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Abstract In aqueous solution, lipid molecules spontaneously assemble into macro-
scopic bilayer membranes, which have highly interesting mechanical properties. In
this chapter, we first discuss some basic aspects of this self-assembly process. In the
second part, we then revisit and slightly expand a well-known continuum-level the-
ory that describes the elastic properties pertaining to membrane geometry and lipid
tilt. We then illustrate in part three several conceptually different strategies for how
one of the emerging elastic parameters—the bending modulus—can be obtained in
computer simulations.

1 Surfactant Self Assembly: Morphology and Statistical
thermodynamics

Surfactant molecules are amphiphiles: they comprise different chemical moieties
which are soluble in different solvents. Since they are linked together chemically,
this requires nature to grapple with an interesting problem: how best to lower the free
energy, given that no matter what the solvent conditions are, some chemical moi-
eties will likely be “unhappy.” Nature’s solution to this is self assembly—a process
by which larger scale structures form cooperatively, such that unfavorable solvent
contact is largely avoided. Self assembly is an amazing and hugely important exam-
ple of an emergent phenomenon, in that it creates new physical entities (namely,
the aggregates) which can be much bigger than the individual molecules they are
made of. This transition in relevant scale is the primary reason why we can deal
with these aggregates using physical tools that are quite removed from atomistic
modeling—such as continuum elasticity. How self-assembly works, is the topic of
our first section.
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The classical work on this topic is the groundbreaking paper by Israelachvili et al.
(1976), from which the present section picks some of the most beautiful results and
elaborates them in a bit more detail. Good discussions can also be found in textbooks
on soft condensed matter physics, such as Jones (2002) or Witten and Pincus (2004).

1.1 Morphology

Lipids, or more generally surfactants, are molecules which are typically divided
into a “head” and a “tail.” The head is hydrophilic (water soluble), for instance
because it has polar groups (e.g., hydroxyl or carbonyl groups), or because it is
charged (e.g., amino, carboxyl, or phosphate groups). The tail, on the other hand,
is hydrophobic (water insoluble), and for lipids generally consists of two aliphatic
chains. They typically contain between 12 and 22 carbon atoms, usually connected
by single bonds, but sometimes with one or more double bonds (in the latter case
one speaks of “unsaturated lipids”). Figure 1 gives a simple illustration of this by
showing pictures of lipids using some commonly employed computational models
for studying them. Notice that only one of these models strives for a full chemical
resolution. The others simplify the chemical architecture more or less drastically, but
they all keep one key aspect: lipids are amphiphiles.

The key effect on which self assembly relies is a cooperative aggregation of
surfactants that tries to bury the water-insoluble tails in the interior of the aggregate,
shielding them from the aqueous solvent by a layer of hydrophilic head groups.
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Fig. 1 Illustration of the morphology of a lipid molecule. Panel a shows a typical physicist’s
cartoon—a hydrophilic head group with two schematic tails; panel b takes this sketch serious and
translates it into a highly coarse grained model (Cooke et al. 2005); panel c illustrates a lipid on
the MARTINI level (Marrink et al. 2007), where the number of beads is increased, but still each
bead accounts for approximately 3–4 heavy atoms; and panel d displays a united-atom lipid model
of DMPC (dimyristoylphosphatidylcholine) (Berger et al. 1997), in which every atom (except non-
polar hydrogens) are explicitly accounted for. Adapted from (Wang and Deserno 2016)
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Fig. 2 Simplified
shape-description of a
surfactant as a blunted cone
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Interestingly, there are numerous different morphologies in which that could happen,
and this depends on the shapeof the surfactant. For instance, if the lipid has a relatively
large head group and a thin tail—if it looks like an ice cream cone—then we can
imagine these surfactants packing together to form little spheres. But if the shape of a
lipid is less obviously pointed, then lower curved structures seem more likely—such
as cylindrical aggregates or even planar sheets. As we will now see, Israelachvili et al.
(1976) have developed a beautifully simple way to make this intuition quantitative.

Let us represent a lipid schematically as a building block that is approximately
cylindrical, but with a somewhat tapered tail region, as illustrated in Fig. 2, so that it
looks like a blunted cone. The area of its head-group surface is a = πr2, its volume
is v, and its length is l. Imagine we need N of these object to piece them together
into a sphere of radius Rsph. It is then obvious that we must have

Nv = Vsph = 4

3
πR3

sph , (1a)

Na = Asph = 4πR2
sph . (1b)

Dividing these two equations, N cancels, and we get an equation for the radius of
that sphere:

v

a
= 1

3
Rsph . (2)

At the center of the sphere we cannot have any empty space. Hence the radius Rsph

which we found cannot be larger than the length l of the amphiphile—imagine for
instance that there is a largest length to which the tails can stretch, and that limits the
sphere’s radius: Rsph ≤ l. This results in the condition

spheres:
v

al
=: P ≤ 1

3
, (3)

where we defined the so-called packing parameter P . We hence find that if this
condition on P is satisfied, these lipid building blocks will indeed like to aggregate
into spherical objects, which go under the name spherical micelles.

We can repeat this argument, but now instead consider packing the building blocks
into a cylinder of radius Rcyl and length Lcyl; Assuming that Lcyl is large enough to
ignore end effects, we then get
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Nv = Vcyl = πR2
cylLcyl , (4a)

Na = Acyl = 2πRcylLcyl . (4b)

Again dividing these two equations yields

v

a
= 1

2
Rcyl . (5)

Once more, requiring that the resulting value for the cylinder’s radius is not larger
than the lipid length l leads to the condition

cylinders:
1

3
≤ P ≤ 1

2
, (6)

where the lower cutoff comes from the previous case: if P is even smaller than 1
3 ,

we already know that we get spheres.
We can again repeat this argument, but now we pack the amphiphiles into a planar

bilayer structure of area Abil and thickness bbil, leading to

Nv = Vbil = bbilAbil , (7a)

Na = A = 2Abil , (7b)

and dividing these two equations gives

v

a
= 1

2
bbil . (8)

Again, the thickness of each individual leaflet (i.e., half the bilayer’s thickness) cannot
exceed the length l to which the lipid can stretch, 1

2bbil ≤ l, and so we find

bilayers:
1

2
≤ P ≤ 1 . (9)

The argument, as presented, is remarkably simple; Israelachvili et al. (1976) look
at the situation in a fair bit more detail, but the key findings nevertheless hold up. In
fact, this line of reasoning works well even for building blocks which are very simple
and not very pliable–such as the lipid model from Fig. 1b. Cooke and Deserno (2006)
showed that by simply changing the head-group size of the three-bead lipid, one can
drive the entire morphological transition from spheres over cylinders to bilayers; if
one pushes the packing parameter even larger, the lamellar phase becomes unstable.
This is illustrated in Fig. 3.

Of course, the transitions themselves do not yet tell whether the simple packing-
parameter theory works; but this theory makes a prediction that can be tested. Taking
the area per lipid from a flat bilayer as the value for a, and using one of the transitions
(say, spheres to cylinders) to pinpoint v/ l, one can write the packing parameter as
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Fig. 3 The different morphologies of amphiphilic aggregates are controlled by amphiphile shape,
even for models as simple as that from Fig. 1b. Reprinted from Cooke and Deserno (2006) with
permission from Elsevier

a function of the head-group size of the lipid. This then gives a prediction for the
head-group size where the other transition (cylinders to bilayer) happens. Cooke and
Deserno (2006) show that this prediction indeed works.

The geometrical picture we have in mind by now is that a smaller packing parame-
ter P corresponds to a more cone-like shape, while for a larger P the lipid becomes
more cylindrical. This intuition can be verified (and made more precise) by a simple
calculation: if � is the solid angle of the blunted cone, then its volume can be written
as

v = 1

3
�
[
R3 − (R − l)3

] = �

[
R2l − Rl2 + 1

3
l3

]
. (10)

Since its head surface is a = �R2, we find P = 1 − l
R + 1

3

(
l
R

)2
, a quadratic equa-

tion that can be solved for R, from which we then get the solid angle. Since, further-
more, � = 2π

(
1 − cos ϕ

2

) ≈ 1
4πϕ2, where the last approximation is good for small

ϕ, we arrive at the opening angle

ϕ

r/ l
≈ 3

[

1 −
√

1 − 4

3
(1 − P)

]

. (11)

This relation is illustrated in Fig. 4. The characteristic ratio r/ l defines an angle, and
the actual opening angle ϕ is some multiple of that—twice as big for cones at the
boundary between spheres and cylinders, and about 1.3 times as big at the boundary
between cylinders and planes. Of course, the angle vanishes at P = 1. Notice that we
can alternatively also calculate the lipid spontaneous curvature, defined as K0,m =
2/R. For P close to 1 we find for this parameter

K0,ml ≈ 2(1 − P) + 2

3
(1 − P)2 + · · · (12)

This provides a link between a parameter from continuum Helfrich theory, K0,m, and
a parameter from the self assembly problem, P .
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Fig. 4 Relation between the
opening angle of the blunted
cone from Fig. 2 (measured
in units of r/ l) and the
packing parameter P .
Around P = 1 we have
ϕ ≈ 2r
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1.2 Statistical Thermodynamics

Knowing the shape of the aggregate is only the beginning. We surely also want to
know, under what conditions such aggregates form, and if they come in different
sizes (say, what’s the length of a cylindrical micelle?), we want to know what that
is, too.

The problem is interesting, because entropy plays a key role. Were it only a matter
of energy, any kind of amphiphile would aggregate to any other amphiphile, no matter
how weak any attractive interaction is. But when we consider entropy, we realize that
aggregation strongly reduces the translational entropy of amphiphiles. To understand
this energy–entropy balance better we again follow Israelachvili et al. (1976). Let us
therefore define

εn : energy per molecule in n -aggregate (13a)

φn : concentration of n-aggregates (13b)

Xn : concentration of monomers in n-aggregates, = nφn , (13c)

where an “n-aggregate” is a self-assembled aggregate of molecules consisting exactly
of n molecules (or monomers or 1-aggregates). You may think of Xn in the following
way: consider only the n-aggregates in solution (mentally remove all the others) and
now ask, what is the overall concentration of all amphiphiles left in the system?

The total energy of one n-aggregate is of course En = nεn . Observe that this
does not imply that En ∝ n, since εn also depends on n. The energy density due to
n-aggregates is therefore

en = φn En = φnnεn = Xnεn . (14)
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For the (translational) entropy density of n-aggregates we will simply assume an
ideal gas law, so that we get

sn = −kB φn
(

log φn − 1
)
. (15)

The total free energy density is then the sum of the energetic and entropic terms over
all aggregate sizes:

f =
N∑

n=1

{en − T sn} =
N∑

n=1

{
Xnεn + kBT

Xn

n

(
log

Xn

n
− 1

)}
, (16)

where N is the total number of molecules, and hence also the biggest aggregate we
can get.

We are interested in the distribution function of aggregate sizes, Xn , subject to
the constraint that the total amount of material in the system is fixed, meaning

N∑

n=1

Xn =: X = fixed , (17)

where X is the total monomer concentration in the system. We can calculate this
distribution function by minimizing Eq. (16) subject to the constraint, which we
enforce by means of a Lagrange multiplier μ:

0
!= ∂

∂Xn

{

f [Xn] − μ

[

X −
N∑

m=1

Xm

]}

. (18)

This readily gives
φn = e−βn(εn−μ) , (19)

where as usual β = 1/kBT . From this we in particular also get the monomer concen-
tration φ1, and so we can eliminate the Lagrange multiplier μ from the expression:

φn = [φ1 eβ(ε1−εn)
]n

. (20)

This is a very important general result. How it plays out in reality depends entirely
on εn , which in turn depends crucially on the geometry of the aggregate—spherical
cylindrical, or planar. Regardless: we see that if εn < ε1, meaning that it is favorable
for a monomer to be in an n-aggregate compared to being isolated in solution, the
exponential factor becomes large and the concentration of n-aggregates goes up. But
let us now specifically look at the individual geometries.

Spherical micelles. What is the energy of a monomer in a micelle consisting of n
monomers? This is potentially a difficult question, but we will circumvent it by look-
ing at the physics: packing monomers of some particular curvature into a spherical
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aggregate will likely result in some particular size—say, m—at which they fit best,
and deviations away from that size will be suboptimal. Let us hence assume that,
to lowest order, the energy is simply quadratic in the deviation from that particular
optimal state:

εn = εm + 1

2
ε∗(n − m)2 . (21)

Inserting this into Eq. (19) leads to

φn = exp

{
−βn

(
εm + 1

2
ε∗(n − m)2 − μ

)}
, (22)

where n needs to be determined from the normalization condition (17). Notice that
this distribution is cubic in the exponent. However, we can simplify it by expanding
the exponent around its maximum, up to quadratic order, and hence find an approx-
imate Gaussian distribution that describes φn reasonably well. To do so, we need to
calculate

0
!= ∂

∂n

[
−βn

(
εm + 1

2
ε∗(n − m)2 − μ

)]
, (23)

which leads to the solution n∗ at which the function peaks:

n∗ = m

3

[

2 +
√

1 − 6(εm − μ)

ε∗m2

]

≈ m − εm − μ

ε∗m
, (24)

where the approximation results from expanding the square root to first-order, since
the term 6(εm − μ)/ε∗m2 is small. We then find the quadratic expansion

n

(
εm + 1

2
ε∗(n − m)2 − μ

)
≈ const. + 1

2
ε∗m

√

1 − 6(εm − μ)

ε∗m2
(n − n∗)2 . (25)

This shows that the micelle distribution can be approximated as a Gaussian,

φn ≈ const. × exp

{
− (n − n∗)2

2σ2

}
, (26)

with the mean value n∗ given in Eq. (24) and the variance given by

σ2 = kBT

ε∗m
. (27)

This shows that the distribution widens at larger temperature, and is narrower for
bigger micelles.

The effects on the structure on a single micelle are curious but minor in the
spherical case; what is truly remarkable and very important is the overall aggregation
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thermodynamics which this model implies. In order to not get bogged down in tedious
math (chiefly from dealing with the normalization condition (17)), let us instead look
at a two-state system, in which we only have monomers coexisting withm-aggregates,
and the normalization condition becomes X = φ1 + mφm . Furthermore, we have

φm
(20)= (φ1eβ(ε1−εm ))m = (φ1eα)m , (28)

where we defined α = β(ε1 − εm) > 0 (we know the sign because we know that it is
energetically favorable to form an m-aggregate). The normalization condition then
becomes

X = φ1 + meαm φm
1 . (29)

This must be solved for φ1, but notice that this is an m th order polynomial equa-
tion. This looks exceedingly troublesome, but it in fact becomes simple to get an
approximate solution if we remember that m is likely large: recall from Sect. 1.1
and Fig. 2 that the number of surfactants in a spherical micelle can be written as
N = 4πl2/a = 4πl2/πr2 = (2l/r)2, and with a reasonable estimate of a ≈ 0.5 nm2

(and hence r ≈ 0.4 nm) and � ≈ 2 nm, we find N ≈ 100. We then see that the second
term in Eq. (29) stays extremely small for large φ1 and then very rapidly picks up
and completely dominates the value of X—see the left hand graph in Fig. 5. The
crossover happens where the two terms on the right hand side are approximately
equal, leading to

φ1 = meαmφm
1 =⇒ φ1 =

(
1

m

) 1
m−1

e− αm
m−1 ≈ e−α , (30)

where the approximation is very good because m � 1 (recall in particular that
(1/m)1/m ≈ 1 − (lnm)m−1 + O(m−2)). This shows that a critical concentration
exists, φcmc = e−α, at which something startling happens: up to that concentration,
the normalization condition is dominated by φ1, and this means that the solution
exists almost exclusively of monomers. But at φcmc the second term takes over,
and from now on adding extra material will almost exclusively go into aggregates.
This is very visible if we plot the inverse of the normalization condition—see the
right hand side of Fig. 5: the concentration of monomers initially grows linearly
with the amount of added material, but it levels off quite abruptly at φcmc, meaning
that from now on any additional material will form micelles, which so far did not
exist. The concentration φcmc is called the critical micelle concentration, usually
abbreviated as “cmc,” and it is a fundamentally important quantity for any aggrega-
tion problem. We will soon see that the concept remains relevant beyond the case
of spherical micelles we have discussed just now. Notice that α = β(ε1 − εm) is
not just positive, but can be a fair amount bigger than 1, since the energy which
an amphiphile gains in an aggregate compared to being in isolation can be many
kBT . This implies, in turn, that the cmc can be very low: not much material needs
to be added before micelles form. For instance, the cmc for the standard surfactant
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Fig. 5 The left plot shows the total monomer concentration in all aggregates combined, X , as a
function of the concentration of single monomers, φ1. Since X emerges as a sum of φ1 and a second
term m(φ1/φcmc)

m with a large m (in the graph we chose m = 50), there is a sharp crossover near
φ1 = φcmc = e−α. The right picture simply flips the axes and shows the monomer concentration φ1
as a function of the total concentration of added amphiphiles. Initially, the monomer concentration
grows linearly with the amount of added amphiphiles—up to the concentration φcmc, at which point
it essentially stays constant

sodiumdodecylsulfate (SDS) is about 8 mM in water at 25 ◦C, at which point the
aggregation number of the micelles is m ≈ 60 (Turro and Yekta 1978).

It should be noted that the micellization transition is not a phase transition in
the classical sense: there is no discontinuity or non-analyticity in any of the ther-
modynamic functions; the transition is always rounded, since m is large but finite.
Regardless, it is a very pronounced change in the system’s behavior, and as such it
dominates aggregation physics.

Cylindrical micelles. The difference between the spherical and the cylindrical case
enters via the energy per monomer in an aggregate, εn . For spheres we made the
reasonable assumption in Eq. (21) that there is a typical size for a micelle, and that
the energy will deviate quadratically as we move away from that value. This cannot
be true for cylindrical micelles, though, since they have an unspecified length: we
can easily make cylindrical micelles longer by simply adding more amphiphiles to
the linear part. The aggregation energy of these amphiphiles will be always the same,
for they cannot know how long the cylindrical aggregate is of which they are a part.
However, amphiphiles at the two end caps of the micelle must have a different energy,
and it must be larger than the energy of amphiphiles in the wormlike middle, for if that
were not so, spherical micelles would form in the first place. It is hence reasonable to
write the total energy of a cylindrical micelle of n monomers as En = nε∞ + 2Ecap,
and hence the energy per monomer is

εn = ε∞ + 2Ecap

n
=: ε∞ + α kBT

n
. (31)
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Notice that the dimensionless number α must be large: it is the excess energy (in units
of kBT ) of all end-cap monomers. Since these caps consist of two semi-spheres, they
together make up essentially one full spherical micelle, whose aggregation number
is O(100), and it seems fair to estimate that the excess energy for each monomer
stuck in the wrong local geometry is at least a sizable fraction of kBT .

Inserting this ansatz for εn into Eq. (20), we get

φn = [φ1 eβ(ε1−ε∞−α kBT/n)
]n = [φ1 eβ(ε1−ε∞)

]n
e−α = [φ1 eα

]n
e−α , (32)

where the last step follows since this equation must be true also for n = 1.
It is now highly useful to define the scaled concentrations φ̃n = φneα, because in

these variables Eq. (32) becomes

φ̃n = φ̃n
1 . (33)

The distribution of the φ̃n is exponential, which is remarkably wide (we will make
this more precise below) and very different from the spherical case, where the dis-
tribution was sharply peaked around an optimal size. Notice that in order for it to
be normalizable, we must have φ̃1 < 1, implying that the monomer concentration
can never exceed e−α—a concentration we will soon recognize as the cmc for the
cylindrical case.

If we define the scaled total concentration of monomers as X̃ = Xeα, the normal-
ization condition (17) becomes

X̃ =
N∑

n=1

n φ̃n =
N∑

n=1

n φ̃n
1 . (34)

Sums of this type can be done by the following elegant trick:

N∑

n=1

nbxn =
N∑

n=1

(
x

∂

∂x

)b

xn =
(
x

∂

∂x

)b N∑

n=1

xn =
(
x

∂

∂x

)b x − xN+1

1 − x
, (35)

where in the last step we summed the well-known geometric series. Moreover, since
we know that in our case x < 1 and N is very large, we can drop the xN+1 term (or,
equivalently, set N → ∞), and so we for instance find

∞∑

n=1

n xn =
(
x

∂

∂x

)
x

1 − x
= x

(1 − x)2
, (36a)

∞∑

n=1

n2 xn =
(
x

∂

∂x

)2 x

1 − x
= x(1 + x)

(1 − x)3
, (36b)
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∞∑

n=1

n3 xn =
(
x

∂

∂x

)3 x

1 − x
= x(1 + x(4 + x))

(1 − x)4
. (36c)

Hence, using Eq. (36a), the normalization condition (34) becomes a quadratic equa-
tion for φ̃1 that is easy to solve

X̃ = φ̃1

(1 − φ̃1)2
=⇒ φ̃1± = 1 + 2X̃ ±

√
1 + 4X̃

2X̃
. (37)

Since we know φ̃1 < 1, the minus sign is the correct choice. Expanding the solution
for small and large X̃ , we find

φ̃1 =
{

X̃ + O(1) : X̃ � 1

1 − 1/
√
X̃ + O(X̃−1) : X̃ � 1

. (38)

As promised, we can again define a cmc, φcmc = e−α, such that below the cmc
the monomer concentration in our solution is proportional to the amount of added
material, while for concentrations larger than the cmc any added material goes into
micelles, leaving the monomer concentration below φcmc, and approaching it with a
very slow 1/

√
X asymptotics. This is illustrated in Fig. 6.

We already know that the distribution of micelle sizes is exponential, but we might
also want to know what the mean and the variance are. These are easily calculated
by working out (weight-averaged) moments of n. For the first one, we find

〈n〉 =
∑∞

n=1 n X̃n
∑∞

n=1 X̃n

=
∑∞

n=1 n
2φ̃n

∑∞
n=1 nφ̃n

∗= 1 + φ̃1

1 − φ̃1

#=
√

1 + 4X̃ , (39)

where at ∗ we used Eqs. (36a) and (36b) and at # we inserted the solution (37).
Hence, the average micelle length grows like the square root of the concentration:
〈n〉 ≈ 2

√
X/φcmc.

Fig. 6 Monomer
concentration for the case of
a cylindrical micelle
aggregation scenario. The
dashed and dotted curves
indicate the small- and
large-concentration limits
from Eq. (38). The full
solution shows a cross over
at the cmc
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√
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The second moment of n is given by

〈n2〉 =
∑∞

n=1 n
2 X̃n

∑∞
n=1 X̃n

=
∑∞

n=1 n
3φ̃n

∑∞
n=1 nφ̃n

∗= 1 + φ̃1(4 + φ̃1)

(1 − φ̃1)2
, (40)

where at ∗ we used Eqs. (36a) and (36c). Hence, the variance of n is

σ2
n = 〈n2〉 − 〈n〉2 = 2φ̃1

(1 − φ̃1)2

#= 2X̃ , (41)

where at # we again used the solution (37). This answer is important, because it
shows that the width of the distribution essentially scales with its mean, and hence

σn

〈n〉 =
√

2X̃

1 + 4X̃
= 1√

2
− O(X̃−1). (42)

Distributions of cylindrical micelles are hence “wide” no matter how large the
micelles are; there is no “law of large micelles,” or a 1/

√
n like asymptotics toward

a sharp mean. Remarkable as this is, it is of course not unexpected, for that is what
exponential distributions do.

Planar bilayers. Again, the first question to address is: what is εn for an aggregate
that assembles in a planar fashion? To make headway, though, we need to make
further assumptions about its geometry. We will assume that it stays flat, and that
it will be circular. The latter follows because the amphiphiles at the bilayer disc’s
edge will have a higher free energy per molecule than the one in the flat region (for
reasons analogous to the elevated free energy of monomers at the ends of cylindrical
micelles). This excess free energy per unit length acts as a line tension (in this
case usually called edge tension), and minimizing it at constant overall area of the
aggregate means that the shape has to be a circle.

If the circular aggregate has area A = πR2, its circumference is C = 2πR =
2
√

πA. The excess free energy of the edge is Eedge = 2πRγ = 2
√

πAγ, with γ being
the edge tension—a material parameter. Since the number of lipids in the aggregate
is approximately n = 2A/a�, with a� being the area per lipid, we get A = 1

2na�, and
hence Eedge = √

2πna�γ. The replacement for Eq. (31) is hence

εn = ε∞ + Eedge

n
= ε∞ +

√
2πna�γ

n
= ε∞ + α kBT√

n
, (43)

where α = √
2πa�βγ is a dimensionless number that’s again a fair bit larger than 1.

To estimate it, let’s take the DOPC values of a� � 0.7 nm2 (Kučerka et al. 2006) and
γ � 20 pN (Portet and Dimova 2010), from which we get α ≈ 10. Notice that the
only difference between the cylindrical and the planar case is that in the latter the
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excess term is proportional to 1/
√
n instead of 1/n. We will see that this changes

the physics in a big way.
Inserting this expression for the energy per monomer into the general form of the

aggregate distribution, Eq. (20), we get

Xn = n φn = n
[
φ1 eβ(ε1−ε∞−α kBT/

√
n)
]n

= n
[
φ1 eβ(ε1−ε∞)

]n
e−α

√
n

= n
[
φ1 eα

]n
e−α

√
n , (44)

where the last step again follows because this equation must also be true for n = 1.
The normalization condition (17) then becomes

X =
N∑

n=1

Xn =
N∑

n=1

n
[
φ1 eα

]n
e−α

√
n . (45)

The term e−α
√
n decreases with n, while for the term [φ1 eα]n the asymptotic behavior

depends on whether φ1eα is bigger or smaller than 1. Assume it is bigger than 1. Then
this term grows with n, and it asymptotically grows faster than e−α

√
n decreases.

This might get us worried, for if we again replace N → ∞ (because N will be
macroscopically big), the sum in Eq. (45) would diverge. So let us assume that,
instead, the expression φ1eα is smaller than 1. In that case, we can calculate

X =
∞∑

n=1

n
[
φ1 eα

]n
e−α

√
n ≤

∞∑

n=1

n e−α
√
n ≈

∫ ∞

0
dn n e−α

√
n = 12

α4
. (46)

This is a pretty disastrous finding, though: apparently, the total amount of material
we can add to the system is bounded from above. What if we wanted to add more
material—who is going to stop us? (Not excluded volume—that was not part of the
model!)

The solution to this conundrum is subtle: the assumption that N can be replaced
by infinity is wrong—despite the fact that N could really be an Avogadro number
of molecules. But large is not the same as infinite, and the normalization condition
only enforces φ1eα ≤ 1 if we really sum all the way up to infinity. If the sum is finite,
there is no reason to demand that φ1eα ≤ 1, because finite sums cannot diverge!
More specifically, even if this term would ultimately outcompete e−α

√
n , if φ1eα is

only ever so slightly bigger than 1, this will only happen near the upper bound of the
sum—showing us that the value of this sum will likely depend very critically on just
how much φ1eα exceeds 1.

Unfortunately, it is quite tricky to see how this plays out analytically, because
the normalization sum (45) turns out to be a very delicate interplay between very
small and very large terms. To brace ourselves for what is actually happening here,
we shall first look at a numerical example. Let us assume that α = 10, that we



Lipid Membranes: From Self-assembly to Elasticity 119

φ̃1

su
m

1.1041.10351.1031.10251.102

101

100

10−1

10−2

10−3

10−4

10−5

Fig. 7 The solid curve is the right hand side of Eq. (47) as a function of the parameter φ̃1, for
α = 10 and N = 10, 000; the dashed curve is the large-n-approximation from Eq. (49)

have N = 10, 000 molecules in the system (really an incredibly small number by
experimental standards, but this might be a typical number to be used in a simulation),
and let us demand that we want to ultimately gain a total concentration of X = 10−2

(notice that this is larger than the erroneous upper bound of 12/α4 = 1.2 × 10−3). If
we abbreviate φ̃1 = φ1eα, then we have to numerically solve the following equation
for φ̃1:

10−2 =
10,000∑

n=1

n φ̃n
1 e−10

√
n . (47)

Figure 7 plots the right hand side of this equation as a function of the parameter φ̃1

in the interesting range. Up to φ̃1 ≈ 1.1025, the right hand side grows linearly (and
extremely weakly) with φ̃1, but at around this point a big change happens, and the
sum picks up extremely rapidly—becoming a power law with an exponent of about
10, 000. (This also shows why it is very hard to treat this problem numerically with
even bigger values of N .) The value 10−2 is reached at φ̃1 ≈ 1.10330764 and hence
X1 ≈ 5.009 × 10−5.

Inserting this value for φ̃1 into the distribution function for Xn from Eq. (44), we
can plot it over the entire range of permissible n values: from n = 1 to n = 10, 000;
this is done in Fig. 8. Initially, the distribution function drops precipitously: one finds
X2 ≈ 1.756 × 10−6 ≈ X1/30 and X3 ≈ 1.211 × 10−7 ≈ X1/400. But at n = 2566
the function attains a minimum, after which it again begins to rapidly grow. At its
largest n-value it becomes X10,000 ≈ 4.696 × 10−4 ≈ 10X1, showing it is about 10
times more likely to find a lipid in that aggregate than to find it in isolation! Another
way of looking at this is the following: 99% of all monomers are found in aggregates
with a size of at least 9, 890. And yet another illustration is the following: Look
at the cumulative normalized distribution of Xn , namely, f (m) = X−1∑m

n=1 Xn . It
rapidly rises from 0 to about 0.0052 when m rises from 1 to 10. However, after that
it stays virtually constant, until about 9, 800, when it begins to rise again. In other
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Fig. 8 The solid curve is the distribution function Xn = n φn from Eq. (44), using the numer-
ical parameters α = 10, N = 10, 000, and X = 0.01, which implies the numerical solution
φ̃1 ≈ 1.10330764 and hence X1 ≈ 5.009 × 10−5. The dashed curve is the approximate distrib-
ution from Eq. (48), using the value for φ̃1 determined via the first-order approximation in Eq. (52),
φ̃

(1)
1 ≈ 1.10330882. Using φ̃

(1)
1 in the full distribution (instead of the exact φ̃1) leads to a curve that

is indistinguishable from the exact one on this plot, with a normalization that is about 1% off

words, with the exception of about half a percent of small oligomers, virtually the
whole system forms one giant aggregate.

With these observations we are now in a better position to develop a decent
approximate solution for the normalization condition (45). Notice that we need to
analytically describe the region in that sum which strongly increases (the “uptake”
in Fig. 7), and that this comes from the aggregates—meaning, the large-n part of
the distribution function. Hence it is probably a good idea to expand the summands
in Eq. (45) around the upper end, n = N , and preferably in such a fashion that we
can perform the sum. But given the exponential variation of Xn , it is wise to do that
expansion in the exponent:

Xn = n φ̃n
1e−α

√
n = φ̃n

1 exp
{−α

√
n + ln n

}

= φ̃n
1 exp

{
− α

[√
N + 1

2
√
N

(n − N )

]

+ ln N + 1

N
(n − N ) + O

(
(n − N )2

)}

≈ Ne−α
√
N/2
(
φ̃1 e−α/2

√
N
)n

. (48)

This expansion permits us to do the sum, since it turns into a simple geometric series:

N∑

n=1

n φ̃n
1e−α

√
n ≈ Ne−α

√
N/2 y

N+1 − 1

y − 1
with y = φ̃1 e−α/2

√
N . (49)
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Since y is slightly larger than 1, but N is huge, yN+1 will be very large compared
to 1. (In our above numerical example we would find y ≈ 1.0494987 and hence
yN+1 ≈ 1.049498710,001 ≈ 6.92 × 10209.) We can hence neglect the “−1” in the
numerator, but of course not in the denominator.

The normalization condition now becomes

� := X eα
√
N/2

N
= yN+1

y − 1
, (50)

but this is again impossible to solve analytically. However, we can get increasingly
good approximations by iteration. First, recall that the right hand side really emerged
as a geometric series, and so it is given by yN + yN−1 + yN−2 + · · · . Let us take the
dominant term, yN , and solve the equation. We then get

y = �
1
N . (51)

Even though only approximate, this already looks remarkably good, since it gives
φ̃1 = 1.103645 for our numerical example, about 0.03% off. And yet, inserting this
value into the normalization condition gives a value about 20 times too big. We need
to do better. In fact, we can improve the solution by iterating the defining equation,
à la y(i+1) = [�(y(i) − 1)]1/(N+1), where y(0) = �1/N is our initial simple result. At
first-order we get

φ̃(1)
1 = eα/2

√
N y(1)

= eα/2
√
N
[
�
(
�1/N − 1

)]1/(N+1)

= eα/2
√
N

[
X

N
eα

√
N/2

((
X

N

)1/N

eα/2
√
N − 1

)]1/(N+1)

. (52)

With the numerical example from above (X = 0.01, α = 10, and N = 10, 000), this
gives φ̃(1)

1 = 1.10330882, which differs from the exact numerical solution only by
1 part in 106, and now the normalization condition is only 1% off. Unfortunately,
further iterations do not gain us much anymore, because we are still solving an
approximate equation, not the exact one.

There is more to be learned. First, even the simplest solution becomes exact in
the thermodynamic limit N → ∞. Performing it, we get

φ1 = e−α lim
N→∞

⎧
⎨

⎩
eα/2

√
N

(
X eα

√
N/2

N

)1/N
⎫
⎬

⎭
= e−α , (53)

showing that—again—we have a critical “micelle” concentration. Since bilayer
patches are usually not viewed as “micelles,” this is more commonly called the
critical aggregate concentration and abbreviated as “cac”: φcac = e−α.
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The scenario looks superficially similar to what we have seen in the spherical
case: the normalization condition becomes a polynomial with a constant term, a
linear term, and one term with a large power (compare Eqs. (29) and (50)), and the
“largeness” of that power makes the transition. However, in the spherical micelle case
that power was given by the micelle size, and hence it was mesoscopic—of order
102. In the bilayer case that power is macroscopic—the total number of molecules in
the system, conceivably of the order of Avogadro’s number, but more importantly:
extensive. It will by definition diverge in the thermodynamic limit. It hence follows
that the aggregation transition for bilayers is a true phase transition—at least in the
model we have studied here.

Alas, our model is defective. The 1/
√
n correction to εn (see Eq. (43)), on which

the whole scenario hinges, comes from the
√
n divergence of the edge energy for

increasingly large flat circular aggregates. But bilayer patches do not have to stay flat.
Once they exceed a critical size, it is preferable for them to close up, make an edgeless
spherical vesicle, and pay bending energy instead, because bending energy does not
scale with size. This was first discussed by Helfrich (1974). Hence, vesiculation
caps the edge energy, moving the correction term back to a 1/n form, for which
we expect a wide exponential distribution function like in the case of cylindrical
micelles. Unfortunately, in reality things are now a lot more complicated, because
we can no longer ignore kinetics. In any case, we still encounter an aggregation
transition once the amphiphile concentration in solution exceeds a critical aggregate
concentration.

2 Fluid Elastic Sheets: From Three to Two Dimensions

The previous section has shown that there is something special about two-dimensional
assemblies of amphiphiles. Spherical micelles are by construction microscopic, and
cylindrical micelles are tenuous threads, constantly breaking and re-merging, with
a corresponding wide length distribution. In contrast, two-dimensional amphiphilic
sheets are endowed by thermodynamics with certain inalienable rights, among them
extensivity, stability, and universal elasticity. They arise as macroscopic persistent
entities, for which we therefore expect an effective large-scale theory to exist, whose
key degrees of freedom are emergent and independent of the microscopic realiza-
tion, and whose key physical parameters are functions of the underlying structure,
but might as well be taken as fundamental at the emergent level.

This situation arises frequently in physics: a system is known to have an under-
lying structure, but we can describe it effectively (and very elegantly) at a level that
completely ignores this structure. For instance, fluid dynamics need not know about
atoms. Its laws follow from thermodynamics and symmetry, only its parameters (mass
density and viscosity in the simplest case) reflect the details of the constituents. The
same is true for elasticity theory, where we can see even more clearly how local
microscopic symmetries leave traces in the macroscopic description (they dictate the
number and type of elastic moduli).
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In such a situation there are two ways for how to proceed, and they differ quite
fundamentally in their “philosophy”:

• Bottom-up approaches strive to reduce larger scale phenomenology to a micro-
scopic description at a smaller scale that is considered more fundamental. In par-
ticular, they aim to elucidate the dependence of the larger scale parameters on the
microscopic foundation.

• Top-down approaches ignore the underlying structure and postulate a macroscopic
theory from scratch, constrained only by symmetry. The parameters of this the-
ory are not themselves predictable, for they depend on the microscopic structure
which this approach purposefully ignores. But one can always measure them at
the macroscopic level, so the endeavor is self-contained.

Both approaches are perfectly valid and have their own advantages and drawbacks.
The top-down approach, for instance, need not wrestle with underlying microscopic
degrees of freedom—say, trying to eliminate them by performing partial traces
in phase space or other scale-bridging procedures. But decorating all symmetry-
permissible terms with phenomenological parameters might be dangerous, for they
need not be independent: a relation between them, enforced by subtleties of the
underlying microphysics, could be missed. The bottom-up approach, in contrast,
necessarily captures such effects, which is probably its biggest strength. But given
our poor ability to actually do the math needed to rigorously coarse-grain a Hamil-
tonian, approximations along the way might cloud the path of emergence. Moreover,
often we do not know the underlying microscopic theory all that well, and so we
instead start with what we perceive to be a good model of the microphysics. This
often works flawlessly, in the sense of giving a perfectly acceptable macroscopic
theory—but this is to be expected: after all, hardly any microscopic details survive the
emergence process. The macroscopic theory only depends on very generic symme-
try considerations and the microscopic details matter only inasmuch as they predict
macroscopic coefficients or produce correlations between them. If we cannot mea-
sure both the microscopic and the macroscopic parameters, it is very difficult to test
whether these predicted connections are fulfilled, and hence it is usually impossible
to be sure that our microscopic model was correct. This, of course, is the well-known
bane of scientists looking for The Fundamental Laws: there is more than one way to
skin a cat.

In our experience, combining both approaches to elucidate the path of scale-
bridging, being aware what powers and limits each modus operandi, and being
skeptical of too freely floating phenomenology as well as suspiciously specific model-
building—these are attitudes that will deepen one’s understanding of the key physics.
Indeed, one of the goals of the book you are holding is to explore this duality for
lipid membranes, for which phenomenological geometric Hamiltonians can be writ-
ten down, which in turn can also be motivated by underlying microphysics that
considers the lipid constituents.

In this section we wish to discuss one particular connection between large-scale
membrane theory and an underlying more microscopic model that is interesting
because it is itself already coarse-grained. It is a description of a thin two-dimensional
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fluid elastic sheet, and the question is, how to bootstrap ourselves up to larger scales
and one dimension lower: large-scale two-dimensional curvature elastic surfaces.
This program has been proposed and worked through in an important and seminal
paper by Hamm and Kozlov (2000). The goal of this section is to revisit their elegant
derivation, but here and there keep a few higher order terms which Hamm and Kozlov
have neglected, but for which one can make good arguments to keep them.

Before we now dive into membrane elasticity—a little heads-up: unlike the pre-
vious section, this one will start to use numerous tools from surface differential
geometry. The notation follows a recent review one of us has written (Deserno
2015), which introduces the basic formalism, derives most of the key identities, and
also provides several applications to membrane elasticity. But then, our view and
usage of differential geometry in this context has been very heavily influenced by
Jemal Guven, who also has a chapter in this book. We hence strongly recommend
that the reader also consults the master, not merely his apprentices.

2.1 The Starting Point: Thin Fluid Elastic Sheets

It is well-known that if ui j is the Cauchy strain tensor, the most general quadratic
expression for the elastic energy density we can write down is

e3d = 1

2
λi jkl ui j ukl , (54)

where λi jkl is the elastic modulus tensor (Landau and Lifshitz 1986). Without loss
of generality, the exchange symmetries i ↔ j , k ↔ l, and i j ↔ kl can be assumed,
leaving at most 21 independent components. But we want to use this expression for
the energy of a fluid lipid monolayer, and in that case additional symmetries reduce
the number of components much further (Hamm and Kozlov 2000; Campelo et al.
2014).

Area strain. Assume the leaflet lies in the xy-plane. First note that the two reflection
symmetries (x, y, z) → (−x, y, z) and (x, y, z) → (x,−y, z) imply that neither an
x- nor a y index can occur in λi jkl an odd number of times. Curiously, this implies
that the same must hold for the z-index, even though a monolayer does not have an
up-down reflection symmetry that would enforce this all by itself. Furthermore, one
consequence of in-plane isotropy is that the x- and the y-directions are indistinguish-
able, and so their λ-coefficients must be equal. This already massively reduces the
permissible terms to the following six:

e3d =1

2
λxxxx

(
u2
xx + u2

yy

)+ λxxyyuxxuyy + 2λxyxyu
2
xy

+ λxxzz
(
uxx + uyy

)
uzz + 2λxzxz

(
u2
xz + u2

yz

)+ 1

2
λzzzzu

2
zz , (55)
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where the prefactors account for obvious permutation multiplicities—such asλxyxy =
λyxyx = λxyyx = λyxxy . It is now useful to rework the quadratic strain expressions
in the following way:

e3d =1

2
λxxxx

(
uxx + uyy

)2 + (λxxyy − λxxxx
)(
uxxuyy − u2

xy

)

+ (2λxyxy + λxxyy − λxxxx
)
u2
xy

+ λxxzz
(
uxx + uyy

)
uzz + 2λxzxz

(
u2
xz + u2

yz

)+ 1

2
λzzzzu

2
zz . (56)

At this point we can exploit full in-plane rotational symmetry. The first two strain
terms in Eq. (56) are quadratic invariants under in-plane rotation: they are (i) the
square of the trace and (i i) the determinant of the strain tensor’s xy-subspace, respec-
tively. But the term in the second line is not an invariant, and there is no term left to
combine it with to remedy this flaw; hence, this term must vanish.

Next, let us make use of in-plane fluidity, which implies that the energy cannot
change under in-plane shear deformations—meaning, in-plane shear stresses must
vanish. One such deformation is a simple shear, uxy , and its associated shear stress is

0
!= σxy = ∂e3d

∂uxy
= −2

(
λxxyy − λxxxx

)
uxy . (57)

Since this must hold for uxy �= 0, we must have λxxyy = λxxxx , and so the second
term in Eq. (56) must vanish, too.

Finally, recall that we intend to describe a thin leaflet, which has the following
consequence: the normal stress σzz at the leaflet’s upper and lower surface vanishes
if the surface is free, but since the leaflet is thin, σzz does not have much opportunity
to considerably grow anywhere within the material. We will hence assume that it
vanishes throughout the material, and this implies

0
!= σzz = ∂e3d

∂uzz
= λxxzz

(
uxx + uyy

)+ λzzzzuzz , (58)

and this means that the in-plane and transverse strains are related by

uzz = −λxxzz

λzzzz

(
uxx + uyy

) =: −ν̃
(
uxx + uyy

)
. (59)

The dimensionless parameter ν̃ is related to the usual Poisson ratio ν via
ν̃ = ν/(1 − ν). Inserting this into Eq. (56), what remains is

e3d = 1

2
Ẽ(uxx + uyy)

2 + 2λxzxz(u
2
xz + u2

yz) , (60)
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Fig. 9 The material director
d̂ in a flat thin plate is by
construction aligned with the
local surface normal n̂. But
upon bending, d̂ may deviate
from n̂ by an angle θ due to
transverse shear (Figure
adapted from Reddy (2006))

n̂

θ
d̂n̂d̂

where we defined the effective modulus

Ẽ = λxxxx − λ2
xxzz

λzzzz
= λxxxx − ν̃2λzzzz . (61)

The first part in the energy (60) has now been recast in terms of a local area strain,
which we will soon relate to the extent of bending.

Lipid tilt. For the second term in Eq. (60), a connection to area strain is not possible,
because the strains uxz and uyz correspond to a local transverse shear, i.e., a defor-
mation related to the fact that the material director of a sheet need not coincide with
the surface normal, even if it does so for the flat sheet—see Fig. 9. This term can
instead be related to lipid tilt—if we decide that a lipid’s orientation is the appropriate
indicator for the local material director.1 To do so quantitatively, it is useful to define
a locally transverse tilt-field T that measures the deviation between material director
and surface normal (Hamm and Kozlov 2000):

T = T lel = d̂

n̂ · d̂ − n̂ . (62)

This definition makes the transversality of T manifest, since T · n̂ = 0 by construc-
tion (i.e., independent of any other conditions that would have to hold, such as T
being the solution of some Euler–Lagrange equation). Also, T is not normalized;
instead, its magnitude is |T | = tan θ, where θ is the tilt angle (i.e., the angle between
d̂ and n̂). Alternatively, we can write

1

cos θ
= 1

cos arctan |T | =
√

1 + T 2 = 1 + 1

2
T 2 + O((T 2)2

)
. (63)

Since within first-order shear deformation plate theory 2uxz = T · x and 2uyz =
T · y (Reddy 2006), this leads to

1Here we assume that a flat membrane is untilted—which is true for fluid phases, but not necessarily
so for membranes in the gel phase.
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u2
xz + u2

yz = 1
4TlT

l , (64)

and that permits us to replace the second term in Eq. (60) in a way that involves tilt:

e3d = 1

2
Ẽ (uxx + uyy)

2 + 1

2
λxzxzTlT

l , (65)

We would now have to relate the two deformations—especially the area strain—to
the geometry of a curved membrane. But before we do that, it is important to realize
that we are not yet done with the energy density: a very crucial term is missing,
because its origin requires us to think beyond a thin sheet of local moduli—i.e., we
must go beyond Eq. (54).

Lateral prestress. Consider again what we are trying to model: a thin self-assembled
in-plane fluid leaflet made up of amphiphilic molecules. Now focus on the fact
that, unlike a homogeneous thin sheet, a lipid monolayer has internal structure that
underlies its very reason of existence: the strongly positionally varying solubility
of lipids—which gives rise to the self-assembly process that shields the tails from
the embedding solvent by placing the head groups in between. One important conse-
quence of this assembly-driven cohesion is that it leaves the membrane under internal
pre-stresses—meaning, stresses that do not locally vanish in the equilibrium state,
only globally. As we will soon see, they contribute to the deformation energy.

Let us first explore, what kind of remaining stresses are permissible by symmetry.
Evidently, for a flat membrane lying in the xy-plane the stress tensor � is diagonal
in the {x, y, z} coordinate system. Due to translational symmetry, it can only depend
on z, and due to rotational symmetry, the x- and y-components must be identical:

� = diag
(
�xx (r),�yy(r),�zz(r)

) = diag
(
�||(z),�||(z),�⊥(z)

)
. (66)

In mechanical equilibrium � must be divergence free, ∂i�i j = 0. This equation
immediately implies that �⊥(z) = �⊥ is a constant, and so it must be equal to
the isotropic ambient pressure acting on the membrane. The tangential component
�||(z), however, is not restricted by this argument and could be a pretty complicated
function of z. As we will soon discover, it indeed is.

Now imagine that we place a small patch of membrane inside a cuboid box
of area A and height z. How would the energy change if we (isothermally and
reversibly) deform that box in a volume-preserving way such that A → A + δA and
z → z − δz = z − (z/A)δA? Following Rowlinson and Widom (2002 Chap. 2.5),
the vertical compression requires the work

δW⊥ = A δz �⊥ = z δA�⊥ . (67)

In contrast, the lateral expansion requires the work

δW|| = −δA
∫ z/2

−z/2
dz �||(z) . (68)
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Hence, the total change in free energy is

δF = δW⊥ + δW|| = δA
∫ z/2

−z/2
dz
{
�⊥ − �||(z)

}
. (69)

The expression under the integral is the positionally resolved effective lateral mechan-
ical tension acting in the membrane. It is often simply called the lateral stress profile:

σ0(z) = �⊥ − �||(z) . (70)

What does this function look like for a membrane?
First, consider that there is the equivalent of a hydrophilic–hydrophobic interface

at the backbone of a lipid, and so roughly at that height in the monolayer we have
a relatively large lateral tension. This is where the bilayer is being pulled together,
where the effect is localized that gives rise to a membrane in the first place. As a con-
sequence, both the tails and the heads of the lipids are now being compressed, leaving
us with a positive pressure (or negative tension) in the tail and upper head region that
strives to expand the leaflet. For a membrane that is not subject to a net lateral ten-
sion, these stresses must balance, such that the net total stress (the integral over σ0(z))
vanishes, thereby setting the equilibrium area per lipid. Hence, we expect σ0(z) to be
a function that features (positive) peaks near the two hydrophilic/hydrophobic tran-
sition regions in a lipid bilayer, while being negative both in the center and further
out beyond the transition regions, such that the overall positive and negative areas
balance.

Figure 10 shows the function σ0(z) as measured for a particular lipid membrane
model (the MARTINI version of DMPC, at a temperature of 300 K). Our overall
expectations are met, even though we could not have anticipated all the extra wiggles.
What might look extremely surprising, though, is how very large the effective stresses
are: hundreds of bars! However, upon second thought, this makes sense: a typical
value for the oil-water surface tension is about 50 mN/m (Goebel and Lunkenheimer
1997). Chemistry and Fig. 10 suggest that the transition between the hydrophilic and
hydrophobic environment occurs over a region of approximately 1 nm width, and

Fig. 10 Lateral stress profile
σ0(z) of a lipid bilayer, using
a coarse-grained model of
the lipid DMPC (MARTINI
force field) at 300 K. This
profile is based on simulation
results presented in (Wang
and Deserno 2015)
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hence the pressure we would expect at the peak is about

σ0(zpeak) ∼ 50 mN/m

1 nm
= 500 bar . (71)

Which is very close to what the simulation finds (fortuitously so, of course, but it is
only the order of magnitude that counts).

Armed with the new insight that an in-plane lateral stress σ0(z) exists in a lipid
membrane, we should amend the monolayer elastic energy from Eq. (65) with a term
that penalizes stretching or compression against that pre-existing stress, which leads
to a term that is linear in the area strain:

e3d = σ0(z(ζ))ε(ζ) + 1

2
Ẽ ε(ζ)2 + 1

2
λxzxzTlT

l . (72)

Here we also defined two more concepts:

1. z(ζ) is the transverse coordinate z of a piece of material in the flat monolayer as a
function of its transverse position ζ in the curved monolayer. Since curving leads
to local lateral stretching or compression, this impacts the transverse coordinates,
because the Poisson ratio generally does not vanish—see Eq. (58). We will soon
exploit this to connect z with ζ.

2. ε(ζ) is the lateral area strain as a function of the curved transverse coordinate ζ.
To first-order in ζ, it is equal to uxx + uyy , but at next order it differs. But since
this difference takes the form of a lateral shear, which meets no resistance in fluid
leaflets, we can ignore it—that’s how Hamm and Kozlov (2000) argue. One could
also state, though, that the true area strain should linearly couple to the true area
stress, and that is why ε should naturally multiply the stress profile σ0. Of course,
the outcome is the same. Also, notice that the difference only matters in the linear
(pre-stress) term, because it becomes higher than quadratic order in the already
quadratic elastic term.

2.2 Decomposing the Membrane Deformation
into Three Stages

It should now become quite evident that the reason curvature will enter our final
expression for a surface energy density functional is that bending the leaflet will give
rise to positionally varying strains. To describe them, we need to carefully distinguish
coordinates in the flat and curved sheet. It turns out that a convenient way of doing
this is to decompose the strain by defining an intermediate state between the original
flat bilayer and the final curved one: a state where lipids have tilted, resulting in a
change of thickness and area per lipid of the leaflet that is uniform throughout its
width. From there, any further strain is now a function that depends at least linearly
on the transverse position and thus describes higher order curvature-induced strains.
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Fig. 11 The flat and untilted
monolayer state in (a) is first
transformed to a flat but
tilted state (b) in which
thickness and area per lipid
have changed. From there a
subsequent bending
deformation, which leaves
the area at the pivotal plane
invariant, leads to the final
curved state (c)

d
d

z

d
d

Z

d d

A
Z

z
a

(a)

(b)

(c)

Figure 11 illustrates these stages, as well as the notation we will use to describe
them: for coordinates or differentials in the initial, intermediate, and final state,
we will use lower case roman, upper case roman, and lower case Greek letters,
respectively. In particular, local area element and transverse height differential in
these three states will be denoted as

initial, (a): {da; dz} ,

intermediate, (b): {dA; dZ} ,

final, (c): {dα; dζ} .

While in the first two states the transverse coordinates z or Z are perpendicular to the
area element, this is not the case in the final state, for which the coordinate ζ aligns
with the local lipid direction. As a consequence, the volume element is not simply
dα dζ but instead dα dζ cos θ, where θ is the tilt angle.2 This will become important
below.

2During the workshop Jemal Guven pointed out that the additional required factor cos θ is the
equivalent of what in a 3 + 1 foliation treatment of general relativity is called the “Lapse function”
(Wheeler 1964).
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The area element dα in the curved configuration (c) will generally be different
from the area element dA of the intermediate configuration (b): further “outside” it
will be stretched, while further “inside” it will be compressed. But there will exist
one particular location in the leaflet, called the “pivotal plane,” at which the area
element is unchanged. We will use this specific location as the reference surface for
the curved configuration, the transverse location from which ζ will be measured and
to which all curvatures shall refer. Hence, we get dα(ζ = 0) = dA, while away from
the pivotal plane the changed area element leads to the higher order lateral strain

εζ = dα − dA

dA
. (73)

Since εζ is local, quantifying it requires not only the lateral location on the leaflet,
but also the transverse coordinate ζ. In contrast, the strain leading from the initial
state (a) to the intermediate state (b) is by construction independent of ζ. We will
hence refer to it as the zeroth order strain, which we can express as

ε0 = dA − da

da
. (74)

Obviously, the total area strain upon transitioning from state (a) to state (c) can be
expressed through ε0 and εζ :

ε(ζ) = dα − da

da
= (1 + ε0)(1 + εζ) − 1 . (75)

Observe that the decomposition through some intermediate state is not unique. Other
states could have been chosen, and more than one intermediate state is possible. But
since the final state of deformation and its associated elastic energy is indeed a
thermodynamic state, it does not matter by what specific path it is reached. The
particular sequence of strains we have chosen to get from the initial to the final state
is motivated by convenience, but our final answer will not depend on it.

2.3 The Link Between Curvature and Local Area Strain

Let us henceforth assume that we describe the shape of a curved monolayer via the
location of its pivotal plane.3 Any other surface, displaced from the pivotal plane by
some amount, will generally not have a vanishing local area strain, and so there will
be a local contribution to the elastic energy coming from (i) the local stress–strain

3Notice that if the monolayer leaflet were not fluid, a deformation that starts from a flat leaflet and
ends up with one that has a non-vanishing Gaussian curvature cannot be isometric by virtue of the
Theorema Egregium. Hence, this approach of writing the elastic energy by looking at the stretching
away from a pivotal plane relies by construction on fluidity.
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work when stretching or compressing against the pre-existing stress σ0 and (i i) the
elastic contribution quadratic in the local strain. We need to calculate how big this
strain is.

More precisely, if X is a point on the pivotal plane, we arrive at the new shifted
point by displacing it a constant distance ζ along the local material direction d̂:

X ′ = X + ζ d̂ . (76)

We need to know the area strain on the shifted surface X ′, which in turn depends on
the local displacement direction d̂.

Area strain for parallel surfaces. The easiest situation is if d̂ = n̂, in which case
the shifted surface is called a parallel surface. To calculate the resulting area strain,
we must compare an area element dA′ on the parallel surface with its corresponding
area element dA on the original parent surface. Recall that the tangent vectors on the
parent surface are given by ei = ∇iX , where ∇i is the metric-compatible covariant
derivative. The area element on the parallel surface is hence

e′
i = ∇i (X + ζ n̂) = ei + ζK j

i e j , (77)

where Ki j is the curvature tensor and where we used the Weingarten equation ∇i n̂ =
K j

i e j . To get the area element, we need the metric determinant g′ on the parallel
surface, and that we get from the cross products of the two tangent vectors:

√
g′ = |e′

1 × e′
2| =

∣∣∣(e1 + ζK j
1 e j ) × (e2 + ζKk

2 ek)
∣∣∣

=
∣∣
∣e1 × e2 + ζ(K 1

1 + K 2
2 ) e1 × e2

+ ζ2(K 1
1 K

2
2 − K 2

1 K
1
2 ) e1 × e2

∣
∣∣

=
∣∣∣(1 + K ζ + KGζ2) (

√
g n̂)

∣∣∣

= √
g (1 + K ζ + KGζ2) , (78)

where K and KG are trace and determinant of the curvature tensor Ki j .
The maybe slightly unorthodox use of individual components can be avoided by

proceeding a little bit more formally. The calculation is a bit longer, but it will turn
out to be quite useful when we go beyond this simple case. Define the Levi–Civita
symbol εi j = εi j such that ε11 = ε22 = 0 and ε12 = −ε21 = 1. Furthermore, define
the Levi–Civita tensor density εi j = √

g εi j , which also implies εi j = εi j/
√

g. Now,
the cross product between the two tangent vectors can be written as
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e′
1 × e′

2 = 1

2
√

g εi j e′
i × e′

j

= 1

2
√

g εi j (ei + ζKk
i ek) × (e j + Kl

j el)

∗= 1

2
√

g εi j
[
εi j + ζ(εil K

l
j + εkl K

k
i ) + ζ2εkl K

k
i K

l
j )
]
n̂

= 1

2
√

g
[
εi jεi j + ζ(εi jεil K

l
j + εi jεk j K

k
i ) + ζ2εi jεkl K

k
i K

l
j

]
n̂ , (79)

where at ∗ we used ei × e j = εi j n̂. If we now apply the identities εi jεi j = 2,
εi jεik = g

j
k = δ

j
k (i.e., the Kronecker-δ), and the definition of the determinant,

det(Ki j ) = 1
2εi jεkl Kik K jl , the last line immediately reproduces Eq. (78) when taking

the modulus.
Since dA = √

g du1du2 and dA′ = √
g′ du1du2, we find the area strain

εζ = dA′ − dA

dA
=

√
g′

√
g

− 1 = K ζ + KGζ2 . (80)

This is quite remarkable because it is exact: No corrections beyond quadratic order
in ζ occur.

Area strain for more general lipid-shifted surfaces. If the direction of shift, d̂, is
not along the surface normal but along the lipid orientation, we instead have

d̂ = T j e j + n̂
√

1 + Tj T j
= T j e j + (1 − 1

2Tj T j
)
n̂ + O(|T |3) . (81)

It is worthwhile to note that we deviate here from Hamm and Kozlov (2000), for these
authors do not normalize the orientation vector. Clearly, this only matters at higher
order, but the difference does have a physical interpretation. Recall that we want ζ to
measure a given distance along a lipid. If we do not normalize the lipid director, the
displacement |ζd| along a tilted lipid is longer than for an untilted one, while this
distance remains unchanged if we use the normalized director. Which one is correct
hence depends on whether lipids stretch upon tilting. Hamm and Kozlov assumed that
lipids stretch by laterally shearing, which exactly corresponds to not normalizing the
orientation vector in the numerator of Eq. (81). However, more recently Kopelevich
and Nagle (2015) showed in a simulation study that there is virtually no correlation
between a lipid’s length and its orientation, suggesting that lipids rotate upon tilting.
In that case the normalized orientation vector is the more appropriate choice, which
leads to the lipid-shifted surface

X ′ = X + ζ
[
T j e j + (1 − 1

2Tj T j
)
n̂
]+ O(T 3) . (82)
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The remainder of the calculation follows the one for parallel surfaces, except that the
form of X ′ results in more complex expressions. To begin with, the tangent vectors
are

e′
j = ∇ j

{
X + ζ

[
T j e j + (1 − 1

2Tj T j
)
n̂
]}

= e j + ζ
[(

K̃ k
j − 1

2 K
k
j TlT

l
)
ek − K̃ jl T

l n̂
]

, (83)

where we defined the effective curvature tensor

K̃i j := Ki j + ∇i Tj . (84)

Warning: K̃i j is generally not a symmetric tensor (unlike Ki j ), because ∇i Tj �= ∇ j Ti .
This means we must be careful when contracting indices, or when raising one of them:
K̃ j

i is not the same as K̃ j
i .

Calculating the cross product of the tangent vectors is now a bit more tedious, but
still straightforward. First,

e′
1 × e′

2 =1

2
√

g εi j e′
i × e′

j

=1

2
√

g εi j
{
ei + ζ

[(
K̃ k

i − 1
2 K

k
i T

2
)
ek − K̃imT

m n̂
] }

×
{
e j + ζ

[(
K̃ l

j − 1
2 K

l
j T

2
)
el − K̃ jnT

n n̂
] }

. (85)

Making use of ei × e j = εi j n̂ as well as n̂ × ei = εi j e j , all cross products can
again be expressed as Levi–Civita tensor densities. Two of them contract either into
a metric or create a determinant. The one case where that does not happen, they form
an expression that will not matter up to order ζ2. We then find

e′
1 × e′

2 =√
g

{
n̂
[
1 + ζ(K̃ − 1

2 KT 2) + ζ2(K̃G − KGT 2)
]

+ ei
[
ζ K̃imT

m + ζ2(irrelevant stuff)
] }

, (86)

where the trace and determinant of the effective curvature tensor are

K̃ = Tr(K̃i j ) = gi j K̃i j , K̃G = det(K̃i j ) = 1
2εi jεkl K̃ik K̃ jl . (87)

Moreover, Eq. (86) already exploits the fact that this expansion is only supposed to
be accurate up to maximally order K 2T 2. This for instance means that terms like
K̃ 2T 2 can be replaced by K 2T 2, since the “extra T ” in K̃ would contribute at higher
order.
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Up to order ζ2, the square of Eq. (86) is hence given by

|e′
1 × e′

2|2
g

=
[
1 + ζ(K̃ − 1

2 KT 2) + ζ2(K̃G − KGT 2)
]2 + ζ2KimK

i
nT

mT n, (88)

and so the ratio of metric determinants is
√

g′
√

g
= 1 + (K̃ − 1

2 KT 2)ζ + (K̃G − KGT 2 + 1
2 KimK i

nT
mT n)ζ2 . (89)

We hence find the following area strain:

εζ = dα − dA

dA
=

√
g′

√
g

− 1 = ε1 ζ + ε2 ζ2 , (90)

with the first- and second-order contribution

ε1 = K̃ − 1
2 KTiT i , (91a)

ε2 = K̃G − (KG gmn − 1
2 KimK i

n

)
TmT n . (91b)

The transverse dimension: Poisson ratio effects. We have just seen how the lateral
area element changes due to curvature—both with and without accounting for tilt.
However, the transverse length element will change, too, and the extent to which
this happens is dictated by the Poisson ratio. It will affect the zeroth order strain ε0

as well as the connection between the differentials dz, dZ , and dζ, which we have
been careful to distinguish.

Let us begin with the zeroth order strain ε0. Following the finding by Kopelevich
and Nagle (2015) that lipids rotate upon tilting, we must have dZ = dz cos θ, and
so the zeroth order transverse strain is

u0
zz = dZ − dz

dz
= cos θ − 1

∗= 1
√

1 + |T |2 − 1 = −1

2
TlT

l + O(|T |4) , (92)

where at “∗” we used |T | = tan θ.
Furthermore, recall that the normal stresses vanish at the top and bottom of the

leaflet. If it is sufficiently thin, this implies that the normal stress vanishes throughout
the leaflet, since they has not much opportunity to grow appreciably. This relates the
transverse and lateral strains (Landau and Lifshitz 1986)

− ν

1 − ν
(u0

xx + u0
yy) =: −ν̃(u0

xx + u0
yy) = u0

zz
(92)= −1

2
TlT

l , (93)

where ν is Poisson’s ratio for the present anisotropic material, which in terms of the
elastic tensor λi jkl is
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ν = λxxzz

λxxzz + λzzzz
or ν̃ := ν

1 − ν
= λxxzz

λzzzz
. (94)

These elastic coefficients could in general depend on their transverse position through
the leaflet, but notice that the area strain cannot, because we assumed it to arise from
a rigid rotation of the lipids. Hence, in Eq. (94) ν̃ must denote the average value across
the leaflet.

Finally, since at O(ζ) the zeroth order area strain equals the sum of the in-plane
diagonal components of the strain tensor, it is found to be

ε0 = 1

2ν̃
TlT

l . (95)

Notice that ν can in principle be zero, in which case ν̃ would also vanish, seemingly
leading to a divergent strain. However, at a vanishing Poisson ratio a lateral surface
stress would not lead to a reduction of thickness, and hence lipids cannot in fact tilt.
Indeed, Eq. (93) shows that if ν̃ = 0 then the tilt vanishes as well, and hence the
area strain remains finite. At any rate, the physically relevant situation for soft fluid
leaflets is ν̃ ≈ 1, not a vanishing Poisson ratio.

Next, let us look at the connection between the transverse area elements in the
initial and final configuration. To begin with, note that the difference in alignment
between the Z - and ζ-coordinate again implies that dZ = dζ cos θ. Combining this
with the usual Poisson relation between lateral and transverse strain normal to the
lateral direction, we get

dζ cos θ − dZ

dZ
= −ν̃εζ . (96)

Inserting dZ = cos θ dz from Eq. (92), cos θ cancels in the relation between the
transverse differentials z and ζ:

dζ = dz
[
1 − ν̃

(
ε1ζ + ε2ζ

2)] . (97)

The expansion coefficients ε1 and ε2 are those given in Eq. (91a) and (91b). This
connection constitutes a differential equation for ζ(z), and it can be solved by a
straightforward quadrature. Fortunately, though, we will only need the solution up to
order z2:

ζ(z) = z − 1
2 ν̃ε1z2 + O(z3) . (98)

Just as in the case of the zeroth order area strain, ν̃ in principle depends on the position
within the leaflet, but since we do not know the functional form, we could not in
general integrate the differential equation. However, at the order in z that we strive
for, all we could and need account for is a linear deviation away from its average
value. Since ν̃ is anyways most likely very close to 1, this extra work seems hardly
justified, and in order to keep things simple, we will again just take the average value
of the Poisson ratio in Eq. (98).
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The volume element Having calculated the lateral and transverse coordinate dif-
ferentials in the deformed configuration, we can now calculate the volume element
in the coordinates we need—which are the transverse position z in the flat untilted
state and the area element dA of the flat tilted state, which by definition is identical
to the area element dα(ζ = 0) of the curved leaflet at its pivotal plane. To calculate
the volume element, we also must recall that the new volume element is generally
not orthogonal, since the ζ-direction has an angle θ with respect to the membrane
normal, and so we get a projection factor cos θ. Putting everything together, we find

dV = dA dz
[
1 − 1

2TlT
l
][

1 + (1 − ν̃)εζ − ν̃ε2
ζ

]
, (99)

where we use Eq. (73) and the Poisson ratio relation Eq. (96).
Notice that Eq. (99) has one disconcerting feature: in the incompressible limit,

ν̃ = 1, the only contribution to area strain should come from tilt (namely, ε0), but
here we get another contribution from geometry—the underlined term. This trouble
is not specific to our particular problem but more generally reflects the fact that the
Poisson ratio is a first-order concept. To see this, consider an area strain εA and a
transverse strain εz . Together, they result in a volume strain εV = (1 + εA)(1 + εz) −
1 = εA + εz + εAεz . And with the usual Poisson ratio connection εz = −ν̃εA, we get
εV = (1 − ν̃)εA − ν̃ε2

A. The last term does not vanish in the incompressible limit
ν̃ = 1, and it is exactly the source of the underlined term in Eq. (99). To avoid this
inconsistency, we will drop the underlined quadratic term.

2.4 From Three Dimensions to Two

Putting everything together, we then arrive at the following overall elastic energy,
which is correct up to order ζ2, squared curvature, squared tilt, and biquadratic terms:

Hm =
∫

dA dz
[
1 − 1

2TlT
l + (1 − ν̃)

(
K̃ − KTlT l

)
ζ
]
×

{
σ0(z(ζ))

[
1

2ν̃
TlT l +

(
K̃ + 1−ν̃

2ν̃
K TlT l

)
ζ

+
(
K̃G − 1

2

(
KGgi j − Kki K k

j

)
T i T j

)
ζ2

]

+ 1
2 Ẽ
(
K̃ 2 + 1

ν̃
KGTlT l

)
ζ2

+ 1
2ν̃
Ẽ K ζTlT l + 1

2λxzxzTlT l

}
. (100)

Here we made one further approximations: we dropped biquadratic terms which
exhibit an additional factor of 1 − ν̃. Since we will invariably be close to the
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incompressible limit, this multiplies the small biquadratics by yet another small-
ness parameter, which we will ignore for simplicity.

From this expression we get the elastic surface energy density by performing the
integral over z, which also requires us to insert the functional dependence ζ(z) from
Eq. (98). Doing this integral, we arrive at the surface energy density

e2d = 1

2
κm(K̃ − K0,m)2 + κm K̃G + 1

2
κt,mM

′
i j T

i T j . (101)

This expression now features numerous new elastic constants, but all of them have
expressions in terms of the underlying elastic model:

κm =
∫

dz
[
Ẽ(z) − ν̃σ0(z)

]
z2 , (102a)

κm =
∫

dz σ0(z) z
2 , (102b)

κt,m =
∫

dz λxzxz(z) , (102c)

κm,ν =
∫

dz
1

ν̃

[
Ẽ(z) − ν̃σ0(z)

]
z2 , (102d)

−κmK0,m =
∫

dz σ0(z) z , (102e)

−κmK0,t =
∫

dz λxzxz(z) (1 − ν̃) z , (102f)

κmK
′
0,m =

∫
dz

1

ν̃

[
Ẽ(z) + (2 − 3ν̃)σ0(z)

]
z , (102g)

The quadratic tilt term in Eq. (101) is not merely characterized by a scalar modulus
but instead by a full tensor, which has the form

M ′
i j =

[
1 + �2K

(
K ′

0,m− K0,t
)− �2K 2 + (�2

ν − rm�2
)
KG

]
gi j + rm�2Kki K

k
j .

(103)
Here, � is a characteristic length defined from bending and tilt moduli, while the
other length scale �ν is defined via the new modulus κm,ν :

�2 = κm

κt,m
, �2

ν = κm,ν

κt,m
. (104)

Moreover, the dimensionless number rm is given by

rm = κm

κm
. (105)
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In the absence of tilt, the stability of the quadratic curvature expression Eq. (101)
requires −2 ≤ rm ≤ 0 (Deserno 2015), and so rm < 0.

Observe that in the absence of tilt Eq. (101) simplifies to the Helfrich Hamiltonian.
Moreover, if the curvature radii are large compared to the characteristic scales � and
�ν), the tilt tensor approaches the metrix, M ′

i j → gi j , and the expression for the
surface energy density reduces to the original expression by Hamm and Kozlov
(2000).

Disentangling Tilt and Curvature in K̃G. The effective curvature K̃ = K + ∇l T l

is the sum of the total curvature and the divergence of the tilt. This separates tilt
and curvature quite nicely, and shows for instance that the divergence of tilt can be
viewed as a position-dependent dynamic spontaneous curvature. Unfortunately, it is
not quite so easy to see how we can wrest the tilde from K̃G. But it is possible. To
do so, recall the definition

K̃G = 1

2
εi jεkl K̃ik K̃ jl (now use εi jεkl = gikg jl − gilg jk)

= 1

2

(
K̃ 2 − K̃ k

i K̃ i
k

)
,

= 1

2

[(
K i

i + ∇i T
i
)(

K j
j + ∇ j T

j
)

−
(
K j

i + ∇i T
j
)(

K i
j + ∇ j T

i
)]

= 1

2

[
K 2 − K j

i K
i
j + 2

(
K∇i T

i − K j
i ∇ j T

i
)

+ ∇i T
i∇ j T

j − ∇i T
j∇ j T

i
]

= KG +
(
K∇i T

i − K j
i ∇ j T

i
)

+ 1

2

(
∇i T

i∇ j T
j − ∇i T

j∇ j T
i
)

. (106)

As the next step, recall that the above expression occurs under an integral. We aim
to integrate the second and third parenthesis by parts, which means “swapping one
derivative and one sign,” as well as getting one boundary term. Doing so, we find

K̃G = KG +
(
∇i K

i
j − ∇ j K

)
T j + 1

2
T i
(
∇ j∇i − ∇i∇ j

)
T j + ∇i B

i , (107)

where the last term is the total divergence of

Bi = KT i − K i
j T

j + 1

2

(
T i∇ j T

j − T j∇ j T
i
)

. (108)

Now notice that the expression in the first parenthesis of Eq. (107) vanishes due to
the contracted Codazzi–Mainardi equation. The expression in the second parenthesis
is more interesting: this is the commutator of covariant derivatives, and as is well
know, it does not vanish in curved geometries. Instead, we have

[∇a,∇b]Vc = RabcdV
d , (109)

where Rabcd is the Riemann tensor. In the present case we hence find
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T i [∇ j ,∇i ]T j = g jkT i [∇ j ,∇i ]Tk = g jkT i R jikl T
l = RilT

i T l = KGT 2 , (110)

where Ril = g jk R jikl is the Ricci tensor, which in two dimensions is simply given
by Ril = KG gil . This shows that—up to a boundary term—we can disentangle the
tilt from the effective Gaussian curvature, finding

K̃G = KG + 1

2
KGT 2 . (111)

As it turns out, the boundary term is in many cases irrelevant. Notice that we are
writing down a theory for a monolayer. If this monolayer is part of a closed vesicle,
it has no boundary. But even if we have a bilayer membrane with an open edge or
a pore, the monolayer is continuous and boundary-free, since it wraps around the
edges. A case where we cannot ignore the edge hence needs to actually provide an
edge. One way in which this could happen is if a membrane contains transmembrane
proteins, which locally provide an end to the monolayer. Now the boundary term
will matter, but we will not look at this case here.

Observe what the disentanglement (111) does to our energy density from Eq. (101):
removing the tilde from K̃G creates the new term 1

2κmKGT 2, which we can incorpo-
rate into the effective tilt modulus tensor of Eq. (103), where it cancels the KG part
in its isotropic contribution.

The elastic parameters. The two-dimensional elastic functional (101) contains
seven new parameters, and the set of Eq. (102) shows how they depend on the underly-
ing elastic tensor λi jkl(z) and the pre-stress σ0(z). Of these parameters, κm, κm, κt,m,
and K0,m already appear in the treatment by Hamm and Kozlov (2000), and in fact are
given by the same microscopic expressions (if we specialize to the incompressible
limit ν̃ = 1). On the other hand, the three parameters κm,ν , K0,t, and K ′

0,m are new.
They are related to the novel biquadratic terms, and in order to judge their relevance,
we need to estimate their magnitude. To keep things simple, we will assume that
the elastic tensor λi jkl is in fact constant throughout the leaflet, for this allows us to
evaluate the moment-integrals analytically.

Let us start with the inverse length K0,t from Eq. (102f), the form of which mimics
the spontaneous curvature term K0,m. In contrast to the latter, however, K0,t is usually
negligible. To see this, consider the following:

−κmK0,t =
∫ dm

0
dz λxzxz(z) (1 − ν̃) (z − z0)

≈ λxzxz (1 − ν̃)

∫ dm

0
dz (z − z0)

= λxzxz (1 − ν̃)
d2

m − 2dmz0

2

≈ 1

2
κt,m(1 − ν̃)(dm − 2z0) , (112)
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where dm is the monolayer thickness and where we explicitly centered the trans-
bilayer integral around z0. We also used Eq. (102c) to rewrite κt,m = λxzxzdm in the
constant-λ-approximation. Dividing out κm and using Eq. (104), we get

K0,t ≈ 1 − ν̃

2�2
(2z0 − dm) . (113)

This is only nonzero if (i) the monolayer is compressible and (i i) its pivotal plane
is not in the center of the leaflet. In a recent simulation study Wang and Deserno
(2016) found z0 = 1.32 nm for a united-atom model of the lipid DMPC (Berger
et al. 1997; Lindahl and Edholm 2000). Taking the monolayer thickness to be the
distance between the bilayer midplane and the position of the phosphate atom (as a
proxy for the Luzzati plane), the authors find dm = 1.80 nm. Also using the value
� ≈ 1.61 nm determined in the same paper, we arrive at K0,t ≈ 0.16(1 − ν̃) nm−1,
or a corresponding curvature radius of 1/K0,t ≈ 6/(1 − ν̃) nm. In practice we do not
expect any strong deviation from incompressibility, and even if we assume ν ≈ 0.45,
we still find 1/K0,t ≈ 33 nm, much larger than any of the other microscopic length
scales (such as dm, z0, or �). It is hence a very good approximation to neglect the
K0,t term altogether.

The other two new terms contain the Poisson ratio in a way that leaves their
incompressible limit finite, and for the sake of estimating magnitudes, we will hence
set ν̃ = 1. This immediately shows that κm,ν = κm and hence also �ν = �. The final
expression, κmK ′

0,m is then found to be the first moment of Ẽ(z) − σ0(z). With the

approximation Ẽ(z) = Ẽ = const., we then find

κmK
′
0,m ≈

∫
dz
[
Ẽ(z) − σ0(z)

]
z ≈ Ẽ

∫ dm

0
dz (z − z0) + κmK0,m ,

where we again explicitly centered the z-integral. We hence find

K ′
0,m = K0,m − Ẽdm

2κm
(2z0 − dm) . (114)

If the pivotal plane is in the middle of the leaflet, then K ′
0,m = K0,m. However, usually

the pivotal plane of a lipid monolayer is located closer to the headgroup region, often
about 2

3 up along the lipid. Using this rule of thumb, we get

K ′
0,m ≈ K0,m − Ẽd2

m

6κm
(if z0 = 2

3dm) . (115)

If we now apply the constant-Ẽ-approximation also to Eq. (102a), we get

κm ≈ Ẽ
∫ dm

0
dz(z − z0)

2 − κm = 1

3
Ẽdm(d2

m − 3dmz0 + 3z2
0) − κm . (116)
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And if we again specialize to the good guess z0 = 2
3dm, we find

Ẽd3
m

9
= κm + κm (if z0 = 2

3dm) , (117)

which together with Eq. (115) leads to

K ′
0,m ≈ K0,m − 1 + rm

z0
(if z0 = 2

3dm) . (118)

This expression is quite curious, because the “correction” part (1 + rm)/z0 can be
anything between zero and very large. It vanishes for rm = −1, which is a perfectly
permissible value for the Gaussian elastic ratio. On the other hand, it is equally
possible that rm is somewhere between −1 and 0, say − 1

2 , in which case the additional
term is −1/2z0, and this is a very strong spontaneous curvature. Recall that Wang and
Deserno (2016) found z0 = 1.32 nm for a united-atom model of DMPC, which gives
−1/2z0 ≈ −0.38 nm−1, much larger (in magnitude) than typical lipid spontaneous
curvatures. For comparison, the conventional spontaneous curvature K0,m for DMPC
is about 0.025 nm−1 (Venable et al. 2015), and lysophosphatidylcholine, one of the
most strongly positively curved lipids, has a spontaneous curvature radius of about
0.26 nm−1 (Kooijman et al. 2005). The reason why such a potentially large K ′

0,m
does not majorly affect bilayer stability and morphology is that it does not directly
enter the bending term—only the ordinary spontaneous curvature K0,m does.

Putting things together. We can finally write down a (slightly approximated) version
of the surface energy functional, in which we ignore K0,t, identify κm,ν = κm, wrest
the tilde from the Gaussian curvature, and also disentangle the term Kki K k

j by virtue
of the once-contracted Gauss equation Kki K k

j = KKi j − KGgi j :

e2d = 1

2
κm(K + ∇i T

i − K0,m)2 + κmKG + 1

2
κt,mMi j T

i T j (119)

with

Mi j =
[
1 + �2

(
KK ′

0,m − K 2 + (1 − rm)KG
)]

gi j + rm�2KKi j . (120)

2.5 Some Consequences of the Curvature-Tilt Functional

As stated before, the theory presented here follows the lead of Hamm and Kozlov
(2000), but it retains some of the higher order terms which they have neglected—
specifically biquadratic terms such as KGT 2, which is quadratic in both curvature
and tilt. Hamm and Kozlov eliminate such terms in their treatment whenever they
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explicitly occur, on account of them being higher order than the usual quadratic terms.
And yet, the tilde over KG, which they do not ignore, is effectively a biquadratic term.

To be consistent, two paths are possible. The simple one is to eliminate all
biquadratics, including the tilde over KG. The perhaps more interesting one is to
keep them all, because they are responsible for some fascinating new physics. How-
ever, one could object against this on the ground that if we keep biquadratic terms,
we should also keep quartic ones, such as K 4, K 2

G, or T 2(∇kT k)2. This is, in prin-
ciple, a valid concern. However, there are good pragmatic reasons for working with
a theory that drops these terms, despite the issue of a consistent order termination:
the biquadratic terms create qualitative changes in the curvature-tilt theory, because
they introduce a new mode of coupling between curvature and tilt that is absent on
the quadratic level. In consequence, they spawn “new physics”—as we will soon
see. The same cannot be said for the quartic terms, which (at least initially) only
quantitatively change the physics, for instance by affecting the curvature energy and
hence changing equilibrium shapes, while only indirectly affecting the partnering
field. Of course, ultimately we would need all terms for truly quantitative predic-
tions, but it is easier to investigate how a novel curvature-tilt coupling affects the
basic physics without simultaneously having to deal with all other conceivable non-
linearities on the non-coupled side of the energy functional. We hence learn, what
new physics is in store, and so we can create hypotheses worthy of testing with more
refined approaches. Incidentally, it is of note that the geometric transformations we
have discussed above indeed create terms quartic in curvature, but they do not create
purely quartic tilt terms.

As anticipated when we started, the new two-dimensional surface functional
comes with a number of coupling coefficients in front of terms that are permit-
ted by symmetry, but the underlying elastic theory predicts their values in terms of
the underlying parameters, such as λi jkl or σ0(z). Crucially, this is not only true for
the “classical” parameters which Hamm and Kozlov (2000) already wrote down, but
also for all higher order terms. This means that any ad hoc extension of their original
functional by terms such as KGT 2 would likely miss the fact that the corresponding
prefactors are not new coefficients but related to the existing ones, such as κm.

An important general finding is that all biquadratic terms act as position-dependent
contributions to the tilt modulus. This is mathematically obvious, but then, it would
be equally conceivable to have them enter as position-dependent contributions to the
bending modulus. After all, the following (simplified toy) expressions are perfectly
equivalent:

1

2
κmK

2 + 1

2
κt,m

[
1 + A

κt,m
K 2

]
T 2 = 1

2
κm

[
1 + A

κm
T 2

]
K 2 + 1

2
κt,mT

2 . (121)

But while equivalent, from a practical point of view the notion that the tilt modulus
gets modified is more useful. To begin with, at sufficiently large scale tilt becomes
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irrelevant,4 And hence, bending is all there is. It then makes sense to solve the problem
iteratively by starting with the shape solution in the absence of tilt, and then take this
to calculate the tilt field at a given shape background. Moreover, there are interesting
cases where the shape is given and need not really be solved for, such as when we
ask what the tilt field is at the edge of a membrane or within a small pore, where a
monolayer tightly curves around to connect the two individual leaflets. In this case,
again, it makes sense to solve for the tilt field in the presence of a shape, but not
the other way around. Of course, should there ever be a situation where the opposite
point of view is more useful, it is trivial to rewrite our equations to reflect this shift
in philosophy.

Observe that the biquadratic terms do not merely amend the tilt modulus in a local
curvature-dependent way; they amend it in an anisotropic way, because Mi j is not
merely proportional to gi j : the last term in Eq. (120) involves the curvature tensor
Ki j . As a consequence, the eigenvectors of Mi j coincide with those of Ki j , and so the
principal curvature directions of the surface also play a special role for tilting. To make
this more explicit, assume that p = pi ei and q = qi ei are the two principal directions
of Ki j (at some local point), so that we can write it as Ki j = Kp pi p j + Kqqiq j , where
Kp and Kq are the principal curvatures. The anisotropic term in the tilt energy density
can hence be written as

1

2
κmKKi j T

i T j = 1

2
κmK

[
Kp pi p j + Kq qiq j

]
T i T j

= 1

2
κmK

[
Kp T

2
p + Kq T

2
q

]
, (122)

where Tp = T i pi = T · p is the p-component of the tilt field, and Tq is the q-
component. For instance, imagine a straight membrane edge, where the p-direction
points “around” the edge, and the q-direction points along the edge. In that case,
Kq = 0 and Kp ≈ 1/z0, giving the contribution

straight edge:
1

2
κmKKi j T

i T j = 1

2
κm

1

z2
0

T 2
p (123)

This term leaves any tilt along the edge unaffected, but it lowers the cost for tilting
around the edge—since κm < 0. In fact, it is easy to see that the full edge tilt energy
density is given by

e2d,edge = 1

2
κt,m

[
1 + �2

z2
0

(
K ′

0,mz0 − 1
)]

T 2 + 1

2
κm

1

z2
0

T 2
p . (124)

4This is merely a consequence of the fact that the length �, which pits curvature against tilt, is
microscopic. On scales larger than �, tilt therefore only enters as a minor correction to the overall
bending physics of then problem.
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However, there is something quite disconcerting about this expression: the ratio �2/z2
0

can be bigger than 1. In fact, taking the numbers which Wang and Deserno (2016)
found for DMPC (� = 1.61 nm and z0 = 1.32 nm) we get �2/z2

0 ≈ 1.5. Now, rm < 0,
and K ′

0,mz0 is generally very negative—see Eq. (118). We hence must conclude that
for curvatures as large as the ones we encounter at an open edge, the effective tilt
energy density is negative, and this could in principle drive the tilt to grow beyond
all bounds. For the tilt around the edge this cannot happen in practice over the short
region of the edge, since the tilt divergence term in Eq. (119) prevents the tilt from
changing too rapidly. But notice that Eq. (124) shows that the effective tilt modulus
along the edge can also become negative,5 and in that case the finite-region-argu-
ment does not save us. Hence, it truly is worrisome that the functional can cease to be
bounded below. This, of course, is a direct consequence of us having neglected quartic
terms, which would have to stabilize it (since the microscopic theory we started out
with is clearly bounded below). We thereby have encountered a case where we are
pushing our theory to its limits. But we also discover remarkable physics that is
hidden at that border, for even if we catch the divergence by a quartic term, we have
now run into a phase transition, and so it is conceivable that strongly curved regions
create spontaneous tilt. A more refined theory is necessary to probe this, but even
without such a better theory, the “circumstantial evidence” that exciting things can
happen in highly curved regions might motivate us to look for them in experiments
or simulations.

Clearly, the anisotropic term in Mi j vanishes if K = 0, meaning that on mini-
mal surfaces the tilt modulus is always isotropic. This is curious, because minimal
surfaces are anything but isotropic. The other possibility for Mi j being isotropic is
if the curvature tensor is locally proportional to the metric, Ki j = c gi j with some
(possible position dependent) function c(u1, u2). What do such surfaces look like?
Inserting this special form of Ki j in the contracted Gauss–Codazzi equation, we find

0 = ∇ j K − ∇i K
i
j = ∇ j (2 c) − ∇i (c gij ) = 2∇ j c − ∇ j c = ∇ j c , (125)

and hence c = const. We then have Ki j = c gi j with a constant prefactor c. Such
surfaces are spheres (do Carmo 1976), and so the resulting isotropy of Mi j is much
less mysterious.

3 Measuring the Bending Modulus

In the previous section we have derived a curvature-tilt functional, following the
original treatment of Hamm and Kozlov (2000). The functional form of many terms
in that theory is often highly intuitive, in the sense that we could have confidently
predicted that these terms would show up; but there is of course nothing intuitive

5Since T 2 = T 2
p + T 2

q , the tilt modulus along the edge (the q-direction) is just the prefactor of T 2

in Eq. (124).
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about theirprefactors. Revisiting the bottom-up and top-down philosophies discussed
at the beginning of Sect. 2, we now have two choices: either we derive the resulting
moduli from the lower level theory, or we need to determine them on the level of the
larger scale theory.

In the present case, the lower level theory was built on the notion of a pre-stressed
thin fluid elastic sheet, quantified by the elastic modulus tensor λi jkl and the stress
profile σ0(z), and we know from Eqs. (102) how the parameters of the curvature-tilt
functional relate to the lower level input. However, we have not yet addressed the
question where we would get λi jkl and σ0(z) from. Again, we have two choices here.
One of them is that there could be an even lower level theory that predicts these
objects, based on even more fundamental parameters. And yet, the reader might
be wondering whether we are merely begging the question, for where would these
parameters come from? An even lower level model? And where would its parameters
come from? What saves us from an infinite regress? The answer is, usually, that at
some point we declare that we know the theory and the parameters. We state that
this is the most fundamental level we care about, and that on this level we happen
to have a theory that we trust. For instance, we could state that the lowest level we
care about is atomistic chemistry (meaning, we ignore nuclei, quarks, strings, …),
and that we are maybe even willing to trust the force fields of classical molecular
dynamics to be applicable to this problem. Being poor calculators of such complex
systems, we then most likely think hard what type of simulation would give us, say,
a modulus tensor, and then we run such a simulation and “measure” that tensor.

The other choice is to forgo the hope of predicting the elastic modulus tensor λi jkl

and the stress profile σ0(z) from some underlying theory and instead measure them
in experiment. Once we have them, we can then plug the results into Eqs. (102) and
derive the curvature-tilt parameters, such as the bending modulus.

Thinking about the second option, the following question might stir: why not
measure the parameters of the curvature-tilt theory directly? Why should we even
take the detour over the lower level theory? Why not cut out the middle man?

The question is serious. After all, we have just noted that the form of the terms
in the higher level theory is often very clear: symmetry principles usually go a long
way in telling us which terms can or cannot appear. Hence, their presence in a theory
rests on something stronger and more fundamental than the particular lower level
model we have chosen to construct. Stated differently: if the higher level theory
can be phrased completely in terms of observables that emerge on that higher level,
the specific details for how that emergence happens need not concern us in order
to have a perfectly workable theory on that level. We do not have to dig down into
the details. But if we do care about emergence, then a key worry might be whether
we got the underlying model right. It is then a good idea to measure things on both
levels, followed by a series of tests that scrutinize the putative connections between
the two theories. Or we might at least test whether connections predicted entirely on
the level of emergent quantities, which are consequences of the model, turn out to be
satisfied. If they hold up, the underlying model is promising. If they fail, it is (likely)
wrong.
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Notice that we are merely retracing the thoughts of the beginning of Sect. 2, with
the specific issue of model parameters in mind. We hope the reader will not consider
them trite, because in this interplay between tiers of modeling lies a core element of
science and epistemology.

The purpose, then, of this last section is to discuss, how some of the parameters
entering the theories discussed so far can be measured. As we have argued above,
determining parameters on two different levels, and then checking whether they con-
nect according to some proposed model of emergence, is the probably most thorough
way to probe nature. However, this is a rather extensive endeavor, and it would war-
rant a book on its own, just dealing with the special case of lipid membranes. We will
hence restrict to make some comments about measuring one parameter, one which
happens to live at the emergent level, and illustrate the maybe unexpected richness of
problems and opportunities that arise even in this narrow corner. Specifically, we will
discuss using simulations to find a parameter. Purists do not call this “measurement,”
and they are strictly right: we don’t query nature, we merely query a theoretical model
invented to represent nature. In some sense, we use computers to solve a problem we
are yet incapable to tackle analytically, but whose answer follows inevitably from
that model. And there it is again: tier-bridging.

Let us hence ask: how can we find the value of a membrane’s bending modulus κ
in a simulation?

3.1 Active Versus Passive Strategies

When measuring spring constants, there are two conceptually different things one
could do. First, one could simply deform the spring and monitor, how much force is
required for a given deformation. But if the spring is very soft, this requires measuring
very small forces. In fact, the spring could be so soft that thermal fluctuations all
by themselves already deform the spring. In that case we not only have to measure
a presumably very tiny deformation force; we would also have to figure out how
to correct for the effects of thermal noise. However, there is an opportunity here: if
fluctuations alone deform the spring, maybe this suffices as a deformation? After
all, we know the strength of thermal fluctuations, and if we can measure the spring’s
stochastic response, we ought to be able to back out its stiffness.

This second approach—measuring fluctuations to infer rigidities—is very popular
in many fields of soft matter physics. The reason is that soft matter has (almost by
definition) small spring constants (read now: moduli), which can be inferred by
the way they pit themselves against the thermal breeze. Lipid membranes are a
good example for this, and we will begin with a discussion for how this connection
works—before concluding that we can do better by actively deforming a membrane.

Membrane undulation spectrum. Consider a flat membrane patch of area L ×
L , and imagine it being subject to periodic boundary conditions. This is not only
theoretically convenient; it is the most natural choice in simulations. Even if the
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membrane is on average flat, thermal fluctuations will roughen it up by adding
stochastic undulations of the shape. However, these will be small, and so we can
likely get away with a parametrization of the membrane that describes the geometry
as a quadratic-level deviation from flatness: linear Monge gauge.

As a brief reminder: in Monge gauge, a membrane’s shape is described by a height
function h(r) above a flat (horizontal) reference plane, with r being the position
within that plane. Let ∇ be the gradient operator in that base plane. If |∇h| � 1,
the expressions for area element and curvatures simplify significantly, and can be
written as (Deserno 2015)

dA =
√

1 + (∇h)2 d2r ≈ (
1 + 1

2 (∇h)2
)

d2r , (126a)

K = −∇ ·
(

∇h
√

1 + (∇h)2

)

≈ −∇2h , (126b)

KG = det(∂i∂ j h)

(1 + (∇h)2)2
≈ det(∂i∂ j h) . (126c)

Hence, the membrane Hamiltonian (including bending, but ignoring both sponta-
neous curvature and tilt for now, and adding a membrane tension σ) can be written as

E =
∫

dA

{
1

2
κK 2 + κKG + σ

}
(127a)

≈
∫

d2r

{
1

2
κ(∇2h)2 + 1

2
σ(∇h)2

}
+ const. (127b)

where we eliminated the Gaussian term, because it vanishes under periodic boundary
conditions—courtesy of the Gauss–Bonnet theorem.

The resulting Hamiltonian in Eq. (127b) is quadratic, but it contains gradients and
Laplacians. These can be removed by going into Fourier space (since Fourier modes
are the eigenfunctions of the gradient operator). Hence, let us Fourier expand the
shape h(r) according to

h(r) =
∑

q

h̃qeiq·r with q = 2π

L

(
nx

ny

)
and nx , ny ∈ N . (128)

Since we want this expansion to be real, we must require of the Fourier coefficients
that h̃−q = h̃∗

q . Inserting this expansion into the quadratic Hamiltonian (127b), we
find

E = 1

2

∫
d2r

{∑

q,q ′
h̃q h̃q ′

[
κ(−q2)(−q ′2) + σ(iq)(iq ′)

]
ei(q+q ′)·r

}
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= 1

2

∑

q,q ′
h̃q h̃q ′

(
κq2q ′2 − σqq ′)

∫
d2r ei(q+q ′)·r

︸ ︷︷ ︸
=L2 δq,−q′

= 1

2
L2
∑

q

∣∣h̃q

∣∣2 (κq4 + σq2
)
. (129)

This final form shows that if the membrane shape is expressed using the Fourier com-
ponents h̃q as degrees of freedom, then the Hamiltonian is not merely quadratic but
diagonal—all degrees of freedom are independent. From the equipartition theorem
we then immediately find that the mean squared amplitude of every Fourier mode is
given by 〈∣∣h̃q

∣∣2
〉

= kBT

L2(κq4 + σq2)
. (130)

This formula, and variants of it, underly a vast number of methods and papers for
measuring the bending modulus κ—both in simulation and, in fact, experiment. The
basic idea is that if we can access the fluctuation spectrum, we can fit to this equation
and extract κ.

But let’s now investigate how much of a membrane deformation we are talking
about. First, notice that the bending rigidity will of course reduce the fluctuations—
as will the tension. To get the biggest effect, let us imagine that we set the tension to
zero.6 Since the (root mean square) curvature will scale like q2|h̃q |, the typical (root
mean square) radius of curvature Rq of any given Fourier mode q is going to be

Rq ∼ 1
√〈K 2〉 ∼ 1

√
〈(q2|h̃q |)2〉

σ=0= L

√
κ

kBT
. (131)

Since for a typical bilayer membrane we have κ ∼ 10 . . . 50 kBT , we find Rq ∼
3 . . . 7 L , showing that—independently of mode—the radius of curvature is several
times bigger than the size of the bilayer. These are very weak curvatures! Not only are
they hard to pick up in a simulation,7 they are also much smaller than many curvatures
we are likely to later impose on membranes (say, when we simulate vesicles), raising
the question whether at much larger curvatures the quadratic theory assumed in
Eq. (127a) actually holds.

The reason this happens is that the rigidity κ is actually not really small compared
to thermal energy kBT . It is comfortably larger than thermal energy, ensuring that
membranes do not fluctuate themselves into bits and pieces, and so while flickering
of membranes is readily observed, it is still a small effect.

6In simulations that can be achieved relatively easily by suitable boundary conditions.
7Recall that we must measure the undulation spectrum 〈|h̃q |2〉 over a sufficiently wide q-range to
plausibly fit a spectrum, and that this spectrum decays rapidly with q.
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Force along a cylindrical membrane tube. The observations from the previous
section suggest that we could instead look at an actively imposed deformation a
membrane and measure the force required to impose it. Several years ago, Har-
mandaris and Deserno (2006) have proposed to study a cylindrical membrane tube
(connected through periodic boundary conditions into one “infinitely long” cylinder)
and measure the axial force along it. It is easy to see that such a force should exist:
the fixed number of lipids in the simulation box will give rise to a membrane of
some given overall area A = 2πRL , where R and L are cylinder radius and length,
respectively. If we change the length of the cylinder, we change R (since A must
stay constant), and so we change the bending energy E . This results in a force F ,
given by

F = ∂E

∂L

∣∣∣∣
A

= ∂

∂L

∣∣∣∣
A

[
1

2
κ

(
1

R

)2

× A

]
= ∂

∂L

∣∣∣∣
A

[
1

2
κ

(
2πL

A

)2

× A

]

= κ

(
2πL

A

)(
2π

A

)
× A = 2πκ

R
. (132)

Hence, measuring the force and the radius gives the rigidity: κ = FR/2π. Moreover,
we can impose much larger curvatures than would ever happen under passive undu-
lation conditions, and so we can test how far the quadratic curvature Hamiltonian
(127a) can be trusted. Harmandaris and Deserno (2006) found that—for the coarse
grained model they studied (Cooke et al. 2005)—it worked with remarkable accuracy
down to curvature radii equal to a few times the membrane thickness—much better
than one would probably have any right to hope! Also, the measured rigidity was
compatible with what was previously measured from monitoring membrane shape
undulations (i.e., exploiting Eq. (130)), but it could be measured more precisely with
the same simulation overhead.

There is a big snag, though: as nice and intuitive as this method appears, it fun-
damentally relies on two conditions that are hardly ever met in a realistic simulation
context, both of which are related to the equilibration of a chemical potential. First,
the simulation setup divides the simulation box into a region inside the tube, and a
region outside. These do not easily communicate, because the solvent (water, or a
coarse grained version of it) usually does not diffuse fast enough through a bilayer (on
the time scales relevant for the simulation). While in reality the chemical potential of
water is equilibrated across the two sides, in a simulation it generally is not (we do
not know ahead of time how much water we really need to put into the two environ-
ments), and it will not automatically equilibrate. Second, the chemical potential of
the lipids in the two bilayer leaflets also has to be the same, since lipids can flip-flop
between leaflets. But again, this typically is much too slow a process to significantly
happen during the course of a simulation, so unless we set up the system already in
equilibrium (and we cannot easily do that, because we do not know how many more
lipids we would have to place in the outside leaflet), we have no chance of instead
converging to it. Harmandaris and Deserno did not have these difficulties, since the
highly coarse grained lipid model which they used (Cooke et al. 2005) (a) has no
solvent and (b) has a sufficiently high flip–flop rate. But for any more highly resolved
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and not necessarily solvent free model, the “pulling-a-tube” method does not readily
work.

And yet, this idea of an active deformation remains enticing—we just need to find
a way to circumvent the unfortunate equilibration troubles. The path to glory exists,
and it involves looking at a different deformation.

3.2 Buckling for Fluid Membranes

In a very important paper, Noguchi (2011) presented a method that solves this prob-
lem (without actually needing it for the model he used): if we place a membrane into
a box that is too small for that membrane, it will buckle. Choosing a large aspect
ratio, we end up with a very well-defined one-dimensional deformation, an example
of which is shown in Fig. 12. Clearly, maintaining that shape requires a force, which
ought to encode the stiffness of the membrane—buckling a more rigid membrane
ought to be harder. In fact, it seems clear that this force ought to be proportional
to the bending rigidity κ. In the following we provide a solution to this problem,
following Hu et al. (2013), which pushes the analytical treatment slightly farther
than Noguchi did.

The shape of a one-dimensional buckle. If we parametrize the membrane in the
angle-arclength parametrization ψ(s) indicated in Fig. 12, the relevant curvature
along the buckle is given by −ψ̇. Since the curvature in the perpendicular direction
vanishes, we get K = −ψ̇ and KG = 0. The curvature elastic Hamiltonian (again,

ψ( )s

s

z

yL
xL

L

Fig. 12 Geometry of a buckled membrane, and illustration of the angle-arclength parametrization
that can be used to describe it: it gives the angle ψ(s) of the local profile with respect to the horizontal
as a function of the arclength measured along the buckle. Reprinted from Hu et al. (2013), with the
permission of AIP Publishing
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without tilt) is then given by

E = Ly

∫ L

0
ds

{
1

2
κψ̇2 + fx

[
cos ψ − Lx

L

]}
. (133)

The second term in the integrand enforces the constraint that the membrane fits into
the box—meaning, that the total distance traversed horizontally equals Lx . Physi-
cally, the associated Lagrange multiplier fx is nothing but the force (per unit length)
required to ensure that this constraint is satisfied.

A simple functional variation gives the Euler–Lagrange equation that ψ(s) needs
to satisfy in oder to minimize this energy:

ψ̈ + λ−2 sin ψ = 0 with λ =
√

κ

fx
, (134)

where we encounter a new characteristic length λ. If we multiply this equation with
ψ̇, we find

0 = ψ̇ψ̈ + λ−2ψ̇ sin ψ = d

ds

[
1

2
ψ̇2 − λ−2 cos ψ

]
, (135)

showing that the expression in square brackets is conserved and hence a first integral.
We can make this constant more explicit by evaluating the expression at an inflection
point of the buckle, where ψ̇ = 0. Calling the value of the angle at that point ψi, we
get

1

2
ψ̇2 − λ−2 cos ψ = −λ−2 cos ψi , (136)

a first-order differential equation whose quadrature can be found by separation of
variables:

s

λ
=
∫ s

0

ds ′

λ
=
∫ ψ

0

dψ′
√

2(cos ψ′ − cos ψi)
= F

[
arcsin

sin(ψ/2)

sin(ψi/2)

∣∣
∣ sin2 ψi

2

]
. (137)

Here, F[z|m] is the incomplete elliptic integral of the first kind. (For all subse-
quent special functions—a veritable panoply of elliptic functions and integrals—see
Abramowitz and Stegun (1970)). After defining the elliptic parameter

m = sin2 ψi

2
, (138)

inverting Eq. (137) leads to the angle ψ(s)

ψ(s) = 2 arcsin
{√

m sn
[
s/λ

∣∣m
]}

, (139)

and integrating the cosine and sine of that expression gives a parametric representa-
tion of the buckle:
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x(s) = 2λ E
[
am
[
s/λ

∣∣m
] ∣∣m

]
, (140a)

z(s) = 2λ
√
m
(
1 − cs

[
s/λ

∣∣m
])

. (140b)

For instance, the second equation (140b) shows that the buckle amplitude is za =
z(L/4) = 2λ

√
m.

Fixing the constraints. The solutions (139) or (140) to the buckle’s differential
equation contain two integration constants: first, λ—which really stands in for the
unknown Lagrange multiplier fx ; and second, m—which encodes the angle which
the buckle makes at its inflection point. The first one is of great interest to us, the
second one not so much—but it is the one that causes technical troubles, because
in a simulation we do not fix the angle but the extent of a buckle’s compression—
essentially, Lx . Of course, we could always measure the inflection angle in our
simulation, but this is laborious, for it would require us to explicitly determine the
membrane shape. Instead, it is much more convenient to do a bit more work and
re-express the constant m in terms of a more natural one, namely the compressional
strain γ, defined as

γ = L − Lx

L
. (141)

To do so, recall that the two constants are fixed by the two boundary conditions of
the problem, which are

ψ(L/4) = ψi and x(L/4) = Lx/4 . (142)

Using Eq. (137), the first condition implies

L

4λ
= F

[π
2

∣∣m
]

= K[m] . (143)

And using Eq. (140a), the second one yields

Lx = 8λ E[m] − L . (144)

Between these two equations, the length λ can be eliminated, leading to the tran-
scendental equation

γ(m) = 2

(
1 − E[m]

K[m]
)

, (145)

which we now “merely” have to invert for m(γ) in order to make the strain γ the
independent variable. Unfortunately, this cannot be done in closed form. But it is
quite easy to find an accurate series expansion solution, by making the ansatz

m(γ) =
∞∑

i=1

ai γ
i , (146)
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γ[%] = 84.9 80 70 60 50 40 30 20 10 5 20

Fig. 13 Sequence of buckles, with the buckling strain γ (in percent) given below the arrow at the
right end of the buckle. The buckle self-touches at γ ≈ 84.87%; notice also that a strain of merely
10% already reaches about half the transverse amplitude of that final touching-state

inserting this into Eq. (145), again expanding the right hand side in a Taylor series
in γ, comparing equal powers of γ on both sides, and thus obtain a set of equations
that will determine the coefficients ai . Most symbolic algebra packages do this in
seconds, and one finds

m(γ) = γ − 1

8
γ2 − 1

32
γ3 − 11

1024
γ4 − 17

4096
γ5 − 55

32 768
γ6 − · · · (147)

Hu et al. (2013) tabulate the coefficients up to order γ10 and show that the accuracy
(compared to an “exact” numerical solution, and restricted to relevant values of
γ � 0.5) is always better than 2 × 10−9. In other words: we now have to all intents
and purposes an analytical solution of the buckling problem. As an illustration,
Fig. 13 shows a sequence of buckles for increasing strain γ

Stress–strain relation. The stress fx required to compress the buckle enters in the
length scale λ, and now that we know m(γ), Eq. (143) can be solved for the stress
strain relation:

fx (γ) = κ

(
4

L
K
[
m(γ)

])2

(148a)

= κ

(
2π

L

)2 [
1 + 1

2
γ + 9

32
γ2 + 21

128
γ3 + 795

8192
γ4 + · · ·

]
. (148b)

Notice that the stress is directly proportional to the rigidity (as expected) and inversely
proportional to the square of the buckle’s contour length. Also, the limit γ → 0 is
discontinuous, showing that a finite stress is required to induce even an infinitesimal
strain—the hallmark of a buckling transition. After onset of buckling, the stress
continues to grow monotonically. The initial post-buckling slope is 1

2 (independent
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in fact of details of the boundary conditions), and the remaining terms only provide
a small correction to them—about 7% at γ = 50%.

Of course, for compressible materials the initial rise cannot be discontinuous.
Since a lipid membrane has a finite area compressibility KA, we would hence expect
the initial rise to be linear, but with a much bigger slope. The crossover strain γ∗
occurs, roughly, where compression and buckling have equal stresses, leading to the
condition

KAγ
∗ = κ

(
2π

L

)2

. (149)

Using microscopic theories (such as the ones from Sect. 2), we can relate the area
compressibility and the bending modulus. In our special case this is difficult, because
the bending modulus also involves the stress profile. But mere scaling already sug-
gests a relation κ ∝ KAd2, where d is the membrane thickness. Imagining lipid
bilayers as two thin homogeneous slidable plates without internal prestress gives a
constant of proportionality of 1

36 (for a Poisson ratio of 1
2 ) (Deserno 2015), leading to

γ∗ = κ

KA

(
2π

L

)2

∼ π2

9

(
d

L

)2

≈
(
d

L

)2

. (150)

For the systems studied by Hu et al. (2013), this is always smaller than about 1%.
Notice, however, that a finite compressibility also changes the buckling problem
itself. The corrections are small if the area compressibility is small (in the sense
that

√
κ/KA is microscopic), but the resulting theory is extremely fascinating, as

Oshri and Diamant (2016) show. For instance, while there is a well-known analogy
between the one-dimensional Euler elastic studied here and the mathematical pendu-
lum (observe that Eq. (134) is nothing but the pendulum equation), the compressible
elastic can be exactly mapped to the relativistic pendulum.

Evidently, the idea is now to simulate buckles at various different strains (bigger
at least than the crossover strain γ∗) and fit the measured stress–strain relation to
Eq. (148)—using κ as the sole fitting parameter. As Hu et al. (2013) demonstrate,
this works very well for models all the way from strongly coarse grained to virtually
fully atomistic.

The stress tensor for membrane buckles. We can learn more about the stress
distribution in a buckle, and in particular the isotropic tension σ within it, by looking
at the membrane stress tensor f a (Capovilla and Guven 2002, 2004; Guven 2004).
Guven and Vázquez–Montejo provide a pedagogical introduction in this volume to
the necessary mathematics, and it is also covered in a recent review by one of us
(Deserno 2015). Briefly, if we draw a curve on a membrane surface with tangent
vector t = taea , tangential co-normal l = laea , and membrane normal n = l × t ,
the traction f acting onto the membrane side into which l points is given by

f = la f
a =

[
1

2
κ
(
K 2

⊥ − K 2
||
)

− σ

]
l + κ KK⊥|| t − κ(∇⊥K ) n . (151)
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Fig. 14 Cross cut through
part of a buckle, defining the
local (l, t, n) coordinate
system, and the angle ψ
which the buckle makes with
the horizontal x. Notice that
l · x = cos ψ and t = y

x

l
n

t

Here, K⊥ = lalbKab and K|| = tatbKab are the normal curvatures into l and t direc-
tion, respectively, while K⊥|| is the off-diagonal element of the curvature tensor in
the (l, t) basis; ∇⊥K = la∇aK is the gradient of K along l . Let’s check the sign: if
κ = 0 and we merely have surface tension (this would correspond for instance to a
soap film), we have f = −σl , showing that a surface tension of magnitude σ pulls
(minus sign!) tangentially onto the side into which l points.

Let us now specialize this to the case of a straight line which runs in the flat
direction of the buckle (the y-direction in Fig. 12). The local geometry is sketched
in Fig. 14. Since this line is straight, K|| = 0, and since it is also a line of curvature,
K⊥|| = 0. Hence, the traction f is given by

f =
[

1

2
κK 2

⊥ − σ

]
l − κ(∇⊥K⊥) n =

[
1

2
κψ̇2 − σ

]
l + κ ψ̈ n , (152)

where in the second step we used ∇⊥ = d
ds and K⊥ = −ψ̇.

Now, a crucial thing to realize is that f must be constant and horizontal. Constant,
because the stress tensor is divergence free, ∇a f

a = 0, or in our one-dimensional
case, d f /ds = 0, and since there are no sources of stress along the buckle, the traction
is constant. Thereare sources at the ends, and they push the buckle horizontally; hence
f ∝ x. This means that there are two ways for how to get the magnitude of f : you
could either project it onto x, or you could square it. This leads to the two equations

fx = f · x =
[

1

2
κψ̇2 − σ

]
cos ψ − κ ψ̈ sin ψ , (153a)

f 2
x = f · f =

[
1

2
κψ̇2 − σ

]2

+ κ2 ψ̈2 . (153b)

Between these two equations, we can eliminate the higher derivative ψ̈ and thereby
arrive at a differential equation that is one order lower:

1

2
κψ̇2 − σ = fx cos ψ . (154)

In other words, stress conservation has given us a first integral of the shape equa-
tion—and we did not even have to write down the shape equation. Observe that
Eq. (154) is the analog of Eq. (136), but in this case we also get a mechanical
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interpretation of the constant of integration, not just a geometrical one. Picking the
position such that we are at an inflection point—just as we had done in Eq. (136)—we
find

σ = − fx cos ψi . (155)

Hence, the isotropic tension (which couples to the area per lipid) is not equal to
the (negative of the) buckling stress, but equal to that stress times the cosine of the
inflection angle. In particular, it vanishes if ψi = π

2 , which happens at m = 1
2 or

γ ≈ 0.543.

Advantages and drawbacks. Now that we have seen how buckling a membrane
gives rise to an observable, fx , that will encode the bending modulus, κ, let us
briefly stop and ponder the benefits and limitations that come with this particular
method of determining a membrane’s rigidity, especially in comparison with more
traditional fluctuation approaches.

Advantages:

• The signal we measure, fx , is directly proportional to the observable we care
about, κ. In the fluctuation case it was inversely proportional: |h̃q |2 ∝ κ−1. Hence,
the buckling method should become better if membranes get stiffer, and worse if
they get softer. Since κ is on the order of a few tens of kBT , we already are in the
limit where fluctuations are visible but weak. Moreover, fitting the q−4 dependence
predicted in Eq. (130) requires a range of q-values, and if we want just one order of
magnitude in q, we encounter a drop of four orders of magnitude in |h̃q |2. Indeed,
we are looking at very weak signals then.

• In fluctuation methods, the fluctuations are the signal from which the observable
κ is deduced, and hence we need to sample them adequately. In contrast, in the
buckling protocol fluctuations are noise—an unwanted perturbation. Not sampling
them properly affects the error of our result much less than in a fluctuation method.
To see that fluctuations are indeed subdominant, consider the persistence length �p

of the equivalent one-dimensional “polymer,” which is given by �p = κLy/kBT .
This is typically several tens times Ly . For common situations this makes the per-
sistence length substantially larger than the buckle’s length, and so its deformations
are dominated by the ground state energy.8

• The method makes no strong assumptions about the microphysics that gives rise to
a bending rigidity in the first place. It measures the emergent macroscopic modulus,
not a microscopic object that is predicted to coincide with it within the framework
of a particular scale-bridging theory. Hence, the bending modulus derived from
buckling can serve as a reference which microscopic predictions must meet. It has
this property in common with the classical fluctuation method based on Eq. (130),
but not with every fluctuation method. For instance Watson et al. (2012) propose
a method that extracts the bending rigidity from the orientation fluctuations of

8Hu et al. (2013) discuss buckle fluctuations in a little bit more detail. They conclude that systematic
fluctuation corrections exist, but that they are small for fx . They are not necessarily small for the
force fy acting along the buckle’s ridges, though.
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lipids; it works with significantly smaller membrane sizes than what Eq. (130)
tends to need (and is hence much more efficient), but it relies on an underlying
microscopic theory for how curvature and tilt couple (which, incidentally, is of
similar nature as the one discussed in Sect. 2).

• Fluctuation methods involve relatively weak curvatures for typical values of the
bending rigidity, as Eq. (131) shows. In order to test whether quadratic curva-
ture elasticity holds for curvatures beyond the weak fluctuation-induced ones, we
have to impose them actively. For instance, by simulating tethers, Harmandaris
and Deserno (2006) showed that within the statistics available at that time, Cooke-
model membranes (panel (b) in Fig. 1) can be bent into curvature radii approaching
the thickness of the membrane without significant deviations from quadratic cur-
vature elasticity. The buckling method opens this possibility to membrane models
for which tether pulling does not work (because, as discussed above, it is hard to
equilibrate the chemical potential of solvent and lipids).

Drawbacks:

• Studying buckles is technically more involved than studying a flat membrane.
First, they must be created9; and second, they require bigger simulation boxes in
the z-direction, hence necessitating more solvent.

• Buckled membranes are not stress free. This does not merely refer to the exter-
nally applied buckling stress fx , but the resulting tension σ = − fx cos ψi—see
Eq. (155). Since σ couples to the area per lipid, buckled membranes usually have
their lipids under a compression, and so they are not, strictly speaking, in the
thermodynamically relaxed state that is probed with the fluctuation formula from
Eq. (130). This matters in particular if the membrane is close to a phase transition
for which the area per lipid could change. For instance, if a fluid membrane is close
to its main phase transition temperature (below which it goes into a gel phase with
a smaller area per lipid), the additional imposed compressive stress can drive (parts
of) the membrane—via Le Châtelier’s principle—into a gel phase, thus obviating
the applicability of the buckling protocol. An exception is the strain leading to
ψi = π

2 , at which point σ = 0.
• The buckling protocol cannot be applied to mixtures without some substantial

extensions. The reason is that the buckle’s local geometry changes with position,
and different lipid species could prefer different regions—for instance regions
where the local monolayer curvature better matches their own spontaneous curva-
ture. Hence, the nontrivial geometry constitutes a driving force for a nonuniform
lipid distribution (and even trigger demixing, in the most extreme case). One can
of course account for these effects, and most likely even learn more about the
mixture in that way, but this requires additional modeling.

9One efficient construction method proceeds via the analytical expressions for position and angle
of a buckle—Eqs. (139) and (140)—for mapping a flat membrane (leaflet-wise) into a buckled
one. If a lipid’s center of mass in the flat configuration has coordinates (x0, y0, z0), map it to
(x(x0), y0, z(x0)) and rotate it around the y-axis by the angle ψ(x0).
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Thermodynamics of the membrane bending modulus. Before we move on to
some striking deviations from Euler buckling, let us conclude this section with a
little detour through the thermodynamics of membrane bending. The buckling force
fx arises because the curved membrane has a higher energy than the flat one. Or to
be more precise—and now we have to be—because it has a higher free energy: we
compress the lipid bilayer at constant temperature. It is crucial to realize that even
if we ignore large wavelength thermal undulations, we by no means study a system
that microscopically sits in an energy ground state. The lipid constituents have a
considerable number of degrees of freedom (translation, rotation, bond length and
angle vibrations, dihedral rotations) which explore their permissible phase space and
whose non-sharp distribution functions “store” a substantial amount of entropy. Of
course, none of this is explicitly accounted for in the Helfrich Hamiltonian—so where
did it go? The answer is that it went into the parameters—for instance the moduli.
The microscopic wiggling of the molecular constituents is captured by effective
parameters on the macroscale. If so, the Helfrich Hamiltonian really describes a
free energy, and since the curvatures K and KG merely capture the geometry, the
subdivision into energetic and entropic contributions to the free energy happens at
the level of the moduli. One might hence ask: is there a way to disentangle them?

If we integrate the stress strain relation fx (γ) over γ, we get back the free energy
E(γ), and it is easy to see that per unit area it is given by

E(γ)

LLy
=
∫ γ

0
dγ′ fx (γ

′) (148)= κ

(
2π

L

)2 [
γ + 1

4
γ2 + 3

32
γ3 + · · ·

]
. (156)

Now, in a simulation we can also measure the plain energy—simply by evaluating
the total microscopic Hamiltonian of the system. Even at zero strain it will have
some nonzero value, but if we buckle the membrane, this energy changes. Let us
define E(γ) = Esim(γ) − Esim(0), the excess energy which the buckled membrane
has relative to the stress-free flat state. How does it compare to E(γ)?

Fig. 15 Free energy E(γ)

(solid) and energy E(γ)

(dashed) in units of
ε = 1.1 kBT as a function of
strain γ. The inset shows the
ratio R = E/E , which is
largely independent of γ and
hence a property of the
modulus. Reprinted from
Hu et al. (2013), with the
permission of AIP
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R
=
[E

si
m
(γ
)−

E
0]
/E

(γ
)

0 1.0 2.0 3.0 4.0 5.0 6.0

7

6

5

4

3

γ

E
si
m
(γ
)−

E
0

,
E(

γ
)
[ε
]

0.60.50.40.30.20.10

400

350

300

250

200

150

100

50

0

energy

free energy

entropyγ



160 M.M. Terzi and M. Deserno

Figure 15 shows a plot of E(γ) and E(γ) versus the strain γ, for the Cooke model
at standard conditions (see Hu et al. (2013) for details). The energy increases much
more rapidly than the free energy, indicating that the entropic contribution will bring
down the true cost of bending—or, in other words, entropy favors bending. The
inset in Fig. 15 shows the ratio R = E/E of these two quantities. Notice that R is
remarkably constant, indicating that geometry “cancels” and all we see is the ratio
between energy and free energy as captured in the bending modulus. It hence makes
sense to talk of the energetic and entropic contribution of the bending modulus, and
thus to “take it apart” as we do with any ordinary free energy:

κ = κE − TκS . (157)

Moreover, using well-known thermodynamic identities, we can write

κE = κ + TκS = κ − T
∂κ

∂T
= κ

(
1 − T

κ

∂κ

∂T

)
= κ

(
1 − ∂ log κ

∂ log T

)
, (158)

and hence

R = κE

κ
= 1 − ∂ log κ

∂ log T
. (159)

This is a differential equation for the temperature dependence of the bending modulus
which we can integrate—provided we know R(T ). Assuming we can expand it as a
series in the smallness parameter log(T/T0),

R(T ) =
∞∑

n=0

Rn

n! logn
T

T0
(160a)

= R0 + R1
T − T0

T0
+ R2 − R1

2

(
T − T0

T0

)2

+ · · · , (160b)

the integration is trivially done, leading to

log
κ(T )

κ0
= (1 − R0) log

T

T0
−

∞∑

n=2

Rn−1

n! logn T

T0
. (161)

This expresses the functional form of κ(T ) in a log-log fashion. Notice that for
T close to T0 this boils down to a simple power law, with corrections only at the
quadratic level:

κ(T ) ≈ κ0

(
T0

T

)R0−1
[

1 − R1

2

(
T − T0

T0

)2

+ · · ·
]

. (162)
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By explicitly calculating κ(T ) over the range 0.95 ≤ T
T0

≤ 1.11, Hu et al. (2013) have
shown (using the standard Cooke model) that a simple power law relation indeed
describes the data very well. This is quite advantageous, because it means that by
also measuring R from the buckling simulations (essentially at no extra cost), one
can predict the bending modulus κ in the vicinity of the simulation temperature, not
just at it.

Notice that if R0 > 1, heating softens the membrane. We would probably have
expected this to be true no matter what, but we now see that this occurs if and
only if buckling increases the energy more rapidly than it increases the free energy.
Interestingly, this need not always be true: R(T ) < 1 is thermodynamically possible
and does in fact occur. Its hallmark is “anomalous swelling,” the phenomenon that the
spacing in a multilamellar stack of membranes unexpectedly increases upon cooling,
which happens for some lipids a few degrees above their main phase transition.
Chu et al. (2005) have argued that this swelling is due to an increased Helfrich
fluctuation repulsion between the lamellae, which indeed points toward a softening
of the modulus.

3.3 Buckling for Gel-Phase Membranes

When fluid membranes are cooled, they ultimately reach a temperature at which
they change into a new phase that is both more ordered and more rigid—the so-
called “gel phase”; this is called the “main transition” of a membrane (see Nagle
(1980) for a review of the theory). Many subtleties exist about this transition, and
some membranes even change first into an intriguing corrugated phase (the so-called
“ripple phase”), but none of this will concern us here. For now we are very modest
and merely want to know, how much stiffer a gel phase is, and how we can measure
that.

Experiments indicate that gel-phase membranes are at least an order of magnitude
stiffer than fluid-phase membranes (Lee et al. 2001; Dimova et al. 2000; Steltenkamp
et al. 2006). Hence, the observable signal from fluctuation methods drops by at least
an order of magnitude, while the signal from active methods increases by the same
factor. Relatively speaking, active methods should therefore be about two orders
of magnitude more sensitive for measuring the membrane bending modulus. Since,
furthermore, the buckling method works even if the membrane becomes less fluid
(the deformation is isometric and can be realized even for solid sheets, such as
paper), applying the technique discussed in this chapter seems ideally suited to study
the rigidity of gel phases. Indeed, Diggins et al. (2015) have done just that. What
they found, though, was highly surprising: the theory developed so far, in particular
the stress strain relation from Eq. (148), does not describe their simulation data at
all—not even qualitatively. Figure 16 shows the stress–strain relation extracted from
simulations of a gel-phase membrane. In contrast to the prediction from Eq. (148),
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Fig. 16 Stress–strain relation for a Cooke buckle at wc/σ = 1.6 and kBT/ε = 0.85. The open
circles are the directly measured stress, the filled circles use additional information from the shape.
The blue dashed line is a poor fit to Eq. (148), the solid line is the prediction from Eq. (164a)
(surrounded by the 68 and 95% confidence bands). The bottom panel shows the inferred value
of the bending rigidity. Reprinted with permission from Diggins et al. (2015); copyright 2015
American Chemical Society

which is clearly a monotonically increasing function, the opposite is true for the
measured data: higher strains lead to smaller stresses, and thus the compressibility
is negative.

Curvature softening. Based on a careful analysis of the resulting buckle shapes,
which on average appear more “pointy” than classical Euler buckles, Diggins et al.
(2015) conjecture that the reason for the discrepancy is a failure of quadratic curvature
elasticity: assume that membranes soften upon bending, in the sense that their elastic
energy does not keep growing quadratically with curvature but instead lags behind as
one continues to increase the curvature. If so, it would be energetically advantageous
to localize bending in small regions, rather than distributing it more evenly. This
would explain the more “pointy” buckle shapes, but what would it predict for the
stress–strain relation?

In order to be quantitative about the stresses, we first need a quantitative theory
of curvature softening. The probably easiest phenomenological approach would be
to amend the quadratic curvature energy density e(K ) by a quartic term that reduces
the energy—in the spirit of adding a next order correction to Helfrich theory:

e(K ) = 1

2
κK 2 − 1

4
κ4K

4 + O(K 6) . (163)

Unfortunately, this is an awkward theory to work with: for K > K � = √
κ/κ4 this

energy density decreases with curvature—all the way to minus infinity; the energy is
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not convex, not even bounded below. This will invariably create numerous artifacts
and is hence ill-suited as an explanatory model for our findings. To fix this, Diggins
et al. (2015) propose an alternative energy density which is both bounded below and
in fact convex, but which up to quartic order coincides with the first guess from
Eq. (163):

e(K ) = κ

�2

[√
1 + K 2�2 − 1

]
(164a)

=
{

1
2κK 2 − 1

8 (κ�2)K 4 + O(K 6) , K � �−1

κ
�2

(∣∣K�
∣∣− 1

)
+ O(K−1) , K � �−1 (164b)

where � is a new characteristic length scale, telling us where softening starts to set in.
Notice that for sufficiently small K this looks like the curvature-softened first guess
from Eq. (163), with κ4 = 1

2κ�2. But beyond K ∼ �−1 the initial quadratic increase
turns into a mere linear one. Stronger bending still always costs more energy, but at
large curvature the differential price is much less than at small curvature. What does
this imply for the stress–strain relation?

A new stress–strain relation. As it turns out, the Euler–Lagrange equation associ-
ated with this new energy density can still be turned into a first integral:

s

�
=
∫ ψ(s)

ψi

ds
1

√{
1 − f̃x

[
cos(ψ(s)) − cos ψi

]}−2 − 1

, (165)

where f̃x = fx�2/κ = �2/λ2 is the scaled buckling force.
Using the same series-inversion techniques as in the ordinary case, Diggins et al.

(2015) arrive at a revised stress strain relationship:

fx (γ, δ) = κ

(
2π

L

)2 [
1 + 1

2

(
1 − 3δ2

)
γ + 9

32

(
1 − 14

3
δ2 + 31

3
δ4
)
γ2 + · · ·

]
,

(166)
which features the new parameter δ = 2π�

L as a convenient dimensionless measure
for exactly how strongly the situation deviates from the plain Euler case. Notice
that in the limit δ → 0 Eq. (166) reduces to the first terms of the Eulerian stress–
strain relation (148), and that for any nonzero δ the initial post-buckling slope of 1

2

is reduced. In fact, at δ = δc = 1/
√

3 ≈ 0.577 that slope vanishes, and for δ > δc

the stress–strain relation starts with a negative slope. For the Cooke-model data in
Fig. 16 Diggins et al. (2015) indeed find that δ is much bigger than that critical value:
δ ≈ 2.9. Unfortunately, at these large values the series expansion from Eq. (166) no
longer converges for all strains of interest, so a numerical solution needs to be sought.
But this solution very nicely fits the measured data, hence supporting the contention
that gel-phase membranes appear to soften upon bending, in a way that is captured
reasonably well by the empirical energy density (164a).
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Fig. 17 Stress–strain relation for a buckle consisting of Cooke lipids—the data are from Hu et al.
(2013). The dashed curve is a fit to the classical Euler stress–strain relation from Eq. (148), the
solid curve is a fit to the revised stress–strain relation from Eq. (166) that allows for curvature
softening—using the bending rigidity κ and the new variable δ as fitting parameters. The scaling
of the vertical axis is such that the intercept will give the bending rigidity. Including curvature
softening leads to a prediction for the value of κ that is about 10% bigger than what the classical fit
yields

Given that gel-phase membranes soften, it is fair to ask whether this is also true
for fluid-phase membranes. If they do, the effect cannot be very large, for otherwise
it would have been observed in many earlier studies. But if the effect is small, finding
it requires both good statistics and a quantitative model capable of identifying the
softening is needed. Hence, one way to answer the question of fluid-phase curvature
softening is to revisit the original buckling data from Hu et al. (2013) and fit them
with the revised curvature softened theory (164a). The result is shown in Fig. 17.
While the classical Euler fit is not truly poor, it does seem to have a slight overall
bias—in the sense that the fit is too large at high strains and too small at low strains.
Given that softening will reduce the slope of the stress–strain relation, we can expect
that this deficiency is resolved by the new theory. Indeed, the solid curve in Fig. 17
shows the fit to Eq. (166), which is overall a better description of the data. Notice
that this implies the bending rigidity (which can be read off at the intercept) to be
larger than what the classical Euler fit would predict. Indeed, the latter would give
κ/kBT = 12.7 ± 0.3, while the curvature softened theory yields the larger rigidity
κ/kBT = 13.8 ± 0.4, with a value for the softening parameter of δ = 0.44 ± 0.08,
or a characteristics length of �/σ = 4.7 ± 0.8 (which is about the bilayer thickness).
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