Chapter 14
Service-Oriented Architectures
for Interoperability in Industrial Enterprises

Ahmed Ismail and Wolfgang Kastner

Abstract This chapter focuses on the technological aspects involved in developing
a service-oriented solution for interoperability in the context of cyber-physical
production systems (CPPS). It addresses the typical state of industrial enterprises
and the core technologies currently available for the development of a service-
oriented (SO) solution for agile environments. The chapter therefore discusses
features of the service-oriented paradigm as well as aspects related to enterprise
and network architectures, constraints, and technologies to discern the current
challenges facing modern enterprises. The chapter also explores the service-oriented
reference architectures of recent EU projects to highlight their main characteristics.
Finally, their respective realizations are decomposed to discern the connectivity
strategies and standards employed by each to achieve an interoperability-focused
technology stack for the operation of agile and flexible industrial plants.

Keywords Horizontal integration ¢ Interoperability * Service-oriented architec-
tures * Technology stack ¢ Vertical integration

14.1 Introduction

The increasing rapidity of change in the environmental factors of modern enterprises
requires that they be able to adapt to external and internal stimuli over increasingly
shorter timescales (Corréa, 2001). Industrial enterprises must be agile to withstand
and thrive in such dynamic environments. The defining characteristics of their
systems should include having “easy access to integrated data whether it is customer
driven, supplier driven, or product and process driven”, “modular production
facilities that can be organized into ever-changing manufacturing nodes”, and “data
that is rapidly changed into information [for the expansion of] knowledge”, amongst
other things (Choudri, 2001). Together, such features may fuel a successful agile
enterprise.

A. Ismail (><) « W. Kastner
Institute of Computer Aided Automation, Technische Universitit Wien, Wien, Austria
e-mail: aismail @auto.tuwien.ac.at; k@auto.tuwien.ac.at

© Springer International Publishing AG 2017 369
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_14

mailto:aismail@auto.tuwien.ac.at
mailto:k@auto.tuwien.ac.at

370 A. Ismail and W. Kastner

From a technical perspective, the pursuit of such characteristics can be sup-
plemented using a number of techniques from the domain of service-oriented
architectures (SOA). This is a field that is concerned with the creation of modular
IT and productions systems that enhance an enterprise’s capabilities for information
exchange, technological independence, and component reuse. The result would
effectively be an industrial environment of operational flexibility and responsiveness
(Valipour et al., 2009).

This chapter focuses on service-oriented architectures and how they may be
applied in current enterprises to achieve flexibility, agility and interoperability,
all within the context of research question RQ II of Chap.1. As such, it will
provide an understanding of the technical state of present industrial enterprises and
detail the characteristics of the SO approach in order to highlight the competitive
advantage possible through service orientation. A sizeable part of this chapter is
dedicated to presenting preliminary SO reference architectures delivered by major
European Union research projects. Respective realizations of these architectures
will be discussed to underline their choices in technologies and their delivered
technical innovations.

14.2 Technical Features of the Industrial Enterprise

Typically, an industrial enterprise undergoes functional segmentation creating
layers that distinguish between the components of the process, control, operations,
business, and Internet-based systems present in or interacting with the enterprise.
Normally, a demilitarized zone (DMZ) is also included to manage access from
the uppermost business and enterprise layers to the lower process-focused layers’
network and data. This kind of segmentation is done to increase the manageability
and security of the enterprise. However, further impositions on the enterprise exist
due to the physical and logical constraints of the enterprise’s assets. Physically,
devices may be connected using legacy serial interfaces (e.g. EIA-232/422/485),
fieldbus systems, and wired and wireless Ethernet and IP-based technologies.
Although devices with both interface types may be used to physically bridge
the two networks together, the protocols may have different demands in real-
time (RT), bandwidth, latency, and other communication-related requirements. At
the messaging layer, these protocols may also differ in their message formats
and exchange mechanisms, as well as in other features. The process of bridging
together these various systems requires special devices and techniques, designed
and implemented carefully to safely allow them to share data (Ismail and Kastner,
2016; Knapp, 2014).

By convention, there are two approaches for managing this heterogeneity and
technical complexity, namely tunneling and translation. Tunneling involves the use
of routers for the encapsulation of one protocol’s data inside the payload of another
and treating the channel as a transparent communication medium. Translation, on

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 371

the other hand, uses gateways as intermediaries to carry out data mappings on behalf
of communicating devices to allow them to exchange information using their native
protocols. Each of these methods has its own drawbacks in relation to capabilities
and implementation complexity, and is often considered to be costly in engineering
efforts (Sauter et al., 2011).

These costs may be compounded by the technological choices and imple-
mentations of enterprise infrastructures, which commonly use monolithic appli-
cations to achieve their functional goals. The resulting system involves many
implicit and explicit dependencies (i.e., to a technology stack) that introduce
stiff resistance to change. In such a case, the enterprise cannot be described
as agile or flexible. In fact, it is properties such as these and their implica-
tions that have become major arguments used by the proponents of service
oriented architectures to effect infrastructural changes in enterprises (Krafzig et al.,
2005).

Take for example the concept of a service-oriented CPPS. CPPS are physical and
computational resources that are tightly bound in coordinated and controlled rela-
tionships and embedded in a socio-technical context. The functionalities originally
addressed by monolithic applications may be decomposed and distributed across the
system’s member devices. That is, by applying the service-oriented design pattern,
a large business problem can be fragmented into smaller problems that may then be
solved using a number of small and related units of logic, termed services, rather
than through a single monolithic application. Distributing these services across the
system would create networks of smart devices that are inherently resilient due
to their lack of dependence on any central component. Furthermore, as services
are typically designed with standardized interfaces, system-wide interoperability
is guaranteed. The internals of these services, such as how they are implemented,
or what technology they use is hidden behind the service interface therefore also
affording the system technological independence and flexibility. Services are also
typically designed with functional agnosticism to allow for their reuse, reducing
future application development efforts. Together, the concepts that define the SO
approach, all of which are summarized from Valipour et al. (2009), Erl (2009),
and Erl et al. (2014) and presented in Table 14.1, afford an enterprise the agility
it pursues and minimizes the need for integration (Kridmer, 2014; Rubio, 2011; Erl,
2009; Valipour et al., 2009).

For reasons such as those mentioned above, several research projects have
pursued and outlined reference architectures for highly interoperable industrial
environments based on SOAs. These efforts have been extensively documented
to facilitate future system implementations. In the coming section, we highlight a
number of these projects, summarizing and evaluating their reference architectures
to give a concise understanding of their details.

372

A. Ismail and W. Kastner

Table 14.1 Features of SOAs (Valipour et al., 2009; Erl, 2009; Erl et al., 2014)

Characteristic Sub-characteristic

Discoverability

Modularity Modular decomposability
Modular composability
Modular understandability
Modular continuity
Modular protection

Interoperability

Loose coupling

Location transparency

Composability Application

Service federation

Service contracts

Service orchestration

Explanation

Services are supported using metadata that
allows them to be discovered and
interpreted

The equivalent concept of functional
decomposition as applied to modules

The ability to create a software service or
system by freely combining reusable
services

The function of a service should be
comprehensible without requiring
knowledge on any other services

A service interface should conceal service
implementation details to allow changes to
the service to occur without them
requiring changes in other services

Perimeterisation of modules to prevent the
cascading of faults unto other services

Ensured ability for different modules to
communicate with each other

Appropriately defined service contracts
that increase the independence of services
from their implementations and from each
other

The decoupling of a service from a
specific location allowing dynamic service
lookups and runtime binding that enhance
the system’s flexibility, availability and
performance

The piecing together of services and their
orchestration using application logic to
achieve specifically set goals

The aggregation of services under a single
service representation

The explicit definition of a service’s
features and parameters as contractual
terms and conditions in a granular form
accessible by service requesters. This may
include the definition of supported data
types, data models, policies and other
features that declare a service’s interaction
requirements

Service execution as part of an application
should be sub-transactional and not
permitted to perform data commits. This
allows the system to rollback to the
pre-transactional state in case of service
failure

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 373

14.3 Service-Oriented Architectures and the Industrial
Enterprise

In this section, we look at a total of five service-oriented reference architectures
that resulted from collaborations between research, vendor, and user organizations
These are the Internet of Things at Work (IoT @ Work), Embedded systems Service-
based Control for Open manufacturing and Process automation (eScop), Production
Logistics and Sustainability Cockpit (PLANTCockpit), ArchitecturE for Service-
Oriented Process—Monitoring and Control (IMC-AESOP), and Arrowhead Frame-
work projects; the inferred or explicitly stated purpose of each of these projects is
summarized in Table 14.2. This list of projects is not comprehensive as there exists
a larger number of SOA-driven projects both old, such as SOCRADES and SODA,
and new, such as ProSEco and CREMA, that are not covered in this chapter. Nor is
it the point of this chapter to give such a viewpoint, but the purpose here is to bring
attention to the main features of a sample of SO reference architectures to underline
their strategies for the modernization of industrial enterprises. As such, our analysis
is limited to projects that started and completed within the period of 2010-2016.
Arrowhead does not meet this timeline, as it is scheduled for completion in 2017,
however, an exception is made in this case as, with a 77-member consortium and 69

Table 14.2 A summary of project durations and objectives

Name Duration Objective

TIoT @Work Jun 2010-Jun 2013 Use IoT technologies to decouple
application/control programming from the
network, enable communication-centric
plug & work capabilities, and enhance the
system security (Rotondi et al., 2013)

PLANTCockpit Sept 2010-Dec 2013 Creating a SO and centralized plant-wide
human-machine interface (HMI)
(PLANTCockpit Consortium, 201 1a)

IMC-AESOP Sept 2010-Dec 2013 Using SO approach for supervisory control
and data acquisition/distributed control
system (SCADA/DCS) in large-scale
process control systems (Colombo et al.,
2014a)

eScop Mar 2013-Feb 2016 System integration using ontology based
knowledge-management, embedded
devices, and SOA (eScop Consortium,
2013)

Arrowhead framework Mar 2013-Feb 2017 Providing a SO technical framework for
cooperative automation in technologically

heterogeneous systems (Blomstedt et al.,
2014b)

374 A. Ismail and W. Kastner

million Euros in funding, it is one of the largest EU projects in the industrial domain
(Nagorny et al., 2014).

14.3.1 IoT@Work

The IoT @Work project represents its reference architecture using layers and planes.
In terms of the former, three layers are used; the physical, abstraction, and composite
service layers. The first of these, the physical layer, is the physical world and
is therefore composed of physical devices. The second layer is an abstraction of
the physical devices as resources and services. In the context of the IoT @Work
architecture, a resource is an object representing a specific physical or virtual
element, while a service gives access to a resource by specifying the type, identifier
and interface. Effectively, a single device may be represented using one or more
resources and services. The third and final layer is that of composite services. These
group together the elements of the second layer to hide their complexity and deal
with context, contention over resources, and access rights. It is this third layer atop
which applications such as event notification, complex event processing (CEP),
network access control (NAC), and controller I/O applications run (Rotondi et al.,
2013).

To address the functional aspects of these three layers, the IoT @Work project
defines a set of core services, listed and defined in Table 14.3, and organizes the
large number of functional components they are composed of into three planes;
the communication, security, and management planes. The communication plane
is concerned with the orchestration of network resources and communication to
resolve access contention issues and provide support for Quality of Service (QoS)
guarantees. The security plane, as the name implies, manages and integrates security
into the overall system. Lastly, the management plane, attends to device, service,
and configuration management with a focus on their inter-relations (Rotondi et al.,
2013).

14.3.2 PLANTCockpit

The PLANTCockpit system architecture is composed of an internal and external
system. The external system refers to the data sources connected to the PLANT-
Cockpit using proprietary or open interfaces, such as an Enterprise Resource
Planning (ERP) system, OPC server, or sensors & actuators. As for the internal
system, this is made up of five layers; the system connector, function engine,
persistence, visualization engine, and presentation engine layers (PLANTCockpit
Consortium, 2011a).

The first of these, the system connector layer, is primarily concerned with
interfacing with external data sources. It provides the configurable adapter modules

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 375

Table 14.3 IoT@Work core services (Rotondi et al., 2013)

Core service
Event notification service (ENS)

ENS access request broker (ARB)
ENS authorisation service (AS)

Policy decision point (PDP)

Revocation service

ENS namespace management service

Slice management system

Embedded application configuration service
Directory service (DS)

Orchestrated management

Complex event monitoring service

Explanation

A common functional component that
collects and distributes events

A broker between ENS clients attempting
to access namespaces and the ENS AS
Decision point for access requests sent to
the ENS ARB

Evaluates the status of capability tokens
and policies to approve or refuse access
requests

Manages capability revocation requests
and capability revocation life cycles

A service for the management of
hierarchical structures used for the
organization of event publishing

A three part service consisting of a
communication service interface (CSI),
slice enforcement point (SEP) and slice
manager. Used for the creation of a ‘slice’®
Provides devices with the configurations
required by their applications

Stores device information in an
ontology-based DS data model
Orchestrated management authoring
support: a lightweight algorithm and API

Orchestrated management scheduling
service: algorithms to produce
management plans and schedule
operations

Management services: a wrapper around
existing operations in the three planes so
that they may be used and executed in
Orchestrated Management scenarios

Context services: capture constraint values
to provide context. May be a parameter of
the manufacturing execution system
(MES) or ERP system

Responsible for the verification of rule
compliance to allow the system to meet
safety and security goals

2A slice is a virtual network with QoS guarantees and policies

376 A. Ismail and W. Kastner

required to allow the PLANTCockpit to access and communicate with these sources.
Due to their configurability, an adapter manager is included in the architecture to
oversee the entire life cycle of adapters. As for the external data structures acquired
through the adapters, these are transformed to an internal data structure using a
mapper module. Finally, the layer uses two generic components, the subscriber
and publisher, to query the external systems via the adapters and push the data
retrieved by way of the adapter and mapper components to the function engine layer,
respectively (PLANTCockpit Consortium, 2011a).

The function engine layer, receiving these data, provides a platform atop where
analytics and functions may be executed. It is based on the concept of function
blocks, which, inspired by the object oriented paradigm and the IEC 61499 standard,
are reconfigurable and encapsulated blocks of program code with clearly defined
interfaces to allow for reuse and composability. These blocks’ life cycles are
managed using a function manager, while a pub/sub broker (publisher/subscriber)
provides them with secure, reliable, and event-driven mechanisms through which
they may communicate with each other (PLANTCockpit Consortium, 2011a).

Any data relevant to the function engine or any other layer’s workings are
managed and stored using the persistence layer. This subsystem is composed of
three components; the data persistence manager, configuration repository, and data
repository. The manager administers the storage, archiving, retrieval, and deletion
of data. The configuration repository maintains all of the data needed to configure
the internal components of the PLANTCockpit system at design and run time.
Finally, the data repository stores all of the data required by analysis processes
in the PLANTCockpit system. It includes a cache that can temporarily store data
to improve the system performance, and a more permanent store that archives
historical data (PLANTCockpit Consortium, 2011a).

Finally, any data to be presented via the HMI interface is prepared for visualiza-
tion using the visualization engine layer. It consists of a service engine which is an
aggregation of a runtime and design engine. The former contains the configurable
user interface (UI), while the latter configures the interface using a composition of
building blocks (visualization elements) and their associated data points. A building
block browser and function block browser is used to make all possible building
blocks and all available data points provided by the data persistence manager
accessible by the design engine for the UI’s configuration, respectively. Finally, a
data provider component subscribes to the Pub/Sub Broker for data and events that
it delivers to the runtime engines. The presentation engine layer, which is composed
solely of a presentation runtime engine, then graphically presents the configured
building blocks (PLANTCockpit Consortium, 201 1a).

14.3.3 IMC-AESOP

As opposed to the PLANTCockpit framework, the IMC-AESOP architecture
attempted to provide a generic architecture to support multiple applications, with

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 377

the HMI only being one of these applications. As such, the framework is in fact
a behemoth of services, service groups, and interactions presented using both
natural language and semi-formal descriptions based on the Fundamental Modeling
Concepts (FMC) graphical notation. The abridged description of the framework’s
components are shown in Table 14.4 (Colombo et al., 2014b).

Based on the architectural overview given in Colombo et al. (2014b), the
framework differentiates between four system components. The first of these is the
user roles, which designates users business, operations, engineering, maintenance,
or training roles. These roles interact with or impact the architecture directly or
indirectly as they take part in plant processes. The second system component is
that of the service groups themselves. These act as the glue binding together the
user roles, the external systems (the third component), and the plant data itself (the
fourth) (Colombo et al., 2014b).

14.3.4 eScop

The eScop project is composed of five layers, a physical (PHL), representation
(RPL), orchestration (ORL), visualization (VIS), and interface (INT) layer. The
PHL is concerned with the physical equipment in the eScop system and there-
fore provides device and service descriptions. The information provided by the
physical layer is consumed by the RPL, which is responsible for knowledge
representation. Syntactic and semantic service descriptions based on the service
implementations are mapped and stored in the RPL. The ORL, which coordinates
and executes service compositions, in addition to requiring service descriptions
from the RPL, may also need input from the physical layer for it to be able to
successfully orchestrate the execution of services. The VIS, configured by the
RPL, then provides an interface for the user to interact with the system data
accessible via the PHL. Finally, the INT acts as the entry point for external
systems and services in the eScop architecture and is functionally concerned with
the provision of technology adapters and access control measures (Iarovyi et al.,
2015b).

As for the features of the reference architecture, the system’s services define
concrete technologies for implementation. To exemplify, the various components of
each of the layers are as follows.

Starting from the bottom up, the PHL consists of an I/O module, runtime core,
and Web Services (WS) toolkit. These support connections to the physical devices,
the definition of applications on controllers, and provide the devices with web
services and notification mechanisms, respectively (Iarovyi et al., 2015b).

The RPL achieves its goal of knowledge representation using an ontology
service, a set of functions, and the ontology itself. The ontology service is in
fact made up of four modules: device registration, visualization provider, ontology
manager, and service handler modules. These handle device registration and de-
registration in the ontology, assist with visualization, provide an interface for the

A. Ismail and W. Kastner

378

SQOTAIRS [0A9] JoySTY St uorjejuasaid 1oy pue suonisodwod

Q0IAIS Sk $3552001d $SAUISNq JO UONNIAX? Ay} J0oJ uLiojie[d e se s9AIds OS]y "uonensdeous

pue uonersuern Jursn sjusuodwod snoouagoraley usamieq Ayiqeradorojur Junmsua 10j o[qrsuodsay]
Poppaquio 9q Aew $]00) [edrydeIS oroym 90eJI)UI gom JLIUAS € SOPIAOI]

SSoUINIosn POIIWI] JO

9q pINoMm AISAOISIP PAseq ISEOPEOI] PUR ISESN[NU UM SANNU oWl Aq KIOA0ISIP 10 MO[[E 0}
pue ‘soniiqedes 10A00SIpP JUSIYUT JNOYIIM SIIT0[ouyd9) Sursn pajuswodur s90T1AISS JO KIOA0ISIP
9 woddns 03 Ansi3ar e sas) ‘uoneoo] pue 2dA3 £q syusuodwiod wAsAs Jo A19400s1p oY) syroddng

eep $s2001d 1040 suonerado [e0130] JO [edLIOWINU

Sunnooxa ut s1osn syroddns aurdus uorR[NOTEd YT, "SIUAAD Jurssa001d I0J pasn SI[NI JO [BAOWAX

1o 9yepdn ‘uoneaId Ay} J0j SMO[[e Jey) d9eJIoIul JudwaSeurw e sapiaoid J] “ejep JuaAd Jo sisk[eue
Kouaye[-mo[J0J SMO[Te SUISUS JgD) A, "SUONE[NO[ed pue JH)) ‘SULId)[y JISeq J0J SIOTAIIS SOPIAOI]

sa13o0[0juo pue sfopowr ejep erdordde ayy 03 eep Jurddew 1oy spoyiow

sop1a01d pue SOOTAIOS [0A9] JOUYSTY I s100npoId BIep $)00UU0D 9TAISS A [, ‘[013U0d Indino Jojenioe
pue ‘Sunuaad o1seq ¢, JUrYoIeas a3eI0ls ‘SUNJIaYd AJUISISUOD ‘TBAILIAI BIRP,, J0J J[qIsuodsay]
Kouepunpal Aqpue)s-104 pue s2ss2001d Jo uoneIn3yuodl duIfuo

o woddns pue suoneMSHuod pue S[EPOW $52001d 9JNIIXI ULD T “90TAISS PANQINSIP & A[[eordAT,
s[opouu-ejoul Jueyd Jo uorenueIsul

9} puE SIOTAISS JO SUTUOISIOA o) 9Seuetl OsTe ABW 90TAISS Y, "SOPOU JO SaINIonmns uoneInSyuod
[edryoresony SulAes 10J aIn3onns e ym 31 sapraoid 9o1a10s K1oyrsodar [opour 2y, ‘sjudwdfe jued
SNOLIBA YY) UO SUONEINTYUOD JO JUAWRII0JUD pue ‘Juawiko[dep ‘uonems3yuod ay) Joj a[qIsuodsay

PR1933 L1)-UWLIB[B/)UIAQ JO/PUR W) 9q ABJA "SULIE[R
ordurs syroddng ‘ggD jo sordrourid o) uo poseq swree sejedar3se pue ‘s10)y ‘sdeur ‘souge(

uoneue[dxg

901A19s Surddew [apojy
QOIAIOS UONNIIXD pue
juowgeurw ssad01d ssoursng
Kemayen

JIOJRIPUI AOTAISS

do1a19s uonisoduro)

uornjejuesaid somydern

Ans13a1 901A19S
901AI3s K19A0DSI(]

Q01AIS JHD

surdus uonemore)
Suoig

uonisinboe ejep A1osuag
UBLIOJSTH

ndjno 101eNOY
Kou9)sIsuod eyeq

IoY0Iq JUeAT

QuISUD UOTINDIXD [0NUOD)

A10y1s0doa1 uoneINIyuo)
901AI3S uoneIN3yuo)
QOIAIAS UOTIRINSYUOD WAISAS

Surssoooid juaas 29 wre[y
uoneInSyuod uLe[y
so01AI0s Juuoduwo)

uorjeIsouy
INH

KI9A00SIq

Surssaooxd vleq

Juswedeur vleqg

[onuo)

juowkordag
29 uoneIn3yuo)

sure[y
dnoi3 201A10G

(Qb10T ““Te 32 0quI0[0)) $IDTAIAS pue sdnoil 9014198 JOSAV-DONI +'+1 2lqeL

379

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises

SOOTAIOS

UONBIO[JISSE PUE ‘JUSWATeURW PUE AIDAOISIP 901A3P ‘AjIfeuonouny (SN) 991AI0S SURU UTBUWIOP
SOPNJOUT] "SaINJeaJ [eO130] pue [ed1sAyd s, we)sAs oY) uo juowadeuewr pue Suniodal 10J SMO[[Y
Suruuerd pue

QourUQUTEW JOJ pasn AJurew pue sjosse jueld Jo Yi[eay pue snyels o) SULIO)TUOW Y)IM PIUIIOU0))

SoINJe9) JOIABYQq PUB doueULIOfIad W)SAS dNsLIAORIEYD 2)e)Iwl 0) syutodpu

uone[nUIs pasodxo SWISAS IOYI0 SOWNSUOD I] "UOTINOIXS SUNL[NWIS PUL SJUTENSUOD SUTen[eAd
¢59559001d J19Y) pue SWSAS saje[nwIs 31 se dnoI3 90T1AISS JOYIO AIOAQ JSOWE 0) PA)IAUUOD ST
uoneIapa) AJUpI JO uonIuyap

U} J0J pUE [OIUOD SSAOJE PAsLq-9]0I IO AITUAPI IO SAIoT[0d/sornT AILINoas sageuew pue souyap
0S[Y 'SaInNIed) JOUJ0 pPUe ‘UONBOINUAYINE ‘AI[EIIUIPYUOD JOJ SINSEIW AILINOJS SANIIX PUB SIOIOJUF
SJUOAQ pUE SULIE[R

Surjpuey Joj pue ‘11 SUIYOLIUD A[[eonuBWS pue sjudauodwod wa)sAs Joyjo Jursn ssadoid [eorsAyd
ay) wotj uonewojul Jueyies 10j o[qisuodsay ‘wIsAs ayy ojur Jurod Anud ue yym S[INH SOpIa0Id
K1031s0doI Q) 0) Q0BJIIUI UL puR

‘s[opow 253y} 21moni)s 0 A1031s0dal € ‘s[opow Jo JUSWITEURW YY) JOJ SITAIIS JLIUAT JO SISISU0D)

suorjouny Sunroddns re[rurs pue ‘uonezruoiyousAs ejep ‘Surddewr

SsaIppe ‘Suryoe) J9sse J10J [qIsuodsal ST 0s pue $Asse IO JO JUIUWITRUBL) [)IM PIUIAIUOD)
woy) SUNNOAX pue ‘sar3a1ens uoneIsu JuLRpo ‘sarouspuadap

woysAs Jurknuopt £q yoeoidde paseq-yOS 9y 03 SW)SAS Aoe39[Jo uonjeidrur oy J0j o[qrsuodsay]
suorjouny 19Yjo pue ‘operddn

QuawAo[dap ‘9oUBUAUIBW IITAIDS J0J MO[[E 0) SIIIAIDS JO OPOI IDINOS) SUTBIUTBUI YOTYM ITAIDS
K10y1s0da1 9pod ® surejuod osye iy *, (uononpoid ‘uorie[nuirs ‘uoneprfea s9) ‘3-9) Jurdeys punoie
$1doou0o os[e pue JudwSeURU 9JIAIS ‘SUILOISIOA ‘sarorjod dourUUIEW SE Yons S303dse,, SIIA0D

QOTAIOS UOTROOT

QOTAIOS JUQWIASRURT JIOMION
QOTAISS FuTUIeN

JIOJIUOW 19SSy

jusurageurwW SOT)SOUILIP 1SSy
QOTAIOS UOTIR[NWIS

$S92014 UONINOIXA UONe[NWIS
IoSeurW OLIRUSDS UOTJB[NWIS
uonen[eAd JUIBNSUOD)

QOTAISS Juourageuew AoT[0q
QOIAIAS JudWRFeURW AJLINOAS

Q0TAI0S SULIOYIUOA

Q0T1AISS A103150dI [SPOIA
90TAIIS JUSWATRURW [OPOIJA

JUSWIdSEUBW AJTAISS IO

9OTAIIS UOIINOIXD UONRISIA
IOATOS UOTIRISTUI 9INJONIISEIJU]

QOTAIRS JUAWAFeURW I[IAIJI]
K10y150da1 9po))

K3orodog,

sonsougeIp
woISAS

uonEe[NWIS

K)1mdag

Sunojiuow
$59001d

[9PON
yoddns KypiqoN

uoneISIN

JuouIdSeUR
Q[okodJI]

380 A. Ismail and W. Kastner

configuration or editing of the model, or manage the RPL’s connections to the
various components of other layers. The governance of access to the ontology in
the triplestore, on the other hand, is done by the RPL's SPARQL query factory
and ontology connector internal functions, and it is suggested that, once secured,
SPARQL-over-HTTP may be used for these factors. As for the ontology itself, this
in fact is stipulated as being the eScop Manufacturing Systems Ontology (MSO),
which is a proprietary component created by one of the designing members of the
architecture (Iarovyi et al., 2015b; eScop Consortium, n.d.(a)).

The ORL coordinates the various components in the architecture using a service
composer and an orchestration engine. The former maps process definitions to
configurations applicable to the system, and the latter executes them (eScop
Consortium, n.d.(a)).

The VIS aims to allow for flexible and generic graphical interfaces. For this it
needs a dynamic composition module, a symbol library, and visualization agent(s).
Together, the VIS is able to map descriptions from the RPL to visualization elements
from the symbol library which are then transformed by the agent(s) into web pages
that can be displayed using a web browser (Iarovyi et al., 2015b; eScop Consortium,
n.d.(a)).

14.3.5 Arrowhead Framework

Finally, the Arrowhead project divides its framework into three parts that are design
guidelines, documentation guidelines, and a software framework. The first provides
a description of design patterns for making legacy or newly created application
systems compliant with the Arrowhead Framework. The documentation guidelines
provide templates for the description of services, systems and system-of-systems.
As for the software framework, this is the main concern of this section and is
described in more detail below (Blomstedt et al., 2014b).

The software architecture defines a grouping of core services. These services are
meant to support communication exchanges between domain-specific application
services. These core services and systems are effectively divided into three groups:
Information Infrastructure (I1), Systems Management (SM), and Information Assur-
ance (IA). II provides service descriptions and information on how to connect
to services and systems. SM core services are concerned with orchestration and
system-of-systems composition. Finally, those of IA address security and safety
factors in information exchange processes. The categorization of core services and
systems identified by the framework under these three groups is shown in Fig. 14.1
(Blomstedt et al., 2014a,b).

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 381

Arrowhead
Framework
Core
Systems
- Service Registry System
Dresign Software Documentation - Authorisation System
Guidelines Framework Guidelines tration System
ine Interface (MMI)
Service Registry System
MMI Authorisation System
- User/Role/System Registry
- Configuraticn System
Information System Information) E:{Im ST:;::“SHI"!—'
Infrastructure Management Assurance - Certificate System
Service Discovery -Logging Authorisation
- Service Metadata Monitoring - Authentication
tion Installation, - Status Functionality - Certificate Distribution
Startup - Orchestration Security Logging
- Rolke Software Distribution - Security Intrusion
- Organisation & Role - Cruality of Service
Software Distribution - Configuration
Palicy
- Event Handling
- Performance

Fig. 14.1 The Arrowhead framework (Blomstedt et al., 2014b; Varga et al., 2014)

14.4 Realizations of the Reference Architectures

So far, the reference architectures have been described in an abstract manner. This
portion of the chapter inspects the technology stacks implemented by each of the
architectures. For comparability, we segregate these technologies into categories
that address the various functional aspects addressed by all of the architectures. We
provide brief descriptions on both the mature and novel technologies implemented
for each category to give a succinct overview of the technical properties of each
project in the pursuit of achieving interoperability.

14.4.1 Service Discovery

An essential aspect present in any service-oriented architecture is that of service dis-
covery. Due to the close association of the device profile for web services (DPWS)
with SOAs, the use of the web services dynamic discovery (WS-Discovery)
specification is common. Four out of the five architectures, excepting eScop, either
directly implemented or discussed methods to allow for the use of the WS-Discovery
protocol.

The WS-Discovery protocol is based on the use of multicast messages (typically
SOAP-over-UDP) to announce or probe for services using specially crafted eXtensi-
ble Markup Language (XML) documents. Announcements operate using multicast
Hello and best-effort Bye messages. Likewise, Probe and Resolve messages are also
multicast; the former is used to locate services based on service types and/or scopes,
while the latter searches for a specific service by name. The use of a Discovery Proxy
is encouraged to allow for the active suppression of multicast traffic in the network.

382 A. Ismail and W. Kastner

The specification also endorses the caching of multicast service advertisements to
incur further savings. Finally, with respect to securing the discovery process, the
specification does not require, but recommends the use of unique XML signatures
and a number of other properties to mitigate against a variety of attacks (Bullen
et al., 2009).

The IMC-AESORP is one of the architectures implementing the WS-Discovery
protocol directly, for example, to allow Service Bus instances to discover each
other (Nappey et al., 2013). However, one of the main contributions of IMC-
AESOP hinges on its bridging of DPWS with the industry-focused OPC Unified
Architecture (OPC UA) standard. The architecture therefore presents concepts
for supplementing OPC UA’s discovery mechanisms using WS-Discovery. To
elaborate, the OPC UA discovery protocol requires the use of a discovery server. The
address of the server must be known beforehand by participating OPC UA clients
and servers. The IMC-AESOP approach presents two methods for auto-discovery in
OPC UA systems using WS-Discovery. The first involves the use of WS-Discovery
to allow OPC UA clients and servers to automatically find the OPC UA Discovery
Server, while the second approach involves replacing the OPC UA Discovery Server
with the WS-Discovery protocol to allow OPC UA clients to find OPC UA servers
directly (Bony et al., 2011).

A second core technology in IMC-AESOP is the Constrained Application
Protocol (CoAP). Identified as a suitable protocol for device-level integration of
constrained devices, such as those belonging to wireless sensor networks (WSN),
the IMC-AESOP approach discusses a reliance on the discovery mechanisms
of CoAP, CoAP multicast, and the Constrained RESTful Environments (CoRE)
Resource Directory (RD), for the location of services and resources hosted on
resource-limited clients (Eliasson et al., 2013; Kyusakov et al., 2014).

As for PLANTCockpit, as the architecture is dependent on the concepts of
adapters to interface with the various systems and function blocks, the discovery
mechanism employed is dependent on the system being interfaced. For example, the
system implements a DPWS adapter to allow for the discovery of DPWS devices.
The adapters themselves, however, are implemented as function blocks based on the
concepts of IEC 61499 function blocks. The identification of FBs depends on FB
Service Interfaces, and these are implemented using the OSGi framework. As such,
although not explicitly stated, it may be the case that the implementation depends
on OSGi’s service registry to register, get, or listen for services (Iarovyi et al., 2013;
Dennert et al., 2013).

Although the IoT@Work approach explored and compared the WS-Discovery
and OPC-UA’s discovery mechanisms, it did so within the context of auto-
configuration. Instead, the IoT @Work system uses a configurable RESTful Direc-
tory Service (DS) as a form of service registry. Devices interact with the DS using
a RESTful API to retrieve, submit or delete device and service information using
HTTP GET, PUT, POST and DELETE requests. The RESTful nature of the service
allows every service to be modeled as a URL-accessible resource. The system also
supports the use of QR codes and NFC tags for the identification of devices (Rotondi
et al., 2013).

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 383

Similar to IoT@Work, the eScop project generates its own discovery mech-
anisms. Discovery here is based on the multicasting of Hello, Bye and Probe
messages, and in this respect, it is similar to the WS-Discovery specification (Iarovyi
et al., 2016). Inspection of the source code,! however, shows that the protocol does
not, in fact, follow the WS-Discovery specification. This is as a number of critical
differences exist, such as the use of JavaScript Object Notation (JSON) encoding
for messages, and of multicast IPs and ports different than those stipulated for use
by WS-Discovery.

Finally, the Arrowhead project defines three approaches for service discovery.
The first is a service registry functionality based on the Domain Name System
(DNS) and DNS Service Discovery (DNS-SD). Effectively, DNS is a hierarchical
database mechanism that can store any kind of data and DNS-SD is a method for
specifying how DNS resource records may be named, structured, and browsed.
These records may be accessed using unicast DNS requests or multicast DNS
(mDNS). The Arrowhead framework applies mDNS for constrained devices, such
as those belonging to WSNs. The second and third approaches for discovery in
the Arrowhead projects are based on the use of XML-over-HTTP and JSON-
over-HTTP for RESTful web services. The former uses a DNS protocol specific
to Arrowhead to allow for service discovery and the retrieval of service and
data descriptions. The JSON-over-HTTP approach is marked to be done and an
implementation still remains to be published. The framework does however discuss
the prospect of implementing a translation service for integration between the
XML/JISON and DNS-SD registry systems (Delsing, 2015; Cheshire and Krochmal,
2013; Arrowhead Consortium, 2014a; Blomstedt and Olofsson, 2016b; Blomstedt,
2016a,b; Blomstedt and Olofsson, 2016¢).

14.4.2 Service Description

For this subsection, we focus specifically on the aspect of service contracts as
defined in Table 14.1. The goal of service contracts is to define a minimal level
of interoperability and thereby reduce the need for integration. It may do so by
making available definitions of the service’s functionality, data model, data transfer
mechanisms and encodings, and policies for security and quality of service, amongst
other things. Naturally, these contracts themselves need to be interpretable by all
services available in the registry or operating environment. Similar to what was the
case for service discovery, a web services technology, the Web Services Description
Language (WSDL), is employed by a number of projects (Erl, 2008).

The WSDL language is a machine-readable XML-based language for the
definition of interfaces. It is capable of describing all of a service’s operations,
the data required and output by each operation, and their respective data types.

Thttp://www.escop-project.eu/tools/.

http://www.escop-project.eu/tools/

384 A. Ismail and W. Kastner

It may also provide addressing and networking information to support inter-
service connectivity. Both of the IMC-AESOP and PLANTCockpit projects use
WSDL files for service descriptions. However, for describing sensor services, the
IMC-AESOP project uses the JSON, XML and EXI-compatible Sensor Markup
Language (SenML) (PLANTCockpit Consortium, 2012c; Colombo et al., 2014b).

The eScop project also employs a WS-based approach and develops a WS-
enabled Remote Terminal Unit (RTU) titled the eScopRTU. Within the eScopRTU,
all services are IEC 61131 Structured Text Language (STL) functions that are
used to execute operations on resources. They are RESTful, hypermedia-driven,
accessible viaa REST API, and the API documentation, read “service descriptions”,
are created using Swagger. Swagger is a specification for the definition of language-
agnostic, human and machine-readable representations of RESTful APIs. The
specification requires that the API be described using either JSON or YAML?; the
resulting files may then be processed by tools that can generate clients in a variety
of languages. The Swagger ecosystem also includes tools to display and test the
APIL. Swagger has since been renamed the OpenAPI Specification (OAS) (Faist and
Stétina, 2015; Ratovsky et al., 2014).

IoT@Work, as previously mentioned, explored the prospects of auto-
configuration using WS-Discovery and OPC UA. Part of the procedure outlined
involves the acquisition of service descriptions. With WS-Discovery, this was
achieved by having metadata on a DPWS-enabled device retrieved by its controller
using the WS-Transfer protocol. The metadata that may be included is defined as
part of the WS-MetadataExchange specification. This metadata would allow the
service to share WSDL definitions, XML schema, policy expressions and so on.
For the case of OPC UA, the GetEndpoints Service, which is part of the OPC UA
standard, retrieves the information required to allow for secure communication
between clients and servers. The information mainly consists of addressing and
security policies and definitions (Diirkop et al., 2012; Ballinger et al., 2008; Mahnke
et al., 2009).

Service description in Arrowhead is dependent on the method of service
discovery implemented. As previously mentioned, the DNS system uses DNS-
SD guidelines to organise the resource records. In such a case, the specification
already allots a structure for the definition of addressing, service name, and other
connection-related information. For any additional requirements, the DNS TXT
record is capable of accommodating such information. The XML-based system uses
XML schema for the description of data, and the Web Application Description
Language (WADL), which is WSDL’s counterpart for RESTful services for the
description of service interfaces. The JSON-based system, as previously mentioned,
is yet to be defined (Blomstedt and Olofsson, 2016b; Blomstedt, 2016a).

2hitp://www.yaml.org/.

http://www.yaml.org/

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 385
14.4.3 Data Representation and Access

The aspect of data representation and access has been covered somewhat partially
while discussing realizations of service descriptions. Our focus here is a more in-
depth description of the information or data model and the semantics used by the
architectures’ respective implementations. The main purpose of these models and
semantics is to homogenize the representation of information or data in the entire
system ensuring accessibility by all participants and avoiding the need for any data
transformation (Erl, 2008).

Of the five projects only two, IMC-AESOP and Arrowhead, rely primarily on
mature standardized models for the representation of data. In IMC-AESOP, the
system applies the OPC UA information model to link up information in the
majority of the enterprise, save the lowest of layers, which instead uses a custom
data model based on the Sensor Markup Language (SenML). The former, OPC
UA, contains a flexible address space that can be used to create information models
that capture objects, their attributes, and relationships. These objects are known as
nodes in the OPC UA address space and can be used to represent physical or virtual
components. The resulting information models create full-mesh networks of these
nodes, with associated properties and relations, and are exposed to applications
through OPC UA servers (Colombo et al., 2014b; Mahnke et al., 2009; Henf3en
and Schleipen, 2014).

As for SenML, the associated specification defines a data model suitable for
highly constrained devices, such as sensors and actuators. It does so by having
a minimalist approach where the goal is to maximize the amount of information
not included in a message while still allowing for self-describing data that includes
measurements and meta-data. The result is a single array data model that contains
a series of data records. The records can contain the device’s unique identifier, a
time stamp, the measurement value and unit, amongst other details, for example,
to allow for the description of the measurements and device, in addition to the
measurement values themselves. The IMC-AESOP project, however, claims that the
level of granularity of information carried by SenML’s data model are insufficient
for its needs and therefore create a custom data model that is primarily and heavily
based on SenML to achieve this granularity (Jennings et al., 2016; Colombo et al.,
2014b).

Similar to IMC-AESOP, Arrowhead also identifies OPC UA and SenML as suit-
able candidates for the implementation of data structures and semantics. However, it
also highlights the Home Performance XML standard and the CoRE Link Format as
appropriate for its needs. The former is a set of data standards that define a number of
XML schema and associated data elements to allow for the description of customers,
contractors, buildings (and their components and systems), and energy performance
factors such as conservation, consumption, and savings, both as actual readings
and as estimates. The goal of these standards is therefore, as the name implies,
standardization in the collection and transfer of information in the domain of home
performance. The latter, the CoRE Link Format, is a realization for exposing the

386 A. Ismail and W. Kastner

URIs of resources on constrained devices and networks. It does so by extending
the HTTP Link Header format to include the URI descriptions, such as resource
relations and attributes, as a message payload, and specifying an entry point URI
as a default request path for the retrieval of these URIs. We do note, however, the
existence of divergences from the semantic and modeling technologies listed in the
Arrowhead guidelines as the energy production demonstrator pilot, for example,
adopts the domain-specific language, Thing Markup Language (ThingML), instead
of the ones listed above for its semantic needs (Varga et al., 2014; Building
Performance Institute, 2013a,b; Shelby, 2012; Arrowhead Consortium, 2014b).

Opposed to IMC-AESOP and Arrowhead are the ontology-driven eScop and
IoT@Work models. eScop, as previously mentioned, develops a proprietary Man-
ufacturing System Ontology (MSO) based on OWL to describe the system com-
ponents, their attributes and relationships. The MSO is in fact the evolved form
of the Politecnico di Milano Production Systems Ontology (P-PSO), which is a
general taxonomy for discrete manufacturing systems. The MSO extends the P-
PSO to include logistics and process production from the perspective of control.
The MSO also incorporates concepts to allow for the visualization of the respective
systems and their data. The information is stored in an RDF triple-store database
that supports SPARQL-over-HTTP to allow for web-based interactions with the
ontology (Fumagalli et al., 2014; Negri et al., 2015; eScop Consortium, n.d.(c)).

The IoT@Work project also follows an ontology based approach by storing
information on devices in a DS-specific data model (ontology) that uses an
RDF-triple-store. In addition to RDF, the model is also inspired by the uCode
Relation Model that models device profile attributes as subject-predicate-object
triples. Effectively, the resulting DS model is a connected directed graph where
the vertices are physical or virtual entities or primitive elements and the edges in
the graph represent the relationships between the various entities and elements.
The DS is also capable of validating and handling requests for information on
devices acquired through an exposed RESTful interface. This information may
be retrieved from the database or by collecting this information directly from
connected devices. The IoT @ Work-compliant devices, unlike the DS, use the OPC
UA address space and information model. The project also supports the retrieval
of information from SNMP compliant devices. Mappings between the respective
device and DS models are therefore a necessity (Rotondi et al., 2013; Imtiaz et al.,
2013).

The PLANTCockpit project presents its own metamodel for a database schema
and an XML schema for the storage of visualization engine configurations. The
database schema consists of four customizable data types and runtime data types
to allow for the persistence of analytics-relevant data. The XML schema contains
a number of elements to allow for the rendering of SVG components in HTMLS5
pages, and their linking to data points to create a configurable and compound HMI
made up of different graphical elements (PLANTCockpit Consortium, 2012b).

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 387
14.4.4 Information and Message Encoding

For message encoding, all of the projects employ XML and extend support for
one or more other specifications. XML is in fact a platform-independent data
structuring format that defines rules for the textual encoding of human and machine-
readable data. It allows for user-defined tags and different data types and processing
methods. By allowing for the definition of syntax rules and standardized contracts
through the use of document type definition (DTD) or XML schema definition
(XSD) descriptions, the validation and verification of encoded data structures are
possible. Several specifications have since been defined for the binary-encoding of
XML documents to address the overhead and performance issues associated with
XML. Of the possible choices, the Efficient XML Interchange (EXI) specification
is employed by the IMC-AESOP and Arrowhead projects for the compact exchange
of information (PLANTCockpit Consortium, 2012d; Hill, 2015; Varga et al., 2014;
Colombo et al., 2014b; Rotondi et al., 2013; Negri et al., 2016).

Other than XML, JSON is also widely employed, being used by all but
PLANTCockpit. Stipulations in the PLANTCockpit approach do however allow
for the inclusion of JSON. This is the case, for example, with the configuration
connector module which is required to be format-agnostic in handling configuration
data. As for the JSON specification itself, JSON, like XML, is a data structuring
specification that defines rules for the formatting of exchangeable and human and
machine-readable data. Tools for the parsing and generation of JSON exist for a
large number of programming languages therefore making it a popular alternative
to XML. It follows a minimalist encoding approach, using a small number of
characters to denote the structure and value of data. Similar to XML, JSON allows
for the definition of JSON-based schema for the validation of resulting encodings.
Binary encodings, such as the Concise Binary Object Representation (CBOR)
specification, exist for JSON. However, aside from the mention of CBOR support
as a long-term goal for Arrowhead’s historian, it does not appear as though any of
the projects include a binary encoding for JSON in their respective stacks (Colombo
et al., 2014b; Rotondi et al., 2010; Varga et al., 2014; PLANTCockpit Consortium,
2011b; eScop Consortium, n.d.(b); Galiegue et al., 2013a,b; Eliasson, 2015).

Aside from XML, EXI, and JSON, three other formats used are OPC UA
Binary, HTML, and XML-binary Optimized Packaging and Message Transmission
Optimization Mechanism (XOP/MTOM). OPC UA Binary, as the name implies,
is the binary protocol for OPC UA. Like other binary representations, it is the
performance and overhead-sensitive data format for OPC UA. It is used in both
IoT@Work and IMC-AESOP and is considered to be part of the PLANTCock-
pit OPC UA adapter. HTML, on the other hand, is used for the structuring
and presentation of multimedia web content using human and machine-readable
semantic descriptions. It is explicitly stated as part of the visualization layers of
IoT@Work and PLANTCockpit. Finally, XOP/MTOM, is used by IMC-AESOP
for the transmission and reception of binary data in SOAP messages (Rotondi et al.,

388 A. Ismail and W. Kastner

2013; PLANTCockpit Consortium, 2012a,b; Colombo et al., 2014b; Imtiaz and
Jasperneite, 2013; PLANTCockpit Consortium, 2012c).

Further specifications include security relevant ones, such as the XML-based
Security Assertion Markup Language (SAML) and eXtensible Access Control
Markup Language (XACML), which are employed in IoT @Work, SOAP for the
structuring of messages, and the previously mentioned YAML for the description of
RESTful APIs. The first of these, SAML, is a standard for the communication of
data for authentication and authorization, while XACML handles the definition of
access policies. How these are applied as part of [oT @Work will be discussed later
on in this chapter. SOAP defines a platform independent XML-based framework
for message structuring, encoding, and processing and for the representation of
remote procedure calls and responses. The SOAP message structure is made up of
a SOAP envelope, SOAP body, and, optionally a SOAP header. The first, the SOAP
envelope, is used to represent the message itself, while the SOAP header can be
used to add features and their associated attributes to a message. Lastly, the SOAP
body contains the message contents to be conveyed to the other communicating
parties. The platform-agnostic nature of the SOAP protocol is one of the driving
factors behind its popularity in the web services community. As for YAML, this
was discussed earlier as the language of choice for the configuration of Swagger
files under the eScop project. YAML, like its counterparts, is a serialization language
aimed at minimizing the number of characters required to indicate the structure and
value of data while maximizing human readability in the resulting data interchange
format. It is built around a typing system, an aliasing mechanism and primitives
such as mappings, scalars and sequences. According to the YAML specification,
compared to JSON, it is more difficult to generate and parse but more legible to
humans than JSON. The specification also states that there is no direct correlation
between XML and YAML (Rotondi et al., 2013; OASIS Security Services (SAML)
TC, n.d.; larovyi et al., 2015a; PLANTCockpit Consortium, 2012d; Ben-Kiki et al.,
2009; Box et al., 2000).

14.4.5 Message Exchange

For message exchange, we note a preference for web-based solutions, such as HTTP
and CoAP, and message-oriented middleware (MOM), such as JMS, AMQP, XMPP,
and MQTT.

Starting with HTTP, this application-level, stateless, and generic protocol is
used by all projects for the transfer of hypermedia across networks. The protocol
typically runs over TCP, employs MIME-like messages for communication, and
uses URISs to provide access to resources. For its secure equivalent, HTTPS, HTTP
is transported over a TLS tunnel. In several instances, such as IMC-AESOP and
PLANTCockpit, implementations used HTTP/HTTPS for the conveyance of SOAP
messages. CoOAP, on the other hand, is a low overhead URI-based web protocol for
machine-to-machine (M2M) communication over UDP with support for unicasting,

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 389

multicasting, proxying, caching, stateless HTTP mapping, and binding to DTLS.
Due to properties such as these, a number of projects, namely IMC-AESOP and
Arrowhead, have favored the use of the CoAP protocol for the access of constrained
devices and network implementations in their realizations (Fielding and Reschke,
2014; Rescorla, 2000; Varga et al., 2014; Rotondi et al., 2010; Colombo et al.,
2014b; PLANTCockpit Consortium, 2012c; Severa et al., n.d.; Shelby et al., 2014;
Eliasson, 2015; Derhamy, 2015).

As for the MOMs employed, PLANTCockpit uses JMS, IoT @Work employs
AMQP, and certain Arrowhead demonstrators implement XMPP or MQTT. MOMs
are a paradigm for asynchronous, loosely coupled and reliable communication in
distributed systems. These properties, as well as others such as high scalability and
availability, are enabled through the use of an intermediate layer, the middleware,
that handles the messaging process on behalf of the communicating parties. The
first MOM to be discussed is JMS, which is a vendor-agnostic standard that
defines a Java API and semantics for the description of the interface and the
messaging system behavior It therefore allows applications to communicate with
heterogeneous enterprise messaging systems, and simplifies their development
process. However, the implementation of the messaging service itself is not defined
by the standard. As such, only a very general structure for the JMS message is
defined by the standard necessitating the inclusion of integration techniques if
multiple implementations of MOM exist within the same system (Mahmoud, 2004;
Richards et al., 2009; PLANTCockpit Consortium, 2012a,d; Imtiaz et al., 2013;
Skou et al., 2014; Eliasson, 2015; Derhamy, 2015).

In contrast to JMS, AMQP defines an open-standard messaging protocol that
includes the networking protocol and message structure and remains agnostic
towards the client API and message broker employed. Its protocol provides flow
control features, message delivery guarantees, and highly flexible routing mech-
anisms for communicating parties. It appears that IloT@Work based its decision
on using AMQP for its ENS implementation on the fact that it addresses, as
a standard, both aspects of high-level modeling and wire-level communication
concepts (OASIS, 2012; Luzuriaga et al., 2015; Richards, 2011; Imtiaz et al., 2013).

In terms of Arrowhead’s choices, the XMPP and MQTT protocols are either
highlighted for use or directly implemented in a number of its services and
demonstrator pilots. The former, XMPP is a widely-implemented XML and TCP/IP
based protocol for near-real-time communication. The protocol addresses aspects
related to connection establishment and teardown, security, discovery, reliability,
messaging, and inter-entity interactions. MQTT, on the other hand, is a lightweight
protocol for constrained and unreliable systems that is more efficient than HTTPS,
but is not extensible, and does not natively include connection security, transactions,
discovery, or message fragmentation features. Multiple instances in the Arrowhead
documents list the desire for services to support both MQTT and XMPP, or, in
the case of the mediator service, to support translation between the two protocols
(Le Pape et al., 2014; Skou et al., 2014; Eliasson, 2015; Derhamy, 2015; Gazis et al.,
2015; Saint-Andre, 2011).

390 A. Ismail and W. Kastner

Other protocols noted include DPWS and OPC UA. DPWS uses SOAP-over-
HTTP and SOAP-over-UDP bindings, yet certain member services, such as WS-
Discovery and WS-Transfer, are transport independent. With SOAP-over-HTTP
the SOAP message is placed inside the HTTP payload field for request/response
messaging allowing for features from both specifications. Similarly, the SOAP-over-
UDP binding allows for the inheritance of UDP’s messaging, encoding, security and
other mechanisms.

Regarding OPC UA, four combinations of encoding, security, and transport
protocols are possible:

* UA Binary + UA-SecureConversation + UA-TCP

» UA Binary + HTTPS

* UA XML + SOAP + HTTPS

¢ UA XML + WS-SecureConversation + SOAP + HTTP

Of these four, the first of these compositions, referred to as native UA Binary, is
mandatory for implementation. Both of IMC-AESOP and IoT @ Work use the native
UA Binary profile for the transport layer of their OPC UA implementations. IMC-
AESOP, however, also includes a communication interface in its DPWS stack that
implements the third profile made up of UA XML, SOAP and HTTPS, labeling it
as OPC UA over WS. Arrowhead, on the other hand, presents a proof of concept
of a condition monitoring system that employs the OPC UA SDK from Unified
Automation, and discusses its use for the integration of legacy components in its
framework. Finally, although OPC UA is highlighted as a development technology
for PLANTCockpit, the details of the implementation is unclear from the public
deliverables (Jeyaraman et al., 2008; Zurawski, 2005; Moreau et al., 2007; Colombo
et al., 2014b; Mahnke et al., 2009; Bony et al., 2011; Varga et al., 2014; Le Pape
et al., 2014; Histbacka et al., 2014; PLANTCockpit Consortium, 2012c).

14.4.6 Networking, Data Link and Media

As may have been partially visible from the previous parts of this chapter, a
wide and heterogeneous variety of media and their associated specifications are
used, required, or discussed for possible implementations. Effectively, however,
only three projects, Arrowhead, IMC-AESOP, and IoT @Work, explicitly state the
technologies implemented at the networking, data link and media layers.

The Arrowhead framework’s stack is declared as being made up of IPv4/IPv6,
6LoWPAN, 802.11p, 802.15.4, NFC, UWB, and NTP. However, we also note
that, other than the aforementioned protocols, several more are used in one of
the pilot demonstrations. Specifically, the GSM (2G), GPRS (2.5G), UMTS (3G),
WiFi and RS-485 CAN standards are highlighted by the Arrowhead project as
possible solutions for communication in electrical vehicle charging infrastructure.
The wireless specifications are to allow users to communicate with charging
stations using devices separate from the vehicle, such as mobile devices. So far,

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 391

the pilot demonstration has limited its implementation to UMTS and WiFi. As
for the communication channel between the vehicle and the charging station, the
Arrowhead project uses CAN, basing it on the CHAdeMO standard (Varga et al.,
2014; Bellavista and Ornato, 2014; Arrowhead Consortium, 2014c; Bocchio and
Ornato, 2014; Kleyko, 2016).

The IMC-AESOP project declares a stack somewhat similar to Arrowhead,
using IPv4, IPv6, TCP, UDP, 6LoWPAN, IEEE 802.15.4, IEEE 802.11 and NTP.
However, it uses RS-485 Modbus instead of CAN, and also includes Profibus,
UA Native, and IEEE 1588 PTP. The majority of these protocols, namely 1Pv4,
IPv6, TCP, UDP, 6LoWPAN are part of the DPWSCore stack in IMC-AESOP. The
component responsible for bridging the DPWS and OPC UA stacks implements the
UA Native protocol. A pilot demonstrating the migration of a plant’s lubrication
system to the IMC-AESOP approach used the Modbus protocol to connect to the
distributed control system and a specific stack consisting of XML/EXI, CoAP,
NTP, UDP, IP, 6LoWPAN, IEEE 802.15.4. A second pilot, for building system of
systems with SOA technology highlights the integration of smart home systems with
communication infrastructure using SenML, EXI, CoAP, IPv6, IEEE 802.11, IEEE
802.15.4 and cellphone communication technologies (agnostic) (Colombo et al.,
2014b).

The IoT@Work approach necessitates the use of IPv6 and designates IPv4 as
optional. For its DS, as previously discussed, both NFC and QR codes are supported.
For timing, both NTP or IEEE 1588 PTP are possible. To demonstrate the auto-
configuration system, it uses the RT Ethernet standard Profinet. Its network slices
technology is mapped using Ethernet VLAN. Where IoT @ Work differs from other
approaches is its focus on discussing facilitating protocols such as SNMP, DHCP,
DNS, LLDP, and STP to support the network-level autoconfiguration of devices
(Rotondi et al., 2013; Houyou et al., 2011; Imtiaz et al., 2013).

14.4.7 Security

The IoT @Work approach to security is founded on capability-based access control.
This mechanism centers around the use of transmissible tokens that reference
an element and its access rights. A process in possession of a valid token may
therefore interact with the referenced element within the constraints of its access
rights. These capabilities may be forged or revoked in the form of XML documents
following specific schema with elements borrowed from the SAML, XACML,
Digital Signature and XML encryption schema. IoT@Work also requires that
devices have secure identifiers based on the IEEE 802.1AR specification, and
that authentication for NAC be carried out based on IEEE 802.1X. With these
mechanisms in hand, the system designs and employs multiple components in a SO
fashion to perform NAC and to secure the system’s event namespace (Gusmeroli
et al., 2013; Rotondi et al., 2013; Fischer and Gesner, 2012).

392 A. Ismail and W. Kastner

The PLANTCockpit project explored the possibility of using single-sign on
solutions for a security service. Ultimately, the PLANTCockpit approach employs
an LDAP service for access control and the management of user rights. Interactions
with the LDAP service are through a Java client implemented using the JLDAP
library. User access rights govern the components and data sources that a user is
permitted to interact with. As for the security aspects related to PLANTCockpit’s
use of JMS, notes in the deliverables claim that PLANTCockpit permits the encryp-
tion of the JMS message body, with the encryption to be managed using a central
component and that JMS security is addressed using ‘interceptors’. Unfortunately,
the security aspects of PLANTCockpit are addressed in a non-public deliverable
(D3.2) and, as such, details on the interceptors and other system mechanisms for
security are not available for us to elaborate further (PLANTCockpit Consortium,
2011b, 2014, 20124d).

As far as the published materials go, Arrowhead instills security measures for its
Service Discovery and Authorization Control, for mediation in legacy systems, and
for communication in general. The Service Discovery service is secured by using
DNS TSIG keys for DNS updates and DNS Security Extensions (DNSSEC) for
queries. Authorization Control is dependent on the use of X.509 certificates, and
provides TLS security for the establishment of secure communication links. In the
case of Arrowhead’s Virtual Market of Energy pilot, the Authorization module uses
Public Key Infrastructure (PKI) and X.509 certificates over REST for authentication
and XMPP-over-TLS for encrypted communications. Generally, the consensus
throughout the Arrowhead framework is to secure information exchange using TLS.
In the case of UDP communication, DTLS is highlighted as the applicable counter-
part. The project has also expressed a desire to develop a secure NFC interface for
industrial applications. Based on a publication, this aspect may have been addressed
through the ‘FESTADO’ system for smart maintenance. This system uses a ‘CUT-
IN’ module made up of a secure and a non-secure but more powerful controller.
The module is designed to be an add-on that would provide security features to
‘non-smart’ and legacy devices. This would include abilities for the secure storage
and execution of data, integrity checks, encrypted memory and encrypted in-CPU
calculations. Finally, we note the use of the Message Passing Interface (MPI)
with Secure Shell (SSH) for protected communications in the implementation of a
distributed framework for 3D swarming systems such as aerial vehicles and WSNs
(Blomstedt and Olofsson, 2016a,b; Varga et al., 2014; Chrysoulas and Jansson,
2016; Krimm et al., 2014; Lesjak et al., 2014; Sadrollah et al., 2014).

In the case of IMC-AESOP, by self-admission, “cyber-security was not at the
heart of [this] project” (Colombo et al., 2014b). As such, IMC-AESOP states
that WS-Security and WS-ReliableMessaging were not implemented as part of its
DPWS communication stack, and neither was IPsec included in the IPv6-based
stack for WSANS, claiming them all as planned additions. Furthermore, the service
bus in IMC-AESOP only implemented HTTP basic authentication and Role-Based
Access Control (RBAC) for service calls with such rights only being given to
administrative users. In accordance with RFC 7617, unless communication takes
place within a secure system (i.e., over TLS), basic authentication is not to be

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 393

considered secure as credentials are transferred in clear-text. It is unclear if IMC-
AESOP implements basic authentication over a secure channel (Colombo et al.,
2014b; Reschke, 2015).

Similarly, other than security testing and a high level discussion of defining and
applying a security model as part of an SOA ecosystem, eScop did not address the
aspect of security. In the case of the former, security testing of the RPL is defined as a
method for verifying the robustness of the ontology by employing “ad-hoc offensive
queries”. For the VIS layer, testing is to be applied to access control measures. As for
the testing of the integration of the PHL, RPL, VIS and ORL, this entailed ensuring
that data in the system is secured and that the functionality of the system cannot be
misused (eScop Consortium, 2014; Simone et al., n.d.).

14.5 Discussion

The concept of SOAs has been in existence for well over a decade and is generally
considered to be a stable and tried architectural design pattern. The evolution of
SOAs and alternatives to the SO approach within the context of industrial systems
are partially addressed in Chaps. 8 and 13. This chapter, on the other hand, inspects
the architectural designs and technological choices of five preliminary SO RAs.
Based on this examination, a number of features and limitations common to all five
projects are apparent. One such observation is the lack of homogeneity in approach
by all five projects in defining their respective architectures. Differences in the
levels of abstraction, the aspects chosen for specification, and the selected forms of
representation are some noted dissimilarities. For example, IMC-AESOP pursues a
high level of abstraction, and therefore limits its reference architecture to a definition
of service groups, member services, dependencies, and possibilities for inter-service
interactions. It does not specify any protocols and standards as part of the reference
architecture and instead addresses these aspects through prototypical demonstrators
and pilot projects. In direct contrast are the [oT@Work and Arrowhead projects
which provide concrete and detailed architectures with specific protocols, standards
and specifications selected for various elements of their architectures. In terms of
representation, it may be observed that only IMC-AESOP, eScop and Arrowhead
declare their use of semi-formal notation in their respective documents, while
IoT@Work and PLANTCockpit lack such explicit statements. Note that a related
study on software reference architectures concludes that informal specification is
found to introduce a lack of clarity and precision in architectures by leaving room
for interpretation (Angelov et al., 2012).

Further issues include missing real-time communication features critical to
industrial applications. IMC-AESOP, IoT @Work, and Arrowhead all include proto-
cols to interface with RT systems in their demonstrators or pilot projects. They also
have a number of publications that take steps towards addressing real-time aspects in
processing, communication, and applications such as auto-configuration (Lindgren
etal., 2013; Jammes, 2011; Pietrzak et al., 2011; Diirkop et al., 2012; Durkop et al.,

394 A. Ismail and W. Kastner

2013; Garibay-Martinez et al., 2013, 2014a,b). Yet, the services themselves, and
the majority of the selected technologies, remain largely without RT-capabilities.
This introduces a concern as to their actual ability to operate in safety-critical CPPS
environments.

Finally, in the case of interoperability, it appears that integration is still a
necessity. This is since a number of the reviewed projects, in multiple instances,
have chosen to select several technologies to address certain critical features in their
architectures in the pursuit of flexibility. This seems to be the case, for example, with
Arrowhead’s approach for discovery and loT@Work’s requirement for mappings
for its novel internal data model. Determining the overall impact of the continued
necessity for integration in SOAs, as well as the effect of the missing features, the
selected levels of abstraction and representation is a matter than can be addressed
through follow-up surveys. Such studies may aim to draw conclusions on the
success of the architectures’ choices by determining adoption rates and stakeholder
criticisms. Unfortunately, while such information would be of great benefit to both
researchers and practitioners alike, it is largely absent from literature.

In sum, it is undeniable that interoperability in the industrial domain has been
marred in complexity since its conception. It therefore appears as though integration
is here to stay for the foreseeable future. Yet, the SO approach, as presented
in this chapter, may be used to strengthen and structure the overall environment
through clearly defined and documented systems, components, boundaries and
interfaces, protocols, guidelines and policies. It is therefore encouraged that SO
solutions continue development in the industrial domain. This is both to address the
shortcomings of existing projects and to further the pursuit of agility in enterprises
in the face of turbulent technical, economic, and legal environments.

Acknowledgements This paper is supported by Technische Universitdt Wien research funds as
part of the Doctoral College Cyber-Physical Production Systems.

References

Angelov, S., Grefen, P, et al.: A framework for analysis and design of software reference
architectures. Inf. Softw. Technol. 54(4), 417-431 (2012)

Arrowhead Consortium: Arrowhead demo T4.2. Technical report (2014a)

Arrowhead Consortium: WP 4—T4.1 Demonstrator (1st Generation): The Safe Home. Technical
report (2014b)

Arrowhead Consortium: WP3.1.2 PO 002 - Requirements definition - Communication and
services. Technical report, Arrowhead Consortium (2014c)

Ballinger, K., Bissett, B., et al.: Web Services Metadata Exchange 1.1 (WS- MetadataExchange).
(2008)

Bellavista, P, Ornato, M.: Arrowhead D3.3 Appendix 3.3b PO 3.3-002 and PO 3.3-004 of Task
3.3 Details about First Generation Pilot Results. Technical report (2014)

Ben-Kiki, O., Evans, C., et al.: YAML Ain’t Markup Language (YAML) (tm) Version 1.2.,
YAML.org. (2009)

Blomstedt, F.: Service Discovery REST_WS-XML-SPSDTR Version 1.1. Technical report, The
Arrowhead Consortium (2016a)

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 395

Blomstedt, F.: ServiceRegistryBridge Version 1.1. Technical report, The Arrowhead Consortium
(2016b)

Blomstedt, F., Olofsson, P.: Orchestration System Version 1.1. Technical report, The Arrowhead
Consortium (2016a)

Blomstedt, F., Olofsson, P.: Service Discovery DNS-SD-TSIG-SPDNS Version 1.3. Technical
report, The Arrowhead Consortium (2016b)

Blomstedt, F., Olofsson, P.: Service Discovery REST_WS-JSON-SPSDTR Version 1.1. Technical
report, The Arrowhead Consortium (2016¢)

Blomstedt, F., Contini, L., et al.: Deliverable D8.3. Technical report, Arrowhead Consortium
(2014a)

Blomstedt, F., Ferreira, L., et al.: The arrowhead approach for SOA application development
and documentation. In: 40th Annual Conference of the IEEE Industrial Electronics Society
(IECON), pp. 2631-2637 (2014b)

Bocchio, S., Ornato, M.: Arrowhead D3.3 Appendix 3.1.1.c PO 002 of Task 3.1.1 Task and
concepts. Technical report (2014)

Bony, B., Harnischfeger, M., et al.: Convergence of OPC UA and DPWS with a cross-domain data
model. In: 9th IEEE International Conference on Industrial Informatics (INDIN) (2011)

Box, D., Ehnebuske, D., et al.: Simple Object Access Protocol (SOAP) 1.1. W3C Note. World
Wide Web Consortium (2000)

Building Performance Institute, Inc.: BPI-2100-S-2013 Standard for Home Performance-Related
Data Transfer. (2013a)

Building Performance Institute, Inc.: BPI-2200-S-2013 Standard for Home Performance-Related
Data Collection. (2013b)

Bullen, G., Carter, S., et al.: Web Services Dynamic Discovery (WS-Discovery) Version 1.1.
Organization for the Advancement of Structured Information Standards (2009)

Cheshire, S., Krochmal, M.: RFC 6762: Multicast DNS. Technical report (2013)

Choudri, A.: The agile enterprise. In: ReVelle, J. (ed.) Manufacturing Handbook of Best Practices:
An Innovation, Productivity and Quality Focus, pp. 3-23. CRC Press, Boca Raton (2001)

Chrysoulas, C., Jansson, O.: Arrowhead System Description (SysD) - Translation System Version
0.4. Technical report, The Arrowhead Consortium (2016)

Colombo, A., Bangemann, T., Karnouskos, S.: IMC-AESOP outcomes: Paving the way to col-
laborative manufacturing systems. In: 12th International Conference on Industrial Informatics
(INDIN) (2014a)

Colombo, A., Bangemann, T., Karnouskos, S., et al., (eds.): Industrial Cloud-Based Cyber-Physical
Systems. Springer, Cham (2014b). ISBN:978-3-319-05623-4 978-3-319-05624-1

Corréa, H.: Agile manufacturing as the 2Ist century strategy for improving manufacturing
competitiveness. In: Gunasekaran, A. (ed.) Agile Manufacturing: The 21st Century Competitive
Strategy, pp. 3—-23. Elsevier Science Ltd, Oxford (2001)

Delsing, J.: Building automation systems from Internet of Things. In: Presented as an 20th
IEEE International Conference on Emerging Technologies and Factory Automation Keynote
Presentation, Luxembourg (2015)

Dennert, A., Montemayor, J., et al.: Advanced concepts for flexible data integration in heteroge-
neous production environment. In: IFAC Proceedings Volumes 46(7), 348-353 (2013)

Derhamy, H.: Arrowhead transparency protocol translation. In: Presented at the Arrowhead
Budapest Meeting (2015)

Diirkop, L., Imtiaz, J., et al.: Service-oriented architecture for the autocon- figuration of real-time
Ethernet systems. In: 3rd Annual Colloquium Communication in Automation (KommA) (2012)

Durkop, L., Imtiaz, J., et al.: Using OPC-UA for the autoconfiguration of real-time Ethernet
systems. In: 11th International Conference on Industrial Informatics (INDIN) (2013)

Eliasson, J.: Arrowhead historian system. In: Presented at the Arrowhead Budapest Meeting (2015)

Eliasson, J., Delsing, J., et al.: A SOA-based framework for integration of intelligent rock bolts
with Internet of things. In: IEEE International Conference on Industrial Technology (ICIT)
(2013)

Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River, NJ (2008)

396 A. Ismail and W. Kastner

Erl, T.: SOA Design Patterns, 1st edn. Prentice Hall Service-Oriented Computing Series from
Thomas Erl. Prentice Hall, Upper Saddle River, NJ (2009)

Erl, T., Gee, C., et al.: Next Generation SOA: A Concise Introduction to Service Technology and
Service-Orientation. Pearson Education, Upper Saddle River (2014)

eScop Consortium: 1st Annual Report. Technical report. http://www.escop-project.eu/wp-content/
uploads/2013/05/D14_eScop_Annual_Reportl_publishable-summary.pdf (2013). Visited on
08 Dec 2016

eScop Consortium: D2.4 General specification and design of eScop reference architecture.
Technical report (2014)

eScop Consortium: eScop Architecture. Technical report (n.d.[a])

eScop Consortium: Orchestration Layer Training Material. Technical report (n.d.[b])

eScop Consortium: Semantic Workbench. Technical report (n.d.[c])

Faist, J., St&tina, M.: Webservice-ready configurable devices for intelligent manufacturing systems.
In: IFIP International Conference on Advances in Production Management Systems (APMS).
Springer, Heidelberg (2015)

Fielding, R., Reschke, J.: RFC 7235: Hypertext Transfer Protocol (HTTP/1.1): Authentication.
Technical report (2014)

Fischer, K., Gesner, J.: Security architecture elements for IoT enabled automation networks. In:
IEEE 17th Conference on Emerging Technologies Factory Automation (ETFA) (2012)

Fumagalli, L., Pala, S., et al.: Ontology-based modeling of manufacturing and logistics systems
for a new MES architecture. In: IFIP International Conference on Advances in Production
Management Systems (APMS), pp. 192-200. Springer, Heidelberg (2014)

Galiegue, F., Zyp, K., et al.: JSON Schema: core definitions and terminology. Technical report,
Internet Engineering Task Force (2013a)

Galiegue, F., Zyp, K., et al.: JSON Schema: interactive and non interactive validation. Technical
report, Internet Engineering Task Force (2013b)

Garibay-Martinez, R., Nelissen, G., et al.: Task partitioning and priority assignment for hard
real-time distributed systems. In: 2nd International Workshop on Real-Time and Distributed
Computing in Emerging Applications (2013)

Garibay-Martinez, R., Ferreira, L., et al.: Towards holistic analysis for fork-join parallel/distributed
real-time tasks. In: 26th Euromicro Conference on Real-Time Systems (2014a)

Garibay-Martinez, R., Nelissen, G., et al.: On the scheduling of fork-join parallel/distributed real-
time tasks. In: 9th IEEE International Symposium on Industrial Embedded Systems (SIES)
(2014b)

Gazis, V., Gortz, M., et al.: A survey of technologies for the internet of things. In: 2015
International Wireless Communications and Mobile Computing Conference (IWCMC) (2015)

Gusmeroli, S., Piccione, S., et al.: A capability-based security approach to manage access control
in the Internet of Things. Math. Comput. Model. 58(5-6), 1189-1205 (2013)

Histbacka, D., Barna, L., et al.: Device status information service architecture for condition
monitoring using OPC UA. In: 19th International Conference on Emerging Technology and
Factory Automation (ETFA) (2014)

HenBen, R., Schleipen, M.: Interoperability between OPC UA and AutomationML. In: Procedia
CIRP, vol. 25, pp. 297-304 (2014)

Hill, B.: Evaluation of efficient XML interchange (EXI) for large datasets and as an alternative to
binary JSON encodings. Technical report, DTIC Document (2015)

Houyou, A., Huth, H., et al.: D2.2- Bootstrapping Architecture. Technical report, IoT@Work
Consortium (2011)

larovyi, S., Garcia, J., et al.: An approach for OSGi and DPWS interoperability: Bridging enter-
prise application with shop-floor. In: 11th International Conference on Industrial Informatics
(INDIN) (2013)

Iarovyi, S., Ramis, B., et al.: Representation of manufacturing equipment and services for OKD-
MES: from service descriptions to ontology. In: 13th International Conference on Industrial
Informatics (INDIN) (2015a)

http://www.escop-project.eu/wp-content/uploads/2013/05/D14_eScop_Annual_Report1_publishable-summary.pdf
http://www.escop-project.eu/wp-content/uploads/2013/05/D14_eScop_Annual_Report1_publishable-summary.pdf

14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 397

Tarovyi, S., Xu, X., et al.: Architecture for open, knowledge-driven manufacturing execution
system. In: IFIP International Conference on Advances in Production Management Systems
(APMS), vol. 460. Springer, Cham (2015b)

Iarovyi, S., Mohammed, W., et al.: Cyber-physical systems for open-knowledge-driven manufac-
turing execution systems. Proc. IEEE 104(5), 1142-1154 (2016)

Imtiaz, J., Jasperneite, J.: Scalability of OPC-UA down to the chip level enables “Internet of
Things”. In: 11th International Conference on Industrial Informatics (INDIN), pp. 500-505
(2013)

Imtiaz, J., Diirkop, L., et al.: D. 2.5 - Integrated Secure Plug&Work Frame-work. Technical report,
IoT@Work Consortium (2013)

Ismail, A., Kastner, W.: Vertical integration in industrial enterprises and distributed middleware.
Int. J. Internet Protoc. Technol. 9(2/3), 79-89 (2016)

Jammes, F.: Real time device level service-oriented architectures. In: IEEE 20th International
Symposium on Industrial Electronics (ISIE) (2011)

Jennings, C., Shelby, Z., et al.: Media Types for Sensor Markup Language (SenML). Technical
report (2016)

Jeyaraman, R., Modi, V., et al.: Understanding Devices Profile for Web Services, Web Services
Discovery, and SOAP-over-UDP. Technical report, Microsoft Corporation (2008)

Kleyko, D.: System-of-Systems Design (SoSDD) LTU Core Framework Description. Technical
report (2016)

Knapp, E.: Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid,
Scada, and Other Industrial Control Systems, 2nd edn. Elsevier, Waltham, MA (2014)

Krafzig, D., Banke, K., et al.: Enterprise SOA: Service-Oriented Architecture Best Practices. The
Coad Series. Prentice Hall Professional Technical Reference, Indianapolis, IN (2005)

Kridmer, B.: Evolution of cyber-physical systems: a brief review. In: Applied Cyber-Physical
Systems. Springer, New York (2014)

Krimm, J., Olofsson, P., et al.: Deliverable D8.2 of Work Package 8: Common Service Framework
- Generation 1 Version 1.1. Technical report, The Arrow-head Consortium (2014)

Kyusakov, R., Pereira, P, et al.: EXIP: a framework for embedded Web development. ACM
Trans.Web (TWEB) 8(4), 23 (2014)

Le Pape, C., Desdouits, C., et al.: Deliverable D1.3 of WPI1. Technical report, Arrowhead
Consortium (2014)

Lesjak, C., Ruprechter, T., et al.. ESTADO-Enabling smart services for industrial equipment
through a secured, transparent and ad-hoc data transmission online. In: IEEE 9th International
Conference for Internet Technology and Secured Transactions (ICITST) (2014)

Lindgren, P., Pietrzak, P., et al.: Real-time complex event processing using concurrent reactive
objects. In: IEEE International Conference on Industrial Technology (ICIT) (2013)

Luzuriaga, J., Perez, M., et al.: A comparative evaluation of AMQP and MQTT protocols over
unstable and mobile networks. In: 12th Annual Conference on Consumer Communications and
Networking Conference (CCNC) (2015)

Mahmoud, Q. (ed.): Middleware for Communications. Wiley, Chichester/Hoboken, NJ (2004)

Mahnke, W., Leitner, S., et al.: OPC Unified Architecture. Springer, Berlin/Heidelberg (2009)

Moreau, J., Nielsen, H., et al.: SOAP Version 1.2 Part 2: Adjuncts, 2nd edn. W3C Recommenda-
tion. World Wide Web Consortium (2007)

Nagorny, K., Colombo, A., et al.: A survey of service-based systems-of-systems manufacturing
systems related to product life-cycle support and energy efficiency. In: 12th IEEE International
Conference on Industrial Informatics (INDIN) (2014)

Nappey P., El Kaed, C., et al.: Migration of a legacy plant lubrication system to SOA. In: 39th
Annual Conference of the IEEE Industrial Electronics Society (IECON) (2013)

Negri, E., Fumagalli, L., Macchi, M., et al.: Ontology for service- based control of production sys-
tems. In: Advances in Production Management Systems: Innovative Production Management
Towards Sustainable Growth, vol. 460, pp. 484—492. Springer, Cham (2015)

Negri, E., Fumagalli, L., Garetti, M., et al.: Requirements and languages for the semantic
representation of manufacturing systems. Comput. Ind. 81, 55-66 (2016)

398 A. Ismail and W. Kastner

OASIS: Advanced Message Queuing Protocol (AMQP) Version 1.0. In: Godfrey, R., Ingham, D.,
et al. (ed.) (2012)

OASIS Security Services (SAML) TC: Technical report (n.d.)

Pietrzak, P., Kyusakov, R., et al.: Roadmap for SOA event processing and service execution in real-
time using Timber. In: IEEE 20th International Symposium on Industrial Electronics (ISIE)
(2011)

PLANTCockpit Consortium: D3.1 Initial Architectural Components of PLANTCockpit. Technical
report (2011a)

PLANTCockpit Consortium: Technical Report Persistency and Synchronization Model. Technical
report (2011b)

PLANTCockpit Consortium: PLANTCockpit White Paper. Technical report, http://plantcockpit.
eu/fileadmin/PLANTCOCKPIT/user_upload/PLANTCockpit_D3.3_Public.pdf (2012a). Vis-
ited on 03 Mar 2015

PLANTCockpit Consortium: Data and Process Model, First Draft. Technical report (2012b)

PLANTCockpit Consortium: External Interface Specification, First Draft. Technical report (2012c)

PLANTCockpit Consortium: Generic Alarms and Events Data Format. Technical report (2012d)

PLANTCockpit Consortium: Project Final Report. Technical report (2014)

Ratovsky R., Gardiner, M., et al.: OpenAPI Specification Version 2.0. Technical report. Open API
Initiative (2014)

Reschke, J.: RFC 7617: The ‘Basic’ HTTP Authentication Scheme. Technical report (2015)

Rescorla, E.: RFC 2818: HTTP over TLS. Technical report (2000)

Richards, M.: Understanding the differences between AMQP & JMS. In: Proceedings of the No
Fluff Just Stuff 7 Java Conference Series (2011)

Richards, M., Monson-Haefel, R., et al.: Java Message Service, 2nd edn. O’Reilly, Sebastopol, CA
(2009)

Rotondi, D., Galipo, A., et al.: D1.1 State of the Art and Functional Requirements in Manufacturing
and Automation. Technical report. IoT @ Work Consortium (2010)

Rotondi, D., Piccione, S., et al.: D1.3 - Final Framework Architecture Specification. Technical
report, [oT @Work Consortium (2013)

Rubio, J.: Service oriented architecture for embedded (avionics) applications. Ph.D. thesis,
Technical University of Catalonia (2011)

Sadrollah, G., Barca, J., et al.: A distributed framework for supporting 3D swarming applications.
In: International Conference on Computer and Information Sciences (ICCOINS) (2014)

Saint-Andre, P.: RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core. Technical
report (2011)

Sauter T., Soucek, S., et al.: Vertical integration. In: Wilamowski, B., Irwin, J. (eds.) Industrial
Communication Systems, 2nd edn., pp. 1-12. CRC Press, London (2011)

Severa, O., Faist, J., et al.: eScopRTU with Service Manager. Technical report, eScop Consortium
(n.d.)

Shelby, Z.: RFC 6690: Constrained RESTful Environments (CoRE) Link Format. Technical report
(2012)

Shelby Z., Hartke, K., et al.: RFC 7252: The Constrained Application Protocol (CoAP). Technical
report (2014)

Simone, P., Obluska, L., et al.: D6.1 Test strategy. Technical report (n.d.)

Skou, A., Lino Ferreira, L., et al.: Deliverable D5.3 of WP 5. Technical report, Arrowhead
Consortium (2014)

Valipour M., AmirZafari, B., et al.: A brief survey of software architecture concepts and service
oriented architecture. In: 2nd International Conference on Computer Science and Information
Technology (ICCSIT) (2009)

Varga, P., Martinez de Soria, I., et al.: Deliverable D7.3 of WP 7. Technical report, Arrowhead
Consortium (2014)

Zurawski, R. (ed.): The Industrial Communication Technology Handbook. Industrial Information
Technology Series. Taylor & Francis/CRC Press, Boca Raton (2005)

http://plantcockpit.eu/fileadmin/PLANTCOCKPIT/user_upload/PLANTCockpit_D3.3_Public.pdf
http://plantcockpit.eu/fileadmin/PLANTCOCKPIT/user_upload/PLANTCockpit_D3.3_Public.pdf

	14 Service-Oriented Architectures for Interoperability in Industrial Enterprises
	14.1 Introduction
	14.2 Technical Features of the Industrial Enterprise
	14.3 Service-Oriented Architectures and the Industrial Enterprise
	14.3.1 IoT@Work
	14.3.2 PLANTCockpit
	14.3.3 IMC-AESOP
	14.3.4 eScop
	14.3.5 Arrowhead Framework

	14.4 Realizations of the Reference Architectures
	14.4.1 Service Discovery
	14.4.2 Service Description
	14.4.3 Data Representation and Access
	14.4.4 Information and Message Encoding
	14.4.5 Message Exchange
	14.4.6 Networking, Data Link and Media
	14.4.7 Security

	14.5 Discussion
	References

