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Abstract The behavior of a lipid membrane on mesoscopic scales is captured
unusually accurately by its geometrical degrees of freedom. Indeed, the membrane
geometry is, very often, a direct reflection of the physical state of the membrane. In
this chapter we will examine the intimate connection between the geometry and the
physics of fluid membranes from a number of points of view.We begin with a review
of the description of the surface geometry in terms of the metric and the extrinsic cur-
vature, examining surface deformations in terms of the behavior of these two tensors.
The shape equation describing membrane equilibrium is derived and the qualitative
behavior of solutions described.We next look at the conservation laws implied by the
Euclidean invariance of the energy, describing the remarkably simple relationship
between the stress distributed in the membrane and its geometry. This relationship
is used to examine membrane-mediated interactions. We show how this geometrical
framework can be extended to accommodate constraints—both global and local—as
well as additional material degrees of freedom coupling to the geometry. The conser-
vation laws are applied to examine the response of an axially symmetric membrane
to localized external forces and to characterize topologically nontrivial states. We
wrap up by looking at the conformal invariance of the symmetric two-dimensional
bending energy, and examine some of its consequences.
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1 Introduction

Bilayers of amphiphilic molecules form the essential component of all cellular mem-
branes, not only the plasma membrane enclosing the cell but also every membrane
contained within it. Under physiological conditions, this bilayer is a fluid along the
membrane; stretching is very costly, but it shears freely. By the 70s, it was begin-
ning to become clear that on mesoscopic scales, which are often the scales that are
most relevant physiologically and certainly the scales on which the global archi-
tecture comes into focus, the biochemical details of the membrane composition get
telescoped into a small number of material parameters. Indeed, the membrane mor-
phology itself is described surprisinglywell by the geometrical degrees of freedom of
a two-dimensional smooth surface. The membrane radius of curvature (∼20nm and
up) is large compared to the bilayer thickness ∼5nm. This is better than one could
have hoped. While these surfaces may be smooth, they are rarely simple, reflecting
the complex functions they play. To understand this morphological variety, it is nec-
essary to possess the appropriate geometrical language. For the most part, this was
understood by the mid-nineteenth century, to wit that two tensor fields characterize
the surface geometry: the metric marking distances along the surface and the extrin-
sic curvature quantifying how it bends along different tangent directions. The two
are not unrelated.

The physical behavior on mesoscopic scales is largely controlled by the bending
energy of this surface, proportional to a quadratic in the membrane extrinsic curva-
ture, Canham (1970); Helfrich (1973). For reviews, see Seifert and Lipowsky (1995);
Bassereau et al. (2014); Tu and Ou-Yang (2014). Significantly, this energy depends
only on the two fundamental tensors. What is more, modulo topology and boundary
conditions, to an unusually good first approximation it is also unique.

Because the energy is determined completely by the geometry, the distribution of
stress established along themembranemust in turn dependonly on the geometry. This
contrasts with the transverse distribution of stress across the membrane which does
depend sensitively on the molecular details of the bilayer, as well as its interaction
with water. But when we zoom out, these details contribute only to the constant of
proportionality in the bending energy. The role they play is to set the rigidity. In
this chapter, we review various aspects of the connection between the membrane
geometry and the physics shaping it. Of course, almost always, additional agents
need to be accommodated, and this direct connection gets modulated by the fields
describing them.

We first examine how the bending energy, not necessarily in equilibrium, responds
to deformations of the surface geometry (Sects. 2, 4). This turns on the behavior of
the two fundamental tensors under deformation. The shape equation describing the
surface geometry depends on the geometry through scalars constructed using these
two tensors. We will develop in parallel the description of the surface in terms of
its height above a plane. This representation is most useful when gradients in this
function are small. This allows us to understand the local behavior consistent with
membrane equilibrium.
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The energy possesses symmetries: even if we disguise the fact by parametrizing
the surface in terms of a height function, it is invariant under reparametrization—
as any meaningful description of a physical theory should be; however, the effect
of a tangential deformation of the surface is equivalent to a reparametrization of the
surface except—and this is important—where the surface terminates; this apparently
innocuous identification distinguishes the geometrical degrees of freedom from any
additional material degrees of freedom overlaying the surface. And it has its physical
consequences. Understanding how the metric and curvature behave under normal
deformations of the surface permits us to describe not only its approach to equilibrium
but also its behavior out of equilibrium.

The surface energy is obviously invariant under the Euclideanmotions of its three-
dimensional environment: translations and rotations. The bending energy of a sym-
metric fluid membrane is also scale invariant; this property of the two-dimensional
bending energy distinguishes it from its one-dimensional counterpart, or for that mat-
ter from higher dimensional generalizations. If it were not for a constraint fixing the
length, bending energywould tend to stretch a loop; a hypothetical three-dimensional
surface would collapse. In two dimensions, the bending energy is independent of
size. If this energy is isotropic, it turns out to be even invariant under the (angle pre-
serving) conformal transformations of three-dimensional space, a property of two-
dimensional surfaces that one could be forgiven for failing to anticipate (Sect. 7).
In particular, it is invariant under inversion in spheres. Two different, indeed very
different, geometries may possess identical bending energies. The energies may be
identical but the local stresses supporting these geometrieswill generally be different.

Each symmetry implies a conservation law. In particular, the translational (rota-
tional) invariance implies the existenceof a conserved stress (torque) tensor,Capovilla
and Guven (2002a) (see Sect. 5). It would not be an exaggeration to claim that the
recognition of the role of symmetry has been central in the development of physics
since the beginning of the 20th century. Improbable as it may appear from a traditional
biophysical point of view, fluid membranes on mesoscopic scales are no exception;
it could be argued that they provide a physical system par excellence supporting this
claim.

In an unadorned fluid membrane, the identification of tangential deformations
of the surface with reparametrizations implies constraints on the stresses associated
with each term in the Hamiltonian, whether or not the membrane happens to be
in equilibrium. We show how the stress tensor can be used to quantify the forces
mediated by themembrane geometry.We also showhow the conservation of the stress
tensor permits direct access to the physics of axially symmetric shapes. Conformal
invariance, happy accident or not, provides unexpected insight into the behavior of
membranes well outside the regime where perturbation theory is reliable; even when
the full symmetry is broken by constraints (Sect. 7).
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Section5 exploits extensively an adaptation of the calculus of variations intro-
duced by one of the authors, Guven (2004). This approach, exploiting the structure
equations describing the surface, provides a very direct construction of the stress
tensor. Surprisingly, as we show, one does not need to know how the metric or the
curvature respond to surface deformations to determine the approach to equilibrium.
We show how this approach can be tweaked to accommodate local constraints on
the geometry, and specifically a constraint on the metric. It also provides a natural
framework inwhich to examine interactionsmediated by themembrane aswell as the
boundary conditions on free edges. At the end of this section we present a comple-
mentary approach to the variational problem in which the equilibrium surface itself
is treated as an emergent quantity from the two fundamental tensors. This approach
exploits not the structure equations but the integrability conditions on these two
tensors which follow from these equations. Unexpectedly, this approach provides a
criterion for assessingmembrane stability, Guven andVázquez-Montejo (2013a). As
we will attempt to communicate, each of the different approaches provides valuable
insight into the underlying physics.

If the membrane consisted only of lipids, and they all responded in the same way,
there would not be a lot to say. Intracellular membranes, however, display striking
morphological diversity: contrast the spherical nuclear envelope punctured by pores
with the endoplasmic reticulum (ER); or indeed the laminar stacks forming the rough
ER with the tubular network forming its smooth counterpart. Then there are the
flattened cisternae of the Golgi apparatus, as well as the convoluted inner membrane
of a mitochondrion. And each membrane morphology is exquisitely adapted to its
function. The downside is that life-threatening physiological malfunctions can all
too often be traced to flaws in assembly.

What lends a membrane its specific morphology is the modulation of the behavior
of the fluid bilayer by local or global constraints or biases, localized external forces,
its composition and, as increasing recognized in recent years, its interactions with
proteins or other macromolecules, themselves very often assembled into one or two-
dimensional semi-flexible structures (for example, see Sens et al. 2008;Amoasii et al.
2013; Terasaki et al. 2013). Remarkably, on the scales that interest us, this additional
structure is captured by fields or by some effective one or two-dimensional elastic
structure interacting with the surface geometry. To understand how these interactions
shape a membrane, it is invaluable to think in terms of the stresses they induce in the
membrane.Wewill illustrate this point using a number of physiologically relevant but
simple examples. We examine the forces constricting a membrane. We also examine
the forces and torques, topological in origin, that sculpt the morphology of a toroidal
vesicle, as well as the distribution of stress associated with them. Here nontrivial
topology arises without the intervention of any exterior agent. These stresses are
contrasted with their counterparts in a topologically spherical vesicle whose poles
are pushed together by an external agency.

Before we begin, we need to introduce a few geometrical ideas on which the
framework is built.
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2 Surface Geometry: Intrinsic Versus Extrinsic Elements

We begin with a quick summary of a few essential geometrical concepts. This is
not the place to present all of the details which would require a monograph in its
own right. The interested reader can consult, Do Carmo (1976); Spivak (1999) or,
for a less technical treatment, Kreyszig (1991). Some of this material is also covered
nicely by Deserno in one of his excellent reviews (most recently, Deserno 2015).
The reader may wish to glide over this section. It will, however, serve to establish
notation and conventions.

We describe the surface parametrically in terms of a mapping into three-
dimensional Euclidean space, � : (u1, u2) → X(u1, u2), where u1 and u2 are any
two local coordinates. Our description of Euclidean space will be Cartesian. The
tangents to the coordinate curves associated with this parametrization form two sur-
face tangent vectors at every point1: ea = ∂aX, a = 1, 2. These two vectors, in turn,
define the surface (unit) normal vector n. Now any vector field on the surface can be
decomposed with respect to the basis vectors {e1, e2, n}.
The two fundamental tensors: By the mid 19th century, it was already recognized
that two surface tensor fields—constructed using derivatives of X—describe the sur-
face geometry completely. The first of these is the metric tensor induced on the
surface from its Euclidean environment, whose components with respect to the para-
metrization are given by the Euclidean scalar product2

gab = ea · eb . (1)

Ifds2 = dx · dx is the line element in three-dimensionalEuclidean space, itspullback

to the surface is given by ds2
∣
∣
∣
�

= ea · eb duadub. Thus gab quantifies distances

between points on the surface and thus characterizes what we think of as its intrinsic
geometry. In particular, the area element on the surface is given by d A = √

g du1du2,
where g = det gab = |e1 × e2|2.3 If g �= 0, gab has an inverse gab: gacgcb = δab. If
� is a scalar function on the surface, then gab∂a�∂b� is another scalar. Indices
are raised (lowered) using gab (gab). Let V = V aea be a surface vector field4; the
metric allows us to associate a covector field Va with V a through the relationship,
Va = gabV b.

1We abbreviate ∂a = ∂aX/∂ua .
2We are interested specifically in surface tensors and the scalars constructed out of them. Con-
sider a surface reparametrization (u1, u2) → (ū1(u1, u2), ū2(u1, u2)). Define J āb = ∂ūa/∂ub,
with inverse Jāc : J āc Jb̄c = δā b̄. Tensor fields transform under reparametrization by matrix multi-
plication on each index with the Jacobian matrix of the reparametrization or its inverse. In particu-
lar, the metric transforms by ḡāb̄ = Jāc Jb̄

dgcd . Note that the three Cartesian embedding functions
X = (X1, X2, X3) are each scalars under reparametrization: X̄1(ū1, ū2) = X1(u1, u2), etc.
3Under reparametrization,

√
ḡ = detJ−1√g.

4It is simple to show that V a transforms like a vector under reparametrization.
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The covariant derivative ∇a compatible with gab coincides with the projection
onto the tangent directions of the derivative along the tangent curves, Do Carmo
(1992). If V = V aea , then its covariant derivative, a surface tensor, is given by

∇aV
b = eb · ∂aV = ∂aV

b + �b
acV

c , (2)

where�b
ac = eb · ∂aec is symmetric in its lower indices by construction. It is straight-

forward to show that �c
ab can be expressed entirely in terms of gab and its derivatives:

�b
ac = 1

2
gbd(∂agcd + ∂cgad − ∂dgac) , (3)

identifying it, not coincidentally, with the Christoffel connection. The action of ∇a

on covectors as well as higher order tensor fields follow from the identification
∇a� = ∂a� on a scalar and the product (Leibnitz) formula for differentiation. Note
that the identity ∇agbc = 0 follows.

An intrinsic measure of curvature is provided by the Riemann tensor, which quan-
tifies the failure of covariant derivatives to commute. For a covector field Va , the Ricci
identity

(∇a∇b − ∇b∇a)Vc = Rabc
d Vd , (4)

defines the Riemann tensor,Rabc
d . It is constructed out of�a

bc and its first derivatives,
Do Carmo (1976).

In the familiarMonge representation, the surface is described in terms of its height
h(r) above a plane. If the plane is itself parametrized by Cartesian coordinates,
r = x i + y j, one has e j = (δ1 j , δ

2
j , ∂ j h), so that gi j = δi j + ∂i h ∂ j h. Its inverse is

given by

gi j = δi j − ∂i h∂ j h

1 + |∇0h|2 , (5)

where |∇0h|2 = ∂i h∂i h. While |∇h0|2 is a scalar on the plane, it is not a surface
scalar. The relevant scalar is |∇h|2 = gab∂ah∂bh.

This representation of a surface has proven very useful when gradients are small
(see, for example, Fournier 2007). With respect to an appropriate plane, it is always
valid locally; even on complex geometries. However, it has its limitations, most
notably if we attempt to access global information when the geometry is closed or
its topology is nontrivial so that gradients necessarily not only become large but also
diverge in places.

In this representation,
√

g = √

1 + |∇0h|2, so that the area is given by

A =
∫

dr
√

1 + |∇0h|2 , (6)

where we use the abbreviation dr to denote the area element on the base plane. The
easiest way to see this is to note that the matrix gi j , defined by Eq. (5) has eigenvalues
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1 + |∇0h|2 (corresponding to the eigenvector ∂i h) and 1 (corresponding to a vector
orthogonal on the plane to ∂i h).

The second fundamental surface tensor is the extrinsic curvature,with components
given by

Kab = ea · ∂bn ; (7)

it quantifies how fast the unit normal vector rotates into one tangent direction as
one moves it along another. It thus captures the way that the surface curves in the
Euclidean environment. This tensor is symmetric; as such, the linear map on tangent
vectors Ka

b = gacKcb has two real eigenvalues,C1 andC2 (the principal curvatures).
The surface curvature along a given direction V is given by C(V ) = V aKabV b; it is
extremal along the two corresponding orthogonal (principal) directions, along which
it assumes the values C1 and C2. To see this, construct the constrained quadratic,
C(V ) = C(V ) − �(V agabV b − 1), where � is a Lagrange multiplier. Now C(V ) is
stationary when KabV b = �Va , or, equivalently, V a is an eigenvector of Ka

b, with
eigenvalue �. C(V ) is completely determined once we know the angle V makes
with (one of) the principle two directions. This may be simple linear algebra but the
geometrical consequences are far-reaching.

If the geometry is simple, it is possible to get along fine without knowing that
curvature is a tensor; but good luck if it is not. The tensorial nature of Kab will play
an essential role in teasing out the relationship between stress and geometry. The two
principal directions turn out to possess physical significance in the interpretation of
the surface stress tensor.

An elementary calculation using height functions is useful to ground the definition
of Kab. If the base plane is tilted so as to coincide with the tangent plane to the surface
at a given point, the curvature there is given by the Hessian of the height function:
Ki j = −∂i∂ j h. Its trace at this point (which we denote K ) is given by K = −∇2

0 h,
where ∇2

0 is the Laplacian defined on the base plane. Its determinant, correct to
quadratic order,

KG = 2det Ki j ≈ (∇2
0h)2 − (∇i∇ j h)(∇i∇ j h) = ∇i

[∇i h∇2h − ∇ j h ∇i∇ j h
]

(8)

is a divergence.

3 The Bending Energy

The bending energy of a homogeneous and isotropic fluid membrane is given by the
Canham–Helfrich (CH) Hamiltonian, quadratic in the symmetric curvature invari-
ants.These invariants can be constructed in terms of the trace K = C1 + C2, and the
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determinant KG = C1 C2 of Ka
b = gacKcb,5 so it reads, Canham (1970); Helfrich

(1973); Evans (1974)

HCH [X] = 1

2
κ

∫

d A (K − C0)
2 + κ̄

∫

d AKG + σA . (9)

It involves two rigidity moduli, κ ≈ 20kBT and κ̄. The constant spontaneous curva-
tureC0 reflects an asymmetry between the two sides of the bilayer; the parameter σ is
interpreted either as a chemical potential or as a surface tension controlling the area
A.6 It is important to emphasize, despite the persistence of claims to the contrary,
that σ is rarely the complete mechanical tension in the membrane. This issue will be
addressed below. As Gauss famously was first to observe, the scalar KG (known as
Gaussian curvature) is invariant under isometry, depending only on the metric tensor.
What is more, according to the Gauss–Bonnet theorem, the corresponding integrated
energy is topological, modulo a boundary addition, DoCarmo (1976); Spivak (1999);
on a closed single component membrane, it is irrelevant as far as determining the
shape is concerned. We will see that it does not contribute explicitly to the stress.
It does, however, play a role in determining the equilibrium geometry though its
contribution to boundary conditions, or if the membrane is inhomogeneous. It is a
mistake to ignore it.
The quadratic approximation: In termsof the height function, the quadratic approx-
imation for the energy (9)—goodwhen height gradients are small (|∇h| � 1)—reads

H ≈ 1

2
κ

∫

dr (∇2
0h)2 + 1

2
�

∫

dr (∇0h)2 + constant , (10)

where� = σ + κC2
0/2 iswhatwe provisionally called surface tension augmented by

spontaneous curvature, Lipowsky (2013).We saw that the term linear in K appearing
in Eq. (9) is a divergence in this approximation, so it does not contribute to the local
energy at this order. The constant = �A0, proportional to the projected area, is
usually ignored. It does, however, contribute to the stress in the membrane. Indeed,
in the familiar textbook demonstration that σ is tension in a soap film, using a square
frame with an adjustable edge, this is the only term appearing in H .

If one expands the energy in powers of gradients, the quartic term is negative.
Note that

√

1 + |∇0h|2 ≈ 1 + 1

2
|∇0h|2 − 1

8
|∇0h|4 + · · · . (11)

5It is straightforward to confirm that the two remaining symmetric quadratics, C2
1 + C2

2 and (C1 −
C2)

2, can be expressed as linear combinations of K 2 and KG .
6As we will show below, controlling area locally is equivalent, in equilibrium, to controlling it
globally.
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To our knowledge, all attempts to improve perturbatively on the quadratic approxi-
mation have failed. Aswewill show sometimes nature is obliging and small gradients
can tell us a lot about the system. But more often, they are too restrictive and one
needs to approach the problem non-perturbatively. For the moment, let us examine
where they take us.
Linearized shape equation: TheEuler–Lagrange (EL) or shape equation, describing
the stationary shapes of the energy (10), is given to linear order by

(∇2
0 − λ2)∇2

0h = 0 , (12)

with a length scale l = λ−1 = √
κ/�, indicating the scale below which bending

rigidity dominates capillary forces: l ≈ 100nm for a typical fluid membrane. The
derivation of Eq. (12) is a straightforward exercise in the calculus of variations.7

It is useful to slow down a moment and examine the elementary solutions of the
linearized shape equation (12) in some detail. This will provide a guide as to what
geometries we can expect to observe locally on a free membrane, as well as priming
us to recognize behavior suggesting that some additional agent is involved.
Harmonic functions: Solutions of the linearized shape equation include minimal sur-
faces satisfying Laplace’s equation on the plane,∇2

0h = 0. By the definition of curva-
ture, these are symmetric saddles almost everywhere, with K = 0 orC1 = −C2. Typ-
ically, however, minimal surfaces are inconsistent with the boundary conditions—
there are also no closed minimal surfaces—but they do feature prominently as local
approximations of the physical geometry; sometimes they do even better, as we
describe in the next paragraph. The Helmholtz equation, (∇2

0 − λ2) h = 0, also
clearly provides solutions of the EL equation, with the same caveat. Any equilibrium
surface can be described locally as a linear combination of solutions to the Laplace
and Helmholtz equations.

Let us parametrize the plane in terms of the complex coordinate Z = reiϕ, where
r and ϕ are polar coordinates; solutions of the two-dimensional Laplace equation are
given by the real and imaginary parts of analytic functions f (Z). Particular solutions
are generated by f (Z) = Zn , n = 0,±1,±2, . . . ; the dipole n = 1 describes a tilt;
the quadrupole n = 2 describes a symmetric saddle, n = 3, 4, . . . describe monkey
saddles and their many-tailed counterparts.

The monopole is generated by f (Z) = ln Z = ln r + iϕ.
(1) The height function obtained from the real part is axially symmetric (the begin-
nings of a neck). The minimal surface spanning a large outer circular ring of radius
R, and a small coaxial inner one raised above it by a height h � R forms part
of a catenoid. Indeed, the asymptotics of a catenoid reproduce the small gradient
approximation.
(2) The imaginary part represents half of a helicoid, h = p ϕ, a spiral staircase or
ramp (depending on the range of r ).8 Notice thatwhile∇2

0ϕ = 0, h = ϕ does describe

7For simplicity we will suppose that not only the surface height but also its normal vector are fixed
on the boundary.
8The other half of helicoid is given by h = c(π + ϕ).
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an exact minimal surface. Curiously, this is the only (nonplanar) minimal surface
described exactly by its linearization.9 These two geometries, despite appearances,
are symmetric saddle everywhere! Indeed, so also are the monkey saddles except at
the origin. Notice that the Gaussian curvature on a monkey saddle vanishes at the
origin. One can easily confirm that KG is also axially symmetric in any one of these
elementary geometries, wiggle as it may.
Minimal ramp and dipole: Let us examine,more closely, the ramp h = p ϕwith inner
radius r0 extending out to some cutoff Rcutoff . Its pitch p provides a length scale.
This is not an academic exercise because, recently, it was discovered that the sheets
within the laminar stacks of the rough endoplasmic reticulum (ER) are connected
by spiral ramps, Terasaki et al. (2013). However, a simple minimal ramp is costly
energetically, with Eramp ∼ p2σ ln RCutoff/r0; they also require a significant vertical
force to hoist. Because its pitch is independent of r , its footprint does not decay as
one moves away from the axis. Individual minimal ramps are thus inconsistent with
planar stacking even if they are metrically flat (KG → 0) far away.

One can, however, construct a ramp dipole by pairing parallel rampswith opposite
chiralities: if the axes are separated by a distance R > 2r0, the height function

h/p = Im ln[(Z − R/2)(Z̄ + R/2)]
= arctan[Rr sinϕ/(r2 − R2/4)] (15)

represents the dipole illustrated in Fig. 1a centered on the origin and aligned along
the x-axis.

Here one observes the beauty of small gradients: superposition holds; if h1 and
h2 are minimal, so is their sum.

The corresponding energy Edipole ∼ p2σ ln R/r0 depends on the distance between
axes; the pitch is now screened and the Gaussian curvature decays as KG ∼
−p2R2/r6 or faster, so the geometry rapidly becomes planar outside a core of size R.

Dipoles also stack much like a parking garage with the two ramps connecting
parallel floors. It has been conjectured, Guven et al. (2014) that the basic element
within the stacks of the rough ER is one of these dipoles. One still needs to explain
what sets the distance between ramps, their pitch, their tilt, as well as the inner radius.
Indeed, the sheets are not simple bilayers, but tetralayers consisting of a parallel pair
of bilayers separated by a lumen; the inner boundaries are highly curved bilayers.

9Under a deformation h(r) → h(r) + δh(r), fixed on the boundary, the change in area A (6), is
given by

δA =
∫

dr ∇0 · J δh (13)

where

J = − ∇0h

(1 + |∇0h|2)1/2 , (14)

so that ∇0 · J = 0 in equilibrium. One can evaluate |∇0h|2 = p2/r2, so that J = p(− sin θ, cos θ)/
r(1 + p2/r2)1/2 and ∇0 · J = 0.
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(a) Dipole (b) Ramp

Fig. 1 Ramp Dipole: a floor to floor and b stacked. The “square” contour � (heavy line) is used to
determine the force between unpinned ramps, discussed in Sect. 5

In this chapter, the framework to address and answer some of these questions will
be provided.
Biharmonic functions: Let us now examine solutions of the Biharmonic Equation
(∇2)2h = 0, describing the linearization of amembranewith� = 0.This is generally
not true but we will see that there exist notable situations when it is. All solutions of
∇2h = 0 are again solutions, as well as solutions with harmonic sources: ∇2h = J ,
where ∇2 J = 0. Using the same method of complex variables used before, we look
at harmonic sources in turn.
(1) For the constant function J = 1; 4∂Z∂Z̄ h = 1, we find h ∼ |Z |2. This is the
beginning of a sphere. Note that it is not analytic. Just as we did not possess the
freedom to construct asymmetric saddles, this parabolic height function is axially
symmetric.
(2) Next look at J = ln Z . Now 4∂Z∂Z̄ h = ln Z implies h = |Z |2(ln Z − 1). This
includes the singular axially symmetric surface r2 ln r/r0 as well as the quadratically
growing spiral r2ϕ.10 The surface r2 ln r possesses a tangent plane at the origin.
However, KG diverges there. The parabolic appearance at the origin is deceiving.
This is a danger of relying too heavily on visual cues. This curvature singularity
signals the breakdown of the source-free equation indicating that a necessity of a
distributional external force at the origin.
(3) One also find solutions h ∼ |Z |2Z±n . In particular, if n = −2, we have the hair-
pins h = e−2iϕ, illustrated in Fig. 2, wiggling with finite amplitude independent of
r but with asymptotically decaying curvature. The curvature is again singular at the
origin.
Helmholtz equation: If � �= 0, then instead of the Biharmonic equation, we need to
solve the Helmholtz equation. Its elementary solutions are given by J = K0(λr),
Kn(λr) cos nϕ, I0(λr), In(λr) cos nϕ (aswell as the sines),where (i) Kn aremodified

10Just as ln |r − r′| is proportional to the Green’s function for the Laplacian, −|r − r′|2 ln |r − r′|
is its counterpart for the bilaplacian.



178 J. Guven and P. Vázquez-Montejo

Fig. 2 Hairpin with
n = −2 : cos 2ϕ

Bessel functions diverging at the origin and monotonically decreasing as a function
of r11; (ii) In are their monotonically increasing counterparts, diverging at infinity.

Now let J = ∇2
0h. Then h − J/λ2 satisfies Laplace’s equation. Therefore there

are no new solutions of Eq. (12) that are not already accounted for by forming linear
combinations of harmonic functions and solutions of the Helmholtz equation.

Note that the axially symmetric function K0(λr), the analogue of −r2 ln r ,
diverges at the origin. In this sense, it behaves like the harmonic ln r .

One can check that there is an elementary Helmholtz spiral ramp, given by
K0(λr)ϕ, forming a helix on its inner boundary, falling away remote from its axis.
Most general isotropic bending energy: The bending energy, (9), is not the only
isotropic energy of interest. Energies involving curvature quartics have been intro-
duced to explain periodic egg carton structures, Goetz and Helfrich (1996); Dom-
mersnes and Fournier (2002); Manyuhina et al. (2010); accounting for the relative
softness of gel phasesmay also involve a square root dependence on the curvature, not
captured by a simple higher order symmetric polynomial, Diggins IV et al. (2015).
All such extensions can be accommodated, without prejudice, by considering an
energy of the general form,

H [X] =
∫

d AH (gab, Kab) , (16)

where the energy density H (a scalar), is some given function (or functional, if
derivatives are entertained) of the two fundamental tensor fields, gab and Kab, defined
earlier.

4 Beyond Height Functions: The Nonlinear Shape Equation

Let us now examine how the energy (16) changes in response to a deformation of
the surface

X(u1, u2) → X(u1, u2) + δ X(u1, u2) . (17)

11The Green’s function of the Helmholtz operator is proportional to K0(|r − r′|).
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One way to do this is to first track the response of gab and Kab to this deformation.
To this end, it is instructive to decompose the deformation vector δX into tangential
and normal parts,

δX = �a ea + � n . (18)

Clearly the two parts play very different roles.
Normal Deformations: The induced normal deformations are given by,
Capovilla et al. (2003):

δ⊥gab = 2Kab� ; (19a)

δ⊥Kab = −(∇a∇b − KacK
c
b)� . (19b)

The former provides a reinterpretation of curvature as the response of the metric to
normal deformations; the latter reproduces the identification of the curvature with the
Hessian of the height function (h ≈ �), when gradients are small and the reference
geometry is planar so that the quadratic in Kab vanishes.

The normal deformation also provides a generalization of the height functionwhen
the reference geometry is not a plane, valid whenever � << radius of curvature of
this geometry. The curvature (19b) added to the surface standing at a height � is
expressed in terms of the Hessian of � on the reference geometry screened (or
anti-screened) by any pre-existing curvature.
Tangential deformations and reparametrizations: The tangential deformations of
gab and Kab are given by

δ‖gab = ∇a�b + ∇b�a ; (20a)

δ‖Kab = (∇cKab + Kac∇b + Kbc∇a)�c . (20b)

A mathematician may be aghast at the notation but should instantly recognize these
two expressions as the Lie derivatives of the two tensors along the vector field defined
by�a . But this is not an accident: for the tangential deformations of a surface can be
identifiedwith the action of reparametrizations on the geometrical fieldsX. Using the
definition of the tangent vectors, the tangential deformation can be cast in the form
δ‖X = �a ∂aX, which is exactly how the embedding functions transform under an
infinitesimal reparametrization of the surface, ua → ua − �a(u1, u2). The expres-
sions for δ‖gab and δ‖Kab thus should describe how the metric and any symmetric
covariant tensor transform under this reparametrization: and this is by a Lie deriv-
ative. They are completely determined by the tensorial character of these variables;
the details of their construction in terms of X are irrelevant. In this context, it should
be noted that δ‖Kab or, for that matter, δ‖ of any surface tensor constructed from
X does not depend on the metric: one can confirm that (and ditto for gab with the
obvious replacement)

δ‖Kab = (∂cKab + Kac∂b + Kbc∂a)�c . (21)
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Using these results, it only takes a short step to see that the tangential deformation
of any energy of the form (16) is given by the integral of a divergence. We first recall
that, given any symmetric matrix Bab (and, in particular, gab), ∂

√
det B/∂Bab =√

det B B−1ab/2. It then follows that, when the metric is varied, the area measure
changes by

δ d A = 1

2
d A gabδgab . (22)

Using Eq. (20a), we have gabδ‖gab = ∇a�
a12, so that δ‖d A = d A∇a�

a ; in addition,
because H is a scalar depending only on X, δ‖H = ∇aH�a . Summing terms, we
find that any energy of the form (16) changes by a divergence

δ‖H =
∫

d A∇a(H�a) . (23)

Using Stoke’s theorem, the rhs can be cast as a boundary term
∮

dsH la�a or equiv-
alently

∮

dsH l · δX, so that it makes no contribution to the response in the bulk and
vanishes if the surface is closed. Here la = gablb are the covariant components of
l = laea , the surface tangent normal to its boundary (its conormal) pointing out of the
surface. The upshot is that tangential deformations of the surface can be discounted
everywhere except on boundaries where new surface is generated. Boundaries do
get pushed about and, as Eq. (23) indicates, tangential deformations will play a role
in understanding the behavior on them. There is a physically important corollary
of the reparametrization invariance of the energy Eq. (16) and the identification of
tangential deformations with reparametrizations: Because the tangential deforma-
tion is given by Eq. (23), derivatives of tangential surface deformations never occur
as boundary terms. Nor can they arise when boundary energies are accommodated.
Caveat: if there is a local constraint on the surface deformation, δX, such as isome-
try, one needs to be more circumspect vis a vis the independence of � and �a ; for
tangential deformations will tag along with their normal counterparts. Specifically,
the constraint δgab = 0 is equivalent to

∇a�b + ∇b�a + 2Kab� = 0 . (24)

The Gauss–Weingarten equations: The derivations of Eqs. (19) and (20a) are sim-
plified significantly using the structure equations that capture the connection between
intrinsic and extrinsic geometry:

∇aeb = −Kab n ; (25a)

∂an = Ka
b eb . (25b)

12∇a�
a = ∂a(

√
g�a)/

√
g.
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TheWeingarten equation (25b) captures directly the definition of Kab (7). If Eq. (25a)
appearsmysterious, note that∂aeb,while not itself a surface tensor (or,more correctly,
a triplet of tensors) may be expanded with respect to the basis vectors:

∂aeb = �c
abec − Kab n . (26)

One finds that �c
ab = ec · ∂aeb is the Christoffel connection (3) constructed using

gab. While neither ∂aeb nor �c
abec is a tensor, their difference ∇aeb is. And ∇a is the

covariant derivative introduced in Eq. (2).
To illustrate the utility of these equations, let us go back and derive Eqs. (19).

Using the definition of gab (1) we have

δ⊥gab = ea · ∂b(�n) + (a ↔ b)

= eb · ∂bn � + (a ↔ b)

= 2Kab �, (27)

where we use Eq. (25b) on the last line. On the other hand, to determine δ⊥Kab, we
require an intermediate result which follows from the orthogonality of n to the sur-
face: ea · n = 0 andn2 = 1 together imply δ⊥n = −∂b� eb. Nowusing the definition
of Kab, given by Eq. (7), we have

δ⊥Kab = ea · ∂b(δ⊥n) + ∂a(n�) · Kb
cec

= −∇a∇b � + KacK
c
b� . (28)

The Gauss–Codazzi and Codazzi–Mainardi equations: It is clear that the tensors
gab and Kab are not independent. Even naively the counting is wrong. Their inter-
dependence is quantified by the Gauss–Codazzi (GM) and Codazzi-Mainardi (CM)
equations, given by

R = K 2 − KabK
ab ; (29a)

∇b (Kgab − Kab) = 0 , (29b)

where R is the scalar curvature (defined in a moment). These three equations arise
as integrability conditions on Eq. (25a). This is easy to show. Rewrite Eq. (25a) as
Gab = ∇aeb + Kab n = 0. Now ∇aGbc − ∇bGac = 0, or

[∇a,∇b] ec = ∇a(Kbcn) − ∇b(Kacn) . (30)

Whereas
[∇a,∇b] ec = Rabc

d ed (31)



182 J. Guven and P. Vázquez-Montejo

as a consequence of the Ricci identities (4),

∇a(Kbcn) − ∇b(Kacn) = (∇aKbc − ∇bKac) n + (KacKbd − KadKbc) ed (32)

on account of Eq. (25b). Equating tangential and normal terms implies

Rabcd − KacKbd + KadKbc = 0 ; (33a)

∇aKbc − ∇bKac = 0 . (33b)

The first set of equations tells us that the (intrinsic) Riemann tensor induced on
a surface embedded in Euclidean space is determined completely by the extrinsic
curvature tensor. The second set of equations is a covariant statement of the fact that
the extrinsic curvature is a Hessian.

Note that there are counterparts of the integrability conditions on the Weingarten
equation (25b) but they provide no additional constraint, simply reproducing
Eq. (33b).

For a two-dimensional geometry these equations simplify. It is easy to see that
the Riemann tensor has a single independent component, say R1212.13 As a result, it
is completely captured by the scalar R:

Rabcd = (gacgbd − gadgbc)R/2 . (35)

Equation (29a) follow on contraction. In addition, it is clear that there are only
two independent Codazzi-Mainardi equations (33b) on a two-dimensional surface:
∇1K21 − ∇2K11 = 0 and ∇1K22 − ∇2K12 = 0. These two equations are equivalent
to the contracted Codazzi- Mainardi equations. For two-dimensional surfaces, there
are three integrability conditions.

The GC equation (29a) indicates that the Gaussian curvature is also an isometry
invariant, depending as it does only on the metric: 2KG = R.14 This is the content
of Gauss’s Theorema egregium. The CM equations (29b) is the statement that the
tensor Kab − K gab is covariantly conserved, an identity that is very useful to recall
when taking covariant derivatives of the extrinsic curvature.
Normal deformations and energy: We have looked at the response of the energy to
tangential deformations. Let us now track its response to a normal deformation—one
that pushes the surface outwards. Consider, to get started, the energy proportional to
the area, H = σA, describing any interface. Using Eqs. (19) and (22) we have

13Note that the Ricci identify (4) implies Rabcd = −Rbacd ; whereas its application to the metric
tensor implies Rabcd = −Rabdc:

0 = [∇a,∇b]gcd = Rabcd + Rabdc . (34)

These account for all the independent constraints on Rabcd on a two-dimensional surface.
14The identity det Ka

b = (K 2 − KabKab)/2 is true for the determinant of any two-dimensional
symmetric matrix.
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δ⊥A =
∫

d A K� . (36)

As a consequence, H is stationary for fixed boundaries when K = 0, representing a
minimal surface or n · ∇2X = 0 where the Laplacian appearing here is the Laplacian
on the surface constructed using gab. This is the nonlinear counterpart of Laplace’s
equation on the plane presented earlier. Note that the three Cartesian coordinates sat-
isfy the Laplace equation, or∇2X = 0. This is because the contractedGauss equation
(25a) implies that the tangential projections vanish identically, or ea · ∇2X = 0.

Now look at HB = 1
2κ

∫

d A K 2. Using the definition K = gabKab, as well as the
general identity for matrix inverses, δgab = −gacgbdδgab, Eq. (19) now imply:

δ⊥K = −(∇2 + KabK
ab)� . (37)

As a consequence:

δ⊥HB = κ

∫

d A[−K (∇2 + KabK
ab) + K 3/2]� . (38)

One may now use Stoke’s theorem to perform two integrations by parts to peel deriv-
atives appearing in the Laplacian off � and transfer them to K . Applying identical
reasoning to the term linear in K appearing in the CH energy (9), the shape equation
describing equilibrium membrane states in the absence of external forces is given by
Capovilla and Guven (2002b)

E = −κ∇2K + 2κK
(

KG − K 2/4
) − 2κC0 KG + � K = 0 . (39)

In the presence of a pressure difference P across the surface, the surface geometry
satisfies the equation: E = P . This is a consequence of the intuitively simple identity

δ⊥V =
∫

d A� . (40)

The change in volume is the base area by the height! Thus, an energy contribution
of the form −PV has normal EL derivative −P .

Early derivations of Eq. (39), notably inRefs.Ou-Yang andHelfrich (1987, 1989),
tended not to exploit the fundamental tensors explicitly. Notice the cubic nonlinearity
in the curvature appearing in Eq. (39); it has its source in the term quadratic in
curvature appearing in δ⊥Kab. It is simple to confirm that the linearization of Eq.
(39) with respect to a planar reference plane reproduces Eq. (12).
A comment on height functions: Let us reexamine the variational principle in the
Monge representation. We saw that, under a deformation h(r) → h(r) + δh(r), the
change in area A (6), is given by Eq. (9). h is a scalar field, both on the base and
on the surface, so it should be possible to express the rhs of Eq. (9) in a manifestly
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covariant form. Recall that, while |∇0h|2 is a scalar on the reference plane, it is not a
surface scalar. In fact, the density

√
g is constructed in this parametrization in terms

of |∇0h|2.
The EL derivative of A appearing in Eq. (9) is clearly a divergence on the base

plane. While not obvious, it should also be a divergence on the surface. If we use the
identity gi j∂ j h = ∂i h/(1 + |∇0h|2) = ∂i h/g, we see that

∂i

(
∂i h

(1 + |∇0h|2)1/2
)

= ∂i (
√

ggi j∂ j h) = √
g∇2h , (41)

so that we can express δA in the manifestly reparametrization invariant form:

δA = −
∫

d A∇2h δh . (42)

The Laplacian ∇2 (= gab∇a∇b) is the Laplacian on the surface, not the base plane.
One does not need to abandon surface reparametrization invariancewhen height func-
tions are used. However note that |∇h|2 = |∇0h|2/g or g = 1/(1 − |∇h|2). Scalars
do get conflated with densities.

In the Monge representation, n = (−∂i h, 1)/
√

g, so that projecting (25a) onto
the vertical k, we identify

Ki j/
√

g = −∇i∇ j h , (43)

where ∇i is the surface covariant derivative. Thus K = −√
g∇2h.

Projecting Eq. (26) onto the Cartesian directions on the plane, one also finds
that �k

i j = Ki j∇kh/
√

g; the connection is proportional to the extrinsic curvature. In
the Monge representation the concepts of intrinsic and extrinsic geometry also get
conflated.
Anisotropic energies: Other contributors discuss anisotropies. Consider the replace-
ment of the bending energy Eq. (9) by an expression of the more general form

H =
∫

d AH(C1,C2) , (44)

say H = κ(C2
1 + αC2

2 )/2, where α �= 1. It is convenient to know how C1 and C2

transform. One has CI = V a
I KabV b

I , so that δ⊥CI = V a
I V

b
I δ⊥Kab—an equation

familiar in quantum mechanics as the first order perturbation in the eigenvalue due
to a perturbation in the Hamiltonian. Now using Eq. (19b), we discover

δ⊥CI = −V a
I V

b
I ∇a∇b� + C2

I � . (45)

The peeling process can be performed exactly as before. Now, however, deriv-
atives of the principal vector fields will appear in the first variation. On a sur-
face only two scalars can be constructed using derivatives of a unit vector field,
V a : its divergence I1 = ∇aV a and its curl, I2 = εab∇aVb (εab is the antisymmetric
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Levi–Cita tensor). Using the identity εab = V aV b
⊥ − V a

⊥V b,15 we find I2 = −V a
⊥V b

∇bVa , which is identified as the geodesic curvature along the integral curves of the
vector field V a .

The derivation of the shape equation presented in this section highlights the geom-
etry. It is also perfectly adequate if one is interested in identifying membrane shapes.
But it still has its limitations: for we are not only interested in shapes; indeed two very
different models may predict qualitatively identical shapes. How then do we discrim-
inate between them? What is missing is the distribution of stress underpinning the
geometry, without which access to the forces acting on the membrane or transmitted
by it is limited. This is simple enough, using a minimum of geometry, if gradients
are small or the geometry is axially symmetric. We will have more to say about this
approach. But we will now show that the little geometry we have introduced suggests
a better way. We will also see there is a remarkably simple connection between the
bending stress (as well as the torques) and the surface geometry, a consequence of
the fact that the energy depends only on the geometry.

5 Stress and Geometry

The surface energy is invariant with respect to spatial translations. Using Noether’s
theorem, we know that this invariance implies the existence of a conserved current,
identified as the stress tensor. This can be constructed by reassembling the normal and
tangential boundary contributions to the energy associated with a translation. This
was first done in Capovilla and Guven (2002b) (and even earlier in a relativistic con-
text, in Arreaga et al. 2000).16 The approach we describe here involves a refinement
of the derivation in Capovilla and Guven (2002b), introduced a few years later by
one of the authors, Guven (2004). There is no need to decompose deformations into
normal and tangential parts; at the end of the calculation we will, however, interpret
the conservation law by examining its projections.

We have seen that the energy (16) depends implicitly on the shape X through
the two fundamental tensors. Thus far we have not fully exploited this depen-
dence. While the metric and the extrinsic curvature are not independent, it is pos-
sible to treat them as though they were by making use of the method of Lagrange
multipliers to record the steps in their construction in terms of X as local con-
straints and reformulating an unconstrained problem in the calculus of variations as
a locally constrained one. We do this by replacing the energy H by the functional
HC = HC [X, ea, n, gab, Kab, fa, f a, f n, T ab, Hab], defined by

15V a⊥ = εabVb is orthogonal to V a .
16A later derivation accommodating the finite thickness of the membrane is presented in Lomholt
and Miao (2006).
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HC = H [gab, Kab] +
∫

d A fa · (ea − ∂aX)

−
∫

d A f a ea · n + 1

2

∫

d A f n(n · n − 1)

+1

2

∫

d A T ab(gab − ea · eb) −
∫

d A Hab(Kab − ea · ∂bn) . (46)

While it does appear that we have just taken a step in the wrong direction, this is
not the case. Bear with us! We are now freed to treat H itself as a functional of two
independent tensor fields, rather than of the embedding functions, i.e., H [gab, Kab].
The construction of gab and Kab, consigned to the constraints, is clearly independent
of the specific choice of H .17

There is also an element of flexibility in this construction: we choose to introduce
the tangent and normal vectors (ea and n), mediating the construction of gab and Kab

in terms of X, as independent fields. As will be evident in a moment there is a good
reason for doing this.

The tensorial character of the Lagrange multipliers reflects the constraint they
enforce: fa , appearing in Eq. (46), is associated with the identification of ea as the
two tangent vectors adapted to the parametrization; f a is associated with the implicit
identification of the normal vector and f n enforces its normalization. The fields T ab

and Hab, completing the identification of gab and Kab as the two fundamental tensors,
are symmetric tensors.

It is now legitimate to vary independently each of the geometric fields X, ea , n,
gab and Kab. Wewill perform the variations in this same order. The first three of these
fields appear only in the constraints, so their variations can be performed without
reference to H . Significantly, the embedding functions appear only in the tangency
constraint, imposed by the multiplier fields, fa . The translational invariance of the
energy is captured by the fact that X also appears only through its derivative. One
determines, almost trivially, the response of HC to a deformation δX:

δXHC = −
∫

d A fa · ∂aδX . (47)

An integration by parts is now used to peel the derivative off the variation; the EL
derivative with respect to X is then identified as a divergence:

δHC

δX
= 1√

g
∂a

(√
g fa

) = ∇afa . (48)

Thus, in equilibrium,
∇afa = 0 , (49)

17In this approach, the deformation vector δX is never disassembled into normal and tangential
parts, so that its reassembly is never necessary.
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or fa is conserved. Below, this tensor will be identified as the stress. We will be inter-
ested in the force per unit length transmitted across curves on the surface, given by the
projection f⊥ := lafa , where l = laea is the conormal, introduced below Eq. (23).18

The EL equations for ea and n identify the tangential and normal projections of
fa completely in terms of the two tensor-valued multipliers, T ab and Hab:

fa = f abeb + f an , (50)

where
f ab = T ab − HacK b

c , f a = −∇bH
ab . (51)

The EL equations for gab and Kab determine T ab and Hab in terms of the
Euler–Lagrange derivatives of the energy densityH with respect to gab and Kab:

T ab = − 2√
g

δ(
√

gH)

δgab
; Hab = δH

δKab
. (52)

This completes the construction of fa . The normalization and sign of T ab are chosen
so that this tensor coincides with the metric stress tensor (see, for example, Wald
2010). However, unless H is independent of Kab (so that Hab = 0), T ab is not the
complete stress. Nor is it conserved.

The structure captured in Eqs. (51) and (52) is independent of the specific form of
H . As promised, the stress is completely determined by the geometry. This is quite
unlike the familiar situation in continuum mechanics where in-plane static shear—
which is not supported by a two-dimensional incompressible fluid—generates stress.

Now let H be the CH energy given by Eq. (9). One then identifies, Capovilla and
Guven (2002b); Guven (2004)

fa =
[

κ (K − C0)

(

Kab − 1

2
(K − C0)g

ab

)

− σgab
]

eb − κ ∇aK n . (53)

To confirm this, note that H involves a sum of terms proportional to Hn = Kn/n,
n = 0, 1, 2. For each n, straightforward calculus gives for the corresponding tensors
defined by Eq. (52), T ab

n = Kn−1
(

2Kab − Kgab/n
)

and Hab
n = Kn−1gab, so that

the contribution to the stress (51) is

fan = Kn−1(Kab − Kgab/n) eb − ∇aK n−1 n . (54)

The Gaussian energy is not of this form. However, one can use the identity KG =
(K 2 − KabK ab)/2 to show that T ab

G = KKab − KacKc
b, and Hab

G = Kgab − Kab.
As a result, the tangential stress, T ab − HacK b

c , appearing in Eq. (51) vanishes
identically; its normal counterpart vanishes on account of the CM equations, (29b).

18If t = taea is the unit tangent vector to the curve, l · t = 0 or gabla tb = 0 or la ta = 0.
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The upshot is that there is no Gaussian stress, and the Gaussian modulus κ̄ does not
feature in fa , a reflection of the topological nature of this energy.

In the case of an interface or a soap film, described by an energy proportional to
area, H = σA, the stress is tangential with f ab = −σ gab and f a = 0. The propor-
tionality to gab indicates that the tangential stress is isotropic; it is also homogeneous
because σ is constant.

The stress in afluidmembrane is quadratic in curvature; as a consequence the stress
is generally neither homogeneous nor isotropic.We note, however, that the tangential
stress f ab is a polynomial in Kab andgab; this implies that the orthogonal eigenvectors
of Kab,V1 andV2, are also eigenvectors of f ab. For pure bending (withC0 = 0,σ =
0), the eigenvalues of f ab are now easily identified as f1 = κ (C2

1 − C2
2 )/2 = − f2.

The tangential bending stress therefore is bounded by f1 and f2 which it assumes
along these directions. IfC1 < C2, then themembrane is under tension alongV1, and
under an equal compression along the orthogonal direction, V2. Because f1 + f2 =
gab f ab = 0, this is equivalent to the statement that the tangential bending stress is
traceless. This is also not an accident. It can be understood to be a consequence
of the scale invariance of the two-dimensional bending energy. Indeed, invariance
of the bending energy under a rescaling δX = λX implies f aa = 0, Capovilla and
Guven (2002b); Guven (2005). This is very different from the behavior we observe
in an interface where the stress is tensile everywhere. More generally, let H be
scale invariant. Equation (47) then implies that the contribution to δH due to X is
proportional to

∫

d A fa · ∇aX =
∫

d A f aa = 0 , (55)

and, for energy densities of the form H(gab, Kab), there are no boundary additions
(these will be discussed below). As a consequence f aa = 0 pointwise. If, how-
ever, the energy involves higher derivatives of either gab or Kab, boundary additions
may show up, implying that the trace does not necessarily vanish but is a diver-
gence: f aa = ∇ag

a , where ga is some vector field. A scale invariant energy with
this property is easy to construct, given by

∫

d A
√∇aK∇aK , but without any phys-

ical application that we are aware of. For the curious, we remark that one needs to
look at energies in higher dimensions involving derivatives to encounter polynomial
examples displaying a ga �= 0.

Notice also that the bending stress vanishes on minimal surfaces, with K = C1 +
C2 = 0, and on spheres, with C1 = C2. Normal stress is not supported in either case,
for this requires nonvanishing gradients in K . On any other surface, the bending
stress may change from tension to compression along a given direction. In fact, the
integrated force may vanish but the torque need not. We will encounter this behavior
in toroidal vesicles.

The force per unit length f⊥ transmitted across any curve can be expanded
with respect to the orthonormal basis, {t, l, n}, adapted to the curve, f⊥ = f⊥⊥l +
f⊥‖t + f⊥n, wherewe introduce the notation, A⊥⊥ := lalb Aab, A⊥‖ := latb Aab, and
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A‖‖ := tatb Aab, for any symmetric tensor, Aab. For the CH energy (9), with stress
given by Eq. (53), we identify the forces transmitted along the three directions as

f⊥⊥ = κ/2
(

K 2
⊥⊥ − (K‖‖ − C0)

2
) − σ , (56a)

f⊥‖ = κ (K − C0) K⊥‖ , (56b)

f⊥ = −κ ∇⊥K , where ∇⊥ = la∇a . (56c)

Note that f‖‖ is given by f⊥⊥ with ‖ and ⊥ interchanged; if the tangential bending
stress is tensile along one direction (not necessarily a principal direction), it will be
compressive along the orthogonal direction. There will generally be a geometrical
in-plane shear f⊥‖ if K⊥‖ �= 0. There is, of course, no inconsistency with the fluid
character of the membrane.

Whereas a fluid sphere may be stress free, a cylinder will generally be under ten-
sion along the axial direction (the curvature along the axis K⊥⊥ = 0 in Eq. (56a)).
A cylinder thus needs to be supported by an external axial force to prevent its col-
lapse along the axis. By scale invariance, this will necessarily be accompanied by
contraction along the radial direction.

Like surface tension, spontaneous curvature breaks the scale invariance of the
energy. Its presence introduces an additional contribution to the tangential stress,
f abS = − 1

2κC2
0 gab − κC0

(

Kab − Kgab
)

, but no normal stress. On a flat membrane,
only the first term remains, so spontaneous curvature contributes isotropically to the
tension, Lipowsky (2013); if the membrane is not flat, however, it makes an addi-
tional curvature dependent and generally non-isotropic contribution to the principal
tangential stresses.

As Eq. (56) indicates, spontaneous curvature biases only the contribution of the
transverse curvature to the forces transmitted across curves. A positive spontaneous
curvature will thus reduce the axial tension required to support a cylinder. An appro-
priate spontaneous curvaturewill even allow tethers to form in the absence of external
forces, Lipowsky (2013); Deserno (2015).

An alternative natural appearance of a term linear in K is in the bilayer couple
model, which accommodates a fixed area difference between the two layers within
the bilayer, Svetina and Žekž (1989); Svetina and Žekš (2014). Indeed, if the bilayer
has a constant thickness t , the difference in area between its two sides is given by
Eq. (22) to be t

∫

d A K . This model has been repurposed recently in the context of
tetralayers consisting of pairs of parallel bilayers with different areas. As such, it
could play a role in explaining the morphology of the rough endoplasmic reticulum
or the nuclear envelope, Guven et al. (2014).

Historical note: the concept of a stress tensor for fluid membranes was first
explored, in the small gradient approximation, some time ago by physicists, Evans
and Skalak (1980); it was also examined by applied mathematicians and engineers,
Jenkins (1977); Steigmann (1999) from a continuum mechanical point of view. It
would be fair to say, however that its origins in geometry were overlooked. The
conservation laws implied by Euclidean invariance appears to have been first under-
stood by Kusner in the context of minimal and constant mean curvature surfaces,
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Kusner (1991). Inexplicably, as recounted in Bernard (2015), pure mathematicians
working on the Willmore functional (our symmetric bending energy), Willmore
(1982) (proven in 2014, Marques and Neves (2014a, b)) were late to appreciate the
implications of Euclidean invariance in this context.
Shape equation from the conservation law: We have discussed stress but we have
yet to unpack the contents of the conservation law for fa . Naively, there appears to be
a discrepancy: for whereas there is a single shape equation, we possess three conser-
vation laws (indeed there are more to come). We first show that the shape equation
is implied by the conservation of the stress tensor. Using the notation introduced in
Eq. (50), we note that the projection onto the normal vector of the conservation law
Eq. (49) gives

E := n · ∇afa = ∇a f
a − Kab f

ab = 0 . (57)

Using the expression (53), this reproduces the shape equation for a fluid membrane,
(39). The divergence is no longer evident. Even if we were to stop here, we now
possess a better understanding of the shape equation: in equilibrium, the coupling of
the tangential stress to curvature is the source of the normal stress.

External forces or normal constraints on the geometry will introduce sources on
the right hand side of the conservation law. For instance, the source associated with
an osmotic pressure is normal, given by P n, so Eq. (39) is replaced by E = P .

The projections of Eq. (49) along tangent directions implies

Eb := eb · ∇afa = ∇a f
a
b + Kab f

a = 0 . (58)

This is another constraint between the tangential and normal stresses: and it appear to
suggest a symmetry between Eqs. (58) and (57) with tangential and normal stresses
interchanged. The character of Eq. (58), however, is very different. In general, if the
only degrees of freedom are geometric, this equation amounts always to a geometric
identity; it hold for each term in the energy independently of the shape equation.
To understand why this is so, recall that infinitesimal tangential deformations are
identified with reparametrizations; using the fact that reparametrization acts by Lie
derivation along the tangent vector field, this identity is reproduced for any geomet-
rical invariant of the form (16) whether or not the geometry is equilibrated, Guven
and Vázquez-Montejo (2013a).

More explicitly, using Eqs. (20a), we can write

δ‖H =
∫

d A

(

−1

2
T ab δ‖gab + Habδ‖Kab

)

=
∫

d A
(∇a f

ab + Kab fa
)

�b +
∫

d A∇a(H�a) , (59)

where we have used the definitions of the tangential and normal stresses given by
Eq. (51). These are analogues of the contracted Bianchi identities in general relativity
which follow from the general covariance of the Hilbert Einstein action.
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Matters are less straightforward if local constraints are imposed on the geometry
ormaterial degrees of freedom interactwith it. It also bears remarking that if themani-
fest reparametrization invariance is broken, choosing a parametrization adapted to the
geometry such as the harmonic parametrization used in theWeierstrass–Enneper rep-
resentation of a surface, which constrains the metric, Guven and Vázquez-Montejo
(2010), the counterparts of Eq. (58) are no longer trivially satisfied. Instead they
determine the additional Lagrange multipliers associated with this choice of gauge.
It is only modulo this input that the counterpart of Eq. (57) reproduces the shape
equation.
Isometric bending: A surprising application of the framework presented in Sect. 5
has been to the description of thin unstretchable sheets (think paper if KG = 0), an
idealization that may be relevant in cell biology when proteins condense on a mem-
brane. Whereas static fluid membranes shear freely; shear is impossible without
stretching. The two limits, nonetheless, are described by the geometrical degrees of
freedom of the surface. Unstretchability translates geometrically into the constraint
that the metric be isometric to some fixedmetric. This local congruence is accommo-
dated in the variational principle by introducing a tensor-valued Lagrange multiplier
T ab, and replacing HC in Eq. (46) by19

HC − 1

2

∫

d A T ab(u1, u2)(gab − g(0)
ab ) , (60)

where g(0)
ab is this fixed metric. As a consequence, the tangential stress f ab is replaced

by f ab + T ab, whereas the normal stress is unchanged. The significant point is that,
even though no extra fields are introduced, the stress is no longer completely deter-
mined by the local geometry even though the degrees of freedom remain geomet-
rical. The EL equation (57) is replaced by E − KabT ab = 0. The presence of the
isometry constraint also breaks the identification of tangential deformations with
reparametrizations: The tangential projection of the conservation law (58) implies
that the multiplier field T ab is conserved: ∇aT ab = 0, Guven and Müller (2008);
Guven et al. (2012).

In this context, it is worth looking at theweaker constraint, local incompressibility.
The constraint (60) is replaced by

HC − 1

2

∫

d2uA(u1, u2)(
√

g −
√

g(0)) , (61)

Now instead of f ab + T ab, we have f ab + Agab, with an inhomogeneous stress.
However, in equilibrium, the tangential conservation law (58) implies thatA is con-
stant; which is the same stress as that associated with a globally constrained area.
Tangential EL with material fields: Let there be material fields: this could be
a scalar S(u1, u2) or a vector field V a(u1, u2), so that the total energy density is
replaced byH[gab, Kab, V a, S]. The EL equations for these fields can be determined

19The local parametrization is fixed.
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conventionally: Va = 0, S = 0, where Va = δH/(δV a√g) and S = δH/(δS
√

g).
Neither V a nor S depends on X, so that the identification of tangential deformations
with reparametrizations breaks down for this H. Now Eq. (58) is not reproduced by
the argument leading to Eq. (59).

Suppose that V a and S interact only with the intrinsic geometry and that H
decomposes asH = H(gab, Kab) + Hint(gab, V a, S), with correspond metric stress,
T ab + T ab

int . Now Eq. (58) implies ∇aT ab
int = 0, a nontrivial conclusion, Capovilla

and Guven (2004a, b). The total stress associated with the fields on the Riemannian
manifold described by the metric tensor gab is conserved. The surface itself does not
even need to be in equilibrium.

Note that the conservation law does not necessarily imply the corresponding EL
equations for the individual fields. If, however, the two fields do not couple directly,
their tangential stresses decouple and are separately conserved. For example, suppose
for simplicity that the scalar field is minimally coupled, described by the gradient
energy plus a potential:

HI (gab, S) = 1

2
c gab∇a S∇bS + V (S) . (62)

Now

T ab
int [gab, S] = c

(

∇a S∇bS − 1

2
gabgcd∇cS∇d S

)

− gabV (S) (63)

is conserved. This implies the EL equation for S,

− c∇2S + ∂V/∂S = 0 . (64)

This equation involves the surface geometry only through its metric. The correspond-
ingEL equation for the surface ismodified by the addition of a source:E = 0 in (57) is
replaced by E − T ab

int Kab = 0. If instead of one scalar field we had two noninteracting
fields, say S1 and S2, they will be separately conserved and their EL equations of the
form (64) are uncoupled. Nonetheless the surface geometry mediates an interaction
between these two fields through the shape equation: E − T ab

int [gab, S1, S2]Kab, where
T ab
int [gab, S1, S2] = T ab

int [gab, S1] + T ab
int [gab, S2]. In particular in a three-component

membrane (described by two relative concentration fields), one can anticipate non-
trivial behavior associated with this indirect interaction. There is clearly a lot of nice
physics yet to be unearthed, nevermind explored on this topic. A simple non-minimal
coupling to curvature, such as a term of the form, f (S)K , will introduce a source in
the EL equation for S.
Laplace pressure as effective surface stress: If there is a pressure difference P
across the membrane, or the volume is fixed, there is an additional term in H given
(modulo a possible constant) by−PV . Using Stokes theorem for the volume integral
of the spatial identity,div · x = 3, the volume can be expressed as a surface integral,20

20On a surface with boundary, this identity yields the volume of the cone standing on the surface
patch, with its apex located at the origin.
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Fig. 3 a Parametrization of an axially symmetric surface. b Generating curve for a torus

V = 1
3

∫

d AX · n. However, the translational invariance of V implies that
∫

d A n =
0, which in turn implies that n itself is a surface divergence. It is simple to verify that

n = ∇a faL , where faL = 1

2
X × (

n × ea
)

. (65)

It follows that the Laplace force across the surface can, itself, always be treated as
an effective surface stress tensor −P faL , Guven (2006).
Axially symmetric vesicles: In general, the EL equation cannot be integrated. Axial
symmetry, however, implies the existence of a first integral of the shape equation
which facilitates the identification of equilibrium states. The traditional way to iden-
tify this first integral is to adapt the variational principle to this symmetry, Zheng
and Liu (1993); Jülicher and Seifert (1994); Podgornik et al. (1995). However, the
conservation law provides an instructive alternative derivation in terms of the stresses
shaping an axially symmetric geometry.

First, let us review a few essential properties of axially symmetric surfaces. The
parallels and meridians on the surface form the principle directions. The curvatures
along these directions are given respectively by C‖ = sin�/R and C⊥ = �̇, where
R is the polar radius, � is the angle that the tangent along the meridian makes with
the polar direction, and a dot represents a derivative with respect to arc length along
the meridian, ˙= d/dl = ∇⊥, as indicated in Fig. 3a. Substituting into Eq. (56), we
identify the nonvanishing tangential and normal forces per unit length transmitted
across a parallel from the membrane below it, f⊥⊥ and f⊥ respectively.

We now use the conservation law to identify the first integral: first project∇afa =
Pn onto the symmetry axis; now integrate over the source-free region bounded below
by a given parallel circle. Using Stokes theorem on the left-hand side, we find that
the linear combination of stresses

L := sin� f⊥⊥ − cos� f⊥ , (66)
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satisfies

L = PR/2 + C/(2πR) , (67)

on this circle, where C is a constant of integration. Note how the derivative is peeled
off f⊥ in this construction. This equation, first written down in Capovilla and Guven
(2002b) (but without the important constant C), expresses equilibrium in terms of
an algebraic balance of tangential and normal stresses. The constant is identified as
the total external axial force acting from above; an equal and opposite force must
counteract it somewhere else. In the absence of such a force,C = 0.Wewill examine
one situation where it vanishes (even though radial external forces act on the vesicle)
and two where it does not: one for topological reasons; the other due to external axial
forces bearing down on the poles of a vesicle.
Stress and Torque conservation from Euclidean invariance: It is straightforward
using the auxiliary framework to show that the change in energy under a deformation
of the surface δX is given by

δH [X] =
∫

d A E n · δX +
∫

d A∇a
[−fa · δX + Habeb · δn

]

. (68)

This identity follows from the first variation of Eq. (46): the first term on the right in
Eq. (68) involves the EL derivative with respect to X and it vanishes in equilibrium
if the region is source-free; the second term collects in a divergence the two terms
linear in derivatives, ∂aδX and ∂aδn, appearing in δHC when X and n are varied. On
any patch of free surface, it depends only on the boundary behavior of the stress, fa ,
and the response to changes in the curvature, Hab; this is not an accident.

Using Eq. (68), it is simple to reproduce the conservation law for the stress tensor,
Eq. (49). For under a constant translation δa, the energy is unchanged within any
surface patch so that δH = 0; as a result, δa · ∫

d A∇afa = 0. Because the patch
is arbitrary, the integrand must vanish pointwise, reproducing the conservation law.
This is not surprising: translational invariance was alreadymanifest in the variational
principle.

The rotational invariance, on the other hand,was not.Under a constant rotation δω,
one has δX = δω × X and δn = δω × n so that, in equilibrium, δω · ∫ d A∇ama =
0, where

ma = X × f a + Hab eb × n . (69)

Thus, ma , which is identified as the surface torque tensor, Capovilla and Guven
(2002b); Müller et al. (2007), is also conserved: ∇ama = 0. The first term appearing
in ma represents the moment of the local stress, whereas the second term—the
bendingmoment—is position independent, a contribution originating in the curvature
dependence of the energy.

Consider the effect of a scaling δX = λX on any functional of the form (16): now
Eq. (68) implies
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δH [X] = λ

∫

d A E n · δX − λ

∫

ds f⊥ · X . (70)

Suppose that H has a consistent scaling dimension. If H = A, then H [�X] =
�2H [X]. furthermore E = K . and fa = −gabeb. One identifies

2A =
∫

d A K n · X +
∫

ds l · X . (71)

This is the Jellett–Minkowski identity, identified by Jellett mid-nineteenth century
but usually attributed only to the latter mathematician, Jellett (1853). A corollary is
that there do not exist closed minimal surfaces.
Stresses in the Monge representation: It is instructive to compare the manifestly
covariant framework described here with its counterpart using the height function
representation of the surface, treating the energy as a functional of this scalar field
on the reference plane. We now examine the forces and torques along this plane and
orthogonal to it.

One can exploit the Euclidean invariance of the energy with respect to translations
on the base plane, exactly as one does for a classical scalar field (electrostatics say),
to identify the conserved horizontal stress. But we do not need to: because we can
also project fa onto the base plane. In the quadratic approximation, this stress is given
by, Fournier (2007)

Ti j = κT B
i j + �T 0

i j , (72)

where

T B
i j ≈ ∇2h

(

∂i∂ j h − 1

2
∇2

0hδi j

)

− ∂i (∇2
0h)∂ j h , (73)

and
T 0
i j ≈ − (

1 + (∇0h)2/2
)

δi j + ∂i h ∂ j h . (74)

Not surprisingly, modulo the constant term associated with the area of the base plane,
T 0
i j assumes the form of the stress tensor of a free scalar field h on the plane. Compare

Eq. (74) with (63).We observe also that T B
i j is not symmetric so that, whereas ∂i Ti j =

0, if the indices are switched the divergence does not vanish: ∂i T B
ji �= ∂i T B

i j . There
is no such ambiguity in the reparametrization invariant approach. Notice also that in
T 0
i j neither homogeneity nor isotropy are manifest. This apparent spatial variation is

an artifact of the planar projection.21 Already in this simple setting, one can see the
advantage of possessing the covariant description. Even if one decides to perform
calculations in the height function representation, the covariant approach provides

21Intriguingly, the quadratic contribution to T B
i j is trace-free in this approximation, a property we

would associate with scale invariance. Yet the area itself is clearly not scale invariant. The source of
this peculiarity is that, in the quadratic approximation in gradients of h, the area is represented by
a massless two-dimensional scalar field on the plane which is scale invariant if the plane is scaled,
but not if h is. On the other hand, T B

ji is not trace-free but should not have been expected to be.
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an unambiguous statement about the nature of the underlying stress. The apparent
discrepancies using height functions arise because Ti j is not the physically significant
tangential stress but its projection onto a plane and the fact that heights are treated
differently from locations on this plane.

The conserved normal force density is Ni = κ∂i (∇2
0h) − σ∂i h. The conservation

laws for Ti j and Ni together encode the information content of Eq. (49), correct to
quadratic order. As we saw, they are not independent.

The invariance of the energy with respect to rotations about an axis orthogonal to
the base plane implies the conservation of the vertical torque,

Mi = κ
(∇2h − C0

)

εi j∂ j h + k̄
(∇2hεi j − ∂i∂khεk j

)

∂ j h . (75)

To account for the full rotational invariance of the surface energy, one needs to
consider rotations about two orthogonal axes lying in the plane. This involves the
rotation of the base plane itself, conflating the scalar field and the reference geom-
etry, a symmetry without any analogue in the theory of a scalar field on the plane.
This is probably why this was not considered in the height function until recently,
Fournier (2007), several years after the covariant description. Taking the appropriate
projections, we identify the horizontal torques

Mi j = κ
(∇2h − C0

)

εi j + κ̄
(

εi j ∇2h − εik∂k∂ j h
)

. (76)

Forces and torques without gauges: In biology, membranes are invariably shaped
by external forces or constraints; often these act locally: for example, the final stage
of endocytosis may involve the constriction of membrane necks by dynamin spirals,
Kozlov (2001); Morlot and Roux (2013); McDargh et al. (2016). There has also
been a considerable amount of work on the interactions between membrane bound
particles (read proteins) that are mediated by the deformed membrane geometry,
Goulian et al. (1993); Kralj-Iglič et al. (1996, 1999); Weikl et al. (1998); Kim
et al. (1998); Yolcu et al. (2011, 2012); Yolcu and Deserno (2012); Fournier (2014);
Haussman and Deserno (2014); Božič et al. (2015); Fournier and Galatola (2015);
Schweitzer and Kozlov (2015). The covariant stress tensor has also been shown to
provide insight into these processes, permitting one to understand non-perturbative
behavior, without the need to resort to triangulations or simulations, Müller et al.
(2005a, b); it also provides a rigorous framework guiding the design of the compu-
tational setup and the interpretation of results, Reynwar et al. (2007). The subject
of membrane fluctuations or Casimir forces has received considerable attention and
has been the subject of reviews, Deserno (2009); Yolcu et al. (2014). It would also
appear that the covariant language is the natural one to use in order to progress
beyond the quadratic or Gaussian approximation in height functions in this context.
The geometrical nature of the problem indicates that these corrections will involve
geometrical invariants.

In this section, we show how the forces and torques acting on the membrane (or
transmitted by it) are identified in our framework. Consider a number of localized
sources acting on the membrane. These could also be particles interacting with the
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Fig. 4 Local a translation and b rotation of the contours enclosing localized sources on the mem-
brane. The vector l is the normal to the contour � pointing into the source. Their magnitude has
been exaggerated for illustration purposes

membrane. To identify the force on the membrane associated with any particular
source, one needs to determine the change in the energy when this source alone is
displaced. This sounds like a complicated operation because its displacement will
drag the membrane along with it. Fortunately, we are only interested in deformations
around equilibrium, so to first order the membrane deformation turns out to be irrel-
evant. We thus let δX be any deformation reducing to a constant vector δa on the
curve � bounding one of these sources while vanishing on all other boundaries, as
illustrated in Fig. 4a. Now we use Stokes theorem in Eq. (68) to recast the divergence
as an integral along �. The change in the energy of the membrane is then given by
the intuitively simple expression:

δH = −δa · F ; F =
∫

�

ds f⊥ . (77)

where f⊥ was defined below Eq. (49). This is the work done on the membrane by
the source inside � when it is displaced a distance δa; as such, the vector F is
identified as the force on the source (or particle), or equivalently minus the force on
the membrane, Müller et al. (2005a, b); importantly, it is determined completely by
the surface geometry in the neighborhood of this boundary.What exactly is occurring
inside� is irrelevant, it may be treated as a black box. If there ismembrane inside, and
we decide to look inside, the distribution of the normal force acting on it is given by
E n, and the total force (not necessarily normal) is determined by integrating over the
interior of � covered by membrane, Phillips et al. (2009). Of course, any geometry
subjected to appropriate sources represents an equilibrium: simply evaluate E to
determine them. There is, however, no guarantee that such sources will be physical.

Note that the integrated conservation law over the free surface implies Newton’s
third law: if there are N boundaries with associated forces FI , I = 1, . . . , N , then

0 =
∫

d A∇afa =
N

∑

I=1

FI . (78)

The torque associated with an external source can be identified by examining the
response of the energy to a rigid rotation of the source. Under a rigid infinitesimal
rotation of � through an angle δω, the corresponding change in the energy is
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δH = −δω · M , M =
∫

�

ds m⊥ , (79)

where m⊥ = lama and ma was defined in Eq. (69). The Gaussian term in the CH
energy contributes through Hab

G to ma , Fournier (2007). It also plays an important
role in the local boundary conditions. However, it does not contribute to the total
torque: this is because the corresponding contribution to m⊥ is proportional to the
arc length derivative of the surface normal vector along the boundary, m⊥ = κ̄n′,
and thus integrates to zero.

In a manner analogous to that for f⊥, with an obvious notation, we can express
m⊥ = m⊥‖T + m⊥⊥l + m⊥n. Along a parallel circle on an axially symmetric geom-
etry, the only surviving component is m⊥‖, given by

m⊥‖ = f⊥⊥X · n − f⊥X · l − H⊥⊥ . (80)

The conservation laws for stress and torque imply that the integrals in (77) and (79)
will be identical on any contour homotopically equivalent to � outside of sources. In
particular, if the geometry possesses symmetries, the contour can also be deformed to
exploit these symmetries. This stratagemwasused to determine the forces and torques
mediated by the membrane between identical particles on a membrane, Müller et al.
(2005a, b). One has, perhaps unsurprisingly, nonlinear analogues of Gauss’ law in
electrostatics.
Horizontal force on the ramp dipole: The line integral (77) permits one to deter-
mine the horizontal force between two elements of the minimal dipole discussed
earlier. One can show that it is always attractive, and given in the small gradient
approximation by (T 0

i j is defined in Eq. (74))

F = σ

∫

dy T 0
xx = 1

2
�

∫

dy (∂yh)2 = 2π p2�/R . (81)

Geometrically, this is the length added to the midline, Guven et al. (2014). Mini-
mal ramps of opposite chiralities attract; if they were the same, they would repel,
Müller et al. (2005a). To prove this note that the contour can be deformed so as to
coincide with the “square” � illustrated in Fig. 1a. As shown in Guven et al. (2014),
the minimal dipole is stabilized by nonharmonic corrections. The simplest example
involves the local addition to each helicoid of the solution to the Helmholtz equa-
tion, h ≈ K0(λr)ϕ, described earlier. The integrated stress associated with such a
correction is always negative which implies repulsion. The dipole size is set by the
competition between this short range repulsion (associated with bending) and the
long range attraction associated with tension.

Note that the behavior of the minimal ramp persists in the nonlinear theory,
Müller et al. (2005a). For a minimal dipole, the force on either ramp is given by
F = �

∫

�
ds l. By symmetry, the force is given by��L , where�L is—as before—

the length added to the midline.
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It bears emphasizing that, even in the linearized theory, this approach always out-
performs the approach still overwhelmingly used in this field to determine forces
which requires integrating the energy density over the entire surface and then dif-
ferentiating with respect to the placement of the sources. Here, it is sufficient to
know the geometry in the neighborhood of a single bounding curve: avoiding the
unnecessary integration and subsequent differentiation.
Boundary conditions: If the free surface terminates on a free boundary, with an
associated line tension or its ownbending energy, the second term inEq. (68) provides
the appropriate boundary conditions, circumventing the necessity to reevaluate them
anew every time we have a boundary to contend with. The explicit use of the stress
tensor in this context was first made in Capovilla et al. (2002). An elegant derivation
of these boundary conditions, including not only boundary tension but also boundary
bending energy, using the methods of exterior differential calculus was provided in
Tu and Ou-Yang (2003, 2004).

If an interface separates two phases with distinct physical parameters, the dif-
ference in the contributions from the two permits one to identify the appropriate
matching conditions, Müller (2007). If the membrane adheres to a substrate, with a
contact potential, (68) facilitates the identification of the discontinuity in the normal
curvature at the boundary of the region of contact, Capovilla and Guven (2002a). A
rather more comprehensive treatment of the adhesion process using the framework
presented here is given in Deserno et al. (2007).
Surfaces as emergent: An alternative to the auxiliary route to the shape equation
is again to focus on gab and Kab as independent tensor fields but, instead of the
structure equations, to impose the Gauss–Codazzi and Codazzi–Mainardi equations
as constraints, Guven and Vázquez-Montejo (2013a). This approach, as we will see,
has some surprising consequences.

Consider a Riemannian manifold with a metric gab (there is a whiff of gravity
here), coupling to a symmetric tensor Kab. If these two tensor fields satisfy theGauss–
Codazzi and Codazzi–Mainardi equations (29), they describe the induced metric and
extrinsic curvature on a surface embedded in three-dimensional Euclidean space,
Spivak (1999). We thus see that these equations are both necessary and sufficient
conditions for forming a surface.

It is now possible, in principle, to address geometric questions about surfaces
without any explicit reference to its environment; the surface itself is an emergent
equilibrium entity. In this approach one does not have a surface to speak of away
from equilibrium.

In contrast with the auxiliary approach, there is even no need to introduce
the embedding, X, explicitly in the variational principle. Let us replace H [X] =
∫

d AH[gab, Kab] by

Hc[gab, Kab,�,λa] = H [gab, Kab] + I [gab, Kab,�,λa] , (82)

where

I = 1

4

∫

d A� C⊥ − 1

2

∫

d A λaCa , (83)
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with C⊥ := R − K 2 + KabK ab and Ca := ∇b(Kab − gabK ). The multiplier fields
� and λa enforce Eq. (29) permitting gab and Kab to be treated as independent
variables. Notice that Kab will tag along even if H depends only on gab, such as it
does in an interfacial energy. For the reader familiar with general relativity, I has
all the appearance of the Arnowitt–Deser–Misner (ADM) action in the Hamiltonian
formulation of the theory, Arnowitt et al. (1959). This is a two-dimensional accident!
For if we were genuinely working in four dimensions, we would need to replace the
single Gauss–Codazzi equation by the twenty equations (33), and � by a tensor-
valued �abcd , with the symmetries of the Riemann tensor. Curiously, the Codazzi–
Mainardi equations in four and higher dimensions are completely determined by
their Gauss–Codazzi counterparts (Thomas) so that the corresponding multipliers
are redundant: λa → λabc = 0.

Remarkably, one never needs to identify these multiplier fields explicitly in the
derivation of the shape equation.

Instead of X → X + δX, we have

δ(H + I ) =
∫

d A

[

−1

2
(T ab + T ab) δgab + (Hab + Hab) δKab

]

+ BT (84)

where T ab and Hab are the functional derivatives of H wrt gab and Kab defined
earlier; T ab and Hab are the counterparts for the constraint term I . BT represents
terms collected in a divergence after integration by parts. The equilibrium states of
the surface are described by the coupled pdes on the two-dimensional Riemannian
manifold:

T ab + T ab = 0 ; (85a)

Hab + Hab = 0 , (85b)

supplemented with C⊥ = 0 and Ca = 0. Equation (85a) are the analogues of the Ein-
stein equations. Equation (85b) are their counterparts for Kab.

The EL derivatives, T ab and Hab, originating in the constraints are model inde-
pendent. Both are linear in L�gab and L�Kab:

T ab = 1

4

(

gabK cd − gcd K ab
)

L�gcd

+1

2

(

gacgbd − gabgcd
)

L�Kcd ; (86a)

Hab = 1

4

(

gacgbd − gabgcd
)

L�gcd , (86b)

where

L�gab = 2Kab� + Lλgab ; (87a)

L�Kab = (−∇a∇b + KacK
c
b
)

� + LλKab . (87b)



The Geometry of Fluid Membranes … 201

If we consult Eqs. (19) and (20a), and restore our Euclidean background, then
� = � n + λa ea is identified as the generator of a surface displacement with the
identification of � with � and λa with �a in (18). But remember that here λa and
� are the generalized forces coupling the two fields to form a surface. Their role is
not to displace.

To identify the shape equation, the contraction of Eq. (86) provides a very useful
identity:

KabT ab = 1

4

(

gab∇2 − ∇a∇b + KacK b
c − gabKcd K

cd
)

L�gab , (88)

equating the contraction KabT ab to a differential expression linear in L�gab. Signif-
icantly, L�Kab does not appear.

Now let us apply this framework to gravitational impostors, described by aHamil-
tonian depending only on the metric, H = H [gab]. Now Hab = δH/δKab = 0 so
that Eq. (85b) implies that Hab = 0 as well. But the identity (86b) then implies that
L�gcd = 0 or that� generates surface isometries. The identity (88) now implies that
KabT ab = 0. The Einstein equations Eq. (85a) finally imply that −Kab T ab = 0: an
unusually short story.

For the trivial example of an interface, H = σA, with T ab = −σgab, we reproduce
the equation, K = 0. The stationary states are minimal surfaces.

This is somewhat mysterious. The Lagrange multipliers appear to have been very
obliging: in the derivation of the surface EL equations, they do their job but we never
even need to identify � explicitly. But let’s look at them. For the area, H = σA, the
trace of T ab, T a

a = −2σ. Equation (86) implies that T a
a = − 1

2 L�K . But L�K =
(−∇2 + R

)

�, so that
(−∇2 + R

)

� = −4σ (89)

The determination of� decouples from that of λa . One can show that the appropriate
boundary conditions are � = 0. Because Eq. (89) is inhomogeneous, the isometry
will be nontrivial! It is also uniquely determined by the equilibrium geometry.

The differential operator D = −∇2 + R also appears in the second variation of
the area:

δ2A =
∫

d A�D�, (90)

where � is the normal deformation of surface. To see this use Eq. (36) to obtain for
the second variation of the area about an equilibrium, δ2A = ∫

d A� δ⊥K . Using
Eq. (37) for δ⊥K we recover Eq. (90). Negative eigenvalues signal instability.

Now let us look at solutions of Eq. (89). In particular, consider a catenoid of neck
radius R0, parametrized R(l)/R0 = √

1 + (l/R0)2, Z(l) = arcsinh l/R0, bounded
between 2 rings separated a distance 2L along the meridian. There exists an exact
solution for �, negative everywhere, vanishing on the boundaries, with a minimum
on the neck, as illustrated in Fig. 5b, Guven and Vázquez-Montejo (2013a). The
solution diverges as L → 1.5088R0.
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Fig. 5 a Soap Bridge b � versus l

Now look at the spectrum of the operatorD: (−∇2 + R)�n = En�n , E0 < E1 <

E2 < · · · . If L is small, E0 > 0. The spectral expansion of �, � = ∑
�n�n , indi-

cates that� → ∞ correlateswith E0 → 0. Singularities in� correlatewith the onset
of instability. A new criterion is identified for the onset of surface instability. This
is an intuitive result: instabilities are reflected in our inability to find an equilibrium
pair, gab and Kab, satisfying Eq. (29).

6 External Forces and Nontrivial Topology

In this section we present examples of surface states minimizing the CH energy when
the geometry is subjected to localized external forces or topological constraints,
analyzing the connection between the stress and the geometry using the framework
presented here. The first example considers the response of a spherical vesicle, of
fixed area, to the radial constriction of its equator.We next present new insight into an
old problem: the equilibrium of toroidal vesicles; we showhow the topology provides
sources for both forces and torques in the vesicle, and describe the distribution of
stress associated with these sources. Finally, we demonstrate how the conformal
invariance of the bending energy can be exploited to examine the morphologies of
a vesicle (not necessarily axially symmetric) subjected to localized external forces
bringing two points (or small patches) into contact.

6.1 Constriction of a Spherical Vesicle

If the membrane possesses spherical topology, and is free of axial forces, thenC = 0
on the right side of Eq. (67). Let the vesicle have a fixed area A0 = 4πR2

0 , and be
subjected to an equatorial constriction provided by an external rigid ring of radius r0.
To keep matters simple, we do not admit spontaneous curvature or fix the volume.
There are no axial forces, so L = 0 (with C0 = 0) in Eq. (67) everywhere except
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(a) r0 = 0.1R0 (b) r0 = 0.5R0 (c) r0 = 0.84R0

Fig. 6 Equatorial constriction of a spherical vesicle

along the equator where there is a radial source. The equation L = 0 is solved by the
shooting method for values of 0 ≤ r0 ≤ R0. The one free parameter is σ, which is
tuned to fix the area to A0. As r0 is decreased one observes the following morpholog-
ical sequence: if the constriction is moderate (0.84 ≤ r0/R0 < 1) the deformation
is prolate, represented in Fig. 6c; if 0.2 ≤ r0/R0 ≤ 0.84 the vesicle develops a waist
as illustrated in Fig. 6b22; if r0 is reduced further, so that r0/R0 ≤ 0.2, the geometry
morphs into two spherical lobes connected by an increasingly narrow neck (Fig. 6a);
in the limit r0 → 0, it resembles two touching spheres of radius R0/

√
2. Various

questions suggest themselves. What is the geometry in the small neck connecting
these two spheres and what is the force squeezing this neck? This force is nonvan-
ishing, i.e., there are sources; thus the neck cannot be a catenoid. How then does it
differ?

If the traction along the edge instead were outward, the vesicle would tend to
become increasingly oblate as r0 is increased, tending to a limiting geometry formed
by two flat disks of radius

√
2 R0, glued together along their common perimeters

with diverging energy and force. The force constricting the membrane is completely
encoded in the membrane geometry in the neighborhood of the equator. To see this,
consider the change in energy under a radial deformation of the equator, δX = δc r̂.
Using Eq. (68), one finds that δH = −δc F , where the equatorial constriction F is
given by the jump across the equator at l = 0:

F

2πr0κ
=

[

− sin� f⊥ + cos� f⊥⊥
]ε

−ε
. (91)

22Unlike the prolate, this geometry is stable with respect to membrane slippage under the ring.
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Fig. 7 Total energy and radial compression as functions of the ring radius. The bending energy
increases monotonically as the equator is constricted, tending to the value 16πκ as r0 → 0; in
contrast, the radial compression, does not behave monotonically

The tangent angle � = π/2 so that the two contributions are equal and opposite:

F

2πr0κ
= C ′

⊥ 0

∣
∣
∣

ε

−ε
= 2�′′

0 . (92)

The presence of the force is signaled by a discontinuity in the derivative of the
normal (meridian) curvature. along the equator. An alternative derivation is provided
in Božič et al. (2014). Contrast this with line tension where the discontinuity is in
the curvature C⊥ itself.

Note that total equatorial force on the vesicle vanishes, in much the same way as
the total Laplace force vanishes on a closed vesicle does,

∫

d A n = 0. There is also an
intriguing duality between the functional form of the expression within parenthesis
in Eq. (91) and the first integral, L given by Eq. (66).

Notice that, whereas the energy increases almost linearly with r0, the depen-
dence of F on r0 illustrated in Fig. 7b is non-monotonic; its behavior displays
a striking correlation with the morphological changes in the membrane, increas-
ing in magnitude as the membrane becomes prolate; relaxing slowly as the belt
tightens but increasing again as the two lobes develop. In particular, not only is
it nonvanishing in the limit r0 → 0, its magnitude is a global maximum. Using
the equation, L = 0, it is simple to show that the polar radius can be expanded
R(l)/r0 ≈ 1 + (	/r0)2 + F0 πr0|	/r0|3/12 at the neck, when r0/R0 � 1, indicating
explicitly the curvature derivative singularity (the third derivative) proportional to
the limit force F0. Significantly, it is not approximated by a catenoid of neck radius
r0, which is given exactly by R(l)/r0 = 1 + (	/r0)2.

We have already seen that the scale invariance of the bending energy has physical
implications. The constricted vesicle involves two scales, R0 defined by the area, and
the equatorial radius, r0. The corresponding constraints can be introduced explicitly
into the variational principal so that the unconstrained functional to be minimized is

H [X] = HCH [X] + σ (A − 4πR2
0) +

∫

ds F(s) (|X| − r0) . (93)
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The function F(s) is a new local Lagrange multiplier enforcing the constraint on
the equatorial radius. If axial symmetry is relaxed it will not be constant. If this
constraint is removed, then σ = 0, a consequence of the scale invariance of bending
energy. In equilibrium, one identifies F := ∫

ds F(s) = ∂HB/∂r0. This is the famil-
iar expression involving HB , and thus requiring knowledge of the complete vesicle
geometry.

On casual inspection, Fig. 7a would suggest that HB depends linearly on r0. The
wiggles may be small but they are real, as comparison with Fig. 7b indicates.

Consider now the effect of a membrane rescaling X → �X on H . One has

H [�X] = HCH [X] + σ (�2 A − 4πR2
0) +

∫

ds F(s)�(�|X| − r0) . (94)

In equilibrium dH/d� = 0 when � = 1. This implies that r0 F = −2σA: σ thus
also determines the force; its sign correlating with it. Note that σ vanishes in the
limit r0 → 0. Elementary calculus then implies that the limiting traction is given by
F0 = limr0→0 ∂σ/∂r0, reflecting the scale-free nontrivial neck geometry lurking in
this limit.23

The model presented here is a very simplified description of the physics: the ring
is assumed rigid. If the ring is elastic, it need not remain circular, and the contraction
process will involve non-axially symmetric deformations of the vesicle. Modeling
the constriction of a membrane neck by a dynamin spiral will necessarily involve
both the breaking of axial symmetry as well as the deformation of the spiral, Nam
et al. (2012); McDargh et al. (2016).

6.2 Topology as a Source of Stress

Nontrivial topology can also provide a source of stress. On a torus, closed curves
along both the wheel and tube are homotopically nontrivial. Such geometries are not
only of academic interest: toroidal vesicles were first observed experimentally some
time ago, not only the common or garden single-holed variety, Mutz and Bensimon
(1991), but also genus two geometries, Michalet and Bensimon (1995). Shape transi-
tions in toroidal vesicles have also recently been examined both experimentally and
numerically in Noguchi and Imai (2015). Indeed, topology plays a role in almost all
intracellular membranes—the Golgi, the Endoplasmic reticulum (rough and smooth
alike), aswell as the innermembrane of themitochondrion—exhibit highly nontrivial
topologies.

Here we will limit our discussion to an axially symmetric toroidal membrane in
order to demonstrate how the topology of a membrane can, itself, provide a source

23This is well known in the context of global constraints. In a symmetric closed fluid membrane
subject to area and volume constraints, the identity 2σA − 3PV = 0 is a consequence of the scale
invariance of the bending energy, Svetina and Žekž (1989).
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of stress in the membrane. Of course, axially symmetric torii have been studied
extensively; yet extraordinarily, to our knowledge, never from this more physical
point of view. Let the torus have awheel radius R0 and tube radius r0 (see Fig. 3b). Let
θ = 	/r0 be the angle made along the tube with the outer radial direction, so that R =
R0 + r0 cos θ is the polar radius (the tangent angle is � = θ + π/2). The curvature
across the tube is constant, C⊥ = 1/r0; whereas that along the wheel is θ dependent:
C‖ = cos θ/R. Notice thatC⊥ − C‖ = R0/(r0R). The Gaussian curvature is positive
(negative) on the outer (inner) tube, vanishing on the upper and lower parallels. The
mean curvature, K , on the other hand, is positive everywhere unless 2r0 > R0, where
it is negative on the interior band of angular width given by 2θ0, where cos θ0 =
−R0/2r0. On a Clifford torus, with R0 = √

2r0, 2θ0 = π/2. The sign of K will be
reflected in the distribution of stress. Substituting into Eq. (67), one finds that HCH

is minimized for a Clifford torus, independent of the physical parameters; the latter
do need to be tuned appropriately, Willmore (1965); Ou-Yang (1990); Ou-Yang et al.
(1999):

P = 2κC0/r
2
0 ,σ = κC0(2/r0 − C0/2) , (95)

see also Seifert (1991, 1997). Moreover, the magnitude of the total axial force on a
parallel appearing in Eq. (67) is

C = −κ(1/r0 + 2C0) . (96)

Its origin will be traced to the topology.
In the absence of spontaneous curvature, P and σ vanish and the vertical force is

determined by the bending modulus C = −κ/r0. Now only the stresses and torques
due to bending are relevant. Their nonvanishing projections are given by Eqs. (56)
and (80):

f⊥⊥ = − f‖‖ = κ K√
2 R

, f⊥ = −
√
2κ

R2
sin θ , (97a)

m⊥‖ = −κr0
R2

(

2 cos2 θ + √
2 cos θ + 1

)

. (97b)

f‖‖ correlates directly with mean curvature. It is plotted in Fig. 8a.
Thus the torus is under tension everywhere along thewheel except within the band

of angular width π/2 on the inner tube where K is negative, and tension is replaced
by compression. The parallels at θ = ±3π/4 are free of tangential stress marking the
boundary along which tension turns to compression. Because f⊥⊥ = − f‖‖, across
the tube, tension and compression are interchanged. This behavior, implied by scale
invariance is not so intuitively clear.
Topological Torque M‖ closing the wheel: The total force closing the tubular cylin-
der (evaluated, say, on any meridional circle) vanishes, F‖ = r0

∫

dθ f‖‖l = 0. The
moments of the local forces, however, do not vanish. The corresponding torque,
closing the torus, is given by M‖ = 2πκẑ. It is topological in origin. This behavior
contrasts with a cylinder, where the axial force is nonvanishing and there is no torque.
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(a) (b)

Fig. 8 Components f⊥⊥ as function of the arc length l measured from the outer parallel for the
a Clifford torus b discocyte (constructed in Sect. 7). The black dots represent the parallels along
which f⊥⊥ vanish. Outside of these parallels, the two geometries are essentially indistinguishable;
inside the stress diverges in the discocyte reflecting its source in external forces, whereas in the
torus it is finite everywhere reflecting its origin in the topology

Topological Force F⊥ closing the tube: The topological force across the tube F⊥
may be evaluated on any parallel circle (such as the wheel outer circle θ = 0), giv-
ing F⊥ = ∫

dϕ R ( f⊥⊥l + f⊥n) = 2πC ẑ. It is also completely determined by the
normal forces on appropriate parallels: evaluate F⊥ along θ = π/2.

The corresponding topological torque vanishes, M⊥ = 0. These results quantify
the connection between the topology and the internal stresses established in the
toroidal membrane. Analogous results will describe higher genus surfaces. But it is
not obvious how one would even access this information without knowledge of the
local stress and torque in the membrane.

In the next section we will examine some of the consequences of the conformal
invariance of bending energy. As we will see, the stress itself is not invariant; and nor
are the conserved quantities. And just as well. Under a conformal transformation,
an axially symmetric torus will map to a Dupin cyclide, Pinkall (1986). Unlike
the energy, which is invariant, the magnitude of the principal stresses increase as
the geometry deviates from axial symmetry. As we will describe, the conformally
deformed membrane of equal energy may rupture.

7 Conformal Invariance as Probe of Highly
Deformed States

An extraordinary feature of the two-dimensional symmetric isotropic bending energy
is its invariance under conformal transformations, Willmore (1982, 1996). These are
the transformations preserving angles: in addition to its invariance under Euclidean
motions it is also scale invariant; less obvious is the fact that it is invariant under
inversion in spheres. If this sphere has a radius RS and is centered at the origin,
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inversion is represented by the mapping of points in space: I : x → x̄ = R2
S x/|x|)2,

where |x|2 := x · x. This induces an inversion of the surface by the replacement of x
by X.

The symmetric bending energy alone rarely provides an accurate description of
the physics; typically material fields, constraints, or even a spontaneous curvature
will be inconsistent with conformal symmetry. It would be a curiosity were it not for
the fact that it can be consistent with nontrivial physically relevant constraints.

Usually one looks at conformal transformations at linear order; let x → x̄ =
x + δx. Angles are preserved if dx̄ · dx̄ = 
2(x)dx · dx. This implies that, correct to
linear order, δx satisfies ∂iδx j + ∂ jδxi = 2div · δx δi j/3. The most general solution
is the sum of a Euclidean motion, a scaling, and a special conformal transformation:
δcx = |x|2 Rx δc, where Rx is the linear operator on three-dimensional space defined
by Rx = 1 − 2x̂ ⊗ x̂, where 1 is the identity transformation and x̂ = x/|x|; Rx rep-
resents a reflection in the plane perpendicular to x passing through the origin, so that
R2

x = 1. The constant space vector δc has dimensions of inverse length squared.
This transformation exponentiates to give (for finite c)

x → x̄ = x + |x|2 c
|c|2 |x|2 + 2 c · x + 1

. (98)

This can be recast (we set the radius of inversion equal to one)

x̄ =
( x
|x|2 + c

)/∣
∣
∣

x
|x|2 + c

∣
∣
∣

2
. (99)

Thus a finite special conformal transformation can be represented as the composition
of an inversion, a translation c, and another inversion: I o c o I. Any conformal
transformation is a composition of inversions in spheres with Euclidean motions and
scalings, Kreyszig (1991). If we understand conformal inversion, we are done.

As was known to themathematicians of ancient Greece, spheres map to spheres or
planes. But, because distances to the center of inversion get inverted, |X̄| = R2

S/|X|,
points on a sphere will get moved around unless it coincide with the sphere used for
inversion. And its center will not remain the center. Other geometries, as we will see,
suffer less recognizable distortions.

To understand the conformal symmetry of the bending energy, one needs to know
how the two fundamental tensors on a surface transform under inversion. The adapted
tangent vectors and the normal vector transform as follows: ēa → R2

S RX ea/|X|2,
n → −RX n. As a consequence of the former, the induced metric (1) transforms by
gab → (RS/|X|)4 gab. Thus in particular, the area measure on the inverted surface is
(RS/|X|)4 d A. As for the extrinsic curvature, for our purposes it will suffice to know
how the two principal curvatures, C1, C2, transform. It follows from the fact that
circles map to circles that24

24Kab → Kab = −|X|2 (

Kab − 2 (X · n)gab/|X|−2
)

.
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CI → −(|X|/RS)
2
(

CI − 2X · n/|X|2) , I = 1, 2; (100)

their difference thus transforms multiplicatively, or

C1 − C2 → −(|X|/RS)
2 (C1 − C2) . (101)

This result, together with the transformation of area, implies that the energy

HW = 1

2

∫

d A (C1 − C2)
2 (102)

is manifestly invariant. It follows that the unadorned quadratic bending energy,
HB = κ/2

∫

d A (C1 + C2)
2 + κ̄

∫

d AC1C2 is also invariant—unless the topology
changes.

Two physically significant consequences are immediate:
(1) any two geometries related by a conformal transformation possess the same
bending energy if the topology is unchanged.
(2) if one of these geometries is an equilibrium state of this energy, then the other is
also, modulo possible pointlike singularities. We will show that these singularities
can be interpreted as external forces acting on the membrane.

In the 90s Seifert and coworkers, Seifert (1991); Jülicher et al. (1993); Jülicher
(1996), observed a degeneracy in the ground states of higher genus vesicles, which
they dubbed conformal diffusion, associated with the existence of conformal trans-
formations preserving constraints. This involved examining the behavior of the con-
strained energy under small special conformal transformations. Such transformations
induce continuous deformations of the surface. We will focus on conformal inver-
sion, a non-perturbative feature of conformal symmetry that cannot be probed by
exponentiation. It will provide a window, albeit a narrow one of its choosing, into
the non-perturbative response of membranes to external forces.

Suppose that the geometrywe beginwith is not compact. Its image under inversion
generally will be compact. To illustrate this point, let us examine the inversion of
a catenoid, a minimal surface. The catenoid is described in polar coordinates by
R(Z) = r0 cosh(Z/r0), where r0 here is its neck radius. Under an inversion centered
at the origin, this catenoid maps into the axisymmetric geometry with radial and
height coordinates,

R̄(Z) = R2
S R(Z)/(R(Z)2 + Z2) ; Z̄(Z) = R2

S Z/(R(Z)2 + Z2) , −∞ < Z < ∞ .

(103)
Its image resembles a discocyte (see Fig. 9), but this coincidence should not be taken
too literally: there are many physical mechanisms producing superficially identical
morphologies.25 While the catenoid and its inverted image are linkedmathematically,
they are topologically different and clearly describe very different physics, Castro-
Villarreal and Guven (2007a, b). Whereas the catenoid is well known, the second

25Fixing the discocyte area at 4πr20 determines RS = 1.089 r0.
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Fig. 9 a Catenoid and b discocyte obtained by its inversion in a sphere centered at the origin

geometry is not and, had it not been for the stratagem provided by inversion, it
is unlikely that one would have guessed that this simple discocyte describes an
equilibrium, nevermind lending itself to an exact analytical treatment.

Let us examine the discocyte geometry more closely. Under inversion, the two
ends of the catenoid map to the origin, forming the north and south poles of the
discocyte which touch with a common tangent plane. The existence of a tangent
plane, however, belies the fact that curvature singularities are present at these points:
the source-free EL equation breaks down implying the presence of localized distri-
butional external forces. The mathematical origin of these singularities is the com-
pactification of the exponential ends into a bounded region, Castro-Villarreal and
Guven (2007a, b); Guven and Vázquez-Montejo (2013b). Note that, in contrast with
a catenoid, the inversion of a hyperboloid of revolution—which is asymptotically
conical—gives a pair of conical singularity at the origin, without tangent planes to
hide behind. We will have more to say about singularities in a moment. Notice also
that whereas

∫

d AC1C2 = −4π for a catenoid, it is given by 4π for a discocyte,
which is topologically a sphere. That the poles touch is irrelevant.

Whereas the distribution of stress associated with bending vanishes in a catenoid,
it does not in the discocyte. The tangential stress along the meridian f⊥⊥ = − f‖‖ is
plotted in Fig. 8b as a functions of archlength, l, measured from the outer parallel. It
is observed that it is strongly localized within the neighborhoods of the two touching
poles, where it diverges.

If we now translate the center of inversion along the axis of the catenoid, a one-
parameter family of equilibrium states is generated: as illustrated for a northward
movement in Fig. 10, the symmetric discocyte morphs smoothly into a stomatocyte.
The limiting shape is a sphere within a sphere, touching at the bottom, connected
by a microscopic catenoidal neck at the top. Unlike the constricted sphere discussed
previously, this time the neck is a catenoid because there are no sources acting
within it.

Now let us place the center of inversion off axis, Guven and Vázquez-Montejo
(2013b). Consider, for example, inversion in a sphere centered on a point located
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(a) z0 = 1 b) z0 = 10 (c) z0 = 100

Fig. 10 Surfaces generated by inversion of a catenoid in spheres centered at height z0 along its
axis of symmetry

Fig. 11 The red and green catenaries on the mirror plane Y = 0 map to a single curve. The circular
neck maps to a straight line

along the X axis. This preserves the mirror symmetries in the X Z and XY planes.26

In Fig. 12, we illustrate four geometries in this sequence. Of special interest are
those generated when this point lies close to the neck of the catenoidal geometry, say
x0 = (1 + ε)r0i, with ε small. Now, the neighborhood of the point r0i on the neck gets
inflated into a large spherical region: the geometry is spherical almost everywhere,
with a defect, formed by the two points held together, localized upon it as indicated
in Fig. 12b, c.

To facilitate the visualization of this construction, it is useful to follow the fate of
the catenary meridians and the neck of the catenoid as illustrated in Fig. 11.

Physically, one can interpret these geometries as the end point of a procedure
bringing two nearby points on an almost spherical vesicle, of fixed area and fixed
enclosed volume, into contact by applying normal forces (as opposed to tangential
ones which would not disturb the initial geometry, fluid in its tangent plane), Guven

26The bilateral symmetry (not necessarily in the original X Z plane) is preserved if the point strays
off this axis; however, the up-down symmetry is broken, just as it was in the axially symmetric
family.
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(a) (b)x0 = 0.5 x0 = 0.93 (c) x0 = 1.07 (d) x0 = 2

Fig. 12 Surfaces generated by inversion of a catenoid in a sphere centered at increasing distances
along the radial direction

and Vázquez-Montejo (2013b). Conformal invariance may grant access to the non-
pertubative equilibrium end state, but it does not have anything to say about the
intermediate states—with the two points still separated—through which the mem-
brane has to pass on its way to this final state. As we have pointed out, conformal
invariance decides what window it opens.

If ε < 0, the geometry represents two nearby points on the vesicle that are pinched
together; it resembles the wrinkle forming on skin that has been pinched. If ε > 0,
on the other hand, two fingers of membrane—touching at a point—project out from
the vesicle. In the latter the force is directed out of the vesicle, not into it as in the
former. Despite the apparent differences in the two descriptions, however, it takes
only a moment’s thought to appreciate that the two limiting geometries are mirror
images in the neighborhood of the defect.

These geometries are also stable. The constraints on the area and on the volume
reduce the conformal symmetry to a single nontrivial degree of freedom. This is
reflected in a zero mode of the operator controlling fluctuations corresponding to
deformations which break the up-down mirror symmetry in the XY plane but leave
fixed the geodesic distance s along the surface separating the two touching points.27

As a consequence, once formed, the membrane cannot slip out of this defect. If the
volume constraint were to be relaxed, however, there would be nothing to prevent
the two points from approaching each other along the membrane.

More exotic increasingly deflated geometries are generated by increasing the
magnitude of x0. The surface first morphs continuously into a folded sausage, as
illustrated in Fig. 12d; beyond a critical value of x0, the waist on the sausage begins
to constrict. As x0 increases further, the geometry evolves, just like its axially sym-
metry counterpart, into a geometry that is spherical almost everywhere: this time it
resembles two spherical lobes, touching at one point and connected by a vanishingly
small catenoidal neck adjacent to it.

27This is the shortest distance between the two points on the surface. They are, of course, in contact
in space.
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Fig. 13 a Stress across the images of parallel circles. b Images of parallel circles represented by
closed curves

On a catenoid, fa = 0. In the inverted geometry, K �= 0 and equilibrium involves
a nontrivial balance of normal and tangential stresses. These stresses possess a pair of
external sources (±F say) normal to the surface localized at the points of contact; this
is what holds them together. It is easy to show that in the height function description
of the geometry with respect to the local tangent plane at these points, one has
h ≈ ∓r2 ln r , where r is the polar radius.28,29 The presence of a source is signaled
geometrically by the logarithmic curvature singularity at these points.

To identify the contact forceF, we can deform the contour surrounding the pole so
that it coincide with the line of symmetry running along the valley (or ridge) between
the twopoles.Using the expression for the force given inEq. (77), one determinesF ≈
9.65πκ/s k. Note that the detailed distribution of stress is not required to determine
the contact force, Guven and Vázquez-Montejo (2013b). As the vesicle is inflated,
s decreases and the contact force increases. One can show, however, that it remains
below the rupture tension of the membrane until s ≈ 20nm, a separation so small
that the mesoscopic modeling in terms of a surface is no longer reliable (Fig. 13).

There is also an important cautionary point to be emphasized here: had one used
the Monge representation for the horizontal stress with respect to the local tangent
plane, an incorrect answer would have been obtained.

28An unexpected duality between the weak field behavior in one geometry and the strong field
behavior in the other is evident: asymptotically, the catenoid is accurately described by the height
function h ∼ ln r , r � r0; this asymptotic region is mapped into the neighborhood of the poles
described by h ∼ −r2 ln r , r � s. Inversion provides a connection between the harmonic behavior
in the former and the biharmonic behavior in the latter, Guven and Vázquez-Montejo (2013b).
To understand this duality between harmonic and biharmonic function, look at the inversion in
the origin x → x/|x|2 (for transparency set the scale to one), described in the height function
representation by (r, h) → (r, h)/((r2 + h2), so that h ≈ ln r → h

r2+h2
= ln[r/(r2 + h2)]. Now,

if h � r , then h
r2

≈ − ln r , and as claimed the Green function of the Laplacian is mapped to its
biharmonic counterpart.
29In this context, note also that the symmetric saddle with h ∼ r2 cos 2θ maps to the biharmonic
dipole h ∼ cos 2θ.
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8 Concluding Remarks

Despite the complexity of the cellular environment on the molecular scale, on zoom-
ing out, one finds that much of the equilibrium physics of cellular membranes on
mesoscopic scales can be understood by treating themembrane as a two-dimensional
surface described by an energy depending only on its geometry. This implies that
this physics is completely encoded in the membrane geometry. We have presented a
number of simple examples to illustrate the nature of this connection. Even if addi-
tional structure is relevant, it can be treated in terms of fields interacting with this
geometry.

There are other examples falling within the scope of this chapter which we have
not treated for want of space, or because they will be treated thoroughly by other
contributors. Some of these are treated, as commented previously, in a nice recent
review, Deserno (2015). Here this framework is used to determine the Gaussian
bending modulus of a buckled membrane. The interested reader can find a statistical
mechanical treatment of the stress tensor, important but absent in our presentation,
in Shiba et al. (2016). Membranes in a viscous fluid are examined by Powers (2010),
membrane viscosity itself is accommodated in Arroyo and DeSimone (2009).

To explore how confinement can shape a membrane, Müller and his coworkers
have looked at the confinement of a topologically spherical membranewithin another
membrane of smaller area, Kahraman et al. (2012a, b). This can be thought of as a
model of the inner membrane of the mitochondrion, capturing the geometrical aspect
of the physics. As the area is increased, in addition to the external forces associated
with confinement, self-contactswill occur breaking the symmetry of the ground state.
If membrane fusion occurs, the topology will change accompanied by a large scale
reorganization of the ground state geometry, Bouzar et al. (2015).

Deflated high-genus geometries are exhibited by the nuclear envelope and the
Golgi apparatus. In the limit where the enclosed volume becomes very small, in
the absence of additional agents, the ground state of a closed fluid membrane
with a fixed genus g approximates two concentric spherical bilayers connected by
g + 1 catenoidal necks (Kusner andYu, private communication). Recent simulations,
involving additional players with their own degrees of freedom, controlling the pore
radius provide amore accurate description of the nuclear envelope, Noguchi (2016a).
In this context, the stability of the inner ramp boundaries in the rough ER described in
Sect. 4. appears to involve the condensation along their length of membrane-shaping
proteins, Guven et al. (2014); Schweitzer and Kozlov (2015); Noguchi (2016b).
While getting the biological details right always involves elaborate numerical analy-
sis; understanding how the membrane geometry gets shaped by external forces and
constraints will inform how we go about it.
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