
An Efficient Method for Time Series Join on Subsequence
Correlation Using Longest Common Substring Algorithm

Vo Duc Vinh1(✉), Nguyen Phuc Chau1, and Duong Tuan Anh2

1 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
voducvinh@tdt.edu.vn, 51303240@student.tdt.edu.vn

2 Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology,
Ho Chi Minh City, Vietnam

dtanh@cse.hcmut.edu.vn

Abstract. Joining two time series on subsequence correlation provides useful
information about the synchronization of the time series. However, finding the
exact subsequence which are most correlated is an expensive computational task.
Although the current efficient exact method, JOCOR, requires O(n2lgn), where n
is the length of the time series, it is still very time-consuming even for time series
datasets with medium length. In this paper, we propose an approximate method,
LCS-JOCOR, in order to reduce the runtime of JOCOR. Our proposed method
consists of three steps. First, two original time series are transformed into two
corresponding strings by PAA transformation and SAX discretization. Second,
we apply an algorithm to efficiently find the longest common substrings (LCS)
of two strings. Finally, the resulting LCSs are mapped back to the original time
series to find the most correlated subsequence by JOCOR method. In comparison
to JOCOR, our proposed method performs much faster while high accuracy is
guaranteed.

Keywords: Time series · Subsequence join · Longest common substring ·
Correlation coefficient

1 Introduction

Joining two time series on subsequence correlation is considered as a basic problem in
time series data mining and appears in many practical applications such as entertainment,
meteorology, economy, finance, medicine, and engineering [2]. Assume that we have
two time series representing the runoffs at the two measurement stations in Mekong
River, Vietnam as in Fig. 1. Meteorologists may concern about in what periods the
runoffs of these two stations (in pink curve and dotted curve in Fig. 1) are similar.
Subsequence join can bring out some useful information about the runoffs at different
stations in the same river by finding subsequences which are most correlated based on
some distance function (see the red (bold) subsequence in Fig. 1). Moreover, this
approach can be extended easily to find all pairs of subsequences from the two time
series that are considered similar. Thanks to these resultant subsequences, meteorolo‐
gists can predict about the runoff of the river in future.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
P. Cong Vinh et al. (Eds.): ICCASA 2016, LNICST 193, pp. 121–131, 2017.
DOI: 10.1007/978-3-319-56357-2_13

Fig. 1. Two time series of the runoff at the two stations in Mekong River, Vietnam. (Color figure
online)

The subsequence join over time series can be viewed in different aspects. The first
view is joining two time series based on their timestamps [8]. This approach does not
carry out any similarity comparison because it just concerns about the high availability
of timestamps and ignores the content of time series data. The second view of subse‐
quence join is based on a nested-loop algorithm and some distance functions like Eucli‐
dian distance or Dynamic Time Warping [6, 7]. This joining approach returns all pairs
of subsequences drawn from two time series that satisfy a given similarity threshold.
This approach has some disadvantages such as time consumption because distance
function is called many times over a lot of iterations. Moreover, the threshold for deter‐
mining the resulting sets needs to be given by user. To reduce the runtime for nested-
loop algorithm, some works tend to approximately estimate the similarity between two
time series by dividing time series into segments. In this approach, Y. Lin et al. [6]
introduced solutions for joining two time series based on a non-uniform segmentation
and a similarity function over a feature-set. Their method is not only difficult to imple‐
ment but also requires high computational complexity, especially for large time series
data. To avoid these drawbacks, the work in [7] proposed joining based on important
extreme points to segment time series. And then, the authors applied Dynamic Time
Warping function to calculate the distance between two subsequences. The resulting
sets are determined based on a threshold given from user. Although this method executes
very fast, it may suffer some false dismissals because it ignores some data points when
shifting the sliding window several data points at a time.

A recent work on subsequence join proposed by Mueen et al. in 2014 [2] can find
the exact correlated subsequence. Mueen et al. introduced an exhaustive searching
method, JOCOR, for discovering the most correlated subsequence based on maximizing
Pearson’s correlation coefficient in two given time series. Although the authors incor‐
porated several speeding-up techniques to reduce the complexity from O(n4) to O(n2lgn),
where n is the length of two time series, the runtime of JOCOR is still unacceptable even
for many time series datasets with moderate size. For example, running JOCOR on the
input time series with length of 40000 data points will take more than 12 days to find
the resulting subsequence. Furthermore, in [2], Mueen et al. also proposed an

122 V.D. Vinh et al.

approximate method, α-approximate-JOCOR. This algorithm finds the nearly exact
correlation subsequence by assigning the step size a value greater than one in each
iteration depending on datasets. A natural question arises as to what reasonable value
for step size. This is like a blind search.

To improve the time efficiency of JOCOR algorithm, in this work, our proposed
method combines PAA dimensionality reduction, SAX discretization and an efficient
Longest Common Substring algorithm to find the candidates of the most correlated
subsequence before applying the JOCOR algorithm to post-process the candidates. The
preprocessing helps to speed-up the process of finding the most correlated subsequence
without causing any false dismissals. The experiment results demonstrate that our
proposed method not only is more accurate than α-approximate-JOCOR but also
achieves the high accuracy, even 100%, when being compared to exact JOCOR while
the time efficiency is much better.

2 Background

2.1 Basic Concepts

Definition 1. A time series T = t1, t2,…, tn is a sequence of n data points measured at
equal periods, where n is the length of the time series. For most applications, each data
point is usually represented by a real value.

Definition 2. Given a time series T = t1, t2,…, tn of length n, a subsequence T[i: i + m
−1] = ti, ti+1,…, ti+m−1 is a continuous subsequence of T, starting at position i and length
m (m ≤ n).

This work aims to approximately join two time series T1 and T2 of length n1 and n2,
respectively. The problem of time series join was defined by Mueen et al. [2] which is
described as follows.

Problem 1. (Max-Correlation Join): Given two time series T1 and T2 of length n1 and
n2, respectively (assume n1 ≥ n2), find the most correlated subsequences of T1 and T2
with length ≥ minlength.

The definition for Problem 1 can be extended to find α-Approximate join.

Problem 2. (α-Approximate Join): Given two time series T1 and T2 of length n1 and
n2, respectively, find the subsequences of T1 and T2 with length ≥ minlength such that
the correlation between the subsequences is within α of the most correlated segments.

When joining two time series, we refer to finding the most correlated subsequence
by calculating Pearson’s correlation coefficient. The correlation coefficient is defined as
follows.

C(x, y) =
1
n

n−1∑

i=0

(
xi − 𝜇x

𝜎x

)(
yi − 𝜇y

𝜎y

)
(1)

An Efficient Method for Time Series 123

where x and y are two given time series of equal length n, with average values μx and
μy, and standard deviations σx and σy, respectively.

The value of Pearson’s correlation coefficient ranges in [−1, 1]. Besides, the z-normal‐
ized Euclidean distance is also a commonly used measure in time series data mining. The
distance between two time series X = x1, x2,…, xn and Y = y1, y2,…, yn with the same length
n is calculated by:

d(x, y) =

√√√√
n∑

i=1

(x̂i − ŷi)
2 (2)

where x̂i =
1
𝜎x

(xi − 𝜇x) and ŷi =
1
𝜎y

(yi − 𝜇y)

Because we just pay attention to maximizing positive correlations and ignore the
negatively correlated subsequences, we can take advantage of the relationship between
Euclidian distance and positive correlation as follows.

C(x, y) = 1 −
dist2(x, y)

2n
(3)

In this work, we will take advantage of statistics for computing correlation coefficient
as follows.

C(x, y) =

∑
xy − n𝜇x𝜇y

n𝜎x𝜎y

(4)

d(x, y) =
√

2n(1 − C(x, y)) (5)

This approach brings us two benefits. Firstly, the algorithm just takes one pass to
compute all of these statistic variables. Secondly, it enables us to reuse computations
and reduce the amortized time complexity to constant instead of linear [2]. In this paper,
the above formulas will be used for computing correlation coefficient and z-normalized
Euclidian distance between two subsequences.

2.2 Symbolic Aggregate Approximation (SAX)

A time series T = t1…. tn of length n can be represented in a reduced w-dimensional
space as another time series D = d1…dw by segmenting T into w equally-sized segments
and then replacing each segment by its mean value di. This dimensionality reduction
technique is called Piecewise Aggregate Approximation (PAA) [4]. After this step, the
time series D is transformed into a symbolic sequence A = a1…aw in which each real
value di is mapped to a symbol ai through a table look-up. The lookup table contains the
breakpoints that divide a Gaussian distribution in an arbitrary number (from 3 to 10) of
equi-probable regions. This discretization is called Symbolic Aggregate Approximation

124 V.D. Vinh et al.

(SAX) [5] which is based on the assumption that the reduced time series have a Gaussian
distribution.

Given two time series Q and C of the same length n, we transform the original time
series into PAA representations, Q′ and C′, we can define lower bounding approximation
of the Euclidean distance between the original time series by:

DR
(
Q′, C′

)
=

√
n

w

√√√√
w∑

i=1

(q′

i
− c′

i
)

2 (6)

When we transform further the data into SAX representations, i.e. two symbolic
strings Q′′ and C′′, we can define a MINDIST function that returns the minimum distance
between the original time series of two words:

MINDIST(Q′′, C′′) =

√
n

w

√√√√
w∑

i=1

(dist(q′′

i
, c′′

i
)2 (7)

The dist() function can be implemented using a table lookup as shown in Table 1.
This table is for an alphabet a = 4. The distance between two symbols can be read off
by examining the corresponding row and column. For example, dist(a, b) = 0 and dist(a,
c) = 0.67.

Table 1. A look-up table used by the MINDIST function.

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

3 The Proposed Method

In Fig. 2 we presents our proposed method for joining two time series based on the
Pearson’s correlation coefficients of their subsequences. The process of time series join
consists of two main phases: (1) reducing the dimensionality of the two time series,
discretizing the reduced time series and (2) joining the discretized time series based on
a Longest Common Substring (LCS) algorithm. We will explain these two main phases.

3.1 Phase 1: Reducing the Dimensionality and Discretizing the Time Series

This phase consists of the following steps.

Step 1: Two original time series will be normalized by z-normalization. This normal‐
ization has two advantages. It helps our proposed method minimize the effect

An Efficient Method for Time Series 125

of noise and makes the whole dataset to fluctuate around x-axis while reserving
the shape of time series.

Step 2: After being normalized, the time series will be dimensionally reduced by
Piecewise Aggregate Approximation (PAA) transformation. PAA is chosen in
this work since it is an effective and very simple dimensionality reduction
technique for time series. In this work, the PAA compression rate will range
from 1/20 to 1/5 depending on each type of datasets.

Step 3: The z-normalized PAA representations of the two time series are mapped into
two strings of characters by applying Symbolic Aggregate Approximation
(SAX) discretization. Thus, we have transformed our original problem of
joining two long time series based on their most correlated subsequence into
the problem of finding the Longest Common Substring (LCS) of two given
strings.

In the next subsection, we will describe how to find the LCS of two strings efficiently.

3.2 Phase 2: Joining Two Time Series based on LCS Algorithm

This phase consists of the following steps.

Step 1: After discretizing two original time series, we get two strings, S1 corresponding
to time series T1 and S2 corresponding to time series T2. We apply the algorithm
of finding the Longest Common Substring (LCS) of the two strings S1 and S2.
Our LCS algorithm is an iterative approach which is based on a level-wise

Fig. 2. Outline of LCS-JOCOR.

126 V.D. Vinh et al.

search. The main idea of our LCS algorithm is that the k-character common
substrings are used to explore (k + 1)-character common substrings. The algo‐
rithm is described as follows:

(i) Find all unique single character strings in the first string S1.
(ii) Find the positions of each of these single character strings in the second

string S2.
(iii) Then check if we can extend any of these single characters into two (or

longer) character strings that are in common between the two strings.
Find the positions of all these common strings in the second string S2.
Repeat (iii) until we can not find any longer common substrings in the
two strings.

Note that in the above algorithm, we introduce two versions of finding LCS:
exact matching and approximate matching. Exact matching simply considers
the operator ‘=’ between two characters. In contrast, approximate matching
checks whether two compared characters equal or not depending on
MINDIST(.) function introduced at Subsect. 2.2.

Step 2: After executing the LCS algorithm successfully, we will have two resulting
substrings, one for exact matching and one for approximate matching. These
longest common substrings will be mapped back to get the corresponding
subsequences in the original time series. These subsequences are potentially
the most correlated subsequences when compared to other ones in the whole
time series.

Step 3: At the final step, we will apply JOCOR algorithm to calculate the Pearson’s
correlation coefficient and find the most correlated subsequence among the
candidate subsequences found in Step 2. The main idea of JOCOR is to reuse
the sufficient statistics for overlapping correlation computation and then prune
unnecessary correlation computation admissibly. The JOCOR algorithm is
described in details in [3].

4 Experimental Evaluation

We implemented all the methods in MATLAB and carried out the experiments on an
Intel(R) Core(TM) i7-4790, 3.6 GHz, 8 GB RAM PC. We will conduct two experiments.
First, we compare the performance of our proposed method to that of exact JOCOR on
three measurements: the correlation coefficient of resulting subsequence, the runtime of
algorithm and the length of the resulting subsequence. Second, we compare the perform‐
ance of our proposed method to that of α-approximate-JOCOR also on the three above
measurements.

4.1 Datasets

Our experiments were conducted over the datasets from the UCR Time Series Data
Mining archive [1] and from [2]. There are 10 datasets used in these experiments. The

An Efficient Method for Time Series 127

names and lengths of 10 datasets are as following: Power (29,931 data points), Koski-
ECG (144,002 data points), Chromosome (999,541 data points), Stock (2,119,415 data
points), EEG (10,957,312 data points), Random Walks (RW2 - 1,600,002 data points),
Ratbp (1,296,000 data points), LFS6 (180,214 data points), LightCurve (8,192,002 data
points), and Temperature (2,324,134 data points). The datasets may be categorized into
two types. The first type is that two long time series are from same source. In this case,
we divide the time series into two equal halves. The first subseries will be T1. The second
one will be T2. The second type is that two time series are from different sources. In this
case, time series data downloaded from UCR will be T1. Basing on T1, we randomly
generate the synthetic dataset T2 by applying the following rule:

xi = xi−1 ± |xi−1 − 𝜀| where 𝜀 =

∑6
i=1 xi

6

In the above formula, + or – is determined by a random process. Time series data T2
is generated after the correspondent dataset has been normalized; therefore, there is no
effect of noise in T2.

4.2 LCS-JOCOR Versus Exact JOCOR

When operating some task on very long time series, the response time is one of the most
challenging factors for researchers. In this experiment, we plan to compare the perform‐
ance of our proposed method with that of exact JOCOR. The performance of each
method is evaluated by three measurements: the maximum correlation coefficient of
resulting subsequence, the runtime of the method, and the length of the resulting subse‐
quence. Because the lengths of the resulting subsequences of the two methods are nearly
similar, we exclude them from our comparison.

From Table 2, with datasets Stock, Koski-ECG and Chromosome, our LCS-JOCOR
produced the same maximum correlation values as the exact JOCOR. In average of all
experiments, our maximum correlation coefficients reach 95% of JOCOR’s results.
Regarding the runtime, our method outperforms JOCOR for eight out of ten datasets.
Especially, with RW2 dataset, in the experiment with 15,000 data points, the runtime
of our method was more than 15,000 times faster than that of JOCOR. The differences
between the two runtimes of LCS-JOCOR and JOCOR are wider when the length of the
datasets increases. Nevertheless, with Stock and LightCurve datasets, JOCOR runs
slightly faster than our method. This is because the time series are undergone several
transformations without being really preprocessed.

4.3 LCS-JOCOR Versus α-approximate-JOCOR

In this experiment, we compare the performances of LCS-JOCOR to that of α-approx‐
imate-JOCOR introduced in [2]. We recorded three measurements: the length of the
resulting subsequence (Length), the runtime of algorithm (RT), and the maximum
correlation coefficient (MC). Firstly, we examined the performances on 8,000 data points
with the same setting as in [2]. For α-approximate-JOCOR, we conducted the

128 V.D. Vinh et al.

experiments at different α values (2, 8, 16, 32, 64), and then we took average of each
parameter. Table 3 presents experimental results for comparison.

With Power and Lightcurve datasets, LCS-JOCOR outperformed α-approximate-
JOCOR in all three measures, especially the runtime of LCS-JOCOR is remarkably
smaller. With datasets RW2, RATBP, and EEG, our method achieved the results
approximately equivalent to α-approximate-JOCOR. Our method did not perform well
on Chromosome and Stock datasets where we obtained the same MC but with greater
runtime and shorter length; however, the differences are insignificant.

In general, the results show that the runtime of LCS-JOCOR is smaller than that of
α-approximate-JOCOR for most datasets, the length of resulting subsequence and the

Table 2. Experimental results of LCS-JOCOR and JOCOR over 7 datasets (RT: runtime in secs;
MC: maximum correlation).

Dataset Length = 1000 Length = 4000 Length = 15000 Method
RT MC RT MC RT MC

Stock 8.86 1.00 490.02 0.9986 187.06 0.9637 LCS-
JOCOR

8.26 1.00 478.02 0.9986 >12 hs N/A JOCOR
RW2 0.06 0.79 17.29 0.9295 21.25 0.9511 LCS-

JOCOR
1.19 0.97 409.46 0.979 10460.6 0.9853 JOCOR

RATBP 0.37 0.97 0.15 0.9755 0.67 0.9947 LCS-
JOCOR

12.47 0.98 426.46 0.996 10197.8 0.9992 JOCOR
Power 0.70 0.87 64.11 0.9403 98.44 0.9403 LCS-

JOCOR
24.17 0.87 1675.3 0.9403 23882.8 0.9403 JOCOR

LSF6 0.11 0.97 2.32 0.9847 4.88 0.9947 LCS-
JOCOR

13.05 1.00 339.42 0.9968 8075.71 0.9981 JOCOR
Koski-ECG 3.63 1.00 182.93 0.996 317.09 0.9973 LCS-

JOCOR
8.47 1.00 508.61 0.996 7579.06 0.9973 JOCOR

EEG 1.65 0.88 5.30 0.9042 31.63 0.8852 LCS-
JOCOR

31.92 0.90 1793.4 0.908 >8 hs N/A JOCOR
Chromosome 11.34 1.00 230.26 0.9993 7378.49 0.9994 LCS-

JOCOR
9.80 1.00 220.12 0.9993 7174.64 0.9994 JOCOR

Temperature 0.29 0.74 0.80 0.4218 10364.5 0.6854 LCS-
JOCOR

25.07 0.97 696.10 0.9717 20823.5 0.9818 JOCOR
LightCurve 1.97 1.00 10.25 0.9998 4.14 0.9997 LCS-

JOCOR
7.57 1.00 435.46 0.9999 10439.0 1.0000 JOCOR

An Efficient Method for Time Series 129

value of Pearson’s correlation coefficient is nearly equivalent. This is because LCS-
JOCOR exploits dimensionality reduction and discretization to preprocess the two time
series before applying the efficient LCS algorithm to find the candidates of the most
correlated subsequence between the two time series while α-approximate-JOCOR jumps
k data points in each iteration without considering the characteristic features of the two
time series.

5 Conclusion and Future works

Subsequence join provides useful information about the synchronization of the time
series. Solving method to the problem can be used as an analysis tool for several domains.
In this paper, we proposed a new method, called LCS-JOCOR, to find approximate
correlated subsequence of two time series with acceptable time efficiency. The experi‐
mental results show that our method runs faster than JOCOR and α-approximate-JOCOR
while the accuracy of our approach is nearly the same as that of exact JOCOR, and higher
than that of the α-approximate-JOCOR. We attribute the high performance of our
method to the use of PAA to reduce the dimensionality of the two time series and the
LCS algorithm to speed up the finding of the most correlated subsequence. As for future
work, we intend to apply some more efficient LCS algorithm which is based on suffix
tree [9] to our LCS-JOCOR in order to improve further its time efficiency.

Acknowledgement. We would like to thank Mr. John, a member of Matlab forum, for
introducing some valuable ideas on the algorithm for finding LCS of two strings.

Table 3. Experimental results of LCS-JOCOR and α-approximate-JOCOR over 7 datasets.

Dataset Length Runtime (sec) MC Method
LightCurve 123 5 0.9999 LCS-JOCOR

106 747 0.9999 α-JOCOR (avg)
RW2 112 87 0.9860 LCS-JOCOR

116 821 0.9839 α-JOCOR (avg)
RATBP 100 0 0.9846 LCS-JOCOR

101 1003 0.9991 α-JOCOR (avg)
Power 216 1058 0.9923 LCS-JOCOR

204 1091 0.9919 α-JOCOR (avg)
EEG 105 41 0.8647 LCS-JOCOR

104 1858 0.8807 α-JOCOR (avg)
Chromosome 6788 1462 0.9998 LCS-JOCOR

6808 958 0.9998 α-JOCOR (avg)
Stock 4252 2578 0.9990 LCS-JOCOR

4250 797 0.9990 α-JOCOR (avg)

130 V.D. Vinh et al.

References

1. Keogh, E.: The UCR time series classification/clustering homepage (2015). http://
www.cs.ucr.edu/~eamonn/time_series_data/

2. Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence correlation. In:
Proceedings of ICDM 2014, pp. 450–459 (2014)

3. Chen, Y., Chen, G., Ooi, B.-C.: Efficient processing of warping time series join of motion
capture data. In: Proceedings of ICDE 2009, pp. 1048–1059 (2009)

4. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Dimensionality reduction for fast
similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

5. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series with
implications for streaming algorithms. In: Proceedings of 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

6. Lin, Y., McCool, Michael D.: Subseries join: a similarity-based time series match approach.
In: Zaki, Mohammed J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI),
vol. 6118, pp. 238–245. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13657-3_27

7. Vinh, V.D., Anh, D.T.: Efficient subsequence join over time series under dynamic time
warping. In: Król, D., Madeyski, L., Nguyen, N.T. (eds.) Recent Developments in Intelligent
Information and Database Systems. SCI, vol. 642, pp. 41–52. Springer, Cham (2016). doi:
10.1007/978-3-319-31277-4_4

8. Xie, J., Yang, J.: A survey of join processing in data streams. In: Data Streams. Advances in
Database Systems, vol. 31, pp. 209–236. Springer, US (2007)

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

An Efficient Method for Time Series 131

http://www.cs.ucr.edu/%7eeamonn/time_series_data/
http://www.cs.ucr.edu/%7eeamonn/time_series_data/
http://dx.doi.org/10.1007/978-3-642-13657-3_27
http://dx.doi.org/10.1007/978-3-319-31277-4_4

	An Efficient Method for Time Series Join on Subsequence Correlation Using Longest Common Substring A ...
	Abstract
	1 Introduction
	2 Background
	2.1 Basic Concepts
	2.2 Symbolic Aggregate Approximation (SAX)

	3 The Proposed Method
	3.1 Phase 1: Reducing the Dimensionality and Discretizing the Time Series
	3.2 Phase 2: Joining Two Time Series based on LCS Algorithm

	4 Experimental Evaluation
	4.1 Datasets
	4.2 LCS-JOCOR Versus Exact JOCOR
	4.3 LCS-JOCOR Versus α-approximate-JOCOR

	5 Conclusion and Future works
	Acknowledgement
	References

