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Engineering Value Chain Modelling

and Optimization

Lina Zhou and Xiaofei Xu

1 Background

The aim of this chapter is to introduce the modelling and optimization
methods in engineering value chain decision-making and show the
effectiveness and advances of solving management problems by infor-
mation technologies. Decision-making is a very important part of engi-
neering value chain management. There are many critical problems, such
as selecting one among a number of suppliers, determining the order
quantities of individual items in the next period, choosing the appropriate
locations to set up the warehouses, allocating the product inventory
among different distribution centres, deciding which route to take for the
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transportation vehicle and so on and so forth. Based on the characters of a
specific problem, different decision methods are developed and applied.
In this chapter, we summarize several typical value chain decision

problems and related decision methods and introduce the popular
decision-making methods based on mathematic model and optimization
algorithms. We then investigate an engineering value chain construction
decision problem, develop a multi-objective model, and propose the
genetic algorithm-based solution procedure. Finally, numerical experi-
ment and discussion are conducted to demonstrate the benefit of the
method. Further trends of development in engineering value chain
modelling and optimization will be illustrated.

2 Engineering Value Chain Decision-Making
Problems and Methods

Problem solving is an essential skill for business and life. As an important
problem-solving activity, the role of decision-making is to identify and
choose alternatives based on the values and preferences of the
decision-makers. The most popular decision-making problems in engi-
neering value chain management can be categorized into four broad
classes: partner selection, location-allocation, inventory decision, and
vehicle routing.

1. Partner selection problem

The right partners must be selected to be involved in the value chain
according to certain criteria. Partner selection is one of the key factors
influencing the strategic alliance’s performance, and the success of a value
chain depends on the selection of the right partners (Beamish 1987).
Developing appropriate criteria to evaluate the alternatives and select the
right ones are the crux of partner selection. Many methods have been
proposed and applied to different partner selection problem in the lit-
erature (Boer 2001; Chai 2013; Govindan 2015).
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2. Location-allocation problem

Proposed by Cooper (1963), this location-allocation problem con-
cerns the location and relation of a set of facilities that will provide
homogeneous services. In engineering value chain management, the
“facilities” could be plants, warehouses, distribution centres, service
centres and any other nodes of an EVC. Location-allocation decision
plays a very important role in the strategic design of value chain net-
works. Its decision object is to decide the best number and location of
the facilities subject to certain constrains. Snyder (2006), Melo (2009),
and Farahani (2012) reviewed the location-allocation decision problems
from different perspectives.

3. Inventory decision problem

Inventory is the quantity of goods or materials in stock. As buffers to
balance supply and demand, most of the nodes of the engineering value
chain need to carry inventories. Inventory management is a very
important part of core operations activities and will affect the perfor-
mance of the value chain. The management of inventory requires a
number of decisions. When to replenish stock, and how much to order
are the two basic decisions in inventory management, which is the
so-called inventory policy. Generally, the objective of inventory decisions
is to decide the inventory policy that minimizes the total inventory cost,
which include the ordering cost, carrying cost, and shortage cost.
Uncertainty, revenue, and deterioration should also be considered in
practical inventory decision problems (Bakker 2012; Horenbeek 2013).

4. Vehicle routing problem

One of the most important factors in implementing engineering value
chain management is to efficiently control the physical flow of the ma-
terial and goods. Vehicle routing decisions concern physical flows, which
focus on how to effectively transport the materials and the products while
minimizing the total cost. For example, how to transport the products to
the final customers via the plants, warehouses, and distribution centres
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using group of vehicles. As a generalization of the travelling salesman
problem, the vehicle routing formulation was first introduced by Dantzig
and Ramser (1959). Beyond the classical formulation, a number of
variants have been studied. Beyond this classical formulation, a number
of variants have been proposed. Eksioglu (2009) presents a methodology
for classifying the literature of the vehicle routing problem. Pillac (2013)
gave a good survey of the dynamic vehicle routing problem. Lin (2014)
reviewed the popular green vehicle routing problems.
The aforementioned problems are themost typical and popular decision

problems in engineering value chain management, which have been hot
topics in both academe and industry, and are receiving increasing atten-
tion. Based on the characters of specific decision problem, different kinds of
decision methods are developed. Multi-criteria decision aid method, data
mining technology-based method and optimization model-based method
are the three commonly used methods in engineering value chain
decision-making.

1. Multi-criteria decision-making methods

Multi-criteria decision-making methods are generally realized in the
following paradigm: a decision-maker considers a set of alternatives and
seeks to take an “optimal” decision considering all the factors that are
relevant to the analysis. Developed to standardize the complex decision
process and based on the alternatives evaluation theory, multi-criteria
decision methods are very efficient in dealing with decision problems in
which alternatives form a finite discrete set, typically consisting of a small
number of elements, in which each alternative is fully known in complete
detail, and any one of them can be selected as the decision. However, in
many decision cases, the alternatives are complex, infinite, and not given in
advance.

2. Data mining technology-based methods

Data mining is the computational process of discovering patterns in
LARGE datasets involving methods at the intersection of artificial intelli-
gence, machine learning, statistics, and database systems. The overall
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goal of the data mining process is to extract information from a data set
and transform it into an understandable structure for further use.
Discovering hidden knowledge from huge amounts of data will strongly
improve the decision quality. For example, mining customer data can
predict future demand and thus aid the production, inventory, and
delivery decisions. Collecting large amounts of business data along an
EVC, developing appropriate data cleaning and mining algorithms are
key issues in applying data mining technology in decision-making.

3. Optimization model-based methods

Originated and defined in mathematics, an optimization prob-
lem concerns finding the best solution from all feasible solutions. It is
applied to a widening array of contexts, including machine learning and
information retrieval, engineering design, economics, finance, and
management. Optimization model-based methods are very efficient in
dealing with the complex constrained decision problems with infinite
and unknown alternatives. Optimization model-based methods can
identify the set of all possible alternatives and provide the optimal
solutions for the decision-makers.

3 Decision-Making Based on Optimization
Model and Algorithms

The standard form of an optimization model is formulated as follows
(Boyd 2004):

Minimize f ðxÞ
subject to

giðxÞ� 0; i ¼ 1; 2; . . .;m

hiðxÞ ¼ 0; i ¼ 1; 2; . . .; n

ð1Þ
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where f ðxÞ is the objective function to be minimized over the variable x,
giðxÞ� 0 are called inequality constraints, and hiðxÞ ¼ 0 are
called equality constraints.
As shown in Fig. 1, the parameters represent the decision environ-

ment, the variables represent the candidate alternatives, the objective
function(s) is (are) the criterion(s); the constraints are the requirements
on the alternatives.
According to the number of the objectives, the optimization models

can be divided into two categories: single-objective models and
multi-objective models. The goal of single-objective models is to find out
the best solution, which will lead to the minimum (maximum) value of
the single-objective function. Cost is usually formulated as the single
objective in many value chain management decision problems. Examples
include Gumus (2009), Monteiro (2010), Başligil (2011), Creazza
(2012), and Lee (2014). Depending on the form and functional
description of the optimization problem, different optimization tech-
niques can be used for the solution, linear programming, nonlinear
programming, discrete optimization, etc. (Nemhauser 1989).
However, almost every real-world problem involves simultaneous

optimization of several incommensurable and even competing objectives.
In multi-objective optimizations, the various objective functions conflict
with each other (i.e. optimizing one of them usually tends to move
another towards undesirable values) and the aim is to simultaneously
optimize a group of conflicting objectives. The interaction among

Merges and Acquisitions

Management strategies 
Variation 

Value chain construction

Changeable business 
environment

Decision requirements

Decision criterions

Decision alternatives

Causes Optimization  model

Decision environment

Constraints 

Objective functions

Variables

Decision problem

Parameters

Fig. 1 Relationship between the decision problem and the optimization model
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different objectives gives rise to a set of compromised solutions, largely
known as the trade-off, non-dominated, non-inferior, or Pareto-optimal
solutions. For multi-objective decision problems, there is no single
optimal solution, but a set of alternative solutions. Pareto-optimality is
expected to provide flexibility for the decision-makers.
Traditionally, there are several popular methods available in the oper-

ational research literature for solving multi-objective programming mod-
els, such as goal programming (Charnes 1957), goal attainment (Kiresuk
1968) and weighted sum method (Turban 1998). Due to the fact that
multi-objective optimization problems are usually NP-hard, evolutionary
algorithms are found efficient for solving multi-objective models (Zitzler
1999). Originated in the late 1950s, the term evolutionary algorithm
stands for a class of stochastic optimization methods that simulate the
process of natural evolution. Some famous evolutionary algorithms for
multi-objective decision problems include vector evaluated genetic algo-
rithm (VEGA) (Schaffer 1985), multi-objective genetic algorithm
(MOGA) (Fonseca 1993), niched Pareto-genetic algorithm (NPGA)
(Horn 1994), strength Pareto-evolutionary algorithm (SPEA) (Zitzler
1999), non-dominated sorting genetic algorithms (NSGA) (Srinivas
1994), Pareto-archived evolution strategy (PAES) (Knowles 1999), etc.
Efficient in handling alternative large search spaces and generating

multiple alternative trade-offs, evolutionary algorithms are widely applied
in solving multi-objective decision problems. Today, multi-objective
decision is evolving towards the application of computer algorithms to
solve mathematical models on computers.

4 Engineering Value Chain
Configuration Model

In high value engineering industry (such as the aerospace industry),
product design and fabrication is a long-term process and contains
complex subprocesses that usually need the combined efforts of
numerous organizations, ranging from very small enterprises to large
corporations. Such value networks are usually very complex as they are
composed of many nodes to handle many kinds of tasks. Thus, value
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network design and optimization is very complicated and hard to com-
plete manually in high value engineering industry.
To interpret the decision process based on an optimization model and

algorithm in detail, an engineering value chain construction problem is
investigated, belonging to the location-allocation decision category and
involves two companies—A and B. Suppose company A is an aerospace
manufacturing company and has a mature supply network which is
composed of the internal and external suppliers, warehouses, and
assembly plants. Company B is a supplier of hardware and related
components to aerospace original equipment manufacturers and their
subcontractors and has its own distribution network composed of the
plants and the regional warehouses, distributing the components to the
customers.
The supply relationship before the acquisition is shown in Fig. 2. BPp

are the plants of company B, and BWi represent its regional warehouses.
Ss are the suppliers of company A (including both internal and external
suppliers, indicated by different colours). AWj represent company A’s
regional warehouses. Ck are company B’s general customers, while APq

are the assembly plants of company A, which are also customers of
company B. M types of products are produced in company B’s plants

BP1

BWiBW2BW1

C3C2C1 AP3AP1
AP2

AW1 AW2 AWj

S1 S2 Ss

APqCk

…

…

…

…

…BP2 BPp…

P1, P2

P1, P3

P4, P5

P6, P7

P2, P3

P1, P2 P2 P1, P3

P5
P2, P3 P4, P5

P1, P2

P6 P6, P7P6

I1, I2

I3, I4

I3, I4
I2 I5

I1, I2, I4

I3, I4
I3, I4

I2, I5

Fig. 2 Two value chain networks prior to acquisition
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(BPp) and distributed to the regional warehouses BWi. Then, BWi serve
the customers (Ck and APq). Company A’s suppliers (Ss) supply n types
of items to company A’s regional warehouses (AWj), which distribute
them to the right assembly plants (APq). The assembly plants integrate
the parts and components supplied by company B and the suppliers into
modules, subassemblies, and finally, aircrafts.
Before the acquisition, company B has to rent the warehouses (BWi)

and maintain its own distribution channel, which is a massive and costly
process in order to satisfy the customers’ (Ck and APq) requirements. It is
obvious that company A’s mature supply network can be utilized to
distribute company B’s products to the customers’ (Ck and APq) after the
acquisition. Thus, how to integrate the two multi-item value chain
networks is a critical issue. The required network integration decisions
include: (1) assessing whether to retain or eliminate company B’s specific
warehouses (BWi); (2) warehouse expansion strategy and the new
capacities of each warehouse (BWi and AWj); (3) supply links between
the facilities; (4) the quantity of items shipped among the facilities.
A mathematical model will be developed to solve the network inte-

gration problem. The proposed model is based on the following
assumptions:

1. Company A’s suppliers (including internal and external suppliers) and
company B’s plants are retained, and their production capacities
remain unchanged after the acquisition.

2. Company B’s general customers are retained and their future product
requirements are estimated based on the history business data.

3. All the requirement of company A’s assembly factories must be
satisfied.

4. Each regional warehouse of company B can be eliminated with a
certain penalty cost.

5. Each regional warehouse of company B and A can be expanded with a
certain cost.

6. Some important items must be stored in the appointed regional
warehouses.
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Consider that the new value chain network will distribute different
kinds of items to different customers (general customers and company
A’s assembly plants) and the decision-makers generally compromise
incompatible objectives to achieve adequate economic profits. We for-
mulate the network integration problem as a multi-objective program-
ming model with three objectives: (1) minimization of total integration
cost, which consists of the costs of closing former warehouses, and
adjusting the capacities of existing warehouses. (2) Minimization of total
operation cost, including the annual fixed cost of warehouse operation, as
well as the variable costs such as transportation cost. (3) Maximization of
the general customer satisfaction rate, which is calculated by the weighted
sum of each general customer’s customer satisfaction rate.

Sets and indices
I Index set of items; i 2 I
S Index set of the first-layer facilities (including firm B’s plants and

firm A’s suppliers); s 2 S
W Index set of the second-layer facilities (including firm B’s existing

warehouse and firm A’s existing warehouse); j 2 W
C Index set of the general customers; k 2 C
P Index set of firm A’s assembly plants; p 2 P
M Index set for capacity levels available to existing warehouses;

m 2 M, in which m ¼ 0 means that the warehouse is closed

Model parameters
SCisj Unit transportation cost of item i from Ss to Wjs
TCijn Unit transportation cost of item i from Wj to Cn or Pn;

n 2 C [P
FCjm Fixed cost of operating Wj with capacity level m
ACjlm Cost of adjusting Wj capacity level from l to m; l;m 2 M, in

which ACjl0(l 6¼ 0) is the penalty cost of closing Wj with
capacity level l, while l ¼ m, ACjlm ¼ 0

CRik Demand for item i of Ck

PRip Demand for item i of APp
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Cis Production capacity of item i for Ss; in which Cis ¼ 0, while Ss
does not produce item i

Gjm Capacity with level m for existing Wj

kn The relative importance of general customer; n 2 C andP
kn ¼ 1

aij The appointed storage relationship for item i; aij ¼ 0 or 1

Model variables

Xjlm ¼ 1 if the capacity level of Wj is adjusted form l to m
0 otherwise

�

Particularly, Wjll¼ 1ðl 6¼ 0Þ indicates the unchanged Wj capacity level,
andWjl0¼ 1ðl 6¼ 0Þ indicates closure of an existingWj with capacity level l.

Yisj Amount of item i shipped from Ss to Wj

Zijn Amount of item i shipped from Wj to Cn or Pn; n 2 C [P

With the above notation, the value chain network integration problem is
formulated as follows:

MinCostI ¼
X

j2W

X

l2M

X

m2M
ACjlmXjlm ð2Þ

MinCostO ¼
X

j2W

X

m2M
FCjm

X

l2M
Xjlmþ

X

i2I

X

s2S

X

j2W
YisjSCisjþ

X

i2I

X

j2W

X

n2C [P

ZijnTCijn

ð3Þ

MaxPDC ¼
X

n2C
kn

X

i2I

X

j2W
Zijn

 !,

CRin

 ! !

ð4Þ
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Subject to:
X

l;m2M
Xjlm � 1;8j 2 W ð5Þ

X

s2S
Yisj ¼

X

n2C [P

Zijn; 8i 2 I; j 2 W ð6Þ

X

j2W
Yisj �Cis;8i 2 I; s 2 S ð7Þ

X

n2C [P

X

i2I
Zijn�

X

l;m2m;m 6¼0

GjmXilm; 8j 2 W ð8Þ

X

j2W
Zijp�PRip ; 8i 2 I; p 2 P ð9Þ

Yisj � aij � Yisj;8i 2 I; j 2 W ; s 2 S ð10Þ
Xjlm 2 ð0; 1Þ;8j 2 W ; l;m 2 M ð11Þ
Yisj� 0; 8i 2 I; s 2 S; j 2 W ð12Þ

Zijn� 0;8i 2 I; j 2 W ; n 2 C [P ð13Þ

In the above formulation, the objective functions maximize the percentage
of satisfied demand of the general customers, while minimizing the inte-
gration cost CostI and the operation cost CostO. The integration cost
CostI consists of the costs of closing former warehouses, and adjusting the
capacities of existing warehouses. The operation cost CostO of the new
value chain network includes the annual fixed cost of warehouse operation,
as well as the variable transportation cost from the first layer to the third
layer through warehouses. The percentage of satisfied demand PDC is the
weighted sum of each general customer’s satisfied percentage. Constraint
(5) ensures that at most one capacity level is assigned to each warehouse.
Constraint(6) makes the incoming and outgoing flows equal at each
warehouse. Constraint (7) guarantees that the item quantity transported
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between the first layer and the second layer does not exceed the suppliers’
production capacity. Constraint (8) guarantees that the item quantity
transported between second layer and the third layer does not exceed the
warehouses’ capacities. Constraint (9) ensures all the requirement of the
assembly plants must be satisfied. Constraint (10) ensures the appointed
storage relationship. Constraint (11) ensures the integrality restriction on
the variables, whereas Constraint (12)/(13) enforce the non-negativity
restriction on all other decision variables.

5 Engineering Value Chain Configuration
Optimization Algorithm

Several conflicting objective functions must be simultaneously optimized
in the multi-objective problems. Due to the conflicting nature of the
objectives, it is impossible to achieve an ideal solution in which each
objective obtains its optimal value. To that end, Swiss economist Pareto
introduced the concept of Pareto-optimality for multi-objective opti-
mization. A solution of a multi-objective optimization problem is
Pareto-optimal if and only if it is impossible to make at least one
objective better without making anyone else worse. The set of
Pareto-optimal solutions of a multi-objective optimization problem
consists of all decision vectors for which the corresponding objective
vectors cannot be improved in a given dimension without worsening
another, and the set of all the corresponding objective vectors is called the
Pareto-front. The objective of multi-objective optimization is to find its
Pareto-optimal solution set and corresponding Pareto-front.
In the literature, many researchers have successfully applied genetic

algorithms (GAs) to solve value chain optimization problems. As a
population-based approach, genetic algorithm (GA) is appropriate in solv-
ing complex multi-objective problems. Many multi-objective GAs have
been proposed, and NSGAII (Deb 2002) is one of the best multi-objective
genetic algorithms as evident from the existing literature. Thus in this
study, NSGAII algorithm is adopted to solve the value chain network
integration model, and the detailed steps of NSGAII are shown in Fig. 3.
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The whole process is repeated until the stopping criterion is met and
the individuals with rank 1 in the last generation are reported. The
termination criterion is usually characterized by the number of genera-
tions. The output of the algorithm is a set of non-dominated
Pareto-optimal solutions, as all the solutions are the best in a sense of
multi-objective optimization. In the following account, the key com-
ponents of the proposed multi-objective solution procedure will be
described in detail.

5.1 Problem Representation and Initialization

Choosing a good representation scheme for the construction of the
genotype is one of the critical issues in using GA to solve optimization
problems. In the value chain network integration problem, the network
handles n types of items and each type of item has an independent
two-stage logistics network (from the first-layer facilities to the
second-layer facilities and from the second-layer facilities to the customer
and plants). The whole value chain network can be seen as a superpo-
sition of the logistic networks of each type of item. Since a single-stage
logistics network can be represented by a spanning tree (Gen 2000) and
be encoded using a determinant code (Abuali 1995). We can encode the
solutions of the value chain network integration problem based on tree
structure. The chromosome structure is designed as shown in Fig. 4.
As shown in Fig. 4, the chromosome includes two parts, the first part

represents the DC capacity levels with M integers between 0 and m,
where “0” means the warehouse is closed. The second part corresponds
to the logistics networks of K items. Each item has two determinant
codes, representing the spanning tree of the first and second stages,
respectively. The determinant code DT for a spanning tree T (V, E) is
defined as follows (Abuali 1995):

DT ¼ ðx2; x3; � � � ; xnÞ ðxi; iÞ 2 E; for i¼j 2 to n

where xi is an integer between 1 and n.
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Generate the initial population with size N

Start

Calculate the rank of each individual by non-
dominance sorting

Calculate fitness value of each individual in the 
current population

Calculate the crowding distance for each 
individual

Select the individuals using a binary 
tournament selection based on the rank and 

crowding distance

Perform crossover and mutation to generate 
the offspring population

Combine parent and offspring populations

End

Stopping 
criteria met?

Calculate the rank and crowding distance for 
each individual in the combination

Generate the N size new population by 
selection

Y

N

Report the last generation

Fig. 3 NSGAII-based solution procedure
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DT has n-1 digits, and the i-1 position in DT represents the direct
connecting node of node i. For example, the determinant code for the
spanning tree in Fig. 5 is (6 6 9 1 2 2 3 1). The first digit “6” means that
Nodes 2 and 6 are connected in the spanning tree. The decoding flow
chart of the determinant code is shown in Fig. 6.
Using the structure shown in Fig. 4, each chromosome corresponds to

a value chain network and the related logistics relationships. All the
decision variables can be achieved by decoding the chromosome. The
decoding algorithm flow chart is shown in Fig. 7.
As previously defined, the chromosome has (1 + K) parts. The first

substring consists of N integers representing the capacity levels of the
warehouses. The last K substrings are determinant codes representing
two-stage logistics network of K items. When decoding the chromosome,

D12D11

I1

D22D21 D32D31 DK2DK1
……

I2 IKI3

3021 ……

W1 W2 W3 WN

Integer variables for
warehouse capacity levels

Determinant codes for the 
logistics network of each item

Determinant code 
of the first layer

Determinant code 
of the second layer

Fig. 4 Representation of chromosome
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Fig. 5 Spanning tree of a single-stage logistics network
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the first N digitals are decoded firstly to achieve the capacity of each
warehouse (if the capacity is “0” the warehouse is not included in the
network). Then, the logistics network of each item is decoded succes-
sively. The chromosome substring of each item consists of two deter-
minant codes, namely Dk1 and Dk2. Dk1 corresponds to the first stage,
whereas Dk2 corresponds to the second stage. For a certain item, the
decoding process is backwards and can be divided into three steps:
(1) decode Dk2 firstly to achieve the subnetwork and supply amounts
between the second layer and the third layer; (2) decode Dk1 to achieve
the subnetwork and supply amounts between the first layer and the
second layer; and (3) check whether the equal flows constraints are
satisfied and otherwise rearrange the supply amounts between the second
layer and the third layer. In step (1), the determinant code Dk2 is
decoded first to achieve the supply links between the warehouse and the

Given a determinant code 

Start

Initialize i =1

i =i+1

End

1 2( , , , )T nD x x x= ...

?i n

(x
i
,i+1)

≤

Add link to TD

Y

Output the link set of the spanning tree TD

N

Fig. 6 Determinant decoding flow chart
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Input a chromosome V

Start

End

?k K≤

Decode determinant code and  achieve the 
logistics link set of  item k

Y

Decode determinant code and  achieve similarly 

N

Decode the first N digitals, achieving and get the 
capacity Gj of each warehouse Wj

Set =1 and begin to decode the first item’s supply 
chain network

{ })min ( , ;  ;kjpkip kp i i i kjp
j W

ZZ PR G G G Z
∈
∑= − = −
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j W

Z PR
∈
∑ ≤
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2( , ) ?i p kW CP L∈
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Y

Y

N

N

Have all 
customers 
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N

isjY

Check the equal flows constrains of each warehouse Wj

= = ,   ?isj ijn
s S n C P

Y Z i I
∈ ∈ ∪

∀ ∈∑ ∑

Rearrange the amount supplied between the 
warehouse and its related general customers

Output all the model variables 
corresponding chromosome V

Y

Y

N

Fig. 7 Decoding algorithm
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customers (including general customer and assembly plants). Due to the
capacity constraints, the warehouses may not satisfy or the customers;
however, according to the constraints that all the requirement of the
assembly plants must be satisfied, thus the assembly plants are satisfied
prior to the general customer, and furthermore, the general customers are
also queued in a priority-descending order. In step (3), the rearrange-
ments also follow the same allocation principle and the chromosome that
cannot satisfy the assembly plants’ requirements will be abandoned. With
the above three steps, the value chain network corresponds to a certain
item and the related variables are achieved. Conducting the decoding
procedure on the items one by one, all the single-item value chain net-
works will be achieved and then the whole value chain network can be
determined.

5.2 Crossover and Mutation

Based on the encoding structure, we employ two-cut-point crossover and
segment-based mutation operations (Altiparmak 2009). Figure 8 shows a
simple illustration of the crossover operation. Two random positions are
generated as the head and tail, respectively, and alleles from the head to
the tail are exchanged between parents.
A mutation is then applied to the generated offspring according to a

mutation rate. As previously defined, the chromosome can be divided

13202 66942231

I1

78683412 75631124

I2

88793241 96841231

I3

78961324

warehouses

03214 58732113 69781254 99724321 76871235 79534412 69785313

Parebt1

Parent2

offspring 1

offspring 2

13202 68732113 69781254 99724321 76871235 7953 4412 78961324

03214 66942231 78683412 75631124 88793241 9684  4412 69785313

head tail

1231

4412

6

5

Fig. 8 Illustration of crossover operator
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into (1 + K) segments, where K is the number of items. The first seg-
ments are integers representing the capacity levels of each warehouse.
The last K segments are determinant codes representing the logistics
network of K items. The mutation is based on the chromosome seg-
ments. Figure 9 illustrates the mutation operation.
The binary mask indicates the segments to be mutated. If the first two

segments are selected, an exchange mutation operator is employed within
the segment. If the last K segments are selected, the value of a randomly
selected gene is replaced with a new one, ranging from one to the
number of corresponding nodes.

5.3 Repair Mechanism

During determinant codes generation, chromosome crossover and
mutation, infeasible codes that cannot be adapted to generate the
transportation tree may be obtained. Thus, a repair mechanism is needed
in the whole evolution process to check and repair the illegal determinant
codes.
A spanning tree may be illegal due to three reasons: “missing Node 1”;

“cycle”; and “self-loop” (Abuali 1995) ;(Chou 2001). “Cycle” and
“self-loop” can be avoided in the initialization through a restriction on
the encoding range of genes: in concrete terms, suppliers are numbered
from 1 to M and demanders are numbered from M + 1 to M + N.
According to the determinant decoding method, nodes corresponding to
the first (M−1) genes connect to nodes indexed from 2 to M, which are

13202 66942231

I1

78683412 75631124

I2

88793241 96841231

I3

78961324

Segment1 Segment2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7

Parent

Binary mask 1 0 0 1 0 1 0

Offspring 12203 66942231 78683412 75731124 88793241 96541231 78961324

warehouses

Fig. 9 Illustration of mutation operation
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supplier nodes. Therefore, the first (M−1) genes must correspond to the
demander nodes, and the value range of the first (M − 1) genes is
restricted to [M + 1, M + N]. Similarly, the value range of the last
(N + 1) genes is restricted to [1, M], ensuring connection of demand
nodes to supplier nodes. Such restrictions on the value range effectively
prevent “self-loops” and “cycles”.
Thus, only “missing Node 1” may occur in our problem, and the

repair mechanism is as follows: Given a determinant encoding substring,
an initial scan determines if Node 1 is missing. If yes, find the lowest-cost
node connected to Node “1” based on the cost matrix, and assign 1 to
the corresponding position. In case of a tie, randomly select a position.
After this repair procedure, all the determinant codes can be decoded into
spanning trees, and the distribution patterns in each stage can be
determined.

6 Numerical Example and Discussion

The proposed model and solution procedure are tested with a network
integration problem with three types of items: 100 first-layer facilities, 15
warehouse and 50 end customers. The algorithm was implemented using
MATLAB programming language and was executed on a Pentium Dual
E2200 processor (2.2 GHz clock) with 2 GB memory. The parameters
were determined as: population size = 300; maximum number of gen-
erations = 300; crossover probability = 0.7; mutation probability = 0.3.
Figure 10 shows the Pareto-front, and Table 1 shows part of the
Pareto-optimal solutions.
The Pareto-optimal solutions represent the trade-off among the three

objectives, validating the fact that the three objectives are incompatible,
and that a perfect value chain network is unreachable. For example,
achieving higher customer service level would require higher operation
cost. Result No.1 shows that more cost is incurred to ensure that all
general customer demands are satisfied. However, the general customer
demand quantities are predicted based on the history of business data
and market research; thus, increasing the investment to reach customer
service level “1” is unadvisable. Particularly, result No.10–12 show that
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to achieve the same standard service level, the operation cost (Costo) will
be very high if the two networks are not integrated and optimization
(CostI ¼ 0).

7 Summary

Decision-making is a very important part of engineering value chain
management. In this chapter, four popular decision-making problems
(partner selection, location-allocation, inventory decision, and vehicle
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Fig. 10 The Pareto-front of the value chain network construction problem

Table 1 Part of the Pareto-optimal solutions

No. PDC CostI Costo First part of the chromosome
1 1.0000 117.35 164.52 121101020002200
2 0.9796 93.22 149.45 021100202002200
3 0.9573 85.17 134.32 220100221002200
4 0.9443 74.34 156.23 121100201002200
5 0.9339 81.88 130.34 122100220002200
6 0.9322 82.34 125.60 120100220002200
7 0.9262 78.95 135.72 202000220002200
8 0.9250 75.71 141.89 022100201002200
9 0.9004 65.33 149.24 120100221002200
10 1.0000 0 382.78 1211211111211111
11 0.9321 0 317.53 1211211111211111
12 0.9145 0 300.21 1211211111211111
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routing) and three decision-making methods (multi-criteria decision aid
method, data mining technology-based method, and optimization
model-based method) are introduced firstly. Then, the optimization
model-based methods are emphasized. To interpret the decision process
using optimization model-based method in detail, a complex value
network integration and optimization problem is investigated as an
example, a multi-objective optimization model is developed, and the
genetic algorithm-based solution procedure is proposed to achieve the
network integration and optimization solutions. Finally, numerical
experiment and discussion are conducted to demonstrate the benefit of
integration and optimization. The decision example shows the effec-
tiveness and advances of solving management problems by information
technologies. How to formulate a realistic decision problem and develop
appropriate optimization algorithm are the crux and difficulty of the
optimization model-based decision method. A stochastic or fuzzy model
would be more realistic, but increasingly complex. Future work can focus
on formulating the stochastic model and developing an effective solution
algorithm.
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