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Foreword

Being university professor implies the attempt to provide young engineers with the
required knowledge enabling them to successfully work within a field of science, in
my case the field of mechanical engineering. This knowledge shall be sufficient to
also cope with challenges that will come up in the next few years.

Following this line of thought, the professional life of mechanical engineers,
and in my case, product engineers, has strongly changed during the last 20 years.
Within the field of product engineering, the increasing capabilities of information
processing have resulted in two main trends.

First, the new capabilities of information processing enable radically improved
or even new engineering methodologies. Examples for improved methodologies
are more detailed analysis methodologies based on finite element methods or
improved simulation methodologies, now also applying improved physics simula-
tions. Examples of new methodologies are the development of advanced creativity
techniques, optimization-based problem solution strategies, for example, exploiting
swarm intelligence or genetic algorithms, or even new product prototype realization
methodologies, such as 3D printing.

Second, the product itself can become more intelligent and, thereby, provide
advanced product features, such as advanced user interaction for product customiza-
tion, or product-related services, such as self-maintenance or self-adaptation.

All these new methodologies and technologies are based on advanced application
of information processing. Thus, information creation, management, and use are key
results, and also challenges, in the professional life of an engineer. Thus, student
capabilities shall be trained to apply these improved or new methodologies and
technologies. In addition, students shall be enabled to adopt upcoming concepts,
methods, and technologies in their work environment efficiently and successfully.

To make this challenge more complicated also in product engineering, engineers
will not work in isolation. Product engineers work in collaborations, in changing
groups of engineers, who together aim at solving an engineering problem. Product
engineers have to share knowledge with/from different engineering disciplines to
enable the appropriate use of this knowledge.
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vi Foreword

As foundation, mechanical engineering students need to acquire key capabil-
ities for dealing with information creation, management, and use within multi-
disciplinary engineering environments. Many of the required skills are discussed in
the book at hand. Within this book, the multi-disciplinary nature of the life cycles of
products, production systems, and production system technologies and components
are considered. The implications of these life-cycle activities toward information
processing are highlighted and knowledge is collected that has the potential to
enable engineers in several disciplines, not only mechanical engineering students,
to successfully cope with important daily challenges in their professional work also
in the foreseeable future.

Thereby, this book discusses three main fields of interest. First, following the
common sense in engineering information processing by models is regarded. Here,
the focus is on modeling structures and behaviors of products and production
systems covering their complete life cycles. Second, integrated information flows
along the product- and production-system life cycles are discussed supporting
informed decisions of engineers by exchanging the required information in the right
quantity and quality independent of its source. Finally, the integration of information
processes in physical objects is discussed, based on the idea of cyber-physical
systems and their occurrence in production systems as cyber-physical production
systems.

Altogether, the book at hand is a valid source of knowledge for all readers
intending to raise their knowledge related to information-driven engineering in a
multi-disciplinary environment, not only to my mechanical engineering students.

Magdeburg, Germany Karl-Heinrich Grote
December 2016



Preface

Industrial engineering is a multi-disciplinary endeavor that is moving toward an
interdisciplinary and information-driven approach in all application areas, including
the engineering of Cyber-Physical Production Systems (CPPS). Engineers from
several disciplines have to develop engineering results cooperatively by exchanging
engineering information describing technical systems from different viewpoints and
on various levels of detail. Within this interdisciplinary and information-driven
approach, models of different kinds and their interrelations become key assets that
should be treated as first-class citizens in the engineering process. Consequently,
model-driven approaches envision improving engineering quality and reducing
engineering efforts.

There is a growing community of engineers involved in the development of
model-driven engineering approaches for product and production systems engineer-
ing in Europe and beyond, such as the members of the AutomationML association,
the IEEE technical committees Factory Automation, Industrial Agents, Industrial
Cyber Physical Systems, and Industrial Informatics. An overall goal of the research
of these communities is to present a holistic view on CPPS from different research
domains that address in some parts different viewpoints on the same topic but seem
to act in isolation from related research groups in other communities. Challenges of
CPPS can only be tackled by a cooperation of the relevant research communities.

Therefore, we provide this book to bridge the gap between the three scientific
communities of multi-disciplinary engineering of products, production systems, and
informatics with a focus on model-based software and information engineering
with examples that should be relevant and understandable for members from all
communities involved. To the best of our knowledge, this is the first book to
cover the topic of Multi-Disciplinary Engineering for Cyber-Physical Production
Systems, which has gained importance with the Industrie 4.0 initiative. More flexible
production systems require stronger integration of the models, methods, and tools
across several engineering disciplines to reach the goal of automating automation.
A major outcome of the research was that the later life-cycle phases of complex
technical systems, i.e., operation, become more and more important. Engineering
and modeling has to map run-time behavior adequately in advance. Real-time data
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analytics in manifold ways increase the capabilities and efficiency of CPPS. CPPS-
based Product Service Systems open new business opportunities.

Wien, Austria Stefan Biffl
February 2017 Detlef Gerhard

Arndt Lüder
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Chapter 1
Introduction to the Multi-Disciplinary
Engineering for Cyber-Physical Production
Systems

Stefan Biffl, Detlef Gerhard, and Arndt Lüder

Abstract The Internet of Things and Services opens new perspectives for goods
and value-added services in various industrial sectors. Engineering of industrial
products and of industrial production systems is a multi-disciplinary, model- and
data-driven engineering process, which involves engineers coming from several
engineering disciplines. These engineering disciplines exploit a variety of engi-
neering tools and information processing systems. This book discusses challenges
and solutions for the required information processing and management capabilities
within the context of multi-disciplinary engineering of production systems. The
authors consider methods, architectures, and technologies applicable in use cases
according to the viewpoints of product engineering and production system engineer-
ing, and regarding the triangle of (1) the product to be produced by (2) a production
process executed on (3) a production system resource.

This chapter motivates the need for better approaches to multi-disciplinary
engineering (MDE) for cyber-physical production systems (CPPS) and provides
background information for non-experts to explain the interaction between produc-
tion engineering, production systems engineering, and enabling contributions from
informatics. Furthermore, the chapter introduces a set of research questions and
provides an overview on the book structure, chapter contributions, and benefits to
the target audiences.

Keywords Multi-disciplinary engineering • Cyber-physical production systems •
Product lifecycle management • Make-to-order • Model-based systems engineer-
ing
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1.1 Motivation

Designing and developing smart products and systems comprising embedded sys-
tems and Internet of Things (IoT) technology—often referred to as Cyber-Physical
Systems (CPS)—requires the extensive collaboration of several engineering disci-
plines. Product creation processes embrace engineering processes of the definition
of products (or modules/systems) and of the required production system. This book
essentially deals with the challenges of domain-spanning engineering processes of
complex technical systems in the production area. This particular focus is mirrored
in the term Cyber-Physical Production System (CPPS), which is also used in the
title of this book. CPPS depicts the projection of the CPS concept to the production
domain. Nonetheless, CPPS with emphasis on smart products, smart production,
and product service systems have several links to CPS concepts focusing on other
domains, e.g., “smart grid” in the energy domain and “smart mobility” in the
mobility domain.

Within engineering processes for CPPS, several software solutions are used
for different tasks in the sense of Model-Based Systems Engineering (MBSE).
These engineering processes lead to many different but linked models, which have
to be managed and maintained. To achieve this goal, typically several types of
business information systems, e.g., Product Data Management (PDM), Enterprise
Resource Planning (ERP), and Manufacturing Execution Systems (MES), form
a company-specific Product Lifecycle Management (PLM) solution. The more
complex engineering projects and associated models get, the more emphasis has
to be put on interoperability and the ability to capture of the semantics of data in
interfacing different systems.

This chapter introduces key characteristics of smart product design and pro-
duction system engineering and derives requirements for informatics approaches
that facilitate information modelling and data integration as foundation for multi-
disciplinary engineering of CPPS.

The world of manufactured products, industrial goods, and services with associ-
ated businesses is changing its face. On the one hand side, there is demand pull.
Drivers for this effect are manifold. New technical solutions are one approach
to solve existing problems of the twenty-first century—often referred to as mega
challenges—on a global scale. Examples are global warming, fresh water or energy
shortage, and population growth. Tackling these challenges often leads to concepts,
which require an increase of cost or resource efficiency, while high quality standards
have to be maintained. In consequence, the complex and interconnected challenges
result in complex technical systems with advanced information technology required
to make them “smart”. Additionally, and sometimes in contrast to the stated global
challenges, huge portions of the world are living in an unprecedented wealth. This
also leads to steadily growing demands in terms of high-end consumer products,
mobility and transport solutions, smart homes etc. Particularly, the demand for
individualized products has increased and the lifecycle of products has shortened
significantly.
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In the early 1990s, car manufacturers had about 3–10 different models. 25 years
later, they have a huge variety of models, crossovers, and derivatives easily exceed-
ing 50–70 major variants. The development time of a car including production
system has shrunk from 6 years to 2–3 years within the same time span. The
sales lifecycle duration of a car was in some cases 30 years or more and is now
about 8 years on average. In the consumer electronics industry, this effect is even
stronger. Once a new smart phone is on the market, the predecessor does not sell any
more, and the time span is not even 1 year. Sometimes, there is even an artificially
generated customer demand, which cannot be explained by rational means, but
western economies heavily rely on growth, and marketing experts do their best in
generating demands.

These effects have a huge impact on industrial production. Production systems
have to be quickly established in parallel to product development and furthermore,
agile and flexible in order to be able to respond rapidly to changed production
demands and variants. There is a strong demand to transform mass production to
“lot-size-one” production while—at the same time—maintaining high quality and
low production cost.

On the other hand—besides demand pull—there is a strong technology push.
This has an impact on the products themselves but also on the production system.
Besides the progress in production technologies enabling producers to exploit
improved production processes, there is progress in automation and control tech-
nology based on information processing. Recent developments in PC-based tech-
nologies make it much cheaper to integrate intelligence into production system
components enabling new control system architectures and new ways of control
decision taking (Vogel-Heuser et al. 2013). For instance, condition monitoring
of a machine tool or production system offers the option to perform preventive
maintenance tasks and thereby reduce downtime or repair costs.

Together, these drivers lead to more complex production systems, see Fig. 1.1.
This complexity has to be faced within both engineering and use of production
systems as well as products produced within them. To do so, engineers have
developed methods and tools like mechatronical engineering, agile programming,
and plug-and-play of devices assisting them in dealing with system complexity and
in dealing with the necessary quality of the engineering results.

Engineering of 
production systems

Human population 
increase: Increased 
number of products

Globalization:
Increased variety 

of products

Technology 
progress: Increased 

technological 
possibilities

Fig. 1.1 Impact factors on production system engineering
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One the one hand, we now face several engineering disciplines developed to
enable the best possible engineering of a part of the overall production system.
Initially in the 1950s, the engineering disciplines mainly were mechanical and
electrical engineering, we now see on the one hand specialized disciplines emerging
from the named two, such as multi-body simulation, computational fluid dynamics,
tribology, or material sciences coming from mechanical engineering, and wiring,
enclosure design, or communication system engineering coming from electrical
engineering. In addition, we have seen emerge several new disciplines like control
programming for programmable logic controllers (PLCs) and robots or optical sys-
tem engineering (for laser-based welding). All of these disciplines have developed
their special engineering methods, models, and terminologies applied within, and
special tools to be used.

On the other hand, we see engineering process chains increasing in duration,
complexity of the engineered technical system, and complexity of the required
discipline-related skills, knowledge and activities. For example, engineering of
a bodywork line for a car manufacturer contains around 25 engineering steps,
which are executed by 25 different engineering tools. Well-known engineering
activities are mechanical engineering design, electrical wiring design, and control
programming. However, there are also less-known engineering steps, such as
reachability analysis for welding points. All these engineering steps depend on each
other’s results. These dependencies form a tightly knit network. For example, the
reachability analysis for welding points depends on the engineering design of the
welding cell and the selection of a welding gun. In turn, the results of the reachability
analysis for welding points have an impact on the engineering design of the welding
cell and the welding gun selection.

Most of the engineering-discipline-specific tools have been enriched and detailed
to engineering tools for the special engineering activities to be executed. Thereby,
engineering-step-related dialects of the engineering methods, models and terminolo-
gies have emerged.

Engineering of production systems is conducted today in a multi-domain,
multi-model, and multi-method environment, with a multitude of organizational,
technical, and social dependencies. There are some initial works to analyze and
optimize the raised complex engineering organizations, e.g., the VDI Guideline
3695 (VDI 3695 2009). However, the editors of this book are convinced that the
improvement of production system engineering requires detailed knowledge about
the boundary conditions of the engineering. These boundary conditions include
possibilities of upcoming cyber-physical structures of production systems and
(enforced by them) new possibilities of data and knowledge acquisition, integration,
consistency evaluation, and management within collaborative multi-discipline and
multi-model engineering.

CPPS is a very general term. In order to derive the research needs and
challenges for CPPS engineering, it is necessary to distinguish different product
types, production concepts, and production types. In the first place, four production
concepts, reflecting the procedure during order processing, can be differentiated
(Higgins et al. 1996): Make-to-Stock (MTS), or alternatively Pick-to-Order (PTO),



1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 5

reflects on production concepts for standard products without variants, which takes
place independent of customer requests and orders, e.g. consumer electronics, hand
machining tools, household appliances. Assemble-to-Order (ATO), or Build-to-
Order (BTO), reflects on preproduction of standard products with manufacturer-
specific variants irrespective of the order but connected to a customer-specific
final production or assembly, e.g. cars and or personal computers. Make-to-Order
(MTO) depicts production of standard products with customer-specific variants that
are partly composed of pre-defined components and partly made up of only pre-
designed components like gas turbines, airplanes, or kitchen furniture. Accordingly,
new components are also created in this concept. Examples are complex machines
for special products, machining tools or utility vehicles. With the Engineer-to-
Order (ETO) concept, products according to customer specifications are produced,
e.g. plant construction or shipbuilding. Because of specialization and considerable
number of new components that have to be designed specific to an order, those
products cannot be completely pre-engineered. A key characteristic of MTO and
ETO production is the combination of existing standard parts with the new or
adapted design of individual parts.

MTS products are typically produced in larger volumes (series or mass pro-
duction) using a specialized production system. Those production systems have a
special engineering process, which starts at a certain maturity level of the product.
Largely they are optimized, often in a clocked flow production. Adaptability and re-
configurability are not main concerns in terms of linking product engineering with
production system engineering. ETO products are in general fixed site fabrications
with job shop pre-manufacturing of single parts or pre-assemblies. Since there are
only single items or small batches to be produced, there is no special engineering
of the production system, but individual workshop production on standard numeric
control (NC) machining tools. Furthermore, intra-logistics and material handling is
in general not automated. The trend towards individualized products with customer
specific requirements is moving industry away from MTS and mass production
towards ATO or MTO in order to meet customer demands. ATO and MTO are often
considered as sub-classes of Configure-to-Order (CTO). Configuration of products
is the essential part of the order process prior to manufacturing and assembly.
Typically, the components of the product cannot be chosen independently, i.e.,
dependencies have to considered. However, in ATO production, the dependencies
are rather simple in nature; components of the product are defined in detail and may
be prefabricated in stock. In MTO production, the dependencies are more complex
compared to ATO, components are manufactured as needed. This requires additional
flexibility in the production process, particularly in terms of detailed production and
material flow planning.

These types of production processes are mainly addressed with CPPS
approaches. Additionally, a far greater collaboration of product engineering and
production system engineering as well as integration of the respective IT systems
is required. A high degree of flexibility for variant rich and customized products
requires the adjustment product structures accordingly. This leads to higher efforts
for product modularization and product line definition. A thoughtful product
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structure is the necessary basis of the often referred to products that control their
own production. The essential task of optimization in production is to increase
efficiency in terms of four each opposing target dimensions: variability, quality,
speed, and economy. This applies especially for CPPS approaches.

1.2 Background

Within the prior section, production systems have been named as product of the
ETO approach. In the following, the distinction between product and production
system will be clarified.

Technical systems are often distinguished in product and production system. In
(Stark 2015), a product is characterized as the reason a company exists for, i.e.
it is created and applied within the company business making profit by selling
the product. Products can be tangible like cars and cameras or intangible like a
repair service for cars or a print service for photos. The combination of tangible
products and associated services is referred to as Product Service System (PSS). In
contrast, production systems are seen by the different authors in (El Maraghy 2009)
as a means to create products by appropriate combination of production factors.
Production factors exploited are among others materials, used work-in-progress,
applied production resources (machines), and the human workers executing the
activities. As easily visible, the same object, for example a bakery, can be regarded
as product (by the bakery system integrator) and as a production system for cake
production (by the bakery owner).

Nevertheless, there are strong dependencies between product and production
system. On the on hand, the product requires a production system to be created.
The production system defines boundary conditions to the properties of products
possibly to be created within. On the other hand, products define requirements to the
production system able to produce them. For example within production systems of
optical components of cameras, dedicated cleanness conditions have to be fulfilled.
Hence, within the engineering of a production system, requirements coming from
the products to be created are relevant; within the engineering of the product the
capabilities and boundary conditions of the production system need to be reflected,
see Fig. 1.2.

Facing these dependencies, the engineering of products and production systems
are interlinked and in some way equivalent. To understand this interlinking and
equivalence, the term engineering needs to be understood. With respect to this
book, the definition given by IEEE seems to be most appropriate. In IEEE (1941)
engineering is defined as a process consisting of a sequence of activities that
creatively apply scientific principles to design or develop structures, machines,
apparatus, or manufacturing processes; all as respects of an intended function,
economic and safe operation.

All engineers involved in an engineering project of a technical system, together
with its necessary technical, economical, and management resources, shall be seen
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Product

Product engineering

Produc�on systemCreates

Defines boundary condi�ons

Produc�on system 
engineering and 
implementa�on

Defines Requirements

Fig. 1.2 Relations between product and production system based on (Biffl et al. 2016)

as engineering organization. The VDI 3695 Guideline “Plant engineering” (VDI
3695 2009) defines an engineering organization as a set of engineering firms or
engineering subunits of a company (supplier, plant manufacturer, plant operator),
which is involved in the engineering process of a technical system. This organization
is involved in planning, realization, and commissioning of new technical systems
and, if necessary, in upgrading, optimizing or modernizing existing technical
systems. Note that an engineering organization is the execution environment and
the executor of MDE.

Widening the picture of MDE engineering in the field of products and production
systems, not only its dependencies buy also its life cycles, shall be reviewed.
VDI/VDE (2014a) gives a good overview about these life cycles related to this
chapter.

Figure 1.3 provides an overview of activities and their relations to the product
and production system life cycle. The product life cycle contains engineering of
a product as an individual entity to be sold. However, in this model, engineering
of one product is not independent from engineering of the other products to be
produced in the considered production system. Here, product line development
covers the informed management of similarities and differences of products required
to fulfil all relevant costumer needs and (in parallel) to not overburden the tech-
nological capabilities of the production system. Finally, a product discontinuation
management belongs to each product (product family) as on the one hand customers
require information about newer versions of their products to be replaced by new
acquisitions and on the other hand technological progress shall be reflected within
product lines. To each existing product type, the production system needs to be able
to process production orders, which need to be generated, shipped and (possibly)
maintained at customer sites.

The link between product and production system is the production process
executing finally the product creation based on orders. The life cycle of a production
system requires engineering of the production system before production execution.
In addition, production system engineering requires the development of production
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Production system
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Fig. 1.3 Value-chain-oriented view on the product and production system life cycle based on
(VDI/VDE 2014a) and (Biffl and Sabou 2016)

technologies to be applied within the production system. Based on the set of avail-
able production technologies (and the set of engineered products), the production
system can be engineered and used in production. In addition, the production system
life cycle contains production system maintenance activities as well as, in case of
production system deterioration, production system removal activities.

Engineering of products and production systems involves several stakeholders.
Obviously, these life cycles will add additional stakeholders relevant for the engi-
neering of products and production systems, which especially will be responsible
for the definition of the boundary conditions of intended function as well as
economic and safe operation of products and production systems as it is intended
in the definition of engineering. Figure 1.4 depicts the interactions between the
stakeholders.

First, there is the plant owner. He is responsible for the economic success of the
production system and, therefore, is involved in the definition of the product to be
produced and the capabilities of the production system to produce the products.

The plant owner will instruct the product engineer with the engineering of
the product as described above. He will collect all necessary boundary conditions
related to the intended function of the product as well as its economic and safe
operation from potential customers and regulation bodies. In addition, he collects
technical boundary conditions related to the necessary production process from the
production system builder.

In parallel, the plant owner will instruct the production system builder (often
also named plant integrator) to set up a production system able to produce
the intended set of products. Together the production system engineer and the
production system builder will engineer, install, and ramp-up the production
system. Therefore, production system builder and engineer will collect all necessary
boundary conditions related to the intended function of the production system from
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Fig. 1.4 Stakeholders in added-value chains related to industrial plant engineering based on (Biffl
et al. 2016)

the product engineer and the production technology provider. Boundary conditions
related to the economic and safe operation of the production system will come from
regulation bodies, plant operator, and plant owner.

After the product and production system are engineered and (in case of the
production system) set up, the production system can be used by the plant operator
to produce products. The plant operator will get all necessary information how to
produce the product from the product engineer and about how to use the production
system from the production system builder. He will get product orders and their
economic and technical boundary conditions, such as the due dates from sales
departments. To ensure a long-lasting and safe operation of the production system,
the plant operator interacts with the production system maintainer.

After a product has been produced, it is shipped by sales to the customer to be
used. During this use phase of the product, the customer may interact with sales and
product maintenance to ensure the economic and safe operation of the product.

Among these stakeholders, information relevant for the engineering of product
and production system will be exchanged. The discussion of the complete flow of
information goes far beyond the scope of this chapter. Some of the interaction flows
will be considered in detail in later chapters of this book. Here, we will focus on
discussing selected illustrative examples relevant for product and production system
engineering.

• Potential customers are a source of information related to boundary conditions
for the intended functions of the product to be engineered by the Product
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engineer. This information cover for example customer use cases, quality
information, product functionality, etc.

• Regulation bodies are a source of boundary conditions related to the safe
operation of the product to be engineered by the product engineer. This includes
for example the definition of regulations regarding safety, potential hazards, and
environmental issues.

• Plant owner and production system builder will exchange both requirements to
the production system functions and to the production system realization process.
Usually, this information includes functional and non-functional requirements
within a tender document (in German: Lastenheft) and the plant maker will reply
with a technical specification (in German: Pflichtenheft).

• Production system builder and production system engineer will exchange the
same type of information as the plant owner and the production system builder,
but on a more detailed level covering only the parts of the technical system that
the production system engineer should contribute to.

• Both the production system builder and the production system engineer will
exchange boundary conditions related to the safe operation of the production
system with the regulation bodies. Examples are pollution regulations, energy
consumption monitoring regulations, and human safety regulations.

• In addition, the production system builder and the production system engineer
will exchange information related to possible functions of the production system
and its usability in the production and/or production system setup, control,
and maintenance. Among others, this covers manufacturing methods, devices
required for the realisation of the manufacturing methods, control code used to
control the manufacturing methods.

A dependency similar to the dependency between product and production system
also exists between production system and production technologies. Within pro-
duction system engineering and installation, the production system is set up based
on the appropriate combination of production system components (Wagner et al.
2010). These components provide capabilities for production process execution
(and in addition capabilities for its integration in the production system during
installation, ramp-up, and maintenance) and can eventually be regarded as CPPS.
These capabilities limit the possibilities within production system engineering and
implementation. In the opposite direction, production system engineering requires
special production technology capabilities to enable the creation of the intended
products, which need to be reflected by production technology development.
Thus, the production system in general cause requirements to further production
technology development. These dependencies are depicted in Fig. 1.5.

The named dependencies between production systems and production system
technologies can also be seen in a different light. Each production system com-
ponent, which provides certain technological functions used within the production
system, is itself a product of a company. These companies act as production
technology providers and are interested in fulfilling the needs of their customers,
the plant owners and production system builders, to the best extent possible.
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Fig. 1.5 Relations between production systems technologies and the production system based on
(Biffl et al. 2016)

The sketched dependencies between product, production system, and production
system technologies and components in front of the required efficient engineering
involving multiple engineering disciplines is one of the sources of the newly
intended comprehensive review and redesign of engineering processes like in the
Industrie 4.0 approach.

Within this initiative, companies and research institutions intend to apply
technologies developed within information process and IT sciences for the imple-
mentation of flexibility and adaptability capabilities of production system resources
and production processes. They are focusing on IoT and CPS (Kagermann et al.
2013). Key elements are (among others)

• Self-aware and self-adaptable production system components,
• The intelligent networking components to provide flexibility on system level

using adaptation capabilities and plug-and-work capabilities, and
• The integrated exchange component information related to engineering and

runtime phases along the production system life cycle.

As the Industrie 4.0 component is a controlled part of a production system
including manufacturing physics as well as control intelligence the Industrie 4.0
component shall be considered as a Cyber Physical Production System (CPPS)
(VDI/VDE 2014b) and shall be considered in the triangle of products, production
processes, and resources (production system components). As indicated above, each
product requires for its production the processes defined in its product engineering.
These processes will be processed on a production system component. Each
production system component will process sets of products and will be able to
execute processes. Finally, each process is used for the production of products and
can be executed by production system components (Pfrommer et al. 2013). Facing
this fact, the production process is the lock stone within the roof architecture of the
building integrating product, production system, and production system technology
and components.
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1.3 Research Questions

Looking on the described multi-disciplinary nature of the life cycles of products,
production systems, and production system technologies and components, engineers
require increasing support to ensure high quality work efficiently. However, this
support requires additional research from product engineering, production systems
engineering, and informatics communities. Seen from the background of the editors,
three of the most interesting research fields related to the necessary support are the
field of information modelling, the field of integrated information flows, and the
field of key capabilities of the considered objects.

Modelling Within the life cycle of production systems, several information sets
are created and applied. It is common sense that these information sets shall be
represented by models and other means for description that are best applicable for
the involved engineers and technical systems (hard- and software). In this field, the
following research questions are of interest.

RQ M1: Modelling the structure and behavior of CPPS. How can model-based
methodologies be exploited to address the specific multi-disciplinary requirements
for the representation of the structure and behavior of CPPS? This question requires
for example (a) the consideration of requirements for model-based engineering and
model-based application of CPPS, (b) an investigation of usual CPPS architectures,
and (c) the exploration of approaches for automating the multi-disciplinary engi-
neering of CPPS.

RQ M2: Modelling in CPPS life cycle phases. How can model-based method-
ologies support information creation and processing in the different life cycle phases
of a CPPS? Related to this question are methodologies (a) for the automation of
engineering, commissioning, and use of CPPS, (b) for the application of CPPS by
service providers or agents, as well as (c) for addressing the quality needs for models
of CPPS.

Integrated Information Flows Supporting informed decisions by engineers
requires that the relevant information is available when needed in the right quantity
and quality independent of its source. This is valid for the life cycles of product,
production system, and systems operation. From this need, we derive the following
research questions.

RQ I1: Information integration in and across value chains. Which methods
and technologies support the integration on information within and across value
chains of products, production systems, and production technologies? Are there
benefits accessible from the exploitation of CPPS? This question addresses for
example (a) the links between product, production technology, and production
systems engineering, (b) the horizontal and vertical integration within production
systems and production value chains, and (c) the digital links between engineering
and operation phases.
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RQ I2: Quality assurance for information exchange. Which methods and
technologies support assuring the required information quality for information
exchange? This question includes (a) the analysis of typical requirements for the
integration of engineering project data coming from heterogeneous data sources
and typical requirements in a CPPS supply chain, e.g. concerning the ramp-up of a
production system, the examination of multi-disciplinary knowledge integration and
representation, as well as (b) the study of required information quality in different
life cycle phases of CPPS.

RQ I3: Description of plug-and-play capabilities and interfaces for
engineering and run time. Are there specific aspects of information exchange
related to the life cycle of CPPS? It is assumed that relevant aspects will come
from the consideration of typical requirements from product engineering and from
production systems engineering on information modelling and integration in the
multi-disciplinary engineering of CPPS. For example, the product engineering
may provide a description of the production process (required for product
creation) in a way enabling its automatic interpretation and execution in the
production system. This is only possible with appropriate rich description
means.

KeyCapabilities of CPPS A CPPS will provide by its nature advanced capabilities
like parameterizable function access and provision of state and health information
related to necessary activities for its design and use along its life cycle phases, which
usually requires cooperative involvement of all technical and informational parts of
the CPPS. The support of multi-disciplinary work in this context will benefit from
answers on the following questions.

RQ C1: Modelling of CPPS flexibility and self-adaptation capabilities.
How can model-based approaches improve the flexibility and self-adaptation
of production systems? What are the roles of product, production technology,
and production system models in this context? This question includes (a)
the consideration of typical requirements for flexibility and adaptability in
software and in hardware systems, and (b) the analysis of methods and tools for
closing the gap between product engineering and production system engineering
as well as (c) the analysis of typical requirements for self-adaptation of
CPPS.

RQ C2: Linking discipline-specific engineering views for flexible and self-
adaptable CPPS. How shall several disciplines in product and production system
engineering be linked to support the engineering of flexible and self-adaptable
CPPS? Within this research question, the exchange of information between both
engineering processes and their relation to the problem of cyber physical systems is
relevant. Especially the digital shadow of products and production systems need to
be considered (Table 1.1).
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Fig. 1.6 General book structure

1.4 Book Structure

The aim of this book is to provide insight into the field of multi-* engineering,
where * can stand for discipline, domain, and/or model. The book is written within
the context of the upcoming next generation of production systems envisioned by
research and development initiatives, such as Industrie 4.0 in Germany, Industrial
Internet Consortium in USA, Factory of the Future in France and UK, or Made in
China 2025 from China and will cover the engineering of industrial products and
industrial production systems, with their dependencies named above.

The book in hand discusses topics including

• The multi-disciplinary and multi-model nature of engineering processes,
• Data integration needs along the various value adding chains,
• Dependencies between products, production processes, and production systems

within engineering processes,
• Architectures of products and production systems enabling improved engineering

processes, and
• Needs and approaches for information modelling and integration.

Therefore, the book is structured into three main parts, see Fig. 1.6, dedicated
to product design, production system engineering, and information modelling and
integration.

1.4.1 Part I: Product Design

Part I on Product Design discusses challenges of and approaches for designing and
developing products with varying degrees of flexibility. These products provide
added value to users and added complexity to production process and system
engineers. An important part of engineering is the multi-disciplinary process
creating information models for the evaluation of product concepts and for reuse
in production systems engineering.
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Chapter 2: Product and Systems Engineering/CA* Tool Chains discusses the
specifics of engineering processes and the development of CPS from a mechanical
engineering design point of view. Emphasis is put on Model-Based Systems
Engineering (MBSE) methods and the required software tools to cope with existing
challenges of different domains especially related to system analysis and system
integration. The chapter contains a description of data and information flows from
an organizational point of view as well as from the product development point of
view. This includes information models (e.g., in SysML) as well as organization and
tailoring of tools and tool chains.

Chapter 3: Cyber-Physical Product Service Systems is discussing the important
topic of product related services, which are deeply integrated in the product
development and use like the provision of a machining capability service useable by
a producing company. It gives a definition of service-based product service systems
(PSS) and unveils the state-of-the-art of CPS-based PSS with major research issues.
The evolution from products to solutions and servitization is shown as well as
the elements and life cycle of CPS-based PSS including hardware, software, and
service elements with integration of product and service life cycles. Based on
industrial use cases, this chapter also deals with challenges for engineering a
CPS-based PSS in terms of complexity, end user involvement with distributed
stakeholders, and involvement of multiple disciplines (e.g., mechanical engineering,
information systems, and service science). This discussion of challenges leads
to implications for designing engineering processes, particularly cross-domain
requirements engineering and design, but also for designing servitized business
models enabled by CPS (i.e., business models related to product services).

Chapter 4: Product Lifecycle Management Challenges of CPPS summarizes data
and information management issues arising from the advanced use of Model-Based
Systems Engineering (MBSE) methods that result from engineering processes of
smart systems and individualized products with high complexity and variability.
The chapter focuses on challenges of the life-cycle integration of products and
the respective CPPS especially addressing the information exchange oriented
possible dependencies between engineering, production, and use phases of products.
Furthermore, data and information management problems coming from integration
of the named life cycle phases of products and systems in terms of forward and
backward information flows are addressed.

1.4.2 Part II: Production System Engineering

Part II on Production System Engineering discusses the design of flexible production
systems, which can be adapted effectively and efficiently to provide a scope
of production processes and address the challenges coming from products and
production processes, which have advanced requirements on flexibility. Key topics
are concepts, methods, and tools to deal with dependencies between production
system model parts and discipline-specific sub models. An important part is the

http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_3
http://dx.doi.org/10.1007/978-3-319-56345-9_4
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simulation and virtual commissioning of flexible production systems to reduce the
risks coming from added flexibility.

Chapters 5, 6, and 7 build a common frame for the consideration of hierarchical
and modular production system architectures and related information along their
life cycle. These chapters provide a discussion of the question, which parts of a
production system can be regarded as components within the hierarchy and which
functionalities and information are assigned to them.

Chapter 5: Fundamentals of Artifact Reuse in CPPS discusses meaningful layers
within the hierarchy of production system components and their life cycle. Based
on a literature survey and practical experiences candidates for hierarchy layers are
identified and their identification criteria are named. In addition, main life cycle
phases of production systems are discussed. The thereby developed hierarchy serves
as a foundation for the reusability and modularization of Industrie 4.0 components.

Chapter 6: Identification of Artifacts in Life Cycle Phases of CPPS considers in
detail the information sets relevant for a production system component along the life
cycle of a production system. For each of the three main life cycle phases named
in Chap. 5 relevant artifacts are identified, assigned to the different layers of the
production system hierarchy, and discussed against main cases of information reuse
within the life cycle of production systems. Thereby, it is intended to enable an
identification of hierarchy layers based on relevant information sets.

Chapter 7: Description Means for Information Artifacts Throughout the Life Cycle
of CPPS again takes up the artifacts and description means related to them in each
of the three life cycle phases on each layer of the hierarchical production system
structure as proposed in Chap. 5. These artifacts are clustered and generic artifact
classes are derived from the fragmented information artifact landscape. Description
means are assigned to the artifact classes, enabling a holisting information manage-
ment and paving the way for future research on this topic.

Chapter 8: Engineering of Next Generation Cyber-Physical Automation System
Architectures provides a summary of non-hierarchical control system architectures
that could be applied in industrial automation domain as well as a review of
their commonalities. The chapter aims to point out the differences between the
traditional centralized and hierarchical architecture to the discussed architectures,
which rely on decentralized decision-making and control. The chapter also explores
the challenges and impacts that industries and engineers face in the process of
adopting decentralized control architectures, analyzing the obstacles for industrial
acceptance and the necessary new interdisciplinary engineering skills. In the end,
the chapter gives an outlook of possible mitigation and migration activities required
to implement decentralized control architectures.

Chapter 9: Engineering Workflow and Software Tool Chains of Automated Pro-
duction Systems presents an overview of tool chains that are applied in the
production system engineering process. The current workflow of production system
engineering is described. In particular, three essential phases of the workflow are
considered in detail, namely mechanical design, electrical design, and software

http://dx.doi.org/10.1007/978-3-319-56345-9_5
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design. With respect to those essential phases, tool chains are presented that are
well established in industry and applied by practitioners. In addition, the tool chain
of planning and simulating production processes is discussed. In this regard, various
engineering data formats and information that is required as input or results as
output by engineering tools is explained. One conclusion that can be derived from
the described workflow is the necessity of a standardized data format to exchange
engineering data along the entire production system engineering process. As a
consequence the role of AutomationML as a potential standardized data format
is addressed in this chapter and exemplarily presented for the case of virtual
commissioning of a production system.

Chapter 10: The Problem of Standardized Information Exchange within Production
System Engineering discusses the problem of appropriate structuring (syntax)
and meaning (semantics) definition for a file based data exchange technology
applicable within information exchange among life cycles, engineering disciplines,
and engineering activities of information driven production systems. Based on a
set of use cases challenges of the information exchange and application within
information driven production systems have been highlighted. The use cases have
been accompanied of current standardization activities undertaken to make the use
cases possible. In addition, information exchange technologies will be discussed
starting with requirements an information exchange technology has to fulfil in an
information driven production system and discussing the fulfilment level of these
requirements provided by different existing information exchange technologies.

As a special case of file-based information exchange AutomationML is consid-
ered. It is discussed how AutomationML deals with the standardization of syntax and
semantics and how the five main challenges of the standardization of data exchange
formats can be fulfilled.

1.4.3 Part III: Information Modeling and Integration

Part III on Information Modeling and Integration discusses an informatics view
on concepts, methods, and software tools for data management in heterogeneous
cyber-physical production-system-engineering environments. This part will discuss
data models and software solutions exploiting Model-Based System Engineering,
Semantic Web, and service-oriented approaches for handling engineering projects
of typical size and complexity. Several chapters discuss alternative approaches for
representing engineering knowledge as foundation for designing applications to
improve the effectiveness and efficiency of engineering processes in the context of
multi-disciplinary engineering or CPPS. As a result, the reader can make a better
informed decision on which selection of engineering knowledge representation
approaches is likely to be most appropriate in a given application context.

Chapter 11: Model-Driven Systems Engineering: Principles and Application in the
CPPSDomain discusses advantages and current challenges towards the adoption of
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model-based approaches in cyber-physical production system (CPPS) engineering.
In particular, the chapter discusses how modeling languages and model transforma-
tions are employed to support current system engineering processes and show their
application for a Pick-and-Place Unit (PPU) production system.

This chapter follows the model-based software engineering approach, which
sees models and their metamodels as the central artifacts for engineering and for
automating engineering processes. Abstraction, a key concept of modeling, can
become a challenge at integration points during the engineering process in a multi-
disciplinary environment, as different stakeholders may choose abstractions that are
hard to reconcile with the modeling choices of other stakeholders.

Chapter 12: Semantic Web Technologies for Data Integration in Multi-Disciplinary
Engineering investigates how Semantic Web technologies can support multi-
disciplinary engineering processes in CPPS engineering. The chapter discusses
typical requirements for intelligent data integration and access in the context
of CPPS engineering and shows how these can be addressed by Semantic Web
technologies and tools. For this, we draw on our own experiences in building
Semantic Web solutions for engineering environments as well as on a survey of other
Semantic-Web-enabled engineering projects. This chapter summarizes material
published in the Springer Book entitled “Semantic Web for Intelligent Engineering
Applications” (2016).

This chapter follows the Semantic Web approach, which puts the focus on the
representation and integration of linked engineering knowledge as foundation for
intelligent engineering applications. The Semantic Web approach originated from
the need to harness the heterogeneity of information representation on the Internet.
Therefore, the Semantic Web inherently assumes a variety of information models
as input to designing software application for automating business and engineering
processes.

Chapter 13: Patterns for Self-Adaptation in Cyber-Physical Systems investigates
existing studies of CPS with regard to self-adaptation mechanisms and models,
applied across the technology stack. From this investigation, we derive recurring
patterns and adaptation models, consolidating design knowledge on self-adaptation
in CPS, in particular CPPS. The patterns and models can support future CPS
designers with the realization and coordination of self-adaptation concerns. Finally,
this chapter outlines a research agenda to advance self-adaptation and coordination
in the domain of CPS.

Chapter 14: Service-Oriented Architecture Middleware for Vertical Integration
in Industrial Enterprises focuses on the technological aspects involved in devel-
oping a service-oriented solution for vertical integration in a heterogeneous CPPS
context. The chapter addresses the typical state of industrial enterprises and the
core technologies currently available for the development of a gateway service
bus (GSB). Therefore, the chapter will discuss aspects related to enterprise and
network architectures, constraints and technologies to discern the challenges to
vertical integration and suggest methods for integrating GSBs in enterprises. In
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addition, the chapter will discuss connectivity strategies and standards that may be
used to coordinate the GSB and its services, and to integrate PPS to finally generate
a holistic framework for the secure operation of CPPS-based industrial plants.

This chapter follows the Service Oriented Architecture (SOA) approach, which
represents systems as service interfaces that allow flexibly designing application
systems even if the technologies of the underlying services differ and the run-time
availability of services changes.

Chapter 15: Deterministic Product Ramp-Up Processes—How to Integrate a Multi-
Disciplinary Knowledge Base describes the involvement of a multi-disciplinary
knowledge base in a production environment in order to address the challenge
of knowledge distribution across product development, production engineering,
and elements of the supply chain. The chapter highlights how production data
has to be maintained and prepared for the automated support of ramp-up project
planning. Through this improvement of planning quality based on reusing existing
production knowledge, ramp-up projects can be improved towards deterministic
ramp-up processes. This chapter provides an example application for the Semantic
Web approach.

Chapter 16: Towards Model Quality Assurance for Multi-Disciplinary
Engineering—Needs, Challenges, and Solution Concept in an AutomationML
Context discusses how models and their quality play an important role in multi-
disciplinary engineering (MDE) projects as inputs to and outputs of engineering
processes. MDE projects include various disciplines, such as mechanical,
electrical, and software engineering. These disciplines apply generic and domain-
specific models in their engineering context. Important challenges include model
synchronization (of often-heterogeneous input from various disciplines) and model
quality assurance (MQA) that is covered insufficiently in current MDE practices.
The chapter focuses on the needs and approaches for MQA in isolated disciplines
as well as in MDE environments, where engineers from different disciplines have
to collaborate. Further, the chapter includes related work on MDE and MQA and
presents concepts and an initial evaluation of MQA approaches in the context of
selected MDE processes.

1.5 Who Shall Read This Book?

This book will be of interest to several target groups: decision makers, product and
production system engineering professionals, researchers, and students within the
various fields of production system engineering and information processing related
sciences. All of these groups will better understand the challenges and needs of
engineering project stakeholders coming from the dependencies between products
and production systems with increased variability.

Decision Makers, such as industrial managers, and business professionals are
interested in a general point of view on how best to make use of the capabilities
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that products and production systems provide. These groups will take away from
this book an up-to-date view on future production system capabilities, in particular,
on the challenges of and approaches for designing and developing products with
varying degrees of flexibility. The CPPS vision will bring added value to users and
added complexity to production process and system engineers. This added value
and complexity have to be harnessed by novel kinds of families of systems, such as
Product Service Systems or Product Lifecycle Management systems.

To support structuring decision making in a CPPS context, the book will
provide better understanding of the benefits and limitations of applicable methods,
architectures, and technologies for selected use cases.

Regarding information modelling and integration, the book will highlight the
heterogeneous nature of data needed in multi-disciplinary engineering for decision
making and explain data integration needs along the various value adding chains.
To address data representation and integration the book will support making better
informed decisions on which engineering knowledge representation approaches are
likely to be most appropriate in a given application context to provide the knowledge
needed for making key decisions.

Beyond information modelling and integration, the book will provide inside in
the needs of information generation, processing, and use along the life cycle of
products and production systems, enabling decision makers to take more informed
decisions related to the management and improvement of engineering and use
processes within production system environments.

Finally, the book will give an overview on informatics approaches that provide
strong contributions to decision making with intelligent information representation,
integration, quality assurance, and access in the context of CPPS engineering,
such as Model-Based System Engineering, Semantic Web, and service-oriented
approaches for CPPS engineering.

Users of Production Systems will become aware of the challenge of knowledge
distribution across product development, production engineering, and elements of
the supply chain. They will get an overview on approaches to select and use relevant
integrated knowledge with appropriate methods, based on case studies, such as
deterministic product ramp-up.

Engineering Professionals, including engineers of products and of production
systems, will become aware of the major challenges of and approaches for designing
and developing products with varying degrees of flexibility. They will better
understand the viewpoints of the different engineering disciplines involved in
CPPS engineering, as well as the benefits and limitations of applicable methods,
architectures, and technologies for selected use cases. A core topic is the need for
data integration along the various value adding chains, in particular, needs and
approaches for information modelling and integration coming from engineering
processes of smart systems and individualized products with high complexity and
variability.

Product engineers will get better insight into the capabilities of CPPS, so they
can consider these capabilities for designing innovative products. They will come to
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better understand the multi-disciplinary process of creating information models for
the evaluation of product concepts and for reuse in production systems engineering,
which is essential to achieve the key benefits of CPPS engineering.

Production systems engineers coming from different disciplines, e.g., mechan-
ical, electrical, and software engineering, will better understand architectures of
products and production systems enabling improved engineering processes, which
in turn is the foundation for improved creative interaction with product engineers,
and for understand flexibility options better. They will appreciate approaches for
better forward and backward information flow between engineering and operation
phases as a foundation for focused improvement of engineering designs and
optimizing systems operations with knowledge coming from engineering models.

Finally, both product engineers and production system engineers will get inside
in the needs and challenges of the other set of engineers enabling the improvement
of a mutual discussion of upcoming challenges within their interaction as well as
enabling the reuse of engineering information on both sides.

Researchers from the fields of product engineering, industrial production systems
engineering, and information modeling and integration, will benefit from better
awareness on the challenges, needs, and approaches in the multi-disciplinary and
multi-model engineering of CPPS.

Product engineering researchers can consider how to use the information around
engineering to design better capabilities for product engineering processes. They
will be introduced to information sources from production systems engineering,
e.g., using the emerging standard AutomationML, and from operation, e.g., using
the standard OPC UA, that can be used for improving the product design process.

Industrial production systems engineering researchers will get a better under-
standing of the challenges and requirements of multi-disciplinary engineering that
will guide them in future research and development activities. They will get ideas
on how to use the information available around engineering and operation to design
better capabilities for CPPS engineering processes. They will become aware of
alternatives to hierarchical control system architectures, their potential challenges
and impacts on production systems engineering. They will get a better overview of
selected tool chains that are evaluated in the production system engineering process
towards virtual commissioning, AutomationML for data exchange and engineering
knowledge accumulation, and selected mechanisms for the self-adaptation in cyber-
physical systems. As a consequence, they will be able to make better informed
decisions on which engineering knowledge representation approaches are likely to
be most appropriate in a given application context.

IT researchers will be enabled to better understand the application domain
of CPPS engineering to provide relevant information management methods as a
foundation to address the dependencies between products, production processes,
and production systems within engineering processes. They will be supported in
making the decision on which engineering knowledge representation approaches
are likely to be appropriate in a given application context, based on case studies that
allow comparing the contributions of Model-Based System Engineering, Semantic
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Web, and service-oriented approaches for CPPS engineering. They will get an
overview on key IT capabilities for CPPS engineering, such as modeling languages
and model transformations, as well as intelligent data integration and access in a
heterogeneous CPPS environment, as a foundation for designing and evaluating
informatics contributions to CPPS engineering.

Finally, students of various disciplines related to production and information
processing systems can use this book as textbook to gain understanding of various
architectures for information creation, processing, and use within the interrelated
life cycles of products and production system. For example, they will find discus-
sions about the interrelations of life cycles, the description of special life cycles, the
description of production system hierarchies, and the description of a methodology
for defect identification within engineering data.

Thus, students will especially benefit from the book during their final graduation
activities finding detailed representation of the state of the art related to multi-
domain model-driven engineering.
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Chapter 2
Product and Systems Engineering/CA* Tool
Chains

Kristin Paetzold

Abstract For the development of interdisciplinary technical systems such as CPS,
systemic approaches which stringently summarize the logic of development are
currently available. These approaches are suitable to support the complexity of
both the CPS as well as the related developmental processes. However, these
development methods are relatively generic. An adaptation or a tailoring to specific
conditions of both the products under consideration as well as the development of
boundary conditions is absolutely necessary to use them effectively and efficiently.
For the development of CPS also a variety of IT tools which effectively support the
product development but only if they are well coordinated with the corresponding
processes, are already available. If the interfaces are described sufficiently and com-
prehensively, and the data characteristics of the results of the various development
activities are taken into account, media discontinuities can be reduced. The major
challenge in the development of complex technical systems is the overall system
analysis and the system integration. To this end, modern methods such as model-
based engineering in general and model-based Systems Engineering in specific,
provide powerful approaches that must be applied and adjusted for the purposes
of the product and process characteristics. This adjustment process to product
development and the integration of MBSE approaches into the IT-structures may
be seen as the main challenges for the future.

Keywords Product development • IT-structure • Systems engineering • Data-
and information flow • Model-based systems engineering

2.1 Introduction

Developing Cyber Physical Systems (CPS) whose functionality is caused by strong
interactions between physical and computational components (Sztipanovits 2007),
pose major challenges to the development and especially the design of development
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processes. CPS include solution approaches from various engineering fields such as
mechanics, electrical engineering, computer science, control engineering but also
thermodynamics or materials engineering. The system behaviour can ultimately no
longer be derived just as a sum of individual partial functions. Instead, synergies
can be skimmed off by the diverse interactions of sub-functions. This product
characteristic results in a number of challenges for both the process itself as well
as the methods and tools used in the development process.

Processes in general as well as product development processes in particular can
be understood as a series of interrelated activities that give rise to a valuable result
for the company (Hammer 2001). For product development, these activities can be
specified as that they include all operations, from the product idea to the start of
production (as Ehrlenspiel and Meerkamm 2013). Development processes are also
characterized by a certain uniqueness. It is not necessarily the aim of achieving an
always equal result but rather finding a customized solution to specific customer
requirements and operating conditions, which is characterized by a high level of
functionality at an equivalent quality. This leads to a paradox: in a company is never
expected the same exact result of a development process is never expected twice,
which is associated with the fact that the development processes are different in each
case. Nevertheless, not only for reasons of efficiency and effectiveness it requires
clear procedures in the design of the development processes which are connected to
a standardization of these. In addition, development processes are distinguished by
a high degree of innovation and creativity (Kline 1995), which again the mentioned
paradox supports.

Basically, product development processes can be characterized by the following
four characteristics (see Fig. 2.1):

• Data and information about products in general and to CPS in particular
arise only in the context of development. In order to still be able to work

Fig. 2.1 Characteristics of the product development processes
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result-oriented, it is common practice to make assumptions first which need to
be concretized and evaluated in the later stages. Development processes are in
accordance with the fact that there must be dealt with uncertain and incomplete
data and information (Freisleben and Schabacker 2002) that become reality just
in the course of development.

• The development of CPSs is highly interdisciplinary. Therefore, the different
domains need to cooperate closely in all stages of the development. The challenge
is that in the different domains, different models are used for the development of
(Horvath and Gerritsen 2012), which in turn differ from the model approaches of
system integration. The models describe the same technical system with different
perspectives on it, what leads to a high variance in the information content of
models.

• In terms of a concurrent engineering, developments in the individual departments
run parallel. For the domain-specific development, data and information from
other departments are required in general. This requires individual activities
and tailored interface management to ensure that the data and information are
available with sufficient quality at any stage of development.

• Development processes consist of a permanent exchange between analysis and
synthesis. Data and information which are defined as part of the synthesis, need
to be investigated and assessed by appropriate analytical steps regarding the
fulfilment of requirements, which in turn may lead to corrections if there is
the need. This is connected to the thought, that the characteristics of data for
synthesis and analysis can be distinguished (Weber 2005).

The development processes of complex technical systems as CPSs thus require
complex processes to secure the expectations in terms of functionality and quality.
Such properties result in the fact that iterations are essential during the development.
Concurrency of activities and the strong links between these individual activities
through data and information exchange lead to pronounced nonlinearities in the
development processes. These nonlinearities are only accessible through a detailed
view of the data and information flows within the development but need to be taken
into account in the design of processes.

In defining of development processes in companies, at least the corporate
knowledge is manifested in the designed technical systems. The approach in the
development is the result of an evolutionary process which does not only take the
product of evolution into account but also effects the “Lessons Learned” or historical
data and information. Reversed, development processes will be anchored in the
definition of departments, team structures and responsibilities, which are in turn
the basis for associate -processes such as release decisions or the actual project
execution. Furthermore, emerge from the descriptions of the development process
for CPS data and information requirements for each activity that must be ultimately
provided and managed by the available IT infrastructure.

Process models for development are therefore not only used to represent the
inherent logic in the development but also serve as basis for the design of the
organizational and operational structure in the development departments and the
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design of the IT environment in enterprises. They also form the basis for associated
processes such as risk management, change management, or the verification and
validation management, which are often implemented as part of the division of
labour as independent tasks of product development. Therefore, models for the
description of the development process have to be considered at three levels also.
Generic process models which reflect the logic of development, proved to be just
little helpful for the practices of process design and optimization, because they
are coarsely granular. It requires a context-specific refinement and adaptation of
process models to the specific conditions in the company, to the market or the
industry and, ultimately, to support the development in terms of workflow processes.
In order to achieve this aim, the data and information flows are analysed within
the development to link targeted activities with each other. This relatively fine-
grained level of process description appears necessary to assess uncertainties due
to incomplete and uncertain data, in order to increase the product maturity with
the initiated activities and thus to avoid unnecessary iterations. Processes on such a
fine-granular level are mainly characterized by detailed interface descriptions which
have to take three aspects into account:

• Procedural interfaces result from the logical sequence of development steps
which contribute to the increase of product maturity;

• Organizational interfaces define responsibilities for process steps or release
mechanisms, and thereby support the quality assurance during the development;

• Formal interfaces link the IT tools which are used during the development in
order to secure consistent data and information flows.

A closer look at these three levels of process description, the underlying models
and the methods and approaches to each process support will be taken in the
following subsection.

2.2 Generic Procedures for the Development
of Interdisciplinary Products

Cyber Physical Systems are not only distinguished by the wide range of functions
but also by the strong interlinkage between those functions. This distinction guar-
antees the variability in the response of the system in different states respectively
its flexibility and robustness of the systems behavior. Such complex systems require
adequate procedures in development. Systemic approaches will be used to make the
strong dependences between systems design and process design explicit.

Haberfellner et al. (Haberfellner et al. 2015) recommend to organize the pro-
cesses based on models for the system description, which map again both functional
and structural aspects of the system being to designed (Fig. 2.2). Such holistic
approach forms the basis of today’s popular procedural models. System devel-
opment itself is based on defined requirements of the overall system, which are
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Fig. 2.2 Systemic thinking in the development of complex technical systems (according to
Haberfellner et al. 2015)

successively decomposed to smaller units, where solution approaches are needed
(from rough to detail). This approach in a phase structure (macro logic) with the
basic steps planning, designing, and finishing of the results (e.g. Pahl and Beitz
2007). This phase structure in turn needs to be put in concrete terms, which depend
on the system structure and the area of expertise, in which the development takes
place.

Within these process models, the main task of the development is to seek
for solutions and to check them with regard to the requested performance. This
problem-solving process (micro logic) (Ehrlenspiel and Meerkamm 2013) manifests
itself in a permanent alternation of synthesis and analysis and can be deduced from
typical approaches to problem solving of individuals.

Individuals as developers need methodological support in the development from
two perspectives: on the one hand, methods for system design and to control the
system’s complexity are needed and on the other hand, methods for process support
and coordination of the development tasks are required. Both perspectives are
explained briefly below.

2.2.1 Micro-logic in Development

The micro-logic in the development describes the operations at the level of concrete
project work (Gausemeier et al. 2004) and supports the systematic processing for
solving partial of problems within individual phases of the development process.
The basis for this processes are generic procedures of psychology of thinking (Miller
et al. 1973).



32 K. Paetzold

Fig. 2.3 Problem solving cycle according to Ehrlenspiel (Ehrlenspiel and Meerkamm 2013)

The problem-solving cycle (according to Ehrlenspiel and Meerkamm 2013) is
shown in Fig. 2.3. After defining the roles, the broadest possible solution space is
created within the framework of the synthesis which is then analysed and evaluated
with respect to the achievement of objectives. Thus, the solution space is always
limited. This constant interplay of analysis and synthesis is ultimately one of the
reasons for iterations in the development process.

The product life cycle determines some implications for the coordination of
data and information flows as well as the tool integration in the development. The
individual steps can be associated with categories of methods as it is illustrated
in Fig. 2.3. Special attention is given on the methods and tools for synthesis and
analysis. The two process steps are interconnected via data and information flows
(Fig. 2.4). It is crucial that for each of the two steps different categories of data must
be captured.

For this purpose, two categories of data must be distinguished (Weber 2005):

• Characteristics which define the product; they are defined by the developer and
thus serve as an adjusting screw to manipulate the properties.

• Features which describe the product behaviour; the properties cannot be influ-
enced directly by the developer.

Exemplary for this mind set is the rough designing and dimensioning in the
design. In order to meet the properties’ conditions several components, for instance,
part lengths or materials (characteristics) with respect to the strength or weight of
the part have to be defined which must fulfil specified functions (features) (Weber
2005).
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Fig. 2.4 Information flows in product development

Input values of the synthesis are properties that are requested by the technical
system. Those values it is necessary to find corresponding characteristics. By
analysing those values characteristics are examined to determine whether the
property’s performance is guaranteed or specified characteristics support the func-
tional performance. Consequently, properties can be divided into target properties,
from the customer requirements and actual properties which are the result of a
development step.

Which of the various methods is suited best, is on the one hand determined by
the objectives of the analysis and on the other hand by the product’s maturity or
rather by the developmental progress and its associated data quality respectively the
uncertainty regarding the data (Reitmeier 2015). This implies the need to distinguish
between product models as a result of the synthesis and analysis models. Result
of synthetic steps are product models such as CAD models, prototypes or test
setups. During the analysis it is necessary to transform the product models into
analysis models in order to make them accessible for calculations, simulations and
experiments. Examples of analysis models, such as FE models, Matlab Simulink
models or test body illustrate the diversity which needs to be handled. Below both
categories are summarised to product artefacts. Such a distinction is necessary to
understand for instance breaks in the data and information flow.

The resulting problem solving cycle (Ehrlenspiel and Meerkamm 2013) as
approach of process description on the problem-oriented level is therefore non-
specific, which means that it is equally suitable for all disciplines. The problem-
solving cycle is primarily used to provide situation-specific methods. Resulting
instructions have descriptive character. It addresses the question of HOW the
solution finding should be done (Lindemann 2007).
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2.2.2 Process Models as Macro-logic in Development

Macro-logic in development is described by process models in product develop-
ment. These process descriptions address the logical and chronological order from
the idea to the finished product. These physical issues are relevant for the actual
characteristics of the individual activities. This is the best reason why the process
model differ quite domain specific. They follow a prescriptive nature and deal with
the question of the WHAT within in the Process (Lindemann 2007).

Process models, as phase concepts, have a high degree of generality even within
the domain. They require a sector-specific adaptation and concretisation for being
used as process basis in terms of project management. It is their big advantage, that
the development process is divided into manageable sections which partly can be
found in the operating structures of the development departments in the company
again. The structure is classified in two ways (Lindemann 2007):

• Logical: During development, an abstract situation will be concretized, whereby
the data and information base progressively will be completed. Thus, the adaption
for the methods which are used for synthesis and analysis is needed.

• Time: The order of the process steps and the details of the data base can therefore
be used for project planning.

Process models describe generally how a predefined target system can be
transferred to a more or less abstract level in a specific technical system (Negele
1998). Process models vary depending on the technical domain in which solutions
for technical systems are being developed, because this solution finding and speci-
fication are very strongly influenced by the used physical effects and relationships.
Nevertheless, independent of the considered domain, four phases can be identified
at a very generic level (Fig. 2.5), which remind of (Pahl and Beitz 2007).

Planning Phase: This phase conduce the definition of the task and of the
demands on the system to be developed. In addition to the customer or user
requirements it is necessary to consider the affecting or limiting constraints from
both perspectives, the company’s internal situation as well as from the environment
or the use out. The aim of this phase is to prepare all the development factors
influencing, so that therefrom parameters for the development itself can be derived.
Results besides the requirement specification is the definition of the system purpose
and the expected system behaviour.

Concept phase: This phase concerns a system decomposition based on the
system purpose and the expected system behaviour (Andreasen 1980). The related
detailing is accompanied by a permanent exchange between function synthesis and
synthesis principle. Function definition and refinement are always associated with
the search for fundamental solutions, which can be derived from the use of physical
effects. The choice of physical effects in turn influences the further breakdown into
sub-functions (Ponn and Lindemann 2011). These partial solutions are assembled
to form a working structure, which in turn defines the basic structure of technical
systems.
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Fig. 2.5 Principle stages in product development

Design phase: The design phase is mainly influenced by the fact that the
individual functions and fundamental solutions are specified and refined. Depending
on the size and complexity of the technical system to be developed this design work
is carried out in several different teams who then are specialized in the development
of individual components.

Integration phase: Since today also in the domain-specific development, a high
level on the division of labour can be observed, the integration of the results into
an overall system is becoming increasingly important. In this context takes place
both, a spatial and functional integration. Adaptions of the integration adjustments
to the partial results or components are made such that the overall system then has
the best performance. In and of itself it does not make sense to consider the system
integration as downstream stage in development. Both in terms of efficiency as well
as from a qualitative and functional point of view out a parallel consideration during
development is strongly preferred. While this is quasi still immanent in the concept
phase, it is challenging especially for further detailing.

Depending on the specific domains, different strengths of effort are required
for each stage in development, which results from the physical relationships and
the mathematical description associated. While the construction has to rely on the
use of geometry and materials for continuous-time descriptions, in development of
integrated circuits e.g. for the description of individual components, discrete event
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Fig. 2.6 Examples of domain-specific process models

approaches can be used. As a result, at a certain level the development is automated
in circuit design, which is not feasible for mechanical design.

Differences in the specialized domains also arise because for function descrip-
tions there is a cross-domain understanding, but the structure depths in the domains
are very different (geometry in engineering, integrated circuits in electronics, source
code in software development).

For these reasons, the process models in the specialized domains are correspond-
ingly varied. Fig. 2.6 shows examples of procedures from the domain engineering,
electrical engineering and software development. The differentiation of the domains
is not only reflected in the structural form but also in individual activities and their
designations. A detailed compilation of domain specific process models can be
found in (Eigner et al. 2014).

Process models provide first only a sequential series of more or less detailed
process steps, following the logic “from the abstract to the concrete”. In the
development of this and especially as a result of adaptation to the specifics of
different disciplines to the process models has been attempted to consider the
general character of development processes. Correspondingly to the structure of the
process models three main types can be differentiated. The simplest structure is a
sequential approach as “logic-beam”. Partly, this structure is also called waterfall
model. Since the need of iterations is well known, this was integrated into the
waterfall model (Fig. 2.7a). Exemplary adaptations can be found in the VDI 2221
(VDI 2221 1986), the approach to circuit design according to VDI 2422 (VDI 2422
1994), generally waterfall model of software development (Boehm 1979) but also
in the Y-chart to Gajsky-Walker, which takes place in the electronic development
(Gajski 1983; Walker and Thomas 1985). In the latter, there are three logic-rays that
reflect and merge the three typical ways of looking at an integrated circuit.

By the logic beam is folded over at the level of activities of the draft to a V-
model (Fig. 2.7b), one can point out the importance of the property protection for
development results. In terms of the function of protection and a high quality product
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Fig. 2.7 Structures of process models

as by increasing demands in terms of system reliability, verification and validation of
technical systems is becoming increasingly important. This type of visualization and
implementation supports the way of thinking. V-model approaches can be found in
software development (Forsber and Mooz 1991), but especially for the description
of the development of complex technical systems as in mechatronics (VDI 2206
2004).

Another structural adjustment is the spiral model (Fig. 2.7c), which is more
commonly used in software development (e.g. Boehm 1988). Ultimately, the logic-
beam thereby will be “wound”. This form of modelling illustrates not only the
paradigm of successive refinement (NASA 1995). The introduction of the quadrants
also addresses and integrates the logic of the problem solving cycle with the phases
tasks careful synthesizing, analysing, evaluating and deciding that must be passed
through to each stage of the procedure. This way of thinking are as the application
of agile methods in software development as a basis. In this way of thinking is based
e.g. the application of agile methods in software development.

2.2.3 Process Models for CPS as an Interdisciplinary
Technical System

To explain the procedure for developing CPS as interdisciplinary technical systems,
domain-specific approaches are not appropriate. But the logic illustrated with the
four phases, needs to be considered due to the inherent systemic view. In considering
such interdisciplinary products there are other aspects of importance:

• The complexity of CPS is not based solely on the number of elements (func-
tions and components) but also on the cross-linking diversity. The structural
characteristics of individual sub-elements are very heterogeneous, with the result
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that interfaces can be partly difficult to detect and to interpret. Emergent system
behaviour of CPS can be the result.

• The expected from CPS behaviour is more diverse. This is not simply because
the CPS must adequately respond to different environmental conditions, but also
to its own system states. New business models, offering services in the context
of the CPS and the requirement for an intensive consideration of the product
life cycle mean that different stakeholders have different demands on the system
behaviour or expect a specially specified behaviour from CPS.

• The division of labour for developing a CPS presents itself much more het-
erogeneous than in conventional technical systems. Many companies cannot
hold the entire technological know-how for the solutions. In some industries,
significant shifts in the leading competencies of the company can be observed.
Core competencies are no longer alone in the mastery of specific technologies
but in system integration. In addition to intensive cooperation with suppliers,
components of the shelf (COTS) gain importance. This requires special attention
to the problems associated with the product development processes, such as
requirements management, risk management or the security management.

For the development of interdisciplinary technical systems like CPS the V-model
has been proved as structural approach (Fig. 2.8). This reflects not only the four
phases shown in the preceding chapter, but also explicitly address aspects such
as property protection and modelling aspects. Thereby, not only the substantiation
of the development results is discussed but there are also first indications for the
description and analysis of data and information flows given.

For each phase now the areas of responsibility need to be expanded.

Fig. 2.8 V-model as a fundamental approach to CPS
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In the planning phase, it is needed to analyse precisely the stakeholders of the
CPS and their goals and expectations on the system behaviour. Since the CPS should
adequately react to different situations, the definition of just one system response
is not sufficient. Instead, it requires an intensive analysis of possible situations
to specify the system behaviour. In addition, there remains a challenge, boundary
conditions of the application environment, from the market and the competition, as
well as from within the company to identify.

Characteristic for the concept phase is processing from rough to detail (Fig. 2.5).
Under this phase it is necessary to substantiate the defined system behaviour by
a functional analysis and to complement the logical order with function execution
(operations). Structural analysis is the condition for a description of the physical
architecture. In this context it is important to clarify how or what features are
summarized in terms of subsystems or components. Hereby, considerations as the
evolution of technical systems play a major role (Kossiakoff et al. 2010). Only in a
few cases, radical new developments take place in product development. In general,
it is necessary to consider incremental innovations. The physical architecture is
then more or less given and serves as a basis for development. Product and variant
management in the company are also influencing. This not only defines the product
structure by the stored modularisation strategies. Finally, the physical architecture
is characterized by the company’s knowledge in development and by providing
access to technologies. Linked to this is also the organizational assignment of
development tasks to individual development teams in the specialized domains.
Figure 2.9 summarizes these aspects of the system architecture together.

Result of the design phase is a system architecture, which describe structural
description and system behaviour from different perspectives (Rechtlin and Maier
2000). The concept phase is of particular importance for development because it
not only predefines the resulting CPS, but also establishes a system understanding,

Fig. 2.9 Consideration to system architecture
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to which the project partners must commit (Blanchard and Fabrycky 2012).
Accordingly, the concept phase requires a highly interdisciplinary cooperation in
which is assumed that the participants from different disciplines to develop a mutual
understanding of the concerns of other specialized domains.

In contrast, the expertise and the specific knowledge of the individual domains
are needed in the design phase. Since they summarize domain-specific knowledge,
subject-specific process models are used to deal with the development tasks. In
terms of the interdisciplinary nature of the entire development task, a special
awareness of the overall system needs is necessary while the processing of subtasks.
Decisions that were taken in one domain also influence the work and decisions of
other development teams. A strong interface management is required, thus also in
the domain-specific development phases, the overall objective won’t get lost.

The phase of system integration provides companies especially in the develop-
ment of CPS with special challenges. Individual solutions from different develop-
ment teams, based on specifications, which only represents part of the complete
the overall system requirements, are optimized in this way usually. It is in the
nature of things that not all possible critical interfaces are considered to other
subsystems. Often simply lack the domain-specific knowledge in detailed questions.
In the phase of system integration, therefore much effort on the adaptation of
individual solutions is put in terms of overall performance. This is associated with
time and cost consuming iterations. It therefore makes sense to support the phase of
system integration from the planning and design phase through methods and tools,
as well as procedural and organizational interfaces by which interfaces between
requirements, stakeholders, subsystems and functions between development teams
and can be made visible. In addition, it requires methods to provide decision
situations with sufficient data and information.

2.2.4 Systems Engineering as an Interdisciplinary Approach
for Development of CPS

While in the previous chapter, the procedure from a more domain-specific point
of view has been continuously broaden to draw conclusions for interdisciplinary
product development, Systems Engineering provides an approach to support the
theme from a cross-domain development perspective. Similar to the already shown
systemic development approaches, Systems Engineering refers to a long history,
(NASA 1995), especially for the development of large-scale systems (Chestnut
1967).

Systems Engineering (SE) is an interdisciplinary approach and means to enable the realiza-
tion of successful systems. It focuses on defining costumer needs and required functionality
early in the development cycle, documenting requirements, and then proceeding with
design synthesis and system validation while considering the complete problem: operations,
cost, schedule, performance, training and support, test, manufacturing, and disposal. SE
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considers both the business and the technical needs of all costumers with the goal of
providing a quality product that meets the user needs. (INCOSE 2010, p. 6)

The definition shows that not only a focus on the stakeholders takes place,
but also the entire product life cycle of the resulting system is made explicit in
development. These limits of consideration are very broad in terms of description
of a socio-technical system from the outset.

Also as part of SE approaches, development of technical systems is understood
as top-down process with iterative character (Eisner 2008). The focus lies more on a
total system approach and on how to find an optimal solution for complex tasks and
problems (Hitchins 2007). Of course, in SE detailing phases in the domain-specific
development are also needed. Here is less discussed how to proceed in detail, but
more which tasks a system engineer has to fulfil, to be able to reasonably coordinate
the results of these domain-specific phases to each other and to be able to integrate
them into an overall system. The methods used in the context of the SE therefore
primarily focus on the control and management of complexity (Kossiakoff et al.
2010), analysis and description of interactions between to developing systems and
the environment as super-system, and between the sub-systems. Especially the latter
is of course based on the expertise of different domains, but should be supported
by the system engineer, from whom a broad technical understanding is expected
(Blanchard and Fabrycky 2012).

Oliver et al. (1997) explain that SE approaches need to support two ways of
looking at development:

SE management process describes the technical and organizational effort
within the product lifecycle and thus focuses more on the typical tasks of project
management. Target of management procedures is to provide information and to
evaluate it in order to support the decision-making in terms of trade-offs between
efficiency and costs (NASA 1995). It is necessary to consider restrictions on cost,
time and potential risks, both in the development itself as well as in the evaluation
of the performance of the technical system.

SE technical process includes all activities from the first request of requirements
up to development through to verification and validation of the results. Both,
procedures represented in literature as well as procedures known from practice,
based on systemic approaches and mind sets that have been explained in detail in
the previous chapter. As process model now commonly a V-model is used as basis
(e.g. (Blanchard and Fabrycky 2012; Kossiakoff et al. 2010)).

Typical methods of SE focus less on the support of individual activities but more
on the analysis and description of the system complexity. Therefore, it should be
given particular mention to:

• Methods for modelling and simulation of complex systems (e.g. NASA 1995)
• Methods for analysing system contexts both at a functional and structural level;

for this, graph-based approaches are used as well as network-based approaches
(conclusion e.g. in (Parraguez 2015))
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• Methods for the preparation and presentation of data and information flows in
the technical system, taking into account constraints and stakeholders through
approaches of model-based systems engineering (MBSE) (e.g. Delligatti 2013).

From the perspective of systems engineering, the emphasis in the description of
data and information flows lies in summarizing the variety of data and information
and in preparing a structure to firstly identify interfaces between sub-systems and the
environment within the technical system. To this end, data and information from the
synthesis of partial elements are grouped in such a way that dependencies between
elements of the overall system can be identified.

Especially the extensions within the V-model for development of interdisci-
plinary products such as CPS give an indication what to look for in design but for
the concrete process design and support, they are only partially suitable. Here, a
significantly more granular fine-mapping of processes is required. Therefore, in the
following chapter approaches are presented to substantiate and refine the process
descriptions.

2.3 Concretisation of Process Descriptions in the Sense
of a Workflow

Especially the extensions within the V-model for development of interdisciplinary
products such as CPS give an indication what to look for in design but for the
concrete process design and support, they are only partially suitable. Here, a
significantly more granular fine-mapping of processes is required. Therefore, in
the following chapter describes approaches to substantiate and refine the process
descriptions.

Looking at the data and information flows within the context of process
models, both, product models as a result of synthesis and analysis models shall
be considered. This requires a detailed process description, which in turn forms the
basis for the design of IT structures. It should focus on that system descriptions
within the process are successively refined through the use of different methods and
related tools. This leads not only to different versions within a product model but
also contributes to a plurality of partly also very heterogeneous product models,
which need to be managed and tackled. With increasing maturity of the technical
system, the data quality improves and data uncertainties are gradually reduced.

Analysis models are based on product models and the associated level of maturity
of the considered subsystem. In addition, analysis models depend in their detailing
or their structure from the objectives which are pursued with the analysis in each
case. Product models require a corresponding contextual preparation to make them
accessible for the analysis.

Both model types, product models and analytical models contain data and
information which describe each viewpoints or parts of the resulting CPS. For
preparation of the product models for analysis and specifically for simulations,
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engineering-workbenches find use. The aim of this is, on the one hand to support
the modelling for simulation by the prepared context information for pre-processing
and assigned to the product model. On the other hand, the analysis results are
pro-cessed in such a way that they are within the meaning of the decision support for
the development process available in post-processing. Libraries for modelling, load
cases, material values, etc. supplement this context information for analysis and can
simultaneously be understood as knowledge repositories.

For collection and delivery of all product artefacts various IT tools are available.
Product data mainly from construction will be deposited directly into product data
management systems (PDM systems). Depending on the structure and format of
these tools, this data can be linked to analysis results. Such processing and provision
of data and information facilitates the provision of data for individual development
steps and the development situation significantly, but also implies that the PDM
systems need to be adjusted in terms of product lifecycle management to the
development processes. In addition to PDM solutions for managing the documents,
data filing systems in which the files themselves are stored, are used. This in turn is
caused by the use of various tools in development. In sum it is necessary to support
development processes with a diverse IT landscape. Their efficiency depends on
how successfully typical development processes for the own organization can be
mapped and finally adapted to the data and information flows.

Figure 2.10 gives an indication to the components of a holistic IT infrastructure
for development. Besides PDM tools and engineering workbenches support file
storage systems the structuring and management of data. These are linked to the
for development necessary producer systems both for the synthesis (for example,
CAD) as well as for the analysis (for example, FEA, MBS). Within these IT systems
in turn, templates, libraries and assistance systems find use to support individual

Fig. 2.10 Overview of components of an IT infrastructure for development
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tasks through targeted provision of knowledge, but also to enable a holistic and
overarching product management. Finally, it requires suitable data interfaces to
ensure the exchange and further use of data within the development process. It
quickly becomes clear that for a concrete definition of an IT infrastructure, a detailed
treatment of the data and information flows is necessary, which cannot be guaranteed
by the process models described in the previous chapter. The process models require
a significant specification, for which the influencing factors are described below.

2.3.1 Adaptation of Development Processes to the Context

The refinement of the development process is not only required to substantiate to
processes in the development and to support decision-making processes through
targeted information delivery. This is done not only on the basis of interdisciplinary
tasks in the development but also by the integration of the development in the
company’s organization. The link to production and assembly, sales and marketing,
logistics, procurement etc. is especially required to consider all influences on
development in terms of product lifecycle reasoning. As a result, so called swim
lane models for process description can be found in the companies (exemplarily
shown in Fig. 2.11). This also goes hand in hand, that for development necessary
IT structures are linked to the IT tools of other company divisions. In this context
should be referred specifically to the link to Enterprise Resource Planning systems
(ERP systems).

The processes depicted with such Swim lane models are very company specific.
They resemble each other but generally are not equal because they are influenced not
only by industry, competition and market but also by corporate strategies. Here, for
example, aspects such as competitive and technology strategy or typical customer
patterns play a decisive role. Such process descriptions and therefore the support
of developers are not only based on typical processes, but also can be explained
to some extent from the company’s history. Last but not least are manifested in
the development processes and the associated IT structures the experience and
knowledge of the company.

Because of the diversity in the expression of the factors influencing the process
design, a generic oriented refinement makes little sense. Below shall therefore be
briefly outlined, which factors are in what way to take into account in order to
reflect the company’s internal processes as a whole can. In turn, starting points and
specifications for IT structures can be derived.
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2.3.2 Identification of Context Factors for Adaption
of Development Processes

The adaptation of the generic process models is described in the literature for
two reasons: on the one hand requires the pronounced interdisciplinarity especially
for CPS the consideration of typical procedures of disciplines involved to obtain
functional and high-quality solutions for components and subsystems (e.g. Pugh
1991; Gericke and Blessing 2011). On the other hand, the adjustment of develop-
ment processes to the corporate context (industry, market, product group strategies)
is necessary to explicitly include the resulting specific framework for development
(e.g. Skalak et al. 1997; Meißner and Blessing 2004). Gericke et al. (2013) illustrate
two types of customization options of development processes: the Augmenting and
Tailoring. The Augmenting ultimately describes the extension of the procedure
description not only by additional process steps but also by the integration of
additional information such as guidelines, design practices, specific methods, or
the like. Target of Tailoring is to carry out industry or company-specific adaptations
of the development process, whereby it is mainly about to make the process steps
explicit, which results from the product or the industry (Gericke and Moser 2012).
In the aviation sector this includes, for example, admission procedures or hedging
measures. For CPS are, for example, specific measures in relation to consider
the data security or the human-machine interaction, required. The challenge for
both forms of process adjustment is to completely grasp the development context
and describe it in its characteristics. Hales and Gooch (2004) illustrate this in a
framework to classify those factors influencing the product development and to
identify (Fig. 2.12). Gericke et al. (2013) use this structuring approach and assign
more detailed context factors that have been identified based on a comprehensive
literature review.

The resulting list of over 230 contextual factors (in Gericke et al. 2013)
provides basic evidence, what to look for in the concrete detailing, but for practical

Fig. 2.12 Influencing factors to product development according to (Hales and Gooch 2004)
improved in (Gericke et al. 2013)
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Fig. 2.13 Detection of the contextual factors for describing the data and information flows
(Reitmeier 2015)

application, this list is a bit bulky. Also not included in the rather linear view is the
fact, that between the contextual factors a number of dependencies are observed.

Reitmeier proposes to extend the structuring approach (Reitmeier 2015) to
capture the data and information flows by continuously evaluating the contextual
factors with respect to the decision to be made (Fig. 2.13).

In (Reitmeier 2015) is distinguished for the classification of contextual factors in
such of first degree, which are directly connected with the activity of the developer
and thus also directly can affect the necessary activities, or even can be influenced
by the developer. In addition to the aspects of the product and the process, the
company’s resources also play a role here. Not least, strategic considerations such
as the importance of the development project for market, industry, customer or
integration in the product management influence a role. These factors influence
the adaptation of the development process to the development task. Boundary
conditions of second order, which at a higher level can be derived from the macro
environment or the company’s strategy, however affect the basic design of the
processes in the development.

2.3.3 An Approach for Systematic Analysis of Determining
Factors for the Development Process

In addition to detection and description of the contextual factors it requires an
analysis, which indications can be derived for the design of development processes.
For this, a systemic approach after (Negele 1998), which in turn follows an idea of
(Patzak 1982), is used. This approach of Negele will be introduced in the following
chapter.
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Fig. 2.14 The development of CPS using the ZOPH model after (Negele 1998)

In principle, it is distinguished between the system to be designed, here the CPS
as product, and the formative system, that is the process of targeted activities that
lead to this CPS. Both systems, the CPS and the development process cannot be
considered independently. Considering further that the CPS initially is present only
as an aggregation of targets, which are substantiated by development, it follows
that the CPS is again divided into a target system and an object system. This opens
up the possibility to address the uncertainties in development. On the other hand,
in connection with the process is illustrated the extent to which the resulting CPS
is correlated with the objectives. A similar approach is for the process to derive
even. The formative system of the process is mainly determined only from the
logical approach and has a generic character for the product group. The concrete
development task can be derived only if demands are accurately specified, resources
and responsibilities are defined and a termination occurs. For this reason, a specific
project will be derived on the basis of the processes virtually, resulting in the
distinction between a process and a system of action.

Finally, of course, it requires a definition of the system boundaries, which are
characterized not least by contextual factors on the micro and macro level. The
difficulty here is that this system boundaries often cannot be drawn strong and clear,
because it is precisely the characteristic of the CPS that they interact closely with the
environment or other systems in the environment. CPS must therefore be interpreted
frequently in the context of a system of systems (SoS). Such blurred dividing line is,
however, difficult to tackle in development. Therefore it is necessary to give special
care on the delimitation and description associated in- and outgoing data, energy
and material flows. Figure 2.14 illustrates this model approach after (Negele 1998).
The name ZOPH of the approach results from the first letter of the german words of
the partial models (Ziel, Objekt, Prozess, Handlung).

This raises the question of how this mind set supports the process development
and control of the development and the associated organization of data and
information flows. For this purpose, the individual subsystems shall be further
concretised in reference to (Negele 1998).



2 Product and Systems Engineering/CA* Tool Chains 49

Fig. 2.15 Detailing of the target system

2.3.3.1 Goal System

The goal system classically summarizes all the requirements for the evolving
CPS. As a product from the capital goods sector, here one needs to distinguish
between load and performance specifications in principle. The challenge lies in
the completeness of goal acquisition. Here are not only partial functions and their
expression of importance, but also the description of the characteristics of the
desired operations. For structuring the target system approaches for describing the
system architecture can be used, which reflect both functional and structural aspects.
Since generally in development always similar systems are in focus, may be used
for the CPS also established product structures. Relationships between functioning
synthesis and principle synthesis (Andreasen and Hein 1987) need to be considered
especially for completely new developments. For adjustments, variant developments
or incremental developments, these aspects are already included in the system
architecture.

The complexity of the CPS results not only from the functional diversity but
also from the diversity of the expected behaviour, which is not least determined by
different stakeholders on the CPS to be developed. Therefore, the target system shall
additional be analysed with respect to different types and forms of operations, what
also integrates aspects of the product life cycle at the same time. This requires a
detailed analysis of the stakeholders, as summarized in Fig. 2.15.

The goal system includes aspects of system definition, therefore the answer to
the question of which functions can be realized only through the CPS and which
arise from the interaction with other systems. One important result of the analysis
to the target system must be to detect cross connections between functions, product
structure, operations and stakeholders to present and show mainly conflicts between
these. Ultimately, the target system is a reference for the object system, but also for
the process system.
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Fig. 2.16 Specification of the object system

The target system is manifested in the requirement description, which in turn
is the basis for requirements engineering. In conjunction with the stakeholder
description and hedging measures, risk assessments or reliability statements can
be deduced.

2.3.3.2 Object System

The object system ultimately summarizes all results in the development process and
therefore also all product artefacts in the various phases of the development process.
This includes any form of additional information such as libraries, catalogues
or templates that underlie the development in the different producing systems
(Fig. 2.16). Ideally, the structuring is based on the product architecture, which
generally underlies also the target system description. A consistent structuring
of both, the object and the target system is the basis of the balance between
demands and results of the development process. However, the orientation on
product architecture takes generally into account the participating disciplines for
component development.

The product artefacts that are collected in the object system are available, both
as documents in data storage systems as well as hardware (prototypes, hardware-in-
the-loop). The analysis of the object system therefore not only serves to flesh out
the IT structures but also the identification of data-technical necessary interfaces
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between the product artefacts. The relationship between various product artefacts
provide, at best, product data management systems and engineering workbenches.
The relationship between data and information from other business sectors are
ideally represented by ERP systems. The enrichment of product artefacts with
information like date of creation, creator, etc. Versioning provides the one hand
the connection to the system of action, on the other hand, these also can be assigned
to phases within the development process and thus draw conclusions for the degree
of maturity.

2.3.3.3 Process System

The process system defines in detail the activities and actions which are relevant for
the specific development. Logical dependencies result from the physical relation-
ships in the specialized domains as well as from the to-implement system functions
and the expected operations. The structure of the process system should be such
that the analysis of data and information flows can occur between the individual
acts. The individual process steps are considered quasi as transformations of the
initial state into a desired end state. For this transformation are usually available the
experience and knowledge to the system, which provides guidelines and methods
that take into account not only the physical relationships but also best practices.
Both, methods and best practices include ultimately guidelines for action and thus
provide the detailed procedures a framework for action. For the analysis of process
steps therefore the proposed model Fig. 2.17 with reference to (Birkhofer et al.
2005) can be used.

A generic procedure description also results from the problem-solving cycle
(see Sect. 2.2.1), because there with a classification of methods and the data
characteristic is connected. As described above, the problem solving cycle is
ultimately to go through at every stage of development. This results is not only a
classification approach for methods (see Fig. 2.3) but also a statement of the maturity
of the resulting system. Conversely, this means that each method must be adapted
to the maturity level of the product. With the application of methods in practise
usually IT-tools are connected, which data requirements and their evaluation results
are directly attached to the methods or the best practices. For the description of
the development processes, the development influencing tasks like procurement,
purchasing or production and assembly now also have to be considered, as they
either provide input or need input at a defined time. Via the process system one can
recognize and specify procedural interfaces. The process system is manifested in
the swim lane models mentioned above (Fig. 2.11).

2.3.3.4 Action System

The action system describes the organizational framework or the organizational
impact parameters for the process design. The organizational structure results in



52 K. Paetzold

Fig. 2.17 Specification of the process system

responsibilities, role assignments and responsibilities for partial activities for both,
the actual development work as well as to administrative supporting processes such
as release mechanisms etc. In action system also material and personnel resources
are defined, whereby the material resources available especially IT tools, licenses
and their characteristics are includes, but also test stands, laboratory equipment,
test equipment, etc. are covered. Since today a variety of development services is
adopted by service providers or suppliers, these have to be interpreted as parts of
the action system, which supports the development with resources and capacity.

The action system serves in addition to content issues also to scheduling
specifications of development processes, depending on the development task and
possible priorities of the company. Depending on the development task, deadlines
and responsibilities must be assigned to the individual process steps. For the
purpose of a multi-project management, his assignment must be accompanied by
a project prioritization, which results from the program or product management.
Thus, directly from within the action system, the processes are complemented by
typical information to substantiate the workflow in terms of project management.
The components of the action system are summarized in Fig. 2.18.
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Fig. 2.18 Specification of the action system

2.3.3.5 Control of Development Tasks via the ZOPH Approach

The individual subsystems of the ZOPH model are not independent, as is already
explained in Fig. 2.14. In terms of a holistic process management it is rather
necessary to consider and develop all the subsystems equally. However, various
views on the development process can be mapped over the subdivision into
subsystems. The planning and integration of IT structures for integrated data and
information flows, for example, requires not only the consideration of the typical
system architectures but also of typical processes to tightly coordinate the individual
IT tools. For supporting decision-making processes in development in turn the
provision of all available data is required, but it also requires the knowledge of
organizational, process and product-related interfaces that are clearly shown by the
ZOPH approach. This is the basis on which to assess the impact of decisions and to
inform those who are affected by the decision.

The main objective of the development is undoubtedly the CPS. This is also
connected to a number of side objectives, such as quality, reliability etc. For
this purpose usually consuming associated processes such as risk management or
requirements management are implemented in product development, which are
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often to be considered as parallel to the actual product development process.
Configuration management and change management on the other hand consider
aspects of creating variants, which are normally anchored in program management.
These associated processes, for example, determine the product development via
modularization approaches, common parts and repeat parts concepts etc. With the
analysis of the company within the meaning of the ZOPH approach, these processes
can be mapped in a holistic way and coupled with development. Ultimately, these
associated processes grab, even if they have different origins, back to specific
elements in the subsystems and bring them goal-oriented together.

2.4 Model-Based Engineering for Mastering Complexity

The major challenge in mastering a CPS, nowadays lies in the system integration.
For individual activities or aspects in development now a variety of powerful
methods and tools are available, the overall system approach is, on the other hand,
less pronounced supported.

Especially in the data and information flows are always media discontinuities
to tackle, which easily lead to fractures in the reality in development. There are
a variety of documents such as request lists, CAD models, feasibility analyses,
calculations as well as Power Point or Word files generated which describe the
resulting product both on functional as well as on structural plane. These are for
individual development steps or specific decisions of importance, but are available
in very different formats. In addition, they represent some very different perspectives
on the CPS, which makes their interpretation and exploitation difficult. The cause
of the resulting lack of development lies accordingly in the document-based
management of the data and information flows, which neglect the data characteristic.
The preparation of more or less unstructured data requires special effort, for which
the creation of data exchange formats is often insufficient. An illustrated document-
centric view in general supports only specific views on the CPS. The challenge
arises not only from the different data formats and data structures but also from the
fact that with the various activities (synthesis/analysis) different data characteristics
are connected (properties/features), which complicates comparability and stringent
further usage.

To overcome these development disruptions, and thus to ensure a certain
completeness and efficiency of the development processes, increasingly model-
based approaches are tried. With such a model-centric organization of data and
information flows, the model becomes the source of relevant information by
structuring the information according to a predefined scheme (Weilkins 2008).

Model-Based Engineering (MBE) should here be understood as an engineering
approach, which uses models within the meaning of pre-structured data as a
basis for the data and information flow. These models include all this data and
information relating to the product life cycle, based on the requirements of the
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design, verification and validation of subsystems as well as on the overall system
(NDIA 2010).

Model-based engineering may be understood as an overriding principle that
originally sprung up in the development of software-intensive applications. The
application of CPS is not only beneficial to master the complexity in development
but also due to the system characteristic. The basic idea here is to continuously
hedge the system behaviour at different levels throughout the entire development
process by the use of these model approaches. For this purpose, firstly parameter-
based models (for example, in Matlab Simulink) are constructed from the overall
system, by which the system response can be displayed and analysed. These
are successively refined, both, in terms of modelling approaches as well as by
hardware components that are integrated (Albers et al. 2013). This ensures the
system integration from the early stages of the development.

Meanwhile, the understanding of MBE is somewhat broader and also includes
in many cases Model Based Systems Engineering (MBSE) and Business Process
Modelling (BPM) (Lee 2008).

Difficulties or challenges in the dealing with models arise from their properties
(Stachowiak 1973). Thus, models are only depictions of a system. This will entail
contractions: by means of the attributes from the original, only those things are
recorded, which are relevant for the defined viewing purpose. By assuming a certain
substitution function, therefore models give only a specific limited view to the
original again (Stachowiak 1973).

A further distinction needs to be made for models:

• Especially in engineering, the feasibility of models is presumed. Models are thus
constructed under the use of method tools such that they can be used as basis
for simulations. This opens the possibility to derive statements about behaviour,
performance and function as early as the early stages of development.

• Increasingly descriptive models that allow a symbolic representation of the CPS
with a defined syntax and semantic, gain in significance. These models are
information models, in which feasibility generally does not exist (exceptions
can be found in software development, where such a source code can be
derived, see also (Rumbaugh et al. 1999)). In this context, UML or SysML
models are exemplarily mentioned. In the end, even CAD-models, which initially
support structure visualization and are based on a pure geometry-based view, are
included. Simulations cannot be initialized directly but always the preparation of
data for an analytical model is required.

The two different interpretations of the MBE are summarized once again in
Fig. 2.19. This depiction illustrates that the model-based approaches on the basis of
executable models correspond to a vertical integration. Accordingly, the challenge
is to refine the models depending on the progress of development, or to link the
different modelling approaches to make them accessible for simulations (Paetzold
and Reitmeier 2010). MBSE other hand focuses on horizontal integration. The goal
is here to compile all data and information for the CPS over the product lifecycle



56 K. Paetzold

Fig. 2.19 Different views of the model-based engineering (Omiciuolo et al. 2015)

in order to ensure a holistic view on the resulting technical system or to assemble
different views.

With vertical integration, especially the kind of modelling or the choice of the
modelling paradigm is combined. From a systemic point of view one can distinguish
both, on the structure level as well as on the function level or the behavioural level.
A modelling based on the structure definition for the whole system is extremely
difficult, what is caused by the domain-specific physical and related mathematical
descriptions (geometry, source code, integrated circuits).

For the simulation of the system behaviour it is more likely to resort to
parameter-based approaches to modelling, as these are based on the more
generic functional description and are linked via input-output relations. With this,
although one accepts a higher level of the abstraction model, however, succeeds a
cross-domain modelling, which can be understood and interpreted in the domains.
The challenges that are associated to this observation will not be further discussed
here, but reference is made to additional literature (the problem of universal
description language, for example (Panreck 2002); multi-domain vs. domain
specific, for example (Sangiovanni-Vincentelli et al. 2009).

2.4.1 Model Based Systems Engineering

The second aspect mentioned in the context of model-based engineering is also
treated under the concept of model-based systems engineering (MBSE).
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Fig. 2.20 Perspectives which shall support the system model

Model-based systems engineering (MBSE) is the formalized application of modelling
to support system requirements, design analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and later
life cycle phases. (INCOSE 2007)

The basic idea is to support the development process and especially the data
and information flows through system models that depict not only aspects of
the entire product life cycle but also the perspectives of different stakeholders.
This is intended not only to support development processes but also to provoke
balanced system solutions (Eigner et al. 2012). For this purpose, as a basis a
unified modelling approach is used, which allows to map both, system models as
well as development activities. MBSE thus should be understood as methodology;
that means a summary of processes, methods and tools by which a defined
goal, here the integral development of complex technical systems, is announced
(Estefan 2007). The management of complex technical systems is supported by
the fact that not only different perspectives on a CPS can be distinguished but
also between function, structure, behaviour and performance. The possibility of
hierarchy formation facilitates impact analyses or traceability of design changes
(Fig. 2.20).

In order to deploy and support a methodology efficiently, three aspects must
ultimately be integrated (Delligatti 2013):

• Methods which describe the development of the technical system,
• Languages that define grammar as a set of rules for system description and that

are understood by all parties,
• Tools that translate the languages and that support in construction and interpreta-

tion of the models by providing a development environment and routines.

These aspects will be described briefly below.
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Methods within the meaning of MBSE describe action rules for consistent
configuration of system models. These methods are not only influenced by the
purpose of the model but also by the mind sets and ways of abstraction of those
who wish to use these models. Of course, the methods follow very much the logical
and systemic approaches for development and the structuring of complex technical
systems, as they are described in this chapter. Certainly, here play for example
domain- or industry-specific priorities in the concretization of the methods such as
for example domain-specific development and lifecycle models a role. Also specific
aspects of the system Engineering management process, such as risk management
issues or security issues, may affect the method in detail here. These methods reflect
quasi a type of a modelling philosophy.

For MBSE, in the literature a number of methods can be identified. In the context
of Systems Engineering as an integrated approach to development by CPS, one
should particularly mention:

• OOSEM (Object-oriented Systems Engineering Method), which was designed as
a top-down approach by the INCOSE, based on a functional analysis (Friedenthal
2014).

• SYSMOD method, a standard top-down approach developed by Tim Weilkiens,
which is based on UML methods and expand them in the sense of systemic
product development (Weilkins 2008).

Besides that, a number of other methods, such as IBM Telelogic Harmony
SE, IBM Rational Unified Process for Systems Engineering (RUP-SE), JPL State
Analysis (SA), Dori Object Process Methodology (OPM) exist. A detailed summary
and explanation of these methods can be found in (Estefan 2007).

Modelling languages define the grammar, thus the nature of the elements and
their connections by means of which a model must be built to represent defined
contents intelligible. The language that is spoken, directly influences the way
how the technical system is seen. The dilemma of the description language for
interdisciplinary technical systems has long been known (for example, Panreck
2002). Domain-specific languages are generally not suitable to transmit content
beyond the domain boundaries or to integrate domain-external matters into the
model. Again and again, attempts have been made to develop general description
languages, which on the one hand reflect the system holistically and are intelligible
to another. This dilemma can also be seen for languages for MBSE. Exemplarily,
reference is made to work, which indeed succeed in depicting geometry elements by
using SysML (Eigner et al. 2014), but these are not readily to interpret as intuitive
as a CAD model. They therefore require to “oneself empathize” into the language,
to understand these.

For MBSE primary graphic-oriented languages are used, which not only define
the element types which may be used in the model but also the relationships that
are allowed between the element types. This is complemented by a notification
which allows the display of elements and relations in diagrams. In the past, each
of the developed method has often developed their own language, what leads to
a corresponding diversity. In this context, System Modeling Language (SysML),
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Unified Modeling Language (UML) and Integration Definition for Functional
Modeling (IDEFx) are particularly mentioned.

All graphic languages have in common that charts are available for both,
the structural view and the behavioural representation by which in the systemic
sense both, structural and behavioural models are constructed and interrelated. The
specific designations or aspects of hierarchy and points of view can, however, vary.

The tools for MBSE implement ultimately the language and modelling methods.
They support the engineer by the availability of a graphical interface, through
routines and libraries for creating and linking models and the automation to update
them. Commercial importance have Cameo System Modeling/MagicDraw (vendor:
NoMagic), Enterprise Architect (vendor: Sparx Systems), Raphsody (vendor: IBM),
Artisan Studio (vendor: Atego) or UModel (vendor: Altova).

The benefits of using MBSE-approaches for interdisciplinary development are
obvious. By provision of clear and accurate models can also interdisciplinary
aspects be summarized in a model approach. The emerging information models are
undoubtedly suitable to reflect and to summarize different perspectives on the CPS
in different hierarchical levels. This also results in the ability to detect dependencies
from both, a procedural, product-oriented as well as an organizational point of view
and to derive interfaces more precise.

Because of these advantages is seen in both, academic as well as industrial
environment, a considerable potential for development support by means of MBSE.
Nevertheless, MBSE approaches are not yet established very wide. Challenges arise
not only for the utilisation of the resulting information models and their integration
into the data and information flows respectively the IT infra-structure but also in the
creation of these models.

The models which are created on the basis of MBSE are not directly available for
simulations. Although today parameter-based models which then e.g. are carried out
by Matlab/Simulink (Sop Njindam 2015) can be derived from certain types of charts
(block diagrams) commercial data interfaces are currently not yet provided for
this. Now, there are some interesting approaches to integrate the MBSE-approaches
into the IT structures of companies, for example, the coupling of requirements
management with MBSE-approaches (e.g. Eigner et al. 2015a, b) with the objective
of repeat and further use of the data and information.

For a successful integration of MBSE models into the data and information flows,
and thus also in the IT structures of a company it is necessary that these reflect
the product and process structures. This in turn presupposes that the development
methods must be refined to such extent that typical development challenges and
circumstances are addressed. The methods mentioned are, similarly as shown for
the process models in this chapter, still relatively generic. For an effective use it
is necessary to substantiate them and to adapt based on the specific development
conditions. This not only requires an intensive analysis of the structures of the CPS
but also of the development processes, which are reflected in the MBSE modelling
methods and the models themselves.

In this context, also the question of the modelling depth for the technical systems
which should be imaged is posed. In the literature currently the trend, to use MBSE
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approaches down to very low levels of detail, can be observed (e.g. Eigner et al.
2015a). However, the modelling depth depends not least on the model’s purpose,
especially if one is considering that the derivation of executable models out of
MBSE models is associated with considerable effort. In addition, in each domain
very powerful modelling and simulation tools are available, which on the one hand
can depict the subject-specific contexts very well and in detail, and on the other, can
be easily understood and interpreted by experts.

The strengths of MBSE lie in the possibility of an overall system view and the
associated possibility to recognize interrelationships and interdependencies in the
CPS and provide them for development processes. This aspect should therefore
define the modelling depth for MBSE models.
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Chapter 3
Cyber-Physical Product-Service Systems

Stefan Wiesner and Klaus-Dieter Thoben

Abstract Cyber-Physical Production Systems (CPPS) foster new processes and
production methods for reducing “time to market”, waste and failures, as well as
improving quality and cost effectiveness. However, changes cannot be restricted to
the technological side. An increasing share of services is offered with these systems
in order to deliver new customized functions and other benefits. This trend has led
to the introduction of Product Service Systems (PSS) as a promising framework
describing the integrated development, realization and offering of specific product-
service bundles as a solution. The integration of both CPPS and PSS concepts is
becoming relevant for industry, because data monitoring, storage and processing
allow creating a higher service layer able to deliver production systems with new
“intelligent” behaviors and communicating capabilities. In this chapter, we use
the term Cyber-physical Product-Service Systems (CPSS) for such an integrated
approach. It gives a definition of CPS-based PSS and unveils the state-of-the-art
for both concepts with major research issues for their integration. The evolution
from products to solutions through servitization is shown, as well as the hardware,
software, and service elements of CPSS, requiring an alignment of CPPS and
service lifecycle models. Based on industrial use cases, this chapter also deals
with challenges for engineering CPS-based PSS in terms of complexity, end user
involvement with information exchange among stakeholders and linking views of
multiple disciplines (mechanical engineering, information systems, service science
etc.). This leads to implications for engineering processes, particularly cross-domain
Requirements Engineering and design but also servitized Business Models enabled
by CPS.
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3.1 Introduction

Industrial companies are more and more facing complex customer needs, forcing
them to analyze the underlying problem and create individually tailored solutions.
In order to remain competitive on the market, such solutions still have to be based
on economy of scale principles (Reichwald et al. 2009), often involving globally
distributed partners (D’Aveni et al. 2010). In this way, the value chain is becoming
an ecosystem of several partners with different competencies and able to share
different knowledge, acting and interacting in a dynamic environment (Hintsa and
Uronen 2012).

Furthermore, rapid technological developments have created possibilities for
innovative production systems, enabling new processes and methods reducing “time
to market” (Chang et al. 2013; Lee et al. 2010), waste and failures. Quality and
cost effectiveness is improved with solutions meeting the customers’ expectations
(Kossiakoff 2011). For example, Follett (2014) enlists as significant emerging
technologies a networked, intelligent world connected by Internet of Things (IoT),
involving robotics, the usage of additive fabrication and 3D printing, and promoting
the just-in-time production. The relevance of these technological advances has
been recognized by being implemented in several governmental programs like the
German “Industrie 4.0” paradigm (Kagermann et al. 2013) and the United States
Smart Manufacturing Leadership Coalition (SMLC 2011). Among other application
scenarios, these initiatives strongly advocate the implementation of cyber-physical
technology in manufacturing, creating Cyber-Physical Production Systems (CPPS)
(VDI/VDE 2014).

However, changes in production cannot be restricted to the technological side
alone. As manufacturers increasingly demand support for all phases of the produc-
tion system lifecycle, from development over assembly and distribution to operation
and decommission, a wide range of services is provided in addition in order
to deliver new customized functions and other benefits. Accordingly, production
system provider’s Business Models are also shifting from selling a system to the
provision of integrated manufacturing solutions. This trend has originally been
named as the “Servitization” of business (Vandermerwe and Rada 1988) and led
to the introduction of Product Service Systems (PSS) as a promising framework
describing the integrated development, realization and offering of specific product-
service bundles as a solution for the customer (Goedkoop 1999; Baines et al. 2007).
Offering of a PSS requires on the one hand additional competencies for the provision
of the associated services and on the other hand a better understanding of the
customer requirements. As the requirements now have implications on the whole
production system life-cycle, an integrated development of the system, services,
and the manufacturing processes is needed.
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The integration of production systems and PSS concepts is becoming relevant
for industry due to the diffusion of pervasive Information and Communication
Technologies (ICT), which have strongly reduced the cost for additional sensors and
cloud technologies, enabling data monitoring, storage and processing (Klocke et al.
2011). This allows creating a higher service layer able to deliver production systems
with new “intelligent” behaviors and communicating capabilities (i.e. monitoring
the manufacturing environment, interacting with the operator and other connected
devices, being adaptable to the user and customer needs) (Yang et al. 2009). These
developments represent new challenges for industrial companies in the design
process, creating individual CPPS solutions for the customer, but also offering these
solutions as a PSS with the appropriate services along the lifecycle. In this chapter,
we use the term Cyber-physical Product-Service Systems (CPSS) (Gorldt et al.
2016) for such an integrated approach.

In an exemplary CPSS scenario, a customer could order a pre-defined machining
capacity for his factory. He would work together with the CPSS provider to develop
such a service specific according to his needs, including the suppliers of hard-
and software components for the CPSS. External service providers could develop
new machining configurations specifically for the CPSS and deliver spare parts and
refurbished components according to customer requirements. The CPSS machining
solution would automatically integrate into the manufacturing environment and
process, while being monitored and maintained by the provider. In such a business
model, the customer could either pay a fixed price for the machining capacity, a
time-based rate for its availability or a fee for the actual usage of the machining and
additional services.

The main prerequisite for successful and cost-effective development of CPSS
offers is understanding their elements, life-cycle and the specific characteristics of
the engineering process. A major challenge in this process is the integration of the
product, service and ICT perspective, each having own models, methods and tools.
Process complexity is further increased by the higher number of stakeholders, the
coverage of the whole lifecycle (Blanchard 2004), and the dynamic of functionalities
expected by the customers, leading to evolutionary changes during engineering.
In this context, it is essential to identify and investigate the integrated phases of
the CPSS engineering process. This begins with the ideation of product-service
solutions with cyber-physical elements, continues with cross-domain Requirements
Engineering (RE) and solution design, leading to the servitized Business Models
(BM) through which they are provided to the customer.

In the further course of this chapter, first the research methodology used to
investigate the above issues and the research objectives are described. The elements
and lifecycle of Cyber-physical Product-Service Systems are derived from the
established definitions of CPS and PSS. Based on this, the challenges for the engi-
neering process are derived. Implications for ideation, Requirements Engineering
and Business Model development are discussed, illustrated by an industrial use case.
Finally, the results are summarized and the chapter is concluded.
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3.2 Research Methodology and Objectives

For the combination of CPPS with PSS Business Models, it is important to establish
the main characteristics of the resulting CPSS and their specific engineering
challenges. This relates to a number of the fundamental research questions raised
in Chap. 1:

RQ C2: How shall several disciplines in product and production system engi-
neering be linked to support the engineering of flexible and self-adaptable CPPS?
This leads to our first research question for this chapter, concerning the necessary
link between production system engineering and service engineering to create self-
adaptable CPPS that can be flexibly offered under a PSS concept, to be addressed in
Sect. 3.3:

1. What is the potential of linking CPPS with the service perspective; i.e. what does
it mean to apply a CPPS as the basis for a PSS offer?

RQ M2 (b): How can model-based methodologies for the application of CPPS
by service providers or agents support information creation and processing in the
different lifecycle phases of a CPPS? This serves as starting point for our second
research question for this chapter, dealing with the interaction points of service
lifecycle and CPPS lifecycle phases, to be addressed in Sect. 3.4:

2. What are the elements and phases of CPPS and PSS lifecycles and how can their
interaction be supported by a methodology towards a CPSS model?

RQ I2: Which methods and technologies support assuring the required infor-
mation quality for exchange of engineering project data and multi-disciplinary
knowledge integration? This is the basis for the third research question for this
chapter, which deals with the necessary support for exchanging requirements and
business knowledge among the involved disciplines, to be addressed in Sect. 3.5:

3. Which are the specific challenges and support needs for the information exchange
in the engineering process resulting from integrated CPSS, particularly for
Requirements Engineering and Business Model development?

In order to address these points, our methodological approach is based on an
exploratory approach, combining a literature review and analysis of industrial use
cases. The literature review has been conducted by analyzing scientific papers
from multiple disciplines (systems engineering, information technology, business
research), as CPS and PSS are a cross-domain research topic. For practical reasons,
the search was limited to books, journal and conference papers in English and
German language. As several expressions are used in literature to describe the
concepts, we searched for literature on CPS, PSS, servitization, RE and BM. The
search results were checked for relevance and redundancy by assessing the abstracts.
Based on this, papers were selected for in-depth analysis of the content. Regarding
the first research question, the analysis concentrated on the existing fundamental
concepts for CPS, PSS, and first attempts for servitization of production systems.

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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For the second research question, the focus was shifted towards product and
service lifecycle management approaches and integration attempts. Concerning the
third research question, existing RE and BM approaches were analysed for their
applicability on CPSS and open issues were extracted.

The work with the industrial use cases for CPSS had a different methodical
approach. In order to compare the results of the literature review with real attempts
to engineer CPSS, the authors were able to work together with companies devel-
oping such a solution in the frame of different research projects (PSYMBIOSYS
2014; Wiesner et al. 2014a). The researchers have been involved in the specification
and development of the CPSS scenarios applying action research (Sein et al. 2011).
With regards to the research question it could be studied, (1) how the responsible
parties for production system and service engineering collaborated and where
the weak points were, (2) how product and service lifecycles were managed and
which methodologies were used, and (3) how information exchange in RE and BM
development was supported and what were the drawbacks.

Evaluation of research results has been conducted in an iterative way. Initially,
it was verified if the challenges for CPSS engineering faced by the industrial use
cases are aligned with the challenges described in literature. Next, approaches found
in literature to overcome the identified challenges were applied in the use cases
and assessed for their usefulness. The outcomes were again validated during the
literature review, leading to a consolidated result.

3.3 Elements and Definition of Cyber-Physical
Product-Service Systems

This section identifies the specific characteristics of Cyber-Physical Systems and
Product Service Systems and integrates them to the concept of Cyber-physical
Product-Service Systems.

3.3.1 Cyber-Physical Systems

CPS integrate physical capabilities with Information and Communication Tech-
nology (ICT) and offer new ways of human–machine interaction using advanced
sensors and actuators (see Fig. 3.1). They require the collaboration of different
disciplines such as mechanical engineering, electrical engineering, and computer
science for their realization. Additionally, for reaching the full potential of CPS,
the system will also comprise the logistics and management processes, as well
as internet services receiving, processing and analyzing data from the sensors
and controlling the actuators, connected by digital networks and multi-modal
human–machine interfaces. As such, CPS are open socio-technical systems with
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Fig. 3.1 Cyber-Physical
System
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a functionality far exceeding controlled embedded systems (Geisberger and Broy
2012).

Several characteristics can be identified that describe CPS and distinguish them
from other complex systems. The eponymous aspect of CPS is merging the physical
and virtual world. CPS involve a multitude of parallel and interlinked sensors,
computers, and machines, which collect and interpret data to decide on this basis
and control real world physical processes. Thus, systems engineering needs to
integrate processes and physical elements with information technology (Rajkumar
et al. 2010). Secondly, CPS have dynamic system borders. Depending on application
and task, different CPS are arranged into a system of systems for a limited time.
Consequently, CPS have to be able to actively configure services and networks with
other systems or part of systems, which may be unknown in the beginning, and
provide new and composite components and services in a controlled way (Colombo
et al. 2013). Furthermore, an important characteristic of CPS is their ability to adapt
to environmental changes and application requirements. This requires continuous
monitoring and assessment of environmental and application data (Wan and Alagar
2014). Additionally, in most cases, there will be no central control of a CPS.
Decisions are made locally based on an assessment of the situation and lead to
a cooperative learning process (Zhou et al. 2013). Finally, CPS have to interact
with humans also on a physical level, which requires multi-modal control interfaces,
recognition, and interpretation of human behavior and interactive decision making
between the system and single persons or groups (Schirner et al. 2013).

3.3.2 Product-Service Systems

For a long time, manufacturers have considered the monetary profit from selling
products as their main revenue stream. Services, if any, have been provided free
(e.g. usage advice) or for a one-time fee (e.g. maintenance) and were strictly
product focused. However, within the last decades product users increasingly
demand holistic solutions for their individual problems, and their buying decision
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Fig. 3.2 Servitization of products—the Extended Product concept

is driven the expected benefits from using the solution rather than sales price
only (Vandermerwe and Rada 1988). As an immediate consequence, especially the
industry for complex products has started to deliver product-service bundles (see
Fig. 3.2).

The Servitization process is a fundamental mean for manufacturing companies
to find new business opportunities and involve new customer segments, increasing
their market share (Wiesner et al. 2014a; Spohrer and Maglio 2010). Figure 3.2
illustrates this phenomenon from a customer perspective on the solution offered.
In case (a), the physical product comprises just a tangible offer and its shell (e.g.
a production system plus accessories) to be bought by the customer. Case (b)
describes a scenario, where the functionality of the tangible product is supported
by a service layer (maintenance, spare part delivery etc.). In this case, the role
of the tangible product is still dominating. Services ensuring functionality can be
ordered in addition to the original product. In case (c), the availability of the product
for its purpose is guaranteed by the provider. While the tangible product might
still be sold separately, there has to be some kind of service level agreement (e.g.
defining the availability ratio of the production system). Of course, this requires pre-
active maintenance or other measures to minimize product failure, which could be
supported by the monitoring and communication capabilities of a CPS. Finally, case
(d) is sharply decoupling the tangible product from the results of its application. The
customer purchases services that are bundled for the solution of his specific problem
(e.g. a specific manufacturing capacity). The tangible product, if still required, will
not be sold but just used to provide the services. Payment models may include pay-
per-use, pay-for-performance etc. This as well relies on the ability of the solution
provider to monitor usage and dynamically reconfigure the product, both of which
could be supported by CPS.

The PSS concept focuses on the bundling of products and services as a mix
of tangible and intangible elements designed and combined to increase the value
for customers (Goedkoop 1999; Meier et al. 2010). From the economic viewpoint,
PSSs are able to create new market potentials and higher profit margins, and can
contribute to higher productivity by means of reducing investment costs along the
lifetime as well as reducing operating costs for the final users (Baines et al. 2007).
Furthermore, PSS can increase resource productivity and closed-loop manufacturing
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(McAloone et al. 2010), thanks to the service functionalities delivered. Value
creations is realized through the extension of the current business network, involving
different stakeholders having the knowledge and skills required to design, develop
and deliver an integrated PSS value proposition.

Despite several methodologies having been proposed in literature to support
industrial companies to design a PSS along its entire lifecycle, some of them are
very theoretical and hard to implement in practice, others are very specific and
have a limited applicability range (Garetti et al. 2012). Currently, integrating several
existing methodologies to design a new PSS solution is being studied (Marilungo
et al. 2015).

3.3.3 Cyber-Physical Product-Service Systems

In order to provide a holistic solution over the full system lifecycle to a customer,
both the technological as well as the economic perspective have to be considered
in a very early phase. The combination of CPPS functionalities with PSS business
models has the potential to enable new and innovative production system offers.
Picking up the example from Sect. 3.1, a manufacturer might require machining
a small number of individual parts on an expensive special machine tool. Due to
the high investment required, the manufacturer will not buy such a tool for his
production system. At the same time, a production order at a third party might
not make sense due to the small lot size or delivery time. CPS technology could
now enable to share such a special machine tool among different manufacturers,
dynamically integrating itself into the different production systems. Payment for
such a shared resource would be based on a PSS model [see Fig. 3.2, case (d)], where
the manufacturer would pay for the machining results, based on usage monitoring by
the CPPS. Such an integration of product and service through CPS is our definition
of a Cyber-physical Product-Service System (CPSS) (Gorldt et al. 2016).

In principle, the relation between the CPS and the PSS concept in a CPSS can
be seen as interdependent, or symbiotic. When looking from a CPS perspective,
the physical and ICT domains are complemented with service engineering for the
development of the solution. This increases the number of stakeholders and adds
additional domain-specific models, methods and tools to the development process.
From the PSS perspective, the new cyber-physical functionalities are enablers of
additional innovative services and Business Models (Hehenberger et al. 2016). As
such, the extended technical opportunities have to be taken into account when
ideating new services that enhance customer benefit. Furthermore, the possibility
to measure usage and performance of the CPPS supports Business Models beyond
a one-time sale, guaranteeing availability of the system or pay-per-use models.
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Fig. 3.3 The CPSS concept

The above considerations can be summarized to a first illustration of the CPSS
concept. The core is an intelligent product, similar to the processor hardware of the
CPS. Here, it is however not reduced to its computational capabilities, but comprises
all the tangible aspects of the offer, such as design and haptics. Similarly, it is
connected to sensors, actuators and communicators, which enable its interaction
with its environment (see Fig. 3.3).

In the CPSS concept, the core components are used to offer “basic services” such
as monitoring, control and data processing. This internal structure is obscured to the
outside world by a halo of high-level and non-ICT services. In the halo, the basic
services are aggregated with the non-ICT services to fulfill certain functionalities
and tasks. These high level services are not hard-wired into the CPSS and can
change dynamically to new demands. Through this service halo, the CPSS is able
to collaborate with different entities to achieve its intended aim. Those entities can
be other CPSS, CPS just providing basic services, or even third party services not
directly developed for the system.

In the case of the special machine tool CPSS, the high level service for the
customer would be the offered possibility to machine a varying amount of parts
in a specific way. This can include non-ICT services, like transport of the parts,
which is provided by a logistic service provider. Another element could be a third
party service that optimizes part design for machining. Through communication
with other CPS, e.g. in the production systems of the customers, the CPSS
could automatically schedule orders according to various criteria. Finally, wear of
components could be early detected through monitoring and trigger on-time spare
part replacement by component suppliers. Customers can pay for access to these
services and use them for their benefit. They can also work together with the CPSS
provider to re-develop services specific to their needs. The same is true for suppliers
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of hard- and software. Finally, external service providers develop new services
specifically for the CPSS, or use standardized interfaces to connect existing services.

3.4 Challenges for Integrating CPPS and PSS LifeCycles

Servitized Business Models extend the responsibility of the PSS provider to the
whole life-cycle of the solution (Aurich et al. 2010). Moreover, Product Lifecycle
Management (PLM) and Service Life-cycle Management (SLM) must be aligned
to be able to create an integrated product-service offer for the customer. For CPPS
offered as PSS, this means to understand the interaction between the elements of the
production system lifecycle and the service lifecycle.

3.4.1 Product LifeCycle Management

PLM covers the whole lifecycle of a product from the first idea and concept to
recycling and disposal. There are many different lifecycle models found in literature.
However, the majority is based on three main lifecycle phases, Beginning of Life
(BoL), Middle of Life (MoL), and End of Life (EoL) (Stark 2011), as shown in
Fig. 3.4.

A similar three-phased structure is used in Chap. 4 of this book for a life-cycle
oriented information integration approach for CPPS. However, for such complex
products BoL, MoL and Eol are not connected by a linear information flow, but the
three phases are arranged orthogonally. Pieces of information from every phase can
be linked to information in any other phase, creating a network of microservices
between the involved software tools. Thus, it addresses mainly ICT services and
would have to be extended to support PSS offers. PLM concepts need to support
multi-disciplinary development of products hardware and software, as well as
methods and system functionalities for cross-domain engineering collaboration.

Imagine Define Realise Use Support Retire Dispose

Product BoL Product MoL Product EoL

Fig. 3.4 Phases of Product Lifecycle Management, according to (Stark 2011)

http://dx.doi.org/10.1007/978-3-319-56345-9_4
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Fig. 3.5 Process model of Service Lifecycle Management (Freitag et al. 2013)

3.4.2 Service LifeCycle Management

SLM is a part of Service Science, Management and Engineering (SSME), which is
a young field of research that addresses the open questions and challenges coming
from the servitization process (Spohrer and Maglio 2010). Nevertheless there are
already some SLM approaches, for instances from Freitag et al. (2013). In this
case, the three main phases of the Service Lifecycle are service creation, service
engineering and service operations management, which are further divided into
several elements (see Fig. 3.5).

Service creation is the phase at the beginning of the Service Lifecycle Manage-
ment. It mainly consists of two pillars: provision of conditions and ideation. The
influences providing opportunities may be changing customer needs, new emerging
technologies, transformations of the company environment, and other causes or
drivers of change. For service ideation, they serve as triggers or stimuli. When a
selection of service ideas is handed over to the first phase of service engineering, it
comes to a structured evaluation of the service ideas based on market and technical
requirements.

The service development process is a waterfall model for the development
of new services (Spohrer and Maglio 2010). In this framework, the engineering
phase consists of four elements: service requirements, service design, service
implementation and service testing. In the requirements analysis the internal and
external requirements are collected. The second element of the service development
process is called service design, in which the new service is defined and described.
In the third step, the implementation of the service also includes the operative
realization of the described services concepts. Furthermore, the involved employees
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need to be trained as planned. The service should be tested by customers, by using
a simulation tool, or at least by a checklist.

The first task in service operations is to acquire customers, respectively service
projects. After the acquisitions, the service needs to be delivered to the customers.
This happens within “service delivery”. The support activities for service operations
are also important, here for instances to evolve the service portfolio and to control
the service operations.

3.4.3 Integration of PLM and SLM

Based on the targeted integrated design of PSS, PLM and SLM must also be
integrated to provide the required interactions between product and service on
an operational level. This is currently a focus of research (Garetti et al. 2012;
Peruzzini et al. 2014). Meier and Uhlmann (2012) derive a PSS lifecycle directly
from a product and service lifecycle. Relevant phases are planning, development,
implementation, operation and dissolution, as shown in Fig. 3.6.

During the planning phase, customer needs and goals are determined for
initiating the overall ideation process. Ideas for PSS solutions are identified, selected
and specified to meet the customer needs. The resulting drafts are used for PSS
development. In addition, first aspects of the Business Model are discussed.

The second phase is the development of the PSS. Stakeholder requirements are
elicited and conceptual solutions are generated with adequate functionalities. The
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Fig. 3.6 PSS lifecycle according to (Meier and Uhlmann 2012)
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product, service and ICT components are then configured and the responsibilities
and resources between customers and suppliers are distributed in accordance with
the concept. The result of the development phase represents a system model.

The implementation phase represents the third phase of the lifecycle. The tan-
gible components are produced and integrated with ICT. In addition, the logistical
processes for the delivery of products and services are designed. For future service
provision, resource planning is carried out. Finally, the phase is completed with the
commissioning of the PSS.

In the operating phase, the use of the PSS is in the foreground. Here service
shares of the PSS are provided and dynamic adjustments to the PSS can occur.
Therefore, knowledge from this phase is also relevant for PSS design. The aim is
that a continuous improvement process can be ensured. A key component of the
phase is maintenance. The last lifecycle phase represents the dissolution, in which
the contractual relationship between client and provider is terminated. Tangible
components of the PSS can be recycled or remanufactured accordingly.

However, there are some aspects of the model that can be criticized, especially in
relation to CPSS. On the one hand, it is still depicting the lifecycles in a linear
fashion, not showing the complex information exchange between the lifecycle
phases. On the other hand, it aligns one product lifecycle with one service lifecycle,
instead of recognizing the possibility of several service lifecycles being attached
to different product lifecycle phases. The resulting engineering challenges are
discussed in the next section.

3.4.4 Engineering Challenges

CPSS require the integration of a large number of different cyber, physical and
service components. Stakeholders are typically separated spatially and organiza-
tionally and stem from multiple disciplines with own formalisms and tools. Various
Authors (Baheti and Gill 2011; Baines et al. 2007) emphasize the need for theories
and tools to design, analyze and verify the components at various levels, understand
the interactions between systems and ensure safety and performance with minimal
cost. Several challenges for engineering CPSS are identified below, which have to
be addressed by suitable approaches for specific problem areas.

Products and services require different competencies, methods and tools to
efficiently manage and perform the activities during their lifecycle. Usually pro-
duction system providers have well-defined product development processes, but
they lack sufficiently in structured service development processes. However, both
manufacturing as well as service provision must be brought together and delivered
in an appropriate way to offer an attractive product-service bundle to the customer
(Spath and Demuß 2006). The basic assumption of many PLM approaches is that
services and their lifecycles are aligned to the product. However, in many cases there
is a strong need to have bi-directional coordination and interaction between PLM
and SLM in a systematic way. Despite several methodologies have been proposed in
literature to support industrial companies to integratively design a PSS (Garetti et al.
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2012), some of them are very theoretical and hard to implement in practice, others
are very specific and have a limited applicability range. Appropriate approaches
and tools for supporting the development of PSS in an efficient way are missing
(Marilungo et al. 2015). Production system providers could use the ICT capabilities
of CPS to combine Product Lifecycle Management (PLM) with Service Lifecycle
Management (SLM).

Many times, design weaknesses are only identified in manufacturing or operation
of production systems. Information exchange between these phases has to be
established to improve design iteratively. For CPSS, an approach is necessary that
also includes feedback from the services during the lifecycle of the product, starting
from engineering and ending at disposal. The current practice of a product-service
development is still linear and hierarchical, meaning that the product is developed
and manufactured before the services, hence being incapable of incorporating
service requirements and constraints from all the stakeholders involved. CPSS
providers must be able to identify ubiquitously the requirements and constraints
arising from the services related to the product during the engineering phase, today
still an ongoing challenge (Annamalai Vasantha et al. 2012). A collaborative envi-
ronment for CPSS design, enabling communication with manufacturing, but also
integrating knowledge form cross-disciplinary feedback loops, including customers
is required. For CPPS, this means joint exploitation of (cyber-physical) data along
the entire product-service lifecycle (not only from production system operation) to
optimize the CPSS offering.

Current production systems are complex distributed systems that connect and
coordinate intelligent machineries, sensors, actuators, control systems and manu-
facturing and business applications (Vyatkin 2013). Because of the still common
application of sequential development approaches, many different views on the
same system are generated along the lifecycle. How can these views, especially
for the “real” production system and its “digital” representation, be reliably
consolidated along the whole lifecycle? Multi-directional interoperability of the
digital images of the same CPPS along every single phase of the lifecycle would
benefit the pinpoint development of integrated services.

The design of CPSS requires knowledge that is usually scattered among different
persons, departments or even organizations. Manufacturers are working closely with
service providers, suppliers and customers to optimize designs of new product-
service bundles before they are realized (Romero et al. 2012). To this end, both
knowledge from the product side as well as the service side must be shared in an
appropriate way, combined and utilized, in order to create an attractive CPSS for the
customer. However, only about 4% of organizational knowledge is formalized (Bell
2006). Informal and unstructured knowledge, consisting of individual posts and
discussions, ideas, comments and other interactions is difficult to codify and share,
as it requires individual interaction to transfer. For production systems, knowledge
sharing is mainly focused on re-using service knowledge to improve the product
or services. The synthesis of knowledge across different domains of application,
including methods of requirements analysis and modelling is needed (Broy et al.
2012).
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Table 3.1 Problem areas and engineering challenges for CPSS

Problem area Challenges

Integration of tangible and intangible
components

• Alignment of product and service development
• Structuring the service engineering process
• Integration of PLM and SLM

Horizontal and vertical information
sharing

• Exchange of key information between lifecycle
phases
• Cross-disciplinary feedback loops

Virtual representation of CPSS • Creating different views on the same CPSS
• Alignment of digital representations along the
CPSS life-cycle

Knowledge management • Management of explicit product-service
knowledge
• Capturing tacit product-service knowledge and
stakeholder sentiment

Business Model innovation • Development and classification of servitized
Business Models
• Assessment and mediation of effects on current
Business Model

From the economic viewpoint, PSS are able to create new market potentials
and higher profit margins, and can contribute to higher productivity by means
of reducing investment costs along the lifetime as well as reducing operating
costs for the final users (Baines et al. 2007). However, the transition to PSS
might have an impact on existing Business Models. Generally, the PSS could be
competitive, complementary or neutral to the existing business. These effects can
occur externally on the market, e.g. if the PSS and the existing products compete for
the same customer budgets (“cannibalization” effects), or internally if they apply the
same resources, a situation that could produce conflicts or synergies. For production
systems, services are fundamentally aligned to the physical product that is usually
part of the existing business, so they should not be conflicting but supportive.
However, if CPPS are used to enable use-oriented or even result-oriented solutions
where the production system is no longer sold, this could lead to a decrease of sales
in the existing business.

Table 3.1 above summarizes the engineering challenges for CPSS and classifies
them into five problem areas:

3.5 Implications for the Engineering Process

This section describes the implications for the engineering process coming from
the specific characteristics of CPSS. Two approaches are presented, which are
addressing some of the challenges identified in Sect. 3.4. Cross-domain Require-
ments Engineering and design aims to capture the needs on tangible and intangible
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components and integrate them into a holistic CPSS design. Servitized Business
Models enabled by CPS tries to classify CPSS innovation and its impact on the
current Business Model.

3.5.1 Cross-Domain Requirements Engineering and Design

According to the challenges identified in the previous section, it is necessary to align
the development of the tangible and intangible components of a CPSS. One of the
earliest activities in both the product and the service lifecycle is establishing the
requirements of the stakeholders towards the targeted system. A weak definition of
requirements can slow down CPSS development and induce unnecessary costs for
design changes (Boehm and Basili 2001). If incorrect requirements are identified,
an unsuitable system architecture and implementation can result and the system may
have missing or wrong functionalities.

Current approaches for Requirements Engineering do not provide full support for
integrated CPSS development. The RE methodologies of the product, service and
software disciplines focus on their respective domain. E.g., elicitation procedures in
the product domain focus on technical requirements and methods such as checklist
are not well suited for service requirements. Service engineering methodologies
are not detailed enough to be used as the basis for CPSS development. Within
software engineering methodologies, the representation of service requirements is
not possible with the provided procedures and modeling techniques. First integrated
approaches for PSS state the necessity of cross-domain knowledge, interfaces
and interdisciplinary requirements (Berkovich et al. 2011). However, they are too
vague and do not provide the procedures necessary in order to realize a PSS. The
procedures are not explained in detail or similarly to service engineering, procedures
of other domains are referenced (Annamalai Vasantha et al. 2012). In the following,
suitable approaches to support the various RE activities for CPSS are presented.

In contrast to the design of complex, distributed systems such as CPPS, the addi-
tional inclusion of the service and business perspective lead to further clarification
needs. The customer, production system manufacturer and service provider have
different perceptions of requirements terminology and wording. In addition, for
such complex systems the customer might not have a clear idea on how the product-
service solution will look like (Gausepohl 2008). An approach to reduce the risk of
capturing false requirements for the CPSS, the storytelling method can be applied
for requirements elicitation (Vink 2015). It allows the participants to develop a use
case story commonly (group storytelling), including the required services, and thus
discuss the different perspectives as it is carried out. A narrative story telling helps
to put the requirement in a specific context clarifying to the reader how they are to
be understood.

In order to analyze the stories and extract an unambiguous, consistent and
complete set of requirements for a CPSS, different modeling techniques can be
applied. An older method that helps not only in identifying the human stakeholders,
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but also system restrictions and other mechanisms (including machinery, software
etc.) is IDEF0. The storytelling can be combined with the IDEF0 generation in
a workshop setting, in which the requirements engineer could establish AS-IS and
TO-BE scenarios. In parallel, the process modelling can be done and all stakeholders
and restrictions are captured.

To create a requirements specification that provides the developers with a com-
plete description of the functionality of the CPSS, information on the connections
between the components has to be recorded to serve as reference for requirements
dependencies later. A change of a requirement on a specific service can lead
to a number of changes in hard- and software of the system. Documentation
has to establish the link from the single requirement towards the whole CPSS
project, including information on the degree and moment of fulfilment. Methods
for documentation of business requirements can be Business Process Model and
Notation (BPMN) or data flow diagrams, showing the difference between AS-IS
and TO-BE business processes. Describing the targeted CPSS behavior in terms of
conditions or capabilities of the envisaged solution can be done through developing
system models describing functionality and then documenting system requirements
that capture the vision of the customer in technical terms. These models can be
documented in SysML, among other modelling languages. First approaches of
automatic transformation between business and functional notation are documented
in literature (Wiesner et al. 2014a). Transformation between different domain
specific models can be supported using methods such as semantic mediation, which
enable conversion between model using ontologies (Hribernik et al. 2010). In this
way, domain barriers can be greatly reduced or fully removed.

The completeness and correctness of the determined requirements is checked
during requirements validation to ensure that the documented requirements accu-
rately express the stakeholder’s needs (Hull et al. 2005). Serious gaming can be used
as a method to validate the requirements (Ribeiro et al. 2014). Using a simulation
based game, mirroring the AS-IS and TO-BE scenarios of the use case, the player
can create different CPSS configurations and see the outcome. This provides a basis
for assessing the relevance and the importance of specific requirements and can be
used to validate the requirements in a playful way.

Requirements traceability enables both assessing the effect of changes of stake-
holder requirements to CPSS development as well as to check if every CPSS
component is linked to a specific stakeholder requirement. In order to understand
how product, service and business requirements and the CPSS design are connected
and transformed into each other, lower-level requirements have to be linked with
the higher-level requirements they originate from, so that each requirement can
be traced to its information source (Wynn et al. 2011). The progress of PSS
development can be monitored and the impact of changed requirement tested in
this way. In addition, for dynamic systems like CPSS, requirements may change
constantly. Changing environment or stakeholders induce changes all along the
life-cycle and impact the development process (Lim and Finkelstein 2011). To
ensure that such modified requirement are fed back into PSS development, a change
management process has to be established (Huang et al. 2011).
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Finally, it has to be evaluated if the CPSS complies with the requirements
specification or not. This confirmation that the PSS fully satisfies the documented
requirements is conducted in requirements qualification. Deviations from require-
ments can be detected e.g. by requirement reviews, design inspections, component
tests and trials, which has to start early in order to avoid late design changes and
rebuilds (Hull et al. 2005). This is done by first testing the individual components
functions, then the integrated CPSS and finally the fulfilment of stakeholder
requirements.

3.5.2 Servitized Business Models Enabled by CPS

A Business Model (BM) describes the rationale of how an organization creates,
delivers, and captures value (Osterwalder and Pigneur 2013). According to this
definition, BMs in the manufacturing industry have focused on the fabrication or
assembly of more or less customized products and have generated revenue from
their sales. With the introduction of CPPS, the provider has to support more and
more all phases of the production system lifecycle. In particular, this includes more
value added service propositions like training, system integration and consulting.
With CPSS, manufacturing becomes even no longer the differentiating process.

CPS technology can be utilized for service provision and to develop closer
relationships to the customer. A manufacturing enterprise that changes from the
fabrication of products to offering CPSS and transforms its supplier base into an
ecosystem of network partners will have to analyze and adapt the elements in all
building blocks to create a new and competitive BM. Another main challenge is
to align the new and unknown BM with the existing BM to avoid cannibalization.
Wiesner et al. (2014b) have developed an eight step approach to develop servitized
BMs (see Fig. 3.7).

During the first phase of the methodology, the current strategy and BM of
the company are analyzed in detail. The analysis of the strategy based on Porter
(2008) gives an indication if the company’s fundamental strategy is targeting cost
leadership, differentiation or selling niche products. A competitor’s analysis makes
potentials and market boundaries visible (Bergen and Peteraf 2002). If the company
is aware of its current strategy, it can be mapped out using the Strategy Canvas
as an analytical tool (Mauborgne and Kim 2005). It describes strategic factors that
are relevant for the competition within an industry. The current BM is analyzed in
the next step and is mapped out on the Business Model Canvas (Osterwalder and
Pigneur 2013) (see Fig. 3.8). If the manufacturer is not able to identify its own
strategy, it is necessary to analyze the current BM of the company first and then
extracting the strategic factors out of the BM and create a Strategy Canvas.

Phase two of the methodology starts with recognizing macro-economic factors
that can pose opportunities or threats for the BM of the manufacturer. Therefore,
a simplified STEEP-Analysis (Fleisher and Bensoussan 2015) is used to capture
future trends that are likely to affect the business. In order to elaborate how
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to maximize opportunities and minimize threats for a new BM, the Six Paths
Framework is applied. Using poster representations of the six paths, company
representatives discuss in a creative process how to change the business according to
the STEEP factors. Is a shift into another strategic group or even into an alternative
industry possible? Can a new group of buyers be created? What are complementary
product and service offerings? Are buyers targeted on a functional or emotional
level? Can external trends be shaped over time? To create a new Strategy Canvas,
the Four Actions Framework is used as tool to reconstruct strategic elements and to
develop a new value curve in the Strategy Canvas (Mauborgne and Kim 2005).

In phase three, a new strategy and BM are developed based on the superior
vision of servitization and collaboration. Out of the new Strategy Canvas, a new
Business Model Canvas is created. The new BM is now visualized and becomes
comprehensible. The creation of the new strategy and the BM is interrelated and
is understood as an iterative process. Finally, the impact of the new BM on the
company business is evaluated.

3.6 Industrial Use Case

The case company is a Spanish SME that manufactures and assembles high added-
value machine tools. It evolved from a small mechanic business that produced pieces
for other machine-tools manufacturers to offering production systems worldwide.
The high maintenance costs during guarantee period of the systems sold abroad
and the growing competition coming from low-cost manufacturing countries is
driving them to improve the average machine availability and reliability, reducing
the manufacturing costs of the machines, and offering new added-value services to
the clients.

The machines are very specific and sometimes they require complex maintenance
tasks, which must be performed by specialized workers trained and certified by the
company. This implies often the physical presence of the technicians on-site, even
if customers are thousands of kilometers away. Furthermore, apart from the planned
or usual maintenance operations, when machines have unexpected breakdowns
they request urgent attendance with the associated high maintenance costs. In this
context, the company realized the opportunity of rethinking the basic maintenance
service provided to its customers to a high added-value service. The aim of this
new business oriented service is not just to reduce maintenance costs, but also to
earn revenues from providing the service, improving at the same time machine
availability and reliability, which is a key point from the customer’s perspective.

The case company has applied both the Requirements Engineering and Business
Model development approach presented in Sect. 3.5 in order to implement the
targeted CPSS offer. In a first step, a story was created describing the intended
scenario. The company needs their machines to be smarter and more autonomous,
once deployed and set up at customer’s facilities they shall have no unexpected
breakdowns leading to production stops. It would need to be able to predict
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anomalies in the machine in order to react earlier than the problems really occur.
In case of a breakdown, they will be able to take the proper decision avoiding
unfortunate damages and undesired stops. Furthermore, the problem solution should
be provided fast and reliable without stopping the machine. It should use fewer
resources, both human and economic, by avoiding physical intervention of a
technician on-site.

Comparing the AS-IS with the desired TO-BE scenario, requirements for product
as well as service developments have be derived. On the one hand, an embedded
device is needed that will be physically connected via Ethernet to all the machines
of the company in the future. It shall be able to query data using different kind
of communication protocols used in the industry, such as different standards under
OPC umbrella, LSV-2 etc. The device also executes predefined rules to generate
and send corresponding alarms warning about possible breakdowns and failures,
including associated info helping in the traceability and identification of potential
causes. On the other hand, requirements for intelligent maintenance services have
been derived. The service functionality takes the information from the mentioned
device and links it with the whole maintenance operations lifecycle system. Once
the client confirms a malfunction, the company receives historical information with
the alarm message and forwards it to the maintenance service staff. After analyzing
it, they check the needed assets to fix the detected problem. Once the customer
confirms by email, the selected maintenance operation is performed. The customer
is able to provide feedback on the quality of the maintenance service provided,
which will be taken into account for future operations.

In order to offer the intended CPSS in a profitable Business Model, the BM
development approach was applied in a workshop, facilitating the different steps
of the approach. Every method was introduced to the participants and the results
were documented continuously. The current BM of the company is based on selling
customized machine tools to metal works in different industries. Table 3.2 shows a
summary of the results of the methodology application:

Communication problems with foreign customers and the development of smart
intelligent products have been identified as issues and trends during the workshop.

Table 3.2 Case study Business Model development

BM building block AS-IS BM PSS BM

Value proposition Custom machine tools Carefree production
Customer segments Metalwork Expansion to BRIC
Channels Direct and distributors Maintenance platform
Customer relationship Personal, co-creation Trust and confidentiality
Key resources Design skills Decision supp. system
Key activities Manufacturing and customization Coordination of maintenance partners
Key partners Suppliers and training Ecosystem of maintenance providers
Cost structure Manufacturing Maintenance platform
Revenue streams Sales Availability fees
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Thus, for the new Strategy Canvas, reaction time for maintenance requests was
created as new strategic factor. The new BM features a carefree production with
guaranteed machine availability, realized with an ecosystem of local maintenance
providers. Additional revenue is targeted by regular fees for the carefree production
service.

3.7 Summary and Conclusions

Production system engineering is evolving from a centralized development process
for individual systems and components towards the orchestration of distributed
software, hardware and business processes for a common purpose. The scale and
complexity of the objects targeted by systems engineering is constantly growing,
reflected by the emergence of CPPS and PSS offers. The integration of both
perspectives creates huge potentials in terms of functionality and revenue, but also
new challenges for engineering and Business Model innovation. In the following,
the answers to the initial research questions, but also strengths and limitations of the
work are presented.

3.7.1 Research Questions Answered

Regarding the first research question, the paper has presented the potential of
applying a CPPS as the basis for a PSS offer in Sect. 3.3. The new cyber-physical
functionalities are enablers of additional innovative services. Furthermore, the
possibility to measure usage and performance of the production system supports
Business Models beyond a one-time sale, guaranteeing availability of the system or
pay-per-use models.

Through answering the second research question in Sect. 3.4, the elements and
phases of both product and service lifecycles could be identified, as well as the
engineering challenges resulting from their interaction. The main problem areas
are the integration of tangible and intangible components, horizontal and vertical
information sharing, virtual representation of CPSS, Knowledge Management and
Business Model innovation.

The third research question has been answered in Sect. 3.5, showing implications
for the engineering of CPSS and existing approaches. For Requirements Engi-
neering and solution design, suitable methods and tools for various RE activities
are presented. Integration of the product, ICT and service perspective could be
achieved using the storytelling approach. The comparison of AS-IS and TO-BE
scenarios delivers meaningful requirements, which can be validated using gamified
approaches. For servitized Business Models enabled by CPS, an eight-step approach
was presented to create CPSS BMs. The approach features the Business Model
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Canvas as well as methods from the Blue Ocean Strategy. Both, the RE and the
BM approach have been evaluated in an industrial use case described in Sect. 3.6.

3.7.2 Strengths and Limitations

The strength of the presented work is clearly the conceptual integration of the
CPPS and PSS concepts, aligning the technological and the service perspective on a
production system. A first conceptual model of such a CPSS could be established, as
well as engineering challenges resulting from the integration of product and service
lifecycles. These challenges could further be classified into five problem areas. In
order to support CPSS engineering, approaches for two of these problem areas
(integration of tangible and intangible components, Business Model innovation)
could already be presented. Furthermore, these approaches have already been
applied in several industrial use cases.

Limitations of the work lie as well in its conceptual approach. Being exploratory,
the research cannot claim to be exhaustive, neither for the challenges, nor for the
potential approaches. The CPSS model must be detailed and open issues clearly
addressed. Methodologies to solve the challenges in all problem areas are needed,
and the existing approaches must be extended and completed for practical use.
Finally, the conducted case studies could only give a qualitative assessment of the
approaches for RE and BM innovation. A quantitative evaluation is missing and
should be conducted to show comparable benefits.

A full CPSS Requirements Engineering framework would help to make the
development of CPSS more cost effective and faster, while retaining a high system
quality. Future work in this area should include the specification of a requirements
structure, which helps to manage changing requirements and predicts the emerging
properties of a CPSS. As it might not be possible to replace domain specific models
in all cases, future work should deal with the implementation of interfaces that
are able to translate between different models without information loss or delay.
Concerning the development of servitized Business Models, a method to predict
and quantify indicators such as cost and expected revenues could provide decision
support to choose between several alternative Business Models.
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Chapter 4
Product Lifecycle Management Challenges
of CPPS

Detlef Gerhard

Abstract In the chapter Product Lifecycle Management (PLM) Challenges of
CPPS, data and information management issues arising from the advanced use
of modern product development and engineering methods are addressed. These
advanced methods are required for engineering processes of smart systems and
individualized products with high complexity and variability. Emphasis is put on
challenges of the life-cycle oriented information integration of products and the
respective Cyber-Physical Production Systems (CPPS). Furthermore, the chapter
addresses data and information management problems coming from integration
of the use and operation phase of products and systems in terms of forward and
backward information flows.

Keywords Product lifecycle management (PLM) • Cyber-physical production
systems (CPPS) • Information management • Model based systems engineering
(MBSE) • Digital Twin

4.1 Introduction

Gill (2010) coined the term Cyber-Physical Systems (CPS) around 2006 and
describes them as “physical, biological, and engineered systems whose operations
are integrated, monitored, and/or controlled by a computational core. Components
are networked at every scale. Computing is deeply embedded into every physical
component, possibly even into materials. The computational core is an embedded
system, usually demands real-time response, and is most often distributed”. Cyber-
Physical Production Systems (CPPS) is a special term that depicts the introduction
of the concept of CPS in the production domain in order to make production
processes in general or production systems in particular “smarter”; this can be seen
similarly to concepts in other domains, e.g. smart mobility, smart home, smart grid.
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CPS as the entity of “smartness” combined with physical processes and objects that
uses the Internet of Things (IoT) as a communication platform form CPPS in the
sense of production value-added chains.

Within the domain of production of goods and products including associated
services, CPS based technical systems have to be taken into account twofold: On
the one hand side, products themselves are incorporating CPS concepts and on the
other hand production facilities for product manufacturing and assembly as well.
Hence, with the introduction of CPS, processes of product development, production
system development, production (including production system commissioning) and
product use (including maintenance, repair and overhaul processes) move closer
together, are even strongly interlinked. This truly indicates the given complexity.

Product1 Lifecycle Management (PLM) is the general concept to consistently
create and manage all information related to products (systems/components). In
particular, engineering information linked to corresponding engineering and pro-
duction processes, as well as operation and usage phase is addressed. The major aim
is to generate a sophisticated information basis for business and value generation
based on products or systems to be produced. This concept comprises aspects of
management, organization, and IT solutions and is typically realized with different
types of business information software applications, e.g., Product Data Management
(PDM), Enterprise Resource Planning (ERP), Manufacturing Execution Systems
(MES), and Maintenance/Service/Asset Management.

PLM focuses on three major phases: engineering, production, and operation
of products. The engineering phase reaches from conceptual design of a product
including all components up to detailed engineering. Complex technical systems,
such as CPPS, are developed with an extensive utilization of different engineering
tools and methods. In particular, the model based approach to product development
called Model Based Systems Engineering (MBSE) is on the rise. MBSE depicts “the
formalized application of modeling to support system requirements, design, analy-
sis, verification and validation activities beginning in the conceptual design phase
and continuing throughout development and later life cycle phases” (INCOSE
2007). This leads to many interlinked models from different so called authoring
tools (e.g. Computer Aided Design CAD, simulation, software engineering) rep-
resenting various required engineering domains, which have to be managed and
maintained. With an increasing complexity of engineering projects and associated
models, significant emphasis has to be put on interoperability and the ability to cap-
ture the semantics of data in order to be able to efficiently interface different systems
and build tool chains. In industrial applications, predominantly PDM systems cover
information management tasks of the engineering phase. This system category also
supports engineering processes in the sense of workflow management. For this task,
many procedural models for dividing this phase into several subsequent steps are
commonly used in industry in order to realize product development processes in

1The term “product” is used synonymously for any kind of consumer product, machine or technical
system in general, which requires a development and engineering process.
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a systematic way, e.g. (VDI2221 1993) or (VDI2206 2004). Particularly, release
and change management processes together with configuration management and
versioning of information captured in documents and models is supported.

During production, the transition from the conceptual and virtual world to
the materialization of a product with its parts and components takes place. This
phase typically also starts with conceptual tasks, such as production system engi-
neering and operations planning, e.g. Numerical Control (NC) and Programmable
Logic Controller (PLC) programming. Commissioning of a production system
is the transition to operation. Further, it involves all resource and production
planning tasks resulting from order processing and additionally the respective
control functions. This is a fundamental difference to the engineering phase.
Whereas engineering focuses on generic product definition without consideration
of capacities and resources, production focuses on the specificity of a single item
instance or lot released for production with given constraints in terms of dates
and resources (personnel, machines, material, etc.). Therefore, production can be
seen as a lifecycle phase that is “orthogonal” to engineering (VDI2219 2002). The
engineering phase does not stop with the beginning of the production phase. It rather
continues creating further releases of a product reflecting improvements, variants,
derivatives, etc. According to the corresponding hierarchical structure for industrial
automation (IEC62264-3 2014), ERP systems are the category of IT systems that
cover the customer orders processes by orchestrating all company’s activities like
commercial, financial, purchasing, logistics, production, etc. (Ben Khedher et al.
2011). Hence, they are predominantly used in industrial applications for planning,
controlling, and information management purposes of the lifecycle phase production
on level 4 of IEC62264 functional hierarchy. Furthermore, on level 3 specialized
MES systems or ERP manufacturing operations management modules cover the
required IT functions, e.g. for detailed planning or production data collection.
Manufacturing Execution Systems (MES) are used to deal with detailed production
planning and control tasks. MES is much closer to the shop floor activities and
therefore it requires more specific production related information because of its
shorter planning intervals.

Again orthogonal to the previous phases engineering and production of the
lifecycle, there is the operation phase of a product. Each produced single item
instance is used or operated differently after production and shipment. This holds
true for consumer products, e.g. household appliances, which are produced in a
considerable lot size of identical items as well as for customized one-of-a-kind
special purpose machines. Hence, in terms of product information management
requirements, each item instance has to be treated separately, sometimes even
components of the item instance. Processes that have to be supported during
operation phase are maintenance (service), repair, and overhaul (MRO) processes,
depending on the type of product. On the one hand side, these processes imply
new service orders and generate business processes, which have to be managed
and supported. This is typically done with software modules of ERP systems or
special service management software tools. On the other hand, there is a link to
the upstream product lifecycle phase. In particular, tracking of production steps or
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Engineering Production Operation

i) Main Phases of Product Lifecycle ii) Orthogonality iii) Multiplicity

Fig. 4.1 Different views (schematic) on product lifecycle phases

engineering tasks, relevant for a situation that occurs during operation is required.
At this point, the orthogonality of the different phases becomes obvious since very
heterogeneous types of information have to be linked and dealt with: For instance,
information about a particular product in operation with information of a production
lot of a particular component and corresponding generic engineering information.

Figure 4.1 schematically shows the different views towards the product lifecycle,
as indicated in the previous paragraph. Part (1) depicts a rather simplified view
on the three main phases, (2) emphasizes on the aspect that the different phases
have to be seen as orthogonal to each other, and (3) indicates, that the orthogonal
phases of the product lifecycle are characterized by massive multiplicity and
different maturity status. The latter imposes even increased complexity in terms
of chronological interdependencies of products and components in development,
production or operation as well as their associated processes.

In order to derive challenges and requirements for PLM in the context of
CPPS, it is necessary to analyze product engineering and production processes
one level deeper. In particular, it is required to distinguish different product types,
production concepts, and production types, since this distinction is the basis for
the required product information management approach. As already mentioned
in Chap. 1, four main different production concepts, reflecting the procedure
during order processing, can be differentiated (Schuh 2006): Make-to-Stock (MTS),
Assemble-to-Order (ATO); Make-to-Order (MTO); Engineer-to-Order (ETO). This
differentiation of product types and their production concepts is necessary to express
the degree of dependencies among the product components and the production
system. Below, aspects that typically apply to the different concepts are outlined
and described in terms of main characteristics for PLM.

MTS determines a production concept that is typically applied for consumer
products, which are produced in larger volumes (series or mass production)
without major variants that have to be managed. Such products as for instance
hand machining tools are in general not subject to extensive after sales services.
Therefore, the application of CPS within those products, particularly to collect
usage and operation data, is still an exception. Nonetheless, usage phase data
could be collected indirectly based on customer feedback, but collected usage

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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data in the operation phase is not directly fed back to the previous phases or
used for maintenance business creation. MTS products are developed without
customer orders based on market research. Due to the high production volume,
a specialized production system has to be engineered in parallel. This production
system respectively the engineering process, can be seen as an ETO product or
system itself. Therefore, many companies producing mass products on the one hand
side, are also producers of production facilities with separate business units. In order
to effectively manage both processes, the two different information flows have to be
tightly linked together (Gerhard and Lutz 2011).

The ability to directly optimize the production process based on process data that
is collected and analyzed in real-time, is the major goal of CPPS engineering in ETO
production processes, not so much CPS based adaptability and re-configurability
of production systems due to the large production volumes. Furthermore, a major
objective of improvement is to shorten commissioning and ramp-up phase because
this can save significantly time and money. Virtual Product Engineering (VPE)
methods are widely adopted in industry, i.e., the complete description of com-
plex technical systems and their characteristics as computer model together with
integration and optimization of IT tools for domain-spanning, multi-disciplinary
information management.

Virtualization of production system engineering, often referred to as “Digital
Factory”, is not as widely adopted in industrial applications but truly on the rise
since there is a lot of potential for speeding up time-to-production. From product
geometry and material properties defined in engineering design, there is a direct
link to required manufacturing operations and programming of NC machining tools
in case of material shaping operations. In addition, clamping devices, fixtures,
jigs, chucks as well as quality assurance and measurement devices have a direct
geometrical link to products or parts of products themselves. Therefore, release and
change processes of products and production system items are closely interlinked.
The Digital Factory approach goes even beyond this and includes additionally
the virtual representation of assembly (ergonomics), intra-logistics, and material
handling processes. With respect to the chronological order, two main stages have
to be considered, firstly engineering of a production system (typically an ETO
process, concurrently started at a certain maturity status of product engineering)
and secondly production system operation (including ramp up). The aim is to
build a so called “Digital Twin” or “Cyber Twin” during production system
engineering, i.e., computerized companions of physical artefacts that can be used
for various engineering purposes and use data from sensors to represent their near
real-time status, working condition, position, etc. (Tuegel et al. 2011). A production
system—as generally most complex technical systems—faces constant changes and
adaptions during operation due to maintenance and improvement procedures. In
addition to the Digital Twin representing the results of the development engineering
processes, an up-to-date Digital Twin representation is the goal during operation
phase. This way, all possible changes and modifications can be verified in advance
and also tracked. Furthermore, a Digital Twin of each component can be used for
capturing condition monitoring records and synthesizing future steps to provide



94 D. Gerhard

Product 
Engineering

Production
Engineering Production Operation

Product
Class

Product
Instance

1 2 3

4 5
6 7

8

Fig. 4.2 Mayor information flows—example ETO system

self-awareness and self-prediction (Lee et al. 2015). To realize this, a fundamental
distinction has to be realized within the respective PLM solution. Whereas all
engineering processes take only product classes into account, for each Digital Twin
representation, a product instance representation is required representing runtime
and operation. This is depicted in Fig. 4.2 below. The different information flows
are detailed in a later paragraph. For simplification reasons, phases are shown in a
strictly subsequent manner though they are partially overlapping and concurrent.

Whereas MTS and ETO both define the end points, ATO and MTO are
located in the center of the production concepts spectrum. ATO is oriented closer
to MTS since this concept describes preproduction of standard products with
manufacturer-specific variants. MTO is oriented closer to ETO since this concept
describes production of standard products with customer-specific variants that are
partly composed of pre-defined components and partly made up newly created
components. There are two main drivers, that have major influence on production:
The combination of IT and “ordinary” products leads to “Smart Products” with
embedded systems providing an added value to both, customers and producers. Pro-
ducers, in particular, can extend ordinary products to Product Service Systems (PSS),
as described in Chap. 3. Smart products require extensively multi-disciplinary
engineering of the product itself as well as the production system and furthermore
intelligent backend information technology for supporting the use phase. The trend
towards individualized products with customer specific requirements is moving
production towards mass customization and lot-size-one concepts.

These concepts for production processes are mainly addressed with CPPS
approaches, though CPPS approaches for ATO and MTO production have mainly
different goals compared to MTS production. Within MTS production, the product
is rather invariant. The production process can be adjusted and optimized with
respect to a single product. Short commissioning and ramp-up plays a vital role
as well as optimization of the whole process utilizing sensor data and machine
feedback with respect to completion, quality or errors in a direct control loop. This
goal is mirrored in the “Overall Equipment Effectiveness” (OEE) Key Performance
Indicator (KPI) coined by Nakajima (1982). This KPI particularly reflects on the

http://dx.doi.org/10.1007/978-3-319-56345-9_3
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measures for optimization of mass production. OEE is beneficial in high-volume
and highly automated process-based manufacture where capacity utilization is a
high priority. Deployment of OEE in low-volume job shops is not very beneficial
(Charaf and Ding 2015).

ATO and MTO production concepts demand extensive flexibility in manufactur-
ing and assembly processes and a by far greater collaboration of product engineering
and production system engineering. Variant rich and customized products require
particularly configuration of product structures and linked manufacturing and
assembly operations. Production according to these concepts typically is realized by
manufacturing shops providing different NC machining tools for special operations
and flexible manufacturing cells for small and medium batch production of parts.
The major goal for CPPS approaches in this case is to realize an intelligent,
resilient and self-adaptable system of interconnected machines and manufacturing
cells capable of producing customized products with a high degree of automation
and thereby at competitive costs. In this scenario, in addition to manufacturing
operations, automated material handling plays a vital role. This insight is not new
(Sethi and Sethi 1990) but nonetheless still an issue that is currently not sufficiently
tackled using computer aided engineering methods (Seibold and Furmanns 2015).

With a PLM view on CPPS in ATO and MTO production environments, again
engineering, production, and operation/use have to be taken into account and
adequately supported in different ways. In the conceptual stage, based on the
product definition, the different manufacturing and assembly steps have to be
planned using a variety of CAD methods. This is done in general on a product class
level though partially single items have to be tracked on instance level. Production
engineering in this case is reduced to operations planning and NC programming,
i.e., an existing set of machining tools and material handling systems has to be
customized and set up in the sense of a flexible manufacturing shop but a special
production system does not have to be engineered and build for this kind of products.
Afterwards, during execution time of the respective production orders of parts and
assemblies (typically in smaller batches), the required production information has
to be provided and actual production data has to be captured. ERP and MES system
build the runtime environment for production execution and respective information
management, top-down in the sense of planning and target values as well as bottom-
up in the sense of shop floor data collection. Production execution is the transition
from the virtual to the real product and also the transition from the product class
view to the product instance view. Each of the produced product instances during its
use phases is operated in a different way and under certain environmental conditions.
Nowadays, many of the more sophisticated products are equipped with embedded
systems and are capable to a certain extent to capture usage information. One
prominent example for such products are cars. They are equipped extensively with
controllers and embedded systems. In addition to the functions vital for operating
the car, they provide capabilities for capturing data that can be used for classical
maintenance and service processes, even for new services supporting drivers or car
holders in everyday tasks, navigation, etc.
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4.2 State of the Art and Challenges of PLM in the CPPS
Context

As indicated above, the vision of CPPS depicts production facilities consisting of
smart machines that are connected and able to connect ad-hoc with smart products
and objects in order to autonomously exchange information, trigger actions and
control each other. CPPS concepts are based on the “Internet of Things (IoT)”
concept coined 1999 by Ashton (2009), i.e., every physical object, machine,
product or object has a virtual representation. Gunes et al. (2014) elaborates
on the following challenges to CPS: Interoperability, Predictability, Reliability,
Sustainability, Dependability, and Security. These have also to be taken into
account in engineering and PLM for CPPS. Interoperability has several aspects:
combining and incorporating heterogenic components of technical systems scaling
in size, throughput or other dimensions. Predictability reflects on accuracy of
intended outcomes in terms of behavior that autonomous systems show based on
inferencing and reasoning in particular contexts. From an engineering point of
view, this leads to challenges with respect to robust and stable performance of a
technical system, i.e., predictability of a guaranteed behavior and reliant operation.
Correct functioning, availability, safety, and maintainability during operation has
to be assured, especially if CPPS are self-adaptable or reconfigurable according
to changing contexts and dynamic tuning. Particularly, issue tracking based on
the right product lifecycle information management becomes difficult since the
origin of many issues might be software based. This aspect also leads to security
challenges and questions of integrity or reliability, i.e., if privacy and confidentiality
of information can be guaranteed and if information is correct and trustful.

In addition to conventional automation and control technology for production
facilities, the aim of CPPS is to design “smart” systems that embody so called self-
x capabilities (e.g., self-configuration, self-organization, self-optimization) in order
to be able adapt autonomously to unforeseen states on machine level as well as
non-intended situations on production system level due to failures, lack of material,
etc. Even though autonomous interaction on micro-level is intended and required
for the implementation of advanced production concepts in modern environments,
predictability and controllability of the whole production system on macro-level has
to be assured. Machine operators as well as production planners in charge need to
have control over the production system. A supplying company of a machine tool, a
flexible production cell or a material handling system has to guarantee certain levels
of function and behavior. Therefore, behavior and logic needs to be represented
using model based descriptions.

Consequently, the challenges of PLM approaches for CPPS are threefold:

• Processes and methods to support systematic multi-domain engineering
• System and information modelling (model representation)
• Information management, particularly data linkage and data analytics.
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4.2.1 Processes and Methods

CPPS are complex technical systems characterized by networked structures, non-
linear behavior and means multi-causation, multi-variability, multi-dimensionality,
interdependence with the environment, and openness. Therefore, product design as
well as production engineering tasks have to be addressed in a systematic way.
Complexity in this particular case has the following facets (in causal order):

• Product and production system complexity
• Process and organization complexity
• IT landscape and tool complexity.

Complexity of products is caused by multiple instances and variants of a
base product to meet requirements with respect to customization demands and
differentiation of the target markets. Besides the mechanical components, nearly
all products consist of electronics, embedded systems with sensors and actuators
and have firmware/software driven controllers. Because there are many differ-
ent domains of expertise involved in engineering tasks, process complexity also
increases through dissemination over locations (countries, cultures) and distribution
within the supply chain (organizations). Collaborative engineering processes require
even more extensive use and support of advanced IT systems. The diversity and
dynamics of the relationships between project partners, manufacturers, vendors, and
suppliers leads to highly sophisticated IT landscapes with docents of data formats,
representing different semantics.

CPPS, have to be engineered and designed within a multi-domain environment
of virtual product development tools. Outcomes of such a development process
determines corridors of operation and limitations to autonomous behavior of a
CPPS. The product and system development process today is well supported with
different tools for e.g. software engineering, CAD, electronic design automation,
and simulation. Integration of the domain specific processes for mechanical design,
electric/electronics engineering and software development is the main challenge in
creating complex technical systems as CPPS in a robust and reliant way. Especially,
there is a gap within the information flow between early phases, i.e., engineering
design, and later phases, i.e., production (Gerhard and Weilguny 2008). Both
phases are in general well supported by different IT tools but the integration
and information flow between is still missing the required level of maturity. This
problem particular increases with the trend to customization and individualization of
products and product service systems. CPPS require a systematic approach towards
the different engineering design tasks. Requirements engineering methods help to
identify the core of given challenges and further guide through the development
process (Cheng and Atlee 2007). Modern CAx systems offer extensive functions to
solve geometric modelling and design tasks, but for multi-domain modelling, there
is always an information loss when exchanging data between different models.

By expanding the range of functions and system limits, smart products and
production systems have more complexity than conventional products. Existing
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development methods and state of the art tools are not fully suitable to support the
specific characteristics and requirements of communication-capable, autonomous
decisive CPPS. Methods and a tool chains for the coherent virtual representation
of a production system being in operation (product manufacturing) and linked
to the product development process are required. In the context of CPPS, this is
necessary in order to be able to rapidly respond to required changes and simulate
the new behavior of a customized system in advance. Typically, engineering design
processes end with the completed definition of a product ready for production
and ready to be utilized after production. The requirements of future technical
systems such as CPPS go one step further. System functionality from production and
operation phase has to be captured by corresponding system models as well, though
the semantics of information models in engineering design and production still is
quite different. Only in this way, it is possible to collect data from operation and
use phase and utilize this models for simulation and optimization of the production
process or use phase of a product. Different simulation models are required to
capture e.g. cycle times, output or quality data of production systems. Having those
models in place, different scenarios of operation can be simulated (e.g. maximum
speed vs. average speed or eco mode) in order to find an optimal operation behavior
in terms of time, material or energy consumption, friction, loss, wear, etc.

Since PLM in particular focuses on engineering processes, one major challenge
is to find a comprehensible way to support engineering design and development
process of CPPS on a methodical level. The question is if it is a feasible approach to
enhance or adapt the procedural VDI 2206 V-model in terms of cascaded systems of
systems modelling. Nattermann and Anderl (2010) for instance proposed a W-model
approach for systematic engineering of adaptronic systems. This model suggests the
use of a special data management layer, which provides not only a central control of
the records of all disciplines but is also able to analyze the discipline-specific records
and to synchronize across disciplines. This data management system should be
capable to capture state and behavior of the system under development at any time
and to ensure compatibility of the discipline-specific components and subsystems.

There is a direct linked to the research questions formulated in Chap. 1: How
can model-based methodologies support information creation and processing in the
different life cycle phases of a CPPS and how shall several disciplines in product
and production system engineering be linked to support the engineering of flexible
and self-adaptable CPPS? The question is how virtual engineering support for an
integrative CPPS hardware/software co-design, verification, validation, and testing
can be realized, given the multitude of different tools and methods. Particularly
not tackled adequately so far are methods and technologies that support the links
between product, production technology, and production systems engineering, i.e.,
horizontal, vertical and life cycle integration within production systems and digital
links between engineering and operation phases.

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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4.2.2 Model Representation

The central concept embodied in multi-disciplinary engineering and model-based
design is that the 3D product model is the most appropriate vehicle for delivering
all of the detailed product information necessary for downstream processes and
operations to perform their portion of the product creation (Quintana et al. 2010).
CAD models are enriched with explicit and implicit knowledge which needs to
be extracted, formalized and managed for re-use in different contexts. However,
extracting knowledge encapsulated in CAD models remains a challenge and does
not cover at all the complex systems engineering requirements. (PROSTEP 2015)
gives a comprehensive over relevant standards for the different procedural steps of
the VDI 2206 V-model, but the V-model more or less stops at the start of production
and does not cover production and operation.

Nonetheless, for information modelling in engineering processes, there have
been considerable developments within STEP—STandard for Exchange of Product
Model Data (ISO 10303 1994). ISO 10303 is an international standard for the
description of physical und functional features of product data. STEP interface
definitions and data formats allow data exchange between different CAx systems
and aims to represent all data of the whole product lifecycle of a product. In addition
to geometric data, this data can e.g. comprise production planning information, bills
of materials, simulations, design studies, and much more. To deal with all kinds of
lifecycle data, ISO 10303 consists of an extensive collection of so called Application
Protocols (AP). Each AP is adapted for a special purpose, for instance ISO 10303-
242 “Managed Model Based 3D Engineering” provides relevant data models
merging AP203 and AP214, which are currently the most implemented for CAD
data exchange between existing commercial CAD systems. AP 239 “Application
Protocol: Product Life Cycle Support” furthermore includes the representation of
a product through life including product requirements and their fulfilment, the
identification of the configuration of a product for a given role, and the specification
of effectivity constraints applied to configuration of a product. AP 233 specifies
the representation of systems engineering data and defines the context, scope and
information requirements for various development stages during the design of a
system.

For modelling lightweight representations of geometry together with product
manufacturing information (PMI), the newer JT standard (ISO 14306 2012) is
interesting to consider. To capture model information beyond geometry, e.g.,
requirements, logic, function, and physics, System Modeling Language (SysML)
(see also Chap. 2 and SYSML 2007) is adopted increasingly. This virtual repre-
sentation of artefacts is a means to integrate and organize the multitude of models
necessary to describe all the aspects of the system with the aim to support interop-
erability between the domains and their data. Since many different disciplines are
involved, complexity handling in engineering and manufacturing (Tolio et al. 2010)
is the main issue that is tackled with these standardization approaches.

http://dx.doi.org/10.1007/978-3-319-56345-9_2
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Self-x functionalities in the sense of smart systems or applicable for a smart
factory are functionalities take into account the context of (a group of) CPPS and
react accordingly to this context, facilitating the adaptive autonomic behavior of
CPPS. Going more into detail, research questions of Chap. 1 contain the challenges
of how to define or model self-x functionalities of CPPS as well as means for
capturing context, behavior and state of artefacts? Furthermore, strategies and
algorithms for modelling and simulation of anticipatory system behavior and layer-
crossing integration of self-x actions have to be developed. Monostori (2014) states
in a comprehensive survey the following R&D challenges for CPPS (among others):
For context-adaptive and (at least partially) autonomous systems, methods for
comprehensive, continuous context awareness as well as for recognition, analysis
and interpretation of plans and intentions of objects are necessary. Furthermore,
the development of new methods is required, which support the fusion of the real
systems with the virtual representation in order to reach the goal of an intelligent
production system which is robust in a changing and uncertain environment.

4.2.3 Information Management and Integration

In industrial applications today, product development processes, production plan-
ning processes, and order based production planning and control are still to a large
extent disconnected. This holds in particular true for data generated during the
use phase of products. For CPPS and smart production, a closed loop information
management is crucial, spanning the whole lifecycle from product concept and
design to production system planning, to order management and production, and
finally to product operation or usage. The international standard IEC 62264 (IEC
62264-3 2007) defines models and transactions for the integration of ERP and MES.
Its main objective is the integration of business planning and logistics systems to
manufacturing operations management systems. While ERP systems operate in time
frames of months, weeks and days, the detailed production planning is done using
much shorter periods like shifts, hours, minutes, seconds and even sub-seconds.
VDI 5600 guideline (VDI 5600 2007) offers a problem-oriented description of
MES and its application potentials. The main tasks of MES like detailed scheduling
and process control, equipment and material management, etc. are defined and
the role of MES for enterprise processes is highlighted. Similar to IEC 62264,
VDI 5600 contains recommendations for the interface management between MES
and machines/terminals/sensors on the manufacturing level. Both standards mainly
address the so called Automation Pyramid from shop floor to top floor in a vertical
integration direction, respectively along the production value chain in a horizontal
integration direction. The integration along the product lifecycle from very early
engineering design stages to production and operation stage or vice versa is not
covered.

The main challenge is that generated data and relevant information at the various
stages of the product lifecycle is quite different in terms of the three orthogonal

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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aspects of data storage, processing, and analysis (3Vs of Big Data), i.e., volume,
variety, and velocity (Laney 2001). Particularly, there is a variety of formats
capturing different semantics, not just relationally structured data representing
different models but unstructured content. Content that is tagged with metadata and
hierarchical file system data. In engineering design, information about the product
in general is created, in early phases there are abstract models, later more tangible
and concrete content. In later stages of the product lifecycle, data or information
flows can be highly inconsistent with peaks and the meaning can also change over
time. The generated information is to a large extent unstructured and stochastic
but not model driven. Data or information flows can be highly inconsistent with
peaks and the meaning can also change over time. The more an integration of the
different information aspects over the product lifecycle is possible the more efficient
processes become. The use of cognitive computing approaches, ontologies and
semantic technologies in the integration of data, information, as well as knowledge
throughout the complete design cycle of a product has the potential to substantially
improve both the product and associated development processes (Welp et al. 2007).

Forward and backward information flows have to be distinguished. Design
engineers usually have a good understanding of the product they are developing, but
any approach to integrate information required in later process stages (e.g. environ-
mentally relevant information or production relevant information) into early product
development and design stages often fails since it adds to workload or complexity
of the process. Ostad-Ahmad-Ghorabi et al. (2013) tackle this issue introducing
ontological approach to set up primary parameters systematically for particular
product categories driving e.g. the environmental performance of products. The aim
of ontological approaches in general is to enable the management and (re-)use of
heterogeneous data along the product development process. Different information
and different views concerning a product structure facilitates the work of each phase.
Yet, the lack of contextual relationships within the structures avoids linking the
correct data between them. Therefore, similar information must often be entered
multiple times and a cross comparison between the information from other domains
or an automated comparison of the various activities in concurrent engineering
processes become virtually impossible. With the use of semantic technologies
and ontologies the continuity of information can be achieved through a coherent
semantic structure associated with views on different areas of the development
process (Gerhard 2012). Ontologies serve as a neutral or intermediate layer, in
which semantic web technologies can be used to build queries or filters that provide
specific data of heterogeneous sources. Ontologies are thus of great importance
when encoding design knowledge as well as integrating software systems for
facilitating semantic interoperability (Chandrasegaran et al. 2013).

Semantic technologies also play a vital role in data analytics. Smart factories
collect vast amounts of data from different sources: Product design data such as
bill-of-materials (BOM) and CAD-files; production process data such as CAM-
files, machine scheduling and QC measurements; logistics data including demand
forecasts; and data from a multitude of sensor constantly monitoring machine
parameters. Currently, ERP and MES systems used in manufacturing operations do
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not adequately mine this data to identify useful patterns and draw conclusions for
operations or engineering processes. This is because current data mining techniques
are typically not suitable for time series data and therefore, are of limited use in
making predictions (Gröger et al. 2012). Additional data objects or information
model enhancements of existing software tools or standards are required to capture
and interface engineering as well as run time data of complex CPPS so they can be
indexed and retrieved for reuse across different products or projects. This comprises
versioning and means to align different (multi-domain) development paths. Still
the research question remains, e.g. if it is possible to find algorithms to analyze
data patterns from manufacturing data for re-use at different stages of the product
creation process, transforming information from data to knowledge level.

4.3 PLM Forward and Backward Information Flows
in CPPS

With the above introduced contents and challenges, it is clear that an enhanced use
of CPS in products and production systems imposes new approaches to look at the
way product related models and documented information have to be managed along
the product lifecycle. As stated before, the lifecycle phases cannot be seen just as
subsequent stages but the orthogonality has to be acknowledged.

IT systems and software solutions for engineering information modeling and
management represent “virtual” product and production engineering information
linked to a product class as well as order based production planning and real time
data of the production process as well as individual usage data. In other words, they
have to cover a complex patchwork of different views in terms of functionality and
models semantics, i.e.,

• Development/engineering, planning, production, operation/use
• Requirements, features/working principles, logic/behavior, geometry/shape
• Structure of products (systems), modules/components and parts/elements
• Mechanics, hydraulics, pneumatics, E/E, control/software
• Manufacturing, assembly, testing, packaging, transportation
• Customer, supplier, service owners/operators
• Building/infrastructure, energy.

A unified and coherent model description of all necessary information (in a
knowledge domain as CPPS) is unrealistic. Requiring all applications to share a
common standardized data model to be truly integrated is not a feasible solution.
Hence, data linkage in a federated manner, semantic technologies, and cognitive
computing approaches can be seen as enablers to introduce new agility and
expanded scope to enterprise applications, such as for instance:

• Automated extraction of metadata to transform unstructured data into a fully
classified resource and synthesize it with existing structured data
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• Enrichment of structured data with qualitative data from vast “unstructured”
sources like sensor-captured production data or usage data from emails, blogs,
chats, and social Web pages

• Identification of embedded meanings and relationships within and across
resources through data analytics

• Natural language processing to interpret imprecise requests and offer spelling
corrections, close matches, and related content

• Creation of innovative and tailored apps that seamlessly merge content and
functionality from diverse sources such as databases, mapping services, and
WWW resources.

This is necessary in order to perform data specialization tasks in forward
direction (early lifecycle phases to late phases) and data generalization tasks in
backward direction (vice versa).

Forward integration of engineering information in the sense of “Design For X”
(DfX) is the concept comprising all endeavors towards making the right decisions
in the product development process on basis of sufficient and universally applicable
knowledge basis. The aim is to take into account impacts that decisions in early
phases of the product development process have on later phases. Particularly,
concepts of Design for Manufacturing, Assembly, and Service are relevant for CPPS
and in many companies in place in order to ensure high quality at optimized cost
and time efforts in the production or operation phase. Forward integration nowadays
means predominantly manual processing of data, e.g. using CAD/CAM data in order
to extract required information for operations planning. PDM systems support these
tasks to a certain coverage since they provide easy access to required information
but they do not provide assistance in terms of e.g. supporting operations planning.
Especially the inherent semantics of product defining data to be used at later stages
is still a weak point. Therefore, to a large extent, operations planning relies on the
experience of planning engineers. Knowledge that can be derived from past projects
and tasks is not taken into account systematically in many cases and the potential of
intelligent knowledge re-use is not addressed. In the forward direction new questions
arise since products become more sophisticated integrating embedded IT systems
and/or IoT technologies.

In the backward direction, feedback information from usage and operation phase
collected on a single item or instance basis, which is in general less structured needs
to be aggregated and generalized to be used earlier phases, i.e., engineering design
or production, in the sense of knowledge management. Backward information
integration in terms of PLM also requires new approaches in order to leverage
opportunities and adequately support processes related e.g. to PSS. The semantics
of information models in engineering design and production still is quite different.
Instance based information from the use phase of a product has to be captured,
generalized and mapped to product class information of product engineering or pro-
duction engineering phase in order take benefit in terms of knowledge management.
In the operation phase of a product or machine (maintenance and support phase),
the inherent task of evaluating if design requirements are met is to take a close look
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at the performance of the product and actual use. A closed feedback loop is the idea
that the output is looked at with respect to a desired goal and then the inputs are
modified in order to change the output to close the gap between what the output is
producing and what is desired. Feedback loops can be direct and internal or indirect
and external to a system. If a product does not meet its design requirements in actual
usage or if actual usage surfaces additional requirements, respective information
should be fed back into a base of knowledge so that engineering can understand
the gap between the requirements they thought could be fulfilled and what actually
occurred. Conclusions can be drawn and requirements for future versions of the
product can be adapted.

Particularly for the backward information flow, it is important to distinguish the
type and the instances of an information object over its lifecycle, i.e., to have unique
identifiers both in the digital (virtual) and in in the physical world.

• Instantiation of product data: For each product in the field, there has to be
a separate instance of product data created. This dedicated instance will be
maintained over the lifetime of the product, to stay up to date, even when parts are
changed during maintenance (e.g. for long life products like machining centers).

• Instantiation of usage data: Data collected during the usage of products have to
be associated to the specific instance of the product instead of its generic model.

Figure 4.2 of the previous section gives an example (ETO production concept) for
the different information flows. Briefly the main information flows can be depicted
as follows:

1. Engineering design data are used to generate production system and operations
planning data

2. Planning data serve as the basis for production control (target values)
3. Actual data of production are the basis for product operation/use including MRO

processes
4. Feedback data to improve the product
5. Feedback data to improve production system and operations planning
6. Actual data for direct optimization of the production process (target-performance

comparison)
7. Actual data for direct optimization of the operation and MRO support
8. Actual data for improving and further developing the product.

Benefits resulting from the forward and backward information integration are to
a large extent company and use case specific. For each use case, the first step is
to figure out who benefits from the delivered information, and therefore, in what
form and where the information has to be presented, e.g. is the information already
necessary/useful in the production planning phase, or is it important later in the
physical production process. For example, simulated milling operation times stored
in the PDM system can be used to calculate target times for operations planning,
or assembly instructions can be displayed on terminal screens in manual assembly
lines. After identification of the required data, suitable approaches for data structures
and data processing have to be defined. Concerning backward integration, it is
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important to identify, which data from the MES or other data sources is accessible
and useful for feedback in the PDM data backbone. That can be raw data (e.g. from
sensors) or already processed data (e.g. key performance indicators of machines). It
has to be clarified, which data has an impact to the generic data in the PDM system,
and how information can be viable created out of all the collected data. For example,
if production introduces new cutting inserts for milling operations resulting in higher
duration of the tool and less tooling time in a production process, this information
can be fed back to operations planning. This means that raw production data has to
be mined and analyzed with respect to the deviation of planned and actual values
taking into account possible outliers.

A software architecture comprising so called authoring tools for different
engineering tasks on the one hand side and comprehensive engineering and
business information management software systems on the other hand side has
to take application diversity into account. Ther e are ongoing research activities
to investigate and develop an approach for multidisciplinary life-cycle oriented
information integration in systems engineering within the Open Services for
Lifecycle Collaboration (OSLC) working group of OMG (OSLC4MBSE 2013).
The focus of major activities still is in the engineering domain, but engineering,
production and usage have to be treated holistically in the context of CPPS, which
goes beyond this viewpoint. Especially, many different concepts have to be mixed
and supported with software tools, like e.g. model based engineering, document
oriented information flows, time related data and time series processing, location
based data and geospatial processing, database oriented transaction handling and
posting entries to ledger accounts. Hence, a principle IT system architecture needs
to support a strongly federated network approach of nodes performing particular
tasks, in which the nodes themselves follow an approach that can be compared to
an onion with a shell like structure incorporating the concept of microservices.
Microservices is an emerging trend in the cloud era: briefly “microservices are
small, autonomous services that work together” (Newman 2015) to achieve a
common or requested functionality. Similar to the Service Oriented Architecture
(SOA) approach, microservices are independently deployable, small, and modular
services that communicate loosely coupled over HTTP protocol typically through
REST APIs with simple semantic standards that can map to any data model using
JSON as a data exchange format. This concept also supports, that contextual
information from third party systems can be provided via a persistent linked data
layer that overcome system and organizational boundaries. Figure 4.3 below depicts
the rationale behind a principle IT system architecture suitable for PLM in the
context of CPPS. As stated before, the different phases of the product lifecycle have
to be seen orthogonal to each other.

In all phases, many different software tools (depicted as dots of the network
in the respective colors in Sect. 2 of the figure) generate information that is
linked to another portion of information, e.g. structured or unstructured information,
simulation models of the engineering phase as well as sensor data of the production
phase that cannot be captured in models. At the outer area of the network (colored
in red), there are even dots representing system boundaries or transition to other

http://dx.doi.org/10.1007/978-3-319-56345-9_2
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i) Orthogonal Phases ii) Network of microservices iii) Shell structure of microservice

Authoring System,

e.g. CAx Tool

Inner Data Mgmnt Shell

e.g. TDM Software

Backbone and Adapter Shell

e.g. PDM or ERP system

Fig. 4.3 Principle IT system architecture for PLM in the context of CPPS

domains, e.g. smart grid energy management systems. The example given in Sect. 3
of Fig. 4.3 reflects the viewpoint of mechanical engineering: A CAD system as core
of required software functionality for a particular process task is wrapped in a Team
Data Management (TDM) environment with high integration depth supporting
collaborative engineering work. The TDM system again is enveloped in a PDM
or ERP backbone. On this level the microservice approach comes into play, i.e.,
communication to other services through defined API leads to a federated approach
of exchanging required information within the given plethora of systems. Beyond
the expressed example, the same holds true for different engineering domains, e.g.
a CAE system wrapped in a specialized simulation data management tool or a
software engineering tool which organizes the software development work within
source code management environment. Section 3 of Fig. 4.3 could also be colored
blue or green in order to represent a microservice of the production or operation
phase or even in mixed colors if there is no clear assignment possible. The major
differences are the type of generated or captured information and the point in time,
which the information represents. Nonetheless, information of the three different
life cycle phases is truly interlinked.

Incorporating a microservices concept likely leads to a situation, that instead
of less large and established enterprise applications suddenly a landscapes with a
variety of small, fast-changing services emerges, which all have to be configured,
managed, and monitored. This issue can be tackled using a so called container
technology like “Docker”. Docker uses “containers”, which capture everything that
is needed to run a chosen software (e.g. code, runtime, system tools, system libraries,
binaries, dependencies, etc.). Docker containers represent one encapsulated unit of
functionality to the “external world”. In this way, it is assured that the code will
run in any selected environment the same way (Mouat 2015). Docker containers are
rather lightweight in comparison to hypervisor techniques, since virtualization is
done on operating system level, encapsulated from the rest of the host system. The
feasibility of this concept is underpinned by the fact that most of large public clouds
have made their systems compatible to Docker (e.g. AWS Elastic Beanstalk, Google
AppEngine, IBM Cloud, Microsoft Azure, Rackspace Cloud). With this support and

http://dx.doi.org/10.1007/978-3-319-56345-9_3
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adoption, Docker will probably become the most prevalent system used to create
cloud applications (Matthias and Kane 2015).

4.4 Summary and Outlook

Digital and real worlds merge. The development of products that are networked
within their operational environment and the support of service-oriented business
models requires the linkage of traditional product data with the digital shadow of
the delivered product configuration (Cyber Twin) as well as the use and association
with data of production and operation. A shift from divided designs of physical
systems, control subsystems and software architecture to integrated and optimized
design can be observed with respect to the process of product and production
systems engineering. Concerning operation of production systems, human and
information-centric operation moves to highly-automated, autonomous, and coor-
dinated frameworks. Engineers have to be better supported in their development
work through system-spanning information links, and assistant functionality that
utilizes advanced information analytics and cognitive computing approaches. Thus,
IT system strategies supporting operation and product lifecycle information man-
agement are changing from centralized to federated, decentralized, and configurable
approaches.

Previously, the focus was on the modeling of all necessary artifacts and prepa-
ration of all necessary documents for the design and manufacture of a system.
In the field of mechanical design, the result virtually consists of a complete
digital mock-up on product class level. In the software domain, the result of
development activities is a static program code, which e.g. evaluates captured sensor
data and system status and possibly performs actuator actions or executes user
interaction. With CPPS, modeling of systems in operation as well as the continuous
documentation of all MRO operations and changes in the operation is necessary.
From the mechanical engineering viewpoint, a functional mock-up is required on
product instance level. In the software field, adaptive program code (for example,
PLC, CNC) to map self-x functionalities.

In particular, the role of PLM in the context of Smart Systems, CPPS and
Industrie 4.0 approaches will change dramatically towards product information
management on a single item instance basis. Today’s PDM systems are complex
technical IT systems that require considerable effort for customizing and imple-
mentation in specific contexts of manufacturing enterprises. System deployment and
operation of a PDM system are complex and costly issues and not only few projects
heavily struggle. The networking of products and services on the Internet of Things
(IoT) raises the question whether ordinary PLM approaches are not completely
overburdened and will become redundant with Linked Open Data, Big Data or
self-learning systems. PLM approaches have to be adopted in order to support the
companies optimally in their digital transformation processes.
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The benefit of a particular PLM solution heavily depends on the processes to
be supported within a company and therefore on the production concept, e.g. ETO
or MTO. After sales and customer service play an increasingly important role in
the context of PSS. Customized and individualized products have to be produced
in smart factories incorporating CPPS approaches with the goal to keep required
efforts low. Data from the operation phase of the products has to be linked with the
engineering data. Necessary are on the one hand side PLM concepts that support
multi-disciplinary development of products with high degree of integrated control
technology and software and on the other hand side methods and system functions
for cross-domain engineering collaboration. Nonetheless, PDM systems have to be
able to manage complex product configurations, including electronics and software
and also depict changes in the configuration during operation. Therefore, PLM
solutions need to support data structuring approaches that go beyond centrality
of the traditional Bill of Material (BOM) concept coming predominantly from
mechanical engineering focus.

Monolithic approaches with one single leading system for PLM in general do not
meet the given demands, particularly because engineering is done to a large extent
collaboratively in joint ventures together with development partners embedded in a
supply network. A modular IT architecture with best of breed solutions ensures a
flexible and user-friendly working environment. It is essential that PLM solutions
are dynamically adaptable reflecting the ongoing changes of data models together
with the process changes in the organizations. Similar to the way the world-wide
web works, federated approaches that link the distributed digital models are required
for the product related information management.
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Chapter 5
Fundamentals of Artifact Reuse in CPPS

Arndt Lüder, Nicole Schmidt, Kristofer Hell, Hannes Röpke,
and Jacek Zawisza

Abstract Recent research and development activities within the field of production
system engineering and use focus on the increase of production system flexibility
and adaptability. One common issue of those approaches is the consideration of
hierarchical and modular production system architectures where the individual
components of the system are equipped with certain functionalities and information.
Up to now there is no common understanding about what a component can
constitute, i.e. which parts of a production system can be regarded as components
within the hierarchy and which functionalities and information are assigned to it.
This gap will be closed within this and the subsequent two chapters.

They will at first discuss the relevant layers of components in a production
system, then the types of information required to be assigned to a component on
the different layers to establish a digital representation of the component, and at
last the description means exploitable to represent the identified information in the
different life cycle phases of a production system.

This chapter in particular will consider hierarchies of production system compo-
nents and their life cycle. Based on a literature survey and practical experiences
candidates for hierarchy layers and their identification criteria are named. In
addition, main life cycle phases of production systems are discussed.
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5.1 Introduction

Production systems all over the world are facing similar challenges. At first, the
number of competitors, aiming to gain visibility by the same customers, is rising.
This can be seen by the increasing growth of global trade by 6% every year—for
the last 25 years (Schmale 2015). Thus, producing companies are trying to offer
more products, product types, and variants of the same product type to optimally
fulfil customer requirements. For example, car manufacturer Volkswagen offered 10
different car models in 1990 and 19 ones in 2016 (not including car model derivates
like limousines and convertibles). In parallel, the producing companies are reducing
the life cycle of products being able to respond to changing customer requirements
much faster. Whereas the first generation of the VW Golf has been available for 9
years, the sixth generation was only available for five.

The second challenge is based on production system technology development.
The pursuit of product variety is applied within the customer market and also in
the market of production technology and production system equipment including
technology breakthroughs like additive production technologies. Hence, producing
companies have to monitor trends in production technology and production system
equipment development to identify possibilities, which can improve their production
systems regarding quality and economical aspects.

Facing both challenges forces production systems to increase adaptability and
flexibility related to producible product portfolio, order volumes, and production
system resources while trying to improve the economic impact of the production
system over its complete life cycle.

To cope with this problem different development directions are considered. An
interesting one from the automation point of view is the Industrie 4.0 initiative. It
aims (among others) at developing methods, tools, and systems enabling production
system owners and developers to handle system complexity and to increase resource
efficiency within the process of improving production system adaptability and
flexibility (Kagermann et al. 2013). Therefore, a new production system architecture
and a new production system component structure are under development. A first
result of this development is the Reference Architecture Model Industrie 4.0 (RAMI
4.0), (Kagermann et al. 2013). This model combines the production system life cycle
with the control hierarchy and the value streams relevant for production.

One key element of RAMI 4.0 is the Industrie 4.0 component. As indicated in
(Vogel-Heuser et al. 2015) the implementation of Industrie 4.0 components can
utilize the CPPS paradigm resulting in a hierarchy of CPPS nesting one CPPS within
another. Thereby, each CPPS is an Industrie 4.0 component on its own.

In (VDI 2015) structural, functional, and information related requirements on
an Industrie 4.0 component are collected especially including the need to combine
objects of the physical world and the virtual world, which are related to the same
component of a production system. Thus, an Industrie 4.0 component shall have
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Fig. 5.1 Industrie 4.0
component following
(Kagermann et al. 2013)

Things

Thing

Thing

Manifest

Resource 

Manager

Industrie 4.0 component

Administration shell
With: virtual representation

With: technical functionality

a virtual representation of itself containing all relevant information related to the
physical, functional, and behavioral properties of the represented physical object
(see Fig. 5.1).

In order to properly design Industrie 4.0 components the virtual representation
has to be filled with information. But depending on the granularity of the component
within the hierarchical system architecture as well as depending on the life cycle
phase this information might be completely different.

Following research question RQ M1 described in Chap. 1, it is of interest
to identify requirements and architectures for Industrie 4.0 component modelling
addressing the multi-disciplinary nature. Considering research question RQ M2, it
is necessary to have a look at the information creation and use of any Industrie 4.0
component throughout its complete life cycle. Finally, following research question
RQ C2, it is relevant to link such multi-disciplinary information enabling a digital
shadow of the Industrie 4.0 component.

A representative example is an industrial robot applied within a welding shop of
a car manufacturer which consists of several welding cells. Both, the robot and the
welding shop, can be considered as an Industrie 4.0 component. During engineering
phase, relevant aspects for a robot are its mechanical and electrical construction.
Their corresponding digital shadow can be obtained from ‘mechanical engineering
information’ (MCAD) and ‘electrical engineering information’ (ECAD). The indi-
vidual instances of these information types are usually stored as drawings like TIFF
or JPEG or as special engineering files like STP or JT. For the complete welding
shop no detailed mechanical and electrical engineering is made, instead information
types like a list of used resources, resource throughput Key Performance Indicators
(KPIs), and costs KPIs are of interest, which can be coded by description means like
CSV files. During the operation phase the robot motions are controlled exploiting
detailed robot control program instances, while at welding shop level the order
assignment to the welding shop is relevant based on B2MML file instances. And

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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finally, during the removal of the production system, within its End-of-Life phase,
KPI of interests is the robot’s degree of abrasion, to decide about its reusability, and
meterials, to consider recycling possibilities. In contrast, for the welding shop, its
transferability to another location or country can be discussed.

Up to now there is no available approach, enabling engineers to decide about the
right information set to be covered by an Industrie 4.0 component and to decide
about applicable implementation technologies. These open issues will be tackled
within this and the subsequent two chapters.

Therefore, the main research question of these chapters is the following: What
are the requirements on the capabilities of Industrie 4.0 components to create,
manage, and use information along its complete life cycle.

To answer this main research question three research questions need to be
addressed beforehand:

Research question 1 What are relevant layers of Industrie 4.0 components in a
production system? Which layers can be considered at general and in which of
them can Industrie 4.0 components be found?

Research question 2 What is the life cycle of an Industrie 4.0 component?
Which main phases are necessary in this life cycle to distinguish an Industrie
4.0 component from their information content? What are general capabilities to
reuse information between life cycle phases of the same or of different Industrie
4.0 components?

Research question 3 What types of information must be assigned to an Industrie
4.0 component on the different layers to be covered by the virtual representation
throughout all life cycle phases of a production system? Are these information
types characteristic for the different layers?

Research question 4 Which description means are exploited to represent the
information types in these life cycle phases? Are there special description means
related to the different layers?

The named research questions are interrelated to the general research questions
identified in Chap. 1. In addition, they will be addressed not only in this but also in
the subsequent two chapters.

This chapter focuses on the discussion of Research questions 1 and 2. It will
develop a hierarchy of potential Industrie 4.0 components, describe their life cycle
and will give insights into the dependencies of life cycles of different Industrie
4.0 components. Thereby, the research questions RQ M1 and M2 of Chap. 1 are
addressed. It should be noted, that the Industrie 4.0 component hierarchy subsumes
elements like components. In this context the same words have a different meaning.

The following Chap. 6 discusses Research question 3. Here, the different
identified life cycle phases of Industrie 4.0 components are considered in detail.
For each phase, information types relevant within them are collected and discussed.
Thereby, the research questions RQ M2 and C2 of Chap. 1 are targeted.

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
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Finally, Chap. 7 is considering Research question 4. Here, description means for
the different information types are named. Out of them, a set of description means is
selected potentially being able to represent all relevant information for an Industrie
4.0 component and, thereby, being a starting point for the implementation of the
digital shadow of Industrie 4.0 components. Thus, it will be related to the research
questions RQ M1 and C2 of Chap. 1.

Since an exhaustive discussion of all possible kinds of production systems goes
beyond the scope of this chapter, the research questions will be only validated
against the background of discret manufacturing processes and the mixed-model-
manufacturing-lines applied within them. This decision is based on the one hand
on the scope of the Industrie 4.0 approach and on the other hand on the practical
experiences of the authors.

To answer the research questions the chapter is structured as follows. In Sect. 5.2
the applied research approach is described. The first research question is answered
in Sect. 5.3. Therefore, the identified layers hosting Industrie 4.0 components are
described. Afterwards, in Sect. 5.4, the life cycle of a production system is sketched.
Here, the main phases are given. With a summary the chapter ends.

5.2 Approach

In order to identify requirements on capabilities of Industrie 4.0 components to
create, manage, and use information along their complete life cycle the following
three research steps have been conducted.

At first, the different layers of manufacturing systems needed to be identified.
Therefore, various kinds of hierarchical structures of production systems have
been discussed on the basis of a literature survey. In addition, the structure of
different production systems used in automotive industry has been evaluated on a
practical level. As a result, a generic hierarchical production system architecture
has been developed that characterizes the functionality of each production system
hierarchy layer. This generic architecture has been verified by mapping several other
production systems to it, based on expert discussions.

In the next step, a general model of a production system life cycle, consisting
of three general life cycle phases and its sub-phases, has been applied to identify
relevant information considered within them.

As a result, a classification space for Industrie 4.0 components has been
developed covering the three dimensions production system hierarchy, life cycle
phases, and information description means. Within this space the different Industrie
4.0 components can be placed (see Fig. 5.2).

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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Fig. 5.2 Classification space for Industrie 4.0 components

5.3 Generic Production System Architecture

5.3.1 Literature Review

This section provides an overview of the different production system architectures
described in recent literature. The architecture types are analyzed with respect to
their layer structure. The main findings of this literature review are described below.

First of all, technical systems can be classified by various views, also named
aspects (DIN 2010), which are divided into the following four categories:

• Local aspect (focused on spatial relations between objects),
• Function aspect (focused on functional context of objects),
• Product aspect (focused on constructional relation between objects), and
• Further aspects (with focus on different aspects of objects).

The literature review showed that there is no consensus on which of these views
shall be applied for the hierarchy definition of production systems, instead depend-
ing on the field of interest researchers have defined diverging layer classifications
that can be mapped to four named aspects:

• Local aspect: The first set of generic production system architectures was derived
from real production systems that are currently used in various industries. These
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architectures are based on a factory planning point of view and consist of layers
such as networks, sites, segments, systems, cells, and stations. Generally, these
layers represent a specific manufacturing resource of a production system. Two
examples of this category can be found in Wiendahl et al. (2007) and Scholten
(2007).

• Function aspect: The second set takes a function-oriented approach. The layers
of these generic production system architectures represent technological manu-
facturing functions. Exemplary layers are cells, main function groups, function
groups, and sub-function groups. Three representatives of this category can be
found in Kiefer (2007) and Meling (2012).

• Product aspect: The third set of architectures focuses on the individual compo-
nents of a production system that define its physical behavior. This mechatronic
device-centered perspective defines layers such as function units, devices, and
device functions. Three representatives of this view point can be found in
Lindemann et al. (2009) and DIN (2013).

• Further aspects: The last set of architectures combines the above mentioned
aspects to an integrated structure. Two examples of this category can be found in
VDI (2015) and NA35 (2003).

In summary, a variety of different layer types is defined in literature which
represents both functions and physical objects. The physical objects range from
large physical system such as production networks to small and tangible objects
such as mechatronic devices and mechanical parts.

The architecture of production systems for manufacturing industry must meet
certain requirements for reuse:

• vertical integration,
• consistency in engineering, and
• functional connection.

The comparison of requirements for reuse with existing production system
architectures demonstrates that current production system architectures do not
focus on component reuse (see Table 5.1). In addition, it is hard to give an
exhaustive representation of the practically applied layers inside a production
system. Furthermore also RAMI 4.0 does not provide any element classification
enabling reuse of elements throughout all different parts of a production system.

Finally, the architecture of interest has to represent different sets of information
in the different layers. Therefore, the major challenge is to define the least number
of layers with the differentiable information volumes. Finally, there is the need to
complement existing production system architectures.

5.3.2 Hierarchy Layers

Based on the literature review and practical experiences gained within expert
interviews, an all-embracing and object-oriented set of production system hierarchy
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layers has been identified. This set of hierarchy layers serves to locate Industrie
4.0 components in a production system. For the identification of the objects, which
make up each layer, different criteria were defined. The primary criterion is the
technical functionality of each object. In the context of Industrie 4.0, technical
functionality refers to the function an object contributes to the overall function of
a production system. This can be a value-adding function, a function that supports
value-adding functions, or a function that is required to supervise, control, diagnose,
and maintain a production system. Additionally, the following subordinate charac-
teristics of a production system have been considered: the hardware modularity,
the control architecture, the control information, the relations to human labor,
the relevance of a production system within the different engineering phases and
activities, and the relations to the complexity of the product that is manufactured
within a production system. The set of hierarchy layers that has been identified
based on these criteria is shown in Table 5.2 and Fig. 5.3.

To assign an Industrie 4.0 component to one of the defined hierarchy layers, two
alternative matching procedures can be applied. The first alternative is to apply a
bottom-up approach. Starting with the lowest hierarchy layer (no. 1) the considered
component is compared to the functional characteristics of each layer, until a layer
is found whose characteristics exceed the required functionality. Alternatively, it is
also possible to match an Industrie 4.0 component to a specific hierarchy layer using

Table 5.2 Hierarchical structure model

Layer Characterization

9 Production network Includes the strategic and long term sales planning of the
products of a company

8 Factory Considers the entire range of activities and facilities required to
produce end products or an intermediate good

7 Production line Enables a distinction among different sections of a production
system which are producing and processing components of the
end product using different manufacturing technologies

6 Production line
segment

Connection of different Work Units via buffers. Thereby,
disturbances within the product/component/material flow can
be controlled

5 Work unit Executes the smallest non-divisible process in producing the
end product

4 Work station Represents the manufacturing related realization of a set of
value adding and auxiliary functions required for the smallest
non-divisible process

3 Function group Represents the technical realization of one value adding or
auxiliary function required for the smallest non-divisible
process

2 Component Enables the smallest non-divisible process
1 Construction element Are not enabling the fulfillment of the smallest non-divisible

process directly but enable the Component to provide their
functionality
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a top-down approach. Every hierarchy layer can be understood as an aggregate of
all lower layers. Thus, a component can be assigned to the highest layer (no. 9) that
matches its functional characteristics.

To identify the information that is required to perform the matching process
described above, a detailed process analysis of production system life cycle phases
was conducted. The analysis is based on the procedure described in Schäffler et al.
(2013) and focuses on the functional characteristics that determine product related
value-adding processes.

The value adding functionality of each Industrie 4.0 component serves as
the main criterion to determine the associated hierarchy layer. However, certain
manufacturing resources of production system (e.g. press shop, body shop, assembly
shop) exhibit functional characteristics that can be assigned to multiple layers.
Therefore the functionality criterion is companied by resource life cycle information
that ensures a conclusive layer distinction. Thereby, a clear separation of layers and
a clear assignment of Industrie 4.0 components to layers get possible.

The architecture depends on the complexity of the production system. Complex
production systems partially require supplementing layers. Furthermore the archi-
tecture can contain cross directional structures like work groups or protective circles.
Cross directional structures are not useful for defining layers mainly due the lack of
unambiguous attribution.

This criteria enrichment process results in a detailed characterization of each
hierarchy layer that allows a practical distinction of Industrie 4.0 components used
in manufacturing (particularly automotive industry) environments. The function-
based identification criteria are presented below.

Construction Elements
The smallest and non-dismountable functional parts in a production system are
defined as construction elements. Construction elements empower the functionality
of components. They are able to influence product characteristics, but cannot indi-
vidually initiate value-adding processes. One example demonstrating this element-
component-relationship is a rotary spray painting bell and a paint atomizer. The bell
embodies an individual construction element of the paint atomizer component.

Components
Components can be subdivided into process and control components. Control
components process electric signals. They are often used for diagnostics and
are not directly involved in value-adding activities. Process components support
manufacturing processes and influence product quality characteristics. These com-
ponents can be subdivided into value-adding components and non-value-adding
components. Value-adding components empower core value adding processes. A
list of these processes such as gluing or welding can be found in DIN (2003)
and VDI (1990). Non-value-adding components exclusively support to perform
the process realization. One example for such components are robots that are
used as mounting devices for value-adding components such as welding tools.
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Generally, all components that serve material-handling purposes are non-value-
adding components. Process components feature a predetermined range of functions
that can be parameterized and adapted to individual needs.

Function Group
Function groups are able to individually perform manufacturing processes or
supportive tasks (DIN 2003; VDI 1990). Generally, solely value-adding function
groups determine product quality characteristic. However, in certain circumstances
non-value-adding function groups also influence product quality. A handling device,
for instance, that positions parts to perform a gluing process is also responsible
for the quality of the gluing application. Faulty positioning might result in rework.
Additionally, specialized multi-functional devices are able to perform both value-
adding and non-value-adding activities. Most steel presses reshape and cut steel and
also have material handling capabilities.

Value-adding function groups are usually used to manufacture single parts and
typically incorporate some kind of robotic application that performs manufacturing
processes such as gluing or welding. Such processes need to be coordinated and
supervised by a control unit.

Work Station
Work stations aggregate multiple function groups that are required to manufacture
single parts or (sub)-assembly groups. They usually combine value-adding and
non-value-adding processes. For instance, multifunctional gluing work stations that
are used in automotive assembly for bonding window frames to the windshield
both position parts and perform the actual gluing process. Work stations such as
automated gantry manipulators or picking stations do not perform any value-adding
activities.

Work Unit
Work units perform multiple interrelated value-adding activities that are required to
manufacture a component of a final product. To complete a work order, all functional
activities that are performed within one work station are repeated “m”-times (REFA
1993). Work units define the product characteristics of a specific part or component.
All manufacturing activities are completed in a closed and spatially connected
system (e.g. door welding, sunroof assembly). Thus, a work unit embodies the
highest hierarchy layer that is able to directly influence product quality and that
determines the product characteristics of single parts or components. The range of
work station functions contains value-adding and non-value-adding activities.

Production Line Segment
Production line segments offer a defined and homogeneous range of functions and
provide a connected manufacturing structure. This structure is used to manufacture
part modules and components. The scope of a production line segment depends on
the vertical range of in-house manufacturing. Product quality characteristics are not
directly determined on this hierarchy layer. The control parameters of production
line segments are, for instance, assembly or body shop welding sequences.
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Production Line
Production lines serve as autonomous and closed systems that are able to produce
physical output (Laucht 1995). The range of functions provided by a production
line exhibits homogenous characteristics and enables to manufacture components,
final products, or product segments. The characteristics and scope of a production
line depend on its spatial organization patterns. Usually, production lines require
personnel planning. They are often used in a just in time or just in sequence
production setting that is synchronized with internal and external entities that supply
intermediate goods.

Factory
Factories provide the entire range of functions that is required to manufacture an
intermediate good, a final product, a product segment, or an entire product portfolio
(REFA 1993). However, the range of specific functions of a factory depends on
individual company related characteristics. Factories require both tactical and oper-
ational planning. This includes tasks such as freight cost optimization, requirements
analysis, forecasting, material supply planning, and production scheduling.

Production Network
Production networks are responsible for strategic long-term distribution/sales plan-
ning (<10 years) and intermediate-term tactical planning (<3 years). In addition,
also operational interdisciplinary tasks such as order management, product data
management, and technical feasibility testing are performed on this hierarchy layer.

5.4 Production System Life Cycle

To efficiently identify the relevant information needed to be assigned to the
components of the different layers it is essential to understand completely the life
cycle of a production system with its different phases and the dependencies among
them.

The life cycle of production systems has been considered by several authors.
Attri and Grover (2012) have provided a detailed survey on different models for
production system life cycles summarizing them to the main phases initiation
of system, design and development of system, operation of system, revision of
system, and termination of system. Wiktorsson (2013) has a more limited view
on the production system life cycle with only production system engineering and
production system operation as main phases. Beyond this view also the End-of-Life
of the production system is essential following the reduction of a production system
life cycle and the need of sustainable use of natural resources.

Thus, the authors decided to focus on the three general but essential life cycle
phases of a production system: engineering, operation and maintenance, and End-
of-Life (VDMA 2013; VDI 2005). They are aware that there are much more
distinguishable engineering phases. As Lindemann has identified in (Lindemann
2009), the life cycle of products (and thereby also production systems) is a hierarchy
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of different phases, activities, and actions. This hierarchy can be considered in
different level of detail. In addition, a cyclic life cycle structure is reached if redesign
is also taken into consideration. The selected very low granularity follows the
aim of enabling a broad application of the identification criteria for Industrie 4.0
components.

The engineering phase covers all activities related to the production system
before its complete physical existence. It ends with a completely built up/installed,
commissioned (see Chap. 15), and ramped-up production system. Within this phase
all engineering activities related to a production system, as named e.g., in Lüder
et al. (2011), are included. Examples of the engineering activities are the product
design including the definition of the bill of material and bill of operation of the
product to be produced with the production system, the planning of the overall
production process and the technologies used within, the functional engineering
covering activities like detailed mechanical and electrical engineering of the
production system components, and the control system design and programming
as well as the commissioning and test of the production system.

The subsequent operation and maintenance phase of the production system
covers the complete period of the use of the production system to manufacture
products. During this phase the production system is controlled, monitored, repaired
if necessary, and partially rebuilt if modernization is necessary in order to adapt the
production system to different sets of products, production technologies, etc..

The last phase of the production system life cycle is the End-of-Life phase of the
production system. It covers the period of the production system between the end of
the production of the last product and the restoration of the so-called greenfield; It
is the complete removal of the production system. During this phase the production
system is disassembled, possibly completely or partially reused, and/or recycled.

The resulting structure of the life cycle of the production system is depicted in
the upper part of Fig. 5.4.

But the use of information is not only relevant within the life cycle of the actual
production system—The information can also be used within the life cycle of other
production systems [see VDI/VDE (2014)]. With respect to this chapter the impact
of the life cycle of one production system on the life cycle of another’s production
system life cycle is considered.

As shown in Fig. 5.4 different cases of utilization of information are considered
ranging from the use of engineering information in the same engineering phase (①
in Fig. 5.4) over use of information of the operation phase within the engineering
and operation phases of another production system (⑤ and ⑥ in Fig. 5.4) to the
use of engineering information in the End-of-Life phase of the same production
system (⑧ in Fig. 5.4) or End-of-Life information in the engineering of another
production system (⑩ in Fig. 5.4). The End-of-Life phase—as the last phase—has
more cases than the other phases since, at first, it can use the information created
in the previous phases and, secondly, it directly connects the life cycle of the actual
production system with the life cycle of other production systems.

http://dx.doi.org/10.1007/978-3-319-56345-9_15
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Fig. 5.4 Reuse of physical and information artifacts in production system life cycle

For each of the nine identified layers and each phase of the three life cycle phases,
the relevant information shall be named completing the matrix depicted in Fig. 5.5
and answering the second research question.

5.4.1 Characteristics of Engineering Phase

To identify the information relevant for Industrie 4.0 components in engineering
and to assign this information to the presented granularity layers of the components,
a detailed look at different engineering approaches and tasks is essential. The focus
of the research is on the analysis of the dependencies between the granularity layers
and the life cycle phases. In order to analyze the dependency in more detail, the point
of time in the life cycle at which the artifacts are generated or are used should be
considered. Therefore, the engineering phase has to be divided in smaller parts to be
able to assign the identified artifacts more precise to the point of time at which they
are generated or are used. Thus, the characteristics of the engineering are described
in the following paragraphs to divide the phase into meaningful subphases.

The guideline VDI 2221 (VDI 1993) is an important general approach for
engineering. This guideline separates the whole process into different tasks. The
tasks end with defined results. The first results have an abstract character, e.g.
function structures, and become more and more specific in later phases, e.g. fixed
layouts. Thus, the process can be divided in four phases which are different
depending on industry or use case.
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Fig. 5.5 Artifacts during the different life cycle phases need to be identified

Exploiting the general guideline VDI 2221 (VDI 1993), other engineering
approaches like NA35 (2003), Höffken and Schweitzer (1991), VDIa (2010), Gepp
(2014), and Urbas and Krause (2012), project management guidelines like Reschke
and Svoboda (1984) and several practical approaches in plant realization, the
engineering process can be characterized in a more specific way (see Fig. 5.6).

The engineering phases contain defined tasks. The phase of concept is focused by
invest decisions, general studies and proposition. If this concept is feasible, rough
planning will be started. The phase of rough planning is focused by dimensioning
of production system and definition of processes. The next phase is detailed
planning during which the defined processes are assigned to related single functions.
Also, components relevant to perform these functions are preselected. As a result,
specifications are ready to call for tenders. Specifications contain among others
a fixed budget, layouts, a value chain process, a preselection for components,
requested suppliers, relevant components to perform needed support functions. The
following phase of design is often operated by a general contractor. In this phase,
the necessary components are defined. There are certain parts and tools which have
to be newly designed for a special purpose at this stage. The phase of design can be
divided in separate disciplines, i.e. mechanical, electrical, information technology
and fluidics design, see more in VDI (2006). As a result, plans and documentation
needed to fabricate the designed plant are finished. In the following two phases
of engineering, fabrication and commissioning, the components and equipment are
ordered, assembled to a functioning plant and commissioned. Commissioning ends
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Fig. 5.6 Phases in plant engineering based on Gepp (2014), Höffken and Schweitzer (1991),
Urbas and Krause (2012), Reschke and Svoboda (1984), and NA35 (2003)

with the rework of documentation due to actual realization and performance level.
The project is finished upon completion of final report and customer acceptance.

A challenge in present engineering projects is related to market pressure.
Time-to-market has to be as short as possible to be competitive. Thus, there are
special demands on information quality, handling, availability and transfer due to
parallelization of tasks. Much information created in one task has to be transferred to
other disciplines at a defined date in order to conclude the other tasks. Parallelization
of tasks and transfer of information and data is supported by tools of the digital
factory, see more in VDI (2011). Vice versa, the needed information transfer makes
high demands on applied tools of digital factory. To deal with the challenge,
identification of relevant information and its relations is necessary, especially in
engineering.

Exploiting the design methodology for mechatronic systems VDI 2206 (VDI
2006) given in Fig. 5.7, a first characteristic of suitable information can be deviated.

Engineering starts with system design therefore needs information relevant
for the whole system, e.g. requirements, economical data, and proposition of
production system. In the domain-specific tasks, information related to these special
purposes is necessary. The information is highly dependent due to parallel design
of mechatronic components in each discipline. The information important at this
stage contains data for single components and function groups rather than system
information. Towards the end of engineering, during the system integration, the
relevant information emerges to system data, as the components are assembled and
interact in a system.
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mechanical engineering
electrical engineering

information technology

modeling and model analysis

productrequirements

Fig. 5.7 V model for engineering of mechatronic products (VDI 2006)

To summarize, in this section, an overview of general engineering approaches
and of the importance of the information identification and the handling in current
digital-supported engineering projects was given. The next Sect 5.4.2 deals with the
characteristics of the Operation and Maintenance Phase and the related demand on
information artifacts in this phase.

5.4.2 Characteristics of Operation and Maintenance Phase

The engineering phase of a production system concludes with the construction,
commissioning and finally the ramp-up of the physical production system (Schenk
et al. 2014). When the production system has eventually transitioned into a steady
state, it can be fully exploited (Attri and Grover 2012). In this phase, usually called
use phase or operation phase [see Dencovski et al. (2010), Schenk et al. (2014),
and Attri and Grover (2012)], the participating elements of the system need to
communicate with each other in order to be productive (VDI 2015).

The operation phase is characterized by a various set of control activities. First,
on one side of the spectrum, sensors and actuators need to be controlled in order to
perform physical processes on field level. This is usually realized by implementing
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programmable logic control (PLC). Second, there are control activities designated
to the allocation and supervision of manufacturing resources that are used for the
processes on field level. Those activities are performed by manufacturing execution
systems (MES). Finally, at the other end of the spectrum, there are activities
for planning and control of business and management tasks. The goal of these
control activities is the optimization of the underlying processes, while at the same
time considering the available resources. These tasks are executed by Enterprise
Resource Planning Systems (ERP). For further information, see Lüder (2006), ZVEI
(2010), and Spath et al. (2013).

Production planning and control activities in operation phase have been described
by a broad set of authors. One of the most common and most frequently cited models
is the “Aachen Model of Production Planning and Control” originally published by
Luczak et al. (1998). It splits the activities into the three main categories network,
core and cross-sectional activities (see Fig. 5.8).

Since its first publication, the Aachen Model has been frequently updated and
is now continued by Schuh and Stich (2012), ensuring that its core principles are
still valid today. However, the model lays its focus mainly on the planning part.
Other authors have addressed this issue and developed models with a stronger focus
on production control. Two important contributors in the context of manufacturing
industry are Lödding (2008) and Dörmer (2013). Lödding (2008) concentrates on
the configuration aspect of manufacturing control and thereby puts the emphasis on
control tasks, such as order authorization and capacity control. This allows tracking
of key performance indicators such as delivery reliability, material inventory, lead
time and equipment utilization. Dörmer (2013) on the other hand adds crucial
elements for highly individualized products in the manufacturing industry. Among
them are material delivery as part of the supply chain and resequencing of
production orders to optimize production efficiency and effectiveness.

In addition to the above-mentioned activities, the different aspects of the
automation pyramid need to be considered in order to break down production
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Fig. 5.8 Production planning and control activities following (Schuh and Stich 2012)
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activities to field level and guarantee functionality, e.g. by ensuring compatibility
between the different systems and real-time capability of critical components. For
further information, see Vogel-Heuser et al. (2013) and Diedrich et al. (2011).

The foregoing shows that the control activities and therefore the information rel-
evant in operation and manufacturing phase are numerous and can be very different
from each other. Nevertheless, in order to implement the required functionalities into
Industrie 4.0 components they have to be integrated by the available implementation
technologies for control systems [see e.g. Lunze (2008), Kiehl (2007), Kis (2014),
Yang et al. (2014), and Leitao and Karnouskos (2015)]. A step towards this goal is
described in the following section.

5.4.3 Characteristics of End-of-Life Phase

Devaluations bring the production system’s operation phase to an end (Seliger et al.
2001). When all inherent flexibility and reconfiguration potentials are exhausted as
well as all upgrade and update possibilities (Wiendahl et al. 2015), the production
system has to be decommissioned, disassembled, removed, reused, recycled, and
disposed (Weber 2008; VDI 2005) to make room for another production system,
then, it is engineered to meet the changed requirements which come along with the
demand of producing new products or a new product mix for the customers. This last
phase of the production system life cycle is called End-of-Life phase (EoL phase).

The essential purpose of the EoL phase is to make room for a new production
system. But how it is removed depends on the further purpose and how the
production system (incl. its components and material) shall be treated in the end
of its life. Hence, the EoL phase is use case specific but general treatments, further
called EoL Scenarios, can be identified.

This chapter only focuses on those scenarios (representing the recovery of
physical artifacts—including disassembly) and excludes the (decommissioning)
activities which bring the production system into a safe state prerequisite to recover
the physical artifacts.

To depict the scenarios in its entirety the production system life cycle (as
described in Chap. 3) needs to be extended to get an overall loop—here, with the
earth and its natural resources as source and sink (see Fig. 5.9). It begins with
mining these resources, which are processed to raw material for manufacturing out
of it single components. Those components are aggregated to the production system
which is, then, producing products for the customers (use of the production system).
Due to requirement changes, like trends or technical progress (Seliger et al. 2001),
the use phase of this production system configuration ends. Finally, the production
system is disposed or incinerated which closes the loop. This life cycle comprises
other life cycles, like the life cycle of a component or of material, but these are out
of the scope of this article.

Even though, just disposing or incinerating the production system is also a loop,
all inherent value of the production system and its components is lost, because all

http://dx.doi.org/10.1007/978-3-319-56345-9_3
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Fig. 5.9 Extended life cycle of a production system: End-of-Life scenarios of production systems
[based on VDI (2002), Duflou et al. (2008), Pahl et al. (2007), and Seliger et al. (2001)]

phases (production of raw material, component manufacturing etc.) has to be done
a second time. For that reason, this is not considered in this article. Instead the
following EoL scenarios are considered:

EoL 1—Material Recovery: This comprises the recovery of material, the com-
ponents are made of, by dissolving the component and its structure (Duflou et
al. 2008). It is applied when devaluations had brought the operation phase of
a production system to an end, and the technology of the components of the
production system is obsolete or the component is too worn to consider it for a
second life.

EoL 2—Component Recovery: This comprises the reuse of used components
of the production system, because the life span of those is longer than the life
span of the production system (Huber 2001). It is applied when devaluations had
brought production system’s operation phase to an end, but the technology of the
components is still up-to-date. This scenario can be divided into direct Compo-
nent Recovery (EoL 2a) and Component Recovery after remanufacturing (EoL
2b); Remanufacturing comprises the activities disassembly, inspection, cleaning,
reprocess, testing, reassembly, and storage.

EoL 3—Production System Recovery: This comprises the reuse of the used
production system. It is applied when the production system needs to be relocated
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due to devaluations, i.e. changed requirements caused by globalization, but the
technology of the production system is still appropriate for its purpose. This scenario
can be divided into direct Production System Recovery (EoL 3a) and Production
System Recovery after remanufacturing (EoL 3b).

Decommissioning and disassembling activities lead up to those recovery scenar-
ios.

Since natural resources are used extensively, pollutant emissions are generated in
high amount, and the ecological awareness of the people is increasing, nowadays,
(VDMA 2015) a consideration of manufacturing from a sustainable point of view
is inevitable (Schultmann 2004). So, it is of economic and environmental interest to
choose an appropriate loop to close the life cycle of a production system. This loop
should be kept small to recover the inherent value of the production system and
its components and material (Duflou et al. 2008; VDMA 2015). The more inherent
value can be remained by recovery, in general, the better, because less energy is
consumed, less resources are depleted, and less waste is generated (Duflou et al.
2008).

5.5 Summary and Outlook

This chapter has analyzed what are relevant layers of Industrie 4.0 components
in a production system. In this context nine layers for Industrie 4.0 components
were identified and characterized by generalizing an exemplarily automotive man-
ufacturing environment and validating this structure in various industrial systems.
Figure 5.10 shows a comparison of hierarchy layers. The defined layers allow an
unambiguous attribution of elements to the layers of a production system with
a one-to-one relationship. Consequently, the developed hierarchy is applicable
for production systems with comparable complexity and research question 1 is
answered.

The developed hierarchy serves as a foundation for the reusability and modular-
ization of Industrie 4.0 components. First of all, the modularization aspect refers to
the construction phase. Components that have been previously used can be easily
integrated in new construction concepts. This process leads to lower equipment
development cost. Secondly, modularization also offers saving potentials with
regard to maintenance activities. Outdated or broken modules can be exchanged
with minimal effort. In general, the reusability of engineering artifacts creates a
tremendous equipment cost reduction potential. The experience gained from tested
and successfully implemented components gradually improves the engineering
quality of components implemented in the future (e.g. equipment availability/down
time).
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Furthermore, this chapter provides the life cycle of an Industrie 4.0 component.
This creates the necessary conditions to identify the relevant information needed to
be assigned to the components of the different layers in Chap. 6.
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Chapter 6
Identification of Artifacts in Life Cycle Phases
of CPPS

Arndt Lüder, Nicole Schmidt, Kristofer Hell, Hannes Röpke,
and Jacek Zawisza

Abstract Recent research and development activities within the field of production
system engineering and operation focus on the increase of production system flexi-
bility and adaptability. One common issue of those approaches is the consideration
of hierarchical and modular production system architectures where the individual
components of the system are equipped with certain functionalities and information.
Up to now there is no common understanding about what a component constitutes,
i.e. which parts of a production system can be regarded as components within the
hierarchy and which functionalities and information are assigned to it. This gap will
be closed within this, the prior, and the subsequent chapter.

They will at first discuss the relevant layers of components in a production
system, then the types of information required to be assigned to a component on
the different layers to establish a virtual representation of the component, and at
last the description means exploitable to represent the identified information in the
different life cycle phases of a production system.

This chapter in particular will consider in detail the information sets relevant for a
production system component along the life cycle of a production system. Relevant
artifacts are identified for each of the three main life cycle phases described in
Chap. 5, assigned to the different layers of the production system hierarchy, and
discussed against main cases of information reuse within the life cycle of production
systems. Through this, it is intended to enable an identification of hierarchy layers
based on relevant information sets.

Keywords Industrie 4.0 component • Administration shell • Life cycle informa-
tion • Virtual representation

A. Lüder (�) • N. Schmidt
Faculty Mechanical Engineering, Otto-von-Guericke University, Magdeburg, Germany
e-mail: arndt.lueder@ovgu.de; nicole.schmidt@ovgu.de

K. Hell • H. Röpke • J. Zawisza
Volkswagen Aktiengesellschaft, Wolfsburg, Germany
e-mail: kristofer.hell@volkswagen.de; hannes.roepke@volkswagen.de;
jacek.zawisza@volkswagen.de

© Springer International Publishing AG 2017
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_6

139

http://dx.doi.org/10.1007/978-3-319-56345-9_5
mailto:arndt.lueder@ovgu.de
mailto:nicole.schmidt@ovgu.de
mailto:kristofer.hell@volkswagen.de
mailto:hannes.roepke@volkswagen.de
mailto:jacek.zawisza@volkswagen.de


140 A. Lüder et al.

6.1 Introduction

The main research questions of the previous chapter, of this chapter and the sub-
sequent chapter is the following: What are the requirements on the capabilities
of Industrie 4.0 components to create, manage, and use information along its
complete life cycle?

In this chapter, the aim is to identify relevant artifacts in the life cycle phases of
CPPS. As the Industrie 4.0 component (I4.0 component) concept is a possible form
of realization for future CPPS in production systems (see Chap. 5), the relevant
information for I4.0 components will be analyzed.

The demands on the technical realization of the administration shell, which
should contain the relevant information, have not been examined so far. One impor-
tant step to define these demands is to identify the types of information dependent
on the granularity of an I4.0 component and on the life cycle phase in which
the information in generated. This chapter focusses on information necessary for
current production systems which are also important for future production system.
These future systems will require additional information for their comprehensive
functionalities. But currently, it is not possible to estimate all the required additional
information. Due to this fact, the types of information are identified which must be
considered even in future I4.0 component based production systems.

Derived from this gap and to answer the main research question, four subordinate
research questions need to be addressed (see Chap. 5 for the overall view). This
Chap. 5 deals solely with the Research question 3, which is:

Research question 3: What types of information must be assigned to an Industrie
4.0 component on the different layers to be covered by the virtual representation
throughout all life cycle phases of a production system? Are these information
types characteristic for the different layers?

In this chapter, description means for the different information types are iden-
tified. Out of them, a set of description means is selected potentially being able
to represent all relevant information for an Industrie 4.0 component and, thereby,
being a starting point for the implementation of the digital shadow of Industrie 4.0
components. Thus, it will be related to the research questions RQ M1 and C2 of
Chap. 1.

In addition, as the identified information sets are based on the consideration of the
different life cycle phases of a production system it will also contribute to research
questions RQ M2.

As a limitation of this chapter, the management process to handle the information
is not considered here. An analysis of the required management process can
be found in Chap. 2. Another limitation of this chapter is the not considered
management information, which is necessary to handle the management process that
supports the use of I4.0 components. This topic is specially addressed in Chap. 6.

To systemically cover the life cycle of an I4.0 component, three main sections
are distinguished. Section 6.2 addresses the engineering phase, Sect. 6.3 addresses

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_6
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the operation and maintenance phase and Sect. 6.4 addresses the end-of-life phase.
Each of these sections includes life cycle specific cases (presented in Chap. 5) which
envision certain possibilities by the use of I4.0 component information. This chapter
ends with a summary and an outlook in Sect. 6.5. Based on the results of this chapter,
the following Chap. 7 will focus further on the demands of the virtual representation
of I4.0 components.

6.2 Engineering Phase

In this section, the identified relevant information of Industrie 4.0 components (not
to be confused with the Component Layer in Chap. 5) during the engineering phase
is presented. The phase of engineering is the beginning of the production system life
cycle, described in Chap. 5.

After having a deeper understanding of the demands and the use of Industrie
4.0 components in engineering (see Chap. 5), in Sect. 6.2.1, the approach for the
identification of relevant artifacts, generated in the engineering phase, is presented.
In Sect. 6.2.2, the identified information needed for major engineering tasks is
described. In Sect. 6.2.3 three cases are presented (see Chap. 5). These cases are
examples of effective usage and new opportunities of cyber-physical Industrie 4.0
components in engineering exploiting the available relevant information artifacts.

6.2.1 Approach for the Identification of Artifacts
in the Engineering Phase

In order to identify the relevant types of information for an Industrie 4.0 component,
a detailed analysis of the engineering processes has been executed. The process
analysis followed the method which is described in (Schäffler et al. 2013). This
method addresses the special needs for the artifact identification in the engineering
phase. As a result, the engineering processes have been modeled as a network of
engineering activities executed by humans, creating and exchanging engineering
artifacts, and exploiting engineering tools.

In a second step, the relevant information types have been mapped to the layers
of the previously defined generalized hierarchical production system architecture
within the engineering phase (see Chap. 5). Thus, the engineering information
relevant for an Industrie 4.0 component on a certain hierarchy layer, to be covered
by a virtual representation, could be identified. The information types have been
analyzed which resulted in the identification of main criteria that characterize each
production system hierarchy layer for the engineering phase.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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6.2.2 Identification Criteria for Artifacts in Engineering Phase

To answer the research question for engineering phase, the relevant engineering
information has to be assigned to the identified different layers of the production
system hierarchy. The results are based on the process analysis, mentioned in
Sect. 6.2.1.

Here, the identified artifacts and tools as well as their assignment are presented.
As there is a large amount of different engineering artifacts, only major artifact types
will be named here. A more detailed description of the assignment can be found in
(Hell et al. 2016).

6.2.2.1 Requirements

Initial requirements coming from the product design, like number of parts or
specified joining processes, coming from economical departments like choice of
location, and coming from legal authorities.

6.2.2.2 Layouts and Visualizations

Block layouts define the set of manufacturing resources at Work Unit Layer within
a production system and put them in a logical interrelation.

2D layouts represent the placement of resources within a factory building. There
are conceptual layouts, rough layouts and other 2D layouts for more detailed
information, like a transport system related 2D conveyor system layout.

3D layouts provide a more detailed representation of the resources of a single
Work Unit. They remain in a conceptual state covering Work Stations, Function
Groups and their geographical locations. There are for example 3D rough layouts,
3D layouts including electronics.

6.2.2.3 Basic Specifications

The basic specifications contain general definitions of production system com-
ponents. They cover for example the component quantity structures, interrelation
structures between manufacturing processes and resource structures like cycle time.

6.2.2.4 Behavior Models

Behavior Models describe the production system behavior ranging from abstract
models like Gantt charts down to simulation based decision models.
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6.2.2.5 CAD Construction

The CAD construction contains detailed mechanical and electrical construction of
the production system often named MCAD and ECAD.

The part list is a register of all components or elements of the production system
which have to be purchased.

Simulation models are usually developed to validate availability and function-
ality of interacting components of production system, e.g. virtual commissioning
or accessibility analysis. Control programs subsume the complete set of software
developed to control the production system, e.g. human machine interfaces (HMI),
programmable logic controllers (PLC), and robot programs.

The power supply concept represents the detailed engineering of the energy
supply for elements of the production system.

The fluidic plans cover the engineering of the hydraulic and pneumatic systems.
The safety concept contains the detailed engineering of relevant safety related
features.

The identified information can be assigned to the different layers of the produc-
tion system hierarchy by considering the engineering tasks within the engineering
life cycles and the hierarchy levels they address. As a result the assignment
presented in Fig. 6.1 can be concluded.

At the Construction Element Layer, the most detailed engineering information is
relevant, i.e. part lists, mechanical and electrical specification, CAD construction,
and electrical construction.

Information assigned to the Component Layer contains basic specifications and
behavior models like joint locations, 3D layouts, part lists, mechanical and electrical
specification, CAD construction, control programs, electrical construction, detailed
behavior models, and simulation models.

At Function Group Layer, the engineering information is more abstract like basic
behavior models, 3D layouts, specifications, control programs, safety concept, and
simulation models.

At Work Station Layer, also rough and detailed engineering information can
be mapped. Here, basic behavior models, 3D plans, 3D layouts, mechanical and
electrical specifications, control programs, safety concept, detailed behavior models,
and simulation models are relevant.

At Work Unit Layer, the detail level of engineering information decreases;
mapped artifacts are basic behavior models, specifications, 3D layouts, and safety
concepts.

At Production Line Segment Layer, only 2D layouts are still relevant. Finally, at
Production Line Layer, requirements and 2D layouts are considered.

At Factory and Production Network Layer, the analysis has not provided
engineering information of interest. Considering usual engineering processes, only
requirements and economical and technical constraints might be relevant on these
layers.

To summarize the research for the engineering phase, we executed an identi-
fication of relevant information and its assignment to Industrie 4.0 components on
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different hierarchy layers. Some information cannot be mapped to a single layer, but
spans several ones. Nonetheless, there are characteristic sets of information types on
the different layers relevant for use of Industrie 4.0 components in the engineering
phase.

6.2.3 Usage of Engineering Phase Artifacts

The engineering of production systems can be very complex and may cover several
different engineering steps as indicated in (Lüder et al. 2011). It is out of the scope
of this chapter to discuss the different versions of engineering processes in detail. A
possible insight is given for example in Chaps. 2, 4, and 9 or in a more general view
in (Lüder et al. 2011).

In this subsection, three cases are presented. All of them deal with the reuse of
engineering artifacts (see cases 1–3 in Chap. 5). The difference is the direction of
their information flows as well as sender and addressee.

http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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Case no. 1: Reuse of Engineering Artifacts Within Engineering Phase
Case no. 2: Reuse of Engineering Artifacts in Engineering Phase of Other

Projects
Case no. 3: Reuse of Engineering Artifacts in Operation and Maintenance

Phase Within One Project or in Other Projects

The analyzed cases come from a sunroof assembly plant. The cases, covering the
engineering phase, focus on the plant’s robots with their related wear-data and other
information artifacts.

Case no. 1: Reuse of Engineering Artifacts Within Engineering Phase
Considering the availability and correct assignment of the entire identified relevant
engineering artifacts of each Industrie 4.0 component on different production
system layers and its information storage in a systematic repository, reuse of these
information engineering artifacts becomes one promising case. Based on reuse of
artifacts in software engineering (see Sametinger 1997), the method of reuse in
mechatronic engineering as considered in (VDI 2010) becomes feasible by effective
usage of related artifacts to cyber-physical Industrie 4.0 components.

To exemplify the reuse of robot wear-data within the phase of engineering, which
is available in the Industrie 4.0 administration shell on Component Layer, the task
of device approval is the first step to emphasize. The approval contains a test of
devices and components under defined condition. Thus, an offering of devices,
integrable in plant design, is made. Depending on operational purposes, the engineer
chooses devices out of the offering. An operational purpose can be the amount of
planned movements of a robot. Then, a risk analysis can be performed by comparing
the planned movement during operational phase to the amount of movements
successfully tested in the approval of devices or to the specified durability given by
the robot supplier. In this case, the artifact of robot wear-data, especially maximal
durability, is reused within engineering phase to approve the robot, to choose an
adequate robot depending on its operation purpose and to perform a risk analysis
based on this artifact.

Case no. 2: Reuse of Engineering Artifacts in Engineering Phase of Other
Projects
Another case is the reuse of robot wear-data within the engineering phase, but
another project. It is the same phase, but in another project with time offset, i.e. a
subsequent project. If the artifact is available in the administration shell that contains
the robot on Component Layer, this artifact can be reused to improve engineering
time and quality. Availability includes the aspects data existence, systematical data
storage, data validity, data traceability, data findability, and easy accessibility to
relevant data in subsequent projects.

Exploiting the continuous availability of robot wear-data of a previous project’s
engineering phase, the decision on the robot type during Component selection in a
subsequent project with comparable operation purposes becomes easier and more
reliable. In addition, former results of a performed risk analysis can also be reused
in subsequent projects to improve the process of device approval.
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Fig. 6.2 Necessary data availability for Industrie 4.0 components exemplified through robot wear-
data

Figure 6.2 shows the layer-based reuse of wear-data related to the Industrie 4.0
concept in a subsequent project in more detail. On Layers 4 and 5 the production
process data is available to compare the original operation purpose to the one of a
subsequent project. On Layer 3, information about Function Group Components
is available. Thus, this information can be used for Component selection in a
subsequent project. On Layers 1 and 2, approvals of Components and Construction
Elements are available, which contain the tested and permitted maximum amount
of movements. This information can be used in engineering of a subsequent
project to support the phase of design. The date of necessary availability of
relevant information in subsequent projects depends on the engineering task. Thus,
information located on different production system layers is needed at different time
slots, as shown in Fig. 6.2.

Case no. 3: Reuse of Engineering Artifacts in Operation and Maintenance
Phase of Same and Other Projects
Case No. 3 deals with the information flow of engineering artifacts from engineering
phase to operation phase (see case 3 in Chap. 5).

An example for this artifact reuse would be the transfer of a robot maintenance
plan or of an instruction about change of robot gear related to its use in the operation
phase. These artifacts are created in the engineering phase, but are reused in the
operation phase in order to improve maintenance. The transfer of these artifacts
within one project, from engineering to operation phase, is a common example of
comprehensive information artifact reuse. The presented maintenance information

http://dx.doi.org/10.1007/978-3-319-56345-9_5
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could be stored in the administration shell of Industrie 4.0 components, which are
mapped to Component Layer (Layer 2).

A related case, and therefore included in No. 3, is the reuse of engineering
artifacts of a predecessor project in the operation phases of subsequent projects, i.e.
of other projects, recognizable by a dotted arrow (see case 3 in Chap. 5). An example
is the transfer of revised instructions about change of a robot gear related to its use
in operation phase. This revised instruction could be the result of a new robot strain
analysis in the engineering phase of a subsequent project, which caused a modified
robot approval. This information, which is created in a subsequent project, would
improve the operation phase of a predecessor project.

6.3 Operation and Maintenance Phase

The virtual representation of Industrie 4.0 components is designed to interpret and
process specific control information appropriately, in order to perform a certain task
during the operation and maintenance phase (VDI/VDE 2015). However, the type
of control information may vary broadly, depending on the task being performed
and the layer(s) it takes place on in the hierarchical production system structure (see
Chap. 5). In this section, typical control activities and information will be identified
and classified, that are required to enable Industrie 4.0 components’ full potential.
As a result, a characterization of each layer of the hierarchical production system
structure will be presented from a production control point of view.

Therefore, this section is structured as follows: First, Sect. 6.3.1 will give a
brief overview of the approach chosen to identify the tasks performed within the
operation and maintenance phase of a production system. Then, in Sect. 6.3.2,
typical control information and the characteristics of each layer of the hierarchical
production system structure will be described. Finally, in Sect. 6.3.3, a case from the
automobile industry will be presented. It demonstrates that a single control decision
may require information on numerous levels and that information artifacts can be
used within and between different life cycle phases.

6.3.1 Approach for the Identification of Artifacts
in the Operation and Maintenance Phase

The literature review in Sect. 6.4.2 has shown that control activities and the
associated information artifacts in the operation and manufacturing phase are
numerous and can vary greatly in their goals as well as in their behavior (e.g. real
time requirements).

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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Against the background of these chapter’s research questions, it is a requirement
to assign the different control activities and the associated information to the layers
of the hierarchical production system model proposed in Chap. 5.

To consider the different aspects of the automation pyramid (see e.g. Vogel-
Heuser et al. 2013; Diedrich et al. 2011) a bandwidth of control information
was taken into account. This includes control of sensors/actuators and processes
on field level, the allocation of manufacturing resources in production planning
systems (MES-Systems), as well as the coordination and optimization of enterprise
processes in ERP-Systems (Lüder 2006). Furthermore, there is a vast number of
implementation technologies available for control systems that allow the imple-
mentation of required functionalities into Industrie 4.0 components (see e.g. Lunze
2008; Kiehl 2007; Kis 2014; Yang et al. 2014; Leitão and Karnouskos 2015), which
were also considered in the analysis. With this in mind, the control activities applied
in a representative set of companies in the manufacturing industry were analyzed
and assigned to the different layers of the model. These companies include press
shop, body shop, paint shop, assembly shop and in-house logistics in the automobile
industry, a hot strip mill and a cross cutter in the steel industry, a stone crusher in
the mining sector, a roof truss manufacturing system in the wood industry, a micro
cuvette manufacturing system in medical technology, a logistics center, a solar park
and a gas turbine facility, both in the power industry. In this context, it is important
to notice that not all of the discussed control tasks and information are mandatory
in all application scenarios and industries. Some of them can be left out, depending
on the complexity and quality requirements of the product and production system.

The performed research results in an amount of control tasks and information
that can be assigned to the different layers of the proposed hierarchy model, and are
presented in the following subsection.

6.3.2 Identification Criteria for Artifacts in Operation
and Maintenance Phase

An important identification criterion for the layers of the hierarchical production
system structure is the corresponding control information of each layer. Since there
are different tasks to be performed on each layer, the input, throughput and output
information varies greatly. However, sets of control information can be identified
that share the same sort of characteristics and therefore can be assigned to the
various layers. These characteristics and typical types of control information of each
layer are described in detail in this subsection.

Based on the literature review in Sect. 6.4.2 and a detailed analysis of existing
manufacturing systems from the automobile sector, a broad spectrum of control
tasks and information was identified and assigned to the layers of the hierarchical
production system structure. The results are summarized in Tables 6.1, 6.2, 6.3, 6.4,
6.5, 6.6, 6.7 and 6.8.

http://dx.doi.org/10.1007/978-3-319-56345-9_5


6 Identification of Artifacts in Life Cycle Phases of CPPS 149

Table 6.1 Control tasks and relevant control information on component layer

Layer Control tasks Control information

2. Component – Switching operations – Switch-on and -off
commands

– Condition monitoring and asset-management – KPIs of process
components

– Communication of a representation of an activity
status to surrounding systems (condition monitoring,
asset management) – No communication within each
element

– No control
information

Table 6.2 Control tasks and relevant control information on function group layer

Layer Control tasks Control information

3. Function
group

– Parametrization of process
components

– Process parameters

– Product identification – Product ID data: vehicle identification
number, order number

– Condition monitoring and asset
management

– Interpreted sensor and actuator data

– Manual manipulation of
specific functionalities (HMI)

– Robot control: trajectories, start and
hold points, operating and breaking speed

– Sensor and actuator control – Sensor and actuator data

Table 6.3 Control tasks and relevant control information on work station layer

Layer Control tasks Control information

4. Work station – Process coordination and supervision,
consisting of : : :

• Simultaneous status detection of multiple
function groups

– Status information

• Simultaneous control of multiple function
groups

– Control commands

– Quality control and quality data acquisition,
production status documentation

– Quality data

– (Semi-)manual manipulation (HMI) – Program fetch, manual
control commands

The control activities on the various layers of the production system structure
range from controlling individual equipment components, such as electric motors,
welding guns and pumps, to planning of factory allocation and strategic production
programs. They can be implemented using different approaches like multi-agent
systems (MAS) or as a service in a service oriented architecture (SOA). For further
details, see Chaps. 8 and 14. The characteristics of each layer and the associated
control information are described in the following paragraphs, starting at the bottom
layer (see Röpke et al. 2016; Zawisza et al. 2016).

http://dx.doi.org/10.1007/978-3-319-56345-9_8
http://dx.doi.org/10.1007/978-3-319-56345-9_14
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Table 6.4 Control tasks and relevant control information on work unit layer

Layer Control tasks Control information

5. Work unit – System operation and
management (HMI)

– Cycle times, variant configuration,
maintenance cycles, status information

– Production and machine
data logging

– Output, standalone availability KPIs,
malfunction evaluation, energy
consumption, NC data, tool data

– Visualization at the level of
the executed process

– Status and error signals, filling levels,
cycle and process times

Table 6.5 Control tasks and relevant control information on production line segment layer

Layer Control tasks Control information

6. Production
line segment

– Equipment control and
supervision (HMI)

– Cycle time controlling: movement, process,
and auxiliary times, availability and degree of
utilization of chained up equipment,
TPM-alarms, benchmarking

– Material flow between work
units, sequencing/order picking,
route planning, transport
control, physical resequencing

– Product variant specific production
sequences, deviations of actual and target
position, quality of pearl chain/order sequence

– Material inventory
management and stock call-offs

– Messages for incoming and outgoing goods,
work in progress

Table 6.6 Control tasks and relevant control information on production line layer

Layer Control tasks Control information

7. Production
line

– Utilization forecast and takt
simulation

– Personnel requirement, shift
scheduling, takt time deviations

– Delivery instructions:
internal and external short
term call-offs, JIT and JIS
call-offs

– Planned demand of next 5–15
workdays, material stock, operating times
for suppliers, vehicle order status, order
data

– Monitoring of production
lines (possibly HMI)

– Target and actual output, system status,
(available/disturbed), buffer state for
product variants

6.3.2.1 Construction Element

There are two forms of Construction Elements: active and passive ones. Active
Construction Elements, in contrast to their passive counterparts, are able to represent
a certain activity status that can be communicated to surrounding elements. How-
ever, communication within each element is not possible and therefore Construction
Elements cannot be characterized by control parameters.
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Table 6.7 Control tasks and relevant control information on factory layer

Layer Control tasks Control information

8. Factory – Net dependent requirements
determination, call-off forecasting

– Vehicle program, technical and sales
restrictions, manufacturability, parts
stock/availability

– Weekly and daily production scheduling,
detailed material supply planning, freight
cost optimization, authorization of
production, definition of manufacturing
sequence

– Production line restrictions, product
mix, line allocation, capital
commitment costs, factory readiness

– Factory monitoring and analysis, virtual
resequencing

– Production relevant order data,
factory KPIs

Table 6.8 Control tasks and relevant control information on production network layer

Layer Control tasks Control information

9. Production
network

– Long term sales planning,
volume planning of vehicles
(primary requirements planning),
strategic production program
planning, factory allocation

– Volume of vehicles, investment and
capacity plan, factory costs

– Volume planning of vehicle
properties, gross dependent
requirements planning, demand
and capacity management,
bottleneck management

– Installation rates (especially of heavy
items), internal and external capacities,
costs and prices, network KPIs,
profitability calculations

– Product data management,
order management,
manufacturability testing

– Part-numbers, part status, primary
properties numbers, technical rules and
product hierarchies, sales rules

6.3.2.2 Component

Components can be distinguished between Process and Control Components.
The latter provide driver functionalities for active Construction Elements. Process
Components on the other hand feature a static or predetermined range of functions
that can be parametrized and adapted to individual needs. The common element
shared by process and Control Components is an I/O information processing system
that is required to perform basic functionalities, like sensor and actuator control,
switching operations, and diagnostics. Consequently, control information on this
layer is characterized by sensor and actuator data, such as oscillation data as a
function of time and voltage, switch-on and -off commands (e.g. of an electric
engine in a conveyor belt), as well as Key Performance Indicators (KPIs) of Process
Components like the stroke rate of a welding gun. An overview is shown in
Table 6.1.



152 A. Lüder et al.

6.3.2.3 Function Group

The above mentioned basic processes usually require several Components to work
together. The parametrization of these Components is realized by Function Groups.
A typical example is the control of a welding robot in a car body welding shop,
where the robot, the welding gun, and the cable assembly need to be parametrized in
order to approach specific coordinates and place a welding spot. The welding current
of the welding gun in Ampere and the holding period in seconds are controlled on
this layer. Other examples for process parameters are the volume of a glue bead
in volume per distance (dm3/m) of a gluing application and the contact pressure in
force per surface (N/mm2) of a suction gripper.

Due to the diverse product mix manufactured in modern production systems,
an important function is also product identification, such as vehicle identification
numbers and separate order numbers. They can e.g. trigger a status message at a
capture point or inform the equipment about the next to build product variant.

Furthermore, condition monitoring and asset management are performed on
Function Group Layer as well, in order to maintain equipment in the desired state.
Relevant control information in this context are interpreted sensor and actuator data,
like e.g. the oscillation information of rolling bearings and oil data of a top or
bottom part of a drawing tool in press shop. Finally, HMIs allow the execution of
functionally specific tasks on this layer. In the example of robot control, this may
include changing robot trajectories, start and hold points, as well as operating and
breaking speed. An overview is shown in Table 6.2.

6.3.2.4 Work Station

Work stations integrate multiple Function Groups in order to successfully perform
a manufacturing process. This circumstance makes coordination and (automated)
supervision indispensable and requires work stations to simultaneously control the
process parameters of the participating Function Groups. For this, both, simultane-
ous state determination and control of the subordinate Function Groups are needed.
As a result, status information and control commands are required at the same time.
Using the example of a car body welding shop, the necessary status information
includes the location of the welding gun (“defined coordinates reached”) and the
status of the clamping system holding down the parts (“clamping elements closed”).
Corresponding control commands are e.g. “keep holding down clamps” and “initiate
welding current”. This kind of control information allows further functionalities like
quality assurance and data logging of control parameters that are required for quality
and warranty claim purposes. Typical examples are parameters like torque, angle,
and cycle time of bolting sequences for security-related connections, volume and
speed of adhesive application, as well as coordinates, deviations, and tolerances of
car body geometry. An overview is shown in Table 6.3.

Similar to the Function Group Layer, it is also possible to manipulate work
stations (semi-)manually through HMIs. The control information is associated to
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manual control commands and program fetches, e.g. to reset a work station to home
position after a malfunction.

6.3.2.5 Work Unit

The process steps, which are determined through the product itself, are being
realized by sequencing the manufacturing steps of multiple Work Stations on
the higher level of Work Units. Consequently, system operation and management
are major activities on this layer. They deal with process information such as
cycle times, variant configurations, maintenance cycles, and status information
of the Work Unit as a whole. Furthermore, supervision functionalities including
production and machine data logging are performed on this layer, resulting in
control information like output, availability, malfunction evaluation, and energy
consumption, as well as NC and tool data. Availability, however, is measured for
stand-alone Work Units only and includes KPIs like Overall Equipment Effective-
ness (OEE), Mean Time To Repair (MTTR) in seconds, and Mean Time Between
Failures (MTBF) in hours. Other characteristic control parameters are status and
error signals (e.g. welding gun: “operational/disturbed”, photoelectric safety switch:
“open/interrupted”), filling levels of process and auxiliary materials, as well as
cycle and process times. Usually this data is gathered and visualized for the system
operator, which is the third functionality on Work Unit Layer. An overview is shown
in Table 6.4.

6.3.2.6 Production Line Segment

Main activities on Production Line Segment Layer are divided into three categories.
The first category is concerned with operational equipment control and supervision.
This includes controlling activities like tracking of cycle time, process times,
auxiliary process times, and movement times. Furthermore, it contains monitoring
the availability and utilization of chained equipment, which allows setting of
Total Productive Maintenance (TPM)-alarms in case of deviations and creating
benchmarks, e.g. of energy consumption of Work Units in the Production Line
Segment. The second category of control activities is built around material flow.
An overview is shown in Table 6.5.

This means material flow between work stations, as well as supply of subassem-
blies connected to them. Supporting activities like order picking, route planning
(e.g. of tugger trains), transport control, and physical resequencing of orders are
also included. Those activities are characterized by control information of the
production sequence and the included product variants (e.g. body shop or assembly
line sequence), deviations between target and current position, as well as quality
of pearl chain or other sequence measuring KPIs. The last category of activities
includes material inventory management and stock call-offs. Typical parameters are
signals of incoming and outgoing goods as well as work in progress.
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6.3.2.7 Production Line

The segments on Layer 6 are grouped on Production Line level. Accordingly, control
activities on this level are of general character. The main planning activities include
forecasting utilization and simulating cycle time on the basis of the scheduled
production program. Typical control parameters are personnel requirements, shift
planning schedules, and cycle time deviations between different orders in the
product mix that have to be balanced. The operational part of the activities on
this layer is concerned with delivery instructions for internal and external suppliers
(short term call-offs) as well as just-in-time (JIT) and just-in-sequence (JIS) call-
offs. Required control information features, among others, short term planned
demand (next 5–15 workdays), material inventory, and supplier timing schedules.
Since JIS call-offs require knowledge about the exact status and timing of the
products they are made for, vehicle order status and order data like technical features
of the order are required as well.

Finally, monitoring of the entire production line is part of the control activities on
this layer, too. Consequently, predominant control parameters are target and actual
output, the overall system status (available/disturbed), as well as buffer states for
the product variants in the current production program. An overview is shown in
Table 6.6.

6.3.2.8 Factory

The Factory Layer combines the processes of multiple production lines in order to
produce a complete product. To achieve this, three types of control activities are
required on this layer. First, there are tactical planning activities ensuring adequate
parts supply in the short term (weeks to months). Important representatives of those
activities are net dependent requirements determination and call-off forecasting. The
related control parameters are, among others, the production program of the vehicles
planned, the technical and sales restrictions, manufacturability, as well as material
stock and parts availability. Second, the level is characterized by operational
preparatory and short term production planning activities (hours to days). They
include breaking down the production program to weeks and days, detailed material
supply planning, as well as authorization of production and definition of the
manufacturing sequence (e.g. start of body shop sequence or color batches for paint
shop). Typical control information includes production line restrictions, product mix
and production line assignment, if there are multiple options to produce a product.
Third, operational supervision activities aiming at ensuring production effectiveness
and efficiency can be found on factory level as well. Monitoring and analysis of
factory KPIs are summarized under this category, as well as virtual resequencing of
orders throughout the factory. Relevant control parameters for the former contain
cost and manufacturing KPIs such as lead time, delivery reliability, production
costs, and pearl chain/order sequence quality, as well as quality KPIs like first pass
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yield and deviations. The later include information about product variants and the
combination of primary properties numbers. An overview is shown in Table 6.7.

6.3.2.9 Production Network

At the top of the production system structure lays the Production Network Layer. In
contrast to the mainly operative control activities at factory level, the production
network is mostly designated to strategic and tactical planning activities with a
horizon of up to 10 years ahead. On the one hand, this includes activities such as long
term sales planning, strategic production program planning, and factory allocation.

On the other hand, more detailed activities like planning of vehicle properties
considering heavy items, demand and capacity management, as well as bottleneck
management of internal and external resources are performed on this layer. These
activities are associated with control information such as volume of vehicles per
country and year, investment and capacity plans, factory costs, as well as installation
rates of technical features, internal and external capacities, network KPIs (e.g.
delivery reliability, indirect procurement costs, etc.), and profitability calculations
(e.g. sales costs, direct costs, etc.).

Most operational tasks on Production Network Layer, however, are connected
to data management. This is a task that has to be performed network-wide, since
the products or subassemblies of the network may be produced or used in multiple
factories around the world. This is especially relevant if multiple products are using
carry over parts from other products inside the network. Consequently, typical
activities are product data management, client order management, and manufac-
turability testing. The control information needed for these activities include part
numbers or primary properties numbers for complicated and individualized parts
like dashboards, part status (valid/invalid) of each part, technical rules and product
hierarchies, as well as sales rules that allow or prohibit certain configurations.

In summary, the analysis shows that the spectrum of control activities and
parameters required during Operation and Maintenance Phase of a production
system is very broad. An overview of the information artifacts in this phase can
be found in Fig. 6.3. Although the control activities and the related parameters are
linked through a complex network of decisions, it is possible to analyze them closer
by narrowing the field of observation to (quasi-)separate decisions. The following
subsection demonstrates this by analyzing a case from the automobile industry. An
overview is shown in Table 6.8.

6.3.3 Usage of Operation and Maintenance Phase Artifacts

The various control activities and related parameters in a production system are
linked in a complex network of interactions and can spread throughout all levels
of the hierarchical production system structure. This subsection illustrates how
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Fig. 6.3 Information artifacts during operation and maintenance phase

certain information artifacts can be used, both within and between different life
cycle phases. To pick up the example of Sect. 6.2.3, the focus is put on robot wear
data as an information artifact. For this purpose, first of all the control process of
the case, a sunroof assembly in an automobile assembly shop, will be described. In
a second step, the three cases of artifact reuse in Operations and Maintenance Phase
will be analyzed (see Chap. 5, cases 4–6). These cases are:

Case no. 4: Reuse of Artifacts Within Operation and Maintenance Phase
Case no. 5: Reuse of Artifacts in Engineering Phase of Other Projects

(Feedback-Loop)
Case no. 6: Reuse of Artifacts in Operation and Maintenance Phase of Other

Projects

The regarded case consists of a sunroof assembly process with an adjacent route
planning and transport control process for tugger trains. A similar configuration can
be found in state of the art automobile factories around the world (see Fig. 6.4).

http://dx.doi.org/10.1007/978-3-319-56345-9_5


6 Identification of Artifacts in Life Cycle Phases of CPPS 157

Layer

Portal robot1

takes a part out 
of a container

Container2
reports: “One part has 
been removed out of 

container no. 3.“

Container station3
continuously counts remain-
ing parts & reports own part 

demand

route planning & transport ctrl.4
gathers & consolidates demand for 

production line segments, creates trip 
plans & initiates transport orders

Operator & tugger train5
receives transport order & rela-
ted documents, starts trip at de-
signated time w/ defined route

Container station6
delivers containers, opens 

container station &  replaces 
empty with full containers

Container7
reports: “Container no. 3 has been 
replaced; now containing 12 parts 

with part. no 1234“

Process OutputInput

4. Work Station

6. Production
Line Segment

5. Work Unit

3. Function
Group

2. Component

7. Production
Line

1. Construction 
Element

8. Factory

9. Production 
Network

Fig. 6.4 Control process for route planning and transportation control for restocking parts for
sunroof assembly

For a more complex case see (Zawisza et al. 2016), where a Just-in-time call-off
between an automobile OEM and a supplier is described.

The control process of the sunroof assembly begins with a robot taking a sunroof
out of a container and installing it into a car on the assembly line with the help
of other robots and workers. This process takes place on Work Station Layer of
the production system structure (Layer 4). Typically, there is no direct information
exchange between the robot and the container. However, the robot can be equipped
with a sensor, enabling it to determine how many sunroofs are left inside the
container. Usually this is achieved using a photoelectric sensor. The robot can,
thus, report to the container station that a sunroof has been removed (Layer 3,
Function Group). The container station on the Work Station Layer holds various
containers for different product variants. It continuously counts the total remaining
sunroofs for each product variant and, when necessary, orders new sunroofs. The
call-off for required parts usually contains information about the type of container
to be replaced, the part-no. of the demanded parts and the time they have to be
delivered (e.g. “Container no. 3 is empty; deliver additional parts with part-no. 1234;
remaining parts last for 24 min. of production”).

Since a tugger train usually doesn’t supply only one installation at a time, the
part orders are collected on a higher layer, i.e. the Production Line Segment Layer.
Here the information considering demand is gathered and consolidated for the whole
production line segment and this is also where the route planning and transport
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control takes place. Using the consolidated information on this layer, a software
algorithm calculates an ideal trip plan and creates a schedule for each available
tugger train, and then initiates the transport order. In the next step, this order is being
forwarded to the individual tugger trains and their operators on Work Station Layer.
It contains all the information the operator needs, including a bill of materials, a
route plan, a schedule etc. The operator then starts the trip at the scheduled time and
uses a defined route to fulfill the assignment. He or she then delivers the containers
to the defined location at the defined time, so that a bottleneck is avoided. Then
the operator has to open the container station and replace an empty with a full
container. This occurs on Work Station Layer and implicates interaction between the
operator and the container station using the HMI of the latter. Finally, the container
reports back to the container station that the demanded part has been restocked (e.g.
“Container no. 3 has been replaced; now containing 12 parts with part no. 1234”),
which closes the loop.

To describe how information artifacts of Operation and Maintenance Phase can
be reused, the following paragraphs distinguish between reuse within Operation and
Maintenance Phase (case no. 4) and reuse in other phases of different projects (cases
no. 5 and 6).

Case no. 4: Reuse of Artifacts Within Operation and Maintenance Phase
As shown above, a large quantity of information is generated and collected during
the described processes in Operation and Maintenance Phase. However, some
necessary information in this phase can neither be measured directly via the systems
sensors nor can it be retrieved from its actuators and the corresponding information
flow. This applies for robot wear and tear data, too. As a workaround, the existing
information artifacts of Operation and Maintenance Phase can be reused in a way
that they serve as a direct indicator for a robots wear and tear.

As an example the number of assembled sunroofs in the above case is equal to the
number of load cycles performed by the robots in the work station. Therefore, robot
wear and tear can be measured indirectly by counting the load cycles of a certain task
a robot performs using the integrated counter. In this case, maintenance personnel
can compare the current number of load cycles with the estimated lifetime from the
engineering Phase and, based on this information, decide whether an inspection or a
part replacement is needed. In an Industrie 4.0 scenario this information is stored in
the administration shell and therefore the Industrie 4.0 component is able to trigger
an inspection or part replacement by itself. Furthermore, based on the data from the
engineering Phase, it is able to predict for how long it will be able to perform its
tasks given the specific requirements like speed and precision, allowing predictive
maintenance and planned stops.

On the other hand, the load cycle data, usually provided by a counter, can also
be reused in a different context. In the sunroof assembly case for example it allows
triggering a call-off for the timely delivery of required parts to a work station and
thereby enables the Industrie 4.0 component to control its part supply and related
activities.
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Another example for reuse of artifacts in this life cycle phase is the ability of
an Industrie 4.0 component to perform process or quality control by itself. This is
possible through comparing data from Engineering and Operation and Maintenance
Phase and correcting occurring deviations, e.g. checking the correct positioning of
a welding spot or the precise assembly of a car sunroof.

Case no. 5–6: Reuse of Artifacts in Engineering and Operation and Mainte-
nance Phase of Other Projects
The artifacts generated in Operation and Maintenance Phase are the basis for an
effective and efficient production process within the life cycle phase itself. However,
those artifacts can have a deep impact on other life cycle phases and other projects
as well.

On the one hand, the information generated during production can be reused in
the engineering Phase of other projects to ensure the responsible engineers get a
reliable feedback on their work and thereby improve future engineering decisions
in new projects. For instance, if an Industrie 4.0 component in the above scenario
detects a deviation in the precision of the sunroof assembly over time (e.g. due
to wear and tear), this information should be reused in the engineering Phase to
improve future production systems and their design. This methodology can be
applied to continuously validate various engineering specifications over the lifetime
of a production system and implement necessary adjustments.

On the other hand, the artifacts used during production can also be a valuable
input during the Operation and Maintenance Phase of other projects in a company.
Since different factories or dependencies of a company may experience very differ-
ent conditions (e.g. humidity, temperature, production schedule, product types, etc.)
an information exchange across factory limits could be of great interest. Therefore,
the information artifacts generated in Operation and Maintenance Phase should be
available throughout a company and even between different cooperating companies
in order to continuously improve performance. This can include information like a
malfunction log, best practices for maintenance and quality assurance purposes, and
version management to handle different combinations of hardware with a different
firmware status. In the case of robot wear and tear, factories can benefit greatly from
each other’s experience by exchanging and analyzing the development of observed
behavior in different locations over time. As a consequence, parameters like cycle
times, velocities, and maintenance cycles of equipment could be adjusted on the
base of a much larger database than it is today, so that problems can be detected
earlier and have less negative effect on productivity.

6.4 End-of-Life Phase

This section intends to identify relevant requirements and information emerging
from End-of-Life (EoL) phase which need to be covered by an Industrie 4.0
component to be applicable in this life cycle phase. The EoL phase is the last phase
of the production system life cycle, described in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
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After having a closer look at the demands and use of Industrie 4.0 components
in EoL (see Chap. 5), Sect. 6.4.1 will describe the approach used to gather relevant
requirements and information necessary within the EoL phase. The requirements,
identified as relevant for the EoL phase, will then be mapped to each hierarchy
layer (see Sect. 6.4.2), which will result in a characterization of each layer of
the hierarchical production system structure from the EoL point of view. In
Sect. 6.4.3, cases are presented which shall illustrate the benefits and opportunities
when Industrie 4.0 components are used in the EoL phase.

6.4.1 Approach for the Identification of Artifacts
in the Engineering Phase

To identify requirements emerging from EoL phase, a literature survey on different
recovery (including recycling and reuse), disassembly, EoL, and EoL scenarios
related publications was chosen. The survey resulted in over one hundred require-
ments for the EoL phase, which have been categorized into the following categories,
representing a ‘production system level of detail’ according to VDI 2243 (VDI
2002): General requirements (G), production system specific requirements (P),
component specific requirements (C), and material specific requirements (M).

In a next step, the categories were mapped to each hierarchy layer for a
characterization of each layer of the hierarchical production system structure (see
Chap. 5) from the EoL point of view. Using these categories—representing a
‘production system level of detail’—as identification criterion for an Industrie 4.0
component on the different layers of the hierarchical production system structure is
an abstract but viable approach.

6.4.2 Identification Criteria for Artifacts in End-of-Life Phase

A possible identification criterion for the layers of the hierarchical production
system structure is the corresponding ‘production system level of detail’ named in
Sect. 6.4.1: General requirements (G), production system specific requirements (P),
component specific requirements (C), and material specific requirements (M).

Examples for general requirements are:

• Compliance with statutory provisions (Ruhland 2006; Steinhilper and Rieg 2012;
VDI 2002; Huber 2001; Industrie 2016; Schiffleitner et al. 2012), or

• Avoidance of environmental impact (VDI 2002; Hartel and Spath 1994).

Examples for product specific requirements are:

• Description of production system and connection structure—(Steinhilper and
Rieg 2012; PAS 2004; VDI 2002; Schultmann et al. 2002; Pahl et al. 2007; Hubig

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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2001; Ruhland 2006; Feldmann et al. 1999; Rosemann et al. 1999; Duflou et
al. 2008; Hartel and Spath 1994; Simolowo and Onovughe 2013; Huber 2001;
Willems et al. 2003), or

• Application of a functional and modular structure—(Steinhilper and Rieg 2012;
VDI 2002; Pahl et al. 2007; Hubig 2001; Ruhland 2006; Duflou et al. 2008;
Willems et al. 2003).

Examples for component specific requirements are:

• Enabling of an easy and non-destructive disassembly structure—(Steinhilper and
Rieg 2012; Pahl et al. 2007; VDI 2002), or

• Enabling of remanufacturing processes—(Steinhilper and Rieg 2012; Pahl et al.
2007; Hubig 2001; Duflou et al. 2008; Obst et al. 2013; Lindahl et al. 2006).

Examples for material specific requirements are:

• Identification of material (also regarding hazard potential)—(Steinhilper and
Rieg 2012; PAS 2004; VDI 2002; Pahl et al. 2007; Hubig 2001; Ruhland 2006),
or

• Documentation of deterioration occurred during use time of the production
system—(Schultmann et al. 2002; Hubig 2001; Ruhland 2006; Duflou et al.
2008; Feldmann et al. 1999; Simolowo and Onovughe 2013; Obst et al. 2013;
Huber 2001; Seliger et al. 2001).

Using the categorized requirements, the assignment of those categories to each
hierarchy layer within the hierarchical production system structure was done. The
categories reflect the level on which the decision has to be made whether a
requirement is fulfilled or not. For this, information is necessary—see Fig. 6.5.

General information (G) has to be provided on Layer 8 and 7. On Layer 8 this
could be complying with specific laws and restrictions, like determination of manda-
tory disassembly amounts, incineration with energy recovery, or CO2 emissions.
On Layer 7 this could be complying with current component/material/substance
prohibitions related to the applied manufacturing technology of the Production Line.

To finally provide information, this might need to be broken down to lower
layers. But the aggregation of information of the lower layers has to be done on
the superordinated layer.

Production system specific information (P) can be found on Layer 8, 7, 6, 5, down
to Layer 4, since the structure of the overall production system is influenced by the
design of each Industrie 4.0 component on each of those layers, mostly following
a functional and modular design approach. This information is relevant mainly for
EoL 3—Production System Recovery (see Chap. 5, Fig. 5.9).

Component specific information (C) is placed on Layer 5 down to Layer 2—
Work Units and their structure are usually engineered in their entirety. Here, an
easy disassembly as well as remanufacturing process is important, so that the
EoL scenarios can be enabled. This information is relevant mainly for EoL 2—
Component Recovery (see Chap. 5, Fig. 5.9).

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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Fig. 6.5 Categories of ‘production system level of detail’ as identification criterion assigned to
hierarchical production system structure

Material specific information (M) can be found on Layer 3, 2, and 1, because
information about material with hazard potential is relevant here—in general the
material identification. This information is relevant mainly for EoL 1—Material
Recovery (see Chap. 5, Fig. 5.9).

Besides the loops which represent the recovery of physical artifacts coming from
the EoL phase, there are also loops which represent the reuse of information artifacts
emerging from that phase. To also describe these the production system life cycle
is reduced back to the life cycle which is described in Chap. 5—only considering
engineering phase, operation and maintenance phase, and EoL phase.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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In doing so, the scenarios EoL 1 and EoL 2b (see Chap. 5, Fig. 5.9) are excluded
on behalf of clarity.

Both types of loops are explained with cases in the following subsection.

6.4.3 Usage of End-of-Life Phase Artifacts

In this subsection two main cases are presented (see cases 7–12 in Chap. 5) which
illustrate the benefits and opportunities when Industrie 4.0 components are used
in the EoL phase. They deal with recovery of physical artifacts and reuse of
information artifacts.

Case no. 7: Reuse of Artifacts from Operation and Maintenance Phase
Case no. 8: Reuse of Artifacts from Engineering Phase
Case no. 9: Reuse in Operation and Maintenance Phase of Same or Other

Projects
Case no. 10: Reuse in Engineering Phase of Same or Other Projects
Case no. 11: Reuse within End-of-Life Phase
Case no. 12: Reuse in End-of-Life Phase of Other Projects

The cases focus on industrial robots with their related wear-data and other
information artifacts.

Case no. 7–10: Reuse Artifacts from the Same Project and Reuse It in Another
Project
For this case the EoL scenario Component Recovery (EoL 2a) is chosen to
illustrate how a component could be recovered, when the production system is
decommissioned.

Component Recovery can be found in the automotive industry, e.g. when a
series expires and the corresponding production system becomes obsolete. This
production system is then decommissioned, disassembled, and used components
can be utilized, on the one hand to equip other production systems in other factories
at other locations (e.g. with a different layout producing a different product); or on
the other hand to store the used components as spare parts in case that those types
of components are still in use within the company, so that a provision of these spare
parts is reasonable.

According to Fig. 6.5 in Sect. 6.4.2, Component Recovery can be found on Layer
5 to 2 of the generic production system architecture. For this case, Layer 3 “Function
Group” is chosen, in particular an industrial robot. Given that the EoL relevant
information for the robot is stored in its administration shell, the robot knows how
it can get decommissioned, disassembled, and how it can get recovered based on its
current state.

In case the robot has evaluated by itself that it can be reused or further used, the
robot could provide the following information and guidance/recommendations to
the personnel involved in the EoL phase:

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
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• The robot needs to be decommissioned this way.
• The robot can get disassembled in xx minutes by undoing xx connections.
• Due to the robot’s time in use it should be cleaned/maintained.
• This part of the robot can get replaced: This would be the optimal trade-off

between costs to invest and life span expansion.
• Due to robot’s actual wear status it cannot fulfil the ‘welding skill’ anymore. It is

too worn out. Instead the robot could ‘insert workpieces’—for this the robot can
be less precise.

This self-description of the robot and its evaluation, that it can get used a second
time, is again the input for engineering tools of the engineering phase of other
projects (see Chap. 5, Fig. 5.4) on the one hand. Here, engineers could select this
self-description from a component library in which the virtual representation of
these real components is stored. Even construction site management tools could
use this self-description—not for erection (Dreher et al. 2013) but for removal. On
the other hand, this self-description could be used to automatically evaluate if the
robot meets the requirements of being a spare part for a specific, already operating
production system.

This case deals with recovery of physical artifacts and reuse of information
artifacts. In addition to the presented cases, in (Schmidt et al. 2016), a generic model
for EoL scenarios of production systems is developed as a basis to enable the EoL
phase being supported by future software tools.

Case no. 11–12: Reuse End-of-Life Phase Experience
This case deals with reuse of information artifacts. These artifacts contains the
documentation of experiences gained by the personnel during the EoL phase of a
production system, which are either used within the same EoL phase (to optimize
workflows, disassembly activities etc.) or in EoL phases of other production
systems.

6.5 Summary and Outlook

In this Chap. 6, the life cycle of a production system has been analyzed in detail
to identify artifacts covering all information sets relevant for the different layers
of production system hierarchy. Based on this, a mapping of information sets to
hierarchy layers and vice versa has been presented, being able to represent all
relevant information for an Industrie 4.0 component and, thereby, being a starting
point for the implementation of the digital shadow of Industrie 4.0 components.
Thus, it is providing answers to research questions RQ M1 and C2 of Chap. 1.

To be able to provide these answers, the production system life cycle was ana-
lyzed in three main phases: the engineering phase, the operation and maintenance
phase and the end-of-life phase. For each phase, a suitable approach was selected to
identify the relevant artifacts. The types of information could be identified for the

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
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analyzed automotive industry. Also, the relevant information for each layer could be
detected.

As a result, the identified artifacts as well as the information contained differ
dependent of the granularity of an I4.0 component and the point of time at which
the artifacts are generated or are used. There is no holistic concept that is valid over
all life cycle phases. The sum of the types of information and its granularity are
characteristic for the different layers, but one kind of information type can appear
on different layers. The artifacts types of information, in order to virtual represent
an I4.0 component at a certain layer, are various. Due to the additional information
needed for future CPPS, the demands on the administration shell to handle the
various types, will become even higher.

To expand the validation of the conducted research, an identification of relevant
types of information, dependent on the different layers and the point of time,
could be undertaken in additional industries. Here, the process industry, the energy
industry or batch production can be mentioned.

The dependencies between the information artifacts were not considered in this
chapter, but it is undisputed, that there are many links in between. In Chap. 12,
dependencies between the artifacts will be addressed.

Another important aspect in order to effectively use the information artifacts of
an I4.0 component is the quality assurance of the data. It is clear that the data must
be correct and complete. Chap. 16 deals particularly with the topic of data quality
assurance, missing in the Chap. 6.

Based on the results of this chapter, the following Chap. 7 analyzes the
description means necessary to hold the information throughout the life cycle of
CPPS.
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Chapter 7
Description Means for Information Artifacts
Throughout the Life Cycle of CPPS

Arndt Lüder, Nicole Schmidt, Kristofer Hell, Hannes Röpke,
and Jacek Zawisza

Abstract Recent research and development activities within the field of production
system engineering and use focus on the increase of production system flexibility
and adaptability. One common issue of those approaches is the consideration of
hierarchical and modular production system architectures where the individual
components of the system are equipped with certain functionalities and information.
Up to now, there is no common understanding about what a component can
constitute, i.e. which parts of a production system can be regarded as components
within the hierarchy and which functionalities and information are assigned to it.
This gap will be closed within this and the two the prior chapters.

They will at first discuss the relevant layers of components in a production
system, then the types of information required to be assigned to a component on
the different layers to establish a digital representation of the component, and at
last the description means exploitable to represent the identified information in the
different life cycle phases of a production system.

This chapter, in particular, will consider the artifacts and description means
related to them in each of the three life cycle phases on each layer of the hierarchical
production system structure as proposed in Chap. 5. Furthermore, the artifacts are
clustered and generic artifact classes are derived from the fragmented information
artifact landscape. Finally, description means are assigned to the artifact classes,
paving the way for future research on this topic.
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7.1 Introduction

Due to the ever growing and accelerating trend towards industrialization and
digitalization, the number of information artifacts, as well as the associated data
formats and description means, are growing at an even higher speed (Vogel-
Heuser 2015). However, as of today, there is no multi-disciplinary data modeling
concept that is also consistent throughout the life cycle of a CPPS. The Industrie
4.0 component addresses this topic, among others, by providing a structure for
information elements to enable the implementation of functionalities of physical and
virtual assets (Plattform Industrie 4.0 2016). Nevertheless, it is still unclear which
overall requirements Industrie 4.0 components will have to fulfill, considering the
depiction of information artifacts and description means.

Therefore, the main research goal of Chaps. 5, 6, and 7 is to define the
requirements on the capabilities of Industrie 4.0 components in order to be able
to create, manage, and use information along its complete life cycle. The two
previous chapters already laid the groundwork to answer this question by providing
a hierarchy and life cycle model to structure the emerging information (see Chap. 5)
and by assigning information artifacts to the hierarchy layers and life cycle phases
(see Chap. 6).

Against this background, in this chapter, the work of the previous two chapters
is continued and the remaining research questions are answered, which are:

Which description means are exploited to represent the information types
in the life cycle phases of a CPPS? Are there special description means
related to the different layers?

These questions are closely linked to the research questions RQ M1 and M2 of
Chap. 1, which state that it is of interest to identify requirements and architectures
for Industrie 4.0 component modeling considering their multi-disciplinary character
and to have a look at the information creation and use related to it.

Therefore, in the course of this chapter, it will be shown which description
means can be assigned to which generic types of engineering artifacts that are used
throughout the life cycle of CPPS. In order to achieve this, the authors gathered and
evaluated a characteristic set of information and the artifacts they are coded within.
The first step was a literature review with focus on the work of (Foehr et al. 2012),
where a Delphi-based expert survey was carried out. In a second step, the authors
of this chapter complemented the data with further expert interviews and assigned a
student work (Hell et al. 2016) to the topic in order to extend the representativeness
of the work. The results are discussed here and, although the artifacts and description
means in this work are not completely exhaustive, it is important to state that they
are representative for a large part of the data types and formats used in the regarded
setting.

In the foregoing, the focus is laid on interdependent information sets throughout
the life cycle phases. For a detailed description on dealing with heterogenous
information on project level using semantic web technologies, see Chap. 12.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_12
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Another important aspect in this context is data quality assurance, which deals with
securing the faultlessness of (engineering) data throughout the life cycle. For further
information on this topic, see Chap. 16.

To answer the described research questions, this chapter is structured as follows:
first, a disambiguation is provided in order to delimit the topic of this chapter. In
a second step, description means for the identified artifacts are identified, which
are exploited to represent information coded within these artifacts. Thereby, it
is possible to analyze whether there are special description means related to the
different layers or not. In the process, description means are assigned to each layer
of the hierarchy model and life cycle phases provided by Chaps. 5 and 6. This makes
it possible to define classes of artifacts and corresponding generic description means
in the next step. Finally, the contributions of this particular chapter as well as the
overall contributions of Chaps. 5, 6, and 7 are discussed and an outlook to future
research is given.

7.2 Disambiguation: Description Means, Information
Handling Methods, and Tools

An important point, here, is that the distinction between description means, infor-
mation handling methods, and information handling applications and tools shall
be considered (Schnieder 1999). The focus of this chapter is on the description
means, neither on information handling methods nor tools. For further reading about
methods and tools the reader can refer to Chap. 9.

Description means enable the expression of problems and their solutions in more
or less formal ways. Usually, it can be distinguished between the information cov-
ered by description means (semantics) and their representation (syntax) (Diedrich
et al. 2011). For example, the behavior of a production system component can be
expressed on an information level by a Petri net where the places cover local states
of the component while transitions express the state evolution. On the representation
level, places are represented by circles with annotations and transitions by bars
with annotations. Nevertheless, description means shall be independent from any
methodology and any technical solution for their creation, management, and use.

Methodologies and any technical solutions for creation, management, and use
of artifacts are represented by information handling methods (usually covering the
Engineering, Operation and Maintenance, and End-of-Life phase activities as named
in the previous chapter) and information handling applications and tools (used
within the same phases). Usually, they are strongly correlated with the description
means applied.

Within the following, the focus will be on the description means and not on
the methodologies and applications/tools. The aim of this Chapter is to name and
assign types of relevant description means to the artifacts identified in the previous

http://dx.doi.org/10.1007/978-3-319-56345-9_16
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_9
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Chapter. As the number of artifacts and the number of applicable description means
is apparently high, only representative examples will be considered.

7.3 Description Means for Artifacts

As it can be seen within the following figure, the artifacts named within Chap. 6
can be assigned to the three identified life cycle phases as well as to the different
layers of the identified hierarchy of a production system in Chap. 5 (see Fig. 7.1).
The description means within the three phases are described in the following.

7.3.1 Description Means During Engineering Phase

Initially, during engineering phase, the production system is designed in a kind of
top-down approach starting with the requirement specifications leading to the details
specification about how to install and commission the production system. Usually,
engineering information is created here, which are stored and exchanged as files,
database content, or paper documents in an appropriate way.
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Fig. 7.1 Production system life cycle phases and phase-specific information

http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_5


7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 173

On the Factory and Production Network layers, requirements and legal, eco-
nomic, and technical constraints (so-called propositions) are usually assigned. In
most cases, these are text-based documents exchanged as PDF files. In some
cases, companies have started to apply more formal ways within the requirement
specification exploiting modeling tools like IBM DOORS or modeling languages
like SysML. In this case, the exchanged documents are XML based (following XMI
in the SysML case) or the information is stored in databases.

On Production Line and Production Line Segment layers, the production system
structure is designed in general. Thus, 2D layouts are relevant which are exchanged
as CAD drawings using files like TIFF, JPG, and PDF which are accompanied by
text-based documents like PDF.

On Work Unit layer, there are basic behavior models, 2D layouts, mechanical
and electrical specifications, 3D layouts, and safety concepts. For modeling basic
behaviors usually Gantt Charts or similar high-level models are applied given
in spreadsheet based documents like Microsoft Excel. Mechanical and electrical
specifications are stored in a textual way or based on dedicated MCAD and ECAD
tools with its appropriate data formats like JT or STEP. 3D layouts are given, in
general, as CAD files. Safety concepts are described by text and/or in structures
defined by legal regulation organizations exploiting XML.

On Work Station layer, behavior models, 3D geometry models, mechanical and
electrical specifications, control programs, fluidic plans, powers supply concepts,
safety concept, electrical construction, and simulation models are applied. Again
related to 3D modeling as well as mechanical, electrical and fluidic constructions
CAD data are created using special CAD files like JT and STP or dedicated
XML structures. Comments and additions to these documents are given in text-
based documents like PDF. Behavior models and simulation models usually cover
more detailed behavior descriptions given by timing diagrams, SysML diagrams,
or automatons as well as by dedicated models for simulation tools like automatons
and Petri nets stored as legacy files or XML. Finally, control programs are given in
appropriate control code following e.g. IEC 61131 stored as PLCopen XML.

On Function Group layer, the engineering information is more detailed cover-
ing basic behavior models, 3D layouts, mechanical and electrical specifications,
control programs, fluidic plans, power supply concepts, safety concepts, electrical
construction, detailed behavior models, and simulation models. The 3D data and
construction specifications are again given as CAD files. Behavior and simulation
models are usually given as detailed timing diagrams (in the specification case),
automatons, or dedicated simulation models like Simulink or Modelica. For the
other named information types XML-based or text based documents are often
applied to represent the information.

Again, on Component Layer, the level of detail increases, especially related
to the structure and behavior specifications like 3D layouts and constructions,
control programs, power supply concepts, safety concepts, electrical construction,
detailed behavior models, and simulation models. In addition, detailed part lists
will be relevant defining the purchase parts of the production system. CAD based
construction models are usually given as CAD files also used for mechanical
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and electrical constructions. Control programs are based on the relevant control
programming languages, which are component type and vendor dependent, or they
are stored as more or less user organization based XML formats like PLCopen
XML. Behavior and simulation models are either given as dedicated simulation
models like Simulink or Modelica or specified by automation based models like
state charts. Especially for part lists Excel based CSV documents are relevant.

On the lowest layer, the Construction Element layer, the most detailed engineer-
ing information is relevant. This include part lists and mechanical and electrical
specifications which are given as text-based documents, CSV files or XML-based
files, and CAD-based construction given as CAD specific files like JT and STP.

An overview of layer specific artifacts and description means during Engineering
Phase is given in Table 7.1.

7.3.2 Description Means During Operation and Maintenance
Phase

Within the use phase, the identification of description means is a bit more com-
plicated as here the time of validity and the way of artifact collection/transmission
are relevant for the description means definition. Artifacts on the higher hierarchy
layers have a validity period of hours and days while the artifacts on the lowest
hierarchy layers are real-time control data with a validity period of minutes, seconds,
and below. Thus, in contrast to engineering data, there is a drastic shift within the
description means.

On the Production Network Layer, there is volume and cost planning informa-
tion, economical Key Performance Indicators (KPIs) as well as technical and sales
rules which usually are coded within text documents like PDF and XML-based
documents.

On the Factory Layer, the relevant artifacts are very similar containing long-
term production program and manufacturing planning, as well as technical and sales
restrictions which mostly are given as text-based documents like PDF, economic,
manufacturing, and logistics related KPIs given as XML structures like KPI XML,
and material stock/availability, and order data coded as database content.

On Production Line Layer, the use related data mostly cover KPIs for staff,
material, and resource allocation possibly coded by XML structures like KPI XML
as well as resource planning, order data, supplier orders modeled as text-based
documents like PDF, spreadsheet-based documents like CSV and database content
like SAP systems.

The only difference between Production Line Segment Layer and Production
Line Layer is the more detailed focus on resources. Thus, there are resource related
KPIs, resource alarming, order data, and material logistics data which can be
represented by spreadsheet based documents like CSV, XML structures like KPI
XML, database content, and, as new means especially for alarming, PLC data.
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Table 7.1 Layer-specific artifacts and description means during engineering phase

Layer Artifacts Usable description means

9 Production
network

Requirement specifications,
legal, economic, and technical
constraints

Text-based documents like PDF,
XML structures

8 Factory Requirement specifications,
legal, economic, and technical
constraints

Text-based documents like PDF,
XML structures, database
content

7 Production line 2D-layouts CAD drawings using files like
TIFF, JPG, PDF, text-based
documents like PDF

6 Production line
segment

2D-layouts CAD drawings using files like
TIFF, JPG, PDF, text-based
documents like PDF

5 Work unit Basic behavior models,
2D-layouts, mechanical and
electrical specifications,
3D-layouts, and safety concepts

Gantt Charts or similar
high-level behavior models in
Excel, text-based documents,
CAD files like JT or STP,
XML-based files

4 Work station Behavior models,
3D-geome-try-models,
mechanical and elec-trical
specifications, control programs,
fluidic plans, powers supply
concepts, safety concepts,
electrical construc-tion,
simulation models

CAD files like JT and STP,
XML structures, text-based
documents like PDF. Impulse
diagrams, SysML diagrams,
automatons, and Petri nets as
legacy or XML files, IEC 61131
code as PLCopen XML

3 Function group Behavior models, 3D-layouts,
mechanical and electrical
specifications, control
pro-grams, fluidic plans, powers
supply concepts, safety
con-cepts, electrical
construction, detailed behavior
models, and simulation models

CAD files like JT and STP,
XML structures, text-based
documents like PDF. Impulse
diagrams, SysML diagrams,
automatons, and Petri nets as
legacy or XML files, simula-tion
models like Simulink or
Modelica, IEC 61131 code as
PLCopen XML

2 Component Behavior models, 3D-layouts,
part lists, mechanical and
elec-trical specification, CAD
con-struction, control programs,
powers supply concepts, safety
concepts, electrical
construc-tion, detailed behavior
models, simulation models

CAD files like JT and STP,
XML structures, text-based
vendor dependent documents,
simulation models like Simulink
or Modelica State charts, IEC
61131 code as PLCopen XML,
CSV files

1 Construction
element

Part lists, mechanical and
electrical specifications,
CAD-based construction

Text-based documents, CSV
files, XML-based files, CAD
specific files like JT and STP
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On Work Unit Layer, the real-time control impact drastically increases and the
importance of KPIs decreases. The relevant data on this layer contains especially
maintenance related resource KPIs, resource state information and resource alarm-
ing, order related data, and production process control data. Thus, here are with
spreadsheet-based documents like CSV, XML structures like KPI XML, database
content, and PLC data the same description means as on Production Line Segment
Layer.

On Work Station Layer, there are the same artifacts and description means
relevant as on Work Unit Layer.

The most relevant shift within the used description means can be found between
Work Station Layer and Function Group Layer. On Function Group Layer as well
as on Component Layer, the use data are related to field control. They subsume
resource and component state and alarming information as well as production
process control data which are modeled as PLC, RND, CNC, etc. data.

Finally, on the Construction Element Layer, there are no direct use phase related
data. Nevertheless, it can be assumed that there might be construction element
related data relevant for maintenance activities like durability of materials. But they
are collected on Work Station Layer as resource KPIs. An overview of layer specific
artifacts and description means during Operation and Maintenance Phase is given in
Table 7.2.

7.3.3 Description Means During End-of-Life Phase

The identification of artifacts for the End-of-Life phase of production systems is still
an open field of research. However, with general information (relevant on layers 8
and 7), production system related information (relevant on layers 8–4), component-
specific information (relevant on layers 5–2), and material-specific information
(relevant on layers 3–1), four general information- types are known.

General information is mostly related to guidelines and regulations defined/
developed by legal advisors, standardization organizations, or vendor organizations.
They are usually provided as text-based documents like PDF, sometimes including
more formal representations like UML diagrams and XML structures.

Production system related information is mostly based on the re-use of engi-
neering information as well as engineering-like information describing the current
state of the structure and behavior of the production system. This may include 2D-
and 3D-plans and -layouts, behavior models, and part lists, which are modeled by
CAD-drawings using files like TIFF, JPG, PDF, text-based documents like PDF,
XML-based structures, Gantt and timing diagrams, as well as spreadsheet-based
documents like CSV.

The component-specific information is very similar to the production system
related information, but usually contains a higher level of detail. They subsume
mechanical and electrical specifications and constructions, behavior models, safety
concepts, and part lists, which are modeled by CAD-drawings using files like
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Table 7.2 Layer-specific artifacts and description means during operation and maintenance phase

Layer Artifacts Usable description means

9 Production
network

Volume and cost planning,
economical KPIs, technical and
sales rules

Text-based documents like
PDF, XML structures like
KPI XML, database content

8 Factory Program and manufacturing
planning, economic, manufacturing
and logistics related KPIs, technical
and sales restrictions,
manufacturability, parts stock/
availability, order data

Text-based documents like
PDF, XML structures like
KPI XML, database content

7 Production line Staff, material and resource
allocation KPIs, resource planning,
order data, supplier orders

Text-based documents like
PDF, table-based documents
like CSV, XML structures
like KPI XML, database
content

6 Production line
segment

Resource KPIs, resource alarming,
order data, logistics data

Table-based documents like
CSV, XML structures like
KPI XML, database content,
PLC data

5 Work unit Resource KPIs, resource state and
alarming, order data, production
process control data

Table-based documents like
CSV, XML structures like
KPI XML, database content,
PLC data

4 Work station Resource KPIs, resource state and
alarming, order data (like quality),
production process control data

Table-based documents like
CSV, XML structures like
KPI XML, database content,
PLC data

3 Function group Resource state and alarming,
production process control data

PLC, RND, CNC, etc. data

2 Component Component state and alarming,
production process control data

PLC, RND, CNC, etc. data

1 Construction
element

– –

TIFF, JPG, PDF, text-based documents like PDF, XML-based structures, timing or
automaton diagrams, as well as spreadsheet-based documents like CSV. The focus
of this information is on the modular and hierarchical structure of the production
system and the way it is assembled during installation. Thereby, the way of dis-
assembling can be defined. In addition, the component-specific information covers
use-phase related information, describing the way of the utilization of components.
This is necessary to estimate the current economic value of a component and its
capability to be reused in other production systems. The named information mostly
covers resource related KPIs, which are modeled as text-based documents like PDF,
XML structures like KPI XML, spreadsheet-based documents like CSV, database
content, or even as PLC data.
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Finally, the material specific information focuses on the material identification
within the used production system elements as well as on the description of the
deterioration of the used material during use time. This is based on the use of device,
material, and other documentations which are given as text files for example as PDF
and on resource/component related KPIs which are modeled as XML structures like
KPI XML, spreadsheet-based documents like CSV, database content, or again as
PLC data.

The named mappings of useable description means are summarized in Table 7.3.
As can be seen, the number of currently applied description means is high. It
changes with the considered layer being more formal and can be automatically
evaluated better on the lower hierarchy layers. In the future, it is advisable to reduce
the number of applied description means.

7.4 Artifact Classification

In order to identify description means potentially usable for the artifacts in a future
scenario, the artifacts need to be classified and the description means need to
be assigned to each artifact class. By this, a potential unification of artifacts can
be reached. It might enable the representation of all identified information types
within/of Industrie 4.0 components by a uniform representation.

One possible classification of the identified artifacts is given in Fig. 7.2. It
represents the three main life cycle phases of the production system, indicates
artifact classes applicable, and maps the artifacts named above to the artifact classes.

Considering the available description means named in the sections above, gen-
eralized XML-based data formats like AutomationML (Drath 2010) and (Automa-
tionML 2009) can be identified as possible candidates for a data format covering all
artifacts. Nevertheless, following (Schmidt and Lüder 2015) AutomationML will
not cover all relevant information sets. Therefore, it needs to be extended by text
files like PDF, CAD drawings using files like TIFF or JPG, and control information
represented in databases like OPC UA or in control devices like PLC, RND, or CNC.
(Lüder et al. 2014) presents a possible integration approach.

Table 7.4 summarizes the combination of the five named information description
means to represent all artifact classes.

7.5 Summary and Outlook

The goal of this Chapter was to define description means that can be exploited to
represent the information types in the three life cycle phases and whether they are
related to the different hierarchy layers as described in Chap. 5.

In order to achieve this, in a first step usable description means were assigned
to the artifacts on each layer of the underlying hierarchy structure. Since the

http://dx.doi.org/10.1007/978-3-319-56345-9_5
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Table 7.3 Layer-specific artifacts and description means during EOL-Phase

Layer Artifacts Usable description means

9 Production
network

– –

8 Factory General information,
production system related
information

Text-based documents like PDF, UML
diagrams, CAD drawings using files
like TIFF, JPG, PDF, XML-based
structures, Gantt and Impulse diagrams,
table-based documents like CSV

7 Production line General information,
production system related
information

Text-based documents like PDF, UML
diagrams, CAD drawings using files
like TIFF, JPG, PDF, XML-based
structures, Gantt and Impulse diagrams,
table-based documents like CSV

6 Production line
segment

Production system
related information

Text-based documents like PDF, CAD
drawings using files like TIFF, JPG,
PDF, XML-based structures, Gantt and
Impulse diagrams, table-based
documents like CSV

5 Work unit Production system
related,
component-specific
information

Text-based documents like PDF, CAD
files like TIFF, JPG, PDF, XML-based
structures, Gantt, Impulse, or
automaton diagrams, table-based
documents like CSV, database content,
PLC data

4 Work station Production system
related,
component-specific
information

Text-based documents like PDF, CAD
files like TIFF, JPG, PDF, XML-based
structures, Gantt, Impulse, or
automaton diagrams, table-based
documents like CSV, database content,
PLC data

3 Function group Component-specific
information, material
specific information

CAD drawings using files like TIFF,
JPG, PDF, text-based documents like
PDF, XML-based structures like KPI
XML, Impulse or automaton diagrams,
table-based documents like CSV.
database content, PLC data

2 Component Component-specific
information, material
specific information

CAD drawings using files like TIFF,
JPG, PDF, text-based documents like
PDF, XML-based structures like KPI
XML, Impulse or automaton diagrams,
table-based documents like CSV.
database content, PLC data

1 Construction
element

Material-specific
information

Text files like PDF, XML structures like
KPI XML, table-based documents like
CSV, database content, PLC data
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Table 7.4 Description means assignment to artifact classes

Artifact classes Description means

XML-based
structures
like Automa-
tionML

Text files
like PDF

CAD
drawings
using files
like TIFF,
JPG

Database
content like
OPC UA

PLC,
RND,
CNC, etc.
data

Concept and
invest planning

X X

Process design
and plant layout
definition

X X

Resource
definition

X X

MCAD X X
ECAD X X
Simulation and
robots
programming

X X

Automation/HMI X X X
Commissioning X X X X X
ERP/PPS X X
MES X X
SCADA X X
PLC X X
Field-I/O X
Decommissioning X X X X X
Disassembly X X X X X
Recovery X X X X

information and description means can vary greatly between the three specified life
cycle phases of CPPS, it was necessary to match artifacts and description means
for engineering, operation, and EoL-Phase. Thereby, it was shown that both, the
assignment of description means to hierarchy layers as well as to life cycle phases
is possible.

However, since the information used in the various scenarios can be interde-
pendent, incompatibility of description means used throughout the life cycle is a
possible outcome. Therefore, in order to make description means compatible in
the future, in this Chapter possible artifact classes were defined and assigned to
description means, making them more consistent.

What are the requirements on the capabilities of Industrie 4.0 components to
create, manage, and use information along its complete life cycle?

Considering the main research question of the Chaps. 5, 6, and 7 the intention
of this work was to provide assistance for engineers to decide about the right
information set to be covered by an Industrie 4.0 component and to decide about

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
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applicable implementation technologies. Therefore, the main research question of
this work has been the identification of requirements on the capabilities of Industrie
4.0 components to create, manage, and use information along their complete life
cycle.

To answer this question three underlying research questions have been addressed
beforehand. At first, nine different layers of Industrie 4.0 components in a pro-
duction system have been presented in Chap. 5. For each layer, the relevant
functionalities of an Industrie 4.0 component were used as criteria for identification.

At second, the different types of information to be assigned to an Industrie
4.0 component on the different layers have been discovered establishing a kind of
virtual representation of the component. Therefore, the main life cycle phases of a
production system have been reviewed in Chap. 6.

Finally, description means applicable to represent the identified information
types in these life cycle phases are given in Chap. 7.

As a result, the named three Chapters together are able to provide

• Candidates for Industrie 4.0 components,
• Candidates for meaningful information sets relevant for these Industrie 4.0 com-

ponent candidates following the different layers of components in a production
system, and finally

• Candidate technologies for representing these information sets in the administra-
tion shell of the Industrie 4.0 component.

The three Chapters failed to provide information-based identification character-
istics for Industrie 4.0 components. Figure 7.2 depicts this problem. Here it gets
visible, that for example the Layers Work Station, Function Group, and Component
contain similar engineering information just with a different granularity. Also,
the runtime information are very similar. Thus, these information set relevant for
an Industrie 4.0 component is not necessarily layer characterizing. Here, further
research can provide a more detailed view on the problem.

In addition, this work still leaves another essential question open. Especially
Tables 7.1, 7.2, and 7.3 indicate that there are various information sets relevant for an
Industrie 4.0 component. But these information sets are not independent from each
other. In contrast, they are strongly dependent, requiring on the one hand consistency
between the information sets as well as sometimes enabling the generation of some
information exploiting other information sets.

The representation of these dependencies and generation processes are beyond
the scope of this paper but need to be considered in detail in future work.

Furthermore, the requirements of model-based engineering make it necessary
to integrate proper methods and tools throughout the engineering processes. Since
this is also a workflow-management topic, Chap. 11 discusses the adoption of
this model-driven systems engineering approach considering the requirements for
CPPS.
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Chapter 8
Engineering of Next Generation Cyber-Physical
Automation System Architectures
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Abstract Cyber-Physical-Systems (CPS) enable flexible and reconfigurable real-
ization of automation system architectures, utilizing distributed control architectures
with non-hierarchical modules linked together through different communication
systems. Several control system architectures have been developed and validated in
the past years by research groups. However, there is still a lack of implementation
in industry. The intention of this work is to provide a summary of current alternative
control system architectures that could be applied in industrial automation domain
as well as a review of their commonalities. The aim is to point out the differences
between the traditional centralized and hierarchical architectures to discussed ones,
which rely on decentralized decision-making and control. Challenges and impacts
that industries and engineers face in the process of adopting decentralized control
architectures are discussed, analysing the obstacles for industrial acceptance and the
new necessary interdisciplinary engineering skills. Finally, an outlook of possible
mitigation and migration actions required to implement the decentralized control
architectures is addressed.
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8.1 Introduction

Production systems are complex systems composed of various, often engineering
discipline specific, subsystems. One important subsystem to be considered is the
automation system. Due to the close interaction between the automation system
and other system components like actuators and sensors the whole system and
its environment needs to be considered when dealing with the automation system
architecture. From this perspective the purpose (e.g., product to be produced) and
system goal (e.g., output capacity) are main influencing factors. But also the overall
system architecture (e.g., structure of production system, layout, IT-Systems) and
the functional and non-functional requirements (e.g., degree of automation) towards
the automation system have an impact on the automation infrastructure. Last but not
least the available technology and hardware must be taken into account.

For today’s systems the environment, system goals and system architecture are
considered stable over the whole life-cycle of the production system. Changes
occur when product changes (e.g., new model of car, new chemical substance) or
requirements change (e.g., new safety regulation) but they normally have no impact
on the architecture as such, except from the software and run-time aspects of the
automation system. If changes occur, the production is stopped and the system is
changed and production is re-started after modification. These downtimes, even if
planned, are resulting in a loss of production capacity and finally a loss of money.
This is also reflected in the classical automation system architecture as discussed in
Sect. 8.2.

The question that arises is: are the above mentioned influencing factors going to
remain stable also in the future? To answer it, the German National Academy of
Science and Engineering (ACATECH, 2011) investigated four future scenarios of
Cyber-Physical Systems (CPS) application with a time horizon until the year 2025.

One of these scenarios “Cyber-Physical System for the factory of the future”
describes the characteristics and challenges for production systems. Production
systems shall be able to react virtually in real time to changes in the market and
the supply chain using CPS, which cooperate with ultra-flexibility even beyond
company boundaries. Therefore a future industrial system architecture is needed that
will focus on key aspects as identified in Kagermann et al. (2013), specifically:

• Allow flexibility and reconfiguration (with no downtime)
• Enable high production system resilience (deal with uncertainties)
• Enable continuous, automatic production optimization
• React faster and more automated to evolving customer and production demands
• Support for highly individualized production and small batches/lot sizes (lot

size 1)

The posed requirements are reflected in several key research questions (RQs).
However, most notably this chapter pertains aspects that tackle or enable approaches
targeting the following RQs (see Chap. 1):
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• Modelling the structure and behaviour of Cyber-Physical Production Systems
(CPPS) (RQ M1)

• Information integration in and across value chains (RQ I1)
• Description of plug-and-play capabilities and interfaces for engineering and run

time (RQ I3)
• Modelling of CPPS flexibility and self-adaptation capabilities (RQ C1)
• Linking discipline-specific engineering views for flexible and self- adaptable

CPPS (RQ C2)

The contributions of this chapter, are strongly liked to the emerging domain of
CPS, and especially in their utilization in production systems. The discussions per-
taining this chapter focus on providing an overview of automation system needs and
evolution, how these are migrated to an new information-driven interoperable and
service-enabled infrastructure, and what key considerations as well as challenges lie
ahead. The intention in this chapter is not to provide a new model-based approach
but to understand why and how the already existing methods and tools that enable
production system flexibility and self-adaptation of CPPS are not adequate or too
poorly implemented in industrial practice.

Based on discussed key requirements new automation system architectures are
emerging in different research approaches which will be described in more detail
in Sect. 8.2. As the design of completely new production systems, also referred to
as green-field, is of secondary importance since a high number of legacy systems
already exists, adequate migration strategies are needed to transform and migrate
from existing automation system architectures to future ones. This transformation
is described in Sect. 8.3. Furthermore the way to engineer these future automation
systems has to be re-thought. This must include new methods and tools for engineers
to design, implement and support such systems. Also educational programs have to
be up-dated to ensure availability of experts that are capable to deal with these new
systems architecture and new engineering paradigms. In Sect. 8.4 a closer look is
taken upon these aspects. Finally, Sect. 8.5 gives an outlook and presents the main
conclusions.

8.2 The Evolution of Automation System Architectures

Today companies are facing new market challenges in the manufacturing industry.
In response to new requirements, innovative forms of manufacturing are recently
introduced accordingly to the German “Industry 4.0” paradigm (Kagermann et al.,
2013). The need of new manufacturing approaches is influenced by several aspects,
namely market competitiveness, technology innovation, and customer requirements.

The global competition requires shortened delivery time and time-to-market,
smaller lot sizes and shorter product life-cycle. Meanwhile, rapid changes in process
technology force the fast integration of new functions into existing systems that are
subject to obsolescence. Furthermore, customer expectations include not only lower
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prices but also more variety, higher quality and faster delivery of the product. In
order to dynamically react to continuous changes of the business environment, the
view on production system control must evolve.

The traditional production control systems are not able to support industries in
overcoming such issues (Delsing et al., 2012). Centralized and hierarchical control
architectures are characterized by rigid and top-down communication flows that
do not enable the easy integration of new modules and, therefore, cannot cope
with sudden and rapid changes. Considering all these aspects, new challenges
for industries arise (Karnouskos et al., 2014a), and the next efforts attempt to
introduce in industry a new production approach characterized by flexibility to
different processing tasks, adaptability to changing production environment, and
reconfigurability to enable these changes, while maintaining the security, safety and
stability provided by classical production systems.

8.2.1 Classical Automation System Architectures

Traditional automation control systems are generally structured hierarchically or
centralized, due to the complexity of automation tasks and interactions between
components. According to the ISA-95/IEC 62264 (ANSI/ISA, 2010) standard, the
main automation tasks are split in different layers of a pyramidal structure as
shown in Fig. 8.1. The ANSI/ISA (2010) standard defines a model for exchanges
of information between systems in five abstraction levels: Level 0—Field, Level
1—Control (PLC), Level 2—Process Control (SCADA), Level 3—Manufacturing
Execution (MES) and Level 4—Enterprise Management (ERP).

The applications located on the different levels typically consider different time
frames that range from months, weeks and days for the higher levels to hours,
minutes, seconds and milliseconds for the lower levels. The first three levels perform
the control function to execute the technological production processes. The field
level uses actuators and sensors to measure, determine and display the equipment

Fig. 8.1 ISA 95 hierarchical view of automation infrastructures
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data, while the control and process control levels are related respectively to the
control of the product/process technology and to monitor the overall production
system. Level 3 comprehends the activities of coordination and management of
the production execution and, especially, the integration of different applications
with respect to the main data and work flows. Level 4 is the highest level and
represents the overall business management of the enterprise, including economical
and logistic activities.

In system architectures structured according to ISA-95 the decision control is
distributed among these hierarchical levels. This kind of structure has the advantages
of predictability and robustness, as well good global optimization. It can be effective
for small systems due to the characteristics of easy development and maintenance,
and also adequate for systems running in very stable and structured environments.
However, it is not adequate for emerging self-x automated manufacturing systems
because of the insufficient adaptability and flexibility to production changes and the
reduced performance in case of a single point of failure.

Analysing the scenario of “Cyber-Physical System for the factory of the future”
(ACATECH, 2011), a “real-time” reaction of the production system to market
changes cannot be performed by a hierarchical automation control system. In
order to react more quickly to customer demands and environment changes, a
more seamless integration of the automation pyramid’s levels is required to change
the production equipment and functions accordingly. The production units need
to cooperate and organize themselves to optimize the production systems, saving
time and costs. Capabilities, such as flexibility, adaptability and reconfigurability,
are limited in a rigid communication structure with no cross-layer interoperability
(Delsing et al., 2012), therefore, the traditional hierarchical ISA-95 structure needs
to be transformed into a modular and flexible automation system architecture
with decentralized control systems. The envisioned future production systems that
possess self-x features, are cost efficient and easy to integrate at mass scale,
cooperate in a cross-layer manner, interact with multiple stakeholders etc., justify
the trend towards a distributed approach that is hardly or too costly to be realized
with traditional approaches.

8.2.2 Emerging Automation System Architectures

The Cyber-Physical Systems (CPS) concept represents one of the key enablers of
innovation in production systems accordingly with the Industry 4.0 paradigm. CPS
focuses on the integration of logical and physical processes to control distributed
physical systems, using cyber technologies (mechatronics, communication and
information) (Lee, 2008; Leitão et al., 2016a). Since decades multi-agent systems
(MAS) and service-oriented architecture (SOA) have been considered as the main
approaches for implementing CPS and developing decentralized control systems in
industry (Leitão and Karnouskos, 2015b). Several projects (Leitão et al., 2016b)
have demonstrated their benefits. MAS is one of the most common approaches
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to realize decentralized control architectures by means of intelligent, modular and
distributed agents that can be interconnected with physical hardware devices (Leitão
et al., 2016a); and SOA is an architectural model for organizing and utilizing
distributed capabilities in order to enable all components to communicate and
interact via services (MacKenzie et al., 2006).

Next to these paradigms other concepts, such as plug-and-produce technology,
web services and cloud manufacturing, have been investigated to build flexible and
reconfigurable manufacturing control systems. During the last years a significant
amount of research has been conducted and, recently, several European funded
projects have reported important developments in this field and presented results
at high technology readiness levels.

The GRACE—Integration of process and quality control using multi-agent
technology—project (Castellini et al., 2011) developed, implemented and validated
a cooperative MAS to integrate process control with quality control at local
and global level. The MAS architecture was designed to manage the planned
changes of set-point in production processes and the large variety of unforeseen
disturbances and changes in process parameters and variables. Self-adaptation
procedures and optimization mechanisms for process and product parameters were
implemented and integrated into control and diagnostic systems at local level, in
terms of individual agents, and global level, considering the data gathered in all the
production system.

In parallel, the IDEAS—Instantly deployable evolvable assembly systems—
project (Onori et al., 2013) developed a fully distributed and pluggable environment
capable to self-organize itself and control at the shop floor level using agent
technology. The IDEAS assembly system ran with a multi-agent control setup and
could be reconfigured on-the-fly assuring the integration of different self-configured
modules at the shop floor in runtime. Moreover, the self-diagnosis capability of each
module permits to have a distributed diagnosis and the entire system is capable of
checking the propagation of problems and re-adapt whenever a component (module)
is plugged without requiring programming effort in order to manage unpredicted
behaviours.

Taking the experience from these projects, the PRIME—Plug and produce intelli-
gent multi-agent environment based on standard technology—project (Antzoulatos
et al., 2014) has gone one step forward to support assembly systems in distributed
reconfiguration and monitoring. It developed a multi-agent architecture using plug-
and-produce principles for module integration, including legacy equipment, and
methods for rapidly configuring production systems through innovative human-
machine interaction mechanisms. The PRIME approach is based on standard tech-
nologies (JADE multi-agent software framework, Vaadin and Cassandra database)
and languages (JAVA and OPC-UA programs for interfacing and data exchange)
for the integration and networking of heterogeneous control system from different
equipment suppliers to support system evolution linked to process performance and
product volume variability.

The I-RAMP3—Intelligent reconfigurable machines for smart plug-and-produce
production—project (Goncalves et al., 2014) focused on the transformation of
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conventional production equipment into network-enabled devices (NETDEVs).
The NETDEV interface enables the integration of plug-and-produce devices and
sensors and actuators at MES level for work flow optimization and production data
assessment, using standardized communication and collaboration mechanisms.

The SOCRADES—Service-Oriented Cross-layer infRAstructure for Distributed
smart Embedded Systems—project (Colombo and Karnouskos, 2009; Karnouskos
et al., 2010; Colombo et al., 2010) used the Service-Oriented Architecture paradigm
at device and application levels to build a design, execution and management
platform for innovative industrial automation systems. The project focused on
designing and implementing a cross-layer infrastructure that would enable the
integration of industrial automation systems and devices up to the MES/ERP level
(Karnouskos et al., 2007, 2009). The approach was driven by open standards,
service-based integration, and collaboration among the various stakeholders, setting
the stage for the next generation of automation systems (Colombo and Karnouskos,
2009).

The IMC-AESOP—Industrial Monitoring and Control ArchitecturE for Service-
Oriented Process—project (Colombo et al., 2014b,a) used as a starting point the
SOCRADES approach and extended it to realize cloud-based industrial CPS.
Driven by key emerging information and communication technologies in industrial
automation, and with a strong focus on the cloud (Karnouskos and Somlev, 2013),
the project envisioned and realized an architecture (Karnouskos et al., 2014b) for
industrial CPS automation infrastructures. The results have been demonstrated
in the next generation cloud & service based SCADA/DCS (Karnouskos and
Colombo, 2011) for monitoring and control, including visions for their design,
implementation, collaboration, and migration The architecture enables cross-layer
service-oriented collaboration both at horizontal and vertical levels by utilizing
service-oriented integration and the cloud.

The Self-Learning—Reliable Self-Learning production systems based on
context-aware service—project (Stokic et al., 2011) proposed the service-oriented
integration of different auxiliary processes into the main control. The processes
are represented as services that fully interoperate in a Web Services platform. The
Self-Learning system enables the reconfiguration of machines and processes based
on user experiences acquired during the system runtime.

The FLEXA—Advanced flexible automation cell—project (Webb and Asif,
2011) developed a flexible manufacturing system based on web services architecture
that connects the cell controller to ERP/MES.

The SelSus—Health Monitoring and Life-Long Capability Management for Self-
Sustaining Manufacturing Systems—project (Sayed et al., 2015) proposed a new
paradigm for highly effective, self-healing production systems to maximize their
performance over longer lifetimes using web-based services for multi-modal data
acquisition techniques to validate, update and document all information on failure
modes or degradation states.

The CassaMobile—Flexible Mini-Factory for local and customized production
in a container—project (Friedrich et al., 2014) developed a new kind of local,
flexible and environmentally friendly production system for highly customized



192 M. Foehr et al.

Table 8.1 Overview of technologies in emerging automation system architectures
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Self-* features � � � �� �� �� � � �
Legend: � covered; �� partially covered

parts based on a combination of different manufacturing processes. The production
is based on a modular architecture that includes mechanical and control system
adaptation by means of a SoA system.

One of the current trends in the future automation control research is to integrate
these solution concepts in the same architecture. One example is the ARUM—
Adaptive Production Management—project (Leitão et al., 2013), which combined
holonic multi-agent systems with services architecture using Enterprise Service Bus
(ESB) to improve planning and control systems.

These projects show a transformation of the centralized architecture into a
distributed control system using different technologies, as shown in Table 8.1.
High levels of autonomy and cooperation of individual entities have been reached
via multi-agent systems in which agents have their own intelligence and interact
with each other optimizing their behaviour iteratively (Wooldridge, 2002; Leitão
et al., 2016b). Service-oriented architecture technologies enable the integration
of components that provide services to other components they are linked to,
creating an Internet of Services for the production system. Web Services contain
components description and exchange data information enhancing the vertical
collaboration between device level and enterprise level. Moreover, hosting these
services in a Cloud it is possible to rapidly compose new industrial application
just by selecting and combining the information stored inside (Colombo et al.,
2014b). Plug-and-play technologies are investigated to build modular structures that
improve components interoperability and reusability to satisfy the requirement of
rapid reconfigurability of the system (Antzoulatos et al., 2014). In addition, self-*
capabilities support equipment integration, control and monitoring, as well as
cooperation and adaptation.

Each of these projects provided an individual solution for flexible and recon-
figurable distributed control architectures involving multi-agent systems (Leitão
et al., 2016b), standard communication protocols, web services and Cyber-Physical
components. However, these solutions solve only narrowed specific problems
neglecting other technological issues. In order to facilitate a wider industrial uptake,
the future industrial system architecture should be a result of the integration of these



8 Engineering of Future CPS Automation Architectures 193

Fig. 8.2 Automation system integration vision over a common (service) infrastructure

technologies in a unique form (e.g., as shown in Fig. 8.2), covering the architecture,
assets and process aspects of the overall production system. As an example, the
SOCRADES project has demonstrated largely feasibility of this vision using web
services for cross-layer integration and collaboration among devices, systems and
other stakeholders (Colombo et al., 2010; Karnouskos et al., 2009; Taisch et al.,
2009). A recent survey of acceptance factors of agent systems in industry (Leitão
and Karnouskos, 2015a) sheds some additional light on key aspects that should be
investigated at large when engineering of future industrial automation systems is to
be considered.

In Fig. 8.2 a vision of automation system integration over a common service-
based infrastructure is proposed. A key role in this new vision is performed by the
distributed service-based integration layer that aims to ensure the transparent, secure
and reliable interconnection of the diverse heterogeneous hardware devices e.g.,
robotic cells and Programmable Logic Controllers (PLC), and software applications
e.g., MES and SCADA/DCS (Karnouskos and Colombo, 2011). Current Business
systems and higher-level applications (i.e., ERP and MES etc.) are typically fully
service-based in their interactions with other systems. As such, integration with
such systems is possible via services, and commonly via Internet technologies
such as web services. However, any proprietary system, not providing service
based interfaces, needs to be integrated via a service wrapper that translates
proprietary interfaces in standard service based interfaces in order to connect the
system to the other software applications and industrial hardware devices. An
important innovation of this integration layer, e.g. developed in the PERFoRM
project (PERFoRM, 2016a), is its distributed and cloud approach, instead of the
centralized ones that can be mostly found nowadays and can act as a single point
of failure as well as a limitation for the system scalability. For this purpose, this
distributed integration layer handles the interconnection of these heterogeneous
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production components by following the service-orientation principles, i.e., each
one is exposing their functionalities as services, which will be discovered and
requested by the other components.

Since the implementation of new control technologies will have a direct impact
on the production, the implementation of a new decentralized control architecture
is not sufficient to achieve the exploitation of Cyber-Physical Production Systems
(CPPS). A migration strategy that supports industries in adopting new technologies
has been only partially considered in the past projects, e.g., IMC-AESOP envisioned
the next generation SCADA/DCS systems (Karnouskos and Colombo, 2011) and
investigated an approach to migrate SCADA and DCS systems to SOA (Delsing
et al., 2011). At present, it is required a set of guidelines for engineers, equipment
developers and end users to plan, support and realize an easy and smooth migration
of the existing factories into the new generation of smart factories, taking into
consideration both technical and economical issues.

8.3 The Transformation of Automation System Architectures

8.3.1 Towards Information-Driven Automation Systems

Business continuity and agility form the core modus operandi of modern global
enterprises (Karnouskos, 2009), and efforts that yield results of more efficient
automation systems are well-justified. In order to achieve the pursued agility and
continuity, business processes performed in highly distributed production systems
need to be efficiently integrated with a sophisticated shop-floor infrastructure that
is capable of responding to dynamic adaptations in a timely manner (Karnouskos,
2011).

The prevalence of CPS and the advanced capabilities they offer, mean a drastic
reshaping of the future automation system architectures. The increased complexity
and sophistication of involved systems, make it very hard to follow monolithic and
one-size-fits-all approaches, and make the transition towards modular, dynamic,
and open systems imperative (Colombo and Karnouskos, 2009; Karnouskos, 2011).
Over the last years, significant efforts have been realized towards service oriented
architectures and systems that interact with them (Colombo et al., 2014b). The
CPS principle pushes such limits even further, as CPS themselves as well as
constellations of them and larger systems of systems need to adhere to similar design
patterns and principles.

In such sophisticated infrastructures, emphasis is put on interaction of the CPS
with its surrounding environment, which may dynamically change, and which is
based on open technologies and interaction patterns rather than closed systems
and proprietary software. Hence the integration aspects gain importance, and its
focus is significantly expanded for large infrastructures and highly heterogeneous
landscapes composed of thousands of devices, systems, services that need to
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Fig. 8.3 Transitioning towards a SOA-based information-driven architecture by offering key
functionalities as services (Karnouskos et al., 2014b; Colombo et al., 2014b)

interact, cooperate and realize their goals in an efficient manner (Colombo et al.,
2013).

Considering envisioned architecture transitions such as the one shown in Fig. 8.3,
the high-level changes imposed upon engineering of future automation systems are
becoming easier to recognize. Figure 8.3 advocates that in parallel to traditional
hierarchical architectures in industrial infrastructures, selected functionalities at
different levels (e.g., as defined by the ISA-95 paradigm), can be exposed as a
collection of CPS services. The latter, may exist in the CPS, traditional systems,
as well as the cloud, giving rise to a highly heterogeneous, dynamic, and adequately
performant ecosystem of services (Colombo et al., 2013; Karnouskos and Somlev,
2013). Upon such services, applications can cherry-pick the functionalities they
need in order to rapidly and efficiently fulfil their goals.

It is important to notice that this transformation of automation systems is
performed mainly at the virtual IT level and not in the physical counterpart of
the system, which simplifies the migration from the existing automation production
systems running currently in the factories to the future ones. Additionally, according
to the McKinsey’s report (McKinsey, 2015), the implementation of “industry 4.0”
solutions will bring significant benefits with only about 40–50% of replacement of
equipment.

Considering the proposed innovative automation systems architectures described
in Sect. 8.2, one can identify some similarities among them. They build upon the
distribution of control functions over intelligent, modular and cooperative entities
providing modularity, flexibility, robustness, scalability and reconfigurability, which
are at large weak aspects of traditional monolithic architectures. The distributed
approach addresses the need to have adequate automation system architectures to



196 M. Foehr et al.

tackle the scenario of “Factory of the Future”, while being in-line with the guidelines
defined by the “Industry 4.0” platform. These architectures also present intelligence
and adaptation capabilities embedded in the distributed nodes and in the emergent
system behaviour, and some exhibits evolution and self-* properties, such as self-
organization, self-adaptation, self-optimization and self-healing.

The deployment of these new decentralized, smart automation architectures in
industrial environments need to be performed in a smooth manner, transforming
the solutions based on the traditional hierarchical ISA-95 automation structure into
solutions based on a network of CPS (ACATECH, 2011; Leitão et al., 2016a). This
transformation effort should consider the integration of heterogeneous robotics and
automation machinery, as well as the existing legacy systems running in the current
industrial solutions to avoid discontinuity and aiming a smooth migration. For this
purpose, the plugability is simplified by considering proper industrial standards
for protocols and technologies that enable easy integration and interaction among
systems and services, while avoiding the creation of “technology islands”.

8.3.2 Migration Strategies

The envisioned next generation of industrial automation architectures provide tan-
gible benefits and are a good match for newly established infrastructures (greenfield
projects) e.g., can be deployed in a new plant. However, the vast majority of
existing infrastructures are brown field projects as they already have constraints in
place (e.g., integration with legacy systems and processes), and need to go through
migration stages, that will enable the smooth transition from existing systems to the
sophisticated infrastructure envisioned.

Current lifetime of production facilities are long, and changes are infrequent
and limited. However, this is increasingly changing and in conjunction with the
prevalence of software and computational processing at the heart of the 4th
industrial revolution, changes are going to be not sporadic but an integral part of
the day-to-day business, transitioning towards a DevOps culture. As such, it can
be considered that these changes will be applied through incremental migration
steps, during the whole lifecycle of devices, services, systems and landscapes. This
is especially important as plant operators typically invest multiple millions into their
production systems. A change over to decentralized control by a complete revamp
of the automation system in one big shot does not only yield a high risk of failure but
also annihilates high amounts of investment before they repaid. A stepwise approach
of system changeover can bring in small portions of the new distributed control at a
time, reducing risks and also allowing to change over the system in accordance with
investment ability of the plant operator. Hence, migration strategies are expected to
play a pivotal role to the success of the envisioned infrastructures.

Considering the migration to an information-flat and service-based infrastructure
as shown in Fig. 8.3, the steps that need to be undertaken are depicted at high level
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Fig. 8.4 Migration of complex functionalities and cross-layer dependencies to a full SOA-based
Infrastructure (Colombo et al., 2014b; Delsing et al., 2011)

in Fig. 8.4. The different system characteristics prevalent in each ISA-95 layer, will
need to be captured step-wise in services and be made available. However, as there
are several inter-dependencies, the potential migration paths have to be assessed and
a migration has to be done step-wise. In doing so, partially the new functionalities
will become available to applications and services. Such migration will also unleash
at system level emergent behaviours as a result of the dynamic interactions among
the different devices and systems. Top-down and bottom-up approaches will need
to be analysed in detail (Delsing et al., 2011), and the resulting migration strategies
can be highly complex, depending on the preconditions, requirements and goals.
More detailed examples with respect to migration and its challenges can be found
in Colombo et al. (2014b). Figure 8.4 makes it clear that the migration is not an
one-time operation, but rather a continuous one, that the automation industry will
have to get accustomed to.

The software industry has long experience with step-wise development, release
and upgrade of systems, and can manage such step-wise changes quite well.
However, when it boils down to CPS infrastructures with strict operational and
timing requirements, things are challenging. In addition, any migration strategies
have a multitude of goals that go beyond technology and include, cost-effectiveness,
resource-efficiency, agility, deterministic behaviour, operational easiness, business
continuity etc. (Karnouskos, 2009). Due to their cross-disciplinary nature, applied
at enterprise level, such migration strategies pose some risk which needs to be
managed. However, once the envisioned architectures and modus operandi are in
place, such incremental migratory actions are expected to be easier to realize.
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8.4 Considerations on Future Automation System
Architectures

The transition from the existing traditional industrial automation systems, mainly
based on Product-Life-Cycle (PLM) into the new CPS based approaches, should
be smooth and requires a rethinking of engineering methodologies, integration of
methods and tools from the different domains where the CPS are located and
best practices. Since such changes have to consider also existing infrastructures
and business continuity, consideration of migration and mitigation strategies to
overcome the identified challenges is seen as of paramount importance. When
talking about Engineering CPS-based Automation Systems, there are three main
task clusters to consider:

• The Engineering to create new CPS components at device level (cyber- and
physical views) and the Engineering to build the System of CPS.

• The Engineering to reconfigure or adapt an existing CPS, to operate it and to
manage its evolution, both at device and system levels

• The Engineering to design, implement, operate and manage autonomous/smart
CPS components within an intelligent automation infrastructure

8.4.1 Rethinking of Automation Systems Engineering

It is important to recognize that all the parts involved in future automation system
architectures, will not be under the control of a single authority, and technology,
and therefore, the integration, interaction and operation will need to be done
via open interfaces exposed by the services (Karnouskos, 2011; Colombo et al.,
2014b). Taking into consideration the goals of a CPS, as discussed in Sect. 8.1,
the engineering effort to adapt a CPS during run-time must be minimal. This means
“Zero Engineering” during run-time must be prepared and implemented. The ability
to reconfigure existing elements and to integrate new elements have to be a “built-
in” capability of the CPS on system level. Engineering such systems has to cope
with continuous updates of the infrastructure (both in hardware and software) and
to provide high resilience for the CPS.

Aspects such as Systems of CPS integration and dynamic reconfiguration require
a set of complementary engineering tasks, which are strongly related to the major
characteristics to be covered by an adequate Systems-of-Systems engineering
approach, i.e.,

• engineering evolvability at system level due to plug-and-play integration and live
removal of CPS components;

• dynamic requirements engineering to support incremental live validation of
structural and behavioural modifications of the system (understanding and
managing “emergency”;
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• control re-configuration for several control systems that are strongly coupled;
• last but not least the integration of the human factor in each of the phases of the

life cycle without loosing the System-of-Systems view perspective

As the different parts of such a system will evolve independently, good practices for
engineering, upgrading, operating and maintaining them need to be followed.

The core idea behind the amalgamating the physical and virtual (digital) worlds,
is to seamlessly gather useful data and information about objects of the physical
world, transform it to knowledge, and empower various industrial applications
(Karnouskos, 2011; Colombo et al., 2014b). The emerging engineering systems,
operating in highly sophisticated infrastructures as discussed, are expected to enable
the elimination of many existing pain points, but unavoidably it will create others.
The new ones will require engineers to draw on knowledge from multiple disciplines
(Broy and Schmidt, 2014; Karnouskos et al., 2014a) if they want to effectively
capitalize on the new capabilities.

The automation engineers dealing with Industrial Systems of Cyber-Physical
Systems have to possess a much wider set of skills to understand how the different
constituent systems interact, both in structural and behavioural manner, as well as
a solid background on Information, Communication, Control Technology and their
fusion.

As such, engineering effective solutions implies e.g., technical excellence, under-
standing of hardware and software components in the infrastructure, knowledge of
industrial operational context, understanding of interactions at device and system
level, risk estimation, understanding of the impact of engineering decisions e.g., to
safety, security, dependability, etc.

8.4.2 Directions and Challenges

The described transformation into the future industrial automation systems, and
their industrial adoption, presents several challenges, which can be aggregated in
6 major clusters (Leitão et al., 2016a):

• CPS Capabilities, which comprises the modularization and servification of CPS
systems, the development of CPS as System of Systems (SoS), their optimization
and real-time monitoring and control, as well as the consideration of advanced
(big) data analytics.

• CPS Management, which includes the security and trust in the management of
large scale CPS, aiming to achieve industrially mature solutions.

• CPS Engineering, which comprises the safe programming and validation, the
resilient risk mitigation, and methods and tools for the CPS and Systems-of-CPS
life-cycle support, which are crucial challenges for the industry. A challenge is
the need to apply new methods within the engineering of these systems (e.g.,
collaborative workflow generation and processing).
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• CPS Ecosystems, which includes the design and deployment of collaborative,
autonomic, self-* and emergent CPS, as well as the integration of Humans in the
Loop, many of them being expected to be matured only in the long-run.

• CPS Infrastructures, which are related to interoperability services, and mitigation
and migration strategies to support the transformation of current automation
systems into the future CPS ones.

• CPS Information Systems, which considers artificial intelligence, data transfor-
mation and data analytics to capitalize the huge amount of collected data to reach
actionable knowledge.

A brief analysis of reported research and innovation results demonstrated over
the last 15–20 years allows to better understand how such actions can be realized by
combining CPS, Internet-of-Things and Internet-of-Services technologies. Embed-
ding at large industrial agents and Service-oriented based automation (SOCRADES,
2016; Taisch et al., 2009; Leitão et al., 2016b) is one innovation approach to be
highlighted. In fact, agents may act as enablers for CPS-based industrial system
architectures and contribute in terms of technology/solution maturity, methodolo-
gies and tools, human in the loop, smooth migration and self-* properties, and
standardization (Leitão et al., 2016b; Leitão and Karnouskos, 2015a)

Another important dimension for the fully industrial adoption of CPS-based
automation systems architectures is the standardization (Kagermann et al., 2013;
IEC, 2015), since the standards compliance may affect the development, installation
and commissioning of industrial applications. In fact, standardization can support
the deployment of CPS, and particularly the smooth migration of these systems, by
easily interfacing with existing legacy systems, plugging devices and systems, and
adapting their behaviour and relationships on-the-fly. The integration of humans
in the loop is seen as a key factor to achieve flexibility (Kagermann et al., 2013),
and not more as an obstacle for the complete system automation, as sustained in
the past, and particularly during the advent of Computer Integrated Manufacturing
(CIM) paradigm.

The Reference Architecture Model Industrie 4.0 (RAMI4.0) standard (DIN,
2016) presents the major architectural specifications for Cyber-Physical components
(labelled as I4.0-component) and the set of rules for engineering Industry 4.0
compliant architectures. Aspects related to the CPS-integration within an ISA95-
compliant architecture, the different phases of the life-cycle of the CPS components
and systems of CPS are considered as the base for supporting the engineering of
CPS-based industrial systems. In this sense, something that has to be highlighted
is the specification of the six digitalization-layers, which cover the full process of
building a Cyber-Physical component, starting with the mechatronics (assets) and
going through the integration, communication, information, function and business
layers. A set of communication and information layers based on the use of Internet
technologies, and the exposition of automation function as services in an Internet-
of-Services fashion, enable the I4.0-components (CPS-component) to engage into
business relationships with other components within a system of CPSs.

Additionally, the implementation of the new generation of automation systems
will demand new challenges for vocational and academic training and continuing
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professional development, as sustained by the “industry 4.0” high-level working
group in its recommended actions (Kagermann et al., 2013; Karnouskos et al.,
2014a). In fact, nowadays, engineers need to integrate multidisciplinary and cross-
domain knowledge, focusing more on the understanding of system of systems
perspective than in a deeply topic domain. In parallel, the penetration of Information
and Communication technologies into traditional mechatronics, hydraulics, pneu-
matic systems, are continuously re-shaping the world, and require an integrative
learning process.

The engineering-students are no more dealing only with the physical but
predominantly with the cyber part of complex engineering systems, which implies
that their acquired knowledge quickly becomes obsolete (some times in less time
than the student takes to get the undergraduate degree). Therefore, they need to
learn different topics to be able to compete in the future (more systems/system of
systems understanding instead of pure (deep) domain knowledge). As example, new
engineers have to cope with new paradigms and concepts (e.g., modelling, seman-
tics, (crowd) collaboration, interoperability, self-organization and self-diagnosis)
and emergent technologies (e.g., Internet-of-Things, Big data, Machine-to-Machine,
advanced data analytics, cloud computing and augmented reality).

Considering all the raised concerns, educating engineers, in the “Industry
4.0” context, means learning how to design, develop, test, deploy, and operate a
traditional engineering environment that is being digitalized in both, its structural
but also in its behavioural/functional aspects.

The implementation of strategies for the smooth migration from traditional
automation systems into the new generation of distributed automation systems are
crucial since legacy systems will continue running and will co-exist with the new
systems (Leitão et al., 2016b; Karnouskos et al., 2014a). As an example, during
the implementation of the GRACE MAS system in the Whirlpool’s factory plant
producing washing machines (Leitão et al., 2015), the lower control level using
PLCs running IEC61313-3 programs was preserved to ensure the real-time control
and the MAS solution was placed at the higher control level to introduce intelligence
and adaptation to the system performance. However, this is an emergent topic that
deserves a significant research in the near future to establish the proper strategies to
ensure a smooth migration transforming the existing running systems into Industrie
4.0 compliant systems. These migration strategies should consider the technical
perspective, as briefly described in Sect. 8.3.2, but also a deeply study of the impact
of economical and social perspectives.

8.5 Conclusion and Outlook

There is a need for flexibility, resilience and optimization in industrial settings,
that can not be adequately tackled with traditional approaches. Although significant
steps have been realized by concepts and utilization of key technologies such as
MAS, SOA, Cloud, CPS, significant efforts are still needed to tackle additional
challenges related to their engineering and interaction in emerging cooperative
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production systems. The intention in this chapter is not to provide a new model-
based approach but to understand why and how the already existing methods and
tools that enable production system flexibility and self-adaptation of CPPS are not
adequate or too poorly implemented in industrial practice. At the end, the successful
applications of such concepts and technologies will not only be determined by
the ability to deal with technology problems, but effectively cover also all other
associated aspects that enable continuous business growth and effectiveness.

One of these aspects is about the availability and quality of information. As (sub-)
systems are not considered as monolithic building blocks any more, but are seen
in their environment of strongly interconnected systems of systems the view on
information availability needs to be altered. This altered view needs to reflect not
only the system itself, but also its role within its environment, lifecycle, functional
hierarchy, etc. This aspect has already been described in Chaps. 5, 6 and 7 of this
book.

The increased integration of the cyber and physical aspects of systems, also
leads to new challenges for system applications (Lee, 2008; Leitão et al., 2016a;
Broy and Schmidt, 2014; Karnouskos et al., 2014a). In the past optimization and
improvements have been targeted mainly on isolated parts of the system. Hence,
improved production processes and technologies has led to new or improved assets
(see top left in Fig. 8.5) or improved control approaches and technologies in the
system architecture (see top right in Fig. 8.5). To bring these improvements into

Fig. 8.5 PERFoRM (2016b) project multi-view on production systems
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already existing production systems basically meant to interchange an existing
building block (e.g., production asset, IT system) with a new one.

Nowadays these improvements are still possible, but they will not allow to
sufficiently address all challenges which are arising from the new complexity of
self-* systems and distributed intelligence. In fact the introduction of these concepts
requires a change in the heart of each system as they lead to changes in multiple
areas and are not isolated only to system building blocks. The integration of assets
and IT will allow to improve the whole value adding process (see bottom in Fig. 8.5).

To do this in an efficient and cost-effective way which is suitable for plant
operators, new migration methods have to be researched and mitigation strategies
need to realized, as discussed in Sects. 8.3 and 8.4. As an example of such an
effort, the PERFoRM (2016b) project does not focus on the development of new
technologies for tackling flexibility, resilience and optimization needs, but to the
re-use of existing developments and their harmonization as also already shown in
Sect. 8.2. Additionally a strong focus is set to the development of suitable migration
methods and mitigation of existing obstacles in order to create an environment and
guidelines for industry to apply decentralized automation system architectures.

This approach, as also proposed within this chapter, allows to re-use already
developed technologies and especially to capitalize on the money already spent for
this research. Additionally, as a side effect, it stops the ongoing diversification in
developed solutions and thus a further diversification of similar technologies to be
harmonized or even standardized later on. A downside of this approach is that it can
only utilize technologies that already passed at least a conceptional stage at which
they are recognized as an already available technology.
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Chapter 9
Engineering Workflow and Software Tool
Chains of Automated Production Systems

Anton Strahilov and Holger Hämmerle

Abstract Application fields of automated production systems are varied, e.g.
automotive, aerospace and food industry, just to name a few. The complexity of
such production systems has significantly been increased in the last years, (Koren
et al., CIRP Ann Manuf Technol 48(2):527–540, 1999). This increase was a
result of the increased complexity and variance of products. As a result of this,
the engineering workflow of automated production system has continuously been
adapted to new requirements. In this regards, this chapter shows and describes the
current engineering workflow of automated production systems based on experience
in the field of production system for the automotive industry. The main focus of this
description is set on the established tool-chains and used tools to create engineering
information as well as data formats to save and exchange information between tools
and involved personnel. In the introduction of this chapter, differences between
an automated production system and a cyber-physical system are given. Current
production systems could be named CPPS but this term is not popular in the field
of production system builder as well as production owners. But in spite of that the
end of this chapter gives an outlook of the future of automated production systems
in direction of CPPS.

Keywords Tool chains • Exchange data formats • Automated production
systems • Engineering data • Engineering workflow • Engineering tools •
Automotive industry
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PLC Programable logical controller
PM Plant manufacturer/system manufacturer
VC Virtual commissioning
VE Virtual engineering

9.1 Introduction

In the past years, the term cyber-physical system has not been popular in the
industrial area of production systems. A production system manufacturer was
coping with mechatronic systems rather than Cyber-Physical Production Systems
(CPPS). The reason for this is that, the term CPPS was not very popular and
further the developed production system could not be referred to being a cyber-
physical production system. The primary cause is the missing intelligence of
implemented sub-components (e.g. electric drives, pneumatic cylinders, sensors,
etc.) in the production system. Additionally, the information about the products,
which have to be manufactured with the system, and the production processes
are integrated into a higher-level Programmable Logic Controller (PLC) as a
software/production program (Dilts et al. 1991). Consequently, sub-components
could not react to product changes with modification of the production process by
themselves. Furthermore, the communication of sub-components with each other in
a production system was rarely used in the practice. The same is also true for the
local communication of production systems of a production line between each other
or with other systems via internet.

Unfortunately, production systems that are currently developed could not be
labelled now as CPPS, because not all sub-components have built-in intelligence
as well as using this intelligence within the production process. But the first step to
use such CPPS in practice for automotive production has not been undertaken yet.
Despite that significant changes of established tool chains for the design of produc-
tion plants are not expected from the production system builder. Only changes or
add-ons for functionalities of currently applied tools as well as on the engineering
workflow are expected to be developed. In this regard, established tool chains in
practice are presented in this chapter. To achieve a better understanding about the
tool chains, a universal and established engineering workflow of production systems
for automotive manufacturing will be presented.

The transition of a usual production system to a CPPS is the next step for each
product system builder as well as system user. New innovative methods and tools
will be required to design qualitative CPPS. Effective usage of these methods and
tools during the design of the CPPS will be a significant success factor of acceptance
by employees. During this, employers have to rethink established system design
concepts of production systems. This rethink process will be taking more time.
An adaptation of established development workflows will also be a necessary step
within the rethink process. A similar rethink process also has to be performed by
users of production system as well as by component manufacturers. Moreover, all
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three parties’ production system builder, production system owner and component
manufacturers have to work together to set a sound basis on which CPPS can be
further designed.

The current chapter establishes an engineering workflow of production systems.
The three main phases System Development, Productive Use and Recycling/Re-Use
phases of the lifecycle of production systems are discussed. From those three phases,
the state of the system development phase stand in focus of this chapter. In this
regards, established tool chains in practice and common used exchange data formats
are presented. Finally, a summary of the chapter is given which contains also a view
of the further of automated production systems in direction of CPPS.

Across this chapter, some research questions described in Chap. 1 are taken into
a count. Specifically, following research questions are from greatest interest for
the current chapter: information in and across value chains, quality assurance for
information exchange and description of plug-and play capabilities and interfaces
for engineering and run time (see Chap. 1, RQI 1–RQ I3).

9.2 Engineering Workflow of Production System

The life cycle of production systems encompasses various phases which could be
simplified as sequential process (Drescher et al. 2013). Thereby, the plant owner
(Original Equipment Manufacturer (OEM)) authorizes a production system builder
(Plan Manufacture (PM)) to develop and provide a production system regarding
to its individual requirements (Li and Meerkov 2001). In the system development
phase of the production system, mechanics, electronics and software of the system
are designed (Groover 2007). Subsequently, the phase of productive utilization of
the system starts and continues until the production system is used productively.
With the ending of this phase, the production system will be recycled or modified,
in such a way that the system could be used for a different production processes. In
the following the development phase of production systems is presented in detail.

The production system’s mechanics, electronics and software are designed and
in a next step realized. Regarding to this, the production system development could
be divided into the both phases system design and system realization (Fig. 9.1).

In system design, as its title suggests, the production system is about to be
designed. Thereby, the three sub-phases mechanical design, electrical design and
software design can be distinguished. In principle, those phases are executed in
parallel and depend on each other. Additionally, system validation activities are
carried out in parallel to the three phases. These activities can be divided into the
phases Virtual Engineering (VE) and Virtual Commissioning (VC).

Into mechanical design, a detailed 3d geometric model of the production system
is created. In this model, mechanical relations between product and production
system are integrated together, e.g. position of welding points, gripper points,
robots, etc. (see Chap. 1-RQ I1). Based on this geometric model, a 2d drawing
of each part as well as aggregated assemblies is derived. These drawings are

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
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Fig. 9.1 Production system development process

required for the manufacturing of the system parts that are individually designed
solely for the production system under development. For the remaining parts, a 2d
drawing is required to become an overview about the used parts and the correct
mounting position, e.g. screws, springs, nuts, flat washers, etc. In some cases,
components provided by a manufacturer are used, e.g. electric drives, pneumatic
drives, pneumatic valves, controllers, industrial robots, etc. Those components
are assembled from a lot of parts and should not be produced by the system
manufacturer. For such component’s parts, the 2d drawing is not really useful and
is not derived.

With the 3D geometric model of the production system, the layout of the system
is defined as well. Thereby, the position of each part respectively component of the
production system is determined. In this context, the position of product parts and
external material flow of parts into the system is defined via the layout.

Another output of the mechanical design is the production process. This process
strongly depends on the requirements defined by the product development engineers
that intend the sequence of the assembly steps for his product. Also, the production
process has a significant impact on the system’s mechanical design respectively
layout. In combination with the defining of the production process, offline robot
programs (OLP) are also created. This output covers important relations between
production system, products and production processes, e.g. processes performed via
robots, sequence of movement of pneumatic/electric drives, change-over between
product variant during production processes, etc. (see Chap. 1-RQ I1).

Regarding to the defined production system’s parts and components of the
mechanical design, a list of all installed parts is created. With this list, the
quality of information exchange between mechanical engineer, pneumatic/electric
engineer and purchasing can be ensured (see Chap. 1-RQ I2). Furthermore, the
electrical engineer derives all parts and components that he requires as input for
starting the design of the electric plan of the production system. In practice, the
electric/fluidic design starts even before the final part list is determined. Regular
changes on the electric plan regarding changes on the selected components are
only one disadvantage of this procedure, e.g. changes of electrical drives, sensors,
industrial robots, etc. But the premature beginning of the electric design phase is
a consequence of time constraints since the development phase only accounts for

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
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3–6 months in total. In some cases, these time period can be more than 6 months
depending on the complexity of the production system (Drescher et al. 2013).
Finally, the electrical plan of the entire production system is created. In this plan,
all required data is summarized that is needed to connect components via electrical
cables, e.g. cable types, port names, electrical sockets, requirements to the cable
laying, additional components, etc.

Based on the created part list, pneumatic components are defined by the
mechanical engineer together with the pneumatic engineer. Based on this list,
a pneumatic plan of the production system is created by a pneumatic engineer.
This pneumatic plan encompasses definitions regarding to use tubes, connections
between the components, used valves to control cylinders, throttles to define the
cylinder velocity, etc. Information about installation of the tubes is determined in
the pneumatic plan in detail. In most cases, installation instructions are defined
in the system realization phase and are not documented after that. The same
is also valid for the installation of electrical cables. Despite that dependencies
between electronics and pneumatics of the system are also added into both plans,
e.g. connection between PLC signals and pneumatic valves as well as inductive
sensors via electric cables, etc. Finally, production system’s specific information
about connections between mechanic, electric/pneumatic and PLC components are
integrated with each other (see Chap. 1-RQ I1).

Parallel to the electrical/fluidic design, the validation of the mechanic design
is carried out within the virtual engineering phase. In this phase, the collision
free movement of each drive component (e.g. pneumatic cylinders, electric drives,
robots, etc.) in the production system regarding to the production process is of major
interest. Within virtual engineering the validation of production cycle time is also of
paramount importance. Using this method, created outputs are collected and tested
with each other (see Chap. 1-RQ I2).

With the ending of the electrical/fluidic design, the PLC/software design phase
starts. In this phase, the software (control program) of the production system is
created. The information contained in the electric plan and pneumatic plan as
well as the knowledge about the production process of the production system is
required. Furthermore, security-related aspects regarding to manufacturing personal
and product will also be considered during the programming of the software. Finally,
the complete software of the production system is created. Thereby, a testing of this
program could be not done even before the real production system is built up.

In order to test and validate the production system’s software the phase virtual
commissioning is added as a sub-phase into the system design. In this phase, as
its name suggests, the virtual commissioning method is used to test and validate
the functionalities of the developed software. For this purpose, an extended 3D
geometric model of the mechanics and a logic behaviour model of the production
system are required to represent the real production system for the PLC that runs
the developed software (Süß et al. 2015).

The manufacturing of the designed parts starts after completion of the parallel
running phases after the mechanical design. Thereby, all parts developed for the
current production system are produced and the remaining parts or components

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1


212 A. Strahilov and H. Hämmerle

provided by suppliers are ordered. The duration of this phase depends on the
complexity of the production system as well as on the ordered components and
can account to one until 4 months. Regarding to this long period, this phase starts in
some cases even before the mechanical design phase is completed.

In the automotive industry, the initial assembling and commissioning of the
production systems is done by the production system builder. The system builder
tests at his facilities the functionality of the system mechanic together with the
interactions with the system electric, pneumatic and software. As soon as the
automatic performing of the production process is tested, the system builder
disassembled the system in separate modules and transports those modules to the
plant owner (OEM’s) shop floor. In the following step, these modules will be
reassembled and commissioned again by the production system builder. Thereby,
the production system is not tested again in detail, only minor adjustments to the
local conditions are implemented.

9.3 Established Tool Chains in Practice

Regarding to the presented production system development process (Fig. 9.1), an
overview about the results of each phase is displayed in Table 9.1. From this table,
the relation between generated outputs of each phase and the processing of those
outputs in other phases can be inferred. Thereby, it is evident from the overview that
a lot of various outputs are generated during the production system development
process. To generate those multiple outputs, a high number of various domain
specific tools are used. Widely used domain specific tools are presented in this
section and assigned to the established tool chains.

Furthermore, the significant data formats that serve to save and exchange outputs
between the phases during the development process are listed. In this context,
resulting difficulties during the exchange of outputs via data formats will also
be considered. Regarding to this, the exchange data format AutomationML is
introduced as possibility to achieve a qualitative information transfer between
domain specific tools without information losses (see Chap. 1-RQ I2). Additionally,
the utilization of AutomationML within the production system development process
will be demonstrated via practical examples. A detailed description of the standard
data exchange format AutomationML is given in Sect. 11.4.

In the following part of this section, the established tool chain for each phase
of the production system development process is presented in separate sections.
Based on this, a description of the output’s content from each phase as well as of
used data formats regarding to the used tools will be made in detail. Therefore, this
section is divided into tool chain for mechanical design, electrical/fluidic design,
PLC/software, virtual engineering and virtual commissioning.

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_11


9 Engineering Workflow and Software Tool Chains of Automated Production Systems 213

T
ab

le
9.
1

O
ve

rv
ie

w
of

ph
as

e’
s

ou
tp

ut
s

in
th

e
pr

od
uc

ti
on

sy
st

em
de

ve
lo

pm
en

t
pr

oc
es

s

E
ng

in
ee

ri
ng

3d
2d

L
ay

ou
t

Pr
oc

es
s

Pa
rt

s
O

ffl
in

e
ro

bo
t

E
le

ct
ri

c
Pn

eu
m

at
ic

K
in

em
at

ic
Pr

oc
es

s
M

at
er

ia
l

R
ob

ot
B

eh
av

io
ur

ph
as

es
ge

om
et

ry
dr

aw
in

gs
pl

an
pl

an
lis

t
pr

og
ra

m
s

D
oc

um
en

ta
tio

n
pl

an
pl

an
PL

C
/S

of
tw

ar
e

3d
si

m
ul

at
io

n
si

m
ul

at
io

n
flo

w
si

m
ul

at
io

n
si

m
ul

at
io

n
si

m
ul

at
io

n

M
ec

ha
ni

ca
l

de
si

gn
c

c
c

c
c

c
c

E
le

ct
ri

c/
flu

id
de

si
gn

c
c

c

PL
C

/S
of

tw
ar

e
u

c
u

u
c

V
ir

tu
al

en
gi

ne
er

in
g

u
u

u
u

c
cu

cu
cu

c
cu

V
ir

tu
al

co
m

m
is

si
on

in
g

u
u

u
c

u
u

u
cu

cu
c

cu

M
an

uf
ac

tu
ri

ng
/

or
de

ri
ng

u
u

c

A
ss

em
bl

in
g

an
d

co
m

m
is

si
on

in
g

u
u

u
u

u
u

u
u

u

c
cr

ea
te

;u
us

e;
cu

cr
ea

te
an

d
us

e



214 A. Strahilov and H. Hämmerle

Fig. 9.2 Established tool chain of mechanical design of production systems

9.3.1 Tool Chain for Mechanical Design

Used tools during the mechanical design are extremely diverse and strongly depend
on the data format that the PM has to deliver to the plant owner (OEM). A distinction
between domain specific tools or rather between functionalities is made particularly
in this contribution into Fig. 9.2. In this figure, connections between the various
domain specific tools are added, too.

For better understanding, a tool for each output of the mechanical design is
represented in the tool chain. It is necessary to keep in mind, that the tool chain
doesn’t show the sequence of using of each domain specific tool but only the relation
between them. Those tools, respectively their outputs, are explained in the following
paragraphs.

As well described in Sect. 9.1, the main output of the mechanical design is the 3d
geometric model of the production system (Fig. 9.3). To create this model, various
Computers-Aided Design (CAD) tools are already available in the market. Some of
those widespread CAD tools are CATIA,1 NX,2 SolidWorks,3 Creo,4 AutoCAD.5

In principle, these CAD tools provide the same functionalities while differing inter
alia in terms of the various operations of the graphical user interface.

1http://www.3ds.com/products-services/catia
2http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml
3http://www.solidworks.de/
4http://de.ptc.com/product/creo
5http://www.autodesk.de/products/autocad/overview

http://www.3ds.com/products-services/catia
http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml
http://www.solidworks.de/
http://de.ptc.com/product/creo
http://www.autodesk.de/products/autocad/overview
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Fig. 9.3 3d geometric model of a production system

Table 9.2 Overview of used native data formats of some CAD tools

Parts Assemblies 2d drawings Layout Plan Process Plan

CATIA/DELMIA *.CATParts *.CATProduct *.CATDrawing *.CATProduct –
NX/MCD *.prt
SolidWorks *.sldprt *.sldasm *.slddrw –
Creo *.prt *.asm *.drw *.lay –
AutoCAD *.dwg –

Usually, not every part of the production system has to be developed from
scratch, because the production system manufacturer tend to use already existing
parts or standard parts as much as possible, e.g. screws, springs, nuts, flat washers,
etc. Such parts could be provided by the product system manufacturer or by third-
party via standardized libraries. In this context, system components that are provided
by a component manufacturer could be downloaded directly as 3d geometric model
in various data formats after a detailed configuration. As add-on, some CAD tools
provide libraries with standard parts as well as functionalities to create and manage
user specific parts, e.g. CATIA V5 via workbench Catalog Editor.

To assemble various 3d geometric models to an entire assembly or module,
various CAD tools provide a lot of functionalities that enable an exact positioning of
parts or components relatively to each other as well as to define constraints between
them (Fig. 9.2, 1). Normally, functionalities for design of 3d geometric models are
separated from those functionalities that are used to create assembly models of the
whole production system. In CATIA for example, both groups of functionalities
are organized into different workbenches, i.e. Part Design and Assembly Design.
A similar organization of those functionalities is made into other CAD tools as
well, e.g. NX, SolidWorks, Creo, AutoCAD, etc. The essential notable difference
between various CAD tools is the data format used to save the created 3d models.
An overview of the various data formats is presented in Table 9.2.
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This table is not an exhaustive list containing all available CAD tools and all
native data formats that are supported by these tools. To find more information to
this topic, please visit the web page.6

A significant benefit of using the same CAD tool for designing of parts and
assembling of whole production systems is that no need for 3d geometry exchange
amongst tools arises. Thus, integration of information related for parts and whole
systems can be ensured (see Chap. 1-RQ I1).

In addition to the mentioned functionalities, CAD tools provide also features to
derive 2d drawings from 3d geometric models of parts and entire assemblies as
well as to create layout plans of production systems (Fig. 9.2, 2 and 4). During
this, a qualitative exchange of information between mechanic and manufacturing or
maintenance of production systems is guaranteed (in Chap. 1-RQ I2). Some data
formats used by CAD tools are presented in Table 9.2. As we can see until here,
CAD tools provide an extended spectrum of functionalities that allow use of solely
one tool to create and prepare all required outputs from the mechanical design.

Normally, a rough concept of the production system is initially generated before
the start of the mechanical design. Thereby, the mechanical engineer creates a rough
plan of the layout and functionalities of the production system (Fig. 9.4). In this

Fig. 9.4 Exemplary production system layout plan as drawing (see Fig. 9.3)

6https://de.wikipedia.org/wiki/Liste_von_CAD-Programmen

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
https://de.wikipedia.org/wiki/Liste_von_CAD-Programmen
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Fig. 9.5 Production process description as sequence diagram in MS excel

step, the same CAD tool is used that will also be used for the following detailed
mechanical design. In this regard, a first draft of the production system process is
also prepared (Fig. 9.5). Based on that, changes on the layout and the production
process should be implemented in the 3d geometric design and considered for the
subsequent steps of OLP and material flow design. Required modifications on the
system’s parts should be considered during creation of 2d drawing and following
manufacturing as well.

Following, detailed 3d geometric models of the system’s parts as well as
assemblies are created in a CAD tool and saved in the CAD tools’ native data
formats. Based on these models, 2d drawings are derived and enhanced by specific
manufacturing information that is required to produce every designed part, e.g. spe-
cific surface characteristics, part’s dimensions, material information, etc. (Fig. 9.6).
As a consequence, the final draft of the layout and production process together with
the 3d geometric model of the system’s mechanic is completed.

Subsequently, the manufacturing of system’s parts and the ordering of cus-
tomized components and standard parts respectively based on the 2d drawings
is about to start (Fig. 9.2a). In practice, 2d drawings are converted to a neutral
data format (e.g. *.dwg or *.dfx, *.) or saved as PDFs (Portable Document
Format). Finally, a hard copy of each system’s specific part is provided to the part
manufacturer that initiates the parts production. 2d drawings are stored by plant
owner (OEM) and serve as templates for the manufacturing of spare parts. Usually,
those drawings are stored as PDFs and more rarely in native or neutral data formats.
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Fig. 9.6 2d drawing of a production system’s assembly

Storage of 2d drawings in native data formats is applied by production system
builder (PM) but generally not required by the OEM.

With the beginning of part manufacturing, the ordering process is started as
well. For this purpose, a part list with all parts and components implemented into
the production system is created (Fig. 9.7). To do this, some CAD tools provide
functionalities to create a part list based on the 3d geometric model. This list could
be stored in various data formats, e.g. text files, word documents, MS excel tables,
PDF’s, etc. In some cases, specific CAD tool add-ons are created by the PM that
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Fig. 9.7 Part list of production system created manually in MS excel

export a part list from CAD tools based on the 3d geometric model of the entire
production system. In doing so, the PM achieves a complete part list without any
gaps.

As already explained, CAD tools provide an extended spectrum of functionalities
to create a large part of mechanical design outputs. Only for process planning
(Fig. 9.2, 6) the use of additional tools is recommended, e.g. design of processes
via Process Simulate (Siemens), DELMIA (Dassault System), etc. Those tools
used 3d geometric models as base to create 3d kinematic simulation models of
the production system. In this regard, the offline robot programming and material
flow design are supported by some process design tools as well (Fig. 9.2, 6 and
7). Here, offline robot programing could be performed based on the 3d geometry
of the robot and all other production system’s parts respectively. This generated
OLP contains the information about motion trajectory and some process relevant
signal references only (Fig. 9.8). Subsequently, OLP’s detailing is performed during
the PLC/software design of the production system since the information about
the signal dependencies is already defined via the PLC/software (see Sect. 9.3.3).
Ultimately, the production process of the system is provided to the assembling and
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Fig. 9.8 Offline robot program of production system created via DELMIA V5

commissioning as well as to the PLC/software design phase as neutral data format,
e.g. PDFs (Fig. 9.2b and c).

Based on practical experience, a simplified 3d model with additional kinematic
information of the production system is required (Fig. 9.2, 5). As a consequence
the enormous complexity of the design model containing each part as detailed 3d
geometric model must be reduced for simulation purposes (Strahilov et al. 2012).
For the execution of simulation, detailed models are superfluous and also deteriorate
the performance of the simulation. Consequently, a separate simulation model has
to be created for the purpose of process planning. The detailed description about
this procedure is presented in the section of Virtual Engineering (Sect. 9.3.4).
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9.3.2 Tool Chains of Electrical Design

Electrical/fluidic design is the second phase of the development process of a pro-
duction system. In this phase, pneumatic plan and electrical plan of the production
system are prepared and provided to the subsequent phases (Figs. 9.9 and 9.10).
As purpose of these outputs, information about the connections between electric
components respectively pneumatic components is described. Thereby, detailed
requirements about used type of cables, in case of electric component, and tubes, in
case of pneumatic components, are presented in those plans. Based on both outputs,
Fig. 9.11 shows the established tool chain of electrical/fluidic design.

To design these plans, the part list created by mechanical design is required
to identify electrical or pneumatic components implemented in the production
system. Moreover, the final draft of the production process is required also to define
additional electric or pneumatic components, e.g. to define the number of required
valves to control pneumatic cylinders or throttles to set the velocity of cylinder’s
piston, electrical fuses, etc. Hence, additional system parts have to be added to
the part’s list and have to be taken into account for the ordering process. Finally,
both designed plans are provided to the PLC/software design as input. Generally,
electrical plans and pneumatic plans are provided to the following processes as
neutral data format via a conversion to PDFs. Storage of those plans as tool specific
formats is done by the PM and rarely provided to the OEM.

Fig. 9.9 Pneumatic plan of production systems
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Fig. 9.10 Electric plan of production system

There are various electrical and fluidic design tools available in the market, e.g.
EPLAN fluidic/electric,7 FluidDraw,8 E3.fluid,9 elecworks™ Fluid,10 DSHplus,11

etc. Most of them provide the required functionalities to design electric and/or
fluidic plans. Some of them can be used to perform simulations to test functionalities
of the designed electrical or fluidic system as well, e.g. DSHplus. Other tools
provide the option to jointly design electric and fluidic systems, e.g. FluidDraw,
E3.fluid, elecworks™ Fluid, etc. Furthermore, some fluidic tools combine 2d
drawings derived from 3d geometric models together with pneumatic plans or fluidic
plans, e.g. FluidDraw. Aside from that, CAD tools used for mechanical design
support additional functionalities to design electric and pneumatic plans but with
focus on 3d cable laying, e.g. CATIA,12 SolidWorks,13 NX,14 etc. For the design of

7https://www.eplan.de/en/solutions/electrical-engineering/
8https://www.festo.com/cms/nl-be_be/17099.htm
9http://www.zuken.com/en/products/electrical-wire-harness-design/e3-series/products/fluid
10https://www.eplan.de/en/solutions/electrical-engineering/
11https://www.fluidon.com/index.php/en/dshplus/
12http://www.3ds.com/products-services/catia
13http://www.solidworks.de/
14http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml

https://www.eplan.de/en/solutions/electrical-engineering/
https://www.festo.com/cms/nl-be_be/17099.htm
http://www.zuken.com/en/products/electrical-wire-harness-design/e3-series/products/fluid
https://www.eplan.de/en/solutions/electrical-engineering/
https://www.fluidon.com/index.php/en/dshplus/
http://www.3ds.com/products-services/catia
http://www.solidworks.de/
http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml


9 Engineering Workflow and Software Tool Chains of Automated Production Systems 223

Fig. 9.11 Established tool chain of electric/fluidic design of production systems

electrical and pneumatic plans, such functionalities are not relevant since, 3d cable
laying design is not possible in the very limited development time of production
systems (see Sect. 9.2).

In the area of the development of production systems for car manufacturing,
EPLAN is the most common design tool for electrical and fluidic design among
prominent OEMs. In some cases, 2d drawing functionalities of CATIA are used to
create electrical parts. In order to realize this, a 2d library with required symbols of
pneumatic components is necessary.

As well as CAD tools, each electric and pneumatic design tool uses a specific
data format to save designed plans (see Sect. 9.3.1). But in practice, the exchange of
electric and pneumatic plans is carried out via data neutral formats, e.g. PDF. During
a conversion to PDF, automated interpretation of content information in these plans
cannot be realized without information losses. At end of this phase, these converted
production system’s plans are provided to the following PLC/software design phase.

9.3.3 Tool Chain of PLC/Software Design

At the end of electric/fluidic design, the PLC/software design is started (Fig. 9.12).
In this phase, the control program of the production system is coded along with
the human machine interfaces (HMI). To do this, production system’s layout plan,
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Fig. 9.12 Established tool chain of PLC/software design of production systems

process plan, pneumatic plan and electric plan that are created in the previous phase
are taken as base. Thereby, these outputs are provided similar to both previous
phases via PDFs.

Regarding to the electrical plan, hardware configuration of the production plan is
created (cf. Fig. 9.13). With this configuration, all electrical components connected
with the PLC via communication bus (e.g. PROFINET, PROFIBUS, etc.) are
required for the PLC to define which components are expected using which bus
address. In parallel, input and output signals of each component are defined also.
Based on input and output signals, PLC software programming is initiated. Thereby,
the production process and OLPs are taken into account and set as base to integrate
all dependencies between the components into PLC’s software. In this regards, the
production process is mapped into the software also. In this phase OLPs must
contain information about dependencies between the PLC’s software and robot
controllers on which these robot programs run. Parallel to this, detailing of robot
programs has to be conducted.

As explained in Sect. 9.3.1, offline robot programs (OLP) are created based
on the 3d simulation model of the production system. Such an OLP contains the
information about motion trajectory and some process relevant signal references
(Fig. 9.8). Based on that, a further detailing of these programs shall be done during
the PLC/software design. The information about dependencies between system’s
components are for example dependencies between safety doors and components,
release of extending or retracting of pneumatic cylinders, release of robot operating
zones, etc. These dependencies are defined in the PLC’s program and integrated
into the robot programs via several signals, e.g. robots wait for release from PLC’s
software via Boolean signal to conduct an operation in a safety zone to prevent
collision with other robots or system’s component (Fig. 9.14).
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Fig. 9.13 Hardware configuration of a PLC’s software via STEP7 (http://w3.siemens.com/mcms/
automation/en/automation-systems/automation-software/Pages/Default.aspx)

Depending on the PLC software programming, HMI of the production system
will be designed. To do this, the signals defined by PLC’s software and layout plan
of the production system are required. Based on both outputs, overview of the whole
production system is created with additional information about signal status, e.g. end
position of pneumatic cylinders, current position of electrical drives, released robot
safe zones, etc. An HMI of a production system that is based on system’s layout
plan and extended by PLC signals is shown in Fig. 9.14.

For the PLC software design multiple tools are available that could be used
to perform this design, e.g. STEP7,15 TIA,16 CODESYS,17 PC WORX,18 etc.
Some of those tools can be used to create PLC software for various PLCs as
well as for various embedded controllers, e.g. CODESYS. For this purpose, they
could be extended via add-ons or additional tools that are from same or other

15http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/De
fault.aspx
16https://www.industry.siemens.com/topics/global/en/tia-portal/Pages/default.aspx
17https://www.codesys.com/#_
18https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2985259&library=
usen&tab=1

http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/Default.aspx
http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/Default.aspx
http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/Default.aspx
https://www.industry.siemens.com/topics/global/en/tia-portal/Pages/default.aspx
https://www.codesys.com/%23_
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2985259&library=usen&tab=1
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2985259&library=usen&tab=1
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Fig. 9.14 Exemplary Human Machine Interface (HMI) of production system (Fig. 9.4)

tool provider. On the contrary, some tools can be used to design programs for
specific PLCs, e.g. STEP7 and TIA. Independently from that, all tools support
the same standard programming languages defined by IEC61131-3, e.g. Ladder
Diagram (LD), Instruction List (IL), Function Block Diagram (FBD), Structured
Text (ST) and Sequential Function Chart (SFC).19 As expected, each of these tools
use proprietary data formats to store native PLC software. Only some tools support
the export and import of PLC software via a neutral data format, e.g. CODESYS
via PLCOpen XML. By means of PLCOpen XML, exchange of PLC software code
as well as HMI code is possible between various tools with marginal information
losses (cf. Fig. 9.14). Furthermore, exchange of PLC software that is written in
various programming languages defined by IEC61131-3 is possible by PLCOpen
XML.

For the PLC software design multiple tools are available that could be used
to perform this design, e.g. STEP7, TIA, CODESYS, PC WORX, etc. Some of
those tools can be used to create PLC software for various PLCs as well as for
various embedded controllers, e.g. CODESYS. At the end of this phase, the finalized
detailed PLC software is provided to the assembling and commissioning phase of
the production system (Fig. 9.15).

Even before commissioning starts, PLC software is tested via virtual commis-
sioning (see Sect. 9.3.5). During system’s commissioning on the shop-floor, each

19http://www.automation.com/pdf_articles/IEC_Programming_Thayer_L.pdf

http://www.automation.com/pdf_articles/IEC_Programming_Thayer_L.pdf
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Fig. 9.15 Production process into PLC’s software as step chain via STEP7

manual as well as automated function of the PLC software is tested in connection to
the real hardware of the production system. e.g. manual extraction and retraction of
each pneumatic cylinder via PLC, manual execution of robot movements, perform
automated production processes with and without products, etc. In this context,
fine adjustments on mechanic and electric components as well as on detailed robot
programs is performed, e.g. adjustment of cylinder’s velocity for extraction and
retraction via throttle settings, teaching of robot target positions, minor modification
of acceleration profiles of electric drives, etc.

9.3.4 Tool Chain of Virtual Engineering

Virtual Engineering (VE) is phase of the development process of production system
that supports the system’s mechanical design (Ovtcharova 2013). As base of this
phase, a 3d simulation model of the production system is required. As explained
already in Sect. 9.3.1, this 3d simulation model uses the 3d geometric model of
the production system as base and integrates additional kinematic information of
components into the production system, e.g. translation of pneumatic cylinders,
rotation of electric drives, kinematic of robots, etc. (Fig. 9.16). Based on this model,
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Fig. 9.16 Tool chain of virtual engineering (VC)

Fig. 9.17 Collision between robots during VE via 3d simulation model

collision free component’s movement in connection with the system’s mechanic
have to be validated (Fig. 9.17). Furthermore, production processes of the system
can be planned as well as tested with respect to process time and sequences via
3d visualization of movement. Of course, a first draft of the production process
is required at the beginning of this step. In this context, OLPs of the production
process are required also to animate the complex movement of robots. Thereby,
OLPs represent a significant part of the production process and have a strong
influence on process time and sequence. Visualization of movement of products
as well as of system’s own components (e.g. welding guns) is another important
aspect within VE. Fort this purpose, the material flow model is needed that describes
the position and orientation as well as dependencies between products or system’s
components during production process simulation, e.g. representation of gripping
processes, conveyor transport processes, etc.
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Based on practical experience in the area of production systems in car manufac-
turing, VE takes a major role in the development process as phase to achieve better
quality of the mechanical design as well as to prevent errors based on the simulation
(Ovtcharova 2013). In most cases, the modelling of the 3d simulation model is
conducted with the same tool for performing the simulation. Typical simulation
tools used in VE are DELMIA,20 Process Simulate21 and Mechatronic Concept
Designer (MCD).22 Some of those tools are integrated in a CAD tool that allows the
use of the designed 3d geometric model without data transfer between the CAD and
simulation tool, e.g. DELMIA into CATIA, MCD into NX, etc. Doing so, flawless
data transfer can be ensured.

During checks of system’s mechanic, difficulties of the mechanic should be
identified and, required changes on system’s mechanic have to be provided back to
the mechanical design phase. After that, performed changes on the 3d geometric
model of system’s mechanic should be checked again based on the updated 3d
simulation model. As soon as all mechanic checks are performed successfully, VE
is completed. In most cases, the simulation model is stored by the PM in native tool
specific data format and provided as same data forma to the OEMs, e.g. DELMIA
as *.CATProcess, MCD as *.prt, etc. (see Table 9.2). Thereby, OEM requires the
3d simulation model by PM to use it for potential mechanical changes regarding
integration of new or adapted products into the production system as well as to
modify the same system for other production purposes in case of system reuse (see
Sect. 9.2). The 3d simulation model is continuously used in virtual commissioning
to visualize movements of the components (Sect. 9.3.5).

9.3.5 Tool Chain of Virtual Commissioning

The virtual commissioning can be observed as a separate phase of the development
process of production systems (Fig. 9.18). In this phase, all functionalities of the
PLC’s software are tested based on a simulation model of the production system
that doesn’t exist in real hardware at this time (Süß et al. 2015; Damrath et al. 2015).
For the purpose of VC, first draft of the PLC’s software as well as working and
tested simulation model of the production system must be available. This required
simulation model, as well as VE’s simulation model contain several sub-models,
e.g. 3d simulation model, material flow and robot simulation (Sect. 9.3.4). Essential
differences between VE’s simulation and VC’s simulation are on the one hand
the additional behaviour model respectively behaviour simulation, that are needed
to simulate logical behaviour of each component connected to the real PLC, and

20http://www.3ds.com/products-services/delmia/products/
21https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/as
sembly/process-simulate.shtml
22https://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/

http://www.3ds.com/products-services/delmia/products/
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/
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Fig. 9.18 Tool chain of virtual commissioning

on the other hand the missing process simulation, which is replaced by PLC’s
software. Furthermore, production system’s 3d simulation model serves to visualize
the movement of the system during the production process by the PLC via PLC’s
software but not to check system’s mechanic such as VE.

Based on practical experience, the 3d simulation model created and used by VE
is taken as base to use it for the purpose of VC. In the market, several tools provide
required functionalities to prepare the 3d simulation model and to conduct VC, e.g.
DELMIA,23 Process Simulate,24 NX-MCD,25 RF::SGView and RF::SGEdit,26 etc.
In some of those tools, VE’s simulation model can be taken without any further
changes and modified for VC, e.g. DELMIA, NX-MCD, Process Simulate, etc.
Based on practical experience, the complexity of a typical 3d simulation model
is enormously high. As consequence of this, high computational performance is
required to run the simulation in an approximate time step between 10 and 100 [ms].
Based on this, some VC’s 3d simulation tools are adapted to deal with complex 3d
simulation models, e.g. RF::SGView. Furthermore, the material flow defined by VE
is used together with the 3d simulation model also. In most cases, both models are
integrated in a single simulation model, e.g. DELMIA, Process Simulate, etc.

Additionally, the behaviour model of the production system is required by VC.
This model represents the logical behaviour of each component connected to the
PLC and communicates with the PLC via signals. For this purpose, the behaviour

23http://www.3ds.com/products-services/delmia/products/
24https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/as
sembly/process-simulate.shtml
25https://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/
26http://www.rf-suite.de/en/products.html

http://www.3ds.com/products-services/delmia/products/
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/
http://www.rf-suite.de/en/products.html
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model of each component installed in the production system has to be created.
In practice, each OEM creates this model by himself or assigned a sub-contractor
(Drescher et al. 2013). PMs receive these OEM’s behaviour models and uses them
to build up the entire behaviour model of the production system. In this context,
each OEM stores behaviour models in tool specific data format. As a consequence,
the PM is forced to use fixed tools to run the behaviour simulation and therefore
also VC. Two widely used behaviour simulation tools in practice are WinMOD

®
and

SIMIT.27 Those tools provide several communication interfaces that allow exchange
of simulation data in approximated real-time with other tools, e.g. WinMOD

®
with

RF::SGView, SIMIT with NX-MCD, etc. Furthermore, additional functions can
be used to automatically create whole behaviour models based on component’s
behaviour models, e.g. specific MS excel based assistance for WinMOD

®
.

Along with the behaviour simulation, robot program simulation is required as
well. In this case, robot programs that are detailed during the PLC/software design
are used and not OLPs (cf. Sects. 9.3.1 and 9.3.3). To run the simulation of those
robot programs, specific tools are required that have to support specific robot
programming languages, e.g. KUKA, ABB, Fanuc, Kawasaki, Mitsubishi, etc. For
this purpose, the most robot manufactures provide a tool to create and simulate
robot programs, e.g. RobotStudio,28 KUKA.Sim,29 etc. Such tools are standalone
solutions and they expected the 3d geometric model of the production systems that
have to be extended in a previous step by kinematic information. A distinction must
be made between OLPs and detailed robot programs. In practice, OLPs are created
by simulation tools that support process simulation and material flow as well as to
export OLPs in several robot languages in parallel, e.g. export function of DELMIA
as KUKA, ABB, Fanuc, Mitsubishi etc. Aside from that, RF::RobSim is a very
common robot simulation tool that can process several real robot programs and
simulate them in real time during VC (Süß et al. 2015). In practice, RF::RobSim is
used in combination with WinMOD

®
and RF::SGView (Hämmerle and Drath 2014).

To achieve greater benefit of VC, modelling effort has to be kept to a minimum.
For this reason, continuous use of VE’s simulation model has to be done to prevent
unnecessary repeated modelling time. In last years, the use of AutomationML30 as
neutral data format has proven itself to realize model exchange without data loss
(Hämmerle and Drath 2014). Currently, several AutomationML export functions
are developed to exchange 3d simulation models between process simulation tools
(e.g. DELMIA, Process Simulation and NX-MCD, etc.) and VC’s tools (e.g.
RF::SGView and NX-MCD). Some renowned OEMs in the car manufacturing
industry use AutomationML export functions of DELMIA and Process Simulate
to transfer 3d simulation models to RF::SGView.

27http://w3.siemens.com/mcms/process-control-systems/en/distributed-control-system-simatic-pcs
-7/simulation_training_systems/Pages/Default.aspx
28http://new.abb.com/products/robotics/robotstudio
29http://www.kuka-robotics.com/germany/de/downloads/software.html
30https://www.automationml.org/o.red.c/home.html

http://w3.siemens.com/mcms/process-control-systems/en/distributed-control-system-simatic-pcs-7/simulation_training_systems/Pages/Default.aspx
http://w3.siemens.com/mcms/process-control-systems/en/distributed-control-system-simatic-pcs-7/simulation_training_systems/Pages/Default.aspx
http://new.abb.com/products/robotics/robotstudio
http://www.kuka-robotics.com/germany/de/downloads/software.html
https://www.automationml.org/o.red.c/home.html
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Fig. 9.19 Virtual Commissioning (VC) via RF::SGView and RF::RobSim

As soon as all functionalities of PLC’s software are successfully tested, VC
is completed. The result of this phase is the validated and optimized real PLC’s
software that runs on the target hardware PLC. As following step, commissioning
of the real production systems can be initialized (Sect. 9.2) (Fig. 9.19).

9.4 Summary and Outlook

At the beginning of this chapter, production systems were not designated as CPPS.
This statement was justified on several reasons. One of those reasons is the missing
intelligence of components used today for production systems. Independently from
that, first studies to use already existing smart components are successfully being
performed, (VDE 2013). An engineering workflow of CPPS can be derived from
the engineering workflow of production system, which was presented in this chapter.
But, a detailed description of the engineering workflow without praxis experience
will not be useful.

Despite this, significant differences between the engineering workflow of CPPS
compared to the engineering workflow of current production systems are not
expected. Only differences on used tools and exchange data formats are conceivable.
Furthermore, additional or extended activities and tasks have to be integrated into
the engineering workflow of CPPS, e.g. integration of component’s and product’s
intelligence into PLC control programs.

Based on existing experience, the main difficulty into the engineering workflow
of productions systems are the specific data formats of the used tools. Even worse
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is the use of standard data formats which do not support the exchange of data
without losses, e.g. PDF. One exception is the use of the standard data format
AutomationML to exchange simulation models between simulation tools and virtual
commissioning tools (see Sect. 9.3.5). In this regards, a extend use of a standard data
format into the whole workflow is an important step which has to be done during
the design of the engineering workflow of CPPS.

From the point of view of the research question, the presented tool chains cover
a great amount of the engineering information. This information is added by a
user via several tools and it is stored in tool’s specific data formats. Consequently,
an integration of engineering information during the engineering workflow of a
production system is not possible without additional efforts (Chap. 1-RQ I1). In case
of a data exchange, tool neutral data formats are used to ensure a data exchange
between different users during the engineering workflow in such a way that the
content of the data can be read by a human, e.g. PDF, DWX, etc. Thus, the quality
of exchanged data is assured but an automated reading of it via a computer is
made difficult (Sect. 1-RQ I2). Checking of the quality of exchanged data is also
performed during the virtual commissioning (Sect. 9.3.5).

Independently from all technical or managerial issues regarding to the engi-
neering workflow of production process or CPPS, plant owner, plant builder and
component manufacturer face their next challenge which could only be solved by
joint action. In these activities, tool providers have to be also involved to design or
adapt the used tools, e.g. new features, import/export functions, etc.
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Chapter 10
Standardized Information Exchange Within
Production System Engineering

Arndt Lüder, Nicole Schmidt, and Rainer Drath

Abstract Information exchange is one of the critical issues within the multi-
disciplinary engineering chain of production system engineering. In the subsequent
chapter the problem of identifying and standardizing an appropriate data exchange
format for this field of application will be considered. It will be argued, why
AutomationML can be an appropriate choice to fulfil current requirements.

Keywords Production system engineering chain • Data exchange • Standardized
data exchange format • AutomationML

10.1 Introduction

The increasing global competition between companies from different global regions
with completely different economic conditions forces European companies on the
one hand to increase product variety, often until complete individualization to meet
customer needs. In parallel, on the other hand, these companies are encouraged to
increase production system flexibility regarding resource capabilities and quantities
as well as regarding used production system technologies. Finally, they shall reduce
the duration of both the product life cycle as well as the plant life cycle. But this
results in an increased production system complexity which has to be handled within
the entire production system life cycle adequately.

To tackle all these challenges different research and development programs are
under progress with the German based Industrie 4.0 and the US based Industrial
Internet Consortium as most prominent ones without neglecting the huge amount
of worldwide initiatives. They intend to combine recent developments within
information sciences like most advanced programming strategies with advances in
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Fig. 10.1 Life cycles in the area of production systems

information processing hardware and communication system technologies as well
as advanced system organization strategies (Kagermann et al. 2013; AGPI4.0 2015;
IIC 2016). The intention is to reach information driven production system following
the paradigm of Cyber Physical Production Systems (CPPS) including information
driven production system development/engineering.

But an essential problem within such information driven systems is their inherent
system complexity. To visualize the complexity here only two aspects will be
reviewed.

The first aspect reflects the various life cycles ranging around production systems
(Lüder et al. 2011; VDI 2014) (see Fig. 10.1). At first there is the production
system life cycle covering engineering, commissioning, test, usage, maintenance,
and disposal of a production system. It requires for the appropriate engineering
the definition of the products to be produced as well as the definition of the
manufacturing technologies to be applied for within production processes.

Thus, there is on the one hand a life cycle of application of manufacturing
technologies covering design, engineering, commissioning, test, usage, support, and
disposal of application systems of manufacturing technologies. On the other hand
there is a product life cycle including design, engineering, manufacturing, sales, use,
support, and disposal/recycling of products.

Beyond engineering the production system also depends on an order life cycle
impacting the production system usage (as well as the manufacturing activity within
the product life cycle). This order life cycle covers order creation, manufacturing,
delivery, and post processing.
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Fig. 10.2 Simplified engineering chain of production systems

Finally, the product life cycle is impacted by the manufacturing technology life
cycle as it may enable new product features relevant in the design and engineering.

All these dependencies are depicted in Fig. 10.1. More details on the dependen-
cies between product life cycle, production system life cycle, and order life cycle
including their data dependencies can be found in Chap. 4.

It is easily visible that the dependency between these life cycles shall result in
appropriate information exchanged between them.

The second aspect to be named is the complexity of engineering chains.
Figure 10.2 provides a view on a simplified version of an engineering chain of
a production system. It highlights that there are different engineering disciplines
involved in the engineering chain executing different engineering activities depend-
ing on each other within a strongly coupled network. Just to give a size the number
of different engineering activities only to within the process of engineering a body
work production system within automotive industry covers more than 30 different
engineering activities, the activities named in Fig. 10.2 among them. See also
Chap. 9 for a practical engineering chain.

For each of these engineering activities optimized engineering tools have been
developed enabling the executing engineers to concentrate on the relevant intellec-
tual work trying to prevent them from stupid “clicking jobs”. Hence, it is required to
ensure the information exchange between the different involved engineering tools
(Drath et al. 2011; Hundt and Lüder 2012; Schmidt et al. 2014) as also identified
in research questions I1 and I2 in Chap. 1. This information exchange needs to
cover all information relevant within at least two engineering tools or engineering
activities.

Beyond the huge amount of information potentially to be exchanged within an
information driven production system also the problem of the difference between
data and information need to be reminded. Within engineering and use of produc-
tion systems different data are created which will represent information. Data is
usually seen as raw material in front of the information processing. They become
information by assigning them a meaning in a way answering on “who”, “what”,

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_1
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“where” and “when” questions. If we apply information we can reach knowledge
by answering “how” questions.

Summing this up, in information driven production systems it is required to
define appropriate structuring (syntax) and meaning (semantics) of data to enable
the appropriate information exchange among life cycles, engineering disciplines,
and engineering activities as partially addressed by research question M2 in Chap. 1.
This chapter will consider this problem and highlight possible stating points and
approaches for its solution.

As the consideration of the complete field of production system goes far
beyond this chapter, initially some relevant use cases of information exchange
and application will be highlighted going beyond the current state of the art.
They are succeeded by the consideration of information exchange technologies
applicable in general and within these use cases especially mainly focusing on
AutomationML as one example technology. Finally, the process of setting up a
standardized information exchange structure is discussed.

10.2 Use Cases for Information Exchange

Within the Industrie 4.0 and Industrial Internet Consortium usually the horizontal
and vertical integration of the different information processing units of production
systems are addressed. Among the use cases relevant within the horizontal and
vertical integration are

• the definition of appropriate production system hierarchies within the complete
engineering chain,

• the integration of pre-developed production system units within larger production
systems within engineering and commissioning,

• the exchange of control system engineering information,
• the consistent and up-to-date documentation of the production system as is, and
• the provision of engineering information at production system runtime and its

combination with control information.

These use cases cover a representative set of requirements to data exchange in
the field of production system engineering.

10.2.1 Use Case 1: Production System Hierarchies

As indicated in Fig. 10.2 and detailed in Chap. 9 of this book within the engineering
of production systems different engineering activities/steps are executed. Let’s just
review the mechanical and electrical engineering steps.

Within the mechanical engineering the mechanical construction of the production
system is defined covering the bottom up combination of materials to small

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_9


10 Standardized Information Exchange Within Production System Engineering 239

components, small components to larger components, and finally to large system
parts, all of them fulfilling a certain functionality within the production system.
Some of the components are provided by suppliers and thereby not considered with
internal details within the engineering, some other components are developed during
the engineering based on purchasable materials like metal sheets, screws, beams,
springs, pipes, etc. integration purchased sensors like proximity switches and actors
like drives and valves. Usually within mechanical engineering the used engineering
tools (CAD tools) enable the combination of elements to components in mostly user
dependent and function and production process oriented hierarchy.

In contrast the electrical engineering will not care about a function or process
oriented component hierarchy. It just will consider the sensors, actors, and control
devices (including communication devices) involved within the production system
and its relation to each other based on proper wiring. Thereby, the established hier-
archy follows the structure of the electric circuits and the necessary communication
signal exchange.

As easily visible both hierarchies will usually be different. In case of the a
proper information exchange between mechanical and electrical engineering tools
(and vice versa) it is required that imported information shall be mapped to the
right hierarchy layer. Thus a definition of hierarchy layers as well as possible layer
crossing groupings of elements as depicted in Fig. 10.3 need to be standardized and
applied within the data exchange format (Grimm 2016).

Fig. 10.3 Examples of
standardized hierarchy layers
following ISA 95 Enterprise
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Area

Production Line

Work cell 

Device

Subsite

Safety area

Station

Hierarchy layers Groups
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10.2.2 Use Case 2: Integration of Pre-developed Production
System Units

The engineering especially of complex production systems is usually not done by
a single person. It is also not always done again from scratch. On the contrary, it is
good engineering practice to reuse pre-developed building blocks. These building
blocks can be of different size and complexity ranging from standardized metal
parts (plates, screws, etc.) up to complete technical systems like welding shops and
combustion engines. This includes the integration of purchased components like
drives, drive chains, or complete packing cells.

Theoretically each involved engineering discipline and each applied engineering
tool can apply its own set of pre-developed components. But it is of much more
value, if all engineering disciplines can apply a common library of pre-developed
components (Wagner et al. 2010; Lüder et al. 2010).

The design of such a common pre-developed library requires two preconditions.
The first is a common, all engineering disciplines spanning, system architecture
(VDI 2009). This architecture shall comply with the different concepts applied
within the production system engineering in the different engineering disciplines
and harmonize them, i.e., a device shall be the same concept in each discipline. In
addition a common conceptualization of the different system component properties
and its consistent management is required. An example can be the component of a
dive chain in a packing machine. It usually contains drive chain related attributes like
the angular speed of a driven roll, the diameter of the roll, and the current and voltage
assigned to the drive in a certain situation. All these attributes are functionally
interrelated. These interrelations need to be representable in a component.

10.2.3 Use Case 3: Exchange of Control System Engineering
Information

As visible in Fig. 10.2 an essential part of the engineering of a production
system is the engineering and validation of control applications. Within these
activities six of the engineering activities named in Fig. 10.2 are involved. Process
planning, Mechanical engineering, and Electrical engineering define necessary
control devices and their connections, PLC and Robot programming exploit them
for control application design, and Virtual commissioning validate the control
applications based on the defined device set.

To integrate the named engineering activities within an engineering chain it
is required to have an appropriate representation of the common concepts of
them. These common concepts at least contain the conceptualization of the control
devices, their internal structure, and their physical and logical relations.
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10.2.4 Use Case 4: Consistent and Up-To-Date Documentation

As named by Tauchnitz in (Tauchnitz 2016) in relation to the engineering of process
control systems, during the life cycle of production systems different sources
provide information about the structure of a control system. There are on the
one hand the CA* tools for mechanical and electrical engineering providing first
versions of the set of applied control devices and its interconnections. Currently
they export created device lists (currently still often given as *.csv files) which
subsequently are applied in PLC and Robot programming.

This methodology is applicable in case of an engineering process but it fails in
case of production system runtime changes. If a device is changed or replaced during
production system ramp-up of maintenance the application of device lists and the
required search for the changed device within this list requires too much time to be
meaningful.

The open question is the optimal way to ensure a proper way of change tracing at
production system runtime. Here a detailed data exchange technology with a proper
syntax and semantics related to control engineering is required.

10.2.5 Use Case 5: Combination of Engineering and Runtime
Information

There is also another use case requiring the integration of engineering and runtime
information of a production system. This use case emerges from the intention to use
advanced production system maintenance strategies like condition monitoring.

The diagnosis and maintenance at production system runtime requires a detailed
knowledge about the structure and behavior of the production system components
including knowledge about the capabilities to identify component fault charac-
teristics. Such knowledge can be extracted from the combination of production
system engineering information, component documentations, and component state
measurements. To enable this combination the named information need to be
accessible at production system runtime.

To reach this accessibility it is necessary to store the engineering information
as well as the component documentation (including documents like mounting
guidelines and handbooks) in an accessible way and to integrate this information
with access paths information usable to access control signals related to sensors,
actuators, and component KPIs.

This storing and integration requires two essential prerequisites. At first there is a
data exchange format required which can be integrated in a runtime system storage
and accessed via clear access paths following syntax and semantics of the stored
information. At second the same technology shall be applicable for the access to
runtime control information enabling the definition of relations between runtime
and engineering information.
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10.2.6 Current Activities Related to Solution of the Use Cases

There are different developments on the way trying to provide solutions for the
named use cases. The most appropriate are

• the development of modular and hierarchical production system architectures,
• the standardization of data exchange formats applicable during the complete life

cycle of production systems, and
• the integration of engineering data representation and runtime communication

system.

These activities will be considered in more detail.

10.2.6.1 Development of Modular and Hierarchical Production System
Architectures

The most prominent development in the direction of a standardized architecture
for the control of production systems is under development of the VDI/VDE-GMA
working group “Industrie 4.0”. It develops with the RAMI (VDI 2015) and the
Industrie 4.0 component a reference structure to be applied in all Industrie 4.0
systems.

Less known are the work of the NAMUR working group “Automatisierung
modularer Anlagen”, the work of the AutomationML association, and the work
of the VDA. The NAMUR made the decision to take up the results of the
successful DIMA project (Obst et al. 2016) to develop a modular process industry
system exploiting so called Module Type Packages. The AutomationML association
currently develops a modelling strategy for production system components inspired
from research and development activities within projects like SkillPro (Pfrommer
et al. 2014), Avanti (Süß et al. 2015), and Conexing (Bartel et al. 2014). Finally, the
VDA is developing a recommendation for the unique representation of production
system hierarchies.

10.2.6.2 Standardization of Data Exchange Formats

With the aim to enable the implementation of standardized engineering tool inter-
faces currently different organizations develop data exchange formats. Following
(Tauchnitz 2016) the most relevant criteria for the development of these data formats
are the sequential standardization of data exchange structures for essential but
manageable parts of the relevant information, the standardization of usually required
information sets to stay with frequently used and lightweight formats, the enabling
of user dependent extensions of the standardized data format, the compatibility with
further developments on the same data format (even for further application cases),
the application of existing standards, and the cooperative development integrating
all relevant stakeholders from users to tool vendors.
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Among others in this field the VDMA working group “Engineering”, the
NAMUR working group “PLS-Engineering”, the VDA working groups “Logistics”
and “Virtual commissioning”, the GMA working group 6.16 “Integriertes Engineer-
ing in der Prozessleittechnik”, the AutomationML association and the ProSTEP
association are active.

10.2.6.3 Integration of Engineering Data Representations and Runtime
Communication Systems

The accessibility of control information is considered by several organizations. A
leading role are taking the communication system developing vendor organizations
like ODVA, PNO, ETC, or Sercos International to name only a small subset.
All of these organizations are developing communication systems defining among
others profiles standardizing access paths to information within production system
components (Reißenweber 2009). The main drawback of this approach is its
dependency to special communication protocols.

A communication protocol independent access to control information is for
example intended by the OPC Foundation with the development of the OPC UA
technology family. For this technology family various other user organizations are
trying to develop special profiles enabling the structured access to domain specific
information.

Among these user organizations the AutomationML association has developed
a methodology to represent engineering information by means of OPC UA. The
resulting OPC UA profile is standardized within DIN SPEC 16592.

An overview of further research activities in the field of production system
engineering is collected within (Ferscha 2016).

10.3 Information Exchange Technologies

Beyond the capability to cover the relevant information to enable the handling of
the named use cases in (Lüder et al. 2014) a set of requirements to a data exchange
format are concluded from a survey. These requirements are the following.

(A1) Information related to common concepts of all involved disciplines over the
engineering process phases has to be exchanged in the same syntactically and
semantically unique way.

(A2) Information about dependencies between different concepts of involved
disciplines has to be exchanged.

(A3) Relevant dependencies between different concepts of involved disciplines
have to be able to be parameterized and traced.
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In addition the broad usability of exchange technologies requires a set of more
technical requirements. From the viewpoint of the authors, the most relevant among
them are the following.

(A4) The information exchange technology shall be XML based to enable a read-
ability of the stored information for example for purposes of proper interface
implementation. Using XML an implementer can validate the created files
also manually to be more familiar with the development results.

(A5) The information exchange technology shall be applicable for free based on
free available standards. Neither parts of the technology nor basic documen-
tation is accessible only based on unreasonable access fees going beyond the
membership fees of user organizations or the usual price of printed documents
of publishers. If possible fees shall be avoided at all.

(A6) The information technology shall be applicable on different platforms includ-
ing engineering stations as well as limited and embedded devices.

(A7) The information exchange technology shall enable the separated standard-
ization of syntax and semantics of data objects. By this the extension of the
standardized representation range shall be extendable on demand.

(A8) Beyond the standardized representation range users shall be enabled to
integrate also not standardized information and represent it in a consistent
and integrated way by the information exchange technology.

There are various data formats applicable to model production systems or parts
of them. In the following a small set of such models is indicated and characterized
representing classes of formats. These set has been selected to provide typical
representatives of the data formats used in industrial practice. In some cases this
might look artificial, but it reflects for example the case, that office tools (especially
Excel) are the most frequent used tools in engineering.

The data exchange format STEP (STandard for the Exchange of Product
model data) has been developed to cover product related information enabling the
modelling of all information relevant within the product life cycle (PLM) (see
also Chap. 4). It covers for example product geometry information, characterizing
properties of products, and production process descriptions for the processes
required for product creation (Xu and Nee 2009). It is standardized within ISO
10303. This standard series contains different profiles which are intended to be
consistent among each other. Some of the defined profiles (especially the newer
ones) are available as XML dialect. Hence, within production system engineering
STEP is mostly applied for product and production process representation.

A possible substitute to STEP covering product information for PLM is PLM-
XML, an XML based product data format specified and maintained by Siemens.

As STEP the data format Jupiter Tessellation (JT) is standardized as ISO
standard within ISO 14306 (ISO 2012b). It has been developed to enable the
vendor neutral representation of geometry information coming from CAD tools.
It is intended to cover product models including the product structure, the geometry
of structure elements, and structure element properties as modelled in collaborative

http://dx.doi.org/10.1007/978-3-319-56345-9_4
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product development processes as well as product lifecycle management processes
(see also Chap. 4).

Substitutes to JT as geometry data formats are COLLADA, IGES, VDA-FS and
DXF.

Within the office environment the data format Portable Document Format (PDF)
has reached a wide acceptance. It is used for implementation technology indepen-
dent text document content representation including the representation of graphical
information on a virtual piece of paper by modelling geometry elements like vector
graphics, text, etc. PDF is standardized in ISO 32000-1:2008. In production system
engineering it is usually applied for manuals, layout plans, etc.

A substitute to PDF can be Postscript.
As in office environment also in the engineering chain of production systems,

Microsoft Office tools are used to create various documents including documenta-
tions, descriptions, listings, etc. Widespread Microsoft Word and Microsoft Excel
are applied and the reached results are stored in DOC, DOCX, XLS, and XLSX
format. The applicability of these tools in the engineering chain of production
systems is not really limited as they are very generic and can cover data from any
engineering domain and phase.

Possible substitutes to office files are CSV files (for Excel) and data formats from
tools like Open Office.

With XML Process Definition Language (XPDL) an XML based dialect has
been standardized in Workflow Management Coalition (WfMC) (WfMC 2012) to
enable business process modelling in a vendor neutral way. It enables the exchange
of process definitions, following both graphics and semantics of business process
workflows. Thus, it has to be regarded as the XML representation of the Business
Process Modelling Notation (BPMN). In the engineering process of production
systems XPDL can be applied for production processes representation.

A possible substitute to XPDL is BEPL.
A further XML based dialect is XML Metadata Interchange (XMI). It has been

developed as meta format and is standardized by Object Management Group (OMG)
(OMG 2015). Based on XMI domain specific XML based dialects can be developed
like it is the case for the representation of UML project content.

In the engineering chain of production systems XMI is usually applied to
represent production process information and production system information.

The AutomationML data exchange format is under development by Automa-
tionML association (Drath 2010; Schmidt and Lüder 2015). It is standardized
within IEC 62714 to provide a neutral, open, and XML based data exchange
format. The intention of AutomationML is to enable consistent and lossless
exchange of engineering information related to manufacturing system topology,
geometry, kinematics, and control behavior. Therefore, AutomationML follows a
modular structure integrating existing XML based data formats. Logically it is
divided into the parts plant topology modelling (following CAEX 62424), geometry
and kinematics modelling (following COLLADA), and control related logic data
modelling (following PLCopen XML) where COLLADA and PLCopen files are
referenced out of CAEX files.

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://en.wikipedia.org/wiki/Workflow_Management_Coalition
http://en.wikipedia.org/wiki/BPMN
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Table 10.1 Modelling range of data formats

AutomationML STEP JT PDF Office XPDL XMI

Production system
topology/structure
information

C C C o o � C

Mechanical engineering
information

C C C o o � �

Electric and fluidic
engineering information

C C o o o � o

Function describing
information

C C � o o C �

Control engineering
information

C � � o o C o

Further/generic engineering
information

o o o C C � o

Dependencies between
different disciplines

C o o o o � �

C is good applicable
o is fair applicable
� is not applicable

In the engineering chain of production systems AutomationML is usually applied
to represent production processes and production system information.

The different represented data formats have different modelling power related
to the coverage of all information relevant for production system engineering.
Table 10.1 subsumes the modelling range of the different selected data formats.

As the modelling range also the ability of the different data formats to fulfil the
different requirements named above is not equal. Table 10.2 gives a summary about
the capabilities of data formats to cope with requirements named above.

10.4 AutomationML

Within the above given tables it gets visible, that AutomationML is a proper
candidate to be used within the use cases named above. Therefore, AutomationML
will be described here in more detail and its main characteristics related to
standardization of data exchange structures are given.

The AutomationML data format has been developed by AutomationML e.V.
[see (AutomationML 2016)] as solution for the data exchange focusing on the
engineering of production systems. It is an open, vendor neutral, XML-based, and
free data exchange format which enables a domain and company spanning transfer
of engineering data of production systems in a heterogeneous engineering tool
landscape.
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Table 10.2 Requirement fulfilment of data formats

AutomationML STEP JT PDF Office XPDL XMI

(A1) Common concepts C C o C C o C
(A2) Dependency types
between concepts

C C � o o � C

(A3) Dependency
properties/traceability

o C � � � � C

(A4) XML based C o � � o C C
(A5) Free accessible C o � C o C C
(A6) Platform independent C o o o o C C
(A7) Separation of syntax
and semantics

C � � o o o C

(A8) Integrate user dependent
information

C � � C C � o

C is good applicable
o is fair applicable
� is not applicable

AutomationML stores engineering information following the object oriented
paradigm and allows the modelling of physical and logical plant components as
data objects encapsulating different aspects. Objects may constitute a hierarchy,
i.e. an object may consist of sub-objects and may itself be a part of a larger
composition or aggregation. Additionally each object can contain information about
object describing properties covering geometry, kinematics, and logic (sequencing,
behavior, and control information) as well as further properties.

AutomationML follows a modular structure by integrating and enhanc-
ing/adapting different already existing XML-based data formats combined under
one roof the so called top level format (see Fig. 10.4).

These data formats are used on an “as-is” basis within their own specifications
and are not branched for AutomationML needs. Logically AutomationML is
partitioned in:

• Description of the component topology and networking information includ-
ing object properties expressed as a hierarchy of AutomationML objects and
described by means of CAEX following IEC 62424 (IEC 2008),

• Description of geometry and kinematics of the different AutomationML objects
represented by means of COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012) (ISO
2012a),

• Description of control related logic data of the different AutomationML objects
represented by means of PLCopen XML 2.0 and 2.0.1 (PLCopen 2012) and
(partially) by means of MathML integrated in PLCopen XML and

• Description of relations among AutomationML objects and references to infor-
mation that is stored in documents outside of the top level format using CAEX
means.
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Fig. 10.4 Structure of AutomationML projects

AutomationML is currently standardized within the IEC standard series IEC
62714 (IEC 2014). For a more detailed description of AutomationML see (Drath
2010) and (Schmidt and Lüder 2015).

The foundation of AutomationML is the application of CAEX as top level
format and the definition of an appropriate utilization fulfilling all relevant needs
of AutomationML to model engineering information of production systems, to
integrate the three named data formats CAEX, COLLADA, and PLCopen XML,
and to enable an extension if necessary in the future.

As mentioned above, CAEX enables an object oriented approach (see Fig. 10.5).
Thereby it enables the separation of syntax and semantics of the represented data
objects. It is based on four main building blocks: role classes (RC), interface classes
(IC), system unit classes (SUC), and internal elements (IE).

Role classes are intended to enable the definition of semantic of data objects in
a kind of late semantic freeze by describing an abstract functionality of an object
without defining the underlying technical implementation. Thus they serve for the
formalization of the main concepts required in an application domain. Role classes
can be for example the role classes motor and sensor indicating system structure
semantics or LogisticalDevice and PhysicalDevice representing communication
system semantics. Each role class is additionally equipped with attributes and
external interfaces (EI) describing the role class in more detail representing role
class properties and role class dependencies to other objects. For example the role
class sensor may have an attributes to indicate the sensor vendor and the power
consumption, an external interface (screwing) to indicate the mounting point of the
sensor, and an external interface (power_connection_socket) to model the power
supply of the sensor.
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Fig. 10.5 AutomationML topology description architecture

Role classes are defined in role class libraries establishing a kind of tree structure
of more detailed roles. AutomationML defines a set of basic role classes. Within Part
1 of the AutomationML standard (IEC 2014) the AutomationMLBaseRoleClassLib
with fundamental role classes is defined. It contains with the AutomationMLBase-
Role a role class each other AutomationML related role class has to be derived from.
More detailed role classes are defined in the further parts of the AutomationML
standard. For example Part 2 defines general role classes required for production
system structuring and manufacturing process identification.

Interface serve as the model of the required relation between objects. They are
derived from interface class describing an abstract relation an element can have
to other elements or to information not covered within the CAEX based model
(for example to geometry and kinematics modelling and behavior modelling). Thus
they serve as formalization of relations between concepts. Examples of interface
classes can be power supply and mounting position or the relation to a manual and
a geometry description all relevant for a device.

Interface classes are defined in interface class libraries establishing a kind of tree
structure of more detailed interfaces. AutomationML defines a set of basic interface
classes. Within Part 1 of the AutomationML standard (IEC 2014) the Automation-
MLInterfaceClassLib with fundamental role classes is defined. It contains with the
AutomationMLBaseInterface an interface class each other AutomationML related
interface class has to be derived from. More detailed interface classes are defined in
the further parts of the AutomationML standard. For example Part 4 defines general
interface classes required for control system structuring. Each interface class may
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have describing attributes. These attributes shall be used and filled with values in
each occurrence of an instance of the interface class. For example a power supply
interface class may contain attributes representing the voltage and current.

System unit classes are considered as ascertained production system components
which are available within product catalogues of component vendors or component
catalogues of system designer intended to enable reuse of already engineered (and
successfully applied) system elements. Therefore they model more than just the
concept. Instead they give a detailed description of the internal structure of the
system component of interest. Therefore they contain a hierarchy of internal ele-
ments as structure representation and interfaces as possible relations representation.
In addition system units classes, their internal elements, and their interfaces may
contain attributes for property detailing. An example of a system unit class can be
a special inductive approximate switch of a special vendor. System unit classes are
defined and maintained within system unit class libraries.

Most important related to the content of this chapter is the property, that each
system unit class shall reference at least one (but possibly more than one) role
class it implements, i.e. which concepts are fulfilled by that system unit class. For
example the system unit class sensor (and all system unit classes derived from it
like inductive_sensor) fulfil the sensor role class. Thus it gets a semantics within
the domain of interest. In addition, each interface integrated in the system unit class
is derived (and by that assigned to) an interface class giving its semantics. Thus,
system unit classes get their semantics by referencing role classes and interface
classes.

The internal elements are the last important building block of CAEX. They
arranged in a hierarchy named instance hierarchy and represent the individual
engineering data to be exchanged. Each internal element represents a relevant data
object including further internal elements as substructures, interfaces representing
their relations to other internal elements, and attributes representing detailed
object properties. An example of an internal element related to production system
engineering can be the representation of a turntable with its internal sensors, actors,
interfaces, and so on.

Again, the most important related to the content of this chapter is the property,
that each internal element has to reference at least one (but possibly more than one)
role class it implements, i.e. which concepts are fulfilled by that internal element.
For example the internal element inductive_sensor_turntable fulfil the sensor role
class and a role class related to the description of an inductive proximity switch
within eCl@ss. Thus it gets a related semantics. Further, each interface integrated
in the internal element is derived (and by that assigned to) an interface class
giving its semantics. Thus, internal elements get their semantics by referencing role
classes and interface classes. Beyond, internal elements can reference a system unit
class acting as the template for the structure of the internal element providing an
additional way of representing the object semantics.

Within Fig. 10.6 some of the named examples are represented. For details on the
described structure and properties of CAEX and its use as roof format of Automa-
tionML the authors refer to the different AutomationML whitepapers available at
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Fig. 10.6 AutomationML topology example

(AutomationML 2016) and to the AutomationML in a nutshell representation in
(Schmidt and Lüder 2015).

10.5 Challenges Within Standardization of Information
Exchange

As already previously mentioned above the setup of information driven production
systems requires the definition of appropriate structuring (syntax) and meaning
(semantics) of data to enable the appropriate information exchange among life
cycles, engineering disciplines, and engineering activities.

This standardization is often trapped in a kind of standardization deadlock (Drath
and Barth 2012). As the intention is to be applied in practical application cases
the standardization process requires the involvement of practitioners. In addition
the used information exchange technologies shall be most advanced and promising
also for the future. Thus also researchers shall be integrated in the standardization
process. Hence, a group of practitioners and researchers is formed developing the
standard of interest.

But usually the developed standard will not fulfil all requirements from practical
application cases as well as from the end users from the first beginning. By applying
the standard in practice for example in engineering tools the quality of the standard
is evaluated and new enhancement request will arise. These enhancement requests
will be handled by the standardization group leading to a more mature version of
the standard which can now be again applied and evaluated.
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This cyclic process of standard development and application is an essential
requirement to reach a high quality standard. But it can be broken by the need of
implementation of engineering tools (and other information processing elements)
applying this standard. Very often companies having an engineering tool (or another
information processing element) as one of its products being relevant for the
implementation of the standard clearly have limited interest in implementing an
uncompleted standard just for evaluation. They cannot be sure on the technical and
economic success of the standard. In addition, the sequential implementation of
different versions of the standard may lead to non-satisfaction of their customers.
Thus, these companies will refuse the implementation of intermediate versions of
the standard braking up the cycle of standard development and evaluation.

To handle this challenge the information exchange standard shall fulfil the
following properties:

(S1) The standardization shall follow a sequential process developing consistent
versions of the standard integrating more advanced features step by step.

(S2) The standard shall enable the combination of standardized parts and non-
standardized (proprietary) parts without loss of generality. If the proprietary
parts become proven it shall be possible to take them over in the standard.

(S3) The standard shall enable the development of domain specific profiles. These
profiles shall be designed in a way that they can be applied in combination and
are, therefore, compatible to each other.

(S4) There shall be an integrated mechanism ensuring, that standardized parts,
domain specific profiles, and proprietary parts will be compatible to each
other.

(S5) The standard shall enable the easy adaptation of implementations of the
standard within engineering tools and other information processing element
by simply changing the configuration of the implementation without necessary
changes within the implementation code.

In the following it will be discussed how the AutomationML technology and the
standardization process of AutomationML are fulfilling the named requirements.
But before this discussion will start, some essential properties of AutomationML
are reminded.

(P1) AutomationML separates the standardization of syntax and semantics. The
syntax is based on the applied XML format CAEX (and the other involved
formats COLLADA, PLCopen XML, and MathML). It defined generic
internal elements within an instance hierarchy being able to cover arbitrary
physical and non-physical production system elements. The semantics of the
data elements is defined by role classes and interface classes to be referenced
by and integrated in the internal elements.

(P2) Internal elements can reference one or more role classes giving those different
semantics in parallel. If the referenced role classes provide the internal element
with attributes having the same name, there are means for attribute mapping
enabling the clear distinction of role related attributes. In addition different
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interfaces derived from different interface classes can be used in an internal
element.

(P3) Role classes are specified in role class libraries and interface classes in inter-
face class libraries which can be integrated in an AutomationML file following
the needs of the application case. They are on the one hand independent from
each other and on the other hand role classes are derived from each other
building up a role class derivation tree with AutomationMLBaseRole as tree
root and the takeover of all attributes and interfaces from the daughter role
class from the mother role class. (A similar tree exists for interface classes
with AutomationMLBaseInterface as tree root.)

The AutomationML standardization process is modular in three dimensions.
The first dimension is formed by the international standardization process. It

starts with the discussion of new application cases and, therefore, parts within the
AutomationML association. Based on this discussion working groups of the associa-
tion will develop a first version of the part of the standard document of interest. This
version is afterwards tested in test implementations by the AutomationML members.
Based on the test results the standard document is improved until it gets stable. If
the standard document is stable it is transferred to the German DKE (www.dke.de),
a German national standardization organization. Here, in cooperation with further
specialists the standard document is improved with respect to the requirements of an
international standard and prepared for international standardization. If the standard
document is prepared, it will be submitted to IEC for international standardization
within IEC 62714.

The second dimension is formed by the stability cycles of the standard within the
different involved organizations. Both, the AutomationML association as well as the
IEC are reviewing and improving the standard documents in temporal cyclic way
enabling the integration of intermediate improvement of the technologies applied as
well as the standard itself.

The third dimension is formed by the parts of the AutomationML standard.
Within the AutomationML association the AutomationML standard is codified by
whitepapers, best practice recommendations and application recommendations. The
whitepapers define the basements of AutomationML. For example Part 1 defines the
CAEX profile AutomationML is based on, Part 3 specifies the use of COLLADA to
represent geometry and kinematics, and Part 4 specifies the application of PLCopen
to represent behavior models. In contrast Part 2 is not defining the use of an XML
format but it defines basic, domain independent role class libraries. Application rec-
ommendations are defining domain specific profiles for the use of AutomationML.
There are for example application recommendations related to the exchange of
control system structures, transportation system models, and the use of OPC UA
to represent an AutomationML project. The best practice recommendations are
intended to reduce the interpretation range of the AutomationML standard and to
provide domain independent features of the data format. For example, there are best
practice recommendations related to the naming of AutomationML library versions,

http://www.dke.de
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the modelling of reference designations, the modelling of parameter lists, or the
structuring of AutomationML projects within an archive file.

Within the DKE and IEC set of documents is limited to parts. Up to now each IEC
part is equivalent to a whitepaper. But following the IEC standard maintenance cycle
the parts will combine whitepapers and best practice recommendations. Whether the
application recommendations will be used to form IEC parts or not is currently not
finally decided.

It is easily visible, that this standardization process fulfils the requirement (S1).
It is also easily visible that the different whitepapers and application recommen-

dations will form domain independent and domain dependent profiles. They define
the necessary semantics by giving appropriate role class libraries and interface class
libraries covering all necessary concepts and relations between concepts of interest.
As all these role class libraries and interface class libraries follow within its design
(P3) and are applied for semantic representation following (P2) they can be applied
independent and together depending on the application case, their application results
in a consistent structure, and they are compatible to each other. Thus, requirement
(S3) and (S4) are fulfilled.

The developed architecture of the AutomationML standard as well as the
properties of CAEX enable users to define its own role class libraries and interface
class libraries based on the predefined ones of AutomationML. They may extend
existing semantics or define completely new semantics within these libraries and
apply them within its own information exchange structures in extension to the
specified AutomationML concepts. The AutomationML association has developed
a procedure enabling users to disclose their internal structures to the members of
the AutomationML for discussion. Within this discussion process the proprietary
structures can be evaluated and finally be codified and standardized within an appli-
cation recommendation or a best practice recommendation. Thereby requirement
(S2) is fulfilled.

The capabilities of AutomationML to fulfil requirement (S5) is more hidden
within the data format and its application on an importer or exporter of an
engineering tool or another information processing element.

The implementation of exporters and importers requires a mapping of the
tool internal information model to the information model of the data exchange
format. This mapping needs to be defined and implemented depending on the used
semantics (Hundt and Lüder 2012). As AutomationML defines the semantics by
defining appropriate role classes and interfaces classes these classes can be applied
to enable the configuration of the required mapping.

A possible solution can be the development of a mapping table between the
applied role and interface classes and internal data elements and the implementation
of a generic data access function reading an incoming or outgoing data element,
looking in the table to find the related mapping and creating its appropriate
representation. By this a general exporter and importer can be implemented tailored
to the standard improvement by simply updating the configuration files fulfilling
requirement (S5).
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10.6 Summary

The intention of this chapter was to consider the problem of appropriate struc-
turing (syntax) and meaning (semantics) definition for a file based data exchange
technology applicable within information exchange among life cycles, engineering
disciplines, and engineering activities of information driven production systems.
Therefore, the chapter has discussed existing challenges and highlight possible
stating points and approaches for its solution.

Initially, five use cases of information exchange and application within infor-
mation driven production systems have been highlighted. They illustrate the strong
potentials information driven production systems contain but also the challenges
arise for its application. The use cases have been accompanied of current standard-
ization activities undertaken to make the use cases possible.

As next step information exchange technologies have been discussed. Starting
with requirements an information exchange technology has to fulfil in an infor-
mation driven production system different - information exchange technologies
have been reviewed and there modelling range and requirement fulfilment have
been identified. This evaluation has highlighted AutomationML as one essential
candidate to be used within the use cases of information driven production systems.

Following a deeper look in the structure and application of AutomationML and a
clear description how AutomationML deals with the standardization of syntax and
semantics five main challenges of the standardization of data exchange formats are
named. It has been discussed how AutomationML deals with these challenges.

In general this chapter provides information about the power of AutomationML
within the development of information driven production systems. It shall encourage
users and developers, practitioners and researchers, and experts and novices to
consider AutomationML, enhance its capabilities, and join the standardization
efforts finally enabling information driven production systems.

Acknowledgement The authors of this paper intend to thank Björn Grimm (Daimler AG) for his
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Chapter 11
Model-Driven Systems Engineering: Principles
and Application in the CPPS Domain

Luca Berardinelli, Alexandra Mazak, Oliver Alt, Manuel Wimmer,
and Gerti Kappel

Abstract To engineer large, complex, and interdisciplinary systems, modeling is
considered as the universal technique to understand and simplify reality through
abstraction, and thus, models are in the center as the most important artifacts
throughout interdisciplinary activities within model-driven engineering processes.
Model-Driven Systems Engineering (MDSE) is a systems engineering paradigm that
promotes the systematic adoption of models throughout the engineering process
by identifying and integrating appropriate concepts, languages, techniques, and
tools. This chapter discusses current advances as well as challenges towards the
adoption of model-driven approaches in cyber-physical production systems (CPPS)
engineering. In particular, we discuss how modeling standards, modeling languages,
and model transformations are employed to support current systems engineering
processes in the CPPS domain, and we show their integration and application based
on a case study concerning a lab-sized production system. The major outcome of
this case study is the realization of an automated engineering tool chain, including
the languages SysML, AML, and PMIF, to perform early design and validation.

Keywords CPPS case study • Cyber-physical production systems • Model-driven
systems engineering • Modeling standards • V-Model

11.1 Introduction

The increasing complexity of networked systems in the field of Cyber-Physical Pro-
duction Systems (CPPS) (e.g., consider real-time control of wirelessly networked
controller, sensors, and actuators from different vendors) demands a more compre-
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hensive and systematized view of all aspects (e.g., physical, software, and network)
in an engineering process. CPPS are being developed as part of a globally networked
future world, in which Products, Processes, and Resources (PPR) interact with
embedded hardware and software beyond the scope of single applications (Broy and
Schmidt, 2014). CPPS engineering requires the integration of physical, software,
network, and control aspects which are highly interwoven (Vangheluwe et al.,
2016). Additionally, flexible control approaches are needed to adapt the systems’
behavior to ever-changing requirements and tasks, unexpected conditions, as well
as structural transformations (Lee, 2008).

The main requirements in the engineering of CPPS are (1) interoperability (i.e.,
the ability of CPPS and humans to connect and communicate), (2) virtualization
(e.g., a virtual copy of the factory with sensed data), (3) decentralization (i.e.,
the ability of CPPS to make decisions on their own), (4) real-time capability
(e.g., for supporting monitoring, analysis, planning, and execution (MAPE) cycles),
(5) modularity (i.e., the flexible adaption of smart factories to changing require-
ments), and (6) cross-disciplinary methods to handle cross-cutting automation
tasks (Kagermann et al., 2013). The realization of these aspects requires the
synergistic integration of mechanical, electrical, network and software engineering,
as well as the computer control of mechanical systems (Kyura and Oho, 1996).
This again requires the integration of heterogeneous artifacts (e.g., design artifacts
like piping and instrumentation diagrams, system control diagrams, etc.) together
with their supporting tools, which are still often not well-integrated and typically
not used in tandem during an engineering process (Jetley et al., 2013). However,
this would be highly needed as, at the time of writing, the different engineering
disciplines in isolation offer only partial solutions to meet the requirements of the
envisioned engineering of CPPS and their combination is challenging as there exists
a heterogeneous document/tool landscape in this domain (Vangheluwe et al., 2016).

It has to be also emphasized that appropriate methods of one engineering
discipline are not necessarily applicable for another. For example, methods which
enable software evolution like variability modeling or tracing are limited to the
software domain (mostly dealing with requirements, software models, and program
code). For the domain of mechanical engineering, e.g., in the field of automated
production systems where naturally requirements will change over the system
life-time (e.g., due to a changing product portfolio), methods of tracing need to
be adapted and linked to well-established domain-specific methods (e.g., design
structure matrix) (Vogel-Heuser et al., 2015). The need for explicit modelling is then
rapidly arising (cf. Research Questions (RQs) of Chap. 1) requiring an appropriate
set of tools and methodologies that meet various needs in the industrial automation
domain (Jetley et al., 2013) throughout a multidisciplinary information flow.

Therefore, it is necessary to identify and implement a suitable subset of
appropriate models and standards for guaranteeing the engineering quality in the
field of CPPS (Broy and Schmidt, 2014). Models represent a system at different
abstraction layers (e.g., requirements elicitation, analysis, design, implementation,
validation, and verification), of different disciplines (e.g., process engineering,
electrical engineering, mechanical engineering, software engineering), considering
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different aspects (security, performance, safety) and tasks (e.g., validation, verifica-
tion, testing, optimization, design-space exploration) (Kagermann et al., 2013) (cf.
Chap. 1, RQ M1).

Moreover, models can be used throughout the entire value chain, e.g., from
product development through manufacturing engineering to production. Especially
the production of the future requires models, e.g., for the virtual design, virtual
planning, conceptualization, and simulation (Kagermann et al., 2013). The complex
software required in CPPS is typically developed and refined iteratively in a model-
driven way (Vogel-Heuser and Biffl, 2016). Model-Driven engineering (MDE)
follows the principle that “everything is a model”, which is also reflected in the
systems engineering domain. However, MDE promotes the models to actually
“drive” the engineering process by using generative and analytical techniques to
automate the different tasks instead of using models solely as documentation or
early sketches of the system (cf. Chap. 1, RQ I1).

Additionally to the general usage of “models”, a set of appropriate standards
(e.g., SysML (Friedenthal et al., 2014), MARTE (Object Management Group
(OMG), 2016c), AML (IEC, 2014), etc.) is needed for integrating various engineer-
ing aspects, different stakeholder perspectives, tool-independent interoperability, as
well as information that is needed to be exchanged at a specific engineering step.
Moreover, appropriate modeling languages (providing a clear syntax as well as
semantics) are essential in planning, designing, and realizing CPPS engineering.
Currently, the interest in adopting system modeling languages is increasing in
the industrial automation domain (Berardinelli et al., 2016). In this context,
the main challenges (among others) are the technical, syntactic, and semantic
heterogeneity as well as the vertical integration (i.e., among models required by
domain/stakeholder-specific activities) and the horizontal integration (i.e., among
models used in the same activity but performed by different stakeholders with
their own, mainstream modeling languages/notations) (Mazak et al., 2016). One
of the obstacles is a systematic adaption of models throughout the engineering
process by identifying proper concepts, notations, techniques, tools, as well as their
integration. Equally important are software tools to manage the complexity resulting
from increasing functionality, customization, dynamics, and cooperation between
different disciplines.

In this chapter, we present a set of appropriate MDSE standards, as
used by authors in their research activities, for enabling the adaption of
MDE principles in the CPPS domain. In particular, we focus on the role
played by (1) the System Modeling Language (SysML) (Object Management
Group (OMG), 2016b) as design notation for CPPS structural and behavioral
modeling, (2) AutomationML (AML) as exchange standard for production system
engineering tools, (3) Performance Model Interchange Format (PMIF) for
performance modeling and analysis (e.g., via queuing networks to calculate
performance indices like resource utilisation) (Cortellessa et al., 2011), and
(4) model transformations as a strategic mechanism to integrate heterogeneous
artifacts throughout the engineering of CPPS to deal with heterogeneities
and to realize horizontal and vertical integration to ensure a holistic view on
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Fig. 11.1 A V-Model variant for CPPS engineering

the resulting technical system and to assemble different views1 (cf. Chap. 1,
RQ C2).

On top of these modeling and data exchange standards, model-based design
and analysis methodologies can be devised in order to demonstrate the value
of MDSE both in design and validation phases. For this purpose we use the
V-Model,2 presented in Fig. 11.1 as methodological foundation in order to express
our framework in a technology neutral way.

Generally, the V-Model is a graphical representation of a system’s development
life-cycle specifying the sequence of steps during a generic engineering process.
These steps include system design, domain specific engineering, system integration,
as well as the verification and validation of system properties (Verein Deutscher
Ingenieure (VDI), 2004). The V-Model has proven as structural approach for the
development of interdisciplinary technical systems like CPPS (cf. Chap. 2 for more
details). In particular, we propose in this book chapter an example of a model-based
Systems Engineering Technical Process. We relate the MDSE standards to the inner
wings of the V-Model to cover that phases of the V-Model needed to realize and
analyze the engineering of CPPS and to support cross-disciplinary modeling built
on MDE techniques. We utilize the synergies between MDSE and the V-Model to
guide stakeholders to select and combine appropriate standards, languages, profiles,
and formats to build their own MDE methodology (e.g., performance analysis

1Chapter 2 also discusses vertical and horizontal integration terms in the context of model-based
engineering.
2See Chap. 2 for an introduction and comparison among engineering process models.
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methodology) as needed for CPPS engineering on top of these standards (e.g., AML
and PMIF).

The intention of this chapter is to provide an overview on how different
standards for MDSE may be combined on the macro-perspective to cover different
engineering phases and not to provide a complete treatment of each engineering
phase in detail. For the latter, we provide pointers to existing literature.

The rest of this chapter is organized as follows. Section 11.2 provides a general
introduction into model-driven engineering (MDE) and presents two major tech-
niques of it: metamodeling and model transformations. Based on this foundation,
we elaborate in Sect. 11.3 on a set of appropriate industry standards to apply MDSE
techniques for CPPS engineering. In Sect. 11.4, we present examples based on a
reference case study to show how the standards and techniques presented in the
Sect. 11.3 are applied to realize CPPS and provide a critical discussion of the results.
Finally, Sect. 11.5 concludes the chapter and outlines future challenges in MDSE.

11.2 Model-Driven Engineering in a Nutshell

Before we discuss in more detail how MDSE can be actually realized in the CPPS
domain, we provide a general introduction into model-driven engineering (MDE).
MDSE may be seen as a special interpretation and application of the general
paradigm of MDE within the systems engineering domain.

In MDE, the abstraction power of models is applied to tackle the complexity
of systems (Brambilla et al., 2012; Schmidt, 2006). MDE follows the principle
“everything is a model” for driving the adoption and ensuring the coherence of
model-driven techniques, in the same way as the principle “everything is an object”
was helpful in driving the object-oriented techniques in the direction of simplicity,
generality, and integration (Bezivin, 2005). Historically, MDE has been mainly
applied in software engineering (Brambilla et al., 2012; Bezivin, 2005; Schmidt,
2006), but in recent years, the application of MDE has been increasing in the CPPS
domain as well (Vyatkin, 2013; Hegny et al., 2010; Schütz et al., 2014).

A key principle of MDE is to address engineering with formal models, i.e.,
machine-readable and processable representations. Based on this foundation, mod-
eling provides a set of advantages for driving the engineering process. The
application of model validation, testing, verification, simulation, transformation,
and execution enables the automation of engineering process steps and support the
traceability of engineering artifacts to improve quality management to mention just
a few benefits (Brambilla et al., 2012).

Furthermore, in MDE, models are considered to be connected (i.e., model
elements may be linked beyond the boundary of one model) and dynamic (i.e.,
models may be analyzed and executed in some form) (Brambilla et al., 2012;
Bezivin, 2005). Models can be (1) compared to reason about differences between
model versions, (2) merged to unify different versions of a model, (3) aligned to
create a global and integrated representation of the system from different viewpoints
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to reason about consistency, (4) optimized to improve their internal structure without
changing their observable behavior, (5) refined to produce platform-specific models
from platform-independent models, and (6) translated to other formalisms for code
generation, verification, and simulation. Dedicated tool support for these tasks is
available out-of-the-box in modeling environments, which can be customized for
the modeling languages in use.

The two major MDE techniques are: (1) metamodeling for specifying modeling
languages, i.e., the structure and content of valid models, and (2) model transforma-
tions to systematically manipulate models. In the following, we discuss these two
techniques to provide the basis for subsequently showing how these techniques are
used in MDSE.

11.2.1 Metamodeling

Metamodels play an important role in MDE (Kühne, 2006). They specify the
abstract syntax of modeling languages (i.e., the language concepts and their
relationships) that is the center of the modeling language definition and all other
concerns such as concrete syntax (i.e., model notation) and semantics are defined
based on these metamodels (Brambilla et al., 2012). MDE provides standardized
metamodeling languages (also referred to as meta-metamodels) used for producing
modeling environments such as the Meta Object Facility (MOF) (Object Man-
agement Group (OMG), 2003) for defining modeling languages that may be seen
as pendant to Extended Backus-Naur Form (EBNF) (Wirth, 1977), which is the
foundation for specifying textual languages.

MOF is based on a core subset of UML class diagrams, i.e., classes, attributes,
and references. A metamodel gives the intentional description of all possible models
within a given language. Practically, metamodels are instantiated to produce models
which are in essence object graphs, i.e., they consist of objects (instances of classes)
representing the modeling elements, object slots for storing values (instances of
attributes), and links between the objects (instances of references), which have to
conform to the UML class diagram describing the metamodel. Therefore, models
are often represented in terms of UML object diagrams if their concrete syntax is
neglected. This is especially true when models are automatically processed by the
computer.

A model has to conform to its metamodel which is often indicated by the
conformsTo relationship (cf. Fig. 11.2). In addition to the constraints defined by the
metamodel, additional constraints may be defined based on the metamodel elements
using a constraint language. The Object Constraint Language (OCL) (Object
Management Group (OMG), 2010) is a standardized and formal language to
describe expressions, constraints, and queries on models. As such, OCL is the
language of choice for defining constraints going beyond simple multiplicity and
type constraints defined by UML class diagrams and metamodels.
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Fig. 11.2 Metamodeling
pattern based on Kühne
(2006)
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Based on this meta-layer architecture, metamodeling environments allow gen-
erating modeling environments and providing generic tool support, which can be
employed for all the modeling languages defined within a metamodeling environ-
ment. Thus, metamodeling environments empower the knowledgeable tool users
to become tool developers, e.g., modeling languages may be easily extended with
new modeling concepts or completely new languages may be developed without
programming efforts.

11.2.2 Model Transformations

In a general sense, a model transformation is a program executed by a transfor-
mation engine which takes one or more models as input to produce one or more
models as output as is illustrated by the model transformation pattern3 (Czarnecki
and Helsen, 2006) in Fig. 11.3. In MDE, model transformations are used to solve
different tasks (Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Lúcio et al.,
2016) such as code generation, model refactoring, reverse engineering to name just
a few. One important aspect is that model transformations are developed on the
metamodel level, and thus, are reusable for all valid model instances.

In the MDE field, various model transformation kinds emerged in the last
decade (Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Lúcio et al., 2016)
whereas two important kinds are differentiated in the following. A model transfor-
mation can be categorized as out-place if it creates new models from scratch, e.g.,

3Please note that the terms source/target models and input/output models are used synonymously.
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Fig. 11.3 Model transformation pattern based on Czarnecki and Helsen (2006)

producing an analysis model from a design model, or as in-place if it rewrites the
input models until the output models are obtained, e.g., as it is the case in model
execution or model optimization.

Several transformation languages emerged in the last decade which provide
dedicated support for defining model transformations (Czarnecki and Helsen,
2006; Mens and Gorp, 2006). In this book chapter we are focussing on out-place
transformations as we are interested in automating the transition from the early
design steps to early validation steps as well as to the subsequent discipline-specific
engineering tasks. Thus, our goal is to apply out-place transformations to produce
from a design model other representations which can be used in discipline-specific
tools as well as analysis tools.

For defining out-place transformations in this book chapter, we make use
of the Query/View/Transformation (QVT) standard (Object Management Group
(OMG), 2016a) which provides several languages to implement model transfor-
mations (Kurtev, 2007). For instance, by using the declarative QVT Relations
language, transformation logic between two different metamodels is specified as
a set of relations that must hold for the transformation to be considered successful.
Relations contain a set of patterns used to match for existing source model elements
in order to instantiate new target model elements or to modify existing ones. Since
declarative approaches like QVT Relations allow for the specification of what
has to be computed but not necessarily how, the transformations are defined in
a very concise manner which allows to focus on the relations between different
concepts instead of reasoning about how to encode them in imperative statements.
Another benefit of using a declarative language such as QVT Relations is to allow
for different application possibilities of the transformation specification. While the
transformation can be executed in both directions, it is also possible to use the
transformation to compare different models (if all relations are fulfilled by the
source and target models) and in cases where differences exist, i.e., some relations
are not completely fulfilled by the existing model elements, synchronization may be
performed to restore the fulfillment of all specified relations.
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In this book chapter we focus on the classical forward transformation capabilities
of QVT Relations and refer the interested reader for other execution capabilities
to Stevens (2010). However, we also see the comparison and synchronization capa-
bilities of QVT Relations as interesting ingredients to further automate the system
engineering process, e.g., consider change propagation and reverse engineering
activities to mention just a few practical engineering tasks. Finally, by instantiating
the relations on the model level, a trace model is produced for indicating which
source elements have been transformed to which target elements by which relation
(cf. bottom of Fig. 11.3).
After presenting the central techniques of MDE, we now proceed with their
application in the domain of CPPS engineering. In particular, we elaborate on
a selected set of standardized languages which are supported by metamodels in
Sect. 11.3 and combine them in an automated engineering tool chain in Sect. 11.4
with the help of model transformations.

11.3 Selected MDSE Standards for CPPS Engineering

In this section, we elaborate on a selected set of industry standards to introduce
MDSE in the CPPS domain. This selection is far from being exhaustive, rather
it aims at providing a coherent subset of modeling standards, proposed by the
experience of the authors. These standards can be suitably integrated in model-
driven methodologies for CPPS design activities as well as for the early verification
and validation activities.

In particular, we selected (1) SysML, a general purpose graphical modeling
language explicitly devised for requirements specification and system design, (2)
AML for realizing data exchange among production system engineering tools, and
(3) PMIF for supporting performance modeling via the queuing network (QN)
notation and as standardized data exchange format among QN solvers. By using
these proposed standards, we can take full advantage of those MDE techniques
presented in the previous section to automate a particular engineering tool chain
framework which focusses on design, data exchange, and analysis. This framework
is not limited to the presented set of standards as also other standards may be used
within this framework.

In the following, we describe each of the selected standards at a glance and give
pointers to external resources for the interested reader.

11.3.1 Systems Modeling Language (SysML)

SysML is a graphical modeling language standardized by the Object Management
Group (OMG) for the development of large-scale, complex, and multi-disciplinary
systems (Object Management Group (OMG), 2016b). SysML is derived and
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extended from the Unified Modeling Language (UML), a graphical, general-
purpose software modeling language that is currently the most adopted one in
model-based software engineering (Hutchinson et al., 2011). SysML reuses a subset
of UML elements and introduces new elements, e.g., for requirements modeling.
SysML is defined as a UML profile. In addition to SysML, several other UML
profiles have been standardized by the OMG such as the MARTE profile (Object
Management Group (OMG), 2016c) which we will discuss later.

To better understand the relationship between UML and SysML, we will explain
it in more detail. With UML profiles, UML provides a language-inherent extension
mechanism for customizing UML concepts for particular domains and platforms.
This mechanism allows engineers to extend UML to create new modeling concepts
(derived from existing ones) comprising specific properties that are suitable for
the domain of interest. A stereotype, denoted by the keyword «stereotype»,
is one of three types of extensibility mechanisms, the other two are tagged values
and constraints (Booch et al., 2005). By using stereotypes any UML metaclass
can be extended with additional meta-attributes (i.e., tagged values) and additional
modeling constraints. The profiling mechanism has been extensively adopted by the
UML community to broaden the adaption of UML as design modeling notation in
several domains. For more details, we refer the interested reader to Booch et al.
(2005) and Seidl et al. (2012).

SysML provides modeling concepts and diagrams for representing requirements,
structure, behavior, and parametrics (i.e., mathematical constraints) of a system
which are linkable to trace requirements and to connect structure with behaviour
(cf. Fig. 11.4). We now present only a small subset of SysML which we use later on
in Sect. 11.4.2.1.

To represent the structure of systems, the UML class diagram and composite
structure diagram are adapted and renamed into block definition diagram (BDD)
and internal block diagram (IBD) by SysML. By using BDD, the structural
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Fig. 11.4 Overview on SysML diagram types and their connections (Friedenthal et al., 2014)
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decomposition of a system into so-called blocks can be defined. A block represents a
modular component of a system. Its definition comprises the component’s properties
and relationships to other components. Important relationships between blocks
include:

• Composition relationships representing the decomposition of a block into sub-
blocks (called parts);

• Reference associations representing logical references between blocks which are
parts of different composite blocks;

• Dependency relationships denoting that a change on one block may cause a
change on other blocks;

• Generalization relationships representing classifications of blocks.

By using IBD, the connections between parts of a compound block can be defined.
In particular, they include:

• Ports to define connection points between blocks;
• Connectors to connect blocks via ports and enable interaction.

SysML provides an integration framework for discipline-specific design models,
e.g., mechanical, electrical, and software models. The system model captures
the overall design of a system on a high-level of abstraction and traces this
design to discipline-specific models. For this reason it fits to the multi-disciplinary
engineering process required for realizing CPPS (cf. Fig. 11.1). SysML has been
already adopted in several domains4 for developing complex and multi-disciplinary
systems, e.g., in the aerospace and defense industry. SysML is now also emerging
in the automation domain (Feldmann et al., 2014). As SysML is a profile extension
of UML, model-driven techniques and tools are directly applicable to this standard.
For more information on SysML, we kindly refer the interested reader to Alt (2012).

11.3.2 Modeling and Analysis of Real-Time Embedded System
Profile (MARTE)

MARTE (Object Management Group (OMG), 2016c) is another standard intro-
duced by the OMG. MARTE’s target modeling domain includes reactive systems
interacting with the external environment through sensors and actuators, e.g.,
consider transportation, factory automation, hardware/software controllers, and
various embedded electronic appliances also including mobile communications. As
MARTE is designed as a UML profile, it is applicable to UML, and by this, also to
all other UML profiles such as SysML.

MARTE includes many sub-profiles structured around two main concerns (1)
modeling software and hardware structures, e.g., by the software resource model

4See http://www.omgsysml.org for an overview.

http://www.omgsysml.org
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Fig. 11.5 A production system modeled in UML with MARTE annotations

profile and hardware resource model profile, and (2) enriching design models
to obtain analysis models with additional parameters required by model-based
methodologies for performance and schedulability analysis (e.g., response time of
software/hardware execution hosts or scheduling policies of tasks).

Figure 11.5 shows a simple example of a production system modeled in terms of a
UML class diagram with annotations from a subset of the MARTE profile. By using
MARTE, the role of different classes can be identified. A production system can be
considered as a collection of active resources, e.g., machines. As shown in Fig. 11.5,
the production system is composed by three different kinds of machines, Machine
A, Machine B, and Machine C. The production system’s layout is presented
by a composite structure diagram (cf. Fig. 11.5, on the bottom right). It includes 4
machines in total (one of type A and one of type C, both, connected by two machines
of type B). In our example, these machines provide processing services for items
entering the system to be processed by Machine A, flowing through Machine
B, and then leaving the system after the last processing step carried out on Machine
C. This flow is indicated by the black triangles showed in the composite structure
diagram of the production system. Thereby, each item is processed following a first-
in-first-out (FIFO) scheduling policy. Additionally, quantitative information can be
annotated on structural (e.g., the resources’ multiplicities) as well as on behavioral
specifications. For example, timed properties can be assigned to actions as shown
in the processItem activity diagram. In this diagram the modeling behavior
of processItem() operation of Machine A is described. Each execution of
the processItem() operation lasts (exactly) 10 s, seizing its execution host, the
Machine A instance shown on the composite structure diagram.

MARTE provides concepts required for model-driven design and analysis of
systems, but it is independent of any design and analysis methodology. Moreover,
the general framework for quantitative analysis provided by MARTE is intended to
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be refined/specialized for the specific methodology of choice (e.g., dependability
analysis; Bernardi et al. 2011). As for SysML, MARTE is a profile extension
of UML, thus model-driven techniques and tools are directly applicable to this
standard. For more information on MARTE, we kindly refer the interested reader
to Object Management Group (OMG) (2016c) and Selic and Gérard (2013).

11.3.3 Performance Modeling Interchange Format (PMIF)

PMIF is conceived as a common representation for system performance model
data that could be used to move queuing network models between analysis and
simulation tools (Smith and Williams, 1999). Its creators were interested in tool
interoperability for performance engineering (Smith, 1990). The first version of
PMIF (Smith and Williams, 1999) addresses a specific type of performance
model, i.e., queuing network models that may be solved using analytical solution
algorithms.

Providing enhanced support for extra-functional modeling and analyses of CPPS
is in particular of high importance in the early design and validation steps (Malavolta
et al., 2013). In this regard, queuing network (QN) models provide a powerful
notation widely used to represent and analyze resource sharing systems like
CPPS (Schleipen and Drath, 2009). As summarized in Cortellessa et al. (2011):

Informally, a QN is a collection of interacting service centers representing system resources
and a set of customers representing the users that share the resources. It can be represented
as a direct graph whose nodes are service centers and edges represent the potential paths
of customers’ service requests. Several different classes of customers can circulate over the
network at the same time, each class representing a set of customers with homogeneous
behavior (i.e., paths and amounts of service requests).

The construction of a QN can be split in two main steps, (1) definition of service
centers, their number, and the interconnections, and (2) parameterization of the
arrival processes, i.e., the definition of job classes, the service rates, scheduling
policies and the routing probability among servers. Figure 11.6 gives a graphical
overview of a generic QN model, its typical modeling elements, and their relation-
ships as already defined for the production system modeled with UML/MARTE in
Sect. 11.3.2. Each machine instance is represented as a server. The produced items
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Fig. 11.6 A production system modeled as an open queuing network
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are instances of the same job class. Jobs enter the system at a certain arrival rate and
flow to servers, waiting for being served, seizing the server for a certain amount of
time (a.k.a., service time) then proceed to the next server connected with arcs until
they leave the system through sink nodes.

PMIF provides a common serialization format for this kind of models. In
this paper, we adopt a variant of the PMIF metamodel presented in Troya and
Vallecillo (2014), suitably updated for being easily integrated in model-driven
performance analysis methodologies. Following this variant, a QN model is a graph
with Nodes connected by Arcs. There are two types of nodes, Servers and
NonServers. The former provide a processing service while the latter represent
origin (SourceNode) and exit (SinkNode) for entities flowing through the QN.
These entities are referred as customers or jobs. Different job classes are defined
through workloads (Workload). A Workload can be open or closed depending
on the capability of jobs to enter/leave the QNM (i.e., open) or not (i.e., closed
with a fixed job number). Any Workload specification includes the sequence of
transits to different Server where jobs can ask for one or more service requests
(ServiceReq). At each Server, the next job to be processed is decided by a
scheduling policy (e.g., first-come-first-served).

Finally, timed properties like job inter-arrival time (for open workload), and
service times (for servers) are usually given as part of a performance analysis
scenario (e.g., arrival probability distribution). Other timed properties (e.g., the
waiting and completion time for single jobs or for the whole workload) are obtained
as part of analysis results and used by tools to compute performance indices.

There are currently several tools for solving QN models providing their own
model representations. In Troya and Vallecillo (2014), the reader can find a recent
list of QN solvers together with their evaluation techniques (e.g., analysis or
discrete event simulation), model format, allowed probability distributions (e.g.,
for generating inter-arrival times and service times) and supported QN types
(e.g., open/closed). As we build on the existing metamodel for PMIF (Troya and
Vallecillo, 2014), model-driven techniques and tools are directly applicable to this
standard as well. For more information on QNs and PMIF, we kindly refer the
interested reader to Smith and Williams (1999), Smith et al. (2010), and Troya and
Vallecillo (2014).

11.3.4 AutomationML

AML is a neutral, free, open, XML-based, and standardized data exchange format,
which aims for data exchange within the engineering process of production
systems (IEC, 2014). We present an overview on AML in Fig. 11.7. In particular,
typical elements in an AML production system model comprise: (1) the plant
structure including devices and communication structures, expressed as a hierarchy
of AML objects and described by means of CAEX which follows the standard
IEC 62424 (Schleipen et al., 2008), (2) geometry and kinematics represented
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Fig. 11.7 AML overview taken from IEC (2014)

by COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012) (ISO/PAS, 2012), and (3)
control related logic data (i.e., PLCopen XML 2.0 and 2.0.1; PLCopen 2011). Since
the foundation of AML is the application of CAEX as top level format, we focus on
this part of AML in this section and the following one.

CAEX stores engineering information following a prototype-oriented paradigm.
It allows the modeling of physical and logical system components as data objects
encapsulating different aspects. CAEX objects (namely, internal elements IE) and
their interfaces (namely, external interfaces ExtI) can be specified from scratch or
suitably instantiated (that means cloned) from existing prototypical classes (namely,
SUC), defined and collected in system unit class libraries (SUClib). Both CAEX
objects and classes may consist of other sub-elements, and may themselves be part
of a larger composition or aggregation.

Both classes, objects, and their interfaces are semantics agnostic. CAEX provides
role classes (RC) and interface classes (IC) to assign semantics to IEs and ExtI,
respectively. Both RC and IC are defined and collected in libraries (RClib for RC
and IClib for IC). AML objects and classes can then support and/or require such
roles.

Finally, individual objects are modeled in an instance hierarchy (IH) which, in
turn, may contain internal elements (IE). IEs can be instantiated from SUCs and
arranged in accordance with the supported and required roles. External interfaces
(ExtI), instantiated from ICs, are used to interlink objects (IL) among each other
or with externally stored information (e.g., COLLADA or PLCopen XML files).

In previous work (Biffl et al., 2015), we have defined a metamodel for AML
considering the CAEX part. Using this metamodel, we can represent AML data as
models and apply model-driven techniques and tools for AML as well. This allows,
e.g., to transform system models defined in SysML to AML and vice versa.

For more details about AML, we kindly refer the interested reader to the different
AML whitepapers available at IEC (2014). In addition, Chap. 9 of this book focuses
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on the role of AML as a potential standardized data format and it is exemplarily
presented for the case of virtual commissioning of a production system.

11.3.5 Synopsis

To sum up this section, we presented four different modeling languages which are
all based on metamodels which are directly defined by standardization bodies or by
the scientific community. This is an important requirement as this already resolves
the potential data model heterogeneities and allows to represent the models in the
same format as well as to manipulate them with the same tools and techniques. We
exploit this feature in the following section to combine the presented languages in
an automated engineering tool chain framework.

11.4 MDSE of CPPS in Action

In this section, we show how the presented languages of Sect. 11.3 can be combined
to support the envisioned CPPS engineering process. Figure 11.8 depicts how these
languages are aligned with the engineering activities of the V-Model:

system level

subsystem level

component level 

Production SystemRequirements

software

electronics

integration

PM 
IF

Fig. 11.8 Populating the V-Model with concrete languages for requirements and design, data
exchange, and analysis



11 MDSE: Principles and Application in the CPPS Domain 277

• Requirements and design language: We use SysML as a front-end require-
ments and design notation. In particular, we model the requirements of the system
as well as its design covering its structure and behavior. Furthermore, we show
how MARTE stereotypes can be used to provide the necessary information to
perform early performance analysis.

• Data exchange language: AML is primarily devised as a data exchange among
automation tools in our engineering tool chain. It eases vertical integration with
other domain-specific activities (e.g., virtual commissioning with COLLADA-
based tools and PLC programming; Lüder et al. 2015). In particular, we show
how the information defined in the SysML model can be exchanged on the basis
of CAEX.

• Analysis language: PMIF is employed to share models with QN solvers to
compute properties of interest for early design validation. In order to analyse the
performance of a design given in SysML and MARTE, we compute the necessary
properties to validate if the stated requirements are fulfilled or not with the help
of an existing QN solver.

As we will see later, the transitions between the different engineering activities are
automated by model transformations. This allows to exchange the design models
between engineering tools used in the discipline-specific engineering activities, as
well as to perform early validation and verification of the design models before
the discipline-specific engineering activities start. Furthermore, we would like to
highlight that based on the trace model generation by model transformation engines,
traceability between the design models, data exchange models, as well as analysis
models is provided automatically.

The rest of this section is organized as follows. We first provide the descrip-
tion of a reference case study, a lab-sized production system hosted at IAF of
the Otto-v.-Guericke University Magdeburg (Equipment Center for Distributed
Systems, 2016) which is subsequently used as a running example to exemplify
the integration of SysML, PMIF, and AML as well as to discuss its benefits and
challenges. First, we provide three different models of this given production system
using SysML, AML, and PMIF as modeling languages for the sake of CPPS
design (via SysML), data exchange, (via AML) and early model-based validation
activities (e.g., performance analysis through queuing network represented by
PMIF). Second, we describe how the integration between (1) SysML and AML and
(2) AML and PMIF has been realized to automate the validation of requirements on
SysML design models.

11.4.1 Case Study

The IAF production system (cf. Fig. 11.9) consists of a transportation line made
of sets of turntables, conveyors, and multi-purpose machines. Each turntable is
equipped with an inductive proximity sensor for material detection and a motor for
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Fig. 11.9 The lab-sized production system hosted at IAF of the Otto-v.-Guericke University
Magdeburg (Equipment Center for Distributed Systems, 2016)

table rotation. The transportation line is wired to a modular fieldbus I/O system,
which, in turn, communicates with Raspberry Pi based controllers by Ethernet.
The Raspberry Pi based controller is running a Programmable Logic Controller
(PLC) program (PLCopen, 2011) governing the transportation line. Such programs
logically divide the transportation line in three areas as depicted in Fig. 11.9. The
production plant is supposed to continuously processes items via its multi-purpose
machines located in different areas. Turntables and conveyors are in charge of
moving such items to these machines following a predefined process.5

11.4.2 CPPS Modeling

Systems design is the process of defining (1) the architecture, in terms of com-
ponents, modules, interfaces, and (2) the functionalities that such a system should
provide in order to satisfy the specified requirements. In the following, we design a
CPPS virtual prototype of the reference case study using SysML and AML. Then
we build a QN performance model based on PMIF to validate the virtual prototype.

5Models realized for this case study can be downloaded from our companion web site at the
following address http://www.sysml4industry.org/wp-content/uploads/2016/08/models-1.zip

http://www.sysml4industry.org/wp-content/uploads/2016/08/models-1.zip
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We represent the overall structure and behavior of the transportation line
that is further decomposed in three groups of resources, called areas. We then
provide a detailed design of Area1, the leftmost logical area in Fig. 11.9, together
with its internal resources (i.e., four turntables, four conveyors, and one
multipurpose machine) as well as resource-specific behaviors.

Of course, the proposed models can be built from scratch in the different stages
of the engineering process and they can be used isolated for documentation purposes
(e.g., by SysML diagrams) or for analysis purposes (e.g., calculating the minimum,
maximum or average processing time for items). However, in order to realize
an efficient engineering process realizing the potential benefits of formal models,
repetitive manual tasks should be eliminated as much as possible. Instead model
transformations should be employed for automating these tasks as much as possible.

11.4.2.1 Modeling in SysML

We employ SysML (Object Management Group (OMG), 2016b) to support require-
ments specification and system design of the CPPS engineering process as sketched
in Fig. 11.8. Figures 11.10 and 11.11 show parts of the IAF plant SysML model
which we discuss in the following.

SysML provides modeling concepts and a diagram type to represent text-
based requirements and their relationships to other SysML modeling elements, as
discussed in Sect. 11.3. The requirements diagram in Fig. 11.10 depicts functional
(FR) and non-functional (NFR) requirements for the IAF Plant.

The FR prescribes a constraint on the logical architecture of the transportation
line, which has to be divided in three distinct areas of turntables, conveyors, and
machines. This requirement will probably affect the logical representation of the
transportation line as programmed in the PLC code deployed on Raspberry PI
controllers (cf. Fig. 11.9).

req IAF Plant Requirements

<<requirement>>
LLogical Areas

id#: FR 1

txt: The IAF plant system is composed by processing
stations without buffering capacity. At any time,
during the production process, no raw products can
be buffered for delayed processing.

<<block>>
IAF Plant

<<requirement>>
Item Production

id#: NFR 1
txt: The IAF plant produces items. The production
process of a single item should last less than a
minute.

<<block>>
Area

«satisfy» «satisfy» «satisfy»

<<QN Model>>
IAF Plant

«verify»

«derivedFrom»

Fig. 11.10 Excerpt of the SysML requirement model of the IAF Plant
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The NFR states a production constraint setting a minimum production threshold.
This is a typical performance requirement that can be validated through analysis of a
queuing network representation of the IAF Plant. For this reason, we extend the
SysML design of the IAF Plant with MARTE annotations and derive a PMIF-
based queuing network for the sake of requirements validation.

Both requirements describe system-level properties, which have to be satisfied
by the whole IAF plant. For this reason, a satisfy relationship is depicted from
the top-level structural SysML block representing the whole IAF plant to these
requirements.

Concerning the design of the IAF Plant, the structural elements and their
relationships are defined via blocks and containment relationships in the BDD in
Fig. 11.11a. A top level IAF Plant block includes an Area block, which in
turn has Turntable, Conveyor, and Machine blocks. The ports depicted on
the blocks’ borders represent the potential input (e.g., inA, for receiving Areas),
output (e.g., outT from Conveyors to Turntables), and bidirectional (e.g.,
in_outC, for Machines interacting with Conveyors) interaction points among
these structural elements. Finally, blocks can be used to define the product types,
e.g., the generic item shown as wooden piece in Fig. 11.9.

The IBD depicted in Fig. 11.11c defines the structure of the transportation line
with three connected areas. We then detail the internal structure of the Area 1
as a graph of parts, ports, and connectors. Parts represent tX and cX properties in
the BDD with the following naming convention: ‘part name’: ‘type name’, where
‘type name’ refers to the corresponding block defined in the IAF Plant Design
BDD (e.g., t1:Turntable). Connectors have both structural and behavioral
functions, specifying both (1) links between parts via ports, and (2) item flows
between parts depicted with black directed arrows.

Once the system architecture has been defined, we proceed with the behav-
ioral specification6 of processing resources, i.e., Turntable, Conveyor, and
Machine blocks by defining the resource-specific operations turn(), trans-
fer(), and process(), respectively, applied on items. The detailed behaviors
are modeled through Activity Diagrams in Fig. 11.11b. Each activity is
realized with a single action receiving the parameter Item i (i.e., the box at the
border of the activity diagram).

In Fig. 11.11d such operation-specific activities are combined in a system-level
activity where a workflow of call operation actions correspond to the process-
ing steps applied on items flowing through Turntables, Conveyors, and
Machines placed in the Area1 of the IAF Plant. We assume that the process-
ing starts at turntable T0 and proceed up to turntable T2. Here the item can leave
Area1 to be processed by resources placed in Area2, or continue to conveyor
C2. A similar alternative choice happens in turntable T3, where the item can be

6It is worth noting that SysML provides different behavioral notations and diagrams such as State
Machines and Interactions (a.k.a., Sequence Diagrams). It is up to the modeler to choose the
notation that better fits with her needs.
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Block Definition Diagram BDD
IAF Plant Design

«GaStep»
{hostDemand = (exp, 0.1, sec)}

turning

i:Item
Internal Block Diagram IBD

area1

«Block», «GaResoucePlatform»
Area

{resMult = 3, throughput = $th, respT = $rt, utilization= $u}

- process (i:Item)

«Block», «GaExecHost»
Machine

{resMult = 1, schedPolicy = FIFO,
throughput = $th, respT = $rt, utilization= $u}

in_outC
- turn (i:Item)

«Block», «GaExecHost»
Turntable

{resMult = 4, schedPolicy = FIFO,
throughput = $th, respT = $rt, utilization= $u}

inC outC

«Block», «Resource»
Item

{resMult = $num_job}

t0: Turntable

c0: Conveyor

t1: Turntable c1: Conveyor

m1: Machine

- transfer (i:Item)

«Block», «GaExecHost»
Conveyor

{resMult = 4, schedPolicy = FIFO,
throughput = $th, respT = $rt, utilization= $u}

inT outTin_outM

t3: Turntable

c2: Conveyor

t2: Turntable

c3: Conveyor

:Item

:Item
:Item :Item

:Item

:Item
:Item:Item

:Item :Item

Activity Diagram
T Process Operation

«CallAction»

T0: turn

i:Item

Activity Diagram
Item Processing

«GaStep»
{hostDemand = (const, 2, sec)}

transfering

i:Item
Activity Diagram

C Process Operation

i:Item
«CallAction»

C0: transfer i:Item
«CallAction»

M1: process…

«GaScenario» {throughput = $th, respT = $rt, utilization= $u}

«GaStep»
{hostDemand = (const, 2, sec)}

processing

i:Item
Activity Diagram

M Process Operation

«CallAction»

T2: turn

i:Item

i:Item
«CallAction»

T3: transfer… i:Item
«CallAction»

C3: transfer

i:Item

«Block», «GaResourcePlatform»
IAF Plant

{resMult = 1, schedPolicy = FIFO,
throughput = $th, respT = $rt, utilization= $u}

outA

Internal Block Diagram IBD
Area 2

inAInternal Block Diagram IBD
Area 3

a)

b) c)

d)

t0

t1

t2

t3

c0

c1

c2

c3

m1

area1

generate(): Item «GaWorkloadEvent»
{pattern=open(arrivalRate=(exp,0.01,sec)), 
generator=Item_Processing}

inA outA

area2
area3

Fig. 11.11 Excerpt of the SysML design model of the IAF plant through block definition diagrams
(a, d), Activity diagrams (b), Internal block diagrams (c)

moved to Area2 or to conveyor C3 where the whole is supposed to restart from the
beginning at turntable T0. This processing scenario is realized on top of the IAF
Plant layout shown in the IBD in Fig. 11.11c.

We now proceed with the description of how MARTE is used to analyze the given
design model with respect to the requirements model.
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11.4.2.2 Profiling SysML Models with MARTE

In MARTE, a system is a platform where resources provide services that can be
acquired and released. In this respect, both, the whole IAF plant and its areas
are identified as platforms (GaResourcePlatform). The structural constraint
imposed by the FR requirement in Fig. 11.10 suggests to consider also the Area
block as a logical sub-collection of resources as depicted in Fig. 11.9. MARTE
allows the distinction of different kinds of resources depending on specific purposes,
i.e., processing, storage, and communication. In particular, in performance modeling
a GaExecHost can be any resource that executes behavior. Therefore we applied
this stereotype to SysML blocks modeling the resources of the IAF transportation
line, i.e., Turntable, Conveyor, and Machine, which host and provide
turn(), tranfer(), and process() operations as services to accomplish the
production of items depicted in Fig. 11.11d.

The aforementioned stereotypes come with predefined properties which act as
placeholders (1) to store input parameters required to generate analysis models from
SysML ones and (2) to store output results generated by the chosen analysis tools.

In order to enable the validation of the NFR requirement imposing a timing
constraint on the item production process, we require the model-driven generation
of a queuing network model representing the Area 1 of the IAF transportation
line. MARTE explicitly supports performance analysis with its Generic Quanti-
tative Analysis Model (GQAM) and Performance Analysis Model (PAM) sub-
profiles (Object Management Group (OMG), 2016c). The performance model
parameters can be partitioned in the following main categories: (1) the operational
profile, (2) the workload, (3) the resource demands.

The operational profile is a collection of data that stochastically represent the
usage that agents make of a system in a certain environment. A typical parameter
is the probability to invoke a certain service. In this example, we consider a
unique system-level service (i.e., item processing) then we omit this parameter (i.e.,
probability equal to one).

The workload represents the intensity of system services requests from agents. It
is annotated by the GaWorkloadEvent applied on the generate() operation
on the Area block that collect all the resources involved in the production process.
Items enter Area1 from turntable T0 and leave it from turntables T2 and T3,
therefore we considered an open workload of items with a mean inter-arrival time
of 10 s (expressed as a Poisson distribution random variable).7

Finally, resource multiplicities (resMult) and demands are annotated on
GaExecHosts block and operations’ Actions in terms of execution times
obtained, as for arrival pattern specification, random variables obtained from
exponential (exp) and constant (const) probability distributions.

7A closed pattern would be considered in a system-level production process involving all the
resources of three areas. In that case a similar annotation would be applied on the IAF Plant block.
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The output of the analysis may also be stored in properties of MARTE. Common
performance indices are throughput, response time, utilization but the possible
performance indices and the granularity of the results depend on the capability
of the chosen analysis tool.8 Indices can be calculated both at system-level or
for single resources. We refer the reader to Sect. 11.4.2.3 for their description
in context of the given case study. In Fig. 11.11 we store the output results
that refer to a particular behavioral modeling element, e.g., the Item Processing
activity (GaScenario, throughput, respT, utilization properties), or
to a particular structural one (GaResourcePlatform, throughput, respT,
utilization properties). In MARTE, variables, shown as $-prefixed Strings in
Fig. 11.11, can be used as placeholder to be replaced with actual results.

It is worth noting that the annotation of SysML models should be considered
as an integral part of model-driven methodology for early validation of systems
adopting SysML as the main modeling notation. In this respect, MARTE does not
prescribe the adoption of any annotation strategy or model-driven methodology. The
interested reader is kindly referred to Cortellessa et al. (2011) for a general overview
on model-driven performance engineering and analysis methodologies.

11.4.2.3 Modeling in PMIF

An excerpt of the IAF Plant modeled in PMIF is illustrated in Fig. 11.12. Such
as AML, PMIF is primarily devised as an exchange standard for interoperability
among queuing network (QN) solvers. Moreover, as discussed for AML, PMIF
does not provide a standard concrete notation. Therefore we provide here an ad-hoc
notation for the sake of explanation aided by a graph-oriented diagram. The legend
on the right side of the diagrammatic representation relates this notation with PMIF
concepts.

The so-called queuing network topology (i.e., the graph of servers and arcs) of
the IAF Plant QN model includes a distinct server for each turntable (Tx), conveyor
(Cx), and machine (Mx), connected through arcs. A source node is connected to the
turntable T0 and two sink nodes can be reached from turntable T2 and T3, where
the item processed by the plant can leave the QN, i.e., the Area1 of the IAF Plant
to enter Area2. The produced items that circulate among servers are referred as
customer or job in the QN jargon. Jobs are generated and injected in the QN via T1
by a workload generator.

The arrival process of item jobs is determined by a probability distribution that
generate the inter-arrival times between consecutive arrivals. In this example, we
considered a Poisson arrival process of items always (then probability set to 1) to
T0. We then assume mutually independent arrivals of items every 100 s, on average
(obtained from the reciprocal of arrival parameter 0.01, a.k.a. lambda parameter).

8For an example, the reader can consolidate the manual of the JMT queuing network solver (Casale
and Serazzi, 2011).
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T0

C0

M1

C2

T3C3

T1 T2C1

Sink_Area2

Sink_Area2

= single queued server

= source

= sink

= arc

= open workload

= job

= Time service request

srv: T2
serviceDistr: exp
service Params: 0.1
Time Units: sec
Transit To: C2, Sink_Area2
Transit Probs: 0.5, 0.5

Time SR

Legend
schedPolicy= FIFO

srv: C2
serviceDistr: const
service Params: 2
Time Units: sec
Transit To: T3
Transit Probs: 1

Time SR
srv: T3
serviceDistr: exp
service Params: 0.1
Time Units: sec
Transit To: C3, Sink_Area2
Transit Probs: 0.5, 0.5

Time SR

item
arrivalDistr: exp
arrival Params: 0.01
time Units: sec
Transit To: Source Item
Transit Probs: 1

Source_Item

Fig. 11.12 Excerpt of IAF Plant modeled in PMIF

The generated item jobs can potentially visit all the servers reachable by the QN
topology. However, the possible paths of such jobs are determined by a collection of
service requests (SR) that Item jobs require to the visited server. A subset of these
SRs required by Items to T2, C2, and T3 servers (srv) are shown at the bottom
of Fig. 11.12. They are expressed in term of service time (Time SR) during which
the server is seized to process the current job before releasing to the next. Again,
the service time is modeled as a stochastic variable governed by an exponential
probability distribution whose average value is obtained as a reciprocal of the
lambda parameter (e.g., 10 s for T3). It is worth noting how the transitTo and
transitProb attributes of T2 and T3 SRs contains two ordered values, one for
each arc outgoing the server. The next server is then determined by pairing the value
of these attributes.

The resulting QN model can be directly modeled in PMIF using the xQNM
tool presented in Troya and Vallecillo (2014) or in JMT (Casale and Serazzi,
2011). Figure 11.13 shows some simulation results generated by JMT and anno-
tated back on the IAF Plant SysML model by replacing the MARTE variables
previously assigned to properties of MARTE stereotypes (cf. the $-prefixed terms
in Fig. 11.11).
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«GaScenario»
throughput = ( (0.017, 0.126, 0.235, 0.345, 0.455, 0.562, 0.674, 0.750) , job/sec, mean)
respT = ( (10.110, 13.442, 16.937, 20.909, 25.779, 33.183, 56.251, 1.024E4) , sec, mean)

Activity Diagram
IItteemm  PPrroocceessssiinngg

«GaStep»
{hostDemand = (exp, 0.017, sec)
utilization = ((0.022, 0.169, 0.310, 

0.462,0.610,0.745,0.902,0.966), real)}
processing

i:ItemActivity Diagram
MM  PPrroocceessss OOppeerraattiioonn

Fig. 11.13 Analysis results and their annotation on IAF Plant SysML model with stereotypes and
properties of the MARTE profile

We calculated the system response time and system throughput9 for the item
processing scenario depicted in the activity of Fig. 11.11d. We conducted an early
what-if analysis by increasing the arrival rate on items from 1 item per minute up to
1 item per second to test production capacity of that area.

Area1 can manage up to 40 item arrivals per minute (0:674 item/s) with
an average response time (i.e., the time required to execute the activity Item
Processing) of 56 s per item. This processing time for items does not violate

9The QN model represents only Area1’s process and resources, therefore it corresponds to the
system under analysis.
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the maximum processing time of 60 s allowed for the item production process (cf.
the NFR in Fig. 11.10).

However, the given response time is an average response time and the utilization
of Area1’s resources rapidly grows to the critical 0:9 threshold (i.e., the resource
is busy for the 90% of its time) as shown for machine M1. Therefore the production
capacity of Area1 is currently limited to 40 items per minute and any increment
in the production rate (e.g., to 45 item per minute, 0:750 item/s) would cause the
violation of the given requirement due to the increasing queue of items waiting for
M1 processing.

Thanks to these early analysis results, the modeler/analyst can then decide (1) to
keep or reduce the current production rate of Area1, (2) to increase the processing
power of the multi-purpose machine M1, or (3) to decrease the arrival rate of items,
and then the production rate of Area1.

11.4.2.4 Modeling in AML

An excerpt of the IAF Plant modeled in AML is shown in Fig. 11.14. It is worth not-
ing that AML does not provide a standard concrete notation (such as SysML does).
Therefore we provide here an ad-hoc notation for the sake of explanation in terms

= external interface (ExtInt)

= internal link (IL)IE = internal element (IE)

= role requirement (RR)

= supported role (SRC)IH = instance hierarchy (IH)

IC = interface class (IC)

= base class

= nesting

= PPR, MARTE, and PMIF semantics layers

IE

T0

IE

IE

IE

IE

IE

IE

IE

IE

C0

C1

C2

C3

T1
T2

T3

M1

IE
IE IEArea1

Area2 Area3IH
IAF Plant

PPR Connector IC

IE

IE

IE

Resource

(from AML library)

(from PMIF library)

RC

RCServer

(from AML library)

Transfer

Turn

Turn

Process

(from AML library)

(from PMIF library)
RC

RC Service Request

IE
Item

Product

(from AML library)

(from PMIF library)

RC

RC Open Workload

IE

(from MARTE library)

(from MARTE library)

RC GaStep

(from MARTE library)

RC GaScenario

Legend

Item Processing

RCGaExecHost

Fig. 11.14 Excerpt of IAF Plant modeled in AML
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of a graph-oriented diagram. The legend below the diagrammatic representation of
IAF Plant explains this notation with AML concepts.

Following the requirements in Fig. 11.10, also the AML representation of the
IAF Plant’s transportation line is divided in three areas (Area1, Area2, and
Area3), each composed of turntables, conveyors, and machines. The root node
is the IAF Plant instance hierarchy (IH). Its nested structure includes three
internal elements (IE), one for each area that logically divide the transportation
line. Then, the detailed architecture of Area1 is shown as a graph of IEs (Lüder
et al., 2013). Turntables (Tx IEs) and conveyors (Cx IEs) are nodes alternating
each other in closed paths. An additional node for a machine M1 is linked to the
C1 IE. Each IE has a predefined set of interaction points modeled as external
interfaces (ExtI) connected via internal links (IL). According to Schleipen and
Drath (2009), such IEs can be classified in (1) products, (2) processes, and (3)
resources (PPR) (Schleipen and Drath, 2009).

Resources are entities involved in the production that process and handle
products. Depending on the reference engineering discipline, software, mechanical,
and electronic elements can all be referred as resources collaborating to product
handling.

Products are the produced goods processed by the IAF plant through its
resources. The IAF plant is supposed to produce a generic item that is moved by
turntables and conveyors towards multi-purpose machines.

Processes consist of processing steps realized by the IAF plant resources. The
IAF plant provides a production process for items determining their movements
among resources.

Products, processes, and resources are all modeled as IEs as done for turntable
T3, the processing step Turn realized by T3, and the product Item.

The instance hierarchy with its internal elements, external interfaces, and internal
links is semantic-agnostic, i.e., there is no distinction between nodes and arcs
building such a graph-like structure. For this purpose, AML provides the role class
libraries (RClib) and role classes (RC) concepts for nodes and interface class
library and interface classes for external interfaces. In particular, AML provides
several standard role class library (RClib) and interface class library libraries
(IClib). The AML RClib defines Product, Process and Resource RC.
We then build a PPR semantics layer in the IAF Plant IH structure by assigning
Product, Process, and Resource role classes to the correspondingIEs of the
IAF Plant instance hierarchy via role requirement relationships (RR) as shown
in Fig. 11.14 for Item, Item Processing, and C0, respectively.

For the sake of the envisioned integration with SysML/MARTE and PMIF, we
further enrich the AML model with two additional semantics layers. We created two
new role class libraries, PMIF RClib and SysML/MARTE RClib that define the
corresponding language-specific concepts by role classes of the same name.

The PMIF RClib introduces in AML role classes like Server, Service
Request, and Open Workload role classes. A PMIF semantics layer is
then realized on top of the same IAF Plant IH by assigning these role



288 L. Berardinelli et al.

classes to resources (e.g., C0), processing steps (e.g., Turn), and products (e.g.,
Open Worload) to facilitate the integration with PMIF as further discussed in
Sect. 11.4.3.2.

The SysML/MARTE RClib supports the modeling of a AML semantics layer
for these two OMG standards. We assigned the AML RC counterparts of MARTE
stereotypes (GaExecHost, GaScenario, and GaScenario) to plant resources
and processes to facilitate the integration of AML with SysML models annotated
with MARTE, as discussed in Sect. 11.4.3.2.

11.4.3 CPPS Engineering Chain Automation

The proposed engineering chain automation approach aims at bridging system
design with early validation of system performance. As we discussed for the
used modeling languages in the engineering chain, all of them are supported by
metamodels which define the languages explicitly and also define the possible
structures and content of the models. This allows model transformations to be
formulated on the metamodel level which ensures their executability for any valid
instance. However, to realize a valid transformation with a specific purpose, also the
models have to be rich enough and systematically built by following modeling rules
to be transformed to the target language.

Figure 11.15 gives a graphical overview on the engineering chain automation.
In particular, we use a transformation chain to transform SysML models to AML
ones with a first transformation and AML models into PMIF ones with a second
transformation. In both cases, the integration of the languages is carried over in two
consecutive steps:

1. Modeling rules to be applied on models;
2. Model transformation rules specification and execution.

The first step suitably extends the source model (SysML in SysML=AML,
AML in AML=PMIF) with information required by the second step, i.e., model
transformations, to obtain a complete and useful target model.

11.4.3.1 Integrating SysML and AML

We presented for the first time the SysML/AML integration in Berardinelli et al.
(2016). Consequently, we give here only an overview of the previously presented
approach.

Modeling Rules for SysML The first step of the SysML/AML integration is
realized through the UML profiling mechanism which allows to add further
information to the SysML models needed for the production of AML models. An
excerpt of the AML4SysML profile is shown in Fig. 11.15a. The AML4SysML
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Fig. 11.15 SysML, AML, and PMIF transformation chain (c) involving the AML4SysML profile
(a) and semantics layers (b)

profile maps AML concepts to structural concepts from SysML such as Block,
Port, and Connector, i.e., it addresses the structural modeling of CPPS in
SysML. As a consequence, the selection of SysML diagram types are restricted
to structural ones, i.e., BDDs and IBDs.

A choice behind the design of the AML4SysML profile is the coupling of our
AML4SysML profile with the SysML profile so that the application of the former
always requires the import of the latter. Consequently, any AML model annotated
with the AML4SysML profile is always managed as a SysML model. For example,
the stereotypes for IH and IE AML concepts are specialization of the SysML block
stereotype (cf. Fig. 11.15a).

SysML to AML Model Transformations For automating the transition from
SysML to AML, we employ model transformations. As we use profiles in addition
to metamodels in our integration chain, it is necessary to use transformation
technologies, which are able to work with profiles and their applications on models
such as it is possible in QVT.

Figure 11.16 provides an excerpt of the transformations needed for our setting. In
particular, it is showing a graphical visualization of a QVT transformation excerpt
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Fig. 11.16 Excerpt of the SySML-to-AML transformation in QVT

realizing one of the mappings between SysML and AML language concepts, namely
the mapping between the SysML Block concept, which is realized by instantiating
the metaclass Class of the UML metamodel (as it is the base for the Block
concept in SysML) and the IE metaclass from the AML metamodel. The left hand
side of the transformation matches UML Classes annotated with three stereotypes
from three different profiles, i.e., Block (from SysML), IE (from AML4SysML),
and GaExecHost (from MARTE).

The corresponding modeling pattern on AML models is depicted on the right
hand side of the transformation: an internal element with three distinct assigned
roles (via role requirement and supported role class relationships), i.e., Resource
(from the standard AML library), Server (from the PMIF library), GaExecHost
(from the SysML/MARTE library).

For realizing this mapping, QVT provides the possibility to define a relation,
which is matched by QVT engines executed in the forward transformation mode
on the input model elements (in our case, the SysML model elements) to produce
the output model elements and to calculate their feature values (in our case, the
AML model elements). Similar relations are possible to develop for all the mappings
reported in Berardinelli et al. (2016) to obtain an executable specification of the
proposed mappings.

11.4.3.2 Integrating AML and PMIF

In Berardinelli et al. (2016), we proposed a model-driven performance engineering
approach for CPPS through the combination of AML with PMIF discussing
three possible integration strategies based on the native AML integration mech-
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anism (IEC, 2014). The one which applies for our given engineering chain
automation is via model transformation which we summarize in the following.

Modeling Rules for AML Figure 11.15b depicts the modeling rules applied on
AML models to close the semantics gap with the target model, i.e., PMIF. The goal
promoted by the proposed modeling rules is creating a domain-specific semantics
layer for PMIF in AML. A semantic layer is a collection RCs that is applied on a
semantics-agnostic graph represented by an IH (e.g., Area1 in Fig. 11.14). These
RCs are suitably collected in AML RClibs and applied on purpose via RR and SRC
relationships.

The PMIF semantics layer includes a PMIFRoleClassLib RClib. In particular, a
new RC is created for each metaclass of the PMIF metamodel and inherits the name
from the corresponding metaclass.

The domain-specific semantics layering for PMIF is realized by assigning the
PMIF-specific RCs to IEs. In order to apply such a new PMIF domain-specific
semantics layer, RR and SRC relationships10 are required that connect IEs to RCs,
as shown in Fig. 11.15b.

For this purpose we add the new PMIF domain-specific layer on top of the PPR
concepts, in accordance with the following three modeling rules:

Resource! Server: A resource RC is an entity involved in production and
executes processes and handle products (Schleipen and Drath, 2009). Similarly,
a Server represents a component of the execution environment that provides
some processing service (Smith and Williams, 1999).

Product!Workload: A product RC depicts a produced good, processed by
resources (e.g., material handling, creation of intermediate products) (Schleipen
and Drath, 2009). In this respect, a Workload represents a collection of jobs,
i.e., characterizes a product type, that make similar ServiceReqs to Servers
(i.e., resources).

Process! ServiceRequests: A process RC represents a production process
including sub-processes, process parameters and the process chain, modifies
products and produces final products out of different sub-products (Schleipen
and Drath, 2009). Similarly, a ServiceReq associates the Workload (i.e.,
product types) with a Server (i.e., resources) (Smith et al., 2010). Therefore, an
ordered set of ServiceReqs (Smith et al., 2010) builds up a process (Schleipen
and Drath, 2009).

AML to PMIF Model Transformation For this transformation, we do not require
the usage of profiles as for the SysML to AML transformation, but we have to
make use of the AML libraries as well as their applications on the input models.
Figure 11.17 shows an excerpt of a model transformation from AML to PMIF
implemented with QVT relations exploiting the PPR, PMIF, and SysML-MARTE
semantics layers.

10RRs assign RCs of a mandatory primary semantics layer, while additional ones can be assigned
via SRC.
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name=„GaExecHost“
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r2:Role

name=„Server“

supportedRoleClass
(from AML library)

(from PMIF library)

(from SysML-MARTE Library)

Fig. 11.17 Excerpt of the AML-to-PMIF transformation in QVT

In particular, it shows a relation that generates a PMIF Server from an AML
IE playing the role of PMIF Server as modeled by the SRC relationships from
such IE to RCs of the PMIF RClib. Similar relations can be implemented to
transform AML IEs, ExtIs, and IL into PMIF Servers and Arcs as has been
done in Berardinelli et al. (2016).

It is worth noting that the left hand side of the QVT transformation in Fig. 11.16
corresponds to the right hand side of the QVT transformation in Fig. 11.17. Once
combined, these two QVT transformations realize the end-to-end integration among
SysML and PMIF adopting AML as an intermediate model, as depicted Fig. 11.15c.

11.4.4 Synopsis

The engineering chain shown in our case study relies on language-specific mecha-
nisms, i.e., (1) the profiling mechanism for OMG standard languages like UML and
SysML, and (2) the specification of RClib libraries in AML.

Both mechanisms create a set of additional information (referred as semantics
layer for AML) attached to source model elements (e.g., a SysML block or an
AML IE) via ad-hoc relationships (e.g., RRs and SRC). These layers are then
accessed by model transformation to generate new target models. The extent of
mappings between source and target modeling languages like SysML and AML,
then depends on (1) the completeness of profiles and RClibs, and, of course, (2)
on the requirements of the adopted model-driven methodology.

In Berardinelli et al. (2016), we already evaluated the current status of the
AML4SysML profile that currently maps a subset of AML concept to SysML model
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elements.11 In this chapter, we introduced for the first time a role class library
for SysML and MARTE. Currently it includes the small subset of the MARTE
stereotypes used in the proposed case study and its extension is left as future work.

Furthermore, we presented a model-driven performance methodology based
on the combination of SysML, AML, and PMIF. In particular, PMIF does not
provide extension mechanisms and does not allow the modeling of requirements
as available is SysML. For this reason, we deliberately ignore the mappings of
SysML requirements to AML and then their translation to PMIF. However, the
AML native extension mechanisms based on role classes can be also used to map
SysML requirements in AML as additional internal elements and relationships to an
extended version of the SysML/MARTE role class library.

Finally, we can state that for the engineers, the knowledge on a subset of SysML
and MARTE is powerful enough to perform early design and validation of systems
such as the IAF plant which also has to meet certain performance indicators. In
future work, we will investigate how general the proposed solution is in the context
of CPPS.

11.4.5 Critical Discussion

In this section we proposed an engineering chain or a technical process (cf. Chap. 2)
for the architectural design and performance analysis of CPPS, leveraging model-
driven methodologies, modeling languages and tools from the authors’ background.

An appropriate selection of methodologies, languages and tools strictly depends
on the chosen views on the CPPS under study. In the proposed example we focused
on three main tasks, i.e., requirement specification, system design and performance
analysis, adopting two main models and modeling languages, namely SysML
for requirement and architectural specification tasks and PMIF for performance
analysis. Model transformation are then required to support the information flow
(see Chap. 2) between system models and analysis models.

Of course, the proposed technical process is limited in terms of the supported
tasks, we deliberately choose a general purpose modeling language such as SysML,
and two free, open, XML-based data exchange file formats, namely AML and PMIF.
We see the following two advantages of our design rationale:

Openness for other modeling concerns: The proposed technical process remain
open to additional process tasks e.g., by extending the CPPS SysML-based
design by UML profiles that increase the informative content of the information
flow among the planned steps.

Openness for other target tools: Additional target models and tools may be
attached to the current information flow through the adopted data exchange

11An up-to-date AML/SysML concepts mapping table is available at http://www.sysml4industry.
org/?page_id=299

http://www.sysml4industry.org/?page_id=299 
http://www.sysml4industry.org/?page_id=299 
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formats, i.e., AML and PMIF. For example, WEASEL12 is Web service that
allows the user to send a PMIF-based QN model to the server, remotely execute
model transformations to tool-specific file formats, and receive back performance
indices calculated on different solvers. In addition, also other tools building on
AML may be used in the technical process such as for deriving implementation
artefacts, e.g., OPC UA specifications (Schleipen et al., 2015), which may be
employed in later engineering phases.

Of course, the implementation of a model-driven, customized technical pro-
cess poses both methodological and technical challenges. On the one hand, new
views can be added to support additional methodologies with native language
extension mechanisms such as UML profiling (e.g., combination of performance
with reliability and availability analyses (Berardinelli et al., 2009) or variability
modeling (Weilkiens, 2011)). On the other hand, new technical challenges may arise
requiring the implementation of additional, possibly bi-directional transformations
among new source/target models which is a challenge on its own (France and
Rumpe, 2007).

11.5 Conclusion and Future Challenges

In this book chapter, we have outlined how systems engineering processes can
be supported by novel model-driven engineering techniques to realize MDSE. In
particular, we have shown (1) how virtual prototypes are produced by using SysML,
(2) how this information may be exchanged on basis of AML to provide vertical as
well as horizontal engineering tool integration in the context of the V-Model, and
(3) how virtual prototypes are validated based on formal analysis methods such as
queuing networks. All of this is facilitated by a set of machine-readable models and
well defined model transformations between them.

The reference model we presented in this book chapter may be further exploited
by new language combinations as well as extended for other scenarios. In particular,
we see research required to classify existing MDSE approaches with respect to
the tasks which are automated. In addition, empirical user studies are required to
evaluate how well MDE approaches are received by practitioners. Furthermore, the
following research lines are of major interest to further develop the area of MDSE.

Requirements modeling and their validation and verification. It starts already
by the requirements specification as different properties may be expected from
the system. As we focussed in this book chapter on non-functional properties
such as performance attributes of the system, also functional properties such as
temporal properties ensuring safety requirements may be needed as well. In previous
work, we have provided a method to construct property languages which allow

12WEASEL Web Service http://sealabtools.di.univaq.it/tools.php

http://sealabtools.di.univaq.it/tools.php
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to formulate temporal properties of interest within the domain-specific language
and to use existing model checkers to verify them (Meyers et al., 2014). Utilizing
this approach for systems engineering is an interesting future research line, e.g., to
generate a property language for SysML which would require to handle parametrics
diagrams as well during the modeling checking process.

Synthesis of discipline-specific models. Another research line is the investi-
gation of transferring system design models established in the early phases to
discipline-specific models (Kernschmidt et al., 2013). Here a dedicated step to refine
the early systems designs into discipline-specific solutions is necessary, first of all
to clarify which elements are realized with mechanical, electrical, and software
components. SysML4Mechatronics (Kernschmidt and Vogel-Heuser, 2013) seems
a very promising candidate to perform this refinement step. Subsequently, dedicated
transformations are needed to derive different models for the specific disciplines
starting from mCAD over eCAD to software models. Providing full traceability
from the systems engineering models to the domain-specific models is a major
requirement to deal with evolution concerns as well as with verification and
validation concerns.

Model-driven design-space exploration. One major benefit of systems engi-
neering is to explore the design-space before one design is chosen to be realized.
For performing design-space exploration efficient search techniques are needed
as exhaustive search, i.e., enumerating each possible design solution, is for most
cases not feasible due to the combinatorial explosion. A very recent emerging
model transformation approach is search-based model transformation (Fleck et al.,
2016) which combines the power of model transformations to systematically
manipulate models and the highly-scalable search capabilities of meta-heuristic
search algorithms. In particular, by formulating objectives for the design models
(also including multi-objectives) in terms of fitness functions, the search algorithms
are guiding the transformation rule applications to find good design models.

Model-driven product lines. In this book chapter we considered the creation
of models from scratch except the availability of a model library providing already
existing building blocks which have to be combined. An alternative approach is to
build a family of systems which allows to derive different concrete realizations. This
approach is often referred to as product-line engineering. A product-line provides
a description of the commonalities as well as differences of the concrete system
realizations covered by the product-line. The design process is then reduced to
configuring a concrete realization, e.g., by using a feature model to select certain
features and using model completion to derive a valid realization in cases where
only a partial selection is performed. The combination of product-line engineering
and SysML has been already discussed in the literature (Papakonstantinou and
Sierla, 2013; Maga and Jazdi, 2010) and different efforts are ongoing to further
support product-line engineering with SysML especially in multi-disciplinary set-
tings (Vogel-Heuser et al., 2015).

Model profiling. We consider this research field as the natural continuation
and unification of different already existing techniques with respect to the usage
of models in the context of MDE. Model profiling continues the research lines
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of (1) process mining (Leemans and van der Aalst, 2015), (2) specification
mining (Dallmeier et al., 2012), (3) FSA learning (Giles et al., 1992), (4) data
profiling (Abedjan et al., 2015), (5) program profiling (Graham et al., 1982), and (6)
data mining as well as (7) data analytics (Fayyad et al., 1996). All these techniques
aim at better understanding the concrete data and events used in or by a system and
by focusing on particular aspects of it. Therefore, we consider model profiling as a
very promising field to bridge the gap between the design time and runtime phases
in the current state-of-the-art in MDE. In particular, the automated information
upstream from operations to the design is highly needed to improve the design of a
system continuously with additional knowledge from operations.
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Chapter 12
Semantic Web Technologies for Data Integration
in Multi-Disciplinary Engineering

Marta Sabou, Fajar J. Ekaputra, and Stefan Biffl

Abstract A key requirement in supporting the work of engineers involved in
the design of Cyber-Physical Production Systems (CPPS) is offering tools that
can deal with engineering data produced across the various involved engineering
disciplines. Such data is created by different discipline-specific tools and is repre-
sented in tool-specific data models. Therefore, due to this data heterogeneity, it is
challenging to coordinate activities that require project-level data access. Semantic
Web technologies (SWTs) provide solutions for integrating and making sense of
heterogeneous data sets and as such are a good solution candidate for solving data
integration challenges in multi-disciplinary engineering (MDE) processes specific
for the engineering of cyber-physical as well as traditional production systems. In
this chapter, we investigate how SWTs can support multi-disciplinary engineering
processes in CPPS. Based on CPPS engineering use cases, we discuss typical
needs for intelligent data integration and access, and show how these needs can be
addressed by SWTs and tools. For this, we draw on our own experiences in building
Semantic Web solutions in engineering environments.

Keywords Multi-disciplinary engineering • Data integration • Semantic Web •
Linked data • Ontology-based information integration

12.1 Introduction

The Industrie 4.0 initiative considers added-value processes that rely on strong data
integration across various stakeholders, engineering disciplines, and engineering
and operation phases; examples are the use cases and application examples in
VDI/VDE (2014) and Industrie 4.0 WG (2013). The shorter lifecycles and higher
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variation of products require better integration (a) between the life cycles of
products and the associated production systems and (b) between the engineering
and operation phases of these production systems. These issues have been discussed
in detail during the introduction to multi-disciplinary engineering (MDE) for CPPS
in Chap. 1. The more complex design-time and run-time variation points in the
design of products and CPPS considerably enlarge the state space of these systems
compared to traditional products and production systems. Therefore, MDE for CPPS
has stronger data integration needs compared to the MDE of traditional, more or less
fixed, production systems.

Semantic Web technologies (SWTs) are a family of knowledge-based approaches
suitable to deal with the data heterogeneity aspects of CPPS and to enable
advanced capabilities of such systems that inherently rely on data integration (e.g.,
handling disturbances, adapting to new business requirements). Unlike traditional
knowledge-based approaches (Legat et al. 2013), SWTs aim to address data
heterogeneity in Web-scale settings thus tackling challenges in terms of data size,
heterogeneity, and level of distribution (Berners-Lee et al. 2001). SWTs enable a
wide range of advanced applications (Shadbolt et al. 2006) and they have been
successfully employed in various areas, ranging from pharmacology (Gray et al.
2014) to cultural heritage (Hyvönen 2012) and e-business (Hepp 2008).

In this chapter, we investigate Semantic Web-based data integration as an
approach to cater for addressing heterogeneity needs in MDE scenarios specific to
CPPS. For that, we draw on several years of experience in using SWTs for creating
flexible automation systems with industry partners as part of the Christian Doppler
Laboratory “Software Engineering Integration for Flexible Automation Systems”
(CDL-Flex)1.

Concretely, we aim to address two of the over-arching research questions that are
core to this book and were specified in Chap. 1. First, we engage in “the analysis
of typical requirements for the integration of engineering project data coming from
heterogeneous data sources” (RQ I2.a). For this, we identify in Sect. 12.2 concrete
needs for semantic integration in CPPS settings and validate those needs with eight
use cases and application examples introduced in VDI/VDE (2014) and Industrie
4.0 WG (2013).

Second, with respect to RQ I1 from Chap. 1, we introduce SWTs as examples
of methods and technologies that support the integration on information within and
across value chains of products, production systems, and production technologies,
with a particular focus on horizontal data integration across MDE teams during the
engineering of CPPS. To that end, we introduce in Sect. 12.3 the basics of SWTs
with a special focus on their use for data integration and explain how core SWT
capabilities address the industry needs detailed in Sect. 12.2. In Sect. 12.4, we sketch
the current uptake of SWTs in representative approaches for CPPS engineering.
Finally, we provide an example use case where SWTs were used to support data
integration during the multi-disciplinary engineering phase of a production system,
namely a hydro power plant (Sects. 12.5 and 12.6). We conclude in Sect. 12.7.

1CDL-Flex: http://cdl.ifs.tuwien.ac.at/

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://cdl.ifs.tuwien.ac.at
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In this book, several chapters relate to the topics discussed in this chap-
ter. Chapter 4 on Product Lifecycle Management Systems discusses data and
information management issues arising from the advanced use of Model-Based
Systems Engineering (MBSE) methods, which need to deal with data interfaces
to several systems engineering disciplines. Section 4.2.2 on Model Representation
summarizes standards for multi-disciplinary product engineering, such as STEP,
product manufacturing information, JT, and SysML. Section 4.2.3 on Information
management and integration discusses the role of semantic technologies as a neutral
or intermediate layer between different areas of the development process and as
foundation for data analytics to integrate product design data, production process
data, and quality measurements.

Chapter 9 on Engineering Software Tool Chains discusses engineering data
formats for the exchange of data between mechanical design, electrical design,
and software design. Chapter 10 on the problem of standardized information
exchange within production system engineering presents requirements for informa-
tion exchange technologies for multi-disciplinary engineering settings. Chapter 15
on setting up a Multi-Disciplinary Knowledge Base for Deterministic Product
Ramp-Up Processes reports on the application of Semantic Web technologies for
mapping descriptions of device-independent production processes to descriptions of
device-dependent production system capabilities as foundation for deciding on the
feasibility to run a specified production process in a given production context. Chap-
ter 16 on Model Quality Assurance for Multi-Disciplinary Engineering presents a
change review process for multi-disciplinary models, which can also be applied to
engineering models expressed with Semantic Web technologies.

12.2 Industry Needs for Semantic Web Technologies

Semantic integration is a foundation for engineering tool support across disciplines,
based on isolated engineering tools and their data models. Biffl et al. (2016) have
considered the research question on needs for semantic support in multi-disciplinary
production system engineering.

In the following, we summarize four usage scenarios that illustrate important
needs for semantic data integration, which pose challenges to the domain experts in
their daily work. Then we describe these needs for semantic data integration. A more
detailed description of these usage scenarios and needs can be found in Biffl et al.
(2016). We validate the needs for semantic data integration with eight use cases and
application examples introduced in VDI/VDE (2014) and Industrie 4.0 WG (2013).

Scenario 1, called Discipline-Crossing Engineering Tool Networks, focuses on
the correct and consistent propagation of engineering data in a MDE context
between engineering activities, engineers, and tools. A semantic challenge is the
heterogeneous modeling of the discipline-specific views on the same objects (e.g.,
plant sensors, drives, and controllers). Currently, these common concepts, which
appear in different forms in several disciplines, are not explicitly represented in

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_10
http://dx.doi.org/10.1007/978-3-319-56345-9_15
http://dx.doi.org/10.1007/978-3-319-56345-9_16
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discipline-specific and isolated tools, which makes data analysis across disciplines
more difficult and dependent on the interpretation by human experts. Adequate
modeling and integration of engineering knowledge would provide the foundation
for better production systems quality and for better engineering tool networks. For
this scenario, the needs N1 to N4 and N6 (see Table 12.1) for engineering knowledge
modeling and integration capabilities are relevant.

Scenario 2, called Use of existing Artifacts for Plant Engineering, concerns
the reuse and protection of knowledge represented in the “digital shadows” of
components in technical systems during engineering. Key issues concern the
description of the reuse requirements for production systems and the capabilities
of reusable devices and components for the effective and efficient identification
and preparation of reusable production system components. A mapping method
for the evaluation of component models to decide about the potential usability
of the component within a production system requires well-defined semantics for
production system components in the production system hierarchy to improve
the quality and efficiency of production systems engineering. For this scenario,
the needs N1 to N6 (see Table 12.1) for engineering knowledge modeling and
integration capabilities are relevant.

Scenario 3, called Flexible Production System Organization, concerns the Indus-
trie 4.0 value chain processes “Commissioning” and “Use for production”, in
particular the run-time flexibility of production systems during the operation phase.
The dynamic integration or change of components within the production system
at run time requires well-defined semantics for describing the capabilities, access
paths, and control-related features of these components. In addition, the CPPS
needs the capability to reason about the information provided by the component
and to integrate the component at run time into the target production processes.
This capability requires the integration of advanced knowledge about the production
system and the product within the production system control system at production
system run time. For this scenario, the needs N1 to N3, N5, and N6 (see Table 12.1)
for engineering knowledge modeling and integration capabilities are relevant.

Scenario 4, called Maintenance and Replacement Engineering, focuses on the
“Maintenance and decomposition planning” and “Maintenance” phases of the
Industrie 4.0 value chains. Automation support for the assessment of the impact
of changes to selected plant components or devices requires strong integration
of the diverse kinds of knowledge coming from several roles in the engineering
process with the maintenance knowledge during production system operation.
Maintenance and repair strategies require the combination of engineering and
run-time information of a production system to achieve improved maintenance
capabilities of production system components. Such scenarios require a common
semantics of engineering and run-time information related to system components
and devices. General behavior models of components are required, which exploit
engineering information and specific system knowledge, and can be combined
with run-time information coming from the production system. For this scenario,
all needs N1 to N7 (see Table 12.1) for engineering knowledge modeling and
integration capabilities are relevant.
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The four scenarios assume strong integration of knowledge coming from several
roles in the engineering and maintenance process based on the well-defined
semantics for a set of shared common concepts allowing to combine engineering
views, such as the production plant topology, mechanical construction geometry
and kinematics, electrical communication and wiring, behavior information on
processes and production resources, and PLC control code.

From these four scenarios, Biffl et al. (2016) derived the following seven needs
(Nx) for semantic engineering knowledge modeling and integration capabilities.

N1—Explicit Engineering Knowledge Representation The expressiveness of the
modeling approaches currently in use is not sufficient for the expression of
knowledge needed to automate engineering processes for CPPS engineering. A key
requirement of all scenarios is well-defined semantics of engineering and operation
knowledge coming from several disciplines and tools for explicit knowledge
representation and design.

N2—Engineering Data Integration In MDE, the heterogeneous data models in
typical engineering tools use different terms and data formats for similar concepts,
which makes the parallel engineering of CPPS more difficult, costly, and risky.
A key requirement of all scenarios is the semantic integration of heterogeneous
engineering and operation knowledge coming from several disciplines and tools.

N3—Engineering Knowledge Access and Analytics In the MDE of CPPS, domain
experts in engineering and operation need to access and analyze the integrated data
model based on the capabilities to provide formally represented and integrated engi-
neering. A requirement of all scenarios are effective and efficient mechanisms for
querying engineering model versions and for defining and evaluating engineering
model constraints and rules across MDE views.

N4—Efficient Access to Semi-structured Data in the Organization and on the Web
MDE domain experts use many data sources, while engineering process automation
mostly uses structured data that follow a metamodel. A requirement of most
scenarios is efficient automated access to semi-structured data, such as technical
fact sheets that include natural language text, or linked data, such as component
information from a provider or in the organization to automate support for reuse
processes.

N5—Flexible and Intelligent Engineering Applications (for the Automation of Engi-
neering) Intelligent engineering applications, such as defect detection and con-
straint checking, can be designed based on the capability of knowledge access and
analytics on an integrated production system plant model. A requirement of some
scenarios are flexible engineering applications that are driven by the description of
the production system and therefore can adapt to changes in a CPPS both at design
time and at run time.

N6—Support for Multi-Disciplinary Engineering Process Knowledge In MDE, a
goal is to increase the quality and efficiency of the MDE process by representing
engineering process responsibilities and process states linked to the production
system plant model. A requirement of all scenarios are an extension of the
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description of the CPPS with model versions and knowledge on process attributes
for analysis and improvement, such as tentative changes.

N7—Provisioning of Integrated Engineering Knowledge at System Run Time In a
CPPS context, domain experts and CPPS mechanisms need engineering knowledge
at run time to assess in a situation, which needs changing the system, the set of
options for a successful change. A requirement of some scenarios is timely access
to integrated engineering knowledge at system run time to support applications that
depend on reacting to real-time processes.

Table 12.1 provides an overview rating to what extent the eight Industrie 4.0
use cases and application examples on CPPS engineering from VDI/VDE (2014)
and Industrie 4.0 WG (2013) require the needs for semantic engineering knowledge
modeling and integration capabilities, N1 to N7. In the following, we will discuss
for each use case and application example the rationale for the ratings given in Table
12.1.

V1. VDI Use Case 1 Optimization of batch processes in a mid-sized company
(VDI/VDE 2014). The core goal of this use case is to improve the optimization
of the adaptation of batch process recipes for the production in a specific industrial
plant by using external computation power.

The solution approach builds on expertise from the disciplines of production
process engineering and simulation as well as software service engineering to enable
the description of recipes and plants as input to a simulation service that allows
adapting the recipe to the needs of a local production engineer.

In this use case, explicit engineering knowledge representation (N1) and engi-
neering data integration (N2) on the production process and on the plant character-
istics are strongly relevant to enable engineering knowledge access and analytics
(N3) for the optimization of the production process settings. In the description of
the use case, the need for efficient access to semi-structured data in the organization
and on the Web (N4) is not explicitly stated but probably useful, e.g., to interpret
data from technical fact sheets coming from technology providers. The envisioned
system is a flexible and intelligent engineering application (N5), which provides
integrated engineering knowledge at production-system run time (N7).

V2. VDI Use Case 2 Plug-and-produce in modular industrial plants (VDI/VDE
2014). Core goal of this use case is to reduce the engineering effort needed
during the operation phase to exchange a processing module against a functionally
equivalent new module by using external computing and simulation power.

The solution approach builds on expertise from the disciplines of CPPS engi-
neering, including the coordination of modules, module control, and visualization
to enable the description of requirements for and capabilities of modules as input
to automatically linking the module interfaces to the interfaces of the production
system and adapting the control, communication, and visualization as needed.

In this use case, the needs N1 to N5 and N7 are strongly relevant to support
the formal description and model analysis of a module to enable automating
engineering processes during the operation phase that currently depend strongly on
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human engineering and configuration activities. For describing the tentative use of
processing modules in a solution option, N6 is relevant for the extension of the plant
structure with engineering process elements.

V3. VDI Use Case 3 Self-correction of a discrete manufacturing process
(VDI/VDE 2014). Core goal of this use case is to reduce the downtime of production
by enhancing a machine for punching and bending with measurement technology
for the self-correction of tool parameters to counter changes in the production
environment.

The solution approach builds on expertise from the disciplines of the process
engineer, the tool vendor, and the CPPS engineer to define system goals for
the process, such as minimal process duration or minimal energy consumption,
to describe how changes in tool parameters may have an impact on achieving
these system goals, and to design a distributed system to collect the data for the
optimization from heterogeneous sources.

In this use case, the needs N1 to N7 are strongly relevant to enable the description
of system goals, the means to achieve these system goals, the mechanism for
reasoning on tentative solution options, including access to external data sources
and services for the optimization.

I1. Industrie 4.0 WG Example Application 1 Energy consumption by a vehicle
body assembly line (Industrie 4.0 WG 2013). Core goal in this example application
is to reduce the energy consumed by a vehicle body assembly line while the line
is not in use by envisioning new versions of the involved machines that allow their
systematic control for going into an energy-saving mode.

The solution approach builds on expertise from the disciplines of machine tool
vendors, process engineers, and CPPS engineers to provide advanced machines that
can be systematically powered down during breaks in production for better energy
efficiency while keeping the system ready to restart production.

In this example application, the needs N1 to N3 are strongly relevant to enable
the description of production system goals, machine capabilities and their control,
and a mechanism to optimize and coordinate a set of machines at run time. The
needs N5 and N7 concern the design of an engineering application, which will
provide integrated engineering knowledge at run time as foundation for data-based
optimization at run time based on sensor data.

I2. Industrie 4.0 WG Example Application 2 End-to-end system engineering
across the entire value chain (Industrie 4.0 WG 2013). Core goal in this visionary
example application is to allow manufacturing individual products by adapting the
IT support for systems engineering to enable a global overview from the perspective
of the product that is manufactured.

The solution approach builds on expertise from the disciplines of software tool
vendors and CPPS engineers to evolve the IT landscape from the current state of IT
systems with a variety of interfaces that are hard to change and maintain towards
the vision of end-to-end systems engineering, in which software tools from several
vendors work together seamlessly.
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In this example application, the needs N1 to N3 are strongly relevant to enable the
integrated description of the production system and alignment with the interfaces of
the relevant IT tools used. Some of these IT support systems will be intelligent
engineering applications (N5), which need access to the engineering process
knowledge (N6), probably also to semi-structured data in the organization and on
the Web (N4). To support the complete value chain, the engineering knowledge has
to be provided at run time (N7).

I3. Industrie 4.0 WG Example Application 3 Supporting custom manufacturing:
how an individual customer’s requirements can be met (Industrie 4.0 WG 2013).
Core goal in this example application is to enable a producer for reacting to last-
minute requests for changes prior or during production based on the customer- and
product-specific coordination of MDE with business value chains.

The solution approach builds on expertise from the disciplines of manufacturing
execution system (MES) tool vendors and CPPS engineers to evolve product line
engineering and manufacturing support from a solution tightly coupled with the
production line hardware to a flexible product line that allows mixing and matching
the equipment and production resources from several parts of the product line.

In this example application, the needs N1 to N3 are strongly relevant to enable the
integrated description of the CPPS and the product lines. The flexible MES will be
an intelligent engineering application (N5), which needs access to the engineering
process knowledge (N6), such as changes to the product line, probably also to semi-
structured data in the organization and on the Web (N4). To support the changes
during production, the engineering knowledge has to be provided at run time (N7).

I4. Industrie 4.0 WG Example Application 4 Telepresence for manufacturing
system diagnosis and maintenance (Industrie 4.0 WG 2013). Core goal in this
example application is to make manufacturing system maintenance more effective
and more efficient by introducing a telepresence platform that provides advanced
services to support manufacturing systems in finding appropriate experts for their
diagnosis and maintenance.

The solution approach builds on expertise from the disciplines of service
providers, manufacturing system tool vendors, and CPPS engineers to evolve the
current business process of servicing the machines of one vendor to the coordinated
data-driven servicing of a manufacturing system, probably consisting of machines
coming from several vendors.

In this example application, the needs N1 to N3 are strongly relevant to enable
the integrated description of the manufacturing system, a CPPS, and the servicing
functionality for machines coming from several vendors. The telepresence platform
will include intelligent engineering applications (N5), which probably will need
access to semi-structured data in the organization and on the Web (N4). To support
changes to the manufacturing system during production, the engineering knowledge
has to be provided at run time (N7).

I5. Industrie 4.0 WG Example Application 5 Sudden change of supplier during
production due to a crisis beyond the manufacturer’s control (Industrie 4.0 WG
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2013). Core goal of this example application is to improve the fallback planning of
a sudden change of supplier during production by using external simulation power.

The solution approach builds on expertise from the disciplines of production
process engineering and simulation as well as software service engineering to enable
the description of production processes and related value chain process steps as
input to a simulation service, which allows adapting the production process and
logistics to the needs of a production engineer facing the sudden change of supplier
during production.

In this example application, explicit engineering knowledge representation (N1)
and engineering data integration (N2) on the production process and on related value
chain process steps are strongly relevant to enable engineering knowledge access
and analytics (N3) for the simulation of the change impacts. In the description of
the example application, the need for efficient access to semi-structured data in the
organization and on the Web (N4) is not explicitly stated but probably very useful,
e.g., to interpret data from technical process descriptions. The envisioned simulation
system is a flexible and intelligent engineering application (N5), which provides
integrated engineering knowledge at production-system run time (N7).

In summary, Table 12.1 indicates that the use cases and application examples in
the Industrie 4.0 research roadmaps (VDI/VDE 2014) and (Industrie 4.0 Working
Group 2013) show significant relevance of the needs identified in Biffl et al. (2016).
All use cases and application examples strongly require N1 to N3, N5, and N7. Some
use cases and application examples strongly require N4 and N6. In the next section
we investigate to what extent Semantic Web technologies provide capabilities that
can address the needs identified in this section. To that end, we introduce the basics
of these technologies first and then discuss how their core capabilities address the
various needs N1–N7.

12.3 Semantic Web Technologies: Key Concepts
and Capabilities

The core motivation behind Semantic Web technologies is to improve information
access on the Web. For example, the large size and diversity of Web data are key
challenges for finding complex information with high precision by using simply
keyword-based search mechanisms. SWTs aim to augment the traditional Web
consisting of textual Web pages, with a semantic layer (Berners-Lee et al. 2001).
This semantic layer contains a description of the Web data in a format that is easier
to read and interpret for computer programs than textual information. As a result,
this semantic layer has the potential to enable advanced information access tasks on
the Web. For example, complex semantic search algorithms can be realized which
handle queries that are more complex and lead to more precise results than keyword-
based search on textual data.
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In this section, we introduce the key elements of SWTs (Sect. 12.3.1) and
focus on explaining the technological aspects of data integration with SWTs (Sect.
12.3.2). We conclude this chapter by enumerating a set of SWT capabilities relevant
for addressing the CPPS engineering specific needs for engineering knowledge
modeling and integration derived in Sect. 12.2 (Sect. 12.3.3).

12.3.1 Key Elements of Semantic Web Technologies

Semantic Web and Linked Data technologies aim (1) to enrich data with semantic
information in a format that machines can process, (2) to publish it using Web
based languages, and (3) to provide advanced data analytics capabilities that rely
on reasoning capabilities (Shadbolt et al. 2006). As such, these technologies are
highly suitable for large-scale data integration and analysis of heterogeneous and
distributed datasets. Such distributed and heterogeneous datasets are often used for
storing data resulting from production systems engineering processes. This section
provides an overview of the core elements of Semantic Web technologies.

Expressing and EncodingMeaning with Ontologies A core element of SWTs are
ontologies (Gruber 1993), formal domain models describing concepts in a domain
and their relationships using logics based formalisms so that computer programs can
process and reason with these descriptions. For example, a mechanical engineering
ontology, such as depicted in Fig. 12.1, could describe concepts such as Conveyer
or Turntable. Data items (e.g., a specific belt conveyor referred to as Conv1) are
then described in terms of ontology concepts (e.g., by associating Conv1to the
concept BeltConveyor by means of the instanceOf relation).

Fig. 12.1 Example ontology in the mechanical domain
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Fig. 12.2 Example RDF Triples (a) and their integration in an RDF Graph (b)

Use of Global Identifiers Since the goal of SWTs is to make data public on
the Web, ontology elements as well as each data element to be described in the
Semantic Web are assigned a unique web URL, for example, http://data.example.
eu/dataset/Conv1, for the data element Conv1 or http://data.example.eu/ontology/
BeltConveyor for the BeltConveyor concept of the ontology. The structure of the
URLs usually indicates the name of the dataset (in this case example) as well as
the type of the entity, which can be either part of the abstract data model (i.e., the
ontology) or of the dataset.

Semantic Web Knowledge Representation Languages To represent Semantic
Web specific data, a set of languages have been developed, most notably RDF2 (Re-
source Description Format), RDF(S)3 (RDF Schema) and OWL4 (Web Ontology
Language). OWL builds on RDF(S) but allows expressing more complex semantics
than RDF(S). While relational databases rely on a relational (i.e., table like) data
model, Semantic Web specific languages adopt a triple (or graph based) model
with data being represented as triples. For example, to declare that Conv1 is a
BeltConveyor, a triple is created stating that < Conv1; isA;BeltConveyor >.
Figure 12.2 illustrates triples that refer to the Conv1 resource (part A) and show
how these are combined into an equivalent graph based structure (part B).

Formality and Reasoning All Semantic Web specific languages are based on
formal logics and possess an associated semantics that enables performing reasoning
activities. For example, OWL is based on Description Logics (Baader et al. 2003)
and has a model-theoretic semantics. This enables the following reasoning tasks:
subsumption checking (e.g., to deduce super- or sub-class relations between ontol-
ogy classes based on their definitions); consistency checking (i.e., to detect logical

2RDF: https://www.w3.org/RDF/
3RDF(S): https://www.w3.org/TR/rdf-schema/
4OWL: https://www.w3.org/TR/owl2-overview/

http://data.example.eu/dataset/Conv1
http://data.example.eu/dataset/Conv1
http://data.example.eu/ontology/BeltConveyor
http://data.example.eu/ontology/BeltConveyor
http://www.w3.org/RDF
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl2-overview
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contradictions within an ontology); or instance classification (i.e., identifying the
most appropriate ontology class for a specific instance).

For a more in-depth presentation of SWTs, we refer the interested reader to
(Sabou 2016).

12.3.2 Data Integration with Semantic Web Technologies

Semantic Web technologies are well suited to support large-scale data integration
scenarios (Wache et al. 2001; Noy 2004). Ontologies can be used to provide
a semantic bridge for information integration. Concretely, ontologies are often
developed with the goal to support data integration (Noy 2004). For example,
developers of several applications can agree on a general ontology and then extend
this ontology with concepts and properties specific to their own applications. Since
individual applications share a common semantic ground, this enables easily finding
correspondences between them and therefore integrating their data. A set of high
level ontologies such as SUMO (Niles and Pease 2001) and DOLCE (Gangemi et al.
2003) have been developed specifically for supporting data integration scenarios.

Wache et al. (2001) identify three typical approaches of ontology-based data
integration. First, in the single ontology approach, one global ontology is used as a
reference model for specifying the semantics of various data sources that need to be
integrated. This approach is best suited when the integrated datasets are semantically
close and it is feasible to define a shared vocabulary for their integration. Second,
if the semantic gap between the various datasets is too broad to grant the creation
of a single over-arching ontology, a multiple ontology approach can be followed. In
this case, each source will be semantically described by its own local ontology and
then mappings will be declared between these local ontologies. Finally, the hybrid
ontology approach combines the previous two approaches: local ontologies are
defined for each data source and then integrated through a shared, global ontology.
In this case, mappings are established between the local and global ontologies.

The ability to define links and transformations between ontologies is a key
enabler for data integration. Ontology matching techniques (Euzenat and Shvaiko
2013) are examples of such mechanisms for defining correspondences and links
between ontologies. Indeed, when combining data sources that are described
according to different ontologies, a set of mappings can be defined between ontology
elements (Kovalenko et al. 2013). An ontology mapping specifies how elements of
two ontologies relate, for example, that conceptWeight in a mechanical engineering
ontology has the same meaning as concept Mass in an electric engineering
ontology. Through such mappings, joint terminologies can be established between
diverse disciplines both for (1) improving the communication of experts but also (2)
thanks to the formal nature of ontologies, for automatically integrating engineering
discipline-specific tool data. Furthermore, thanks to their explicit nature (i.e., being
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declared as opposed to hard-coded), ontology models and mappings can be reused
from one project to another.

Additionally to ontology matching, Linked Data technologies support data
integration at Web-scale. To that end, they rely on a stack of technical standards
for publishing, querying, and annotating ontological information on the Web e.g.,
RDF(S), OWL, SPARQL (SPARQL Query Language for RDF)5. Since with Linked
Data technologies datasets are made available online through Web based standards,
links can be explicitly specified and recorded between the elements of these datasets
(similarly to hyperlinks in HTML). Most often, an owl W sameAs link is created
between URLs from different datasets that represent the same real-life entity. These
links enable computer programs to understand that two syntactically different terms
refer to the same entity, thus again facilitating data integration. Due to the formal
semantics of the mapping constructs, reasoning mechanisms can exploit these cross-
model links to discover new knowledge that is only implicitly represented. For
example, if the mo W Device concept of the example ontology is declared equivalent
to the Component concept of another ontology, by virtue of reasoning, it can
be deduced that any subconcept of mo W Device (e.g., mo W Turntable;mo W
Conveyer) is also a subconcept of Component. This ability to reason about cross-
dataset links enables data integration applications.

12.3.3 Semantic Web Capabilities

Taking into consideration the technology details described in Sect. 12.3.1, in (Sabou
2016) we introduced a set of SWT capabilities that are important for addressing the
aspects of heterogeneity in CPPS engineering (Sabou 2016). To that end, we took
the set of ontology-specific technology features identified by Oberle (2014) as a
starting point for defining these capabilities and revised those from the perspective
of the engineers’ needs. Therefore, they are not always purely technical capabilities
but rather useful functionalities that can support the various needs of engineering
scenarios introduced in Sect. 12.2. We now discuss these Semantic Web capabilities
and how they support typical industry needs (from Sect. 12.1). An overview of our
analysis is depicted in Table 12.2.

C1—Formal and Flexible Semantic Modelling Semantic (or conceptual) mod-
elling is achieved with ontologies, which facilitate capturing a universe of discourse
with their modelling primitives (classes, properties, and instances). Ontology
models are represented by means of formal, logics-based knowledge representation
languages that assign unambiguous meaning to modelling constructs. By formally
explaining the meaning of data, ontologies make data easier to understand to a wider
range of users, both humans and machines.

5SPARQL: https://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query
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C1 addresses the need for explicit knowledge representation (N1) and therefore
it is marked with “CC” in Table 12.2. Semantic models (1) enable reasoning
and querying functionalities which provide access to and analytics on engineering
knowledge (N3) and (2) facilitate data integration (N2) because meaningful relations
between datasets can be clearly specified. Data integration can also be achieved
with semi-structured data (e.g., technical fact-sheets including natural language)
both within the organization and on the Web (N4) by specifying links to this
data. Semantic engineering models support the creation of intelligent engineering
applications (N5) and are a pre-requisite for addressing the need of providing
integrated engineering knowledge at system run time (N7). Semantic modelling
technique can help explicitly represent engineering process knowledge, such as
engineering process responsibilities and process states (N6).

C2—Intelligent, Web-Scale Knowledge Integration This capability refers to
the possibility of using SWTs to tackle data heterogeneity by automatically and
flexibly solving complex data integration problems on a large scale. Examples from
other domains include advanced applications that integrate many millions of data
elements in pharmacology (Groth et al. 2014) or media publishing (Kobilarov et al.
2009). C2 further enhances the knowledge representation capabilities of SWTs as
it allows specifying links between models (N1). C2 enables engineering data inte-
gration (N2) and knowledge access and analytics on this integrated data (N3) which
are often used as a key ingredient of flexible and intelligent engineering applications
(N5). Linked data facilitates access to semi-structured data in the organization and
on the Web by providing mechanisms to interlink these resources (N4). Finally,
C2 provides support for multi-disciplinary engineering process knowledge which
is distributed and must be integrated for a meaningful insight onto project-wide
processes (N6).

C3—Browsing and Exploration of Distributed Data Sets Linked Data tech-
nologies enable user-friendly browsing and exploration of distributed data sets
(Hausenblas et al. 2014). In the context of engineering applications, this capability
can be used to browse and explore both engineering models internal to an orga-
nization and external data sources, such as Web resources coming from third-party
providers. C3 is a core requirement for efficient access to semi-structured data in the
organization and on the Web (N4) and for engineering knowledge access through
browsing, exploration and navigation. Browsing capabilities are important features
of flexible and intelligent engineering applications (N5). By supporting sense-
making and following links across engineering disciplines, capability C3 supports
the increased productivity of multi-disciplinary engineering processes (N6). Finally,
navigational data access interfaces can provide access to integrated engineering
knowledge during the production-system run time (N7).

C4—Quality Assurance of Knowledge with Reasoning Given the mission-
critical character of engineering projects, inconsistencies, defects and faults among
diverse engineering models should be discovered as early as possible. Therefore, the
quality assurance of engineering knowledge with advanced checks is highly rele-
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vant. SWTs address this requirement by formally representing (C1) and interlinking
(C2) engineering knowledge and then automating a variety of quality assurance
tasks through reasoning mechanisms. Semantic Web reasoning facilities can be used
for supporting a wide range of tasks, but the ability to ensure quality (e.g., through
consistency checks) is particularly important for the engineering domain.

Capability C4 allows detecting defects, faults and inconsistencies and as such
it increases the productivity of multi-disciplinary engineering process (N6) while
ensuring that high-quality engineering knowledge is provided at production-system
run time (N7), often as part of intelligent engineering applications that both
act intelligently (i.e., deduce new information from existing information through
reasoning) and reliably with respect to quality assurance (N5).

C5—Knowledge Reuse One implication of the declarative nature of ontologies
is that knowledge represented in ontologies can be easily reused among different
application use cases. This reusability of knowledge is one of the fundamental
concepts underlying SWTs (Simperl 2009), (Arp et al. 2015).

Knowledge reuse activities are often integral part of semantic modelling pro-
cesses by reusing existing models (N1) and of data integration by reusing already
specified mappings between semantic models (N2) thus increasing the productivity
of multi-disciplinary engineering processes by avoiding creating this knowledge
from scratch (N6). C5 strongly supports the need for engineering knowledge access
and analytics (N3). Lastly, the provision of integrated engineering knowledge at
production system run time can leverage on knowledge reuse (N7).

12.4 Adoption of Semantic Web Technologies
in Multi-Disciplinary Engineering Settings

In previous work Sabou and Biffl (2016) and Sabou et al. (2016), we have found that
SWTs were successfully used to support various aspects of production system’s engi-
neering, including requirements management (Feldmann et al. 2014), engineering
artifact design optimization (Tudorache and Alani 2016), consistency management
across diverse engineering models (Tudorache and Alani 2016; Steyskal and Wim-
mer 2016; Feldmann et al. 2016), creation of control system setup to enable product
ramp-up (Willmann and Kastner 2016), simulation design and integration (Novák
and Šindelár 2016) and project management (Grünwald et al. 2014). These diverse
use cases from the various life cycle stages of production systems are enabled at a
technical level by the following three individual tasks: model consistency checking,
flexible comparison and model integration. We discuss these tasks in what follows.

Model consistency management is the task of detecting defects and inconsisten-
cies in engineering models from individual disciplines as well as across inter-related
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models from diverse engineering disciplines. This task is particularly relevant in
multi-disciplinary engineering projects to avoid that defects in artifacts of individual
disciplines are propagated to related artifacts in other disciplines. For example, a
sensor type specified in the physical topology model (mechanical engineering) must
match the information in the corresponding electrical plan (electrical engineering)
and the value range for control variables (software engineering). Defects may
also arise from inconsistencies between disciplines without being defects in any
of the single discipline views. Because these interdisciplinary relations are not
represented in a machine-understandable way, they cannot be checked and managed
easily with standard tool support. For example, Steyskal and Wimmer (2016)
focus on consistency management among different, overlapping views (or models)
of the same complex systems. The proposed technical solution relies on RDF
to encode different system views in a uniform manner (making use of the C1
capability) and the emerging Shapes Constraint Language (SHACL)6 to define
the inter-viewpoint dependencies. By relying on Reasoning SWT capabilities (C4),
these dependencies can be automatically checked during modeling time to uncover
potential inconsistencies between the various models.

Flexible comparison refers to performing comparison among descriptions of
engineering objects. In engineering settings, such comparisons are often performed
between engineering objects that should be replaced or interchanged, e.g., a
comparison between the capabilities of an engineering unit to be replaced (e.g.,
a device) and a new unit. For example, Feldmann et al. (2016) focus on ensuring
compatibility between mechatronic modules that need to be replaced in a given
system configuration. This use case requires means for (1) identifying modules
compatible with a module that needs to be replaced and (2) identifying and resolving
conflicts in a given system configuration as a follow up of a module change. For this,
the authors propose using an ontology for representing compatibility information
and encoding and checking compatibility through SPARQL queries (thus relying
on capabilities C1 and C4). Similarly, flexible comparison enables recommending a
control system setup for efficient product ramp-up processes (Willmann and Kastner
2016). This task requires assembling a production plan for the target production
system by modifying and adjusting the production system of the source system in
a way that it flexibly reuses artifacts (e.g., devices, configurations, raw materials)
from the target site.

Model integration aims to bridge semantic gaps in engineering environments
between engineering models. These models are often created by diverse engineering
disciplines who use different terminologies that need to be semantically aligned.
For example, a shared concern in the various works described above which aim
to solve model consistency checking (Tudorache and Alani 2016; Steyskal and
Wimmer 2016; Feldmann et al. 2016) is that solving data integration is a prerequisite
for reaching their goal. Most authors chose an ontology-based data integration
approach in line with Wache et al.’s hybrid ontology model (2001). Concretely, an

6SHACL: https://www.w3.org/TR/shacl/

http://www.w3.org/TR/shacl
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ontology is built that captures the common concepts among engineering disciplines
and plays the role of a semantic bridge to integrate data described in terms
of discipline-specific local ontologies (C1, C2). For example, in their work to
detect inconsistencies between different engineering models of the same system,
Feldmann et al. (2016) observe that the engineering models created to describe
the same system overlap to some extent. The overlaps between models should be
kept consistent by defining which parts correspond to each other as a basis for
compatibility checks. The proposed solution includes (1) defining a base vocabulary
that contains the common concepts used by the various models and (2) using a
common data representation language (namely RDF) to encode the various models
in a uniform way and describe equivalent mappings between their corresponding
elements.

To conclude, we observe that most approaches that use SWTs in various
engineering settings rely on data integration as a pre-requisite for providing more
advanced functionalities (e.g., consistency management). Therefore, in the rest of
this chapter we focus on discussing data integration approaches with SWTs. In
Sect. 12.5 we provide a use case that illustrates data integration needs in multi-
disciplinary engineering settings and then illustrate the concrete SWT solution
developed for this use case in Sect. 12.6.

12.5 Use Case: Engineering Data Integration
in a Multi-Disciplinary Engineering Setting

To exemplify the use of SWTs for data integration, we consider a use case related
to the development of a hydro power plant. Although a hydro power plant is
not a CPPS itself, its development process provides a good example for a multi-
disciplinary engineering setting which also characterizes CPPS. Engineers from
different engineering disciplines work on their own part of the system but rely on
data exchange to coordinate their work with other engineering teams. In particular,
in our use case, engineers exchange data about signal information. Signals are one of
the core information artifacts in the course of developing power plants and consist
of structured key value pairs representing communication links between different
power plant components. Depending on their size, hydro power plants manage
40,000–80,000 signals. Signal information is typically exported from the discipline-
specific tools in machine-readable formats, such as Comma Separated Values (CSV)
or eXtensible Markup Language (XML).

There is a strong need for data integration to alleviate the effects of the
heterogeneity of terms used for the same concept across engineering disciplines and
tools. For example, information about a CPU can be stored as part of the composite
programmable logic controller (PLC) address in EPLAN7 (electrical engineering

7EPLAN: http://www.eplan.at/

http://www.eplan.at
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tool) data or as property LK_BSE in OPM (Object Process Methodology, typically
used in mechanical engineering) data. Such heterogeneous representations of the
same engineering artifact within diverse engineering models raise the need for prop-
agating changes across data from different engineering disciplines and for detecting
potential defects across engineering models. In this particular example, changes
to the CPU at the mechanical level (e.g., replacement with a new version) must
be communicated with the electrical engineers to update their models accordingly.
At the same time inconsistencies in representing CPU data in diverse engineering
models must be identified. However, a pre-requisite of change and inconsistency
management is the meaningful integration of engineering data originating from
different disciplines.

In our use case, there are three different data sources that need to be integrated
for purposes of change and inconsistency management:

• Mechanical Engineering Data (OPM). The OPM tool is used in mechanical
engineering to develop the plant topology and its components. OPM exports data
as CSV files representing the design of the overall structure of the mechanical
components. The exported file can also contain information about software
components.

• Electrical Engineering Data (EPL). Electrical engineers use the EPLAN tool to
develop the electrical component of the power plants. EPLAN also provides
a CSV file export containing information about the electrical setup and its
link to the mechanical components. It also contains specific information about
electrical components, which may or may not be useful to stakeholders from
other engineering domains.

• Project Management Data (PMD). Additionally, in many use cases it is important
to consider project management data such as the engineering project, customer,
and engineering activities, typically available as spreadsheet files.

In Sect. 12.6 we describe the SWT based data integration approach used in this
use case.

12.6 A SWT-Based Solution for Data Integration

Our data integration approach in this use case was based on Wache et al.’s hybrid
ontology model (2001). Concretely, the semantics of each individual data source is
described by its own ontology (called local ontologies) and these local ontologies
are mapped to a common ontology, which acts as a shared vocabulary across the
terminologies of various disciplines. Our generic solution approach is depicted in
Fig. 12.3. We will now discuss the main technical elements to realize this approach.
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Fig. 12.3 Conceptual data integration solution

12.6.1 Ontologies Used for Data Integration

Local ontologies are obtained through an automatic transformation from the input
CSV files to RDF documents. Currently, the resulting ontologies are semantically
lightweight and primarily serve to enable easier data transformation between local
data and common ontology.

The Hydro Power Plant common concept ontology (CCO8) represents the
common information relevant for different engineering disciplines involved in the
use case. As detailed in (Ekaputra et al. 2016), the CCO consists of two major
parts. First, it contains concepts that describe organizational level aspects, including
the Project, the Customer for whom the project is performed, as well as the
Engineers (and Engineering Roles) necessary to realise the project. Engineers
conduct Engineering Activities, which take as input and create as their output
various Engineering Documents (e.g., signal lists, design documents). Engineering

8CCO: http://data.ifs.tuwien.ac.at/engineering/cco

http://data.ifs.tuwien.ac.at/engineering/cco
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documents are versioned and reviewed by the customer, thus constituting an
important exchange medium between the customer, who requested a project, and the
engineering team executing that project. Second, the CCO describes various Engi-
neering Objects created during the engineering project, such as Software Objects,
Mechatronic Objects, and Electrical Objects. Physical Signals and Logical Signals
represent the links between engineering objects created by different engineering
disciplines and how these diverse components can command or exchange data with
each other.

12.6.2 Mappings Across Local and Common Ontologies

Mappings between the common and local ontologies ensure integrated access to
local data through the common ontology. As detailed by Kovalenko and Euzenat
(2016), diverse mapping scenarios arise between engineering data structures such
as local and common ontologies, including: mapping between a property in one
ontology and a (mathematical) combination of properties in other ontologies; or
mappings between structures where different conceptualizations are used (e.g.,
mapping a concept in one ontology to a property in another). Kovalenko and Euzenat
(2016) have distilled seven such transformation scenarios (and their variants) and
showed that, among available technologies, SPARQL Construct, EDOAL9 and
SPIN10 have the expressivity to express all these complex transformations. We chose
SPARQL Construct because it as a W3C standard and many other languages (e.g.,
SPIN, or the upcoming SHACL language) use it as backend implementation. An
excerpt of mappings between local ontologies (i.e., local electrical ontology and
local mechanical ontology) and common concept ontology is shown in Fig. 12.4.
Classes are defined in bold while properties are preceded by “-”.

Kovalenko and Euzenat (2016) identified several types of ontology mappings that
can exist between engineering data models. Figure 12.4 exemplifies a few types of
these mappings, including:

(1) Direct mapping, e.g., Function_Text in the Electrical Ontology has the same
meaning as longText in the Mechanical Ontology,

(2) Structural Granularity arises when different modeling elements need to be
mapped to each other. For example, we mapped PLC_address, a property in
the Electrical Ontology to the concepts of Rack, Channel, and Position in the
CCO, and

(3) Datatype transformations specify some transformations between data values
through mathematical or other custom-defined functions, e.g., transforming the

9EDOAL: https://ns.inria.fr/edoal/1.0/
10SPIN: https://www.w3.org/Submission/spin-overview/

https://ns.inria.fr/edoal/1.0
http://www.w3.org/Submission/spin-overview
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Fig. 12.4 An example mapping of local ontologies to common concepts

Table 12.3 Example data from local mechanical ontology

Mech. entry Project code Rack LK_CAT code LK_DP code Long text

M1 KOM 2 5702 112 6 kV GENERAL
DISTRIBUTION
METERING PT FUSE
TRIPPED

M2 KOM 2 5702 135 6 kV GENERAL
DISTRIBUTION
COUPLING CB OPENED

value of the Rack class in the CCO, which uses a certain encoding standard, to
a value using another coding standard for the property Rack in the Mechanical
Ontology.

As an example of data transformation based on this mapping, we show sample
data from both local mechanical and electrical ontologies in Tables 12.3 and
12.4 respectively. From the electrical data and the mapping, we can derive the
information about contained Rack, Channel, and Position. The longText property
of PhysicalSignal can also be derived using a split string function in the Function
Text field by the “\n” character.

From the mechanical data we can derive the information about Rack and
longText. Additionally, we can derive the information about Channel and Position
using a user-defined function. The transformation result from these two local
ontologies using the mappings from Fig. 12.4 is shown in Fig. 12.5.
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Table 12.4 Example data from local electrical ontology

Elec. entry Name identification PLC address Function text

E1 D0CKN10GH001C0CKN01-A26:1 050.04.02.4.00 6 kV GENERAL
DISTRIBUTION
METERING PT FUSE
TRIPPED\nKOM.0.BBA00.
ED010.XM01

E2 D0CKN10GH001C0CKN01-A27:8 050.04.02.5.07 6 kV GENERAL
DISTRIBUTION
COUPLING CB
OPENED\nKOM.0.BBA00.
GS104.XB01

Fig. 12.5 Common concept ontology instances from two local ontology instances in Tables 12.3
and 12.4

12.6.3 Implementation Details and Functionality

In the implementation, we derived the process steps for engineering data integration
by adapting the ontology based information integration approach (Wache et al.
2001, Calvanese et al. 2001). We utilize an IDEF-011 style diagram to structure
the proposed approach, in which processes are shown as boxes and resources are
shown as directed arrows (see Fig. 12.6). Input is shown as incoming arrows from
the left hand side of the box, output is drawn as outgoing arrows to the right hand
side of the box, consumable resources and stakeholders are depicted as input arrows
from the bottom of the box and standards are indicated by incoming arrows from
the top of the box used in the reference process.

11IDEF-0: http://www.idef.com/idefo-function_modeling_method/

http://www.idef.com/idefo-function_modeling_method
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Fig. 12.6 An adapted OBII approach for Engineering Data Integration

We now explain each process step and its implementation within our prototype:

1. Local Data Model Definition
This step encapsulates the process of defining local ontologies. These ontolo-

gies represent data coming from local tools (e.g., Eplan CSV data from electrical
engineering). Due to the table-like structure of spreadsheet files exported from
the local tools, we develop lightweight ontologies with only one class for each
tool as this is sufficient to represent the data in this particular use case. Other use
cases might require a richer local ontology for representing local data.

2. Common Data Model & Mapping Definition
This step handles the process of developing a common data model and

its mappings to the local data models. To support this goal, vocabularies and
standards are required to formalize the data model and mappings. More details
about the Common Concept Ontology used as the common data model and the
mapping technology used for our prototype is available in Sects. 12.6.1 and
12.6.2.

3. Local Data Model Extraction, Transformation and Load (ETL)
This step manages the process of extracting and transforming local data from

engineering tools in spreadsheet format into the local ontologies previously
defined in Step 1. In our prototype, the data is cleaned and transformed into these
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local ontologies using the combination of OpenRefine12 tool, CommonCSV13

library and Jena14 API.
4. Data Transformation

This step conducts the data transformation process from local ontologies into
common data model based on the mapping definition. Here, we utilized SPARQL
constructs mentioned in Sect. 12.6.2 to execute this transformation. It has to be
noted that in our prototype we do not consider data propagation, since it is a
complex process and will be addressed separately. In addition to the engineering
data, we also attach metadata information such as timestamp and data source.

5. Data Validation
This process step validates newly transformed data according to validation

rules previously defined by domain experts. The validation rules need to be trans-
formed into a set of rule languages. In our prototype, the rules are represented
as SPARQL queries. In the future, we are considering using Shapes Constraint
Validation Language to replace SPARQL queries for data validation.

6. Data Store and Analysis
The process step deals with storing validated data into a semantic triplestore

(i.e., Apache, Jena TDB). All data is stored within in-memory datasets of Apache
Jena TDB, separated into the three local (Project Management, Mechanical
Engineering, and Electrical Engineering) and one common datasets (Common
Concept). In the earlier version of the prototype, we used in-memory storage
to ease the development process and to allow rapid prototyping. Later on we
switched to transactional TDB storage for robustness and scalability reasons.
Analysis queries then can be performed against both integrated data in the
common and local datasets.

From the resulted integrated data in Common Concept ontology, we can conduct
analysis of the overall production system since we can access both common concept
and the local ontologies. Several sample analyses that can be conducted are:

• Which signals contain different information about the same properties?
• Which signals have been changed in the last commit?
• How many racks have been added in the overall commit from both local

ontologies?

12.7 Summary

This chapter focused on the use of SWTs for data integration in MDE settings spe-
cific for the creation of CPPS. The first part of the chapter (Sect. 12.2) identified a set
of typical industrial scenarios where data integration is needed and then synthesized

12OpenRefine: http://openrefine.org/
13CommonCSV: https://commons.apache.org/proper/commons-csv/
14Jena API: https://jena.apache.org/

http://openrefine.org
https://commons.apache.org/proper/commons-csv
https://jena.apache.org
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needs for semantic integration. Engineers and managers from engineering domains
can use these scenarios to select and adopt appropriate SWT solutions or alternative
solution approaches in their own settings. The rest of the sections introduced SWTs
(Sect. 12.3) and exemplified their use in selected approaches (Sect. 12.4) as well
as in a concrete use case from the area of Hydro power plant development (Sects.
12.5 and 12.6). This material will support engineers and managers from engineering
domains to get a better understanding of the benefits and limitations coming from
using SWTs for data integration.

The overall conclusion is that Semantic Web technologies are well suited to
address a range of various industry needs frequent in use cases and application
examples introduced in (VDI/VDE 2014) and by the Industrie 4.0 WG (2013).
Thanks to this suitability, SWTs have been adopted by various groups to solve
diverse tasks in engineering settings, in particular related to model consistency
management, flexible comparison and model integration. Data integration emerges
therefore as one of the key valuable capabilities of SWTs especially supported by
ontology matching techniques and Linked Data technologies. In the presented multi-
disciplinary engineering use case, data integration enabled performing queries over
data originating from both contributing engineering disciplines. This provides a
basis for project wide data analysis and the identification of cross-disciplinary issues
and anomalies.

Data integration solutions inherently bring up the challenge of how to propagate
changes across the data from the various disciplines and how to manage these
changes. Therefore, in future work we will investigate topics related to change
management and propagation within datasets integrated using hybrid-ontology
based approaches. Other topics of interest include easy integration with legacy
systems and providing methods to more easily build and extract local and global
ontologies.
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Chapter 13
Patterns for Self-Adaptation in Cyber-Physical
Systems

Angelika Musil, Juergen Musil, Danny Weyns, Tomas Bures, Henry Muccini,
and Mohammad Sharaf

Abstract Engineering Cyber-Physical Systems (CPS) is challenging, as these
systems have to handle uncertainty and change during operation. A typical approach
to deal with uncertainty is enhancing the system with self-adaptation capabilities.
However, realizing self-adaptation in CPS, and consequently also in Cyber-Physical
Production Systems (CPPS) as a member of the CPS family, is particularly chal-
lenging due to the specific characteristics of these systems, including the seamless
integration of computational and physical components, the inherent heterogeneity
and large-scale of such systems, and their open-endedness.

In this chapter we survey CPS studies that apply the promising design strategy
of combining different self-adaptation mechanisms across the technology stack of
the system. Based on the survey results, we derive recurring adaptation patterns that
structure and consolidate design knowledge. The patterns offer problem-solution
pairs to engineers for the design of future CPS and CPPS with self-adaptation
capabilities. Finally, the chapter outlines the potential of collective intelligence
systems for CPPS and their engineering based on the survey results.
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13.1 Introduction

Cyber-Physical Production Systems (CPPS) form a distinct sub-category of the
more general family of Cyber-Physical Systems (CPS). Though distinctively
focused on production, CPPS, as a member of the CPS family, share many
common traits with other types of CPS, such as distributed robotics, autonomous
vehicular systems, smart grid, and smart spaces. These common traits include the
strong coupling of physical environment and the computing system via sensors
and actuators, involvement of humans-in-the-loop, the necessity of coping with a
multitude of heterogeneous models (e.g., physical, electrical, mechanical, control),
the need of real-timeness, and strong requirements on dependability.

The close relation to the environment, humans-in-the-loop and the complex
interplay of the heterogeneous models brings a high level of uncertainty as a critical
factor to be taken into account and addressed when designing CPS, and conse-
quently also CPPS. Examples of uncertainty include the unpredictability of human
actions, unexpected emergent behavior of the environment (typically stemming
from unanticipated interactions among constituents of the environment and the CPS
due to the fact that a CPS is an inherent part of the environment it observes and
controls), unexpected or faulty interplay between CPS components, and incomplete
requirements. The presence of uncertainty makes it difficult to design the complete
behavior of a very complex CPPS with guaranteed dependability, as parts of the
knowledge required for such a design may only become available at run time.

A viable software-based solution to the problem of uncertainty lies in equipping
the system with self-adaptation capabilities. Self-adaptation adds introspective
capabilities to the system allowing it to be aware of its internal state and structure,
reason about itself and its goals, identify potential problems in its ability to
dependably achieve its goals, and adapt itself to cope with the identified problems.
Self-adaptation was already introduced in the area of enterprise systems by IBM
in 2003 (Kephart and Chess, 2003). Similar concepts are nowadays regularly
applied also for instance in cloud computing where an application automatically
reconfigures to scale with the current load and to avoid virtual machines that perform
badly due to resource sharing. For a guided tour through the history of the field of
self-adaptation, we refer the interested reader to Weyns (2017).

As outlined in Chap. 1 of this book, the key research question addressing the
modelling of CPPS flexibility and self-adaptation capabilities (RQ C1) discusses
a very relevant topic for CPPS engineers. From the perspective of this research
question, this chapter elaborates concretely on effective architectural approaches
and best practices to combine self-adaptation mechanisms to handle uncertainty
challenges and concerns. Although other chapters of this book also address a CPPS
architecture perspective, we focus on the design of self-adaptation capabilities.

In this chapter, we aim at providing insight on how self-adaptation can be
used in addressing uncertainty in CPPS. Since there is rather a general lack of
knowledge on self-adaptation specifically in CPPS, we take a generalization step
and overview self-adaptation related to the larger family of CPS. Since CPS are
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systems that do not focus on one layer of the technology stack, but their engineering
crosses all layers, self-adaptation mechanisms are also relevant to be considered on
all layers. This claim is supported by the results of a recent systematic literature
review aiming at assessing state-of-the-art approaches to handle self-adaptation in
CPS at an architectural level. The study revealed that, remarkably, 36% of the
investigated studies combine different adaptation mechanisms across the technology
stack to realize adaptation in a CPS (Muccini et al., 2016). Therefore, this chapter
follows this promising architecture design strategy for CPS and focuses explicitly
on combinations of different types of adaptation mechanisms that may span various
layers within a system. We do so by the means of a systematic literature mapping
with the goal to identify recurring adaptation patterns used in addressing uncertainty
by self-adaptation. We further relate these patterns to the specific field of CPPS to
give an insight on how to exploit self-adaptation to CPPS. Finally, we outline the
potential of Collective Intelligence Systems (CIS) for CPPS and their engineering
based on the study results by presenting three emerging research directions.

The remainder of this paper is organized as follows: Sect. 13.2 introduces
background information about uncertainty types, self-adaptation approaches, and
collective intelligence systems. In Sect. 13.3 the research questions and research
methodology we used are presented. Section 13.4 summarizes the method used
to conduct the systematic mapping study. The results of the systematic mapping
study are presented in Sect. 13.5, followed by a summary of threats to its validity
in Sect. 13.6 and a reflection on the results in Sect. 13.7. Section 13.8 describes and
discusses the three identified adaptation patterns in CPS. We further explore the
potential of collective intelligence systems for CPS and CPPS in Sects. 13.9 and
13.10 summarizes related work. Finally, Sect. 13.11 draws conclusions and outlines
future work.

13.2 Background

This section provides a general introduction to uncertainty types in adaptive
systems, different adaptation approaches, its purpose and different methods, as well
as collective intelligence systems as a promising enhancement to CPS and CPPS
architectures.

13.2.1 Uncertainties

When designing CPS the available knowledge is often not adequate to anticipate
all the run time conditions the system will encounter (e.g., missing or inaccurate
knowledge regarding the availability of resources, concrete operating conditions
that the system will face at run time, and the emergence of new requirements while
the system is operating). To that end, Garlan (2010) argues that in today’s software



334 A. Musil et al.

Table 13.1 Uncertainty dimensions (Mahdavi-Hezavehi et al., 2016)

Uncertainty dimension Description Options

Location Refers to the locale, where
uncertainty manifests itself within
the whole system

Environment, model, adaptation
functions, goals, managed
system, resources

Nature Specifies whether the uncertainty
is due to the imperfection of
available knowledge, or is due to
the inherent variability of the
phenomena being described

Epistemic, variability

Level/Spectrum Indicates the position of
uncertainty along the spectrum
between deterministic knowledge
and total ignorance

Statistical uncertainty, scenario
uncertainty

Emerging time Refers to time when the existence
of uncertainty is acknowledged or
uncertainty is appeared during the
life cycle of the system

Run time, design time

Sources Refers to a variety of
circumstances affecting the
adaptation decision, which
eventually deviate system’s
performance from expected
behavior

Variety of options based on the
sources of uncertainty (e.g.,
abstraction, model drift, etc. for
model uncertainty; sensing,
effecting etc. for adaptation
functions)

systems uncertainty should be considered as a first-class concern throughout the
whole system life cycle. In the context of adaptive systems, Ramirez et al. (2012)
provide a taxonomy for uncertainty that describes common sources of uncertainty
and their effect on requirements, design and run time phases of the system.
Esfahani and Malek (2013) present an extensive list of sources of uncertainties
with examples. Moreover, these authors investigate uncertainty characteristics, i.e.,
reducibility versus irreducibility, variability versus lack of knowledge, and spectrum
of uncertainty. Perez-Palacin and Mirandola (2014) present another taxonomy
for uncertainty for adaptive systems based on three dimensions: location, level,
and nature of uncertainty. Mahdavi-Hezavehi et al. (2016) present a classification
framework for uncertainty in adaptive systems, which is based on a systematic
review of the literature. This classification is shown in Table 13.1.

One way to deal with uncertainties is to design systems that adapt themselves
during run time, when the lacking knowledge becomes available. Adaptive systems
are capable of autonomously modifying their run time behavior to deal with
dynamic system context, and changing or new system requirements in order to
provide dependable systems. However, realizing adaptation in CPS is particularly
challenging due to specifics of these systems include the blurring boundaries
between the system and its environment, large scale and inherent complexity, the
role of end-users, multi-level uncertainty, open-endedness, among others (Bures
et al., 2015).
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13.2.2 Adaptation

Adaptive systems are capable of modifying their run time behavior in order
to achieve systems objectives. Unpredictable circumstances such as changes in
the system’s environment, system faults, new requirements, and changes in the
priority of requirements are some of the reasons for triggering adaptation action
in a self-adaptive system. To deal with these uncertainties, an adaptive system
continuously monitors itself, gathers data, and analyzes them to decide if adaption
is required. Different paradigms for realizing adaptation have been developed. We
summarize three paradigms that appeared in the study presented in this paper:
architecture-based adaptation, multi-agent based approaches, and self-organizing
based approaches. Examples of other adaptation approaches, out of scope of this
chapter, are computational reflection and approaches based on principles from
control theory.

13.2.2.1 Architecture-Based Adaptation

Architecture-based adaptation (Oreizy et al., 1998; Garlan et al., 2004; Kramer
and Magee, 2007; Weyns et al., 2012) is one well-recognized approach that deals
with uncertainties at run time. The essential functions of architecture-based self-
adaptation are defined in the MAPE-K (i.e., Monitor, Analyze, Plan, Execute,
and Knowledge component) reference model (Kephart and Chess, 2003). By
complying with the concept of separation of concerns (i.e., separation of domain-
specific concerns from adaptation concerns that deal with uncertainties), the
MAPE-K model has shown to be a suitable approach for designing feedback
loops and developing self-adaptive systems (Weyns et al., 2013a). One well-
known architecture-based self-adaptive framework is Rainbow (Garlan et al.,
2004). Rainbow uses an abstract architectural model to monitor software
system run time specifications, evaluates the model for constraint violations,
and if required, performs global or module-level adaptations. Calinescu et al.
(2011) present a quality of service management framework for self-adaptive
services-based systems, which augments the system architecture with the MAPE-
K loop functionalities. In their framework, the high-level quality of service
requirements are translated into probabilistic temporal logic formulae which
are used to identify and enforce the optimal system configuration while taking
into account the quality dependencies. Moreover, utility theory can be used
(Cheng et al., 2006) to dynamically compute trade-offs (i.e., priority of quality
attributes over one another) between conflicting interests, in order to select
the best adaptation strategy that balances multiple quality requirements in the
self-adaptive system.
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13.2.2.2 Multi-Agent Based Approaches

Multi-agent systems belong to a class of decentralized systems in which each
component (agent) is an autonomous problem solver, typically able to operate
successfully in various dynamic and uncertain environments (Wooldridge, 2001).
These agents interact to solve problems that are beyond their individual capabilities
or knowledge. Multi-agent systems have features that are key to engineering
adaptive systems, specifically loose coupling, context sensitivity, and robustness to
failures and unexpected events (Weyns, 2010; Weyns and Georgeff, 2010). Agents
are self-contained, goal-directed entities. They get their adaptability from goals.
When multiple agents are available, a goal can be achieved by selecting among
the agents at run time, for example using negotiation (Fatima et al., 2006), rather
than requiring a hardwired design. An agent includes a specification of the situation
or context in which it is appropriate or expected to achieve its target goal. A
calling agent can simply post the goals it wishes to achieve and select only those
agents appropriate to the goal and current processing context: the right agent at
the right time in the right circumstances. Similarly, an agent’s internal processes
are typically associated with a context condition describing the situations in which
the process can achieve its specified goal. This means that processes “self select”
according to the desired goal and prevailing situation. Goal-directed multi-agent
systems eliminate most of the complexity needed for handling failures (Minsky and
Murata, 2004). Failures and unexpected events cause the original goal to be reposted
and tried again, without the need for explicit exception handling. The goal-directed
mechanism will automatically try them until success or ultimate failure.

13.2.2.3 Self-Organizing Based Approaches

Self-organization is a dynamic and adaptive process where a system acquires
and maintains structure itself, without external control (De Wolf and Holvoet,
2004). The essence of self-organization is an adaptable behavior that autonomously
acquires and maintains an increased order. Self-organizing systems exhibit the
following essential properties: increase in order (exhibiting useful behavior), auton-
omy (absence of external control), robustness (adaptability in the presence of
perturbations), and dynamicity (dynamics that handle changes). Self-organizing
systems may expose emergent behavior at the global level that dynamically arises
from the interactions between the parts at the local level. The engineering of self-
organizing systems if often inspired by natural phenomena, for example from
biology such as ant behavior and swarms (Di Marzo Serugendo et al., 2006).
The principle idea is to exploit the robustness and flexibility of these natural
systems as a metaphor for engineering computing systems. As an example, field-
based coordination relies on virtual computational fields (e.g., distributed data
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structures), mimicking gravitational and electromagnetic fields, as the basic mech-
anisms with which to coordinate activities among open and dynamic groups of
application components. This enables components to spontaneously interact with
each other via the mediation of fields to self-organize their activity patterns in
an adaptive way (Mamei et al., 2006; Weyns et al., 2008). In a recent paper,
Bures et al. (2013) propose a component-based approach that exploits princi-
ples of self-organization. In this approach, autonomic components dynamically
form so called ensembles that share data to organize themselves on the fly.
The authors present the DEECo component model, a concrete realization of the
approach.

13.2.3 Collective Intelligence Systems

In the last decades, a form of user-contribution-driven web platforms has intensively
influenced the way of today’s knowledge creation and sharing processes. Today,
this kind of software systems is very popular and widespread in use in our
daily lives. Well-known examples of such CIS include Facebook,1 Wikipedia,2

YouTube,3 and Yelp.4 CIS are socio-technical multi-agent systems that aim to
harness the collective intelligence of interacting human actors by providing a web-
based environment for sharing, distributing and retrieving topic-specific information
in an efficient way (Musil et al., 2015a). A CIS posses a characteristic system
model that is illustrated by Fig. 13.1. It consists of three layers: (1) a proac-
tive actor base, (2) a passive CI artifact network, and (3) a reactive/adaptive
computational analysis, management and dissemination (AMD) system (Musil
et al., 2015b). Between the layers, the CIS realizes a perpetual feedback loop
connecting the human actor base and the reactive computational coordination
environment and consisting of two essential phases: aggregation and dissemination
(Musil et al., 2015b). In the aggregation phase, the individual actor contributes
explicitly or implicitly new content to so-called CI artifacts by performing defined
local activities. These CI artifacts store the aggregated information in a defined
structure and are part of a passive artifact network. Defined rules of coordination
in the reactive and adaptive AMD system govern the processing and analysis
of the artifact data as well as the extraction of consolidated information. In the
following dissemination phase, the AMD system uses both active and passive

1http://www.facebook.com/ (last visited 01/15/2017).
2http://www.wikipedia.org/ (last visited 01/15/2017).
3http://www.youtube.com/ (last visited 01/15/2017).
4http://www.yelp.com/ (last visited 01/15/2017).

http://www.facebook.com/
http://www.wikipedia.org/
http://www.youtube.com/
http://www.yelp.com/
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Fig. 13.1 Multi-layer CIS model with three main components and the stigmergic process (Musil
et al., 2016a)

dissemination mechanisms to make the actors aware about artifact content changes
and overall actor activities in the system environment as well as stimulate sub-
sequent actor interaction. Thus the resulting bottom-up feedback loop constitutes
a stigmergic process (Heylighen, 2016) enabling indirect, environment-mediated
communication and coordination (Musil et al., 2015b). In addition, the stigmergic
process enables self-organization which realizes adaptation within the CIS environ-
ment.

To support software architects in the design of CIS architectures, Musil
et al. (2015c) proposed the architecture framework for collective intelli-
gence systems (CIS-AF) as one approach that provides guidance for real-
izing new CIS solutions. The CIS-AF is developed as a methodology to
efficiently describe the core elements of a CIS architecture, which are
documented in the Stigmergic Information System (SIS) architecture pattern
(Musil et al., 2015b), without being limited in its technical implementa-
tion.
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13.3 Research Questions

This chapter basically focuses on contributions to answer RQ C1—Modelling of
CPPS flexibility and self-adaptation capabilities specified in Chap. 1 of this book.
Concretely, we aim to consolidate existing design knowledge on self-adaptation
strategies to address uncertainty in CPPS and to identify novel and promising
approaches that need further research. Since there is rather a general lack of
knowledge on self-adaptation specifically in CPPS, we broaden the scope of our
investigation and provide insight on how self-adaptation capabilities of the more
general family of CPS are designed. Thus CPPS engineers can learn from applica-
tion experiences with CPS for dealing with adaptation challenges and concerns in
CPPS.

To address this goal, we identified the following research questions:

RQ1. How is self-adaption applied in cyber-physical systems in general?
We aim to analyze how state-of-the-art approaches make use of self-adaptation
mechanisms and models to handle uncertainty while architecting CPS. In addition,
we focus on self-adaptation applied in CPS in the manufacturing domain.

RQ2. How can this knowledge be applied and exploited to cyber-physical produc-
tion systems and their engineering?
Based on a better understanding of existing developed adaptation strategies to
address challenges and concerns of CPS, we seek to closely examine common
approaches, considerations and advances to identify recurring patterns, models or
tactics. The documentation of such architectural knowledge should support CPPS
engineers with the realization and coordination of self-adaptation. In addition, this
consolidated design knowledge base can provide a strong foundation for designing
self-adaptation capabilities in CPPS engineering that can be further researched and
extended by CPPS researchers.

RQ3. Can principles from collective intelligence systems provide innovation for
adaptive CPPS and CPPS engineering?
CIS are complex adaptive socio-technical systems that apply stigmergic adaptation
with humans-in-the-loop. They represent a well-known approach for adaptation
used in particular, predominantly social, domains. This research question aims to
go beyond the typical application contexts of CIS and to explore CIS capabilities
applied in the environment of CPPS. This contributes to a new perspective on
CPPS with the focus on social interactions and social dynamics as innovative
enhancements.

To answer these research questions we applied an iterative research approach
with three steps. In the first step, we reviewed the state-of-the-art in literature using
a systematic mapping study method and consolidated existing design knowledge
on self-adaptation strategies in CPS. The goal of the first step is to answer RQ1.
In the second step, we synthesized and analyzed the collected knowledge to
derive recurring adaptation patterns that can be applied for engineering CPPS.
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The goal of the second step is to answer RQ2. In the third step, we explored a
new perspective on adaptive CPPS by introducing collective intelligence system
principles with humans, but also machines-in-the-loop. The goal of the third step
is to answer RQ3.

13.4 Systematic Mapping Study Method

In order to get an overview of the current state of primary studies focusing on
self-adaptation approaches in CPS on an architectural level and get insights
into recurring patterns and models, we performed a systematic mapping
study (SMS). To apply this research method in an unbiased, objective and
systematic way, we followed the guidelines by Kitchenham and Charters
(2007). In contrast to a systematic literature review, a SMS is applied to
review a specific software engineering topic area and classifies primary research
papers in that specific domain (Kitchenham et al., 2011). Thus the research
questions for such a study are generally broader defined and more high
level to provide an overview of a certain topic (Kitchenham et al., 2011).
In the following we briefly summarize the performed study process and
activities.5 For detailed information about the study and its results, we refer
the interested reader to the study protocol (Musil et al., 2016c) and the study
website.6

The study started with defining an initial study protocol. Since the protocol
is a critical element of a systematic study, it was piloted by reviewing a sample
of 4 papers. In the following, the study protocol was revised with respect to
the pilot results. Once all reviewers agreed on the protocol, the phase of con-
ducting the SMS started by applying the search strategy and selection criteria,
data extraction form, data analysis methods, and reporting strategy defined in the
protocol.

Figure 13.2 shows the overall systematic mapping study process that we applied
with the number of remaining papers after each phase of the study. The study
was conducted by six researchers. Two reviewers defined the initial protocol. The
retrieving and selecting publications process was performed by two other reviewers.
Four reviewers extracted the data from the selected studies. Finally, they synthesized
and analyzed the data as well as prepared the final study report. These final steps
were crosschecked by the other two reviewers.

5If the reader is familiar with this research method, this section can be skipped.
6Supplementary material of the study is available at: http://qse.ifs.tuwien.ac.at/ci/material/pub/
mde-cpps17/

http://qse.ifs.tuwien.ac.at/ci/material/pub/mde-cpps17/
http://qse.ifs.tuwien.ac.at/ci/material/pub/mde-cpps17/
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Fig. 13.2 Applied systematic mapping study process

13.4.1 Search and Selection Strategy

The initial set of primary studies under investigation is based on the replication
package of the study “Self-Adaptation for Cyber-Physical Systems: A Systematic
Literature Review” by Muccini et al. (2016), where the search and selection strategy
as well as the inclusion/exclusion criteria are defined, that were used for retrieving
the studies. The scope of the systematic literature review includes studies from 2006
to mid 2015. Therefore, the SLR protocol is reused to extend the set of primary
studies by searching and selecting studies that were published since mid 2015 (end
of scope of the SLR) and are relevant for this SMS.

In order to cover as many as possible relevant studies about self-adaptation
approaches applied in CPS on an architectural level, we performed searches in
four of the largest scientific online databases as sources of primary studies: IEEE
Xplore Digital Library, ACM Digital Library, SpringerLink, and ScienceDirect. For
these searches, we used defined keywords and combinations of them to identify
candidate papers, e.g., software, architect, cyber-physical, control system. The
involved reviewers applied the search strategy to identify potential study candidates.
The search results are documented in a spreadsheet where the identified candidate
studies are collected and stored. In addition, duplicates are removed. Each paper is
indexed by a unique identifier and title.

The identified set of candidate studies is carefully assessed and filtered for their
actual relevance to answer RQ1 by two reviewers. Therefore, the study goals and
well-defined study selection criteria are used to determine which studies to include
or exclude. Hence the inclusion and exclusion criteria defined in the SLR protocol
(Muccini et al., 2016) are extended. A study is included if it is compliant to the
following inclusion and exclusion criteria:
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IC 1 Studies proposing, leveraging, or analyzing an architectural solution, archi-
tectural method or technique specific for CPS.

IC 2 (updated) Studies in which multiple types of self-adaptation are explicitly
used as an instrument to engineer CPS.

IC 3 Studies subject to peer review (Wohlin et al., 2012) (e.g., journal papers,
papers published as part of conference proceedings).

IC 4 Studies published since 2006.

IC 5 (new) Studies in which self-adaptation mechanisms are applied at least at two
layers of the technology stack.

IC 6 (new) Studies comprising at least a minimal description of a concrete scenario
or use case.

EC 1 Studies that are written in a language other than English, or that are not
available in full-text.

EC 2 Secondary studies (e.g., systematic literature reviews, surveys, etc.).

EC 3 (new) Studies of poor quality (e.g., poorly described architecture or use case).

Results of selections and rejections are crosschecked by two other reviewers
and any disagreements are discussed and resolved. Finally, the set of studies to be
included in the data collection process is finalized.

13.4.2 Data Extraction

For each study remaining after the selection process, we independently investigated
and extracted pre-defined data. In addition to including all the data items needed
to answer RQ1, the data extraction form provides standard information about the
publication. The definition of pre-defined extraction forms with data items allows
to survey each study in the same way (objectively) and reduces the room for bias.
Table 13.2 gives an overview of the data items that were collected from the primary
studies to answer the research question. Each primary study was assigned to and
reviewed by at least two reviewers. After discussion of the individual results for each
study with the other reviewers, the extracted data were collected and documented in
a spreadsheet in a consistent manner.

13.4.3 Data Analysis and Reporting

The process of analyzing and synthesizing the collected data of the SMS includes
the application of descriptive statistics and representation and interpretation of the
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Table 13.2 Data extraction form

Data item

(D1) Study title (D2) Publication year

(D3) Venue (D4) Country

(D5) Application domain (D6) Overall architectural style

(D7) Overall system goal (D8) Type of distribution

(D9) Uncertainties considered (D10) Adaptation purposes/goals

(D11) Adaptation mechanisms applied (D12) Location of the adaptation mechanisms
in the technology stack

(D13) Inter-adaptation coordination
mechanisms

results with respect to RQ1. Besides standard information about each included
paper (study title, publication year, venue, country), data items needed to answer
RQ1 were collected and analyzed. Data item (D5) captures the reported application
domain of the study to ensure representative and evaluated results. In addition,
the application description supports a better understanding of the approach, and
maybe allows to draw conclusions about a more beneficial application of particular
adaptation mechanisms in one domain. Data item (D9) focuses on different types
of addressed uncertainties in the environment, in parts of the system itself, and
in requirements/goals for which adaptation is applied. This knowledge supports a
better understanding of the focus of current research and shows what uncertainty
types are mostly addressed and what areas of uncertainties are not yet addressed at
all. Data item (D10) summarizes different purposes and goals of applying adaptation
mechanisms in a CPS, while data item (D11) is used to identify and investigate the
types of adaptation mechanisms applied in the study. To generalize the technology
stack that is commonly used for applying adaptation mechanisms, data item (D12) is
used to create a general layer model. Finally, data item (D13) captures the interaction
and coordination between different adaptation mechanisms across the layers.

The analysis results and their visual representation are documented in a spread-
sheet that is available at the study website.7

13.5 Adaptation in Cyber-Physical Systems

After applying inclusion and exclusion criteria to the initial set of 42 primary studies
from the SLR by Muccini et al. (2016) as well as to the extended set of 26 studies,
data were extracted from a total number of 13 primary studies to answer RQ1. An
overview list of all selected primary studies is shown in Table 13.3. After finishing

7Supplementary material of the study is available at: http://qse.ifs.tuwien.ac.at/ci/material/pub/
mde-cpps17/

http://qse.ifs.tuwien.ac.at/ci/material/pub/mde-cpps17/
http://qse.ifs.tuwien.ac.at/ci/material/pub/mde-cpps17/
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Table 13.3 Final list of primary studies retrieved in the systematic mapping study

ID Title Reference

1 An Architecture of Cyber Physical System based
on Service

Yu et al. (2012)

2 An Architecture Framework for
Experimentations with Self-Adaptive
Cyber-Physical Systems

Kit et al. (2015)

5 C-MAP: Framework for Multi-agent Planning in
Cyber Physical Systems

Mukherjee and Chaudhury
(2013)

7 Context-Aware Vehicular Cyber-Physical
Systems with Cloud Support: Architecture,
Challenges, and Solutions

Wan et al. (2014)

9 Towards Context-aware Smart Mechatronics
Networks: Integrating Swarm Intelligence and
Ambient Intelligence

Gupta et al. (2014)

13 A multi-agent RFID-enabled distributed control
system for a flexible manufacturing shop

Barenji et al. (2014)

19 Multi-Agent Control System for Real-time
Adaptive VVO/CVR in Smart Substation

Nasri et al. (2012)

37 Coupling heterogeneous production systems by
a multi-agent based cyber-physical production
system

Vogel-Heuser et al. (2014)

41 Cloud Robotics: Architecture, Challenges and
Applications

Hu et al. (2012)

51 Continuous Collaboration: A Case Study on the
Development of an Adaptive Cyber-physical
System

Hölzl and Gabor (2015)

62 Cloud-Assisted Context-Aware Vehicular
Cyber-Physical System for PHEVs in Smart
Grid

Kumar et al. (2015)

63 Cyber-physical-social system in intelligent
transportation

Xiong et al. (2015)

67 Cross-layer Virtual/Physical Sensing and
Actuation for Resilient Heterogeneous
Many-core SoCs

Sarma et al. (2016)

the data collection, the results were checked for consistency and completeness
as well as documented in a spreadsheet. This section presents the results of the
conducted systematic mapping study.

Figure 13.3 presents the variety of application domains (D5) where proposed
self-adaptation approaches were applied to evaluate their efficiency and perfor-
mance. The results show that transportation (23%) is the dominant application
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Infrastructure; 1; 8%
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Military; 1; 8%
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Robot Navigation; 2; 15%
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Fig. 13.3 Overview of identified application domains (D5)

Fig. 13.4 Types of uncertainties addressed by existing approaches for self-adapting CPS (D9).
(a) Uncertainties in the environment. (b) Uncertainties in requirements and goals. (c) Uncertainties
in parts of the system itself

domain, followed by robot navigation (15%), energy (15%) and manufacturing
(15%).

All studies report to enable adaptation in the CPS to address uncertainties (D9)
in the environment and to make context-aware decisions. The identified clusters
of uncertainty types in the environment are presented in Figure 13.4a. As CPS
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operate in real-time and thus have to deal with environments that are usually subject
to volatile and dynamic conditions (such as weather conditions, road conditions,
traffic flow, danger zones, parking spaces), the most dominant uncertainty type that
need to be addressed can be described as dynamic conditions (77%). For enabling
the exchange of knowledge and data or negotiations between components of the
CPS, the communication reliability in the environment is also a relevant issue to
consider. Due to unforeseen noises in the environment, CPS need to deal with
limited communication and bandwidth as well as latencies (31%). In addition, not
predictable resource constraints (such as fuel, ammunition, personnel, ingredients)
in the environment (31%) can lead to obstacles for the correct operation of CPS
that need action to be taken. Further identified uncertainty types related to the
environment are failures (such as production system breakdown, infrastructure
failure) reported by 15% of the studies and process (such as unforeseen changes
of the requested production process) reported by 8%.

Only five studies mention uncertainties (D9) in requirements and goals that are
affected by their proposed adaptation approaches. In particular, they describe
dynamic demands by customers or the market (31%) and incompleteness of
specified requirements (8%) as uncertainty types. The results are summarized
by Fig. 13.4b.

Most of the studies also considered uncertainty in parts of the CPS
itself to be addressed by adaptation approaches, but the results are quite
diverse as Fig. 13.4c illustrates. The most frequently mentioned uncertainty
type is infrastructure (such as broken hardware, aging effects) considered
by 23% of the studies. Other uncertainty types are system decisions (15%),
assumptions of behavior and knowledge of other components (15%), system
resources (15%), internal faults (8%), changing technology (8%), extensibility
to integrate unknown features into the system (8%), and service reliability
(8%).

In our mapping study we further investigated the purposes and goals of designing
self-adaptive CPS (D10). We clustered the results of the identified adaptation
purposes and goals as presented in Fig. 13.5. As the dominant adaptation pur-
pose, we identified performance in 77% of the studies. Other stated adapta-
tion purposes and goals are efficiency (46%), flexibility (31%), and reliability
(23%).

Fig. 13.5 Purposes and goals
of adapting CPS (D10)
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The analysis of the technology stacks that are used in the studies for applying
adaptation mechanisms (D12) revealed a general architecture model of CPS
comprising the following 6 different layers:

1. Physical Layer:
This layer represents physical real-world components of the CPS that interact

with humans. Examples include vehicles, production systems, robots, road
infrastructure, parcels, and smart meter. The physical components monitor the
environment, collect information with sensors and take actions to modify the
environment with actuators.

2. Proxy Layer:
This layer constitutes the transition from the real-time physical world to

the virtual world where the physical components are represented by intelligent
mechanisms. Examples include interfaces, software agents, and smart compo-
nents. These mechanisms communicate the collected context information to the
computational system in the upper layers and receive responses based on the sent
data.

3. Communication Layer:
The interaction between the proxy layer and the upper layers is enabled by this

layer. A variety of technologies are available (wired/wireless, short/long-range)
to use for the communication process. Examples include Bluetooth, ZigBee,
WLAN, LAN, and special communication protocols.

4. Service and Middleware Layer:
This layer provides context-aware services and middleware to process and

analyze the collected data according to defined goals. In some studies these
services are located in the cloud. Examples include traffic cloud services,
controller intelligent agents, component framework, and optimization unit.

5. Application Layer:
This layer represents the domain-specific application that is in charge of

system control and responsible for realization of the system goals. Therefore,
it has to acquire all required resources and make justified decisions to achieve
the demanded Quality-of-Service. Examples include software agents and control
applications.

6. Social Layer:
This layer represents an optional extension of the common CPS architecture.

It integrates social systems into a CPS architecture by providing specific mech-
anisms to humans, organizations, and societies so that they can offer knowledge
and feedback. The combination of social and physical sensing information can
then achieve more intelligent and improved decisions by a CPS. An example
could be a social network.

Figure 13.6 illustrates the identified general multi-layer CPS architecture.
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Fig. 13.6 General multi-layer architecture of CPS

We further investigated the types of adaptation mechanisms that are applied in
proposed CPS architecture designs (D11). Figure 13.7 shows the frequencies of
different self-adaptation mechanisms as well as their locations in the technology
stack (D12). Smart elements are mostly applied (77%) and always located at the
proxy layer. They represent the physical components capable of self-adaptation.
Other types of adaptation mechanisms are broader distributed across the technology
stack. Multi-agent systems (69%) are applied at the proxy layer, service middleware
layer and application layer, followed by MAPE (54%) at the proxy layer and service
middleware layer, autonomous entities (38%) at the proxy layer, service middleware
layer and application layer, collaborative entities (23%) at the proxy layer, service
middleware layer and application layer, swarm (15%) at the service middleware
layer and application layer. Self-organization (at the application layer) and social
network (at the social layer) are equally applied (both 8%) as adaptation mechanism.
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Fig. 13.7 Self-adaptation mechanisms applied at multiple layers in CPS architectures (D11/D12)

Fig. 13.8 Combinations of adaptation mechanisms (D13)

Each primary study proposed an application of adaptation at the proxy layer and
service middleware layer.

In the primary studies we observed the application of combinations of different
types of adaptation mechanisms that interact and coordinate across multiple layers
of the technology stack (D13). By applying such solution approaches the CPS is
capable to deal with different uncertainties and concerns at a time using adaptation.
Figure 13.8 presents the observed combinations of adaptation mechanisms. The
results show that the majority of primary studies combine MAPE with smart
elements or MAS with smart elements (both 31%) in a CPS architecture design.
Combinations of multiple multi-agent systems were realized in 23% of the primary
studies. 15% of the primary studies equally combined self-organization or swarm
with autonomous entities, MAS with MAPE, MAPE with MAPE, and autonomous
entities with MAPE. Only 8% of the primary studies combined MAS with swarm
and MAPE with collaborative entities.
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13.6 Threats to Validity

As with any empirical research, there are threats to the validity of this study that
need to be considered. The following potential validity threats were identified and
discussed how to mitigate them in order to strengthen the outcomes of the study.

• Quality of the selected primary studies. We defined several inclusion/exclusion
criteria to ensure sufficient quality of the selected primary studies for the
mapping study, but we did not apply a systematic and detailed quality assessment
procedure in order to critically evaluate the quality of each paper as it is common
in systematic literature reviews. To mitigate this weakness to some extent, we
particularly added the inclusion criterion that each primary study must provide
a description of a concrete scenario or use case to draw conclusions for real-
world applications. In addition, we discussed and excluded some papers with
determined poor quality during the mapping study.

• Adaptation of data items. Based on our expertise, we defined a set of data items
for the data collection of the mapping study. During piloting the data extraction
form, we identified some data items that did not always fit for the selected
primary studies or were omitted. Based on the results of this initial review, we
updated the data extraction form for the remaining studies to ensure a consistent
data collection and analysis of the results.

• Limited CPPS expertise of research team. The research team consisted of experts
in the fields of self-adaptation, software architecture, cyber-physical systems and
collective intelligence systems without special experience with cyber-physical
production systems. In order to reduce bias, we consolidated other researchers
with expertise in the CPPS domain and discussed the outcomes.

• Generality of the results for CPPS. Due to a general lack of knowledge on
self-adaptation specifically in CPPS and the nature of a mapping study to
provide a broad overview of a research topic area, we reviewed state-of-the-
art self-adaptation approaches related to the larger family of CPS. However,
during the mapping study we focused on self-adaptation applied in CPS in
the manufacturing domain and eventually included some primary studies with
described use cases in this domain. During the data analysis, we came to the
conclusion that these studies are no outliers and informally discussed the results
with CPPS experts. Nevertheless we are careful to generalize the results for CPPS
and see a need for further research in this direction to enhance the validity of the
results.

• Small number of primary studies. Since CPS and specifically CPPS is still a
quite young research field, the number of primary studies providing insight on
how self-adaptation can be used in addressing uncertainty in these systems is
small. Thus the data extracted from this mapping study can only be considered
as evaluation of the current state-of-the-art. This study should be replicated after
a period of time.
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13.7 Reflection of the Systematic Mapping Study Results

The goal of the systematic mapping study was to capture, consolidate and document
state-of-the-art design strategies and best practices how engineers currently deal
with adaptation across the technology stack in CPS. Based on the analysis results
of the collected data, we were able to synthesize this knowledge to derive recurring
patterns in CPS architectures that can be reused to engineer adaptive CPPS to handle
uncertainty. In particular, we studied the interaction and coordination between
different applied adaptation mechanisms across the layers. Finally, the results of
this investigation supports the proposal of three identified adaptation patterns to
answer RQ2, whereby each pattern is applicable for a different purpose. The
consolidation and documentation of this design knowledge represents a valuable
contribution for CPPS engineers as a useful starting point for the system’s design
with respect to adaptation. The provided insights into evaluated and effective design
strategies, that enable self-adaptation in CPS, are promising to be useful for reuse
in CPPS architecture design as well. In evaluations of the proposed approaches
with scenarios in different application domains, the solution designs demonstrated
their applicability and effectiveness to address particular uncertainties and concerns
related to self-adaptation. In addition, they were observed to support the CPS in the
realization of the stated adaptation purposes and goals.

However, these results require further investigation with specific focus on the
CPPS domain and related application scenarios, but our contributions can serve
as a useful basis for future research. The identified patterns are introduced in the
following section in more detail.

13.8 Patterns for Self-Adaptation

To derive the patterns, we carefully studied the collected data and analysis results
of the conducted systematic mapping study. We created a comprehensive table8

presenting the concrete designs of self-adaptation mechanisms applied across the
technology stack for the application scenario of each investigated study. The
comparison across all represented solution designs highlighted areas that follow
similar or equal strategies, enabling us to identify three multi-adaptation patterns
with different combinations of multiples types of self-adaptation within a system:
SYNTHESIZE-UTILIZE, SYNTHESIZE-COMMAND, and COLLECT-ORGANIZE. In
particular, a multi-adaptation pattern provides knowledge about (1) the kinds of
used adaptation mechanisms, (2) their layer locations, and (3) the cross-layer inter-
adaptation interactions between the respective mechanisms. This section describes

8Supplementary material of the study is available at: http://qse.ifs.tuwien.ac.at/ci/material/pub/
mde-cpps17/

http://qse.ifs.tuwien.ac.at/ci/material/pub/mde-cpps17/
http://qse.ifs.tuwien.ac.at/ci/material/pub/mde-cpps17/
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each pattern according to the pattern writing form provided by Meszaros and Doble
(1997).

A pattern aims to capture best practices that address certain recurring problems
in a specific context for reuse and guidance (Meszaros and Doble, 1997). Thereby
it is important to communicate the purpose of the pattern, the concrete context in
which to apply it, the problem it addresses, a description of the solution to solve the
problem, and the effects and consequences it creates in detail. Such a detailed pattern
description efficiently supports the reader to decide about the applicability of the
pattern of interest in a specific scenario and eventually also to guide the application.
The patterns are structured using the following template based on Meszaros and
Doble (1997):

• Name: a name to refer to the pattern
• Context: a short description of the situation in which to apply the pattern
• Problem: a short description that describes a specific recurring problem that the

pattern solution aims to solve
• Solution: kind of a reusable model that solves the problem
• Consequences: set of rationales why the proposed solution is most appropriate

for the stated problem (benefits) as well as a set of other effects and limitations
to make clear where the pattern is not applicable

• Known Uses: a short description of representative use cases that illustrate the
application of the solution and the positive effects to address the problem

13.8.1 Synthesize-Utilize Pattern

Context: A distributed application is composed of diverse physical resources and
application entities, whereby each of which possesses data that is heterogeneous,
spatially distributed and continuously changing.

Problem: A distributed application seeks to improve the utility of its services to the
physical resources by dynamically exploiting rich context information.

Solution: SYNTHESIZE-UTILIZE is composed of a MAPE-like adaptation mecha-
nism on the service middleware layer and autonomous entities on the application
layer. The pattern is illustrated in Fig. 13.9, which also depicts the concrete
workflow steps across the layers. The characteristic workflow between the layers
is as follows: (1) The service middleware layer receives data from the physical
resources via the proxy layer and requests data from the autonomous entities on
the application layer. (2) The service middleware layer uses MAPE-like adaptation
for the continuous collection and synthesis of data. (3) The consolidated data
is then provided to the autonomous entities on the application layer. (4) The
autonomous entities dynamically optimize their services to the physical resources
by collaborating with each other and by using the integrated data that is offered from
the service layer.
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Fig. 13.9 Synthesize-Utilize pattern with adaptation mechanisms (red) and characteristic work-
flow steps across layers

Consequences:

+ Efficient sourcing of heterogeneous data from a diverse set of systems and its
consolidation that can be used for situated optimization.

+ Reduced effort for adding and removing data sources.
– Timing aspects.
– Varying quality and granularity of data requires additional data acquisition and

integration effort.

Example “Intelligent Transportation System”: In this example the physical
resources include vehicles and sensors that are positioned along the road
infrastructure. On the application layer, services are provided to traffic participants
on a global scale (traffic-related information) and individual scale (smart
parking, routing/navigation), as well as to traffic management authorities (traffic
performance, congestion control). By collecting data from individual vehicles and
road sensors, the service middleware layer can monitor traffic-related information.
It then continuously integrates the data into traffic models that are created
from dynamic simulations and experiments. Based on the evaluated models the
traffic information is consolidated and forwarded with respect to the individual
traffic services. The consolidated data is used for optimization and if necessary
personalized to the individual recipient (e.g., traffic participant). Further the
services locally interact (e.g., via Vehicle-2-Vehicle networking, flexible web
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service orchestration) with each other in order to factor in additional context
information.

Identified in Primary Studies: ID-07 Dynamic Parking Service (Wan et al., 2014),
ID-63 Intelligent Transportation System (Xiong et al., 2015).

13.8.2 Synthesize-Command Pattern

Context: A distributed application produces its functionality by employing an
assembly of heterogeneous, physical resources which are independent and have
different capabilities and capacities.

Problem: A distributed application exploits data of individual resource to improve
its overall utility by changing the resource configuration that produces the applica-
tion’s functionality.

Solution: SYNTHESIZE-COMMAND is composed of a MAPE-like adaptation mech-
anism on the service middleware layer and a multi-agent system (MAS) on the
application layer which manages the physical resources. The pattern is illustrated
in Fig. 13.10, which also depicts the concrete workflow steps across the layers. The
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Fig. 13.10 Synthesize-Command pattern with adaptation mechanisms (red) and characteristic
workflow steps across layers
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characteristic workflow between the layers is as follows: (1) The service middleware
layer receives data from the physical resources via the proxy layer. (2) The service
middleware layer uses MAPE-like adaptation for the continuous collection and
synthesis of physical resource data. (3) The consolidated data is then used to derive
commands which are sent to the MAS on application layer. (4) The agents in the
MAS locally interact and reorganize so that the commands are performed in an
efficient way on the physical layer.

Consequences:

+ MAPE-based “plug-in” model allows selection of appropriate adaptation func-
tion.

+ Separation of concerns: reconfiguration of request and its execution.
+ Easy extensibility of resources on the physical layer.
– Cross-layer coordination is complex.
– Reduced autonomy of physical resources due to high dependence on central

command coordination.

Example “Flexible Manufacturing Shop”: In this example the physical resources
include various kinds of manufacturing equipment which are grouped into stations.
The application layer consists of manufacturing resource agents, whereby the agents
are connected to the physical resources with specific agent-machine interfaces. On
the service middleware layer, the MAPE-like adaptation mechanism is realized in
a station controller which collects data on realizable capabilities from the station
and compares it with a product capability list in order. If the product capabilities
are realizable on the station, the station controller assigns information on related
manufacturing resources and process steps for efficient production to the resource
manufacturing agents. The resource manufacturing agents forward the production
information to the associated manufacturing equipments and continuously send
feedback about the status of the manufacturing process back to the station controller,
which is case of constraint conflicts would adapt the process on the respective
station.

Identified in Primary Studies: ID-01 Water Resource Management (Yu et al., 2012),
ID-13 Flexible Manufacturing Shop (Barenji et al., 2014)

13.8.3 Collect-Organize Pattern

Context: A distributed application provides services to autonomous, cyber-physical
entities, whereby each entity generates their own, local models and collects data that
is spatially distributed and continuously changing.

Problem: A distributed application seeks to improve the overall utility of its
service, which requires the autonomous entities to efficiently share information and
coordinate their tasks on a local basis.



356 A. Musil et al.

Application Layer

Service Middleware Layer

Communication Layer

Proxy Layer

Physical Layer

Provide data

Data flow

Process data

R1

R2

R3
Rn

Physical Resource

P1

P2

P3
Pn

Proxy as virtual 
representation of        
Physical Resource

Interaction with Physical 
Resource and its context

2

3

(Re-)Organize4

Adapt tasks
5

Data Collection

Autonomous Entity

Local Interactions 
between entities

Local Interactions 
between elements

Adaptation 
activities

Interaction

1

An

A2

A3

A1

Self-Organization 
Mechanisms

Organization Interaction

Adaptive Algorithm

Fig. 13.11 Collect-Organize pattern with adaptation mechanisms (red) and characteristic work-
flow steps across layers

Solution: COLLECT-ORGANIZE is composed of adaptive algorithms on the proxy
layer, autonomous entities on the service middleware layer and self-organization
mechanisms on the application layer. The pattern is illustrated in Fig. 13.11, which
also depicts the concrete workflow steps across the layers. The characteristic
workflow between the layers is as follows: (1) On the proxy layer, adaptive
algorithms continuously integrate data from physical resources into local models.
(2) Autonomous entities on the service middleware layer exchange local information
in order to generate and update global models. (3) On the application layer, self-
organization mechanisms facilitate the adaptation with regard to situated tasks
among the individual entities based on the local and global models.

Consequences:

+ Efficient organization in highly dynamic application scenarios.
+ Cyber-physical entity has autonomy and maintains operational, even if service

middleware layer adaptation fails.
– Cross-layer coordination is complex, in particular with regard to emergent

behavior induced by self-organization mechanisms.
– Pattern requires smart systems at the bottom of the architecture instead of “dumb”

physical systems.
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Example “Smart Parking”: In this example the physical resources include smart
vehicles which are equipped with intelligent sensors that collect data about available
parking space. The service provided on the application layer is a smart parking
service, which supports the vehicles in the discovery of parking space and with
negotiating the allocation of suitable space. On the proxy layer, the data from the
sensors is integrated into models using adaptive algorithms (like MAPE-K loops)
and real-time CPS control logic. On the service middleware layer, an autonomous
entity, representing the vehicle, receives the model information. These entities are
realized as autonomous components which are dynamically grouped into ensembles
(subset of vehicles in proximity) consisting of a coordinator and multiple members.
Within an ensemble the autonomous components continuously exchange their
partial models in order to collectively produce a more complete, global model of the
situation. The consolidated model is then forwarded to the application layer, where it
is used by the smart parking service to derive a list of suitable parking spaces. These
spaces are particular for the individual vehicle with respect to the other vehicles,
leading to emergent self-organizational interaction, since the ensembles are highly
temporal.

Identified in Primary Studies: ID-02 Smart Parking (Kit et al., 2015), ID-51 Rescue
Robot Navigation (Hölzl and Gabor, 2015).

13.9 Potential of Collective Intelligence Systems
for Cyber-Physical Systems and Cyber-Physical
Production Systems

This section presents an overview about emerging directions of how collective
intelligence systems are used in CPS and CPPS. Based on the background
of CIS in Sect. 13.2.3 and the findings of our systematic mapping study in
Sect. 13.5, we describe the three directions of capability augmentation, emergent
machine-to-machine interactions, and multi-disciplinary knowledge integration and
coordination.

13.9.1 Collective Intelligence Systems for Capability
Augmentation

The results of the systematic mapping study reveal a recent trend to add an additional
“social” layer in a CPS architecture that involves components in a CPS to address
human and social factors. So-called Cyber-Physical-Social Systems (CPSS) (Wang,
2010) consider social and human dynamics as an essential part of an effective CPS
design and operation. A CPSS is defined as a complex system that is constituted
by three parts: a physical system, a social system including human beings, and a
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cyber system that connects both of them (Xiong et al., 2015). The social system is
a human-centered system, like social networking sites and social media platforms,
that explicitly involves individuals, organizations, and societies in the processes of
a CPS for information exchange and feedback. One application scenario of a CPSS
architecture is an intelligent transportation system (Xiong et al., 2015) where the
social system aims to effectively aggregate (by so-called social sensor network)
and disseminate up-to-date travel-related information and resources from multiple
sources. Examples of this shared information are emergency events, traffic jams,
navigation, road conditions, and car-sharing information. Such useful information
can have influences on the decisions and behavior of individuals as well as on
transportation authorities who can use this information to improve their services
and management. As one successful example of such a CIS which support a
transportation system is Waze.9 They concluded that CPSS have a significant value,
but there are existing challenges to control and manage them by applying traditional
theories and methods which demand the research of novel approaches.

Considering and utilizing the potential of humans-in-the-loop, their interac-
tions and the created social dynamics offer new opportunities for CPPS as well.
According to the scenario of a “Cyber-Physical System for the factory of the
future” investigated by the German acatech – National Academy of Science and
Engineering (2011), industrial production systems should be able to react virtually
in real-time to changing customer demands as well as changes in the market and
the supply chain. A CIS in the social layer of a CPPS architecture can support this
vision by facilitating to effectively incorporate humans into the CPPS processes
and by introducing CIS-specific capabilities. Companies as well as customers (local
or globally distributed) can interact with each other by using a CIS for sharing
opinions, experiences, requirements as well as discussing new ideas and designs
for future products. The combination of information and feedback from multiple
sources (different sensors in the physical system and different human groups in the
CIS) enables a more efficient sensing of the CPPS and thus improves its decision-
making processes. For example, based on the collected knowledge a CPPS can react
rapidly to customer feedback and optimize the manufacturing of tailored customer
products or correct defective production models.

13.9.2 Collective Intelligence Systems as Enabler for Emergent
Machine-To-Machine Interactions

CIS-based CPPS architectures highlights the potential of a new kind of social
interactions that goes beyond the typical human-to-human interactions. So far CIS
approaches consider humans as essential entities in the critical feedback loop to be

9http://www.waze.com/ (last visited 01/15/2017).

http://www.waze.com/
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successful and effective (e.g., Yelp10 in the domain of business ratings and reviews
or Facebook11 for creating a social network of friend relationships). But if humans
were regarded as one of many variability points in a CIS architecture, they could be
replaced by machines as for instance robots or CPPS to realize machine-to-machine
configurations (Musil et al., 2015a). The integration of a CIS with machines that
represent its actor base into a manufacturing environment enables the connection
and communication of several groups of CPPS or single systems to support the
machines to share their information and experiences among each other, which
is illustrated by Fig. 13.12. Single globally distributed, adaptive and evolutionary
production units that belong to different operators are situated in a specific,
local context and thus have only awareness about local available information
but have difficulties to access remote information from other machines involved
in the production processes. The creation of a global network of cooperating
and interacting industrial plants as well as the aggregation and coordination of
their collective intelligence by applying CIS mechanisms, that have proven to be
effective, offers the possibility of a global access to relevant and critical information
and data of individual machines with respect to context, status, defects, diagnoses,
experiences, influences, effects, analytics, and learned capabilities. In their work
Bauernhansl et al. (2014) recognize on numerous occasions the potential of social
media platforms, besides data mining and mobile, as a pivotal enabling technology
for smart factories of the future. Factory Social Media is expected to play an

10http://www.yelp.com/ (last visited 01/15/2017).
11http://www.facebook.com (last visited 01/15/2017).

http://www.yelp.com/
http://www.facebook.com
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important role in future CPPS process improvement efforts by enabling effective
and efficient bottom-up information collection and dissemination capabilities in
human-human, human-machine and machine-machine scenarios. But the authors
also mention the lack of their current application, although there is a clear need to
support the increased computerization of physical systems and address the resulting
need to organize and coordinate.

Approaches in this promising direction can be found in the work of Mukherjee
and Chaudhury (2013) who elaborated on this topic and proposed a novel multi-
agent planning framework. For illustration they used the scenario of a network
centric battle space with military CPS. The challenge here is the collaboration and
coordination of plans between multiple planner agents. To deal with uncertainty
while planning, Mukherjee and Chaudhury (2013) explored (1) bottom-up bio-
logically inspired continuous planning in order to adapt to changing environment
and (2) Blackboard-based multi-agent coordination. Similar to this approach, CIS
use the nature-inspired coordination mechanism of stigmergy (Heylighen, 2016)
which enables bottom-up, environment-mediated coordination and indirect com-
munication of agents via traces in the environment (Musil et al., 2015a). Thus the
stigmergic process creates a positive feedback loop that promotes awareness among
agents about the activities of others and stimulates further agent activities. The
resulting feedback loop provides CIS with emergent, self-organizational capabilities
and allows the system to adapt (Musil et al., 2015a).

The concept of CIS for machine-to-machine communication brings along new
architectural design and realization challenges to deal with in an agenda for future
research. Aspects like what processes can be supported by a CIS of machines-in-
the-loop or what skills provided by machines are needed to play the role of humans
in a CIS for CPPS need to be investigated.

13.9.3 Collective Intelligence Systems
as Coordinators and Knowledge Integrators Across
Heterogeneous, Multi-Disciplinary Domains

Similar to the support of CPPS processes during production, also the engineering
of CPPS as group processes can be improved with CIS-based approaches. CPPS
engineering processes involve humans from multiple engineering disciplines, such
as electrical, mechanical and software engineering, who are essential factors in the
planning, design, and realization of a well-functioning CPPS. Consequently the
following challenges arise for the multi-disciplinary engineering teams in particular:
heterogeneous representations as for instance of engineering data, models and
terminologies, weak accumulation and integration of dispersed, local engineering
know-how that is instrumental for the engineering processes, lack of traceability and
awareness of activities and changes as well as required effective communication,
coordination and sharing of knowledge and artifacts between teams across the
organization (Jazdi et al., 2010; Musil et al., 2016b).
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In such environments of multi-disciplinary projects in which CPPS are engi-
neered, social interaction and communication between the experts are critical
and thus need to be supported by social systems, like a CIS. This kind of a
socio-technical system has the potential to enhance current engineering meth-
ods and tools to overcome existing challenges and complexities (Musil et al.,
2016b). The capabilities of a CIS support engineers to identify important implicit
engineering knowledge and to integrate the dispersed, local information into an
organization-wide and project-independent knowledge base in order to make it
explicitly available (Musil et al., 2016b). The efficient and structured collection
and maintenance of project-independent knowledge enabled by a CIS allows the
sharing and awareness of engineering know-how without loss of information (Jazdi
et al., 2010). So it provides the ability to deal with complexity of a CPPS and to
reuse expert knowledge, and thus efficiently and transparently supports engineering,
maintenance (Winkler et al., 2016), and modernization activities. Figure 13.13
illustrates a scenario with a CIS as coordinator and knowledge integrator in multi-
disciplinary engineering processes.

All three introduced CIS-focused concepts open up different new future research
directions to investigate novel theories, methods and technologies, but provide a
good starting point for a research agenda.

13.10 Related Work

This section presents an overview of related systematic studies in the areas of
agent/multi-agent based, architecture-based, control theory-based, and self-organi-
zation-based adaptation. While we could not identify any secondary study directly
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looking at patterns of combined adaptation mechanisms in the field of CPS, we
summarize related research that is worth mentioning.

First we looked at systematic studies surveying agent/multi-agent based
approaches. Leitão (2009) presented a state-of-the-art survey on multi-agent system
approaches for designing manufacturing control systems that exhibit intelligence,
robustness and adaptation. While the study does not deal directly with adaptation
patterns for CPS, it reports on holonic- and agent-based architectures based
on centralized and decentralized patterns such as agent federation centered in
the mediator approach, adaptive control approach, hybrid control architecture,
decentralized planning and rough level process planning, and hierarchical structure
based on rules. Juziuk et al. (2014) provided an overview of existing design patterns
for multi-agent systems collected using a systematic literature review. In their study,
the authors identified a total of 206 patterns. One cluster of associated patterns was
formed around bio-inspired concepts such as pheromones, ants, and stigmergy.
This cluster also included recent patterns related to self-organization and adaptive
behavior. In addition, the authors investigated the types of systems for which these
design patterns have been applied. They concluded that there is not a dominant type
of system, but with regard to industrial applications the main reported application
domains are process control and manufacturing, traffic and transportation.

Then we focused on research work in designing architecture-based adaptation.
Weyns and Ahmad (2013) conducted a systematic literature review on claims and
evidence for architecture-based self-adaptation. The authors discovered that 69% of
the studies focus on a single feedback loop, with 37% of the primary studies using
distinct components for each of the MAPE functions and 32% using components
that mix (some of) the MAPE functions. Only 20% of the studies focus on multiple
feedback loops. As commented by the authors, while MAPE serves a reference
model, it is not generally considered as a reference architecture. Weyns et al. (2013b)
consolidated a number of well-known patterns of decentralized control in self-
adaptive systems as well as described them with a simple notation to foster their
comprehension. The presented MAPE patterns model different types of interacting
MAPE loops with different degrees of decentralization. The set of described patterns
include the coordinated control, information sharing, master/slave, and regional
planning. In addition, the authors discussed drivers that should be considered by
designers of self-adaptive systems when choosing one of these MAPE patterns
(e.g., optimization, scalability, robustness). Ramirez and Cheng (2010) collected
adaptation-oriented design patterns from the literature and open sources that support
the development of self-adaptive systems. These patterns aim to facilitate the
separate development of the functional and adaptive logic. In their work the authors
present 12 adaptation-oriented design patterns for reuse of existing adaptation
expertise and cluster them in three groups based on their overall objective in the self-
adaptive system: monitoring, decision-making, or reconfiguration. Their patterns are
at the level of software design in contrast to our architecture-centric perspective that
we adopted in this chapter.

In addition, we had a look at control-based self-adaptation approaches.
Patikirikorala et al. (2012) systematically surveyed the design of self-adaptive
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software systems using control engineering approaches. The authors investigated
control methodologies in self-adaptive systems and identified a set of design
patterns, that are: feedback control system (with reactive decision making)
implemented by 88.2% of the surveyed approaches, feed-forward control system
(with proactive control mechanisms) utilized by 10.6% of the analyzed papers, and
feedback and feed-forward control systems used by only two over the 161 surveyed
papers. A number of adaptive control strategies are also elicited and discussed in
their work, being the Fixed and Adaptive the most commonly used (29.7% and
14.9%, respectively).

Research in self-organizing systems has brought forward a number of patterns.
De Wolf and Holvoet (2007) consolidated and described a set of patterns to
systematically design a self-organising emergent solution such as gradient fields
and market-based control. The purpose of the patterns proposed in their work
is to help engineers to decide which decentralised coordination mechanisms are
promising to solve a certain problem, to provide best practice in using each
coordination mechanism and to guide engineers in applying them. The benefits
of a self-organising solution, as explained by the authors, are that it is constantly
adapting to changes without a central controlling entity and is still robust to
failures. In their work, Fernandez-Marquez et al. (2013) provide a catalogue of bio-
inspired mechanisms for self-organizing systems in form of modular and reusable
design patterns. The authors investigated the inter-relations among self-organising
mechanisms for engineering self-systems in order to understand how they work and
to facilitate their adaptation or extension to tackle new problems. By analyzing these
mechanisms and their behaviors in detail, they identified different levels: lower-level
patterns include basic mechanisms (repulsion, evaporation, aggregation, spreading)
that can be used individually and other more complex mechanisms composed
of basic ones (digital pheromone, gradients, gossip). Higher-level patterns show
different ways to exploit the basic and composed mechanisms (flocking, foraging,
quorum sensing, chemotaxis, morphogenesis). The presented patterns are best
exploited during the design phase.

All these systematic studies have in common that they did not focus on
combinations of different types of adaptation mechanisms and cross-layer inter-
adaptation interactions as we did in the mapping study and the adaptation patterns
described in this chapter.

13.11 Conclusion and Future Work

In this chapter we reported the results of a systematic survey of CPS studies that
combine different self-adaptation mechanisms across the technology stack of the
system. The results show that the majority of primary studies combine either MAPE
with smart elements or MAS with smart elements in CPS architecture design.
From the designs of the primary studies, we derived three patterns: SYNTHESIZE-
UTILIZE, SYNTHESIZE-COMMAND, and COLLECT-ORGANIZE. These patterns
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offer problem-solution pairs to engineers for the design of future CPS and CPPS
with self-adaptation capabilities, whereby the SYNTHESIZE-COMMAND pattern
seems to be particularly relevant for the design of CPPS. Based on the survey results
and the background of CIS, we described three emerging directions of how CIS
are used in CPS and CPPS: capability augmentation, emergent machine-to-machine
interactions, and multi-disciplinary knowledge integration and coordination. We
hope that the research results presented in this chapter can contribute to push
forward the important field of CPPS in general and the application of self-adaptation
to it in particular.
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Chapter 14
Service-Oriented Architectures
for Interoperability in Industrial Enterprises

Ahmed Ismail and Wolfgang Kastner

Abstract This chapter focuses on the technological aspects involved in developing
a service-oriented solution for interoperability in the context of cyber-physical
production systems (CPPS). It addresses the typical state of industrial enterprises
and the core technologies currently available for the development of a service-
oriented (SO) solution for agile environments. The chapter therefore discusses
features of the service-oriented paradigm as well as aspects related to enterprise
and network architectures, constraints, and technologies to discern the current
challenges facing modern enterprises. The chapter also explores the service-oriented
reference architectures of recent EU projects to highlight their main characteristics.
Finally, their respective realizations are decomposed to discern the connectivity
strategies and standards employed by each to achieve an interoperability-focused
technology stack for the operation of agile and flexible industrial plants.

Keywords Horizontal integration • Interoperability • Service-oriented architec-
tures • Technology stack • Vertical integration

14.1 Introduction

The increasing rapidity of change in the environmental factors of modern enterprises
requires that they be able to adapt to external and internal stimuli over increasingly
shorter timescales (Corrêa, 2001). Industrial enterprises must be agile to withstand
and thrive in such dynamic environments. The defining characteristics of their
systems should include having “easy access to integrated data whether it is customer
driven, supplier driven, or product and process driven”, “modular production
facilities that can be organized into ever-changing manufacturing nodes”, and “data
that is rapidly changed into information [for the expansion of] knowledge”, amongst
other things (Choudri, 2001). Together, such features may fuel a successful agile
enterprise.
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From a technical perspective, the pursuit of such characteristics can be sup-
plemented using a number of techniques from the domain of service-oriented
architectures (SOA). This is a field that is concerned with the creation of modular
IT and productions systems that enhance an enterprise’s capabilities for information
exchange, technological independence, and component reuse. The result would
effectively be an industrial environment of operational flexibility and responsiveness
(Valipour et al., 2009).

This chapter focuses on service-oriented architectures and how they may be
applied in current enterprises to achieve flexibility, agility and interoperability,
all within the context of research question RQ I1 of Chap. 1. As such, it will
provide an understanding of the technical state of present industrial enterprises and
detail the characteristics of the SO approach in order to highlight the competitive
advantage possible through service orientation. A sizeable part of this chapter is
dedicated to presenting preliminary SO reference architectures delivered by major
European Union research projects. Respective realizations of these architectures
will be discussed to underline their choices in technologies and their delivered
technical innovations.

14.2 Technical Features of the Industrial Enterprise

Typically, an industrial enterprise undergoes functional segmentation creating
layers that distinguish between the components of the process, control, operations,
business, and Internet-based systems present in or interacting with the enterprise.
Normally, a demilitarized zone (DMZ) is also included to manage access from
the uppermost business and enterprise layers to the lower process-focused layers’
network and data. This kind of segmentation is done to increase the manageability
and security of the enterprise. However, further impositions on the enterprise exist
due to the physical and logical constraints of the enterprise’s assets. Physically,
devices may be connected using legacy serial interfaces (e.g. EIA-232/422/485),
fieldbus systems, and wired and wireless Ethernet and IP-based technologies.
Although devices with both interface types may be used to physically bridge
the two networks together, the protocols may have different demands in real-
time (RT), bandwidth, latency, and other communication-related requirements. At
the messaging layer, these protocols may also differ in their message formats
and exchange mechanisms, as well as in other features. The process of bridging
together these various systems requires special devices and techniques, designed
and implemented carefully to safely allow them to share data (Ismail and Kastner,
2016; Knapp, 2014).

By convention, there are two approaches for managing this heterogeneity and
technical complexity, namely tunneling and translation. Tunneling involves the use
of routers for the encapsulation of one protocol’s data inside the payload of another
and treating the channel as a transparent communication medium. Translation, on
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the other hand, uses gateways as intermediaries to carry out data mappings on behalf
of communicating devices to allow them to exchange information using their native
protocols. Each of these methods has its own drawbacks in relation to capabilities
and implementation complexity, and is often considered to be costly in engineering
efforts (Sauter et al., 2011).

These costs may be compounded by the technological choices and imple-
mentations of enterprise infrastructures, which commonly use monolithic appli-
cations to achieve their functional goals. The resulting system involves many
implicit and explicit dependencies (i.e., to a technology stack) that introduce
stiff resistance to change. In such a case, the enterprise cannot be described
as agile or flexible. In fact, it is properties such as these and their implica-
tions that have become major arguments used by the proponents of service
oriented architectures to effect infrastructural changes in enterprises (Krafzig et al.,
2005).

Take for example the concept of a service-oriented CPPS. CPPS are physical and
computational resources that are tightly bound in coordinated and controlled rela-
tionships and embedded in a socio-technical context. The functionalities originally
addressed by monolithic applications may be decomposed and distributed across the
system’s member devices. That is, by applying the service-oriented design pattern,
a large business problem can be fragmented into smaller problems that may then be
solved using a number of small and related units of logic, termed services, rather
than through a single monolithic application. Distributing these services across the
system would create networks of smart devices that are inherently resilient due
to their lack of dependence on any central component. Furthermore, as services
are typically designed with standardized interfaces, system-wide interoperability
is guaranteed. The internals of these services, such as how they are implemented,
or what technology they use is hidden behind the service interface therefore also
affording the system technological independence and flexibility. Services are also
typically designed with functional agnosticism to allow for their reuse, reducing
future application development efforts. Together, the concepts that define the SO
approach, all of which are summarized from Valipour et al. (2009), Erl (2009),
and Erl et al. (2014) and presented in Table 14.1, afford an enterprise the agility
it pursues and minimizes the need for integration (Krämer, 2014; Rubio, 2011; Erl,
2009; Valipour et al., 2009).

For reasons such as those mentioned above, several research projects have
pursued and outlined reference architectures for highly interoperable industrial
environments based on SOAs. These efforts have been extensively documented
to facilitate future system implementations. In the coming section, we highlight a
number of these projects, summarizing and evaluating their reference architectures
to give a concise understanding of their details.
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Table 14.1 Features of SOAs (Valipour et al., 2009; Erl, 2009; Erl et al., 2014)

Characteristic Sub-characteristic Explanation

Discoverability Services are supported using metadata that
allows them to be discovered and
interpreted

Modularity Modular decomposability The equivalent concept of functional
decomposition as applied to modules

Modular composability The ability to create a software service or
system by freely combining reusable
services

Modular understandability The function of a service should be
comprehensible without requiring
knowledge on any other services

Modular continuity A service interface should conceal service
implementation details to allow changes to
the service to occur without them
requiring changes in other services

Modular protection Perimeterisation of modules to prevent the
cascading of faults unto other services

Interoperability Ensured ability for different modules to
communicate with each other

Loose coupling Appropriately defined service contracts
that increase the independence of services
from their implementations and from each
other

Location transparency The decoupling of a service from a
specific location allowing dynamic service
lookups and runtime binding that enhance
the system’s flexibility, availability and
performance

Composability Application The piecing together of services and their
orchestration using application logic to
achieve specifically set goals

Service federation The aggregation of services under a single
service representation

Service contracts The explicit definition of a service’s
features and parameters as contractual
terms and conditions in a granular form
accessible by service requesters. This may
include the definition of supported data
types, data models, policies and other
features that declare a service’s interaction
requirements

Service orchestration Service execution as part of an application
should be sub-transactional and not
permitted to perform data commits. This
allows the system to rollback to the
pre-transactional state in case of service
failure
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14.3 Service-Oriented Architectures and the Industrial
Enterprise

In this section, we look at a total of five service-oriented reference architectures
that resulted from collaborations between research, vendor, and user organizations
These are the Internet of Things at Work (IoT@Work), Embedded systems Service-
based Control for Open manufacturing and Process automation (eScop), Production
Logistics and Sustainability Cockpit (PLANTCockpit), ArchitecturE for Service-
Oriented Process—Monitoring and Control (IMC-AESOP), and Arrowhead Frame-
work projects; the inferred or explicitly stated purpose of each of these projects is
summarized in Table 14.2. This list of projects is not comprehensive as there exists
a larger number of SOA-driven projects both old, such as SOCRADES and SODA,
and new, such as ProSEco and CREMA, that are not covered in this chapter. Nor is
it the point of this chapter to give such a viewpoint, but the purpose here is to bring
attention to the main features of a sample of SO reference architectures to underline
their strategies for the modernization of industrial enterprises. As such, our analysis
is limited to projects that started and completed within the period of 2010–2016.
Arrowhead does not meet this timeline, as it is scheduled for completion in 2017,
however, an exception is made in this case as, with a 77-member consortium and 69

Table 14.2 A summary of project durations and objectives

Name Duration Objective

IoT@Work Jun 2010–Jun 2013 Use IoT technologies to decouple
application/control programming from the
network, enable communication-centric
plug & work capabilities, and enhance the
system security (Rotondi et al., 2013)

PLANTCockpit Sept 2010–Dec 2013 Creating a SO and centralized plant-wide
human-machine interface (HMI)
(PLANTCockpit Consortium, 2011a)

IMC-AESOP Sept 2010–Dec 2013 Using SO approach for supervisory control
and data acquisition/distributed control
system (SCADA/DCS) in large-scale
process control systems (Colombo et al.,
2014a)

eScop Mar 2013–Feb 2016 System integration using ontology based
knowledge-management, embedded
devices, and SOA (eScop Consortium,
2013)

Arrowhead framework Mar 2013–Feb 2017 Providing a SO technical framework for
cooperative automation in technologically
heterogeneous systems (Blomstedt et al.,
2014b)
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million Euros in funding, it is one of the largest EU projects in the industrial domain
(Nagorny et al., 2014).

14.3.1 IoT@Work

The IoT@Work project represents its reference architecture using layers and planes.
In terms of the former, three layers are used; the physical, abstraction, and composite
service layers. The first of these, the physical layer, is the physical world and
is therefore composed of physical devices. The second layer is an abstraction of
the physical devices as resources and services. In the context of the IoT@Work
architecture, a resource is an object representing a specific physical or virtual
element, while a service gives access to a resource by specifying the type, identifier
and interface. Effectively, a single device may be represented using one or more
resources and services. The third and final layer is that of composite services. These
group together the elements of the second layer to hide their complexity and deal
with context, contention over resources, and access rights. It is this third layer atop
which applications such as event notification, complex event processing (CEP),
network access control (NAC), and controller I/O applications run (Rotondi et al.,
2013).

To address the functional aspects of these three layers, the IoT@Work project
defines a set of core services, listed and defined in Table 14.3, and organizes the
large number of functional components they are composed of into three planes;
the communication, security, and management planes. The communication plane
is concerned with the orchestration of network resources and communication to
resolve access contention issues and provide support for Quality of Service (QoS)
guarantees. The security plane, as the name implies, manages and integrates security
into the overall system. Lastly, the management plane, attends to device, service,
and configuration management with a focus on their inter-relations (Rotondi et al.,
2013).

14.3.2 PLANTCockpit

The PLANTCockpit system architecture is composed of an internal and external
system. The external system refers to the data sources connected to the PLANT-
Cockpit using proprietary or open interfaces, such as an Enterprise Resource
Planning (ERP) system, OPC server, or sensors & actuators. As for the internal
system, this is made up of five layers; the system connector, function engine,
persistence, visualization engine, and presentation engine layers (PLANTCockpit
Consortium, 2011a).

The first of these, the system connector layer, is primarily concerned with
interfacing with external data sources. It provides the configurable adapter modules
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Table 14.3 IoT@Work core services (Rotondi et al., 2013)

Core service Explanation

Event notification service (ENS) A common functional component that
collects and distributes events

ENS access request broker (ARB) A broker between ENS clients attempting
to access namespaces and the ENS AS

ENS authorisation service (AS) Decision point for access requests sent to
the ENS ARB

Policy decision point (PDP) Evaluates the status of capability tokens
and policies to approve or refuse access
requests

Revocation service Manages capability revocation requests
and capability revocation life cycles

ENS namespace management service A service for the management of
hierarchical structures used for the
organization of event publishing

Slice management system A three part service consisting of a
communication service interface (CSI),
slice enforcement point (SEP) and slice
manager. Used for the creation of a ‘slice’a

Embedded application configuration service Provides devices with the configurations
required by their applications

Directory service (DS) Stores device information in an
ontology-based DS data model

Orchestrated management Orchestrated management authoring
support: a lightweight algorithm and API

Orchestrated management scheduling
service: algorithms to produce
management plans and schedule
operations

Management services: a wrapper around
existing operations in the three planes so
that they may be used and executed in
Orchestrated Management scenarios

Context services: capture constraint values
to provide context. May be a parameter of
the manufacturing execution system
(MES) or ERP system

Complex event monitoring service Responsible for the verification of rule
compliance to allow the system to meet
safety and security goals

aA slice is a virtual network with QoS guarantees and policies
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required to allow the PLANTCockpit to access and communicate with these sources.
Due to their configurability, an adapter manager is included in the architecture to
oversee the entire life cycle of adapters. As for the external data structures acquired
through the adapters, these are transformed to an internal data structure using a
mapper module. Finally, the layer uses two generic components, the subscriber
and publisher, to query the external systems via the adapters and push the data
retrieved by way of the adapter and mapper components to the function engine layer,
respectively (PLANTCockpit Consortium, 2011a).

The function engine layer, receiving these data, provides a platform atop where
analytics and functions may be executed. It is based on the concept of function
blocks, which, inspired by the object oriented paradigm and the IEC 61499 standard,
are reconfigurable and encapsulated blocks of program code with clearly defined
interfaces to allow for reuse and composability. These blocks’ life cycles are
managed using a function manager, while a pub/sub broker (publisher/subscriber)
provides them with secure, reliable, and event-driven mechanisms through which
they may communicate with each other (PLANTCockpit Consortium, 2011a).

Any data relevant to the function engine or any other layer’s workings are
managed and stored using the persistence layer. This subsystem is composed of
three components; the data persistence manager, configuration repository, and data
repository. The manager administers the storage, archiving, retrieval, and deletion
of data. The configuration repository maintains all of the data needed to configure
the internal components of the PLANTCockpit system at design and run time.
Finally, the data repository stores all of the data required by analysis processes
in the PLANTCockpit system. It includes a cache that can temporarily store data
to improve the system performance, and a more permanent store that archives
historical data (PLANTCockpit Consortium, 2011a).

Finally, any data to be presented via the HMI interface is prepared for visualiza-
tion using the visualization engine layer. It consists of a service engine which is an
aggregation of a runtime and design engine. The former contains the configurable
user interface (UI), while the latter configures the interface using a composition of
building blocks (visualization elements) and their associated data points. A building
block browser and function block browser is used to make all possible building
blocks and all available data points provided by the data persistence manager
accessible by the design engine for the UI’s configuration, respectively. Finally, a
data provider component subscribes to the Pub/Sub Broker for data and events that
it delivers to the runtime engines. The presentation engine layer, which is composed
solely of a presentation runtime engine, then graphically presents the configured
building blocks (PLANTCockpit Consortium, 2011a).

14.3.3 IMC-AESOP

As opposed to the PLANTCockpit framework, the IMC-AESOP architecture
attempted to provide a generic architecture to support multiple applications, with
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the HMI only being one of these applications. As such, the framework is in fact
a behemoth of services, service groups, and interactions presented using both
natural language and semi-formal descriptions based on the Fundamental Modeling
Concepts (FMC) graphical notation. The abridged description of the framework’s
components are shown in Table 14.4 (Colombo et al., 2014b).

Based on the architectural overview given in Colombo et al. (2014b), the
framework differentiates between four system components. The first of these is the
user roles, which designates users business, operations, engineering, maintenance,
or training roles. These roles interact with or impact the architecture directly or
indirectly as they take part in plant processes. The second system component is
that of the service groups themselves. These act as the glue binding together the
user roles, the external systems (the third component), and the plant data itself (the
fourth) (Colombo et al., 2014b).

14.3.4 eScop

The eScop project is composed of five layers, a physical (PHL), representation
(RPL), orchestration (ORL), visualization (VIS), and interface (INT) layer. The
PHL is concerned with the physical equipment in the eScop system and there-
fore provides device and service descriptions. The information provided by the
physical layer is consumed by the RPL, which is responsible for knowledge
representation. Syntactic and semantic service descriptions based on the service
implementations are mapped and stored in the RPL. The ORL, which coordinates
and executes service compositions, in addition to requiring service descriptions
from the RPL, may also need input from the physical layer for it to be able to
successfully orchestrate the execution of services. The VIS, configured by the
RPL, then provides an interface for the user to interact with the system data
accessible via the PHL. Finally, the INT acts as the entry point for external
systems and services in the eScop architecture and is functionally concerned with
the provision of technology adapters and access control measures (Iarovyi et al.,
2015b).

As for the features of the reference architecture, the system’s services define
concrete technologies for implementation. To exemplify, the various components of
each of the layers are as follows.

Starting from the bottom up, the PHL consists of an I/O module, runtime core,
and Web Services (WS) toolkit. These support connections to the physical devices,
the definition of applications on controllers, and provide the devices with web
services and notification mechanisms, respectively (Iarovyi et al., 2015b).

The RPL achieves its goal of knowledge representation using an ontology
service, a set of functions, and the ontology itself. The ontology service is in
fact made up of four modules: device registration, visualization provider, ontology
manager, and service handler modules. These handle device registration and de-
registration in the ontology, assist with visualization, provide an interface for the
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configuration or editing of the model, or manage the RPL’s connections to the
various components of other layers. The governance of access to the ontology in
the triplestore, on the other hand, is done by the RPL’s SPARQL query factory
and ontology connector internal functions, and it is suggested that, once secured,
SPARQL-over-HTTP may be used for these factors. As for the ontology itself, this
in fact is stipulated as being the eScop Manufacturing Systems Ontology (MSO),
which is a proprietary component created by one of the designing members of the
architecture (Iarovyi et al., 2015b; eScop Consortium, n.d.(a)).

The ORL coordinates the various components in the architecture using a service
composer and an orchestration engine. The former maps process definitions to
configurations applicable to the system, and the latter executes them (eScop
Consortium, n.d.(a)).

The VIS aims to allow for flexible and generic graphical interfaces. For this it
needs a dynamic composition module, a symbol library, and visualization agent(s).
Together, the VIS is able to map descriptions from the RPL to visualization elements
from the symbol library which are then transformed by the agent(s) into web pages
that can be displayed using a web browser (Iarovyi et al., 2015b; eScop Consortium,
n.d.(a)).

14.3.5 Arrowhead Framework

Finally, the Arrowhead project divides its framework into three parts that are design
guidelines, documentation guidelines, and a software framework. The first provides
a description of design patterns for making legacy or newly created application
systems compliant with the Arrowhead Framework. The documentation guidelines
provide templates for the description of services, systems and system-of-systems.
As for the software framework, this is the main concern of this section and is
described in more detail below (Blomstedt et al., 2014b).

The software architecture defines a grouping of core services. These services are
meant to support communication exchanges between domain-specific application
services. These core services and systems are effectively divided into three groups:
Information Infrastructure (II), Systems Management (SM), and Information Assur-
ance (IA). II provides service descriptions and information on how to connect
to services and systems. SM core services are concerned with orchestration and
system-of-systems composition. Finally, those of IA address security and safety
factors in information exchange processes. The categorization of core services and
systems identified by the framework under these three groups is shown in Fig. 14.1
(Blomstedt et al., 2014a,b).
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Fig. 14.1 The Arrowhead framework (Blomstedt et al., 2014b; Varga et al., 2014)

14.4 Realizations of the Reference Architectures

So far, the reference architectures have been described in an abstract manner. This
portion of the chapter inspects the technology stacks implemented by each of the
architectures. For comparability, we segregate these technologies into categories
that address the various functional aspects addressed by all of the architectures. We
provide brief descriptions on both the mature and novel technologies implemented
for each category to give a succinct overview of the technical properties of each
project in the pursuit of achieving interoperability.

14.4.1 Service Discovery

An essential aspect present in any service-oriented architecture is that of service dis-
covery. Due to the close association of the device profile for web services (DPWS)
with SOAs, the use of the web services dynamic discovery (WS-Discovery)
specification is common. Four out of the five architectures, excepting eScop, either
directly implemented or discussed methods to allow for the use of the WS-Discovery
protocol.

The WS-Discovery protocol is based on the use of multicast messages (typically
SOAP-over-UDP) to announce or probe for services using specially crafted eXtensi-
ble Markup Language (XML) documents. Announcements operate using multicast
Hello and best-effort Bye messages. Likewise, Probe and Resolve messages are also
multicast; the former is used to locate services based on service types and/or scopes,
while the latter searches for a specific service by name. The use of a Discovery Proxy
is encouraged to allow for the active suppression of multicast traffic in the network.
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The specification also endorses the caching of multicast service advertisements to
incur further savings. Finally, with respect to securing the discovery process, the
specification does not require, but recommends the use of unique XML signatures
and a number of other properties to mitigate against a variety of attacks (Bullen
et al., 2009).

The IMC-AESOP is one of the architectures implementing the WS-Discovery
protocol directly, for example, to allow Service Bus instances to discover each
other (Nappey et al., 2013). However, one of the main contributions of IMC-
AESOP hinges on its bridging of DPWS with the industry-focused OPC Unified
Architecture (OPC UA) standard. The architecture therefore presents concepts
for supplementing OPC UA’s discovery mechanisms using WS-Discovery. To
elaborate, the OPC UA discovery protocol requires the use of a discovery server. The
address of the server must be known beforehand by participating OPC UA clients
and servers. The IMC-AESOP approach presents two methods for auto-discovery in
OPC UA systems using WS-Discovery. The first involves the use of WS-Discovery
to allow OPC UA clients and servers to automatically find the OPC UA Discovery
Server, while the second approach involves replacing the OPC UA Discovery Server
with the WS-Discovery protocol to allow OPC UA clients to find OPC UA servers
directly (Bony et al., 2011).

A second core technology in IMC-AESOP is the Constrained Application
Protocol (CoAP). Identified as a suitable protocol for device-level integration of
constrained devices, such as those belonging to wireless sensor networks (WSN),
the IMC-AESOP approach discusses a reliance on the discovery mechanisms
of CoAP, CoAP multicast, and the Constrained RESTful Environments (CoRE)
Resource Directory (RD), for the location of services and resources hosted on
resource-limited clients (Eliasson et al., 2013; Kyusakov et al., 2014).

As for PLANTCockpit, as the architecture is dependent on the concepts of
adapters to interface with the various systems and function blocks, the discovery
mechanism employed is dependent on the system being interfaced. For example, the
system implements a DPWS adapter to allow for the discovery of DPWS devices.
The adapters themselves, however, are implemented as function blocks based on the
concepts of IEC 61499 function blocks. The identification of FBs depends on FB
Service Interfaces, and these are implemented using the OSGi framework. As such,
although not explicitly stated, it may be the case that the implementation depends
on OSGi’s service registry to register, get, or listen for services (Iarovyi et al., 2013;
Dennert et al., 2013).

Although the IoT@Work approach explored and compared the WS-Discovery
and OPC-UA’s discovery mechanisms, it did so within the context of auto-
configuration. Instead, the IoT@Work system uses a configurable RESTful Direc-
tory Service (DS) as a form of service registry. Devices interact with the DS using
a RESTful API to retrieve, submit or delete device and service information using
HTTP GET, PUT, POST and DELETE requests. The RESTful nature of the service
allows every service to be modeled as a URL-accessible resource. The system also
supports the use of QR codes and NFC tags for the identification of devices (Rotondi
et al., 2013).
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Similar to IoT@Work, the eScop project generates its own discovery mech-
anisms. Discovery here is based on the multicasting of Hello, Bye and Probe
messages, and in this respect, it is similar to the WS-Discovery specification (Iarovyi
et al., 2016). Inspection of the source code,1 however, shows that the protocol does
not, in fact, follow the WS-Discovery specification. This is as a number of critical
differences exist, such as the use of JavaScript Object Notation (JSON) encoding
for messages, and of multicast IPs and ports different than those stipulated for use
by WS-Discovery.

Finally, the Arrowhead project defines three approaches for service discovery.
The first is a service registry functionality based on the Domain Name System
(DNS) and DNS Service Discovery (DNS-SD). Effectively, DNS is a hierarchical
database mechanism that can store any kind of data and DNS-SD is a method for
specifying how DNS resource records may be named, structured, and browsed.
These records may be accessed using unicast DNS requests or multicast DNS
(mDNS). The Arrowhead framework applies mDNS for constrained devices, such
as those belonging to WSNs. The second and third approaches for discovery in
the Arrowhead projects are based on the use of XML-over-HTTP and JSON-
over-HTTP for RESTful web services. The former uses a DNS protocol specific
to Arrowhead to allow for service discovery and the retrieval of service and
data descriptions. The JSON-over-HTTP approach is marked to be done and an
implementation still remains to be published. The framework does however discuss
the prospect of implementing a translation service for integration between the
XML/JSON and DNS-SD registry systems (Delsing, 2015; Cheshire and Krochmal,
2013; Arrowhead Consortium, 2014a; Blomstedt and Olofsson, 2016b; Blomstedt,
2016a,b; Blomstedt and Olofsson, 2016c).

14.4.2 Service Description

For this subsection, we focus specifically on the aspect of service contracts as
defined in Table 14.1. The goal of service contracts is to define a minimal level
of interoperability and thereby reduce the need for integration. It may do so by
making available definitions of the service’s functionality, data model, data transfer
mechanisms and encodings, and policies for security and quality of service, amongst
other things. Naturally, these contracts themselves need to be interpretable by all
services available in the registry or operating environment. Similar to what was the
case for service discovery, a web services technology, the Web Services Description
Language (WSDL), is employed by a number of projects (Erl, 2008).

The WSDL language is a machine-readable XML-based language for the
definition of interfaces. It is capable of describing all of a service’s operations,
the data required and output by each operation, and their respective data types.

1http://www.escop-project.eu/tools/.

http://www.escop-project.eu/tools/
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It may also provide addressing and networking information to support inter-
service connectivity. Both of the IMC-AESOP and PLANTCockpit projects use
WSDL files for service descriptions. However, for describing sensor services, the
IMC-AESOP project uses the JSON, XML and EXI-compatible Sensor Markup
Language (SenML) (PLANTCockpit Consortium, 2012c; Colombo et al., 2014b).

The eScop project also employs a WS-based approach and develops a WS-
enabled Remote Terminal Unit (RTU) titled the eScopRTU. Within the eScopRTU,
all services are IEC 61131 Structured Text Language (STL) functions that are
used to execute operations on resources. They are RESTful, hypermedia-driven,
accessible via a REST API, and the API documentation, read “service descriptions”,
are created using Swagger. Swagger is a specification for the definition of language-
agnostic, human and machine-readable representations of RESTful APIs. The
specification requires that the API be described using either JSON or YAML2; the
resulting files may then be processed by tools that can generate clients in a variety
of languages. The Swagger ecosystem also includes tools to display and test the
API. Swagger has since been renamed the OpenAPI Specification (OAS) (Faist and
Štětina, 2015; Ratovsky et al., 2014).

IoT@Work, as previously mentioned, explored the prospects of auto-
configuration using WS-Discovery and OPC UA. Part of the procedure outlined
involves the acquisition of service descriptions. With WS-Discovery, this was
achieved by having metadata on a DPWS-enabled device retrieved by its controller
using the WS-Transfer protocol. The metadata that may be included is defined as
part of the WS-MetadataExchange specification. This metadata would allow the
service to share WSDL definitions, XML schema, policy expressions and so on.
For the case of OPC UA, the GetEndpoints Service, which is part of the OPC UA
standard, retrieves the information required to allow for secure communication
between clients and servers. The information mainly consists of addressing and
security policies and definitions (Dürkop et al., 2012; Ballinger et al., 2008; Mahnke
et al., 2009).

Service description in Arrowhead is dependent on the method of service
discovery implemented. As previously mentioned, the DNS system uses DNS-
SD guidelines to organise the resource records. In such a case, the specification
already allots a structure for the definition of addressing, service name, and other
connection-related information. For any additional requirements, the DNS TXT
record is capable of accommodating such information. The XML-based system uses
XML schema for the description of data, and the Web Application Description
Language (WADL), which is WSDL’s counterpart for RESTful services for the
description of service interfaces. The JSON-based system, as previously mentioned,
is yet to be defined (Blomstedt and Olofsson, 2016b; Blomstedt, 2016a).

2http://www.yaml.org/.

http://www.yaml.org/
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14.4.3 Data Representation and Access

The aspect of data representation and access has been covered somewhat partially
while discussing realizations of service descriptions. Our focus here is a more in-
depth description of the information or data model and the semantics used by the
architectures’ respective implementations. The main purpose of these models and
semantics is to homogenize the representation of information or data in the entire
system ensuring accessibility by all participants and avoiding the need for any data
transformation (Erl, 2008).

Of the five projects only two, IMC-AESOP and Arrowhead, rely primarily on
mature standardized models for the representation of data. In IMC-AESOP, the
system applies the OPC UA information model to link up information in the
majority of the enterprise, save the lowest of layers, which instead uses a custom
data model based on the Sensor Markup Language (SenML). The former, OPC
UA, contains a flexible address space that can be used to create information models
that capture objects, their attributes, and relationships. These objects are known as
nodes in the OPC UA address space and can be used to represent physical or virtual
components. The resulting information models create full-mesh networks of these
nodes, with associated properties and relations, and are exposed to applications
through OPC UA servers (Colombo et al., 2014b; Mahnke et al., 2009; Henßen
and Schleipen, 2014).

As for SenML, the associated specification defines a data model suitable for
highly constrained devices, such as sensors and actuators. It does so by having
a minimalist approach where the goal is to maximize the amount of information
not included in a message while still allowing for self-describing data that includes
measurements and meta-data. The result is a single array data model that contains
a series of data records. The records can contain the device’s unique identifier, a
time stamp, the measurement value and unit, amongst other details, for example,
to allow for the description of the measurements and device, in addition to the
measurement values themselves. The IMC-AESOP project, however, claims that the
level of granularity of information carried by SenML’s data model are insufficient
for its needs and therefore create a custom data model that is primarily and heavily
based on SenML to achieve this granularity (Jennings et al., 2016; Colombo et al.,
2014b).

Similar to IMC-AESOP, Arrowhead also identifies OPC UA and SenML as suit-
able candidates for the implementation of data structures and semantics. However, it
also highlights the Home Performance XML standard and the CoRE Link Format as
appropriate for its needs. The former is a set of data standards that define a number of
XML schema and associated data elements to allow for the description of customers,
contractors, buildings (and their components and systems), and energy performance
factors such as conservation, consumption, and savings, both as actual readings
and as estimates. The goal of these standards is therefore, as the name implies,
standardization in the collection and transfer of information in the domain of home
performance. The latter, the CoRE Link Format, is a realization for exposing the
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URIs of resources on constrained devices and networks. It does so by extending
the HTTP Link Header format to include the URI descriptions, such as resource
relations and attributes, as a message payload, and specifying an entry point URI
as a default request path for the retrieval of these URIs. We do note, however, the
existence of divergences from the semantic and modeling technologies listed in the
Arrowhead guidelines as the energy production demonstrator pilot, for example,
adopts the domain-specific language, Thing Markup Language (ThingML), instead
of the ones listed above for its semantic needs (Varga et al., 2014; Building
Performance Institute, 2013a,b; Shelby, 2012; Arrowhead Consortium, 2014b).

Opposed to IMC-AESOP and Arrowhead are the ontology-driven eScop and
IoT@Work models. eScop, as previously mentioned, develops a proprietary Man-
ufacturing System Ontology (MSO) based on OWL to describe the system com-
ponents, their attributes and relationships. The MSO is in fact the evolved form
of the Politecnico di Milano Production Systems Ontology (P-PSO), which is a
general taxonomy for discrete manufacturing systems. The MSO extends the P-
PSO to include logistics and process production from the perspective of control.
The MSO also incorporates concepts to allow for the visualization of the respective
systems and their data. The information is stored in an RDF triple-store database
that supports SPARQL-over-HTTP to allow for web-based interactions with the
ontology (Fumagalli et al., 2014; Negri et al., 2015; eScop Consortium, n.d.(c)).

The IoT@Work project also follows an ontology based approach by storing
information on devices in a DS-specific data model (ontology) that uses an
RDF-triple-store. In addition to RDF, the model is also inspired by the uCode
Relation Model that models device profile attributes as subject-predicate-object
triples. Effectively, the resulting DS model is a connected directed graph where
the vertices are physical or virtual entities or primitive elements and the edges in
the graph represent the relationships between the various entities and elements.
The DS is also capable of validating and handling requests for information on
devices acquired through an exposed RESTful interface. This information may
be retrieved from the database or by collecting this information directly from
connected devices. The IoT@Work-compliant devices, unlike the DS, use the OPC
UA address space and information model. The project also supports the retrieval
of information from SNMP compliant devices. Mappings between the respective
device and DS models are therefore a necessity (Rotondi et al., 2013; Imtiaz et al.,
2013).

The PLANTCockpit project presents its own metamodel for a database schema
and an XML schema for the storage of visualization engine configurations. The
database schema consists of four customizable data types and runtime data types
to allow for the persistence of analytics-relevant data. The XML schema contains
a number of elements to allow for the rendering of SVG components in HTML5
pages, and their linking to data points to create a configurable and compound HMI
made up of different graphical elements (PLANTCockpit Consortium, 2012b).
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14.4.4 Information and Message Encoding

For message encoding, all of the projects employ XML and extend support for
one or more other specifications. XML is in fact a platform-independent data
structuring format that defines rules for the textual encoding of human and machine-
readable data. It allows for user-defined tags and different data types and processing
methods. By allowing for the definition of syntax rules and standardized contracts
through the use of document type definition (DTD) or XML schema definition
(XSD) descriptions, the validation and verification of encoded data structures are
possible. Several specifications have since been defined for the binary-encoding of
XML documents to address the overhead and performance issues associated with
XML. Of the possible choices, the Efficient XML Interchange (EXI) specification
is employed by the IMC-AESOP and Arrowhead projects for the compact exchange
of information (PLANTCockpit Consortium, 2012d; Hill, 2015; Varga et al., 2014;
Colombo et al., 2014b; Rotondi et al., 2013; Negri et al., 2016).

Other than XML, JSON is also widely employed, being used by all but
PLANTCockpit. Stipulations in the PLANTCockpit approach do however allow
for the inclusion of JSON. This is the case, for example, with the configuration
connector module which is required to be format-agnostic in handling configuration
data. As for the JSON specification itself, JSON, like XML, is a data structuring
specification that defines rules for the formatting of exchangeable and human and
machine-readable data. Tools for the parsing and generation of JSON exist for a
large number of programming languages therefore making it a popular alternative
to XML. It follows a minimalist encoding approach, using a small number of
characters to denote the structure and value of data. Similar to XML, JSON allows
for the definition of JSON-based schema for the validation of resulting encodings.
Binary encodings, such as the Concise Binary Object Representation (CBOR)
specification, exist for JSON. However, aside from the mention of CBOR support
as a long-term goal for Arrowhead’s historian, it does not appear as though any of
the projects include a binary encoding for JSON in their respective stacks (Colombo
et al., 2014b; Rotondi et al., 2010; Varga et al., 2014; PLANTCockpit Consortium,
2011b; eScop Consortium, n.d.(b); Galiegue et al., 2013a,b; Eliasson, 2015).

Aside from XML, EXI, and JSON, three other formats used are OPC UA
Binary, HTML, and XML-binary Optimized Packaging and Message Transmission
Optimization Mechanism (XOP/MTOM). OPC UA Binary, as the name implies,
is the binary protocol for OPC UA. Like other binary representations, it is the
performance and overhead-sensitive data format for OPC UA. It is used in both
IoT@Work and IMC-AESOP and is considered to be part of the PLANTCock-
pit OPC UA adapter. HTML, on the other hand, is used for the structuring
and presentation of multimedia web content using human and machine-readable
semantic descriptions. It is explicitly stated as part of the visualization layers of
IoT@Work and PLANTCockpit. Finally, XOP/MTOM, is used by IMC-AESOP
for the transmission and reception of binary data in SOAP messages (Rotondi et al.,
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2013; PLANTCockpit Consortium, 2012a,b; Colombo et al., 2014b; Imtiaz and
Jasperneite, 2013; PLANTCockpit Consortium, 2012c).

Further specifications include security relevant ones, such as the XML-based
Security Assertion Markup Language (SAML) and eXtensible Access Control
Markup Language (XACML), which are employed in IoT@Work, SOAP for the
structuring of messages, and the previously mentioned YAML for the description of
RESTful APIs. The first of these, SAML, is a standard for the communication of
data for authentication and authorization, while XACML handles the definition of
access policies. How these are applied as part of IoT@Work will be discussed later
on in this chapter. SOAP defines a platform independent XML-based framework
for message structuring, encoding, and processing and for the representation of
remote procedure calls and responses. The SOAP message structure is made up of
a SOAP envelope, SOAP body, and, optionally a SOAP header. The first, the SOAP
envelope, is used to represent the message itself, while the SOAP header can be
used to add features and their associated attributes to a message. Lastly, the SOAP
body contains the message contents to be conveyed to the other communicating
parties. The platform-agnostic nature of the SOAP protocol is one of the driving
factors behind its popularity in the web services community. As for YAML, this
was discussed earlier as the language of choice for the configuration of Swagger
files under the eScop project. YAML, like its counterparts, is a serialization language
aimed at minimizing the number of characters required to indicate the structure and
value of data while maximizing human readability in the resulting data interchange
format. It is built around a typing system, an aliasing mechanism and primitives
such as mappings, scalars and sequences. According to the YAML specification,
compared to JSON, it is more difficult to generate and parse but more legible to
humans than JSON. The specification also states that there is no direct correlation
between XML and YAML (Rotondi et al., 2013; OASIS Security Services (SAML)
TC, n.d.; Iarovyi et al., 2015a; PLANTCockpit Consortium, 2012d; Ben-Kiki et al.,
2009; Box et al., 2000).

14.4.5 Message Exchange

For message exchange, we note a preference for web-based solutions, such as HTTP
and CoAP, and message-oriented middleware (MOM), such as JMS, AMQP, XMPP,
and MQTT.

Starting with HTTP, this application-level, stateless, and generic protocol is
used by all projects for the transfer of hypermedia across networks. The protocol
typically runs over TCP, employs MIME-like messages for communication, and
uses URIs to provide access to resources. For its secure equivalent, HTTPS, HTTP
is transported over a TLS tunnel. In several instances, such as IMC-AESOP and
PLANTCockpit, implementations used HTTP/HTTPS for the conveyance of SOAP
messages. CoAP, on the other hand, is a low overhead URI-based web protocol for
machine-to-machine (M2M) communication over UDP with support for unicasting,
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multicasting, proxying, caching, stateless HTTP mapping, and binding to DTLS.
Due to properties such as these, a number of projects, namely IMC-AESOP and
Arrowhead, have favored the use of the CoAP protocol for the access of constrained
devices and network implementations in their realizations (Fielding and Reschke,
2014; Rescorla, 2000; Varga et al., 2014; Rotondi et al., 2010; Colombo et al.,
2014b; PLANTCockpit Consortium, 2012c; Severa et al., n.d.; Shelby et al., 2014;
Eliasson, 2015; Derhamy, 2015).

As for the MOMs employed, PLANTCockpit uses JMS, IoT@Work employs
AMQP, and certain Arrowhead demonstrators implement XMPP or MQTT. MOMs
are a paradigm for asynchronous, loosely coupled and reliable communication in
distributed systems. These properties, as well as others such as high scalability and
availability, are enabled through the use of an intermediate layer, the middleware,
that handles the messaging process on behalf of the communicating parties. The
first MOM to be discussed is JMS, which is a vendor-agnostic standard that
defines a Java API and semantics for the description of the interface and the
messaging system behavior It therefore allows applications to communicate with
heterogeneous enterprise messaging systems, and simplifies their development
process. However, the implementation of the messaging service itself is not defined
by the standard. As such, only a very general structure for the JMS message is
defined by the standard necessitating the inclusion of integration techniques if
multiple implementations of MOM exist within the same system (Mahmoud, 2004;
Richards et al., 2009; PLANTCockpit Consortium, 2012a,d; Imtiaz et al., 2013;
Skou et al., 2014; Eliasson, 2015; Derhamy, 2015).

In contrast to JMS, AMQP defines an open-standard messaging protocol that
includes the networking protocol and message structure and remains agnostic
towards the client API and message broker employed. Its protocol provides flow
control features, message delivery guarantees, and highly flexible routing mech-
anisms for communicating parties. It appears that IoT@Work based its decision
on using AMQP for its ENS implementation on the fact that it addresses, as
a standard, both aspects of high-level modeling and wire-level communication
concepts (OASIS, 2012; Luzuriaga et al., 2015; Richards, 2011; Imtiaz et al., 2013).

In terms of Arrowhead’s choices, the XMPP and MQTT protocols are either
highlighted for use or directly implemented in a number of its services and
demonstrator pilots. The former, XMPP is a widely-implemented XML and TCP/IP
based protocol for near-real-time communication. The protocol addresses aspects
related to connection establishment and teardown, security, discovery, reliability,
messaging, and inter-entity interactions. MQTT, on the other hand, is a lightweight
protocol for constrained and unreliable systems that is more efficient than HTTPS,
but is not extensible, and does not natively include connection security, transactions,
discovery, or message fragmentation features. Multiple instances in the Arrowhead
documents list the desire for services to support both MQTT and XMPP, or, in
the case of the mediator service, to support translation between the two protocols
(Le Pape et al., 2014; Skou et al., 2014; Eliasson, 2015; Derhamy, 2015; Gazis et al.,
2015; Saint-Andre, 2011).
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Other protocols noted include DPWS and OPC UA. DPWS uses SOAP-over-
HTTP and SOAP-over-UDP bindings, yet certain member services, such as WS-
Discovery and WS-Transfer, are transport independent. With SOAP-over-HTTP
the SOAP message is placed inside the HTTP payload field for request/response
messaging allowing for features from both specifications. Similarly, the SOAP-over-
UDP binding allows for the inheritance of UDP’s messaging, encoding, security and
other mechanisms.

Regarding OPC UA, four combinations of encoding, security, and transport
protocols are possible:

• UA Binary C UA-SecureConversation C UA-TCP
• UA Binary C HTTPS
• UA XML C SOAP C HTTPS
• UA XML C WS-SecureConversation C SOAP C HTTP

Of these four, the first of these compositions, referred to as native UA Binary, is
mandatory for implementation. Both of IMC-AESOP and IoT@Work use the native
UA Binary profile for the transport layer of their OPC UA implementations. IMC-
AESOP, however, also includes a communication interface in its DPWS stack that
implements the third profile made up of UA XML, SOAP and HTTPS, labeling it
as OPC UA over WS. Arrowhead, on the other hand, presents a proof of concept
of a condition monitoring system that employs the OPC UA SDK from Unified
Automation, and discusses its use for the integration of legacy components in its
framework. Finally, although OPC UA is highlighted as a development technology
for PLANTCockpit, the details of the implementation is unclear from the public
deliverables (Jeyaraman et al., 2008; Zurawski, 2005; Moreau et al., 2007; Colombo
et al., 2014b; Mahnke et al., 2009; Bony et al., 2011; Varga et al., 2014; Le Pape
et al., 2014; Hästbacka et al., 2014; PLANTCockpit Consortium, 2012c).

14.4.6 Networking, Data Link and Media

As may have been partially visible from the previous parts of this chapter, a
wide and heterogeneous variety of media and their associated specifications are
used, required, or discussed for possible implementations. Effectively, however,
only three projects, Arrowhead, IMC-AESOP, and IoT@Work, explicitly state the
technologies implemented at the networking, data link and media layers.

The Arrowhead framework’s stack is declared as being made up of IPv4/IPv6,
6LoWPAN, 802.11p, 802.15.4, NFC, UWB, and NTP. However, we also note
that, other than the aforementioned protocols, several more are used in one of
the pilot demonstrations. Specifically, the GSM (2G), GPRS (2.5G), UMTS (3G),
WiFi and RS-485 CAN standards are highlighted by the Arrowhead project as
possible solutions for communication in electrical vehicle charging infrastructure.
The wireless specifications are to allow users to communicate with charging
stations using devices separate from the vehicle, such as mobile devices. So far,
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the pilot demonstration has limited its implementation to UMTS and WiFi. As
for the communication channel between the vehicle and the charging station, the
Arrowhead project uses CAN, basing it on the CHAdeMO standard (Varga et al.,
2014; Bellavista and Ornato, 2014; Arrowhead Consortium, 2014c; Bocchio and
Ornato, 2014; Kleyko, 2016).

The IMC-AESOP project declares a stack somewhat similar to Arrowhead,
using IPv4, IPv6, TCP, UDP, 6LoWPAN, IEEE 802.15.4, IEEE 802.11 and NTP.
However, it uses RS-485 Modbus instead of CAN, and also includes Profibus,
UA Native, and IEEE 1588 PTP. The majority of these protocols, namely IPv4,
IPv6, TCP, UDP, 6LoWPAN are part of the DPWSCore stack in IMC-AESOP. The
component responsible for bridging the DPWS and OPC UA stacks implements the
UA Native protocol. A pilot demonstrating the migration of a plant’s lubrication
system to the IMC-AESOP approach used the Modbus protocol to connect to the
distributed control system and a specific stack consisting of XML/EXI, CoAP,
NTP, UDP, IP, 6LoWPAN, IEEE 802.15.4. A second pilot, for building system of
systems with SOA technology highlights the integration of smart home systems with
communication infrastructure using SenML, EXI, CoAP, IPv6, IEEE 802.11, IEEE
802.15.4 and cellphone communication technologies (agnostic) (Colombo et al.,
2014b).

The IoT@Work approach necessitates the use of IPv6 and designates IPv4 as
optional. For its DS, as previously discussed, both NFC and QR codes are supported.
For timing, both NTP or IEEE 1588 PTP are possible. To demonstrate the auto-
configuration system, it uses the RT Ethernet standard Profinet. Its network slices
technology is mapped using Ethernet VLAN. Where IoT@Work differs from other
approaches is its focus on discussing facilitating protocols such as SNMP, DHCP,
DNS, LLDP, and STP to support the network-level autoconfiguration of devices
(Rotondi et al., 2013; Houyou et al., 2011; Imtiaz et al., 2013).

14.4.7 Security

The IoT@Work approach to security is founded on capability-based access control.
This mechanism centers around the use of transmissible tokens that reference
an element and its access rights. A process in possession of a valid token may
therefore interact with the referenced element within the constraints of its access
rights. These capabilities may be forged or revoked in the form of XML documents
following specific schema with elements borrowed from the SAML, XACML,
Digital Signature and XML encryption schema. IoT@Work also requires that
devices have secure identifiers based on the IEEE 802.1AR specification, and
that authentication for NAC be carried out based on IEEE 802.1X. With these
mechanisms in hand, the system designs and employs multiple components in a SO
fashion to perform NAC and to secure the system’s event namespace (Gusmeroli
et al., 2013; Rotondi et al., 2013; Fischer and Gesner, 2012).
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The PLANTCockpit project explored the possibility of using single-sign on
solutions for a security service. Ultimately, the PLANTCockpit approach employs
an LDAP service for access control and the management of user rights. Interactions
with the LDAP service are through a Java client implemented using the JLDAP
library. User access rights govern the components and data sources that a user is
permitted to interact with. As for the security aspects related to PLANTCockpit’s
use of JMS, notes in the deliverables claim that PLANTCockpit permits the encryp-
tion of the JMS message body, with the encryption to be managed using a central
component and that JMS security is addressed using ‘interceptors’. Unfortunately,
the security aspects of PLANTCockpit are addressed in a non-public deliverable
(D3.2) and, as such, details on the interceptors and other system mechanisms for
security are not available for us to elaborate further (PLANTCockpit Consortium,
2011b, 2014, 2012d).

As far as the published materials go, Arrowhead instills security measures for its
Service Discovery and Authorization Control, for mediation in legacy systems, and
for communication in general. The Service Discovery service is secured by using
DNS TSIG keys for DNS updates and DNS Security Extensions (DNSSEC) for
queries. Authorization Control is dependent on the use of X.509 certificates, and
provides TLS security for the establishment of secure communication links. In the
case of Arrowhead’s Virtual Market of Energy pilot, the Authorization module uses
Public Key Infrastructure (PKI) and X.509 certificates over REST for authentication
and XMPP-over-TLS for encrypted communications. Generally, the consensus
throughout the Arrowhead framework is to secure information exchange using TLS.
In the case of UDP communication, DTLS is highlighted as the applicable counter-
part. The project has also expressed a desire to develop a secure NFC interface for
industrial applications. Based on a publication, this aspect may have been addressed
through the ‘ESTADO’ system for smart maintenance. This system uses a ‘CUT-
IN’ module made up of a secure and a non-secure but more powerful controller.
The module is designed to be an add-on that would provide security features to
‘non-smart’ and legacy devices. This would include abilities for the secure storage
and execution of data, integrity checks, encrypted memory and encrypted in-CPU
calculations. Finally, we note the use of the Message Passing Interface (MPI)
with Secure Shell (SSH) for protected communications in the implementation of a
distributed framework for 3D swarming systems such as aerial vehicles and WSNs
(Blomstedt and Olofsson, 2016a,b; Varga et al., 2014; Chrysoulas and Jansson,
2016; Krimm et al., 2014; Lesjak et al., 2014; Sadrollah et al., 2014).

In the case of IMC-AESOP, by self-admission, “cyber-security was not at the
heart of [this] project” (Colombo et al., 2014b). As such, IMC-AESOP states
that WS-Security and WS-ReliableMessaging were not implemented as part of its
DPWS communication stack, and neither was IPsec included in the IPv6-based
stack for WSANs, claiming them all as planned additions. Furthermore, the service
bus in IMC-AESOP only implemented HTTP basic authentication and Role-Based
Access Control (RBAC) for service calls with such rights only being given to
administrative users. In accordance with RFC 7617, unless communication takes
place within a secure system (i.e., over TLS), basic authentication is not to be
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considered secure as credentials are transferred in clear-text. It is unclear if IMC-
AESOP implements basic authentication over a secure channel (Colombo et al.,
2014b; Reschke, 2015).

Similarly, other than security testing and a high level discussion of defining and
applying a security model as part of an SOA ecosystem, eScop did not address the
aspect of security. In the case of the former, security testing of the RPL is defined as a
method for verifying the robustness of the ontology by employing “ad-hoc offensive
queries”. For the VIS layer, testing is to be applied to access control measures. As for
the testing of the integration of the PHL, RPL, VIS and ORL, this entailed ensuring
that data in the system is secured and that the functionality of the system cannot be
misused (eScop Consortium, 2014; Simone et al., n.d.).

14.5 Discussion

The concept of SOAs has been in existence for well over a decade and is generally
considered to be a stable and tried architectural design pattern. The evolution of
SOAs and alternatives to the SO approach within the context of industrial systems
are partially addressed in Chaps. 8 and 13. This chapter, on the other hand, inspects
the architectural designs and technological choices of five preliminary SO RAs.
Based on this examination, a number of features and limitations common to all five
projects are apparent. One such observation is the lack of homogeneity in approach
by all five projects in defining their respective architectures. Differences in the
levels of abstraction, the aspects chosen for specification, and the selected forms of
representation are some noted dissimilarities. For example, IMC-AESOP pursues a
high level of abstraction, and therefore limits its reference architecture to a definition
of service groups, member services, dependencies, and possibilities for inter-service
interactions. It does not specify any protocols and standards as part of the reference
architecture and instead addresses these aspects through prototypical demonstrators
and pilot projects. In direct contrast are the IoT@Work and Arrowhead projects
which provide concrete and detailed architectures with specific protocols, standards
and specifications selected for various elements of their architectures. In terms of
representation, it may be observed that only IMC-AESOP, eScop and Arrowhead
declare their use of semi-formal notation in their respective documents, while
IoT@Work and PLANTCockpit lack such explicit statements. Note that a related
study on software reference architectures concludes that informal specification is
found to introduce a lack of clarity and precision in architectures by leaving room
for interpretation (Angelov et al., 2012).

Further issues include missing real-time communication features critical to
industrial applications. IMC-AESOP, IoT@Work, and Arrowhead all include proto-
cols to interface with RT systems in their demonstrators or pilot projects. They also
have a number of publications that take steps towards addressing real-time aspects in
processing, communication, and applications such as auto-configuration (Lindgren
et al., 2013; Jammes, 2011; Pietrzak et al., 2011; Dürkop et al., 2012; Durkop et al.,
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2013; Garibay-Martínez et al., 2013, 2014a,b). Yet, the services themselves, and
the majority of the selected technologies, remain largely without RT-capabilities.
This introduces a concern as to their actual ability to operate in safety-critical CPPS
environments.

Finally, in the case of interoperability, it appears that integration is still a
necessity. This is since a number of the reviewed projects, in multiple instances,
have chosen to select several technologies to address certain critical features in their
architectures in the pursuit of flexibility. This seems to be the case, for example, with
Arrowhead’s approach for discovery and IoT@Work’s requirement for mappings
for its novel internal data model. Determining the overall impact of the continued
necessity for integration in SOAs, as well as the effect of the missing features, the
selected levels of abstraction and representation is a matter than can be addressed
through follow-up surveys. Such studies may aim to draw conclusions on the
success of the architectures’ choices by determining adoption rates and stakeholder
criticisms. Unfortunately, while such information would be of great benefit to both
researchers and practitioners alike, it is largely absent from literature.

In sum, it is undeniable that interoperability in the industrial domain has been
marred in complexity since its conception. It therefore appears as though integration
is here to stay for the foreseeable future. Yet, the SO approach, as presented
in this chapter, may be used to strengthen and structure the overall environment
through clearly defined and documented systems, components, boundaries and
interfaces, protocols, guidelines and policies. It is therefore encouraged that SO
solutions continue development in the industrial domain. This is both to address the
shortcomings of existing projects and to further the pursuit of agility in enterprises
in the face of turbulent technical, economic, and legal environments.

Acknowledgements This paper is supported by Technische Universität Wien research funds as
part of the Doctoral College Cyber-Physical Production Systems.

References

Angelov, S., Grefen, P., et al.: A framework for analysis and design of software reference
architectures. Inf. Softw. Technol. 54(4), 417–431 (2012)

Arrowhead Consortium: Arrowhead demo T4.2. Technical report (2014a)
Arrowhead Consortium: WP 4—T4.1 Demonstrator (1st Generation): The Safe Home. Technical

report (2014b)
Arrowhead Consortium: WP3.1.2 PO 002 - Requirements definition - Communication and

services. Technical report, Arrowhead Consortium (2014c)
Ballinger, K., Bissett, B., et al.: Web Services Metadata Exchange 1.1 (WS- MetadataExchange).

(2008)
Bellavista, P., Ornato, M.: Arrowhead D3.3 Appendix 3.3b PO 3.3-002 and PO 3.3-004 of Task

3.3 Details about First Generation Pilot Results. Technical report (2014)
Ben-Kiki, O., Evans, C., et al.: YAML Ain’t Markup Language (YAML) (tm) Version 1.2.,

YAML.org. (2009)
Blomstedt, F.: Service Discovery REST_WS-XML-SPSDTR Version 1.1. Technical report, The

Arrowhead Consortium (2016a)



14 Service-Oriented Architectures for Interoperability in Industrial Enterprises 395

Blomstedt, F.: ServiceRegistryBridge Version 1.1. Technical report, The Arrowhead Consortium
(2016b)

Blomstedt, F., Olofsson, P.: Orchestration System Version 1.1. Technical report, The Arrowhead
Consortium (2016a)

Blomstedt, F., Olofsson, P.: Service Discovery DNS-SD-TSIG-SPDNS Version 1.3. Technical
report, The Arrowhead Consortium (2016b)

Blomstedt, F., Olofsson, P.: Service Discovery REST_WS-JSON-SPSDTR Version 1.1. Technical
report, The Arrowhead Consortium (2016c)

Blomstedt, F., Contini, L., et al.: Deliverable D8.3. Technical report, Arrowhead Consortium
(2014a)

Blomstedt, F., Ferreira, L., et al.: The arrowhead approach for SOA application development
and documentation. In: 40th Annual Conference of the IEEE Industrial Electronics Society
(IECON), pp. 2631–2637 (2014b)

Bocchio, S., Ornato, M.: Arrowhead D3.3 Appendix 3.1.1.c PO 002 of Task 3.1.1 Task and
concepts. Technical report (2014)

Bony, B., Harnischfeger, M., et al.: Convergence of OPC UA and DPWS with a cross-domain data
model. In: 9th IEEE International Conference on Industrial Informatics (INDIN) (2011)

Box, D., Ehnebuske, D., et al.: Simple Object Access Protocol (SOAP) 1.1. W3C Note. World
Wide Web Consortium (2000)

Building Performance Institute, Inc.: BPI-2100-S-2013 Standard for Home Performance-Related
Data Transfer. (2013a)

Building Performance Institute, Inc.: BPI-2200-S-2013 Standard for Home Performance-Related
Data Collection. (2013b)

Bullen, G., Carter, S., et al.: Web Services Dynamic Discovery (WS-Discovery) Version 1.1.
Organization for the Advancement of Structured Information Standards (2009)

Cheshire, S., Krochmal, M.: RFC 6762: Multicast DNS. Technical report (2013)
Choudri, A.: The agile enterprise. In: ReVelle, J. (ed.) Manufacturing Handbook of Best Practices:

An Innovation, Productivity and Quality Focus, pp. 3–23. CRC Press, Boca Raton (2001)
Chrysoulas, C., Jansson, O.: Arrowhead System Description (SysD) - Translation System Version

0.4. Technical report, The Arrowhead Consortium (2016)
Colombo, A., Bangemann, T., Karnouskos, S.: IMC-AESOP outcomes: Paving the way to col-

laborative manufacturing systems. In: 12th International Conference on Industrial Informatics
(INDIN) (2014a)

Colombo, A., Bangemann, T., Karnouskos, S., et al., (eds.): Industrial Cloud-Based Cyber-Physical
Systems. Springer, Cham (2014b). ISBN:978-3-319-05623-4 978-3-319-05624-1

Corrêa, H.: Agile manufacturing as the 21st century strategy for improving manufacturing
competitiveness. In: Gunasekaran, A. (ed.) Agile Manufacturing: The 21st Century Competitive
Strategy, pp. 3–23. Elsevier Science Ltd, Oxford (2001)

Delsing, J.: Building automation systems from Internet of Things. In: Presented as an 20th
IEEE International Conference on Emerging Technologies and Factory Automation Keynote
Presentation, Luxembourg (2015)

Dennert, A., Montemayor, J., et al.: Advanced concepts for flexible data integration in heteroge-
neous production environment. In: IFAC Proceedings Volumes 46(7), 348–353 (2013)

Derhamy, H.: Arrowhead transparency protocol translation. In: Presented at the Arrowhead
Budapest Meeting (2015)

Dürkop, L., Imtiaz, J., et al.: Service-oriented architecture for the autocon- figuration of real-time
Ethernet systems. In: 3rd Annual Colloquium Communication in Automation (KommA) (2012)

Durkop, L., Imtiaz, J., et al.: Using OPC-UA for the autoconfiguration of real-time Ethernet
systems. In: 11th International Conference on Industrial Informatics (INDIN) (2013)

Eliasson, J.: Arrowhead historian system. In: Presented at the Arrowhead Budapest Meeting (2015)
Eliasson, J., Delsing, J., et al.: A SOA-based framework for integration of intelligent rock bolts

with Internet of things. In: IEEE International Conference on Industrial Technology (ICIT)
(2013)

Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River, NJ (2008)



396 A. Ismail and W. Kastner

Erl, T.: SOA Design Patterns, 1st edn. Prentice Hall Service-Oriented Computing Series from
Thomas Erl. Prentice Hall, Upper Saddle River, NJ (2009)

Erl, T., Gee, C., et al.: Next Generation SOA: A Concise Introduction to Service Technology and
Service-Orientation. Pearson Education, Upper Saddle River (2014)

eScop Consortium: 1st Annual Report. Technical report. http://www.escop-project.eu/wp-content/
uploads/2013/05/D14_eScop_Annual_Report1_publishable-summary.pdf (2013). Visited on
08 Dec 2016

eScop Consortium: D2.4 General specification and design of eScop reference architecture.
Technical report (2014)

eScop Consortium: eScop Architecture. Technical report (n.d.[a])
eScop Consortium: Orchestration Layer Training Material. Technical report (n.d.[b])
eScop Consortium: Semantic Workbench. Technical report (n.d.[c])
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Chapter 15
A Deterministic Product Ramp-up Process: How
to Integrate a Multi-Disciplinary Knowledge
Base
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Abstract Ramping up new products to volume production is a challenge for most
manufacturing companies. The deviation between plan and reality of costs and
duration of ramp-up projects is still significant, and the achievable quality of new
products at the start-up of volume production is difficult to predict. Consequently,
new products arrive too late at the customer, causing dissatisfaction or even loss
of customers, additional operational costs or unplanned enhancement of ramp-
up budget. The vertical knowledge exchange between product engineering and
process engineering, as well as horizontally along the production process and the
supply chain has turned out to be the major reason for deviations. This chapter
describes how information from product engineering and process engineering has
to be structured for automated recommendation of information reuse during the
planning of ramp-up projects. It discusses the involvement of a multi-disciplinary
knowledge base in a production environment but also organizational measures to
be taken into account in order to address this challenge. Needs for standardization
across enterprises is addressed as well. Through thus achievable improvement of
planning quality, based on reused production knowledge, ramp-up projects can
improve towards deterministic ramp-up processes. The article is of interest for
industrial engineers, quality managers and ICT-managers in the industrial field.
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15.1 Introduction

The trend towards individualized products and shorter product life cycles, which
is expected to be accelerated by Industrie 4.0, enforces companies to improve the
performance of product ramp-up projects. The manufacturing industries (Kurttila
et al. 2010; Fransoo and de Kok 2007) have to deal with shortening of product
life cycles and an increasing number of new products in their production lines. In
Chapter 4 this topic is also addressed as an essential part of the product lifecycle.
As a consequence, product ramp-up projects have to be better predictable with
respect to their costs and durations but also concerning the achieved initial yield.
Moreover, costs and duration of ramp-up projects have to be minimized, and the
initially achieved yield has to be maximized.

The time span within which a new product is ramped up after the end of
product development to stable volume production is called the ramp-up phase. The
ramp-up phase usually begins when the development phase of the new product
ends (Fig. 15.1). From the development phase there is obtained a so called bill
of material—abbreviated as BOM—of the new product. This is the hierarchical
structure of all subparts or subproducts which composes the final product, including
the detailed characteristics of all ingredients of the subproducts (e.g., size, weight,
uniformity of surface).

Together with the BOM, the development phase provides expectations for each
step of the production process which need to be achieved in order to transform
subproducts to the next higher composition level. Accordingly, those process
expectations are close related to the BOM but do not comprise specific details with
respect to the setup of individual devices of a production system. In conjunction

Fig. 15.1 Location of the ramp-up phase of a new product based on (Slamanig and Winkler 2012,
p. 484).
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with the BOM the expectations of all process steps result in a structure which can
be called device-independent process plan throughout this chapter.

The device-independent process plan has to be enriched with specific handling
instructions and information about the setup of devices within the context of
each production system. This is the task of the product ramp-up team. It is time-
consuming, and its efficiency and effectiveness strongly depends on the interaction
between the multi-disciplinary team members as well as the quality of information
provided to the team members. However, due to the shortening of product lifecycles
and increasing variations of products (individualization of products) it is crucial to
improve the predictability of this phase of the product lifecycle.

In accordance to Terwiesch et al. (International product transfer and production
ramp-up: a case study from the data storage industry, 2001, p. 435), time-to-volume
attracted reasonable more attention than time-to-market already to the beginning
of the century. “The fundamental difference between time-to-market and time-
to-volume is that the former ends with the beginning of commercial production
whereas the latter explicitly includes the period of production ramp-up. Production
ramp-up is the period during which a manufacturing process makes the transition
from zero to full-scale production at target level of cost and quality.”

Delayed completion of product ramp-up (Abele et al. 2008, pp. 96–98) may
have significant impact to the success of the product on the market. Customers
may migrate to competitive products, thus reducing the planned sales quantity. As
a consequence, there is not only a reduction of the planned turnover and profit.
The planned production capacity is too large for the now lower sales. Aside of
these major reasons for costs and losses due to non-deterministic product ramp-
up, the costs for ramping up new products are typically operational expenses of
the manufacturing companies and have therefore an immediate impact on their
profitability and liquidity. Non-deterministic product ramp-up also causes non-
deterministic need for additional budget which is difficult to gain.

Abele et al. are discussing product ramp-up in conjunction with the construction
of a new facility. However, the principle statements are also correct for the
concrete situation of this chapter, were the production of a new product shall
be transferred from one existing production system to another one. Utilization of
production resources (staff and equipment) without adding value, additional setup
times of actually productive equipment (increased idle times and thus reduced added
value), consumption of energy or scraped material (reduced added value, useless
emissions to the environment), enhanced risk of negative impact on the quality
of simultaneously ongoing volume production of forerunner products (customer
dissatisfaction) are additional cost drivers. Personnel costs of process experts for
knowhow transfer at far distant locations are another one.

Therefore, the questions to be answered in the following chapters are all related
to measures in order to achieve more deterministic product ramp-up projects by
reusing existing production knowledge.
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Q1: How is a production system organized in order to achieve maximal reuse
of production knowledge?

Q2: How is a multi-disciplinary knowledgebase for product ramp-up support
integrated with the production system?

Q3: Which scenarios have to be considered in order to match information
about a new product with existing information?

Q4: Which information domains needs to be standardized across enterprises?

Q2 contributes to RQ I3 of Chap. 1 and discusses the need to integrate knowledge
management for product ramp-up with existing manufacturing execution systems
(MES) as well as the multi-disciplinary engineering team being involved. Q3 is
related to the research question RQ M1 of Chap. 1 and contributes particularly to the
reuse of existing production knowledge of a CPPS for mastering ramp-up scenarios
of new products. Q4 addresses RQ I1 of Chap. 1 with respect to the exchange of
product-related knowledge as well as a subset of process-related knowledge which
is discussed in the sequel in more detail.

For answering those questions, there shall be first a discussion about the
relevance of this problem case dependent on the individual strategies of enterprises
(Sect. 15.2). The applied terminology with respect to the structure of the production
process is introduced in Sect. 15.3. The central activities of a ramp-up team are
discussed in Sect. 15.4 including additionally introduced terminology. Section 15.5
answers Q1 by discussing methods to make production systems more agile and how
those measures lead to reusable production knowledge during a product ramp-up.
Section 15.6 provides an answer to Q2 by the description of an IT-architecture
which utilizes Semantic Web specifications for information representation and for
information exchange. An information model and a categorization of scenarios
which may be faced during a new product’s ramp-up are introduced in Sect. 15.7
thus answering Q3. It turns out that there is a need for standardization of information
models across enterprises in order to maximize the benefit from a multi-disciplinary
knowledge base for the purpose of new products’ ramp-up support. In Sect. 15.8
those needs are summarized.

15.2 Strategy-Dependent Relevance

Depending on the complexity of the product and the production process accordingly,
the ramp-up team has to master a challenging but also error prone task, which is
sometimes also based on trial and error. The complexity of the product is driven
by the number of components (subproducts) which are used to compose the new
product or by high quality demands, while the complexity of the production process

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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Fig. 15.2 Types of German enterprises according to production volume and product complexity—
source (Kinkel and Maloca 2010, p. 3)

depends on the number of single process steps which have to be performed with
continuously high precision.

Kinkel and Maloca (2010) published the results of a survey amongst German
enterprises in the manufacturing industry. In Fig. 15.2 one result of this report
is visualized and the enterprises with the highest relevance for a deterministic
product ramp-up process are grayed. According to this assumption, almost 60%
of the manufacturing enterprises in Germany are challenged by small to medium
production volume with respect to each produced product (10,000 workpieces per
product or product variant per year (Schmidt-Dilcher and Minssen 1996, p. 95)) and
by medium to high product complexity. Consequently, a deterministic product ramp-
up is of particular relevance for these enterprises as there is a significant overhead

• due to a large number of new product ramp-ups (as a consequence of the low
production volume per product and the product complexity on a certain level)
and

• because of the given potential to categorize production knowledge for reuse.

Typical examples of such enterprises are in the domain of car manufacturing or
semiconductor manufacturing (Type 2 or Type 4 depending on strategic priority), or
confectioneries (Type 5).

More deterministic product ramp-up may be also of some relevance for enter-
prises of Type 1 (e.g., plant engineering) or Type 3 (e.g., food and beverage).
However, in case of Type 1 it depends strongly on the specific nature of produced
products, with respect to the potential for categorization and reuse of production
knowledge. For Type 3, the number of ramp-ups of new products may be low and
the resulting benefits may have no economical relevance.
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15.3 Structure of a Production Process

Process operations (SEMATECH, Inc. 1998, p. 222) represent the atomic part of a
production process which is directly associated with a set of particular machines as
well as appropriate machine recipes and handling instructions for human operators.
A process operation represents either a material processing operation (Treating),
which is considered as value-adding performance, or a material measurement
operation (Inline Metrology), which is considered as support performance. An
arbitrary sequence of material processing operation followed by one or more
metrology steps makes up a process segment (ISA 2001, p. 48) (Fig. 15.3).

In the production system, subproducts are created or treated by manufacturing
resources by executing the sequence of process operations within a process
segments one after the other. Therefore, the sequence of process operations within a
process segment depends on the utilized manufacturing resources. Moreover, there
are device-specific setups on the level of the process segment (process segment
setup) and on the level of each process operations (process operation setup).Process
segments and process operations as well as their setups are thus concepts of the
device-dependent information of a production system which cannot be transferred
easily between heterogeneously equipped production systems.

The creation of subproducts can be also outsourced to suppliers. In this case, a
process segment of the production system which is named goods receipt measures
the incoming subproduct (a.k.a. consumable material) of the suppliers. Such
process segments comprise only of one or more process operations for material
measurement (metrology operations) to ensure that the received parts are delivered
to the production with the required quality. Therefore, the existence of a metrology
operation is in common for all process segments, independently whether the process
segment is treating material as part of the production process or whether the process
segment does only measure received parts of suppliers during goods receipt.

In combination with a particular setup, each process segment is qualified for a
specific process capability. A process capability (ISA 2001, p. 94) (SEMATECH,

Treating Treating
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Fig. 15.3 Structure of process segments as the source of quality data (Willmann 2016, p. 16)
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Inc. 1998, p. 226) can be treated as an agreement about the result of a process
segment if a particular setup is applied. A subproduct requires specific process
capabilities for its creation or its composition from other subproducts. Through
the introduction of process capabilities, this requirement is completely independent
from any production resource of the physical production system as it is probably
described through AutomationML (see Chap. 10). Therefore, process capabilities
are an essential design concept of production systems in order to separate the device-
independent specifications of subproducts or products from the device-specific setup
of production resources.

A process plan is a sequence of process segments (see process flow context in
(SEMATECH, Inc. 1998, p. 221)) which needs to be executed in order to create the
new product. The hierarchical composition of a product from subproducts and the
specific process capabilities which are needed for each composition step, result in
a directed path of process capabilities. Consequently, this directed path of process
capabilities also causes a directed path of process segments and thus a directed path
of process operations. Therefore, a process plan comprises all information which is
needed for the creation of a product by utilizing available production resources.
This set of process operations is also known as the Bill of Operations (BOO).
MESs use such process plans and the detailed information which is provided by
process segments and process operations in order to control the logistic flow of
material within the physical production system. Therefore, the outcome of the ramp-
up project is an essential in order to setup the MES for producing the new product.

15.4 Qualification of a Production Process

Each product has to fulfill a set of functional requirements which satisfy certain
customer needs. The satisfaction of functional requirements is measured in every
production system with the context of the process segment named quality assurance.
Commonly, this is one of the last segments in the production process. Ramping up a
new product at a target production system requires information about the functional
requirements of this new product.

During execution of the quality assurance, samples are taken and, from these
samples, predefined characteristics are measured which are specified by functional
requirements. It is verified, whether the measured characteristics are located within
the product-specific specification limits. If this is the case, the group of workpieces,
from which the sample was taken, has passed the test. Otherwise, the entire group is
either discarded or, possibly, cost-intensive detailed gauging or reworking must be
performed.

Similarly, in advanced production processes, samples of the semifinished work-
pieces are removed and tested almost after every single material processing
operation resulting in the structure of process segments as discussed in Sect. 15.4.

During these inline metrology steps it is not possible to test the function of
the final product. However, it is possible to test characteristics of the design

http://dx.doi.org/10.1007/978-3-319-56345-9_10
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specifications of the respective subproducts. The ratio of measured parts depends
on the sampling rate, which can be calculated with statistical means as they are for
instance described by (Breyfogle III 2003) or (Dietrich and Schulze 2003).

For each process segment, the first pass yield (FPY) is calculated as the portion
of defect-free workpieces Eq. (15.1) of a specific subproduct which are passing a
particular process segment (Wappis and Jung 2010, pp. 179–180) at the first pass
(without rework). The FPY is calculated from the results of each inline metrology
operation and the quality assurance process segment.

FPY D
�

1 � Count of defective parts

Count off all parts

�
:100% (15.1)

With respect to the overall production process (Wappis and Jung 2010, pp. 179–
180), the so called rolled throughput yield (RTY) represents the portion of all
produced workpieces Eq. (15.2) which are passing the overall production process
at the first pass, which means that there is no potential rework required in order
to correct defects. The RTY is calculated for each product which is produced in
the production system. The FPYi are considered to be independent from each other
accordingly.

RTY D FPY1: : : : :FPYn (15.2)

High quality, being close to the optimum of production costs, requires a high
RTY and thus low costs with respect to expensive rework loops (aside of other
cost drivers). As RTY strongly depends on the performance of each FPY, the same
requirement is also valid for each process segment. Keeping the initially achieved
yield as performance metric of a ramp-up project in mind, RTY and the FPYi are
becoming obviously critical performance indicators of any ramp-up project.

At the beginning of a product ramp-up project, it is therefore important to deter-
mine the potential of reusable and thus already mastered subproducts and process
capabilities with respect to their FPY. However, it has also to be validated whether
new or modified process segments respectively new or modified subproducts of
suppliers meet the expected FPYi.

This validation is called the “qualification of a subproduct” if the subproduct
is provided by a supplier along the supply chain (a.k.a. consumable material or
consumable), and it is called “process qualification” in case of a process segment
which is performed within the domain of the production system. Consumable
material is qualified if it satisfies repeatedly the expected specification. Process
segments are qualified for a particular process capability if the specification of
this process capability is repeatedly satisfied. In case of consumable material, this
specification is usually equivalent to the functional specification or the design speci-
fication in accordance to agreements with the suppliers. In case of process segments,
as underlined before, this specification is represented by the process capability.
A repeatedly achieved specification requires that each gauged characteristic of a
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workpiece which is treated by a process segment is within the specified ranges of a
process capability for which the process segment is qualified.

Process capabilities represent device-independent process-related information
and are used as a contract between products and process segments. In order to create
or treat some product or subproduct, an appropriate process capability is required.
On the other hand, process segments of a production system are qualified in order to
satisfy the specifications of a process capability. Consequently, process capabilities
do not refer anyhow to specific equipment and are therefore device-independent.
But they are referenced from both sides—from the product-related information and
from the device-specific process-related information. In a product ramp-up scenario,
process capabilities are also transferred from the original production system.

Products are formally specified by characteristics which make up their dis-
tinction. Such a set of specifications holds specification ranges or specification
targets. Both concepts are generalized as specifications. A specification connects
a specific characteristic with a set of values. The set of values comprises a small
discrete number of values (specification target) or a large or even infinite number of
continuous values within a given range (specification range). Each product, product
category or process capability is specified by more than one characteristic, each
with its particular specification range or specification target.

A specification range is delimited by specification limits (Fig. 15.4)—commonly
an upper specification limit (USL) and a lower specification limit (LSL). In
exceptional cases also onesided specification limits are possible if the opposite side
is delimited due to physical restrictions for instance.

While the qualification of consumable material is ensured within the production
process of the supplier, the qualification of process segments has to be ensured
within the domain of the own production system. Every workpiece which is pro-
duced with at least one characteristic outside of the specification range is counted
as defective part and must be either scrapped or reworked until all characteristics
are within their specification ranges.

USLLSL µ

σ σ

Fig. 15.4 Exemplary normal distribution of measurements between specification limits (LSL
lower specification limit, USL upper specification limit) (Willmann 2016, p. 20)
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The critical process capability index (cpk) is commonly used in the industry
in order to quantify the capability of a process segment to avoid defective parts.
Assuming normal distribution of the gauged values of a characteristic, the cpk

represents a multiple of three standard deviations (¢) from the shortest distance
between the process average (�) and the specification limits (LSL or USL) Eq.
(15.3).

cpk D min .� � LSLIUSL � �/

3�
(15.3)

Based on the cpk, it is immediately possible to derive the probability of
measurements outside the specification range and thus the number of defective
parts due to this particular characteristic. In high-quality production, the cpk of each
characteristic of a process segment (and consequently of each acquired consumable
material) is 2.0. A cpk of 2.0 is equivalent to 0.002 defective parts per million
(ppm). Consequently, the FPY of a process segment is in close relationship with
the achieved cpk. With respect to the ramp-up of a new product the cpk is therefore
the most critical performance indicator which is associated with the achieved initial
yield of the volume production. Being able to determine reusable subproducts or
process capabilities thus helps to save qualification efforts for the production of
introduced subproducts.

There is not always a normal distribution of measurements. For this reason the
ISO 21747 standard defines time dependent distribution models and standardizes
the calculation of the cpk for each type of distribution model (ISO—International
Standards Organization 2007).

Also qualifying specifications are possible. For instance, a specification with a
characteristic “surface color” is linked with acceptance criterion “red”. However, it
could be also more than one acceptance criterion, like the criteria “red” and “dark
orange” in order to specify a set of acceptable colors. Such acceptance criteria are
targets which must be achieved in order to avoid defective parts. Therefore, this type
of specification is called specification target in the context of the following chapters.

Due to the previous insight, ramping up of a new product in a production system
is an interdisciplinary task which involves experts from several domains (ramp-up
team). Knowledge about currently produced products and the capabilities of the
underlying production processes of a production line have to be combined with
the specific requirements for the new product. In Chap. 1 those competences are
summarized as Product Engineer and Production System Engineer (Fig. 1.4). In
more complex production systems (e.g. semiconductor, flat panel, photovoltaic,
printed circuit board manufacturing) there are dedicated Process Engineers or
Production Technology Experts in addition. During the ramp-up phase, product-
specific setup has to be specified for each process operation and process segment,
where no immediate reuse is possible. This setup comprises handling instructions,
the setup of devices but also the setup of data collection and process control models.

There are a clearly planned budget and a predefined duration which must not be
exceeded by the ramp-up team while executing a ramp-up project. After completion

http://dx.doi.org/10.1007/978-3-319-56345-9_1
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of the ramp-up phase, the resulting instructions must enable the available production
resources as well as suppliers and the control software to produce instances of the
new product (workpieces) with repeatable quality on a certain level. This quality
level to be achieved (initial yield) is predefined as well and limits the count of
workpieces which are allowed to be scrapped or reworked because of missed quality
criteria after the ramp-up project is finished.

Slamanig and Winkler (2012, p. 488) reported that the majority of companies
still struggle to perform the ramp-up of new products within the planned costs or
budget or to achieve the planned yield after ramp-up. “In the past, almost two-thirds
of the companies were unable to meet their time-related targets, nearly 60% of the
companies failed to achieve their cost-related goals, and 47% of the companies
stated that they could not attain their objectives in process quality”. Altogether,
the results revealed that the companies within the industries being investigated lack
considerable knowledge and expertise in managing their product change projects in
their supply chain networks.

A significant proportion of the problem is caused by poor planning and poor
information exchange. With increasing complexity of the product and the produc-
tion process it is assumed that the problem is also valid within a production system
and not only across the supply chain. Such complex products are, for instance,
integrated circuits (ICs) and their production processes, which are said to be the
most complex ones one can imagine in today’s manufacturing industry.

For this reason, the ramp-up of a new product is still an individual project (ramp-
up project) instead of a routine process, although some companies have developed
technical concepts and business models in order to lower the risk of product ramp-
up. Such measures include aspired quality gates during the ramp-up project and
a modular product design in order to maximize the reuse of existing production
knowledge.

15.5 Product Ramp-up and the Agility of Production
Systems

The need for device-independent process plans is caused by the differences between
the equipment of the volume production line (the target production system) where
workpieces of the new product shall be produced and the equipment of the pilot
line (original production system) where the first workpieces were created, for
development and evaluation purpose. The differences between both production
systems are caused by equipment which was acquired from different suppliers and
at different times. Equipment variations are therefore caused by the variation of
equipment structure across vendors as well as by the age and thus the different
stages of technical progress of equipment.

In order to face this challenge, some companies are following the strategy of
copy exactly, were every production system is an exact copy of a production system
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template which is following enterprise-wide design rules. Using this approach,
the complexity of a product ramp-up project is reduced significantly because the
information of the original production system simply needs to be transferred to the
target production system without modifications. No additional assumptions need to
be performed because equipment and control software in both production systems
use exactly the same configuration.

However, Terwiesch and Xu (2003) highlight that although the copy exactly
approach sounds attractive it is coming with a price. Copy exactly requires identical
production equipment for every production system thus reducing complexity of
change in case of transfer of products between production systems. As a conse-
quence, for complex production processes, either significant investment is needed
for leading edge production equipment in all production systems simultaneously or
increasingly out-dated equipment has consequently to be used. The latter must be
then used for production of new leading-edge products as well. Probably not all
companies want or can deal with such restriction. Therefore, it is also admitted by
Terwiesch and Xu (2003, p. 4) that for instance most semiconductor manufacturers
still favor a much more aggressive process change during product ramp-up and do
not follow the copy exactly approach. Therefore, the discussed approach is beneficial
for a broad range of ecosystems of industrial manufacturing.

The ability to adapt a production system due to changes of its environment, like
the need to produce a new product, strongly depends on its physical structure and
organization. In the following sections, the most essential measures are discussed
and how reuse of knowledge can take advantage from the result of such measures.
Accordingly, Q1, as introduced in Sect. 15.1, is answered. Willmann (2016, pp.
148–155), discusses already some premises about the support of knowledge reuse
during product ramp-up. In this chapter, those ideas are extended by yet published
concepts about the agility of production systems.

It is assumed that cyber-physical production systems need to be agile in order
to maximize the reuse of existing production knowledge. What does it mean—to
be agile? A flexible production system (Nyhuis et al., pp. 24–26) is able to react
and adjust itself within planned specification corridors. An agile production system,
in the contrary, is rather solution-neutral and does not contain explicit specification
limits. The scope for possible changes, however, is premeditated.

A production system has to interact with a turbulent environment (Fig. 15.5).
Through adjustment (Cisek et al. 2002) of one or more of a limited set of
receptors, it is possible to adapt a production system according to changes in the
environment. The need to produce a new product is understood as a change of this
environment. The receptors are the product, as well as costs, time, quantity, quality
and system elements. The system elements comprise the organizational structure, the
production resources and processes and therefore all elements which also make up
the production system.

The ramp-up of a new product requires by all means interaction through the
receptor product, by passing the new product’s specification—the BOM—to the
production system. It requires rather likely adaptations through the receptor system
elements—particularly the specifications of appropriate handling instructions for
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Fig. 15.5 Production system interacting with a turbulent environment—source (Nyhuis et al. n.d)

human operators as well as for machine recipes. Even more complex, the product
may require additional qualification of operators, modifications of the equipment
setup, adapted sequences of process steps or rearrangement of the organizational
structure.

With respect to new products’ ramp-up the receptors costs, time, quantity and
quality are applied on a more strategic level. They are not used due to a single
ramp-up event but strategically. Questions to be answered strategically are as
follows: What is the targeted time to volume by utilizing the available capabilities
of the production system? What is the targeted minimum quantity of individuals
of a product for profitable production? Which quality level shall be achieved by
consideration of the production system’s capabilities? What are the targeted costs
to provide the new product with a competitive price?

Answering those questions is close related to the strategic orientation of the
respective company and is already discussed in Sect. 15.2. In particular, companies
of the types 2, 4 and 5 must optimize the setup as well the monitoring and control of
their production systems through those four receptors with respect to the ramp-up
of new products.

The strategic design of an agile production system requires the consideration of
enablers for agility (conversion enablers). Nyhuis et al. (pp. 26–28) are particularly
highlighting universality, mobility, scalability, modularity and compatibility. With
respect to faster ramp-up of new products some of those conversion enablers are
discussed in the sequel in conjunction with respective strategies of manufacturers.
The most effective reuse of production knowledge presumes that some of those
strategies are implemented first within the structure of the production system.
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By maximizing the potential of reusable subproducts across a large variety of
products, the time to volume is reduced thus reducing overhead costs and decreasing
the quantity where individuals of a new product can be still produced with profit.
At the same time, reinvention of the wheel is avoided by producing new products
with a shared set of already qualified process segments thus achieving the expected
quality and therefore yield soon. Rethinking the design of products and product
families with respect to reusability of subproducts leads to the concept of product
platforms and addresses the conversion enablers universality,modularity, scalability
and compatibility.

Matching product-related information from the original production system with
product-related information of the target production system is managed easier if
a common product platform is used across both production systems. It is obvious
that the chance of matching subproducts increases if new products are designed
by reusing subproducts of a common product platform which are already used
by forerunners. And with the number of matching subproducts also the number
of reusable process segments increases in a ramp-up scenario. This is actually
the intention of a product platform. Universality, modularity, scalability and
compatibility shall be first discussed on the level of products and in the sequel on
the level of process segments.

Ong et al. (2008) describe the design of products for reuse, but also the structure
of production basic data as standardized by (ISA 2001) considers agile production
systems to certain extend. Closs (2007) introduces design for supply chain man-
agement and thus the need for comprehensive consideration of the principles of
product families respectively product platforms, as well as the principlesmodularity
and universality (the also introduced principle of postponement is not considered
in the sequel). Those principles are overlapping with the previously introduced
conversion enablers on the product level. Product families, in addition, introduce
standardization of subproducts respectively the consideration of standardized parts.

Considering the principle of universality during product design implies, for
instance, that a power supply is not designed to meet the needs of a product but
the product is designed to work with an existing power supply. The power supply is
a subproduct with can be used universally for a large variety of products. The same
is also valid for much less complex subproducts than power supplies.

The principle of modularity delegates functionality which is in common for a
variety of products to dedicated modules, like, again, a power supply, a display or a
cooling system. On the level of single modules it is also easier to consider scalability
of products as part of the design, like the resolution of a variety of displays.

Finally, the previous principles also include the consideration of the conversion
factor compatibility where ever it is useful to assemble a product or a subproduct
from standardized parts.

Following the meaning of those conversion enablers (respectively the principles
of design for supply chain management) during the product design has an immediate
impact on the organization of the supply chain, the structure of the production
process and the physical structure of the production system. The use of standardized
parts results in lower vertical integration of the production process, thus less
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complexity of the own production process and reusable knowledge on the level
of standardized products. Compatibility on the product level implicitly supports
compatibility on the process level.

Manufacturing of dedicated modules (Weber 2004) within one production system
may lead to a layout of production cells, where dedicated modules are produced
by a team of operators by using a set of locally organized machines. It is also
possible to establish common process segments for varieties of modules which are
parameterized through particularly design characteristics (e.g., the resolution of
the display which shall be mounted to a frame). Modularity on the product level
therefore implicitly supports the modularity on the process level as well. Scalability
on the product level can be supported by modularity on the product level, therefore
reduced complexity on the process level and therefore the opportunity to setup
common parameterized process segments.

Universality of the process level is supported by the use of universally usable
equipment, which is commonly known as computerized numerical controlled
(CNC) equipment. Nowadays, such equipment is not limited to molding machines
but it includes a variety of deposition machines, cutters, welding machines, or 3D-
printers. All CNC equipment in common is able to provide a particular production
technique with a huge variety of results (universality) based on the loaded instruc-
tion set (a.k.a. machine recipe). And there is the most universal resource, the human
operator, which is able to perform almost every work based on appropriate training
and, again, a set of instructions (a.k.a. handling instructions).

Mobility on the level of equipment allows rearrangement of production cells in
accordance with changing needs due to required process segments. And because the
need for process segments is driven by the need of currently produced products or
subproducts, the layout of the production system is driven by them.

In order to reduce complexity during a product ramp-up, IC-manufacturers,
for instance, have introduced the concepts of process technologies and silicon
intellectual property (silicon IP). Silicon IP (Nenni and McLellan 2013, p. 19)
comprises off-the-shelf functions like A/D converters, memory and processors
which can be randomly combined during the design of a new IC-product. Silicon IP
consists of a particular layout of electronic elements which is mandatory in order to
implement some function of an IC-product and helps to prepare the physical setup
of production equipment (e.g., reticles) accordingly. Therefore, silicon IP addresses
the conversion enablers modularity, compatibility and scalability with respect to
IC-products.

Moreover, silicon IP comprises an appropriate stack of material layers which is
needed to achieve the expected electrical behavior of such a function. If a function
is needed, the appropriate silicon IP is reused to realize this function within an IC-
product. The stack of material layers lead to process technologies.

Also process technologies (e.g., CMOS) are commonly used by IC-
manufacturers. A process technology is defined by a specific stack of material
layers which is built by a particular sequence of process segments on a circular
ultrathin disk of monocrystalline silicon (a.k.a. silicon wafer). Also the size range of
features of each layer is specific for process technologies. Each process technology
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is therefore linked to a dedicated set of equivalent process plans which can be
performed to build the requested stack of layers. Therefore, process technologies
represent a link between the process plan and the design of specific IC-products.

To some extent, process technologies can be seen as reusable templates of
production processes which can be used to build individual IC-products. Variations
of individual products are achieved by modification of the layout of single layers,
the thicknesses of layers, controlled impurities of the material on each layer or other
means of parameterization. The structure of process plans and the way how process
segments are utilized for different products is again an example of modularity,
compatibility and scalability.

However, even the conversion enabler universality is realized in this case. The
universality of equipment and personnel is achieved, because every layer of an
IC-product is created by repetition of the same limited set of process segments
while the setup of the involved equipment and handling instruction of human
operators is adjusted in an appropriate way. Accordingly, the production system
of an IC-manufacturer is equipped with rather universally usable machines from the
perspective of IC-production.

Because of this branch-specific method of process technologies and modulariza-
tion of products by the use of silicon IP, the semiconductor industry provides a good
pattern of an agile production system by using templates and unified underlying
production processes. Some other industries, like the production of printed circuit
boards (PCBs) apply this method as well (Macleod 2002).

Also the automotive manufacturing industry uses the concept of product tem-
plates. In this industry, product templates are called platforms. An outstanding
example of a platform approach is Toyota’s policy concerning its car models.
According to Hüttenrauch and Baum (2008), Toyota is currently launching new
generations of its successful car models that utilize more than 70% of their
forerunners’ components, and the platforms of these cars have remained largely
constant through successive car generations.

The concept of process technologies or product platforms can be considered
similar. For instance, Ong et al. (2008, pp. 81–112) are summarizing possible
design principles for the design of product platforms independently of a specific
branch of industrial manufacturing. The approach of product platforms has therefore
general validity in the manufacturing industry for reduction of the complexity of
management of product variants and therefore the complexity of product ramp-up
projects.

In an agile production system it is therefore necessary to consider universality,
modularity, scalability and compatibility on the product level as part of the design
phase. This first step leads consequently to the consideration of conversion enablers
on the process level. To some extend the conversion enablers on the process level
are supported by conversion enables on the equipment level (e.g., universality,
mobility).

Answering the question about an appropriate information model for automated
recommendation of reusable existing subproducts or process segments, implicitly
leads to afore mentioned best practices of agile production systems. The next
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chapters discuss the architecture of a multi-disciplinary knowledge base and in the
sequel the structure of the information model and how it fits to possible scenarios
which may be faced during a new product’s ramp-up.

15.6 Invoking an Effective Multi-disciplinary Knowledge
Base

The brief concept of a multi-disciplinary knowledge base which is in common
across production systems in order to improve new product ramp-up is described
by Willmann et al. (2013). This concept is enhanced by the general description
of an automated ramp-up process which is performed on this knowledge base
(Willmann et al. 2014). A detailed ontology model including a detailed automated
process for generating recommendations for knowledge reuse in a product ramp-up
scenario is provided by Willmann (2016). The architecture of a multi-disciplinary
knowledge base which provides those features to connected production systems is
also described in this work (Willmann 2016, pp. 96–97) and cited in the following
sections in order to answer Q2 as specified in Sect. 15.1.

The overall architecture of a K-RAMP knowledge base is spread across multiple
production systems. Individual knowledge stores, which reside at each production
system, are connected through intranet or internet communication technologies.
This architecture is shown in Fig. 15.6.

The architectural center of each K-RAMP knowledge store is a Semantic Web
database which supports the widely spread specifications of the Semantic Web as
there are the Resource Description Framework (RDF) (W3C—World Wide Web
Consortium 2014), the RDF-Schema (RDFS) (Brickley et al. 2014), Web Ontology
Language (OWL) (World Wide Web Consortium (W3C) 2012), the Semantic Web
Reasoning Language (SWRL) (Horroks et al. 2004) and the query language of
Semantic Web (SPARQL) (Harris et al. 2013). A detailed description of those
specifications is provided in Sect. 13.3.

The Semantic Web specification (Allemang and Hendler 2011, p. 20) introduces
methods for the creation of distributed information models. Assuming the inter-
action between a source production system and a target production system, this
capability has to be considered as essential. In Chapter 13 the industry needs for
Semantic Web Technologies in the industry are discussed in detail. The discussed
Scenario 3 is close related to the ramp-up scenario which is the central topic of this
chapter. Moreover, RDF (W3C—The world wide web consortium 2014), which is
actually the foundation of all Semantic Web specifications being relevant for K-
RAMP, provides means for expressing information and exchange of information
without loss of meaning. RDFS provides means of classification of information and
OWL introduces means of generalization and certain kinds of reasoning.

Why are Semantic Web specifications applied for information storage and
exchange in conjunction with K-RAMP? From the perspective of broad applica-

http://dx.doi.org/10.1007/978-3-319-56345-9_13
http://dx.doi.org/10.1007/978-3-319-56345-9_13
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Fig. 15.6 Architectural overview of the K-RAMP knowledge base at a single production system
(Willmann 2016, p. 97)

bility in the future, Germany’s strategic initiative Industrie 4.0 (Forschungsunion,
National Academy of Science and Engineering 2013, p. 40) indicates the need
for a common approach concerning how to see things in production engineering,
mechanical engineering, process engineering, automation engineering, as well as IT
and the internet. The concept of K-RAMP and the challenges to be discussed in this
chapter address such a common approach for the domain of product engineering
and process engineering across dislocated production systems. Therefore, on the IT-
level a common technology for information exchange and information storage has
to be considered as well.

The K-RAMP knowledge store comprises this Semantic Web database and
attached hybrid components which are needed in order to complement the Semantic
Web database with enhanced reasoning and asserting of new information from
existing information. These hybrid components are interacting with the Semantic
Web database by utilizing SPARQL.



15 A Deterministic Product Ramp-up Process: How to Integrate a Multi-. . . 417

For the purpose of information exchange the K-RAMP knowledge stores across
all production systems are connected via the internet or intranet through pairs of
one inbound gateway (incoming information) and one outbound gateway (outgoing
information). These gateways use SPARQL for the interaction with the Semantic
Web database of the local K-RAMP knowledge store.

In order to integrate the local K-RAMP knowledge stores with the local
production-IT, namely the local MES, two complementary application programming
interfaces (APIs) are applied for reading respectively for writing of information
(incoming API, outgoing API). Again SPARQL is used for the interaction with the
Semantic Web database. The MES or equivalent software is the primary source and
target of information at a particular production system. First, it uploads product-
related information which is converted to the information models being primarily
derived from the K-RAMP information model (a.k.a. ontologies). Secondly, it
uploads Process-related information which is also converted to the information
models being derived from the K-RAMP information models.

The ramp-up team interacts through a user interface (Ramp-up UI) with the local
K-RAMP knowledge store. By means of theRamp-UpUI the ramp-up team is able to
gather recommendations. After the recommended ramp-up activities are performed
the initial updates on product-related information and process-related information
are performed in the local MES by the ramp-up team. Again from the local MES
the updated information is fed back to the K-RAMP knowledge store. The local
MES thus remains the master of product-related information and process-related
information.

Due to the standardization of the applied Semantic Web specifications and
the exclusive use of SPARQL for information exchange, each production system
may use its own off-the-shelf software product with respect to the Semantic Web
database.

15.7 Information Model and Matchmaking Scenarios

In the following sections Q3 is answered by introducing the general concept of K-
RAMP’s information model first and by discussing the scenarios which may be
considered during a product ramp-up next. The following sections of this chapter
are based on (Willmann 2016).

At the target production system the product-related information and the device-
independent process-related information has to be interwoven with the respective
information about the existing production. Beside product-related information
about forerunners and device-independent process-related information, the target
production system also provides device-dependent process-related information
(Fig. 15.7). This portion of information comprises the sequential order of process
operations embedded in process segments as well as handling instructions or
equipment recipes. In a presumed heterogeneous equipment environment between
the original production system and the target production system, this portion of
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information cannot be exchanged easily. This portion of information must be reused
through matchmaking of common or similar product-related information or device-
independent process-related information.

The matchmaking process of K-RAMP utilizes two different sources of
information—the original production system and the target production system.
Product-related design information is provided by both sources. Process-related
knowledge is provided comprehensively (device-independent and device-dependent
information) by the target production system only. The original production system
only provides the device-independent portion of process-related information.

There is another aspect of device-independent process-related information beside
process capabilities. It is possible to categorize process segments according to basic
production technique. Industrial branches may use the basic production techniques
(Koether and Rau, 2008, p. 15) (Deutsches Institut für Normung e. V. 2003),
namely master forming, forming, separating, merging, coating, altering or more
specialized derivations of them, like browning, cooking, baking, boiling or heating
in restaurant kitchens, or mounting windshield, undercoat painting or thixocasting
in automotive manufacturing, or chemical vapor deposition, dry etch or lithography
in semiconductor manufacturing. These production techniques can be formalized in
taxonomy models without consideration of specific equipment. K-RAMP presumes
that such taxonomy of production techniques is applied for categorizing of process
segments although the process segments remain individual information of each
production system.

In order to understand the matchmaking between products, product categories
or process capabilities, it is first necessary to discuss the common information



15 A Deterministic Product Ramp-up Process: How to Integrate a Multi-. . . 419

model which allows their specification. Each product, product category or process
capability must comprise a set of specifications which describes it uniquely.

One specification may enclose another specification or two specifications may
overlap each other. In case of specification targets, these relations are specified
easily by the help of set operations. Each specification target represents a set of
target values. Given two specifications targets st1 and st2, st1 encloses st2 if the set
of target values of st1 is a superset of the set of target values of st2. Further, st1 and
st2 are overlapping if the set of target values of st1 and st2 have an intersection which
is not empty. In case of specification ranges the definition of these two relations is
similar. However, the set of possible values is defined by LSL and USL. Given two
specification ranges sr1 and sr2, sr1 encloses sr2 if its specification range encloses
the specification range of sr2. And both specification ranges are overlapping if their
two specification ranges are overlapping as well.

Specifications are comparable with each other if both are referring to the identical
characteristic. For this reason it is necessary and also a premise of K-RAMP that
characteristics are commonly managed across production systems.

Specification sets—which are represented by products, product categories or
process capabilities in specific—are set of specification ranges or specification
targets. There are also relations between pairs of specification sets which are based
on afore introduced relations between pairs of specifications. This has to be ensured
by the information management of each production system.

For a pair of specifications from two specification sets, one specification either
encloses the other, both specifications overlap each other or the pair is not associated
at all. Consequently, the two specification sets are enclosing each other—if all
specifications of the left specification set enclose the respective specifications of
the right hand specification set. In such a case the cardinality of the left hand
specification set is less than or equal to the cardinality of the right hand specification
set because the used set of characteristics of the left hand specification sets is a
subset of the set of characteristics of the right hand specification set.

The specifications of both specification sets may overlap each other, resulting in
a relation “overlaps” between the two specification sets. This is the case, if there is
at least one specification of the right hand specification set only overlapped by its
counterpart of the left hand specification set.

Some of the specifications of both specification sets are not related with each
other if no counterpart uses the same characteristic. In this case the specification
sets can be only partially overlapped—except for the last case where not a single
specification of the one specification sets is related with a specification of the
other specification set. In this case there is no relation established between the
two specification sets. If two specification sets are partially overlapped, the relation
between their cardinalities is not specified because it is not determined how many
specifications of the one specification set and the other specification set are not
related with each other.

The previously introduced relations between specification sets are validated
based on the quality of the relation.
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1. A ratio of specifications which are enclosing specifications of the other specifi-
cation set compared to all relations between specifications of both specification
sets. For instance, for two specification sets set1 and set2 there is the relationship
overlaps (set1, set2)—set1 overlaps set2. Overlaps may also imply a mixture of
encloses and overlaps associations between specifications as mentioned above.
In this example set1 may have 3 specifications which enclose specifications of
set2. Furthermore, set2 has 1 specification which encloses a specification of set1.
From the perspective of set1 this specification overlaps in the other direction.
Additionally, 2 further specifications are overlapping from the perspective of
both specification sets, and 1 more specification in set2 is not related with any
specification in set1 because there is no common characteristic shared.

All in all, this results in jset1j D 6 and jset2j D 7. The relation set1 overlaps set2
is validated with a ratio of enclosing specifications of 0.5 (3 enclosing of 6 in total)
while in the opposite direction there is a ratio of 0.143 (1 enclosing of 7 in total)
for set2 partially set1 because from the perspective of set2 there is one specification
which is not associated with any specification of set1.

2. A ratio of characteristics which are shared between specifications of both
specification sets compared to the cardinality of the respective specification sets.

With respect to the previous example, this ratio of common characteristics is 1.0
from the perspective of set1 because jset1j D 6 and there are 3 encloses associations
and 3 disjoint overlaps associations encountered. From the perspective of set2, the
ratio is 0.43 because jset2j D 7 and there is 1 encloses and 2 overlaps association.

It is recalled at this position that these relations between specification sets
are specialized as relations between products, product categories and process
capabilities. K-RAMP therefore presumes that beside of products and product
categories also process capabilities are managed on top of process segments within
production systems. All three concepts are specializations of specification sets as
mentioned above. Interweaving information of the original production system and
the target production system is starting with the assertion of all possible relations
between

• pairs of product categories—for determining specialization hierarchy,
• product categories and products—for categorization of products,
• pairs of process capabilities—for determining appropriate existing process

capabilities, and
• product categories or products and process capabilities—also for determining

appropriate existing process capabilities.

A product category which encloses another product category is a generalization
of the enclosed product category. Products and product categories require process
capabilities in order to produce them. These process capabilities must be enclosed
by products respectively by product categories (e.g., p1.1.1 encloses pc2 in
Fig. 15.8 because the specifications of characteristics A, B and C of p1.1.1 enclose
the specifications of the same characteristics of pc2). This is probably not always the
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case because there are also process capabilities which are specified for producing
a category of products in general (e.g., it is assumed that p1.1.1 does not enclose
pc1). One group of examples comprises capabilities of cooling processes or heating
processes where probably the volume and density of the material are the only
relevant constraints (e.g., pc1 comprises only specifications for characteristics A
and B).

However, each product has its individually specified shape (e.g., p1.1.1 com-
prises specifications of characteristics A, B, C and D). Therefore, the product’s
specifications are a superset of the specifications of the process capability (e.g.,
p1.1.1 � pc1). According to the definition of the relationship encloses, consequently
the product does not enclose the process capability, and as further consequence the
product would not require the process capability. But this decision is only half the
story because this particular process capability is dedicated to a product category as
mentioned before (e.g., pt1 encloses pc1).

How is it possible to determine, whether a categorized product requires this
process capability? The solution is as follows. The product is categorized by a
product category which may be a specialization of another product category (e.g.,
pt1 encloses pt1.1, p categorized by pt1.1 and therefore p is also categorized
by pt1). The product p1.1.1 does not necessarily enclose pc1. However, both
specification sets are for sure overlapping, and therefore, process capabilities of
product categories can be possible candidates for their categorized products.
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Based on these general relations between products, product categories and
process capabilities, it is possible to determine existing product-related information
of the target production system. However, there is still no way to recommend
activities in order to reuse existing device-dependent process-related information.
With respect to process capabilities, it is not only a question about enclosing their
specification. It is also important to consider the subproducts which are used by the
process segment in order to produce a subproduct on the next higher composition
level.

A process segment setup uses an arbitrary number of product categories. It is
the idea, that the same process segment can be used to satisfy different process
capabilities just by variation of the used product categories or the adjustment of
some setup parameters. As a consequence, product categories are used due to
process segment setups in order to enable a certain process capabilities. So product
categories do not only require process capabilities but they are also the input
of process segments (through process segment setups) in order to satisfy process
capabilities.

Due to this usage of product categories, process segment setups are also treated
as product category sets. There is another concept in the information model which
is treated as product category set—namely product categories themselves due to the
fact that each product category is usually a composition of one or more subordinated
product categories.

The composition of product categories through subordinated product categories
requires afore mentioned process capability. The process segment setup which
enables a process capability by utilizing a particular process segment uses these
subordinated product categories. Reusing an existing process capability by a new
process capability is therefore not only a question about enclosing or overlapping
of specification sets. The product categories being used by the existing underlying
process segment setup also need consideration.

The relations encloses, overlaps and partially of specification sets are already
discussed above. In the context of product category sets the semantics of these
relations are extended to sets of specification sets. However, the particular need
for these semantics is limited to sets of process categories for the purpose of K-
RAMP. A product category set is a set of product categories and provides relations
(enclosesPTS, overlapsPTS, partiallyPTS where PTS abbreviates product category set).
Product category sets are used to match the immediate decomposition structure of
product categories with the used product categories of process segment setups. For
this purpose, product categories and process segment setups become specializations
of product category sets. Product category is a specialization of product category set
because every product category refers to a set of product categories which represent
its immediate decomposition. Process segment setup is a specialization of product
category set because every process segment setup refers to a set of used product
categories.

What are the rules in order to assert those relations? A product category set
pts1 enclosesPTS a product category set pts2 if each member of pts1 encloses—
mutual enclosing of specification sets—the equivalent member of pts2. This rule
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requires that each product category of pts1 encloses an equivalent counterpart in
pts2. It is already highlighted as a premise, that each production system thoroughly
specifies each product category with sufficient entirety, in order to distinct it from
other entities in the knowledgebase. The latter ensures that for each member of the
one set its counterpart can be determined in the other set.

A product category set pts1 overlapsPTS with a product category set pts2 if at
least one member of pts1 overlaps—in terms of specification sets—the equivalent
member of pts2 instead of enclosing it. Again, each product category of pts1
has an equivalent counterpart in pts2. Each pair of members of both sets shares
specifications with the same characteristic but either their specification ranges or
their sets of specification targets are only overlapping.

A product category set pts1 is partiallyPTS a product category set pts2 if a subset
of members of pts1 overlaps or encloses equivalent members of pts2. In this case,
there are members in each set which do not have equivalent counterparts in the other
set.

After the introduction of process category sets, all information is available
for asserting a series of possible recommendations about how newly introduced
products and product categories can reuse existing process capabilities and thus the
underlying device-dependent process-related information of the target production
system.

Willmann (2016, pp. 65–70), determines 17 matchmaking scenarios. Possible
efforts with respect to the adjustment of existing information before reuse lead to a
categorization of these scenarios through penalty levels.

One scenario with the lowest possible penalty 0 (matchmaking scenario MS-01)
(Fig. 15.9) represents a situation where the new product category (PTi) encloses an
existing product category (PTx), which means that an existing product category has
already the same of even tighter specifications than the new product category with
respect to the relevant characteristics. Moreover, also the product categories on the
next lower decomposition level of the introduced product category (PTi-1 to PTi-n)
enclose (enclosePTS) their counterparts of the existing product category (PTx-1 to
PTx-n). In this case it is recommended to apply the existing process capability
(PCx), as well as the underlying process segment and its setup structure also for
the production of the new product category.

The scenario with the highest possible penalty, 15, (MS-17) (Fig. 15.10)
represents a situation where the new product category only partially overlaps an
existing product category. Also the new introduced process capability (PCi) only
partially overlaps with the existing process capability (PCx) related to the existing
product category.

Moreover, also along the decomposition structure there is only a partial over-
lapping between the new product category and the existing product category.
In such a situation it must be determined whether the overlapping subset of
specifications on the level of process capabilities is a subset of the overlapping
specifications on the product category level. For instance, there may be two product
categories with a set of completely different specifications but one single common
specification “body temperature” (e.g., “butter” and “chocolate coated cake”) and
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Fig. 15.9 Examplary
matchmaking scenario MS-01
(Willmann 2016, p. 65)
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both product categories require a process capability to ensure a certain “body
temperature” (e.g. room temperature around 22 ıC). In this scenario an existing
process segment which brings cold butter after removing from the fridge to room
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temperature (e.g., “storing of material until room temperature achieved”) may be
also applicable for the new product to cool it down to room temperature after it
was coated with hot chocolate couverture. However, there may be still additional
specifications which need to be considered due to the new process capability.
In order to consider those specifications through the potentially reusable process
segment behind the existing process capability, new metrology operations need to
be considered. This premise requires certain modification of the process segment.
Moreover, it must be determined whether both process capabilities are implemented
by process segments of the same production technique. For instance, two process
capabilities may be specified by a characteristic “layer thickness”. However, the
existing process capability implemented by a process segment of the production
technique “polishing” while the new introduced process capability is originally
enabled by a process segment of the production technique “coating”.

The summary of all matchmaking scenarios is comprehensively listed in
Table 15.1. It provides an overview about the intensity of linkage between pairs of
product categories, process capabilities or product category sets as well as change
actions to be considered during ramp-up and the penalty of the recommendation.
The higher the penalty, the higher are the duration and costs of the underlying
process qualification. It is assumed that the replacement of the product category
usages has the lowest costs. There are no modifications performed within the
existing setup of the process segment but only the incoming material is modified.
Parameter adjustment is more expensive because it requires at least the modification
of some adjustable parameters of the process segment, which causes implicitly more
expensive and time consuming pilot production runs than in the case of simple
change of incoming material. If similarity of process capabilities is assumed due
to the categorization by a common production technique, some penalty points
are counted. The most expensive matchmaking scenarios are the ones where
modifications of the process segment’s sequences are encountered. Therefore,
these recommendations are assigned with the highest penalty level – meaning the
most expensive ramp-up activities. The need for activities is rated through binary
digits for each scenario. The resulting binary number maps to the penalty level.

A recommendation about the adjustment of existing device-dependent process-
related information holds all information which is needed in order to derive an
appropriate process segment setup for enabling a process capability which can be
required by the newly introduced product category. Based on the recommended
actions in Table 15.1 which are flagged with 1, a recommendation sentence can be
derived by the knowledge base.

The previous sections of this chapter discussed the underlying information
model of the multi-disciplinary knowledge base and matchmaking scenarios for
information which is exchanged between two production systems during a new
product’s ramp-up. Therefore, Q3 of Sect. 15.1 is answered.
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15.8 Needs for Standardization Across Enterprises

In Section 15.7 it turned out already that certain domains of the introduced
information model are managed across the production systems which are involved in
a product ramp-up scenario. These premises raise the need for standardization of the
respective information domains if the scope is enhanced to the supply chain across
enterprises. In the following sections such recommendations for standardization are
introduced and reflected to existing initiatives thus answering Q4 of Sect. 6.1.

As highlighted in Sect. 15.7, automated recommendation concerning the reuse
and the adjustment of reusable information, in case of a new product’s ramp-up,
comes with a set of premises which need to be fulfilled by a production system in
order to maximize the benefit from the multi-disciplinary knowledge base.

• Design of products and product categories by consequent consideration of
modularity, scalability, compatibility and universality.

• The structuring of production processes to process segments in accordance to
the needs of designed subproducts and subproduct categories which consist of
at least one metrology operation and an arbitrary number of material processing
operations.

• All process segments deliver metrology data. Consequently, there are process
capabilities specified by characteristics which are determined in this context.

• Process capabilities are managed within production systems, consequently
decoupling device-dependent process-related information from product-related
information. This aspect contributes to the vertical integration of product-relation
information and process-related information.

• A commonly managed hierarchy of product categories which allows integration
of product-related information horizontally along the supply chain.

• A categorization of products through product categories, consequently matching
products and subproducts along the supply chain (horizontal integration of
information) due to their membership in common product categories.

• Products, product categories and process capabilities are described uniquely as
specification sets, thus enabling matchmaking between individuals of these con-
cepts through the discussed relations encloses and overlaps. This matchmaking
comprises vertical and horizontal integration of information.

• A taxonomy of production techniques across involved production systems
enables the categorization or process segments, thus an approach to a common
process-related taxonomy across production systems. Consequently, this aspect
contributes to the horizontal integration of process-related information.

• A commonly managed set of characteristics—and consequently a commonly
managed set of engineering units—across involved production systems is a
further contribution to horizontal integration. Actually, this aspect is the core
of all opportunities for matchmaking being listed previously.

http://dx.doi.org/10.1007/978-3-319-56345-9_6
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Several of those premises need to be considered within individual enterprises as
well as individual production systems. However, with respect to the enhanced scope
of the supply chain across enterprises there are some needs for standardization.

A taxonomy or an ontology of production techniques across enterprises helps to
categorize capabilities of production services for a more efficient lookup for service
providers. Moreover, as described in Sect. 15.7, production techniques contribute if
similarities between process capabilities need to be determined. Nowadays, generic
or for specific industrial branches taxonomy models about production techniques
are published (e.g., Koether and Rau 2008). However, there are no public standards
available yet on this quality level and no Semantic Web based models which can be
used automatically.

With respect to product categories, there is the initiative UNSPSC of the United
Nations Organization (UNO) which also provides an ontology (United Nations
Development Programme 2014). However, this ontology is a pure hierarchical
model of unified names of product categories and product service categories.
However, reviewing documentation and web-pages on the internet there are also
a lot of specific standards and legal regulations for categories of products including
detailed specifications. These detailed specifications are not yet considered by
UNSPSC or another more enhanced ontology. Also in Chapter 6 there are several
standards (e.g. STEP) introduced which are used to exchange product data between
CA* systems. Eventually, it could be also useful to provide a platform, where
product providers are able to provide the public specifications of their products thus
supporting the exchange of detailed specifications of standard components.

Ontology models for engineering units are already very well researched through
the QUDT ontology (Hodgson et al. 2014). The integration of QUDT could be
a future extension of the K-RAMP concept. It can be also useful to unify the
terminology on characteristics. Some industry (e.g., the semiconductor industry)
has recently started to unify characteristics on the level of equipment data collection
(Semiconductor Equipment and Material International 2013).

Willmann (2016) introduces a comprehensive ontology model which covers
those information domains as part of K-RAMP. However, with respect to K-RAMP,
currently asserted recommendations are only understood as the first step towards
standardized ontology models for product ramp-up support on the supply chain
level.

15.9 Outlook: Deterministic Product Ramp-up for Supply
Chains

Achieving afore introduced needs for the reuse of existing production knowledge
during a product ramp-up is not only a technical task but also an organizational
challenge. As it could be highlighted, many techniques and methods are already
known and best practices in many enterprises. Initiatives are driven today on several

http://dx.doi.org/10.1007/978-3-319-56345-9_6
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levels but following similar principles. We just need to compare the principles of
design for supply chain management and the conversion enablers for manufacturing
agility of production systems.

All those measures are crucial, and therefore they are premises in order to intro-
duce an effective information model for knowledge reuse during a new product’s
ramp-up. K-RAMP provides an ontology model which is based on existing industry
standards and with enhancements for facing this specific challenge. But its maximal
contribution is also dependent on those premises.

There are technical concepts and best practices available how Semantic Web
database are integrated with existing ICT-systems. K-RAMP provides ontology
models which can be performed in the context of Semantic Web databases. These
ontology models are used to perform automated recommendation about the reuse of
production knowledge for new products during their ramp-up.

However, there is also a need for unified management of information across
the involved production systems. This measure needs to be taken on the level
of individual enterprises at least. A more effective approach is the unification of
required information on a public level thus leading to more effective and more
efficient product ramp-up on the level of global supply chains.
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Chapter 16
Towards Model Quality Assurance
for Multi-Disciplinary Engineering

Needs, Challenges and Solution Concept in an
AutomationML Context

Dietmar Winkler, Manuel Wimmer, Luca Berardinelli, and Stefan Biffl

Abstract In multi-disciplinary engineering (MDE) projects, information models
play an important role as inputs to and outputs of engineering processes. In
MDE projects, engineers collaborate from various disciplines, such as mechanical,
electrical, and software engineering. These disciplines use general-purpose and
domain-specific models in their engineering context. Important challenges include
model synchronization and model quality assurance (MQA) that are covered insuffi-
ciently in current MDE practices. This chapter focuses on the needs and approaches
for MQA in MDE environments. We address the following two research questions
(RQs): The first RQ focuses on investigating needs and expected capabilities that
are required for a systematic review process that focuses on changes in MDE design
models (RQ-MQA1). The second RQ focuses on how to extend a standard modeling
language for MDE, such as the AutomationML, to address needs for storing process-
relevant attributes in the context of quality assurance and review process support
(RQ-MQA2). This chapter presents concepts and an initial evaluation of MQA
approaches in the context of selected MDE processes, i.e., the addition, change,
or removal of a component in an engineering discipline and an impact analysis on
the integrated plant model. Main results are that (a) an adapted review process helps
to systematically drive model reviews for MDE and (b) the standardized language
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description of AutomationML can be extended with process-related attributes that
are useful for quality assurance and reviewing.

Keywords Model Quality Assurance • Multi-Disciplinary Engineering • Model
Review • Defect Detection • AutomationML

16.1 Introduction

In multi-disciplinary engineering (MDE) projects, models play an important role
as inputs to and outputs of engineering processes. Various engineering disciplines,
such as mechanical, electrical, and software engineering are involved. Engineers
coming from different disciplines typically use, create, and adapt generic and
domain-specific models in their individual engineering context (Biffl et al. 2016a).
Important challenges include model synchronization of often-heterogeneous inputs
from various disciplines that need to be synchronized for efficient data exchange
and model quality assurance (MQA) that is covered insufficiently in current MDE
practices (Xiong et al. 2007; Whittle et al. 2016). In context of product lifecycle
Management (PLM) (Chap. 4), engineering processes and tool chains (Chaps. 2
and 11) can help to support model synchronization in heterogeneous and multi-
disciplinary engineering projects. Chapter 9 presents a set established tool chains
from an industry perspective for different disciplines/phases in a typical production
system engineering project. However, current approaches pay little attention to the
quality of engineering models and the improvement of engineering processes.

Chapter 1 in this book explains in the context of cyber-physical production
systems (CPPS), why additional complexity intensifies the need for model-driven
systems and software engineering to address variability and flexibility of these
production systems and the associated assessment of sufficient model quality
(Lee 2008). Furthermore, quality assurance activities are insufficiently applied in
context of model application in CPPS. Thus, there is a strong need for providing
mechanisms for model quality assurance and for improving model quality in CPPS
environments. In this context, this chapter focuses on the needs and approaches
for MQA in MDE environments, where engineers from different disciplines have
to collaborate. Based on needs for a standardized data exchange approach (Chap.
10), we focus on an integrated plant model of a production system, which can be
represented as an AutomationML model.1 AutomationML (Drath 2009) is an emerg-
ing standard for modeling artifacts derived from different engineering disciplines,
such as the plant structure and interfaces between plant components, allowing
to describe an integrated view on the plant model. Therefore, we investigate
AutomationML models that aim at providing an integrated view on a draft of a
production system. A major shortcoming of the current version of AutomationML
is the lack of language means to express process states, e.g., whether a change is

1AutomationML: http://www.AutomationML.org

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_11
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_10
http://www.automationml.org
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approved or still provisionary and under review by the engineering team (Göring
and Fay 2012). Thus, the AutomationML standard does not provide process and
tool support for MQA out-of-the-box. In addition, in MDE there is no established
systematic review process for design models (Travassos et al. 1999; Winkler et
al. 2016b), as a versioned integrated model of the draft production system is
not always available. However, reviewing activities require domain experts (who
are familiar with reviewing artifacts, associated tools and data models in related
disciplines), high effort for review planning and execution, and cognitive skills.
Blackwell et al. (2001) provide a framework of cognitive difficulties with notations.
These difficulties make reviewing MDE models hard, such as the limited visibility
of necessary information or hard mental operations to compare different parts of
models, in particular, to find defects in different model views effectively and to
assess the impact of changes between model versions.

Because engineering models can become quite large, an important review aspect
is the definition of manageable scopes for reviewing tasks. In an engineering process
with versioned engineering artifacts/models, the changes between versions allow
defining a manageable scope for reviewing to assess the impact of recent changes
on the quality and risks of the overall engineering model (Mordinyi et al. 2016a).
Therefore, we propose a systematic review process focusing on changes in MDE
design models, to reduce the cognitive load by limiting the review scope for finding
defects in change sets and to assess and mitigate risks from the impact of changes
to related engineering models.

In this kind of systematic review, the reviewers compare the review object, such
as a selected model view, with a reference document, such as system requirements
or usage scenarios, to guide the detection of important defects. Furthermore, to the
best of our knowledge, there is only limited method and tool support for model
quality assurance (MQA) in MDE teams along the lifecycle of engineering models.
However, an important approach for early defect detection, e.g., in design models,
is the systematic review of engineering models. In these reviews, domain experts
investigate the overlaps of engineering models between disciplines to identify
defects, such as syntactic and semantic mismatches, inconsistencies, and missing or
unclear information. The identification of these kinds of defects can be a first step to
design semi-automated support for efficient defect detection (Feldmann et al. 2015).
Semantic data representations can support data integration and quality assurance in
models of CPPS engineering projects (see chap. 12 for requirements and use cases)
and how Semantic Web Technologies can help to improve defect detection in MDE
projects (Winkler et al. 2017).

In the context of the research questions (RQs) of this book, two generic RQs are
specifically relevant in context of this chapter. The book RQ M2 “Modeling in CPPS
lifecycle phases” concerns how model-based methodologies support information
creation and processing in different lifecycle phases of a CPPS, including addressing
the quality needs for models of a CPPS. The book RQ I2 “Quality assurance
for information exchange” concerns method and technology support assuring the
required information quality for information exchange. From these generic RQs we
derive the following research questions (RQs) for this chapter.

http://dx.doi.org/10.1007/978-3-319-56345-9_12
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• RQ MQA1: MDE Information Model Change Review Process. Which
requirements have to be addressed and which (tool) capabilities are needed
to support systematic review processes with a focus on changes in MDE design
models, expressed in AutomationML?

• RQ MQA2: MDE Modeling Language with Process Concerns. How can a
standard modeling language for MDE, such as the AutomationML modeling
language, be extended to address needs for storing process-relevant attributes
to support quality assurance aspects?

Based on related work (Sect. 16.2) and identified research questions (Sect. 16.3),
this chapter presents concepts of MQA approaches (Sect. 16.4) in the context of
selected MDE processes, i.e., the addition, change, or removal of a component in an
engineering discipline and impact analysis on the integrated plant model. In more
detail, we present an effective, efficient, and usable systematic process approach
(MQA-Review) that focuses on changes in MDE design models (Sect. 16.4.1).
An AutomationML language metamodel extension will be introduced that allows
storing process-relevant attributes to support a systematic review process (Sects.
16.4.2 and 16.4.3). Finally, this chapter presents a conceptual evaluation (Sect. 16.5)
on the usability of MQA approaches in the context of selected MDE processes
for round-trip-engineering for changes that focus on new, modified, or removed
model elements or components in an engineering discipline and their impact on the
integrated plant model, described in AutomationML. Finally, Sect. 16.6 summarizes,
discusses limitations, and presents future work.

16.2 Background

This section summarizes background work on stakeholder needs, model-driven
engineering,AutomationML, and quality assurance with focus on systematic quality
assurance and review support.

16.2.1 Stakeholder Needs for Model Quality Assurance

In MDE projects for engineering production systems, such as a CPPS (Lee
2008), several stakeholder groups are critical for the success of MQA approaches
for parallel engineering (Biffl et al. 2016b): Engineers create, update, and use
engineering models in their discipline and exchange models with engineers from
other disciplines. System integrators collect discipline-specific engineering views
to create an integrated plant model, which allows checking for inter-disciplinary
defects and understanding the impact of changes on other engineering disciplines.
Quality managers need an integrated view on engineering plans to assess the
overall progress, quality, and risks of the planned production system. However, in
concurrent engineering projects, individual stakeholders work in parallel and need
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a stable support for model quality assurance. These parallel engineering activities
result in the need for frequent synchronization of models, such as round-trip-
engineering process approaches (Winkler et al. 2015) that represent an important
sample engineering process in practice. Beyond model synchronization and process
support (Biffl et al. 2016b), quality assurance (Winkler et al. 2016a) and model
quality assurance are success-critical activities to identify defects early, effectively,
and efficiently. Thus, managers, domain experts, and quality assurance personnel
want effective, efficient, and usable methods and tools for the quality assessment
and improvement of models that have significant impact on (automated) software
engineering in the context of MDE teams. This chapter will provide practitioners
with a process to effectively conduct MQA for design models, in particular, for
integrated plant models expressed in AutomationML.

16.2.2 Model-Driven Engineering

Model-driven engineering promotes models as first-class citizens in engineering
projects (Brambilla et al. 2012 and Chap. 11 of this book). Models are not only
used for documentation purposes or early sketches of systems, but they are used
in generative ways to produce parts of the systems (e.g., code generation) and in
analytical ways to check for certain system properties (e.g., test case generation or
system validation). Thus, models are used throughout the complete system lifecycle.
Of course, this means that models must be of sufficiently high quality to realize and
maintain systems effectively and efficiently.

Besides the traditional validation, verification, and testing approaches for models,
additional support is needed to ensure and improve the quality of models by human
inspection. Human-driven reviews and inspections are traditional approaches with
a long tradition for formal requirements or design inspection of informal code
walkthroughs (Aurum et al. 2002). Of course, these techniques are also required
on the model level to ensure the quality of models.2

Unfortunately, there is still a lack of approaches and tools for performing model
reviews. A pioneer on this is EGerrit,3 an Eclipse plug-in that provides an integra-
tion of Gerrit4 in Eclipse. Gerrit (Milanesio 2013) is a review tool that provides
also dedicated support for modeling projects by combining EMF5 Compare6 and
Gerrit. For instance, models and model differences may be directly commented and
review tasks, such as voting, are supported. While EGerrit provides first tool support
for performing model reviews, more research is needed to understand which review
processes are beneficial for modeling projects.

2Model Reviews: http://agilemodeling.com/essays/modelReviews.htm
3EGerrit: http://eclipse.org/egerrit
4Gerrit: https://www.gerritcodereview.com/
5EMF: Eclipse Modeling Framework, https://eclipse.org/modeling/emf/
6EMF Compare: https://www.eclipse.org/emf/compare/

http://dx.doi.org/10.1007/978-3-319-56345-9_11
http://agilemodeling.com/essays/modelReviews.htm
http://eclipse.org/egerrit
https://www.gerritcodereview.com
https://eclipse.org/modeling/emf/
https://www.eclipse.org/emf/compare/
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16.2.3 AutomationML

The representation of models is a success-critical issue to enable effective and
efficient model management in related tool solutions. Model management includes
model changes, such as adding, removing, or modifying model elements, the
synchronization of different model views considering the involved disciplines, and
model quality assurance to keep the overall model consistent (Brambilla et al. 2012).

AutomationML (AML) is an emerging standard in automation systems develop-
ment for the data exchange between different engineering disciplines (Drath 2009).
Based on a neutral, free, open, and XML-based standardized data exchange format,
individual tools may exchange data without loss between related engineering
disciplines within the MDE process. The ongoing standardization process covers
the architecture and general requirements (IEC62714-1), role class libraries for
modeling engineering information (IEC62714-2), and geometry and kinematics
(IEC62714-3). Building blocks of the AML data exchange format (Berardinelli
et al. 2015) focus on (a) the plant structure as a hierarchical representation of
AML objects (Schleipen et al. 2008); (b) geometry and kinematics described in
the COLLADA data description format for exchanging data between 3D modeling
tools (ISO/PAS 17506); and (c) control logic based on PLCOpen7 XML. CAEX
(Drath 2009) enables the modeling of physical and logical system components
encapsulating different aspects of the engineering project. CAEX data objects can
facilitate the reuse of existing components to improve the engineering project based
on a product line approach (Pohl et al. 2005) and therefore can improve engineering
processes and projects. For example, the instantiation of classes by cloning existing
prototype classes can support reuse of data objects. In addition, the hierarchical
plant structure enables the definition of sub-elements, composition, or aggregation.
Identified benefits of AutomationML can also support Industrie 4.0 (Vogel-Heuser
et al. 2016) initiatives and cyber-physical production systems (CPPS) (Lee 2008).
However, the availability of data exchange formats for MDE projects requires
method and tool support for making engineering and quality assurance processes
more effective and efficient. To the best of our knowledge, there is only little work
on MQA and review support for AutomationML models (Winkler et al. 2016b).

16.2.4 Quality Assurance and Model Review

Software Reviews and Inspections have been successfully applied in Software
Engineering since more than 25 years (Aurum et al. 2002). The main purpose of
a formal review process is to find defects in (software) engineering artifacts early in
the development cycle, effectively and efficiently.

7PLCOpen: http://www.plcopen.org/

http://www.plcopen.org
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Fig. 16.1 Traditional software review process

Figure 16.1 presents the traditional review process consisting of six basic steps:
(1) Review Planning, including team member selection, timing, preparation of the
review material, and definition of entry criteria; (2) an optional Overview helps
to get familiar with review objects and methods; (3) Individual Preparation, i.e.,
individual human-based review of artifacts based on provided guidelines and report
of candidate defects; (4) Review Meeting, i.e., team discussion to agree on a team
defect list; (5) Rework of review artifacts according to the team defect list; and
(6) Follow-Up, e.g., planning of another review cycle, if important quality criteria
have not been passed. Note that individual roles are defined for every task of the
review process. See Laitenberger and DeBaud (2000) for a basic review framework,
involved stakeholders and different review strategies.

In addition to systematic review processes, reading techniques (RTs) support
reviewers in detecting defects in various engineering artifacts more effectively
and efficiently, e.g., in requirements documents, specification documents, models,
diagrams, and software code. However, reviews are not limited to software code
documents but are applicable to various types of documents and models.

Reading guidelines and reading techniques aim at supporting reviewers or review
teams by guiding them though the reading and defect detection process, e.g.,
based on checklists (checklist-based reading), use cases (usage-based reading),
application scenarios (scenario-based reading), or perspectives (perspective-based
reading). Benefits and limitations of reading technique approaches have been widely
investigated in empirical studies in a variety of study contexts (Aurum et al. 2002;
Kollanus and Koskinen 2007; Travassos et al. 1999). In MDE projects stakeholders
come from different disciplines and typically have different perspectives on the
projects, e.g., from mechanical, electrical, or software perspective. Following these
different viewpoints, the Perspective-Based Reading (PBR) technique approach
seems to be well-suited for model review in MDE contexts. Winkler and Biffl
(2015) reported on a pilot study on an automation-supported review process based
on perspectives in context of a hydro power plant systems development project.
Main results were that different perspectives provide strong benefits for defect
detection and analysis in a change management process approach. Although review
processes and perspectives can help to increase defect detection performance, e.g.,
effectiveness and efficiency of defect detection processes, tool support is needed to
facilitate reviewing of large models.
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As already mentioned before, EGerrit or—more general—Gerrit Code Review
is an established tool in software engineering that supports defect detection based
on individual commits and code changes (Milanesio 2013). Main goal is to review
every code change set (in the context of a single commit) for correctness prior to
merging the change into a source code repository (e.g., GIT8). New software code
(including the change) and old code (that comes from the repository) are presented
and changes are highlighted in different colors. Gerrit uses color-coding for new,
removed, and modified software parts. Thus, reviewers can easily inspect the code
fragments, give comments and decide whether or not the code should be accepted
(and committed to the repository) or rejected. It has been shown that Gerrit makes
code reviews more efficient and effective (Milanesio 2013). Unfortunately, Gerrit
is limited to software code and text documents and is not capable of supporting
the review of changes related to models or images. Furthermore, the commenting
feature of Gerrit allows remarks on individual aspects of the code but does not
support annotating model elements. Nevertheless, Gerrit is a promising approach as
part of a tool chain for model quality assurance in context of AutomationML models
(Winkler et al. 2016b). For annotating model elements, DefectRadar9 provides
mechanisms to annotate elements in different types of documents, e.g., in PDF
files, generated from engineering plans.DefectRadar was developed to support issue
management for building automation. However, capabilities of Gerrit (as a code
review tool) and Defect Radar (as issue tracking tool) are promising starting points
to support reviews in MDE environments, e.g., based on AutomationML models.

16.3 Research Questions

Looking at the multi-disciplinary nature of the lifecycles of products, production
systems, and production technologies described in Chap. 1, engineers require
increasing support to make informed decisions and to ensure high quality work
efficiently. An important requirement for this support is the effective quality
assurance of information models along the lifecycles of products and production
systems engineering. In this chapter, we investigate how model-based methodolo-
gies can support quality assurance of information models, which may come from
heterogeneous data sources in MDE, in the different lifecycle phases of a CPPS (see
RQ M2 and RQ I2 in Chap. 1). For this chapter, we derive the following research
questions (RQs).

RQ-MQA1: MDE Information Model Change Review Process. Which
requirements have to be addressed and which (tool) capabilities are needed to
support systematic review processes with a focus on changes in MDE design
models, expressed in AutomationML? The size and complexity of large information

8GIT: git-scm.com/
9DefectRadar: www.defectradar.com

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://git-scm.com
http://www.defectradar.com
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models in MDE may exceed human capabilities for a complete review within a
reasonable period during the development process. Therefore, we investigate (a)
needs and expected tool capabilities that for systematic review support in MDE
contexts and (b) how a review process can be designed to focus the review scope
on recent changes in an information model to guide reviewers to risky parts of the
model and reduce the cognitive load for reviewers. We investigate the feasibility of
the process with an industry use case in an AutomationML model of a production
system part.

RQ MQA2: MDE Modeling Language with Process Concerns. How can
a standard modeling language for MDE, such as the AutomationML modeling
language, be extended to address needs for storing process-relevant attributes to
support model change review processes? The AutomationML modeling language
allows expressing both discipline-specific views on a system and an integrated
system view. This is a very useful capability for describing the design of a system
and saving versions of these designs over the course of a project to represent the
state of work over time. However, during the parallel engineering of a production
system, the different model parts may represent finished system designs, early ideas
that need refinement or explorative variants that need evaluation and may eventually
be discarded. The current version of the AutomationML modeling language does
not provide native means to express these process-relevant attributes as foundation
for information model analysis from a management point of view. Therefore, we
investigate how an extension of the AutomationML language can address these
needs for storing process-relevant attributes with a change management use case
(i.e., supporting the handling of new, modified, and removed components).

Our research approach is to collect requirements for MDE model quality
assurance with a focus on the human review of AutomationML models of CPPS
parts. As a study object, an important MDE process regarding the addition, change,
or removal of a component in an engineering discipline and impact analysis on the
integrated plant model has been selected. Related work has been revisited to build on
and gaps in research that needs to be addressed. A systematic review process focuses
on changes in MDE design models that is effective, efficient, and usable in a typical
engineering team. Design extensions of the AutomationML language metamodel
allow storing process-relevant attributes in general and in particular to support a
systematic review process of information model changes. Section 16.5 presents an
evaluation of the feasibility of the adapted review process focusing on changes in
MDE design models and adequacy of the AutomationML language extensions with
data from a use case on round-trip-engineering, i.e., the addition, change, or removal
of a component in an engineering discipline and impact analysis on the integrated
plant model described in automation.
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16.4 Model Quality Assurance Concept

This section focuses on an adapted review process for model reviews in MDE
context (Sect. 16.4.1), AutomationML extensions to support model annotation
of model elements (Sect. 16.4.2), and the related prototype embedded in the
AutomationML Editor10 (Sect. 16.4.3).

16.4.1 Adapted Review Process for MDE and AutomationML
MQA

Based on traditional review processes (see Fig. 16.1), MDE requires additional
mechanisms to address (a) individual change types (e.g., new, removed, and mod-
ified model elements); (b) tool support for change highlighting; and (c) annotation
and defect reporting. In context of this work we use AutomationML for efficient data
exchange, model synchronization, and model quality assurance.

Figure 16.2 presents the adapted review process—MQA-Review—for MDE
requirements based on the AutomationML data exchange format. Individual engi-
neering artifacts from related stakeholders represent process inputs (Fig. 16.2,
left hand side), are processed during individual process steps (Fig. 16.2, middle
part) and create review process outputs (Fig. 16.2, right hand side). The process
takes input data in AutomationML data format, e.g., the plant topology, systems
requirements, and individual artifacts derived from engineering disciplines and prior
review process steps. In context of traditional review processes, some artifacts are
considered to be correct and represent reference documents, e.g., the requirements
specification, and the plant topology. Reviewing objects, such as electrical or
mechanical planning documents, are in focus of the review and are reviewed with
the intent to identify defects and deviations. Therefore, fundamental results of
the reviewing process are defects and deviations and intermediate results such as
annotations, comments, or individual candidate defects. The process, depicted in
Fig. 16.2, presents the basic process steps with concrete tasks and deliverables
based on the AutomationML. Depending on the review purpose, examples in Fig.
16.2 focus on a process instance applicable in the design phase of a sequential
engineering process. See Winkler et al. (2016b) for an example of a typical and
sequential engineering process in MDE projects.

In detail, MQA-Review consists of three fundamental steps with sub-steps and
inputs/outputs:

• Step 1a. Review Planning. The Review Moderator is responsible for planning,
preparation, and coordination of the review process. Main tasks include defin-
ing the review scope, selecting reference documents, such as requirements

10AutomationML Editor: www.AutomationML.org

http://www.automationml.org
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Fig. 16.2 Adapted Review Process (MQA-Review) based on an example for the Systems Design
Engineering Phase (Winkler et al. 2016b)

specifications provided from Requirements Engineers, and appropriate guide-
lines, installing the review team, and scheduling the review process. In automa-
tion systems engineering projects, the moderator is typically supported by the
Plant Planner. Output is the scope of the review and detailed plan for executing
the review process and the review package including review objects, reference
documents, and supporting material such as reading techniques for review.
Note that review objects require a structured representation, such as provided
by AutomationML. However, organization-specific data formats can be used in
context of AML-Review.

• Step 1b. (Optional) Overview. As an introduction of the review package and
the review process, an optional overview might be scheduled. Reasons for an
optional overview can be high complexity of the engineering artifacts, novelty of
the application domain, or limited experience of review team members with the
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method and/or the project context. Goal of this step is to introduce to participants
the (sub-)system under review, reviewing and supporting material, and the review
process. This process step has been skipped in Fig. 16.2 for simplicity reasons.

• Step 2. MQA-Review. This process step represents the core phase of the adapted
review process. Note that it is required to have review artifacts available
in machine-processing data formats, such as in AutomationML to enable
automation-supported defect detection. However, organization-specific data
formats can be used for (manual) defect detection. Basically, MQA-Review
includes the following sub-process steps: (a) annotation and commenting; (b)
individual defect detection and reporting; (c) generation of team defect report,
i.e., an aggregated list of agreed defects. Annotations can help to set a current
state on the model element, e.g., approved, rework, and declined, or add/assign
defect attributes (such as defect type or severity). Comments can be used to
better understand the identified defect or represent explanatory information on
related model elements (e.g., relationships to other model elements). The list
of annotations, identified candidate defects, and comments are the input for
generating a team defect list (as a real team meeting or as nominal team meeting
without communication and interaction). In real team meetings, individual
candidate defects and comments are discussed to come to an agreed team defect
list. In context of nominal teams, all individual candidate defects are scanned
and merged by the moderator. However, the three process steps can be combined
into one step supported by a tool solution or a tool chain. This tool chain can
support different viewpoints, enables traceability (e.g., via the plant topology)
and provides support for analyzing relationships within engineering plans and
across engineering plans. The final output of this process is a team defect list that
can be created during team meetings or generated by a tool solution.

• Step 3a. Rework. Based on the team defect list, annotations, and comments,
individual and responsible engineers address assigned issues in their engineering
plans, i.e., correction of defects or response to annotation and comments.

• Step 3b. Follow-up. Improved engineering artifacts and the team defect list repre-
sent the input for the last MQA process step. Typically, the review moderator (and
the plant planner) check the modifications with respect to the team defect list and
decide on accepting the work products or plan another review cycle. Outcome is
a decision on the acceptance (or rejection) of the review artifacts and a review
report summarizing reviewing results.

16.4.2 A Generic Reviewing Language

Based on MQA-Review and models that are available in a structured data format,
such as in AutomationML, tool support can help to improve review processes and
support engineers in making these processes more effective and efficient. The main
question is how language extensions can help to annotate process elements in
context of model quality assurance.
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In this subsection, we introduce a generic reviewing language which may be
reused for AutomationML and any modeling language. The design rationale behind
this reviewing language is to attach the information about model reviews to the
models and their model elements. By this, we follow the “everything is a model”
principle of model-driven engineering (Brambilla et al. 2012), which allows to
explicitly represent reviews as well as to apply the same techniques to reviews as
for any other artifact. Furthermore, this allows to reason about review decisions
directly in the context of the model, and provides an explicit model structure for
such decisions, which enables automatic processing by model-driven engineering
tools. For instance, also textual descriptions of model reviews may be automatically
produced by model-to-text transformations.

Figure 16.3a shows an excerpt of a generic reviewing language (package
ReviewLanguage) which is bound to a simple example structural modeling language
just consisting of elements and connectors. In Fig. 16.3b, this language is used to
annotate a base model consisting of two elements and one connector with reviewing
decisions which are instantiations of the review decision meta-classes shown in
Fig. 16.3a.

The goal of this reviewing language is to allow for annotating the results of a
systematic examination of a model. For simplicity, we just introduce three reviewing
decisions in the review language, namely Approved (i.e., the model element is
correctly defined), Rework (i.e., the model element has to be modified by an
engineer), and Declined (i.e., the proposed model element should be dropped from
the model) which shall be applicable to every kind of element in every modeling
language. Other example decision types which are not shown due reasons of brevity
may include Deprecate, Vote, Merge to mention just a few. All of these concepts
extend the abstract concept review decisions. By this, the applicability of these
concepts is checked by reasoning about the base concept which is reviewed. A base
concept may receive several review decisions and a review decision may relate to
several base concepts.

In order to use the reviewing language for a concrete modeling language, the base
concept has to be bound to the concepts of the modeling language which are valid
targets to receive review decisions. In the example shown in Fig. 16.3a, the base
concept is bound to the NamedElement concept of an exemplary base language,
which provides the model elements and connections between them. In Fig. 16.3b,
we show an example usage of the reviewing language. We have defined a simple
model using the base modeling language, which consists of two elements, a robot
and a working station, as well as a connection between the two elements, which
means that the robot is attached to the working station. The model is simply shown
in its abstract syntax, which is visualized in terms of a UML object diagram. In
a reviewing process performed by Harry and Sally, two reviewing decisions are
made: (a) the robot element is approved by Harry and (b) Sally performed a review
concerning the working station element, which should be changed to represent not
station A but station B. This rework task is assigned to John.
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ReviewDecision

reviewer: String
reviewDate: Date

«metamodel» ReviewLanguage

«imported»
BaseConcept

Declined

reason: String

Approved Rework

reason: String
assignedTo: String

rd001 : Approved
reviewer = „Harry"
reviewDate = 23/06/2016

e001 : Element
name = „Robot 1"

c001 : Connector
name = „R2S"

e002 : Element
name = „Station A"

rd002 : Rework
reviewer = „Sally" 
reviewDate = 27/06/2016
reason = "Change to Station B„
assignedTo = „John"

appliedTo appliedTo

(a) Language level

(b) Model level

«metamodel» BaseLanguage

«imports»

0..*

appliedTo

Element Connector

NamedElement

src

trg

«conformsTo»

«conformsTo»

«binds(BaseConcept <- NamedElement)»

0..*

1..1

1..1

Fig. 16.3 Generic Reviewing Language: (a) Language definition and (b) examplary usage for an
example model

16.4.3 Utilizing the Generic Reviewing Language
for AutomationML

Reviewing decisions are important meta-information, which should be possible
to be exchanged between tools, e.g., assume that John has to rework the model
as requested by Sally in a different modeling tool. Therefore, we discuss in this
subsection how to utilize the presented reviewing language for AutomationML. By
this, not only the information about production systems should be exchanged, but
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Fig. 16.4 Reviewing Language libraries in AutomationML: role class library

also current reviewing decisions which are attached to the model elements which
are representing (parts of) the production systems.

The AutomationML realization of the reviewing language we have shown in
Fig. 16.3 is realized in terms of AutomationML libraries (Fig. 16.4 presents role
class library and Fig.16.5 the system unit class library) and applied on a simple
example depicted in Fig. 16.6 (i.e., the instance hierarchy).

AutomationML allows in general two ways to integrate additional information
resources going beyond CAEX, COLLADA, and PLCopen (Berardinelli et al.
2015). First, this additional information may be stored directly in the CAEX files
by adding additional domain-specific layers to AutomationML based on dedicated
libraries. Second, the additional information is stored outside and references by
external data connectors from CAEX. As we aim to provide reviewing decisions
in the context of the model, we aim for the first option. Based on the concep-
tual model of the reviewing language presented in Fig. 16.3a, we are able to
derive a domain-specific layer for it consisting of two AML libraries, namely the
ReviewingRoleClassLib (RClib) in Fig. 16.4 and the ReviewingSystemUnitClassLib
(SUCLib) in Fig. 16.5. In particular, a new RoleClass and SystemUnitClass are
introduced in the libraries for each review decision element shown in Fig. 16.3a.

The domain-specific semantics layering for reviews is then possible by assigning
the reviewing-specific Role Classes (RCs) to the reviewing-specific System Unit
Classes (SUCs), suitably mapping on SUCs the corresponding attributes (required
for MQA-Review) from RCs through mapping objects.

Finally, these SUCs are instantiated to represent reviewing decisions in the
instance hierarchy, which represents the system model under review (Fig. 16.6).

Review decisions can then be attached to internal elements (and subtype of
internal elements). In particular, any ReviewedElement provides a ReviewHistory,
which acts as a collection of ReviewDecisions of any kind for that internal element.
Please note that this utilization of the reviewing language for AutomationML allows
attaching review decisions to internal elements (and subtypes of internal elements)
only. However, by this also review decisions on review decisions can be represented.
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Fig. 16.5 Reviewing Language libraries in AutomationML: system unit class library

16.5 Conceptual Evaluation

This section focuses on the conceptual evaluation of the adapted reviewing
process (MQA-Review), the generic model language extension, and the prototype
implementation by using the AutomationML language approach. We use the
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Fig. 16.6 Reviewing Language usage in AutomationML: instance hierarchy

round-trip-engineering process as an important and common engineering approach
in MDE environments as illustrative use case.

16.5.1 Illustrative Use Case: Round-Trip-Engineering

In common industry projects several engineers, coming from different disciplines,
have to collaborate and work in parallel. Important challenges arise from hetero-
geneous and distributed disciplines with limited interoperability and capabilities
for data exchange and quality assurance (Winkler et al. 2016a). AutomationML
(Drath 2009) enables efficient data exchange by providing a common data format
for exchanging engineering data effective and efficient. However, tools are required
that enable features to enable efficient data exchange based on the common
AutomationML data format.



450 D. Winkler et al.

Fig. 16.7 Round-Trip-Engineering Process Approach (Sample Scenario)

The AML.hub (Winkler et al. 2015) provides the technical foundation for
enabling efficient data exchange between tools and data models that are based on
AutomationML. Note that the AML.hub is responsible for mapping and merging
individual discipline-specific views and data elements and for propagating changes
to related disciplines. Mordinyi et al. (2016a, b) describe the fundamental concepts
and the prototype implementation of efficient data exchange for AutomationML
and organization-specific artifacts. In context of this chapter, we will consider the
AML.hub as “black box” for providing integrated data as foundation for MQA-
review.

The round-trip-engineering process is a typical use case in MDE environments
for parallel and distributed collaboration of related engineers from different disci-
plines. Figure 16.7 illustrates related stakeholders in a sample scenario based on the
round-trip-engineering process and the contribution of MQA-Review.

The round-trip-engineering scenario includes four types of engineers (Plant
Planner, Mechanical Engineer, Electrical Engineer, and Software Engineer, i.e., PLC
programmers) and consists of six basic steps:

1. Commit Initial Plant Topology. The plant planner is responsible for providing
the basic plant structure and the plant topology in AutomationML data format as
architectural guideline for engineering.

2. Read Plant Topology. Mechanical Engineers receive/read the initial plant model
usable in local engineering tools, e.g., mechanical design tools such as MCAD.
Before adding/modifying model elements in the mechanical view they can review
the received plans by using the extended AutomationML Editor. See Section
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16.4.2 for a generic language extension and Sect. 16.4.3 for an AutomationML
specific extension for review support.

3. Commit MCAD. After completing the mechanical design step (or even interme-
diate design versions) the mechanical engineer commits the current state of the
work to the AML.hub for merging purposes.

4. Read Plant Topology & MCAD. In sequence of this round-trip engineering
scenario the Electrical Engineer receives the plant topology and current MCAD
version. After an optional MQA-Review process step he can add electrical plan
data and commit these data to the AML.hub.

5. Commit ECAD. Committed electrical planning data are merged and changes are
propagated by the AML.hub platform.

6. Read Plant Topology, MCAD, ECAD. The last step in this scenario focuses on
the Software Engineer, who receives the software related view of the project,
executes an optional MQA-Review and adds and commits modifications to the
AML.hub for further processing.

16.5.2 MQA-Review Needs and Expected Tool Capabilities

The round-trip-engineering scenario follows a sequential engineering process
derived from the “perfect engineering world”. However, in practice, engineers
work in parallel, identify defects and execute changes regularly, e.g., based on
changed requirements from customers or related disciplines or based on reported
defects. Thus, frequent changes, represented by various reads and commits from
different perspectives arise in parallel along the project’s course. Change types
typically include added/modified/removed model elements or attributes. However,
frequent interaction and data exchange may include risks of inconsistencies, defects
in various engineering artifacts that need to be addressed efficiently and effective.
MQA-Review can help to keep the project artifacts consistent on discipline level,
where engineers can perform MQA-Reviews to assess the current state of the
projects from their individual viewpoint. Furthermore, quality managers can initiate
and drive formal review processes to identify defects according to the project plan.

As manual reviews become risky (if multiple disciplines are involved), time-
consuming and expensive if experts from various disciplines are involved, tool-
supported review can help to overcome these issues. Therefore needs and require-
ments have been elicited with research and industry partners to identify a set of
needed capabilities for a tool solution that supports the MQA-Review process in
AutomationML context. These results can be summarized as follows:

Process Capabilities

• Traceable Review Process focuses on the implemented review process that
enables checking annotations and defect reports in various engineering models
(across disciplines).
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• Defined Roles and Responsibilities. Role definitions and responsibilities are
required to organize reviewing activities.

Data Exchange Capabilities

• AutomationML Support. Efficient data exchange, e.g., by using the AML.hub
requires model descriptions in machine-readable and machine-processable data
format, such as AutomationML. However, depending on an agreed data exchange
format, any structured data representation might be applicable but might need
some work for data transformation, mapping, and merging of various tool data.

• Language Extension for review process support. Data exchange formats typically
provide a description of pure engineering data without any additional functional-
ity. However, for tool support of quality assurance and reviewing processes, these
data formats should enable extensions for specific purposes, such as annotations
for the review decision or for reporting and classifying defects.

Defect Detection Performance

• Defect Detection Efficiency refers to the number of defects identified over time,
i.e., capturing as many defects as possible within a very short time interval. Thus,
efficient tool-support should increase defect detection performance.

• Defect Detection Effectiveness refers to the capability of identifying most defects
in the review objects. Thus, efficient tool-support should enable increasing
the coverage of review artifacts (i.e., covering all relevant model parts in a
measurable way).

Tool Capabilities

• Model Element Annotations. Annotation can help to provide additional com-
ments or assessments results to model elements under review, i.e., review
decisions or annotations of defects.

• Browsing Capabilities. The involvement of different disciplines (and discipline-
specific views on the system) makes inter-disciplinary traceability difficult.
However, browsing through the topology of a system can help to better identify
relationships of relevant model elements.

• Automation Supported Difference Checks. Highlighting differences caused by
changes (e.g., added, modified, or removed components) aims at accelerating
the review process because reviewers are guided by changes leaving other
components out of the review.

• Reporting. Finally, reporting capabilities have to be available to provide defect
lists and lists of annotations for project and quality management.

16.5.3 Evaluation of MQA-Review with Tool Support

This subsection describes a conceptual evaluation based on expert estimations
from research and industry with the focus on required capabilities of MQA-Review
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Table 16.1 Comparison of Traditional Review and Tool-Supported Review Approaches (C Good
Support, O neutral Support, � Weak Support)

Required tool capabilities Trad. Review Gerrit Code Rev. Defect Radar MQA Review

Process capabilities
Traceable Review Process O C O C
Defined roles and responsibilities C C O C
Data exchange format
AutomationML Support O O O C
Language Extensions � � � C
Defect detection performance
Efficiency � C � C
Effectiveness � C � C
Tool capabilities
Model Element Annotations O C C C
Browsing � � � C
Difference Checks � C � C
Reporting O C C C

support (adapted review process including language extensions for review support).
We compare the traditional (human-based) review process approach, Gerrit as
representative for code review tools with focus on changes, DefectRadar as a
representative tool for annotation and issue management in building automation,
and MQA-Review. Table 16.1 summarizes the conceptual evaluation.

Process Capabilities All approaches are capable of supporting review process
phases and traceable review process steps to some defined extent. However, it
depends on the quality strategy and organizational constraints how well process
phases are supported for the traditional review approach and forDefectRadar.Gerrit
and MQA-Review include more formal process steps that enable process traceability.
Similar comments are applicable for defined roles and responsibilities.

Data Exchange Format Models in AutomationML notation can be reviewed by
all approaches, as traditional reviews also enable code reviews and DefectRadar
supports informal reviews of documents, which might also be text documents and
AutomationML models. However, we see strong benefits for Gerrit (focus on code
changes) and MQA-Review (focus on AutomationML Models).

Defect Detection Performance Regarding efficiency, we observed benefits of Gerrit
because of the focus on changes (and change types) that guide the review to most
critical system parts. However, there is limited support for analyzing relationships
and dependencies. For MQA-Review, there is limited support for change analysis
but strong support for browsing capabilities that might increase defect detection
efficiency. For traditional review and DefectRadar defect detection efficiency
strongly depends on involved experts. No explicit tool-support is available. Similar
comments apply for defect detection effectiveness. Language extensions of the
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MQA-Review approach enable exploring the status of the review and provide
measurable results of review coverage.

Tool Capabilities While annotations have to be executed manually in the tradi-
tional review approach by experts, Gerrit and DefectRadar provide commenting
features and annotation of artifacts on a tool level. For the MQA-Review approach
language extensions have been implemented to focus on specific annotation features
required by the reviewing process. Browsing capabilities are not supported by
traditional expert reviews, Gerrit, and DefectRadar. The topology representation
and internal links (core components of AutomationML) enable efficient browsing.
Tool-supported Difference Checks are not available for the traditional review
and DefectRadar. Difference checks and visualization is a core feature of Gerrit
and applicable in MQA-Review. Based on queries differences can be highlighted.
Finally, paper-based Reporting is typically applied in the traditional approach,
Gerrit and Defect Radar provide export functionality for reporting purposes.
Finally MQA-Review supports reporting by querying capabilities provided by the
AML.hub.

Summarizing the conceptual evaluation, the traditional review approach strongly
relies on human experts and includes strong limitations for tool support. Gerrit
focuses on analysis and review support for text documents and is applicable
for AutomationML models. However, language extensions and browsing are not
supported. DefectRadar enables the analysis of any types of documents by enabling
annotations with limitations to AutomationML engineering plans. Finally, MQA-
Review with AutomationML language extensions combines benefits of Gerrit and
DefectRadar. The initial evaluation explored needs and required tool capabilities for
MQA-Review. We observed limitations of individual tools to fully support MQA-
Review. However, the introduction of a tool chain, incorporating features from
individual tools, can help to support the MQA-Review process and improve defect
detection performance and product quality.

16.6 Summary, Limitations, and Outlook

In Multi-Disciplinary Engineering, the synchronization and quality assurance of
models is success critical for making informed decisions and ensuring high quality
work products. An important requirement is the effective and efficient quality
assurance of information models along the lifecycles of products and production
systems engineering. In this chapter, we investigated how model-based methodolo-
gies can support quality assurance of information models, which may come from
heterogeneous data sources in MDE, in the different lifecycle phases of a CPPS.

In the context of this chapter, we focused on two research questions: (a) what
are the needs for systematic and tool-supported review processes and which review
approaches support these processes with focus on changes in MDE Data models
and (b) how can a standard modeling language for MDE, such as AutomationML,
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be extended to address needs for storing process-relevant attributes in context of
quality assurance and review process support.

In context of systematic review process support (RQ-MQA1) we identified a set
of needs and expected tool capabilities and adapted a traditional software review
process for MDE projects based on the AutomationML data exchange format.
Based on AutomationML and the AutomationML Editor we presented a generic
reviewing language and an instance for AutomationML (RQ-MQA2) that is capable
of supporting reviewing activities for AutomationML data.

For evaluation purposes, we focused on a selected scenario, a round-trip-
engineering process, an important engineering process that includes the synchro-
nization of models that typically change along the engineering lifecycle. Changes
include added, modified, or removed components or model attributes. Based on
this scenario, we derived a set of required tool capabilities for MQA-Review
process support. These capabilities include process capabilities to support review
process steps, data exchange capabilities that are needed for efficient and effective
model synchronization and language extension capabilities to address needs for
MQA, defect detection performance as measure for reviewing capabilities, and
tool capabilities that are required to support MQA-Review processes. Based on
the required capabilities, we conducted a conceptual evaluation of four approaches,
i.e., traditional review, Gerrit as an established tool for code reviews, DefectRadar,
an issue management for different types of documents usually used in context of
issue management for building automation, and MQA-Review. Major results of
the conceptual evaluation showed benefits of Gerrit for analyzing and reviewing
text document, e.g., software code or AutomationML data) and benefits for Defec-
tRadar for efficient annotation and the support of various engineering documents
(beyond textual documents). However, MQA-Review combines the benefits of
both approaches and includes additional features for effective and efficient model
reviews, e.g., browsing capabilities.

Major findings are that (a) an adapted review process helps to systematically
drive the review process and (b) AutomationML can be extended with process-
related attributes that are useful for quality assurance and reviewing.

Limitations The presented approach for the MQA-Review process and tool support
represents promising directions for supporting efficient and effective reviews in
MDE environments. In this chapter, we focused on a conceptual evaluation of
fundamental concepts (adapted process approach and AutomationML language
extensions). An in-depth analysis of the evaluation results is required to fully
understand these approaches in the context of review process support.

Outlook Future work will include an intensive evaluation of the conceptual proto-
types, and the design and development of a tool chain that fully supports all parts
of the review process (i.e., planning, execution, rework, and follow-up) based on
AutomationML concepts. Finally, we will plan an empirical evaluation of the process
with tool support in larger and more diverse MDE design models and scenarios from
industry partners.
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Chapter 17
Conclusions and Outlook on Research
for Multi-Disciplinary Engineering
for Cyber-Physical Production Systems

Stefan Biffl, Detlef Gerhard, and Arndt Lüder

This chapter summarizes and reflects on the material presented in this book
regarding challenges and solutions for the required information processing and
management in the context of the multi-disciplinary engineering of production
systems.

The intention of this book has been to give insights into the requirements,
technologies, and trends related to multi-* engineering, where * can stand for
discipline, domain, and/or model. Therefore, the book discusses different views
on the multi-disciplinary and multi-model nature of engineering processes looking
on topics such as data and model integration, dependencies between the different
objects to be engineered (especially products and their production systems), and
the resulting needs with respect to information technology. All chapters in the
book contribute to this discussion, each of them highlighting specific views and
perceptions of the field of interests and each of them targeting different aspects of
the selected research questions. The chapter authors describe the state of the art
as well as research directions within their field and sketch the relevance of their
findings towards the given research questions.

This chapter summarizes the discussions above. Related to the research questions
(RQs), this chapter draws conclusions based on the chapter discussions in the
three book parts. It is the intention of this chapter to consider which portions of
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the research questions are well addressed and to identify open issues for further
investigation and research. Therefore, this chapter summarizes the contributions
of the chapters towards the different research questions, and sum up the findings
to discuss the state of the replies to research questions and open issues for future
research.

The research questions M1 and M2 target advanced modelling capabilities
applicable within the lifecycle of production systems. Thereby, the information sets
created and applied within the cyber-physical production system (CPPS) lifecycle
shall be representable reflecting both integration of the different lifecycle phases
and different related views and disciplines as well as ensuring the consistency
of modelled information sets. The applicable chapters contribute to the detailed
consideration of these research questions in several ways.

RQ M1: Modelling the structure and behavior of CPPS. How can model-
based methodologies help address the specific multi-disciplinary requirements for
the representation of the structure and behavior of CPPS? Chapters 2, 5, 6, 7, and
11 address this research question.

Chapter 2 discusses the different procedural approaches within the design of
technical systems. It compares the traditional multi-domain-oriented engineer-
ing approach of cooperating engineering domains with the systems-engineering-
oriented approach. Following the comparison, the different impact factors on
the engineering of a technical system are characterized and the importance of
model-based engineering is highlighted. The chapter can be seen as plead for the
application of modelling language sets, such as UML and SysML.

Chapters 5, 6, and 7 deal with the importance of information related to production
systems components along the complete lifecycle of a production system. Together,
these chapters identify a hierarchy of production system components and a raw
version of a production system lifecycle (Chap. 5), depict the relevant sets of
engineering-time-, run-time-, and deconstruction-time-related information for the
different layers within this hierarchy (Chap. 6), and name relevant modelling means
for the identified information sets (Chap. 7). Together the chapters provide a detailed
consideration of all relevant information to be managed within the lifecycle of a
cyber-physical system (CPS) on the different layers of a production system.

Finally, Chapter 11 examines the challenges of Model-Driven Systems Engineer-
ing especially against the background of applied modelling frameworks, such as
SysML, MARTE, PMIF, and AutomationML. It sketches the different capabilities
of these languages for requirement modelling, data exchange, or analysis, and
discusses the possible combination of the different languages.

Altogether, the five chapters give a comprehensive overview on information sets
relevant within the engineering of technical systems and on methodologies and
technologies applicable to solve the challenges arising from the multi-domain nature
of these information sets. The chapters discuss relevant requirements for model-
based engineering and explore approaches for automating the multi-disciplinary
engineering activities.
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In addition, these chapters highlight an important, mostly open, challenge
for the model-driven engineering of technical systems: methodologies transform
models between modelling languages and methodologies to guarantee consistency
between different models of the same modelling language or different modelling
languages. In closed modelling frameworks, such as SysML, such transformations
and consistency checks are possible, but in case of lifecycles of technical systems
with discipline-crossing modelling technologies, there are several open issues, such
as the identification of equal objects, the mutual mapping of model elements, the
management of different levels of detail within and across the models, or the
management of dependencies between characteristic parameters of modelled objects
within and across the different applied models. Therefore, the chapters all together
give important insights into the RQ without being able to solve the RQ challenges
completely.

RQM2:Modelling in CPPS lifecycle phases.How can model-basedmethodolo-
gies support information creation and processing in the different lifecycle phases of
a CPPS? Chapters 2, 3, 4, 5, 6, 11, 12, 15, and 16 address this research question.

Chapter 2 provides to the discussion of RQ M2 the description of dependencies
between engineering information sets and the sequential enrichment of information
along the engineering process. Thereby, the chapter gives insights into the required
tool support for multi-domain and systems engineering.

Chapter 3 considers the special case of CPPS enriched by Product Service
Systems (PSS). This chapter discusses the importance of modelling means within
requirement engineering and business cases of such enriched CPPS.

Chapter 4 deals with the universe of Product Lifecycle Management (PLM)
systems and their use within the product (and production system) lifecycle. The
chapter emphasizes the dependencies between product engineering, production
system engineering, production, and product use, all of them considering product-
related information with different focus points and related to different objects
(classes of products versus instances of products). This chapter especially discusses
information flows and the usability of IT technologies to enable a specific informa-
tion flow.

Chapter 5 provides a short model of the lifecycle of a production system and
its components. Based on this lifecycle, Chapter 6 discusses information reuse
scenarios within and across the lifecycle phases engineering, use, and end of life
of a production system. Chapter 6 describes and discusses requirements towards the
information creation, distribution, and use related to production system components.

Chapter 11 describes model-based engineering technologies and their inherent
information flows. Model exchange and model use are characterized to provide a
set of standard modeling approaches that fit well to each other and can be iteratively
extended to cover further modeling needs.

Chapter 12 discusses Semantic Web technologies, which assist the information
use within multi-domain engineering by enabling the representation of information
dependencies, including consistency rules. Thereby, automatic information use and
reasoning about modelled information becomes possible enabling more comprehen-
sive information use along the CPPS lifecycle.
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Chapter 15 considers another special problem within the lifecycle of a production
system, the production ramp-up process. The main emphasis of the chapter is on
the required modelling of production processes and their relation to production
resources and products. Thus, the chapter reflects on and models information
emerging from and information used in different phases of the CPPS lifecycle to
enable automatic reasoning, e.g., on production feasibility and ramp-up risks.

Chapter 16 studies the necessary quality assurance of engineering information
in the CPPS lifecycle phases. The chapter describes a methodology to ensure
engineering quality with model review based on a selected modelling methodology.

All chapters together present different views on the use of models to sup-
port information creation, exchange, and use. As this field is very broad, even
the considerable number of chapters cannot consider all facets of model-based
methodologies supporting information creation and processing. Nevertheless, the
provided overview enables an evaluation of existing methodologies applicable for
the automation of engineering, commissioning, and use of CPPS, the evaluation of
capabilities to exploit services within the CPPS lifecycle, and to evaluate method-
ologies supporting quality assurance within engineering and run-time information
of CPPS. Thus, these chapters enable the solution of RQ M2.

Beyond the evaluation, the chapters highlight needs of further research, such as
the need for more detailed methodologies for consistency management within model
systems as well as for a more detailed consideration of the different requirements
along the lifecycle of CPPS, ranging from a component to a complete system.

Research questions I1, I2, and I3 consider the field of information representation
within the lifecycle of production systems, focusing on CPPS. Here, modelling
methodologies and model applications for different purposes are of interest.

RQ I1: Information integration in and across value chains.Which methods and
technologies support the integration of information within and across value chains
of products, production systems, and production technologies? Are there benefits
accessible from the exploitation of CPPS? Chapters 2, 4, 6, 7, 9, 10, 11, 12, 14, and
15 contribute to addressing this research question.

Chapter 2 provides an overview on the engineering process structure for technical
systems as well as on challenges emerging from the interdisciplinary views of model
engineering, which point out links between product, production technology, and
production systems engineering.

Chapter 4 introduces the concept of Product Lifecycle Management (PLM) for
CPPSs and discusses data and information management issues, PLM activities,
methods, and tools in a model-based, multidisciplinary context, therefore linking
products to production technology and to production systems engineering. The
chapter covers the phases engineering, production, and operation/use of smart
products and CPPS, considering different product types and production concepts as
well as forward and backward information flows between the phases, which provide
needs and conceptual solutions for digital links between engineering and operation
phases.
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Chapter 6 identifies layers of CPPS within the production system. For each of
these layers, Chapter 7 discusses the required information along all phases of the
production system lifecycle as a foundation for analyzing needs and options for
horizontal and vertical integration within production systems and production value
chains.

Chapter 9 provides and discusses a selection of tool chains to support workflows
in production system engineering. Further, relevant data formats for the horizontal
integration in tool chains for production systems engineering are investigated,
including the emerging standard AutomationML, which is illustrated with a case
on virtual commissioning of a production system.

Chapter 10 discusses requirements for standardization in information exchange
in production systems engineering and evaluates selected data exchange standards
and formats, in particular the emerging standard AutomationML, as a foundation for
better horizontal and vertical integration within production systems and production
value chains.

Chapter 11 provides and discusses a selection of Model-Driven System Engineer-
ing (MDSE) standards to support better horizontal and vertical integration within
the early phases of production systems engineering, in particular to facilitate the
early verification of production system models regarding system structure, behavior,
and non-functional system properties, such as performance, which is an important
foundation for designing and evaluating CPPS.

Chapter 12 considers needs for semantic integration and identifies associated
capabilities of Semantic Web technologies to support the horizontal and vertical
integration of heterogeneous data generated by various tools and systems in
multidisciplinary CPPS engineering.

Chapter 14 discusses on how to address issues of interoperability in CPPS,
in particular heterogeneity, with Service-Oriented Architecture (SOA) approaches,
SOA reference architectures, and derives a technology stack suitable for the
operation of agile and flexible industrial plants.

Chapter 15 introduces a method for modeling, collecting, and analyzing produc-
tion data in a multi-disciplinary knowledge base as foundation for the automated
support of fact-based ramp-up project planning as a deterministic process.

Altogether, these chapters give insight into information modeling and informa-
tion exchange along the lifecycle of a production system covering integration of
engineering tools, engineering disciplines, and engineering roles. The chapters high-
light the importance of information representation (modelling) and the application
of common semantic concepts.

In addition, these chapters link to CPPS, mostly reflecting CPPS-based require-
ments to information modelling. Benefits possibly gained by exploiting CPPS
based views have not been regarded. This seems to be an open issue for further
investigation. Nevertheless, the discussed approaches have the potential to provide
answers to RQ I1.

RQ I2: Quality assurance for information exchange. Which methods and
technologies support assuring the required information quality for information
exchange? Chapters 3, 6, 7, 9, 10, 11, 12, and 16 address this research question.
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Chapter 3 introduces the concept of Product Service Systems (PSS), presents an
interesting literature review on the challenges and benefits of PSS, and the study
of required information in value chains related to CPPS as foundation for quality
assurance on information provided for exchange along the production system
lifecycle.

Chapter 6 defines three main lifecycle phases for production systems differing in
information creation and use while Chap. 7 discusses the information required for
different kinds of production system components along the phases of the production
system lifecycle named in Chap. 6 as a foundation for quality assurance methods
that can be applied within production systems and production value chains.

Chapter 9 reviews relevant data formats in software tool chains and their quality
needs, motivating the need for the emerging standard AutomationML, which is
illustrated with a case on virtual commissioning of a production system.

Chapter 10 discusses requirements for standardization in information exchange
as foundation for studying the required information quality in different lifecycle
phases of CPPS, and evaluates selected data exchange standards and formats, in
particular the emerging standard AutomationML, regarding these criteria.

Chapter 11 provides and discusses a selection of Model-Driven System Engi-
neering (MDSE) standards to facilitate the early verification of CPPS engineering
models, a key enabler for many kinds of CPPS.

Chapter 12 explains how Semantic Web technologies support multi-disciplinary
engineering processes by integration of heterogeneous data generated by various
tools and systems as foundation for data quality assurance in multi-disciplinary
knowledge.

Chapter 16 provides for Model Quality Assurance (MQA) a review process
for multi-disciplinary engineering (MDE), which supports the detection of defects
already in early phases of CPPS engineering.

All named chapters have one major commonality, the highlighting of the
need of representation and application of dependencies and interrelations between
information sets coming from several engineering disciplines, discipline-specific
models, and lifecycle phases. In some cases, the chapters sketch initial ideas to solve
these needs. However, altogether the chapters also show that there is still a wide
field of research to be done to finally answer RQ I2. In particular, the chapters show
that the identification and evaluation of the best-fitting or even relevant modelling
means, e.g., semantic technologies, is still ongoing.

RQ I3: Description of plug-and-play capabilities and interfaces for engineer-
ing and run time. Are there specific aspects of information exchange related to the
lifecycle of CPPS? The issues of plug-and-play capabilities of CPPS and interfaces
for the linkage of engineering and run time are addressed, Chaps. 8, 9, and 15 intend
to provide answers to this research question.

Chapter 8 on the engineering of next generation cyber-physical automation
system architectures addresses the lack of implementation of control system
architectures that have been developed and validated in the recent past by several
research groups in industry. The chapter provides a summary of current alternative
control system architectures that could be applied in industrial automation domain
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as well as a review of their commonalities. Further, the chapter points out the
differences between the traditional centralized/hierarchical architectures and decen-
tralized decision-making and control architectures. A vision of automation system
integration over a common service-based infrastructure or integration layer that
aims to ensure the transparent, secure, and reliable interconnection of shop-floor
components and software systems in a plug-and-play fashion is proposed. However,
the issue of linking the engineering and run time phases remains open.

Chapter 9 presents an overview on tool chains and the current workflows of
mechanical design, electrical design, and software design in production system
engineering process. The chapter highlights the necessity of a standardized data
format to exchange engineering data along the entire production system engineering
process, and presents AutomationML as example data format for the case of
virtual commissioning of a production system. Nonetheless, several data formats
are still required in the whole processes, in particular, if the interplay of product
development and production system development needs to be addressed. Feedback
of data from operation (run time) to production system engineering (e.g. virtual
commissioning) in order to realize a digital twin is still an open issue not covered
by any standard data format.

Chapter 15 introduces a method for modelling, collecting, and analyzing pro-
duction data in a multi-disciplinary knowledge base on deterministic production
ramp-up processes to support fact-based ramp-up project planning. So the interface
of run time and engineering is directly addressed.

Altogether, these chapters discuss only a small part of the wide field of plug-and-
play structures within the lifecycle of CPPS. Still, the chapters open up an essential
view on the requirements within this area and discuss challenges to be tackled
within the implementation of plug-and-play capabilities. Especially the topics of
information modeling and the relation of information models to system architectures
are discussed.

However, there are several open issues, such as the discussion of dependencies
between engineering and run-time data, the mapping of required and available
capabilities within a production system, or the identification of best-fitting data
formats for information representation.

RQ C1: Modelling of CPPS flexibility and self-adaptation capabilities. How
can model-based approaches improve the flexibility and self-adaptation of produc-
tion systems? What are the roles of product, production technology, and production
system models in this context? Chapters 4, 8, 13, and 15 address this research
question.

Chapter 4 introduces the concept of Product Lifecycle Management (PLM) for
CPPSs and discusses data and information management issues, PLM activities,
methods, and tools in a model-based, multidisciplinary context, therefore linking
products to production technology and production systems engineering. The chapter
covers the phases engineering, production, and operation/use of smart products
and CPPS, considering different product types and production concepts as well as
forward and backward information flows between the phases, which provides needs
and conceptual solutions for digital links between engineering and operation phases.
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Chapter 8 gives a summary of non-hierarchical control system architectures
that could be applied in industrial automation domain as well as a review of their
commonalities. The chapter aims to point out the differences between the traditional
centralized/hierarchical architecture and decentralized decision-making and control
architectures. The chapter also explores the challenges and impacts that industries
and engineers face in the process of adopting decentralized control architectures,
analyzing obstacles for industrial acceptance and necessary new interdisciplinary
engineering skills. In the end, the chapter gives an outlook on possible mitigation
and migration activities required to implement decentralized control architectures.

Chapter 13 investigates existing studies of CPS with regard to advanced self-
adaptation mechanisms, applied across the technology stack. From this investiga-
tion, the chapter authors derive recurring patterns, consolidating design knowledge
on self-adaptation in CPS, in particular CPPS. The patterns and models can support
future CPS designers with the realization and coordination of self-adaptation
concerns. Finally, this chapter outlines a research agenda to advance self-adaptation
and coordination in the domain of CPS.

Chapter 15 introduces a method for modeling, collecting, and analyzing produc-
tion data in a multi-disciplinary knowledge base as foundation for the automated
support of fact-based ramp-up project planning as a deterministic process. The chap-
ter discusses the identification of capability fulfillment of product based production
process requirements with resource-based production system capabilities and the
exploitation of this identification.

Altogether, these chapters provide a detailed overview on the relations between
production system architectures, product structures, and production technologies on
the one hand and information representation on the other hand. The chapters give
insight into modelling approaches that enable more flexibility in production systems
by exploiting self-adaptation or even human-based adaptation.

Nevertheless, these chapters cannot provide a consistent approach. Rather, the
chapters discuss building blocks that can be part of a solution to address RQ C1.
Open issues related to the RQ include model management related to the different
possibly involved modelling means or the necessary approaches for generating the
information required within a self-adaptation process of CPPS.

RQ C2: Linking discipline-specific engineering views for flexible and self-
adaptable CPPS. How shall several disciplines in product and production system
engineering be linked to support the engineering of flexible and self-adaptable
CPPS? Chapters 3 and 4 address this research question.

Chapter 3 introduces the concept of Product Service Systems (PSS), presents an
interesting literature review on the challenges and benefits of PSS, and the study of
required information in value chains related to CPPS.

Chapter 4 introduces the concept of Product Lifecycle Management (PLM) for
CPPSs and discusses data and information management issues, PLM activities,
methods, and tools in a model-based, multidisciplinary context, therefore linking
products to production technology and to production systems engineering. The
chapter covers the phases engineering, production, and operation/use of smart
products and CPPSs, considering different product types and production concepts as
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well as forward and backward information flows between the phases, which provide
needs and conceptual solutions for digital links between engineering and operation
phases.

These two chapters give a view on the relations between engineering disciplines
and their possible management. The chapters sketch approaches for dependency
handling and for information propagation. Nevertheless, a consistent approach
applicable in several cases is still lacking.

Beyond these intended relations between the book chapters and the research
questions, all chapters within this book provide at least an implicit input to nearly
all research questions. As examples, we point to Chaps. 4, 7, and 16.

Chapter 4 discusses with engineering to order, build to order, and build to stock
different types of motivations for starting the product and/or the production system
lifecycle. Thereby, the chapter discusses requirements for information creation,
management, and use, having a strong impact on the modelling of structure and
behavior of CPPS having an impact on the answers to RQ M1.

Chapter 7 discusses the information sets related to different lifecycle phases of
production systems. As these information sets are partially interrelated, this chapter
implicitly gives answers to the problem of linking engineering disciplines with each
other and with runtime information. Thereby it gives input to RQ C2.

Finally, Chapter 16 discusses the quality management of engineering informa-
tion. This quality management shall not be made only once in an engineering
process but several times. Thereby, the fact becomes evident that the described
approaches shall be applied within and between the different phases of the lifecycle
of production system covering the different engineering steps and use phases
(including redesign and maintenance). Thus, this chapter defines requirements to
the information integration in and across value chains and, thereby, is related to
RQ I1.

Summing up all chapters, this book discusses challenges and solutions for
the required information representation, processing, and management capabilities
within the context of multi-disciplinary engineering of products and production
systems. The authors considered models, methods, architectures, and technologies
applicable in CPPS use cases according to the viewpoints of product and production
system engineering and their use. Thus, the main aim of this book is fulfilled.

As can be seen in this chapter, there are still several open issues for research
identified within this book in relation to the research questions. The most relevant
open issues are the following.

The information management within the complete lifecycle of products and
production systems shall be based on commonly agreed and possibly standardized
information representation means with more or less formal models as best choice.
These information representation means shall be negotiated among all relevant
stakeholders enabling a consistent and integrated information representation over all
involved engineering and use activities, applied engineering tools and information
processing entities of the use phase, as well as all involved disciplines during
engineering and use.
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Based on these information representation means, model integration and model
consistency management shall be enabled. Different models views on the same
object shall be transformable in to each other (clearly reflecting the different
information sets they may cover). Dependencies between information sets within
the different models must be ready for verification and appropriate evaluation.

Building on such a strong information representation foundation, an efficient
information management shall be developed considering all relevant stakeholders
along the complete lifecycle of a product and/or a production system. This approach
shall enable a more efficient and high quality information generation, processing,
and use.

Finally, the way to treat products as well as production systems within the
combined engineering of products and production systems shall be reviewed. It
can be discussed whether a system-engineering-oriented view on products and
production systems is more likely to cover all requirements of the multi-disciplinary
character of the information related to products and production systems compared
to the current state of the practice.
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