Stefan Biffl - Arndt Liider
Detlef Gerhard Editors

Multi-Disciplinary
Engineering for
Cyber-Physical
Production Systems

Data Models and Software Solutions for
Handling Complex Engineering Projects

@ Springer

Multi-Disciplinary Engineering for Cyber-Physical
Production Systems

Stefan Biffl « Arndt Luder ¢ Detlef Gerhard
Editors

Multi-Disciplinary
Engineering for
Cyber-Physical
Production Systems

Data Models and Software Solutions for
Handling Complex Engineering Projects

@ Springer

Editors

Stefan Biffl Arndt Liider

Institute of Software Technology Institute of Ergonomics, Manufacturing
and Interactive Systems Systems and Automation (IAF)

Technische Universitit Wien Otto von Guericke University Magdeburg

Wien, Austria Magdeburg, Germany

Detlef Gerhard

Institute of Engineering Design

and Logistics Engineering
Technische Universitit Wien
Wien, Austria

ISBN 978-3-319-56344-2 ISBN 978-3-319-56345-9 (eBook)
DOI 10.1007/978-3-319-56345-9

Library of Congress Control Number: 2017940637

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Being university professor implies the attempt to provide young engineers with the
required knowledge enabling them to successfully work within a field of science, in
my case the field of mechanical engineering. This knowledge shall be sufficient to
also cope with challenges that will come up in the next few years.

Following this line of thought, the professional life of mechanical engineers,
and in my case, product engineers, has strongly changed during the last 20 years.
Within the field of product engineering, the increasing capabilities of information
processing have resulted in two main trends.

First, the new capabilities of information processing enable radically improved
or even new engineering methodologies. Examples for improved methodologies
are more detailed analysis methodologies based on finite element methods or
improved simulation methodologies, now also applying improved physics simula-
tions. Examples of new methodologies are the development of advanced creativity
techniques, optimization-based problem solution strategies, for example, exploiting
swarm intelligence or genetic algorithms, or even new product prototype realization
methodologies, such as 3D printing.

Second, the product itself can become more intelligent and, thereby, provide
advanced product features, such as advanced user interaction for product customiza-
tion, or product-related services, such as self-maintenance or self-adaptation.

All these new methodologies and technologies are based on advanced application
of information processing. Thus, information creation, management, and use are key
results, and also challenges, in the professional life of an engineer. Thus, student
capabilities shall be trained to apply these improved or new methodologies and
technologies. In addition, students shall be enabled to adopt upcoming concepts,
methods, and technologies in their work environment efficiently and successfully.

To make this challenge more complicated also in product engineering, engineers
will not work in isolation. Product engineers work in collaborations, in changing
groups of engineers, who together aim at solving an engineering problem. Product
engineers have to share knowledge with/from different engineering disciplines to
enable the appropriate use of this knowledge.

vi Foreword

As foundation, mechanical engineering students need to acquire key capabil-
ities for dealing with information creation, management, and use within multi-
disciplinary engineering environments. Many of the required skills are discussed in
the book at hand. Within this book, the multi-disciplinary nature of the life cycles of
products, production systems, and production system technologies and components
are considered. The implications of these life-cycle activities toward information
processing are highlighted and knowledge is collected that has the potential to
enable engineers in several disciplines, not only mechanical engineering students,
to successfully cope with important daily challenges in their professional work also
in the foreseeable future.

Thereby, this book discusses three main fields of interest. First, following the
common sense in engineering information processing by models is regarded. Here,
the focus is on modeling structures and behaviors of products and production
systems covering their complete life cycles. Second, integrated information flows
along the product- and production-system life cycles are discussed supporting
informed decisions of engineers by exchanging the required information in the right
quantity and quality independent of its source. Finally, the integration of information
processes in physical objects is discussed, based on the idea of cyber-physical
systems and their occurrence in production systems as cyber-physical production
systems.

Altogether, the book at hand is a valid source of knowledge for all readers
intending to raise their knowledge related to information-driven engineering in a
multi-disciplinary environment, not only to my mechanical engineering students.

Magdeburg, Germany Karl-Heinrich Grote
December 2016

Preface

Industrial engineering is a multi-disciplinary endeavor that is moving toward an
interdisciplinary and information-driven approach in all application areas, including
the engineering of Cyber-Physical Production Systems (CPPS). Engineers from
several disciplines have to develop engineering results cooperatively by exchanging
engineering information describing technical systems from different viewpoints and
on various levels of detail. Within this interdisciplinary and information-driven
approach, models of different kinds and their interrelations become key assets that
should be treated as first-class citizens in the engineering process. Consequently,
model-driven approaches envision improving engineering quality and reducing
engineering efforts.

There is a growing community of engineers involved in the development of
model-driven engineering approaches for product and production systems engineer-
ing in Europe and beyond, such as the members of the AutomationML association,
the IEEE technical committees Factory Automation, Industrial Agents, Industrial
Cyber Physical Systems, and Industrial Informatics. An overall goal of the research
of these communities is to present a holistic view on CPPS from different research
domains that address in some parts different viewpoints on the same topic but seem
to act in isolation from related research groups in other communities. Challenges of
CPPS can only be tackled by a cooperation of the relevant research communities.

Therefore, we provide this book to bridge the gap between the three scientific
communities of multi-disciplinary engineering of products, production systems, and
informatics with a focus on model-based software and information engineering
with examples that should be relevant and understandable for members from all
communities involved. To the best of our knowledge, this is the first book to
cover the topic of Multi-Disciplinary Engineering for Cyber-Physical Production
Systems, which has gained importance with the Industrie 4.0 initiative. More flexible
production systems require stronger integration of the models, methods, and tools
across several engineering disciplines to reach the goal of automating automation.
A major outcome of the research was that the later life-cycle phases of complex
technical systems, i.e., operation, become more and more important. Engineering
and modeling has to map run-time behavior adequately in advance. Real-time data

vii

viii Preface

analytics in manifold ways increase the capabilities and efficiency of CPPS. CPPS-
based Product Service Systems open new business opportunities.

Wien, Austria Stefan Biffl
February 2017 Detlef Gerhard
Arndt Liider

Contents

1 Introduction to the Multi-Disciplinary Engineering
for Cyber-Physical Production Systems......................ccoooenne. 1
Stefan Biffl, Detlef Gerhard, and Arndt Liider

PartI Product and Systems Design

2 Product and Systems Engineering/CA* Tool Chains 27
Kristin Paetzold

3 Cyber-Physical Product-Service Systems 63
Stefan Wiesner and Klaus-Dieter Thoben

4 Product Lifecycle Management Challenges of CPPS................... 89
Detlef Gerhard

PartII Production System Engineering

5 Fundamentals of Artifact Reusein CPPS................................ 113
Arndt Liider, Nicole Schmidt, Kristofer Hell, Hannes Ropke,
and Jacek Zawisza

6 Identification of Artifacts in Life Cycle Phases of CPPS................ 139
Arndt Liider, Nicole Schmidt, Kristofer Hell, Hannes Ropke,
and Jacek Zawisza

7 Description Means for Information Artifacts Throughout
the Life Cycle of CPPS ... 169
Arndt Liider, Nicole Schmidt, Kristofer Hell, Hannes Ropke,
and Jacek Zawisza

8 Engineering of Next Generation Cyber-Physical Automation
System Architectures................c.cuiiiiiiiiiiiiiiiiiiiiiiiieees 185
Matthias Foehr, Jan Vollmar, Ambra Cala, Paulo Leitdo, Stamatis
Karnouskos, and Armando Walter Colombo

ix

10

Contents

Engineering Workflow and Software Tool Chains of Automated
Production Systems............cooiiiiiiiiiiiiii 207
Anton Strahilov and Holger Himmerle

Standardized Information Exchange Within Production
System Engineeringcooiiiiiiiiiiiiiiiiiiiiiiiiiees 235
Arndt Liider, Nicole Schmidt, and Rainer Drath

Part III Information Modeling and Integration

11

12

13

14

15

16

17

Model-Driven Systems Engineering: Principles

and Application in the CPPSDomain 261
Luca Berardinelli, Alexandra Mazak, Oliver Alt,

Manuel Wimmer, and Gerti Kappel

Semantic Web Technologies for Data Integration
in Multi-Disciplinary Engineering...........................o 301
Marta Sabou, Fajar J. Ekaputra, and Stefan Biffl

Patterns for Self-Adaptation in Cyber-Physical Systems 331
Angelika Musil, Juergen Musil, Danny Weyns, Tomas Bures,
Henry Muccini, and Mohammad Sharaf

Service-Oriented Architectures for Interoperability
in Industrial Enterprises..............ccooooiiiiiiiiiiiiiiii 369
Ahmed Ismail and Wolfgang Kastner

A Deterministic Product Ramp-up Process: How to Integrate
a Multi-Disciplinary Knowledge Baseoooen. 399
Roland Willmann and Wolfgang Kastner

Towards Model Quality Assurance for Multi-Disciplinary

Engineeringocoooiiiiiiiiiiiii 433
Dietmar Winkler, Manuel Wimmer, Luca Berardinelli,

and Stefan Biffl

Conclusions and Outlook on Research for Multi-Disciplinary
Engineering for Cyber-Physical Production Systems................... 459
Stefan Biffl, Detlef Gerhard, and Arndt Liider

List of Contributors

Oliver Alt Lieber Lieber GmbH, Vienna, Austria

Luca Berardinelli Business Informatics Group, Technische Universitit Wien,
Wien, Austria

Stefan Biffl Technische Universitit Wien, Wien, Austria

Tomas Bures Department of Distributed and Dependable Systems, Charles
University Prague, Prague, Czechia

Ambra Cala Otto-v.-Guericke University, Magdeburg, Germany
Siemens AG Corporate Technology, Erlangen, Germany

Armando Walter Colombo University of Applied Sciences Emden/Leer, Emden,
Germany

Rainer Drath ABB Research, Ladenburg, Germany

Fajar J. Ekaputra Technische Universitit Wien, Wien, Austria
Matthias Foehr Siemens AG Corporate Technology, Erlangen, Germany
Detlef Gerhard Technische Universitit Wien, Wien, Austria

Holger Himmerle EKS InTech, Weingarten, Germany

Kristofer Hell Volkswagen AG, Wolfsburg, Germany

Ahmed Ismail Institute of Computer Aided Automation, Technische Universitiit
Wien, Wien, Austria

Gerti Kappel Business Informatics Group, Technische Universitit Wien, Wien,
Austria

Stamatis Karnouskos SAP, Walldorf, Germany
Wolfgang Kastner Institute of Computer Aided Automation, Technische

Universitat Wien, Wien, Austria

xi

xii List of Contributors

Paolo Leitao Polytechnic Institute of Braganca, Braganga, Portugal
Arndt Liider Otto-v.-Guericke University/IAF, Magdeburg, Germany

Alexandra Mazak Business Informatics Group, Technische Universitit Wien,
Wien, Austria

Henry Muccini DISIM Department, University of L’ Aquila, L’ Aquila, Italy

Angelika Musil Institute of Software Technology and Interactive Systems,
Technische Universitidt Wien, Wien, Austria

Jirgen Musil Institute of Software Technology and Interactive Systems,
Technische Universitiat Wien, Wien, Austria

Kristin Paetzold UniBW Miinchen, Munich, Germany

Hannes Ropke Volkswagen AG, Wolfsburg, Germany

Marta Sabou Technische Universitidt Wien, Wien, Austria

Nicole Schmidt Otto-v.-Guericke University/IAF, Magdeburg, Germany
Mohammad Sharaf DISIM Department, University of L’ Aquila, L’ Aquila, Italy
Anton Strahilov EKS InTech, Weingarten, Germany

Klaus Dieter Thoben Universitit Bremen/BIBA, Bremen, Germany

Jan Vollmar Siemens AG Corporate Technology, Erlangen, Germany

Danny Weyns Department of Computer Science, KU Leuven, Leuven,
Belgium

Department of Computer Science, Linnaeus University, Vixjo, Sweden

Stefan Wiesner BIBA—Bremer Institut fiir Produktion und Logistik GmbH at the
University of Bremen, Bremen, Germany

Roland Willmann Carinthia University of Applied Sciences, Villach, Austria

Manuel Wimmer Business Informatics Group, Technische Universitit Wien,
Wien, Austria

Dietmar Winkler SBA Research gGmbH, Vienna, Austria
Technische Universitat Wien, Wien, Austria

Jacek Zawisza Otto-v.-Guericke University/IAF, Magdeburg, Germany

Chapter 1

Introduction to the Multi-Disciplinary
Engineering for Cyber-Physical Production
Systems

Stefan Biffl, Detlef Gerhard, and Arndt Liider

Abstract The Internet of Things and Services opens new perspectives for goods
and value-added services in various industrial sectors. Engineering of industrial
products and of industrial production systems is a multi-disciplinary, model- and
data-driven engineering process, which involves engineers coming from several
engineering disciplines. These engineering disciplines exploit a variety of engi-
neering tools and information processing systems. This book discusses challenges
and solutions for the required information processing and management capabilities
within the context of multi-disciplinary engineering of production systems. The
authors consider methods, architectures, and technologies applicable in use cases
according to the viewpoints of product engineering and production system engineer-
ing, and regarding the triangle of (1) the product to be produced by (2) a production
process executed on (3) a production system resource.

This chapter motivates the need for better approaches to multi-disciplinary
engineering (MDE) for cyber-physical production systems (CPPS) and provides
background information for non-experts to explain the interaction between produc-
tion engineering, production systems engineering, and enabling contributions from
informatics. Furthermore, the chapter introduces a set of research questions and
provides an overview on the book structure, chapter contributions, and benefits to
the target audiences.

Keywords Multi-disciplinary engineering * Cyber-physical production systems ¢
Product lifecycle management ¢ Make-to-order * Model-based systems engineer-
ing

S. Biffl (2<) « D. Gerhard
Technische Universitit Wien, Wien, Austria
e-mail: Stefan.Biffl @tuwien.ac.at; Detlef.Gerhard @tuwien.ac.at

A. Liider
Otto-von-Guericke Universitdt Magdeburg, Magdeburg, Germany
e-mail: Arndt.Lueder@ovgu.de

© Springer International Publishing AG 2017 1
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_1

mailto:Stefan.Biffl@tuwien.ac.at
mailto:Detlef.Gerhard@tuwien.ac.at
mailto:Arndt.Lueder@ovgu.de

2 S. Biffl et al.

1.1 Motivation

Designing and developing smart products and systems comprising embedded sys-
tems and Internet of Things (I10T) technology—often referred to as Cyber-Physical
Systems (CPS)—requires the extensive collaboration of several engineering disci-
plines. Product creation processes embrace engineering processes of the definition
of products (or modules/systems) and of the required production system. This book
essentially deals with the challenges of domain-spanning engineering processes of
complex technical systems in the production area. This particular focus is mirrored
in the term Cyber-Physical Production System (CPPS), which is also used in the
title of this book. CPPS depicts the projection of the CPS concept to the production
domain. Nonetheless, CPPS with emphasis on smart products, smart production,
and product service systems have several links to CPS concepts focusing on other
domains, e.g., “smart grid” in the energy domain and “smart mobility” in the
mobility domain.

Within engineering processes for CPPS, several software solutions are used
for different tasks in the sense of Model-Based Systems Engineering (MBSE).
These engineering processes lead to many different but linked models, which have
to be managed and maintained. To achieve this goal, typically several types of
business information systems, e.g., Product Data Management (PDM), Enterprise
Resource Planning (ERP), and Manufacturing Execution Systems (MES), form
a company-specific Product Lifecycle Management (PLM) solution. The more
complex engineering projects and associated models get, the more emphasis has
to be put on interoperability and the ability to capture of the semantics of data in
interfacing different systems.

This chapter introduces key characteristics of smart product design and pro-
duction system engineering and derives requirements for informatics approaches
that facilitate information modelling and data integration as foundation for multi-
disciplinary engineering of CPPS.

The world of manufactured products, industrial goods, and services with associ-
ated businesses is changing its face. On the one hand side, there is demand pull.
Drivers for this effect are manifold. New technical solutions are one approach
to solve existing problems of the twenty-first century—often referred to as mega
challenges—on a global scale. Examples are global warming, fresh water or energy
shortage, and population growth. Tackling these challenges often leads to concepts,
which require an increase of cost or resource efficiency, while high quality standards
have to be maintained. In consequence, the complex and interconnected challenges
result in complex technical systems with advanced information technology required
to make them “smart”. Additionally, and sometimes in contrast to the stated global
challenges, huge portions of the world are living in an unprecedented wealth. This
also leads to steadily growing demands in terms of high-end consumer products,
mobility and transport solutions, smart homes etc. Particularly, the demand for
individualized products has increased and the lifecycle of products has shortened
significantly.

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 3

In the early 1990s, car manufacturers had about 3—10 different models. 25 years
later, they have a huge variety of models, crossovers, and derivatives easily exceed-
ing 50-70 major variants. The development time of a car including production
system has shrunk from 6 years to 2-3 years within the same time span. The
sales lifecycle duration of a car was in some cases 30 years or more and iS now
about 8 years on average. In the consumer electronics industry, this effect is even
stronger. Once a new smart phone is on the market, the predecessor does not sell any
more, and the time span is not even 1 year. Sometimes, there is even an artificially
generated customer demand, which cannot be explained by rational means, but
western economies heavily rely on growth, and marketing experts do their best in
generating demands.

These effects have a huge impact on industrial production. Production systems
have to be quickly established in parallel to product development and furthermore,
agile and flexible in order to be able to respond rapidly to changed production
demands and variants. There is a strong demand to transform mass production to
“lot-size-one” production while—at the same time—maintaining high quality and
low production cost.

On the other hand—besides demand pull—there is a strong technology push.
This has an impact on the products themselves but also on the production system.
Besides the progress in production technologies enabling producers to exploit
improved production processes, there is progress in automation and control tech-
nology based on information processing. Recent developments in PC-based tech-
nologies make it much cheaper to integrate intelligence into production system
components enabling new control system architectures and new ways of control
decision taking (Vogel-Heuser et al. 2013). For instance, condition monitoring
of a machine tool or production system offers the option to perform preventive
maintenance tasks and thereby reduce downtime or repair costs.

Together, these drivers lead to more complex production systems, see Fig. 1.1.
This complexity has to be faced within both engineering and use of production
systems as well as products produced within them. To do so, engineers have
developed methods and tools like mechatronical engineering, agile programming,
and plug-and-play of devices assisting them in dealing with system complexity and
in dealing with the necessary quality of the engineering results.

Human population
increase: Increased
number of products

A 4

Engineering of
production systems

Technology
progress: Increased
technological
possibilities

Globalization:
Increased variety
of products

Fig. 1.1 Impact factors on production system engineering

4 S. Biffl et al.

One the one hand, we now face several engineering disciplines developed to
enable the best possible engineering of a part of the overall production system.
Initially in the 1950s, the engineering disciplines mainly were mechanical and
electrical engineering, we now see on the one hand specialized disciplines emerging
from the named two, such as multi-body simulation, computational fluid dynamics,
tribology, or material sciences coming from mechanical engineering, and wiring,
enclosure design, or communication system engineering coming from electrical
engineering. In addition, we have seen emerge several new disciplines like control
programming for programmable logic controllers (PLCs) and robots or optical sys-
tem engineering (for laser-based welding). All of these disciplines have developed
their special engineering methods, models, and terminologies applied within, and
special tools to be used.

On the other hand, we see engineering process chains increasing in duration,
complexity of the engineered technical system, and complexity of the required
discipline-related skills, knowledge and activities. For example, engineering of
a bodywork line for a car manufacturer contains around 25 engineering steps,
which are executed by 25 different engineering tools. Well-known engineering
activities are mechanical engineering design, electrical wiring design, and control
programming. However, there are also less-known engineering steps, such as
reachability analysis for welding points. All these engineering steps depend on each
other’s results. These dependencies form a tightly knit network. For example, the
reachability analysis for welding points depends on the engineering design of the
welding cell and the selection of a welding gun. In turn, the results of the reachability
analysis for welding points have an impact on the engineering design of the welding
cell and the welding gun selection.

Most of the engineering-discipline-specific tools have been enriched and detailed
to engineering tools for the special engineering activities to be executed. Thereby,
engineering-step-related dialects of the engineering methods, models and terminolo-
gies have emerged.

Engineering of production systems is conducted today in a multi-domain,
multi-model, and multi-method environment, with a multitude of organizational,
technical, and social dependencies. There are some initial works to analyze and
optimize the raised complex engineering organizations, e.g., the VDI Guideline
3695 (VDI 3695 2009). However, the editors of this book are convinced that the
improvement of production system engineering requires detailed knowledge about
the boundary conditions of the engineering. These boundary conditions include
possibilities of upcoming cyber-physical structures of production systems and
(enforced by them) new possibilities of data and knowledge acquisition, integration,
consistency evaluation, and management within collaborative multi-discipline and
multi-model engineering.

CPPS is a very general term. In order to derive the research needs and
challenges for CPPS engineering, it is necessary to distinguish different product
types, production concepts, and production types. In the first place, four production
concepts, reflecting the procedure during order processing, can be differentiated
(Higgins et al. 1996): Make-to-Stock (MTS), or alternatively Pick-to-Order (PTO),

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 5

reflects on production concepts for standard products without variants, which takes
place independent of customer requests and orders, e.g. consumer electronics, hand
machining tools, household appliances. Assemble-to-Order (ATO), or Build-to-
Order (BTO), reflects on preproduction of standard products with manufacturer-
specific variants irrespective of the order but connected to a customer-specific
final production or assembly, e.g. cars and or personal computers. Make-to-Order
(MTO) depicts production of standard products with customer-specific variants that
are partly composed of pre-defined components and partly made up of only pre-
designed components like gas turbines, airplanes, or kitchen furniture. Accordingly,
new components are also created in this concept. Examples are complex machines
for special products, machining tools or utility vehicles. With the Engineer-to-
Order (ETO) concept, products according to customer specifications are produced,
e.g. plant construction or shipbuilding. Because of specialization and considerable
number of new components that have to be designed specific to an order, those
products cannot be completely pre-engineered. A key characteristic of MTO and
ETO production is the combination of existing standard parts with the new or
adapted design of individual parts.

MTS products are typically produced in larger volumes (series or mass pro-
duction) using a specialized production system. Those production systems have a
special engineering process, which starts at a certain maturity level of the product.
Largely they are optimized, often in a clocked flow production. Adaptability and re-
configurability are not main concerns in terms of linking product engineering with
production system engineering. ETO products are in general fixed site fabrications
with job shop pre-manufacturing of single parts or pre-assemblies. Since there are
only single items or small batches to be produced, there is no special engineering
of the production system, but individual workshop production on standard numeric
control (NC) machining tools. Furthermore, intra-logistics and material handling is
in general not automated. The trend towards individualized products with customer
specific requirements is moving industry away from MTS and mass production
towards ATO or MTO in order to meet customer demands. ATO and MTO are often
considered as sub-classes of Configure-to-Order (CTO). Configuration of products
is the essential part of the order process prior to manufacturing and assembly.
Typically, the components of the product cannot be chosen independently, i.e.,
dependencies have to considered. However, in ATO production, the dependencies
are rather simple in nature; components of the product are defined in detail and may
be prefabricated in stock. In MTO production, the dependencies are more complex
compared to ATO, components are manufactured as needed. This requires additional
flexibility in the production process, particularly in terms of detailed production and
material flow planning.

These types of production processes are mainly addressed with CPPS
approaches. Additionally, a far greater collaboration of product engineering and
production system engineering as well as integration of the respective IT systems
is required. A high degree of flexibility for variant rich and customized products
requires the adjustment product structures accordingly. This leads to higher efforts
for product modularization and product line definition. A thoughtful product

6 S. Biffl et al.

structure is the necessary basis of the often referred to products that control their
own production. The essential task of optimization in production is to increase
efficiency in terms of four each opposing target dimensions: variability, quality,
speed, and economy. This applies especially for CPPS approaches.

1.2 Background

Within the prior section, production systems have been named as product of the
ETO approach. In the following, the distinction between product and production
system will be clarified.

Technical systems are often distinguished in product and production system. In
(Stark 2015), a product is characterized as the reason a company exists for, i.e.
it is created and applied within the company business making profit by selling
the product. Products can be tangible like cars and cameras or intangible like a
repair service for cars or a print service for photos. The combination of tangible
products and associated services is referred to as Product Service System (PSS). In
contrast, production systems are seen by the different authors in (El Maraghy 2009)
as a means to create products by appropriate combination of production factors.
Production factors exploited are among others materials, used work-in-progress,
applied production resources (machines), and the human workers executing the
activities. As easily visible, the same object, for example a bakery, can be regarded
as product (by the bakery system integrator) and as a production system for cake
production (by the bakery owner).

Nevertheless, there are strong dependencies between product and production
system. On the on hand, the product requires a production system to be created.
The production system defines boundary conditions to the properties of products
possibly to be created within. On the other hand, products define requirements to the
production system able to produce them. For example within production systems of
optical components of cameras, dedicated cleanness conditions have to be fulfilled.
Hence, within the engineering of a production system, requirements coming from
the products to be created are relevant; within the engineering of the product the
capabilities and boundary conditions of the production system need to be reflected,
see Fig. 1.2.

Facing these dependencies, the engineering of products and production systems
are interlinked and in some way equivalent. To understand this interlinking and
equivalence, the term engineering needs to be understood. With respect to this
book, the definition given by IEEE seems to be most appropriate. In IEEE (1941)
engineering is defined as a process consisting of a sequence of activities that
creatively apply scientific principles to design or develop structures, machines,
apparatus, or manufacturing processes; all as respects of an intended function,
economic and safe operation.

All engineers involved in an engineering project of a technical system, together
with its necessary technical, economical, and management resources, shall be seen

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 7

Product engineering Defines boundary conditions
Product < Creates l Production system

&

J\ Production system
Defines Requirements 1/ engineering and
implementation

Fig. 1.2 Relations between product and production system based on (Biff] et al. 2016)

as engineering organization. The VDI 3695 Guideline “Plant engineering” (VDI
3695 2009) defines an engineering organization as a set of engineering firms or
engineering subunits of a company (supplier, plant manufacturer, plant operator),
which is involved in the engineering process of a technical system. This organization
is involved in planning, realization, and commissioning of new technical systems
and, if necessary, in upgrading, optimizing or modernizing existing technical
systems. Note that an engineering organization is the execution environment and
the executor of MDE.

Widening the picture of MDE engineering in the field of products and production
systems, not only its dependencies buy also its life cycles, shall be reviewed.
VDI/VDE (2014a) gives a good overview about these life cycles related to this
chapter.

Figure 1.3 provides an overview of activities and their relations to the product
and production system life cycle. The product life cycle contains engineering of
a product as an individual entity to be sold. However, in this model, engineering
of one product is not independent from engineering of the other products to be
produced in the considered production system. Here, product line development
covers the informed management of similarities and differences of products required
to fulfil all relevant costumer needs and (in parallel) to not overburden the tech-
nological capabilities of the production system. Finally, a product discontinuation
management belongs to each product (product family) as on the one hand customers
require information about newer versions of their products to be replaced by new
acquisitions and on the other hand technological progress shall be reflected within
product lines. To each existing product type, the production system needs to be able
to process production orders, which need to be generated, shipped and (possibly)
maintained at customer sites.

The link between product and production system is the production process
executing finally the product creation based on orders. The life cycle of a production
system requires engineering of the production system before production execution.
In addition, production system engineering requires the development of production

8 S. Biffl et al.

Product
Product Product line W, \(W’
engineering development J‘ 7] management P

h 4

Product order Product order
shipment maintenance
| Production j
\j—lé Production system
maintenance

4
Production system
removal

Product order
generation

Production system
installation and
ramp-up

4

Production Production system
technology engineerin,
development € ¢

Production system

Fig. 1.3 Value-chain-oriented view on the product and production system life cycle based on
(VDI/VDE 2014a) and (Biffl and Sabou 2016)

technologies to be applied within the production system. Based on the set of avail-
able production technologies (and the set of engineered products), the production
system can be engineered and used in production. In addition, the production system
life cycle contains production system maintenance activities as well as, in case of
production system deterioration, production system removal activities.

Engineering of products and production systems involves several stakeholders.
Obviously, these life cycles will add additional stakeholders relevant for the engi-
neering of products and production systems, which especially will be responsible
for the definition of the boundary conditions of intended function as well as
economic and safe operation of products and production systems as it is intended
in the definition of engineering. Figure 1.4 depicts the interactions between the
stakeholders.

First, there is the plant owner. He is responsible for the economic success of the
production system and, therefore, is involved in the definition of the product to be
produced and the capabilities of the production system to produce the products.

The plant owner will instruct the product engineer with the engineering of
the product as described above. He will collect all necessary boundary conditions
related to the intended function of the product as well as its economic and safe
operation from potential customers and regulation bodies. In addition, he collects
technical boundary conditions related to the necessary production process from the
production system builder.

In parallel, the plant owner will instruct the production system builder (often
also named plant integrator) to set up a production system able to produce
the intended set of products. Together the production system engineer and the
production system builder will engineer, install, and ramp-up the production
system. Therefore, production system builder and engineer will collect all necessary
boundary conditions related to the intended function of the production system from

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . .

Use phases

Customer

Product

2 A

Production system

Product 1 Sales

maintenance

Product S~
engineer -
IN

) \s

Production system
maintainer”

Plantdperator

Production system
“ builder

—8

_Plant Owner

Production system
engineer

Engineering &
Installation phases

Regulation body L \

Environment Production technology provider

Potential Customer

Fig. 1.4 Stakeholders in added-value chains related to industrial plant engineering based on (Biffl
et al. 2016)

the product engineer and the production technology provider. Boundary conditions
related to the economic and safe operation of the production system will come from
regulation bodies, plant operator, and plant owner.

After the product and production system are engineered and (in case of the
production system) set up, the production system can be used by the plant operator
to produce products. The plant operator will get all necessary information how to
produce the product from the product engineer and about how to use the production
system from the production system builder. He will get product orders and their
economic and technical boundary conditions, such as the due dates from sales
departments. To ensure a long-lasting and safe operation of the production system,
the plant operator interacts with the production system maintainer.

After a product has been produced, it is shipped by sales to the customer to be
used. During this use phase of the product, the customer may interact with sales and
product maintenance to ensure the economic and safe operation of the product.

Among these stakeholders, information relevant for the engineering of product
and production system will be exchanged. The discussion of the complete flow of
information goes far beyond the scope of this chapter. Some of the interaction flows
will be considered in detail in later chapters of this book. Here, we will focus on
discussing selected illustrative examples relevant for product and production system
engineering.

» Potential customers are a source of information related to boundary conditions
for the intended functions of the product to be engineered by the Product

10 S. Biffl et al.

engineer. This information cover for example customer use cases, quality
information, product functionality, etc.

* Regulation bodies are a source of boundary conditions related to the safe
operation of the product to be engineered by the product engineer. This includes
for example the definition of regulations regarding safety, potential hazards, and
environmental issues.

* Plant owner and production system builder will exchange both requirements to
the production system functions and to the production system realization process.
Usually, this information includes functional and non-functional requirements
within a tender document (in German: Lastenheft) and the plant maker will reply
with a technical specification (in German: Pflichtenhefft).

* Production system builder and production system engineer will exchange the
same type of information as the plant owner and the production system builder,
but on a more detailed level covering only the parts of the technical system that
the production system engineer should contribute to.

* Both the production system builder and the production system engineer will
exchange boundary conditions related to the safe operation of the production
system with the regulation bodies. Examples are pollution regulations, energy
consumption monitoring regulations, and human safety regulations.

e In addition, the production system builder and the production system engineer
will exchange information related to possible functions of the production system
and its usability in the production and/or production system setup, control,
and maintenance. Among others, this covers manufacturing methods, devices
required for the realisation of the manufacturing methods, control code used to
control the manufacturing methods.

A dependency similar to the dependency between product and production system
also exists between production system and production technologies. Within pro-
duction system engineering and installation, the production system is set up based
on the appropriate combination of production system components (Wagner et al.
2010). These components provide capabilities for production process execution
(and in addition capabilities for its integration in the production system during
installation, ramp-up, and maintenance) and can eventually be regarded as CPPS.
These capabilities limit the possibilities within production system engineering and
implementation. In the opposite direction, production system engineering requires
special production technology capabilities to enable the creation of the intended
products, which need to be reflected by production technology development.
Thus, the production system in general cause requirements to further production
technology development. These dependencies are depicted in Fig. 1.5.

The named dependencies between production systems and production system
technologies can also be seen in a different light. Each production system com-
ponent, which provides certain technological functions used within the production
system, is itself a product of a company. These companies act as production
technology providers and are interested in fulfilling the needs of their customers,
the plant owners and production system builders, to the best extent possible.

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 11

Production technology
development

NS

Production system \}

Defines functional requirements

technologies and
components J

Creates > Production system

7S

/\ Production system
Defines boundary conditions / engineering and
implementation

Fig. 1.5 Relations between production systems technologies and the production system based on
(Biffl et al. 2016)

The sketched dependencies between product, production system, and production
system technologies and components in front of the required efficient engineering
involving multiple engineering disciplines is one of the sources of the newly
intended comprehensive review and redesign of engineering processes like in the
Industrie 4.0 approach.

Within this initiative, companies and research institutions intend to apply
technologies developed within information process and IT sciences for the imple-
mentation of flexibility and adaptability capabilities of production system resources
and production processes. They are focusing on IoT and CPS (Kagermann et al.
2013). Key elements are (among others)

* Self-aware and self-adaptable production system components,

* The intelligent networking components to provide flexibility on system level
using adaptation capabilities and plug-and-work capabilities, and

e The integrated exchange component information related to engineering and
runtime phases along the production system life cycle.

As the Industrie 4.0 component is a controlled part of a production system
including manufacturing physics as well as control intelligence the Industrie 4.0
component shall be considered as a Cyber Physical Production System (CPPS)
(VDI/VDE 2014b) and shall be considered in the triangle of products, production
processes, and resources (production system components). As indicated above, each
product requires for its production the processes defined in its product engineering.
These processes will be processed on a production system component. Each
production system component will process sets of products and will be able to
execute processes. Finally, each process is used for the production of products and
can be executed by production system components (Pfrommer et al. 2013). Facing
this fact, the production process is the lock stone within the roof architecture of the
building integrating product, production system, and production system technology
and components.

12 S. Biffl et al.
1.3 Research Questions

Looking on the described multi-disciplinary nature of the life cycles of products,
production systems, and production system technologies and components, engineers
require increasing support to ensure high quality work efficiently. However, this
support requires additional research from product engineering, production systems
engineering, and informatics communities. Seen from the background of the editors,
three of the most interesting research fields related to the necessary support are the
field of information modelling, the field of integrated information flows, and the
field of key capabilities of the considered objects.

Modelling Within the life cycle of production systems, several information sets
are created and applied. It is common sense that these information sets shall be
represented by models and other means for description that are best applicable for
the involved engineers and technical systems (hard- and software). In this field, the
following research questions are of interest.

RQ M1: Modelling the structure and behavior of CPPS. How can model-based
methodologies be exploited to address the specific multi-disciplinary requirements
for the representation of the structure and behavior of CPPS? This question requires
for example (a) the consideration of requirements for model-based engineering and
model-based application of CPPS, (b) an investigation of usual CPPS architectures,
and (c) the exploration of approaches for automating the multi-disciplinary engi-
neering of CPPS.

RO M2: Modelling in CPPS life cycle phases. How can model-based method-
ologies support information creation and processing in the different life cycle phases
of a CPPS? Related to this question are methodologies (a) for the automation of
engineering, commissioning, and use of CPPS, (b) for the application of CPPS by
service providers or agents, as well as (c) for addressing the quality needs for models
of CPPS.

Integrated Information Flows Supporting informed decisions by engineers
requires that the relevant information is available when needed in the right quantity
and quality independent of its source. This is valid for the life cycles of product,
production system, and systems operation. From this need, we derive the following
research questions.

RQ 11: Information integration in and across value chains. Which methods
and technologies support the integration on information within and across value
chains of products, production systems, and production technologies? Are there
benefits accessible from the exploitation of CPPS? This question addresses for
example (a) the links between product, production technology, and production
systems engineering, (b) the horizontal and vertical integration within production
systems and production value chains, and (c) the digital links between engineering
and operation phases.

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 13

RQ 12: Quality assurance for information exchange. Which methods and
technologies support assuring the required information quality for information
exchange? This question includes (a) the analysis of typical requirements for the
integration of engineering project data coming from heterogeneous data sources
and typical requirements in a CPPS supply chain, e.g. concerning the ramp-up of a
production system, the examination of multi-disciplinary knowledge integration and
representation, as well as (b) the study of required information quality in different
life cycle phases of CPPS.

RQ 13: Description of plug-and-play capabilities and interfaces for
engineering and run time. Are there specific aspects of information exchange
related to the life cycle of CPPS? It is assumed that relevant aspects will come
from the consideration of typical requirements from product engineering and from
production systems engineering on information modelling and integration in the
multi-disciplinary engineering of CPPS. For example, the product engineering
may provide a description of the production process (required for product
creation) in a way enabling its automatic interpretation and execution in the
production system. This is only possible with appropriate rich description
means.

Key Capabilities of CPPS A CPPS will provide by its nature advanced capabilities
like parameterizable function access and provision of state and health information
related to necessary activities for its design and use along its life cycle phases, which
usually requires cooperative involvement of all technical and informational parts of
the CPPS. The support of multi-disciplinary work in this context will benefit from
answers on the following questions.

RQ CI1: Modelling of CPPS flexibility and self-adaptation capabilities.
How can model-based approaches improve the flexibility and self-adaptation
of production systems? What are the roles of product, production technology,
and production system models in this context? This question includes (a)
the consideration of typical requirements for flexibility and adaptability in
software and in hardware systems, and (b) the analysis of methods and tools for
closing the gap between product engineering and production system engineering
as well as (c) the analysis of typical requirements for self-adaptation of
CPPS.

RQ C2: Linking discipline-specific engineering views for flexible and self-
adaptable CPPS. How shall several disciplines in product and production system
engineering be linked to support the engineering of flexible and self-adaptable
CPPS? Within this research question, the exchange of information between both
engineering processes and their relation to the problem of cyber physical systems is
relevant. Especially the digital shadow of products and production systems need to
be considered (Table 1.1).

S. Biffl et al.

14

1x9JU0)) TuUOneWwoINY ue ur jdesuo)

X X uoTIN[OS pue ‘sa3ua[[ey) ‘SpeoN—=IuLeauIsuy Areurdosi-nny I0J oueInssy Ajend) [OpojA spremo], 971 deyDd

X X X X ased o3pa[mouy] Areurjdiosig-nnjA e Aeidauy 0} MoH—ss001d dn-duwrey jonpoid onsmuruiRqy 1 "deyd
X sosudIg)uy [eLsnpuy Ul UoreISoIU] [BONISA I0) QIBMI[PPIA QINJOANIYILY PAUSLIQ MIARS [deyd

X SWAISAS [eo1sAyd 19gAD ur uoneydepy-J[o§ Ioj sudned ¢ ‘deyd
X X X Suouruyg Areurdrosi-nnjA ur uoneI3AU] ele(10 sAIFo[ouyda], gop onuewas ¢ ‘deyd

X X X X urewo(q Sd4D 2y ur uoneorddy pue sopdiourd :Sumeduiduyg swSAS UAL-[PPOIN [T "deyd
uopei3dNuU pue SUIPPOJA UoHEULIOJU] 111 1ed

X X Sureaurduyg wosAS uonoNpPoId UM oSueyOXH UONBUWLIOJU] PAzZIpiepue)S Jo wo[qoid oYyl (] "deyd

X X X SW9)SAS UONONPOIJ PAJEWOINY JO SUIey)) [00], aIeMIJOS pue MOppHop SumeeuiSug g ‘dey)

X X SQINJOAIYITY WRISAS UOTIRWOINY [BIISAUJ-IGAD) UOTIRIQUD) IXAN Jo Jumeauidug § “dey)
X X X SddD JO 994D 93117 2y} InoySnoIy [, s)oejnry uoneuwiojuy Joy suedjy uonduoseq £ dey)

X X X X SddD Jo saseyq A[OAD oJIT Ul SIoBJIIY jo uonesynuapy 9 ‘dey)

X X SddD Ul snay 1oejIIy jo s[ejuowepuny - ¢ ‘dey)

SurauIduy wI)SAS uonINpoIg 11 1ed

X X X SddD Jo se3ua[[ey) Juowadeury [0AoajI 1onpold ‘deyDd
X X SWIAISAS AJIAIIS-}onpol{ [eo1sAyd-1094) ¢ "dey)

X X X surey) [00], 4V D/3uLooui3uy swoisAg pue jonpoily ¢ ‘dey)d

u3Is9(SWRISAS pue Jonpoig 1 1eg

1D ¢ U I TN TN g OY Surssarppe v 193deyo yoog

(X) A1Suons g uonsanb yoreasar sassaippe v 1a1deyd jooq :suonnqriuod 193deyd yooq pue sjuswaimbay T dqeL

http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_3
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_8
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_10
http://dx.doi.org/10.1007/978-3-319-56345-9_11
http://dx.doi.org/10.1007/978-3-319-56345-9_12
http://dx.doi.org/10.1007/978-3-319-56345-9_13
http://dx.doi.org/10.1007/978-3-319-56345-9_14
http://dx.doi.org/10.1007/978-3-319-56345-9_15
http://dx.doi.org/10.1007/978-3-319-56345-9_16

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 15

Part 2: Production
system engineering

\ 4

Multi-* Engineering

Part 3: Information
modeling and
integration

Part 1:
Product design

Fig. 1.6 General book structure

1.4 Book Structure

The aim of this book is to provide insight into the field of multi-* engineering,
where * can stand for discipline, domain, and/or model. The book is written within
the context of the upcoming next generation of production systems envisioned by
research and development initiatives, such as Industrie 4.0 in Germany, Industrial
Internet Consortium in USA, Factory of the Future in France and UK, or Made in
China 2025 from China and will cover the engineering of industrial products and
industrial production systems, with their dependencies named above.
The book in hand discusses topics including

* The multi-disciplinary and multi-model nature of engineering processes,

* Data integration needs along the various value adding chains,

* Dependencies between products, production processes, and production systems
within engineering processes,

* Architectures of products and production systems enabling improved engineering
processes, and

* Needs and approaches for information modelling and integration.

Therefore, the book is structured into three main parts, see Fig. 1.6, dedicated
to product design, production system engineering, and information modelling and
integration.

1.4.1 Part I: Product Design

Part I on Product Design discusses challenges of and approaches for designing and
developing products with varying degrees of flexibility. These products provide
added value to users and added complexity to production process and system
engineers. An important part of engineering is the multi-disciplinary process
creating information models for the evaluation of product concepts and for reuse
in production systems engineering.

16 S. Biffl et al.

Chapter 2: Product and Systems Engineering/CA* Tool Chains discusses the
specifics of engineering processes and the development of CPS from a mechanical
engineering design point of view. Emphasis is put on Model-Based Systems
Engineering (MBSE) methods and the required software tools to cope with existing
challenges of different domains especially related to system analysis and system
integration. The chapter contains a description of data and information flows from
an organizational point of view as well as from the product development point of
view. This includes information models (e.g., in SysML) as well as organization and
tailoring of tools and tool chains.

Chapter 3: Cyber-Physical Product Service Systems is discussing the important
topic of product related services, which are deeply integrated in the product
development and use like the provision of a machining capability service useable by
a producing company. It gives a definition of service-based product service systems
(PSS) and unveils the state-of-the-art of CPS-based PSS with major research issues.
The evolution from products to solutions and servitization is shown as well as
the elements and life cycle of CPS-based PSS including hardware, software, and
service elements with integration of product and service life cycles. Based on
industrial use cases, this chapter also deals with challenges for engineering a
CPS-based PSS in terms of complexity, end user involvement with distributed
stakeholders, and involvement of multiple disciplines (e.g., mechanical engineering,
information systems, and service science). This discussion of challenges leads
to implications for designing engineering processes, particularly cross-domain
requirements engineering and design, but also for designing servitized business
models enabled by CPS (i.e., business models related to product services).

Chapter 4: Product Lifecycle Management Challenges of CPPS summarizes data
and information management issues arising from the advanced use of Model-Based
Systems Engineering (MBSE) methods that result from engineering processes of
smart systems and individualized products with high complexity and variability.
The chapter focuses on challenges of the life-cycle integration of products and
the respective CPPS especially addressing the information exchange oriented
possible dependencies between engineering, production, and use phases of products.
Furthermore, data and information management problems coming from integration
of the named life cycle phases of products and systems in terms of forward and
backward information flows are addressed.

1.4.2 Part II: Production System Engineering

Part IT on Production System Engineering discusses the design of flexible production
systems, which can be adapted effectively and efficiently to provide a scope
of production processes and address the challenges coming from products and
production processes, which have advanced requirements on flexibility. Key topics
are concepts, methods, and tools to deal with dependencies between production
system model parts and discipline-specific sub models. An important part is the

http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_3
http://dx.doi.org/10.1007/978-3-319-56345-9_4

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 17

simulation and virtual commissioning of flexible production systems to reduce the
risks coming from added flexibility.

Chapters 5, 6, and 7 build a common frame for the consideration of hierarchical
and modular production system architectures and related information along their
life cycle. These chapters provide a discussion of the question, which parts of a
production system can be regarded as components within the hierarchy and which
functionalities and information are assigned to them.

Chapter 5: Fundamentals of Artifact Reuse in CPPS discusses meaningful layers
within the hierarchy of production system components and their life cycle. Based
on a literature survey and practical experiences candidates for hierarchy layers are
identified and their identification criteria are named. In addition, main life cycle
phases of production systems are discussed. The thereby developed hierarchy serves
as a foundation for the reusability and modularization of Industrie 4.0 components.

Chapter 6: Identification of Artifacts in Life Cycle Phases of CPPS considers in
detail the information sets relevant for a production system component along the life
cycle of a production system. For each of the three main life cycle phases named
in Chap. 5 relevant artifacts are identified, assigned to the different layers of the
production system hierarchy, and discussed against main cases of information reuse
within the life cycle of production systems. Thereby, it is intended to enable an
identification of hierarchy layers based on relevant information sets.

Chapter 7: Description Means for Information Artifacts Throughout the Life Cycle
of CPPS again takes up the artifacts and description means related to them in each
of the three life cycle phases on each layer of the hierarchical production system
structure as proposed in Chap. 5. These artifacts are clustered and generic artifact
classes are derived from the fragmented information artifact landscape. Description
means are assigned to the artifact classes, enabling a holisting information manage-
ment and paving the way for future research on this topic.

Chapter 8: Engineering of Next Generation Cyber-Physical Automation System
Architectures provides a summary of non-hierarchical control system architectures
that could be applied in industrial automation domain as well as a review of
their commonalities. The chapter aims to point out the differences between the
traditional centralized and hierarchical architecture to the discussed architectures,
which rely on decentralized decision-making and control. The chapter also explores
the challenges and impacts that industries and engineers face in the process of
adopting decentralized control architectures, analyzing the obstacles for industrial
acceptance and the necessary new interdisciplinary engineering skills. In the end,
the chapter gives an outlook of possible mitigation and migration activities required
to implement decentralized control architectures.

Chapter 9: Engineering Workflow and Software Tool Chains of Automated Pro-
duction Systems presents an overview of tool chains that are applied in the
production system engineering process. The current workflow of production system
engineering is described. In particular, three essential phases of the workflow are
considered in detail, namely mechanical design, electrical design, and software

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_8
http://dx.doi.org/10.1007/978-3-319-56345-9_9

18 S. Biffl et al.

design. With respect to those essential phases, tool chains are presented that are
well established in industry and applied by practitioners. In addition, the tool chain
of planning and simulating production processes is discussed. In this regard, various
engineering data formats and information that is required as input or results as
output by engineering tools is explained. One conclusion that can be derived from
the described workflow is the necessity of a standardized data format to exchange
engineering data along the entire production system engineering process. As a
consequence the role of AutomationML as a potential standardized data format
is addressed in this chapter and exemplarily presented for the case of virtual
commissioning of a production system.

Chapter 10: The Problem of Standardized Information Exchange within Production
System Engineering discusses the problem of appropriate structuring (syntax)
and meaning (semantics) definition for a file based data exchange technology
applicable within information exchange among life cycles, engineering disciplines,
and engineering activities of information driven production systems. Based on a
set of use cases challenges of the information exchange and application within
information driven production systems have been highlighted. The use cases have
been accompanied of current standardization activities undertaken to make the use
cases possible. In addition, information exchange technologies will be discussed
starting with requirements an information exchange technology has to fulfil in an
information driven production system and discussing the fulfilment level of these
requirements provided by different existing information exchange technologies.

As a special case of file-based information exchange AutomationML is consid-
ered. It is discussed how AutomationML deals with the standardization of syntax and
semantics and how the five main challenges of the standardization of data exchange
formats can be fulfilled.

1.4.3 Part II1: Information Modeling and Integration

Part III on Information Modeling and Integration discusses an informatics view
on concepts, methods, and software tools for data management in heterogeneous
cyber-physical production-system-engineering environments. This part will discuss
data models and software solutions exploiting Model-Based System Engineering,
Semantic Web, and service-oriented approaches for handling engineering projects
of typical size and complexity. Several chapters discuss alternative approaches for
representing engineering knowledge as foundation for designing applications to
improve the effectiveness and efficiency of engineering processes in the context of
multi-disciplinary engineering or CPPS. As a result, the reader can make a better
informed decision on which selection of engineering knowledge representation
approaches is likely to be most appropriate in a given application context.

Chapter 11: Model-Driven Systems Engineering: Principles and Application in the
CPPS Domain discusses advantages and current challenges towards the adoption of

http://dx.doi.org/10.1007/978-3-319-56345-9_10
http://dx.doi.org/10.1007/978-3-319-56345-9_11

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 19

model-based approaches in cyber-physical production system (CPPS) engineering.
In particular, the chapter discusses how modeling languages and model transforma-
tions are employed to support current system engineering processes and show their
application for a Pick-and-Place Unit (PPU) production system.

This chapter follows the model-based software engineering approach, which
sees models and their metamodels as the central artifacts for engineering and for
automating engineering processes. Abstraction, a key concept of modeling, can
become a challenge at integration points during the engineering process in a multi-
disciplinary environment, as different stakeholders may choose abstractions that are
hard to reconcile with the modeling choices of other stakeholders.

Chapter 12: Semantic Web Technologies for Data Integration in Multi-Disciplinary
Engineering investigates how Semantic Web technologies can support multi-
disciplinary engineering processes in CPPS engineering. The chapter discusses
typical requirements for intelligent data integration and access in the context
of CPPS engineering and shows how these can be addressed by Semantic Web
technologies and tools. For this, we draw on our own experiences in building
Semantic Web solutions for engineering environments as well as on a survey of other
Semantic-Web-enabled engineering projects. This chapter summarizes material
published in the Springer Book entitled “Semantic Web for Intelligent Engineering
Applications” (2016).

This chapter follows the Semantic Web approach, which puts the focus on the
representation and integration of linked engineering knowledge as foundation for
intelligent engineering applications. The Semantic Web approach originated from
the need to harness the heterogeneity of information representation on the Internet.
Therefore, the Semantic Web inherently assumes a variety of information models
as input to designing software application for automating business and engineering
processes.

Chapter 13: Patterns for Self-Adaptation in Cyber-Physical Systems investigates
existing studies of CPS with regard to self-adaptation mechanisms and models,
applied across the technology stack. From this investigation, we derive recurring
patterns and adaptation models, consolidating design knowledge on self-adaptation
in CPS, in particular CPPS. The patterns and models can support future CPS
designers with the realization and coordination of self-adaptation concerns. Finally,
this chapter outlines a research agenda to advance self-adaptation and coordination
in the domain of CPS.

Chapter 14: Service-Oriented Architecture Middleware for Vertical Integration
in Industrial Enterprises focuses on the technological aspects involved in devel-
oping a service-oriented solution for vertical integration in a heterogeneous CPPS
context. The chapter addresses the typical state of industrial enterprises and the
core technologies currently available for the development of a gateway service
bus (GSB). Therefore, the chapter will discuss aspects related to enterprise and
network architectures, constraints and technologies to discern the challenges to
vertical integration and suggest methods for integrating GSBs in enterprises. In

http://dx.doi.org/10.1007/978-3-319-56345-9_12
http://dx.doi.org/10.1007/978-3-319-56345-9_13
http://dx.doi.org/10.1007/978-3-319-56345-9_14

20 S. Biffl et al.

addition, the chapter will discuss connectivity strategies and standards that may be
used to coordinate the GSB and its services, and to integrate PPS to finally generate
a holistic framework for the secure operation of CPPS-based industrial plants.

This chapter follows the Service Oriented Architecture (SOA) approach, which
represents systems as service interfaces that allow flexibly designing application
systems even if the technologies of the underlying services differ and the run-time
availability of services changes.

Chapter 15: Deterministic Product Ramp-Up Processes—How to Integrate a Multi-
Disciplinary Knowledge Base describes the involvement of a multi-disciplinary
knowledge base in a production environment in order to address the challenge
of knowledge distribution across product development, production engineering,
and elements of the supply chain. The chapter highlights how production data
has to be maintained and prepared for the automated support of ramp-up project
planning. Through this improvement of planning quality based on reusing existing
production knowledge, ramp-up projects can be improved towards deterministic
ramp-up processes. This chapter provides an example application for the Semantic
Web approach.

Chapter 16: Towards Model Quality Assurance for Multi-Disciplinary
Engineering—Needs, Challenges, and Solution Concept in an AutomationML
Context discusses how models and their quality play an important role in multi-
disciplinary engineering (MDE) projects as inputs to and outputs of engineering
processes. MDE projects include various disciplines, such as mechanical,
electrical, and software engineering. These disciplines apply generic and domain-
specific models in their engineering context. Important challenges include model
synchronization (of often-heterogeneous input from various disciplines) and model
quality assurance (MQA) that is covered insufficiently in current MDE practices.
The chapter focuses on the needs and approaches for MQA in isolated disciplines
as well as in MDE environments, where engineers from different disciplines have
to collaborate. Further, the chapter includes related work on MDE and MQA and
presents concepts and an initial evaluation of MQA approaches in the context of
selected MDE processes.

1.5 Who Shall Read This Book?

This book will be of interest to several target groups: decision makers, product and
production system engineering professionals, researchers, and students within the
various fields of production system engineering and information processing related
sciences. All of these groups will better understand the challenges and needs of
engineering project stakeholders coming from the dependencies between products
and production systems with increased variability.

Decision Makers, such as industrial managers, and business professionals are
interested in a general point of view on how best to make use of the capabilities

http://dx.doi.org/10.1007/978-3-319-56345-9_15
http://dx.doi.org/10.1007/978-3-319-56345-9_16

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 21

that products and production systems provide. These groups will take away from
this book an up-to-date view on future production system capabilities, in particular,
on the challenges of and approaches for designing and developing products with
varying degrees of flexibility. The CPPS vision will bring added value to users and
added complexity to production process and system engineers. This added value
and complexity have to be harnessed by novel kinds of families of systems, such as
Product Service Systems or Product Lifecycle Management systems.

To support structuring decision making in a CPPS context, the book will
provide better understanding of the benefits and limitations of applicable methods,
architectures, and technologies for selected use cases.

Regarding information modelling and integration, the book will highlight the
heterogeneous nature of data needed in multi-disciplinary engineering for decision
making and explain data integration needs along the various value adding chains.
To address data representation and integration the book will support making better
informed decisions on which engineering knowledge representation approaches are
likely to be most appropriate in a given application context to provide the knowledge
needed for making key decisions.

Beyond information modelling and integration, the book will provide inside in
the needs of information generation, processing, and use along the life cycle of
products and production systems, enabling decision makers to take more informed
decisions related to the management and improvement of engineering and use
processes within production system environments.

Finally, the book will give an overview on informatics approaches that provide
strong contributions to decision making with intelligent information representation,
integration, quality assurance, and access in the context of CPPS engineering,
such as Model-Based System Engineering, Semantic Web, and service-oriented
approaches for CPPS engineering.

Users of Production Systems will become aware of the challenge of knowledge
distribution across product development, production engineering, and elements of
the supply chain. They will get an overview on approaches to select and use relevant
integrated knowledge with appropriate methods, based on case studies, such as
deterministic product ramp-up.

Engineering Professionals, including engineers of products and of production
systems, will become aware of the major challenges of and approaches for designing
and developing products with varying degrees of flexibility. They will better
understand the viewpoints of the different engineering disciplines involved in
CPPS engineering, as well as the benefits and limitations of applicable methods,
architectures, and technologies for selected use cases. A core topic is the need for
data integration along the various value adding chains, in particular, needs and
approaches for information modelling and integration coming from engineering
processes of smart systems and individualized products with high complexity and
variability.

Product engineers will get better insight into the capabilities of CPPS, so they
can consider these capabilities for designing innovative products. They will come to

22 S. Biffl et al.

better understand the multi-disciplinary process of creating information models for
the evaluation of product concepts and for reuse in production systems engineering,
which is essential to achieve the key benefits of CPPS engineering.

Production systems engineers coming from different disciplines, e.g., mechan-
ical, electrical, and software engineering, will better understand architectures of
products and production systems enabling improved engineering processes, which
in turn is the foundation for improved creative interaction with product engineers,
and for understand flexibility options better. They will appreciate approaches for
better forward and backward information flow between engineering and operation
phases as a foundation for focused improvement of engineering designs and
optimizing systems operations with knowledge coming from engineering models.

Finally, both product engineers and production system engineers will get inside
in the needs and challenges of the other set of engineers enabling the improvement
of a mutual discussion of upcoming challenges within their interaction as well as
enabling the reuse of engineering information on both sides.

Researchers from the fields of product engineering, industrial production systems
engineering, and information modeling and integration, will benefit from better
awareness on the challenges, needs, and approaches in the multi-disciplinary and
multi-model engineering of CPPS.

Product engineering researchers can consider how to use the information around
engineering to design better capabilities for product engineering processes. They
will be introduced to information sources from production systems engineering,
e.g., using the emerging standard AutomationML, and from operation, e.g., using
the standard OPC UA, that can be used for improving the product design process.

Industrial production systems engineering researchers will get a better under-
standing of the challenges and requirements of multi-disciplinary engineering that
will guide them in future research and development activities. They will get ideas
on how to use the information available around engineering and operation to design
better capabilities for CPPS engineering processes. They will become aware of
alternatives to hierarchical control system architectures, their potential challenges
and impacts on production systems engineering. They will get a better overview of
selected tool chains that are evaluated in the production system engineering process
towards virtual commissioning, AutomationML for data exchange and engineering
knowledge accumulation, and selected mechanisms for the self-adaptation in cyber-
physical systems. As a consequence, they will be able to make better informed
decisions on which engineering knowledge representation approaches are likely to
be most appropriate in a given application context.

IT researchers will be enabled to better understand the application domain
of CPPS engineering to provide relevant information management methods as a
foundation to address the dependencies between products, production processes,
and production systems within engineering processes. They will be supported in
making the decision on which engineering knowledge representation approaches
are likely to be appropriate in a given application context, based on case studies that
allow comparing the contributions of Model-Based System Engineering, Semantic

1 Introduction to the Multi-Disciplinary Engineering for Cyber-Physical. . . 23

Web, and service-oriented approaches for CPPS engineering. They will get an
overview on key IT capabilities for CPPS engineering, such as modeling languages
and model transformations, as well as intelligent data integration and access in a
heterogeneous CPPS environment, as a foundation for designing and evaluating
informatics contributions to CPPS engineering.

Finally, students of various disciplines related to production and information
processing systems can use this book as textbook to gain understanding of various
architectures for information creation, processing, and use within the interrelated
life cycles of products and production system. For example, they will find discus-
sions about the interrelations of life cycles, the description of special life cycles, the
description of production system hierarchies, and the description of a methodology
for defect identification within engineering data.

Thus, students will especially benefit from the book during their final graduation
activities finding detailed representation of the state of the art related to multi-
domain model-driven engineering.

Acknowledgment This work was supported by the Christian Doppler Forschungsgesellschaft, the
Federal Ministry of Science, Research and Economy, and the National Foundation for Research,
Technology and Development in Austria.

References

Biffl, S., Sabou, M.: Introduction. In: Biffl, S., Sabou, M. (eds.) Semantic Web Technologies for
Intelligent Engineering Applications. Springer, Berlin (2016)

Biffl, S., Liider, A., Winkler, D.: Multi-disciplinary engineering for Industrie 4.0 — semantic
challenges and needs. In: Biffl, S., Sabou, M. (eds.) Semantic Web Technologies for Intelligent
Engineering Applications. Springer, Berlin (2016)

El Maraghy, H.A.: Changeable and Reconfigurable Manufacturing Systems. Springer, London
(2009)

Higgins, P., Le Roy, P, Tierney, L.: Manufacturing Planning and Control — Beyond MRP II.
Springer, Berlin (1996)

IEEE: Engineers council for professional development. Science. 94(2446), 456 (1941)

Kagermann, H., Wahlster, W., Helbig, J. (eds.): Umsetzungsempfehlungen fiir das Zukunftspro-
jekt Industrie 4.0 — Deutschlands Zukunft als Industriestandort sichern. Forschungsunion
Wirtschaft und Wissenschaft, Arbeitskreis Industrie 4.0 (2013)

Pfrommer, J., Schleipen, M., Beyerer, J.: PPRS: production skills and their relation to product,
process, and resource. In: 18th IEEE Conference on Emerging Technologies and Factory
Automation (ETFA 2013), Cagliary, Italy, Proceedings, pp. 1-4, September 2013

Stark, J.: Product Lifecycle Management — Volume 1: 21st Century Paradigm for Product
Realisation. Springer, New York (2015)

VDI Richtlinie 3695: Engineering von Anlagen — Evaluieren und optimieren des Engineerings.
Beuth Verlag, Berlin (2009)

VDI/VDE:Industrie 4.0 — Wertschopfungsketten. VDI/VDE Gesellschaft Mess- und Automa-
tisierungstechnik. Statusreport (2014a)

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA): Fachausschuss “Industrie
4.0”: Industrie 4.0 — Gegenstinde, Entititen, Komponenten. Status report. http://www.vdi.de/
technik/fachthemen/mess-und-automatisierungstechnik/industrie-40/ (2014b). Last access Feb
2015

http://www.vdi.de/technik/fachthemen/mess-und-automatisierungstechnik/industrie-40/

24 S. Biffl et al.

Vogel-Heuser, B., Diedrich, C., Broy, M.: Anforderungen an CPS aus Sicht der Automatisierungs-
technik. Automatisierungstechnik. 61(10), 669-676 (2013)

Wagner, T., HauBner, C., Elger, J., Lowen, U., Liider, A.: Engineering Processes for Decentralized
Factory Automation Systems, Factory Automation 22. In-Tech, Austria. http://www.intechope
n.com/articles/show/title/engineering-processes-for-decentralized-factory-automation-systems

http://www.intechopen.com/articles/show/title/engineering-processes-for-decentralized-factory-automation-systems
http://www.intechopen.com/articles/show/title/engineering-processes-for-decentralized-factory-automation-systems

Part I
Product and Systems Design

Chapter 2
Product and Systems Engineering/CA* Tool
Chains

Kristin Paetzold

Abstract For the development of interdisciplinary technical systems such as CPS,
systemic approaches which stringently summarize the logic of development are
currently available. These approaches are suitable to support the complexity of
both the CPS as well as the related developmental processes. However, these
development methods are relatively generic. An adaptation or a tailoring to specific
conditions of both the products under consideration as well as the development of
boundary conditions is absolutely necessary to use them effectively and efficiently.
For the development of CPS also a variety of IT tools which effectively support the
product development but only if they are well coordinated with the corresponding
processes, are already available. If the interfaces are described sufficiently and com-
prehensively, and the data characteristics of the results of the various development
activities are taken into account, media discontinuities can be reduced. The major
challenge in the development of complex technical systems is the overall system
analysis and the system integration. To this end, modern methods such as model-
based engineering in general and model-based Systems Engineering in specific,
provide powerful approaches that must be applied and adjusted for the purposes
of the product and process characteristics. This adjustment process to product
development and the integration of MBSE approaches into the IT-structures may
be seen as the main challenges for the future.

Keywords Product development e IT-structure * Systems engineering * Data-
and information flow ¢ Model-based systems engineering

2.1 Introduction

Developing Cyber Physical Systems (CPS) whose functionality is caused by strong
interactions between physical and computational components (Sztipanovits 2007),
pose major challenges to the development and especially the design of development

K. Paetzold (><)
University of German Federal Armed Forces (UniBW), Munich, Germany
e-mail: kristin.paetzold @unibw.de

© Springer International Publishing AG 2017 27
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_2

mailto:kristin.paetzold@unibw.de

28 K. Paetzold

processes. CPS include solution approaches from various engineering fields such as
mechanics, electrical engineering, computer science, control engineering but also
thermodynamics or materials engineering. The system behaviour can ultimately no
longer be derived just as a sum of individual partial functions. Instead, synergies
can be skimmed off by the diverse interactions of sub-functions. This product
characteristic results in a number of challenges for both the process itself as well
as the methods and tools used in the development process.

Processes in general as well as product development processes in particular can
be understood as a series of interrelated activities that give rise to a valuable result
for the company (Hammer 2001). For product development, these activities can be
specified as that they include all operations, from the product idea to the start of
production (as Ehrlenspiel and Meerkamm 2013). Development processes are also
characterized by a certain uniqueness. It is not necessarily the aim of achieving an
always equal result but rather finding a customized solution to specific customer
requirements and operating conditions, which is characterized by a high level of
functionality at an equivalent quality. This leads to a paradox: in a company is never
expected the same exact result of a development process is never expected twice,
which is associated with the fact that the development processes are different in each
case. Nevertheless, not only for reasons of efficiency and effectiveness it requires
clear procedures in the design of the development processes which are connected to
a standardization of these. In addition, development processes are distinguished by
a high degree of innovation and creativity (Kline 1995), which again the mentioned
paradox supports.

Basically, product development processes can be characterized by the following
four characteristics (see Fig. 2.1):

e Data and information about products in general and to CPS in particular
arise only in the context of development. In order to still be able to work

incomplete and uncertain
data and information
leads to iterations

parallelization of design steps Ch o R eriaticnt interdisci;.;linary work is 3
transition between domain . d with I bod
design processes
specific and interdisciplinary work of knowledge

change between
synthesis and analysis
several characteristic of data

Fig. 2.1 Characteristics of the product development processes

2 Product and Systems Engineering/CA* Tool Chains 29

result-oriented, it is common practice to make assumptions first which need to
be concretized and evaluated in the later stages. Development processes are in
accordance with the fact that there must be dealt with uncertain and incomplete
data and information (Freisleben and Schabacker 2002) that become reality just
in the course of development.

e The development of CPSs is highly interdisciplinary. Therefore, the different
domains need to cooperate closely in all stages of the development. The challenge
is that in the different domains, different models are used for the development of
(Horvath and Gerritsen 2012), which in turn differ from the model approaches of
system integration. The models describe the same technical system with different
perspectives on it, what leads to a high variance in the information content of
models.

* Interms of a concurrent engineering, developments in the individual departments
run parallel. For the domain-specific development, data and information from
other departments are required in general. This requires individual activities
and tailored interface management to ensure that the data and information are
available with sufficient quality at any stage of development.

* Development processes consist of a permanent exchange between analysis and
synthesis. Data and information which are defined as part of the synthesis, need
to be investigated and assessed by appropriate analytical steps regarding the
fulfilment of requirements, which in turn may lead to corrections if there is
the need. This is connected to the thought, that the characteristics of data for
synthesis and analysis can be distinguished (Weber 2005).

The development processes of complex technical systems as CPSs thus require
complex processes to secure the expectations in terms of functionality and quality.
Such properties result in the fact that iterations are essential during the development.
Concurrency of activities and the strong links between these individual activities
through data and information exchange lead to pronounced nonlinearities in the
development processes. These nonlinearities are only accessible through a detailed
view of the data and information flows within the development but need to be taken
into account in the design of processes.

In defining of development processes in companies, at least the corporate
knowledge is manifested in the designed technical systems. The approach in the
development is the result of an evolutionary process which does not only take the
product of evolution into account but also effects the “Lessons Learned” or historical
data and information. Reversed, development processes will be anchored in the
definition of departments, team structures and responsibilities, which are in turn
the basis for associate -processes such as release decisions or the actual project
execution. Furthermore, emerge from the descriptions of the development process
for CPS data and information requirements for each activity that must be ultimately
provided and managed by the available IT infrastructure.

Process models for development are therefore not only used to represent the
inherent logic in the development but also serve as basis for the design of the
organizational and operational structure in the development departments and the

30 K. Paetzold

design of the IT environment in enterprises. They also form the basis for associated
processes such as risk management, change management, or the verification and
validation management, which are often implemented as part of the division of
labour as independent tasks of product development. Therefore, models for the
description of the development process have to be considered at three levels also.
Generic process models which reflect the logic of development, proved to be just
little helpful for the practices of process design and optimization, because they
are coarsely granular. It requires a context-specific refinement and adaptation of
process models to the specific conditions in the company, to the market or the
industry and, ultimately, to support the development in terms of workflow processes.
In order to achieve this aim, the data and information flows are analysed within
the development to link targeted activities with each other. This relatively fine-
grained level of process description appears necessary to assess uncertainties due
to incomplete and uncertain data, in order to increase the product maturity with
the initiated activities and thus to avoid unnecessary iterations. Processes on such a
fine-granular level are mainly characterized by detailed interface descriptions which
have to take three aspects into account:

* Procedural interfaces result from the logical sequence of development steps
which contribute to the increase of product maturity;

* Organizational interfaces define responsibilities for process steps or release
mechanisms, and thereby support the quality assurance during the development;

* Formal interfaces link the IT tools which are used during the development in
order to secure consistent data and information flows.

A closer look at these three levels of process description, the underlying models
and the methods and approaches to each process support will be taken in the
following subsection.

2.2 Generic Procedures for the Development
of Interdisciplinary Products

Cyber Physical Systems are not only distinguished by the wide range of functions
but also by the strong interlinkage between those functions. This distinction guar-
antees the variability in the response of the system in different states respectively
its flexibility and robustness of the systems behavior. Such complex systems require
adequate procedures in development. Systemic approaches will be used to make the
strong dependences between systems design and process design explicit.
Haberfellner et al. (Haberfellner et al. 2015) recommend to organize the pro-
cesses based on models for the system description, which map again both functional
and structural aspects of the system being to designed (Fig. 2.2). Such holistic
approach forms the basis of today’s popular procedural models. System devel-
opment itself is based on defined requirements of the overall system, which are

2 Product and Systems Engineering/CA* Tool Chains 31

system - thinking process - thinking

process of problem solving

problem solution
e synthesis \ _——

\ 8 analysis
) |

method for system-development method for process-management
» domain specific methods managing associated processes
* methods for system integration method for project management

coordination of data and
information flow

* method to manage complexity

Fig. 2.2 Systemic thinking in the development of complex technical systems (according to
Haberfellner et al. 2015)

successively decomposed to smaller units, where solution approaches are needed
(from rough to detail). This approach in a phase structure (macro logic) with the
basic steps planning, designing, and finishing of the results (e.g. Pahl and Beitz
2007). This phase structure in turn needs to be put in concrete terms, which depend
on the system structure and the area of expertise, in which the development takes
place.

Within these process models, the main task of the development is to seek
for solutions and to check them with regard to the requested performance. This
problem-solving process (micro logic) (Ehrlenspiel and Meerkamm 2013) manifests
itself in a permanent alternation of synthesis and analysis and can be deduced from
typical approaches to problem solving of individuals.

Individuals as developers need methodological support in the development from
two perspectives: on the one hand, methods for system design and to control the
system’s complexity are needed and on the other hand, methods for process support
and coordination of the development tasks are required. Both perspectives are
explained briefly below.

2.2.1 Micro-logic in Development

The micro-logic in the development describes the operations at the level of concrete
project work (Gausemeier et al. 2004) and supports the systematic processing for
solving partial of problems within individual phases of the development process.
The basis for this processes are generic procedures of psychology of thinking (Miller
etal. 1973).

32 K. Paetzold

method support

= situation analysis classifying, structuring,
= goal formulation collecting data
= structuring of the task

synthesis method (creativity
methods, CAD, etc.)

found solutions

* generate solutions
= systematize and complement
solutions

analysis methods (simulation,

choose solution :
calculation, test, etc.)

= analyze solutions
= evaluate solutions
= make a decision

evaluation methods
(multicriterial evaluation)

\ /A
L sshiton_J

Fig. 2.3 Problem solving cycle according to Ehrlenspiel (Ehrlenspiel and Meerkamm 2013)

The problem-solving cycle (according to Ehrlenspiel and Meerkamm 2013) is
shown in Fig. 2.3. After defining the roles, the broadest possible solution space is
created within the framework of the synthesis which is then analysed and evaluated
with respect to the achievement of objectives. Thus, the solution space is always
limited. This constant interplay of analysis and synthesis is ultimately one of the
reasons for iterations in the development process.

The product life cycle determines some implications for the coordination of
data and information flows as well as the tool integration in the development. The
individual steps can be associated with categories of methods as it is illustrated
in Fig. 2.3. Special attention is given on the methods and tools for synthesis and
analysis. The two process steps are interconnected via data and information flows
(Fig. 2.4). It is crucial that for each of the two steps different categories of data must
be captured.

For this purpose, two categories of data must be distinguished (Weber 2005):

* Characteristics which define the product; they are defined by the developer and
thus serve as an adjusting screw to manipulate the properties.

» Features which describe the product behaviour; the properties cannot be influ-
enced directly by the developer.

Exemplary for this mind set is the rough designing and dimensioning in the
design. In order to meet the properties’ conditions several components, for instance,
part lengths or materials (characteristics) with respect to the strength or weight of
the part have to be defined which must fulfil specified functions (features) (Weber
2005).

2 Product and Systems Engineering/CA* Tool Chains 33

output
properties

analysis models

input

properties

p > output input "
characteristics characteritics

product models

e.g. CAD, EoREAte and task: 'Y e.g. MBS-model
driven EE rroal

prototype

product artefacts

stored in:
several documents

stored in:
PDM-systems

via
file-structures

via product
structures

Fig. 2.4 Information flows in product development

Input values of the synthesis are properties that are requested by the technical
system. Those values it is necessary to find corresponding characteristics. By
analysing those values characteristics are examined to determine whether the
property’s performance is guaranteed or specified characteristics support the func-
tional performance. Consequently, properties can be divided into target properties,
from the customer requirements and actual properties which are the result of a
development step.

Which of the various methods is suited best, is on the one hand determined by
the objectives of the analysis and on the other hand by the product’s maturity or
rather by the developmental progress and its associated data quality respectively the
uncertainty regarding the data (Reitmeier 2015). This implies the need to distinguish
between product models as a result of the synthesis and analysis models. Result
of synthetic steps are product models such as CAD models, prototypes or test
setups. During the analysis it is necessary to transform the product models into
analysis models in order to make them accessible for calculations, simulations and
experiments. Examples of analysis models, such as FE models, Matlab Simulink
models or test body illustrate the diversity which needs to be handled. Below both
categories are summarised to product artefacts. Such a distinction is necessary to
understand for instance breaks in the data and information flow.

The resulting problem solving cycle (Ehrlenspiel and Meerkamm 2013) as
approach of process description on the problem-oriented level is therefore non-
specific, which means that it is equally suitable for all disciplines. The problem-
solving cycle is primarily used to provide situation-specific methods. Resulting
instructions have descriptive character. It addresses the question of HOW the
solution finding should be done (Lindemann 2007).

34 K. Paetzold
2.2.2 Process Models as Macro-logic in Development

Macro-logic in development is described by process models in product develop-
ment. These process descriptions address the logical and chronological order from
the idea to the finished product. These physical issues are relevant for the actual
characteristics of the individual activities. This is the best reason why the process
model differ quite domain specific. They follow a prescriptive nature and deal with
the question of the WHAT within in the Process (Lindemann 2007).

Process models, as phase concepts, have a high degree of generality even within
the domain. They require a sector-specific adaptation and concretisation for being
used as process basis in terms of project management. It is their big advantage, that
the development process is divided into manageable sections which partly can be
found in the operating structures of the development departments in the company
again. The structure is classified in two ways (Lindemann 2007):

* Logical: During development, an abstract situation will be concretized, whereby
the data and information base progressively will be completed. Thus, the adaption
for the methods which are used for synthesis and analysis is needed.

* Time: The order of the process steps and the details of the data base can therefore
be used for project planning.

Process models describe generally how a predefined target system can be
transferred to a more or less abstract level in a specific technical system (Negele
1998). Process models vary depending on the technical domain in which solutions
for technical systems are being developed, because this solution finding and speci-
fication are very strongly influenced by the used physical effects and relationships.
Nevertheless, independent of the considered domain, four phases can be identified
at a very generic level (Fig. 2.5), which remind of (Pahl and Beitz 2007).

Planning Phase: This phase conduce the definition of the task and of the
demands on the system to be developed. In addition to the customer or user
requirements it is necessary to consider the affecting or limiting constraints from
both perspectives, the company’s internal situation as well as from the environment
or the use out. The aim of this phase is to prepare all the development factors
influencing, so that therefrom parameters for the development itself can be derived.
Results besides the requirement specification is the definition of the system purpose
and the expected system behaviour.

Concept phase: This phase concerns a system decomposition based on the
system purpose and the expected system behaviour (Andreasen 1980). The related
detailing is accompanied by a permanent exchange between function synthesis and
synthesis principle. Function definition and refinement are always associated with
the search for fundamental solutions, which can be derived from the use of physical
effects. The choice of physical effects in turn influences the further breakdown into
sub-functions (Ponn and Lindemann 2011). These partial solutions are assembled
to form a working structure, which in turn defines the basic structure of technical
systems.

2 Product and Systems Engineering/CA* Tool Chains 35

PLANNING PHASE systems-purpose defining the systems purpose
N out * systems behavior
* requirements
CONCEPTUAL PHASE B « break down into
IN out part functions via
-_‘-_‘ input-output-relations
._._ * PROPERTIES
* have generic character
DETAILING PHASE _'._'._‘-_' » definition of transformation

T ([mechanisms via input-output
: * design of structure
— * CHARACTERISTICS
* domain specific (geometry
source code; electronic wiring)

INTEGRATION PHASE

spatial and functional

integration of elements
* best possible systems
| our performance

Fig. 2.5 Principle stages in product development

Design phase: The design phase is mainly influenced by the fact that the
individual functions and fundamental solutions are specified and refined. Depending
on the size and complexity of the technical system to be developed this design work
is carried out in several different teams who then are specialized in the development
of individual components.

Integration phase: Since today also in the domain-specific development, a high
level on the division of labour can be observed, the integration of the results into
an overall system is becoming increasingly important. In this context takes place
both, a spatial and functional integration. Adaptions of the integration adjustments
to the partial results or components are made such that the overall system then has
the best performance. In and of itself it does not make sense to consider the system
integration as downstream stage in development. Both in terms of efficiency as well
as from a qualitative and functional point of view out a parallel consideration during
development is strongly preferred. While this is quasi still immanent in the concept
phase, it is challenging especially for further detailing.

Depending on the specific domains, different strengths of effort are required
for each stage in development, which results from the physical relationships and
the mathematical description associated. While the construction has to rely on the
use of geometry and materials for continuous-time descriptions, in development of
integrated circuits e.g. for the description of individual components, discrete event

36 K. Paetzold

[e =
7 o [wnaey e
tank danficaton I~y | I —im = behaviowr, A structure
requinements list =
identify functions and structure It Jo=
- ~~ funeticnal structure. = = I ﬂ
search for slutions principles and | = “
divide into realable moduls | e b= -
el (= 2
' ~ firna detign (parts) I L — e
W“‘:’ - ™ oraalidergn F
-u!MuuA:\m —~ SR | I =1 [
[further realiation B D e S =4 eeomenry
procedure model according to VDI 2221 procedure model for circuit design procedure model for electronics
VDI 2221 1986] according to VDI 2422 according to Gajski Walker
[VDI 2422 1994] [Gajski 1983]

Fig. 2.6 Examples of domain-specific process models

approaches can be used. As a result, at a certain level the development is automated
in circuit design, which is not feasible for mechanical design.

Differences in the specialized domains also arise because for function descrip-
tions there is a cross-domain understanding, but the structure depths in the domains
are very different (geometry in engineering, integrated circuits in electronics, source
code in software development).

For these reasons, the process models in the specialized domains are correspond-
ingly varied. Fig. 2.6 shows examples of procedures from the domain engineering,
electrical engineering and software development. The differentiation of the domains
is not only reflected in the structural form but also in individual activities and their
designations. A detailed compilation of domain specific process models can be
found in (Eigner et al. 2014).

Process models provide first only a sequential series of more or less detailed
process steps, following the logic “from the abstract to the concrete”. In the
development of this and especially as a result of adaptation to the specifics of
different disciplines to the process models has been attempted to consider the
general character of development processes. Correspondingly to the structure of the
process models three main types can be differentiated. The simplest structure is a
sequential approach as “logic-beam”. Partly, this structure is also called waterfall
model. Since the need of iterations is well known, this was integrated into the
waterfall model (Fig. 2.7a). Exemplary adaptations can be found in the VDI 2221
(VDI 2221 1986), the approach to circuit design according to VDI 2422 (VDI 2422
1994), generally waterfall model of software development (Boehm 1979) but also
in the Y-chart to Gajsky-Walker, which takes place in the electronic development
(Gajski 1983; Walker and Thomas 1985). In the latter, there are three logic-rays that
reflect and merge the three typical ways of looking at an integrated circuit.

By the logic beam is folded over at the level of activities of the draft to a V-
model (Fig. 2.7b), one can point out the importance of the property protection for
development results. In terms of the function of protection and a high quality product

2 Product and Systems Engineering/CA* Tool Chains 37

goal-definition synthesis

A \V

decision

a) waterfall-model b) v-model c) spiral-model

Fig. 2.7 Structures of process models

as by increasing demands in terms of system reliability, verification and validation of
technical systems is becoming increasingly important. This type of visualization and
implementation supports the way of thinking. V-model approaches can be found in
software development (Forsber and Mooz 1991), but especially for the description
of the development of complex technical systems as in mechatronics (VDI 2206
2004).

Another structural adjustment is the spiral model (Fig. 2.7c), which is more
commonly used in software development (e.g. Boehm 1988). Ultimately, the logic-
beam thereby will be “wound”. This form of modelling illustrates not only the
paradigm of successive refinement (NASA 1995). The introduction of the quadrants
also addresses and integrates the logic of the problem solving cycle with the phases
tasks careful synthesizing, analysing, evaluating and deciding that must be passed
through to each stage of the procedure. This way of thinking are as the application
of agile methods in software development as a basis. In this way of thinking is based
e.g. the application of agile methods in software development.

2.2.3 Process Models for CPS as an Interdisciplinary
Technical System

To explain the procedure for developing CPS as interdisciplinary technical systems,
domain-specific approaches are not appropriate. But the logic illustrated with the
four phases, needs to be considered due to the inherent systemic view. In considering
such interdisciplinary products there are other aspects of importance:

* The complexity of CPS is not based solely on the number of elements (func-
tions and components) but also on the cross-linking diversity. The structural
characteristics of individual sub-elements are very heterogeneous, with the result

K. Paetzold

that interfaces can be partly difficult to detect and to interpret. Emergent system
behaviour of CPS can be the result.

The expected from CPS behaviour is more diverse. This is not simply because
the CPS must adequately respond to different environmental conditions, but also
to its own system states. New business models, offering services in the context
of the CPS and the requirement for an intensive consideration of the product
life cycle mean that different stakeholders have different demands on the system
behaviour or expect a specially specified behaviour from CPS.

The division of labour for developing a CPS presents itself much more het-
erogeneous than in conventional technical systems. Many companies cannot
hold the entire technological know-how for the solutions. In some industries,
significant shifts in the leading competencies of the company can be observed.
Core competencies are no longer alone in the mastery of specific technologies
but in system integration. In addition to intensive cooperation with suppliers,
components of the shelf (COTS) gain importance. This requires special attention
to the problems associated with the product development processes, such as
requirements management, risk management or the security management.

For the development of interdisciplinary technical systems like CPS the V-model

has been proved as structural approach (Fig. 2.8). This reflects not only the four
phases shown in the preceding chapter, but also explicitly address aspects such
as property protection and modelling aspects. Thereby, not only the substantiation
of the development results is discussed but there are also first indications for the
description and analysis of data and information flows given.

For each phase now the areas of responsibility need to be expanded.

requirements
stakeholder

CPS
validation _

specification ‘ - 4
conceptual production
design
integration

functional and logical
prototypes
detailed hardware/software
design in the loop

validation

b
-

structure physical
structure, topology
systems

architecture

domain- and task-specific

Fig. 2.8 V-model as a fundamental approach to CPS

2 Product and Systems Engineering/CA* Tool Chains 39

In the planning phase, it is needed to analyse precisely the stakeholders of the
CPS and their goals and expectations on the system behaviour. Since the CPS should
adequately react to different situations, the definition of just one system response
is not sufficient. Instead, it requires an intensive analysis of possible situations
to specify the system behaviour. In addition, there remains a challenge, boundary
conditions of the application environment, from the market and the competition, as
well as from within the company to identify.

Characteristic for the concept phase is processing from rough to detail (Fig. 2.5).
Under this phase it is necessary to substantiate the defined system behaviour by
a functional analysis and to complement the logical order with function execution
(operations). Structural analysis is the condition for a description of the physical
architecture. In this context it is important to clarify how or what features are
summarized in terms of subsystems or components. Hereby, considerations as the
evolution of technical systems play a major role (Kossiakoff et al. 2010). Only in a
few cases, radical new developments take place in product development. In general,
it is necessary to consider incremental innovations. The physical architecture is
then more or less given and serves as a basis for development. Product and variant
management in the company are also influencing. This not only defines the product
structure by the stored modularisation strategies. Finally, the physical architecture
is characterized by the company’s knowledge in development and by providing
access to technologies. Linked to this is also the organizational assignment of
development tasks to individual development teams in the specialized domains.
Figure 2.9 summarizes these aspects of the system architecture together.

Result of the design phase is a system architecture, which describe structural
description and system behaviour from different perspectives (Rechtlin and Maier
2000). The concept phase is of particular importance for development because it
not only predefines the resulting CPS, but also establishes a system understanding,

[user needs][bour?d_ary]
conditions

stakeholder - descriptions of use g
” ; constraints
expectations cases/behavior

¥

systems I operational
purpose concept
- organizational
/ “\ architecture
1

logical
architecture

T

physical
architecture

g

functional
architectur product -

structure

Fig. 2.9 Consideration to system architecture

40 K. Paetzold

to which the project partners must commit (Blanchard and Fabrycky 2012).
Accordingly, the concept phase requires a highly interdisciplinary cooperation in
which is assumed that the participants from different disciplines to develop a mutual
understanding of the concerns of other specialized domains.

In contrast, the expertise and the specific knowledge of the individual domains
are needed in the design phase. Since they summarize domain-specific knowledge,
subject-specific process models are used to deal with the development tasks. In
terms of the interdisciplinary nature of the entire development task, a special
awareness of the overall system needs is necessary while the processing of subtasks.
Decisions that were taken in one domain also influence the work and decisions of
other development teams. A strong interface management is required, thus also in
the domain-specific development phases, the overall objective won’t get lost.

The phase of system integration provides companies especially in the develop-
ment of CPS with special challenges. Individual solutions from different develop-
ment teams, based on specifications, which only represents part of the complete
the overall system requirements, are optimized in this way usually. It is in the
nature of things that not all possible critical interfaces are considered to other
subsystems. Often simply lack the domain-specific knowledge in detailed questions.
In the phase of system integration, therefore much effort on the adaptation of
individual solutions is put in terms of overall performance. This is associated with
time and cost consuming iterations. It therefore makes sense to support the phase of
system integration from the planning and design phase through methods and tools,
as well as procedural and organizational interfaces by which interfaces between
requirements, stakeholders, subsystems and functions between development teams
and can be made visible. In addition, it requires methods to provide decision
situations with sufficient data and information.

2.2.4 Systems Engineering as an Interdisciplinary Approach
Jor Development of CPS

While in the previous chapter, the procedure from a more domain-specific point
of view has been continuously broaden to draw conclusions for interdisciplinary
product development, Systems Engineering provides an approach to support the
theme from a cross-domain development perspective. Similar to the already shown
systemic development approaches, Systems Engineering refers to a long history,
(NASA 1995), especially for the development of large-scale systems (Chestnut
1967).

Systems Engineering (SE) is an interdisciplinary approach and means to enable the realiza-
tion of successful systems. It focuses on defining costumer needs and required functionality
early in the development cycle, documenting requirements, and then proceeding with
design synthesis and system validation while considering the complete problem: operations,
cost, schedule, performance, training and support, test, manufacturing, and disposal. SE

2 Product and Systems Engineering/CA* Tool Chains 41

considers both the business and the technical needs of all costumers with the goal of
providing a quality product that meets the user needs. INCOSE 2010, p. 6)

The definition shows that not only a focus on the stakeholders takes place,
but also the entire product life cycle of the resulting system is made explicit in
development. These limits of consideration are very broad in terms of description
of a socio-technical system from the outset.

Also as part of SE approaches, development of technical systems is understood
as top-down process with iterative character (Eisner 2008). The focus lies more on a
total system approach and on how to find an optimal solution for complex tasks and
problems (Hitchins 2007). Of course, in SE detailing phases in the domain-specific
development are also needed. Here is less discussed how to proceed in detail, but
more which tasks a system engineer has to fulfil, to be able to reasonably coordinate
the results of these domain-specific phases to each other and to be able to integrate
them into an overall system. The methods used in the context of the SE therefore
primarily focus on the control and management of complexity (Kossiakoff et al.
2010), analysis and description of interactions between to developing systems and
the environment as super-system, and between the sub-systems. Especially the latter
is of course based on the expertise of different domains, but should be supported
by the system engineer, from whom a broad technical understanding is expected
(Blanchard and Fabrycky 2012).

Oliver et al. (1997) explain that SE approaches need to support two ways of
looking at development:

SE management process describes the technical and organizational effort
within the product lifecycle and thus focuses more on the typical tasks of project
management. Target of management procedures is to provide information and to
evaluate it in order to support the decision-making in terms of trade-offs between
efficiency and costs (NASA 1995). It is necessary to consider restrictions on cost,
time and potential risks, both in the development itself as well as in the evaluation
of the performance of the technical system.

SE technical process includes all activities from the first request of requirements
up to development through to verification and validation of the results. Both,
procedures represented in literature as well as procedures known from practice,
based on systemic approaches and mind sets that have been explained in detail in
the previous chapter. As process model now commonly a V-model is used as basis
(e.g. (Blanchard and Fabrycky 2012; Kossiakoff et al. 2010)).

Typical methods of SE focus less on the support of individual activities but more
on the analysis and description of the system complexity. Therefore, it should be
given particular mention to:

* Methods for modelling and simulation of complex systems (e.g. NASA 1995)

* Methods for analysing system contexts both at a functional and structural level,;
for this, graph-based approaches are used as well as network-based approaches
(conclusion e.g. in (Parraguez 2015))

42 K. Paetzold

* Methods for the preparation and presentation of data and information flows in
the technical system, taking into account constraints and stakeholders through
approaches of model-based systems engineering (MBSE) (e.g. Delligatti 2013).

From the perspective of systems engineering, the emphasis in the description of
data and information flows lies in summarizing the variety of data and information
and in preparing a structure to firstly identify interfaces between sub-systems and the
environment within the technical system. To this end, data and information from the
synthesis of partial elements are grouped in such a way that dependencies between
elements of the overall system can be identified.

Especially the extensions within the V-model for development of interdisci-
plinary products such as CPS give an indication what to look for in design but for
the concrete process design and support, they are only partially suitable. Here, a
significantly more granular fine-mapping of processes is required. Therefore, in the
following chapter approaches are presented to substantiate and refine the process
descriptions.

2.3 Concretisation of Process Descriptions in the Sense
of a Workflow

Especially the extensions within the V-model for development of interdisciplinary
products such as CPS give an indication what to look for in design but for the
concrete process design and support, they are only partially suitable. Here, a
significantly more granular fine-mapping of processes is required. Therefore, in
the following chapter describes approaches to substantiate and refine the process
descriptions.

Looking at the data and information flows within the context of process
models, both, product models as a result of synthesis and analysis models shall
be considered. This requires a detailed process description, which in turn forms the
basis for the design of IT structures. It should focus on that system descriptions
within the process are successively refined through the use of different methods and
related tools. This leads not only to different versions within a product model but
also contributes to a plurality of partly also very heterogeneous product models,
which need to be managed and tackled. With increasing maturity of the technical
system, the data quality improves and data uncertainties are gradually reduced.

Analysis models are based on product models and the associated level of maturity
of the considered subsystem. In addition, analysis models depend in their detailing
or their structure from the objectives which are pursued with the analysis in each
case. Product models require a corresponding contextual preparation to make them
accessible for the analysis.

Both model types, product models and analytical models contain data and
information which describe each viewpoints or parts of the resulting CPS. For
preparation of the product models for analysis and specifically for simulations,

2 Product and Systems Engineering/CA* Tool Chains 43

engineering-workbenches find use. The aim of this is, on the one hand to support
the modelling for simulation by the prepared context information for pre-processing
and assigned to the product model. On the other hand, the analysis results are
pro-cessed in such a way that they are within the meaning of the decision support for
the development process available in post-processing. Libraries for modelling, load
cases, material values, etc. supplement this context information for analysis and can
simultaneously be understood as knowledge repositories.

For collection and delivery of all product artefacts various IT tools are available.
Product data mainly from construction will be deposited directly into product data
management systems (PDM systems). Depending on the structure and format of
these tools, this data can be linked to analysis results. Such processing and provision
of data and information facilitates the provision of data for individual development
steps and the development situation significantly, but also implies that the PDM
systems need to be adjusted in terms of product lifecycle management to the
development processes. In addition to PDM solutions for managing the documents,
data filing systems in which the files themselves are stored, are used. This in turn is
caused by the use of various tools in development. In sum it is necessary to support
development processes with a diverse IT landscape. Their efficiency depends on
how successfully typical development processes for the own organization can be
mapped and finally adapted to the data and information flows.

Figure 2.10 gives an indication to the components of a holistic IT infrastructure
for development. Besides PDM tools and engineering workbenches support file
storage systems the structuring and management of data. These are linked to the
for development necessary producer systems both for the synthesis (for example,
CAD) as well as for the analysis (for example, FEA, MBS). Within these IT systems
in turn, templates, libraries and assistance systems find use to support individual

product
management
templates, libraries,
catalogues

model libraries
loading conditions,

materials, etc.

synthesis tools product analysis :
—p ’
CAD, SPICE, etc. _ model > CAE-workbenches = oqer> analysis
f result I

further reports

product models

a8 4

Fig. 2.10 Overview of components of an IT infrastructure for development

44 K. Paetzold

tasks through targeted provision of knowledge, but also to enable a holistic and
overarching product management. Finally, it requires suitable data interfaces to
ensure the exchange and further use of data within the development process. It
quickly becomes clear that for a concrete definition of an IT infrastructure, a detailed
treatment of the data and information flows is necessary, which cannot be guaranteed
by the process models described in the previous chapter. The process models require
a significant specification, for which the influencing factors are described below.

2.3.1 Adaptation of Development Processes to the Context

The refinement of the development process is not only required to substantiate to
processes in the development and to support decision-making processes through
targeted information delivery. This is done not only on the basis of interdisciplinary
tasks in the development but also by the integration of the development in the
company’s organization. The link to production and assembly, sales and marketing,
logistics, procurement etc. is especially required to consider all influences on
development in terms of product lifecycle reasoning. As a result, so called swim
lane models for process description can be found in the companies (exemplarily
shown in Fig. 2.11). This also goes hand in hand, that for development necessary
IT structures are linked to the IT tools of other company divisions. In this context
should be referred specifically to the link to Enterprise Resource Planning systems
(ERP systems).

The processes depicted with such Swim lane models are very company specific.
They resemble each other but generally are not equal because they are influenced not
only by industry, competition and market but also by corporate strategies. Here, for
example, aspects such as competitive and technology strategy or typical customer
patterns play a decisive role. Such process descriptions and therefore the support
of developers are not only based on typical processes, but also can be explained
to some extent from the company’s history. Last but not least are manifested in
the development processes and the associated IT structures the experience and
knowledge of the company.

Because of the diversity in the expression of the factors influencing the process
design, a generic oriented refinement makes little sense. Below shall therefore be
briefly outlined, which factors are in what way to take into account in order to
reflect the company’s internal processes as a whole can. In turn, starting points and
specifications for IT structures can be derived.

2 Product and Systems Engineering/CA* Tool Chains

development

W

sjuBLINIop

1efoid

uBjsap

-auempieH

uBjsop
-alemijos

uopanpoud

i) ddns

Sugaxiew

“ujwpe

45

Fig. 2.11 Example of a development process as swim lane model in the company

46 K. Paetzold

2.3.2 Identification of Context Factors for Adaption
of Development Processes

The adaptation of the generic process models is described in the literature for
two reasons: on the one hand requires the pronounced interdisciplinarity especially
for CPS the consideration of typical procedures of disciplines involved to obtain
functional and high-quality solutions for components and subsystems (e.g. Pugh
1991; Gericke and Blessing 2011). On the other hand, the adjustment of develop-
ment processes to the corporate context (industry, market, product group strategies)
is necessary to explicitly include the resulting specific framework for development
(e.g. Skalak et al. 1997; Meifiner and Blessing 2004). Gericke et al. (2013) illustrate
two types of customization options of development processes: the Augmenting and
Tailoring. The Augmenting ultimately describes the extension of the procedure
description not only by additional process steps but also by the integration of
additional information such as guidelines, design practices, specific methods, or
the like. Target of Tailoring is to carry out industry or company-specific adaptations
of the development process, whereby it is mainly about to make the process steps
explicit, which results from the product or the industry (Gericke and Moser 2012).
In the aviation sector this includes, for example, admission procedures or hedging
measures. For CPS are, for example, specific measures in relation to consider
the data security or the human-machine interaction, required. The challenge for
both forms of process adjustment is to completely grasp the development context
and describe it in its characteristics. Hales and Gooch (2004) illustrate this in a
framework to classify those factors influencing the product development and to
identify (Fig. 2.12). Gericke et al. (2013) use this structuring approach and assign
more detailed context factors that have been identified based on a comprehensive
literature review.

The resulting list of over 230 contextual factors (in Gericke et al. 2013)
provides basic evidence, what to look for in the concrete detailing, but for practical

Environment (Macro level) cultural & scientific influences
Market
Company branch, organization, strategy, culture, stakeholder, production,

Management

Design

personal design task, tools and methods, knowledge, skills,
competences

Fig. 2.12 Influencing factors to product development according to (Hales and Gooch 2004)
improved in (Gericke et al. 2013)

2 Product and Systems Engineering/CA* Tool Chains 47

macro environment |
(social-cultural; political-legal; technological; ecological, economic...) boundary conditions

2" grad
company

(micro environment; core competences, organization, supply chain...) .
l View of the developer

|

process: HOW ?
+ process engineering (workflow,

resources: responsibilities, temporal data origin...)

WHEREBY ? boundary conditions
+ resource product: WHAT ? 1stgrad
management + product validation (functionality, complexity,

(methods, tools interdisciplinary...)

personnel...) strategy: WHY ?
+ strategy controlling (market- , product
strategy, range of products...)

Fig. 2.13 Detection of the contextual factors for describing the data and information flows
(Reitmeier 2015)

application, this list is a bit bulky. Also not included in the rather linear view is the
fact, that between the contextual factors a number of dependencies are observed.

Reitmeier proposes to extend the structuring approach (Reitmeier 2015) to
capture the data and information flows by continuously evaluating the contextual
factors with respect to the decision to be made (Fig. 2.13).

In (Reitmeier 2015) is distinguished for the classification of contextual factors in
such of first degree, which are directly connected with the activity of the developer
and thus also directly can affect the necessary activities, or even can be influenced
by the developer. In addition to the aspects of the product and the process, the
company’s resources also play a role here. Not least, strategic considerations such
as the importance of the development project for market, industry, customer or
integration in the product management influence a role. These factors influence
the adaptation of the development process to the development task. Boundary
conditions of second order, which at a higher level can be derived from the macro
environment or the company’s strategy, however affect the basic design of the
processes in the development.

2.3.3 An Approach for Systematic Analysis of Determining
Factors for the Development Process

In addition to detection and description of the contextual factors it requires an
analysis, which indications can be derived for the design of development processes.
For this, a systemic approach after (Negele 1998), which in turn follows an idea of
(Patzak 1982), is used. This approach of Negele will be introduced in the following
chapter.

48 K. Paetzold

designed system formative system

1 I
goal system e s process system

describes the purpose l describes the activities
\ L t

object system - . action system
describes the realization ﬁdescribes the implementation

Fig. 2.14 The development of CPS using the ZOPH model after (Negele 1998)

In principle, it is distinguished between the system to be designed, here the CPS
as product, and the formative system, that is the process of targeted activities that
lead to this CPS. Both systems, the CPS and the development process cannot be
considered independently. Considering further that the CPS initially is present only
as an aggregation of targets, which are substantiated by development, it follows
that the CPS is again divided into a target system and an object system. This opens
up the possibility to address the uncertainties in development. On the other hand,
in connection with the process is illustrated the extent to which the resulting CPS
is correlated with the objectives. A similar approach is for the process to derive
even. The formative system of the process is mainly determined only from the
logical approach and has a generic character for the product group. The concrete
development task can be derived only if demands are accurately specified, resources
and responsibilities are defined and a termination occurs. For this reason, a specific
project will be derived on the basis of the processes virtually, resulting in the
distinction between a process and a system of action.

Finally, of course, it requires a definition of the system boundaries, which are
characterized not least by contextual factors on the micro and macro level. The
difficulty here is that this system boundaries often cannot be drawn strong and clear,
because it is precisely the characteristic of the CPS that they interact closely with the
environment or other systems in the environment. CPS must therefore be interpreted
frequently in the context of a system of systems (SoS). Such blurred dividing line is,
however, difficult to tackle in development. Therefore it is necessary to give special
care on the delimitation and description associated in- and outgoing data, energy
and material flows. Figure 2.14 illustrates this model approach after (Negele 1998).
The name ZOPH of the approach results from the first letter of the german words of
the partial models (Ziel, Objekt, Prozess, Handlung).

This raises the question of how this mind set supports the process development
and control of the development and the associated organization of data and
information flows. For this purpose, the individual subsystems shall be further
concretised in reference to (Negele 1998).

2 Product and Systems Engineering/CA* Tool Chains 49

function behaviour

I —[:]I - stakeholder

| |
| | 1 | |

standards

-]
A} v

productlifecycle

maintenance

function
specifi- specifi-
cations cations

production
assembling
use
maintenance
obsolescence
\Z)

Fig. 2.15 Detailing of the target system

2.3.3.1 Goal System

The goal system classically summarizes all the requirements for the evolving
CPS. As a product from the capital goods sector, here one needs to distinguish
between load and performance specifications in principle. The challenge lies in
the completeness of goal acquisition. Here are not only partial functions and their
expression of importance, but also the description of the characteristics of the
desired operations. For structuring the target system approaches for describing the
system architecture can be used, which reflect both functional and structural aspects.
Since generally in development always similar systems are in focus, may be used
for the CPS also established product structures. Relationships between functioning
synthesis and principle synthesis (Andreasen and Hein 1987) need to be considered
especially for completely new developments. For adjustments, variant developments
or incremental developments, these aspects are already included in the system
architecture.

The complexity of the CPS results not only from the functional diversity but
also from the diversity of the expected behaviour, which is not least determined by
different stakeholders on the CPS to be developed. Therefore, the target system shall
additional be analysed with respect to different types and forms of operations, what
also integrates aspects of the product life cycle at the same time. This requires a
detailed analysis of the stakeholders, as summarized in Fig. 2.15.

The goal system includes aspects of system definition, therefore the answer to
the question of which functions can be realized only through the CPS and which
arise from the interaction with other systems. One important result of the analysis
to the target system must be to detect cross connections between functions, product
structure, operations and stakeholders to present and show mainly conflicts between
these. Ultimately, the target system is a reference for the object system, but also for
the process system.

50 K. Paetzold

system architecture product artefacts

product models

V4

subsystem analysis models

component

subsystem libraries, catalogs,
templates, guidelines

vt 2

project goals
priority, risk, ambition, timeline, budget, program management, variant management,
configuration management

Fig. 2.16 Specification of the object system

The target system is manifested in the requirement description, which in turn
is the basis for requirements engineering. In conjunction with the stakeholder
description and hedging measures, risk assessments or reliability statements can
be deduced.

2.3.3.2 Object System

The object system ultimately summarizes all results in the development process and
therefore also all product artefacts in the various phases of the development process.
This includes any form of additional information such as libraries, catalogues
or templates that underlie the development in the different producing systems
(Fig. 2.16). Ideally, the structuring is based on the product architecture, which
generally underlies also the target system description. A consistent structuring
of both, the object and the target system is the basis of the balance between
demands and results of the development process. However, the orientation on
product architecture takes generally into account the participating disciplines for
component development.

The product artefacts that are collected in the object system are available, both
as documents in data storage systems as well as hardware (prototypes, hardware-in-
the-loop). The analysis of the object system therefore not only serves to flesh out
the IT structures but also the identification of data-technical necessary interfaces

2 Product and Systems Engineering/CA* Tool Chains 51

between the product artefacts. The relationship between various product artefacts
provide, at best, product data management systems and engineering workbenches.
The relationship between data and information from other business sectors are
ideally represented by ERP systems. The enrichment of product artefacts with
information like date of creation, creator, etc. Versioning provides the one hand
the connection to the system of action, on the other hand, these also can be assigned
to phases within the development process and thus draw conclusions for the degree
of maturity.

2.3.3.3 Process System

The process system defines in detail the activities and actions which are relevant for
the specific development. Logical dependencies result from the physical relation-
ships in the specialized domains as well as from the to-implement system functions
and the expected operations. The structure of the process system should be such
that the analysis of data and information flows can occur between the individual
acts. The individual process steps are considered quasi as transformations of the
initial state into a desired end state. For this transformation are usually available the
experience and knowledge to the system, which provides guidelines and methods
that take into account not only the physical relationships but also best practices.
Both, methods and best practices include ultimately guidelines for action and thus
provide the detailed procedures a framework for action. For the analysis of process
steps therefore the proposed model Fig. 2.17 with reference to (Birkhofer et al.
2005) can be used.

A generic procedure description also results from the problem-solving cycle
(see Sect. 2.2.1), because there with a classification of methods and the data
characteristic is connected. As described above, the problem solving cycle is
ultimately to go through at every stage of development. This results is not only a
classification approach for methods (see Fig. 2.3) but also a statement of the maturity
of the resulting system. Conversely, this means that each method must be adapted
to the maturity level of the product. With the application of methods in practise
usually I'T-tools are connected, which data requirements and their evaluation results
are directly attached to the methods or the best practices. For the description of
the development processes, the development influencing tasks like procurement,
purchasing or production and assembly now also have to be considered, as they
either provide input or need input at a defined time. Via the process system one can
recognize and specify procedural interfaces. The process system is manifested in
the swim lane models mentioned above (Fig. 2.11).

2.3.3.4 Action System

The action system describes the organizational framework or the organizational
impact parameters for the process design. The organizational structure results in

52 K. Paetzold

activities engineer tools
knowledge, qualification for problem solving
motivation, experiences
input ¥ \ 4 output
. « information,
rdata = structure sequences description =P |noedge
* information . . i
* documents * consequences
principal conditions Methods
processes, company, guidelines,
infrastructure, teams * best practices
b
comp. A + t LX) t
: : product program
——————— e et et et iy * strategy,
—l
comp. 8 t 4 it bt * change
« management,
i I . | *variant
v&v it l t t | t management
i + * requirements
A4
—] : management
supplier + t -‘ t ' t

Fig. 2.17 Specification of the process system

responsibilities, role assignments and responsibilities for partial activities for both,
the actual development work as well as to administrative supporting processes such
as release mechanisms etc. In action system also material and personnel resources
are defined, whereby the material resources available especially IT tools, licenses
and their characteristics are includes, but also test stands, laboratory equipment,
test equipment, etc. are covered. Since today a variety of development services is
adopted by service providers or suppliers, these have to be interpreted as parts of
the action system, which supports the development with resources and capacity.

The action system serves in addition to content issues also to scheduling
specifications of development processes, depending on the development task and
possible priorities of the company. Depending on the development task, deadlines
and responsibilities must be assigned to the individual process steps. For the
purpose of a multi-project management, his assignment must be accompanied by
a project prioritization, which results from the program or product management.
Thus, directly from within the action system, the processes are complemented by
typical information to substantiate the workflow in terms of project management.
The components of the action system are summarized in Fig. 2.18.

2 Product and Systems Engineering/CA* Tool Chains 53

organizational structure team structure resources
functional budget
divisional .
time
matrix
personal
IT-tools

comp T
________ 1__3_i_
comp. B ‘i R q i

supplier

project management

Fig. 2.18 Specification of the action system

2.3.3.5 Control of Development Tasks via the ZOPH Approach

The individual subsystems of the ZOPH model are not independent, as is already
explained in Fig. 2.14. In terms of a holistic process management it is rather
necessary to consider and develop all the subsystems equally. However, various
views on the development process can be mapped over the subdivision into
subsystems. The planning and integration of IT structures for integrated data and
information flows, for example, requires not only the consideration of the typical
system architectures but also of typical processes to tightly coordinate the individual
IT tools. For supporting decision-making processes in development in turn the
provision of all available data is required, but it also requires the knowledge of
organizational, process and product-related interfaces that are clearly shown by the
ZOPH approach. This is the basis on which to assess the impact of decisions and to
inform those who are affected by the decision.

The main objective of the development is undoubtedly the CPS. This is also
connected to a number of side objectives, such as quality, reliability etc. For
this purpose usually consuming associated processes such as risk management or
requirements management are implemented in product development, which are

54 K. Paetzold

often to be considered as parallel to the actual product development process.
Configuration management and change management on the other hand consider
aspects of creating variants, which are normally anchored in program management.
These associated processes, for example, determine the product development via
modularization approaches, common parts and repeat parts concepts etc. With the
analysis of the company within the meaning of the ZOPH approach, these processes
can be mapped in a holistic way and coupled with development. Ultimately, these
associated processes grab, even if they have different origins, back to specific
elements in the subsystems and bring them goal-oriented together.

2.4 Model-Based Engineering for Mastering Complexity

The major challenge in mastering a CPS, nowadays lies in the system integration.
For individual activities or aspects in development now a variety of powerful
methods and tools are available, the overall system approach is, on the other hand,
less pronounced supported.

Especially in the data and information flows are always media discontinuities
to tackle, which easily lead to fractures in the reality in development. There are
a variety of documents such as request lists, CAD models, feasibility analyses,
calculations as well as Power Point or Word files generated which describe the
resulting product both on functional as well as on structural plane. These are for
individual development steps or specific decisions of importance, but are available
in very different formats. In addition, they represent some very different perspectives
on the CPS, which makes their interpretation and exploitation difficult. The cause
of the resulting lack of development lies accordingly in the document-based
management of the data and information flows, which neglect the data characteristic.
The preparation of more or less unstructured data requires special effort, for which
the creation of data exchange formats is often insufficient. An illustrated document-
centric view in general supports only specific views on the CPS. The challenge
arises not only from the different data formats and data structures but also from the
fact that with the various activities (synthesis/analysis) different data characteristics
are connected (properties/features), which complicates comparability and stringent
further usage.

To overcome these development disruptions, and thus to ensure a certain
completeness and efficiency of the development processes, increasingly model-
based approaches are tried. With such a model-centric organization of data and
information flows, the model becomes the source of relevant information by
structuring the information according to a predefined scheme (Weilkins 2008).

Model-Based Engineering (MBE) should here be understood as an engineering
approach, which uses models within the meaning of pre-structured data as a
basis for the data and information flow. These models include all this data and
information relating to the product life cycle, based on the requirements of the

2 Product and Systems Engineering/CA* Tool Chains 55

design, verification and validation of subsystems as well as on the overall system
(NDIA 2010).

Model-based engineering may be understood as an overriding principle that
originally sprung up in the development of software-intensive applications. The
application of CPS is not only beneficial to master the complexity in development
but also due to the system characteristic. The basic idea here is to continuously
hedge the system behaviour at different levels throughout the entire development
process by the use of these model approaches. For this purpose, firstly parameter-
based models (for example, in Matlab Simulink) are constructed from the overall
system, by which the system response can be displayed and analysed. These
are successively refined, both, in terms of modelling approaches as well as by
hardware components that are integrated (Albers et al. 2013). This ensures the
system integration from the early stages of the development.

Meanwhile, the understanding of MBE is somewhat broader and also includes
in many cases Model Based Systems Engineering (MBSE) and Business Process
Modelling (BPM) (Lee 2008).

Difficulties or challenges in the dealing with models arise from their properties
(Stachowiak 1973). Thus, models are only depictions of a system. This will entail
contractions: by means of the attributes from the original, only those things are
recorded, which are relevant for the defined viewing purpose. By assuming a certain
substitution function, therefore models give only a specific limited view to the
original again (Stachowiak 1973).

A further distinction needs to be made for models:

» Especially in engineering, the feasibility of models is presumed. Models are thus
constructed under the use of method tools such that they can be used as basis
for simulations. This opens the possibility to derive statements about behaviour,
performance and function as early as the early stages of development.

 Increasingly descriptive models that allow a symbolic representation of the CPS
with a defined syntax and semantic, gain in significance. These models are
information models, in which feasibility generally does not exist (exceptions
can be found in software development, where such a source code can be
derived, see also (Rumbaugh et al. 1999)). In this context, UML or SysML
models are exemplarily mentioned. In the end, even CAD-models, which initially
support structure visualization and are based on a pure geometry-based view, are
included. Simulations cannot be initialized directly but always the preparation of
data for an analytical model is required.

The two different interpretations of the MBE are summarized once again in
Fig. 2.19. This depiction illustrates that the model-based approaches on the basis of
executable models correspond to a vertical integration. Accordingly, the challenge
is to refine the models depending on the progress of development, or to link the
different modelling approaches to make them accessible for simulations (Paetzold
and Reitmeier 2010). MBSE other hand focuses on horizontal integration. The goal
is here to compile all data and information for the CPS over the product lifecycle

56 K. Paetzold

description communication consistency validation

model based system engineering

+ several methodologies available (e.g. JPL State Analysis)
» general purpose modeling languages / SysML

* requirements specification as a by-product

+ coordination of domain specific engineering/modeling/

simulation

I <
= e - 2 overall system
] o] S T
S I §2%8
= = = =
SEEM| C2sE

w [I = =
SHEE 2G2S sub-system
sEEl| 8253 &
02 (o] ol o <]
Sl c2s 8 &
SRENl 5t £
] © E S fo . & components
£ g= g =3 gﬁ O =

Q Tt Eaoaxs &X

=

- - - - - -

Fig. 2.19 Different views of the model-based engineering (Omiciuolo et al. 2015)

in order to ensure a holistic view on the resulting technical system or to assemble
different views.

With vertical integration, especially the kind of modelling or the choice of the
modelling paradigm is combined. From a systemic point of view one can distinguish
both, on the structure level as well as on the function level or the behavioural level.
A modelling based on the structure definition for the whole system is extremely
difficult, what is caused by the domain-specific physical and related mathematical
descriptions (geometry, source code, integrated circuits).

For the simulation of the system behaviour it is more likely to resort to
parameter-based approaches to modelling, as these are based on the more
generic functional description and are linked via input-output relations. With this,
although one accepts a higher level of the abstraction model, however, succeeds a
cross-domain modelling, which can be understood and interpreted in the domains.
The challenges that are associated to this observation will not be further discussed
here, but reference is made to additional literature (the problem of universal
description language, for example (Panreck 2002); multi-domain vs. domain
specific, for example (Sangiovanni-Vincentelli et al. 2009).

2.4.1 Model Based Systems Engineering

The second aspect mentioned in the context of model-based engineering is also
treated under the concept of model-based systems engineering (MBSE).

2 Product and Systems Engineering/CA* Tool Chains 57

n performance

Other analysis models { = j
standards L B

user

operator

maintenance u

obsolescence I
I

_|: :|- y structure / components

Fig. 2.20 Perspectives which shall support the system model

function/behavior

Model-based systems engineering (MBSE) is the formalized application of modelling
to support system requirements, design analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and later
life cycle phases. INCOSE 2007)

The basic idea is to support the development process and especially the data
and information flows through system models that depict not only aspects of
the entire product life cycle but also the perspectives of different stakeholders.
This is intended not only to support development processes but also to provoke
balanced system solutions (Eigner et al. 2012). For this purpose, as a basis a
unified modelling approach is used, which allows to map both, system models as
well as development activities. MBSE thus should be understood as methodology;
that means a summary of processes, methods and tools by which a defined
goal, here the integral development of complex technical systems, is announced
(Estefan 2007). The management of complex technical systems is supported by
the fact that not only different perspectives on a CPS can be distinguished but
also between function, structure, behaviour and performance. The possibility of
hierarchy formation facilitates impact analyses or traceability of design changes
(Fig. 2.20).

In order to deploy and support a methodology efficiently, three aspects must
ultimately be integrated (Delligatti 2013):

* Methods which describe the development of the technical system,

* Languages that define grammar as a set of rules for system description and that
are understood by all parties,

* Tools that translate the languages and that support in construction and interpreta-
tion of the models by providing a development environment and routines.

These aspects will be described briefly below.

58 K. Paetzold

Methods within the meaning of MBSE describe action rules for consistent
configuration of system models. These methods are not only influenced by the
purpose of the model but also by the mind sets and ways of abstraction of those
who wish to use these models. Of course, the methods follow very much the logical
and systemic approaches for development and the structuring of complex technical
systems, as they are described in this chapter. Certainly, here play for example
domain- or industry-specific priorities in the concretization of the methods such as
for example domain-specific development and lifecycle models a role. Also specific
aspects of the system Engineering management process, such as risk management
issues or security issues, may affect the method in detail here. These methods reflect
quasi a type of a modelling philosophy.

For MBSE, in the literature a number of methods can be identified. In the context
of Systems Engineering as an integrated approach to development by CPS, one
should particularly mention:

* OOSEM (Object-oriented Systems Engineering Method), which was designed as
a top-down approach by the INCOSE, based on a functional analysis (Friedenthal
2014).

* SYSMOD method, a standard top-down approach developed by Tim Weilkiens,
which is based on UML methods and expand them in the sense of systemic
product development (Weilkins 2008).

Besides that, a number of other methods, such as IBM Telelogic Harmony
SE, IBM Rational Unified Process for Systems Engineering (RUP-SE), JPL State
Analysis (SA), Dori Object Process Methodology (OPM) exist. A detailed summary
and explanation of these methods can be found in (Estefan 2007).

Modelling languages define the grammar, thus the nature of the elements and
their connections by means of which a model must be built to represent defined
contents intelligible. The language that is spoken, directly influences the way
how the technical system is seen. The dilemma of the description language for
interdisciplinary technical systems has long been known (for example, Panreck
2002). Domain-specific languages are generally not suitable to transmit content
beyond the domain boundaries or to integrate domain-external matters into the
model. Again and again, attempts have been made to develop general description
languages, which on the one hand reflect the system holistically and are intelligible
to another. This dilemma can also be seen for languages for MBSE. Exemplarily,
reference is made to work, which indeed succeed in depicting geometry elements by
using SysML (Eigner et al. 2014), but these are not readily to interpret as intuitive
as a CAD model. They therefore require to “oneself empathize” into the language,
to understand these.

For MBSE primary graphic-oriented languages are used, which not only define
the element types which may be used in the model but also the relationships that
are allowed between the element types. This is complemented by a notification
which allows the display of elements and relations in diagrams. In the past, each
of the developed method has often developed their own language, what leads to
a corresponding diversity. In this context, System Modeling Language (SysML),

2 Product and Systems Engineering/CA* Tool Chains 59

Unified Modeling Language (UML) and Integration Definition for Functional
Modeling (IDEFx) are particularly mentioned.

All graphic languages have in common that charts are available for both,
the structural view and the behavioural representation by which in the systemic
sense both, structural and behavioural models are constructed and interrelated. The
specific designations or aspects of hierarchy and points of view can, however, vary.

The tools for MBSE implement ultimately the language and modelling methods.
They support the engineer by the availability of a graphical interface, through
routines and libraries for creating and linking models and the automation to update
them. Commercial importance have Cameo System Modeling/MagicDraw (vendor:
NoMagic), Enterprise Architect (vendor: Sparx Systems), Raphsody (vendor: IBM),
Artisan Studio (vendor: Atego) or UModel (vendor: Altova).

The benefits of using MBSE-approaches for interdisciplinary development are
obvious. By provision of clear and accurate models can also interdisciplinary
aspects be summarized in a model approach. The emerging information models are
undoubtedly suitable to reflect and to summarize different perspectives on the CPS
in different hierarchical levels. This also results in the ability to detect dependencies
from both, a procedural, product-oriented as well as an organizational point of view
and to derive interfaces more precise.

Because of these advantages is seen in both, academic as well as industrial
environment, a considerable potential for development support by means of MBSE.
Nevertheless, MBSE approaches are not yet established very wide. Challenges arise
not only for the utilisation of the resulting information models and their integration
into the data and information flows respectively the IT infra-structure but also in the
creation of these models.

The models which are created on the basis of MBSE are not directly available for
simulations. Although today parameter-based models which then e.g. are carried out
by Matlab/Simulink (Sop Njindam 2015) can be derived from certain types of charts
(block diagrams) commercial data interfaces are currently not yet provided for
this. Now, there are some interesting approaches to integrate the MBSE-approaches
into the IT structures of companies, for example, the coupling of requirements
management with MBSE-approaches (e.g. Eigner et al. 2015a, b) with the objective
of repeat and further use of the data and information.

For a successful integration of MBSE models into the data and information flows,
and thus also in the IT structures of a company it is necessary that these reflect
the product and process structures. This in turn presupposes that the development
methods must be refined to such extent that typical development challenges and
circumstances are addressed. The methods mentioned are, similarly as shown for
the process models in this chapter, still relatively generic. For an effective use it
is necessary to substantiate them and to adapt based on the specific development
conditions. This not only requires an intensive analysis of the structures of the CPS
but also of the development processes, which are reflected in the MBSE modelling
methods and the models themselves.

In this context, also the question of the modelling depth for the technical systems
which should be imaged is posed. In the literature currently the trend, to use MBSE

60 K. Paetzold

approaches down to very low levels of detail, can be observed (e.g. Eigner et al.
2015a). However, the modelling depth depends not least on the model’s purpose,
especially if one is considering that the derivation of executable models out of
MBSE models is associated with considerable effort. In addition, in each domain
very powerful modelling and simulation tools are available, which on the one hand
can depict the subject-specific contexts very well and in detail, and on the other, can
be easily understood and interpreted by experts.

The strengths of MBSE lie in the possibility of an overall system view and the
associated possibility to recognize interrelationships and interdependencies in the
CPS and provide them for development processes. This aspect should therefore
define the modelling depth for MBSE models.

References

Albers, A., Behrendt, M., Schroeter, J., Ott, S., Klingler, S.: X-in-the-loop: a framework for
supporting central engineering activities and contracting complexity in product engineering
processes. In: ICED 2013: 13th international conference on engineering design, Seoul, South-
Korea (2013)

Andreasen, M.M.: Machine design methods based on a systematic appraoch. Dissertation, Lund
University, Sweden (1980)

Andreasen, M.M., Hein, L.: Integrated Product Development. IFS, Bedford (1987)

Birkhofer, H., Jansch, J., Kloberdanz, H.: An extensive and detailed view of the application of
design methods and methodology in industry. In: Samuel, A., Lew-is, W. (Hrsg.) Proceedings
of the ICED 2005, Melbourne (2005)

Blanchard, S.B., Fabrycky, J.W.: Systems Engineering and Analysis. Verlag Pearson New Interna-
tional Edition (2012)

Boehm, B.: Guidelines fiir Verifying and Validation Software Requirements and Design Specifi-
cations. In: Samet, P.A. (ed.) Euro IFIP 79. North-Holland Publishing Company, Amsterdam
(1979)

Boehm, B.W.: A spiral model of software development and enhancement. Computer 21, 61-72
(May 1988)

Chestnut, H.: Systems Engineering Methods. Wiley, New York (1967)

Delligatti, L.: SysML Distilled. Addison-Wesley (2013)

Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung — Denkablédufe, Methodeneinsatz,
Zusammenarbeit. 5. Auflage. Carl Hanser, Miinchen (2013)

Eigner, M., Dickkopf, T., Schulte, T., Schneider, M.: mecPro? — Entwurf einer Beschreibungssys-
tematik zur Entwicklung cybertronischer Systeme mit SysML. In: Schulze, S., Muggeo, C.
(eds.) Tag des Systems Engineering, S. 163—172. Hanser Verlag, Miinchen (2015a)

Eigner, M., Eickhoff, T., Ernst, J., Eiden, A.: Systemiibergreifendes Anderungsmanagement
zwischen PLM und ERP. In: PLM Jahrbuch 2016 — Ein Leitfaden fiir den PLM Markt, pp. 76—
79. Weka GmbH, Darmstadt (2015b)

Eigner, M., Gilz, T., Zafirov, R.: Neue Methoden, Prozesse und IT Losungen fiir die virtuelle
diszipliniibergreifende Produktentwicklung. In: Berns, K., Schindler, C., DreBler, K., Jorg,
B., Kalmar, R., Zolynski, G. (Hrsg.) Proceedings of the 2nd commercial vehicle technology
symposium (CVT 2012) (2012)

Eigner, M., Roubanov, D., Zafirov, R.: Modellbasierte Virtuelle Produktentwicklung. Springer,
Berlin (2014)

Eisner, H.: Essentials of Project and Systems Engineering Management, 3rd edn. Wiley, New York
(2008)

2 Product and Systems Engineering/CA* Tool Chains 61

Estefan, J.A.: Survey of Model-Based Systems Engineering (MBSE) methodologies. Technical
Report. California Institute of Technology (25 May 2007)

Forsber, K., Mooz, H.: The relationship of system engineering to the project cycle. Center for
systems managements. Proceedings of the first annual meeting of the National Council for
Systems Engineering and the 12th annual meeting of the American Society for Engineering
Management, Chattanooga (20-23 October 1991)

Freisleben, D., Schabacker, M.: Wissensbasierte Projektnavigation in der Produktentwicklung. In:
Proceedings of the 20th CAD-FEM Users’ Meeting 2002, International Conference on FEM-
Technology, BD. 2, S. 1-10 (2002)

Friedenthal, S.: Object oriented systems engineering. Process integration for 2000 and beyond:
systems engineering and software symposium, 3rd edn. Lockheed Martin Corporation, New
Orleans, LA (2014)

Gajski, D.D.: Construction of a large scale multiprocessor. Cedar Project, Laboratory for advanced
Supercomputers, Dept. of Computer Sciences, University of Illinois at Urbana-Chambaign
(Report/Department of Computer Sciences, No. UIUCDCS-R-83-1123) (1983)

Gausemeier, J., Michels, J.S., Orlik, L., Redenius, A.: Modellierung und Planung von Produk-
tentstehungsprozessen, In: VDI-Berichte Nr. 1819, S. 245-256. VDI-Verlag, Diisseldorf (2004)

Gericke, K., Blessing, L.: Comparisons of design methodologies and process models across
disciplines: a literature review. In: Culley, S.J., et al. (eds.) Design Processes, pp. 393-404.
Design Society, Glasgow (2011)

Gericke, K., Meifiner, M., Paetzold, K.: Understanding the context of product development.
Proceedings of the 19th international conference on engineering design 2013, 19-22. August
2013, Seoul, Korea (2013)

Gericke, K., Moser, H.: Adapting a design approach: a case study in a small space company. In:
Heisig, P., Clarkson, P.J., (eds.) Proceedings of 2nd international workshop on Modeling and
Management of Engineering Processes MMEP, Cambridge UK (2012)

Haberfellner, R., de Weck, O.L., Fricke, E., Vossner, S.: Systems Engineering: Grundlagen und
Anwendung. Orell Fiissli Verlage; 13. Auflage (2015)

Hales, C., Gooch, S.: Managing engineering design, 2nd edn. Springer, London (2004)

Hammer, M.: Seven insights about processes. In: Proceedings of the conference on strategic power
process ensuring survival creating competitive advantage. Boston, USA (2001)

Hitchins, D.K.: Systems Engineering: A 21st Century Systems Methodology. Wiley (2007)

Horvath, 1., Gerritsen, B.: Cyper-physical systems: concepts, technologies and implementation
principles. In: Proceedings of TMCE 2012, Karlsruhe (2012)

INCOSE: Technical operations. Systems engineering vision 2020, version 2.03. Seattle, WA:
International Council on Systems Engineering, Seattle, WA, INCOSE-TP-2004-004-02 (2007)

INCOSE: Systems engineering handbook, version 3.2; INCOSE-TP-2003-002-03.2 (2010)

Kline, S.J.: Innovation is not a linear process. In: Research management, Vol. 26, Nr. 2, S.36-45
1995

Kossiakoff, A., Sweet, W.N., Seymour, S.J., Biemer, S.M.: Systems Engineering Principles and
Practice, 2. Auflage. Wiley (2010)

Lee, E.: Cyper physical systems: Design challenges. In: 11th IEEE Symposium on Object Oriented
Real Time Distributed Computing (ISORC) (2008)

Lindemann, U.: Methodische Entwicklung technischer Produkte — Methoden flexibel und situa-
tionsgerecht anwenden, 2. Auflage. Springer, Berlin (2007)

Meifiner, M., Blessing, L.: Adapting a design process to a new set of standards — a case study
from the railway industry. In: Marjanovic, D. (ed.) 8th international design conference — design
2004. Design Society, Glasgow (2004)

Miller, G.A., Galanter, E., Pribram, K.H.: Strategien des Handelns — Pldne und Strukturen des
Verhaltens. Ernst Klett, Stuttgart (1973)

NASA Systems Engineering Handbook. NASA, SP-610S, Washington (1995)

NDIA, Wagner, Brockwell, Daniels, Loesh, Gosnell: NDIA Paper: use of a model-based approach
to minimize system development risk and time-to-field for new systems. Final Report of the
Model Based Engineering (MBE) Subcommittee NDIA, 10 Feb 2011 (2011)

62 K. Paetzold

Negele, H.: Systemtechnische Methodik zur ganzheitlichen Modellierung am Bei-spiel der
integrierten Produktentwicklung. Dissertation, TU Miinchen (1998)

Oliver, D.W., Kelliher, T.P., Keegan, J.G.: Engineering Complex Systems with Models and Objects.
McGraw-Hill (1997). ISBN:0-07-048188-1

Omiciuolo, M., Thiel, M., Forster, K.P., Paetzold, K., Foerstner, R.: General purpose modeling and
domain specific simulation: a framework for space mechanisms design. IEEE SysCon 2015,
Proceedings, Vancouver (2015)

Paetzold, K, Reitmeier, J.: Approaches for process attendant property validation of products. 1st
International Conference on Modeling and Management of Engineering Processes MMEP
2010, Cambridge (2010)

Pahl, G., Beitz, W.: Konstruktionslehre — Grundlagen erfolgreicher Produktent-wicklung. Metho-
den und Anwendung. 7. Auflage. Springer, Berlin (2007)

Panreck, K.: Rechnergestiitzte Modellbildung physikalisch-technischer Systeme, Fortschritt-
Berichte, VDI-Verlag, Diisseldorf (2002)

Parraguez, P.: A networked perspective on the engineering design process. PhD-Thesis, Techinical
University of Denmark (2015)

Patzak, G.: Systemtechnik — Planung komplexer innovativer Systeme, Grundlagen, Methoden,
Techniken. Springer, Berlin (1982)

Ponn, J., Lindemann, U. (eds.): Konzeptentwicklung und Gestaltung technischer Produkte.
Springer, Heidelberg (2011)

Pugh, S.: Total design: Integrated Methods for Successful Product Engineering. Addison-Wesley,
Wokingham, England (1991)

Rechtlin, E., Maier, M.W.: The Art of Systems Architecting. 2nd edn, CRC Press (2000)

Reitmeier, J.: Eigenschaftsorientierte Simulationsplanung - Ein Beitrag zur effizienten virtuellen
Absicherung der Produktfunktionalitit. Dissertation, UniBW Miinchen, Verlag Dr. Hut (2015).
ISBN:978-3843921626

Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. The
Addison-Wesley Object Technology Series. Addison-Wesley (1999)

Sangiovanni-Vincentelli, A., Yang, G., Shukla, S.K., Mathaikutty, S.A., Sztipanovits, J.: Metamod-
eling: an emerging representation paradigm for system-level design. University of California
Berkeley, IEEE Design & Test of Computers (2009)

Skalak, S.C., Kemser, H.-P., Ter-Minassian, N.: Defining a product development methodology with
concurrent engineering for small manufacturing companies. J. Eng. Des. 8(4), 305-328 (1997)

Sop Njindam, T.: A systemic approach to analyze failures of complex multidisciplinary systems
on the basis of their weak emergent behaviour. Dissertation, UniBW Miinchen, Verlag Dr. Hut
(2015)

Stachowiak, H.: Allgemeine Modelltheorie. Springer, Wien (1973)

Sztipanovits, J.: Composition of cyber-physical systems. In: 14th Annual IEEE Int’l. Conference
and Workshop on the engineering of Computer-Based Systems (ECBS ’07), pp. 3-6. IEEE
Computer Society, Washington (2007)

VDI 2206: Entwicklungsmethodik fiir mechatronische Systeme, Hrsg. Verein Deutscher Inge-
nieure, Ausg. Juni (2004)

VDI 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, Hrsg.
Verein Deutscher Ingenieure, Diisseldorf, Ausg. November (1986)

VDI 2422: Entwicklungsmethodik fiir Geréte mit Steuerung durch Mikroelektronik, Hrsg. Verein
Deutscher Ingenieure, Diisseldorf (1994)

Walker, R., Thomas, D.: A model of design representation and synthesis. 22nd design automation
conference, Las Vegas (1985)

Weber, C.: CPM/PDD — An extended theoretical approach to modeling products and product
development processes. In: Bley, H., Jansen, H., Krause, F.-L., Shpitalni, M. (eds.) Proceedings
of the German-Israeli symposium on advances in methods and systems for development of
products and processes. Fraunhofer, Stuttgart (2005)

Weilkins, T.: Systems Engineering mit SysML/UML: Modellierung, Analyse, Design, 2nd edn.
dpunkt Verlag (2008)

Chapter 3
Cyber-Physical Product-Service Systems

Stefan Wiesner and Klaus-Dieter Thoben

Abstract Cyber-Physical Production Systems (CPPS) foster new processes and
production methods for reducing “time to market”, waste and failures, as well as
improving quality and cost effectiveness. However, changes cannot be restricted to
the technological side. An increasing share of services is offered with these systems
in order to deliver new customized functions and other benefits. This trend has led
to the introduction of Product Service Systems (PSS) as a promising framework
describing the integrated development, realization and offering of specific product-
service bundles as a solution. The integration of both CPPS and PSS concepts is
becoming relevant for industry, because data monitoring, storage and processing
allow creating a higher service layer able to deliver production systems with new
“intelligent” behaviors and communicating capabilities. In this chapter, we use
the term Cyber-physical Product-Service Systems (CPSS) for such an integrated
approach. It gives a definition of CPS-based PSS and unveils the state-of-the-art
for both concepts with major research issues for their integration. The evolution
from products to solutions through servitization is shown, as well as the hardware,
software, and service elements of CPSS, requiring an alignment of CPPS and
service lifecycle models. Based on industrial use cases, this chapter also deals
with challenges for engineering CPS-based PSS in terms of complexity, end user
involvement with information exchange among stakeholders and linking views of
multiple disciplines (mechanical engineering, information systems, service science
etc.). This leads to implications for engineering processes, particularly cross-domain
Requirements Engineering and design but also servitized Business Models enabled
by CPS.

S. Wiesner (<)

BIBA—Bremer Institut fiir Produktion und Logistik GmbH at the University of Bremen,
Hochschulring 20, 28359, Bremen, Germany

e-mail: wie@biba.uni-bremen.de

K.-D. Thoben
BIBA—Bremer Institut fiir Produktion und Logistik GmbH at the University of Bremen,
Hochschulring 20, 28359, Bremen, Germany

Faculty of Production Engineering, University of Bremen, Badgasteiner Strafe 1, 28359, Bremen,
Germany
e-mail: tho@biba.uni-bremen.de

© Springer International Publishing AG 2017 63
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_3

mailto:wie@biba.uni-bremen.de
mailto:tho@biba.uni-bremen.de

64 S. Wiesner and K.-D. Thoben

Keywords Cyber-physical system ¢ Product-service system ¢ Extended product *
Industrie 4.0 ¢ Smart manufacturing

3.1 Introduction

Industrial companies are more and more facing complex customer needs, forcing
them to analyze the underlying problem and create individually tailored solutions.
In order to remain competitive on the market, such solutions still have to be based
on economy of scale principles (Reichwald et al. 2009), often involving globally
distributed partners (D’ Aveni et al. 2010). In this way, the value chain is becoming
an ecosystem of several partners with different competencies and able to share
different knowledge, acting and interacting in a dynamic environment (Hintsa and
Uronen 2012).

Furthermore, rapid technological developments have created possibilities for
innovative production systems, enabling new processes and methods reducing “time
to market” (Chang et al. 2013; Lee et al. 2010), waste and failures. Quality and
cost effectiveness is improved with solutions meeting the customers’ expectations
(Kossiakoff 2011). For example, Follett (2014) enlists as significant emerging
technologies a networked, intelligent world connected by Internet of Things (I0T),
involving robotics, the usage of additive fabrication and 3D printing, and promoting
the just-in-time production. The relevance of these technological advances has
been recognized by being implemented in several governmental programs like the
German “Industrie 4.0” paradigm (Kagermann et al. 2013) and the United States
Smart Manufacturing Leadership Coalition (SMLC 2011). Among other application
scenarios, these initiatives strongly advocate the implementation of cyber-physical
technology in manufacturing, creating Cyber-Physical Production Systems (CPPS)
(VDI/VDE 2014).

However, changes in production cannot be restricted to the technological side
alone. As manufacturers increasingly demand support for all phases of the produc-
tion system lifecycle, from development over assembly and distribution to operation
and decommission, a wide range of services is provided in addition in order
to deliver new customized functions and other benefits. Accordingly, production
system provider’s Business Models are also shifting from selling a system to the
provision of integrated manufacturing solutions. This trend has originally been
named as the “Servitization” of business (Vandermerwe and Rada 1988) and led
to the introduction of Product Service Systems (PSS) as a promising framework
describing the integrated development, realization and offering of specific product-
service bundles as a solution for the customer (Goedkoop 1999; Baines et al. 2007).
Offering of a PSS requires on the one hand additional competencies for the provision
of the associated services and on the other hand a better understanding of the
customer requirements. As the requirements now have implications on the whole
production system life-cycle, an integrated development of the system, services,
and the manufacturing processes is needed.

3 Cyber-Physical Product-Service Systems 65

The integration of production systems and PSS concepts is becoming relevant
for industry due to the diffusion of pervasive Information and Communication
Technologies (ICT), which have strongly reduced the cost for additional sensors and
cloud technologies, enabling data monitoring, storage and processing (Klocke et al.
2011). This allows creating a higher service layer able to deliver production systems
with new “intelligent” behaviors and communicating capabilities (i.e. monitoring
the manufacturing environment, interacting with the operator and other connected
devices, being adaptable to the user and customer needs) (Yang et al. 2009). These
developments represent new challenges for industrial companies in the design
process, creating individual CPPS solutions for the customer, but also offering these
solutions as a PSS with the appropriate services along the lifecycle. In this chapter,
we use the term Cyber-physical Product-Service Systems (CPSS) (Gorldt et al.
2016) for such an integrated approach.

In an exemplary CPSS scenario, a customer could order a pre-defined machining
capacity for his factory. He would work together with the CPSS provider to develop
such a service specific according to his needs, including the suppliers of hard-
and software components for the CPSS. External service providers could develop
new machining configurations specifically for the CPSS and deliver spare parts and
refurbished components according to customer requirements. The CPSS machining
solution would automatically integrate into the manufacturing environment and
process, while being monitored and maintained by the provider. In such a business
model, the customer could either pay a fixed price for the machining capacity, a
time-based rate for its availability or a fee for the actual usage of the machining and
additional services.

The main prerequisite for successful and cost-effective development of CPSS
offers is understanding their elements, life-cycle and the specific characteristics of
the engineering process. A major challenge in this process is the integration of the
product, service and ICT perspective, each having own models, methods and tools.
Process complexity is further increased by the higher number of stakeholders, the
coverage of the whole lifecycle (Blanchard 2004), and the dynamic of functionalities
expected by the customers, leading to evolutionary changes during engineering.
In this context, it is essential to identify and investigate the integrated phases of
the CPSS engineering process. This begins with the ideation of product-service
solutions with cyber-physical elements, continues with cross-domain Requirements
Engineering (RE) and solution design, leading to the servitized Business Models
(BM) through which they are provided to the customer.

In the further course of this chapter, first the research methodology used to
investigate the above issues and the research objectives are described. The elements
and lifecycle of Cyber-physical Product-Service Systems are derived from the
established definitions of CPS and PSS. Based on this, the challenges for the engi-
neering process are derived. Implications for ideation, Requirements Engineering
and Business Model development are discussed, illustrated by an industrial use case.
Finally, the results are summarized and the chapter is concluded.

66 S. Wiesner and K.-D. Thoben
3.2 Research Methodology and Objectives

For the combination of CPPS with PSS Business Models, it is important to establish
the main characteristics of the resulting CPSS and their specific engineering
challenges. This relates to a number of the fundamental research questions raised
in Chap. 1:

RQ C2: How shall several disciplines in product and production system engi-
neering be linked to support the engineering of flexible and self-adaptable CPPS?
This leads to our first research question for this chapter, concerning the necessary
link between production system engineering and service engineering to create self-
adaptable CPPS that can be flexibly offered under a PSS concept, to be addressed in
Sect. 3.3:

1. What is the potential of linking CPPS with the service perspective; i.e. what does
it mean to apply a CPPS as the basis for a PSS offer?

RO M2 (b): How can model-based methodologies for the application of CPPS
by service providers or agents support information creation and processing in the
different lifecycle phases of a CPPS? This serves as starting point for our second
research question for this chapter, dealing with the interaction points of service
lifecycle and CPPS lifecycle phases, to be addressed in Sect. 3.4:

2. What are the elements and phases of CPPS and PSS lifecycles and how can their
interaction be supported by a methodology towards a CPSS model?

RQ I2: Which methods and technologies support assuring the required infor-
mation quality for exchange of engineering project data and multi-disciplinary
knowledge integration? This is the basis for the third research question for this
chapter, which deals with the necessary support for exchanging requirements and
business knowledge among the involved disciplines, to be addressed in Sect. 3.5:

3. Which are the specific challenges and support needs for the information exchange
in the engineering process resulting from integrated CPSS, particularly for
Requirements Engineering and Business Model development?

In order to address these points, our methodological approach is based on an
exploratory approach, combining a literature review and analysis of industrial use
cases. The literature review has been conducted by analyzing scientific papers
from multiple disciplines (systems engineering, information technology, business
research), as CPS and PSS are a cross-domain research topic. For practical reasons,
the search was limited to books, journal and conference papers in English and
German language. As several expressions are used in literature to describe the
concepts, we searched for literature on CPS, PSS, servitization, RE and BM. The
search results were checked for relevance and redundancy by assessing the abstracts.
Based on this, papers were selected for in-depth analysis of the content. Regarding
the first research question, the analysis concentrated on the existing fundamental
concepts for CPS, PSS, and first attempts for servitization of production systems.

http://dx.doi.org/10.1007/978-3-319-56345-9_1

3 Cyber-Physical Product-Service Systems 67

For the second research question, the focus was shifted towards product and
service lifecycle management approaches and integration attempts. Concerning the
third research question, existing RE and BM approaches were analysed for their
applicability on CPSS and open issues were extracted.

The work with the industrial use cases for CPSS had a different methodical
approach. In order to compare the results of the literature review with real attempts
to engineer CPSS, the authors were able to work together with companies devel-
oping such a solution in the frame of different research projects (PSYMBIOSYS
2014; Wiesner et al. 2014a). The researchers have been involved in the specification
and development of the CPSS scenarios applying action research (Sein et al. 2011).
With regards to the research question it could be studied, (1) how the responsible
parties for production system and service engineering collaborated and where
the weak points were, (2) how product and service lifecycles were managed and
which methodologies were used, and (3) how information exchange in RE and BM
development was supported and what were the drawbacks.

Evaluation of research results has been conducted in an iterative way. Initially,
it was verified if the challenges for CPSS engineering faced by the industrial use
cases are aligned with the challenges described in literature. Next, approaches found
in literature to overcome the identified challenges were applied in the use cases
and assessed for their usefulness. The outcomes were again validated during the
literature review, leading to a consolidated result.

3.3 Elements and Definition of Cyber-Physical
Product-Service Systems

This section identifies the specific characteristics of Cyber-Physical Systems and
Product Service Systems and integrates them to the concept of Cyber-physical
Product-Service Systems.

3.3.1 Cyber-Physical Systems

CPS integrate physical capabilities with Information and Communication Tech-
nology (ICT) and offer new ways of human—machine interaction using advanced
sensors and actuators (see Fig. 3.1). They require the collaboration of different
disciplines such as mechanical engineering, electrical engineering, and computer
science for their realization. Additionally, for reaching the full potential of CPS,
the system will also comprise the logistics and management processes, as well
as internet services receiving, processing and analyzing data from the sensors
and controlling the actuators, connected by digital networks and multi-modal
human-machine interfaces. As such, CPS are open socio-technical systems with

68 S. Wiesner and K.-D. Thoben

Fig. 3.1 Cyber-Physical
System Cyber-Physical-System

[Processor]

® ® ¥ v

[Sensor(s)] [Communicator] [Actuator(s)

observes I affects

Environment

a functionality far exceeding controlled embedded systems (Geisberger and Broy
2012).

Several characteristics can be identified that describe CPS and distinguish them
from other complex systems. The eponymous aspect of CPS is merging the physical
and virtual world. CPS involve a multitude of parallel and interlinked sensors,
computers, and machines, which collect and interpret data to decide on this basis
and control real world physical processes. Thus, systems engineering needs to
integrate processes and physical elements with information technology (Rajkumar
etal. 2010). Secondly, CPS have dynamic system borders. Depending on application
and task, different CPS are arranged into a system of systems for a limited time.
Consequently, CPS have to be able to actively configure services and networks with
other systems or part of systems, which may be unknown in the beginning, and
provide new and composite components and services in a controlled way (Colombo
et al. 2013). Furthermore, an important characteristic of CPS is their ability to adapt
to environmental changes and application requirements. This requires continuous
monitoring and assessment of environmental and application data (Wan and Alagar
2014). Additionally, in most cases, there will be no central control of a CPS.
Decisions are made locally based on an assessment of the situation and lead to
a cooperative learning process (Zhou et al. 2013). Finally, CPS have to interact
with humans also on a physical level, which requires multi-modal control interfaces,
recognition, and interpretation of human behavior and interactive decision making
between the system and single persons or groups (Schirner et al. 2013).

3.3.2 Product-Service Systems

For a long time, manufacturers have considered the monetary profit from selling
products as their main revenue stream. Services, if any, have been provided free
(e.g. usage advice) or for a one-time fee (e.g. maintenance) and were strictly
product focused. However, within the last decades product users increasingly
demand holistic solutions for their individual problems, and their buying decision

3 Cyber-Physical Product-Service Systems 69

(a) Physical (b) Product + (c) Product + (d) Product
Product Functionality Availability Results

o-y-oh-i)

Fig. 3.2 Servitization of products—the Extended Product concept

is driven the expected benefits from using the solution rather than sales price
only (Vandermerwe and Rada 1988). As an immediate consequence, especially the
industry for complex products has started to deliver product-service bundles (see
Fig. 3.2).

The Servitization process is a fundamental mean for manufacturing companies
to find new business opportunities and involve new customer segments, increasing
their market share (Wiesner et al. 2014a; Spohrer and Maglio 2010). Figure 3.2
illustrates this phenomenon from a customer perspective on the solution offered.
In case (a), the physical product comprises just a tangible offer and its shell (e.g.
a production system plus accessories) to be bought by the customer. Case (b)
describes a scenario, where the functionality of the tangible product is supported
by a service layer (maintenance, spare part delivery etc.). In this case, the role
of the tangible product is still dominating. Services ensuring functionality can be
ordered in addition to the original product. In case (c), the availability of the product
for its purpose is guaranteed by the provider. While the tangible product might
still be sold separately, there has to be some kind of service level agreement (e.g.
defining the availability ratio of the production system). Of course, this requires pre-
active maintenance or other measures to minimize product failure, which could be
supported by the monitoring and communication capabilities of a CPS. Finally, case
(d) is sharply decoupling the tangible product from the results of its application. The
customer purchases services that are bundled for the solution of his specific problem
(e.g. a specific manufacturing capacity). The tangible product, if still required, will
not be sold but just used to provide the services. Payment models may include pay-
per-use, pay-for-performance etc. This as well relies on the ability of the solution
provider to monitor usage and dynamically reconfigure the product, both of which
could be supported by CPS.

The PSS concept focuses on the bundling of products and services as a mix
of tangible and intangible elements designed and combined to increase the value
for customers (Goedkoop 1999; Meier et al. 2010). From the economic viewpoint,
PSSs are able to create new market potentials and higher profit margins, and can
contribute to higher productivity by means of reducing investment costs along the
lifetime as well as reducing operating costs for the final users (Baines et al. 2007).
Furthermore, PSS can increase resource productivity and closed-loop manufacturing

70 S. Wiesner and K.-D. Thoben

(McAloone et al. 2010), thanks to the service functionalities delivered. Value
creations is realized through the extension of the current business network, involving
different stakeholders having the knowledge and skills required to design, develop
and deliver an integrated PSS value proposition.

Despite several methodologies having been proposed in literature to support
industrial companies to design a PSS along its entire lifecycle, some of them are
very theoretical and hard to implement in practice, others are very specific and
have a limited applicability range (Garetti et al. 2012). Currently, integrating several
existing methodologies to design a new PSS solution is being studied (Marilungo
et al. 2015).

3.3.3 Cyber-Physical Product-Service Systems

In order to provide a holistic solution over the full system lifecycle to a customer,
both the technological as well as the economic perspective have to be considered
in a very early phase. The combination of CPPS functionalities with PSS business
models has the potential to enable new and innovative production system offers.
Picking up the example from Sect. 3.1, a manufacturer might require machining
a small number of individual parts on an expensive special machine tool. Due to
the high investment required, the manufacturer will not buy such a tool for his
production system. At the same time, a production order at a third party might
not make sense due to the small lot size or delivery time. CPS technology could
now enable to share such a special machine tool among different manufacturers,
dynamically integrating itself into the different production systems. Payment for
such a shared resource would be based on a PSS model [see Fig. 3.2, case (d)], where
the manufacturer would pay for the machining results, based on usage monitoring by
the CPPS. Such an integration of product and service through CPS is our definition
of a Cyber-physical Product-Service System (CPSS) (Gorldt et al. 2016).

In principle, the relation between the CPS and the PSS concept in a CPSS can
be seen as interdependent, or symbiotic. When looking from a CPS perspective,
the physical and ICT domains are complemented with service engineering for the
development of the solution. This increases the number of stakeholders and adds
additional domain-specific models, methods and tools to the development process.
From the PSS perspective, the new cyber-physical functionalities are enablers of
additional innovative services and Business Models (Hehenberger et al. 2016). As
such, the extended technical opportunities have to be taken into account when
ideating new services that enhance customer benefit. Furthermore, the possibility
to measure usage and performance of the CPPS supports Business Models beyond
a one-time sale, guaranteeing availability of the system or pay-per-use models.

3 Cyber-Physical Product-Service Systems 71

3rd Part;\

Level Se"Vices

wigh

4

& / Commu- ", Customer
Ry f A
CPSS S 4 nicator ., Q
o)‘zl/\ it G
o AN -
L L B N
N <,
A &
VL t— S :) S p
. S . Intelligent / «— b
3rd Party \ _Product / "
‘ Suppliers
CPs Sensors P ’ Actuators
i £
"._.vf.r
/ Data Processing \
Services
3rd Party lvc,"_":.r Services Service
Services Providers

Fig. 3.3 The CPSS concept

The above considerations can be summarized to a first illustration of the CPSS
concept. The core is an intelligent product, similar to the processor hardware of the
CPS. Here, it is however not reduced to its computational capabilities, but comprises
all the tangible aspects of the offer, such as design and haptics. Similarly, it is
connected to sensors, actuators and communicators, which enable its interaction
with its environment (see Fig. 3.3).

In the CPSS concept, the core components are used to offer “basic services” such
as monitoring, control and data processing. This internal structure is obscured to the
outside world by a halo of high-level and non-ICT services. In the halo, the basic
services are aggregated with the non-ICT services to fulfill certain functionalities
and tasks. These high level services are not hard-wired into the CPSS and can
change dynamically to new demands. Through this service halo, the CPSS is able
to collaborate with different entities to achieve its intended aim. Those entities can
be other CPSS, CPS just providing basic services, or even third party services not
directly developed for the system.

In the case of the special machine tool CPSS, the high level service for the
customer would be the offered possibility to machine a varying amount of parts
in a specific way. This can include non-ICT services, like transport of the parts,
which is provided by a logistic service provider. Another element could be a third
party service that optimizes part design for machining. Through communication
with other CPS, e.g. in the production systems of the customers, the CPSS
could automatically schedule orders according to various criteria. Finally, wear of
components could be early detected through monitoring and trigger on-time spare
part replacement by component suppliers. Customers can pay for access to these
services and use them for their benefit. They can also work together with the CPSS
provider to re-develop services specific to their needs. The same is true for suppliers

72 S. Wiesner and K.-D. Thoben

of hard- and software. Finally, external service providers develop new services
specifically for the CPSS, or use standardized interfaces to connect existing services.

3.4 Challenges for Integrating CPPS and PSS LifeCycles

Servitized Business Models extend the responsibility of the PSS provider to the
whole life-cycle of the solution (Aurich et al. 2010). Moreover, Product Lifecycle
Management (PLM) and Service Life-cycle Management (SLM) must be aligned
to be able to create an integrated product-service offer for the customer. For CPPS
offered as PSS, this means to understand the interaction between the elements of the
production system lifecycle and the service lifecycle.

3.4.1 Product LifeCycle Management

PLM covers the whole lifecycle of a product from the first idea and concept to
recycling and disposal. There are many different lifecycle models found in literature.
However, the majority is based on three main lifecycle phases, Beginning of Life
(BoL), Middle of Life (MoL), and End of Life (EoL) (Stark 2011), as shown in
Fig. 3.4.

A similar three-phased structure is used in Chap. 4 of this book for a life-cycle
oriented information integration approach for CPPS. However, for such complex
products BoL, MoL and Eol are not connected by a linear information flow, but the
three phases are arranged orthogonally. Pieces of information from every phase can
be linked to information in any other phase, creating a network of microservices
between the involved software tools. Thus, it addresses mainly ICT services and
would have to be extended to support PSS offers. PLM concepts need to support
multi-disciplinary development of products hardware and software, as well as
methods and system functionalities for cross-domain engineering collaboration.

\ A \

/ Product BolL Y Product Mol Y Product EolL \

Imagin> Deﬁne> Realise> Use> Support> Retire> Dispos>

Fig. 3.4 Phases of Product Lifecycle Management, according to (Stark 2011)

http://dx.doi.org/10.1007/978-3-319-56345-9_4

3 Cyber-Physical Product-Service Systems 73

, | . |)

[BOLCreation ! MOL and Engineering I Operations and EOL

Service Service Service Service Service Service Service
Ideation Requir. Design Implem Testing Deliver Evolut.

Opportunity Market Business HR / Organi. Simulation Marketing & Re-design &
Recognition Requirement Design Implement Virtual Lab Value Prop. Re-engineer.
[EES Technical Technical IT System Business Technical Re-thinking
Generation Requirement Design Implement Assessment Deployment Re-purpose
Ideas Partners Governance Phys. Means Technical Portfolio End of Life
Selection Selection Design Implement Assessment Governance Decommiss.

Fig. 3.5 Process model of Service Lifecycle Management (Freitag et al. 2013)

3.4.2 Service LifeCycle Management

SLM is a part of Service Science, Management and Engineering (SSME), which is
a young field of research that addresses the open questions and challenges coming
from the servitization process (Spohrer and Maglio 2010). Nevertheless there are
already some SLM approaches, for instances from Freitag et al. (2013). In this
case, the three main phases of the Service Lifecycle are service creation, service
engineering and service operations management, which are further divided into
several elements (see Fig. 3.5).

Service creation is the phase at the beginning of the Service Lifecycle Manage-
ment. It mainly consists of two pillars: provision of conditions and ideation. The
influences providing opportunities may be changing customer needs, new emerging
technologies, transformations of the company environment, and other causes or
drivers of change. For service ideation, they serve as triggers or stimuli. When a
selection of service ideas is handed over to the first phase of service engineering, it
comes to a structured evaluation of the service ideas based on market and technical
requirements.

The service development process is a waterfall model for the development
of new services (Spohrer and Maglio 2010). In this framework, the engineering
phase consists of four elements: service requirements, service design, service
implementation and service testing. In the requirements analysis the internal and
external requirements are collected. The second element of the service development
process is called service design, in which the new service is defined and described.
In the third step, the implementation of the service also includes the operative
realization of the described services concepts. Furthermore, the involved employees

74 S. Wiesner and K.-D. Thoben

need to be trained as planned. The service should be tested by customers, by using
a simulation tool, or at least by a checklist.

The first task in service operations is to acquire customers, respectively service
projects. After the acquisitions, the service needs to be delivered to the customers.
This happens within “service delivery”. The support activities for service operations
are also important, here for instances to evolve the service portfolio and to control
the service operations.

3.4.3 Integration of PLM and SLM

Based on the targeted integrated design of PSS, PLM and SLM must also be
integrated to provide the required interactions between product and service on
an operational level. This is currently a focus of research (Garetti et al. 2012;
Peruzzini et al. 2014). Meier and Uhlmann (2012) derive a PSS lifecycle directly
from a product and service lifecycle. Relevant phases are planning, development,
implementation, operation and dissolution, as shown in Fig. 3.6.

During the planning phase, customer needs and goals are determined for
initiating the overall ideation process. Ideas for PSS solutions are identified, selected
and specified to meet the customer needs. The resulting drafts are used for PSS
development. In addition, first aspects of the Business Model are discussed.

The second phase is the development of the PSS. Stakeholder requirements are
elicited and conceptual solutions are generated with adequate functionalities. The

Product Lifecycle(1SO 9000)

Plannin Developm. Manufact. Use & Recycling /
g & Design & Assembly Support Disposal
t $ t

1 v
Imple.men' Dissolution
tation

Fig. 3.6 PSS lifecycle according to (Meier and Uhlmann 2012)

Idea generation Require- Desien
& evaluation ments e

Service Lifecycle (DIN-FB 75)

3 Cyber-Physical Product-Service Systems 75

product, service and ICT components are then configured and the responsibilities
and resources between customers and suppliers are distributed in accordance with
the concept. The result of the development phase represents a system model.

The implementation phase represents the third phase of the lifecycle. The tan-
gible components are produced and integrated with ICT. In addition, the logistical
processes for the delivery of products and services are designed. For future service
provision, resource planning is carried out. Finally, the phase is completed with the
commissioning of the PSS.

In the operating phase, the use of the PSS is in the foreground. Here service
shares of the PSS are provided and dynamic adjustments to the PSS can occur.
Therefore, knowledge from this phase is also relevant for PSS design. The aim is
that a continuous improvement process can be ensured. A key component of the
phase is maintenance. The last lifecycle phase represents the dissolution, in which
the contractual relationship between client and provider is terminated. Tangible
components of the PSS can be recycled or remanufactured accordingly.

However, there are some aspects of the model that can be criticized, especially in
relation to CPSS. On the one hand, it is still depicting the lifecycles in a linear
fashion, not showing the complex information exchange between the lifecycle
phases. On the other hand, it aligns one product lifecycle with one service lifecycle,
instead of recognizing the possibility of several service lifecycles being attached
to different product lifecycle phases. The resulting engineering challenges are
discussed in the next section.

3.4.4 Engineering Challenges

CPSS require the integration of a large number of different cyber, physical and
service components. Stakeholders are typically separated spatially and organiza-
tionally and stem from multiple disciplines with own formalisms and tools. Various
Authors (Baheti and Gill 2011; Baines et al. 2007) emphasize the need for theories
and tools to design, analyze and verify the components at various levels, understand
the interactions between systems and ensure safety and performance with minimal
cost. Several challenges for engineering CPSS are identified below, which have to
be addressed by suitable approaches for specific problem areas.

Products and services require different competencies, methods and tools to
efficiently manage and perform the activities during their lifecycle. Usually pro-
duction system providers have well-defined product development processes, but
they lack sufficiently in structured service development processes. However, both
manufacturing as well as service provision must be brought together and delivered
in an appropriate way to offer an attractive product-service bundle to the customer
(Spath and Demuf} 2006). The basic assumption of many PLM approaches is that
services and their lifecycles are aligned to the product. However, in many cases there
is a strong need to have bi-directional coordination and interaction between PLM
and SLM in a systematic way. Despite several methodologies have been proposed in
literature to support industrial companies to integratively design a PSS (Garetti et al.

76 S. Wiesner and K.-D. Thoben

2012), some of them are very theoretical and hard to implement in practice, others
are very specific and have a limited applicability range. Appropriate approaches
and tools for supporting the development of PSS in an efficient way are missing
(Marilungo et al. 2015). Production system providers could use the ICT capabilities
of CPS to combine Product Lifecycle Management (PLM) with Service Lifecycle
Management (SLM).

Many times, design weaknesses are only identified in manufacturing or operation
of production systems. Information exchange between these phases has to be
established to improve design iteratively. For CPSS, an approach is necessary that
also includes feedback from the services during the lifecycle of the product, starting
from engineering and ending at disposal. The current practice of a product-service
development is still linear and hierarchical, meaning that the product is developed
and manufactured before the services, hence being incapable of incorporating
service requirements and constraints from all the stakeholders involved. CPSS
providers must be able to identify ubiquitously the requirements and constraints
arising from the services related to the product during the engineering phase, today
still an ongoing challenge (Annamalai Vasantha et al. 2012). A collaborative envi-
ronment for CPSS design, enabling communication with manufacturing, but also
integrating knowledge form cross-disciplinary feedback loops, including customers
is required. For CPPS, this means joint exploitation of (cyber-physical) data along
the entire product-service lifecycle (not only from production system operation) to
optimize the CPSS offering.

Current production systems are complex distributed systems that connect and
coordinate intelligent machineries, sensors, actuators, control systems and manu-
facturing and business applications (Vyatkin 2013). Because of the still common
application of sequential development approaches, many different views on the
same system are generated along the lifecycle. How can these views, especially
for the “real” production system and its “digital” representation, be reliably
consolidated along the whole lifecycle? Multi-directional interoperability of the
digital images of the same CPPS along every single phase of the lifecycle would
benefit the pinpoint development of integrated services.

The design of CPSS requires knowledge that is usually scattered among different
persons, departments or even organizations. Manufacturers are working closely with
service providers, suppliers and customers to optimize designs of new product-
service bundles before they are realized (Romero et al. 2012). To this end, both
knowledge from the product side as well as the service side must be shared in an
appropriate way, combined and utilized, in order to create an attractive CPSS for the
customer. However, only about 4% of organizational knowledge is formalized (Bell
2006). Informal and unstructured knowledge, consisting of individual posts and
discussions, ideas, comments and other interactions is difficult to codify and share,
as it requires individual interaction to transfer. For production systems, knowledge
sharing is mainly focused on re-using service knowledge to improve the product
or services. The synthesis of knowledge across different domains of application,
including methods of requirements analysis and modelling is needed (Broy et al.
2012).

3 Cyber-Physical Product-Service Systems 77

Table 3.1 Problem areas and engineering challenges for CPSS

Problem area Challenges
Integration of tangible and intangible * Alignment of product and service development
components * Structuring the service engineering process

* Integration of PLM and SLM
Horizontal and vertical information » Exchange of key information between lifecycle
sharing phases

* Cross-disciplinary feedback loops
Virtual representation of CPSS * Creating different views on the same CPSS

* Alignment of digital representations along the
CPSS life-cycle

Knowledge management * Management of explicit product-service
knowledge
* Capturing tacit product-service knowledge and
stakeholder sentiment

Business Model innovation * Development and classification of servitized
Business Models
¢ Assessment and mediation of effects on current
Business Model

From the economic viewpoint, PSS are able to create new market potentials
and higher profit margins, and can contribute to higher productivity by means
of reducing investment costs along the lifetime as well as reducing operating
costs for the final users (Baines et al. 2007). However, the transition to PSS
might have an impact on existing Business Models. Generally, the PSS could be
competitive, complementary or neutral to the existing business. These effects can
occur externally on the market, e.g. if the PSS and the existing products compete for
the same customer budgets (“‘cannibalization” effects), or internally if they apply the
same resources, a situation that could produce conflicts or synergies. For production
systems, services are fundamentally aligned to the physical product that is usually
part of the existing business, so they should not be conflicting but supportive.
However, if CPPS are used to enable use-oriented or even result-oriented solutions
where the production system is no longer sold, this could lead to a decrease of sales
in the existing business.

Table 3.1 above summarizes the engineering challenges for CPSS and classifies
them into five problem areas:

3.5 Implications for the Engineering Process

This section describes the implications for the engineering process coming from
the specific characteristics of CPSS. Two approaches are presented, which are
addressing some of the challenges identified in Sect. 3.4. Cross-domain Require-
ments Engineering and design aims to capture the needs on tangible and intangible

78 S. Wiesner and K.-D. Thoben

components and integrate them into a holistic CPSS design. Servitized Business
Models enabled by CPS tries to classify CPSS innovation and its impact on the
current Business Model.

3.5.1 Cross-Domain Requirements Engineering and Design

According to the challenges identified in the previous section, it is necessary to align
the development of the tangible and intangible components of a CPSS. One of the
earliest activities in both the product and the service lifecycle is establishing the
requirements of the stakeholders towards the targeted system. A weak definition of
requirements can slow down CPSS development and induce unnecessary costs for
design changes (Boehm and Basili 2001). If incorrect requirements are identified,
an unsuitable system architecture and implementation can result and the system may
have missing or wrong functionalities.

Current approaches for Requirements Engineering do not provide full support for
integrated CPSS development. The RE methodologies of the product, service and
software disciplines focus on their respective domain. E.g., elicitation procedures in
the product domain focus on technical requirements and methods such as checklist
are not well suited for service requirements. Service engineering methodologies
are not detailed enough to be used as the basis for CPSS development. Within
software engineering methodologies, the representation of service requirements is
not possible with the provided procedures and modeling techniques. First integrated
approaches for PSS state the necessity of cross-domain knowledge, interfaces
and interdisciplinary requirements (Berkovich et al. 2011). However, they are too
vague and do not provide the procedures necessary in order to realize a PSS. The
procedures are not explained in detail or similarly to service engineering, procedures
of other domains are referenced (Annamalai Vasantha et al. 2012). In the following,
suitable approaches to support the various RE activities for CPSS are presented.

In contrast to the design of complex, distributed systems such as CPPS, the addi-
tional inclusion of the service and business perspective lead to further clarification
needs. The customer, production system manufacturer and service provider have
different perceptions of requirements terminology and wording. In addition, for
such complex systems the customer might not have a clear idea on how the product-
service solution will look like (Gausepohl 2008). An approach to reduce the risk of
capturing false requirements for the CPSS, the storytelling method can be applied
for requirements elicitation (Vink 2015). It allows the participants to develop a use
case story commonly (group storytelling), including the required services, and thus
discuss the different perspectives as it is carried out. A narrative story telling helps
to put the requirement in a specific context clarifying to the reader how they are to
be understood.

In order to analyze the stories and extract an unambiguous, consistent and
complete set of requirements for a CPSS, different modeling techniques can be
applied. An older method that helps not only in identifying the human stakeholders,

3 Cyber-Physical Product-Service Systems 79

but also system restrictions and other mechanisms (including machinery, software
etc.) is IDEFO0. The storytelling can be combined with the IDEFQ generation in
a workshop setting, in which the requirements engineer could establish AS-IS and
TO-BE scenarios. In parallel, the process modelling can be done and all stakeholders
and restrictions are captured.

To create a requirements specification that provides the developers with a com-
plete description of the functionality of the CPSS, information on the connections
between the components has to be recorded to serve as reference for requirements
dependencies later. A change of a requirement on a specific service can lead
to a number of changes in hard- and software of the system. Documentation
has to establish the link from the single requirement towards the whole CPSS
project, including information on the degree and moment of fulfilment. Methods
for documentation of business requirements can be Business Process Model and
Notation (BPMN) or data flow diagrams, showing the difference between AS-IS
and TO-BE business processes. Describing the targeted CPSS behavior in terms of
conditions or capabilities of the envisaged solution can be done through developing
system models describing functionality and then documenting system requirements
that capture the vision of the customer in technical terms. These models can be
documented in SysML, among other modelling languages. First approaches of
automatic transformation between business and functional notation are documented
in literature (Wiesner et al. 2014a). Transformation between different domain
specific models can be supported using methods such as semantic mediation, which
enable conversion between model using ontologies (Hribernik et al. 2010). In this
way, domain barriers can be greatly reduced or fully removed.

The completeness and correctness of the determined requirements is checked
during requirements validation to ensure that the documented requirements accu-
rately express the stakeholder’s needs (Hull et al. 2005). Serious gaming can be used
as a method to validate the requirements (Ribeiro et al. 2014). Using a simulation
based game, mirroring the AS-IS and TO-BE scenarios of the use case, the player
can create different CPSS configurations and see the outcome. This provides a basis
for assessing the relevance and the importance of specific requirements and can be
used to validate the requirements in a playful way.

Requirements traceability enables both assessing the effect of changes of stake-
holder requirements to CPSS development as well as to check if every CPSS
component is linked to a specific stakeholder requirement. In order to understand
how product, service and business requirements and the CPSS design are connected
and transformed into each other, lower-level requirements have to be linked with
the higher-level requirements they originate from, so that each requirement can
be traced to its information source (Wynn et al. 2011). The progress of PSS
development can be monitored and the impact of changed requirement tested in
this way. In addition, for dynamic systems like CPSS, requirements may change
constantly. Changing environment or stakeholders induce changes all along the
life-cycle and impact the development process (Lim and Finkelstein 2011). To
ensure that such modified requirement are fed back into PSS development, a change
management process has to be established (Huang et al. 2011).

80 S. Wiesner and K.-D. Thoben

Finally, it has to be evaluated if the CPSS complies with the requirements
specification or not. This confirmation that the PSS fully satisfies the documented
requirements is conducted in requirements qualification. Deviations from require-
ments can be detected e.g. by requirement reviews, design inspections, component
tests and trials, which has to start early in order to avoid late design changes and
rebuilds (Hull et al. 2005). This is done by first testing the individual components
functions, then the integrated CPSS and finally the fulfilment of stakeholder
requirements.

3.5.2 Servitized Business Models Enabled by CPS

A Business Model (BM) describes the rationale of how an organization creates,
delivers, and captures value (Osterwalder and Pigneur 2013). According to this
definition, BMs in the manufacturing industry have focused on the fabrication or
assembly of more or less customized products and have generated revenue from
their sales. With the introduction of CPPS, the provider has to support more and
more all phases of the production system lifecycle. In particular, this includes more
value added service propositions like training, system integration and consulting.
With CPSS, manufacturing becomes even no longer the differentiating process.

CPS technology can be utilized for service provision and to develop closer
relationships to the customer. A manufacturing enterprise that changes from the
fabrication of products to offering CPSS and transforms its supplier base into an
ecosystem of network partners will have to analyze and adapt the elements in all
building blocks to create a new and competitive BM. Another main challenge is
to align the new and unknown BM with the existing BM to avoid cannibalization.
Wiesner et al. (2014b) have developed an eight step approach to develop servitized
BMs (see Fig. 3.7).

During the first phase of the methodology, the current strategy and BM of
the company are analyzed in detail. The analysis of the strategy based on Porter
(2008) gives an indication if the company’s fundamental strategy is targeting cost
leadership, differentiation or selling niche products. A competitor’s analysis makes
potentials and market boundaries visible (Bergen and Peteraf 2002). If the company
is aware of its current strategy, it can be mapped out using the Strategy Canvas
as an analytical tool (Mauborgne and Kim 2005). It describes strategic factors that
are relevant for the competition within an industry. The current BM is analyzed in
the next step and is mapped out on the Business Model Canvas (Osterwalder and
Pigneur 2013) (see Fig. 3.8). If the manufacturer is not able to identify its own
strategy, it is necessary to analyze the current BM of the company first and then
extracting the strategic factors out of the BM and create a Strategy Canvas.

Phase two of the methodology starts with recognizing macro-economic factors
that can pose opportunities or threats for the BM of the manufacturer. Therefore,
a simplified STEEP-Analysis (Fleisher and Bensoussan 2015) is used to capture
future trends that are likely to affect the business. In order to elaborate how

3 Cyber-Physical Product-Service Systems

1 Porter Strategy
: Framework
2
2 Competitors
: Analysis -
=
— Yes No 2
3. Z
\ \Z
Strategy Canvas | o | Business Model
= =
4. | Business Model | S Servitization & 3 Canvas
& g A
Canvas Collaboration Strategy Canvas
|
5 STEEP-Analysis
: Six-Paths-Framework

Find &
Create

W

6 Four Actions Framework
) Strategy Canvas -
1
i 2
7. Business Model Canvas) No % E
. 5 E
8 Evaluation of [=]
: practicability
Yes
\%
(Implementation)

Fig. 3.7 Steps of the approach for Business Model development

Customer

Value Relationships

proposition

Key Activities rd
= Customer
Key : _ _‘] Segments
Partners / 21 ’ (""‘*3\ \
,- 4 _f’if»e;
Ke — Chahnels
Resources

Cost Structure Revenue Streams

Fig. 3.8 The Business Model Canvas (Osterwalder and Pigneur 2013)

81

82 S. Wiesner and K.-D. Thoben

to maximize opportunities and minimize threats for a new BM, the Six Paths
Framework is applied. Using poster representations of the six paths, company
representatives discuss in a creative process how to change the business according to
the STEEP factors. Is a shift into another strategic group or even into an alternative
industry possible? Can a new group of buyers be created? What are complementary
product and service offerings? Are buyers targeted on a functional or emotional
level? Can external trends be shaped over time? To create a new Strategy Canvas,
the Four Actions Framework is used as tool to reconstruct strategic elements and to
develop a new value curve in the Strategy Canvas (Mauborgne and Kim 2005).

In phase three, a new strategy and BM are developed based on the superior
vision of servitization and collaboration. Out of the new Strategy Canvas, a new
Business Model Canvas is created. The new BM is now visualized and becomes
comprehensible. The creation of the new strategy and the BM is interrelated and
is understood as an iterative process. Finally, the impact of the new BM on the
company business is evaluated.

3.6 Industrial Use Case

The case company is a Spanish SME that manufactures and assembles high added-
value machine tools. It evolved from a small mechanic business that produced pieces
for other machine-tools manufacturers to offering production systems worldwide.
The high maintenance costs during guarantee period of the systems sold abroad
and the growing competition coming from low-cost manufacturing countries is
driving them to improve the average machine availability and reliability, reducing
the manufacturing costs of the machines, and offering new added-value services to
the clients.

The machines are very specific and sometimes they require complex maintenance
tasks, which must be performed by specialized workers trained and certified by the
company. This implies often the physical presence of the technicians on-site, even
if customers are thousands of kilometers away. Furthermore, apart from the planned
or usual maintenance operations, when machines have unexpected breakdowns
they request urgent attendance with the associated high maintenance costs. In this
context, the company realized the opportunity of rethinking the basic maintenance
service provided to its customers to a high added-value service. The aim of this
new business oriented service is not just to reduce maintenance costs, but also to
earn revenues from providing the service, improving at the same time machine
availability and reliability, which is a key point from the customer’s perspective.

The case company has applied both the Requirements Engineering and Business
Model development approach presented in Sect. 3.5 in order to implement the
targeted CPSS offer. In a first step, a story was created describing the intended
scenario. The company needs their machines to be smarter and more autonomous,
once deployed and set up at customer’s facilities they shall have no unexpected
breakdowns leading to production stops. It would need to be able to predict

3 Cyber-Physical Product-Service Systems 83

anomalies in the machine in order to react earlier than the problems really occur.
In case of a breakdown, they will be able to take the proper decision avoiding
unfortunate damages and undesired stops. Furthermore, the problem solution should
be provided fast and reliable without stopping the machine. It should use fewer
resources, both human and economic, by avoiding physical intervention of a
technician on-site.

Comparing the AS-IS with the desired TO-BE scenario, requirements for product
as well as service developments have be derived. On the one hand, an embedded
device is needed that will be physically connected via Ethernet to all the machines
of the company in the future. It shall be able to query data using different kind
of communication protocols used in the industry, such as different standards under
OPC umbrella, LSV-2 etc. The device also executes predefined rules to generate
and send corresponding alarms warning about possible breakdowns and failures,
including associated info helping in the traceability and identification of potential
causes. On the other hand, requirements for intelligent maintenance services have
been derived. The service functionality takes the information from the mentioned
device and links it with the whole maintenance operations lifecycle system. Once
the client confirms a malfunction, the company receives historical information with
the alarm message and forwards it to the maintenance service staff. After analyzing
it, they check the needed assets to fix the detected problem. Once the customer
confirms by email, the selected maintenance operation is performed. The customer
is able to provide feedback on the quality of the maintenance service provided,
which will be taken into account for future operations.

In order to offer the intended CPSS in a profitable Business Model, the BM
development approach was applied in a workshop, facilitating the different steps
of the approach. Every method was introduced to the participants and the results
were documented continuously. The current BM of the company is based on selling
customized machine tools to metal works in different industries. Table 3.2 shows a
summary of the results of the methodology application:

Communication problems with foreign customers and the development of smart
intelligent products have been identified as issues and trends during the workshop.

Table 3.2 Case study Business Model development

BM building block ~ AS-IS BM PSS BM

Value proposition Custom machine tools Carefree production

Customer segments ~ Metalwork Expansion to BRIC

Channels Direct and distributors Maintenance platform

Customer relationship Personal, co-creation Trust and confidentiality

Key resources Design skills Decision supp. system

Key activities Manufacturing and customization Coordination of maintenance partners
Key partners Suppliers and training Ecosystem of maintenance providers
Cost structure Manufacturing Maintenance platform

Revenue streams Sales Availability fees

84 S. Wiesner and K.-D. Thoben

Thus, for the new Strategy Canvas, reaction time for maintenance requests was
created as new strategic factor. The new BM features a carefree production with
guaranteed machine availability, realized with an ecosystem of local maintenance
providers. Additional revenue is targeted by regular fees for the carefree production
service.

3.7 Summary and Conclusions

Production system engineering is evolving from a centralized development process
for individual systems and components towards the orchestration of distributed
software, hardware and business processes for a common purpose. The scale and
complexity of the objects targeted by systems engineering is constantly growing,
reflected by the emergence of CPPS and PSS offers. The integration of both
perspectives creates huge potentials in terms of functionality and revenue, but also
new challenges for engineering and Business Model innovation. In the following,
the answers to the initial research questions, but also strengths and limitations of the
work are presented.

3.7.1 Research Questions Answered

Regarding the first research question, the paper has presented the potential of
applying a CPPS as the basis for a PSS offer in Sect. 3.3. The new cyber-physical
functionalities are enablers of additional innovative services. Furthermore, the
possibility to measure usage and performance of the production system supports
Business Models beyond a one-time sale, guaranteeing availability of the system or
pay-per-use models.

Through answering the second research question in Sect. 3.4, the elements and
phases of both product and service lifecycles could be identified, as well as the
engineering challenges resulting from their interaction. The main problem areas
are the integration of tangible and intangible components, horizontal and vertical
information sharing, virtual representation of CPSS, Knowledge Management and
Business Model innovation.

The third research question has been answered in Sect. 3.5, showing implications
for the engineering of CPSS and existing approaches. For Requirements Engi-
neering and solution design, suitable methods and tools for various RE activities
are presented. Integration of the product, ICT and service perspective could be
achieved using the storytelling approach. The comparison of AS-IS and TO-BE
scenarios delivers meaningful requirements, which can be validated using gamified
approaches. For servitized Business Models enabled by CPS, an eight-step approach
was presented to create CPSS BMs. The approach features the Business Model

3 Cyber-Physical Product-Service Systems 85

Canvas as well as methods from the Blue Ocean Strategy. Both, the RE and the
BM approach have been evaluated in an industrial use case described in Sect. 3.6.

3.7.2 Strengths and Limitations

The strength of the presented work is clearly the conceptual integration of the
CPPS and PSS concepts, aligning the technological and the service perspective on a
production system. A first conceptual model of such a CPSS could be established, as
well as engineering challenges resulting from the integration of product and service
lifecycles. These challenges could further be classified into five problem areas. In
order to support CPSS engineering, approaches for two of these problem areas
(integration of tangible and intangible components, Business Model innovation)
could already be presented. Furthermore, these approaches have already been
applied in several industrial use cases.

Limitations of the work lie as well in its conceptual approach. Being exploratory,
the research cannot claim to be exhaustive, neither for the challenges, nor for the
potential approaches. The CPSS model must be detailed and open issues clearly
addressed. Methodologies to solve the challenges in all problem areas are needed,
and the existing approaches must be extended and completed for practical use.
Finally, the conducted case studies could only give a qualitative assessment of the
approaches for RE and BM innovation. A quantitative evaluation is missing and
should be conducted to show comparable benefits.

A full CPSS Requirements Engineering framework would help to make the
development of CPSS more cost effective and faster, while retaining a high system
quality. Future work in this area should include the specification of a requirements
structure, which helps to manage changing requirements and predicts the emerging
properties of a CPSS. As it might not be possible to replace domain specific models
in all cases, future work should deal with the implementation of interfaces that
are able to translate between different models without information loss or delay.
Concerning the development of servitized Business Models, a method to predict
and quantify indicators such as cost and expected revenues could provide decision
support to choose between several alternative Business Models.

References

Annamalai Vasantha, G.V., Roy, R., Lelah, A., Brissaud, D.: A review of product—
service systems design methodologies. J. Eng. Des. 23(9), 635-659 (2012).
doi:10.1080/09544828.2011.639712

Aurich, J.C., Mannweiler, C., Schweitzer, E.: How to design and offer services successfully. CIRP
J. Manuf. Sci. Technol. 2(3), 136-143 (2010). doi:10.1016/j.cirpj.2010.03.002

Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161-166 (2011)

http://dx.doi.org/10.1080/09544828.2011.639712
http://dx.doi.org/10.1016/j.cirpj.2010.03.002

86 S. Wiesner and K.-D. Thoben

Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A., Greenough, R., Peppard, J., Roy, R., Shehab, E.,
Braganza, A., Tiwari, A., Alcock, J.R., Angus, J.P., Bastl, M., Cousens, A., Irving, P., Johnson,
M., Kingston, J., Lockett, H., Martinez, V., Michele, P., Tranfield, D., Walton, .M., Wilson,
H.: State-of-the-art in product-service systems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
221(10), 1543-1552 (2007). doi:10.1243/09544054JEM858

Bell, S.: Lean Enterprise Systems: Using IT for Continuous Improvement, Wiley series in systems
engineering and management. Wiley-Interscience, Hoboken, NJ (2006)

Bergen, M., Peteraf, M.A.: Competitor identification and competitor analysis: A broad-based
managerial approach. Manag. Decis. Econ. 23(4-5), 157-169 (2002). doi:10.1002/mde.1059

Berkovich, M., Leimeister, J.M., Krcmar, H.: Requirements engineering fiir product service
systems. Wirtschaftsinf. 53(6), 357-370 (2011). doi:10.1007/s11576-011-0301-3

Blanchard, B.S.: System Engineering Management, 3rd edn. Wiley, Hoboken, NJ (2004)

Boehm, B., Basili, V.R.: Top 10 list [software development]. Computer. 34(1), 135-137 (2001).
doi:10.1109/2.962984

Broy, M., Cengarle, M.V., Geisberger, E.: Cyber-physical systems: imminent challenges. In:
Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor,
M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D.,
Vardi, M.Y., Weikum, G., Calinescu, R., Garlan, D. (eds.) Large-Scale Complex IT Systems.
Development, Operation and Management, vol. 7539, pp. 1-28. Springer, Berlin (2012)

Chang, W., Yan, W., Chen, C.-H.: Customer requirements elicitation and management for
product conceptualization. In: Stjepandié, J., Rock, G., Bil, C. (eds.) Concurrent Engineering
Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, pp.
957-968. Springer, London (2013)

Colombo, A.W., Karnouskos, S., Bangemann, T.: A system of systems view on collaborative
industrial automation. In: 2013 IEEE International Conference on Industrial Technology (ICIT
2013), pp. 1968-1975, 2013

D’Aveni, R.A., Dagnino, G.B., Smith, K.G.: The age of temporary advantage. Strateg. Manag. J.
31(13), 1371-1385 (2010). doi:10.1002/sm;j.897

Hintsa, J. and Uronen, K.: Cassandra D1.1 — FINAL — Compendium (2012)

Fleisher, C.S., Bensoussan, B.E.: Business and Competitive Analysis: Effective Application of
New and Classic Methods, 2nd edn. Pearson Education, Upper Saddle River, NJ (2015)

Follett, J.: Designing for Emerging Technologies. O’Reilly Media, Sebastopol, CA (2014)

Freitag, M., Kremer, D., Hirsch, M., Zelm, M.: An approach to standardise a service lifecycle
management. In: Zelm, M., van Sinderen, M., Pires, L.F., Doumeingts, G. (eds.) Enterprise
Interoperability, pp. 115-126. Wiley, Chichester (2013)

Garetti, M., Rosa, P., Terzi, S.: Life cycle simulation for the design of product—service systems.
Comput. Ind. 63(4), 361-369 (2012). doi:10.1016/j.compind.2012.02.007

Gausepohl, K.A.: Investigation of storytelling as a requirements elicitation method for medical
devices. Masters Thesis in Industrial and Systems Engineering, Virginia Polytechnic Institute
(2008)

Geisberger, E., Broy, M.: agendaCPS: Integrierte Forschungsagenda Cyber-Physical Systems.
SpringerLink: Biicher. Springer, Berlin (2012)

Goedkoop, M.J.: Product service systems, ecological and economic basics. Publikatiereeks
produktenbeleid, nr. 1999/36 [Ministry of Housing, Spatial Planning and the Environment,
Communications Directorate]. Distributiecentrum VROM [distr.], The Hague, Zoetermeer
(1999)

Gorldt, C., Wiesner, S., Westphal, I.: Product-Service Systems im Kontext von Industrie 4.0: Auf
dem Weg zu CPSS. In: Gronau, N. (ed.) Industrie 4.0 Management 1/2016: Product-Service
Design, Erstauflage, neue Ausgabe (2016)

Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., Achiche, S.: Design,
modelling, simulation and integration of cyber physical systems: methods and applications.
Comput. Ind. 82, 273-289 (2016). doi:10.1016/j.compind.2016.05.006

http://dx.doi.org/10.1243/09544054JEM858
http://dx.doi.org/10.1002/mde.1059
http://dx.doi.org/10.1007/s11576-011-0301-3
http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1002/smj.897
http://dx.doi.org/10.1016/j.compind.2012.02.007
http://dx.doi.org/10.1016/j.compind.2016.05.006

3 Cyber-Physical Product-Service Systems 87

Hribernik, K.A., Kramer, C., Hans, C., Thoben, K.-D.: A semantic mediator for data integration in
autonomous logistics processes. In: Popplewell, K., Harding, J., Poler, R., Chalmeta, R. (eds.)
Enterprise Interoperability IV, pp. 157-167. Springer, London (2010)

Huang, H.-Z., Li, Y., Liu, W., Liu, Y., Wang, Z.: Evaluation and decision of products conceptual
design schemes based on customer requirements. J. Mech. Sci. Technol. 25(9), 2413-2425
(2011). doi:10.1007/s12206-011-0525-6

Hull, E., Jackson, K., Dick, J.: Requirements Engineering, 2nd edn. Springer, London (2005)

Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Umsetzungsempfehlungen fiir das Zukun-
ftsprojekt Industrie 4.0: Deutschlands Zukunft als Produktionsstandort sichern ; Abschluss-
bericht des Arbeitskreises Industrie 4.0. Forschungsunion; Geschiftsstelle der Plattform
Industrie 4.0, Berlin (2013)

Klocke, E., Kratz, S., Auerbach, T., Gierlings, S., Wirtz, G., Veselovac, D.: Process monitoring and
control of machining operations. IJAT. 5(3), 403—411 (2011). doi:10.20965/ijat.2011.p0403
Kossiakoff, A.: Systems engineering principles and practice, Wiley series in systems engineering

and management, 2nd edn. Wiley, Oxford (2011)

Lee, S., Park, G., Yoon, B., Park, J.: Open innovation in SMEs — an intermediated network model.
Res. Policy. 39(2), 290-300 (2010). doi: 10.1016/j.respol.2009.12.009

Lim, S.L., Finkelstein, A.: Anticipating change in requirements engineering. In: Avgeriou, P.,
Grundy, J., Hall, J.G., Lago, P, Mistrik, I. (eds.) Relating Software Requirements and
Architectures, pp. 17-34. Springer, Berlin (2011)

Marilungo, E., Peruzzini, M., Germani, M.: An integrated method to support PSS design within
the virtual enterprise. Proc. CIRP. 30, 54-59 (2015). doi:10.1016/j.procir.2015.02.021

Mauborgne, R., Kim, W.C.: Blue Ocean Strategy: How to Create Uncontested Market Space and
Make the Competition Irrelevant. Harvard Business School Press, Boston, MA (2005)

McAloone, T.C., Mougaard, K., Restrepo, J., Knudsen, S., others: Eco-innovation in the value
chain. In: Marjanovic¢, D. (ed.) Design 2010: DS 60: Proceedings of DESIGN 2010, the 11th
International Design Conference, pp. 855-864, Dubrovnik, Croatia, Zagreb, 2010

Meier, H., Roy, R., Seliger, G.: Industrial product-service systems—IPS2. CIRP Ann. Manuf.
Technol. 59(2), 607-627 (2010). doi:10.1016/j.cirp.2010.05.004

Meier, H., Uhlmann, E. (eds.): Integrierte Industrielle Sach- und Dienstleistungen. Springer, Berlin
(2012)

Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers. Wiley, Hoboken, NJ (2013)

Peruzzini, M., Marilungo, E., Germani, M., others: Sustainable product-service design in man-
ufacturing industry. In: DS 77: Proceedings of the DESIGN 2014 13th International Design
Conference, pp. 955-964, 2014

Porter ME (2008) On Competition, Updated and expanded ed. The Harvard business review book
series. Harvard Business School Pub, Boston, MA

PSYMBIOSYS: Product-Service sYMBIOtic SYStems. http://www.psymbiosys.eu/ (2014).
Accessed 19 Apr 2016

Rajkumar, R., Lee, 1., Sha, L., Stankovic, J.: Cyber-physical systems. In: Sapatnekar, S. (ed.) The
47th Design Automation Conference, p. 731, 2010. doi: 10.1145/1837274.1837461

Reichwald, R., Piller, F,, Ihl, C.: Interaktive Wertschopfung: Open Innovation, Individualisierung
und neue Formen der Arbeitsteilung, 2., vollstdndig iiberarbeitete und erweiterte Auflage.
Gabler Verlag/GWV Fachverlage GmbH, Wiesbaden (2009)

Ribeiro, C., Farinha, C., Pereira, J., Mira da Silva, M.: Gamifying requirement elicitation: practical
implications and outcomes in improving stakeholders collaboration. Entertain. Comput. 5(4),
335-345 (2014). doi:10.1016/j.entcom.2014.04.002

Romero, D., Rabelo, R.J., Molina, A.: On the management of virtual enterprise’s inheritance
between virtual manufacturing & service enterprises: supporting “dynamic” product-service
business ecosystems. In: 2012 18th International ICE Conference on Engineering, Technology
and Innovation (ICE), pp. 1-11, 2012

Schirner, G., Erdogmus, D., Chowdhury, K., Padir, T.: The future of human-in-the-loop cyber-
physical systems. Computer. 46(1), 3645 (2013). doi:10.1109/MC.2013.31

http://dx.doi.org/10.1007/s12206-011-0525-6
http://dx.doi.org/10.20965/ijat.2011.p0403
http://dx.doi.org/10.1016/j.respol.2009.12.009
http://dx.doi.org/10.1016/j.procir.2015.02.021
http://dx.doi.org/10.1016/j.cirp.2010.05.004
http://www.psymbiosys.eu/
http://dx.doi.org/10.1145/1837274.1837461
http://dx.doi.org/10.1016/j.entcom.2014.04.002
http://dx.doi.org/10.1109/MC.2013.31

88 S. Wiesner and K.-D. Thoben

Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research. MIS Q.
35(1), 37-56 (2011)

SMLC, Smart Manufacturing Leadership Coalition: Implementing 21st Century Smart Manufac-
turing: Workshop Summary Report, Washington, DC (2011)

Spath, D., DemuB, L.: Entwicklung hybrider Produkte — Gestaltung materieller und immaterieller
Leistungsbiindel. In: Bullinger, H.-J., Scheer, A.-W. (eds.) Service Engineering, pp. 463-502.
Springer, Berlin (2006)

Spohrer, J.C., Maglio, P.P.: Toward a science of service systems. In: Maglio, P.P., Kieliszewski,
C.A., Spohrer, J.C. (eds.) Handbook of Service Science, pp. 157-194. Springer, Boston, MA
(2010)

Stark, J.: Product Lifecycle Management: 21st Century Paradigm for Product Realisation, Decision
engineering, 2nd edn. Springer, London (2011)

Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding services. Eur. Manag.
J. 6(4), 314-324 (1988). doi:10.1016/0263-2373(88)90033-3

VDI/VDE: Industrie 4.0 — Gegenstinde, Entititen, Komponenten. Status report (2014)

Vink, J.: Storytelling: conceptualize, define, design, discover, implement. http://
designresearchtechniques.com/casestudies/storytelling/ (2015). Accessed 11 Dec 2015

Vyatkin, V.: Software engineering in industrial automation: state-of-the-art review. IEEE Trans.
Ind. Inf. 9(3), 1234-1249 (2013). doi:10.1109/T11.2013.2258165

Wan, K., Alagar, V.: Context-aware security solutions for cyber-physical systems. Mobile Netw.
Appl. 19(2), 212-226 (2014). doi:10.1007/s11036-014-0495-x

Wiesner, S., Guglielmina, C., Gusmeroli, S., Doumeingts, G. (eds.): Manufacturing Service
Ecosystem: Achievements of the European 7th Framework Programme FoF-ICT Project, neue
Ausg. Bremer Schriften zur integrierten Produkt- und Prozessentwicklung, vol. 78. Mainz, G,
Aachen (2014a)

Wiesner, S., Padrock, P., Thoben, K.-D.: Extended product business model
development in four manufacturing case studies. Proc. CIRP. 16, 110-115 (2014b).
doi:10.1016/j.procir.2014.01.014

Wynn, M.T., Ouyang, C., ter Hofstede, A., Fidge, C.J.: Data and process requirements for product
recall coordination. Comput. Ind. 62(7), 776-786 (2011). doi:10.1016/j.compind.2011.05.003

Yang, X., Moore, P, J-S, P, Wong, C.-B.: A practical methodology for realizing prod-
uct service systems for consumer products. Comput. Ind. Eng. 56(1), 224-235 (2009).
doi:10.1016/j.cie.2008.05.008

Zhou, K., Ye, C., Wan, J., Liu, B., Liang, L.: Advanced control technologies in cyber-physical
system. In: 2013 5th International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC), pp. 569-573, 2013

http://dx.doi.org/10.1016/0263-2373(88)90033-3
http://designresearchtechniques.com/casestudies/storytelling/
http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.1007/s11036-014-0495-x
http://dx.doi.org/10.1016/j.procir.2014.01.014
http://dx.doi.org/10.1016/j.compind.2011.05.003
http://dx.doi.org/10.1016/j.cie.2008.05.008

Chapter 4
Product Lifecycle Management Challenges

of CPPS
Detlef Gerhard

Abstract In the chapter Product Lifecycle Management (PLM) Challenges of
CPPS, data and information management issues arising from the advanced use
of modern product development and engineering methods are addressed. These
advanced methods are required for engineering processes of smart systems and
individualized products with high complexity and variability. Emphasis is put on
challenges of the life-cycle oriented information integration of products and the
respective Cyber-Physical Production Systems (CPPS). Furthermore, the chapter
addresses data and information management problems coming from integration
of the use and operation phase of products and systems in terms of forward and
backward information flows.

Keywords Product lifecycle management (PLM) ¢ Cyber-physical production
systems (CPPS) ¢ Information management * Model based systems engineering
(MBSE) e Digital Twin

4.1 Introduction

Gill (2010) coined the term Cyber-Physical Systems (CPS) around 2006 and
describes them as “physical, biological, and engineered systems whose operations
are integrated, monitored, and/or controlled by a computational core. Components
are networked at every scale. Computing is deeply embedded into every physical
component, possibly even into materials. The computational core is an embedded
system, usually demands real-time response, and is most often distributed”. Cyber-
Physical Production Systems (CPPS) is a special term that depicts the introduction
of the concept of CPS in the production domain in order to make production
processes in general or production systems in particular “smarter”; this can be seen
similarly to concepts in other domains, e.g. smart mobility, smart home, smart grid.

D. Gerhard (P)

Mechanical Engineering Informatics and Virtual Product Development (MIVP) Research Group,
Technische Universitit Wien, Getreidemarkt 9/307, 1060, Wien, Austria

e-mail: detlef.gerhard @tuwien.ac.at

© Springer International Publishing AG 2017 89
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_4

mailto:detlef.gerhard@tuwien.ac.at

90 D. Gerhard

CPS as the entity of “smartness” combined with physical processes and objects that
uses the Internet of Things (I0T) as a communication platform form CPPS in the
sense of production value-added chains.

Within the domain of production of goods and products including associated
services, CPS based technical systems have to be taken into account twofold: On
the one hand side, products themselves are incorporating CPS concepts and on the
other hand production facilities for product manufacturing and assembly as well.
Hence, with the introduction of CPS, processes of product development, production
system development, production (including production system commissioning) and
product use (including maintenance, repair and overhaul processes) move closer
together, are even strongly interlinked. This truly indicates the given complexity.

Product! Lifecycle Management (PLM) is the general concept to consistently
create and manage all information related to products (systems/components). In
particular, engineering information linked to corresponding engineering and pro-
duction processes, as well as operation and usage phase is addressed. The major aim
is to generate a sophisticated information basis for business and value generation
based on products or systems to be produced. This concept comprises aspects of
management, organization, and IT solutions and is typically realized with different
types of business information software applications, e.g., Product Data Management
(PDM), Enterprise Resource Planning (ERP), Manufacturing Execution Systems
(MES), and Maintenance/Service/Asset Management.

PLM focuses on three major phases: engineering, production, and operation
of products. The engineering phase reaches from conceptual design of a product
including all components up to detailed engineering. Complex technical systems,
such as CPPS, are developed with an extensive utilization of different engineering
tools and methods. In particular, the model based approach to product development
called Model Based Systems Engineering (MBSE) is on the rise. MBSE depicts “the
formalized application of modeling to support system requirements, design, analy-
sis, verification and validation activities beginning in the conceptual design phase
and continuing throughout development and later life cycle phases” (INCOSE
2007). This leads to many interlinked models from different so called authoring
tools (e.g. Computer Aided Design CAD, simulation, software engineering) rep-
resenting various required engineering domains, which have to be managed and
maintained. With an increasing complexity of engineering projects and associated
models, significant emphasis has to be put on interoperability and the ability to cap-
ture the semantics of data in order to be able to efficiently interface different systems
and build tool chains. In industrial applications, predominantly PDM systems cover
information management tasks of the engineering phase. This system category also
supports engineering processes in the sense of workflow management. For this task,
many procedural models for dividing this phase into several subsequent steps are
commonly used in industry in order to realize product development processes in

'The term “product” is used synonymously for any kind of consumer product, machine or technical
system in general, which requires a development and engineering process.

4 Product Lifecycle Management Challenges of CPPS 91

a systematic way, e.g. (VDI2221 1993) or (VDI2206 2004). Particularly, release
and change management processes together with configuration management and
versioning of information captured in documents and models is supported.

During production, the transition from the conceptual and virtual world to
the materialization of a product with its parts and components takes place. This
phase typically also starts with conceptual tasks, such as production system engi-
neering and operations planning, e.g. Numerical Control (NC) and Programmable
Logic Controller (PLC) programming. Commissioning of a production system
is the transition to operation. Further, it involves all resource and production
planning tasks resulting from order processing and additionally the respective
control functions. This is a fundamental difference to the engineering phase.
Whereas engineering focuses on generic product definition without consideration
of capacities and resources, production focuses on the specificity of a single item
instance or lot released for production with given constraints in terms of dates
and resources (personnel, machines, material, etc.). Therefore, production can be
seen as a lifecycle phase that is “orthogonal” to engineering (VDI2219 2002). The
engineering phase does not stop with the beginning of the production phase. It rather
continues creating further releases of a product reflecting improvements, variants,
derivatives, etc. According to the corresponding hierarchical structure for industrial
automation (IEC62264-3 2014), ERP systems are the category of IT systems that
cover the customer orders processes by orchestrating all company’s activities like
commercial, financial, purchasing, logistics, production, etc. (Ben Khedher et al.
2011). Hence, they are predominantly used in industrial applications for planning,
controlling, and information management purposes of the lifecycle phase production
on level 4 of IEC62264 functional hierarchy. Furthermore, on level 3 specialized
MES systems or ERP manufacturing operations management modules cover the
required IT functions, e.g. for detailed planning or production data collection.
Manufacturing Execution Systems (MES) are used to deal with detailed production
planning and control tasks. MES is much closer to the shop floor activities and
therefore it requires more specific production related information because of its
shorter planning intervals.

Again orthogonal to the previous phases engineering and production of the
lifecycle, there is the operation phase of a product. Each produced single item
instance is used or operated differently after production and shipment. This holds
true for consumer products, e.g. household appliances, which are produced in a
considerable lot size of identical items as well as for customized one-of-a-kind
special purpose machines. Hence, in terms of product information management
requirements, each item instance has to be treated separately, sometimes even
components of the item instance. Processes that have to be supported during
operation phase are maintenance (service), repair, and overhaul (MRO) processes,
depending on the type of product. On the one hand side, these processes imply
new service orders and generate business processes, which have to be managed
and supported. This is typically done with software modules of ERP systems or
special service management software tools. On the other hand, there is a link to
the upstream product lifecycle phase. In particular, tracking of production steps or

92 D. Gerhard

Engineering Production Operation

i) Main Phases of Product Lifecycle i) Orthogonality iii) Multiplicity

Fig. 4.1 Different views (schematic) on product lifecycle phases

engineering tasks, relevant for a situation that occurs during operation is required.
At this point, the orthogonality of the different phases becomes obvious since very
heterogeneous types of information have to be linked and dealt with: For instance,
information about a particular product in operation with information of a production
lot of a particular component and corresponding generic engineering information.

Figure 4.1 schematically shows the different views towards the product lifecycle,
as indicated in the previous paragraph. Part (1) depicts a rather simplified view
on the three main phases, (2) emphasizes on the aspect that the different phases
have to be seen as orthogonal to each other, and (3) indicates, that the orthogonal
phases of the product lifecycle are characterized by massive multiplicity and
different maturity status. The latter imposes even increased complexity in terms
of chronological interdependencies of products and components in development,
production or operation as well as their associated processes.

In order to derive challenges and requirements for PLM in the context of
CPPS, it is necessary to analyze product engineering and production processes
one level deeper. In particular, it is required to distinguish different product types,
production concepts, and production types, since this distinction is the basis for
the required product information management approach. As already mentioned
in Chap. 1, four main different production concepts, reflecting the procedure
during order processing, can be differentiated (Schuh 2006): Make-to-Stock (MTS),
Assemble-to-Order (ATO); Make-to-Order (MTO); Engineer-to-Order (ETO). This
differentiation of product types and their production concepts is necessary to express
the degree of dependencies among the product components and the production
system. Below, aspects that typically apply to the different concepts are outlined
and described in terms of main characteristics for PLM.

MTS determines a production concept that is typically applied for consumer
products, which are produced in larger volumes (series or mass production)
without major variants that have to be managed. Such products as for instance
hand machining tools are in general not subject to extensive after sales services.
Therefore, the application of CPS within those products, particularly to collect
usage and operation data, is still an exception. Nonetheless, usage phase data
could be collected indirectly based on customer feedback, but collected usage

http://dx.doi.org/10.1007/978-3-319-56345-9_1

4 Product Lifecycle Management Challenges of CPPS 93

data in the operation phase is not directly fed back to the previous phases or
used for maintenance business creation. MTS products are developed without
customer orders based on market research. Due to the high production volume,
a specialized production system has to be engineered in parallel. This production
system respectively the engineering process, can be seen as an ETO product or
system itself. Therefore, many companies producing mass products on the one hand
side, are also producers of production facilities with separate business units. In order
to effectively manage both processes, the two different information flows have to be
tightly linked together (Gerhard and Lutz 2011).

The ability to directly optimize the production process based on process data that
is collected and analyzed in real-time, is the major goal of CPPS engineering in ETO
production processes, not so much CPS based adaptability and re-configurability
of production systems due to the large production volumes. Furthermore, a major
objective of improvement is to shorten commissioning and ramp-up phase because
this can save significantly time and money. Virtual Product Engineering (VPE)
methods are widely adopted in industry, i.e., the complete description of com-
plex technical systems and their characteristics as computer model together with
integration and optimization of IT tools for domain-spanning, multi-disciplinary
information management.

Virtualization of production system engineering, often referred to as “Digital
Factory”, is not as widely adopted in industrial applications but truly on the rise
since there is a lot of potential for speeding up time-to-production. From product
geometry and material properties defined in engineering design, there is a direct
link to required manufacturing operations and programming of NC machining tools
in case of material shaping operations. In addition, clamping devices, fixtures,
jigs, chucks as well as quality assurance and measurement devices have a direct
geometrical link to products or parts of products themselves. Therefore, release and
change processes of products and production system items are closely interlinked.
The Digital Factory approach goes even beyond this and includes additionally
the virtual representation of assembly (ergonomics), intra-logistics, and material
handling processes. With respect to the chronological order, two main stages have
to be considered, firstly engineering of a production system (typically an ETO
process, concurrently started at a certain maturity status of product engineering)
and secondly production system operation (including ramp up). The aim is to
build a so called “Digital Twin” or “Cyber Twin” during production system
engineering, i.e., computerized companions of physical artefacts that can be used
for various engineering purposes and use data from sensors to represent their near
real-time status, working condition, position, etc. (Tuegel et al. 2011). A production
system—as generally most complex technical systems—faces constant changes and
adaptions during operation due to maintenance and improvement procedures. In
addition to the Digital Twin representing the results of the development engineering
processes, an up-to-date Digital Twin representation is the goal during operation
phase. This way, all possible changes and modifications can be verified in advance
and also tracked. Furthermore, a Digital Twin of each component can be used for
capturing condition monitoring records and synthesizing future steps to provide

94 D. Gerhard

Product | Product
Class | Instance

Product Production . ;
Engineering > mOns Engineering —(2)|Production —(3)~|Operation

‘1@1@' S

(3)
&)

3)
&)

Fig. 4.2 Mayor information flows—example ETO system

self-awareness and self-prediction (Lee et al. 2015). To realize this, a fundamental
distinction has to be realized within the respective PLM solution. Whereas all
engineering processes take only product classes into account, for each Digital Twin
representation, a product instance representation is required representing runtime
and operation. This is depicted in Fig. 4.2 below. The different information flows
are detailed in a later paragraph. For simplification reasons, phases are shown in a
strictly subsequent manner though they are partially overlapping and concurrent.

Whereas MTS and ETO both define the end points, ATO and MTO are
located in the center of the production concepts spectrum. ATO is oriented closer
to MTS since this concept describes preproduction of standard products with
manufacturer-specific variants. MTO is oriented closer to ETO since this concept
describes production of standard products with customer-specific variants that are
partly composed of pre-defined components and partly made up newly created
components. There are two main drivers, that have major influence on production:
The combination of IT and “ordinary” products leads to “Smart Products” with
embedded systems providing an added value to both, customers and producers. Pro-
ducers, in particular, can extend ordinary products to Product Service Systems (PSS),
as described in Chap. 3. Smart products require extensively multi-disciplinary
engineering of the product itself as well as the production system and furthermore
intelligent backend information technology for supporting the use phase. The trend
towards individualized products with customer specific requirements is moving
production towards mass customization and lot-size-one concepts.

These concepts for production processes are mainly addressed with CPPS
approaches, though CPPS approaches for ATO and MTO production have mainly
different goals compared to MTS production. Within MTS production, the product
is rather invariant. The production process can be adjusted and optimized with
respect to a single product. Short commissioning and ramp-up plays a vital role
as well as optimization of the whole process utilizing sensor data and machine
feedback with respect to completion, quality or errors in a direct control loop. This
goal is mirrored in the “Overall Equipment Effectiveness” (OEE) Key Performance
Indicator (KPI) coined by Nakajima (1982). This KPI particularly reflects on the

http://dx.doi.org/10.1007/978-3-319-56345-9_3

4 Product Lifecycle Management Challenges of CPPS 95

measures for optimization of mass production. OEE is beneficial in high-volume
and highly automated process-based manufacture where capacity utilization is a
high priority. Deployment of OEE in low-volume job shops is not very beneficial
(Charaf and Ding 2015).

ATO and MTO production concepts demand extensive flexibility in manufactur-
ing and assembly processes and a by far greater collaboration of product engineering
and production system engineering. Variant rich and customized products require
particularly configuration of product structures and linked manufacturing and
assembly operations. Production according to these concepts typically is realized by
manufacturing shops providing different NC machining tools for special operations
and flexible manufacturing cells for small and medium batch production of parts.
The major goal for CPPS approaches in this case is to realize an intelligent,
resilient and self-adaptable system of interconnected machines and manufacturing
cells capable of producing customized products with a high degree of automation
and thereby at competitive costs. In this scenario, in addition to manufacturing
operations, automated material handling plays a vital role. This insight is not new
(Sethi and Sethi 1990) but nonetheless still an issue that is currently not sufficiently
tackled using computer aided engineering methods (Seibold and Furmanns 2015).

With a PLM view on CPPS in ATO and MTO production environments, again
engineering, production, and operation/use have to be taken into account and
adequately supported in different ways. In the conceptual stage, based on the
product definition, the different manufacturing and assembly steps have to be
planned using a variety of CAD methods. This is done in general on a product class
level though partially single items have to be tracked on instance level. Production
engineering in this case is reduced to operations planning and NC programming,
i.e., an existing set of machining tools and material handling systems has to be
customized and set up in the sense of a flexible manufacturing shop but a special
production system does not have to be engineered and build for this kind of products.
Afterwards, during execution time of the respective production orders of parts and
assemblies (typically in smaller batches), the required production information has
to be provided and actual production data has to be captured. ERP and MES system
build the runtime environment for production execution and respective information
management, top-down in the sense of planning and target values as well as bottom-
up in the sense of shop floor data collection. Production execution is the transition
from the virtual to the real product and also the transition from the product class
view to the product instance view. Each of the produced product instances during its
use phases is operated in a different way and under certain environmental conditions.
Nowadays, many of the more sophisticated products are equipped with embedded
systems and are capable to a certain extent to capture usage information. One
prominent example for such products are cars. They are equipped extensively with
controllers and embedded systems. In addition to the functions vital for operating
the car, they provide capabilities for capturing data that can be used for classical
maintenance and service processes, even for new services supporting drivers or car
holders in everyday tasks, navigation, etc.

96 D. Gerhard

4.2 State of the Art and Challenges of PLM in the CPPS
Context

As indicated above, the vision of CPPS depicts production facilities consisting of
smart machines that are connected and able to connect ad-hoc with smart products
and objects in order to autonomously exchange information, trigger actions and
control each other. CPPS concepts are based on the “Internet of Things (IoT)”
concept coined 1999 by Ashton (2009), i.e., every physical object, machine,
product or object has a virtual representation. Gunes et al. (2014) elaborates
on the following challenges to CPS: Interoperability, Predictability, Reliability,
Sustainability, Dependability, and Security. These have also to be taken into
account in engineering and PLM for CPPS. Interoperability has several aspects:
combining and incorporating heterogenic components of technical systems scaling
in size, throughput or other dimensions. Predictability reflects on accuracy of
intended outcomes in terms of behavior that autonomous systems show based on
inferencing and reasoning in particular contexts. From an engineering point of
view, this leads to challenges with respect to robust and stable performance of a
technical system, i.e., predictability of a guaranteed behavior and reliant operation.
Correct functioning, availability, safety, and maintainability during operation has
to be assured, especially if CPPS are self-adaptable or reconfigurable according
to changing contexts and dynamic tuning. Particularly, issue tracking based on
the right product lifecycle information management becomes difficult since the
origin of many issues might be software based. This aspect also leads to security
challenges and questions of integrity or reliability, i.e., if privacy and confidentiality
of information can be guaranteed and if information is correct and trustful.

In addition to conventional automation and control technology for production
facilities, the aim of CPPS is to design “smart” systems that embody so called self-
x capabilities (e.g., self-configuration, self-organization, self-optimization) in order
to be able adapt autonomously to unforeseen states on machine level as well as
non-intended situations on production system level due to failures, lack of material,
etc. Even though autonomous interaction on micro-level is intended and required
for the implementation of advanced production concepts in modern environments,
predictability and controllability of the whole production system on macro-level has
to be assured. Machine operators as well as production planners in charge need to
have control over the production system. A supplying company of a machine tool, a
flexible production cell or a material handling system has to guarantee certain levels
of function and behavior. Therefore, behavior and logic needs to be represented
using model based descriptions.

Consequently, the challenges of PLM approaches for CPPS are threefold:

* Processes and methods to support systematic multi-domain engineering
* System and information modelling (model representation)
* Information management, particularly data linkage and data analytics.

4 Product Lifecycle Management Challenges of CPPS 97

4.2.1 Processes and Methods

CPPS are complex technical systems characterized by networked structures, non-
linear behavior and means multi-causation, multi-variability, multi-dimensionality,
interdependence with the environment, and openness. Therefore, product design as
well as production engineering tasks have to be addressed in a systematic way.
Complexity in this particular case has the following facets (in causal order):

* Product and production system complexity
* Process and organization complexity
e IT landscape and tool complexity.

Complexity of products is caused by multiple instances and variants of a
base product to meet requirements with respect to customization demands and
differentiation of the target markets. Besides the mechanical components, nearly
all products consist of electronics, embedded systems with sensors and actuators
and have firmware/software driven controllers. Because there are many differ-
ent domains of expertise involved in engineering tasks, process complexity also
increases through dissemination over locations (countries, cultures) and distribution
within the supply chain (organizations). Collaborative engineering processes require
even more extensive use and support of advanced IT systems. The diversity and
dynamics of the relationships between project partners, manufacturers, vendors, and
suppliers leads to highly sophisticated IT landscapes with docents of data formats,
representing different semantics.

CPPS, have to be engineered and designed within a multi-domain environment
of virtual product development tools. Outcomes of such a development process
determines corridors of operation and limitations to autonomous behavior of a
CPPS. The product and system development process today is well supported with
different tools for e.g. software engineering, CAD, electronic design automation,
and simulation. Integration of the domain specific processes for mechanical design,
electric/electronics engineering and software development is the main challenge in
creating complex technical systems as CPPS in a robust and reliant way. Especially,
there is a gap within the information flow between early phases, i.e., engineering
design, and later phases, i.e., production (Gerhard and Weilguny 2008). Both
phases are in general well supported by different IT tools but the integration
and information flow between is still missing the required level of maturity. This
problem particular increases with the trend to customization and individualization of
products and product service systems. CPPS require a systematic approach towards
the different engineering design tasks. Requirements engineering methods help to
identify the core of given challenges and further guide through the development
process (Cheng and Atlee 2007). Modern CAx systems offer extensive functions to
solve geometric modelling and design tasks, but for multi-domain modelling, there
is always an information loss when exchanging data between different models.

By expanding the range of functions and system limits, smart products and
production systems have more complexity than conventional products. Existing

98 D. Gerhard

development methods and state of the art tools are not fully suitable to support the
specific characteristics and requirements of communication-capable, autonomous
decisive CPPS. Methods and a tool chains for the coherent virtual representation
of a production system being in operation (product manufacturing) and linked
to the product development process are required. In the context of CPPS, this is
necessary in order to be able to rapidly respond to required changes and simulate
the new behavior of a customized system in advance. Typically, engineering design
processes end with the completed definition of a product ready for production
and ready to be utilized after production. The requirements of future technical
systems such as CPPS go one step further. System functionality from production and
operation phase has to be captured by corresponding system models as well, though
the semantics of information models in engineering design and production still is
quite different. Only in this way, it is possible to collect data from operation and
use phase and utilize this models for simulation and optimization of the production
process or use phase of a product. Different simulation models are required to
capture e.g. cycle times, output or quality data of production systems. Having those
models in place, different scenarios of operation can be simulated (e.g. maximum
speed vs. average speed or eco mode) in order to find an optimal operation behavior
in terms of time, material or energy consumption, friction, loss, wear, etc.

Since PLM in particular focuses on engineering processes, one major challenge
is to find a comprehensible way to support engineering design and development
process of CPPS on a methodical level. The question is if it is a feasible approach to
enhance or adapt the procedural VDI 2206 V-model in terms of cascaded systems of
systems modelling. Nattermann and Anderl (2010) for instance proposed a W-model
approach for systematic engineering of adaptronic systems. This model suggests the
use of a special data management layer, which provides not only a central control of
the records of all disciplines but is also able to analyze the discipline-specific records
and to synchronize across disciplines. This data management system should be
capable to capture state and behavior of the system under development at any time
and to ensure compatibility of the discipline-specific components and subsystems.

There is a direct linked to the research questions formulated in Chap. 1: How
can model-based methodologies support information creation and processing in the
different life cycle phases of a CPPS and how shall several disciplines in product
and production system engineering be linked to support the engineering of flexible
and self-adaptable CPPS? The question is how virtual engineering support for an
integrative CPPS hardware/software co-design, verification, validation, and testing
can be realized, given the multitude of different tools and methods. Particularly
not tackled adequately so far are methods and technologies that support the links
between product, production technology, and production systems engineering, i.e.,
horizontal, vertical and life cycle integration within production systems and digital
links between engineering and operation phases.

http://dx.doi.org/10.1007/978-3-319-56345-9_1

4 Product Lifecycle Management Challenges of CPPS 99
4.2.2 Model Representation

The central concept embodied in multi-disciplinary engineering and model-based
design is that the 3D product model is the most appropriate vehicle for delivering
all of the detailed product information necessary for downstream processes and
operations to perform their portion of the product creation (Quintana et al. 2010).
CAD models are enriched with explicit and implicit knowledge which needs to
be extracted, formalized and managed for re-use in different contexts. However,
extracting knowledge encapsulated in CAD models remains a challenge and does
not cover at all the complex systems engineering requirements. (PROSTEP 2015)
gives a comprehensive over relevant standards for the different procedural steps of
the VDI 2206 V-model, but the V-model more or less stops at the start of production
and does not cover production and operation.

Nonetheless, for information modelling in engineering processes, there have
been considerable developments within STEP—STandard for Exchange of Product
Model Data (ISO 10303 1994). ISO 10303 is an international standard for the
description of physical und functional features of product data. STEP interface
definitions and data formats allow data exchange between different CAx systems
and aims to represent all data of the whole product lifecycle of a product. In addition
to geometric data, this data can e.g. comprise production planning information, bills
of materials, simulations, design studies, and much more. To deal with all kinds of
lifecycle data, ISO 10303 consists of an extensive collection of so called Application
Protocols (AP). Each AP is adapted for a special purpose, for instance ISO 10303-
242 “Managed Model Based 3D Engineering” provides relevant data models
merging AP203 and AP214, which are currently the most implemented for CAD
data exchange between existing commercial CAD systems. AP 239 “Application
Protocol: Product Life Cycle Support” furthermore includes the representation of
a product through life including product requirements and their fulfilment, the
identification of the configuration of a product for a given role, and the specification
of effectivity constraints applied to configuration of a product. AP 233 specifies
the representation of systems engineering data and defines the context, scope and
information requirements for various development stages during the design of a
system.

For modelling lightweight representations of geometry together with product
manufacturing information (PMI), the newer JT standard (ISO 14306 2012) is
interesting to consider. To capture model information beyond geometry, e.g.,
requirements, logic, function, and physics, System Modeling Language (SysML)
(see also Chap. 2 and SYSML 2007) is adopted increasingly. This virtual repre-
sentation of artefacts is a means to integrate and organize the multitude of models
necessary to describe all the aspects of the system with the aim to support interop-
erability between the domains and their data. Since many different disciplines are
involved, complexity handling in engineering and manufacturing (Tolio et al. 2010)
is the main issue that is tackled with these standardization approaches.

http://dx.doi.org/10.1007/978-3-319-56345-9_2

100 D. Gerhard

Self-x functionalities in the sense of smart systems or applicable for a smart
factory are functionalities take into account the context of (a group of) CPPS and
react accordingly to this context, facilitating the adaptive autonomic behavior of
CPPS. Going more into detail, research questions of Chap. 1 contain the challenges
of how to define or model self-x functionalities of CPPS as well as means for
capturing context, behavior and state of artefacts? Furthermore, strategies and
algorithms for modelling and simulation of anticipatory system behavior and layer-
crossing integration of self-x actions have to be developed. Monostori (2014) states
in a comprehensive survey the following R&D challenges for CPPS (among others):
For context-adaptive and (at least partially) autonomous systems, methods for
comprehensive, continuous context awareness as well as for recognition, analysis
and interpretation of plans and intentions of objects are necessary. Furthermore,
the development of new methods is required, which support the fusion of the real
systems with the virtual representation in order to reach the goal of an intelligent
production system which is robust in a changing and uncertain environment.

4.2.3 Information Management and Integration

In industrial applications today, product development processes, production plan-
ning processes, and order based production planning and control are still to a large
extent disconnected. This holds in particular true for data generated during the
use phase of products. For CPPS and smart production, a closed loop information
management is crucial, spanning the whole lifecycle from product concept and
design to production system planning, to order management and production, and
finally to product operation or usage. The international standard IEC 62264 (IEC
62264-3 2007) defines models and transactions for the integration of ERP and MES.
Its main objective is the integration of business planning and logistics systems to
manufacturing operations management systems. While ERP systems operate in time
frames of months, weeks and days, the detailed production planning is done using
much shorter periods like shifts, hours, minutes, seconds and even sub-seconds.
VDI 5600 guideline (VDI 5600 2007) offers a problem-oriented description of
MES and its application potentials. The main tasks of MES like detailed scheduling
and process control, equipment and material management, etc. are defined and
the role of MES for enterprise processes is highlighted. Similar to IEC 62264,
VDI 5600 contains recommendations for the interface management between MES
and machines/terminals/sensors on the manufacturing level. Both standards mainly
address the so called Automation Pyramid from shop floor to top floor in a vertical
integration direction, respectively along the production value chain in a horizontal
integration direction. The integration along the product lifecycle from very early
engineering design stages to production and operation stage or vice versa is not
covered.

The main challenge is that generated data and relevant information at the various
stages of the product lifecycle is quite different in terms of the three orthogonal

http://dx.doi.org/10.1007/978-3-319-56345-9_1

4 Product Lifecycle Management Challenges of CPPS 101

aspects of data storage, processing, and analysis (3Vs of Big Data), i.e., volume,
variety, and velocity (Laney 2001). Particularly, there is a variety of formats
capturing different semantics, not just relationally structured data representing
different models but unstructured content. Content that is tagged with metadata and
hierarchical file system data. In engineering design, information about the product
in general is created, in early phases there are abstract models, later more tangible
and concrete content. In later stages of the product lifecycle, data or information
flows can be highly inconsistent with peaks and the meaning can also change over
time. The generated information is to a large extent unstructured and stochastic
but not model driven. Data or information flows can be highly inconsistent with
peaks and the meaning can also change over time. The more an integration of the
different information aspects over the product lifecycle is possible the more efficient
processes become. The use of cognitive computing approaches, ontologies and
semantic technologies in the integration of data, information, as well as knowledge
throughout the complete design cycle of a product has the potential to substantially
improve both the product and associated development processes (Welp et al. 2007).

Forward and backward information flows have to be distinguished. Design
engineers usually have a good understanding of the product they are developing, but
any approach to integrate information required in later process stages (e.g. environ-
mentally relevant information or production relevant information) into early product
development and design stages often fails since it adds to workload or complexity
of the process. Ostad-Ahmad-Ghorabi et al. (2013) tackle this issue introducing
ontological approach to set up primary parameters systematically for particular
product categories driving e.g. the environmental performance of products. The aim
of ontological approaches in general is to enable the management and (re-)use of
heterogeneous data along the product development process. Different information
and different views concerning a product structure facilitates the work of each phase.
Yet, the lack of contextual relationships within the structures avoids linking the
correct data between them. Therefore, similar information must often be entered
multiple times and a cross comparison between the information from other domains
or an automated comparison of the various activities in concurrent engineering
processes become virtually impossible. With the use of semantic technologies
and ontologies the continuity of information can be achieved through a coherent
semantic structure associated with views on different areas of the development
process (Gerhard 2012). Ontologies serve as a neutral or intermediate layer, in
which semantic web technologies can be used to build queries or filters that provide
specific data of heterogeneous sources. Ontologies are thus of great importance
when encoding design knowledge as well as integrating software systems for
facilitating semantic interoperability (Chandrasegaran et al. 2013).

Semantic technologies also play a vital role in data analytics. Smart factories
collect vast amounts of data from different sources: Product design data such as
bill-of-materials (BOM) and CAD-files; production process data such as CAM-
files, machine scheduling and QC measurements; logistics data including demand
forecasts; and data from a multitude of sensor constantly monitoring machine
parameters. Currently, ERP and MES systems used in manufacturing operations do

102 D. Gerhard

not adequately mine this data to identify useful patterns and draw conclusions for
operations or engineering processes. This is because current data mining techniques
are typically not suitable for time series data and therefore, are of limited use in
making predictions (Groger et al. 2012). Additional data objects or information
model enhancements of existing software tools or standards are required to capture
and interface engineering as well as run time data of complex CPPS so they can be
indexed and retrieved for reuse across different products or projects. This comprises
versioning and means to align different (multi-domain) development paths. Still
the research question remains, e.g. if it is possible to find algorithms to analyze
data patterns from manufacturing data for re-use at different stages of the product
creation process, transforming information from data to knowledge level.

4.3 PLM Forward and Backward Information Flows
in CPPS

With the above introduced contents and challenges, it is clear that an enhanced use
of CPS in products and production systems imposes new approaches to look at the
way product related models and documented information have to be managed along
the product lifecycle. As stated before, the lifecycle phases cannot be seen just as
subsequent stages but the orthogonality has to be acknowledged.

IT systems and software solutions for engineering information modeling and
management represent “virtual” product and production engineering information
linked to a product class as well as order based production planning and real time
data of the production process as well as individual usage data. In other words, they
have to cover a complex patchwork of different views in terms of functionality and
models semantics, i.e.,

* Development/engineering, planning, production, operation/use

* Requirements, features/working principles, logic/behavior, geometry/shape
* Structure of products (systems), modules/components and parts/elements

* Mechanics, hydraulics, pneumatics, E/E, control/software

* Manufacturing, assembly, testing, packaging, transportation

* Customer, supplier, service owners/operators

* Building/infrastructure, energy.

A unified and coherent model description of all necessary information (in a
knowledge domain as CPPS) is unrealistic. Requiring all applications to share a
common standardized data model to be truly integrated is not a feasible solution.
Hence, data linkage in a federated manner, semantic technologies, and cognitive
computing approaches can be seen as enablers to introduce new agility and
expanded scope to enterprise applications, such as for instance:

* Automated extraction of metadata to transform unstructured data into a fully
classified resource and synthesize it with existing structured data

4 Product Lifecycle Management Challenges of CPPS 103

e Enrichment of structured data with qualitative data from vast “unstructured”
sources like sensor-captured production data or usage data from emails, blogs,
chats, and social Web pages

e Identification of embedded meanings and relationships within and across
resources through data analytics

* Natural language processing to interpret imprecise requests and offer spelling
corrections, close matches, and related content

e Creation of innovative and tailored apps that seamlessly merge content and
functionality from diverse sources such as databases, mapping services, and
WWW resources.

This is necessary in order to perform data specialization tasks in forward
direction (early lifecycle phases to late phases) and data generalization tasks in
backward direction (vice versa).

Forward integration of engineering information in the sense of “Design For X”
(DfX) is the concept comprising all endeavors towards making the right decisions
in the product development process on basis of sufficient and universally applicable
knowledge basis. The aim is to take into account impacts that decisions in early
phases of the product development process have on later phases. Particularly,
concepts of Design for Manufacturing, Assembly, and Service are relevant for CPPS
and in many companies in place in order to ensure high quality at optimized cost
and time efforts in the production or operation phase. Forward integration nowadays
means predominantly manual processing of data, e.g. using CAD/CAM data in order
to extract required information for operations planning. PDM systems support these
tasks to a certain coverage since they provide easy access to required information
but they do not provide assistance in terms of e.g. supporting operations planning.
Especially the inherent semantics of product defining data to be used at later stages
is still a weak point. Therefore, to a large extent, operations planning relies on the
experience of planning engineers. Knowledge that can be derived from past projects
and tasks is not taken into account systematically in many cases and the potential of
intelligent knowledge re-use is not addressed. In the forward direction new questions
arise since products become more sophisticated integrating embedded IT systems
and/or IoT technologies.

In the backward direction, feedback information from usage and operation phase
collected on a single item or instance basis, which is in general less structured needs
to be aggregated and generalized to be used earlier phases, i.e., engineering design
or production, in the sense of knowledge management. Backward information
integration in terms of PLM also requires new approaches in order to leverage
opportunities and adequately support processes related e.g. to PSS. The semantics
of information models in engineering design and production still is quite different.
Instance based information from the use phase of a product has to be captured,
generalized and mapped to product class information of product engineering or pro-
duction engineering phase in order take benefit in terms of knowledge management.
In the operation phase of a product or machine (maintenance and support phase),
the inherent task of evaluating if design requirements are met is to take a close look

104 D. Gerhard

at the performance of the product and actual use. A closed feedback loop is the idea
that the output is looked at with respect to a desired goal and then the inputs are
modified in order to change the output to close the gap between what the output is
producing and what is desired. Feedback loops can be direct and internal or indirect
and external to a system. If a product does not meet its design requirements in actual
usage or if actual usage surfaces additional requirements, respective information
should be fed back into a base of knowledge so that engineering can understand
the gap between the requirements they thought could be fulfilled and what actually
occurred. Conclusions can be drawn and requirements for future versions of the
product can be adapted.

Particularly for the backward information flow, it is important to distinguish the
type and the instances of an information object over its lifecycle, i.e., to have unique
identifiers both in the digital (virtual) and in in the physical world.

» Instantiation of product data: For each product in the field, there has to be
a separate instance of product data created. This dedicated instance will be
maintained over the lifetime of the product, to stay up to date, even when parts are
changed during maintenance (e.g. for long life products like machining centers).

 Instantiation of usage data: Data collected during the usage of products have to
be associated to the specific instance of the product instead of its generic model.

Figure 4.2 of the previous section gives an example (ETO production concept) for
the different information flows. Briefly the main information flows can be depicted
as follows:

1. Engineering design data are used to generate production system and operations
planning data

2. Planning data serve as the basis for production control (target values)

3. Actual data of production are the basis for product operation/use including MRO
processes

4. Feedback data to improve the product

5. Feedback data to improve production system and operations planning

6. Actual data for direct optimization of the production process (target-performance
comparison)

7. Actual data for direct optimization of the operation and MRO support

8. Actual data for improving and further developing the product.

Benefits resulting from the forward and backward information integration are to
a large extent company and use case specific. For each use case, the first step is
to figure out who benefits from the delivered information, and therefore, in what
form and where the information has to be presented, e.g. is the information already
necessary/useful in the production planning phase, or is it important later in the
physical production process. For example, simulated milling operation times stored
in the PDM system can be used to calculate target times for operations planning,
or assembly instructions can be displayed on terminal screens in manual assembly
lines. After identification of the required data, suitable approaches for data structures
and data processing have to be defined. Concerning backward integration, it is

4 Product Lifecycle Management Challenges of CPPS 105

important to identify, which data from the MES or other data sources is accessible
and useful for feedback in the PDM data backbone. That can be raw data (e.g. from
sensors) or already processed data (e.g. key performance indicators of machines). It
has to be clarified, which data has an impact to the generic data in the PDM system,
and how information can be viable created out of all the collected data. For example,
if production introduces new cutting inserts for milling operations resulting in higher
duration of the tool and less tooling time in a production process, this information
can be fed back to operations planning. This means that raw production data has to
be mined and analyzed with respect to the deviation of planned and actual values
taking into account possible outliers.

A software architecture comprising so called authoring tools for different
engineering tasks on the one hand side and comprehensive engineering and
business information management software systems on the other hand side has
to take application diversity into account. Ther e are ongoing research activities
to investigate and develop an approach for multidisciplinary life-cycle oriented
information integration in systems engineering within the Open Services for
Lifecycle Collaboration (OSLC) working group of OMG (OSLC4MBSE 2013).
The focus of major activities still is in the engineering domain, but engineering,
production and usage have to be treated holistically in the context of CPPS, which
goes beyond this viewpoint. Especially, many different concepts have to be mixed
and supported with software tools, like e.g. model based engineering, document
oriented information flows, time related data and time series processing, location
based data and geospatial processing, database oriented transaction handling and
posting entries to ledger accounts. Hence, a principle IT system architecture needs
to support a strongly federated network approach of nodes performing particular
tasks, in which the nodes themselves follow an approach that can be compared to
an onion with a shell like structure incorporating the concept of microservices.
Microservices is an emerging trend in the cloud era: briefly “microservices are
small, autonomous services that work together” (Newman 2015) to achieve a
common or requested functionality. Similar to the Service Oriented Architecture
(SOA) approach, microservices are independently deployable, small, and modular
services that communicate loosely coupled over HTTP protocol typically through
REST APIs with simple semantic standards that can map to any data model using
JSON as a data exchange format. This concept also supports, that contextual
information from third party systems can be provided via a persistent linked data
layer that overcome system and organizational boundaries. Figure 4.3 below depicts
the rationale behind a principle IT system architecture suitable for PLM in the
context of CPPS. As stated before, the different phases of the product lifecycle have
to be seen orthogonal to each other.

In all phases, many different software tools (depicted as dots of the network
in the respective colors in Sect. 2 of the figure) generate information that is
linked to another portion of information, e.g. structured or unstructured information,
simulation models of the engineering phase as well as sensor data of the production
phase that cannot be captured in models. At the outer area of the network (colored
in red), there are even dots representing system boundaries or transition to other

http://dx.doi.org/10.1007/978-3-319-56345-9_2

106 D. Gerhard

Backbone and Adapter Shell

\.¢.g2. PDM or ERP system
Authoring System,
N_¢e.g. CAx Tool
Inner Data Mgmnt Shell
\¢e.g. TDM Software

i) Orthogonal Phases i) Network of microservices iii) Shell structure of microservice

Fig. 4.3 Principle IT system architecture for PLM in the context of CPPS

domains, e.g. smart grid energy management systems. The example given in Sect. 3
of Fig. 4.3 reflects the viewpoint of mechanical engineering: A CAD system as core
of required software functionality for a particular process task is wrapped in a Team
Data Management (TDM) environment with high integration depth supporting
collaborative engineering work. The TDM system again is enveloped in a PDM
or ERP backbone. On this level the microservice approach comes into play, i.e.,
communication to other services through defined API leads to a federated approach
of exchanging required information within the given plethora of systems. Beyond
the expressed example, the same holds true for different engineering domains, e.g.
a CAE system wrapped in a specialized simulation data management tool or a
software engineering tool which organizes the software development work within
source code management environment. Section 3 of Fig. 4.3 could also be colored
blue or green in order to represent a microservice of the production or operation
phase or even in mixed colors if there is no clear assignment possible. The major
differences are the type of generated or captured information and the point in time,
which the information represents. Nonetheless, information of the three different
life cycle phases is truly interlinked.

Incorporating a microservices concept likely leads to a situation, that instead
of less large and established enterprise applications suddenly a landscapes with a
variety of small, fast-changing services emerges, which all have to be configured,
managed, and monitored. This issue can be tackled using a so called container
technology like “Docker”. Docker uses “containers”, which capture everything that
is needed to run a chosen software (e.g. code, runtime, system tools, system libraries,
binaries, dependencies, etc.). Docker containers represent one encapsulated unit of
functionality to the “external world”. In this way, it is assured that the code will
run in any selected environment the same way (Mouat 2015). Docker containers are
rather lightweight in comparison to hypervisor techniques, since virtualization is
done on operating system level, encapsulated from the rest of the host system. The
feasibility of this concept is underpinned by the fact that most of large public clouds
have made their systems compatible to Docker (e.g. AWS Elastic Beanstalk, Google
AppEngine, IBM Cloud, Microsoft Azure, Rackspace Cloud). With this support and

http://dx.doi.org/10.1007/978-3-319-56345-9_3
http://dx.doi.org/10.1007/978-3-319-56345-9_3

4 Product Lifecycle Management Challenges of CPPS 107

adoption, Docker will probably become the most prevalent system used to create
cloud applications (Matthias and Kane 2015).

4.4 Summary and Outlook

Digital and real worlds merge. The development of products that are networked
within their operational environment and the support of service-oriented business
models requires the linkage of traditional product data with the digital shadow of
the delivered product configuration (Cyber Twin) as well as the use and association
with data of production and operation. A shift from divided designs of physical
systems, control subsystems and software architecture to integrated and optimized
design can be observed with respect to the process of product and production
systems engineering. Concerning operation of production systems, human and
information-centric operation moves to highly-automated, autonomous, and coor-
dinated frameworks. Engineers have to be better supported in their development
work through system-spanning information links, and assistant functionality that
utilizes advanced information analytics and cognitive computing approaches. Thus,
IT system strategies supporting operation and product lifecycle information man-
agement are changing from centralized to federated, decentralized, and configurable
approaches.

Previously, the focus was on the modeling of all necessary artifacts and prepa-
ration of all necessary documents for the design and manufacture of a system.
In the field of mechanical design, the result virtually consists of a complete
digital mock-up on product class level. In the software domain, the result of
development activities is a static program code, which e.g. evaluates captured sensor
data and system status and possibly performs actuator actions or executes user
interaction. With CPPS, modeling of systems in operation as well as the continuous
documentation of all MRO operations and changes in the operation is necessary.
From the mechanical engineering viewpoint, a functional mock-up is required on
product instance level. In the software field, adaptive program code (for example,
PLC, CNC) to map self-x functionalities.

In particular, the role of PLM in the context of Smart Systems, CPPS and
Industrie 4.0 approaches will change dramatically towards product information
management on a single item instance basis. Today’s PDM systems are complex
technical IT systems that require considerable effort for customizing and imple-
mentation in specific contexts of manufacturing enterprises. System deployment and
operation of a PDM system are complex and costly issues and not only few projects
heavily struggle. The networking of products and services on the Internet of Things
(IoT) raises the question whether ordinary PLM approaches are not completely
overburdened and will become redundant with Linked Open Data, Big Data or
self-learning systems. PLM approaches have to be adopted in order to support the
companies optimally in their digital transformation processes.

108 D. Gerhard

The benefit of a particular PLM solution heavily depends on the processes to
be supported within a company and therefore on the production concept, e.g. ETO
or MTO. After sales and customer service play an increasingly important role in
the context of PSS. Customized and individualized products have to be produced
in smart factories incorporating CPPS approaches with the goal to keep required
efforts low. Data from the operation phase of the products has to be linked with the
engineering data. Necessary are on the one hand side PLM concepts that support
multi-disciplinary development of products with high degree of integrated control
technology and software and on the other hand side methods and system functions
for cross-domain engineering collaboration. Nonetheless, PDM systems have to be
able to manage complex product configurations, including electronics and software
and also depict changes in the configuration during operation. Therefore, PLM
solutions need to support data structuring approaches that go beyond centrality
of the traditional Bill of Material (BOM) concept coming predominantly from
mechanical engineering focus.

Monolithic approaches with one single leading system for PLM in general do not
meet the given demands, particularly because engineering is done to a large extent
collaboratively in joint ventures together with development partners embedded in a
supply network. A modular IT architecture with best of breed solutions ensures a
flexible and user-friendly working environment. It is essential that PLM solutions
are dynamically adaptable reflecting the ongoing changes of data models together
with the process changes in the organizations. Similar to the way the world-wide
web works, federated approaches that link the distributed digital models are required
for the product related information management.

References

Ashton, K.: That ‘internet of things’ thing. RFiD J. 22, 97-114. http://www.rfidjournal.com/
articles/view?4986 (2009). Retrieved 25 Jul 2016

Ben Khedher, A., Henry, S., Bouras, A.: Integration between MES and product lifecycle manage-
ment. In IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA’11), pp. 8-13. Toulouse, 2011

Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horvath, L., Bernard, A., Harik, R.F., Gao, W.:
The evolution, challenges, and future of knowledge representation in product design systems.
Comput. Aided Des. 2013, 204-228 (2013)

Charaf, K., Ding, H.: Is overall equipment effectiveness (OEE) universally applicable? The case of
Saint-Gobain. Int. J. Econ. Fin. 7(2), 241-252 (2015)
Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In: Proceedings of
Future of Software Engineering, pp. 285-303. IEEE Computer Society, Washington (2007)
Gerhard, D.: The role of semantic technologies in future PLM. In: Fathi, M. (ed.) Integration of
Practice-Oriented Knowledge Technology: Trends and Prospectives, pp. 157-170. Springer,
Berlin (2012)

Gerhard, D., Lutz, C.: Rechnerunterstiitztes Konfigurieren und Auslegen kundenindividueller
Produkte. ZWF Z. wirtschaftlichen Fabrikbetrieb. 3, 103—-104 (2011)

Gerhard, D., Weilguny, L.: Applied feature technology — review of developing a generic solution
facilitating data-consistency and enabling knowledge-based engineering. In: CIRP Design
Conference 2008, Twente, NL, 2008

http://www.rfidjournal.com/articles/view?4986

4 Product Lifecycle Management Challenges of CPPS 109

Gill, H.: Cyber-physical systems — beyond ES, SNs, and SCADA. In: Presentation in the
Trusted Computing in Embedded Systems (TCES) Workshop. http://repository.cmu.edu/cgi/
viewcontent.cgi?article=1724&context=sei (2010). Retrieved 25 Jul 2016

Groger, C., Mitschang, B., Niedermann, F.: Data mining-driven manufacturing process optimisa-
tion. In: Proceedings of the World Congress on Engineering, vol. III, pp. 1-7, 2012

Gunes, V., et al.: A survey on concepts, applications, and challenges in cyber-physical systems.
KSII Trans. Internet Inf. Syst. 8(12), (2014)

IEC 62264-3: Enterprise-control system integration — Part 3: activity models of manufacturing
operations management. Beuth, Berlin (2014)

INCOSE: International council on systems engineering: systems engineering vision
2020 INCOSE-TP-2004-004-02 ver. 2.03. http://oldsite.incose.org/ProductsPubs/pdf/
SEVision2020_20071003_v2_03.pdf (2007). Retrieved 25 Jul 2016

ISO 10303: Industrial Automation Systems and Integration — Product Data Representation and
Exchange. International Organization for Standardization (ISO), Geneva (1994)

ISO 14306: Industrial Automation Systems and Integration — JT File Format Specification for 3D
Visualization. International Organization for Standardization (ISO), Geneva (2012)

Laney, D.: 3-D data management: controlling data volume, velocity and variety. http://
blogs.gartner.com/doug-laney/deja-vvvue-others-claiming-gartners-volume-velocity-variety-
construct-for-big-data/ (2001). Retrieved 25 Jul 2016

Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for Industry 4.0-based
manufacturing systems. Elsevier Manuf. Lett. 3, 18-23 (2015)

Matthias, K., Kane, S.P.: Docker Up & Running, Shipping Reliable Containers in Production.
O’Reilly Media, Sebastopol, CA (2015)

Monostori, L.: Cyber -physical production systems: roots, expectations and R&D challenges.
Variety management in manufacturing. Proceedings of the 47th CIRP Conference on Manu-
facturing Systems. Proc. CIRP. 17(2014), 9-13 (2014)

Mouat, A.: Using Docker, Developing and Deploying Software with Containers. O’Reilly Media,
Sebastopol, CA (2015)

Nakajima, S.: TPM tenkai, JIPM Tokyo. https://en.wikipedia.org/wiki/Seiichi_Nakajima (1982).
Retrieved 25 Jul 2016

Nattermann, R., Anderl, R.: Approach for a data-management-system and a proceeding-model
for the development of adaptronic systems. In: Proceedings for the ASME International
Mechanical Engineering Congress & Exposition (IMECE), Vancouver, 2010

Newman, S.: Building Microcervices, Designing Fine-Grained Systems, p. 18. O’Reilly Media,
Sebastopol, CA (2015)

OSLC4MBSE: Working Group. http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
oslc:oslc4mbse_working_group (2013). Retrieved 25 Jul 2016

Ostad-Ahmad-Ghorabi, H., Rahmani, T., Gerhard, D.: Forecasting environmental profiles in the
early stages of product development by using an ontological approach. In: Abramovici, M.,
Stark, R. (eds.) Smart Product Engineering, pp. 715-724. Springer, Berlin/Heidelberg (2013)

PROSTEP: White Paper Datenmanagement fiir Smart Systems Engineering (Smart SE). ProSTEP
iViP (2015)

Quintana, V., Rivest, L., Pellerin, R., Venne, F., Kheddouci, F.: Will model-based definition replace
engineering drawings throughout the product lifecycle? A global perspective from aerospace
industry. Comput. Ind. 61(5), 497-508 (2010)

Schuh, G.: Produktionsplanung und -steuerung Grundlagen, Gestaltung und Konzepte, 3rd edn.
Springer, Berlin (2006)

Seibold, Z., Furmanns, K.: Dezentrale Koordinationsmechanismen fiir Multifunktionalitit und
Wiederverwendbarkeit. In: Bauernhansl, et al. (eds.) Industrie 4.0 in Produktion, Automa-
tisierung und Logistik, pp. 1-17. Springer, Berlin (2015)

Sethi, A.K., Sethi, S.P.: Flexibility in manufacturing: a survey. Int. J. Flex. Manuf. Syst. 2, 289-328
(1990)

SYSML: The SysML specification, v 1.0. http://www.sysml.org (2007). Retrieved 25 Jul 2016

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1724&context=sei
http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://blogs.gartner.com/doug-laney/deja-vvvue-others-claiming-gartners-volume-velocity-variety-construct-for-big-data/
https://en.wikipedia.org/wiki/Seiichi_Nakajima
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-oslc:oslc4mbse_working_group
http://www.sysml.org

110 D. Gerhard

Tolio, T., Ceglarek, D., El Maraghy, H.A., Fischer, A., Hu, S.J., Laperri¢re, L., Newman, S.T.,
Viéncza, J.: SPECIES — co-evolution of products, processes and production systems. CIRP Ann.
Manuf. Technol. 59(2), 672-693 (2010)

Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering aircraft structural life
prediction using a digital twin. Int. J. Aerospace Eng. 2011, Article ID 154798 (2011). http://
dx.doi.org/10.1155/2011/154798. https://www.hindawi.com/journals/ijae/2011/154798/

VDI 2206: VDI-Guideline 2206 — design methodology for mechatronic systems. Beuth, Berlin
(2004)

VDI 2219: VDI-Guideline 2219 — information technology in product development — introduction
and usage of PDM systems. Beuth, Berlin (2002)

VDI 2221: VDI-Guideline 2221 — systematic approach to the development and design of technical
systems and products. Beuth, Berlin (1993)

VDI 5600: VDI-Guideline 5600 — manufacturing execution systems (MES). Beuth, Berlin (2007)

Welp, E.G., Labenda, P., Bludau, C.: Usage of ontologies and software agents for knowledge-
bases design of mechatronic systems. In: Proceedings of the 16th International Conference on
Engineering Design (ICED 07), Paris, 2007

http://dx.doi.org/10.1155/2011/154798
https://www.hindawi.com/journals/ijae/2011/154798/

Part 11
Production System Engineering

Chapter 5
Fundamentals of Artifact Reuse in CPPS

Arndt Liider, Nicole Schmidt, Kristofer Hell, Hannes Ropke,
and Jacek Zawisza

Abstract Recent research and development activities within the field of production
system engineering and use focus on the increase of production system flexibility
and adaptability. One common issue of those approaches is the consideration of
hierarchical and modular production system architectures where the individual
components of the system are equipped with certain functionalities and information.
Up to now there is no common understanding about what a component can
constitute, i.e. which parts of a production system can be regarded as components
within the hierarchy and which functionalities and information are assigned to it.
This gap will be closed within this and the subsequent two chapters.

They will at first discuss the relevant layers of components in a production
system, then the types of information required to be assigned to a component on
the different layers to establish a digital representation of the component, and at
last the description means exploitable to represent the identified information in the
different life cycle phases of a production system.

This chapter in particular will consider hierarchies of production system compo-
nents and their life cycle. Based on a literature survey and practical experiences
candidates for hierarchy layers and their identification criteria are named. In
addition, main life cycle phases of production systems are discussed.

Keywords Production system hierarchy ¢ Industrie 4.0 component * Administra-
tion shell ¢ Life cycle phase

A. Liider (2<) ¢ N. Schmidt
Faculty Mechanical Engineering, Otto-von-Guericke University, Magdeburg, Germany
e-mail: arndt.lueder @ovgu.de; nicole.schmidt@ovgu.de

K. Hell » H. Ropke ¢ J. Zawisza

Volkswagen Aktiengesellschaft, Wolfsburg, Germany

e-mail: kristofer.hell @volkswagen.de; hannes.roepke @volkswagen.de;
jacek.zawisza@volkswagen.de

© Springer International Publishing AG 2017 113
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_5

mailto:arndt.lueder@ovgu.de
mailto:nicole.schmidt@ovgu.de
mailto:kristofer.hell@volkswagen.de
mailto:hannes.roepke@volkswagen.de
mailto:jacek.zawisza@volkswagen.de

114 A. Liider et al.
5.1 Introduction

Production systems all over the world are facing similar challenges. At first, the
number of competitors, aiming to gain visibility by the same customers, is rising.
This can be seen by the increasing growth of global trade by 6% every year—for
the last 25 years (Schmale 2015). Thus, producing companies are trying to offer
more products, product types, and variants of the same product type to optimally
fulfil customer requirements. For example, car manufacturer Volkswagen offered 10
different car models in 1990 and 19 ones in 2016 (not including car model derivates
like limousines and convertibles). In parallel, the producing companies are reducing
the life cycle of products being able to respond to changing customer requirements
much faster. Whereas the first generation of the VW Golf has been available for 9
years, the sixth generation was only available for five.

The second challenge is based on production system technology development.
The pursuit of product variety is applied within the customer market and also in
the market of production technology and production system equipment including
technology breakthroughs like additive production technologies. Hence, producing
companies have to monitor trends in production technology and production system
equipment development to identify possibilities, which can improve their production
systems regarding quality and economical aspects.

Facing both challenges forces production systems to increase adaptability and
flexibility related to producible product portfolio, order volumes, and production
system resources while trying to improve the economic impact of the production
system over its complete life cycle.

To cope with this problem different development directions are considered. An
interesting one from the automation point of view is the Industrie 4.0 initiative. It
aims (among others) at developing methods, tools, and systems enabling production
system owners and developers to handle system complexity and to increase resource
efficiency within the process of improving production system adaptability and
flexibility (Kagermann et al. 2013). Therefore, a new production system architecture
and a new production system component structure are under development. A first
result of this development is the Reference Architecture Model Industrie 4.0 (RAMI
4.0), (Kagermann et al. 2013). This model combines the production system life cycle
with the control hierarchy and the value streams relevant for production.

One key element of RAMI 4.0 is the Industrie 4.0 component. As indicated in
(Vogel-Heuser et al. 2015) the implementation of Industrie 4.0 components can
utilize the CPPS paradigm resulting in a hierarchy of CPPS nesting one CPPS within
another. Thereby, each CPPS is an Industrie 4.0 component on its own.

In (VDI 2015) structural, functional, and information related requirements on
an Industrie 4.0 component are collected especially including the need to combine
objects of the physical world and the virtual world, which are related to the same
component of a production system. Thus, an Industrie 4.0 component shall have

5 Fundamentals of Artifact Reuse in CPPS 115

Fig. 5.1 Industrie 4.0 Industrie 4.0 component
component following 1

(Kagermann et al. 2013) 1

Resource
Manager

a virtual representation of itself containing all relevant information related to the
physical, functional, and behavioral properties of the represented physical object
(see Fig. 5.1).

In order to properly design Industrie 4.0 components the virtual representation
has to be filled with information. But depending on the granularity of the component
within the hierarchical system architecture as well as depending on the life cycle
phase this information might be completely different.

Following research question RQ M1 described in Chap. 1, it is of interest
to identify requirements and architectures for Industrie 4.0 component modelling
addressing the multi-disciplinary nature. Considering research question RQ M2, it
is necessary to have a look at the information creation and use of any Industrie 4.0
component throughout its complete life cycle. Finally, following research question
RQ C2, it is relevant to link such multi-disciplinary information enabling a digital
shadow of the Industrie 4.0 component.

A representative example is an industrial robot applied within a welding shop of
a car manufacturer which consists of several welding cells. Both, the robot and the
welding shop, can be considered as an Industrie 4.0 component. During engineering
phase, relevant aspects for a robot are its mechanical and electrical construction.
Their corresponding digital shadow can be obtained from ‘mechanical engineering
information’ (MCAD) and ‘electrical engineering information’ (ECAD). The indi-
vidual instances of these information types are usually stored as drawings like TIFF
or JPEG or as special engineering files like STP or JT. For the complete welding
shop no detailed mechanical and electrical engineering is made, instead information
types like a list of used resources, resource throughput Key Performance Indicators
(KPIs), and costs KPIs are of interest, which can be coded by description means like
CSV files. During the operation phase the robot motions are controlled exploiting
detailed robot control program instances, while at welding shop level the order
assignment to the welding shop is relevant based on B2MML file instances. And

http://dx.doi.org/10.1007/978-3-319-56345-9_1

116 A. Liider et al.

finally, during the removal of the production system, within its End-of-Life phase,
KPI of interests is the robot’s degree of abrasion, to decide about its reusability, and
meterials, to consider recycling possibilities. In contrast, for the welding shop, its
transferability to another location or country can be discussed.

Up to now there is no available approach, enabling engineers to decide about the
right information set to be covered by an Industrie 4.0 component and to decide
about applicable implementation technologies. These open issues will be tackled
within this and the subsequent two chapters.

Therefore, the main research question of these chapters is the following: What
are the requirements on the capabilities of Industrie 4.0 components to create,
manage, and use information along its complete life cycle.

To answer this main research question three research questions need to be
addressed beforehand:

Research question 1 What are relevant layers of Industrie 4.0 components in a
production system? Which layers can be considered at general and in which of
them can Industrie 4.0 components be found?

Research question 2 What is the life cycle of an Industrie 4.0 component?
Which main phases are necessary in this life cycle to distinguish an Industrie
4.0 component from their information content? What are general capabilities to
reuse information between life cycle phases of the same or of different Industrie
4.0 components?

Research question 3 What types of information must be assigned to an Industrie
4.0 component on the different layers to be covered by the virtual representation
throughout all life cycle phases of a production system? Are these information
types characteristic for the different layers?

Research question 4 Which description means are exploited to represent the
information types in these life cycle phases? Are there special description means
related to the different layers?

The named research questions are interrelated to the general research questions
identified in Chap. 1. In addition, they will be addressed not only in this but also in
the subsequent two chapters.

This chapter focuses on the discussion of Research questions 1 and 2. It will
develop a hierarchy of potential Industrie 4.0 components, describe their life cycle
and will give insights into the dependencies of life cycles of different Industrie
4.0 components. Thereby, the research questions RQ M1 and M2 of Chap. 1 are
addressed. It should be noted, that the Industrie 4.0 component hierarchy subsumes
elements like components. In this context the same words have a different meaning.

The following Chap. 6 discusses Research question 3. Here, the different
identified life cycle phases of Industrie 4.0 components are considered in detail.
For each phase, information types relevant within them are collected and discussed.
Thereby, the research questions RQ M2 and C2 of Chap. 1 are targeted.

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1

5 Fundamentals of Artifact Reuse in CPPS 117

Finally, Chap. 7 is considering Research question 4. Here, description means for
the different information types are named. Out of them, a set of description means is
selected potentially being able to represent all relevant information for an Industrie
4.0 component and, thereby, being a starting point for the implementation of the
digital shadow of Industrie 4.0 components. Thus, it will be related to the research
questions RQ M1 and C2 of Chap. 1.

Since an exhaustive discussion of all possible kinds of production systems goes
beyond the scope of this chapter, the research questions will be only validated
against the background of discret manufacturing processes and the mixed-model-
manufacturing-lines applied within them. This decision is based on the one hand
on the scope of the Industrie 4.0 approach and on the other hand on the practical
experiences of the authors.

To answer the research questions the chapter is structured as follows. In Sect. 5.2
the applied research approach is described. The first research question is answered
in Sect. 5.3. Therefore, the identified layers hosting Industrie 4.0 components are
described. Afterwards, in Sect. 5.4, the life cycle of a production system is sketched.
Here, the main phases are given. With a summary the chapter ends.

5.2 Approach

In order to identify requirements on capabilities of Industrie 4.0 components to
create, manage, and use information along their complete life cycle the following
three research steps have been conducted.

At first, the different layers of manufacturing systems needed to be identified.
Therefore, various kinds of hierarchical structures of production systems have
been discussed on the basis of a literature survey. In addition, the structure of
different production systems used in automotive industry has been evaluated on a
practical level. As a result, a generic hierarchical production system architecture
has been developed that characterizes the functionality of each production system
hierarchy layer. This generic architecture has been verified by mapping several other
production systems to it, based on expert discussions.

In the next step, a general model of a production system life cycle, consisting
of three general life cycle phases and its sub-phases, has been applied to identify
relevant information considered within them.

As a result, a classification space for Industrie 4.0 components has been
developed covering the three dimensions production system hierarchy, life cycle
phases, and information description means. Within this space the different Industrie
4.0 components can be placed (see Fig. 5.2).

http://dx.doi.org/10.1007/978-3-319-56345-9_1

118 A. Liider et al.

Hierarchy layers

Life cycle phases

Fig. 5.2 Classification space for Industrie 4.0 components

5.3 Generic Production System Architecture

5.3.1 Literature Review

This section provides an overview of the different production system architectures
described in recent literature. The architecture types are analyzed with respect to
their layer structure. The main findings of this literature review are described below.

First of all, technical systems can be classified by various views, also named
aspects (DIN 2010), which are divided into the following four categories:

* Local aspect (focused on spatial relations between objects),
* Function aspect (focused on functional context of objects),
* Product aspect (focused on constructional relation between objects), and
» Further aspects (with focus on different aspects of objects).

The literature review showed that there is no consensus on which of these views
shall be applied for the hierarchy definition of production systems, instead depend-
ing on the field of interest researchers have defined diverging layer classifications
that can be mapped to four named aspects:

* Local aspect: The first set of generic production system architectures was derived
from real production systems that are currently used in various industries. These

5 Fundamentals of Artifact Reuse in CPPS 119

architectures are based on a factory planning point of view and consist of layers
such as networks, sites, segments, systems, cells, and stations. Generally, these
layers represent a specific manufacturing resource of a production system. Two
examples of this category can be found in Wiendahl et al. (2007) and Scholten
(2007).

* Function aspect: The second set takes a function-oriented approach. The layers
of these generic production system architectures represent technological manu-
facturing functions. Exemplary layers are cells, main function groups, function
groups, and sub-function groups. Three representatives of this category can be
found in Kiefer (2007) and Meling (2012).

* Product aspect: The third set of architectures focuses on the individual compo-
nents of a production system that define its physical behavior. This mechatronic
device-centered perspective defines layers such as function units, devices, and
device functions. Three representatives of this view point can be found in
Lindemann et al. (2009) and DIN (2013).

* Further aspects: The last set of architectures combines the above mentioned
aspects to an integrated structure. Two examples of this category can be found in
VDI (2015) and NA35 (2003).

In summary, a variety of different layer types is defined in literature which
represents both functions and physical objects. The physical objects range from
large physical system such as production networks to small and tangible objects
such as mechatronic devices and mechanical parts.

The architecture of production systems for manufacturing industry must meet
certain requirements for reuse:

 vertical integration,
* consistency in engineering, and
¢ functional connection.

The comparison of requirements for reuse with existing production system
architectures demonstrates that current production system architectures do not
focus on component reuse (see Table 5.1). In addition, it is hard to give an
exhaustive representation of the practically applied layers inside a production
system. Furthermore also RAMI 4.0 does not provide any element classification
enabling reuse of elements throughout all different parts of a production system.

Finally, the architecture of interest has to represent different sets of information
in the different layers. Therefore, the major challenge is to define the least number
of layers with the differentiable information volumes. Finally, there is the need to
complement existing production system architectures.

5.3.2 Hierarchy Layers

Based on the literature review and practical experiences gained within expert
interviews, an all-embracing and object-oriented set of production system hierarchy

A. Liider et al.

120

juerjdwoo A[nj ‘ueridwos Afrensed ¢ querdwos-uou ()

C 0 0 4 (4 4 0 0 suonouny pI[[Y[nj Y3 03 SUIPIOIOE PASUBLIE I8 SILIBIQI]
14 C 4 14 14 ¥ 0 7 SIoKe[ay) 0) suonounj/sassedold Jo uornginje snonsiquieu)
UOT}OUUO0D
¥ 4 C 4 v 4 0 T uononpoid mopj dAnowone ue Jo sanreuonouny ay) dejy E—.Hovoz:m
s1oAe] 03
0 0 4 T 4 4 0 (0 SUOISIOop USISIpP Puk BIEP JO 0UIJAI juauniredop uononpoig
C 14 4 z z T 0 y orow Auew pue Surreeuidud juerd 0} INHO WOIj AJ[IqeIojsuel],
0 14 ¥ 14 14 14 0 ¥ SQOTAQP JTUOIIRYOAUI JO 93eS)
0 4 14 14 C 14 0 T SOLIRIQI] 9[qesh A[BSIOATUN)
Surreourua
sjuauodwod s)1 pue ur
0 4 ¥ T z T 0 4 wa)sAs uononpoid e Jo 97040 9317 oY) Inoy3noxy) d[qeorddy Aoudlsisuo))
IoAe] aures ay) 0) sjuawredop
0 0 0 0 0 0 0 0 uononpoid JUIIP JO SIUAW[S J[qeredwod JO UOHBIO[[Y
diysuonear au0-03-9uo € YIm wa)sKs uononpoid
0 4 C T 0 0 0 C ue JO SI9AR] Y} 0) SJUSWIIA JO UOINQLIIe snongiquieu)
0 0 4 T 0 0 4 0 swouniedsp uononpoid sATjoWOINE [[B JOJ INONIS [BOTIUIPT
0 0 0 0 0 T 0 0 swaIsAs uoronpoid Jo s1oke[JUBAS[RI [[€ JO UOTIBIUSAIJ
4 4 C 0 0 T 4 C uononpoid Mo 9ATJOWOINE UT SIQAR] JO UOTHIUGAP Ied[D)
uoreIdojur
0 C C (4 4 4 0 ¢ uononpoid MOp dAOWOINE UT SJUSW[Q [[B JO UOHIUYIP Jed[D) [eoTIoA
0 14 C ¥ 14 v 0 % $9s59001d pue sjoejriIe u3Isop FunNsIxa Jo UOHBIIPISUOD)
14 ¥ 14 14 14 14 4 4 s300fo1d-piegumouq 2 -proyuaais 1oy o[qedrddy
0 4 C T 14 14 ¥ 4 uononpoid mopj aanowoine 10y d[qedrddy [eI1oUdD)
(% S6

mweN JAVY ~ VSI uuewopur] SUlPN I9Jry [YRPUSIAY USYOYOS

SIUQWDL WA)SAS uononpoid Jo asnar 10J sjuowaanbay 'S IqeL

5 Fundamentals of Artifact Reuse in CPPS 121

layers has been identified. This set of hierarchy layers serves to locate Industrie
4.0 components in a production system. For the identification of the objects, which
make up each layer, different criteria were defined. The primary criterion is the
technical functionality of each object. In the context of Industrie 4.0, technical
functionality refers to the function an object contributes to the overall function of
a production system. This can be a value-adding function, a function that supports
value-adding functions, or a function that is required to supervise, control, diagnose,
and maintain a production system. Additionally, the following subordinate charac-
teristics of a production system have been considered: the hardware modularity,
the control architecture, the control information, the relations to human labor,
the relevance of a production system within the different engineering phases and
activities, and the relations to the complexity of the product that is manufactured
within a production system. The set of hierarchy layers that has been identified
based on these criteria is shown in Table 5.2 and Fig. 5.3.

To assign an Industrie 4.0 component to one of the defined hierarchy layers, two
alternative matching procedures can be applied. The first alternative is to apply a
bottom-up approach. Starting with the lowest hierarchy layer (no. 1) the considered
component is compared to the functional characteristics of each layer, until a layer
is found whose characteristics exceed the required functionality. Alternatively, it is
also possible to match an Industrie 4.0 component to a specific hierarchy layer using

Table 5.2 Hierarchical structure model

Layer Characterization
9 Production network Includes the strategic and long term sales planning of the
products of a company
8 Factory Considers the entire range of activities and facilities required to
produce end products or an intermediate good
7 Production line Enables a distinction among different sections of a production

system which are producing and processing components of the
end product using different manufacturing technologies

6 Production line Connection of different Work Units via buffers. Thereby,

segment disturbances within the product/component/material flow can

be controlled

5 Work unit Executes the smallest non-divisible process in producing the
end product

4 Work station Represents the manufacturing related realization of a set of
value adding and auxiliary functions required for the smallest
non-divisible process

3 Function group Represents the technical realization of one value adding or
auxiliary function required for the smallest non-divisible
process

2 Component Enables the smallest non-divisible process

1 Construction element Are not enabling the fulfillment of the smallest non-divisible

process directly but enable the Component to provide their
functionality

A. Liider et al.

UOIBN[RAD SSAUAANIAYR AJfenb pue s103[qo 1oAe] Arejdwoxe Surpn[our a1nonns [2A9] AYoIeIdly walsAs jonpold €S “S1g

sjuswa|z

o
1o uoponssuoy

unb Buin|b jo ajzzoN Japmod o1jejsouos|3 juiof jeuonejos ebuly |laJpuew Buimelq

122

sjusuodwo)
0uU0) =
(Jopjoy uelq E:w:_oasow
+ [aJpuew Buime.q) $S9001d =
unb Buinje unb Aeidg unb Buipiep Bale 90BUNS SAIOY sjusuodwos
D abexoed asoH+ dnoug uonouny
unb Buinig unb Aesdg unb Buipjep+ (ped doy) jooy Buimeiq
+10q0y +10q0y joqoy
3
» Q uoneIS YoM (| ¥
b4 [(1ed wonoq pue doy)
n._. .m uonejs Buinjo 1190 10q0Y 1192 Buipjopn |00} Buimelq
— \w.lw =3 » —
4 a
= 1un %40,
m. Jun Buunjoeynuew o HUNHOM () §
< Alquissse jooy sul| }e004B3|) yed Apoq aja1yapn N sjoo} (Buissaud) jo 1o
— lo| & — - —
M) 8l @
.m m jJuawboeg 9
W S JuswBas Bulnjoenuew aulm uondnpolid
% uonoas aul| Alquessy aul| 1eod-do| Apoq sjo1yap ssauid Bumelq
3| e =
o
m aurm uonanpoud || 2
-
) aul| Alquassy aul Buneo) doys Apog aul| Buissaid
= L L L
o4 doys Alquisssy - doys juied - doys Apog doys ssaid —
[
- ol L fioyoey|| 8
o< (o
3818 —
Sc nm
m. Q S.
- |2 I pue W30 oA} v siomjaN uononpoud || 6
3
- J -~

(senuadoud
|elsa)ew jo abueys

Apoaaip WApoaapul

(senuadoud jeusjew jo abueys ‘Buiwioj ‘Bunesedas) solsiia)oeleyd jonpoid ‘Burwioy ‘buesedss)

119)0€IRYD JONpoid

ssauaAnoaye Ajjenp

5 Fundamentals of Artifact Reuse in CPPS 123

a top-down approach. Every hierarchy layer can be understood as an aggregate of
all lower layers. Thus, a component can be assigned to the highest layer (no. 9) that
matches its functional characteristics.

To identify the information that is required to perform the matching process
described above, a detailed process analysis of production system life cycle phases
was conducted. The analysis is based on the procedure described in Schiffler et al.
(2013) and focuses on the functional characteristics that determine product related
value-adding processes.

The value adding functionality of each Industrie 4.0 component serves as
the main criterion to determine the associated hierarchy layer. However, certain
manufacturing resources of production system (e.g. press shop, body shop, assembly
shop) exhibit functional characteristics that can be assigned to multiple layers.
Therefore the functionality criterion is companied by resource life cycle information
that ensures a conclusive layer distinction. Thereby, a clear separation of layers and
a clear assignment of Industrie 4.0 components to layers get possible.

The architecture depends on the complexity of the production system. Complex
production systems partially require supplementing layers. Furthermore the archi-
tecture can contain cross directional structures like work groups or protective circles.
Cross directional structures are not useful for defining layers mainly due the lack of
unambiguous attribution.

This criteria enrichment process results in a detailed characterization of each
hierarchy layer that allows a practical distinction of Industrie 4.0 components used
in manufacturing (particularly automotive industry) environments. The function-
based identification criteria are presented below.

Construction Elements

The smallest and non-dismountable functional parts in a production system are
defined as construction elements. Construction elements empower the functionality
of components. They are able to influence product characteristics, but cannot indi-
vidually initiate value-adding processes. One example demonstrating this element-
component-relationship is a rotary spray painting bell and a paint atomizer. The bell
embodies an individual construction element of the paint atomizer component.

Components

Components can be subdivided into process and control components. Control
components process electric signals. They are often used for diagnostics and
are not directly involved in value-adding activities. Process components support
manufacturing processes and influence product quality characteristics. These com-
ponents can be subdivided into value-adding components and non-value-adding
components. Value-adding components empower core value adding processes. A
list of these processes such as gluing or welding can be found in DIN (2003)
and VDI (1990). Non-value-adding components exclusively support to perform
the process realization. One example for such components are robots that are
used as mounting devices for value-adding components such as welding tools.

124 A. Liider et al.

Generally, all components that serve material-handling purposes are non-value-
adding components. Process components feature a predetermined range of functions
that can be parameterized and adapted to individual needs.

Function Group

Function groups are able to individually perform manufacturing processes or
supportive tasks (DIN 2003; VDI 1990). Generally, solely value-adding function
groups determine product quality characteristic. However, in certain circumstances
non-value-adding function groups also influence product quality. A handling device,
for instance, that positions parts to perform a gluing process is also responsible
for the quality of the gluing application. Faulty positioning might result in rework.
Additionally, specialized multi-functional devices are able to perform both value-
adding and non-value-adding activities. Most steel presses reshape and cut steel and
also have material handling capabilities.

Value-adding function groups are usually used to manufacture single parts and
typically incorporate some kind of robotic application that performs manufacturing
processes such as gluing or welding. Such processes need to be coordinated and
supervised by a control unit.

Work Station

Work stations aggregate multiple function groups that are required to manufacture
single parts or (sub)-assembly groups. They usually combine value-adding and
non-value-adding processes. For instance, multifunctional gluing work stations that
are used in automotive assembly for bonding window frames to the windshield
both position parts and perform the actual gluing process. Work stations such as
automated gantry manipulators or picking stations do not perform any value-adding
activities.

Work Unit

Work units perform multiple interrelated value-adding activities that are required to
manufacture a component of a final product. To complete a work order, all functional
activities that are performed within one work station are repeated “m”-times (REFA
1993). Work units define the product characteristics of a specific part or component.
All manufacturing activities are completed in a closed and spatially connected
system (e.g. door welding, sunroof assembly). Thus, a work unit embodies the
highest hierarchy layer that is able to directly influence product quality and that
determines the product characteristics of single parts or components. The range of
work station functions contains value-adding and non-value-adding activities.

Production Line Segment

Production line segments offer a defined and homogeneous range of functions and
provide a connected manufacturing structure. This structure is used to manufacture
part modules and components. The scope of a production line segment depends on
the vertical range of in-house manufacturing. Product quality characteristics are not
directly determined on this hierarchy layer. The control parameters of production
line segments are, for instance, assembly or body shop welding sequences.

5 Fundamentals of Artifact Reuse in CPPS 125

Production Line

Production lines serve as autonomous and closed systems that are able to produce
physical output (Laucht 1995). The range of functions provided by a production
line exhibits homogenous characteristics and enables to manufacture components,
final products, or product segments. The characteristics and scope of a production
line depend on its spatial organization patterns. Usually, production lines require
personnel planning. They are often used in a just in time or just in sequence
production setting that is synchronized with internal and external entities that supply
intermediate goods.

Factory

Factories provide the entire range of functions that is required to manufacture an
intermediate good, a final product, a product segment, or an entire product portfolio
(REFA 1993). However, the range of specific functions of a factory depends on
individual company related characteristics. Factories require both tactical and oper-
ational planning. This includes tasks such as freight cost optimization, requirements
analysis, forecasting, material supply planning, and production scheduling.

Production Network

Production networks are responsible for strategic long-term distribution/sales plan-
ning (<10 years) and intermediate-term tactical planning (<3 years). In addition,
also operational interdisciplinary tasks such as order management, product data
management, and technical feasibility testing are performed on this hierarchy layer.

5.4 Production System Life Cycle

To efficiently identify the relevant information needed to be assigned to the
components of the different layers it is essential to understand completely the life
cycle of a production system with its different phases and the dependencies among
them.

The life cycle of production systems has been considered by several authors.
Attri and Grover (2012) have provided a detailed survey on different models for
production system life cycles summarizing them to the main phases initiation
of system, design and development of system, operation of system, revision of
system, and termination of system. Wiktorsson (2013) has a more limited view
on the production system life cycle with only production system engineering and
production system operation as main phases. Beyond this view also the End-of-Life
of the production system is essential following the reduction of a production system
life cycle and the need of sustainable use of natural resources.

Thus, the authors decided to focus on the three general but essential life cycle
phases of a production system: engineering, operation and maintenance, and End-
of-Life (VDMA 2013; VDI 2005). They are aware that there are much more
distinguishable engineering phases. As Lindemann has identified in (Lindemann
2009), the life cycle of products (and thereby also production systems) is a hierarchy

126 A. Liider et al.

of different phases, activities, and actions. This hierarchy can be considered in
different level of detail. In addition, a cyclic life cycle structure is reached if redesign
is also taken into consideration. The selected very low granularity follows the
aim of enabling a broad application of the identification criteria for Industrie 4.0
components.

The engineering phase covers all activities related to the production system
before its complete physical existence. It ends with a completely built up/installed,
commissioned (see Chap. 15), and ramped-up production system. Within this phase
all engineering activities related to a production system, as named e.g., in Liider
et al. (2011), are included. Examples of the engineering activities are the product
design including the definition of the bill of material and bill of operation of the
product to be produced with the production system, the planning of the overall
production process and the technologies used within, the functional engineering
covering activities like detailed mechanical and electrical engineering of the
production system components, and the control system design and programming
as well as the commissioning and test of the production system.

The subsequent operation and maintenance phase of the production system
covers the complete period of the use of the production system to manufacture
products. During this phase the production system is controlled, monitored, repaired
if necessary, and partially rebuilt if modernization is necessary in order to adapt the
production system to different sets of products, production technologies, etc..

The last phase of the production system life cycle is the End-of-Life phase of the
production system. It covers the period of the production system between the end of
the production of the last product and the restoration of the so-called greenfield; It
is the complete removal of the production system. During this phase the production
system is disassembled, possibly completely or partially reused, and/or recycled.

The resulting structure of the life cycle of the production system is depicted in
the upper part of Fig. 5.4.

But the use of information is not only relevant within the life cycle of the actual
production system—The information can also be used within the life cycle of other
production systems [see VDI/VDE (2014)]. With respect to this chapter the impact
of the life cycle of one production system on the life cycle of another’s production
system life cycle is considered.

As shown in Fig. 5.4 different cases of utilization of information are considered
ranging from the use of engineering information in the same engineering phase (®
in Fig. 5.4) over use of information of the operation phase within the engineering
and operation phases of another production system (® and ® in Fig. 5.4) to the
use of engineering information in the End-of-Life phase of the same production
system (® in Fig. 5.4) or End-of-Life information in the engineering of another
production system (® in Fig. 5.4). The End-of-Life phase—as the last phase—has
more cases than the other phases since, at first, it can use the information created
in the previous phases and, secondly, it directly connects the life cycle of the actual
production system with the life cycle of other production systems.

http://dx.doi.org/10.1007/978-3-319-56345-9_15

5 Fundamentals of Artifact Reuse in CPPS 127

. Operation & .

q q Operation & .
®

¢

.‘ % Operation &
Engineering ’ Maintenance ’

®

¢
)

@ Re-use within Engineering Phase @ Re-use within Operation & Maintenance @ Re-use of artefacts from Operation & Main-
Phase tenance Phase
@ Re-use in Engineering Phase of Re-use in Engineering Phase of other Re-use of artefacts from Engineering
other projects projects (feedback-loop) Phase
@ Re-use in Operation & Maintenance Phase @ Re-use in Operation & Maintenance @ Re-use in Operation & Maintenance
of same or other projects Phase of other projects Phase of same or other projects

Re-use in Engineering Phase of same or
other projects

@ Re-use within End-of-Life Phase
Re-use in End-of-Life Phase of other
projects

Fig. 5.4 Reuse of physical and information artifacts in production system life cycle

For each of the nine identified layers and each phase of the three life cycle phases,
the relevant information shall be named completing the matrix depicted in Fig. 5.5
and answering the second research question.

5.4.1 Characteristics of Engineering Phase

To identify the information relevant for Industrie 4.0 components in engineering
and to assign this information to the presented granularity layers of the components,
a detailed look at different engineering approaches and tasks is essential. The focus
of the research is on the analysis of the dependencies between the granularity layers
and the life cycle phases. In order to analyze the dependency in more detail, the point
of time in the life cycle at which the artifacts are generated or are used should be
considered. Therefore, the engineering phase has to be divided in smaller parts to be
able to assign the identified artifacts more precise to the point of time at which they
are generated or are used. Thus, the characteristics of the engineering are described
in the following paragraphs to divide the phase into meaningful subphases.

The guideline VDI 2221 (VDI 1993) is an important general approach for
engineering. This guideline separates the whole process into different tasks. The
tasks end with defined results. The first results have an abstract character, e.g.
function structures, and become more and more specific in later phases, e.g. fixed
layouts. Thus, the process can be divided in four phases which are different
depending on industry or use case.

128 A. Liider et al.

Laver Engineering- Operation- & End-of-Life-
Y Phase Maintenance Phase Phase

9. Production
Network

8. Factory

7. Production
Line

6. Production
Line
Segment

5. Work Unit

4. Work
Station

3. Function
Group

2. Component

1. Construction|
Element

Fig. 5.5 Aurtifacts during the different life cycle phases need to be identified

Exploiting the general guideline VDI 2221 (VDI 1993), other engineering
approaches like NA35 (2003), Hoffken and Schweitzer (1991), VDIa (2010), Gepp
(2014), and Urbas and Krause (2012), project management guidelines like Reschke
and Svoboda (1984) and several practical approaches in plant realization, the
engineering process can be characterized in a more specific way (see Fig. 5.6).

The engineering phases contain defined tasks. The phase of concept is focused by
invest decisions, general studies and proposition. If this concept is feasible, rough
planning will be started. The phase of rough planning is focused by dimensioning
of production system and definition of processes. The next phase is detailed
planning during which the defined processes are assigned to related single functions.
Also, components relevant to perform these functions are preselected. As a result,
specifications are ready to call for tenders. Specifications contain among others
a fixed budget, layouts, a value chain process, a preselection for components,
requested suppliers, relevant components to perform needed support functions. The
following phase of design is often operated by a general contractor. In this phase,
the necessary components are defined. There are certain parts and tools which have
to be newly designed for a special purpose at this stage. The phase of design can be
divided in separate disciplines, i.e. mechanical, electrical, information technology
and fluidics design, see more in VDI (2006). As a result, plans and documentation
needed to fabricate the designed plant are finished. In the following two phases
of engineering, fabrication and commissioning, the components and equipment are
ordered, assembled to a functioning plant and commissioned. Commissioning ends

5 Fundamentals of Artifact Reuse in CPPS 129

and assembly

Commissioning The production-ready plant Documentation

Phases Results Tasks
Phase of concept The feasible plant Investment decision
Rough planning The admissible plant System/ process definition and
dimensioning

2
= Detailed planning Ready to call for tenders Function definition, preselection on
=] components
E
E Phase of design The constructible plant Component design
g
=
} Fabrication The functional plant Order required components/ parts

Operation Phase

(i

Fig. 5.6 Phases in plant engineering based on Gepp (2014), Hoffken and Schweitzer (1991),
Urbas and Krause (2012), Reschke and Svoboda (1984), and NA35 (2003)

with the rework of documentation due to actual realization and performance level.
The project is finished upon completion of final report and customer acceptance.

A challenge in present engineering projects is related to market pressure.
Time-to-market has to be as short as possible to be competitive. Thus, there are
special demands on information quality, handling, availability and transfer due to
parallelization of tasks. Much information created in one task has to be transferred to
other disciplines at a defined date in order to conclude the other tasks. Parallelization
of tasks and transfer of information and data is supported by tools of the digital
factory, see more in VDI (2011). Vice versa, the needed information transfer makes
high demands on applied tools of digital factory. To deal with the challenge,
identification of relevant information and its relations is necessary, especially in
engineering.

Exploiting the design methodology for mechatronic systems VDI 2206 (VDI
20006) given in Fig. 5.7, a first characteristic of suitable information can be deviated.

Engineering starts with system design therefore needs information relevant
for the whole system, e.g. requirements, economical data, and proposition of
production system. In the domain-specific tasks, information related to these special
purposes is necessary. The information is highly dependent due to parallel design
of mechatronic components in each discipline. The information important at this
stage contains data for single components and function groups rather than system
information. Towards the end of engineering, during the system integration, the
relevant information emerges to system data, as the components are assembled and
interact in a system.

130 A. Liider et al.

requirements product

mechanical engineering >

electrical engineering

information technology

modeling and model analysis

Fig. 5.7 V model for engineering of mechatronic products (VDI 2006)

To summarize, in this section, an overview of general engineering approaches
and of the importance of the information identification and the handling in current
digital-supported engineering projects was given. The next Sect 5.4.2 deals with the
characteristics of the Operation and Maintenance Phase and the related demand on
information artifacts in this phase.

5.4.2 Characteristics of Operation and Maintenance Phase

The engineering phase of a production system concludes with the construction,
commissioning and finally the ramp-up of the physical production system (Schenk
et al. 2014). When the production system has eventually transitioned into a steady
state, it can be fully exploited (Attri and Grover 2012). In this phase, usually called
use phase or operation phase [see Dencovski et al. (2010), Schenk et al. (2014),
and Attri and Grover (2012)], the participating elements of the system need to
communicate with each other in order to be productive (VDI 2015).

The operation phase is characterized by a various set of control activities. First,
on one side of the spectrum, sensors and actuators need to be controlled in order to
perform physical processes on field level. This is usually realized by implementing

5 Fundamentals of Artifact Reuse in CPPS 131

programmable logic control (PLC). Second, there are control activities designated
to the allocation and supervision of manufacturing resources that are used for the
processes on field level. Those activities are performed by manufacturing execution
systems (MES). Finally, at the other end of the spectrum, there are activities
for planning and control of business and management tasks. The goal of these
control activities is the optimization of the underlying processes, while at the same
time considering the available resources. These tasks are executed by Enterprise
Resource Planning Systems (ERP). For further information, see Liider (2006), ZVEI
(2010), and Spath et al. (2013).

Production planning and control activities in operation phase have been described
by a broad set of authors. One of the most common and most frequently cited models
is the “Aachen Model of Production Planning and Control” originally published by
Luczak et al. (1998). It splits the activities into the three main categories network,
core and cross-sectional activities (see Fig. 5.8).

Since its first publication, the Aachen Model has been frequently updated and
is now continued by Schuh and Stich (2012), ensuring that its core principles are
still valid today. However, the model lays its focus mainly on the planning part.
Other authors have addressed this issue and developed models with a stronger focus
on production control. Two important contributors in the context of manufacturing
industry are Lodding (2008) and Dormer (2013). Lodding (2008) concentrates on
the configuration aspect of manufacturing control and thereby puts the emphasis on
control tasks, such as order authorization and capacity control. This allows tracking
of key performance indicators such as delivery reliability, material inventory, lead
time and equipment utilization. Dérmer (2013) on the other hand adds crucial
elements for highly individualized products in the manufacturing industry. Among
them are material delivery as part of the supply chain and resequencing of
production orders to optimize production efficiency and effectiveness.

In addition to the above-mentioned activities, the different aspects of the
automation pyramid need to be considered in order to break down production

Network activities Core activities cross-sectional activities

Network configuration Production programm planning = :E
o
Q
g . 2
£ g =
Network sales planning Production programm planning é g 2
=
5 g S
External procure-|| In-house pro- g 5
Network requirements planning ment planning || duction planning E
and control and control

Data management

Fig. 5.8 Production planning and control activities following (Schuh and Stich 2012)

132 A. Liider et al.

activities to field level and guarantee functionality, e.g. by ensuring compatibility
between the different systems and real-time capability of critical components. For
further information, see Vogel-Heuser et al. (2013) and Diedrich et al. (2011).

The foregoing shows that the control activities and therefore the information rel-
evant in operation and manufacturing phase are numerous and can be very different
from each other. Nevertheless, in order to implement the required functionalities into
Industrie 4.0 components they have to be integrated by the available implementation
technologies for control systems [see e.g. Lunze (2008), Kiehl (2007), Kis (2014),
Yang et al. (2014), and Leitao and Karnouskos (2015)]. A step towards this goal is
described in the following section.

5.4.3 Characteristics of End-of-Life Phase

Devaluations bring the production system’s operation phase to an end (Seliger et al.
2001). When all inherent flexibility and reconfiguration potentials are exhausted as
well as all upgrade and update possibilities (Wiendahl et al. 2015), the production
system has to be decommissioned, disassembled, removed, reused, recycled, and
disposed (Weber 2008; VDI 2005) to make room for another production system,
then, it is engineered to meet the changed requirements which come along with the
demand of producing new products or a new product mix for the customers. This last
phase of the production system life cycle is called End-of-Life phase (EoL phase).

The essential purpose of the EoL phase is to make room for a new production
system. But how it is removed depends on the further purpose and how the
production system (incl. its components and material) shall be treated in the end
of its life. Hence, the EoL phase is use case specific but general treatments, further
called EoL Scenarios, can be identified.

This chapter only focuses on those scenarios (representing the recovery of
physical artifacts—including disassembly) and excludes the (decommissioning)
activities which bring the production system into a safe state prerequisite to recover
the physical artifacts.

To depict the scenarios in its entirety the production system life cycle (as
described in Chap. 3) needs to be extended to get an overall loop—here, with the
earth and its natural resources as source and sink (see Fig. 5.9). It begins with
mining these resources, which are processed to raw material for manufacturing out
of it single components. Those components are aggregated to the production system
which is, then, producing products for the customers (use of the production system).
Due to requirement changes, like trends or technical progress (Seliger et al. 2001),
the use phase of this production system configuration ends. Finally, the production
system is disposed or incinerated which closes the loop. This life cycle comprises
other life cycles, like the life cycle of a component or of material, but these are out
of the scope of this article.

Even though, just disposing or incinerating the production system is also a loop,
all inherent value of the production system and its components is lost, because all

http://dx.doi.org/10.1007/978-3-319-56345-9_3

5 Fundamentals of Artifact Reuse in CPPS 133

E,

o -

Production_of DE
/ Raw Material \ 7E

v
Component |

Manufacturing
=

Mining of
Resources

/

N

Production
System
’Engineering

EolL 1: Material Recovery

\

=
: X | Use of the
Incll:ﬁ:laftillfn’ eco\‘e‘ Production
“\?‘ System

End-of-Life

Fig. 5.9 Extended life cycle of a production system: End-of-Life scenarios of production systems
[based on VDI (2002), Duflou et al. (2008), Pahl et al. (2007), and Seliger et al. (2001)]

phases (production of raw material, component manufacturing etc.) has to be done
a second time. For that reason, this is not considered in this article. Instead the
following EoL scenarios are considered:

EoL 1—Material Recovery: This comprises the recovery of material, the com-
ponents are made of, by dissolving the component and its structure (Duflou et
al. 2008). It is applied when devaluations had brought the operation phase of
a production system to an end, and the technology of the components of the
production system is obsolete or the component is too worn to consider it for a
second life.

EoL 2—Component Recovery: This comprises the reuse of used components
of the production system, because the life span of those is longer than the life
span of the production system (Huber 2001). It is applied when devaluations had
brought production system’s operation phase to an end, but the technology of the
components is still up-to-date. This scenario can be divided into direct Compo-
nent Recovery (EoL 2a) and Component Recovery after remanufacturing (EoL
2b); Remanufacturing comprises the activities disassembly, inspection, cleaning,
reprocess, testing, reassembly, and storage.

EoL 3—Production System Recovery: This comprises the reuse of the used
production system. It is applied when the production system needs to be relocated

134 A. Liider et al.

due to devaluations, i.e. changed requirements caused by globalization, but the
technology of the production system is still appropriate for its purpose. This scenario
can be divided into direct Production System Recovery (EoL 3a) and Production
System Recovery after remanufacturing (EoL 3b).

Decommissioning and disassembling activities lead up to those recovery scenar-
ios.

Since natural resources are used extensively, pollutant emissions are generated in
high amount, and the ecological awareness of the people is increasing, nowadays,
(VDMA 2015) a consideration of manufacturing from a sustainable point of view
is inevitable (Schultmann 2004). So, it is of economic and environmental interest to
choose an appropriate loop to close the life cycle of a production system. This loop
should be kept small to recover the inherent value of the production system and
its components and material (Duflou et al. 2008; VDMA 2015). The more inherent
value can be remained by recovery, in general, the better, because less energy is
consumed, less resources are depleted, and less waste is generated (Duflou et al.
2008).

5.5 Summary and Outlook

This chapter has analyzed what are relevant layers of Industrie 4.0 components
in a production system. In this context nine layers for Industrie 4.0 components
were identified and characterized by generalizing an exemplarily automotive man-
ufacturing environment and validating this structure in various industrial systems.
Figure 5.10 shows a comparison of hierarchy layers. The defined layers allow an
unambiguous attribution of elements to the layers of a production system with
a one-to-one relationship. Consequently, the developed hierarchy is applicable
for production systems with comparable complexity and research question 1 is
answered.

The developed hierarchy serves as a foundation for the reusability and modular-
ization of Industrie 4.0 components. First of all, the modularization aspect refers to
the construction phase. Components that have been previously used can be easily
integrated in new construction concepts. This process leads to lower equipment
development cost. Secondly, modularization also offers saving potentials with
regard to maintenance activities. Outdated or broken modules can be exchanged
with minimal effort. In general, the reusability of engineering artifacts creates a
tremendous equipment cost reduction potential. The experience gained from tested
and successfully implemented components gradually improves the engineering
quality of components implemented in the future (e.g. equipment availability/down
time).

5 Fundamentals of Artifact Reuse in CPPS 135

ISA 95 Hierarchical Production RAMI 4.0
System Structure

IHD Connected World
Enterprise 9 Production Network <
Site 8 Factory Enterprise
p7 Production Line <
Area 6 Production Line Segment Work Unit

Production Line

& Work Unit [
Work Cell 4 ‘Work Station Station
b3 Function Group Control Device
Device o Component
p2 = Process Components <
= Control Components > Device
p1 Construction Element <

Product

Fig. 5.10 Comparison of hierarchy layers

Furthermore, this chapter provides the life cycle of an Industrie 4.0 component.
This creates the necessary conditions to identify the relevant information needed to
be assigned to the components of the different layers in Chap. 6.

References

Attri, R., Grover, S.: A comparison of production system life cycle models. Front. Mech. Eng. 7(3),
305-311 (2012)

Dencovski, K., Lowen, U., Holm, T., Amberg, M., Maurmaier, M., Gohner, P.: Production
system’s life cycle-oriented innovation of industrial information systems. InTech, http://
cdn.intechopen.com/pdfs-wm/10837.pdf (2010). Accessed 01.04.2016

Diedrich, C., Liider, A., Hundt, L.: Bedeutung der Interoperabilitit bei Entwurf und Nutzung von
automatisierten Produktionssystemen. at — Automatisierungstechnik. 59(7), 426438 (2011)

DIN 8580: Fertigungsverfahren — Begriffe, Einteilung. Beuth Verlag, Berlin (2003) (in German)

http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://cdn.intechopen.com/pdfs-wm/10837.pdf

136 A. Liider et al.

DIN 81346-1: Industrielle Systeme, Anlagen und Ausriistung und Industrieprodukte — Struk-
turierungsprinzipien und Referenzkennzeichen. Beuth Verlag, Berlin (2010) (in German)

DIN 62264-1: Integration von Unternehmensfithrungs- und Leitsystemen. Beuth Verlag, Berlin
(2013) (in German)

Doérmer, J.: Produktionsprogrammplanung bei variantenreicher FlieBproduktion. Untersucht am
Beispiel der Automobilendmontage. Springer Gabler, Wiesbaden (2013) (in German)

Duflou, J.R., Seliger, G., Kara, S., Umeda, Y., Ometto, A., Willems, B.: Efficiency and feasibility of
product disassembly — a case-based study. CIRP Ann. Manuf. Technol. 57(2), 583-600 (2008)

Gepp, M.: Standardisierungsprogramme als Ansatz zur Steigerung der Wirtschaftlichkeit im indus-
triellen Anlagen-Engineering. Schriftenreihe Innovative Betriebswirtschaftliche Forschung und
Praxis, vol. 418. Dr. Kovac Verlag, Hamburg (2014)

Hoftken, E., Schweitzer, M. (Hrsg.): Beitrige zur Betriebswirtschaft des Anlagenbaus. Schmalen-
bachs Zeitschrift fiir betriebswirtschaftliche Forschung Sonderheft. Diisseldorf, Verl.-Gruppe
Handelsblatt, vol. 28 (1991)

Huber, A.: Demontageplanung und -steuerung: Planung und Steuerung industrieller Demontage-
prozesse mit PPS-Systemen. Dissertation, Otto-von-Guericke University Magdeburg (2001) (in
German)

Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implementing the
strategic initiative INDUSTRIE 4.0 — Securing the future of German manufacturing industry.
Final report of the Industrie 4.0 Working Group, April 2013. http://www.acatech.de/filead
min/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material _fuer_Sonderseiten/In
dustrie_4.0/Final_report__Industrie_4.0_accessible.pdf. Accessed 2016-02-01

Kiefer, J.: Mechatronikorientierte Planung automatisierter Fertigungszellen im Bereich
Karosseriebau. PhD Thesis, Schriftenreihe Produktionstechnik, vol. 43, Universitit des Saar-
landes (2007) (in German)

Kiehl, E. (ed.): Antriebslosungen — Mechatronik fiir Produktion und Logistik. Springer, Berlin
(2007)

Kis, T.: Planning and Scheduling in the Digital Factory, KOMSO Challenge Workshop — Math for
the Digital Factory. In: Proceedings, Berlin, Germany, May 2014

Laucht, O.: Flexibilisierung der manuellen Gromontage. PhD Thesis, TU Braunschweig (1995)
(in German)

Leitao, P., Karnouskos, S.: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 153-170. Elsevier, Waltham, MA (2015)

Lindemann, U.: Methodische Entwicklung technischer Produkte. Springer, Berlin (2009) (in
German)

Lindemann, U., Maurer, M., Braun, T.: Structural Complexity Management — An Approach for the
Field of Product Design. Springer, Berlin (2009)

Lodding, H.: Verfahren der Fertigungssteuerung. Grundlagen, Beschreibung, Konfiguration, 2.
erw. Aufl. Springer (VDI), Berlin (2008) (in German)

Luczak, H., Eversheim, W., Schotten, M. (eds.): Produktionsplanung und -steuerung. Grundlagen,
Gestaltung und Konzepte, 1. Aufl. Springer (VDI), Berlin (1998)

Liider, A.: Strukturen zur verteilten Steuerung von Produktionssystemen, Habilitationsschrift.
Fakultit Maschinenbau, Otto-von-Guericke Universitdt Magdeburg (2006)

Lider, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, St.: Aggregation of engineering
processes regarding the mechatronic approach. In: 16th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2011), Toulouse, France, Proceedings-
CD, September 2011

Lunze, J.: Automatisierungstechnik — Methoden fiir die Uberwachung und Steuerung kontinuier-
licher und ereignisdiskreter Systeme. Oldenbourg Verlag, Miinchen (2008)

Meling, F.: Methodik fiir die Rekombination von Anlagentechnik. PhD Thesis, TU Munich (2012)
(in German)

NAMUR: Automatisierungstechnik — Methoden fiir die Uberwachung und Steuerung kontinuier-
licher und ereignisdiskreter Systeme. In: Abwicklung von PLT-Projekten, NA 35, Namur-
Arbeitsblatt, 24.03.2003. NAMUR Arbeitskreis 1.1 “Planungsmethodik” (2003)

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf

5 Fundamentals of Artifact Reuse in CPPS 137

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design — A Systematic Approach.
Springer, London (2007)

REFA: Ausgewihlte Methoden der Planung und Steuerung. Carl Hanser Verlag, Munich (1993)
(in German)

Reschke, H., Svoboda, M.: Projektmanagement. Konzeptionelle Grundlagen. Ges. fiir Projektman-
agement, Munich (1984)

Schiffler, T., Foehr, M., Liider, A., Supke, K.: Engineering process evaluation — evaluation of the
impact of internationalisation decisions on the efficiency and quality of engineering processes.
In: 22nd IEEE International Symposium on Industrial Electronics (ISIE 2013), Taipei, Taiwan,
Proceedings, May 2013

Schenk, M., Wirth, S., Miiller, E.: Fabrikplanung und Fabrikbetrieb — Methoden fiir die wandlungs-
fihige, vernetzte und ressourceneffiziente Fabrik, 2nd edn. Springer Vieweg, Berlin (2014)

Schmale, C.: Welthandel: Beunruhigende Signale! http://www.godmode-trader.de/artikel/
welthandel-beunruhigende-signale,4412211 (2015). Accessed Mar 2016

Scholten, B.: The Road to Integration. ISA (2007)

Schuh, G., Stich, V.: Produktionsplanung und -steuerung 1 — Grundlagen der PPS, 4th edn.
Springer, Berlin (2012)

Schultmann, E.: Industrielles Produktions- und Logistikmanagement. In: Haasis, H.-D., Spengler,
T.S. (eds.) Produktion und Umwelt — Festschrift fiir Otto Rentz. Springer, Berlin (2004) (in
German)

Seliger, G., Basdere, B., Keil, T.: e-Cycling platform for profitable re-use. In: IEEE International
Symposium on Assembly and Task Planning, Fukuoka, Japan, Proceedings, 28-29 May 2001

Spath, D. (Hrsg.), Ganschar, O., Gerlach, S., Himmerle, M., Krause, T., Schlund, S.: Produk-
tionsarbeit der Zukunft — Industrie 4.0. Studie, Fraunhofer-Institut fiir Arbeitswirtschaft und
Organisation. Fraunhofer-Verlag, Stuttgart (2013)

Urbas, L., Krause, A.: Process Control Systems Engineering. Oldenbourg Industrieverlag GmbH,
Munich (2012)

VDI 2860: Montage- und Handhabungstechnik — Handhabungsfunktionen, Handhabungseinrich-
tungen; Begriffe, Definitionen, Symbole. Beuth Verlag, Berlin (1990) (in German)

VDI 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Beuth
Verlag, Berlin (1993)

VDI 2243: Recycling-oriented Product Development. Beuth Verlag, Berlin (2002)

VDI 2884: Purchase, Operating and Maintenance of Production Equipment using Life Cycle
Costing (LCC). Beuth Verlag, Berlin (2005)

VDI 2206: Design methodology for mechatronic systems. Beuth Verlag, Berlin (2006)

VDI 4499: Digital Factory. Beuth Verlag, Berlin (2011)

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik — Fachausschuss 7.21 “Industrie 4.0”,
“Status Report: Reference Architecture Model Industrie 4.0 (RAMI4.0), July 2015. http://
www.zvei.org/Publikationen/GMA-Status-Report-RAMI-40-July-2015.pdf

VDI/VDE: Industrie 4.0 —Wertschopfungsketten. VDI/VDE Gesellschaft Mess- und Automa-
tisierungstechnik, Statusreport, April 2014

VDIa 3695: Engineering of industrial Plants, Evaluation and Optimization, Part 1. Beuth Verlag,
Berlin (2010)

VDMA 34160: Prognosemodell fiir die Lebenszykluskosten von Maschinen und Anlagen. Beuth
Verlag, Berlin (2013)

VDMA Arbeitsgemeinschaft GroBanlagenbau: Lagebericht 2014/2015: Weltweite Krisen meis-
tern — lokale Chancen nutzen, Beitrige zum Industrieanlagenbau. Technical Report, VDMA
Arbeitsgemeinschaft GroBanlagenbau (2015) (in German)

Vogel-Heuser, B., Bauernhansl, T., ten Hompel M. (eds.): Handbuch Industrie 4.0 — Produktion,
Automatisierung und Logistik. Springer, Berlin (2015) (in German)

Vogel-Heuser, B., Diedrich, C., Broy, M.: Anforderungen an CPS aus Sicht der Automatisierung-
stechnik. Automatisierungstechnik 61(10), 669—-676 (2013)

Weber, K.H.: Dokumentation verfahrenstechnischer Anlagen. Springer, Berlin (2008) (in German)

http://www.godmode-trader.de/artikel/welthandel-beunruhigende-signale,4412211
http://www.zvei.org/Publikationen/GMA-Status-Report-RAMI-40-July-2015.pdf

138 A. Liider et al.

Wiendahl, H.-P., EIMaraghy, H.A., Nyhuis, P, Zih, M.F., Wiendahl, H.-H., Duffie, N.A., Brieke,
M.: Changeable manufacturing — classification, design and operation. Ann. CIRP. 56(2), 783—
809 (2007)

Wiendahl, H.-P., Reichardt, J., Nyhuis, P.: Handbook Factory Planning and Design. Springer,
Berlin (2015)

Wiktorsson, M.: Consideration of legacy structures enabling a double helix development of
production systems and products. In: Henriques, E., Pecas, P., Silva, A. (eds.) Technology
and Manufacturing Process Selection, Springer Series in Advanced Manufacturing, pp. 21-32.
Springer, London (2013)

Yang, C., Vyatkin, V., Pang, C.: Model-driven development of control software for distributed
automation. IEEE Trans. Syst. Man Cybern. Syst. 44(3), 292-305 (2014)

ZVEI - Fachverband Automation (Hrsg.): Manufacturing Execution Systems (MES). Branchen-
spezifische Anforderungen und herstellerneutrale Beschreibung von Losungen. ZVEI, Frank-
furt (2010)

Chapter 6
Identification of Artifacts in Life Cycle Phases
of CPPS

Arndt Liider, Nicole Schmidt, Kristofer Hell, Hannes Ropke,
and Jacek Zawisza

Abstract Recent research and development activities within the field of production
system engineering and operation focus on the increase of production system flexi-
bility and adaptability. One common issue of those approaches is the consideration
of hierarchical and modular production system architectures where the individual
components of the system are equipped with certain functionalities and information.
Up to now there is no common understanding about what a component constitutes,
i.e. which parts of a production system can be regarded as components within the
hierarchy and which functionalities and information are assigned to it. This gap will
be closed within this, the prior, and the subsequent chapter.

They will at first discuss the relevant layers of components in a production
system, then the types of information required to be assigned to a component on
the different layers to establish a virtual representation of the component, and at
last the description means exploitable to represent the identified information in the
different life cycle phases of a production system.

This chapter in particular will consider in detail the information sets relevant for a
production system component along the life cycle of a production system. Relevant
artifacts are identified for each of the three main life cycle phases described in
Chap. 5, assigned to the different layers of the production system hierarchy, and
discussed against main cases of information reuse within the life cycle of production
systems. Through this, it is intended to enable an identification of hierarchy layers
based on relevant information sets.

Keywords Industrie 4.0 component * Administration shell ¢ Life cycle informa-
tion * Virtual representation

A. Liider (2<) ¢ N. Schmidt
Faculty Mechanical Engineering, Otto-von-Guericke University, Magdeburg, Germany
e-mail: arndt.lueder @ovgu.de; nicole.schmidt@ovgu.de

K. Hell » H. Ropke ¢ J. Zawisza

Volkswagen Aktiengesellschaft, Wolfsburg, Germany

e-mail: kristofer.hell @volkswagen.de; hannes.roepke @volkswagen.de;
jacek.zawisza@volkswagen.de

© Springer International Publishing AG 2017 139
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_6

http://dx.doi.org/10.1007/978-3-319-56345-9_5
mailto:arndt.lueder@ovgu.de
mailto:nicole.schmidt@ovgu.de
mailto:kristofer.hell@volkswagen.de
mailto:hannes.roepke@volkswagen.de
mailto:jacek.zawisza@volkswagen.de

140 A. Liider et al.

6.1 Introduction

The main research questions of the previous chapter, of this chapter and the sub-
sequent chapter is the following: What are the requirements on the capabilities
of Industrie 4.0 components to create, manage, and use information along its
complete life cycle?

In this chapter, the aim is to identify relevant artifacts in the life cycle phases of
CPPS. As the Industrie 4.0 component (14.0 component) concept is a possible form
of realization for future CPPS in production systems (see Chap. 5), the relevant
information for 14.0 components will be analyzed.

The demands on the technical realization of the administration shell, which
should contain the relevant information, have not been examined so far. One impor-
tant step to define these demands is to identify the types of information dependent
on the granularity of an 14.0 component and on the life cycle phase in which
the information in generated. This chapter focusses on information necessary for
current production systems which are also important for future production system.
These future systems will require additional information for their comprehensive
functionalities. But currently, it is not possible to estimate all the required additional
information. Due to this fact, the types of information are identified which must be
considered even in future 14.0 component based production systems.

Derived from this gap and to answer the main research question, four subordinate
research questions need to be addressed (see Chap. 5 for the overall view). This
Chap. 5 deals solely with the Research question 3, which is:

Research question 3: What types of information must be assigned to an Industrie
4.0 component on the different layers to be covered by the virtual representation
throughout all life cycle phases of a production system? Are these information
types characteristic for the different layers?

In this chapter, description means for the different information types are iden-
tified. Out of them, a set of description means is selected potentially being able
to represent all relevant information for an Industrie 4.0 component and, thereby,
being a starting point for the implementation of the digital shadow of Industrie 4.0
components. Thus, it will be related to the research questions RQ M1 and C2 of
Chap. 1.

In addition, as the identified information sets are based on the consideration of the
different life cycle phases of a production system it will also contribute to research
questions RQ M2.

As a limitation of this chapter, the management process to handle the information
is not considered here. An analysis of the required management process can
be found in Chap. 2. Another limitation of this chapter is the not considered
management information, which is necessary to handle the management process that
supports the use of 14.0 components. This topic is specially addressed in Chap. 6.

To systemically cover the life cycle of an 14.0 component, three main sections
are distinguished. Section 6.2 addresses the engineering phase, Sect. 6.3 addresses

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_6

6 Identification of Artifacts in Life Cycle Phases of CPPS 141

the operation and maintenance phase and Sect. 6.4 addresses the end-of-life phase.
Each of these sections includes life cycle specific cases (presented in Chap. 5) which
envision certain possibilities by the use of 14.0 component information. This chapter
ends with a summary and an outlook in Sect. 6.5. Based on the results of this chapter,
the following Chap. 7 will focus further on the demands of the virtual representation
of 14.0 components.

6.2 Engineering Phase

In this section, the identified relevant information of Industrie 4.0 components (not
to be confused with the Component Layer in Chap. 5) during the engineering phase
is presented. The phase of engineering is the beginning of the production system life
cycle, described in Chap. 5.

After having a deeper understanding of the demands and the use of Industrie
4.0 components in engineering (see Chap. 5), in Sect. 6.2.1, the approach for the
identification of relevant artifacts, generated in the engineering phase, is presented.
In Sect. 6.2.2, the identified information needed for major engineering tasks is
described. In Sect. 6.2.3 three cases are presented (see Chap. 5). These cases are
examples of effective usage and new opportunities of cyber-physical Industrie 4.0
components in engineering exploiting the available relevant information artifacts.

6.2.1 Approach for the Identification of Artifacts
in the Engineering Phase

In order to identify the relevant types of information for an Industrie 4.0 component,
a detailed analysis of the engineering processes has been executed. The process
analysis followed the method which is described in (Schiffler et al. 2013). This
method addresses the special needs for the artifact identification in the engineering
phase. As a result, the engineering processes have been modeled as a network of
engineering activities executed by humans, creating and exchanging engineering
artifacts, and exploiting engineering tools.

In a second step, the relevant information types have been mapped to the layers
of the previously defined generalized hierarchical production system architecture
within the engineering phase (see Chap. 5). Thus, the engineering information
relevant for an Industrie 4.0 component on a certain hierarchy layer, to be covered
by a virtual representation, could be identified. The information types have been
analyzed which resulted in the identification of main criteria that characterize each
production system hierarchy layer for the engineering phase.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5

142 A. Luder et al.
6.2.2 Identification Criteria for Artifacts in Engineering Phase

To answer the research question for engineering phase, the relevant engineering
information has to be assigned to the identified different layers of the production
system hierarchy. The results are based on the process analysis, mentioned in
Sect. 6.2.1.

Here, the identified artifacts and tools as well as their assignment are presented.
As there is a large amount of different engineering artifacts, only major artifact types
will be named here. A more detailed description of the assignment can be found in
(Hell et al. 2016).

6.2.2.1 Requirements

Initial requirements coming from the product design, like number of parts or
specified joining processes, coming from economical departments like choice of
location, and coming from legal authorities.

6.2.2.2 Layouts and Visualizations

Block layouts define the set of manufacturing resources at Work Unit Layer within
a production system and put them in a logical interrelation.

2D layouts represent the placement of resources within a factory building. There
are conceptual layouts, rough layouts and other 2D layouts for more detailed
information, like a transport system related 2D conveyor system layout.

3D layouts provide a more detailed representation of the resources of a single
Work Unit. They remain in a conceptual state covering Work Stations, Function
Groups and their geographical locations. There are for example 3D rough layouts,
3D layouts including electronics.

6.2.2.3 Basic Specifications

The basic specifications contain general definitions of production system com-
ponents. They cover for example the component quantity structures, interrelation
structures between manufacturing processes and resource structures like cycle time.
6.2.2.4 Behavior Models

Behavior Models describe the production system behavior ranging from abstract
models like Gantt charts down to simulation based decision models.

6 Identification of Artifacts in Life Cycle Phases of CPPS 143

6.2.2.5 CAD Construction

The CAD construction contains detailed mechanical and electrical construction of
the production system often named MCAD and ECAD.

The part list is a register of all components or elements of the production system
which have to be purchased.

Simulation models are usually developed to validate availability and function-
ality of interacting components of production system, e.g. virtual commissioning
or accessibility analysis. Control programs subsume the complete set of software
developed to control the production system, e.g. human machine interfaces (HMI),
programmable logic controllers (PLC), and robot programs.

The power supply concept represents the detailed engineering of the energy
supply for elements of the production system.

The fluidic plans cover the engineering of the hydraulic and pneumatic systems.
The safety concept contains the detailed engineering of relevant safety related
features.

The identified information can be assigned to the different layers of the produc-
tion system hierarchy by considering the engineering tasks within the engineering
life cycles and the hierarchy levels they address. As a result the assignment
presented in Fig. 6.1 can be concluded.

At the Construction Element Layer, the most detailed engineering information is
relevant, i.e. part lists, mechanical and electrical specification, CAD construction,
and electrical construction.

Information assigned to the Component Layer contains basic specifications and
behavior models like joint locations, 3D layouts, part lists, mechanical and electrical
specification, CAD construction, control programs, electrical construction, detailed
behavior models, and simulation models.

At Function Group Layer, the engineering information is more abstract like basic
behavior models, 3D layouts, specifications, control programs, safety concept, and
simulation models.

At Work Station Layer, also rough and detailed engineering information can
be mapped. Here, basic behavior models, 3D plans, 3D layouts, mechanical and
electrical specifications, control programs, safety concept, detailed behavior models,
and simulation models are relevant.

At Work Unit Layer, the detail level of engineering information decreases;
mapped artifacts are basic behavior models, specifications, 3D layouts, and safety
concepts.

At Production Line Segment Layer, only 2D layouts are still relevant. Finally, at
Production Line Layer, requirements and 2D layouts are considered.

At Factory and Production Network Layer, the analysis has not provided
engineering information of interest. Considering usual engineering processes, only
requirements and economical and technical constraints might be relevant on these
layers.

To summarize the research for the engineering phase, we executed an identi-
fication of relevant information and its assignment to Industrie 4.0 components on

144 A. Liider et al.

Engineering-
Layer
Y Phase
9. Production
Network
e Y
8. Factory
=T
mElmlE
7. Production = -2
Line % S
= &
m]
6. Production 2
Line = 2
Segment LJl gl &
R = o N e Ty e
@)
5. Work Unit o
4. Work |] 5 &
Station = 5 53)
Hell2l|2lall= s °
fffff = HEHEHSH=<!aH &N 8H8H B
3. Function :DEEEE%%‘SE
: RN EE IR E R
Group 2I1E|2]|™]| 8|| || £]| 2
< = oll_J 2 g =
777777777 =k O Of-—=—=- 2|4 - =
[} ezl = @] g
= &
2. Component
=
[4 E,b{,b{}rﬁ,&?{
1. Construction| ~
Element
LJL JL)

Fig. 6.1 Layer mapping of engineering phase artifacts

different hierarchy layers. Some information cannot be mapped to a single layer, but
spans several ones. Nonetheless, there are characteristic sets of information types on
the different layers relevant for use of Industrie 4.0 components in the engineering
phase.

6.2.3 Usage of Engineering Phase Artifacts

The engineering of production systems can be very complex and may cover several
different engineering steps as indicated in (Liider et al. 2011). It is out of the scope
of this chapter to discuss the different versions of engineering processes in detail. A
possible insight is given for example in Chaps. 2, 4, and 9 or in a more general view
in (Liider et al. 2011).

In this subsection, three cases are presented. All of them deal with the reuse of
engineering artifacts (see cases 1-3 in Chap. 5). The difference is the direction of
their information flows as well as sender and addressee.

http://dx.doi.org/10.1007/978-3-319-56345-9_2
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_5

6 Identification of Artifacts in Life Cycle Phases of CPPS 145

Case no. 1: Reuse of Engineering Artifacts Within Engineering Phase

Case no. 2: Reuse of Engineering Artifacts in Engineering Phase of Other
Projects

Case no. 3: Reuse of Engineering Artifacts in Operation and Maintenance
Phase Within One Project or in Other Projects

The analyzed cases come from a sunroof assembly plant. The cases, covering the
engineering phase, focus on the plant’s robots with their related wear-data and other
information artifacts.

Case no. 1: Reuse of Engineering Artifacts Within Engineering Phase
Considering the availability and correct assignment of the entire identified relevant
engineering artifacts of each Industrie 4.0 component on different production
system layers and its information storage in a systematic repository, reuse of these
information engineering artifacts becomes one promising case. Based on reuse of
artifacts in software engineering (see Sametinger 1997), the method of reuse in
mechatronic engineering as considered in (VDI 2010) becomes feasible by effective
usage of related artifacts to cyber-physical Industrie 4.0 components.

To exemplify the reuse of robot wear-data within the phase of engineering, which
is available in the Industrie 4.0 administration shell on Component Layer, the task
of device approval is the first step to emphasize. The approval contains a test of
devices and components under defined condition. Thus, an offering of devices,
integrable in plant design, is made. Depending on operational purposes, the engineer
chooses devices out of the offering. An operational purpose can be the amount of
planned movements of a robot. Then, a risk analysis can be performed by comparing
the planned movement during operational phase to the amount of movements
successfully tested in the approval of devices or to the specified durability given by
the robot supplier. In this case, the artifact of robot wear-data, especially maximal
durability, is reused within engineering phase to approve the robot, to choose an
adequate robot depending on its operation purpose and to perform a risk analysis
based on this artifact.

Case no. 2: Reuse of Engineering Artifacts in Engineering Phase of Other
Projects

Another case is the reuse of robot wear-data within the engineering phase, but
another project. It is the same phase, but in another project with time offset, i.e. a
subsequent project. If the artifact is available in the administration shell that contains
the robot on Component Layer, this artifact can be reused to improve engineering
time and quality. Availability includes the aspects data existence, systematical data
storage, data validity, data traceability, data findability, and easy accessibility to
relevant data in subsequent projects.

Exploiting the continuous availability of robot wear-data of a previous project’s
engineering phase, the decision on the robot type during Component selection in a
subsequent project with comparable operation purposes becomes easier and more
reliable. In addition, former results of a performed risk analysis can also be reused
in subsequent projects to improve the process of device approval.

146 A. Liider et al.

Predecessor project Subsequent project
5. Work Unit TELET FEEYT T EPRTTS -
4. Work Station TEEEY O} FECEPREL TP ~
3 Function e den
roup
2. Component ------------------>
1.C0nStruCti0n SOLEERENEEN FRENEE] REN)
element >
IS S
&\& 09& 6%3’3‘ && &\& b@%
A A S AD A &
) < o QN o
D 2 DG &
S \,‘.b'} Q\\‘b% Q’OQ’ \‘ZS' Q\&
< N P
Artifacts directly related am Data availability for
to robot wear-data subsequent project

Fig. 6.2 Necessary data availability for Industrie 4.0 components exemplified through robot wear-
data

Figure 6.2 shows the layer-based reuse of wear-data related to the Industrie 4.0
concept in a subsequent project in more detail. On Layers 4 and 5 the production
process data is available to compare the original operation purpose to the one of a
subsequent project. On Layer 3, information about Function Group Components
is available. Thus, this information can be used for Component selection in a
subsequent project. On Layers 1 and 2, approvals of Components and Construction
Elements are available, which contain the tested and permitted maximum amount
of movements. This information can be used in engineering of a subsequent
project to support the phase of design. The date of necessary availability of
relevant information in subsequent projects depends on the engineering task. Thus,
information located on different production system layers is needed at different time
slots, as shown in Fig. 6.2.

Case no. 3: Reuse of Engineering Artifacts in Operation and Maintenance
Phase of Same and Other Projects

Case No. 3 deals with the information flow of engineering artifacts from engineering
phase to operation phase (see case 3 in Chap. 5).

An example for this artifact reuse would be the transfer of a robot maintenance
plan or of an instruction about change of robot gear related to its use in the operation
phase. These artifacts are created in the engineering phase, but are reused in the
operation phase in order to improve maintenance. The transfer of these artifacts
within one project, from engineering to operation phase, is a common example of
comprehensive information artifact reuse. The presented maintenance information

http://dx.doi.org/10.1007/978-3-319-56345-9_5

6 Identification of Artifacts in Life Cycle Phases of CPPS 147

could be stored in the administration shell of Industrie 4.0 components, which are
mapped to Component Layer (Layer 2).

A related case, and therefore included in No. 3, is the reuse of engineering
artifacts of a predecessor project in the operation phases of subsequent projects, i.e.
of other projects, recognizable by a dotted arrow (see case 3 in Chap. 5). An example
is the transfer of revised instructions about change of a robot gear related to its use
in operation phase. This revised instruction could be the result of a new robot strain
analysis in the engineering phase of a subsequent project, which caused a modified
robot approval. This information, which is created in a subsequent project, would
improve the operation phase of a predecessor project.

6.3 Operation and Maintenance Phase

The virtual representation of Industrie 4.0 components is designed to interpret and
process specific control information appropriately, in order to perform a certain task
during the operation and maintenance phase (VDI/VDE 2015). However, the type
of control information may vary broadly, depending on the task being performed
and the layer(s) it takes place on in the hierarchical production system structure (see
Chap. 5). In this section, typical control activities and information will be identified
and classified, that are required to enable Industrie 4.0 components’ full potential.
As a result, a characterization of each layer of the hierarchical production system
structure will be presented from a production control point of view.

Therefore, this section is structured as follows: First, Sect. 6.3.1 will give a
brief overview of the approach chosen to identify the tasks performed within the
operation and maintenance phase of a production system. Then, in Sect. 6.3.2,
typical control information and the characteristics of each layer of the hierarchical
production system structure will be described. Finally, in Sect. 6.3.3, a case from the
automobile industry will be presented. It demonstrates that a single control decision
may require information on numerous levels and that information artifacts can be
used within and between different life cycle phases.

6.3.1 Approach for the Identification of Artifacts
in the Operation and Maintenance Phase

The literature review in Sect. 6.4.2 has shown that control activities and the
associated information artifacts in the operation and manufacturing phase are
numerous and can vary greatly in their goals as well as in their behavior (e.g. real
time requirements).

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5

148 A. Liider et al.

Against the background of these chapter’s research questions, it is a requirement
to assign the different control activities and the associated information to the layers
of the hierarchical production system model proposed in Chap. 5.

To consider the different aspects of the automation pyramid (see e.g. Vogel-
Heuser et al. 2013; Diedrich et al. 2011) a bandwidth of control information
was taken into account. This includes control of sensors/actuators and processes
on field level, the allocation of manufacturing resources in production planning
systems (MES-Systems), as well as the coordination and optimization of enterprise
processes in ERP-Systems (Liider 2006). Furthermore, there is a vast number of
implementation technologies available for control systems that allow the imple-
mentation of required functionalities into Industrie 4.0 components (see e.g. Lunze
2008; Kiehl 2007; Kis 2014; Yang et al. 2014; Leitdo and Karnouskos 2015), which
were also considered in the analysis. With this in mind, the control activities applied
in a representative set of companies in the manufacturing industry were analyzed
and assigned to the different layers of the model. These companies include press
shop, body shop, paint shop, assembly shop and in-house logistics in the automobile
industry, a hot strip mill and a cross cutter in the steel industry, a stone crusher in
the mining sector, a roof truss manufacturing system in the wood industry, a micro
cuvette manufacturing system in medical technology, a logistics center, a solar park
and a gas turbine facility, both in the power industry. In this context, it is important
to notice that not all of the discussed control tasks and information are mandatory
in all application scenarios and industries. Some of them can be left out, depending
on the complexity and quality requirements of the product and production system.

The performed research results in an amount of control tasks and information
that can be assigned to the different layers of the proposed hierarchy model, and are
presented in the following subsection.

6.3.2 Identification Criteria for Artifacts in Operation
and Maintenance Phase

An important identification criterion for the layers of the hierarchical production
system structure is the corresponding control information of each layer. Since there
are different tasks to be performed on each layer, the input, throughput and output
information varies greatly. However, sets of control information can be identified
that share the same sort of characteristics and therefore can be assigned to the
various layers. These characteristics and typical types of control information of each
layer are described in detail in this subsection.

Based on the literature review in Sect. 6.4.2 and a detailed analysis of existing
manufacturing systems from the automobile sector, a broad spectrum of control
tasks and information was identified and assigned to the layers of the hierarchical
production system structure. The results are summarized in Tables 6.1, 6.2, 6.3, 6.4,
6.5,6.6,6.7 and 6.8.

http://dx.doi.org/10.1007/978-3-319-56345-9_5

6 Identification of Artifacts in Life Cycle Phases of CPPS

149

Table 6.1 Control tasks and relevant control information on component layer

Layer Control tasks
2. Component — Switching operations

— Condition monitoring and asset-management

— Communication of a representation of an activity
status to surrounding systems (condition monitoring,
asset management) — No communication within each
element

Control information
— Switch-on and -off
commands

— KPIs of process
components

— No control
information

Table 6.2 Control tasks and relevant control information on function group layer

Layer Control tasks Control information

3. Function — Parametrization of process — Process parameters

group components
— Product identification — Product ID data: vehicle identification

number, order number

— Condition monitoring and asset — Interpreted sensor and actuator data
management
— Manual manipulation of — Robot control: trajectories, start and
specific functionalities (HMI) hold points, operating and breaking speed
— Sensor and actuator control — Sensor and actuator data

Table 6.3 Control tasks and relevant control information on work station layer

Layer Control tasks Control information
4. Work station — Process coordination and supervision,
consisting of . . .
» Simultaneous status detection of multiple — Status information
function groups
* Simultaneous control of multiple function — Control commands
groups
— Quality control and quality data acquisition, —— Quality data

production status documentation

— (Semi-)manual manipulation (HMI) — Program fetch, manual
control commands

The control activities on the various layers of the production system structure
range from controlling individual equipment components, such as electric motors,
welding guns and pumps, to planning of factory allocation and strategic production
programs. They can be implemented using different approaches like multi-agent
systems (MAS) or as a service in a service oriented architecture (SOA). For further
details, see Chaps. 8 and 14. The characteristics of each layer and the associated
control information are described in the following paragraphs, starting at the bottom

layer (see Ropke et al. 2016; Zawisza et al. 2016).

http://dx.doi.org/10.1007/978-3-319-56345-9_8
http://dx.doi.org/10.1007/978-3-319-56345-9_14

150

A. Liider et al.

Table 6.4 Control tasks and relevant control information on work unit layer

Layer
5. Work unit

Control tasks

— System operation and
management (HMI)

— Production and machine
data logging

— Visualization at the level of
the executed process

Control information

— Cycle times, variant configuration,
maintenance cycles, status information
— Output, standalone availability KPIs,
malfunction evaluation, energy
consumption, NC data, tool data

— Status and error signals, filling levels,
cycle and process times

Table 6.5 Control tasks and relevant control information on production line segment layer

Layer

6. Production
line segment

Control tasks

— Equipment control and
supervision (HMI)

— Material flow between work
units, sequencing/order picking,
route planning, transport
control, physical resequencing
— Material inventory
management and stock call-offs

Control information

— Cycle time controlling: movement, process,
and auxiliary times, availability and degree of
utilization of chained up equipment,
TPM-alarms, benchmarking

— Product variant specific production
sequences, deviations of actual and target
position, quality of pearl chain/order sequence

— Messages for incoming and outgoing goods,
work in progress

Table 6.6 Control tasks and relevant control information on production line layer

Layer

7. Production
line

Control tasks

— Utilization forecast and takt
simulation

— Delivery instructions:
internal and external short
term call-offs, JIT and JIS
call-offs

— Monitoring of production
lines (possibly HMI)

6.3.2.1 Construction Element

Control information

— Personnel requirement, shift
scheduling, takt time deviations

— Planned demand of next 5-15
workdays, material stock, operating times
for suppliers, vehicle order status, order
data

— Target and actual output, system status,
(available/disturbed), buffer state for
product variants

There are two forms of Construction Elements: active and passive ones. Active
Construction Elements, in contrast to their passive counterparts, are able to represent
a certain activity status that can be communicated to surrounding elements. How-
ever, communication within each element is not possible and therefore Construction
Elements cannot be characterized by control parameters.

6 Identification of Artifacts in Life Cycle Phases of CPPS 151

Table 6.7 Control tasks and relevant control information on factory layer

Layer Control tasks Control information
8. Factory — Net dependent requirements — Vehicle program, technical and sales
determination, call-off forecasting restrictions, manufacturability, parts
stock/availability

— Weekly and daily production scheduling, — Production line restrictions, product
detailed material supply planning, freight mix, line allocation, capital

cost optimization, authorization of commitment costs, factory readiness
production, definition of manufacturing

sequence

— Factory monitoring and analysis, virtual —— Production relevant order data,
resequencing factory KPIs

Table 6.8 Control tasks and relevant control information on production network layer

Layer Control tasks Control information
9. Production — Long term sales planning, — Volume of vehicles, investment and
network volume planning of vehicles capacity plan, factory costs

(primary requirements planning),
strategic production program
planning, factory allocation

— Volume planning of vehicle — Installation rates (especially of heavy
properties, gross dependent items), internal and external capacities,
requirements planning, demand costs and prices, network KPIs,

and capacity management, profitability calculations

bottleneck management

— Product data management, — Part-numbers, part status, primary
order management, properties numbers, technical rules and
manufacturability testing product hierarchies, sales rules

6.3.2.2 Component

Components can be distinguished between Process and Control Components.
The latter provide driver functionalities for active Construction Elements. Process
Components on the other hand feature a static or predetermined range of functions
that can be parametrized and adapted to individual needs. The common element
shared by process and Control Components is an I/O information processing system
that is required to perform basic functionalities, like sensor and actuator control,
switching operations, and diagnostics. Consequently, control information on this
layer is characterized by sensor and actuator data, such as oscillation data as a
function of time and voltage, switch-on and -off commands (e.g. of an electric
engine in a conveyor belt), as well as Key Performance Indicators (KPIs) of Process
Components like the stroke rate of a welding gun. An overview is shown in
Table 6.1.

152 A. Liider et al.

6.3.2.3 Function Group

The above mentioned basic processes usually require several Components to work
together. The parametrization of these Components is realized by Function Groups.
A typical example is the control of a welding robot in a car body welding shop,
where the robot, the welding gun, and the cable assembly need to be parametrized in
order to approach specific coordinates and place a welding spot. The welding current
of the welding gun in Ampere and the holding period in seconds are controlled on
this layer. Other examples for process parameters are the volume of a glue bead
in volume per distance (dm>/m) of a gluing application and the contact pressure in
force per surface (N/mm?) of a suction gripper.

Due to the diverse product mix manufactured in modern production systems,
an important function is also product identification, such as vehicle identification
numbers and separate order numbers. They can e.g. trigger a status message at a
capture point or inform the equipment about the next to build product variant.

Furthermore, condition monitoring and asset management are performed on
Function Group Layer as well, in order to maintain equipment in the desired state.
Relevant control information in this context are interpreted sensor and actuator data,
like e.g. the oscillation information of rolling bearings and oil data of a top or
bottom part of a drawing tool in press shop. Finally, HMIs allow the execution of
functionally specific tasks on this layer. In the example of robot control, this may
include changing robot trajectories, start and hold points, as well as operating and
breaking speed. An overview is shown in Table 6.2.

6.3.2.4 Work Station

Work stations integrate multiple Function Groups in order to successfully perform
a manufacturing process. This circumstance makes coordination and (automated)
supervision indispensable and requires work stations to simultaneously control the
process parameters of the participating Function Groups. For this, both, simultane-
ous state determination and control of the subordinate Function Groups are needed.
As aresult, status information and control commands are required at the same time.
Using the example of a car body welding shop, the necessary status information
includes the location of the welding gun (“defined coordinates reached”) and the
status of the clamping system holding down the parts (“clamping elements closed”).
Corresponding control commands are e.g. “keep holding down clamps” and “initiate
welding current”. This kind of control information allows further functionalities like
quality assurance and data logging of control parameters that are required for quality
and warranty claim purposes. Typical examples are parameters like torque, angle,
and cycle time of bolting sequences for security-related connections, volume and
speed of adhesive application, as well as coordinates, deviations, and tolerances of
car body geometry. An overview is shown in Table 6.3.

Similar to the Function Group Layer, it is also possible to manipulate work
stations (semi-)manually through HMIs. The control information is associated to

6 Identification of Artifacts in Life Cycle Phases of CPPS 153

manual control commands and program fetches, e.g. to reset a work station to home
position after a malfunction.

6.3.2.5 Work Unit

The process steps, which are determined through the product itself, are being
realized by sequencing the manufacturing steps of multiple Work Stations on
the higher level of Work Units. Consequently, system operation and management
are major activities on this layer. They deal with process information such as
cycle times, variant configurations, maintenance cycles, and status information
of the Work Unit as a whole. Furthermore, supervision functionalities including
production and machine data logging are performed on this layer, resulting in
control information like output, availability, malfunction evaluation, and energy
consumption, as well as NC and tool data. Availability, however, is measured for
stand-alone Work Units only and includes KPIs like Overall Equipment Effective-
ness (OEE), Mean Time To Repair (MTTR) in seconds, and Mean Time Between
Failures (MTBF) in hours. Other characteristic control parameters are status and
error signals (e.g. welding gun: “operational/disturbed”, photoelectric safety switch:
“open/interrupted”), filling levels of process and auxiliary materials, as well as
cycle and process times. Usually this data is gathered and visualized for the system
operator, which is the third functionality on Work Unit Layer. An overview is shown
in Table 6.4.

6.3.2.6 Production Line Segment

Main activities on Production Line Segment Layer are divided into three categories.
The first category is concerned with operational equipment control and supervision.
This includes controlling activities like tracking of cycle time, process times,
auxiliary process times, and movement times. Furthermore, it contains monitoring
the availability and utilization of chained equipment, which allows setting of
Total Productive Maintenance (TPM)-alarms in case of deviations and creating
benchmarks, e.g. of energy consumption of Work Units in the Production Line
Segment. The second category of control activities is built around material flow.
An overview is shown in Table 6.5.

This means material flow between work stations, as well as supply of subassem-
blies connected to them. Supporting activities like order picking, route planning
(e.g. of tugger trains), transport control, and physical resequencing of orders are
also included. Those activities are characterized by control information of the
production sequence and the included product variants (e.g. body shop or assembly
line sequence), deviations between target and current position, as well as quality
of pearl chain or other sequence measuring KPIs. The last category of activities
includes material inventory management and stock call-offs. Typical parameters are
signals of incoming and outgoing goods as well as work in progress.

154 A. Liider et al.

6.3.2.7 Production Line

The segments on Layer 6 are grouped on Production Line level. Accordingly, control
activities on this level are of general character. The main planning activities include
forecasting utilization and simulating cycle time on the basis of the scheduled
production program. Typical control parameters are personnel requirements, shift
planning schedules, and cycle time deviations between different orders in the
product mix that have to be balanced. The operational part of the activities on
this layer is concerned with delivery instructions for internal and external suppliers
(short term call-offs) as well as just-in-time (JIT) and just-in-sequence (JIS) call-
offs. Required control information features, among others, short term planned
demand (next 5—15 workdays), material inventory, and supplier timing schedules.
Since JIS call-offs require knowledge about the exact status and timing of the
products they are made for, vehicle order status and order data like technical features
of the order are required as well.

Finally, monitoring of the entire production line is part of the control activities on
this layer, too. Consequently, predominant control parameters are target and actual
output, the overall system status (available/disturbed), as well as buffer states for
the product variants in the current production program. An overview is shown in
Table 6.6.

6.3.2.8 Factory

The Factory Layer combines the processes of multiple production lines in order to
produce a complete product. To achieve this, three types of control activities are
required on this layer. First, there are tactical planning activities ensuring adequate
parts supply in the short term (weeks to months). Important representatives of those
activities are net dependent requirements determination and call-off forecasting. The
related control parameters are, among others, the production program of the vehicles
planned, the technical and sales restrictions, manufacturability, as well as material
stock and parts availability. Second, the level is characterized by operational
preparatory and short term production planning activities (hours to days). They
include breaking down the production program to weeks and days, detailed material
supply planning, as well as authorization of production and definition of the
manufacturing sequence (e.g. start of body shop sequence or color batches for paint
shop). Typical control information includes production line restrictions, product mix
and production line assignment, if there are multiple options to produce a product.
Third, operational supervision activities aiming at ensuring production effectiveness
and efficiency can be found on factory level as well. Monitoring and analysis of
factory KPIs are summarized under this category, as well as virtual resequencing of
orders throughout the factory. Relevant control parameters for the former contain
cost and manufacturing KPIs such as lead time, delivery reliability, production
costs, and pearl chain/order sequence quality, as well as quality KPIs like first pass

6 Identification of Artifacts in Life Cycle Phases of CPPS 155

yield and deviations. The later include information about product variants and the
combination of primary properties numbers. An overview is shown in Table 6.7.

6.3.2.9 Production Network

At the top of the production system structure lays the Production Network Layer. In
contrast to the mainly operative control activities at factory level, the production
network is mostly designated to strategic and tactical planning activities with a
horizon of up to 10 years ahead. On the one hand, this includes activities such as long
term sales planning, strategic production program planning, and factory allocation.

On the other hand, more detailed activities like planning of vehicle properties
considering heavy items, demand and capacity management, as well as bottleneck
management of internal and external resources are performed on this layer. These
activities are associated with control information such as volume of vehicles per
country and year, investment and capacity plans, factory costs, as well as installation
rates of technical features, internal and external capacities, network KPIs (e.g.
delivery reliability, indirect procurement costs, etc.), and profitability calculations
(e.g. sales costs, direct costs, etc.).

Most operational tasks on Production Network Layer, however, are connected
to data management. This is a task that has to be performed network-wide, since
the products or subassemblies of the network may be produced or used in multiple
factories around the world. This is especially relevant if multiple products are using
carry over parts from other products inside the network. Consequently, typical
activities are product data management, client order management, and manufac-
turability testing. The control information needed for these activities include part
numbers or primary properties numbers for complicated and individualized parts
like dashboards, part status (valid/invalid) of each part, technical rules and product
hierarchies, as well as sales rules that allow or prohibit certain configurations.

In summary, the analysis shows that the spectrum of control activities and
parameters required during Operation and Maintenance Phase of a production
system is very broad. An overview of the information artifacts in this phase can
be found in Fig. 6.3. Although the control activities and the related parameters are
linked through a complex network of decisions, it is possible to analyze them closer
by narrowing the field of observation to (quasi-)separate decisions. The following
subsection demonstrates this by analyzing a case from the automobile industry. An
overview is shown in Table 6.8.

6.3.3 Usage of Operation and Maintenance Phase Artifacts

The various control activities and related parameters in a production system are
linked in a complex network of interactions and can spread throughout all levels
of the hierarchical production system structure. This subsection illustrates how

156 A. Liider et al.

Layer Operation- &

Maintenance Phase

9. Production { Supplier management }
Network { Investment plan J
[Product mix }
8. Factory
[Capacity plan }
7. Production { Material stock }
Line { Human labor plan J
6. Production { Product related process sequencing }
Line
Segment [Resource monitoring } =
,, =}
o
{ Process supervision } %
5. Work Unit o5
[Production data acquisition] é =
,, 5|
- o
4. Work [Quality control } 2 S %
Station g =
g8
r Process control X :n 5[
3. Function = §
=}
Group [Product identification } ‘%
,, e
{ Sensor/actor control } g
2. Component =
[Product data acquisition } 2
,, 8 et
1. Construction
Element

Fig. 6.3 Information artifacts during operation and maintenance phase

certain information artifacts can be used, both within and between different life
cycle phases. To pick up the example of Sect. 6.2.3, the focus is put on robot wear
data as an information artifact. For this purpose, first of all the control process of
the case, a sunroof assembly in an automobile assembly shop, will be described. In
a second step, the three cases of artifact reuse in Operations and Maintenance Phase
will be analyzed (see Chap. 5, cases 4—6). These cases are:

Case no. 4: Reuse of Artifacts Within Operation and Maintenance Phase

Case no. 5: Reuse of Artifacts in Engineering Phase of Other Projects
(Feedback-Loop)

Case no. 6: Reuse of Artifacts in Operation and Maintenance Phase of Other
Projects

The regarded case consists of a sunroof assembly process with an adjacent route
planning and transport control process for tugger trains. A similar configuration can
be found in state of the art automobile factories around the world (see Fig. 6.4).

http://dx.doi.org/10.1007/978-3-319-56345-9_5

6 Identification of Artifacts in Life Cycle Phases of CPPS 157

Layer Input Process Output
9. Production
Network
8. Factory
7. Production
Line
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - -
4) route planning & transport ctrl.
6. ET"d'écm" gathers & idates demand for
ine Segment Pl production line segments, creates trip
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, W b e N
5. Work Unit
7777777777777777777777777777 A\ 4
(1) Portalrobot_|(3) Container station (5) Operator & tugger train|((6) Container station
4. Work Station akes a part out continuously counts remain- Teceives transport order & rela- || delivers containers, opens
:].:’ 'i)z;’;n"e:‘_ ing parts & reports own part ted documents, starts trip at de- || container station & replaces
_ contan I demand) signated time w/ defined route_J _empty with full containers
2 Container l 7 Container
3. Function reports: “One part has reports: “Container no, 3 has been]
Group been removed out of replaced; now containing 12 parts
conainerno 3> J) | withpartno 1234)
2. Component
1. Construction
Element

Fig. 6.4 Control process for route planning and transportation control for restocking parts for
sunroof assembly

For a more complex case see (Zawisza et al. 2016), where a Just-in-time call-off
between an automobile OEM and a supplier is described.

The control process of the sunroof assembly begins with a robot taking a sunroof
out of a container and installing it into a car on the assembly line with the help
of other robots and workers. This process takes place on Work Station Layer of
the production system structure (Layer 4). Typically, there is no direct information
exchange between the robot and the container. However, the robot can be equipped
with a sensor, enabling it to determine how many sunroofs are left inside the
container. Usually this is achieved using a photoelectric sensor. The robot can,
thus, report to the container station that a sunroof has been removed (Layer 3,
Function Group). The container station on the Work Station Layer holds various
containers for different product variants. It continuously counts the total remaining
sunroofs for each product variant and, when necessary, orders new sunroofs. The
call-off for required parts usually contains information about the type of container
to be replaced, the part-no. of the demanded parts and the time they have to be
delivered (e.g. “Container no. 3 is empty; deliver additional parts with part-no. 1234;
remaining parts last for 24 min. of production”).

Since a tugger train usually doesn’t supply only one installation at a time, the
part orders are collected on a higher layer, i.e. the Production Line Segment Layer.
Here the information considering demand is gathered and consolidated for the whole
production line segment and this is also where the route planning and transport

158 A. Liider et al.

control takes place. Using the consolidated information on this layer, a software
algorithm calculates an ideal trip plan and creates a schedule for each available
tugger train, and then initiates the transport order. In the next step, this order is being
forwarded to the individual tugger trains and their operators on Work Station Layer.
It contains all the information the operator needs, including a bill of materials, a
route plan, a schedule etc. The operator then starts the trip at the scheduled time and
uses a defined route to fulfill the assignment. He or she then delivers the containers
to the defined location at the defined time, so that a bottleneck is avoided. Then
the operator has to open the container station and replace an empty with a full
container. This occurs on Work Station Layer and implicates interaction between the
operator and the container station using the HMI of the latter. Finally, the container
reports back to the container station that the demanded part has been restocked (e.g.
“Container no. 3 has been replaced; now containing 12 parts with part no. 1234”),
which closes the loop.

To describe how information artifacts of Operation and Maintenance Phase can
be reused, the following paragraphs distinguish between reuse within Operation and
Maintenance Phase (case no. 4) and reuse in other phases of different projects (cases
no. 5 and 6).

Case no. 4: Reuse of Artifacts Within Operation and Maintenance Phase

As shown above, a large quantity of information is generated and collected during
the described processes in Operation and Maintenance Phase. However, some
necessary information in this phase can neither be measured directly via the systems
sensors nor can it be retrieved from its actuators and the corresponding information
flow. This applies for robot wear and tear data, too. As a workaround, the existing
information artifacts of Operation and Maintenance Phase can be reused in a way
that they serve as a direct indicator for a robots wear and tear.

As an example the number of assembled sunroofs in the above case is equal to the
number of load cycles performed by the robots in the work station. Therefore, robot
wear and tear can be measured indirectly by counting the load cycles of a certain task
a robot performs using the integrated counter. In this case, maintenance personnel
can compare the current number of load cycles with the estimated lifetime from the
engineering Phase and, based on this information, decide whether an inspection or a
part replacement is needed. In an Industrie 4.0 scenario this information is stored in
the administration shell and therefore the Industrie 4.0 component is able to trigger
an inspection or part replacement by itself. Furthermore, based on the data from the
engineering Phase, it is able to predict for how long it will be able to perform its
tasks given the specific requirements like speed and precision, allowing predictive
maintenance and planned stops.

On the other hand, the load cycle data, usually provided by a counter, can also
be reused in a different context. In the sunroof assembly case for example it allows
triggering a call-off for the timely delivery of required parts to a work station and
thereby enables the Industrie 4.0 component to control its part supply and related
activities.

6 Identification of Artifacts in Life Cycle Phases of CPPS 159

Another example for reuse of artifacts in this life cycle phase is the ability of
an Industrie 4.0 component to perform process or quality control by itself. This is
possible through comparing data from Engineering and Operation and Maintenance
Phase and correcting occurring deviations, e.g. checking the correct positioning of
a welding spot or the precise assembly of a car sunroof.

Case no. 5-6: Reuse of Artifacts in Engineering and Operation and Mainte-
nance Phase of Other Projects

The artifacts generated in Operation and Maintenance Phase are the basis for an
effective and efficient production process within the life cycle phase itself. However,
those artifacts can have a deep impact on other life cycle phases and other projects
as well.

On the one hand, the information generated during production can be reused in
the engineering Phase of other projects to ensure the responsible engineers get a
reliable feedback on their work and thereby improve future engineering decisions
in new projects. For instance, if an Industrie 4.0 component in the above scenario
detects a deviation in the precision of the sunroof assembly over time (e.g. due
to wear and tear), this information should be reused in the engineering Phase to
improve future production systems and their design. This methodology can be
applied to continuously validate various engineering specifications over the lifetime
of a production system and implement necessary adjustments.

On the other hand, the artifacts used during production can also be a valuable
input during the Operation and Maintenance Phase of other projects in a company.
Since different factories or dependencies of a company may experience very differ-
ent conditions (e.g. humidity, temperature, production schedule, product types, etc.)
an information exchange across factory limits could be of great interest. Therefore,
the information artifacts generated in Operation and Maintenance Phase should be
available throughout a company and even between different cooperating companies
in order to continuously improve performance. This can include information like a
malfunction log, best practices for maintenance and quality assurance purposes, and
version management to handle different combinations of hardware with a different
firmware status. In the case of robot wear and tear, factories can benefit greatly from
each other’s experience by exchanging and analyzing the development of observed
behavior in different locations over time. As a consequence, parameters like cycle
times, velocities, and maintenance cycles of equipment could be adjusted on the
base of a much larger database than it is today, so that problems can be detected
earlier and have less negative effect on productivity.

6.4 End-of-Life Phase

This section intends to identify relevant requirements and information emerging
from End-of-Life (EoL) phase which need to be covered by an Industrie 4.0
component to be applicable in this life cycle phase. The EoL phase is the last phase
of the production system life cycle, described in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-56345-9_5

160 A. Liider et al.

After having a closer look at the demands and use of Industrie 4.0 components
in EoL (see Chap. 5), Sect. 6.4.1 will describe the approach used to gather relevant
requirements and information necessary within the EoL phase. The requirements,
identified as relevant for the EoL phase, will then be mapped to each hierarchy
layer (see Sect. 6.4.2), which will result in a characterization of each layer of
the hierarchical production system structure from the EoL point of view. In
Sect. 6.4.3, cases are presented which shall illustrate the benefits and opportunities
when Industrie 4.0 components are used in the EoL phase.

6.4.1 Approach for the Identification of Artifacts
in the Engineering Phase

To identify requirements emerging from EoL phase, a literature survey on different
recovery (including recycling and reuse), disassembly, EoL, and EoL scenarios
related publications was chosen. The survey resulted in over one hundred require-
ments for the EoL phase, which have been categorized into the following categories,
representing a ‘production system level of detail’ according to VDI 2243 (VDI
2002): General requirements (G), production system specific requirements (P),
component specific requirements (C), and material specific requirements (M).

In a next step, the categories were mapped to each hierarchy layer for a
characterization of each layer of the hierarchical production system structure (see
Chap. 5) from the EoL point of view. Using these categories—representing a
‘production system level of detail’—as identification criterion for an Industrie 4.0
component on the different layers of the hierarchical production system structure is
an abstract but viable approach.

6.4.2 Identification Criteria for Artifacts in End-of-Life Phase

A possible identification criterion for the layers of the hierarchical production

system structure is the corresponding ‘production system level of detail’ named in

Sect. 6.4.1: General requirements (G), production system specific requirements (P),

component specific requirements (C), and material specific requirements (M).
Examples for general requirements are:

* Compliance with statutory provisions (Ruhland 2006; Steinhilper and Rieg 2012;
VDI 2002; Huber 2001; Industrie 2016; Schiffleitner et al. 2012), or
* Avoidance of environmental impact (VDI 2002; Hartel and Spath 1994).

Examples for product specific requirements are:

» Description of production system and connection structure—(Steinhilper and
Rieg 2012; PAS 2004; VDI 2002; Schultmann et al. 2002; Pahl et al. 2007; Hubig

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5

6 Identification of Artifacts in Life Cycle Phases of CPPS 161

2001; Ruhland 2006; Feldmann et al. 1999; Rosemann et al. 1999; Duflou et
al. 2008; Hartel and Spath 1994; Simolowo and Onovughe 2013; Huber 2001;
Willems et al. 2003), or

» Application of a functional and modular structure—(Steinhilper and Rieg 2012;
VDI 2002; Pahl et al. 2007; Hubig 2001; Ruhland 2006; Duflou et al. 2008;
Willems et al. 2003).

Examples for component specific requirements are:

* Enabling of an easy and non-destructive disassembly structure—(Steinhilper and
Rieg 2012; Pahl et al. 2007; VDI 2002), or

* Enabling of remanufacturing processes—(Steinhilper and Rieg 2012; Pahl et al.
2007; Hubig 2001; Duflou et al. 2008; Obst et al. 2013; Lindahl et al. 2006).

Examples for material specific requirements are:

» Identification of material (also regarding hazard potential)—(Steinhilper and
Rieg 2012; PAS 2004; VDI 2002; Pahl et al. 2007; Hubig 2001; Ruhland 2006),
or

* Documentation of deterioration occurred during use time of the production
system—(Schultmann et al. 2002; Hubig 2001; Ruhland 2006; Duflou et al.
2008; Feldmann et al. 1999; Simolowo and Onovughe 2013; Obst et al. 2013;
Huber 2001; Seliger et al. 2001).

Using the categorized requirements, the assignment of those categories to each
hierarchy layer within the hierarchical production system structure was done. The
categories reflect the level on which the decision has to be made whether a
requirement is fulfilled or not. For this, information is necessary—see Fig. 6.5.

General information (G) has to be provided on Layer 8 and 7. On Layer 8 this
could be complying with specific laws and restrictions, like determination of manda-
tory disassembly amounts, incineration with energy recovery, or CO, emissions.
On Layer 7 this could be complying with current component/material/substance
prohibitions related to the applied manufacturing technology of the Production Line.

To finally provide information, this might need to be broken down to lower
layers. But the aggregation of information of the lower layers has to be done on
the superordinated layer.

Production system specific information (P) can be found on Layer 8, 7, 6, 5, down
to Layer 4, since the structure of the overall production system is influenced by the
design of each Industrie 4.0 component on each of those layers, mostly following
a functional and modular design approach. This information is relevant mainly for
EoL 3—Production System Recovery (see Chap. 5, Fig. 5.9).

Component specific information (C) is placed on Layer 5 down to Layer 2—
Work Units and their structure are usually engineered in their entirety. Here, an
easy disassembly as well as remanufacturing process is important, so that the
EoL scenarios can be enabled. This information is relevant mainly for EoL 2—
Component Recovery (see Chap. 5, Fig. 5.9).

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5

162 A. Liider et al.

End-of-Life-
Layer

Phase

9. Production

Network

8. Factory g =
.é %
: 5|l E
7. Production £ <
Line =
g
c; -
6. Production %
Line ~
Segment g
__________ Z |
wn
5. Work Unit g
= 2
4. Work g &
Station IS}
“=
E __?___/__.
1 2
3. Function g
Group - =
=4 <
1 = | 5 g
=] L 9
2 S8
2. Component = = g
E || E&
18 He=|
1. Construction| =
Element

L

Fig. 6.5 Categories of ‘production system level of detail’ as identification criterion assigned to
hierarchical production system structure

Material specific information (M) can be found on Layer 3, 2, and 1, because
information about material with hazard potential is relevant here—in general the
material identification. This information is relevant mainly for EoL 1—Material
Recovery (see Chap. 5, Fig. 5.9).

Besides the loops which represent the recovery of physical artifacts coming from
the EoL phase, there are also loops which represent the reuse of information artifacts
emerging from that phase. To also describe these the production system life cycle
is reduced back to the life cycle which is described in Chap. 5—only considering
engineering phase, operation and maintenance phase, and EoL phase.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5

6 Identification of Artifacts in Life Cycle Phases of CPPS 163

In doing so, the scenarios EoL 1 and EoL 2b (see Chap. 5, Fig. 5.9) are excluded
on behalf of clarity.
Both types of loops are explained with cases in the following subsection.

6.4.3 Usage of End-of-Life Phase Artifacts

In this subsection two main cases are presented (see cases 7—12 in Chap. 5) which
illustrate the benefits and opportunities when Industrie 4.0 components are used
in the EoL phase. They deal with recovery of physical artifacts and reuse of
information artifacts.

Case no. 7: Reuse of Artifacts from Operation and Maintenance Phase

Case no. 8: Reuse of Artifacts from Engineering Phase

Case no. 9: Reuse in Operation and Maintenance Phase of Same or Other
Projects

Case no. 10: Reuse in Engineering Phase of Same or Other Projects

Case no. 11: Reuse within End-of-Life Phase

Case no. 12: Reuse in End-of-Life Phase of Other Projects

The cases focus on industrial robots with their related wear-data and other
information artifacts.

Case no. 7-10: Reuse Artifacts from the Same Project and Reuse It in Another
Project

For this case the EoL scenario Component Recovery (EoL 2a) is chosen to
illustrate how a component could be recovered, when the production system is
decommissioned.

Component Recovery can be found in the automotive industry, e.g. when a
series expires and the corresponding production system becomes obsolete. This
production system is then decommissioned, disassembled, and used components
can be utilized, on the one hand to equip other production systems in other factories
at other locations (e.g. with a different layout producing a different product); or on
the other hand to store the used components as spare parts in case that those types
of components are still in use within the company, so that a provision of these spare
parts is reasonable.

According to Fig. 6.5 in Sect. 6.4.2, Component Recovery can be found on Layer
5 to 2 of the generic production system architecture. For this case, Layer 3 “Function
Group” is chosen, in particular an industrial robot. Given that the EoL relevant
information for the robot is stored in its administration shell, the robot knows how
it can get decommissioned, disassembled, and how it can get recovered based on its
current state.

In case the robot has evaluated by itself that it can be reused or further used, the
robot could provide the following information and guidance/recommendations to
the personnel involved in the EoL phase:

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_5

164 A. Liider et al.

* The robot needs to be decommissioned this way.

* The robot can get disassembled in xx minutes by undoing xx connections.

* Due to the robot’s time in use it should be cleaned/maintained.

* This part of the robot can get replaced: This would be the optimal trade-off
between costs to invest and life span expansion.

* Due to robot’s actual wear status it cannot fulfil the ‘welding skill’ anymore. It is
too worn out. Instead the robot could ‘insert workpieces’—for this the robot can
be less precise.

This self-description of the robot and its evaluation, that it can get used a second
time, is again the input for engineering tools of the engineering phase of other
projects (see Chap. 5, Fig. 5.4) on the one hand. Here, engineers could select this
self-description from a component library in which the virtual representation of
these real components is stored. Even construction site management tools could
use this self-description—not for erection (Dreher et al. 2013) but for removal. On
the other hand, this self-description could be used to automatically evaluate if the
robot meets the requirements of being a spare part for a specific, already operating
production system.

This case deals with recovery of physical artifacts and reuse of information
artifacts. In addition to the presented cases, in (Schmidtet al. 2016), a generic model
for EoL scenarios of production systems is developed as a basis to enable the EoL
phase being supported by future software tools.

Case no. 11-12: Reuse End-of-Life Phase Experience

This case deals with reuse of information artifacts. These artifacts contains the
documentation of experiences gained by the personnel during the EoL phase of a
production system, which are either used within the same EoL phase (to optimize
workflows, disassembly activities etc.) or in EoL phases of other production
systems.

6.5 Summary and Outlook

In this Chap. 6, the life cycle of a production system has been analyzed in detail
to identify artifacts covering all information sets relevant for the different layers
of production system hierarchy. Based on this, a mapping of information sets to
hierarchy layers and vice versa has been presented, being able to represent all
relevant information for an Industrie 4.0 component and, thereby, being a starting
point for the implementation of the digital shadow of Industrie 4.0 components.
Thus, it is providing answers to research questions RQ M1 and C2 of Chap. 1.

To be able to provide these answers, the production system life cycle was ana-
lyzed in three main phases: the engineering phase, the operation and maintenance
phase and the end-of-life phase. For each phase, a suitable approach was selected to
identify the relevant artifacts. The types of information could be identified for the

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_1

6 Identification of Artifacts in Life Cycle Phases of CPPS 165

analyzed automotive industry. Also, the relevant information for each layer could be
detected.

As a result, the identified artifacts as well as the information contained differ
dependent of the granularity of an 14.0 component and the point of time at which
the artifacts are generated or are used. There is no holistic concept that is valid over
all life cycle phases. The sum of the types of information and its granularity are
characteristic for the different layers, but one kind of information type can appear
on different layers. The artifacts types of information, in order to virtual represent
an 14.0 component at a certain layer, are various. Due to the additional information
needed for future CPPS, the demands on the administration shell to handle the
various types, will become even higher.

To expand the validation of the conducted research, an identification of relevant
types of information, dependent on the different layers and the point of time,
could be undertaken in additional industries. Here, the process industry, the energy
industry or batch production can be mentioned.

The dependencies between the information artifacts were not considered in this
chapter, but it is undisputed, that there are many links in between. In Chap. 12,
dependencies between the artifacts will be addressed.

Another important aspect in order to effectively use the information artifacts of
an 14.0 component is the quality assurance of the data. It is clear that the data must
be correct and complete. Chap. 16 deals particularly with the topic of data quality
assurance, missing in the Chap. 6.

Based on the results of this chapter, the following Chap. 7 analyzes the
description means necessary to hold the information throughout the life cycle of
CPPS.

References

Diedrich, C., Liider, A., Hundt, L.: Bedeutung der Interoperabilitit bei Entwurf und Nutzung von
automatisierten Produktionssystemen. Automatisierungstechnik. 59(7), 426438 (2011)

Dreher, S., Niirnberger, A., Kégebein, S., Schoch, A.: Digitiales Baustellenmanagement fiir
Produktionsanlagen. ZWF Jahrg. 108, 1-2 (2013, in German)

Duflou, J.R., Seliger, G., Kara, S., Umeda, Y., Ometto, A., Willems, B.: Efficiency and feasibility of
product disassembly — a case-based study. CIRP Ann. Manuf. Technol. 57(2), 583-600 (2008)

Feldmann, K., Trautner, S., Meedt, O.: Innovative disassembly strategies based on flexible partial
destructive tools. Annu. Rev. Control. 23, 159-164 (1999)

Hartel, M., Spath, D.: Oko-Portfolio: Methode zur Beurteilung der Recyclingeignung technischer
Serienprodukte, pp. 371-392. VDI-Berichte, 1171, VDI Diisseldorf (1994, in German)

Hell, K., Hillmann, R., Liider, A., Ropke, H., Zawisza, J., Schmidt, N., Cala, A.: Demands on the
virtual representation of physical Industrie 4.0 components. In: Conferenza INCOSE Italia su
Systems Engineering (CIISE 2016), Turin, Italy, 14—16 November 2016

Huber, A.: Demontageplanung und -steuerung: Planung und Steuerung industrieller Demontage-
prozesse mit PPS-Systemen. Dissertation, Otto-von-Guericke University Magdeburg (2001, in
German)

http://dx.doi.org/10.1007/978-3-319-56345-9_12
http://dx.doi.org/10.1007/978-3-319-56345-9_16
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7

166 A. Liider et al.

Hubig, M.-A.: Erarbeitung einer Methode zur deduktiven Ableitung Strategischer Recyclingan-
forderungen mit Hilfe der Szenariotechnik. Seminar Paper, University Kaiserslautern (2001, in
German)

AG Forschung and Innovation (Plattform Industrie 4.0): Aspekte der Forschungsroadmap in den
Anwendungsszenarien. Report, BMWi (2016, in German)

Kiehl, E. (ed.): Antriebslosungen — Mechatronik fiir Produktion und Logistik. Springer, Berlin
(2007)

Kis, T.: Planning and scheduling in the digital factory, KOMSO challenge workshop — math for the
digital factory. In: Proceedings, Berlin, Germany, May 2014

Leitdo, P., Karnouskos, S.: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 153-170. Elsevier, Waltham, MA (2015)

Lindahl, M., Sundin, E., Ostlin, J., Bjorkman, M.: Concepts and definitions for product recovery,
analysis and clarification of the terminology used in academia and industry. In: Brissaud, D.,
et al. (eds.) Innovation in Life Cycle Engineering and Sustainable Development, pp. 123-138.
Springer (2006)

Liider, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, St.: Aggregation of engineering
processes regarding the mechatronic approach. In: 16th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2011), Toulouse, France, Proceedings-
CD, September 2011

Liider, A.: Strukturen zur verteilten Steuerung von Produktionssystemen, Habilitationsschrift.
Fakultdt Maschinenbau, Otto-von-Guericke Universitit Magdeburg (2006)

Lunze, J.: Automatisierungstechnik — Methoden fiir die Uberwachung und Steuerung kontinuier-
licher und ereignisdiskreter Systeme. Oldenbourg Verlag, Miinchen (2008)

Obst, M., Holm, T., Bleuel, S., Claussnitzer, U., Evertz, L., Jager, T., Nekolla, T.: Automatisierung
im Life Cycle modularer Anlagen: Welche Veridnderungen und Chancen sich ergeben. atp
edition. 55(01-02), 24-31 (2013, in German)

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design — A Systematic Approach.
Springer, London (2007)

PAS 1049: Transmission of Recycling Relevant Product Information Between Producers and
Recyclers — The Recycling Passport. Beuth Verlag, Berlin (2004, in German)

Ropke, H., Liider, A., Hell, K., Zawisza, J., Schmidt, N.: Identification of “Industrie 4.0
component hierarchy layers. In: Submitted to IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2016), Berlin, Germany, September 2016

Rosemann, B., Meerkamm, H., Trautner, S., Feldmann, K.: Design for recycling, recycling data
management and optimal end-of-life planning based on recycling-graphs. In: International
Conference on Engineering Design (ICED 1999), pp. 1-6, Munich, Germany, 24-26 August
1999

Ruhland, K.: Methoden und Werkzeuge zur recyclinggerechten Automobilentwicklung. Disserta-
tion, University Kaiserslautern (2006, in German)

Sametinger, J.: Software Engineering with Reusable Components. Springer, New York (1997)

Schiffler, T., Foehr, M., Liider, A., Supke, K.: Engineering process evaluation — evaluation of the
impact of internationalisation decisions on the efficiency and quality of engineering processes.
In: 22nd IEEE International Symposium on Industrial Electronics (ISIE 2013), Taipei, Taiwan,
Proceedings, May 2013

Schiffleitner, A., Bley, T., Schneider, R., Wimpff, D.-P.: Stakeholder perspectives on business
model requirements for a sustainability data exchange platform across supply chains. In: Joint
International Conference and Exhibition “Electronics Goes Green”, pp. 9-12, Berlin, Germany,
Proceedings, September 2012

Schmidt, N, Liider, A., Hell, K., Ropke, H., Zawisza, J.: A generic model for the end-of-life phase
of production systems. In: IECON 2016: The 42nd Annual Conference of IEEE Industrial
Electronics Society, Florence, Italy, 24-27 October 2016

Schultmann, F., Frohling, M., Rentz, O.: Demontageplanung und -steuerung mit Enterprise-
Resource- and Advanced-Planning-Systemen. Wirtschaftsinformatik (WI-Aufsatz). 44(6),
557-565 (2002, in German)

6 Identification of Artifacts in Life Cycle Phases of CPPS 167

Seliger, G., Basdere, B., Keil, T.: e-Cycling platform for profitable reuse. In: IEEE International
Symposium on Assembly and Task Planning, Fukuoka, Japan, Proceedings, 28-29 May 2001

Simolowo, E., Onovughe, E.: Automation of generation of models for disassembly process
planning for recycling. In: World Congress on Engineering 2013, vol. III (WCE 2013), London,
UK, Proceedings, 3-5 July 2013

Steinhilper, R., Rieg, F. (eds.): Handbuch Konstruktion. Carl Hanser Verlag, Munich (2012, in
German)

VDI 2243: Recycling-Oriented Product Development. Beuth Verlag, Berlin (2002)

VDI/VDE—GMA—Fachausschuss 7.21: Industrie 4.0. Referenzarchitekturmodell Industrie 4.0
(RAMI4.0). https://www.vdi.de/fileadmin/user_upload/ (2015). Last access 25 Oct 2016

VDI 3695: Engineering of Industrial Plants. Evaluation and Optimization. Subject Methods, Part
3. Beuth Verlag, Berlin (2010)

Vogel-Heuser, B., Diedrich, C., Broy, M.: Anforderungen an CPS aus Sicht der Automatisierung-
stechnik. Automatisierungstechnik. 61(10), 669-676 (2013)

Willems, B., Seliger, G., Duflou, J., Basdere, B.: Contribution to design for adaptation: method
to assess the adaptability of products (MAAP). In: EcoDesign2003: Third International
Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 589-596,
IEEE, Tokyo, Japan, Proceedings, 8—11 December 2003

Yang, C., Vyatkin, V., Pang, C.: Model-driven development of control software for distributed
automation. IEEE Trans. Syst. Man Cybern. Syst. 44(3), 292-305 (2014)

Zawisza, J., Hell, K., Ropke, H., Liider, A., Schmidt, N.: Generische Strukturierung von
Produktionssystemen der Fertigungsindustrie. 17. Branchentreff der Mess- und Automa-
tisierungstechnik (Automation 2016), Baden-Baden, Germany, Proceedings, VDI-Verlag, June
2016 (in German)

https://www.vdi.de/fileadmin/user_upload/

Chapter 7
Description Means for Information Artifacts

Throughout the Life Cycle of CPPS

Arndt Liider, Nicole Schmidt, Kristofer Hell, Hannes Ropke,
and Jacek Zawisza

Abstract Recent research and development activities within the field of production
system engineering and use focus on the increase of production system flexibility
and adaptability. One common issue of those approaches is the consideration of
hierarchical and modular production system architectures where the individual
components of the system are equipped with certain functionalities and information.
Up to now, there is no common understanding about what a component can
constitute, i.e. which parts of a production system can be regarded as components
within the hierarchy and which functionalities and information are assigned to it.
This gap will be closed within this and the two the prior chapters.

They will at first discuss the relevant layers of components in a production
system, then the types of information required to be assigned to a component on
the different layers to establish a digital representation of the component, and at
last the description means exploitable to represent the identified information in the
different life cycle phases of a production system.

This chapter, in particular, will consider the artifacts and description means
related to them in each of the three life cycle phases on each layer of the hierarchical
production system structure as proposed in Chap. 5. Furthermore, the artifacts are
clustered and generic artifact classes are derived from the fragmented information
artifact landscape. Finally, description means are assigned to the artifact classes,
paving the way for future research on this topic.

Keywords Model-based engineering ¢ Description means ¢ Information artifact
classes ¢ Life cycle phases Production system hierarchy

A. Liider (2<) ¢ N. Schmidt
Faculty Mechanical Engineering, Otto-von-Guericke University, Magdeburg, Germany
e-mail: arndt.lueder @ovgu.de; nicole.schmidt@ovgu.de

K. Hell » H. Ropke ¢ J. Zawisza

Volkswagen Aktiengesellschaft, Wolfsburg, Germany

e-mail: kristofer.hell @volkswagen.de; hannes.roepke @volkswagen.de;
jacek.zawisza@volkswagen.de

© Springer International Publishing AG 2017 169
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_7

http://dx.doi.org/10.1007/978-3-319-56345-9_5
mailto:arndt.lueder@ovgu.de
mailto:nicole.schmidt@ovgu.de
mailto:kristofer.hell@volkswagen.de
mailto:hannes.roepke@volkswagen.de
mailto:jacek.zawisza@volkswagen.de

170 A. Liider et al.

7.1 Introduction

Due to the ever growing and accelerating trend towards industrialization and
digitalization, the number of information artifacts, as well as the associated data
formats and description means, are growing at an even higher speed (Vogel-
Heuser 2015). However, as of today, there is no multi-disciplinary data modeling
concept that is also consistent throughout the life cycle of a CPPS. The Industrie
4.0 component addresses this topic, among others, by providing a structure for
information elements to enable the implementation of functionalities of physical and
virtual assets (Plattform Industrie 4.0 2016). Nevertheless, it is still unclear which
overall requirements Industrie 4.0 components will have to fulfill, considering the
depiction of information artifacts and description means.

Therefore, the main research goal of Chaps. 5, 6, and 7 is to define the
requirements on the capabilities of Industrie 4.0 components in order to be able
to create, manage, and use information along its complete life cycle. The two
previous chapters already laid the groundwork to answer this question by providing
a hierarchy and life cycle model to structure the emerging information (see Chap. 5)
and by assigning information artifacts to the hierarchy layers and life cycle phases
(see Chap. 6).

Against this background, in this chapter, the work of the previous two chapters
is continued and the remaining research questions are answered, which are:

Which description means are exploited to represent the information types
in the life cycle phases of a CPPS? Are there special description means
related to the different layers?

These questions are closely linked to the research questions RQ M1 and M2 of
Chap. 1, which state that it is of interest to identify requirements and architectures
for Industrie 4.0 component modeling considering their multi-disciplinary character
and to have a look at the information creation and use related to it.

Therefore, in the course of this chapter, it will be shown which description
means can be assigned to which generic types of engineering artifacts that are used
throughout the life cycle of CPPS. In order to achieve this, the authors gathered and
evaluated a characteristic set of information and the artifacts they are coded within.
The first step was a literature review with focus on the work of (Foehr et al. 2012),
where a Delphi-based expert survey was carried out. In a second step, the authors
of this chapter complemented the data with further expert interviews and assigned a
student work (Hell et al. 2016) to the topic in order to extend the representativeness
of the work. The results are discussed here and, although the artifacts and description
means in this work are not completely exhaustive, it is important to state that they
are representative for a large part of the data types and formats used in the regarded
setting.

In the foregoing, the focus is laid on interdependent information sets throughout
the life cycle phases. For a detailed description on dealing with heterogenous
information on project level using semantic web technologies, see Chap. 12.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_12

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 171

Another important aspect in this context is data quality assurance, which deals with
securing the faultlessness of (engineering) data throughout the life cycle. For further
information on this topic, see Chap. 16.

To answer the described research questions, this chapter is structured as follows:
first, a disambiguation is provided in order to delimit the topic of this chapter. In
a second step, description means for the identified artifacts are identified, which
are exploited to represent information coded within these artifacts. Thereby, it
is possible to analyze whether there are special description means related to the
different layers or not. In the process, description means are assigned to each layer
of the hierarchy model and life cycle phases provided by Chaps. 5 and 6. This makes
it possible to define classes of artifacts and corresponding generic description means
in the next step. Finally, the contributions of this particular chapter as well as the
overall contributions of Chaps. 5, 6, and 7 are discussed and an outlook to future
research is given.

7.2 Disambiguation: Description Means, Information
Handling Methods, and Tools

An important point, here, is that the distinction between description means, infor-
mation handling methods, and information handling applications and tools shall
be considered (Schnieder 1999). The focus of this chapter is on the description
means, neither on information handling methods nor tools. For further reading about
methods and tools the reader can refer to Chap. 9.

Description means enable the expression of problems and their solutions in more
or less formal ways. Usually, it can be distinguished between the information cov-
ered by description means (semantics) and their representation (syntax) (Diedrich
et al. 2011). For example, the behavior of a production system component can be
expressed on an information level by a Petri net where the places cover local states
of the component while transitions express the state evolution. On the representation
level, places are represented by circles with annotations and transitions by bars
with annotations. Nevertheless, description means shall be independent from any
methodology and any technical solution for their creation, management, and use.

Methodologies and any technical solutions for creation, management, and use
of artifacts are represented by information handling methods (usually covering the
Engineering, Operation and Maintenance, and End-of-Life phase activities as named
in the previous chapter) and information handling applications and tools (used
within the same phases). Usually, they are strongly correlated with the description
means applied.

Within the following, the focus will be on the description means and not on
the methodologies and applications/tools. The aim of this Chapter is to name and
assign types of relevant description means to the artifacts identified in the previous

http://dx.doi.org/10.1007/978-3-319-56345-9_16
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_9

172 A. Liider et al.

Chapter. As the number of artifacts and the number of applicable description means
is apparently high, only representative examples will be considered.

7.3 Description Means for Artifacts

As it can be seen within the following figure, the artifacts named within Chap. 6
can be assigned to the three identified life cycle phases as well as to the different
layers of the identified hierarchy of a production system in Chap. 5 (see Fig. 7.1).
The description means within the three phases are described in the following.

7.3.1 Description Means During Engineering Phase

Initially, during engineering phase, the production system is designed in a kind of
top-down approach starting with the requirement specifications leading to the details
specification about how to install and commission the production system. Usually,
engineering information is created here, which are stored and exchanged as files,
database content, or paper documents in an appropriate way.

Laver Engineering- Operation- & E:(i}-:_f-
e Phase Maintenance Phase Phase

9. Production Suppller management
Network [Investment plan]
') N oY)
[Product mix]
8. Factory g o
[Capacity plan] =R 2
o g
T T T o & el [Material stock] o] ‘g
R 3 JCi
Bine é] [Human labor plan] =
@ E e e R
6. Production I [Product related process sequencing] =
Line 5|2 — o~
Segment ol & [Resource monitoring] - E
& == = = 2 - | &
a [Process supervision] 8 @
5. Work Unit 2|z g
[Production data acquisition] é £ =
= NP
() . B2 E=1 5]
4. Work A = (Quality control) 2|zl E || £
Station E1N s 8 = E =|| g £
2zl 2llall= 5 o} 2= =
a2z el S sHel B P 1 S =
E g 8] SIEIREIES 2 g 'rocess contro! o|] 8 e [/
3. Function a2 =12 Z]|8]|2]] 2 £([S z
Group ENENEIEEEEE L R S 2 -
SR z 2|8 Product identification B & g
ElloHel=12 SH 2 2 > =
sl|ellg|)]~ © E =1 58
A= @ [Sensor/actor control] g 2 S5
2. Component =1 8 = g
Az [Product data acquisition] b g -2 £
J e L) Sl=—=} S {g&
1. Construction (= =
Element
L JL) J L

Fig. 7.1 Production system life cycle phases and phase-specific information

http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_5

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 173

On the Factory and Production Network layers, requirements and legal, eco-
nomic, and technical constraints (so-called propositions) are usually assigned. In
most cases, these are text-based documents exchanged as PDF files. In some
cases, companies have started to apply more formal ways within the requirement
specification exploiting modeling tools like IBM DOORS or modeling languages
like SysML. In this case, the exchanged documents are XML based (following XMI
in the SysML case) or the information is stored in databases.

On Production Line and Production Line Segment layers, the production system
structure is designed in general. Thus, 2D layouts are relevant which are exchanged
as CAD drawings using files like TIFF, JPG, and PDF which are accompanied by
text-based documents like PDF.

On Work Unit layer, there are basic behavior models, 2D layouts, mechanical
and electrical specifications, 3D layouts, and safety concepts. For modeling basic
behaviors usually Gantt Charts or similar high-level models are applied given
in spreadsheet based documents like Microsoft Excel. Mechanical and electrical
specifications are stored in a textual way or based on dedicated MCAD and ECAD
tools with its appropriate data formats like JT or STEP. 3D layouts are given, in
general, as CAD files. Safety concepts are described by text and/or in structures
defined by legal regulation organizations exploiting XML.

On Work Station layer, behavior models, 3D geometry models, mechanical and
electrical specifications, control programs, fluidic plans, powers supply concepts,
safety concept, electrical construction, and simulation models are applied. Again
related to 3D modeling as well as mechanical, electrical and fluidic constructions
CAD data are created using special CAD files like JT and STP or dedicated
XML structures. Comments and additions to these documents are given in text-
based documents like PDF. Behavior models and simulation models usually cover
more detailed behavior descriptions given by timing diagrams, SysML diagrams,
or automatons as well as by dedicated models for simulation tools like automatons
and Petri nets stored as legacy files or XML. Finally, control programs are given in
appropriate control code following e.g. IEC 61131 stored as PLCopen XML.

On Function Group layer, the engineering information is more detailed cover-
ing basic behavior models, 3D layouts, mechanical and electrical specifications,
control programs, fluidic plans, power supply concepts, safety concepts, electrical
construction, detailed behavior models, and simulation models. The 3D data and
construction specifications are again given as CAD files. Behavior and simulation
models are usually given as detailed timing diagrams (in the specification case),
automatons, or dedicated simulation models like Simulink or Modelica. For the
other named information types XML-based or text based documents are often
applied to represent the information.

Again, on Component Layer, the level of detail increases, especially related
to the structure and behavior specifications like 3D layouts and constructions,
control programs, power supply concepts, safety concepts, electrical construction,
detailed behavior models, and simulation models. In addition, detailed part lists
will be relevant defining the purchase parts of the production system. CAD based
construction models are usually given as CAD files also used for mechanical

174 A. Liider et al.

and electrical constructions. Control programs are based on the relevant control
programming languages, which are component type and vendor dependent, or they
are stored as more or less user organization based XML formats like PLCopen
XML. Behavior and simulation models are either given as dedicated simulation
models like Simulink or Modelica or specified by automation based models like
state charts. Especially for part lists Excel based CSV documents are relevant.

On the lowest layer, the Construction Element layer, the most detailed engineer-
ing information is relevant. This include part lists and mechanical and electrical
specifications which are given as text-based documents, CSV files or XML-based
files, and CAD-based construction given as CAD specific files like JT and STP.

An overview of layer specific artifacts and description means during Engineering
Phase is given in Table 7.1.

7.3.2 Description Means During Operation and Maintenance
Phase

Within the use phase, the identification of description means is a bit more com-
plicated as here the time of validity and the way of artifact collection/transmission
are relevant for the description means definition. Artifacts on the higher hierarchy
layers have a validity period of hours and days while the artifacts on the lowest
hierarchy layers are real-time control data with a validity period of minutes, seconds,
and below. Thus, in contrast to engineering data, there is a drastic shift within the
description means.

On the Production Network Layer, there is volume and cost planning informa-
tion, economical Key Performance Indicators (KPIs) as well as technical and sales
rules which usually are coded within text documents like PDF and XML-based
documents.

On the Factory Layer, the relevant artifacts are very similar containing long-
term production program and manufacturing planning, as well as technical and sales
restrictions which mostly are given as text-based documents like PDF, economic,
manufacturing, and logistics related KPIs given as XML structures like KPI XML,
and material stock/availability, and order data coded as database content.

On Production Line Layer, the use related data mostly cover KPIs for staff,
material, and resource allocation possibly coded by XML structures like KPT XML
as well as resource planning, order data, supplier orders modeled as text-based
documents like PDF, spreadsheet-based documents like CSV and database content
like SAP systems.

The only difference between Production Line Segment Layer and Production
Line Layer is the more detailed focus on resources. Thus, there are resource related
KPIs, resource alarming, order data, and material logistics data which can be
represented by spreadsheet based documents like CSV, XML structures like KPI
XML, database content, and, as new means especially for alarming, PLC data.

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS

Table 7.1 Layer-specific artifacts and description means during engineering phase

Layer

9 Production
network

8 Factory

7 Production line

6 Production line
segment

5 Work unit

4 Work station

3 Function group

2 Component

1 Construction
element

Artifacts

Requirement specifications,
legal, economic, and technical
constraints

Requirement specifications,
legal, economic, and technical
constraints

2D-layouts

2D-layouts

Basic behavior models,
2D-layouts, mechanical and
electrical specifications,
3D-layouts, and safety concepts

Behavior models,
3D-geome-try-models,
mechanical and elec-trical
specifications, control programs,
fluidic plans, powers supply
concepts, safety concepts,
electrical construc-tion,
simulation models

Behavior models, 3D-layouts,
mechanical and electrical
specifications, control
pro-grams, fluidic plans, powers
supply concepts, safety
con-cepts, electrical
construction, detailed behavior
models, and simulation models

Behavior models, 3D-layouts,
part lists, mechanical and
elec-trical specification, CAD
con-struction, control programs,
powers supply concepts, safety
concepts, electrical
construc-tion, detailed behavior
models, simulation models

Part lists, mechanical and
electrical specifications,
CAD-based construction

Usable description means

Text-based documents like PDF,
XML structures

Text-based documents like PDF,
XML structures, database
content

CAD drawings using files like
TIFF, JPG, PDF, text-based
documents like PDF

CAD drawings using files like
TIFF, JPG, PDF, text-based
documents like PDF

Gantt Charts or similar
high-level behavior models in
Excel, text-based documents,
CAD files like JT or STP,
XML-based files

CAD files like JT and STP,
XML structures, text-based
documents like PDF. Impulse
diagrams, SysML diagrams,
automatons, and Petri nets as
legacy or XML files, IEC 61131
code as PLCopen XML

CAD files like JT and STP,
XML structures, text-based
documents like PDF. Impulse
diagrams, SysML diagrams,
automatons, and Petri nets as
legacy or XML files, simula-tion
models like Simulink or
Modelica, IEC 61131 code as
PLCopen XML

CAD files like JT and STP,
XML structures, text-based
vendor dependent documents,
simulation models like Simulink
or Modelica State charts, IEC
61131 code as PLCopen XML,
CSV files

Text-based documents, CSV
files, XML-based files, CAD
specific files like JT and STP

175

176 A. Liider et al.

On Work Unit Layer, the real-time control impact drastically increases and the
importance of KPIs decreases. The relevant data on this layer contains especially
maintenance related resource KPIs, resource state information and resource alarm-
ing, order related data, and production process control data. Thus, here are with
spreadsheet-based documents like CSV, XML structures like KPI XML, database
content, and PLC data the same description means as on Production Line Segment
Layer.

On Work Station Layer, there are the same artifacts and description means
relevant as on Work Unit Layer.

The most relevant shift within the used description means can be found between
Work Station Layer and Function Group Layer. On Function Group Layer as well
as on Component Layer, the use data are related to field control. They subsume
resource and component state and alarming information as well as production
process control data which are modeled as PLC, RND, CNC, etc. data.

Finally, on the Construction Element Layer, there are no direct use phase related
data. Nevertheless, it can be assumed that there might be construction element
related data relevant for maintenance activities like durability of materials. But they
are collected on Work Station Layer as resource KPIs. An overview of layer specific
artifacts and description means during Operation and Maintenance Phase is given in
Table 7.2.

7.3.3 Description Means During End-of-Life Phase

The identification of artifacts for the End-of-Life phase of production systems is still
an open field of research. However, with general information (relevant on layers 8
and 7), production system related information (relevant on layers 8-4), component-
specific information (relevant on layers 5-2), and material-specific information
(relevant on layers 3—1), four general information- types are known.

General information is mostly related to guidelines and regulations defined/
developed by legal advisors, standardization organizations, or vendor organizations.
They are usually provided as text-based documents like PDF, sometimes including
more formal representations like UML diagrams and XML structures.

Production system related information is mostly based on the re-use of engi-
neering information as well as engineering-like information describing the current
state of the structure and behavior of the production system. This may include 2D-
and 3D-plans and -layouts, behavior models, and part lists, which are modeled by
CAD-drawings using files like TIFF, JPG, PDF, text-based documents like PDF,
XML-based structures, Gantt and timing diagrams, as well as spreadsheet-based
documents like CSV.

The component-specific information is very similar to the production system
related information, but usually contains a higher level of detail. They subsume
mechanical and electrical specifications and constructions, behavior models, safety
concepts, and part lists, which are modeled by CAD-drawings using files like

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 177

Table 7.2 Layer-specific artifacts and description means during operation and maintenance phase

Layer Artifacts Usable description means
9 Production Volume and cost planning, Text-based documents like
network economical KPIs, technical and PDF, XML structures like
sales rules KPI XML, database content
8 Factory Program and manufacturing Text-based documents like

planning, economic, manufacturing ~ PDF, XML structures like
and logistics related KPIs, technical ~ KPI XML, database content
and sales restrictions,

manufacturability, parts stock/

availability, order data

7 Production line Staff, material and resource Text-based documents like
allocation KPIs, resource planning, PDF, table-based documents
order data, supplier orders like CSV, XML structures

like KPI XML, database
content

6 Production line Resource KPIs, resource alarming, Table-based documents like

segment order data, logistics data CSV, XML structures like
KPI XML, database content,
PLC data

5 Work unit Resource KPIs, resource state and Table-based documents like
alarming, order data, production CSV, XML structures like
process control data KPI XML, database content,

PLC data

4 Work station Resource KPIs, resource state and Table-based documents like
alarming, order data (like quality), CSV, XML structures like
production process control data KPI XML, database content,

PLC data

3 Function group Resource state and alarming, PLC, RND, CNC, etc. data
production process control data

2 Component Component state and alarming, PLC, RND, CNC, etc. data

production process control data

1 Construction - -
element

TIFFE, JPG, PDF, text-based documents like PDF, XML-based structures, timing or
automaton diagrams, as well as spreadsheet-based documents like CSV. The focus
of this information is on the modular and hierarchical structure of the production
system and the way it is assembled during installation. Thereby, the way of dis-
assembling can be defined. In addition, the component-specific information covers
use-phase related information, describing the way of the utilization of components.
This is necessary to estimate the current economic value of a component and its
capability to be reused in other production systems. The named information mostly
covers resource related KPIs, which are modeled as text-based documents like PDF,
XML structures like KPI XML, spreadsheet-based documents like CSV, database
content, or even as PLC data.

178 A. Liider et al.

Finally, the material specific information focuses on the material identification
within the used production system elements as well as on the description of the
deterioration of the used material during use time. This is based on the use of device,
material, and other documentations which are given as text files for example as PDF
and on resource/component related KPIs which are modeled as XML structures like
KPI XML, spreadsheet-based documents like CSV, database content, or again as
PLC data.

The named mappings of useable description means are summarized in Table 7.3.
As can be seen, the number of currently applied description means is high. It
changes with the considered layer being more formal and can be automatically
evaluated better on the lower hierarchy layers. In the future, it is advisable to reduce
the number of applied description means.

7.4 Artifact Classification

In order to identify description means potentially usable for the artifacts in a future
scenario, the artifacts need to be classified and the description means need to
be assigned to each artifact class. By this, a potential unification of artifacts can
be reached. It might enable the representation of all identified information types
within/of Industrie 4.0 components by a uniform representation.

One possible classification of the identified artifacts is given in Fig. 7.2. It
represents the three main life cycle phases of the production system, indicates
artifact classes applicable, and maps the artifacts named above to the artifact classes.

Considering the available description means named in the sections above, gen-
eralized XML-based data formats like AutomationML (Drath 2010) and (Automa-
tionML 2009) can be identified as possible candidates for a data format covering all
artifacts. Nevertheless, following (Schmidt and Liider 2015) AutomationML will
not cover all relevant information sets. Therefore, it needs to be extended by text
files like PDF, CAD drawings using files like TIFF or JPG, and control information
represented in databases like OPC UA or in control devices like PLC, RND, or CNC.
(Liider et al. 2014) presents a possible integration approach.

Table 7.4 summarizes the combination of the five named information description
means to represent all artifact classes.

7.5 Summary and Outlook

The goal of this Chapter was to define description means that can be exploited to
represent the information types in the three life cycle phases and whether they are
related to the different hierarchy layers as described in Chap. 5.

In order to achieve this, in a first step usable description means were assigned
to the artifacts on each layer of the underlying hierarchy structure. Since the

http://dx.doi.org/10.1007/978-3-319-56345-9_5

Layer

Production
network

Factory

Production line

Production line
segment

Work unit

Work station

Function group

Component

Construction
element

Artifacts

General information,
production system related
information

General information,
production system related
information

Production system
related information

Production system
related,
component-specific
information

Production system
related,
component-specific
information

Component-specific
information, material
specific information

Component-specific
information, material
specific information

Material-specific
information

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 179

Table 7.3 Layer-specific artifacts and description means during EOL-Phase

Usable description means

Text-based documents like PDF, UML
diagrams, CAD drawings using files
like TIFF, JPG, PDF, XML-based
structures, Gantt and Impulse diagrams,
table-based documents like CSV

Text-based documents like PDF, UML
diagrams, CAD drawings using files
like TIFF, JPG, PDF, XML-based
structures, Gantt and Impulse diagrams,
table-based documents like CSV

Text-based documents like PDF, CAD
drawings using files like TIFF, JPG,
PDF, XML-based structures, Gantt and
Impulse diagrams, table-based
documents like CSV

Text-based documents like PDF, CAD
files like TIFF, JPG, PDF, XML-based
structures, Gantt, Impulse, or
automaton diagrams, table-based
documents like CSV, database content,
PLC data

Text-based documents like PDF, CAD
files like TIFF, JPG, PDF, XML-based
structures, Gantt, Impulse, or
automaton diagrams, table-based
documents like CSV, database content,
PLC data

CAD drawings using files like TIFF,
JPG, PDF, text-based documents like
PDF, XML-based structures like KPI
XML, Impulse or automaton diagrams,
table-based documents like CSV.
database content, PLC data

CAD drawings using files like TIFF,
JPG, PDF, text-based documents like
PDF, XML-based structures like KPI
XML, Impulse or automaton diagrams,
table-based documents like CSV.
database content, PLC data

Text files like PDF, XML structures like
KPI XML, table-based documents like
CSYV, database content, PLC data

A. Liider et al.

180

soseyd 9[0Ad 9JI] 921y oY) UI S)ORJILIR JuBAQ[I Jo so[dwexyq g°L 81

SuruoIsSTUmod(

Sd

SpUBLILIOD
JJO-/uo-yonms

detailed

s[ooojoxd
nuwwod e

HATT-40-ANA

-, ejep %%nﬂ
IolMoR/IOSUSS @ 4 __---=-fr === - Moﬂ%e.
vavos w_Eo:wSam ss2001d @ 9010 suﬂ nm.l;
? S0P S, Aquiassesiq

NOILVIAdO = Qséen . ‘ sofeyoed

-4, UONRULIOJUI @
Jopi1o uononpord ey,
S E\ bas Ajquiasse o
Jjo-[ed e /
‘bosiopioe
o_:mosom uononpoid e
StionoLsal Sa[es / ‘U2 @

SIOpIO SI[eS @ 4 tres N
1880210 JJO-[[Ed ® . uepd’
| uonedo[[e K101oe) @ ““tiononpoid
Sdd fipiqemogynuew o ued puewap e ueydi sojes U_Mﬁwﬁ v

/ddA 199ys BIEp sjuswaInbax widf Suoje W
1onpoij e juapuadop $s0I3 @ S

\

WOg e poneRk

ureyo [1ead o

uoneuLIojuL %.—v.»cuvm

e1ouas @ \ .

1woid e UStoT

Y .Hmm‘_.& IsoAUT @

T
1081e))S9AUT @

i

! Py

\ Sl 15 i ssa001d ySnos e /
I suonao] Sutuolyd AUqIssT e I 1ok yaoig e s, \ K
SUILOISSIWIWOD [eNHIA N nofey 1d2ou0o (Ic @ ! Sununoooe e
\) 59IN01 10£2AU0D @ : Suruuepd 3sAuy
Suruoissiuuwo) = . % %o ko 8

pue ydaduo)

m_wc__xuc_ Sururof $$0001d payieiop
S T==-l s mofejySnor g e JHRYI-NUED ©

510K9AU00 uS1sp y3noi e L moke[ysnoiqze
NueiSoid Y14 e 3 - SOTou0310 @ ™., Woke] [euy 4z e
/ 1eyo asind e /Ayiqeeae jueid o - PLIDA s noke] g o

~,, $s3001d [euy @

uBISop [NH @
IIAH /uoyezneuwioyny sisA[eue A)[1q1ssa00E @

- uonIIyd(J JnoAe| jueld
20IN0SA1 [EULj @
pue usisa($s014

Jdaouos ban:%.iuiobvﬁv . uononysuoo e dnjoous jueid [eySiq e
Sunuwes3oid duij-jjo { sonenud e :
Surwwes3 HO® Jdasuoo Kayes e SoIneIpAy o

sue[d so13[° @ uonmupq

92IN0SNY

Suruureagoud sjoqoy
pue uoneWIg

erd Sunsnlpe o

avod
IONRIAANIONT]|

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 181

Table 7.4 Description means assignment to artifact classes

Artifact classes Description means
CAD
XML-based drawings PLC,
structures using files Database RND,
like Automa- Text files like TIFF, content like CNC, etc.
tionML like PDF JPG OPC UA data
Concept and X X
invest planning
Process design X X
and plant layout
definition
Resource X X
definition
MCAD X X
ECAD X X
Simulation and X X
robots
programming
Automation/HMI X X X
Commissioning X X X X X
ERP/PPS X X
MES X X
SCADA X X
PLC X X
Field-I/O X
Decommissioning X X X X X
Disassembly X X X X X
Recovery X X X X

information and description means can vary greatly between the three specified life
cycle phases of CPPS, it was necessary to match artifacts and description means
for engineering, operation, and EoL-Phase. Thereby, it was shown that both, the
assignment of description means to hierarchy layers as well as to life cycle phases
is possible.

However, since the information used in the various scenarios can be interde-
pendent, incompatibility of description means used throughout the life cycle is a
possible outcome. Therefore, in order to make description means compatible in
the future, in this Chapter possible artifact classes were defined and assigned to
description means, making them more consistent.

What are the requirements on the capabilities of Industrie 4.0 components to
create, manage, and use information along its complete life cycle?

Considering the main research question of the Chaps. 5, 6, and 7 the intention
of this work was to provide assistance for engineers to decide about the right
information set to be covered by an Industrie 4.0 component and to decide about

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7

182 A. Liider et al.

applicable implementation technologies. Therefore, the main research question of
this work has been the identification of requirements on the capabilities of Industrie
4.0 components to create, manage, and use information along their complete life
cycle.

To answer this question three underlying research questions have been addressed
beforehand. At first, nine different layers of Industrie 4.0 components in a pro-
duction system have been presented in Chap. 5. For each layer, the relevant
functionalities of an Industrie 4.0 component were used as criteria for identification.

At second, the different types of information to be assigned to an Industrie
4.0 component on the different layers have been discovered establishing a kind of
virtual representation of the component. Therefore, the main life cycle phases of a
production system have been reviewed in Chap. 6.

Finally, description means applicable to represent the identified information
types in these life cycle phases are given in Chap. 7.

As a result, the named three Chapters together are able to provide

» Candidates for Industrie 4.0 components,

* Candidates for meaningful information sets relevant for these Industrie 4.0 com-
ponent candidates following the different layers of components in a production
system, and finally

* Candidate technologies for representing these information sets in the administra-
tion shell of the Industrie 4.0 component.

The three Chapters failed to provide information-based identification character-
istics for Industrie 4.0 components. Figure 7.2 depicts this problem. Here it gets
visible, that for example the Layers Work Station, Function Group, and Component
contain similar engineering information just with a different granularity. Also,
the runtime information are very similar. Thus, these information set relevant for
an Industrie 4.0 component is not necessarily layer characterizing. Here, further
research can provide a more detailed view on the problem.

In addition, this work still leaves another essential question open. Especially
Tables 7.1, 7.2, and 7.3 indicate that there are various information sets relevant for an
Industrie 4.0 component. But these information sets are not independent from each
other. In contrast, they are strongly dependent, requiring on the one hand consistency
between the information sets as well as sometimes enabling the generation of some
information exploiting other information sets.

The representation of these dependencies and generation processes are beyond
the scope of this paper but need to be considered in detail in future work.

Furthermore, the requirements of model-based engineering make it necessary
to integrate proper methods and tools throughout the engineering processes. Since
this is also a workflow-management topic, Chap. 11 discusses the adoption of
this model-driven systems engineering approach considering the requirements for
CPPS.

http://dx.doi.org/10.1007/978-3-319-56345-9_5
http://dx.doi.org/10.1007/978-3-319-56345-9_6
http://dx.doi.org/10.1007/978-3-319-56345-9_7
http://dx.doi.org/10.1007/978-3-319-56345-9_11

7 Description Means for Information Artifacts Throughout the Life Cycle of CPPS 183

References

AutomationML Association: AutomationML web page (2009). www.automationml.org

Diedrich, C., Liider, A., Hundt, L.: Bedeutung der Interoperabilitit bei Entwurf und Nutzung von
automatisierten Produktionssystemen. Automatisierungstechnik. 59(7), 426438 (2011)

Drath, R. (ed.): Datenaustausch in der Anlagenplanung mit AutomationML—Integration von
CAEX, PLCopen XML und COLLADA. Springer, Berlin (2010)

Foehr, M., Liider, A., Steblau, A., Liider, M.: Analyse der praktischen Relevanz verschiedener
Beschreibungsmitte]l im Entwurfsprozess von Produktionssystemen Entwurf komplexer
Automatisierungssysteme (EKA 2012). Magdeburg, Deutschland, Proceedings, pp. 61-72
(2012)

Hell, K., Hillmann, R., Liider, A., Ropke, H., Zawisza, J., Schmidt, N., Cala, A.: Demands on the
Virtual Representation of Physical Industrie 4.0 Components. Conferenza INCOSE Italia su
Systems Engineering (CIISE 2016), November 1416, Turin, Italy (2016)

Liider, A., Schmidt, N., Rosendahl, R., John, M.: Integrating different information types within
AutomationML. 19th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2014), Barcelona, Spain, Proceedings (2014)

Plattform Industrie 4.0: Struktur der Verwaltungsschale. Fortentwicklung des Referenzmodells fiir
die Industrie 4.0-Komponente. http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Pu
blikation/struktur-derverwaltungsschale.pdf?__blob=publicationFile&v=8 (2016). Accessed
October 2016

Schmidt, N., Liider, A.: AutomationML in a Nutshell. AutomationML consortium. http://
www.automationml.org (2015). Accessed September 2016

Schnieder, E.: Methoden der Automatisierungstechnik. Vieweg Verlag (1999)

Vogel-Heuser, B.: Herausforderungen und Anforderungen aus Sicht der IT und der Automa-
tisierungstechnik. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch
Industrie 4.0—Produktion, Automatisierung und Logistik, pp. 37-48 (in German). Springer,
Berlin (2015)

http://www.automationml.org/
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/struktur-derverwaltungsschale.pdf?__blob=publicationFile&v=8
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/struktur-derverwaltungsschale.pdf?__blob=publicationFile&v=8
http://www.automationml.org

Chapter 8
Engineering of Next Generation Cyber-Physical
Automation System Architectures

Matthias Foehr, Jan Vollmar, Ambra Cala, Paulo Leitao,
Stamatis Karnouskos, and Armando Walter Colombo

Abstract Cyber-Physical-Systems (CPS) enable flexible and reconfigurable real-
ization of automation system architectures, utilizing distributed control architectures
with non-hierarchical modules linked together through different communication
systems. Several control system architectures have been developed and validated in
the past years by research groups. However, there is still a lack of implementation
in industry. The intention of this work is to provide a summary of current alternative
control system architectures that could be applied in industrial automation domain
as well as a review of their commonalities. The aim is to point out the differences
between the traditional centralized and hierarchical architectures to discussed ones,
which rely on decentralized decision-making and control. Challenges and impacts
that industries and engineers face in the process of adopting decentralized control
architectures are discussed, analysing the obstacles for industrial acceptance and the
new necessary interdisciplinary engineering skills. Finally, an outlook of possible
mitigation and migration actions required to implement the decentralized control
architectures is addressed.

Keywords CPS in production * Future automation systems * Industrial systems
engineering ¢ Migration strategy ® System architectures

M. Foehr (P<)) J. Vollmar * A. Cala
Siemens AG Corporate Technology, Erlangen, Germany
e-mail: matthias.foehr@siemens.com; jan.vollmar @siemens.com; ambra.cala.ext@siemens.com

P. Leitdo
Polytechnic Institute of Braganca, Braganga, Portugal
e-mail: pleitao@ipb.pt

S. Karnouskos
SAP, Walldorf, Germany
e-mail: stamatis.karnouskos @sap.com

A.W. Colombo
University of Applied Sciences Emden/Leer, Emden, Germany
e-mail: awcolombo @technik-emden.de

© Springer International Publishing AG 2017 185
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_8

mailto:matthias.foehr@siemens.com
mailto:jan.vollmar@siemens.com
mailto:ambra.cala.ext@siemens.com
mailto:pleitao@ipb.pt
mailto:stamatis.karnouskos@sap.com
mailto:awcolombo@technik-emden.de

186 M. Foehr et al.

8.1 Introduction

Production systems are complex systems composed of various, often engineering
discipline specific, subsystems. One important subsystem to be considered is the
automation system. Due to the close interaction between the automation system
and other system components like actuators and sensors the whole system and
its environment needs to be considered when dealing with the automation system
architecture. From this perspective the purpose (e.g., product to be produced) and
system goal (e.g., output capacity) are main influencing factors. But also the overall
system architecture (e.g., structure of production system, layout, IT-Systems) and
the functional and non-functional requirements (e.g., degree of automation) towards
the automation system have an impact on the automation infrastructure. Last but not
least the available technology and hardware must be taken into account.

For today’s systems the environment, system goals and system architecture are
considered stable over the whole life-cycle of the production system. Changes
occur when product changes (e.g., new model of car, new chemical substance) or
requirements change (e.g., new safety regulation) but they normally have no impact
on the architecture as such, except from the software and run-time aspects of the
automation system. If changes occur, the production is stopped and the system is
changed and production is re-started after modification. These downtimes, even if
planned, are resulting in a loss of production capacity and finally a loss of money.
This is also reflected in the classical automation system architecture as discussed in
Sect. 8.2.

The question that arises is: are the above mentioned influencing factors going to
remain stable also in the future? To answer it, the German National Academy of
Science and Engineering (ACATECH, 2011) investigated four future scenarios of
Cyber-Physical Systems (CPS) application with a time horizon until the year 2025.

One of these scenarios “Cyber-Physical System for the factory of the future”
describes the characteristics and challenges for production systems. Production
systems shall be able to react virtually in real time to changes in the market and
the supply chain using CPS, which cooperate with ultra-flexibility even beyond
company boundaries. Therefore a future industrial system architecture is needed that
will focus on key aspects as identified in Kagermann et al. (2013), specifically:

* Allow flexibility and reconfiguration (with no downtime)

* Enable high production system resilience (deal with uncertainties)

* Enable continuous, automatic production optimization

» React faster and more automated to evolving customer and production demands

* Support for highly individualized production and small batches/lot sizes (lot
size 1)

The posed requirements are reflected in several key research questions (RQs).
However, most notably this chapter pertains aspects that tackle or enable approaches
targeting the following RQs (see Chap. 1):

8 Engineering of Future CPS Automation Architectures 187

* Modelling the structure and behaviour of Cyber-Physical Production Systems
(CPPS) (RQ M1)

* Information integration in and across value chains (RQ I1)

» Description of plug-and-play capabilities and interfaces for engineering and run
time (RQ 13)

* Modelling of CPPS flexibility and self-adaptation capabilities (RQ C1)

» Linking discipline-specific engineering views for flexible and self- adaptable
CPPS (RQ C2)

The contributions of this chapter, are strongly liked to the emerging domain of
CPS, and especially in their utilization in production systems. The discussions per-
taining this chapter focus on providing an overview of automation system needs and
evolution, how these are migrated to an new information-driven interoperable and
service-enabled infrastructure, and what key considerations as well as challenges lie
ahead. The intention in this chapter is not to provide a new model-based approach
but to understand why and how the already existing methods and tools that enable
production system flexibility and self-adaptation of CPPS are not adequate or too
poorly implemented in industrial practice.

Based on discussed key requirements new automation system architectures are
emerging in different research approaches which will be described in more detail
in Sect. 8.2. As the design of completely new production systems, also referred to
as green-field, is of secondary importance since a high number of legacy systems
already exists, adequate migration strategies are needed to transform and migrate
from existing automation system architectures to future ones. This transformation
is described in Sect. 8.3. Furthermore the way to engineer these future automation
systems has to be re-thought. This must include new methods and tools for engineers
to design, implement and support such systems. Also educational programs have to
be up-dated to ensure availability of experts that are capable to deal with these new
systems architecture and new engineering paradigms. In Sect. 8.4 a closer look is
taken upon these aspects. Finally, Sect. 8.5 gives an outlook and presents the main
conclusions.

8.2 The Evolution of Automation System Architectures

Today companies are facing new market challenges in the manufacturing industry.
In response to new requirements, innovative forms of manufacturing are recently
introduced accordingly to the German “Industry 4.0” paradigm (Kagermann et al.,
2013). The need of new manufacturing approaches is influenced by several aspects,
namely market competitiveness, technology innovation, and customer requirements.

The global competition requires shortened delivery time and time-to-market,
smaller lot sizes and shorter product life-cycle. Meanwhile, rapid changes in process
technology force the fast integration of new functions into existing systems that are
subject to obsolescence. Furthermore, customer expectations include not only lower

188 M. Foehr et al.

prices but also more variety, higher quality and faster delivery of the product. In
order to dynamically react to continuous changes of the business environment, the
view on production system control must evolve.

The traditional production control systems are not able to support industries in
overcoming such issues (Delsing et al., 2012). Centralized and hierarchical control
architectures are characterized by rigid and top-down communication flows that
do not enable the easy integration of new modules and, therefore, cannot cope
with sudden and rapid changes. Considering all these aspects, new challenges
for industries arise (Karnouskos et al., 2014a), and the next efforts attempt to
introduce in industry a new production approach characterized by flexibility to
different processing tasks, adaptability to changing production environment, and
reconfigurability to enable these changes, while maintaining the security, safety and
stability provided by classical production systems.

8.2.1 Classical Automation System Architectures

Traditional automation control systems are generally structured hierarchically or
centralized, due to the complexity of automation tasks and interactions between
components. According to the ISA-95/IEC 62264 (ANSI/ISA, 2010) standard, the
main automation tasks are split in different layers of a pyramidal structure as
shown in Fig. 8.1. The ANSI/ISA (2010) standard defines a model for exchanges
of information between systems in five abstraction levels: Level 0—Field, Level
1—Control (PLC), Level 2—Process Control (SCADA), Level 3—Manufacturing
Execution (MES) and Level 4—Enterprise Management (ERP).

The applications located on the different levels typically consider different time
frames that range from months, weeks and days for the higher levels to hours,
minutes, seconds and milliseconds for the lower levels. The first three levels perform
the control function to execute the technological production processes. The field
level uses actuators and sensors to measure, determine and display the equipment

_ wqnnn
= .,k'i HoH 3
! i

~

v7 Control (PLC)

7) Field
&% Field \[]k J[&J

Fig. 8.1 ISA 95 hierarchical view of automation infrastructures

| =
(al

N
—
A4

8 Engineering of Future CPS Automation Architectures 189

data, while the control and process control levels are related respectively to the
control of the product/process technology and to monitor the overall production
system. Level 3 comprehends the activities of coordination and management of
the production execution and, especially, the integration of different applications
with respect to the main data and work flows. Level 4 is the highest level and
represents the overall business management of the enterprise, including economical
and logistic activities.

In system architectures structured according to ISA-95 the decision control is
distributed among these hierarchical levels. This kind of structure has the advantages
of predictability and robustness, as well good global optimization. It can be effective
for small systems due to the characteristics of easy development and maintenance,
and also adequate for systems running in very stable and structured environments.
However, it is not adequate for emerging self-x automated manufacturing systems
because of the insufficient adaptability and flexibility to production changes and the
reduced performance in case of a single point of failure.

Analysing the scenario of “Cyber-Physical System for the factory of the future”
(ACATECH, 2011), a “real-time” reaction of the production system to market
changes cannot be performed by a hierarchical automation control system. In
order to react more quickly to customer demands and environment changes, a
more seamless integration of the automation pyramid’s levels is required to change
the production equipment and functions accordingly. The production units need
to cooperate and organize themselves to optimize the production systems, saving
time and costs. Capabilities, such as flexibility, adaptability and reconfigurability,
are limited in a rigid communication structure with no cross-layer interoperability
(Delsing et al., 2012), therefore, the traditional hierarchical ISA-95 structure needs
to be transformed into a modular and flexible automation system architecture
with decentralized control systems. The envisioned future production systems that
possess self-x features, are cost efficient and easy to integrate at mass scale,
cooperate in a cross-layer manner, interact with multiple stakeholders etc., justify
the trend towards a distributed approach that is hardly or too costly to be realized
with traditional approaches.

8.2.2 Emerging Automation System Architectures

The Cyber-Physical Systems (CPS) concept represents one of the key enablers of
innovation in production systems accordingly with the Industry 4.0 paradigm. CPS
focuses on the integration of logical and physical processes to control distributed
physical systems, using cyber technologies (mechatronics, communication and
information) (Lee, 2008; Leitdo et al., 2016a). Since decades multi-agent systems
(MAS) and service-oriented architecture (SOA) have been considered as the main
approaches for implementing CPS and developing decentralized control systems in
industry (Leitdo and Karnouskos, 2015b). Several projects (Leitdo et al., 2016b)
have demonstrated their benefits. MAS is one of the most common approaches

190 M. Foehr et al.

to realize decentralized control architectures by means of intelligent, modular and
distributed agents that can be interconnected with physical hardware devices (Leitdo
et al., 2016a); and SOA is an architectural model for organizing and utilizing
distributed capabilities in order to enable all components to communicate and
interact via services (MacKenzie et al., 2006).

Next to these paradigms other concepts, such as plug-and-produce technology,
web services and cloud manufacturing, have been investigated to build flexible and
reconfigurable manufacturing control systems. During the last years a significant
amount of research has been conducted and, recently, several European funded
projects have reported important developments in this field and presented results
at high technology readiness levels.

The GRACE—Integration of process and quality control using multi-agent
technology—project (Castellini et al., 2011) developed, implemented and validated
a cooperative MAS to integrate process control with quality control at local
and global level. The MAS architecture was designed to manage the planned
changes of set-point in production processes and the large variety of unforeseen
disturbances and changes in process parameters and variables. Self-adaptation
procedures and optimization mechanisms for process and product parameters were
implemented and integrated into control and diagnostic systems at local level, in
terms of individual agents, and global level, considering the data gathered in all the
production system.

In parallel, the IDEAS—Instantly deployable evolvable assembly systems—
project (Onori et al., 2013) developed a fully distributed and pluggable environment
capable to self-organize itself and control at the shop floor level using agent
technology. The IDEAS assembly system ran with a multi-agent control setup and
could be reconfigured on-the-fly assuring the integration of different self-configured
modules at the shop floor in runtime. Moreover, the self-diagnosis capability of each
module permits to have a distributed diagnosis and the entire system is capable of
checking the propagation of problems and re-adapt whenever a component (module)
is plugged without requiring programming effort in order to manage unpredicted
behaviours.

Taking the experience from these projects, the PRIME—PIug and produce intelli-
gent multi-agent environment based on standard technology—project (Antzoulatos
et al., 2014) has gone one step forward to support assembly systems in distributed
reconfiguration and monitoring. It developed a multi-agent architecture using plug-
and-produce principles for module integration, including legacy equipment, and
methods for rapidly configuring production systems through innovative human-
machine interaction mechanisms. The PRIME approach is based on standard tech-
nologies (JADE multi-agent software framework, Vaadin and Cassandra database)
and languages (JAVA and OPC-UA programs for interfacing and data exchange)
for the integration and networking of heterogeneous control system from different
equipment suppliers to support system evolution linked to process performance and
product volume variability.

The I-RAMP?—Intelligent reconfigurable machines for smart plug-and-produce
production—project (Goncalves et al., 2014) focused on the transformation of

8 Engineering of Future CPS Automation Architectures 191

conventional production equipment into network-enabled devices (NETDEVs).
The NETDEV interface enables the integration of plug-and-produce devices and
sensors and actuators at MES level for work flow optimization and production data
assessment, using standardized communication and collaboration mechanisms.

The SOCRADES—Service-Oriented Cross-layer infR Astructure for Distributed
smart Embedded Systems—project (Colombo and Karnouskos, 2009; Karnouskos
etal., 2010; Colombo et al., 2010) used the Service-Oriented Architecture paradigm
at device and application levels to build a design, execution and management
platform for innovative industrial automation systems. The project focused on
designing and implementing a cross-layer infrastructure that would enable the
integration of industrial automation systems and devices up to the MES/ERP level
(Karnouskos et al., 2007, 2009). The approach was driven by open standards,
service-based integration, and collaboration among the various stakeholders, setting
the stage for the next generation of automation systems (Colombo and Karnouskos,
2009).

The IMC-AESOP—Industrial Monitoring and Control ArchitecturE for Service-
Oriented Process—project (Colombo et al., 2014b,a) used as a starting point the
SOCRADES approach and extended it to realize cloud-based industrial CPS.
Driven by key emerging information and communication technologies in industrial
automation, and with a strong focus on the cloud (Karnouskos and Somlev, 2013),
the project envisioned and realized an architecture (Karnouskos et al., 2014b) for
industrial CPS automation infrastructures. The results have been demonstrated
in the next generation cloud & service based SCADA/DCS (Karnouskos and
Colombo, 2011) for monitoring and control, including visions for their design,
implementation, collaboration, and migration The architecture enables cross-layer
service-oriented collaboration both at horizontal and vertical levels by utilizing
service-oriented integration and the cloud.

The Self-Learning—Reliable Self-Learning production systems based on
context-aware service—project (Stokic et al., 2011) proposed the service-oriented
integration of different auxiliary processes into the main control. The processes
are represented as services that fully interoperate in a Web Services platform. The
Self-Learning system enables the reconfiguration of machines and processes based
on user experiences acquired during the system runtime.

The FLEXA—Advanced flexible automation cell—project (Webb and Asif,
2011) developed a flexible manufacturing system based on web services architecture
that connects the cell controller to ERP/MES.

The SelSus—Health Monitoring and Life-Long Capability Management for Self-
Sustaining Manufacturing Systems—project (Sayed et al., 2015) proposed a new
paradigm for highly effective, self-healing production systems to maximize their
performance over longer lifetimes using web-based services for multi-modal data
acquisition techniques to validate, update and document all information on failure
modes or degradation states.

The CassaMobile—Flexible Mini-Factory for local and customized production
in a container—project (Friedrich et al., 2014) developed a new kind of local,
flexible and environmentally friendly production system for highly customized

192 M. Foehr et al.

Table 8.1 Overview of technologies in emerging automation system architectures

Research @ § %D %

Projects 8 - m § % ECJ % < . § s

2 £ 2 = 8 <z B 2 3§ S

2 = > S s & &

Technologies O = % X 9: E A = A O <

Multi-agent systems @ ° ° > O (]

SOA/Web services e o o [d [] []

Cloud > @ []

Plug-and-Play [[] [] e o []
Self-* features [[[@ > 0 @ [[

Legend: @ covered; @ partially covered

parts based on a combination of different manufacturing processes. The production
is based on a modular architecture that includes mechanical and control system
adaptation by means of a SOA system.

One of the current trends in the future automation control research is to integrate
these solution concepts in the same architecture. One example is the ARUM—
Adaptive Production Management—project (Leitdo et al., 2013), which combined
holonic multi-agent systems with services architecture using Enterprise Service Bus
(ESB) to improve planning and control systems.

These projects show a transformation of the centralized architecture into a
distributed control system using different technologies, as shown in Table 8.1.
High levels of autonomy and cooperation of individual entities have been reached
via multi-agent systems in which agents have their own intelligence and interact
with each other optimizing their behaviour iteratively (Wooldridge, 2002; Leitao
et al., 2016b). Service-oriented architecture technologies enable the integration
of components that provide services to other components they are linked to,
creating an Internet of Services for the production system. Web Services contain
components description and exchange data information enhancing the vertical
collaboration between device level and enterprise level. Moreover, hosting these
services in a Cloud it is possible to rapidly compose new industrial application
just by selecting and combining the information stored inside (Colombo et al.,
2014b). Plug-and-play technologies are investigated to build modular structures that
improve components interoperability and reusability to satisfy the requirement of
rapid reconfigurability of the system (Antzoulatos et al., 2014). In addition, self-*
capabilities support equipment integration, control and monitoring, as well as
cooperation and adaptation.

Each of these projects provided an individual solution for flexible and recon-
figurable distributed control architectures involving multi-agent systems (Leitdo
et al., 2016b), standard communication protocols, web services and Cyber-Physical
components. However, these solutions solve only narrowed specific problems
neglecting other technological issues. In order to facilitate a wider industrial uptake,
the future industrial system architecture should be a result of the integration of these

8 Engineering of Future CPS Automation Architectures 193
ERP MES SCADA Simulation Data
-
£t +- || E ~¥< Q)
L - —— —
T T
|) R T
) ? ? ? '._’_: L_.._;
Distributed Service-based Integration Layer]
= e T s T !
T % ®
!.r _!_; _!_i I _!_:
PLC CNC Robot Field Motion by
0 @ Service interface
<I> ‘ h + Wl Proprietary interface

Fig. 8.2 Automation system integration vision over a common (service) infrastructure

technologies in a unique form (e.g., as shown in Fig. 8.2), covering the architecture,
assets and process aspects of the overall production system. As an example, the
SOCRADES project has demonstrated largely feasibility of this vision using web
services for cross-layer integration and collaboration among devices, systems and
other stakeholders (Colombo et al., 2010; Karnouskos et al., 2009; Taisch et al.,
2009). A recent survey of acceptance factors of agent systems in industry (Leitdo
and Karnouskos, 2015a) sheds some additional light on key aspects that should be
investigated at large when engineering of future industrial automation systems is to
be considered.

In Fig. 8.2 a vision of automation system integration over a common service-
based infrastructure is proposed. A key role in this new vision is performed by the
distributed service-based integration layer that aims to ensure the transparent, secure
and reliable interconnection of the diverse heterogeneous hardware devices e.g.,
robotic cells and Programmable Logic Controllers (PLC), and software applications
e.g., MES and SCADA/DCS (Karnouskos and Colombo, 2011). Current Business
systems and higher-level applications (i.e., ERP and MES etc.) are typically fully
service-based in their interactions with other systems. As such, integration with
such systems is possible via services, and commonly via Internet technologies
such as web services. However, any proprietary system, not providing service
based interfaces, needs to be integrated via a service wrapper that translates
proprietary interfaces in standard service based interfaces in order to connect the
system to the other software applications and industrial hardware devices. An
important innovation of this integration layer, e.g. developed in the PERFoRM
project (PERFoRM, 2016a), is its distributed and cloud approach, instead of the
centralized ones that can be mostly found nowadays and can act as a single point
of failure as well as a limitation for the system scalability. For this purpose, this
distributed integration layer handles the interconnection of these heterogeneous

194 M. Foehr et al.

production components by following the service-orientation principles, i.e., each
one is exposing their functionalities as services, which will be discovered and
requested by the other components.

Since the implementation of new control technologies will have a direct impact
on the production, the implementation of a new decentralized control architecture
is not sufficient to achieve the exploitation of Cyber-Physical Production Systems
(CPPS). A migration strategy that supports industries in adopting new technologies
has been only partially considered in the past projects, e.g., IMC-AESOP envisioned
the next generation SCADA/DCS systems (Karnouskos and Colombo, 2011) and
investigated an approach to migrate SCADA and DCS systems to SOA (Delsing
et al., 2011). At present, it is required a set of guidelines for engineers, equipment
developers and end users to plan, support and realize an easy and smooth migration
of the existing factories into the new generation of smart factories, taking into
consideration both technical and economical issues.

8.3 The Transformation of Automation System Architectures

8.3.1 Towards Information-Driven Automation Systems

Business continuity and agility form the core modus operandi of modern global
enterprises (Karnouskos, 2009), and efforts that yield results of more efficient
automation systems are well-justified. In order to achieve the pursued agility and
continuity, business processes performed in highly distributed production systems
need to be efficiently integrated with a sophisticated shop-floor infrastructure that
is capable of responding to dynamic adaptations in a timely manner (Karnouskos,
2011).

The prevalence of CPS and the advanced capabilities they offer, mean a drastic
reshaping of the future automation system architectures. The increased complexity
and sophistication of involved systems, make it very hard to follow monolithic and
one-size-fits-all approaches, and make the transition towards modular, dynamic,
and open systems imperative (Colombo and Karnouskos, 2009; Karnouskos, 2011).
Over the last years, significant efforts have been realized towards service oriented
architectures and systems that interact with them (Colombo et al., 2014b). The
CPS principle pushes such limits even further, as CPS themselves as well as
constellations of them and larger systems of systems need to adhere to similar design
patterns and principles.

In such sophisticated infrastructures, emphasis is put on interaction of the CPS
with its surrounding environment, which may dynamically change, and which is
based on open technologies and interaction patterns rather than closed systems
and proprietary software. Hence the integration aspects gain importance, and its
focus is significantly expanded for large infrastructures and highly heterogeneous
landscapes composed of thousands of devices, systems, services that need to

8 Engineering of Future CPS Automation Architectures 195

Next Generation
Industrial Applications |

Business
Mobile Apps

Cyber: cloud
service

\? SCADA
\/ Control (PLC)
‘y Field
Service Cloud
@: Service

Fig. 8.3 Transitioning towards a SOA-based information-driven architecture by offering key
functionalities as services (Karnouskos et al., 2014b; Colombo et al., 2014b)

Cyber: on CPS
service

Physical: hardware
integration

interact, cooperate and realize their goals in an efficient manner (Colombo et al.,
2013).

Considering envisioned architecture transitions such as the one shown in Fig. 8.3,
the high-level changes imposed upon engineering of future automation systems are
becoming easier to recognize. Figure 8.3 advocates that in parallel to traditional
hierarchical architectures in industrial infrastructures, selected functionalities at
different levels (e.g., as defined by the ISA-95 paradigm), can be exposed as a
collection of CPS services. The latter, may exist in the CPS, traditional systems,
as well as the cloud, giving rise to a highly heterogeneous, dynamic, and adequately
performant ecosystem of services (Colombo et al., 2013; Karnouskos and Somlev,
2013). Upon such services, applications can cherry-pick the functionalities they
need in order to rapidly and efficiently fulfil their goals.

It is important to notice that this transformation of automation systems is
performed mainly at the virtual IT level and not in the physical counterpart of
the system, which simplifies the migration from the existing automation production
systems running currently in the factories to the future ones. Additionally, according
to the McKinsey’s report (McKinsey, 2015), the implementation of “industry 4.0”
solutions will bring significant benefits with only about 40-50% of replacement of
equipment.

Considering the proposed innovative automation systems architectures described
in Sect. 8.2, one can identify some similarities among them. They build upon the
distribution of control functions over intelligent, modular and cooperative entities
providing modularity, flexibility, robustness, scalability and reconfigurability, which
are at large weak aspects of traditional monolithic architectures. The distributed
approach addresses the need to have adequate automation system architectures to

196 M. Foehr et al.

tackle the scenario of “Factory of the Future”, while being in-line with the guidelines
defined by the “Industry 4.0” platform. These architectures also present intelligence
and adaptation capabilities embedded in the distributed nodes and in the emergent
system behaviour, and some exhibits evolution and self-* properties, such as self-
organization, self-adaptation, self-optimization and self-healing.

The deployment of these new decentralized, smart automation architectures in
industrial environments need to be performed in a smooth manner, transforming
the solutions based on the traditional hierarchical ISA-95 automation structure into
solutions based on a network of CPS (ACATECH, 2011; Leitao et al., 2016a). This
transformation effort should consider the integration of heterogeneous robotics and
automation machinery, as well as the existing legacy systems running in the current
industrial solutions to avoid discontinuity and aiming a smooth migration. For this
purpose, the plugability is simplified by considering proper industrial standards
for protocols and technologies that enable easy integration and interaction among
systems and services, while avoiding the creation of “technology islands”.

8.3.2 Migration Strategies

The envisioned next generation of industrial automation architectures provide tan-
gible benefits and are a good match for newly established infrastructures (greenfield
projects) e.g., can be deployed in a new plant. However, the vast majority of
existing infrastructures are brown field projects as they already have constraints in
place (e.g., integration with legacy systems and processes), and need to go through
migration stages, that will enable the smooth transition from existing systems to the
sophisticated infrastructure envisioned.

Current lifetime of production facilities are long, and changes are infrequent
and limited. However, this is increasingly changing and in conjunction with the
prevalence of software and computational processing at the heart of the 4th
industrial revolution, changes are going to be not sporadic but an integral part of
the day-to-day business, transitioning towards a DevOps culture. As such, it can
be considered that these changes will be applied through incremental migration
steps, during the whole lifecycle of devices, services, systems and landscapes. This
is especially important as plant operators typically invest multiple millions into their
production systems. A change over to decentralized control by a complete revamp
of the automation system in one big shot does not only yield a high risk of failure but
also annihilates high amounts of investment before they repaid. A stepwise approach
of system changeover can bring in small portions of the new distributed control at a
time, reducing risks and also allowing to change over the system in accordance with
investment ability of the plant operator. Hence, migration strategies are expected to
play a pivotal role to the success of the envisioned infrastructures.

Considering the migration to an information-flat and service-based infrastructure
as shown in Fig. 8.3, the steps that need to be undertaken are depicted at high level

8 Engineering of Future CPS Automation Architectures 197

\ Service Cloud

Mig ra‘tion Path 1

Migration Path 7 |

I\ L 1 ||Ir/ . l 1

N N\ L e
& Control (PLC) DL LNy
)y . \Ml'gration Path LIS

\

v
@
- i

&

Field

Current Implemented System Next Generation
Legacy SoA-based System

@ © Service EI : Orchestration of services

Fig. 8.4 Migration of complex functionalities and cross-layer dependencies to a full SOA-based
Infrastructure (Colombo et al., 2014b; Delsing et al., 2011)

in Fig. 8.4. The different system characteristics prevalent in each ISA-95 layer, will
need to be captured step-wise in services and be made available. However, as there
are several inter-dependencies, the potential migration paths have to be assessed and
a migration has to be done step-wise. In doing so, partially the new functionalities
will become available to applications and services. Such migration will also unleash
at system level emergent behaviours as a result of the dynamic interactions among
the different devices and systems. Top-down and bottom-up approaches will need
to be analysed in detail (Delsing et al., 2011), and the resulting migration strategies
can be highly complex, depending on the preconditions, requirements and goals.
More detailed examples with respect to migration and its challenges can be found
in Colombo et al. (2014b). Figure 8.4 makes it clear that the migration is not an
one-time operation, but rather a continuous one, that the automation industry will
have to get accustomed to.

The software industry has long experience with step-wise development, release
and upgrade of systems, and can manage such step-wise changes quite well.
However, when it boils down to CPS infrastructures with strict operational and
timing requirements, things are challenging. In addition, any migration strategies
have a multitude of goals that go beyond technology and include, cost-effectiveness,
resource-efficiency, agility, deterministic behaviour, operational easiness, business
continuity etc. (Karnouskos, 2009). Due to their cross-disciplinary nature, applied
at enterprise level, such migration strategies pose some risk which needs to be
managed. However, once the envisioned architectures and modus operandi are in
place, such incremental migratory actions are expected to be easier to realize.

198 M. Foehr et al.

8.4 Considerations on Future Automation System
Architectures

The transition from the existing traditional industrial automation systems, mainly
based on Product-Life-Cycle (PLM) into the new CPS based approaches, should
be smooth and requires a rethinking of engineering methodologies, integration of
methods and tools from the different domains where the CPS are located and
best practices. Since such changes have to consider also existing infrastructures
and business continuity, consideration of migration and mitigation strategies to
overcome the identified challenges is seen as of paramount importance. When
talking about Engineering CPS-based Automation Systems, there are three main
task clusters to consider:

e The Engineering to create new CPS components at device level (cyber- and
physical views) and the Engineering to build the System of CPS.

* The Engineering to reconfigure or adapt an existing CPS, to operate it and to
manage its evolution, both at device and system levels

* The Engineering to design, implement, operate and manage autonomous/smart
CPS components within an intelligent automation infrastructure

8.4.1 Rethinking of Automation Systems Engineering

It is important to recognize that all the parts involved in future automation system
architectures, will not be under the control of a single authority, and technology,
and therefore, the integration, interaction and operation will need to be done
via open interfaces exposed by the services (Karnouskos, 2011; Colombo et al.,
2014b). Taking into consideration the goals of a CPS, as discussed in Sect. 8.1,
the engineering effort to adapt a CPS during run-time must be minimal. This means
“Zero Engineering” during run-time must be prepared and implemented. The ability
to reconfigure existing elements and to integrate new elements have to be a “built-
in” capability of the CPS on system level. Engineering such systems has to cope
with continuous updates of the infrastructure (both in hardware and software) and
to provide high resilience for the CPS.

Aspects such as Systems of CPS integration and dynamic reconfiguration require
a set of complementary engineering tasks, which are strongly related to the major
characteristics to be covered by an adequate Systems-of-Systems engineering
approach, i.e.,

* engineering evolvability at system level due to plug-and-play integration and live
removal of CPS components;

* dynamic requirements engineering to support incremental live validation of
structural and behavioural modifications of the system (understanding and
managing “‘emergency’’;

8 Engineering of Future CPS Automation Architectures 199

* control re-configuration for several control systems that are strongly coupled;
* last but not least the integration of the human factor in each of the phases of the
life cycle without loosing the System-of-Systems view perspective

As the different parts of such a system will evolve independently, good practices for
engineering, upgrading, operating and maintaining them need to be followed.

The core idea behind the amalgamating the physical and virtual (digital) worlds,
is to seamlessly gather useful data and information about objects of the physical
world, transform it to knowledge, and empower various industrial applications
(Karnouskos, 2011; Colombo et al., 2014b). The emerging engineering systems,
operating in highly sophisticated infrastructures as discussed, are expected to enable
the elimination of many existing pain points, but unavoidably it will create others.
The new ones will require engineers to draw on knowledge from multiple disciplines
(Broy and Schmidt, 2014; Karnouskos et al., 2014a) if they want to effectively
capitalize on the new capabilities.

The automation engineers dealing with Industrial Systems of Cyber-Physical
Systems have to possess a much wider set of skills to understand how the different
constituent systems interact, both in structural and behavioural manner, as well as
a solid background on Information, Communication, Control Technology and their
fusion.

As such, engineering effective solutions implies e.g., technical excellence, under-
standing of hardware and software components in the infrastructure, knowledge of
industrial operational context, understanding of interactions at device and system
level, risk estimation, understanding of the impact of engineering decisions e.g., to
safety, security, dependability, etc.

8.4.2 Directions and Challenges

The described transformation into the future industrial automation systems, and
their industrial adoption, presents several challenges, which can be aggregated in
6 major clusters (Leitdo et al., 2016a):

* CPS Capabilities, which comprises the modularization and servification of CPS
systems, the development of CPS as System of Systems (SoS), their optimization
and real-time monitoring and control, as well as the consideration of advanced
(big) data analytics.

e CPS Management, which includes the security and trust in the management of
large scale CPS, aiming to achieve industrially mature solutions.

e CPS Engineering, which comprises the safe programming and validation, the
resilient risk mitigation, and methods and tools for the CPS and Systems-of-CPS
life-cycle support, which are crucial challenges for the industry. A challenge is
the need to apply new methods within the engineering of these systems (e.g.,
collaborative workflow generation and processing).

200 M. Foehr et al.

e CPS Ecosystems, which includes the design and deployment of collaborative,
autonomic, self-* and emergent CPS, as well as the integration of Humans in the
Loop, many of them being expected to be matured only in the long-run.

» CPS Infrastructures, which are related to interoperability services, and mitigation
and migration strategies to support the transformation of current automation
systems into the future CPS ones.

* CPS Information Systems, which considers artificial intelligence, data transfor-
mation and data analytics to capitalize the huge amount of collected data to reach
actionable knowledge.

A brief analysis of reported research and innovation results demonstrated over
the last 15-20 years allows to better understand how such actions can be realized by
combining CPS, Internet-of-Things and Internet-of-Services technologies. Embed-
ding at large industrial agents and Service-oriented based automation (SOCRADES,
2016; Taisch et al., 2009; Leitdo et al., 2016b) is one innovation approach to be
highlighted. In fact, agents may act as enablers for CPS-based industrial system
architectures and contribute in terms of technology/solution maturity, methodolo-
gies and tools, human in the loop, smooth migration and self-* properties, and
standardization (Leitdo et al., 2016b; Leitdo and Karnouskos, 2015a)

Another important dimension for the fully industrial adoption of CPS-based
automation systems architectures is the standardization (Kagermann et al., 2013;
IEC, 2015), since the standards compliance may affect the development, installation
and commissioning of industrial applications. In fact, standardization can support
the deployment of CPS, and particularly the smooth migration of these systems, by
easily interfacing with existing legacy systems, plugging devices and systems, and
adapting their behaviour and relationships on-the-fly. The integration of humans
in the loop is seen as a key factor to achieve flexibility (Kagermann et al., 2013),
and not more as an obstacle for the complete system automation, as sustained in
the past, and particularly during the advent of Computer Integrated Manufacturing
(CIM) paradigm.

The Reference Architecture Model Industrie 4.0 (RAMI4.0) standard (DIN,
2016) presents the major architectural specifications for Cyber-Physical components
(labelled as I4.0-component) and the set of rules for engineering Industry 4.0
compliant architectures. Aspects related to the CPS-integration within an ISA95-
compliant architecture, the different phases of the life-cycle of the CPS components
and systems of CPS are considered as the base for supporting the engineering of
CPS-based industrial systems. In this sense, something that has to be highlighted
is the specification of the six digitalization-layers, which cover the full process of
building a Cyber-Physical component, starting with the mechatronics (assets) and
going through the integration, communication, information, function and business
layers. A set of communication and information layers based on the use of Internet
technologies, and the exposition of automation function as services in an Internet-
of-Services fashion, enable the 14.0-components (CPS-component) to engage into
business relationships with other components within a system of CPSs.

Additionally, the implementation of the new generation of automation systems
will demand new challenges for vocational and academic training and continuing

8 Engineering of Future CPS Automation Architectures 201

professional development, as sustained by the “industry 4.0” high-level working
group in its recommended actions (Kagermann et al., 2013; Karnouskos et al.,
2014a). In fact, nowadays, engineers need to integrate multidisciplinary and cross-
domain knowledge, focusing more on the understanding of system of systems
perspective than in a deeply topic domain. In parallel, the penetration of Information
and Communication technologies into traditional mechatronics, hydraulics, pneu-
matic systems, are continuously re-shaping the world, and require an integrative
learning process.

The engineering-students are no more dealing only with the physical but
predominantly with the cyber part of complex engineering systems, which implies
that their acquired knowledge quickly becomes obsolete (some times in less time
than the student takes to get the undergraduate degree). Therefore, they need to
learn different topics to be able to compete in the future (more systems/system of
systems understanding instead of pure (deep) domain knowledge). As example, new
engineers have to cope with new paradigms and concepts (e.g., modelling, seman-
tics, (crowd) collaboration, interoperability, self-organization and self-diagnosis)
and emergent technologies (e.g., Internet-of-Things, Big data, Machine-to-Machine,
advanced data analytics, cloud computing and augmented reality).

Considering all the raised concerns, educating engineers, in the “Industry
4.0” context, means learning how to design, develop, test, deploy, and operate a
traditional engineering environment that is being digitalized in both, its structural
but also in its behavioural/functional aspects.

The implementation of strategies for the smooth migration from traditional
automation systems into the new generation of distributed automation systems are
crucial since legacy systems will continue running and will co-exist with the new
systems (Leitdo et al., 2016b; Karnouskos et al., 2014a). As an example, during
the implementation of the GRACE MAS system in the Whirlpool’s factory plant
producing washing machines (Leitdo et al., 2015), the lower control level using
PLCs running IEC61313-3 programs was preserved to ensure the real-time control
and the MAS solution was placed at the higher control level to introduce intelligence
and adaptation to the system performance. However, this is an emergent topic that
deserves a significant research in the near future to establish the proper strategies to
ensure a smooth migration transforming the existing running systems into Industrie
4.0 compliant systems. These migration strategies should consider the technical
perspective, as briefly described in Sect. 8.3.2, but also a deeply study of the impact
of economical and social perspectives.

8.5 Conclusion and Outlook

There is a need for flexibility, resilience and optimization in industrial settings,
that can not be adequately tackled with traditional approaches. Although significant
steps have been realized by concepts and utilization of key technologies such as
MAS, SOA, Cloud, CPS, significant efforts are still needed to tackle additional
challenges related to their engineering and interaction in emerging cooperative

202 M. Foehr et al.

production systems. The intention in this chapter is not to provide a new model-
based approach but to understand why and how the already existing methods and
tools that enable production system flexibility and self-adaptation of CPPS are not
adequate or too poorly implemented in industrial practice. At the end, the successful
applications of such concepts and technologies will not only be determined by
the ability to deal with technology problems, but effectively cover also all other
associated aspects that enable continuous business growth and effectiveness.

One of these aspects is about the availability and quality of information. As (sub-)
systems are not considered as monolithic building blocks any more, but are seen
in their environment of strongly interconnected systems of systems the view on
information availability needs to be altered. This altered view needs to reflect not
only the system itself, but also its role within its environment, lifecycle, functional
hierarchy, etc. This aspect has already been described in Chaps. 5, 6 and 7 of this
book.

The increased integration of the cyber and physical aspects of systems, also
leads to new challenges for system applications (Lee, 2008; Leitdo et al., 2016a;
Broy and Schmidt, 2014; Karnouskos et al., 2014a). In the past optimization and
improvements have been targeted mainly on isolated parts of the system. Hence,
improved production processes and technologies has led to new or improved assets
(see top left in Fig.8.5) or improved control approaches and technologies in the
system architecture (see top right in Fig.8.5). To bring these improvements into

Asset view Architectural view

Fig. 8.5 PERFoRM (2016b) project multi-view on production systems

8 Engineering of Future CPS Automation Architectures 203

already existing production systems basically meant to interchange an existing
building block (e.g., production asset, IT system) with a new one.

Nowadays these improvements are still possible, but they will not allow to
sufficiently address all challenges which are arising from the new complexity of
self-* systems and distributed intelligence. In fact the introduction of these concepts
requires a change in the heart of each system as they lead to changes in multiple
areas and are not isolated only to system building blocks. The integration of assets
and IT will allow to improve the whole value adding process (see bottom in Fig. 8.5).

To do this in an efficient and cost-effective way which is suitable for plant
operators, new migration methods have to be researched and mitigation strategies
need to realized, as discussed in Sects. 8.3 and 8.4. As an example of such an
effort, the PERFoRM (2016b) project does not focus on the development of new
technologies for tackling flexibility, resilience and optimization needs, but to the
re-use of existing developments and their harmonization as also already shown in
Sect. 8.2. Additionally a strong focus is set to the development of suitable migration
methods and mitigation of existing obstacles in order to create an environment and
guidelines for industry to apply decentralized automation system architectures.

This approach, as also proposed within this chapter, allows to re-use already
developed technologies and especially to capitalize on the money already spent for
this research. Additionally, as a side effect, it stops the ongoing diversification in
developed solutions and thus a further diversification of similar technologies to be
harmonized or even standardized later on. A downside of this approach is that it can
only utilize technologies that already passed at least a conceptional stage at which
they are recognized as an already available technology.

Acknowledgements The authors would like to thank the European Commission for the support,
and the partners of the EU Horizon 2020 project PERFoRM (2016b) for the fruitful discussions.
The PERFoRM project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 680435.

References

ACATECH: Cyber-Physical Systems: driving force for innovation in mobility, health, energy and
production. Tech. rep., ACATECH — German National Academy of Science and Engineering.
https://goo.gl/Q6WFQN (2011)

ANSI/ISA: ANSI/ISA-95.00.01-2010 (IEC 62264-1 Mod) Enterprise-Control ~System
Integration — Part 1: Models and Terminology. http://www.isa.org (2010)

Antzoulatos, N., Castro, E., Scrimieri, D., Ratchev, S.: A multi-agent architecture for plug and
produce on an industrial assembly platform. Prod. Eng. Res. Devel. 8(6), 773-781 (2014);
doi:10.1007/s11740-014-0571-x

Broy, M., Schmidt, A.: Challenges in engineering Cyber-Physical Systems. Computer 47(2), 70-72
(2014); doi:10.1109/mc.2014.30

https://goo.gl/Q6WFQN
http://www.isa.org

204 M. Foehr et al.

Castellini, P, Cristalli, C., Foehr, M., Leitdo, P., Paone, N., Schjolberg, 1., Tjonnas, J., Turrin,
C., Wagner, T.: Towards the integration of process and quality control using multi-agent
technology. In: IECON 2011 — 37th Annual Conference of the IEEE Industrial Electronics
Society (2011); doi:10.1109/iecon.2011.6119347

Colombo, A.W., Karnouskos, S.: Towards the factory of the future: a service-oriented cross-
layer infrastructure. In: ICT Shaping the World: A Scientific View, pp. 65-81. European
Telecommunications Standards Institute/Wiley, New York (2009)

Colombo, A.W., Karnouskos, S., Mendes, J.M.: Factory of the future: a service-oriented system of
modular, dynamic reconfigurable and collaborative systems. In: Springer Series in Advanced
Manufacturing, pp. 459-481. Springer, London (2010); doi:10.1007/978-1-84996-119-6_15

Colombo, A.W., Karnouskos, S., Bangemann, T.: A system of systems view on collaborative
industrial automation. In: 2013 IEEE International Conference on Industrial Technology (ICIT)
(2013); doi:10.1109/icit.2013.6505980

Colombo, A.W., Bangemann, T., Karnouskos, S.: IMC-AESOP outcomes: paving the way
to collaborative manufacturing systems. In: 2014 12th IEEE International Conference on
Industrial Informatics (INDIN) (2014a); doi:10.1109/indin.2014.6945517

Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R., Jammes, F.,
Martinez Lastra, J.L. (eds.): Industrial Cloud-based Cyber-Physical Systems: The IMC-AESOP
Approach. Springer, New York (2014b)

Delsing, J., Eliasson, J., Kyusakov, R., Colombo, A.W., Jammes, F., Nessaether, J., Karnouskos,
S., Diedrich, C.: A migration approach towards a SOA-based next generation process control
and monitoring. In: IECON 2011 — 37th Annual Conference of the IEEE Industrial Electronics
Society (2011); doi:10.1109/iecon.2011.6120045

Delsing, J., Rosenqvist, F., Carlsson, O., Colombo, A.W., Bangemann, T.: Migration of
industrial process control systems into service oriented architecture. In: IECON 2012 —
38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC (2012);
doi:10.1109/iecon.2012.6389039

DIN: Reference Architecture Model Industrie 4.0 (RAMI4.0). Tech. rep., Deutsches Institut fiir
Normung (DIN). http://www.din.de/en/wdc-beuth:din21:250940128 (2016)

Friedrich, J., Scheifele, S., Verl, A., Lechler, A.: Flexible and modular control and manufacturing
system. Procedia CIRP 33, 115-120 (2014); doi:10.1016/j.procir.2015.06.022

Goncalves, G., Reis, J., Pinto, R., Alves, M., Correia, J.: A step forward on intelligent factories: a
smart sensor-oriented approach. In: Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA) (2014); doi:10.1109/etfa.2014.7005227

IEC: White paper factory of the future. Tech. rep., IEC — International Electrotechnical Commis-
sion (2015)

Kagermann, H., Wahlster, W., Helbig, J.: Securing the future of German manufacturing
industry: recommendations for implementing the strategic initiative industrie 4.0. Tech. rep.,
ACATECH - German National Academy of Science and Engineering. http://goo.gl/oc3X4n
(2013)

Karnouskos, S.: Efficient sensor data inclusion in enterprise services. Datenbank-Spektrum 9(28),
5-10 (2009)

Karnouskos, S.: Realising next-generation web service-driven industrial systems. Int. J. Adv.
Manuf. Technol. 60(1-4), 409-419 (2011); doi:10.1007/s00170-011-3612-z

Karnouskos, S., Colombo, A.W.: Architecting the next generation of service-based SCADA/DCS
system of systems. In: 37th Annual Conference of the IEEE Industrial Electronics Society
(IECON 2011), Melbourne (2011); doi:10.1109/iecon.2011.6119279

Karnouskos, S., Somlev, V.: Performance assessment of integration in the cloud of things via
web services. In: 2013 IEEE International Conference on Industrial Technology (ICIT) (2013);
doi:10.110%/cit.2013.6505983

Karnouskos, S., Baecker, O., de Souza, L.M.S., Spiess, P.: Integration of SOA-ready networked
embedded devices in enterprise systems via a cross-layered web service infrastructure. In: 2007
IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), pp. 293—
300 (2007); doi:10.1109/efta.2007.4416781

http://www.din.de/en/wdc-beuth:din21:250940128
http://goo.gl/oc3X4n

8 Engineering of Future CPS Automation Architectures 205

Karnouskos, S., Guinard, D., Savio, D., Spiess, P, Baecker, O., Trifa, V., de Souza, L.M.S.:
Towards the real-time enterprise: service-based integration of heterogeneous SOA-ready
industrial devices with enterprise applications. IFAC Proc. Vol. 42(4), 2131-2136 (2009);
doi:10.3182/20090603-3-ru-2001.0551

Karnouskos, S., Savio, D., Spiess, P., Guinard, D., Trifa, V., Baecker, O.: Real-World Service
Interaction with Enterprise Systems in Dynamic Manufacturing Environments. Springer Series
in Advanced Manufacturing, pp. 423-457. Springer, New York (2010); doi:10.1007/978-1-
84996-119-6_14

Karnouskos, S., Colombo, A.W., Bangemann, T.: Trends and challenges for cloud-based industrial
cyber-physical systems. In: Industrial Cloud-based Cyber-Physical Systems: The IMC-AESOP
Approach, pp. 231-240, Springer, New York (2014a); doi:10.1007/978-3-319-05624-1_11

Karnouskos, S., Colombo, A.W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., Sikora, M.,
Jammes, F., Delsing, J., Eliasson, J., Nappey, P., Hu, J., Graf, M.: The IMC-AESOP architecture
for cloud-based industrial Cyber-Physical Systems. In: Industrial Cloud-Based Cyber-Physical
Systems, pp. 49-88. Springer, New York (2014b); doi:10.1007/978-3-319-05624-1_3

Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363-369
(2008); doi:10.1109/ISORC.2008.25

Leitao, P., Karnouskos, S.: A survey on factors that impact industrial agent acceptance. In:
Industrial Agents: Emerging Applications of Software Agents in Industry, pp. 401-429.
Elsevier, Amsterdam (2015a); doi:10.1016/b978-0-12-800341-1.00022-x

Leitdo, P., Karnouskos, S. (eds.): Industrial Agents: Emerging Applications of Software Agents in
Industry. Elsevier, Amsterdam (2015b)

Leitao, P., Barbosa, J., Vrba, P., Skobelev, P., Tsarev, A., Kazanskaia, D.: Multi-agent system
approach for the strategic planning in ramp-up production of small lots. In: 2013 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (2013); doi:10.1109/smc.2013.807

Leitdo, P., Rodrigues, N., Turrin, C., Pagani, A.: Multi-agent system integrating process and quality
control in a factory producing laundry washing machines. IEEE Trans. Ind. Inf. 11(4), 879-886
(2015); doi:10.1109/tii.2015.2431232

Leitao, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems
technologies: Prototype implementations and challenges. Comput. Ind. 81, 11-25 (2016a);
doi:10.1016/j.compind.2015.08.004

Leitdo, P, Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.. Smart
agents in industrial Cyber—Physical Systems. Proc. IEEE 104(5), 1086-1101 (2016b);
doi:10.1109/jproc.2016.2521931

MacKenzie, C.M., Laskey, K., McCabe, F., Brown, PF., Metz, R.: Reference model for service
oriented architecture 1.0. http://docs.oasis-open.org/soa-rm/v1.0/ (2006)

McKinsey: Industry 4.0: How to navigate digitization of the manufacturing sector. Tech. rep.,
McKinsey Digital. https://www.mckinsey.de/files/mck_industry_40_report.pdf (2015)

Onori, M., Maffei, A., Durand, F.: The IDEAS plug and produce system. In: International
Conference on Advanced Manufacturing Engineering and Technologies, NewTech (2013)
PERFoRM: Definition of the system architecture. Tech. rep., Deliverable D2.2, PERFoRM project.

http://www.horizon2020-perform.eu/files/documents/D2_2_public.pdf (2016a)

PERFoRM: Production harmonizEd Reconfiguration of Flexible Robots and Machinery (PER-
FoRM) project, European Commission, horizon 2020 programme. http://www.horizon2020-
perform.eu (2016b)

Sayed, M.S., Lohse, N., Sondberg-Jeppesen, N., Madsen, A.L.: SelSus: Towards a reference
architecture for diagnostics and predictive maintenance using smart manufacturing devices.
In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Institute of
Electrical and Electronics Engineers (IEEE) (2015); doi:10.1109/indin.2015.7281990

SOCRADES: Service-Oriented Cross-layer infRAstructure for Distributed smart Embedded
devices (SOCRADES) project, European Commission, FP6 Programme. http://www.socrades.
net (2016)

http://docs.oasis-open.org/soa-rm/v1.0/
https://www.mckinsey.de/files/mck_industry_40_report.pdf
http://www.horizon2020-perform.eu/files/documents/D2_2_public.pdf
http://www.horizon2020-perform.eu
http://www.horizon2020-perform.eu
http://www.socrades.net
http://www.socrades.net

206 M. Foehr et al.

Stokic, D., Scholze, S., Barata, J.: Self-learning embedded services for integration of complex,
flexible production systems. In: IECON 2011 — 37th Annual Conference of the IEEE Industrial
Electronics Society (2011); doi:10.1109/iecon.2011.6119346

Taisch, M., Colombo, A.W., Karnouskos, S., Cannata, A.: SOCRADES roadmap: The future
of SOA-based factory automation. Tech. rep., SOCRADES Project. http://www.socrades.net/
Documents/objects/file1274836528.pdf (2009)

Webb, P., Asif, S.: Advanced flexible automation cell. In: 6th Innovation for Sustainable Aviation
in a Global Environment (2011)

Wooldridge, M.: An Introduction to Multi-Agent Systems. Wiley, Harlow (2002)

http://www.socrades.net/Documents/objects/file1274836528.pdf
http://www.socrades.net/Documents/objects/file1274836528.pdf

Chapter 9
Engineering Workflow and Software Tool
Chains of Automated Production Systems

Anton Strahilov and Holger Himmerle

Abstract Application fields of automated production systems are varied, e.g.
automotive, aerospace and food industry, just to name a few. The complexity of
such production systems has significantly been increased in the last years, (Koren
et al.,, CIRP Ann Manuf Technol 48(2):527-540, 1999). This increase was a
result of the increased complexity and variance of products. As a result of this,
the engineering workflow of automated production system has continuously been
adapted to new requirements. In this regards, this chapter shows and describes the
current engineering workflow of automated production systems based on experience
in the field of production system for the automotive industry. The main focus of this
description is set on the established tool-chains and used tools to create engineering
information as well as data formats to save and exchange information between tools
and involved personnel. In the introduction of this chapter, differences between
an automated production system and a cyber-physical system are given. Current
production systems could be named CPPS but this term is not popular in the field
of production system builder as well as production owners. But in spite of that the
end of this chapter gives an outlook of the future of automated production systems
in direction of CPPS.

Keywords Tool chains ¢ Exchange data formats e Automated production
systems ¢ Engineering data * Engineering workflow ¢ Engineering tools e
Automotive industry

List of Abbreviations

CPPS Cyber-physical production systems

CPS Cyber-physical production systems

OEM Original equipment manufacturer

OLP Offline robot program/offline robot programing

A. Strahilov (0<) « H. Himmerle
EKS InTec GmbH, Heinrich-Hertz-Strasse 6, 88250, Weingarten, Germany
e-mail: anton.strahilov@eks-intec.de; holger.haemmerle @eks-intec.de

© Springer International Publishing AG 2017 207
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_9

mailto:anton.strahilov@eks-intec.de
mailto:holger.haemmerle@eks-intec.de

208 A. Strahilov and H. Himmerle

PLC Programable logical controller

PM Plant manufacturer/system manufacturer
VC Virtual commissioning

VE Virtual engineering

9.1 Introduction

In the past years, the term cyber-physical system has not been popular in the
industrial area of production systems. A production system manufacturer was
coping with mechatronic systems rather than Cyber-Physical Production Systems
(CPPS). The reason for this is that, the term CPPS was not very popular and
further the developed production system could not be referred to being a cyber-
physical production system. The primary cause is the missing intelligence of
implemented sub-components (e.g. electric drives, pneumatic cylinders, sensors,
etc.) in the production system. Additionally, the information about the products,
which have to be manufactured with the system, and the production processes
are integrated into a higher-level Programmable Logic Controller (PLC) as a
software/production program (Dilts et al. 1991). Consequently, sub-components
could not react to product changes with modification of the production process by
themselves. Furthermore, the communication of sub-components with each other in
a production system was rarely used in the practice. The same is also true for the
local communication of production systems of a production line between each other
or with other systems via internet.

Unfortunately, production systems that are currently developed could not be
labelled now as CPPS, because not all sub-components have built-in intelligence
as well as using this intelligence within the production process. But the first step to
use such CPPS in practice for automotive production has not been undertaken yet.
Despite that significant changes of established tool chains for the design of produc-
tion plants are not expected from the production system builder. Only changes or
add-ons for functionalities of currently applied tools as well as on the engineering
workflow are expected to be developed. In this regard, established tool chains in
practice are presented in this chapter. To achieve a better understanding about the
tool chains, a universal and established engineering workflow of production systems
for automotive manufacturing will be presented.

The transition of a usual production system to a CPPS is the next step for each
product system builder as well as system user. New innovative methods and tools
will be required to design qualitative CPPS. Effective usage of these methods and
tools during the design of the CPPS will be a significant success factor of acceptance
by employees. During this, employers have to rethink established system design
concepts of production systems. This rethink process will be taking more time.
An adaptation of established development workflows will also be a necessary step
within the rethink process. A similar rethink process also has to be performed by
users of production system as well as by component manufacturers. Moreover, all

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 209

three parties’ production system builder, production system owner and component
manufacturers have to work together to set a sound basis on which CPPS can be
further designed.

The current chapter establishes an engineering workflow of production systems.
The three main phases System Development, Productive Use and Recycling/Re-Use
phases of the lifecycle of production systems are discussed. From those three phases,
the state of the system development phase stand in focus of this chapter. In this
regards, established tool chains in practice and common used exchange data formats
are presented. Finally, a summary of the chapter is given which contains also a view
of the further of automated production systems in direction of CPPS.

Across this chapter, some research questions described in Chap. 1 are taken into
a count. Specifically, following research questions are from greatest interest for
the current chapter: information in and across value chains, quality assurance for
information exchange and description of plug-and play capabilities and interfaces
for engineering and run time (see Chap. 1, RQI 1-RQ I3).

9.2 Engineering Workflow of Production System

The life cycle of production systems encompasses various phases which could be
simplified as sequential process (Drescher et al. 2013). Thereby, the plant owner
(Original Equipment Manufacturer (OEM)) authorizes a production system builder
(Plan Manufacture (PM)) to develop and provide a production system regarding
to its individual requirements (Li and Meerkov 2001). In the system development
phase of the production system, mechanics, electronics and software of the system
are designed (Groover 2007). Subsequently, the phase of productive utilization of
the system starts and continues until the production system is used productively.
With the ending of this phase, the production system will be recycled or modified,
in such a way that the system could be used for a different production processes. In
the following the development phase of production systems is presented in detail.

The production system’s mechanics, electronics and software are designed and
in a next step realized. Regarding to this, the production system development could
be divided into the both phases system design and system realization (Fig. 9.1).

In system design, as its title suggests, the production system is about to be
designed. Thereby, the three sub-phases mechanical design, electrical design and
software design can be distinguished. In principle, those phases are executed in
parallel and depend on each other. Additionally, system validation activities are
carried out in parallel to the three phases. These activities can be divided into the
phases Virtual Engineering (VE) and Virtual Commissioning (VC).

Into mechanical design, a detailed 3d geometric model of the production system
is created. In this model, mechanical relations between product and production
system are integrated together, e.g. position of welding points, gripper points,
robots, etc. (see Chap. 1-RQ I1). Based on this geometric model, a 2d drawing
of each part as well as aggregated assemblies is derived. These drawings are

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1

210 A. Strahilov and H. Himmerle

F System

; Mechanical Design >‘ Manufacturing/ Ordering

Electric/ Fluidic Design

PLC/ Software

Virtual
Engineering

Virtual
Commissioning

Fig. 9.1 Production system development process

required for the manufacturing of the system parts that are individually designed
solely for the production system under development. For the remaining parts, a 2d
drawing is required to become an overview about the used parts and the correct
mounting position, e.g. screws, springs, nuts, flat washers, etc. In some cases,
components provided by a manufacturer are used, e.g. electric drives, pneumatic
drives, pneumatic valves, controllers, industrial robots, etc. Those components
are assembled from a lot of parts and should not be produced by the system
manufacturer. For such component’s parts, the 2d drawing is not really useful and
is not derived.

With the 3D geometric model of the production system, the layout of the system
is defined as well. Thereby, the position of each part respectively component of the
production system is determined. In this context, the position of product parts and
external material flow of parts into the system is defined via the layout.

Another output of the mechanical design is the production process. This process
strongly depends on the requirements defined by the product development engineers
that intend the sequence of the assembly steps for his product. Also, the production
process has a significant impact on the system’s mechanical design respectively
layout. In combination with the defining of the production process, offline robot
programs (OLP) are also created. This output covers important relations between
production system, products and production processes, e.g. processes performed via
robots, sequence of movement of pneumatic/electric drives, change-over between
product variant during production processes, etc. (see Chap. 1-RQ I1).

Regarding to the defined production system’s parts and components of the
mechanical design, a list of all installed parts is created. With this list, the
quality of information exchange between mechanical engineer, pneumatic/electric
engineer and purchasing can be ensured (see Chap. 1-RQ 12). Furthermore, the
electrical engineer derives all parts and components that he requires as input for
starting the design of the electric plan of the production system. In practice, the
electric/fluidic design starts even before the final part list is determined. Regular
changes on the electric plan regarding changes on the selected components are
only one disadvantage of this procedure, e.g. changes of electrical drives, sensors,
industrial robots, etc. But the premature beginning of the electric design phase is
a consequence of time constraints since the development phase only accounts for

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 211

3—6 months in total. In some cases, these time period can be more than 6 months
depending on the complexity of the production system (Drescher et al. 2013).
Finally, the electrical plan of the entire production system is created. In this plan,
all required data is summarized that is needed to connect components via electrical
cables, e.g. cable types, port names, electrical sockets, requirements to the cable
laying, additional components, etc.

Based on the created part list, pneumatic components are defined by the
mechanical engineer together with the pneumatic engineer. Based on this list,
a pneumatic plan of the production system is created by a pneumatic engineer.
This pneumatic plan encompasses definitions regarding to use tubes, connections
between the components, used valves to control cylinders, throttles to define the
cylinder velocity, etc. Information about installation of the tubes is determined in
the pneumatic plan in detail. In most cases, installation instructions are defined
in the system realization phase and are not documented after that. The same
is also valid for the installation of electrical cables. Despite that dependencies
between electronics and pneumatics of the system are also added into both plans,
e.g. connection between PLC signals and pneumatic valves as well as inductive
sensors via electric cables, etc. Finally, production system’s specific information
about connections between mechanic, electric/pneumatic and PLC components are
integrated with each other (see Chap. 1-RQ I1).

Parallel to the electrical/fluidic design, the validation of the mechanic design
is carried out within the virtual engineering phase. In this phase, the collision
free movement of each drive component (e.g. pneumatic cylinders, electric drives,
robots, etc.) in the production system regarding to the production process is of major
interest. Within virtual engineering the validation of production cycle time is also of
paramount importance. Using this method, created outputs are collected and tested
with each other (see Chap. 1-RQ 12).

With the ending of the electrical/fluidic design, the PLC/software design phase
starts. In this phase, the software (control program) of the production system is
created. The information contained in the electric plan and pneumatic plan as
well as the knowledge about the production process of the production system is
required. Furthermore, security-related aspects regarding to manufacturing personal
and product will also be considered during the programming of the software. Finally,
the complete software of the production system is created. Thereby, a testing of this
program could be not done even before the real production system is built up.

In order to test and validate the production system’s software the phase virtual
commissioning is added as a sub-phase into the system design. In this phase, as
its name suggests, the virtual commissioning method is used to test and validate
the functionalities of the developed software. For this purpose, an extended 3D
geometric model of the mechanics and a logic behaviour model of the production
system are required to represent the real production system for the PLC that runs
the developed software (Siif§ et al. 2015).

The manufacturing of the designed parts starts after completion of the parallel
running phases after the mechanical design. Thereby, all parts developed for the
current production system are produced and the remaining parts or components

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1

212 A. Strahilov and H. Himmerle

provided by suppliers are ordered. The duration of this phase depends on the
complexity of the production system as well as on the ordered components and
can account to one until 4 months. Regarding to this long period, this phase starts in
some cases even before the mechanical design phase is completed.

In the automotive industry, the initial assembling and commissioning of the
production systems is done by the production system builder. The system builder
tests at his facilities the functionality of the system mechanic together with the
interactions with the system electric, pneumatic and software. As soon as the
automatic performing of the production process is tested, the system builder
disassembled the system in separate modules and transports those modules to the
plant owner (OEM’s) shop floor. In the following step, these modules will be
reassembled and commissioned again by the production system builder. Thereby,
the production system is not tested again in detail, only minor adjustments to the
local conditions are implemented.

9.3 Established Tool Chains in Practice

Regarding to the presented production system development process (Fig. 9.1), an
overview about the results of each phase is displayed in Table 9.1. From this table,
the relation between generated outputs of each phase and the processing of those
outputs in other phases can be inferred. Thereby, it is evident from the overview that
a lot of various outputs are generated during the production system development
process. To generate those multiple outputs, a high number of various domain
specific tools are used. Widely used domain specific tools are presented in this
section and assigned to the established tool chains.

Furthermore, the significant data formats that serve to save and exchange outputs
between the phases during the development process are listed. In this context,
resulting difficulties during the exchange of outputs via data formats will also
be considered. Regarding to this, the exchange data format AutomationML is
introduced as possibility to achieve a qualitative information transfer between
domain specific tools without information losses (see Chap. 1-RQ I2). Additionally,
the utilization of AutomationML within the production system development process
will be demonstrated via practical examples. A detailed description of the standard
data exchange format AutomationML is given in Sect. 11.4.

In the following part of this section, the established tool chain for each phase
of the production system development process is presented in separate sections.
Based on this, a description of the output’s content from each phase as well as of
used data formats regarding to the used tools will be made in detail. Therefore, this
section is divided into tool chain for mechanical design, electrical/fluidic design,
PLC/software, virtual engineering and virtual commissioning.

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_11

213

9 Engineering Workflow and Software Tool Chains of Automated Production Systems

IS0 PUB JJBAIO N SN 71 $21BAID D

Suruorssruwos

n n n n n n n n n pue Surjquiessy

Suropio

5 n n /Suumoeinue

Suruorssruwod

n 5 no n n n n 5 n n n [emaIA
Surroouidua

nd o] nd nd nd bl n n n n TemaiA

5 n n 5 n remyos/D1d

ugisop

5 5 5 pIny/oo9[g

ugisop

p) p) 5 p) 5 5 p) [BITURYOIA

UOTR[NWUIIS UOME[NWIIS UONR[NUWIS MO UONB[NWIS UONE[NWIS P I1em}JoS/DTd uerd uerd uoneLAWINOO swrerdord 37 ueld uwerd sSummerp Anowoo3 soseyd
Imoraeyeg 10q0y [PLIIR] SS2001] onewaury onewnaug dLodH 10QOI QUIGIO SMed $S9001d InoKe] 274 P SureourSug

ss2001d juowdofaaop waisAs uononpoid ayy ut sindino s oseyd Jo MAIAIAQ °6 AIqBL

214 A. Strahilov and H. Himmerle

> Mechanical Design >

o 2d drawings \ convert native datato PDFA“-:L M - ’ %
—>{ 3d geometry de5|“,>> design W & Orderi

as PDFs, MSword & Excel, e(c'.":\ H

3 part list (gl p----- = : i

Jayout convert native data to PDFs E.

planning - i

T 4 g . H

N, simudation g \' process convert native data to PDFs |
: i

‘f model Q‘Lt planning W H

........... waoras ¥

offline robot ge _f{?{r .‘_- PLC/ Software G
programing w [design n

y material flow g
design iy i

3d geomenry related changes

- following phase » - domain specific tools

S g
) 2 - additional procedure > |
/ 5

Fig. 9.2 Established tool chain of mechanical design of production systems

9.3.1 Tool Chain for Mechanical Design

Used tools during the mechanical design are extremely diverse and strongly depend
on the data format that the PM has to deliver to the plant owner (OEM). A distinction
between domain specific tools or rather between functionalities is made particularly
in this contribution into Fig. 9.2. In this figure, connections between the various
domain specific tools are added, too.

For better understanding, a tool for each output of the mechanical design is
represented in the tool chain. It is necessary to keep in mind, that the tool chain
doesn’t show the sequence of using of each domain specific tool but only the relation
between them. Those tools, respectively their outputs, are explained in the following
paragraphs.

As well described in Sect. 9.1, the main output of the mechanical design is the 3d
geometric model of the production system (Fig. 9.3). To create this model, various
Computers-Aided Design (CAD) tools are already available in the market. Some of
those widespread CAD tools are CATIA,! NX,? SolidWorks,? Creo,* AutoCAD.?
In principle, these CAD tools provide the same functionalities while differing inter
alia in terms of the various operations of the graphical user interface.

Uhttp://www.3ds.com/products-services/catia
Zhttp://www.plm.automation.siemens.com/en_us/products/nx/index.shtml
3http://www.solidworks.de/

“http://de.ptc.com/product/creo
Shttp://www.autodesk.de/products/autocad/overview

http://www.3ds.com/products-services/catia
http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml
http://www.solidworks.de/
http://de.ptc.com/product/creo
http://www.autodesk.de/products/autocad/overview

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 215

=

Fig. 9.3 3d geometric model of a production system

Table 9.2 Overview of used native data formats of some CAD tools

Parts Assemblies 2d drawings Layout Plan Process Plan
CATIA/DELMIA *.CATParts *.CATProduct *.CATDrawing *.CATProduct —
NX/MCD * prt
SolidWorks * sldprt * sldasm * slddrw -
Creo * prt *.asm *.drw * lay -
AutoCAD *.dwg -

Usually, not every part of the production system has to be developed from
scratch, because the production system manufacturer tend to use already existing
parts or standard parts as much as possible, e.g. screws, springs, nuts, flat washers,
etc. Such parts could be provided by the product system manufacturer or by third-
party via standardized libraries. In this context, system components that are provided
by a component manufacturer could be downloaded directly as 3d geometric model
in various data formats after a detailed configuration. As add-on, some CAD tools
provide libraries with standard parts as well as functionalities to create and manage
user specific parts, e.g. CATIA V5 via workbench Catalog Editor.

To assemble various 3d geometric models to an entire assembly or module,
various CAD tools provide a lot of functionalities that enable an exact positioning of
parts or components relatively to each other as well as to define constraints between
them (Fig. 9.2, 1). Normally, functionalities for design of 3d geometric models are
separated from those functionalities that are used to create assembly models of the
whole production system. In CATIA for example, both groups of functionalities
are organized into different workbenches, i.e. Part Design and Assembly Design.
A similar organization of those functionalities is made into other CAD tools as
well, e.g. NX, SolidWorks, Creo, AutoCAD, etc. The essential notable difference
between various CAD tools is the data format used to save the created 3d models.
An overview of the various data formats is presented in Table 9.2.

216 A. Strahilov and H. Himmerle

This table is not an exhaustive list containing all available CAD tools and all
native data formats that are supported by these tools. To find more information to
this topic, please visit the web page.’

A significant benefit of using the same CAD tool for designing of parts and
assembling of whole production systems is that no need for 3d geometry exchange
amongst tools arises. Thus, integration of information related for parts and whole
systems can be ensured (see Chap. 1-RQ I1).

In addition to the mentioned functionalities, CAD tools provide also features to
derive 2d drawings from 3d geometric models of parts and entire assemblies as
well as to create layout plans of production systems (Fig. 9.2, 2 and 4). During
this, a qualitative exchange of information between mechanic and manufacturing or
maintenance of production systems is guaranteed (in Chap. 1-RQ 12). Some data
formats used by CAD tools are presented in Table 9.2. As we can see until here,
CAD tools provide an extended spectrum of functionalities that allow use of solely
one tool to create and prepare all required outputs from the mechanical design.

Normally, a rough concept of the production system is initially generated before
the start of the mechanical design. Thereby, the mechanical engineer creates a rough
plan of the layout and functionalities of the production system (Fig. 9.4). In this

Fig. 9.4 Exemplary production system layout plan as drawing (see Fig. 9.3)

Shttps://de.wikipedia.org/wiki/Liste_von_CAD-Programmen

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
https://de.wikipedia.org/wiki/Liste_von_CAD-Programmen

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 217

I Fi I i 5 1 i 1 1 I I

B8 4438 108 66

116
-

0
. O]

100

1116

438

1
=
.-‘/_-

139

Fig. 9.5 Production process description as sequence diagram in MS excel

step, the same CAD tool is used that will also be used for the following detailed
mechanical design. In this regard, a first draft of the production system process is
also prepared (Fig. 9.5). Based on that, changes on the layout and the production
process should be implemented in the 3d geometric design and considered for the
subsequent steps of OLP and material flow design. Required modifications on the
system’s parts should be considered during creation of 2d drawing and following
manufacturing as well.

Following, detailed 3d geometric models of the system’s parts as well as
assemblies are created in a CAD tool and saved in the CAD tools’ native data
formats. Based on these models, 2d drawings are derived and enhanced by specific
manufacturing information that is required to produce every designed part, e.g. spe-
cific surface characteristics, part’s dimensions, material information, etc. (Fig. 9.6).
As a consequence, the final draft of the layout and production process together with
the 3d geometric model of the system’s mechanic is completed.

Subsequently, the manufacturing of system’s parts and the ordering of cus-
tomized components and standard parts respectively based on the 2d drawings
is about to start (Fig. 9.2a). In practice, 2d drawings are converted to a neutral
data format (e.g. *.dwg or *.dfx, *.) or saved as PDFs (Portable Document
Format). Finally, a hard copy of each system’s specific part is provided to the part
manufacturer that initiates the parts production. 2d drawings are stored by plant
owner (OEM) and serve as templates for the manufacturing of spare parts. Usually,
those drawings are stored as PDFs and more rarely in native or neutral data formats.

218 A. Strahilov and H. Himmerle

sek. sek. sek.
target process time 70,0

1 Werkzeug mit Roboter an Werkstiick, Position 1 schwenker 0,0 10,0 10,0 robot

2 cylinder 1 to work position 10,0 2.0 12,0 cylinder 1

3 cylinder 2 to work position 12,0 2,0 14,0 cylinder 2

4 cylinder 3 to work position 14,0 20 16,0 cylinder 3

5 cylinder 4 to work position 16,0 2,0 18,0 cvlinder 4

6 cylinder 5 to work position 18,0 2,0 20,0 cvlinder 5

7 cylinder 6 to work position 20,0 1,5 21,5 cylinder 6

8 cylinder 7 to work position 215 155 23,0 cvlinder 7

9 electro drive 1 drive to 150mm 23,0 3,0 26,0 electric drive

10 tool on robot to product 1, position 2 move 26,0 10,0 36,0 robot

11 electro drive 1 drive to 40mm 36,0 30 39,0 -electric drive

12 cylinder 7 to base position 39.0 125 40,5 cylinder 7

13 cylinder 6 to base position 40,5 135 42,0 cylinder 6

14 cylinder 5 to base position 42,0 2,0 44,0 cylinder 5

15 cylinder 4 to base position 44.0 20 46,0 cvlinder 4

16 cylinder 3 to base position 46,0 2,0 48,0 cylinder 3

17 cylinder 2 to base position 48,0 2,0 50,0 cylinder 2

18 cylinder 1 to base position 50,0 2,0 52,0 cylinder 1

19 robot move to home position 52.0 10,0 62.0 robot
0,0 100 200 300 400 50,0 60,0 700

e]

—
-
==
|
-
=
-
[]
e
=
-
-
-
|
]
|
r—.

Fig. 9.6 2d drawing of a production system’s assembly

Storage of 2d drawings in native data formats is applied by production system
builder (PM) but generally not required by the OEM.

With the beginning of part manufacturing, the ordering process is started as
well. For this purpose, a part list with all parts and components implemented into
the production system is created (Fig. 9.7). To do this, some CAD tools provide
functionalities to create a part list based on the 3d geometric model. This list could
be stored in various data formats, e.g. text files, word documents, MS excel tables,
PDF’s, etc. In some cases, specific CAD tool add-ons are created by the PM that

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 219

piece type mm name man.numb.
2x |profile_§_40x40 920 profile § 40x40, natur 0.0.026.03
4x |profle_§_40x40 2000 profile § 40x40, natur 0.0.026.03
2x |profile_8_40x40 519 profile § 40x40, natur 0.0.026.03
4x |profile_8_40x40 1306 profile § 40x40, natur 0.0.026.03
4x |profile_8_40x40 323 profile § 40x40, natur 0.0.026.03
2x |profile_S_40x40 500 profile § 40x40, natur 0.0.026.03
1x |acrylglass_Smm_klar 541x362 acrylglass Smm, klar 0.0.428.21
2x |aerylglass_Smm_klar 300x862 acrylglass Smm, klar 0.0.428.21
2x |acrylglass_Smm klar 328x862 acrylglass Smm, Klar 0.0.428.21
1x |acrylglass_Smm_Klar 1271x862 acrylglass Smm, Klar 0.0.428.21
28x _|angle § 40_black - angel § 40, black 0.0.196.87
4% |tap_8_40 black tap 8 40, black 0.0.196.86
60x |skidmg block_8_MS -
60x |t _bolt_MS -
3x |hinge_8_PA_rechts_black - hinge § PA, right, black 0.0.026.12
2x ic stop 8§, black - ic stop §, black 0.0.601.30
Ix |hand_grip PA_120_black = hand grip PA 120, black 0.0.391.35
20x |eap_8_40x40_black - cap § 40x40, black 0.0.026.01
Ix |mount part 6-8 for sefaty switch end position compact - 0.0.473.23
Ix |mount part 6-8 for sefaty switch end position & M12x1 code A - 0.0.473.22
Ix [safety switch end position 0.0.473.90
2% |safety switch M12x1 code A - 0.0.473.25
Ix |[ADVU-50-250-A-P-A pneumatic cylinder
Ix |ADVU-50-80-A-P-A preumatic cylinder
1x |CPX-GE-EV-5-7/8-5POL
2x |CPX-AB-4-M12X2-5POL
2x |[MTH-5/2-7,0-L-8-VI velve
2x |MTH-5/3B-70-L-8-VI velve
2x |cap profie 8, black 541 cap profile 8, black 0.0.422.26
4x |cap profile 8, black 300 cap profile 8, black 0.0.422.26
4x |cap profile 8, black 328 |cap profile 8, black 0.0.422.26
2x |cap profile §, black 1271 |cap profile §, black 0.0.422.26

Fig. 9.7 Part list of production system created manually in MS excel

export a part list from CAD tools based on the 3d geometric model of the entire
production system. In doing so, the PM achieves a complete part list without any
gaps.

As already explained, CAD tools provide an extended spectrum of functionalities
to create a large part of mechanical design outputs. Only for process planning
(Fig. 9.2, 6) the use of additional tools is recommended, e.g. design of processes
via Process Simulate (Siemens), DELMIA (Dassault System), etc. Those tools
used 3d geometric models as base to create 3d kinematic simulation models of
the production system. In this regard, the offline robot programming and material
flow design are supported by some process design tools as well (Fig. 9.2, 6 and
7). Here, offline robot programing could be performed based on the 3d geometry
of the robot and all other production system’s parts respectively. This generated
OLP contains the information about motion trajectory and some process relevant
signal references only (Fig. 9.8). Subsequently, OLP’s detailing is performed during
the PLC/software design of the production system since the information about
the signal dependencies is already defined via the PLC/software (see Sect. 9.3.3).
Ultimately, the production process of the system is provided to the assembling and

220 A. Strahilov and H. Himmerle

- O x
Datei Bearbeiten Format Ansicht ? [‘re:e; Bearbeiten Format Ansicht ?
&ACCESS RVP - &ACCESS RVP
ECOMMENT &REL 1
DEF RBsCell() &PARAM EDITMASK = *
INT Prgno DEF RP_DEMO_2_base()
;FOLD PTP Viapoint2 vel= 50 % PDATL Ti_
LOOP SBWDSTART=FALSE
WAIT FOR $IN[I_PrgNoRdy] PDAT_ACT=PPDAT1
FinrRobProgram = 0 BAS (#PTP_DAT)
PrgNo = DIgInPrgNo FOAT_ACT=Fviaroint2
SWITCH Prgno BAS (#FRAMES)
CASE 1 BAS(#VEL_PTP, 50)
RP_DEMO_2_base() PTP XviaPoint2
FinRobProgram = 1 + ENDFOLD %
PGNO=0 $FOLD PTP viaPoint3 vel= 50 % PDATL T+
CASE 2 SEWDSTART=FALSE
RP_DEMO_2_s amg'le_l vi() PDAT_ACT=PPDAT1
FinRobProgram = 2 BAS (#PTP_DAT)
PGNO=0 FDAT_ACT=FViaPoint3
CASE 3 BAS(#FRAMES)
RP_DEMO_2_sample_1_v2() BAS(#VEL_PTP,50)
FinrobProgram = 3 PTP XviaPoint3
PGNO=0 3 ENDFOLD
CASE 4 sFOLD PTP viarointd vel= 50 % PDATL Tv
RP_DEMO_2_sample_2_v1() SEWDSTART=FALSE
FinRobProgram = 4 PDAT_ACT=PPDATL
PGNO=0 BAS(#PTP_DAT)
ENDSWITCH FDAT_ACT=FViaPointd
ENDLOOP BAS(#FRAMES)
END i BAS(#VEL_PTP,50)
F ' M ’
Zeile 18, 5¢ Zeile 1, Spalt
L}
Datei Bearbeiten Format Ansicht
&ACCESS RVP -
4&REL 1
&PARAM EDITMASK = *
DEFDAT RP_DEMO_2_base =
DECL PDAT PPDAT1={VEL 50,ACC 100,APO_DIST 0}
DECL EG6POS XviaPoint2={x -647.7444085,y -198.5840603,z 1897.611544,a -162.9555962,1
DECL FDAT FViaPoint2={TOOL_NO 2,BASE_ND 0,IPO_FRAME #BASE}
DECL E6POS XviaPoint3={x -1148.037531,y -351.9628415,z 2009.276385,a -162.9555947,1
DECL FDAT FviaPoint3={TOOL_NO 2,BASE_NO 0,IPO_FRAME #BA E}
DECL E6POS XviaPointd4={x -156.3164832,y -1190.483898,z 2009.282837,a -97.4804004,b
DECL FDAT FViaPointd={TOOL_NO 2,BASE_NO 0,IPO_FRAME #BASE}
« (i » |
Zeile 27, Spalte 2 |

Fig. 9.8 Offline robot program of production system created via DELMIA V5

commissioning as well as to the PLC/software design phase as neutral data format,
e.g. PDFs (Fig. 9.2b and c).

Based on practical experience, a simplified 3d model with additional kinematic
information of the production system is required (Fig. 9.2, 5). As a consequence
the enormous complexity of the design model containing each part as detailed 3d
geometric model must be reduced for simulation purposes (Strahilov et al. 2012).
For the execution of simulation, detailed models are superfluous and also deteriorate
the performance of the simulation. Consequently, a separate simulation model has
to be created for the purpose of process planning. The detailed description about
this procedure is presented in the section of Virtual Engineering (Sect. 9.3.4).

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 221
9.3.2 Tool Chains of Electrical Design

Electrical/fluidic design is the second phase of the development process of a pro-
duction system. In this phase, pneumatic plan and electrical plan of the production
system are prepared and provided to the subsequent phases (Figs. 9.9 and 9.10).
As purpose of these outputs, information about the connections between electric
components respectively pneumatic components is described. Thereby, detailed
requirements about used type of cables, in case of electric component, and tubes, in
case of pneumatic components, are presented in those plans. Based on both outputs,
Fig. 9.11 shows the established tool chain of electrical/fluidic design.

To design these plans, the part list created by mechanical design is required
to identify electrical or pneumatic components implemented in the production
system. Moreover, the final draft of the production process is required also to define
additional electric or pneumatic components, €.g. to define the number of required
valves to control pneumatic cylinders or throttles to set the velocity of cylinder’s
piston, electrical fuses, etc. Hence, additional system parts have to be added to
the part’s list and have to be taken into account for the ordering process. Finally,
both designed plans are provided to the PLC/software design as input. Generally,
electrical plans and pneumatic plans are provided to the following processes as
neutral data format via a conversion to PDFs. Storage of those plans as tool specific
formats is done by the PM and rarely provided to the OEM.

> Electric/ Fluidic Design >

B . \, convertnative datato PDFs ";‘_ Manufacturing & Assembling &
ym=es part list i e
Ordering Commissioning

N process N o
Ve planning /7 :

i1 extend of part’s list

2 PLC/ Software
design

-

" e,
’) 2 - additional procedure >

- et

- following phase \\ - previous phase » - domain specific tools
—

Fig. 9.9 Pneumatic plan of production systems

222 A. Strahilov and H. Himmerle

P — . -
i L
| o b B e e | |

- —1 s
FE‘%“ ! —1 1 =
1 I Fl I 3 4 I L I [i] I T 1]

Fig. 9.10 Electric plan of production system

There are various electrical and fluidic design tools available in the market, e.g.
EPLAN fluidic/electric,” FluidDraw,® E3.fluid,’ elecworks™ Fluid,'? DSHplus,!!
etc. Most of them provide the required functionalities to design electric and/or
fluidic plans. Some of them can be used to perform simulations to test functionalities
of the designed electrical or fluidic system as well, e.g. DSHplus. Other tools
provide the option to jointly design electric and fluidic systems, e.g. FluidDraw,
E3.fluid, elecworks™ Fluid, etc. Furthermore, some fluidic tools combine 2d
drawings derived from 3d geometric models together with pneumatic plans or fluidic
plans, e.g. FluidDraw. Aside from that, CAD tools used for mechanical design
support additional functionalities to design electric and pneumatic plans but with
focus on 3d cable laying, e.g. CATIA,'?> SolidWorks,'* NX,'* etc. For the design of

https://www.eplan.de/en/solutions/electrical-engineering/
8https://www.festo.com/cms/nl—beﬁbe/ 17099.htm
“http://www.zuken.com/en/products/electrical-wire-harness-design/e3-series/products/fluid
Ohttps://www.eplan.de/en/solutions/electrical-engineering/
Uhttps://www.fluidon.com/index.php/en/dshplus/
2http://www.3ds.com/products-services/catia

Bhttp://www.solidworks.de/
14http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml

https://www.eplan.de/en/solutions/electrical-engineering/
https://www.festo.com/cms/nl-be_be/17099.htm
http://www.zuken.com/en/products/electrical-wire-harness-design/e3-series/products/fluid
https://www.eplan.de/en/solutions/electrical-engineering/
https://www.fluidon.com/index.php/en/dshplus/
http://www.3ds.com/products-services/catia
http://www.solidworks.de/
http://www.plm.automation.siemens.com/en_us/products/nx/index.shtml

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 223

i
s
g >EL -

Wt ALER T

| MrH daisqnn

Frapt [Tt T
Eezreder: el e Ee-rar

Fig. 9.11 Established tool chain of electric/fluidic design of production systems

electrical and pneumatic plans, such functionalities are not relevant since, 3d cable
laying design is not possible in the very limited development time of production
systems (see Sect. 9.2).

In the area of the development of production systems for car manufacturing,
EPLAN is the most common design tool for electrical and fluidic design among
prominent OEMs. In some cases, 2d drawing functionalities of CATIA are used to
create electrical parts. In order to realize this, a 2d library with required symbols of
pneumatic components is necessary.

As well as CAD tools, each electric and pneumatic design tool uses a specific
data format to save designed plans (see Sect. 9.3.1). But in practice, the exchange of
electric and pneumatic plans is carried out via data neutral formats, e.g. PDFE. During
a conversion to PDF, automated interpretation of content information in these plans
cannot be realized without information losses. At end of this phase, these converted
production system’s plans are provided to the following PLC/software design phase.

9.3.3 Tool Chain of PLC/Software Design

At the end of electric/fluidic design, the PLC/software design is started (Fig. 9.12).
In this phase, the control program of the production system is coded along with
the human machine interfaces (HMI). To do this, production system’s layout plan,

224 A. Strahilov and H. Himmerle

> PLC/ Software >

Assembling & 3

N T N\ ™., Manufacturing & g@RE":.,
s S/ Ordering Commissioning
.. : ; : : : .. 1 L T T TS fannns $ aaaaa }\-
\ process \ convert native data to PDFs :
/S planning /
e — \ __}_’st_ _____ PLC/ software native
N . design
/7 design /
_ S e \ PDFs native

electric design | HMI design
G —— et m—— . EEEmmmmEmsssssssssmssm===———— R .

. . ~ native
offt mem{)o: \ k] detail robot programing -~
programing ot ’

K Sfollowing phase \\ - previous phase » - domain specific tools
—

Fig. 9.12 Established tool chain of PLC/software design of production systems

process plan, pneumatic plan and electric plan that are created in the previous phase
are taken as base. Thereby, these outputs are provided similar to both previous
phases via PDFs.

Regarding to the electrical plan, hardware configuration of the production plan is
created (cf. Fig. 9.13). With this configuration, all electrical components connected
with the PLC via communication bus (e.g. PROFINET, PROFIBUS, etc.) are
required for the PLC to define which components are expected using which bus
address. In parallel, input and output signals of each component are defined also.
Based on input and output signals, PLC software programming is initiated. Thereby,
the production process and OLPs are taken into account and set as base to integrate
all dependencies between the components into PLC’s software. In this regards, the
production process is mapped into the software also. In this phase OLPs must
contain information about dependencies between the PLC’s software and robot
controllers on which these robot programs run. Parallel to this, detailing of robot
programs has to be conducted.

As explained in Sect. 9.3.1, offline robot programs (OLP) are created based
on the 3d simulation model of the production system. Such an OLP contains the
information about motion trajectory and some process relevant signal references
(Fig. 9.8). Based on that, a further detailing of these programs shall be done during
the PLC/software design. The information about dependencies between system’s
components are for example dependencies between safety doors and components,
release of extending or retracting of pneumatic cylinders, release of robot operating
zones, etc. These dependencies are defined in the PLC’s program and integrated
into the robot programs via several signals, e.g. robots wait for release from PLC’s
software via Boolean signal to conduct an operation in a safety zone to prevent
collision with other robots or system’s component (Fig. 9.14).

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 225

Staton earbeken Enflgen Zwdystem fnokht Extras Eenster Wife - &%
D68 § & e ddba Do 38w
& Blx
swhe [o

Broft Standud -

* g5 FROFIEUSOP
FROFIBUSPA

« 3 FROFNET 10
o il SMATIC 300

7 Fl.CPU 319F3 PH/DP - o [SMATIC 400

Xt] sepe @m0 % [l SIMATICPC Based Contisl 300/

2 [e ———— M % @ SIMATICFC Stabon

xa (] m}ﬁfﬁﬁmfmzwi

xrin [l Port E—

XIPZR Pod &

] (5] = 001pr001-4035 m50g04Eam1 SBapa

Stechplats Bauggee

g 80 075, ! 585psl TN 197770

AT (258

xrrer |l At

T Pwr”
AAHDA [aE] [TH 573710, CFA-44E LH, Code HI
A8H [4E) [TH 541484, CP-4AH
Fo34 PHI0 Moad TH 548751, CPAFB3A.
801D EDE] [TH 541420, CPA-801-D. £ ¥
B0ID [S0E [TH 541430, CPX80ID, PROFSLS D laves der 3’
Mak/Masi DIL 1 [BDA] [TH 1565738, CP-GP03-4.0, Code & E i

Auswihlen der Hardware [ed

Fig. 9.13 Hardware configuration of a PLC’s software via STEP7 (http://w3.siemens.com/mcms/
automation/en/automation-systems/automation-software/Pages/Default.aspx)

Depending on the PLC software programming, HMI of the production system
will be designed. To do this, the signals defined by PLC’s software and layout plan
of the production system are required. Based on both outputs, overview of the whole
production system is created with additional information about signal status, e.g. end
position of pneumatic cylinders, current position of electrical drives, released robot
safe zones, etc. An HMI of a production system that is based on system’s layout
plan and extended by PLC signals is shown in Fig. 9.14.

For the PLC software design multiple tools are available that could be used
to perform this design, e.g. STEP7,'> TIA,'® CODESYS,!” PC WORX,'® etc.
Some of those tools can be used to create PLC software for various PLCs as
well as for various embedded controllers, e.g. CODESYS. For this purpose, they
could be extended via add-ons or additional tools that are from same or other

Shttp://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/De
fault.aspx

IShttps://www.industry.siemens.com/topics/global/en/tia-portal/Pages/default.aspx
Thttps://www.codesys.com/#_

8https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2985259&library=
usen&tab=1

http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/Default.aspx
http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/Default.aspx
http://w3.siemens.com/mcms/automation/en/automation-systems/automation-software/Pages/Default.aspx
https://www.industry.siemens.com/topics/global/en/tia-portal/Pages/default.aspx
https://www.codesys.com/%23_
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2985259&library=usen&tab=1
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2985259&library=usen&tab=1

226 A. Strahilov and H. Himmerle

RC 100-104.2 © *
RC100-104.1 ©
RC 400 - live Bit RC 100-1156 @

© Rc100-lvesit

RC100-1120 @
RC 100-097.4 @
.
ALOHMI
RC400-1042 © AL1HMI
RC400-1041 @ AL2 HMI
RC400-1156 © =
RC400-1120 @ P
RC 400-097.4 © RC 400 -safe zone [| [l RC 100 -safe zone
Safe door ©
. RC 300-safezone [l 1 [RC 200 -safe zone k‘J
RC300-1042 ©, RC200-1042 ©
RC300-104.1 @ RC200-104.1 @
RC300-1156 @ RC200-1156 @
RC300-1120 @ RC 200-1120 @
RC 300-097.4 ©

RC200-0974 ©

.
" e .
RC 300 - live Bit u u RC 200 - live Bit

Fig. 9.14 Exemplary Human Machine Interface (HMI) of production system (Fig. 9.4)

tool provider. On the contrary, some tools can be used to design programs for
specific PLCs, e.g. STEP7 and TIA. Independently from that, all tools support
the same standard programming languages defined by IEC61131-3, e.g. Ladder
Diagram (LD), Instruction List (IL), Function Block Diagram (FBD), Structured
Text (ST) and Sequential Function Chart (SFC)." As expected, each of these tools
use proprietary data formats to store native PLC software. Only some tools support
the export and import of PLC software via a neutral data format, e.g. CODESYS
via PLCOpen XML. By means of PLCOpen XML, exchange of PLC software code
as well as HMI code is possible between various tools with marginal information
losses (cf. Fig. 9.14). Furthermore, exchange of PLC software that is written in
various programming languages defined by IEC61131-3 is possible by PLCOpen
XML.

For the PLC software design multiple tools are available that could be used
to perform this design, e.g. STEP7, TIA, CODESYS, PC WORX, etc. Some of
those tools can be used to create PLC software for various PLCs as well as for
various embedded controllers, e.g. CODESYS. At the end of this phase, the finalized
detailed PLC software is provided to the assembling and commissioning phase of
the production system (Fig. 9.15).

Even before commissioning starts, PLC software is tested via virtual commis-
sioning (see Sect. 9.3.5). During system’s commissioning on the shop-floor, each

Yhttp://www.automation.com/pdf_articles/IEC_Programming_Thayer_L.pdf

http://www.automation.com/pdf_articles/IEC_Programming_Thayer_L.pdf

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 227

1> Dotel Gewbeten Erfugen Debystem Iedt Ankht Exras Eenster e & x

B oMo er]! ik - xslacTED-Ba&qO
]
.............. '.r.;.....
s1 § [itialize step
INI [n ["FGDE_010XSKOO1*.A INI
Grundstell Tl
R e [i = 2
vngsettonef o |— Starth
ledingu

ng

a s2 Check initialize position
g GRD N_["FGDB_O10XSK001".A Zeit starten
= ¥ N _["FGDB_U10XSKO001".A_GRD

"FGUE_010XSK001™. A T2
_Zeit_abgelmafen™| 00 |y eeseeseseean —t—"
(Grunds

83 Extend of cylinder 1
N ["FGDB_010XSKO01".A Zeit zuruecksetz.
ul |"PGDB 010XSKO01".A O0D1PNVOO1l MM1 ra

"FGEE_0L0ZYFOOL™.U T3
= T Y —
o 21

s4 Extend of cylinder 3
R N |"FGDB_D10%SKOD1".A Zeit_starten
N I'FGDB 010%XSK001".A OO01ENVOO1 MM3 re

"FGDE_0L0XSKO0L™ . A T4
Zeit_abgelaufen| 000 ey semererereees —_
Zelt

labgela
< ¥ ufen
EE [5
Drikchen Sin F1, um Hife u exhislten, D olfien Abs Erdg

Fig. 9.15 Production process into PLC’s software as step chain via STEP7

manual as well as automated function of the PLC software is tested in connection to
the real hardware of the production system. e.g. manual extraction and retraction of
each pneumatic cylinder via PLC, manual execution of robot movements, perform
automated production processes with and without products, etc. In this context,
fine adjustments on mechanic and electric components as well as on detailed robot
programs is performed, e.g. adjustment of cylinder’s velocity for extraction and
retraction via throttle settings, teaching of robot target positions, minor modification
of acceleration profiles of electric drives, etc.

9.3.4 Tool Chain of Virtual Engineering

Virtual Engineering (VE) is phase of the development process of production system
that supports the system’s mechanical design (Ovtcharova 2013). As base of this
phase, a 3d simulation model of the production system is required. As explained
already in Sect. 9.3.1, this 3d simulation model uses the 3d geometric model of
the production system as base and integrates additional kinematic information of
components into the production system, e.g. translation of pneumatic cylinders,
rotation of electric drives, kinematic of robots, etc. (Fig. 9.16). Based on this model,

228 A. Strahilov and H. Himmerle

Virtual Engineering

.-
)l 3d geomertry design *

P : \. » simulation N =8
ayout planning 7 3 id

. — — — e mmemmm———— -

process N s] B]
planning b 4 material flow simulation
afflinerobor N 2 z :
programing /' process simulation
e a1

i 3d geometry related changes

N TR \
) 2 - additional procedure :.‘ 2 - following phase \\ - previous phase) - domain specific tools
L4 90 —

e Ly

Fig. 9.16 Tool chain of virtual engineering (VC)

Fig. 9.17 Collision between robots during VE via 3d simulation model

collision free component’s movement in connection with the system’s mechanic
have to be validated (Fig. 9.17). Furthermore, production processes of the system
can be planned as well as tested with respect to process time and sequences via
3d visualization of movement. Of course, a first draft of the production process
is required at the beginning of this step. In this context, OLPs of the production
process are required also to animate the complex movement of robots. Thereby,
OLPs represent a significant part of the production process and have a strong
influence on process time and sequence. Visualization of movement of products
as well as of system’s own components (e.g. welding guns) is another important
aspect within VE. Fort this purpose, the material flow model is needed that describes
the position and orientation as well as dependencies between products or system’s
components during production process simulation, e.g. representation of gripping
processes, conveyor transport processes, etc.

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 229

Based on practical experience in the area of production systems in car manufac-
turing, VE takes a major role in the development process as phase to achieve better
quality of the mechanical design as well as to prevent errors based on the simulation
(Ovtcharova 2013). In most cases, the modelling of the 3d simulation model is
conducted with the same tool for performing the simulation. Typical simulation
tools used in VE are DELMIA,?® Process Simulate?' and Mechatronic Concept
Designer (MCD).??> Some of those tools are integrated in a CAD tool that allows the
use of the designed 3d geometric model without data transfer between the CAD and
simulation tool, e.g. DELMIA into CATIA, MCD into NX, etc. Doing so, flawless
data transfer can be ensured.

During checks of system’s mechanic, difficulties of the mechanic should be
identified and, required changes on system’s mechanic have to be provided back to
the mechanical design phase. After that, performed changes on the 3d geometric
model of system’s mechanic should be checked again based on the updated 3d
simulation model. As soon as all mechanic checks are performed successfully, VE
is completed. In most cases, the simulation model is stored by the PM in native tool
specific data format and provided as same data forma to the OEMs, e.g. DELMIA
as *.CATProcess, MCD as *.prt, etc. (see Table 9.2). Thereby, OEM requires the
3d simulation model by PM to use it for potential mechanical changes regarding
integration of new or adapted products into the production system as well as to
modify the same system for other production purposes in case of system reuse (see
Sect. 9.2). The 3d simulation model is continuously used in virtual commissioning
to visualize movements of the components (Sect. 9.3.5).

9.3.5 Tool Chain of Virtual Commissioning

The virtual commissioning can be observed as a separate phase of the development
process of production systems (Fig. 9.18). In this phase, all functionalities of the
PLC’s software are tested based on a simulation model of the production system
that doesn’t exist in real hardware at this time (Siif} et al. 2015; Damrath et al. 2015).
For the purpose of VC, first draft of the PLC’s software as well as working and
tested simulation model of the production system must be available. This required
simulation model, as well as VE’s simulation model contain several sub-models,
e.g. 3d simulation model, material flow and robot simulation (Sect. 9.3.4). Essential
differences between VE’s simulation and VC’s simulation are on the one hand
the additional behaviour model respectively behaviour simulation, that are needed
to simulate logical behaviour of each component connected to the real PLC, and

2http://www.3ds.com/products-services/delmia/products/

2 https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/as
sembly/process-simulate.shtml

Zhttps://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/

http://www.3ds.com/products-services/delmia/products/
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/

230 A. Strahilov and H. Himmerle

Virtual Commissioning

5 PLC/ software \

design

model

R i LS > Behaviour simulation

> material flow simulation
> robot simulation

<= e, 4
) } -additionalprocedure » - following phase \\ - previous phase) - domain specific tools
P z —

nast

L LEE TR
simulation)
3d kinematic simulation
v,
-

)
7
)
b

PLC’s software & HMI related changes

Fig. 9.18 Tool chain of virtual commissioning

on the other hand the missing process simulation, which is replaced by PLC’s
software. Furthermore, production system’s 3d simulation model serves to visualize
the movement of the system during the production process by the PLC via PLC’s
software but not to check system’s mechanic such as VE.

Based on practical experience, the 3d simulation model created and used by VE
is taken as base to use it for the purpose of VC. In the market, several tools provide
required functionalities to prepare the 3d simulation model and to conduct VC, e.g.
DELMIA,?? Process Simulate,?* NX-MCD,? RF::SGView and RF::SGEdit,?° etc
In some of those tools, VE’s simulation model can be taken without any further
changes and modified for VC, e.g. DELMIA, NX-MCD, Process Simulate, etc.
Based on practical experience, the complexity of a typical 3d simulation model
is enormously high. As consequence of this, high computational performance is
required to run the simulation in an approximate time step between 10 and 100 [ms].
Based on this, some VC’s 3d simulation tools are adapted to deal with complex 3d
simulation models, e.g. RF::SGView. Furthermore, the material flow defined by VE
is used together with the 3d simulation model also. In most cases, both models are
integrated in a single simulation model, e.g. DELMIA, Process Simulate, etc.

Additionally, the behaviour model of the production system is required by VC.
This model represents the logical behaviour of each component connected to the
PLC and communicates with the PLC via signals. For this purpose, the behaviour

Zhttp://www.3ds.com/products-services/delmia/products/

Z4https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/as
sembly/process-simulate.shtml

2Shttps://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/
Zhttp://www.rf-suite.de/en/products.html

http://www.3ds.com/products-services/delmia/products/
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/tecnomatix/manufacturing-simulation/assembly/process-simulate.shtml
https://www.plm.automation.siemens.com/en/products/nx/for-design/mechatronics-design/
http://www.rf-suite.de/en/products.html

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 231

model of each component installed in the production system has to be created.
In practice, each OEM creates this model by himself or assigned a sub-contractor
(Drescher et al. 2013). PMs receive these OEM’s behaviour models and uses them
to build up the entire behaviour model of the production system. In this context,
each OEM stores behaviour models in tool specific data format. As a consequence,
the PM is forced to use fixed tools to run the behaviour simulation and therefore
also VC. Two widely used behaviour simulation tools in practice are WinMOD’ and
SIMIT.?” Those tools provide several communication interfaces that allow exchange
of simulation data in approximated real-time with other tools, e.g. WinMOD” with
RF::SGView, SIMIT with NX-MCD, etc. Furthermore, additional functions can
be used to automatically create whole behaviour models based on component’s
behaviour models, e.g. specific MS excel based assistance for WinMOD".

Along with the behaviour simulation, robot program simulation is required as
well. In this case, robot programs that are detailed during the PLC/software design
are used and not OLPs (cf. Sects. 9.3.1 and 9.3.3). To run the simulation of those
robot programs, specific tools are required that have to support specific robot
programming languages, e.g. KUKA, ABB, Fanuc, Kawasaki, Mitsubishi, etc. For
this purpose, the most robot manufactures provide a tool to create and simulate
robot programs, e.g. RobotStudio,”® KUKA.Sim,? etc. Such tools are standalone
solutions and they expected the 3d geometric model of the production systems that
have to be extended in a previous step by kinematic information. A distinction must
be made between OLPs and detailed robot programs. In practice, OLPs are created
by simulation tools that support process simulation and material flow as well as to
export OLPs in several robot languages in parallel, e.g. export function of DELMIA
as KUKA, ABB, Fanuc, Mitsubishi etc. Aside from that, RF::RobSim is a very
common robot simulation tool that can process several real robot programs and
simulate them in real time during VC (SiB et al. 2015). In practice, RF::RobSim is
used in combination with WinMOD" and RF::SG View (Hammerle and Drath 2014).

To achieve greater benefit of VC, modelling effort has to be kept to a minimum.
For this reason, continuous use of VE’s simulation model has to be done to prevent
unnecessary repeated modelling time. In last years, the use of AutomationML> as
neutral data format has proven itself to realize model exchange without data loss
(Hammerle and Drath 2014). Currently, several AutomationML export functions
are developed to exchange 3d simulation models between process simulation tools
(e.g. DELMIA, Process Simulation and NX-MCD, etc.) and VC’s tools (e.g.
RF::SGView and NX-MCD). Some renowned OEMs in the car manufacturing
industry use AutomationML export functions of DELMIA and Process Simulate
to transfer 3d simulation models to RF::SGView.

2Thttp://w3.siemens.com/mems/process-control-systems/en/distributed-control-system-simatic-pcs
-7/simulation_training_systems/Pages/Default.aspx

Zhttp://new.abb.com/products/robotics/robotstudio
http://www.kuka-robotics.com/germany/de/downloads/software.html
Ohttps://www.automationml.org/o.red.c/home.html

http://w3.siemens.com/mcms/process-control-systems/en/distributed-control-system-simatic-pcs-7/simulation_training_systems/Pages/Default.aspx
http://w3.siemens.com/mcms/process-control-systems/en/distributed-control-system-simatic-pcs-7/simulation_training_systems/Pages/Default.aspx
http://new.abb.com/products/robotics/robotstudio
http://www.kuka-robotics.com/germany/de/downloads/software.html
https://www.automationml.org/o.red.c/home.html

232 A. Strahilov and H. Himmerle

o bt e i b L S T———
EPRX TH wene 1] e (e m = * HTE OEE@X @ 4 s ruim s Drngnoas o8
Qxm wae Fim Mo Eeosn Slms 40 = i | =i
N e Bm Rk CIERE] W mm e B o q [E' a
-
B PCL_STRTY AN O (P90 it 135 TN | 2ot
o i3 | S inantad
ko - B e i e | el
i iy T OWC B85 & et
LA R ALY [t B aITn P
wan
sy
f-=i
P
seetain
s
1
sty
o
o
senin
Ees
oan
ey
fesy
o
sy
fi
i
sy
B
ot
s
o
o
wania
fe=
o
sesinis
sy
J) e s e .]
*
e

Fig. 9.19 Virtual Commissioning (VC) via RF::SGView and RF::RobSim

As soon as all functionalities of PLC’s software are successfully tested, VC
is completed. The result of this phase is the validated and optimized real PLC’s
software that runs on the target hardware PLC. As following step, commissioning
of the real production systems can be initialized (Sect. 9.2) (Fig. 9.19).

9.4 Summary and Outlook

At the beginning of this chapter, production systems were not designated as CPPS.
This statement was justified on several reasons. One of those reasons is the missing
intelligence of components used today for production systems. Independently from
that, first studies to use already existing smart components are successfully being
performed, (VDE 2013). An engineering workflow of CPPS can be derived from
the engineering workflow of production system, which was presented in this chapter.
But, a detailed description of the engineering workflow without praxis experience
will not be useful.

Despite this, significant differences between the engineering workflow of CPPS
compared to the engineering workflow of current production systems are not
expected. Only differences on used tools and exchange data formats are conceivable.
Furthermore, additional or extended activities and tasks have to be integrated into
the engineering workflow of CPPS, e.g. integration of component’s and product’s
intelligence into PLC control programs.

Based on existing experience, the main difficulty into the engineering workflow
of productions systems are the specific data formats of the used tools. Even worse

9 Engineering Workflow and Software Tool Chains of Automated Production Systems 233

is the use of standard data formats which do not support the exchange of data
without losses, e.g. PDF. One exception is the use of the standard data format
AutomationML to exchange simulation models between simulation tools and virtual
commissioning tools (see Sect. 9.3.5). In this regards, a extend use of a standard data
format into the whole workflow is an important step which has to be done during
the design of the engineering workflow of CPPS.

From the point of view of the research question, the presented tool chains cover
a great amount of the engineering information. This information is added by a
user via several tools and it is stored in tool’s specific data formats. Consequently,
an integration of engineering information during the engineering workflow of a
production system is not possible without additional efforts (Chap. 1-RQI1). In case
of a data exchange, tool neutral data formats are used to ensure a data exchange
between different users during the engineering workflow in such a way that the
content of the data can be read by a human, e.g. PDF, DWX, etc. Thus, the quality
of exchanged data is assured but an automated reading of it via a computer is
made difficult (Sect. 1-RQ 12). Checking of the quality of exchanged data is also
performed during the virtual commissioning (Sect. 9.3.5).

Independently from all technical or managerial issues regarding to the engi-
neering workflow of production process or CPPS, plant owner, plant builder and
component manufacturer face their next challenge which could only be solved by
joint action. In these activities, tool providers have to be also involved to design or
adapt the used tools, e.g. new features, import/export functions, etc.

References

Damrath, F., Strahilov, A., Bér, T., Vielhaber, M..: Experimental validation of a physics-based
simulation approach for pneumatic components for production systems in the automotive
industry. In: 15th CIRP Conference on Modelling of Machining Operations. Elsevier (2015)

Dilts, D.M., Boyd, Whorms, H.H.: The evolution of control architectures for automated manufac-
turing systems. J. Manuf. Syst. 10(1), 79-93 (1991)

Drescher, B., Stich, P, Kiefer, J., Bir, T., Strahilov, A., Reinhart, G.: Physikbasierte Simulation
im Anlagenentstehungsprozess — Einsatzpotenziale bei der Entwicklung automatisierter Mon-
tageanlagen im Automobilbau. HNI-Verlagsschriftenreihe, Paderborn (2013)

Groover, P.: Automation, Production Systems, and Computer-Integrated Manufacturing. Prentice
Hall Press, Upper Saddle River, NJ (2007)

Hiammerle, H., Drath, R.: Erfahrungen bei der virtuellen Inbetriebnahme. In: Tagungsband zur
Automation (2014)

Koren, Y., Heisel, Y., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.:
Reconfigurable manufacturing systems. CIRP Ann. Manuf. Technol. 48(2), 527-540 (1999)

Li, J., Meerkov, M.: Production System Engineering. Springer, New York (2001)

Ovtcharova, J.: Virtual engineering: principles, methods and applications. In: International Design
Conference — Designe 2010, 2013

Strahilov, A., Mrkonji¢, M., Kiefer, J.: Development of 3D CAD simulation models for virtual
commissioning. In: Proceedings of TMCE, 2012

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1

234 A. Strahilov and H. Himmerle

Sii3, S., Strahilov, A., Diedrich, C.: Behaviour simulation for virtual commissioning using co-
simulation. In: 20th IEEE International Conference on Emerging Technologies and Factory
Automation (2015). doi:10.1109/ETFA.2015.7301427

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Cyber-Physical Systems: Chancen
und Nutzen aus Sicht der Automation Thesen und Handlungsfelde. Report of VDE. https://
www.vdi.de/uploads/media/Stellungnahme_Cyber-Physical_Systems.pdf (2013). Accessed 03
Nov 2016

http://dx.doi.org/10.1109/ETFA.2015.7301427
https://www.vdi.de/uploads/media/Stellungnahme_Cyber-Physical_Systems.pdf

Chapter 10
Standardized Information Exchange Within
Production System Engineering

Arndt Liider, Nicole Schmidt, and Rainer Drath

Abstract Information exchange is one of the critical issues within the multi-
disciplinary engineering chain of production system engineering. In the subsequent
chapter the problem of identifying and standardizing an appropriate data exchange
format for this field of application will be considered. It will be argued, why
AutomationML can be an appropriate choice to fulfil current requirements.

Keywords Production system engineering chain ¢ Data exchange ¢ Standardized
data exchange format ¢ AutomationML

10.1 Introduction

The increasing global competition between companies from different global regions
with completely different economic conditions forces European companies on the
one hand to increase product variety, often until complete individualization to meet
customer needs. In parallel, on the other hand, these companies are encouraged to
increase production system flexibility regarding resource capabilities and quantities
as well as regarding used production system technologies. Finally, they shall reduce
the duration of both the product life cycle as well as the plant life cycle. But this
results in an increased production system complexity which has to be handled within
the entire production system life cycle adequately.

To tackle all these challenges different research and development programs are
under progress with the German based Industrie 4.0 and the US based Industrial
Internet Consortium as most prominent ones without neglecting the huge amount
of worldwide initiatives. They intend to combine recent developments within
information sciences like most advanced programming strategies with advances in

A. Liider (2<) ¢ N. Schmidt

Faculty Mechanical Engineering, Otto-von-Guericke University, Universitaetsplatz 2, 39106,
Magdeburg, Germany

e-mail: arndt.lueder @ovgu.de; nicole.schmidt@ovgu.de

R. Drath
ABB AG Forschungszentrum, Wallstadter Strae 59, 68526, Ladenburg, Germany
e-mail: rainer.drath@de.abb.com

© Springer International Publishing AG 2017 235
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_10

mailto:arndt.lueder@ovgu.de
mailto:nicole.schmidt@ovgu.de
mailto:rainer.drath@de.abb.com

236 A. Liider et al.

Order life cycle
—

(1) Products used in
(2) 1) Products
2NEE T (2) Use of manufacturing
> . technology applications
Product life cycle within production sys-
_— tems to create ordered
products
(2) (3) Use of products within
y manufactuing
technology applications
and production systems
(4) Use of manufacturing

Production
system life cycle

3
@) technology applications
) to set up new product
3) capabilities

Manufacturing
technology appli-
cation life cycle

(3)

Fig. 10.1 Life cycles in the area of production systems

information processing hardware and communication system technologies as well
as advanced system organization strategies (Kagermann et al. 2013; AGPI4.0 2015;
IIC 2016). The intention is to reach information driven production system following
the paradigm of Cyber Physical Production Systems (CPPS) including information
driven production system development/engineering.

But an essential problem within such information driven systems is their inherent
system complexity. To visualize the complexity here only two aspects will be
reviewed.

The first aspect reflects the various life cycles ranging around production systems
(Liider et al. 2011; VDI 2014) (see Fig. 10.1). At first there is the production
system life cycle covering engineering, commissioning, test, usage, maintenance,
and disposal of a production system. It requires for the appropriate engineering
the definition of the products to be produced as well as the definition of the
manufacturing technologies to be applied for within production processes.

Thus, there is on the one hand a life cycle of application of manufacturing
technologies covering design, engineering, commissioning, test, usage, support, and
disposal of application systems of manufacturing technologies. On the other hand
there is a product life cycle including design, engineering, manufacturing, sales, use,
support, and disposal/recycling of products.

Beyond engineering the production system also depends on an order life cycle
impacting the production system usage (as well as the manufacturing activity within
the product life cycle). This order life cycle covers order creation, manufacturing,
delivery, and post processing.

10 Standardized Information Exchange Within Production System Engineering 237

Cell
simulation

Layout Robot pro-
planning gramming

Virtual com-

/ missioning
7

Mechanical
engineering

Process
planning

PLC pro-
gramming

Electrical
engineering

Fig. 10.2 Simplified engineering chain of production systems

Finally, the product life cycle is impacted by the manufacturing technology life
cycle as it may enable new product features relevant in the design and engineering.

All these dependencies are depicted in Fig. 10.1. More details on the dependen-
cies between product life cycle, production system life cycle, and order life cycle
including their data dependencies can be found in Chap. 4.

It is easily visible that the dependency between these life cycles shall result in
appropriate information exchanged between them.

The second aspect to be named is the complexity of engineering chains.
Figure 10.2 provides a view on a simplified version of an engineering chain of
a production system. It highlights that there are different engineering disciplines
involved in the engineering chain executing different engineering activities depend-
ing on each other within a strongly coupled network. Just to give a size the number
of different engineering activities only to within the process of engineering a body
work production system within automotive industry covers more than 30 different
engineering activities, the activities named in Fig. 10.2 among them. See also
Chap. 9 for a practical engineering chain.

For each of these engineering activities optimized engineering tools have been
developed enabling the executing engineers to concentrate on the relevant intellec-
tual work trying to prevent them from stupid “clicking jobs”. Hence, it is required to
ensure the information exchange between the different involved engineering tools
(Drath et al. 2011; Hundt and Liider 2012; Schmidt et al. 2014) as also identified
in research questions I1 and I2 in Chap. 1. This information exchange needs to
cover all information relevant within at least two engineering tools or engineering
activities.

Beyond the huge amount of information potentially to be exchanged within an
information driven production system also the problem of the difference between
data and information need to be reminded. Within engineering and use of produc-
tion systems different data are created which will represent information. Data is
usually seen as raw material in front of the information processing. They become
information by assigning them a meaning in a way answering on “who”, “what”,

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_1

238 A. Liider et al.

“where” and “when” questions. If we apply information we can reach knowledge
by answering “how” questions.

Summing this up, in information driven production systems it is required to
define appropriate structuring (syntax) and meaning (semantics) of data to enable
the appropriate information exchange among life cycles, engineering disciplines,
and engineering activities as partially addressed by research question M2 in Chap. 1.
This chapter will consider this problem and highlight possible stating points and
approaches for its solution.

As the consideration of the complete field of production system goes far
beyond this chapter, initially some relevant use cases of information exchange
and application will be highlighted going beyond the current state of the art.
They are succeeded by the consideration of information exchange technologies
applicable in general and within these use cases especially mainly focusing on
AutomationML as one example technology. Finally, the process of setting up a
standardized information exchange structure is discussed.

10.2 Use Cases for Information Exchange

Within the Industrie 4.0 and Industrial Internet Consortium usually the horizontal
and vertical integration of the different information processing units of production
systems are addressed. Among the use cases relevant within the horizontal and
vertical integration are

* the definition of appropriate production system hierarchies within the complete
engineering chain,

* the integration of pre-developed production system units within larger production
systems within engineering and commissioning,

* the exchange of control system engineering information,

* the consistent and up-to-date documentation of the production system as is, and

* the provision of engineering information at production system runtime and its
combination with control information.

These use cases cover a representative set of requirements to data exchange in
the field of production system engineering.

10.2.1 Use Case 1: Production System Hierarchies

As indicated in Fig. 10.2 and detailed in Chap. 9 of this book within the engineering
of production systems different engineering activities/steps are executed. Let’s just
review the mechanical and electrical engineering steps.

Within the mechanical engineering the mechanical construction of the production
system is defined covering the bottom up combination of materials to small

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_9

10 Standardized Information Exchange Within Production System Engineering 239

components, small components to larger components, and finally to large system
parts, all of them fulfilling a certain functionality within the production system.
Some of the components are provided by suppliers and thereby not considered with
internal details within the engineering, some other components are developed during
the engineering based on purchasable materials like metal sheets, screws, beams,
springs, pipes, etc. integration purchased sensors like proximity switches and actors
like drives and valves. Usually within mechanical engineering the used engineering
tools (CAD tools) enable the combination of elements to components in mostly user
dependent and function and production process oriented hierarchy.

In contrast the electrical engineering will not care about a function or process
oriented component hierarchy. It just will consider the sensors, actors, and control
devices (including communication devices) involved within the production system
and its relation to each other based on proper wiring. Thereby, the established hier-
archy follows the structure of the electric circuits and the necessary communication
signal exchange.

As easily visible both hierarchies will usually be different. In case of the a
proper information exchange between mechanical and electrical engineering tools
(and vice versa) it is required that imported information shall be mapped to the
right hierarchy layer. Thus a definition of hierarchy layers as well as possible layer
crossing groupings of elements as depicted in Fig. 10.3 need to be standardized and
applied within the data exchange format (Grimm 2016).

Fig. 10.3 Examples of Hierarchy layers Groups
standardized hierarchy layers
following ISA 95 _{ Enterprise]
E— |
Site
@ N
R — Subsite
s Y,
—{ Area }
- N
e ——
Safety area
Production Line & J
@ N
- .
Station
—{ Work cell] ~ 4
—
[Device }

240 A. Liider et al.

10.2.2 Use Case 2: Integration of Pre-developed Production
System Units

The engineering especially of complex production systems is usually not done by
a single person. It is also not always done again from scratch. On the contrary, it is
good engineering practice to reuse pre-developed building blocks. These building
blocks can be of different size and complexity ranging from standardized metal
parts (plates, screws, etc.) up to complete technical systems like welding shops and
combustion engines. This includes the integration of purchased components like
drives, drive chains, or complete packing cells.

Theoretically each involved engineering discipline and each applied engineering
tool can apply its own set of pre-developed components. But it is of much more
value, if all engineering disciplines can apply a common library of pre-developed
components (Wagner et al. 2010; Liider et al. 2010).

The design of such a common pre-developed library requires two preconditions.
The first is a common, all engineering disciplines spanning, system architecture
(VDI 2009). This architecture shall comply with the different concepts applied
within the production system engineering in the different engineering disciplines
and harmonize them, i.e., a device shall be the same concept in each discipline. In
addition a common conceptualization of the different system component properties
and its consistent management is required. An example can be the component of a
dive chain in a packing machine. It usually contains drive chain related attributes like
the angular speed of a driven roll, the diameter of the roll, and the current and voltage
assigned to the drive in a certain situation. All these attributes are functionally
interrelated. These interrelations need to be representable in a component.

10.2.3 Use Case 3: Exchange of Control System Engineering
Information

As visible in Fig. 10.2 an essential part of the engineering of a production
system is the engineering and validation of control applications. Within these
activities six of the engineering activities named in Fig. 10.2 are involved. Process
planning, Mechanical engineering, and Electrical engineering define necessary
control devices and their connections, PLC and Robot programming exploit them
for control application design, and Virtual commissioning validate the control
applications based on the defined device set.

To integrate the named engineering activities within an engineering chain it
is required to have an appropriate representation of the common concepts of
them. These common concepts at least contain the conceptualization of the control
devices, their internal structure, and their physical and logical relations.

10 Standardized Information Exchange Within Production System Engineering 241
10.2.4 Use Case 4: Consistent and Up-To-Date Documentation

As named by Tauchnitz in (Tauchnitz 2016) in relation to the engineering of process
control systems, during the life cycle of production systems different sources
provide information about the structure of a control system. There are on the
one hand the CA* tools for mechanical and electrical engineering providing first
versions of the set of applied control devices and its interconnections. Currently
they export created device lists (currently still often given as *.csv files) which
subsequently are applied in PLC and Robot programming.

This methodology is applicable in case of an engineering process but it fails in
case of production system runtime changes. If a device is changed or replaced during
production system ramp-up of maintenance the application of device lists and the
required search for the changed device within this list requires too much time to be
meaningful.

The open question is the optimal way to ensure a proper way of change tracing at
production system runtime. Here a detailed data exchange technology with a proper
syntax and semantics related to control engineering is required.

10.2.5 Use Case 5: Combination of Engineering and Runtime
Information

There is also another use case requiring the integration of engineering and runtime
information of a production system. This use case emerges from the intention to use
advanced production system maintenance strategies like condition monitoring.

The diagnosis and maintenance at production system runtime requires a detailed
knowledge about the structure and behavior of the production system components
including knowledge about the capabilities to identify component fault charac-
teristics. Such knowledge can be extracted from the combination of production
system engineering information, component documentations, and component state
measurements. To enable this combination the named information need to be
accessible at production system runtime.

To reach this accessibility it is necessary to store the engineering information
as well as the component documentation (including documents like mounting
guidelines and handbooks) in an accessible way and to integrate this information
with access paths information usable to access control signals related to sensors,
actuators, and component KPIs.

This storing and integration requires two essential prerequisites. At first there is a
data exchange format required which can be integrated in a runtime system storage
and accessed via clear access paths following syntax and semantics of the stored
information. At second the same technology shall be applicable for the access to
runtime control information enabling the definition of relations between runtime
and engineering information.

242 A. Liider et al.
10.2.6 Current Activities Related to Solution of the Use Cases

There are different developments on the way trying to provide solutions for the
named use cases. The most appropriate are

* the development of modular and hierarchical production system architectures,

* the standardization of data exchange formats applicable during the complete life
cycle of production systems, and

* the integration of engineering data representation and runtime communication
system.

These activities will be considered in more detail.

10.2.6.1 Development of Modular and Hierarchical Production System
Architectures

The most prominent development in the direction of a standardized architecture
for the control of production systems is under development of the VDI/VDE-GMA
working group “Industrie 4.0”. It develops with the RAMI (VDI 2015) and the
Industrie 4.0 component a reference structure to be applied in all Industrie 4.0
systems.

Less known are the work of the NAMUR working group “Automatisierung
modularer Anlagen”, the work of the AutomationML association, and the work
of the VDA. The NAMUR made the decision to take up the results of the
successful DIMA project (Obst et al. 2016) to develop a modular process industry
system exploiting so called Module Type Packages. The AutomationML association
currently develops a modelling strategy for production system components inspired
from research and development activities within projects like SkillPro (Pfrommer
et al. 2014), Avanti (Siif et al. 2015), and Conexing (Bartel et al. 2014). Finally, the
VDA is developing a recommendation for the unique representation of production
system hierarchies.

10.2.6.2 Standardization of Data Exchange Formats

With the aim to enable the implementation of standardized engineering tool inter-
faces currently different organizations develop data exchange formats. Following
(Tauchnitz 2016) the most relevant criteria for the development of these data formats
are the sequential standardization of data exchange structures for essential but
manageable parts of the relevant information, the standardization of usually required
information sets to stay with frequently used and lightweight formats, the enabling
of user dependent extensions of the standardized data format, the compatibility with
further developments on the same data format (even for further application cases),
the application of existing standards, and the cooperative development integrating
all relevant stakeholders from users to tool vendors.

10 Standardized Information Exchange Within Production System Engineering 243

Among others in this field the VDMA working group “Engineering”, the
NAMUR working group “PLS-Engineering”, the VDA working groups “Logistics”
and “Virtual commissioning”, the GMA working group 6.16 “Integriertes Engineer-
ing in der Prozessleittechnik”, the AutomationML association and the ProSTEP
association are active.

10.2.6.3 Integration of Engineering Data Representations and Runtime
Communication Systems

The accessibility of control information is considered by several organizations. A
leading role are taking the communication system developing vendor organizations
like ODVA, PNO, ETC, or Sercos International to name only a small subset.
All of these organizations are developing communication systems defining among
others profiles standardizing access paths to information within production system
components (ReiBenweber 2009). The main drawback of this approach is its
dependency to special communication protocols.

A communication protocol independent access to control information is for
example intended by the OPC Foundation with the development of the OPC UA
technology family. For this technology family various other user organizations are
trying to develop special profiles enabling the structured access to domain specific
information.

Among these user organizations the AutomationML association has developed
a methodology to represent engineering information by means of OPC UA. The
resulting OPC UA profile is standardized within DIN SPEC 16592.

An overview of further research activities in the field of production system
engineering is collected within (Ferscha 2016).

10.3 Information Exchange Technologies

Beyond the capability to cover the relevant information to enable the handling of
the named use cases in (Liider et al. 2014) a set of requirements to a data exchange
format are concluded from a survey. These requirements are the following.

(A1) Information related to common concepts of all involved disciplines over the
engineering process phases has to be exchanged in the same syntactically and
semantically unique way.

(A2) Information about dependencies between different concepts of involved
disciplines has to be exchanged.

(A3) Relevant dependencies between different concepts of involved disciplines
have to be able to be parameterized and traced.

244 A. Liider et al.

In addition the broad usability of exchange technologies requires a set of more
technical requirements. From the viewpoint of the authors, the most relevant among
them are the following.

(A4) The information exchange technology shall be XML based to enable a read-
ability of the stored information for example for purposes of proper interface
implementation. Using XML an implementer can validate the created files
also manually to be more familiar with the development results.

(A5) The information exchange technology shall be applicable for free based on
free available standards. Neither parts of the technology nor basic documen-
tation is accessible only based on unreasonable access fees going beyond the
membership fees of user organizations or the usual price of printed documents
of publishers. If possible fees shall be avoided at all.

(A6) The information technology shall be applicable on different platforms includ-
ing engineering stations as well as limited and embedded devices.

(A7) The information exchange technology shall enable the separated standard-
ization of syntax and semantics of data objects. By this the extension of the
standardized representation range shall be extendable on demand.

(A8) Beyond the standardized representation range users shall be enabled to
integrate also not standardized information and represent it in a consistent
and integrated way by the information exchange technology.

There are various data formats applicable to model production systems or parts
of them. In the following a small set of such models is indicated and characterized
representing classes of formats. These set has been selected to provide typical
representatives of the data formats used in industrial practice. In some cases this
might look artificial, but it reflects for example the case, that office tools (especially
Excel) are the most frequent used tools in engineering.

The data exchange format STEP (STandard for the Exchange of Product
model data) has been developed to cover product related information enabling the
modelling of all information relevant within the product life cycle (PLM) (see
also Chap. 4). It covers for example product geometry information, characterizing
properties of products, and production process descriptions for the processes
required for product creation (Xu and Nee 2009). It is standardized within ISO
10303. This standard series contains different profiles which are intended to be
consistent among each other. Some of the defined profiles (especially the newer
ones) are available as XML dialect. Hence, within production system engineering
STEP is mostly applied for product and production process representation.

A possible substitute to STEP covering product information for PLM is PLM-
XML, an XML based product data format specified and maintained by Siemens.

As STEP the data format Jupiter Tessellation (JT) is standardized as ISO
standard within ISO 14306 (ISO 2012b). It has been developed to enable the
vendor neutral representation of geometry information coming from CAD tools.
It is intended to cover product models including the product structure, the geometry
of structure elements, and structure element properties as modelled in collaborative

http://dx.doi.org/10.1007/978-3-319-56345-9_4

10 Standardized Information Exchange Within Production System Engineering 245

product development processes as well as product lifecycle management processes
(see also Chap. 4).

Substitutes to JT as geometry data formats are COLLADA, IGES, VDA-FS and
DXF.

Within the office environment the data format Portable Document Format (PDF)
has reached a wide acceptance. It is used for implementation technology indepen-
dent text document content representation including the representation of graphical
information on a virtual piece of paper by modelling geometry elements like vector
graphics, text, etc. PDF is standardized in ISO 32000-1:2008. In production system
engineering it is usually applied for manuals, layout plans, etc.

A substitute to PDF can be Postscript.

As in office environment also in the engineering chain of production systems,
Microsoft Office tools are used to create various documents including documenta-
tions, descriptions, listings, etc. Widespread Microsoft Word and Microsoft Excel
are applied and the reached results are stored in DOC, DOCX, XLS, and XLSX
format. The applicability of these tools in the engineering chain of production
systems is not really limited as they are very generic and can cover data from any
engineering domain and phase.

Possible substitutes to office files are CSV files (for Excel) and data formats from
tools like Open Office.

With XML Process Definition Language (XPDL) an XML based dialect has
been standardized in Workflow Management Coalition (WfMC) (WfMC 2012) to
enable business process modelling in a vendor neutral way. It enables the exchange
of process definitions, following both graphics and semantics of business process
workflows. Thus, it has to be regarded as the XML representation of the Business
Process Modelling Notation (BPMN). In the engineering process of production
systems XPDL can be applied for production processes representation.

A possible substitute to XPDL is BEPL.

A further XML based dialect is XML Metadata Interchange (XMI). It has been
developed as meta format and is standardized by Object Management Group (OMG)
(OMG 2015). Based on XMI domain specific XML based dialects can be developed
like it is the case for the representation of UML project content.

In the engineering chain of production systems XMI is usually applied to
represent production process information and production system information.

The AutomationML data exchange format is under development by Automa-
tionML association (Drath 2010; Schmidt and Liider 2015). It is standardized
within IEC 62714 to provide a neutral, open, and XML based data exchange
format. The intention of AutomationML is to enable consistent and lossless
exchange of engineering information related to manufacturing system topology,
geometry, kinematics, and control behavior. Therefore, AutomationML follows a
modular structure integrating existing XML based data formats. Logically it is
divided into the parts plant topology modelling (following CAEX 62424), geometry
and kinematics modelling (following COLLADA), and control related logic data
modelling (following PLCopen XML) where COLLADA and PLCopen files are
referenced out of CAEX files.

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://en.wikipedia.org/wiki/Workflow_Management_Coalition
http://en.wikipedia.org/wiki/BPMN

246 A. Liider et al.

Table 10.1 Modelling range of data formats
AutomationML STEP JT PDF Office XPDL XMI

Production system + + + o o - +
topology/structure

information

Mechanical engineering + + + o [— —
information

Electric and fluidic + + o o o — o
engineering information

Function describing + + - o o + -
information

Control engineering + — - o0 o + o
information

Further/generic engineering [o o + + — [
information

Dependencies between + o o o o — -

different disciplines

+ is good applicable
o is fair applicable
— is not applicable

In the engineering chain of production systems AutomationML is usually applied
to represent production processes and production system information.

The different represented data formats have different modelling power related
to the coverage of all information relevant for production system engineering.
Table 10.1 subsumes the modelling range of the different selected data formats.

As the modelling range also the ability of the different data formats to fulfil the
different requirements named above is not equal. Table 10.2 gives a summary about
the capabilities of data formats to cope with requirements named above.

10.4 AutomationML

Within the above given tables it gets visible, that AutomationML is a proper
candidate to be used within the use cases named above. Therefore, AutomationML
will be described here in more detail and its main characteristics related to
standardization of data exchange structures are given.

The AutomationML data format has been developed by AutomationML e.V.
[see (AutomationML 2016)] as solution for the data exchange focusing on the
engineering of production systems. It is an open, vendor neutral, XML-based, and
free data exchange format which enables a domain and company spanning transfer
of engineering data of production systems in a heterogeneous engineering tool
landscape.

10 Standardized Information Exchange Within Production System Engineering 247

Table 10.2 Requirement fulfilment of data formats

AutomationML STEP JT PDF Office XPDL XMI
(A1) Common concepts + + o + + o +
(A2) Dependency types + + - o o - +
between concepts

(A3) Dependency
properties/traceability

(A4) XML based
(AS5) Free accessible
(A6) Platform independent

(A7) Separation of syntax
and semantics

)
+
|
|
|
+

+ 4+ +
© © ©
|
OO+
o O O ©
o+ + +
+ 4+ +

+
+
|
o

(A8) Integrate user dependent + — —
information

+ is good applicable
o is fair applicable
— is not applicable

AutomationML stores engineering information following the object oriented
paradigm and allows the modelling of physical and logical plant components as
data objects encapsulating different aspects. Objects may constitute a hierarchy,
i.e. an object may consist of sub-objects and may itself be a part of a larger
composition or aggregation. Additionally each object can contain information about
object describing properties covering geometry, kinematics, and logic (sequencing,
behavior, and control information) as well as further properties.

AutomationML follows a modular structure by integrating and enhanc-
ing/adapting different already existing XML-based data formats combined under
one roof the so called top level format (see Fig. 10.4).

These data formats are used on an “as-is” basis within their own specifications
and are not branched for AutomationML needs. Logically AutomationML is
partitioned in:

* Description of the component topology and networking information includ-
ing object properties expressed as a hierarchy of AutomationML objects and
described by means of CAEX following IEC 62424 (IEC 2008),

* Description of geometry and kinematics of the different AutomationML objects
represented by means of COLLADA 1.4.1 and 1.5.0 ISO/PAS 17506:2012) (ISO
2012a),

* Description of control related logic data of the different AutomationML objects
represented by means of PLCopen XML 2.0 and 2.0.1 (PLCopen 2012) and
(partially) by means of MathML integrated in PLCopen XML and

* Description of relations among AutomationML objects and references to infor-
mation that is stored in documents outside of the top level format using CAEX
means.

248

A. Liider et al.

- ™
AutomationML Geometry
IEC 62714 and
kinematics
Plant Functional Commis- COLLADA
planning engineering sioning = 4
4 N
/ Logic PLCopen XML
Top level format CAEX et = e)
following IEC 62424 - |9 _
- Plant topology _ o i =)
- Mechatronics < om p ~
- Networks s |9 Semantic -
- Devices e _ referencing ¥

S

Fig. 10.4 Structure of AutomationML projects

Attributes " = j %[Further formats]

AutomationML is currently standardized within the IEC standard series IEC
62714 (IEC 2014). For a more detailed description of AutomationML see (Drath
2010) and (Schmidt and Liider 2015).

The foundation of AutomationML is the application of CAEX as top level
format and the definition of an appropriate utilization fulfilling all relevant needs
of AutomationML to model engineering information of production systems, to
integrate the three named data formats CAEX, COLLADA, and PLCopen XML,
and to enable an extension if necessary in the future.

As mentioned above, CAEX enables an object oriented approach (see Fig. 10.5).
Thereby it enables the separation of syntax and semantics of the represented data
objects. It is based on four main building blocks: role classes (RC), interface classes
(IC), system unit classes (SUC), and internal elements (IE).

Role classes are intended to enable the definition of semantic of data objects in
a kind of late semantic freeze by describing an abstract functionality of an object
without defining the underlying technical implementation. Thus they serve for the
formalization of the main concepts required in an application domain. Role classes
can be for example the role classes motor and sensor indicating system structure
semantics or LogisticalDevice and PhysicalDevice representing communication
system semantics. Each role class is additionally equipped with attributes and
external interfaces (EI) describing the role class in more detail representing role
class properties and role class dependencies to other objects. For example the role
class sensor may have an attributes to indicate the sensor vendor and the power
consumption, an external interface (screwing) to indicate the mounting point of the
sensor, and an external interface (power_connection_socket) to model the power
supply of the sensor.

10 Standardized Information Exchange Within Production System Engineering 249

Instantiation of
reusable objects
ﬁswnce hierarchy | /
Description of project :?ata
- : Linking of
4% objects

Refere

extern

System unit class Iibmm
Definition of

]
]
]
i
0 reusable components
]
]
]
]
]
J;

like vendor catalogs

Use of roles for se-
mantic representation

S Use of interfaces for
relation modelling
-

Interface class library
Definition of interfaces
to represent relations
between concepts

Role class library
Definition of object semantic
based on domain
conceptualization

Fig. 10.5 AutomationML topology description architecture

Role classes are defined in role class libraries establishing a kind of tree structure
of more detailed roles. AutomationML defines a set of basic role classes. Within Part
1 of the AutomationML standard (IEC 2014) the AutomationMLBaseRoleClassLib
with fundamental role classes is defined. It contains with the AutomationMLBase-
Role arole class each other AutomationML related role class has to be derived from.
More detailed role classes are defined in the further parts of the AutomationML
standard. For example Part 2 defines general role classes required for production
system structuring and manufacturing process identification.

Interface serve as the model of the required relation between objects. They are
derived from interface class describing an abstract relation an element can have
to other elements or to information not covered within the CAEX based model
(for example to geometry and kinematics modelling and behavior modelling). Thus
they serve as formalization of relations between concepts. Examples of interface
classes can be power supply and mounting position or the relation to a manual and
a geometry description all relevant for a device.

Interface classes are defined in interface class libraries establishing a kind of tree
structure of more detailed interfaces. AutomationML defines a set of basic interface
classes. Within Part 1 of the AutomationML standard (IEC 2014) the Automation-
MLInterfaceClassLib with fundamental role classes is defined. It contains with the
AutomationMLBaselnterface an interface class each other AutomationML related
interface class has to be derived from. More detailed interface classes are defined in
the further parts of the AutomationML standard. For example Part 4 defines general
interface classes required for control system structuring. Each interface class may

250 A. Liider et al.

have describing attributes. These attributes shall be used and filled with values in
each occurrence of an instance of the interface class. For example a power supply
interface class may contain attributes representing the voltage and current.

System unit classes are considered as ascertained production system components
which are available within product catalogues of component vendors or component
catalogues of system designer intended to enable reuse of already engineered (and
successfully applied) system elements. Therefore they model more than just the
concept. Instead they give a detailed description of the internal structure of the
system component of interest. Therefore they contain a hierarchy of internal ele-
ments as structure representation and interfaces as possible relations representation.
In addition system units classes, their internal elements, and their interfaces may
contain attributes for property detailing. An example of a system unit class can be
a special inductive approximate switch of a special vendor. System unit classes are
defined and maintained within system unit class libraries.

Most important related to the content of this chapter is the property, that each
system unit class shall reference at least one (but possibly more than one) role
class it implements, i.e. which concepts are fulfilled by that system unit class. For
example the system unit class sensor (and all system unit classes derived from it
like inductive_sensor) fulfil the sensor role class. Thus it gets a semantics within
the domain of interest. In addition, each interface integrated in the system unit class
is derived (and by that assigned to) an interface class giving its semantics. Thus,
system unit classes get their semantics by referencing role classes and interface
classes.

The internal elements are the last important building block of CAEX. They
arranged in a hierarchy named instance hierarchy and represent the individual
engineering data to be exchanged. Each internal element represents a relevant data
object including further internal elements as substructures, interfaces representing
their relations to other internal elements, and attributes representing detailed
object properties. An example of an internal element related to production system
engineering can be the representation of a turntable with its internal sensors, actors,
interfaces, and so on.

Again, the most important related to the content of this chapter is the property,
that each internal element has to reference at least one (but possibly more than one)
role class it implements, i.e. which concepts are fulfilled by that internal element.
For example the internal element inductive_sensor_turntable fulfil the sensor role
class and a role class related to the description of an inductive proximity switch
within eCl@ss. Thus it gets a related semantics. Further, each interface integrated
in the internal element is derived (and by that assigned to) an interface class
giving its semantics. Thus, internal elements get their semantics by referencing role
classes and interface classes. Beyond, internal elements can reference a system unit
class acting as the template for the structure of the internal element providing an
additional way of representing the object semantics.

Within Fig. 10.6 some of the named examples are represented. For details on the
described structure and properties of CAEX and its use as roof format of Automa-
tionML the authors refer to the different AutomationML whitepapers available at

10 Standardized Information Exchange Within Production System Engineering 251

o i - v
~ EEAv LR ey BEERAYE

BEBE

BEBRBE |

iaaeeeeee =

Fig. 10.6 AutomationML topology example

(AutomationML 2016) and to the AutomationML in a nutshell representation in
(Schmidt and Liider 2015).

10.5 Challenges Within Standardization of Information
Exchange

As already previously mentioned above the setup of information driven production
systems requires the definition of appropriate structuring (syntax) and meaning
(semantics) of data to enable the appropriate information exchange among life
cycles, engineering disciplines, and engineering activities.

This standardization is often trapped in a kind of standardization deadlock (Drath
and Barth 2012). As the intention is to be applied in practical application cases
the standardization process requires the involvement of practitioners. In addition
the used information exchange technologies shall be most advanced and promising
also for the future. Thus also researchers shall be integrated in the standardization
process. Hence, a group of practitioners and researchers is formed developing the
standard of interest.

But usually the developed standard will not fulfil all requirements from practical
application cases as well as from the end users from the first beginning. By applying
the standard in practice for example in engineering tools the quality of the standard
is evaluated and new enhancement request will arise. These enhancement requests
will be handled by the standardization group leading to a more mature version of
the standard which can now be again applied and evaluated.

252 A. Liider et al.

This cyclic process of standard development and application is an essential
requirement to reach a high quality standard. But it can be broken by the need of
implementation of engineering tools (and other information processing elements)
applying this standard. Very often companies having an engineering tool (or another
information processing element) as one of its products being relevant for the
implementation of the standard clearly have limited interest in implementing an
uncompleted standard just for evaluation. They cannot be sure on the technical and
economic success of the standard. In addition, the sequential implementation of
different versions of the standard may lead to non-satisfaction of their customers.
Thus, these companies will refuse the implementation of intermediate versions of
the standard braking up the cycle of standard development and evaluation.

To handle this challenge the information exchange standard shall fulfil the
following properties:

(S1) The standardization shall follow a sequential process developing consistent
versions of the standard integrating more advanced features step by step.

(S82) The standard shall enable the combination of standardized parts and non-
standardized (proprietary) parts without loss of generality. If the proprietary
parts become proven it shall be possible to take them over in the standard.

(S83) The standard shall enable the development of domain specific profiles. These
profiles shall be designed in a way that they can be applied in combination and
are, therefore, compatible to each other.

(S4) There shall be an integrated mechanism ensuring, that standardized parts,
domain specific profiles, and proprietary parts will be compatible to each
other.

(S5) The standard shall enable the easy adaptation of implementations of the
standard within engineering tools and other information processing element
by simply changing the configuration of the implementation without necessary
changes within the implementation code.

In the following it will be discussed how the AutomationML technology and the
standardization process of AutomationML are fulfilling the named requirements.
But before this discussion will start, some essential properties of AutomationML
are reminded.

(P1) AutomationML separates the standardization of syntax and semantics. The
syntax is based on the applied XML format CAEX (and the other involved
formats COLLADA, PLCopen XML, and MathML). It defined generic
internal elements within an instance hierarchy being able to cover arbitrary
physical and non-physical production system elements. The semantics of the
data elements is defined by role classes and interface classes to be referenced
by and integrated in the internal elements.

(P2) Internal elements can reference one or more role classes giving those different
semantics in parallel. If the referenced role classes provide the internal element
with attributes having the same name, there are means for attribute mapping
enabling the clear distinction of role related attributes. In addition different

10 Standardized Information Exchange Within Production System Engineering 253

interfaces derived from different interface classes can be used in an internal
element.

(P3) Role classes are specified in role class libraries and interface classes in inter-
face class libraries which can be integrated in an AutomationML file following
the needs of the application case. They are on the one hand independent from
each other and on the other hand role classes are derived from each other
building up a role class derivation tree with AutomationMLBaseRole as tree
root and the takeover of all attributes and interfaces from the daughter role
class from the mother role class. (A similar tree exists for interface classes
with AutomationMLBaselnterface as tree root.)

The AutomationML standardization process is modular in three dimensions.

The first dimension is formed by the international standardization process. It
starts with the discussion of new application cases and, therefore, parts within the
AutomationML association. Based on this discussion working groups of the associa-
tion will develop a first version of the part of the standard document of interest. This
version is afterwards tested in test implementations by the AutomationML members.
Based on the test results the standard document is improved until it gets stable. If
the standard document is stable it is transferred to the German DKE (www.dke.de),
a German national standardization organization. Here, in cooperation with further
specialists the standard document is improved with respect to the requirements of an
international standard and prepared for international standardization. If the standard
document is prepared, it will be submitted to IEC for international standardization
within IEC 62714.

The second dimension is formed by the stability cycles of the standard within the
different involved organizations. Both, the AutomationML association as well as the
IEC are reviewing and improving the standard documents in temporal cyclic way
enabling the integration of intermediate improvement of the technologies applied as
well as the standard itself.

The third dimension is formed by the parts of the AutomationML standard.
Within the AutomationML association the AutomationML standard is codified by
whitepapers, best practice recommendations and application recommendations. The
whitepapers define the basements of AutomationML. For example Part 1 defines the
CAEX profile AutomationML is based on, Part 3 specifies the use of COLLADA to
represent geometry and kinematics, and Part 4 specifies the application of PLCopen
to represent behavior models. In contrast Part 2 is not defining the use of an XML
format but it defines basic, domain independent role class libraries. Application rec-
ommendations are defining domain specific profiles for the use of AutomationML.
There are for example application recommendations related to the exchange of
control system structures, transportation system models, and the use of OPC UA
to represent an AutomationML project. The best practice recommendations are
intended to reduce the interpretation range of the AutomationML standard and to
provide domain independent features of the data format. For example, there are best
practice recommendations related to the naming of AutomationML library versions,

http://www.dke.de

254 A. Liider et al.

the modelling of reference designations, the modelling of parameter lists, or the
structuring of AutomationML projects within an archive file.

Within the DKE and IEC set of documents is limited to parts. Up to now each IEC
part is equivalent to a whitepaper. But following the IEC standard maintenance cycle
the parts will combine whitepapers and best practice recommendations. Whether the
application recommendations will be used to form IEC parts or not is currently not
finally decided.

It is easily visible, that this standardization process fulfils the requirement (S1).

It is also easily visible that the different whitepapers and application recommen-
dations will form domain independent and domain dependent profiles. They define
the necessary semantics by giving appropriate role class libraries and interface class
libraries covering all necessary concepts and relations between concepts of interest.
As all these role class libraries and interface class libraries follow within its design
(P3) and are applied for semantic representation following (P2) they can be applied
independent and together depending on the application case, their application results
in a consistent structure, and they are compatible to each other. Thus, requirement
(S3) and (S4) are fulfilled.

The developed architecture of the AutomationML standard as well as the
properties of CAEX enable users to define its own role class libraries and interface
class libraries based on the predefined ones of AutomationML. They may extend
existing semantics or define completely new semantics within these libraries and
apply them within its own information exchange structures in extension to the
specified AutomationML concepts. The AutomationML association has developed
a procedure enabling users to disclose their internal structures to the members of
the AutomationML for discussion. Within this discussion process the proprietary
structures can be evaluated and finally be codified and standardized within an appli-
cation recommendation or a best practice recommendation. Thereby requirement
(S2) is fulfilled.

The capabilities of AutomationML to fulfil requirement (S5) is more hidden
within the data format and its application on an importer or exporter of an
engineering tool or another information processing element.

The implementation of exporters and importers requires a mapping of the
tool internal information model to the information model of the data exchange
format. This mapping needs to be defined and implemented depending on the used
semantics (Hundt and Liider 2012). As AutomationML defines the semantics by
defining appropriate role classes and interfaces classes these classes can be applied
to enable the configuration of the required mapping.

A possible solution can be the development of a mapping table between the
applied role and interface classes and internal data elements and the implementation
of a generic data access function reading an incoming or outgoing data element,
looking in the table to find the related mapping and creating its appropriate
representation. By this a general exporter and importer can be implemented tailored
to the standard improvement by simply updating the configuration files fulfilling
requirement (S5).

10 Standardized Information Exchange Within Production System Engineering 255
10.6 Summary

The intention of this chapter was to consider the problem of appropriate struc-
turing (syntax) and meaning (semantics) definition for a file based data exchange
technology applicable within information exchange among life cycles, engineering
disciplines, and engineering activities of information driven production systems.
Therefore, the chapter has discussed existing challenges and highlight possible
stating points and approaches for its solution.

Initially, five use cases of information exchange and application within infor-
mation driven production systems have been highlighted. They illustrate the strong
potentials information driven production systems contain but also the challenges
arise for its application. The use cases have been accompanied of current standard-
ization activities undertaken to make the use cases possible.

As next step information exchange technologies have been discussed. Starting
with requirements an information exchange technology has to fulfil in an infor-
mation driven production system different - information exchange technologies
have been reviewed and there modelling range and requirement fulfilment have
been identified. This evaluation has highlighted AutomationML as one essential
candidate to be used within the use cases of information driven production systems.

Following a deeper look in the structure and application of AutomationML and a
clear description how AutomationML deals with the standardization of syntax and
semantics five main challenges of the standardization of data exchange formats are
named. It has been discussed how AutomationML deals with these challenges.

In general this chapter provides information about the power of AutomationML
within the development of information driven production systems. It shall encourage
users and developers, practitioners and researchers, and experts and novices to
consider AutomationML, enhance its capabilities, and join the standardization
efforts finally enabling information driven production systems.

Acknowledgement The authors of this paper intend to thank Bjorn Grimm (Daimler AG) for his
valuable support and discussion of the content of this paper within the AutomationML association.

References

Arbeitsgruppen der Plattform Industrie 4.0: Umsetzungsstrategie Industrie 4.0 — Ergebnisbericht
der Plattform Industrie 4.0. https://www.bmwi.de/BMWi/Redaktion/PDF/I/industrie-40-verba
endeplattform-bericht,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf (2015). Last
Access 01 Feb 2016 (in German)

AutomationML e.V: AutomationML. www.automationml.org (2016). Last Access Sept 2016

Bartel, M., Schyja, A., Kuhlenkoétter, B.: More than a Mockup — smart components: reusable fully
functional virtual components from scratch. Prod. Eng. 8(6), 727-735 (2014-12)

Drath, R. (ed.): Datenaustausch in der Anlagenplanung mit AutomationML. Springer, Berlin
(2010)

https://www.bmwi.de/BMWi/Redaktion/PDF/I/industrie-40-verbaendeplattform-bericht,property=pdf,bereich=bmwi2012, sprache=de,rwb=true.pdf
https://www.bmwi.de/BMWi/Redaktion/PDF/I/industrie-40-verbaendeplattform-bericht,property=pdf,bereich=bmwi2012, sprache=de,rwb=true.pdf
http://www.automationml.org

256 A. Liider et al.

Drath, R., Barth, M.: Concept for managing multiple semantics with AutomationML — maturity
level concept of semantic standardization. In: 17th IEEE International Conference on Emerging
Technologies & Factory Automation (ETFA 2012), Krakow, Poland, Proceedings, September
2012

Drath, R., Fay, A., Barth, M.: Interoperabilitit von Engineering-Werkzeugen. Automatisierung-
stechnik. 59(7), 451-460 (2011)

Ferscha, A.: Whitebook JKU Production Research, Johannes Keppler University Linz.
http://www.pervasive.jku.at/download/JKU_PRODUCTION_WHITEBOOK.pdf (2016). Last
Access Dec 2016

Grimm, B.: AutomationML in den Engineeringprozess einfiihren, ATP edition. Band 58(Ausgabe
05), 42-51 (2016)

Hundt, L., Liider, A.: Development of a method for the implementation of interoperable tool
chains applying mechatronical thinking — Use case engineering of logic control, In: 17th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA 2012),
Krakow, Poland, Proceedings, September 2012

Industrial Internet Consortium (IIC): The industrial internet reference architecture technical paper.
http://www.iiconsortium.org/IIRA.htm (2016)

International Electrotechnical Commission: IEC 62424: Representation of process control engi-
neering — Requests in P&I diagrams and data exchange between P&ID tools and PCE-CAE
tools. www.iec.ch (2008)

International Electrotechnical Commission: IEC 62714: Engineering data exchange format for use
in industrial automation systems engineering — AutomationML. www.iec.ch (2014)

International Organization for Standardization: ISO/PAS 17506:2012 — Industrial automation
systems and integration - COLLADA digital asset schema specification for 3D visualization of
industrial data. www.iso.org (2012a)

International Organization for Standardization: ISO 14306:2012 — Industrial automation systems
and integration — JT file format specification for 3D visualization. ISO Publisher, Research
Triangle Park, NC (2012b)

Kagermann, H., Wahlster, W., Helbig, J. (eds.): Recommendations for implementing the strategic
initiative INDUSTRIE 4.0 — Securing the future of German manufacturing industry, Final
report of the Industrie 4.0 Working Group. http://www.acatech.de/fileadmin/user_upload/
Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final
_report__Industrie_4.0_accessible.pdf (2013) Last Access 01 Feb 2016

Lider, A., Foehr, M., Hundt, L., Hoffmann, M., Langer, Y., Frank, St.: Aggregation of engineering
processes regarding the mechatronic approach. In: 16th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2011), Toulouse, France, Proceedings-
CD, September 2011

Lider, A., Hundt, L., Foehr, M., Wagner, T., Zaddach, J.-J.: Manufacturing system engineering
with mechatronical units. In: 15th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2010), Bilbao, Spain, Proceedings-CD, September 2010

Liider, A., Schmidt, N., Rosendahl, R., John, M.: Integrating different information types within
AutomationML. In: 19th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Barcelona, Spain, Proceedings, September 2014

Object Management Group: XML Metadata Interchange (XMI) Version 2.5.1. www.omg.org/spec/
XMI/ (2015)

Obst, M., Holm, T., Urbas, L., Fay, A., Kreft, S., Hempen, U., Albers, T.: Beschreibung von
Prozessmodulen, ATP edition. Band 57(Ausgabe 01-02), 48-59 (2016)

Pfrommer, J., Stogl, D., Aleksandrov, K., Schubert, V., Hein, B.: Modelling and orchestration of
service-based production systems via skills. In: IEEE 19th Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2014), Barcelona, Spain, Proceedings, September 2014

PLCopen association: PLCopen XML. www.plcopen.org (2012)

Reiflenweber, B.: Feldbussysteme in der industriellen Praxis. Oldenbourg Industrieverlag,
Miinchen (2009)

http://www.pervasive.jku.at/download/JKU_PRODUCTION_WHITEBOOK.pdf
http://www.iiconsortium.org/IIRA.htm
http://www.iec.ch
http://www.iec.ch
http://www.iso.org
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.omg.org/spec/XMI/
http://www.plcopen.org

10 Standardized Information Exchange Within Production System Engineering 257

Schmidt, N., Liider, A.. AutomationML in a nutshell, AutomationML consortium.
www.automationml.org (2015)

Schmidt, N., Liider, A., Steininger, H., Biffl, S.: Analyzing requirements on software tools
according to the functional engineering phase in the technical systems engineering process.
In: 19th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Barcelona, Spain, Proceedings, September 2014

Sii3, S., Strahilov, A., Diedrich, C.: Behaviour simulation for virtual commissioning using co-
simulation. In: 20th IEEE Conference on Emerging Technologies & Factory Automation
(ETFA), Luxembourg, Proceedings, 2015

Tauchnitz, T.: Engineering, Prozessdaten, Anlagendaten, Industrie 4.0 — alles wichst zusammen.
Automation Kongress 2016, Baden Baden, Germany, Proceedings, June 2016

VDI/VDE: Industrie 4.0 — Wertschopfungsketten, VDI/VDE Gesellschaft Mess- und Automa-
tisierungstechnik. Status report (2014)

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik — Fachausschuss 7.21 Industrie 4.0:
Status Report: Reference Architecture Model Industrie 4.0 (RAMI4.0). http://www.zvei.org/
Publikationen/GMA-Status-Report-RAMI-40-July-2015.pdf (2015)

Verein Deutscher Ingenieure: VDI Guideline 3695 — Engineering von Anlagen — Evaluieren und
optimieren des Engineerings. VDI Verlag, Diisseldorf (2009)

Wagner, T., Haufiner, C., Elger, J., Lowen, U., Liider, A.: Engineering processes for decen-
tralized factory automation systems. In: Silvestre-Blanes, J. (ed.) Factory Automation, vol.
22. In-Tech, Austria. ISBN:978-953-7619-42-8. http://www.intechopen.com/articles/show/
title/engineering-processes-for-decentralized-factory-automation-systems (2010)

Workflow Management Coalition: XML Process Definition Language (XPDL). www.xpdl.org
(2012)

Xu, X., Nee, A.: Advanced Design and Manufacturing Based on STEP. Springer, New York (2009)

http://www.automationml.org/
http://www.zvei.org/Publikationen/GMA-Status-Report-RAMI-40-July-2015.pdf
http://www.intechopen.com/articles/show/title/engineering-processes-for-decentralized-factory-automation-systems
http://www.xpdl.org/

Part I11
Information Modeling and Integration

Chapter 11
Model-Driven Systems Engineering: Principles
and Application in the CPPS Domain

Luca Berardinelli, Alexandra Mazak, Oliver Alt, Manuel Wimmer,
and Gerti Kappel

Abstract To engineer large, complex, and interdisciplinary systems, modeling is
considered as the universal technique to understand and simplify reality through
abstraction, and thus, models are in the center as the most important artifacts
throughout interdisciplinary activities within model-driven engineering processes.
Model-Driven Systems Engineering (MDSE) is a systems engineering paradigm that
promotes the systematic adoption of models throughout the engineering process
by identifying and integrating appropriate concepts, languages, techniques, and
tools. This chapter discusses current advances as well as challenges towards the
adoption of model-driven approaches in cyber-physical production systems (CPPS)
engineering. In particular, we discuss how modeling standards, modeling languages,
and model transformations are employed to support current systems engineering
processes in the CPPS domain, and we show their integration and application based
on a case study concerning a lab-sized production system. The major outcome of
this case study is the realization of an automated engineering tool chain, including
the languages SysML, AML, and PMIF, to perform early design and validation.

Keywords CPPS case study ¢ Cyber-physical production systems * Model-driven
systems engineering * Modeling standards ¢ V-Model

11.1 Introduction

The increasing complexity of networked systems in the field of Cyber-Physical Pro-
duction Systems (CPPS) (e.g., consider real-time control of wirelessly networked
controller, sensors, and actuators from different vendors) demands a more compre-

L. Berardinelli (b<) » A. Mazak « M. Wimmer * G. Kappel

Business Informatics Group, Technische Universitidt Wien, Wien, Austria

e-mail: luca.berardinelli @tuwien.ac.at; mazak @big.tuwien.ac.at; wimmer@big.tuwien.ac.at;
gerti @big.tuwien.ac.at

0. Alt
LieberLieber GmbH, Vienna, Austria
e-mail: oliver.alt@lieberlieber.com

© Springer International Publishing AG 2017 261
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_11

mailto:luca.berardinelli@tuwien.ac.at
mailto:mazak@big.tuwien.ac.at
mailto:wimmer@big.tuwien.ac.at
mailto:gerti@big.tuwien.ac.at
mailto:oliver.alt@lieberlieber.com

262 L. Berardinelli et al.

hensive and systematized view of all aspects (e.g., physical, software, and network)
in an engineering process. CPPS are being developed as part of a globally networked
future world, in which Products, Processes, and Resources (PPR) interact with
embedded hardware and software beyond the scope of single applications (Broy and
Schmidt, 2014). CPPS engineering requires the integration of physical, software,
network, and control aspects which are highly interwoven (Vangheluwe et al.,
2016). Additionally, flexible control approaches are needed to adapt the systems’
behavior to ever-changing requirements and tasks, unexpected conditions, as well
as structural transformations (Lee, 2008).

The main requirements in the engineering of CPPS are (1) interoperability (i.e.,
the ability of CPPS and humans to connect and communicate), (2) virtualization
(e.g., a virtual copy of the factory with sensed data), (3) decentralization (i.e.,
the ability of CPPS to make decisions on their own), (4) real-time capability
(e.g., for supporting monitoring, analysis, planning, and execution (MAPE) cycles),
(5) modularity (i.e., the flexible adaption of smart factories to changing require-
ments), and (6) cross-disciplinary methods to handle cross-cutting automation
tasks (Kagermann et al., 2013). The realization of these aspects requires the
synergistic integration of mechanical, electrical, network and software engineering,
as well as the computer control of mechanical systems (Kyura and Oho, 1996).
This again requires the integration of heterogeneous artifacts (e.g., design artifacts
like piping and instrumentation diagrams, system control diagrams, etc.) together
with their supporting tools, which are still often not well-integrated and typically
not used in tandem during an engineering process (Jetley et al., 2013). However,
this would be highly needed as, at the time of writing, the different engineering
disciplines in isolation offer only partial solutions to meet the requirements of the
envisioned engineering of CPPS and their combination is challenging as there exists
a heterogeneous document/tool landscape in this domain (Vangheluwe et al., 2016).

It has to be also emphasized that appropriate methods of one engineering
discipline are not necessarily applicable for another. For example, methods which
enable software evolution like variability modeling or tracing are limited to the
software domain (mostly dealing with requirements, software models, and program
code). For the domain of mechanical engineering, e.g., in the field of automated
production systems where naturally requirements will change over the system
life-time (e.g., due to a changing product portfolio), methods of tracing need to
be adapted and linked to well-established domain-specific methods (e.g., design
structure matrix) (Vogel-Heuser et al., 2015). The need for explicit modelling is then
rapidly arising (cf. Research Questions (RQs) of Chap. 1) requiring an appropriate
set of tools and methodologies that meet various needs in the industrial automation
domain (Jetley et al., 2013) throughout a multidisciplinary information flow.

Therefore, it is necessary to identify and implement a suitable subset of
appropriate models and standards for guaranteeing the engineering quality in the
field of CPPS (Broy and Schmidt, 2014). Models represent a system at different
abstraction layers (e.g., requirements elicitation, analysis, design, implementation,
validation, and verification), of different disciplines (e.g., process engineering,
electrical engineering, mechanical engineering, software engineering), considering

11 MDSE: Principles and Application in the CPPS Domain 263

different aspects (security, performance, safety) and tasks (e.g., validation, verifica-
tion, testing, optimization, design-space exploration) (Kagermann et al., 2013) (cf.
Chap. 1, RQ M1).

Moreover, models can be used throughout the entire value chain, e.g., from
product development through manufacturing engineering to production. Especially
the production of the future requires models, e.g., for the virtual design, virtual
planning, conceptualization, and simulation (Kagermann et al., 2013). The complex
software required in CPPS is typically developed and refined iteratively in a model-
driven way (Vogel-Heuser and Biffl, 2016). Model-Driven engineering (MDE)
follows the principle that “everything is a model”, which is also reflected in the
systems engineering domain. However, MDE promotes the models to actually
“drive” the engineering process by using generative and analytical techniques to
automate the different tasks instead of using models solely as documentation or
early sketches of the system (cf. Chap. 1, RQ I1).

Additionally to the general usage of “models”, a set of appropriate standards
(e.g., SysML (Friedenthal et al., 2014), MARTE (Object Management Group
(OMG), 2016¢), AML (IEC, 2014), etc.) is needed for integrating various engineer-
ing aspects, different stakeholder perspectives, tool-independent interoperability, as
well as information that is needed to be exchanged at a specific engineering step.
Moreover, appropriate modeling languages (providing a clear syntax as well as
semantics) are essential in planning, designing, and realizing CPPS engineering.
Currently, the interest in adopting system modeling languages is increasing in
the industrial automation domain (Berardinelli et al., 2016). In this context,
the main challenges (among others) are the technical, syntactic, and semantic
heterogeneity as well as the vertical integration (i.e., among models required by
domain/stakeholder-specific activities) and the horizontal integration (i.e., among
models used in the same activity but performed by different stakeholders with
their own, mainstream modeling languages/notations) (Mazak et al., 2016). One
of the obstacles is a systematic adaption of models throughout the engineering
process by identifying proper concepts, notations, techniques, tools, as well as their
integration. Equally important are software tools to manage the complexity resulting
from increasing functionality, customization, dynamics, and cooperation between
different disciplines.

In this chapter, we present a set of appropriate MDSE standards, as
used by authors in their research activities, for enabling the adaption of
MDE principles in the CPPS domain. In particular, we focus on the role
played by (1) the System Modeling Language (SysML) (Object Management
Group (OMG), 2016b) as design notation for CPPS structural and behavioral
modeling, (2) AutomationML (AML) as exchange standard for production system
engineering tools, (3) Performance Model Interchange Format (PMIF) for
performance modeling and analysis (e.g., via queuing networks to calculate
performance indices like resource utilisation) (Cortellessa et al., 2011), and
(4) model transformations as a strategic mechanism to integrate heterogeneous
artifacts throughout the engineering of CPPS to deal with heterogeneities
and to realize horizontal and vertical integration to ensure a holistic view on

264 L. Berardinelli et al.

Model Engineer
) =
- = ~
(inner wing) Production System
F horizontal integratioﬁ ; o
o i1 o)
]

system level e
%nt O o 3§ S
ol
O\ =W E
T

subsystem level m
2 £
O °

component level O

vertical integration

) ~

* = tool v mechanics
= documents (models) Z electronics
software

Fig. 11.1 A V-Model variant for CPPS engineering

the resulting technical system and to assemble different views' (cf. Chap.1,
RQ C2).

On top of these modeling and data exchange standards, model-based design
and analysis methodologies can be devised in order to demonstrate the value
of MDSE both in design and validation phases. For this purpose we use the
V-Model,? presented in Fig. 11.1 as methodological foundation in order to express
our framework in a technology neutral way.

Generally, the V-Model is a graphical representation of a system’s development
life-cycle specifying the sequence of steps during a generic engineering process.
These steps include system design, domain specific engineering, system integration,
as well as the verification and validation of system properties (Verein Deutscher
Ingenieure (VDI), 2004). The V-Model has proven as structural approach for the
development of interdisciplinary technical systems like CPPS (cf. Chap. 2 for more
details). In particular, we propose in this book chapter an example of a model-based
Systems Engineering Technical Process. We relate the MDSE standards to the inner
wings of the V-Model to cover that phases of the V-Model needed to realize and
analyze the engineering of CPPS and to support cross-disciplinary modeling built
on MDE techniques. We utilize the synergies between MDSE and the V-Model to
guide stakeholders to select and combine appropriate standards, languages, profiles,
and formats to build their own MDE methodology (e.g., performance analysis

!Chapter 2 also discusses vertical and horizontal integration terms in the context of model-based
engineering.
2See Chap. 2 for an introduction and comparison among engineering process models.

11 MDSE: Principles and Application in the CPPS Domain 265

methodology) as needed for CPPS engineering on top of these standards (e.g., AML
and PMIF).

The intention of this chapter is to provide an overview on how different
standards for MDSE may be combined on the macro-perspective to cover different
engineering phases and not to provide a complete treatment of each engineering
phase in detail. For the latter, we provide pointers to existing literature.

The rest of this chapter is organized as follows. Section 11.2 provides a general
introduction into model-driven engineering (MDE) and presents two major tech-
niques of it: metamodeling and model transformations. Based on this foundation,
we elaborate in Sect. 11.3 on a set of appropriate industry standards to apply MDSE
techniques for CPPS engineering. In Sect. 11.4, we present examples based on a
reference case study to show how the standards and techniques presented in the
Sect. 11.3 are applied to realize CPPS and provide a critical discussion of the results.
Finally, Sect. 11.5 concludes the chapter and outlines future challenges in MDSE.

11.2 Model-Driven Engineering in a Nutshell

Before we discuss in more detail how MDSE can be actually realized in the CPPS
domain, we provide a general introduction into model-driven engineering (MDE).
MDSE may be seen as a special interpretation and application of the general
paradigm of MDE within the systems engineering domain.

In MDE, the abstraction power of models is applied to tackle the complexity
of systems (Brambilla et al., 2012; Schmidt, 2006). MDE follows the principle
“everything is a model” for driving the adoption and ensuring the coherence of
model-driven techniques, in the same way as the principle “everything is an object”
was helpful in driving the object-oriented techniques in the direction of simplicity,
generality, and integration (Bezivin, 2005). Historically, MDE has been mainly
applied in software engineering (Brambilla et al., 2012; Bezivin, 2005; Schmidt,
20006), but in recent years, the application of MDE has been increasing in the CPPS
domain as well (Vyatkin, 2013; Hegny et al., 2010; Schiitz et al., 2014).

A key principle of MDE is to address engineering with formal models, i.e.,
machine-readable and processable representations. Based on this foundation, mod-
eling provides a set of advantages for driving the engineering process. The
application of model validation, testing, verification, simulation, transformation,
and execution enables the automation of engineering process steps and support the
traceability of engineering artifacts to improve quality management to mention just
a few benefits (Brambilla et al., 2012).

Furthermore, in MDE, models are considered to be connected (i.e., model
elements may be linked beyond the boundary of one model) and dynamic (i.e.,
models may be analyzed and executed in some form) (Brambilla et al., 2012;
Bezivin, 2005). Models can be (1) compared to reason about differences between
model versions, (2) merged to unify different versions of a model, (3) aligned to
create a global and integrated representation of the system from different viewpoints

266 L. Berardinelli et al.

to reason about consistency, (4) optimized to improve their internal structure without
changing their observable behavior, (5) refined to produce platform-specific models
from platform-independent models, and (6) translated to other formalisms for code
generation, verification, and simulation. Dedicated tool support for these tasks is
available out-of-the-box in modeling environments, which can be customized for
the modeling languages in use.

The two major MDE techniques are: (1) metamodeling for specifying modeling
languages, i.e., the structure and content of valid models, and (2) model transforma-
tions to systematically manipulate models. In the following, we discuss these two
techniques to provide the basis for subsequently showing how these techniques are
used in MDSE.

11.2.1 Metamodeling

Metamodels play an important role in MDE (Kiihne, 2006). They specify the
abstract syntax of modeling languages (i.e., the language concepts and their
relationships) that is the center of the modeling language definition and all other
concerns such as concrete syntax (i.e., model notation) and semantics are defined
based on these metamodels (Brambilla et al., 2012). MDE provides standardized
metamodeling languages (also referred to as meta-metamodels) used for producing
modeling environments such as the Meta Object Facility (MOF) (Object Man-
agement Group (OMG), 2003) for defining modeling languages that may be seen
as pendant to Extended Backus-Naur Form (EBNF) (Wirth, 1977), which is the
foundation for specifying textual languages.

MOF is based on a core subset of UML class diagrams, i.e., classes, attributes,
and references. A metamodel gives the intentional description of all possible models
within a given language. Practically, metamodels are instantiated to produce models
which are in essence object graphs, i.e., they consist of objects (instances of classes)
representing the modeling elements, object slots for storing values (instances of
attributes), and links between the objects (instances of references), which have to
conform to the UML class diagram describing the metamodel. Therefore, models
are often represented in terms of UML object diagrams if their concrete syntax is
neglected. This is especially true when models are automatically processed by the
computer.

A model has to conform to its metamodel which is often indicated by the
conformsTo relationship (cf. Fig. 11.2). In addition to the constraints defined by the
metamodel, additional constraints may be defined based on the metamodel elements
using a constraint language. The Object Constraint Language (OCL) (Object
Management Group (OMG), 2010) is a standardized and formal language to
describe expressions, constraints, and queries on models. As such, OCL is the
language of choice for defining constraints going beyond simple multiplicity and
type constraints defined by UML class diagrams and metamodels.

11 MDSE: Principles and Application in the CPPS Domain 267

Fig. 11.2 Metamodeling
pattern based on Kiihne
(2006) Meta-Metamodel

«Meta-language»

1 «conformsTo
1

<

«Language»
Metamodel

I «conformsTo
1

x

«Sentence»

Model

«represents»

!
I
\'4

System

Based on this meta-layer architecture, metamodeling environments allow gen-
erating modeling environments and providing generic tool support, which can be
employed for all the modeling languages defined within a metamodeling environ-
ment. Thus, metamodeling environments empower the knowledgeable tool users
to become tool developers, e.g., modeling languages may be easily extended with
new modeling concepts or completely new languages may be developed without
programming efforts.

11.2.2 Model Transformations

In a general sense, a model transformation is a program executed by a transfor-
mation engine which takes one or more models as input to produce one or more
models as output as is illustrated by the model transformation pattern® (Czarnecki
and Helsen, 2006) in Fig. 11.3. In MDE, model transformations are used to solve
different tasks (Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Lucio et al.,
2016) such as code generation, model refactoring, reverse engineering to name just
a few. One important aspect is that model transformations are developed on the
metamodel level, and thus, are reusable for all valid model instances.

In the MDE field, various model transformation kinds emerged in the last
decade (Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Lucio et al., 2016)
whereas two important kinds are differentiated in the following. A model transfor-
mation can be categorized as out-place if it creates new models from scratch, e.g.,

3Please note that the terms source/target models and input/output models are used synonymously.

268 L. Berardinelli et al.

«metamodel»
Transformation
Language

N
1 «conformsTo»
1

«model»

«metamodel» «refersTo» Transformation “efe'ST"»} «metamodel»
Source Language I Target Language
Specification
1 1
! «conformsTo» Neexecutes» «conformsTo» |
M 1
«model» «reads» : «writes» «model»
s Model €77~~~ Transformation | |----"3 T t Model
r : r
ource viode! Englne arge oae
AN T N
1 1
1 \/ «writes» :
! «refersTo» «refersTo» |
] «model» |
Trace Model

Fig. 11.3 Model transformation pattern based on Czarnecki and Helsen (2006)

producing an analysis model from a design model, or as in-place if it rewrites the
input models until the output models are obtained, e.g., as it is the case in model
execution or model optimization.

Several transformation languages emerged in the last decade which provide
dedicated support for defining model transformations (Czarnecki and Helsen,
2006; Mens and Gorp, 2006). In this book chapter we are focussing on out-place
transformations as we are interested in automating the transition from the early
design steps to early validation steps as well as to the subsequent discipline-specific
engineering tasks. Thus, our goal is to apply out-place transformations to produce
from a design model other representations which can be used in discipline-specific
tools as well as analysis tools.

For defining out-place transformations in this book chapter, we make use
of the Query/View/Transformation (QVT) standard (Object Management Group
(OMG), 2016a) which provides several languages to implement model transfor-
mations (Kurtev, 2007). For instance, by using the declarative QVT Relations
language, transformation logic between two different metamodels is specified as
a set of relations that must hold for the transformation to be considered successful.
Relations contain a set of patterns used to match for existing source model elements
in order to instantiate new target model elements or to modify existing ones. Since
declarative approaches like QVT Relations allow for the specification of what
has to be computed but not necessarily how, the transformations are defined in
a very concise manner which allows to focus on the relations between different
concepts instead of reasoning about how to encode them in imperative statements.
Another benefit of using a declarative language such as QVT Relations is to allow
for different application possibilities of the transformation specification. While the
transformation can be executed in both directions, it is also possible to use the
transformation to compare different models (if all relations are fulfilled by the
source and target models) and in cases where differences exist, i.e., some relations
are not completely fulfilled by the existing model elements, synchronization may be
performed to restore the fulfillment of all specified relations.

11 MDSE: Principles and Application in the CPPS Domain 269

In this book chapter we focus on the classical forward transformation capabilities

of QVT Relations and refer the interested reader for other execution capabilities
to Stevens (2010). However, we also see the comparison and synchronization capa-
bilities of QVT Relations as interesting ingredients to further automate the system
engineering process, e.g., consider change propagation and reverse engineering
activities to mention just a few practical engineering tasks. Finally, by instantiating
the relations on the model level, a trace model is produced for indicating which
source elements have been transformed to which target elements by which relation
(cf. bottom of Fig. 11.3).
After presenting the central techniques of MDE, we now proceed with their
application in the domain of CPPS engineering. In particular, we elaborate on
a selected set of standardized languages which are supported by metamodels in
Sect. 11.3 and combine them in an automated engineering tool chain in Sect. 11.4
with the help of model transformations.

11.3 Selected MDSE Standards for CPPS Engineering

In this section, we elaborate on a selected set of industry standards to introduce
MDSE in the CPPS domain. This selection is far from being exhaustive, rather
it aims at providing a coherent subset of modeling standards, proposed by the
experience of the authors. These standards can be suitably integrated in model-
driven methodologies for CPPS design activities as well as for the early verification
and validation activities.

In particular, we selected (1) SysML, a general purpose graphical modeling
language explicitly devised for requirements specification and system design, (2)
AML for realizing data exchange among production system engineering tools, and
(3) PMIF for supporting performance modeling via the queuing network (QN)
notation and as standardized data exchange format among QN solvers. By using
these proposed standards, we can take full advantage of those MDE techniques
presented in the previous section to automate a particular engineering tool chain
Jframework which focusses on design, data exchange, and analysis. This framework
is not limited to the presented set of standards as also other standards may be used
within this framework.

In the following, we describe each of the selected standards at a glance and give
pointers to external resources for the interested reader.

11.3.1 Systems Modeling Language (SysML)

SysML is a graphical modeling language standardized by the Object Management
Group (OMGQG) for the development of large-scale, complex, and multi-disciplinary
systems (Object Management Group (OMG), 2016b). SysML is derived and

270 L. Berardinelli et al.

extended from the Unified Modeling Language (UML), a graphical, general-
purpose software modeling language that is currently the most adopted one in
model-based software engineering (Hutchinson et al., 2011). SysML reuses a subset
of UML elements and introduces new elements, e.g., for requirements modeling.
SysML is defined as a UML profile. In addition to SysML, several other UML
profiles have been standardized by the OMG such as the MARTE profile (Object
Management Group (OMG), 2016¢) which we will discuss later.

To better understand the relationship between UML and SysML, we will explain
it in more detail. With UML profiles, UML provides a language-inherent extension
mechanism for customizing UML concepts for particular domains and platforms.
This mechanism allows engineers to extend UML to create new modeling concepts
(derived from existing ones) comprising specific properties that are suitable for
the domain of interest. A stereotype, denoted by the keyword «stereotype»,
is one of three types of extensibility mechanisms, the other two are tagged values
and constraints (Booch et al., 2005). By using stereotypes any UML metaclass
can be extended with additional meta-attributes (i.e., tagged values) and additional
modeling constraints. The profiling mechanism has been extensively adopted by the
UML community to broaden the adaption of UML as design modeling notation in
several domains. For more details, we refer the interested reader to Booch et al.
(2005) and Seidl et al. (2012).

SysML provides modeling concepts and diagrams for representing requirements,
structure, behavior, and parametrics (i.e., mathematical constraints) of a system
which are linkable to trace requirements and to connect structure with behaviour
(cf. Fig. 11.4). We now present only a small subset of SysML which we use later on
in Sect. 11.4.2.1.

To represent the structure of systems, the UML class diagram and composite
structure diagram are adapted and renamed into block definition diagram (BDD)
and internal block diagram (IBD) by SysML. By using BDD, the structural

pkeg SysML Model Organization 1

System
Model

q) D

Requirements Behavior Structure Parametrics
req [Package] Requirements act [Activity] Behavior::A0] bdd [Package] Structure] par [Block] Parametrics J

:System_| _:Actor |

=GO

<<requirement>> e property 1
R1

[Frmee] []
values Values
property 1.1 property 2.1 property 1.1 property 2.1
O ibd [Block] System

Fig. 11.4 Overview on SysML diagram types and their connections (Friedenthal et al., 2014)

11 MDSE: Principles and Application in the CPPS Domain 271

decomposition of a system into so-called blocks can be defined. A block represents a
modular component of a system. Its definition comprises the component’s properties
and relationships to other components. Important relationships between blocks
include:

* Composition relationships representing the decomposition of a block into sub-
blocks (called parts);

* Reference associations representing logical references between blocks which are
parts of different composite blocks;

* Dependency relationships denoting that a change on one block may cause a
change on other blocks;

» Generalization relationships representing classifications of blocks.

By using IBD, the connections between parts of a compound block can be defined.
In particular, they include:

e Ports to define connection points between blocks;
* Connectors to connect blocks via ports and enable interaction.

SysML provides an integration framework for discipline-specific design models,
e.g., mechanical, electrical, and software models. The system model captures
the overall design of a system on a high-level of abstraction and traces this
design to discipline-specific models. For this reason it fits to the multi-disciplinary
engineering process required for realizing CPPS (cf. Fig. 11.1). SysML has been
already adopted in several domains* for developing complex and multi-disciplinary
systems, e.g., in the aerospace and defense industry. SysML is now also emerging
in the automation domain (Feldmann et al., 2014). As SysML is a profile extension
of UML, model-driven techniques and tools are directly applicable to this standard.
For more information on SysML, we kindly refer the interested reader to Alt (2012).

11.3.2 Modeling and Analysis of Real-Time Embedded System
Profile (MARTE)

MARTE (Object Management Group (OMG), 2016c) is another standard intro-
duced by the OMG. MARTE’s target modeling domain includes reactive systems
interacting with the external environment through sensors and actuators, e.g.,
consider transportation, factory automation, hardware/software controllers, and
various embedded electronic appliances also including mobile communications. As
MARTE is designed as a UML profile, it is applicable to UML, and by this, also to
all other UML profiles such as SysML.

MARTE includes many sub-profiles structured around two main concerns (1)
modeling software and hardware structures, e.g., by the software resource model

4See http://www.omgsysml.org for an overview.

http://www.omgsysml.org

272 L. Berardinelli et al.

Class diagr?m in'j <<GaResourcePlatform>> E] out
System Design Production System
tems
C
a ? <<GaExecHost>> out
b MachineC
; <<GaExecHost>> h
in[] paEkectost HJOU‘ Gabedors inT_{fresMult = 1, schedPolicy = FIFO)
{resMult= 1, schedPolicy = FIFO} . Machine B . | processResource |
n {resMult = 1, schedPolicy = FIFO}
- processitem(i:item) |- processResource(i:ltem) [':l out
activity Composite Structure
processltem Production System

«GaStep»
{hostDemand = (10, sec), prob=1}
process

Fig. 11.5 A production system modeled in UML with MARTE annotations

profile and hardware resource model profile, and (2) enriching design models
to obtain analysis models with additional parameters required by model-based
methodologies for performance and schedulability analysis (e.g., response time of
software/hardware execution hosts or scheduling policies of tasks).

Figure 11.5 shows a simple example of a production system modeled in terms of a
UML class diagram with annotations from a subset of the MARTE profile. By using
MARTE, the role of different classes can be identified. A production system can be
considered as a collection of active resources, €.g., machines. As shown in Fig. 11.5,
the production system is composed by three different kinds of machines, Machine
A, Machine B, and Machine C. The production system’s layout is presented
by a composite structure diagram (cf. Fig. 11.5, on the bottom right). It includes 4
machines in total (one of type A and one of type C, both, connected by two machines
of type B). In our example, these machines provide processing services for items
entering the system to be processed by Machine A, flowing through Machine
B, and then leaving the system after the last processing step carried out on Machine
C. This flow is indicated by the black triangles showed in the composite structure
diagram of the production system. Thereby, each item is processed following a firsz-
in-first-out (FIFO) scheduling policy. Additionally, quantitative information can be
annotated on structural (e.g., the resources’ multiplicities) as well as on behavioral
specifications. For example, timed properties can be assigned to actions as shown
in the processItem activity diagram. In this diagram the modeling behavior
of processItem() operation of Machine A is described. Each execution of
the processItem () operation lasts (exactly) 10 s, seizing its execution host, the
Machine A instance shown on the composite structure diagram.

MARTE provides concepts required for model-driven design and analysis of
systems, but it is independent of any design and analysis methodology. Moreover,
the general framework for quantitative analysis provided by MARTE is intended to

11 MDSE: Principles and Application in the CPPS Domain 273

be refined/specialized for the specific methodology of choice (e.g., dependability
analysis; Bernardi et al. 2011). As for SysML, MARTE is a profile extension
of UML, thus model-driven techniques and tools are directly applicable to this
standard. For more information on MARTE, we kindly refer the interested reader
to Object Management Group (OMG) (2016¢) and Selic and Gérard (2013).

11.3.3 Performance Modeling Interchange Format (PMIF)

PMIF is conceived as a common representation for system performance model
data that could be used to move queuing network models between analysis and
simulation tools (Smith and Williams, 1999). Its creators were interested in tool
interoperability for performance engineering (Smith, 1990). The first version of
PMIF (Smith and Williams, 1999) addresses a specific type of performance
model, i.e., queuing network models that may be solved using analytical solution
algorithms.

Providing enhanced support for extra-functional modeling and analyses of CPPS
is in particular of high importance in the early design and validation steps (Malavolta
et al., 2013). In this regard, queuing network (ON) models provide a powerful
notation widely used to represent and analyze resource sharing systems like
CPPS (Schleipen and Drath, 2009). As summarized in Cortellessa et al. (2011):

Informally, a QN is a collection of interacting service centers representing system resources
and a set of customers representing the users that share the resources. It can be represented
as a direct graph whose nodes are service centers and edges represent the potential paths
of customers’ service requests. Several different classes of customers can circulate over the
network at the same time, each class representing a set of customers with homogeneous
behavior (i.e., paths and amounts of service requests).

The construction of a QN can be split in two main steps, (1) definition of service
centers, their number, and the interconnections, and (2) parameterization of the
arrival processes, i.e., the definition of job classes, the service rates, scheduling
policies and the routing probability among servers. Figure 11.6 gives a graphical
overview of a generic QN model, its typical modeling elements, and their relation-
ships as already defined for the production system modeled with UML/MARTE in
Sect. 11.3.2. Each machine instance is represented as a server. The produced items

server Machine B1
workload generator source ——

job class

*

item Item generator queue

Machine A

sink

Machine C

Machine B2

Fig. 11.6 A production system modeled as an open queuing network

274 L. Berardinelli et al.

are instances of the same job class. Jobs enter the system at a certain arrival rate and
flow to servers, waiting for being served, seizing the server for a certain amount of
time (a.k.a., service time) then proceed to the next server connected with arcs until
they leave the system through sink nodes.

PMIF provides a common serialization format for this kind of models. In
this paper, we adopt a variant of the PMIF metamodel presented in Troya and
Vallecillo (2014), suitably updated for being easily integrated in model-driven
performance analysis methodologies. Following this variant, a QN model is a graph
with Nodes connected by Arcs. There are two types of nodes, Servers and
NonServers. The former provide a processing service while the latter represent
origin (SourceNode) and exit (SinkNode) for entities flowing through the QN.
These entities are referred as customers or jobs. Different job classes are defined
through workloads (Workload). A Workload can be open or closed depending
on the capability of jobs to enter/leave the QNM (i.e., open) or not (i.e., closed
with a fixed job number). Any Workload specification includes the sequence of
transits to different Server where jobs can ask for one or more service requests
(ServiceReq). At each Server, the next job to be processed is decided by a
scheduling policy (e.g., first-come-first-served).

Finally, timed properties like job inter-arrival time (for open workload), and
service times (for servers) are usually given as part of a performance analysis
scenario (e.g., arrival probability distribution). Other timed properties (e.g., the
waiting and completion time for single jobs or for the whole workload) are obtained
as part of analysis results and used by tools to compute performance indices.

There are currently several tools for solving QN models providing their own
model representations. In Troya and Vallecillo (2014), the reader can find a recent
list of QN solvers together with their evaluation techniques (e.g., analysis or
discrete event simulation), model format, allowed probability distributions (e.g.,
for generating inter-arrival times and service times) and supported QN types
(e.g., open/closed). As we build on the existing metamodel for PMIF (Troya and
Vallecillo, 2014), model-driven techniques and tools are directly applicable to this
standard as well. For more information on QNs and PMIF, we kindly refer the
interested reader to Smith and Williams (1999), Smith et al. (2010), and Troya and
Vallecillo (2014).

11.3.4 AutomationML

AML is a neutral, free, open, XML-based, and standardized data exchange format,
which aims for data exchange within the engineering process of production
systems (IEC, 2014). We present an overview on AML in Fig. 11.7. In particular,
typical elements in an AML production system model comprise: (1) the plant
structure including devices and communication structures, expressed as a hierarchy
of AML objects and described by means of CAEX which follows the standard
IEC 62424 (Schleipen et al., 2008), (2) geometry and kinematics represented

11 MDSE: Principles and Application in the CPPS Domain 275

AutomationML
COLLADA -
CAEX IEC 62424 ISCIPAS 17506:2012 ~
Top level format Geometry E.’
Kinematics
ObjectA
Planttopology
information Object A; PLCopen XML @
Mechatronics [object 4, | Behaviour =)
: Sequencing End
Communication Object A, e
Further formats |
r Furtheraspects of -
i engineeringinformation | —

Fig. 11.7 AML overview taken from IEC (2014)

by COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012) (ISO/PAS, 2012), and (3)
control related logic data (i.e., PLCopen XML 2.0 and 2.0.1; PLCopen 2011). Since
the foundation of AML is the application of CAEX as top level format, we focus on
this part of AML in this section and the following one.

CAEX stores engineering information following a prototype-oriented paradigm.
It allows the modeling of physical and logical system components as data objects
encapsulating different aspects. CAEX objects (namely, internal elements IE) and
their interfaces (namely, external interfaces ExtI) can be specified from scratch or
suitably instantiated (that means cloned) from existing prototypical classes (namely,
SUC), defined and collected in system unit class libraries (SUC1ib). Both CAEX
objects and classes may consist of other sub-elements, and may themselves be part
of a larger composition or aggregation.

Both classes, objects, and their interfaces are semantics agnostic. CAEX provides
role classes (RC) and interface classes (IC) to assign semantics to IEs and ExtI,
respectively. Both RC and IC are defined and collected in libraries (RC1ib for RC
and IClib for IC). AML objects and classes can then support and/or require such
roles.

Finally, individual objects are modeled in an instance hierarchy (IH) which, in
turn, may contain internal elements (IE). IEs can be instantiated from SUCs and
arranged in accordance with the supported and required roles. External interfaces
(ExtI), instantiated from ICs, are used to interlink objects (IL) among each other
or with externally stored information (e.g., COLLADA or PLCopen XML files).

In previous work (Biffl et al., 2015), we have defined a metamodel for AML
considering the CAEX part. Using this metamodel, we can represent AML data as
models and apply model-driven techniques and tools for AML as well. This allows,
e.g., to transform system models defined in SysML to AML and vice versa.

For more details about AML, we kindly refer the interested reader to the different
AML whitepapers available at IEC (2014). In addition, Chap. 9 of this book focuses

276 L. Berardinelli et al.

on the role of AML as a potential standardized data format and it is exemplarily
presented for the case of virtual commissioning of a production system.

11.3.5 Synopsis

To sum up this section, we presented four different modeling languages which are
all based on metamodels which are directly defined by standardization bodies or by
the scientific community. This is an important requirement as this already resolves
the potential data model heterogeneities and allows to represent the models in the
same format as well as to manipulate them with the same tools and techniques. We
exploit this feature in the following section to combine the presented languages in
an automated engineering tool chain framework.

11.4 MDSE of CPPS in Action

In this section, we show how the presented languages of Sect. 11.3 can be combined
to support the envisioned CPPS engineering process. Figure 11.8 depicts how these
languages are aligned with the engineering activities of the V-Model:

~ - p

- XXXy =

r Y f

@l Production System

subsystem level Am
)
2 5.

component level

electronics

------ software

Fig. 11.8 Populating the V-Model with concrete languages for requirements and design, data
exchange, and analysis

11 MDSE: Principles and Application in the CPPS Domain 277

* Requirements and design language: We use SysML as a front-end require-
ments and design notation. In particular, we model the requirements of the system
as well as its design covering its structure and behavior. Furthermore, we show
how MARTE stereotypes can be used to provide the necessary information to
perform early performance analysis.

* Data exchange language: AML is primarily devised as a data exchange among
automation tools in our engineering tool chain. It eases vertical integration with
other domain-specific activities (e.g., virtual commissioning with COLLADA-
based tools and PLC programming; Liider et al. 2015). In particular, we show
how the information defined in the SysML model can be exchanged on the basis
of CAEX.

* Analysis language: PMIF is employed to share models with QN solvers to
compute properties of interest for early design validation. In order to analyse the
performance of a design given in SysML and MARTE, we compute the necessary
properties to validate if the stated requirements are fulfilled or not with the help
of an existing QN solver.

As we will see later, the transitions between the different engineering activities are
automated by model transformations. This allows to exchange the design models
between engineering tools used in the discipline-specific engineering activities, as
well as to perform early validation and verification of the design models before
the discipline-specific engineering activities start. Furthermore, we would like to
highlight that based on the trace model generation by model transformation engines,
traceability between the design models, data exchange models, as well as analysis
models is provided automatically.

The rest of this section is organized as follows. We first provide the descrip-
tion of a reference case study, a lab-sized production system hosted at IAF of
the Otto-v.-Guericke University Magdeburg (Equipment Center for Distributed
Systems, 2016) which is subsequently used as a running example to exemplify
the integration of SysML, PMIF, and AML as well as to discuss its benefits and
challenges. First, we provide three different models of this given production system
using SysML, AML, and PMIF as modeling languages for the sake of CPPS
design (via SysML), data exchange, (via AML) and early model-based validation
activities (e.g., performance analysis through queuing network represented by
PMIF). Second, we describe how the integration between (1) SysML and AML and
(2) AML and PMIF has been realized to automate the validation of requirements on
SysML design models.

11.4.1 Case Study

The IAF production system (cf. Fig. 11.9) consists of a transportation line made
of sets of turntables, conveyors, and multi-purpose machines. Each turntable is
equipped with an inductive proximity sensor for material detection and a motor for

278 L. Berardinelli et al.

=0
Pl CONTROLLERS

Fig. 11.9 The lab-sized production system hosted at IAF of the Otto-v.-Guericke University
Magdeburg (Equipment Center for Distributed Systems, 2016)

table rotation. The transportation line is wired to a modular fieldbus I/O system,
which, in turn, communicates with Raspberry Pi based controllers by Ethernet.
The Raspberry Pi based controller is running a Programmable Logic Controller
(PLC) program (PLCopen, 2011) governing the transportation line. Such programs
logically divide the transportation line in three areas as depicted in Fig. 11.9. The
production plant is supposed to continuously processes items via its multi-purpose
machines located in different areas. Turntables and conveyors are in charge of
moving such items to these machines following a predefined process.’

11.4.2 CPPS Modeling

Systems design is the process of defining (1) the architecture, in terms of com-
ponents, modules, interfaces, and (2) the functionalities that such a system should
provide in order to satisfy the specified requirements. In the following, we design a
CPPS virtual prototype of the reference case study using SysML and AML. Then
we build a QN performance model based on PMIF to validate the virtual prototype.

SModels realized for this case study can be downloaded from our companion web site at the
following address http://www.sysml4industry.org/wp-content/uploads/2016/08/models- 1.zip

http://www.sysml4industry.org/wp-content/uploads/2016/08/models-1.zip

11 MDSE: Principles and Application in the CPPS Domain 279

We represent the overall structure and behavior of the transportation line
that is further decomposed in three groups of resources, called areas. We then
provide a detailed design of Areal, the leftmost logical area in Fig. 11.9, together
with its internal resources (i.e., four turntables, four conveyors, and one
multipurpose machine) as well as resource-specific behaviors.

Of course, the proposed models can be built from scratch in the different stages
of the engineering process and they can be used isolated for documentation purposes
(e.g., by SysML diagrams) or for analysis purposes (e.g., calculating the minimum,
maximum or average processing time for items). However, in order to realize
an efficient engineering process realizing the potential benefits of formal models,
repetitive manual tasks should be eliminated as much as possible. Instead model
transformations should be employed for automating these tasks as much as possible.

11.4.2.1 Modeling in SysML

We employ SysML (Object Management Group (OMG), 2016b) to support require-
ments specification and system design of the CPPS engineering process as sketched
in Fig. 11.8. Figures 11.10 and 11.11 show parts of the IAF plant SysML model
which we discuss in the following.

SysML provides modeling concepts and a diagram type to represent text-
based requirements and their relationships to other SysML modeling elements, as
discussed in Sect. 11.3. The requirements diagram in Fig. 11.10 depicts functional
(FR) and non-functional (NFR) requirements for the IAF Plant.

The FR prescribes a constraint on the logical architecture of the transportation
line, which has to be divided in three distinct areas of turntables, conveyors, and
machines. This requirement will probably affect the logical representation of the
transportation line as programmed in the PLC code deployed on Raspberry PI
controllers (cf. Fig. 11.9).

req |AF Plant Requirements |
<<requirement>> <<requirement>>
Logical Areas Item Production
id#: FR 1 id#: NFR 1
txt: The IAF plant system is composed by processing txt: The IAF plant produces items. The production
stations without buffering capacity. At any time, process of a single item should last less than a
during the production process, no raw products can mimfte.
be buffered for delayed processing. - I\
«satisfy»,” «satisfy» . satisfy» ', «verify»
<<block>> <<block>> | «derivedFrom» [<<QN Model>>
Area |AF Plant |AF Plant

Fig. 11.10 Excerpt of the SysML requirement model of the IAF Plant

280 L. Berardinelli et al.

The NFR states a production constraint setting a minimum production threshold.
This is a typical performance requirement that can be validated through analysis of a
queuing network representation of the IAF Plant. For this reason, we extend the
SysML design of the IAF Plant with MARTE annotations and derive a PMIF-
based queuing network for the sake of requirements validation.

Both requirements describe system-level properties, which have to be satisfied
by the whole IAF plant. For this reason, a sat isfy relationship is depicted from
the top-level structural SysML block representing the whole IAF plant to these
requirements.

Concerning the design of the IAF Plant, the structural elements and their
relationships are defined via blocks and containment relationships in the BDD in
Fig.11.11a. A top level IAF Plant block includes an Area block, which in
turn has Turntable, Conveyor, and Machine blocks. The ports depicted on
the blocks’ borders represent the potential input (e.g., 1na, for receiving Areas),
output (e.g., outT from Conveyors to Turntables), and bidirectional (e.g.,
in outC, forMachines interacting with Conveyors) interaction points among
these structural elements. Finally, blocks can be used to define the product types,
e.g., the generic item shown as wooden piece in Fig. 11.9.

The IBD depicted in Fig. 11.11c defines the structure of the transportation line
with three connected areas. We then detail the internal structure of the Area 1
as a graph of parts, ports, and connectors. Parts represent tX and cX properties in
the BDD with the following naming convention: ‘part name’: ‘type name’, where
‘type name’ refers to the corresponding block defined in the IAF Plant Design
BDD (e.g., t1:Turntable). Connectors have both structural and behavioral
functions, specifying both (1) links between parts via ports, and (2) item flows
between parts depicted with black directed arrows.

Once the system architecture has been defined, we proceed with the behav-
ioral speciﬁcation6 of processing resources, i.e., Turntable, Conveyor, and
Machine blocks by defining the resource-specific operations turn (), trans-
fer (), and process (), respectively, applied on items. The detailed behaviors
are modeled through Activity Diagrams in Fig.11.11b. Each activity is
realized with a single action receiving the parameter Item i (i.e., the box at the
border of the activity diagram).

In Fig. 11.11d such operation-specific activities are combined in a system-level
activity where a workflow of call operation actions correspond to the process-
ing steps applied on items flowing through Turntables, Conveyors, and
Machines placed in the Areal of the IAF Plant. We assume that the process-
ing starts at turntable TO and proceed up to turntable T2. Here the item can leave
Areal to be processed by resources placed in Area2, or continue to conveyor
C2. A similar alternative choice happens in turntable T3, where the item can be

%It is worth noting that SysML provides different behavioral notations and diagrams such as State
Machines and Interactions (a.k.a., Sequence Diagrams). It is up to the modeler to choose the
notation that better fits with her needs.

11 MDSE: Principles and Application in the CPPS Domain

281

a) Block Definition Diagram BDD areal Block, <GaR olath
. «Block», «GaResoucePlatform»
IAF Plant Design area2 A
rea
area3

{resMult = 3, throughput = $th, respT = $rt, utilization= Su}

«Block», «Resource»

generate(): Item «GaWorkloadEvent»
{pattern=open(arrivalRate=(exp,0.01,sec)),

«Block», «GaResourcePlatform»

Item
{resMult = Snum_job}

generator=item_Processing} —

IAF Plant =
{resMult = 1, schedPolicy = FIFO,

throughput = Sth, respT = $rt, utilization= $u}

.

c3 «Block», «GaExecHost» «Block», «GaExecHost»
«Block», «GaExecHost» 3 7 Conveyor Machine
Turntable o " {resMult = 4, schedPolicy = FIFO, {resMult = 1, schedPolicy = FIFO,
{resMult = 4, schedPolicy = FIFO, < fthroughput = $th, respT = $rt, utilization= $u}| |throughput = $th, respT = $rt, utilization= Su}
- = i = tl 0
throughput = $th, respT = $rt, utilization= $u}| ° or transfer (item) — ~process (item)
- turn (izltem) 1 | =] Hy 04—
T T in_outM inT outT in_outC
inC outC
b) itltem C)
Activity Diagram Internal Block Diagram IBD
T Process Operation areal
«GaStep»
{hostDemand = (exp, 0.1, sec)}
turning
t2: Turntable
i:ltem Item
Activity Diagram » dtem
C Process Operation
«GaStep»
{hostDemand = (const, 2, sec)}
transfering dtem 4
:ltem <
10: Turntable ¢3: Conveyor
i:ltem
Activity Diagram
M Process Operation
«GaStep»
{hostDemand = (const, 2, sec)} Internal Block Diagram IBD
processing Area3 Internal Block Diagram IBD
Area2
[]
d) Activity Diagram . _ _ I
Item Processing «GaScenario» {throughput = $th, respT = $rt, utilization= $u}
«CallAction»
To:turn [[
isltem
i:Item [
«CallAction» «CallAction» o «CallAction»
T2: turn T3: transfer C3: transfer
L]

Fig. 11.11 Excerpt of the SysML design model of the IAF plant through block definition diagrams

(a, d), Activity diagrams (b), Internal block diagrams (c)

moved to Area? or to conveyor C3 where the whole is supposed to restart from the
beginning at turntable T0. This processing scenario is realized on top of the IAF

Plant layout shown in the IBD in Fig. 11.11c.

We now proceed with the description of how MARTE is used to analyze the given

design model with respect to the requirements model.

282 L. Berardinelli et al.

11.4.2.2 Profiling SysML Models with MARTE

In MARTE, a system is a platform where resources provide services that can be
acquired and released. In this respect, both, the whole IAF plant and its areas
are identified as platforms (GaResourcePlatform). The structural constraint
imposed by the FR requirement in Fig. 11.10 suggests to consider also the Area
block as a logical sub-collection of resources as depicted in Fig.11.9. MARTE
allows the distinction of different kinds of resources depending on specific purposes,
i.e., processing, storage, and communication. In particular, in performance modeling
a GaExecHost can be any resource that executes behavior. Therefore we applied
this stereotype to SysML blocks modeling the resources of the IAF transportation
line, i.e., Turntable, Conveyor, and Machine, which host and provide
turn (), tranfer (), and process () operations as services to accomplish the
production of items depicted in Fig. 11.11d.

The aforementioned stereotypes come with predefined properties which act as
placeholders (1) to store input parameters required to generate analysis models from
SysML ones and (2) to store output results generated by the chosen analysis tools.

In order to enable the validation of the NFR requirement imposing a timing
constraint on the item production process, we require the model-driven generation
of a queuing network model representing the Area 1 of the IAF transportation
line. MARTE explicitly supports performance analysis with its Generic Quanti-
tative Analysis Model (GQAM) and Performance Analysis Model (PAM) sub-
profiles (Object Management Group (OMG), 2016¢). The performance model
parameters can be partitioned in the following main categories: (1) the operational
profile, (2) the workload, (3) the resource demands.

The operational profile is a collection of data that stochastically represent the
usage that agents make of a system in a certain environment. A typical parameter
is the probability to invoke a certain service. In this example, we consider a
unique system-level service (i.e., item processing) then we omit this parameter (i.e.,
probability equal to one).

The workload represents the intensity of system services requests from agents. It
is annotated by the GaWorkloadEvent applied on the generate () operation
on the Area block that collect all the resources involved in the production process.
Items enter Areal from turntable TO and leave it from turntables T2 and T3,
therefore we considered an open workload of items with a mean inter-arrival time
of 10's (expressed as a Poisson distribution random variable).’

Finally, resource multiplicities (resMult) and demands are annotated on
GaExecHosts block and operations’ Actions in terms of execution times
obtained, as for arrival pattern specification, random variables obtained from
exponential (exp) and constant (const) probability distributions.

7A closed pattern would be considered in a system-level production process involving all the
resources of three areas. In that case a similar annotation would be applied on the IAF Plant block.

11 MDSE: Principles and Application in the CPPS Domain 283

The output of the analysis may also be stored in properties of MARTE. Common
performance indices are throughput, response time, utilization but the possible
performance indices and the granularity of the results depend on the capability
of the chosen analysis tool.® Indices can be calculated both at system-level or
for single resources. We refer the reader to Sect.11.4.2.3 for their description
in context of the given case study. In Fig.11.11 we store the output results
that refer to a particular behavioral modeling element, e.g., the Item Processing
activity (GaScenario, throughput, respT, utilization properties), or
to a particular structural one (GaResourcePlatform, throughput, respT,
utilization properties). In MARTE, variables, shown as $-prefixed Strings in
Fig. 11.11, can be used as placeholder to be replaced with actual results.

It is worth noting that the annotation of SysML models should be considered
as an integral part of model-driven methodology for early validation of systems
adopting SysML as the main modeling notation. In this respect, MARTE does not
prescribe the adoption of any annotation strategy or model-driven methodology. The
interested reader is kindly referred to Cortellessa et al. (2011) for a general overview
on model-driven performance engineering and analysis methodologies.

11.4.2.3 Modeling in PMIF

An excerpt of the IAF Plant modeled in PMIF is illustrated in Fig. 11.12. Such
as AML, PMIF is primarily devised as an exchange standard for interoperability
among queuing network (QN) solvers. Moreover, as discussed for AML, PMIF
does not provide a standard concrete notation. Therefore we provide here an ad-hoc
notation for the sake of explanation aided by a graph-oriented diagram. The legend
on the right side of the diagrammatic representation relates this notation with PMIF
concepts.

The so-called queuing network topology (i.e., the graph of servers and arcs) of
the IAF Plant QN model includes a distinct server for each turntable (Tx), conveyor
(Cx), and machine (Mx), connected through arcs. A source node is connected to the
turntable TO and two sink nodes can be reached from turntable T2 and T3, where
the item processed by the plant can leave the QN, i.e., the Areal of the IAF Plant
to enter Area2. The produced items that circulate among servers are referred as
customer or job in the QN jargon. Jobs are generated and injected in the QN via T1
by a workload generator.

The arrival process of item jobs is determined by a probability distribution that
generate the inter-arrival times between consecutive arrivals. In this example, we
considered a Poisson arrival process of items always (then probability set to 1) to
T0. We then assume mutually independent arrivals of items every 100s, on average
(obtained from the reciprocal of arrival parameter 0.01, a.k.a. lambda parameter).

8For an example, the reader can consolidate the manual of the JMT queuing network solver (Casale
and Serazzi, 2011).

284 L. Berardinelli et al.

item

arrivalDistr: exp
arrival Params: 0.01 .
time Units: sec schedPolicy= FIFO

Transit To: Source ltem Legend
Transit Probs: 1
I:O = single queued server
:¢7 Source_ltem Sink_Area2 [> = source

< =sink

) = open workload

=p =arc
* =job
Sink_Area2 o =Time service request

i i Time SR
srv: T2 Time SR Q srv: C2 flgeeh Q srv: T3 Q
serviceDistr: exp serviceDistr: const serviceDistr: exp
service Params: 0.1 service Params: 2 service Params: 0.1
Time Units: sec Time Units: sec Time Units: sec
Transit To: C2, Sink_Area2 Transit To: T3 Transit To: C3, Sink_Area2
Transit Probs: 0.5, 0.5 Transit Probs: 1 Transit Probs: 0.5, 0.5

Fig. 11.12 Excerpt of IAF Plant modeled in PMIF

The generated item jobs can potentially visit all the servers reachable by the QN
topology. However, the possible paths of such jobs are determined by a collection of
service requests (SR) that Item jobs require to the visited server. A subset of these
SRs required by Items to T2, C2, and T3 servers (srv) are shown at the bottom
of Fig. 11.12. They are expressed in term of service time (Time SR) during which
the server is seized to process the current job before releasing to the next. Again,
the service time is modeled as a stochastic variable governed by an exponential
probability distribution whose average value is obtained as a reciprocal of the
lambda parameter (e.g., 10s for T3). It is worth noting how the transitTo and
transitProb attributes of T2 and T3 SRs contains two ordered values, one for
each arc outgoing the server. The next server is then determined by pairing the value
of these attributes.

The resulting QN model can be directly modeled in PMIF using the xQNM
tool presented in Troya and Vallecillo (2014) or in JMT (Casale and Serazzi,
2011). Figure 11.13 shows some simulation results generated by JMT and anno-
tated back on the IAF Plant SysML model by replacing the MARTE variables
previously assigned to properties of MARTE stereotypes (cf. the $-prefixed terms
in Fig. 11.11).

11 MDSE: Principles and Application in the CPPS Domain 285

x10
T DE[T T T T T T
10[i
o 0.7 1
) -
gosf 1 306
= =]
= £05
g06f 11l 2
o IS 0.4
4
£04 i E 0.3 1
2
& '%0.2 E
0.2[1
01 §
it} £ 0.0
00 01 02 03 04 05 06 07 08 0o 01 0z 0.3 0.4 05 086 0.7 0.8
Itern arrival rate [iis] Itern arrival rate [ifs]

Activity Diagram
Item Processing «GaScenario»

throughput = ((0.017, 0.126, 0.235, 0.345, 0.455, 0.562, 0.674, 0.750) , job/sec, mean)
respT =((10.110, 13.442, 16.937, 20.909, 25.779, 33.183, 56.251, 1.024E4) , sec, mean)

1o I | Activity Diagram i:litem
031 1 M Process Operation
08 1
gl}.? r 1
Sosf K «GaStep»
§Ig_5 - - | {hostDemand = (exp, 0.017, sec)
S04t g utilization = ((0.022, 0.169, 0.310,
a3k] 0.462,0.610,0.745,0.902,0.966), real)}
02f 1 processing
011 1
0ol I S [—
00 01 02 03 04 05 06 07 08
Itern arrival rate [i/s]

Fig. 11.13 Analysis results and their annotation on IAF Plant SysML model with stereotypes and
properties of the MARTE profile

We calculated the system response time and system throughput’ for the item
processing scenario depicted in the activity of Fig. 11.11d. We conducted an early
what-if analysis by increasing the arrival rate on items from 1 item per minute up to
1 item per second to test production capacity of that area.

Areal can manage up to 40 item arrivals per minute (0.674item/s) with
an average response time (i.e., the time required to execute the activity Item
Processing) of 56s per item. This processing time for items does not violate

°The QN model represents only Areal’s process and resources, therefore it corresponds to the
system under analysis.

286 L. Berardinelli et al.

the maximum processing time of 60 s allowed for the item production process (cf.
the NFR in Fig. 11.10).

However, the given response time is an average response time and the utilization
of Areal’s resources rapidly grows to the critical 0.9 threshold (i.e., the resource
is busy for the 90% of its time) as shown for machine M1. Therefore the production
capacity of Areal is currently limited to 40 items per minute and any increment
in the production rate (e.g., to 45 item per minute, 0.750 item/s) would cause the
violation of the given requirement due to the increasing queue of items waiting for
M1 processing.

Thanks to these early analysis results, the modeler/analyst can then decide (1) to
keep or reduce the current production rate of Areal, (2) to increase the processing
power of the multi-purpose machine M1, or (3) to decrease the arrival rate of items,
and then the production rate of Areal.

11.4.2.4 Modeling in AML

An excerpt of the IAF Plant modeled in AML is shown in Fig. 11.14. It is worth not-
ing that AML does not provide a standard concrete notation (such as SysML does).
Therefore we provide here an ad-hoc notation for the sake of explanation in terms

IAF Plant
—UH AreaZ Area3
Areal _—Eb—de
IE -
(from MARTE library) (from AML library)
(from AML library) IE Item Processing/ RC ffs_c_e:]f:ie- «ns=s|RC| Process
PPR Connector| IC |E hmnmnnm®®” (from PMIF library)
T2 Turn | ~|RC| Service Request
(from AML library) T1[IEIE OHIE [T] 13 g\:\ (from MARTE library)
'S
Resource |RC#, c1 E E “4RC| Gastep
., Transfer
(from PMIF library) 44 IE co c2 IE [, | IE (from AML library)
z
server [RCE” 1 JRC]| Product
Il a3 Turn K
rommasrernrary ! [1E 301 1E |00 1E E———C{ 1E FHEIEK _ grom pmre vy
N
GaExecHost |RCf TO T3 Item \~‘RC Open Workload
=j i = external interface (Extint Legend
IH | = instance hierarchy (IH) O () / supported role (SRC) g
|E | = internal element (IE) #” =internal link (IL) 2 eI cS
IC | = interface class (IC) ,/ = role requirement (RR) IEI = nesting

= PPR, MARTE, and PMIF semantics layers

Fig. 11.14 Excerpt of IAF Plant modeled in AML

11 MDSE: Principles and Application in the CPPS Domain 287

of a graph-oriented diagram. The legend below the diagrammatic representation of
IAF Plant explains this notation with AML concepts.

Following the requirements in Fig. 11.10, also the AML representation of the
IAF Plant’s transportation line is divided in three areas (Areal, Area2, and
Area3), each composed of turntables, conveyors, and machines. The root node
is the TAF Plant instance hierarchy (IH). Its nested structure includes three
internal elements (IE), one for each area that logically divide the transportation
line. Then, the detailed architecture of Areal is shown as a graph of IEs (Liider
et al., 2013). Turntables (Tx IEs) and conveyors (Cx IEs) are nodes alternating
each other in closed paths. An additional node for a machine M1 is linked to the
C1 IE. Each IE has a predefined set of interaction points modeled as external
interfaces (ExtI) connected via internal links (IL). According to Schleipen and
Drath (2009), such IEs can be classified in (1) products, (2) processes, and (3)
resources (PPR) (Schleipen and Drath, 2009).

Resources are entities involved in the production that process and handle
products. Depending on the reference engineering discipline, software, mechanical,
and electronic elements can all be referred as resources collaborating to product
handling.

Products are the produced goods processed by the IAF plant through its
resources. The IAF plant is supposed to produce a generic item that is moved by
turntables and conveyors towards multi-purpose machines.

Processes consist of processing steps realized by the IAF plant resources. The
IAF plant provides a production process for items determining their movements
among resources.

Products, processes, and resources are all modeled as IEs as done for turntable
T3, the processing step Turn realized by T3, and the product Ttem.

The instance hierarchy with its internal elements, external interfaces, and internal
links is semantic-agnostic, i.e., there is no distinction between nodes and arcs
building such a graph-like structure. For this purpose, AML provides the role class
libraries (RC1ib) and role classes (RC) concepts for nodes and interface class
library and interface classes for external interfaces. In particular, AML provides
several standard role class library (RC1lib) and interface class library libraries
(IClib). The AML RC1lib defines Product, Process and Resource RC.
We then build a PPR semantics layer in the IAF Plant IH structure by assigning
Product, Process, and Resource role classes to the corresponding IEs of the
IAF Plant instance hierarchy via role requirement relationships (RR) as shown
in Fig. 11.14 for Item, Item Processing, and CO, respectively.

For the sake of the envisioned integration with SysML/MARTE and PMIF, we
further enrich the AML model with two additional semantics layers. We created two
new role class libraries, PMIF RC1lib and SysML/MARTE RC1ib that define the
corresponding language-specific concepts by role classes of the same name.

The PMIF RC1ib introduces in AML role classes like Server, Service
Request, and Open Workload role classes. A PMIF semantics layer is
then realized on top of the same IAF Plant IH by assigning these role

288 L. Berardinelli et al.

classes to resources (e.g., C0), processing steps (e.g., Turn), and products (e.g.,
Open Worload) to facilitate the integration with PMIF as further discussed in
Sect. 11.4.3.2.

The SysML/MARTE RC1lib supports the modeling of a AML semantics layer
for these two OMG standards. We assigned the AML RC counterparts of MARTE
stereotypes (GaExecHost, GaScenario, and GaScenario) to plant resources
and processes to facilitate the integration of AML with SysML models annotated
with MARTE, as discussed in Sect. 11.4.3.2.

11.4.3 CPPS Engineering Chain Automation

The proposed engineering chain automation approach aims at bridging system
design with early validation of system performance. As we discussed for the
used modeling languages in the engineering chain, all of them are supported by
metamodels which define the languages explicitly and also define the possible
structures and content of the models. This allows model transformations to be
formulated on the metamodel level which ensures their executability for any valid
instance. However, to realize a valid transformation with a specific purpose, also the
models have to be rich enough and systematically built by following modeling rules
to be transformed to the target language.

Figure 11.15 gives a graphical overview on the engineering chain automation.
In particular, we use a transformation chain to transform SysML models to AML
ones with a first transformation and AML models into PMIF ones with a second
transformation. In both cases, the integration of the languages is carried over in two
consecutive steps:

1. Modeling rules to be applied on models;
2. Model transformation rules specification and execution.

The first step suitably extends the source model (SysML in SysML/AML,
AML in AML/PMIF) with information required by the second step, i.e., model
transformations, to obtain a complete and useful target model.

11.4.3.1 Integrating SysML and AML

We presented for the first time the SysML/AML integration in Berardinelli et al.
(2016). Consequently, we give here only an overview of the previously presented
approach.

Modeling Rules for SysML The first step of the SysML/AML integration is
realized through the UML profiling mechanism which allows to add further
information to the SysML models needed for the production of AML models. An
excerpt of the AML4SysML profile is shown in Fig. 11.15a. The AML4SysML

11 MDSE: Principles and Application in the CPPS Domain 289

SYSTEM DESIGN EARLY VALIDATION

system level
subsystem level
component level

AML/SysML integration ll AML/PMIF integration

a) SysML/AML modeling rules (AML4SysML profile) b) AML/PMIF modeling rules (semantics layers)

<Product Name>
Class ‘ Port | ‘ Connector | E
A

«extends» «extends»
<<profile>> RR
SysML «extends» SRC Process GaStep
Block ‘ RC <Resource Name> ¢ anyt jibrary) SRC

| Workload
< «imports»! (from AML
AML L ! library) (from PMIF

library)
(from PMIF library)

<<stereotype>> <<stereot
e ype>>
InstanceHierarchy (IH) face (Extl) Resource
Server
(from AML library)
—stereotype oot (from PMIF library)
InternalElement (IE) InternalLink (IL)

GaExecHost

<Process Name>

(from SysML/MARTE
library)

Service
Request

(from SysML/MARTE library)

c) Integration implementation via model transformations

SysML2AML
Transformation

AML2PMIF
Transformation

«from»/”

SysML
Metamodel

T

0»

PMIF
Metamodel

i i
i
i «conformsTo» «conformsTo» «conformsTo» |

Sl AML wocel | INEENEEED | PMIF Model
Model

Fig. 11.15 SysML, AML, and PMIF transformation chain (c) involving the AML4SysML profile
(a) and semantics layers (b)

Metamodel

profile maps AML concepts to structural concepts from SysML such as Block,
Port, and Connector, i.e., it addresses the structural modeling of CPPS in
SysML. As a consequence, the selection of SysML diagram types are restricted
to structural ones, i.e., BDDs and IBDs.

A choice behind the design of the AML4SysML profile is the coupling of our
AMLA4SysML profile with the SysML profile so that the application of the former
always requires the import of the latter. Consequently, any AML model annotated
with the AML4SysML profile is always managed as a SysML model. For example,
the stereotypes for IH and IE AML concepts are specialization of the SysML block
stereotype (cf. Fig. 11.15a).

SysML to AML Model Transformations For automating the transition from
SysML to AML, we employ model transformations. As we use profiles in addition
to metamodels in our integration chain, it is necessary to use transformation
technologies, which are able to work with profiles and their applications on models
such as it is possible in QVT.

Figure 11.16 provides an excerpt of the transformations needed for our setting. In
particular, it is showing a graphical visualization of a QVT transformation excerpt

290 L. Berardinelli et al.

Block2InternalElement

— «domain» — — «domain» —
ie:Internal
b:Class
Element

name=n 2ysm|C>aml , name=n
supportedRoleClass

roleRequirement

st1:Block r3:Role
: rl:Role W
st2:1E st3:GaExecHost name=,GaExecHost
name=, Resource” - y i
supportedRoleClass (from SysML-MARTE Library)

(from AML Iibrary)i II

(from PMIF library) name=,Server”

— where
PropertyToAttribute(b,ie)

Fig. 11.16 Excerpt of the SySML-to-AML transformation in QVT

realizing one of the mappings between SysML and AML language concepts, namely
the mapping between the SysML Block concept, which is realized by instantiating
the metaclass Class of the UML metamodel (as it is the base for the Block
concept in SysML) and the IE metaclass from the AML metamodel. The left hand
side of the transformation matches UML Classes annotated with three stereotypes
from three different profiles, i.e., Block (from SysML), IE (from AML4SysML),
and GaExecHost (from MARTE).

The corresponding modeling pattern on AML models is depicted on the right
hand side of the transformation: an internal element with three distinct assigned
roles (via role requirement and supported role class relationships), i.e., Resource
(from the standard AML library), Server (from the PMIF library), GaExecHost
(from the SysML/MARTE library).

For realizing this mapping, QVT provides the possibility to define a relation,
which is matched by QVT engines executed in the forward transformation mode
on the input model elements (in our case, the SysML model elements) to produce
the output model elements and to calculate their feature values (in our case, the
AML model elements). Similar relations are possible to develop for all the mappings
reported in Berardinelli et al. (2016) to obtain an executable specification of the
proposed mappings.

11.4.3.2 Integrating AML and PMIF
In Berardinelli et al. (2016), we proposed a model-driven performance engineering

approach for CPPS through the combination of AML with PMIF discussing
three possible integration strategies based on the native AML integration mech-

11 MDSE: Principles and Application in the CPPS Domain 291

anism (IEC, 2014). The one which applies for our given engineering chain
automation is via model transformation which we summarize in the following.

Modeling Rules for AML Figure 11.15b depicts the modeling rules applied on
AML models to close the semantics gap with the target model, i.e., PMIF. The goal
promoted by the proposed modeling rules is creating a domain-specific semantics
layer for PMIF in AML. A semantic layer is a collection RCs that is applied on a
semantics-agnostic graph represented by an IH (e.g., Areal in Fig. 11.14). These
RCs are suitably collected in AML RC1ibs and applied on purpose via RR and SRC
relationships.

The PMIF semantics layer includes a PMIFRoleClassLib RC1ib. In particular, a
new RC is created for each metaclass of the PMIF metamodel and inherits the name
from the corresponding metaclass.

The domain-specific semantics layering for PMIF is realized by assigning the
PMIF-specific RCs to IEs. In order to apply such a new PMIF domain-specific
semantics layer, RR and SRC relationships'’ are required that connect IEs to RCs,
as shown in Fig. 11.15b.

For this purpose we add the new PMIF domain-specific layer on top of the PPR
concepts, in accordance with the following three modeling rules:

Resource <w> Server: A resource RC is an entity involved in production and
executes processes and handle products (Schleipen and Drath, 2009). Similarly,
a Server represents a component of the execution environment that provides
some processing service (Smith and Williams, 1999).

Product <~ Workload: A product RC depicts a produced good, processed by
resources (e.g., material handling, creation of intermediate products) (Schleipen
and Drath, 2009). In this respect, a Workload represents a collection of jobs,
i.e., characterizes a product type, that make similar ServiceReqs to Servers
(i.e., resources).

Process <w»> ServiceRequests: A process RC represents a production process
including sub-processes, process parameters and the process chain, modifies
products and produces final products out of different sub-products (Schleipen
and Drath, 2009). Similarly, a ServiceReq associates the Workload (i.e.,
product types) with a Server (i.e., resources) (Smith et al., 2010). Therefore, an
ordered set of ServiceRegqs (Smith et al., 2010) builds up a process (Schleipen
and Drath, 2009).

AML to PMIF Model Transformation For this transformation, we do not require
the usage of profiles as for the SysML to AML transformation, but we have to
make use of the AML libraries as well as their applications on the input models.
Figure 11.17 shows an excerpt of a model transformation from AML to PMIF
implemented with QVT relations exploiting the PPR, PMIF, and SysML-MARTE
semantics layers.

10RRs assign RCs of a mandatory primary semantics layer, while additional ones can be assigned
via SRC.

292 L. Berardinelli et al.

InternalElement2Server

— «domain» —
ie:Internal — «domain» —
Element .
aml pmif s:Server
€---- -
name=n
name=n
supportedRoleClass

roleRequirement

r3:Role
rl:Role
name=,GaExecHost”
name=,Resource” rom SysML-MARTE Librar,
" supportedRoleClass oM v)
.

AML lib
& g r2:Role

(from PMIF library) name=, Server*
b |

Fig. 11.17 Excerpt of the AML-to-PMIF transformation in QVT

In particular, it shows a relation that generates a PMIF Server from an AML
IE playing the role of PMIF Server as modeled by the SRC relationships from
such IE to RCs of the PMIF RClib. Similar relations can be implemented to
transform AML IEs, ExtIs, and IL into PMIF Servers and Arcs as has been
done in Berardinelli et al. (2016).

It is worth noting that the left hand side of the QVT transformation in Fig. 11.16
corresponds to the right hand side of the QVT transformation in Fig. 11.17. Once
combined, these two QVT transformations realize the end-to-end integration among
SysML and PMIF adopting AML as an intermediate model, as depicted Fig. 11.15c.

11.4.4 Synopsis

The engineering chain shown in our case study relies on language-specific mecha-
nisms, i.e., (1) the profiling mechanism for OMG standard languages like UML and
SysML, and (2) the specification of RC1ib libraries in AML.

Both mechanisms create a set of additional information (referred as semantics
layer for AML) attached to source model elements (e.g., a SysML block or an
AML IE) via ad-hoc relationships (e.g., RRs and SRC). These layers are then
accessed by model transformation to generate new target models. The extent of
mappings between source and target modeling languages like SysML and AML,
then depends on (1) the completeness of profiles and RC1ibs, and, of course, (2)
on the requirements of the adopted model-driven methodology.

In Berardinelli et al. (2016), we already evaluated the current status of the
AMLA4SysML profile that currently maps a subset of AML concept to SysML model

11 MDSE: Principles and Application in the CPPS Domain 293

elements.'! In this chapter, we introduced for the first time a role class library
for SysML and MARTE. Currently it includes the small subset of the MARTE
stereotypes used in the proposed case study and its extension is left as future work.

Furthermore, we presented a model-driven performance methodology based
on the combination of SysML, AML, and PMIF. In particular, PMIF does not
provide extension mechanisms and does not allow the modeling of requirements
as available is SysML. For this reason, we deliberately ignore the mappings of
SysML requirements to AML and then their translation to PMIF. However, the
AML native extension mechanisms based on role classes can be also used to map
SysML requirements in AML as additional internal elements and relationships to an
extended version of the SysML/MARTE role class library.

Finally, we can state that for the engineers, the knowledge on a subset of SysML
and MARTE is powerful enough to perform early design and validation of systems
such as the IAF plant which also has to meet certain performance indicators. In
future work, we will investigate how general the proposed solution is in the context
of CPPS.

11.4.5 Critical Discussion

In this section we proposed an engineering chain or a technical process (cf. Chap.2)
for the architectural design and performance analysis of CPPS, leveraging model-
driven methodologies, modeling languages and tools from the authors’ background.

An appropriate selection of methodologies, languages and tools strictly depends
on the chosen views on the CPPS under study. In the proposed example we focused
on three main tasks, i.e., requirement specification, system design and performance
analysis, adopting two main models and modeling languages, namely SysML
for requirement and architectural specification tasks and PMIF for performance
analysis. Model transformation are then required to support the information flow
(see Chap. 2) between system models and analysis models.

Of course, the proposed technical process is limited in terms of the supported
tasks, we deliberately choose a general purpose modeling language such as SysML,
and two free, open, XML-based data exchange file formats, namely AML and PMIF.
We see the following two advantages of our design rationale:

Openness for other modeling concerns: The proposed technical process remain
open to additional process tasks e.g., by extending the CPPS SysML-based
design by UML profiles that increase the informative content of the information
flow among the planned steps.

Openness for other target tools: Additional target models and tools may be
attached to the current information flow through the adopted data exchange

"1 An up-to-date AML/SysML concepts mapping table is available at http://www.sysml4industry.
org/?page_id=299

http://www.sysml4industry.org/?page_id=299
http://www.sysml4industry.org/?page_id=299

294 L. Berardinelli et al.

formats, i.e., AML and PMIF. For example, WEASEL!? is Web service that
allows the user to send a PMIF-based QN model to the server, remotely execute
model transformations to tool-specific file formats, and receive back performance
indices calculated on different solvers. In addition, also other tools building on
AML may be used in the technical process such as for deriving implementation
artefacts, e.g., OPC UA specifications (Schleipen et al., 2015), which may be
employed in later engineering phases.

Of course, the implementation of a model-driven, customized technical pro-
cess poses both methodological and technical challenges. On the one hand, new
views can be added to support additional methodologies with native language
extension mechanisms such as UML profiling (e.g., combination of performance
with reliability and availability analyses (Berardinelli et al., 2009) or variability
modeling (Weilkiens, 2011)). On the other hand, new technical challenges may arise
requiring the implementation of additional, possibly bi-directional transformations
among new source/target models which is a challenge on its own (France and
Rumpe, 2007).

11.5 Conclusion and Future Challenges

In this book chapter, we have outlined how systems engineering processes can
be supported by novel model-driven engineering techniques to realize MDSE. In
particular, we have shown (1) how virtual prototypes are produced by using SysML,
(2) how this information may be exchanged on basis of AML to provide vertical as
well as horizontal engineering tool integration in the context of the V-Model, and
(3) how virtual prototypes are validated based on formal analysis methods such as
queuing networks. All of this is facilitated by a set of machine-readable models and
well defined model transformations between them.

The reference model we presented in this book chapter may be further exploited
by new language combinations as well as extended for other scenarios. In particular,
we see research required to classify existing MDSE approaches with respect to
the tasks which are automated. In addition, empirical user studies are required to
evaluate how well MDE approaches are received by practitioners. Furthermore, the
following research lines are of major interest to further develop the area of MDSE.

Requirements modeling and their validation and verification. It starts already
by the requirements specification as different properties may be expected from
the system. As we focussed in this book chapter on non-functional properties
such as performance attributes of the system, also functional properties such as
temporal properties ensuring safety requirements may be needed as well. In previous
work, we have provided a method to construct property languages which allow

2WEASEL Web Service http://sealabtools.di.univaq.it/tools.php

http://sealabtools.di.univaq.it/tools.php

11 MDSE: Principles and Application in the CPPS Domain 295

to formulate temporal properties of interest within the domain-specific language
and to use existing model checkers to verify them (Meyers et al., 2014). Utilizing
this approach for systems engineering is an interesting future research line, e.g., to
generate a property language for SysML which would require to handle parametrics
diagrams as well during the modeling checking process.

Synthesis of discipline-specific models. Another research line is the investi-
gation of transferring system design models established in the early phases to
discipline-specific models (Kernschmidtet al., 2013). Here a dedicated step to refine
the early systems designs into discipline-specific solutions is necessary, first of all
to clarify which elements are realized with mechanical, electrical, and software
components. SysML4Mechatronics (Kernschmidt and Vogel-Heuser, 2013) seems
a very promising candidate to perform this refinement step. Subsequently, dedicated
transformations are needed to derive different models for the specific disciplines
starting from mCAD over eCAD to software models. Providing full traceability
from the systems engineering models to the domain-specific models is a major
requirement to deal with evolution concerns as well as with verification and
validation concerns.

Model-driven design-space exploration. One major benefit of systems engi-
neering is to explore the design-space before one design is chosen to be realized.
For performing design-space exploration efficient search techniques are needed
as exhaustive search, i.e., enumerating each possible design solution, is for most
cases not feasible due to the combinatorial explosion. A very recent emerging
model transformation approach is search-based model transformation (Fleck et al.,
2016) which combines the power of model transformations to systematically
manipulate models and the highly-scalable search capabilities of meta-heuristic
search algorithms. In particular, by formulating objectives for the design models
(also including multi-objectives) in terms of fitness functions, the search algorithms
are guiding the transformation rule applications to find good design models.

Model-driven product lines. In this book chapter we considered the creation
of models from scratch except the availability of a model library providing already
existing building blocks which have to be combined. An alternative approach is to
build a family of systems which allows to derive different concrete realizations. This
approach is often referred to as product-line engineering. A product-line provides
a description of the commonalities as well as differences of the concrete system
realizations covered by the product-line. The design process is then reduced to
configuring a concrete realization, e.g., by using a feature model to select certain
features and using model completion to derive a valid realization in cases where
only a partial selection is performed. The combination of product-line engineering
and SysML has been already discussed in the literature (Papakonstantinou and
Sierla, 2013; Maga and Jazdi, 2010) and different efforts are ongoing to further
support product-line engineering with SysML especially in multi-disciplinary set-
tings (Vogel-Heuser et al., 2015).

Model profiling. We consider this research field as the natural continuation
and unification of different already existing techniques with respect to the usage
of models in the context of MDE. Model profiling continues the research lines

296 L. Berardinelli et al.

of (1) process mining (Leemans and van der Aalst, 2015), (2) specification
mining (Dallmeier et al., 2012), (3) FSA learning (Giles et al., 1992), (4) data
profiling (Abedjan et al., 2015), (5) program profiling (Graham et al., 1982), and (6)
data mining as well as (7) data analytics (Fayyad et al., 1996). All these techniques
aim at better understanding the concrete data and events used in or by a system and
by focusing on particular aspects of it. Therefore, we consider model profiling as a
very promising field to bridge the gap between the design time and runtime phases
in the current state-of-the-art in MDE. In particular, the automated information
upstream from operations to the design is highly needed to improve the design of a
system continuously with additional knowledge from operations.

Acknowledgements This work has been supported by the Christian Doppler Forschungsge-
sellschaft and the BMWFW, Austria and by the Austrian Research Promotion Agency (FFG) within
the project “InteGra 4.0 - Horizontal and Vertical Interface Integration 4.0”.

References

Abedjan, Z., Golab, L. and Naumann, F.: Profiling relational data: a survey. VLDB J. 24(4), 557-
581 (2015)

Alt, O.: Modellbasierte Systementwicklung mit SysML. Carl Hanser Verlag, Munich (2012)

Berardinelli, L., Bernardi, S., Cortellessa, V., Merseguer, J.: UML profiles for non-functional
properties at work: analyzing reliability, availability and performance. In: ‘Proceedings of
NFPinDSML Workshop @ MoDELS’ (2009)

Berardinelli, L., Biffl, S., Liider, A., Mitzler, E., Mayerhofer, T., Wimmer, M., Wolny, S.: Cross-
disciplinary engineering with AutomationML and SysML. Automatisierungstechnik 64(4),
253-269 (2016)

Berardinelli, L., Mitzler, E., Mayerhofer, T., Wimmer, M.: Integrating performance modeling
in industrial automation through AutomationML and PMIF. In: Proceedings of the IEEE
International Conference on Industrial Informatics (INDIN), pp. 1-6 (2016)

Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE. Softw. Syst.
Model. 10(3), 313-336 (2011)

Bezivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171-188 (2005)

Biffl, S., Liider, A., Mitzler, E., Schmidt, N., Wimmer, M.: Linking and versioning support
for AutomationML: a model-driven engineering perspective. In: Proceedings of 2015 IEEE
International Conference on Industrial Informatics (INDIN), pp. 499-506 (2015)

Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide, 2nd edn.
Addison-Wesley, Reading, MA (2005)

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan
and Claypool, San Rafael (2012)

Broy, M., Schmidt, A.: Challenges in engineering Cyber-Physical Systems. Computer 47(2), 70-72
(2014)

Casale, G., Serazzi, G.: Quantitative system evaluation with Java modeling tools. In: Proceedings
of the 2nd ACM/SPEC International Conference on Performance Engineering (ICPE), pp. 449—
454 (2011)

Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance Analysis.
Springer, Berlin (2011)

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J.
45(3), 621-645 (2006)

11 MDSE: Principles and Application in the CPPS Domain 297

Dallmeier, V., Knopp, N., Mallon, C., Fraser, G., Hack, S., Zeller, A.: Automatically generating
test cases for specification mining. IEEE Trans. Softw. Eng. 38(2), 243-257 (2012)

Equipment Center for Distributed Systems: http://www.iaf-bg.ovgu.de/en/technische_ausstattung_
cvs.html (2016). [Online; accessed 30 Oct 2016]

Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an
overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances
in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence,
pp. 1-34. AAAI Press, Menlo Park, CA (1996)

Feldmann, S., Kernschmidt, K., Vogel-Heuser, B.: Combining a SysML-based modeling approach
and semantic technologies for analyzing change influences in manufacturing plant models. In:
Proceedings of the 47th CIRP Conference on Manufacturing Systems (CMS) (2014)

Fleck, M., Troya, J., Wimmer, M.: Search-based model transformations with MOMOoT. In: Pro-
ceedings of the 9th International Conference on Theory and Practice of Model Transformations
(ICMT), pp. 79-87 (2016)

France, R.B., Rumpe, B.: Model-driven development of complex software: a research roadmap.
In: Proceedings of the International Conference on Software Engineering (ICSE), pp. 37-54
(2007)

Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: the Systems Modeling
Language. Morgan Kaufmann, Amsterdam (2014)

Giles, C.L., Miller, C.B., Chen, D., Chen, H.-H., Sun, G.-Z., Lee, Y.-C.: Learning and extracting
finite state automata with second-order recurrent neural networks. Neural Comput. 4(3), 393—
405 (1992)

Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler. SIGPLAN
Not. 17(6), 120-126 (1982)

Hegny, 1., Wenger, M., Zoitl, A.: IEC 61499 based simulation framework for model-driven
production systems development. In: Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1-8 (2010)

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of MDE in
industry. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE),
pp. 471480 (2011)

IEC: IEC 62714 — Engineering data exchange format for use in industrial automation systems
engineering — AutomationML. http://www.iec.ch (2014)

ISO/PAS: ISO/PAS 17506:2012 Industrial automation systems and integration — COLLADA
digital asset schema specification for 3D visualization of industrial data. http://www.iso.org
(2012)

Jetley, R., Nair, A., Chandrasekaran, P., Dubey, A.: Applying software engineering practices
for development of industrial automation applications. In: Proceedings of the 11th IEEE
International Conference on Industrial Informatics (INDIN), pp. 558-563 (2013)

Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic
initiative INDUSTRIE 4.0 — securing the future of German manufacturing industry. Final
Report of the Industrie 4.0 Working Group, Forschungsunion im Stifterverband fiir die
Deutsche Wirtschaft e. V. (2013)

Kernschmidt, K., Vogel-Heuser, B.: An interdisciplinary SysML based modeling approach for
analyzing change influences in production plants to support the engineering. In: Proceedings of
the IEEE International Conference on Automation Science and Engineering (CASE), pp. 1113—
1118 (2013)

Kernschmidt, K., Barbieri, G., Fantuzzi, C., Vogel-Heuser, B.: Possibilities and challenges
of an integrated development using a combined SysML-model and corresponding domain
specific models. In: Proceedings of the 7th IFAC Conference on Manufacturing Modelling,
Management, and Control (MIM), pp. 1465-1470 (2013)

Kiihne, T.: Matters of (Meta-)modeling. Softw. Syst. Model. 5(4), 369-385 (2006)

Kurtev, I.: State of the art of QVT: A model transformation language standard. In: Proceedings
of the International Symposium on Applications of Graph Transformations with Industrial
Relevance (AGTIVE), pp. 377-393 (2007)

http://www.iaf-bg.ovgu.de/en/technische_ausstattung_cvs.html
http://www.iaf-bg.ovgu.de/en/technische_ausstattung_cvs.html
http://www.iec.ch
http://www.iso.org

298 L. Berardinelli et al.

Kyura, N., Oho, H.: Mechatronics—an industrial perspective. IEEE/ASME Trans. Mechatron. 1(1),
10-15 (1996)

Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC),
pp. 363-369 (2008)

Leemans, M., van der Aalst, W.M.P.: Process mining in software systems: discovering real-life
business transactions and process models from distributed systems. In: Proceedings of the 18th
International Conference on Model Driven Engineering Languages and Systems (MoDELS),
pp. 44-53 (2015)

Licio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G. M.K., Syriani, E., Wimmer, M.:
Model transformation intents and their properties. Softw. Syst. Model. 15(3), 647-684 (2016)

Liider, A., Schmidt, N., Helgermann, S.: Lossless exchange of graph based structure information of
production systems by AutomationML. In: Proceedings of IEEE 18th Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1-4 (2013)

Lider, A., Schmidt, N., Rosendahl, R.: Data exchange toward PLC programming and virtual
commissioning: is AutomationML an appropriate data exchange format? In: Proceedings of the
IEEE 13th International Conference on Industrial Informatics (INDIN), pp. 492-498 (2015)

Maga, C.R., Jazdi, N.: An approach for modeling variants of industrial automation systems. In:
Proceedings of the IEEE International Conference on Automation Quality and Testing Robotics
(AQTR), pp. 1-6 (2010)

Malavolta, 1., Lago, P, Muccini, H., Pelliccione, P, Tang, A.: What industry needs from
architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869-891 (2013)

Mazak, A., Wimmer, M., Huemer, C., Kappel, G., Kastner, W.: Rahmenwerk zur modellbasierten
horizontalen und vertikalen Integration von Standards fiir Industrie 4.0. In: Vogel-Heuser, B.
et al. (eds.) Handbuch Industrie 4.0. Springer, Berlin (2016)

Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electron. Notes Theor. Comput. Sci.
152, 125-142 (2006)

Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H., Wimmer, M.: Promobox:
a framework for generating domain-specific property languages. In: Proceedings of the 7th
International Conference on Software Language Engineering (SLE), pp. 1-20 (2014)

Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Core Specification. OMG
Document ptc/03-10-04 (2003)

Object Management Group (OMG): Object Constraint Language (OCL) Specification. Version 2.2.
OMG Document formal/2010-02-01 (2010)

Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT). OMG Document formal/2016-06-03 (2016a)

Object Management Group (OMG): OMG Systems Modeling Language (OMG SysML). http://
www.omg.org/spec/SysML/1.4/ (2016b)

Object Management Group (OMG): UML Profile for MARTE. Version 1.1. http://www.omg.org/
spec/MARTE/1.1/PDF (2016c¢)

Papakonstantinou, N., Sierla, S.: Generating an Object Oriented IEC 61131-3 software product
line architecture from SysML. In: Proceedings of the IEEE 18th Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1-8 (2013)

PLCopen: PLCopen. http://www.plcopen.org (2011)

Schleipen, M., Drath, R.: Three-view-concept for modeling process or manufacturing plants with
AutomationML. In: Proceedings of the IEEE Conference on Emerging Technologies Factory
Automation (ETFA), pp. 1-4 (2009)

Schleipen, M., Drath, R., Sauer, O.: The system-independent data exchange format CAEX for
supporting an automatic configuration of a production monitoring and control system. In:
Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 1786—
1791 (2008)

Schleipen, M., Selyansky, E., Henssen, R., Bischoff, T.: Multi-level user and role concept for a
secure plug-and-work based on OPC UA and AutomationML. In: Proceedings of the 20th IEEE
Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-4 (2015)

http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.plcopen.org

11 MDSE: Principles and Application in the CPPS Domain 299

Schmidt, D.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2), 25-31
(2006)

Schiitz, D., Legat, C., Vogel-Heuser, B.: MDE of manufacturing automation software — integrating
SysML and standard development tools. In: Proceedings of the 12th IEEE International
Conference on Industrial Informatics (INDIN), pp. 267-273 (2014)

Seidl, M., Scholz, M., Huemer, C., Kappel, G.: UML@Classroom. Springer, New York (2012)

Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems. Elsevier, Heidelberg (2013)

Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley Longman Publish-
ing Co., Inc., Reading, MA (1990)

Smith, C.U., Llado, C.M., Puigjaner, R.: Performance Model Interchange Format (PMIF 2): a
comprehensive approach to Queueing Network Model interoperability. Perform. Eval. 67(7),
548-568 (2010)

Smith, C.U., Williams, L.G.: A performance model interchange format. J. Syst. Softw. 49(1), 63—
80 (1999)

Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open questions.
Softw. Syst. Model. 9(1), 7-20 (2010)

Troya, J., Vallecillo, A.: Specification and simulation of queuing network models using domain-
specific languages. Comput. Stand. Interfaces 36(5), 863-879 (2014)

Vangheluwe, H., Amaral, V., Giese, H., Broenink, J., Schitz, B., Norta, A., Carreira, P., Lukovic, I.,
Mayerhofer, T., Wimmer, M., Vallecillo, A.: MPM4CPS: multi-paradigm modelling for Cyber-
Physical Systems. In: Proceedings of the Project Showcase @ STAF 2015, pp. 1-10 (2016)

Verein Deutscher Ingenieure (VDI): Design methodology for mechatronic system—VDI 2206
(2004)

Vogel-Heuser, B., Biffl, S.: Cross-discipline modeling and its contribution to automation. Automa-
tisierungstechnik 64(3), 165-167 (2016)

Vogel-Heuser, B., Fay, A., Schaefer, 1., Tichy, M.: Evolution of software in automated production
systems: challenges and research directions. J. Syst. Softw. 110, 54-84 (2015)

Vogel-Heuser, B., Fuchs, J., Feldmann, S., Legat, C.: Interdisziplindrer Produktlinienansatz zur
Steigerung der Wiederverwendung. Automatisierungstechnik 63(2), 99-110 (2015)

Vyatkin, V.: Software engineering in industrial automation: state-of-the-art review. IEEE Trans.
Ind. Inf. 9(3), 1234-1249 (2013)

Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan
Kaufmann, Waltham (2011)

Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic definitions?
Commun. ACM 20(11), 822-823 (1977)

Chapter 12
Semantic Web Technologies for Data Integration
in Multi-Disciplinary Engineering

Marta Sabou, Fajar J. Ekaputra, and Stefan Biffl

Abstract A key requirement in supporting the work of engineers involved in
the design of Cyber-Physical Production Systems (CPPS) is offering tools that
can deal with engineering data produced across the various involved engineering
disciplines. Such data is created by different discipline-specific tools and is repre-
sented in tool-specific data models. Therefore, due to this data heterogeneity, it is
challenging to coordinate activities that require project-level data access. Semantic
Web technologies (SWTs) provide solutions for integrating and making sense of
heterogeneous data sets and as such are a good solution candidate for solving data
integration challenges in multi-disciplinary engineering (MDE) processes specific
for the engineering of cyber-physical as well as traditional production systems. In
this chapter, we investigate how SWTs can support multi-disciplinary engineering
processes in CPPS. Based on CPPS engineering use cases, we discuss typical
needs for intelligent data integration and access, and show how these needs can be
addressed by SWTs and tools. For this, we draw on our own experiences in building
Semantic Web solutions in engineering environments.

Keywords Multi-disciplinary engineering ¢ Data integration * Semantic Web ¢
Linked data * Ontology-based information integration

12.1 Introduction

The Industrie 4.0 initiative considers added-value processes that rely on strong data
integration across various stakeholders, engineering disciplines, and engineering
and operation phases; examples are the use cases and application examples in
VDI/VDE (2014) and Industrie 4.0 WG (2013). The shorter lifecycles and higher

M. Sabou (<) « F.J. Ekaputra
Technische Universitidt Wien, Favoritenstrasse 11, Wien, Austria
e-mail: Marta.Sabou @ifs.tuwien.ac.at; Fajar.Ekaputra@tuwien.ac.at

S. Biffl
Technische Universitit Wien, Wien, Austria
e-mail: Stefan.Biffl@tuwien.ac.at

© Springer International Publishing AG 2017 301
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_12

mailto:Marta.Sabou@ifs.tuwien.ac.at
mailto:Fajar.Ekaputra@tuwien.ac.at
mailto:Stefan.Biffl@tuwien.ac.at

302 M. Sabou et al.

variation of products require better integration (a) between the life cycles of
products and the associated production systems and (b) between the engineering
and operation phases of these production systems. These issues have been discussed
in detail during the introduction to multi-disciplinary engineering (MDE) for CPPS
in Chap. 1. The more complex design-time and run-time variation points in the
design of products and CPPS considerably enlarge the state space of these systems
compared to traditional products and production systems. Therefore, MDE for CPPS
has stronger data integration needs compared to the MDE of traditional, more or less
fixed, production systems.

Semantic Web technologies (SWTs) are a family of knowledge-based approaches
suitable to deal with the data heterogeneity aspects of CPPS and to enable
advanced capabilities of such systems that inherently rely on data integration (e.g.,
handling disturbances, adapting to new business requirements). Unlike traditional
knowledge-based approaches (Legat et al. 2013), SWTs aim to address data
heterogeneity in Web-scale settings thus tackling challenges in terms of data size,
heterogeneity, and level of distribution (Berners-Lee et al. 2001). SWTs enable a
wide range of advanced applications (Shadbolt et al. 2006) and they have been
successfully employed in various areas, ranging from pharmacology (Gray et al.
2014) to cultural heritage (Hyvonen 2012) and e-business (Hepp 2008).

In this chapter, we investigate Semantic Web-based data integration as an
approach to cater for addressing heterogeneity needs in MDE scenarios specific to
CPPS. For that, we draw on several years of experience in using SWTs for creating
flexible automation systems with industry partners as part of the Christian Doppler
Laboratory “Software Engineering Integration for Flexible Automation Systems”
(CDL-Flex)'.

Concretely, we aim to address two of the over-arching research questions that are
core to this book and were specified in Chap. 1. First, we engage in “the analysis
of typical requirements for the integration of engineering project data coming from
heterogeneous data sources” (RQ 12.a). For this, we identify in Sect. 12.2 concrete
needs for semantic integration in CPPS settings and validate those needs with eight
use cases and application examples introduced in VDI/VDE (2014) and Industrie
4.0 WG (2013).

Second, with respect to RQ I1 from Chap. 1, we introduce SWTs as examples
of methods and technologies that support the integration on information within and
across value chains of products, production systems, and production technologies,
with a particular focus on horizontal data integration across MDE teams during the
engineering of CPPS. To that end, we introduce in Sect. 12.3 the basics of SWTs
with a special focus on their use for data integration and explain how core SWT
capabilities address the industry needs detailed in Sect. 12.2. In Sect. 12.4, we sketch
the current uptake of SWTs in representative approaches for CPPS engineering.
Finally, we provide an example use case where SWTs were used to support data
integration during the multi-disciplinary engineering phase of a production system,
namely a hydro power plant (Sects. 12.5 and 12.6). We conclude in Sect. 12.7.

!CDL-Flex: http://cdLifs.tuwien.ac.at/

http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://dx.doi.org/10.1007/978-3-319-56345-9_1
http://cdl.ifs.tuwien.ac.at

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 303

In this book, several chapters relate to the topics discussed in this chap-
ter. Chapter 4 on Product Lifecycle Management Systems discusses data and
information management issues arising from the advanced use of Model-Based
Systems Engineering (MBSE) methods, which need to deal with data interfaces
to several systems engineering disciplines. Section 4.2.2 on Model Representation
summarizes standards for multi-disciplinary product engineering, such as STEP,
product manufacturing information, JT, and SysML. Section 4.2.3 on Information
management and integration discusses the role of semantic technologies as a neutral
or intermediate layer between different areas of the development process and as
foundation for data analytics to integrate product design data, production process
data, and quality measurements.

Chapter 9 on Engineering Software Tool Chains discusses engineering data
formats for the exchange of data between mechanical design, electrical design,
and software design. Chapter 10 on the problem of standardized information
exchange within production system engineering presents requirements for informa-
tion exchange technologies for multi-disciplinary engineering settings. Chapter 15
on setting up a Multi-Disciplinary Knowledge Base for Deterministic Product
Ramp-Up Processes reports on the application of Semantic Web technologies for
mapping descriptions of device-independent production processes to descriptions of
device-dependent production system capabilities as foundation for deciding on the
feasibility to run a specified production process in a given production context. Chap-
ter 16 on Model Quality Assurance for Multi-Disciplinary Engineering presents a
change review process for multi-disciplinary models, which can also be applied to
engineering models expressed with Semantic Web technologies.

12.2 Industry Needs for Semantic Web Technologies

Semantic integration is a foundation for engineering tool support across disciplines,
based on isolated engineering tools and their data models. Biffl et al. (2016) have
considered the research question on needs for semantic support in multi-disciplinary
production system engineering.

In the following, we summarize four usage scenarios that illustrate important
needs for semantic data integration, which pose challenges to the domain experts in
their daily work. Then we describe these needs for semantic data integration. A more
detailed description of these usage scenarios and needs can be found in Biffl et al.
(2016). We validate the needs for semantic data integration with eight use cases and
application examples introduced in VDI/VDE (2014) and Industrie 4.0 WG (2013).

Scenario 1, called Discipline-Crossing Engineering Tool Networks, focuses on
the correct and consistent propagation of engineering data in a MDE context
between engineering activities, engineers, and tools. A semantic challenge is the
heterogeneous modeling of the discipline-specific views on the same objects (e.g.,
plant sensors, drives, and controllers). Currently, these common concepts, which
appear in different forms in several disciplines, are not explicitly represented in

http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_4
http://dx.doi.org/10.1007/978-3-319-56345-9_9
http://dx.doi.org/10.1007/978-3-319-56345-9_10
http://dx.doi.org/10.1007/978-3-319-56345-9_15
http://dx.doi.org/10.1007/978-3-319-56345-9_16

304 M. Sabou et al.

discipline-specific and isolated tools, which makes data analysis across disciplines
more difficult and dependent on the interpretation by human experts. Adequate
modeling and integration of engineering knowledge would provide the foundation
for better production systems quality and for better engineering tool networks. For
this scenario, the needs N1 to N4 and N6 (see Table 12.1) for engineering knowledge
modeling and integration capabilities are relevant.

Scenario 2, called Use of existing Artifacts for Plant Engineering, concerns
the reuse and protection of knowledge represented in the “digital shadows” of
components in technical systems during engineering. Key issues concern the
description of the reuse requirements for production systems and the capabilities
of reusable devices and components for the effective and efficient identification
and preparation of reusable production system components. A mapping method
for the evaluation of component models to decide about the potential usability
of the component within a production system requires well-defined semantics for
production system components in the production system hierarchy to improve
the quality and efficiency of production systems engineering. For this scenario,
the needs N1 to N6 (see Table 12.1) for engineering knowledge modeling and
integration capabilities are relevant.

Scenario 3, called Flexible Production System Organization, concerns the Indus-
trie 4.0 value chain processes “Commissioning” and “Use for production”, in
particular the run-time flexibility of production systems during the operation phase.
The dynamic integration or change of components within the production system
at run time requires well-defined semantics for describing the capabilities, access
paths, and control-related features of these components. In addition, the CPPS
needs the capability to reason about the information provided by the component
and to integrate the component at run time into the target production processes.
This capability requires the integration of advanced knowledge about the production
system and the product within the production system control system at production
system run time. For this scenario, the needs N1 to N3, N5, and N6 (see Table 12.1)
for engineering knowledge modeling and integration capabilities are relevant.

Scenario 4, called Maintenance and Replacement Engineering, focuses on the
“Maintenance and decomposition planning” and “Maintenance” phases of the
Industrie 4.0 value chains. Automation support for the assessment of the impact
of changes to selected plant components or devices requires strong integration
of the diverse kinds of knowledge coming from several roles in the engineering
process with the maintenance knowledge during production system operation.
Maintenance and repair strategies require the combination of engineering and
run-time information of a production system to achieve improved maintenance
capabilities of production system components. Such scenarios require a common
semantics of engineering and run-time information related to system components
and devices. General behavior models of components are required, which exploit
engineering information and specific system knowledge, and can be combined
with run-time information coming from the production system. For this scenario,
all needs N1 to N7 (see Table 12.1) for engineering knowledge modeling and
integration capabilities are relevant.

305

pasu JuedyIuSIs ou ** [[29 A)dwo {podu 9[qeIOPISUOD “* 4 podu Suons " 44

+4+ +4+ ++ ++ ++ ++ +4+ +4 own unt wIsAs-uononpoid je 93po[mouy SULIROUISUD pAjeI3AUI Jo SUTUOISIAOL /N
++ 44+ +4+ + a8pajmoury ssaoo1d Jumeauidus Areurjdiosip-nnuw 1oy Joddng 9N

++ ++ ++ ++ ++ ++ ++ ++ suopeotidde SuL1oauISuS JUSSI[AIUI PUE AQPAL] N
++ + + 4+ ++ ++ + g9\ 9Y) UO pue UoneZIueSIo oy} Ul BJEp PAInjonIns-1uas 0 sS900e JUAdg N
++ +4+ ++ ++ ++ ++ ++ ++ sonAJeue pue ssod0e a3po[mouy| SuLouISug €N
++ ++ ++ ++ ++ ++ ++ uoneIdajul ejep utoduidug N
++ ++ ++ ++ ++ ++ ++ ++ uonejuesardor o3pojmouy Suneouisud JIdxg N
SI Tl €I u 11 A A IA sordwrexa uoneodrdde/sased as) pue spoou FULIPAUISUD WIA)SAS UOIONPOI]

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . .

(XN) seniiqedes uonei3aur
pue Surepowr 93pojmouy] SULIAUISUD oNuBWAS 10 spaou pue (X]) sojdwexe uonesrdde pue (xA) sosed osn SULIAUISUD WRISAS uononpold T¢I dqeL

306 M. Sabou et al.

The four scenarios assume strong integration of knowledge coming from several
roles in the engineering and maintenance process based on the well-defined
semantics for a set of shared common concepts allowing to combine engineering
views, such as the production plant topology, mechanical construction geometry
and kinematics, electrical communication and wiring, behavior information on
processes and production resources, and PLC control code.

From these four scenarios, Biffl et al. (2016) derived the following seven needs
(Nx) for semantic engineering knowledge modeling and integration capabilities.

NI—Explicit Engineering Knowledge Representation The expressiveness of the
modeling approaches currently in use is not sufficient for the expression of
knowledge needed to automate engineering processes for CPPS engineering. A key
requirement of all scenarios is well-defined semantics of engineering and operation
knowledge coming from several disciplines and tools for explicit knowledge
representation and design.

N2—Engineering Data Integration In MDE, the heterogeneous data models in
typical engineering tools use different terms and data formats for similar concepts,
which makes the parallel engineering of CPPS more difficult, costly, and risky.
A key requirement of all scenarios is the semantic integration of heterogeneous
engineering and operation knowledge coming from several disciplines and tools.

N3—Engineering Knowledge Access and Analytics In the MDE of CPPS, domain
experts in engineering and operation need to access and analyze the integrated data
model based on the capabilities to provide formally represented and integrated engi-
neering. A requirement of all scenarios are effective and efficient mechanisms for
querying engineering model versions and for defining and evaluating engineering
model constraints and rules across MDE views.

N4—Efficient Access to Semi-structured Data in the Organization and on the Web
MDE domain experts use many data sources, while engineering process automation
mostly uses structured data that follow a metamodel. A requirement of most
scenarios is efficient automated access to semi-structured data, such as technical
fact sheets that include natural language text, or linked data, such as component
information from a provider or in the organization to automate support for reuse
processes.

N5—Flexible and Intelligent Engineering Applications (for the Automation of Engi-
neering) Intelligent engineering applications, such as defect detection and con-
straint checking, can be designed based on the capability of knowledge access and
analytics on an integrated production system plant model. A requirement of some
scenarios are flexible engineering applications that are driven by the description of
the production system and therefore can adapt to changes in a CPPS both at design
time and at run time.

N6—Support for Multi-Disciplinary Engineering Process Knowledge In MDE, a
goal is to increase the quality and efficiency of the MDE process by representing
engineering process responsibilities and process states linked to the production
system plant model. A requirement of all scenarios are an extension of the

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 307

description of the CPPS with model versions and knowledge on process attributes
for analysis and improvement, such as tentative changes.

N7—Provisioning of Integrated Engineering Knowledge at System Run Time In a
CPPS context, domain experts and CPPS mechanisms need engineering knowledge
at run time to assess in a situation, which needs changing the system, the set of
options for a successful change. A requirement of some scenarios is timely access
to integrated engineering knowledge at system run time to support applications that
depend on reacting to real-time processes.

Table 12.1 provides an overview rating to what extent the eight Industrie 4.0
use cases and application examples on CPPS engineering from VDI/VDE (2014)
and Industrie 4.0 WG (2013) require the needs for semantic engineering knowledge
modeling and integration capabilities, N1 to N7. In the following, we will discuss
for each use case and application example the rationale for the ratings given in Table
12.1.

V1. VDI Use Case 1 Optimization of batch processes in a mid-sized company
(VDI/VDE 2014). The core goal of this use case is to improve the optimization
of the adaptation of batch process recipes for the production in a specific industrial
plant by using external computation power.

The solution approach builds on expertise from the disciplines of production
process engineering and simulation as well as software service engineering to enable
the description of recipes and plants as input to a simulation service that allows
adapting the recipe to the needs of a local production engineer.

In this use case, explicit engineering knowledge representation (N1) and engi-
neering data integration (N2) on the production process and on the plant character-
istics are strongly relevant to enable engineering knowledge access and analytics
(N3) for the optimization of the production process settings. In the description of
the use case, the need for efficient access to semi-structured data in the organization
and on the Web (N4) is not explicitly stated but probably useful, e.g., to interpret
data from technical fact sheets coming from technology providers. The envisioned
system is a flexible and intelligent engineering application (N5), which provides
integrated engineering knowledge at production-system run time (N7).

V2. VDI Use Case 2 Plug-and-produce in modular industrial plants (VDI/VDE
2014). Core goal of this use case is to reduce the engineering effort needed
during the operation phase to exchange a processing module against a functionally
equivalent new module by using external computing and simulation power.

The solution approach builds on expertise from the disciplines of CPPS engi-
neering, including the coordination of modules, module control, and visualization
to enable the description of requirements for and capabilities of modules as input
to automatically linking the module interfaces to the interfaces of the production
system and adapting the control, communication, and visualization as needed.

In this use case, the needs N1 to N5 and N7 are strongly relevant to support
the formal description and model analysis of a module to enable automating
engineering processes during the operation phase that currently depend strongly on

308 M. Sabou et al.

human engineering and configuration activities. For describing the tentative use of
processing modules in a solution option, N6 is relevant for the extension of the plant
structure with engineering process elements.

V3. VDI Use Case 3 Self-correction of a discrete manufacturing process
(VDI/VDE 2014). Core goal of this use case is to reduce the downtime of production
by enhancing a machine for punching and bending with measurement technology
for the self-correction of tool parameters to counter changes in the production
environment.

The solution approach builds on expertise from the disciplines of the process
engineer, the tool vendor, and the CPPS engineer to define system goals for
the process, such as minimal process duration or minimal energy consumption,
to describe how changes in tool parameters may have an impact on achieving
these system goals, and to design a distributed system to collect the data for the
optimization from heterogeneous sources.

In this use case, the needs N1 to N7 are strongly relevant to enable the description
of system goals, the means to achieve these system goals, the mechanism for
reasoning on tentative solution options, including access to external data sources
and services for the optimization.

I1. Industrie 4.0 WG Example Application 1 Energy consumption by a vehicle
body assembly line (Industrie 4.0 WG 2013). Core goal in this example application
is to reduce the energy consumed by a vehicle body assembly line while the line
is not in use by envisioning new versions of the involved machines that allow their
systematic control for going into an energy-saving mode.

The solution approach builds on expertise from the disciplines of machine tool
vendors, process engineers, and CPPS engineers to provide advanced machines that
can be systematically powered down during breaks in production for better energy
efficiency while keeping the system ready to restart production.

In this example application, the needs N1 to N3 are strongly relevant to enable
the description of production system goals, machine capabilities and their control,
and a mechanism to optimize and coordinate a set of machines at run time. The
needs N5 and N7 concern the design of an engineering application, which will
provide integrated engineering knowledge at run time as foundation for data-based
optimization at run time based on sensor data.

12. Industrie 4.0 WG Example Application 2 End-to-end system engineering
across the entire value chain (Industrie 4.0 WG 2013). Core goal in this visionary
example application is to allow manufacturing individual products by adapting the
IT support for systems engineering to enable a global overview from the perspective
of the product that is manufactured.

The solution approach builds on expertise from the disciplines of software tool
vendors and CPPS engineers to evolve the IT landscape from the current state of IT
systems with a variety of interfaces that are hard to change and maintain towards
the vision of end-to-end systems engineering, in which software tools from several
vendors work together seamlessly.

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 309

In this example application, the needs N1 to N3 are strongly relevant to enable the
integrated description of the production system and alignment with the interfaces of
the relevant IT tools used. Some of these IT support systems will be intelligent
engineering applications (N5), which need access to the engineering process
knowledge (N6), probably also to semi-structured data in the organization and on
the Web (N4). To support the complete value chain, the engineering knowledge has
to be provided at run time (N7).

13. Industrie 4.0 WG Example Application 3 Supporting custom manufacturing:
how an individual customer’s requirements can be met (Industrie 4.0 WG 2013).
Core goal in this example application is to enable a producer for reacting to last-
minute requests for changes prior or during production based on the customer- and
product-specific coordination of MDE with business value chains.

The solution approach builds on expertise from the disciplines of manufacturing
execution system (MES) tool vendors and CPPS engineers to evolve product line
engineering and manufacturing support from a solution tightly coupled with the
production line hardware to a flexible product line that allows mixing and matching
the equipment and production resources from several parts of the product line.

In this example application, the needs N1 to N3 are strongly relevant to enable the
integrated description of the CPPS and the product lines. The flexible MES will be
an intelligent engineering application (N5), which needs access to the engineering
process knowledge (N6), such as changes to the product line, probably also to semi-
structured data in the organization and on the Web (N4). To support the changes
during production, the engineering knowledge has to be provided at run time (N7).

14. Industrie 4.0 WG Example Application 4 Telepresence for manufacturing
system diagnosis and maintenance (Industrie 4.0 WG 2013). Core goal in this
example application is to make manufacturing system maintenance more effective
and more efficient by introducing a telepresence platform that provides advanced
services to support manufacturing systems in finding appropriate experts for their
diagnosis and maintenance.

The solution approach builds on expertise from the disciplines of service
providers, manufacturing system tool vendors, and CPPS engineers to evolve the
current business process of servicing the machines of one vendor to the coordinated
data-driven servicing of a manufacturing system, probably consisting of machines
coming from several vendors.

In this example application, the needs N1 to N3 are strongly relevant to enable
the integrated description of the manufacturing system, a CPPS, and the servicing
functionality for machines coming from several vendors. The telepresence platform
will include intelligent engineering applications (N5), which probably will need
access to semi-structured data in the organization and on the Web (N4). To support
changes to the manufacturing system during production, the engineering knowledge
has to be provided at run time (N7).

I5. Industrie 4.0 WG Example Application 5 Sudden change of supplier during
production due to a crisis beyond the manufacturer’s control (Industrie 4.0 WG

310 M. Sabou et al.

2013). Core goal of this example application is to improve the fallback planning of
a sudden change of supplier during production by using external simulation power.

The solution approach builds on expertise from the disciplines of production
process engineering and simulation as well as software service engineering to enable
the description of production processes and related value chain process steps as
input to a simulation service, which allows adapting the production process and
logistics to the needs of a production engineer facing the sudden change of supplier
during production.

In this example application, explicit engineering knowledge representation (N1)
and engineering data integration (N2) on the production process and on related value
chain process steps are strongly relevant to enable engineering knowledge access
and analytics (N3) for the simulation of the change impacts. In the description of
the example application, the need for efficient access to semi-structured data in the
organization and on the Web (N4) is not explicitly stated but probably very useful,
e.g., to interpret data from technical process descriptions. The envisioned simulation
system is a flexible and intelligent engineering application (N5), which provides
integrated engineering knowledge at production-system run time (N7).

In summary, Table 12.1 indicates that the use cases and application examples in
the Industrie 4.0 research roadmaps (VDI/VDE 2014) and (Industrie 4.0 Working
Group 2013) show significant relevance of the needs identified in Biffl et al. (2016).
All use cases and application examples strongly require N1 to N3, N5, and N7. Some
use cases and application examples strongly require N4 and N6. In the next section
we investigate to what extent Semantic Web technologies provide capabilities that
can address the needs identified in this section. To that end, we introduce the basics
of these technologies first and then discuss how their core capabilities address the
various needs N1-N7.

12.3 Semantic Web Technologies: Key Concepts
and Capabilities

The core motivation behind Semantic Web technologies is to improve information
access on the Web. For example, the large size and diversity of Web data are key
challenges for finding complex information with high precision by using simply
keyword-based search mechanisms. SWTs aim to augment the traditional Web
consisting of textual Web pages, with a semantic layer (Berners-Lee et al. 2001).
This semantic layer contains a description of the Web data in a format that is easier
to read and interpret for computer programs than textual information. As a result,
this semantic layer has the potential to enable advanced information access tasks on
the Web. For example, complex semantic search algorithms can be realized which
handle queries that are more complex and lead to more precise results than keyword-
based search on textual data.

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 311

In this section, we introduce the key elements of SWTs (Sect. 12.3.1) and
focus on explaining the technological aspects of data integration with SWTs (Sect.
12.3.2). We conclude this chapter by enumerating a set of SWT capabilities relevant
for addressing the CPPS engineering specific needs for engineering knowledge
modeling and integration derived in Sect. 12.2 (Sect. 12.3.3).

12.3.1 Key Elements of Semantic Web Technologies

Semantic Web and Linked Data technologies aim (1) to enrich data with semantic
information in a format that machines can process, (2) to publish it using Web
based languages, and (3) to provide advanced data analytics capabilities that rely
on reasoning capabilities (Shadbolt et al. 2006). As such, these technologies are
highly suitable for large-scale data integration and analysis of heterogeneous and
distributed datasets. Such distributed and heterogeneous datasets are often used for
storing data resulting from production systems engineering processes. This section
provides an overview of the core elements of Semantic Web technologies.

Expressing and Encoding Meaning with Ontologies A core element of SWTs are
ontologies (Gruber 1993), formal domain models describing concepts in a domain
and their relationships using logics based formalisms so that computer programs can
process and reason with these descriptions. For example, a mechanical engineering
ontology, such as depicted in Fig. 12.1, could describe concepts such as Conveyer
or Turntable. Data items (e.g., a specific belt conveyor referred to as Convl) are
then described in terms of ontology concepts (e.g., by associating Convlto the
concept BeltConveyor by means of the instanceOf relation).

Supplier éhasSuppIier

isA isA

| Tumta’;ale:_] [C;nveyorl] ?’.:.gggy

isA

BeltConveyor{

instanceOf instanceOf Ontology

Instances
(CSemers Je—tassuppier———{_coni) (Ao

Fig. 12.1 Example ontology in the mechanical domain

312 M. Sabou et al.

[

rdf:type

|

I mo:hasSupplier

|
I

df:type
mo:Conveyor

i

o:hasSupplier

Ofg
é

mo-Convi —Mo:hasMaxWorkingH __[1400]

Imo:hasMaxWorkingH

Y
1400] () Literal

O Resource

(A) RDF Triples (B) RDF Graph

Fig. 12.2 Example RDF Triples (a) and their integration in an RDF Graph (b)

Use of Global Identifiers Since the goal of SWTs is to make data public on
the Web, ontology elements as well as each data element to be described in the
Semantic Web are assigned a unique web URL, for example, http://data.example.
eu/dataset/Conv1, for the data element Convl1 or http://data.example.eu/ontology/
BeltConveyor for the BeltConveyor concept of the ontology. The structure of the
URLSs usually indicates the name of the dataset (in this case example) as well as
the type of the entity, which can be either part of the abstract data model (i.e., the
ontology) or of the dataset.

Semantic Web Knowledge Representation Languages To represent Semantic
Web specific data, a set of languages have been developed, most notably RDF? (Re-
source Description Format), RDF(S)* (RDF Schema) and OWL* (Web Ontology
Language). OWL builds on RDF(S) but allows expressing more complex semantics
than RDF(S). While relational databases rely on a relational (i.e., table like) data
model, Semantic Web specific languages adopt a triple (or graph based) model
with data being represented as triples. For example, to declare that Convl is a
BeltConveyor, a triple is created stating that < Convl,isA, BeltConveyor >.
Figure 12.2 illustrates triples that refer to the Convl resource (part A) and show
how these are combined into an equivalent graph based structure (part B).

Formality and Reasoning All Semantic Web specific languages are based on
formal logics and possess an associated semantics that enables performing reasoning
activities. For example, OWL is based on Description Logics (Baader et al. 2003)
and has a model-theoretic semantics. This enables the following reasoning tasks:
subsumption checking (e.g., to deduce super- or sub-class relations between ontol-
ogy classes based on their definitions); consistency checking (i.e., to detect logical

2RDF: https://www.w3.0org/RDF/
SRDF(S): https://www.w3.org/TR/rdf-schema/
4OWL: https://www.w3.org/TR/owl2-overview/

http://data.example.eu/dataset/Conv1
http://data.example.eu/dataset/Conv1
http://data.example.eu/ontology/BeltConveyor
http://data.example.eu/ontology/BeltConveyor
http://www.w3.org/RDF
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl2-overview

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 313

contradictions within an ontology); or instance classification (i.e., identifying the
most appropriate ontology class for a specific instance).

For a more in-depth presentation of SWTs, we refer the interested reader to
(Sabou 2016).

12.3.2 Data Integration with Semantic Web Technologies

Semantic Web technologies are well suited to support large-scale data integration
scenarios (Wache et al. 2001; Noy 2004). Ontologies can be used to provide
a semantic bridge for information integration. Concretely, ontologies are often
developed with the goal to support data integration (Noy 2004). For example,
developers of several applications can agree on a general ontology and then extend
this ontology with concepts and properties specific to their own applications. Since
individual applications share a common semantic ground, this enables easily finding
correspondences between them and therefore integrating their data. A set of high
level ontologies such as SUMO (Niles and Pease 2001) and DOLCE (Gangemi et al.
2003) have been developed specifically for supporting data integration scenarios.

Wache et al. (2001) identify three typical approaches of ontology-based data
integration. First, in the single ontology approach, one global ontology is used as a
reference model for specifying the semantics of various data sources that need to be
integrated. This approach is best suited when the integrated datasets are semantically
close and it is feasible to define a shared vocabulary for their integration. Second,
if the semantic gap between the various datasets is too broad to grant the creation
of a single over-arching ontology, a multiple ontology approach can be followed. In
this case, each source will be semantically described by its own local ontology and
then mappings will be declared between these local ontologies. Finally, the hybrid
ontology approach combines the previous two approaches: local ontologies are
defined for each data source and then integrated through a shared, global ontology.
In this case, mappings are established between the local and global ontologies.

The ability to define links and transformations between ontologies is a key
enabler for data integration. Ontology matching techniques (Euzenat and Shvaiko
2013) are examples of such mechanisms for defining correspondences and links
between ontologies. Indeed, when combining data sources that are described
according to different ontologies, a set of mappings can be defined between ontology
elements (Kovalenko et al. 2013). An ontology mapping specifies how elements of
two ontologies relate, for example, that concept Weight in a mechanical engineering
ontology has the same meaning as concept Mass in an electric engineering
ontology. Through such mappings, joint terminologies can be established between
diverse disciplines both for (1) improving the communication of experts but also (2)
thanks to the formal nature of ontologies, for automatically integrating engineering
discipline-specific tool data. Furthermore, thanks to their explicit nature (i.e., being

314 M. Sabou et al.

declared as opposed to hard-coded), ontology models and mappings can be reused
from one project to another.

Additionally to ontology matching, Linked Data technologies support data
integration at Web-scale. To that end, they rely on a stack of technical standards
for publishing, querying, and annotating ontological information on the Web e.g.,
RDF(S), OWL, SPARQL (SPARQL Query Language for RDF)°. Since with Linked
Data technologies datasets are made available online through Web based standards,
links can be explicitly specified and recorded between the elements of these datasets
(similarly to hyperlinks in HTML). Most often, an owl : sameAs link is created
between URLs from different datasets that represent the same real-life entity. These
links enable computer programs to understand that two syntactically different terms
refer to the same entity, thus again facilitating data integration. Due to the formal
semantics of the mapping constructs, reasoning mechanisms can exploit these cross-
model links to discover new knowledge that is only implicitly represented. For
example, if the mo : Device concept of the example ontology is declared equivalent
to the Component concept of another ontology, by virtue of reasoning, it can
be deduced that any subconcept of mo : Device (e.g., mo : Turntable,mo :
Conveyer) is also a subconcept of Component. This ability to reason about cross-
dataset links enables data integration applications.

12.3.3 Semantic Web Capabilities

Taking into consideration the technology details described in Sect. 12.3.1, in (Sabou
2016) we introduced a set of SWT capabilities that are important for addressing the
aspects of heterogeneity in CPPS engineering (Sabou 2016). To that end, we took
the set of ontology-specific technology features identified by Oberle (2014) as a
starting point for defining these capabilities and revised those from the perspective
of the engineers’ needs. Therefore, they are not always purely technical capabilities
but rather useful functionalities that can support the various needs of engineering
scenarios introduced in Sect. 12.2. We now discuss these Semantic Web capabilities
and how they support typical industry needs (from Sect. 12.1). An overview of our
analysis is depicted in Table 12.2.

Cl1—Formal and Flexible Semantic Modelling Semantic (or conceptual) mod-
elling is achieved with ontologies, which facilitate capturing a universe of discourse
with their modelling primitives (classes, properties, and instances). Ontology
models are represented by means of formal, logics-based knowledge representation
languages that assign unambiguous meaning to modelling constructs. By formally
explaining the meaning of data, ontologies make data easier to understand to a wider
range of users, both humans and machines.

SSPARQL: https://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query

315

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . .

++

+

asnax
agpamouy—s)

Anmiqedeo e Aq paau e Jo 1oddns (4-) 9yerepows pue (+4-) Suong

++ +
++ + ++
++ + ++
++ +
+ ++
++
+
SuTuOSEaI YIIM 93PI[MOUY SJOS Blep PAINQINSIP JO UOTIRIZOIUT 9Fpajmouy]
Jo doueinsse uorjerofdxa pue [edS-qom
Aend—yD Sursmorg—e) ESI[IU[—T)

+

l_l

+

+

++
l_l

++

Surfopowr oTjUBWAS
a1qrxoy pue
[euIog—10

Qi unl wsAs-uononpoid
& 93pa[mouy| JuLIAUISUD
pajeadayur Jo SUTUOISIAOI]

J3pajmoury

ssao01d Surreaurdua
Areurdrosip-nnw

103 310ddng

suonjeordde SuroouI3ud
JUOSI[[AIUT PUE S[qIX3L
goA\ 9y UO pue uonezueSIio
U} Ul BJEP PAINJONIS-TUIS
0] $5900€ JUSIOLFH

SonAJeue pue ssa00e
93pajmouy| SuLroouIuyg
uoneI3aur ejep SuLRuISuy
uonejuasaidor oFpaymoury
Surreour3ua Jrordxg

soniqedes qop

LN

ON

SN

YN

EN
N

IN
plaliiiel
"SA SPION

(xDQ) seniiqedes £30[0uyo9) QoA ONUBWAS "SA (XN) UoneIdajur pue Surfopol 93pamouy] SULIAUISUD 10§ SPAIN 7°CT dIqeL

316 M. Sabou et al.

C1 addresses the need for explicit knowledge representation (N1) and therefore
it is marked with “4-+” in Table 12.2. Semantic models (1) enable reasoning
and querying functionalities which provide access to and analytics on engineering
knowledge (N3) and (2) facilitate data integration (N2) because meaningful relations
between datasets can be clearly specified. Data integration can also be achieved
with semi-structured data (e.g., technical fact-sheets including natural language)
both within the organization and on the Web (N4) by specifying links to this
data. Semantic engineering models support the creation of intelligent engineering
applications (N5) and are a pre-requisite for addressing the need of providing
integrated engineering knowledge at system run time (N7). Semantic modelling
technique can help explicitly represent engineering process knowledge, such as
engineering process responsibilities and process states (N6).

C2—Intelligent, Web-Scale Knowledge Integration This capability refers to
the possibility of using SWTs to tackle data heterogeneity by automatically and
flexibly solving complex data integration problems on a large scale. Examples from
other domains include advanced applications that integrate many millions of data
elements in pharmacology (Groth et al. 2014) or media publishing (Kobilarov et al.
2009). C2 further enhances the knowledge representation capabilities of SWTs as
it allows specifying links between models (N1). C2 enables engineering data inte-
gration (N2) and knowledge access and analytics on this integrated data (N3) which
are often used as a key ingredient of flexible and intelligent engineering applications
(N5). Linked data facilitates access to semi-structured data in the organization and
on the Web by providing mechanisms to interlink these resources (N4). Finally,
C2 provides support for multi-disciplinary engineering process knowledge which
is distributed and must be integrated for a meaningful insight onto project-wide
processes (N6).

C3—Browsing and Exploration of Distributed Data Sets Linked Data tech-
nologies enable user-friendly browsing and exploration of distributed data sets
(Hausenblas et al. 2014). In the context of engineering applications, this capability
can be used to browse and explore both engineering models internal to an orga-
nization and external data sources, such as Web resources coming from third-party
providers. C3 is a core requirement for efficient access to semi-structured data in the
organization and on the Web (N4) and for engineering knowledge access through
browsing, exploration and navigation. Browsing capabilities are important features
of flexible and intelligent engineering applications (NS5). By supporting sense-
making and following links across engineering disciplines, capability C3 supports
the increased productivity of multi-disciplinary engineering processes (N6). Finally,
navigational data access interfaces can provide access to integrated engineering
knowledge during the production-system run time (N7).

C4—AQuality Assurance of Knowledge with Reasoning Given the mission-
critical character of engineering projects, inconsistencies, defects and faults among
diverse engineering models should be discovered as early as possible. Therefore, the
quality assurance of engineering knowledge with advanced checks is highly rele-

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 317

vant. SWTs address this requirement by formally representing (C1) and interlinking
(C2) engineering knowledge and then automating a variety of quality assurance
tasks through reasoning mechanisms. Semantic Web reasoning facilities can be used
for supporting a wide range of tasks, but the ability to ensure quality (e.g., through
consistency checks) is particularly important for the engineering domain.

Capability C4 allows detecting defects, faults and inconsistencies and as such
it increases the productivity of multi-disciplinary engineering process (N6) while
ensuring that high-quality engineering knowledge is provided at production-system
run time (N7), often as part of intelligent engineering applications that both
act intelligently (i.e., deduce new information from existing information through
reasoning) and reliably with respect to quality assurance (N5).

C5—Knowledge Reuse One implication of the declarative nature of ontologies
is that knowledge represented in ontologies can be easily reused among different
application use cases. This reusability of knowledge is one of the fundamental
concepts underlying SWTs (Simperl 2009), (Arp et al. 2015).

Knowledge reuse activities are often integral part of semantic modelling pro-
cesses by reusing existing models (N1) and of data integration by reusing already
specified mappings between semantic models (N2) thus increasing the productivity
of multi-disciplinary engineering processes by avoiding creating this knowledge
from scratch (N6). C5 strongly supports the need for engineering knowledge access
and analytics (N3). Lastly, the provision of integrated engineering knowledge at
production system run time can leverage on knowledge reuse (N7).

12.4 Adoption of Semantic Web Technologies
in Multi-Disciplinary Engineering Settings

In previous work Sabou and Biffl (2016) and Sabou et al. (2016), we have found that
SWTs were successfully used to support various aspects of production system’s engi-
neering, including requirements management (Feldmann et al. 2014), engineering
artifact design optimization (Tudorache and Alani 2016), consistency management
across diverse engineering models (Tudorache and Alani 2016; Steyskal and Wim-
mer 2016; Feldmann et al. 2016), creation of control system setup to enable product
ramp-up (Willmann and Kastner 2016), simulation design and integration (Novak
and Sindeldr 2016) and project management (Griinwald et al. 2014). These diverse
use cases from the various life cycle stages of production systems are enabled at a
technical level by the following three individual tasks: model consistency checking,
flexible comparison and model integration. We discuss these tasks in what follows.

Model consistency management is the task of detecting defects and inconsisten-
cies in engineering models from individual disciplines as well as across inter-related

318 M. Sabou et al.

models from diverse engineering disciplines. This task is particularly relevant in
multi-disciplinary engineering projects to avoid that defects in artifacts of individual
disciplines are propagated to related artifacts in other disciplines. For example, a
sensor type specified in the physical topology model (mechanical engineering) must
match the information in the corresponding electrical plan (electrical engineering)
and the value range for control variables (software engineering). Defects may
also arise from inconsistencies between disciplines without being defects in any
of the single discipline views. Because these interdisciplinary relations are not
represented in a machine-understandable way, they cannot be checked and managed
easily with standard tool support. For example, Steyskal and Wimmer (2016)
focus on consistency management among different, overlapping views (or models)
of the same complex systems. The proposed technical solution relies on RDF
to encode different system views in a uniform manner (making use of the Cl
capability) and the emerging Shapes Constraint Language (SHACL)® to define
the inter-viewpoint dependencies. By relying on Reasoning SWT capabilities (C4),
these dependencies can be automatically checked during modeling time to uncover
potential inconsistencies between the various models.

Flexible comparison refers to performing comparison among descriptions of
engineering objects. In engineering settings, such comparisons are often performed
between engineering objects that should be replaced or interchanged, e.g., a
comparison between the capabilities of an engineering unit to be replaced (e.g.,
a device) and a new unit. For example, Feldmann et al. (2016) focus on ensuring
compatibility between mechatronic modules that need to be replaced in a given
system configuration. This use case requires means for (1) identifying modules
compatible with a module that needs to be replaced and (2) identifying and resolving
conflicts in a given system configuration as a follow up of a module change. For this,
the authors propose using an ontology for representing compatibility information
and encoding and checking compatibility through SPARQL queries (thus relying
on capabilities C1 and C4). Similarly, flexible comparison enables recommending a
control system setup for efficient product ramp-up processes (Willmann and Kastner
2016). This task requires assembling a production plan for the target production
system by modifying and adjusting the production system of the source system in
a way that it flexibly reuses artifacts (e.g., devices, configurations, raw materials)
from the target site.

Model integration aims to bridge semantic gaps in engineering environments
between engineering models. These models are often created by diverse engineering
disciplines who use different terminologies that need to be semantically aligned.
For example, a shared concern in the various works described above which aim
to solve model consistency checking (Tudorache and Alani 2016; Steyskal and
Wimmer 2016; Feldmann et al. 2016) is that solving data integration is a prerequisite
for reaching their goal. Most authors chose an ontology-based data integration
approach in line with Wache et al.’s hybrid ontology model (2001). Concretely, an

SSHACL: https://www.w3.org/TR/shacl/

http://www.w3.org/TR/shacl

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 319

ontology is built that captures the common concepts among engineering disciplines
and plays the role of a semantic bridge to integrate data described in terms
of discipline-specific local ontologies (C1, C2). For example, in their work to
detect inconsistencies between different engineering models of the same system,
Feldmann et al. (2016) observe that the engineering models created to describe
the same system overlap to some extent. The overlaps between models should be
kept consistent by defining which parts correspond to each other as a basis for
compatibility checks. The proposed solution includes (1) defining a base vocabulary
that contains the common concepts used by the various models and (2) using a
common data representation language (namely RDF) to encode the various models
in a uniform way and describe equivalent mappings between their corresponding
elements.

To conclude, we observe that most approaches that use SWTs in various
engineering settings rely on data integration as a pre-requisite for providing more
advanced functionalities (e.g., consistency management). Therefore, in the rest of
this chapter we focus on discussing data integration approaches with SWTs. In
Sect. 12.5 we provide a use case that illustrates data integration needs in multi-
disciplinary engineering settings and then illustrate the concrete SWT solution
developed for this use case in Sect. 12.6.

12.5 Use Case: Engineering Data Integration
in a Multi-Disciplinary Engineering Setting

To exemplify the use of SWTs for data integration, we consider a use case related
to the development of a hydro power plant. Although a hydro power plant is
not a CPPS itself, its development process provides a good example for a multi-
disciplinary engineering setting which also characterizes CPPS. Engineers from
different engineering disciplines work on their own part of the system but rely on
data exchange to coordinate their work with other engineering teams. In particular,
in our use case, engineers exchange data about signal information. Signals are one of
the core information artifacts in the course of developing power plants and consist
of structured key value pairs representing communication links between different
power plant components. Depending on their size, hydro power plants manage
40,000-80,000 signals. Signal information is typically exported from the discipline-
specific tools in machine-readable formats, such as Comma Separated Values (CSV)
or eXtensible Markup Language (XML).

There is a strong need for data integration to alleviate the effects of the
heterogeneity of terms used for the same concept across engineering disciplines and
tools. For example, information about a CPU can be stored as part of the composite
programmable logic controller (PLC) address in EPLAN (electrical engineering

7EPLAN: http://www.eplan.at/

http://www.eplan.at

320 M. Sabou et al.

tool) data or as property LK_BSE in OPM (Object Process Methodology, typically
used in mechanical engineering) data. Such heterogeneous representations of the
same engineering artifact within diverse engineering models raise the need for prop-
agating changes across data from different engineering disciplines and for detecting
potential defects across engineering models. In this particular example, changes
to the CPU at the mechanical level (e.g., replacement with a new version) must
be communicated with the electrical engineers to update their models accordingly.
At the same time inconsistencies in representing CPU data in diverse engineering
models must be identified. However, a pre-requisite of change and inconsistency
management is the meaningful integration of engineering data originating from
different disciplines.

In our use case, there are three different data sources that need to be integrated
for purposes of change and inconsistency management:

e Mechanical Engineering Data (OPM). The OPM tool is used in mechanical
engineering to develop the plant topology and its components. OPM exports data
as CSV files representing the design of the overall structure of the mechanical
components. The exported file can also contain information about software
components.

* Electrical Engineering Data (EPL). Electrical engineers use the EPLAN tool to
develop the electrical component of the power plants. EPLAN also provides
a CSV file export containing information about the electrical setup and its
link to the mechanical components. It also contains specific information about
electrical components, which may or may not be useful to stakeholders from
other engineering domains.

* Project Management Data (PMD). Additionally, in many use cases it is important
to consider project management data such as the engineering project, customer,
and engineering activities, typically available as spreadsheet files.

In Sect. 12.6 we describe the SWT based data integration approach used in this
use case.

12.6 A SWT-Based Solution for Data Integration

Our data integration approach in this use case was based on Wache et al.’s hybrid
ontology model (2001). Concretely, the semantics of each individual data source is
described by its own ontology (called local ontologies) and these local ontologies
are mapped to a common ontology, which acts as a shared vocabulary across the
terminologies of various disciplines. Our generic solution approach is depicted in
Fig. 12.3. We will now discuss the main technical elements to realize this approach.

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 321

Common Ontology
(CCO)

Local Ontology Local Ontology Local Ontology
(PMD) (EPL) (OPM)

Project Management Electrical Engineering Mechanical Engineering
Tools Tools Tools

Fig. 12.3 Conceptual data integration solution

12.6.1 Ontologies Used for Data Integration

Local ontologies are obtained through an automatic transformation from the input
CSV files to RDF documents. Currently, the resulting ontologies are semantically
lightweight and primarily serve to enable easier data transformation between local
data and common ontology.

The Hydro Power Plant common concept ontology (CCO®) represents the
common information relevant for different engineering disciplines involved in the
use case. As detailed in (Ekaputra et al. 2016), the CCO consists of two major
parts. First, it contains concepts that describe organizational level aspects, including
the Project, the Customer for whom the project is performed, as well as the
Engineers (and Engineering Roles) necessary to realise the project. Engineers
conduct Engineering Activities, which take as input and create as their output
various Engineering Documents (e.g., signal lists, design documents). Engineering

8CCO: http://data.ifs.tuwien.ac.at/engineering/cco

http://data.ifs.tuwien.ac.at/engineering/cco

322 M. Sabou et al.

documents are versioned and reviewed by the customer, thus constituting an
important exchange medium between the customer, who requested a project, and the
engineering team executing that project. Second, the CCO describes various Engi-
neering Objects created during the engineering project, such as Software Objects,
Mechatronic Objects, and Electrical Objects. Physical Signals and Logical Signals
represent the links between engineering objects created by different engineering
disciplines and how these diverse components can command or exchange data with
each other.

12.6.2 Mappings Across Local and Common Ontologies

Mappings between the common and local ontologies ensure integrated access to
local data through the common ontology. As detailed by Kovalenko and Euzenat
(2016), diverse mapping scenarios arise between engineering data structures such
as local and common ontologies, including: mapping between a property in one
ontology and a (mathematical) combination of properties in other ontologies; or
mappings between structures where different conceptualizations are used (e.g.,
mapping a concept in one ontology to a property in another). Kovalenko and Euzenat
(2016) have distilled seven such transformation scenarios (and their variants) and
showed that, among available technologies, SPARQL Construct, EDOAL® and
SPIN'? have the expressivity to express all these complex transformations. We chose
SPARQL Construct because it as a W3C standard and many other languages (e.g.,
SPIN, or the upcoming SHACL language) use it as backend implementation. An
excerpt of mappings between local ontologies (i.e., local electrical ontology and
local mechanical ontology) and common concept ontology is shown in Fig. 12.4.
Classes are defined in bold while properties are preceded by “-”.

Kovalenko and Euzenat (2016) identified several types of ontology mappings that
can exist between engineering data models. Figure 12.4 exemplifies a few types of
these mappings, including:

(1) Direct mapping, e.g., Function_Text in the Electrical Ontology has the same
meaning as longText in the Mechanical Ontology,

(2) Structural Granularity arises when different modeling elements need to be
mapped to each other. For example, we mapped PLC_address, a property in
the Electrical Ontology to the concepts of Rack, Channel, and Position in the
CCO, and

(3) Datatype transformations specify some transformations between data values
through mathematical or other custom-defined functions, e.g., transforming the

YEDOAL: https://ns.inria.fr/edoal/1.0/
10SPIN: https://www.w3.org/Submission/spin-overview/

https://ns.inria.fr/edoal/1.0
http://www.w3.org/Submission/spin-overview

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 323

Common Concept
Ontology
Rack
- hasChannel Datatype
:l Transformation
Channel S———
- hasPosition :l
Position 9—1
Structural Mapping: —I
Granularity PhysicalsSignal
- hasSignalPositio
Local Electrical - longText <«—— User-
Ontology Defined
s Function 5
ElectricalEntry Local Mechanical
- Function_definition Ontology
- Function_group . X Direct Mechanical
- Function_category String Function Mapping - Rack
- Name_identification - LK_DP_Code
- PLC_address - LK_CA? Code
- Function_text I—_ - LONGTEXT
- Placement - Project_Code
Fig. 12.4 An example mapping of local ontologies to common concepts
Table 12.3 Example data from local mechanical ontology
Mech. entry Project code Rack LK_CAT code LK_DP code Long text
M1 KOM 2 5702 112 6 kV GENERAL
DISTRIBUTION
METERING PT FUSE
TRIPPED
M2 KOM 2 5702 135 6 kV GENERAL
DISTRIBUTION

COUPLING CB OPENED

value of the Rack class in the CCO, which uses a certain encoding standard, to
a value using another coding standard for the property Rack in the Mechanical
Ontology.

As an example of data transformation based on this mapping, we show sample
data from both local mechanical and electrical ontologies in Tables 12.3 and
12.4 respectively. From the electrical data and the mapping, we can derive the
information about contained Rack, Channel, and Position. The longText property
of PhysicalSignal can also be derived using a split string function in the Function
Text field by the “\n” character.

From the mechanical data we can derive the information about Rack and
longText. Additionally, we can derive the information about Channel and Position
using a user-defined function. The transformation result from these two local
ontologies using the mappings from Fig. 12.4 is shown in Fig. 12.5.

324 M. Sabou et al.

Table 12.4 Example data from local electrical ontology

Elec. entry Name identification PLC address Function text

El =0CKN10GH0014+-0CKNO01-A26:1 050.04.02.4.00 6 kV GENERAL
DISTRIBUTION
METERING PT FUSE
TRIPPED\nKOM.0.BBAOO.
ED010.XMO1

E2 =0CKN10GH0014+-0CKNO01-A27:8 050.04.02.5.07 6 kV GENERAL
DISTRIBUTION
COUPLING CB
OPENED\nKOM.0.BBAOQO.
GS104.XB01

zhySicﬁl hasChannel ZhySiTazl
'gna’. hasChannel igna’.
\ longText

hasSignalPosition

hasSignalPosition
longText Channel.5 Channel.4
* hasPosition hasPosition
BV GENERAL A A 6KV GENERAL
DISTRIBUTION
METERING PT FUSE iti i DISTRIBUTION
TRIPPED Position.07 Position.00 COUPLING CB OPENED

Fig. 12.5 Common concept ontology instances from two local ontology instances in Tables 12.3
and 12.4

12.6.3 Implementation Details and Functionality

In the implementation, we derived the process steps for engineering data integration
by adapting the ontology based information integration approach (Wache et al.
2001, Calvanese et al. 2001). We utilize an IDEF-0'! style diagram to structure
the proposed approach, in which processes are shown as boxes and resources are
shown as directed arrows (see Fig. 12.6). Input is shown as incoming arrows from
the left hand side of the box, output is drawn as outgoing arrows to the right hand
side of the box, consumable resources and stakeholders are depicted as input arrows
from the bottom of the box and standards are indicated by incoming arrows from
the top of the box used in the reference process.

DEF-0: http://www.idef.com/idefo-function_modeling_method/

http://www.idef.com/idefo-function_modeling_method

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 325

(Q) Query Language (R) Rule Language (S) Serialization Format
Domain Tools
Input Data Local Data ETL
[
Q(R)
KE Local data
I
Data
Local Data Model __ Transformation
Axioms ,
A ‘ Transformed Data ®)
DEKE \ 5
[

- > - Validation
Validation Rules 1 P Data Validation —Resuls >
Local

Local Data Model
—Daa B finition Common Data Model AA Validated ¢, &
Structure & Mapping Definition DIE KIE Data)
AA L
— Analysis Queries D-E K-E | »| Data Store & Analysis
g (R) Analysis Results
Local Data
Model Axioms Common Data Model ‘ A
Common Data & Mapping Definition PMKE

_ Domain Knowledge & Model & Mapping Vo
Analysis Requirements Definition

AA - %
DEKE " P

Kriowledge Project [‘)o'mair'\
Engineer (KE) Manager (PM) Experts (DE)

Fig. 12.6 An adapted OBII approach for Engineering Data Integration

We now explain each process step and its implementation within our prototype:

1. Local Data Model Definition
This step encapsulates the process of defining local ontologies. These ontolo-
gies represent data coming from local tools (e.g., Eplan CSV data from electrical
engineering). Due to the table-like structure of spreadsheet files exported from
the local tools, we develop lightweight ontologies with only one class for each
tool as this is sufficient to represent the data in this particular use case. Other use
cases might require a richer local ontology for representing local data.
2. Common Data Model & Mapping Definition
This step handles the process of developing a common data model and
its mappings to the local data models. To support this goal, vocabularies and
standards are required to formalize the data model and mappings. More details
about the Common Concept Ontology used as the common data model and the
mapping technology used for our prototype is available in Sects. 12.6.1 and
12.6.2.
3. Local Data Model Extraction, Transformation and Load (ETL)
This step manages the process of extracting and transforming local data from
engineering tools in spreadsheet format into the local ontologies previously
defined in Step 1. In our prototype, the data is cleaned and transformed into these

326 M. Sabou et al.

local ontologies using the combination of OpenRefine'? tool, CommonCSV'?
library and Jena'* APL

. Data Transformation

This step conducts the data transformation process from local ontologies into
common data model based on the mapping definition. Here, we utilized SPARQL
constructs mentioned in Sect. 12.6.2 to execute this transformation. It has to be
noted that in our prototype we do not consider data propagation, since it is a
complex process and will be addressed separately. In addition to the engineering
data, we also attach metadata information such as timestamp and data source.

. Data Validation

This process step validates newly transformed data according to validation
rules previously defined by domain experts. The validation rules need to be trans-
formed into a set of rule languages. In our prototype, the rules are represented
as SPARQL queries. In the future, we are considering using Shapes Constraint
Validation Language to replace SPARQL queries for data validation.

. Data Store and Analysis

The process step deals with storing validated data into a semantic triplestore
(i.e., Apache, Jena TDB). All data is stored within in-memory datasets of Apache
Jena TDB, separated into the three local (Project Management, Mechanical
Engineering, and Electrical Engineering) and one common datasets (Common
Concept). In the earlier version of the prototype, we used in-memory storage
to ease the development process and to allow rapid prototyping. Later on we
switched to transactional TDB storage for robustness and scalability reasons.
Analysis queries then can be performed against both integrated data in the
common and local datasets.

From the resulted integrated data in Common Concept ontology, we can conduct

analysis of the overall production system since we can access both common concept
and the local ontologies. Several sample analyses that can be conducted are:

Which signals contain different information about the same properties?

Which signals have been changed in the last commit?

How many racks have been added in the overall commit from both local
ontologies?

12.7 Summary

This chapter focused on the use of SWTs for data integration in MDE settings spe-
cific for the creation of CPPS. The first part of the chapter (Sect. 12.2) identified a set
of typical industrial scenarios where data integration is needed and then synthesized

120penRefine: http://openrefine.org/

3CommonCSV: https://commons.apache.org/proper/commons-csv/

14Jena API: https://jena.apache.org/

http://openrefine.org
https://commons.apache.org/proper/commons-csv
https://jena.apache.org

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 327

needs for semantic integration. Engineers and managers from engineering domains
can use these scenarios to select and adopt appropriate SWT solutions or alternative
solution approaches in their own settings. The rest of the sections introduced SWTs
(Sect. 12.3) and exemplified their use in selected approaches (Sect. 12.4) as well
as in a concrete use case from the area of Hydro power plant development (Sects.
12.5 and 12.6). This material will support engineers and managers from engineering
domains to get a better understanding of the benefits and limitations coming from
using SWTs for data integration.

The overall conclusion is that Semantic Web technologies are well suited to
address a range of various industry needs frequent in use cases and application
examples introduced in (VDI/VDE 2014) and by the Industrie 4.0 WG (2013).
Thanks to this suitability, SWTs have been adopted by various groups to solve
diverse tasks in engineering settings, in particular related to model consistency
management, flexible comparison and model integration. Data integration emerges
therefore as one of the key valuable capabilities of SWTs especially supported by
ontology matching techniques and Linked Data technologies. In the presented multi-
disciplinary engineering use case, data integration enabled performing queries over
data originating from both contributing engineering disciplines. This provides a
basis for project wide data analysis and the identification of cross-disciplinary issues
and anomalies.

Data integration solutions inherently bring up the challenge of how to propagate
changes across the data from the various disciplines and how to manage these
changes. Therefore, in future work we will investigate topics related to change
management and propagation within datasets integrated using hybrid-ontology
based approaches. Other topics of interest include easy integration with legacy
systems and providing methods to more easily build and extract local and global
ontologies.

Acknowledgments This work was supported by the Christian Doppler Forschungsgesellschaft,
the Federal Ministry of Economy, Family and Youth, and the National Foundation for Research,
Technology and Development in Austria.

References

Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology, 248p. MIT
Press, Cambridge, MA (2015). ISBN: 978-0262527811

Baader, F.,, Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
New York, NY (2003)

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 29-37 (2001)

Biffl, S., Liider, A., Dietmar Winkler, D.: Multi-disciplinary engineering for Industrie 4.0: semantic
challenges and needs. In: Biffl, S., Sabou, M. (eds.) Semantic Web for Intelligent Engineering
Applications. Springer, Cham (2016)

Calvanese, D., De Giacomo, G., Lenzerini, M.: Ontology of integration and integration of
ontologies. In: International Description Logics Workshop (2001)

328 M. Sabou et al.

Ekaputra, FJ., Sabou, M., Serral, E., Biffl, S.: Knowledge change management and analysis during
the engineering of cyber physical production systems: A use case of hydro power plants. In:
Proceedings of the 12th International Conference on Semantic Systems (Semantics) (2016)

Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2013)

Feldmann, S., Rosch, S., Legat, C., Vogel-Heuser, B.: Keeping requirements and test cases
consistent: towards an ontology-based approach. In: 12th IEEE International Conference on
Industrial Informatics, INDIN, pp. 726-732 (2014)

Feldmann, S., Kernschmidt, K., Vogel-Heuser, B.: Applications of Semantic Web technologies for
the engineering of automated production systems — three use cases. In: Biffl, S., Sabou, M.
(eds.) Semantic Web for Intelligent Engineering Applications. Springer, Cham (2016)

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WORDNET with DOLCE. Al
Mag. 24(3), 13-24 (2003)

Gray, A.J.G., Groth, P, Loizou, A., Askjaer, S., Brenninkmeijer, C., Burger, K., Chichester,
C., Evelo, C.T., Goble, C., Harland, L., Pettifer, S., Thompson, M., Waagmeester, A.,
Williams, A.J.: Applying linked data approaches to pharmacology: architectural decisions and
implementation. Semant. Web J. 5(2), 101-113 (2014)

Groth, P.,, Loizou, A., Gray, A.J.G., Goble, C., Harland, L., Pettifer, S.: API-centric linked data
integration: The open PHACTS discovery platform case study. Web Semant. Sci. Serv. Agents
World Wide Web. 29, 12-18 (2014)

Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2),
199-220 (1993)

Griinwald, A., Winkler, D., Sabou, M., Biffl, S.: The semantic model editor: efficient data modeling
and integration based on OWL ontologies. In: Proceedings of the 10th International Conference
on Semantic Systems, SEM ’14, ACM, pp. 116-123 (2014)

Hausenblas, M., Ruth, L., Wood, D., Zaidman, M.: Linked Data, Manning, 336p (2014). ISBN:
978-1617290398

Hepp, M. (2008) GoodRelations: an ontology for describing products and services offers on the
web. In: Gangemi, A., Euzenat, J. (eds.) Proceedings of the 16th International Conference on
Knowledge Engineering and Knowledge Management (EKAW), Acitrezza, Italy. LNCS, vol.
5268, pp. 332-347. Springer, Berlin

Hyvonen, E.: Publishing and Using Cultural Heritage Linked Data on the Semantic Web, Series:
Synthesis Lectures on Semantic Web, Theory and Technology. Morgan and Claypool, San
Rafael, CA (2012)

Industrie 4.0 WG: Industrie 4.0 Working Group. Securing the future of German manufacturing
industry. Recommendations for implementing the strategic initiative. http://www.acatech.de/
fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material _fuer_Sonderseit
en/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (2013)

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., Lee, R.:
Media meets Semantic Web — How the BBC uses DBpedia and linked data to make connections.
In: Aroyo, L., Traverso, P., Ciravegna, F.,, Cimiano, P., Heath, T., Hyvonen, E., Mizoguchi,
R., Oren, E., Sabou, M., Simperl, E. (eds.) Proceedings of the 6th European Semantic Web
Conference on The Semantic Web: Research and Applications (ESWC), pp. 723-737. Springer,
Berlin (2009)

Kovalenko, O., Euzenat, J.: Semantic matching of engineering data structures. In: Biffl, S., Sabou,
M. (eds.) Semantic Web for Intelligent Engineering Applications. Springer, Cham (2016)

Kovalenko, O., Debruyne, C., Serral, E., Biffl, S.: Evaluation of technologies for mapping
representation in ontologies. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene,
Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) On the Move to Meaningful Internet Systems:
OTM 2013 Conferences, pp. 564-571. Springer, Berlin (2013)

Legat, C., Lamparter, S., Vogel-Heuser, B.: Knowledge-based technologies for future factory engi-
neering and control. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in
Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence,
vol. 472, pp. 355-374. Springer, Berlin (2013)

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf

12 Semantic Web Technologies for Data Integration in Multi-Disciplinary. . . 329

Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the international
conference on Formal Ontology in Information Systems (FOIS ‘01), vol. 2001, pp. 2-9, ACM
(2001)

Novik, P., Sindeldr, R.: Ontology-based simulation design and integration. In: Biffl, S., Sabou, M.
(eds.) Semantic Web for Intelligent Engineering Applications. Springer, Cham (2016)

Noy, N.E.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33(4),
65-70 (2004)

Oberle, D.: Ontologies and reasoning in enterprise service ecosystems. In: Informatik Spektrum
37/4 (2014)

Sabou, M.: An introduction to Semantic Web technologies. In: Biffl, S., Sabou, M. (eds.) Semantic
Web for Intelligent Engineering Applications. Springer, Cham (2016)

Sabou, M., Biffl, S.: Conclusions. In: Biffl, S., Sabou, M. (eds.) Semantic Web for Intelligent
Engineering Applications. Springer, Cham (2016)

Sabou, M., Kovalenko, O., Ekaputra, F.J., Biffl, S.: Semantic Web solutions in engineering. In:
Biffl, S., Sabou, M. (eds.) Semantic Web for Intelligent Engineering Applications. Springer,
Cham (2016)

Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96—
101 (2006)

Simperl, E.: Reusing ontologies on the Semantic Web: a feasibility study. Data Knowl. Eng. 68(10),
905-925 (2009)

Steyskal, S., Wimmer, M.: Leveraging Semantic Web technologies for consistency management
in multi-viewpoint systems engineering. In: Biffl, S., Sabou, M. (eds.) Semantic Web for
Intelligent Engineering Applications. Springer, Cham (2016)

Tudorache, T., Alani, L.: Semantic Web solutions in the automotive industry. In: Biffl, S., Sabou,
M. (eds.) Semantic Web for Intelligent Engineering Applications. Springer, Cham (2016)

VDI/VDE: Industrie 4.0 — CPS-basierte Automation, Forschungsbedarf anhand konkreter
Fallbeispiele. VDI/VDE Gesellschaft Mess- und Automatisierungstechnik, Statusreport
Juli 2014. https://www.vdi.de/technik/fachthemen/mess-und-automatisierungstechnik/artikel/
cps-basierte-automation-forschungsbedarf-anhand-konkreter-fallbeispiele/ (2014)

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner, S.:
Ontology-based integration of information — a survey of existing approaches. In Stucken-
schmidt, H. (ed.) Proceedings of IJCAI Workshop: Ontologies and Information, pp. 108-117
(2001)

Willmann, R., Kastner, W.: Product ramp-up for semiconductor manufacturing: automated recom-
mendation of control system setup. In: Biffl, S., Sabou, M. (eds.) Semantic Web for Intelligent
Engineering Applications. Springer, Cham (2016)

https://www.vdi.de/technik/fachthemen/mess-und-automatisierungstechnik/artikel/cps-basierte-automation-forschungsbedarf-anhand-konkreter-fallbeispiele/

Chapter 13
Patterns for Self-Adaptation in Cyber-Physical
Systems

Angelika Musil, Juergen Musil, Danny Weyns, Tomas Bures, Henry Muccini,
and Mohammad Sharaf

Abstract Engineering Cyber-Physical Systems (CPS) is challenging, as these
systems have to handle uncertainty and change during operation. A typical approach
to deal with uncertainty is enhancing the system with self-adaptation capabilities.
However, realizing self-adaptation in CPS, and consequently also in Cyber-Physical
Production Systems (CPPS) as a member of the CPS family, is particularly chal-
lenging due to the specific characteristics of these systems, including the seamless
integration of computational and physical components, the inherent heterogeneity
and large-scale of such systems, and their open-endedness.

In this chapter we survey CPS studies that apply the promising design strategy
of combining different self-adaptation mechanisms across the technology stack of
the system. Based on the survey results, we derive recurring adaptation patterns that
structure and consolidate design knowledge. The patterns offer problem-solution
pairs to engineers for the design of future CPS and CPPS with self-adaptation
capabilities. Finally, the chapter outlines the potential of collective intelligence
systems for CPPS and their engineering based on the survey results.

Keywords Collective intelligence systems ¢ Cyber-physical systems ¢ Patterns e
Self-adaptation ¢ Software architecture * Systematic study

A. Musil (B4) » J. Musil

Institute of Software Technology and Interactive Systems, Technische Universitit Wien,
Wien, Austria

e-mail: angelika@computer.org; jmusil @computer.org

D. Weyns
Department of Computer Science, KU Leuven, Leuven, Belgium

Department of Computer Science, Linnaeus University, Vixjo, Sweden
e-mail: danny.weyns @kuleuven.be

T. Bures
Department of Distributed and Dependable Systems, Charles University Prague, Prague, Czechia
e-mail: bures@d3s.mff.cuni.cz

H. Muccini * M. Sharaf
DISIM Department, University of L’ Aquila, L’ Aquila, Italy
e-mail: henry.muccini @univagq.it; massharaf @yahoo.com

© Springer International Publishing AG 2017 331
S. Biffl et al. (eds.), Multi-Disciplinary Engineering for Cyber-Physical
Production Systems, DOI 10.1007/978-3-319-56345-9_13

mailto:angelika@computer.org
mailto:jmusil@computer.org
mailto:danny.weyns@kuleuven.be
mailto:bures@d3s.mff.cuni.cz
mailto:henry.muccini@univaq.it
mailto:massharaf@yahoo.com

332 A. Musil et al.

13.1 Introduction

Cyber-Physical Production Systems (CPPS) form a distinct sub-category of the
more general family of Cyber-Physical Systems (CPS). Though distinctively
focused on production, CPPS, as a member of the CPS family, share many
common traits with other types of CPS, such as distributed robotics, autonomous
vehicular systems, smart grid, and smart spaces. These common traits include the
strong coupling of physical environment and the computing system via sensors
and actuators, involvement of humans-in-the-loop, the necessity of coping with a
multitude of heterogeneous models (e.g., physical, electrical, mechanical, control),
the need of real-timeness, and strong requirements on dependability.

The close relation to the environment, humans-in-the-loop and the complex
interplay of the heterogeneous models brings a high level of uncertainty as a critical
factor to be taken into account and addressed when designing CPS, and conse-
quently also CPPS. Examples of uncertainty include the unpredictability of human
actions, unexpected emergent behavior of the environment (typically stemming
from unanticipated interactions among constituents of the environment and the CPS
due to the fact that a CPS is an inherent part of the environment it observes and
controls), unexpected or faulty interplay between CPS components, and incomplete
requirements. The presence of uncertainty makes it difficult to design the complete
behavior of a very complex CPPS with guaranteed dependability, as parts of the
knowledge required for such a design may only become available at run time.

A viable software-based solution to the problem of uncertainty lies in equipping
the system with self-adaptation capabilities. Self-adaptation adds introspective
capabilities to the system allowing it to be aware of its internal state and structure,
reason about itself and its goals, identify potential problems in its ability to
dependably achieve its goals, and adapt itself to cope with the identified problems.
Self-adaptation was already introduced in the area of enterprise systems by IBM
in 2003 (Kephart and Chess, 2003). Similar concepts are nowadays regularly
applied also for instance in cloud computing where an application automatically
reconfigures to scale with the current load and to avoid virtual machines that perform
badly due to resource sharing. For a guided tour through the history of the field of
self-adaptation, we refer the interested reader to Weyns (2017).

As outlined in Chap. 1 of this book, the key research question addressing the
modelling of CPPS flexibility and self-adaptation capabilities (RQ CI) discusses
a very relevant topic for CPPS engineers. From the perspective of this research
question, this chapter elaborates concretely on effective architectural approaches
and best practices to combine self-adaptation mechanisms to handle uncertainty
challenges and concerns. Although other chapters of this book also address a CPPS
architecture perspective, we focus on the design of self-adaptation capabilities.

In this chapter, we aim at providing insight on how self-adaptation can be
used in addressing uncertainty in CPPS. Since there is rather a general lack of
knowledge on self-adaptation specifically in CPPS, we take a generalization step
and overview self-adaptation related to the larger family of CPS. Since CPS are

13 Patterns for Self-Adaptation in Cyber-Physical Systems 333

systems that do not focus on one layer of the technology stack, but their engineering
crosses all layers, self-adaptation mechanisms are also relevant to be considered on
all layers. This claim is supported by the results of a recent systematic literature
review aiming at assessing state-of-the-art approaches to handle self-adaptation in
CPS at an architectural level. The study revealed that, remarkably, 36% of the
investigated studies combine different adaptation mechanisms across the technology
stack to realize adaptation in a CPS (Muccini et al., 2016). Therefore, this chapter
follows this promising architecture design strategy for CPS and focuses explicitly
on combinations of different types of adaptation mechanisms that may span various
layers within a system. We do so by the means of a systematic literature mapping
with the goal to identify recurring adaptation patterns used in addressing uncertainty
by self-adaptation. We further relate these patterns to the specific field of CPPS to
give an insight on how to exploit self-adaptation to CPPS. Finally, we outline the
potential of Collective Intelligence Systems (CIS) for CPPS and their engineering
based on the study results by presenting three emerging research directions.

The remainder of this paper is organized as follows: Sect.13.2 introduces
background information about uncertainty types, self-adaptation approaches, and
collective intelligence systems. In Sect. 13.3 the research questions and research
methodology we used are presented. Section 13.4 summarizes the method used
to conduct the systematic mapping study. The results of the systematic mapping
study are presented in Sect. 13.5, followed by a summary of threats to its validity
in Sect. 13.6 and a reflection on the results in Sect. 13.7. Section 13.8 describes and
discusses the three identified adaptation patterns in CPS. We further explore the
potential of collective intelligence systems for CPS and CPPS in Sects. 13.9 and
13.10 summarizes related work. Finally, Sect. 13.11 draws conclusions and outlines
future work.

13.2 Background

This section provides a general introduction to uncertainty types in adaptive
systems, different adaptation approaches, its purpose and different methods, as well
as collective intelligence systems as a promising enhancement to CPS and CPPS
architectures.

13.2.1 Uncertainties

When designing CPS the available knowledge is often not adequate to anticipate
all the run time conditions the system will encounter (e.g., missing or inaccurate
knowledge regarding the availability of resources, concrete operating conditions
that the system will face at run time, and the emergence of new requirements while
the system is operating). To that end, Garlan (2010) argues that in today’s software

334

A. Musil et al.

Table 13.1 Uncertainty dimensions (Mahdavi-Hezavehi et al., 2016)

Uncertainty dimension

Description

Options

Location Refers to the locale, where Environment, model, adaptation
uncertainty manifests itself within functions, goals, managed
the whole system system, resources
Nature Specifies whether the uncertainty ~ Epistemic, variability
is due to the imperfection of
available knowledge, or is due to
the inherent variability of the
phenomena being described
Level/Spectrum Indicates the position of Statistical uncertainty, scenario

uncertainty along the spectrum uncertainty
between deterministic knowledge

and total ignorance

Refers to time when the existence ~ Run time, design time
of uncertainty is acknowledged or
uncertainty is appeared during the

life cycle of the system

Emerging time

Variety of options based on the
sources of uncertainty (e.g.,
abstraction, model drift, etc. for
model uncertainty; sensing,
effecting etc. for adaptation
functions)

Refers to a variety of
circumstances affecting the
adaptation decision, which
eventually deviate system’s
performance from expected
behavior

Sources

systems uncertainty should be considered as a first-class concern throughout the
whole system life cycle. In the context of adaptive systems, Ramirez et al. (2012)
provide a taxonomy for uncertainty that describes common sources of uncertainty
and their effect on requirements, design and run time phases of the system.
Esfahani and Malek (2013) present an extensive list of sources of uncertainties
with examples. Moreover, these authors investigate uncertainty characteristics, i.e.,
reducibility versus irreducibility, variability versus lack of knowledge, and spectrum
of uncertainty. Perez-Palacin and Mirandola (2014) present another taxonomy
for uncertainty for adaptive systems based on three dimensions: location, level,
and nature of uncertainty. Mahdavi-Hezavehi et al. (2016) present a classification
framework for uncertainty in adaptive systems, which is based on a systematic
review of the literature. This classification is shown in Table 13.1.

One way to deal with uncertainties is to design systems that adapt themselves
during run time, when the lacking knowledge becomes available. Adaptive systems
are capable of autonomously modifying their run time behavior to deal with
dynamic system context, and changing or new system requirements in order to
provide dependable systems. However, realizing adaptation in CPS is particularly
challenging due to specifics of these systems include the blurring boundaries
between the system and its environment, large scale and inherent complexity, the
role of end-users, multi-level uncertainty, open-endedness, among others (Bures
et al., 2015).

13 Patterns for Self-Adaptation in Cyber-Physical Systems 335
13.2.2 Adaptation

Adaptive systems are capable of modifying their run time behavior in order
to achieve systems objectives. Unpredictable circumstances such as changes in
the system’s environment, system faults, new requirements, and changes in the
priority of requirements are some of the reasons for triggering adaptation action
in a self-adaptive system. To deal with these uncertainties, an adaptive system
continuously monitors itself, gathers data, and analyzes them to decide if adaption
is required. Different paradigms for realizing adaptation have been developed. We
summarize three paradigms that appeared in the study presented in this paper:
architecture-based adaptation, multi-agent based approaches, and self-organizing
based approaches. Examples of other adaptation approaches, out of scope of this
chapter, are computational reflection and approaches based on principles from
control theory.

13.2.2.1 Architecture-Based Adaptation

Architecture-based adaptation (Oreizy et al., 1998; Garlan et al., 2004; Kramer
and Magee, 2007; Weyns et al., 2012) is one well-recognized approach that deals
with uncertainties at run time. The essential functions of architecture-based self-
adaptation are defined in the MAPE-K (i.e., Monitor, Analyze, Plan, Execute,
and Knowledge component) reference model (Kephart and Chess, 2003). By
complying with the concept of separation of concerns (i.e., separation of domain-
specific concerns from adaptation concerns that deal with uncertainties), the
MAPE-K model has shown to be a suitable approach for designing feedback
loops and developing self-adaptive systems (Weyns et al., 2013a). One well-
known architecture-based self-adaptive framework is Rainbow (Garlan et al.,
2004). Rainbow uses an abstract architectural model to monitor software
system run time specifications, evaluates the model for constraint violations,
and if required, performs global or module-level adaptations. Calinescu et al.
(2011) present a quality of service management framework for self-adaptive
services-based systems, which augments the system architecture with the MAPE-
K loop functionalities. In their framework, the high-level quality of service
requirements are translated into probabilistic temporal logic formulae which
are used to identify and enforce the optimal system configuration while taking
into account the quality dependencies. Moreover, utility theory can be used
(Cheng et al., 2006) to dynamically compute trade-offs (i.e., priority of quality
attributes over one another) between conflicting interests, in order to select
the best adaptation strategy that balances multiple quality requirements in the
self-adaptive system.

336 A. Musil et al.

13.2.2.2 Multi-Agent Based Approaches

Multi-agent systems belong to a class of decentralized systems in which each
component (agent) is an autonomous problem solver, typically able to operate
successfully in various dynamic and uncertain environments (Wooldridge, 2001).
These agents interact to solve problems that are beyond their individual capabilities
or knowledge. Multi-agent systems have features that are key to engineering
adaptive systems, specifically loose coupling, context sensitivity, and robustness to
failures and unexpected events (Weyns, 2010; Weyns and Georgeff, 2010). Agents
are self-contained, goal-directed entities. They get their adaptability from goals.
When multiple agents are available, a goal can be achieved by selecting among
the agents at run time, for example using negotiation (Fatima et al., 20006), rather
than requiring a hardwired design. An agent includes a specification of the situation
or context in which it is appropriate or expected to achieve its target goal. A
calling agent can simply post the goals it wishes to achieve and select only those
agents appropriate to the goal and current processing context: the right agent at
the right time in the right circumstances. Similarly, an agent’s internal processes
are typically associated with a context condition describing the situations in which
the process can achieve its specified goal. This means that processes “self select”
according to the desired goal and prevailing situation. Goal-directed multi-agent
systems eliminate most of the complexity needed for handling failures (Minsky and
Murata, 2004). Failures and unexpected events cause the original goal to be reposted
and tried again, without the need for explicit exception handling. The goal-directed
mechanism will automatically try them until success or ultimate failure.

13.2.2.3 Self-Organizing Based Approaches

Self-organization is a dynamic and adaptive process where a system acquires
and maintains structure itself, without external control (De Wolf and Holvoet,
2004). The essence of self-organization is an adaptable behavior that autonomously
acquires and maintains an increased order. Self-organizing systems exhibit the
following essential properties: increase in order (exhibiting useful behavior), auton-
omy (absence of external control), robustness (adaptability in the presence of
perturbations), and dynamicity (dynamics that handle changes). Self-organizing
systems may expose emergent behavior at the global level that dynamically arises
from the interactions between the parts at the local level. The engineering of self-
organizing systems if often inspired by natural phenomena, for example from
biology such as ant behavior and swarms (Di Marzo Serugendo et al., 2006).
The principle idea is to exploit the robustness and flexibility of these natural
systems as a metaphor for engineering computing systems. As an example, field-
based coordination relies on virtual computational fields (e.g., distributed data

13 Patterns for Self-Adaptation in Cyber-Physical Systems 337

structures), mimicking gravitational and electromagnetic fields, as the basic mech-
anisms with which to coordinate activities among open and dynamic groups of
application components. This enables components to spontaneously interact with
each other via the mediation of fields to self-organize their activity patterns in
an adaptive way (Mamei et al., 2006; Weyns et al., 2008). In a recent paper,
Bures et al. (2013) propose a component-based approach that exploits princi-
ples of self-organization. In this approach, autonomic components dynamically
form so called ensembles that share data to organize themselves on the fly.
The authors present the DEECo component model, a concrete realization of the
approach.

13.2.3 Collective Intelligence Systems

In the last decades, a form of user-contribution-driven web platforms has intensively
influenced the way of today’s knowledge creation and sharing processes. Today,
this kind of software systems is very popular and widespread in use in our
daily lives. Well-known examples of such CIS include Facebook,! Wikipedia,
YouTube,® and Yelp.* CIS are socio-technical multi-agent systems that aim to
harness the collective intelligence of interacting human actors by providing a web-
based environment for sharing, distributing and retrieving topic-specific information
in an efficient way (Musil et al., 2015a). A CIS posses a characteristic system
model that is illustrated by Fig.13.1. It consists of three layers: (1) a proac-
tive acto