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Abstract Fitting item response theory (IRT) models often relies on the assumption
of a normal distribution for the person latent trait(s). Violating the assumption of
normality may bias the estimates of IRT item and person parameters, especially
when sample sizes are not large. In practice, the actual distribution for person
parameters may not always be normal, and hence it is important to understand how
IRT models perform under such situations. This study focuses on the performance
of the multi-unidimensional graded response model using a Hasting-within-Gibbs
procedure. The results of this study provide a general guideline for estimating
the multi-unidimensional graded response model under the investigated conditions
where the latent traits may not assume a normal distribution.

Keywords Polytomous item response theory • Multi-unidimensional graded
response models • Hastings-within-Gibbs • Non-normal distributions

1 Introduction

Polytomous item response theory (IRT; Lord 1980) models are applicable for
tests with items involving more than two response categories. Polytomous responses
include nominal and ordinal responses. Ordinal polytomous responses, such as
Likert scale items (Likert 1932), are broadly used in many fields, including
education, psychology, and marketing. This study focuses on the graded response
model (GRM; Samejima 1969), the most widely used IRT model for polytomous
response data (e.g., Ferero and Maydeu-Olivares 2009; Rubio et al. 2007).
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In many circumstances, multidimensional IRT (MIRT; Reckase 1997, 2009)
models are adopted when distinct multiple traits are involved in producing the mani-
fest responses for an item. A special case of the MIRT model applies to the situation
where the instrument consists of several subscales with each measuring one latent
trait, such as the Minnesota Multiphasic Personality Inventory (MMPI; Buchanan
1994). In the IRT literature, such a model is called the multi-unidimensional (Sheng
and Wikle 2007) or the simple structure MIRT (McDonald 1999) model and is the
major focus of the study.

The multi-unidimensional GRM applies to situations where a K-item instrument
consists of m subscales or dimensions, each containing kv polytomous response
items that measure one latent dimension. With a probit link, the probability that
the ith (i D 1; 2; : : : N) person contains a Likert scale response with c categories
(c D 1; 2; : : : ; Cj) for the jth (j D 1; 2; : : : K) item is defined as

P.Yvij D cj�vi; ˛vj; ıj/ D ˆ.˛vj�vi � ıj;c�1/ � ˆ.˛vj�vi � ıj;c/

D
Z ıj;c

ıj;c�1

�.zI ˛vj�vi/dz; (1)

where ˆ.�/ and �.�/ are the standard normal CDF and PDF, respectively, z is a
standard normal variate, ˛vj and �vi denote the item discrimination and the person’s
latent trait in the vth dimension (v D 1; 2; : : : ; m), and ıj;c denotes the item threshold
parameter for the cth response category of item j (Samejima 1969), the latter of
which satisfies

�1 D ıj;0 < ıj;1 < : : : < ıj;Cj�1 < ıj;Cj D 1: (2)

From a theoretical perspective, latent trait distributions in the IRT literature
are often assumed to be normal. Therefore, some common estimation methods,
such as marginal maximum likelihood and Bayesian techniques, are developed
assuming normal latent traits. However, in some psychological instruments, such
as depression and anxiety tests, the population latent traits may follow a non-
normal distribution. Research has shown that violating the assumption of normality
may bias the estimates of IRT item and latent trait parameters (e.g., Sass et al.
2008; Reise and Revicki 2014). In the literature, studies have been conducted
to investigate item and person parameter recovery in estimating unidimensional
dichotomous (e.g., Kirisci et al. 2001; Sass et al. 2008) and unidimensional multi-
group dichotomous (e.g., Santo et al. 2013) models, where the latent trait follows a
non-normal distribution. However, little has been conducted to investigate parameter
recovery in estimating multidimensional polytomous models in this regard.

In view of the above, this study focuses on investigating parameter recovery of
estimating multi-unidimensional GRMs when latent traits are either normal or non-
normal. Specifically, different distributions of person parameters are adopted, and
the performances of estimating item and person parameters using Hastings-within-
Gibbs (HwG; Kuo and Sheng 2015) are compared. The remainder of the paper is
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outlined as follows. In Sect. 2, the HwG estimation is introduced. The simulation
study is described and the results are discussed in Sect. 3. Finally, the conclusion for
this study is summarized in Sect. 4.

2 Hastings-Within-Gibbs Estimation Procedure

For the past two decades, fully Bayesian has gained an increased popularity due to
improved computational efficiency. There are two types of fundamental mechanisms
among the Markov chain Monte Carlo (MCMC) algorithm: Gibbs sampling (Geman
and Geman 1984) and Metropolis-Hastings (MH; Hastings 1970; Metropolis and
Ulam 1949). Gibbs sampling is adopted in situations when the full conditional
distribution of each parameter can be derived in closed form. If any of the full
conditional distribution is not in an obtainable form, MH can be used via choosing
a proposal or candidate distribution by the current value of the parameters. Then
a proposal value is generated from the proposal distribution and accepted in the
Markov chain with a certain amount of probability.

Hastings-within-Gibbs (HwG) is a form of the hybrid between Gibbs sampling
and MH and has proved to be useful for complicated IRT models, such as
GRMs. In the literature, Albert and Chib (1993) proposed a Gibbs sampler for the
unidimensional GRM model. Cowels (1996) proposed a HwG procedure by using
an MH step within the Gibbs sampler developed by Albert and Chib (1993) for
sampling the threshold parameters to improve mixing and to accelerate convergence.
Kuo and Sheng (2015) extended Cowles’ approach to the more general multi-
unidimensional GRM.

3 Simulation Study

To investigate parameter recovery of the HwG procedure in situations when latent
traits are not normal, a Monte Carlo simulation study was carried out where tests
with two subscales were considered so that the first half measured one latent trait
(�1) and the second half measured the other (�2).

3.1 Simulated Data

In the study, three factors were manipulated: sample size (N), test length (K), and
intertrait correlation (�). The choice of N, K, and � was based on previous studies
with similar models. For example, when investigating multidimensional GRMs, Fu
et al. (2010) adopted N D 500; 1000, K D 10; 20; 30, � D 0:1; 0:3; 0:5; 0:7; 0:9 for
dichotomous items and N D 1000, K D 20, � D 0:2; 0:4; 0:6; 0:8 for polytomous
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items involving three categories. Working with dichotomous multi-unidimensional
models, Sheng (2008) adopted N D 1000, K D 18, � D 0:2; 0:5; 0:8 in the
simulation studies, while Sheng and Headrick (2012) adopted N D 1000, K D 10,
� D 0:2; 0:4; 0:6. Wollack et al. (2002) conducted simulation studies with nominal
response models, and they observed that parameter recovery was improved by
increasing the test length from 10 to 30 items but that increasing the test length
from 20 to 30 items did not produce a noticeable difference. Consequently, with
our study, N polytomous responses (N D 500; 1000) to K items (K D 20; 40)
were generated according to the multi-unidimensional GRM, where the population
correlation between the two latent traits (�) was set to be 0:2; 0:5, or 0:8. Each item
was set to be measured on a Likert scale with three categories so that two threshold
parameters were estimated for each item. The item discrimination parameters ˛v

were generated randomly from uniform distributions so that ˛vj � U.0; 2/. The
threshold parameters ıj1 and ıj2 were sorted values based on those randomly
generated from a standard normal distribution, i.e., ıj1 D min.X1; X2/ and ıj2 D
max.X1; X2/, where X1; X2 � N.0; 1/.

The person parameters of the first dimension (�1) and the second dimension
(�2) were generated based on the Method of Percentile (MOP; Koran et al. 2015)
Power Method transformation. The MOP transformation was developed to generate
multivariate distributions with specified values of median, interdecile ranges, left-
right tail-weight ratios (a skewness function) and tail-weight factors (a kurtosis
function) for each distribution, and the pairwise correlations.

To generate �1 and �2 using the MOP transformation, �1 were generated from a
standard normal distribution, and �2 were generated from one of the following four
distributions: (1) skewness D 0, kurtosis = 0 (Dist. 1), (2) skewness D 0, kurtosis D
25 (Dist. 2), (3) skewness D 2, kurtosis D 7 (Dist. 3), and (4) skewness D 3, kurtosis
D 21 (Dist. 4). The correlation between �1 and �2 (i.e., the true intertrait correlation,
�) was set to be 0:2; 0:5, or 0:8. Note that the skewness and kurtosis considered in
each of the four distributions are conventional values and they can be transferred to
left-right tail-weight ratios and tail-weight factors in order to implement the MOP
transformation technique (see Koran et al. 2015).

Harwell et al. (1996) suggested that a minimum of 25 replications for Monte
Carlo studies in IRT-based research is needed in order to obtain a better accuracy.
Therefore, this study carried out 25 replications for each scenario, where root-mean-
squared differences (RMSDs) and bias were used to evaluate the recovery of each
item parameter. Let � denote the true value of a parameter (e.g., ˛vj or ıj;c) and O�r

is the estimate in the rth replication (r D 1; : : : ; R). The RMSD is defined as

RMSD� D
sPR

rD1. O�r � �/2

R
; (3)

and the bias is defined as

bias� D
PR

rD1. O�r � �/

R
: (4)
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The 10% trimmed means of these measures were calculated across items to provide
summary statistics.

3.2 Results

Tables 1, 2, 3, and 4 display the results of the simulation study under the twelve
test situations. The results indicated that the HwG procedure had an overall better
estimation when �2 followed a normal distribution. The non-normality of �2

affected the accuracy of estimating ˛2. Specifically, distributions 2–4 had overall
larger RMSDs of ˛2 than distribution 1 (normal). ˛1 had similar RMSDs across
these four distributions when � D 0:2 or 0.5. However, the non-normality of �2 had
more influence on estimating ˛1 when the two dimensions were highly correlated
(i.e., � D 0:8). On the other hand, the performance of estimating ı was affected
more by skewness than kurtosis. Specifically, even though distribution 2 had the
heaviest kurtosis, its RMSDs for estimating ı were smaller than those from skewed
distributions (i.e., distributions 3 and 4). The estimation of � was sensitive to both
skewness and kurtosis. Distributions 2–4 had larger RMSDs in estimating � than
distribution 1. A further comparison of its RMSDs under the four distributions
indicated that they were similar when � D 0:2 but became more different when
the actual correlation was higher (i.e., 0.5 or 0.8).

Posterior estimates for the person parameters (�1 and �2) were also obtained and
correlated with their corresponding true values. Tables 1, 2, 3, and 4 summarize
all the correlation results, where r.�1; O�1/ and r.�2; O�2/ represent the correlations
between the posterior estimates ( O�) and their corresponding true values (�) for
dimensions 1 and 2, respectively. The results indicate that �1 was estimated fairly
well due to the satisfaction of normality assumption. On the other hand, the
estimation of �2 was affected by kurtosis more than skewness, as distribution 2
had an overall lower r.�2; O�2/ than distribution 3 (less kurtotic but more skewed).
However, extreme skewed distributions (i.e., distribution 4) had an overall lower
r.�2; O�2/ than distributions 2 and 3. In addition, a comparison of K D 40 and
K D 20 for the same sample size conditions (i.e., Table 2 vs. Table 1 and Table 4 vs.
Table 3) indicates that the former had consistently larger r.�2; O�2/ values than the
latter. This suggests that the accuracy of estimating �2 improved with the increase
in test length regardless of its distribution.

Further, it is found that an increase of sample size can improve the accuracy of
estimating model parameters. For example, with the test length of K D 20, the
RMSDs of estimating ˛, ı, and � when N D 1000 were in general smaller than
those when N D 500, especially when the true intertrait correlation was higher.
One shall note that when � D 0:2, larger sample sizes helped reduce the RMSDs
of ˛2 when �2 was non-normal. This is however not observed with � D 0:5 or
0:8. In terms of estimating � , larger sample size tended to increase the accuracy of
estimating �1. This pattern is only observed when estimating �2 in distributions 2
and 3 when � < 0:8.
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4 Conclusion and Discussion

In general, with the use of Monte Carlo simulations, this study demonstrates that
departure from normal distributions for the latent traits in the multi-unidimensional
GRM does affect the accuracy of its parameter recovery. This is in line with
findings from previous studies with unidimensional IRT models (e.g., Sass et al.
2008; Reise and Revicki 2014). Specifically, what we found in our study are that
skewed distributions would affect more on the accuracy in estimating the item step
parameters and that kurtotic distributions affect the estimation of person parameters.
In situations where not all latent traits are normally distributed (such as what
was considered in the simulation study), the non-normal shape associated with
a few latent traits would affect the estimation of parameters in other dimensions
when the intertrait correlation is moderate to high. As non-normal latent trait
distributions are common in many polytomous response items, and examples of such
instruments include mental tests, business satisfaction, cross-cultural differences,
etc., one needs to be aware of the shapes of latent trait distributions before fitting
the model to actual data. However, such information may not always be available in
practice. It is hence important to find alternate solutions, such as using a more robust
estimation method or a non-normal prior distribution. In addition, this study shows
that increased sample size and/or test length can help improve the estimation of
the multi-unidimensional GRM parameters. This finding not only confirms results
from previous studies dealing with normal latent trait(s) (e.g., Linacre 2002; Sheng
2010; Kuo and Sheng 2015; Wollack et al. 2002) but also extends to situations
where the latent traits are not normal. One may consider reducing the effect of non-
normality by increasing sample size/test length under the non-normal conditions.
The minimum number of persons/items necessary to reach a desired level of
accuracy can be an interesting study that requires further investigation.

This study focuses on Likert scale items involving three scales, and therefore
two threshold parameters need to be estimated for each item. Further study can
evaluate the estimation of these procedures using items with more than three scales
or with different numbers of scales. In addition, this study investigates the effects
of non-normal latent traits using the HwG estimation method. Further study can
include other estimation techniques, such as marginal maximum likelihood (Bock
and Aitkin 1981) and Metropolis-Hastings Robbins-Monro (Cai 2010a,b). Lastly,
the simulation study adopted 25 replications due to the computational expense of
the MCMC procedures. Further studies can consider more replications to achieve a
better accuracy.
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