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Engineering Value Chain Coordination

and Optimization

Ming Dong and Yonglin Li

1 Introduction

Increasing competitive pressures and market globalization are forcing
firms to develop engineering chain that can quickly respond to customer
needs. Historically, have been managed independently, buffered by large
inventories. Therefore, effective engineering management requires coor-
dination among the three fundamental stages of the engineering chain:
procurement, production, and distribution.
Coordination can be visualized in different functions such as logistics,

inventory management, forecasting, and transportation. Similarly, various
interfaces such as supplier—manufacturer and manufacturer—retailer can
be effectively managed using coordination. The members of engineering
chain are often separate and independent economic entities. Even though
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coordination improves the performance of the engineering chain, it may
not always be beneficial to coordinate the engineering chain members.
Hence, a key issue in engineering chain coordination is then to develop
specific mechanisms that align the objective of independent members and
coordination, their decisions, and activities so as to optimize engineering
system performance. By utilizing coordination mechanisms, the perfor-
mance of engineering chain value may improve. There are four different
types of coordination mechanisms as discussed (see Fig. 1).
With the advances in logistics and engineering chain management

technology in recent years, there has been an explosion of interest in the
topic of “engineering Chain Optimization”. Optimization is the applica-
tionof processes and tools to ensure the optimal operationofmanufacturing
and distribution chain. This often involves the application of mathematical
modeling techniques using optimization techniques (see Fig. 2).
Typically, engineering chain optimization is trying to maximize the

profitable operation of their manufacturing and distribution chain. This
could include measures like maximizing gross margin return on inventory
invested (balancing the cost of inventory at all points in the engineer-
ing chain with availability to the customer), minimizing total
operating expenses (transportation, inventory, and manufacturing), or
maximizing the gross profit of products distributed through the

Fig. 1 The relationships of coordination mechanisms
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engineering chain. Engineering chain optimization involved the
end-to-end process, which starts with the design of the product or service
and ends with the time when it has been sold, consumed, and finally,
discarded by the consumer; issues can be classified into two broad cate-
gories: configuration (design-oriented) issues that relate to the basic
infrastructure on which the engineering chain executes and coordination
(execution-oriented) issues that relate to the actual execution of the
engineering chain.
The competitiveness and dynamic nature of today’s marketplace are

due to rapid advances in information technology, short product life cycles
and the continuing trend in global outsourcing. Managing the resulting
engineering chain networks effectively is a complex and challenging task
which is imputable to a high level of uncertainty in engineering demand,
conflict objectives, and vagueness of information, numerous decision
variables, and constraints. System modeling is used in such cases to model
the real system. These models can be mathematical models or simulation
models. In order to capture the system complexity, mathematical models
are rarely used to model engineering chain. Decisions are made at different
levels in engineering chain. These decisions are needed to be supported by
robust optimization techniques to enable decisions to evaluate the impact
of their decisions prior to actually making them in the real environment.
Optimization techniques have shown a great potential to solve engi-

neering chain problems that cause an immense challenge to decision

Fig. 2 The processor of modeling and optimization in EV chain
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makers. These challenges are imputable to a high level of uncertainty in
supply demand, conflict objectives, lack of needed information, numer-
ous decision variables, and inevitable constraints. Traditional techniques
(e.g., linear programming, integer programming, and mixed-integer
programming) have limited capabilities to handle the inherent interde-
pendencies in current engineering chain networks. Optimization
methodologies have to focus not only on improving a particular process
performance but also on achieving a broader impact on engineering chain
efficiency. Accordingly, metaheuristics were presented into engineering
chain applications because of its global optimization capabilities in
stochastic environments. On the other hand, statistical methods and
metamodel-based methods can be incorporated with metaheuristics to
provide more reliable solutions in a reasonable timeframe.
Manufacturing processes are also undergoing major challenges to

achieve the Smart Factory vision such as to increase systematic processes,
reuse, and improve understandability of complex structures. Most of the
new factory concepts share attributes of smart networking (Dolgui and
Proth 2010; Ivanov et al. 2013; Chick et al. 2014). That is why it
becomes a timely and crucial topic to consider engineering chain as
collaborative cyber-physical systems (Camarinha-Matos and Macedo
2010; Ivanov et al. 2014). Cyber-physical systems incorporate elements
from both information and material subsystems which are integrated and
decisions in them are cohesive (Zhuge 2011).
Some coordinationmechanisms, such as quantity discount schedule and

revenue-sharing schedule, are used to regulate the relationship among `’s
members. The continuous evolving dynamic structure of the engineering
chain poses many interesting challenges for effective system coordination.
Very often, schedules are designed for the static environment such as a
known market demand and a distribution function in the stochastic
environment. These schedules can be defined as a static coordination
mechanism. However, after the plan has been settled down, the environ-
ment is often disrupted by some unexpected events, such as machine
breakdown, the raw material shortage, the SARS epidemic, and Hurricane
Katrina. The disruptions have made companies aware of the need for active
disruption management.
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How to design adaptive coordination mechanisms is a problem, and
some aspects can be considered as follows:

• Double check the traditional coordination mechanisms by further
consideration of the more realistic business environment. For example,
considering the influence of the widely used trade credit and its
associated risk in realistic commerce.

• Realize the influences of a new relationship of customs and behaviors.
For example, based on a review of the social network, consumption
habits, and the ways of communication.

• Realize the influences of new ICT. For example, forecast demand
directly using big data mining technology.

• Holistic coordination model for integrating currently commercial
environment and novel manufacturing models.

• It must be noted that a typical engineering chain also deals with
human systems, and hence, it is hard to coordinate engineering chain
members may be visualized.

• There exist differences in the interest of engineering chain members as
the members habitually work as an individual based on local per-
spective and opportunistic behavior results in a mismatch of supply
and demand.

Today’s markets call for elaborate competition schemes as a large
variety of products is available to meet customer requirements. Mass
customization has become an imperative for many manufacturers to
survive in the growing competition characterized by heterogenic cus-
tomer demands, accelerated new product development investments, and
shortened product life cycles. Duray shows that the degree or type of
customization depends on the point in the production cycle where the
initial customer involvement is (Duray et al. 2000). They define four
points in the production cycle, where each of the points is an expression
of the degree of customization: design, fabrication, assembly, and use.
The first three are quite easily recognized as commonly known,
engineer-to-order (ETO), make-to-order (MTO), and assembly-to-order
(ATO).
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In summary, engineering chain management in new business envi-
ronment is complicated and has its own special characters mainly
reflected in two aspects. One is the random information from customer
orders and the complex relations among engineering chain cooperators,
which can cause many complicated contradictions in strategic or oper-
ational level and bring dynamic or stochastic characteristics to it; the
other is the outstanding relations of collaborative benefits and risks in
this complicated environment. Therefore, we must probe the ways to
respond to these characteristics and analyses, the coordination mecha-
nisms, and optimization approaches in new business environment.
Coordination is essential for successful engineering chain manage-

ment; we make a conjoint research of information sharing, operational
research and behavior research to adaptive coordination mechanism,
and the details are worded in Sect. 2 . As for modeling and optimization,
review papers (Da Silveira et al. 2001; Fogliatto et al. 2012) defined four
steps that described activities in generating and processing MC orders,
namely (1) building the product catalog, (2) configuring customer
orders, (3) transferring orders to manufacturing, and (4) manufacturing
customized orders. We focus on step (3) to engineering chain opti-
mization, transferring orders to manufacturing, which is specific to the
manufacturer who fulfills the orders based on available production
resources: materials and production capacity under the ATO engineering
chain environment in Sect. 3.

2 Trust-Embedded Coordination
in Information Sharing

2.1 Introduction

Information sharing is one of the most important coordination mecha-
nisms in engineering chain (see Fig. 1). In industries, many firms follow
electronic data interchange (EDI) system to place orders. Based on the
received orders, their upper streamers determine their optimal capacities
(Premkumar et al. 1994). Because the orders are costless, non-verifiable,
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and cancelable before shipping, they are commonly referred to
soft-orders (Taylor and Plambeck 2007). Therefore, EDI based non-
binding soft-orders primarily do not involve complex contracts. Since a
downstream retailer has an incentive to over-order products for abundant
supply, fully relying on the soft-orders usually leads to great capacity
risks. Sometimes, an upstream supplier deems all soft-orders to be
meaningless (Cai et al. 2013). Based on the above analysis, a critical
question of information sharing by soft-orders is how much information
to be credibly transmitted and what is the optimal decision under
information asymmetric circumstance.
Information asymmetry in a supplier—retailer relationship is well

studied; strategic information transmission and contract designing are
helpful to align the pecuniary incentives of engineering chain partners
and ensure credible information sharing (e.g., Cachon and Lariviere
2001; Özer et al. 2011). In industries, many firms share nonbinding
unverified information via soft-orders. For example, Nike has started
soft-order service via an EDI system for nearly 15 years. At the first year
when the service was started, the service helped Nike to reduce its stock
by 14% (Nike Inc. 1999). It is also reported that more than 41% of Asia
Pacific firms have adopted EDI systems to transmit their soft-orders since
2008. Motivated by the practices, some behavior studies (e.g., Özer et al.
2011; Ebrahim-Khanjari et al. 2012) establish the role of trust in in-
formation sharing via soft-orders without complex contracts and verify
that trust is the primary factor for credible information transmission.
Since “trust is a psychological state comprising the intention to accept
vulnerability based upon positive expectations of the intentions or
behavior of another” (Rousseau et al. 1998), it is also affected by instant
behaviors in current transactions. In order to mathematically present the
influence of instant behaviors to trust, we suggest a trust evaluation
model. The proposed model is helpful to analyze the value of trust in the
information sharing process and how trust affects engineering chain
decisions.
We focus on a two-tier engineering chain consisted of a supplier and a

retailer. Both the supplier and retailer do forecast independently before
transaction. At the beginning of their transaction, the retailer places
soft-orders and the supplier decides his capacity afterward. Because both
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supplier and retailer’s forecasted demands are their private information, it
is risky for both sides to make decisions under the highly information
asymmetric circumstance. For example, the retailer does not know how
much the supplier trusts when she places orders because the supplier’s
forecasted demand is unknown to her. Simultaneously, the supplier also
faces potential loss stemming from the retailer’s artificial soft-orders since
he does not know the retailer’s private forecast. Therefore, we provide a
trust-embedded coordination to mitigate their risks and improve engi-
neering chain performances. The coordination process consists of two
stages: at the first stage, the retailer and supplier negotiate a cost-sharing
rule; at the second stage, the retailer makes ordering decision and the
supplier makes capacity decisions sequentially. We are interested in: what
is the role of trust takes in their transaction? How does the negotiation
power of the supplier/retailer affect the engineering chain decisions and
performances? Whether the proposed trust-embedded coordination
works effectively or not?

2.2 Modeling Trust

The existing psychology theories have proven that trust is affected by
multiple factors. Some factors can be evaluated before a transaction, e.g.,
reputation, historical transaction, and peer recommendations from
trustees; emotions, experience, and cognition from the trustors. The
evaluations of these factors are pre-known and unchanging in a trans-
action, so that these factors can be named as predetermined factors.
However, some instant behaviors in transactions can affect trust
(Rousseau et al. 1998). Thus, some trust-affecting factors (i.e., instant
behaviors) can only be evaluated in the current transaction. Thus, we
name the factors that work in the current transaction as instant factors.
For convenience, we denote all the predetermined factors by R and all
instant factors by D. Moreover, because trust is a kind of psychological
state, its distributions are often evaluated by regression approaches
(Laeequddin et al. 2012). Thus, we consider trust T as a randomly
distributed variable with cumulative density function (c.d.f) FðtÞ and
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probability density function (p.d.f.) f ðtÞ. According to the above analysis,
trust T is formulated as:

T � f ðt=R;DÞ where 0� t� 1 ð1Þ

Equation (1) suggests a generalmodel to quantify trust, whereR denotes
predetermined factors and D denotes instant factors. Since R and Dmight
contain different items in different situations, the proposed trust model is
general and applicable to different engineering chain problems. For exam-
ple, a decision maker might analyze information in some complex situa-
tions, e.g., multiple partners, multiple engineering chain tiers, or complex
transaction processes. The decision maker can classify all trust-affecting
factors of his/her problem into two groups, the predetermined factorsR and
the instant factors D. Based on this classification, his/her trust level can be
evaluated by Eq. (1). Therefore, our proposed trust evaluation model is
general and could be used in the complex situations.
In the target problem of this paper, the predetermined trust-affecting

factors include reputation and historical transactions of the retailer,
experience and psychology state of the supplier, peer recommendation
from the third side, and so on. When a transaction begins, the retailer
places a soft-order. After that, the supplier calculates the information
mismatch level by comparing his private forecasting demand with the
retailer’s soft-order. Because information mismatch harms trust level l
(Kosfeld et al. 2005; Sriram 2005), the supplier updates his trust based
on information mismatch. We let lS be the supplier’s forecasted demand
and lRS be the retailer ordered quantity; thus, the information mismatch

can be denoted by D ¼ lRS�lSj j
ls

. Therefore, when D ¼ 0, we have

T � f ðtjR; 0Þ, which means the supplier’s trust only depends on the
predetermined factor R. Thus, the supplier’s trust when D ¼ 0 can be
named as “initial trust.” As suggested by Özer et al. (2011), we have trust
level T ranged within [0,1]. The fact of T ¼ 0 suggests that the supplier
fully distrusts the retailer’s soft-order, while the fact of T ¼ 1 indicates
the supplier fully trusts the retailer’s soft-order.
In this context, market demand is formulated as D ¼ l0þ e, where l

is a positive constant denoting average market demand and e describes
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demand fluctuation. They both know that e is a random variable with
c.d.f. CðeÞ and p.d.f. sðeÞ. In the engineering chain we studied, both the
retailer and supplier forecast the value of l0 individually. Because the
retailer is more close to consumers and professional on marketing, we
assume the retailer can precisely forecast the distribution of market
demand. Although the retailer’s forecasted demand is lR, she places a
soft-order lRS to the supplier. After receiving the retailer’s soft-order lRS,
the supplier updates his demand evaluation based on ordered quantity
lRS and his own forecasted demand quantity lS. As suggested by Clemen
and Winkler (1999), we assume that the supplier combines two demands
of lRS and lS using a simple weighted average approach. Therefore, the
supplier believes that the average market demand is:

l ¼ TlRSþð1� TÞlS; where T � f ðtjR;DÞ ð2Þ

Since l is a random variable, we let GðtÞ and gðtÞ denote its c.d.f. and
p.d.f., respectively. Because T 2 ½0; 1�, we have minðlRS; lSÞ�EðlÞ
�maxðlRS;lSÞ based on Eq. (2), which indicates that the supplier
insists that average demand is within his own forecasted demand and the
retailer’s soft-order. Although the retailer does not know the value of lS,
she can employ the concept of Bayes’ rule to evaluate it. We assume that
she evaluates lS to be l0S. Therefore, the retailer believes her trustwor-
thiness T 0 to be:

T 0 � f ðt0jR;D0Þ where t0 2 ½0; 1�; D0 ¼ jlRS � l0Sj
l0S

ð3Þ

Let l0S denote the retailer’s evaluation on lS, the retailer’s evaluation of
l is written as:

l0 ¼ T 0lRSþð1� T 0Þl0S ð4Þ

Since T 0 is a random variable, l0 is also a random variable.
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2.3 Profit Functions

Because of advantages in information collection and customer demand
forecasting, retailers in engineering chain most probably know the real
demand information. Similarly, to some existing studies (e.g., Cachon
and Lariviere 2001; Özer and Wei 2006), we assume that the retailer
knows the demand information since she is more close to market. We
also assume that the wholesale price pS , retail price pR, production cost
c, and capacity preparation cost ck for each product are known.
Both the supplier and retailer have their individual forecasts and

communicate with soft-orders; their transaction follows such a sequence:
(1) both the retailer and supplier forecast the average market demand and
the retailer evaluates the supplier’s forecasted demand; (2) the retailer
places a soft-order to the supplier; (3) the supplier evaluates the market
demand based on the retailer’s soft-order and his private forecast. After
that, he determines his optimal production capacity. The decision pro-
cess is illustrated in Fig. 3.
Different from the decision process given by Özer et al. (2011), we do

not only analyze the supplier’s optimal determinations but also solve the
retailer’s optimal decision in this paper. As shown in Fig. 1, the engi-
neering chain decisions are made following a Stackelberg game, where
the retailer is the leader and the supplier is the follower. In the game, the
retailer decides her ordered quantity at first and the supplier determines
his optimal capacity based on the retailer’s decision.

1. The retailer’s decision.
Let Q denote the supplier’s capacity, the retailer’s profit is:

Forecasts demand Places order

Forecasts demand Updates demand evaluation 

The retailer

The supplier

Prepares capacity

Evaluates the supplier forecasted demand 

t1 t2 t3t0

Fig. 3 Sequence of events in decentralized pattern
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PR ¼ E
e
½ðpR � pSÞmin ðQ; lRÞþ eÞ� ð5Þ

Because the retailer evaluates lS to be l0S (Eq. 4), the supplier’s
expected profit in retailer’s belief is:

P0
S ¼ E

e
½ðpS � cÞminðQ; l0Sþ eÞ � ckQ� ð6Þ

Note that formula l0S þ e is random, we assume its c.d.f. and p.d.f. to
be G0 t0ð Þ and g0 t0ð Þ, respectively. Let l�RS and Q0� be the optimal solu-
tions of max PRð Þ and max P0

Sð Þ, respectively. We can solve the retailer’s
decision Q0� by Eq. (6). Then, we introduce Q0� into Eq. (5) and
compute the retailer’s decision l�RS (Corollary 1).

Corollary 1 For 8lR , we have

l�RS ¼ arg max
lRS

Q0�; Q0� ¼ G0�1 pS � c� ck
pS � c

� �
þE l0ð Þ

Proof. Because the retailer and supplier make decisions sequentially, we
solve the supplier’s decision at first. For a given lRS, we have
l0 ¼ T 0lRSþ 1� T 0ð Þl0S, where T 0 � f t0jR;D0ð Þ (Eq. 3). We introduce
l0 into Eq. (6) and have:

dP0
S

dQ
¼ pS � cð Þ 1� G0 Q� E l0ð Þð Þ½ � � ck

d2P0
S

dQdQ
¼ � pS � cð Þg0 Q� E l0ð Þð Þ\0

Therefore, according to Eq. (1), we have the supplier’s optimal solu-
tion as follows:

Q0� ¼ arg max
Q

P0
S ¼ G�1 pS � c� ck

pS � c

� �
þE l0ð Þ
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Because
Q

R strictly increases with Q, we have the retailer’s decision on
optimal soft-order:

l�RS ¼ argmax
lRS

PR ¼ argmax
lRS

Q0�:

In Corollary 1, Q0� is the retailer’s evaluation about the supplier’s
capacity when she orders l�RS: Therefore, the retailer’s maximum
expected profit is

Q0
R
�
Q0�ð Þ.

2. The supplier’s decision.
After receiving the retailer’s soft-order lRS, the supplier evaluated
market demand is lðlRSÞ by Eq. (2). We have the supplier’s profit
function:

PS ¼ E
e
½ðpS � cÞmin ðQ; lðlRSÞþ eÞ � ckQ�

) Q� ¼ argmax
Q

PS ¼ E½TlRSþð1� TÞlS� þG�1
�
pS � c� ck

pS � c

�

ð7Þ

Introducing l�RS into Eq. (7), we have the supplier’s optimal capacity
decision:

Q� ¼ E½Tl�RSþð1� TÞlSþG�1
�
pS � c� ck

pS � c

�

The solutions of l�RS and Q� indicate that both the retailer and sup-
plier’s optimal decisions are directly linked with l0S.
Engineering chain ineffectiveness resulting from information asym-

metric is a classic and well-documented problem in information sharing
studies, and it is proved that both the supplier and retailer face potential
losses when they make decisions in a decentralized pattern. Therefore, we
are interested in designing a trust-embedded coordination mechanism to
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mitigate both the partners’ risks of loss and show how much the engi-
neering chain can benefit from the coordination.
Due to the poor engineering chain performance resulting from double

marginalization, many contracts are proposed to coordinate the engi-
neering chain performances, e.g., quantity discount contract, buy-back
contract, and wholesale price contract (Cachon 2003). Different from the
contracts above, we consider the supplier’s trust in building a
cost-sharing contract.
In the contract we proposed, both the retailer and supplier negotiate a

cost-sharing rule right after their forecasts/evaluations are made. The
engineering chain decisions are made following a two-stage decision
process (Fig. 4). At Stage 1, both the supplier and retailer negotiate a
cost-sharing rule under the information asymmetric circumstance. Once
they reach an agreement on shared cost of per ordered product after the
negotiation, the order is regarded as “bounded.” That is, when the
retailer places a soft-order and pays the negotiated shared cost, the
supplier guarantees the order to be fully satisfied. Note that if they
cannot successfully negotiate a cost-sharing rule, then the retailer’s order
will not be guaranteed by the supplier, and the order is regarded as
“unbounded.” At Stage 2, the retailer determines her ordered quantity
and the supplier decides his optimal capacity.

Stage 1. Negotiation on shared cost.

Let m be the shared cost for each ordered product in the cost-sharing
contract and let ~PR ¼ E

e
½ðpR � pSÞmin ðQ;lRþ eÞ� where Q� lRS,

then we have the retailer’s expected profit in binding pattern as
~PR � lRSm. Note that the retailer shares cost to bind her order only if
the profit in binding pattern is no less than that in unbinding pattern,

Forecasts demand 
Places soft-order

Forecasts demand Updates demand evaluation 

Retailer

Supplier Prepares capacity

Negotiate the 
cost-sharing rule

Evaluates the supplier forecasted demand 

t0 t1 t2 t3 t4

Fig. 4 Sequence of events in the coordination pattern
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i.e., ~P�
R � lRSm�P�

R: We name the constraint as “retailer’s binding
constraint,” which can be transformed as:

m�
~P�
R �P�

R

lRS
ð8Þ

When the retailer’s soft-order is bounded, the supplier’s capacity is
no less than the retailer’s order. Thus, let ~PS ¼ E

e
½ðpS � cÞmin

ðQ; lþ eÞ � ckQ� where Q�lRS, we have the supplier’s profit in
binding pattern ~PSþ lRSm. Simultaneously, the supplier will agree to
bind retailer’s soft-order only if his expected profit from binding is no less
than that in unbinding pattern. For a given ordered quantity lRS, the
supplier’s maximum profit in unbinding pattern is calculated by P�

S ¼
PS½Q�ðlRSÞ� (Eq. 7). Thus, we have ~P�

S þlRSm�P�
S. We name the

constraint as “supplier’s binding constraint,” which can be transformed as:

m�
~P�
S �P�

S

lRS
ð9Þ

Equations (8–9) give the retailer and supplier’s requirements on
binding the retailer’s soft-orders. Therefore, there exist two negotiation
results.
Negotiation result 1: soft-order is not bounded.
Based on Eqs. (8) and (9), we have m 2 u if ~P�

S �P�
S[P�

R � ~P�
R.

Therefore, the soft-order is not bounded under this situation, and both
the supplier and retailer make decisions in unbinding pattern.
Negotiation result 2: soft-order is bounded.
When ~P�

S �P�
S�PR

� � ~PR
�
, the supplier and retailer are able to

negotiate a value of shared cost m, where m 2
�

~P�
S�P�

S
lRS

;
P�

R� ~P�
R

lRS

�
. Because

both the supplier and retailer have their own private demand forecasts,
the cost-sharing rule is negotiated depending on their negotiation power
in the engineering chain. As suggested by Blodgett that the negotiation
power is proportionally linked with profit-sharing, we denote w, where
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w 2 ð0; 1Þ, as the supplier’s negotiation power and 1� w as the retailer

negotiation power, respectively. Let mS ¼ ~P�
S�P�

S
lRS

and mR ¼ ~P�
R�P�

R
lRS

, the

negotiated shared cost m�ðlRSÞ for each bounded product in the first
stage is written as m�ðlRSÞ ¼ mS þwðmR � mSÞ. Under the extreme
situation that the retailer dominates the engineering chain (i.e., w ! 1),
we have m�ðlRSÞ ! mR; otherwise, if the supplier dominates the engi-
neering chain, we have m�ðlRSÞ ! mS.

Stage 2. Order and capacity decisions.

In this stage, the retailer and supplier make decisions sequentially
based on the negotiation results at Stage 1.
Under negotiation result 1, the retailer and supplier make decisions in

unbinding pattern. Thus, their optimal solutions can be obtained based
on Corollary 1:

fl�RS;Q�g ¼
�
argmax

lRS

�
G0
�
pS � c� ck

pS � c

�
þEðl0Þ

�
;E½lSTðl�RSÞþ l�RS � l�RSTðl�RSÞ�

þG�1

�
pS � c� ck

pS � c

��

ð10Þ

However, under the negotiation result 2, the retailer has her order
bounded by sharing a cost m�ðlRSÞ for per unit of ordered products.
Thus, the supplier takes the retailer ordered quantity as lower bound of
his capacity.

1. The retailer’s decision.
Let P0

S ¼ E
e
½ðpS � cÞmin ðQ; l0Sþ eÞ � ckQ�, then the supplier’s

expected profit from the retailer’s belief isP0
Sþ lRSm

�ðlRSÞ. Therefore,
the supplier’s optimal reaction Q0� from the retailer’s belief can be
written as:

~Q0�ðlRSÞ ¼ argmax
Q

½P0
S þlRSm

�ðlRSÞ� ¼ argmax
Q

P0
S
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where P0
S ¼ E

e
½ðpS � cÞmin ðQ;l0Sþ eÞ � ckQ�

s.t. Q� lRS.

Corollary 2 For a given lRS, we have,

~Q0�ðlRSÞ ¼ max
�
lRS;E½T 0lRSþð1� T 0Þl0S� þG0�1

�
pS � c� ck

pS � c

��

Corollary 2 presents the supplier’s reaction from the retailer’s belief for
a given value of lRS. Let ~PR ¼ E

e
½ðpR � pSÞmin ð~Q0�ðlRSÞ; lRþ eÞ�, the

retailer’s expected profit can be written as ~PR � lRSmðlRSÞ. Therefore,
the retailer’s optimal ordered quantity ~l�RS can be calculated by Eq. (11):

~l�RS ¼ argmax
lRS

½ ~PR � lRSmðlRSÞ� ð11Þ

where ~PR ¼ E
e
½ðpR � pSÞmin ð~Q0�ðlRSÞ;lRþ eÞ�.

(2) The supplier’s decision.
After receiving the retailer’s order ~l�RS, the supplier updates his
forecasted demand to be lð~l�RSÞ according to Eq. (2). The supplier’s
expected profit becomes ~PSþm�~l�RS, and his optimal capacity ~Q�

can be written as:

~Q� ¼ argmax
Q

ð ~PS þm�~l�RSÞ ¼ argmax
Q

~PS

where ~PS ¼ E
e
½ðpS � cÞmin ðQ;lð~l�RSÞþ eÞ � ckQ�

s.t. Q� ~l�RS.
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Corollary 3. For a given ~l�RS, we obtain

~Q�ð~l�RSÞ ¼ maxf~l�RS;E½~l�RSTð~l�RSÞþ lSð~l�RSÞ � Tð~l�RSÞlSð~l�RSÞ� þG�1ðpS�c�ck
pS�c Þg

Equation (11) and Corollary 3 present the engineering chain decisions
when the soft-order is bounded. According to Eqs. (10–11) and
Corollary 3, the equilibrium solution of retailer’s soft-order, shared cost,
and the supplier’s capacity in coordination pattern are summarized as
follows:

fl�RS;Q�;ug if ~P�
S �P�

S[P�
R � ~P�

R
f~l�RS; ~Q�ð~l�RSÞ;m�ð~l�RSÞg if ~P�

S �P�
S�P�

R � ~P�
R

�
ð12Þ

Remarks: The retailer and supplier’s decisions under the two-stage
coordination process are calculated in Sect. 4.2. According to the retailer
and supplier’s binding conditions, it is obvious that both partners’
expected profits in the proposed contract are no less than those in a
decentralized pattern. Therefore, the two-stage coordination process is
acceptable by both the retailer and the supplier.

The retailer makes decisions based on her belief of l0S since the sup-
plier’s forecasted demand lS is unknown to her. Simultaneously, the
supplier makes decisions based on his evaluated market demand l, while
the real market demand is lR. Thus, the retailer and supplier do not
know their real expected profits when they make their individual deci-
sions. Since T , l0S, and e are random variables, an analytical study is
prohibitively complicated. Therefore, we provide an experimental study
to observe the roles that trust plays in decision making and examine the
performance of our coordination contact.

2.4 Experimental Study

To find the effects of the trust on engineering chain decisions and the
performance of the proposed trust-embedded cost-sharing coordination,
we set up several scenarios in our experiment. The conclusions are as
follows:
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1. Evaluating Trust
Observation 1. Many positive experiences are needed to gain trust,
but a few negative experiences will lead to a big loss of trust.
Observation 2. Trust-embedded coordination works since both the
retailer and supplier value trust differently.
Observation 3. The supplier’s negotiation power does not neces-
sarily mean profitability, i.e., a supplier’s strong negotiation power
might lead to a coordination failure.

The proposed trust-embedded coordination performs more efficiently
when market demand volume is large. Since demand information dis-
tortion and demand volume fluctuations over time are common in
industries, the proposed trust-embedded coordination is potentially
helpful in practice.

3 ATP-Based Flexible Order Allocation
Optimization in ATO Engineering Chain

3.1 Introduction

As a tool for enhancing the responsiveness of order promising and the
reliability of order fulfillment, the available-to-promise (ATP) has
increasingly attracted the attentions of the engineering chain managers
and researchers. It directly links available resources, including both
materials and production capacity, which affect the overall performance
of an engineering chain.
In the traditional order fulfillment processes, the manufacturer makes

order fulfillment plans after the arrival of new orders without considera-
tion of resources availability. It might result in a high risk for the order
fulfillments. In order to reduce the risk that some orders may not be
fulfilled, companies have to keep large amounts of inventory. The rejec-
tions of some strategic customer orders or the high-profit orders may cause
unbalanced usages of resources and ruin long-term interests. Therefore, it
is important to ensure a high customer service level and maximize the

10 Engineering Value Chain Coordination and Optimization 249



profits by optimally allocating the key components and limited produc-
tion capacity to the strategic customers or the high-profit orders.
From the current literatures (Xiong et al. 2003; Chen and Huang

2006; Yu-tao et al. 2008; Meyr 2009; Gao et al. 2012; Yang and Fung
2014) on available-to-promise and order fulfillment in engineering chain
areas, although there have been some achievements in the research of ATP
allocation and order fulfillment, the current literatures mainly focus on a
single factory in MTS (make-to-stock) engineering chain. Very few papers
consider the ATO and MTO engineering chain operation environment
for a manufacturer who has multiple factories located in different areas.
The study is also very limited on combining the ATP allocation model,
which considers the customer priorities, and order fulfillment model,
which is based on either batch orders or real-time orders. Based on the
pre-allocation ATP of production capacity and components engineering
capacity, we study an order fulfillment problem for a manufacturer with
multiple factories in the ATO engineering chain. The order fulfillment
models are established based on two kinds of order fulfillment mecha-
nisms, i.e., the batch order fulfillment mechanism and the real-time
order fulfillment mechanism. In the batch order fulfillment model,
we propose a hybrid policy combining re-delivery and product substitu-
tion. In addition, the resource ATP (production capacity ATP
and components engineering capacity ATP) searching rules are devel-
oped when the resource ATP is needed in the real-time order fulfillment
model.
We focus on the optimization of the order fulfillment processes for a

manufacturer with multiple production sites under the assemble-to-order
(ATO) environment. Based on the constraints between the resources
(production capacity and components) and customer demand priority
level, a pre-allocated ATP model is established for the ATO engineering
chain. Then, a batch fulfillment model (based on periodic operation) and
a real-time fulfillment model (based on real-time operation) are presented
by using the pre-allocated ATP results obtained from the pre-allocated
ATP model.
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3.2 ATP Pre-allocation Model

We consider a manufacturer, which has multiple factories and produces
multiple products that are sold in multiple areas at different prices. Under
the ATO engineering chain environment, the end products can be fin-
ished by simple assembling operations. And all factories can produce all
kinds of products. However, due to the different cost on production
equipment, labor, and other factors, the production cost and efficiency
for the same product are different among factories.
In order to better achieve the manufacturer’s development strategy and

more profits, we classify the forecasting demand of next planned period
into two levels according to historical sales data. An ATP pre-allocation
model is built to allocate the component ATP and production capacity
ATP for each demand level. Since that production is carried out only
after orders arrive in the ATO engineering chain. To simplify the model,
we assume that there is no initial stock of components and end products
in the manufacturer at the beginning. Without loss of generality, we
assume that the production lead time is assumed to be one period and
the production preparation time and cost are negligible. And the com-
ponents can be supplied at the beginning of each period.
The notations used in the ATP pre-allocation model are listed in

Table 1.
In order to handle the difference between forecasting demand and

actual demand in next period, we express the reserving rates of pro-
duction capacity and components as cp and mp, respectively. The value
of cp depends on the forecasting accuracy of demand quantity, while the

Table 1 Indices for ATP per-allocation
model

Indices Descriptions
f Set of factories (f 2 F)
m Set of components (m 2 M)
p Set of products (p 2 P)
t, s set of periods (t 2 T , s 2 T)
r Set of demand levels (r 2 R)
l Set of selling areas (l 2 L)
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value of mp depends on the forecasting accuracy level of demand for the
variety of products. Then, some variables used in the ATP pre-allocation
model are listed in Table 2.
Through the ATP pre-allocation model, the engineering plan, product

capacity pre-allocation plan, component re-allocation plan, reserving
product capacity plan, and reserving component plan can be obtained.
The decision variables are shown in Table 3.
A mixed-integer programming model can be used to describe the

re-allocated available-to-promise planning problem as follows:

max Y1 ¼
XT
t¼1

XF
f¼1

XL
l¼1

XR
r¼1

XT
s¼t

XP
p¼1

ðQatptflr sp � VlrpÞ �
XT
t¼1

XF
f¼1

XM
m¼1

Cmstofm �
�
Ietfmþ Ittfm

2

�

�
XT
t¼1

XF
f¼1

XP
p¼1

Cpstofp �
�
Ieptfpþ Itptfp

2

�
�
XT
t¼1

XF
f¼1

XL
l¼1

XR
r¼1

XT
s¼t

XP
p¼1

ðCtranflp � Qatptflr spÞ

ð13Þ

Table 2 Notations in the ATP pre-allocation model

Data Descriptions
Qslrp The total forecast demand quantity of product p coming from r demand

level during period s in selling area l
Vlrp The unit profit of product p supplied to the r demand level in selling

area l
uscapfp The consumed product capacity by factory f for making one unit of

product p
usmtrlpm The consumed component m quantities for making one unit of product

p
Captf The available product capacity in factory f during period t
Matltm The greatest supplied quantities of component m during period t by

vendor
Cmstofm The inventory cost of component m in factory f each period per unit
Cpstofm The inventory cost of product p in factory f each period per unit
Ctranflp The transportation cost of product p from factory f to selling area l per

unit
Ietfm The inventory of component m at the beginning of period t in factory f
Ittfm The inventory of component m at the end of period t in factory f
Ieptfp The inventory of product p at the beginning of period t in factory f
Itptfp The inventory of product p at the end of period t in factory f
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The first term is the profit derived from the anticipated sales based on
the forecasting demand. The second term represents the inventory
holding cost incurred for unused components when the component
usage is less than the available supply during each period. The third term
shows the inventory holding cost incurred for unsold products during
each period. The last term represents the transportation cost from each
factory to the demanding area.
The constraints on the pre-allocation resource problem for the each

demand level are given in the following. Constraints (14)–(15) represent
the demand restrictions. For the manufacturer, the production capacity
and the available component supply are limited. Constraint (14) shows
that the demand will be met as much as possible. The production
quantities in every factory during each period are represented in con-
straint (15). In ATP pre-allocated plans, to avoid the delayed distribu-
tion, the product will not be allocated to the previous demand; this is
represented by constraint (16).

Table 3 Decision variables in ATP pre-allocation model

Decision
variable

Descriptions

QPtfp The quantities of product p produced by factory f during period t
QatPtflr sp The quantities of product p supplied by factory f for the demand

in period s from r demand level in selling area l during period t
SDf sp The quantities of product p supplied by factory f for the demand

in period s
pre�Matptfr sm The pre-allocated quantities of component m supplied by factory f

for demand happened in period s from r demand level during
period t

pre�Catptfr s The pre-allocated quantities of production capacity supplied by
factory f for the demand in period s from r demand level during
period t

Pmatltfm The quantities of component m received by factory f at the
beginning of period t

mftfm The real reserved quantities of component m in factory f during
period t

cftf The real reserved quantities of production capacity in factory f
during period t
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Xs

t¼1

XF
f¼1

Qatptflr sp�Qslrp; 8s; l; r; p ð14Þ

QPtfp ¼
XL
l¼1

XR
r¼1

XT
s¼t

Qatptflr sp; 8f ; p; t ð15Þ

XT
t¼2

XF
f¼1

XL
l¼1

XR
r¼1

Xt�1

s¼1

Qatptflr sp ¼ 0; ð16Þ

Constraints (17)–(19) provide the production capacity restriction.
Due to the finite production capacity, constraint (17) shows that the
production quantities of each factory cannot exceed the available supply
quantities during each period. Constraint (18) represents the real
reserved quantities of production capacity. Constraint (19) gives the
pre-allocated production capacity policy for each factory during different
periods, which will be used by the real-time order fulfillment model.

XP
p¼1

ðQPtfp � uscapfpÞ�Captf � ð1� cpÞ; 8t; f ð17Þ

cftf ¼ Captf �
XP
p¼1

ðQPtfp � uscapfpÞ; 8t; f ð18Þ

XL
l¼1

XP
p¼1

ðQatptflr sp � uscapfpÞ ¼ pre� Catptfr s; 8t; f ; r; s ð19Þ

Constraints (20–23) represent the components’ restrictions.
Constraint (20) provides the procurement plan which can be used by the
batch order fulfillment model and the real-time order fulfillment model.
In constraint (20), the production component reserved rate mp is used to
balance the forecasting inaccuracy on product variety or the demand
fluctuations. Constraint (21) indicates that the procurement quantities
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for each type of components cannot exceed the available supply capacity
during each period. Constraint (22) gives the real reserved quantities for
each component type. The pre-allocated component ATP policy can be
obtained by constraint (23).

XP
p¼1

ðQPtfp � usmtrlpmÞ� ð1� mpÞ � Pmatltfm; 8t; f ;m ð20Þ

XF
f¼1

Pmatltfm �Mattm; 8t;m ð21Þ

mftfm ¼ Pmatltfm �
XP
p¼1

ðQPtfp � usmtrlpmÞ; 8t; f ;m ð22Þ

XL
l¼1

XP
p¼1

ðQatptflr sp � usmtrlpmÞ ¼ pre�Matptfr sm; 8t; f ; r; s;m ð23Þ

Constraints (24–28) give the inventory levels of each type of com-
ponent at the beginning and end of each period.

Ie1fm ¼ Pmatl1fm; 8f ;m ð24Þ
Ietfm ¼ Itðt�1ÞfmþPmatltfm; 8t� 2; f ;m ð25Þ

Ittfm ¼ Ietfm �
XP
p¼1

ðQPtfp � usmtrlpmÞ; 8t; f ;m ð26Þ

Iep1fp ¼ 0; 8f ; p ð27Þ
Ieptfp ¼ Itpðt�1Þfp; 8t� 2; f ; p ð28Þ

In addition, decision variables Pmatltfm, QPtfp, and Qatptflr sp are
integers and greater than or equal to zero.
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We assume that products have the same functions but with different
performances. Some customers would accept the substitution products if
they can obtain some compensation. When the resource ATP is in
shortage, the manufacturer can choose re-delivery order fulfillment policy,
product substitution order fulfillment policy, or high-demand-
level-priority order fulfillment policy to better meet customers’ demand.
The re-delivery order fulfillment policy shows that the manufacturer is
able to meet customers’ orders by two deliveries with the condition that
customers allow receiving the products by two deliveries for the order and
the quantity of the first delivery must meet the customers’ request. The
product substitution order fulfillment policy indicates that the manu-
facturer can meet customers’ demand by substituting products partly
when specified products are not available. The high-demand-level-priority
order fulfillment policy says that pre-allocated production component
ATP and capacity ATP for the lower demand level can be switched to
higher demand level. In terms of the responses to the customers’ orders,
there are two order fulfillment models: the batch order fulfillment model
and the real-time order fulfillment model.
In the batch order fulfillment model, all orders gathered during the

batch interval will be fulfilled, and fulfillment date and quantities for
each order will be given. The batch order fulfillment model can be used
to determine whether or not the order can be accepted by the manu-
facturer and whether or not we need to apply the re-delivery order
fulfillment policy or the product substitution order fulfillment policy,
and the detailed fulfilled plan.
To avoid the situation that the orders of the strategic customers or the

high-profit orders are rejected due to limited resources, in the real-time
order fulfillment model, the high-demand-level-priority order fulfillment
policy is adopted. With this policy, the higher level demand can use the
pre-allocated production component ATP and capacity ATP that are
already assigned to the lower level demand when the resource is in
shortage. This real-time order fulfillment model will search the produc-
tion capacity ATP along the backward time dimension, the demand level
dimension, and the selling areas dimension. And this model will search
the production component ATP along both forward and backward time
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dimension, the demand level dimension, and the selling areas dimension
when components are in shortage.

3.3 Experimental Study

The proposed models are verified and tested through an example of the
MP4 electronics manufacturing industry. The manufacturer has two
factories and produces four kinds of products that have the same func-
tions with different performances in two selling areas. The performance
sequence of the four products is, from low to high, P1, P2, P3, and P4.
In this paper, according to the customers’ importance, we divide the
customers into two levels and each level has a different priority.
To summarize, we can conclude the batch mechanism is better than

the real-time mechanism on the order fulfillment. However, in order to
response quickly, more and more manufacturers operate based on
real-time order fulfillment mechanism. In addition, before orders are
fulfilled, it is helpful for the manufacturer to optimize the pre-allocated
resource ATP plan. And, the manufacturer can reserve some resources
according to the inaccuracy of demand forecasting.

4 Conclusions

To remain competitive, firms must reduce operating costs while contin-
uously improving customer service by coordinating and optimizing the
overall engineering chain performances in the new business environment.
Currently, engineering chain management is complicated and has its own
special characters mainly reflected in two aspects. One is the random
information from customer orders and the complex relations among
engineering chain cooperators; the other is the outstanding relations of
collaborative benefits and risks in this complicated environment.
Therefore, we must probe the ways to respond to these characteristics and
analyses, the coordination mechanisms, and optimization approaches in
new business environment. We made a conjoint research of information
sharing, operational research and behavior research to adaptive
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coordination mechanism. As for modeling and optimization, we focus on
transferring orders to manufacturing and manufacturing customized
orders under the ATO engineering chain environment, which is specific
to fulfill the orders based on available production resources: materials and
production capacity. Some conclusions are drawn as follows:
Since decision makers’ feeling on trust is seldom studied in operations

management area, investigating trust in engineering chain information
sharing is meaningful. We first formulate a trust evaluation model based
on psychology and statistics theories. The proposed model analytically
explains that many positive experiences are needed to gain trust, but a few
negative experiences will lead to a big loss of trust. Because of information
asymmetry, both the engineering chain partners value trust differently and
the engineering chain performs ineffectively. A coordination contract with
a two-stage decision process is thereby proposed to coordinate the engi-
neering chain. At the first stage, the supplier and retailer negotiate the
cost-sharing rule. At the second stage, the retailer decides whether or not
to bind her soft-orders and her optimal ordered quantity, while the
supplier determines his optimal capacity. In order to maximize the sup-
plier’s expected profit, we find that there exists a crucial threshold of the
supplier’s negotiation power in negotiation, and strategically, making use
of negotiation power is helpful to avoid business failures.
According to the pre-allocated production capacity and components,

two order fulfillment models are formulated based on the batch pro-
cessing and real-time mechanisms. In both order fulfillment models, an
ATP searching method along the time dimension, the demand priority
level dimension, the product dimension, or the selling area dimension is
proposed when production capacity and components are in shortage.
Several numerical examples are used to illustrate the proposed models.
The experimental results show that the order fulfillment model with
pre-allocation ATP is better than that without ATP pre-allocation. As a
global optimization model, the batch mechanism is better than the
real-time mechanism on the order fulfillments. When resources are in
shortage, it is better to adopt the ATP searching method in the order
fulfillment processes.
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