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Overview of Phylogenetic Approaches

to Mycorrhizal Biogeography, Diversity

and Evolution

Santiago Sánchez-Ramı́rez, Andrew W. Wilson, and Martin Ryberg

1.1 Introduction

For more than two centuries biologists have been interested in understanding the

distribution of biodiversity. Following the work of Agustin Pyramus de Candolle

and Alexander von Humboldt in the eighteenth century, biogeography has changed

from being a merely descriptive discipline to a field rooted in ecological and

evolutionary principles (Crisci et al. 2003). Biogeography has now diversified

into many branches that specialize on different spatial, temporal, and taxonomic

scales, but can be classified into two major categories known as ecological and
historical biogeography (Wiens and Donoghue 2004). For historical biogeography

(from here on just termed biogeography), the last decades of the twentieth century

witnessed paradigm shifts between dispersal and vicariance schools (Zink et al.

2000). Nowadays, it is generally accepted that multiple evolutionary processes such

as dispersal, speciation, extinction, and species interactions contribute to biodiver-

sity build-up and distribution (Hubbell 2001; Ricklefs 2004; Wiens and Donoghue

2004; Mittelbach et al. 2007; Ree and Sanmartı́n 2009; Ronquist and Sanmartı́n

2011; Birand et al. 2012).
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Uppsala, Sweden

© Springer International Publishing AG 2017

L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230,
DOI 10.1007/978-3-319-56363-3_1

1

mailto:santiago.snchez@gmail.com


Undoubtedly, the bulk biogeographic knowledge has garnered around the study

of plant and animal distribution. In contrast, patterns in microorganisms (fungi

included) have been more elusive. This has led to considerable debate on how

microorganisms disperse and are structured geographically (Finlay 2002; Martiny

et al. 2006; Peay et al. 2007, 2010a). For instance, a classic view in microbial

biogeography is that “everything is everywhere, but the environment selects”

(Baas-Becking 1934). This hypothesis is based on two major assumptions. One is

that many microorganisms have dispersal capabilities (e.g. vegetative reproduction

and massive spore production) that allow propagules to be present “virtually”

everywhere (Stolp 1988). This perception may be confounded with the fact that

most microorganisms have simple morphologies, suggesting they are “cosmopol-

itan”, when, in fact, there are many different species (Finlay 2002; Peay et al.

2010a). The second is the role of the environment as a selective filter during

colonization, which may limit the establishment of propagules in new regions.

This last point can relate to geographical bonds that many microorganisms have

with their hosts (Werren et al. 1995; Corby-Harris et al. 2007), in spite of their

potential for global propagation (Brown and Hovmøller 2002). While this hypoth-

esis would provide a simple test to assess the mechanisms behind microbial

geographical structure, their cryptic nature is a complicating factor.

In the last three decades, the study of fungal ecology and evolution has experi-

enced a revolution after the introduction and advancement of molecular tools (Horton

and Bruns 2001; Bruns and Shefferson 2004; Peay et al. 2008). DNA-based analyses

provide a means to overcome the “micro” dimension, making relevant biological

units quantifiable. For instance, environmental meta-barcoding can reveal diversity

that is unobservable to the naked eye. Similarly, molecular phylogenetics can help

understand evolutionary relationships between observable and unobservable diver-

sity, enabling the exploration of microbial diversity dynamics in both temporal and

spatial scales.

Fungi are among the most diverse organisms on Earth. Not only accounting for

the thousands of described species or the millions of missing ones, but also referring

to the vast complexity of ecological interactions above- and below-ground

(Hawksworth 2001; O’Brien et al. 2005; Mueller et al. 2007; Blackwell 2011;

Tedersoo et al. 2014b). The mycorrhizal symbiosis is one of the most common

forms of mutualistic relationships in nature. Plant, fungal, and bacterial partners

interact in intricate ways in the rhizosphere contributing in large extent to nutrient

recycling and carbon sequestration (Smith and Read 2010; Bonfante and Genre

2010). Mycorrhizal fungi are scattered across the fungal tree of life, where most can

be found in four main fungal groups. The Glomeromycota is a fungal phylum

exclusively composed of fungi forming arbuscular mycorrhizae (AM) (Schüßler
et al. 2001; Redecker and Raab 2006). Fungi forming ectomycorrhizae (EcM)

appeared more recently and are spread across the largest fungal phyla: the

Basidiomycota, with about 50 known lineages; the Ascomycota, with about

40 known lineages; and the /endogone1, /endogone2 and /densospora lineages in

the Mucoromycotina of Zygomycota (Tedersoo et al. 2010; Tedersoo and Smith

2013; Chap. 6). AM fungi interact with the vast majority of plant biota (ca. 80%
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land plants), but are taxonomically species-poor (Bonfante and Genre 2010; Öpik

et al. 2013; Pagano et al. 2016), whereas EcM fungi are more diverse, but only interact

with a limited number of families of mostly woody plants, including Pinaceae,

Fagaceae, Betulaceae, Salicaceae, Myrtaceae, Nothofagaceae, Dipterocarpaceae, and

some members of the Rosaceae and Fabaceae, which dominate many tree communi-

ties of temperate, tropical, alpine, and boreal ecosystems of the Northern and Southern

hemispheres (Malloch et al. 1980; Alexander 2006; Smith and Read 2010; Chaps. 19

and 20). Mycorrhizal fungi are key players in all terrestrial ecosystems except

Antarctica. By tracing their evolutionary and ecological history, we can better under-

stand the role of past environmental and biotic events in shaping distribution and

diversity patterns that we observe today. In addition, host association data can provide

interesting points of view for the emergence and conservation of mycorrhizal host

communities over evolutionary time scales.

In this review, we seek to highlight phylogenetic approaches that may have

valuable applications in current mycorrhizal phylo- and biogeographic research.

Rather than enlisting different available methods (reviewed, for instance, in

Ronquist and Sanmartı́n 2011), we conceptualize and discuss relevant methodo-

logical advancements, also recounting major methodological biases. We emphasize

some examples from both EcM and AM fungi, and other organismal groups;

particularly in the light of increasingly popular phylogenetic methods for species

delimitation, divergence time estimation, and analyses involving the inference of

historical distribution ranges, diversification rates, and trait evolution.

1.2 Barcoding, Species Delimitation, and the Need

for Robust Phylogenies

Species are fundamental units for most biodiversity and evolutionary studies (Sites

and Marshall 2004; de Queiroz 2007). Recognizing and defining species is a crucial

task, not only for high-level species richness assessments and systematic studies,

but also for population-level, intraspecific studies. For fungi, this task is particularly

challenging given that more than 1.5 million fungal species are thought to exist

(Hawksworth 2001; Blackwell 2011), yet less than 10% have a formal taxonomic

description. Due to the fact that fungi live out most of their existence hidden from

human eyes, the vast majority of undocumented species will likely remain that way.

Before the rise of the molecular, PCR-based era in the 1990s (White et al. 1990),

fungal taxonomy and systematics relied heavily on the morphological description

of taxa. Many studies have shown this to be insufficient in describing fungal

biodiversity (Taylor et al. 2000, 2006). More recently, fungal molecular phyloge-

nies of related taxa commonly reveal the existence of species complexes composed

ofmultiple cryptic lineages (Geml et al. 2006, 2008;Matute 2006; Jargeat et al. 2010;

Leavitt et al. 2011a, b, 2015; Sánchez-Ramı́rez et al. 2015a, b). The term “cryptic

species” is actually broadly applicable in fungi. Besides the common failure to
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recognize species by morphological means alone, their hidden existence in the

environment makes them generally difficult to study.

For more than twenty years, ribosomal DNA (rDNA) applications have been

truly revolutionary in fungal research (White et al. 1990; Bruns et al. 1991;

Horton and Bruns 2001; Schoch et al. 2012). In part, this is due to the efficiency

of PCR primers that consistently amplify rDNA regions across many different

fungal groups (Bruns and Gardes 1993; Schoch et al. 2012), and the variability

and phylogenetic resolution found in different portions of the rDNA region (Bruns

et al. 1991). For instance, the internal transcribed spacer region (ITS1-5.8S-ITS2 or

simply ITS) is widely recognized as a species-level marker for fungi (Schoch et al.

2012). Other rDNA genes such as the 28S and 18S large and small subunits (LSU

and SSU), usually provide resolution at higher taxonomic ranks due to being

conserved, given their role as functional genes in the genome (Bruns et al. 1991;

Bruns and Shefferson 2004). Early molecular studies were largely based on

PCR and electrophoretic RFLP patterns, which were quickly replaced by DNA

sequencing. With the availability of DNA sequence data, new advances were made

in the fields of systematics and evolution through phylogenetics, and ecology

through DNA barcoding. Early rDNA-based phylogenetics were a true turning

point in fungal systematics, showing that many morphological characters did

not reflect shared ancestry (e.g. homoplasy) (Hibbett et al. 1997a, 2000; Moncalvo

et al. 2000, 2002; Hibbett and Binder 2002). In parallel, efforts on databasing

initiatives (Bruns et al. 1998; Kõljalg et al. 2005; Abarenkov et al. 2010) and

massive production of ITS sequences (Schoch et al. 2012; Hibbett 2016), have

enhanced the accuracy and efficiency of fungal identification and classification

(Peay et al. 2008).

In spite of their importance, transcendence, and widespread use in fungal

biology, rDNA sequence data suffer from several deficiencies. In the case of ITS,

which is probably the most popular, levels of intra- and inter-specific variation can

be very different within and between species (Nilsson et al. 2008). Such inter-taxon

differences may have an effect in sequence identity cut-off-based species

delimitations, often used in environmental meta-barcoding studies, leading to an

over- or under-estimation of diversity. ITS intra-genomic variability has also been

reported, where multi-allelic copies have been found within the same genome

(Simon and Weiß 2008; Lindner and Banik 2011). Base-calling errors and missing

data in DNA chromatograms can arise in such cases, affecting downstream analyses

such as multiple sequence alignments and phylogenetic analyses. While high levels

of DNA variation is desirable in barcoding genes, too much variation, particularly

at indel positions, can be problematic during alignments, causing misleading

phylogenetic inference. In AM fungi, ITS is too variable and does not resolve

species boundaries (Stockinger et al. 2010). Instead, the preferred barcoding rDNA

gene is the small subunit (SSU), which has a resolution power at the family or order

level in other groups (Stockinger et al. 2010; Bruns and Taylor 2016). Protein-

coding genes, on the other hand, are generally easier to align because most positions

along exons are subject to selection. They also have a wide range of phylogenetic

scalability. For instance, amino acid alignments can be used for deep phylogenetics
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(families, orders, classes), while synonymous codon positions and introns often

have enough variation for more recent times-scales (species, populations). In

principle, this has led initiatives, such as the Assembling the Fungal Tree of Life

(AFTOL) project, to explore other genomic loci for resolving relationships among

fungi (Blackwell et al. 2006). For some groups, such as Cortinarius, Laccaria, and
Amanita, the ITS region has some utility in recognizing species, but protein coding

genes such as rpb2 and tef1 are considered superior when defining intra- and inter-

species boundaries (Frøslev et al. 2005; Sheedy et al. 2013; Sánchez-Ramı́rez et al.

2015a, b; Chap. 13). Nonetheless, protein-coding genes may be more challenging to

work with at the production stage, given that primer pairs do not consistently

amplify across taxa, or are too unspecific (Schoch et al. 2012). Moreover, in spite

of their potential for environmental studies, protein-encoding loci are not widely

accepted as barcoding markers among the community of fungal ecologists. In part,

this might be due to the fact that protein-coding sequences, such as rpb2, are
taxonomically not that well represented in nucleotide databases, and can be difficult

to produce. However, protein-coding genes have promising advantages that might

be worth exploring further for fungal environmental studies (Větrovský et al. 2016).

Simple barcoding for species identification usually involves the use of the Basic

Local Alignment Search Tool (BLAST; Altschul et al. 1990). BLAST is an

algorithm that efficiently compares sequences to pre-existing databases, retrieving

the best matching records. If the sequence is unknown, such as those from envi-

ronmental samples, this method provides a way to define its taxonomic affinity, and

potential geographic ties, depending on the availability of meta-data in the database

used in the search. One way to determine if a sequence or a group of sequences

belong to a molecular operational taxonomic unit (MOTU) is to establish a

sequence identity cut-off (Nilsson et al. 2008; Fig. 1.1). Empirical studies looking

at fungal intraspecific ITS variation have shown that a conservative threshold

typically averages around 2–3% pairwise differences, with substantial variation

between species (Nilsson et al. 2008; Hughes et al. 2009; Schoch et al. 2012). The

process of clustering MOTUs can be fully automated given a set of aligned

sequences using the barcode gap discovery method (ABGD; Puillandre et al.

2011; Fig. 1.1), or with sequence clustering algorithms such as UCLUST (Edgar

2010; Fig. 1.1). For instance, Tedersoo et al. (2014b) used ABGD to search for

similarity thresholds to distinguish MOTUs in a data set of 757 sequences of

Sebacinales. Moreover, considering the rate of molecular substitution in ITS and

the rate of speciation, MOTUs may be over or underestimated depending on

species-specific population histories (Ryberg 2015). A more sensitive approach

would be, of course, to use data directly from phylogenetic trees to delimit species.

This is, in fact, the purpose of models such as General Mixed Yule Coalescent

(GMYC, Pons et al. 2006; bGMYC, Reid and Carstens 2012) and the Poisson Tree

Processes (PTP/bPTP/mPTP, Zhang et al. 2013) that use branching patterns in a

phylogenetic tree to determine, which branching events correspond to coalescence

events (intraspecific) or speciation (interspecific) (Fig. 1.1). These models,

however, rely heavily on the topology of the tree and assume that species are

reciprocally monophyletic (Fujisawa and Barraclough 2013; Ryberg 2015). For
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example, species with high population sizes will generally have longer coalescence

times, leading to incomplete lineage sorting (Sánchez-Ramı́rez et al. 2015b). The

accuracy of the GMYC model has been shown to drop in these situations, based on

simulation data, leading to cases where species are not monophyletic (Fujisawa and

Barraclough 2013). For these and other reasons it is generally recommended to use

multiple approaches and data sources for species delimitation (Camargo et al. 2012;

Carstens et al. 2013). Several studies with lichens (Leavitt et al. 2011a, b, 2015) and
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Species 2

Species 3

MOTU 1 MOTU 2 MOTU 3

Species 1
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Species 3

Time
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Species 1
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Species 2

Species 3

Time

Trait

Pairwise distance

Freq.

Barcode gap

A B

C D

E F

Fig. 1.1 Schematic presentation of species delimitation approaches. (a) Environmental sequence

clustering based on a predefined similarity threshold. White circles represent species-specific

barcodes. Grey circles represent intraspecific variation. (b) Similarity threshold estimation based

on the ABGD method. (c, d) identification of population-level coalescent (grey dotted lines) and
speciation (black lines left) branching events is the basis for GMYC-type species delimitations.

Nodes representing the most recent common ancestor of each species are marked by a black circle;
(c) represents the GMYC model, where trees are ultrametric, while (d) represents the PTP model,

where branches represent substitutions. (e, f) Multi-locus species delimitation based on the multi-

species coalescent model. Gene trees (grey dotted lines) from unlinked loci are used to infer the

speciation history (species tree) and determine the most likely species delimitation scheme; (f) is

an extension that allows incorporating information from continuous trait data
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the basidiomycete Tulasnella (Linde et al. 2014) have shown the discriminatory

power of multiple multi-locus approaches for fungal species delimitation.

Most of the approaches mentioned above were developed specifically for single-

locus data. However, there have been efforts to introduce the application of multi-locus

approaches for the recognition of fungal species [e.g. the Genealogical Concordance

Phylogenetic Species Concept (GCPSC); Taylor et al. (2000, 2006)]. Moreover, with

the drop in sequencing costs and the availability of technology for massive sequencing,

whole-genome approaches will be more common for phylogenetic reconstruction

(Philippe et al. 2005; Cutter 2013). Biogeographic and phylogeographic analyses can

benefit from large amounts of data in the sense that more robust phylogenies typically

will lead to more solid evidence when testing hypotheses. Multi-locus data sets not only

increase the number of molecular characters; they can also be used to delimit species

more robustly using coalescent methods. Rannala and Yang (2003) introduced a model

in which independent gene genealogies are fitted within the speciation history of a

group of related species, into what it is now called a species tree. Species tree models

(e.g. the multi-species coalescent) can take into account sources of gene tree incon-

gruence (e.g. incomplete lineage sorting), while inferring species divergences and

demographic histories (Rannala and Yang 2003; Liu et al. 2009; Heled and Drummond

2010). Different implementations of this model are now used to delimit species:

Bayesian Phylogenetics and Phylogeography, or BP&P (Fig. 1.1e; Yang and Rannala

2010, 2014; Rannala and Yang 2013; Yang 2015); *BEAST model testing (Grummer

et al. 2014); DISSECT and STACEY (Jones 2014) (for a recent review on coalescent-

based species delimitation methods, see Mallo and Posada 2016). Novel extensions of

BP&P are able to integrate phenotypic or geographic data together with genetic data to

delimit species (Fig. 1.1f; iBPP, Solı́s-Lemus et al. 2015). Such advancements will

probably bring systematists closer to the much-desired integrative taxonomy (Dayrat

2005; Will et al. 2005). Up to now, this approach has been used to delimit species in

arthropods (Huang and Knowles 2016), reptiles (Pyron et al. 2016), and fish (Dornburg

et al. 2016). However, we can envision environmental and geographic data, such as pH,

humidity, elevation, latitude and longitude, being used as characters, in addition to

genetic data, to delimit fungal species. Initiatives like UNITE that make these kinds of

meta-data more easily accessible are therefore very valuable (Tedersoo et al. 2011).

1.3 Reconstructing the Geographic Past:

Phylo- and Biogeography

Phylogeography and biogeography are two deeply connected disciplines focusing

on the spatial dimension of biodiversity at different temporal scales. As a more

recent field in evolutionary biology, phylogeography is concerned with explaining

the geographic distribution of genetic diversity within a species (Avise et al. 1987;

Avise 2000). This is accomplished by integrating approaches from phylogenetics

and population genetics to tackle problems that lie between macro- and micro-
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evolutionary scales (Avise 2009; Knowles 2009; Hickerson et al. 2010). Biogeog-

raphy, on the other hand, is largely phylogeny-based and it is primarily concerned

with distribution patterns of species or higher taxonomic ranks (Ronquist 1997; Ree

and Sanmartı́n 2009). Both disciplines have phylogenetic roots, and as such, share

many methodological approaches to infer geographic patterns.

Ancestral-state reconstruction (ASR) methods are widely used in phylo- and

biogeorgaphic research (Ree and Sanmartı́n 2009; Ronquist and Sanmartı́n 2011).

The basic concept behind ASR involves the projection of character states, that can

be discrete or continuous (e.g. a saprotrophic vs. mycorrhizal ecology, latitude,

elevation, fruiting morphology, etc.), backwards in time. Character states are

usually assigned to sampled biological units (i.e. species or individuals) that occupy

the tips of a phylogeny. These character states are then traced back from the tips

down through the branches of the tree (for a recent review see Joy et al. 2016). In a

geographic context, characters states can be either discrete and spatially defined

areas (Maddison et al. 1992; Pagel 1994, 1999) or numeric geographical coordi-

nates represented as continuous characters (Lemmon and Lemmon 2008; Lemey

et al. 2010; Bloomquist et al. 2010).

ASR of discrete character states can be evaluated in a number of ways. Maxi-

mum parsimony optimizes the reconstruction to the minimum number of state

transitions (e.g. Swofford and Maddison 1987). On the other hand, statistical

methods apply maximum likelihood or Bayesian inference to optimize a stochastic

continuous-time Markov-chain (CTMC) matrix (e.g. Pagel 1994, 1999; Pagel et al.

2004), which is used to describe transition probabilities between states or areas

(O’Meara 2012; Sanmartı́n et al. 2008; Fig. 1.2). Ancestral area reconstruction

methods often use a parsimony-based approach, such as the dispersal-vicariance

analysis (DIVA) (Ronquist 1997). Others employ CTMCmodels, which are usually

more parameter rich, such as the dispersal-extinction-cladogenesis (DEC) analysis

(LAGRANGE, Ree and Smith 2008). Other CTMC models have been optimized to

situations when the number of areas is large (BayArea, Landis et al. 2013) or

include parameters that account for “jump” dispersal (e.g. founder-events)

(BioGeoBears, Matzke 2013). At least two different programs, BioGeoBears and

RASP (Yu et al. 2015), allow running different models within the same computing

framework. Other packages allow the co-estimation of discrete CTMC

phylogeographic models together with phylogenetic inference and divergence

times (BEAST, Lemey et al. 2009; Drummond et al. 2012). These ancestral area

reconstruction analyses differ in what processes they model. For example, if they

allow for species to be distributed over more than one area (e.g. LAGRANGE) or

not (e.g. Sanmartı́n et al. 2008). Perhaps they include separate processes for

inheritance of ancestral areas at speciation events (e.g. LAGRANGE), or just

include changes in ancestral areas along branches (e.g. BayArea). It is therefore

important to consider what processes may be most important in any particular group

to effectively formulate a hypothesis that is testable with these methods. Continu-

ous geographic characters (e.g. geographic coordinates) have been more often used

to infer phylogeographic patterns at a shallower temporal scale (Lemmon and

Lemmon 2008; Lemey et al. 2010), where dispersal is more closely linked to the
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Fig. 1.2 Molecular dating and biogeographic reconstruction of the Amanitaceae. (a) Continuous-

Time Markov Chain (CTMC) matrix depicting the rate of transition/dispersal between six biogeo-

graphic states; (b) time-calibrated molecular phylogeny of the Amanitaceae showing reconstructed

and extant areas; and (c) lineage-through-time (LTT) plot of the phylogeny, excluding

non-mycorrhizal taxa (clade highlighted in brown in the phylogeny) and the saprotrophic outgroup

Limacella (highlighted in black). Grey concentric rings in A mark the Pliocene, Oligocene, and

Palaeocene; white rings mark the Pleistocene, Miocene, Eocene, and the late Cretaceous; the green
ringmarks the time of the potential transition from the saprotrophic to mycorrhizal habit in Amanita

1 Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity. . . 9



movement of individuals rather than rare discrete long-distance events. Empirical

studies, for instance, have applied diffusion models to track the evolutionary

dynamics of epidemic outbreaks (Lemey et al. 2010), human language (Bouckaert

et al. 2012), and Pleistocene refugia (Gavin et al. 2014; Bryson et al. 2014). Some of

these trait-evolution models are largely based on Brownian motion (BM), where

traits evolve by small random changes that are controlled by a diffusion rate

parameter (Felsenstein 1988). Extensions of BM allow traits to evolve constrained

by a selection rate termed alpha, and are known as Ornstein–Uhlenbeck

(OU) models (Hansen 1997; Butler and King 2004). OU models allow for the

identification “preferred” trait optima, but they have been poorly explored in a

geographic context.

Both discrete and continuous biogeographic and phylogeographic inference can

also be achieved with standalone programs for ASR such as BayesTraits (Pagel

et al. 2004), or through an integrated interphase such as R (R Core Team 2015),

where packages like ape (Paradis et al. 2004) and diversitree (FitzJohn 2012)

include built-in functions for ASR. R implementations are practical because they

facilitate the direct manipulation and visualization of phylogenetic data. In addi-

tion, other visualization tools such as SPREAD (Bielejec et al. 2011) and

Phylowood (Landis and Bedford 2014) are also important contributions that bring

ease to the interpretation of complex historical phylo-/biogeographic processes.

Compared to plants and animals, fungal phylogeography and biogeography are

considered to be in their early stages (Lumbsch et al. 2008; Beheregaray 2008; Peay

and Matheny 2016). Some of the earliest phylogeny-based biogeographic analyses of

fungi have concisely pointed out the importance of geography and molecular data to

explain patterns of divergence and speciation—e.g. between intersterile groups in

Pleurotus (Vilgalys and Sun 1994) and plant pathogens from the genus Gibberella
(O’Donnell et al. 1998). Because many fungi interact with other organisms such as

plants and animals, their distribution patterns have often been associated to those of

their hosts (Bisby 1943; Horak 1983; Lichtwardt 1995). Nonetheless, mixed results

have led to considerable debate on whether fungi exhibit biogeographic structure.

Global and regional-scale studies have shown extensive cryptic lineages in EcM

groups, some of which exhibit geographic structure, and associations with endemic

Fig. 1.2 (continued) (ca. 88–99 Myr). Altogether 789 LSU sequences of Amanitaceae with

geographic distribution data, available (Sept. 2016) in NCBI were downloaded and aligned in

Mafft (Katoh and Standley 2013). A maximum-likelihood tree was built with RAxML (Stamatakis

2014) and terminal species were delimited with mPTP (Zhang et al. 2013), keeping those with

different species names in each cluster to compensate the lack of species-level resolution in LSU.

A single sequence was randomly selected to construct a time-calibrated tree in BEAST v1.82

(Drummond et al. 2012), using a relaxed clock model with log-normal distribution, and calibrating

with a normal distribution the nodes of the section Caesareae and the subgenus Amanita, based on
Sánchez-Ramı́rez et al. (2015a). Terminal biogeographic states were recoded based on meta-data

from the sequences and maximum likelihood reconstructions were performed using the functions

make.mkn, find.mle, and asr.marginal in R package diversitree (FitzJohn 2012). The LTT plot is

based on 1000 trees from the posterior distribution (in grey) and their mean (dotted line)
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hosts (e.g. Sato et al. 2012 or specifically in Amanita, Geml et al. 2006, 2008; Cai

et al. 2014; Sánchez-Ramı́rez et al. 2015a, b; Boletus, Feng et al. 2012; Inocybaceae,
Matheny et al. 2009; Laccaria, Wilson et al. 2016a; Chap. 13; Pisolithus, Martin et al.

2002; Strobilomyces, Sato et al. 2007; Tuberaceae, Bonito et al. 2013). In contrast,

other fungal biogeographic studies have shown more recent distribution patterns,

typically explained by episodes of long-distance dispersal (Moyersoen et al. 2003;

Kauserud et al. 2006; Moncalvo and Buchanan 2008; Geml et al. 2011) or cosmo-

politan distribution (Pringle et al. 2005; Queloz et al. 2011). For EcM fungi, this

notion implies that while some species have limited dispersal due to environmental

constraints (e.g. Peay et al. 2007, 2010b, 2012; Sato et al. 2012), others are able to

successfully establish propagules carried over transoceanic distances to exotic

regions, where they might outcompete native fungi (Moyersoen et al. 2003; Vellinga

et al. 2009; Pringle et al. 2009; Geml et al. 2011; Wolfe and Pringle 2012; Sato et al.

2012). Furthermore, a seemingly common observation has been a consistent associ-

ation between continentally disjunct groups of fungi (e.g. between Asia and North

America) (Wu et al. 2000; Mueller et al. 2001; Shen et al. 2002; Chapela and

Garbelotto 2004; Oda et al. 2004; Geml et al. 2006, 2008; Halling et al. 2008; Cai

et al. 2014; Sánchez-Ramı́rez et al. 2015a; Wilson et al. 2016a; Chap. 13; Fig. 1.2),

similar to patterns found in temperate plants from the same regions (Wen 1999;

Xiang et al. 2000; Qian and Ricklefs 2000). In several cases, there are hints of

Palaeotropical origins and recent temperate diversification in different EcM groups

(Matheny et al. 2009; Wilson et al. 2012, 2016a; Feng et al. 2012; Cai et al. 2014;

Sánchez-Ramı́rez et al. 2015a; Fig. 1.2). This observation contrasts with higher

species diversity seen in the Northern Hemisphere, both for EcM hosts and symbionts

(Malloch et al. 1980; Halling 2001; Matheny et al. 2009). Alexander (2006) argues

that the EcM habit is likely to have evolved in a Palaeotropical environment given

that a putative EcM host ancestor in the Dipterocarpaceae is likely to have originated

in Gondwana about 135 Ma (Moyersoen 2006), predating the Cretaceous radiation of

other EcM Angiosperms (Lidgard and Crane 1988; Berendse and Scheffer 2009, but

see Chap. 19). In the case of EcM fungi, this kind of evidence would support long-

term host co-migration (e.g. Halling 2001; Põlme et al. 2013), followed by allopatric

speciation/divergence and/or regional adaptation. If fact, studies in EcM groups

commonly suggest patterns consistent with trans-continental dispersal over land

masses (Halling et al. 2008; Geml et al. 2006, 2008; Matheny et al. 2009; Wilson

et al. 2012; Bonito et al. 2013; Sánchez-Ramı́rez et al. 2015a; Fig. 1.2a, b), and at

least two different studies have explicitly tested biogeographic models which support

historical world-wide co-dispersal scenarios with plants (e.g. the Boreotropical

hypothesis sensu Wolfe 1978; also see Lavin and Luckow 1993) in the

Sclerodermatinae (Wilson et al. 2012) and Amanita sect. Caesareae (Sánchez-

Ramı́rez et al. 2015a). Compared to EcM fungi, it is unfortunate that far less

biogeographic studies have been conducted in AM fungi given the need to understand

their evolutionary history (Chaudhary et al. 2008). While strict historical biogeo-

graphical studies are still scarce in AM fungi, macroecological studies have

suggested that while geography and local environment explain some of the variance

in global community structures, many operational taxa are globally distributed

1 Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity. . . 11

http://dx.doi.org/10.1007/978-3-319-56363-3_13
http://dx.doi.org/10.1007/978-3-319-56363-3_13
http://dx.doi.org/10.1007/978-3-319-56363-3_19


(Chap. 7; Kivlin et al. 2011; Öpik et al. 2013; Davison et al. 2015; see Bruns and

Taylor 2016 for a counter-argument). Moreover, phylogeographic analyses based on

coalescent approaches have also been applied to test hypotheses about the cosmo-

politan distribution of the AM speciesGlomus mosseae, indicating a recent expansion
within the last few hundred years (Rosendahl et al. 2009).

1.4 Molecular Dating and the Fossil Record

Molecular phylogenies are necessary to study patterns and processes at macro- and

micro-evolutionary scales (Avise and Wollenberg 1997; Barraclough and Nee 2001).

The phylogeny takes the form of a topology or a graph depicting relationships

between biological units, which includes basic information such as: (1) branch

lengths indicating the amount of evolutionary change, (2) internal nodes or branching

points, and (3) terminal nodes or tips, which represent sampled biological units. An

important property of phylogenetic trees is that branch lengths can be represented as

evolutionary time (Fig. 1.2). This notion comes from the molecular clock concept,

introduced by Zuckerkandl and Pauling (1965), which states that the amount of

molecular substitutions between taxa are proportional to the amount of time elapsed

since their last common ancestor (Kumar 2005). Given this principle, branches and

nodes in the tree can be scaled to time units and become “ultrametric” (i.e. every tip is

equidistant to the root). In ultrametric trees, nodes represent divergence times in

species-level trees, and coalescent times in population-level genealogies (Drummond

and Bouckaert 2015). There are only a limited number of ways to time-calibrate

ultrametric trees: (1) by calibrating terminal nodes (tip-calibration) based on known

sampling dates; (2) by applying and assuming a known molecular clock (e.g. a

molecular substitution rate, usually in the scale of number of substitutions per site

per time unit—e.g. Myr, yr, generations); or (3) by calibrating internal nodes based

on evidence from either the fossil record or geotectonic events.

Tip-calibration is practical for time-stamped samples of rapidly evolving organ-

isms such as viruses, and some cases where ancient DNA is available (Drummond

et al. 2003). Based on prior knowledge of substitution rates, a molecular clock

model can be used to scale phylogenetic branches. In fact, the rate of substitution/

mutation of some genes such as animal mitochondrial (Brown et al. 1979) and plant

chloroplast genes (Clegg et al. 1994) have been well characterized across taxa and

within populations. In contrast, substitution rates for rDNA genes, which are

commonly used for fungal phylogenies, are quite variable between and within

lineages (Bruns and Szaro 1992; Moncalvo et al. 2000; Berbee and Taylor 2001),

deeming their use for time-calibrating fungal phylogenies impractical on their own,

unless rates are specifically calculated for particular groups. However, rates need to

be estimated from independent evidence in the first place, such as the fossil record

or biogeographic events. In this case, internal node calibrations can be used as

reference points to infer both molecular clock rates and divergence times (Kumar

2005; Ho and Phillips 2009).
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Clock models for divergence time estimation have progressed over the last

couple of decades (Welch and Bromham 2005; Ho 2014). The first clock model

was conceptualized and implemented as a strict molecular clock (i.e. an evenly

ticking clock), where every substitution happened at a constant rate within any

given lineage. A new generation of “relaxed” clock models were later introduced

allowing substitution rates to vary between lineages, accommodating for more

biologically realistic evolutionary scenarios (Drummond et al. 2006; Drummond

and Suchard 2010; Ho and Duchêne 2014). One of the most popular phylogenetics

programs (with over 10,000 citations in last 10 years), and probably the de facto
standard for time-tree analysis is the BEAST package (Drummond and Rambaut

2007; Drummond et al. 2012). Some of the advantages of BEAST over other

software are that (1) phylogenies are co-estimated with divergence times, (2) the

uncertainty in divergence time estimation can be measured, and (3) it offers

flexibility and extensibility for model specification (Drummond and Rambaut

2007; Drummond et al. 2012; Bouckaert et al. 2014). Since the introduction of

BEAST, together with the steady growth of DNA sequence data, time-calibration

has regained much attention in phylogenetic research (Robinson 2006).

The fossil record can be a valuable source for studying ancestral distributions

(Meseguer et al. 2015). Besides helping track the distribution of taxa and their

extinct relatives in space and time (Lieberman 2003), ages of fossils can be used as

priors for time-calibrating molecular phylogenies (Ho and Phillips 2009). In addi-

tion, well-sampled records can also provide information about extinction rates

(Jablonski 2008) and data that can be used in newer models for divergence-time

estimation. For example, the fossilized birth-death process uses “total evidence”

from the fossil record, integrating information from rates of speciation, extinction,

and fossilization (Heath et al. 2014; Zhang et al. 2016).

Compared to many plant and animal records, the fungal fossil record is depau-

perate (Berbee and Taylor 2010). One of the reasons is because most fungal

structures are made of soft tissues that decay rather quickly, making fossilization

difficult (Pirozynski 1976; Taylor et al. 2014). Another challenge is their correct

classification and taxonomic assignment, which is largely based on reproductive

structures that rarely fossilize. Given these difficulties, mycologists have often

relied on secondary calibrations (e.g. using age constraints based on a previous

time-calibration), where they either estimate a “taxonomically broad” phylogenetic

tree with external fossil calibrations to generate prior calibration distributions

(e.g. Skrede et al. 2011; Wilson et al. 2012, 2016a; Tedersoo et al. 2014b; Cai

et al. 2014; Sánchez-Ramı́rez et al. 2015a; Zhao et al. 2016), use node ages from

other studies based on fossil records or molecular clocks (Jeandroz et al. 2008;

Matheny et al. 2009; Ryberg and Matheny 2011, 2012), or fix the global substitu-

tion/mutation rate of a particular gene (Rosendahl et al. 2009; Bonito et al. 2013;

Sánchez-Ramı́rez et al. 2015b). Using a diverse array of approaches can lead to

inconsistent results and lack of reproducibility. In order to aid mycologists in their

quest to time-calibrate molecular phylogenies we provide a condensed overview of

potentially useful fossils (e.g. well-identified fossils representing the minimum age

of certain groups; Table 1.1).
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Time-calibrated phylogenies can be used for testing hypothesis about the evolu-

tionary history of organisms, in particular those with poor or no fossil record. For

instance, some of the oldest putatively Glomeromycota fossils from the Ordovician

(ca. 460 Ma, Redecker et al. 2000) and Devonian (Dotzler et al. 2006) suggest that

AM fungi where already associated with plants during the transition from an aquatic

to a terrestrial environment (Malloch et al. 1980; Brundrett 2002). Molecular dating

studies endorse this hypothesis, placing the origin of AM fungi between 400 and

600 Ma (Simon et al. 1993; Berbee and Taylor 2001; Lucking et al. 2009). On the

other hand, EcM symbiosis has evolved more recently. Based on molecular clock

estimates using SSU branch lengths of several EcM lineages and evidence from the

fossil record (e.g. permineralized EcM from the Eocene; LePage et al. 1997), Bruns

et al. (1998) suggested that EcM symbioses could have radiated independently and

simultaneously during the Tertiary (e.g. Eocene-Oligocene). This was when the

climate initiated its cooling trend leading to a more temperate environment domi-

nated by members of the Pinaceae and Fagales (Wolfe 1978; Prothero and Berggren

1992; Zachos et al. 2001). In contrast, Halling (2001) proposed that EcM symbiosis

evolved together with the Pinaceae—most of which are able to form EcM associa-

tions—during the Jurassic (ca. 180 Ma; Gernandt et al. 2008), and subsequently

diversified further as a result of angiosperm radiation in the Cretaceous (125–65 Ma;

Berendse and Scheffer 2009). Using time calibrated phylogenies of nine EcM

lineages of Agaricales, Ryberg and Matheny (2012) rejected both hypotheses on

the basis of discordant clade ages, most of which occurred after the Jurassic, during

the Cretaceous and Palaeogene periods (from ca. 100–40 Ma). However, other

groups, such as the truffles (Tuberaceae) might have had an older evolutionary

history, spanning from the late Jurassic (ca. 156 Ma) and later diversifying during

the Cretaceous and Palaeogene (Jeandroz et al. 2008; Bonito et al. 2013). Supporting

the findings of Ryberg and Matheny (2012), our case analysis indicates that the EcM

habit in Amanita could have evolved during the late Cretaceous (ca. 90 Ma;

Fig. 1.2b). The genus Amanita is a particularly interesting system to study the

evolution of EcM symbiosis. First, its close saprotrophic sister group is known

(Wolfe et al. 2012b); second, several Amanita genomes have been sequenced to

date, which may facilitate comparative assessments of genomic machineries between

mycorrhizal and non-mycorrhizal species (Nagendran et al. 2009; Wolfe et al. 2012a;

Hess and Pringle 2014; Hess et al. 2014; van der Nest et al. 2014); and third, the

growing number of biogeographic and phylogeographic studies (Oda et al. 2004;

Geml et al. 2006, 2008; Cai et al. 2014; Sánchez-Ramı́rez et al. 2015a, b, c; Zhang

et al. 2015) providing ample resources for phylogenetic inference.
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1.5 Tracking Species Richness Over Time and Space:

Diversification Rates

Speciation and extinction are the ultimate processes responsible for biodiversity

build-up (Hubbell 2001; Ricklefs 2004, 2007). One way to look at patterns of

variation in species diversity throughout evolutionary time is to measure the

amount of fossil species (Jablonski 2008; Liow 2010). However, not all taxonomic

groups have reliable fossil record. Alternatively, branching patterns in (well-

sampled) molecular phylogenies can be interpreted or modeled as diversification

processes (Barraclough and Nee 2001; Nee 2006; Ricklefs 2007; Purvis 2008).

Yule (1925) developed one of the first models of phylogenetic bifurcation. This

model described a process of pure birth (speciation) where lineages split indepen-

dently from one another at a constant rate—usually termed λ. Later, a model that

allowed both birth and death of lineages (the birth-death model) was introduced

(Raup 1985; Nee et al. 1992). This incorporated an additional parameter controlling

the rate at which lineages went extinct—usually termed μ. From then on, several

different macro-evolutionary models have been developed with the intention of

better describing plausible diversification scenarios (Moen and Morlon 2014).

Another way to assess how nodes in the phylogenetic tree are distributed relative

to the root or the tips is to plot the cumulative number of lineages as a function of

time (Nee 2006). This is known in the literature as a lineage-through-time (LTT)

plot (Fig. 1.2c). A different method is the γ-statistic, which measures the branching

patterns in molecular phylogenies numerically by quantifying the degree of devi-

ation from a constant-rate expectation (γ ¼ 0) (Pybus and Harvey 2000). Positive

values (γ > 0; significant if>1.96 at 95% confidence) indicate that nodes are closer

to the tips (“exponential” LTT plot), which reflect recent diversification bursts or

background extinction, whereas negative γ values (γ < 0; significant <�1.64 at

95% confidence) indicate that nodes in the tree are closer to the root (“logistic” LTT

plot), suggesting a rapid burst of diversification followed by a slowdown (Pybus

et al. 2002; Crisp and Cook 2009). In fact, the latter signature is a common pattern

observed in phylogenies from different plants and animals (McPeek 2008; Morlon

et al. 2010). These slowdown patterns can be attributed to many different scenarios,

including diversity-dependence due to niche saturation (Rabosky and Lovette 2008;

Phillimore and Price 2008; Etienne et al. 2012), time-dependency (Stadler 2011),

and protracted speciation (Etienne and Rosindell 2012).

Other models measure diversification rates as a function of character states, and

are particularly useful for biogeographic and trait-evolution analyses. They have

‘blossomed’ into a family of trait-dependent models that range from a basic binary

(two discrete states) model (BiSSE, Maddison et al. 2007), to multi-states (MuSSE,

FitzJohn 2012), to geographic states (GeoSSE, Goldberg et al. 2011), to continuous

traits (QuaSSE, FitzJohn 2010), all of which are implemented in likelihood and

Bayesian frameworks in the R package diversitree (FitzJohn 2012). The most

recent addition is the hidden-state speciation and extinction (HiSSE) model,

which attempts to correct for potentially unaccounted states that could also influ-

ence rates of diversification (Beaulieu and O’Meara 2016). Furthermore, complex
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mixtures of diversification rate-variation can also be detected using reversible-jump

MCMC algorithms, such as BAMM (Rabosky 2014).

Unsurprisingly, most empirical analyses have focused on patterns in plants and

animals (McPeek 2008; Butlin et al. 2009), leaving microorganisms understudied.

Nevertheless, diversification analyses can prove to be powerful approaches to

understand diversity dynamics though evolutionary time in groups with a poor

fossil record, such as fungi. Likewise, these approaches can help mycologists test

evolutionary hypotheses regarding the role of hosts, soil chemistry, geography, and

other underlying mechanisms driving fungal diversification.

A long-standing question in EcM evolution has been the high degree of func-

tional convergence and the high relative diversity of different EcM groups (Malloch

et al. 1980; Bruns et al. 1998; Hibbett et al. 2000; Halling 2001; Brundrett 2002).

Although most EcM fungi converge into a similar ecological niche, they are

scattered across the fungal tree of life occurring independently in at least 80 phylo-

genetic lineages (Tedersoo et al. 2010; Chap. 6). Substantial variation in species

diversity can be found among EcM lineages/clades; for instance, the /cortinarius

lineage comprises >2000 species, while only 1–4 species are found in the /

meliniomyces lineage and other helotialean groups (Tedersoo et al. 2010). If we

hypothesize that all EcM lineages/clades originated around the same time (i.e. have

the same clade age), and assume that they diversify at a constant rate, then we

would expect clades to have similar number of species (same clade size). In

contrast, observations of EcM richness pattern suggest otherwise; either that

(a) EcM clades originated at different times and have diversified under a constant

rate, or that (b) EcM clades originated within a similar time-frame but their

diversification rate is variable within and/or among clades, or that (c) both times

and rates vary. The relationship between clade age and clade size has been studied

and discussed broadly for plant and animal clades, with a more or less generalized

conclusion that both variables are decoupled, supporting variable diversification

rates among clades (Ricklefs 2006; Rabosky et al. 2012; Scholl and Wiens 2016).

Ryberg and Matheny (2012) showed that both ages and rates of diversification vary

among several EcM clades of Agaricales. They also tested the hypothesis of a

potential initial rapid radiation followed by a diversification slowdown tentatively

caused by rapid niche occupation, as shown to occur in other taxa (Rabosky and

Lovette 2008; Etienne et al. 2012). However, models of rate constancy could not be

rejected. If the degree of statistical power was adequate, this observation could

imply that diversification in these fungi is not driven primarily by niche speciali-

zation, which can happen where there is competition (Ackermann and Doebeli

2004), probably depending on other sources of speciation, such as allopatry or

parapatry (Ryberg and Matheny 2012). Compared to EcM fungi, AM fungi appear

to have much lower rates of diversification. While formal diversification rate

analyses are still lacking in AM fungi, it is possible to estimate the net diversifica-

tion rate based on an approximation by Magallón and Sanderson (2001). Based on a

clade size of 200–300 spp. (Öpik et al. 2013), a crown age of 460 Ma (Redecker

et al. 2000), and the assumption of a constant diversification rate, the

Glomeromycota would have a net diversification rate of about 0.01 speciation
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events per million years. Notably, this in 3–14 times lower than speciation rates in

some EcM agarics (Ryberg and Matheny 2012).

Other diversification studies in fungi focusing on trait or character state evolu-

tion have found support for different trends. For instance, a study in the

saprotrophic agaric Coprinellus found a correlation between higher rates of lineage
accumulation and trait diversification as evidence of an adaptive radiation linked to

the appearance of auto-digestion as a key innovation trait (Nagy et al. 2012).

Another study on gasteriod fungi showed that net diversification rates

(e.g. speciation–extinction) in several gasteroid lineages are elevated in comparison

to non-gasteroid lineages across the Agaricomyces (Wilson et al. 2011). While this

result was not significant, equilibrium frequency calculations that incorporated the

one-way (irreversible) transition of gasteromycetation suggested a trend toward

increased gasteroid diversity. Furthermore, after finding evidence of multiple

independent dispersal events from the New World to the Old World in the Caesar’s
mushrooms (Amanita sect. Caesareae), Sánchez-Ramı́rez et al. (2015a) tested the

hypothesis of increased diversification after the colonization of a new environment,

finding evidence that supports both higher speciation and extinction in New World

compared to Old World lineages. This suggests higher species turnover in the New

World, which is probably coupled with recent drivers of diversification such as

glacial cycles (Sánchez-Ramı́rez et al. 2015a, b).

Most of these studies have focused on isolated clades, making broader comparisons

difficult. Nevertheless, a recent initiative known as the Agaricales Diversification

(aDiv; https://sites.google.com/site/agaridiv2013/home) project seeks to generate a

LSU and rpb2 data set for about 3000 species of Agaricales. A primary goal of the

project is to explore diversification drivers within key ecological groups in the

Agaricales (Szarkándi et al. 2013). An order-level time-calibrated phylogeny can

offer a unique opportunity for testing broader hypotheses on EcM evolutionary

ecology.

1.6 Evolutionary Ecology

The field of evolutionary ecology is concerned with studying the evolution of

species interactions, specifically targeting biological or environmental processes

that influence changes in diversity over evolutionary time scales. An obvious step

towards understanding the evolution of modern ecological roles is to integrate

phylogenetic information with geographic and environmental data (Ricklefs

2004; Wiens and Donoghue 2004; Pinto-Sánchez et al. 2014), as well as community

assembly data (Webb et al. 2002; Cavender-Bares et al. 2009; Cadotte and Davies

2016). Having a historical view about biodiversity is crucial to advance our

understating of past and present-day patterns.

A well-recognized spatial pattern across the tree of life is the general latitudinal

diversity gradient (LDG), which shows that species richness is highest at tropical

latitudes and decreases towards the poles (Hillebrand 2004; Brown 2014). While
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this latitude-diversity relationship has been observed for many groups of plants and

animals over past decades, these patterns in soil fungi have only recently been

recognized. Studies have shown that the general LDG holds for soil fungi as a

whole (Tedersoo et al. 2014a), but for EcM fungi the diversity peaks at temperate

latitudes (Tedersoo and Nara 2010; Tedersoo et al. 2012, 2014a; Chap. 18). This

means that EcM species richness is higher in temperate regions, compared for

instance to tropical or boreal regions. From a macro-evolutionary perspective,

processes such as speciation, extinction, and dispersal are the ultimate contributing

factors to the LDG (Mittelbach et al. 2007). Recent studies based on phylogenetic

and ecological data have linked higher species richness in the temperate region to

higher rates of diversification. For example, Kennedy et al. (2012) found that a

single temperate clade in the genus Clavulina had 2.6 times higher speciation rate

that the rest of the group, which was inferred to be mainly tropical. Sánchez-

Ramı́rez et al. (2015c) used the time-calibrated phylogeny of Amanita sect.

Caesareae and continuous geographic data to test for the role of latitude as a driver
of diversification. Model testing, together with continuous trait evolution, suggest

that lineages diversify at a faster rate at temperate latitudes compared to tropical

climate, supporting the findings of Kennedy et al. (2012). Further support has come

from a study in the genus Russula that reported overall higher net diversification

rates in extra-tropical lineages with continual transitions between temperate and

tropical environments (Looney et al. 2016). In the light of the growing evidence in

favor of higher rates of diversification in the temperate region, it would be inter-

esting to test if these bouts of temperate diversification occurred simultaneously

during the Miocene cooling trend that coincided with orogenic activity around the

globe and an increase in dominance of EcM plants (Askin and Spicer 1995; Potter

and Szatmari 2009; Chap. 20). Until now, these studies have focused on geographic

traits, either discrete or continuous, but studies in other groups (e.g. amphibians)

have shown how climatic data can be coupled with comparative phylogenetic

methods to look at how ecological niches evolve in relation to diversification

processes (Pyron and Wiens 2013).

Macro-ecological studies also indicate that other groups of fungi have particular

patterns of diversity that vary, not only with respect to latitude, but also with respect

to other environmental factors such as temperature or precipitation (Arnold and

Lutzoni 2007; Öpik et al. 2013; Tedersoo et al. 2014a; Treseder et al. 2014; Davison

et al. 2015). For instance, compared to EcM fungi, AM and endophytic fungi appear

to be more diverse in tropical and subtropical regions, and their communities seem

to be more differentiated (Arnold 2007; Arnold and Lutzoni 2007; Öpik et al.

2013). A similar pattern rises for fungal pathogens and saprotrophs (Tedersoo

et al. 2014a). Both differences in diversity patterns across fungal taxa, as well as

differences in their ecological modes, might reflect a historical relationship with

their ancestral ecological niche. In spite of heavy criticism about sampling,

Treseder et al. (2014) found support to the hypothesis that tropical environments

tend to harbor older taxa, compared to younger taxa that tend to reside at more

temperate ones.
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Another topic of interest regarding evolutionary ecology of mycorrhizal fungi is

the co-evolution of host associations. While AM fungi are obligate mutualists with a

wide range of hosts (Giovannetti and Sbrana 1998; Bonfante and Genre 2010), EcM

fungi can be either generalists or specialists (Molina et al. 1992; Bruns et al. 2002),

some of which may be potentially facultative (Baldrian 2009). Examples of high

specificity in EcM associations are interactions between certain fungi and myco-

heterotrophic plants (Bidartondo and Bruns 2005; Bidartondo 2005), the bolete genus

Suillus and members of the Pinaceae (Kretzer et al. 1996; Bidartondo and Bruns

2005; Nguyen et al. 2016), and alder-associated mycobiota (Tedersoo et al. 2009;

Kennedy et al. 2011, 2015; Põlme et al. 2013). Studies in some of these systems can

provide insights into the co-evolution of plant-fungal interactions. High degree of

symbiont affinity in the Monotropoideae (Ericaceae) has been evidenced by unique

congeneric associations among different myco-heterotrophic plant lineages

(Bidartondo and Bruns 2002). Waterman et al. (2011) studied how pollinators and

symbionts affected speciation, coexistence, and distribution in orchid species. They

show that shifts in symbiont partners are important for plant coexistence, but not for

speciation, as most closely related species tend to have the same EcM partners

(Waterman et al. 2011, 2012). Given that specific EcM and bacterial communities

can be found in Alnus-dominated forests, several studies have focused on how the

natural history of the host has affected the distribution of the symbionts. Kennedy

et al. (2011) compared community assemblages in different Alnus-dominated loca-

tions in Mexico and other locations in the Americas. They found a striking similarity

in the composition of MOTUs between the different locations, giving support to the

hypothesis of host-fungal co-dispersal. Similarly, Põlme et al. (2013, 2014) found

that the evolutionary history of Alnus species had a strong impact on EcM and

bacterial (Frankia) community structure.

Historical biogeographic analyses have also evidenced host co-dispersal based

on phylogenetic and ASR data (Matheny et al. 2009; Wilson et al. 2012; Sánchez-

Ramı́rez et al. 2015a). A number of studies have focused on evolutionary transitions

between gymnosperm and angiosperm hosts, with the aim of investigating ancestral

host preferences in EcM fungi. A period of rapid speciation in Leccinum has been

associated to different host changes from an Angiosperm ancestor (den Bakker

et al. 2004). Also, Matheny et al. (2009) found that members of the EcM family

Inocybaceae were ancestrally associated to Angiosperms and later switched to

members of the Pinaceae. Similar patterns have been observed in the

Hysterangiales (Hosaka et al. 2008), the truffle family Tuberaceae (Bonito et al.

2013), as well as in gasteroid boletes (Sclerodermatineae) (Wilson et al. 2012).

Ryberg and Matheny (2012) showed some support for older EcM agaric clades

(e.g. Hygrophorus) being ancestrally associated with Pinaceae hosts, whereas

younger clades (e.g. Inocybaceae and Cortinarius) were ancestrally associated

with Angiosperms.
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1.7 Methodological Biases and Caveats

As a word of caution, we point out a number of biases and caveats, some that can

arise through the application of specific methodology, and others that are inherent

of mycological fieldwork and fungal biology in general. We emphasize that some of

these points should be considered when making phylo-/biogeographic inferences or

interpretations of observed patterns.

Mycorrhizal fungi spend most of their life cycle dwelling in the rhizosphere

underground. EcM fungi, for instance, only produce fruiting bodies (on which

morpho-taxonomy is based on) during a narrow time-frame (e.g. one or two

months). Also, fruiting bodies decay rather quickly, which can further narrow the

observational window. Other EcM groups such as members of the Sebacinales or

Thelephorales are rarely collected in the field, but have been found to be quite

abundant underground (Gardes and Bruns 1996; Dahlberg 2001; Tedersoo et al.

2006; Porter et al. 2008). AM fungi are only known to reproduce asexually, which

can complicate morphological species delimitations and sampling strategies

(Helgason and Fitter 2009). These limitations can have implications for fungal

diversity assessments in general, but specially in a geographic context. Probably

due to logistic reasons and bureaucracy in certain regions, fungal taxa from

different geographic locations have been studied disproportionately. Given that

significantly more biodiversity research is conducted in North America and Europe

(Wilson et al. 2016b), mycorrhizal fungi from these regions (most of the times in

temperate ecosystems) have been sampled and studied more often than others

(Dahlberg 2001; Dickie and Moyersoen 2008). Historically, many more fungal

biodiversity surveys (Mueller et al. 2007) and genetic analyses (Douhan et al. 2011)

have been conducted in temperate regions than in tropical ones. This systematic

sampling bias can thus generate gaps in our understanding of the distribution of

fungal taxa, which can have profound effects in the proposition and assessment of

biogeographic hypotheses.

Human-mediated dispersal is also well documented in fungi. In particular, AM

and EcM fungi can easily travel with soil or roots of trees that have been

translocated for reforestation practices, food production, or as ornamental plants

(Dunstan et al. 1998; Vellinga et al. 2009). Many of them are able to invade and

spread in non-native habitat (Pringle et al. 2009). These events can also introduce

noise in biogeographic inference. Nevertheless, long-distance dispersal is also a

natural process by which spores travel long distances and establish in distant

locations (e.g. Moyersoen et al. 2003; Bonito et al. 2013; Geml et al. 2011).

Reliable data on host association is often unavailable for many mycorrhizal

species, which can directly affect studies on host coevolution. Accurately identify-

ing hosts can be tedious if done through inoculation studies, or misleading if done in

the field. While the most straight-forward way to identify a host is by molecular

means (Muir and Schl€otterer 1999; Sato et al. 2007; Wilson et al. 2007), this step is

not done routinely. This also concerns the correct and detailed annotation of

sequences deposited in GenBank, which often lacks isolation source data, including
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geographic location and host (Vilgalys 2003; Bidartondo et al. 2008; Tedersoo et al.

2011). Establishing such connections is critical to effectively investigate how

photobionts shape biogeographic patterns in fungi.

Phylogenetic analyses are known to be subject to sampling issues. For instance,

the accuracy in dated molecular phylogenies strongly depends on taxonomic

sampling (Heath et al. 2008), in particular for clades used for fossil-calibration

(Linder et al. 2005). The shape of a phylogenetic tree can change significantly if the

sampling is non-random or incomplete, which is often the case in fungal phylog-

enies (Hibbett et al. 2011; Ryberg and Matheny 2011; Hinchliff et al. 2015),

affecting the interpretation of diversification processes (Pybus and Harvey 2000;

Pybus et al. 2002; Ryberg and Matheny 2011). Most models for ASR are also

susceptible to sampling, as state or location transition probabilities will tend to be

more accurate in better sampled phylogenies. It is also unclear how robust models

including cladogenetic processes are to missing branching events in the tree.

BiSSE-type analyses have also undergone scientific scrutiny for their high false-

positive rates due to phylogenetic pseudo-replication (Maddison and FitzJohn

2015; Rabosky and Goldberg 2015), and issues with the size of phylogenetic

trees (Davis et al. 2013). Many of these issues can be controlled for by doing

simulations (e.g. Rabosky and Goldberg 2015), or by applying models that directly

account for the issues (e.g. HiSSE, Beaulieu and O’Meara 2016). Similarly,

implementations of other models, such as BAMM have also been critiqued

(Moore et al. 2016). Finally, although phylo-community methods are appealing

approaches to answer many questions about mycorrhizal (and fungal/microbial)

biogeography, most of the species-level data comes from ITS sequences, which are

often problematic to align over distantly related taxonomic groups.

1.8 Conclusions and Future Directions

For about a decade, fungal (and microbial) biogeography has been regarded as a

young, emerging field (Martiny et al. 2006; Lumbsch et al. 2008; Douhan et al.

2011). Nonetheless, it is clear that a slow but steady body of knowledge is amassing

around our understanding of the dimensions of fungal diversity. This includes the

notion that the ‘everything-is-everywhere’ paradigm does not hold generally true,

and that an historical perspective is necessary to understand the diversity of any

given area (Peay et al. 2010a, 2016; Peay and Matheny 2016).

The steady stream of sequence data promises to supply us with information to

solve many of the questions on fungal biogeography. However, most sequences

come from the ITS region, which is difficult to use in wider taxonomic contexts, and

the necessary meta-data for studies of biogeography and host associations are often

lacking. Some of the major challenges relate to accurate and biologically meaning-

ful species delimitations, as well as the generation of robust phylogenies for

molecular dating and testing biogeographic hypothesis. Genomic initiatives

(e.g. Kohler et al. 2015) and cheaper sequencing (i.e. next-generation sequencing)
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will undoubtedly provide unprecedented molecular resources for phylogenomics,

that together with better models, promise to solve many of the current downfalls.

Although there are only a handful of studies about diversification and evolutionary

ecology of fungi (many of which are focused on EcM symbioses), results seem to be

consistent with biogeographic scenarios that point to recent high diversification rates

in temperate regions, compared to more ancient and historically conserved tropical

patterns (Kennedy et al. 2012; Treseder et al. 2014; Sánchez-Ramı́rez et al. 2015c;

Looney et al. 2016). We envision future phylogeny-based studies incorporating more

ecological data (e.g. physiological, climatic, environmental, and geographic traits)

and future meta-barcoding-based studies incorporating more phylogenetic data. The

first point could be achieved, in part, by making use of geographic information

system resources, such as WorldClim (http://www.worldclim.org), while the second

could be achieved by implementing supertree approaches (e.g. Beaulieu et al. 2012;

Qian and Jin 2016). With regards to EcM phylogeography, there is virtually no study

to date (Google searched on Oct. 18, 2016) that has used geographic-coordinate-

based diffusion models to infer ancestral distribution ranges in fungi. Similarly, there

are very few studies that have applied palaeo-distribution modeling to infer refugial

areas during the last glacial maximum (Sánchez-Ramı́rez et al. 2015b; Feng et al.

2016), in spite of its great potential to understand EcM population dynamics during

the last tens of thousands of years.
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Põlme S, Bahram M, Kõljalg U, Tedersoo L (2014) Global biogeography of Alnus-associated
Frankia actinobacteria. New Phytol 204:979–988

Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, Duran D, Hazell S et al (2006) Sequence-

based species delimitation for the dna taxonomy of undescribed insects. Syst Biol 55:595–609

Porter TM, Skillman JE, Moncalvo J-M (2008) Fruiting body and soil rDNA sampling detects

complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-

dominated forest plot in southern Ontario. Mol Ecol 17:3037–3050

Potter PE, Szatmari P (2009) Global Miocene tectonics and the modern world. Earth Sci Rev

96:279–295
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Szarkándi GJ, Dima B, Kocsubé, S, Vágv€olgyi C, Papp T, Nagy LG (2013) The ADiv project:

analyzing rates of diversification in the Agaricales. Presented at the joint mycological society

of America and American phythopathology society meeting, Austin

Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399:648

Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000)

Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005) Perithecial ascomycetes from the

400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia

97:269–285

Taylor JW, Turner E, Pringle A, Dettman J, Johannesson H (2006) Fungal species: thoughts on

their recognition, maintenance and selection. In: Gadd GM, Watkinson SC, Dyer PS (eds)

Fungi in the environment. Cambridge University Press, Cambridge, pp 313–339

Taylor TN, Krings M, Taylor EL (2014) Fossil fungi. Academic, London

Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in

ectomycorrhizal fungi. New Phytol 185:351–354

Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and

novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99
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Větrovský T, Kolařı́k M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a

viable alternative molecular marker for the analysis of environmental fungal communities. Mol

Ecol Resour 16:388–401

Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:4–5

Vilgalys R, Sun BL (1994) Ancient and recent patterns of geographic speciation in the oyster

mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. PNAS

91:4599–4603

Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V et al (2011) The

effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat

177:E54–E68

Waterman RJ, Klooster MR, Hentrich H, Bidartondo MI (2012) Species interactions of

mycoheterotrophic plants: specialization and its potential consequences. In: Merckx VSFT

(ed) Mycoheterotrophy. Springer, New York, pp 267–296

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and comunity ecology.

Annu Rev Ecol Syst 33:475–505

Welch J, Bromham L (2005) Molecular dating when rates vary. Trends Ecol Evol 20:320–327

Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in

flowering plants. Annu Rev Ecol Syst 30:421–455

Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods.

Proc R Soc B 262:197–204

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal

ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ

(eds) PCR protocols. Elsevier, New York, pp 315–322

Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends

Ecol Evol 19:639–644

Will K, Mishler B, Wheeler Q (2005) The perils of DNA barcoding and the need for integrative

taxonomy. Syst Biol 54:844–851

36 S. Sánchez-Ramı́rez et al.



Wilson AW, Hobbie EA, Hibbett DS (2007) The ectomycorrhizal status of Calostoma
cinnabarinum determined using isotopic, molecular, and morphological methods. Can J Bot

85:385–393

Wilson AW, Binder M, Hibbett DS (2011) Effects of gasteroid fruiting body morphology on

diversification rates in three independent clades of fungi estimated using binary state speciation

and extinction analysis. Evolution 65:1305–1322

Wilson AW, Binder M, Hibbett DS (2012) Diversity and evolution of ectomycorrhizal host

associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol 194:1079–1095

Wilson AW, Hosaka K, Mueller GM (2016a) Evolution of ectomycorrhizae as a driver of

diversification and biogeographic patterns in the model mycorrhizal mushroom genus

Laccaria. New Phytol. doi:10.1111/nph.14270

Wilson KA, Auerbach NA, Sam K, Magini AG, Moss ASL, Langhans SD et al (2016b) Conser-

vation research is not happening where it is most needed. PLoS Biol 14:e1002413

Wolfe JA (1978) A paleobotanical interpretation of tertiary climates in the northern hemisphere:

data from fossil plants make it possible to reconstruct tertiary climatic changes, which may be

correlated with changes in the inclination of the earth’s rotational axis. Am Sci 66:694–703

Wolfe BE, Pringle A (2012) Geographically structured host specificity is caused by the range

expansions and host shifts of a symbiotic fungus. ISME 6:745–755

Wolfe BE, KuoM, Pringle A (2012a) Amanita thiersii is a saprotrophic fungus expanding its range
in the United States. Mycologia 104:22–33

Wolfe BE, Tulloss RE, Pringle A (2012b) The irreversible loss of a decomposition pathway marks

the single origin of an ectomycorrhizal symbiosis. PLoS One 7:e39597

Wu QX, Mueller GM, Lutzoni FM, Huang YQ, Guo SY (2000) Phylogenetic and biogeographic

relationships of eastern Asian and eastern North American disjunct Suillus species (fungi) as
inferred from nuclear ribosomal RNA ITS sequences. Mol Phylogenet Evol 17:37–47

Xiang QY, Soltis DE, Soltis PS, Manchester SR, Crawford DJ (2000) Timing the eastern Asian-

eastern North American floristic disjunction: molecular clock corroborates paleontological

estimates. Mol Phylogenet Evol 15:462–472

Yang Z (2015) Program BPP for species tree estimation and species delimitation. Curr Zool

61:854–865

Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. PNAS

107:9264–9269

Yang Z, Rannala B (2014) Unguided species delimitation using dna sequence data from multiple

loci. Mol Biol Evol 31:3125–3135

Yu Y, Harris AJ, Blair C, He X (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool

for historical biogeography. Mol Phylogenet Evol 87:46–49

Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr. JC Willis,

FRS. Philos Trans R Soc Lond B 213:21–87

Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in

global climate 65 Ma to present. Science 292:686–693

Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with

applications to phylogenetic placements. Bioinformatics 29:2869–2876

Zhang P, Tang L-P, Cai Q, Xu J-P (2015) A review on the diversity, phylogeography and

population genetics of Amanita mushrooms. Mycology 6:1–8

Zhang C, Stadler T, Klopfstein S, Heath TA, Ronquist F (2016) Total-evidence dating under the

fossilized birth–death process. Syst Biol 65:228–249

Zhao R-L, Zhou J-L, Chen J, Margaritescu S, Sánchez-Ramı́rez S, Hyde KD et al (2016) Towards

standardizing taxonomic ranks using divergence times – a case study for reconstruction of the

Agaricus taxonomic system. Fungal Divers 78:239–292

Zink RM, Blackwell-Rago RC, Ronquist F (2000) The shifting roles of dispersal and vicariance in

biogeography. Proc R Soc B 267:497–503

Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In:

Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166

1 Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity. . . 37

http://dx.doi.org/10.1111/nph.14270

	Chapter 1: Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity and Evolution
	1.1 Introduction
	1.2 Barcoding, Species Delimitation, and the Need for Robust Phylogenies
	1.3 Reconstructing the Geographic Past: Phylo- and Biogeography
	1.4 Molecular Dating and the Fossil Record
	1.5 Tracking Species Richness Over Time and Space: Diversification Rates
	1.6 Evolutionary Ecology
	1.7 Methodological Biases and Caveats
	1.8 Conclusions and Future Directions
	References


