, 290, 291,

293
Photon, 236
Photon extraction efficiency, 201
Photonic crystal, 42, 201
Photonic crystal cavity, 25
Photonic integrated circuits, 421
Photonic qubits, 388
Photon-indistinguishability, 217
Photon spectral function, 46
Photon statistics, 9
π -pulse, 332, 334
2π pulse, 332
Planar cavity, 81
Poincaré sphere, 236
Polarization, 236
Polaron master equation, 42
Polaron transformation, 24
Positive-tone resist, 210
Pseudo-spin, 327, 346
P-shell, 215
P-shell pumping, 84
Pulse area, 113, 332, 334

Pumping regimes, 83
Purcell effect, 82, 97
Purcell-enhanced emission lifetime, 26, 32
Purcell factor, 97
Pure dephasing, 23, 219
Pure dephasing time, 80

Q
QD susceptibility, 54
Quadrupole interaction, 307
Quantum dot molecules, 406
Quantum dots, 240

electric dipole, 175, 176, 184, 185, 195
electric field tuning, 433
electric quadrupole, 176, 185
magnetic dipole, 176, 184, 185
mesoscopic moment, 174–176, 178–
182, 184, 185

mesoscopic strength, 174, 181, 182
quantum efficiency, 172
quantum-mechanical current density,
175, 177, 182–184

resonant excitation, 429
strong-confinement regime, 169, 171,
178, 186–188

weak-confinement regime, 169, 186, 187
Quantum information processing, 127
Quantum key distribution, 202
Quantum regression theorem, 7
Quantum Stark effect, 245
Quantum-state tomography, 109
Quasi-resonant excitation, 215
Quasi-resonant pumping, 84
Qubit, 128

coherence, 351
initialization, 347
rotation, 338, 342, 350

R
Rabi flopping, see Rabi oscillations
Rabi frequency, 330
Rabi oscillations, 86, 292, 307–309, 328–

332
biexciton, 345
detuned, 335
exciton, 340–342

Raby frequency, 93
Radiative cascade, 133
Radiative coupling, 30, 32
Radiative lifetime, 80, 288, 289, 302
Radiative processes, 171–173, 178, 190–192
Radiative recombination, 293, 294
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Raman scattering, 398
Ramsey interference, 275, 334, 342
Ramsey interferometry, 398
Rate-equation theory, 33
Rayleigh, 95
Rayleigh scattering, 301
Resonance fluorescence, 65, 87, 287–289,

292, 294, 295, 297–299, 301–303,
306, 309, 310, 313, 314, 316

Resonant excitation, 134
Resonant QD pumping, 85
Resonant Rayleigh scattering, 89
Rotating wave approximation, 330

S
Schottky diode, 340
Schrieffer-Wolff transformation, 28
Second-order coherence function, 6, 26
Second-order photon auto-correlation, 216
Selection rules, 312, 380
Shot noise, 295, 301
Single photons, 79
Single-photon purity, 10
Single-photon source, electrically driven, 16
Single-photon superradiance, 186, 187,

189–192, 195
Single-photon flux, 214
Single photon source, 8, 288, 293
Single-shot spin readout, 351
Slow-light waveguide, 52
Solid immersion lens, 203
Spectral diffusion, 101, 219
Spectral wandering, 80
Spectroscopy, 132
Spectrum (QD or cavity emission), 46
Spin, 129, 144

coherent control, 345–351
initialization, 347–348
readout, 351

Spin-photon interface, 359
Spin-blockade, 215
Spin-blockaded biexciton, 135, 137, 139
Spin-echo, 388
Spin-orbit interaction, 293
Spin qubit, 287, 288, 290, 303, 312, 313, 318
Spontaneous emission, 13, 26, 28, 289, 291,

293, 301, 314, 315
Stark effect, 292–294, 296, 297, 301
Statistical mixture, 328
Stimulated emission, 29, 32
Stimulated Raman Adiabatic Passage (STI-

RAP), 348

Stochastic force, 222
Strain, 246
Strong coupling regime, 10
Strong-coupling criterion, 11
Subradiance, 30
Super-bunching, 30
Superconducting single-photon detector,

434
Superposition state, 326
Superradiance, 27, 30
Superradiant emission pulse, 30
Symmetry reduction, 127
Synthesized waveforms, 90
System-reservoir coupling, 24

T
T1 time, 332, 351
T2 time, 332, 351
T ∗
2 time, 333, 351

Telegraph noise, 298
Teleportation, 391
Three photon, 95
Time-bin analyzer, 271
Time-local master equation, 45, 55
Time-resolved differential transmission, 21
Time-tagged single-photons, 96
Transform limit, 292–294, 302
Transverse relaxation, 333
Trion, 346
Trion states, 215
Tunable Raman photons, 105
Tunneling, 290
Two-level atom approximation, 326
Two-level system, 222
Two-photon Bell state, 108
Two-photon excitation, 109
Two-photon interference, 217
Two-photon interference visibility, 223
Two-photon resonance, 314
Two-qubit gate, 344, 349

U
Ultra-coherent, 90
Unitary transformation, 222

V
Vacuum Rabi doublet, 10
Vacuum Rabi splitting, 58
Voigt geometry, 346
Von Neumann equation, 18
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Von Neumann-Lindblad equation, 5, 18, 27,
31

W
Waveguides, 415

dipole-coupling, 420
modes, 417
propagation losses, 425

Weak coupling, 97
Weak coupling regime, 10, 11
Weak excitation approximation, 56
Wetting layer, 83

X
X+ exciton, 340, 346
X− exciton, 346
2X exciton, 339
X0 exciton, 338
XX exciton, 339

Z
Zeeman energy, 304, 306, 310, 311, 314,

316–318
Zeeman splitting, 105, 297, 311, 313, 314,

316, 346
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