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Preface

This volume consists of Lecture Notes based on lectures delivered at the Advanced
Summer School entitled “The Role of Mechanics in the Study of Lipid Bilayers”
held at the International Centre for Mechanical Sciences (CISM) in Udine, Italy,
during the period July 11–15, 2016. The course was presented by six lecturers, from
Germany, Mexico, Spain, the UK and the USA (2).

The purpose of the six chapters comprising the volume is to provide a
state-of-the-art account of the continuum theory underpinning the mechanics and
physics of lipid bilayers and its applications.

Chapter “Mechanics and Physics of Lipid Bilayers” outlines an approach to the
theory of lipid bilayers through an appeal to three-dimensional liquid-crystal theory.
This provides an over-arching framework that encompasses the classical theory
while facilitating its extension to embrace nonstandard effects associated with
lipid tilt and distension, dissipative processes involving flow and diffusion, and
electromagnetic interactions.

Chapter “Elasticity and Hereditariness” is devoted to the study of the energetics
of lipid membranes, the nature and origin of the line tension accompanying phase
transitions, and the role played by viscoelastic effects.

Chapter “Lipid Membranes: From Self-Assembly to Elasticity” delves into the
physical basis of lipid bilayer arrangements, their self-assembly and associated
thermodynamics, their elastic moduli, and the physical origins of lipid tilt.

In Chapter “The Geometry of Fluid Membranes: Variational Principles,
Symmetries and Conservation Laws” the theory of lipid membranes is cast in a
variational and differential-geometric setting, facilitating a development of the
notion of membrane stress and its role in the associated mathematics. Included here
are the consequences of reparametrization invariance and Euclidean invariance and
the systematic treatment of constraints.

Chapter “On the Computational Modeling of Lipid Bilayers Using Thin-shell
Theory” is devoted to the numerical analysis of lipid membrane behavior by
advanced finite element methods. This provides an opportunity, through several
examples, to exhibit the potential of the theory of lipid bilayers to predict of the
emergence of various geometric features such as filaments and buds.

v



Chapter “Onsager’s Variational Principle in Soft Matter: Introduction and
Application to the Dynamics of Adsorption of Proteins onto Fluid Membranes”
describes a far-ranging investigation into Onsager’s variational principle with
applications to chemo-mechanical problems in soft matter and the dynamics of
protein adsorption.

These chapters combine to provide a unique perspective on this important branch
of bio-physics from the vantage point of mechanics and applied mathematics.

It is a pleasure to acknowledge the efforts of my colleagues, Profs. Arroyo,
Deseri, Deserno, Guven and Sauer, for presenting their lectures and for preparing
the chapters of this volume, and the students for attending the lectures and con-
tributing to the discussions.

I particularly thank the Rector, officers and staff at CISM for their encourage-
ment, enthusiasm, assistance, and warm hospitality, which were essential to the
success of the School. I am also grateful to Prof. Paolo Serafini, Executive Editor of
CISM, for his guidance and encouragement in the preparation of these lecture notes.

Berkeley, USA David J. Steigmann
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Mechanics and Physics of Lipid Bilayers

David J. Steigmann

Abstract In this chapter we review recent work by the writer and coworkers on
various aspects of the mechanics and physics of lipid bilayers. A framework for
lipid bilayer surface, based on a dimension reduction procedure applied to three-
dimensional liquid crystal theory, is reviewed in Sect. 1. This accommodates the
non-standard effects of lipid distension and tilt. A special case of the general model
in which tilt is suppressed but distension, and accompanying surface dilation, are per-
mitted, is also derived. This is further specialized, in Sect. 2, to obtain a model of the
classical type, due to Canham and Helfrich. Our approach facilitates understanding
of the place of the classical theory, and its logical extensions, in a larger context.
Section3 provides a further development of the theory with surface dilation—
reported here for the first time—to accommodate dissipative effects, including intra-
membrane viscous flow and the diffusion of trans-membrane embedded proteins.
This may be viewed as a theory of generalized capillarity, accounting for various
higher order gradient effects of the Cahn–Hilliard type in the constitutive equations.
A simpler variant of this model is described in Sect. 4, in which non-standard gradi-
ent effects are suppressed. This furnishes the simplest thermodynamically consistent
extension of the classical theory to cover diffusion and viscosity. Finally, Sect. 5 is
devoted to the electromechanical theory. This is limited to the simplest extension
of the classical model to accommodate surface flexo-electricity and the coupling
of surface shape with a polarization field. Restrictions on the latter, consistent with
the three-dimensional electromechanical theory for liquid crystals, yield a relatively
simple generalization of the classical theory appropriate for analyzing membrane
response to a remote applied electric field.

D.J. Steigmann (B)
Department of Mechanical Engineering, University of California,
6133 Etcheverry Hall, Mailstop 1740, Berkeley, CA 94720-1740, USA
e-mail: dsteigmann@berkeley.edu
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2 D.J. Steigmann

1 A Model for Lipid Membranes with Tilt and Distension,
Derived from Three-Dimensional Liquid Crystal Theory

1.1 Introduction

Research on the mechanics and physics of lipid bilayer membranes emphasizes the
classical Canham/Helfrich theory (Canham 1970; Helfrich 1973) and its variants, in
which the lipid molecules are constrained to remain fixed in length and orthogonal
to the membrane surface as it deforms. In this framework the mechanical response
is determined solely by the geometry of the membrane surface. The subject has
therefore benefited from a close connection to the differential geometry of surfaces,
as exemplified by thework ofGuven (Capovilla andGuven 2002;Deserno et al. 2007;
Müller et al. 2005a, b, 2007), described elsewhere in this book. Canham/Helfrich-
typemodels are appropriatewhen the density of the lipids on the surface is sufficiently
high as to promote alignment of the lipids with the surface normal. At lower values
of lipid density it is possible for the lipids to tilt relative to the surface normal.

Models of the Canham/Helfrich type may be viewed in the framework of the
nonlinearKirchhoff–Love theory of elastic shells, whereasmodels that accommodate
tilt belong to the Cosserat theory of shells (Naghdi 1972). Naturally, the latter models
may be shown to subsume the former upon the introduction of appropriate kinematic
constraints (Steigmann 1999a). Here we extract the relevant two-dimensional theory
from the mechanics of three-dimensional liquid crystals, regarded as Cosserat fluids.

In this section we present a concise outline of three-dimensional liquid crystal
theory (Ericksen 1961, 1962, 1976; Virga 1994). This is followed by a description
of the dimension reduction procedure, which entails the identification of the leading-
order term in the thickness-wise expansion of the energy of a thin liquid-crystal film.
We show that the resulting expression may be refined by imposing a condition on
the thickness-wise derivative of the director field that describes the lipid trajectories.
This condition ensures that the two-dimensional model is energetically optimal. The
resulting model, thus optimized, is effectively a Cosserat shell theory for fluid films.
Themodel allows for lipid distension, in contrast to themore common theory of liquid
crystals in which distension is suppressed and an associated Lagrange multiplier is
incorporated. This is motivated by our interest in certain unconventional effects,
associated with the gradient of surface dilation, that accompany lipid distension.
Relevant theory is developed in Sect. 2.

Molecular dynamics simulations in progress (Mandadapu 2016) indicate, in con-
trast to conventionalmodels, that lipid tilt is relevant near interfaceswith local embed-
ded structures such as trans-membrane proteins, where hydrophobic lipid–protein
interactions require either localized distension or tilt to prevent the hydrophobic
surfaces of these structures from coming into contact with the surrounding aque-
ous solution. Various plausible modes of interaction involving distension or tilt are
depicted in Fig. 1. Initial efforts to model such interactions on the basis of contin-
uum theory have yielded remarkably good quantitative predictions vis a vis MD
simulations down to extremely small length scales (Rangamani et al. 2014). This
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Fig. 1 Distension and tilt modes

fact provides impetus for the present emphasis on continued development of the
continuum approach.

1.2 Liquid Crystal Theory

In this section we present a brief overview of the static theory of liquid crystals in
three dimensions, to set the stage for the derivation of a two-dimensional model that
follows.

The basic kinematic variables in the static theory are a deformation map, χ(x),
taking the material point with position x in a reference configuration κr to its position
y = χ(x) in a current configuration κc; and a director field d associated with the
oriented molecules of the liquid crystal. Each point x ∈ κr is associated with such
a molecule, so that d may be regarded as field defined on κr . Roughly, the latter
furnishes the direction field of the trajectories of these molecules and deforms with
them. We express this either as a function of x or y, the two alternatives being
equivalent because of the presumed invertibility of χ(·).

The deformation and director fields are assumed to be smooth. Let the gradient of
the former be denoted by F. Two gradients of d are needed: that with respect to y and
that with respect to x. These are denoted byD and G, respectively, and connected by

G = DF. (1.1)

The aforementioned invertibility property implies that F is non-singular. If κr is a
configuration which could in principle be occupied by the material, then we have the
conventional restriction detF > 0. Accordingly, D = GF−1.

The director and deformation fields are kinematically independent; that is, the
former is not to be confused with a conventional material vector that is convected by
the deformation map, although—like a principal axis of strain—it may be regarded
as a material vector in any one deformation. This point is essential in the theory as
developed by Ericksen (1961), which requires the fieldsχ and d to be independently
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variable. Thus, suppose χ̇ and ḋ are variations of these fields at a particular material
point. Let x(ς) be the parametric representation of a given trajectory of oriented
molecules of the liquid crystal in κr . These molecules occupy the trajectory y(ς) =
χ(x(ς)) in κc and we assume ς to be scaled such that d = y′, the derivative with
respect to ς. The chain rule then yields d = Fdr, where dr = x′ is the direction
field in κr . Kinematic independence amounts to the stipulation that χ̇ and ḋ can be
assigned independently. For example, if χ̇ vanishes then ḋ = Fḋr,which imposes no

restriction on ḋ. However, if ḋ vanishes then ḋr = −F−1ḞF
−1
d, with no restriction

on χ̇. Thus it is clear that kinematic independence entails the fact that dr is allowed to
vary, and hence that it is not a material vector with respect to a variable deformation
map;. i.e., a map that can vary with a parameter (e.g., time). A similar situation exists
with respect to principal axes of strain. These behave like material vectors in any
one deformation, but are generally non-material when the deformation is allowed to
evolve.

Following the originators of the subject, in the case of incompressibilitywe assume
the existence of a function U (d, D), representing the strain energy per unit volume
of κc. This is presumed to be a quadratic function of D; i.e., (Virga 1994; Eq. (3.7))

U = l(d) + L(d) · D + 1
2D · L(d)[D], (1.2)

in which l, L and L are scalar, second-order tensor and fourth-order tensor-valued
functions, respectively, with L = Lt . Quadratic energies are justified by the fact
that the characteristic length scale for variation of the director field is typically
large compared to molecular dimensions. The gradient of the director field, non-
dimensionalized by the only local scale available—the molecular length—is then
sufficiently small that a quadratic approximation proves to be sufficient. Whether
quadratic or not, the function U is subject to the restriction

U (d,D) = U (Qd,QDQt) for all rotations Q, (1.3)

associated with the frame invariance of the constitutive response. A representation
theorem for quadratic functions meeting this requirement, with d restricted to be a
unit vector in accordance with the conventional theory, is given in (Virga 1994). This
is the classical Frank formula for the energy of a liquid crystal.

Following Dafermos (1970), we assume that U (d, ·) is convex. In the quadratic
case this in turn is equivalent to the positivity of the tensor L(d). In the general case
it implies that

A ·UDD[A] > 0 for all A �= 0, (1.4)

where bold subscripts identify derivatives of scalar-valued functions with respect to
tensors.

It iswell known that convexity of the strain energy (with respect to the deformation
gradient) is incompatible with frame invariance in conventional elasticity theory
(Ciarlet 1993). Here there is no such conflict. In particular convexity is satisfied
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by imposing appropriate restrictions on the coefficients arising in the representation
theorem for functions of the form (1.2) that satisfy (1.4) (Virga 1994).

Regarding balance laws, Ericksen’s approach (1961; 1962; 1976) is based on a
virtual-work expression derived from the energy

E =
∫

κc

Udv (1.5)

associated with the region κc occupied by the liquid crystal. His approach differs
from others (e.g., (Virga 1994)) that account solely for variations in the director
field, the deformation field remaining fixed. Instead, Ericksen fixes the material
points and allows variations in the deformation and director fields. These variations
may be subject to local constraints such as incompressibility (detF = 1) or director
inextensibility (|d| = const.), but are otherwise independent.

Ericksen’s approach is facilitated by using the expression

E =
∫

κr

U ∗dV, (1.6)

where

U ∗(F, d, G) = θU (d,GF−1) and θ = detF, (1.7)

is the strain energy per unit reference volume. For, the domain κr remains fixed under
variations of the type considered.

It follows trivially from (1.7) thatU ∗(F, d, G) = U ∗(FH, d, GH) for allH with
detH = 1, implying that the material is fluid in the sense of Noll (Truesdell 1991).
Thus the strain-energy function is invariant under the action of the proper unimodular
group. In this work we will assume bulk incompressibility of the liquid crystal and
thus impose the isochoricity constraint θ = 1.

Further adjustment is needed if the director length is constrained to remain fixed,
as in the conventional theory, although Ericksen (1961, 1962, 1976) does not confine
attention to this case. In thisworkwe allow for lipid distension and thus do not impose
inextensibility.

1.3 Dimension Reduction

The three-dimensional theory is used to develop a two-dimensional model of lipid
membranes in termsof an areal strain-energy functiondefinedona surfaceω occupied
by a layer of lipids. This layer is only two molecules thick, and the molecules are
densely distributed on ω. While it is permissible to regard the membrane as a two-
dimensional continuum; it is not a continuum in the usual three-dimensional sense.
For this reason it is appropriate to propose a two-dimensional model at the outset, as
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advocated in (Ericksen 1979). However, appeal to three-dimensional theory furnishes
a useful guide as to the variables that may be expected to figure in a two-dimensional
theory of lipid membranes.

Let t be the total arclength of a fixed number of lipid molecules occupying a
trajectory piercing the pre-image of a regular orientable material surface ω ∈ κc in
a reference configuration κr . To extract a two-dimensional theory, we proceed to
estimate the three-dimensional energy E in terms of t, and seek an areal surface
energy W , independent of t, such that

E/t = E + o(t)/t, as t → 0, (1.8)

where

E =
∫

ω

Wda. (1.9)

The areal energy density thus furnishes the leading-order energy in the limit as t tends
to zero.Our objective is an expression for the explicit formofW . To qualify as a useful
approximation to the three-dimensional energy, the areal energy density should be
well posed in the sense that (1.9) possesses a minimizer. This follows immediately
from (1.8); any minimizer of the three-dimensional energy E necessarily minimizes
E, at leading order. Later, we discuss local necessary conditions for this requirement
to be satisfied.

Proceeding, we first parametrize the surface ω using a system of coordinates {θα}.
Position on the surface is thus given by a function r(θα). This in turn induces the
vectors aα = r,α at the point on ω with coordinates θα. If these are not collinear, then
they constitute a natural basis for the tangent plane Tω(θα) at the considered point.
Using these we define a positive definite metric aαβ = aα · aβ and a dual metric
aαβ , given by the inverse of the matrix of metric components. These furnish a dual
basis aα = aαβaβ forTω(θα) and a surface orientationn = 1

2ε
αβaα × aβ,where εαβ =

eαβ/
√
a, a = det(aαβ) and eαβ is the usual permutation symbol (e12 = −e21 = 1,

e11 = e22 = 0). The area measure on ω is da = √
adθ1dθ2.

We regard the lipids as being permanently attached to ω and thus view the latter as
amaterial surface in the sense of being convected by the deformationmapχ(·).Thus
we may regard {θα} as a convected-coordinate system; that is, the coordinates may
be regarded as maintaining fixed values while computing variational derivatives in
the sense of Ericksen. Details on the convected-coordinate formalism are developed
in Sect. 3.6 below.

To convert the volume integral in (1.5) to an expression involving integration
over ω is it necessary to compute a liquid-crystal volume measure using a suitable
parametrization of three-space. To this end we use a three-dimensional coordinate
system {θi} = {θα, ς}, defined in an open neighborhood of a point on the surface,
where ς parametrizes the trajectory of liquid crystal molecules that intersects ω at
the point (θα). The surface ω is identified with the coordinate surface ς = 0. Position
of a point in this neighborhood is thus given by
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y(θi) = r(θα) + p(θα, ς); p(θα, 0) = 0, (1.10)

where p is the position of this point relative to the surface point (θα). As before this
induces the natural basis vectors gi = y,i; the (positive definite) metric gij = gi · gj;
the dual metric gij, whose matrix is the inverse of the metric components; and the
dual basis gi = gijgj. The associated volume measure is

dv = √
gdθ1dθ2dς = μdςda, where μ = √

g/a (1.11)

and g = det(gij) = ∣∣g1 × g2 · g3

∣∣2 (Sokolnikoff 1964).
The parameter ς is scaled such that

d = p′, (1.12)

where d is the director field of the three-dimensional theory and (·)′ = ∂(·)/∂ς. Thus
the function p(θα, ·) generates the trajectory of liquid crystal molecules that intersect
ω transversely at the point (θα). We assume the coordinate ς to be convected with
the lipid trajectories. Accordingly, if ς measures arclength along these trajectories in
the reference configuration κr , then ς ∈ (−t/2, t/2), where t is the total arclength of
a lipid trajectory piercing the associated material surface in that configuration.

The energy may then be written as

E =
∫

�

(∫ t/2

−t/2
μrU

∗dς

)
dA, (1.13)

where � is the image of ω in the reference configuration κr and μr is the associated
value of μ, given by μr = √

G/A in which G and A are the values of g and a in κr

and on �, respectively; and

U ∗ = θU, where θ = √
g/G, (1.14)

is the strain energy per unit reference volume. Here we have used the easily derived
result detF = √

g/G. Of course U ∗ = U in the case of bulk incompressibility, but
it is useful to maintain a conceptual distinction between these energies.

For a given director distribution the interior integral in (1.13) may be regarded as
a function of t. This is estimated for small t by combining a Taylor expansion with
Leibniz’ rule, yielding

E = t
∫

�

W ∗dA + o(t), (1.15)

where

W ∗ = (μrU
∗)|�, (1.16)
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the restriction of the integrand to the surface�.This is the leading-order areal energy
density on �. This in turn yields (1.9) with

JW = W ∗, (1.17)

where

J = √
a/A (1.18)

is the surface dilation. Combining these results yields W = (U ∗√G/a)|� =
(μU ∗√G/g)|� and therefore

W = (μU )|ω (1.19)

in the case of bulk incompressibility.
We make this explicit by using (1.10) to obtain

gα = aα + p,α, g3 = d and
√

g = ∣∣(a1 + p,1) × (a2 + p,2) · d∣∣ . (1.20)

Sufficient regularity is assumed in the trajectory field of the liquid-crystal molecules
to support the thickness-wise Taylor expansion

p = ςδ(θα) + 1
2 ς

2η(θα) + ..., (1.21)

where the independent vector fields δ and η, respectively, are the restrictions of d
and d′ to the surface ω. Using (1.11) and (1.20) we then obtain

W = |n · δ|U|ω. (1.22)

To make this explicit we require the restriction to ω of the three-dimensional
director gradient D. Expressed in the {θi} system, this is

D = d,i ⊗ gi. (1.23)

This in turn requires the restrictions gi
|ω. To construct these we note, from (1.20) and

(1.21), that {gα}|ω = {aα}.Combining thiswithgi · gj = δij (theKronecker delta) and
g3 = gradς = αn for some α ∈ R (because ω is a surface on which ς = const.), we
conclude that g3

|ω = (n · δ)−1n. Then, in the case of bulk incompressibility we have

W = |n · δ|U (δ,D|ω), (1.24)
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with

D|ω = δ,α ⊗ gα + (n · δ)−1η ⊗ n, (1.25)

wherein all terms are evaluated on ω.

To reduce this we resolve gα in the basis {aβ,n} and use {gα}|ω = {aα} with
δα
β = gα · gβ = gα · aβ; thus,

gα = aα + (gα · n)n. (1.26)

Next, we resolve n in the basis {gi}. Recalling that g3 = δ and n · g3 = (n · δ)−1,

we derive

n = (n · gi)gi = (n · gα)aα + (n · δ)−1δ. (1.27)

Accordingly,

n · gβ = −(n · δ)−1δβ, (1.28)

where

δβ = aβ · δ. (1.29)

Substitution into the second expression above then yields

gα = aα − (n · δ)−1δαn. (1.30)

The expression forD|ω is then given by substituting into the first expression above:

D|ω = ∇δ + (n · δ)−1(η − δαδ,α) ⊗ n, (1.31)

where

∇δ = δ,α ⊗ aα (1.32)

is the surface gradient of the director field.
This expression for the limit energy is meaningful provided that n · δ 	= 0, but

not if n · δ vanishes. However, in the latter state the lipids lie in the tangent plane
Tω(θα) and their hydrophobic tail groups are exposed to the surrounding aqueous
solution; this is a highly energetic and unstable condition. To avoid this we introduce
the additional ad hoc requirement that the local two-dimensional energy should grow
without bound as n · δ → 0.
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1.4 The Optimal Two-Dimensional Model

The areal energy density is a function of the independent fields r (via aα and n),

δ and η. Among these, dependence on the latter is purely algebraic, and the Euler
equation associated with it is

Uη = 0. (1.33)

This of course is an equilibrium condition, associated with states that render the total
energy stationary. It is also necessary if the field η is to minimize the energy, all other
fields remaining fixed. This suggests a strategywhereby the energy isminimizedwith
respect to η a priori, to derive an expression for the energy that depends on the fields
r and δ. Here we show that this is indeed feasible, granted the hypotheses made thus
far. The resulting model emerges as a special case of the theory of elastic Cosserat
surfaces (Naghdi 1972).

To this end we fix all variables other than η and consider the function defined by
G(η) = U (δ,D|ω). Let σ(u) = G(η(u)), where η(u) is a one-parameter family of
vectors. The chain rule then furnishes

σ̇ = (n · δ)−1(UD)n · η̇ and σ̈ = (n · δ)−1(UD)n · η̈ + (n · δ)−2η̇ ⊗ n ·UDD[η̇ ⊗ n],
(1.34)

which imply that

Gη = (n · δ)−1(UD)n and η̇ · (Gηη)η̇ = (n · δ)−2η̇ ⊗ n ·UDD[η̇ ⊗ n]. (1.35)

Accordingly,Gηη is positive definite by virtue of (1.4), and the stationarity condition
(1.33) (equivalent to the vanishing of Gη) is equivalent to the restriction

(UD)n = 0 on ω. (1.36)

That (1.33) is solvable uniquely for η is an immediate consequence of the implicit
function theorem. Moreover, the solution minimizes the energy automatically. For
energies of the form (1.2), this is obtained by solving

(L[D])n = −Ln (1.37)

in which D is given by (1.31). Explicitly,

η = δαδ,α − (n · δ)A−1{Ln + (L[∇δ])n} (1.38)

in which L and L are evaluated at d = δ and A(δ) is the positive-definite tensor-
valued function defined, for any vector v, by

Av = (L[v ⊗ n])n. (1.39)
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We have established the existence of a unique solution η = η̄(n, δ,∇δ) to (1.33).
This solution delivers the areal energy density (cf. (1.24))

W̄ (n, δ,∇δ) = |n · δ|U [∇δ + (n · δ)−1(η̄ − δαδ,α) ⊗ n], (1.40)

which furnishes the optimal value of the areal energy densityW with respect toη. For
quadratic three-dimensional energies this procedure furnishes areal energy densities
that are quadratic in ∇δ. The desired functional is then given by

E =
∫

ω

W̄ (n, δ,∇δ)da. (1.41)

In view of (1.8) this expression furnishes the rigorous leading-order energy for a
thin liquid crystal film. Moreover, the presumed convexity of the three-dimensional
energy U with respect to D implies that W̄ is a convex function of ∇δ. This is
important for the well-posedness of the two-dimensional model.

1.5 Euler Equations and Boundary Conditions

The Euler equations for the lipid membrane follow from the stationarity, in the sense
of Ericksen, of the energy functional. To facilitate analysis, we first convert this
energy to an integral over a fixed reference surface �, obtaining

E =
∫

�

W ∗dA, where W ∗(aα, δ, δ,α; θα) = JW̄ . (1.42)

Here we have used the fact that the argument n of the function W̄ is determined by
{aα}. Defining

JNα = ∂W ∗/∂aα, JMα = ∂W ∗/∂δ,α and Jm = ∂W ∗/∂δ, (1.43)

we conclude that the Euler equations are

(JNα)|α = 0 and (JMα)|α − Jm = 0, (1.44)

where the (·)|α is the covariant derivative on �. To accommodate lateral pressures
P±, say, at the major surfaces, we assume that these scale as P± = tp± + o(t),where
p± are independent of t. Following (Steigmann 2010), this is found to yield

∫
∂κc(n)

Pn · χ̇da = −t
∫

ω

pn · ṙda + o(t), (1.45)
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where, on the right-hand side, n is the unit normal to ω and p = p+ − p− is the
leading-order pressure difference across ω in the direction of the surface normal.
The leading-order stationarity condition is then given by

Ė =
∫

ω

pn · ṙda. (1.46)

The identity (Naghdi 1972) (JNα)|α = JNα
;α, where (·);α is the covariant derivative

on the current surface ω, then furnishes

Nα
;α + pn = 0 and Mα

;α − m = 0. (1.47)

Standard boundary conditions entail the specification of r and Nανα, and of δ and
Mανα, on (possibly different) complementary parts of the edge ∂ω with exterior
unit normal ν = ναaα. These coincide with the equilibrium equations and boundary
conditions for a Cosserat shell (Naghdi 1972; Steigmann 1999a).

It is interesting to observe that the assumption of bulk incompressibility imposes
no constraint on the foregoing variational problem. To see this we recall that the local
dilation is θ = √

g/G, with
√

g = μ
√
a and

√
G = μr

√
A, where μ = |n · δ| and

μr = |N · δr | . Here the subscript r is used to identify quantities associated with the
reference surface�, with unit normalN. It follows that θ = Jμ/μr,with J = √

a/A.

The variational derivative of the constraint θ ≡ 1 then yields (Jμ)· = Jμμ̇r/μr .

Because δr is not a material vector with respect to the deformation map, this expres-
sion serves merely to impose a restriction on δ̇r in terms of the primary variables
involved in the statement of the variational problem. Thus, because δr is not included
in that list of variables, it follows that bulk incompressibility does not impose any
constraint among the primary variables.

Exceptionally, if lipid tilt is suppressed; i.e., if δ = λn for some scalar field λ >

0, then with δr = N (μ = λ and μr = 1) we derive θ = λJ. If, in addition, lipid
distension is suppressed; i.e., if λ ≡ 1, then bulk incompressibility implies areal
incompressibility; i.e., J ≡ 1. Because the determinant A of the metric is fixed on�,

this in turn imposes a restriction on the determinant a of the metric on the evolving
surfaceω, and therefore constitutes a bona fide constraint on the variational problem.
This is the more commonly studied case, and is discussed fully in Sect. 2. The case
of distension without tilt, the theory for which is quite different, is discussed in the
next subsection.

However, before proceeding,we pause to solve a problem inwhich lipid tilt figures
prominently. The problem addressed is inspired by an unusual feature predicted
by recent molecular dynamics simulations (Mandadapu 2016). This entails tilt in
the immediate vicinity of an embedded hydrophobic cylinder representing a trans-
membrane protein. The lipids tilt locally so as to cover the hydrophobic surface
of the cylinder (Fig. 1), exposing a vacuum gap adjoining the lipid tails. Molecular
dynamics simulations indicate that this unusual configurationof lipids is energetically
favorable when the height of the hydrophobic surface of the cylinder is less than that
of the adjacent lipids.
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Wemodel this situation by adapting the foregoing tilt theory to one of the leaves of
the bilayer. The actual configuration is then obtained by invoking reflection symmetry
with respect to the underlying surfaceω,which is assumed to remain flat as the lipids
tilt non-uniformly.This restrictionmeans thatn = k, thefixedunit normal to the plane
ω. Accordingly, the energy reduces to a function of δ and ∇δ, in which ∇(·) is the
gradient on the plane ω. We decompose the director field in the form

δ = φ + λk, (1.48)

where φ, the tilt field, lies tangential to ω. In terms of these components,

∇δ = ∇φ + k ⊗ ∇λ. (1.49)

To obtain a simple explicit model for purposes of illustration, we adopt the
quadratic frame-invariant energy (Rangamani and Steigmann 2014)

W = 1
2k |∇δ|2 + G(ξ,λ); ξ = |∇φ| , (1.50)

where k is a positive constant and with G chosen to penalize lipid collapse (G → ∞
as λ → 0). Treating the lipids as springs with stiffness C, we might propose that

G(ξ,λ) = 1
2C(

√
ξ2 + λ2 − λ0)

2 + H(λ) (1.51)

where λ0 is the relaxed lipid length, with H(λ) constructed such that H(λ0) = 0,
H ′(λ0) = 0 and H → ∞ as λ → 0.

The Euler equations are easily derived and given by

div

(
∂W

∂∇φ

)
= ∂W

∂φ
and div

(
∂W

∂∇λ

)
= ∂W

∂λ
, (1.52)

where div(·) is the two-dimensional divergence on ω. Standard boundary conditions
entail the specification of φ or (∂W/∂∇φ)ν, and λ or ν · ∂W/∂∇λ, on appropriate
parts of the edge ∂ω with exterior unit normal ν.

For energies of the form (1.50) it is a simple matter to obtain

∂W

∂∇φ
= k∇φ,

∂W

∂∇λ
= k∇λ and

∂W

∂λ
= Gλ. (1.53)

To compute ∂W/∂φ we use the chain rule in the form

∂W

∂φ
· φ̇ = Gξ ξ̇ = ξ−1Gξφ · φ̇. (1.54)



14 D.J. Steigmann

Accordingly,

∂W

∂φ
= ξ−1Gξφ (1.55)

and the Euler equations reduce to the nonlinear system

k�φ = ξ−1Gξφ and k�λ = Gλ, (1.56)

where �(·) is the Laplacian on ω. This system is coupled through the function G.

Explicit solutions are available for the linearized problem. Using superposed dots
to denote small changes (not to be confused with the use of the same notation for
variations) the linearized system is found to be

k�φ̇ = (ξ−1Gξ)
·φ0 + (ξ−1Gξ)0φ̇ and k�λ̇ = (Gλλ)0λ̇ + (Gλξ)0ξ̇, (1.57)

where the subscript (·)0 identifies quantities associated with a base state relative to
which the system is linearized. Here we choose the base state (φ,λ)0 = (0,λ0), cor-
responding to a relaxed state with no tilt. For energies of the form (1.50), with (1.51),
this state is easily seen to furnish a solution to the nonlinear problem (1.56). More-
over, in these circumstances the linearized problem reduces to the simple decoupled
system

�φ̇ = 0 and �λ̇ = κλ̇, (1.58)

where κ = (C + H ′′(λ0))/k is a nominally positive constant.
The solution to the second equation, exterior to a circle and decaying in the far

field (λ̇ → 0, corresponding to λ → λ0), is given, in polar coordinates (r, θ), by

λ̇ =
∞∑
m=0

Km(
√

κr)(Cm cosmθ + Dm sinmθ), (1.59)

where Km is the modified Bessel function of the second kind, of order m, and the
Fourier coefficients Cm and Dm are determined by the assigned function
λ̇0(= λ − λ0) on the circle.

1.6 Distension Without Tilt

There is experimental evidence (Deseri et al. 2008) that lipidmembranes may exhibit
thickness distension without tilt. Theory for this is subsumed under the foregoing
model by requiring δ to be aligned with the surface normal; i.e.,

δ = λn, (1.60)
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for some scalar fieldλ > 0.Wefind that the areal energy density reduces to a function
of the list {λ,∇λ,n,∇n} in which∇(·) is the surface gradient on the current surface
ω and ∇n = −b, where

b = bαβaα ⊗ aβ, with bαβ = n · r,αβ, (1.61)

is the curvature tensor of ω. The energy is therefore expressible in the form

W = Ŵ (λ,∇λ,n, b), (1.62)

where

Ŵ (λ,∇λ,n, b) = λU (δ,∇δ + λ−1η̄ ⊗ n), (1.63)

in which (1.60) is incorporated; i.e.,

∇δ = n ⊗ ∇λ − λb. (1.64)

This is subject to the frame-invariance requirement

Ŵ (λ,∇λ,n, b) = Ŵ (λ,Q∇λ,Qn,QbQt) for all rotations Q. (1.65)

To examine the consequences of this restriction we choose rotations having axis
n (i.e., Qn = n), yielding

Ŵ (λ,∇λ,n, b) = Ŵ (λ,Q∇λ,n,QbQt) (1.66)

for all such Q. Here it is only the action of Q on Tω that is relevant, and so we may
regard this as a restriction that must hold for all two-dimensional rotations that map
Tω to itself. Then, the function

F(∇λ, b) = Ŵ (λ,∇λ,n, b), (1.67)

obtained by fixing λ and n, satisfies

F(∇λ, b) = F(Q∇λ,QbQt) (1.68)

for all two-dimensional rotations Q. It is well known (Zheng 1993; Table2) that F
then depends on its arguments through the list {|∇λ| ,∇λ · b(∇λ),H,K}, where

H = 1
2 trb and K = det b (1.69)

are the mean and Gaussian curvatures of ω. The energy is thus expressible in the
form

Ŵ (λ,∇λ,n, b) = F̂(λ, |∇λ| ,∇λ · b(∇λ),H,K,n), (1.70)
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in which F̂ is invariant under replacement of n byQn for all rotationsQ. Dependence
on the latter thus occurs through |n| (= 1); that is, the energy is independent of
n. Combining these facts, we find that the areal energy density has the canonical
representation

Ŵ (λ,∇λ,n, b) = W̃ (λ, |∇λ| ,∇λ · b(∇λ),H,K), (1.71)

which satisfies (1.66) automatically, for all rotations.
We have remarked that if the three-dimensional energy U is quadratic in the

director gradientD (cf. (1.2)), then the procedure given in Sects. 1.3 and 1.4 to derive
the areal energy density delivers a function that is quadratic in ∇δ. This implies, via
(1.64), that the energy density is then quadratic in ∇λ and b jointly. It also implies
that the invariant ∇λ · b(∇λ), which is of third order in ∇δ, should be suppressed
in the list of arguments of the energy function in (1.71).

1.7 Surface Dilation and Its Gradient

As noted previously, the constraint of bulk incompressibility, in the absence of direc-
tor tilt, implies that

λJ = 1. (1.72)

We may then use ∇λ = −J−2∇J to conclude that the areal energy density (1.71) is
expressible in the form

W̃ (λ, |∇λ| ,∇λ · b(∇λ),H,K) = W (J, |∇J| ,∇J · b(∇J),H,K) (1.73)

for some function W .
We observe that the constitutive dependence of the energy on J and its gradient

is equivalent, by virtue of the conservation of mass, to a constitutive dependence on
current areal mass density and its gradient, together with a parametric dependence
on the (convected) coordinates via the referential density. In this context the notion
of uniformity of material response presumes the existence of a reference surface on
which the mass density is uniform. Similar remarks apply to the three-dimensional
theory, and serve to connect the present model to more common theories of gradient
effects in fluids.

In the quadratic case the energy is expressible in the form

W = α(J) + k(J)H2 + k̄(J)K + π(J) |∇J| + ω(J) |∇J|2 , (1.74)

where we have imposed bilayer symmetry—the requirement that the energy be an
even function of H—merely for the sake of discussion. This generalizes the conven-
tional Helfrich theory of lipid membranes by including the effects of surface dilation
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and dilation gradient. Suppression of the curvature dependence yields a theory of
generalized capillarity that accounts for the dilation and dilation gradient. We note
that both the dilation and its gradient figure in the leading-order two-dimensional
model derived from three-dimensional liquid crystal theory. From this point of view
it is therefore not appropriate to regard the energy as a function of dilation unless its
gradient is also included, contrary to the view advanced in (Baesu et al. 2004).

Further, using

∇δ = −J−1(J−1n ⊗ ∇J + b) (1.75)

we infer that ∇J is linear in ∇δ. Then, |∇J|2 is a positive, homogeneous quadratic
(hence convex) function of ∇δ, and it follows from the convexity of the energy
with respect to the director gradient that ω > 0. This has significant implications
for the well-posedness of energy minimization problems. Moreover, because H2 is
a positive, homogeneous quadratic function of b, which in turn is a linear function
of ∇δ, it follows from convexity of the energy that k > 0.

1.8 Equilibrium Equations and Edge Conditions

The suppression of director tilt yields equilibrium equations and edge conditions
that differ in their basic structure from those without constraints. To obtain them
we proceed from the virtual-work principle. Here the energy per unit area of � is
W ∗ = JW, and it variation is

Ė =
∫

ω

(Ẇ + WJ̇/J)da, (1.76)

where J̇/J = aα · ṙ,α. We seek vector fields Nα and Mαβ such that

Ẇ + WJ̇/J = Nα · u,α + Mαβ · u;αβ, (1.77)

where u = ṙ and u;αβ = u,αβ − �λ
αβu,λ is the second covariant derivative of the

virtual displacement u; here, �λ
αβ = aλ · aα,β are the Christoffel symbols on ω. We

then proceed as in (Steigmann 2013) to write

Ẇ + WJ̇/J = ϕα
;α − u · Tα

;α, (1.78)

where

Tα = Nα − Mαβ
;β , (1.79)
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with

Mβα
;β = Mβα

,β + Mβα�λ
λβ + Mβλ�α

λβ, (1.80)

and

ϕα = Tα · u + Mαβ · u,β . (1.81)

The integral of the first term in (1.78) may be transformed to ∂ω using Stokes’
theorem, and the remaining integral over ω is then leads to the Euler equation

Tα
;α + pn = 0, (1.82)

where allowance has been made for pressure loading.
It is customary to decompose the equilibrium equation into tangential and normal

parts, and to this end we write

Nα = Nβαaβ + Nαn, Mαβ = Mλαβaλ + Mαβn, (1.83)

substitute into (1.79) and invoke the Gauss and Weingarten equations of surface
theory (Sokolnikoff 1964), obtaining

Tα = (Nλα + Mβαbλ
β − Mλβα

;β )aλ + (Nα − Mβα
;β − Mλβαbλβ)n, (1.84)

where

Mλβα
;β = Mλβα

,β + Mλβα�
μ
μβ + Mλβμ�α

μβ + Mμβα�λ
μβ . (1.85)

Projection of (1.82) onto aμ and n then yields

(Nμα + Mβαbμ
β − Mμβα

;β );α + (Mβα
;β + Mλβαbλβ − Nα)bμ

α = 0 (1.86)

and

(Nα − Mβα
;β − Mλβαbλβ);α + (Nβα + Mλαbβ

λ − Mβμα
;μ )bβα + p = 0. (1.87)

The natural boundary conditions are

Tανα − (Mαβνατβ)′ = f and Mαβνανβ = c on ∂ωn, (1.88)

where τ is the unit tangent to ∂ω in the sense of Stokes’ theorem, ν = τ × n is
the unit normal to ∂ω lying in the tangent plane, (·)′ is the arclength derivative on
∂ω; and f and c are the assigned force and double-force densities on the part ∂ωn

of the edge where natural boundary conditions are imposed. These follow from the
boundary integral,

∫
ω ϕαναds, referred to previously, by writing u,β = τβu′ + νβuν,
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where u′ and uν are the tangential and normal derivatives of u on ∂ω, and integrating
the terms involving tangential derivatives by parts, assuming ∂ω to be smooth and
thus τ (hence ν) to be continuous; if the boundary is merely piecewise smooth then
this procedure leads to additional corner forces similar to those found in the classical
Kirchhoff–Love theory of shells. Equation (1.88) then followprovided that the virtual
work of the edge loads may be written in the form

∫
∂ωn

(f · u + c · uν)ds. Details of
the procedure are provided in (Steigmann 2013) in the setting of shell theory.

To make these equations explicit we use the energy density (1.74) to express Ẇ as
a linear form in u,α and u;αβ . We then use (1.77) to read off the relevant expressions
forNα andMαβ .To this endwewrite the energy as a function of the list {J,H,K,G},
where

G = |∇J| , (1.89)

and use

Ẇ = WJJ̇ + WHḢ + WKK̇ + WGĠ, (1.90)

where (Agrawal and Steigmann 2009)

2Ḣ = aαβn · u;αβ − 2bαβaβ · u,α and K̇ = b̃αβn · u;αβ − 2Kaα · u,α, (1.91)

and where

b̃αβ = 2Haαβ − bαβ (1.92)

is the cofactor of the curvature tensor. To compute the variation of G we begin by
observing that ∇J = J,αaα, with

J,α = (
√
a/A),α = JSλ

λα, (1.93)

where

Sλ
αβ = �λ

αβ − �̄λ
αβ, (1.94)

�̄λ
αβ are the Christoffel symbols induced by the convected coordinates θα on the

reference surface �, and use has been made of the identities (
√
a),α/

√
a = �λ

λα and
(
√
A),α/

√
A = �̄λ

λα (Sokolnikoff 1964). We then have

(∇J)· = J̇,αaα + J,αȧ
α
, (1.95)

where ȧα is given by (1.120) below and

J̇,α = J̇Sλ
λα + JṠλ

λα, (1.96)
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in which (see the Appendix to this section; Eq. (1.124))

Ṡβ
βα = aβ · u;αβ + bβ

αn · u,β . (1.97)

After some algebra we derive

Ġ = G−1∇J · (∇J)·

= JG−1J,λa
αλaβ · u;αβ

+ {Gaα + JG−1J,λa
λα∇J + JG−1J,λb

λαn} · u,α. (1.98)

Comparing (1.78) and (1.90) and taking account of the symmetries of u;αβ and
Mαβ , we conclude that

Mαβ = 1
2JG

−1WGJ,μ(a
αμaβ + aβμaα) + ( 12WHa

αβ + WKb̃
αβ)n (1.99)

and

Nα = {[W + JWJ − 2(HWH + KWK)]aαβ + WHb̃
αβ}aβ

+ WG(Gaα + JG−1J,λa
λα∇J + JG−1J,λb

λαn). (1.100)

It follows immediately that

Mαβ = 1
2WHa

αβ + WKb̃
αβ,

Mλαβ = 1
2JG

−1WGJ,μ(a
αμaβλ + aβμaαλ) (1.101)

and

Nα = JG−1WGJ,λ(2Ha
λα − b̃λα),

Nαβ = [W + JWJ − 2(HWH + KWK) + GWG]aαβ

+ JG−1WGJ,λJ,μa
λαaμβ + WHb̃

αβ . (1.102)

We observe that the response functionsMαβ and Nα vanish whenever the surface
curvature vanishes. If the strain energy of the underlying three-dimensional liquid
crystal is purely quadratic in the director gradient, then (1.75) implies that π vanishes
in (1.74), yielding

W = α(J) + k(J)H2 + k̄(J)K + ω(J)G2. (1.103)

We show in Sect. 2 that (1.87) reduces to the conventional shape equation for lipid
films (Jenkins 1977; Steigmann 1999b) in the presence of the areal incompressibility
constraint J = 1, which is typically imposed in the classical Canham/Helfrichmodel.
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1.9 Legendre–Hadamard Necessary Condition for Energy
Minimizers

If equilibria are energy minimizers, then they satisfy the operative Legendre–
Hadamard (or Weierstrass–Graves) necessary condition pointwise on ω. In the
present context, this is the inequality (Hilgers and Pipkin 1993)

W(r,α; r,αβ + abαbβ) − W(r,α; r,αβ) ≥ a · ∂W/∂ r,αβbαbβ (1.104)

for all three-vectors a and for all bα, where

W(r,α; r,αβ) = W (J,H,K,G). (1.105)

We have used the fact that the present energy is determined by the first and second
derivatives of the position field r(θα) on ω. In (1.104) this position field is assumed
to correspond to an energy minimizer, and the derivatives on the right-hand side are
evaluated at the minimizing configuration.

To compute these derivatives, we proceed from the chain rule, obtaining

∂W/ ∂r,αβ · ṙ,αβ = Ẇ = WHḢ + WKK̇ + WGĠ, (1.106)

where superposed dots refer to variations in which the r,α, and hence J , are held
fixed. In this case (1.91) and (1.98) reduce to

Ḣ = 1
2a

αβn · ṙ,αβ, K̇ = b̃αβn · ṙ,αβ and Ġ = JG−1J,λa
αλaβ · ṙ,αβ . (1.107)

Substituting into (1.106) and comparing with (1.77), we conclude that

∂W/ ∂r,αβ = Mαβ, (1.108)

and hence that

a · ∂W/∂ r,αβbαbβ = Mαβbαbβa · n + Mγαβbαbβa · aγ, (1.109)

where Mαβ and Mγαβ are given by (1.101). In particular,

Mαβbαbβ = 1
2WH + ςWK , (1.110)

where

ς = b̃αβbαbβ (1.111)

in which the normalization condition aαβbαbβ = 1 has been imposed without loss
of generality; and



22 D.J. Steigmann

Mγαβbαbβ = JG−1WGJ,λb
λbγ, where bλ = aβλbβ . (1.112)

To reduce (1.104) we first evaluate the finite perturbations of H and K induced
by r,αβ → r,αβ + abαbβ with r,α fixed. To this end we observe that bαβ → bαβ +
n · abαbβ .Consequently,H → H + �H andK → K + �K,where�H = 1/2n · a
and �K = ςn · a = 2ς�H. Further, using (1.94) we then infer that replacement of
r,αβ by r,αβ + abαbβ is tantamount to the replacement of Sλ

λα by S
λ
λα + aλbλbα,where

aλ = a · aλ; and hence to the replacement of∇J by∇J + J(a · b)b,where a = aλaλ

and b = bλaλ. Using (1.89) and (1.93), we then find that (1.104) reduces to

W (J,H + �H, K + �K, |∇J + J(a · b)b|) − W (J,H,K,G)

≥ (�H)WH(J,H,K,G) + (�K)WK(J,H,K,G)

+ G−1J(a · b)(b · ∇J)WG(J,H,K,G). (1.113)

This is the version of the Weierstrass–Graves inequality (Graves 1939) appropriate
to the present model.

To derive a necessary condition for (1.113) we select a = (n · a)n (i.e., a · b = 0)
and linearize with respect to θ = n · a. To this end we fix J,H,K,G, and ς and set
F(θ) = W (J,H + θ/2, K + ςθ,G). Then, F ′(θ) = 1/2WH + ςWK and (1.113) is
seen to be equivalent to the convexity of F(θ) at θ = 0; i.e., F(θ) ≥ F(0) + θF ′(0).
This in turn implies that θ2[F ′′(0) + o(θ2)/θ2] ≥ 0.Dividing by θ2 and passing to the
limit, we obtain the Legendre–Hadamard condition F ′′(0) ≥ 0, which is equivalent
to

1
4WHH + ςWHK + ς2WKK ≥ 0, (1.114)

in which the derivatives are evaluated at H and K . Here, ς is bounded between the
largest and smallest eigenvalues of the cofactor of the curvature of the equilibrium
surface at the (arbitrary) point in question.

Inequality (1.114) is easily seen to be equivalent to the restriction

k(J) ≥ 0 (1.115)

for energies of the form (1.103). We have already seen that this is implied by the
convexity of the energy as a function of the director gradient. It is interesting that
there is no corresponding restriction on the coefficient k̄. To explore the further
consequences of (1.113) in the present theory we consider the case a · n = 0. This
implies that G2 = aαβJ,αJ,β is replaced by

G2 + J2(aλbλ)
2aαβbαbβ + 2J(aλbλ)J,αb

α. (1.116)

For the energy function (1.103), we thus reduce (1.113), in the case a · n = 0, to the
inequality
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ω(J)[G2 + J2(aλbλ)2aαβbαbβ + 2J(aλbλ)J,αb
α] − ω(J)G2 ≥ 2Jω(J)(aγbγ)J,λb

λ,

(1.117)

which is equivalent to J2ω(J)(a · b)2 |b|2 ≥ 0 for all aλ and bλ; this in turn is equiv-
alent to

ω(J) ≥ 0. (1.118)

We have seen that this inequality is assured by the convexity condition (1.4).
Naturally the notion of energy minimization is meaningful only when the applied

loads are conservative, this putting a restriction on the nature of the lateral pressure,
for example. A catalog of admissible pressure loadings is discussed in (Steigmann
1991). Inequality (1.104) remains necessary without amendment in the presence of
such pressure loads and also in the presence of conservative edge loads.

Appendix

We use ȧα = (aαβaβ)· with ȧαβ = −aανaβμȧνμ, which follows from aαγaγβ = δα
β ,

the Kronecker delta. Using aνμ = aν · aμ we then obtain

ȧαβ = −aβμaα · ȧμ − aαμaβ · ȧμ (1.119)

and

ȧα = aαμȧμ − [aβ · (aαμȧμ)]aβ − aμ(aα · ȧμ). (1.120)

Combine the first two terms as

aαμȧμ − [aβ · (aαμȧμ)]aβ = (I − aβ ⊗ aβ)(aαμȧμ) = n · (aαμȧμ)n, (1.121)

where I is the identity for three-space, and use (I − aβ ⊗ aβ) = n ⊗ n.
Next, we use

Jn = 1
2μ

αβaα × aβ, (1.122)

where μαβ = Jεαβ = eαβ/
√
A, with e12 = −e21 = 1, e11 = e22 = 0, obtaining

J̇n + Jṅ = μβαaβ × ȧα. (1.123)

Finally, (1.97) follows by using (1.94) to derive Ṡλ
αβ = �̇λ

αβ = (aλ · aα,β)·. Using
(1.120) together with the Gauss equation aα,β = �

ϕ
αβaϕ + bαβn and ṙ;αβ = ṙ,αβ −

�
ϕ
αβ ṙ,ϕ, we find that

Ṡλ
αβ = aλ · ṙ;αβ + aλμbαβn · ṙ,μ, (1.124)

which yields (1.97) upon recalling that u = ṙ.
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2 The Classical Canham/Helfrich Model

The classical theory, due to Canham (1970) and Helfrich (1973), is long established
and constitutes the basis of the bulk of the literature on the continuum theory of
lipid bilayers. It is a special case of the foregoing in which both tilt and distension
are suppressed. As we have seen, the suppression of distension in the absence of tilt
is appropriate in the presence of bulk incompressibility provided that areal incom-
pressibility also obtains. This constraint has interesting mathematical consequences
which alter the basic character of the theory. Accordingly, we develop the classical
model anew in a variational setting.

2.1 Surface Geometry and the Energy Functional

With reference to (1.71) and in the absence of lipid distension, the response of
the membrane is seen to be embodied in an areal free-energy density function
W (H,K; θα), where H is the mean curvature of the membrane surface and K is
the Gaussian curvature. These are defined by

H = 1
2a

αβbαβ and K = 1
2ε

αβελμbαλbβμ, (2.1)

where (aαβ) is the matrix of dual metric components, the inverse of the metric (aαβ);
εαβ = eαβ/

√
a is the permutation tensor densitywith a = det(aαβ); e12 = −e21 = 1,

e11 = e22 = 0; and bαβ are the coefficients of the second fundamental form. The
latter are the covariant components of the surface curvature tensor. The contravariant
cofactor of the curvature is given by

b̃αβ = εαλεβγbλγ, (2.2)

and satisfies

bβ
μb̃

μα = Kaβα, (2.3)

where bβ
μ are the mixed components of the curvature. These components figure in

the Gauss and Weingarten equations

aα;β = bαβn and n,α = −bβ
αaβ, (2.4)

respectively. Here, aα = r,α are the tangent vectors to ω induced by the parametriza-
tion r(θα), the position in 3-space of a point on the surface with coordinates θα, and
the unit-vector field n(θα) = 1

2ε
αβaα × aβ is the local surface orientation. The aα

are related to the metric by aαβ = aα · aβ, where the dot refers to the conventional
Euclidean inner product. Further, semi-colons are used to denote surface covariant
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differentiation. Thus, for example,

aα;β = aα,β − �λ
αβaλ, (2.5)

where �λ
αβ are the Christoffel symbols induced by the coordinates on ω.

Equilibria are those configurations that render stationary the potential energy
defined by

E =
∫

ω

W (H,K; θα)da. (2.6)

To accommodate the present constraint on surface area, we consider the augmented
energy functional

E =
∫

�

[JW (H,K; θα) + λ(θα)(J − 1)]dA, (2.7)

where λ(θα) is a Lagrange-multiplier field,

J = √
a/A (2.8)

is the local areal stretch induced by the map from a fixed reference surface � to the
actual surface ω, and A is the value of a on �.

2.2 The Shape Equation

To compute the variation of the energy it is necessary to have explicit formulas for the
variational derivatives of J,H, and K induced by the virtual displacement u(θα) = ṙ
of the equilibrium position field r(θα). The induced variation of the energy is

Ė =
∫

ω

[Ẇ + (W + λ)J̇/J]da, (2.9)

where

Ẇ = WHḢ + WKK̇ . (2.10)

Here and henceforth the subscriptsH and K refer to partial derivatives. We note that,
while the augmented functional may be considered to depend on both the position
and Lagrange multiplier, regarded as independent fields, variation with respect to the
latter merely returns the constraint and so need not be made explicit.

For example, under tangential variations we have (Steigmann et al. 2003)

J̇/J = uα
;α, Ḣ = uαH,α and K̇ = uαK,α, (2.11)



26 D.J. Steigmann

wherein J, H and K are equilibrium fields. These furnish

Ẇ = uα(WHH,α + WKK,α) and

(W + λ)J̇/J = [(W + λ)uα];α − uα(W + λ),α, (2.12)

which may be combined with (2.9) and Stokes’ theorem to obtain the associated
variation

Ė =
∫

ω

uα(WHH,α + WKK,α − W,α − λ,α)da +
∫

∂ω

(W + λ)uαναds, (2.13)

where να are the covariant components of the exterior unit normal to the edge ∂ω,

lying in the tangent plane ofω as it is traversed in the direction of increasing arclength
s. The associated Euler equation is equivalent to the vanishing of the parenthetical
term in the first integral. To reduce this, we use

W,α = WHH,α + WKK,α + ∂W/∂θα, (2.14)

where the partial derivative on the right is due to the explicit coordinate dependence
in the functionW . This arises from the possible non-uniformity of the film properties
in the present context. Accordingly, the relevant Euler equation is expressible in the
form

λ,α = −∂W/∂θα. (2.15)

This yields λ = const. in the special case of a film with properties that are uniform
in the sense that W does not depend explicitly on the coordinates θα. A class of
problems pertaining to non-uniform films is discussed in Sect. 4.

For normal variations we have (Steigmann et al. 2003)

J̇/J = −2Hu, 2Ḣ = �u + u(4H2 − 2K) and K̇ = 2KHu + (b̃αβu,α);β,

(2.16)

where�(·) = aαβ(·);αβ is the surfaceLaplacian, also known as theBeltrami operator.
These lead to

(W + λ)J̇/J = −2Hu(W + λ) (2.17)

and, with some effort (Steigmann et al. 2003), to

Ẇ = u[�( 12WH) + (WK);βαb̃
βα + WH(2H2 − K) + 2KHWK ]

+ 1
2WH(aαβu,α);β − 1

2 [(WH),βa
αβu];α + (WKb̃

αβu,α);β − [(WK),β b̃
αβu];α.

(2.18)
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Thus normal variations induce the energy variation

Ė =
∫
ω
u[�( 12WH ) + (WK );βαb̃

βα + WH (2H2 − K) + 2KHWK − 2H(W + λ)]da

+
∫
∂ω

[ 12WHναu,α − 1
2 (WH ),αναu + WKb̃

αβνβu,α − (WK ),αb̃
αβνβu]ds. (2.19)

Suppose the membrane bounds a volume of incompressible liquid. We assume the
membrane to be impermeable and regard themembrane and liquid as a closed system.
The bulk incompressibility of the liquid is taken into account through the replacement

E → E −
∫
B
p(X)[det(Gradχ) − 1]dV, (2.20)

where χ(X) is a one-to-one deformation that maps a fixed configuration B of the
bulk fluid to its current configuration, Grad is the gradient with respect to position
X ∈ B, y = χ(X; ε) is the position of amaterial point in the current configuration, and
p(X) is a Lagrangemultiplier field. Incompressibility is associatedwith the constraint
det(Gradχ) = 1. This leads to the substitution

Ė → Ė +
∫
R
χ̇ · gradpdv −

∫
ω

upda, (2.21)

where R is the volume occupied by the liquid in its equilibrium configuration (ω ⊂
∂R) and grad is the gradient with respect to y ∈ R. Accordingly, the Euler equations
are gradp = 0, implying that p is uniform in R, and

�( 12WH ) + (WK );βαb̃
βα + WH (2H2 − K) + 2KHWK − 2H(W + λ) = p on ω.

(2.22)

It follows that p is mechanically equivalent to a net lateral pressure exerted on the
membrane in the direction of its orientation n. This may be compared to (1.87).

From (1.114) we deduce that a further necessary condition for an equilibrium
state to be energy minimizing, in addition to (2.15) and (2.22), is

1
4WHH + ςWHK + ς2WKK > 0 (2.23)

at all points of the film, where ς is defined in (1.114).
For bilayers that have no natural orientation the energy function W satisfies

the symmetry relation W (H,K; θα) = W (−H,K; θα) (Steigmann 1999b). A well-
known example—a special case of (1.103)—is

W = kH2 + k̄K (2.24)
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wherein k and k̄ are empirical constants, and pertains to filmswith uniformproperties.
This is compatible with (2.23) if and only if k > 0, while k̄ is unrestricted, and the
shape equation reduces to

k[�H + 2H(H2 − K)] − 2λH = p. (2.25)

In general, bilayer symmetry implies that p = 0 if the membrane is flat anywhere.
For, the odd-order derivatives of W with respect to H vanish at zero curvature and
(2.22) reduces to p = 0.The uniformity of p then implies that it vanishes everywhere.

2.3 Edge Conditions

With (2.15) and (2.22) satisfied the variation of the energy reduces to Ė = ĖB,where

ĖB = Bt + Bn, (2.26)

and

Bt =
∫

∂ω

(W + λ)uαναds, (2.27)

Bn =
∫

∂ω

[ 12WHναu,α − 1
2 (WH),αναu + WKb̃

αβνβu,α − (WK),αb̃
αβνβu]ds, (2.28)

respectively, are the contributions to the boundary working arising from tangential
and normal variations. To reduce the latter to a usable form it is necessary to express
the derivatives u,α of a normal variation in terms of its independent arclength and
normal derivatives u′(s) and u,ν on ∂ω. These are the restrictions to ∂ω of ταu,α and
ναu,α, respectively, where τ is the unit tangent to ∂ω, pointing in the direction of
increasing arclength. Let θα(s) be the parametrization of ∂ω. Then,

ν = ναaα = τ × n, (2.29)

where

τ = d
ds r(θ

α(s)) = ταaα and τα = dθα/ds. (2.30)

The required expression follows from the orthonormality of {ν, τ}. Thus (Naghdi
1972),

u,α = ταu
′ + ναu,ν . (2.31)
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Combining this with (Steigmann 1999b)

b̃αβ = 2Haαβ − bαβ (2.32)

and

aαβ = τατβ + νανβ (2.33)

results in

aαβu,α = τβu′ + νβu,ν (2.34)

and

WKb̃
αβνβu,α = u(τWK)′ − (τWKu)

′ + (2H − κν)WKu,ν . (2.35)

Here,

τ = bαβτανβ (2.36)

is the twist of the surface ω on the ν, τ - axes, and

κν = bαβνανβ (2.37)

is its normal curvature in the direction of ν. Thus, for ∂ω piecewise smooth in the
sense that aα is continuous there, while r̄(s) = r(θα(s)) is piecewise differentiable
(so that τ can have a finite number of jumps), we obtain

Bn =
∫

∂ω

[(τWK)′ − 1
2ν

β(WH),β − (WK),β b̃
αβνα]uds

+
∫

∂ω

( 12WH + κτWK)u,νds +
∑

uWK [τ ], (2.38)

where the square bracket in the summand identifies the forward jump of the enclosed
quantity at a corner of ∂ω (a point where τ is discontinuous), and

κτ = bαβτατβ = 2H − κν (2.39)

is the normal curvature of ω in the direction of τ . The twist and normal curva-
tures are simply the components of the curvature tensor b = bαβaα ⊗ aβ on the ν,

τ - axes; i.e.,

b = κνν ⊗ ν + κττ ⊗ τ + τ (ν ⊗ τ + τ ⊗ ν). (2.40)
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Some conceptual clarity is gained by expressing u and u,ν in terms of the virtual
displacement u and its normal derivative u,ν = ναu,α. To this end we use u = u · n
to obtain

u,ν = να(u · n),α = n · u,ν + u · n,ν, (2.41)

where

n,ν = ναn,α = −ναbβ
αaβ . (2.42)

The latter may be simplified by substituting

aβ = τβτ + νβν, (2.43)

yielding

n,ν = −ττ − κνν. (2.44)

Further, it is possible to show that (Steigmann 1999a)

ṅ = −(n · u,ν)ν − (n · u′)τ , (2.45)

where ṅ is the variation of n. Because the latter is a unit vector in all configurations
of the surface, it follows that ṅ = ω × n for some vector ω. Thus,

− n · u,ν = τ · ω (2.46)

and hence

u,ν = −τ · ω − bν · u. (2.47)

We also note the relations

n · u′ = ν · ω and u′ = ν · ω − bτ · u, (2.48)

which are derived similarly.
The foregoing may be used to reduce (2.26) to the compact form

ĖB =
∫

∂ω

(Fνν + Fττ + Fnn) · uds −
∫

∂ω

Mτ · ωds +
∑

f i · ui, (2.49)

where

M = 1
2WH + κτWK (2.50)
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is the bending couple applied to ω per unit length of ∂ω,

Fν = W + λ − κνM, Fτ = −τM and

Fn = (τWK)′ − ( 12WH),ν − (WK),β b̃
αβνα, (2.51)

respectively, are the ν -,τ - and n - components of the force per unit length applied
to ∂ω, and

f i = WK [τ ]in (2.52)

is the force applied to the film at the ith corner of ∂ω.

3 Dissipative Effects: Diffusion and Viscous Flow

This section provides theory for viscous flow and protein transport in the bilayer
surface. The basic aim is to further advance recent efforts to establish models for vis-
cous flow, and the interaction of different species, on lipid bilayers. These processes
are known to play an essential role in regulating a wide range of cellular functions.
The focus here is on the case of lipid distension without tilt, which is appropriate in
the presence of a sufficiently high surface concentration of lipids.

3.1 Effect of a Second Chemical Species

Lipid distension λ and areal surface dilation J are connected via bulk incompress-
ibility; thus, λJ = 1. Variable distension is needed to accommodate hydrophobic
mismatch in the absence of tilt at the boundaries between lipids and transmem-
brane proteins, regarded as a second species on the lipid bilayer. Because of the bulk
incompressibility of the liquid crystal, this is tantamount to a spatial variation of the
dilation J. In the present setting proteins are accommodated by using a continuum
model based on an areal density of proteins rather than interactions with discrete
proteins. This is appropriate if the number of proteins per unit area of the membrane
surface is sufficiently high. Locally, the distension adjusts near a discrete protein.
Accordingly, surface dilation adjusts to accommodate the proteins.

We have seen that in a dimension reduction approach based on 3D liquid crystal
theory, and in the absence of lipid tilt, the free-energy density,W, is found to depend
on dilation J, the norm of its gradient, G = |∇J| , and the mean and Gaussian
curvatures, H and K , respectively. Here we allow a further dependence on the areal
protein density, σ. Following the work of Cahn and Hilliard (1958), and in line with
other recent work on multi-component membranes (Embar et al. 2013), we also
assume a constitutive sensitivity to the gradient of concentration ∇σ. This provides
an energetic penalty to the formation of sharp interfaces between different species on
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Fig. 2 Transmembrane
proteins generate
spontaneous curvature

the bilayer. Invariance requirements imply that this enters the constitutive response
through the norm L = |∇σ| . Thus the areal energy density is a functionW of the list

{J,G,H,K,σ,L}. (3.1)

A specific example is afforded by an expression of the form (cf. (1.103))

W (J,G,H,K,σ,L) = α(J,σ) + k(J,σ)[H − C(J,σ)]2
+ k̄(J,σ)K + ω(J,σ)G2 + �(J,σ)L2, (3.2)

Here, α is a chemical interaction term accounting for the contribution of proteins to
the energy; and C, the well-known spontaneous curvature, serves to couple local
membrane shape to local protein concentration. Hydrophobic interactions between
the lipids and embedded proteins tend to promote local membrane curvature as
required to adjust to protein geometry, as shown in Fig. 2. This effect is taken into
account in the function C.

The term involving G penalizes abrupt transitions in J and thus promotes smooth
transitions from regions having large and small dilations, or small and large disten-
sions. The functionsα andC are phenomenological in nature and plausible forms for
them must be specified. The quadratic dependencies on the curvature and gradient
terms may be justified by scaling arguments of the kind adopted in conventional
liquid crystal theory: The length scales for the spatial variations of the associated
functions are assumed to substantially exceed the intrinsic local scale, the lipid length,
which is on the order of molecular dimensions. The leading-order gradient terms are
then quadratic. For this reason we suppress an otherwise permissible constitutive
dependence on the variables ∇J · b(∇J), ∇σ · b(∇σ) and ∇J · b(∇σ), where b is
the surface curvature tensor, on the grounds that these are cubic in the gradients and
hence of higher order than those retained in (3.2).

3.2 Equilibrium Theory

When a potential energy exists for a given system it is conventional to regard equilib-
ria as energy minimizers. This affords a straightforward and convenient framework
for extracting the equilibrium equations via a variational procedure. Of course this
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presumes that any loading that may be present admits a load potential, so that an
overall potential energy can be defined. When this is not the case the virtual-work
theorem preserves the utility of the variational approach.

Suppose, for the moment, that there is no external loading applied to the bilayer.
Then, the net free energy is precisely the potential energy and the problem is to
minimize the expression

E =
∫

ω

Wda, (3.3)

where ω is the surface currently occupied by the bilayer. To this end we re-write the
energy in the form

E =
∫

�

JWdA, (3.4)

where � is a fixed reference surface and J is the surface dilation.
Equilibria render the energy stationary and thus satisfy Ė = 0, where the super-

posed dot is the variational derivative. A direct derivation is pursued on the basis of
(3.1), rather than by enforcing the constraint λJ = 1 via Lagrange multipliers. This
procedure affords a more direct comparison with conventional models based on the
Canham/Helfrich theory. Accordingly,

0 =
∫

�

(J̇W + JẆ )dA =
∫

ω

(Ẇ + WJ̇/J)da, (3.5)

where

Ẇ = WJJ̇ + WHḢ + WKK̇ + WGĠ + Wσσ̇ + WLL̇ (3.6)

is the variation of the energy density. Here subscripts refer to partial derivatives with
respect to the indicated variables. Using formulas developed in (Steigmann 2013) for
the variational derivatives of the associated variables, it is then possible, following a
lengthy and detailed procedure, to reduce the integrand in (3.5) to the form

Ẇ + WJ̇/J = ϕα
;α − u · Tα

;α + μσ̇ + (L−1WLa
αβσ,βσ̇);α, (3.7)

where u is the virtual displacement of the lipids (the variational derivative of the
membrane position field); the Greek subscripts preceded by commas indicate partial
derivatives with respect to the surface coordinates the subscripted semi-colons refer
to surface covariant derivatives;

μ = Wσ − (L−1WLa
αβσ,β);α (3.8)

is the chemical potential; and,

ϕα = Tα · u + Mαβ · u,β (3.9)
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with

Tα = Nα − Mαβ
;β , (3.10)

where

Nα = Nβαaβ + Nαn and Mαβ = Mλαβaλ + Mαβn, (3.11)

in which the coefficients are the constitutive functions. In the present context these
are (Steigmann 2013)

Nβα = [W + JWJ − 2(HWH + KWK) + GWG]aαβ

+ (JG−1WGJ,λJ,μ − L−1WLσ,λσ,μ)a
αλaβμ + WHb̃

αβ, (3.12)

Nα = JG−1WGJ,λ(2Ha
λα − b̃λα), (3.13)

Mαβ = 1
2WHa

αβ + WKb̃
αβ (3.14)

and

Mλαβ = 1
2JG

−1WGJ,μ(a
αμaβλ + aβμaαλ), (3.15)

in which the effect of concentration gradient is reflected in (3.12). Here aαβ is the
contravariant surface metric and b̃αβ is the cofactor of the surface curvature tensor.
Because of the identities b̃αβ

;β = 0, which are equivalent to the Mainardi–Codazzi
compatibility conditions of surface theory (Steigmann 1999b), it is convenient to
express the constitutive equations in terms of the cofactor of the curvature rather
than the curvature itself, to facilitate simplification of the balance laws.

Loads admitted by the present model may include a distributed load over the
surface ω, such as a normal pressure, as well as edge tractions and couple tractions,
f and c, representing forces and double forces per unit length. Additional terms arise
from the effects of concentration. Here these are confined to a flux of power, ξ, due
to variations in concentration at the edge of the bilayer. When these are operative,
the stationary-energy statement Ė = 0 is replaced by the virtual-work statement

Ė =
∫

ω

pn · uda +
∫

∂ω

(f · u + c · u,ν + ξσ̇)da, (3.16)

where p is the net lateral pressure in the direction of the surface normal n, due, for
example, to osmotic pressure, and u,ν is the derivative of the virtual displacement
in the direction of the normal to the edge ∂ω, lying in the surface tangent plane.
This statement is required to hold for arbitrary variations σ̇ of the concentration and
arbitrary kinematically admissible virtual displacements u.
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The necessary and sufficient conditions for this are the Euler–Lagrange equations
(Steigmann 2013)

Tα
;α + pn = 0 and μ = 0 in ω, (3.17)

and the natural boundary conditions

ξ = L−1WLν · ∇σ, f = Tανα − (Mαβνατβ)′ and c = Mαβνανβ, (3.18)

where τ = n × ν is the unit tangent to the edge and (·)′ is the arclength derivative
in the direction of τ . Alternative boundary conditions entail the specification of the
concentration, position and surface orientation at an edge of the bilayer, in the case
of open bilayers.

These equations, which have not appeared in the literature at this level of gen-
erality, are the necessary and sufficient conditions for the mechanical and chemical
equilibrium of the lipid–protein bilayer.

The literature on lipid bilayers emphasizes the well-known shape equation. This
is the projection of the equation of mechanical equilibrium onto the direction of
the surface normal. The version of this equation in the present theory is somewhat
more complicated than its classical counterpart. In the present context it is given by
(cf. (1.87))

(Nα − Mβα
;β − Mλβαbλβ);α + (Nβα + Mλαbβ

λ − Mβμα
;μ )bβα + p = 0, (3.19)

where p is the net lateral pressure and bβα are the components of the surface curvature.
The tangential components of the equilibrium equation are (cf. (1.86))

(Nμα + Mβαbμ
β − Mμβα

;β );α + (Mβα
;β + Mλβαbλβ − Nα)bμ

α = 0. (3.20)

In contrast to classical diffusion, in which the species concentration is uniformly
distributed in thermodynamic equilibrium (granted compatible boundary conditions),
in the present setting the coupling with bilayer shape means that in equilibrium the
species concentration may be non-uniformly distributed. The present model thus has
the potential to predict complex geometries that characterize structures such as the
rough endoplasmic reticulum, where membrane shape is known to be correlated with
non-uniform distributions of trans-membrane proteins.

3.3 Diffusion

To describe the dynamic evolution of the lipid–protein mixture, a model is proposed
that accommodates protein diffusion and intra-membrane lipid viscosity, and their
interplay with the evolving shape dynamics of the bilayer. This model is constructed
so as to reduce to the foregoing static theory in the equilibrium limit, while ensuring
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that the modeling of transient response is inherently dissipative. The latter condition
serves as surrogate for the second law of thermodynamics in the present setting.
Elastic, diffusive and viscous effects are combined into a single model, in the spirit
of similar work on coupled bulk-fluid/membrane dynamics described in (Arroyo and
DeSimone 2009), on the understanding that not all effects can be expected to play
equal roles in a given problem. In this way different regimes of response can be
explored within a single over-arching framework.

In view of the small length scales involved in typical applications of the model,
and the disparate time-scales associated with inertial and dissipative phenomena, the
effects of mechanical inertia are here suppressed, so that the bilayer is deemed to
remain in mechanical equilibrium during the course of diffusion and viscous flow;
that is, the dynamics are regarded as being quasi-static from the purely mechanical
point of view. This implies that Eqs. (3.17a) and (3.18b, c) remain in effect during
the course of a dynamical process. The only additional balance law required is that
associated with diffusive transport of the proteins over the evolving bilayer surface.
In the absence of bulk protein sources supplied by the surrounding aqueous solution,
this reduces to

d
dt

∫
π

σda = −
∫

∂π

m · νds, (3.21)

where t is the time, m is the diffusive flux vector and π is an arbitrary subsurface of
the bilayer surface ω. Converting the left-hand integral to a fixed surface, as in (3.4),
carrying out the derivative, and invoking Stokes’ theorem leads to the local form

σ̇ + σJ̇/J + mα
;α = 0, (3.22)

where the third term involving the surface covariant derivative is the divergence of the
flux, mα are the contravariant components of the flux vector, and σ̇ is the material
time derivative (not to be confused with the variational derivative of the previous
subsection); i.e., the time derivative following a lipid molecule. This is given by

σ̇ = σt + vασ,α, (3.23)

where σt is the time derivative at a fixed surface point and vα are the components of
the tangential velocity field.

The evolution of surface dilation is described by the kinematic rule J̇/J = vα
;α −

2Hw, where w is the velocity in the direction of the surface normal. Here and
elsewhere, the velocity field is that of the lipids. This yields the evolution equation

(ln J)t + vα(ln J),α = vα
;α − 2Hw (3.24)

for the surface dilation. Using these relations, Eq. (3.22) may be reduced to the
diffusive balance law

σt + vασ,α + σ(vα
;α − 2Hw) + mα

;α = 0. (3.25)
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3.4 Dissipative Dynamic Evolution

Under isothermal conditions, and for negligible inertia, the energy balance is:

D = P − dE/dt, (3.26)

where E is the energy content of the lipid–protein system, P is the power supplied
to the system by mechanical means and by protein flux, and D is the dissipation,
assumed to satisfy D ≥ 0 in every process. This requirement serves as a surrogate
for the second law of thermodynamics. The rate of change of the energy is

dE/dt =
∫

π

(Ẇ + WJ̇/J)da, (3.27)

as in (3.5), except that here the superposed dots refer to material time derivatives
(time derivatives following fixed lipid molecules) rather than variational derivatives;
π is an arbitrary subsurface of the bilayer surface ω. Further, (3.16) remains valid,
with the same interpretation. Following the earlier variational development, this may
be cast in the form

dE/dt =
∫

∂π

ϕαναds −
∫

π

u · Tα
;αda +

∫
π

μσ̇da +
∫

∂π

σ̇(L−1WLν · ∇σ)ds,

(3.28)

in which the dots now refer to material time derivatives, while the power supply is
given by

P =
∫

ω

pn · uda +
∫

∂ω

(f · u + c · u,ν + ξσ̇ − q · ν)da, (3.29)

where u is now the material (lipid) velocity and q is the flux of energy transported
by the proteins through the edge ∂ω. This is given by

q = μm. (3.30)

Substituting the diffusive balance law (3.22), which holds in ω, reduces (3.28) to

dE/dt =
∫

∂π

ϕαναds −
∫

π

u · Tα
;αda −

∫
π

μσJ̇/Jda

+
∫

π

m · ∇μda +
∫

∂π

(σ̇L−1WL∇σ − μm) · νds, (3.31)

where Stokes’ theorem has been used to treat a term involving the divergence of the
diffusive flux. Because J̇ is linear in the velocity gradient, the associated term may
be absorbed into the stress; that is, the stress vectors Tα defined in (3.10)–(3.15) are
amended by the addition of the terms μσaα, arising from J̇/J = aα · u,α, yielding a
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non-equilibrium contribution to the stress arising from diffusion. This has the effect
of adding the expression μσaβα to the right-hand side of (3.12). The effects of intra-
membrane lipid viscosity are taken into account by further appending a viscous stress
πβα to the right-hand side of the same equation, yielding the full expression for the
non-equilibrium stress. This is given by (3.10)–(3.15), with (3.12) replaced by

Nαβ = [W + JWJ − 2(HWH + KWK) + GWG]aαβ

+ (JG−1WGJ,λJ,μ − L−1WLσ,λσ,μ)a
αλaβμ + WHb̃

αβ + παβ + μσaαβ,

(3.32)

which clearly reduces to (3.12) in (thermodynamic) equilibrium. Explicit constitutive
equations for the dissipative terms are discussed below. With these adjustments to
the stress, (3.31) reduces to

dE/dt =
∫

∂π

ϕαναds −
∫

π

u · Tα
;αda −

∫
π

m · ∇μda

+
∫

∂π

(σ̇L−1WL∇σ − μm) · νds. (3.33)

Imposing the mechanical equilibrium equation (3.17a) and the boundary condi-
tions (3.18a, b) on the non-equilibrium stress, as appropriate for quasi-static evo-
lution problems, Eqs. (3.29)–(3.31) are then used to reduce the expression for the
dissipation, Eq. (3.26), to

D =
∫

π

( 12π
αβ ȧαβ − m · ∇μ)da. (3.34)

The arbitrariness of π ⊂ ω combines with the requirement D ≥ 0 to imply that the
integrand is pointwise non-negative on ω. These impose restrictions on the consti-
tutive equations for the viscous stress παβ and the diffusive flux m. In conventional
models in which these effects operate separately, this necessarily entails the restric-
tions

παβ ȧαβ ≥ 0 and m · ∇μ ≤ 0, (3.35)

which are also sufficient for the dynamics to be dissipative in the general case. These
ensure that the dynamical theory reduces to the equilibrium theory described in the
previous section in the absence of dissipation; i.e., when the surface straining ȧαβ

and the diffusive flux m both vanish pointwise on the bilayer surface.

3.5 Constitutive Equations for the Dissipative Variables

Following Scriven (1960) and Aris (1989) the viscous stress is assumed to be given
by the surface analog of the Navier–Stokes theory. Thus,
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παβ = (νaαηaβμ + εEαηβμ)ȧημ, (3.36)

where ν and ε are the positive intra-membrane viscosities, and

Eαηβμ = aαβaημ + aαμaηβ − aαηaβμ. (3.37)

In practice the surface straining is expressed in the form (Rangamani et al. 2013)

ȧαβ = vα;β + vβ;α − 2wbαβ, (3.38)

in terms of the tangential velocities vα and the normal velocity w.

Regarding the diffusive flux, for illustrative purposes we may adopt the simplest
constitutive assumption; i.e.,

m = −c∇μ, (3.39)

where c, another positive constant, is the diffusivity.
These relations satisfy (3.35) and hence ensure dissipative membrane dynamics.

More general constitutive equations coupling viscosity and diffusion could also be
considered in this framework.

3.6 Convected Coordinates versus Surface-Fixed Coordinates

In the foregoing we have implicitly made use of convected coordinates in the formu-
lation of balance laws. We pause to elaborate on this formalism in the present sub-
section. We identify the underlying material manifold with a convected-coordinate
system ξα. This may be identified with the system θα at a fixed instant t0, say. The
associated surface �, with parametric representation x(ξα) = r(ξα, t0), is fixed and
may serve as a reference surface in a Lagrangian or referential description of the
motion. That is, we regard these coordinates as being convected in the sense that
they identify, via a map r = r̂(ξα, t), the current position at time t of a material point
that was located at x(ξα) ∈ � at time t0. The notion may be generalized by regarding
� as a surface that is in one-to-one correspondence with that occupied at time t0,
so that � need not actually be occupied in the course of the motion. The connection
with the θα - parametrization of ω is provided by

r̂(ξα, t) = r(θα(ξβ, t), t). (3.40)

Thus, we specify the fixed surface coordinates θα as functions of ξα and t subject to
θα(ξβ, t0) = ξα. We assume the relations giving θα in terms of ξα to be invertible, to
reflect the notion that at fixed t, the coordinates θα can be associated with a unique
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material point (identified by fixed values of ξα). Any function, f (θα, t), say, may
then be expressed in terms of convected coordinates as f̂ (ξα, t), where

f̂ (ξα, t) = f (θα(ξβ, t), t). (3.41)

The material derivative of f is its partial time derivative in the convected-coordinate
representation; i.e., ḟ = ∂ f̂ (ξα, t)/∂t,whereas its local time derivative in the surface-
fixed coordinate parametrization is ft = ∂f (θα, t)/∂t. By the chain rule, the two are
related by ḟ = ft + (θα)·f,α.

The velocity of a material point on � that has been convected by the motion to
ω is u = ṙ = ∂r̂/∂t. We may write this in terms of components on the natural basis
induced by the surface-fixed (θα) parametrization. Thus,

u = vαaα + wn. (3.42)

This is not the same as the time derivative rt . However, the two are related by

u = (θα)·aα + rt . (3.43)

Following Scriven (1960) we adopt the surface-fixed parametrization defined by

d
dt θ

α = vα(θβ, t), θα
|t0 = ξα, (3.44)

where the derivative is evaluated at a fixed value of the doublet {ξα} and is therefore
equal to (θα)·. Accordingly, the normal velocity in (3.42) is given by

wn = rt, (3.45)

and the convective and surface-fixed time derivatives satisfy the connection

ḟ = ft + vαf,α. (3.46)

We require an expression for the material derivative ȧαβ in terms of the surface-
fixed θα - parametrization. To this end we adopt convected coordinates ξα whose
values coincide with the instantaneous values of θα. The two sets of coordinate sys-
temswill of course differ at different instants due to the fact thatmaterial is convecting
with respect to the θα - system. Said differently, the material point instantaneously
located at the place with surface-fixed coordinates θα will have different locations
at different instants and hence be associated with different values of θα, whereas the
values of ξα remain invariant. Accordingly, while it is always permissible to iden-
tify ξα with θα at any particular instant t0, say, it is not possible to do so over an
interval of time. However, for our purposes this limitation is not restrictive. Using
ȧλμ = ȧλ · aμ + aλ · ȧμ and
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ȧλ = (∂r/∂θλ)· = [∂r/∂ξμ(∂ξμ/∂θλ)]·
= ∂u/∂ξμ(∂ξμ/∂θλ) + ∂r/∂ξμ(∂2ξμ/∂θλ∂θα)vα, (3.47)

together with ∂ξμ/∂θλ = δ
μ
λ (the Kronecker delta) and hence ∂2ξμ/∂θλ∂θα = 0 at

time t0, we derive ȧα = ∂u/∂ξα and

ȧλμ = u,λ · aμ + aλ · u,μ, (3.48)

where u,λ = ∂u/∂θλ at the considered instant.
Combining (3.42) with the Gauss and Weingarten equations yields

u,λ = (vα;λ − wbαλ)aα + (vαbαλ + w,λ)n, (3.49)

where aα = aαβaβ and vα;λ is the covariant derivative defined by

vα;λ = vα,λ − vβ�
β
αλ, (3.50)

in which �
β
αλ are the Christoffel symbols on ω computed using the θα - system. This

delivers the expression (3.38); i.e.:

ȧλμ = vμ;λ + vλ;μ − 2wbλμ. (3.51)

The corresponding result in Aris’ book (1989; Eqs. 10.21.3,4) is given, in our
notation, by

ȧλμ = vμ;λ + vλ;μ + (aλμ)t, (3.52)

where (·)t is computed at fixed θα. The latter is (aλμ)t = (aλ)t · aμ + aλ · (aμ)t,where
(aλ)t = (r,λ)t = (rt),λ, and (cf. (3.45))

(rt),λ = (wn),λ = w,λn − wbλαaα, (3.53)

yielding (aλμ)t = −2wbλμ, in agreement with (3.51).
The foregoing relationships facilitate the derivation of balance laws. Thus, if f is

the areal density of a particular quantity on ω, then the rate of change of the total
quantity in a part π of ω is

d
dt

∫
π

fda = d
dt

∫
�

fJdA =
∫

π

(ḟ + f J̇/J)da, (3.54)

where � is the part of the fixed surface � that is convected to π and J is the local
areal dilation of the surface; i.e.,

∫
π

da =
∫

�

JdA for all � ⊂ �. (3.55)
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To express the right-hand side of (3.54) in terms of the surface-fixed parametrization,
we combine J̇/J = 1

2a
αβ ȧαβ (Steigmann et al. 2003) with (3.51), obtaining

J̇/J = vα
;α − 2Hw. (3.56)

For example, mass conservation is expressed by

d
dt

∫
π

ρda = 0. (3.57)

Using (3.54) with f = ρ and invoking the arbitrariness of π then yields the local
conservation law

0 = ρ̇ + ρJ̇/J = ρt + vαρ,α + ρ(vα
;α − 2Hw). (3.58)

It is well known that lipid membranes are relatively stiff against areal dilation in
the absence of lipid distension, in comparison to bending or shearing in the tangent
plane (Evans and Skalak 1980). To model this we can impose J = 1, as in the next
section, as a local constraint at material points. In this case J̇ vanishes and (3.58)
simplifies to

0 = ρ̇ = ρt + vαρ,α, (3.59)

the first of which implies that ρ is independent of t in the convected-coordinate
description; that is, ρ is independent of t when expressed as a function of ξμ and
t. Accordingly, it’s value at a particular material point is invariant in time and thus
given by the density at that point in the fixed configuration associated with �. The
constraint on J is thus seen to be equivalent to the constraint that ρ be invariant at
any material point.

Suppose the membrane is such that the mass density is uniformly distributed on
the fixed surface � used in the definition of convected coordinates. The presumed
existence of such a configuration, even if it is never actually occupied in the course
of the motion, may be taken as part of the definition of a uniform film. By the chain
rule we then have 0 = ∂ρ/∂ξα = ρ,β∂θβ/∂ξα. The presumed invertibility of the
relation between the surface-fixed and convected coordinates implies that the matrix
(∂θβ/∂ξα) is non-singular and hence that ρ,β = 0.Themass-conservation law (3.59)
then yields ρt = 0, implying that ρ is a fixed constant on the surface ω, independent
of θα and t. If the film is uniform in the sense described, then its response to H
and K should be the same at all material points. There is then no explicit coordinate
dependence in the areal energy densityW. The latter result is modified in the case of
filmswith non-uniform bending properties inwhich the non-uniformity is induced by
a diffusing species, for example (Agrawal and Steigmann 2011). In the next section
we show that it is also modified by viscous flow in the surface.
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4 A Transport Theory Without Dilation or Distension

A much simpler model emerges in the limit of a dilute concentration of proteins. In
this limit it is appropriate to assume that the embedded proteins have a negligible
effect on surface dilation, which thus remains fixed at the value J = 1 in the absence
of lipid distension. This affords the simplest generalization of the Canham/Helfrich
framework to accommodate protein diffusion on the surface. The overall energy
balance under isothermal conditions, and for negligible inertia, remains as before;
namely:

D = P − dE/dt, (4.1)

where E is the energy content of the lipid–protein system, P is the power supplied
to the system by mechanical means and by protein flux, and D is the dissipation,
assumed to satisfy D ≥ 0 in every possible process.

4.1 Energetics

Let W again stand for the strain energy per unit area of the evolving membrane. It
is conventional, in the standard Canham/Helfrich theory of lipid bilayers, to neglect
areal dilation of the surface and thus to impose two-dimensional incompressibility
as a constraint. Here we assume the distribution of trans-membrane proteins to be
sufficiently dilute that the areal incompressibility constraint remains meaningful. In
this case, the rate of change of the energy is

dE/dt =
∫

π

Ẇda, (4.2)

where π is an arbitrary subsurface of the membrane surface ω; Ẇ , the material time
derivative, is given by

Ẇ = WHḢ + WKK̇ + Wσσ̇, (4.3)

and σ is the areal protein density (i.e., number of proteins per unit current area of ω).
Here we have assumed, in accordance with the standard model, that W is a function
of themean andGaussian curvatures of the surface,H andK , respectively, in addition
to the non-standard dependence on protein concentration. For simplicity’s sake we
suppress dependence on concentration gradient.

The power supply may be written in the form

P = Pmech −
∫

∂π

q · νds, (4.4)
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where Pmech is the conventional power supplied by mechanical means and q is the
energy flux due to protein transport across the boundary ∂π,with exterior unit normal
ν lying in the tangent plane of the surface. This is related to the state of themembrane
and to the protein flux vector m by

q = Wσm. (4.5)

The stress powerS is the power generated by internal interactions in themembrane.
It satisfies (Rangamani et al. 2013)

S = dE/dt + 1
2

∫
π

παβ ȧαβda, (4.6)

where ȧαβ, the material derivative of the evolving surface metric aαβ, is the straining
of the surface due to flow, and παβ is the stress arising from viscous resistance to
flow. Combining this with (4.1) and (4.4), we obtain

D = P − S + 1
2

∫
π

παβ ȧαβda = Pmech − S + 1
2

∫
π

παβ ȧαβda −
∫

∂π

q · νds. (4.7)

Let Smech be the mechanical contribution to the stress power; i.e., the stress power in
the absence of diffusion. This is given by (cf. (2.3) and (2.6))

Smech =
∫

π

(WHḢ + WKK̇)da + 1
2

∫
π

παβ ȧαβda, (4.8)

and the total stress power is then given by

S = Smech +
∫

π

Wσσ̇da. (4.9)

As a consequence of the Principle of Virtual work, mechanical equilibrium of the
membrane requires that

Smech = Pmech. (4.10)

Accordingly, the expression for the dissipation, due to viscosity and diffusion,
reduces to

D = 1
2

∫
π

παβ ȧαβda −
∫

∂π

q · νds −
∫

π

Wσσ̇da. (4.11)
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4.2 Balance Laws

The flux m satisfies the diffusive balance law (cf. (3.22))

σ̇ + mα
;α = 0, (4.12)

where the second term involving the surface covariant derivative is the divergence
of the flux. Moreover, Eq. (4.10) generates three associated balance laws; namely, a
normal equation and the two tangential equations of equilibrium (Rangamani et al.
2013)

(∂W/∂θα + λ,α)aβα + π
βα
;α = 0, (4.13)

where λ is a Lagrange-multiplier field associated with the local constraint of areal
incompressibility; λ,α is its gradient in the surface; aβα is the dual, or reciprocal,
surface metric; and the final term is the divergence of the viscous stress. Further,
∂W/∂θα, in which θα are the surface-fixed coordinates, arises from the explicit
coordinate dependence in the function W, regarded as a function of H and K . In the
present context this is due to the presence of proteins, yielding

∂W/∂θα = Wσσ,α. (4.14)

The normal equation - the so-called shape equation - is given by (Rangamani et al.
2013)

p = �( 12WH ) + (WK );αβ b̃
αβ + WH (2H2 − K) + 2H(KWK − W ) − 2λH + παβbαβ ,

(4.15)

where p is the lateral pressure on themembrane due, for example, to osmotic pressure,
� is the surface Laplacian, bαβ is the 2nd fundamental form (the curvature) of the
surface, b̃αβ is its cofactor, and (·);αβ is the second covariant derivative on the surface.
These constitute the partial differential equations to be solved for the surface flow,
the surface shape, the Lagrange multiplier and the protein distribution. The system is
completed by appending the areal incompressibility constraint. In the present setting
this is

vα
;α = 2Hw, (4.16)

where vα is the tangential velocity vector and w is the (scalar) normal velocity.
The diffusive balance law facilitates a useful reduction of the expression for the

dissipation. Combining (4.5) with (4.6) and applying Stokes’ theorem on the surface,
we obtain

D =
∫

π

[ 12παβ ȧαβ − mα(Wσ),α]da. (4.17)
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4.3 Constitutive Equations

To ensure that membrane processes are dissipative, it is sufficient to adopt the con-
stitutive equations (cf. (3.36) and (3.37))

παβ = νaαηaβμȧημ, (4.18)

where ν, a positive constant, is the intra-membrane surface viscosity, and (cf. (3.39))

mα = −caαβ(Wσ),β, (4.19)

where c, another positive constant, is the diffusivity. These are the relations con-
ventionally adopted in separate studies (Agrawal and Steigmann 2011; Rangamani
et al. 2013) concerned either with viscous surface flow or protein diffusion. Other
possibilities coupling viscosity and diffusion can be proposed, provided that they
conform to the requirement of non-negative dissipation.

Regarding the energy, the appropriate specialization of (3.2) is

W (H,K,σ) = α(σ) + k(σ)[H − C(σ)]2 + k̄(σ)K . (4.20)

The functions α, k and k̄ are phenomenological in nature and plausible forms for
them must be specified. The foregoing balance laws simplify accordingly, but these
simpler forms are not recorded here.

In the limit of a dilute concentration of proteins, σ is small enough to justify use
of the approximations

α(σ) = α(0) + σα′(0) + 1
2σ

2α′′(0) + ...,

k(σ) = k(0) + σk′(0) + ...,

k̄(σ) = k̄(0) + σk̄′(0) + ... and

C(σ) = C(0) + σC′(0) + ... . (4.21)

Suppose the membrane forms a natural bilayer in the absence of proteins, so that
C(0) = 0. Suppose further that the state σ ≡ 0 is in thermodynamic equilibrium
when the surface is flat. Then, Wσ vanishes at {H,K,σ} = {0, 0, 0}, yielding

α(σ) � 1
2σ

2α′′(0), k(σ) � k(0) ≡ k, k̄(σ) � k̄(0) ≡ k̄ and C(σ) � σC′(0).
(4.22)

We note that in this limit the constant k̄ does not contribute to the equilibrium
Eq. (4.15) and may therefore be dropped if the membrane forms a closed surface
without boundary. As for the spontaneous curvature, we assume that C′(0) = βϕ,

where β is an empirical constant and ϕ is the protein cone angle characterizing the
conical geometry of the embedded trans-membrane proteins. Accordingly,C(σ) � 0
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for cylindrical proteins (ϕ = 0), regardless of protein density. The expression for the
energy reduces to

W (H,K,σ) = 1
2σ

2α′′(0) + k[H − σ(βϕ)]2 + k̄K . (4.23)

Numerical solutions obtained using this model are described in (Agrawal and
Steigmann 2011).

5 Electromechanics of Polarized Lipid Bilayers

In this final section a model for the electromechanics of lipid bilayers, accounting for
flexo-electricity, is obtained as the thin-film limit of the continuum electrodynamics
of nematic liquid crystals.Apriori restrictions on the polarizationfield consistentwith
minimum energy considerations effectively decouple the leading-order membrane
problem from the computation of the self field, yielding a substantial simplification
vis a vis the three-dimensional theory. While there is a substantial existing literature
on this subject, it is marred by the arbitrary suppression of the electric self field on
an ad hoc basis, and by the assumption that the polarization field in the membrane
may be regarded as a material vector, perpetually aligned along the direction of
opposing polar head groups constituting the lipids of the bilayer (Petrov 1999).
Neither assumption is compatible with continuum electrodynamics. The latter is
used here to derive an asymptotic leading-order-in-thickness model in which the
electric self field plays no role. The self field, if desired, can then be computed a
posteriori, thereby affording a major simplification of the theory. This, however,
requires that the polarization field adjust accordingly.

The idea that lipid bilayers can be regarded as thin liquid crystal films appar-
ently originated in the work of Helfrich (1973). This point of view gave rise to an
associated body of work that has been reviewed in (Ou-Yang et al. 1999). As we
have seen, the liquid-crystal framework provides a clear conceptual foundation for
extensions of the basic purely mechanical theory to coupled-field problems; here this
notion is extended to encompass electromechanical interactions. We adapt the three-
dimensional electromechanical liquid crystal theory advanced in (DeGennes and
Prost 1992; Ericksen 1961, 1962, 1976; Virga 1994) to derive a two-dimensional
model for the response of electrically polarized lipid bilayers to applied electric
fields generated by a remote source. Our approach differs substantially from those
described in (Gao et al. 2008; Mohammidi et al. 2014). For definiteness and for the
sake of simplicity, we base our model on the general theory for nematics (Virga
1994), while allowing for the so-called flexo-electric effect (Meyer 1969; DeGennes
and Prost 1992).
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5.1 Energetics of Three-Dimensional Liquid Crystals
in the Presence of a Stationary Applied Field

Numerous variational formulations of electromechanical interactions in deformable
media are available in the literature. These have been studied extensively in
(Bustamante et al. 2009; Dorfmann and Ogden 2014), to which the interested reader
is referred for fuller expositions. There it is shown that Maxwell’s equations and the
equilibrium equations for a polarized medium in the presence of an applied electric
field that is fixed in space, in the absence of applied loads or free electric charges,
are such as to render stationary the energy functional

E =
∫
R
(U − 1

2es · p − ea · p)dv, (5.1)

where R is the volume currently occupied by the material in three-space; U is the
relevant energy density; p is the polarization per unit volume; es is the electric self-
field generated by the polarized material; and ea is the applied electric field, assumed
to be assigned as a smooth function in all of three-space, including R. The net electric
field is

e = es + ea. (5.2)

Further, the applied field is a given function of position y in the enveloping three-
space. Its variational derivative, associated with a fixed material point (a fixed lipid
molecule in the present context), is thus purely convective; i.e.,

ėa = (gradea)ẏ, (5.3)

where grad is the (spatial) gradient with respect to y; and, here and henceforth,
superposed dots are used to denote variational derivatives. The field ea is curl-free;
its gradient is therefore symmetric: gradea = (gradea)t . The self field is also curl
free; it is obtained from

es = −gradVs, (5.4)

where the self-field potential Vs is given by (Kovetz 2000)

4πε0Vs(y) =
∫

∂R

p′ ·n′
|y−y′|da −

∫
R

div′p′
|y−y′|dv, (5.5)

in which ε0 is the free-space permittivity; n′ is the exterior unit normal to ∂R,

expressed as a function of the integration variable y′; p′ is likewise the polarization
in terms of y′; and div′ is the divergence with respect to y′.

The energy densityU is a function of the polarization and appropriate deformation
variables. In the conventional theory of electro-elasticity the relevant deformation
variable is the deformation gradient, the gradient of y = χ(x)with respect to position
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x in some fixed reference configuration. Here χ(·) is a field describing the defor-
mation of material points. In the present application to liquid crystals, the relevant
variables are a director field d(y)—describing the orientation of the liquid crystal
molecules—and its spatial gradient (cf. (1.1))

D = gradd. (5.6)

We follow the conventional theory and impose |d(y)| = 1.
The electric field is given in terms of the polarization by the partial derivative

(Toupin 1956; Bustamante et al. 2009)

e = Up(d,D, p). (5.7)

In applications U is typically assumed to be a quadratic function of D, as we
have seen. This reflects the notion that the length scale for spatial variations of the
director is typically much larger than the local length scale: the molecular length;
the dimensionless gradient is then sufficiently small to justify the termination of the
Taylor expansion of U (d, ·, p) at second order. Thus (cf. (1.2)),

U = l(d, p) + L(d, p) · D + 1
2D · L(d, p)[D], (5.8)

in which l, L and L are scalar, second-order tensor and fourth-order tensor-valued
functions, respectively, with L = Lt .

Guided by (Virga 1994), we adopt the specific forms

l(d, p) = 1
2χ⊥ |p|2 + 1

2χa(p · d)2, (5.9)

where χ⊥ and χa are the anisotropic dielectric constants, and

D · L[D] = k1(divd)2 + k2(d · curld)2 + k3 |Dd|2 + (k2 + k4)[tr(D2) − (divd)2],
(5.10)

in which the latter is independent of p, and k1 − k4 are constants with 2k1 ≥ k2 + k4,
k2 ≥ |k4| and k3 ≥ 0, in accordance with the presumed positive-definiteness of L
(Virga 1994). The second expression is the Frank energy for nematic liquid crystals.

To model the flexo-electric effect, we adopt Meyer’s proposal (Meyer 1969) in a
form similar to that adopted by Ou-Yang et al. (1999). Thus,

L(d, p) · D = −p · f (d,D), with f (d,D) = c1(divd)d + c2curld × d, (5.11)

where c1 and c2 are the flexo-electric constants. The relationship (5.7) then furnishes
an expression for the electric field:

e = χ⊥p + χa(p · d)d − f (d,D), (5.12)
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which reduces, in the specializationχa = χ⊥, to Eq. (2.153) in Ou-Yang et al. (1999)
in the case when the electric field vanishes.

Our objective here is to derive the leading-order small-thickness limit of the energy
(5.1). This limit is taken to be the energy of a polarized lipid membrane. Stationarity
conditions for the limit energy are then identified with the equilibrium equations of
a polarized lipid membrane in the presence of an applied field generated by a remote
source.

We have in mind a lipid bilayer constituting a membrane structure in a biological
cell. Because such a membrane is only one or two molecules across, its thickness
is on the order of the local length scale embodied in the constitutive response of
the liquid crystal. Accordingly, this is the only length scale arising in the dimension
reduction procedure.

5.2 Liquid Crystal Films

In the purely mechanical theory of thin liquid crystal films the leading-order strain-
energy density W is associated with the limit (Steigmann 2013)

lim
t→0

t−1
∫
R
Udv =

∫
ω

Wda, (5.13)

where ω is the interior midsurface of the film, t is the (uniform) thickness of the film,
and

W = U|ω (5.14)

is the leading-order energy density on ω. This follows by using the volume measure
dv = μdςda (Naghdi 1972), where ς is a linear coordinate in the direction of the
unit surface normal n, regarded as the restriction of d to ω, and μ = 1 − 2ςH + ς2K,

where H and K , respectively, are the mean and Gaussian curvatures of ω. In effect,
then, we suppress misalignment of the lipid molecules with the surface normal - the
so-called lipid tilt - as in the classical Canham/Helfrich theory. This is appropriate if
the surface density of the lipids is sufficiently high. We have (cf. (1.31))

n = d|ω and D|ω = ∇n + η ⊗ n, (5.15)

where ∇(·) is the (two-dimensional) surface gradient on ω and η is the restriction to
ω of the derivative of d in the direction of d. Accordingly,

n · η = 0 on ω. (5.16)
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The extension to the case of polarizable films in the presence of an applied field
is immediate. Thus,

lim
t→0

t−1E = E, (5.17)

with

E =
∫

ω

Wda, (5.18)

where W is now given by

W = (U − 1
2es · p − ea · p)|ω. (5.19)

Remark 1 Quantum mechanical considerations and molecular dynamics simulations
(Seelig 1978; Frischleder and Peinel 1982; Warshaviak et al. 1808) indicate that the
polarization vector is essentially tangential to the film surface. In this case an estimate
based on (5.5)—derived in the mathematically identical context of magneto-statics
(Barham et al. 2012)—indicates that the magnitude |es| of the self field is of order
O(t ln t); for small t this is negligible compared to unity. It follows that the leading-
order energy; i.e., the limit of E/t as t → 0, is given by (5.18) but with W given
by

W = U|ω − ea(r) · π, (5.20)

where π = p|ω, r = y|ω is the position field on ω, and

n · π = 0 on ω. (5.21)

Remark 2The estimate on the self field effectively decouples its computation from the
problemof renderingE stationary, implying that itmaybe evaluatedaposteriori.This
feature affords a major simplification of the theory for thin films vis a vis that for bulk
continua. Further, in the analogous magnetostatic setting, the condition (5.21), with
polarization replaced by magnetization, is known to furnish energetically optimal
states of magnetization in thin films (Gioia and James 1997). Thus our approach via
dimension reduction provides justification for the suppression of the self field, in the
leading-order two-dimensional model, under conditions in which the polarization
field is tangential to the membrane. In contrast, in (Gao et al. 2008;Mohammidi et al.
2014) no analysis is offered to justify the suppression of the self field.

The self field at points in space remote from the membrane may be evaluated a
posteriori by applying the divergence theorem to (5.5), for points y not in R. Thus,

4πε0Vs(y) =
∫
R
p′ · y−y′

|y−y′|3 dv = t

[∫
ω

π· y−r
|y−r|3 da + o(t)/t

]
, (5.22)
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in which r is the membrane position field. The self field then follows by computing
the gradient with respect to y (cf. (5.4)):

4πε0 lim
t→0

(t−1es) =
∫

ω

Gπda, (5.23)

where

G = 3
|y−r|5 (y − r) ⊗ (y − r) − 1

|y−r|3 I. (5.24)

The leading-order self field in space is thus delivered by a quadrature over ω after
membrane shape has been determined.

In the expression (5.20) we have

U|ω = U (n,−b + η ⊗ n,π), (5.25)

where

b = −∇n (5.26)

is the (symmetric) curvature tensor of ω.
The explicit formused here follows from (5.8)–(5.11). For example, the restriction

to ω of the function f (d,D) in (5.11) is given by

f |ω = c1(n · η − 2H)n + c2η, (5.27)

where

H = 1
2 trb (5.28)

is the mean curvature of ω. This expression may be simplified by imposing (5.16),
but we refrain from doing so for reasons discussed below. Here use has been made
of (5.15) and the formula curld × d = Dd, which follows from the fact that d is a
field of unit vectors (Virga 1994).

To reduce (5.10) we first introduce a coordinate parametrization r(θα) of ω. This
induces the natural tangent basis aα = r,α and associated dual basis aα, where (·),α =
∂(·)/∂θα. Then, the restriction of curld to ω is (Steigmann 2013)

(curld)|ω = aα × n,α + n × η, (5.29)

whereaα × n,α = −bαβaα × aβ,withbαβ = aα · baβ,vanishes by virtue of the sym-
metry of b; accordingly, (d · curld)|ω = 0.

Using (5.26) with bn = 0 we also derive

tr(D2)|ω = tr(b2) + (n · η)2. (5.30)
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Applying the Cayley–Hamilton formula

b2 = 2Hb + K1, (5.31)

where

K = det b (5.32)

is the Gaussian curvature of ω and 1 is the identity transformation on Tω, we then
obtain

[tr(D2) − (divd)2]|ω = 2Hn · η − 2K, (5.33)

which again may be simplified by imposing (5.16).
Remark 3 It is well known (Virga 1994) that the combination tr(D2) − (divd)2 is
a null Lagrangian in the three-dimensional theory. It is also well known that the
Gaussian curvature is a null Lagrangian in the surface theory; in particular, the
total curvature of a closed surface is fixed by its genus and thus contributes only a
disposable constant to the energy if the surface topology is fixed. Accordingly, (5.16)
implies that the same combination of terms also furnishes a null Lagrangian in the
two-dimensional theory.

Altogether, the surface energy (5.8) reduces to

U|ω = 1
2χ⊥ |π|2 + 1

2χa(π · n)2 − c1(n · η − 2H)n · π − c2η · π

+ 1
2k1(n · η − 2H)2 + 1

2k3 |η|2 + (k2 + k4)(Hn · η − K), (5.34)

yielding the net energy density in the form:

W = kH2 + k̄K + 1
2k3 |η|2 + 1

2χ⊥ |π|2 − c2η · π + ϕ̃n · π + ψ̃n · η − ea(r) · π,

(5.35)

where

k = 2k1, k̄ = −(k2 + k4) (5.36)

and ϕ̃, ψ̃ are certain scalars which will prove to be irrelevant. Then, W may be
regarded as a function of the list

{H,K, r,n,η,π}, (5.37)

subject to the constraints (5.16) and (5.21), in which it is understood that H, K and
n are determined by the surface parametrization r(θα). Henceforth we require the
doublet {θα} to maintain a fixed correspondence with a material point; i.e., a lipid
molecule. Thus the coordinates are convected with the lipids.
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5.3 Variational Problem and Equilibrium Equations

It is convenient to adopt an extended variational formulation in which the constraints
are relaxed. In this formulationwedo not impose (5.16) or (5.21), but instead consider
the auxiliary energy

E∗ =
∫

�

[JW + λ(J − 1) + ϕ̄n · π + ψ̄n · η]dA, (5.38)

whereW is given by (5.35),with r,η andπ regarded as independent fields; andwhere
ϕ̄ and ψ̄ are Lagrange-multiplier fields associated with the constraints (5.16) and
(5.21). Here � is the pre-image of ω in a fixed reference placement, with da = JdA.

In terms of the convected-coordinate parametrizationwe have J = √
a/A,where a =

det(aαβ), aαβ = aα · aβ is the surface metric, and A is the value of a on �. Further,
λ is a Lagrange-multiplier field associated with the constraint that the map from any
configuration to another preserves local surface area; i.e., that J = 1. This restriction
is appropriate in the absence of lipid distension, as in the classical Canham/Helfrich
theory. As we have seen, the bulk incompressibility of the liquid crystal then implies
that area is preserved locally. Generalizations to account for distension in a purely
mechanical setting are discussed in Sect. 1 above and in (Kim and Steigmann 2015).

We observe that ϕ̃ and ψ̃ in (5.35) may be absorbed into the Lagrange multipliers
and conclude that no generality is lost if the former is replaced by

W = U − ea(r) · π (5.39)

in (5.38), where U is now given by

U = kH2 + k̄K + 1
2k3 |η|2 + 1

2χ⊥ |π|2 − c2η · π. (5.40)

We note that the quadratic form involving η and π is positive definite if and only if
k3 > 0, χ⊥ > 0 and c22 < k3χ⊥.

The variational derivative of the extended energy, neglecting the variations of the
Lagrange multipliers, is

Ė∗ =
∫

ω

[Ẇ + (W + λ)J̇/J + ϕ(ṅ · π + n · π̇) + ψ(ṅ · η + n · η̇)]da, (5.41)

where ϕ = ϕ̄/J and ψ = ψ̄/J , and it is understood, having suppressed the variations
of the multipliers, that all terms in this expression are to be evaluated post facto at
states satisfying the constraints (5.16) and (5.21). In the presence of a net lateral
pressure p in the direction of the surface normal n, the virtual-work statement is
given by (Agrawal and Steigmann 2009)

Ė∗ =
∫

ω

pn · ṙda +
∫

∂ω

χds, (5.42)



Mechanics and Physics of Lipid Bilayers 55

where χ is the density of edge power. We remark that because of the definition
(5.14), the energy in this expression is the actual energy divided by the thickness t;
the dimensions of p and χ are affected accordingly. Thus, for example, the actual
pressure is tp, and with p = O(1) this is of order t.

We consider the consequences of (5.42) with respect to variations of each variable
in turn. The simplest are those associated with the variations π̇ and η̇. They are given,
respectively, by (cf. (5.7) and (5.15))

ea = Uπ + ϕn (5.43)

and

Uη + ψn = 0, (5.44)

with

Uπ = χ⊥π − c2η and Uη = k3η − c2π. (5.45)

Accordingly, with the constraints (5.16) and (5.21) in effect we have

ψ = 0 and η = (c2/k3)π; (5.46)

with

ϕ = n · ea and Uπ = Pea, (5.47)

where P = I − n ⊗ n, in which I is the identity for 3-space, is the projection onto
Tω. We note that P = 1, the identity on Tω . Then, from (5.45),

Dπ = Pea(r), where D = χ⊥ − c22/k3. (5.48)

This furnishes the polarization uniquely in terms of the surface parametrization,
provided that D 	= 0 and the applied field is assigned as a function in space. When
χ⊥ > 0, the sign of D is controlled by the strength of the flexo-electric effect; thus
D is positive or negative according as |c2| is small or large, respectively. These
alternatives correspond to the relevant quadratic form in the energy being positive
definite or indefinite, respectively.

These results imply that the equilibrium value of the energy (5.40)maybe regarded
as a function of H,K and π; on combining (5.46) and (5.48), the explicit expression
is found to be

U = kH2 + k̄K + 1
2D |π|2 . (5.49)

With the foregoing in effect, (5.41) and (5.42) furnish the residual virtual-work
statement



56 D.J. Steigmann

∫
ω

[Ẇ + (W + λ)J̇/J + ϕπ · ṅ]da =
∫

ω

pn · ṙda +
∫

∂ω

χds, (5.50)

in which all variations are induced by the virtual velocity

u = ṙ (5.51)

with π̇ = 0. In particular,

J̇/J = aα · u,α (5.52)

and

ṅ = εβαaβ × u,α − (J̇/J)n, (5.53)

where εβα is the contravariant Levi–Civita permutation tensor. Further,

Ẇ = U̇ − ėa(r) · π, (5.54)

with
ėa = (gradea)|ωu and U̇ = UHḢ +UKK̇, (5.55)

in which we have invoked Uη = 0 (cf. (5.44) and (5.46)1). From (5.49),

UH = 2kH and UK = k̄. (5.56)

Expressions for the variations Ḣ and K̇ given previouslywill be recalled in the next
subsection. To facilitate their representation we use the decomposition (cf. (3.42))

u = uαaα + un, (5.57)

where uα and u, respectively, are the tangential and normal variations of the position
field.

Tangential Variations

For tangential variations we have u = 0 and (cf. (2.11))

J̇/J = uα
;α, Ḣ = uαH,α and K̇ = uαK,α. (5.58)

Thus,

(W + λ)J̇/J = [(W + λ)uα];α − uα(W + λ),α, (5.59)
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where

W,α = U,α − aα · (gradea)|ωπ − ea · π,α; (5.60)

whereas, with π̇ = 0,

Ẇ = uα[UHH,α +UKK,α − aα · (gradea)|ωπ]. (5.61)

We thus reach

Ẇ + (W + λ)J̇/J = [(W + λ)uα];α + uα(UHH,α +UKK,α −U,α − λ,α + ea · π,α).

(5.62)

Here we use the fact that Uη vanishes in equilibrium, together with (5.48) and the
symmetry of P, to derive

U,α = UHH,α +UKK,α + ea · Pπ,α, (5.63)

which furnishes

Ẇ + (W + λ)J̇/J = [(W + λ)uα];α + uα[(ea · n)(n · π,α) − λ,α]. (5.64)

To reduce the term in (5.50) involving ϕ, we use (5.53) to obtain

ṅ = εβαbλαu
λaβ × n, (5.65)

where εβλ is the covariant permutation tensor, together with εβαεβλ = δα
λ

(the Kronecker delta). This and

n × aβ = εβγaγ (5.66)

yield

ṅ = −bλαu
λaα, (5.67)

which combines with (5.47) to deliver

ϕπ · ṅ = −(n · ea)bαβπβuα. (5.68)

However, the constraint (5.21) implies that

π,α = π
β
;αaβ + bαβπβn, (5.69)

where (·);α is the covariant derivative on ω. Accordingly,
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Ẇ + (W + λ)J̇/J + ϕπ · ṅ = [(W + λ)uα];α − uαλ,α. (5.70)

Using Stokes’ theorem, the surface integral over ω of the first term on the right-hand
side may be represented as an integral over the edge ∂ω. Remarkably, the Euler
equations emerging from (5.42) under tangential variations are then given simply by
λ,α = 0; i.e.,

λ = const. on ω, (5.71)

as in the classical Canham/Helfrich theory for uniform lipid bilayers in the absence
of electromagnetic effects (cf. Sect. 2). Appropriate edge conditions, extending those
presented in Sect. 2, are developed in (Steigmann and Agrawal 2016).

Normal Variations

In this case u = un, yielding (cf. (2.16))

J̇/J = −2Hu, 2Ḣ = �u + u(4H2 − 2K) and K̇ = 2KHu + (b̃αβu,α);β,

(5.72)

where, for any scalar field ξ,

�ξ = 1√
a
(
√
aaαβξ,β),α (5.73)

is the surface Laplacian in which aαβ is the dual metric.
Recalling thatUη vanishes at equilibrium and noting that π is fixed in the present

class of variations, after a lengthy calculation, detailed in (Steigmann et al. 2003),
we arrive at

Ẇ + (W + λ)J̇/J = u[�( 12UH) + (UK);αβ b̃
αβ +UH(2H2 − K)

+ 2H(KUK − W ) − 2Hλ − n · (gradea)|ωπ]
+ [( 12UHa

αβ +UKb̃
αβ)u,α];β

− {[(UH),βa
αβ + (UK),β b̃

αβ]u};α. (5.74)

Here (·);αβ is the second covariant derivative on ω and

b̃ = 2H1 − b (5.75)

is the cofactor of the curvature tensor.
For normal variations (5.53) gives

ṅ = −aαu,α, (5.76)

yielding

ϕπ · ṅ = u(ϕπα);α − (ϕπαu);α. (5.77)
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Combining this with (5.41) and writing the integrals of the divergences as bound-
ary integrals, from (5.42) the relevant Euler–Lagrange equation is found to be (com-
pare (2.22))

�( 12UH) + (UK);αβ b̃
αβUH(2H2 − K)

+ 2H(π · ea + KUK −U ) − 2Hλ + (ϕπα);α
= p + n · (gradea)|ωπ, (5.78)

where

(ϕπα);α = 1√
a
(
√
aϕπα),α. (5.79)

This generalizes the well-known shape equation of the conventional theory
(Ou-Yang et al. 1999; Agrawal and Steigmann 2009). For the particular energy given
by (5.49) it reduces to

k[�H + 2H(H2 − K)] − D |π|2 H + 2H(π · ea − λ) + (ϕπα);α
= p + n · (gradea)|ωπ, with ϕ = n · ea. (5.80)

This may be simplified by using (5.47) and (5.48) to reach

Dπ · ea = Pea · ea = |Pea|2 = |ea|2 − ϕ2 (5.81)

and

2Hπ · ea − D |π|2 H = D−1H(|ea|2 − ϕ2). (5.82)

Numerical examples are discussed in (Steigmann and Agrawal 2016).
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tributing to shed light on the mechanical behavior of lipid bilayers. In particular,
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Bending and saddle splay rigidities are shown here to be directly obtainable from
the membranal response, as well as the line tension, holding together domains in
which lipids are in different phases. The power law hereditariness of lipid mem-
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1 Introduction

In Deseri et al. (2008) we obtained an energetics for biomembranes, such as lipid
bilayers, which accounts for the through-thickness phase transition exhibited by
planar structures and curved closed liposomes, like Giant Unilamellar Vescicles
(GUVs) (see e.g., Lipowsky and Sackmann 1995). As pointed out in other chapters
of this volume, the average thickness of such structures is of the order of 5 nm while
the other two dimensions are several orders of magnitudes higher in size. In the
treatment mentioned above no distinction is done between the leaflets of a bilayer,
thereby inferring that even the energetics of lipidmonolayers is compatible with such
derivation.

Ways for controlling the morphologies in planar lipid systems and in GUVs are
temperature and osmotic pressure based (see e.g., Baumgart et al. 2003; Veatch
et al. 2004). Advanced high-resolution fluorescence imaging techniques employed
in Baumgart et al. (2003) in particular have highlighted the coexistence of regions
(or phases) with completely different features, highlighted in red and blue in Fig. 1
included in the same paper. The main contrast among such zones on the membranes
is in terms of “degree of curliness” of the lipids, namely how curly and, hence,
how short they get relative to their maximum length. This has an impact on the
values of the curvatures in GUVs in regions with different degrees of curliness
and also in the redistribution of the species within a lipid membrane with a given
chemical composition. Because lipid membranes have the molecules free to move
in-plane, namely across the surface, the two phases are called liquid ordered-Lo

and liquid disordered-Ld . In some cases, the presence of “lipid rafts” is detected in
lipid bilayers. Basically, glycosphingolipid-enriched domains do form such rafts. For
instance, the latter occur in the presence of fully saturated chains of sphingomyelin
and glycosphingolipids bond with neighboring active functional glycosyl groups.
Obviously, any model owing the Lo–Ld transition can consistently predict lipid
rafts. The issue is: can a model at the continuum level be more physically based and
predict both the phase transitions and the changes in curvature and shapes? Through
the last four decades this has been one of the main tasks in the field and, obviously,
there no unique answer to this. Among the most prominent works in this direction

Fig. 1 Images experimentally obtained by Baumgart et al. (2003), showing how phase separation
relates to shapes achieved by GUVs. In red and blue respectively liquid-disordered and liquid-
ordered phases. Scale bars 5µm (Images by courtesy of Baumgart et al. 2003)
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one can certainly single out Lipowsky and Sackmann (1995)-Chap.1. There it was
remarked that “here the theory of nonreacting mixtures and the theory of phase
transitions are strictly related to the theory of thin, fluid shells”. Ultimately, this
corroborates the fact that obtaining a physically based model at the continuum level
incorporating information regarding the species forming the bilayer, and rendering
out the phase transition and the geometrical changes experienced by such structures
is an extremely hard task. Contributions focusing on the purely mechanical behavior
of such systems can be related to the pioneering work in Canham (1970), Fung
(1966), Fung and Tong (1968), although the keystone work in biophysics regarding
lipid bilayers can be singled out in Helfrich (1973), where the free energy density per
unit area in the case of pure bending was obtained. This led the Helfrich free energy,
which does coincidewith theKirchhoff–Love bending energy density in the presence
of large curvature changes. The latter is well known in Structural Engineering and
Solid Mechanics.

A piecewise Helfrich’s energy has been employed when different zones of the
surface of the bilayer are already known to be occupied by lipids in different phases.
Spontaneous curvature inGUVshas also been accounted for in someof the extensions
of Helfrich’s model.

Along similar lines, a purely mechanical energy for liquid films has been obtained
in Keller and Merchant (1991), where the bending stiffness of a liquid surface has
been computed. Later, in Steigmann (1999) an expression of the dependence for
two-dimensional fluid films exhibiting such stiffness was singled out, thanks to a
theory of elastic surfaces. Along similar lines of thinking, in Baesu et al. (2004) it
was proposed a stretching–bending energy density.

In all themodels above the bilayerwas always considered a two-dimensional body,
thereby neglecting direct information associated with the thickness of themembrane.
This is certainly not what one must do in order to capture the main mechanism of
the observed phase transition experienced by the lipids. Indeed, they are seen to
be nearly extended in the ordered phase, Lo, whereas they get shorter and curlier
in the disordered phase, Ld . Indeed, it is known that a raise in temperature causes
the hydrocarbon lipid tails of phospholipids to undergo the phase transition just
mentioned above, evidenced by a significant thickness reduction from the liquid-
ordered phase Lo to the liquid-disordered phase Ld (see e.g., Falkovitz et al. 1982;
Goldstein and Leibler 1988, 1989; Jahnig 1981, 1996; Owicki et al. 1978; Owicki
and McConnell 1979; Lipowsky and Sackmann 1995).

The conclusion is that keeping track of thickness changes is essential for lipid
membranes and its changes witness the variations of the lipids order. This key issue
is addressed in Deseri et al. (2008).

Asymptotic approaches delivering the mechanics of nonlinear elastic shells (see
e.g., Koiter 1966) show that the thickness governs the scaling of both the membranal
and the bending contributions to the energy density, being the former linear with the
thicknesswhile the latter is cubic in this quantity.Henceforth, ignoring themembranal
term (asmany formulations do)means to neglect an energy contribution to the overall
energy which is two orders of magnitude more important than the bending term.
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The work done in Deseri et al. (2008) also represents one of the first attempts
toward a better understanding of the correlation among lipid order, membrane shape,
and chemical composition during either temperature changes or osmotic pressure
or both. This has been followed by several contributions in recent years, including
Maleki et al. (2013). A related discussion and a derivation of the line tension, namely
the configurational force arising at between zones of difference phases allowing for
zones of finite size, is presented in Deseri and Zurlo (2013). This agrees with results
obtained in Trejo and Ben Amar (2011).

The final reduced two-dimensional energetics in Deseri et al. (2008) is consistent
with a dimension reduction procedure. This is done in two steps. The first one is
to impose a modified Kirchhoff–Love kinematics which accounts for the thickness
changes and by enforcing a new symmetry group, introduced in Zurlo (2006), proved
Healey et al. (2017) and, eventually in Maleki et al. (2013), thereby delivering a bulk
energy density as a function of solely three invariants of the Cauchy–Green strain
measure. The second step is to perform an asymptotic expansion of the bulk energy
with respect to a reference thickness.

Summing up, the resulting energy density confirms the hierarchy between the
membranal and the bending terms described above, although it delivers a uniquely
and strikingly revealing expression, explained in Sect. 2. This will eventually lead to
deducing the key features of the elastic part of the response of lipid membranes, such
as the areal and bending rigidities and the line tension, namely the configurational
force holding together zones in different phases.

The main feature of the energy derived in Deseri et al. (2008) is the presence of
two turning points in the local stress governing the biological membrane behavior
(see Fig. 7a). They are placed in the spinoidal zone for the local part of the energy.
Henceforth, whenever the external conditions are such that the aerial stretch, i.e., the
reciprocal of the thinning, is enclosed in this region, the responsemay produce a rapid
change of the geometry, i.e., material instabilities can occur. The onset of bifurcated
configurations possibly arising from homogeneous configurations characterized by
an areal stretch lying in the spinoidal region is studied in Sect. 2.5. The total elastic
(Gibbs free) energy expanded upon any ground state in such region will be studied
to determine the bifurcated modes and the relationships between the number of
nucleated spatial oscillations with the critical values of the areal stretches.

In the sequel we will show that this occurrence is exhibited even when the in-
plane viscosity of the lipidmembrane is accounted for. In this regard, the experimental
observations of lipid viscous behavior showed that the loss and storage moduli are
well described by power law functions (Espinosa et al. 2011). This observation
suggests that the behavior of the biological membrane is properly described in the
framework of fractional hereditariness.

An analysis of the appropriate energetics arising because of viscosity will lead to
a new governing functional for studying the influence of the effective viscoelasticity
of the lipid membrane on the material instabilities exhibited by the system which is
studied in Sect. 3. The resulting viscoelastic free energy has a local and a nonlocal
part. There, the power at which stress and hyperstress relax might be different, as
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diffusion mechanisms may occur at different average speeds depending on whether
or not they arise in a boundary layer between different phases or in a given phase.

Exactly like in the purely elastic case, values of the areal stretches for which
unknown time evolving bifurcated configurations could occur are sought. This is to
investigate the role of the hereditariness on such unstable ground states. To this aim, in
full analogy with the elastic case, a variational principle is employed. The Gibbs free
energy density prevailing the space-time varying perturbation is taken from Deseri
et al. (2014), where a hierarchical rheological model yields the Staverman–Schartzl
free energy (extensively studied in Del Piero and Deseri 1996, 1997; Deseri et al.
2006, among many others) as the one for power law materials.

The variational principle yields a non-classical eigenvalue problem. Spatialmodes
bifurcating from ground states characterized by the areal stretch within the spinoidal
zone are of course oscillatory. The period of spatial oscillation is shown to decrease
with the ratio of generalized local and nonlocal moduli. Henceforth, the number of
oscillations increases with respect to the elastic case. As the ratio just mentioned
above increases, for a given number of oscillations the interval of stretches for
which bifurcation can occur gets larger if compared with the one determined by the
purely elastic behavior. The model then is suggesting that hereditariness increases
the chances of nucleating spatially oscillatory bifurcated modes.

Upon exploring the transfer function of the equation governing the eigenvalue
problemmentioned above, it is found that, for various values of the local and nonlocal
relaxation power, time decay occurs in the response. Hence, spatial oscillations do
slowly relax, exhibiting a long tail type response in time.

2 The New Elastic Energy for Lipid Membranes

In this section we briefly recall the main results obtained in Deseri et al. (2008),
together with a schematic description of the approach followed in this work. The
main result is the derivation of a new surface energy density for the lipid bilayer.
This is shown to give the possibility of deducing bending rigidities, line tension, and
thickness profile inside the boundary layer during the order–disorder transition from
simple experimental data on the stretching behavior of the membrane.

Attention here will be restricted to initially planar membranes, thereby neglecting
the effects of spontaneous curvature. An orthonormal basis (e1, e2, e3) is introduced
to describe material points in the reference configuration and geometrical changes
with respect to that. A simply connected region B0 of constant thickness h0 in the
direction of e3 and with a flat mid-surface � in the plane spanned by (e1, e2) depicts
the reference configuration for the membrane, thereby not distinguishing between
the upper and the lower leaflet of the membrane. Points of B0 are denoted by

x = x + ze3,
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where
x = xe1 + ye2

and z ∈ (−h0/2, h0/2).
In the sequel f represents the deformation map of B0 and F = ∇f its 3 × 3

gradient. The energy E stored in the membrane is symbolically expressed as follows:

E =
∫
B0

W (F) dV =
∫

�

∫ h0/2

−h0/2
W (F) dz d�, (1)

where W is the purely elastic Helmholtz energy density per unit volume. Evidently,
the energy density per unit surface in the reference configuration reads as follows:

ψ =
∫ h0/2

−h0/2
W (F) dz. (2)

In-plane fluidity is the main features of lipid membranes at room-to-body tempera-
ture. This entails the impossibility of sustaining shear stresses in planes perpendicular
to e3, unless viscosity is accounted for. This has been used to restrict the dependence
ofW on three suitable invariants of F (see Zurlo 2006; Healey et al. 2017 andMaleki
et al. 2013), namely

I (x) = { J̄ (x), det F(x), φ̄(x)}, (3)

representing the areal stretch of planes perpendicular to the direction e3, the volume
change and the stretch across the thickness, which ultimately will deliver the order
parameter for the degree of curliness of the lipids, respectively.

With the aim of catching the out-of-plane kinematics as well as thickness changes,
the following ansatz is assumed for the 3D deformation (see Fig. 2):

Fig. 2 Schematic representation of the deformation (4) of a plate-like reference configuration B0
into the current configuration B. The gray box depicts the space occupied by two lipid molecules,
their volume being conserved during the deformation (courtesy of Deseri and Zurlo 2013)



Elasticity and Hereditariness 69

f (x) = g(x) + z φ(x)n(x), (4)

where g(x) = g(x, y, 0) defines the current mid-surface of the membrane, that is
ω = g(�), where n is the outward normal to ω and where

φ(x) = h(x)/h0

is the thickness stretch, with h the current thickness. Such ansatz permits to make
explicit the dependence of the invariants I on z and, ultimately, to perform the
expansion of (2) in powers of the reference thickness h0.

The molecular volume of biological membranes can be shown to stay almost
constant in a broad rangeof temperature (see e.g.,Goldstein andLeibler 1989;Owicki
et al. 1978). This condition can be made explicit through a quasi-incompressibility
constraint, namely

det F(x, 0) = J̄ (x, 0)φ(x) = 1. (5)

The gray area in Fig. 2 relates with neighboring lipid molecules across the upper
and lower leaflets with respect to the film mid-surface. The constraint (5) is actually
a first-order approximation of the exact incompressibility constraint, as det F(x) =
det F(x, 0) + O(z). In all planar deformations, namely whenever ω deforms in the
plane z = 0, (5) yields that det F(x) = 1 is exact. This is the special case considered
in the sequel, thereby focusing on planar lipid membranes. It is not difficult to show
that the 3D energy density W reduces as follows:

w(J ) = W ( J̄ , det F, φ̄)

∣∣∣
z=0

= W (J, 1, J−1), (6)

where
J (x) = J̄ (x, 0).

The ansatz (4) and the assumption of in-plane fluidity yield the following expan-
sion of (2) up to terms of order h30:

ψ = ϕ(J ) + κ(J )H 2 + κg(J )K + α(J )||gradω Ĵ ||2, (7)

where H and K are, respectively, the mean and Gaussian curvatures of the mid-
surface ω, where

ϕ(J ) = h0 w(J ) (8)

is the stretching energy density of the membrane, scaling with h0, and where bending
rigidities are found to be the following:

k(J ) = h20
6

ϕ′′(J ) = h30
6

w′′(J ), kG(J ) = h20
12J

ϕ′(J ) = h30
12J

w′(J ), (9)
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where ′ = d/d J . It is worth emphasizing that the latter scale with h30, as expected.
The last term in (7) reads as follows:

α(J ) = h20
24J 3

ϕ′(J ), (10)

and it penalizes the gradients of J = h/h0, namely the presence of boundary layers
between zones where the lipids are in either of the two possible phases. It is worth
emphasizing that Ĵ represents the spatial description Ĵ ◦ g = J of J , and gradω is
the spatial gradient, with respect to points of the current mid-surface ω.

Often times the bending energy is calculated relative to the current surface ω and,
hence, bending rigidities must be expressed relative to the same configuration (see
e.g., Baumgart et al. 2003), i.e.,

κ(J ) = h20
6J

ϕ′′(J ), κG(J ) = h20
12J 2

ϕ′(J ). (11)

The expression (7) is consistent with several models previously introduced in the
literature of biological membranes. Indeed, Helfrich’s model

ψ = kH 2 + kGK

is recovered whenever one considers fixed value of J fixed.
The new energy (7) enables one to predict thickness phase transitions even for

planar lipid membranes, including Langmuir films, that remain flat under external
inputs, like temperature changes. Such situations are retrieved by (7) by setting
H = K = 0. This energetics reminds of the resulting energy for cold drawing of
polymeric films obtained in (see e.g., Coleman and Newman 1988). If the term
factoring α is neglected, (7) agrees with the one determined in Baesu et al. 2004.

It is worth noting that the strategy followed in Deseri et al. (2008) and Zurlo
(2006) to deliver (7) accounts for fairly general constitutive assumptions on the 3D
energy W , and also accounts for chemical composition, temperature dependence
and, potentially, for the presence of spontaneous curvature.

2.1 Stretching Energy

As it is clear from the structure of (7) and from (11) and (10), the pivot information
governing the whole energetics is the surface Helmholtz energy ϕ(J ). This regulates
the in-plane stretching behavior of the membrane and allows for predicting the phase
transition phenomena observed in lipid membranes (Fig. 3).

The experimental evidence clearly shows that for a given chemical composition
there may exist a temperature range where the Lo and Ld phases coexist, organiz-
ing themselves in domains called rafts. In closed membranes, these domains are
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Fig. 3 The stretching energy
ϕ(J ) adapted from Goldstein
and Leibler (1989), for a
temperature T ∼ 30◦. The
areal stretch Jo = 1
corresponds to the
unstressed, reference
configuration B0 (courtesy
of Deseri and Zurlo 2013)
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typically detectable by curvature inhomogeneities, reflecting the occurrence of dif-
ferent bending rigidities (Baumgart et al. 2003). The expressions (11) for the bend-
ing moduli enlighten how the order–disorder transition, described by the stretching
energyϕ(J ), is connected with bending behavior of the membrane. Furthermore, we
will prove that the knowledge of ϕ(J ) also determines the line tension occurring at
the phase boundary.

Several works, such as Falkovitz et al. (1982), Goldstein and Leibler (1989),
Komura et al. (2004), Owicki et al. (1978), Owicki and McConnell (1979), show
that in order to provide a suitable expression for ϕ(J ) a Landau expansion in terms
of the powers of either the thinning field φ = h/h0 or the areal stretch J is provided.
This has the advantage that its (temperature dependent) coefficients are connected
to the latent heat and the order parameter jump (e.g., Goldstein and Leibler 1989
and Lipowsky and Sackmann 1995). For the sake of convenience, in the sequel we
assume that the natural planar configuration B0 of the lipid membrane is precisely
the ordered phase Lo, where J = Jo = 1, so that the stretching energy takes the form

ϕ(J ) = a0 + a1 J + a2 J
2 + a3 J

3 + a4 J
4, (12)

where the coefficientsai (i = 0, . . . , 4) depend on temperature and chemical compo-
sition. Lacking of more experimental information leads one to tune such parameters,
thanks to experimentals provided in Goldstein and Leibler (1989), actually also uti-
lized in Komura et al. (2004), to connect with the thinning transition experienced by
the lipids. At room temperature T ∼ 30◦, one record the following coefficients for
ϕ(J ):

a0 = 2.03, a1 = −7.1, a2 = 9.23,
a3 = −5.3, a4 = 1.13.

(13)

It is worth noting that their dimension is [J ][m]−2. The choice (13) has been pursued
with the aim to show the feasibility of the proposed treatment. Specific data on the
bilayer chemical composition and the temperature are required in order to get realistic
pictures of the geometrical changes during the expected phase transition.
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Summing up we conclude that:

• the membrane energy densityϕ(J ) can be completely determined experimentally:
this is a local term within the energy and depends on temperature, chemical com-
position (of the specific lipids), and it scales with the linear power of the reference
thickness of the bilayer;

• bending and spatial changes of either the thickness change gradient or of the related
areal stretch are detected by the energy, thanks to the arising nonlocal terms;

• the latter coincides with the Helfrich’s energy when the gradient term is negligible
with respect to the bending one and the elastic moduli do not significantly change
with areal stretch and concentration;

• like in the case of Coleman and Newman (1988), the penalization of the gradient
of the areal stretch spontaneously arises from the dimension reduction procedure;

• besides prescribing the mean and the Gaussian curvatures, the resulting bending
energy density is completely determined by the sole membrane energy density
ϕ(J ): this relates to the chemical composition of the membrane is the only needed
constitutive information of the model.

2.2 Thinning Transition in Flat Lipid Layers

A planar membrane in the reference configuration B0 is displayed in Fig. 4. Its
homogeneous thickness in the direction of e3 is denoted by h0, while its width in the
direction of e2 is labeled by B and its length is denoted by L . At z = 0 the reference
mid-surface� is set, while the sides of the planar bilayer are situated x = ±L/2 and
y = ±B/2.

Plane strain deformations are considered to explore the main features of the thin-
ning phase transition. Hence, the kinematics reads as follows:

ϕ(x) = g(x)e1 + ye2 + zφ(x)e3, (14)

where x is the variable in the direction e1. The deformation gradient of such ϕ reads
as follows:

Fig. 4 Plane strain lipid
bilayer undergoing phase
transition from the thicker
Lo domain to the thinner Ld
domain under a traction � in
the e1 direction (courtesy of
Deseri and Zurlo 2013)
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F = ∇ϕ =
⎡
⎣ gx 0 0

0 1 0
zφx 0 φ

⎤
⎦ , (15)

where x denotes differentiation with respect to that (only) variable. The displacement
component along e1 is u(x) = g(x) − x . The stretch in direction of the length of the
bilayer is introduced in the sequel

λ(x) = gx (x). (16)

The 3D quasi-incompressibility reduces to φ = λ−1 on �, so that the membrane
deformation is completely determined by λ.

We note that
||gradω Ĵ ||2 = ||gradωλ̂||2 = λ2

xλ
−2, (17)

after setting λ̂ = λ ◦ g−1, representing the spatial description of λ,
The resulting energy density per unit area (7) reads as follows:

ψ(λ,λx ) = ϕ(λ) + h20
24

λ−5ϕ′(λ)λ2
x (18)

where ′ = d/dλ (here J = λ). Upon introducing

γ(λ) = −h20
12

λ−5ϕ′(λ), β(λ) = 1

2
γ′(λ), (19)

(see Coleman and Newman 1988), the energy density above can be rewritten as
follows:

ψ(λ,λx ) = ϕ(λ) − 1

2
γ(λ)λ2

x . (20)

It is worth noting that if γ would be replaced by a negative constant, the energy (20)
coincides to the Cahn–Hilliard functional (Cahn and Hilliard 1958). The fact that the
constant γ < 0 in such a model is required for stability purposes. In (19) the fact that
γ depends on λ makes (20) to resemble the energy density deduced in Coleman and
Newman (1988). Even in this case the condition γ(λ) < 0 is required for nucleating
phase boundaries. This is in fact the case for the energy density (12).

For the sake of argument, opposite tractions � (force per reference length) are
taken to arise on the edges x = ±L/2. Due to the presence of λx hypertractions �

performing work against ux must be accounted for. Henceforth, the work performed
on the bar reads as follows:

W (u, ux ) = B [�u]+L/2
−L/2 + B [�ux ]

+L/2
−L/2 . (21)

Evidently, the total potential energy for any g is the sum of the total strain energy,
obtained by integrating (20) across the membrane, minus the work (21), i.e.,
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E (γ) = B
∫ L/2

−L/2
ψ(λ,λx ) dx − W (u, ux ). (22)

Stationarity of (22) yields the Euler–Lagrange equation for u and the associated
boundary conditions. A perturbation η(x) is imposed on the underlying g, namely

gε(x) := g(x) + εη(x), (23)

to deliver those information from (22). The arbitrariness ofη leads to thefirst variation
δE = dE(gε)/dε|ε=0 of (22), thereby delivering the Euler–Lagrange equation. Upon
integrating such relation, the following condition is obtained:

� = ϕ′(λ) + β(λ)λ2
x + γ(λ)λxx = const., (24)

holding in the open interval (−L/2, L/2), with the boundary conditions

[� + γ(λ)λx ]−L/2 = [� + γ(λ)λx ]+L/2 = 0. (25)

Strain localizations are investigated to explore the possible coexistence of ordered
regions, in the Lo phase, and disordered zones, the thinner Ld phase: this transition
maybe connected through a boundary layer.With the aimof getting rid of edge effects
induced by the boundary (Coleman and Newman 1988), the length L is considered
unbounded relative to the reference thickness h0. Henceforth, −∞ < x < ∞. The
particular case in which� = 0 at the boundaries is explored in the sequel, so that (25)
implies λx → 0 as x → ±∞. Nontrivial and bounded solutions of (24) are sought.
In Coleman and Newman (1988) it is shown that they verify the equation

x − x̄ =
∫ λ(x)

λ(x̄)

( −2

γ(λ)

∫ λ

λa

[
ϕ′(ζ) − �

]
dζ

)− 1
2

dλ, (26)

where x̄ is arbitrary and where λa is either the value of λ at a specific location or a
limiting value at which λx = 0. The derivation of (26) is detailed in Deseri and Zurlo
(2013).

Whenever γ(λ) < 0, nontrivial bounded solutions of (24) have been completely
characterized in Coleman and Newman (1988) for given tractions �. Depending on
the number of locations at which λx = 0, the solutions of the problem are shown to
fall in one of the following classes:

1. λ is strictly monotone, if λx 	= 0 for any finite location;
2. λ exhibits either a bulge or a neck, if there exists precisely one location x at which

λx = 0;
3. λ is periodic, if there is more than one finite value of x at which λx = 0.

Strictly monotone solutions are analyzed in the sequel. In such cases the following
relations hold:
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limx→−∞ λ = λ∗, limx→+∞ λ = λ∗
limx→±∞ λx = 0, limx→±∞ λxx = 0.

(27)

Coleman and Newman (1988) show that such conditions can be attained provided
that the applied traction equals the Maxwell stress �M , which is determined by the
equal area rule

∫ λ∗

λ∗
[ϕ′(λ) − �M ] dλ = 0, (28)

with
ϕ′(λ∗) = ϕ′(λ∗) = �M ,

bearing in mind that these solutions are uniquely determined to within a reflection or
translation. The fact that λ(x) is monotonic allows for determining the location map
x in terms of λ from (26), with λa ≡ λ∗ and x̄ arbitrary, such that λ∗ < λ(x̄) < λ∗.

For the specific energy (12), it turns out that

�M = 5.92mNm−1, λ∗ = 1.025, λ∗ = 1.308, (29)

which is consistent withwhat it is displayed in (see Fig. 5). For the sake of illustration,
onemay take h0 = 45.5Å for the reference thickness of the ordered phase (seeDeseri
and Zurlo 2013) and its reference to Goldstein and Leibler (1989) and by making use
of (12, 19), the numerical integration of (26) yields λ(x) within the range (λ∗,λ∗).

The boundary layer is displayed in Fig. 6 as a result of the solutions of the Euler–
Lagrange equation mentioned above. Evidently, with λ(x) strictly monotonic, the
limit values (λ∗,λ∗) are asymptotic values at infinity. Nonetheless, the solution
depicted in Fig. 6 is characterized by a strong strain localization inside a bound-
ary layer of length �15Å. It is between λ∗ and λ∗ where such a boundary layer
is almost completely localized. As it was expected, the length of the boundary
layer and the membrane thickness are of the same order. This is in agreement with

Fig. 5 The function ϕ′(J )

and the value of the Maxwell
stress �M = 5.92mNm−1,
resulting from the equal area
construction (gray regions)
(courtesy of Deseri and
Zurlo 2013)
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Fig. 6 The function λ(x)
(up) and the thickness profile
h(x) (down) in
correspondence of � = �M .
Lengths expressed in Å
(courtesy of Deseri and
Zurlo 2013)

previously obtained estimates, such as the one obtained in Akimov et al. (2004). It
goes without saying that the stretch is almost constant outside the boundary layer.
The two domains where the stretch is practically equal to λ∗ and λ∗ are the Lo and
Ld phases, respectively. From (24), the (Piola) stress (per reference length) in both
phases equals�M , whereas the Cauchy stress (per current length) in the two domains
amounts to

t Lo = t∗ = �Mλ∗ = 6.07mNm−1

t Ld = t∗ = �Mλ∗ = 7.74mNm−1.
(30)

Of course such values strongly depend on the form of ϕ(J ) taken in (12). Although
this is certainly the case, such values are consistent with estimates of surface stress
in ordered and disordered domains inferred through experimental investigations (see
e.g., Semrau et al. 2008). In the latter paper it is shown that the stress in the disordered
phase is significantly higher than in the ordered one. Furthermore, the values of
surface stress obtained in this analysis are within the range of values of tension
physiologically intrinsic of lipidmembranes, namely (0−15mNm−1). The estimates
above agree with the results in Reddy et al. (2012), where the role played by surface
tension in changes of the lipid conformational order has been investigated.

2.3 Line Tension Holding Zones in a Given Phase

Before introducing the line tension, as the configurational force capable to hold zones
in one phase surrounded by others in a different phase, we prove that (26) is a global
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minimizer of the total potential energyE in the class of smooth solutions fulfilling the
boundary conditions (27). Furthermore, one can also show that this profile delivers
an optimal value of the line tension.

In order to do so,we recall that phase coexistence follows twodifferent approaches:
the gradient theory and the sharp interface approximation.

The gradient theory does not allow discontinuities in the field. In either case,
the analysis leading to phase transition between two different zones relies upon
minimizing the total potential energy introduced earlier in the text, namely:

E =
∫

�

[
ϕ(J ) + α(J )||gradω Ĵ ||2

]
d� − W . (31)

The sharp interface approximation allows for the order parameter J to be subject to
discontinuities; in this case the total potential energy reads

F =
∫

�

ϕ(J ) d� + σ �(�J�) − W , (32)

where σ is the line tension between the two phases which, from the dimensional
standpoint, is a force.Here � is the length of the interface,which in this approximation
is a jump set, i.e., the union of regions across which J can tolerate jumps.

In Deseri and Zurlo (2013) a rigorous analysis demonstrates the strict connection
between the sharp interface approach and the gradient theory. Indeed, it is proved
that minimizers of E converge (in a suitable sense) to minimizers of F (see e.g.,
Alberti 2000 for explanations). An optimal value for the line tension can be deduced
by evaluating the global minima of E in the class of solutions fulfilling the boundary
conditions (27).

Because of compatibility we recall that ux (x) = λ(x) − 1. Henceforth, the work
can be rewritten as follows:

W = B
∫ L/2

−L/2
�Mλ dx − B�ML . (33)

It is worth noting that the following quantity, essentially representing a Gibbs free
energy density for the lipid membrane, remains constant at the minimizer, i.e.,

ϕ(λ∗) − �Mλ∗ = ϕ(λ∗) − �Mλ∗.

This suggests to consider the energy

ϕ̃(λ) = ϕ(λ) + c,

where
c = �Mλ∗ − ϕ(λ∗) = �Mλ∗ − ϕ(λ∗), (34)
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so that
ϕ̃(λ∗) − �Mλ∗ = ϕ̃(λ∗) − �Mλ∗ = 0. (35)

We also note that away from the characteristic stretches λ∗ and λ∗, i.e., for λ 	= λ∗
and λ 	= λ∗, the following inequality holds:

ϕ̃(λ) − �Mλ ≥ 0. (36)

After discussing the sharp interface approximation, the gradient functional is now
analyzed. Outcomes from the latter will be compared with the former. Indeed the film
is subject to a traction �M , and we consider a monotonic stretch profile λ(x) within
the interval (−L/2, L/2). Assume that λ → λ∗ as x → −L/2 and that λ → λ∗ as
x → L/2. Obviously, �M is the Maxwell value introduced in Sect. 2.2.

Consider the total potential energy per unit length E /L . By utilizing ((33), (35)),
for any thickness profile satisfying the boundary conditions (27), the relation below
follows:

E

L
= B

L

∫ L/2

−L/2

[
(ϕ̃(λ) − �Mλ) − γ(λ)

2
λ2
x

]
dx + d, (37)

where d = B(�M − c) is a constant.
On closing, the profile characterized by (26) and verifying stationarity is now

shown to be a minimizer for E /L . This is based on a result in Alberti (2000). By
ϕ̃(λ) − �Mλ ≥ 0, by −γ(λ)λ2

x ≥ 0, by the monotonicity of λ and by the inequality
a2 + b2 ≥ 2ab, it follows the following inequality:

E

L
≥ B

L

∫ λ∗

λ∗

√−2γ(λ) (ϕ̃(λ) − �Mλ) dλ + d, (38)

and equality holds if and only if a = b, namely if and only if

ϕ̃(λ) − �Mλ = −γ(λ)

2
λ2
x . (39)

If one now simply recognizes that

ϕ̃(λ) − �Mλ =
∫ λ

λ∗

(
ϕ′(ζ) − �M

)
dζ (40)

from (35), (26) is obtained in exact form by integrating (39). Finally, we just showed
that the following minimum is actually attained:

min

(
E

L

)
=

= B

L

∫ λ∗

λ∗

√−2γ(λ) (ϕ̃(λ) − �Mλ) dλ + d, (41)
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within the functions verifying the boundary conditions (27), provided that λ(x) is
given by (26).

Consider now any configuration characterized by λ = λ∗ for x < x0 and λ = λ∗
for x > x0, so that in x = x0 there is a sharp interface. The location x0 is an arbitrary
finite point. In this configuration, one can show that the total potential energy per
unit length (32) becomes

F

L
= B

L
σ + d. (42)

By comparing (37), (41) and (42) the line tension of the sharp interfacemodel remains
determined as follows:

σ =
∫ λ∗

λ∗

√−2γ(λ) (ϕ̃(λ) − �Mλ) dλ. (43)

Numerical data (13) and integration of (43) owe the following number for the line
tension:

σ = 3.88 · 10−13N (44)

which is consistent with the experimentally found value 9 ± 0.3 · 10−13N (see e.g.,
Baumgart et al. 2003; Semrau et al. 2008). The predicted thickness profile and
line tension are then consistent with pre-existing analyses for lipid membranes, that
account for the competition of stretching and tilt elasticity. This latter phenomenon
is due to the fact that lipid molecules can deviate from the mid-surface normal (see
e.g., Akimov et al. 2004; Hamm and Kozlov 2000).

2.4 Elastic Properties of the Lipid Membrane

In the sequel we explore values for the elastic moduli in a lipid bilayer undergoing a
traction�M . Here each pure phase is characterized by a specific value of the stretchλ,
namely λ = λ∗ for the liquid-ordered phase Lo and λ = λ∗ for the liquid-disordered
one Ld .

Area compressibility A tangent area compressibility modulus

KA(λ) := ϕ′′(λ) (45)

is defined as the change of surface stress, ϕ′(λ), induced by a change in stretch. As
themembrane energyϕ(λ) is a fourth-order polynomial, the compressibility stiffness
KA is nonconstant and takes the form

KA(λ∗) = KA(λ
∗) = 181mNm−1, (46)
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in λ∗ and λ∗, and for the unstretched membrane (λ = 1)

KA(1) = 288mNm−1. (47)

Henceforth, KA manifests softening. The obtained values are consistent with mea-
surements available in the literature. In particular, the highest areal stretch is
δA/A0 = λ∗ − 1 = 0.025 and it agrees with the value of rupture stretches found
in Lipowsky and Sackmann (1995).

Bending stiffness Relation (11)1 yields values in agreement with previous results
(see e.g., Bermúdez et al. 2004; Evans 1974; Norouzi et al. 2006; Pan et al. 2009;
Rawicz et al. 2000). Specifically, in the ordered and disordered phases the following
values are obtained:

κLo = κ(λ∗) = 6.10 · 10−19 J, (48)

κLd = κ(λ∗) = 4.78 · 10−19 J. (49)

It is worth noting that the ratio of these rigidities is

κLo

κLd
= 1.27 (50)

in agreement with the experimental findings (see e.g., Baumgart et al. 2003; Semrau
et al. 2008).

Gaussian stiffnessNormally the evaluation of this quantity refers to the spontaneous
curvature of each leaflet (Hu et al. 2012; Siegel and Kozlov 2004), while in Deseri
and Zurlo (2013), Zurlo (2006) these values are not accounted for. There each leaflet
has no spontaneous curvature and the resulting κG is of the order of 10−21J. This is
then turns out to be two orders of magnitude lower than existing estimates available
in Norouzi et al. 2006, Semrau et al. (2008). This discrepancy could be solved either
incorporating those spontaneous curvatures of each monolayer of by incorporating
the lateral (and highly nonconstant through thickness) pressure profile within the
bilayer. This is actually under investigation.

Keeping the approach of Deseri and Zurlo (2013), Zurlo (2006), relations (9)2
and (10) yield

α(J ) = kG(J )

2J 2
, (51)

highlighting the connection between changes of the Gaussian rigidity with changes
in the gradient of thinning and, ultimately, of the areal stretch. This connection is
actually not surprising. Indeed, thanks to the Gauss–Bonnet Theorem, kG emerges
at the boundaries of each region characterized by constant values of J . Namely, kG
appears at the phase boundaries between the Lo and the Ld phases. The role of α(J )

emerges instead while trying to evaluate the line tension inside the boundary layer,
as highlighted in Sect. 2.3. Such instances are consistent with the relation established
in Eq. (51).
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2.5 The Onset of Change of Elastic Phase

In this section we obtain the linearized equation of lipid membrane under the plane
strain geometry (14) with gx = J̄ and φ = φ̄ (hence φx = 0). In this regard let us
denote with ε the strain field perturbing uniformly the stretched configuration just
described. The elastic free energy density (20) for the membrane is then evaluated
at the perturbed configuration J = J̄ + ε, and takes the following form:

ψ (ε, εx ) = ϕ
(
J̄ + ε

) + α( J̄ + ε)|| ( J̄ + ε
)
x ||2

≈ ϕ( J̄ ) + ϕ′( J̄ ) ε + ϕ′′( J̄ )

2
ε2 + α( J̄ ) ||εx ||2 ,

(52)

where we neglected higher order contributions in ε2 to define ψDZ . Then the free
energy takes the following form:

�DZ =
∫

�

ψDZ(ε, εx )dx, (53)

where � ∈ [−L/2, L/2], and

ψDZ(ε, εx ) = ϕ( J̄ ) + ϕ′( J̄ ) ε + ϕ′′( J̄ )

2
ε2 + α( J̄ ) ε2x . (54)

The (in-plane) displacement field is expressed through a perturbation v such that
u = ū + v, and ε(x) = vx (x).

Due to the presence of nonlocal terms εx , we recall that the hypertractions �

performwork against displacement gradient vx at the boundary. Henceforth, the total
energy E change in a neighborhood of the “ground” (homogeneous) configuration
reads as follows:

E = B �DZ − W (v, vx ), (55)

where the external work reads now as follows:

W (v, vx ) = B [� × (ū + v) + � × (ūx + vx )]∂� , (56)

where ū = J̄x is zero if the ground configuration is homogeneously stretched. For the
sake of conciseness, nonhomogeneous ground configurations will not be analyzed
here, although the issue is addressed in Deseri et al. (2016). By substituting (52) and
(55) in (56) the total energy change takes the following form:

E = B
∫

�

(
ϕ + ϕ′( J̄ ) vx + ϕ′′( J̄ )

2
v2
x + α( J̄ ) v2

xx

)
dx

− B [� v + � vx ]∂� + Ē ,

(57)
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where

Ē = B
∫

�

ϕ( J̄ )dx − [� ū + � ūx ]∂� . (58)

From now on, every item with the over-bar is calculated on the ground configuration
(e.g., ϕ̄ = ϕ( J̄ ) etc.), and we will denote with ′ the derivative with respect to the
spatial variable x .

The linear Euler–Lagrange equation for the perturbations of planar membranes is
derived through stationarity of E (see Appendix A1 in Deseri et al. 2016 for details).
Such equation together with its boundary conditions reads as follows:

⎧⎨
⎩
2ᾱ v′′′′ − ϕ̄′′ v′′ = 0 in �

either ϕ̄′′ v′ − 2ᾱ v′′′ = � − ϕ̄ or δv = 0 in ∂�

either 2ᾱ v′′ = � or δv′ = 0 in ∂�

(59)

It is worth noting that homogeneous configurations, and hence their corresponding
values J̄ , from which oscillatory perturbations could arise are still not known at this
point. In order to find them, a parameter ω is introduced as follows:

ω2 :=

⎧⎪⎨
⎪⎩

+ ϕ̄′′

2ᾱ
if ϕ̄′′ > 0

− ϕ̄′′

2ᾱ
if ϕ̄′′ < 0,

(60)

where, because of (10) and (9), we have

ϕ̄′′

2ᾱ
= 12

h20

ϕ̄′′

ϕ̄′ J̄
5. (61)

Relation (59) can then be rewritten as follows:

⎧⎪⎨
⎪⎩

v′′′′ ∓ w2 v′′ = 0 in �

either ± ω2v′ − v′′′ = � − ϕ̄

2ᾱ
or δv = 0 in ∂�

either 2ᾱ v′′ = � or δv′ = 0 in ∂�.

(62)

Boundary conditions yield obviously several cases. For the sake of illustration, we
choose the case in which the displacement is constrained and the hypertractions are
imposed at the boundary, i.e., v = 0 and 2ᾱ v′′ = �.

The value of ω2 does determine the type of solution arising from this analysis.
In particular, the phase changes start to be seen from the onset arising, thanks to
the specific value of ω2. In order to investigate such onset, subcases are identified
depending on J̄ relative to the landscape of the membrane energyϕ in Fig. 3. Indeed,
because such a function has at most one stationary point J0 unless the lipid bilayer
is at its transition temperature, inspection of Fig. 7 below shows that there are four
values of J besides J̄ to be accounted for, i.e., J∗ ≤ Jmax ≤ Jmin ≤ J ∗. Here Jmax
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and Jmin are points of turning curvature for ϕ(J ), whereas J∗ and J ∗ are the values
of the two points sharing the value of the tangent to the graph of ϕ(J ).

Two alternative situations may arise depending on the sign of ϕ̄′′, depending on
whether or not the ground state J̄ belongs to the spinoidal, hence unstable, zone of
ϕ(J ).

2.6 Unstable Region: ϕ̄′′ < 0

The case just mentioned is investigated in this section. Here, J̄ is then such that
Jmax < J̄ < Jmin , corresponding to a region of negative tangent for the membrane
stress τ (J ) = ϕ′(J ) (see Fig. 7). The Euler–Lagrange equation (62) takes then the
following form:

v
′′′′ + ω2v

′′ = 0, (63)

Fig. 7 The membrane
energy ϕ(J ) for a
temperature T ∼ 30◦ and
related local stress τ (J ). The
value Jo = 1 corresponds to
the unstressed, reference
configuration B0 (courtesy
of Deseri and Zurlo 2013;
Deseri et al. 2016)
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which general solution reads as follows:

v(x) = A1 cos(ω x) + A2 sin(ω x) + A3 x + A4. (64)

The primary interest here is to investigate the influence of the boundary conditions
below:

v

∣∣∣
∂�−

= 0 v

∣∣∣
∂�+

= 0 2ᾱv′′
∣∣∣
∂�−

= �̂L 2ᾱv′′
∣∣∣
∂�+

= �̂R (65)

where �̂R = �

∣∣∣
∂�+

and �̂L = �

∣∣∣
∂�−

. For the sake of brevity we set

c = cos(ω L/2) and s = sin(ω L/2).

The boundary conditions assume can be then recast in the following form:

⎧⎨
⎩

A1 c − A2 s − A3
L

2
+ A4 = 0

2ᾱω2 (−A1 c + A2 s) = �̂L

at x = − L

2
⎧⎨
⎩

A1 c + A2 s + A3
L

2
+ A4 = 0

2ᾱω2 (−A1 c − A2 s) = �̂R

at x = + L

2

We further choose a constant hyperstress at the boundary, namely �̂L = �̂R = �̂,
leading to the simplified set of algebraic conditions below:

⎡
⎢⎢⎣

0 s L
2 0

c 0 0 1
0 s 0 0

−2ᾱ ω2c 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
�̂

⎞
⎟⎟⎠ . (66)

We record that the determinant of the coefficient matrix of such system reads as
follows ᾱ c s L ω2. We now characterize the nontrivial modes (64) of the system no
matter what the value of the hyperstress, namely we investigate the solutions of

ᾱ c s L ω2 = 0. (67)

Because of (10) and 1 < Jmax < J̄ < Jmin , we note that ᾱ > 0 for all J̄ > 1. Then,
the orthogonality of the trigonometric functions imposes that the equation is satisfied
if either c = cos(ω L/2) = 0 or s = sin(ω L/2) = 0.

It follows that we are left to study only two subcases.

Case 1. We investigate the case s = 0 and c = ±1. Such instance implies that

ω = 2 n π

L
(68)
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and relation (68) allows for showing that this circumstance occurs whenever the
ground state solves the nonlinear algebraic equation below:

ϕ̄′′

ϕ̄′ J̄
5 = −n2π2

3

(
h0
L

)2

. (69)

It is worth noting that the ratio (h0/L)2 measures the thinness of the bilayer and it
is of the order 10−8 or smaller. Henceforth, from (69) it follows that a large finite
number n of oscillations arise in the onset of bifurcation starting from ground states
solving (69). Indeed this is possible just by noting that for J such that ϕ̄′′ → 0−,
namely right after the change on convexity of ϕ. The solution of the resulting system
permits to get the amplitudes of the nth mode, i.e.,

⎡
⎢⎢⎣

0 0 L
2 0

±1 0 0 1
0 0 0 0

∓2ᾱ ω2 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
�̂

⎞
⎟⎟⎠

then ⎧⎪⎪⎨
⎪⎪⎩

A1 = ∓ �̂

2ᾱ ω2

A3 = 0
A4 = ∓A1

.

Then, the corresponding buckled solution of order n reads

vn(x) = ± �̂

8 ᾱ n2 π2

[
cos

(
2nπ

x

L

)
− 1

]

+ A2 sin
(
2nπ

x

L

)
.

(70)

It goes without saying that even if no hyperstress �̂ is present at the boundary, (70)
guarantees that a bifurcated mode vn = A2 sin

(
2nπ x

L

)
does occur.

Case 2. We now instead explore the following situation:

s = ±1 and c = 0.

In this case we have

ω = (1 + 2 n)π

L
(71)

and
ϕ̄′′

ϕ̄′ J̄
5 = − (1 + 2n)2π2

12

(
h0
L

)2

, (72)
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which definitely has solutions for J̄ so that ϕ̄′′ → 0− for the same very reason
discussed for case 1. Boundary conditions lead to A2 = A3 = A4 = 0. It follows
that solutions exist if and only if �̂ = 0 and they take the form

vn(x) = A1 cos(ω x) = A1 cos
(
(1 + 2n)π

x

L

)
. (73)

2.7 Stability Region: ϕ̄′′ > 0

If the ground state J̄ is not in the spinoidal zone, namely there ϕ̄′′ > 0, and either
1 < J̄ < Jmax or J̄ > Jmin , the balance equation reduces to

v′′′′ − ω2 v′′ = 0, (74)

and its general solution becomes

v(x) = A1 cosh(ω x) + A2 sinh(ω x) + A3 x + A4, (75)

hence no oscillations arise.

2.8 Singular Ground States: ϕ̄′′ = 0

Singular values for the ground states are J̄ = Jmax and J̄ = Jmin . There, the first
derivative of the local stress with respect to J is zero and, hence, ϕ̄′′ = 0. This
immediately tells that ω = 0, and the resulting governing equation, v′′′′ = 0, admits

v(x) = A0 + A1 x + A2 x
2 + A3 x

3 (76)

as solution. If (65) are imposed at the boundary with �̂R = �̂L = �̂, the constants in
the previous relation become as follows:

A0 = − �̂ L2

16 ᾱ
A1 = 0 A2 = �̂

4 ᾱ
A3 = 0, (77)

thereby leading to a unique solution. In other words, no bifurcations arise from
singular ground states and perturbations do not arise in the absence of hyperstress at
the boundary.
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3 Hereditariness of Lipid Membranes

Available experimental data Harland et al. (2010), Espinosa et al. (2011), Craiem and
Magin (2010) show that lipid bilayers present an anomalous rate-dependent behavior
within broad ranges of temperature. Anomaly means that if the loss and storage
moduli1 in any rheometric test are plotted against frequency, such quantity scale with
a noninteger power of the frequency itself. Indeed, Harland et al. (2010) showed that
the storage and lossmodulus are proportional to the frequency through a power law of
fractional order, i.e.,G

′
(ω) ∝ ωβ andG

′′
(ω) ∝ ωβ+1, where the exponent β depends

on temperature and specific chemical composition of the biological structure. This
justifies the term “fractional” for such a kind of response. Fractional hereditariness is
then an intrinsic feature of lipid membranes. Perturbations of the ground states from
which bifurcations of phases occur are nucleated and then evolve in time according
to such behavior.

Results in Harland et al. (2010) show that lipid membranes are not purely elastic
and this is in fact only an asymptotic condition. Nevertheless, such structures have
been predominantly modeled as hyperelastic surfaces. Physiological conditions of
cells are in fact characterized by intracellular and extracellular viscous fluid com-
partments cooperating to vary the areal stretch several times during cell lifetimes.
The corresponding membrane stress therefore changes in time and can achieve sig-
nificantly higher values than the ones evaluated by utilizing nonlinear elasticity. The
time change of such stress can even evolve to the extent of either causing rupture of
the cell membrane or to modify toward ceramide phase, and then to cell apoptosis,
the lipids across the membrane (Craiem and Magin 2010).

3.1 The Physics of Hereditariness in Lipid Structures

As pointed out before, lipid systems forming cytoplasmaticmembranes present time-
hereditary properties (Espinosa et al. 2011). Storage and lossmoduliG

′
(ω),G

′′
(ω) of

lipidmembrane depend on the type of lipids. The presence of very common lipids like
phosphatidylcholine (PODC) and sphingomyelin (SM) do heavily influence the rate
behavior of lipid layers, thereby showing various morphologies ultimately affecting
the resulting effective viscosity of the membrane. The phases can be either liquid-
ordered or gel-phase, for temperatures over or below the melting temperatures of the
PODC. For SM the liquid-disordered or the solid phase (ceramide) can be involved
depending on the temperature of the system.

From the point of view of modeling, it is obvious that the use ofMaxwell rheolog-
ical elements to describe storage and loss moduli of the material does not provide a
suitable representation for the behavior of lipid membranes for the simple reason that

1For the reader who is not familiar with this standard terminology, we recall that the right-handed
Fourier transform of a given relaxation function represents the “complex modulus” of a viscoelastic
material; its real part is the “storage modulus”, while its imaginary part is its “loss modulus”.
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Maxwell models yield G
′
(ω) ∝ ω and G

′′
(ω) ∝ ω2, never observed in experiments

(see e.g., Espinosa et al. 2011).
It is then obvious that the only way to account for hereditary behavior of lipid

membranes must contain fractional-order features, where creep and relaxation are
described as power laws so that J (t) ∝ tβ and G(t) ∝ t−β , respectively. Small per-
turbations arising from homogeneous ground states must then be studied by making
use of the Boltzmann–Volterra convolution integral. This allows for keeping track
the stress evolution at any x depending on the strain history ε(x, t), namely

σ(x, t) = Cβ

�[1 − β]
∫ t

−∞
(t − τ )−β ε̇(x, τ ) dτ . (78)

The right-hand side of the latter relation relates with the Caputo fractional-order
derivative Dβ

t defined as follows:

Dβ
t f (t) = 1

�(β)

∫ t

−∞
(t − τ )−β ḟ (x, τ )dτ , (79)

introduced in Caputo (1969) and explored in several papers ever since (see e.g.,
Podlubny 1998; Magin 2010; Samko et al. 1987; Kilbas et al. 2006). The springpot
element introduced in Scott-Blair (1974) is a rheological element associated to (79).
This detects an intermediate behavior between a linear elastic spring and a viscous
dashpot, which are then limiting cases obtained for β = 0 and β = 1, respectively.

When it comes to considering more complex studies of nucleations of phase
perturbations in the presence of elasticity and viscosity, one needs to provide an
expression of the free energy, delivering the key element of a variational principle
suitable for the desired investigations. The free energy provided by Deseri et al.
(2014) for power law hereditary systems is then used in the sequel. This can be
further specialized to characterize the non-dissipated part of the power performed
in a given springpot by an underlying stress, thereby allowing for a powerful tool
suitable for handling lipid membrane hereditariness.

3.2 The Free Energy for Small Perturbations of Planar Lipid
Structures

In this section we aim to obtain and solve the balance equations governing the nucle-
ation and evolutionof small perturbations of homogeneous ground states in hereditary
and planar lipid membranes.

The limiting elastic case is well described through (54), containing both the local
term, ε(x t), and a nonlocal one, εx (x, t). Henceforth, when it comes to accounting
for fractional hereditariness of our systems, the expression of the free energy function
is then the sum of contributions related to the local and the nonlocal state variables
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(for the notion of state in hereditary systems see e.g., Del Piero and Deseri 1997;
Deseri et al. 1999, 2006).

It is then reasonable to infer that nucleation and evolution of small perturbations
from homogeneous ground states are determined by the local and nonlocal stresses
σL(x, t) and σN(x, t) respectively, i.e.,

σL(x, t) =
∫ t

0
GL(t − τ )ε̇(x, τ ) dτ , (80a)

σN(x, t) =
∫ t

0
GN(t − τ )ε̇x (x, τ ) dτ , (80b)

where GL and GN represent the local and nonlocal relaxation functions (relative to
the given ground state J̄ ), respectively, defined as follows:

GL(t) = ϕ̄′′ + fL(t),

GN(t) = 2ᾱ + fN(t).

Asymptotically, we require the following relations to hold:

lim
t→∞ fL(t) = lim

t→∞ fN(t) = 0, (81)

as the elastic case must be retrieved as limit. The analytic dependence of both fL(t)
and fN(t) on time can be determined by experimental observations of the evolution
of the phases as well as of their transition zone. The striking experimental evidence
discussed in the section above induces us to utilize a power law relaxation function
to model both local and nonlocal evolution of the constitutive response. In general
two different laws for describing the local and the nonlocal contributions have to be
considered; here we assume

GL(t) = ϕ̄′′ + CL t
−λ, (82a)

GN(t) = 2ᾱ + CN t
−ν, (82b)

where CL and CN are generalized moduli of the local and nonlocal relaxations, λ and
ν are the decay exponents of the relaxations, chosen in the (open) interval (0, 1).
Relations (82) yield a fractional-order rheological element introduced in (79).

The free energy function �(x, t) is chosen to be additive in two distinguished
terms:

�(x, t) = �DZ(x, t) + �V (x, t), (83)

where �DZ(x, t) is defined by (53) and represents the elastic contribution to the
free energy at equilibrium (see Del Piero and Deseri 1996), while �V (x, t) is the
free energy characterizing the hereditary response of the system. The latter has been
obtained in Deseri et al. (2014). There it has been shown that a multiscale procedure
across the spectrum of observation scales of a fractal material does deliver (i) a power
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law relaxation function and (ii) a Staverman–Schartzl free energy, which is indeed
utilized here for �V . Studies on Staverman–Schartzl free energies can be found in
Breuer and Onat (1964), Del Piero and Deseri (1996), Del Piero and Deseri (1997),
among other works. The results in Deseri et al. (2014) and formulas (80), (82) yield
�(x, t) as follows:

�(x, t) = �L(ε(x, t)) + �N(εx (x, t)), (84)

where the subscripts L and NL stand for local and nonlocal, respectively. The former
term depends upon the strain, while the latter one is a functional of its gradient.
Results in Breuer and Onat (1964) and Deseri et al. (2014) suggest to introduce
a kernel K (◦, ◦), symmetric in its arguments, namely such that K (◦, ◦) ≥ 0 and
K (τ1, τ2) = K (τ2, τ1) hold. Specifically, each contribution is taken as follows:

�L(x, t) = 1

2
KL(0, 0)ε(x, t)

2

+ ε(x, t)
∫ t

−∞
K̇L(0, t − τ )ε(x, τ )dτ

+ 1

2

∫ t

−∞

∫ t

−∞
K̈L(t − τ1, t − τ2)ε(x, τ1)ε(x, τ2)dτ1dτ2,

(85a)

�N(x, t) = 1

2
KN(0, 0)εx (x, t)

2

+ εx (x, t)
∫ t

−∞
K̇N(0, t − τ )εx (x, τ )dτ +

+ 1

2

∫ t

−∞

∫ t

−∞
K̈N(t − τ1, t − τ2)εx (x, τ1)εx (x, τ2)dτ1dτ2,

(85b)

where

KL(t, 0) = ϕ̄′′ + CL

�(1 − λ)
(t + δ)−λ = Gδ

L(t), (86a)

KN(t, 0) = 2ᾱ + CN

�(1 − ν)
(t + δ)−ν = Gδ

N(t), (86b)

where δ is a preloading time. This comes from the fact that no strain process starts
with abrupt jump and, instead, it does require some time, δ, to reach a desired value.

The relations KL(0, t) = KL(t, 0) and KN(0, t) = KN(t, 0) also do hold. This
result, together with (82) and the considerations addressed in Eqs. (17−22) in Deseri
et al. (2014), permits to write the free energy as follows:
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�L(x, t) = 1

2
Gδ

L(0)ε
2(x, t)

+ ε(x, t)
∫ t

−∞
Ġδ

L(t − τ )ε(x, τ )dτ

+ 1

2

∫ t

−∞

∫ t

−∞
G̈δ

L(2t − τ1 − τ2)ε(x, τ1)ε(x, τ2)dτ1dτ2,

(87a)

�N(x, t) = 1

2
Gδ

N(0)ε
2
x (x, t)

+ εx (x, t)
∫ t

−∞
Ġδ

N(t − τ )εx (x, τ )dτ

+ 1

2

∫ t

−∞

∫ t

−∞
G̈δ

N(2t − τ1 − τ2)εx (x, τ1)εx (x, τ2)dτ1dτ2,

(87b)

where ε(x, t) = vx (x, t), and v(x, t) is the space-time perturbation process of the
underlying ground state of themembrane. Ultimately, the free energy associated with
the perturbation process v(x, t) becomes the following:

E = B
∫ t2

t1

(∫
�

[�L(x, t) + �N(x, t)] dx

)
dt

− B [� v(x, t) + � vx (x, t)]∂� ,

(88)

where t1 and t2 > t1 are two subsequent times during which the time evolution of
the membrane is investigated.

3.3 Time Evolution of Phase Perturbations

The governing equation for the evolution of small perturbations v is sought by impos-
ing the stationarity of E within the class of synchronous variations, i.e., such that
δv(◦, t1) = δv(◦, t2). This leads to the Euler–Lagrange equation in the following
form (see Deseri et al. 2016 for details):

2ᾱ
∂4

∂x4
(
v + C∗

NDν
t v
) − ϕ̄′′ ∂2

∂x2
(
v + C∗

LDλ
t v
) = y(x), (89)

where C∗
L = CL/ϕ̄

′′ and C∗
N = CN/2ᾱ represent the normalized local and nonlocal

moduli of themembrane, respectively, and the forcing term y(x) is defined as follows:

y(x) = 2ᾱ
∂4 v0

∂x4
− ϕ̄′′ ∂

2 v0

∂x2
, (90)

where v0(x) is an initial perturbation induced on the system. This represents the
initial perturbation of the ground state before the relaxation takes place. The balance
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equation (89) is endowed with the boundary conditions to be retrieved from the
following conditions:

⎧⎪⎪⎨
⎪⎪⎩

either
ϕ̄′′ (v′ + C̄LDλ

t v
′) − 2ᾱ

(
v′′′ + C̄NDν

t v
′′′) = � + �0

or
δv = 0

(91a)

⎧⎪⎪⎨
⎪⎪⎩

either
2ᾱ

(
v′′ + C̄NDν

t v
′′) = � + 2ᾱ ε′

0
or
δv′ = 0

(91b)

Here �0 = ϕ̄′′ε0 + 2 ᾱ ε′′
0 is the initial stress arising on the bilayer associated with

the initially perturbed configuration. Obviously, whenever the membrane is initially
perturbation-free then (89) and its boundary conditions give us an eigenvalue prob-
lem: this will be solved in Sect. 3.6.

Separation of variables is employed here to solve (89), namely we seek for solu-
tions in the form

v(x, t) = f (x) q(t), (92)

whereq(t) describes the time change of the perturbation and f (x) describes the shape
of the mode. Substitution of (92) in (89) leads to the following pair of equations

2ᾱ

ϕ̄′′
f

′′′′
(x)

f ′′(x)
= q(t) + C∗

L Dλ
t q(t)

q(t) + C∗
N Dν

t q(t)
= k2, (93)

where k2 is a constant to be determined. We remind that the expression (60) relating
2ᾱ
ϕ̄′′ to the spatial frequency (squared) ω2 does hold. Because here we focus on the
circumstances for which spatial oscillations can occur, the only case of interest is
when ϕ̄′′ < 0. Henceforth, we will solve the following equations:

− 1

ω2

f
′′′′
(x)

f ′′(x)
= q(t) + C∗

L Dλ
t q(t)

q(t) + C∗
N Dν

t q(t)
= k2. (94)

The very same boundary conditions assumed for the elastic case (65) will be con-
sidered for the viscoelastic problem, namely:

⎧⎨
⎩

v

∣∣∣
∂�−

= v

∣∣∣
∂�+

= 0

2ᾱ
[
v′′ + C∗

N Dν
t v

′′] ∣∣∣
∂�−

= 2ᾱ
[
v′′ + C∗

N Dν
t v

′′] ∣∣∣
∂�+

= �̂
(95)
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which by (92) yield the following relations:

⎧⎪⎨
⎪⎩

f (x)
∣∣∣
∂�

= 0

2ᾱ f ′′ [q(t) + C∗
N Dν

t q(t)
] ∣∣∣

∂�
= �̂

(96)

3.4 Spatial Modes for the Perturbations

The spatial mode f (x) verifies (93), namely

f
′′′′
(x) + k2 ω2 f ′′(x) = 0. (97)

the solution of (97) reads as

f (x) = A1 cos (ζ x) + A2 sin (ζ x) + A3x + A4, (98)

after setting
ζ2 = k2 ω2 . (99)

Boundary conditions (96) allow for determining the coefficients Ai , i = 1 ÷ 4. In
particular, the second boundary condition yields

2ᾱ f ′′
∣∣∣
∂�

[
q(t) + C∗

N Dν
t q(t)

] = �̂ ∀ t,

to be satisfied if either �̂ is a prescribed function of time or if it is constant. Whenever
this is the case, then

q(t) + C∗
N Dν

t q(t) = κn, (100)

where κn is a constant. Consequently, the boundary condition under exam reads as
follows:

2ᾱ f ′′
∣∣∣
∂�

κn = �̂. (101)

Moreover, this condition at the edge highlights that the second derivative evaluated

in such location v"(x, t)
∣∣∣
∂�

can be zero for whatever value of κn if and only if no

hyperstress arises at the edges, i.e.,

f ′′
∣∣∣
∂�

= 0 ⇐⇒ �̂ = 0. (102)

For such a case, Eq. (100) is irrelevant. After setting s = sin(ζL/2) and c =
cos(ζL/2), the boundary conditions can be written explicitly in the following form:
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⎧⎨
⎩

A1 c − A2 s − A3
L

2
+ A4 = 0

2ᾱζ2 (−A1 c + A2 s) κn = �̂
at x = − L

2
⎧⎨
⎩

A1 c + A2 s + A3
L

2
+ A4 = 0

2ᾱζ2 (−A1 c − A2 s) κn = �̂
at x = + L

2

Such a system is the analog of (66):

⎡
⎢⎢⎣

0 s L
2 0

c 0 0 1
0 s 0 0

−2ᾱ κnζ
2c 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
�̂

⎞
⎟⎟⎠ (103)

whose nontrivial solutions can be found by studying the roots of the determinant,
namely after solving:

ᾱ c s L κn ζ2 = 0. (104)

The ground states J̄ from which bifurcations may occur are given by the latter
equation no matter what κn , and because the constants ᾱ, L are always nonzero,
only two possibilities are left.

Case 1. Because ζ2 = k2 ω2 with k > 0 (although still unknown at this stage), if
s = 0 we have

k2 ω2 = 4n2π2

L2
, (105)

and

− ϕ̄′′

ϕ̄′ J̄
5 = n2π2

3 k2

(
h0
L

)2

. (106)

Case 2. If c = 0 then �̂ = 0. As highlighted in (102), this happens if and only if
f ′′ (∂�) = 0.

3.5 Time Evolutions of the Perturbations

The expression of q(t) can be traced back to the solution of the equation coming
from the boundary condition (101).

Whenever in (96) the boundary condition on the second derivative of the dis-
placement is nonzero, the presence of a hyperstress �̂ at the edges implies that the
time-dependent term is constant, assuring that relation (100) holds. This equation is
solved in Deseri et al. (2016) and delivers the following expression:
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q(t) = κn

C∗
N

tνEν,ν+1

(
− 1

C∗
N

tν
)

+ q0Eν

(
− 1

C∗
N

tν
)

, (107)

where Eα,β (z) is the Mittag-Leffler function of two parameters.
Nonetheless, separation of variables imposes (93) to be fulfilled. This, together

with relation (100), delivers the following differential equation:

q(t) + C∗
L Dλ

t q(t) = k2 κn, (108)

again solved in Deseri et al. (2016) by means of the same method, delivering the
following expression for q:

q(t) = k2 κn

C∗
L

tλEλ,λ+1

(
− 1

C∗
L

tλ
)

+ h0Eλ

(
− 1

C∗
L

tλ
)

. (109)

Obviously the two obtained expressions for q must agree at all times. This is certainly
true in the trivial case for which the local and nonlocal terms have both the same
relaxation exponent λ = ν and the same normalized parameters C∗

L = −C∗
N , namely

k2 = 1, recalling that C∗
L < 0 has been rendered nondimensional by taking CL and

dividing it by ϕ̄′′ < 0.

3.6 Eigenvalue Problem Governing the Time Dependence
of the Perturbations

Because Eqs. (93) and (100) both govern the evolution function q a complete study
of such a requirement is needed. Indeed, those two equations deliver the following
fractional-order eigenvalue problem:

C∗
L Dλ

t q(t) − C∗
N k

2 Dν
t q(t) + (1 − k2)q(t) = 0. (110)

The solution method of such a problem is here based on the right-sided Fourier
transform Q(p)

Q(p) :=
∫ +∞

0
e−i p tq(t) dt p ∈ R. (111)

By Fourier transforming both sides of (110) we obtain

[
C∗

L (−i p)λ − C∗
N k

2 (−i p)ν + (1 − k2)
]
Q(p) = 0. (112)

The zeros of the function inside square brackets provide the eigenvalues of the frac-
tional differential equation (110) no matter what Q(p) is. It is worth noting that the
constant k2 appearing in (93) for the first time must be a real number. The algebraic
equation (112) can actually be manipulated by separating the real and the imaginary
parts as follows:
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k2 = 1 + C∗
L pλ (cλ − i sλ)

1 + C∗
N pν (cν − i sν)

=
(
1 + C∗

L pλ cλ

) − i
(
C∗

L pλ sλ
)

(
1 + C∗

N pν cν

) − i
(
C∗

N pν sν
) = a − i b

c − i d

= a − i b

c − i d

c + i d

c + i d
= a c + b d

c2 + d2
+ i

a d − b c

c2 + d2
,

after setting {
a = 1 + C∗

L pλ cλ

b = C∗
L pλ sλ

{
c = 1 + C∗

N pν cν

d = C∗
N pν sν

,

cα = cos(α π/2)

sα = sin(α π/2),

α = λ, ν. Because k is real, the former complex algebraic equation delivers the
following real-valued conditions to be verified, namely,

k2 = a c + b d

c2 + d2
(113a)

a d − b c = 0. (113b)

Equation (113b) can be rewritten as follows:

C∗
N pν sν − C∗

L pλ sλ + C∗
L C

∗
N pλ+ν (sνcλ − cνsλ) = 0

and, through the transformation formulas for the difference of two angles, it becomes

C∗
N pν sin

(
ν

π

2

)
− C∗

L pλ sin
(
λ

π

2

)
+

+ C∗
L C

∗
N pλ+ν sin

(
(ν − λ)

π

2

)
= 0.

(114)

Finally, a relationship for k2 is found in the following form:

k2 =
(
1 + C∗

L pλ cλ

) (
1 + C∗

N pν cν

) + (
C∗

L pλ sλ
) (
C∗

N pν sν
)

(
1 + C∗

N pν cν

)2 + (
C∗

N pν sν
)2 . (115)

Whenever the trivial case λ = ν and C∗
L = C∗

N is considered, Eq. (114) has solution
p = 0, that implies k2 = 1, as noticed qualitatively above. The solution of (115) can-
not be found in closed form. In Figs. 8 and 9 some numerical results are represented
whenever the moduli C∗

L , C
∗
N and both the exponents are known.

The ratio
R = −C∗

L /C
∗
N
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Fig. 8 Locus of the real values of p and correspondent eigenvalues k2 as function of the ratio
R = −C∗

N/C∗
L whenever λ = 0.9 and ν = 0.3 (see (114) and (115)) (courtesy of Deseri et al.

2016)

Fig. 9 Locus of the real values of p and correspondent eigenvalues k2 as function of the ratio
R = −C∗

N/C∗
L whenever λ = 0.7 and ν = 0.4 (see (114) and (115)) (courtesy of Deseri et al.

2016)

shows that the eigenvalues are bijections of p. Hence, there is also a one-to-one
correspondence between R and k2. Of course, each bifurcation is characterized by a
value of k2 which modifies the left and right branch of the ratio ϕ̄′′/ϕ̄′:

− k2
ϕ̄′′

ϕ̄′ J̄
5 = n2π2

3

(
h0
L

)2

, (116)

which is the viscoelastic analog of (69).
A numerical example based on the very same energetics utilized in the elastic

case is displayed in Fig. 10. This diagram shows that k2 acts as a rescaling parameter,
thereby amplifying the ratio ϕ̄′′/ϕ̄′ as k increases. While the values of Jn are not
modified by such rescaling, the upper bound of the curve is highly influenced by
such parameter. This has an impact on the maximum number of oscillations, nmax ,
as displayed in Fig. 10. Henceforth, by plotting in Fig. 11 the values of the critical J in
terms of the number of oscillations, one can notice that the left (blue color) and right
(red color) branches do have different shapes, thereby modifying their intersections
with any given J̄ .
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Fig. 10 Left-hand side of
Eq. (116) in terms of J . It is
highlighted the influence of
of k2 and the corresponding
maximum number of spatial
oscillations nmax is
displayed (courtesy of
Deseri et al. 2016)

Fig. 11 Modification of the
left and right intersections
depending on k2 (courtesy
of Deseri et al. 2016)

3.7 Influence of the Initial Conditions

The “full” fractional differential equation (110) with inhomogeneous initial condi-
tions is analyzed in this section, namely,

{
C∗

L Dλ
t q(t) − C∗

N kDν
t q(t) + (1 − k2)q(t) = 0,

q(0) = q0.

The right-handed Fourier transform is again employed here to account the initial
condition, i.e.,

C∗
L

[
(i p)λ Q̂ − (i p)λ−1q0

]
− C∗

N k
2
[
(i p)ν Q̂+

− (i p)ν−1q0
]

+ Q̂ (1 − k2) = 0,
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Fig. 12 Time-dependent
transfer function for two
chosen values of C∗

L = −C∗
N

and h0 = 1.5. Here

t∗ = ν

√
tν

C∗
N

is a

dimensionless time
(courtesy of Deseri et al.
2016)

Fig. 13 Transfer function
Ĝk(p): real and imaginary
parts (courtesy of Deseri
et al. 2016)
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whose solution Q̂(p) reads as follows:

Q̂k(p) = Ĝk(p) q0
(
C∗

L (i p)λ−1 − C∗
N k

2 (i p)ν−1
)
, (117)

where

Ĝk(p) = 1

C∗
L (i p)λ − C∗

N k
2 (i p)ν + (1 − k2)

(118)

is the transfer function for this problem. It is worth noting that this function strictly
depends on the order of the eigenvalue, k2.

From Podlubny (1998), Eqs. 5.22–5.25, p. 155 (where a = C∗
L , β = λ, b =

−C∗
N k

2, α = ν and c = 1 − k2), we find the anti-right-handed Fourier transform
of such a function, which reads as follows:

Gk(t) = F−1
{
Ĝk(p); t

}
=

= 1

C∗
L

∞∑
z=0

(−1)z
(
1 − k2

C∗
L

)z+1

tλ(z+1)−1E (z)
λ−ν,λ+zν

(
C∗

N

C∗
L

k2 tλ−ν

)
.

(119)

The obtained result is then represented by a series of Mittag-Leffler functions with
two parameters. This plays the role of modulating the membrane response no matter
what the initial data is. For the sake of illustration, the transfer function is numerically
explored inFig. 12whenever two subcases ofC∗

L = −C∗
N are considered, by assuming

several values of the exponential decay λ = ν. Similarly, in Fig. 13 the real and
imaginary parts of the transfer function are analyzed whenever different exponents
of the decay λ 	= ν are chosen for some values of k2. The Mittag-Leffler function
drives the evolution of themembrane stretch, determining changes in the amplitude of
the membrane response, as expected from the analysis with a separation of variables.

4 Conclusions

The mechanical behavior of biological membranes is regulated by the interaction
of an extremely rich list of features, such as their thinness, their special constitutive
naturewhich enables them to sustain bendingmoments but not in-plane shear stresses
unless their viscosity is accounted for, their chemical composition and, furthermore,
their capability of undergoingordering–disorderingphenomena.The resulting effects
of this interaction are evidenced by a strong variety of configurations that can be
achieved and kept by biological membranes at equilibrium for given values of overall
chemical composition, controlled temperature, or applied osmotic pressure.

Within this framework, a remarkable issue is the analysis of line tension at the
boundary of ordered–disordered domains: it is now recognized that, together with
bending rigidities, line tension plays a major role in maintaining nonspherical con-
figurations observed in experiments (see e.g., Akimov et al. 2004). In the effort of
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deducing a physically based model of lipid membranes where the bending behavior,
the order–disorder transition, and the chemical composition are consistently consid-
ered, in Deseri et al. (2008), Deseri and Zurlo (2013), Zurlo (2006) the expression of
the energetics regulating the thermo-chemo-mechanical behavior of biological mem-
braneswasderived,within the frameworkof a formal asymptotic 3D-to-2D reduction,
based on thinness assumptions. This model reveals the possibility of describing the
geometrical (shape) and conformational (state of order) behavior of the lipid bilayer
on the basis of one single ingredient: the in-plane membrane stretching elasticity,
regulating the material response with respect to local area changes on the membrane
mid-surface. A confirmation of these possibilities is given in Choksi et al. (2012),
where a model energy obtainable from the one deduced in Deseri et al. (2008) is
proved to exhibit two-phase global minimizers resembling observed configurations
in Baumgart et al. (2003). In essence, the major point in Deseri et al. (2008), Deseri
and Zurlo (2013), Zurlo (2006) is that the bilayer stretching elasticity is enough to
describe its order–disorder transition (together with the influence of chemical com-
position), to determine the profile and the length of the boundary layer where the
membrane thickness passes from a thicker domain (ordered phase) to a thinner one
(disordered phase), to evaluate the corresponding line tension andfinally to determine
the bending rigidities in both phases.

A prototypical planar problem has been studied in Deseri and Zurlo (2013) with
the aim of elucidating the potentials of themodel described above and summarized in
the present work. On the basis of a Landau expansion of the stretching energy density,
calibrated, thanks to the experimental results inGoldstein and Leibler (1989), the line
tension, the thickness profile inside the boundary layer and the area compressibility
and bending moduli are obtained. Those calculated quantities show a satisfactory
comparison with the data known in the literature.

Lipid phase transition arising in planar membrane and triggered by material insta-
bilities and their linearized evolution are studied in Deseri et al. (2016) and summa-
rized in this work. There, the effective viscoelastic behavior inherited by their exhib-
ited power law in-plane viscosity (Espinosa et al. 2011) is accounted for. At first it
is shown that the critical set of areal stretches is determined in the limiting case of
elasticity and for two sets of boundary conditions. Spatial oscillations corresponding
to the nucleated configurations arising from any of such critical stretches are investi-
gated. Perturbations of the phase ordering of lipids are predicted to form bifurcated
shapes, sometimes of large periods relative to the reference thickness of the bilayer.
The corresponding membrane stress changes are also oscillatory. Then, the influence
of the effective viscoelasticity of the membrane on its material instabilities is investi-
gated. A variational principle based on the search of stationary points of a Gibbs free
energy in the class of synchronous perturbation is employed for such analysis. The
resulting Euler–Lagrange equation is a fractional-order partial differential equation
yielding a non-classical eigenvalue initial boundary value problem. The eigenvalues
are found to be amplified with respect to their elastic counterpart. Spatial modes
and transfer functions characterizing the resulting admissible perturbations of the
underlying ground configurations are determined. It is found that while the range of
critical areal stretches not get affected, the number of oscillations per given critical
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stretch significantly increases, thereby drastically reducing the period of oscillations
of the bifurcated configurations. Nevertheless, a “long tail” type relaxation of the
bifurcated configurations is shown to occur. Furthermore, whenever the same power
law applies both for the local and the nonlocal response, the explicit time decay is
displayed, while in all of the other cases the frequency dependence of the real and
imaginary parts of the transfer function reveal that fading memory in time occurs as
well (see Fig. 13).
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Lipid Membranes: From Self-assembly
to Elasticity

M. Mert Terzi and Markus Deserno

Abstract In aqueous solution, lipid molecules spontaneously assemble into macro-
scopic bilayer membranes, which have highly interesting mechanical properties. In
this chapter, we first discuss some basic aspects of this self-assembly process. In the
second part, we then revisit and slightly expand a well-known continuum-level the-
ory that describes the elastic properties pertaining to membrane geometry and lipid
tilt. We then illustrate in part three several conceptually different strategies for how
one of the emerging elastic parameters—the bending modulus—can be obtained in
computer simulations.

1 Surfactant Self Assembly: Morphology and Statistical
thermodynamics

Surfactant molecules are amphiphiles: they comprise different chemical moieties
which are soluble in different solvents. Since they are linked together chemically,
this requires nature to grapple with an interesting problem: how best to lower the free
energy, given that no matter what the solvent conditions are, some chemical moi-
eties will likely be “unhappy.” Nature’s solution to this is self assembly—a process
by which larger scale structures form cooperatively, such that unfavorable solvent
contact is largely avoided. Self assembly is an amazing and hugely important exam-
ple of an emergent phenomenon, in that it creates new physical entities (namely,
the aggregates) which can be much bigger than the individual molecules they are
made of. This transition in relevant scale is the primary reason why we can deal
with these aggregates using physical tools that are quite removed from atomistic
modeling—such as continuum elasticity. How self-assembly works, is the topic of
our first section.
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The classical work on this topic is the groundbreaking paper by Israelachvili et al.
(1976), from which the present section picks some of the most beautiful results and
elaborates them in a bit more detail. Good discussions can also be found in textbooks
on soft condensed matter physics, such as Jones (2002) or Witten and Pincus (2004).

1.1 Morphology

Lipids, or more generally surfactants, are molecules which are typically divided
into a “head” and a “tail.” The head is hydrophilic (water soluble), for instance
because it has polar groups (e.g., hydroxyl or carbonyl groups), or because it is
charged (e.g., amino, carboxyl, or phosphate groups). The tail, on the other hand,
is hydrophobic (water insoluble), and for lipids generally consists of two aliphatic
chains. They typically contain between 12 and 22 carbon atoms, usually connected
by single bonds, but sometimes with one or more double bonds (in the latter case
one speaks of “unsaturated lipids”). Figure 1 gives a simple illustration of this by
showing pictures of lipids using some commonly employed computational models
for studying them. Notice that only one of these models strives for a full chemical
resolution. The others simplify the chemical architecture more or less drastically, but
they all keep one key aspect: lipids are amphiphiles.

The key effect on which self assembly relies is a cooperative aggregation of
surfactants that tries to bury the water-insoluble tails in the interior of the aggregate,
shielding them from the aqueous solvent by a layer of hydrophilic head groups.

sn1 chain2 chainsn sn1 chain

2 chainsn

glycerol
backbone

glycerol
backbone

he
ad phosphate

choline

ta
il

choline

phosphate

(a) (b) (c) (d)

Fig. 1 Illustration of the morphology of a lipid molecule. Panel a shows a typical physicist’s
cartoon—a hydrophilic head group with two schematic tails; panel b takes this sketch serious and
translates it into a highly coarse grained model (Cooke et al. 2005); panel c illustrates a lipid on
the MARTINI level (Marrink et al. 2007), where the number of beads is increased, but still each
bead accounts for approximately 3–4 heavy atoms; and panel d displays a united-atom lipid model
of DMPC (dimyristoylphosphatidylcholine) (Berger et al. 1997), in which every atom (except non-
polar hydrogens) are explicitly accounted for. Adapted from (Wang and Deserno 2016)
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Fig. 2 Simplified
shape-description of a
surfactant as a blunted cone

l

r

R

v a

Interestingly, there are numerous different morphologies in which that could happen,
and this depends on the shapeof the surfactant. For instance, if the lipid has a relatively
large head group and a thin tail—if it looks like an ice cream cone—then we can
imagine these surfactants packing together to form little spheres. But if the shape of a
lipid is less obviously pointed, then lower curved structures seem more likely—such
as cylindrical aggregates or even planar sheets. As we will now see, Israelachvili et al.
(1976) have developed a beautifully simple way to make this intuition quantitative.

Let us represent a lipid schematically as a building block that is approximately
cylindrical, but with a somewhat tapered tail region, as illustrated in Fig. 2, so that it
looks like a blunted cone. The area of its head-group surface is a = πr2, its volume
is v, and its length is l. Imagine we need N of these object to piece them together
into a sphere of radius Rsph. It is then obvious that we must have

Nv = Vsph = 4

3
πR3

sph , (1a)

Na = Asph = 4πR2
sph . (1b)

Dividing these two equations, N cancels, and we get an equation for the radius of
that sphere:

v

a
= 1

3
Rsph . (2)

At the center of the sphere we cannot have any empty space. Hence the radius Rsph

which we found cannot be larger than the length l of the amphiphile—imagine for
instance that there is a largest length to which the tails can stretch, and that limits the
sphere’s radius: Rsph ≤ l. This results in the condition

spheres:
v

al
=: P ≤ 1

3
, (3)

where we defined the so-called packing parameter P . We hence find that if this
condition on P is satisfied, these lipid building blocks will indeed like to aggregate
into spherical objects, which go under the name spherical micelles.

We can repeat this argument, but now instead consider packing the building blocks
into a cylinder of radius Rcyl and length Lcyl; Assuming that Lcyl is large enough to
ignore end effects, we then get
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Nv = Vcyl = πR2
cylLcyl , (4a)

Na = Acyl = 2πRcylLcyl . (4b)

Again dividing these two equations yields

v

a
= 1

2
Rcyl . (5)

Once more, requiring that the resulting value for the cylinder’s radius is not larger
than the lipid length l leads to the condition

cylinders:
1

3
≤ P ≤ 1

2
, (6)

where the lower cutoff comes from the previous case: if P is even smaller than 1
3 ,

we already know that we get spheres.
We can again repeat this argument, but now we pack the amphiphiles into a planar

bilayer structure of area Abil and thickness bbil, leading to

Nv = Vbil = bbilAbil , (7a)

Na = A = 2Abil , (7b)

and dividing these two equations gives

v

a
= 1

2
bbil . (8)

Again, the thickness of each individual leaflet (i.e., half the bilayer’s thickness) cannot
exceed the length l to which the lipid can stretch, 1

2bbil ≤ l, and so we find

bilayers:
1

2
≤ P ≤ 1 . (9)

The argument, as presented, is remarkably simple; Israelachvili et al. (1976) look
at the situation in a fair bit more detail, but the key findings nevertheless hold up. In
fact, this line of reasoning works well even for building blocks which are very simple
and not very pliable–such as the lipid model from Fig. 1b. Cooke and Deserno (2006)
showed that by simply changing the head-group size of the three-bead lipid, one can
drive the entire morphological transition from spheres over cylinders to bilayers; if
one pushes the packing parameter even larger, the lamellar phase becomes unstable.
This is illustrated in Fig. 3.

Of course, the transitions themselves do not yet tell whether the simple packing-
parameter theory works; but this theory makes a prediction that can be tested. Taking
the area per lipid from a flat bilayer as the value for a, and using one of the transitions
(say, spheres to cylinders) to pinpoint v/ l, one can write the packing parameter as
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Fig. 3 The different morphologies of amphiphilic aggregates are controlled by amphiphile shape,
even for models as simple as that from Fig. 1b. Reprinted from Cooke and Deserno (2006) with
permission from Elsevier

a function of the head-group size of the lipid. This then gives a prediction for the
head-group size where the other transition (cylinders to bilayer) happens. Cooke and
Deserno (2006) show that this prediction indeed works.

The geometrical picture we have in mind by now is that a smaller packing parame-
ter P corresponds to a more cone-like shape, while for a larger P the lipid becomes
more cylindrical. This intuition can be verified (and made more precise) by a simple
calculation: if � is the solid angle of the blunted cone, then its volume can be written
as

v = 1

3
�
[
R3 − (R − l)3

] = �

[
R2l − Rl2 + 1

3
l3

]
. (10)

Since its head surface is a = �R2, we find P = 1 − l
R + 1

3

(
l
R

)2
, a quadratic equa-

tion that can be solved for R, from which we then get the solid angle. Since, further-
more, � = 2π

(
1 − cos ϕ

2

) ≈ 1
4πϕ2, where the last approximation is good for small

ϕ, we arrive at the opening angle

ϕ

r/ l
≈ 3

[

1 −
√

1 − 4

3
(1 − P)

]

. (11)

This relation is illustrated in Fig. 4. The characteristic ratio r/ l defines an angle, and
the actual opening angle ϕ is some multiple of that—twice as big for cones at the
boundary between spheres and cylinders, and about 1.3 times as big at the boundary
between cylinders and planes. Of course, the angle vanishes at P = 1. Notice that we
can alternatively also calculate the lipid spontaneous curvature, defined as K0,m =
2/R. For P close to 1 we find for this parameter

K0,ml ≈ 2(1 − P) + 2

3
(1 − P)2 + · · · (12)

This provides a link between a parameter from continuum Helfrich theory, K0,m, and
a parameter from the self assembly problem, P .
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Fig. 4 Relation between the
opening angle of the blunted
cone from Fig. 2 (measured
in units of r/ l) and the
packing parameter P .
Around P = 1 we have
ϕ ≈ 2r

l (1 − P)

P

ϕ
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]
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1.2 Statistical Thermodynamics

Knowing the shape of the aggregate is only the beginning. We surely also want to
know, under what conditions such aggregates form, and if they come in different
sizes (say, what’s the length of a cylindrical micelle?), we want to know what that
is, too.

The problem is interesting, because entropy plays a key role. Were it only a matter
of energy, any kind of amphiphile would aggregate to any other amphiphile, no matter
how weak any attractive interaction is. But when we consider entropy, we realize that
aggregation strongly reduces the translational entropy of amphiphiles. To understand
this energy–entropy balance better we again follow Israelachvili et al. (1976). Let us
therefore define

εn : energy per molecule in n -aggregate (13a)

φn : concentration of n-aggregates (13b)

Xn : concentration of monomers in n-aggregates, = nφn , (13c)

where an “n-aggregate” is a self-assembled aggregate of molecules consisting exactly
of n molecules (or monomers or 1-aggregates). You may think of Xn in the following
way: consider only the n-aggregates in solution (mentally remove all the others) and
now ask, what is the overall concentration of all amphiphiles left in the system?

The total energy of one n-aggregate is of course En = nεn . Observe that this
does not imply that En ∝ n, since εn also depends on n. The energy density due to
n-aggregates is therefore

en = φn En = φnnεn = Xnεn . (14)
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For the (translational) entropy density of n-aggregates we will simply assume an
ideal gas law, so that we get

sn = −kB φn
(

log φn − 1
)
. (15)

The total free energy density is then the sum of the energetic and entropic terms over
all aggregate sizes:

f =
N∑

n=1

{en − T sn} =
N∑

n=1

{
Xnεn + kBT

Xn

n

(
log

Xn

n
− 1

)}
, (16)

where N is the total number of molecules, and hence also the biggest aggregate we
can get.

We are interested in the distribution function of aggregate sizes, Xn , subject to
the constraint that the total amount of material in the system is fixed, meaning

N∑

n=1

Xn =: X = fixed , (17)

where X is the total monomer concentration in the system. We can calculate this
distribution function by minimizing Eq. (16) subject to the constraint, which we
enforce by means of a Lagrange multiplier μ:

0
!= ∂

∂Xn

{

f [Xn] − μ

[

X −
N∑

m=1

Xm

]}

. (18)

This readily gives
φn = e−βn(εn−μ) , (19)

where as usual β = 1/kBT . From this we in particular also get the monomer concen-
tration φ1, and so we can eliminate the Lagrange multiplier μ from the expression:

φn = [φ1 eβ(ε1−εn)
]n

. (20)

This is a very important general result. How it plays out in reality depends entirely
on εn , which in turn depends crucially on the geometry of the aggregate—spherical
cylindrical, or planar. Regardless: we see that if εn < ε1, meaning that it is favorable
for a monomer to be in an n-aggregate compared to being isolated in solution, the
exponential factor becomes large and the concentration of n-aggregates goes up. But
let us now specifically look at the individual geometries.

Spherical micelles. What is the energy of a monomer in a micelle consisting of n
monomers? This is potentially a difficult question, but we will circumvent it by look-
ing at the physics: packing monomers of some particular curvature into a spherical
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aggregate will likely result in some particular size—say, m—at which they fit best,
and deviations away from that size will be suboptimal. Let us hence assume that,
to lowest order, the energy is simply quadratic in the deviation from that particular
optimal state:

εn = εm + 1

2
ε∗(n − m)2 . (21)

Inserting this into Eq. (19) leads to

φn = exp

{
−βn

(
εm + 1

2
ε∗(n − m)2 − μ

)}
, (22)

where n needs to be determined from the normalization condition (17). Notice that
this distribution is cubic in the exponent. However, we can simplify it by expanding
the exponent around its maximum, up to quadratic order, and hence find an approx-
imate Gaussian distribution that describes φn reasonably well. To do so, we need to
calculate

0
!= ∂

∂n

[
−βn

(
εm + 1

2
ε∗(n − m)2 − μ

)]
, (23)

which leads to the solution n∗ at which the function peaks:

n∗ = m

3

[

2 +
√

1 − 6(εm − μ)

ε∗m2

]

≈ m − εm − μ

ε∗m
, (24)

where the approximation results from expanding the square root to first-order, since
the term 6(εm − μ)/ε∗m2 is small. We then find the quadratic expansion

n

(
εm + 1

2
ε∗(n − m)2 − μ

)
≈ const. + 1

2
ε∗m

√

1 − 6(εm − μ)

ε∗m2
(n − n∗)2 . (25)

This shows that the micelle distribution can be approximated as a Gaussian,

φn ≈ const. × exp

{
− (n − n∗)2

2σ2

}
, (26)

with the mean value n∗ given in Eq. (24) and the variance given by

σ2 = kBT

ε∗m
. (27)

This shows that the distribution widens at larger temperature, and is narrower for
bigger micelles.

The effects on the structure on a single micelle are curious but minor in the
spherical case; what is truly remarkable and very important is the overall aggregation
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thermodynamics which this model implies. In order to not get bogged down in tedious
math (chiefly from dealing with the normalization condition (17)), let us instead look
at a two-state system, in which we only have monomers coexisting withm-aggregates,
and the normalization condition becomes X = φ1 + mφm . Furthermore, we have

φm
(20)= (φ1eβ(ε1−εm ))m = (φ1eα)m , (28)

where we defined α = β(ε1 − εm) > 0 (we know the sign because we know that it is
energetically favorable to form an m-aggregate). The normalization condition then
becomes

X = φ1 + meαm φm
1 . (29)

This must be solved for φ1, but notice that this is an m th order polynomial equa-
tion. This looks exceedingly troublesome, but it in fact becomes simple to get an
approximate solution if we remember that m is likely large: recall from Sect. 1.1
and Fig. 2 that the number of surfactants in a spherical micelle can be written as
N = 4πl2/a = 4πl2/πr2 = (2l/r)2, and with a reasonable estimate of a ≈ 0.5 nm2

(and hence r ≈ 0.4 nm) and � ≈ 2 nm, we find N ≈ 100. We then see that the second
term in Eq. (29) stays extremely small for large φ1 and then very rapidly picks up
and completely dominates the value of X—see the left hand graph in Fig. 5. The
crossover happens where the two terms on the right hand side are approximately
equal, leading to

φ1 = meαmφm
1 =⇒ φ1 =

(
1

m

) 1
m−1

e− αm
m−1 ≈ e−α , (30)

where the approximation is very good because m � 1 (recall in particular that
(1/m)1/m ≈ 1 − (lnm)m−1 + O(m−2)). This shows that a critical concentration
exists, φcmc = e−α, at which something startling happens: up to that concentration,
the normalization condition is dominated by φ1, and this means that the solution
exists almost exclusively of monomers. But at φcmc the second term takes over,
and from now on adding extra material will almost exclusively go into aggregates.
This is very visible if we plot the inverse of the normalization condition—see the
right hand side of Fig. 5: the concentration of monomers initially grows linearly
with the amount of added material, but it levels off quite abruptly at φcmc, meaning
that from now on any additional material will form micelles, which so far did not
exist. The concentration φcmc is called the critical micelle concentration, usually
abbreviated as “cmc,” and it is a fundamentally important quantity for any aggrega-
tion problem. We will soon see that the concept remains relevant beyond the case
of spherical micelles we have discussed just now. Notice that α = β(ε1 − εm) is
not just positive, but can be a fair amount bigger than 1, since the energy which
an amphiphile gains in an aggregate compared to being in isolation can be many
kBT . This implies, in turn, that the cmc can be very low: not much material needs
to be added before micelles form. For instance, the cmc for the standard surfactant
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Fig. 5 The left plot shows the total monomer concentration in all aggregates combined, X , as a
function of the concentration of single monomers, φ1. Since X emerges as a sum of φ1 and a second
term m(φ1/φcmc)

m with a large m (in the graph we chose m = 50), there is a sharp crossover near
φ1 = φcmc = e−α. The right picture simply flips the axes and shows the monomer concentration φ1
as a function of the total concentration of added amphiphiles. Initially, the monomer concentration
grows linearly with the amount of added amphiphiles—up to the concentration φcmc, at which point
it essentially stays constant

sodiumdodecylsulfate (SDS) is about 8 mM in water at 25 ◦C, at which point the
aggregation number of the micelles is m ≈ 60 (Turro and Yekta 1978).

It should be noted that the micellization transition is not a phase transition in
the classical sense: there is no discontinuity or non-analyticity in any of the ther-
modynamic functions; the transition is always rounded, since m is large but finite.
Regardless, it is a very pronounced change in the system’s behavior, and as such it
dominates aggregation physics.

Cylindrical micelles. The difference between the spherical and the cylindrical case
enters via the energy per monomer in an aggregate, εn . For spheres we made the
reasonable assumption in Eq. (21) that there is a typical size for a micelle, and that
the energy will deviate quadratically as we move away from that value. This cannot
be true for cylindrical micelles, though, since they have an unspecified length: we
can easily make cylindrical micelles longer by simply adding more amphiphiles to
the linear part. The aggregation energy of these amphiphiles will be always the same,
for they cannot know how long the cylindrical aggregate is of which they are a part.
However, amphiphiles at the two end caps of the micelle must have a different energy,
and it must be larger than the energy of amphiphiles in the wormlike middle, for if that
were not so, spherical micelles would form in the first place. It is hence reasonable to
write the total energy of a cylindrical micelle of n monomers as En = nε∞ + 2Ecap,
and hence the energy per monomer is

εn = ε∞ + 2Ecap

n
=: ε∞ + α kBT

n
. (31)
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Notice that the dimensionless number α must be large: it is the excess energy (in units
of kBT ) of all end-cap monomers. Since these caps consist of two semi-spheres, they
together make up essentially one full spherical micelle, whose aggregation number
is O(100), and it seems fair to estimate that the excess energy for each monomer
stuck in the wrong local geometry is at least a sizable fraction of kBT .

Inserting this ansatz for εn into Eq. (20), we get

φn = [φ1 eβ(ε1−ε∞−α kBT/n)
]n = [φ1 eβ(ε1−ε∞)

]n
e−α = [φ1 eα

]n
e−α , (32)

where the last step follows since this equation must be true also for n = 1.
It is now highly useful to define the scaled concentrations φ̃n = φneα, because in

these variables Eq. (32) becomes

φ̃n = φ̃n
1 . (33)

The distribution of the φ̃n is exponential, which is remarkably wide (we will make
this more precise below) and very different from the spherical case, where the dis-
tribution was sharply peaked around an optimal size. Notice that in order for it to
be normalizable, we must have φ̃1 < 1, implying that the monomer concentration
can never exceed e−α—a concentration we will soon recognize as the cmc for the
cylindrical case.

If we define the scaled total concentration of monomers as X̃ = Xeα, the normal-
ization condition (17) becomes

X̃ =
N∑

n=1

n φ̃n =
N∑

n=1

n φ̃n
1 . (34)

Sums of this type can be done by the following elegant trick:

N∑

n=1

nbxn =
N∑

n=1

(
x

∂

∂x

)b

xn =
(
x

∂

∂x

)b N∑

n=1

xn =
(
x

∂

∂x

)b x − xN+1

1 − x
, (35)

where in the last step we summed the well-known geometric series. Moreover, since
we know that in our case x < 1 and N is very large, we can drop the xN+1 term (or,
equivalently, set N → ∞), and so we for instance find

∞∑

n=1

n xn =
(
x

∂

∂x

)
x

1 − x
= x

(1 − x)2
, (36a)

∞∑

n=1

n2 xn =
(
x

∂

∂x

)2 x

1 − x
= x(1 + x)

(1 − x)3
, (36b)
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∞∑

n=1

n3 xn =
(
x

∂

∂x

)3 x

1 − x
= x(1 + x(4 + x))

(1 − x)4
. (36c)

Hence, using Eq. (36a), the normalization condition (34) becomes a quadratic equa-
tion for φ̃1 that is easy to solve

X̃ = φ̃1

(1 − φ̃1)2
=⇒ φ̃1± = 1 + 2X̃ ±

√
1 + 4X̃

2X̃
. (37)

Since we know φ̃1 < 1, the minus sign is the correct choice. Expanding the solution
for small and large X̃ , we find

φ̃1 =
{

X̃ + O(1) : X̃ � 1

1 − 1/
√
X̃ + O(X̃−1) : X̃ � 1

. (38)

As promised, we can again define a cmc, φcmc = e−α, such that below the cmc
the monomer concentration in our solution is proportional to the amount of added
material, while for concentrations larger than the cmc any added material goes into
micelles, leaving the monomer concentration below φcmc, and approaching it with a
very slow 1/

√
X asymptotics. This is illustrated in Fig. 6.

We already know that the distribution of micelle sizes is exponential, but we might
also want to know what the mean and the variance are. These are easily calculated
by working out (weight-averaged) moments of n. For the first one, we find

〈n〉 =
∑∞

n=1 n X̃n
∑∞

n=1 X̃n

=
∑∞

n=1 n
2φ̃n

∑∞
n=1 nφ̃n

∗= 1 + φ̃1

1 − φ̃1

#=
√

1 + 4X̃ , (39)

where at ∗ we used Eqs. (36a) and (36b) and at # we inserted the solution (37).
Hence, the average micelle length grows like the square root of the concentration:
〈n〉 ≈ 2

√
X/φcmc.

Fig. 6 Monomer
concentration for the case of
a cylindrical micelle
aggregation scenario. The
dashed and dotted curves
indicate the small- and
large-concentration limits
from Eq. (38). The full
solution shows a cross over
at the cmc
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The second moment of n is given by

〈n2〉 =
∑∞

n=1 n
2 X̃n

∑∞
n=1 X̃n

=
∑∞

n=1 n
3φ̃n

∑∞
n=1 nφ̃n

∗= 1 + φ̃1(4 + φ̃1)

(1 − φ̃1)2
, (40)

where at ∗ we used Eqs. (36a) and (36c). Hence, the variance of n is

σ2
n = 〈n2〉 − 〈n〉2 = 2φ̃1

(1 − φ̃1)2

#= 2X̃ , (41)

where at # we again used the solution (37). This answer is important, because it
shows that the width of the distribution essentially scales with its mean, and hence

σn

〈n〉 =
√

2X̃

1 + 4X̃
= 1√

2
− O(X̃−1). (42)

Distributions of cylindrical micelles are hence “wide” no matter how large the
micelles are; there is no “law of large micelles,” or a 1/

√
n like asymptotics toward

a sharp mean. Remarkable as this is, it is of course not unexpected, for that is what
exponential distributions do.

Planar bilayers. Again, the first question to address is: what is εn for an aggregate
that assembles in a planar fashion? To make headway, though, we need to make
further assumptions about its geometry. We will assume that it stays flat, and that
it will be circular. The latter follows because the amphiphiles at the bilayer disc’s
edge will have a higher free energy per molecule than the one in the flat region (for
reasons analogous to the elevated free energy of monomers at the ends of cylindrical
micelles). This excess free energy per unit length acts as a line tension (in this
case usually called edge tension), and minimizing it at constant overall area of the
aggregate means that the shape has to be a circle.

If the circular aggregate has area A = πR2, its circumference is C = 2πR =
2
√

πA. The excess free energy of the edge is Eedge = 2πRγ = 2
√

πAγ, with γ being
the edge tension—a material parameter. Since the number of lipids in the aggregate
is approximately n = 2A/a�, with a� being the area per lipid, we get A = 1

2na�, and
hence Eedge = √

2πna�γ. The replacement for Eq. (31) is hence

εn = ε∞ + Eedge

n
= ε∞ +

√
2πna�γ

n
= ε∞ + α kBT√

n
, (43)

where α = √
2πa�βγ is a dimensionless number that’s again a fair bit larger than 1.

To estimate it, let’s take the DOPC values of a� � 0.7 nm2 (Kučerka et al. 2006) and
γ � 20 pN (Portet and Dimova 2010), from which we get α ≈ 10. Notice that the
only difference between the cylindrical and the planar case is that in the latter the
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excess term is proportional to 1/
√
n instead of 1/n. We will see that this changes

the physics in a big way.
Inserting this expression for the energy per monomer into the general form of the

aggregate distribution, Eq. (20), we get

Xn = n φn = n
[
φ1 eβ(ε1−ε∞−α kBT/

√
n)
]n

= n
[
φ1 eβ(ε1−ε∞)

]n
e−α

√
n

= n
[
φ1 eα

]n
e−α

√
n , (44)

where the last step again follows because this equation must also be true for n = 1.
The normalization condition (17) then becomes

X =
N∑

n=1

Xn =
N∑

n=1

n
[
φ1 eα

]n
e−α

√
n . (45)

The term e−α
√
n decreases with n, while for the term [φ1 eα]n the asymptotic behavior

depends on whether φ1eα is bigger or smaller than 1. Assume it is bigger than 1. Then
this term grows with n, and it asymptotically grows faster than e−α

√
n decreases.

This might get us worried, for if we again replace N → ∞ (because N will be
macroscopically big), the sum in Eq. (45) would diverge. So let us assume that,
instead, the expression φ1eα is smaller than 1. In that case, we can calculate

X =
∞∑

n=1

n
[
φ1 eα

]n
e−α

√
n ≤

∞∑

n=1

n e−α
√
n ≈

∫ ∞

0
dn n e−α

√
n = 12

α4
. (46)

This is a pretty disastrous finding, though: apparently, the total amount of material
we can add to the system is bounded from above. What if we wanted to add more
material—who is going to stop us? (Not excluded volume—that was not part of the
model!)

The solution to this conundrum is subtle: the assumption that N can be replaced
by infinity is wrong—despite the fact that N could really be an Avogadro number
of molecules. But large is not the same as infinite, and the normalization condition
only enforces φ1eα ≤ 1 if we really sum all the way up to infinity. If the sum is finite,
there is no reason to demand that φ1eα ≤ 1, because finite sums cannot diverge!
More specifically, even if this term would ultimately outcompete e−α

√
n , if φ1eα is

only ever so slightly bigger than 1, this will only happen near the upper bound of the
sum—showing us that the value of this sum will likely depend very critically on just
how much φ1eα exceeds 1.

Unfortunately, it is quite tricky to see how this plays out analytically, because
the normalization sum (45) turns out to be a very delicate interplay between very
small and very large terms. To brace ourselves for what is actually happening here,
we shall first look at a numerical example. Let us assume that α = 10, that we
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Fig. 7 The solid curve is the right hand side of Eq. (47) as a function of the parameter φ̃1, for
α = 10 and N = 10, 000; the dashed curve is the large-n-approximation from Eq. (49)

have N = 10, 000 molecules in the system (really an incredibly small number by
experimental standards, but this might be a typical number to be used in a simulation),
and let us demand that we want to ultimately gain a total concentration of X = 10−2

(notice that this is larger than the erroneous upper bound of 12/α4 = 1.2 × 10−3). If
we abbreviate φ̃1 = φ1eα, then we have to numerically solve the following equation
for φ̃1:

10−2 =
10,000∑

n=1

n φ̃n
1 e−10

√
n . (47)

Figure 7 plots the right hand side of this equation as a function of the parameter φ̃1

in the interesting range. Up to φ̃1 ≈ 1.1025, the right hand side grows linearly (and
extremely weakly) with φ̃1, but at around this point a big change happens, and the
sum picks up extremely rapidly—becoming a power law with an exponent of about
10, 000. (This also shows why it is very hard to treat this problem numerically with
even bigger values of N .) The value 10−2 is reached at φ̃1 ≈ 1.10330764 and hence
X1 ≈ 5.009 × 10−5.

Inserting this value for φ̃1 into the distribution function for Xn from Eq. (44), we
can plot it over the entire range of permissible n values: from n = 1 to n = 10, 000;
this is done in Fig. 8. Initially, the distribution function drops precipitously: one finds
X2 ≈ 1.756 × 10−6 ≈ X1/30 and X3 ≈ 1.211 × 10−7 ≈ X1/400. But at n = 2566
the function attains a minimum, after which it again begins to rapidly grow. At its
largest n-value it becomes X10,000 ≈ 4.696 × 10−4 ≈ 10X1, showing it is about 10
times more likely to find a lipid in that aggregate than to find it in isolation! Another
way of looking at this is the following: 99% of all monomers are found in aggregates
with a size of at least 9, 890. And yet another illustration is the following: Look
at the cumulative normalized distribution of Xn , namely, f (m) = X−1∑m

n=1 Xn . It
rapidly rises from 0 to about 0.0052 when m rises from 1 to 10. However, after that
it stays virtually constant, until about 9, 800, when it begins to rise again. In other
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Fig. 8 The solid curve is the distribution function Xn = n φn from Eq. (44), using the numer-
ical parameters α = 10, N = 10, 000, and X = 0.01, which implies the numerical solution
φ̃1 ≈ 1.10330764 and hence X1 ≈ 5.009 × 10−5. The dashed curve is the approximate distrib-
ution from Eq. (48), using the value for φ̃1 determined via the first-order approximation in Eq. (52),
φ̃

(1)
1 ≈ 1.10330882. Using φ̃

(1)
1 in the full distribution (instead of the exact φ̃1) leads to a curve that

is indistinguishable from the exact one on this plot, with a normalization that is about 1% off

words, with the exception of about half a percent of small oligomers, virtually the
whole system forms one giant aggregate.

With these observations we are now in a better position to develop a decent
approximate solution for the normalization condition (45). Notice that we need to
analytically describe the region in that sum which strongly increases (the “uptake”
in Fig. 7), and that this comes from the aggregates—meaning, the large-n part of
the distribution function. Hence it is probably a good idea to expand the summands
in Eq. (45) around the upper end, n = N , and preferably in such a fashion that we
can perform the sum. But given the exponential variation of Xn , it is wise to do that
expansion in the exponent:

Xn = n φ̃n
1e−α

√
n = φ̃n

1 exp
{−α

√
n + ln n

}

= φ̃n
1 exp

{
− α

[√
N + 1

2
√
N

(n − N )

]

+ ln N + 1

N
(n − N ) + O

(
(n − N )2

)}

≈ Ne−α
√
N/2
(
φ̃1 e−α/2

√
N
)n

. (48)

This expansion permits us to do the sum, since it turns into a simple geometric series:

N∑

n=1

n φ̃n
1e−α

√
n ≈ Ne−α

√
N/2 y

N+1 − 1

y − 1
with y = φ̃1 e−α/2

√
N . (49)
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Since y is slightly larger than 1, but N is huge, yN+1 will be very large compared
to 1. (In our above numerical example we would find y ≈ 1.0494987 and hence
yN+1 ≈ 1.049498710,001 ≈ 6.92 × 10209.) We can hence neglect the “−1” in the
numerator, but of course not in the denominator.

The normalization condition now becomes

� := X eα
√
N/2

N
= yN+1

y − 1
, (50)

but this is again impossible to solve analytically. However, we can get increasingly
good approximations by iteration. First, recall that the right hand side really emerged
as a geometric series, and so it is given by yN + yN−1 + yN−2 + · · · . Let us take the
dominant term, yN , and solve the equation. We then get

y = �
1
N . (51)

Even though only approximate, this already looks remarkably good, since it gives
φ̃1 = 1.103645 for our numerical example, about 0.03% off. And yet, inserting this
value into the normalization condition gives a value about 20 times too big. We need
to do better. In fact, we can improve the solution by iterating the defining equation,
à la y(i+1) = [�(y(i) − 1)]1/(N+1), where y(0) = �1/N is our initial simple result. At
first-order we get

φ̃(1)
1 = eα/2

√
N y(1)

= eα/2
√
N
[
�
(
�1/N − 1

)]1/(N+1)

= eα/2
√
N

[
X

N
eα

√
N/2

((
X

N

)1/N

eα/2
√
N − 1

)]1/(N+1)

. (52)

With the numerical example from above (X = 0.01, α = 10, and N = 10, 000), this
gives φ̃(1)

1 = 1.10330882, which differs from the exact numerical solution only by
1 part in 106, and now the normalization condition is only 1% off. Unfortunately,
further iterations do not gain us much anymore, because we are still solving an
approximate equation, not the exact one.

There is more to be learned. First, even the simplest solution becomes exact in
the thermodynamic limit N → ∞. Performing it, we get

φ1 = e−α lim
N→∞

⎧
⎨

⎩
eα/2

√
N

(
X eα

√
N/2

N

)1/N
⎫
⎬

⎭
= e−α , (53)

showing that—again—we have a critical “micelle” concentration. Since bilayer
patches are usually not viewed as “micelles,” this is more commonly called the
critical aggregate concentration and abbreviated as “cac”: φcac = e−α.
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The scenario looks superficially similar to what we have seen in the spherical
case: the normalization condition becomes a polynomial with a constant term, a
linear term, and one term with a large power (compare Eqs. (29) and (50)), and the
“largeness” of that power makes the transition. However, in the spherical micelle case
that power was given by the micelle size, and hence it was mesoscopic—of order
102. In the bilayer case that power is macroscopic—the total number of molecules in
the system, conceivably of the order of Avogadro’s number, but more importantly:
extensive. It will by definition diverge in the thermodynamic limit. It hence follows
that the aggregation transition for bilayers is a true phase transition—at least in the
model we have studied here.

Alas, our model is defective. The 1/
√
n correction to εn (see Eq. (43)), on which

the whole scenario hinges, comes from the
√
n divergence of the edge energy for

increasingly large flat circular aggregates. But bilayer patches do not have to stay flat.
Once they exceed a critical size, it is preferable for them to close up, make an edgeless
spherical vesicle, and pay bending energy instead, because bending energy does not
scale with size. This was first discussed by Helfrich (1974). Hence, vesiculation
caps the edge energy, moving the correction term back to a 1/n form, for which
we expect a wide exponential distribution function like in the case of cylindrical
micelles. Unfortunately, in reality things are now a lot more complicated, because
we can no longer ignore kinetics. In any case, we still encounter an aggregation
transition once the amphiphile concentration in solution exceeds a critical aggregate
concentration.

2 Fluid Elastic Sheets: From Three to Two Dimensions

The previous section has shown that there is something special about two-dimensional
assemblies of amphiphiles. Spherical micelles are by construction microscopic, and
cylindrical micelles are tenuous threads, constantly breaking and re-merging, with
a corresponding wide length distribution. In contrast, two-dimensional amphiphilic
sheets are endowed by thermodynamics with certain inalienable rights, among them
extensivity, stability, and universal elasticity. They arise as macroscopic persistent
entities, for which we therefore expect an effective large-scale theory to exist, whose
key degrees of freedom are emergent and independent of the microscopic realiza-
tion, and whose key physical parameters are functions of the underlying structure,
but might as well be taken as fundamental at the emergent level.

This situation arises frequently in physics: a system is known to have an under-
lying structure, but we can describe it effectively (and very elegantly) at a level that
completely ignores this structure. For instance, fluid dynamics need not know about
atoms. Its laws follow from thermodynamics and symmetry, only its parameters (mass
density and viscosity in the simplest case) reflect the details of the constituents. The
same is true for elasticity theory, where we can see even more clearly how local
microscopic symmetries leave traces in the macroscopic description (they dictate the
number and type of elastic moduli).
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In such a situation there are two ways for how to proceed, and they differ quite
fundamentally in their “philosophy”:

• Bottom-up approaches strive to reduce larger scale phenomenology to a micro-
scopic description at a smaller scale that is considered more fundamental. In par-
ticular, they aim to elucidate the dependence of the larger scale parameters on the
microscopic foundation.

• Top-down approaches ignore the underlying structure and postulate a macroscopic
theory from scratch, constrained only by symmetry. The parameters of this the-
ory are not themselves predictable, for they depend on the microscopic structure
which this approach purposefully ignores. But one can always measure them at
the macroscopic level, so the endeavor is self-contained.

Both approaches are perfectly valid and have their own advantages and drawbacks.
The top-down approach, for instance, need not wrestle with underlying microscopic
degrees of freedom—say, trying to eliminate them by performing partial traces
in phase space or other scale-bridging procedures. But decorating all symmetry-
permissible terms with phenomenological parameters might be dangerous, for they
need not be independent: a relation between them, enforced by subtleties of the
underlying microphysics, could be missed. The bottom-up approach, in contrast,
necessarily captures such effects, which is probably its biggest strength. But given
our poor ability to actually do the math needed to rigorously coarse-grain a Hamil-
tonian, approximations along the way might cloud the path of emergence. Moreover,
often we do not know the underlying microscopic theory all that well, and so we
instead start with what we perceive to be a good model of the microphysics. This
often works flawlessly, in the sense of giving a perfectly acceptable macroscopic
theory—but this is to be expected: after all, hardly any microscopic details survive the
emergence process. The macroscopic theory only depends on very generic symme-
try considerations and the microscopic details matter only inasmuch as they predict
macroscopic coefficients or produce correlations between them. If we cannot mea-
sure both the microscopic and the macroscopic parameters, it is very difficult to test
whether these predicted connections are fulfilled, and hence it is usually impossible
to be sure that our microscopic model was correct. This, of course, is the well-known
bane of scientists looking for The Fundamental Laws: there is more than one way to
skin a cat.

In our experience, combining both approaches to elucidate the path of scale-
bridging, being aware what powers and limits each modus operandi, and being
skeptical of too freely floating phenomenology as well as suspiciously specific model-
building—these are attitudes that will deepen one’s understanding of the key physics.
Indeed, one of the goals of the book you are holding is to explore this duality for
lipid membranes, for which phenomenological geometric Hamiltonians can be writ-
ten down, which in turn can also be motivated by underlying microphysics that
considers the lipid constituents.

In this section we wish to discuss one particular connection between large-scale
membrane theory and an underlying more microscopic model that is interesting
because it is itself already coarse-grained. It is a description of a thin two-dimensional
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fluid elastic sheet, and the question is, how to bootstrap ourselves up to larger scales
and one dimension lower: large-scale two-dimensional curvature elastic surfaces.
This program has been proposed and worked through in an important and seminal
paper by Hamm and Kozlov (2000). The goal of this section is to revisit their elegant
derivation, but here and there keep a few higher order terms which Hamm and Kozlov
have neglected, but for which one can make good arguments to keep them.

Before we now dive into membrane elasticity—a little heads-up: unlike the pre-
vious section, this one will start to use numerous tools from surface differential
geometry. The notation follows a recent review one of us has written (Deserno
2015), which introduces the basic formalism, derives most of the key identities, and
also provides several applications to membrane elasticity. But then, our view and
usage of differential geometry in this context has been very heavily influenced by
Jemal Guven, who also has a chapter in this book. We hence strongly recommend
that the reader also consults the master, not merely his apprentices.

2.1 The Starting Point: Thin Fluid Elastic Sheets

It is well-known that if ui j is the Cauchy strain tensor, the most general quadratic
expression for the elastic energy density we can write down is

e3d = 1

2
λi jkl ui j ukl , (54)

where λi jkl is the elastic modulus tensor (Landau and Lifshitz 1986). Without loss
of generality, the exchange symmetries i ↔ j , k ↔ l, and i j ↔ kl can be assumed,
leaving at most 21 independent components. But we want to use this expression for
the energy of a fluid lipid monolayer, and in that case additional symmetries reduce
the number of components much further (Hamm and Kozlov 2000; Campelo et al.
2014).

Area strain. Assume the leaflet lies in the xy-plane. First note that the two reflection
symmetries (x, y, z) → (−x, y, z) and (x, y, z) → (x,−y, z) imply that neither an
x- nor a y index can occur in λi jkl an odd number of times. Curiously, this implies
that the same must hold for the z-index, even though a monolayer does not have an
up-down reflection symmetry that would enforce this all by itself. Furthermore, one
consequence of in-plane isotropy is that the x- and the y-directions are indistinguish-
able, and so their λ-coefficients must be equal. This already massively reduces the
permissible terms to the following six:

e3d =1

2
λxxxx

(
u2
xx + u2

yy

)+ λxxyyuxxuyy + 2λxyxyu
2
xy

+ λxxzz
(
uxx + uyy

)
uzz + 2λxzxz

(
u2
xz + u2

yz

)+ 1

2
λzzzzu

2
zz , (55)
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where the prefactors account for obvious permutation multiplicities—such asλxyxy =
λyxyx = λxyyx = λyxxy . It is now useful to rework the quadratic strain expressions
in the following way:

e3d =1

2
λxxxx

(
uxx + uyy

)2 + (λxxyy − λxxxx
)(
uxxuyy − u2

xy

)

+ (2λxyxy + λxxyy − λxxxx
)
u2
xy

+ λxxzz
(
uxx + uyy

)
uzz + 2λxzxz

(
u2
xz + u2

yz

)+ 1

2
λzzzzu

2
zz . (56)

At this point we can exploit full in-plane rotational symmetry. The first two strain
terms in Eq. (56) are quadratic invariants under in-plane rotation: they are (i) the
square of the trace and (i i) the determinant of the strain tensor’s xy-subspace, respec-
tively. But the term in the second line is not an invariant, and there is no term left to
combine it with to remedy this flaw; hence, this term must vanish.

Next, let us make use of in-plane fluidity, which implies that the energy cannot
change under in-plane shear deformations—meaning, in-plane shear stresses must
vanish. One such deformation is a simple shear, uxy , and its associated shear stress is

0
!= σxy = ∂e3d

∂uxy
= −2

(
λxxyy − λxxxx

)
uxy . (57)

Since this must hold for uxy �= 0, we must have λxxyy = λxxxx , and so the second
term in Eq. (56) must vanish, too.

Finally, recall that we intend to describe a thin leaflet, which has the following
consequence: the normal stress σzz at the leaflet’s upper and lower surface vanishes
if the surface is free, but since the leaflet is thin, σzz does not have much opportunity
to considerably grow anywhere within the material. We will hence assume that it
vanishes throughout the material, and this implies

0
!= σzz = ∂e3d

∂uzz
= λxxzz

(
uxx + uyy

)+ λzzzzuzz , (58)

and this means that the in-plane and transverse strains are related by

uzz = −λxxzz

λzzzz

(
uxx + uyy

) =: −ν̃
(
uxx + uyy

)
. (59)

The dimensionless parameter ν̃ is related to the usual Poisson ratio ν via
ν̃ = ν/(1 − ν). Inserting this into Eq. (56), what remains is

e3d = 1

2
Ẽ(uxx + uyy)

2 + 2λxzxz(u
2
xz + u2

yz) , (60)
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Fig. 9 The material director
d̂ in a flat thin plate is by
construction aligned with the
local surface normal n̂. But
upon bending, d̂ may deviate
from n̂ by an angle θ due to
transverse shear (Figure
adapted from Reddy (2006))

n̂

θ
d̂n̂d̂

where we defined the effective modulus

Ẽ = λxxxx − λ2
xxzz

λzzzz
= λxxxx − ν̃2λzzzz . (61)

The first part in the energy (60) has now been recast in terms of a local area strain,
which we will soon relate to the extent of bending.

Lipid tilt. For the second term in Eq. (60), a connection to area strain is not possible,
because the strains uxz and uyz correspond to a local transverse shear, i.e., a defor-
mation related to the fact that the material director of a sheet need not coincide with
the surface normal, even if it does so for the flat sheet—see Fig. 9. This term can
instead be related to lipid tilt—if we decide that a lipid’s orientation is the appropriate
indicator for the local material director.1 To do so quantitatively, it is useful to define
a locally transverse tilt-field T that measures the deviation between material director
and surface normal (Hamm and Kozlov 2000):

T = T lel = d̂

n̂ · d̂ − n̂ . (62)

This definition makes the transversality of T manifest, since T · n̂ = 0 by construc-
tion (i.e., independent of any other conditions that would have to hold, such as T
being the solution of some Euler–Lagrange equation). Also, T is not normalized;
instead, its magnitude is |T | = tan θ, where θ is the tilt angle (i.e., the angle between
d̂ and n̂). Alternatively, we can write

1

cos θ
= 1

cos arctan |T | =
√

1 + T 2 = 1 + 1

2
T 2 + O((T 2)2

)
. (63)

Since within first-order shear deformation plate theory 2uxz = T · x and 2uyz =
T · y (Reddy 2006), this leads to

1Here we assume that a flat membrane is untilted—which is true for fluid phases, but not necessarily
so for membranes in the gel phase.
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u2
xz + u2

yz = 1
4TlT

l , (64)

and that permits us to replace the second term in Eq. (60) in a way that involves tilt:

e3d = 1

2
Ẽ (uxx + uyy)

2 + 1

2
λxzxzTlT

l , (65)

We would now have to relate the two deformations—especially the area strain—to
the geometry of a curved membrane. But before we do that, it is important to realize
that we are not yet done with the energy density: a very crucial term is missing,
because its origin requires us to think beyond a thin sheet of local moduli—i.e., we
must go beyond Eq. (54).

Lateral prestress. Consider again what we are trying to model: a thin self-assembled
in-plane fluid leaflet made up of amphiphilic molecules. Now focus on the fact
that, unlike a homogeneous thin sheet, a lipid monolayer has internal structure that
underlies its very reason of existence: the strongly positionally varying solubility
of lipids—which gives rise to the self-assembly process that shields the tails from
the embedding solvent by placing the head groups in between. One important conse-
quence of this assembly-driven cohesion is that it leaves the membrane under internal
pre-stresses—meaning, stresses that do not locally vanish in the equilibrium state,
only globally. As we will soon see, they contribute to the deformation energy.

Let us first explore, what kind of remaining stresses are permissible by symmetry.
Evidently, for a flat membrane lying in the xy-plane the stress tensor � is diagonal
in the {x, y, z} coordinate system. Due to translational symmetry, it can only depend
on z, and due to rotational symmetry, the x- and y-components must be identical:

� = diag
(
�xx (r),�yy(r),�zz(r)

) = diag
(
�||(z),�||(z),�⊥(z)

)
. (66)

In mechanical equilibrium � must be divergence free, ∂i�i j = 0. This equation
immediately implies that �⊥(z) = �⊥ is a constant, and so it must be equal to
the isotropic ambient pressure acting on the membrane. The tangential component
�||(z), however, is not restricted by this argument and could be a pretty complicated
function of z. As we will soon discover, it indeed is.

Now imagine that we place a small patch of membrane inside a cuboid box
of area A and height z. How would the energy change if we (isothermally and
reversibly) deform that box in a volume-preserving way such that A → A + δA and
z → z − δz = z − (z/A)δA? Following Rowlinson and Widom (2002 Chap. 2.5),
the vertical compression requires the work

δW⊥ = A δz �⊥ = z δA�⊥ . (67)

In contrast, the lateral expansion requires the work

δW|| = −δA
∫ z/2

−z/2
dz �||(z) . (68)
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Hence, the total change in free energy is

δF = δW⊥ + δW|| = δA
∫ z/2

−z/2
dz
{
�⊥ − �||(z)

}
. (69)

The expression under the integral is the positionally resolved effective lateral mechan-
ical tension acting in the membrane. It is often simply called the lateral stress profile:

σ0(z) = �⊥ − �||(z) . (70)

What does this function look like for a membrane?
First, consider that there is the equivalent of a hydrophilic–hydrophobic interface

at the backbone of a lipid, and so roughly at that height in the monolayer we have
a relatively large lateral tension. This is where the bilayer is being pulled together,
where the effect is localized that gives rise to a membrane in the first place. As a con-
sequence, both the tails and the heads of the lipids are now being compressed, leaving
us with a positive pressure (or negative tension) in the tail and upper head region that
strives to expand the leaflet. For a membrane that is not subject to a net lateral ten-
sion, these stresses must balance, such that the net total stress (the integral over σ0(z))
vanishes, thereby setting the equilibrium area per lipid. Hence, we expect σ0(z) to be
a function that features (positive) peaks near the two hydrophilic/hydrophobic tran-
sition regions in a lipid bilayer, while being negative both in the center and further
out beyond the transition regions, such that the overall positive and negative areas
balance.

Figure 10 shows the function σ0(z) as measured for a particular lipid membrane
model (the MARTINI version of DMPC, at a temperature of 300 K). Our overall
expectations are met, even though we could not have anticipated all the extra wiggles.
What might look extremely surprising, though, is how very large the effective stresses
are: hundreds of bars! However, upon second thought, this makes sense: a typical
value for the oil-water surface tension is about 50 mN/m (Goebel and Lunkenheimer
1997). Chemistry and Fig. 10 suggest that the transition between the hydrophilic and
hydrophobic environment occurs over a region of approximately 1 nm width, and

Fig. 10 Lateral stress profile
σ0(z) of a lipid bilayer, using
a coarse-grained model of
the lipid DMPC (MARTINI
force field) at 300 K. This
profile is based on simulation
results presented in (Wang
and Deserno 2015)
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hence the pressure we would expect at the peak is about

σ0(zpeak) ∼ 50 mN/m

1 nm
= 500 bar . (71)

Which is very close to what the simulation finds (fortuitously so, of course, but it is
only the order of magnitude that counts).

Armed with the new insight that an in-plane lateral stress σ0(z) exists in a lipid
membrane, we should amend the monolayer elastic energy from Eq. (65) with a term
that penalizes stretching or compression against that pre-existing stress, which leads
to a term that is linear in the area strain:

e3d = σ0(z(ζ))ε(ζ) + 1

2
Ẽ ε(ζ)2 + 1

2
λxzxzTlT

l . (72)

Here we also defined two more concepts:

1. z(ζ) is the transverse coordinate z of a piece of material in the flat monolayer as a
function of its transverse position ζ in the curved monolayer. Since curving leads
to local lateral stretching or compression, this impacts the transverse coordinates,
because the Poisson ratio generally does not vanish—see Eq. (58). We will soon
exploit this to connect z with ζ.

2. ε(ζ) is the lateral area strain as a function of the curved transverse coordinate ζ.
To first-order in ζ, it is equal to uxx + uyy , but at next order it differs. But since
this difference takes the form of a lateral shear, which meets no resistance in fluid
leaflets, we can ignore it—that’s how Hamm and Kozlov (2000) argue. One could
also state, though, that the true area strain should linearly couple to the true area
stress, and that is why ε should naturally multiply the stress profile σ0. Of course,
the outcome is the same. Also, notice that the difference only matters in the linear
(pre-stress) term, because it becomes higher than quadratic order in the already
quadratic elastic term.

2.2 Decomposing the Membrane Deformation
into Three Stages

It should now become quite evident that the reason curvature will enter our final
expression for a surface energy density functional is that bending the leaflet will give
rise to positionally varying strains. To describe them, we need to carefully distinguish
coordinates in the flat and curved sheet. It turns out that a convenient way of doing
this is to decompose the strain by defining an intermediate state between the original
flat bilayer and the final curved one: a state where lipids have tilted, resulting in a
change of thickness and area per lipid of the leaflet that is uniform throughout its
width. From there, any further strain is now a function that depends at least linearly
on the transverse position and thus describes higher order curvature-induced strains.
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Fig. 11 The flat and untilted
monolayer state in (a) is first
transformed to a flat but
tilted state (b) in which
thickness and area per lipid
have changed. From there a
subsequent bending
deformation, which leaves
the area at the pivotal plane
invariant, leads to the final
curved state (c)
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Figure 11 illustrates these stages, as well as the notation we will use to describe
them: for coordinates or differentials in the initial, intermediate, and final state,
we will use lower case roman, upper case roman, and lower case Greek letters,
respectively. In particular, local area element and transverse height differential in
these three states will be denoted as

initial, (a): {da; dz} ,

intermediate, (b): {dA; dZ} ,

final, (c): {dα; dζ} .

While in the first two states the transverse coordinates z or Z are perpendicular to the
area element, this is not the case in the final state, for which the coordinate ζ aligns
with the local lipid direction. As a consequence, the volume element is not simply
dα dζ but instead dα dζ cos θ, where θ is the tilt angle.2 This will become important
below.

2During the workshop Jemal Guven pointed out that the additional required factor cos θ is the
equivalent of what in a 3 + 1 foliation treatment of general relativity is called the “Lapse function”
(Wheeler 1964).
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The area element dα in the curved configuration (c) will generally be different
from the area element dA of the intermediate configuration (b): further “outside” it
will be stretched, while further “inside” it will be compressed. But there will exist
one particular location in the leaflet, called the “pivotal plane,” at which the area
element is unchanged. We will use this specific location as the reference surface for
the curved configuration, the transverse location from which ζ will be measured and
to which all curvatures shall refer. Hence, we get dα(ζ = 0) = dA, while away from
the pivotal plane the changed area element leads to the higher order lateral strain

εζ = dα − dA

dA
. (73)

Since εζ is local, quantifying it requires not only the lateral location on the leaflet,
but also the transverse coordinate ζ. In contrast, the strain leading from the initial
state (a) to the intermediate state (b) is by construction independent of ζ. We will
hence refer to it as the zeroth order strain, which we can express as

ε0 = dA − da

da
. (74)

Obviously, the total area strain upon transitioning from state (a) to state (c) can be
expressed through ε0 and εζ :

ε(ζ) = dα − da

da
= (1 + ε0)(1 + εζ) − 1 . (75)

Observe that the decomposition through some intermediate state is not unique. Other
states could have been chosen, and more than one intermediate state is possible. But
since the final state of deformation and its associated elastic energy is indeed a
thermodynamic state, it does not matter by what specific path it is reached. The
particular sequence of strains we have chosen to get from the initial to the final state
is motivated by convenience, but our final answer will not depend on it.

2.3 The Link Between Curvature and Local Area Strain

Let us henceforth assume that we describe the shape of a curved monolayer via the
location of its pivotal plane.3 Any other surface, displaced from the pivotal plane by
some amount, will generally not have a vanishing local area strain, and so there will
be a local contribution to the elastic energy coming from (i) the local stress–strain

3Notice that if the monolayer leaflet were not fluid, a deformation that starts from a flat leaflet and
ends up with one that has a non-vanishing Gaussian curvature cannot be isometric by virtue of the
Theorema Egregium. Hence, this approach of writing the elastic energy by looking at the stretching
away from a pivotal plane relies by construction on fluidity.
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work when stretching or compressing against the pre-existing stress σ0 and (i i) the
elastic contribution quadratic in the local strain. We need to calculate how big this
strain is.

More precisely, if X is a point on the pivotal plane, we arrive at the new shifted
point by displacing it a constant distance ζ along the local material direction d̂:

X ′ = X + ζ d̂ . (76)

We need to know the area strain on the shifted surface X ′, which in turn depends on
the local displacement direction d̂.

Area strain for parallel surfaces. The easiest situation is if d̂ = n̂, in which case
the shifted surface is called a parallel surface. To calculate the resulting area strain,
we must compare an area element dA′ on the parallel surface with its corresponding
area element dA on the original parent surface. Recall that the tangent vectors on the
parent surface are given by ei = ∇iX , where ∇i is the metric-compatible covariant
derivative. The area element on the parallel surface is hence

e′
i = ∇i (X + ζ n̂) = ei + ζK j

i e j , (77)

where Ki j is the curvature tensor and where we used the Weingarten equation ∇i n̂ =
K j

i e j . To get the area element, we need the metric determinant g′ on the parallel
surface, and that we get from the cross products of the two tangent vectors:

√
g′ = |e′

1 × e′
2| =

∣∣∣(e1 + ζK j
1 e j ) × (e2 + ζKk

2 ek)
∣∣∣

=
∣∣
∣e1 × e2 + ζ(K 1

1 + K 2
2 ) e1 × e2

+ ζ2(K 1
1 K

2
2 − K 2

1 K
1
2 ) e1 × e2

∣
∣∣

=
∣∣∣(1 + K ζ + KGζ2) (

√
g n̂)

∣∣∣

= √
g (1 + K ζ + KGζ2) , (78)

where K and KG are trace and determinant of the curvature tensor Ki j .
The maybe slightly unorthodox use of individual components can be avoided by

proceeding a little bit more formally. The calculation is a bit longer, but it will turn
out to be quite useful when we go beyond this simple case. Define the Levi–Civita
symbol εi j = εi j such that ε11 = ε22 = 0 and ε12 = −ε21 = 1. Furthermore, define
the Levi–Civita tensor density εi j = √

g εi j , which also implies εi j = εi j/
√

g. Now,
the cross product between the two tangent vectors can be written as
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e′
1 × e′

2 = 1

2
√

g εi j e′
i × e′

j

= 1

2
√

g εi j (ei + ζKk
i ek) × (e j + Kl

j el)

∗= 1

2
√

g εi j
[
εi j + ζ(εil K

l
j + εkl K

k
i ) + ζ2εkl K

k
i K

l
j )
]
n̂

= 1

2
√

g
[
εi jεi j + ζ(εi jεil K

l
j + εi jεk j K

k
i ) + ζ2εi jεkl K

k
i K

l
j

]
n̂ , (79)

where at ∗ we used ei × e j = εi j n̂. If we now apply the identities εi jεi j = 2,
εi jεik = g

j
k = δ

j
k (i.e., the Kronecker-δ), and the definition of the determinant,

det(Ki j ) = 1
2εi jεkl Kik K jl , the last line immediately reproduces Eq. (78) when taking

the modulus.
Since dA = √

g du1du2 and dA′ = √
g′ du1du2, we find the area strain

εζ = dA′ − dA

dA
=

√
g′

√
g

− 1 = K ζ + KGζ2 . (80)

This is quite remarkable because it is exact: No corrections beyond quadratic order
in ζ occur.

Area strain for more general lipid-shifted surfaces. If the direction of shift, d̂, is
not along the surface normal but along the lipid orientation, we instead have

d̂ = T j e j + n̂
√

1 + Tj T j
= T j e j + (1 − 1

2Tj T j
)
n̂ + O(|T |3) . (81)

It is worthwhile to note that we deviate here from Hamm and Kozlov (2000), for these
authors do not normalize the orientation vector. Clearly, this only matters at higher
order, but the difference does have a physical interpretation. Recall that we want ζ to
measure a given distance along a lipid. If we do not normalize the lipid director, the
displacement |ζd| along a tilted lipid is longer than for an untilted one, while this
distance remains unchanged if we use the normalized director. Which one is correct
hence depends on whether lipids stretch upon tilting. Hamm and Kozlov assumed that
lipids stretch by laterally shearing, which exactly corresponds to not normalizing the
orientation vector in the numerator of Eq. (81). However, more recently Kopelevich
and Nagle (2015) showed in a simulation study that there is virtually no correlation
between a lipid’s length and its orientation, suggesting that lipids rotate upon tilting.
In that case the normalized orientation vector is the more appropriate choice, which
leads to the lipid-shifted surface

X ′ = X + ζ
[
T j e j + (1 − 1

2Tj T j
)
n̂
]+ O(T 3) . (82)
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The remainder of the calculation follows the one for parallel surfaces, except that the
form of X ′ results in more complex expressions. To begin with, the tangent vectors
are

e′
j = ∇ j

{
X + ζ

[
T j e j + (1 − 1

2Tj T j
)
n̂
]}

= e j + ζ
[(

K̃ k
j − 1

2 K
k
j TlT

l
)
ek − K̃ jl T

l n̂
]

, (83)

where we defined the effective curvature tensor

K̃i j := Ki j + ∇i Tj . (84)

Warning: K̃i j is generally not a symmetric tensor (unlike Ki j ), because ∇i Tj �= ∇ j Ti .
This means we must be careful when contracting indices, or when raising one of them:
K̃ j

i is not the same as K̃ j
i .

Calculating the cross product of the tangent vectors is now a bit more tedious, but
still straightforward. First,

e′
1 × e′

2 =1

2
√

g εi j e′
i × e′

j

=1

2
√

g εi j
{
ei + ζ

[(
K̃ k

i − 1
2 K

k
i T

2
)
ek − K̃imT

m n̂
] }

×
{
e j + ζ

[(
K̃ l

j − 1
2 K

l
j T

2
)
el − K̃ jnT

n n̂
] }

. (85)

Making use of ei × e j = εi j n̂ as well as n̂ × ei = εi j e j , all cross products can
again be expressed as Levi–Civita tensor densities. Two of them contract either into
a metric or create a determinant. The one case where that does not happen, they form
an expression that will not matter up to order ζ2. We then find

e′
1 × e′

2 =√
g

{
n̂
[
1 + ζ(K̃ − 1

2 KT 2) + ζ2(K̃G − KGT 2)
]

+ ei
[
ζ K̃imT

m + ζ2(irrelevant stuff)
] }

, (86)

where the trace and determinant of the effective curvature tensor are

K̃ = Tr(K̃i j ) = gi j K̃i j , K̃G = det(K̃i j ) = 1
2εi jεkl K̃ik K̃ jl . (87)

Moreover, Eq. (86) already exploits the fact that this expansion is only supposed to
be accurate up to maximally order K 2T 2. This for instance means that terms like
K̃ 2T 2 can be replaced by K 2T 2, since the “extra T ” in K̃ would contribute at higher
order.
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Up to order ζ2, the square of Eq. (86) is hence given by

|e′
1 × e′

2|2
g

=
[
1 + ζ(K̃ − 1

2 KT 2) + ζ2(K̃G − KGT 2)
]2 + ζ2KimK

i
nT

mT n, (88)

and so the ratio of metric determinants is
√

g′
√

g
= 1 + (K̃ − 1

2 KT 2)ζ + (K̃G − KGT 2 + 1
2 KimK i

nT
mT n)ζ2 . (89)

We hence find the following area strain:

εζ = dα − dA

dA
=

√
g′

√
g

− 1 = ε1 ζ + ε2 ζ2 , (90)

with the first- and second-order contribution

ε1 = K̃ − 1
2 KTiT i , (91a)

ε2 = K̃G − (KG gmn − 1
2 KimK i

n

)
TmT n . (91b)

The transverse dimension: Poisson ratio effects. We have just seen how the lateral
area element changes due to curvature—both with and without accounting for tilt.
However, the transverse length element will change, too, and the extent to which
this happens is dictated by the Poisson ratio. It will affect the zeroth order strain ε0

as well as the connection between the differentials dz, dZ , and dζ, which we have
been careful to distinguish.

Let us begin with the zeroth order strain ε0. Following the finding by Kopelevich
and Nagle (2015) that lipids rotate upon tilting, we must have dZ = dz cos θ, and
so the zeroth order transverse strain is

u0
zz = dZ − dz

dz
= cos θ − 1

∗= 1
√

1 + |T |2 − 1 = −1

2
TlT

l + O(|T |4) , (92)

where at “∗” we used |T | = tan θ.
Furthermore, recall that the normal stresses vanish at the top and bottom of the

leaflet. If it is sufficiently thin, this implies that the normal stress vanishes throughout
the leaflet, since they has not much opportunity to grow appreciably. This relates the
transverse and lateral strains (Landau and Lifshitz 1986)

− ν

1 − ν
(u0

xx + u0
yy) =: −ν̃(u0

xx + u0
yy) = u0

zz
(92)= −1

2
TlT

l , (93)

where ν is Poisson’s ratio for the present anisotropic material, which in terms of the
elastic tensor λi jkl is
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ν = λxxzz

λxxzz + λzzzz
or ν̃ := ν

1 − ν
= λxxzz

λzzzz
. (94)

These elastic coefficients could in general depend on their transverse position through
the leaflet, but notice that the area strain cannot, because we assumed it to arise from
a rigid rotation of the lipids. Hence, in Eq. (94) ν̃ must denote the average value across
the leaflet.

Finally, since at O(ζ) the zeroth order area strain equals the sum of the in-plane
diagonal components of the strain tensor, it is found to be

ε0 = 1

2ν̃
TlT

l . (95)

Notice that ν can in principle be zero, in which case ν̃ would also vanish, seemingly
leading to a divergent strain. However, at a vanishing Poisson ratio a lateral surface
stress would not lead to a reduction of thickness, and hence lipids cannot in fact tilt.
Indeed, Eq. (93) shows that if ν̃ = 0 then the tilt vanishes as well, and hence the
area strain remains finite. At any rate, the physically relevant situation for soft fluid
leaflets is ν̃ ≈ 1, not a vanishing Poisson ratio.

Next, let us look at the connection between the transverse area elements in the
initial and final configuration. To begin with, note that the difference in alignment
between the Z - and ζ-coordinate again implies that dZ = dζ cos θ. Combining this
with the usual Poisson relation between lateral and transverse strain normal to the
lateral direction, we get

dζ cos θ − dZ

dZ
= −ν̃εζ . (96)

Inserting dZ = cos θ dz from Eq. (92), cos θ cancels in the relation between the
transverse differentials z and ζ:

dζ = dz
[
1 − ν̃

(
ε1ζ + ε2ζ

2)] . (97)

The expansion coefficients ε1 and ε2 are those given in Eq. (91a) and (91b). This
connection constitutes a differential equation for ζ(z), and it can be solved by a
straightforward quadrature. Fortunately, though, we will only need the solution up to
order z2:

ζ(z) = z − 1
2 ν̃ε1z2 + O(z3) . (98)

Just as in the case of the zeroth order area strain, ν̃ in principle depends on the position
within the leaflet, but since we do not know the functional form, we could not in
general integrate the differential equation. However, at the order in z that we strive
for, all we could and need account for is a linear deviation away from its average
value. Since ν̃ is anyways most likely very close to 1, this extra work seems hardly
justified, and in order to keep things simple, we will again just take the average value
of the Poisson ratio in Eq. (98).
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The volume element Having calculated the lateral and transverse coordinate dif-
ferentials in the deformed configuration, we can now calculate the volume element
in the coordinates we need—which are the transverse position z in the flat untilted
state and the area element dA of the flat tilted state, which by definition is identical
to the area element dα(ζ = 0) of the curved leaflet at its pivotal plane. To calculate
the volume element, we also must recall that the new volume element is generally
not orthogonal, since the ζ-direction has an angle θ with respect to the membrane
normal, and so we get a projection factor cos θ. Putting everything together, we find

dV = dA dz
[
1 − 1

2TlT
l
][

1 + (1 − ν̃)εζ − ν̃ε2
ζ

]
, (99)

where we use Eq. (73) and the Poisson ratio relation Eq. (96).
Notice that Eq. (99) has one disconcerting feature: in the incompressible limit,

ν̃ = 1, the only contribution to area strain should come from tilt (namely, ε0), but
here we get another contribution from geometry—the underlined term. This trouble
is not specific to our particular problem but more generally reflects the fact that the
Poisson ratio is a first-order concept. To see this, consider an area strain εA and a
transverse strain εz . Together, they result in a volume strain εV = (1 + εA)(1 + εz) −
1 = εA + εz + εAεz . And with the usual Poisson ratio connection εz = −ν̃εA, we get
εV = (1 − ν̃)εA − ν̃ε2

A. The last term does not vanish in the incompressible limit
ν̃ = 1, and it is exactly the source of the underlined term in Eq. (99). To avoid this
inconsistency, we will drop the underlined quadratic term.

2.4 From Three Dimensions to Two

Putting everything together, we then arrive at the following overall elastic energy,
which is correct up to order ζ2, squared curvature, squared tilt, and biquadratic terms:

Hm =
∫

dA dz
[
1 − 1

2TlT
l + (1 − ν̃)

(
K̃ − KTlT l

)
ζ
]
×

{
σ0(z(ζ))

[
1

2ν̃
TlT l +

(
K̃ + 1−ν̃

2ν̃
K TlT l

)
ζ

+
(
K̃G − 1

2

(
KGgi j − Kki K k

j

)
T i T j

)
ζ2

]

+ 1
2 Ẽ
(
K̃ 2 + 1

ν̃
KGTlT l

)
ζ2

+ 1
2ν̃
Ẽ K ζTlT l + 1

2λxzxzTlT l

}
. (100)

Here we made one further approximations: we dropped biquadratic terms which
exhibit an additional factor of 1 − ν̃. Since we will invariably be close to the
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incompressible limit, this multiplies the small biquadratics by yet another small-
ness parameter, which we will ignore for simplicity.

From this expression we get the elastic surface energy density by performing the
integral over z, which also requires us to insert the functional dependence ζ(z) from
Eq. (98). Doing this integral, we arrive at the surface energy density

e2d = 1

2
κm(K̃ − K0,m)2 + κm K̃G + 1

2
κt,mM

′
i j T

i T j . (101)

This expression now features numerous new elastic constants, but all of them have
expressions in terms of the underlying elastic model:

κm =
∫

dz
[
Ẽ(z) − ν̃σ0(z)

]
z2 , (102a)

κm =
∫

dz σ0(z) z
2 , (102b)

κt,m =
∫

dz λxzxz(z) , (102c)

κm,ν =
∫

dz
1

ν̃

[
Ẽ(z) − ν̃σ0(z)

]
z2 , (102d)

−κmK0,m =
∫

dz σ0(z) z , (102e)

−κmK0,t =
∫

dz λxzxz(z) (1 − ν̃) z , (102f)

κmK
′
0,m =

∫
dz

1

ν̃

[
Ẽ(z) + (2 − 3ν̃)σ0(z)

]
z , (102g)

The quadratic tilt term in Eq. (101) is not merely characterized by a scalar modulus
but instead by a full tensor, which has the form

M ′
i j =

[
1 + �2K

(
K ′

0,m− K0,t
)− �2K 2 + (�2

ν − rm�2
)
KG

]
gi j + rm�2Kki K

k
j .

(103)
Here, � is a characteristic length defined from bending and tilt moduli, while the
other length scale �ν is defined via the new modulus κm,ν :

�2 = κm

κt,m
, �2

ν = κm,ν

κt,m
. (104)

Moreover, the dimensionless number rm is given by

rm = κm

κm
. (105)
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In the absence of tilt, the stability of the quadratic curvature expression Eq. (101)
requires −2 ≤ rm ≤ 0 (Deserno 2015), and so rm < 0.

Observe that in the absence of tilt Eq. (101) simplifies to the Helfrich Hamiltonian.
Moreover, if the curvature radii are large compared to the characteristic scales � and
�ν), the tilt tensor approaches the metrix, M ′

i j → gi j , and the expression for the
surface energy density reduces to the original expression by Hamm and Kozlov
(2000).

Disentangling Tilt and Curvature in K̃G. The effective curvature K̃ = K + ∇l T l

is the sum of the total curvature and the divergence of the tilt. This separates tilt
and curvature quite nicely, and shows for instance that the divergence of tilt can be
viewed as a position-dependent dynamic spontaneous curvature. Unfortunately, it is
not quite so easy to see how we can wrest the tilde from K̃G. But it is possible. To
do so, recall the definition

K̃G = 1

2
εi jεkl K̃ik K̃ jl (now use εi jεkl = gikg jl − gilg jk)

= 1

2

(
K̃ 2 − K̃ k

i K̃ i
k

)
,

= 1

2

[(
K i

i + ∇i T
i
)(

K j
j + ∇ j T

j
)

−
(
K j

i + ∇i T
j
)(

K i
j + ∇ j T

i
)]

= 1

2

[
K 2 − K j

i K
i
j + 2

(
K∇i T

i − K j
i ∇ j T

i
)

+ ∇i T
i∇ j T

j − ∇i T
j∇ j T

i
]

= KG +
(
K∇i T

i − K j
i ∇ j T

i
)

+ 1

2

(
∇i T

i∇ j T
j − ∇i T

j∇ j T
i
)

. (106)

As the next step, recall that the above expression occurs under an integral. We aim
to integrate the second and third parenthesis by parts, which means “swapping one
derivative and one sign,” as well as getting one boundary term. Doing so, we find

K̃G = KG +
(
∇i K

i
j − ∇ j K

)
T j + 1

2
T i
(
∇ j∇i − ∇i∇ j

)
T j + ∇i B

i , (107)

where the last term is the total divergence of

Bi = KT i − K i
j T

j + 1

2

(
T i∇ j T

j − T j∇ j T
i
)

. (108)

Now notice that the expression in the first parenthesis of Eq. (107) vanishes due to
the contracted Codazzi–Mainardi equation. The expression in the second parenthesis
is more interesting: this is the commutator of covariant derivatives, and as is well
know, it does not vanish in curved geometries. Instead, we have

[∇a,∇b]Vc = RabcdV
d , (109)

where Rabcd is the Riemann tensor. In the present case we hence find
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T i [∇ j ,∇i ]T j = g jkT i [∇ j ,∇i ]Tk = g jkT i R jikl T
l = RilT

i T l = KGT 2 , (110)

where Ril = g jk R jikl is the Ricci tensor, which in two dimensions is simply given
by Ril = KG gil . This shows that—up to a boundary term—we can disentangle the
tilt from the effective Gaussian curvature, finding

K̃G = KG + 1

2
KGT 2 . (111)

As it turns out, the boundary term is in many cases irrelevant. Notice that we are
writing down a theory for a monolayer. If this monolayer is part of a closed vesicle,
it has no boundary. But even if we have a bilayer membrane with an open edge or
a pore, the monolayer is continuous and boundary-free, since it wraps around the
edges. A case where we cannot ignore the edge hence needs to actually provide an
edge. One way in which this could happen is if a membrane contains transmembrane
proteins, which locally provide an end to the monolayer. Now the boundary term
will matter, but we will not look at this case here.

Observe what the disentanglement (111) does to our energy density from Eq. (101):
removing the tilde from K̃G creates the new term 1

2κmKGT 2, which we can incorpo-
rate into the effective tilt modulus tensor of Eq. (103), where it cancels the KG part
in its isotropic contribution.

The elastic parameters. The two-dimensional elastic functional (101) contains
seven new parameters, and the set of Eq. (102) shows how they depend on the underly-
ing elastic tensor λi jkl(z) and the pre-stress σ0(z). Of these parameters, κm, κm, κt,m,
and K0,m already appear in the treatment by Hamm and Kozlov (2000), and in fact are
given by the same microscopic expressions (if we specialize to the incompressible
limit ν̃ = 1). On the other hand, the three parameters κm,ν , K0,t, and K ′

0,m are new.
They are related to the novel biquadratic terms, and in order to judge their relevance,
we need to estimate their magnitude. To keep things simple, we will assume that
the elastic tensor λi jkl is in fact constant throughout the leaflet, for this allows us to
evaluate the moment-integrals analytically.

Let us start with the inverse length K0,t from Eq. (102f), the form of which mimics
the spontaneous curvature term K0,m. In contrast to the latter, however, K0,t is usually
negligible. To see this, consider the following:

−κmK0,t =
∫ dm

0
dz λxzxz(z) (1 − ν̃) (z − z0)

≈ λxzxz (1 − ν̃)

∫ dm

0
dz (z − z0)

= λxzxz (1 − ν̃)
d2

m − 2dmz0

2

≈ 1

2
κt,m(1 − ν̃)(dm − 2z0) , (112)
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where dm is the monolayer thickness and where we explicitly centered the trans-
bilayer integral around z0. We also used Eq. (102c) to rewrite κt,m = λxzxzdm in the
constant-λ-approximation. Dividing out κm and using Eq. (104), we get

K0,t ≈ 1 − ν̃

2�2
(2z0 − dm) . (113)

This is only nonzero if (i) the monolayer is compressible and (i i) its pivotal plane
is not in the center of the leaflet. In a recent simulation study Wang and Deserno
(2016) found z0 = 1.32 nm for a united-atom model of the lipid DMPC (Berger
et al. 1997; Lindahl and Edholm 2000). Taking the monolayer thickness to be the
distance between the bilayer midplane and the position of the phosphate atom (as a
proxy for the Luzzati plane), the authors find dm = 1.80 nm. Also using the value
� ≈ 1.61 nm determined in the same paper, we arrive at K0,t ≈ 0.16(1 − ν̃) nm−1,
or a corresponding curvature radius of 1/K0,t ≈ 6/(1 − ν̃) nm. In practice we do not
expect any strong deviation from incompressibility, and even if we assume ν ≈ 0.45,
we still find 1/K0,t ≈ 33 nm, much larger than any of the other microscopic length
scales (such as dm, z0, or �). It is hence a very good approximation to neglect the
K0,t term altogether.

The other two new terms contain the Poisson ratio in a way that leaves their
incompressible limit finite, and for the sake of estimating magnitudes, we will hence
set ν̃ = 1. This immediately shows that κm,ν = κm and hence also �ν = �. The final
expression, κmK ′

0,m is then found to be the first moment of Ẽ(z) − σ0(z). With the

approximation Ẽ(z) = Ẽ = const., we then find

κmK
′
0,m ≈

∫
dz
[
Ẽ(z) − σ0(z)

]
z ≈ Ẽ

∫ dm

0
dz (z − z0) + κmK0,m ,

where we again explicitly centered the z-integral. We hence find

K ′
0,m = K0,m − Ẽdm

2κm
(2z0 − dm) . (114)

If the pivotal plane is in the middle of the leaflet, then K ′
0,m = K0,m. However, usually

the pivotal plane of a lipid monolayer is located closer to the headgroup region, often
about 2

3 up along the lipid. Using this rule of thumb, we get

K ′
0,m ≈ K0,m − Ẽd2

m

6κm
(if z0 = 2

3dm) . (115)

If we now apply the constant-Ẽ-approximation also to Eq. (102a), we get

κm ≈ Ẽ
∫ dm

0
dz(z − z0)

2 − κm = 1

3
Ẽdm(d2

m − 3dmz0 + 3z2
0) − κm . (116)
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And if we again specialize to the good guess z0 = 2
3dm, we find

Ẽd3
m

9
= κm + κm (if z0 = 2

3dm) , (117)

which together with Eq. (115) leads to

K ′
0,m ≈ K0,m − 1 + rm

z0
(if z0 = 2

3dm) . (118)

This expression is quite curious, because the “correction” part (1 + rm)/z0 can be
anything between zero and very large. It vanishes for rm = −1, which is a perfectly
permissible value for the Gaussian elastic ratio. On the other hand, it is equally
possible that rm is somewhere between −1 and 0, say − 1

2 , in which case the additional
term is −1/2z0, and this is a very strong spontaneous curvature. Recall that Wang and
Deserno (2016) found z0 = 1.32 nm for a united-atom model of DMPC, which gives
−1/2z0 ≈ −0.38 nm−1, much larger (in magnitude) than typical lipid spontaneous
curvatures. For comparison, the conventional spontaneous curvature K0,m for DMPC
is about 0.025 nm−1 (Venable et al. 2015), and lysophosphatidylcholine, one of the
most strongly positively curved lipids, has a spontaneous curvature radius of about
0.26 nm−1 (Kooijman et al. 2005). The reason why such a potentially large K ′

0,m
does not majorly affect bilayer stability and morphology is that it does not directly
enter the bending term—only the ordinary spontaneous curvature K0,m does.

Putting things together. We can finally write down a (slightly approximated) version
of the surface energy functional, in which we ignore K0,t, identify κm,ν = κm, wrest
the tilde from the Gaussian curvature, and also disentangle the term Kki K k

j by virtue
of the once-contracted Gauss equation Kki K k

j = KKi j − KGgi j :

e2d = 1

2
κm(K + ∇i T

i − K0,m)2 + κmKG + 1

2
κt,mMi j T

i T j (119)

with

Mi j =
[
1 + �2

(
KK ′

0,m − K 2 + (1 − rm)KG
)]

gi j + rm�2KKi j . (120)

2.5 Some Consequences of the Curvature-Tilt Functional

As stated before, the theory presented here follows the lead of Hamm and Kozlov
(2000), but it retains some of the higher order terms which they have neglected—
specifically biquadratic terms such as KGT 2, which is quadratic in both curvature
and tilt. Hamm and Kozlov eliminate such terms in their treatment whenever they
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explicitly occur, on account of them being higher order than the usual quadratic terms.
And yet, the tilde over KG, which they do not ignore, is effectively a biquadratic term.

To be consistent, two paths are possible. The simple one is to eliminate all
biquadratics, including the tilde over KG. The perhaps more interesting one is to
keep them all, because they are responsible for some fascinating new physics. How-
ever, one could object against this on the ground that if we keep biquadratic terms,
we should also keep quartic ones, such as K 4, K 2

G, or T 2(∇kT k)2. This is, in prin-
ciple, a valid concern. However, there are good pragmatic reasons for working with
a theory that drops these terms, despite the issue of a consistent order termination:
the biquadratic terms create qualitative changes in the curvature-tilt theory, because
they introduce a new mode of coupling between curvature and tilt that is absent on
the quadratic level. In consequence, they spawn “new physics”—as we will soon
see. The same cannot be said for the quartic terms, which (at least initially) only
quantitatively change the physics, for instance by affecting the curvature energy and
hence changing equilibrium shapes, while only indirectly affecting the partnering
field. Of course, ultimately we would need all terms for truly quantitative predic-
tions, but it is easier to investigate how a novel curvature-tilt coupling affects the
basic physics without simultaneously having to deal with all other conceivable non-
linearities on the non-coupled side of the energy functional. We hence learn, what
new physics is in store, and so we can create hypotheses worthy of testing with more
refined approaches. Incidentally, it is of note that the geometric transformations we
have discussed above indeed create terms quartic in curvature, but they do not create
purely quartic tilt terms.

As anticipated when we started, the new two-dimensional surface functional
comes with a number of coupling coefficients in front of terms that are permit-
ted by symmetry, but the underlying elastic theory predicts their values in terms of
the underlying parameters, such as λi jkl or σ0(z). Crucially, this is not only true for
the “classical” parameters which Hamm and Kozlov (2000) already wrote down, but
also for all higher order terms. This means that any ad hoc extension of their original
functional by terms such as KGT 2 would likely miss the fact that the corresponding
prefactors are not new coefficients but related to the existing ones, such as κm.

An important general finding is that all biquadratic terms act as position-dependent
contributions to the tilt modulus. This is mathematically obvious, but then, it would
be equally conceivable to have them enter as position-dependent contributions to the
bending modulus. After all, the following (simplified toy) expressions are perfectly
equivalent:

1

2
κmK

2 + 1

2
κt,m

[
1 + A

κt,m
K 2

]
T 2 = 1

2
κm

[
1 + A

κm
T 2

]
K 2 + 1

2
κt,mT

2 . (121)

But while equivalent, from a practical point of view the notion that the tilt modulus
gets modified is more useful. To begin with, at sufficiently large scale tilt becomes
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irrelevant,4 And hence, bending is all there is. It then makes sense to solve the problem
iteratively by starting with the shape solution in the absence of tilt, and then take this
to calculate the tilt field at a given shape background. Moreover, there are interesting
cases where the shape is given and need not really be solved for, such as when we
ask what the tilt field is at the edge of a membrane or within a small pore, where a
monolayer tightly curves around to connect the two individual leaflets. In this case,
again, it makes sense to solve for the tilt field in the presence of a shape, but not
the other way around. Of course, should there ever be a situation where the opposite
point of view is more useful, it is trivial to rewrite our equations to reflect this shift
in philosophy.

Observe that the biquadratic terms do not merely amend the tilt modulus in a local
curvature-dependent way; they amend it in an anisotropic way, because Mi j is not
merely proportional to gi j : the last term in Eq. (120) involves the curvature tensor
Ki j . As a consequence, the eigenvectors of Mi j coincide with those of Ki j , and so the
principal curvature directions of the surface also play a special role for tilting. To make
this more explicit, assume that p = pi ei and q = qi ei are the two principal directions
of Ki j (at some local point), so that we can write it as Ki j = Kp pi p j + Kqqiq j , where
Kp and Kq are the principal curvatures. The anisotropic term in the tilt energy density
can hence be written as

1

2
κmKKi j T

i T j = 1

2
κmK

[
Kp pi p j + Kq qiq j

]
T i T j

= 1

2
κmK

[
Kp T

2
p + Kq T

2
q

]
, (122)

where Tp = T i pi = T · p is the p-component of the tilt field, and Tq is the q-
component. For instance, imagine a straight membrane edge, where the p-direction
points “around” the edge, and the q-direction points along the edge. In that case,
Kq = 0 and Kp ≈ 1/z0, giving the contribution

straight edge:
1

2
κmKKi j T

i T j = 1

2
κm

1

z2
0

T 2
p (123)

This term leaves any tilt along the edge unaffected, but it lowers the cost for tilting
around the edge—since κm < 0. In fact, it is easy to see that the full edge tilt energy
density is given by

e2d,edge = 1

2
κt,m

[
1 + �2

z2
0

(
K ′

0,mz0 − 1
)]

T 2 + 1

2
κm

1

z2
0

T 2
p . (124)

4This is merely a consequence of the fact that the length �, which pits curvature against tilt, is
microscopic. On scales larger than �, tilt therefore only enters as a minor correction to the overall
bending physics of then problem.
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However, there is something quite disconcerting about this expression: the ratio �2/z2
0

can be bigger than 1. In fact, taking the numbers which Wang and Deserno (2016)
found for DMPC (� = 1.61 nm and z0 = 1.32 nm) we get �2/z2

0 ≈ 1.5. Now, rm < 0,
and K ′

0,mz0 is generally very negative—see Eq. (118). We hence must conclude that
for curvatures as large as the ones we encounter at an open edge, the effective tilt
energy density is negative, and this could in principle drive the tilt to grow beyond
all bounds. For the tilt around the edge this cannot happen in practice over the short
region of the edge, since the tilt divergence term in Eq. (119) prevents the tilt from
changing too rapidly. But notice that Eq. (124) shows that the effective tilt modulus
along the edge can also become negative,5 and in that case the finite-region-argu-
ment does not save us. Hence, it truly is worrisome that the functional can cease to be
bounded below. This, of course, is a direct consequence of us having neglected quartic
terms, which would have to stabilize it (since the microscopic theory we started out
with is clearly bounded below). We thereby have encountered a case where we are
pushing our theory to its limits. But we also discover remarkable physics that is
hidden at that border, for even if we catch the divergence by a quartic term, we have
now run into a phase transition, and so it is conceivable that strongly curved regions
create spontaneous tilt. A more refined theory is necessary to probe this, but even
without such a better theory, the “circumstantial evidence” that exciting things can
happen in highly curved regions might motivate us to look for them in experiments
or simulations.

Clearly, the anisotropic term in Mi j vanishes if K = 0, meaning that on mini-
mal surfaces the tilt modulus is always isotropic. This is curious, because minimal
surfaces are anything but isotropic. The other possibility for Mi j being isotropic is
if the curvature tensor is locally proportional to the metric, Ki j = c gi j with some
(possible position dependent) function c(u1, u2). What do such surfaces look like?
Inserting this special form of Ki j in the contracted Gauss–Codazzi equation, we find

0 = ∇ j K − ∇i K
i
j = ∇ j (2 c) − ∇i (c gij ) = 2∇ j c − ∇ j c = ∇ j c , (125)

and hence c = const. We then have Ki j = c gi j with a constant prefactor c. Such
surfaces are spheres (do Carmo 1976), and so the resulting isotropy of Mi j is much
less mysterious.

3 Measuring the Bending Modulus

In the previous section we have derived a curvature-tilt functional, following the
original treatment of Hamm and Kozlov (2000). The functional form of many terms
in that theory is often highly intuitive, in the sense that we could have confidently
predicted that these terms would show up; but there is of course nothing intuitive

5Since T 2 = T 2
p + T 2

q , the tilt modulus along the edge (the q-direction) is just the prefactor of T 2

in Eq. (124).
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about theirprefactors. Revisiting the bottom-up and top-down philosophies discussed
at the beginning of Sect. 2, we now have two choices: either we derive the resulting
moduli from the lower level theory, or we need to determine them on the level of the
larger scale theory.

In the present case, the lower level theory was built on the notion of a pre-stressed
thin fluid elastic sheet, quantified by the elastic modulus tensor λi jkl and the stress
profile σ0(z), and we know from Eqs. (102) how the parameters of the curvature-tilt
functional relate to the lower level input. However, we have not yet addressed the
question where we would get λi jkl and σ0(z) from. Again, we have two choices here.
One of them is that there could be an even lower level theory that predicts these
objects, based on even more fundamental parameters. And yet, the reader might
be wondering whether we are merely begging the question, for where would these
parameters come from? An even lower level model? And where would its parameters
come from? What saves us from an infinite regress? The answer is, usually, that at
some point we declare that we know the theory and the parameters. We state that
this is the most fundamental level we care about, and that on this level we happen
to have a theory that we trust. For instance, we could state that the lowest level we
care about is atomistic chemistry (meaning, we ignore nuclei, quarks, strings, …),
and that we are maybe even willing to trust the force fields of classical molecular
dynamics to be applicable to this problem. Being poor calculators of such complex
systems, we then most likely think hard what type of simulation would give us, say,
a modulus tensor, and then we run such a simulation and “measure” that tensor.

The other choice is to forgo the hope of predicting the elastic modulus tensor λi jkl

and the stress profile σ0(z) from some underlying theory and instead measure them
in experiment. Once we have them, we can then plug the results into Eqs. (102) and
derive the curvature-tilt parameters, such as the bending modulus.

Thinking about the second option, the following question might stir: why not
measure the parameters of the curvature-tilt theory directly? Why should we even
take the detour over the lower level theory? Why not cut out the middle man?

The question is serious. After all, we have just noted that the form of the terms
in the higher level theory is often very clear: symmetry principles usually go a long
way in telling us which terms can or cannot appear. Hence, their presence in a theory
rests on something stronger and more fundamental than the particular lower level
model we have chosen to construct. Stated differently: if the higher level theory
can be phrased completely in terms of observables that emerge on that higher level,
the specific details for how that emergence happens need not concern us in order
to have a perfectly workable theory on that level. We do not have to dig down into
the details. But if we do care about emergence, then a key worry might be whether
we got the underlying model right. It is then a good idea to measure things on both
levels, followed by a series of tests that scrutinize the putative connections between
the two theories. Or we might at least test whether connections predicted entirely on
the level of emergent quantities, which are consequences of the model, turn out to be
satisfied. If they hold up, the underlying model is promising. If they fail, it is (likely)
wrong.
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Notice that we are merely retracing the thoughts of the beginning of Sect. 2, with
the specific issue of model parameters in mind. We hope the reader will not consider
them trite, because in this interplay between tiers of modeling lies a core element of
science and epistemology.

The purpose, then, of this last section is to discuss, how some of the parameters
entering the theories discussed so far can be measured. As we have argued above,
determining parameters on two different levels, and then checking whether they con-
nect according to some proposed model of emergence, is the probably most thorough
way to probe nature. However, this is a rather extensive endeavor, and it would war-
rant a book on its own, just dealing with the special case of lipid membranes. We will
hence restrict to make some comments about measuring one parameter, one which
happens to live at the emergent level, and illustrate the maybe unexpected richness of
problems and opportunities that arise even in this narrow corner. Specifically, we will
discuss using simulations to find a parameter. Purists do not call this “measurement,”
and they are strictly right: we don’t query nature, we merely query a theoretical model
invented to represent nature. In some sense, we use computers to solve a problem we
are yet incapable to tackle analytically, but whose answer follows inevitably from
that model. And there it is again: tier-bridging.

Let us hence ask: how can we find the value of a membrane’s bending modulus κ
in a simulation?

3.1 Active Versus Passive Strategies

When measuring spring constants, there are two conceptually different things one
could do. First, one could simply deform the spring and monitor, how much force is
required for a given deformation. But if the spring is very soft, this requires measuring
very small forces. In fact, the spring could be so soft that thermal fluctuations all
by themselves already deform the spring. In that case we not only have to measure
a presumably very tiny deformation force; we would also have to figure out how
to correct for the effects of thermal noise. However, there is an opportunity here: if
fluctuations alone deform the spring, maybe this suffices as a deformation? After
all, we know the strength of thermal fluctuations, and if we can measure the spring’s
stochastic response, we ought to be able to back out its stiffness.

This second approach—measuring fluctuations to infer rigidities—is very popular
in many fields of soft matter physics. The reason is that soft matter has (almost by
definition) small spring constants (read now: moduli), which can be inferred by
the way they pit themselves against the thermal breeze. Lipid membranes are a
good example for this, and we will begin with a discussion for how this connection
works—before concluding that we can do better by actively deforming a membrane.

Membrane undulation spectrum. Consider a flat membrane patch of area L ×
L , and imagine it being subject to periodic boundary conditions. This is not only
theoretically convenient; it is the most natural choice in simulations. Even if the
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membrane is on average flat, thermal fluctuations will roughen it up by adding
stochastic undulations of the shape. However, these will be small, and so we can
likely get away with a parametrization of the membrane that describes the geometry
as a quadratic-level deviation from flatness: linear Monge gauge.

As a brief reminder: in Monge gauge, a membrane’s shape is described by a height
function h(r) above a flat (horizontal) reference plane, with r being the position
within that plane. Let ∇ be the gradient operator in that base plane. If |∇h| � 1,
the expressions for area element and curvatures simplify significantly, and can be
written as (Deserno 2015)

dA =
√

1 + (∇h)2 d2r ≈ (
1 + 1

2 (∇h)2
)

d2r , (126a)

K = −∇ ·
(

∇h
√

1 + (∇h)2

)

≈ −∇2h , (126b)

KG = det(∂i∂ j h)

(1 + (∇h)2)2
≈ det(∂i∂ j h) . (126c)

Hence, the membrane Hamiltonian (including bending, but ignoring both sponta-
neous curvature and tilt for now, and adding a membrane tension σ) can be written as

E =
∫

dA

{
1

2
κK 2 + κKG + σ

}
(127a)

≈
∫

d2r

{
1

2
κ(∇2h)2 + 1

2
σ(∇h)2

}
+ const. (127b)

where we eliminated the Gaussian term, because it vanishes under periodic boundary
conditions—courtesy of the Gauss–Bonnet theorem.

The resulting Hamiltonian in Eq. (127b) is quadratic, but it contains gradients and
Laplacians. These can be removed by going into Fourier space (since Fourier modes
are the eigenfunctions of the gradient operator). Hence, let us Fourier expand the
shape h(r) according to

h(r) =
∑

q

h̃qeiq·r with q = 2π

L

(
nx

ny

)
and nx , ny ∈ N . (128)

Since we want this expansion to be real, we must require of the Fourier coefficients
that h̃−q = h̃∗

q . Inserting this expansion into the quadratic Hamiltonian (127b), we
find

E = 1

2

∫
d2r

{∑

q,q ′
h̃q h̃q ′

[
κ(−q2)(−q ′2) + σ(iq)(iq ′)

]
ei(q+q ′)·r

}
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= 1

2
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∣∣h̃q
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)
. (129)

This final form shows that if the membrane shape is expressed using the Fourier com-
ponents h̃q as degrees of freedom, then the Hamiltonian is not merely quadratic but
diagonal—all degrees of freedom are independent. From the equipartition theorem
we then immediately find that the mean squared amplitude of every Fourier mode is
given by 〈∣∣h̃q

∣∣2
〉

= kBT

L2(κq4 + σq2)
. (130)

This formula, and variants of it, underly a vast number of methods and papers for
measuring the bending modulus κ—both in simulation and, in fact, experiment. The
basic idea is that if we can access the fluctuation spectrum, we can fit to this equation
and extract κ.

But let’s now investigate how much of a membrane deformation we are talking
about. First, notice that the bending rigidity will of course reduce the fluctuations—
as will the tension. To get the biggest effect, let us imagine that we set the tension to
zero.6 Since the (root mean square) curvature will scale like q2|h̃q |, the typical (root
mean square) radius of curvature Rq of any given Fourier mode q is going to be

Rq ∼ 1
√〈K 2〉 ∼ 1

√
〈(q2|h̃q |)2〉

σ=0= L

√
κ

kBT
. (131)

Since for a typical bilayer membrane we have κ ∼ 10 . . . 50 kBT , we find Rq ∼
3 . . . 7 L , showing that—independently of mode—the radius of curvature is several
times bigger than the size of the bilayer. These are very weak curvatures! Not only are
they hard to pick up in a simulation,7 they are also much smaller than many curvatures
we are likely to later impose on membranes (say, when we simulate vesicles), raising
the question whether at much larger curvatures the quadratic theory assumed in
Eq. (127a) actually holds.

The reason this happens is that the rigidity κ is actually not really small compared
to thermal energy kBT . It is comfortably larger than thermal energy, ensuring that
membranes do not fluctuate themselves into bits and pieces, and so while flickering
of membranes is readily observed, it is still a small effect.

6In simulations that can be achieved relatively easily by suitable boundary conditions.
7Recall that we must measure the undulation spectrum 〈|h̃q |2〉 over a sufficiently wide q-range to
plausibly fit a spectrum, and that this spectrum decays rapidly with q.
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Force along a cylindrical membrane tube. The observations from the previous
section suggest that we could instead look at an actively imposed deformation a
membrane and measure the force required to impose it. Several years ago, Har-
mandaris and Deserno (2006) have proposed to study a cylindrical membrane tube
(connected through periodic boundary conditions into one “infinitely long” cylinder)
and measure the axial force along it. It is easy to see that such a force should exist:
the fixed number of lipids in the simulation box will give rise to a membrane of
some given overall area A = 2πRL , where R and L are cylinder radius and length,
respectively. If we change the length of the cylinder, we change R (since A must
stay constant), and so we change the bending energy E . This results in a force F ,
given by

F = ∂E
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= ∂

∂L

∣∣∣∣
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[
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2
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2
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× A

]

= κ

(
2πL

A

)(
2π

A

)
× A = 2πκ

R
. (132)

Hence, measuring the force and the radius gives the rigidity: κ = FR/2π. Moreover,
we can impose much larger curvatures than would ever happen under passive undu-
lation conditions, and so we can test how far the quadratic curvature Hamiltonian
(127a) can be trusted. Harmandaris and Deserno (2006) found that—for the coarse
grained model they studied (Cooke et al. 2005)—it worked with remarkable accuracy
down to curvature radii equal to a few times the membrane thickness—much better
than one would probably have any right to hope! Also, the measured rigidity was
compatible with what was previously measured from monitoring membrane shape
undulations (i.e., exploiting Eq. (130)), but it could be measured more precisely with
the same simulation overhead.

There is a big snag, though: as nice and intuitive as this method appears, it fun-
damentally relies on two conditions that are hardly ever met in a realistic simulation
context, both of which are related to the equilibration of a chemical potential. First,
the simulation setup divides the simulation box into a region inside the tube, and a
region outside. These do not easily communicate, because the solvent (water, or a
coarse grained version of it) usually does not diffuse fast enough through a bilayer (on
the time scales relevant for the simulation). While in reality the chemical potential of
water is equilibrated across the two sides, in a simulation it generally is not (we do
not know ahead of time how much water we really need to put into the two environ-
ments), and it will not automatically equilibrate. Second, the chemical potential of
the lipids in the two bilayer leaflets also has to be the same, since lipids can flip-flop
between leaflets. But again, this typically is much too slow a process to significantly
happen during the course of a simulation, so unless we set up the system already in
equilibrium (and we cannot easily do that, because we do not know how many more
lipids we would have to place in the outside leaflet), we have no chance of instead
converging to it. Harmandaris and Deserno did not have these difficulties, since the
highly coarse grained lipid model which they used (Cooke et al. 2005) (a) has no
solvent and (b) has a sufficiently high flip–flop rate. But for any more highly resolved
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and not necessarily solvent free model, the “pulling-a-tube” method does not readily
work.

And yet, this idea of an active deformation remains enticing—we just need to find
a way to circumvent the unfortunate equilibration troubles. The path to glory exists,
and it involves looking at a different deformation.

3.2 Buckling for Fluid Membranes

In a very important paper, Noguchi (2011) presented a method that solves this prob-
lem (without actually needing it for the model he used): if we place a membrane into
a box that is too small for that membrane, it will buckle. Choosing a large aspect
ratio, we end up with a very well-defined one-dimensional deformation, an example
of which is shown in Fig. 12. Clearly, maintaining that shape requires a force, which
ought to encode the stiffness of the membrane—buckling a more rigid membrane
ought to be harder. In fact, it seems clear that this force ought to be proportional
to the bending rigidity κ. In the following we provide a solution to this problem,
following Hu et al. (2013), which pushes the analytical treatment slightly farther
than Noguchi did.

The shape of a one-dimensional buckle. If we parametrize the membrane in the
angle-arclength parametrization ψ(s) indicated in Fig. 12, the relevant curvature
along the buckle is given by −ψ̇. Since the curvature in the perpendicular direction
vanishes, we get K = −ψ̇ and KG = 0. The curvature elastic Hamiltonian (again,

ψ( )s

s

z

yL
xL

L

Fig. 12 Geometry of a buckled membrane, and illustration of the angle-arclength parametrization
that can be used to describe it: it gives the angle ψ(s) of the local profile with respect to the horizontal
as a function of the arclength measured along the buckle. Reprinted from Hu et al. (2013), with the
permission of AIP Publishing
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without tilt) is then given by

E = Ly

∫ L

0
ds

{
1

2
κψ̇2 + fx

[
cos ψ − Lx

L

]}
. (133)

The second term in the integrand enforces the constraint that the membrane fits into
the box—meaning, that the total distance traversed horizontally equals Lx . Physi-
cally, the associated Lagrange multiplier fx is nothing but the force (per unit length)
required to ensure that this constraint is satisfied.

A simple functional variation gives the Euler–Lagrange equation that ψ(s) needs
to satisfy in oder to minimize this energy:

ψ̈ + λ−2 sin ψ = 0 with λ =
√

κ

fx
, (134)

where we encounter a new characteristic length λ. If we multiply this equation with
ψ̇, we find

0 = ψ̇ψ̈ + λ−2ψ̇ sin ψ = d

ds

[
1

2
ψ̇2 − λ−2 cos ψ

]
, (135)

showing that the expression in square brackets is conserved and hence a first integral.
We can make this constant more explicit by evaluating the expression at an inflection
point of the buckle, where ψ̇ = 0. Calling the value of the angle at that point ψi, we
get

1

2
ψ̇2 − λ−2 cos ψ = −λ−2 cos ψi , (136)

a first-order differential equation whose quadrature can be found by separation of
variables:

s

λ
=
∫ s

0

ds ′

λ
=
∫ ψ

0

dψ′
√

2(cos ψ′ − cos ψi)
= F

[
arcsin

sin(ψ/2)

sin(ψi/2)

∣∣
∣ sin2 ψi

2

]
. (137)

Here, F[z|m] is the incomplete elliptic integral of the first kind. (For all subse-
quent special functions—a veritable panoply of elliptic functions and integrals—see
Abramowitz and Stegun (1970)). After defining the elliptic parameter

m = sin2 ψi

2
, (138)

inverting Eq. (137) leads to the angle ψ(s)

ψ(s) = 2 arcsin
{√

m sn
[
s/λ

∣∣m
]}

, (139)

and integrating the cosine and sine of that expression gives a parametric representa-
tion of the buckle:
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x(s) = 2λ E
[
am
[
s/λ

∣∣m
] ∣∣m

]
, (140a)

z(s) = 2λ
√
m
(
1 − cs

[
s/λ

∣∣m
])

. (140b)

For instance, the second equation (140b) shows that the buckle amplitude is za =
z(L/4) = 2λ

√
m.

Fixing the constraints. The solutions (139) or (140) to the buckle’s differential
equation contain two integration constants: first, λ—which really stands in for the
unknown Lagrange multiplier fx ; and second, m—which encodes the angle which
the buckle makes at its inflection point. The first one is of great interest to us, the
second one not so much—but it is the one that causes technical troubles, because
in a simulation we do not fix the angle but the extent of a buckle’s compression—
essentially, Lx . Of course, we could always measure the inflection angle in our
simulation, but this is laborious, for it would require us to explicitly determine the
membrane shape. Instead, it is much more convenient to do a bit more work and
re-express the constant m in terms of a more natural one, namely the compressional
strain γ, defined as

γ = L − Lx

L
. (141)

To do so, recall that the two constants are fixed by the two boundary conditions of
the problem, which are

ψ(L/4) = ψi and x(L/4) = Lx/4 . (142)

Using Eq. (137), the first condition implies

L

4λ
= F

[π
2

∣∣m
]

= K[m] . (143)

And using Eq. (140a), the second one yields

Lx = 8λ E[m] − L . (144)

Between these two equations, the length λ can be eliminated, leading to the tran-
scendental equation

γ(m) = 2

(
1 − E[m]

K[m]
)

, (145)

which we now “merely” have to invert for m(γ) in order to make the strain γ the
independent variable. Unfortunately, this cannot be done in closed form. But it is
quite easy to find an accurate series expansion solution, by making the ansatz

m(γ) =
∞∑

i=1

ai γ
i , (146)
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γ[%] = 84.9 80 70 60 50 40 30 20 10 5 20

Fig. 13 Sequence of buckles, with the buckling strain γ (in percent) given below the arrow at the
right end of the buckle. The buckle self-touches at γ ≈ 84.87%; notice also that a strain of merely
10% already reaches about half the transverse amplitude of that final touching-state

inserting this into Eq. (145), again expanding the right hand side in a Taylor series
in γ, comparing equal powers of γ on both sides, and thus obtain a set of equations
that will determine the coefficients ai . Most symbolic algebra packages do this in
seconds, and one finds

m(γ) = γ − 1

8
γ2 − 1

32
γ3 − 11

1024
γ4 − 17

4096
γ5 − 55

32 768
γ6 − · · · (147)

Hu et al. (2013) tabulate the coefficients up to order γ10 and show that the accuracy
(compared to an “exact” numerical solution, and restricted to relevant values of
γ � 0.5) is always better than 2 × 10−9. In other words: we now have to all intents
and purposes an analytical solution of the buckling problem. As an illustration,
Fig. 13 shows a sequence of buckles for increasing strain γ

Stress–strain relation. The stress fx required to compress the buckle enters in the
length scale λ, and now that we know m(γ), Eq. (143) can be solved for the stress
strain relation:

fx (γ) = κ

(
4

L
K
[
m(γ)

])2

(148a)

= κ

(
2π

L

)2 [
1 + 1

2
γ + 9

32
γ2 + 21

128
γ3 + 795

8192
γ4 + · · ·

]
. (148b)

Notice that the stress is directly proportional to the rigidity (as expected) and inversely
proportional to the square of the buckle’s contour length. Also, the limit γ → 0 is
discontinuous, showing that a finite stress is required to induce even an infinitesimal
strain—the hallmark of a buckling transition. After onset of buckling, the stress
continues to grow monotonically. The initial post-buckling slope is 1

2 (independent
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in fact of details of the boundary conditions), and the remaining terms only provide
a small correction to them—about 7% at γ = 50%.

Of course, for compressible materials the initial rise cannot be discontinuous.
Since a lipid membrane has a finite area compressibility KA, we would hence expect
the initial rise to be linear, but with a much bigger slope. The crossover strain γ∗
occurs, roughly, where compression and buckling have equal stresses, leading to the
condition

KAγ
∗ = κ

(
2π

L

)2

. (149)

Using microscopic theories (such as the ones from Sect. 2), we can relate the area
compressibility and the bending modulus. In our special case this is difficult, because
the bending modulus also involves the stress profile. But mere scaling already sug-
gests a relation κ ∝ KAd2, where d is the membrane thickness. Imagining lipid
bilayers as two thin homogeneous slidable plates without internal prestress gives a
constant of proportionality of 1

36 (for a Poisson ratio of 1
2 ) (Deserno 2015), leading to

γ∗ = κ

KA

(
2π

L

)2

∼ π2

9

(
d

L

)2

≈
(
d

L

)2

. (150)

For the systems studied by Hu et al. (2013), this is always smaller than about 1%.
Notice, however, that a finite compressibility also changes the buckling problem
itself. The corrections are small if the area compressibility is small (in the sense
that

√
κ/KA is microscopic), but the resulting theory is extremely fascinating, as

Oshri and Diamant (2016) show. For instance, while there is a well-known analogy
between the one-dimensional Euler elastic studied here and the mathematical pendu-
lum (observe that Eq. (134) is nothing but the pendulum equation), the compressible
elastic can be exactly mapped to the relativistic pendulum.

Evidently, the idea is now to simulate buckles at various different strains (bigger
at least than the crossover strain γ∗) and fit the measured stress–strain relation to
Eq. (148)—using κ as the sole fitting parameter. As Hu et al. (2013) demonstrate,
this works very well for models all the way from strongly coarse grained to virtually
fully atomistic.

The stress tensor for membrane buckles. We can learn more about the stress
distribution in a buckle, and in particular the isotropic tension σ within it, by looking
at the membrane stress tensor f a (Capovilla and Guven 2002, 2004; Guven 2004).
Guven and Vázquez–Montejo provide a pedagogical introduction in this volume to
the necessary mathematics, and it is also covered in a recent review by one of us
(Deserno 2015). Briefly, if we draw a curve on a membrane surface with tangent
vector t = taea , tangential co-normal l = laea , and membrane normal n = l × t ,
the traction f acting onto the membrane side into which l points is given by

f = la f
a =

[
1

2
κ
(
K 2

⊥ − K 2
||
)

− σ

]
l + κ KK⊥|| t − κ(∇⊥K ) n . (151)
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Fig. 14 Cross cut through
part of a buckle, defining the
local (l, t, n) coordinate
system, and the angle ψ
which the buckle makes with
the horizontal x. Notice that
l · x = cos ψ and t = y

x

l
n

t

Here, K⊥ = lalbKab and K|| = tatbKab are the normal curvatures into l and t direc-
tion, respectively, while K⊥|| is the off-diagonal element of the curvature tensor in
the (l, t) basis; ∇⊥K = la∇aK is the gradient of K along l . Let’s check the sign: if
κ = 0 and we merely have surface tension (this would correspond for instance to a
soap film), we have f = −σl , showing that a surface tension of magnitude σ pulls
(minus sign!) tangentially onto the side into which l points.

Let us now specialize this to the case of a straight line which runs in the flat
direction of the buckle (the y-direction in Fig. 12). The local geometry is sketched
in Fig. 14. Since this line is straight, K|| = 0, and since it is also a line of curvature,
K⊥|| = 0. Hence, the traction f is given by

f =
[

1

2
κK 2

⊥ − σ

]
l − κ(∇⊥K⊥) n =

[
1

2
κψ̇2 − σ

]
l + κ ψ̈ n , (152)

where in the second step we used ∇⊥ = d
ds and K⊥ = −ψ̇.

Now, a crucial thing to realize is that f must be constant and horizontal. Constant,
because the stress tensor is divergence free, ∇a f

a = 0, or in our one-dimensional
case, d f /ds = 0, and since there are no sources of stress along the buckle, the traction
is constant. Thereare sources at the ends, and they push the buckle horizontally; hence
f ∝ x. This means that there are two ways for how to get the magnitude of f : you
could either project it onto x, or you could square it. This leads to the two equations

fx = f · x =
[

1

2
κψ̇2 − σ

]
cos ψ − κ ψ̈ sin ψ , (153a)

f 2
x = f · f =

[
1

2
κψ̇2 − σ

]2

+ κ2 ψ̈2 . (153b)

Between these two equations, we can eliminate the higher derivative ψ̈ and thereby
arrive at a differential equation that is one order lower:

1

2
κψ̇2 − σ = fx cos ψ . (154)

In other words, stress conservation has given us a first integral of the shape equa-
tion—and we did not even have to write down the shape equation. Observe that
Eq. (154) is the analog of Eq. (136), but in this case we also get a mechanical



Lipid Membranes: From Self-assembly to Elasticity 157

interpretation of the constant of integration, not just a geometrical one. Picking the
position such that we are at an inflection point—just as we had done in Eq. (136)—we
find

σ = − fx cos ψi . (155)

Hence, the isotropic tension (which couples to the area per lipid) is not equal to
the (negative of the) buckling stress, but equal to that stress times the cosine of the
inflection angle. In particular, it vanishes if ψi = π

2 , which happens at m = 1
2 or

γ ≈ 0.543.

Advantages and drawbacks. Now that we have seen how buckling a membrane
gives rise to an observable, fx , that will encode the bending modulus, κ, let us
briefly stop and ponder the benefits and limitations that come with this particular
method of determining a membrane’s rigidity, especially in comparison with more
traditional fluctuation approaches.

Advantages:

• The signal we measure, fx , is directly proportional to the observable we care
about, κ. In the fluctuation case it was inversely proportional: |h̃q |2 ∝ κ−1. Hence,
the buckling method should become better if membranes get stiffer, and worse if
they get softer. Since κ is on the order of a few tens of kBT , we already are in the
limit where fluctuations are visible but weak. Moreover, fitting the q−4 dependence
predicted in Eq. (130) requires a range of q-values, and if we want just one order of
magnitude in q, we encounter a drop of four orders of magnitude in |h̃q |2. Indeed,
we are looking at very weak signals then.

• In fluctuation methods, the fluctuations are the signal from which the observable
κ is deduced, and hence we need to sample them adequately. In contrast, in the
buckling protocol fluctuations are noise—an unwanted perturbation. Not sampling
them properly affects the error of our result much less than in a fluctuation method.
To see that fluctuations are indeed subdominant, consider the persistence length �p

of the equivalent one-dimensional “polymer,” which is given by �p = κLy/kBT .
This is typically several tens times Ly . For common situations this makes the per-
sistence length substantially larger than the buckle’s length, and so its deformations
are dominated by the ground state energy.8

• The method makes no strong assumptions about the microphysics that gives rise to
a bending rigidity in the first place. It measures the emergent macroscopic modulus,
not a microscopic object that is predicted to coincide with it within the framework
of a particular scale-bridging theory. Hence, the bending modulus derived from
buckling can serve as a reference which microscopic predictions must meet. It has
this property in common with the classical fluctuation method based on Eq. (130),
but not with every fluctuation method. For instance Watson et al. (2012) propose
a method that extracts the bending rigidity from the orientation fluctuations of

8Hu et al. (2013) discuss buckle fluctuations in a little bit more detail. They conclude that systematic
fluctuation corrections exist, but that they are small for fx . They are not necessarily small for the
force fy acting along the buckle’s ridges, though.
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lipids; it works with significantly smaller membrane sizes than what Eq. (130)
tends to need (and is hence much more efficient), but it relies on an underlying
microscopic theory for how curvature and tilt couple (which, incidentally, is of
similar nature as the one discussed in Sect. 2).

• Fluctuation methods involve relatively weak curvatures for typical values of the
bending rigidity, as Eq. (131) shows. In order to test whether quadratic curva-
ture elasticity holds for curvatures beyond the weak fluctuation-induced ones, we
have to impose them actively. For instance, by simulating tethers, Harmandaris
and Deserno (2006) showed that within the statistics available at that time, Cooke-
model membranes (panel (b) in Fig. 1) can be bent into curvature radii approaching
the thickness of the membrane without significant deviations from quadratic cur-
vature elasticity. The buckling method opens this possibility to membrane models
for which tether pulling does not work (because, as discussed above, it is hard to
equilibrate the chemical potential of solvent and lipids).

Drawbacks:

• Studying buckles is technically more involved than studying a flat membrane.
First, they must be created9; and second, they require bigger simulation boxes in
the z-direction, hence necessitating more solvent.

• Buckled membranes are not stress free. This does not merely refer to the exter-
nally applied buckling stress fx , but the resulting tension σ = − fx cos ψi—see
Eq. (155). Since σ couples to the area per lipid, buckled membranes usually have
their lipids under a compression, and so they are not, strictly speaking, in the
thermodynamically relaxed state that is probed with the fluctuation formula from
Eq. (130). This matters in particular if the membrane is close to a phase transition
for which the area per lipid could change. For instance, if a fluid membrane is close
to its main phase transition temperature (below which it goes into a gel phase with
a smaller area per lipid), the additional imposed compressive stress can drive (parts
of) the membrane—via Le Châtelier’s principle—into a gel phase, thus obviating
the applicability of the buckling protocol. An exception is the strain leading to
ψi = π

2 , at which point σ = 0.
• The buckling protocol cannot be applied to mixtures without some substantial

extensions. The reason is that the buckle’s local geometry changes with position,
and different lipid species could prefer different regions—for instance regions
where the local monolayer curvature better matches their own spontaneous curva-
ture. Hence, the nontrivial geometry constitutes a driving force for a nonuniform
lipid distribution (and even trigger demixing, in the most extreme case). One can
of course account for these effects, and most likely even learn more about the
mixture in that way, but this requires additional modeling.

9One efficient construction method proceeds via the analytical expressions for position and angle
of a buckle—Eqs. (139) and (140)—for mapping a flat membrane (leaflet-wise) into a buckled
one. If a lipid’s center of mass in the flat configuration has coordinates (x0, y0, z0), map it to
(x(x0), y0, z(x0)) and rotate it around the y-axis by the angle ψ(x0).
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Thermodynamics of the membrane bending modulus. Before we move on to
some striking deviations from Euler buckling, let us conclude this section with a
little detour through the thermodynamics of membrane bending. The buckling force
fx arises because the curved membrane has a higher energy than the flat one. Or to
be more precise—and now we have to be—because it has a higher free energy: we
compress the lipid bilayer at constant temperature. It is crucial to realize that even
if we ignore large wavelength thermal undulations, we by no means study a system
that microscopically sits in an energy ground state. The lipid constituents have a
considerable number of degrees of freedom (translation, rotation, bond length and
angle vibrations, dihedral rotations) which explore their permissible phase space and
whose non-sharp distribution functions “store” a substantial amount of entropy. Of
course, none of this is explicitly accounted for in the Helfrich Hamiltonian—so where
did it go? The answer is that it went into the parameters—for instance the moduli.
The microscopic wiggling of the molecular constituents is captured by effective
parameters on the macroscale. If so, the Helfrich Hamiltonian really describes a
free energy, and since the curvatures K and KG merely capture the geometry, the
subdivision into energetic and entropic contributions to the free energy happens at
the level of the moduli. One might hence ask: is there a way to disentangle them?

If we integrate the stress strain relation fx (γ) over γ, we get back the free energy
E(γ), and it is easy to see that per unit area it is given by

E(γ)

LLy
=
∫ γ

0
dγ′ fx (γ

′) (148)= κ

(
2π

L

)2 [
γ + 1

4
γ2 + 3

32
γ3 + · · ·

]
. (156)

Now, in a simulation we can also measure the plain energy—simply by evaluating
the total microscopic Hamiltonian of the system. Even at zero strain it will have
some nonzero value, but if we buckle the membrane, this energy changes. Let us
define E(γ) = Esim(γ) − Esim(0), the excess energy which the buckled membrane
has relative to the stress-free flat state. How does it compare to E(γ)?

Fig. 15 Free energy E(γ)

(solid) and energy E(γ)

(dashed) in units of
ε = 1.1 kBT as a function of
strain γ. The inset shows the
ratio R = E/E , which is
largely independent of γ and
hence a property of the
modulus. Reprinted from
Hu et al. (2013), with the
permission of AIP
Publishing
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Figure 15 shows a plot of E(γ) and E(γ) versus the strain γ, for the Cooke model
at standard conditions (see Hu et al. (2013) for details). The energy increases much
more rapidly than the free energy, indicating that the entropic contribution will bring
down the true cost of bending—or, in other words, entropy favors bending. The
inset in Fig. 15 shows the ratio R = E/E of these two quantities. Notice that R is
remarkably constant, indicating that geometry “cancels” and all we see is the ratio
between energy and free energy as captured in the bending modulus. It hence makes
sense to talk of the energetic and entropic contribution of the bending modulus, and
thus to “take it apart” as we do with any ordinary free energy:

κ = κE − TκS . (157)

Moreover, using well-known thermodynamic identities, we can write

κE = κ + TκS = κ − T
∂κ

∂T
= κ

(
1 − T

κ

∂κ

∂T

)
= κ

(
1 − ∂ log κ

∂ log T

)
, (158)

and hence

R = κE

κ
= 1 − ∂ log κ

∂ log T
. (159)

This is a differential equation for the temperature dependence of the bending modulus
which we can integrate—provided we know R(T ). Assuming we can expand it as a
series in the smallness parameter log(T/T0),

R(T ) =
∞∑

n=0

Rn

n! logn
T

T0
(160a)

= R0 + R1
T − T0

T0
+ R2 − R1

2

(
T − T0

T0

)2

+ · · · , (160b)

the integration is trivially done, leading to

log
κ(T )

κ0
= (1 − R0) log

T

T0
−

∞∑

n=2

Rn−1

n! logn T

T0
. (161)

This expresses the functional form of κ(T ) in a log-log fashion. Notice that for
T close to T0 this boils down to a simple power law, with corrections only at the
quadratic level:

κ(T ) ≈ κ0

(
T0

T

)R0−1
[

1 − R1

2

(
T − T0

T0

)2

+ · · ·
]

. (162)
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By explicitly calculating κ(T ) over the range 0.95 ≤ T
T0

≤ 1.11, Hu et al. (2013) have
shown (using the standard Cooke model) that a simple power law relation indeed
describes the data very well. This is quite advantageous, because it means that by
also measuring R from the buckling simulations (essentially at no extra cost), one
can predict the bending modulus κ in the vicinity of the simulation temperature, not
just at it.

Notice that if R0 > 1, heating softens the membrane. We would probably have
expected this to be true no matter what, but we now see that this occurs if and
only if buckling increases the energy more rapidly than it increases the free energy.
Interestingly, this need not always be true: R(T ) < 1 is thermodynamically possible
and does in fact occur. Its hallmark is “anomalous swelling,” the phenomenon that the
spacing in a multilamellar stack of membranes unexpectedly increases upon cooling,
which happens for some lipids a few degrees above their main phase transition.
Chu et al. (2005) have argued that this swelling is due to an increased Helfrich
fluctuation repulsion between the lamellae, which indeed points toward a softening
of the modulus.

3.3 Buckling for Gel-Phase Membranes

When fluid membranes are cooled, they ultimately reach a temperature at which
they change into a new phase that is both more ordered and more rigid—the so-
called “gel phase”; this is called the “main transition” of a membrane (see Nagle
(1980) for a review of the theory). Many subtleties exist about this transition, and
some membranes even change first into an intriguing corrugated phase (the so-called
“ripple phase”), but none of this will concern us here. For now we are very modest
and merely want to know, how much stiffer a gel phase is, and how we can measure
that.

Experiments indicate that gel-phase membranes are at least an order of magnitude
stiffer than fluid-phase membranes (Lee et al. 2001; Dimova et al. 2000; Steltenkamp
et al. 2006). Hence, the observable signal from fluctuation methods drops by at least
an order of magnitude, while the signal from active methods increases by the same
factor. Relatively speaking, active methods should therefore be about two orders
of magnitude more sensitive for measuring the membrane bending modulus. Since,
furthermore, the buckling method works even if the membrane becomes less fluid
(the deformation is isometric and can be realized even for solid sheets, such as
paper), applying the technique discussed in this chapter seems ideally suited to study
the rigidity of gel phases. Indeed, Diggins et al. (2015) have done just that. What
they found, though, was highly surprising: the theory developed so far, in particular
the stress strain relation from Eq. (148), does not describe their simulation data at
all—not even qualitatively. Figure 16 shows the stress–strain relation extracted from
simulations of a gel-phase membrane. In contrast to the prediction from Eq. (148),
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Fig. 16 Stress–strain relation for a Cooke buckle at wc/σ = 1.6 and kBT/ε = 0.85. The open
circles are the directly measured stress, the filled circles use additional information from the shape.
The blue dashed line is a poor fit to Eq. (148), the solid line is the prediction from Eq. (164a)
(surrounded by the 68 and 95% confidence bands). The bottom panel shows the inferred value
of the bending rigidity. Reprinted with permission from Diggins et al. (2015); copyright 2015
American Chemical Society

which is clearly a monotonically increasing function, the opposite is true for the
measured data: higher strains lead to smaller stresses, and thus the compressibility
is negative.

Curvature softening. Based on a careful analysis of the resulting buckle shapes,
which on average appear more “pointy” than classical Euler buckles, Diggins et al.
(2015) conjecture that the reason for the discrepancy is a failure of quadratic curvature
elasticity: assume that membranes soften upon bending, in the sense that their elastic
energy does not keep growing quadratically with curvature but instead lags behind as
one continues to increase the curvature. If so, it would be energetically advantageous
to localize bending in small regions, rather than distributing it more evenly. This
would explain the more “pointy” buckle shapes, but what would it predict for the
stress–strain relation?

In order to be quantitative about the stresses, we first need a quantitative theory
of curvature softening. The probably easiest phenomenological approach would be
to amend the quadratic curvature energy density e(K ) by a quartic term that reduces
the energy—in the spirit of adding a next order correction to Helfrich theory:

e(K ) = 1

2
κK 2 − 1

4
κ4K

4 + O(K 6) . (163)

Unfortunately, this is an awkward theory to work with: for K > K � = √
κ/κ4 this

energy density decreases with curvature—all the way to minus infinity; the energy is
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not convex, not even bounded below. This will invariably create numerous artifacts
and is hence ill-suited as an explanatory model for our findings. To fix this, Diggins
et al. (2015) propose an alternative energy density which is both bounded below and
in fact convex, but which up to quartic order coincides with the first guess from
Eq. (163):

e(K ) = κ

�2

[√
1 + K 2�2 − 1

]
(164a)

=
{

1
2κK 2 − 1

8 (κ�2)K 4 + O(K 6) , K � �−1

κ
�2

(∣∣K�
∣∣− 1

)
+ O(K−1) , K � �−1 (164b)

where � is a new characteristic length scale, telling us where softening starts to set in.
Notice that for sufficiently small K this looks like the curvature-softened first guess
from Eq. (163), with κ4 = 1

2κ�2. But beyond K ∼ �−1 the initial quadratic increase
turns into a mere linear one. Stronger bending still always costs more energy, but at
large curvature the differential price is much less than at small curvature. What does
this imply for the stress–strain relation?

A new stress–strain relation. As it turns out, the Euler–Lagrange equation associ-
ated with this new energy density can still be turned into a first integral:

s

�
=
∫ ψ(s)

ψi

ds
1

√{
1 − f̃x

[
cos(ψ(s)) − cos ψi

]}−2 − 1

, (165)

where f̃x = fx�2/κ = �2/λ2 is the scaled buckling force.
Using the same series-inversion techniques as in the ordinary case, Diggins et al.

(2015) arrive at a revised stress strain relationship:

fx (γ, δ) = κ

(
2π

L

)2 [
1 + 1

2

(
1 − 3δ2

)
γ + 9

32

(
1 − 14

3
δ2 + 31

3
δ4
)
γ2 + · · ·

]
,

(166)
which features the new parameter δ = 2π�

L as a convenient dimensionless measure
for exactly how strongly the situation deviates from the plain Euler case. Notice
that in the limit δ → 0 Eq. (166) reduces to the first terms of the Eulerian stress–
strain relation (148), and that for any nonzero δ the initial post-buckling slope of 1

2

is reduced. In fact, at δ = δc = 1/
√

3 ≈ 0.577 that slope vanishes, and for δ > δc

the stress–strain relation starts with a negative slope. For the Cooke-model data in
Fig. 16 Diggins et al. (2015) indeed find that δ is much bigger than that critical value:
δ ≈ 2.9. Unfortunately, at these large values the series expansion from Eq. (166) no
longer converges for all strains of interest, so a numerical solution needs to be sought.
But this solution very nicely fits the measured data, hence supporting the contention
that gel-phase membranes appear to soften upon bending, in a way that is captured
reasonably well by the empirical energy density (164a).
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Fig. 17 Stress–strain relation for a buckle consisting of Cooke lipids—the data are from Hu et al.
(2013). The dashed curve is a fit to the classical Euler stress–strain relation from Eq. (148), the
solid curve is a fit to the revised stress–strain relation from Eq. (166) that allows for curvature
softening—using the bending rigidity κ and the new variable δ as fitting parameters. The scaling
of the vertical axis is such that the intercept will give the bending rigidity. Including curvature
softening leads to a prediction for the value of κ that is about 10% bigger than what the classical fit
yields

Given that gel-phase membranes soften, it is fair to ask whether this is also true
for fluid-phase membranes. If they do, the effect cannot be very large, for otherwise
it would have been observed in many earlier studies. But if the effect is small, finding
it requires both good statistics and a quantitative model capable of identifying the
softening is needed. Hence, one way to answer the question of fluid-phase curvature
softening is to revisit the original buckling data from Hu et al. (2013) and fit them
with the revised curvature softened theory (164a). The result is shown in Fig. 17.
While the classical Euler fit is not truly poor, it does seem to have a slight overall
bias—in the sense that the fit is too large at high strains and too small at low strains.
Given that softening will reduce the slope of the stress–strain relation, we can expect
that this deficiency is resolved by the new theory. Indeed, the solid curve in Fig. 17
shows the fit to Eq. (166), which is overall a better description of the data. Notice
that this implies the bending rigidity (which can be read off at the intercept) to be
larger than what the classical Euler fit would predict. Indeed, the latter would give
κ/kBT = 12.7 ± 0.3, while the curvature softened theory yields the larger rigidity
κ/kBT = 13.8 ± 0.4, with a value for the softening parameter of δ = 0.44 ± 0.08,
or a characteristics length of �/σ = 4.7 ± 0.8 (which is about the bilayer thickness).
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The Geometry of Fluid Membranes:
Variational Principles, Symmetries
and Conservation Laws

Jemal Guven and Pablo Vázquez-Montejo

Abstract The behavior of a lipid membrane on mesoscopic scales is captured
unusually accurately by its geometrical degrees of freedom. Indeed, the membrane
geometry is, very often, a direct reflection of the physical state of the membrane. In
this chapter we will examine the intimate connection between the geometry and the
physics of fluid membranes from a number of points of view.We begin with a review
of the description of the surface geometry in terms of the metric and the extrinsic cur-
vature, examining surface deformations in terms of the behavior of these two tensors.
The shape equation describing membrane equilibrium is derived and the qualitative
behavior of solutions described.We next look at the conservation laws implied by the
Euclidean invariance of the energy, describing the remarkably simple relationship
between the stress distributed in the membrane and its geometry. This relationship
is used to examine membrane-mediated interactions. We show how this geometrical
framework can be extended to accommodate constraints—both global and local—as
well as additional material degrees of freedom coupling to the geometry. The conser-
vation laws are applied to examine the response of an axially symmetric membrane
to localized external forces and to characterize topologically nontrivial states. We
wrap up by looking at the conformal invariance of the symmetric two-dimensional
bending energy, and examine some of its consequences.
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1 Introduction

Bilayers of amphiphilic molecules form the essential component of all cellular mem-
branes, not only the plasma membrane enclosing the cell but also every membrane
contained within it. Under physiological conditions, this bilayer is a fluid along the
membrane; stretching is very costly, but it shears freely. By the 70s, it was begin-
ning to become clear that on mesoscopic scales, which are often the scales that are
most relevant physiologically and certainly the scales on which the global archi-
tecture comes into focus, the biochemical details of the membrane composition get
telescoped into a small number of material parameters. Indeed, the membrane mor-
phology itself is described surprisinglywell by the geometrical degrees of freedom of
a two-dimensional smooth surface. The membrane radius of curvature (∼20nm and
up) is large compared to the bilayer thickness ∼5nm. This is better than one could
have hoped. While these surfaces may be smooth, they are rarely simple, reflecting
the complex functions they play. To understand this morphological variety, it is nec-
essary to possess the appropriate geometrical language. For the most part, this was
understood by the mid-nineteenth century, to wit that two tensor fields characterize
the surface geometry: the metric marking distances along the surface and the extrin-
sic curvature quantifying how it bends along different tangent directions. The two
are not unrelated.

The physical behavior on mesoscopic scales is largely controlled by the bending
energy of this surface, proportional to a quadratic in the membrane extrinsic curva-
ture, Canham (1970); Helfrich (1973). For reviews, see Seifert and Lipowsky (1995);
Bassereau et al. (2014); Tu and Ou-Yang (2014). Significantly, this energy depends
only on the two fundamental tensors. What is more, modulo topology and boundary
conditions, to an unusually good first approximation it is also unique.

Because the energy is determined completely by the geometry, the distribution of
stress established along themembranemust in turn dependonly on the geometry. This
contrasts with the transverse distribution of stress across the membrane which does
depend sensitively on the molecular details of the bilayer, as well as its interaction
with water. But when we zoom out, these details contribute only to the constant of
proportionality in the bending energy. The role they play is to set the rigidity. In
this chapter, we review various aspects of the connection between the membrane
geometry and the physics shaping it. Of course, almost always, additional agents
need to be accommodated, and this direct connection gets modulated by the fields
describing them.

We first examine how the bending energy, not necessarily in equilibrium, responds
to deformations of the surface geometry (Sects. 2, 4). This turns on the behavior of
the two fundamental tensors under deformation. The shape equation describing the
surface geometry depends on the geometry through scalars constructed using these
two tensors. We will develop in parallel the description of the surface in terms of
its height above a plane. This representation is most useful when gradients in this
function are small. This allows us to understand the local behavior consistent with
membrane equilibrium.
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The energy possesses symmetries: even if we disguise the fact by parametrizing
the surface in terms of a height function, it is invariant under reparametrization—
as any meaningful description of a physical theory should be; however, the effect
of a tangential deformation of the surface is equivalent to a reparametrization of the
surface except—and this is important—where the surface terminates; this apparently
innocuous identification distinguishes the geometrical degrees of freedom from any
additional material degrees of freedom overlaying the surface. And it has its physical
consequences. Understanding how the metric and curvature behave under normal
deformations of the surface permits us to describe not only its approach to equilibrium
but also its behavior out of equilibrium.

The surface energy is obviously invariant under the Euclideanmotions of its three-
dimensional environment: translations and rotations. The bending energy of a sym-
metric fluid membrane is also scale invariant; this property of the two-dimensional
bending energy distinguishes it from its one-dimensional counterpart, or for that mat-
ter from higher dimensional generalizations. If it were not for a constraint fixing the
length, bending energywould tend to stretch a loop; a hypothetical three-dimensional
surface would collapse. In two dimensions, the bending energy is independent of
size. If this energy is isotropic, it turns out to be even invariant under the (angle pre-
serving) conformal transformations of three-dimensional space, a property of two-
dimensional surfaces that one could be forgiven for failing to anticipate (Sect. 7).
In particular, it is invariant under inversion in spheres. Two different, indeed very
different, geometries may possess identical bending energies. The energies may be
identical but the local stresses supporting these geometrieswill generally be different.

Each symmetry implies a conservation law. In particular, the translational (rota-
tional) invariance implies the existenceof a conserved stress (torque) tensor,Capovilla
and Guven (2002a) (see Sect. 5). It would not be an exaggeration to claim that the
recognition of the role of symmetry has been central in the development of physics
since the beginning of the 20th century. Improbable as it may appear from a traditional
biophysical point of view, fluid membranes on mesoscopic scales are no exception;
it could be argued that they provide a physical system par excellence supporting this
claim.

In an unadorned fluid membrane, the identification of tangential deformations
of the surface with reparametrizations implies constraints on the stresses associated
with each term in the Hamiltonian, whether or not the membrane happens to be
in equilibrium. We show how the stress tensor can be used to quantify the forces
mediated by themembrane geometry.We also showhow the conservation of the stress
tensor permits direct access to the physics of axially symmetric shapes. Conformal
invariance, happy accident or not, provides unexpected insight into the behavior of
membranes well outside the regime where perturbation theory is reliable; even when
the full symmetry is broken by constraints (Sect. 7).
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Section5 exploits extensively an adaptation of the calculus of variations intro-
duced by one of the authors, Guven (2004). This approach, exploiting the structure
equations describing the surface, provides a very direct construction of the stress
tensor. Surprisingly, as we show, one does not need to know how the metric or the
curvature respond to surface deformations to determine the approach to equilibrium.
We show how this approach can be tweaked to accommodate local constraints on
the geometry, and specifically a constraint on the metric. It also provides a natural
framework inwhich to examine interactionsmediated by themembrane aswell as the
boundary conditions on free edges. At the end of this section we present a comple-
mentary approach to the variational problem in which the equilibrium surface itself
is treated as an emergent quantity from the two fundamental tensors. This approach
exploits not the structure equations but the integrability conditions on these two
tensors which follow from these equations. Unexpectedly, this approach provides a
criterion for assessingmembrane stability, Guven andVázquez-Montejo (2013a). As
we will attempt to communicate, each of the different approaches provides valuable
insight into the underlying physics.

If the membrane consisted only of lipids, and they all responded in the same way,
there would not be a lot to say. Intracellular membranes, however, display striking
morphological diversity: contrast the spherical nuclear envelope punctured by pores
with the endoplasmic reticulum (ER); or indeed the laminar stacks forming the rough
ER with the tubular network forming its smooth counterpart. Then there are the
flattened cisternae of the Golgi apparatus, as well as the convoluted inner membrane
of a mitochondrion. And each membrane morphology is exquisitely adapted to its
function. The downside is that life-threatening physiological malfunctions can all
too often be traced to flaws in assembly.

What lends a membrane its specific morphology is the modulation of the behavior
of the fluid bilayer by local or global constraints or biases, localized external forces,
its composition and, as increasing recognized in recent years, its interactions with
proteins or other macromolecules, themselves very often assembled into one or two-
dimensional semi-flexible structures (for example, see Sens et al. 2008;Amoasii et al.
2013; Terasaki et al. 2013). Remarkably, on the scales that interest us, this additional
structure is captured by fields or by some effective one or two-dimensional elastic
structure interacting with the surface geometry. To understand how these interactions
shape a membrane, it is invaluable to think in terms of the stresses they induce in the
membrane.Wewill illustrate this point using a number of physiologically relevant but
simple examples. We examine the forces constricting a membrane. We also examine
the forces and torques, topological in origin, that sculpt the morphology of a toroidal
vesicle, as well as the distribution of stress associated with them. Here nontrivial
topology arises without the intervention of any exterior agent. These stresses are
contrasted with their counterparts in a topologically spherical vesicle whose poles
are pushed together by an external agency.

Before we begin, we need to introduce a few geometrical ideas on which the
framework is built.
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2 Surface Geometry: Intrinsic Versus Extrinsic Elements

We begin with a quick summary of a few essential geometrical concepts. This is
not the place to present all of the details which would require a monograph in its
own right. The interested reader can consult, Do Carmo (1976); Spivak (1999) or,
for a less technical treatment, Kreyszig (1991). Some of this material is also covered
nicely by Deserno in one of his excellent reviews (most recently, Deserno 2015).
The reader may wish to glide over this section. It will, however, serve to establish
notation and conventions.

We describe the surface parametrically in terms of a mapping into three-
dimensional Euclidean space, � : (u1, u2) → X(u1, u2), where u1 and u2 are any
two local coordinates. Our description of Euclidean space will be Cartesian. The
tangents to the coordinate curves associated with this parametrization form two sur-
face tangent vectors at every point1: ea = ∂aX, a = 1, 2. These two vectors, in turn,
define the surface (unit) normal vector n. Now any vector field on the surface can be
decomposed with respect to the basis vectors {e1, e2, n}.
The two fundamental tensors: By the mid 19th century, it was already recognized
that two surface tensor fields—constructed using derivatives of X—describe the sur-
face geometry completely. The first of these is the metric tensor induced on the
surface from its Euclidean environment, whose components with respect to the para-
metrization are given by the Euclidean scalar product2

gab = ea · eb . (1)

Ifds2 = dx · dx is the line element in three-dimensionalEuclidean space, itspullback

to the surface is given by ds2
∣
∣
∣
�

= ea · eb duadub. Thus gab quantifies distances

between points on the surface and thus characterizes what we think of as its intrinsic
geometry. In particular, the area element on the surface is given by d A = √

g du1du2,
where g = det gab = |e1 × e2|2.3 If g �= 0, gab has an inverse gab: gacgcb = δab. If
� is a scalar function on the surface, then gab∂a�∂b� is another scalar. Indices
are raised (lowered) using gab (gab). Let V = V aea be a surface vector field4; the
metric allows us to associate a covector field Va with V a through the relationship,
Va = gabV b.

1We abbreviate ∂a = ∂aX/∂ua .
2We are interested specifically in surface tensors and the scalars constructed out of them. Con-
sider a surface reparametrization (u1, u2) → (ū1(u1, u2), ū2(u1, u2)). Define J āb = ∂ūa/∂ub,
with inverse Jāc : J āc Jb̄c = δā b̄. Tensor fields transform under reparametrization by matrix multi-
plication on each index with the Jacobian matrix of the reparametrization or its inverse. In particu-
lar, the metric transforms by ḡāb̄ = Jāc Jb̄

dgcd . Note that the three Cartesian embedding functions
X = (X1, X2, X3) are each scalars under reparametrization: X̄1(ū1, ū2) = X1(u1, u2), etc.
3Under reparametrization,

√
ḡ = detJ−1√g.

4It is simple to show that V a transforms like a vector under reparametrization.
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The covariant derivative ∇a compatible with gab coincides with the projection
onto the tangent directions of the derivative along the tangent curves, Do Carmo
(1992). If V = V aea , then its covariant derivative, a surface tensor, is given by

∇aV
b = eb · ∂aV = ∂aV

b + �b
acV

c , (2)

where�b
ac = eb · ∂aec is symmetric in its lower indices by construction. It is straight-

forward to show that �c
ab can be expressed entirely in terms of gab and its derivatives:

�b
ac = 1

2
gbd(∂agcd + ∂cgad − ∂dgac) , (3)

identifying it, not coincidentally, with the Christoffel connection. The action of ∇a

on covectors as well as higher order tensor fields follow from the identification
∇a� = ∂a� on a scalar and the product (Leibnitz) formula for differentiation. Note
that the identity ∇agbc = 0 follows.

An intrinsic measure of curvature is provided by the Riemann tensor, which quan-
tifies the failure of covariant derivatives to commute. For a covector field Va , the Ricci
identity

(∇a∇b − ∇b∇a)Vc = Rabc
d Vd , (4)

defines the Riemann tensor,Rabc
d . It is constructed out of�a

bc and its first derivatives,
Do Carmo (1976).

In the familiarMonge representation, the surface is described in terms of its height
h(r) above a plane. If the plane is itself parametrized by Cartesian coordinates,
r = x i + y j, one has e j = (δ1 j , δ

2
j , ∂ j h), so that gi j = δi j + ∂i h ∂ j h. Its inverse is

given by

gi j = δi j − ∂i h∂ j h

1 + |∇0h|2 , (5)

where |∇0h|2 = ∂i h∂i h. While |∇h0|2 is a scalar on the plane, it is not a surface
scalar. The relevant scalar is |∇h|2 = gab∂ah∂bh.

This representation of a surface has proven very useful when gradients are small
(see, for example, Fournier 2007). With respect to an appropriate plane, it is always
valid locally; even on complex geometries. However, it has its limitations, most
notably if we attempt to access global information when the geometry is closed or
its topology is nontrivial so that gradients necessarily not only become large but also
diverge in places.

In this representation,
√

g = √

1 + |∇0h|2, so that the area is given by

A =
∫

dr
√

1 + |∇0h|2 , (6)

where we use the abbreviation dr to denote the area element on the base plane. The
easiest way to see this is to note that the matrix gi j , defined by Eq. (5) has eigenvalues
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1 + |∇0h|2 (corresponding to the eigenvector ∂i h) and 1 (corresponding to a vector
orthogonal on the plane to ∂i h).

The second fundamental surface tensor is the extrinsic curvature,with components
given by

Kab = ea · ∂bn ; (7)

it quantifies how fast the unit normal vector rotates into one tangent direction as
one moves it along another. It thus captures the way that the surface curves in the
Euclidean environment. This tensor is symmetric; as such, the linear map on tangent
vectors Ka

b = gacKcb has two real eigenvalues,C1 andC2 (the principal curvatures).
The surface curvature along a given direction V is given by C(V ) = V aKabV b; it is
extremal along the two corresponding orthogonal (principal) directions, along which
it assumes the values C1 and C2. To see this, construct the constrained quadratic,
C(V ) = C(V ) − �(V agabV b − 1), where � is a Lagrange multiplier. Now C(V ) is
stationary when KabV b = �Va , or, equivalently, V a is an eigenvector of Ka

b, with
eigenvalue �. C(V ) is completely determined once we know the angle V makes
with (one of) the principle two directions. This may be simple linear algebra but the
geometrical consequences are far-reaching.

If the geometry is simple, it is possible to get along fine without knowing that
curvature is a tensor; but good luck if it is not. The tensorial nature of Kab will play
an essential role in teasing out the relationship between stress and geometry. The two
principal directions turn out to possess physical significance in the interpretation of
the surface stress tensor.

An elementary calculation using height functions is useful to ground the definition
of Kab. If the base plane is tilted so as to coincide with the tangent plane to the surface
at a given point, the curvature there is given by the Hessian of the height function:
Ki j = −∂i∂ j h. Its trace at this point (which we denote K ) is given by K = −∇2

0 h,
where ∇2

0 is the Laplacian defined on the base plane. Its determinant, correct to
quadratic order,

KG = 2det Ki j ≈ (∇2
0h)2 − (∇i∇ j h)(∇i∇ j h) = ∇i

[∇i h∇2h − ∇ j h ∇i∇ j h
]

(8)

is a divergence.

3 The Bending Energy

The bending energy of a homogeneous and isotropic fluid membrane is given by the
Canham–Helfrich (CH) Hamiltonian, quadratic in the symmetric curvature invari-
ants.These invariants can be constructed in terms of the trace K = C1 + C2, and the
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determinant KG = C1 C2 of Ka
b = gacKcb,5 so it reads, Canham (1970); Helfrich

(1973); Evans (1974)

HCH [X] = 1

2
κ

∫

d A (K − C0)
2 + κ̄

∫

d AKG + σA . (9)

It involves two rigidity moduli, κ ≈ 20kBT and κ̄. The constant spontaneous curva-
tureC0 reflects an asymmetry between the two sides of the bilayer; the parameter σ is
interpreted either as a chemical potential or as a surface tension controlling the area
A.6 It is important to emphasize, despite the persistence of claims to the contrary,
that σ is rarely the complete mechanical tension in the membrane. This issue will be
addressed below. As Gauss famously was first to observe, the scalar KG (known as
Gaussian curvature) is invariant under isometry, depending only on the metric tensor.
What is more, according to the Gauss–Bonnet theorem, the corresponding integrated
energy is topological, modulo a boundary addition, DoCarmo (1976); Spivak (1999);
on a closed single component membrane, it is irrelevant as far as determining the
shape is concerned. We will see that it does not contribute explicitly to the stress.
It does, however, play a role in determining the equilibrium geometry though its
contribution to boundary conditions, or if the membrane is inhomogeneous. It is a
mistake to ignore it.
The quadratic approximation: In termsof the height function, the quadratic approx-
imation for the energy (9)—goodwhen height gradients are small (|∇h| � 1)—reads

H ≈ 1

2
κ

∫

dr (∇2
0h)2 + 1

2
�

∫

dr (∇0h)2 + constant , (10)

where� = σ + κC2
0/2 iswhatwe provisionally called surface tension augmented by

spontaneous curvature, Lipowsky (2013).We saw that the term linear in K appearing
in Eq. (9) is a divergence in this approximation, so it does not contribute to the local
energy at this order. The constant = �A0, proportional to the projected area, is
usually ignored. It does, however, contribute to the stress in the membrane. Indeed,
in the familiar textbook demonstration that σ is tension in a soap film, using a square
frame with an adjustable edge, this is the only term appearing in H .

If one expands the energy in powers of gradients, the quartic term is negative.
Note that

√

1 + |∇0h|2 ≈ 1 + 1

2
|∇0h|2 − 1

8
|∇0h|4 + · · · . (11)

5It is straightforward to confirm that the two remaining symmetric quadratics, C2
1 + C2

2 and (C1 −
C2)

2, can be expressed as linear combinations of K 2 and KG .
6As we will show below, controlling area locally is equivalent, in equilibrium, to controlling it
globally.
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To our knowledge, all attempts to improve perturbatively on the quadratic approxi-
mation have failed. Aswewill show sometimes nature is obliging and small gradients
can tell us a lot about the system. But more often, they are too restrictive and one
needs to approach the problem non-perturbatively. For the moment, let us examine
where they take us.
Linearized shape equation: TheEuler–Lagrange (EL) or shape equation, describing
the stationary shapes of the energy (10), is given to linear order by

(∇2
0 − λ2)∇2

0h = 0 , (12)

with a length scale l = λ−1 = √
κ/�, indicating the scale below which bending

rigidity dominates capillary forces: l ≈ 100nm for a typical fluid membrane. The
derivation of Eq. (12) is a straightforward exercise in the calculus of variations.7

It is useful to slow down a moment and examine the elementary solutions of the
linearized shape equation (12) in some detail. This will provide a guide as to what
geometries we can expect to observe locally on a free membrane, as well as priming
us to recognize behavior suggesting that some additional agent is involved.
Harmonic functions: Solutions of the linearized shape equation include minimal sur-
faces satisfying Laplace’s equation on the plane,∇2

0h = 0. By the definition of curva-
ture, these are symmetric saddles almost everywhere, with K = 0 orC1 = −C2. Typ-
ically, however, minimal surfaces are inconsistent with the boundary conditions—
there are also no closed minimal surfaces—but they do feature prominently as local
approximations of the physical geometry; sometimes they do even better, as we
describe in the next paragraph. The Helmholtz equation, (∇2

0 − λ2) h = 0, also
clearly provides solutions of the EL equation, with the same caveat. Any equilibrium
surface can be described locally as a linear combination of solutions to the Laplace
and Helmholtz equations.

Let us parametrize the plane in terms of the complex coordinate Z = reiϕ, where
r and ϕ are polar coordinates; solutions of the two-dimensional Laplace equation are
given by the real and imaginary parts of analytic functions f (Z). Particular solutions
are generated by f (Z) = Zn , n = 0,±1,±2, . . . ; the dipole n = 1 describes a tilt;
the quadrupole n = 2 describes a symmetric saddle, n = 3, 4, . . . describe monkey
saddles and their many-tailed counterparts.

The monopole is generated by f (Z) = ln Z = ln r + iϕ.
(1) The height function obtained from the real part is axially symmetric (the begin-
nings of a neck). The minimal surface spanning a large outer circular ring of radius
R, and a small coaxial inner one raised above it by a height h � R forms part
of a catenoid. Indeed, the asymptotics of a catenoid reproduce the small gradient
approximation.
(2) The imaginary part represents half of a helicoid, h = p ϕ, a spiral staircase or
ramp (depending on the range of r ).8 Notice thatwhile∇2

0ϕ = 0, h = ϕ does describe

7For simplicity we will suppose that not only the surface height but also its normal vector are fixed
on the boundary.
8The other half of helicoid is given by h = c(π + ϕ).
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an exact minimal surface. Curiously, this is the only (nonplanar) minimal surface
described exactly by its linearization.9 These two geometries, despite appearances,
are symmetric saddle everywhere! Indeed, so also are the monkey saddles except at
the origin. Notice that the Gaussian curvature on a monkey saddle vanishes at the
origin. One can easily confirm that KG is also axially symmetric in any one of these
elementary geometries, wiggle as it may.
Minimal ramp and dipole: Let us examine,more closely, the ramp h = p ϕwith inner
radius r0 extending out to some cutoff Rcutoff . Its pitch p provides a length scale.
This is not an academic exercise because, recently, it was discovered that the sheets
within the laminar stacks of the rough endoplasmic reticulum (ER) are connected
by spiral ramps, Terasaki et al. (2013). However, a simple minimal ramp is costly
energetically, with Eramp ∼ p2σ ln RCutoff/r0; they also require a significant vertical
force to hoist. Because its pitch is independent of r , its footprint does not decay as
one moves away from the axis. Individual minimal ramps are thus inconsistent with
planar stacking even if they are metrically flat (KG → 0) far away.

One can, however, construct a ramp dipole by pairing parallel rampswith opposite
chiralities: if the axes are separated by a distance R > 2r0, the height function

h/p = Im ln[(Z − R/2)(Z̄ + R/2)]
= arctan[Rr sinϕ/(r2 − R2/4)] (15)

represents the dipole illustrated in Fig. 1a centered on the origin and aligned along
the x-axis.

Here one observes the beauty of small gradients: superposition holds; if h1 and
h2 are minimal, so is their sum.

The corresponding energy Edipole ∼ p2σ ln R/r0 depends on the distance between
axes; the pitch is now screened and the Gaussian curvature decays as KG ∼
−p2R2/r6 or faster, so the geometry rapidly becomes planar outside a core of size R.

Dipoles also stack much like a parking garage with the two ramps connecting
parallel floors. It has been conjectured, Guven et al. (2014) that the basic element
within the stacks of the rough ER is one of these dipoles. One still needs to explain
what sets the distance between ramps, their pitch, their tilt, as well as the inner radius.
Indeed, the sheets are not simple bilayers, but tetralayers consisting of a parallel pair
of bilayers separated by a lumen; the inner boundaries are highly curved bilayers.

9Under a deformation h(r) → h(r) + δh(r), fixed on the boundary, the change in area A (6), is
given by

δA =
∫

dr ∇0 · J δh (13)

where

J = − ∇0h

(1 + |∇0h|2)1/2 , (14)

so that ∇0 · J = 0 in equilibrium. One can evaluate |∇0h|2 = p2/r2, so that J = p(− sin θ, cos θ)/
r(1 + p2/r2)1/2 and ∇0 · J = 0.
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(a) Dipole (b) Ramp

Fig. 1 Ramp Dipole: a floor to floor and b stacked. The “square” contour � (heavy line) is used to
determine the force between unpinned ramps, discussed in Sect. 5

In this chapter, the framework to address and answer some of these questions will
be provided.
Biharmonic functions: Let us now examine solutions of the Biharmonic Equation
(∇2)2h = 0, describing the linearization of amembranewith� = 0.This is generally
not true but we will see that there exist notable situations when it is. All solutions of
∇2h = 0 are again solutions, as well as solutions with harmonic sources: ∇2h = J ,
where ∇2 J = 0. Using the same method of complex variables used before, we look
at harmonic sources in turn.
(1) For the constant function J = 1; 4∂Z∂Z̄ h = 1, we find h ∼ |Z |2. This is the
beginning of a sphere. Note that it is not analytic. Just as we did not possess the
freedom to construct asymmetric saddles, this parabolic height function is axially
symmetric.
(2) Next look at J = ln Z . Now 4∂Z∂Z̄ h = ln Z implies h = |Z |2(ln Z − 1). This
includes the singular axially symmetric surface r2 ln r/r0 as well as the quadratically
growing spiral r2ϕ.10 The surface r2 ln r possesses a tangent plane at the origin.
However, KG diverges there. The parabolic appearance at the origin is deceiving.
This is a danger of relying too heavily on visual cues. This curvature singularity
signals the breakdown of the source-free equation indicating that a necessity of a
distributional external force at the origin.
(3) One also find solutions h ∼ |Z |2Z±n . In particular, if n = −2, we have the hair-
pins h = e−2iϕ, illustrated in Fig. 2, wiggling with finite amplitude independent of
r but with asymptotically decaying curvature. The curvature is again singular at the
origin.
Helmholtz equation: If � �= 0, then instead of the Biharmonic equation, we need to
solve the Helmholtz equation. Its elementary solutions are given by J = K0(λr),
Kn(λr) cos nϕ, I0(λr), In(λr) cos nϕ (aswell as the sines),where (i) Kn aremodified

10Just as ln |r − r′| is proportional to the Green’s function for the Laplacian, −|r − r′|2 ln |r − r′|
is its counterpart for the bilaplacian.
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Fig. 2 Hairpin with
n = −2 : cos 2ϕ

Bessel functions diverging at the origin and monotonically decreasing as a function
of r11; (ii) In are their monotonically increasing counterparts, diverging at infinity.

Now let J = ∇2
0h. Then h − J/λ2 satisfies Laplace’s equation. Therefore there

are no new solutions of Eq. (12) that are not already accounted for by forming linear
combinations of harmonic functions and solutions of the Helmholtz equation.

Note that the axially symmetric function K0(λr), the analogue of −r2 ln r ,
diverges at the origin. In this sense, it behaves like the harmonic ln r .

One can check that there is an elementary Helmholtz spiral ramp, given by
K0(λr)ϕ, forming a helix on its inner boundary, falling away remote from its axis.
Most general isotropic bending energy: The bending energy, (9), is not the only
isotropic energy of interest. Energies involving curvature quartics have been intro-
duced to explain periodic egg carton structures, Goetz and Helfrich (1996); Dom-
mersnes and Fournier (2002); Manyuhina et al. (2010); accounting for the relative
softness of gel phasesmay also involve a square root dependence on the curvature, not
captured by a simple higher order symmetric polynomial, Diggins IV et al. (2015).
All such extensions can be accommodated, without prejudice, by considering an
energy of the general form,

H [X] =
∫

d AH (gab, Kab) , (16)

where the energy density H (a scalar), is some given function (or functional, if
derivatives are entertained) of the two fundamental tensor fields, gab and Kab, defined
earlier.

4 Beyond Height Functions: The Nonlinear Shape Equation

Let us now examine how the energy (16) changes in response to a deformation of
the surface

X(u1, u2) → X(u1, u2) + δ X(u1, u2) . (17)

11The Green’s function of the Helmholtz operator is proportional to K0(|r − r′|).
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One way to do this is to first track the response of gab and Kab to this deformation.
To this end, it is instructive to decompose the deformation vector δX into tangential
and normal parts,

δX = �a ea + � n . (18)

Clearly the two parts play very different roles.
Normal Deformations: The induced normal deformations are given by,
Capovilla et al. (2003):

δ⊥gab = 2Kab� ; (19a)

δ⊥Kab = −(∇a∇b − KacK
c
b)� . (19b)

The former provides a reinterpretation of curvature as the response of the metric to
normal deformations; the latter reproduces the identification of the curvature with the
Hessian of the height function (h ≈ �), when gradients are small and the reference
geometry is planar so that the quadratic in Kab vanishes.

The normal deformation also provides a generalization of the height functionwhen
the reference geometry is not a plane, valid whenever � << radius of curvature of
this geometry. The curvature (19b) added to the surface standing at a height � is
expressed in terms of the Hessian of � on the reference geometry screened (or
anti-screened) by any pre-existing curvature.
Tangential deformations and reparametrizations: The tangential deformations of
gab and Kab are given by

δ‖gab = ∇a�b + ∇b�a ; (20a)

δ‖Kab = (∇cKab + Kac∇b + Kbc∇a)�c . (20b)

A mathematician may be aghast at the notation but should instantly recognize these
two expressions as the Lie derivatives of the two tensors along the vector field defined
by�a . But this is not an accident: for the tangential deformations of a surface can be
identifiedwith the action of reparametrizations on the geometrical fieldsX. Using the
definition of the tangent vectors, the tangential deformation can be cast in the form
δ‖X = �a ∂aX, which is exactly how the embedding functions transform under an
infinitesimal reparametrization of the surface, ua → ua − �a(u1, u2). The expres-
sions for δ‖gab and δ‖Kab thus should describe how the metric and any symmetric
covariant tensor transform under this reparametrization: and this is by a Lie deriv-
ative. They are completely determined by the tensorial character of these variables;
the details of their construction in terms of X are irrelevant. In this context, it should
be noted that δ‖Kab or, for that matter, δ‖ of any surface tensor constructed from
X does not depend on the metric: one can confirm that (and ditto for gab with the
obvious replacement)

δ‖Kab = (∂cKab + Kac∂b + Kbc∂a)�c . (21)
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Using these results, it only takes a short step to see that the tangential deformation
of any energy of the form (16) is given by the integral of a divergence. We first recall
that, given any symmetric matrix Bab (and, in particular, gab), ∂

√
det B/∂Bab =√

det B B−1ab/2. It then follows that, when the metric is varied, the area measure
changes by

δ d A = 1

2
d A gabδgab . (22)

Using Eq. (20a), we have gabδ‖gab = ∇a�
a12, so that δ‖d A = d A∇a�

a ; in addition,
because H is a scalar depending only on X, δ‖H = ∇aH�a . Summing terms, we
find that any energy of the form (16) changes by a divergence

δ‖H =
∫

d A∇a(H�a) . (23)

Using Stoke’s theorem, the rhs can be cast as a boundary term
∮

dsH la�a or equiv-
alently

∮

dsH l · δX, so that it makes no contribution to the response in the bulk and
vanishes if the surface is closed. Here la = gablb are the covariant components of
l = laea , the surface tangent normal to its boundary (its conormal) pointing out of the
surface. The upshot is that tangential deformations of the surface can be discounted
everywhere except on boundaries where new surface is generated. Boundaries do
get pushed about and, as Eq. (23) indicates, tangential deformations will play a role
in understanding the behavior on them. There is a physically important corollary
of the reparametrization invariance of the energy Eq. (16) and the identification of
tangential deformations with reparametrizations: Because the tangential deforma-
tion is given by Eq. (23), derivatives of tangential surface deformations never occur
as boundary terms. Nor can they arise when boundary energies are accommodated.
Caveat: if there is a local constraint on the surface deformation, δX, such as isome-
try, one needs to be more circumspect vis a vis the independence of � and �a ; for
tangential deformations will tag along with their normal counterparts. Specifically,
the constraint δgab = 0 is equivalent to

∇a�b + ∇b�a + 2Kab� = 0 . (24)

The Gauss–Weingarten equations: The derivations of Eqs. (19) and (20a) are sim-
plified significantly using the structure equations that capture the connection between
intrinsic and extrinsic geometry:

∇aeb = −Kab n ; (25a)

∂an = Ka
b eb . (25b)

12∇a�
a = ∂a(

√
g�a)/

√
g.
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TheWeingarten equation (25b) captures directly the definition of Kab (7). If Eq. (25a)
appearsmysterious, note that∂aeb,while not itself a surface tensor (or,more correctly,
a triplet of tensors) may be expanded with respect to the basis vectors:

∂aeb = �c
abec − Kab n . (26)

One finds that �c
ab = ec · ∂aeb is the Christoffel connection (3) constructed using

gab. While neither ∂aeb nor �c
abec is a tensor, their difference ∇aeb is. And ∇a is the

covariant derivative introduced in Eq. (2).
To illustrate the utility of these equations, let us go back and derive Eqs. (19).

Using the definition of gab (1) we have

δ⊥gab = ea · ∂b(�n) + (a ↔ b)

= eb · ∂bn � + (a ↔ b)

= 2Kab �, (27)

where we use Eq. (25b) on the last line. On the other hand, to determine δ⊥Kab, we
require an intermediate result which follows from the orthogonality of n to the sur-
face: ea · n = 0 andn2 = 1 together imply δ⊥n = −∂b� eb. Nowusing the definition
of Kab, given by Eq. (7), we have

δ⊥Kab = ea · ∂b(δ⊥n) + ∂a(n�) · Kb
cec

= −∇a∇b � + KacK
c
b� . (28)

The Gauss–Codazzi and Codazzi–Mainardi equations: It is clear that the tensors
gab and Kab are not independent. Even naively the counting is wrong. Their inter-
dependence is quantified by the Gauss–Codazzi (GM) and Codazzi-Mainardi (CM)
equations, given by

R = K 2 − KabK
ab ; (29a)

∇b (Kgab − Kab) = 0 , (29b)

where R is the scalar curvature (defined in a moment). These three equations arise
as integrability conditions on Eq. (25a). This is easy to show. Rewrite Eq. (25a) as
Gab = ∇aeb + Kab n = 0. Now ∇aGbc − ∇bGac = 0, or

[∇a,∇b] ec = ∇a(Kbcn) − ∇b(Kacn) . (30)

Whereas
[∇a,∇b] ec = Rabc

d ed (31)
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as a consequence of the Ricci identities (4),

∇a(Kbcn) − ∇b(Kacn) = (∇aKbc − ∇bKac) n + (KacKbd − KadKbc) ed (32)

on account of Eq. (25b). Equating tangential and normal terms implies

Rabcd − KacKbd + KadKbc = 0 ; (33a)

∇aKbc − ∇bKac = 0 . (33b)

The first set of equations tells us that the (intrinsic) Riemann tensor induced on
a surface embedded in Euclidean space is determined completely by the extrinsic
curvature tensor. The second set of equations is a covariant statement of the fact that
the extrinsic curvature is a Hessian.

Note that there are counterparts of the integrability conditions on the Weingarten
equation (25b) but they provide no additional constraint, simply reproducing
Eq. (33b).

For a two-dimensional geometry these equations simplify. It is easy to see that
the Riemann tensor has a single independent component, say R1212.13 As a result, it
is completely captured by the scalar R:

Rabcd = (gacgbd − gadgbc)R/2 . (35)

Equation (29a) follow on contraction. In addition, it is clear that there are only
two independent Codazzi-Mainardi equations (33b) on a two-dimensional surface:
∇1K21 − ∇2K11 = 0 and ∇1K22 − ∇2K12 = 0. These two equations are equivalent
to the contracted Codazzi- Mainardi equations. For two-dimensional surfaces, there
are three integrability conditions.

The GC equation (29a) indicates that the Gaussian curvature is also an isometry
invariant, depending as it does only on the metric: 2KG = R.14 This is the content
of Gauss’s Theorema egregium. The CM equations (29b) is the statement that the
tensor Kab − K gab is covariantly conserved, an identity that is very useful to recall
when taking covariant derivatives of the extrinsic curvature.
Normal deformations and energy: We have looked at the response of the energy to
tangential deformations. Let us now track its response to a normal deformation—one
that pushes the surface outwards. Consider, to get started, the energy proportional to
the area, H = σA, describing any interface. Using Eqs. (19) and (22) we have

13Note that the Ricci identify (4) implies Rabcd = −Rbacd ; whereas its application to the metric
tensor implies Rabcd = −Rabdc:

0 = [∇a,∇b]gcd = Rabcd + Rabdc . (34)

These account for all the independent constraints on Rabcd on a two-dimensional surface.
14The identity det Ka

b = (K 2 − KabKab)/2 is true for the determinant of any two-dimensional
symmetric matrix.
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δ⊥A =
∫

d A K� . (36)

As a consequence, H is stationary for fixed boundaries when K = 0, representing a
minimal surface or n · ∇2X = 0 where the Laplacian appearing here is the Laplacian
on the surface constructed using gab. This is the nonlinear counterpart of Laplace’s
equation on the plane presented earlier. Note that the three Cartesian coordinates sat-
isfy the Laplace equation, or∇2X = 0. This is because the contractedGauss equation
(25a) implies that the tangential projections vanish identically, or ea · ∇2X = 0.

Now look at HB = 1
2κ

∫

d A K 2. Using the definition K = gabKab, as well as the
general identity for matrix inverses, δgab = −gacgbdδgab, Eq. (19) now imply:

δ⊥K = −(∇2 + KabK
ab)� . (37)

As a consequence:

δ⊥HB = κ

∫

d A[−K (∇2 + KabK
ab) + K 3/2]� . (38)

One may now use Stoke’s theorem to perform two integrations by parts to peel deriv-
atives appearing in the Laplacian off � and transfer them to K . Applying identical
reasoning to the term linear in K appearing in the CH energy (9), the shape equation
describing equilibrium membrane states in the absence of external forces is given by
Capovilla and Guven (2002b)

E = −κ∇2K + 2κK
(

KG − K 2/4
) − 2κC0 KG + � K = 0 . (39)

In the presence of a pressure difference P across the surface, the surface geometry
satisfies the equation: E = P . This is a consequence of the intuitively simple identity

δ⊥V =
∫

d A� . (40)

The change in volume is the base area by the height! Thus, an energy contribution
of the form −PV has normal EL derivative −P .

Early derivations of Eq. (39), notably inRefs.Ou-Yang andHelfrich (1987, 1989),
tended not to exploit the fundamental tensors explicitly. Notice the cubic nonlinearity
in the curvature appearing in Eq. (39); it has its source in the term quadratic in
curvature appearing in δ⊥Kab. It is simple to confirm that the linearization of Eq.
(39) with respect to a planar reference plane reproduces Eq. (12).
A comment on height functions: Let us reexamine the variational principle in the
Monge representation. We saw that, under a deformation h(r) → h(r) + δh(r), the
change in area A (6), is given by Eq. (9). h is a scalar field, both on the base and
on the surface, so it should be possible to express the rhs of Eq. (9) in a manifestly
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covariant form. Recall that, while |∇0h|2 is a scalar on the reference plane, it is not a
surface scalar. In fact, the density

√
g is constructed in this parametrization in terms

of |∇0h|2.
The EL derivative of A appearing in Eq. (9) is clearly a divergence on the base

plane. While not obvious, it should also be a divergence on the surface. If we use the
identity gi j∂ j h = ∂i h/(1 + |∇0h|2) = ∂i h/g, we see that

∂i

(
∂i h

(1 + |∇0h|2)1/2
)

= ∂i (
√

ggi j∂ j h) = √
g∇2h , (41)

so that we can express δA in the manifestly reparametrization invariant form:

δA = −
∫

d A∇2h δh . (42)

The Laplacian ∇2 (= gab∇a∇b) is the Laplacian on the surface, not the base plane.
One does not need to abandon surface reparametrization invariancewhen height func-
tions are used. However note that |∇h|2 = |∇0h|2/g or g = 1/(1 − |∇h|2). Scalars
do get conflated with densities.

In the Monge representation, n = (−∂i h, 1)/
√

g, so that projecting (25a) onto
the vertical k, we identify

Ki j/
√

g = −∇i∇ j h , (43)

where ∇i is the surface covariant derivative. Thus K = −√
g∇2h.

Projecting Eq. (26) onto the Cartesian directions on the plane, one also finds
that �k

i j = Ki j∇kh/
√

g; the connection is proportional to the extrinsic curvature. In
the Monge representation the concepts of intrinsic and extrinsic geometry also get
conflated.
Anisotropic energies: Other contributors discuss anisotropies. Consider the replace-
ment of the bending energy Eq. (9) by an expression of the more general form

H =
∫

d AH(C1,C2) , (44)

say H = κ(C2
1 + αC2

2 )/2, where α �= 1. It is convenient to know how C1 and C2

transform. One has CI = V a
I KabV b

I , so that δ⊥CI = V a
I V

b
I δ⊥Kab—an equation

familiar in quantum mechanics as the first order perturbation in the eigenvalue due
to a perturbation in the Hamiltonian. Now using Eq. (19b), we discover

δ⊥CI = −V a
I V

b
I ∇a∇b� + C2

I � . (45)

The peeling process can be performed exactly as before. Now, however, deriv-
atives of the principal vector fields will appear in the first variation. On a sur-
face only two scalars can be constructed using derivatives of a unit vector field,
V a : its divergence I1 = ∇aV a and its curl, I2 = εab∇aVb (εab is the antisymmetric
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Levi–Cita tensor). Using the identity εab = V aV b
⊥ − V a

⊥V b,15 we find I2 = −V a
⊥V b

∇bVa , which is identified as the geodesic curvature along the integral curves of the
vector field V a .

The derivation of the shape equation presented in this section highlights the geom-
etry. It is also perfectly adequate if one is interested in identifying membrane shapes.
But it still has its limitations: for we are not only interested in shapes; indeed two very
different models may predict qualitatively identical shapes. How then do we discrim-
inate between them? What is missing is the distribution of stress underpinning the
geometry, without which access to the forces acting on the membrane or transmitted
by it is limited. This is simple enough, using a minimum of geometry, if gradients
are small or the geometry is axially symmetric. We will have more to say about this
approach. But we will now show that the little geometry we have introduced suggests
a better way. We will also see there is a remarkably simple connection between the
bending stress (as well as the torques) and the surface geometry, a consequence of
the fact that the energy depends only on the geometry.

5 Stress and Geometry

The surface energy is invariant with respect to spatial translations. Using Noether’s
theorem, we know that this invariance implies the existence of a conserved current,
identified as the stress tensor. This can be constructed by reassembling the normal and
tangential boundary contributions to the energy associated with a translation. This
was first done in Capovilla and Guven (2002b) (and even earlier in a relativistic con-
text, in Arreaga et al. 2000).16 The approach we describe here involves a refinement
of the derivation in Capovilla and Guven (2002b), introduced a few years later by
one of the authors, Guven (2004). There is no need to decompose deformations into
normal and tangential parts; at the end of the calculation we will, however, interpret
the conservation law by examining its projections.

We have seen that the energy (16) depends implicitly on the shape X through
the two fundamental tensors. Thus far we have not fully exploited this depen-
dence. While the metric and the extrinsic curvature are not independent, it is pos-
sible to treat them as though they were by making use of the method of Lagrange
multipliers to record the steps in their construction in terms of X as local con-
straints and reformulating an unconstrained problem in the calculus of variations as
a locally constrained one. We do this by replacing the energy H by the functional
HC = HC [X, ea, n, gab, Kab, fa, f a, f n, T ab, Hab], defined by

15V a⊥ = εabVb is orthogonal to V a .
16A later derivation accommodating the finite thickness of the membrane is presented in Lomholt
and Miao (2006).
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HC = H [gab, Kab] +
∫

d A fa · (ea − ∂aX)

−
∫

d A f a ea · n + 1

2

∫

d A f n(n · n − 1)

+1

2

∫

d A T ab(gab − ea · eb) −
∫

d A Hab(Kab − ea · ∂bn) . (46)

While it does appear that we have just taken a step in the wrong direction, this is
not the case. Bear with us! We are now freed to treat H itself as a functional of two
independent tensor fields, rather than of the embedding functions, i.e., H [gab, Kab].
The construction of gab and Kab, consigned to the constraints, is clearly independent
of the specific choice of H .17

There is also an element of flexibility in this construction: we choose to introduce
the tangent and normal vectors (ea and n), mediating the construction of gab and Kab

in terms of X, as independent fields. As will be evident in a moment there is a good
reason for doing this.

The tensorial character of the Lagrange multipliers reflects the constraint they
enforce: fa , appearing in Eq. (46), is associated with the identification of ea as the
two tangent vectors adapted to the parametrization; f a is associated with the implicit
identification of the normal vector and f n enforces its normalization. The fields T ab

and Hab, completing the identification of gab and Kab as the two fundamental tensors,
are symmetric tensors.

It is now legitimate to vary independently each of the geometric fields X, ea , n,
gab and Kab. Wewill perform the variations in this same order. The first three of these
fields appear only in the constraints, so their variations can be performed without
reference to H . Significantly, the embedding functions appear only in the tangency
constraint, imposed by the multiplier fields, fa . The translational invariance of the
energy is captured by the fact that X also appears only through its derivative. One
determines, almost trivially, the response of HC to a deformation δX:

δXHC = −
∫

d A fa · ∂aδX . (47)

An integration by parts is now used to peel the derivative off the variation; the EL
derivative with respect to X is then identified as a divergence:

δHC

δX
= 1√

g
∂a

(√
g fa

) = ∇afa . (48)

Thus, in equilibrium,
∇afa = 0 , (49)

17In this approach, the deformation vector δX is never disassembled into normal and tangential
parts, so that its reassembly is never necessary.
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or fa is conserved. Below, this tensor will be identified as the stress. We will be inter-
ested in the force per unit length transmitted across curves on the surface, given by the
projection f⊥ := lafa , where l = laea is the conormal, introduced below Eq. (23).18

The EL equations for ea and n identify the tangential and normal projections of
fa completely in terms of the two tensor-valued multipliers, T ab and Hab:

fa = f abeb + f an , (50)

where
f ab = T ab − HacK b

c , f a = −∇bH
ab . (51)

The EL equations for gab and Kab determine T ab and Hab in terms of the
Euler–Lagrange derivatives of the energy densityH with respect to gab and Kab:

T ab = − 2√
g

δ(
√

gH)

δgab
; Hab = δH

δKab
. (52)

This completes the construction of fa . The normalization and sign of T ab are chosen
so that this tensor coincides with the metric stress tensor (see, for example, Wald
2010). However, unless H is independent of Kab (so that Hab = 0), T ab is not the
complete stress. Nor is it conserved.

The structure captured in Eqs. (51) and (52) is independent of the specific form of
H . As promised, the stress is completely determined by the geometry. This is quite
unlike the familiar situation in continuum mechanics where in-plane static shear—
which is not supported by a two-dimensional incompressible fluid—generates stress.

Now let H be the CH energy given by Eq. (9). One then identifies, Capovilla and
Guven (2002b); Guven (2004)

fa =
[

κ (K − C0)

(

Kab − 1

2
(K − C0)g

ab

)

− σgab
]

eb − κ ∇aK n . (53)

To confirm this, note that H involves a sum of terms proportional to Hn = Kn/n,
n = 0, 1, 2. For each n, straightforward calculus gives for the corresponding tensors
defined by Eq. (52), T ab

n = Kn−1
(

2Kab − Kgab/n
)

and Hab
n = Kn−1gab, so that

the contribution to the stress (51) is

fan = Kn−1(Kab − Kgab/n) eb − ∇aK n−1 n . (54)

The Gaussian energy is not of this form. However, one can use the identity KG =
(K 2 − KabK ab)/2 to show that T ab

G = KKab − KacKc
b, and Hab

G = Kgab − Kab.
As a result, the tangential stress, T ab − HacK b

c , appearing in Eq. (51) vanishes
identically; its normal counterpart vanishes on account of the CM equations, (29b).

18If t = taea is the unit tangent vector to the curve, l · t = 0 or gabla tb = 0 or la ta = 0.
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The upshot is that there is no Gaussian stress, and the Gaussian modulus κ̄ does not
feature in fa , a reflection of the topological nature of this energy.

In the case of an interface or a soap film, described by an energy proportional to
area, H = σA, the stress is tangential with f ab = −σ gab and f a = 0. The propor-
tionality to gab indicates that the tangential stress is isotropic; it is also homogeneous
because σ is constant.

The stress in afluidmembrane is quadratic in curvature; as a consequence the stress
is generally neither homogeneous nor isotropic.We note, however, that the tangential
stress f ab is a polynomial in Kab andgab; this implies that the orthogonal eigenvectors
of Kab,V1 andV2, are also eigenvectors of f ab. For pure bending (withC0 = 0,σ =
0), the eigenvalues of f ab are now easily identified as f1 = κ (C2

1 − C2
2 )/2 = − f2.

The tangential bending stress therefore is bounded by f1 and f2 which it assumes
along these directions. IfC1 < C2, then themembrane is under tension alongV1, and
under an equal compression along the orthogonal direction, V2. Because f1 + f2 =
gab f ab = 0, this is equivalent to the statement that the tangential bending stress is
traceless. This is also not an accident. It can be understood to be a consequence
of the scale invariance of the two-dimensional bending energy. Indeed, invariance
of the bending energy under a rescaling δX = λX implies f aa = 0, Capovilla and
Guven (2002b); Guven (2005). This is very different from the behavior we observe
in an interface where the stress is tensile everywhere. More generally, let H be
scale invariant. Equation (47) then implies that the contribution to δH due to X is
proportional to

∫

d A fa · ∇aX =
∫

d A f aa = 0 , (55)

and, for energy densities of the form H(gab, Kab), there are no boundary additions
(these will be discussed below). As a consequence f aa = 0 pointwise. If, how-
ever, the energy involves higher derivatives of either gab or Kab, boundary additions
may show up, implying that the trace does not necessarily vanish but is a diver-
gence: f aa = ∇ag

a , where ga is some vector field. A scale invariant energy with
this property is easy to construct, given by

∫

d A
√∇aK∇aK , but without any phys-

ical application that we are aware of. For the curious, we remark that one needs to
look at energies in higher dimensions involving derivatives to encounter polynomial
examples displaying a ga �= 0.

Notice also that the bending stress vanishes on minimal surfaces, with K = C1 +
C2 = 0, and on spheres, with C1 = C2. Normal stress is not supported in either case,
for this requires nonvanishing gradients in K . On any other surface, the bending
stress may change from tension to compression along a given direction. In fact, the
integrated force may vanish but the torque need not. We will encounter this behavior
in toroidal vesicles.

The force per unit length f⊥ transmitted across any curve can be expanded
with respect to the orthonormal basis, {t, l, n}, adapted to the curve, f⊥ = f⊥⊥l +
f⊥‖t + f⊥n, wherewe introduce the notation, A⊥⊥ := lalb Aab, A⊥‖ := latb Aab, and
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A‖‖ := tatb Aab, for any symmetric tensor, Aab. For the CH energy (9), with stress
given by Eq. (53), we identify the forces transmitted along the three directions as

f⊥⊥ = κ/2
(

K 2
⊥⊥ − (K‖‖ − C0)

2
) − σ , (56a)

f⊥‖ = κ (K − C0) K⊥‖ , (56b)

f⊥ = −κ ∇⊥K , where ∇⊥ = la∇a . (56c)

Note that f‖‖ is given by f⊥⊥ with ‖ and ⊥ interchanged; if the tangential bending
stress is tensile along one direction (not necessarily a principal direction), it will be
compressive along the orthogonal direction. There will generally be a geometrical
in-plane shear f⊥‖ if K⊥‖ �= 0. There is, of course, no inconsistency with the fluid
character of the membrane.

Whereas a fluid sphere may be stress free, a cylinder will generally be under ten-
sion along the axial direction (the curvature along the axis K⊥⊥ = 0 in Eq. (56a)).
A cylinder thus needs to be supported by an external axial force to prevent its col-
lapse along the axis. By scale invariance, this will necessarily be accompanied by
contraction along the radial direction.

Like surface tension, spontaneous curvature breaks the scale invariance of the
energy. Its presence introduces an additional contribution to the tangential stress,
f abS = − 1

2κC2
0 gab − κC0

(

Kab − Kgab
)

, but no normal stress. On a flat membrane,
only the first term remains, so spontaneous curvature contributes isotropically to the
tension, Lipowsky (2013); if the membrane is not flat, however, it makes an addi-
tional curvature dependent and generally non-isotropic contribution to the principal
tangential stresses.

As Eq. (56) indicates, spontaneous curvature biases only the contribution of the
transverse curvature to the forces transmitted across curves. A positive spontaneous
curvature will thus reduce the axial tension required to support a cylinder. An appro-
priate spontaneous curvaturewill even allow tethers to form in the absence of external
forces, Lipowsky (2013); Deserno (2015).

An alternative natural appearance of a term linear in K is in the bilayer couple
model, which accommodates a fixed area difference between the two layers within
the bilayer, Svetina and Žekž (1989); Svetina and Žekš (2014). Indeed, if the bilayer
has a constant thickness t , the difference in area between its two sides is given by
Eq. (22) to be t

∫

d A K . This model has been repurposed recently in the context of
tetralayers consisting of pairs of parallel bilayers with different areas. As such, it
could play a role in explaining the morphology of the rough endoplasmic reticulum
or the nuclear envelope, Guven et al. (2014).

Historical note: the concept of a stress tensor for fluid membranes was first
explored, in the small gradient approximation, some time ago by physicists, Evans
and Skalak (1980); it was also examined by applied mathematicians and engineers,
Jenkins (1977); Steigmann (1999) from a continuum mechanical point of view. It
would be fair to say, however that its origins in geometry were overlooked. The
conservation laws implied by Euclidean invariance appears to have been first under-
stood by Kusner in the context of minimal and constant mean curvature surfaces,
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Kusner (1991). Inexplicably, as recounted in Bernard (2015), pure mathematicians
working on the Willmore functional (our symmetric bending energy), Willmore
(1982) (proven in 2014, Marques and Neves (2014a, b)) were late to appreciate the
implications of Euclidean invariance in this context.
Shape equation from the conservation law: We have discussed stress but we have
yet to unpack the contents of the conservation law for fa . Naively, there appears to be
a discrepancy: for whereas there is a single shape equation, we possess three conser-
vation laws (indeed there are more to come). We first show that the shape equation
is implied by the conservation of the stress tensor. Using the notation introduced in
Eq. (50), we note that the projection onto the normal vector of the conservation law
Eq. (49) gives

E := n · ∇afa = ∇a f
a − Kab f

ab = 0 . (57)

Using the expression (53), this reproduces the shape equation for a fluid membrane,
(39). The divergence is no longer evident. Even if we were to stop here, we now
possess a better understanding of the shape equation: in equilibrium, the coupling of
the tangential stress to curvature is the source of the normal stress.

External forces or normal constraints on the geometry will introduce sources on
the right hand side of the conservation law. For instance, the source associated with
an osmotic pressure is normal, given by P n, so Eq. (39) is replaced by E = P .

The projections of Eq. (49) along tangent directions implies

Eb := eb · ∇afa = ∇a f
a
b + Kab f

a = 0 . (58)

This is another constraint between the tangential and normal stresses: and it appear to
suggest a symmetry between Eqs. (58) and (57) with tangential and normal stresses
interchanged. The character of Eq. (58), however, is very different. In general, if the
only degrees of freedom are geometric, this equation amounts always to a geometric
identity; it hold for each term in the energy independently of the shape equation.
To understand why this is so, recall that infinitesimal tangential deformations are
identified with reparametrizations; using the fact that reparametrization acts by Lie
derivation along the tangent vector field, this identity is reproduced for any geomet-
rical invariant of the form (16) whether or not the geometry is equilibrated, Guven
and Vázquez-Montejo (2013a).

More explicitly, using Eqs. (20a), we can write

δ‖H =
∫

d A

(

−1

2
T ab δ‖gab + Habδ‖Kab

)

=
∫

d A
(∇a f

ab + Kab fa
)

�b +
∫

d A∇a(H�a) , (59)

where we have used the definitions of the tangential and normal stresses given by
Eq. (51). These are analogues of the contracted Bianchi identities in general relativity
which follow from the general covariance of the Hilbert Einstein action.
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Matters are less straightforward if local constraints are imposed on the geometry
ormaterial degrees of freedom interactwith it. It also bears remarking that if themani-
fest reparametrization invariance is broken, choosing a parametrization adapted to the
geometry such as the harmonic parametrization used in theWeierstrass–Enneper rep-
resentation of a surface, which constrains the metric, Guven and Vázquez-Montejo
(2010), the counterparts of Eq. (58) are no longer trivially satisfied. Instead they
determine the additional Lagrange multipliers associated with this choice of gauge.
It is only modulo this input that the counterpart of Eq. (57) reproduces the shape
equation.
Isometric bending: A surprising application of the framework presented in Sect. 5
has been to the description of thin unstretchable sheets (think paper if KG = 0), an
idealization that may be relevant in cell biology when proteins condense on a mem-
brane. Whereas static fluid membranes shear freely; shear is impossible without
stretching. The two limits, nonetheless, are described by the geometrical degrees of
freedom of the surface. Unstretchability translates geometrically into the constraint
that the metric be isometric to some fixedmetric. This local congruence is accommo-
dated in the variational principle by introducing a tensor-valued Lagrange multiplier
T ab, and replacing HC in Eq. (46) by19

HC − 1

2

∫

d A T ab(u1, u2)(gab − g(0)
ab ) , (60)

where g(0)
ab is this fixed metric. As a consequence, the tangential stress f ab is replaced

by f ab + T ab, whereas the normal stress is unchanged. The significant point is that,
even though no extra fields are introduced, the stress is no longer completely deter-
mined by the local geometry even though the degrees of freedom remain geomet-
rical. The EL equation (57) is replaced by E − KabT ab = 0. The presence of the
isometry constraint also breaks the identification of tangential deformations with
reparametrizations: The tangential projection of the conservation law (58) implies
that the multiplier field T ab is conserved: ∇aT ab = 0, Guven and Müller (2008);
Guven et al. (2012).

In this context, it is worth looking at theweaker constraint, local incompressibility.
The constraint (60) is replaced by

HC − 1

2

∫

d2uA(u1, u2)(
√

g −
√

g(0)) , (61)

Now instead of f ab + T ab, we have f ab + Agab, with an inhomogeneous stress.
However, in equilibrium, the tangential conservation law (58) implies thatA is con-
stant; which is the same stress as that associated with a globally constrained area.
Tangential EL with material fields: Let there be material fields: this could be
a scalar S(u1, u2) or a vector field V a(u1, u2), so that the total energy density is
replaced byH[gab, Kab, V a, S]. The EL equations for these fields can be determined

19The local parametrization is fixed.
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conventionally: Va = 0, S = 0, where Va = δH/(δV a√g) and S = δH/(δS
√

g).
Neither V a nor S depends on X, so that the identification of tangential deformations
with reparametrizations breaks down for this H. Now Eq. (58) is not reproduced by
the argument leading to Eq. (59).

Suppose that V a and S interact only with the intrinsic geometry and that H
decomposes asH = H(gab, Kab) + Hint(gab, V a, S), with correspond metric stress,
T ab + T ab

int . Now Eq. (58) implies ∇aT ab
int = 0, a nontrivial conclusion, Capovilla

and Guven (2004a, b). The total stress associated with the fields on the Riemannian
manifold described by the metric tensor gab is conserved. The surface itself does not
even need to be in equilibrium.

Note that the conservation law does not necessarily imply the corresponding EL
equations for the individual fields. If, however, the two fields do not couple directly,
their tangential stresses decouple and are separately conserved. For example, suppose
for simplicity that the scalar field is minimally coupled, described by the gradient
energy plus a potential:

HI (gab, S) = 1

2
c gab∇a S∇bS + V (S) . (62)

Now

T ab
int [gab, S] = c

(

∇a S∇bS − 1

2
gabgcd∇cS∇d S

)

− gabV (S) (63)

is conserved. This implies the EL equation for S,

− c∇2S + ∂V/∂S = 0 . (64)

This equation involves the surface geometry only through its metric. The correspond-
ingEL equation for the surface ismodified by the addition of a source:E = 0 in (57) is
replaced by E − T ab

int Kab = 0. If instead of one scalar field we had two noninteracting
fields, say S1 and S2, they will be separately conserved and their EL equations of the
form (64) are uncoupled. Nonetheless the surface geometry mediates an interaction
between these two fields through the shape equation: E − T ab

int [gab, S1, S2]Kab, where
T ab
int [gab, S1, S2] = T ab

int [gab, S1] + T ab
int [gab, S2]. In particular in a three-component

membrane (described by two relative concentration fields), one can anticipate non-
trivial behavior associated with this indirect interaction. There is clearly a lot of nice
physics yet to be unearthed, nevermind explored on this topic. A simple non-minimal
coupling to curvature, such as a term of the form, f (S)K , will introduce a source in
the EL equation for S.
Laplace pressure as effective surface stress: If there is a pressure difference P
across the membrane, or the volume is fixed, there is an additional term in H given
(modulo a possible constant) by−PV . Using Stokes theorem for the volume integral
of the spatial identity,div · x = 3, the volume can be expressed as a surface integral,20

20On a surface with boundary, this identity yields the volume of the cone standing on the surface
patch, with its apex located at the origin.
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Fig. 3 a Parametrization of an axially symmetric surface. b Generating curve for a torus

V = 1
3

∫

d AX · n. However, the translational invariance of V implies that
∫

d A n =
0, which in turn implies that n itself is a surface divergence. It is simple to verify that

n = ∇a faL , where faL = 1

2
X × (

n × ea
)

. (65)

It follows that the Laplace force across the surface can, itself, always be treated as
an effective surface stress tensor −P faL , Guven (2006).
Axially symmetric vesicles: In general, the EL equation cannot be integrated. Axial
symmetry, however, implies the existence of a first integral of the shape equation
which facilitates the identification of equilibrium states. The traditional way to iden-
tify this first integral is to adapt the variational principle to this symmetry, Zheng
and Liu (1993); Jülicher and Seifert (1994); Podgornik et al. (1995). However, the
conservation law provides an instructive alternative derivation in terms of the stresses
shaping an axially symmetric geometry.

First, let us review a few essential properties of axially symmetric surfaces. The
parallels and meridians on the surface form the principle directions. The curvatures
along these directions are given respectively by C‖ = sin�/R and C⊥ = �̇, where
R is the polar radius, � is the angle that the tangent along the meridian makes with
the polar direction, and a dot represents a derivative with respect to arc length along
the meridian, ˙= d/dl = ∇⊥, as indicated in Fig. 3a. Substituting into Eq. (56), we
identify the nonvanishing tangential and normal forces per unit length transmitted
across a parallel from the membrane below it, f⊥⊥ and f⊥ respectively.

We now use the conservation law to identify the first integral: first project∇afa =
Pn onto the symmetry axis; now integrate over the source-free region bounded below
by a given parallel circle. Using Stokes theorem on the left-hand side, we find that
the linear combination of stresses

L := sin� f⊥⊥ − cos� f⊥ , (66)



194 J. Guven and P. Vázquez-Montejo

satisfies

L = PR/2 + C/(2πR) , (67)

on this circle, where C is a constant of integration. Note how the derivative is peeled
off f⊥ in this construction. This equation, first written down in Capovilla and Guven
(2002b) (but without the important constant C), expresses equilibrium in terms of
an algebraic balance of tangential and normal stresses. The constant is identified as
the total external axial force acting from above; an equal and opposite force must
counteract it somewhere else. In the absence of such a force,C = 0.Wewill examine
one situation where it vanishes (even though radial external forces act on the vesicle)
and two where it does not: one for topological reasons; the other due to external axial
forces bearing down on the poles of a vesicle.
Stress and Torque conservation from Euclidean invariance: It is straightforward
using the auxiliary framework to show that the change in energy under a deformation
of the surface δX is given by

δH [X] =
∫

d A E n · δX +
∫

d A∇a
[−fa · δX + Habeb · δn

]

. (68)

This identity follows from the first variation of Eq. (46): the first term on the right in
Eq. (68) involves the EL derivative with respect to X and it vanishes in equilibrium
if the region is source-free; the second term collects in a divergence the two terms
linear in derivatives, ∂aδX and ∂aδn, appearing in δHC when X and n are varied. On
any patch of free surface, it depends only on the boundary behavior of the stress, fa ,
and the response to changes in the curvature, Hab; this is not an accident.

Using Eq. (68), it is simple to reproduce the conservation law for the stress tensor,
Eq. (49). For under a constant translation δa, the energy is unchanged within any
surface patch so that δH = 0; as a result, δa · ∫

d A∇afa = 0. Because the patch
is arbitrary, the integrand must vanish pointwise, reproducing the conservation law.
This is not surprising: translational invariance was alreadymanifest in the variational
principle.

The rotational invariance, on the other hand,was not.Under a constant rotation δω,
one has δX = δω × X and δn = δω × n so that, in equilibrium, δω · ∫ d A∇ama =
0, where

ma = X × f a + Hab eb × n . (69)

Thus, ma , which is identified as the surface torque tensor, Capovilla and Guven
(2002b); Müller et al. (2007), is also conserved: ∇ama = 0. The first term appearing
in ma represents the moment of the local stress, whereas the second term—the
bendingmoment—is position independent, a contribution originating in the curvature
dependence of the energy.

Consider the effect of a scaling δX = λX on any functional of the form (16): now
Eq. (68) implies
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δH [X] = λ

∫

d A E n · δX − λ

∫

ds f⊥ · X . (70)

Suppose that H has a consistent scaling dimension. If H = A, then H [�X] =
�2H [X]. furthermore E = K . and fa = −gabeb. One identifies

2A =
∫

d A K n · X +
∫

ds l · X . (71)

This is the Jellett–Minkowski identity, identified by Jellett mid-nineteenth century
but usually attributed only to the latter mathematician, Jellett (1853). A corollary is
that there do not exist closed minimal surfaces.
Stresses in the Monge representation: It is instructive to compare the manifestly
covariant framework described here with its counterpart using the height function
representation of the surface, treating the energy as a functional of this scalar field
on the reference plane. We now examine the forces and torques along this plane and
orthogonal to it.

One can exploit the Euclidean invariance of the energy with respect to translations
on the base plane, exactly as one does for a classical scalar field (electrostatics say),
to identify the conserved horizontal stress. But we do not need to: because we can
also project fa onto the base plane. In the quadratic approximation, this stress is given
by, Fournier (2007)

Ti j = κT B
i j + �T 0

i j , (72)

where

T B
i j ≈ ∇2h

(

∂i∂ j h − 1

2
∇2

0hδi j

)

− ∂i (∇2
0h)∂ j h , (73)

and
T 0
i j ≈ − (

1 + (∇0h)2/2
)

δi j + ∂i h ∂ j h . (74)

Not surprisingly, modulo the constant term associated with the area of the base plane,
T 0
i j assumes the form of the stress tensor of a free scalar field h on the plane. Compare

Eq. (74) with (63).We observe also that T B
i j is not symmetric so that, whereas ∂i Ti j =

0, if the indices are switched the divergence does not vanish: ∂i T B
ji �= ∂i T B

i j . There
is no such ambiguity in the reparametrization invariant approach. Notice also that in
T 0
i j neither homogeneity nor isotropy are manifest. This apparent spatial variation is

an artifact of the planar projection.21 Already in this simple setting, one can see the
advantage of possessing the covariant description. Even if one decides to perform
calculations in the height function representation, the covariant approach provides

21Intriguingly, the quadratic contribution to T B
i j is trace-free in this approximation, a property we

would associate with scale invariance. Yet the area itself is clearly not scale invariant. The source of
this peculiarity is that, in the quadratic approximation in gradients of h, the area is represented by
a massless two-dimensional scalar field on the plane which is scale invariant if the plane is scaled,
but not if h is. On the other hand, T B

ji is not trace-free but should not have been expected to be.
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an unambiguous statement about the nature of the underlying stress. The apparent
discrepancies using height functions arise because Ti j is not the physically significant
tangential stress but its projection onto a plane and the fact that heights are treated
differently from locations on this plane.

The conserved normal force density is Ni = κ∂i (∇2
0h) − σ∂i h. The conservation

laws for Ti j and Ni together encode the information content of Eq. (49), correct to
quadratic order. As we saw, they are not independent.

The invariance of the energy with respect to rotations about an axis orthogonal to
the base plane implies the conservation of the vertical torque,

Mi = κ
(∇2h − C0

)

εi j∂ j h + k̄
(∇2hεi j − ∂i∂khεk j

)

∂ j h . (75)

To account for the full rotational invariance of the surface energy, one needs to
consider rotations about two orthogonal axes lying in the plane. This involves the
rotation of the base plane itself, conflating the scalar field and the reference geom-
etry, a symmetry without any analogue in the theory of a scalar field on the plane.
This is probably why this was not considered in the height function until recently,
Fournier (2007), several years after the covariant description. Taking the appropriate
projections, we identify the horizontal torques

Mi j = κ
(∇2h − C0

)

εi j + κ̄
(

εi j ∇2h − εik∂k∂ j h
)

. (76)

Forces and torques without gauges: In biology, membranes are invariably shaped
by external forces or constraints; often these act locally: for example, the final stage
of endocytosis may involve the constriction of membrane necks by dynamin spirals,
Kozlov (2001); Morlot and Roux (2013); McDargh et al. (2016). There has also
been a considerable amount of work on the interactions between membrane bound
particles (read proteins) that are mediated by the deformed membrane geometry,
Goulian et al. (1993); Kralj-Iglič et al. (1996, 1999); Weikl et al. (1998); Kim
et al. (1998); Yolcu et al. (2011, 2012); Yolcu and Deserno (2012); Fournier (2014);
Haussman and Deserno (2014); Božič et al. (2015); Fournier and Galatola (2015);
Schweitzer and Kozlov (2015). The covariant stress tensor has also been shown to
provide insight into these processes, permitting one to understand non-perturbative
behavior, without the need to resort to triangulations or simulations, Müller et al.
(2005a, b); it also provides a rigorous framework guiding the design of the compu-
tational setup and the interpretation of results, Reynwar et al. (2007). The subject
of membrane fluctuations or Casimir forces has received considerable attention and
has been the subject of reviews, Deserno (2009); Yolcu et al. (2014). It would also
appear that the covariant language is the natural one to use in order to progress
beyond the quadratic or Gaussian approximation in height functions in this context.
The geometrical nature of the problem indicates that these corrections will involve
geometrical invariants.

In this section, we show how the forces and torques acting on the membrane (or
transmitted by it) are identified in our framework. Consider a number of localized
sources acting on the membrane. These could also be particles interacting with the
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Fig. 4 Local a translation and b rotation of the contours enclosing localized sources on the mem-
brane. The vector l is the normal to the contour � pointing into the source. Their magnitude has
been exaggerated for illustration purposes

membrane. To identify the force on the membrane associated with any particular
source, one needs to determine the change in the energy when this source alone is
displaced. This sounds like a complicated operation because its displacement will
drag the membrane along with it. Fortunately, we are only interested in deformations
around equilibrium, so to first order the membrane deformation turns out to be irrel-
evant. We thus let δX be any deformation reducing to a constant vector δa on the
curve � bounding one of these sources while vanishing on all other boundaries, as
illustrated in Fig. 4a. Now we use Stokes theorem in Eq. (68) to recast the divergence
as an integral along �. The change in the energy of the membrane is then given by
the intuitively simple expression:

δH = −δa · F ; F =
∫

�

ds f⊥ . (77)

where f⊥ was defined below Eq. (49). This is the work done on the membrane by
the source inside � when it is displaced a distance δa; as such, the vector F is
identified as the force on the source (or particle), or equivalently minus the force on
the membrane, Müller et al. (2005a, b); importantly, it is determined completely by
the surface geometry in the neighborhood of this boundary.What exactly is occurring
inside� is irrelevant, it may be treated as a black box. If there ismembrane inside, and
we decide to look inside, the distribution of the normal force acting on it is given by
E n, and the total force (not necessarily normal) is determined by integrating over the
interior of � covered by membrane, Phillips et al. (2009). Of course, any geometry
subjected to appropriate sources represents an equilibrium: simply evaluate E to
determine them. There is, however, no guarantee that such sources will be physical.

Note that the integrated conservation law over the free surface implies Newton’s
third law: if there are N boundaries with associated forces FI , I = 1, . . . , N , then

0 =
∫

d A∇afa =
N

∑

I=1

FI . (78)

The torque associated with an external source can be identified by examining the
response of the energy to a rigid rotation of the source. Under a rigid infinitesimal
rotation of � through an angle δω, the corresponding change in the energy is
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δH = −δω · M , M =
∫

�

ds m⊥ , (79)

where m⊥ = lama and ma was defined in Eq. (69). The Gaussian term in the CH
energy contributes through Hab

G to ma , Fournier (2007). It also plays an important
role in the local boundary conditions. However, it does not contribute to the total
torque: this is because the corresponding contribution to m⊥ is proportional to the
arc length derivative of the surface normal vector along the boundary, m⊥ = κ̄n′,
and thus integrates to zero.

In a manner analogous to that for f⊥, with an obvious notation, we can express
m⊥ = m⊥‖T + m⊥⊥l + m⊥n. Along a parallel circle on an axially symmetric geom-
etry, the only surviving component is m⊥‖, given by

m⊥‖ = f⊥⊥X · n − f⊥X · l − H⊥⊥ . (80)

The conservation laws for stress and torque imply that the integrals in (77) and (79)
will be identical on any contour homotopically equivalent to � outside of sources. In
particular, if the geometry possesses symmetries, the contour can also be deformed to
exploit these symmetries. This stratagemwasused to determine the forces and torques
mediated by the membrane between identical particles on a membrane, Müller et al.
(2005a, b). One has, perhaps unsurprisingly, nonlinear analogues of Gauss’ law in
electrostatics.
Horizontal force on the ramp dipole: The line integral (77) permits one to deter-
mine the horizontal force between two elements of the minimal dipole discussed
earlier. One can show that it is always attractive, and given in the small gradient
approximation by (T 0

i j is defined in Eq. (74))

F = σ

∫

dy T 0
xx = 1

2
�

∫

dy (∂yh)2 = 2π p2�/R . (81)

Geometrically, this is the length added to the midline, Guven et al. (2014). Mini-
mal ramps of opposite chiralities attract; if they were the same, they would repel,
Müller et al. (2005a). To prove this note that the contour can be deformed so as to
coincide with the “square” � illustrated in Fig. 1a. As shown in Guven et al. (2014),
the minimal dipole is stabilized by nonharmonic corrections. The simplest example
involves the local addition to each helicoid of the solution to the Helmholtz equa-
tion, h ≈ K0(λr)ϕ, described earlier. The integrated stress associated with such a
correction is always negative which implies repulsion. The dipole size is set by the
competition between this short range repulsion (associated with bending) and the
long range attraction associated with tension.

Note that the behavior of the minimal ramp persists in the nonlinear theory,
Müller et al. (2005a). For a minimal dipole, the force on either ramp is given by
F = �

∫

�
ds l. By symmetry, the force is given by��L , where�L is—as before—

the length added to the midline.
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It bears emphasizing that, even in the linearized theory, this approach always out-
performs the approach still overwhelmingly used in this field to determine forces
which requires integrating the energy density over the entire surface and then dif-
ferentiating with respect to the placement of the sources. Here, it is sufficient to
know the geometry in the neighborhood of a single bounding curve: avoiding the
unnecessary integration and subsequent differentiation.
Boundary conditions: If the free surface terminates on a free boundary, with an
associated line tension or its ownbending energy, the second term inEq. (68) provides
the appropriate boundary conditions, circumventing the necessity to reevaluate them
anew every time we have a boundary to contend with. The explicit use of the stress
tensor in this context was first made in Capovilla et al. (2002). An elegant derivation
of these boundary conditions, including not only boundary tension but also boundary
bending energy, using the methods of exterior differential calculus was provided in
Tu and Ou-Yang (2003, 2004).

If an interface separates two phases with distinct physical parameters, the dif-
ference in the contributions from the two permits one to identify the appropriate
matching conditions, Müller (2007). If the membrane adheres to a substrate, with a
contact potential, (68) facilitates the identification of the discontinuity in the normal
curvature at the boundary of the region of contact, Capovilla and Guven (2002a). A
rather more comprehensive treatment of the adhesion process using the framework
presented here is given in Deserno et al. (2007).
Surfaces as emergent: An alternative to the auxiliary route to the shape equation
is again to focus on gab and Kab as independent tensor fields but, instead of the
structure equations, to impose the Gauss–Codazzi and Codazzi–Mainardi equations
as constraints, Guven and Vázquez-Montejo (2013a). This approach, as we will see,
has some surprising consequences.

Consider a Riemannian manifold with a metric gab (there is a whiff of gravity
here), coupling to a symmetric tensor Kab. If these two tensor fields satisfy theGauss–
Codazzi and Codazzi–Mainardi equations (29), they describe the induced metric and
extrinsic curvature on a surface embedded in three-dimensional Euclidean space,
Spivak (1999). We thus see that these equations are both necessary and sufficient
conditions for forming a surface.

It is now possible, in principle, to address geometric questions about surfaces
without any explicit reference to its environment; the surface itself is an emergent
equilibrium entity. In this approach one does not have a surface to speak of away
from equilibrium.

In contrast with the auxiliary approach, there is even no need to introduce
the embedding, X, explicitly in the variational principle. Let us replace H [X] =
∫

d AH[gab, Kab] by

Hc[gab, Kab,�,λa] = H [gab, Kab] + I [gab, Kab,�,λa] , (82)

where

I = 1

4

∫

d A� C⊥ − 1

2

∫

d A λaCa , (83)
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with C⊥ := R − K 2 + KabK ab and Ca := ∇b(Kab − gabK ). The multiplier fields
� and λa enforce Eq. (29) permitting gab and Kab to be treated as independent
variables. Notice that Kab will tag along even if H depends only on gab, such as it
does in an interfacial energy. For the reader familiar with general relativity, I has
all the appearance of the Arnowitt–Deser–Misner (ADM) action in the Hamiltonian
formulation of the theory, Arnowitt et al. (1959). This is a two-dimensional accident!
For if we were genuinely working in four dimensions, we would need to replace the
single Gauss–Codazzi equation by the twenty equations (33), and � by a tensor-
valued �abcd , with the symmetries of the Riemann tensor. Curiously, the Codazzi–
Mainardi equations in four and higher dimensions are completely determined by
their Gauss–Codazzi counterparts (Thomas) so that the corresponding multipliers
are redundant: λa → λabc = 0.

Remarkably, one never needs to identify these multiplier fields explicitly in the
derivation of the shape equation.

Instead of X → X + δX, we have

δ(H + I ) =
∫

d A

[

−1

2
(T ab + T ab) δgab + (Hab + Hab) δKab

]

+ BT (84)

where T ab and Hab are the functional derivatives of H wrt gab and Kab defined
earlier; T ab and Hab are the counterparts for the constraint term I . BT represents
terms collected in a divergence after integration by parts. The equilibrium states of
the surface are described by the coupled pdes on the two-dimensional Riemannian
manifold:

T ab + T ab = 0 ; (85a)

Hab + Hab = 0 , (85b)

supplemented with C⊥ = 0 and Ca = 0. Equation (85a) are the analogues of the Ein-
stein equations. Equation (85b) are their counterparts for Kab.

The EL derivatives, T ab and Hab, originating in the constraints are model inde-
pendent. Both are linear in L�gab and L�Kab:

T ab = 1

4

(

gabK cd − gcd K ab
)

L�gcd

+1

2

(

gacgbd − gabgcd
)

L�Kcd ; (86a)

Hab = 1

4

(

gacgbd − gabgcd
)

L�gcd , (86b)

where

L�gab = 2Kab� + Lλgab ; (87a)

L�Kab = (−∇a∇b + KacK
c
b
)

� + LλKab . (87b)
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If we consult Eqs. (19) and (20a), and restore our Euclidean background, then
� = � n + λa ea is identified as the generator of a surface displacement with the
identification of � with � and λa with �a in (18). But remember that here λa and
� are the generalized forces coupling the two fields to form a surface. Their role is
not to displace.

To identify the shape equation, the contraction of Eq. (86) provides a very useful
identity:

KabT ab = 1

4

(

gab∇2 − ∇a∇b + KacK b
c − gabKcd K

cd
)

L�gab , (88)

equating the contraction KabT ab to a differential expression linear in L�gab. Signif-
icantly, L�Kab does not appear.

Now let us apply this framework to gravitational impostors, described by aHamil-
tonian depending only on the metric, H = H [gab]. Now Hab = δH/δKab = 0 so
that Eq. (85b) implies that Hab = 0 as well. But the identity (86b) then implies that
L�gcd = 0 or that� generates surface isometries. The identity (88) now implies that
KabT ab = 0. The Einstein equations Eq. (85a) finally imply that −Kab T ab = 0: an
unusually short story.

For the trivial example of an interface, H = σA, with T ab = −σgab, we reproduce
the equation, K = 0. The stationary states are minimal surfaces.

This is somewhat mysterious. The Lagrange multipliers appear to have been very
obliging: in the derivation of the surface EL equations, they do their job but we never
even need to identify � explicitly. But let’s look at them. For the area, H = σA, the
trace of T ab, T a

a = −2σ. Equation (86) implies that T a
a = − 1

2 L�K . But L�K =
(−∇2 + R

)

�, so that
(−∇2 + R

)

� = −4σ (89)

The determination of� decouples from that of λa . One can show that the appropriate
boundary conditions are � = 0. Because Eq. (89) is inhomogeneous, the isometry
will be nontrivial! It is also uniquely determined by the equilibrium geometry.

The differential operator D = −∇2 + R also appears in the second variation of
the area:

δ2A =
∫

d A�D�, (90)

where � is the normal deformation of surface. To see this use Eq. (36) to obtain for
the second variation of the area about an equilibrium, δ2A = ∫

d A� δ⊥K . Using
Eq. (37) for δ⊥K we recover Eq. (90). Negative eigenvalues signal instability.

Now let us look at solutions of Eq. (89). In particular, consider a catenoid of neck
radius R0, parametrized R(l)/R0 = √

1 + (l/R0)2, Z(l) = arcsinh l/R0, bounded
between 2 rings separated a distance 2L along the meridian. There exists an exact
solution for �, negative everywhere, vanishing on the boundaries, with a minimum
on the neck, as illustrated in Fig. 5b, Guven and Vázquez-Montejo (2013a). The
solution diverges as L → 1.5088R0.
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Fig. 5 a Soap Bridge b � versus l

Now look at the spectrum of the operatorD: (−∇2 + R)�n = En�n , E0 < E1 <

E2 < · · · . If L is small, E0 > 0. The spectral expansion of �, � = ∑
�n�n , indi-

cates that� → ∞ correlateswith E0 → 0. Singularities in� correlatewith the onset
of instability. A new criterion is identified for the onset of surface instability. This
is an intuitive result: instabilities are reflected in our inability to find an equilibrium
pair, gab and Kab, satisfying Eq. (29).

6 External Forces and Nontrivial Topology

In this section we present examples of surface states minimizing the CH energy when
the geometry is subjected to localized external forces or topological constraints,
analyzing the connection between the stress and the geometry using the framework
presented here. The first example considers the response of a spherical vesicle, of
fixed area, to the radial constriction of its equator.We next present new insight into an
old problem: the equilibrium of toroidal vesicles; we showhow the topology provides
sources for both forces and torques in the vesicle, and describe the distribution of
stress associated with these sources. Finally, we demonstrate how the conformal
invariance of the bending energy can be exploited to examine the morphologies of
a vesicle (not necessarily axially symmetric) subjected to localized external forces
bringing two points (or small patches) into contact.

6.1 Constriction of a Spherical Vesicle

If the membrane possesses spherical topology, and is free of axial forces, thenC = 0
on the right side of Eq. (67). Let the vesicle have a fixed area A0 = 4πR2

0 , and be
subjected to an equatorial constriction provided by an external rigid ring of radius r0.
To keep matters simple, we do not admit spontaneous curvature or fix the volume.
There are no axial forces, so L = 0 (with C0 = 0) in Eq. (67) everywhere except
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(a) r0 = 0.1R0 (b) r0 = 0.5R0 (c) r0 = 0.84R0

Fig. 6 Equatorial constriction of a spherical vesicle

along the equator where there is a radial source. The equation L = 0 is solved by the
shooting method for values of 0 ≤ r0 ≤ R0. The one free parameter is σ, which is
tuned to fix the area to A0. As r0 is decreased one observes the following morpholog-
ical sequence: if the constriction is moderate (0.84 ≤ r0/R0 < 1) the deformation
is prolate, represented in Fig. 6c; if 0.2 ≤ r0/R0 ≤ 0.84 the vesicle develops a waist
as illustrated in Fig. 6b22; if r0 is reduced further, so that r0/R0 ≤ 0.2, the geometry
morphs into two spherical lobes connected by an increasingly narrow neck (Fig. 6a);
in the limit r0 → 0, it resembles two touching spheres of radius R0/

√
2. Various

questions suggest themselves. What is the geometry in the small neck connecting
these two spheres and what is the force squeezing this neck? This force is nonvan-
ishing, i.e., there are sources; thus the neck cannot be a catenoid. How then does it
differ?

If the traction along the edge instead were outward, the vesicle would tend to
become increasingly oblate as r0 is increased, tending to a limiting geometry formed
by two flat disks of radius

√
2 R0, glued together along their common perimeters

with diverging energy and force. The force constricting the membrane is completely
encoded in the membrane geometry in the neighborhood of the equator. To see this,
consider the change in energy under a radial deformation of the equator, δX = δc r̂.
Using Eq. (68), one finds that δH = −δc F , where the equatorial constriction F is
given by the jump across the equator at l = 0:

F

2πr0κ
=

[

− sin� f⊥ + cos� f⊥⊥
]ε

−ε
. (91)

22Unlike the prolate, this geometry is stable with respect to membrane slippage under the ring.
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Fig. 7 Total energy and radial compression as functions of the ring radius. The bending energy
increases monotonically as the equator is constricted, tending to the value 16πκ as r0 → 0; in
contrast, the radial compression, does not behave monotonically

The tangent angle � = π/2 so that the two contributions are equal and opposite:

F

2πr0κ
= C ′

⊥ 0

∣
∣
∣

ε

−ε
= 2�′′

0 . (92)

The presence of the force is signaled by a discontinuity in the derivative of the
normal (meridian) curvature. along the equator. An alternative derivation is provided
in Božič et al. (2014). Contrast this with line tension where the discontinuity is in
the curvature C⊥ itself.

Note that total equatorial force on the vesicle vanishes, in much the same way as
the total Laplace force vanishes on a closed vesicle does,

∫

d A n = 0. There is also an
intriguing duality between the functional form of the expression within parenthesis
in Eq. (91) and the first integral, L given by Eq. (66).

Notice that, whereas the energy increases almost linearly with r0, the depen-
dence of F on r0 illustrated in Fig. 7b is non-monotonic; its behavior displays
a striking correlation with the morphological changes in the membrane, increas-
ing in magnitude as the membrane becomes prolate; relaxing slowly as the belt
tightens but increasing again as the two lobes develop. In particular, not only is
it nonvanishing in the limit r0 → 0, its magnitude is a global maximum. Using
the equation, L = 0, it is simple to show that the polar radius can be expanded
R(l)/r0 ≈ 1 + (	/r0)2 + F0 πr0|	/r0|3/12 at the neck, when r0/R0 � 1, indicating
explicitly the curvature derivative singularity (the third derivative) proportional to
the limit force F0. Significantly, it is not approximated by a catenoid of neck radius
r0, which is given exactly by R(l)/r0 = 1 + (	/r0)2.

We have already seen that the scale invariance of the bending energy has physical
implications. The constricted vesicle involves two scales, R0 defined by the area, and
the equatorial radius, r0. The corresponding constraints can be introduced explicitly
into the variational principal so that the unconstrained functional to be minimized is

H [X] = HCH [X] + σ (A − 4πR2
0) +

∫

ds F(s) (|X| − r0) . (93)
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The function F(s) is a new local Lagrange multiplier enforcing the constraint on
the equatorial radius. If axial symmetry is relaxed it will not be constant. If this
constraint is removed, then σ = 0, a consequence of the scale invariance of bending
energy. In equilibrium, one identifies F := ∫

ds F(s) = ∂HB/∂r0. This is the famil-
iar expression involving HB , and thus requiring knowledge of the complete vesicle
geometry.

On casual inspection, Fig. 7a would suggest that HB depends linearly on r0. The
wiggles may be small but they are real, as comparison with Fig. 7b indicates.

Consider now the effect of a membrane rescaling X → �X on H . One has

H [�X] = HCH [X] + σ (�2 A − 4πR2
0) +

∫

ds F(s)�(�|X| − r0) . (94)

In equilibrium dH/d� = 0 when � = 1. This implies that r0 F = −2σA: σ thus
also determines the force; its sign correlating with it. Note that σ vanishes in the
limit r0 → 0. Elementary calculus then implies that the limiting traction is given by
F0 = limr0→0 ∂σ/∂r0, reflecting the scale-free nontrivial neck geometry lurking in
this limit.23

The model presented here is a very simplified description of the physics: the ring
is assumed rigid. If the ring is elastic, it need not remain circular, and the contraction
process will involve non-axially symmetric deformations of the vesicle. Modeling
the constriction of a membrane neck by a dynamin spiral will necessarily involve
both the breaking of axial symmetry as well as the deformation of the spiral, Nam
et al. (2012); McDargh et al. (2016).

6.2 Topology as a Source of Stress

Nontrivial topology can also provide a source of stress. On a torus, closed curves
along both the wheel and tube are homotopically nontrivial. Such geometries are not
only of academic interest: toroidal vesicles were first observed experimentally some
time ago, not only the common or garden single-holed variety, Mutz and Bensimon
(1991), but also genus two geometries, Michalet and Bensimon (1995). Shape transi-
tions in toroidal vesicles have also recently been examined both experimentally and
numerically in Noguchi and Imai (2015). Indeed, topology plays a role in almost all
intracellular membranes—the Golgi, the Endoplasmic reticulum (rough and smooth
alike), aswell as the innermembrane of themitochondrion—exhibit highly nontrivial
topologies.

Here we will limit our discussion to an axially symmetric toroidal membrane in
order to demonstrate how the topology of a membrane can, itself, provide a source

23This is well known in the context of global constraints. In a symmetric closed fluid membrane
subject to area and volume constraints, the identity 2σA − 3PV = 0 is a consequence of the scale
invariance of the bending energy, Svetina and Žekž (1989).
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of stress in the membrane. Of course, axially symmetric torii have been studied
extensively; yet extraordinarily, to our knowledge, never from this more physical
point of view. Let the torus have awheel radius R0 and tube radius r0 (see Fig. 3b). Let
θ = 	/r0 be the angle made along the tube with the outer radial direction, so that R =
R0 + r0 cos θ is the polar radius (the tangent angle is � = θ + π/2). The curvature
across the tube is constant, C⊥ = 1/r0; whereas that along the wheel is θ dependent:
C‖ = cos θ/R. Notice thatC⊥ − C‖ = R0/(r0R). The Gaussian curvature is positive
(negative) on the outer (inner) tube, vanishing on the upper and lower parallels. The
mean curvature, K , on the other hand, is positive everywhere unless 2r0 > R0, where
it is negative on the interior band of angular width given by 2θ0, where cos θ0 =
−R0/2r0. On a Clifford torus, with R0 = √

2r0, 2θ0 = π/2. The sign of K will be
reflected in the distribution of stress. Substituting into Eq. (67), one finds that HCH

is minimized for a Clifford torus, independent of the physical parameters; the latter
do need to be tuned appropriately, Willmore (1965); Ou-Yang (1990); Ou-Yang et al.
(1999):

P = 2κC0/r
2
0 ,σ = κC0(2/r0 − C0/2) , (95)

see also Seifert (1991, 1997). Moreover, the magnitude of the total axial force on a
parallel appearing in Eq. (67) is

C = −κ(1/r0 + 2C0) . (96)

Its origin will be traced to the topology.
In the absence of spontaneous curvature, P and σ vanish and the vertical force is

determined by the bending modulus C = −κ/r0. Now only the stresses and torques
due to bending are relevant. Their nonvanishing projections are given by Eqs. (56)
and (80):

f⊥⊥ = − f‖‖ = κ K√
2 R

, f⊥ = −
√
2κ

R2
sin θ , (97a)

m⊥‖ = −κr0
R2

(

2 cos2 θ + √
2 cos θ + 1

)

. (97b)

f‖‖ correlates directly with mean curvature. It is plotted in Fig. 8a.
Thus the torus is under tension everywhere along thewheel except within the band

of angular width π/2 on the inner tube where K is negative, and tension is replaced
by compression. The parallels at θ = ±3π/4 are free of tangential stress marking the
boundary along which tension turns to compression. Because f⊥⊥ = − f‖‖, across
the tube, tension and compression are interchanged. This behavior, implied by scale
invariance is not so intuitively clear.
Topological Torque M‖ closing the wheel: The total force closing the tubular cylin-
der (evaluated, say, on any meridional circle) vanishes, F‖ = r0

∫

dθ f‖‖l = 0. The
moments of the local forces, however, do not vanish. The corresponding torque,
closing the torus, is given by M‖ = 2πκẑ. It is topological in origin. This behavior
contrasts with a cylinder, where the axial force is nonvanishing and there is no torque.
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(a) (b)

Fig. 8 Components f⊥⊥ as function of the arc length l measured from the outer parallel for the
a Clifford torus b discocyte (constructed in Sect. 7). The black dots represent the parallels along
which f⊥⊥ vanish. Outside of these parallels, the two geometries are essentially indistinguishable;
inside the stress diverges in the discocyte reflecting its source in external forces, whereas in the
torus it is finite everywhere reflecting its origin in the topology

Topological Force F⊥ closing the tube: The topological force across the tube F⊥
may be evaluated on any parallel circle (such as the wheel outer circle θ = 0), giv-
ing F⊥ = ∫

dϕ R ( f⊥⊥l + f⊥n) = 2πC ẑ. It is also completely determined by the
normal forces on appropriate parallels: evaluate F⊥ along θ = π/2.

The corresponding topological torque vanishes, M⊥ = 0. These results quantify
the connection between the topology and the internal stresses established in the
toroidal membrane. Analogous results will describe higher genus surfaces. But it is
not obvious how one would even access this information without knowledge of the
local stress and torque in the membrane.

In the next section we will examine some of the consequences of the conformal
invariance of bending energy. As we will see, the stress itself is not invariant; and nor
are the conserved quantities. And just as well. Under a conformal transformation,
an axially symmetric torus will map to a Dupin cyclide, Pinkall (1986). Unlike
the energy, which is invariant, the magnitude of the principal stresses increase as
the geometry deviates from axial symmetry. As we will describe, the conformally
deformed membrane of equal energy may rupture.

7 Conformal Invariance as Probe of Highly
Deformed States

An extraordinary feature of the two-dimensional symmetric isotropic bending energy
is its invariance under conformal transformations, Willmore (1982, 1996). These are
the transformations preserving angles: in addition to its invariance under Euclidean
motions it is also scale invariant; less obvious is the fact that it is invariant under
inversion in spheres. If this sphere has a radius RS and is centered at the origin,
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inversion is represented by the mapping of points in space: I : x → x̄ = R2
S x/|x|)2,

where |x|2 := x · x. This induces an inversion of the surface by the replacement of x
by X.

The symmetric bending energy alone rarely provides an accurate description of
the physics; typically material fields, constraints, or even a spontaneous curvature
will be inconsistent with conformal symmetry. It would be a curiosity were it not for
the fact that it can be consistent with nontrivial physically relevant constraints.

Usually one looks at conformal transformations at linear order; let x → x̄ =
x + δx. Angles are preserved if dx̄ · dx̄ = 
2(x)dx · dx. This implies that, correct to
linear order, δx satisfies ∂iδx j + ∂ jδxi = 2div · δx δi j/3. The most general solution
is the sum of a Euclidean motion, a scaling, and a special conformal transformation:
δcx = |x|2 Rx δc, where Rx is the linear operator on three-dimensional space defined
by Rx = 1 − 2x̂ ⊗ x̂, where 1 is the identity transformation and x̂ = x/|x|; Rx rep-
resents a reflection in the plane perpendicular to x passing through the origin, so that
R2

x = 1. The constant space vector δc has dimensions of inverse length squared.
This transformation exponentiates to give (for finite c)

x → x̄ = x + |x|2 c
|c|2 |x|2 + 2 c · x + 1

. (98)

This can be recast (we set the radius of inversion equal to one)

x̄ =
( x
|x|2 + c

)/∣
∣
∣

x
|x|2 + c

∣
∣
∣

2
. (99)

Thus a finite special conformal transformation can be represented as the composition
of an inversion, a translation c, and another inversion: I o c o I. Any conformal
transformation is a composition of inversions in spheres with Euclidean motions and
scalings, Kreyszig (1991). If we understand conformal inversion, we are done.

As was known to themathematicians of ancient Greece, spheres map to spheres or
planes. But, because distances to the center of inversion get inverted, |X̄| = R2

S/|X|,
points on a sphere will get moved around unless it coincide with the sphere used for
inversion. And its center will not remain the center. Other geometries, as we will see,
suffer less recognizable distortions.

To understand the conformal symmetry of the bending energy, one needs to know
how the two fundamental tensors on a surface transform under inversion. The adapted
tangent vectors and the normal vector transform as follows: ēa → R2

S RX ea/|X|2,
n → −RX n. As a consequence of the former, the induced metric (1) transforms by
gab → (RS/|X|)4 gab. Thus in particular, the area measure on the inverted surface is
(RS/|X|)4 d A. As for the extrinsic curvature, for our purposes it will suffice to know
how the two principal curvatures, C1, C2, transform. It follows from the fact that
circles map to circles that24

24Kab → Kab = −|X|2 (

Kab − 2 (X · n)gab/|X|−2
)

.
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CI → −(|X|/RS)
2
(

CI − 2X · n/|X|2) , I = 1, 2; (100)

their difference thus transforms multiplicatively, or

C1 − C2 → −(|X|/RS)
2 (C1 − C2) . (101)

This result, together with the transformation of area, implies that the energy

HW = 1

2

∫

d A (C1 − C2)
2 (102)

is manifestly invariant. It follows that the unadorned quadratic bending energy,
HB = κ/2

∫

d A (C1 + C2)
2 + κ̄

∫

d AC1C2 is also invariant—unless the topology
changes.

Two physically significant consequences are immediate:
(1) any two geometries related by a conformal transformation possess the same
bending energy if the topology is unchanged.
(2) if one of these geometries is an equilibrium state of this energy, then the other is
also, modulo possible pointlike singularities. We will show that these singularities
can be interpreted as external forces acting on the membrane.

In the 90s Seifert and coworkers, Seifert (1991); Jülicher et al. (1993); Jülicher
(1996), observed a degeneracy in the ground states of higher genus vesicles, which
they dubbed conformal diffusion, associated with the existence of conformal trans-
formations preserving constraints. This involved examining the behavior of the con-
strained energy under small special conformal transformations. Such transformations
induce continuous deformations of the surface. We will focus on conformal inver-
sion, a non-perturbative feature of conformal symmetry that cannot be probed by
exponentiation. It will provide a window, albeit a narrow one of its choosing, into
the non-perturbative response of membranes to external forces.

Suppose that the geometrywe beginwith is not compact. Its image under inversion
generally will be compact. To illustrate this point, let us examine the inversion of
a catenoid, a minimal surface. The catenoid is described in polar coordinates by
R(Z) = r0 cosh(Z/r0), where r0 here is its neck radius. Under an inversion centered
at the origin, this catenoid maps into the axisymmetric geometry with radial and
height coordinates,

R̄(Z) = R2
S R(Z)/(R(Z)2 + Z2) ; Z̄(Z) = R2

S Z/(R(Z)2 + Z2) , −∞ < Z < ∞ .

(103)
Its image resembles a discocyte (see Fig. 9), but this coincidence should not be taken
too literally: there are many physical mechanisms producing superficially identical
morphologies.25 While the catenoid and its inverted image are linkedmathematically,
they are topologically different and clearly describe very different physics, Castro-
Villarreal and Guven (2007a, b). Whereas the catenoid is well known, the second

25Fixing the discocyte area at 4πr20 determines RS = 1.089 r0.
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Fig. 9 a Catenoid and b discocyte obtained by its inversion in a sphere centered at the origin

geometry is not and, had it not been for the stratagem provided by inversion, it
is unlikely that one would have guessed that this simple discocyte describes an
equilibrium, nevermind lending itself to an exact analytical treatment.

Let us examine the discocyte geometry more closely. Under inversion, the two
ends of the catenoid map to the origin, forming the north and south poles of the
discocyte which touch with a common tangent plane. The existence of a tangent
plane, however, belies the fact that curvature singularities are present at these points:
the source-free EL equation breaks down implying the presence of localized distri-
butional external forces. The mathematical origin of these singularities is the com-
pactification of the exponential ends into a bounded region, Castro-Villarreal and
Guven (2007a, b); Guven and Vázquez-Montejo (2013b). Note that, in contrast with
a catenoid, the inversion of a hyperboloid of revolution—which is asymptotically
conical—gives a pair of conical singularity at the origin, without tangent planes to
hide behind. We will have more to say about singularities in a moment. Notice also
that whereas

∫

d AC1C2 = −4π for a catenoid, it is given by 4π for a discocyte,
which is topologically a sphere. That the poles touch is irrelevant.

Whereas the distribution of stress associated with bending vanishes in a catenoid,
it does not in the discocyte. The tangential stress along the meridian f⊥⊥ = − f‖‖ is
plotted in Fig. 8b as a functions of archlength, l, measured from the outer parallel. It
is observed that it is strongly localized within the neighborhoods of the two touching
poles, where it diverges.

If we now translate the center of inversion along the axis of the catenoid, a one-
parameter family of equilibrium states is generated: as illustrated for a northward
movement in Fig. 10, the symmetric discocyte morphs smoothly into a stomatocyte.
The limiting shape is a sphere within a sphere, touching at the bottom, connected
by a microscopic catenoidal neck at the top. Unlike the constricted sphere discussed
previously, this time the neck is a catenoid because there are no sources acting
within it.

Now let us place the center of inversion off axis, Guven and Vázquez-Montejo
(2013b). Consider, for example, inversion in a sphere centered on a point located
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(a) z0 = 1 b) z0 = 10 (c) z0 = 100

Fig. 10 Surfaces generated by inversion of a catenoid in spheres centered at height z0 along its
axis of symmetry

Fig. 11 The red and green catenaries on the mirror plane Y = 0 map to a single curve. The circular
neck maps to a straight line

along the X axis. This preserves the mirror symmetries in the X Z and XY planes.26

In Fig. 12, we illustrate four geometries in this sequence. Of special interest are
those generated when this point lies close to the neck of the catenoidal geometry, say
x0 = (1 + ε)r0i, with ε small. Now, the neighborhood of the point r0i on the neck gets
inflated into a large spherical region: the geometry is spherical almost everywhere,
with a defect, formed by the two points held together, localized upon it as indicated
in Fig. 12b, c.

To facilitate the visualization of this construction, it is useful to follow the fate of
the catenary meridians and the neck of the catenoid as illustrated in Fig. 11.

Physically, one can interpret these geometries as the end point of a procedure
bringing two nearby points on an almost spherical vesicle, of fixed area and fixed
enclosed volume, into contact by applying normal forces (as opposed to tangential
ones which would not disturb the initial geometry, fluid in its tangent plane), Guven

26The bilateral symmetry (not necessarily in the original X Z plane) is preserved if the point strays
off this axis; however, the up-down symmetry is broken, just as it was in the axially symmetric
family.
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(a) (b)x0 = 0.5 x0 = 0.93 (c) x0 = 1.07 (d) x0 = 2

Fig. 12 Surfaces generated by inversion of a catenoid in a sphere centered at increasing distances
along the radial direction

and Vázquez-Montejo (2013b). Conformal invariance may grant access to the non-
pertubative equilibrium end state, but it does not have anything to say about the
intermediate states—with the two points still separated—through which the mem-
brane has to pass on its way to this final state. As we have pointed out, conformal
invariance decides what window it opens.

If ε < 0, the geometry represents two nearby points on the vesicle that are pinched
together; it resembles the wrinkle forming on skin that has been pinched. If ε > 0,
on the other hand, two fingers of membrane—touching at a point—project out from
the vesicle. In the latter the force is directed out of the vesicle, not into it as in the
former. Despite the apparent differences in the two descriptions, however, it takes
only a moment’s thought to appreciate that the two limiting geometries are mirror
images in the neighborhood of the defect.

These geometries are also stable. The constraints on the area and on the volume
reduce the conformal symmetry to a single nontrivial degree of freedom. This is
reflected in a zero mode of the operator controlling fluctuations corresponding to
deformations which break the up-down mirror symmetry in the XY plane but leave
fixed the geodesic distance s along the surface separating the two touching points.27

As a consequence, once formed, the membrane cannot slip out of this defect. If the
volume constraint were to be relaxed, however, there would be nothing to prevent
the two points from approaching each other along the membrane.

More exotic increasingly deflated geometries are generated by increasing the
magnitude of x0. The surface first morphs continuously into a folded sausage, as
illustrated in Fig. 12d; beyond a critical value of x0, the waist on the sausage begins
to constrict. As x0 increases further, the geometry evolves, just like its axially sym-
metry counterpart, into a geometry that is spherical almost everywhere: this time it
resembles two spherical lobes, touching at one point and connected by a vanishingly
small catenoidal neck adjacent to it.

27This is the shortest distance between the two points on the surface. They are, of course, in contact
in space.
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Fig. 13 a Stress across the images of parallel circles. b Images of parallel circles represented by
closed curves

On a catenoid, fa = 0. In the inverted geometry, K �= 0 and equilibrium involves
a nontrivial balance of normal and tangential stresses. These stresses possess a pair of
external sources (±F say) normal to the surface localized at the points of contact; this
is what holds them together. It is easy to show that in the height function description
of the geometry with respect to the local tangent plane at these points, one has
h ≈ ∓r2 ln r , where r is the polar radius.28,29 The presence of a source is signaled
geometrically by the logarithmic curvature singularity at these points.

To identify the contact forceF, we can deform the contour surrounding the pole so
that it coincide with the line of symmetry running along the valley (or ridge) between
the twopoles.Using the expression for the force given inEq. (77), one determinesF ≈
9.65πκ/s k. Note that the detailed distribution of stress is not required to determine
the contact force, Guven and Vázquez-Montejo (2013b). As the vesicle is inflated,
s decreases and the contact force increases. One can show, however, that it remains
below the rupture tension of the membrane until s ≈ 20nm, a separation so small
that the mesoscopic modeling in terms of a surface is no longer reliable (Fig. 13).

There is also an important cautionary point to be emphasized here: had one used
the Monge representation for the horizontal stress with respect to the local tangent
plane, an incorrect answer would have been obtained.

28An unexpected duality between the weak field behavior in one geometry and the strong field
behavior in the other is evident: asymptotically, the catenoid is accurately described by the height
function h ∼ ln r , r � r0; this asymptotic region is mapped into the neighborhood of the poles
described by h ∼ −r2 ln r , r � s. Inversion provides a connection between the harmonic behavior
in the former and the biharmonic behavior in the latter, Guven and Vázquez-Montejo (2013b).
To understand this duality between harmonic and biharmonic function, look at the inversion in
the origin x → x/|x|2 (for transparency set the scale to one), described in the height function
representation by (r, h) → (r, h)/((r2 + h2), so that h ≈ ln r → h

r2+h2
= ln[r/(r2 + h2)]. Now,

if h � r , then h
r2

≈ − ln r , and as claimed the Green function of the Laplacian is mapped to its
biharmonic counterpart.
29In this context, note also that the symmetric saddle with h ∼ r2 cos 2θ maps to the biharmonic
dipole h ∼ cos 2θ.
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8 Concluding Remarks

Despite the complexity of the cellular environment on the molecular scale, on zoom-
ing out, one finds that much of the equilibrium physics of cellular membranes on
mesoscopic scales can be understood by treating themembrane as a two-dimensional
surface described by an energy depending only on its geometry. This implies that
this physics is completely encoded in the membrane geometry. We have presented a
number of simple examples to illustrate the nature of this connection. Even if addi-
tional structure is relevant, it can be treated in terms of fields interacting with this
geometry.

There are other examples falling within the scope of this chapter which we have
not treated for want of space, or because they will be treated thoroughly by other
contributors. Some of these are treated, as commented previously, in a nice recent
review, Deserno (2015). Here this framework is used to determine the Gaussian
bending modulus of a buckled membrane. The interested reader can find a statistical
mechanical treatment of the stress tensor, important but absent in our presentation,
in Shiba et al. (2016). Membranes in a viscous fluid are examined by Powers (2010),
membrane viscosity itself is accommodated in Arroyo and DeSimone (2009).

To explore how confinement can shape a membrane, Müller and his coworkers
have looked at the confinement of a topologically spherical membranewithin another
membrane of smaller area, Kahraman et al. (2012a, b). This can be thought of as a
model of the inner membrane of the mitochondrion, capturing the geometrical aspect
of the physics. As the area is increased, in addition to the external forces associated
with confinement, self-contactswill occur breaking the symmetry of the ground state.
If membrane fusion occurs, the topology will change accompanied by a large scale
reorganization of the ground state geometry, Bouzar et al. (2015).

Deflated high-genus geometries are exhibited by the nuclear envelope and the
Golgi apparatus. In the limit where the enclosed volume becomes very small, in
the absence of additional agents, the ground state of a closed fluid membrane
with a fixed genus g approximates two concentric spherical bilayers connected by
g + 1 catenoidal necks (Kusner andYu, private communication). Recent simulations,
involving additional players with their own degrees of freedom, controlling the pore
radius provide amore accurate description of the nuclear envelope, Noguchi (2016a).
In this context, the stability of the inner ramp boundaries in the rough ER described in
Sect. 4. appears to involve the condensation along their length of membrane-shaping
proteins, Guven et al. (2014); Schweitzer and Kozlov (2015); Noguchi (2016b).
While getting the biological details right always involves elaborate numerical analy-
sis; understanding how the membrane geometry gets shaped by external forces and
constraints will inform how we go about it.
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B. Božič, J. Guven, P. Vázquez-Montejo, S. Svetina, Direct and remote constriction of membrane
necks. Phys. Rev. E 89, 052701 (2014). doi:10.1103/PhysRevE.89.052701
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On the Computational Modeling of Lipid
Bilayers Using Thin-Shell Theory

Roger A. Sauer

Abstract This chapter discusses the computational modeling of lipid bilayers based
on the nonlinear theory of thin shells. Several computational challenges are identified
andvarious theoretical and computational ingredients are proposed inorder to counter
them. In particular, C1-continuous, NURBS-based, LBB-conforming surface finite
element discretizations are discussed. The constitutive behavior of the bilayer is based
on in-plane viscosity and (near) area-incompressibility combined with the Helfrich
bending model. Various shear stabilization techniques are proposed for quasi-static
computations. All ingredients are formulated in the curvilinear coordinate system
characterizing general surface parameterizations. The consistent linearization of the
formulation is presented, and several numerical examples are shown.

List of Important Symbols

1 identity tensor in R
3

a determinant of matrix [aαβ]
A determinant of matrix [Aαβ]
aα covariant tangent vectors of surface S at point x; α = 1, 2
Aα covariant tangent vectors of surface S0 at point X ; α = 1, 2
aα contra-variant tangent vectors of surface S at point x; α = 1, 2
Aα contra-variant tangent vectors of surface S0 at point X ; α = 1, 2
aα,β parametric derivative of aα w.r.t. ξβ

aα;β covariant derivative of aα w.r.t. ξβ

aαβ covariant metric components of surface S at point x
Aαβ covariant metric components of surface S0 at point X
aαβγδ derivative of aαβ w.r.t. aγδ

a class of stabilization methods based on artificial shear viscosity
A class of stabilization methods based on artificial shear stiffness
bαβ covariant curvature tensor components of surface S at point x
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Bαβ covariant curvature tensor components of surface S0 at point X
bαβγδ derivative of bαβ w.r.t. aγδ

b curvature tensor of surface S at point x
B left surface Cauchy–Green tensor
C right surface Cauchy–Green tensor
cαβγδ derivative of ταβ w.r.t. aγδ

γ surface tension of S
�

γ
αβ Christoffel symbols of the second kind of surface S

dαβ covariant components of the symmetric surface velocity gradient
D dissipation per current surface area
D0 dissipation per reference surface area
da differential surface element on S
dA differential surface element on S0

dαβγδ derivative of ταβ w.r.t. bγδ

δ... variation of ...
�... increment of ... that is required for linearization
�s Laplace operator on surface S
divs divergence operator on surface S
e index numbering the finite elements; e = 1, ..., nel
eαβγδ derivative of Mαβ

0 w.r.t. aγδ

ε penalty parameter
E surface Green–Lagrange strain tensor
f αβγδ derivative of Mαβ

0 w.r.t. bγδ

f ‘body’ force acting on S
fe finite element force vector of element �e

g expression for the area-incompressibility constraint
G expression for the weak form
Ge contribution to G from finite element �e

ge finite element ‘force vector’ of element �e due to constraint g
∇s gradient operator on surface S
H mean curvature of S at x
H0 spontaneous curvature prescribed at x
η in-plane surface viscosity
I index numbering the finite element nodes
I1, I2 invariants of the surface Cauchy–Green tensors
i surface identity tensor on S
I surface identity tensor on S0

J area change between S0 and S
Ja area change between P and S
JA area change between P and S0

k bending modulus
kg Gaussian modulus
K initial surface bulk modulus (=area compression modulus)
Keff effective surface bulk modulus
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ke finite element tangent matrix associated with fe and ge

κ Gaussian curvature of surface S at x
κ1, κ2 principal curvatures of surface S at x
L I pressure shape function of finite element node I
L interface between two NURBS patches
λ1, λ2 principal surface stretches of S at x
me number of pressure nodes of finite element �e

mν , mτ bending moment components acting at x ∈ ∂S
m̄ν , m̄τ prescribed bending moment components
Mαβ contra-variant bending moment components
Mαβ

0 = JMαβ

μ initial in-plane membrane shear stiffness
μeff effective in-plane membrane shear stiffness
nno total number of finite element nodes used to discretize S
nel total number of finite elements used to discretize S
nmo total number of finite element nodes used to discretize pressure q
ne number of displacement nodes of finite element �e

Nαβ total, contra-variant, in-plane membrane stress components
NI displacement shape function of finite element node I
n surface normal of S at x
N surface normal of S0 at X
N array of the shape functions for element �e

ν normal vector on ∂S
ξα convective surface coordinates; α = 1, 2
P parametric domain spanned by ξ1 and ξ2

P class of stabilization methods based on normal projection;
projection matrix

ψ Helmholtz free energy per unit mass
�0 Helmholtz free energy per reference area
q Lagrange multiplier associated with area-incompressibility
q array of all Lagrange multipliers qI in the system; I = 1, ..., nmo

qe array of all Lagrange multipliers qI for finite element �e; I = 1, ..., me

R arbitrary subregion of S
ρ surface density of S at x
ρ0 surface density of S0 at x
Sα contra-variant, out-of-plane shear stress components
S current configuration of the surface
S0 initial configuration of the surface
σ Cauchy stress tensor of the shell
σαβ stretch-related, contra-variant, in-plane stress components
t effective traction acting on the boundary ∂S normal to ν
t̄ prescribed boundary tractions on Neumann boundary ∂tS
T traction acting on the boundary ∂S normal to ν
Tα traction acting on the boundary ∂S normal to aα
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ταβ = Jσαβ

V , Q admissible function spaces
ϕ deformation map of surface S
ϕ̄ prescribed boundary deformations on boundary ∂xS
w hyperelastic stored surface energy density (per current surface area)
W hyperelastic stored surface energy density (per reference surface area)
x current position of a surface point on S
X initial position of x on the reference surface S0

x I position vector of finite element node I lying on S
X I initial position of finite element node I on S0

x stacked array of all x I of the discretized surface; I = 1, ..., nno
xe stacked array of all x I for finite element �e; I = 1, ..., ne
Xe stacked array of all X I for finite element �e

0; I = 1, ..., ne
�e current configuration of finite element e
�e

0 reference configuration of finite element e

Part I: Introduction

The aim of this work is to present the computational treatment of lipid bilayers using
the framework of isogeometric finite element analysis and nonlinear shell theory. The
presentation follows earlier work onmembranes (Sauer et al. 2014) and shells (Sauer
and Duong 2017; Duong et al. 2017; Sauer et al. 2017). It thus presents a condensed
and combined version of earlier work by focussing on the most important aspects
that are required for the computational description of lipid bilayers. Additionally,
several new parts have been incorporated into the presentation. Those are:

• a summary and discussion of the computational challenges
• an extension of the theory to include surface differential operators, surface contact
and surface viscosity

• the discretization and linearization of the viscosity term
• an investigation of the LBB condition for mixed shell finite elements
• a computational example on lipid bilayer indentation.

The remainder of Part I gives an overview of the ingredients and challenges of
the computational modeling of lipid bilayers (Sect. 1), and surveys related literature
(Sect. 2). Part II (Sects. 4–9) and Part III (Sects. 10–13) then discuss the theoretical
background and the computational modeling in detail. Readers familiar with shell
theory may directly jump to Part III and revisit relevant sections of Part II as they
are addressed. Section14 concludes this work.
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1 Computational Ingredients and Challenges

The modeling of lipid bilayer shells is a challenging task due to a variety of reasons.
Lipid bilayers are liquid shells that are characterized by in-plane flow and out-of-
plane bending elasticity (Fig. 1a). The mechanics of such shells can lead to very
complex surface shapes (Fig. 1b). Table1 gives an overview of the computational

solid behavior  
out-of-plane 

liquid flow 
in-plane 

(a) (b)

Fig. 1 Lipid bilayer deformations: a combined solid-like and liquid-like behavior; b complex bud
shapes (Sauer et al. 2017)

Table 1 Lipid bilayer modeling: computational challenges and corresponding model ingredients
(and the sections where they are addressed)

Challenge Ingredient Sects.

Surface description Curvilinear coordinates
3

Liquid- and solid-like behavior In-plane flow + out-of-plane
bending 4

Geometric PDE’s Surface balance laws
5

Bilayer constitution Helfrich model + in-plane
viscosity 6 and 7

Nonlinearity Consistent linearization
8 and 10

Smooth discretization NURBS-based surface finite
elements 10

Area-incompressibility LBB-conforming mixed
methods 11

Zero shear stiffness In-plane shear stabilization
12

Complex surface flow Surface ALE –

Coupled problems Coupled balance laws –

Local refinement LR-B-splines, LR-NURBS –

Tilt, interlayer sliding Additional degrees-of-freedom –
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modeling challenges of lipid bilayers and lists corresponding ingredients to deal with
them. The remainder of this section provides a short discussion on those challenges.

In order to deal with the solid- and liquid-like behavior of lipid bilayers, a very
general model formulation is required that is capable of describing the kinematics of
large bending deformations and surface flows. This requires a very general surface
description that can capture large deformations and rotations. Such a formulation is
offered by curvilinear surface coordinates. It is presented in Sects. 3 and 4. Curvi-
linear coordinates offer the extra advantage that they can be used to define the finite
element shape functions. In consequence this leads to a straightforward finite element
description of the problem.

The bilayer deformation is governed by so-called geometric PDE’s. These are
partial differential equations that live on evolving surfaces. For mechanical systems,
these PDE’s follow from the balance laws of mass and momentum. This is presented
in Sect. 5.

In order to solve the PDE’s, the constitutive behavior of the bilayer has to be
defined. A popular approach is to use the elastic bending model of Helfrich (1973)
and combine it with in-plane viscosity. In general, constitution needs to be able to
account for the full range of possible deformation. Therefore, the bilayer constitution
should also be described in the curvilinear coordinate system of the evolving surface.
This is presented in Sects. 6 and7.

The PDE’s and their corresponding weak form are strongly nonlinear. In order to
solve such a system within implicit finite element methods, the consistent lineariza-
tion of the formulation is required. This is presented in Sects. 8 and10.

Lipid bilayers are very thin structures, and it is appropriate to describe them with
thin-shell theory. Thin-shell theory leads to a high-order weak form that requires a
surface description that is at least C1-continuous. Such a formulation is provided by
NURBS-based finite element spaces. They are presented in Sect. 10.

The surface flow of lipid bilayers can be considered to be area-incompressible.
Area-incompressibility is a constraint that introduces new unknowns. The discretiza-
tion of those needs to conform with the discretization of the surface and its velocity
according to the LBB condition. This is discussed in Sect. 11.

Under quasi-static conditions, the bilayer offers no resistance to shear deforma-
tions. To solve such cases computationally, numerical shear stabilization is required.
Several stabilization techniques can be used, as is presented in Sect. 12.

Under dynamic conditions, viscosity offers resistance to shear flow. However,
surface flow can lead to very large surface deformations that cannot be tracked by a
pure Lagrangian (i.e., material) mesh. Also pure Eulerian (i.e., fixed) meshes cannot
be used, since the surface shape can change. Thus an arbitrary Lagrangian-Eulerian
(ALE) surface formulation is required.

The mechanics of lipid bilayers may be coupled to other phenomena, such as
diffusion, phase transitions, and protein binding reactions. To account for these, the
surface balance laws have to be extended by the energy and mass balance of multiple
species. A recent theory for this has been provided by Sahu et al. (2017).
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The surface deformation can become very localized. For such cases local mesh
refinement is desirable. Classical NURBS do not offer this, but there is recent work
on locally refined NURBS (Zimmermann and Sauer 2017).

Classical thin-shell theory does not account for tilting of the lipids. Also, they
do not account for sliding between the two lipid layers. In order to describe these
aspects the kinematic description of the bilayer deformation has to be generalized.
This effectively adds degrees-of-freedom to the formulation. Lipid tilt and interlayer
sliding are addressed in other chapters of this book.

2 Literature Survey

This section gives an overview of existing literature that is related to the computa-
tional modeling of lipid bilayers based on nonlinear shell theory. The presentation
focuses on finite element models and follows Sauer et al. (2017).

In the past, several computational models have been proposed for cell membranes.
Depending on how the membrane is discretized, two categories can be distinguished:
Models based on an explicit surface discretization, and models based on an implicit
surface discretization. In the second category, the surface is captured by a phase field
(Du and Wang 2007) or level set function (Salac and Miksis 2011) that is defined on
the surrounding volume mesh. In the first category, the surface is captured directly
by a surface mesh. The approach is particularly suitable if only surface effects are
studied, such that no surrounding volume mesh is needed. This is the approach
taken here. An example is to use Galerkin surface finite elements: The first corre-
sponding 3D FE model for lipid bilayer membranes seems to be the formulation of
Feng and Klug (2006) and Ma and Klug (2008). Their FE formulation is based on
so-called subdivision surfaces (Cirak and Ortiz 2001), which provide C1-continuous
FE surface discretizations. Such discretizations are advantageous, since they do not
require additional degrees of freedomasC0-continuousFE formulations do. Still,C0-
continuous FEs have been considered to model red blood cell (RBC) membranes and
their supporting protein skeleton (Dao et al. 2003; Peng et al. 2010), phase changes
of lipid bilayers (Elliott and Stinner 2010), and viscous cell membranes (Tasso and
Buscaglia 2013). Subdivision finite elements have been used to study confined cells
(Kahraman et al. 2012). Lipid bilayers can also be modeled with so-called ‘solid
shell’ (i.e., classical volume) elements instead of surface shell elements (Kloeppel
and Wall 2011). Using solid elements, C0-continuity is sufficient, but the formu-
lation is generally less efficient. For two-dimensional and axisymmetric problems
also C1-continuous B-spline and Hermite finite elements have been used to study
membrane surface flows (Arroyo and DeSimone 2009; Rahimi and Arroyo 2012),
cell invaginations (Rim et al. 2014), and cell tethering and adhesion (Rangarajan and
Gao 2015). The latter work also discusses the generalization to three-dimensional
B-spline FE. For some problems it is also possible to use specific, Monge-patch FE
discretizations (Rangamani et al. 2013, 2014).
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The computational framework considered here is based on isogeometric finite
elements (Hughes et al. 2005; Cottrell et al. 2009). Those provide C1-continuity
through the use of splines. Isogeometric FE formulations have been applied to solid
shells (Kiendl et al. 2009, 2010, 2015; Benson et al. 2011; Nguyen-Thanh et al.
2011) based on rotation-free FE discretizations (Flores and Estrada 2007; Linhard
et al. 2007; Dung and Wells 2008). In Duong et al. (2017) a new isogeometric FE
formulation is proposed using curvilinear shell theory (Naghdi 1982; Pietraszkiewicz
1989; Libai and Simmonds 1998). The isogeometric shell model has been extended
to liquid shells (Sauer et al. 2017) based on the shell formulation of Steigmann (1999)
and the bilayer models of Canham (1970) and Helfrich (1973).

There are also several works that do not use finite element approaches. Examples
are numericalODE integration (Agrawal andSteigmann2009),MonteCarlomethods
(Ramakrishnan et al. 2010), molecular dynamics (Li and Lykotrafitis 2012), finite
differencemethods (Lau et al. 2012; Gu et al. 2014) andmesh-freemethods (Rosolen
et al. 2013). There are also non-GalerkinFEapproaches that use triangulated surfaces,
e.g., see Jarić et al. (1995), Jie et al. (1998).

Ideal liquids lack shear stiffness.Under quasi-static conditions, liquidmembranes,
and shells therefore do not provide any resistance to in-plane shear deformations and
thus need to be stabilized. Various stabilization methods have been proposed in
the past, considering artificial viscosity (Ma and Klug 2008; Sauer 2014), artificial
stiffness (Kahraman et al. 2012), and normal offsets – either as a projection of the
solution (with intermediate mesh update steps) (Sauer 2014), or as a restriction of
the surface variation (Rangarajan and Gao 2015). The instability problem is absent,
if shear stiffness is present, e.g., due to an underlying cytoskeleton, like in RBCs
(Dao et al. 2003; Peng et al. 2010; Kloeppel and Wall 2011).

Part II: Theoretical Description

Part II discusses the theoretical description of lipid bilayers that is required for the
computational formulation following in Part III.

3 Surface Description

This section discusses the description of curved surfaces based on the general frame-
work of curvilinear coordinates. The description is based on a surface parameteri-
zation (Sect. 3.1), from which the surface decomposition (Sect. 3.2), surface differ-
entiation (Sect. 3.3), surface curvature (Sect. 3.4) and the surface Cayley–Hamilton
theorem (Sect. 3.5) follow.
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3.1 Surface Parameterization

The bilayer surface, denoted by S, can be described by the parametric description

x = x(ξα) , (1)

where ξα, α = 1, 2 are coordinates associated with a parameter domain P .
Equation (1) corresponds to a mapping from point (ξ1, ξ2) ∈ P to the surface point
x ∈ S, see Fig. 2. The mapping reflects the property that the surface is a 2D object
embedded within 3D space. Mapping (1) fully characterizes the surface geometry.
Coordinates ξα are known as curvilinear coordinates. The tangent vector to coordi-
nate ξα is given by

aα = ∂x
∂ξα

. (2)

The two vectors a1 and a2 are generally not orthonormal, i.e., the four numbers

aαβ = aα · aβ , (3)

generally give [aαβ] �= [1 0; 0 1]. The object aαβ is an important characteristic of
the surface, known as the surface metric. To restore orthonormality, a second set of
tangent vectors a1 and a2 is introduced such that

aα · aβ = δβ
α , (4)

Fig. 2 Mapping between parameter domain P , reference surface S0 and current surface S (Sauer
et al. 2014)
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where [δβ
α] = [1 0; 0 1]. δβ

α is known as the Kronecker delta. Multiplication by δβ
α

simply exchanges indices, e.g., aα δβ
α = aβ . It follows that

aα = aαβ aβ , (5)

where [aαβ] = [aαβ]−1. Tangent vectors a1 and a2 are also called the covari-
ant tangent vectors, while a1 and a2 are also known as the contra-variant tan-
gent vectors. Analogously, aαβ is called the covariant surface metric and aαβ the
contra-variant surface metric. Equation (5) uses index notation, i.e., summation is
implied on repeated indices. By construction, repeated indices always appear as
covariant/contra-variant pairs.

The normal vector to surface S can be defined as

n = a1 × a2

‖a1 × a2‖ . (6)

The quantity Ja := ‖a1 × a2‖ gives the area enclosed by vectors a1 and a2. It can
be shown that Ja = √

det[aαβ].

3.2 Surface Decomposition

The triads {a1, a2, n} and {a1, a2, n} form bases that can be used to decompose
vectors v ∈ R

3 into their in-plane and out-of-plane components, i.e.,

v = vs + vn , vs = vα aα = vα aα , vn = v n , (7)

where v = v · n is the vector component along n, and vα = v · aα and vα = v · aα are
the vector components along aα and aα, respectively. vα is also called the covariant
and vα the contra-variant vector component. Applying (5)–(7) yields vα = aαβ vβ .
Likewise vα = aαβ vβ . Generally, aαβ and aαβ raise and lower indices, respectively.

Two important second-order tensors are the surface identity tensor,

i := aα ⊗ aα = aα ⊗ aα , (8)

and the full identity in R3,
1 := i + n ⊗ n . (9)

With those follow, iv = vs, ivs = vs, 1v = v and 1vs = vs. Thus i , can be viewed
as a projection operator, that extracts vs from v. In the same fashion i can be used
to extract the in-plane contents of a tensor. For example, the surface part of the
second-order tensor c ∈ R

3 × R
3 is

cs := i · c i . (10)
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From (8) follows
cs = cαβ aα ⊗ aβ , cαβ = aα · c aβ ,

= cα
β aα ⊗ aβ , cα

β = aα · c aβ ,

= cαβ aα ⊗ aβ , cαβ = aα · c aβ ,

= c β
α aα ⊗ aβ , c β

α = aα · c aβ .

(11)

If c is symmetric, then c α
β = cα

β =: cα
β . Apart from cs, tensor c also has components

along n ⊗ n, aα ⊗ n and n ⊗ aα.
Based on these definitions, three important tensor functions can be defined. The

first is the surface trace, defined by

trs c := i : c . (12)

It is related to the regular trace operator tr c := 1 : c, by trs c := tr cs. Further trs c =
cα
α. The second important tensor function is the surface determinant, defined by

dets c := det[cα
β ] , (13)

i.e., as the usual matrix-determinant1 of the 2 × 2 matrix [cα
β ]. Since cα

β = aαγcγβ ,
the surface determinant can also be written as

dets c := det[aαβ] det[cαβ] = det[cαβ]/ det[aαβ] . (14)

Note that this expression does not contain any summation on α or β, since det[...] is
a scalar. The third tensor function is the surface inverse c−1

s , defined from

c−1
s cs = i . (15)

c−1
s is a surface tensor with the contra-variant components

cαβ
inv := 1

c
eαγ cδγ e

βδ , c := det[cαβ] , (16)

since cαβ
inv cβγ = δα

γ . Here

[eαβ] =
[
0 1

−1 0

]
(17)

is the so-called unit alternator. In particular, (16) yields

aαβ = 1

a
eαγ aγδ e

βδ , a := det[aαβ] . (18)

1Note that det[cα
β ] = det[cα

β] = det[c α
β ] even if cα

β �= c α
β .
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Note that in general trs c �= tr c, dets c �= det c and c−1
s �= c−1. Multiplying (18) by

aαβ , one can further find

a = 1

2
eαγ eβδ aαβ aγδ . (19)

3.3 Surface Differentiation

The derivative encountered in (2) is called the parametric derivative. It is denoted
by a comma. Taking another parametric derivative gives

aα,β = ∂aα

∂ξβ
= x,αβ . (20)

Generally, vector aα,β has both in-plane and out-of-plane components. But only the
latter is needed in order to describe surface curvature. This motivates the introduction
of another derivative, the so-called co-variant derivative. It is denoted by a semicolon.
For basis vectors aα and aα it is defined by

aα;β := (n ⊗ n) aα,β (21)

and
aα

;β := (n ⊗ n) aα
,β . (22)

Using Eqs. (9) and (8), leads to

aα;β = aα,β − �
γ
αβ aγ (23)

and
aα

;β := aα
,β + �α

βγ aγ . (24)

where
�

γ
αβ := aγ · aα,β (25)

are the so-called Christoffel symbols. For scalars φ ∈ R and general vectors v ∈ R
3

(that are independent of the surface parameterization), such as the normal vector n,
the covariant derivative is defined to be equal to the parametric derivative. From (7)
thus follow n;α = n,α, v;α = v,α, (vαaα);β = (vαaα),β , (vαaα);β = (vαaα),β , and
further

vα;β = vα,β − �
γ
αβ vγ ,

vα
;β = vα

,β + �α
βγ vγ .

(26)

In classical physics, the gradient, divergence, and Laplacian are important differ-
ential operators. They can now be defined on the surface S. The surface gradient of
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a scalar function φ is defined through the regular gradient ∇φ as

∇sφ := ∇φ · i , (27)

Inserting (8), gives∇sφ = φ,α aα. Likewise, the surface gradient for a vector function
v is defined as

∇sv := ∇v · i , (28)

such that ∇sv = v,α ⊗ aα. The surface divergence follows from the gradient as

divsv := tr∇sv . (29)

i.e. divsv = v,α · aα. The surface Laplacian of a scalar φ is then defined by

�sφ := divs∇sφ , (30)

which leads to �sφ = φ;αβ aαβ . In the above expressions φ;α = φ,α and v;α = v,α.
However, φ;αβ �= φ,αβ . Instead

φ;αβ = φ,αβ − �
γ
αβ φ,γ . (31)

3.4 Surface Curvature

The surface curvature is characterized by the normal component of aα,β , i.e., by the
four numbers

bαβ := n · aα,β = n · aα;β . (32)

They are known as the covariant components of the curvature tensor b = bαβ aα ⊗
aβ . The curvature tensor is a surface tensor like i and cs. It is symmetric and has the
mixed components bα

β = aαγ bγβ and the contra-variant components bαβ = bα
γ aγβ .

It appears in the formulas of Gauss,

aα;β = bαβ n , (33)

and Weingarten,
n,α = −bβ

α aβ . (34)

Its two invariants

H := 1

2
trs b (35)

and
κ := dets b (36)
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are known as the mean curvature and Gaussian curvature of surface S. According
to Sect. 3.2, those can also be written as H = 1

2 b
α
α = 1

2 a
αβ bαβ and κ = b/a, where

b := det[bαβ] and a := det[aαβ]. The eigenvalues of b,

κ1/2 = H ± √
H 2 − κ , (37)

are the principal curvatures of S. Note that 2H = κ1 + κ2 and κ = κ1 κ2. Using (7)
and Weingarten’s formula, the surface divergence of vector v can also be written as

divsv = vα
;α − 2Hv . (38)

3.5 Surface Cayley–Hamilton

According to the surface Cayley–Hamilton theorem, a tensor c satisfies the identity

cγ
γ a

αβ − cαβ = c̃αβ , (39)

where c̃αβ := c

a
cαβ
inv are the contra-variant components of the adjugate tensor of c.

For the curvature tensor in particular, the Cayley–Hamilton-theorem becomes

2H aαβ − bαβ = κ bαβ
inv . (40)

Multiplying this by bγ
β gives

bαγ bβ
γ = 2H bαβ − κ aαβ . (41)

Lowering indices with aαβ , then gives

bγ
α bγβ = 2H bαβ − κ aαβ . (42)

4 Surface Kinematics

This section discusses the kinematics of deforming surfaces and examines its con-
sequences. Important kinematical objects are the surface strain tensor (Sect. 4.1),
the surface velocity gradient (Sect. 4.2) and the area-incompressibility constraint
(Sect. 4.3). For the subsequent developments, all kinematical objects need to be var-
ied (Sect. 4.4) and linearized (Sect. 4.5).
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4.1 Surface Deformation

In order to describe the deformation of surface S, a reference configuration, denoted
S0, is introduced. This could for example be a flat plane. But that is not a requirement.
The only requirement for S0 is that it is fixed in time. The reference surface S0 can
be described in the same form as S. Therefore all the quantities introduced in Sect. 3
can be re-defined for S0. This is done by using upper-case letters, or adding subscript
‘0.’ Surface S0 is thus described by the mapping X = X(ξα) and the tangent vectors
Aα = X ,α, see Fig. 2. Further objects that follow in that fashion are Aαβ , Aαβ , N ,
Aα,β and so forth. In particular,

I := Aα ⊗ Aα = Aα ⊗ Aα (43)

denotes the surface identity tensor on S0, such that 1 = I + N ⊗ N .
The mapping between S0 and S, denoted x = ϕ(X), is characterized by the

surface deformation gradient
F := aα ⊗ Aα . (44)

and the surface stretch

J := Ja
JA

=
√
det[aαβ]

√
det[Aαβ] . (45)

They relate differential line and area elements according to dx = F dX and da =
J dA. If the number of surface particles is conserved during deformation, as will be
considered here,2 then

ρ da = ρ0 dA , (46)

such that
J = ρ0

ρ
, (47)

where ρ and ρ0 are the surface densities at x ∈ S and X ∈ S0, respectively.
Two important objects for describing in-plane deformation, are the left and right

surface Cauchy–Green tensors, given by

C := FT F = aαβ Aα ⊗ Aβ ,

B := F FT = Aαβ aα ⊗ aβ .
(48)

C is a surface tensor on S0, while B is a surface tensor on S. Their trace I1 := tr C =
I : C = tr B = i : B is equal to

I1 = Aαβaαβ . (49)

2For an extension to changing mass, e.g., due to protein binding, see Sahu et al. (2017).



236 R.A. Sauer

From C follows the surface Green–Lagrange strain tensor

E := (
C − I

)
/2 . (50)

Its surface components are

Eαβ := (
aαβ − Aαβ

)
/2 , (51)

such that E = Eαβ Aα ⊗ Aβ . Likewise, the relative curvature tensor K = Kαβ Aα ⊗
Aβ , with the components

Kαβ := bαβ − Bαβ , (52)

is defined. It is an important object for describing bending.

4.2 Surface Motion

In general, the deformation of the surface is time-dependent. The consequences of
this on the surface description and kinematics are discussed here. The velocity of a
surface particle (e.g., a lipid molecule) at x ∈ S, is v = ẋ, where the notation

˙(...) := D...

Dt
:= ∂...

∂t

∣
∣
∣
∣

X=fixed
(53)

denotes the so-called material time derivative. The time derivative of the tangent
vectors and their parametric derivatives then follow as ȧα = ẋ,α = v,α and ȧα,β =
ẋ,αβ = v,αβ . This then leads to

ȧαβ = aα · ȧβ + ȧα · aβ (54)

and
ḃαβ = aα,β · ṅ + n · ȧα,β . (55)

Taking a time derivative of n · n = 1 and n · aα = 0, one can find

ṅ = −(aα ⊗ n) ȧα = −aα(n · ȧα) , (56)

such that
ḃαβ = (

ȧα,β − �
γ
αβ ȧγ

) · n . (57)

Taking a time derivative of (4) and n · aα = 0, one can find

ȧα = (
aαβ n ⊗ n − aβ ⊗ aα

)
ȧβ . (58)
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From (19) follows
ȧ = a aαβ ȧαβ , (59)

and therefore

J̇ = ∂ J

∂aαβ
ȧαβ = J

2
aαβ ȧαβ . (60)

From (18) follows
ȧαβ = aαβγδ ȧγδ , (61)

with

aαβγδ := ∂aαβ

∂aγδ
= 1

2a

(
eαγeβδ + eαδeβγ

) − aαβaγδ . (62)

A component-wise comparison shows that

aαβγδ = −1

2

(
aαγaβδ + aαδaβγ

)
, (63)

i.e., aαβγδ corresponds to the contra-variant components of a fourth-order identity
tensor: Contracting aαβγδ with any symmetric tensor with components cγδ , yields

aαβγδ cγδ = −cαβ . (64)

It is noted that aαβγδ has major and minor symmetries. Given aαβγδ , Eq. (61) turns
into

ȧαβ = −aαγ aβδ ȧγδ . (65)

An important object for fluids is the symmetric surface velocity gradient

d := (
v,α ⊗ aα + aα ⊗ v,α

)
/2 . (66)

Its covariant and contra-variant components, according to (11), simply are dαβ =
ȧαβ/2 and dαβ = −ȧαβ/2. In terms of the velocity components vα := v · aα and
v := v · n, also dαβ = aαγaβδ(vγ;δ + vδ;γ)/2 − v bαβ holds.

The time derivative of the mean curvature yields

Ḣ = 1

2
ȧαβ bαβ + 1

2
aαβ ḃαβ . (67)

Using Eqs. (61) and (64) gives

Ḣ = ∂H

∂aαβ
ȧαβ + ∂H

∂bαβ
ḃαβ , (68)

with
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∂H

∂aαβ
= −1

2
bαβ ,

∂H

∂bαβ
= 1

2
aαβ .

(69)

Analogously, the change of the Gaussian curvature is

κ̇ = ∂κ

∂aαβ
ȧαβ + ∂κ

∂bαβ
ḃαβ , (70)

with
∂κ

∂aαβ
= −κ aαβ ,

∂κ

∂bαβ
= κ bαβ

inv = b̃αβ .

(71)

e.g., see Sauer and Duong (2017).
The last object of interest is ḃαβ . Taking the time derivative of bαβ = bγδ aγα aδβ

yields

ḃαβ = ∂bαβ

∂aγδ
ȧγδ + ∂bαβ

∂bγδ
ḃγδ , (72)

with
∂bαβ

∂aγδ
= bαβγδ ,

∂bαβ

∂bγδ
= −aαβγδ ,

(73)

and

bαβγδ := −1

2

(
aαγ bβδ + bαγ aβδ + aαδ bβγ + bαδ aβγ

)
(74)

(Sauer and Duong 2017). From a component-wise comparison, it can be shown that
bαβγδ is also equal to

bαβγδ = 2H
(
aαβ aγδ + aαβγδ

) − (
aαβ bγδ + bαβ aγδ

)
. (75)

4.3 Surface Incompressibility

An important constraint on the surfacemotion is surface- (or area-) incompressibility.
During such motion

g := J − 1 = 0 ∀ t , (76)
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such that J̇ = 0. From (60) and (54) follows that area-incompressibility implies

ȧα · aα = 0 , (77)

which is equivalent to
divsv = 0 . (78)

4.4 Surface Variation

In order to derive the weak form, which is essential for the finite element method,
the variation of several kinematical quantities is required. Therefore, a variation of
position x ∈ S by the amount δx is considered, and the effect on various kinemat-
ical quantities is examined. The variation of the tangent vectors and its parametric
derivative are δaα = δx,α and δaα,β = δx,αβ . Since the variation follows the laws of
differentiation, δ(...) has the same format as ˙(...), and one can immediately extract the
expressions for δaαβ , δbαβ , δn, δaα, δJ , δH , δκ, δaαβ and δbαβ from the preceding
section. In particular,

δaαβ = aα · δaβ + δaα · aβ (79)

δbαβ = aα,β · δn + n · δaα,β (80)

or
δbαβ = (

δaα,β − �
γ
αβ δaγ

) · n (81)

and
δn = −(aα ⊗ n) δaα . (82)

4.5 Surface Linearization

In order to employ Newton’s method, as is considered for the solution of the resulting
finite element equations, the weak form needs to be linearized w.r.t. configuration x.
Therefore, an increment �x is considered and its effect on the system is examined.
The change of aα and aα,β , due to �x, thus is �aα = �x,α and �aα,β = �x,αβ .
Since the linearization follows the laws of differentiation,�(...) has the same format
as ˙(...), and one can immediately extract the expressions for �aαβ , �bαβ , �n, �aα,
�J , �H , �κ, �aαβ and �bαβ from Sect. 4.2. Since linearization follows after
variation, the variations that still depend on x (instead of just depending on δx), also
need to be linearized. Linearizing (79) and (80), gives
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�δaαβ = δaα · �aβ + δaβ · �aα ,

�δbαβ = δaα,β · �n + δn · �aα,β + aα,β · �δn .
(83)

From (82) and (58) follows

�δn = (δaα · n)(n · �aβ) aαβ n
+ (δaα · n)(aα · �aβ) aβ + (δaα · aβ)(n · �aβ) aα ,

(84)

such that

aα,β · �δn = δaγ · (
�

γ
αβ aδ ⊗ n + �δ

αβ n ⊗ aγ − aγδ bαβ n ⊗ n
)
�aδ . (85)

Inserting (85) into (83) and using (82), then gives

�δbαβ = − δaγ · (n ⊗ aγ)�aα,β − δaα,β · (aγ ⊗ n)�aγ

+ δaγ · (
�

γ
αβ aδ ⊗ n + �δ

αβ n ⊗ aγ − aγδ bαβ n ⊗ n
)
�aδ .

(86)

Note that all these expressions are symmetric w.r.t. linearization and variation.

5 Surface Balance

This section presents themechanical balance laws for shells. The sectional forces and
sectional moments are introduced (Sect. 5.1), and then linear momentum (Sect. 5.2),
angular momentum (Sect. 5.3) and mechanical power (Sect. 5.5) are discussed.
Section5.4 discusses boundarymoments. The presentation follows Sauer and Duong
(2017).

5.1 Sectional Forces and Moments

Consider an infinitesimal surface element da ⊂ S, located at x and aligned along a1

and a2 as is shown in Fig. 3. On the cut surfaces the distributed3 sectional force and
moment components Nαβ , Sα and Mαβ are defined as shown. The sectional forces
are collected in the stress tensor

σ := Nαβ aα ⊗ aβ + Sα aα ⊗ n , (87)

such that the traction vector on the cut normal to ν is given through Cauchy’s formula

T := σTν . (88)

3Per current length of the cut face.
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Fig. 3 Sectional forces and moments (Sauer and Duong 2017): Components of the traction and
moment vectors T1, T2, M1 and M2 defined on the faces normal to a1 and a2 (top). Components
of the physical moment vector m acting on the same faces (bottom)

With ν = να aα one can write T = Tα να, where

Tα := σT aα = Nαβ aβ + Sα n , (89)

are then the tractions defined on the face normal to aα, see Fig. 3.
The distributed section moments are collected in the moment tensor

μ := −Mαβ aα ⊗ aβ , (90)

such that one can define the distributed moment vector

M := μT ν (91)

on the cut normal to ν. Similar to before, one can write

M = Mα να , (92)

with
Mα := μT aα = −Mαβ aβ . (93)
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The components of −Mα are shown in the top right inset of Fig. 3. Vector M can
be associated with a force couple (Sahu et al. 2017). The moment vector physically
acting on the element is given by the quantity

m := n × M . (94)

Inserting (92) and (93), and using the identity

aβ × n = τβ ν − νβ τ , (95)

gives
m = mν ν + mτ τ (96)

with the local Cartesian components

mν := Mαβ να τβ ,

mτ := −Mαβ να νβ .
(97)

The vector M can then also be written as

M = mτ ν − mν τ . (98)

The bottom inset of Fig. 3 shows the vector m acting on faces aα.

5.2 Balance of Linear Momentum

Consider a part of the surfaceS, denotedR that is assumed to have a smooth boundary
∂R. The ‘body’ force (per current surface area) acting on R is denoted by f . For
every such surface part, the change of its linear momentum is equal to the external
forces acting on it, i.e.,

D

Dt

∫

R
ρ v da =

∫

R
f da +

∫

∂R
T ds ∀R ⊂ S . (99)

Here, D/Dt denotes the material time derivative introduced in (53), and v is the
material velocity at x. From the local conservation of mass (46) and the surface
divergence theorem ∫

∂R
Tα να ds =

∫

R
Tα

;α da , (100)

immediately follows the local form of (99),

Tα
;α + f = ρ v̇ ∀ x ∈ S , (101)
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which is the strong form equilibrium equation at x ∈ S. If desired, it can be decom-
posed into in-plane and out-of-plane contributions (Jenkins 1977; Sauer and Duong
2017).

5.3 Balance of Angular Momentum

For every surface part R ⊂ S, the change of angular momentum is equal to the
moment of the external forces, i.e.,

D

Dt

∫

R
ρ x × v da =

∫

R
x × f da +

∫

∂R
x × T ds +

∫

∂R
m ds ∀R ⊂ S .

(102)
Sauer and Duong (2017) show that this is satisfied if and only if

σαβ := Nαβ − bβ
γ Mγα (103)

is symmetric and
Sα = −Mβα

;β . (104)

The last equation expresses the well-known Kirchhoff–Love result that the out-of-
plane shear component follows as the derivative of the bending moments. It turns
out that apart from σαβ also Mαβ is symmetric, see Sect. 6.2. According to relation
(103), the in-plane stress component

Nαβ = σαβ + bβ
γ Mγα (105)

is influenced by bending, and consequently Nαβ is generally nonsymmetric.

5.4 Boundary Conditions

At the boundary of the surface, ∂S, the boundary conditions

x = ϕ̄ on ∂xS ,

t = t̄ on ∂tS ,

mτ = m̄τ on ∂mS
(106)

can be prescribed. Here, mτ is the bending moment component parallel to boundary
∂S. For Kirchhoff–Love shells, bending moments perpendicular to boundary ∂S,
denoted mν , affect the boundary traction. Therefore, the effective traction

t := T − (mνn)′ (107)
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is introduced, e.g., see Sauer and Duong (2017). In the following examples, mν = 0
is considered.

5.5 Mechanical Power Balance

The mechanical power balance follows from equilibrium. Contracting the equilib-
rium equation (101) with the velocity v and integrating over R ⊂ S, gives

∫

R
v · (

Tα
;α + f − ρ v̇

)
da = 0 ∀R ⊂ S . (108)

In here, the last term corresponds to the change of the kinetic energy

K := 1

2

∫

R
ρ v · v da , (109)

which, due to mass conservation, is given by

K̇ :=
∫

R
ρ v · v̇ da . (110)

Applying the surface divergence theorem to the first term, rearranging terms and
applying the surface divergence theorem again, leads to the mechanical power bal-
ance (Sauer and Duong 2017)

K̇ + Pint = Pext ∀R ⊂ S , (111)

where

Pint = 1

2

∫

R
σαβ ȧαβ da +

∫

R
Mαβ ḃαβ da (112)

is the internal stress power of R and

Pext =
∫

R
v · f da +

∫

∂R
v · T ds +

∫

∂R
ṅ · M ds (113)

is the power of the external forces acting onR and ∂R. Using definition (107), Pext
can be rewritten into (Sauer and Duong 2017)

Pext =
∫

R
v · f da +

∫

∂R

(
v · t + ṅ · mτ ν

)
ds + [v · mν n

]
, (114)

where the last term denotes the power of the point loads mν n that are present at cor-
ners of boundary ∂R. For smooth boundaries, or for mν = 0, the last term vanishes.
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The derivation of the weak form of Eq. (101), considered in Sect. 8, is analogous
to the derivation of the mechanical power balance.

6 Surface Constitution

This section discusses the constitutive framework of lipid bilayers, accounting for
elastic bending, (near-) area-incompressibility, and viscous shear. The framework
follows from the dissipation inequality (Sect. 6.1) using classical thermodynamical
arguments (Sect. 6.2). For later use, linearization (Sect. 6.3) and stability (Sect. 6.4)
are also discussed briefly.

6.1 Dissipation Inequality

The local power density σαβ ȧαβ/2 + Mαβ ḃαβ , appearing within (112), also appears
in the mechanical dissipation inequality

D := 1

2
σαβ ȧαβ + Mαβ ḃαβ − ρṪ s − ρψ̇ ≥ 0 , (115)

where T is the temperature, s is specific entropy, and ψ is the specific Helmholtz free
energy (per unit mass). Equation (115) is a consequence of the second law of ther-
modynamics for surfaces, e.g., see Sahu et al. (2017). Under isothermal conditions,
considered here, the ρṪ s term vanishes. The dissipation D has units of power per
current area. Multiplying by J , D can be related to the reference area. Introducing

ταβ := Jσαβ ,

Mαβ
0 := JMαβ ,

(116)

the isothermal dissipation inequality can thus be written as

D0 := 1

2
ταβ ȧαβ + Mαβ

0 ḃαβ − �̇0 ≥ 0 , (117)

where �0 := ρ0ψ is the Helmholtz free energy per reference area. Here, (47) and
mass conservation have been used.
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6.2 Constrained Visco-Elasticity

The free energy �0 is a function of the deformation, which, for thin shells, is fully
characterized by aαβ and bαβ . In order to account for constraints on aαβ , such as
area-incompressibility, �0 is expressed as

�0 = �0x + �0g , (118)

where
�0x = �0x(aαβ, bαβ) (119)

denotes the contribution from deformation, and

�0g = q g(aαβ) (120)

denotes the contribution associated with a constraint g = 0. q denotes the Lagrange
multiplier associated with the constraint. Applying chain rule then yields

�̇0 = ∂�0

∂aαβ
ȧαβ + ∂�0

∂bαβ
ḃαβ + g q̇ , (121)

so that (117) yields

(
1

2
ταβ − ∂�0

∂aαβ

)
ȧαβ +

(
Mαβ

0 − ∂�0

∂bαβ

)
ḃαβ − g q̇ ≥ 0 . (122)

The surface stress σαβ is considered to contain elastic and viscous contributions
in the form

σαβ = σ
αβ
elas + σ

αβ
visc . (123)

The elastic contribution is independent of the rate ȧαβ , while the viscous contribution
depends on the rate ȧαβ such that ȧαβ → 0 implies σ

αβ
visc → 0. The moment Mαβ is

considered to be purely elastic.
Since (122) applies to all thermodynamic processes (with general ȧαβ , ḃαβ and

q̇), the classical argument by Coleman and Noll (1964) (based on considering a set
of special ȧαβ , ḃαβ and q̇) leads to the constitutive equations

σ
αβ
elas = 2

J

∂�0

∂aαβ
,

Mαβ = 1

J

∂�0

∂bαβ
,

g = 0 ,

σ
αβ
visc ȧαβ ≥ 0 .

(124)
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The first two relations correspond to classical hyperelasticity, the third is just the
constraint, and the fourth implies that viscous stresses are dissipative. A simple
expression that satisfies this4 is

σ
αβ
visc = −η ȧαβ . (125)

where η ≥ 0 is a constant. Comparing to 3D fluids, η can be identified as the dynamic
surface viscosity. An extension considering more general viscous stresses, as well
as thermal fields and changing mass is provided by Sahu et al. (2017).

For the later developments, the variation of �0 is required. Similar to (121), this
can be written as

δ�0 = δx�0 + g δq , (126)

with

δx�0 := ∂�0

∂aαβ
δaαβ + ∂�0

∂bαβ
δbαβ . (127)

From (124) follows
δx�0 = 1

2 ταβ δaαβ + Mαβ
0 δbαβ . (128)

If no constraint is present q and δq are zero.

6.3 Linearization of δ�0

Linearizing (126), gives

�δ�0 = �xδx�0 + δg �q + δq �g , (129)

with

δg = ∂g

∂aαβ
δaαβ , �g = ∂g

∂aαβ
�aαβ , (130)

and

�xδx�0 = δaαβ
∂2�0

∂aαβ ∂aγδ
�aγδ + δaαβ

∂2�0

∂aαβ ∂bγδ
�bγδ + ∂�0

∂aαβ
�δaαβ

+ δbαβ
∂2�0

∂bαβ ∂aγδ
�aγδ + δbαβ

∂2�0

∂bαβ ∂bγδ
�bγδ + ∂�0

∂bαβ
�δbαβ .

(131)

Introducing the material tangents

4Since σ
αβ
visc ȧαβ = 4η d : d = 4η‖d‖2 > 0 due to (65) and (66).
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cαβγδ := 4
∂2�0

∂aαβ ∂aγδ
= 2

∂ταβ

∂aγδ
,

dαβγδ := 2
∂2�0

∂aαβ ∂bγδ
= ∂ταβ

∂bγδ
,

eαβγδ := 2
∂2�0

∂bαβ ∂aγδ
= 2

∂Mαβ
0

∂aγδ
,

f αβγδ := ∂2�0

∂bαβ ∂bγδ
= ∂Mαβ

0

∂bγδ
,

(132)

gives

�xδx�0 = cαβγδ 1
2δaαβ

1
2�aγδ + dαβγδ 1

2δaαβ �bγδ + ταβ 1
2�δaαβ

+ eαβγδ δbαβ
1
2�aγδ + f αβγδ δbαβ �bγδ + Mαβ

0 �δbαβ .
(133)

Note that cαβγδ and f αβγδ posses both minor and major symmetries; dαβγδ and eαβγδ

posses only minor symmetries, but additionally satisfy

dαβγδ = eγδαβ . (134)

Due to the symmetries of c, d, and e, and due to Eqs. (79) and (81), one finds

cαβγδ 1
2δaαβ

1
2�aγδ = δaα · aβ cαβγδ aγ · �aδ ,

dαβγδ 1
2δaαβ �bγδ = δaα · aβ dαβγδ n · �ãα,β ,

eαβγδ δbαβ
1
2�aγδ = δãα,β · n eαβγδ aγ · �aδ ,

f αβγδ δbαβ �bγδ = δãα,β · n f αβγδ n · �ãα,β ,

(135)

where
δãα,β := δaα,β − �ε

αβ δaε ,

�ãα,β := �aα,β − �ε
αβ �aε .

(136)

Expressions for �δaαβ and �δbαβ are given in (83) and (86).

6.4 Material Stability

For many material models, the four tangent matrices introduced in (132) can be
written in the format

ĉαβγδ = ĉaa aαβ aγδ + ĉa aαβγδ + ĉab aαβ bγδ + ĉba bαβ aγδ + ĉbb bαβ bγδ , (137)

with suitable definitions of coefficients ĉaa , ĉa , ĉab, ĉba and ĉbb. Sauer and Duong
(2017) show that material stability requires
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2ĉaa − ĉa > 0 & ĉa < 0 . (138)

7 The Helfrich Energy

In order to fully characterize the constitutive behavior, the Helmholtz free energy�0

needs to be specified. The bending behavior of lipid bilayers is commonly described
by the bending model of Helfrich (1973)

w = k (H − H0)
2 + kgκ . (139)

Here k is the bending modulus, kg is the Gaussian modulus and H0 denotes the
so-called spontaneous curvature that can be used to model the presence of certain
proteins embedded within the lipid bilayer.

This section presents the Helfrich energy for the cases of area-compressibility
(Sect. 7.1) and area-incompressibility (Sect. 7.2), and discussed its properties
(Sect. 7.3) and tangentmatrices (Sect. 7.4). Section7.5 discusses the relation between
the models of Helfrich and Canham. The presentation follows Sauer et al. (2017)
and Sauer and Duong (2017).

7.1 Area-Compressible Lipid Bilayer

The Helfrich energy is an energy density per current surface area. Multiplying it by J
and adding a quadratic energy term for the surface area change, gives the Helmholtz
free energy

�0 = J w + K

2
(J − 1)2 , (140)

where K is the surface bulk modulus. A quadratic energy term is suitable for
small area changes. For lipid bilayers, typically |J − 1| < 4% before rupture occurs.
According to (123)–(125) and (105), the stress andmoment components then become

σαβ = (
K (J − 1) + k �H 2 − kg κ

)
aαβ − 2 k �H bαβ − η ȧαβ ,

Mαβ = (
k �H + 2 kgH

)
aαβ − kg bαβ ,

Nαβ = (
K (J − 1) + k �H 2

)
aαβ − k �H bαβ − η ȧαβ ,

(141)

where �H := H − H0.
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7.2 Area-Incompressible Lipid Bilayer

Since K is usually very large for lipid-bilayers, one may as well consider the surface
to be fully area-incompressible. Using the Lagrange multiplier approach, one now
has

�0 = J w + q g , (142)

where the incompressibility constraint (76) is enforced by the Lagrange multiplier q.
q is an independent variable that needs to be accounted for in the solution procedure
(see Sect. 11). Physically, q corresponds to a surface tension. The stress and moment
components now become

σαβ = (
q + k �H 2 − kg κ

)
aαβ − 2 k �H bαβ − η ȧαβ ,

Mαβ = (
k �H + 2 kgH

)
aαβ − kg bαβ ,

Nαβ = (
q + k �H 2

)
aαβ − k �H bαβ − η ȧαβ .

(143)

They are identical to (141) for q = Kg.
As K becomes larger and larger, both models approach the same solution. So

from a physical point of view it may not make a big difference which model is
used. Computationally, model (140) is easier to handle but can become inaccurate
for large K , as is shown in Sauer et al. (2017). In analytical approaches, often (142)
is preferred as it usually simplifies the solution. Examples for (142) are found in
Baesu et al. (2004) and Agrawal and Steigmann (2009); (140) is considered in the
original work of Helfrich (1973).

7.3 Model Properties

In both preceding models, the membrane part only provides bulk stiffness, but lacks
shear stiffness. For quasi-static computations the model can thus become unstable
and should be stabilized, as is discussed in Sect. 12. Interestingly, the bending part
of the Helfrich model can contribute an in-plane shear stiffness, which is shown in
the following.

To this end, the surface tension

γ := 1
2 σ : i = 1

2N
α
α , (144)

is first introduced. For both (141) and (143) one finds

γ = q − k H0 �H , (145)

where q = Kg in the former case. It can be seen that for H0 �= 0, the bending part
contributes to the surface tension. This dependency has also been noted by Lipowsky
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(2013) and Rangamani et al. (2014). The surface tension is therefore not given by
the membrane part alone. For the compressible case, the effective bulk modulus can
then be determined from

Keff := ∂γ

∂ J
, (146)

i.e. as the change of γ w.r.t. J . One finds

Keff = K + k H0 H/J , (147)

since ∂H/∂ J = −H/J . Likewise, the effective shear modulus can be defined from

μeff := J aαγ
∂Nαβ

dev

2 ∂aγδ
aβδ , (148)

i.e., as the change of the deviatoric stress w.r.t. the deviatoric deformation (charac-
terized by aγδ/J ). The deviatoric in-plane stress is given by

Nαβ
dev := Nαβ − γ aαβ . (149)

One finds
Nαβ
dev = k �H

(
H aαβ − bαβ

)
(150)

for both (141) and (143). Evaluating (148) thus gives

μeff = Jk
(
3H 2 − 2HH0 − κ

)
/2 . (151)

The model therefore provides stabilizing shear stiffness if 3H 2 > 2HH0 + κ. Since
this is not always the case (e.g., for flat surface regions), additional shear stabilization
should be provided for quasi-static computations. This is discussed in Sect. 12. The
value of μeff is discussed further in the examples of Sect. 13. It is shown that μeff

can sufficiently stabilize the problem such that no additional shear stabilization is
needed. It is also shown that μeff does not necessarily need to be positive to avoid
instabilities. Geometric stiffening, arising in large deformations, can also stabilize
the surface.

7.4 Material Tangent

In the following, the material tangents of Eq. (132) are evaluated and assessed. This
is done by examining the contributions to (141) and (143) piecewise.

Area-compressibility For the area-compressible case, the elastic membrane stress
is characterized by
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ταβ = K J (J − 1) aαβ . (152)

From (132) thus follows

cαβγδ = K J (2J − 1) aαβaγδ + 2K J (J − 1) aαβγδ . (153)

Since ca = 2K J (J − 1) ≥ 1 for J ≥ 1, this model does not satisfy criteria (138)
and therefore is unstable by itself.

Area-incompressibility For the area-incompressible case, the elastic membrane
stress is characterized by

ταβ = −q J aαβ , (154)

so that
cαβγδ = −q J aαβaγδ − 2q J aαβγδ . (155)

Since 2caa − ca = 0, this model does not satisfy criteria (138) and therefore is unsta-
ble by itself.

Bending part The bending contribution, characterized by

ταβ = J
(
k �H 2 − kg κ

)
aαβ − 2k J �H bαβ ,

Mαβ
0 = J

(
k �H + 2kg H

)
aαβ − kg J bαβ ,

(156)

leads to

cαβγδ = caa aαβ aγδ + ca aαβγδ + cbb bαβ bγδ + cab
(
aαβ bγδ + bαβ aγδ

)
,

dαβγδ = daa aαβ aγδ + da aαβγδ + dab aαβ bγδ + dba bαβ aγδ = eγδαβ ,

f αβγδ = faa aαβ aγδ + fa aαβγδ ,

(157)

with
caa = J

(
k �H (�H − 8H) + kg κ

)
,

ca = 2J
(
k �H (�H − 4H) − kg κ

)
,

cbb = 2k J ,

cab = cba = 2k J �H ,

daa = J
(
k �H − 2kg H

)
,

da = 2J k �H ,

dab = J kg ,

dba = −J k ,

faa = J (k/2 + kg) ,

fa = J kg .

(158)

The stability can be assessed by examining the bending tangent f αβγδ . According to
(138), it is easy to see that stability requires

0 < −kg < k . (159)
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7.5 The Canham Model

A special case of the Helfrich model is the bending model of Canham (1970). It can
be expressed as

�0 = J w , w := c

2

(
κ2
1 + κ2

2

)
. (160)

Here, w can also be written as w = c bα
β bβ

α/2 or w = c (2H 2 − κ), so that the Can-
ham model follows from the Helfrich model with k = 2c, kg = −c and H0 = 0.
Since this satisfies (159), the model is stable in bending. In particular, the Canham
model gives

σαβ = c
(
2H 2 + κ

)
aαβ − 4c H bαβ − η ȧαβ (161)

and
Mαβ = c bαβ . (162)

8 Weak Form

This section presents the weak form of the thin shell equation (101), considering
the area-compressible case (Sect. 8.1) and the area-incompressible case (Sect. 8.2).
The decomposition into in-plane and out-of-plane contributions (Sect. 8.3) and the
linearization (Sect. 8.4) follow. The presentation follows Sauer and Duong (2017)
and Sauer et al. (2017).

8.1 Unconstrained System

The weak form of equilibrium equation (101) can be derived analogously to the
mechanical power balance in Sect. 5.5 by simply replacing the velocity v with the
admissible variation δx ∈ V . Immediately one obtains

G in + G int − Gext = 0 ∀ δx ∈ V , (163)

with

G in =
∫

S0

δx · ρ0 v̇ dA ,

G int =
∫

S0

δx�0 dA =
∫

S0

1

2
δaαβ ταβ dA +

∫

S0

δbαβ Mαβ
0 dA ,

Gext =
∫

S
δx · f da +

∫

∂S
δx · T ds +

∫

∂S
δn · M ds ,

(164)
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according to Eqs. (110)–(113). As noted in (123), stress ταβ = Jσαβ , and hence also
G int, has elastic and viscous contributions. Due to Eq. (128), the elastic part of G int

can also be obtained as the variation of

�int =
∫

S0

�0 dA (165)

w.r.t. x, i.e., G int,el = δx�int. Thus, if Gext is also derivable from a potential, the
quasi-static weak form G int − Gext = 0 ∀ δx ∈ V is the result of the principle of
stationary potential energy.

8.2 Constrained System

For the constrained problem, the constraint g = 0 needs to be included. The weak
form of that is simply

Gg =
∫

S0

δq g dA = 0 ∀ δq ∈ Q , (166)

where δq ∈ Q is a suitably chosen variation of the Lagrange multiplier q. The weak
form problem statement is then given by solving the two equations

G in + G int − Gext = 0 ∀ δx ∈ V ,

Gg = 0 ∀ δq ∈ Q ,
(167)

for x and q. Due to Eq. (126), one can find G int,el + Gg = δ�int, such that the static
version of weak form (167), for suitable Gext, is still the result of the principle of
stationary potential energy.

8.3 Decomposition

As noted in Sauer et al. (2014), the weak form can be decomposed into in-plane and
out-of-plane contributions. Denoting the in-plane and out-of-plane components of
δx by wα and w, such that δx := wα aα + w n, one finds that

δaαβ = wα;β + wβ;α − 2w bαβ . (168)

Thus, the first part of G int can be split into in-plane and out-of-plane contributions
as ∫

S

1

2
δaαβ σαβ da = G in

σ + Gout
σ , (169)
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with

G in
σ =

∫

S
wα;β σαβ da (170)

and

Gout
σ = −

∫

S
w bαβ σαβ da . (171)

In principle – although not needed here – the second part of G int can also be split
into in-plane and out-of-plane contributions (Sauer and Duong 2017).

8.4 Linearization

In the following, the linearization of the quasi-static case is discussed, where inertia
and viscosity are absent. Inertia is linearly dependent on acceleration and thus easy to
linearize. Viscosity can be conveniently treated within the framework of the implicit
Euler time discretization scheme discussed in Sect. 10.4 and linearized in Sect. 10.5.
The quasi-static case of weak form (167) can be written in the combined form

δ�int − Gext = 0 ∀ δx ∈ V & δq ∈ Q , (172)

where δ�int = G int + Gg. Linearizing the internal virtual work gives, according to
(129),

�δ�int =
∫

S0

�xδx�0 dA +
∫

S0

δg �q dA +
∫

S0

δq �g dA , (173)

where �xδx�0 is given by (133). In order to linearize Gext, dead loading for f , t ,
and M is considered. The case of live pressure loading is given in Sauer et al. (2014).
For dead loading, Sauer and Duong (2017) show that

�Gext =
∫

∂S
mτ δaα · (

νβ n ⊗ aα + να aβ ⊗ n
)
�aβ ds , (174)

which is symmetric w.r.t. variation and linearization.

9 Analytical Solutions

This section presents two analytical solutions that describe simple bilayer defor-
mations. They are useful for the verification of numerical results. Considered are
pure bending and stretching of a flat sheet (Sect. 9.1), and the inflation of a sphere
(Sect. 9.2).
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9.1 Pure Bending and Stretching of a Flat Sheet

The first example considers the pure bending and stretching of a flat sheet. It is taken
from Sauer and Duong (2017) and Sauer et al. (2017). The sheet has the dimension
S × L and is parameterized by the coordinates ξ1 ∈ [0, S] and ξ2 ∈ [0, L]. The sheet
is deformed into a curved sheet with dimension s × � by applying the homogeneous
curvature κ1 and the homogeneous stretches λ1 = s/S and λ2 = �/L as is shown
in Fig. 4. The deformed sheet thus forms a circular arc with radius r = 1/κ1. The
parameters S, L , κ1, λ1, and λ2 are considered given, unless specified otherwise.
According to the figure, the surface in its initial configuration can be described by

X(ξ1, ξ2) = ξ1 e1 + ξ2 e2 , (175)

while its current surface can be described by

x(ξ1, ξ2) = r sin θ e1 + λ2 ξ2 e2 + r (1 − cos θ) e3 , (176)

with θ := κ1λ1ξ
1 and r := 1/κ1. The rotation at the end thus is � = κ1λ1S. From

these relations follow the initial tangent vectors

A1 = ∂X
∂ξ1

= e1 ,

A2 = ∂X
∂ξ2

= e2 ,

(177)

the current tangent vectors

a1 = ∂x
∂ξ1

= λ1
(
cos θ e1 + sin θ e3

)
,

a2 = ∂x
∂ξ2

= λ2 e2 ,

(178)

Fig. 4 Pure bending and
stretching of a sheet (Sauer
and Duong 2017):
Deformation of a flat sheet
into a curved sheet with
constant radius
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and the current surface normal

n = − sin θ e1 + cos θ e3 . (179)

This results in the kinematic quantities

[Aαβ] =
[
1 0
0 1

]
, [Aαβ] =

[
1 0
0 1

]
, (180)

[aαβ] =
[

λ2
1 0
0 λ2

2

]
, [aαβ] =

[
λ−2
1 0
0 λ−2

2

]
, J = λ1λ2 , (181)

and

[bαβ] =
[

κ1λ
2
1 0

0 0

]
, [bα

β ] =
[

κ1 0
0 0

]
,

[bαβ] =
[

κ1λ
−2
1 0

0 0

]
, H = κ1

2
, κ = 0 .

(182)

With this, the in-plane stress components become

N 1
1 = q − k H 2 ,

N 2
2 = q + k H 2 ,

(183)

both for the area-incompressible model of (143) and the area-compressible model
of (141) with q = K (J − 1).

Now consider a cut at θ that is perpendicular to the normal

ν = a1/λ1 , (184)

such that
ν1 = a1 · ν = λ1 and ν2 = a2 · ν = 0 . (185)

The distributed bending moment acting on the cut is given by M = Mαβναν
β
. Both

models, (141) and (143), lead to the simple linear relation

M = k H , (186)

between the prescribed curvature and the resulting bending moment. At θ = 0 and
θ = �, M corresponds to the boundary moment (per current length of the support).
Measured per reference length, the boundary moment is M0 = λ2 M .

If the boundaries at ξ1 = 0 and ξ1 = S are considered stress-free, N 1
1 = 0, so that

q = k H 2, (187)
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and consequently the support reaction (per current length) along ξ2 = 0 and ξ2 = L
is N := N 2

2 = 2k H 2. Per reference length this becomes N0 = λ1N .
For the area-incompressible model of (142), one has λ1 = 1/λ2, such that the

sheet is in a state of pure shear. For the area-compressible case according to model
(140), one can determine λ1 from (187) with J = λ1λ2, giving

λ1 = 1

λ2

[ k

K
H 2 + 1

]
. (188)

9.2 Inflation of a Sphere

The second example considers the inflation of a spherical vesicle. It is taken from
Sauer et al. (2017). Since the surface area increases during inflation, the area-
incompressiblemodel (140) has to be considered. For thismodel, the in-plane traction
component, given in (141), is

Nαβ = Na aαβ + Nb bαβ , (189)

with
Na := k �H 2 + K (J − 1) ,

Nb := −k �H .
(190)

The initial radius of the sphere is denoted by R, the initial volume is denoted by
V0 = 4πR3/3. The vesicle remains spherical during inflation. The current radius
during inflation is denoted by r , the current volume by V = 4πr3/3. Considering
the surface parameterization

x(φ, θ) =
⎡

⎣
r cosφ sin θ
r sin φ sin θ

−r cos θ

⎤

⎦ , (191)

one finds

[aαβ] = 1

r2

[
1/ sin2 θ 0

0 1

]
, (192)

bαβ = −aαβ/r and H = −1/r . The traction vector T = ναTα on a cut ⊥ ν thus
becomes

T = (Na − Nb/r)ν + Sαναn (193)

according to (89). The in-plane component Tν := Na − Nb/r must equilibrate the
current pressure according to the well-known relation

p = 2Tν

r
. (194)
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One can thus establish the analytical pressure–volume relation

p̄(V̄ ) = 2H̄0 V̄− 2
3 − 2H̄ 2

0 V̄− 1
3 + 2K̄

(
V̄

1
3 − V̄− 1

3

)
, (195)

normalized according to the definitions p̄ := pR3/k, V̄ := V/V0, H̄0 := H0R and
K̄ := K R2/k.

Part III: Computational Formulation

Part III discusses the computational formulation based on the theory described in
Part II. The finite element equations are presented for the shell PDE (Sect. 10) and
the incompressibility constraint (Sect. 11). Stabilization is addressed (Sect. 12) and
several numerical examples are presented (Sect. 13). Part III follows the develop-
ments in Duong et al. (2017) and Sauer et al. (2017).

10 Rotation-Free Shell FE

The shell theory presented in Part II results in a fourth order, nonlinear partial dif-
ferential equation (PDE), which involves displacement degrees of freedom, but no
rotations. In order to solve its weak form, a C1-continuous finite element discretiza-
tion is required.5 Such a discretization is provided by isogeometric finite elements. In
Duong et al. (2017) a new isogeometric FE formulation is presented for thin shells.
The formulation is suitable for a wide range of materials, and it accounts for large
deformations and rotations as Fig. 5 demonstrates. This section presents the formula-
tion (Sects. 10.1–10.3) and discussed how to treat surface viscosity (Sect. 10.4), C1-
continuity (Sect. 10.6) and patch boundaries (Sect. 10.7). Linearization is addressed
in Sect. 10.5.

10.1 FE Approximation

The surface geometry of the reference and current configuration (see Fig. 2) is dis-
cretized into nel finite elements �e, e = 1, ..., nel. Within each element, the surface
is approximated by the finite element interpolations

Xh = NXe (196)

and
xh = Nxe , (197)

5Strictly, G1-continuity (i.e., continuity in n but not necessary in aα) is sufficient.
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Fig. 5 Pinching of a cylindrical shell (Duong et al. 2017)

where N := [N11, ..., Nne1] is a (3 × 3ne) array containing the ne nodal shape
functions NI = NI (ξ

1, ξ2) of element �e defined in parameter space P . Xe :=
[XT

1 , ...., XT
ne ]T and xe := [xT

1 , ...., xT
ne ]T contain the ne nodal position vectors

of �e. The tangent vectors of the surface are thus approximated by

Ah
α = ∂Xh

∂ξα
= N,α Xe (198)

and

ah
α = ∂xh

∂ξα
= N,α xe . (199)

Likewise, the the tangent derivative aα,β and the variations δx and δaα are approxi-
mated by

ah
α,β = N,αβ xe , (200)

δxh = N δxe (201)

and
δah

α = N,α δxe . (202)

According to (6), the surface normals N and n are thus approximated by

Nh = Ah
1 × Ah

2

‖Ah
1 × Ah

2‖
(203)

and

nh = ah
1 × ah

2

‖ah
1 × ah

2‖
. (204)
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With these approximations, all the kinematical quantities of Sect. 4, like aαβ , aαβ ,
aα and bαβ , can be approximated.

10.2 Discretization of Kinematical Variations

Based on the above expressions, all the variations appearing within weak form (163)
can be evaluated. According to (79) and (81), the discretization of δaαβ and δbαβ

follow as
δahαβ = δxTe

[
NT

,α N,β + NT
,β N,α

]
xe ,

δbhαβ = δxTe N
T
;αβ nh ,

(205)

where
N;αβ := N,αβ − �

γ
αβ N,γ (206)

has been introduced. In the same fashion, the increments �aαβ and �bαβ are dis-
cretized by

�ahαβ = �xTe
[
NT

,α N,β + NT
,β N,α

]
xe ,

�bhαβ = �xTe N
T
;αβ nh .

(207)

For the increments of δaαβ and δbαβ , given in (83) and (86), the approximations

�δahαβ = δxTe
[
NT

,α N,β + NT
,β N,α

]
�xe

�δbhαβ = − δxTe
[
NT

,γ (n ⊗ aγ)N;αβ + NT
;αβ (aγ ⊗ n)N,γ

+NT
,γ a

γδ bαβ (n ⊗ n)N,δ

]
�xe

(208)

then follow. Here, superscript h has been omitted from n, aγ , aγδ , and bαβ for
simplicity. For the rest of the paper, all quantities are understood to be discrete even
without explicit use of superscript h.

10.3 Discretized Weak Form

In the discrete system the weak form of Sect. 8 takes the form

G =
nel∑

e=1

Ge =
nel∑

e=1

(
Ge

in + Ge
int + Ge

c − Ge
ext

)
, (209)

where Ge• are the elemental contributions to the expressions in (164). Inserting the
above interpolations into (209) leads to
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Ge = δxTe f
e , (210)

with
fe := fein + feint + fec − feext . (211)

The first term,

fein := −
∫

�e

ρNT N da v̇e , (212)

defines the inertia forces acting on the nodes of element �e. The second term, feint :=
feσ + feM , defines the internal forces of element �e caused by the membrane stress
σαβ and the bending moment Mαβ . The two contributions are given by

feσ :=
∫

�e

σαβ NT
,α aβ da , (213)

and

feM :=
∫

�e

Mαβ NT
;αβ n da . (214)

Following decomposition (169), feσ can be split into the in-plane and out-of-plane
contributions (Sauer et al. 2014)

feσin := feσ − feσout ,

feσout := −
∫

�e

σαβ bαβ NT n da .
(215)

The third term,

fec =
∫

�e

NT pc n da , (216)

defines the FE contact forces due to the contact pressure pc. The last term, feext :=
fef + fet + fem , defines the FE forces due to the external loads f , t and mτ . The three
pieces are given by

fef :=
∫

�e

NT f da ,

fet :=
∫

∂t�e

NT t ds ,

fem :=
∫

∂m�e

NT
,α να mτ n ds .

(217)

In the examples considered here, the external forces are zero.
The discretized system is in equilibrium if all nodal forces sum up to zero (see

Sect. 11.2 for details). This force balance is a second-order system of ordinary dif-
ferential equations due to the inertia term. If inertia is neglected, as is considered in
the remainder of this paper, the force balance is a first-order system of ODEs due
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to the viscosity term. The temporal discretization of the viscosity term is discussed
next.

10.4 Temporal Discretization of the Viscosity Term

In order to solve the time-dependent problem, time is discretized into a set of nt
steps and the solution is advanced from step tn to tn+1. The viscosity dependant
stress σ

αβ
visc = −η ȧαβ can be discretized at tn+1 by the first-order rate approximation

ȧαβ
n+1 ≈ 1

�tn+1

(
aαβ
n+1 − aαβ

n

)
, (218)

where •n := •(tn) and �tn+1 := tn+1 − tn . At the new step tn+1, the problem is then
solved implicitly for the current nodal positions x I (tn+1), given the previous positions
x I (tn). The reference configuration is taken as the initial configuration at time t0 = 0,
i.e. X I = x I (t0). This temporal discretization approach corresponds to the implicit
Euler scheme.

10.5 Linearization

The resulting nonlinear equations at the current time step are solvedwith theNewton–
Raphson method. This requires the linearization of the discretized weak form. The
most important contribution is the linearization of the internal virtual work. The
linearization of inertia and the external forces is not required for the later examples,
and they are therefore omitted here. The interested reader can find them in Duong
et al. (2017). The linearization of the contact forces can be found in the contact
literature, e.g., see Sauer and De Lorenzis (2013, 2015).

According to (173) and (133), the linearization of Ge
int (in the absence of the

incompressibility constraint) leads to

�Ge
int =

∫

�e
0

(
cαβγδ 1

2δaαβ
1
2�aγδ + dαβγδ 1

2δaαβ �bγδ

+ eαβγδ δbαβ
1
2�aγδ + f αβγδ δbαβ �bhγδ

+ Jσαβ 1
2�δaαβ + JMαβ �δbαβ

− Jη

4�t
δaαβ

[(
aαβ − aαβ

n

)
aγδ + 2aαβγδ

]
�aαβ

)
dA ,

(219)

where subscript n + 1 has been omitted. The tangent matrices cαβγδ , dαβγδ , eαβγδ and
f αβγδ have been given in Sect. 7.4. The last term arises from the viscosity approxi-
mation of (218). In can be absorbed into cαβγδ if one replaces
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cαβγδ ← cαβγδ − Jη

�t

[(
aαβ − aαβ

n

)
aγδ + 2aαβγδ

]
. (220)

Using (135), and exploiting the minor symmetries in the tangent matrices, one finds

cαβγδ 1
2δaαβ

1
2�aγδ = cαβγδ δxTe N

T
,α (aβ ⊗ aγ)N,δ �xe ,

dαβγδ 1
2δaαβ �bγδ = dαβγδ δxTe N

T
,α (aβ ⊗ n)N;γδ �xe ,

eαβγδ δbαβ
1
2�aγδ = eαβγδ δxTe N

T
;αβ (n ⊗ aγ)N,δ �xe ,

f αβγδ δbαβ �bγδ = f αβγδ δxTe N
T
;αβ (n ⊗ n)N;γδ �xe ,

(221)

such that

�Ge
int = δxTe

[
ke

σσ + ke
σM + ke

Mσ + ke
MM + ke

σ + ke
M

]
�xe , (222)

with

ke
σσ :=

∫

�e
0

cαβγδ NT
,α (aβ ⊗ aγ)N,δ dA ,

ke
σM :=

∫

�e
0

dαβγδ NT
,α (aβ ⊗ n)N;γδ dA ,

ke
Mσ :=

∫

�e
0

eαβγδ NT
;αβ(n ⊗ aγ)N,δ dA ,

ke
MM :=

∫

�e
0

f αβγδ NT
;αβ (n ⊗ n)N;γδ dA ,

(223)

and

ke
σ =

∫

�e

NT
,α σαβ N,β da ,

ke
M = ke

M1 + ke
M2 + (ke

M2)
T ,

(224)

and

ke
M1 := −

∫

�e

bαβ Mαβ aγδ NT
,γ (n ⊗ n)N,δ da ,

ke
M2 := −

∫

�e

Mαβ NT
,γ (n ⊗ aγ)N;αβ da .

(225)

The first four ke are the material tangent matrices of element �e. In order for those
to be positive definite, stability criterion (138) needs to be satisfied. ke

σ and ke
M are

the geometric tangent matrices of element �e.
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10.6 C1-Continuous Shape Functions

As noted before, the FE shape function have to be at leastC1-continuous everywhere
in the domain, including element boundaries. This property is provided by the shape
functions used in isogeometric analysis (Hughes et al. 2005; Cottrell et al. 2009).
An example are NURBS (Nonuniform rational B-splines). Thanks to the Bézier
extraction operator Ce introduced by Borden et al. (2011), the usual finite element
structure can be used for NURBS basis functions. The NURBS shape function of
node (= control point) A is given by

NA(ξ
α) = wA N̂ e

A(ξ
α)

∑ne
A=1 wA N̂ e

A(ξ
α)

. (226)

Here,ne is the number of control points defining element�e,wA is aweight, and N̂ e
A is

the B-spline basis function expressed in terms of Bernstein polynomials according to

N̂e(ξα) = Ce
1 B(ξ1) ⊗ Ce

2 B(ξ2) , (227)

with N̂ e
A being the corresponding entries of matrix N̂e. Further details can be found

in Borden et al. (2011). Figure6 shows the basis function N̂ e
A for a one-dimensional

example with five control points. The tensor-based structure of (227) provides a
simple extension to two dimensions, as long as the surface S can be globally defined
from a rectangular parameter domain. If this is not the case, alternatives exists. One
possibility is to use T-spline basis functions (Scott et al. 2011). Another option is to
construct the surface frommultipleNURBSpatches (e.g., see the example in Fig. 16).
In this case, the relative rotation between neighboring patches has to be suppressed.
This is discussed in the following section. It is also possible to apply local refinement
to the patches (Johannessen et al. 2014; Zimmermann and Sauer 2017).

Fig. 6 The B-spline basis functions for a patch of three elements and five control points (Corbett
2016)
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10.7 Patch Interfaces

To constrain rotations between patches, the constraint potential

�n =
∫

L0

ε

2
(n − ñ) · (n − ñ) dS (228)

is added to the formulation. L0 denotes the patch interface in the reference configu-
ration, ε is a penalty parameter, and n and ñ are the normal vectors on the two sides
of the patch interface. The variation, linearization, and FE discretization of (228) is
discussed in Duong et al. (2017). Careful implementation of the approach leads to
no loss in accuracy compared to single patches as Fig. 7 shows.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7 Pure bending of a flat sheet (cf. Sect. 9) considering: a single patch with regular mesh,
b single patch with skew mesh, c two patches with regular mesh, and d two patches with skew
mesh. e Deformed configuration coloured by the relative error in mean curvature H . f L2 error of
the solution w.r.t. mesh refinement (Duong et al. 2017)
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11 Mixed Finite Elements

For the area-incompressible case of Eq. (142), the Lagrange multiplier q and the
corresponding weak form equation have to be discretized as well. This is discussed
in the following (Sect. 11.1) using LBB-conforming finite elements (Sect. 11.3). The
resulting solution procedure is presented in Sect. 11.2 using the normalization scheme
of Sect. 11.4

11.1 Discretization of the Area Constraint

The Lagrange multiplier is approximated by the interpolation

qh = Lqe , (229)

analogously to the deformation in Eq. (197). Here L := [L1, ..., Lme ] is a (1 × me)

array containing the me nodal shape functions L I = L I (ξ
α) of surface element �e,

and qe := [q1, ...., qme ]T contains theme nodal Lagrange multipliers of the element.
It follows that

δqh = L δqe , (230)

such that weak form (166) becomes

Gg =
nel∑

e=1

Ge
g , (231)

where
Ge

g = δqT
e g

e , (232)

with

ge :=
∫

�e
0

LT g dA . (233)

11.2 Solution Procedure

The mixed problem is characterized by the two unknown fields x and q, or their
discrete counterparts x and q. The combined weak form of the discrete problem is
given by

δxT f(x,q) + δqT g(x) = 0 , ∀ δx ∈ Vh & δq ∈ Qh , (234)
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which follows from adding the elemental contributions of Ge and Ge
g given in (210)

and (232). Here x, q, δx, and δq are global vectors containing all nodal deformations,
Lagrange multipliers and their variations. Vh and Qh are the discrete counterparts
to spaces V and Q. The global vectors f and g are assembled from the elemental
contributions feint, f

e
c , f

e
ext, and ge by adding corresponding entries. Equation (234)

is satisfied if f = 0 and g = 0 at nodes where no Dirichlet BC apply. These two
nonlinear equations are then solvedwith Newton’s method for the unknowns x and q.

If no constraint is present (like in model (140)), the parts containing q and g are
simply skipped.

11.3 LBB Condition

FormixedFEproblems, the discretization of x andq cannot be chosen independently.
Instead, xh and qh should satisfy the LBB condition6

inf
qh∈Qh

sup
vh∈Vh

∫
S qh divs vh dA

‖vh‖H 1 ‖qh‖L2
= γh ≥ γ > 0 (235)

(Babuška 1973; Bathe 1996). For the presented shell discretization, the inf-sup value
γh corresponds to the smallest eigenvalue of

Gφ = λSφ , (236)

Bathe (2001), where

G := kT
g T

−1 kg ,

kg :=
∫

Sh

LTaα · N,α da ,

T :=
∫

Sh

LTL da ,

S :=
∫

Sh

(
NTN + aαβ NT

,αN,β

)
da ,

(237)

and (λ,φ) denotes the eigenvalue/eigenvector pair. Eigenvalue problem (236) is
defined on the entire system, and hence, the integrals are taken over the entire surface
Sh and the arrays N and L now extended to all nodes. The LBB condition can
be satisfied if x is interpolated by C1-continuous, biquadratic NURBS and q is
interpolated by C0-continuous, bilinear Lagrange shape functions (Loc et al. 2013).
This is demonstrated in Fig. 8. If the LBB condition is violated, oscillations in the
Lagrange multiplier appear. Such oscillations do not appear in this example. Also the

6Named after Ladyzhenskaya, Babuška, and Brezzi.
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Fig. 8 Cook’s membrane test for mixed displacement/pressure FE (here for NURBS-based
biquadratic displacement and Lagrange-based bilinear pressure interpolation): initial configuration
(a), deformed configuration (b), inf-sup value (c). The left boundary is fully clamped, while on the
right boundary a distributed force is applied considering two cases: only an in-plane force (‘Cook’s
membrane’) and a force with an out-of-plane component (‘Cook’s shell’). Area-incompressibility
together with shear model ‘A-st’ with μ̄ = 5 is considered. The color in the middle figure shows
the Lagrange multiplier. Since the inf-sup value is bounded the formulation is LBB-stable

multi-patch example in Sect. 13.2 does not exhibit such oscillations if it is discretized
by the mixed approach described above. However, If a penalty regularization of
constraint (76) is used, oscillations appear as the penalty parameter (i.e., the bulk
modulus K ) is increased (Sauer et al. 2017).

11.4 Normalization

For a numerical implementation, the preceding expressions need to be normalized.
For this purpose a length scale L0, time scale T0, and force F0 are chosen, and used to
normalize all lengths, times, and forces in the system. Velocities, surface densities,
surface pressures, membrane stiffness, and membrane viscosity are then normalized
by the scales

v0 := L0

T0
, ρ0 := F0T 2

0

L3
0

, p0 := F0

L2
0

, μ0 := F0

L0
, η0 := F0T0

L0
. (238)

Weak form (234) can then be expressed in the normalized form

δx̄T f̄(x̄, q̄) + δq̄T ḡ(x̄) = 0 , (239)

where a bar denotes normalization with the corresponding scale from above, e.g.,

f̄eσ :=
∫

�̄e

σ̄αβ N̄T
,α aβ dā , (240)
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with σ̄αβ = σαβ/μ0, N̄,α = N,α L0 and dā = da/L2
0. By choice, parameter ξα is

supposed to carry units of length, so that aα and aαβ become dimensionless. All the
other quantities appearing in (234) are normalized in the same fashion.

If F0 is defined through k = F0L0 (the bending modulus k has the unit [force
× length]), the system is effectively normalized by k. The nondimensional material
parameters thus are

k̄ = 1 ,

k̄g = kg/k ,

K̄ = K L2/k ,

μ̄ = μ L2/k ,

ε̄ = ε L/k ,

(241)

while the normalization of stress and moment components become

q̄ = q L2/k ,

σ̄αβ = σαβ L2/k ,

M̄αβ = Mαβ L/k .

(242)

12 Lipid Bilayer Stabilization

As noted in Sects. 1, 7.4 and 10.5, the lipid bilayer is unstable for quasi-static com-
putations (i.e., when no inertia and viscosity is considered). There are two principal
ways to stabilize the system without modifying and affecting the original problem.
They are discussed in the following two sections and then summarized in Sect. 12.3.
The presentation is taken from Sauer et al. (2017).

12.1 Adding Stiffness

One way to stabilize the system is to add a stabilization stress σ
αβ
sta to σαβ in order

to provide additional stiffness. This stress can be defined from a (convex) shear
energy or from numerical viscosity. An elegant and accurate option is to add the
stabilization stress only to the in-plane contribution (170) while leaving the out-
of-plane contribution (171) unchanged. The advantage of this approach is that the
out-of-plane part, responsible for the shape of the bilayer, is not affected by the
stabilization, at least not in the continuum limit of the discretization. There are
several different ways to define the stabilization stress, and they are grouped into two
categories. An overview of all the options is then summarized in Table2.

In-plane shear and bulk stabilization The first category goes back to Sauer (2014),
who used it to stabilize liquid membranes governed by constant surface tension. The
stabilization stress for such membranes requires shear and bulk contributions. Those
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are given for example by the stabilization stress

σ
αβ
sta = μ/J

(
Aαβ − aαβ

)
, (243)

based on numerical stiffness, and

σ
αβ
sta = μ/J

(
aαβ
pre − aαβ

)
, (244)

based on numerical viscosity. Here, aαβ
pre denotes the value of aαβ at the preced-

ing computational step. These stabilization stresses are then only included within
Eq. (170) and not in Eq. (171), and the resulting two stabilization schemes are denoted
‘A’ (for (243)) and ‘a’ (for (244)) following Sauer (2014). This reference shows that
scheme ‘a’ is highly accurate and performs much better than scheme ‘A.’ It also
shows that applying the stabilization stresses (243) and (244) only to the in-plane
part is much more accurate than applying it throughout the system (i.e., in both
Eqs. (170) and (171)), which we denote as schemes ‘A-t’ and ‘a-t.’

Sole in-plane shear stabilization If the surface tension is not constant, as in the
lipid bilayer models introduced above, only shear stabilization is required. A suitable
stabilization stress can be derived from the shear energy

�0 = μ

2

(
Î1 − 2

)
, (245)

where Î1 = I1/J (Sauer et al. 2017). Equations (124) and (116) then give

τ
αβ
sta = μ

J

(
Aαβ − I1

2
aαβ

)
. (246)

As before, this stress will only be applied to Eq. (170) and not to Eq. (171), even
though it has been derived from a potential and should theoretically apply to both
terms. Following earlier nomenclature, this scheme is denoted by ‘A-s’. Replacing
Aαβ by aαβ

pre in (246) gives

τ
αβ
sta = μ

J ∗
(
aαβ
pre − I ∗

1

2
aαβ

)
, (247)

with J ∗ :=
√
det aαβ

/
det apreαβ and I ∗

1 := aαβ
pre aαβ , which is an alternative shear-

stabilization scheme based on the numerical viscosity. It is denoted ‘a-s’. If stresses
(246) and (247) are applied throughout the system (i.e., to both (170) and (171)), the
corresponding schemes are denoted ‘A-st’ and ‘a-st’.

If the shell is (nearly) area-incompressible the two stabilization methods of sec-
tions “In-plane shear and bulk stabilization” and “Sole in-plane shear stabilization”
can behave identical, as can be seen by the example in Sect. 12.4.
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12.2 Normal Projection

The second principal way to stabilize the system consists of a simple projection
of the formulation onto the solution space defined by the normal surface direction.
This step can be applied directly to the discretized formulation as was proposed
by Sauer (2014). According to this, for the discrete system of linear equations for
displacement increment �u, which is given by K�u = −f , the reduced system for
increment �ured = P�u is simply obtained as

Kred �ured = −fred , Kred := PKPT , fred := P f , (248)

where

P :=

⎡

⎢
⎢
⎢
⎣

nT
1 0T · · · 0T

0T nT
2 · · · 0T

...
...

. . .
...

0T 0T · · · nT
nno

⎤

⎥
⎥
⎥
⎦

(249)

is a projection matrix defined by the nodal normal vectors nI . Since this method can
lead to distorted FE meshes, a mesh update can be performed by applying any of the
stabilization techniques discussed above. If this is followed by a projection step at
the same load level, a dependency on parameter μ is avoided.

As noted in Sauer et al. (2017), the projection approach does not work very well
for surfaces with (near) area-incompressibility, but it does work very well for area-
compressible surfaces (Sauer 2014).

12.3 Summary of the Stabilization Schemes

The nine stabilization schemes presented above are summarized in Table2. They
can be grouped into three classes: A, a and P. The schemes of class A depend only
on μ but require this value to be quite low. The schemes of class a also depend on
the number of computational steps, nt . If this number is high, the schemes provide
stiffness without adding much stress. The shell is then stabilized without modifying
the solution much, even when μ is high. Scheme ‘P’ depends on the nodal projection
vector nI , which is usually taken as the surface normal. The performance of the
different stabilization schemes is investigated in the following section.
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Table 2 Summary of the stabilization schemes presented in Sects. 12.1 and 12.2 (Sauer et al. 2017)

Class Scheme Stab. stress
σ

αβ
sta /μ

Application of
σ

αβ
sta

Dependence

A A
(
Aαβ − aαβ

)
/J Only in (170) Only on μ

A-t
(
Aαβ − aαβ

)
/J In (170) and

(171)
Only on μ

A-s
(
Aαβ −
1
2 I1 a

αβ
)
/J 2

Only in (170) Only on μ

A-st
(
Aαβ −
1
2 I1 a

αβ
)
/J 2

In (170) and
(171)

Only on μ

a a
(
aαβ
pre − aαβ

)
/J Only in (170) On μ and nt

a-t
(
aαβ
pre − aαβ

)
/J In (170) and

(171)
On μ and nt

a-s
(
aαβ
pre −

1
2 I

∗
1 aαβ

)
/J ∗2

Only in (170) On μ and nt

a-st
(
aαβ
pre −

1
2 I

∗
1 aαβ

)
/J ∗2

In (170) and
(171)

On μ and nt

P P 0 – On nodal nI

12.4 Performance of the Stabilization Schemes

Two examples are considered in order to examine the performance of the proposed
stabilization schemes. They are based on the two analytical examples presented in
Sect. 9.

Pure bending and stretching of a flat sheet The first example considers the pure
bending and stretching of a flat sheet. The analytical solution for this problem is given
in Sect. 9.1. The problem is solved numerically using the computational setup shown
in Fig. 9. The FE mesh is discretized by m elements along X . The parameter t is
introduced to apply the rotation � = tπ/6 and stretch λ2 = 1 + t/2 by increasing t
linearly from 0 to 1 in nt steps, where nt is chosen as amultiple ofm. Themean curva-
ture then follows as H = �/(2λ1S). Numerically, the rotation is applied according
to (228) considering the penalty parameter ε = 100m k/L . Figure9b shows the FE
solution and analytical solution for the bending moment M0(t) and the stress N0(t),
normalizing M0 by k/L and N0 by k/L2.

Next, the accuracy of the different stability schemes is studied in detail by exam-
ining the L2-error of the solution, defined by

L2 :=
√

1

SL

∫

S0

‖uexact − uFE‖2 dA , (250)

and the error in M and N , defined by
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EMN := |Mexact − MFE|
Mexact

+ |Nexact − NFE|
Nexact

, (251)

where MFE and NFE are the computed mean values along the respective boundaries.
The first error is a measure of the kinematic accuracy, while the second is a measure
of the kinetic accuracy. Figure10 shows the two errors for the area-incompressible
model of Eq. (142). Looking at the L2-error, schemes ‘A-t,’ ‘A-st,’ ‘a-t,’ and ‘a-st’
perform best. In case of error ENM , schemes ‘a’ and ‘a-s’ perform best. Class A
generally converges with μ, but it may not converge with the number of elements
for high values of μ. Interestingly, the L2-error of scheme ‘A-t’ and ‘A-st’ is not
affected by μ, as schemes ‘A’ and ‘A-s’ are. For sufficiently low μ (form = 32 about
μ̄ < 10−3), the accuracy of class A (both in L2 and EMN ) reaches that of class a
and then only improves with mesh refinement. ClassAwith low μ may even surpass
class a with high μ. But generally, class a is more accurate and robust (as μ does not
need to be very small). There is no clear favorite in class a for this test case.

As the plots show, not a single stabilization scheme stands out here and the accu-
racy depends both on the model and the error measure. In general, all schemes are
suitable to solve the problem. If class A is used, the value of μ needs to be suit-
ably low. For class a even large values for μ can be used. In this example it is even
possible to setμ = 0 in the code. Thisworks since the effective shear stiffness accord-
ing to (151) is positive here, i.e., μeff = 3 JkH 2/2 > 0. For other problems μeff can
be negative, and stabilization is required.

Inflation of a sphere The second example considers the inflation of a spherical cell.
Contrary to the previous example, the FEmesh now also contains interfaces between
NURBS patches. Since the surface area increases during inflation, potential (140) is
considered. Figure11 shows the computational setup of the problem. The compu-
tational domain consists of a quarter sphere discretized with four NURBS patches.
The quarter sphere contains 3m2/2 elements where m is the number of elements
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Fig. 9 Pure bending and stretching of a sheet (Sauer et al. 2017): a initial FE configuration and
boundary conditions (discretized withm = 8 elements); b distributed boundary moment M0(t) and
normal traction N0(t) as obtained analytically and computationally for the area-incompressible
model (142)
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Fig. 10 Pure bending and stretching of a sheet (Sauer et al. 2017): accuracy for the area-
incompressible model (142): (a) L2-error versus m considering stabilization classes A and a with
μ̄ = 10 and nt = 12.5m; (b) L2-error versus μ considering stabilization class A with m = 32;
(c)–(d) same as (a)–(b), but now for error EMN . Considered is �/2 = π/3 and λ2 = 1.5

along the equator of the quarter sphere. At the boundaries and at the patch interfaces
C1-continuity is enforced using (228) with ε = 4000mk/R. The area bulk modulus
is taken as K = 5 k/R2, while kg is taken as zero. Two cases are considered: H0 = 0
and H0 = 1/R. Figure12 shows that the computational p(V )-data converge to the
exact analytical result of (195). Here the pressure error

ep = |pexact − pFE|
pexact

(252)

is examined for H0 = 1/R and V̄ = 2 considering the 9 stabilization schemes of
Table2 with μ̄ = 0.01 for class A and μ̄ = 1 and nt = 5m for class a. For schemes
‘A,’ ‘A-s,’ ‘A-st,’ ‘a,’ ‘a-s,’ ‘a-st,’ and ‘P’ this error converges nicely (and is indistin-
guishable in the figure). Only schemes ‘A-t’ and ‘a-t’ behave significantly different.
They introduce further errors that only converge if μ is decreased or nt is increased.
The reason why all other schemes have equal error, is that here the error is actually
determined by the penalty parameter ε used within patch constraint (228). The error
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Fig. 11 Sphere inflation (Sauer et al. 2017): a initial FE configuration and boundary conditions
(for mesh m = 8); b current FE configuration for an imposed volume of V̄ = 2 compared to the
initial configuration; the colors show the relative error in the surface tension Tν
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Fig. 12 Sphere inflation (Sauer et al. 2017): a pressure-volume relation; b FE convergence for the
different stabilization schemes

stemming from the stabilization methods (apart from ‘A-t’ and ‘a-t’) is insignificant
compared to that. It is interesting to note that ‘A-st’ and ‘a-st’ perform much better
than ‘A-t’ and ‘a-t’, even though no shear is present in the analytical solution. ‘A-st’
and ‘a-st’ can therefore be considered as the best choices here, since they are the
most efficient schemes to implement.

We finally note that for a sphere μeff = JkH(H − H0), where H = −1/r . Thus
μeff > 0 for H < H0, which is the case here.
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13 Numerical Examples

This section presents three numerical examples based on the computational formu-
lation presented in the preceding three sections. The first two examples are taken
from Sauer et al. (2017). The third example is new.

13.1 Bilayer Tethering

If a surface point of the bilayer is pulled in normal direction n, a thin tether forms,
e.g., see Cuvelier et al. (2005). In order to simulate the tether drawing process,
the setup of Fig. 13 is considered. The bilayer membrane is modeled as a circular,
initially flat disc with initial radius L . The effect of the surrounding membrane is
captured by the boundary tension σ (measured w.r.t. the current boundary length).
The surface is described bymaterial model (140). L and k are used for normalization.
The remainingmaterial parameters are chosen as kg = −0.7 k and K = 20,000 k/L2.
The cases σ ∈ {100, 200, 400, 800} k/L2 are considered. Stabilization scheme ‘A-
s’ is usedwithμ = 0.1 k/L2. The bilayer is clamped at the boundary, but free tomove
in the in-plane direction. The traction t = σν is imposed and applied numerically
via (217.2). Even though t is constant during deformation, the boundary length ds
appearing in fet changes and has to be linearized (Sauer 2014). At the center, the
displacement u is imposed on the initially flat, circular surface.

Figure13b also shows one of the chosen finite element discretizations of the initial
configuration. Quadratic, NURBS-based, C1-continuous finite elements are used. A
finer discretization is chosen at the center, where the tube is going to form. The
chosen NURBS discretization degenerates at the center, such that the C1-continuity
is lost there. It is regained if displacement u is applied not only to the central control
point but also to the first ring of control points around the center. This ensures that the
tangent plane remains horizontal at the tip. Likewise, a horizontal tangent is enforced
at the outer boundary by fixing the height of the outer two rings of control points.

Fig. 13 Bilayer tethering (Sauer et al. 2017): a boundary conditions and b coarse FE mesh of the
initial configuration
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Fig. 14 Bilayer tethering (Sauer et al. 2017): Results for a σ = 100 k/L2 and b σ = 800 k/L2;
the colors show the mean curvature H normalized by L−1
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Fig. 15 Bilayer tethering (Sauer et al. 2017): a load-displacement curve; b FE convergence

Figure14 shows the deformed surface for u = L with σ̄ = 100 and σ̄ = 800. Fur-
ther cases are shown in Sauer et al. (2017). The surface tension affects the slenderness
of the appearing tube. Derényi et al. (2002) showed from theoretical considerations7

that the tube radius is

a = 1

2

√
k

σ
, (253)

while the steady force during tube drawing is

P0 = 2π
√

σ k . (254)

These values are confirmed by the computations, as is shown in Fig. 15. The left
side shows the force-displacement relation during drawing. Oscillations appear in the
numerical solution due to the mesh discretization error. They are more pronounced
for more slender tubes, as the black curve in Fig. 15a shows. They disappear upon
mesh refinement, as the solution converges. The convergence of P0 for σ = 200 k/L2

and u = L (= 28.28a) is shown in Fig. 15b by examining the error

7Assuming that the tube is sufficiently long and can be idealized by a perfect cylinder.
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e(PFE
0 ) := |P ref

0 − PFE
0 |

P ref
0

, (255)

where P ref
0 is the FE solution for m = 256 and μ = 0. Different values of stability

parameter μ are considered. Even the case μ = 0 works, due to the inherent shear
stiffness of the Helfrich model given in (151). In all cases, the error reported in
Fig. 15b is assessed by comparison to the finest FE mesh. From this one can find
that the analytical solution itself has an error of about 0.2%, due to its underlying
assumptions.

13.2 Bilayer Budding

The adsorption of proteins can lead to shape change in lipid bilayers (Zimmerberg
and Kozlov 2006; McMahon and Gallop 2005; Kozlov et al. 2014; Shi and Baumgart
2015). The lipid membrane deforms whenever its curvature is incompatible with the
inherent structure of a protein, giving rise to a spontaneous curvature. In order to
study this, a hemi-spherical cell with initial radius R and curvature H = −1/R is
considered. The cell surface is clamped at the boundary, but free to expand radially as
is shown in Fig. 16. On the top of the cell, within the circular region of radius 0.2R, a
constant spontaneous curvature H̄0 is prescribed in aLagrangian fashion, such that the
proteins causing H0 move alongwith the lipid bilayer and no diffusion occurs. Unless
otherwise specified, model (140) is used with the material parameters k̄g = −0.7 and
K̄ = 10,000, while k and R are used for normalization according to Sect. 11.4 and
remain unspecified. Further, stabilization scheme ‘A-s’ is usedwith μ̄ = 0.01. TheFE
discretization shown in Fig. 16, consisting of fiveNURBSpatches, is used.Where the
patches meet, constraint (228) is added to ensure rotational continuity and moment
transfer. Constraint (228) is also used to fix the surface normal at the boundary. The
actual FEmesh is much finer than in Fig. 16 and uses 12288 elements (64 times more
than in the figure).

In past numerical studies, axisymmetric bud shapes have been reported, e.g.,
Walani et al. (2015). These shapes should be a natural solution due to the axisymmetry
of the problem. However, as is shown below, non-axisymmetric solutions are also
possible, and can be energetically favorable, indicating that axisymmetric solutions
can become unfavored. This is illustrated by considering the three different test cases
listed in Table3 and discussed in the following:

Case a. (Fig. 17a): Here, the deformation is constrained to remain axisymmet-
ric (i.e., the FE nodes are only allowed to move in radial direction). The resulting
deformation at H̄0 = −25 is shown in Fig. 17a.

Case b. (Fig. 17b): Here, the deformation is not constrained to remain axisym-
metric. Consequently, a non-axisymmetric bud shape appears. To induce it, H0

is prescribed within an imperfect circle, i.e., an ellipse with half-axes a = 0.22R
and b = 0.18R. It is energetically favorable for the bud to evade into an elongated
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Fig. 16 Bilayer budding (Sauer et al. 2017): Considered setup showing the initial configuration,
FE discretization and boundary conditions. The surface normal at the boundary is fixed and the
boundary nodes are only free to move in the radial direction

Table 3 Bilayer budding: different physical test cases considered

Case Bud shape H0 region Stabilization μ̄ In-plane stress

a Axisym. Circle A-s 0.01 Hydro-static

b General Ellipse A-st 10 Elastic shear

c General Ellipse a-st 1250 Viscous shear

Fig. 17 Bilayer budding (Sauer et al. 2017): a axisymmetric case, b shear stiff case, and c viscous
case at H̄0 = −25. The colors show the mean curvature H̄
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Fig. 18 Bilayer budding (Sauer et al. 2017): a axisymmetric case, b shear stiff case, and c viscous
case at H̄0 = −25. The colors show the normalized surface tension γ̄

plate-like shape (see Fig. 17b). To counter this, shear resistance is provided by elastic
shear stresses according to model ‘A-st.’8

Case c. (Fig. 17c): Here, the deformation is also not constrained to remain axisym-
metric. H0 is again prescribedwithin an imperfect circle (a = 0.22R andb = 0.18R).
But now shear resistance is provided through physical viscosity. This is captured
through model ‘a-st’ using the relation η = μ�t with μ̄ = 1250 and a load stepping
increment for H0 of �H̄0 = 0.02 (such that η = 25 k/L3/Ḣ0, where Ḣ0 is the rate
with which the spontaneous curvature is prescribed). As Fig. 17c shows, the bud
splits into two separate buds.

In Sauer et al. (2017) movies can be found that animate the bud growth for the
three cases. One of the advantages of the proposed finite element formulation is that
the surface tension γ can be studied. This is shown in Fig. 18. As seen the surface
tension is not a constant. At extreme values of γ, rupture might occur, depending
on the strength of the lipid bilayer. Further details on bilayer budding are discussed
Sauer et al. (2017).

13.3 Bilayer Indentation

The preceding two examples show that liquid shells, such as lipid bilayers, exhibit
out-of-plane deformations that are very different to those observed for solid shells.

8The shear stresses are now physical and need to be applied both in-plane and out-of-plane.
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Fig. 19 Indentation of a square bilayer sheet by a spherical indenter. The inset on the right shows
that the surface remains smooth during deformation. Only half of the system is shown

This is also seen during indentation, which is considered in the following. An initially
flat, square bilayer sheet with size 2L × 2L is brought into normal contact with a
spherical indenter. The sheet is considered to be area-extensible such that it can be
clamped at the edge. The considered model parameters are k̄g = −0.83 and K̄ =
7.60 · 105, using stabilization scheme ‘a-s’ with μ̄ = 12.20. Contact is described by
the penalty method, according to which the contact pressure is given by

pc =
{−εn gn if gn < 0 ,

0 else ,
(256)

where εn is the contact penalty parameter and

gn = (x − x0) · n0 − R0 (257)

denotes the normal gap between sphere and bilayer surface. Here, x ∈ S denotes a
surface point, while R0, x0, and n0 denote radius, center, and surface normal of the
sphere. In the example, R̄0 = 0.1 and ε̄n = 7.60 · 108 is used.

Figure19 shows the deformation of the bilayer sheet for an indentation depth of
0.4L . The problem is symmetric, and therefore the finite element computations are
performed on one quarter of the sheet. Along the symmetry boundaries, constraint
(228) is used in order to enforce continuity of n. The continuity of n across the
symmetry boundary is confirmed by the inset shown on the right.

14 Conclusion

This chapter discusses the computational modeling of lipid bilayers based on thin-
shell theory. Various model ingredients are presented in order to address the chal-
lenges of this. Those ingredients range from theoretical approaches that provide a
general description of balance laws, constitution, kinematics, andweak formbased on
curvilinear coordinates, to computational methods, such as nonlinear finite element
analysis, NURBS-based surface discretizations, LBB-conforming mixed methods,
and shear stabilization. A necessary component of this is the consistent linearization
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of the formulation. The proposed formulation is illustrated by several analytical and
numerical examples. The analytical examples are used to examine the behavior of
the proposed shear stabilization schemes. The constitutive behavior of the bilayer is
based on the Helfrich bending model combined with in-plane viscosity and (near)
area-incompressibility. Neglecting inertia leads to a nonlinear PDE that is fourth
order in space and first order in time. The corresponding weak form is second order
in space and first order in time. This requires globally C1-continuous surface dis-
cretizations. Those are provided by NURBS-based FE shape functions together with
rotational constraints at patch interfaces.

The generality of the proposed formulation admits many possible extensions.
One is the generalization of the bilayer kinematics to account for tilt and interlayer
sliding. Another is the consideration of mass-varying systems (Sahu et al. 2017).
Further extension are the development of surface-ALE formulations, and local mesh
refinement in the framework of LR-NURBS (Zimmermann and Sauer 2017).

Acknowledgements The author is grateful to the German Research Foundation (DFG) for
supporting this research under grants GSC 111 and SA1822/5-1. The author also wishes to thank
Kranthi Mandadapu, Thang Duong, and Amaresh Sahu for their valuable comments, and Yannick
Omar for his help with the example in Sect. 13.3. Special thanks also go to David Steigmann for
organizing the CISM summer school that led to this article.

References

A. Agrawal, D. Steigmann, Modeling protein-mediated morphology in biomembranes. Biomech.
Model. Mechanobiol. 8(5), 371–379 (2009)

M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915
(2009)

I. Babuška, The finite elementmethodwith Lagrangianmultipliers. Num.Math. 20, 179–192 (1973)
E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, Continuum modeling of cell membranes. Int. J.
Non-lin. Mech. 39, 369–377 (2004)

K.-J. Bathe, Finite Element Procedures (Prentice-Hall, New Jersey, 1996)
K.-J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods. Comput.
Struct. 79, 243–252 (2001)

D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeo-
metric shell. Comput. Methods Appl. Mech. Engrg. 200(13–16), 1367–1378 (2011)

M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures
based on Bezier extraction of NURBS. Int. J. Numer. Meth. Engng. 87, 15–47 (2011)

P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of
the human red blood cell. J. Theoret. Biol. 26, 61–81 (1970)

F. Cirak, M. Ortiz, Fully C1-conforming subdivision elements for finite element-deformation thin-
shell analysis. Int. J. Numer. Meth. Engng 51, 813–833 (2001)

B.D.Coleman,W.Noll, The thermodynamics of elasticmaterialswith heat conduction and viscosity.
Arch. Ration. Mech. Anal. 13, 167–178 (1964)

C.J. Corbett, Isogeometric Finite Element Enrichment for Problems Dominated by Surface Effects.
Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2016)

J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis (Wiley, Chichester, 2009)
D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy, Coalescence of membrane tethers: experiments,
theory, and applications. Biophys. J. 88, 2714–2726 (2005)



284 R.A. Sauer

M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers.
J. Mech. Phys. Solids 51, 2259–2280 (2003)

I. Derényi, F. Jülicher, J. Prost, Formation and interaction ofmembrane tubes. Phy. Rev. Lett. 88(23),
238101 (2002)

Q. Du, X.Q. Wang, Convergence of numerical approximations to a phase field bending elasticity
model of membrane deformations. Int. J. Numer. Anal. Model. 4(3–4), 441–459 (2007)

N.T. Dung, G.N.Wells, Geometrically nonlinear formulation for thin shells without rotation degrees
of freedom. Comput. Methods Appl. Mech. Engrg. 197, 2778–2788 (2008)

T.X. Duong, F. Roohbakhshan, R.A. Sauer, A new rotation-free isogeometric thin shell formulation
and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech.
Engrg. 316, 43–83 (2017)

C.M. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using
surface finite elements. J. Comp. Phys. 229(18), 6585–6612 (2010)

F. Feng, W.S. Klug, Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220,
394–408 (2006)

F.G. Flores, C.F. Estrada, A rotation-free thin shell quadrilateral. Comput. Methods Appl. Mech.
Engrg. 196(25–28), 2631–2646 (2007)

R. Gu, X. Wang, M. Gunzburger, Simulating vesicle-substrate adhesion using two phase field
functions. J. Comput. Phys. 275, 626–641 (2014)

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch.
28c, 693–703 (1973)

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195
(2005)
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Onsager’s Variational Principle in Soft
Matter: Introduction and Application
to the Dynamics of Adsorption of Proteins
onto Fluid Membranes

Marino Arroyo, Nikhil Walani, Alejandro Torres-Sánchez
and Dimitri Kaurin

1 Introduction

Lipid bilayers are unique soft materials operating in general in the low Reynolds
limit. While their shape is predominantly dominated by curvature elasticity as in a
solid shell, their in-plane behavior is that of a largely inextensible viscous fluid. These
two behaviors, however, are tightly coupled through themembrane geometry. Indeed,
shape transformations necessarily induce lipid flows that bringmaterial from one part
of the membrane to another (Evans and Yeung 1994). On the other hand, fluid flows
in the presence of curvature generate out-of-plane forces, which modify the shape of
the membrane and elicit elastic forces (Rahimi et al. 2013). This mechanical duality
provides structural stability and adaptability, allowing membranes to build relatively
stable structures that can nevertheless undergo dynamic shape transformations. These
transformations are critical for the cell function; they are required in vesicular and
cellular trafficking (Sprong et al. 2001; Rustom et al. 2004), cell motility and migra-
tion (Arroyo et al. 2012; Yamaguchi et al. 2015), or in the mechano-adaptation of
cells to stretch and osmotic stress (Kosmalska et al. 2015).

In addition to this solid–fluid duality, lipid membranes are extremely responsive
to chemical stimuli. They transiently respond, for instance, to pH gradients by devel-
oping tubules and pearled protrusions (Khalifat et al. 2014, 2008; Fournier et al.
2009). Furthermore, a myriad of proteins interact with lipid bilayers through curva-
ture, either to generate it or to sense it (McMahon and Gallop 2005; Zimmerberg
and Kozlov 2006; Sens et al. 2008; Shibata et al. 2009; Antonny 2011). A number of
quantitative experiments on synthetic reconstituted systems have examined this inter-
action, notably using tethers pulled out of vesicles and exposed to curvature-active
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proteins delivered from either the bulk solution or a membrane reservoir (Sorre et al.
2009;Heinrich et al. 2010a, b; Sorre et al. 2012).More recently, the interplay between
membrane tension and curvature generation by adsorbed curving proteins has been
examined, with implications in cell mechanosensing andmechano-adaptation (Sinha
et al. 2011; Shi and Baumgart 2015).

While there is a very large body of theoretical and computational literature cover-
ing different aspects of bilayer mechanics, current models and simulation techniques
fail to capture the dynamical and chemically responsive nature of bilayermembranes.
We highlight below some of the requirements of a sufficiently general modeling
framework that can quantify and predict the behavior of lipid bilayer membranes:

Capture the out-of-equilibrium response. Indeed, bilayers are highly dynamical,
but due to the complexity of the chemical and hydrodynamical effects involved,
theory and experiments have focused on equilibrium. For instance, the classical
bendingmodel ofHelfrich (Helfrich 1973;Lipowsky1991; Jülicher andLipowsky
1993; Staykova et al. 2013) has been very successful in understanding equilibrium
conformations (Steigmann 1999; Capovilla and Guven 2002; Tu and Ou-Yang
2004; Feng and Klug 2006; Rangarajan and Gao 2015; Sauer et al. 2017), but
is insufficient to understand the reconfigurations of membranes when subjected
to transient stimuli. To address this challenge, models and simulations coupling
membrane hydrodynamics and elasticity (Arroyo and DeSimone 2009; Arroyo
et al. 2010; Rahimi and Arroyo 2012; Rahimi et al. 2013; Rangamani et al. 2013;
Rodrigues et al. 2013; Barrett et al. 2016) or elasticity and the phase-separation
of chemical species (Embar et al. 2013; Elliott and Stinner 2013) are emerging in
recent years, but only provide initial steps toward a general dynamical framework.

Capture the bilayer architecture. The classicalHelfrichmodel treats bilayermem-
branes as simple surfaces. Subsequent refinements in equilibrium, such as theArea
difference elasticity (ADE) model (Seifert 1997), acknowledge the bilayer archi-
tecture, by which bending compresses one monolayer and stretches the other but,
since monolayers can slip relative to each other, this mechanism of elastic energy
storage can be released to a certain degree in a nonlocal manner. In real biological
membranes, however, the ADE effect is thought to play a minor role because
of fast cholesterol translocation between monolayers. Beyond equilibrium, the
work of Seifert and Langer (1993) and Evans and Yeung (1994) demonstrated
that the bilayer architecture is crucial to understand the dynamics of lipid mem-
branes. In particular, these works highlighted the role of inter-monolayer friction
as a “hidden” but significant dissipative effect. When it comes to the interaction
of bilayers with proteins, the bilayer architecture is bound to play an important
role since proteins can merely scaffold the membrane, shallowly insert into one
monolayer, or pierce through the entire bilayer. Elasto-hydrodynamical models
capturing the bilayer architecture have been developed under the assumption of
linearized perturbations (Seifert and Langer 1993; Fournier et al. 2009; Callan-
Jones et al. 2016), or in a fully nonlinear albeit axisymmetric setting (Rahimi and
Arroyo 2012). In this chapter, we will not focus on this aspect.
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Capture mechanical and chemical nonlinearity. Nonlinearity is essential to
understand many soft matter systems such as lipid membranes. On the mechanics
side, these systems experience very large deformations that elicit geometric non-
linearity. On the chemical side, bilayers exhibit nonlinear chemical effects as a
result of molecular crowding, such as nonlinear adsorption (Sorre et al. 2012) or
nonlinear sorting of proteins between vesicles and tubules (Zhu et al. 2012; Aimon
et al. 2014; Prévost et al. 2015). Thus, linearized chemo-mechanical models can
only provide information about the onset of transitions (Shi and Baumgart 2015),
about dilute concentrations of protein on the surface (Góźdź 2011), or about the
response under very small perturbations (Callan-Jones et al. 2016).

Consistently treat multiple physics. As argued above, the function of lipid bilayers
is mediated by the tight interplay between elasticity, hydrodynamics, molecular
diffusion, and chemical reactions. All these phenomena act in concert and depend
on each other. For instance, the concentration of adsorbed proteins modifies the
preferred curvature of the membrane and conversely curvature modulates the
adsorption reaction. Application of a force may change the shape, inducing lipid
flows that advect proteins, drive diffusion, and feedback into shape. Although
several models have coupled mechanical and chemical phenomena resulting from
the interaction between membranes and proteins, these focus on equilibrium (Zhu
et al. 2012; Singh et al. 2012; Lipowsky 2013), on the linearized setting (Callan-
Jones et al. 2016), or consider simplistic models for the mechanical relaxation
dynamics (Liu et al. 2009).

In this chapter, we do not attempt to address all these requirements. Instead, we
will focus on the last point. More specifically, our main objective is to introduce an
emerging variational modeling framework for the dissipative dynamics of soft mat-
ter and biological systems, which provides a systematic and transparent approach
to generate complex models coupling multiple physics. This approach is founded
on Onsager’s variational principle, by which the dynamics result from the interplay
between energetic driving forces and dissipative drag forces, each of them deriving
from potentials that are the sum of individual contributions for each physical mech-
anism. Models coupling different physics can be assembled by just adding more
terms to the energy and dissipation potentials, and encoding in them the interactions
between the different physical mechanisms. In this way, this framework provides a
flexible and thermodynamically consistent method to generate complex models. The
goal of this chapter is to convey Onsager’s variational principle through examples.
Some of these examples are directly relevant to bilayer mechanics. In the second
part of this chapter, we emphasize models relevant to the adsorption of proteins on
membranes. We avoid, however, the general formulation of a complete model for
bilayers coupling elasticity, bulk and interfacial hydrodynamics, bulk and interfacial
diffusion, and adsorption in a deformable membrane, which requires many pages
and extensive use of differential geometry, but does not significantly contribute to
our goal here.

While going through this chapter, some readers may find some of the material
close to trivial or irrelevant. We encourage them to read further because the beauty
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and importance of Onsager’s principlemanifests itself when confrontedwith systems
involving multiple physics. We also note that much of the material presented here is
standard textbook material or can be found scattered in the recent and not so recent
literature. The unified viewofOnsager’s principle as a powerful and general approach
to model nonlinear dissipative systems, however, is an emerging idea. Furthermore,
we present some original applications of this principle to model nonlinear adsorption
phenomena, and curvature sensing and generation by proteins. The interested reader
may find recent applications of Onsager’s principle to lipid membranes elsewhere
(Arroyo and DeSimone 2009; Rahimi and Arroyo 2012; Rahimi et al. 2013; Fournier
2015; Callan-Jones et al. 2016).

This chapter is organized as follows. In Sect. 2, we introduce Onsager’s varia-
tional principle by way of elementary mechanical models. We also revisit common
models such as Stokes incompressible flow, linear diffusion, diffusion coupled with
hydrodynamics in the presence of a rigid semipermeable membrane, or a linear
reaction–diffusion system involving two species. See Peletier (2014) for a related
pedagogical work. By deriving all these problems using Onsager’s principle, we
frame them into a unified framework and provide the elements to build more com-
plexmodels. In Sect. 3,we focus on the adsorption and diffusion of a chemical species
from the bulk onto a surface of fixed shape. This allows us to identify the variational
structure behind common linear and nonlinear adsorption models including Lang-
muir model. Finally, in Sect. 4, we provide a minimal model to examine curvature
sensing and generation, by introducing a coupling between protein concentration and
spontaneous curvature.

2 Onsager’s Variational Principle

2.1 Background

Variational principles underly many mechanical and thermodynamic theories. These
principles provide a systematic procedure to generate governing equations, and pro-
vide an additional mathematical structure that highlights qualitative properties of
the solutions not apparent from the Euler–Lagrange equations. For instance, the
principle of minimum potential energy provides information about the stability of
equilibria, not accessible from the mere equilibrium equations. Hamilton’s principle
for the inertial mechanics of particles and continua characterizes variationally trajec-
tories otherwise satisfying “F = mA.” This variational principle provides a natural
framework to Noether’s theorem and to derive variational time integrators (Lew et al.
2004).

Toward an analogous framework to model soft matter and biological systems, we
introduce here Onsager’s variational principle (Onsager 1931a, b), in a terminology
introduced by Doi (2011). This variational framework describes the dynamics of
dissipative systems and is an extension of the principle of least energy dissipation,
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first introduced by Rayleigh (1873) (Goldstein 1980). Onsager’s relations are gener-
ally invoked in the context of linear irreversible thermodynamics (Prigogine 1967).
As argued earlier, however, nonlinearity is essential in many soft matter systems.
Importantly, as noted byDoi (2011), Onsager’s relations emerge from amore general
variational principle applicable in fully nonlinear settings. This fact was exploited
to derive the geometrically nonlinear equations for an inextensible interfacial fluid
with bending rigidity coupled to a bulk viscous fluid (Arroyo and DeSimone 2009),
or to derive the governing equations for a phase-field model of membranes coupled
to a viscous bulk fluid (Peco et al. 2013). This formalism assumes that inertial forces
are negligible (see Öttinger (2005) for an extension), but otherwise encompasses
the classes of problems encountered in soft matter and biological physics, tightly
coupling chemistry, hydrodynamics, and nonlinear solid mechanics.

Besides soft matter physics, variational principles of the Onsager type were intro-
duced in solid mechanics, in particular invoking time-incremental discretized prin-
ciples to generate algorithms (Ortiz and Repetto 1999) or to develop mathematical
analysis (Mielke 2011a, b, 2012). Along similar lines, Jordan et al. (1998); Otto
(2001) identified a variational formulation for diffusion equations as gradient flows
of entropy functionals, providing mathematical and physical insight and highlight-
ing the importance of adequately parametrizing the processes that modify the state
of the system. This led to a further formalization of Onsager’s variational principle
by Peletier (2014) introducing the so-called process operators, which were indepen-
dently used by Doi (2011) to model viscoelastic fluids and by Rahimi and Arroyo
(2012) to derive the equations of a nonlinear dynamical model for lipid bilayers.
More recently, the gradient structure of reaction–diffusion systems has been iden-
tified (Mielke 2011a), allowing us to couple such problems with other phenomena
through Onsager’s principle.

We introduce next Onsager’s principle through simple mechanical and chemical
models. Our goal is to emphasize that this principle provides a systematic way to
derive the governing equations for complex systems starting from elementary ener-
getic and dissipative ingredients, which act as building blocks of the theory. Here, we
do not address an additional important benefit of Onsager’s principle: the fact that it
provides a privileged starting point for time and space discretization of the resulting
systems of partial differential equations.

2.2 Onsager’s Principle for Elementary Systems

We consider a spring of elastic constant k coupled in parallel with a dashpot of drag
coefficient η and under the action of a force F (see Fig. 1a). It may seem an overkill
to invoke Onsager’s principle to describe such an elementary model. However, we
shall see that the treatment of more complex systems follows the same rationale,
and therefore this and subsequent examples provide a simple physical picture to
understand the essential ideas.
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(a) (b)

Fig. 1 Diagrams of two elementary mechanical systems. a A spring with constant k is in parallel
with a dashpot with drag coefficient η and a force F is applied. The system is characterized by the
displacement of the point of application of the force from its equilibrium position, x . b The spring
is now in series with the dashpot and the force is applied to the dashpot; the system in this case is
characterized by x1, the displacement of the spring relative to its equilibrium position, and x2, the
relative displacement of the dashpot with respect to the spring

The state of the system is characterized by the displacement of the spring with
respect to its natural elongation, x . The force generated by the spring is

Fcons = −kx, (1)

where the label “cons” identifies that this force is conservative. The system is also
experiencing a viscous force opposing its motion

Fvisc = −μv, (2)

where v = ẋ . If the drag is sufficiently large, inertia can be neglected. Then, balance
of forces reads

Fcons + Fvisc + F = 0, (3)

leading to

ηẋ + kx = F. (4)

This is an ordinary differential equation that can be easily integrated in time to obtain
x(t) given an initial condition. But let us focus on the structure of this equation rather
than on its solution; this equation follows from a variational principle. Indeed, on the
one hand, the spring and external forces derive from a potential, which includes the
stored elastic energy in the spring and the potential for the external force

Fcons + F = −dF
dx

where F(x) = k

2
x2 − Fx . (5)

On the other hand, the viscous force also derives from a potential, usually referred to
as the dissipation potential or as the Rayleigh dissipation function, depending on v
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Fvisc = −∂D
∂v

where D(v) = η

2
v2. (6)

The rate of change of the energy can be written, using the chain rule, as

d

dt
[F(x(t))] = dF

dx
(x(t)) ẋ(t) = (kx − F) v, (7)

and therefore Ḟ depends on the state of the system x and on the rate of change of
the state v. Now, let us define the function

R(x, v) = Ḟ(x, v) + D(v) = (kx − F) v + 1

2
ηv2. (8)

It is clear that the governing equation for this system (4) follows from 0 = ∂R/∂v.
Furthermore, because η > 0, R is a convex function of v. Thus, we conclude that
the governing equation follows from the variational principle

v = argmin
w

R(x, w). (9)

This is Onsager’s variational principle and the function R(x, v) is called the
Rayleighian of the system. The minimization is performed over the rate of change
of the state of the system, v, rather than on the state of the system, x , in contrast
with the classical equilibrium principle of minimum potential energy. This is a gen-
uinely dynamical principle establishing a competition between the energy release
rate and dissipation (Onsager 1931a; Doi 2011). Focusing on linear response theory,
Onsager showed that this principle holds for general irreversible processes, where
the key assumptions are that (i) dissipation dominates over inertia and (ii) viscous
forces are derived from a dissipation potential. This principle, however, is still valid
if F or D are general nonharmonic potentials for the spring or for the dashpot.

Before showing the application of Onsager’s variational principle to continuous
systems, we consider another discrete example consisting of a spring in series with
a dashpot loaded with a force (see Fig. 1b). The system is characterized by the
displacement of the spring from its equilibrium position, x1, and by the displacement
of the dashpot with respect to the spring, x2. We denote the rate of change of these
coordinates by vi = dxi/dt . Let us proceed directly following Onsager’s variational
principle. The energy of this system is just the energy stored by the spring and the
potential energy of the load, whose application point is displaced by x1 + x2

F(x1, x2) = k

2
x21 − F(x1 + x2). (10)

The rate of change of the energy is

Ḟ(x1; v1, v2) = kx1v1 − F(v1 + v2), (11)
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which here happens not to depend on x2. On the other hand, the dissipation potential
can be written in terms of v2 only

D(v2) = η

2
v2
2 . (12)

Thus, the Rayleighian is

R(x1; v1, v2) = kx1v1 − F(v1 + v2) + η

2
v2
2 (13)

and Onsager’s variational principle states that

v1, v2 = argmin
w1,w2

R(x1;w1, w2). (14)

The stationarity necessary conditions for the minimizer, 0 = ∂R/∂vi , lead to

F = kx1 = ηv2, (15)

which coincides with the result obtained from direct force balance for this system.
We end this Section with a variation of the model in Fig. 1b, in which we have two

dashpots in series with constants η1 and η2. This example is intended to make a more
subtle point and may be skipped in a first reading. In this case, F = −F(x1 + x2)
and we simply add the dissipation potentials of each of the dashpots to form

D = η1

2
v2
1 + η2

2
v2
2 . (16)

Applying Onsager’s principle, we immediately find vi = F/ηi . Now, let us define
the total displacement of the right end of the system x = x1 + x2 and its velocity
v = v1 + v2. A simple manipulation shows that the following relation holds

v = η1 + η2

η1η2
F, (17)

and therefore, the viscous force of the composite system consisting of two dashpots
in series derives from the following dissipation potential

D̂(v) = 1

2

η1η2

η1 + η2
v2. (18)

This potential exhibits a nonadditive structure in that the effective drag coefficient is
not the sum of the individual drag coefficients. In contrast, the corresponding dual
dissipation potential obtained through a Legendre transform
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D̂∗(F) = min
v

[
Fv − D̂(v)

]
= 1

2

(
1

η1
+ 1

η2

)
F2 (19)

does exhibit an additive structure for this model. This point has been raised in a
different but related context (Mielke 2012) to favor a formalism relying on the dual
dissipation potential. This simple example shows, however, that the dissipation poten-
tial retains an additive structure, see Eq. (16), provided sufficient detail is kept in the
formulation describing the rate of change of the system and how these changes dis-
sipate energy.

2.3 Incompressible Stokes Flow

We formulate next the governing equations for a Newtonian incompressible fluid
in the low Reynolds limit, the familiar Stokes equations, within the framework of
Onsager’s principle. This formalization will be useful later, when coupling low Re
hydrodynamics with different physics. We consider a fluid in a fixed volume � with
boundary ∂�. The motion of material particles in the fluid is characterized by a
velocity field v(x). The field v(x) is the continuous equivalent to v in the previous
example. The dissipation potential characterizes the energy dissipated as the fluid
deforms. For an incompressible Newtonian fluid, it takes the form

D[v] = η

∫

�

d : d dV, (20)

where d is the rate-of-deformation tensor d = 1
2

(∇v + (∇v)T
)
and η is the shear

viscosity of the fluid. Recalling that the viscous shear stress is 2ηd for a Newtonian
fluid, then η d : d can be identified as half of the rate of dissipation per unit volume.

We split∂� = �D ∪ �N into twodisjoint subdomains, theDirichlet boundary�D ,
where a velocity field is prescribed v(x) = v̄(x), and the Neumann boundary �N ,
where a traction t(x) is applied. The traction at the Neumann boundary is supplying
power to the system. This power supply can be introduced through a potential of the
form

P[v] = −
∫

�N

t · vdS. (21)

In this problem there is no energetic ingredient, and therefore, the system is oblivious
to anyvariable encoding the state system.Thus theRayleghian accounting for internal
dissipation and power supply through boundary traction is simply R[v] = D[v] +
P[v].

Onsager’s principle states that the systemevolves in such away that theRayleghian
isminimizedwith respect tov.However, it is important to realize that the velocityfield
is subjected to constraints. On the one hand, it should satisfy the Dirichlet boundary
conditions. On the other hand, since the fluid is incompressible, it should satisfy
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∇ · v = 0 in �. The variational principle allows us to easily incorporate constraints,
for instance using a field of Lagrange multipliers and forming the Lagrangian

L[v, p] = R[v] −
∫

�

p∇ · v dV

= η

∫

�

d : d dV −
∫

�N

t · vdS −
∫

�

p∇ · v dV,

(22)

where p can be interpreted as the pressure in the fluid.Now, the constrainedOnsager’s
principle can be stated as a saddle problem

v, p = argmax
q

argmin
w

{L[w, q]} . (23)

The variation of the Lagrangian with respect to the velocity field along δv consis-
tent with Dirichlet boundary conditions, i.e., δv = 0 at �D , leads to the stationarity
condition

2η
∫

�

d : ∇δv dV −
∫

�N

t · δv dS −
∫

�

p∇ · δv dV = 0. (24)

Variations with respect to p lead to

∫

�

δ p∇ · v dV = 0. (25)

Eqs. (24) and (25) are the weak form of the problem. The strong form follows after
integration by parts and taking into account the arbitrariness in δv and δ p,

∇ · σ = 0 in �,

∇ · v = 0 in �,

v = v̄ on �D,

σ · n = t on �N ,

(26)

whereσ = 2ηd − p I is the stress tensor of the fluid, I is the identity tensor, and n is
the unit outward normal to ∂�. Thus, the equations characterizing an incompressible
Newtonian fluid in the low Re limit can be obtained from Onsager’s variational
principle. This example also illustrates the treatment of constraints in this formalism.

Note that by replacing v by a displacement field u (now a state variable), d by
the linearized strain tensor ε = (∇u + ∇uT )/2, and η by the shear modulus μ, these
equations are those of linear isotropic elasticity for an incompressiblematerial. These
equations also follow from Onsager’s principle, starting from the free energy

F[u] = μ

∫

�

ε : ε dV −
∫

�N

t · udS. (27)
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Since we do not have a dissipation source, and noting that v = ∂tu, the constrained
Rayleighian becomes

L[u; v, p] = 2μ
∫

�

ε : ∇v dV −
∫

�N

t · vdS −
∫

�

p∇ · v dV . (28)

2.4 Diffusion of a Solute in a Fluid

Further building our catalog of models amenable to Onsager’s principle, we consider
now the diffusion equation. Let � be a region of space occupied by a quiescent fluid
with a dilute distribution of noninteracting and neutrally buoyant solute molecules.
This region is delimited by an impermeable container. We denote by c(x, t) the
molar concentration field of this substance at time t . A classical model to describe
the time evolution of this field is based on the diffusion equation, ∂t c = D�c, where
D is the diffusion coefficient and � is the Laplacian, supplemented by appropriate
boundary and initial conditions. Furthermore, the Stokes–Einstein equation provides
a microscopic expression for the diffusion coefficient as

D = kBT

f
(29)

where kB is the Boltzmann constant, T is the absolute temperature, and f is the
hydrodynamic drag coefficient, that is, the proportionality coefficient between the
drag force experienced by a solute molecule and the speed at which it is moving
relative to the fluid. For an incompressible Newtonian fluid at low Re and a spherical
solute or radius a,

f = 6πηa (30)

where η is the shear viscosity of the fluid (Happel and Brenner 2012).
As discussed by Jordan et al. (1998), a direct calculation shows that the diffusion

equation can be formally derived from Onsager’s principle using as free energy

F[c] = D

2

∫

�

|∇c|2dV, (31)

characterizing the changes of state of the system simply by ∂t c, and considering as
dissipation potential

D[∂t c] = 1

2

∫

�

(∂t c)
2dV . (32)

This approach, however, is not satisfactory for several reasons. First, these potentials
do not admit a compelling physical interpretation, nor provide a connection with
the microscopic physics. Second, and this cannot be fully appreciated yet, these
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potentials are not meaningful building blocks that can be combined with elasticity,
chemistry or hydrodynamics.

Instead, the main driving force for molecular diffusion is mixing entropy maxi-
mization (or minimization of entropic free energy). For a dilute solution at concen-
tration c, it can be motivated from various points of view (Peletier 2014; Pauli and
Enz 2000) that the entropy density per unit volume due to mixing between the solute
and the solvent is given by −RTc log(c/c0), where c0 is an arbitrary normalization
constant and R is the universal gas constant. Therefore, the free energy of the system
will be given by the so-called ideal gas mixing entropy

F[c] = RT
∫

�

c log
c

c0
dV . (33)

It is easy to see that c0 is an arbitrary constant. Indeed, using the properties of the
logarithm, the free energy can be written as · · · − RT log c0

∫
�
c dV . Because the

container is impermeable, conservation of solute molecules implies that this integral
is a constant, and therefore c0 only modifies an additive constant in the energy. If
part of the boundary was capable of exchanging solute molecules with a reservoir at
fixed chemical potential, then the constant c0 would not be arbitrary. We leave this
as an exercise. An alternative way to express the normalization constant common in
the literature is

F[c] = RT
∫

�

c (log c − 1) dV +
∫

�

cμ0dV, (34)

where μ0 is called standard chemical potential. As we shall see later, the governing
equations will not depend on this arbitrary normalization constant.

The state of the system, and hence its free energy, is characterized at time t by the
field c(·, t). Then, the free energy functional evaluated at this time-dependent field
F[c(·, t)] generates a function that depends only on time. Its rate of change, noting
that the boundary of � is impermeable, and therefore, Reynolds transport theorem
only involves a bulk term, can then be computed as

d

dt
(F[c(·, t)]) =

∫

�

(μ0 + RT log c) ∂t c dV, (35)

where

μ(c) = δF
δc

= μ0 + RT log c (36)

is the chemical potential at concentration c, defined as the functional derivative of the
free energy with respect to the concentration (here it is simply the partial derivative
of the free energy density). The chemical potential μ(c) locally measures the free
energy cost of adding one mole of solutes per unit volume at a given concentration.
Therefore, it is natural that gradients in the chemical potential will drive migration
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of the solutes to reduce the free energy. From this expression we see that μ0 is the
chemical potential at a reference concentration, here c = 1.

Now, let us think about the dissipation involved in the diffusive migration of the
solutes. Imagining a single solute molecule moving with a velocity w relative to the
quiescent fluid, we have seen that the drag force is given by F = − fw, and therefore
the dissipation potential for this single solute would be ( f/2)|w|2. Now, in a unit of
volume we have NAc of such molecules, where NA is Avogadro’s number. Let us
think of w as an effective collective velocity of the solutes relative to the quiescent
fluid–a diffusive velocity–in a given region in space. Then, assuming that the solution
is dilute, and therefore the drag on a solute molecule is not affected by the presence
of other solute molecules, it is reasonable to write the dissipation potential per unit
volume as ( f NA/2)c|w|2 and therefore

D[w] = f NA

2

∫

�

c|w|2dV . (37)

Toward applying Onsager’s principle, we can combine Eqs. (35) and (37) to form the
Rayleighian. However, we immediately note that Ḟ is expressed as a functional of
∂t c, but D is instead a functional of w, and therefore it is not clear what should we
minimize with respect to. How to proceed?

The first important observation is that not only ∂t c but alsow characterize the rate
of change of the state of the system. Indeed, if solutes move with diffusive velocity
w, they will rearrange in space and the concentration field will be modified. The
second observation is that these two ways of expressing the rate of change of the
state are not independent. Indeed, they are related by the continuity equation

∂t c + ∇ · (cw) = 0 (38)

expressing locally the conservation of solute molecules (Landau and Lifshitz 2013).
The product j D = cw is the molar diffusive flux of solute molecules. We will call
w the process variable for this system because it describes the rate of change of the
system, and allows us to express the dissipation. Plugging this equation into Eq. (35),
we can express the rate of change of the energy, after integration by parts, as

Ḟ[c;w] = −
∫

�

μ(c)∇ · (cw) dV

= −
∫

∂�

μ(c)cw · n dS +
∫

�

c∇μ(c) · w dV . (39)

Since we have assumed that the solute molecules cannot cross the boundary of the
container, and therefore, j D · n = 0 over ∂�, the boundary integral term vanishes
and the Rayleighian takes the form

R[c;w] =
∫

�

c∇μ(c) · w dV + f NA

2

∫

�

c|w|2dV . (40)
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Recalling Eq. (36) and minimizing this functional with respect to w we obtain the
stationarity condition

0 =
∫

�

RT∇c · δw dV + f NA

∫

�

cw · δw dV, (41)

which should hold for all admissible variations δw. This allows us to localize the
relation

j D = cw = − RT

f NA
∇c = −kBT

f
∇c. (42)

Thus, not only do we identify Fick’s law of diffusion. We also recover the Stokes–
Einstein equation for the diffusion coefficient, see Eq. (29). Plugging this expression
into the continuity equation, we recover the classical diffusion equation

∂t c = kBT

f
�c in �, (43)

with homogeneous Neumann boundary conditions ∂c/∂n = 0 in ∂�. Thus, we have
seen that Fick’s law, the Stokes–Einstein equation, and the diffusion equation can
be derived using Onsager’s principle from physically motivated expressions for the
free energy and the dissipation potential. We also see that the resulting governing
equations are independent of the normalization constant μ0.

2.5 Abstract Statement of Onsager’s Principle

The previous example has shown that the rate of change of the energy and the dis-
sipation potential may be expressed in terms of different descriptions of the rate of
change of the system. Ḟ was a functional of ∂t c while D was a functional of the
diffusive velocity w. To place the rate of change of the energy and the dissipation
potential on an equal footing in the Rayleighian, we needed a relation between these
two quantities (the continuity equation), termed process operator in the terminology
of Peletier (2014). We follow this reference in this section to formalize an abstract
statement of Onsager’s principle. The objective of this formal exercise is to conceptu-
alize the procedure and guide our formulation of more complex problems. It remains
a nontrivial task, however, to map a particular physical model into this formalism.

In the examples examined so far, we have seen that the main ingredients in
Onsager’s modeling framework are (1) the state variables, such as x or c, which
identify the state of the system, (2) the free energy F , which depends on the state
variables, (3) the process variables, such as v, v or w, which describe how the sys-
tem changes its state and generates dissipation, (4) the process operator P , which
relates the rate of change of the state variables and the process variables, (5) the
dissipation potential D, measuring the energy dissipated by the process variables,
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and possibly (6) potentials accounting for the externally supplied power P and (7)
constraints such as the incompressibility condition. Constraints may be formulated
on the state or on the process variables, but the former can always be linearized and
expressed as constraints on the process variables. Collecting all these ingredients,
we can abstractly state Onsager’s variational principle as follows.

Let us describe a dissipative system through some state variables X (t) evolving in
a suitable space (possibly a nonlinear manifold), a free energy F(X), some process
variables V (living in a vector bundle and therefore with a clear notion of 0), a
dissipationpotentialD(X; V ), and apotential for the external power supplyP(X; V ).
Suppose also that the process variables are linearly constrained by0 = C(X)V during
the time evolution of the system. F is often a nonlinear function of X , D may be a
nonlinear function of X but is generally quadratic in V , andP is generally linear in V .
However,D does not need to be quadratic in V in Onsager’s formalism as described
here. As motivated below, the thermodynamic requirements we will need on D are
(1) that it is nonnegative, (2) that D(X, 0) = 0 and (3) that it is convex as a function
of V . We will also assume here that the dissipation potential is differentiable. This
is not necessarily the case, for instance in rate independent dissipative processes
such as dry friction, which can nevertheless be framed in Onsager’s principle. The
differentiability assumption is justified here because soft and biological matter is
generally wet and rate dependent.

To form the Rayleighian, we need to evaluate the rate of change of the energy,
which can most of the times be obtained by the chain rule

Ḟ(X; ∂t X) = d

dt
[F(X (t))] = DF(X) · ∂t X, (44)

where DF(X) denotes the derivative of the free energy. The situations is slightly
complicated when considering free energy integrals over nonmaterial domains (open
systems),whereReynolds transport theoremproduces an explicit dependence of Ḟ on
the process variables V . This is the case in the example in Sect. 2.6. This dependence,
however, does not complicate the application of Onsager’s principle in any way.

In general, the process variable V (w in the previous example) will not be simply
the time-derivative of the state variable ∂t X (∂t c in the previous example), although
this was the case in the examples of Sect. 2.2. To relate these two descriptions of the
evolution of the state of the system, we need a process operator, which we consider
here to be linear

∂t X = P(X)V . (45)

This operator will often be either trivial, i.e., ∂t X = V , or a statement of conservation
of mass. Importantly, as noted by Otto (2001); Peletier (2014), V often contains
redundant information to describe ∂t X , which is however required to properly model
dissipation. This is the case in the previous example, where ∂t c is a scalar field but
w is a vector field.
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The process operator allows us to express the rate of change of the system in terms
of the process variable V , and thus form the Rayleighian as

R(X; V ) = DF(X) · P(X)V + D(X; V ) + P(X; V ). (46)

Onsager’s variational principle then states that the system evolves such that

V = argmin
W

R(X;W ) (47)

subject to the constraints on W

C(X)W = 0. (48)

The constrained dynamics can be equivalently characterized as stationary (saddle)
points of the Lagrangian

L(X; V,�) = DF(X) · P(X)V + D(X; V ) + P(X; V ) + � · C(X)V, (49)

where � are the Lagrange multipliers. Once V is obtained from this variational
principle, we can then integrate ∂t X in time recalling Eq. (45).

Let us now formally examine an important qualitative property of the result-
ing dissipative dynamics. For this, we will consider a “homogeneous” system with
P(X; V ) = 0. The stationarity condition 0 = δ�L simply leads to 0 = C(X)V . The
stationarity condition 0 = δVL results in the dynamical equilibrium equation

0 = DXF(X) · P(X) + DVD(X; V ) + � · C(X). (50)

Multiplying this equation by the actual V along the dissipative dynamics and rear-
ranging terms, we obtain

DXF(X) · P(X)V︸ ︷︷ ︸
Ḟ

= −DVD(X; V )V − � · C(X)V︸ ︷︷ ︸
0

. (51)

Now, sinceD is convex and differentiable in V and we have required thatD(X; 0) =
0, we conclude that

0 = D(X; 0) ≥ D(X; V ) + DVD(X; V )(0 − V ). (52)

Since we have required D(X; V ) ≥ 0, we conclude from this equation that

0 ≥ −D(X; V ) ≥ −DVD(X; V )V . (53)
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This equation, together with Eq. (51), shows that during the dynamics

Ḟ ≤ 0, (54)

and DVD(X; V )V is the rate of dissipation. For quadratic dissipation potentials,
it is easily checked that DVD(X; V )V = 2D(X; V ). Therefore, the free energy F
is a Lyapunov function of the dynamics. This also shows that Onsager’s principle
complies with the second law of thermodynamics by construction, as long as D
satisfies a set of minimal requirements. Finally, we note that this notion of stability
is fully nonlinear and does not assume a quadratic form for the dissipation or free
energy potentials.

2.6 Diffusion, Low Re Hydrodynamics, and Osmosis
in a Fluid with a Solute Interacting
with a Semipermeable Membrane

We consider now a simple problem coupling diffusion, hydrodynamics, andmechan-
ics. This problem also exemplifies the treatment of moving interfaces. The physical
model is described in Fig. 2. Because of the presence of a semipermeable mem-
brane, that selectively blocks the passage of solute molecules (red dots in the figure)
but lets solvent molecules go through (blue background medium), this model will
allow us to examine osmotic effects. The semipermeable membrane is rigid, but can

Fig. 2 Impermeable fluid container � with a semipermeable membrane dividing the container in
two subdomains. The semipermeable membrane is rigid but can move laterally and is connected to
a spring. The fluid contains solute molecules
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move laterally at the expense of storing elastic energy in a spring. Thus, this model
conceptually recapitulates a number the ingredients relevant to membrane physics.
Indeed, lipid bilayers are semipermeable membranes embedded in a solution at high
osmolar strength, and their deformation stores elastic energy. Because the imper-
meable barrier does not allow solute molecules to pass, the concentration of these
molecules may be discontinuous across �. On the other hand, the solvent can cross
the semipermeable barrier, but this passage involves some friction characterized by
a permeation coefficient (Staykova et al. 2013).

Let us address this problem using Onsager’s principle, and let us try to follow
the systematic procedure outlined in the previous section. First, we need to identify
suitable state variables, which in this case are the concentration field c of solute
molecules, which can be discontinuous across � (and for this reason we distinguish
between c+ and c− on themembrane), and the position of themoving semipermeable
membrane x . Combining ingredients introduced in the previous examples, we can
form the free energy depending on X = {c, x} as

F(X) = RT
∫

�

c (log c − 1) dV +
∫

�

cμ0dV + k

2
x2. (55)

Let us discuss the process variables. These include the diffusive velocity w char-
acterizing changes in c and the velocity of the semipermeable membrane vm = ẋ .
Furthermore, it is clear that the motion of this membrane will displace the fluid,
which cannot be assumed to be quiescent as in Sect. 2.4. Therefore, the velocity of
the fluid v will also be part of the process variables. Now, since the background
fluid is moving, we need to decide whether w describes the absolute velocity of the
solutes or their velocity relative to the fluid. We choose the latter, since this relative
velocity is the one that is meaningful to describe dissipation during diffusion. Thus,
the process variables are V = {w, vm, v}.

Let us discuss now the constraints affecting the process variables.We shall assume
that the solution is dilute, and therefore the solute molecules occupy a negligible
volume fraction. The condition of molecular incompressibility then leads to the
common condition for an incompressible fluid (here the solvent) ∇ · v = 0 in �.
For the fluid, we adopt no-slip boundary conditions at the boundary of the container,
v = 0 on ∂�. The fluid can cross themembrane, but tangentially, we impose a no-slip
condition v − (v · N)N = 0 on �. By conservation of mass of solvent v · N must be
continuous across �. Since its normal and tangential components are continuous, v
is continuous across �. Since the container is impermeable to the solute molecules,
we have w · n = 0 on ∂�.

The two dissipation potentials in Eq. (20) for viscous flow and in Eq. (37) for
diffusion are relevant to the present situation. There is an additional source of dis-
sipation associated to solvent permeation through the semipermeable membrane. In
agreement with commonly used models for permeation, we postulate that the dis-
sipation potential density per unit area is quadratic in the normal component of the
velocity of fluid across the interface v · N − vm . Thus, the dissipation potential for
this problem can be written as
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D(X; V ) = η

∫

�

d : d dV + f NA

2

∫

�

c|w|2dV + η̄

2

∫

�

(v · N − vm)2 dS, (56)

where η̄ is a permeation coefficient.
Following the systematic procedure outlined in the previous section, we now turn

to the process operator. This operator relating ∂t X and V contains the trivial compo-
nent ẋ = vm , and another component stating the conservation of solute molecules,
which now takes the form

0 = ∂t c + ∇ · ( j D + cv) = ∂t c + ∇ · [c(w + v)] , (57)

since the solute molecules can be transported either diffusively or by advection. In
addition to these two equations, there is another important process relation at the
semipermeable membrane. Because the solutes cannot cross the membrane, their
diffusive velocity needs to coincide with the membrane velocity on either side of the
domain

vm = (w± + v) · N. (58)

Since v · N is continuous across the interface, we conclude that w · N is continuous
across the interface. Therefore, the process operator can be summarized by the three
relations

ẋ = vm, 0 = ∂t c + ∇ · [c(w + v)] in �, vm = (w + v) · N on �. (59)

Now, we are in a position to compute the rate of change of the free energy, a key
point in the theory. Recalling the definition of the chemical potential in Eq. (36) and
applying Reynolds transport theorem in �− and �+ separately to account for the
internal moving boundary, we obtain

Ḟ = d

dt

∫

�−
[
RTc(log c − 1) + cμ0

]
dV + d

dt

∫

�+
[
RTc(log c − 1) + cμ0

]
dV + kx ẋ

=
∫

�−
μ∂t c dV + vm

∫

�

[
RTc−(log c− − 1) + c−μ0

]
dS+

∫

�+
μ∂t c dV − vm

∫

�

[
RTc+(log c+ − 1) + c+μ0

]
dS + kx ẋ

=
∫

�−
μ∂t c dV +

∫

�+
μ∂t c dV − vm

∫

�

[[
RTc(log c − 1) + cμ0

]]
dS + kx ẋ

=
∫

�−
μ∂t c dV +

∫

�+
μ∂t c dV − vm

∫

�
([[cμ]] − RT [[c]]) dS + kx ẋ, (60)

where [[ f ]] denotes the jump of a function f across an interface f + − f −. Now,
using the first and second process equations in Eq. (59), the divergence theorem, the
boundary conditions on ∂�, and the fact that n− = −n+ = N on �, we have



306 M. Arroyo et al.

Ḟ = −
∫

�−
μ∇ · [c(w + v)] dV −

∫

�+
μ∇ · [c(w + v)] dV

− vm

∫

�

([[cμ]] − RT [[c]]) dS + kxvm

=
∫

�

c∇μ · (w + v)dV +
∫

�

[[cμ]] (w + v) · NdS

− vm

∫

�

([[cμ]] − RT [[c]]) dS + kxvm (61)

Finally, using the third process equation in Eq. (59), we obtain

Ḟ =RT
∫

�

∇c · (w + v)dV + vm

(
RT

∫

�

[[c]] dS + kx

)
. (62)

In the abstract formalism of the previous section, the equation above is a workable
expression of DF(X) · P(X)V . The second term already shows that, in addition
to the elastic force kx , the semipermeable membrane experiences an osmotic force
that agrees with the classical van’t Hoff formula, which naturally follows from the
present formalism.

We can now form the constrained Rayleighian (accounting for solvent incom-
pressibility), which takes the form

L[c, x;w, vm, v, p] =RT
∫

�

∇c · (w + v)dV + vm

(
RT

∫

�

[[c]] dS + kx

)

+ η

∫

�

d : d dV + f NA

2

∫

�

c|w|2dV

+ η̄

2

∫

�

(v · N − vm)2 dS −
∫

�

p∇ · v dV . (63)

Making this functional stationary with respect to w leads, as in the pure diffusion
example, to Fick’s law

cw = −kBT

f
∇c in �. (64)

The variation with respect to vm leads to balance of forces acting on the semiperme-
able membrane

0 = RT
∫

�

[[c]] dS + kx + η̄

∫

�

(vm − v · N)dS. (65)

Variation with respect to p recovers the incompressibility condition 0 = ∇ · v.
Finally, variation with respect to v leads to
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0 =RT
∫

�

∇c · δvdV + 2η
∫

�

d : ∇δv dV −
∫

�

p∇ · δv dV

+ η̄

∫

�

(v · N − vm)δv · NdS. (66)

Performing integration by parts carefully over the two subdomains, and recalling
the homogeneous boundary conditions on ∂� and the fact that v (and hence δv) is
continuous across �, we find

0 =
∫

�

(RT∇c − 2η∇ · d + ∇ p) · δv dV −
∫

�

N · [[2ηd − p I]] · δv dS

+ η̄

∫

�

(v · N − vm)δv · NdS. (67)

Thus, identifying the stress tensor as σ = 2ηd − p I , the above equation leads to

0 = ∇ · σ − RT∇c in � (68)

and to

N · [[σ]] = η̄(v · N − vm)N on �. (69)

Finally, we can eliminate w from the formulation by plugging Fick’s law in Eq. (64)
into the two process relations in Eq. (59) encoding mass conservation to obtain

∂t c − kBT

f
�c + v · ∇c = 0 in �, (70)

and the two equations

kBT

f

∂c

∂N

±
= c±(v · N − vm) on �. (71)

In summary, we have deduced usingOnsager’s principle the governing equations
for the system depicted in Fig. 2. These equations are a Stokes/advection-diffusion
system in the bulk reflecting conservation of mass of solutes and solvent and balance
of linear momentum in the fluid, together with Fick’s law and the constitutive relation
for a Newtonian fluid:

0 = ∂t c − kBT

f
�c + v · ∇c

0 = ∇ · v
0 = ∇ · σ − RT∇c

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

in �,
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where σ = 2ηd − p I with boundary conditions

v = 0 and
∂c

∂n
= 0 on ∂�. (72)

These equations are supplemented with conditions at the moving semipermeable
membrane. These conditions are a no-slip condition in the tangential direction

v − (v · N)N = 0 on �, (73)

a global force balance on the membrane involving permeation, osmotic, and elastic
forces

η̄

∫

�

(v · N − vm)dS = RT
∫

�

[[c]] dS + kx . (74)

a local force balance in the fluid at the interface involving the jump of fluid tractions
and the permeation tractions

η̄(v · N − vm)N = N · [[σ]] on �, (75)

and interface conditions resulting from conservation of solute and solvent

[[v]] = 0, [[w]] · N = 0, and
kBT

f

∂c

∂N

±
= c±(v · N − vm) on �. (76)

We note that, at the interface, we impose simultaneously Dirichlet and Neumann-like
jump conditions for v, and Dirichlet and Robin-like jump conditions for c. This is
possible because the interface is moving.

We could have directly arrived at this set of equations with sufficient physical
insight and invoking constitutive relations such as Fick’s law, van’t Hoff’s relation,
or that of a Newtonian fluid. It is also clear that one can easily make errors in such a
direct derivation. Instead, all these relations have followed systematically from the
rather simple modeling assumptions behind F and D, the use of conservation of
mass for solvent and solute to define the process operator, and Reynolds transport
theorem. Furthermore, just by looking at the final equations, it is not easy to see how
is F driving this system and decreasing during the dynamics or how is energy being
dissipated. Finally, Onsager’s principle allows us to systematically construct more
complex models by adding additional building blocks. For instance, the membrane
could be made flexible and endowed with tension or curvature elasticity. Or, using
the elementary models presented in the next sections, the solute molecules could be
chemically active and react with other species, adsorb to surfaces, or preferentially
react while adsorbed on a catalyzer.

We would like to make a final point regarding this example. We discussed earlier
that the diffusion equation can be formally derived from Onsager’s principle starting
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from the energy and dissipation potentials in Eqs. (31) and (32), not founded on the
microscopic physics of diffusion. The reader can easily become convinced that these
functionals, however, dramatically fail when diffusion acts in concert with other
physics. Indeed, they cannot be meaningfully combined in a Rayleighian with the
functionals encoding additional ingredients such as hydrodynamics or permeation
through a semipermeablemembrane. Instead, the approach described above naturally
produces, for instance, entropic effects such as osmotic forces.

2.7 Reaction–Diffusion of Two Species in a Quiescent Fluid

We introduce next a new item into our catalog of phenomena amenable to Onsager’s
principle: chemical reactions. As a minimal model system, we want to identify the
variational structure of a system of two coupled linear reaction–diffusion equations
for two chemical species. We consider a domain �, whose boundary is assumed for
simplicity to be impermeable to both substances.

Let us first describe this simple model. The state of the system is described by
two molar concentration fields c1 and c2, one for each one of the species X1 and X2,
which transform through the simple reaction

X1

k f−−⇀↽−−
kb

X2. (77)

We assume that this reaction follows the law of mass action, by which in this simple
example themolar rate per unit volume of transformation of species X1 to species X2,
the forward rate r f , is proportional to the concentration of the reactant, r f = k f c1.
Conversely, the backward rate is given by rb = kbc2, and thus the net forward rate
is r = k f c1 − kbc2. Then, the dynamics of this system can be modeled through the
linear system of reaction–diffusion equations

∂t c1 =D1�c1 − k f c1 + kbc2
∂t c2 =D2�c2 + k f c1 − kbc2

}
in �, (78)

where D1 and D2 are the diffusion coefficient of each chemical species, supplemented
by initial and boundary conditions. In equilibrium, the concentrationswill be uniform
and r = 0, and thus ceq1 /ceq2 = kb/k f = K is a constant called equilibrium constant
of the reaction.

In the previous sections, we showed that molecular diffusion can be understood
as a process of entropic free energy minimization, dragged by the resistance exerted
by the solvent. Can we integrate this phenomenology with that of chemical reactions
between the diffusing species? In other words, canwe find the appropriate dissipation
and free energy potentials so that the diffusion–reaction dynamics emerge from
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Onsager’s principle? The answer is yes and due to Mielke (2012). Let us develop
such a model.

We first model the free energy of the system. Assuming that the concentrations
are dilute, we write the chemical free energy of the system building on that of an
ideal gas in Eq. (34) as a function of X = {c1, c2}

F(X) =RT
∫

�

c1 (log c1 − 1) dV +
∫

�

c1μ0,1dV

+RT
∫

�

c2 (log c2 − 1) dV +
∫

�

c2μ0,2dV, (79)

where μ0,i are the standard chemical potentials for each species. In the single-species
diffusion case, this was an irrelevant constant. We shall see that for two reacting
species, the difference between these two constants determines the equilibrium con-
stant of the reaction.

Now, in addition to the diffusive velocities w1 and w2 for each substance, the
concentrations can evolve as a result of chemical reactions quantified for instance by
the net forward reaction rate r . Thus, the process variables are now V = {w1,w2, r}.
Note that, in 3D, we need only two scalar fields to describe the state of the system
and as many as 7 (two vector fields and a scalar field) to describe the rate of change
of the system. As we show later, we do need that many degrees of freedom in V to
properly model dissipation.

Accounting for chemical reactions, the process operator is then given by the
equations

∂t c1 + ∇ · (c1w1) + r = 0,

∂t c2 + ∇ · (c2w2) − r = 0,
(80)

encoding balance of mass for the dissolved species. The conditions 0 = wi · n in ∂�,
reflecting the fact that ∂� is impermeable, can also be viewed as part of the process
operator. With the free energy and the process operator at hand, and following a
similar calculation as in Sect. 2.4, we can write the rate of change of the energy as

Ḟ(X; V ) = −
∫

�

μ1∇ · (c1w1) dV −
∫

�

μ2∇ · (c2w2) dV

+
∫

�

(μ2 − μ1)r dV (81)

with the chemical potentials given by

μi (c) = μ0,i + RT log ci . (82)
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After integration by parts using the fact that ∂� is impermeable, we obtain

Ḟ(X; V ) =RT
∫

�

∇c1 · w1 dV + RT
∫

�

∇c2 · w2 dV

+
∫

�

(μ2 − μ1) r dV . (83)

This expression already contains interesting information about equilibrium. Indeed,
the equilibrium state should minimize the free energy, and from the expression above
three stationary conditions can be extracted. Stationarity with respect to diffusive
velocitieswi implies that in equilibriumboth concentrations are uniform. Stationarity
with respect to the reaction rate r implies that μ2 = μ1, and thus

K = ceq1
ceq2

= exp
�μ0

RT
, (84)

where �μ0 = μ0,2 − μ0,1 is the difference of reference chemical potentials. Thus,
K = kb/k f is a purely thermodynamic quantity (although both kb and k f contain
kinetic information).

Having examined equilibrium, we introduce the dissipation potential, which
accounts for the dissipation during diffusion and reaction. Recalling Eq. (37), we
consider

D(X; V ) = f1NA

2

∫

�

c1|w1|2dV + f2NA

2

∫

�

c2|w2|2dV + 1

2

∫

�

1

k̄
r2dV, (85)

where fi are the molecular drag coefficients of the two species. We postulate that the
dissipation potential is quadratic in the rate r (all the dissipation potentials examined
so far have been quadratic), and leave the coefficient k̄ unspecified for the moment.
This parameter should be nonnegative for consistency with the second law of ther-
modynamics, as discussed in Sect. 2.5.

Forming the Rayleighian R = Ḟ + D and minimizing it with respect to wi , we
recover Fick’s law for each species

ciwi = −kBT

fi
∇ci in �. (86)

Minimization with respect to r leads to

r = k̄(μ1 − μ2). (87)

Now, let us remember that our goal here was to identify Onsager’s variational struc-
ture for the reaction–diffusion system in Eq. (78). We can directly established the
diffusion part by introducing Eq. (86) into the process equations in (80). To estab-
lish the reaction part, we need to express the reaction rate in Eq. (87) in the form
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r = k f c1 − kbc2. Examining the expression of the chemical potentials in Eq. (82), it
is clear that k̄ will need to be a complicated function of the concentrations.

Consider now the following choice for the concentration-dependent kinetic coef-
ficient

k̄(c1, c2) = k
c1 − e�μ0/(RT )c2

μ1 − μ2

= ke−μ0,1/(RT )

RT

eμ1/(RT ) − eμ2/(RT )

μ1/(RT ) − μ2/(RT )
, (88)

where k > 0 is a kinetic constant not depending on the concentrations. Using Eq. (82)
it is easily shown that these two expressions for k̄ are equivalent. The first form is
useful because when plugged into Eq. (87), we immediately find the sought after
expression

r = k︸︷︷︸
k f

c1 − ke�μ0/(RT )︸ ︷︷ ︸
kb

c2, (89)

which furthermore shows that we recover Arrhenius equation. The second form
of the kinetic coefficient in Eq. (88) is important because, since the exponential
function is monotonically increasing, it clearly shows that k̄ ≥ 0 for any choice of
concentrations.

Thus,we have recovered the reaction–diffusion system inEq. (78) usingOnsager’s
principle. This derivation has showed that both reaction and diffusion are driven by
the same chemical energy in Eq. (79), which decreases during the dynamics. This
free energy contains an entropic component, but also an enthalpic one given by
the difference of reference chemical potentials between the reacting species �μ0.
The newest and maybe surprising ingredient in this model has been the form of
the coefficient encoding dissipation during the chemical reaction in Eq. (88). In the
numerator, we have “�c” measuring the deviation from the equilibrium condition
in Eq. (84), and in the denominator we have �μ. This expression can be generalized
to more complex chemical reactions obeying the law of mass action (Mielke 2012).
By understanding the basic structure of the reaction–dissipation potential, we have a
new building block for modeling that can be easily adapted to different settings and
combined with different physics, as shown in subsequent sctions. We are not aware
of a compelling microscopic interpretation of Eq. (88).

During the derivation of the equations, we have identified the diffusion constants
as Di = kBT/ fi . Furthermore, we have understood that the forward and backward
rates contain not only kinetic information, but also thermodynamic information in
that their ratio depends on �μ0. Onsager’s principle has allowed us to untangle the
kinetic and thermodynamic components of the reaction dynamics. Thus, this example
further exemplifies two benefits of Onsager’s principle: (1) it provides a systematic
method to derive models for dissipative systems from a library of building blocks,
and (2) it highlights the energetic-dissipative structure of such systems, providing
physical insight into the model parameters.
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3 Surface Sorption and Diffusion

Having considered reaction–diffusion systems in the bulk, we are in a position to
examine chemical adsorption. We consider diffusing solutes in a bulk fluid adsorb-
ing or desorbing on the surface enclosing it and diffusing on it. For simplicity, we
assume that the surface has a fixed shape and the fluid is quiescent. The bulk fluid
is represented by � and the surface by � = ∂� as shown in Fig. 3. The bulk fluid
can exchange solutes with the surrounding surface through sorption—the process
encompassing adsorption and desorption.

In the context of biological membranes, adsorption from the bulk is a possible
mechanism for protein incorporation. Another important mechanism involves fusion
with vesicles loaded with membrane proteins. Proteins may adsorb by weakly scaf-
folding the membrane or by inserting amphiphilic domains into one leaflet or the
entire bilayer. Irrespective of whether the process of adsorption induces a confor-
mational change or not, we consider that the chemical reaction is the transformation
from a molecule in solution to one bound to the surface. Thus, we treat the solute
molecules in the bulk XB and those on the surface XS–the adsorbate–as two different
species transforming through the elementary reaction

XB −−−⇀↽−−− XS. (90)

We will denote by c the molar concentration of solute molecules in the bulk. To
adhere with the literature, we will express the concentration of adsorbates on the
surface through the area fraction of surface covered by adsorbed molecules φ. Thus,
the state variables are the bulk and surface fields X = {c,φ}. The molar surface
concentration can then be recovered as φ/a0, where a0 is the molar area of the
adsorbate.

In this section, we will assume that c is small, which allows us to safely consider
the ideal gas mixing entropy introduced earlier. However, we will consider the possi-
bility that the area fraction is finite, and even large. Large area coverage of membrane
proteins is common in synthetic systems (Sorre et al. 2012; Zhu et al. 2012) and in

Ω

Γ

N

Fig. 3 Elementary model for sorption–diffusion. The solutes and adsorbates are labeled with red
and green dots, respectively. The bulk domain representing quiescent fluid is � and the surface of
fixed geometry is � = ∂�
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cell organelles (Shibata et al. 2009; Terasaki et al. 2013). Molecular crowding of
proteins on the membrane can then lead to nonlinear chemical effects as discussed
in the introduction. If the adsorbates modify the preferred curvature of the bilayer by
any of the proposed mechanisms such as scaffolding, wedging, or crowding (Shibata
et al. 2009; Stachowiak et al. 2012), then adsorption may induce significant shape
transformations. In this section, however, we ignore such a coupling between chem-
istry and mechanics, which we only examine in a simple model in Sect. 4, and focus
here on the sorption/diffusion system.

3.1 Onsager’s Principle for Linear Sorption–Diffusion

First, we assume that adsorbates are very dilute. This situation is very similar to that
in Sect. 2.7, and therefore, we will provide a concise presentation highlighting the
main differences. In close analogy with that section, we write the chemical energy
in the surface and the bulk as

F = RT

a0

∫

�

φ( logφ − 1) dS + 1

a0

∫

�

μ0,aφ dS

+ RT
∫

�

c

(
log

c

c0
− 1

)
dV +

∫

�

μ0,sc dV,

(91)

where the molar area of adsorbate a0 is introduced in the first line because the
standard form of the chemical energy is for a concentration, not an area fraction. To
maintain dimensional consistency of the formulation, we have explicitly introduced
a reference concentration c0 at which the chemical potential of the solute is precisely
μ0,s . This does not involve a real additional parameter in the model because μ0,s is
defined relative to c0.

The state of the system in the bulk can change due to the solute diffusive velocity
ws according to the continuity equation

∂t c + ∇ · (cws) = 0 in �. (92)

In the surface, the surface fraction can change due to the adsorbate diffusive velocity
wa , a vector field tangent to the surface �, and due to the rate of adsorption r ,
which we express as a rate of change of area fraction. Therefore, the statement of
conservation of adsorbate becomes

∂tφ + ∇s · (φwa) = r on �, (93)

where ∇s denotes here the covariant derivative on the surface. Besides these two
equations, we need an additional equation expressing the fact that the rate of adsorbed
molecules is balanced by a flux of molecules in solution exiting �:
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cws · N = r

a0
on �, (94)

where a0 is required to convert r into rate of change of molar areal concentration.
Equations (92–94) are the process equations relating the state variables X = {c,φ}
and the process variables V = {ws,wa, r}.

Since the surface does not have boundary and the fluid is quiescent, the rate of
change of the free energy takes the form

Ḟ(X; V ) = 1

a0

∫

�

μa∂tφ dS +
∫

�

μs∂t c dV, (95)

where the chemical potentials for adsorbate and solute resulting from this calculation
are

μa(φ) = μ0,a + RT logφ,

μs(c) = μ0,s + RT log
c

c0
.

(96)

Using the process equations and the divergence theorem, we obtain

Ḟ(X; V ) = RT

a0

∫

�

∇sφ · wa dS + RT
∫

�

∇c · ws dV

+ 1

a0

∫

�

r(μa − μs) dS
(97)

We note from this expression that the chemical potential of the solute plays a role only
at the interface, where it undergoes a reaction. Making the free energy stationary, we
conclude that in equilibrium μa = μs , and therefore, the equilibrium constant of the
reaction is

ceq

φeqc0
= exp

�μ0

RT
, (98)

where �μ0 = μ0,a − μ0,s .
Similar to the previous section, the dissipation potential accounting for diffusion

of solute, of adsorbate and the sorption reaction is given by

D(X; V ) = fs NA

2

∫

�

c|ws |2 dV + fa NA

2a0

∫

�

φ|wa|2 dS + 1

2a0

∫

�

1

k̄
r2 dS, (99)

where fa , the drag coefficient of an adsorbed molecule on the membrane, will
depend strongly on the membrane interfacial viscosity and weakly on the mole-
cule size according to the theory by Saffman and Delbruck (1975). We consider
now a concentration-dependent kinetic coefficient with the same structure as in the
previous section and taking the form
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k̄ = k
c/c0 − e�μ0/(RT )φ

μs(c) − μa(φ)
(100)

To prove that, as thermodynamically required, k̄ ≥ 0, we recall Eqs. (96) and (98).
Then, a direct calculation shows that

k̄ = ke−μ0,s/(RT )

RT

eμs/(RT ) − eμa/(RT )

μs/(RT ) − μa/(RT )
, (101)

which is manifestly nonnegative because the exponential function is strictly increas-
ing.

Forming the Rayleighian combining Eqs. (97) and (99), and making it stationary
with respect to r , Onsager’s principle leads to

r = k̄(μs − μa). (102)

Recalling our choice for kinetic coefficient in Eq. (100), we immediately conclude
that

r = k

c0︸︷︷︸
kA

c − ke�μ0/(RT )︸ ︷︷ ︸
kD

φ, (103)

which allows us to identify the adsorption and desorption rates kA and kD for a model
obeying the law of mass action. As in the previous example, we recognize that their
ratio is a thermodynamic quantity, while the purely kinetic information about the
reaction is given by the rate constant k.

Stationarity of the Rayleighian with respect to the surface and bulk diffusive
velocities leads to Fick’s law in the bulk and the surface. Finally, replacing these
relations in the process equations we obtain the diffusion–sorption equation on the
surface

∂tφ = kBT

fa
�sφ + kAc − kDφ on �, (104)

where �s is the surface Laplacian, the diffusion equation in the bulk

∂t c = kBT

fs
�c in �, (105)

and a condition on the surface matching bulk flux and surface reaction

kBT

fs

∂c

∂N
= 1

a0
(kDφ − kAc) on �. (106)

These are the equations that we could have postulated a priori, but now we have
a clear understanding of the free energy driving the system and of the dissipative
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mechanisms dragging the dynamics. This example shows that Onsager’s principle
naturally deals with interfacial phenomena coupled to bulk phenomena.

While this linear sorption–diffusion model is reasonable in a dilute limit, that is
for small values of c and φ, an obvious conceptual drawback apparent from Eq. (98)
is that φeq can be made arbitrarily large by either increasing ceq at fixed �μ0, or by
considering a negative �μ0 of increasing the magnitude at fixed ceq . However, the
area fraction of adsorbates cannot be larger than 1.

3.2 Onsager’s Principle for Langmuir Sorption–Diffusion

The above limitations of the linear sorptionmodel can be overcomewith the classical
Langmuir model (Masel 1996). In a nutshell, this model introduces the notion that,
for a molecule in solution XB to become adsorbed, XS , it needs to react with a free
site on the surface XF , which is thus viewed as an additional reactant/product in the
adsorption/desorption reaction

XB + XF −−−⇀↽−−− XS. (107)

In this way, as the area coverage of adsorbate increases, fewer free sites become
available, which slows down the adsorption reaction and fixes the issue of unbounded
area coverage in the linear sorption model. In a continuum model, if φ is the area
fraction of adsorbates, then the free area fraction is 1 − φ. Because in some systems
the maximum area fraction of adsorbates φm saturates before reaching unity, we
can slightly generalize the area fraction of free sites as φm − φ. Then, from the
reaction above and the law of mass action, we can postulate the following form of
the adsorption reaction rate

r = kAc(φm − φ) − kDφ, (108)

where kA and kD are adsorption/desorption rate coefficients. It is clear that in a
dilute limit φm − φ ≈ φm and we essentially recover the reaction rate in Eq. (103).
In equilibrium, r = 0, which leads to the following expression for the equilibrium
area fraction of adsorbates

φeq = kAφmceq

kAceq + kD
. (109)

It is now clear that as the bulk concentration becomes larger, ceq → +∞, the area
fraction tends to the saturation valueφeq → φm as expected. To couple this adsorption
model with diffusion in the bulk and the surface, it seems reasonable to replace the
reaction rate in Eq. (103) by that in Eq. (108), which results in simply replacing kAc
by kAc(φm − φ) in Eqs. (104) and (106). The reaction–diffusion system that follows
from this reasonable modeling approach is nonlinear in the reaction terms.
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Our question now is whether Langmuir’s sorption model can be derived from
Onsager’s principle, and if so, what is the appropriate notion of free energy and
dissipation potential. If this is the case, Onsager’s principle provides a natural way
to couple the sorption reaction with diffusion. Then, a second question is whether
the resulting sorption–diffusion system is indeed that discussed in the previous
paragraph.

Let us focus on the mixing entropy on the surface. In the ideal gas model in
Eq. (91), we accounted for the entropy of the adsorbates with a term of the form
φ logφ (up to normalization factors). Now, since we view empty sites as a new
reacting species, it makes sense to consider also their entropic contribution, which
will be of the form (φm − φ) log(φm − φ). Since the empty sites are immaterial, it
does not make sense to include an enthalpic term analogous to μ0,aφ. This argument
leads to following expression for the free energy of the system:

F[c,φ] = RT

a0

∫

�

[
φ logφ + (φm − φ) log(φm − φ)

]
dS + 1

a0

∫

�

μ0,aφ dS

+RT
∫

�

c

(
log

c

c0
− 1

)
dV +

∫

�

μ0,sc dV .

(110)

The first term is in fact the well-known Flory–Huggins expression for the entropy of
mixing (Huggins 1941; Flory 1942), introduced originally in the context of polymer
blends. In the Flory–Huggins theory, an additional enthalpic term is added to the free
energy density to account for the interaction between the mixing species of the form
(RT/a0)χφ(φm − φ), whereχ is a dimensionless parameter. In this context, it makes
more sense to interpret this term as a self-interaction term of adsorbate molecules
of the form −(RT/a0)χφ2 plus a term proportional to φ that can be included in
μ0,a . Such a free energy has been invoked to examine equilibrium in the context of
adsorption of curving proteins on lipid membranes (Sorre et al. 2012; Singh et al.
2012).

Let us examine next the consequences of considering this free energy in the
framework of Onsager’s principle. The process equations of the previous section
remain unchanged. Likewise, a direct calculation shows that the rate of change of
the free energy adopts the form

Ḟ(X; V ) = 1

a0

∫

�

∇sμa · (φwa) dS +
∫

�

∇μs · (cws) dV

+ 1

a0

∫

�

r(μa − μs) dS,

(111)

where now the chemical potentials of the adsorbate in the surface and of the solute
in the bulk are
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μa(φ) = μ0,a + RT log
φ

φm − φ
,

μs(c) = μ0,s + RT log
c

c0
.

(112)

From the first expression, we recognize that μ0,a is the chemical potential of the
adsorbate when the area fractions of adsorbate and free sites are equal. Noting that
now

∇sμa = RT
φm

φm − φ

∇sφ

φ
(113)

we find that

Ḟ(X; V ) = RT

a0

∫

�

φm

φm − φ
∇sφ · wa dS + RT

∫

�

∇c · ws dV

+ 1

a0

∫

�

r(μa − μs) dS
(114)

In equilibrium, μa = μs and therefore, similarly to earlier, we find that

φm − φeq

φeq

ceq

c0
= e�μ0/(RT ), (115)

where �μ0 = μ0,a − μ0,s .
We adopt the same structure of dissipation potential as in Eq. (99) with the fol-

lowing natural choice for the kinetic coefficient

k̄ = k
1
c0
c(φm − φ) − e�μ0/(RT )φ

μs(c) − μa(φ)
, (116)

which can be shown to be nonnegative with analogous arguments to those leading to
Eq. (101). Invoking Onsager’s principle and making the Rayleighian stationary with
respect to r , we recover Langmuir’s adsorption model and identify the thermody-
namic/kinetic components behind the reaction rates

r = k

c0︸︷︷︸
kA

c(φm − φ) − ke�μ0/(RT )︸ ︷︷ ︸
kD

φ. (117)

Therefore, this derivation establishes that the Langmuir’s adsorption model can be
viewed as a consequence of the Flory–Huggins form of the mixing entropy. Now,
making the Rayleighian stationary with respect to wa , we find that the adsorbates
undergo non-Fickian transport in that

ja = φwa = −kBT

fa

φm

φm − φ
∇sφ. (118)
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The term multiplying ∇sφ can be interpreted as a diffusion coefficient dependent on
area fraction. When plugged into the corresponding process operator, this relation
leads to the nonlinear diffusion equation on the surface

∂tφ = kBT

fa
∇s ·

(
φm

φm − φ
∇sφ

)
+ kAc(φm − φ) − kDφ on �. (119)

Thus, according to this derivation, the nonlinear Langmuir adsorption model would
be paired with a nonlinear diffusion of adsorbates, both following from the Flory–
Huggins entropy of mixing.

It is instructive to note that we can recover Fickian diffusion on the surface by
defining the surface contribution to the dissipation potential as

fa NAφm

2a0

∫

�

φ

φm − φ
|wa|2 dS. (120)

Without a compelling physical interpretation, however, this remains nothing but a
mathematical trick. As we argue next, removing the nonlinearity with such a trick is
artificial and does not seem justified from a physical point of view.

Indeed, something unsettling about the nonlinear diffusion equation in (119) is
that it has been obtained from a free energy that tries to account for the finite area
coverage of the adsorbates to deal with inconsistencies in the dilute limit. However,
the dissipation contribution due to adsorbates has the structure

Naφ

a0
· fa
2

|wa|2 (121)

where the first factor represents the number of molecules per unit area and the second
factor is the dissipation potential for a singlemolecule. Thus, it is the superposition of
the effect of an isolated molecule, which can be expected to be valid only in a dilute
limit. A more pertinent modeling approach would be to couple the Flory–Huggins
entropy to a better approximation of dissipation in a crowded solution of adsorbates.
It is natural to expect that accounting for crowdingwill introduce an additional source
of nonlinearity in the dissipation, which will not be in general of the form of that in
Eq. (120). For instance, in a bulk solution and accounting for first-order interaction
effects, the hydrodynamic drag coefficient of spherical solutes of radius a can be
approximated as

fs(c) = 6πηa
(
1 + Bv

1/3
0 c1/3

)
, (122)

where v0 is the molar volume of solute molecules and B is a nondimensional positive
constant (Happel andBrenner 2012). Such a concentration-dependent dragwill intro-
duce additional nonlinear effects and lead to non-Fickian diffusion.We are not aware
of similar approximations capturing the influence of area coverage and applicable
to molecules moving on a two-dimensional fluid, that is an expression for fa(φ)

extending the theory by Saffman and Delbruck (1975) to crowded membranes.
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Thus, Onsager’s approach vividly shows that a concentration-dependent diffusion
coefficient (Ramadurai et al. 2009) can have its origin in both the free energy driving
diffusion and in the dissipation dragging it. Furthermore, Onsager’s approach pro-
vides a framework to model systems at multiple scales, that it connects effective
coefficients such as diffusivity or reaction rates to microscopic thermodynamic and
kinetic quantities, which can in principle be estimated with microscopic theories or
experiments.

4 A Minimal Model for Curvature Sensing and Generation
in a Membrane Tube

Having established theOnsager variational structure behind the Langmuir adsorption
model, in this section, we study the coupling between adsorption and mechanics.
Rather than considering a general model with concentration gradients and general
shapes, we focus on a uniform tubular lipid membrane to highlight how this coupling
allows us to understand curvature sensing and generation by membrane proteins.

We consider a membrane tube of length � and radius ρ, subjected to a longitudinal
force F .Wewill assume that themembrane is inextensible, and therefore, the product
�ρ is constant. We will consider two different ensembles, one in which the length
(and therefore the radius) is fixed and the force can adjust, and another in which
the force is fixed and the length and radius are allowed to adjust. In neither of these
situations the membrane tension is constant. A constant membrane tension ensemble
would require changes in membrane area and therefore lipid flows from a reservoir,
which is at odds with a simple uniform dynamical model. Zhu et al. (2012); Prévost
et al. (2015) have developed models that allow for exchange of lipids and proteins
with a reservoir, albeit in equilibrium. We further assume that both the osmolarity
and the hydraulic pressure are the same inside and outside of the tube. Therefore,
there is no pressure difference across the membrane.

When proteins are dissolved in the bulk fluid, only those closest to the membrane
will adsorb, thereby creating a gradient in concentration followed by diffusion of
dissolved proteins toward the membrane. Thus, if we assume that the concentration
of proteins in the bulk is uniform, we are assuming that the timescale associated with
equilibration of bulk protein gradients by diffusion ismuch smaller than the timescale
of the adsorption reaction. Let us check if this is reasonable. The typical diffusion
coefficient for proteins in the bulk is in the range of D ≈ 1–10µm2/s, (Elowitz et al.
1999). Therefore, the timescale for radial diffusion can be estimated as τd = ρ2/D.
The timescale associated with protein adsorption on membranes is typically of a
few tens of minutes, τa ≈ 600 s (Sorre et al. 2012). Requiring that τd 
 τa is then
tantamount to requiring that ρ 
 25–80µm, which is the case in most situations of
interest where tubules have radii of tens of nanometers. Therefore, it is reasonable
to assume a uniform concentration in the bulk.
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The state of the system is hence characterized by the area fraction of proteins on
the surface, the radius of the cylinder and the length of the cylinder, X = {φ, ρ, �}.
We will model the bending elasticity of the membrane using Helfrich’s curvature
model (Helfrich 1973; Lipowsky 1991). According to this classical model, the free
energy density takes the form κ

2 (H − C0)
2 where κ is the bending rigidity, H is

the mean curvature (here H = 1/ρ), and C0 is the spontaneous curvature. Thus,
it penalizes deviations of the mean curvature from the spontaneous curvature. As
discussed earlier,membraneproteins can change the preferred curvature of the bilayer
in various ways (McMahon and Gallop 2005; Zimmerberg and Kozlov 2006; Sens
et al. 2008; Shibata et al. 2009; Antonny 2011). This effect is generally modeled
by considering that C0 is a function of the area coverage of proteins, the simplest
model being that it is proportional toφ (see Breidenich et al. (2000) for amicroscopic
justification). Thus, the free energy of the system considering the elastic and chemical
contributions and the potential of the longitudinal force is

F(X) = 2π�ρ

{
κ

2

(
1

ρ
− C0φ

)2

+ RT

a0

[
φ logφ + (φm − φ) log (φm − φ)

]

+μ0,aφ

a0

}
− F�.

(123)

Note that in this simple uniform example, F is an algebraic function of the state
variables. We chose to impose the inextensibility constraint �ρ =constant, or equiv-
alently �̇ρ + �ρ̇ = 0, later using a Lagrangemultiplier, whichwill allow us to identify
the membrane tension. The nontrivial process equation is the balance of adsorbed
molecules analogous to Eq. (93). Because the system is uniform, this equation does
not involve diffusive fluxes. However, because we are not imposing yet the inexten-
sibility condition of the surface, this equation includes a second term involving the
rate of change of area (Rahimi et al. 2013):

φ̇ = r − φ
�̇ρ + �ρ̇

�ρ
. (124)

Following a lengthy but direct calculation that uses the process equation above,
the rate of change of the free energy can be computed as

Ḟ = 2πρ�

a0

{
μ0,a + RT log

φ

φm − φ
− a0κ

(
1

ρ
− C0φ

)
C0

}
r

+ 2π�

{
RT

a0
φm log(φm − φ) − κ

2

(
1

ρ
− C0φ

)2
}

ρ̇

+ 2πρ

{
RT

a0
φm log(φm − φ) + κ

2

(
1

ρ2
− C2

0φ
2

)}
�̇ − F �̇.

(125)
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During this calculation, we identify the chemical potential of adsorbates as

μa = μ0,a + RT log
φ

φm − φ︸ ︷︷ ︸
μchem
a

−a0κ

(
1

ρ
− C0φ

)
C0

︸ ︷︷ ︸
μmech
a

, (126)

involving a chemical component, but also a mechanical component.
To model the effect of the fixed bulk concentration of proteins c̄, which are thus

at a fixed chemical potential μ̄s = μ0,s + RT log(c̄/c0), we introduce the external
chemical power

P = −2π�ρμ̄s

a0
r, (127)

where we recall that a0 allows us to dimensionally reconcile a chemical potential per
unit mole with a reaction rate measuring the rate of change of adsorbate area fraction.
Finally, the only dissipative mechanism operative here is the sorption reaction, and
therefore,

D = π�ρ

a0k̄
r2. (128)

With these ingredients, we can form the constrained Rayleighian as

L = Ḟ + D + P + 2πσ
(
�̇ρ + �ρ̇

)
. (129)

Let us focus first on adsorption. The optimality condition ∂L/∂r = 0 resulting from
Onsager’s principle leads to

r = k̄(μ̄s − μa). (130)

Now, we are confronted with the modeling choice of defining the coefficient k̄ char-
acterizing dissipation during reaction. A direct analogy with the previous section
would suggest

k̄ = k
c̄
c0

(φm − φ) − e�μ0/(RT )φ

μ̄s − μa
, (131)

where as before �μ0 = μ0,a − μ0,s . Combining the two equations above, a direct
calculation shows that this leads to an adsorption rate of the Langmuir form
r = kAc̄(φm − φ) − kDφ. However, the choice in Eq. (131) has at least two impor-
tant drawbacks. First, such a model does not capture the phenomenology by which
curving proteins bind at a higher rate to curved membranes–curvature sensing. Sec-
ond, because μa depends also on the curvature of the membrane, see Eq. (126), it
is not possible to express k̄ as defined in Eq. (131) as a positive coefficient times
a term of the form (ea − eb)/(a − b), and therefore, in general, we will not be
able to guarantee that k̄ ≥ 0 as thermodynamically required. Therefore, a stan-
dard Langmuir adsorptionmodel insensitive to curvature r = kAc̄(φm − φ) − kDφ is
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thermodynamically inconsistent with our form of free energy in Eq. (123). Therefore,
we discard Eq. (131).

Onewayaround thermodynamic inconsistency is to define the reaction–dissipation
coefficient as

k̄ = k
c̄
c0

(φm − φ) − e�μ0/(RT )φ

μ̄s − μchem
a

(132)

= ke−μ0,s/(RT )(φm − φ)

RT

eμ̄s/(RT ) − eμchem
a /(RT )

μ̄s/(RT ) − μchem
a /(RT )

, (133)

which has the right structure to guarantee its nonnegativity. Importantly, with
Eq. (132) we are postulating that dissipation due to the adsorption reaction does
not depend on membrane curvature. This choice for k̄ does lead to a reaction rate
sensitive to curvature because, when combined with Eq. (130), we find

r = [kAc̄(φm − φ) − kDφ]

⎡
⎣1 +

a0κ
(
1
ρ

− C0φ
)
C0

μ̄s − μchem
a (φ)

⎤
⎦

= [kAc̄(φm − φ) − kDφ]

⎡
⎣1 +

a0κ
(
1
ρ

− C0φ
)
C0

RT log kAc̄(φm−φ)

kDφ

⎤
⎦ (134)

with kA and kD defined as in Eq. (117). We recover the Langmuir equation when
C = 0. In the dilute limit, the second term between brackets becomes 1, φm − φ ≈
φm , and we recover the linear adsorption model.

Therefore, we conclude that the model emanating from Eq. (132) is thermody-
namically acceptable and physically meaningful. Of course, there are other possible
choices. One could be replacing the two instances of μchem

a in Eq. (133) by μa , which
leads to positive dissipation, introduces an explicit curvature dependence in k̄, but
strangely, this dependence has a structure dictated by thermodynamics. Therefore, it
would be a rather artificial choice. A more realistic model accounting for the curva-
ture sensitivity in the dissipation could consider k to be a function of curvature. To
our knowledge, none of these issues have been examined before. Again, we see how
Onsager’s principle provides a systematic framework to think about modeling.

Variations of the constrained Rayleighian with respect to ρ̇ and �̇ lead to the radial
and longitudinal equilibrium equations

0 = RT

a0
φm log(φm − φ) − κ

2

(
1

ρ
− C0φ

)2

+ σ, (135)

0 = RT

a0
φm log(φm − φ) + κ

2

(
1

ρ2
− C2

0φ
2

)
− F

2πρ
+ σ. (136)
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Not being dragged by any dissipativemechanism, these equations are instantaneously
satisfied by the system at any value of φ by adjusting σ and F in the first ensemble,
or σ, � and ρ in the second ensemble. Subtracting these two equations, we can relate
the applied force to the shape and area fraction of protein as

F = 2πκ

(
1

ρ
− C0φ

)
. (137)

4.1 Protein Sorption at Fixed Shape of the Tube

Suppose that the length of the tube is held fixed. As a result of the inextensibility of
the membrane, the radius is also fixed, However, the force required to maintain the
fixed length will depend on protein area coverage. Recalling the expression for the
sorption rate, we have

φ̇ = [kAc̄(φm − φ) − kDφ]

⎡
⎣1 +

a0κ
(
1
ρ

− C0φ
)
C0

RT log kAc̄(φm−φ)

kDφ

⎤
⎦ . (138)

We consider the parameters reported in Sorre et al. (2012) for amphiphysins inter-
acting with a model lipid membrane: C0 = 10 nm−1, c̄ = 100 nMolar, kD/kA = 35
nMolar. This is a first-order nonlinear differential equation, which can be solved
numerically.

Figure4 (top) shows the results for φ(t) assuming no initial area coverage of
protein, φ(0) = 0 for tubes of varying curvature between 0.001 C0 and 1.5 C0. The
figure shows that the adsorption dynamics strongly depends on curvature. Both the
initial adsorption rate and the saturation area fraction in equilibrium increase with
increasing curvature. This curvature-dependent adsorption of proteins is generally
referred to as curvature sensing, and generally quantified by ratios of the equilibrium
area coverage for various curvatures. Curvature sensing may provide a mechanism
for the chemical organization of membrane organelles.

Even though shape is fixed in this section, the adsorbing proteins have a mechan-
ical manifestation in the force required to maintain the tubule shape, see Fig. 4 (bot-
tom). Force is computed using Eq. (137). The decrease of required force needed to
maintain a tube as adsorption proceeds is an expected consequence of the scaffolding
effect of the curving proteins and is consistent with experiments in tethers pulled out
of vesicles. Along with this, our simple model provides an explanation for observa-
tions of no retraction of membrane tubules covered with proteins upon removal of
the applied force (Sorre et al. 2012). Beyond equilibrium, the model can also predict
the time and area fraction of protein at which we can observe no retraction upon
force removal or even compressive buckling.

Figure5 represents the adsorption isotherms for tubes of various curvatures.
These curves represent the equilibrium area coverage–the horizontal asymptotes
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Fig. 4 (Top) Area fraction
of adsorbed proteins as a
function of time for various
fixed curvatures of the
membrane. We observe a
curvature-dependent
adsorption response: both the
initial rate of change of φ
(slope of the curve at t ∼ 0)
and the equilibrium area
coverage increase with
increasing curvature of tube
(1/ρ). (Bottom) Tube
longitudinal force F as a
function of time. The force
decreases with time due to
increased area fraction of the
protein. The unit of force is
in kBT/nm ≈ 4.1 pN
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Fig. 5 Adsorption isotherms
in tubules of different
curvature, i.e., equilibrium
values φeq as a function of
concentration of proteins in
the bulk in a semi-log scale.
The legend ‘LA’ stands for
the Langmuir adsorption
model
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in Fig. 4 (top)–as a function of the bulk concentration. In equilibrium, φ̇ = 0,
and therefore, the right-hand side in Eq. (138) is equal to zero. In the Langmuir
model, recovered when C0 = 0, the first factor is zero and the isotherm is given by
φeq(c̄) = φm/[1 + (kD/kAc̄)]. If the adsorbed molecules are mechanically active,
however, the isotherm φeq(c̄) is implicitly defined by the relation

0 = RT log
kAc̄(φm − φeq)

kDφeq
+ a0κ

(
1

ρ
− C0φ

eq

)
C0. (139)

The figure shows how, for proteins with preferred curvature (C0 �= 0), the isotherms
significantly deviate from the Langmuir model. Notably, when the membrane is
nearly planar (a similar model can be derived for spherical shapes more pertinent to
tense vesicles, yielding similar results), the behavior closely follows the Langmuir
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model at very small concentrations, but strongly deviates from it at large concentra-
tions. Yet, Langmuir’s model is still used to interpret adsorption experiments onto
large vesicles of proteins with preferred curvature (Sorre et al. 2012). The present
model suggests a methodology to interpret similar experiments, where in addition
to the parameters kD/kA and φm present in the Langmuir isotherm, the additional
parameters a0, κ, and C0 could be fit from equilibrium or dynamical observations at
different bulk concentration and curvature.

4.2 Protein Sorption at Fixed Force

While the fixed shape ensemble of the previous section allowed us to examine the
curvature sensing capability of proteins with preferred curvature, it did not provide
insight about their ability to generate curvature. Toward an elementary model for
shape generation, we consider now a membrane tube at fixed force, which can adapt
its radius and length to meet the mechanical equilibrium equations and the inexten-
sibility constraint during adsorption.

Now, we integrate in time the differential-algebraic system for φ and ρ given by
Eqs. (137) and (138). Equation (135) allows us to compute the tensionσ. By plugging
Eq. (137) into (138), we find that

Fig. 6 Area fraction of
proteins on the membrane
(top) and mean curvature
1/ρ (bottom) as a function of
time. The bulk concentration
of proteins is c̄ = 100 nM
and the unit of force is
kBT/nm ≈ 4.11 pN
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Fig. 7 Adsorption isotherms
for fixed force adsorption of
proteins. The isotherms
deviate from the Langmuir
isotherm with increase in
area fraction as a function of
concentration. The unit of
force is kBT/nm ≈ 4.11 pN
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Fig. 8 Dynamics of a tubule
during adsorption in
response to a sudden
increase (decrease) of the
applied force. a Area
fraction, b mean curvature
and c surface tension as a
function time. The bulk
concentration of proteins is
c̄ = 100 nM and the unit of
force is kBT/nm ≈ 4.11 pN
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φ̇ = [kAc̄(φm − φ) − kDφ]

[
1 + a0C0F/(2π)

RT log kAc̄(φm−φ)

kDφ

]
, (140)

and therefore the Langmuir model is recovered for F = 0.
Figure6 shows the dynamics of area coverage and of tube curvature. We observe

that both quantities increase in time up to an equilibrium value. Thus, as molecules
adsorb, they modify the shape of the membrane. The rate of increase and magnitude
of area coverage and curvature increase with the magnitude of the applied load, con-
sistent with experiments. The adsorption isotherms are shown in Fig. 7. As predicted
theoretically, the low force limit approaches the Langmuir model. The figure also
shows a very large sensitivity of the equilibrium area coverage to the applied force,
particularly at intermediate bulk concentrations.

To highlight the chemo-mechanical coupling captured by our simple model, we
consider that during adsorption, and close to the equilibrium plateau, the force F is
suddenly increased (decreased), see Fig. 8. It can be observed how, to adapt to such
a disturbance, the protein coverage, tube curvature and tension increase (decrease).
Interestingly, the mechanical quantities F and σ adjust discontinuously but the area
fraction adjusts continuously, since the rate of adsorption/desorption is penalized by
the dissipation potential.
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